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PREFACE

Like a feu others before me, I must admit that my dissertation did not

turn out exactly es planned. lly original idea utes to urite a

"definitive" text on cement rau materiels, discussing applications of

geostatistics, mathematical programming, statistics and data analysis,

process engineering, chemistry, geologyr ahd mining engineering, roughly

in decreasing order of emphasis. Houeverr after I had rritten over tuo

hundred pages just on the subject of "condi tional simulation of

coregionalization" -- a subset of the field of geostatistics --

realized that to cover nry uhole list of topics in comparable detail, t

tould have to spend perhaps another three or {our years at Stanford and

urite perhaps another tuo thousand pages. Lacking sufficient conmitment

to undertake such a task at graduate-student reg€sr I decided to

restrict ny dissertation research to appl ications of conditional

simulation of coregionalization and simply devote ny subsequent career

to tackling the remaining issues. Fortunately, conditional simuletion

has a great deal of untapped potential for applications in the cement

industry, as I hope the folloning pages uill demonstrate.

Financial support for this dissertation ras provided largelV by a

grant from Exxon [.linerals Company. Additional support uas furnished by

the Stanford Geostatistics Progran and by the Dean and Dorothea ncGee

Fund of the stanford school of Earth sciences. The fol louing

individuals also provided much direct assistance in the completion of



this project: my patient and hard-uorking adviserr Andre Journelr uhose

influence can be found on nearly every page; the members of my proposal,

reading, and defense committees, and particularly llike Davisr uho

pointed out a multitude of inadequaeies in Chapter 3; and Ron Gebhardt

and Charles Yost of Lehigh Portland Cementr rho made numerous

suggestions for the improvement of Chapter 2 and urho arranged for

release of the excellent data set used in Section 4.2.

This dissertation is dedicated in nemory of my father and of

ilrs. N. H. Davisonr rho gave me my first zscience,, book as soon as I uas

old enough to read the uords.



ABSTRACT

llodern cement plants commonly rely on homogenization and proportioning

facilities to reduce the natural variabitity of incoming rar materials

and to blend different naterials into plant feeds satisfving strict

chemical specifications. To deterrnine apPropriate designs and

capacities for such facil ities, plant designers must knou the

statistical behavior of each rau material arriving at the Plant.

Houever, il the quarries have not been opened V€tr or if historical date

on rap-naterial quality have not been kept, or if the materials to be

quarried in the future differ appreciably from those used in the past,

then only data extracted {rom exploratory drilling of the materials in

the ground uill be available.

Fortunatel y, useful information can be obteined by combining

conditional simulations of the deposits to be mined uith simulations of

likely mining procedures. A conditional simulation of a nineral deposit

consists of a large set of sirnulated rau-material analyses distributed

among the nodes of a fine tro- or three-dimensional grid covering the

region of the deposit that is to be mined. These simulated data should

possess all statistical properties, including spatial properties, that

are suggested by the availeble data from the real deposit; furthernore,

they shoutd equal the data obteined fron the real deposit at actuel data

locations. The output of a mining simulation applied to a simulated

deposit is a time-series simulation of material compositions that rnimics

- Yll -



the statistical behavior

plant in the future.

lmproved methods have

geological ly real istic

coregional ized, data such

been used to simul ate

currentl y being mi ned

of the real naterials to be delivered to the

been developed for creating statistioally end

conditional simulations of nultivariater ot'

as complete rock analyses. These methods have

chemi cal anal yses of tuo I inestone deposi ts

for cement manufacture. Simul ations of

alternative mining and homogenization procedures applied to one of the

simulated deposits il lustrate hou conditional simulations can be

employed to select the best mining and homogenization procedures before

mining of the deposit has actually begun.
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Chapter I

I NTRO DU CT I ON

This is a dissertation in Applied Earth Sciences. For any uork to be

"applied", it must be dedicated to the solution of a Practical problem.

The problem to be addressed here is hon to characterize and deal lith

the variabilitv of rau materials used for the nanufacture of portland

cement. This is not a neN problem, but it is beooming nore serious:

The general character o{ the formation }lith uhich one is
dealing must be determined in order to formulate proper plans
for prospecting. It is positively a nistake, although not as
serious, to drill 50 prospect holes in a property uhere marked
uniformity prevailsr if l0 holes uould be sufficientr a3 to
drill only l0 in a region of variable rocks uhere 50 are
necessary to forn an adequate picture of the situation. The
uriter has observed mistakes of both kinds. ta. L. t'liller,
1934, p. 301

The complexities of both process and equiPment uill dictate an
ever-increasing demand for highly qual ified personnel and
staff. The geologist can no longer simply determine
the quantity and grade of basic oxides and alkalies. The
analysis nust include the determination of variations
Itt. t'l.8arrett, 1976, p. l6l

Therefore, there is clearly a basic requirement for a tlo tier
geological survey to include:

t. A prel iminary investigation lhich establ ishes the
particular deposit to be utilised and subsequently quarried.

2. A nore detai led study uhich lould
provide the requisita process design data and information.
Present practice ui thin the cement industry tends to
concentrate al I the avai I abl e effort end resources on the
prel iminary investigation Point 2 abover ol though
regarded as important, cannot be justified on a cost basis by
the industry. . Such costs cen be justi f ied by
considering, that as the industry is essentially moving nore
touards the utilisation of progressively louer grad€ t"€s€FVOST
there is a corresponding increase in the probability of a
cement uorks being designed, built and onstream that is
incapable of producing cement to the specification originallv



envisaged, due essential ly to the inadequacies of the raN
materiel . assessment. In the author'e opinion (in the
context of the totally inadequate nethodology adopted uithin
the industry for orebody quality characterization) such an

event uill take place, and although undesirable nay uell have
to occur before the necessary shift of cost emphasis {rom
quantity to qual itv considerations
lc. G. Schofield, l9E0' p.2001

is forthconing.

B. L. l'lil lerr e pioneer in the appl ication of geological science to

the study of cement rau materials, recognized fifty years ago that those

of us uho make a living assessing the suitability of ran naterials for

cement manufacture sometimes do not adequatelY take the variability of

those materials into consideration in our assessments. Our shortconings

in this regard have become nore serious as the technology of cement

making has become more sophisticated and more dependent on uniform

ran-material feeds. The second and third quotes above' by contemporery

cement process-design engineers, make it clear that these shortcomings

have been noticed. Nevertheless, cement managers and plent designers

rarely ask geologists for more than an eccounting of the total reserves

and an impression of the g.ele.S. characteristics of their rau materials.

possibly no further information is sought sirnply because no further

information is believed to be obtainable.

This dissertation demonstrates that useful information on

rau-material variability gan be obtained, using the same types of data

(mainly dril I ing data) that cernent geologists have traditional ly used

for determining only the averege compositions of their rau materials.

Such information can be particularly valuable if ne uish to construct a

neu cenent plant on a "greenfield" site, using o€llr Previously

unquarried rau material s. Plant designers nrust decide uhether to

construct a preblending system to smooth out the variability of those
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rer,r materials as they are delivered to the nel plant; then they may need

to decide lhat kind of system it should be and hou big it should be.

euantitative information for making these decisions cen be obtained lith

the methods described in the follouing chapters.

Chapter 2 provides a revieu of eement-making processes and the types

of information that are inportant in the characterization of cement rau

materials. Chapter 3 contains a summary of basic "geostatistical"

concepts, uhich ere the basis for characterizing rau-material

variabi I ity, and provides a detai Ied exposition of the methods and

practices of "conditional simulation of coregional ization", a

geostatistical technique particularly uell suited to cement Problems.

Chapter 4 contains tuo cement-releted case studies i I lustrating the

methods of conditional simulation and some of its applications in mine

planning and plant design. Chapter 5 offers some final comments about

the costs of sinulation studies, the types end amounts of data that are

neededr and the criteria that should be used to decide rhen a simulation

epproach is uarranted.





Chapter I I

PORTLAND CEI.IENT AND CEI.IENT RAI.I T1ATERIALS

This chapter briefly sumnarizes some fundamentals of cement conposition

and manufacture, and describes the methods used for evaluetion'

selection, and quality control of cement rau materiels. For readers

rishing to learn nore detai ls about these subjects, the fol louing

sources are recommended. Bye (1983) provides a short, up-to-date

introduction to al I phases of cement technology, uritten fron a

materials-science vier.rpoint. l'lore detailed revieus of individual

top'ics, including extensive bibliographies' are provided in a large

volume edited by Ghosh (1983)r ahd by Duda (1977). Schofield (t980)

discusses the state of the art in homogenizetion, proportioning, and

process-control systems for cement rau materials' and includes a tealth

o{ useful references. Lea (1971) provides an exhaustive account of

cement and concrete chemistry. Tro useful European journals, usually

providing several articles of rau-naterials interest each yearr aFe

llorld Cement (U.K.) and Zement-Kalk-Gips (Gernany). 0ccasional ly

something of interest also appears in the less technical American trade

journals Rock Products and li:! and 0uarrvr ard in the proceedings of the

IEEE Cernent Industry Technical Conference.

-5-
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2 .l PoRTLANO cEllENTs gELLt{LLI-9.XS AND SPEOIFIcATI0NS

Portland cement -- a hydraulic cement produced by pulverizing
cl inker consisting essential ly of hydraul ic calciurn si I icates'
usually containing one or more of the forms of calcium sulfate
as an interground addition. IASTt'l' 1964, p. t56l

Portland cement may be defined . as a product obtained by
intimatelv mixing together calcareous and argillaceous' or
other sil ica, alumina, and iron-bearing materials, burning
them at a clinkering temperaturer ahd grinding the resulting
cl inker. ILea, 1971, p. l3l

The term,tportland cement" is a generic name for the nost conmon of

several varieties of hydraulic cement used to manufacture concrete for

construction purposes. lt is usually produced by blending together

calcareous and argillaceous ran materials, such as linestone and clay'

then grinding the blended materials to a Po1der, then "burning" the

ground material in a kiln at a temperature sufficient to recombine the

nonvolatile constituents into a nixture of several neu compoundsr ihd

finally grinding the resulting clinker together uith a small amount of

gypsum. (The gypsun is added primarily to co,ntrol the rate at uhich the

concrete hardens.) The product is a gray pouder that reects utith uater

to forn a hard crystalline cementing naterial. A typical portland

cement might have the follouring chemical composition (Lea' 1971, P. l6):

Si0z AlzOs FezOg CaO t1g0 S0 s

1.4 2.1

0ther T0TAL

1.9 100.022.0 5.5 3.0 64. I

l'tineralogical ly, a good-qual ity Portland cement consists mainlv of

the compoundst (CaO)o'Si0a or C35, (CaO)2'Si02 or C2S, (CaO)s'Ale0s or

r The follouring abbreviated chemical notation, in common use in the
cement industry, r,ti I I be used in this chapter: S=Si0z, A=Al zos,
F=Fez0r, C=Cao I S=S0a, i,l=l'190, K=K20, N=Na20, H=Ha0. (An overbar,
rather than an underscore, is nornally used in the abbreviation for
Sgs. gverbars are not available in the character set used to print
this dissertation. )
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C3A, a ferrite similar to (CaO)1oAl203oFe203 or CIAFr ahd either gypsum

(CaOrS0s.(HzO)2, or CSHz) or a mixture of gypsum and anhydrite (CaOoS03,

or CS). The major inpurities usually are 1190, Yarious compounds of

Na20, K20, and S03r ard some {ree CaO. The clinker compounds typically

occur as poorly crystal I ized sol id solutions that may deviate

considerabl y from the ideal formul as above. They are general I y

interspersed uith Slassy material formed during the quenching of the hot

cl inker. For this and other technical reasons, it is difficult to

obtain an accurate quantitative mineralogical (rnodal) analysis of a

cement. Hence it is common practice to represent the composition of a

cement in terns of a set of "potential" (norrnative) compound

compositions calculated from a complete chemical analysis of the cement'

in the same manner that normative mineral compositions are obtained for

igneous rocks. The,'Bogue equations" (Bogue, 1955, Chapter l0), derived

belourr dFe the most commonly used formulas for calculation of normative

mineral compositions of cements and clinkers. These equations are

I isted in Table l, in the sl iShtly modif ied f orm given in ASTI'I

Specification C 150 (ASTf'l' 1984, pp. l5E-159).

Table I lists several chemical specifications that are commonly

imposed on the tuo most common types of portland cement used in the

United States. Additional ohvsical specifications on the product rill

not be discussed here, as the physical properties of cements ere

determined primari ly by the manufacturing process end are thus

unimportant in a discussion of ralt materials. Sone of the

specifications listed in Table I are promulgated by ASTt'l (in the United

States)r som€ are more commonly imposed by individual manufectuf€FSr and



TABLE I

Sone common cement specifications
describe the compositions

and other functions used to
of portland cenents.

SPECIFICATION

Bogue CgS

Bogue CzS

Bogue C3A

Bogue CqAF

Si 02

Al 203

Fea0o

llg0

Sos

Al kal i es

sl.l

Atl

LSF C/

in cement)

7.6 S - 6.718 A

- 2.852 S

0. 7544 CsS

1.692 F

Typical I imits forr
Type I Type II

s55 c50

( 2.E S + l.l8 A +

*<E
(see F)

* )20.0

* ( 5.0

* ( 6.0

* ( 6.0

r ( 3.0

( 0.60

2. 6-3. t

1.3-1.7

0.E8-0.91

FORI'IULA
(ueight 2

4.07t c -
- 1.43 F

2.867 S -

2.65 A -

3.043 F

s

A

F

tl

s

N + 0.658

s/(A+
A/r

K

F)

* ( 6.0

*(3.5

( 0.60

2.3-2. 8

1.3-2.3

0.65 F ) 0.91-0.96

NOTES: 0nly specifications that may be important in judging the
suitabilitv of rau materials are included here.

Type I portland cement -- general-purpose cement
Type II portland cement -- cement lith moderate sulfate

resistance or moderate heat of hydration

Spec i f i cat i ons marke d by zxtt are ASTI'I Standard Chemi cal
Requirements, applicable to TyPe I or Type Il cenents
produced in the USA' from ASTII SPecif ication C 150.
0ther specifications are nore conmonly imPosed by cement
producers or customersr 8hd may vary greatly among plants.



others may be required by goyernment agencies or custoners.

rationales underlying these specifications ere briefly summarized in

fol I or.ting paragraphs.

The Booue equations. To obtain a normative mineral composition o{ a

cement from an analysis of Si02, A1203, Fe203, CaOr artd S03r ue sinply

assume that these five chemical conponents ere allocated among the

folloning five phases: C3S, C2S, C3Ar C1AF, and Cg.2 Thus the total

Fe203 reported in the analysis consists entirely of the Fe203 that makes

up 32.862 by ueight of stoichiometric CrAFr is this is the only phase

containing Fez0g; the A1203 in the analysis contributes 37.73't of the

CsA and 20.982 of the CrAF; and so on for the other oxides. If ue

represent the normative composi tion of the cl inker by the vector

N'=[CaS,C2S,C3A,C1AF,CSl and the chemical composition by Xt=lS,A,F,C,Sl,

ute can easily set up a matrix l'l to transform a nornative analysis into a

chemical analysis, i.e. :

9

The

the

S

A

F

c

s

X=l'lN

0.263t 0.3488 0 0

0 0 0.3773 0.209E
0 0 0 0.3286

0.7369 0.65,|2 0.6227 0.46t6
0000

adds to '1.0' so that:

+F+C+S=CsS+CzS+ C3A+C1AF+C$

0

0
0
4t t9
588 I

CsS
czs
crA

Cq AF
cs

Each column of l'l

s+A

2 Bogue (1955) adjusts his total
beginning his calculations,
directly into his equations.

to account for C! before
incorporating S and CS

Ca0 dounrard
rather than
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lnverting l.t, re obtain a

incorporated (uith more or

Standard C 150 (ASTt1, 1984,

matrix 11-l of Bogue coefficients, thich are

I ess roundof f than provided bel ou) into ASTt'l

P. 158):3

N = n'r x

csS
czS
CsA

ClAF
cs

3 A different set of
phase composi tion,
is less than 0.64.

72 - t.43 4.A7
07 1.08 -3.07
65 -1.69 0

3.04 0

00

-7. 60
E. 60

0
0
0

-6.
5.
2.

0
0

-2.65
2. r5

0
0

r.70

s
A

F

c

s

If ue multiply the,,typicalz chemical composition on page 6 by M-r, ue

obtain the f ol lor.ring "typical', Bogue compositions for a poriland cement:

CaS=46.5, CaS=28.0, C3A=9.5r ClAF=9. l, CS=3.6. This approximates a

Type I cement according to Table l. Cg normally is not reported; sulfur

actually occurs in several compounds ranging from c! to cSHa in a

typical cement.

CsS is the essentiel inEredient needed to provide high early strength

in a concrete. ccA and cqAF also appear to contribute to early

strength, uhereas c2S appears to provide sloner gains in strength.

Although cements very high in silicates tould provide high strength,

they uould be prohibitively expensive to manufacture because the mixes

uould have to be burned at very high temperatures to form the silicates.

Nevertheless, the contents of c3A and crAF must be limited in some

applications. CsA produces a high heat of hydration at early ages that

is undesirable in nassive concrete structures, and concretes nrade rith

high-C3A cements have a lou resistance to attack by sulfates in their

equations, based on different assumptions about the
is used in Standard C 150 if the teight ratio A/F
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environment. CrAF end other iron-bearing phases are dark-colored and

thus must be severel y I ini ted in uhi te cements used for some

architectural appl ications.

Ratios (moduli). Ratios betleen linear cornbinations of oxides have

become popular for clinker quality control. Although a beuildering

array of ratios (ttith conflicting formulas and names) has been proposed,

the three most conmonly used ratios appear to ber

Silica modulus = Slt = S / ( A + F )

Alumina modulus = Al,l = A / F

Lime Saturation Factor = LSF = C / ( 2.S s + l.lg A + 0.65 F )

llixes rith lou Sl'l and LSF are more ,'burnablerr; i.e., cl inker compounds

tend to form at louer tenperatures, requiring less fuel consumption. A

nix lith higher Sl'l uill produce a clinker having a relatively higher

content of silicates (C35 and C2S) versus aluminate and aluminoferrite

(C3A and CIAF). l'lixes uith high At't uill produce clinker nith a larger

proportion of CsA to CrAFr ahd nixes uith high LSF rill yield higher

ratios of C3S to C2S. LSF uas originally derived so that LSF=|.0

represented "the maximum lime content that can be present uithout free

lime appearing at the clinkering tenperature in equilibrium nith the

liquid present" in the quaternary system S-A-F-C (Lea, 1971, p. t64).

Impurities and 0ther Constraints. l'laximum levels of l'lg0r S03r 6nd in

some cases alkel ies (conmonly expressed es soda equivalent,

Na20 + 0.658 K20) are imposed on cements, and specific types of cement

(particularly Type II -- see Table l) are tightly constrained in their

contents of other oxides and potential compounds. undesirably high

levels of l1g0 and alkalies are particulerly common in limestones and
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shales, respectively, and ere among the most common reasons uhy specific

limestone and shale deposits are rejected in the early stages of

exploration for cenent rau materials. Particles of periclase (l,lg0)

occurring in a cement may undergo a slou hydration leading to long-term

unsoundness of the concrete' and alkalies in the cenent may react xith

some types of siliceous aggregates to produce long-term expansion and

cracking of the concrete.

2 .2 CEI'IENT I1ANUFACTUR I NG

The cenent nanufacturing process (Figure l) can 
-be 

divided into five

successive steps: (l) mining and crushing of the individual rall

naterials; (2) homogenization and proportioning of the reu naterials;

(3) grinding and homogenization of the rar mix; (4) dehydration,

calcinationr ahd sintering of the rau nrix in a kiln system, folloued by

rapid cooling of the resulting clinker; and (5) grinding of the clinker,

usual ly uith addition of gypsum or I gypsum-anhydrite blendr ahd

possibly urith addition of other special-purpose additives. The means by

uhich these steps are carried out may yary greatly among different

plants, and in many plants there is some overlap among the steps. The

underlying principles and major operations involved in each Btep are

described briefly in the folloring sections. This description is rather

nontraditional, strongly emphasizing the second step of the process'

rhere the methods to be developed in this dissertation can be most

profitably appl ied.
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2.2,1 l'lininq and Crushinq

Cement plants are usually located in one of tuo ereas: near the primary

source of rar naterials, or near the primary market for the cement.

Total transportation costs for rau meterials and product are usually

loner if the plant is located nearer the rau materials. This

alternative avoids the costs of transporting noisture, combined uater,

carbon dioxide, and components eventual ly discarded as uaste dust

(explained belou) -- al I of uhich are present in nost of the rar.l

naterials, but not in the product.

llost cement plents are suppl ied by at leest tuo nearby mining

operations: a large quarry for limestone production, and a smaller pit

for shale or clay. Because of the lou unit values of the rau materials

and product, expensive mining nethods must be avoided if possible. Raur

naterials consumed in relatively small quantities (perhaps sand, iron

op€r kaolin or bauxite, and gypsum or anhydrite) and the fuel used in

the kiln (usual ly coal ) are typical ly purchased from outside suppl iers

and transported to the plant.

All rau materials are crushed to a top size of a fen centimeters

prior to homogenization and proportioning. Neuer plants usually have a

primarv cruslrer inside the limestone quarry, nith a long conveyor belt

leading to a secondary crusher near the plant.

2.2.2 Hornoqenization and Proportionino

"Homogenization" of rau materials is the reduction of variations in
rer-material characteristics by mechanical means. Homogenization has

become more important in recent yeers rith the introduction of energy-
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saving burning methods (discussed in Section 2.2.4), Lthich tend to be

sensitive to fluctuations in rau-material composition. "Proportioning"r

of rax materials is the combining together of dif{erentr Preferably

homogenized, rau materials in proportions designed to eatisfy a set of

qual ity speci f ications. Proportioning has alHays been a fundamental

concern in cement quality control,

exp I orat i on .

mine planningr ehd rau-materials

2.2.2.1 Homogenization

If ue follou a particular mined or imported rau material "dounstream"

from its source to its final disposition as part of the finished

product' ue can find several locations along the ltay uhere

homogeni zat i on (or i ts opposi te segregation) can occur.

Homogenization can begin in the quarry, phere a given material exposed

in several active quarry faces, or throughout a single large face' may

be loaded together into the same truck (rarely)' or loaded into

di fferent trucks but del ivered to the same pre-crusher stockpi I e

(commonly), thus smoothing out the effects of the local in-situ

variabil itv in the material. A sirnulated example of the effects of

different loading schemes (but on a larger scale than truck loads) is

provided in Section 4.2.5.

Once the material has entered the plant's process stream (beginning

uith the pre-crusher stockpile' if there is one)r 8r! location in the

stream shere large amounts of material are accumulated and mixed

t Some authorities (e.g., Schofield, l9S0) use the term "blending"
instead of "proportioning". StiII otlrers use "blending" to mean

"homogenization", as in a kitchen "blendor".



t6

together (i.e., t'pools" in the stream) cahr in principle, be used for

homogenization. These are facilities in uhich the material can be said

to have a distribution of "residence times". The capabilities of such

facilities have been enalyzed in detail by Schofield (,|980). The

facilities may be specifically designed for honogenization (e.9.,

stacker-reclaimer systems' stirred tanks, and fluidized silos), although

storage stockpiles' surge bins, storage silos, crushers' mills, and even

kiln systems may also achieve gome homogenization. 0f courser systems

not specifically designed to homogenize nay segregate instead (e.9., a

stockpile in uhich coarse materials collect at the edges), or do nothing

(e.g., a bin or silo through uhich material moves by "plug flou"' as

though in a pipeline).

Stacker-reclaimer systems (stockpile prehonogenizers) ere nearly a

or precalcinernecessity for cenent plants rith sensitive preheater

systems and chemically variable rau naterials or fuel

plants). Several competing commercial designs are avai

conceptually by Schofield, 1980, Chapters 3 through 5;

(i.e.' nost neu

lable (described

mechanical ly in

tlohlbier, 1977; and concisely by Col ijn, 1980)

systems operate on a "batch" principle.

Al I but one of the

A very simple type of batch system is illustrated in Figure 2(a).

The basic idea is simpty to add increments of naterial to the pile in

series, then Nithdran them in parallel. As crushed material is conveyed

to the system it is dumped onto a long, narror stockpile by a traveling

stacker, lhich noves back and forth along the length of the pile many

times (perhaps about 100 times each uay) uhile the pile is being built,

spreading a thin layer of material across the pile during each pass.
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(a)

INPUT

(b)
OUTPUT

ONE
BATCH

FiEure 2: Homogenization of a rau-material input stream using a
batchuise I inear stockpile prehomogenizer.
(a) Plan vieu of a lineer stacker-reclaimer system.
(b) Batchpise homogenization of an input time series.
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l.lhen this pile is finished, the stacker moves to a second pile end

builds it up in the same rav, nhile a reclaimer goes to uork on the

original pile. The reclaimer begins at one end of the linear pile and

rorks its lay gradually to the other end, continuously reclaiming a

complete cross section through the stacked rnaterial (about 200 layers of
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material stacked onto the pi I e at 200 di fferent times) from the

triangular face of the pile. The reclaimer may simply be a bucket-uheel

etcavatorr or preferably some device capable of shaving e slice of

material off the uhole face of the pile simultaneously. Any variability

among the layers of material collected from the input stream during the

tine the pile las being built is thus averaged out by reclaiming all

layers simultaneously. The composition of a slice reclained from each

of t00 to 200 layers deposited at regulars intervals during the time in

tthich the pile ras built constitutes a very good approximation of the

average composition of the uhole pile.6 The result is depicted in

Figure 2(b), uhieh compares the input and output time series of a

batchuise stacking system. The large variability of the input stream

deposited onto each successive pile is reduced to small random

fluctuations about the meen composi tion of each pi te. llajor

fluctuations in the output stream occur only uhen the reclaimer shifts

from one pile to another pile uith a different averege composition.

Larger piles are able to accomplish nore averaging, thus reducing the

variabil ity among piles. l'lethods for choosing appropriate pile sizes

ere exPlained in Section 3.9.2.1 and illustrated in the cese study of

Section 4.2.

Notice that effectively only 100 layers
the pile, rhere the stacker reverses
deposited in the middle. Even ferer
the outernrost edges of the end cones of
segregation also may occur. Betueen
pile, the anount of averaEing that
betueen an average of 100 evenly spaced
evenly spaced samples.

are deposited near the ends of
direction' if 200 layers are

than 100 leyers are present in
the pile, rhere particle-size

the ends and the middle of the
effectively takes place varies

samples and an averege of 200

In the lenguage of Section 3.7, the "discretization error" involved in
representing the composition of the pile by the average o{ 100 evenly
spaced sanples is very small.
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(a)

RECLAI!,18R

(b)

RECLAII{I"' -,

INPUT
(c)

OUTPUT

Figure 3r Homogenization of a rau-material input stream using a

continuous circular stockpile prehomogenizer. (a) Plan
vieu of a continuous circular stacker-reclaimer system.
(b) Longitudinal cross section along the pile, shouing
directions of stacking and reclaining. (c) Continuous
moving-average honogenization of an input time series.
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along the crest of the pile as before, but on each fornard pass

(clockuise in Figure 3(a), auay from the reclaimer) it travels a bit

farther foruard before turning back' and on each backuard Pass

(counterclocknise, tourard the reclaimer) it correspondinglv turns

fornard again a bit short of its previous turning point. Thus the

tapered forrard end of the pi le gradual ly advances in the forrard

(clockr.rise) direction. Simul taneousl y, the recl aimer recovers the

stacked material from the completed back end of the pile, moving foruard

(clockr.rise) at the same average rate at rhich the front of the pile

moves foruard. The time-series output of this system is essentially a

simple moving averege of the input series, illustrated in Figure 3(c).

The composition of the output stream varies slottly and continuously'

avoiding the sudden inter-batch jumps in conposition that appear in

Figure 2(b). One disadvantage of this system is that its capacity

cannot be easily expanded. Another is that the stacker should be able

to stack continuously over the uhole length of the pile, eliminating the

inactive completed part of the pile' in order for maximum homogenization

(maximum residence time in the active part of the pile) to be achieved.

2.2.2.2 Proportioning

The calculation of rau-material mix proportions is deterministic, in

that ue must impl icitly assume that al I rau-materiel analyses are

perfectly knourn and unchanging. In practice this is never the cts€r so

proportioning aluays involves errors. Nays of dealing rith the errors

that occur because of short-term changes in ran-material compositions

are discussed in Section 2.2.2.3.

illustrated in Section 2.3.3.

Some I onger-term probl ems are
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The distinction betreen long-term (design) and short-term (control)

proportioning calculations is fundamental. llhen a plent is first

designedr d long-term estimate of the quantity of each rau material to

be used in the plant must be made available for proper sizing of the

storager r€ighingr ihd mixing facilities' and for a check on the

adequacy of rau-material reserves. After the plant is built, long-term

estimates are still needed occasionally for quarry planning and for the

negotiation of contracts uith suppl iers of purchased ran naterials.

Linear programming is usual ly employed to. obtain these estimates.

(Details on this procedure and some alternatives are provided in

Section 2.3.2. ) The problem in these ceses is to determine lhat

proportions of rau materiels nill be needed over a long period of time

to produce an acceptable clinker at minimum cost. It is recognized that

the short-term mix proportions actually required during production nill

deviete from the long-term proportions because of variations in the

compositions end costs of materials, and because of changes in the

plant's product mix (e.9., mix proportions for Type I usual ly differ

fron those for Type II -- see Table 1). Plant designers incorporate

some flexibility into a plant's proportioning facilities to accommodate

these variations. (Just bgt rnuch flexibility should be incorporated is

addressed in Section 3.9.2.2.1

Several methods can be used for short-term control proportioning.

llost plants proportion their rraterials to achieve a fixed quality "aim",

or ideal mix composition.T The objective of control Proportioning is

Usually an ideal cement or clinker composition is determined first'
and then adjustments are made for dust uastager stack losses, fuel
contributions, end perhaps gypsum addi tion, to obtain the

explained more ful lycorresponding rau-mix aim. These adjustments are
in Sections 2.3. I and 2.3.2.
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either to achieve this aim g1g|U' regardless of the resulting costs or

quantities of materials used, or to nininize deviations from the eim,

subject to constraints on cost, mix compositionr ot. rau-naterial

tonnages. Some plants may still try to nininize costs in e control

situation (e.g., Laney, 1977), but in these cases the chemical

constraints night have to be set very tightly so that large fluctuations

in nrix composition cannot occur in response to short-term changes in

rau-material costs or compositions.

The most straightforuard short-term proportioning calculation is by

solution of a set of linear equations representing equality constraints

on the composition or rer-material proportions of the mix.s The number

of equations must equal the number of rau materials evailable. For

example, suppose $e are giYen analyses of Si02, A1203, Fe203r end C80

for four rau naterials, and ue uant to produce 100 tons of ral nix

satisfying the equalitV constraints LSF=0.95' St'l=2.5r and At'l=1.5

(Table l). First te linearize the three ratio constreints. Instead of

using LSF = C/Q.8 S +1.l8 A +0.65 F) = 0.95r lle us€:

llsf = C - 0.95 ( 2.8 S+ l;18 A+ 0.65 F ) = 0

Similarly, Sr,| = S/(A+F) = 2.5 becones

lrn = S - 2.5 ( A + F ) = 0

and Al1 = A/F = 1.5 becomes:

l.n = A - 1.5 F = 0

Complicated "cookbook" procedures, evidently designed for those uho do

not have a computer and do not nish to perform matrix operations by

hand, are still in uidespread use. Actually they amount to sPecial
cases of
three-,

the method described here. Cookbook algorithms for tlo-'
and four-component mixes are described by Peray (1979'

Chapter 2) and l.li tt ( 1966, Chapter 4) .
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cal cu I ate

system of

4

I I r=r(i) p(i) = [
i=l

4

I t-n(i) p(i) =
i=l

4

I l.r(i) p(i) =
i=l

4

I p(i) = 100 tons
i=l

uhere p(i) is the proportion of ran material rritr, expressed in tons.

If L represents the 4x4 matrix of coefficients, P the 4xl vector of

proportions, and K the 4xl vector of equality constraints (the ,'aim'r),

this system is simply

LP=K
and the mix proportions are found from:

P = L.I K

The solution P is feasible if none of the elements p(i) is negative, and

if no p(i) lies outside the proportions that can be handled by the

plant's ueighing and conveying facilities. I{ in {act an infeasible P

is found, then either the vector K must be al tered sl ightly (e.9., to

drive a negative p(i) to zeroe), or if this is not possible, at least

one additional naterial uith a more suitable composition must be made

available (along uith an additional constraint). Some cement plants

e A procedure for doing this, involving inspection of the elements of
L-1, is explained bv Niederjohn (,|959).
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keep small amounts of high-grade zadditives" on hand for this type of

situation. If a plant operates uith the three specifications used in

this example, then some (probably expensive) additives that could be

used are silica sand, bauxite or kaolin, iron orer oi high-calcium

fimestone, lrhich uould provide very high-grade sources of S, A, F, or C'

respectively. 0f these, iron ore seems to be the most commonly used.

ln control situations, ue may not be required to satisfy an "aim"

composition exactly but merely to minimize deviations from the aim.

(The aim could actually be the composition of the immediately preceding

mix, in phich case re nould be minimizing mix-to-mix variability.) This

is a mathematical-programming problem of the general form:

I'tINIIlIZE objective function

SUBJECT T0 constraints on mix composition and nrix proportions

Schofield (1980, Section 8.4) proposes en objective function of the form

o.(LSF1-LSFr)2 + B(St'lt-Sl'lr)z + y(Att1-Atln)z + (Tt-Tn)a

uhere the subscripts k and m denote the aim and mix characteristics,

respectively, T denotes the total tonnage of material being mixedr ahd

Gr B, and y are peights chosen subjectively to reflect the relative

importance of the three components of the aim. The optinal solution is

f ound by a hi I l-cl imbing method that al Ior.rs upper and lolrer constraints

to be placed on any number of additional variables.

Niederjohn (1969) has proposed a Lagrangian approach starting uith a

similar objective function (stated more generally here),

f P. tqnr-Qrrr)2
n

there the subscripts n denote different ain cheracteristics Qn' the;16's

denote the subjective ueights, and the subscripts k and m denote the aim
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respectively. Equality constraints to be met

objective function as additional terms, i.e.,
(Qnk-Qnr)2 - I fi (R51-R;p)

j

uhere the subscripts j denote the exact constraints R;r 8hd the I;rs
denote the Lagrange multipliers. The minimum is found by setting the

partial derivatives of this expression r.rith respect to each enn and each

I; to zeror dhd then solving the resulting set of sinultaneous equations

(nuch as in the ,,kriging systemz of Seotion 3.1.4).

Another nethod that rnight be used for short-tern proportioning is
linear goal programming (Hillier and Lieberman, 1980, Chapter S), uhich

has been appl ied by Lonergan ( lg84) to the proportioning of coal

suppl ies for polrer-plant feed. This is a ,,nul ti-objectivez optimization

technique, in uhich each target value of the aim composition is
reformulated as an objective function. For example, if ue rant LSF to

be as close as possible to 0.95 (as expressed in the example on page

23), then the linearized objective function for LsF is expressed as

4

I lrrt(i) p(i) + alef - blrf = 0
i=l

uhere alrf is a negative deviation variable end b1s1 is e positive

deviation variable, representing the extent to nhich the actual mix

composition (represented by the sunnati2il) deviates from the target

value of zero. These deviation varia6les, plus those associated nith

other target values, are ueighted according to their relative importance

and combined into an /achievement function", uhich is then nininized by

the goal -programming al gori thm. Goal programming is proposed by

Lonergan ( 1984) as an attractive al ternative to I inear programming
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(Section 2.3.2) for both long-

in uhich some constraints nay

solution.

that is needed to achieve e

xeighing of the amount of

and short-term proportioning calculations

have to be violated to obtain a feasible

Proportioning and homogenization can be performed sinultaneously in a

batch stacker-reclainer system by stacking different rau naterials onto

the same pile and reclaiming them together. The reu naterials might be

stacked onto the pile one at a time, although better control can be

achieved by continuously proportioning el I materials onto the seme

conveyor belt ahead of the stacker. If the rau materials have constant

knoun compositions (or have already been homogenized)' the only control

correctly proportioned mix is an accurate

each naterial added to the feed stream

(Col i jn, 1983). l'lore commonly the rau materials have variable

compositions' so the individual input stream from each ran material

source should be repeatedly sampled and analyzed so that the total

conposition of the pile can be continually updated as the pile is built.

(t'lethods {or sampl ing streans of crushed material accurately and

precisely are described and analyzed in great detail by Gy, 1982.) Any

of the mathematical proportioning methods discussed in this section can

then be applied periodically to determine the proportions of each rau

material that should be added to the feed stream to guide the pile

touard its desired final composition. Eech time the proportioning

calculation is performed, the composition of the existing partly built

pile, nhich should be uell established from previous sampling of the

leed streams, is entered into the proportioning algorithn as e single

ret material that nrust be used in a fixed amount. The compositions of
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other rau materials to be added to the stream can be represented by

their long-term expected values' or preferably forecasted by one of the

nethods described in Section 2.2.2.3. The proportioning algorithm then

ealculates the amount of each rau material thet should be edded to the

pile to achieve the correct feed composition, and the feed rates are

adjusted accordingly. These operations are performed periodically using

neuly updated pile compositions and nerly estirnated feed compositions.

l.lhen the pile has achieved a large enough size and an acceptable total

composition' a neu pile can be sterted. A procedure of this typer using

linear programming for proportioning, is described by Laney (t977). If

the rau mix can be consistently proportioned and homogenized correctly

by such a system, there may be no need for further homogenization of the

rau nix before it enters the kiln. Houeverr segr€lition commonly occurs

during subsequent handl ing of the output strean, so that a pouder

homogenization system (Section 2.2.3) is usually required.

2.2.2.3 Sampl ing and Control of llix Composition

In some instancesr on€ or more sources of disturbance may be
measured and these measurements used to compensate potential
deviations in the output. Such ection is called feedforuard
control. In other situations, the only evidence ue have of
the existence of the disturbance is the devietion from target
it produces in the output. llhen this deviation itself is used
as a basis for adjustment, this action is feedback control.
In sone instancesr e cohbinstion of the t$o modes of control
is desirabler ard this is referred to as feedforuard-feedback
control. IBox and Jenkins, 1976, p. 4231

The proportioning calculations described above require that the

compositions of all rau-material inputs be knoun or reliably estimated.

This uould seem to be an obvious necessity in any plant producing a

chemical product from variable rau materials. But at the present tine'
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a surprising number of cement plants (seemingly a majority in the United

States) do not routinelv sampte individual reu-material feed streams, do

not homogenize their rau materials prior to proportioningr and do not

routinely use core-drill or blast-hole sample data to estimate the local

compositions of individual mined ran naterials. Quality control of rnix

composition in such a plant must be performed entirely by feedback,

using only blended rau-mix eompositions and perhaps the ,reverege,

compositions of the individual rar materials to calculate neu mix

proportions (Figure 4). The rau-mix composition is obtained either from

sampl es of bl ended material I eaving the rau rni | | or from sampl es

extracted somehou from the post-rniII honrogenizing systen. !lith only

this information, only the most general kinds of control decisions can

be made (e.g. , t'if LsF is too lor.r in the mix, add more I imestonerr).

This approach can rork reasonably rel I for I plant lith relatively

uniform rau-material inputs or uith a batch blending system that rill

not al I out the consequences of occasional anonal ies in rax-mix

composition to cascade immediately into the kiln. In the case of

extremely uniform rau materials (prehomogenized materials, or naturally

uniform naterials such as the ,'layer-cake,, sedimentary deposits of the

central United States)r i plant may operate rith prectically constant

mix proportions and obtain a practically constant mix composition.

This traditional approach cannot be expected to perform uell in a

plant uith highly variable rep materials and a lour tolerance for mix

variabilitv. (Then if LSF is too lor.r in the mix, ue uould lant to knon

precisely hou much more limestone to edd.) In such a case noticeable

improvement may be obtained just by sampl ing the individual feed
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Figure 4: Feedback control of rau-mix quality using only reu-mix
anal yses.

streams, so that the source of any anomalous mix compositions that

appear can be readily identified and corrected (Figure 5).. By the

definitions quoted above, the use of these individual analyses to

control mix conpositions constitutes feedforuard control of the mix.

Houeverr each feed stream is being controlled only by feedback if only

the rnost recent analyses are used in the proportioning calculations. If

rau-material fluctuations are rapid and the time lag betueen sanPling

and control is long, direct corrections to nix proportions based solely

on these samples may be no longer aPPropriate (possiblV resulting in

,toversteering" or "tail-chasing", in plant parlance). This is a common

ueakness of leedback control.

Forecastinq of incoming rag-material qualities can be per{ormed

time-series nethods (Box and Jenkins, 1976; Chatfield' l9E0) or

by

by
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Figure 5: Control of rau-mix quality using individual
rau-material analyses. The addition of a feedback loop
(dashed) using rar-nix analyses may be advisable if
some individual rau materials are poorly sampled.

PROPORTIONING

CALCULATIONS

AND CONTROL

AT{AIYSES

geostatistics, provided that the individuel feed streams have been rell

sanpl ed and thei r statistical properti es (particul arl y thei r

autocorrelation functions or their variograms, Section 3.1.2) are uell

knoun (Schofield, 1980, Chapter ll). The general approach is to use

present and past analyses of the individual feed streams to forecast

their future compositions by regressionr and to adjust nix proportions

based upon these compositions.

Additional in{ormation on future compositions can be obtained from

the quarry (Figure 6). Some plants uith variable rau materials

routinely analyze blast-hole cuttings to determine the compositions of

blocks of of stone before they are mined. (The data set used for the

first case study in Chapter 4 consists entirely of block compositions
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Figure 6: The full capabilities of {eedforrard control, using
forecasts of individual feed-strean compositions. Both
present and past feed-stream stmples and samples
collected far upstream in the process (ravy lines),
usually in the quarryr oF€ employed to predict future
ran-material composi ti ons.

est imated

of bl ock

data from

Predictions

regressi on,

combination

in this ray.) Even before blast holes are drilled, forecasts

conpositions can be obtained by kriging (Section 3.t.4.)r using

surrounding core-dri | | holes and previouslg sampled blocks.

of future feed-stream compositions can then be made by

using estimates obtained by time-series methods in

uith the estimated compositions of the nining blocks to be

fed into the rat-material strean at that time. The exact forecasting

fornula to be adopted uould vary nidelv uith the situation.
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The most effective, though initial ly most expensive, means of

controlling ral-mix compositions in plants uith extremely variable rall

naterials is to employ stacker-reclainer systems to smooth out the

variability of the individual streamsr so that proportioning can be

performed on homogenized materials. The most fruitful cement-related

applications of the methods to be introduced in chapter 3 (and of

geostatistics in general) probablv are in the design of these systems.

2.2.2.4 Sensitivity of Control Variables

Control difficulties result not only from variable rau materials, but

also from the fact that some quality indices are exceedingly sensitive

to changes in rat-naterial composition. A particularly bad offender is

the Bogue formula for CsS (Table l), uhich is commonly used as a control

variable. Consider the variance of C3S:

Var(C35) = 4.07l2Yar(C)+7.52Var(S)+6.7lE2Var(A)+t.432Var(F)+2.8522Var(g)

- 2(4.071) [7.6Cov(C,S) + 6.7l8Cov(CrA) + l.430ov(C,F) + 2.852Cov(C,!) t

+ 2(7.6) t6.7l80ov(S,A) + l.430ov(S,F) + 2.85ZCov(S,g) |

+ 2(6.718) [ l.430ov(A,F) + 2.852Cov(A,S)l

+ 2(1.43) I2.E52Cov(F,S)l

Nou consider that, in a mixture of limestone and clay (the usual cement

rau nix), uhen caO goes up, everything else invotved in c3s tends to go

doun. Furthernore, because Si02, A1203, Fer0sr eDd sometimes sos ere

major constituents of the clay or shaler rlren one goes up in the mix,

usually they all do. In other uords, all of the covariances of the fornr

Cov(C' not C) listed in the second rou above are larqe and neqative,

rhereas all of the others are l3lgg and positive. Finally, notice that
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the negative covariances are multiplied bv large negative coefficients,

lhereas the positive covariancesr ihd the variances in the first rour

are nultipl ied by large positive coefficients. clearlv Bogue C3S can

have a huqe variancer ard yet nany plants try to control it rithin a feu

percentage points. In this si tuation, even a sl ight sampl ing or

analytical error can cause alarnr. For exanple' in the "typical" cement

analysis on page 6, if Si0a gained 121 and CaO lost l2 (an easily

imaginable occurrence), the Bogue equations end moduli uould be altered

as belour:

I ndex

css
CzS
CsA
C 1AF
sl'l
Af.l

LSF

0ld Analysis

46. 52
27.98
9. 50
9. t3
2. 59
1.83
0. 92

Neu Analysis

34. E5
39.65

9. 50
9. t3
2.71
l. E3
0. E7

Either CaS or LSF (a similarly volatile index) rould likelV trigger an

"add-more-l inestone" order. This example i I lustrates the desirabi I ity

of honogenizing each rau material be{ore proportioning and the need {or

accurate and precise sampl ing and analysis for qual ity control.

Although analytical capabilities in American plents ere usually fairly

good, and homogenization of the ran materials is being practiced in sone

neuer plants, the sampling and sample-preparation techniques (0y, t982)

are commonly crude and need inprovement.
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2.2.3 Grindinq and Homoqenization gul the Rau llix

The proportioned rau naterials are fed into a mill that reduces the raut

mix to a fine porderr typically rith a top size of about 100 microns.

This degree of fineness is necessary so that reactions enong the

chemical constituents of the different rau materials in the kiln can

proceed quickly and conpletely. After grinding, a final stage of

homogenizationr commonlt in an air-agitated silo containing at least

several hours of rau-mix production, is usually included before the raut

mix is released to the kiln. Homogenization at this stage is intended

primarily to filter out short-scale fluctuations in feed composition

caused by segregation in the recl aining and grinding systems.

Capacities usually are too srnall to filter out {luctuations on a

day-to-day scale. Homogenization may be performed in one or nore

"cascade" silos, into uhich rau materials are constantlp being added and

rithdraunr of in a pair of "batch" silos, one of rhich is filled uhile

the other is emptied. Batch systems nay be preferred if some final fine

tuninE of the mix composition is I ikely to be needed. The

characteristics of various si I os are discussed by Schofield ( 1960,

Section 2.6 and Chapter 9).

In many older cement plants, uater is added to the rau mix at the

grinding stage' or perhaps earlier in the process if some of the raul

materials are already very moist. The ground rau-material slurry is

then pumped into a stirred homogenization tank prior to entering the

kiln. Because of the large increases in fuel prices that occurred in

the 1970's, this "tet process,' is nou out of favorr es the uater

contained in the nix (commonly around 30-352, unless reduceb by
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filtration) must be evaporated in the kiln. Neu plants usually employ a

"dry process", nherein the rau mix is thoroughly dried before or during

grindiogr conmonly uith the use of hot exit gases from the kiln.

2.2,4 Burninq

The follouing reactions occur during "burning" of the reu mix (Lea,

.|971, p. 123):

Temperature (Celsius) Reaction Heat change

100 Evaporation of free rater Endothernric
)500 Evolution of combined rater from clay Endothermic
)900 Crystallization of amorphous dehydration Exothermic

products of clay
)900 Evolution of carbon dioxide from CaC0a Endothermic
900-1200 Reaction betueen lime and clay Exothermic
1250-1280 Commencement of liquid formation Endothermic
)1280 Further f ormation of I iquid and completion l'tainly

of formation of cement conpounds endothermic

In a ret-process plant, 8ll of these reactions occur uithin e long

rotary kiln that is inclined about three degrees from the horizontal and

rotates about once per minute. The rau material tumbles slor.rly doun the

length of the kiln touard a flame at the louer end. A fan dreps hot air

fron the clinker cooler and eombustion products {rom the flane up

through the kiln, opposite the direction of rau-material flou. In the

louer part of the kiln, nearest the flamer clinker tenperatures may

reach 1500 degrees and gas temperatures 2000 degrees Celsius. Shortly

after reaching its maxinun temperature, the clinker falls from the louer

end of the kiln into a cooler, uhere fans blor outside air through the

clinker as it passes over a grate.

Dry-process plants may also operate r.rith a single long kiln, but nrost

ner plants realize some additional energy savings by combining preheater
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or preheater-precalciner systens uith a shorterr Dof€ rapidly rotating

kiln. In a preheater system, the rau mix is first heeted to about 800

degrees as it falls through turbulent exit gases from the rotarl kiln.
(Exit gases may also be used to dry the rau nix as it is being ground in

the mi I l. ) l'lore ef f icient heat transf er f rom gas to rau material r nith

resulting energy savings, can be accomplished in this nay. Some

calcination (decarbonation of CaC03) occurs in the louer part of the

svstem. Further calcination and clinker formation then occur in the

short rotary kiln.

A precalciner, uhich nay be inserted betueen the preheater and the

rotary kiln, uses hot gases frorn the clinker cooler end a secondary

flame to elevate mix temperatures rell into the calcining range before

naterial enters the rotary kiln. As the calcinetion reaction is highly

endothermic, the application of additional heat to the nrix at the

Iocation uhere most calcination oGCUFST instead of farther doun the

kiln, can result in further energy savings and permit greater production

from a given size of kiln.

Some K20' Na20r ind S03 evaporate from the rau mix in the cl inkering

zone of the rotary kiln and enter the gas strean. Additional S03 end

some K20 and Na20 are contributed by the fuel (particularlv by ashy

coal). After the gas enters the cooler parts of the kiln system, these

constituents condense onto dust particles entrained in the gas. Finer

dust particles collect nore of the condensate because of their greater

surface-to-vol ume rati o. If the rar naterials end fuel contain

excessive levels of these constituents and an old-fashioned kiln system

is being used, the heavily contaminated fine dust can be captured in
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dust collectors and discarded, nhile the coarser dust is returned to the

mix, thus lonering the content of KaO, Na20r ahd S03 in the clinker.

This is not possible in preheater systems, beoause the outgoing dust

becomes thoroughlV mixed uith the incoming rer mix inside the preheater.

To achieve the same effect in a preheater system, some energy efficiency

may have to be sacrif iced by el lor.ring some of the kiln gas to bypass the

preheater.

Additional problems nay be created in the preheater if the nolar

ratio of alkalies (K20 and Naz0) to SOs in the gas departs greatly

from 1.0 (Garrett, t976). In this caser sticky coatings of lor-melting

alkali or sulfate compounds may accumulate inside narrou pesseges uithin

the preheater and plug up the system. Even if the long-tern ratio is in

bal ance, short-scal e f I uctuati ons betueen excess SOs and excess

alkalies' as uell as fluctuations in other conponents of the kiln gas,

may still cause plug-ups. Thus strong fluctuations in the compositions

of the ran materials and fuel cannot be tolerated in a preheater system.

This is one reason uhy stacker-reclaimer systeme are desirable in

preheater-equipped installations. Another reeson is that the residence

time of rar naterials in a preheater-equipped kiln system is much

shorter than in a long kiln system (about half en hour versus tuo to

three hours)r so preheater systens are inherently nore sensitive to all

kinds of short-scale changes in feed quantities or compositions. This

is particularly true in the preheater itself, rhere residence times are

about thirty seconds (Garrett, 1976, p. 6).
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2.2.5 Cenrent Grindinq

After the clinker leaves the cooler, it is generally sampled and

stockpiled for a tirne uhile a chemical analysis is obtained. lf the

analysis of a clinker departs significantly from the aim composition, it

nav be bl ended ui th other cl inkers to ochieve the proper overal I

qualitv. Ihe final stage in the manufacturing process involves grinding

the clinker together nith a small amount of gypsum or a gypsum-hnhydrite

blend -- usually enough to raise the S03 content of the cement by about

one to ttto percent. These materials retard the setting times of

concrete mixes and may someuhat enhance the strength of the concrete.

Fineness of the ground cement is neasured indirectly, and specifications

are expressed in terms of surface area per unit reight.

2.3 CEI.iENT R4l.t mATERIALS

2.3. I Specifications

Specifications on the compositions of cement rau materials naturally

depend to a large extent on the chernical specifications epplied to

clinker or cenent (Table l). Usually only the chemical conpositions of

the rau rnaterials are actively considered, as their mineral conpositions

and phvsical characteristics are destroyed in the kiln. Houever,

naterials that are knoun to be exceptional ly tough, ebrasiye, or

unreactive (coarse quartz grains, for example) nay be evoided even if
chemical ly suitable.

To understand the characteristics that cement rau materials should

haYe, ue must understand uhat happens to these materials in the cenent-

making process. The various chemical constituents of the rau materials
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and fuel tend to segregate inside the kiln system and end uP in

different products. The flou of materials consumed and generated by the

cement-naking process is depicted in Figure ?. Notice that the rar.r nix

is not the only input to the systen. The fuel nay introduce a large

anount of sulfur and ash (essentially sintered shale and Pyrite) into

the kiln systefir host of uhich ends up in the clinker. Some oxygen from

the outside air introduced to the kiln also is picked up by the clinker

and by other products of the kiln system. Rat-material and ash analyses

(but not fuel sulfur) ere usually quoted as though the naterials uere

fully oxidizedto, so they do not have to be adjusted for oxygen added

from the air.

R,A].I T.IATERIALS --.+
I
I
+--)

FUEL ---------------)
+--)
I

AIR -------------+

GYPSUm ----)

+..) STACK GASES

I

------) llAsTE DUST

I+..) CLINKER

I

kiln

system

I cE]lENT I (----------+

FiEure 7: l,laterials consumed and produced during the manufacture
of portland cement.

lo This nay result in
reduced material s'
sulfides.

analyses total ing uel I
such as black shales

over l00Z for some highly
or any material containing
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The kiln system produces three products: clinkerr lraste dust, and

stack gases. llaste dust (if any) typically has a composition similar to

the clinker, except that the proportions of K20, Na20, S0r, COe

(reported as "loss on ignition"), and perhaps other volatile components

(e.9. r chloride) are elevated. Stack gases evolved from the rau

naterials and fuel consist mostly of COzr H20, and ninor S0z. The

cl inker that remains after the gases and raste dust are removed from the

system is then interground pith gypsum to produce the final product.

Because fectors in addition to rar-naterial compositions determine

the extent to uhich various rau naterials can be used in a cement ran

nix, and because "undesirable" characteristics in one rap material may

be innocuous shen the naterial is diluted among other rau naterials,

strict specifications (e.E., the "cutoff gradesa commonly used in metals

nining) are rarely placed on the chsrecteristics of individual cement

rau materials.lt The suitability of rau naterials is instead determined

from the celculation of "mix designs", uhich take the influence of all

components of Figure 7 into account in determining proper rau-material

proportions.

2.3.2 l'lix Desiqns

Out of the dust,
Out of the sl ime,
A I ittle rust,
And a little lime. .

-- attributed to Beelzebub by e.

. Nor.r you are dust,
Limestone and rust.
I mold and I stir
And make you again.

L. l'lasters, Spoon River Antholoqv

It 0f course, chemical restrictions do have to be uritten into most
oontracts for purchased rau materials and fuel, so that both parties
understand uhat is beinE purchased.
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The term "nix design" is industry iargon for a rau-material recipe that

is calculated in advance to assure a good-quality cenent. Short-tern

mix-design calculations for control proportioning have elreedy been

explained in Section 2.2.2.2. If one is satisfied uith matching

rau-nateriel proportions to a fixed t'eim" composition, these methods can

be used for long-tern planning as uell. But nore commonly, long-term

rnix designs are obtained by linear programming.t2 The general problen is

stated es fol I ors:

l'IINII'IIZE: Total cost of rau materials

SUBJECT T0: Constraints on product composition

Constraints on rau-material avai labi I ity

The calculations require the fol louing data: unit production costs

(usually excluding fixed costs) for each rau material' a "typicalz or

"averege" analysis for each rau material (plus moisture if the costs are

quoted for "as-receiyed" materials), constraints (if any) on the

avai I abi I i ty of each rar naterial , speci fications on the chemical

composition of the cl inker (in the form of I inear constraints),

estimates of the chenical contributions of fuel to the product (e.9., an

estimate of tons of coal required to produce each ton of clinker, the

esh content and sulfur content of the coal, end en snalysis of the ash),

an estimate of the composition of the raste dust, and an estimate of the

proportion of total sulfur in the system that escapes as stack gas. The

fuel contribution is treated rs a rar material, and the raste products

l2 There are nany good textbooks on linear progranning. A best-selling
general introduction to operations research, inoluding I inear
programming and other optimization methods discussed here and in
Sections 2.2.2.2 end 2.3.3, is Hillier and Liebernen (1980).
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(dust and stack gas) are usually treated as rsr materials rith negative

compositi6ns. l3

Clinker specifications are normally used as constraints. All other

material composi tionsr costs, and proportions therefore nust be

converted to e "clinker", gr t'ignited", basis before the proportioning

calculetions begin, and then reconyerted to their original forms to

report the results.lr Rau-material costs, tonnages, end enalyses must

all be adjusted for "loss on ignition" (essentially C02 end chemically

bound later), rhich is reported in the enalyses but is entirely lost to

the stack gases during calcination of the rau materials.ls Costs and

tonnages may also have to be adjusted for loss of noisture. The tonnage

and analysis of the raste dust nust be adjusted for loss on ignition.

Several taste dusts nith different conpositions may be used in the

calculation, to reflect the fact that fine, high-alkali dusts are alrays

throun auay first and coarse, relatively lon-alkali dusts are throun

aulay last. The relative amounts and compositions of these dusts depend

on the type of dust-col leetion cquipment instal led in the plant.

Nornally sulfur (represented by SOs in the calculations) is the only

t3 Data on gas and dust compositions are lecking if the plant has not
yet been built. Furthermore their compositions depend heavily on
burning conditions in the kiln and on the amount of dust nasted, and
both of these factors are under the control of plant personnel.
llence for plant design purposes these compositions must be
subjectively chosen from a ride range of possible values.

It Houever, if onlv ratio constraints such as LSF, Sll, and Al'l (Table
are being used' it is not necessary to convert to ignited basis,
the numerators end denominators of the ratios are inflated equally
the calculation.

t)
as
by

ls For instance, to convert each oxide
analysis to an ignited percentage,

xi=l00xr/
rhere yr is the loss on ignition of

percentag€r x;r in a rau-material
ri' use the relation
(100-vr)
the rau material.
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component of the stack gas uhose flor nust be measured or estimatedr ds

the other components of the gas disappear from the calouletion as loss

on iEnition. The contribution of outside air does not need to be

measured either, es all snalyses are reported es though the materials

rere fully oxidized.

0nce all materials have been adjusted to ignited basis, the linear-

programming problem can be straightforuardly uritten:

Ir
FIINIt'IIZE: f p(i) c(i)

i=l

SUBJECT TO:

It
(Chemical constraints) I p(i) l;(i) (=) ki, j = | to U

i=l

(l'lateri al avai I abi I i ti es I t
or f ixed tonnages) I pti) ln(i) (=) Qrr ttt = I to I'l

i:l

(l'laterial I r
balance) f p(i) + p(fuel) - p(dust) - p(gas) = clinker tonnage

i=l

(Nonnegativity) p(i) l 0, i = I to It

rhere p(i) denotes the ignited tonnage of naterial i

c(i) denotes the ignited cost per ton of materiel i

Ir denotes the number of rar naterials

It denotes the total number of materials aside from clinker;

i.e., rau materials, fuel contribution, dustr and gas

l5(i) denotes the value of linear "chemical functiotro j,

for naterial i

k5 denotes the value of chemical constraint j (a elinker

specification)

J denotes the number of clinker chenical constraints



lr(i)

9rn

t1

lrhere Sf'l =

constrai nt

epProx imate

denotes the

function" m,

denotes the

denotes the

coefficient of I inear "availability
for material i

val ue of "avai I abi I i ty constraint" n

total number of availability constraints

denotes ),3' or

In this f ormul ationr !rdst€

tonnages p(i) to satisfy the

chemical compositions are used

dust and stack S03.

=.

dust and stack S03 are assigned positive

nonnegativity constraints, but negative

to calculate the coefficients l5(i) for

s the mix silica modulus, Sl'lain is the ninimum

factor A represents the

Sl'l above i ts minimum.

Some embellishments to this type of formulation can be made to

reflect more accurately the total cost of the mix. For instancer costs

for dust disposal can be added to the objective function' although dust

uastage uil I be ninimized by the above formulation anyuay. (l'lore dust

rastage necessitates more rahr materiels, beceuse of the material-balance

constraint. If several dust analyses are entered, the nost contaninated

dusts r.rill normally be discarded first, to minimize rastage.) It is

also possible to develop objective functions that eccount for the

relative energy costs of different mixes. For example, Xirokostas and

Zoppas (1977) have proposed a nonlinear objective function incorporating

an extra term in r.rhich the energy cost is regarded as a function of the

si I ica modulus St'l of the mix; i.e.,

Ir
I p(t) c(i) + A ( sm - Silp;6 )
=lI

Is./(A+F )

on Sl'l for their problem, and the

energy costs per unit oflncrease ln
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For long-range-planninll purpos€sr one may uish to incorporate one or

more mix designs into a nuch larger optimization modelr lherein en

optimal combination of rau-material mixes, product mixes (proportions of

different tvpes of cement to be produced)r ard shipping strategies,

possibly formulated as a multi-period cash-flou problem, can be found

sinultaneously (e.9., Gershon, 1982). Integer programming can be

incorporated into the model to include fixed costs incurred uith the use

(versus non-use) of di{ferent rau naterials or products, to devise

optimal mining plans requiring either-or or conditional decisions, and

to decide on alternative locations for facilities (e.9.,

Ramani, 1983; Hillier and Lieberman, ,|980, Section 18.5).

Barbaro and

2.3.3 Ng Illustration g[ g ilix Oesiqn and tts l.feaknesses

Sinple linear-programming problems involving tno or three ral materials

can be represented graphically. For example, suppose that over the life

of a certain cement plantr r€ expect to produce 100 million tons of

cl inker from three raut meterials. lle ui I I uaste no dust, use a

I ott-sul fur natural gas es fuel ' and use I ox-sul fur rau material s.

Therefore the problem simply involves proportioning the three reu

materials to match a set of specifications. Ignited-basis analyses and

costs of the three rau materials are:

Rau l'lateri el

High-Calcium Limestone (X)

Si I iceous Limestone (Y)

cl ay (Z)

s

4

20

60

A

I

4

35

F

0

I

5

C i/ton

953

7s2
0l
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Ne uish to keep CsS betueen 45% and 552, St'l betueen 2.5 and 3.0, and C3A

less than l0Z. Furthermore, the siliceous linestone lies on top of the

high-calcium I imestoner such that to avoid uasting sone sil iceous

limestoner lre must use at least tuo (ignited) tons of siliceous stone

for every ton of high-calcium stone. Finally' ue have reserves of only

40 nillion tons of clay. Thus the problem is (in millions of tons):

I'|INII'IIZE: 3X + 2Y + Z

SUBJECT TO:

(C3S) xX + (C3S) yY + (C3S) 22 ) (45) ( 100)

(C35) yX + (C3S) rY + (C35) 1Z S (55) ( 100)

(4X+20Y+602)
) 2.5

(x+4Y+352)+(Y+52)

(4X+20Y+602)
( 3.0

(x+4Y+357)+(Y+52)

(C3A);X + (C3A)"Y + (CoA)zZ 3 (10)(100)

Y/X 2 2

z t 40

x+Y+z = 100

X, Y, Z } O

Calculating the C3S and C3A coefficients end linearizing the ratio

constraints, the above formulation is sirnplified to:

]'IINIIIIZE: 3X + 2Y + Z

SUBJECT TO:

349.6 X + t25.0 Y - 59E.3 Z ) 4500

349.6 X + t25.0 Y - 698.3 Z S 5500

t.5x+7.5Y-40.02 l 0

t.0x+5.0Y-60.02 ( 0
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2.7 X + E.9 Y

-2.0 x

+ E4.3 Z

+ t.0 Y )

340

I 000

X+y+Z = 100

X, Y, 2 ) 0

The last tno constraints aboye (material-balance and nonnegetiyity)

define an equilateral triangle rithin the three-dinensionsl spece of

(X,Y,Z). The problem can thus be displeyed on e triangular composition

diagram, as in Figure 8, by plotting I ines representing the

intersections of all other constreint planes lrith the plane X+Y+Z=100.

Figure E displays several interesting features that can help us

understand the typical behavior of mix-design problems. First notice

that the tuo constraints on C3S plot as tno parallel lines, exceedingly

close together. These constreints alone renoye the vast rnajority of the

triangle from feasibility. The closeness of the tuo lines reflects the

extreme sensitivity of the Bogue CsS fornula to small changes in rar-mix

composition. Even a tiny shift in mix proportions (especially, a change

of more than lZ in the anount of clay) could result in an unsatisfactory

mix. Obviously then, CgS is a highly restrictive specifioetion to use

in a nix design, particularly if it is given both upper and louer

I imi ts.

The tno constraints on Sll plot as not-quite-parallel lines that are

soneuhat less restrictive than CsS. The C35 constraints, in conjunction

rith the nonnegativity constraint on high-calciun limestone (i.e., X)0),

render the constraint SllS3.0 redundant, es the entire feasible region

already lies uithin the area uhere Slll3.0. Notioe that the tuo tonnage
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constraints, Y/X>2 and 2140, are also redundant;

clay or high-calcium limestone to make this mix.

re do not need much

Nor a dire situation erupts rhen Lte spply the single constraint on

CsA. This constraint excludes the entire region bounded by X)0, Sll)2.5,

and 453C33355, uhich had previously been considered feasible. Thus the

Figure E: Graphical solution of a simple linear-progranming
mix-design problem. The hachures mark the infeasible
sides of the inequality constraints. The constraint on
CsA (dotted) had to be renoved to obtain a feasible
solution. The orientation of the contours of the cost
function (dashed lines) make it plain that the minimum-
cost feasible mix is located at (X,Y,Z)=(0, 90.3, 9.7r,
indicated bv "Y on the graph.

I
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problem has no feasible solution, regardless of cost. Ne sinply cannot

nake a lout-C3A cl inker uith only these three ran materials. Even

renoving the restrictive constraints on C3S rould not help, as then the

constraints St1(3.0 and Y/X22 nould still conf lict uith CgA3l0.

In practice, this difficulty uould probably be solved by purchasing e

fourth material very lou in CsAr such as iron ore. But then the problem

could not be visualized on a single tuo-dimensional graphr so for

purposes of i I I ustration I et's essume that re can I ive ni th a yery

high-CsA clinker. Then the only remaining issue is the choice of a

single set of mix proportions (X,Y'Z) fron the infinite number of

choices rithin the f easible region bounded by X)0, Sl'l)2.5, and 45!CsSS55

(and of course by x+Y+z:100 nillion tons). In the statement of this

probl em' the cri terion chosen to sel ect such a proportion uas

minimization of the linear cost function 3X+2Y+2. The dashed lines in

Figure 8 are the contours of this function uhere it intersects the plane

X+Y+Z=100 million tons. The minimun rau-materiel cost of i1.90 per ton

of mix is achieved at (x,y,z) = (0,90.3, 9.7), uhich is fixed at cas=45

(the ninimum), X:0 (the minimum -- no high-calcium stone is used), and

X+Y+Z=100 ni | | ion tons.

This solution, I ike al I optimal I inear-programming solutions, I ies

exactly on a set of constraints. In this case three constraints are

needed to fix the three variables Xr Yr and Z. It is aluays lise, then,

to set the chemical constraints someuhat narrouer than their officiet
limits (e.g.r htrrolter than the ASTt'l limits in Table l), so that very

slight changes in mix proportions or reu-material compositions cannot

easily cause the product to fall out of specifications.
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B

Figure 9:

DIRECTION OF INIUUU COST

c

A possible effect of a small change in rau-material
compositions on optimal nix proportions. If
compositional changes shift constraint A to constraint
A', the mininum-cost mix uill shift from point c to
point a'.

t
u

Nour uhat if the ran materials vary greatly in composition, instead of

having constant knoun composi tions, as impl ici tl y assuned here? In

Figure E, variable conpositions uould cause the slopes of the chemical-

constraint lines to vary. If the contours of the cost function uere

nearly paratlel to one or nore constraints, and il the constraints

changed orientations sl ightly because of changing rau-meteriel

compositions, the location of the optinal solution could change a great

deal (Figure 9). The convex feasible region might even disappear or

become defined by a different set of constraints. For example, uith a

small shift in either the St'l or the CsS of one of the rax materials in

the exampl e, the constraint Sl'133.0 might become a boundary of the

feasible region, possibly even replacing X)0 and thus forcing the

addition of high-calciurn limestone to the mix.

Clearly, rhen rau materials are hishly variable in composition, a

deterministic linear-programming solution of this type is of limited



5t

qt

4"
(a,+ <')/2
o(

,+.

%8t..
Cf A

Figure l0: A simple example of the difference betueen a ninimum-
cost mix using everage enalyses and the average of
mininum-cost nixes. Tuo constraints A and A"
resulting from different compositions o{ rau-material
Xr it.€ used to deternine tro mininum-cost mix€sr c and
c'. The average compositions of rau-naterial X,
resulting in constraint A'' yields another minimum-
cost mixt ot"t uhich is higher in cost than the average
of mixes s and c'. In this exanple the constreints
are !

A2X
A' 3X
A,' 2. 5X
BX

+Y=l
+Y=l
+Y=l

+2Y=l

valuer erd might be severely misleading. Furthermore, the average

minimum rau-material cost of the mix is not generally the minimum cost

obtained by using average ran-material compositions (Figure l0), so the

solution obtained by using the average analyses of variable naterials

may not be truly optimal, although it is probably close in most cases.
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Nevertheless, some method must be used to obtain an impression of the

mix proportions needed by the plant. In Section 3.9.2.2r som€ methods

ere suggested for determining uhether the ansuer yielded by linear

programming is likely to be reasonable, and hor.t much flexibility in mix

proportions should be anticipated uhen designing e neu proportioning

system to accommodate previously unmined materials.

2.4 INVESTIGATToNS gI ggnEu RAH I'TATERIALS

After all is said, the services of a geologist in the cement
industry are needed solely for the purpose of enabling the
company concerned to obtain the rau materials necessary uith
the least expenditure of money and ef f ort. 10. L. t'ti I ler,
1934, p. 401

2.4. I Exploration

Cement is a lou-unit-value product, and most cement plants operate rith

a lou profit margin. This has three important impl ications for

rar-materials exploration. First, the major rau materials (and the

plant site) should be located close to the najor cenent market on good

transportation routes, so that transportation costs do not greatlv

increase the cost of cenent del ivered to the market. Second, the

production costs of rau naterials rnust be kept lor.r. Expensive mining

methods lhether necessitated by thick overburden, compl icated

geologic structure, an abundance of ceves or clay seams, excessive

groundtater inflous, or zones of uaste or off-grade materials that lould

have to be nined selectively -- are rarely affordable. And third, raul

naterials that nould greatllr increase handling or processing costs in

the plant are preferebly avoided. Such rnaterials might include: sticky
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Het clays that create handling problems; cherty or sandy limestones that

cause excessive uear of erushing and grinding equipment and drive uP

fuel costs; or any materials uith undesirable or highly variable

characteristics that necessitate extra homogenization and proPortioning

efforts, require importation of exotic materials to counteract their

effects, require dust uastager ot. increase fuel consumption.

0f course, in many parts of the norld all of these preferences cannot

be satisfied simultaneously. This is particularly true in regions uith

a shortage of high-qual ity rar,r naterials. In these regions' the need to

minimize transportation costs drives nany cement producers to put up

uith rau-material problems that producers in other areas uould find

intolerable. Even in some fornerly favorabl€ BF€asr the best plant

sites have nout been occupied or uithdraun from consideration for

environmental or political reasonsr 8hd the best rau materials have been

depleted. Thus production costs have increased as producers have

resorted to less favorable rer rnaterials and sites.

Increased fuel prices have also made some formerly desirable

materials less so (particularly high-moisture and lou-burnabi I ity

naterials), and have spurred the installation of more energy-efficient

processes that are less tolerant of variations in unhomogenized raN

materials. Environmental regulations have elso necessitated stricter

monitoring of the composition and variability of plant emissions and

uaste products. Thus external develoPments are bringing stricter

controls on rau-material qual ity, even though narginal-qual ity raul

materials are being forced into greater use esch yeer. These trends

must be kept in mind lhen selecting Potential plant and nine sites.
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Cement is made primarily from relatively uidespread sedimentarv rall

materials. This is fortunate, as it helps to keep transportation costs

dorn in most regions. The geographic distribution of naterials likely

to be usable for cenent manufacture can usually be readily determined

frorn geologic tttipsr government geological survey reports, and quick

field reconnaissance. Except in less developed areas lhere there is

litile published information, or in areas uhere some of the needed

materials happen to be scarce (e.g., limestones on the uest coast of the

United States)r €xploration focuses less on finding the materials than

on finding the best sites for nininE and processing the meterials.

Ideally, a mine site should have at least the follouing characteristics:

abundantt6 good-quality rau materials, lou mining costs and safe mining

conditions, ebsence of serious environnental constraints (including

close neighbors), and proxirnity to a good plant site. The plant site

should be located on stable ground (cement plants ere yg.CU heavv),

adjacent to major highuav and rail facilities, preferably adjacent to a

navigable taternay, neer electric-Pouer supPlies, near a source of

taterr and near sources of any necessary purchased ral materiafs and

fuel. The site should slso be near enough to poPulated areas that the

plant can be staffedr routine services can be Provided' and some of the

productcanbeso|d|oca||y,butnotsonearthatenvironmentaland

zoning restrictions uould impede operations.

13 lypically a neu plant should have reserves adequate for at least 50

to 100 yeers of production. This is desirable because Payback times
for plant investments can be long, because creeping urbanization or
other unforeseen factors may ultimately rule out some reseFV€sr and

because future pl ant expansions may resul t in much more raPid
depletion of reserves.
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The first stage of an exploration project usually is to define e

search area (typically an area surrounding a good potential market) on a

map and inrnediately locate all sites uithin thet area rhere seemingly

acceptable rart materials coexist uith adequate infrastructure

(transportationr por€rr rlt€Fr and services). This simple step usually

narrous the search to only e feu sites (and in nany cases uill reveal

that all of the best sites are already occupied). Then zoning,

environnental restrictions, property ounership and likely availability

of property, and the Eeneral geology and mining situation are checked

out for those feu sites. A "most favorable" site can usual |y be

selected at this point. Then the detailed geology of this site is

mapped in the field, and surface sanrpling of the rau materials is

performed rherever outcrops are available, to determine uhether the

compositions of the materials appear to be suitable. lf the detailed

geology and field analyses appeer fevorable, the property may be

optioned or claimed so that more detailed field studies can be performed

to obtain information adequate for a thorough feasibility study.

2.4.2 Len"eral Site Evaluation

Nidely spaced core drilling, grounduater pumping tests, and perhaps

geophvsical methods are used to obtain general subsurface geologic and

hydrologic inforrnation to essess geologic structure end rnining

conditions' and to obtain reliable chemical and mineralogical analyses

of the rau naterials available at the rnine site. A geotechnical study

of the plant site may also be performed at this time. At this point, it
is usually not necessary to spend large sums of noney for a dense
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program of core drilling, sampling, and analysis. One needs only enough

chemical information to identify the distinctive rock types that are

present on the property' to obtain a reliable estimate of the total

quantity of each rock type, and to obtain a reliable estimate of the

everage composition of each rock type and a rough appraisal of its

variabi I ity. A prel iminary mining plan is needed to determine the

limits rithin lhich reserve calculations should be performed.

The average compositions and total tonnages of the various rnaterials

identified on the property are used in rnix-design calculations to

determine thether a suitable cement nix can be made, and to estimate

uhether the property nill be essentially self-sufficient in rall

naterials' or nhether additional property or purchased naterials uill be

needed. All of this infornation, combined rith independently gathered

marketing' technical, and economic data' should be adequete to perform a

careful feasibility study of the total projectr cnd in nost cases uill

be adequate to reach a decision on uhether to conmit over $100 million

to construction of a neu plant.

2.4.3 Detailed Site Evaluation

Traditionally, the evaluation of cement rau materiels has stopped at the

"general" stage described above. The drilling of more than fifty or so

holes on a single property at this stage has been uidely vieued as e

profligate expenditure of conpany funds, and the drilling of tno holes

closer together than a feu hundred feet has been considered a sign of

geological ineptitude, unless the rocks rere clearly in e structural

mishmash. These vieus developed for good F€esonsr based on many
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people's accumulated experience in evaluating cement rau naterials.

First of all' sparse drilling is perfectly adequate in many cases

because of the virtually constant compositions of nany sedimentary raur

naterials. Furthermore, the looser restrictions on feed veriebil itv

that lrere permissible in many older plants made it unnecessary to

evaluate local rau-material variabi I itv yery cereful ly. And final ly,

until the advent of geostatistics in the past feu yearsr ho method

existed for translating information on the variability of drill-core

analyses into information on the variability of rau-feed compositions.

Nevertheless, the remarks quoted at the beginning of Chapter I

indicate that the traditional methods of cement rar-material assessment

ere no longer adequate for the design of most modern plants. In

particular' if the chemical compositions of the reu naterials appear to

be extremely variable, then the more sophisticated mining nethods, extra

homogenization capacity, increased flexibil ity in proportioning and

storage, ird nore sophisticated sampling and quality-control methods

that rill be needed may add several million dollars to the capital cost

of a plant and millions more to the total discounted operating cost of

the plant throughout its life. Therefore it is important to obtain

information on rau-material variability, so that these additional costs

can be properly evaluated.

Rel iable information on variabi I itvr is opposed to everage

compositions' requires considerably more drilling data in most cases.

Furthermore' information on snall-scale variability -- the hour-to-hour

and day-to-day variabil ity in the compositions of del ivered rell

materials that is of greatest importance in quality control end process
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stability can be determined only {rom clogelv spaced data on

rau-material compositions. Still, the additional expense of gathering

more data (treated further in chapter 5) can be justified onlv if

methods are available to recast the drilling data into a form usable by

pl ant desi Eners. Chapter 3 of this dissertstion describes these

nethods, chapter 4 provides sone examples of their execution end

practical applicationr ind Chapter 5 discusses the costs involved and

the factors that should be considered in making a decision about uhether

more data and more sophisticated rnethods of rau-material assessment are

needed for a specific project.



Chapter I I I

SIl'IULATI0N 0F COREGIONALIZATI0N: BASIC llETH0DS,
EXTENSIONS, AND APPLICATIONS

This chapter introduces a feu basic concepts that are needed for an

understanding of the methods of conditional simulation of

coregionalization (spatial cross-association among variables), and then

describes those methods and some of their applicetions. Section 3.1

provides a brief introduction to linear geostatistics. Sections 3.2

through 3.4 discuss the methods used for classical conditional

simul ations of coregional ization for stationary gaussian spatiat

processes (the simplest case). The remaining sections present some

extensions to these techniques for the simulation of more complicated

phenomena and provide some practical advice on real-rorld applications.

Tuo case studies, invol ving simul ations of I imestone deposi ts, are

presented in Chapter 4.

3. I GEOSTATISTICAL CONOEPTS: N BRIEF 0VERVIEN

3. t. I Scope: Geostatistics and Its Appl ications

Let's begin by revieuing a very unfortunate bit of terminology. The

term "geostatistics" naturally should mean ,'statistics applied to the

earth sciences"r and original ly that is exactly that it did mean.

Unfortunately, during the past several years the definition of

geostatistics has gradually been transformed into ,rapplications of the

theory of regional ized variablesz, regardless of uhether those

-59-
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appl ications happen to be in the earth sciences. Thus ue nor find the

prefix "gs6-tt being used inthe name of e discipline thatis not

necessarily concerned uith earth-science problems at all. |loreover, the

general field of statistical applications in the earth scienceg hes nou

been rendered nameless. (The common terms "mathematical geology" and

ttgeomathematics" certainly are not eppropriate replacements. )

Geostatistics (as the term is nolr applied) is used to describe

phenomena that appear to vary continuously in space or time according to

a spatial probabi I i ty I au. Examples of such variables from geology

include ore grades in mineral deposits' elevations or thicknesses of

sedimentary beds, chemical enalyses of rocks, porosities of aquifers or

oil reservoirs, and strengths of earth naterials. Examples outside

geology include rainfal I data, concentrations of environmental

pollutants, crop yields, densities of forest species, and nost data

commonly analyzed by time-series methods. ln mining appl ications,

useful results that can be obtained by geostatistical methods include

optimal estimates of total F€s€FV€sr local ore gradesr and recoverable

reserves in mineral deposits, estimates of the variability of different-

sized blocks of oFOr selection of the best drilling locations for the

improvement of the quality of ore estimation, and simulations of the

spatial distribution of ore grades for use in mine and process planning

(covered in the case study of Section 4.2).

A clear and concise introduction to basic geostatistical concepts can

be found in Chapter I of Journel and Huijbregts (1978). The terminology

end most of the notation used in this dissertation conform to their^
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usege.tt Their volune and that of David (1977) are the most complete

texts covering all of linear geostatistical theory and its mining

appl ications. This dissertation provides only a very brief

introduction, stressing those concepts that are most important in

eppl ied simulations of coregional ization.

There is an important conceptual hurdle that one nust leap before one

can apply, uith a clear conscience, the methods of geostatistics in a

study of real-lorld phenomenar one must hg uillinc lg accept the idea

that e qeostatistical ooint g[ vieu jS ySl id for the ohenomenon under

study. Some geologists,, and other natural. scientists uho ere closely

acquainted uith complex natural phenomena in a field setting' ere

uncomfortable nith the idea that such compl iceted variables as ore

grades can be realistically represented by any kind of mathenatical

model. But several points can be made in response:

(t) It is true that some situations cannot be rendered into a neat

probabilistic form very easily. A situation uhere several different

rock types have been mixed together by folding, faulting, and igneous

intrusion is a fine example. But a thinking geostatistician uorking in

such a setting nust be, emong other things, a thinking earth scientist,

and es an earth scientist he ri I I recognize situations rhere a

straightf orr.rard probabi I istic model does not apply and al ter his nrodel

or the scale of his study accordingly.

17 A feu exceptions to
have been necessary,
character set used to

the notation of Journel and Huijbregts (1978)
primari I y because o{ | imi tations in the

print this dissertation.
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(2) For many applications, the geostatistical nodel ernployed does not

need to fit all observable aspects of a naturel phenomenon exactly. The

inportant question to ask rhen fitting a model to a set of data is not

"Horl perf ect is this nodel as a representation of the compl ete

phenomenon?", but rather "Hou adequate is this model as a representation

of those aspects of the phenomenon that are of practical importance?".

It is especially important to consider the scale at nhich observations

have been made in comparison uith the sqale of the geostatistical study.

For example, if ue are interested only in the ore grades of large nining

blocks' then the microscopic features of the ore mineralization are

irrelevant to the problem, even if the model ue are using uould be

clearly inappropriate at very small scales.

(3) Ultimately, geologic processes may be regarded as deterninistic,

yet this does not mean that ue cannot use a probabilistic approach in

analyzing the results of those processes. So many different influences

converge to produce a given result that, giyen our ignorance of their

individual effects, ne might as uell vieu the outcome as probabilistic.

f'loreover, Journel ( 1985) has demonstrated that deterministic and

probabil istic formulations of spatial estimation problems ultinately

boil doun to the same estimation methods, merely expressed in different

mathematical languages.

(4) Geostatistics' in common rith other probabilistic epproaches' is

a ray of recognizing and accountino @ our ignorance of the phenomenon

under study. A situation in rhich the geologist has reason to doubt the

accuracy of a carefully constructed geostatisticel estimate is usually

one in uhich an estimate by eny other means uould be equally bad or
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rorse; but at least the geostatistical estimate is acconpanied by an

"estimation variance", rhich can tell the geologist hou bad the estimate

is likely to be.

(5) Final ly, al though the introduction to geostatistical methods

presented in this chapter covers only very simple nodels, this

simpl icity is only in the interest of brevity. If enough data are

available (including qualitative geological data)r geostatistical

techniques can be "custom-built" to fit virtuel ly any situation. The

case study of Section 4.2 provides one example of hou several simple

techniques can be combined and adapted to a nonideal situation, through

careful data analysis, consideration of qual itative geological

information' and "conditioning" of the model to the date.

3. t.2 Random Functions and Reqionalized Variables

The type of phenomenon that ue can examine by neans of geostatistics is

one that can be vieued as a realization g[ g spatial random function

(random proG€ssr or rsndom field) having a value at every point in

space.ts The space can have any number of dimensions -- usually one,

tuo, or three. A tuo-dimensional example of such a reelization is

presented in Figure ll, uhich is a contour map of simulated porosities

in a thin (effectively tno-dimensional) sandstone aquifer.le Porosity is

considered to be a random quantity distributed over this tuo-dinensional

t8 As emphasized in the previous section, the phenomenon does not have
to be a realization of a randon function, but it must resemble one
enough to allott a random-function model to be constructed from the
data.

le This simulation uas a prelirninary step in the generation of e more
compl icated simulation, cal led ,rFiel d 1r, by Helnick and Luster
il984).
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space' but "randomness" does not necessarily imply a complete lack of

structure. The porosities of eny tro neighboring points ere not

independent but tend to be positively correlated uith each other -- in

general, the closer together the points, the nore sirnilar their

porosities. FurthermoF€r n€ighboring points a given distance apart tend

to be most similar if they are located elong a northuest-southeest line,

and least similar if they are located along a northeast-southuest line.

Thus, the degree of correlation depends on direction ss rell as on

d i s.tance .

IWWffiN I
I
I

15 20 25r tlorth
10

Figure I l: Contour map of porosity in a conditionelly simulated
sandstone aquifer. Each simulated value represents
the average porosity for the total thickness of the
aquifer at that point. Contour interval r 52
porositV. Sample semivariograms of this simulation
are provided in Figure 12.



65

In geostatistics, re regard the set of porosities at all points x

(actually a vector of coordinates, I) as a "regionalized variable" z(x),

uhich in turn is regarded as one particular realization of a random

function Z(x), lhich obeys a spatial probabil ity lan that rnust be

inferred from the data. In a simple caser H€ can consider this random

function to be "second-order-stationary',.2o Second-order stationarity

entails first that the mean (expected value) of the random function Z(x)

is a constant for all locations x, i.e.:

EZ(x) = m(x) = m for all x

This is a uay of saying that there are no large-scale ,,trends', or

"drifts" in porosity across the area of interest. Second, it entails

that the covariance (or "autocovariance") function C(h), representing

the covariance betueen Z(x) and Z(x+h) at tuo points separated by vector

h, is also a constant for any given vector h, independent of the

location x; i.e., for points x1 and x2 separated by vector h:

C(x1,x2) = EtlZ(xr)-m(xq) llZ(xa)-m(x2) l)

= E[Z(x+h)Z(x)]-rn2 = 0(h) f or al I x

The variogramzl function 2z(h) is defined as:

2y(h) = EtlZ(x+h)-Z(x) l2] = 2l C(0)-C(h) | for al I x

Second-order stationarity differs from rrstrictz stationarity, uhich
requires that the nul tivariate distribution of the set of random
variables {Z(x;)} {or any configuration of points [xi] be invariant
under anv translation of the set of points. Different authors
unfortunately use someuhat different terminology in reference to
stationarity. The terminology in common use in geostatistics is
explained by Journel and Huijbregts (1978, Section II.A.Z).

In informal usage the senivariogram function y(h) is commonly called
a "variogram"; horeverr an attempt has been nade to naintain the more
formal usage in this dissertation.

20

2l
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Under second-order stationarity, this is just the variance of the

increment" 21x+h)-Z(x), uhich have mean zero. lf ue have tuo spatially

cross-correlated reEional ized variables of interest, zr (r) end z2(x),

there is an analogous cross-veriogram function, representing the

covariance of the increments Zr (x+h)-Zr (x) and Z2(x+h)-Zz(x):

2yrz(h) = E{[Zr(x+h)-21(x)Ilzz(x+h)-22(x)l] for all x

The variogram is fundamental to all geostatistical calculations,

is treated in detail in the next section.

so it

3.1.3 Structurel Analvsis of Reoionalized Data

In a real situation ue do not knou the random function Z(x), so ue must

be content uith estirnates of its properties. Fortunately, for most

geostatistical calculations (those required in the appl ication of

"linear" geostatistics, rhich is used in this dissertation)' ue need

only a good estirnate of the semivariogram function ?(h) for all directed

distances h that are of interest to us. For a set of N data uithin an

area of interest, the usual semivariogram estimator is22

N (h)
z*(h) = l1/(2N(h))t I tz(x;+6)-z(x;)tz

i=l

rhere N(h) is the nurnber of pairs of data separated by the vector h.

The corresponding cross-senivariogram estimator is

Nr z (h)
y*rz(h) = I1/12N12(h))l I tzr(xi+h)-21(xi)llzz(x;+[)-2.(xi)l

i=l

22 Some other estimators ere discussed in Part t of yerly et al. (t984)
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$here Nrz(h) is the number of pairs rith observed values of both zr

and 22. In practicer distances and directions ere grouPed into classes

{or irregularly spaced data. "sample sernivariograms" yr(h) of the

contoured data in Figure lt ere shoun in Figure .|2. These

semivariograms have been calculated in four directions from a set of

3024 simulated porosity data, uhich are located on e regular square grid

covering the entire area. Because there is Such a large number of

ideally located points from uhich to calculate these semivariograms' the

resul ting pl ots I ook much smoother than most sanpl e semivariograms

calculated from real data sets.

I* (h)

+ + +

!

NE-SW

EE

+

o
o

r

+

a
o

r

3
o

+

.r. 
t t:s 3

E
o

r Nw-sE

h

Figure 122 Exhaustive
exanple in

sample semivariograms for the porosity
Figure I t.



68

once ue have obtained a sample semivariogram ?r(h)r ll€ need to fit a

model semivariogram function ?(h) to the sample points. ln practice,

this fitting is usually done by eyer although autonatic procedures

exist. l.le cannot fit just any function to such a plot: ue nust select

only "conditionally positive-definite" (Journel and Huijbregts, 1978,

p. 35) semivariogram models that uill assure nonnegative variances for

all finite linear combinations of random variables Z(x;) draun from the

random function Z(x). Standard geostatistical texts list nany such

models, uhich can be used separately or in linear combinations ("nested

structures") to fit any sample plot encountered in practiee. Several of

these models are illustrated in Figure 13. Tno models that are

especially useful for sinrulation purposes ere the spherical model'

uhich

I ess

?(r) = ict3rza - r3za3) for r 3 a

=c {orr}a

is positive-definite in one, t$or oF three dimensions, and the

commonly knoun circular model,

r(r) = [2cz(na2) ltr{1sz-r2) + a2Arcsin(r/a) I forrSa

forrla

lhich is positive-definite in one or tuo dinensions. In the above

expressionsr 2F" is the modulus of vector hr r=lhl. The parameter "4"

is a distance parameter, the t?ange" of the senivariogram in e

particular direction. Beyond this distancer yalues of the random

function are uncorrelated. (This parameter can be regarded as a "range

of influence" around a data point.) The maximum value "C" ol the

semivariogram is called its "sill" valuei this velue is achieved at

distances beyond the range. I{ the random field has infinite spatial
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extent' the scale parameter C corresponds to the variance of the random

function.

Al though the tpo nodel s ebove reach thei r si | | val ues at f ini te

distances' others reach their sills only asymptotically. ltodels uith

sills are collectively called "transition" models. Still other models,

corresponding to processes uithout finite veriances, have no sill: the

semivariogram continues to increase uith increasing distance. For

example' the l.liener-Levy (continuous random-ualk) process has a linear

semivariogram y(r)=Crr rhere C is just the semivariogramrs slope, not a

var I ance . "Hole-effectt' semivariogram models do not increase

monotonical ly uith distance and may correspond to periodic or

pseudoperiodic randon {unctions. Finally, purely random processes uith

no correlation structure at eny observable scale have ,rpure-nugget-

effect" models; these nodels have flat semivariograms nith constant

values equal to the sill value at all distances greater than zero.

All semivariogram functions are necessarily equal to zero at their

origins, i.e. et distance r=0. The shape of a senivariogram model near

its origin is related to the short-scale continuity of the random

f unction. A parabol ic (concave-upr.rard) behavior, in nhich y(r)cAr2 as

r+0' corresponds to very continuous (almost differentiable) spatial

variabi I ity; for example, a one-dimensional deterministic function

consisting of just a sloping line uould have a semivariogram exactly

equal to Ar2r uhere A is the squere of the line's slope. Semivariograms

uith linear behavior near the origin, z(r).rAr es r.r0r Gofr€spond to

random functions that 6re mean-squere continuous (i.e., lim y(r)=0 uhen

r+0) but not differentiable (i.e. r hot ,,smooth")t good examples are
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(a)

(b)

(c)

arr

Figure l3: 6raphs of several conmonly used model senivariogram
f unctions. t'lodels rith a sil | (spherical r circular,
simple-transitive, quadratic, exponent'ial, gaussian,
pure-nugEet-effect) are scal ed to si | | =1. (a) ilodel s
uith a definite range (spherical, circular, simple-
transitive, quadratic, pure-nugget-effect) are scaled
to range=1, except for pure-nugget-effect. (b) The

"practical range" of the exponentiel and gaussian
models is taken as the distance lhere the model
reaches 952 of its sill value; this distance is scaled
to I in the diagram. (c) Pouer models (including the
linear model) and the 3-0 hole-effect model can be
useful if the data exhibit local drifts or
pseudoperiodicities. Details on the quadratic rnodel
are proyided by Alfaro (t9E4); the sinple-transitive,
circular' and spherical models are derived in Section.
3.3.1.2 of this dissertation; the spherical model and
the other models are described by Journel and
Huijbregts (1978, Chapter III). Note that the
spherical ' circularr ehd sinple-transitive models are
positive-definite in (3, 52, and I dimension,
respectively. The other models are positive-definite
in (3 dinensions.

0
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randon functions rith spherical and circular semivariograns, and the

lliener-Levy process. Finally, pure-nugget-effect models and nested

models incorporating a discontinuity at the origin (v(0)=0 but v(r)*0

for r)0) correspond to phenomena having a purely random (t'rhite-noise")

component urith no spatial correlation at eny distanee beyond zero.

Figure l4 compares time-series plots and sample semivariograns of

realizations of thite-noise, randon-ualk, and integrated rendom-lalk

processes to illustrete the differences among these types of short-

distance semivariogram behavior. 23

As illustrated by Figure 12, semivariograms of multi-dimensional

phenomena need not be "isotropic": semivariograms may differ for

different directions of vector h. The nost obvious example of

anisotropy among geologic phenomena is probably a bedded sedimentary

deposit, in uhich one usually finds a shorter range and probably a

larger variance (higher sill) in directions that cut ecross the bedding.

Even nithin beds there may be a direction in uhich the rock is least

variablar e.g. the direction parallel to a paleo-shoreline.

There are tuo types of anisotropy. If the anisotropy can be removed

simply by a I inear transformation of the coordinate system, the

anisotropy is said to be "geometric". ln this case the sill values in

al I di rections nust be equal r 8Dd the distances at lhich the

semivariogram reaches a particular value (e.g. the range in the case of

the sill value) must trace out an ellipse (in tno dimensions) or

23 In Section 3.3.2' ue uill see that models nith parabolic behavior
correspond to random functions in uhich most of the variability of
the process is concentrated at lou frequencies, uhereas models rith
linear behavior correspond to randon functions rith a lot of high-
frequency (local ized) variabil ity.
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Figure l4: The behavior of some sample semiveriogrem functions et
short distances. (a) Normally distributed xhite
noise, illustrating a semivsriogram nith a
discontinuity at the origin. (b) tntegrated uhite
noise (random ualk)r Gonsisting of the cumulative sums
of the process in (a), illustrating a semivarioEram
uith linear behavior at the origin. (c) Integrated
random ualk, consisting of the cumulative sums of the
process in (b), illustrating a semivariogram uith
parabol ic behavior at the origin.
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ellipsoid uhen plotted against all possible directions of vector h. The

linear transformation of coordinates that uould restore isotropy is that

nhich uoul d deform the el I ipsoid back into a sphere. A three-

dimensional semivariogram function shouing geometric enisotropy can be

represented in the {orm

t(h) = y'

rhere h represents a vector

directions (u,v,H), and

components. Figure l5(a)

tuo-dimensional nodel .

(r/ t tn',r) 2+ (h' v) 2+ (h' lt) 2 I )

lith components (hurhvrhx) in the coordinate

(h'urh'vrh'r) are I inearly transformed

i I I ustrates a geometric anisotropy for a

Anisotropies that do not have this simple structure are said to be

"zonal". Zonal anisotropies are nodeled by systems of "nested

structures,, (l inear combinations of several semivariogren models).

Zonal anisotropies are very common in three-dimensional nodel s,

especially of bedded deposits. An example is provided in Figure l5(b).

3. 1.4 Estimation Yeriance end Kriqino

Returning to the porosity example of Figures ll and 12, suppose le knou

the porosities z(x) at three points xq' xz, and x3 lithin the aree of

interest, and ne uant to estimate (interpolate) the porosity at another

point xr fronr these three data (see Figure 16). The estimate z*(xq)

uill have to be some function of the three dste. In terms of the

underlying randorn function Z(x)' ue cen define en "estimation variance"

o2e=EilZ(x)-Z*(x)18) as a measure of the quality of this estimate. In

linear geostatistics' re restrict ourselves to estimators that are

linear combinations of the available data, i.e.:
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N (v) r(bt

(a) Plot of
range
versus
direction

E(u)

t(b)

(b)

N-S

Figure l5: l'lodels of anisotropy illustrated by a typical
sedimentary deposit. (a) Geometric anisotropy rithin
a bedding plane. The range is 6.0 in the north-south
(v) direction,3.0 in the east-uest (u) direction.
Isotropy can be restored by multiplying the north-
south distance bv *. Thus the model is:

7(hu,hy) = yt Gl (h2u+h2vl4) )
(b) Zonal anisotropy in three dimensions. The overal I
model is composed of a geometric-anisotropic structure
for the horizontal direction (?r) nested uith another
structure (yz) representing the dif{erence betueen the
horizontal semivariogram (yr) and the more variable
vertical sernivariogram (yo). The final model is thusr

?(hu,hv,hr) = 7tt{(h2u+htv/4+h2*)) + 72(h1)
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n
zr(x): fI;z(x;)

i=l
uhere n = the number of data

If Z(x) is a second-order-stationary rendom

be unbiased if ftr;=1. But hou should ue

the deta points xi? To get a feel for

comparing the data points tro at a time.

function, this estinate uill
ellocate the reights li enong

the ansuer, let's start by

. xl i
NORTHoX2

Oxr
ot 13

Xg

Figure l6: Data configuration for a simple linear estimation
problem. l,le rish to estimate an unknoun value of the
regionalized variable z(x) at point xr. Tno cases are
considered: (a) the available date are at x1r x2r and
x3, and (b) there is an additional datum at xs.

lf le uere given only xr end x3, it r.rould seen to nake sense that the

value at x3, uhich is closer to the unknorn point xq than is !(1r should

receive nore teight than the value at x1, provided that the distance

lx3-xql is lithin the range of the variogram in the northtest-southeast

direction -- otherr.rise both data uould be uncorrelated r.rith the value at

xtr so both r.rould be equally good estimators. Given only xr and x2, it

uould also make sense that x3 should receive more neight than x2r €verl

though both are equidistant from x1; this is because the regionalized
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variable z(x) is less variable in the northuest-southeast (xr-xs)

direction than in the northeast-southuest (xz-xr) direction, so lre

naturally expect x3 to be a better estimator than x2. Given only xr and

x2, it is not so easy to decide nhich point should receive greater

ueight. Recall that the variogran 2y(h) is the expected value of the

squared difference betreen the values at tuo points x and. x+h; it is

thus equivalent to the estimation varience uhen estimating z(x) by the

single value z(x+h). As the regional ized variable z(x) is least

variable in the northuest-southeast direction, the variogram for a given

distance urill be louest in that direction. Thus it is reasonable that,

in order to minimize estimetion variancer t.l€ should decide on the

relative ueights of xq and x2 by checking to see uhich distance, lxr-xrl

or lx2-xql' corresponds to a lorer variogram value in the corresponding

direction.

Nor.r in conparing the points tuo at a tiner ue have overlooked an

important consideration: the relative ueights of any tro points nay not

be independent of the position of the third point. To see this more

clearly, suppose that point x3 has a companion point, xs, e yery short

distance auay (Figure l6). Nou it is not so obvious that xs should

receive more ueight than, for instance, xr. Because x3 tnd x9

contribute roughly the same information, x3's reight should be only

about half of uhat it nas before the advent of x3r ahd might thus be

less than x1's Height.

0bviously the task of assigning an intelligent set of ueights to a

I inear estimator z*(x) may not be trivial r €sp€cial ly in a practical

case phere the number of data is large and their spatial configuration



is very complicated. In such a situation, le need a ]tay to calculate

"optimaln set of ueights, i.e. a set of reights that rill result in
ninimum estination variance.

To approach this problem, let's consider the general case uhere re

lant to determine the average value z"(x) of a regionalized variable

z(x) over some volume v, centered at xr from a knoun averege value

zu(xt) in some other yolume u, centered at xr. Each volumer v ihd ur

can be composed of a single point' a compact volune, or a set of several

volumes and/or points. In terms of Z(x), the estimation varience is

o2c = E{[Zv(x)-Zu(x') l2]

= Et[(lzv) [ zcv)dy - (1tut t zlv)dv12]
v(x) u(xr)

(ttv2) t t z9)z(y')dy,dy
v(x) v(x)

- (22(vu)) f ! zcv>z(y')dy,dv
v(x) u(xr)

+ (tzuz) f t z<v>z(yr)dy,dy
u(x') u(x')

tlrv2)I Icg-y')dy,dy + m2

v(x) v(x)
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an

a

(22(vu)) J J ctv-v.ldy'dy
v(x) u(x,)

2m2

+(1tu2)[ fc{v-v,)dyrdy + m2
u(x') u(x,)

uhere C(y-yt ) is the covariance function et vector (y-yr).

expressed more compactly in the folloxing ltay:

This can be

o2c = !(v,v) - zg(y,u) + g(uru)

uhere g(A,B) is the everege value of the covariance function C(h) uhen

the opposite extremities of vector h independenily vary over the volumes
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A and B.2r Recalling that the semivariogram {unction y(h) is equal to

C(0)-C(h), Lte can conveniently ."rrite the above expression simply by

reversing the signs (and rearranging terms):

oze = 2Y(v,u) - I(v,v) - 1(u'u)

This is the fundamental catch-al I formula {or estimation varience. From

the first termr t.t€ see that as the volumes v and u become more distant'

the estimation variance becomes larEer -- es le night expect. As the

domain v to be estimated becomes larger, the variance decreases: it is

easier to estimate an average over a large volume than over a small one.

As the domain u of the data becomes larger, the var.ience also decreases:

it is easier to estimate using a lrFg€r spatially dispersed set of data

than using a smal I r coilpect set. Notice that the variogran function

2y(h) may be regarded as an estimation variance for the trivial case in

uhich the volumes y and u are points separated by Yector h!

o2e = Z!(v,u) - Z(vrv) - Z(u,u) = Zy(vru) - 0 - 0 = zy(h)

In practice the Z values can be calculated rith the use of auxiliary

functions (the approach used uhen calculating an estimation variance by

hand)r oF by discretization of the volunes v and u into fine grids of

points (for a numerical integration over the volumes -- the computerized

approach). These alternatives are discussed by Journel and Huijbregts

(1978, pp. 95-147).

Not back to the problem of minirnizing the estination variance by

obtaining an optimal set of ueights. Suppose lte ere estimating our

unknoun zy(x) by not one but several data sets zs;(x;), i = | to n, uith

2t Journel and Huijbregts (.|978)
overbar instead o{ an underscore
semivariogram. 0verbars are not
to print this dissertation.

and nost other references use an
to indicate an average covarience or
available in the character set used
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becomes:

i = | to n. The estimation
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vari ance then

n
s2e = EttzY-IIiZui l2l

i=l

nnn
= 2Ir;t(vrui) - 1(v,v) - f Iriliz(uiruj)

i=l i=t j=l

lle uant to mininize ozj subject to the nonbias condition fI;=!. Notice

that once ue have calculated the relevant y values from the

semivariogram model, the expression for s2" is just a quadratic equation

uith n unknorns, the I; values. To minimize this expression subject to

the nonbias condition, Ne can use the Lagrange procedure found in many

basic calculus texts, setting up n partial differential equations of the

form:

D.zbl; ts2. - 2ptlri - tll = 0 {or all i = | to n

The expression lIIi - ll above is equal to zero uhen the nonbias

condition is satisfied, although after differentiation a nonzero term,

-2p, uill appear at this location in each equation. The parameter U

then appears as an (n+l)th unknounr so ue add the nonbias condition

above es an (n+l)th equation, thus constraining the ueights to obey this

condition. Substituting the expression for ozg and simpl ifyingr lt€

arrive at a system of n+l linear equations:

n

fljltuiruj) + p = 1(u;,v) for all i = | to n
j=l

n

fri=tj=l
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Solving this ,'ordinary kriging system" provides us nith the set of

"kriging ueights" ttr;, j = | to n] that results in a mi,nimum estimation

Ji-C-LelIg-e, o21, uhich is cal led the "kriging variance".

There are other types of I inear kriging systems. "Cokriging"

systemsr taking advantage of cross correlations anong different

regionalized variables, can be obtained for estimating values of one

regional ized variable from data on the same variable and other

rcoregional izedz variabl es (Journel and Hui jbregts, 197E, p. 324).

Cokriging is especially helpful if the variable being estimated has been

,,undersampled" in comparison to other variables. "0rift" functions can

also be incorporated, resulting in "universal kriging"' applicable to

some nonstationary cases (Journel and Huijbregts, 1978, p. 313).

Nonl inear geostatistics incorporates transforrnations of the data so that

nonlinear estimates can be rnade (described in several papers in Verly

et al., 1984). Finally, sone research on optimization criteria other

than minimum estimation variance has been initiated recently (Journel,

r984b).

3.1.5 Disoersion Variance

Expressions of the variabi I ity of regional ized phenonena nust alrays

make reference to the scale of measurement. The variabil ity of

thousand-ton blocks of ore should be less than the variability of core

samples, and the variability of monthly composite chemical analyses of

rau naterials delivered to a processing plant should be less than that

of hourly qual ity-control samples. The variogram Provides the

information re need to calculate the theoretical values of these
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variances for any sample size (cal led zsupportz in geostatistical

jargon) larger than the size used in calculating the variogran itself.

ln most rnining situations, the variogram is calculated from exploratory

drilling data, defined on "core support", phereas the variability that

is of interest for mine-planning purposes is usually the variability on

"block support".

Consider a large block of neterial of volume (support) ,rvn

(Figure 17) rithin a much larger ore deposit of volume rrrrr. This block

maV be divided up into N smaller blocks of volume ,rn'r. If ne measure

the average value of a regionalized variable z(x) uithin each of the

smal I blocks u(x;) centered at x1,

zu(x;) = ( ltultz(y)dy
u(xi)

and also the average uithin the larger block v,

N

zv(x) = (ltv)Iz(y)dy = (tzN)fzu(xi)
v(x) i=l

then the "dispersion variance" D2(uzv) of small blocks of size u tlithin

large blocks of size v is defined as

N

D2(uzv) = E{fi/N)ttZy(x)-Zs(x i) l2}
i=l

uhich' under second-order stationari ty, is a constant for fixed

configurations of u and vr independent of the location of v. Notice

that actually more than just the !'olumes of u and v must be specified

here: the shapes and orientations of the blocks are also inportant.

Volumes rith elongated shapes usually encompass more different types of

material (and thus accomplish more smoothing of the variability of the

material ) than blocks uith compact shapes. Furthermore, the



E2

regional ized phenomenon nay be

more susceptible to averaging)

anisotropic and

in one direction

thus more variable (and

than in another.

Figure l7: A large block of
blocks of volume

ore
u.

ol volume v divided into snaller

Ne need not

of units ui. A

consider only

more general

02 (uzv) =

volumes v divided into an integral number N

expression for the dispersion variance is

( tzv)Je ilzr(x)-zu(y) I2]dy
v (x)

uhich is the mean velue over v of the estimation variance of Zv(x) by

Zr(l). Substituting the expression for estimation variance into this

f ormul dr !r€ have:

D2(uzv) = ( l/v)Jlg(v(x),v(x))-29(v(x),u(y))+g(u(y),u(y)) ldy
v (x)
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Nou recal I that the average covariances g(v(x)rv(x)) and g(u(y),u(y))

depend on the internal geometries of the supports v and u but not on

their respective locations x and y in the above expression. Thus the

average values of the averege covariances over volume v(x) are just

g(v,v) and 9(u,u). The remaining term, 9(v(x),u(y)), rhen averaged over

the volume v(x)' just becomes g(v(x),v(x)), or simply 9(v,v).

expression for dispersion variance becomes

Thus the

D2 (uzvl = g(v,v)-29(v,y)+!(u,u)

= g(u,u)-S(v,v)

orr in terms of the semivariogrem:

D2(uZvl = 1(v,y) - g(u,u)

An important inrplication of this simple relationship is that dispersion

variances calculated for progressively larger supports are

additiYer P.g.:

Dz(utu) = D2(uzv) + D2(v/r) for u ( v ( r,r

Nou consider a random function Z(x) measured on point support and

having finite variance Var{Z(x)}=EtlZtx)-ml2}=C(0). This variance may

be regarded as the dispersion variance D2(0zoo) of point-support volumes

uithin an infinite volume. Thus:

02(0zo) = c(0,0) - C(o,o) = C(0) - 0 = C(0)

: y(cro) - Z(0,0) = y(o) - g = y(o)

So the semivariogram sill has the equivalent representations:

D2 (0zo) = c(0) = y(o) = Yartz(x) ]

The concept of dispersion variance can be extended to describe

covariances betureen the grades of different coregionalized variables

measured on b I ock support. t'latheron ( 1965, pp. | 46- 148) denonstrates

that the "dispersion covariance",
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D2qp(uzv) = E((lzxlIIZratx)-Zuc,(x i) I tZys(x)-Zus(xi) l)
i=l

for random functions Zq,(x) and Zp(x) measured on support u inside volume

v can be simply calculated by

rhere yq,s(h) is the

important additivity

Dzsp(uzv) = lsg(v'v) - Ias(u,u)

cross senivariogram betueen Za(x) and Zs(x). The

D2as (uztt )

property sti I I hol ds:

= D2ao(uzv) + Ozq,s(v/u) {or u ( v ( u

3.1.6 Reqularization

Yariograms are not necessarily expressed on point support. Point-

support data exist only in theory enyray. In practice, core-support

data can usually be considered as "practically" point-support data,

because (except perhaps in the doun-hole direction) the dimensions of

the core samples are very small in comparison to the dinensions of

mining blocks, so that 02(corezblock) s D2(0.zblock). But sornetines ue

have data on larger supports' such as block eyerages estimated fron a

large volume of conbined blast-hole samples, or from crushed ore sampled

in a processing plant. Ne can then define a "regularized" variogram,

2yu(h) = EtlZu(x+h)-Z.r(x) l2l

rhere x and x+h are block centers separated by vector h, and u denotes

the nonpoint support. If ue formulate this variogram as an estimation

variancer re have;

2?u(h) = 22(u(x)'u(x+h))-Z(u(x)'u(x) )-Z(u(x+h),u(x+h))

Under stationari ty, the I ast tr,ro terms are equal ' thus r

?u(h) = 1(u(x),u(x+h) )-1(u,u)
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The first term, 1(u(x),u(x+h)), can be approximated by y(h) if the

distance lhl is very large in comparison to the block size. This is

certainly true as lhl approaches infinity; thus ue see that the sill

?u(o) of the regularized semivariogram is aluays lorer than the sill of

the point semivariogram by an amount equal to 1(uru)r so that:

D2(uzo) = Cu(0) = ?u(o) = YartZu(x)) ( Vartz(x))

The regularized range (for semivariogram nodels having ranges), uhich is

the distance at uhich the values of Z.r(x) in tuo volumes u(x) and u(x+h)

are uncorrelatedr tnust be increased by the uidth of the volume u in the

direction of vector h.

Figure lE compares the characteristics of sample semivariograms ?*(h)

and ?*u(h) for a typical transition phenomenon rith finite range.

Notice that, in addition to a decreese j.! l[e sill and an increese j3

the ranqe' there is a tendency touard parabolic behavior near the oriqin

of the regul arized curve. Thi s short-scal e smoothness of the

regularized phenomenon is the result of overlap betueen volunes u(x) and

u(x+h) at distances lhl less than the dimension of u.2s As the size of

volume u increases, all three of these effects becone more pronounced.

If the volume u is not isotropic (a circle in tno dimensions, a sphere

in three), the regul arized variogram r,ri | | not be isotropic even i f the

point-support process js isotropic.

In the absence of measurement €fForsr a sanple semivariogram of a

regul arized phenonenon shoul d ehor.r no discontinui ty at the origin (no

nugget effect). In practice, such a discontinuity might sti I I be

2s Parabolic behavior arising from large support is rarely observed
clearly in sample senivariograms. Samples do not usually overlap in
practice, so sample semivariogram points are usually farther apart
than the dimension of the samples.
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Figure l8r Comparison of sample semivariogram functions for point
and regulerized phenomena. The example is a point-
support time series having a simple-transitive
semivariogram uith range=l and sill=1. The time
series is regularized by averaging the data uithin a
moving line segment of length u=|.

observed if sampling, preparation, or analytical errors are responsible

for an appreciable part of the observed variability of the phenomenon.

3. t.7 Simulation end Conditioninq

The tuo variances discussed above -- estimation variance and dispersion

variance -- are linked to the tuo basic types of problens that can be

solved by I inear geostatistical methods. If xe are interested in

estimatino the value of a regionalized variable at some point uhere ue

have no data, or its average over some volume rhere ue have missing or

inconplete data' then ue are interested in estimation variance end its

minimization by kri9in9. If re are more interested in the variabilitv

of a phenomenonr dhd the relationship of that variability to the support

(volumer shap€r and orientation) of the measurement units, then re are

interested in dispersion variance.



87

There are some practical applications in lhich dispersion variance

may not give us all of the in{ormation ue need about variability. For

example, if ue are designing a nineral-processing plant at e neu mine

site, re uould like to knou in advance the variability of the ore to be

processed. But ue really need more than just a feu numbers representing

the variances of small blocks of ore uithin large oh€sr large ones

uithin still larger ohssr and so forth. The rar-material input to tlris

processing plant uill be the output of a complex mining system operating

on a regionalized variable (the ore grades in place in the mine). In

effect' the mining system is a very compl icated transformation, having

no neat mathematical form, uhich converts a three-dimensional

realization of ore grades in place into a one-dimensional realizetionr

a time series of ore grades delivered to the plant. The nore ue knou

about this time series, the better job lre Gan do in designing the plant.

Dispersion variance alone can give us only, even under ideal conditions,

the long-term variance (i.e., the semivariogram si I I ) of this time

series. To characterize the time series completelyr lt€ h€€d both a

mSd.e-l_ g{ the nininq svstem and a model o{ the ore orades il place. The

ore-grades nodel should reflect not just the variability of the ore

grades at different scales, but their uhole spatial distribution.

The ideal model for ore grades in place uould be e conplete

real ization of the true regional ized variabl e zo (x) et al I points x

pithin the region of interest. But in practice ue have only a finite

data set tzo(xi), i = I to Nl uithin this region. Infinitely many

different realizations of the random function Z(x)r all passing through

the N available data points, and all having the same histogram and
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var i ogram as the real z6 (x ) ,

realizations is the real zo(x).

are possibl e. 0nl y one of these

From the available data re can generate kriged estirnates zrsl(x) at

all points x uithin the region of interest. Although these estimates

are optimal in the sense that the estination variance at each point is

rninimized, the complete set of estimated values (zrok(x)l over the uhole

region of interest ni | | have a variance smal ler than the observed

variance of the data. It is easy to see uhy this "smoothing effect"

(Journel and Huijbregts, 197E, p. 450) occurs: the kriged estinates are

just ueighted averages of the data' and the everaging process filters

out nuch of the variance observed in the original values.

Nor.r suppose that ne apply a computerized model of the mining process

to the kriged estimates of the ore grades. Because the kriged estimates

are so smooth, the output of this mining model rould be e time-series

input of ore grades to the processing plant that also uould be very

smooth -- creating an overly optimistic impression of the quality-

control problems that ue uould actually experience in the real plant.

To obtain a more realistic impression of these problems, Ne need e

realization of the random function Z(x) of ore grades in place that

(t) equals the observed data values at points phere the real

regionalized variable zs(x) has been sampled, and (2) has the same

spatial distribution as the real zo(x)r oF at least the same mean and

variogram. In geostatistical jargonr such a realization is called a

"conditional simulationt' of zo(x) "conditional" because it is

constrained to pass through the observed data values, and "simulation"

becauser as ih other types of simulations, this realization is draun
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randomly from en infinite population of possible realizations having the

same statistical characteristics as the data.26 This is an important

point:

unique.

a conditional simulation, unlike a kriged estimate, is not

Given a single finite set of conditioning data and the

associated statistics (at least a mean and semivariogram model), an

infinite number of conditional simulations can be produced.

There ere many applications for conditional sinulation in addition to

mine and process planning (discussed nore ful ly in Section 3.9).

Several of these applications are described in Journel (1980)' in

Journel and Huijbregts (1978, Section VII.B' particularly YII.B.3)r ehd

in Verly et al. (1964, particularly Part XII).

To get an idea of hour a conditionel simulation is created in

practice, let's look at a simple one-dimensional case -- a published

time series of CaS01 percentages of an enhydrite-shale mixture delivered

to a stockpile (Schofield, 1980, pp. 95 and 259). Figure l9(a) shous a

plot of the normal scoreszt of part of the original data, point-sampled

at fifteen-minute intervals. Figure 20(a) shors the semivariogram of

the normal scores. Nor.r suppose' f or some mineral -processing study' re

uould like to fill in some additional data at five-minute intervals.

Ne begin by obtaining kriged values at the intervening {ive-minute

positions, shoun elso in Figure l9(a).28 Next re generate an

26 In conformance to popular (but sloppy) usage, the term "simulation"
is used throughout this dissertation to denote both the simulated
realization and the act and methods of creating it. Some authors
call the realization e "nunerical model".

2t The reason for using normal scores rather than rar data uill become
clear in Section 3.5.

2s Some risk is being taken in this erample. There are no data at five-
minute intervals nith nhich to estimate the semivariogran at five-
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(a)

(b)

(c)

(d)

Figure l9: Steps in the conditional simulation of a time serigs
of CaSOr analyses. (a) Normal scores of original data
at lifteen-ninute intervals, fron Schofield (1980,
pp. 95 and 259), rith kriged estimates (loner plot) at
five-minute intervals. (b) Unconditional simulation
at five-minute intervalsr ltith kriged values (louer
plot) at five-minute intervals using simulated data at
fi{teen-minute intervals. (c) Kriging errors obtained
by subtracting the kriged estinates in (b) from the
simulated data. (d) Conditional simulation obtained
by adding the kriging errors in (c) to the kriged
estimates {rom the original data in (a).
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Figure 20: Sample semivariograms of the time series depicted in
Figure 19. The legs on the horizontal axes ere scaled
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the coarse vertical scale of the plot.
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"unconditional simulation" of the process at five-minute intervels,

shoun in Figure l9(b)r using the noving-average technique explained in

Section 3.3.t.2.2e These simulated values have essentielly the seme

semivariogram as the model senivariogrem fitted to the originel sanple

plot (compare Figures 20(a) and (b)), but the simulated values are not

constrained to equal the data values at the fifteen-minute data

locations -- hence the simulation is "unconditional". Next ue select

from the simul ated series the subset of data located at points

corresponding to the real fifteen-rninute data locations. Ne use this

smal ler simulated data set to produce kriged estinates at the

intervening five-minute locations' shoun also in Figure l9(b). Next ue

subtraet the kriged values of FiEure l9(b) from the unconditionally

simulated values, to produce a set of simulated residuals, or kriging

errors, shoun in Figure l9(c). Finally, re add these residuals to the

kriged values ue obtained uith the original data (Figure l9(a)),

producing a "conditional simuletion"' depicted in Figure l9(d).

Tuo important claims can be made about this conditional simulation:

(l) its variogram is equal to the variogram of the original data

(compare Figures 20(a) and (d)), and (2) the simulated realization

passes through all of the original data points (conpare the fifteen-

minute values in Figures l9(a) and (d)). These tuo claims further imply

that the nean and variance of the conditionally simulated data are equal

minute and ten-minute lags, so the short-distance structure of the
semivariogram has been extrapolated from sarnple Points at longer
distances. A shortage of data at close spacings is a conmon problem
in semivariogram model ing.

2e The sample semivariogram ras fitted by tuo nested simple-transitive
nodels, rhich are easy to simulate in one dimension.

I

F
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Unless the rendon function is gaussian

(as explained in the introduction to Section 3.3), these clairns do not

imply that the uhole spatial distribution of simulated values is the

same. llore complicated methods for better reproducing the distribution

are provided in Section 3.5.

Nou let's see rhy this rnethod uorks.30 It is easy to see

qual i tativel y uhat is being done: ue have created tuo "smooth"

real izations (the tro krigings) ' subtracted the unconditional smooth

realization from its associated "rough" unconditional simulationr ahd

then simply added these residuals back to the other smooth realization,

in order to roughen it up a bit. To demonstrate that the tuo claims

made above are correctr u€ first need to formalize the series of steps

that uere per{ormed above. l.le started uith a data set selected from a

true realization zs(x)r uhich is unknoun at all but a fex data points.

At these same data points and at several additional points, re created a

conditionally simulated realization zs6(x) by the follouing operation:

uhere: zsg(x)

z*ok(x)

zs(x)

zisl(x)

3o more extensive
Journel and Hui

discussions can
jbregts ( 1978,

be found
Chapter VI

is the value kriged from the selected unconditionally

simulated data.

A nice property of kriged estimates is that they are "exact

interpolators"; i.e., the kriged values at data points uith knoln real

values are the real values themselves. This is to be expected, because

zss(x) = z*0t(x) + [zs(x) - ai51(x)l

is the conditionally sinulated value at point x,

is the value kriged fron the real data,

is the unconditionally simulated value, and

in
r)

Journel (1974a, 1974b) and
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kriged estimates are calculated to minimize squared estinatioh €r't.orsr

and the estimation error of s knorn value obviously should be zero. So

at a particular point x'uhere ue have observed the real velue of zs(x')

and the corresponding value of z6(x'), the relation above can be

reuri tten

demonstrating the

To demonstrate

the conditionaf ly

functions:

Z3s(x') = zo(x') + lz"(x') - zs(x') I

or zsg(x') = zo(x')

second clain above.

yrc(h) = E{[Zss(x)-23"(x+h) l2]

E ( [ Z*o 1(x )+(2" (x )-Z* j1 (x) ) - Z*o t(x+h)- (Z g(x+h)-Zf sk (x+h) ) I z ]

E tI Z*or(x)-Zro r(x+h) I a]

+ Eil (Zr(x)-Zi"p(x) )-(Zs(x+h)-Ztrk(x+h) ) I2]

+ 2E t I z*o r (x) -Zro 1 (x+h) I [ (zr(x)-Zts1 (x ) )- (Zr(x+h) -Zis1 (x+h) ) I ]

the first claim' letts look at the semivariogram of

simulated points in terms of some underlying random

= 7ek(h) + fr-a1(h) + 0

term in the above expression is zeror os the realizetions

zs(x), along,uith their associated krigings, ere independent.

that this is equivalent to the semivariogram ?o(h) of the

realization zq(x)r B€ FBI{Fite the random function Zo(x) as:

The thi rd

ze (x) and

To see

original

Zo(x) : Z*ot(x) + IZo(x) - Z*or(x)l

Then the senivariogram of Zo(x) can be re-expressed:

?o(h) = EtlZo(x)-Zo(x+h) l2)

= E Il Z*q1(x 1+(Zo (x)-Zro1(x) ) - Z*o t(x+h)-(Zs (x+h)-Zro r(x+h) ) I z]
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= E[[Zrot(x)-Z*e1(x+h) l2]

+ E t [ (Zo (x)-Z*o 1(x) )-(Zo (x+h)-Zio t (x+h) ) I z ]

+ 2E ( I Z*o r(x )-Z*o 1(x+h ) I [ (zo (x ) -Zro r(x ) )- (Zs (x+h)-Z*or(x+h) ] I ]

= ?ok(h) + ?o-ok(h) + 0

In this c?s€r to shou that the third tern is zero ue use a proof in

Journel and Huijbregts (1978, pp. 496-498), uhich shous that in ordinary

kriging the kriging error IZo(x)-Z*or(x)l is orthogonal to differences

betueen the kriged values IZ*ok(y)-Z*ot(y') l:

EtIZ*ot(y)-Z*ot(y') ].lZo(x)-Z*01(x) l] = 0 for al I x' Yt y'

Thus both cross products involved in the third term above are zero.

Final ly, the semiveriograms of the tuo kriging €f t^ot'sr 7r-rt(h) end

yp-31(h) must be equivalent' as the spetial configuration of kriging

data is the same in both cds€sr and the tuo reali:ations zs(x) and zo(x)

(and their semivariograns y"(h) and yo(h)) are of the same randon

function Z6 (x),

y."(h) = yq1(h)

= 7s1(h)

?t- rl (h )

to-ok(h) = ?o(h)

+

+

demonstrating the first claim.

To recapitulate: a conditional simulation zj"(x) of a single

regionalized variable ze(x) is nothing more then en ordinary kriging

z*ok(x) of that zo(x)r perturbed by some artfully constructed artificial

kriging errors, Izrc(x)-z*rt(x)1. These kriging errors ere designed to

have the same structure as the true kriging errors, Izo(x)-z*61(x)1. In

particular, the variance of the simulated error at any given point x'is

the sane as that of the actual unknoun kriging error: it is the kriging

variance oz1 described in Section 3. 1.4. Horever, the sinulated error
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is statistical ly independent of the true errorr ahd the errors of

independently simulated values at x' (using independent sets of randon

nunbers) are independent of one another. Hence, the estimation variance

of a true value z6(x') at location x'by a conditionally sinulated value

zlg(x') is:

vartIzs(x')-zss(x') l] = Var{[zs(x')-z*03(x') l+[zro1(x')-zss(x']l] = 2c2k

If ue rere to generate a large number N of independent conditional

simulations and .eJgLagg them, the estimation variance of their average

uoul d be:

N

var [ [ zs (x' )-fzs66(x' )/N I J
n=l

t{

= Vartlzo(xr)-z*01(x') I + Ilz*e1(xr)-23s6(xr) l/N]
n=l

= o2k + s2klN = o2k(N+l)/N

As N-ro, this variance converges to the kriging variance c21. The second

term above, oz1lNr coh bB vieued as the estirnation variance of the

kriged value by the average of the simulated values. As the number N of

simulations increases' this average converges to the kriEed value. The

overall properties of a realization composed of averaged conditional

simulations correspondingly converges touard the snrooth properties of

the kriging. So here are tuo final remarks on uhat not to do rith a

condi tional sinul ation

(l) There is little

local estimator.

point in treating a conditional simulation as a

conditional simulation is a bad local estimator

conpared to a kriging.



(2) There is I ittle point

simulations together. The everage

bad representation of the variabilit
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n averaging several condi tional

is both a bad local estimator and a

y of the simulated phenomenon.

3.2 THE LINEAR r.ropEL 0F CoREGI0NALIZATIoN gND rTS USE JX SIT.IULATIoN

In this dissertation, the principal technique being used is conditional

simulation of coreqionalization, rhich differs in practice from the

procedure outl ined in the previous section only in that the

unconditional-simulation step must provide simuleted real izations of

more than one random variable, ihd those realizations must exhibit the

same variograms and cross varioorams as the original data. The

conditioning can be done by cokriging to be rigorous, although in

Suppose re have a set of k second-order-stationary random functions

[Zi(x), i = I to k], r.rith a positive-definite natrix of positive-

definite direct and cross covariance functions C;5(h), of the form

uhere m; snd m;

C;5(h) = EtZi(x)Z;(x+h)) - m;m;

are the stationary expected values of any tuo of the k

random functions, Z;(x) and 25(x) (including the cases i:j). The

requirement of positive definiteness of the matrix and covariance

functions ensures that the variances of all finite linear combinations

of the Z's uill be positive.3l To confirm the positive definiteness of a

natrix of nested covariance functionsr rl€ split the matrix into additive

practice ordinary kriging usual ly ui | | suffice.

about this in Section 3.7.5.)

(i'lore ui I I be sai d

no "lag effect" such that
1978' p. 173) explain hor.r to
si tuati on.

3l Ne assune in
c;;(h)*C;;(-h)
deal uith such

this model that there is
. Journel and Huijbregts (
a geological ly remarkable



98

natrices of component covariance structures uith the same mathematical

form and the same range. For any vector h, the matrix of y(h) values

ril I be positive-definite if the associated matrix of sil ls (or other

vertical scale parameters, if there are no sills) is positive-definite.

Then the total matrix of covariances sunmed from the nested structures

must also be positive-definite. A simple example is provided belout.

The problem is to simulate, first unconditionally, then

conditional ly, a set of k coregional ized (spatial ly cross-correlated)

variables r.rith a covariance matrix equal to the matrix of covariance

functions observed in the sample data. Clearly te cannot accomplish

this by merely performing k independent conditional simulations, as

described in the preceding section: al though the condi tioning uoul d

impart some cross structure to the simulated data, the sirnulated values

lying far from any conditioning points probably tould not be properly

cross-correl ated. lle nust instead find sone trick al louing us to

simulate these k coregionalized variables dependently. This trick is

the linear model of coregionalization.

For simpl icity' let's consider an exampl e ri th onl y tro

coregionalized variables, z1(x) and zz(x). These have means nr and mz,

direct semivariograms Tr(h) and ?z(h), and cross senivariogran yra(h).

For further simplicityr essunre that alI of these semivariograms have the

same sinple nested form:

spherical structure ui th

semiveriograms' i.e.,

a nugget constent plus a single isotropic

common range t'at' f or al I three

yr (h)

?z (h)

?r z (h)

COr +

COr +

C0q2 +

Clr Sphr(h)

Clz Sphr(h)

ClreSpha(h)
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uhere C0 denotes nugget constants, Cl denotes the eills of the spherical

nodels, Sphe(h) denotes a spherical semivariogram model uith sill:l and

range=a' and the subscripts denote the direct and cross structures.

Ne can deal uith the tuo sets of nested structures separately. For

the matrix of covariance functions defined above to be positive-

definite, the matrices of nugget constants C0 and spherical sills Cl

must both be positive-definite. This implies that the matrix of total

sil ls, C=C0+Cl, also is positive-definite. One of several checks on

positive definiteness is to check that the determinants of all of the

upper-left submatrices are positive.

values, this amounts to verifying that:

ln the case of the total sill

l" crzl
C1)0 and I l)0

lcra cz I

This restriction on the semivariogram models (and their component nested

structures) nust be satisf ied uhen f i tting nodel s to sampl e

semi variogram pl ots. I f the sampl e pl ots do not exhibi t cl ear si I I

values, re must either fit nontransition models uith a positive-definite

covariance matrix or at least fit a positive-definite set of transition

models that uill still fit the sample plots for small values of h. 0nly

the quality of the variogram fit near the origin is of great inportance

in a uell conditioned simulationr is the larger-scale behavior of the

simulation is imposed by conditioning (Section 3.7.5).

Nou hou do re obtain an unconditional simulation of coregionalization

that ril I fit our positive-definite model for z1 (x) and zz(x)? Consider

tuo nen random functions, Y1(x) and Y2(x), uhich have neen zero and

direct covariance functions Kr (h) and K2(h), but are independentr so



Cr (h) = a2rrKr (h) + aztzKz(h)

C2 (h) = a2erKr (h) + a2azKz (h)

Crz(h) = arrazrKr (h) + 8rtaz2K2(h)

Nou ue see a ltay by thich Ee can unconditionally

coregional ized variabl es zt (x) and z2 (x). Ne begin

independent regional ized variabl es yr (x) and yz (x)

suitable coefficients sttr tt2, t2t, and a22 Such

posi tive-defini te covariance matrix,

r'l
lcr(h) C12(h)ltl
lc,12 ftrl cz (h) 

ILJ
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Kr z (h)=0 for al I h.

functions:

Suppose ue form tno linear combinations of these

Zr (x) = dr rYr (x) + arzYz (x)

Zz(x) = 82tYr (x) + azzYz(x)

As the Y's are independent, the covariance functions c(h) of the Zrs are

as follor.rs:

sinulate the trro

by simulating tuo

; then ne pick

that the correct

uill be produced. lf the variograns of the z's have nested structures,

re simul ate each structure independentl y,32 veri fying that the si | |

natrix of each set of like structures is positive-definite. The

coregionalized z's for the different structures are then edded up to get

the final set of unconditional ly simulated coregional ized variables.

The choice of coefficients, eii, is not unique. For example, given the

The construction of a nested semivariogram model implies that the
hypothetical underl ying random functions corresponding to the
different nested structures are uncorrelatedr ond thus independent if
the random function is gaussian (Section 3.3). 0therxise, the
variances (sills) of the nested structures could not sinply be added
up to get the total variance.

32
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three equations for the knotn C1, C2, and C12 abover r€ cannot solve

uniquely for the four unknoun coefficients. Therefore, ue usually just

set one of the coefficients to zero, thereby setting one of the Zts

equal to one of the Y,s, e.g.:

Then :

Z.r (x) = Yr (x)

Z2(x) = 02tYr (x) + aazYe(x)

Ci(h) = Kr (h)

C2 (h) = a22rKr (h) + a2z2K2 (h)

C12(h) = E2rKr (h)

The above expressions of Zr(x) and 22(x) in terms of the independent

functions Y1(x) and Y2(x) are one possible rrlinear model" for the

coregional ization of Zq (x) and 22 (x). Linear model s of this type can

also be invented for each set of independent structures involved in a

matrix of nested semivariogram models. The restriction to positive

definiteness of the sill matrices of all independent nested structures

implies that the sill values of any pair of like structures must satisfy

the relationship Cr. < rltctCz) (the Schurarz inequality). This means

that i f a particul ar nested structure ui th si I I Cr z eppears on the

sanple cross senivariogram 7rz(h) of variables z1(x) and z2(x), then

that structure must also appear on the direct semivariograms ?r(h) and

7z(h). Horeverr a structure eppeering on one or both of the direct

semivariogrems need not be present on the cross seniyariogram.

If there are many coregionalized variables rith complicated nested

structures, our problem can become rather tedious. First re have to

form a sill or covariance natrix for each set of like structures and

verify that this matrix is positive-definite. It is necessary to
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isolate structures uith the same form (e.9., spherical) and the same

range in a separate matrix. Then, given these sill matrices, ue nust

find a set of coef{icients nhich, applied to a set of independently

simulated Y's uith the same structure' r,rill give us the required sills.

The general forn of the linear model' expressed in necessarily rather

cunbersome notationr is outl ined in pages l7l-t75 of Journel and

Huijbregts (t97E)r end its appl ication in conditional simulation is

formulated on pages 515-517. In this dissertation, the formalism is

avoided in favor of uorked-out examples, thich are provided in the

cement-related case study in Section 4.1, and in the paregraphs belour.

Another example can be found in Journel and Isaaks (19E5).

For a brief and very simple numerical example of the procedure,

consider the coregional ization of porosity and horizontal (assumed

isotropic) permeability33 in the thin sandstone aquifer uhose porosity

is mapped in Figure tl. The sample semivariograns of the original data

set suggested the fol louing simple nugget+circular models:

For z1(x) = porosity, units (7.)2:

?r(h) = I + Circlrange:60,sill=61

For z2(x) = perneability, units (md)2:

?z(h) = 10000 + Circlrange=60,sil I:40001

For the cross semivariogrimr units (Z)(nd):

?rz(h) = 70 + Circlrange=60,sill=80I

33 Permeabilitv usually is approximately lognormally distributedr so in
most real applications the structural analysis, linear modelr ahd
simulations uould actual ly be performed using looarithms of the
permeability data instead of the untransformed permeabilities used
here. In the present exanrple the simulated perneabilities uould look
normal r rs expl ained in the introduction to section 3.3. No
transformation ras performed for this example because the original
(quite unusual) data appeared more normal than their Iogarithms.
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The sill matrices are:

Nuggets
I

I

70 100

These matrices are posi tive-de

satisfied for each:

Schuarz inequal ity is

Nuggets: 70 ( J(1.10000) = 100

Circulars: S0 ( J(6o4000) = 154.92

Total: 150 ( t/t2.14000) = 3t3.05

The nested nugget and ci rcul ar structures can be nodel ed

independently. First the nugget variables' 201 (x) end Z0a(x):

201(x) = a0rtY0r(x; + a0r2Y02(x)

Z0z(x) = aOzrY0r(x) + a02zYOz(x)

COr(h) = a02rrKOr(h) + a0212K02(h) = |

C0t(h) = a02arK0r (h) + a0222K02(h) = t0000

C012(h) = a0tra0:rK0r(h) + a0rzaOazKOz(h) = 70

If ne generate independent normal nugget random variables YOr and Y02

uith mean=O and variance=K0r=KOz=1, the solution is straightforuard.

First, arbitrarily set one coefficient equal to zeros a0tz=0. Therefore

a0rr=1. llou a0rta0ar=?0r so e021=79. As a022'1+gQzaz=10000, then

a0222=10000-4900r oF a022=71.41. Thus the linear nodel for the nugget

structures is:

Z0r(x) = (l) Y0r(x)

Z0z(x) = (70)Y0r(x) + (71.41)Y0a(x)

Next, the circular yariables, 211(x) and Zl2(x):

Total
12

7 rsol

o r 40ool

Circulers
12

r.l rI e sol Ill=l
Lro 4000J 

Ltt

finiter BS the

2

"ll+
ooJ

I

2
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Zlr (x) = alrrYlr (x) + al12Yl2(x)

Zlz(x) = alerYlr (x) + al22Yl2(x)

C l1 (h)

Clr(h)

al2rrKtt(h) + al2rzKlz(h) = $

al2zrKlr (h) + al2ezKlz(h) = 4000

Clrz(h) = alrralzrKlr(h) + a112al22Klz(h) = 80

Nor ]re generate independent circular realizations Ylr and Yl2 luith

mean=0r vdFiance=Kl1=(12:1, and range=60. Ne set 8l 1 2=0r so

ailq=y'6=2.45. Then al21=397y'6=32.65. As a1221+sl2ez=4000, then

a1222=4990-6400/6, or alzz=54.16. So the linear model for the circular

structures is:

Zll (x) = (2.45) Yl1 (x)

Zt2(x) = (32.65)Ylr(x) + (54.t6)Y12(x)

FinalIy, to get the unconditional sirnulations of Zr(x) and 22(x)r u€

combine the independent nugget and circular structures. Their

variograms sirnply add up' es the simuletions of the nested structures

are independent. This yields e final I inear model of coregional ization

for Zr(x) and Zz(x):

z1 (x)=Z0r (x)+Zl1 (x)=(l)Y01 (x)+(2.45)Ylr (x)

Zz (x)=Z0z (x)+Z l2 (x)=(70)Y0r (x)+(71.41 )Y02 (x)+(32.65)Y | 1 (x)+( 54. l6)Y lz (x)

As a check on the total variencesr u€ notice that the four directly

simulated variables YOr, Y()e, Yllr and Yl2 8re all indePendertr so!

Sill(Zr)=12+2.452lr7

Sill (Zz) = ?02+71.4t2+32.654+54.162 :: 14000

Similerly, the sill of the cross semivariogram is:

Sill(21*Zz) = (t)(70)+(2.45)(32.65) c 150



t05

Notice that these unconditionally simulated coregionalized variables

have the proper direct and cross variograms, but their means are still

zero. For a real istic unconditional simulation of porosity and

permeability, ue tould need to add the sample mean values of porosity

and permeability (regarded as estimates of the stationary expectations

of 21 and 2z) to all simulated values of the corresponding variables.

This is unnecessary in the case of a conditional simulation, es

conditioning nith the real data values uill impose the appropriate mean

upon the simulated regional ization.

Notice al so that, al though the I inear model used for the

uncondi tional simul ation of porosi ty and permeabi I i ty invol ves onl y

isotropic structures, the conditional simulation of porosity contoured

in Figure tl is clearly anisotropic. Actually this anisotropy is not

evident at short distances. The overall anisotropy that is visible is

entirely the result of conditioning rith en anisotropic set of partly

fictitious data3rr rhich imposed the observed large-scale anisotropy on

the simul ation.

3.3 UNCONDITIONAL Slt'lUtATl0NS: IIETH0DS FOR 0ENERATING C0RRELATED DATA

The production of a conditional simulation of coregionalization requires

tpo types of input data: a set of coregionalized conditioning data, end

several independently and unconditionally simulated sets of regionalized

data, uhich are transformed into en unconditional ly simulated

coregionalizetion by means of a linear model. 0rdinary kriging is

3r The use of
conditioning

fictitious conditioning
in general are discussed

data and the importance of
in Section 3.7.5.
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usual ly employed

rill be described

the conditioning. The organization of these steps

nore detail in Section 3.4.

The subject of this section is the nethods used to produce the

several independent unconditional simulations used as input to the

linear model of coregionalizetion. A large literature has developed on

this subjectr ihd several remarkabl y diverse techniques have been

proposed for unconditionally simulating correlated random data in one,

tuo, and three dimensions. These nethods f al I into tr.ro main categories:

space-domain (or time-donain' in one dimension) methods and frequency-

domain (spectral ) methods.

In space-domain simulations, the objective is to create a realization

of a random function lith a prespecified covariance structure. In

frequency-domain simulations, the realization is characterized by a

prespecified spectral density function. The covariance function and its

Fourier transform, the spectral density function' convey the same

information about the random proc€ssr but in different forms that are

more or less natural in different applications. Because space-domain

nethods are easier to understand, generally just as fastr atrd probably

more natural for most earth-science appl ications, the emphasis in this

section uill be placed on space-domain procedures. Section 3.7.6

summarizes the relative advantages and disadvantages of the methods and

nakes some general recommendations on their use.

Oaussian processes. All of the simulation methods to be discussed

here produce approximate real izations of gaussian spatial rendom

functions, commonly called simply "Eaussian processest'. A gaussian

process (uhich has nothing to do uith the gaussian semivariogran model

in Figure l3) is defined as a random function Y(t) satisfying the

for

in
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property that any finite set of random variables tY(tq),...,Y(tn)) draun

from the random function ui I I have a joint normal (gaussian)

distribution (al ternativelyr ihY finite I inear combination of the

Y(ti)'s is normally distributed). In a sinulationr each simulated y(t)

value is formed by summing up the contributions of several independent

x(u) values, and such a sum is ssymptotically normal by a central limit

theorem as the number of terms in the sum becomes large.3s Gaussian

processes have some useful properties, derived from the properties of

the multivariate normal distribution: the conditional expectation of an

unknoun y(t) is a linear function of the knoun conditioning values

{y(ti)}, hence a I inear kriging estimete, nhich is the best unbiased

linear estimate in terms of estimation variance, is also the best

estimate overall; the mean and covariance function (mean vector and

covariance matrix for a coregional ization) of a gaussian process

characterize its spatial distribution completely; a zero cross-

covariance function (at ell h) betreen tno gaussian processes indicates

that the processes are completely independent, not just I inearly

uncorrelated; and e linear combination of gaussian processes' uhether

they are correlated or not, is also a gaussian process.

Unfortunately, real spatial phenomena do not aluays have the good

taste to be gaussian. Adaptations of gaussian simulations to represent

these phenomena are discussed in Section 3.5.

cs The x (u) val ues
variance, but sone
normal ity for y(t)
interval (0,1) can
of x(u) val ues is
normal distribution

can be draun from any distribution uith finite
distributions rill result in slolter convergence to
. Values from the uniform distribution on the
be generated most rapidly, but if a small number
being summed, it is safer to dral x(u) from a
to assure normality of y(t).
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3.3. I Space-Domain Approaches

3.3.1.1 l'latrix t'lethods

The objective is to sirnulate a finite number N of values representing a

real ization of a stationary gaussian spatial process Y(t) at N grid

points ti, i = | to N. From the definition of a gaussiar pioc€ssr these

values must be draun from a multivariate normal distribution, uhich has

a positive-definite symmetric NxN matrix C of covariences among the N

random variables. Under second-order stationarity, each elenent c;; of

the covariance matrix is the covariance betueen the random variables

Y(ti) and Y(t5), i.e. cii = C(t;-t5) = C(h), lhere vector h = (ti-ti).

Thus one Nav to obtain an unconditional simulation of the process at N

points is to use one of the standard methods for generating a

multivariate nornal random vector uith a prespecified covariance matrix.

Factorizati on approach. A popular technique usually attributed to

Scheuer and Stoller (,|962) (although nentioned in passing by Hanmersley

and Nelder, 1955) is to factor the covariance natrix C=AA' into the

product of a matrix A and its transpose A'. A good choice of A is the

Cholesky decomposition, described in Kennedy and Gentle (1980r p. 294r,

uhich produces a louer-triangular matrix A. The N-component random

vector Y of simulated values can then be generated by

Y=AX+m

there X is an N-component vector of independent standard normal random

numbers (mean:0r vdriance=l) and m is the desired vector of means. For

a stationary gaussian pfocEssr al I elements of m are equal. If

conditioning is to be performed laterr rn cBIl be set to zero. This

approach and closely related ones are described in most basic simulation
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and statistical-computing texts, 8.9. Lar and Kelton (,|982, p. 269),

Rubinstein (198.|, p. 55), and Kennedy and Gentle (1980, p. 228). These

texts also describe methods for generating the independent normal

components of vector X.

Stepuise-conditional approach. Anotherr usual ly slolJ€rr approach

relies on the expression of the nultivariate distribution of Y as the

product of nested conditional distributions. l.le begin by generating a

realization y(tr) from the normal distribution nith stationary mesn=m

and variance=C(0). Then ue generate I(t2) from the conditional

distribution of Y(tz) given y(t1), folloued by generation of v(t3) given

V(t2) and y(t1), and so forth. This approach is described by Kennedy

and Gentle (1980' p. 229r. Borgman (1982, p. 406) points out that it is

possible to obtain a conditional simuletion of a gaussian process

directly by this sort of approach, using the uell knoln expressions for

the conditional mean ("regression function") and conditional coveriance

matrix (Anderson, 1958, p. 28, equations 5 and 6). Suppose ue uant to

simulate a nultivariate normal random vector Y, partitioned into tuo

vectors Y1 end Y2

partitioned:

The mean vector and covariance matrix are similarly

n= c=
[.::,,:,]

,=[;

Nor.r suppose that ue are

condi tioning data. Ne

drauing a vector Y27,g

mean and covariance:

of val ues {yt },

a real ization of

tivariate normal

draun from Y1 r is

Yzl(Yr={yr}) by

distribution ri th

[::]

,,'|

l,.J

given

must

f rom

a set

ob tai n

the nul
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trzt | = + Crz'Crt-t(Yr-mr)

Czztt = C22 - Cra'Crr- lCtz

0nce the values for m271 and Czztt are determinedr 8t1t multivariate-

normal generator can be employed to generate a real ization from Y271.

Notice that the conditional mean vectoF !n271 is not necessarily zero

even if the original vector m ras taken to be zero.

n

Eiqenvalue-eiqenvector approach. Borgnan (1982,

another mul tivariate-normal generator based on

eigenvalue relation

p. 39,| ) describes

the eigenvector-

CB=BL

uhere B is a matrix uhose columns are the eigenvectors of the covariance

matrix Cr and L is a diagonal matrix of eigenvalues of C.36 The

multinornal random vector Y is then expressed as

y=Br/t-x+m

uhere rlt- is the diagonal matrix of square roots of the eigenvalues. In

the common situation uhere some of the Y(ti)'s are highly correlated and

some uncorrelated or only slightly correlated (i.e., nhen the variogram

range is less than the size of the simulation donain) many of the

eigenvalues rill be zero or nearly so. If le partition the B and L

matrices eccording to the sizes of the eigenvalues' i.e.,

oe This is the
in Section

principal -components
3.5.3.

relation, discussed in nore detail



r.rhere Lz represents the near-zero ei genval ues,

potentially faster ltey to generate Y:

y = Br t/l-, x,| + Bz r/Lz xz + m

TE

Iil

then have a

are much
advantage

The second term in this expression for Y can be neglected in practice,

because the elements of Jt-z are very small.

The factorization and eigenvalue formulations can be useful if many

independent simulations at a fairly small number of grid points are to

be performed. The natrix decomposition must be performed only once;

therea{ter the stored coefficients A or gJl- cEn be multiplied by any

number of independent X vectors to get repeated uncondi ti onal

simulations of the random function Y(t).

The big limitation of the matrix approach to simulation is the

expense and impractical ity of manipulating yery large covariance

matr i ces. For example' the triangul ar matrix A produced by the

factorization rnethod requires N(N+l)/2 storage locations3T in the

computerr unl ess time-consuming input-output operations are used.

Honever, it is commonly possible to take advantage of special

regularities in the covariance matrix to simpl ify the procedure.

Borgman (19E2, p. 395) points out that zthe stationarity usually assumed

for the time series Ior spatial processl leads to the covariance

function b.eing only a function of time lag lor distancel. This behavior

forces a regularity on the covariance natrix and reduces the uhole

concept of matrix multiplication to an equivalence uith the filtering of

nhite noise." In other uords, ue can regard the triangular matrix A es

Some types of sparse matrices require feuer locations and
easier end faster to manipulate. l'latrix simulations taking
of such structures are described by Davis (1985a).

3'
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e re-expression of a moving-average ueight function (fi I ter) that

transforms en uncorrel ated input vector X (rhi te noise) into a

correlated output vector Y. A simple time-series example is shorn in

Figure 21, rhich depicts the matrix form of a sinple moving-everage

process created by noving a constant-valued reight function oyer a tine

series of uncorrelated random numbers. l'loving-average simul ation

methods are discussed in Section 3.3.1.2 in more detail.

Although impractical for very large simulations, matrix methods have

been used to generate simulations of an "areal-average" (regularized)

process f or use in subsurf ace hydrol ogy (llantogl ou and l.ti I sonr 1981,

p. 157). t'latrix methods nay be appropriate in such an appl ication, in

rhich many independent realizations, of only o fen areal averages each,

are needed for input to a fluid-flop simulation program. Borgnan et al.

(19E4) also apply this approach to generate correlated data for use in a

three-dimensional spectral simulation, described in Section 3.3.2.2.

3.3. 1.2 !'loving-Average f'lethods

Simulation by space-domain methods is greatly simplified if the random

function can be nodeled as a noving-everage process. To obtain a

moving-average piocessr ne first define a random function X(u) at each

point u in n-dimensional-space Rn. X(u) is second-order-stationary rith

nean EX=Or covtriance Cx(h). ].le then def ine a nelr random f unction Y(t)

at each point t in Rn as e "Neighted average" of X(u):

y(t) = Jtct-u)X(u)du
Rn

The teight function f(t-u) applied to each value X(u) depends on the

distance and direction (t-u) betueen point t and each location u. If ue
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Figure 2l: The relationship betueen the matrix and moving-average
fornulations of a discrete time series. Given a

vector X of ten uncorrelated random numbers rith
m€ih=0r Yariance=l' ue generate a diScrete moving-
average Process of the form
Y = X(t) + X(t-l) + X(t-2), for t = 3'4,...,10.
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represent the space Rn by e col lection

simulation, Y(t) becomes

of discrete grid points ln a

y(t) = ftCt-u1lX(u1)
k

uhere the summation is carried out over all points u1 uithin the spac€r

or uithin a sliding local neighborhood if f(t-u)=0 for large distances

It-ufl. Clearly the expected value of y(t) is elso zero, and its
covariance function cy(h) can be expressed in terms of c1(h) and a

convolution of the reight functionr

cy(y(t),y(t+h)) = Ety(t)y(t+h)l - Ey(t)Ey(t+h)

= Ettf (t-u)x(u)duJf (t+h-v)x(v)dvl - 0

= fff ( t-u) f (t+h-v) EI x (u)x(v) ldudv

= ttf (t-u)f (t+h-v)Cx(u-v)dudv = Cv(h)

Nou l.et's consider a very useful speciel case there the ueight

function has a constant value of I rithin a distence ez2=lt-ul in any

direction, and a value of zero at distances beyond az2. (Notice that

this amounts to a regularization of X(u) over e hyperspherical volume of

diameter "a"., Suppose further that the random function X(u) is a

standardized thite-noise (pure-nugget-effect) process such that C*(0)=1,

C x(h) =0 for h)0. Then :

cy(h)=tl . ft r Cx(u-v)dudv
I t+h-v I tar? | t-u | (ez2

= fdu
I t+h-u | 3at2
I t-u | 3az2

In other Nords, for this case the covariance betueen Y(t) and y(t+h) is

just equal to the volume of the intersection of tuo n-dirnensional

hyperspheres of diameter "a", one centered at t and the other et t+h.

An illustration {or n=l and n:2 is provided in Figure 22.
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Fi gure 22 : A uhite-noise randon field averaged by a constant-
valued hyperspherical moving ueight function. In one
dinension, the ueight function is constant inside a
moving l ine segment of length "a", and zero outside;
in tno dinensions, the reight function is eonstant
inside a moving circle of dianeter "a". The
covariance betpeen pairs of points separated by vector
h is equal to the measure of the intersection of the
tr.ro I ine segnents or circles surrounding the
respective points.

Nhen the distance h exceeds the diameter of the hyperspheres, the tuo

hyperspheres ri I I no longer intersectr so Y(t) and Y(t+h) ui | | be

uncorrelated: Cy(h)=0 for h)a. Thus the diameter of the hypersphere is

the ranqe of the variogram of the Y process. For h:0, the variance

Cy(0)=?y(o)=Cy of the Y process is just the "volume" of the hypersphere,

e.9. :
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For n=lr Cyt = a (length of line segment)

For n=2, Cyz = ta2t4 (area of circle)

For n=3, Cyo = la3u6 (volume of sphere)

For distances r=lhl lying betueen 0 and a, the amount of overlap, cr(r),
of the tuo hyperspheres can be calculated, or in the case of louer

dimensions simply looked up in a nathematical handbook. For 0!rSa:

For n=l' Cy1(r): overlap of tno line segments = a-r

For n=2, Cyz(r) = overlap of tuo circles

= (a2tZ)Arccos(r/il - ft4ll(a2-r2)

= ta2t4 - (aztZ)Arcsin(rza) - (-t2ll (a2-r2 )

For n=3r Cy3(r) = overlap of tuo spheres

= Ta3/6 - tra2 r/4 + tr3tlz

Ne oan continue uith calculations of the semivariograms for tt = lr 2r

or 3, using the relation ?(r)=c(0)-c(r) for 03r(a, ?(r)=c(0) for rlar
For n=lt tyt(r) = lal-ta-rl = r

Yyr (r)

For n=2 t tyz(?)

= [alrlrzal for 0(r(a;

= Ial for rla.

= 1:ra2 t 4l- [ rra2z4- (az t2) Arcsi n ( rza) - ( rza)y' (a2-rz ) I

= 0 + (a2tz)Arcsin(r/a)+(r/zr/h2-?2,

ltazt4l.l2u(ra2) l.laaArcsin(r/a)+ry'taz-;z) | for 0Sr(a;

yy2(r) = lnazt4l for rla.

For n=3, ?ys(r) = lnast6l-lrra3z6-ra2rz4+nrctl2l

= 0 + ta2rt4-1;r3t12

= lna3z6l.i.t3rza-r3za3l for 0(rSa;

tyr(r) = lna3z6l for rla.



The reader may recognize the semivariograms for

r t7

n=2 and n=3 as the

circular and spherical models, respectively, that uere quoted in

Section 3.1.3 and graphed in Figure ,|3, rhere the sill value C in those

formulas has been scaled in this case to Cy2=ile2/4 for the circular

nodel and Cy3=[a3l6 for the spherical model. For the case [=lr the

analogous semivariogram is linear betueen r=0 and r=a; beyond r=a' the

sill value of Cy1=a is attained. A semivariogram of this zsimple-

transitive"3s type is depicted in Figure 13, and the associated

covariance function is shoun in Figure 2l for a discrete time series.

llatern ( ,|960r p. 30) provides an expression for a hyperspherical

covariance for n=5. Apparently the expression for n=4 is difficult to

derive.

These simple modefs fit nany natural Phenomena very nicely. As they

also can be represented so easily as a regularization of a uhite-noise

pFoc€SSr it is easy to see a simple (though not necessarily fast) ray to

simulate such e process unconditionally. Ne simPly generate a set of

independent identical ly distributed random numbers (from any

distribution uith finite moments, uniform being the easiest) on a grid

and then smooth them uith a constant-vslued I inear' circular, or

spherical moving uindou. l.le can also use a higher-dimensional model for

a louer-dimensional process; €.9., an unconditional spherical simulation

in tr.ro dimensions can be obtainad (expensively) by averaging a three-

dimensional grid of randon data using a spherical lindou those center

travels over a single plane in the grid. Subroutine CS20 ("Circular

Simulation, 2 Dinensions"), described in Appendix A, applies this nethod

3s This is sometimes called the "triangular" modelr as in Alfaro (1979)
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to unconditional tno-dimensional simulations of random functions tith

circuler variograms.

In principle, any random function rhose covariance can be expressed

in terms of a convolution of a ueight function (as shopn on pege l14)

can be simulated by the moving-average method. Houeverr the teight

function nay not be constant or restricted to a finite neighborhood as

in the preceding exanple. Furthermore, even the very simple moving-

average simulation applied in subroutine CS2D can become horribly time-

consuming if the number of grid points inside the circuler rindou is

large and the number of circular-simulated data to be generated is also

large. Simulation by this method requires a summation uithin lg nested

!! looos: ohB loop for each dimension inside the rindout, and one for

each dimension of the simulation domain. Subroutine CS2D therefore is

not recommended for really big simulation jobs, unless one's computer

facility operates free of charge. 0bviously a spherical simulation of

this type r.rould be excruciatingly slou.

In summary, ue can nou describe one sirnple method for unconditionally

simulating a random function Y(t) on Rn that has a hyperspherical

covariance function:

(l) Generate a grid of independent randon numbers x(u) (e.g.r uniform

on the interval (0,,l)) over a finite domain in Rn.

(2) Attribute to each grid node t in the simulation domain a value

y(t) equal to the sum of all x(u) located inside a hypersphere of

diameter a, centered at t. The simulation dornain must be snaller than

the x(u) domain by a distance "a" in each dimension.



Alternatively,

at each point u,

points t Fithin a

avoids the necessi

val ues.

The real ization y(t)

hyperspherical variogram.

uill have en

The real ization

isotropic n-dimensional

can be standardized to

depicts the arrangement of

ization on a rectangul ar

I t9

lue can simply generate the values x(u) one at a time

adding each x(u) value to all values y(t) located at

hypersphere of diameter a, centered at u. This option

ty of storing and retrieving the uhole series of x(u)

If the uindou covers many grid nodes, the original alternative can be

speeded up bv means of an "updating" formula. Instead of summing all

x(u) values inside the hypersphere each time it is moved, the updating

formula simply retains the previous sum' subtrects from it the fringe of

x(u) values left behind the trailing edge of the hypersphere after it

movesr ihd adds to it the neu x(u) values picked up across the leading

edge of the hypersphere. This method till not uork for general noving-

average simulations in phich the moving reight function is not constant

uithin the uindou.

mean=0r variaDC€=lr if desired. Figure 23(a)

points used for generating a circular real

spatial domain using s moving-average method.

3.3. 1.3 Random-Average l'lethods

In the noving-average procedurer e hyperspherical volume is epproximated

by a set of discrete grid points, so the technique has something in

common uith the numerical quadrature procedures used for performing an

approximate integration on a computer. It turns out that the

alternative class of numerical integration procedures, the "f'lonte Carlo"
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(a) (b)

Figure 23: Simulation of a random function uith a circular
variogram by the moving-average and rendom-average
methods. (The cheaper approach of centering the
circles on the points ur adding the value x(u) to y(t)
at all points t inside the circle, is depicted above.
The equivalent approach of centering the circles on
the points t is more intuitive and is used in the text
to introduce the methods.) (a) Floving-average
simulation: the central simulated value receives
contributions from several surrounding x(u) values.
The spacing betueen points u; for the X(u) uhite-noise
process must be less than or equal to the spacing
betueen points t; {or the circular Y(t) process;
otheruise adjacent y(t) values uill occasionally be
identical. The most efficient procedure is to use
equal spacings for ui and t5, as in subroutine CSZD.
(b) Random-average nrethod: the central simulated
value receives contributions from the x(u) values that
happen to fall nearby (inside the shaded circles).
The more dense the spacing of the Poisson points ui,
the less common nill be the occurrences of adjacent
identical y(t) values.

approach' has an analogy in simulations of random functions -- the

"random-ave rage"

characteristics

procedures. These procedures rely on the

of the n-dimensional Poisson process. The Poisson

random function describing theprocess is a "point process/' a



distribution of discrete points in space.3e (For some homely

examples, consider the locations of dianonds in a kimberlite

three dimensions, the locations of kimberlite pipes on e nap

in tuo dimensions, or the times of kimberl ite intrusions

dimension.) The Poisson process is the simplest point process,

in ei ther of tr.ro uays:

def i ned

at t?

l2l

geologic

pipe in

of Africa

in one

def i ned

(l) The random number K of points inside a volume of I given size

follotts a Poisson distribution lith mean=variance=D. This distribution

has the discrete probability mass function P(k)=P[K=k]=g-rryk71! for

integers k=0, I ,2,..
(2) The numbers ol points inside nonoverlapping volumes are

independent; i.e., the point locations ere ,,purely randomrr.

A Poisson process is very easy to simulate, as the locations the

points are independent and uniformly distributed in n dirnensions. If ue

rish to distribute Poisson points rithin a unit hypercube, ne just drau

independent vectors of n independent random numbers distributed

uniformly on the interval (0,1)r ard assign a point to the coordinate

location represented by each vector. For a rectangular hyperprism, Ne

just rescale the range (0, l) of each coordinate to the arbitrary

endpoints (a'b). For an irregular volume, r.re lirst enclose the volume

inside a rectangular hyperprisnr, then discard all randon points lving

inside the prism but outside the volume.

Nor.r nhat uou I d be the covar i ance of the Poisson variable K(t),

in a volune of size vr centered

space' K(t) and K(t+h) rill be

the number of random points

the volume v is translated in

f

I

as

tf

3e Spatial point
( l98l ' Ghapters

processes are described
7 and 6).

by Diggle (,|983) and Ripley
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Figure 24: Random-coin sinulation of a spherical random function
on the plane. The upper illustration is a side vieu
of a sl ice of vertical thickness ,tan Jrithin the three-
dimensional spece, shouing the locations of several
random spheres of diameter,,a', centered uithin the
slice. The tuo-dimensional simuletion plane is
represented by the horizontal line through the niddle
of the slice. The louer illustration is a plan vieur
of the simulation plane, shor.ring the randon-sized
circular intersections of the constant-sized spheres
uith the plane. Hotice that te need a tot o{ circles
to avoid Eenerating a "mosaic,, simulation uith locally
constant values.
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generated by

(-nt?r+11t2)

uniformly on

sphere. The

drauing a random azinuth

and a random distance from

(-R,+R). In three dimensions

distanoe from the center of

plane and the azimuth and plunge of the

plane are then draun from (-R'+R), (0,2n),

unifornly from the interval

the center of the cirol e

the domain is inscribed in a

the sphere to each simulated

pole fron the center to the

and (0,tt/21r iespectively.

3.3. ,|.4 Turning-Bands llethod

The turning-bands metlrod of I'latheron ( 1973) is described in considerabl e

detail by Journel and Huijbregts (197E) for three dimensions and by

l'lantoglou and Nilson (1981, lgEZ) and Bras and Rodriguez-Iturbe (t985)

for both tpo and three dimensions, so only the essentials are presented

here. This fast method bui lds a higher-dinensional simulation bv

averaging the contributions of several independent one-dinensional

simulations oriented in several directions in space.

The method is geometrically easier to visualize in tuo dimensions.

For a tto-dimensional simulation (Figure 25), ne first simulate (usually

by a moving-average or spectral technique) several real izations from a

one-dimensional random function uith a prespecified covariance function

Cr(s)r uhere s=lhl in one dirnension. These realizations are attributed

to I ines that pass through the origin of the tuo-dimensional grid and

are oriented in a regular fashion in the tuo-dimensional spece (e.g.r

eight lines separated by angles of rrlE).rz Each regularly spaced

r2 Alternatively, the lines can be randomly oriented uniformly on the
interval (0'rr). The distinction betueen regular and random line
orientations is analogous to the distinction betueen the regular grid
of uhite-noise points used in the moving-average method and the
random collection of points used in the random-average nethod. The
sample covariance functions calculated from turning-bands sinulations
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simulated point on each line is given a "band" of influence in the

tr.ro-dimensi onal space. Thi s band is perpendi cul ar to the I ine and i s

delimited at the line by the midpoints betreen the simulated line point

and the adjacent points on either side. To obtain a simulated value {or

the turo-dimensional random function at some point on tha tuo-dimensional

grid, ue ascertain nhich bands contain that grid point and sinrply sun up

the simulated line values associated uith those bands. I{ ue rish the

variance of the simulated point on the plane to be the same as the

variance of the line process€sr xe just divide the sum Uv rlt-, uhere L is

the number of lines. This tuo-dimensional realization nill be draun

fron some random lunction having an isotropic covariance C2(r)' uhere

r=lhl on the plane. Given a desired covariance function C2(r), re must

derive, by methods described belou, the function C1(s) that should be

specified for the indep'endent line simulations.

In three dimensions the geometrical situation is

a large number of lines regularly (or rendomly)

dimensional space. A good choice is lifteen

opposite edges of a regular icosahedron (lith

described by Journel and Huijbregts (1978, p. 503).

analogous. Ne need

oriented in three-

I ines connecting the

trenty faces) r 8s

To see hou the line covariance function Cr(s) corresponds to a given

tr.ro- or three-dimensional oovariance C(r) r consider the simpl e

tr.ro-dimensional example in Figure 26. Ne generate tro values y(tr) and

I(tz) at tro arbitrary points t1 and tz on the planer using

contributions from only ttro (for simplicity) independent coplanar Iine

converge more
covariances in
Nilson, 1981, p.

repidlv
the case
58).

(uith feuer lines) to their theoretical
of regularly oriented lines (t'lantoglou and
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Figure 25: Illustration of the turning-bands method in tuo
dinrensions. Each simulated point on the plane is the
average of all simulated line values nhose bands of
influence contain the point. For simplicity, only
four line sinulations are depicted here. Actually
eight or sixteen lines rould be preferable.

simulations -- x(u1) on line ut and x(uz) on

second-order-stationary I ine real izations

independently r.rith mean zero and covariance

betueen Y(tr) and Y(t2) is:

line uz. Each of these

has been generated

Cr (s). The covariance

C2 (Y(t1),Y(tz) ) = E il (X(u11)+X(u2 r))nl2l I (X(ur 2 )+X(u22) )d2l]
Because the lines are independent:

= {EIX(u1 1 )X(urz) l+f lX(u21 )X(u22, ll/2

= I Cr (ur r -ur 2 )+C1 (u2 I -u2 z) lt2



Figure 26r The
on
U2.
are

relationship betneen covariances on the lines and
the plane. The tuo independent I ih€s are u1 and

The tpo values to be simulated by turning bands
at tr and t2.

Ne see

avera9e

c I osest

and u2.

(hru;)r

from L

that the covariance betueen the tuo Y(t) values is

of the covariances betueen the colinear X(u) values

to the projections of tt and t2 onto the independent

RePresenting the projection of h=(tr-tz) onto each I

the covariance in n-dimensiorial space o{ the Yrs, uhen

independent liha proc€ss€sr is:

l3l

just the

occurr i ng

I ines u1

ine u; as

simul ated

L

Cn(h) = (l/L)fcs(<h,u;>)
i=l

If ue could produce an infinite number of such lines uith orientations

varying uniformly over all directions in n-dimensional spacer Ho uould

generate a process lith an isotropic covariance Cn(r), r=lhl,



r32

Cn(r) = (lzsn)fc1((h,u))du
sn

Hhere S. is the surface aree of a hypersphere of radius=|. An explicit

general expression for this relation in n dimensions is stated by

l'fatheron (1973, p. 462). The solution for the case n=3 is very simple:

Cr(r) = d/dr IrCs(r)l

This is usually easy to solve given any Co(r). This expression is

derived in detail by llantoglou and l.lilson (1981, Chapter 3) and in less

detail by Journel and Huijbregts (1978, p. 500). For n=2 the integral

equat i on

r
cz(r) = (2zrr)flcr (s)zrf (r2-s2) tds

0

(derived by I'tantoglou and l.li lson, 1981, Chapter 3) has a much more

complicated solution, obtained by Brooker (1984, t985):

r
ct (r) = cz(0)+JIrzy'trz-ez) l.ld./ds c2(s) lds

0

For the commonly used spherical model xith sill=1, this solution yields

Cr (r) = l-(3rrt4) [ (rza)-l(rza)31 for ria

= l- ( 3t?)l(rza)-i (r/a)3 Iarcsi n(a/r)-(3/4) (r/a).rll t- (azr )2 I f or r)a

uhere "a" is the range of the spherical nodel.r3

Before the solution for n=2 became knoun, it nas difficult to obtain

appropriate line realizations for the tuo-dimensional cis€r because

there ras no general expression for Cr(s) in terms of Cz(r). This

problem Has addressed at length bv l'lantoglou and l.lilson (lgEl, 1982),

uho proposed turo approaches: simulation of the line processes by

spectral nethods (the nore versatile approach)r ard derivation of

r3 The expression for rta uas also stated by Dagbert (l9Sl).



one-dimensional coveriances corresponding to

tNo-dimensional covariance functions. They obtained a

expression of the spectral density function 51(ta) of

(defined in Section 3.3.2.1) in terms of the radial

{unction f(or) of the tuo-dimensional ptoc€ssr
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feu particul ar

remarkably simple

the line process

spectral density

t982)

is less

(1972)

Sect i on

sr(or) = cz(0}tfu)t2

uhere Cz(0) is the variance of the tno-dimensional process. The

function f(o) can be calculated (sometines uith difficulty) fron Cz(r).

Knoring Sr(eo)r ohe of the spectral simulation methods described in

Section 3.3.2.2 can be used to simulate the line procsss€sr nithout need

of deriving any expression for Cr (s)

t{antoglou and Nilson (l9El, l9E2) describe the convergence of the

covariance of the simulated tuo-dimensional real iaation to the

covariance of the model random function in terms of four factors: the

number of sinulated lines, the discretization length (banduidth) along

the I ines, and the maximum frequency and number of harmonics used to

represent the line spectral density. The most important of these

variables is the number of lines, L. For equally spaced lines, the

error around the true covariance is proportional to l/L2. Hantoglou and

l.tilson (l9El) also derive some rather complicated expressions for Cr(s)

for exponential and Bessel Cz(r) functions, calculating the associeted

moving-average ueight functions numerical Iy.

For tuo-dimensional simulations, l'lantoglou and Nilson (1981,

report that their implementation of the turning-bands nethod

expensive than the direct spectral rnethods of Shinozuka and Jan

and l'le jia and Rodriguez-Iturbe ( 1974), both discussed in
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3. 3. 2. 2, for the same accuracy. To generate values at N points on the

plane, the cost is roughly proportional to r/X for turning bands uith

equal lv spaced I ines' N for the spectral methods. It is elso

approximately proportional to N for the moving-average and random-

average methods described earlier, but probably uould be less accurate

for the same cost using the random-average method. The noving-average

and random-average methods also vary in cost in proportion to the number

of points (regularly or randomly spaced) used to discretize the ueight

function.

f'lantogl ou and Ni I son ( l98l, Chapter 4) provide a variation on the

turning-bands nethod for simulating anisotropic random functions on the

plane, by keeping the I ines uniformly spaced but al louing their

covariances C1(s) to vary uith line orientation. In most prectical

situations, such an anisotropy can be nore easily created by a simple

transformation of the coordinate system. l{antoglou and Nilson (1981)

also provide descriptions of turning-bands simulations of block grades

(for regularized phenomena) and of some nonstationary phenomena uith

polynomial drifts ("intrinsic random functions"), uhich are described by

l'latheron ( 1973) .

Subroutine TB30 ("Turning 8ands, 3 Dimensions',), described in

Appendix B, is a revised version of subroutine SItlUL, described in

Journel and Huijbregts (1978, p. 537). Line processes are generated by

the moving-average methodr using discretized neight functions. This

subroutine is specifically designed for three-dimensional simulations,

using the fifteen-line icosahedron approachr ahd is thus not very

ef f icient f or the simul ation of tr.ro-dimensional processes, f or uhich



eight or sixteen coplanar

respectivel y, roul d be a

t982) have devel oped

tuo-dimensional simul ations

lines separated by angles

better choice. l'lantoglou

and extensivel y tested

using this arrangement.
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of rrz8 or t/76,

and lli l son ( l9E l ,

a progrem for

3. 3. | . 5 Autoregressi ve l'lethods

l'lany d i screte t ime seri es, and some very restr i ct i ve di sorete

multidinensional (lattice) phenomena, display a covariance structure

consistent uith an autoregressive (AR) model' rhich can be used to

perform unconditional simulations. The general form of a time-series

autoregressive model of order p, denoted AR(p), is

Y(t) = crY(t-l) + ceY(t-2) + . . + coY(t-p) + x(t)

rhere X(t) is a stationary independent (rhite-noise) random variable

uith mean zoFor usually considered to be normally distributed, and the

coefficients c are constants subject to certain sufficient constraints

to ensure stationarity (Chatfield, 19E0, p. 48).rr The processes Y(t)

and X(t) are observed only at unit intervals of time t. This

"one-sided" expression can be reformulated, if appropriate, to yield an

autoregression on both past and future values. Autoregressive and

moving-average (l1A(q))rs time-series models may be combined into

ARHA(prq) nodels and extended to nonstationary ARlt'lA(p,d,9) models, in

ir The discrete Ces0r time series displayed in Figure l9(a) fits an
AR(1) model (uhich has an exponential variogran for 0(c(l), but this
model could not be used for simulating the intervening points betueen
the data points. For simplicityr a simple-transitive nodel uas used
in the unconditional simulation and a linear nodel ras used as a
short-scale approximation in the kriging, instead of e discrete time-
series model.

ts Figure 2l i I lustrates a sinple I'lA(2) process.
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rhich the order-d differenced (i.e., dth-derivative) time series is

stationary. Further extensions al lou the inclusion of periodic

components. This rich variety of discrete tine-series nrodels is

discussed fully in Box and Jenkins (1976) and in numerous other basic

texts in time-series analvsis. A general conparison of the methods and

goals of time-series analysis and geostatistics is provided by Solott

il 984) .

Clearly an autoregressive nrodel is easy to simulate, given a starting

set of p consecutive conditioning data: for each y(t), one simply

generates a neu independent "innovation" x(t) and obtains y(t) by

applying the formula above. The variogram of an autoregressive process

nay be of exponential or hole-effect formr depending on the s

coef{icients. From inspection of the variogram one can decide at uhat

time the simulated process nill be nearly uncorrelated uith its starting

values (the "practical range" of the variogram). Beyond this time' one

effectively has an unconditional sinulation of the process.

The simplicity of generating one-dimensional autoregressive Processes

uould seem to make them attractive for use in turning-bands simulations,

but the higher-dinensional covarience functions corresponding to

autoregressive line processes do not seem to be so simple. Houever,

llantoglou and Nilson (l96lr p. 93) have derived one tuo-dimensional

covariance function corresponding to a sinrple eutoregressive line

p rocess.

Nearest-neiqhbor rnethod. Spatial autoregressions (Riplev, 1981,

p.88) have received sone limited epplication in the earth sciences. A

particular GisEr the "{irst-order nearest-neighbor nodelz' has been used
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by Snith and Freeze (1979) to generate e tuo-dimensional field of

hydraulic conductivities for an aquifer :nodel, and a refornulation of

their approach has been applied by Baker (1984) to the simulation of

soil properties. The first-order nearest-neiEhbor nodel is

Y(ur,uz) = arlY(ur-l,uz)+Y(ut+t,u2)l+o.2[Y(u1ru:-l)+Y(urru2*l)l+€(ur,uz)

uhere u1 and u2 aFe the coordinates of a discrete tto-dimensional grid

point (uith grid spaeings scaled to l), a,1 ind c2 are eutoregressive

coefficients associated rith the ur end u2 directions, and E(urruz) is a

normal r.rhite-noise random variable. Smith and Freeze provide methods

for selecting the variance of t and the appropriate values of c1 and c2

that uill provide a stationary Y process rith prespecified exponential

covariance functions in the ur end uz directions. Their simulation is

performed by a matrix method, first generating a field of uncorrelated

standard normal variables represented by vector E, then solving for a

vector Y of sinulated zero-nean values'

or equivalently
Y=l.lY+aE

Y=(l-N)-rtE

rhere l.l is the ueight rnatrix composed f rom the c's, I is the identi ty

matrix, and ? is a scalar multiplier used to control the variance of Y.

The stationary mean of the process is edded after the simulation.

Notice that the second formulation above, Nhich is the one actually used

to simulate Y, is just a :natrix formulation for a moving-average

representation of the Y process.

Although nearest-neighbor methods apparently have been uidely used to

simulate subsurface hydrologic variables, llantoglou and llilson (t982,

p. l39l) point out that this approach 'provides a very particular
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correlation structure that is not directly related to any isotropic

tuo-dinensional covariance function, nor can the autoregressive

parameters of the model be easi I y estinated di rectl y from

field data. This approach yields an anisotropic field beceuse

care is taken to preserve the correlation structure only in tuo

orthogonal directions." To apply this nethod in e conditional

simulationr or€ could either approxinate the semivariogram of the

simulated random function by some simple model for use in kriging, or

one could derive a covariance matrix C=AA'r uhere A=(I-l.l)-lrl, then use

the condi tional rnatrix method expl ained on page 109 to drau a

realization of the unknoun values from their conditional distribution,

given the fixed values. Houever, the severe limitations of nearest-

neighbor models es applied to real-uorld phenomena seem to recommend

against their use in most practical situations. It uould be easier and

probably geologically more realistic to use en isotropic moving-average

{ormulation that uould resemble the neighting system (I-1.1)'la.

A nrajor difficulty lith the nearest-neighbor approach described above

is the large size of the matrix (I-N)-r1 that must be stored and

manipul ated. Sharp and Aroian ( l9E5) have proposed an al ternative

"herringbonez rnethod that generates the real ization recursively'

beginning rith tno or three one-dimensional AR(l) sinulations positioned

along the edges of the tuo- or three-dirnensional simulation grid. This

method is fast and avoids the generation of a huge reight matrix.



,|39

3.3.2 Frequencv-Oomain Approaches

Geologic phenomena do not commonly exhibit Periodic behavior, so

frequency-domain representations do not usually oontribute much to an

understanding of the phenomena. Nevertheless there are some linited

advantages to the frequency-domain approach in simulationr particularly

in the simulation of the line processes used in the turning-bands

method. Unfortunately the mathematics can be relatively complicated and

the notation used by different authors is nildly nonstationary. The

discussion that follous uses notation similar to that of tlantoglou and

Nilson (198't), uho describe tuo epproaches that have been used {or

direct frequencv-domain simulations of spatial random functions.

Chatfield (1960, Chapters 6 and 7) provides a short, simple

introduction to the frequency domain as it is applied in the analysis of

discrete time series. i'lantoglou and l,lilson (l9El, Chapter 2), Ripley

(1981' Chapter 5)' end Borgman et al. (19E4) discuss some extensions

into tuo and higher dimensions.

dinensions is provided belou.

A very brief sunmary for one and tuo

3.3.2. t l'lathenratics of the Frequency Domain

Consider a one-dimensional (time-series) stationary gaussian random

function Y(t) urith a covariance function C(h) satisfying:

*o
ftccr)ldr ( o

In the time-domain vieu of Y(t), the nean m(t)=m and the covariance

function C(t,t+h)=C(h) are used to characterize the spatial distribution

of this random function (and in the gaussioh Gds€r they characterize it
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fully). In the frequency domain ue use an alternate expression for the

covar i illc€ r

oo

C(r) = Zjcos(or)S(ta)dor
0

uhere S(or) is the "spectral density function" of the time series,

describing the contribution of variation at frequency o to the total

variance of the process. This expression has en inverse,

S(o) = ttzn)icos(ar)C(r)dr
0

thich is positive at all tt if the covariance function C(r) is positive-

definite. The frequency-domain approach relies on a model of the

process Y(t) as the sum of an infinite number of sinusoidal functions of

the form

Rcos(ot+f) = Rcos(f)cos(r.rt)-Rsin(f)sin(art)

uhere R is the amplitude, or the frequency in radians, and f the phese in

radians. The ampl itudes and phase angles essociated nith different

values of o are considered to be independent randon variables, fixed for

a particular realization of the process.

Because of the invertible relationship betueen C(r) and S(o),r6 it is

clear that they contain the same information about the process but

express it in different forms. The covariance C(r) or the semivariogram

v(r)=c(0)-C(r) expresses the variability at different scales or

distances as compared to the total variability C(0)=y(o) of the piocassr

uhereas the spectral densi ty S(o) expresses the contribution of

r6 The expressions
transform pair in

above for C(r) and S(at) consti tute a Fourier
uhich Y(t) must be a real-valued function.
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veriability at different frequencies to the total variabilitt,tt
q,

C(0) = ZJstarlOar
0

In tuo dimensions, the analogous expression for C(h) is

C(h) = Jcos(hro)S(o)dar
p2

uhere h and o are tuo-dimensional vectors and (h.o) is their inner

product. Correspondingly:

S(o) = I l/(qnzl uc(h)cos(hror)dh
pz

For isotropic proGesseSr these functions can be expressed in terms of

r=lhl and to=lcal, leading to the fol louing compact expressions for the

isotropic covariance C(r) and "radial spectral density function" f(to)

(tlantoglou and Nilson, 1981, p. 26)r

C(r) = c(0)tJo(or)f (o)dta
0

f (r.r) = 2nclS(o)/C(0) = k)/c(O))tC(r)Jo(or)rdr
0

uhere C(0) is the variance of the process and Jo is a Bessel function of

the first kind' order zero. llantoglou and l.lilson (1982) provide

expressions for f(cr) corresponding to turo-dimensional isotropic

exponential, Bessel r gaussian (t'double-exponentialtt), spherical r and

"Telis" coveriances. Similar expressions (in quite different notation)

are provided by Borgnan et al. (19t4) for the simple-transitive

rt The factor of 2 in
ue are considering
real and symmetric
of (-o'+o).

the expressions for C(r) and C(0) arises because
only real processes, in uhich,C(r) and S(o) are
functions that He nay integrate over (0'oo) instead
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(posi tive-defini te onl y in Rl ) r spherical ,

hole-ef f ect covari ances.

exponential '
gaussi an, and

3.3.2.2 Spectral Simulation l'lethods

Hethod g[ Shinozuka and Jan (!972). One uay to simulate a realizetion

of y(t) in one dimension is to begin uith a discrete aPproximation to

the covariance function on page 140,

K

C(r) ., 2fcos(c,rrr)S(ot)Ato
k=l

uhere again 2fS(cr1)Ato c C(0), the variance of the process. The discrete

ueights S(rat)Ao correspond to a histogram of K spikes representing K

harmonics 6rk spaced at distances Ato, nhich together approximate the

continuous spectral density function S(o)r 6s shoun in Figure 27. The

covariance can be reproduced bl simulating a discretized sinusoidal

model of the one-dimensional randon function Y(t)'

K

Y (t) a r/zlr/ts(orr)Aolcos(ct' 1t+f1)
k=l

uhere arrk is the frequency o1 perturbed by a small random variable edded

to avoid exact periodicities, and f; is an indePendent random phase

angle uniformly distributed on (0,2n). Ne simulate Y(t) at position t

along the line by sampling a value of fr and o'1 for each of the K

harmonics 0)k and summing up their contributions according to the

formula. The more harnonics ok that ue use in the discretization, the

more closely the simulated values lil I conform to the theoretical

spectrum S(tr) and its associated covariance C(r). As in the simulation

methods discussed previouslyr each simulated value is composed of the
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sum of several random variables, resulting in a simulated gaussian

process. This approach, suggested by Rice (1954), is presented more

thoroughly by llantoglou and l.lilson (1981, p. 37).

Shinozuka and Jan (1972) propose a generalizetion to n dimensions,

also discussed by tlantoglou and l.lilson (1981, p. 36). In n dimensions,

re must discretize the n-dimensional spectral density into K1'Kzoo'Kn

spikes of an n-dirnensional histogram:

S(ol tr tu2y2r . . . r&)hlqn)Acol oAtl2"'A@n

For each Y(t) value that ue simulate, Ne must drau n values of tl'and

one of f corresponding to each of the Kr.Kz...Kn spikes. t'lantogl ou and

Nilson suggest that Kr=Kz=20 harmonics (400 altogether) be used to get

sufficient "earth-science" accuracy for a typical tuo-dimensional

simulation lith 8n exponential covarience. For a large grid of

simulated Y(t) values, such a simulation could be rather expensive.

l,lantoglou and Nilson concern themselves prinarily rith exponential

covariances and others of similar appearance. The accuracy of the

simulation for a given density of discretization depends on the tyPe of

covariance being modeled (Journel, 1974a, p. 42) -- particularly on its

behavior near the origin, r+0. For models ltith parabolic behavior near

the origin, S(or)+0 quickly as o+oo. For instance, S(tt) for the gaussian

semivariogram rnodel (Figure l3) is a gaussian (normal) density function.

llodels uith I inear behavior near the origin shott less continuity et

short distances, thus more high-frequency verietion, so S(tt)+0 slouly as

o+o. For example, the exponential covariance model yields a Cauchy

density for S(o). To discretize such a long-tailed density' ue must

either sacrifice some detail in the discretization by making the
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Figure 27: Discretization of a one-dimensional spectral density
function- The neight of the shaded spike is S(r,r1)ao.
For real-valued processesr ohll the positive
frequencies have to be considered.

increment Aal larger oF use a large number K of increments, driving up

the cost of the sirnulation.rB So in Eeneral, spectral methods are

cheaper to implement in the case of very continuous ilou-frequency)

random functions, nhich unfortunately are not so commonly encountered in

geostatistical practice.

This uould not be a problern i
t.tere very coarse. In that case
tuo grid spacings (i.e., the
p. l3t) could not be observed
to avoid "aliasingr' (Chatf ield,

f the density of the simulation grid
frequencies higher than one cycle per

Nyquist frequency -- Chatfield, 1980,
and should not be sirnulated, in order

1980, p. 156).

t8
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nethod g$ lleiia and Rodriquez-Iturbe (1974). This method, also

summarized by l'lantoglou and l,lilson (l9Slr P. 35) and by Bres and

Rodriguez-Iturbe (1985, p. 288), samples randomlv {rom the spectral

density function, rhereas the method of Shinozuka and Jan (t972),

described above, discretizes the function nith e reguler grid and

reights the cosine terms in the simulation equation according to the

associated densitv. Briefly, in one dinension the model of l'lejia and

Rodriguez-Iturbe is

K

Y (t) .r r/tzc to)zr)fcos(arrt+fr)
k=l

nhere C(0) is the variance of the process, fk is a random phase angle

uniform on (0,Ztt), and ok is en independent random variable sampled from

the probability density function S(o)zC(0). For n dimensiohsr Gfk end t

become vectors. Tuo-dimensional isotropic sinulations can make use of

the radial spectral density function. For one-dimensional Processes'

nantoglou and l,lilson (t981) state that the covariance of this type of

simulation converges to the model covariance as lz{K, much more slouly

than lzK2 for the rnethod of Rice (t954).re

Applications j! turnino-bands simulations. Because of the sinple

relationship (t'lantoglou and Nilson, 1981, p. 6l)

S1(ar) = Ca(0)f(.nr/2

ie Ne have seen this distinction in tuo other contexts: the moving-
average rnethod versus the random-everege methodr efid evenly spaced
lines versus randomly oriented lines in the turning-bands method. It
appears that in all of these approaches the discretizetion methods,
analogous to an integration by numerical quadrature' converge nore
rapidly to the theoretical covariance than the l'lonte Carlo methods.
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betueen the spectral densitv 51(ar) of a turning-bands line process and

the radial spectral density f(ar) of the associated tuo-dinensional

process, spectral methods turn out to be very useful in the simulation

of line processes for tuo-dimensional turning-bands simulations. Using

this relationship and the radial spectral densities provided by

l'lantoglou and Nilson (1982) and Borgman et al . (19E4)r or€ can obtain

I ine spectral densities Sr (ta) corresponding to a variety of

tro-dimensional processes.50 l'lantoglou and Nilson use the method of R.ice

(1954)r ds nodified by Shinozuka and Jan (1972), to generate line

processes for their tuo-dinensional turning-bands simulations.

I'lethod of Davis et al . ( l98l ). An approach appl icable to

one-dinensional simulations for uhich the one-dimensional covariance is

knoun is presented by Oavis et al. (1981), tho provide a F0RTRAN

computer program employing the finite Fourier transform of Cooley and

Tukey (t965). Their simulation algorithm employs a numerical Fourier

transfornation of an arbitrary discretized one-dinensional covariance

function. Because the one-dimensional covariance nust be knourn, this

approach has received little application, but it is more valuable nour

that Brooker's (1985) solution for one-dimensional turning-bands

covariances is available.

s0 For instance, the commonly used exponential coyariance function
c(r)=exp(-rza) (for sill=l) has a radial spectral density function
llu)=azut(l+12rz13/2, For the line spectrum, one sinply divides this
expression by 2. Unfortunately' the eyen more commonly used
spherical covariance has a decidedly oompl icated f(c.t), expl icitly
stated in i'lantoglou end Nilson (1982r p. t38l). For spherical
simulations in tuo dimensions, it uould probably be easier to use
Brooker's ( 1985) solution for the one-dimensional spherical
covariance in combination uith the finite-Fourier-transform
simulation approach of Davis et al. (1961), discussed in the next
paragraph.
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method 9;[ Borqman et al. (19E4). This technique simulates a three-

dimensional real ization as a stack of turo-dimensional real izationsr €ich

created using ttro-dimensional radial spectra and a tr,ro-dimensional

simulation nethod similar to that of Davis et al. (lgEl). The three-

dimensional structure is built from nodels of the turo-dimensional radial

spectral density of the individual planes and e matrix of direct and

cross spectra among the planes. This spectral nratrix model is used to

generate correlated nornal random variables by the eigenvalue method

(discussed in Section 3.3.1.1) for use in the separate planar

simulations. The difficultv of simulating long vectors of random data

by matrix methods effectively limits the extent of the sirnulation domain

in the third dimension.

3.4 CoNpTTIONAL SrmuLATr0N gE coREGIoNALIZATI0N FoR GAUSSIAN PRoCESSES

This short section summarizes the essential steps in a conditional

simulation of e stationary gaussian coregionalization -- the only kind

of phenornenon that can be sirnulated rith the methods described so far.

In this simplest possible (but highly restrictive) caser r€ simUlate k'N

values (z;(x5), j= | toN, i =l tokldraunfronak'N-variatenormal

distribution. At each point x5r the k cross-correlated random variables

Z;(x;) have a k-variate nornal distribution characterized bv the

etationary mean vector m = (m1,m2r...rtttl)'and the kxk positive-de{inite

symnetric covariance matrix :

Cr r (0)

":'o'

Crr (0)

Czz (0)

CtzfOl . : crr(o)

C(0) =



148

Similarly, all k.N random variables taken together have a koN-variate

normal distribution urith a k.N-component nean vector consisting of

(m1,n2,. . . rmg)' repeated N timesr and a (k.N)x(k'X) positive-definite

syrnnetric covariance matrix consisting of the kxk C(h) matrix (shonn

above for h=0) repeated NxN times (for all possible vectors h separating

the locations x;).

Unfortunately, real-uorld earth-science data seldom fit this model,

as ure uill see in Section 3.5.1. Consequentlv' ue must consider a

variety of transformations, to be introduced in Section 3.5, for

converting other types of data into a form acceptsbly close to this

model. 0nce ue have imposed an epproximation of multinormality on the

transformed data set, Be proceed tith the simulation using the follouing

steps:

(l) perform a variographic (structural ) analysis of the (usual ly

trans{orned) data set to infer a set of positive-definite senivariogran

models, nith a positive-definite natrix of si I ls or covariance

functions, as described in Sections 3.,|.3 and 3.2.

(2) Formulate a linear model of coregionalization, as described in

Section 3.2.

(3) perform independent unconditional simulations of the independent

components of the linear model, using an appropriate method selected

from those described in Section 3.3 (and heeding the caveats of

Section 3.7).

(4) Combine the unconditional simulations as directed bv the linear

model to obtain an unconditional simulation of coregionalization.
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(5) Using the locations from the original data set, perform tto

ordinary krigings (or cokrigings, for some cases described in

Section 3.7) -- one using the original (usually transformed) data set,

and one using simulated data from the corresponding locations.

(6) Combine the tr.ro krigings and the unconditional simulation of each

coregionalized variable according to the formula

zs6(x) = z*or(x) + [zr(x)-z*s1(x) I

as described in Section 3.1.7, page 93, to obtain the final conditional

simulation of coregional ization.

(7) Check the statistics and variograms of the final simulation to

confirm agreement uith the important characteristics of the data set.

,{ULTI VAR IATE
DATA SET

STRUCTURAL
ANALYS I S

LINEAR
}IODEL OF

CORE6IONAL-

INDEPENDENT
UNCONDITIONAL

UNCONDI T I ONAL
SI}iULATION OF

CORE6IONALIZATION

ORDI NARY
KRIGING
USING

S II{ULATED

ORDINARY
KRIEINC

USTNG REAL

CONDITIONAL SI}tULATION OF COREGIONALIZATION

CIIECK RESULTS

Figure 28: Steps
for a

in a conditional simulation of coregionalization
gaussian process.

These steps are

original data uere

summarized in a flou

transformed prior to

in Figure 28. If the

structural analysis in

chart

the
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step (l) abover an inyerse transfornation is performed after step (7) to

obtain a simulation of the original phenomenon. Step (7) should be

repeated after the inverse transformation to confirm that the important

characteristics of the original data have been preserved. The

importance of transformations is discussed in the next section.

3.5 TRANSFORTIATIONS OF COREGIONALIZED OATA

3.5.1 Nonqaussian Processes j3 the Earth Sciences

All of the unconditional simulation methods revieued in Section 3.3

produce realizations of gaussien processes. Because linear combinations

of gaussian processes also are gaussian, an unconditional simulation of

coregionalizationr cieat€d by combining gaussian realizations according

to a I inear model, is e mul tivariate gaussian Process. If the

conditioning data are draun from a gaussiill proc€ssr the conditional

simulation uill be gaussian as uell.

But i t is evident that feu earth-science phenomena can be

realistically modeled as gaussian processes. Gaussian distributions are

symmetrical and unboundedr uhereas many earth-science variables have

markedly skeued distributions or distributions uith domains bounded by

maximum or ninimun constraints. Trace-element and permeability data are

usual I y posi tivel y skened and are general I y considered to be

approximately lognormally distributed. All percentage data are bounded

bv O'/, and 1002, although percentage data uith small variences and means

far from the constraints, such as sandstone porosity data and some

major-element chemical data, may look gaussian. Some major-element data

comnonly are negatively skened, e.g. celcium in lirnestone or iron in

i ron ore.
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Even if the univariate distributions of a set of coregionalized

variables appear to be roughly gaussian, there may be multivariate

relationships that clearly are nongaussian. For example, most complete

chemical analyses are supposed to sum to epproximately 100?r lnd the sum

of any subset of the chemical components in an analysis should have an

upper bound of about 1002. Such a constraint cannot hold if the

variables have a multivariate normal distribution, even if the marginal

distributions of the chemical variables appear to be approximately

normal.

Finally, even if both the univariate and nultivariete sample

distributions of a set of coregional ized data appear to be gaussian, the

data still need not be draun from a gaussien proce6s. Normality of the

histograms end scattergrams of k coregional ized variables

{zi(x), i = I to k} does not irnplp the joint normality of all randon

variables [Z;(x;) for all i and all j], or even the joint normalitv of

all pairs of data separated by a vector h, i.e. tzi(x)r zj(x+h)]'

Clearly te must either find neu methods for simulating a Hide variety

of nongaussian spatial processes directly, or find methods to transform

realizations of nongaussian processes into e forrn that is at least

approximately gaussian. Very little is knonn ebout the former approach.

The infinite variety of nongaussian processes that are possible seens to

precl ude a general method for thei r di rect simul ation. s I Furthermore'

3l Houeverr specific kinds of processes may be directly simulated as

nonl inear f unctions of one or more gaussian processesi 3.9., t'li I ler
and Borgman (1985) provide a nethod for simulating exPonentially
distributed properties as the sum of squares of tro independent
gaussian simulations, and Alfaro (,|979) describes the properties of
other random functions obtained from squires (ganma process),
products (Bessel ), and exponentiations (lognormal ) of gaussian

Processes.
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their distributions in general uould not be preserved in I inear

combinations, so conditioning bv kriging and the use of linear nodels of

coregionalization lould be restricted. Houever, the second approach is

nore promising. Ne first need to find an invertible transformation of

the data values that uill convert the original Process into a gaussian

process. tle can then perform a conditional simulation of the gaussian

pfoG€ssr uhich uill reproduce both its mean and its coveriance (or mean

vector and covariance natrix, in the case of a coregionalization).

Because the mean and covariance of a gaussian process determine its

entire spatial distribution, this conditional ly simulated gaussian

process uil I reproduce the entire spatial distribution of the

transformed conditioning data. Then ue need only to invert the

transformation originally applied to the data to convert the conditional

gaussian simulation to a conditional simulation of the original process.

Notice that this procedure assumes that a transformation from the

original process to a gaussian process indeed exists, and that only the

data yglgSS (not their locations) need to be transformed to create a

gaussian-like realization. Section 3.7.8 points out some common natural

phenomena for lhich this assumption is not valid and also summarizes

some other practical hazards encountered in the use of transformations.

It is important to real ize that, in theory, lte nust transforn the

original process exactly to a gaussian process in order to reproduce the

entire spatial distribution of the original phenomenon exactlv. 0nly in

the case of a gaussian process uill reproduction of the nean end

covariance function assure reproduction of the entire spatial

distribution. If the distribution is not reproduced exactlv, even the
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covariance function (or the variogram) of the original process uill not

necessarily be reproduced exactly by the back-transformed simulation,

for the covariance

C(x1,x2) = EIZ(xq)oZ(xz)l - EZ(xt)oEZ(xz)

involyes an integration (uithin the expectation EIZ(xr).2(xz)l) of the

cross product Z(xr )rZ(xz) over the bivariate distribution of Z(xr ) and

Z(xz). Therefore, e very useful (but not sufficient) check on the

accuracy of a simulation is a check on the reproduction of the original

variograns or covariances.

To apply the approach described above rigorously, lte uould have to

infer the spatial distribution of the original random function. This is

fundamentally impossible for earth-science data, because re have only

one realization of the randon pFoc€ssr thus only one sample from the

distribution of each random variable Zi(xi) at each x;. But if re can

assume strict stationarity and ergodicity (Section 3.7.2), then samples

from different points xi can be combined to construct the histogrems and

k-variate scattergram of tzi(x), i = I to kl. Furthermorer the ioint

distributions of al I finite sets of random variables {Z;(x5) for

a1 i and j] litl depend only on the distances among the points. Then,

in principle, Ne can infer at least the biveriate distributions betueen

pairs such as [Zr(x),22(x+h)] for vanious distance end direction classes

of vector h by exanining the "h scattergrems" (0mre, 1984, Journel '

1984a, and Journel, l9E4c) of al I pairs [(zr (xr ),zz(xz), xz-xrch] that

can be {ound in the data set.

There is an easy ray to obtain a quick (but not definitive) check on

the binormality of h scattergrams. Computer Progroms that calculete
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sample variogram functions must identify alt pairs sepereted by vector h

and accumulate the sum of their squared differences. It is eesy to

alter such a program to save a vector of the values of these individual

differences. If the data come from a stationary gaussian realization,

if the spatial domain of the data is large in comparison to the range of

the variogram (to assure ergodicity -- aee Section 3.7.2r, and it the

data pairs cover the spatial domain evenly (e.9.r rendomly or on e

grid), then these differences uill be normally distributed uith mean

Z€For variance 2y(h). If ure define the realization uithin this domain

to be a ,'population,, represented by the data, then ue can perform a

goodness-of-fit (e.9., chi-square) test for normal ity on the sample

distribution of differences saved by the modified program. Checks of

this and similar types have been illustreted bv de 0liveira Leite

(r983).

The "gW p[ dimensionalitv". ln practice re still cannot reliably

infer the nultivariate distribution of neny coregionalized variables at

a large number of vectors h using these simple checks. The difficultv

lies in the lirnited amount of data evailable. If a given numbe? "n" of

data is considered necessary to essess the properties of a univariate

distribution via its sample histogramr then assessnent of the properties

of an m-variate distribution rith marginals of the same general tyPe

nill require roughly nn data to achieve the sene accuracy.sa This

To see uhy this is so, visualize a histogram of one variable obtained
by dividing the domain of the sampled distribution into l0 histogram
classes. To obtain a reliable histogramr !l€ oust sample until le
obtain some minimum number of data falling r.rithin each class. For a

bivariate scatt€fgrahr the domain is a rectangular 8f€dr uhich le
uould probably u"nt to divide into lOxl0 rectanguler cliss€sr each

{ilted tith at least the same minimum nunber of data. In general, if
n data are adequate to characterize a univariate histogram'

g2
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situation is an instance of Bellman's (l95lr P. 94) famous "curse of

dimensional i ty". An essessment of the mul tivariate distribution

underlying a coregionalization of k variables, rhere pairs of data are

broken into j distance-and-direction categories (representing various

clesses of distances and directions of vector h) uould thus seem to

require about njk data. Actually the situation is not quite so bad,

because in construction of the j sets of h scattergramsr rost data lill

be used several times, and because nore efficient rnethods for

multivariate density estimation than the histogram method suggested in

the footnote above are available (some references are in the next

paragraph). Nevertheless, in a typical tuo-dimensional (i.e.r simple)

mining situetion ue uould be very surprised to find nore than e feu

thousand analyses (end usually fener than that)' yet re might have k=10

variables and uant n=.|00 data per vari abl e and

j=(E lags x 4 directions)=32 categories of. h, thus requiring betleen

nk=1020 end njk=l!5to rell placed data for a good assessnent of the

complete distributional Properties of the phenotnenon.

The multiqaussian hvpothesis. It should nol be eninently clear that

knoxledge of the complete spatial distribution of a natural phenomenon

is not obtainable strictlv from the data. lle nrust either use our

knouledge of the physical processes that created the phenomenon to

obtain some theoretical insight into the distributiohr oF just make some

,rreasonable', hypotheses about the multivariate distribution based upon

analysis of a feu projections or combinations of the multivariate data.

Numerous methods are available for assessing the properties of marginal

approxinatel y nn data
histogram.

rill be adequate for en m-dimensional
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distributions and mul tivafiate distributions ui th rel atively feut

variables (e.g., Section 5.4 of Gnanadesikan, 1977, Chapter 2 of Hand,

198.|, and Friedman et al., 1982).

One natural hypothesis to make about a coregional ized spatial

phenomenon is that the multivariate distribution among different classes

of vector h is ei ther "simi I ar la" or "more normal than" the

distribution at h=0. For instance, the scattergram (for h=0) of a set

of multivariate chemical analyses night exhibit some univariate or joint

lognormal behavior that could be removed by transforming the data to

their logarithms. If this transformation succeeded in making the

scattergram et h=0 look normal, then it could be hypothesized

(especially after a feu spot checks) that the multivariate distribution

among various values of h*0 uould be normal as lell. Here ue have

hypothesized that the multivariate distribution at h*0 is "sinilar toz

the distribution at h=0.

An analysis at h=0 rnight also be subject to the constraint that the

sun of any number of chemical components in a single chemical enalysis

cannot exceed 1002. Houever these same components' some analyzed at one

location x and some at another location x*h' nould not be strictly

subject to this constraint (slthough they might obey it approximately,

especially at small distances lhl), so their joint distribution could be

considered "more normal then" (here meaning "less constrained than") the

distribution at h=0. l.le cou I d hypothesi ze that a transf ornat i on

removing the constraint at h=0 uould have a similar effect at h*0, thus

transforming the uhole spatial distribution into one that is "more

norna I z.
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Section 3.5.2 describes e {eu particular transformations designed to

inpose normality, or a semblance of it, onto univariate histograms and

multiviriate scattergrams at h=0. The efficacy of these methods in

imposing multivariate nornality onto a spatial random Process at all h

depends upon the val idi ty of the "simi I ar-to" or "more-normal -than"

hypothesis. The general hypothesis of normality at h*0 given normality

at h=0 is called the "multiEaussian" or "multinormal" hypothesis by

Yerly (1984a, t9S4b) and is the basis for the eppl ication of

mul tigaussien (l'1G) nonl inear estimation methods.

3.5.2 Transformations of Nonqaussian 0ate

God does not usually tell us from Ihat distribution the data
come. IBratley et al., l9E3' P. l24l

3.5.2. I Requirements

Tuo requirements nust be met before a transforrnation can be applied to

convert a nongaussian data set into an approximately gaussian data set

suitable for simulation purposes. (Note that in some cases no such

transformation may exist; see Section 3.7.8.)

First, ue must knou or infer a fex necessary characteristics of the

data distribution. Some transformations require more knouledge of the

distribution than others. Transformations rith fixed rnathematical forms

uork properly only if the original data follor particular distributions

(e.g., logarithmic transformations are use{ul onlg for loEnormal-l ike

distributions). Transformations to remove constraints on the domain of

a distribution can be applied only if the constraints are knoln. The

steptise-conditional gaussian transformation described in Section
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3.5.2.3 requires knouledge of the complete nultivariate density at h=0.

Even then only the sample distribution of the rau data is usedr as ih

the univariate normal-scores or "graphical" transformation ol Section

3.5.2.2, ue must still knou or assune that this distribution is

representative of the phenomenon to be simulated.

Secondr r€ rnust insure that the transformation is invErtible' or

one-to-one. From a practical point of vieu, this is necessary so that

the condi ti onal sinul ati on can be transformed back to a form

approximating the original process and the conditioning data can be

restored to their original values. From a theoretical Point of vie}|, a

correct restoration of the simulated process to a form resenbling the

original process is assured because the original and transformed

multivariate distributions determine each other exactly only in the case

of a one-to-one transformation. If le transform the original k-variate

distribution F(zr,22t... rzl) to a k-variate gaussian distribution

G(VrrVzr...rYk) by apptying the transformation yi = t;(21,22t...r2k)r

i = 1,2,...rk, and then in the simulation ue reproduce this transforned

distribution, Gs(yr ,Yzt .. . r!/k) c G(Vr tYz, .. . rYk), then upon aPplying the

inverse transformation zi = sj(YrrV2,...,!/k), j = l,2r'.',k, to the

simulated data gir re ui I I obtain simul ation of the original

phenomenon uith distribution F3(21 222r... rz[) c F(zt,22r rzk) that is

a

very close to the original distribution, F.

A smal I practical difficul tY in constructing one-to-one

transformations occurs then the sample distribution contains one or more

rrspikes". A spike is a vertical jump in the cumulative histogram caused

by several ,,tied" data lith exactly the same value. This is a common
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occurrence uhen values ere rounded off to a small number of digits' uhen

the data are in the form of integer "counts", or lhen several oze?o" or

"belou-detection-limit" values are present. Tied data can be a problem

because some transformations (particularlg the normal-scores

transformation discussed in Section 3.5.2.2) implicitly involve rankinq

o{ the data (independently for each coregionalized variable), folloued

by a transformation of the ranks. If there is no unique ranking of the

original data, there can be no unique transfornation to a gaussian

distribution, uhich has no spikes. In practice lte must adopt a

convention for assigning distinct ranks to the tied data. At one

extremer re can assign the ranks randomly, probably creating a

transformed process nith an overly high nugget component. At the other

extremer Ne can assign ranks by kriging each tied velue (after deleting

it) and then ranking the tied values eccording to the ranks of their

kriged values. This is probebly less dangerousr but it runs the risk of

creating an overly smooth transformed process. A simpler, and probablv

less smooth, approximation to the kriging apProach has been euggested by

Verly (t984a, t9E4b). This technique, employed in G. N. Verly's (l9E4b)

subroutine DESPIKT fahks the tied data according to the average of data

uithin a prespecified "zone of influence" ol lixed size centered on each

tied data point.

ln applying the transformations di scussed bel on to a

coregionalization, lte transform only the rnultivariate distribution at

h=0 (or in the case of univariate gaussian transformations, just the

marginal distributions), relying on the mul tinormal hypothesis of

Section 3.5. | (or on a much stronger hypothesis that narginal



150

transformations at

assure the correct

h=0 effect the

transf ornat i on

proper nul tivariate

among al I h.

transformation) to

3.5.2.2 Univariate Gaussian Transformations

Nornral -scores (qraphical ) trensformation: The onl y nethod for

transforming a nongaussian process to approximate nornality that is non

in uidespread use is the univariate gaussian transformation (gaussian

anamorphosis), lhich is described in Journel and Huijbregts (1978,

p. 508). The simplest type of univariate gaussian transfornation is the

fami I iar normal-scores transformation, nhich is employed in some

nonparemetric or rank-order statistical tests. lt corresponds to the

"graphical transform" described by Journel and Hui jbregts ( 1978,

p. 476r. To epply this transformation, ne begin uith a set of N data

tzo(xi), i = I to N) from some regionalized variable zo(x), uith samPle

cumulative distribution function F*(zo). These data ere essumed to be

representative of the population being modeled.s3 The univariate normal-

scores transformation sirnply associates each observed value z6(x;) uith

a standards r normal val ue uo (x i ) (cal I ed the "normal score" of zo (x i ) )

draun lrom the standard normal distribution funotion G(uo), such that

Fr(26) = 0(uo)

53 One must be very careful in rnaking this assumption. Samp I e

distributions can be very sensitive to -domain errors" and

"estimation errors", as described in Sections 3.7.2 end 3.7.3.
Furthermore, the data may be clustered, the sampling may have been
done Preferentially, or the suPport may be heterogeneous. A method
for t'declustering" data is described by Journel (1983' lppendix A).

Bf /31"n6ard/ typically means mean=0r yrriance=1. For small data sets,
the normal scores actually hsve e variance different from 1.0'
because the continuous distribution has been discretized.
unimportant in the present application.

This is
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as illustrated in Figure 29. A conditional sinulation based upon the

transformed data set is then performedr ord finally the simulated values

are back-transformed (by a technique described belou) to reproduce the

original distribution Fi. lt is emphasized that the distribution being

reproduced is the sample distribution F*r not the underlying F. Anv

peculiarities that happen to appear in Fr simply because of sampl'ing

variability rill be reproduced in the simulated distribution'

The graphical transformation and inverse transformation betueen data

sets having the tuo distributions F* end 6 can be performed by Verly's

(1984b) subroutines GINV and LINT, possiblv.uith the essistance of his

subroutine DESPIK to dissolve spikes in the distribution Fr. The

{oruard transformation (GINY) is a straightforrlard calculation of

uo=G-tFt(zo). The inverse of the gaussian distribution function, G-1,

is calculated by an epproximation formula (Abremouitz and Stegun, 7972,

p. 933, Equation 26.2.23). Fr(zo) is equal to rank(zo)/(N+l), N being

the number of zo data. The smallest Zo vslue has rank:|. If many zo

data are available to define the function Ftr end if Fr is fairly

eontinuous (no big gaPs in the zo values), then a Yery sinple linear

interpolation (LINT), described belou, is adequate for the inverse

transformation of the simulated standard gaussian data u.(x).55 For a

particular value of u3(x) equal to one of the original data values

uE(x;)r the inverse transfornation zs,=F*-lG(u") is sirnply z.(x)=zo(x) '

If the velue of u3(x) does not equal an original value us(xi) but lies

betueen tuo ordered Yalues, uo(xi)(us(x)(u6(x;), then e I inear

35 A modification of this procedure that
large numbers of real and simulated data
in Section 4.2.2.6.

may speed up execution uhen
are involved is demonstrated
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,r1
11

Figure 29: Normal-scores (graphical ) univariate gaussian
transformation. A straightforrard trensfornation is
illustrated by the relationship betreen datum z1 and
its normal score u1. Data z2 and z3 are tied, so some
convention must be adopted to decide uhich of the
scores u2 and u3 is assigned to each z. simulated
score us could be transformed back to zr by the means
illustrated here, but the linear-interpolation nethod
described in the text effectively substitutes a linear
epproximation to distribution G in the region of ur.
The median l'l of the data set is transformed to z€For
the median of the standard normal distribution.

interpolation is perforned to obtain zr(x):

lzr(x)-zo(x i) lzlzs (x5 )-zo (x i ) I = [ur(x)-uo (x i ) Izlus (x; )-uo (x i ] I

Extreme values of u3(x), lying above or belou al I values of the

transformed data set tuo(xi)) can be (as an approximation) transformed
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to the naximun or minimum values of the data set {zo(xi)} orr

preferablrr can be interpolated using tuo prespecified extreme transform

pairs, (milt 26r min us) and (max Zo' oex uo)r ehosen such that the

probabi I i tv that a simul ated val ue us(x) ui I I fal I outside these

extrenes is very small. Selection of appropriete values for nin zs and

Itix 26 may be a very subjective undertaking that requires one to imagine

uhat the extreme tails of the original distribution F(z) might look

I ike.

0ther transformations. A feu other approaches to univariate gaussian

transfornations are avai I abl e. lf one can rel iabl y infer the

mathematical form of the underlying distribution F(z)' it nav be

possible to transform zo(x) directly into a gaussian us(x)r as in the

case of the lognornal distribution, for nhich uo(x)=log zo(x) is

normally distributed.s6 This type of transfornration avoids the possibly

undesirable reproduction in the simuletion of the sanpl ing-induced

peculiarities of F* that is inherent in the graphical method.

An alternative to the graphical transformation is to fit a Hermite-

polynomial expansion to the transformation function G-tFr, as described

by llarechal (.|976), Journel and Huijbregts (197E, Sections VI.B.3 and

vl.8.4), and Dor.rd ( 1978, Chapter 3). Houever, this approach seems

needlessly complicated for simulation purposes. A brief illustration of

its application in a simulation of coregionalization is provided by

Dagbert (t981), and a lengthy example is provided by Doud ( 1978,

Chapter 3).

36 Journel and Huijbregts
relationships betueen
case.

(1978, pp. 525-526) describe the nathematical
the structures of uo and ze for the lognormal
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There are sti I I other "data-directed" transformations in the

I i terature that mi ght be appl i ed to transform an arbi trary sampl e

distribution to one that is "more normal". An example is the poner

transfornation of Box and Cox (,|964). The appl icetion of this

transformation to multivariate data is described by Gnanedesikan (1977,

P. t37).

Hypotheses. I{ te are simulating only one regionalized variable

z(x), the hypothesis underlying the use of a univariate gaussian

transformation is that a transformation of the univariate histogram of

[zo(xi)] uil I result not only in the univariate normal ity of tuo(xi)]

but also in joint normality among (u6(x+h;)l for all x and all possible

vectors h;, as ue uould find in a realization of a gaussian process.

This is exactly Yerly's (t984a, l9E4b) multinormal hypothesis. Although

this is a strong hypothesis, practical simulations incorporating this

transformation generally seem to have achieved acceptable reproduction

of at least the univariate distribution and the variogram of the

original data.

If this transformation is appl ied in a simul ation of

coreqional ization, in uhich each coregional ized variable z; (x) is

independently transformed to an associated u5(x), a stronqer nultinormal

hypothesis nust be made. lle nust sssume that the univariate normality

of all of the marginal regionalized variables u;(x) implies not only the

joint nornality of u5(x) and uj(x+h) for each j and all h, but also the

joint normality of u;(x) and u;(x+h), j*i. Joint normality for j*i is a

very strong assumption, especially for h:0, so it is a good idea to

check for joint nornality (e.9., using one of the nethods described by
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Gnanadesikan, 1977, Section 5.4), at least et h=0' before Proceeding

ui th a simul ation of coregional ization using this approach. The

approach is I ikely to be particularlv unsatisfactorv at h=0 if

multivariate constraints (such as fz5(x)3t00, for percentage data) exist

emong the original variables at h=0. Univariate transformations of the

marginal distributions may distort' but not el irninater such constraints'

so the transforned variables cannot be nultivariate normal. It is

preferabl e to remove these constraints by a prior transformation

(Section 3.5.2.4).

3.5.2.3 I'lultivariate Gaussian Transformations

Because the use of univariate gaussian transformations of only the

marginal distributions of a set of coregionalized data requires such a

strong hypothesis of mul tinormal ity, an obvious next step is to

transform the entire multivariate scattergram at h=0 (not just the

marginal histograms) to a multivariate normal scattergram. Then ue need

onl y to hypothesize that mul tinormal i ty anong the transformed

coregional ized variables u5(x) at h=0 ril I resul t in aPproximate

rnultinormality among u;(x+h;) for all regionalized variables u; and all

possible vectors hi.

Stepr,rise-condi tional transformation. lf ne knou (or can reliably

estimate) the multivariate distribution at h=0 of the original data, a

nrultinormal transfornation of the scattergram can be performed exactly'

using the stepuise-conditional approach proposed by Rosenblatt (1952).

This transfornation is illustrated in Figure 30. If the original

coregional ized random function Z=(Zr ,22,... '21) has a k-variate

distribution (at h=0)
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F(z1r 22t ... r2[) = PtZr tzt rZz!22, '. ' ,Zt(zt]

then the follouing stepr.rise transformations (taken in eny order anong

the k variables)

F (zr ) = PtZr lzr ]

F(zelz1) = P(Za(zzlZ1=2t1

uk = F(ztlzt-rrZk-2r - - - tz1)

uil I yield a random function U=(Ur tl)z,...,U1) that is uniformly

distributed (at h=0) on the k-dimensional unit hypercubei i.€.' the k

components of U are uniformly and indeoendentlv distributed over the

interval I0,ll. Nou all ue need to do is to apply the standard gaussian

inverse transformation 6-l (usin9 the method in subroutine GINV) to

obtain a nelr k-variete random function

. v = (VqrV2,...,V1) = (G-l(Ur)rG'l(U2)r...rG-t(Ur))

consisting of k independent (at h=0) standard normal variables. ![ the

mul tinormat hypothesis is val id, this tli | | transform the k

coregional ized random functions ZtrZzr... rZ1 Hith en arbitrary

multivariate distribution (at all vectors h) into k etandard gaussian

random functions vr rY2r...rvk' If ue are lucky' the indePendence of the

transforned variables at h=0 may further result in indePendence of the k

transformed regionalized variables at all vectors h, naking them very

easy to simulate. It is important to realize that indePendence et h=0

may be only "appiF3nt": the multivariate transformation above does not

take spatiat dependencies into accountr so a check of the cross

variograms of the components of V is needed. Gaussian random functions

uq =

UZ:

uith zero cross variograms are strictly independent. (The effects of
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Section 3.5.3. )

spatial dependence
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ere discussed further in

This method is so nice that there nust be sone reason uhy no one

seems to have tried it (although Chiles, 1984, has used a sinilar

approach' described belou). Probablp the reason is that, in practice,

the orig'inal nultivariate distribution F is not given but must be

estimated from the data, and reliable nonparametrio multivariate density

estimates based only on sample scattergrams tend to require a lot of

data (because of the curse of dimensionality -- see Section 3.5.,|) to

avoid seriously biased estimates.s' Hand (1981) summarizes several

methods of rnultivariate density estimation, some of uthich require feuer

data than the simple histogram method described in a footnote in

Section 3.5.1r but all of nhich rork best rith either a lot of data or

only a feu variables. The best method for the many-variable case may be

the projection-pursuit method of Friednan et al. (19E2), uhich Has

specifically designed to sidestep the "curse".

If re can obtain a reliable estimated density Fr for the original

k-variate data set, lre can apply the transformations described above to

obtain samples from k regional ized variables vr (x),v2(x),...,v9(x),

rhich ue hope uill be multinormal among all h. lle then perforn e

structural analysis of the transforned variables and proceed uith a

classical conditional simulation of coregionelization. (lt is likely

57 Bias (difference betueen estimated and true density) increases as the
number of data deoreases. For instance, in the histogran method of
density estimation (Section 3.5. l), ue divide the dornain of the
distribution into cells and count the number of data fslling rithin
each cell. If there is a ehortage of data, ue nust increase the cell
size to get adequate counts. Then any local details of the original
density uill be smeared out ecross the large cells, producing a bias
in the estinate.
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Figure 30: Illustration of the stepuise-conditional rnultivariate
gaussian transformation for some bivariate data. This
is a fictitious idealized illustration created by
first simulating pairs of independent uniform (0,1)
data and attributing their ranks to (u1ru2), and then
applying arbitrary transformations to get (2tt2z) and
normal-scores transformations to get (v1rv2).



simulated the k realizations vii(x), re then apply the G transformation

to obtain uis(x)=G(v;r(x)), and f inal ly invert RosenbI att's

transfornation in a stepuise manner (in rhich the variables uj3 night be

back-transformed in any orderr r€gerdless of the order of the foruard

transfornation):

that the linear model of coregionalization

independence of the transforned data at

Euaranteer z€Fo cross variograns among

zq 3(x)

223(x)

0ther transformations.

transformations have been
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rill be rather simple, ag

h=0 nay suggest, but not

aome variabl es. ) Hav i ng

F*'lzr(urs(x))

F*'r.ztzr(ues(x))

Some other, less comprehensive, multivariate

described. A generalization of the Box and

pouer trensformation to simul taneous

,. 213(x) = F*-l-kzzk-t,,,:t(utg(x))

Implementation of this epproach uould involve a lot of computational

effort and detai I to obtain Fr and its essociated conditional

distributions and transformations, and to sssure strict restoration of

the values of the oriEinal conditioning data. The only advantage is

elimination of our reliance on a hypothesis of multinormality at h=0, so

in most practical situations, univariate gaussian transformations,

accompanied by some checks on mul tinormal ity at h=0, ui I I probablv

suffice. Nevertheless, nultivariate transformations of this type seem

to be a promising topic for research and may be necessary in the

occasional instances in uhich univariate transformations do not lork

uel I .

Cox ( 1964) univariate
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transformations of nrul tivariate data is summarized and i I lustrated tlith

some examples in Gnanadesikan (1977' pP. 137-150 and 241-247rr ahd

Chiles (19E4) has proposed a linear-regression approach that is similar

in spirit to the stepuise-conditional transformation, described above.

Chiles' approach, uhich he applies to a simulation of coregionalization

of thicknesses and grades in a nickel-laterite deposit, is particularly

useful if the variance of one coregionalized variable eppears to depend

on the value of another "leading" variable (a dependency that does not

exist in a multivariate normal distribution). To transform a bivariate

scattergram, Chiles first designates one of the coregionalized variables

zr (x) as the leading variable. He independently transforns z1 (x) and

z2(x) into u1(x) and u2(x)r iasp€ctively, using the univariate normal-

scores transformation described previously. u2(x) is then transformed

further to

u2,(x) = [uz(x) - m(ur (x)) I z c(ur (x))

lhere m(ut(x)) is the linear regression of u2 on the transformed leading

variable urr aod o(ur(x)) is the conditional standard deviation

(a function of ur) of the residuals luz-m(ur)1. In practice u1 and u2'

rilt be roughlv independent at h=0, and the variance of ua' uill be

independent of ur. l{ the cross variogram of uq and u2'is zero for ell

h and the multinormal hypothesis is valid, these variables can be

simul ated independently.

3.5.2.4

Univariate

r i gorousl y

Transfornations to Remove Constraints

transformations. llost earth-science phenomena cannot

be normally distributed because, among other F€isohsr the
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data are not alloued to vary over the range [-o,+ol as required for a

normal rendom variable. Percentage data' for instancer 8FB confined to

the range 10, l00l.so If the constraints aPply only to individual

regionalized variables and not to functions (e.9.' suns) of several

coregionalized variables, they can be neatly removed in one of tuo uays.

(l) A univariate normal-scores transformation uill autometically remove

the constraints from the transformed variable. To ensure that the

interpolated back-transformed simulated data obey the original

constraints, simply set the minimum constraint equal to the minimum

interpolation-class boundary "min zo" and the maximum constraint to "max

Zo"

one

(2) Before (or perhaps in place of) the gaussian transformation,

can perform a logarithmic or logit transfornation on the original

data. If z(x) is a positive regional ized variable lith ninimum

constraint "at' and maximun constraint ub"r then:

u(x) = lo9(z(x)-a) has no ninimum constraint,

has no naxinum constraint' andu(x) = -log(b-z(x))

u(x) = log[ (z(x)-s)/(b-z(x)) I has neither.

If some of the rau data ere eJ-SllJ equal to the constraints, it uil I be

necessary to adjust the constraints to [a-e'b+el, uhere e is 8 very

srnal I nunber, to avoid some obvious difficul ties lith the

transformations. t'losteller and Tukey (1977, Chapter 5) provide a guide

to these and several other useful transformations (uhich they cal I

"re-expressions") for various types of rau data.

58 Actually, there are some familiar chemical examples uhere this is not
really true. For instancer 8 complete chemical analysis of a rock in
uhich all iron is reported as Fe203 and all sulfur es S03 ttill
probably have a total above l00U if the rock contains pyrite (FeS2).
Sampling and analytical errors can also result in totals above 1002.



l'tut tivariate transf ornations. l'lany coregional ized variables also

have nul tivariate constraints. The nost familiar of these are the

constraints [0, l00l on sums of percentage data. ComPlete chemical

analyses may be constrained to sum exactly to l00Z (perhaps Plus a small

allouance for error). This type of constraint is treated in detail

later in this section. There may also be mineralogical constraints

built into chemical analyses of rocks. For instance' the case study of

Section 4.2 involves the simulation of a limestone deposit thatr or e

nicroscopic level r consists of essential ly three phases: cal ci te

(Cacos)r dolomite (Cat'lg(C03)2)' and a mixture of clays. The rocks are

analyzed only for ueight percentages of CaC0s and l'lgc0sr so there are

four mul tivariate constraints'

02 3 CaC03 + t'19C03 ( l00Z * Gtr and

0 S (F1gC0g)/(CaCOs+llgC03) ( 0.457 + ez,

lhere €q end €a are tolerances for sampling and analytical errors. The

second pair of constraints marks the pernrissible range in compositions

for nixtures of stoichiometric calcite and dolomite. (Al I analyses

contain some CaCOgr so the denominator of the ratio ebove never reaches

zero.) These constraints can be remoyed in tno stepsr (l) oonvert the

original variables zr=caco3 and z2=I'19C03 to tuo neu variables

ur =CaCOc+l'lgC0e and u2=MgC03/u1 i (2) appl y univariate gaussian

transfornations to ur and uz to remove the constraints [0,100+er I and

10,0.457+ezl, respectively, uhere 0.457 = l'lN(l'lgc03)/llN(cat'lg(c03)2), and

"nW stands for t'moIecuIar ueight". These transformations ere

one-to-on€r so if the gaussian transformations of ut(x) and u2(x) forn a

nultinormal coregionalization (multinormality should be checked at least
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et h=0), then a straightforuard condi tional simul ation of

coregional ization fol loued by inversion of the gaussian (first) and

constraint (second) transformations should reproduce the entire spatial

distribution of z1 and 22.

This exampl e i I I ustrates the general apProach for removal of

mul tivariate constraints: transforn the original coregional ized

variables (e.g. r CaCO3, ll9C0a) into a nelt invertible set o{

coregionalized variables consisting of the functions that are !g be

constrained (e.g. r CaC03+l'lgC0g, l1gC03/(CaCO3+t{gC03)), then remove the

constraints either through the normal-scores back transformation or

through some other transformation, such as a logarithmic or logit

transformation. As long as all transformations are invertible and

inverse transformations are performed in reverse order to the foruard

transf ormat i ons, any number of nested transformations can be

imaginatively epplied to convert e troublesome initial distribution to

approxinate normal i ty.

Transformations to remove constraints may become nore difficult to

apply in an unusual situation uhere the number of constraint functions

exceeds the nurnber of coregionalized variables, as the resulting one-to-

many multivariate transformation could not be inverted after simulation

to recover the original variables. ln such I coser re should first make

sure that no constraints are redundant (e.g., CaC033l00Z is redundant

given CaC03+tlgf,03Sl00Z). Then re night combine some transformations in

a pieceuise mannerr ds illustrated by the extreme example in Figure 31.

Such a fixup becomes hard to visualize in more than tuo dimensions (in

the variable space), but it seems unlikely that many high-dimensional
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coregionalizations of geologic phenomena nould ernbody nore recognizable

constraint functions than coregional ized veriables. The Pieceuise

nature of this transfornation night make the transforned real ization

look nonstationaryr is its behavior uould chanEe abruptly at locations

rhere the original real ization crossed the boundaries betreen the

pieceuise zones of influence in Figure 31. A further gaussian

transformation probably r.rould smooth out this behavior.

Figure 3l: Piecerise
funct i ons
represent

transformations for use rhen constraint
outnumber the variables. The dashed lines
the contours of tro transformed variables.

Transformations for constant-sum

encountered in practice is the

constraint, rhich has received an

data. The rnost common constraint

constant-sum or "closed-ar?eyt'

embarrassment of attention in the
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I iterature of nathematical geology and petrology. (One may begin

exploring this I iterature by looking up the references cited by

Aitchison (198t), Butler (1981), and Lellaitre (1982).) This constraint

appl ies to percentages (or proportions) that must sum exactly to l00Z

(or to l), although the statistical behavior of such data is essentially

unchanged if the constraint is only approxinate (e.g., because of

analytical errors). A set of k-variate percentage data subject to this

constraint actually contains only k-l degrees of freedon, as the kth

percentage can be determined by subtracting the sun of the other k-l

percentages from 1002. Geometrical ly, the data must plot on a

(k-l)-dimensional simplex connecting the points (100,0,0,...,0),

(0,100,0,...,0), ..., (0,0,...r0r100) in k-dimensional space. As the k

percentage variables are effectively "conpeting for space", an increase

in one variable requires a corresponding decrease in one or several of

the others. This competition tends to induce negative correlations

among the percentages. l'lost of the many euthors uho have xritten on

this subject over the years have been groping for reys to decide rhen

observed correlations emong the variables are caused by sone substantive

association among the variables other than this /closure property". The

usual approach is to transform the data into some "open" forn and

examine the correlations among the transforned variables to see if any

petrological ly significant relationships are revealed.

ln conditional simulations re usual ly do not care hou the

multivariate associations emong a set of coregionalized variables are

produced, so long as the relationships that do exist are recognized and

reproduced by the simulation. Nevertheless, some transformations that
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have been proposed to remove the closure constraint nay be useful in

transforming closed data into a nore nearly normal (unconstrained) forn

for sinrulation purposes. For exampler Aitchison (l9El) has proposed the

fol loning transformation: Eiven a k-dimensional set of nonzero

pereentage data z=(zr t22t... rz[) uhere Z1*22*...+zt=1002, ue transform

the first k-l data into

ui = log(zizzt) = lo9 zi - log zlr i=1,2'...rk-l

uhich have inverses!

k-t
zi = 100 exp(u;)/[1+fexp(u5)),

j=l

These k-l invertible transformations produce k-l variablesr ui, that are

distributed over l-o,+olr 8s required for norrnal ity. If the u;'s (or

subsequent transformations of the u;'s) are approximately multivariate

normal at h=0r Ehd the multinormal hypothesis for h*0 is validr lt€ c8h

conditionally simulate these k-l regionalized variables, then invert the

transfornations by the inversion formula above to obtain sinulated

values for 21tz2'.rrrzk-r. The last "simulated" variable' zkr is

calculated by difference and uill aluays be greater than zeror as

required, for

k-t k-l k-l
I.i = loo lexp(ui)zIl+fexp(u5)l

i=l i=l j=l

= 100 sull/(t+sul,l)

uhich is less than 100.

Aitchison's transformation is most easily applied if all k original

variables zi are approximately lognornal ly distributed (an unl ikely

cds€r considering the constraint on their sum), for in that case the

i=1,2'...rk-l
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marginal distributions of all ui = log zi - log zk are normalr 3o

further transformations to impose normality at h=0 are not required. In

practice, one could pick zk to be a lognormal-looking variable, as it

appears in ey€t ! u i r and then apply a further transformation to

normalize any resulting u; that did not appear to be normal.

In cases uhere the sums of the original percentege data are not

exactly 1002, Aitchison's transformation can still be used by adding a

fictitious "remainder" variable if the sum is alNays less than 1002, or

by adding the remainder variable and then raising the constant sum to

some value safely above 1002, perhaps l0Slt, if the actual sum varies

both above and belou 1002.

There is a simpler alternative to Aitchison's transformation that

might be called a "successive-remaining-space" transformation. Ne begin

uith a vector z of constant-sum data such that fzi=100r ts beforer thd

apply the follouing k-l transformations in succession:

u1 =zl
i-l

ui = 100 z\/(100-fz5),
j=l

i =2, 3, ,k-l

These ui's are also percentage data' but they are percentages of the

"remaining space" in the analysis, after eccounting for the i-l previous

variables, rather than the original apace of the zi's. Being percentage

data, the ul's are not likely to be normal-looking and uill have to be

further transforned such that the percentage constraints 0(uiSl00 (or

some narrouer range suggested by inspection of the transformed data) are

observed. The sole function of this transfornation is to ensure that

the final back-transformed simulated data strictly obey the original

constant-sum constraint on the zi's. The simulated ug's are invertible,
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21=ut

i-l
zi = u;(100-fz5r/100,

j=l
i=2r3'...'k-1

and the final "sinulatedu zk, calculated by difference, nust be

nonnegative, {or each successive simulated zi is oalculated to fill only

a fraction (u;2100) of the remaining space

i-l
(100-Iti)

j=l

that is left after summation of the previously inverted z;'s, j(i.

A potential practical difficulty nith this transformation is that

each transformed variable ui includes contributions {ron all previously

transformed z1's. The many individual nested structures that might end

up in the variograms of the last feu ui's utould be difficult to observe

in the sample variogram plots, uith the Possible resul t that the

regional izations of the final z;'s uould not be rel I modeled (see

Section 3.7.8). Because the sequence of transformations nay influence

the quality of the model, it might be a good idea to transform the nost

"important" veriables (economical ly or geological ly) first.

Doud (1978, t984) used a remaining-space type of transfornation

(uhich he called his "second methodu) to simulate e coregionalization of

bed thicknesses in a petroleum reservoir. The problem in that case uas

that the individual simulated bed thicknesses had to sum to the

simulated total thickness of the section. This uas accomplished by

first simulating the proportion of the total thickness attributed to

each bed by the method described above, then mul tiplying these

proportions by the sinulated total thickness to obtain the sirnulated

individual bed thicknesses.
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3.5.3 Transformations lg Sirnelifv lfr Covariance f'latrix

In the construction of a I inesr model of coregional ization {or k

coregional ized variables, it is necessary to fit (k)(k+l)/? nodel

senivariograms and cross semivariograms and to ensure that all matrices

of nested semivariogram functions uith the same general structure (i.e.,

the same shape except for a nultiplicative factorr such as the sill,

corresponding to the vertical scale of the semivariogram) are positive-

definite. This can be a formidable task if k is large. For instance,

complete chemical analyses of rocks mey include nine or nore oxides,

requiring the fitting of at least 45 nodels, possibly uith conrplicated

nested structures and anisotropies. Eyen assuming (outrageouslv) that

sufficient data are available to estimate ell of these models and their

associated parameters simultaneously end accurately, one must still

consider the labor involved in fitting the functions, verifying positive

definiteness, and constructing a linear model. Hence it is uorthuhile

to investigate uhether transformations might be made that could simplifv

the covariance structure that must be modeled and reproduoed.

Transformations to remove multivariate constraints (Section 3.5.2.4)'

particularly constant-sum constraints, commonly nill effect some

simpl i fication in the covariance structure by removing cross-

associations induced by the constraints. But in nost real situations,

cross correletions among the variables are likelv to persist even in

gaussian-transformed data, although the stepuise-conditional gaussian

transformation introduced on page 165 has the nice property of removing

cross correlations among the original variables at h=0. This

transformation un{ortunately requires a very good estimate of the
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multivariate distribution at h=0r 8hd if the nunber of variables is

large this estimate may be as hard (or harder) to obtain than the

variogram estimates f or al I h. f'loreoverr independence et h=0 does not

imply independence for all h, although in practice some of the cross

variograms among the transformed variables probably xould be Practically

2er^or thus simplifying the linear model of coregionalization.

Principal-components transformation. A sirnpler transformation uith a

similar effect at h=0 is the principal-components transformation. This

is an invertible multivariate linear transformation of the original

variables zq' i = | to k, of the form

k
Yj = Iaijzi'

i=l
j=lr2'...,k

in uhich the coefficients eii are selected in such e ray that the cross

covariances Cpp(0)r piD' among the transformed variables are zero. As

these covariances are the cross-semivariogram sill values of the neu

variables, many of the cross semivariograms ?uu(h) probably lill be

close to zero for all h.5e If the original scattergram at h=0 is

approximately k-variate nornal, the nultinormal hypothesis for h#0 nould

suggest that each transforned variable yp is independent of any other

trans{ormed variable yu for uhich ?u,y(h)=O for all h. If this tere true

anong al I k coregional ized variables, lfe could just sinulate each

transforned variable independently, requiring the nrodeling of only k

5t Principal-components computer programs normal ly use the sample
variances and covariances of the data to obtain the components. For
geostatistical applications, it is usually preferable to nork uith a
natrix of vertical-scale parameters of the variograns (the
semivariogram sills, if they exist) estimated from the data rather
than the sample variances and covariances, rhich are actually only
estimates of the dispersion variances and covariances of the data
uithin the finite spatial domain that has been sampled.
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direct semivariogram functions instead of (k)(k+l)22 direct and cross

semivariograms. In general it uill not be true lor all 7pu, but some

simplification of the covariance structure and its associated linear

rnodel is sti | | I ikelv. The effects of princiPal-components

transfornations on semivariogram nodels are discussed in more detail

further on in this section.

The principal-components transformation and its associated inverse

actually constitute one particular linear nodel of coregionaliaation, in

uhich only the matrix of total coyariances (not those of the nested

structures)60 is used to derive the coefficients of the model. In

theory, this model should provide a poorer fit than a painstakinglv

constructed I inear model of el I of the various nested structures

involved in the coregionalization. tn practice, the results might be

just as good, but only if the structure is simple (such as en intrinsic

coregionalization) or if deficiencies in the data rill not allou a

comprehensive set of linear models to be confidently constructed.

principal-components analysis and the related techniques of factor

analysis and correspondence analysis are described in many textbooks on

nul tivariate statistics. These techniques have a long history of

appl ications in the earth sciences, many of thern revieued by Joreskog

et al. (1976). Geostatistical applications are nore recent and still

feu in number. Borgman and Frahme (1976) used principal components to

approximate a coregionalization of eleven measured properties of tlyoming

bentonites using only five roughly independent regionalizations of the

five largest components; Bryan and Roghani (t9E2) reduced tuelve

6o But see the last paragraph in this section for a refinement.
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yariables to five components for use in uranium reserve estimation; and

Davis and Greenes (19E3) kriged the Principal components of ash, BTU,

and sulfur in e study of coal quality. Dagbert (1981) sinulated a

coregionalization of seven major-element concentrations in a quartz-

diorite pluton using seven principal components, one of uhich alone

accounted tor 682 of the sum of variances in the original data. The

narginal distributions of the original variables uere normalized by

univariate gaussian transformations (using the Hermite method) before

appl ication of the principal-components transformationr ahd conditioning

nas performed directly on the simulated components using the components

of the original conditioning data.

llany statistical computer packages containing principal-conponents

routines are uidely available. Davis (1973, p. 494) and Cooley and

Lohnes (l97lr p. tl6) also provide listings of simple programs and

associated subroutines to perform principal-components transformations.

To transform a random vector Z=lzr tz2t... rzkl' to its principal

components Y=[y1,yz,...,ykl', ue multiply Z by the transpose of a kxk

matrix A=lAr,A2, ...,Ai, . . .,Arl of column vectors A; ' so Y=AIZ. Each v5

has the form:

!/ j = ar jzr+ae jzz+. . .+ekizk = Ai'Z

If A is an orthogonal natrix, such that A'A=AA'=I (lhere I is the

identity natrix), then the elements a;; of each column vector A5 are

scaled such that

k
Ai'Ai=fazii=l

i=l
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Ir=Yar(y1)=A1,CAq is maximizedr subject to the constraint Aq'A1:1. If Z

is a nultinormal random vectorr re ere actually finding the direction

(eigenvector) in the space Rk of the variables that corresPonds to the

largest axis of the hyperel I ipsoidal Point cloud formed by the

k-dimensional data. A Lagrange procedure similar to the one used to

solve for kriging ueights in Section 3.1.{ can be used here to solve for

41. The second principal component Yz=Az'Z must have the largest

possible variance tr2 of al I Possible combinations Az'Z that are

orthogonal to Yr and satisfy the scaling Az'Az=1. The Lagrange solution

to this problem thus maximizes Var(y2)=A2'CA2 subject to the scale

constraint A2'Az=lr and subject to the orthogonal itv constraint that

Cov(y2,yl)=Az'CAt is zeror of moF€ simply, .that the eigenvectors A1 and

A2 are orthogonal: A2'A1=Q. For each subsequent principal component

that ue extractr re must add another orthogonality constraint. The

principal components yt,...rVk that eventually emerge from this Process

ere uncorrelated and have progressively decreasing veriances, rhich add

up to the sun of variances of the original Z data. The covariance

matrices C and L are related by L:A'CA or equivalently C=ALA' (because

AA,=I). If Z is a multinormal vector, the k eigenvectors A5 uill

correspond to the k axial directions of the hyperellipsoidal point cloud

of Zt and the standard deviations y'tr; rill be proportional to the

lengths of the axes.

The simple transformation Y=A'Z in general uill result in principal

components Y that do not have zero neans. l'lost programs actually

perform the transf ormation Y=A'(Z-t'l)r uhere l'l is the vector of sample

means of Z. After simulation of the oomponents, each simulated vector
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Ys r.ri I I have the f orm Y"=tr'(Zs-il). Recal I ing that AA'=I r r€ can back-

transform the simulated Y5 velues as follotts:

A Y3 + l'l = A A' (Zg - t1) + l'l = Zr - ll + ll = Zr

Notice that a small eigenvalue 15 corresponds to a component V; uith

very small variancer so little information may be lost in replacing such

a v; bv its meanr uhich is zero if the transformation Y=A'(Z-l'1) has been

adopted. This means that, if the Iast ter.r eigenvalues 15, m(jSk, are

close to zeror lt€ need only to simulate the first n components' Yna,

filling in the remaining k-m elements uith zeror thd later aPply the

inverse transf ormation :

Zns=AYns+llaZs

This uill restore the proper mean to the sinrulated values, but the

variances Hi I I be decreased sl ightly because the last feu (tiny)

components uere deleted. Also, the inverse transformation $ill impose

an exact I inear 4ependencv emong the Z;s, instead of the near dependency

implied by the near-zero eigenvalues. This transformation is not

one-to-one, so the distribution is not being reproduced exactly by the

simulation, even in the multigaussian case. I'toreoV€fr if one of the

deleted components happens to be neighted heavily in the expression of

an eoonomically important variable, the simulation of that variable may

be unacceptably smooth. consequently, although principal-components

analysis is used in many disciplines primarilv to reduce the

dimensional ity of the variable space' for simuletion purPoses it is

better to retain all principal components unless simulation costs are a

najor consideration.
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The principal-components transfornation constructs nell variables

uhose cross covariences are constrained to be zero only at h=0, uhereas

for simulation purposes it is preferable for the cross covariances to be

zero at all h. Unfortunately, e zero cross eovarience at h=0 does not

generally imply a zero cross covariance at all h -- not even for

transition nodels, in uhich the cross covariance at h=0 is the cross-

semivariogram si I | . To see this, consider a coregional ization of

variables zq,, c = I to k' uith a matrix of (possibly nested) transition-

model semivariograms, rhich are denoted 7ss(h). If ue construct

principal components of the forn

Vp

then the components ui I I

k

= IaaUzc p = 112,...,k
c=l

have semivariograms of the forn

kk
luu(h) = f laapapyrcs(h)

a=l B=l

r.rhich ue uould I ike to be zero at al I h, f or ;r*u, even though only

Cpy(0) : fpy(o) = 0' B*u, is assured by the transformation. Because the

structures zce are transi ti on model s, the conponents ui I I have

transition models as uel | (usual ly nested), and ril I have cross

semivariograms ?up rith ttre general appearance depicted in Figure 32.

The function in figure 32 is zero by definition at h=0, and it has elso

been set to zero et h=o by the transformation. For this function to be

zero at all h, it must not not exhibit any hole effects. Unfortunately,

e coregionalization of arbitrary monotonic trensition rnodels does not

necessarily yield principal components uhose cross variograms are free

of hole effects' as the {ollouing-simple example uill illustrate.
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l(b)

Figure 32: A cross semivariogram betueen tuo
constructed from transition-nodel

principal components
variables.

Suppose ue have the simple situation il lustrated in Figure 33(a):

tuo coregionalized time series Z1 and z2 rith nested simple-transitive

semivariogran models. The positive-definite sil I matrices are given

belou:

Variable

21

Zz

l.le shall perform a principal-components transfornation using the matrix

C of total sil ls. For this simple natrix the eigenvelues and

eigenvectors are easily obtained uithout resorting to the Lagrange

procedure described previously. To get the eigenvalues, ue solve for

the tuo values lt and Iz for uhich the determinant of (C-II) is zero:

Range a1 Range a2 Total Sills

Ir -rl It tl lto -..|ll*ll=ll
fo 'J I o ,J [-e toj

I r ro-rl -ol
| | = fi0-l)z - (-6)2 =Ie - Z0I+64
l-6 ilo-r) |
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(a)

(b)

.I

Figure 33r

.2

Appl ication
to a simple
variables.
variables.
components.

of a principal-components transformation
coregional ization of transition-model
(a) Sernivariograms of the original
(b) Senivariograms of the principal



So the eigenvalues are the tuo roots

trz=4. These roots sum to the

16+4 = 10+10 = 20. Each eigenvalue

for uhich A5'Ai=1. The eigenvector

for A5, subject to A5'Aj=l ,

tE9

of tr2-20tr+64 = 0t i.e., Ir=16 and

suil of veriances es requi red:

tr5 has an associated eigenvector A;

is obtained by solving (C-l5I)A;=g

forn uant a

For tr1=16, (c-trrI)Ar = 
[-:

Yielding Ar'=[arr,32r ] = anY vect

solution for uhich A1'A1=1, i.e. Ar

or of th

'=tt/i,-,/i

[.
=l

fo

e

I

=['l
t'J

lx,-xl. l.le

-l'[".,]

t'tilrlarzl lolll=ll
1"..1 lolL J LJ

form lxrxl. Ne nant a

The tuo eigenvectors are

A=[Ar,Az I is orthogonal :

For 11=4, (C-lzI)Az

yielding Az'=[a12ra22l = any vector of the

solution f or urhich A2'A2=1, i.e. Az'=trli,t/t l.

orthogonal: A2'Aq=$. Furthernore the matrix

AA'=l .

The principal components are thus

Yr = 81121*3 2i2z = rll zr - t/l zz

trz = 6r zZr*az zzz = r/i z1 + r/l zz

and their direct and cross semivariogFahsr applying the formula on page

lE6, are:

yy1(h) = lz=r(h) + ly-z(h) - ?zrr(h)

?y2(h) = *yar(h) + ly.z(h) + yrrz(h)

?vtz(h) = lz.r(h) - lz.z(h) + 0
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The positive-definite

given belour, and their

the principal components are

presented in Figure33(b).

a2 Total Sills.
1r1til lts ol
l=ll3il I o 4l
JLJ

Yariable

yr

y2

Notice that the cross semivariogram Tvrz displays a slight hole effect

that might, on a sample plot, be difficult to recognize. Notice also

that the individual matrices of nested components have been made nore

complicated bV this transformation -- the opposite of our original

i ntent i on.

If the structures ?as(h) are in intrinsic coreqionalization (Journel

and Huijbregts, 1978' p. 174)' i.e.r lso(h)=!ss7s(h) for all a and B,

uhere Ibcsl is a positive-definite natrix of constants, then

kk
Ypy(h) = f faapapybqp?o(h)

a=l B=l

for all U and u. Then if xe set ypy(h) to zero for all h' the form of

the common factor ?o(h) is irrelevant, as it can be divided out of the

equation. Thus, in the particular case of intrinsic coregionalization,

ue pgn use principal components to reduce the cross variograms to zero

at all h, simply by uorking rith the natrix of coefficients bsp. Even a

linear yo nould sufficer 8S the matrix of senivariogram slopes bqp,

rather than the matrix of sills ?as(o) used for transition modelsr ttould

be subjected to the eigenvalue analysis. The slopes of the linear cross

semivariograms of the principal components utould be set to zero. There

is conmonly a great deal of subjectivity involved in fitting a matrix of

direct and cross semivariograms to sample plots, so it pays to fit an

intrinsic-coregional ization model there possible.

sill matrices of

semivariograms are

Range aq Range
r'tr
lrzi -rtl lgtll*ll-rr tl lrtLJL
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Intrinsic coregional ization is only a sufficient condition for zero

cross variograms among principal components: conceivablyr noFE

complicated sets of nested structures could also have this propertyr ot

least approximately. One does not have to depend on inspection of noisy

sample semivariograms of the components to judge uhether their models

should be Z€ior as the formula on pege 186 can be used to plot the

component models precisely.

Applications jp structural analvsis. Principal-components analysis

has a useful application in structural analysis and the formulation of a

linear nodel for a coregionalization. If le first perforn just the

initial steps of a structural analysis by hand -- i.e., lte separate the

matrix of total semivariogram functions into its additive matrices of

nested structures -- hre can then use a principal-components program to

do the rest automatically. It urill check the positive definiteness of

the individual si I I matrices (bv checking that at I eigenval ues are

positive)' and it uill derive a linear model from the eigenvectors.

Because the individual matrices of nested structures are intrinsical ly

coregionalized, the cross variograms of the nested structures uill be

zero at al I h. This I inear independence (zero cross variograms) among

the components of the linear model is the essential property that allous

us to construct simulations of coregionel ization from sets of

independently simulated basic structures. In the presence of "good

conditioning"' only the short-scale structures of the direct and cross

semivariograms must be modeled carefully for sinulation purposes, as

explained in Section 3.7.5. Thus in many ceses it should be possible to

reduce the number of nested intrinsic coregionalizations that must be
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modeled to one matrix of nugget structures and another matrix o{

transition models to represent variogram behavior near the origin.

3.6 CONDITIONAL SIIIULATION OF COREGIONALIZATION FOR TRANSFORI'IED
PROCESSES

This short section summarizes sone extensions to the procedure outlined

in Section 3.4 for the simulation of gaussian processes. Several useful

transformations of nongaussian and many-variable data have been proposed

in Section 3.5, all rith the aim of enabling one to simulete very

compl icated mul tivariate processes using the simple unconditional

gaussian simulation methods of Section 3.3. Nou ue must establish hou

these transformations relate to the procedure outlined in Figure 28 of

Section 3.4, and hou they relate to one another.

There is a fairly unambiguous hierarchy ol transformations thet

determines the proper order in uhich they should be carried out.

Figure 34 depicts an expanded general procedure for simulating

nongaussian spatial processes. The hierarchy of transformations can be

summarized as fol lor.rs:

(t) Transformations of the ran data to remove constraints from the

scattergrams at h=0 should usually be performed first. Otheruise, other

transformations (particularly nonl inear transformations uith no definite

algebraic form, such as the univariate nornal-scores or multivariate

stepuise-conditional transformations) might distort the existing

eonstraints beyond recogni tion, making thei r subsequent removal

dilficult.

(2) Transformations to normalize nongaussian scattergrams should be

performed next. llul tivariate transformations thet better essure
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I{ULTIYARIATE
DATA SET

DATA AIiIALYSI
COilSTRAIT{TS

DATA sET 
'I

DATA AI{AL
DISTRTEUTION

TRANSFORI,TED
DATA SET 12

STRUCTURAL
A|'IALYS I I

L I IiIEAR
IIODEL or

PRTIICIPAL
COflPOt{Et'lTS

AITALYS I S

I IIDEPENDENT
UI{CONDI T IONAL

s lI{ULAT I otirs

ORD I NAR Y
xRt€tNc

USIIiIC REAL

ORD I NAR Y
rRtetit6
USINC

S IJ.IULATE
DATA

uncot{Dt T I ot{AL
s tf,rutAT toN oF

COREe I ONAL I ZATI Ottl

CTIECK RESULTS

ilvERStON OF cAU9StAN ttAXSFOTilATtONS

INVERS lOl{ OF COl,lSTRAllilT TRAI{SFOR|iAT

COI{DITIONAL SIXULATION OF CONE6IONALIZATION

CHECK RESULTS

Figure 34: Conditional simulation of coregionalization for
transformed processes. This chart shor.rs the steps
involved in a conditional simulation of several
coregional ized nongaussian random functions. In this
version, conditioning is done on transformed
(approximately gaussian) cross-correlated data using
ordinary kr jging. FiEure 35 shor.ts an al ternate
arrangement of the central (bracketed) part of this
chart (corresponding to al I of the chart in
Figure 2E).

multivariate normality of the scattergrams are preferable in theory but

are oomputationally nessy and commonly suppose either better knouledge

of the starting distribution than is likell to exist or more data for

estimation of the distribution than are I ikelv to be avai lable.

Univariate normal-scores transformations of the marginal distributions,

folloued by some informal checks on nultivariate nornarityr are rikely

to be the method of choice for nost practical simulations.
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(3) Principal-components transformations to simpl ify the overal I

coyariance structure are uorthurhile only uhen the number of variables is

large (say at least four) and it is difficult to infer a linear nodel

from the starting data. Any transfornation to impose gaussian behavior

onto a nongaussian data set should be performed before the principal-

components transformation, es the components are geometrical I y

interpretable in the Eaussian cese. Furthermore' if the lack of

correlations among the conponents at h=0 also produces zero cross

variograms at all h, the components uill be strictly indePendent in the

gaussian cds€r making the use of independent simulations easier to

justify. If the principal-components transformation does not appear to

reduce all cross variograms to zero, it is at least likelV to reduce

several of them to zero, so that a linear model accounting for the cross

structures that remain uill be easier to construct. A principal -

components analysis appl ied to the individual matrices of nested

structures can be used to construct a linear model eutomatically' as

described at the end of Section 3.5.3.

After conditioning and checking of results for the conditional

simulation of coregionalization of the gaussian-transformed pFocessr the

normalizing and constraint-removal transformations should be inverted in

reverse order. Final ly, the variograhsr scattergrams, histograms'

constraints, and any other noterorthy characteristics of the original

data should be compared uith the corresponding characteristics of the

completely back-transformed conditional simulation of coregional ization

to see that al I important feetures of the phenomenon have been

preserved.
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CONSTRAI NTS
I.IUL?I VAR IATE

DATA SEI

DATA sET II
OATA ANALYSISS

DlSTrlBUTlOil AT h-0

STRUCTURAL
AXALYS I S

TRANSFOR'.IED
DATA SET 12

PTTNCTPAL
co'rPoNEl{Ts
ANAL YS I S

PRINCIPAL
COI{PONENTS AnALYS I S

oF cof,tPofitEt{T

It'IDEPENDENT
UNCONDITIONAL

SI'.IULATIONS OF

ORDINARY (RI6IN6
USIilE COilPONENTS

OF DATA SET

ORDINANY TRIETilG
USIX6 5I'IULATED

COI{POTEilTS

C}IECK RESULTS

Figure 35: Conditional simulation of coregionalization uith
conditioning on principal components. The central
part of this chart is a revision of the central part
of Figure 34 to allou conditioning of the principal-
component scores by ordinary kriging.

Conditioning should aluays be done using ful ly transformed

conditioning data, as the entire distribution of the phenomenon is

preserved during conditioninE only in the multigaussian case.

ConditioninE may be done either on principal-component data or on the

reconstituted dependent gaussian data. Conditioning using the principal

components of the conditioning data by ordinarv kriqinq actual Iy
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incorporates sone of the potential advantages of condi tioning the

dependent data by cokriqinor ds the principal components include

oontributions from al I of the original coregional ized variables.

Holever, the precise cokriginE nodel usually is not being duplicated

here, as onlv the total coveriances C(0) of the scattergrem at h=0, not

the uhole cross-variogram structure of the coregional izationr eFe being

used to determine the contributions of other variables to the estination

of the kriged variable. Figures 34 and 35 shott both options for

conditioning: conditioninE after reconstitution of the cross-correlated

gaussian variables, and conditioning on principal comPonents.

3.7 GUIDELINES FoR AVoI0ING BIAS JN SIFIULATIoNS

A certain Isimulationl nodel becomes nore accurate as it
beeomes more expensive. It'lantoglou and l'lilson, l9El, p. 351

This section provides some practical advice on appropriate choices of

modelsr methodsr ahd parameters for conditional simulations, and offers

some comments on the sensitivitv of simulation results to these choices.

For simplicityr rnuch of the discussion that follous nakes reference only

to sirnulations of a single regionalized variable zg(x).61 Sirnulations of

several coregionalized variables deserve much the same advicer Plus a

feur additional caveats that are brought up nainly in Section 3.7.5. The

discussion in Sections 3.7.1 through 3.7.7 is directed primarily touard

the minimization of errors that can occur in the creation of a oaussian

conditional rinulation. A host of additional BFt^ot'sr described mostlv

6t If r.re are considering a conditional simulation,
that is used in Section 3.1.7 corresponds to
zr(x) that is used in Section 3.7.

the notation z3s(x)
the shorter notation



in Section 3.7.E, may creep into a nongaussian sinulation

multigaussian hypothesis is not valid lor the transformed data.
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the

3.7.1 The Total gimulation Error gld ttg Components

The objective of a conditional simulation of a gaussian process is to

reproduce the characteristics of e real regionalized phenomenon ze(x)

(or of a coregionalization) in a simulated phenomenon z3(x). lle depend

almost entirelv on a finite set of data tzo(xi)' xi in vol' col lected

tithin a finite continuous spatial domain Ve in the real space Rn' to

infer the properties of zo(x) (or at least to infer the meanr vdriogFarr

and histogram) and to condition the simulation.62 The continuous spatial

domain Ys in Rn of the simulated data set tz3(x;), xi in Vsl may not

coincide exactly uith the domain of observation Yer it may be a subset

of .Ye, a larger domain surrounding vor a Partly overlapping domain' or

even a disjoint domain. The bounCeCies of the continuous domains Vo and

V3 are someuhat arbitraryr although it is convenient in nany situations

to define them as the convex hulls around txi in Vol and [xi in V5]r 8s

in Figure 36. This definition is not aluays appropriate in the case of

Vo, as there may be large regions inside the convex hull that contain no

data.

l^le uould I ike the properties of [23(x5), xi in Vr] to be es close as

possible to the properties of tzo(x), all x in Vr]. In other uords, if

Q is any quantity or {unction of interest (e.9., the nean over some

volume, the local variogram function calculated uithin that volune, the

sone situations the data
not be exactlv the same.
simer for simplicity.

sets used for estimation and conditioning
In this section they are assumed to be

if

62 ln
ney
the
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Figure 36: Spatial domains of conditioning data and simulated
data. Continuous domains Ve snd Vr of the
conditioning data set tzo(x;), xi in Yo) and simulated
data set [zs(x5), xi in Vr]' for an example in the
real cartesian space R2. (xi in Yo) are marked by

"+tti txi in V"l are marked bY ttx"i
{xi=x' in Ye and Vr} are marked by tt*tt. For
convenience, Vs and V. are defined to be the regions
bounded by the convex hulls around txil and [x5],
respectively.
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+
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probabil itv density function of the regional ized variable z(x) rithin

the volume, or the realization z(x) itself), ne uould like the simuleted

Q*c(vr)r m€isured from the discrete (denoted by r) simulated (denoted

by 3) data za(x5) in volume V3 (denoted. by {vrt) to be as close as

possible to the true but unknoun quantitp Qorvrr that nould be measured

from the real (denoted by o ) phenomenon ze (x ) . The error

IQirr vst-Qot vrt I uil I be cal led the "total simulation error,'r or TSE.

It is conposed of several nested subsidiary erpoFsr sumnarized in

Figure 37. Continual reference to this fiEure nill be helpful during

the reading of the follouring paragraphs.
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Totrl sirlulrtlon Ettor
lsE'tQ! 1ur1 -oo (vcr I

StEulation Di6cretizatlon Errot
SDE- tQ!,u"1 -Q" 1yr1 I rE'lQs(vs) {o(vrt I

Totrl lodel Error
$lE. tOs (vB) -06 (vo) I

lotal E8ti&ation EEror
IEE- 106 (v0 ) -00 (vB ) I

llodel DoDain Error
tlDE-t0"1y"1-QarvOt I

lodel EstiEation E!ror
!lEE' tQ" ,uo , -Ot ,oo, t ae- {O[ 1op, -Q0 (v0 r I DE- tQo (vo) -Qo (vs) I

?lnrl Ploduct / \ Prolrerty to bG Rcproduccd

Addi tive relationships :

TSE=SDE+TFE

= SDE + IT|'IE + TEEI = SDE + IFT-IE + FREI

= sDE + [ (l,tDE+mEE) + (EE+DE) |

Notat i on :

q is some quantity (parameter, function) of interest;* denotes I discrete sample from e continuous realization;
e denotes the real regionalized phenoil€ron zsr regarded

as e real ization of the random function Z;
o0 denotes another regionalized phenoh€noh zs6r regarded

as another real ization of the rendom function Z;
3 denotes the sinrulated regionalized phenomohon Z3r

similar to but not exactly the same as a realization
of the random function Z;

(vot denotes the continuous domain of observation
(and conditioning) Vo;

(v.t denotes the continuous domain of simulation Vr.

FiEure 37: sources of error contributing to differences betueen
real gaussian phenonenon and a sinulation of it.

fotal Pun(!lternatlve I Erro!

Functiona.I [odel Error
P!lE. tQ" ,u" I -000 (Vs ) !

Functlonll Rerlization Error
lREr [Qoo (vs) {o (vs) I
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Firstr $o Geh decompose TSE into tro additive conponents. One is the

"simulation discretization error" SDEr uhich is the difference betueen

the quantity Qrr(vs1 calculated from the grid of discrete simulation

data and the ideal Qs(vsr that uould be obtained from an infinitely

dense grid simulated by an "exact" rnethod (e.g.r a nethod that does not

crudely approxinate the covarience function or some other

characteristic). The nature of this error rill be explained beloul in

more detail. The other component of TSE is the "total functional error"

TFE, uhich is merely the difference betueen this ideal Qs(vr) and the

unknoun true quantity Qo{vs). Lg theorv' TFE should be merely the error

committed by substituting the simulated realization zj(x) of the rendom

function Z(x) for the actuel real ization zo(x); this is the only

difference that is contenplated in the basic theory of conditional

simul'ation presented in Section 3.1.7. But ja pEctiggr the sinulated

phenomenon zs(x) nay not be a realization of Z(x), because xe actually

do not knou the true properties of Z(x)r oF even of zo(x). Ne have only

estimated these properties from a finite data set tzo(xi), xi in Vol,

and then fitted a usual ly biased or oversimpl ified nodel to the

estimate. Thus, in practice' the error betueen Qr(vr1 end Qo(vsl

includes much more than just the difference betueen tuo realizations of

the same Z(x).

Ne can decompose TFE in tro different rsvsr both il

Figure 37. The "functional real ization error" FRE

difference that can occur betueen one realization 26(x)

function Z(x) and another realization zs6(x) of the

function. The remaining error is the tfunctional nodel

I ustrated in

is just the

of the random

same random

error" FIIE,
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nhich accounts for the additional departure from zs(x) caused by

estirnation and fitting errors. The statistical properties of FRE

characterize the minimum obtainable TFE' corresponding to perfect

estimation and model ing of the randon function Z(x) underlying the

realization zo(x). Unfortunately the properties of FllE and FRE cannot

be measured in practice, so this decomposition of TFE is not suited to

much further analysis.

To obtain a more useful decomposition of TFE, lle can examine the

procedure that is actually used to obtain e model for generating zs(x).

l.le first obtain estinates of the relevant proPerties of

[zo(x)r ell x in vr], €.g. the property Qo(vr), by examining the

corresponding properties of the data set, tzo(x;), xi in Yol, e.9. the

property Qro( vot. The difference betueen these tuo is the "total

estimation error" TEE. This error is composed of tuo components: the

',estimation error" EE=lQro(vot-Qor"otlr llhich is sinplV the error

comnitted rhen replecing the parameter Qo( vo) by e statistic Q*ot vol

calculated from a finite sample, and the "domein error"

DE=[Qor vo)-Qo( vst l, uhich is the error nade uhen the domein of

observation (and conditioning) Vo and the domain of simulation V3 do not

coincide.63

Once re have obtained an estimate

of a total estimation error' ue still

entailing the commission of a "total

Q*o(vo), involving the commission

must oonstruct a sinulation model,

rnode I error" TtlE= I Qr( vr ) -Qro ( vo l L

63 If the quantity Q is the senivariogram function 1(h), the errors EE

and DE are conceptuallv siniler to the errors associated uith the
"yarience of estimationt' and "fluctuation variancet of local
semivariograms. The only difference is that the domain Vr is
replaced by the entire space Rn in the definition of fluctuation
variance (Journel and tluijbregts, 1978, p. ,|92).
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uhioh is also composed of turo errors. The "model estimation error"

tlEE=[Qs(vol-Q*or"olI represents the error made in fitting an ideal nodel

(such as a smooth positive-definite semivariogram nodel) to an estimate

f rom a discrete sampl e. The "model domain error" t'lDE=lQst vst-Qrt vo t I is

analogous to the donain error lQotvol-Qotvrrl considered eerlierr but it

is not exactlg the sensr because zs(x) nay not differ from one spatial

domain to another in the same manner as zo(x).

Notice that in decomposing the total functional error TFE, He

encounter estimation and domain errors tuice! once in a continuous-to-

discrete direction (TEE) as re construct a sample estimate Q*orvo) of

Qo(vs)r and once in a discrete-to-continuous direction (TME) ss ue infer

a continuous model Qs(vsy from the estimate Qro{vo). Both of the

associated estimation et.FoFSr EE end l'lEEr can be reduced br obtaining

nore closely and evenly spaced data nithin the domain of observetion Ve.

Both of the domair Br forsr 0E and l'10E, can be elimineted completely if

the domain of observation Ve completely contains' or at least coincides

nith, the domain of simulation Y".6t In summary, the totel functional

error TFE, uhich is probably the more important component of the total

simulation error TSE in most practical situations, can be reduced to

insignificance by fol louing one simple (but expensive) rule: col lect g

denselv spaced data S-$, evenlv coverino al I ef. lhe, domain ef.

sinul ation V..

6t For good conditioning, V6 should extend bevond V,
Houever, the properties of (zo(x), all x in Vrl
using only data uithin V3, if enough such data are

in al I directions.
are best measured
available.
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The other component of the total estimation error is the "simulation

discretization erroru SDE. Ideally, this inevitable error uould be

attributable solely to the effects of discretizing the continuous domain

V. into a finite grid of points. In this GES€r the error could be

reduced by merelv decreasing the grid spacings andr of course, by

extending the grid over the $hole domaih Vs. Houever, there can be

another component of discretization error: the error that is nade by

using the short cuts or approximations built into almost all sirnulation

procedures. This component of SDE also arises prirnarilv because of

coarse discretization (but of a different type) and is difficul t to

extricate from the more straightfornard part of SDE explained abover 8s

both usual ly involve interrelated choices of parameters for the

unconditional-simulation step. Approximations that could give rise to

noticeable errors of this type include the use of too fen Poisson points

to perform a random-average simulation, the use of too teu I ines in a

tuo-dimensional turning-bands simulation, the use of too feu discrete

harmonics in a spectrel sinulationr of ev€n the use of too small e

kriging neighborhood at the conditioning stage.

Nor.r that the main sources of error in the sinulation of a gaussian

process have been identified' let's examine exactly hou the departures

occur in order to develop uays for selecting appropriate simulation

methods and parameters.
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3.7.2 Donain Errors ([E and t'lDE)

To appreciate the importance of the dornain error 0E, consider the time

series depicted in Figure 19, Section 3.1.7. SuPPose that ue divided

the time donain shoun in Figure l9(a) into its first, rniddle, and last

thirds, and looked at the statistics of each third conpared to those of

the lhole. Clearly the mean of the first third is nuch higher than that

of the lest, and the middle third is someuhere in betr.reen. The niddle

third also shous a marked trend, so its semivariogram uould probably

exhibit a linear or concave-upuard form uith no visible sill, xhereas

the semivariograns of the first and last thirds might have sills at

f airly lor.r levels (al though the tiny number of sample points involved

uould probably result in messy semivariograns in all three ceses

contributing to a high estination error EEly(h)l). The histograms, and

any other sunmarization of the three sanples that ue could maker rould

also differ strongly from one another. Obviously then, e sinulation

over one of these domains nould poorly reproduce the characteristics of

the time series in that domain if ue relied solely on the statistics

(and conditioning data) of another domain.

The difficulty here is that the three tine domains, in addition to

being disjoint and having a small number of dissrete sample points (thus

producing high estimation errors), are also yery short in comparison to

the range of the variogram for this process. tn fact the range is over

half the length of each subdomain, based on the sample senivariogram in

Figure 20(a), Section 3.1.7. (The semivariograms in Figure 20 are

calculated over a longer domain than the one covered by the sample plots

in Figure .|9.) tlithin these snalI subdornains the random process does
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not have room to exhibit its "average" Properties in a single

real ization. A finite real ization observed over such a restricted

domain is dominated by local "hi I ls and val Ieys" in the reel ization'

t'teans uill be unstable and variograms xill tend to exhibit drifts and

hole effects not characteristic of the real Process Z(x) or of any

realization z(x) observed over a large domain. If ue observed for a

period of time that uas a large multiple of the range, the behavior of

the process (if it is stationery at least up to the order of the

statistics ne are calculating) rould be much better estimated bv the

samp I e.

Erqodicity. This leads us to the concept of "ergodicity".

Informally, a random process is said to be ergodic if the statistics of

e sinqle realization of the process, observed over a finite spatial

domain (tirne domain for the example used here)r GohY€rge to their

corresponding expected values as the size of the domain of observation

increases. For instance, if the example in Figure l9 represents a

realization of an ergodic pFoc€ssr then the sampls ftelhr variogramr ahd

other statistics that ue calculate from the data $ill converge to the

true parameters (stationary expected valuer Positive-definite variogran

function, etc.) of the process as the time dornain of observation

i nc reases.

The convergence of different types of sanple functions may be

guaranteed by different kinds of requirements on the random Process.

For instancer I s€guence of sample neans

T

m(T) = (l/T) fztt)
t=l

for a discrete time series Z(t) is said to be ergodic if
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I irn Varlm(T) I = 0

Ts
(Parzen, 1962, p. 73). A sufficient condition for this to be true is

that the covariance function C(h) exists and tends to zero as h tends

to !o. (In other uords, the variogram must have a sill.)

Convergence of the sampl e variogran is a rnore di ff icul t probl em,

requiring knosledge of the fourth moments of the random function Z(x).

In a sinulation project, it is vitally important that the variogram of

the simul ated data,

N!(h)
27*sr vst (h) = (l/NB(h))flzr(x5+h)-25(x5) l2

j=l

uhere NE(h) is the number of data pairs l(x;+h),(x;)l located uithin the

domain of simulation.Vj, be as close as possible to the unknoun tlocal

variogramtt of the phenomenon of interest,

2?or "rl 
(h) = (l/vs(h)lItzo(x+h)-zo(x) l2dx

Y3(h)

uhere Vs(h) is the intersection of the donein Vr nith its translation by

vector -h (Figure 38). tn other uords, re rant to keep the total

simul ation error TsEly(h) | = [Yrst vrr (h)-vor y31 (h) I as smal I as

practically possible. If the semivariograms ?o(h) and yr(h) that ue

observe and sinulate, respectively, differ greatly betueen domains Ve

(observation and conditioning) and Va (simuletion)' this error may be

unacceptably large because of large domain errors 0gIfo(h) I and

trDE[?s(h) I. These errors are closely related to the "fluctuation
variances" (Journel and Hui jbregts, 1978,

semivariogram models,

p. 192) of the tlo

Varlyr vr (h) I = Ettz(h)-7( v) (h) l2l
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Hhere ?rvt(h) is the true local semivariogram over the continuous

domain y, and z(h) is the true semivariogram for the theoretical

undertying random function (or for a regionalized variable observed over

a practically infinite domain, if the process is ergodic). ?(h) is the

expected value of 71yy(h).

The variences associated uith domain errors depend on the spatiel

proximity of the tuo domains; €.9.r under second-order stationarity,

DE[70 (h) I = [yor 
"o 

I (h)-?o( vs) (h) I has e varience equal to:

Var(DEIy(h) l] = Var l?or vo) (h) | + Var[?ot u"] (h) I

- 2Etlvor roy (h)-70(h) ltTo( vry (h)-?o(h) Il

The last expectation above is a "fluctuation coverisnce". I f the tuo

domains are about the same size and they essentially coincide, this last

term uiIt be approximately equal to the sum of the first ttto, so

yartoEl?(h)llr!0. If they are about the same size but lie far aPart, the

lest term rill be roughl1l z€ror and VartOEI?(h)l) e Z Yar{DElvor"ol(h)l}

g 2 Var[?orvrt(h)1.

The domain error and fluctuation variance of the semivariogram are

functions of the vector h. ln practice, unconditional simulations tend

to reproduce their model semivariogran functions rather poorly for large

values of h, particularly if the distance lhl is large in conparison to

the size of the simulation domain. This should not be surprising, as

the domain of integration Va(h) for the local variogran (Figure 38) is

very snal I in this case, thus providing a poor estimate of the behavior

of zj(h) for the random function, and thus a large fluctuation variance.

A similar problem occurs in estirnation of the variogram function from a

data setr i€sulting in the "practical rule" (Journel and Huijbregts,
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FiEure 38: A continuous spatial domain Y and the corresponding
dornain of integration V(h) over lhich a local
variogram can be defined. Integration can be carried
out over al I points x for uhich both x and x+h I ie
uithin V. These points x define domain Y(h), thich is
equivalent to the intersection of V lith its
translation by -h.

1978, p. 194) that inferences of semivariogram models for random

functions (but not local semivariograrns) are only valid for lhl < L/2,

uhere L is the dirnension of the sampled volume in the direction of h.

To see hor,r sensitive to domain or fluctuation errors a local

variogram can ber compare the sample semivariograms plotted in

Figure 40. The sample semivariogram in Figure 40(a) uas calculated from

a series of 320 sinrulated time-series data, shoun in FiEure 39(a). The

semivariogram model used for this unconditional moving-average

sinulation lras simple-transitive uith range=10, sil l=10, so the

simulation involved merely generating a series of independent standard

normal data and performing a running sun of groups of ten data. As this
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and evenl y spaced data set, the estimation error

lv*ot326y(h)-?o(320)(h)l over the field of 320 data should be very

smallr except for values of h close to 320, rhere the number of data

pairs uould be small. (l1ore ebout this in Section 3.7.3.) So nost of

the fluctuation of the sample semivariogram ebout the nodel should be

attributable to the fluctuation error [?"r szo I (h)-rs(h) l. The model,

plotted as a solid line in Figure 40(a), is uell reproduced near the

origin but rather poorly reproduced at large h, rhere there are obvious

hole effects. Even though the domain is f! times the range, the local

variogram is nevertheless affected by local hi I ls and dales in the

simulated real ization.

This effect becomes clearer rhen re cut the realization of 320 data

into tuo halvesr consisting of the first 160 consecutive data, and then

the rest. Nor.r each hal f covers onl y sixteen times the range. The

sgmivariograns of the tuo halyes ere presented in Figure 40(b). Both

shorl "pseudoperiodicities", but they are quite different in detail.

Still, the behavior near the origin is uell reproduced.

Final ly, Figure 40(c) shous four eample senivariograms representing

the first, second, third, and {ourth groups of eighty consecutive data.

Each point on these plots still is estimated by at least tuenty date

pairs, so the narked departures from the nodel are largely the result of

fl uctuation errors. Non consider the unfortunate consequenqes of

unconditionally simulating the local realization in the second group of

eightv data using only a model inferred from the sample senivariogram of

the first group of eighty data. The very large di fferences

[7*rtrrt so1(h) - ?*s(2nd B0](h)l uould be mostly the result of domain

error, l7s(lrt eol(h) - 7s(2nd sot(h)1.
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The simulations

the same set of

longer sequences)

depicted in Figure 39(b) and (c)

independent random numbers (but

that uas used for simulation (a),

rere performed using

necessari ly someuhat

but running sums of

(a) Range=t0 l

(b) Range:20 !

(c) Range=30 :

160 320

Figure 39: Three simulated time series rith variogram ranges of
ten, tuentyr ihd thirty. Semivariograms and
histograms of these series and of subsets of then are
displayed in the next four figures. All semivariogram
models are simple-transitive.
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ath E0

f'
2nd 160

..r-

3rd 80

All 320
I

2nd E0

,l

r.- r-

let 160

lst 80

(a)

Figure 40:

(b) (c)

Semivariograms of parts of the simulated time series
in Figure 39(a). (a) Semivariogram of all 320 data.(b) Senivariograns of the first and second series of
160 data. (c) Semivariograms of the firstr s€cohdr
thirdr and fourth series of 80 data.
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{th 80

2nd 150

3rd 80

All 320

I
t"

2nd 80

lEt 160

lBt 80

(a)

Figure 4l:

(b) (c)

Semivariograms of parts of the simulated time series
in Figure 39(b). (a) Semivariogram of all 320 data.
(b) Semivariograms of the first and second series of
160 data. (c) Semivariograns of the firstr s€cohdr
third, and fourth series of 80 data.
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Irh 80

2nd 160

/

All 320

2nd 80

lst 80

(a)

Figure 42:

(b) (c)

Semivariograms of parts of the simulated time series
in Figure 39(c). (a) Semivariogram of all 320 date.
(b) Semivariograms of the first and second series of
160 data. (c) Semivariograms of the firstr socohdr
thirdr and fourth series of 80 data.

3rtt 80

lst 160
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trenty and thirty data, respectively, llere Performed to obtain

real izations of simple-transitive processes uith ranges and si I ls of

tuenty and thirty. The semivariograms corresponding to these plots are

displayed in Figures 4l and 42. Notice that the "Periods'of the local

hole effects in these plots tend to increase uith the ranges of the

variograms. This should not be surprising, as the uidths of the local

hills and dales in a realization should naturelly riden as the range of

its variogram lengthens.

Al though the exampl es in Figures 40, 4l ' and 42 depict onl y

one-dimensional real izations, the problems of variogram domain errors

persist into higher dimensions, uhere they might appear as unstable

local anisotropies as lell as local drifts end hole effects. Honever,

because variograms in any one direction can be calculated over several

lines of grid points instead of just one, the very severe fluctuations

that are evident in the one-dimensional examples shoun here become

progressively less aevere in progressively higher dimensions.

The magnitude of the fluctuation variance of a local variogram

depends on three factors: the spatial probability lau obeyed by the

random function, the dimensionality of the spatial domain, and the

characteristics (range, sill, functional form) of the semivariogran

model. Alfaro (.|979) has conducted an extensive investigation into

these factors and their relevance in simulation. For unconditional

simulations, his rnajor results can be summarized as follouts:

(l) Fluctuation variance is comparatively small for gaussian processes,

and notabl y huge for I ognormal processes. (2) For pouer-model

semivariograms (z(h)=Alhlu' 03u(2), fluctuation variance increases
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nith u. In general, more continuous phenomena fluctuete nore ridely.

(3) Fluctuation variance increases uith increasing lhl; i.e. '
reproduction of variogram structure is better at shorter lags. For

approaches zero as uel I .lh l+0, the fluctuation variance

(4) Fluctuation variance decreases uith decreasing variogram range (or

horizontal scale parameter). (5) Fluctuation variances rithin linear

domains of length L in Rl ere much greater than those uithin square

domains of size LxL in R2. For gaussian processes in one dimension' the

"relative {luctuation variance" Varlzlyl(h)lzly(h)lz is is equal to 2

for h=Lr retardless of the semivariogram model. This explains the poor

behavior of the semivariograms in Figures 40-42 at large lhl. For tlo

dimensions, the relative fluctuation variance at h=L depends on the form

of the variogram but is aluays much less than 2. (6) Oovariances

fluctuate nore uidely than variograms, particularly at snall lhl. The

fluctuation variance of a covariance does not approach zero as h+0.

This is not surprising, as local covariances depend on local neans.

Figure 43 shous histograms, tn€ihsr and standard deviations

corresponding to the realizations in Figure 39(c) and the semivariograms

of Figure 42. It is apparent that domain errors among these univariate

statistics can also be larger particularly uhen the range is large

compared to the size of the domain. One must be careful uhen comparing

the histograms, as the effects of estimation (in this case, simulation

discretization) errors are also important uhere there are feu data per

histogram class. Houeverr it is clear that the overall shapes of the

histograms very greatly from one subdomain to the next.
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In conditional simulations, the large-scale behavior of the true

local senivariogram yorvst(h) over the simulation domain can generallV

be very nel l reproduced in the simul ated semivariogram ?j1 y31 (h) r

provided that conditioning data are evenly spread over the uhole domain

end tend to be closer together than the distance lhl that is of concern.

The advantage of good conditioning is evident in the time-series example

in Figure 20, Section 3.1.7. The senivariogran of the unconditional

sinulation (20(b)) deperts somelhat from the shape of the sample

senivariogrem (20(a)), especially at large h' but the semivariogram of

the conditional simulation (20(d)) reproduces the idiosyncrasies of the

sampl e pl of very uel I . The condi tioning in this exampl e $as

exceptional I y goodr is regul arl y spaced data uere avai I abl e over the

uhole simulation domain. Houeyerr even g fep conditioning data are

capable of vastly reduoing variogram fluctuations among simulations,

especially at large lhl. For instance, Al faro ( 1979) obteined

theoretical results for a gaussian time-series sinulation rith a linear

variogram and only tuo conditioning data -- one et each end of the

simul ation doma'in. Compared to uncondi tional simul ations, the

fluctuation variance uas cut roughly in half at short distances lhl, uas

cut much nore than half at distances close to the length "L" of the

domairir ahd of course tas reduced to zero at h=L.

Further evidence of the pouter of conditioning may be found in

Figure 12, nhich shours strongly anisotropic directional semivariogram

plots, even though the semivariogram model (formulated in the numerical

example of Section 3.2) used in the unconditional simulation ltas

isotropic. An isotropic nodel ras used in that case because too feut
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data tere available to infer an anisotropic model uith much confidence,

but conditioning (including the use of many fictitious data' discussed

further in Section 3.7.5) eventually restored the lost anisotropye it

least at distances larger than the data spacings.

tticroerqodicitv. Alfaro (1979, 1984) has pointed out some serious

pitfalls that can occur in the reproduction of short-scale variogram

structure in a simulation. Conditioning is of I ittle help in the

reproduction of variogram structure at distances less than the data

spacings, so re must rely on the ability of the unconditional simulation

to reproduce the structure faithfully. Alfaro introduces the concept of

"microergodicilyo in a variogram function, thich is defined in terms of

the rel ative fluctuation variance, Varlvr rr (h) l/ly(h) 12. A variogram

function is nicroergodic if:

VarlYr y1 (h) I
lim

lh l+0
=(t

lr(h) l2

If this condition holds, it is possible to estimate (or reproduce in a

simulation) the theoretical y(h) very accurately for small lhl from a

single realization of the process over the dornain Y. tf .the random

function is a gaussien process and 7(h) resembles a pouer model (i.e.,

y(h) = Alhlu+...) close to the origin (applicable to alnost any model)'

then the condition is satisfied for 0(u(2, itith the I init being

approached more rapidly for smaller velues of u. For u:2 (corresponding

to smooth functions Z(x)),. the limit is a constant nonzero velue.

Perhaps one can think of this more easily in the frequency domain:

for v((2, the process is dorninated by high-frequency (local) variation

rhose average behavior' as characterized by the variogramr crn be uel I
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sampled nithin a relatively small sPatial domain V. As u apProaches 2,

the process becomes very continuous at short distancesr thd most of the

variance is concentrated at lou frequencies, requiring a much larger

domain for adequate sampling.

Thus accurate reproduction of the short-scale behavior of e gaussian-

model semivariogram in a simulation, or reproduction of any model uith

parabolic behavior near the origin, can be difficult uith a single

real ization over a smal I spatial domain. Estirnation of such a model

fron a local data set is similarly risky (strictly because of donain

€tFoFSr not estimation errors). t'lodels ui.th linear behavior near the

origin (most of the rnodels used in geostatistical Practice) are

relatively easy to reproduce. Figure 44 illustrates the instability of

short-scale semivariogram behavior for a smooth-looking phenonenon.

Alfaro (1979, l9E4) points out a particulorly alarming problem in the

reproduction of variograms {or nongaussian processes. Yariograms of the

commonly observed lognorrnal processes (i.e., Z(x)=exp(Y(x)), Y(x) baing

a gaussian process), and of most other nonlinearly transformed gaussian

processesr ir"E exceedingly difficult to reproduce uithin a small spatial

donairr €veh {or variograms uith linear behavior near the origin. This

is particularly true for unconditional sinrulations of lognormal

processes, because lognormal Processes exhibit a "proportional ef{ect"

(Journel and Huijbregts, 1978, p. lE6), uherein the local semivariograms

?tvl(h) are proportional to the squares of the local means. Yery large

donains of estination and sinulation are required to obtain stable

estimates and good reproduction of the mean and variogram of the random

funct i on.
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In practical simulation probl€osr x€ are not interested in the random

function (uhich has no physical neaning anygay if re are studying the

unique realization of some geological phenomenon)r so the tno caveats to

keep in rnind are that nongaussian processes in general, and lognormal

processes in particularr reeuire very good conditioning for adequate
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reproduction of large-scale variogram structure, and that the short-

scale structure of a nongaussian realization is apt to be poorly

reproduced if the domains of estimation and simulation are not large or

do not essential ly coincide. lf ne are interested in a very snall

simulation domain, ue might obtain a feeling lor the magnitude ol this

problem by running seyeral independent conditional simulations over the

domain and observing the variability of the sunmary statistics arnong the

different realizations. (0ther situations in rhich repeated simulations

are useful are described in Section 3.7.7.)

Nou here is an effort-saving practical comment.6s l.le have seen that

good conditioning uill do nuch to insure reproduction of local means and

local variogram structures (at least for large lhl ) for gaussian

processesr BV€o if the corresponding statistics of the unconditional

simulation have run {ar afield. Thereforer Nhy should re construct

elaborete semivariogram models uith complicated nested or anisotropic

structures for our unconditional simulations' if the effects of those

complications rill be evident only at large distences lhl? lf the

simulation domain Y3 is densely and evenly covered by conditioning data,

then only the short-scale variogram structure and the microergodicity of

the model are important considerations et the unconditional-sinrulstion

stage. Fussiness about variogran behavior at distances much longer than

the typical data spacing is unjustified.

For exampl e, the nested simpl e-transi tive model used for the

unconditional simul ation in Figure 20(b) is reat ly needlessly

complicated and uas used only because it ras not convenient to make this

63 Alas, one of the feu effort-savinq practical comments made in this
dissertation.
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remark earl ier. Because data uere available {or that simulation on

fifteen-minute intervals, compared to nested variogram rsnges of 60 and

105 ninutes, only the shape o{ the variogram up to lhtc3Q is really

important.s6 A single simple-transitive structure uith the same short-

scale shape should have done just as uell in practice, although the

theory underlying conditional simulation essumes that the observed and

unconditional ly sirnulated nodels are identical.

So in the presence of good conditioning (and particularly in the

absence of any big gaps in the data, lthere conditioning lould have

little effect on the simulation)r a good rule of thumb is: nodel the

semivariogram carefully at distances around and uithin the typical data

spacing -- essentially up to the distance that xould be included in e

practical kriging neighborhood (Journel and Huijbregts' 197E, P. 345) --

then nodel it only apProxinatelv at greater distances. Let the

conditioning do the rest.

A dramatic example of the application of this rule is shoun in

Figure 45, nhich shous sample semivariogrsm plots from four

unconditional ((a) to (d)) and three conditional ((e) to (g)) tine-

series simul ati ons. Every { i fth simul ated datum from the I i rst

unconditional simulation (sernivariogram (a)) uas used to condition the

unconditional simulations represented by semivariograms (b) through (d),

uhich differ vastly lrom one another at large distances lhl, but ere all

the same at short distances. The resulting conditional simulations,

66 The shape of the variogram at larger distances might be important {or
kriging, but in this example it uas not even important for kriging
because the closely spaced time-series data screened out the
influence of far-auay data.
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represented by senivsriogrems (e) through (g)r li€ el I virtual ly

ldentical in structure to semivariogram (a) at gLL distances lhl.

In the presence of poor conditioning, the expenditure ol great effort

on modeling (minimization of mfelz(h)l) nay still be open to question,

as the domain error DE, end possibly the estimation error EE as uell,

may be so large that careful reproduction of a Poorly knourn lunction by

attenpted ninimization of ilEE lould not be uorth the trouble.

By nou it should be clear that, in nost applications, the nost

important characteristic of the data that an unconditional simulation

should reproduce is the SloLL.SSglg variooram structure. If the

unconditional sirnulation is later conditioned to the data, the larger-

scale structure and the other statistical cheracteristics of the data

ui | | be imposed by condi tioningr lnd PerhaPs by subsequent back

transformations. Even if the simulation is not conditioned, or i8

conditioned by a sparse or unevenly distributed dats setr reproduction

of short-scale structure remains nor€ important than reproduction of

large-scale structure, because large fluctuation variances at larEe

scales are natural and appropriate in unconditional einulations. The

common practice of standardizinq unconditional simulations to e eamPle

variance or sill value is thus incorrect in most applications, because

dispersion variances and sill values dePend largely or entirely on

large-scale variogram structurer lhich commonly is poorly knorn and

poorly reproduced in unconditional sirnulations. Standardization of a

simuleted data set to reproduce the sample sill or sample variance of

the data lithin a finite domain may have tuo unfortunate effects:

(t) it nay bias the relatively rell reproduced short-scale structure of

the unconditional simulation bv altering the variogram's slope to
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Figure 45: Comparison of the semivarioErans of unconditional and
conditional time-series simulations. The nodels used
for the four unconditional simulations are represented
by solid lines. Every fifth datum fron simulation (a)
ras used to condition simulations (b) through (d),
producing conditional simulations (e) through (g),
respectively.
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Illustration of the ill effects of standardization on
the short-scale structure of sample semivariograms.
Sample semivariogrems of four unconditional time-
series simulations of length 150 are shorn in the
upper diagram. The model (solid line) is sinple-
transitive nith a range=50, sill=50r and no
standardization has been performed. The louer diagram
shous semivariograms for the same sinulations after
standardization of the sample variance to exactly 50.
Notice that reproduction of the model semivariogram
structure is adversely affected at short lags. Even
if standardization had been perforned to the proper
dispersion variance 02(0/150) rithin the domain of t50
data instead of to the sill, Dz(0zo)=50, the
individual plots still uould have been more dispersed
around the model at short lags after standardization.
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compensate for the relatively poorly reproduced larqe-scale structure

(Figure 46), and (2) it ril I destroy any value the unconditional

simulation might have had as a simulated realization o{ the nodel random

function. Independent real izations of a random function ire not

supposed to have the same sample sill or the same sample dispersion

variancer uhless the realizations are defined over practically infinite

spatial domains. Forcing such a characteristic on them is artificial
and in sone applications could be nisleading.

3.7.3 Estimati on Errors (EE and l'lEE)

Estimation errors (EE) naturally tend to decrease uith an increasing

number of discrete data uithin the observation domain Ye, but they also

depend on the anount of detail that is required in the estimate. For

instance, in the case of irregularly spaced data, the estimation error

EEI?(h)l=lzr(h)-r(h)l for the semivariogram depends on the lidths of the

distance and direction classes oyer rhich the squared-difference

summation is carried out. In generalr as the class ridths increase, the

number of data pairs falling pithin each class increasesr ohd the

estinate uithin. each class becomes rnore stable; i.e., if re add or

subtract a feu data the estimate uill not fluctuate so lildlv. Houeverr

if the class tidths are nade too large in order to increase the number

of data pairs, this increased stability may have been traded for a loss

of sensitivity in the estimate. For example, very ride dietance classes

nay nake the variogram's exact range hard to observe, as data pairs at

distances rel I beyond and uel I lithin the renge mey be averaged

together. Sinilarly, a sanple variogram calculated from a
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tuo-dimensional realization using uide ezinruth (direction) classes may

not reveal a subtle anisotropy in the true variogram. This tradeoff

betueen sensitivity and stability (i.e.r ecGUFacy and precision' or bias

and variance) of an estimate also appears in other contexts. For

example, in the estimation of density functions, an increase in the

uidths o{ histogram classes nay danpen spurious spikes and troughs in

the histogram uhile smearing out the details of the true density; and in

checks on stationarity by calculation of local neans end Yariances

tithin noving lindours, an increase in the uindou size nill decrease

sampling variability unrelated to the structure but also snooth over

real smal I'scale features.

A corresponding tradeofl occurs rhen constructing a model of the

continuous phenomenon fron a discrete estimate, involving the commission

of .a model estimation error, llEE. t'lany long and fruitless arguments

have been laged over lhether an apperent break in slope in a ragged

sample semivariogram plot is real and deserving of incorporation into

the modelr of d sampling artifact that is best ignored. Unfortunately,

the classical semivariogram estimator introduced on Page 66 is very

sensitive to extrene values and spatial clustering in the data' so large

estimation errors and consequent rnodel ing errors ere easy to nake. If

problems of this kind are suspectedr oh investigation of "robust and

resistant" yariogram estimators and procedures for assessing the qualitv

of semivariogram nodels may be uorthuhile. Some of these are described

in Part I of Yerly et al. (1984).

Fortunately, it is evident from the resul ts

accurate semivariogram nodeling is not critical

Section 3.7.2 that

a uell conditioned

of

for
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simulationr €xcept at distances shorter than the radius of a practical

kriging neighborhood. llgfortunately, the structure at very short

distances usually is poorly knounr €specially at distances shorter than

the typical data spacing. I{ one is fortunate enough to have a feu

"trin" dri I I hol es, or a "cross" or "fence" of hol es dri I I ed at

relatively close spacings, it nay be possible to get a fairly good

estimate of this short-scale structurer although even in the nost

{avorabl e of real si tuations' the number of pai rs avai I abl e for

semivariogram estimation near the origin is typically far less than the

recommended practical threshold of thirty (Journel and Huijbregts' 1978,

p. 194).67 "Simplez, and thus sparsely drilled, deposits of limestone'

clay, or coal are particularly likely to be deficient in closely spaced

data. The problem is nore serious for nongaussian data, ouing to the

microergodicity problem summarized in Section 3.7.2.

The problen of modeling short-scale variogram structure is rell knoun

in geostatistics, as the short-scale structure (particularlr the size of

the nugget constant) has a large influence on kriging variances and the

relative sizes of kriging reights. In simulation, the problem is even

EgIg serious: ue need the short-scale structure not only for kriging

but even nore importantly for model ing the semivariogram to be

reproduced in the unconditional (and, via the kriging EfroFSr in the

6r The variance of estination of a senivariogram is inversely
proportional to the number of data pairs used. For a one-dimensional
gaussian process rith a poner-nodel semivariogram (y(h)=lhlv), the
variance of estimation of the senivariogram is equal to (Journel end
Hui jbregts, l9?8, p. 193):

vartEEly(h)l) = r([y*ry1(h)-r1y1(h)12] = 4y(h)oD2(0/v)/N(h)
uhere ?1y; is the true local semivariogram uithin the one-dimensional
domain Y, ?rr vr (h) is its estimate, D2(0/V) is the dispersion
variance of the (assurned point-support) data nithin V, end N(h) is
the number of data pairs at lag h available to calculate trrvr(h).
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conditional) sirnulation. The validity of the final results of a

simulation study -- €.9., the estimate of short-term variability of

mined ores delivered to a Plant -- commonly depends critically on the

short-scale structure of the simulationr and this structure is not

imposed by conditioning but by the unconditional simulation and the

quality of the semivariogram model (as illustrated in Section 3.?.2r.

Hence it is vitally important in real-rorld simulation studies to have

an adequate set of ctosely spaced data, particularly if the original

data are not gaussian.

Closely spaced data are particularly important if the phenomenon is

not very continuous at short distances (e.g.r a phenomenon trith a linear

semivariogram y(h)=lhlu nith u((2r oF a variogram uith a short range).

Alfaro (1979) demonstrates that variogran estirnation errors are laroer

in such cisBSr in contrast to fluctuation varishcer rhich tends to be

smal I er in these same cases. Al faro's "equi I ibrium principal"

summarizes the relationship: rhat you lose in fluctuation variahc€r lou

gain in estimation variance.

Large ilata sets are al so requi red for the data-di rected

transformations discussed in Section 3.5. The pieceuise normal-scores

transformation and its interpolated inverse transformation (Figure 29)

are not satisfactory if there are insufficient data to provide a smooth-

looking sample distribution. Furthermore, or.ring to the curse of

dimensionality, the nultivariate density estimates required to implement

the rnultivariate stepuise-conditional gaussian transformation of Section

3.5.2.3 are unreliable nithout a large data set.
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obviously, massive estimation and nodeling errors cen occur if the

effects of drifts, discontinuities (contacts, faults), nultiple

populations, and clustered or preferential dri I I ing schemes are not

recognized and accounted for before the modeling stage of e sinulation

study. Practical approaches to some of these problems are discussed in

later sections of this chapterr rhd some are illustrated in the case

study of Section 4.2. The practical advice on structural analysis

otfered in Section III.C of Journel and Huijbregts (1978) is also

applicable.

3.7.4 Simulation Discretization Error (SgE)

Simulation discretization error comprises all of the interrelated errors

that are conmitted uhen a continuous spatial phenomenon is sinulated at

a discrete set of grid points, using a simulation method involving

discrete approximations of the covariance function or spectral density

{unct i on .

The most straightforuard of these conponent errors is the error

involved in discretizing the simulation donain V3 into a regular grid of

points x; at uhich simulated realizations of the randon variables Zr(xi)

rill be generated. The total number N of grid points x;, i = t to N, is

a major factor in determining the cost of a sinulationr so it should be

chosen carefully. 0nce the boundaries of the sinuletion domain V3 have

been chosen (rith due regard to the effects of the domain errors DE and

l'lDE), the choice of N amounts to a decision on the spacinqs of the

simulation grid and, to a much lesser extent, the orientation of the

grid. A nunber of factors should be considered uhen choosing grid

spacings and orientationr
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3.7.4. I Choice of Grid 0rientation

If the phenonenon to be sinulated is anisotropic, an unconditional

simulation is usually easier to perform if the grid is oriented parallel

to the major axes of anisotropy. A geometric enisotropy on a square or

cubic grid can then be simulated by performing an isotropic simulation

(usually simpler to do) on a rectangular grid uhose spacings are

inversely proportional to the variogram ranges in the corresponding

directions (Figure 47). This is the method incorporated into

subroutines CS2D and TB3Dr pres€nted in Appendices A and 8.68 Zonal

anisotropies are also easier to incorporate into a simulation if the

axes of all additive zonal structures can be oriented parallel to the

grid.

If the phenomenon is isotropic, if the data are located on a

perfectly regular grid that is convenient for kriging, if the simulation

donain V3 is large and rectangular in shape' or if_ mining blocks are to

be laid out in some prespeoified orientation, then it may be easier in

the long run to orient the simulation grid parallel to the data grid,

the rectilinear bounCaries of the simulation domain, or the boundaries

of the nining blocks. If the anisotropy is in conflict uith one of

these orientations, one nay have a difficult choice to make; hotever, it

mav still be possible to satisfy the conflicting goals sirnultaneously.

Sample variograms commonly do not yield sufficient detail to choose the

axes of anisotropy precisely, so it may be possible to juggle the

anisotropy a bit so that it corresponds to a 4S-degree diagonal

direction in the conflicting grid systen (Figure 48). One should keep

68 An obl ique anisotropy cen be used
externally, as explained in Appendix

in CS2D by generating the uindou
A.



232

in nind that the distance betueen colinear grid points in this oblique

direction uill be longer than the spacings of the rectangular simulation

grid, so in some applications it might be necessary to decrease the

spacings to make the simulation detailed enough in all directions of

interest. In a conditional simulation, a sl ight alteration of the

directions of anisotropy in the unconditional sinulation uil I not

usually be detectabler because conditioning uill force the anisotropy of

the conditioning data onto the simulationr et least at large distances.

ISOTROPIC SINULATION
horizontal range = l4
vertical range = l4

ANISOTROPIC GRID
horizontal spacing = 7
vertical spacing = 3

is equivalent to

ANI SOTROPI C SII1ULATION
horizontal range = 6

vertical range = l4

ISOTROPIC GRID
horizontal spacing
vertical spacing

=t
=J,

Figure 47: Simulation of a geometric anisotropy by deformation of
a rectangular grid system. The axes of anisotropy
must be parallel to the axes of the grid. The
procedure is to divide each desired final grid spacing
by a value proportional to the range in the
corresponding direction.

o
o
o
o
o
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3.7.4.2 Choice of Grid Spacings

At least four considerations ere important rhen choosing grid spacings:

(l) the form (particularlV the range) of the variogram in the

corresponding direction, (2) the spacing and accuracy of data locations,

(3) the support of the data, and (4) the nature of the problem being

investigated. These matters are disoussed in detail in the follouing

paragraphs:

o

o

Figure 46:

a

0rientation of a simulation grid system uhere the
anisotropy is oblique to the preferred grid
directions. Alternate points from the original
4S-degree grid (all black dots above) are retained
the final simulation grid (circled dots).

ln
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(l) Form g{ the varioqram. The spacing in each direction should be

at least fine enough to allou reproduction of the important features of

the variogram in that direction. In particular' the range of any nested

structure uill be difficult to see if the spacing is greater than about

one fourth of the range. The parabolic behavior of the gaussien model

near the origin may also be hard to observe if several spacings are not

avai lable uithin this short distance.6e Furthermore, the al l-irnportant

kriging errors that are generated during kriging of the unconditional

simulation rill be more realisticelly structured if the grid spacing is

small uith respect to the range of the variogram and the typical

distance betueen the data points used for kriging.

In simulating an anisotropyr oho should consider the reproduction of

the structure in al I di rections, not just those di rections that

correspond to grid (or structural ) exes. F i gure 49 shor.rs p I ots of

several discretized elliptical uindous for a moving-average simulation

by subroutine CS2D; although most uindours reproduce the range very uell

in the axial directions, notice that the discretization is effectively

coerser in diagonal directions. Some diagonal renges are thus poorly

reproduced, snd the elliptical anisotropy es a rhole is correspondinglv

poorly reproduced.

6e Variograms of regularized phenomena also exhibit parabolic behavior
near the origin, oling to overlap of the nonpoint support at short
d i stances. If the simulation is supposed to represent
non-overlapping volumes of naterial centered at necessarily greater
spacings' the simul ated real iaation ri | | not exhibi t a cl ear
parabol ic behavior. A shorter spacing than the uidth of the support
could be used in the sinulation to check the accuracy of the
simulated variogram, but then only simulated data at the senters of
nonoverlapping blocks should be retained for subsequent studies.
l'lore comments on the subject of support appear in paragraph (3),
be I ou.
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Figure 49: Discretized el I iptical ueight functions used to
simul ate real izations ri th anisotropic ci rcul ar
variograms. Compare the discretized ranges in various
directions rith the smooth geometric anisotropies in
the nodel ueight functions.

(2) Eta locations. The theory of conditioning requires that kriging

be performed using real and unconditionally sinulated data at the Sru

locations. Thus, if conditioning data are not on a regular grid, it is

irnportant to make the simulation grid fine enough so that a grid point

in the unconditional simulation nill fall ecceptably close to each real

data point. (0ne could also simulate additional data at the exact

locations using a matrix approach from Section 3.3.1.1, but this rould

complicate the procedure.)
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It is also important to remember that the domain of the unconditional

simulation must be large enough to cover the rhole set of conditioning

data, even though the domain of the conditional simulation' Yrr tnaV be a

small subset of this region. The seemingly sitly mistake of not naking

the unconditional domain big enough is easy to nake.

(3) Data suooort. The support of the estimation and conditioning

data should be considered uhen choosing grid spacings. If the data

represent the average properties of constant sample volumes ov" of

specified dimensions, rather than point-support measurements' then it is

simplest to simulate only the regularized process represented by the

data. Then each simulated value at a specific grid location represents

the average content of a volume "v" centered at that grid point. If the

grid epacings are equal to or greater than the corresponding dimensions

of volume yr the simulation can proceed exactly like a simulation of

point-support data. If the spacings are less than the corresponding

dimensions of v, then more than one sirnulated value nay lie inside a

given volume uith the dimensions of y. Then alternative approaches

might be taken:to

(a) Use a model obtained directly from the nonpoint data to simulate

the regularized process in the usual lr8v, but retain only simulated data

at locations corresponding to the centers of nonoverlapping blocks of

support v. (A dense simulation of physically overlapping blocks is

useless for most applications.) If the original data rere on a regular

grid, this procedure uould be rasteful, as meny sinulated data rould be

discarded. If the data uere irregularly located' then the procedure

to Paragraphs (a)
uninterested in

to (d) that
the details of

fol lou can be skipped by readers
this narrou subject.
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nakes nore sense, because the finer grid uould allon the data locations

to be reproduced more accurately. (This is the approach mentioned in

the footnote of paragraph (l) and used for the unconditional sinulation

in Section 4. l. )

(b) Use the model obtained from the nonpoint data to perform the

kriging, and attribute the knoun conditioning value inside each sarnpled

volume v to all grid points that fall inside the volume. This uill

resul t in a snooth real ization (especial ly near the locations of

conditioning data) that ui | | not real ly represent the short-scale

variabilitv of either a point-support process or a process regularized

over smaller volumes y'(v, centered on the sinulation grid points. Thus

there is really no advantage to having so fine a grid, and usage of such

a simulation to study the effects of short-scale variability could be

very misleading. This approach is not recommended.

(c) Use a "deregularized" (deconvoluted) model (e.9., obtained using

the procedure suggested by Journel and Huijbregts, 1978, pp. 90-91) to

perform the unconditional sinulation,Tl folloued by kriging as above.

This uill still result in an overly smooth conditional realization in

the vicinity of the conditioning data.

(d) Use e deregularized nodel as abover ahd substitute

"roughened" conditioning data on the deregularized (usual

support for each real datum on support v. The roughened data

a set of

ly point)

should be

tl In deriving
point-support
deregul arized
rigorous' i t
than that of
suppl ementary
1978, p. 231)

the deregularized nodel' it is edvisable to have some
data fron uhich to estimate the behavior of the

semivariogratrr particularly near the origin. "To be
is not possible to reach a greater degree of precision
the smallest support v of the date lithout introducing
and unverifiable hypotheses." (Journel and Huijbregts,
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unconditionally simulated, using a structure consistent rith the

structure of the deregularized model at distances less than the

dimensions of v (e.9., their variance should approximate the dispersion

variance Dz(v'/v) of the simulation grid support v' uithin the original

data support v). Their values should be standardized so that the

average of the simulated values rithin a conditioning volume v is

exactly the real conditioning value if the data points represent volumes

v,(v that sum e-Igg-LU to the conditioning volume Y.72 If the simulated

conditioning values represent only a grid of point data nithin v, then

their average should be standardized to a random value consistent lith

the estimation variance of the knorn value of support v by the internal

grid of point data. Although complicated (perhaps needlessly so, in

practice), this approach uill provide a fairly rigorous simulation of

the deregul arized process.

lf a simulation is required only for block data on I lgroer, suPPort

than the actual data, then the alternative change-of-support nethods

described by Journel and Huijbregts (197t, Section VlI.A.5) can be used

to perform a block simulation. The easiest and most flexible (though

not necessarily cheapest) approach is simply to perform e point-support

(or data-support) simulation and then averege the points to obtain the

block values, as described belou and in Journel and Huijbregts ('1978,

pp. 5l t-513).

rz lf the average of the simulated grid data on small support v'is to
equal the knoun conditioning value nithin the larger volune v in the
final back-transformed conditional simulation, then the average of
the transformed grid values uill not generally equal the transformed
conditioning value rithin v if the transformation is nonlinear. Thus
the standardizetion of the conditioning values should be performed on
back-transformed data.
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In simulations of tabular deposits, such as most sedinentary units,

not only the grid spacings but also the dimensionality of the simulation

domain may be open to choice. If the entire thickness of the deposit is

nined in one bench, there may be no point in Performing a three-

dimensional simul ation. Houever' if the data are drill-core analyses

and these analyses do not routinely intersect the entire thickness of

the deposit, a three-dimensional simulation may still be necessary. An

advantage of turo-dimensional sirnulations of tebular deposits is that the

common problern of variable core-sanple lengths can simpll be averaged

out.

(4) Nature q[ the problem. The grid spacings of a point-support

simulation should be fine enough to provide en adequate approximation of

a continuous regionalized variable realized at all points tithin the

continuous domaih Vs. Adequacy in this sense depends on the purpose of

the study. For instance, if lte are simulating an ore deposit for a

study of fluctuations in the grades of mined ores delivered to a Plant,

ue should have in mind some minimum sanpling inorement (support or

tonnage) of ore rhose characteristics the simulation should respect

faithfutly. Obviously the simulation cannot practically be expected to

reproduce the lj.Iy short-scale behavior of a stream of delivered ore

(rock by rock' for exampl e). But i f He are interested in the

variability of lots of delivered ore es small 8sr eay, 100 tons, then ue

nould xant the sinulation to reproduce the variability of hundred-ton

bl ocks of ore (or f i fty-ton bl ocks, i { tr.ro f aces are mi ned

simultaneously, etc.) faithfully. In other uords, it "dn denotes the

set of simulated point-support data located inside a block "y" of
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specified dinensions, and Q" is the sirnulated quantity in question, then

ue uant the error IQstdt-Qs(vtl to be tolerably small. In mine-planning

and mineral-processing applications, the dispersion variance of blocks

of ore uithin sone region V of the deposit is commonly of great

interest. Thus ue uant:

Dz(d/Y) c D2(vzY)

1(V,V)-1(d,d) c 1(V'V)-Z(v,v)

1(d,d) a 1(v,v)

For simulations, a reasonable criierion of acceptability uould be

that the difference IDz(d/V)-D2(v/V)l should be small in comparison uith

Dz(v/V) -- the quantity ue uish to reproduce. If the volumes v and V

are rectangularly shaped, the quantities t(vrv) and 1(V,Y) can usually

be calculated easily by means of the auxiliary function "Fz or looked up

in a chart (e.9.r s€E Journel and Huijbregts, 1978, Section Il.E). Then

s sinple computer program to calculate Z(drd) among progressively denser

grids of points rithin v can be used to determine the naxinum grid

spacings that ui I I resul t in acceptabl y cl ose val ues of Dz (d/Y) end

D2(vzV). As a rough guide, Journel and Huijbregts (1978, p. 97) suggest

that the follouing numbers of regularly spaced points provide adequate

approximations to continuous Z(vrv)

appl ications:

val ues for most practi cal

For a linear v'

For a seuaia Yr

For a cubic v,

| 0 po'i nts;

5x6 points;

4x4x4 points.

0f course the proper discretization depends on the characteristics of

?(h), so these suggested discretizations may be inappropriate for some
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simulations. A preliminary cornputation of U(d,d) for some alternative

grid densities is recommended.

One should keep in mind that a simulation nay be used for several

purposes, and the spacing should be adequate for any such usage. For

instance, the sizes, shapesr or orientations of mining blocks nay be

changedr oi nay be undecided at the sinulation stage. For e

coregional ization, different variables may have different structures.

Usually the spacing alloting proper reproduction of the shortest-range

structure should be adopted. tf transformations ere performed on the

data, the ranges observed in the original end transformed processes

might differ. The spacing should then reflect the shortest range found

among @!! the original and transformed structures -- the original

structures, because these structures should be reproduced in the final

back-transformed simulation that is actual ly used, and the ful ly

t ran sf o rmed ("g auss i an-p rocess" ) structures, because ri thout

reproduction of these structures the entire spatial distribution of the

gaussian data cannot be reproduced, and thus the qualitV of the back-

transformed sinulation nav be jeopardized.

3.7.4.3 Choices of Other Parameters

Improper choices of other parameters used at the unconditional-

simulation stege can result in discretiaation errors of other kinds.

l,lany of these choices are related to the ehoice made for grid spacings,

so it is better to choose the grid spacings first and allou this prior

choice to influence the choices of other Paremeters.
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For some simple examples of the effects of grid spacings on the

choice of unconditional-simulation parameters, consider first the choice

of the number of Poisson points that must be generated in a sinulation

by a random-average technique (Section 3.3.1.3). To avoid generating a

"mosaic" real ization in solla sFeisr the number of Poisson centers nust

greatly exceed the number of grid points in the sinulation domain,

al though probabl y many fener points utoul d adequatel y reproduce the

sample variogram. lf ne use a spectral method for the unconditional

simulationr Lr€ should consider reproducing the spectral density function

for all tavelengths greater than or equal to tuice the minimum grid

spacing (corresponding to the Nyquist frequency). In a turning-bands

simulation, the spacing of simulated values of the line processes should

be dense enough so that adjacent grid points ui I I not receive

contributions from exactly the same set of sirnulated line points.

(Subroutine TB3D deternrines en appropriate spacing automatically.) ln a

tuo-dimensional turning-bands simulationr n€ also ean choose the number

of lines that are simulated. Flantoglou and Nilson (1981' Section 3.6)

have careful ly expl ored the effects of the number of I ines,

discretization along lines, and spectral discretization for the line

processesr ind have concluded that in practical tuo-dimensional turning-

bands simulations, the finite number of lines is the rnain source of

simulation discretization error. Nevertheless, they do not recommend

more than eight evenly spaced lines for nost practical simulations, and

their reasoning leads us to a final important consideration:

Before choosing to endure the expense of simulations on a very fine

grid, spectral discretizations rith many fine frequency increments,
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semivariogram nodels uith compl icated nested structures end

enisotropies, tlo-dirnensional turning-bands sirnul ations on a great

number of lines, and numerous other niceties, ue should aluays carefully

consider the qualitv of the data and of the nodel ue have constructed

from the data. It is not uorthr.rhile to drive the simulation

discretization error SDE (r.rhich re can usual ly control ) to the vanishing

point rhen sone of the components of the total functional error TFE

(most of uhich ue cannot control uithout nore data) are likely to be

several times larger:

There is a tradeoff betueen accuracy and cost. A more
accurate model uill be more expensive. In practical
appl ications, the imposed (theoreticel ) statistics are very
often obtained from a limited set of data points in the field
and a limited number of realizations (very often only one).
So it is expected that the errors in the estimation of the
covarianoe function, etc., are quite significant and the true
covariance function is different from the one ue fit uith a
model. tThis is the total functional error, TFEIC(h)l; see
Figure 37. I consequently, in the simulation of the process'
re may not aluays be justified in using a very exact (and thus
more expensive) generation model, by increasing the nunber of
lines, etc. Hon rell should te preserve the nodel coveriance
function, uhen it does not represent exactly the reality? lt
urould be uiser to choose the parameters of the model such that
there is consistency betreen these input data estimation
errors and the sinulation nodel errors.
l.lilson, 1981, p. 961

I ilantog I ou and

In practice' a numerical value for the varience of the total

functional error is not generally obtainable (at least not using the

sketchy ideas presented here), but the discussions in Sections 3.7.2 and

3.7.3 should provide an intuitive feeling for hour much detail and

expense are justi f iabl e

discretization error.

in order to minimize the simulation



244

3.7.5 Conditioninq [ethods gpg[ Appl ications

Several of the advantages of "good conditioning" have alreedy been

emphasized in previous sections of this chapter. Al I of these

edvantages can be summarized in one general remark: conditioning

imposes the local g-ns.gjelld idiosyncrasies of the conditioning dnta onto

a sirnulation of a more broadly specified phenomenon. Conditioning is

especially beneficial if the spatial domain of the simulation is small

rith respect to the variogram renge. In such 8 coser different

unconditional simulations tend to differ strongly from one another,

particularly in their large-scale features, and thus nay depart severely

from the characteristics of the real data in the area of interest.

(These problems are discussed at greater length in Section 3.7.2.,

Conditioning is also helpful if the specification of the model is in

doubtr or sinply in error. characteristics of the phenomenon that occur

on a scale larqer than the typical spacing of the conditioning data rill

be imposed on the simulation by conditioning, nhether incorporated into

the model or not.ts

l^lhat constitutes "good conditioning"? To ansrer this question, lre

{irst have to decide hou accurate our simulation is supposed to be;

i.e., re must assign a maxinum tolerable value to the total simulation

€r"Fot^r TSE=[Qrs( vsl-Qor vr) l, for each characteristic q that is of

interest. Then re must ask uhether this maximum value can be respected,

73 For instance, in the case-study results summarized in Section 4.2.4,
the short-scale structure of one of the variables, PCTD0LT ues
snoothed out by an inadequate despiking procedure. The
semivariograms of the simulated data are parallel to those of the
original data, as e result of conditioning. Hoteverr conditioning
did not correct the bias in the short-scale (essentially nugget)
structure of the sinulation' eo the semivariograms of the real and
simulated data do not coincide.
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assuming that r.re emplov the best available procedures to create e

condi tional simul ation using the avai I abl e data. If the total

sinulation error cannot be kept under control even uith the best

procedures, then ue probably do not have adequate conditioning: more

data, carefully placed, are needed to reduce some or all components of

the total simulation error.?t Unfortunately, a quantitative assessnent

of the total simulation errorr oF of most of its components, is seldom

possible; so the decision of uhether the total error is under control

and, if not, uhat must be done to reduce it, is a subjectiye one.

Fortunately, most deficiencies should be obvious during preliminary

inspection and structural analysis of the data. Gaps in the data

coverage leading to large domain errors are usually obvious, and it is

the domain errors DE and l'1DE that can be most readily reduced by an

expansion in the conditioning data base.

Guidance in finding the best locations for additional conditioning

data can be obtained from a nap of local kriging variances. The true

characteristics of areas uith high kriginE variances uill tend to be

Iess faithful ly reproduced in a conditional simulationr ard multiple

independent conditional simulations (using independent unconditional

realizations) uill tend to differ from one another most strongly in

these areas. Areas rith high variances uill usually be those uith a lou

density of nearby data, or lith data only on one side. To prevent a

7r Addi tional data may be needed for purposes other than just
conditioning. For instancer reduction of the estimation error for
variogram behavior near the origin cannot be improved by
conditioning, because the error occurs at too short a scele.
Hopever' additional data from tuin holes or e cross or fence of holes
ui I I usual ly reduce this error throughout the simulation domain,
although it uill inprove oonditioning only very locally.
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sinulation from running uild at the edges of the simulation donain, it

is eluays a good idea to place sone conditioning deta on or just outside

the boundaries. Reproduction of "globalo characteristics, such as the

average grade or total quantity of netal uithin a very large donain, is

not ordinarily an irnportant objective of a simulation. Consequently,

the rather complicated procedures that have been devised for locating

additional data for reduction of global estimation variance are not

usually pertinent in the location of data for conditioning.

In addition to its primary advantage of introducing unmodeled

characteristics of the data into the simulationr conditioning affords an

opportunity to introduce subjective information into the simulation,

either by ordinary kriging using fictitious conditioning data, or

indirectly by ookrigingr tsott', krigingr of universal kriging tith

subjective shape functions (all discussed belou). Observed regionalized

variables that have not been simulated but are cross-correlated rith

simulated variables can also be used to inprove the qual itf of

conditioning by means of cokriging. ln generalr the decision of uhether

to introduce nore data or rhether to use a nore elaborate kriging rnethod

for conditioning a simulation should be based on the same consideretions

that are inportant in devising a solution to an estimation problem. The

remainder of this section provides some detai I s on el ternative

conditioning methods.

Fictitious deta. Fictitious (or ,'subjectivez, to use e nore polite

term) conditioning data for use in ordinary kriging should certainly be

used rith care. There should be a very good reason to believe that a

fictitious value is very close to the correct value, particularly if its
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location is jnside the simulation domain. 0therrise the conditional

simul ation ui I I be biased. Fictitious data ere perhaps easier to

justify if their locations are outside the region of direct interest.

For exanple, if there are good geological reasons for ielieving that a

regionalized variable has a certain average velue or exhibits a certain

trend in a border area of the simulation domain uhere there are no real

data, then a fringe of fictitious conditioning data, designed to force

such an average or trend onto the kriged estimates in this ef€dr might

be placed just outside the simulation domain (Figure 50) to /tie doHn"

the conditional simulation in the border area. tn the case of a trend,

both the positions and the values of the fictitious data uill influence

the trend. A nap of the kriged values is thus helpful in visualizing

uhere to edd the date' lhat their values should be' and hou many such

data are needed.

o&ljo kriqino. If subiective conditioning data are placed lithin

the simulation dornain' it is probably better to consider these data as a

separate variable to be used in ookriging. (This requires a subjective

cross variogram as nell.) A more elaborate extension of this approach

uould be to use "soft" kriging (Journel, 1984e)' uhich allous us to use

subjective (prior) probabil ity distributions, or incompletely knoun

distributions (as in the case of inequality constraints, described

belou), instead of deterministic fictitious data at several unsampled

points in and around the simulation domain. A series of krigings or

cokrigings using knoun and zsoft" data can then be performed to obtain

estirnated probabilitv distributions of the variable being simulated at

all points in the simuletion domain. To select a feu fixed values for
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Boundary of donain Y. z

An illustration of the use of fictitious data in the
conditioning of a time-series simulation. (a) Kriged
values obtained using a limited data set thet does not
cover the uhole simulation domain Vr maV extrapolate
undesirable local trends in the data into outlying
regions uhere there are no data. (This is
particularly likely if the phenomenon is very
continuous.) (b) rictitious data are used to remove
an undesirable local trend in the kriged values.
(c) Fictitious data are used to force a local trend
onto the kriged values.

conditioning the simulationr r€ might extract the expected value from

each predicted probability distribution et each neu conditioning point,

or drau a value at random from its probability distribution. This

relatively compl icated approach could be justifiable for the

conditioning of a badly undersampled variable that cannot be ef{ectively

cokriged using existing real data, or for situations in nhich a great

deal of inportant qualitative information is available. An application

of soft kriging is described by Kulkarni (t984).

Kriqinq r,rith inequal itv constraints. In tuo related Papers, Dubrule

and Kostov (19E4) and Kostov end Dubrule (1984) present an aPproech for

taking inequality data into account in an estimation. Their nethod is
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usefut in situations uhere lte do not knou the exact vslues of I

regionalized variable z(x) at some locations Xir but ue do knou upper

and/or louer bounds for these values (i.e.r ll€ knou zri I z(xi),

z(xi) ( zzir or both). The most common situation in lhich such

constraints occur is in an estimation of. the elevation of a

stratigraphic horizon using dri I l-hole data. In some locations the

holes may not penetrate all the ray to the horizon of interest, but it

is knoun that the horizon must lie belou the bottom of the hole. In e

simulation context, this situation could easily occur if re rere

simulating a contact betreen tuo populations as e regionalized variable

(Section 3.E.2). To assure that the kriged estimates zr(x;) satisfy the

knonn constraints at all locations xi rhere ue have inequality data, Ne

can reformulate the kriging as e quadratic-programrning problem (Hillier

and Lieberman, 1980, p. 751). Kostov and Dubrule (t984) Provide

examples of hon this formulation can be applied to the mapping of

subsurface elevations and bed thicknesses.

This problem can also be regarded as a special case of the "soft"

kriging problem and is approached from that point of vieu by Journel

(1984e).

Subiective trends and universil krioino. 0mre and Holden (1984) have

suggested en application of universel kriging (Journel and Huijbregts,

1978, p. 313) that allors subjective infornation on the forms of drifts

and discontinuities to be taken into account in an estimation (or

conditioning) problem. Instead of the polynomial drift functions

usually assumed in universal kriging, Omre and Holden allou arbitrary

"shape functions", including discontinuous functions (e.g. r representing
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faults) to be incorporated into the estimation. This approach is

helpful if ne have a good subjective notion of the overall shape that a

realization should take uithin some area uhere ue have feu data, but le

do not necessarily have any idea of rhat the velues should be at any

points in that 8F€8r as in the previous tr.ro approaches.

Cokriqinq. In practice, ordinary kriging usually is employed to

condition simulations of coregionalization, simply because cokriging is

nore complicated and expensive. If all of the simulated variables have

been observed at al I of the conditioning points, and if the

unconditional simulation of coregionalization has been properly modeled,

then little has been lost by using this shortcut. In the speciel case

of intrinsic coregional ization, re.lhi-ng has been lost, as ordinery-

kriging and cokriging estinates are then the seme if the data

configurations are the same for all variables (Journel and Huijbregts,

t978, p. 326). Houever, i f el I simul ated variabl es have !g! been

measured at all conditioning points' cokriging may be necessary to

control the simulations of the undersampled variables.?3 0thernise the

cross correl ations among the variabl es that are bui I t into the

uncondi tional sinul ation of coregional ization may be al tered as

different variables are conditioned by different configurations of data

(Figure 5l). 0f course, if some variables are not sirnulated at all but

are nevertheless associated in some Ltay uith the sirnulated variables,

improved correspondence of the real and sinulated phenomena might still

be obtained by cokriging using all data. This tould correspond to the

example in Figure 5l if ue uere simulating the loner variable only.

ts Another serious difficulty uith undersampling is discussed at the end
of Section 3.7.8.
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Figure 5l: Estimation of coregionalized time series by ordinary
kriging end by cokriging. tn this exampler the louer
series has been undersanpled rith respect to the upper
oner rith lhich it is positivelv correlated. In
case (a), the additional data of the upper variable
have not been used in the kriging (solid line 0t0z) of
the lolrer variable. In a simuletion' the cross
correlations among the variables at distances longer
than the data spacings tould be largely removed by
conditioning in this ray, although very short-scale
fluctuations, rthich shon up only in the kriging
€Frofsr tould still be oross-correlated. In case (b)'
the longer-range cross correlation is restored by
cokriging (dashed I ine 0r0z).

Are there any situations in lthich conditioning is not necessary? lf

lue are concerned uith a phenomenon of rhich multiple realizations are

physically possible (e.9., the regionalization of reinfall from passing

thunderstorms), then observed data from one realization may contain no

information about another except for gross statistical characteristics

(e.9., histograms and variograms that can be expected for rainfall from

e storm of a certain nagnitude). In such I cos€r I conditional
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sinulation using data col lected from one real ization .rould grossly

underestimate the diversity of results that could be exPected {rom other

realizations. (Houever, if the terrain the thunderstorns are crossing

is irregular, certain trends in rainfall might be applicable to nost

realizations.) In geological phenomena of uhich only one realization is

possible, it is ordinari ly nuch safer to perform a conditional

simulation, unless the simulation domain is vefvr very large lith

respect to the variogram range and ue do not intend ever to use any part

of the simulation to represent any particular Part of a real physical

domain. In mining applications, the range is almost alueys large in

conparison to the dimensions of the domain, and ue usually have definite

plans to start mining in one particular place and cheu our uey into

several others, in something I ike an orderly manner. Therefore, for

mining applications, a good rule of thumb is: don't even $Lltrk about

using an unconditional simulation for anything ercePt input to a

condi tioning procedure. Furthermore, the "better" the conditioning

(generally, the more evenly and densely spaced the conditioning data),

the more realistic, usefulr ard trustrorthy the results.

One common misconception about the applications of unconditional

simulations in mining can nou be readily cleared up. Suppose ue simply

uanted to find out uhat an zaverage" year's production from a certain

mine uould look tike in the rnill. Could ue not use the results of an

unconditional simulation as input to a mining simulation to produce a

realization of an average year's production? No, lre could not, because

in a typical mine in rhich the ranEe of the variogram is larEe in

comparison rith the spatial extent of the reserves, there simply is no
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such thing as an "average" year. The phenomenon is not ergodic;

therefore, it is entirely possible that no tuo years' output lill ever

look the same in the rnill. This is something to keep in nind uhen

designing mineral-processing faci I ities: the Plent nust be able not

only to handle variations in the ore on the scale of mihut€s' hoursr and

reeks, but elso to adapt itself to very long-range fluctuations possibly

on the scale of decades and possibly involving yery large changes in the

,'average', characteristics of the ore. Conditional simulations of entire

ore deposits or entire properties should therefore prove valuable in

pl anning both the short-range homogenization and proportioning

capabi I ities of the plant and the long-range flexibi I ity (particularly

in proportioning) that nill be required. In this sense, the output of a

conditional simulation and associeted mining rnodel might be superior to

ectual historical quality data from an existing mill using rat materials

from the same nine.

3.7.6 Selection g5[ l'lethods ful Unconditional Sinulations

In Section 3.3r several methods rere proposed for the unconditional

simulation of realizations from a specified gaussian random function.

Nou that the most important errors that can creep into such a sinulation

have been described, it is possible to make a feu reconmendations for

choosing among these methods. The najor considerations seem to be the

characteristics of the random function (particularl}l the senivariogram

model), the tolerable simulation discretization error SDE (particularly

as it relates to the choice of sinulation grid spacings), the size and

dimensionality of the simulation domain, the execution speeds of the
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yarious algorithrns and specific computer programs that are available,

and of course the simple availability of the programs or the conplexity

of nriting one.

tlost of the advantages and disadvantages of each method already have

been stated in Section 3.3. The follouing paragraphs recapitulate those

remarks and add some neu comments based upon the results of Sections

3.7. t-3.7.4.

ttatrix methods. For very large simulations of geological phenomena,

these procedures may be too slou on nost computers and may demand too

much array storager although for some types of matrices (Oavis' 1985a)

storage requirements can be reduced considerably. These methods have

the advantage that repeated simulations (Section 3.7.7) can be easily

performedr ond repeated conditional simulations, perforned rithout

kriging, are possible using the conditional nean and covariance natrices

provided on page 109. tlatrix methods night thus Prove useful for

generation of the repeated unconditional line simulations required for

turning-bands simulations. A final advantage of matrix methods is the

ease of simulating data at irregularly spaced locations (e.9., to

coincide exactly rith the locations of conditioning data).

llovinq-averaqe rnethods. The execution time of a moving-average

simulation is roughly proportional to the number of grid points to be

simul ated times the nunber of grid points spanned by the ueight

function.T6 (ln subroutine CS2D, this means the product of al I

dimensions of the arrays t'Yt' end ttlA".> If the rindou is large in

t6 Keep in mind, houever, that the span of the neight
the variogram model) can usually be reduced, uith
of computer time, if closely spaced conditioning
This is discussed in Section 3.7.2 and illustrated

function (range of
a consequent saving
data are available.
in Figure 45.
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comparison to the simulation domain' the tine becomes even greater'

because many random numbers must be generated at grid locations outside

the domain. Hence very large tro-dimensional simulations ere erpensive'

and three-dimensional simulations mev be virtually ruled out. Houever,

if the ueight function is constant-valuedr 8s in the case of

hyperspherical semivariogram nodel s, i t may be possibl e to save

considerable execution tirne by means of an zupdatingt' algorithm, es

explained briefly in Section 3.3.1.2. The main advantages of moving-

everage nrethods are their simplicity and their accuracy. For ueight

functions uith finite spans (corresponding to finite variogram ranges),

no epproximations are made except for discretization of the ueight

function and sinulation dornain. Thus the "striping" that can occur in a

turning-bands real izetion (discussed belol) cannot occur in a moving-

average real ization.

Random-averaqe methods. Although Chiles (t9E4) uas able to reproduce

his model semivariogram functions satisfactorily using a relatively

smal I number of Poisson centers (3000 to 10,000 centers for a

tuo-dimensional grid of about 12,000 points), it is apparent that such

realizations nould yield some areas uith "mosaicz structure (Section

3.3.'1.3). This could be dangerous if the simulation is used to

investigate the effects of very smal l-scale fluctuations in the

realization. Conditioning does not cure such smell-scale inaccuracies:

a conditioned random-average simulation nould contain "tiles" ttith

smoothly varvinq internal values instead of the constant values turned

out by the unconditional simulation. Back-transformed values rould

generally be smooth as rell. Thus the random-average method seems to be
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Heakest precisely rhere an unconditional simulation method should shou

its greatest strength: in reproduction of the short-scale variabil ity

of the model random function. Its use is thus not recommendedr except

possibly in tuo cases: (l) simulations incorporating a large nugget

component that uoul d add some short-scal e randomness, and

(2) simulations in uhich reproduction of short-scale variability is of

little importance. In other cBS€sr moving-average or turning-bands

simulations r.rould be more rel iable.

Turnino-bands method. This method achieves its great sPeed by

reducing a tuo- or three-dimensional simulation to a set of much faster

one-dimensional simulations. Its superiority to the moving-average

rnethods lies solely in its speed. t'lantoglou and Nilson (t98.|' 1982)

also demonstrate that it is faster than the spectral methods of

Shinozuka and Jan ( ,|972) and l'le jia and Rodriguez-Iturbe ( 1974).

There is some loss in accuracy or.ring to the f inite number of I ine

simulations. This seems to be the source of the "striping" -- the

appearance of nebulous cross-hachured zones of predominantly high or lout

values -- that can be observed in txo-dimensional layers extracted from

three-dimensional unconditional turning-bands simulations. This effect

can be visualized in Figure 52, rhere zones of very high or lou values

occurring by chance on the lines nay exert a strong influence on all

values occurring uithin the associated turning bands. Striping is

particularly easy to see if one extracts a plane of sirnulated data from

a three-dimensional turning-bands sirnulation and performs a cutoff on

the simulated values -- attributing an indicator "l" to all values above

the cutoft, "0n to all values belou. If the cutoff is placed at one of
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the upper quantiles of the sinulated distribution, a fer vague linear

zones containing mostlv l's rill be visible on a neP of the indicators.

Each zone represents the contributions of a zone of very high values on

one of the lines. Parallel zones ere contributed by the same line.

uide zones may have been contributed by very ride anomalous zones on the

lines, or possibly by a line that is nearly orthogonal to the observed

plane. Fortunatelyr sUCh striping is easily removed by conditioning, so

it is only of concern (if then) in three-dimensional unconditional

simulations. In tno dimensions, striping cen be obl iterated by

increasing the number of I ines, thus di luting the effects of

extraordinary zones along any one line.

Tuo-dimensional turning-bands simulations have been underutilized in

the past because of the difficulty of deriving appropriate models for

the associated line processes. The spectral method of tlantoglou and

Nilson (19S2) and the one-dimensional covariance solution of Brooker

(t985) have cleared up this difficulty, so tro-dimensional simulations

should nou become nore popular.

Autoreqressive methods. This approach is convenient for discrete

time-series simulations of AR(p) processes conditioned only by a set of

"p" initial data. Higher-dimensional autoregressions mey not be

realistic, are relatively difficult to rnodel and to perform (although

the neu approach of Sharp and Aroian (1985) appeers much simpler), and

are not uell suited to conditioning by kriging because of the peculiar

forms of the covariance functions.

Frequencv-domain approaches. llantoglou and !lilson (l9El, 1982) have

amply demonstrated the advantages of the turning-bands method over the
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Ltnc.1.

,lLlnc.2.Y

Zone.o. _)

<--- Planc of linulltcd d.t. --->

Figure 52: 0rigin of t'striping" in an unconditional simulation
produced by the turning-bands method. This is a side
vier along a plane of simulated data from an
unconditional three-dimensional turning-bands
realization. Tro Iines, numbered "1" and t2"o drg
shonn above the plane, along uith graphical
representations of the simulated line realizations.
An "anomalous" zone "a" on Iine I contributes e slice
of anomalous values to all points in space lying
nithin the associated turning bands. The intersection
of these bands uith a plane extracted from the
simulated domain creates a stripe of high values, not
adequately diluted by contributions from the other
fourteen Iines. Anomalous zones "b" and "c" on Iine 2
produce parallel stripes on the plane, uhich uill tend
to be narrorer than the stripes associated lith line I
because of the higher engle betueen the associated
bands and the plane.

spectral methods of Shinozuka and Jan ( t972) and ilejia and

Rodriguez-Iturbe (1974). Borgman et al. (t984) clai:n great speed for

their method, but direct comparisons uith other methods have not been



259

odd€r and the method uill not accept a great number of simulated layers

in the third dimension. Spectrel methods can be useful for turning-

bands line simulations, as denonstrated by tlantoglou and l.lilson (1982)'

although for some covariance rnodels (e.9., the spherical nodel) the

corresponding spectral formulations are rnathematical ly complex. The

finite-Fourier-transform program of pavis et al. (198t) may see

increasing applications in turning-bands simulations, particularly noll

that Brooker (1985) has provided a neans for deriving the required

one-dimensional covariances for tuo-dimensional simulations.

.spectral approaches are more convenient for the simulation of very

continuous phenonena, uhich have predominantly lotl-frequency

variabi I itv. Covariance models nith short-scale I inear behavior

correspond to I ong-tai I ed spectra, xhich can be reproduced onl y .

inaccurately or expensively by spectral simulation nethods. A

simulation discretization error can be committed by discretizing the

spectrum into too fer harmonics -- either by truncating the sPectrum at

too lott s frequency or by spacing the harnonics too far apart.

(Houever, the spectrum should be truncated belou the Nyquist frequency.)

0f course, nugget effects are not at all suited to spectral sinulation.

3.7.7 The Advantaoes of Repeated Simtllations

Because conditional simulations are not unique, it is irnportant to

determine under uhat conditions one simulation uill be just as good for

our purposes as any otherr 8hd under uhat conditions it tould be

preferable to conpare the results of severel independent simulations.

Independent simul etions, using the same model and methods but
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independent sets of random numbers, rill all look practically alike

under either of tro circumstances: (l) the conditioning is uniformly

very dense in comparison to the soale on uhich the phenomenon is being

investigatedr ol" (2, the simulation (conditional or unconditional )

covers a spatial domain that is very large in comparison to the

variogram range. The second case requires ergodicity: the overall, but

not necessari lv local r characteristics of a single real ization must

approach the average characteristics of a large suite of independent

realizations as the size of the simulation donain increases. In a ray,

the first circumstance is a special case of the second. In conditioning

re impose the large-scale fluctuations of the conditioning data onto ell

conditional simulations. The only differences that remain are in the

short-scale variabi I ity of the residuals. In a rel I condi tioned

simulation, the range of the residuals is much shorter than that of the

original realization, ahd thus usually small in comparison to the size

of the simulation domain. Notice that if ue simulate rithin a large

donain but subsequently make use of only a part of the domain, re give

up this advantage.

For cases in uhich the above circumstances do not apply, including

many cases in mining practice,

noticeably different resul ts, so

sinulation should be considered.

di fferent simul ations may yiel d

independent repl ications of the

But hou shoul d ue use these

replications? The futility of merely averacinq repeated sirnulations is

explained at the end of Section 3.1.7: the everage of a suite of

conditional simulations is just an approximation of the kriging. (For

uncondi tional simul ations, the average approximates the stationary
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Furthermore, the variance of the simuleted values at a given

point is just an estimate of the kriging variance (or of the siflr for

unconditional simulations). In other uords, nere statistical summaries

of repeated simulations of regionalized variables tell us nothing that a

kriging uould not tell us more easily.

If ue use each independent conditional simulation as input to some

other kind of simulation (e.9., a mining simulator operating on

simulated ore grades, a reservoir simulator operating on simulated

porosities and permeabilitiesr or a drainage-basin simulator operating

on simulated rainfal ls), the statistics of the final output may be

exceedingl y hard to predict ni thout actual ly plugging in several

conditional simulations and ratching uhat comes out. A good example in

the field of hydrology is provided by 0elhomme (1979)r rho discusses the

influence of different conditional simulations of log-transmissivity in

an aquiter on the spatial distribution of hydraul ic head values.

D'ifferent realizations of the heed values are obtained by epplying a

numerical model of groundlater flor.r to different simulated

log-transmissivi ty f iel ds.

It is irnportant to realize that this usage of repeated simulations

reveals the influence of only gng source of variability on the final

output: variability among the independent sets of random numbers used

to generate independent simulated realizations of the nodel random

function. The game nodel is used in each case. Obviously' if the renge

or overal I shape of the variogram, the size of the nugget constant, the

form of the rar.r histogram (or scattergram at h=0), the reliability of

the conditioning values' and numerous other parameters are in question'
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then the total uncertainty in the final output may be much greater than

that indicated by rerunning several simulations uith fixed parameters.tt

tt lould be possible to design an experinrent to test the sensitivity of

the final output to all parameters in question, using an analysis-of-

variance approach. Houever, such an experinent uould be cumbersome to

conduct and uould consume vast chunks of computer time, so e more

practical approach is to begin uith good estimates of all parameters.

0f courser lood estimates are obtained from good deta sets, and good

data sets also promote good conditioning. As pointed out above' the

better the conditioning, the better confidence ue can place in a sinqle

simulation. Extremely unstable results for the final output of a study'

as demonstrated through the use of repeated simulations, might thus be

used as a good argument for gathering additional data.

If there ere large gaps in the sinulation domain uith feu or no data,

the local kriging estimates (from both real and simulated data) inside

the gaps uill be very smooth. In such a c3s8r the unconditional

simul ati on imposes not onl y i ts SmaLL-scal e features onto the

conditional real ization, but its larger-scale features as uel l. The

sample semivariogram of an unconditional simulation is nuch more subiect

to fluctuation variance at these larger scales. Consequently' the

characteristics of sparsely conditioned regions may Yery appreciably

from one realization to another. In some situationsr there may be

enough qual itative information about a sparsely conditioned area to

allou one simulation out of several replicates to be selected as somehou

?7 This additional uncertainty corresponds essentially to the functional
model error Ft'lE of Figure 37, uhereas repeated simulations differing
only in their random numbers rould difter by arnounts equal to the
functional real ization error FRE.
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t'more reasonable" than the others. This nould be an alternative to the

use of subjective conditioning methods, described in Section 3.7.5.

Selection of particular realizations might also be made on the basis of

variogram reproduction' uhich can be poor if the simuletion domain is

small, if the semivariogram model is not nicroergodic, or if the

original data are not gaussien (Section 3.7.2).

3.7.8 Transformation Errors

Because earth-science data rarely appear to have been draun from

real izations of gaussian processes (Section 3.5. l), it is usual ly

necessary to transform the data before a gaussian simulation can be

performed. The form of the transformation usually is inferred from the

available datar rith the aid of the multigaussian hypothesis (rhich,

although critical' cannot be fully checked)r ahd perhaps uith the aid of

some knoul edge of the physical processes involved. If the

transformation does not correctly yield a sample from a gaussian

realization, then a gaussian simulation (the onlV kind considered here)

cannot correctly reproduce the entire spatial variability of the

phenomenon. Furthernorer the lack of nicroergodicity in nongaussian

real izations makes unconditional simulations particularly hazardous and

the short-scale behavior of the 'real ization questionable even in

conditional simulations. This problem is discussed at greater length in

Section 3.7.2, page 219.

In practicer it has often been observed (but not nell discussed in

the I iterature) that the variogram of a conditional simulation

reproduces the variogran of the fully transformed 
- t'gaussian" data very
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rel l, but discrepancies appear betneen the variogram of the back-

transformed sirnulation and that of the relt data.t8 In other rords

lt*r(vst(h)-?*o1yq1(h)1, uhich is the sum of the total model error and

the simulation discretization error in y(h), is small for the gaussian

data but large for the rar data. This suggests that the transformation

has been speoified incorrectly and thus the transforned data are not

really multigaussian -- not a surprising developnentr coltsidering the

serious inference problems that are discussed in Section 3.5.1 and in

the subsequent descriptions of individual transformations in

Section 3.5. This can be regarded as a type of nodel estimation errorr

but one that is committed at e very early stage in a sinulation project

and not discovered until the sirnulation has been completed. (Ni th

reference to Figure 34, the error is cornmitted prior to creation of

"transformed data set nunber 2" and usually not discovered until the

very last step, labeled "check results".) Because so much rork may be

nasted before the poor qual i tv of the resul t is reveal edr i t is

important to insure that transformations are modeled correctly in the

beginning.

Transformations are usually constructed by trial and error. lle

search for a transfornation of the ral.r data that produces a transformed

data set uith the characteristics of a gaussian real ization

(essential ly, a gaussian distribution at h=0, and gaussian

h soattergrams). Ne hope that the inverse of this transformation,

appl ied to a simulated gaussian real ization nodeled after the

t8 The faulty reproduction of the "PCTDOL" semivariogram
Section 4.2.4 is a fine example. In that cls€r
technique (a type of transformation) applied to the
caused the problem.

discussed in
the despiking
original data
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transformeddata,nitIthenreproducethecharacteristicsobservedin

the rau data. An error occurs if the foruard transfornation does not

really produce a sample from a gaussian realization. There are tuo

general rays to mitigate this problem: (l) perform thorough checks on

the transformed data, confirning either that nongaussian characteristics

have been eradicated or that sone other transformation is needed' or

(2) collect nany more data. A large data set is irnportant because both

the checks and the estimation procedures necessary to derive some of the

transformations are sensi tive to the curse of dimensional i ty

(Section 3.5. I ). Furthernore, as the densitv of conditioning data

increases, the condi tional simul ation ui | | conforn to the

characteristics of the original realization more closely. This makes

the simulation more robust to all kinds of tnodeling errors, including

transformation errors. The follouing paragraphs briefly summarize the

major pitfal ls involved in the various transformations proposed in

Section 3.5.

The fundamental danger in the usage of the gaussian transformations

in Sections 3.5.2.2 and 3.5.2.3 is the danger that the multigaussian

hypothesis -- the hypothesis that nornality at h=0 irnplies normalitv at

h*0 -- is invalid. It rnay be the case that no transformation exists

that r.rould convert the observed realization to a gaussian realization'

or perhaps a transformation does exist' but is too conplicated to be

inferred from the available data. If the best Procedures are used to

construct a transforrnation at h=0, but checks on the distribution at h*0

reveal that the spatial distribution still is not gaussian' there

appears (up to nou) to be little else that can be done in nost clseSr
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except to hope that conditioning uill make the simulation robust to the

remaining discrepancies. Transformations of individual h scattergrams

are not feasibl e, as the same data appear in nany scattergrams.

Simul taneous i terative transformations of many h scatterErams are

conceivable but hardly seem practical. ln some cases, transformations

of the spatial donain of the data (and simuletion), rather than of the

data values, might improve the normality of h scattergrams, but no

theory on hou to derive such transformations seems to be yet available.

(Unfolding" of deformed deposits prior to geostatistical calculations is

a commonly used transformation of this typer ilthough used for a

di fferent purpose. )

Some nessy phenomena commonl y observed i n nature may not be

transformable into gaussian realizations by anv means. Exanples of

apparently hopeless cases include almost all natural landscapes, such as

those contoured in Figure 53. The local kinks and other peculiarities

(uhich might be vieued as "systematic nonstationarities") in the shapes

of these contours seem to require highly parameterized nodels that could

not be produced merely by transforming the distributions of the surface

elevations to a gaussian distribution. t'lethods that nould reproduce

multivariate properties, such as multidimensional h-scattergrams among

tz(x)' z(x+hr), z(x+hz), .), uould come closer to reproducing these

phenomena, but such methods are unavailable. The 'rfractalz approach of

llandelbrot (1977, 1982), uhich is rnore directly concerned uith modeling

the lshapesl of natural phenomenar fiit be helpful in some of these

crs€sr although again only a feu parameters are being modeled.

simulation of the physical processes that formed the phenomena nay
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provide enother approach (e.9., Harbaugh and Bonharn-Carter, 1970), but

there seems to be no uay of conditioning most simulations of this type.

Certainly it is advisable to nrake the multigaussian hypothesis as

justifiable as possible by insuring that the distribution at h=0 reallv

is normal. For instance, if ue have a nultivariate data set, it could

be dangerous to depend only on independent transfornations of the

marginal distributions (Section 3.5.2.2) if checks on multinormality at

h=0 reveal serious departures from gaussian behavior in the transformed

data. The most comprehensive multivariate transfornation at h=0, the

stepurise-conditional approach (Section 3.5.2.3)r unfortunately requires

a good estimate of the true multivariate distribution at h=0 and thus is

thinkable only uhen there are nany data, or estimation procedures

requiring feuer data, or a thorough knouledge of the natural phenomenon

that allous some characteristics of the distribution (e.g.r cortstant-sum

or mineralogical constraints) to be specified rithout deta. In

practicer less complicated transformations such as the one proposed by

Chiles (1984, end Section 3.5.2.3) probably !till suffice in nany cases.

It is important aluays to remove eny knoun constraints (Section

3.5.2.4) on the rau data prior to further transformationsr os the

constraints cannot be accurately respected by a gaussian simulation and

probably cannot be accurately nodeled by a smooth data-directed

transfornation or density-estimation technique. Constraints can be

removed by the zgraphical" transformation procedure (Section 3.5.2.2)

for univariate data.

All nultivariate transformations that involve combinations (linear or

othernise) of several coregionalized variables carry a risk that small
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Figure 53: Sone examples of landscape topographies that uould
difficult to transforn into stationary gaussian
surfaces. Clockuise from upper leftr rectanguler
drainage, dendritic draiDag€r drumlins, impact
craters' barchan dunes, and alpine glaciation.

be
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but potential ly important characteristics of the original variables nay

become so diluted in the transforned variables that they uill not be

recognized in the transformed data. For instance' the principal -

components transformation for sinpl ifying the covariance matrix

(Section 3.5.3) and the successiye-remaining-space transformation for

elimination of the constant-sum constraint (Section 3.5.2.4) yield some

transformed variables that include contributions from most or all of the

original variables. It is possible then that the influence of some

individual components of a complieated nested variogram structure in one

of the original variables may not be observed or modeled in the

transformed data. Actually this may not be serious, as conditioning

should impose al I but very short-scale structures onto the final

simulation. lloreover, there ney not be anything uniquely valuable about

the original data: ue might ergue just as forcefully that models

constructed from the original data uould be deficient if they did not

embody structures that appeared in any arbitrary combination of the

data. The characteristics that should be checked most csrefully upon

completion of a conditional simulation ere the characteristics of

variables that ulill be important rhen the simulation is actually used.

Combinations of the original variables' rather than the ran variables

themselves' may be of prinary importance in applications. For instance,

in cement quality-control applications, checks on the reproduction of

the distribution of Bogue C3S (Table l) mey be o{ much greater

importance than reproduction of the individual characteristics of Cao,

Si02, A1203' Fe203, and S03r if c3S is actively used in quality control

and its conponent oxides are not.
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ltost of the multivariate trans{ornations described in Section 3.5

involve all k coregionalized variables, either simultaneously or in a

stepuise fashion. Thus serious problems may occur if some of the k data

are nissing at some locations. lf stepuise transformetions are being

used (e.g., the stepuise-conditional gaussian transformation of Section

3.5.2.3 or the successive-remaining-space transformation of Section

3.5.2.4), and the rnissing observations alnays occur in the seme

variables, then these variables should be transformed last. Cokriging

can then be used to estimate missing transformed conditioning data from

the other available data. I{ simultaneous transformations are being

used (e.9., the principal-components transformation of Section 3.5.3)'

the missjng data miSht be simulated by some epproxinate method prior to

the transformation, or just replaced by estimeted values if there are

only a feu missing data. The same approxinations Hould be necessary in

the case of sporadic missing values that occur in different variables at

different locations. Some errors clearly nould result in these

simulations, but if there are fep nissing data, they Probably uould not

be serious. Simultaneous transformations probably should be avoided if

there are many missing data.

3.8 r.r0pELrNG $ULTIPLE P0PULATI0NS

3.8..| The Problern of l'lultiple Populations

Geostatistical nethods tere invented to describe real izations of second-

order-stationary rendom functions, although stationarity of the mean can

be rel axed i f the mean is a smooth dri ft function. Horeverr

geostatistical methods break doun entirely if the D€inr or any othEr

characteristic of the phenomenon of interest' varies discontinuouslv in
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if the phenomenon is actually a mixture of different

realizations from one or more randon functions. Then, if le are to use

geostatistics successfully, ue must isolate these different realizations

and treat each as I separate population for uhich nodel inference,

estination, and simulation are performed seParately (although not

necessarily independently). This section describes rays for

partitioning the simulation domain into subdonains containing different

populations. The simulation domain is assumed here to be a three-

dimensional rectangular prism; the procedures to be used in louer

dimensions are anal ogous. The contacts betueen the di fferent

populations may be sharp or gradationalr and the geometry of the

contacts may be essential ly deterninistic (e.g. ' flat or regularly

folded bedding planes) or partly randon (e.g., the irregular boundary of

a reef depositr oF an erosion surface).

lf the contact betueen tuo populations is sharp, uell sampled, and

essentially smooth at the scale of investigation, then it possibly can

be modeled deterministically by a smooth surface-fitting technique or by

the geometrical methods used in structural geology (e.g., Ragan,

t973).te If the contact is sharp but so irregular that deterministic

methods are neither reliable nor realistic, then geostatistical means

night be used to estimate the contact (in the context of a

geostatistical estimation problem), or to simulate it (in a sirnulation

problem). Then tuo situations arise: (l) the "elevation" (in some

te If the rocks have been deformed jgte.rnallt by folding or faulting
(i.e., if not only the boundaries betueen populations but also the
internal spatial domains of the populations have been deformed), an

"unfolding" technique (e.g., Dagbert et al., 1984) should be applied
to rectify the coordinate system before geostatistical r.rork begins.
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coordinate system) of the contact sur{ace in three-dimensional space can

be regarded as a regional ized variable in tuo-dimensional sPace

(Figure 54(a)), or (2) the contact is too convoluted for the first

approach and thus must be modeled in three-dimensional space as the

boundary betueen excursions of a regionalized variable above or belou a

cutoff value (Figure 54(b)). The second situation arises only if the

eontact cannot be modeled as a f unction of tr.ro spatial coordinates --

i.e., if the contact can cross a given coordinate location nore than

once. Sections 3.E.2 and 3.E.3 describe methods for simulating contacts

in these tuo situations.

If the contact is .S-E!-e-tjgne.I and the dif ference betueen the tuo

populations is primarily a difference in mean, then it night be possible

to combine the tto phenomena (possibly after a transformation, if more

than the mean differs)r regarding the transition betr.reen them as a local

drift. If the differences extend to the second- or higher-order

properties of the tuo phenomena, then a drift model usually is not

appropriate. In this cis€r one can define a sharp contact someuhere

lithin the transition zone and then use conditioning to force the tuo

real izations to converge at this contact. The sharp contact can be

imposed a priori so that it is geometrically simple, or it can be

estimated or simulated by one of the tro procedures described belou and

conditioned by the available data. If it is estinated or simulated,

some criterion (such as a cutoff value) must be selected to decide uhich

available data are in uhich population. Techniques falling under the

general category of "classification", including varieties of cluster

analysis and discriminant analysis (Hand, l96l), can be used to allocate
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classification

Classification

summarized in

data to inferred subpopul ations; then the

of the data can be used to define the

teehniques appropriate for analyeing geological

Section 3. t0. t.
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resulting

contac ts.

data are

(a) A regionalized variable in R2

(b) Contour ol e regionalized varieble in Rg

Figure 54: Geologic contacts that can be nodeled as a
regionalized variable or as e contour of a
regionalized variable. These are cross-sectional
vieus of contacts separating three-dimensional
domai ns.
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3. E.2 Contacts 39 Reqional ized Variabl es

If a geologic contact in a three-dimensional dornain can be vieued as a

function of tr,ro "horizontal" spatial coordinates, then the /elevation"

of the contact in the third dimension can be vieued as a regionalized

variable and can be simulated rithin a tuo-dimensional domain. Knoln

contact elevations identified from field or drilling data can be used to

estimate the characteristics of the regional ized variable and to

condition the simulation. The simulated elevations divide the three-

dimensional domain into irregularly shaped upper and louer parts. This

operation can be performed successivelV to divide the three-dimensional

domain into several parts, possibly to sinulate a sedimentary sequence.

Care might have to be taken to insure that successively sinulated

contacts do not cross (e.g.' if some beds "pinch out"). This can be

done through dense conditioning or through the use of a transformation.

A likely choice of transformations is the "successive-renaining-space"

transformation, described at the end of Section 3.5.2.4, uhich

transforms each successive elevation (e.9., from bottom to top) into the

proportion of the vertical dimension in the simulation domain that has

not been alreedy isolated by the lorer contacts. An undertaking similar

to this is described by Doud (1978, l9E4).

ln somB coseSr the position of a contact may be statistical ly

correlated uith the values observed in the continuous reEional ized

variables (generally rock analyses) observed on either side of it. This

can be taken into account by conditioning in the case of an indicator

sinulation (described in the next section) but not straight{orrardly in

an elevation sinulationr os the contact elevation is simulated in tuo
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dimensions, and the relevant data are recorded in three dimensions. The

third dimension is precisely the one in nhich the correlation is likely

to be observed (as in a gradational contact).

3.8.3 Contacts Defined by Cutoffs end Indicators

3.8.3. I 0verviet of Conditional Indicator Simulation

If a contact is too convoluted to be represented as a regionalized

variable in tuo dimensions, le nay be able to use the technique of

,'conditional indicator simulation", r,rhich is related to the indicator

approach to geostatistical estimation problems describe'd bv Journel

il983). To apply the technique in its original form (Isaaks, 1984a' and

Journel and tsaaks, 1985)r rte hust begin rith tuo intermingled

populations characterized by tuo sets of gontinuous data (e.g.r chemical

analyses). There nust also be some direction in the (possiblV

transformed) variable space in rhich the tuo populations do not overlap;

i.e., ue nust be able to distinguish betueen the populations simply bv

applying a culoff to the continuous data. If the data are multivariate,

ue night apply the cutoff to some combination of the measured variables'

such as a I inear discriminant function (Hand, l9El, Chapter 4).

Continuous data values above the cuto{f are assigned indicator values

of tr7"i values belour the cutoff are assigned indicator values ol ttt".

An exampl e ip i I lustrated in Figure 55(a) for a one-dimensional

tuo-population realization. The associated indicator realization is

depicted in Figure 55(b). These tuo realizations are knoun only at a

feu discrete sample points, uhich ere subsequently used in model

inference end conditioning of the indicator simulation. Conditioning of
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an indicator simulation using the oriEinal continuous data is discussed

in Section 3.8.3.3 end model inference in Section 3.E.3.2. llore general

methods for obtaining the gaussian conditioning data that do not depend

on the original data (or on continuous data at al I ) are described in

Section 3.8.3.4.

The conditional indicator sinulation should satisfy at least the same

basic criteria that ne impose on a conditional simulation of a gaussian

process: it nust equal the knoun indicator values at the data points,

and it must have the same variogram es the knoun indicator data. (There

is no reason uhy variograms end other statistics cannot be defined for

indicator data.) The conditional ind'icator simulation is performed by

first conditional ly simulating a real ization fron a gaussian process,

and then applying some cutoff to these simulated continuous values to

generate the simulated indicator values. The locus of points uithin the

simulation domain at uhich the gaussian realization grosses the cutoff

value (i.e.r i particular "contour" of the sinulated data values) thus

becomes the simulated contact betueen the tuo continuous populations

defined in the original data. Notice that the location of the contact

is not simulated precisely but is knoun to lie betueen adjacent grid

points uith diftering indicator values.

The big questions are: (t) uhat variogram should the simulated

gaussian realization have, (2) uhat continuous values should be used to

condition it, and (3) lhat cutoff should be applied to those values?

Some partial ansuers can be given immediately. (t) The variogram of the

gaussian real ization should be specified in such e Hay that the

indicators generated by applying the cutoff uil I have the proPer
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(a)

(b)

(c)

(d)

Figure 55: A one-dimensional indicator sirnulation conditioned by

continuous data {ron tuo populations. (a) The

original mixture of tuo populations, distinguished btr

a cutoff value. The true values are knonn only at a

f er.r points (ci rcl ed) . (b) The true indicators, knoun
only at a feu points. (c) Conditionallv simulated
indicators, obtained bv applving a cutoff to the
realization in (d). (d) Gaussian realization
conditioned bv transformed data sampled from (a)'
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indicator variogram. (2) The conditioning values should be continuous

data (draun fron a single gaussian real ization, to be rigorous) that are

above the selected cutoff there the knoun indicator values are zt' and

belou the cutoff r.rhere they are "0". (3) The cutoff should be selected

such that the proportion of gaussian values above the cutoff is roughly

the same as the proportion of "7" indicator values in the data. If the

data do not coYer the simulation dornain evenly, a declusterized

histogram of the data (Journel, 1983) might be used.

To simulate contacts emong several populations this llay

(Figure 56(a)), ue utould probablV start by sirnulating the contact

separating one population (perhaps a nell conditioned one) from all

others. Then ue noul d simul ate the contact seParating another

population from all others, possibly incorporating inforrnation from the

previous.simulation into the conditioning data. (This could produce a

huge set of conditioning data, so some judicious sampling of the

simulated data might be in order.) The contact separating the last

population from al I others uould be ful ly determined bv previous

simulations. Notice that simply Perforning several cutoffs on a gi!g-13

gaussian simulation (Figure 56(b)) could be realistic only if contacts

never intersectr 8s in a layered sequence. Then a simulation by the

regionalized-variable approach (Section 3.8.2) usually nould be

feasi b I e.

All of the varieties of contact simulation described here rely on the

use of gaussian simulations, or transformations of then, to represent a

complicated boundary betueen tuo or more geological populations. [n

nature, there is ordinarily no reason to suppose that geologic contacts



279

8,,
2O

(a) (b)

Figure 56: Conditional indicator simulations separating more than
turo populations. (a) The numbered populations can be
separated sequentially, o.9. by isolating population
t'ln iirst, folloued by a separation ol nzt' and u3".
(b) A rare situation in rhich nultiple cutoffs of a
single gaussian realiaation night be used to separate
several populations simul taneously.

behave like transformations of gaussian spatial phenomenar so ue have

here the same serious limitations that Nere depicted previously in

Figure 53. Sone contact morphologies just nay not be realistically

"simulatable" rith the techniques to be offered here (e.9. r see

Figure 57). lte must rely on dense conditioning in these GOS€sr or anait

the development of methods not tied so closely to stationary gaussian

phenonena. A general method capable of reproducing conplicated shapes

like those in Figure 57 nould have to be able to reproduce not onll the

bivariate properties of a phenomenon (e.g. ' the variogran' uhich

neasures squared differences betueen Z(x) and Z(x+h))' but its

multivariate properties as uell. 0nly the univariate and second-order
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bivariate properties (mean and covarianoe function)

reproduced by neans of a gaussian simulation.

can be modeled and

Figure 57: Sone examples of geologic contacts that rould be
difficult to model as contours of stationary gaussian
realizations. Clockttise from upper Ieft: breccia,
ptygmatic veins, karst surface (cross section),
channel fi | | ings (map vieu).
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3.8.3.2 Variograms of Indicator and Gaussian Processes

Regardless of the type of data used for conditioning' a common approach

is adopted for model ing the semivariogram function that is used for the

unconditional gaussian sinulation. If the unconditional ly simulated

standardized gaussian real ization yg(x) has model distribution function

G(y), then the corresPonding indicator i(x), equal to "1" llhen ys(x)

exceeds the cutoff yc and "0" otherrise, has the fol louing exPected

moments, derived from the characteristics of Bernoul I i (indicator)

random variables:

tlean: EII(x)] = l_G(yc) = mi

Yariance: Var{t(x)}: G(y.)[l-G(Yc)l = mi(l-mi) = ci(0)

Semivariogram: 7i (h) = lett t (x+h)-I (x) lz]

Covariancer Ci(h) = E[I(x+h)I(x]] - nei

Noncentered covariance: EtI (x+h) I (x) l = c; (h) + rn2;

= Ci(o) - Zi(h) + mzi

= mi - yi(h)

= L(Vcr!rcrpys(h))

there L(yc,Vc,pyr(h)) = Probt Yr(x+h))yc and Y3(x)lyc). The function L

is described and graphed in Abramouitz and Stegun (1972r PP. 936-939).

Because yr(x) is standard normal, its correlogrem function,

just:

Pvs(h) , i s

pvr(h) = EtYr(x)Y"(x+h)l = | - lys(h)

Estimates ol al I of these indicator moments can be obtained from the

available (possibly declusterized) indicator data, uhich are either

defined from a cutoff on continuous data or based on other types of

infornation, as explained in the next tno sections. These statistics



2E2

ere used to select parameters for the unconditional gaussian simuletion.

Frorn the sample nean m*; and senivariogram y*;(h)r H€ cill obtain the

noncentered covari ance :

L*(Yc,9c'Pys(h)) = nti - 7ri(h)

The function L* can be inverted by reference to Abramouitz and Stegun

(1972) to obtain e value for p*vs(h). Then a discrete estimate of the

appropriate gaussian-process senivariogram yys(h) can be obtained by:

y*ys(h)=l-p'yg(h)

Ne simply fit a continuous model yys(h) to this senivariogram, perform

the unconditional gaussian simulation, and condition it (using 7y3(h))

either to the gaussian-transformed continuous data (using the method of

Isaaks, 1984a, and Journel and Isaaks, 1985, presented in Section

3.8.3.3) or to data generated directly from the indicator data set

(using one of the rnethods from Section 3.8.3.4). The fitting of ?ys(h)

at small lhl should be done uith care. If the populations have uell

defined contacts, a nugget effect probably should be avoided so the

resul ting population bounderies do not look overly fuzzv. If the

contact should look very smooth, ue should fit a model pith parabolic

behavior near the origin.

3.8.3.3 Conditioning Nith Continuous Data

Clearly one (not necessarily the best) choice for gaussian conditioning

data uould be the normal scores of the original data (or of the

discriminant function used to de{ine the cutoff if the original data

are nultivariate), using both populations combined. The corresPonding

choice for the cutoff uould then be the normal score of the cutoff that
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uas applied to the original data (or to the discriminant function). But

nhat uould ue assume in this case? Ne uould assume that the positions

of the contacts and the continuous data values that occur in the trto

poPu|ationsaregl3@L{dependent.t.|erouldfurtherassumethat

the pooled gaussian-transformed conditioning data "look like' data {rom

a single realization of a gaussian process that crosses the cutoffs in

the appropriate places. In such a realizationr continuous values above

cutoff should tend to decrease touard the contact and the continuous

values belou cutoff should tend to increase touard the contact' creating

a qradational contact betureen the gaussian-transformed populetions.

If the transformed continuous data look exactlv I ike a gaussian

realization, then the tuo populations appearing in the original data

nust have been derived frorn a sinqle parent gaussian reelization by the

application of an invertible graphical transfornation nith a shape such

as the one in Figure 58. (ln the case of multivariate data, Figure 58

might represent a transformation of the discrinrinant function.) Nou if

this Ltere strictlv b!t-g., lte could simply perforn a normal-scores

transformation on the original data (or on a transformation of the

nultivariate data), invoke the multigaussian hypothesis of

Section 3.5. l, conditional ly simulate a neut gaussian real ization using

the variogram of the gaussian data to model the unconditional simulation

and using the transformed data for conditioning, apply the inverse

transformation, and end up uith a simulated tno-population data set

having essentially the same entire spatial distribution as the observed

one. If ne appl ied a cutoff to this sinulation, the resul ting

indicators necessarily rould have the same variogram that He uould tind
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for the indicators of the original data, because the entire spatial

distributions of the gaussian-transforned data and of the gaussian

simulation uould be the sane. The indicators uould also be conditioned

properlt. Thus both requirements placed on the conditional indicetor

simulation uould be sat'isfied.

Populrtion I Populrtion 2

Figure 58: Transformation of a gaussian distribution into a
bimodal ("trlo-population") distribution.

t
cutoff

The supposition that the txo populations uere derived from one parent

gaussian realization by a transformation is not generally geologically

reasonable, although specific instances (perhaps including selective

mi neral i zat i on of e "gaussi an" country rock ) ttti ght be f ound.

Nevertheless, the original fornulation of conditional indicator

sirnulation proposed by Isaaks (1984a) and Journel and Isaaks (1984)

relies on the same conditioning procedure as the one ebove, differing
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onlv in the derivation of the semivariogram nodel for the unconditional

gaussian simulation. (This derivation is described in Section 3.8.3.2.)

The normal scores of the original data uere used for conditioning in

their case study largely for convenience; houever, the ringle-parent

hypothesis for their case study (a sandstone uranium deposit) night be

considered geological ly feasible, and the ore grades in the tuo

populations do tend to converge near the contacts' as uould be expected

in a phenomenon monotonically transformed from a gaussian realization.

These characteristics, along nith a good set of conditioning deta, made

their indicator simulation look very reElistic.

If ue use gaussian-trans{ormed continuous data for conditioning' re

uill tend to force the larger-scale variogram structure of these data

onto the variogram of the conditional gaussian simuletion. This is one

of the primary rradvantagesz of conditioning in most contexts, but it may

not be such an advantage here. I{ the continuous data really represent

(or at least resembleso) e transfornation of a single parent gaussian

realization into tno artificial "populations" as in Figure 58, then the

variogram of the gaussian-transformed data and the variogram used in the

unconditional simulation (Section 3.E.3.2) should be the same'

0theruise they may not be very sirnilar at all -- particularly if the tuo

populations represent essentially unrelated geologic phenomena, such as

igneous intrusions in a much older country rock. ln that GOS€r le uould

The data should at least be gradational at the contacts -- i'e"
values above the cutoff should tend to decrease touard the contacts,
and values belou the cuto{f should tend to increase touard the

contacts. Satisfactory checks on binormality of the h scattergrams
of the data uould add {urther comfort. Another check is simply the
equivalence of the semivariogram of the gaussian-transforned data and

the model semivariogram yyr(h) of the unconditional sinulation'
derived by the methods of Section 3.8.3.2'

80
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be computing a variogran over a nixed population of apples end otahlf€sr

uith unpredictable results. In this type of geological situation, a

cutoff applied to the conditional simulation yrc(x) usuld yield an

indicator simulation that nould be conditional to the real indicator

data. Houeverr reproduction of the indicator variogram nould depend on

hou closely the kriged values resenbled a kriging of a single gaussian

realization. An example has been cooked up in Figure 59, lhich is

analogous to Figure 55(a)r €xGept that the contacts betueen the tuo

populations have no tendency to be gradational -- in fact, iust the

opposite. (lt may be comforting to realize that geological examples of

gradational behavior near contacts are legionr rhereas real-xorld

exampl es of the "reverse-gradational" behavior in Figure 59 are

imaginable but hardly common. ) The behavior of the continuous

conditional simulation ysc(x) obtained by kriging uith the gaussian

transforms of the data in Figure 59 rould probably be rather different

from that obtained using the data from Figure 55r and thus the indicator

sinulations miSht look rather differentr although the sample indioator

variograms in both situations are the same. Notice that the fundamental

deficiency of the data set in Figure 59 is that it does not look like a

monotonic transformation of a sinqle gaussian realization' but nore like

a transformation of tto or more real izations pieced together. This

problem uill appear also in the next section' uhere ue attempt to

generate gaussian data from indicators.
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Figure 59: A mixture of tuo one-dimensional processes uith
nongradational behavior near their contacts. Compare

this figure uith Figure 55(a).

3.8.3.4 Conditioning !lith Indicator Data

In many practical situations, there is no reason to suPpose that the

original continuous data are appropriate for use in conditioning the

indicator simulation. The use of these data severely restricts the

possible outcomes thet the conditional indicator simulation can have,

and if indicator sirnulations are being performed to get an idea of the

uncertainty that exists in the locations of the contacts' this type of

conditioning may lead to both a bias in the assemblage of outcomes and

an unreal isticel ly narro$ diversity of outcomes, as explained belon.

ttoreover, there are many situations in uhich ue mey define PoPulations

(and thus indicator data) in rays other than by application of a cutoff

to a continuous data set pooled from both Populations'

For instance, a geologist may have logged the occurrence of granite

versus rall rock in a set of drill cores that *ere subsequently analyzed

for some rnetal. In our simulation of the metal deposit, ue probably

uoul d uant to treat the grani te and ual l-rock mineral izations
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separately. If the granite intrusives are numerous and complex in shaPe

(e.g., pegmatite bodies), an indicator simulation of granite versus uall

rook might be considered, but there are only indicator data -- t'1" fo?

granite, ,r0r' for ual I rock -- avai lable for conditioning. (The metal

contents of the tuo PoPulations might actually overlap' so the cutoff

approach rould be useless.) Hou do lle generate gaussisn data to

condition the unconditional gaussian simulation?

Suppose ue have discretized the simulation domain into a grid of

points and le assign appropriate indicator values i(x) to the points x

that roughly represent the locations of the logged drill holes. lle end

up uith N indicator data, l'l of nhich are granite (indicator "1">. The

immediate objective is to simulate an unconditional gaussian realization

Ic(x) nith a specified sernivariogram (rnodeled from the sample indicator

semivario.gram)r ahd then condition it to a set of gaussian data. The

logical cutoff yc to perform on these data is the []l/(N+l)lth quantile

of the gaussian distribution G(y), assuming that the domain has been

sampled in an unclustered manner. Ne nust generate (i.e.r sirnulate) a

set of continuous conditioning data (V(x5), j = I to N) that appear to

have been draun {rom a gaussian realization y(x) uith the same mean and

variogram as the unconditional simulation. These data must also satisfy

the conditions that:

v(x;)

y(x5)

Here ue do not essune anY

continuous conditioning data

) Vc if i(x5) = |

3 vc if i(x;) = 0

continuous values or rankings for the

only conformance to the inequalities

imposed by the indicator values. These inequalitv conditions are &Ugb
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less restrictive than the exact conditioning values imposed on the

conditional gaussian simulations described in earlier sections. As the

conditioning is less restrictive, the diversity of possible outcomes is

greater.

Nou hol can t.te generate these data? ]le must transform indicators

into continuous data -- a "one-to-manyt' transformation that can only be

accomplished by sorne sort of simulation. The next feu paragraphssl list

several plausible approaches (nunbered for convenience) :

(l) The brute-force uay uould be by acceptance-rejection, in uhich ue

use sone nethod to generate repeated uncondi tional nul tinormal

simulations at the N data points (e.g.r on€ of the matrix methods in

Section 3.3.1.1) and accept the first sirnulation that juet happens to

verify all of the inequalities inposed by the indicator data. In the

case of a large number N of indicator data, ue could find ourselves

generating and checking unconditional simulations for a very long time,

so this is not general ly an efficient approach.

Q, A better (but still yerv heavy) approach is a stepuise method

similar to the nested conditional matrix-simulation nrethod of Section

3.3. l. l. lte start by generating a value y(xr) from the conditional

distribution of

Y(xr ) | i (xr ), i (x2),..., i (x6)

then generate y(xz) from the conditional distribution of

Y(xz) lv(x1 ), i (x2), i (xs),..., i (xn)

and so on through y(xn):

8t sone resders nay prefer to skip the
proposes several alternative nethods
practical situations.

rest of this section, uhich
that have not been tested in
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Y(xn) | y(xr ),y(xe ), . . . ry(xn- r ), i (xn)

In practice, each V(x;) uould be conditioned only on the i (x) and

previously generated y(x) values that are no farther allay from l(x5)

than the ranges of the associated variograms.

This nay seem confusing, so consider the trivial case of only tuto

indicator data, i(x1)=1, and i(x2)=0. tle nust generate y(xr) and y(xz)

from a doubly truncated bivariate standard normal distribution lith

neans [0,01r viFiances I l, I I and covariance (equal to the correlation

coefficient in this case) p(lxr-x2l) = l-?(lxr-xzl), as sholn in

Figure 60. Ne knon that y(x1))9c, because i(x1)=1, and that y(xz)Syc,

because i(x2)=0. These constraints define a region uithin the domain of

the unconditional bivariate nornal density g(yr,Ia) -- the louer-ri9ht

part in this case -- from nhich re are permitted to drau values of y(xr)

and y(xz). To generate y(xr)r u€ must somehout integrate the density

g(yr,yz) tithin this region over all allor.red values of Iz, and then

progressively over all values of yr above yc, to produce a conditional

marEinal distribution function:

y(xr) y"
! f g(yr,yz) dyz dyr

Yc
F(y(xt ) | i (xi), i (x2)) =

qr Ic
f f g(vrrvz) dvz dvr

Ic

Then ue can just generate a random number ur distributed uniformly

betueen 0 and l, and obtain an aPPropriate value for y(xr) fron:

y(xr) = F-ly(xtt titxtt .i(x21(u1)

This reduces the domain of g(yrrVz) frorn uhich bte can generate a value

for y(xz) to the heavy vertical half-line shoun uithin the louer-right



part of Figure 60

truncated version

distribution

Knouing the value

of the condi ti onal
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of y(xr ) r lle generate v(x2) f rom a

densitv g(YzlYr=Y(xt)) using the

y(xz)

_f 9(vzlvr=v(xr)) dv2

F(y(xz) ly(x1 ),i (x2)) =
Yc

_J 
g(vz lvr=v(xr ) ) dvz

so that y(xz) is obtained from

v(x2) = F-ly(x2t /ytx1t.i(x21(u2)

uhere u2 is distributed uniformly on [0,1], independently of ur.

It is not obvious hou this "better" approach, already complicated

enough uith only tno data, could be programmed to generate several

thousand gaussian conditioning values -- a realistic nunber for real-

lorld applications. Thus it appears that ue may have to resort to some

kind of approxination. A feu possibilities ere described belout.

(3) Suppose that ue ignore the conditioning effect of all knoun

indicator values (or of those no farther auay than the range of the

indicator variogram) on the simulation of each y(x5). Instead lle

condition each sirnulated y(x5) only on the indicator i(x5) and on the

previously generated y(x) values lying uithin the range of the y(x)

variogram. Then ue could use the stepuise-conditional approach of

Section 3.3. t. lr augn€nted by only one acceptance-reiection step to

account for the single indicator. Ne start by generating a first trial

value of y(xr) from an unconstrained standard normal distribution. lf

the value happens to land on the correct side of the cutoffr le accept

it. Otheruise, ue keep generating until ue get uhat ue uant. Thus ue

have e{fectivelv generated y(xr) from the distribution of:
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(Compare this nith

generate y(xz) from

Y(xr)li(x|)

the distribution for Y(xr) on page 289.)

the conditional distribution of

Y(xz)ly(xt),i(xa)

Then re

Y(xr)-0 Y(xt)'Y" I (rr) -y(rr)
I
I
I
I
I\r

lf
,l

ll rt, lr I llriltrrlratttr ttlt Y (r2) -yc

/

Y(xr)-0

I
I
I

-l-
l
\
\

lt
,r| \--
I

\ \---
---- --

f
Jr

-!b- - Y(x2)-y(xr)

\-
\*raee

Figure 60: Generation of turo bivariete gaussian data from a

distribution conditioned by indicator data. l'le knou
that i (xr )=t, so y(xr ))Vc. Ne knou that i (x2)=0r so
y(xz)3yc. Thus ue must generate t$o values y(xr) and
y(x2) randomly from the lo!rer-right (doublv sheded)
part of the unconstrained bivariate density g(yr,9a).

ll ft | | ttt rllli ,r ll , l,

I
I

I
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using the same acceptance-rejection procedure to account for the

indicator i(xz). Ne continue until ue get an acceptable value for y(x,'t)

from the distribution of:

Y(xrr) ly(xr ),y(xz), . . . ,Y(xn- r ), i (xn)

Vier.red geostatistically, each successive v(x5) uould be samPled bv

acceptance-rejection fron a gaussian distribution rith mean equal to the

simple-kriging estimate (Journel and Huijbregts, 1978, p. 56.| and

p. 565) of y(x;) given the Previously genersted y(x) values' and

variance equal to the simple-kriging variance. Although this method is

much simpler than method (2), the matrix calculetions required to obtain

the last several data are still verv heavy. (Houever, if conditioning

is limited to previously generated y(x) values nithin the range of the

y variogp8lnr the:natrices may not be so large in Practice.)

The resulting set of conditioning data (y(x;), j = I to N] uould all

satisfy their individual indicator constraints' but they uould have been

draun fron the Nrono conditional distributions. In the bivariate case

illustrated by Figure 60, this Procedure emounts to draning 9(x1) from

the rnarginal density obtained by integrating the uhole rioht (sheded)

side of the density g(yrryz) over V2r instead of just the portion of the

density lying in the loper-right (doubly shaded) sector. 0nce y(xr) is

drann in this biased uay, y(xz) is obtained in the usual manner from its

conditional distribution given y(xr) and i(xz). Although this method is

not strictlv ggEg.tr the values generated by the method night, uhen

vieued es e group, look reasonable enough to be used as gaussien

condi tioning data. The earl ier values, generated uith I ess

conditioningr uould tend to be less realistic than the later ones. For

example, early velues generated near contacts betleen "0" gnd "lt'
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indicators might not tend to be close to the cutoffr 8s ue uould expect

in a single gaussian realization; and values genereted uithin clusters

of t'1" or "0" indicators mi ght not tend to be t'high" or ttlou",

are generated probabl y shoul d be randomized. To correct I ikel y

deficiencies in the earlier y(x;)'s, ue might perforn e second pass over

some of these values, obtaining ner simulated values by conditioning on

the later values obtained in the first pass.

tl
I

I
0l

A g

I

Figure 6l:

I
I

llap of a set of hypothetical indicator data to be used
for conditioning a gaussian sinulation. Gaussian
conditioning values generated at zA" should tend to be
higher than those generated at "!", €v€h if both t and

E have the same indicator velue. The influence of the
surroundino indicator values is explicitly considered
in methods (l), (2rr ahd (5) of this section, but not
in rnethods (3) and (4).

respectively (Figure 6l).

i I lustrated in Figure 59. )

A faster but

uncondi tional

simul taneousl y

(This problem is simi lar to the one

Therefore, the order in nhich the y(x;)'s

even less satisfactory approach utould be to generate an

simulation at at I conditioning Points xi and

accept al I v(x;) velues satisfving their oun indicstor
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values. Then ue could generate a neu set of v(x5) values to replace the

rejected values, conditional on the values eccepted in the {irst passr

again accepting those satisfying their oun indicators. All data could

be simulated relativelv quickly this Nigr but probably big local chunks

of inappropriate-looking unconditional data uould al I be accepted

together in the first pass.

Yet another alternative uould be to replace the successive simple-

kriging estimates of each y(xi) uith a cokrigingr taking into account

all surrounding indicator data. t'lethod (5), belou, achieves a similar

effect in a somerhat simpler lay.

(4) Isaaks (1984b) has described another approach that generates

conditioning data nith e univariate gaussian distribution end the proper

indicator variogram. Houeverr like method (3)' this method generates

data that are not sampled from a single gaussian realization and thus

nitl not'generally have the correct variogram for conditioning the

gaussian simulation. Ne begin by generating tuo independent

unconditional gaussian real izations using the senivariogrem nodel

derived from the indicator semivariogram. The first real ization'

ysr(x), is generated at all points in the simulation dornain and is used

es the unconditional gaussian simulation. The second real ization,

ys2(x)r needs to be generated only at oonditioning points, but in

practice it is probably easier to generate it everyuhere in the domain.

Each nrember of the data set {yrz(x;), j = | to N} is then transformed

into one of tuo ranks, ko; or k1;r depending on the velue of the

associated indioator i (x;)r ahd final ly transforned into

y13(xi) = G't [kojG(yc)/[ (tt+1)(l-mi) l] if i(x5) = 0

if i(x;) = |= G-r IG(yc)+k1 ;t 1-C(yc) l/[ (N+l)(mi) l]
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uhere ke; =

kr j =

mi =

yc =

N=

rank of yse(x;) among all j for uhich i(x5)=0

rank of ysa(xi) among all j for rhich i(x5)=l

arithmetic average of ti(x;), j = I to Nl

G- r il-mi l

total number of indicator data

and G( ) = standard normal distribution function.

Each transformed value ys3(x;) then represents a quantile of one of the

complementary truncated normal distributions in Figure 62.

t
yc

Figure 62: Truncated nornal densities used in the transformation
of Isaaks (1984b). The value yc separates the tno
truncated densities. Simulated values t32(x5) are
transformed into values from the left density if
i(x;)=0, from the right density if i(x;)=1.

The resul ting data set

condition the unconditional

{y53(x5 ), j = I to N} is

gaussian simul ationr Vst

then

(x),

used to

using the
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semivariogram model attributed to yrr (x) in the kriging. The

transformation above, explained in detail by Isaaks (1984b), is designed

to inpose univariate normality on the uhole set of N datar uhile

assuring thet data essociated uith indicators i(x;)=l exceed the cutoff

trc and other date are belou the cutoff. Although the indicator

variogram is strictly reproduoed, this method does not assure

reproduction of the semivariogram model for yrr(x), as it does not in

general produce a realization of a single gaussian process. Because the

starting data (y12(x;)) are teken {rom a completely unconditional

simulation, the velues of the dete ty"e(x5)) nav not tend to rise and

fal I touard the contacts in a natural manner as ltould be exPected in I

single gaussian realization. This nethod rnight theretore produce an

even less realistic data set for conditioning than the previous ones.

Houever, it is computationally much easier than the other methods,

avoiding the heavy matrix manipulations required for the stepuise-

conditional sinul etions.

(5) A final approach, rhich night be developed into several related

variations, attempts to strike a compromise betueen the rigorous

stepuise-conditional approach (2) and the abbreviated stepuise

approach (3). Ne again generate the V(x;) values by e successiYe

conditional methodr at first using only transformed indicator data for

conditioning, but Eradual ly replacing these nith previously generated

y(x) data. ue begin by (somehou) transforming the indicetors into a

univariate gaussien data set tu(x5), j = I to N]' having a standard

normal distribution G(u), a tendency to grade touard the contacts like a

nell behaved single gaussian realizationr ord a consistency uith the
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indicator data, so that u(x;))Yc if

The transformation might be done

variations to the approach.

82 An example of the ill effects
the next step is contained in
nrethod in Section 4.2.4.

i(x5)=1, and u(x;)(tc if i(x5)=0.

in several uays, il louing several

that could arise by not proceeding to
the discussion of a smooth "despiking"

For instance, ue might replace each indicator value i(x5) rith a

continuous variable it(x5) kriged from the other indicator values using

a model indicator semivariogram estimated from the indicetor data. Then

ue could rank the kriged values into tuo categories (depending on the

true indicators i(x5)) and apply the transformation of Isaaks (1984b),

urhich is provided in the description of method (4), to obtain the neut

data set tu(x;)] nith gaussian distribution G(u). The data u(x5) uould

then be consistent nith the indicator data and usually close to the

cutoff value in areas uhere both 20" e d ttlt' indicators occur. HoHever,

because the i*(x5)'s are generated bV a kriging, the r(x5) values

probably nould be too smooth to reproduce the desired semivariogram

model for the gaussian data, so another step probably uould be required

to get the conditioning data.82

Ne could perforn a stepnise-conditional generation of the

conditioning data y(x;), taking the locations xi in a random order. The

first valuer y(xr), is generated frorn the conditional distribution of

Y ( x r ) | i ( x r ) , r ( x 2 ) , u ( x 3 ) r . . . r H ( x n)

lhere the t(x) data are treated as though they uere previously generated

y(x) data, and i (xr ) is satisfied by acceptance-rejection. Then,

successively, lte generata y(xz) from

Y ( x e ) | v ( x 1 ) , i ( x 2 ) r t.| ( x 3 ) r !t ( x I ) , . . . , ]l ( x 6 )
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end so on to y(xn) generated from:

Y(x6) ly(xr ) 'y(xe), . . .,t(xn-r ) ' i 
(xn)

For a variation on this approach, ue could replace the kriging of

i*(x;) uith an average of the i(x5) data uithin a noving lindou (a

simpler approach, maybe just as good, and probabty not so smooth).83 Ne

could also add some noise to the ir(x5) before transforming them to the

n(x5) to roughen them UP, or smooth the i*(x5) rith a moving uindou

before transforming them to the n(x5), to tone them doun. This lay le

might achieve a semivariogram model for the r(x;)'s that nould look very

much I ike the desired model, in uhich case the arduous stepuise-

conditional method might be skipped.

Notice that, of the five approaches abover ohly methods (l) and (2)

are rigoFousr but they do not aeem practical for indicator data sets of

realistic size. If the number of conditioning data to be generated is

very laFg€r the approximations proPosed in methods (3) and (5) may be

impractical as uell, because of the matrix sizes involved in the

stepnise-conditional generation nethod. (The matrix size is not such I

problem if only a feu previously generated data lie Hithin the renge of

each ner value to be generated.) Because nany Practical situations can

be visualized in nhich a reelistic simulation of complicated contects

among different populations uould be considered crucial, the general

field of indicator sirnulation has to be considered ripe for research.

Better nethods for obtaining gaussian conditioning data are needed.

83 Essential ly the
ueight functions
Journel ( 1984d).

same approach, al I ouing nonuni form movinE-average
as uell as uniform "uindousz, has been suggested bv
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l.'lethods not dependent on gaussian simulationsr ihd thus able to

reproduce more highly parameterized shapes, are needed even nore.st

3.8.4 Conditioninq Continuous Data Nithin Populetions

ln theory, all regionalized variables have infinite spatial domainsr but

in nature this is never the case. Furthermore' natural regionalized

phenomena are seldom independent of their natural spatial boundaries.

For instancer uhless a geologic contact is a razor-sharp fault, the

rocks on either side of it usually exhibit some sort of systematic

behavior uith proximity to the contact. Usually this behavior cannot be

strictly reproduced in a conditional simulation simply by truncating the

simulation at the contactr unless a very good set of conditioning data

is availeble near the contact.

Several types of behavior near geologic contacts can

a completely gradational contact, the statistical

characteristics of one phenomenon grade smoothly into

This situation, common in sedimentary facies contacts,

Figure 63(a). Igneous intrusive contacts nore

systematic behavior that depends only on distance from

igneous rock mey become finer-grained and more

assimilated uall rock near the contact, and the uall

be imagined. In

and geological

those of another.

is illustrated in

commonl y exhibi t

the contact: the

contaminated by

rock may become

3r Davis (1985b) has proposed a matrix rnethod for indicator simulation
that is not based upon gaussian simuletions, but it is not
specifically designed to reproduce the nultivariate properties of the
data setr ahd it is subject to the usual size limitations of natrix
sinulations. Alsor nethods to generate unconditional sinulations of
tuo- and three-dimensional llarkov random-set processes nith a linite
number of states are described at length by Lin and Harbaugh (t9E4).
The properties of the process in tuo dinensions rere derived by
Suitzer (t965). The method produces nosaic-like realizations uith
linear or planar boundaries betleen tiles.
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more recrystallized and metasomatized near the igneous body. The

compositions of the tuo rocks may not appear gradationalr although they

may grade tonard each other, as in Figure 63(b). (ln this case, the

contact may appear completely gradational after a transfornation;

cf. Figures 55(a) and (d).) lf the contact is an erosion surfacer 8rV

of the situations in Figure 63(b)r (G)r oF (d) night occur.

Contact effects are not the only uays in uhich the compositions of

tuo adjacent rock types can be cross-correlated. For example, if a

shaly limestone is locally dolomitized after deposition, the contacts

betueen the t irnestone and dol omi te facies nay be sharp and

nongradational, but the amount of shale in the tuo facies may appeer as

a continuous regionalization, independent of the dolomitization. Then

the calcium contents of the limestone and dolomite uould also be cross-

correlated, oting to a constant-sum constreint' involving the shale, but

the calcium regional izations in the tuo PoPulations lould not be

continuous across the contacts.

If there are no geological reasons for suspecting a certain kind of

cross correlation or contact behavior, the data should nevertheless be

carefully explored to see if such effects may be present. Then three

questions arise:

fi) Are the continuous data statistical ly independent of their

positions ltith respect to the contacts? Such a dependency may eppear 8s

a local drift near the contact, uhioh rnight be modeled as a regression

vieting the regional ized variable as a response variable uith

distance-from-contact as a predictor. (This uould not be a linear

regression, as the effect of the contact could be expected to die out



(a)

(b)

(c)

(d)

Figure 63: Possible trends in regionalized data near poPulation
boundaries. In case (a), tuo populations uith very
different statistical properties grade into each other
across a contact. In cases (b) and (c)' the contact
is not gradational, but the tuo populations
nevertheless appear to be local ly statistical ly
dependent. In case (d), the tuo populetions are
independent, although one shous a relEtionship to the
eontact.
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gradually auay from the contact.) Another possible model lould be a

coregional ization betueen the regional ized variable and a rock-tyPe

indicator variable. An analysis of the data should reveal nhich model

is more appropriate.

(2) Are the continuous data in each population independent of the

data in the other populations? Although data in different PoPulations

may appear to be cross-correlated near the contacts, this night be

explained entirely by a "distance" or /indicator" effect of type (l).

Houever, populations separated by completely Eradational contacts, or

populations consiSting of "mineralized" and "UnmineraliZed" rock (e.9.,

the local l9 dolomitized I imestone described ebove) may be more reedily

modeled as spatial ly cross-correlated variables.

(3) In the case of a coregionalizetionr do all variables in a

population behave in the same Nay uith regard to questions (l) and (2)?

Although it is possible that not all variables uill shol obvious

dependencies, it is likely that any dependencies that Sle exist uill all

be of the same type: either dependence on contact proximity, or sPatial

cross correlation emong populations.

A preliminary analysis of the data to ansuer the three questions

abover 8s urell as a consideration of the geological origins of the

populations in question, should provide some clues to hou the observed

effects could be incorporated into a simulation. 0nce the population

boundaries have been fixed (possibly after a careful consideration of

these questions, particularly if indicator simulation is used),

simulation of the continuous phenomena inside them can utilize both the

available continuous data and the position of the contact (or the
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essociated indicator data) for conditioning. Furthermore, i f one

population is simulated before enother, the sirnulated data from one

population can be used to condition the simulation of another rith rhich

it is correlated, although simultaneous simulations via a combined

linear model night be preferable. Some sl ternative procedures {or

different situations are described belon.

Before ue can determine rhether a natural regionelized phenomenon is

dependent in some uay on the proximity of a contactr H€ must knou the

contact's location. If the contact is uell behaved -- i.e.' if it is

deterministic or at least predictable uithin e small estimation error --

then ue can easily find the shortest ("vertical") distance betneen each

data point and the contact. A scattergram of values of the regionalized

data versus their distances from the contact should reveal any trend

that may exist in the local mean. Then the simplest uay to nodel the

effect is to fit a smooth curve to the trend (generallv e curye uhose

slope decreases in absolute value uith increasing distance fron the

contact, like a spherical semivariogram curve) and regard the residuals

as samples fron a stationary regional ized varisble. Subsequent

semivariogram nodeling and conditioning should be performed using these

residuals. (The residuals should be inspected carefully, as a trend may

exist in the local variances of the data as rell as in their means. A

further transformation to stabilize the variance nay be needed.) In a

sedimentary deposit rith a pervasive vertical drift that extends through

the uhole thickness of the deposit, the local drift near the contact may

be model ed together ri th the overal I dri f t. (l,lethods f or simul ati ng

vertical drifts are discussed in Section 3.10.4.)
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lf the contacts eppear to be convolutedr oF if their true locations

are very poorly knoun, any effect on a regionalized variable that

results fron proximity to contacts uill have to be modeled using only

the knoun indicator data. Some tyPe o{ contact effect involving the

boundary betueen tuo populations should be suspected if there is any

structure in the sample noncentered cross covarioDC€r

N(h)
NCC*a;(h) = n/N(Ml [tz(x5)i(x5+h)lj=l

betureen the continuous data z(x;) uithin one population and the

indicator data i(x;) of both populations. (Notation is analogous to

that in Section 3.1.3.) Notice that the sample cross semivariogromr

N(h)
?t=i(h) = [ l/(2N(h))l IttzCxi)-z(x;+h) lti(x;)-i(x;+h)l]

j=l

trould be meaningless in such a case, because the first difference

lz(x)-z(x+h)lr for z(x) defined in a given populationr exists only uhere

the second difference Ii(x)-i(x+h)l is zero. The centered covariance,

c*a;(h) = NCCr:i(h) - |ni:trlri

is of questionable value as uell, because the mean nr3 of the z(x) data

applies to only part of the domain, and the mean nr; of the indicator

data is probably nonstationary (certainly nonstationary if the domain is

smal | ). Fortunately, a noncentered covariance can be used in a

cokriging system, so the procedure for modeling a contact e{{ect using

indicator data is to simulate a etationary z"(x) uithin the donain of

interest and use cokriging uith the knorn indicator data (or even

better, ltith previously simulated indicator data knoun everyuhere) to

condition the simulation. Although more difficult to visualize than the
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local-drift nodel of the previous Paragraph, an indicator approach to

contact effects might be more realistic in complicated situations lhere

rocks from one population ere surrounded by several nasses of material

from another population. In such a Gis€r a reliance on the distence to

the nearest contact (if knoun) as a predictor lould tend to ignore the

likely effects of other nearby contacts. Cokriging rith indicator data

uould al lor.r the proximity of al I nearby materials to be taken into

account.

To check uhether the continuous data of tuo Populations are cross-

correlatedr u€ tnust again calculate sanple noncentered cross covariances

instead of variogr8msr because tuo variables zr(x) and zz(x) defined on

disjoint spatial domains have no cross variogram. If the cross

covariances shott some structure, tuo approaches are possible:

(l) simulation of each variable independently, using cokriging to

condition each simulation, or preferably (2) simulation of both

variabtes simultaneously es e coregionalization, aoain using cokriging

for conditioning. Cokriging is necessary in both c8s€3r because the

data coverage for each variable contains large gaps corresponding to the

disjoint donain of the other variable. Hence data near the contacts

urould not be properly conditioned using only ordinary kriging. lf the

variables are simulated independently, conditioning might be done

sequentially, using the conditionally simulated data from one population

to condition the other.

lf tuo populations are believed to be completely gradationalr end the

difference betueen them is primarily a difference in the mean, the

contact region can be simulated in either of tr.ro ltays: (l) es a local
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driftr or (2) as a single stationary phenomenonr conditioned by data

from both popul ations. The first approaoh probably requires feuer

conditioning data. The easiest ray to use nethod (l) is to estimate the

drift from local averages' by universal krigitlgr ot' (suboptimallyes) by

trend-surtace techniques (Davis, 1973, pp. 322-358). If residuals frorn

the drift are statiororgr the drift can simply be subtracted out; then

the simulation can proceed using the residuals instead of the original

data.86 If the variogram of the residuals is not stationrryr the next

paragraph may offer a lay out. To use method (2) $e should break the

data set into tuo stationary populations, leaving out the transition

2oh€r and estinate the variogram separately !rithin each population. The

method should nork uell if the inferred semiveriogram models are the

ermer or cl ose enough to be pool ed together ri th l i ttl e l oss of

accuracy. l.le then perform a single unconditional simulation over the

combined domain of both populations using the pooled semivariogram

model. The transitional behavior is imposed by conditioning.

If there is e difference in the varioqrams of the data in tuo

gradational populations, an approxinate solution, nhich nodels the

transition zone as a ueighted average of the tno regionalizations, may

still be available, An example is provided in Figure 64. First ue

should remove any trend in the nean of the tuo populations by method (l)

above. Then ue calculate semiveriogram models for three disjoint

domainsr the "left" population (in Figure 64), the transition zolr€r and

The trend-surface fitting technique assumes that residuels from the
fitted surface are uncorrelated. This is not usually the case.

Houeyer, the first oase study of Chapter 4 (particularlr Section
4.1.3.5) illustrates a difficulty that can develop uhen using
normalizing transformations in the presence of drifts.

85

86



308

the ,,right', population. If the semivariogram uithin the transition zone

(uhich presumably is not stationary) appears like a nixture of the left

and right semivariogramsr t.te can proceed rlith the simulation.

First ue sinulate unconditional realizations from the semivariogram

models of each population. Eech simulation domain should cover the

domain of the corresponding population' fu the domain of the

transition zoner so the tuo realizations overlap. Non pe find e linear

combination of the left and right semivariograms that looks reasonably

like the calculated sample semivariogram of the transition zone. This

model should be roughly appropriate for the central part of the

transition zone (the "contact"r if ue had to pick a sharp one). ble then

construct a sinole unconditional simulation of the uhole phenonenon as

follous. At the center of the transition Zoher ue average the tto

unconditional simulations according to e linear model derived from the

coefficients of the combined semivariograns, deterrnined above. At the

contact betueen the stationary left population and the transition zone'

ue apply a coefficient of "l" to the simulation of the left PoPulation,

'rg" lo the sirnulation of the right population. At the contact betueen

the right population and the transition zone, these coefficients are

reversed. At all other points rithin the transition zone, linear

combinations interpolated betueen the central cornbination and the tuo

endpoints are used, as shoun in Figure 64. Finally, the simuletion is

conditioned using ordinary kriging uithin the tuo ttpurE" populations,

using the respective semivariograms of those populations, and including

a fer bordering data from the transition zone. Nithin the transition

zoh€r kriging can be performed using the nested model derived earl ier,



Transition ZoneLeft Population R,ight Popul ation

Plots of
Real izetions
(mean trend
renoved )

Semi var i ogrems

Coefficients
of Left N(0,1)
Sinulation

0

Coefficients
,n of Right N(0,t)rLA Simul ation

"contact"(-----) (-----)
DL DR

(--) (--)
dl dr

Note r commonly,
DL = DR.

Figure 64: Unconditional simulation of a transition zone betueen
turo populations uith different variograms. The left
and right unconditional simulations (standardized to
sills of l) are combined uithin the transition zone
according to these fornulas:

At "contactt: ooefficient of left sinulation = AL
coefficient of right sinrulation = AR

Left of contact: coefficient of
= ldl/DLIAL +

left sinulation
t (oL-dr )/DLhr(cL)

right simulationcoefficient
= ldl./DLIAR

coefficient
= [drlDRIAL

of

Right of contact: of left simulation

coefficient of
= [drlDRIAR + I

right simulation
( oR-dr )/oR lJ ( cR)
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or (r,tith rnore dif f icul ty) using a nrodel

across the zone.

that progressively changes

The method can be simplified at the unconditional-sinulation stage by

naking a direct interpolation betueen the simulations of the tuo

populations instead of norking through the model derived from the

transition zone. This may be necessary if there are too feu data in the

transition zone to provide a good sample variogram. 0theruise, the use

of the central point should provide a better simulation of the

transitional phenomenon. This nethod could be extended to unconditional

simulations of phenomena that have only local ly stationary ("quasi-

stationary,,) variograms. Ne uould first break up the simulation domain

into quasi-stationary regions and perforn an unconditional simulation

nithin each region, overlapping large areas of adjacent regions. Ne

uould the.n simulate the transitional areas betueen regions in the manner

described above.

3.9 ApPLICATI0NS E CoN0ITIoNAL SIIlULATI0N J! t'IINING AN0 l'IINERAL
PROCESSI NG

Ne can be thankful that the pure beauty of mathematics is part
of our life experience, but ue must remember that our ProPer
place is on the mainland of "doing." tS. C. Florman, J.E
Existential Pleasures g[ Enqineerinq' Chapter ltl

3.9. I llininq Appl ications

Since its development in the early 1970'sr conditional simulation has

been applied nost frequently to the design of rnining systems. The

general approach has al ready been described in the introductory

paraEraphs of Section 3.1.7. Briefly, the idea is to try out various



3tl

simul eted mining procedures on a simul ated mineral deposi t; the

procedures that perform favorably ere then considered for installation

in the actual mine. The closer the simulated mineral dePosit and

simulated mining systems come to the ectual situation that nould be

encountered in the real mine, the more confidence ue can place in the

simulated results. If either the conditional simulation of the deposit

or the mining simulation is unrealistic, the results uill be of little

val ue. Interestingly, the recent publ ished I iterature on appl ied

conditional simulation in mining seems to duell nore on the development

of realistic mining rnodels than on the creation of more realistic

conditional simulations of nineral deposits. The emphasis in this

dissertation is just the opposite: nining simulations are covered only

briefly in this section, and only very sinple simulations are attempted

in the case study of Section 4.2.

Itany extended exanples of conditional simulations applied to mining

problems have appeared in the literature. Yery brief guides to the

early literature are presented by Journel(1980' pP. 9E-10E) and by

Journel and Huijbregts (1978, pp. 545-554)i a more lengthV description

of an irnportant early application by Oeraisme (19?7)r similar in some

respects to the study presented in Section 4.2' is contained in each of

those revieus. Several more recent appl ications are described by

Deraisme and Dumay (1981), Dereisme and l'larbeau (t983)r thd Deraisme and

de Fouquet (19S4). tlining-simulation programs commonly are interactive,

utilizing graphical displays to enable a human operator to control the

progress of the simulated rnining operation. 0f course, human

interventions render a mining sinulation irreproducible and in a sense
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I ess easi I y comparabl e r.ri th simul ations of other al ternatives, because

the effects of human and preprogramned factors are confounded. lloueYer'

such simulations are usually nore realistic, inasmuch as real nining

operetions are never ful I y automated. Furthermore, Bome of the

inportant factors that nust be considered during the development of a

real nine (draihdger torkirg Foohr noise, traffic flon' etc.) may not be

easily reduced to a set of programmable instructions.

l,lining simulations nay be designed to ansuer a variety of practical

questions about the interaction betueen mining procedures and the

spatial distribution of ore grades nithin a mineral deposit. A common

problem, addressed in the case study of Section 4.2r is the selection of

e rnining procedure that uill somehor minimize the variability of ore

grades delivered to a processing plant, lJhile satisfying constreints on

product qualitv. If the compositional variability of the delivered ore

can be cheaply reduced by a simple change in mining procedures, it may

be possible to sirnpl ify or reduce the caPacity of the plant's

homogenization systems, described in Section 2.2.2 and 2.2.3.

Characteristics of the mining procedure that might affect variabilitv

include: the dimensions and orientations of mining blocks; the number

of blocks being rnined and blended together; the possible use of blast-

hole or core-drill information to select the blocks to be blended; the

possibility of splitting some heterogeneous blocks into ore and uaste

subbl ocks; and the possibi I i ty of routing mined ore to di fferent

stockpiles having different chemical qual ities end subsequently

proportioning the outputs of these stockpiles to achieve an overall

qual ity aim.
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Conditional simulations can also be used to study the effects of the

spatial distributions and sizes of high- end lou-grade areas on the

total recoverable reserves of a deposit that is being mined selectively;

to study the effects of dilution at contacts betueen rock tyPes

(Section 3.10.2) by conditionally sirnulating the contact and the rock

compositions on either side of it (Section 3.E)' and then simulating a

mining operation recovering ore from the vicinity of the contact; and to

study the effectiveness of various estirnation procedures on the

prediction of local ore grades and of recoverable reserves.

3.9.2 llineral-Processinq Applications

Any resemblance betueen prospect data and actual plant feed is
coincidental.
The design everrge is that statistical point through rhich a

value most frequently passes uhen going from one extreme to
the other.
Remember, i{ it cen' it uill. lf it cannot, it might.
lselections fron "Raulerson's Rules for the Design of l'lineral
Beneficiation Plants", by John Raulerson, Jt.., as quoted in
mininq Enoineerinq, llarch 1985, p.2071

3.9.2.1 Design of Homogenization Facilities

The most important and most difficult feature to specifv is
the size of the stockpile required to echieve the required
reduction in material variabi I ity betteen successive
stockpiles. If the design is insufficiently precise then the
stockpiles must be made extra large for safety, causing
excessive cost. lParnaby et al.' 1973, p. 3251

The output of a nine (or of a mining simulation operating on a simulated

mineral deposit) is a time series of (possibly multivariate) ore grades

and ore tonnages. Stockpile homogenization systems (Section 2.2.2. l)

are designed to filter out some of the variability in this tine series.

To a close approximation (explained belon), the effect of a stockpile
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prehomogenizer can be concisely expressed, in geostatistical terms, as a

regularization (Section 3.1.6) of the time series. (If this is not

apparentr a euick reviel of Figures 2 and 3 should make it so.) lf the

mine-output time series uere stationary and observable over e long

period of time, the effectiveness of any homogenizer could be calculated

straightforgardly from the variogram of the time seriesr using the

formulas for dispersion variance and regularization provided in Sections

3. .|.5 and 3. 1.5. Ho[ever, because actual observed or simul ated mine-

output time series conmonly do not exhibit stationarity and ergodicity'

it is usually safer, and perhaps easier as uell, to study the effects o{

various homogenization systems experinental ly, by calculating simple

noving eyerages of the time series data using several different lengths

(spans) for the uniform moving-aversge teight funotion.

If both tonnage and grade time series are availsble, the moving

average rnight be calculated oyer the tine series of accunulations

(tonnage x grade)r ot^ the tirne series might be converted to a "tonnage

series", in uhich grade is expressed as a function of the curnulative

tonnage of ore del ivered to the stockPi le. The tonnage-series

representation is the correct choice if the stacker is designed to stack

a constant tonnage per unit length along the axis of the stockpile (a

good idea anynay). This is the only approaeh available in a simulation

studyr uhless one is prepared to simulate a time series of both tonnages

and grades delivered to the stockpile. A detailed simuleted time series

of tonnages uould involve sone modeling of the hauling and crushing

systemsr oF reliance on historical tonnage data.8? This level of detail

8? The important uord
of Section 4.2.5,

in this sentence is "detailed". In the case study
a time series of tonnages jS simulated uithout the
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is not justified in most simulation studies o{ homogenization systens,

uhere the main parameter of interest is the size of the pile. The rate

at lhich the pile is built is of little or no relevance in determining

pi le sizes.

The principal objective of a homogenization system is to reduce the

variability D2(q./L) of a rar naterial to be used in the plant. The

support nq" is a "criticel sampling quantity" (Schofield, 19E0, p. 7E)

that is actually deternined by the sampling system and quality-control

objectives of the plant, but in this discussion it is more convenient to

identify q uith the emount of material contained in one "sl ice"

recovered from the face of the stockpile by a reclaiming device. Some

reclaimersr such as bucket uheelsr nove cyclically back and forth across

the face of the pile' so that a slice can be lell defined as the

material reclaimed from the pile during a single cycle. Some more

elaborate reclaimers attempt to recoyer material from the lhole face

simultaneously and continuously, so that the definition of a slice may

become arbitrary. The support "L" nay be taken to be t'on if the plant

operates continuously for a long period of time, or it may be some

finite tonnage of naterial if the plant uorks on a "batch" basis. (For

example, in a cenent plant, t'L" may represent the total amount of rau

naterial consumed by the plant during a "runo of a Particular type of

clinker.) Nhatever the caser ohce the quantities Q and L are defined,

the stockpile's efficiency cen be measured in terms of the variance

ratio D2(Qo/L)/D2(qi/L)t there Qi represents a continuous segment of the

need of any information on
is on a pile-to-pile scale.
the time series contains
blocks, and the recoverable

the hauling and crushing systems, but it
In that simulation, each pile of ore in

output fron the seme number of mining
reserves of the blocks are not constant.
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stockpile input stream containing a tonnage Q of materialr end Qo

represents a similar segment of the output stream {rom the stockpile.

Each variance can be decomposed into "slice" and "pile" terms, i.€.'
pz (e.zL) = D2 (q/P) + D2 (P/L)

uhere "P" is the amount of material contained in a full stockpile. A

stockpile homogenizer of a given capacity is oble to reduce only

D2(Qo/P), the sl ice-to-sl ice output variabil ity from an individual pile.

D2(PolL), the pile-to-pile output variability, remains equal to

0a(e;zL). Houever, De(PilL) = D2(PolL) can be decreased by increasing

the size of the pi I e or by somehou decreasing the I arge-scal e

variabilitv of the input tine seriesr e.9., by selective niningr or by

blending mined materials from several faces into each pile. (Al I of

these methods for reducing D2(P/L) are simulated in Section 4.2.5.)

The effect of a stockpile homogenizer can be represented exactly as e

regularization if D2(q/P) can be reduced to zero,88 i.e., if the

material xithin the stockpile has been completelv honogenized. In

theory this coul d be accompl ished by bui lding up the pi I e from a

practical ly infinite nunber of very thin layers. In practice this

variance never vanishes and does not usually decrease noticeably beyond

about 100 layers (Gy, t98l), because the varying compositions of the

individual particles contained in the slices uill alrays cause different

slices to differ in composition, no natter hou nany end hou thin the

layers. This variabi I ity at the particle sctle corresponds to Gy's

(1982) "constitution and distribution heterogeneitiesz and comprises a

88 In the unlikely case that simulated data are available on a smaller
support than Q, ue uould have to reduce Dz(datazP) to zero to have a
rigorously defined regularization; houever, the conponent D2(datazQ)
of this variance is probably of no practical importance.
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large part of the nugget effect observed in the input variogran of a

real (not sinulated) stockpile-input time series. It can be reduced

only by increasing Q or decreasing the particle size uithin Q; otheruise

this nugget constant persists in the output variogram uhereas all other

variation contained uithin D2(qo./P) can be effectively eliminated.se A

reduction in particle size is accomplished in the mill, but only after

the individual slices have already been recoveredr so it does not affect

gz(qozp). Houeverr if the milt has a large enough capacity to mix

several slices of material together, or if the plant has a pouder

homogenization silo (Section 2.2.3), the output from the total

stockpile-mill-silo system may have very nearly a zero D2(qo/P). In any

case D2(eo./P) is very small in comparison to galq;zP) for a nany-layered

pile, so the vien of homogenization as a regularization involves very

little approximation in most plants.

In a simulation studyr re c8h normally assume that the stockpile uill

be built of a suf f icient number of layers to nake gz(qo,zP) srnal I in

comparison to 02(P/L, and insignificant after grinding and pouder

homogenization. Then the only influences on 9:(qozL) that must be

considered are those involving D2(P/L)r (l) the size of the pile, lhich

in a simulation is represented by the span of the moving-average ueight

function applied to the input time seriesr and (2) the nining methods,

the important features of r.rhich presunably are embodied in the mining

simulation (Section 3.9. l). A simulation study of alternative stockpile

homogenization systems is thus reduced to a mere smoothing of the

outputs of various mining simulations using moving-average smoothers of

8e A convincing
conducted in a

pl ant-scal e
French cement

experinrental study of these effects'
plant, is described by Gy (1981).
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various spans. The resulting sanple values of D2(qo/L) are then

compared uith the value needed for acceptable plant performance.eo The

smallest (cheapest) pile that seems assured of producing an acceptably

smooth output is the one chosen for installation. Batch and continuous

piles (Figures 2 and 3) uith the same active capecityrt are represented

by the same ueight function. The only difference is that in a

continuous system, the xeight function sl ides over the time series

continuousl y (point to point in a discrete simul ation) Bs in

Figure 3(c), lhereas in a batch system it jumps from one pile-sized

increment to another, attributing the average sithin the input increment

to al I sl ices ui thin the corresponding output increnentr is in

Figure 2(b). Thus ue have a straightforuard procedure for specifying

the size required for a homogenization stockpile; the "nost important

and most difficult" problem posed in the quotation at the beginning of

this section can be easily solved if re have reliable mine-output time-

series simul ations.

Ne cannot specify the sizes of mil ls and pouder homogenizetion

facil ities in this uay. These facil ities should be sized to handle

variability on a particulate scale and variability that nay be created

by segregation in the stockpile reclaiming system or in the mill itself.

These sources of variability might be modeled separately in e

e0 criteria other than dispersion yariance may be selected. ln the case
study of Section 4.2, the mean absolute difference betreen successive
pile compositions (easily obtainable only by sinulation) is used as a
criterion (Section 4.2.5.3).

et The circular stockpile shonn in Figure 3 has the seme /active
capacity" as a linear pile of the same size only if the stacker is
stacking over the uhole length of the pile. If part of the pile is
just dead storage xaiting to be reclaimed, the efficiency of the pile
is reduced.
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comprehensive plant engineering study, but no useful information at this

scale is available in the simulated time-series data obtained by the

methods described here. 0f course, direct measurements of short-scale

variability can be obtained after the plant is built and in production

(or night be obtained from a similar plant built previously that uses

similar materials) and certainly should be obtained if e pouder

homogenization systen is to be designed for installation in an existing

p I ant. l'lethods f or col lecting data on short-scale veriabi I ity,

primarily for the design of sampling and control systems but applicable

to short-scale homogenization systems as uell, are described by Cy

(1982, Chapters 6 and l4). An example of the use of those methods to

illustrate the effects of segregation by a bucket-uheel reclaimer is

provided by Gy (lgEl).

3.9.2.2 Design of Proportioning Faci I i ties

If time-series realizations (real or simulated) ere available for all
(or at least alI "yariable") rau materials to be used by a plant,

valuable information can be gained on the degree of flexibility that

should be built into the plant's proportioning facilities. The

solutions to deterministic long-tern proportioning problems (the "mix-

design" problems of Section 2.3.2) provide only an impression of the

"typical" amount of each ran naterial that uill be required by the

plant. If chemical qual ity specif icetions are tight end some of the rar.r

materials are variable in composition, the actual day-to-day or even

year-to-year rau-material proportions that the plant lill require may

depart severely from the deterministic solution.
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To assess hou serious these departures r,ri I I be, He can appl y the

qual ity-control proportioning algorithm (or rnaybe several al ternative

algorithms) to be used in the plant to the time-series mine-output data

and observe experimentally hou much the nix proportions lill vory lron

time to time. In this application the time-series data must first be

expressed as "tonnage series" (described in the preceding section),

because the rate at nhich each naterial is consumed pill Yary according

to the instructions provided by the proportioning algorithm. The nost

important results to be collected from such a study probably are the

ranqes in mix proportions calculated for each rau material (Figure 65).

The maximum proportions suggest hou much storage and feeder caPacity

should be installed {or each material. The rninimum proportions suggest

Hhether lacilities should be available to measure out very snall

quantities of some materials, and nhether some sources of rau naterials

nay not be used at al I from time to tine.

l'lining and proportioning sirnulations nay be carried out

sirnuttaneously, incorporating feedback and feedforuard control loops

(Section 2.2.2.3) betueen the proportioning algorithm and the mine(s)'

in the manner depicted in Figure 6. Simulated oblast-hole data"

extracted frorn the conditional sinulations of the various rau naterials,

in conbination nith real csre-drill data, might be used to obtain

simulated estimates (possibly by kriging) for feedforuard controlr aod

the current and past simulated tonnage-series dats encountered by the

proportioning algorithm could be used for feedback control. "Control"

might amount to nothing more than changes in mix Proportions in the

plantr 8s depicted in Figure 6r but it might also incorporate an
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Figure 65: The usage of simulated tonnage-series data to assess
variability in mix proportions. In this imaginarv
example, three rau materials (A' B, and C) are being
proportioned to obtain successive equal-sized batches
of rnix uith a constant target mix composition. As the
rau materials vary in composition, the proPortions
also change (broken dotted line). Proportioning and
storage facilities must be {lexible enough to
accommodate the long-run extremes in mix ProPortions
represented by the dashed I ines and the short-run
changes in proportions indicated by the dotted line.

oto

,ixn
AI

C.,

s'o

engineer's decision to change

mines. An integrated nining

years' nininE operations might

engineer and a quality-control

uorking faces in one of the simulated

and proportioning sinulation of several

be performed interactively by a mining

supervisor in a fer days' tine.
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No proportioning simulations are included in the tuo case studies of

Chapter 4, as only data sets fron single rau materials uere available.

(Houever, in both case studies these single rau materials are so

variable that proportioning the outputs from different parts of the same

nine lould be a thinkable option.) Data sets ol sufficient size and

quality for a geostatistical study currently are a rerity in the cement

industry, even for single rau naterials. Drilling data adequate for

reliable conditional simulations of all materials being used by a plant

may not exist anyuhere at this time. Neverthelessr Oeraisme and Dumay

(.|961, Annexe B) have performed a multi-material proportioning study

using data from a French cement plant. (This study is briefly reported

in English by Deraisme and de Fouquet, 1984.) In that study, drilling

data adequate for a conditional sirnulation uere available for only one

of the four materials being used. The other naterials tere assumed to

be constant in composition. The four materials tere being stacked onto

a common blending stockpile, nith an attempt being nade to meet a target

calcium concentration in the pile uhile respectinE a maxinum magnesium

constraint and a target pile size. The high magnesium content o{ the

principal (sirnulated) linestone commonly required the addition of a

large amount of expensive purchased high-calcium limestone. Four nrining

simulations uere performed on the principal limestone deposit: one

representing actual mine practice, and three others using kriging to

estinate block contents before niningr erd using three different

orientations for the nining blocks. The first sinulation faithful ly

reproduced plant experienGBr uhereas the inproved control afforded by

the kriged estimates enabled the sirnulated proportioning operation to

decrease its average consumption of the expensive limestone.
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3.IO SOI'lE SPECIAL PROBLET'IS

3. 10.1 Identifvinq l'lultiple Populations

Section 3.E suggests some methods for conditional ly simulating the

locations and compositions of multiple rock types occurring uithin the

simulation domain. These methods presupPose that the rock tyPes have

already been distinguished in the conditioning data. For example, in

the case study of Section 4.2, the limestone and dolostone Populations

lere visually identified in the drill cores by a field geologist before

the sampling and analysis of the cores uere performed. But in many data

sets no classification has been made g-gfj-qi, and indeed a meaningful

classification not based on the chemical data is not aluays possible.

Then the chemical analyses should be examined to see lhether the

existence of multiple populetions is indicated. If only one or tuo

variables are of interest, the examination can be done graphically.

Histograms (one variable) or scattergrems (tuo variables) of the data

may reyeal rhether natural groupings of data values exist' if they can

be distinguished nithout reference to their locations.

Spatial groupings of data values may also be present even though no

clusters appear on histograms or scatterjrams, if the compositions of

the spatial groups extensively overlap. These groups may be revealed on

contour naps or cross sections as zones uith different contour levels or

patterns. (In the case of multivariate data, some function ol the data,

such as a principal component, might be rnepped. ) It is good practice to

plot mapsr cross sections, histogrems' and e veriety of bivariate

scattergrams to examine the data for unsuspected clusters or trends.
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Discernment of multiple poPulations can be difficult in a high-

dimensional nul tivariate data set. Trivariate scattergrems can be

rotated and examined from di fferent angl es on conputer graphics

terminals, and split-screen displays of several multicolored trivariate

scattergrams have proven useful in the examination of data sets lith

more than three dimensions (l'lcDonald, 1982). In addition to graphicel

nethods, nany nunerical nethods for identifying groups rithin

mul tivariate data sets, col lectively cal led "cluster analysis", have

appeared during the past turenty years. These are lel I described by

Everitt (.|9E0), Gordon (1981), and Hand (1981, Chapter 7). The class

memberships assigned by any of these exploratory rnethods must be

examined careful ly, especial ly in the case of spatial ly distributed

data. A useful approach is to plot maps and cross sections denoting the

locations of samples assigned to different clusters rith different

symbols or colors. These plots can then be examined to see uhether the

spatial distribution of clusters nakes geological sense.

Location or contiguity of data can be built into a olassification

system so that samples uill tend to be lumped into spatially compact

groups. Some methods, called "constrained classification", that achieve

this are revieued by Gordon (l9El, p.5l). llethods particularly

applicable to geological data sets have been presented by l{ebster and

Burrough (1972re2, uho are concerned uith soil classification and

nrapping, and by Sinding-Larsen (1975), rho is concerned uith subdividing

e region into geochernical ly honogeneous ereas identified by soi I

e2 This paper is summarized by ilarriott (t974, pp. 85-89).
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cl assi fying remote-sensing

3. 10.2 Dilution o{ 0re Grades Durinq t'lininq

,'Dilution,, is a mining term meaning the contamination of mined ore by

uaste or off-grade materials. Typical lv di lution occurs then mining

activities accidentally uander ecross an ore-reste contact and a smell

amount of taste material is incorporated into the recovered oF€r

,,diluting', its grade. The effects of this kind of dilution on the time

(or tonnage) series of ore grades delivered to a processing facility can

be studied by simulationr pfoyided that the ore grades in question have

been simulated in both ore and raste populations (unless the grades 8re

effectively zero in one of the populations)r ahd provided that the

locations of ore and uaste uithin the simulation domain have also been

simulated. llethods for performing simulations of multiple populations

are discussed in Section 3.E. Simulated mining procedures can be

applied to a multiple-population conditional simulation to observe lhat

happens if ore recovery is not perfectly con{ined nithin the boundaries

of the ore body. Sone examples are provided by the mining simulations

of Section 4.2.5. l, in uhich the I imestone ore is contaminated bv

dolostone in amounts varying rith the degree of selectivitv of the

mining procedure.

In surface mines, dilution by incompletely stripped overburden nay be

an important source of contamination of the ore. For instance, cl ay

caught in small solution cavities near the surface of a high-grade

limestone deposit may oontribute most of the variebility observed in the
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delivered limestone grades. The effects of this kind of dilution are

more difficult to reproduce in a simulation, as the amount of overburden

recovered depends not only on the nature of the bedrock surface but also

on the effectiyeness of the stripping operation, uhich is difficult to

model. In some cases a comparison of historical delivered ore grades

rith simulated grades of clean ore mined from the same erea mey Permit

estimation of the statistical properties of overburden contamination

experienced in the past. For a neu nine, one lould simply have to make

,rreasonable assumptions" or rely on experience from similar operations.

In limestones and other rocks subject to the development of solution

features, overburden nay contaminate the ore not only at the bedrock

surface but also pithin cavities and along joint surfaces throughout the

deposit. Assessnent of the extent of this kind of contamination cannot

be made directly usinE only core-drilling records, as the unconsolidated

clays and other naterials filling the cavities usually are lashed out of

the rock during drilling. Serious underestimation of the amount and

variability of such contamination is probably the most connon reeson for

disappointment in the qual ity of neuly opened I imestone deposits.

(Commonlv the responsible geologist's reputation becomes as soiled as

the rar materials.) ln some caS€sr a better impression of the average

composition of a clay-contaminated deposit can be obtained from chip

samples taken {rom a percussion drill than from core-drill samples.

lf the rock is riddled uith fairly nide cavities that produce gaps in

drill-core recoveryr er1 upper limit on the amount of clay in the rock

can be obtained during core dri I I ing by careful I y recording the

percentage of core recovery at regular intervals doun each hole.
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l'tissing core footage may correspond to cavities (open or clay-filled),

very soft or broken-up rock, or accidental grinding up of the core

during drilling. Usually the driller knous hou nuch of the missing

footage is ettributable to cavities. Core recovery (or percentage of

cavities) can be treated as a regionalized variable and estimated or

simulated pith the techniques described previously in this chapter. If

core-recovery data ere compi led from several successive dri I I ing

programs, or possibly even from nore than one dritler or rig, the data

from di fferent sources shoul d be compared careful I y, as di fferent

equipment or personnel may have di fferent degrees of success in

recovering core from zproblem" materials. (For exanpler core recovery

data lere available from both of the drilling programs contributing to

the data set used in the case study of Section 4.2, but the recovery

tended to be better in the second program. Recovery data Here not used

in the case study.) As the support (core length) for rhich recovery is

recorded decreases, the core reqovery tends to look more I ike an

indicator variable (much like the percentage of dolostone simulated in

Section 4.2).

Normally some hypothesis nill have to be nade regarding the amount of

cevity spaee that is occupied bV clay. Furthernore, samples of clay

from the cavities may be feu or nonexistentr so a further hypothesis on

clay composition and variability is usually needed es uell. (Subjective

judgements of clay qualities and compositions night be incorporated via

"soft kriging" (Journel, 1984e) or a similar approach.) Houeverr €veh

uith these uncertainties a geostatistical vieu of clay contanination is

still likely to yield a better ultimate impression of the effects of



328

contamination on the qualitv of the delivered ore than the simple

application of totally subjective dilution factors to all results.

Clay contamination may be confined to sharply defined tabular "seams"

occupying solution-uidened joints or fracture zoh€sr nith ride

intervening volumes of uncontaminated rock. In this si tuation a

regionalized-variabte model of the contamination nay not seem realistic.

Then direct simulation of the locations' orientations' and thicknesses

of the seams may be preferable to simulation via core reoovery. A

straightforuard, though sirnplisticr llsY to do this is to drau the dips,

azimuths, trace lengths, thicknesses, and possibly depths of the seams

randomly from their estimated (possibly ioint) probability distributions

(subjective, or from data), firing the location of the center of each

seam in space by simulation of a spatial point pFocossr such as a

Poisson process (e.g. r using nethods described by Diggle, l9E3'

Chapter 4).e3 ,,Gonditioning" to a fen knoun seams cen be acconplished

rith little bias just by entering the knoun properties of the knoun

seems directly into the simulated data set, drauing any unknoun

properties from their estimated distributions in the usual lley. Seams

can be kept out of areas rhere they are knoun not to occur simply by

acceptance-re jection. This simple l'lonte Carlo rnethod uil I not reproduce

any spatial correlations in seam properties that might be evident from

the data or f rom f ield observations. l{ethods f or simulating spatial lv

correlated fracture properties by spectral means ere reported by l'liller

and Borgman (1985). Their method does not, ss stated, admit the

e3 The nethod described by Lin and Harbaugh
pl anes in three dirnensions might al so
described briefly at the end of Section

(19E4) for generating random
be used. This method is

3.3. 1.3.
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simulation of cross correlations, but extensions of the nethod to do

this are under development. Presumably space-domain simulations of

these properties could be performed as xell.

3. 10.3 l'lixinq gpg[ Seoreqation Ourinq I'linino and Processino

llixing and segregation of broken ore must be modeled, if at all, at the

rnining-simulation stage. Normally these effects occur on such a small

scale in comparison to the scale of the simuletion (small even conpared

to the density of discretization of the simulation donain) that they

nould not be observable in the simulation output anyray. For instance,

several nethods night be employed to recover a pile of broken ore

blasted doun from a given nining block. Each method lould mix or

segregate the ore from different parts of the pile, or from different

size fractions of the pile' to some degree. But unless the nining block

in question is lerge indeed or the simulation is performed on a very

small support (dense discretization)r ort, attempt to model the grades of

the broken ore on this scale uould push the conditional simulation uell

beyond i ts intended eccuracy. Discretization errors commi tted by

representing the block as a finite set of discrete points uould likely

exceed the errors comrnitted by ignoring the mixing and segregation

involved in nining out the block.

The scale at thich the time-series output o{ e mining simulqtion can

be useful is similarly limited by the effective aupport of the simulated

time-series data. Even if the ectual minerel deposit could be neatly

mined out in a sequence of small parcels of ore corresponding to
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individual simulated dataer, each datum uould probablv still represent

several tons of ore. Bv the time each parcel of ore had passed through

the rnining, crushing, and conveying systems that rould carry it to the

plant, it uould probably have been mixed uith several other parcels.

Thus the support at uhich simuleted time-series data could be used for

plant studies could certainly be no snaller than the discretization

support of the conditional simulation, or this support stretched out

according to the residence-time distributions of the miningr ct'ushihgr

and handling systems. This means that questions about the very short-

scale behavior of the actual tirne series in the plant cannot be ansuered

using the output of a nining simuletion appl ied to a conditional ly

simulated mineral dePosit. This is just asking too nuch of the

simul ation. Questions that g-g-e be ansuered are those that involve

supports at the scale of mining blocks, uith conpositions simulated as

averages of several individual sinulated data (unless a block-support

simulation has been done). Thus the compositions of blending piles

composed of ore from one or nore mining blocks can be simulated nicely,

but the minute-to-minute variabil itv of ore streams that must be

measured to calculate the accuracy of sampling systems (as in Gy' l9E2'

Chapter l4) is not accessible.

er And further assuming
each simulated value
instead of the usual

that support corrections had been nade to nake
representative of its entire discretization cell
point or core support.
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3.10.4 Drifts jq Sedirnentarv Oeposits

Sedimentary deposits commonly exhibit rnarked drifts in composition in

the direction perpendicular to bedding (described belolt as 'vertical").
If the vertical thickness of the deposit hss been sampled in suitablv

short increments so that a long vertical sequence of samples is

available from each drill hole, it mqy be possible to estimate the form

and parameters of a drift function to describe this vertical trend

ni thin each hol e. Di fferent shapes of the dri ft in di fferent hol es

usual ly can be represented by a single nodel for al I holes uith

different parameters in different holes. These parameters may then be

regarded as regionalized variables in the horizontal plane. l'lethods for

estimating grades in such deposits are described by Rendu and David

(1979) and by Royle et al. (1982).

A realistic simuletion of such a deposit can be constructed from

simulations of the drift paraneters' plus e simulation of residuals

representing the local departures of individual data from the drift.

The drift sinulation is done in tso dinensions and the residual

simulation in three. This type of simulation is particularly useful if

the spacing betreen holes is ride and the drift fluctuates uidely

betueen adjacent holes. If the spacing is close enough that neighboring

holes generally exhibit very similar drifts (as in the case study of

Section 4.2)' then the drift functions need not be nodeled, as the tight

condi tioning ri | | force the simul ations to conforn to the dri fts

embodied in the conditioning data.

An unconditional simulation incorporating a model of vertical drift

uas performed by Alfaro and Huijbregts (t974) and is also described by
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Journel and Hui jbregts ( 197E, p. 530). The simul ation domain blas

discretized into 550xll0 cells in its horizontal dirnensions (x'v), uith

each cel I represented by tuenty sinrulated values in the vertical

dinrension (z). The regionalization of grades g(x,Vrz) nas considered to

be the sum of tuo indePendent terns:

g(x,y,z) = t(x,YrZ) * r(x,Y,z)

rhere t(x,y,z) is the trend and r(x,y,z) the residual.

trend uas given a fixed cubic form:

Hhere a,

The vertical

t(xrv'z) = s I a z3B + s 22F + c zF I

b, and c are constants and a end B are regionalized variables

q,(x,y) and B(x,y) in the tno-dimensional horizontal space. In this

representation the parameter c(x,y) controls the amplitude of the

vertical drift function at horizontal location (x'y), and B(x'y)

controls the function,s shape -- specifically the vertical (z) locations

of the local extrema of the trend lunction at (x,y)' The residuals

r(x,y,z) uere modeled as the sum of three nested structures -- e nugget'

an isotropic horizontal structure uith a long range, and an isotropic

three-dimensional structure nith a much shorter range. tn this ray the

residuals uere correlated over long distances horizontally but only over

very short distances vertically, as one rould expect in a sedimentary

deposi t.



Chapter IV

CASE STUDIES

This chapter describes tuo case studies involving simulations of

limestone deposits. Both deposits are being ectively quarried as cement

rau materials. The first case study is relatively short and is intended

primarily to illustrate the use of principal components in multivariate

simulations. The second case study is much longer' involving

reproduction of constraints on the simulated values, simulations of

nultiple populations and their contacts, unfolding of deformed strata,

and some applications of simulations to nine planning and the design of

homogenization systems.

4. I A SnIULATT0N 0F CoREGToNALtZATI0N gI LII'TESToNE Cot'rp0srTroNS USrNG
PRINC I PAL COI.IPONENTS

4.1. t Oescription g.:l the Data

This brief case study is not directed touard a specific practical

problem but merely illustrates some of the methods that can be used to

simulate a coregionalization of several variables. The data consist of

a set of limestone analyses from e quarry near Plymouth, England,

provided by Schofield (1980, Chapter ll, pp. 196-212, and Appendix llc,

pp. 304-3t0). These analyses are estimates of the overall compositions

of mining blocks, each obtained from a composite of tlre blast-hole

samples collected uithin a block. Only 129 blocks located in the upper

level of the quarry have been selected for this tuo-dimensional study.

-333-
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The support of the data is not constant: the number of blast holes Per

block, the tonnage of stone per block, and the orientations of the

roughly rectangular blocks are all highly veriable. Not surprisinglv'

the larger blocks (in terms of either holes or tonnege) are slightly

less variable in composition than the snal ler blocks. Houeverr this

effect is small enough to be neglected for the Purpose of this study' so

all data are treated equally regardless of support.

The continuous tno-dimensional spatial domain of the data, Vo (see

Section 3.7.l), is nelI defined in this caser 8s the block support of

the data fills the entire domain (although there are some unsampled

interior blocks). The general shape of Vo can be seen clearly in the

plot of block centers in Figure 66(a).es Nithin this domain there is

almost no formal estimation error EE (Section 3.7.3)' because the domain

is nearly exhaustively sampled on block support. The most common

general objective of conditional simulation is to nanufacture additional

data for a more exhaustive coverage o{ the domain. In the case of

exhaustive block data this objective has already been realized, so for

the present case study a different objective is proposed: to replace

the irregularly spaced (ouing to variable support) block data Nith a nett

set of regularly spaced, constant-support block data representing square

blocks of roughly the same size as the average size of the real blocks.

The centers of the 206 simulated blocks ere plotted in Figure 56(b).

Applications of such a sinulation can be imagined; for instance' mine-

eE The isolated point in the uest-central part of Figure 66(a) nay
represent a block in the louer level of the quarry, although it is
included in the upper-bench data by Schofield (1980, Appendix llc).
Because of its isolation and its unremarkable analysis, it uill have
almost no effect on the simulationr €y€n though it is left in the
data set.
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programs cen be nore easily devised to lorkplanning and mine-simulation

on constant-sized blocks.
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Figure 66: llaps shouing the locations of the 129 original
Plymouth data and the 206 simulated data. The scale
is in meters. Numerals indicate nultiple locations
close together.
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The five

l'190. Some

Table 7(a).

H20) r uhich

variables to be simulated are Si02r A1203, Fe203, CaOr and

statistics for the 129 original data are provided in

These five variables, plus loss on ignition (mostly COe and

uas not deterninedr should account for nearly l00Z of the
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limestone. The nost important undetermined oxides are likely to be Kz0r

Na20, and Ti02 (in clays or other silicates)' and SOs (possibly as

pVrite, FeS2). Schofield does not describe the ninerel composition or

detailed geology of the limestone, but the proportions of Si0z, 41203,

and Fe203 in the analyses suggest that these three oxides might occur in

sil icate minerals of roughly il I ite composition. There appears to be

little excess Si0z to suggest the presence of much sand or chert in the

I imestone. The smal I amount of lt90 probabl y occurs primari I v as

dolomite (Cat|g(C0g)z). The remainder of the I imestone is I ikely to be

alnost entirely calcite (CaC0s). As the percentage of cal ci te,

dolomite, and silicates should add uF to nearly t00Z in all of the

samples analyzed, it is likely thatr emong the five measured variables,

there are tlro significant sources of variation: the proportion of

carbonates to si I icates, and the proportion of dolomite to calcite

ri thin the carbonates. This interpretation is supported by the

correlation natrix in Table 7(a), rhich reveals yery strong positive

correlations among Si02, Al203r and Fe203 (constituents of the silicate

fraction)' strong negative correlations betueen these oxides and CaO

(the major constituent of the carbonate fraction), and relatively

uncorrelated behavior for l'190.

4.1.2 Check for g Constant-Sum Constraint

The impl ied mineralogical makeup of the I imestone suggests some

potentially useful "normative" (in the petrologic sense) transfornations

of the chemical data. Suppose re allocate all Si02r A1203, and Fe203 to

the si I icate f raction, plus sone of the CaO and l,l90r and also some
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unanalyzed H20r K20, Na20, and Ti02. Then re night obtain an

approxinate percentage of t'clav" in the limestone by the fornula

"CLAY" = .|.2 ( Siz0 + Alzos + Fe203 )

uhere the available Si0z, Alz0sr Bhd Fe203 are determined from the

analyses, end the factor 1.2 accounts for a proportionate amount of Ca0'

ilgo, K20, Na20, Ti02, and ll20 in the clay. This provides a normative

percentage of a ttclay" that is consistent uith the comPosition of

illite. Because some CaO and l1g0 are allocated to the clay, they nust

be subtracted from the analyzed CaO and llg0 available to the carbonate

ninerals. Thus the total calciun carbonate (in calcite and dolomite)

and magnesium carbonate (in dolomite) ere obtained by

"CaCOs" = 1.785 ( CaO - 0.02 ZCLAY" 
>

"l'f9c03" = 2.092 ( l'1g0 - 0.01 "CLAY" )

uhere the factors 1.7E5 and 2.092 are the ratios of the nolecular

reights of the corresponding carbonates end oxides. tt these

mineralogical assumptions are reasonable' and if the oxide analyses are

accurate, the total of /CLAY" + zCaC0su + /l'l9C03u should be essential ly

1002, or a little less. Transfornations to remove linear constraints,

described in Section 3.5.2.4, might then be applied to these data before

using them in a conditional sinulation. A plot of "CARB0I{ATE" = "CaC03"

+ "f'tg003" versus ttCLAY" is provided in Figure 68(a). It is clear from

this plot that the relatively high-carbonate samples seen to contain too

@h carbonate. A revised set of transformations cooked up to provide a

better fi t,



i'CLAY" = I.25 ( Si0z + Alzoc + Fez0o )

,rCaC03,, = 1 .73 ( CaO - 0.02 "CLAY" )

"l'lgcO3" = 2.03 ( l'lg0 - 0.01 "CLAY" )

"CARB0NATE" = "CaC03t'* "AgCO3"

is pl otted in fi gure 58(b) . These transformations come closer to

satisfying the t00Z-maximum constraint, but there is still a great deal

of scatter beneath (and some above) the constraint. The el I iptical

clouds of points in Figures 6E(a) and (b) could just as easily represent

a sarnple from a bivariate normal distribution. The second set of

transformations is also more difficult to explain nineralogically.

Perhaps the mineral composition is rather different from nhat uas

supposed (a possibility, because some rocks in the region have been

considerably metanorphosed)r or. perhaps the analyses ere simply lacking

in accuracy and precision. Nhatever the case, the constraint is not

manifest in the data, so no effort is made to reproduce it in this case

study. The second case study in this chapter uill provide a much

clearer example of the treatment of linear constraints.

4. t.3 Description of the Simulation Procedure

An outline of the simulation procedure is provided in Table 2. This

procedure conforms closelV to that illustrated in Figure 35. The

general idea is to transform the rar.t data into approximately normally

distributed (at least at h=0) datar conditionally simulate the principal

components of those data, then invert the principal -components

transformation and all other transformations in reverse order to obtain

a conditional sirnulation of the original phenomenon.
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TABLE 2

0utline of the simulation procedure for the Plynrouth case studv.

CHECKS STEPS (refer to subheadings in Section 4.1.3)

+----) 1. Statistics, plots, and variograms of original data
2. R,egression to obtain I inear trends
3. Subtraction of trends to obtain residuals

---) 4. Statistics, plots, and variograms of residuals
5. Normal scores of residuals

+--) 6. Statistics, plots, and variograms of normal scores
7. Principal components of normal scores

++) 8. Statistics, plots, and variograms of principal
components

9. Variogram models for principal. components
10. Independent simulations of circular structures
ll. Principal co.mponents and linesr nodel for correlated

nugget structures
12. Independent simulations of nugget structures,|3. Linear combinations of nugget structures
14. Combinations of correlated nugget and independent

circular structures to get unconditionally simulated
principal components

+) 15. Statistics, plots, and variograms of sinulated
components

16. 0rdinary kriging uith principal-conponent data,|7. 0rdinary kriging r.rith simulated components
18. Combination of unconditional simulation and tuo

krigings to get conditional simulation of conponents
+-) 19. Statistics, plots, and variograms of conditionally

simulated components
20. Inversion of principal-components transformation to

get conditionally simulated normal scores
--> 21. Statistics, plots, and variogrems of simulated

normal scores
22. Inversion of normal-scores transformation by linear

interpolation to get conditionally sirnulated
resi dual s

--) 23. Statisticsr plots, and variograms of simulated
resi dual s

24. Restoration of I inear trends
--) 25. Statistics, plots, and variograms of final

conditionel simulation
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Statistics, semivariogrdtnsr scatterplots, and maps of the data or

simulations are obtained after each transformation or simulation so

errors in the transformations or poor reproduction of the data

characteristics by the sirnulations can be detected as early ss possible.

For this smalI sinrulation, the easy-to-use statistical package tIINITAB

(Ryan et al., 1976) is enployed for checking statistics, plotting data

and semivariograms, and perforrning some transformations and

manipulations of data. All of the illustrations presented in this case

study uere oonstructed uith I.IINITAB. The Bt'lDP4l1 ("Factor Analysisee)

Program (Dixon and Broun' .|979) is used to obtain principal components

and a linear model for correlated nugget structures. The only other

routines used in the study are subroutine CS2D (Appendix A) to perform

unconditional circular-variogram simulations in tuo dinensions;

unpublished Stanford subroutine 0K820, used to perforn ordinary kriging

in tuo dimensions; and a rnodification of Yerly,s (1984b) subroutine'LINT

to invert the normal-scores transformation performed by mINITAB.

The titles of the follouing sections refer to the numbered steps in

Table 2.

4.t.3.,| Drifts and Geologic Structurer Steps l-4

Schofield (1980, p. 200) states that the limestone has been folded, but

the quarry benches are essentially horizontal. The result is that

different sets of strata intersect the sampled blast holes at different

locations in the quarry. It is not surprising then that the analyses

exhibi t noticeabl e dri fts, roughl y I inear in form, uhich eppear

strongest in a roughly north-south direction. The drifts are so marked
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in the sernivariograms of the rau data (Figure 7l) that the local

structures to be reproduced by the unconditional simulations are largely

obscured, except in the east-uest direction. Thus e set of linear

trends, obtained by regression of each variable on the spatial

coordinates (i.e., by "trend-surface analysis"), uilI be renoved from

the data prior to further analysis. No claims of optimality or of

significance (statistical or geological ) are made for these I inear

trends; they are simply regarded as deterministic functions to be

subtraoted from the data at the beginning of the simulation procedure

and restored at the end' in order to nake the intermediate steps easier.

Semivariograms for some of the residuals from these trends are displayed

in Figure ?2.

4.t.3.2 Normal Scores and Principal Components: Steps 5-9

The "nscore" commande6 in the I1INITAB system is used in Step 5 to obtain

the normal scores of the residuals obtained in Step 3. The residuals

corresponding to each of the five variables are transformed separately,

as described in Section 3.5.2.2. Al I ten bivariate scatterplots'

representing all possible pairs of the five variables, display roughly

el I iptical forms, confirming that the variables are at least

approximately binormally distributed at h=0. It is then hypothesized

that the nornal scores ere approxinately nultinornally distributed among

all five variables at all possible lags h.

e6 This command does
that appear in the
rather assigns the
undesirable if the

not erbitrarily renk or despike any tied values
input data, as described in Section 3.5.2.2, but
same normal score to each tied value. lt is thus
input distribution contains large spikes.
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Plots of the direct and cross semivariogrems of the nornal scores

exhibit a variety of shapes and anisotropies (based upon inspection of

sixty semivariogram plots' not shoun here -- four directions for each of

five direct and ten cross senivariograms). The fitting of a positive-

definite matrix of fifteen nestedr ihisotropic semivariogram models to

such pl ots "by hand" uoul d be a daunting task, so program Bl.lDP4t'l

("Factor Analysis") of the Eiornedical Computer Programs series (Dixon

and Broun, 1979) is used to obtain principal-components scores (Table 3)

for these data, in an effort to simplify the modeling job bV simplifying

the cross semivariograms. As described in Section 3.5.3r the cross

semivariograns emong the principal components must be zero if the normal

scores are intrinsical ly coregional ized; otherrise, some cross

correlation is likely to persist emong at least some of the pairs of

components et some lags. Omnidirectional plots of the direct and cross

semivariograms of the first three principal components ere illustrated

in Figure 67. As the normal-score semivariograms exhibit a uide variety

of shapes, it is not surprising that the cross semivariograms of the

components exhibit a fer small departures fron Z€ror indicating that the

normal scores are not intrinsically coregionalized. Nevertheless, these

plots (and the directional plots, not shoun) do appear simpler in

structure than those of the normal scores (also not shogn).

Because the plots in FiEure 57 are rather ragged-looking (even more

so for the directional plots) ouing to the paucity of data, no great

effort should be expended to fit the models very carefully. An easy

epproxirnation ( justi f ied bel ou) is adopted here: all five components

are fitted by independent single circular semivariogram structures to
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TABLE 3

Formulas for the principal components of the normal scores of
the residuals.

Each of the five principal-component scores for each of the 129
observations is a linear conbination of the five normal scores
for that observetion leighted by a vector of principal-component
score coefficients. In the notation of Section 3.5.3,

k
yj = Iaiizi j = 1,2,...rk

i=l

rhere in this case k=5, the yi's are the five principal-
component scor€sr the zi's are the five normal scores, and
each a;5 is an element of the 5x5 rnatrix of coefficients.
In this case!

COI'IP0NENT COEFFI CI ENTS x N0Rl*lAL SCORES of resi dual s
Si0z Alz0s Fe203 CaO l'1g0

yt = !. 267622*0.2721622+0. 2609020-0.252932r-0.081 l4zs
yz = -0.052332r-0.0469022+0.085992s-0.3,|5472r+0.930402s
yo = - I .0344421+0. 33Eg5z2+l . 5626gzg+0. E547321+0. I 03gtzs
yr = 1.324382r+1.0737522-0.426212g+1.6617621+0.799292s
ys = -1.5393521+2. 3965722-1. 3204923-0. 5098121-0.021832s

These coefficients are obtained from the output of proEran
Bl'lDP4Il' under the heading "f actor score coef f icients" (as belou).
The coef f icients printed by Bt'lDP4]'l are strictly val id only af ter
the means of the zi's have been subtracted, but as the normal
scores are already approximately standardized, the coef{icients
can be used t'as isz lith little loss of occuracy. The relevant
output of proEram Bl'lDP4t'l looks I ike the f ol loping:

FACTOR SCORE COEFFICIENTS

THESE COEFFICIENTS ARE FOR THE VARIABLES AFTER THEIR
I-IEANS HAVE BEEN SUBTRACTED.

FACTOR FACTOR FACTOR FACTOR FACTOR
12345

sr02 | 0.26762 -0.05233 -t.03444 t.s2438 -r.6393s
A1203 2 0 .27276 -0.04690 0.33895 1.07375 2.396s7
FE203 3 0.26090 0.0E599 t.56268 -0.4262t -t.32049
cAo 4 -0.25293 -0.3t547 0.E5473 t.E6l76 -0.5098r
l,rGo 5 -0.oEil4 0.93040 0. t038t 0.79929 -0.02t83
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account for the short- to rnedium-scale behavior (up to about 200 meters)

of the directional and omnidirectional plots, and dependent nugget

structures to account for the very short-scale behavior of both the

direct and cross semivariograms. The sample plots are so ragged

(especielly at small h, uhere there are fen pairs) that it is difficult

to distinguish nugget effects from short-scale transition behavior.

Nevertheless, it is important to retain some fidelity to the short-scale

sample structure in the unconditional simulation. The solution adopted

here al locates any observed short-scale departures of the cross

semivariograms from zero entirely to the nugget constants and ignores

the longer-scale behavior of the cross semivariograms' trusting

conditioning to restore the unmodeled features to the conditional

simulation. The final matrix of semivariogram models used for the

unconditional simulation is summarized in Table 4.

4.1.3,3 Unconditional Simulations: Steps l0-15

The coordinate locations of the data set (x increasing to the east,

y increasing to the north) are clustered near the center of I square

area bounded by x= 400 to 700 neters, y= 50 to 350 neters. For the

unconditional simulations, data are generated on a matrix of 60x60

points spaced 5x5 meters apart. The southuesternmost point is assigned

to (x=405,9=55). The northeasternmost point is thus (x=700ry=350).

Subroutine CS2D (Appendix A) is used to generate five independent

unconditional circular simulations as described in Table 4. I r'1SL

subroutine GGNPI'|e7 (tnsL, 1982) is used to generate five independent

9t l'lany other normal
GGNt'lL r oF the

generators are avai lable; 8.9., Il,lSL subroutine
"nran" command in tllNITAB, or any of the
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TABLE 4

Nested nugget and circular semivariogram models for the five
principal components to be simulsted.

INDEPENDENT ANISOTROPIC CIRCULAR STRUCTURES

VARTABLE P.C. I P.C. 2 P.C. 3 P.C. 4 P.C. 5

srLL 0.6 0.3 0.2 0..| 0.15

N-s RANGE 150 200 t0 50 150 (meters)

E-l.t RANGE 80 60 60 50 E0 (meters)

DEPENDENT NUGGET STRUCTURES -- NAITiX Of SiIIS

VARIABLE P.C. I P.C. 2 P.C. 3 P.C. 4 P.C. 5

P.C. I 0.6

P.C. 2 0.1 0.7

P.C. 3 0.0 -0. | 0.6

P.C. 4 0. t -0. I 0.0 0.7

P.c. 5 0.0 0.1 0.1 0.0 0.75

sets of standard normal data for the nugget structures. These nugget

data are combined using a I inear rnodel obtained fron another run of

program Bl'lDP4t'1.

To obtain a I inear model f or the nuggets f rom 8l'tDP4l'lr one treats the

matri x of nugget constants as a covar i ance matr i x. Program Bl'lDP4t'l

calculates the eigenvalues of this natrix, providing an inmediate check

transformations of uniform random numbers suggested by Rubinstein
(1981, pp. 86-9t).
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and

provides a linear rnodel in the forn of a matrix of "unrotated factor

loadings (pattern)", reproduced in Table 5. The loadings are then

treated as the coefficients of a linear model of coregionalization for

the nugget simulations, as illustrated in Table 5. (This amounts to the

"eigenvalue-eigenvector approach" to multinormal simulations discussed

in Section 3.3. l. l. eo )

To obtain the final unconditional sirnulation for this case study, the

independent circular simulations are multiplied by the square roots of

the sill values listed in Table 4 to obtain the correct circular sills,

and the coregionalized nugget data are simply added on.

4.1.3.4 Conditioning: Steps t6-19

The unconditional ly simulated principal-component scores are distributed

uithin a grid of 60x60 locations at Sx5-meter spacings. Houeverr the

original data are irregularly spaced, lrith integer locations nearly

aluays more than five meters apart but not necessarily falling on the

9rid. Because the CS2D subroutine executes very slouly rhen the

simulation grid is very dense, it is impractical to create a

300x30O-neter simul ation grid at lxl-meter spacings. Thus an

approximation must be made to obtain simulated values at the exact data

locations for kriging purposes: the coordinate location of eech real

datum is simply truncated doun to the nearest S-neter grid location, and

to An even simpler approach that might be used is to employ
such as Il'lSL subroutine cGNSl.l (It1SL, 1982), thich
factorization (also described in Section 3.3. l. l) of a
covariance matrix to generate independent vectors of
normal random numbers.

a routine
empl oys e
specified

corre I ated
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TABLE 5

A linear nodel of coregionalization for the nugget simulation,
obtained by principal components.

The matrix of nugget sills from Table 4 is (rnultiplied by l0):

Program Bl'10P41'l obtains principal-components loadings end
eigenvalues for this natrix' reported as belor:

0utput from Bl'lDP4l'l:

UNROTATED FACTOR LOADINGS (PATTERN)

FOR PRINCI PAL COI'IPONENTS

6
17
0 -1 5
| -t 0 7
0lr07l

PCt
PC2
PC3
pc4
PC5

I
2

3
4
5

VP

FACTOR
I

0. 392
2.06

-0. I l5
-1.04

r.76

E.605

FACTOR

2

0.265
-0. 839

1.44
1.32
t.E0

7. t33

FACTOR
3

| .71
0. E55

-0.855
l.7t

-0.428

7. 500

FACTOR

4

1.36
0.7140-0t

1.52
-0. 826
-0. 774

5. 444

FACTOR
5

-1.00
t.t4

0. 934
0. 745

-0. 614

4.1t8

The positive eigenvalues ("YP") confirm positive definiteness of
the nratrix. To obtain nuggets zq, i = I to 5, uith a covariance
natrix equal to the above (divided by l0), ue then perform the
fol louring transformations to a set of five independent
standard-normal nugget sinulations yi, j = | to 5:

Z1 = 0.3162 [ 0.39Zyr+0.265y2+l.Zt0y3+1.360yr-1.000ys I
zz = 0.3'162 I 2.060vr-0. E39y2+0.855ys+0.071vr+1. l40ys I
za = 0.3162 l-0. ll5yr+1.440y2-0.E55y3+1.520yr+0.934ys I
zr = 0.3162 [-1.040yr+1.320y2+l.7l0ys-0.E26yr+0.745ys I
z5 = 0.3162 I l.760yr+t.800y2-0.42Eys-0.774ys-0.6t4ysl

uhere 0.3162 = y'ttzt0).
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the simulated datum at that grid locetion is attributed to the original

location. For example' a real data location of (603,297) rould receive

the simulated data located at (600,295). As the data are more uidely

spaced than 5x5 meters and kriging is done on a l0xl0-meter grid, this

approximation should be acceptable.

A tuo-dimensional ordinary-kriging routine for irregularly spaced

data (Stanford subroutine OKB2D) is used to obtain kriged yalues on a

30x30 grid uith l0xl0-rneter spacings. These spacings correspond to

simulated square blocks comparable in size to the average size of the

real, roughly rectangular blocks. The kriging program is instructed not

to krige grid locations {or uhich feuer than four conditioning data

exist xithin a 20-meter radius. Only 206 of the 900 grid locations

examined satisfy this requirement, effectively limiting the conditional

simulation to the vicinity of heavily sampled areasr as illustrated in

Figure 66. This limitation of the simuletion domain preyents domain

errors (Section 3.7.2) from becoming too large.

The program used to perform the kriging does not provide explicitly

for kriging uith circular variograms. Houeverr rithin the relatively

short 20-meter search radius being used in this crs€r the circular and

spherical nodels have nearly I inear forms, differing only in slope

(Figure l3), so appropriately adjusted sphericel nodels are used es

approximations to the circular models in Table 4.

0rdinary kriging is used to condition each simulated principal

component independently. As the components are only reakly cross

correlated and the simulation is confined to uell conditioned sFBdsr

ordinary kriging can be expected to differ I ittle from cokriging
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Furthermore, much of the cross correlation embodied in the real data is

restored uhen the simulated principal components ere inverted to obtain

sirnulated cross-correlated normal scoF€sr as explained in the next

secti on.

4.1.3.5 Inversion of Transformations: Steps 20-25

The principal-component loadings furnished by program Bl'lDP4l'l in Step 7

can nolt be used to transform the conditionally simulated principal-

component scores back into simulated normal scores. The procedure is

the same one used in Step 13 to obtain a I inear model of

coregional ization for the unconditional ly simulated nugget structures.

oetails of this back transformation are provided in Table 6. Notice

that the first tno principal components, xhich explain 90.72 of the

total variance in the nornal-scores data, essentially correspond to the

tuo principal geological sources of variation described in Section

4.1.t. The first component ("Factor l" in Table 6) contributes heavily

to Si0z, Alzos, Fe203r ird (negatively) CaO, thus corresponding to the

influence of the proportion of csrbonates to silicates in the rock. The

second component contributes heavily to 1190, and also negatively to CaOr

thus corresponding to the influence o{ the proportion of dolomite to

calcite uithin the carbonates.

The conditional ly simulated normal scores 8re inverted to the

corresponding residuals from linear trends by linear interpolation' as

described in Section 3.5.2.2, using a simple progrem similar to Yerly's

(1984b) subroutine LINT. A great deal of subjectivity creeps in at this

point, because some of the sirnulated normal scores lie outside the range
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TABLE 6

A linear model to transform conditionally sinulated principal-
component scores back into normal scores.

Program Bl'lDP4t1 obtained the f ol louing principal-component
Ioadings and eigenvalues from the calculated covariance matrix of
the 129 normal-score data:

0utput from Bt'lDP4l'l:

UNROTATED FACTOR LOADINGS (PATTERN)

FOR PRINCIPAL COI1PONENTS

SI 02
AL203
FE20 3
cA0
t'lc0

FACTOR
I

| 0.931
2 0. 94E
3 0.909
4 -0.E80
5 -0.282

FACTOR
2

-0. 530D-0 |
-0. 4750-0 1

0. 6730-0 |
-0. 320

0. 943

FACTOR
3

-0. 234
0. 7670-0 |
0. 354
0. t93
0. 2350-0 t

9.224

FACTOR

4

0. t82
0. l4E

-0. 58ED-0 l
0.255
0.110

0. t36

FACTOR

5

-0. t56
o.227

-0.125
-0. 4840-0 |
-0. 2070-02

0. 094YP 3.445 I .004

Thus the simulated nornal Boor€s zir i : I to 5,
from the components Vj, j = I to 5, as follotts:

Normal score

can be obtained

= Q.93l0yr-0.0530v2-0.2340ys+0. lE20yr-0. l560ys
= !.9480yr-0.0475y2+0.0767ys+0. l480yc+0.2270ys
= Q. 9090y1+Q.0873y2+0.3540y3-0.0588yr-0. l250ys
= -Q. 8800yr-0. 3200y2+0. l930ys+0. 2560yr-0. 0484ys

= -Q. 2820vr+0. 9430y2+0.0235ys+0. t l00yr-0. 002lys

Si0z = Zt
Al 203 = 22
Fe203 = z3
CaO = Zr
llg0 = Zs

of the real nornal scores. In this case one nust furnish additional

extreme ttreal" values to correspond to the extreme simulated scores. In

practice, one might choose to transform all out-of-bounds simulated
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scores to the nost extreme of the observed real values -- but this is e

too-easy solution that tends to produce aukuard spikes of simulated

values at the extremes of the sinulated sample distributions. A better

approach is to examine the histograns of the real data and try to

imagine uhere their extremes uould be if more data rere available. In

some cases the appropriate extremes ere dictated by natural constraints

on the data; €.9., minimum percentage data should never fall belou 02.

But in this case study the back-transformed normal scores are not

original percentages but residuals from linear trends, so natural

constraints on the original data values cannot enforced in the

simulation unless the data locations as uell as their values are taken

into account in the transfornation. Nothing so fancy is attempted in

this case studyr rith the result that, among the 206 final simulated

Si02 values obtained after the linear trend is restored, four values in

the southern part of the simulation domain end up tith slightly negative

Si02 percentages, lith the losest being -0.717,. tf this simulation tere

being used to solve a real mining problem, such a violation lould be

unforgivable, so either a second try at the back transformation of the

Si0z normal scores uould be necessary or some final fixup nould have to

be made to the lor.r-Si02 values in the southern part of the domain. This

can be vieued as an important practical drauback to simulating residuals

from deterninistic trends.
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4. 1.4 Resul ts

Figures 68 to 7l shour histograms, selected scettergrams, and selected

di rectional senivariograms for the original and gimul eted data.

Statistics are compared in Table 7. Because the linear trends obscure

some of the subtle local features of the semivariograms, Figure 72

illustrates the semivariogrems of the residuals for the same variables

plotted in Figure 71.

It is clear that the major features of the data have been reproduced

in the simulation. Even the hypothesized linear constraint of Figure 6E

seems as tell obeyed by the sirnulation as by the original data, even

though it has not been taken into account in the transfornations.

Presumably reproduction uould have been better if the spatial domains of

the tto data sets had coincided more exactly, and if the real data

points had atl coincided exactly uith simulated points. Sone trial-and-

error nork uith the back transformation of the normal scores might also

have helped, especielly in the reproduction of the Si02 ninimum. (It

uould not be a good idea to perform the normal-scores transformation

before removing the trend from the data, as then the detrended normal

scores uould no longer be normalr ihd the constraints finally reproduced

by the simulation uould probably not be valid if the simulation domain

uere at all different from the domain of the data. The uhole problem

here is that histograms of nonstationary data do not nean nuch outside

the domain of the data.)

From inspection of Table 7 and plots such as those in Figures 68'72,

it appears that the behavior of llg0 is less rell reproduced than that of

the other variables (e.9., Si02, shoun in all of the figures). This is



TABLE 7

Statistical summaries of the Plymouth limestone rau data and of
the conditional simulation based upon the data.

(a) 129 0RIGINAL DATA

YARI. I'IEAN STD. I.IIN. I'IAX. CORRELATION NITH
ABLE DEV. SiOz A1203 Fe203 CaO l'lg0

Si0z 4.00 2.22 0.33 10.07 1.00

AlzOs 1.43 0.54 0.45 2.98 0.94 .|.00

Fe203 0.57 0.20 0.22 1.07 0.9,| 0.95 1.00

Cao 51.0? 1.83 46.22 54.39 -0.91 -0.88 -0.85 1.00

l'1g0 1.40 0.62 0.57 4.96 -0.54-0.53-0.47 0.28 1.00

(b) 205 CONDITIONALLY SII'IULATED DATA

VARI. I'IEAN STD. TIIN. }IAX. CORRELATION }IITH
ABLE DEV. SiOz A1203 Fe203 CaO 11g0

Si 0z 3. 97 2.22 -0 .71 10. 2 | I . 00

Al 203 t .40 0. 56 0.20 2. 59 0.91 I .00

Fe203 0.55 0.20 0. l2 1.00 0.87 0.93 1.00

CaO 51.23 ,|.85 46.?4 55.23 -0.E8 -0.87 -0.84 1.00

HgO 1.33 0.56 0.27 3.72 -0.58 -0.58 -0.51 0.36 1.00

354

particul arl y apparent

semivariograms of real

This problem apparently

some unusual I y hi gh-l'lg0

achieve much influence

in the departures betueen the east-uest

and simulated l'lg0 shorn in Figures 7l and 72.

erose mostly at the conditioning stage, rhere

data at the southern edge of the donain did not

in the kriging.
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one should aluays confirm that any data falling exactly on the

simulation grid have been reproduced, for all practical purposesr

exactly. In this csse study, only one of the original 129 data points

fell exactly on one of the 206 lOxl0-meter block centers. A conparison

of the real and simulated values at this point is provided belorr

Coordinates: r=535r y=285 neters

Si 02 Al 203 Fe203
sIr.luLATr0N 5.95024 1.E4027 0.7400,|
0ATA 5. 95 I . 84 0.74

D r FFERENCE 0. 00024 0. 00027 0. 0000 I -0. 00034 -0. 00007

4.2 FoRECASTTNG RAN-IIATERIAL VARIABILITY FoR A CEnENT PLANT

The case study presented here is much more compl icated than the one in

Section 4.1. In fact, it has deliberately been nade nore elaborate than

necessary for the practical problen to rhich it is applied, so that a

uide variety of potentially useful techniques can be illustrated. A

summary of uays in uhich the study might have been completed more easily

and quickly in a "production" situation is included in Section 4.2.6.

4.2. I The Problen

This case study involves the simulation of a linestone-dolostone deposit

in north-central loua and the use of this simulation to choose anong

alternative nining and nineral-processing systems for a cement plant.

For several years the Lehigh Portland Cement Company has operated an

open-pit limestone quarry near }lason City, Ioua, prinrarily in the

Devonian Cedar Valley Limestone (Coralville l'lember), but locally

including a small amount of the overlying Shell Rock Formation (Nora

CaO llg0
49.7r967 0.80e93
49.72 0. E I
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ttember). The bedrock stratigraphic section in the quarry, described bv

Koch (t970, pp. 38-39 and 94-95) and in Anderson (1964)' is typically

about fiftv feetee thick and is oyerlain by Pleistocene outrash end

ti I I . The deposit consists mostly of fine-grained, I ight-grey, high-

cal cium I imestones (averaging about 962 CaC0r , 17. l'lgC0s), interbedded

nith coarser-grained' brornish-grey dolostone beds (much more variable

in composition, and averaging about 602 CaC03, 34j4 ngC0s). The

dolostone beds, uhich appear as irregular bodies interfingering xith the

limestones, ere concentrated mostly in the upper third of the section.

The rocks just beneath the querry floor also are dolomitic.

The limestones dip gently southuestuard on a regional scale, although

uithin the quarry area the regional dip is obscured by several local

lrarps in the structure. lluch of the bedrock surface in the quarry erea

appears to lie at nearly the same stratigraphic position, such that the

bedrock topography tends to follou the structure. The bedrock surface

mey thus represent a 9l acial ly stripped contact' perhaps the

unconformity separating the Cedar Valley and Shell Rock carbonates from

the overl yi ng shal e of the Lime Creek Fornati on (Juni per Hi I I

l.lember). I o0

The high l1g0Os content of the dolostone makes it unsuitable es a

cement rau material, except in smallr controlled quantities.l0l Areas of

ee English units are used throuEhout this case study, as all data
furnished by Lehigh uere recorded that nay.

| 00 ;166;, ( 1970) considers the Shel I Rock to be onl y f our f eet thick in
the southern part of the quarry and missinE in the northern part.
Regionally, the Lime Creek Formation appears to rest on an angular
unconformity above the linestones.

lot The naximum l1g0 content of a cenent is 62 (Table l).
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the deposit uhere dolostone appears are thus more costly to QUsffYr

because either the upper dolomitic "caprock" must be completely stripped

and rasted, or more complicated mining procedures nust be emPloyed --

possiblv including smal l-scale selective quarrying and blending of

materials from several quarry faces to reduce fluctuations in l'lgC03.

For most of the quarry's history, these problems have been avoided by

simply "high-grading" the deposit on a large scale, i.e., by I imiting

mining operations to broad areas of the property uhere there is little

or no dolostone in the section. Houever, these high-grade areas uill

eventually be depletedi then the plant uill be forced either to strip

and uaste all of the dolonitic caprock present in the remaining areas

(shortening the life of the quarry), or to devise methods to use as much

of the dolostone as possible. If some dolostone is used, the variable

thicknesses and compositions bf the dolostone beds could cause qualitV-

control problems in the plant' unless neu procedures are adopted to

control the anount of ]'lg00s in the stone del ivered to the plant. The

neu procedures rnight include smal l-scale selective nining or blending

uithin the quarryr oF installation of a stacker-reclaimer system in the

plant to smooth out limestone variability and possibly to blend higher-

and loxer-grade stone from different parts of the quarry. (An approach

that appears to rork Hell, based on simulation results, is suggested in

Section 4.2.5.3.)

Because the quarry has historically operated in a high-grading mode,

there has been no sustained experience in deal ing rith large

f luctuations in the l{gCOs content of the I imestone. In f act much of the

variability in t1gcog that the plant has faced in the past has been
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attributed to variabte amounts of dolostone uithin the shale of the Lime

Creek Fornation, nhich is also used as a cement reu rnaterial. Thus the

choice of mining procedures, as uel I as the choice of homogenization and

proportioning facilities that may be needed to deal lith nore variable

linestone compositions in the future, must be made tithout the aid of

relevant historical data on limestone variability. In such a "dataless"

situation, managers and plant designers have traditional ly rel ied on

their orn (sometimes mistaken) judgernent to anticipate future problens,

and relied even more on the inclusion of liberal "safety factors",

sometimes at great cost, to enable the plant to accomnodate uorst-case

si tuations.

Fortunately, completely subjective judgements vill not be necessary

in the present case. The entire quarry eree has been sampled by an

unusual ly dense (by cement-industry standards) grid of core-dri I I

holes -- an excellent data set lor use in conditional sirnulation. The

remainder of this chapter describes a complete, full-scale simulation

study directed torard a better solution to this problem. Qualitative

and statistical descriptions and models of the data, es uel I as

descriptions of numerous adjustnents and trensformations that had to be

maCe, ere provided in Section 4.2.2. Steps in the condi tional

simulation of CeCog and ltgC0s for the partly dolornitized uestern part of

the quarry property (a likely area for quarry expansion) are described

in Section 4.2.3, and the results ere summariaed in Section 4.2.4.

Simulations of alternative rnining procedures applied to the simulated

rau materials are described in Section 4.2.5. I, and homogenization

alternatives in Section 4.2.5.2. Section 4.2.5.3 presents the results
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and discusses hor these results can be

nethods and honogenization facil ities.

hou this complicated simulation might

loss of applicability.

used to select appropriate mining

Final ly, Section 4.2.6 discusses

have been simpl ified rith I ittle

4.2.2 Data Analvsis and Structural Altalvsis

4.2.2.1 Description of the Data

The quarry property has been investigated by four drilling programs,

concluded in 1953, 1955, 1960, and 1967. The 1955 and 1967 data sets

are much more extensive than the others. The holes from these tuo

programs uere drilled on a nearly regular grid covering nearlr all of

the quarry area (Figure 73). Each core sample ras analyzed for CaCOs

and l19C03r and geologic descriptions of the core uere recorded.

Geologic descriptions are not available for the 1953 and 1960 drilling

progrimsr and the l,lg0Oa contents of the limestone samples collected from

those holes seen high' suggesting that the linestone and dolostone beds

lere not uell separated during sampling. Because data from the 1953 and

1950 programs are incomplete, possiblv less reliable than data from the

1955 and .|967 programs, and distributed thinly over the same eree

covered by the 1955 and 1967 progirmsr they uere excluded from the linal

data set used in this case study.

As an exanple of the types of data available for this study, the

geologic section in hole J193, drilled on the quarry property in 1967,

is depicted in Figure 74, and the associated entry in the original data

file compiled for the case study is shoun in Figure 75. The date

available from each hole include surface elevationr depth of overburden,
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depths to the top and bottorn of each sample, depths to the tops and

bottoms of tithologically distinct beds encountered in the cot^€r the

total depth of the hole, the CaC0s' llgC03r and core recovery for each

sample, and descriptions of the color and any outstanding features of

each sample. (The core-recovery data are not important for this study,

although they may be extremely valuable in other situations' as

described in Section 3.10.2.) Depths uere recorded originally in feet

end inches, but converted to feet and tenths for this study. The

surface elevations for most holes xere recorded to the nearest foot.

All data uere recorded originally on handuritten log sheetsr most of

rhich uere subsequently typed. In these cases only the typed logs are

nou available.

At the start of this case study' the data {rom the logs uere typed

into comp.uter disk files (as in Figure 75) end carefully inspected for

errors. Numerous obvious errors uere found in the typed data sheets

during data entryr dnd several nore subtle errors rere detected by

inspection of histograms and scatterplots of the chemical data' by

running a computer progran to check the continuity of sample footages

donn the holes, and by inspection of a contour map of surface elevations

and line-printer cross sections through the holes (Figure 82). The fact

that many errors uere found suggests that many others t.tere not, but the

density of date uithin the property at least assures that the influence

of the remaining errors nill be kept local.
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Lithology Sanple nunberr Depth ln feet

IO.B. -
Lr
Dr

SDr

glacial overburden
lluestone
doloBtone
shaly dol.ostone

Figure 74r Seologic section in hole J,|93, shouing the intervals
of drill core subnitted for chemicel analysis. The
corresponding entry in the data file is shoEn in
Figure 75.
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Jl93 rZ 45 il24 56.4 4.7 45.7 0E
GtfL 4.7 6.3 96.2 0.0
BBD 6.3 10.4 65.0 23.E
cNfc 10.4 21.6 E9.6 7.7 [D0L0mITE 12-12.5 AND l8.E-19.2
Gl.tL 10.4 12.0
NND 12.0 12.5
Gl.tL 12.5 18.8
NND t8.8 19.2
GUL .|9.2 21.6
GBD 2t.6 23.0 59.9 36.5
Gra 23.0 30.0 96.4 .|.3 ISEE BELol.l
Gl.tL ?3.0 29.7
NNX 29.7 30.0
cNo 30.0 40.0 92.5 3.4 [ 00101'IITE AND CLAY 29. ?-31.0
NNX 30.0 31.0
cHL 3l.0 40.0
cNL 40.0 45.7 95.5 0.4
GB$ 45.7 56.4 66.4 29.9 [rrmeSrOnE 50-50.? AND 51.7-52.7
cB0 45. 7 50. 0
NNL 50.0 50.7
GBD 50.7 5t.7
NNL 51.7 52.7
cBD 52.7 56.4

Figure 75r Data from hole J193, as entered in the original
computer data file. The {irst line contains the hole
number, €ast-uest and north-south coordinates (as
cross-section names "lZ" and "45")r surface elevation
(nearest foot), total depth of hole, depth of
overburden, depth to a fairly continuous "marker"
dolostone beneath the quarry floor (used to "deuarp"
the local geologic structure), and number of
chemically enalyzed samples in the hole. The next
line contains information on the topmost sanple,
including color ('GW" = gray-rhite"), lithology
(t'L" = "limestonet'), depths in feet to the top and
bottom of the sampl er ahd the CeC03 and l'lgCOs contents
of the sample. The fourth line deseribes a
contaminated sample (indicated by "*", meaning a
limestone sample containing a small amount of
dolostone), rhich is broken doun in subsequent lines
into subsample intervals. These subsamples are
eventual ly assiEned "synthetic" chemical compositions,
as described in Section 4.2.2.2. In all lines of the
data file, the character strings to the right of the
numerical data are reserved {or geologic descriptions,
and originally for subsample intervals' as shonn here.
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4.2.2.2 Assignment of Chemical Data to Lithologic Subsamples

It is clear from Figure 74 that the support of the chemical data in the

vertical direction is variable, and that the support of the lithologic

data (i.e., indicators of limestone or dolostone) is smaller than that

of the chemical data. In fact, the lithologic support can be made

arbitrarily small in the vertical direction, as the contacts betueen

rock types rere measured by a geologist in the field, independent of the

chemical compositions subsequently determined from the associated

sampl es. I o2

Because the conditional simulation must be performed on a constant

support, some conversion of the available chemical data into a constant-

support format must be per{ormed. The first question that arises is

uhether adjacent linestones and dolostones can be averaged together in

support adjustments, or rhether they are so different and nongradational

that they should be sirnulated separately, and therefore nust be

identified and separated before the support ediustrnents ere made. The

data provided in Figure 75 are typical and provide an immediate ansuer

to this question. The I inestones tend to be extremely lor.r in Il9C03

(Figure 76), even uhere in direct contact pith high-l'lgC0r dolostones.

The l'lgC03 contents of the "l inestone" semples rise above 2?4 very rarely,

unless thin layers of dolostone have been included in the sample.

Dolostone samples, on the other hand, usually exhibit tlg0O3 values in

the 30's (Figure 77) unl ess contaminated by I inestone. (Sampl es

cl assi f ied by the geol ogist es ,,1 imey dol omi tez or zdol orni tic I imestone,'

lo2 Actually, a feu rock types assigned by the
typed urong, have been reassigned for this
inconsistencies lith the chemical data.

geologist, or possibly
study because of serious
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are very rare and separete distinctly into tno groups; for this study,

these samples rere considered limestone if the ll9C03 les belou l0Z.)

Furthermore, there is no apparent relationship betleen the ohemical

compositions of samples and their thicknesses; 8.9.r sanples of thin

lirnestones encased in dolostone shou no consistent tendency touard

higher MgC03, although a feur anomalously high values do occur. Thus the

I imestone and dolostone populations are distinct and almost total ly

nongradational. Clearly they cannot be real istical ly modeled as a

realization of a single random Processr 8r1d any averaging of the tuo

populations prior to their simulation should be avoided.103

This means that the samples that contain both limestone and dolostone

G.Z't ol the total footage, Plotted in Figure 7E) present a serious

problem: although ue should expect the final simulation of this deposit

to be conditioned to the analyses of these samples, they are actually

far from representative of either population' Fortunately' the geologic

logs o{ the dril I cores provide information on the locations and

thicknesses of the contaminating materials, and this infornation is

useful in finding a practical though imperfect solution to the problem.

To approach the contarninated-sample problem rigorously' one lould

have to condition the simulations of the tuo rock types in such a uay

that the average of the analyses of the tuo conditional sinulations,

ueighted by the thicknesses of the respective rock types' pould equal

the analysis of the original contaminated sample at each location of

contaminated data. One possible approach uould be to use a l'lonte Carlo

method entailing no spatisl considerations. For instance, for a nixture

lo3 8ut see Section 4.2.6.
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Figure 76: Scatterplots of data from limestone samples
uncontaminated by dolostone. Samples containing
t'clay", es described in the geologic logs, ere plotted
separately here but appear to be indistinguishable
from the "oleanz limestones' so they are subsequently
treated together. ln the scatterplots, nfre 3 e1g
observationr "numeral" = number of observations,
t'+" = more than nine observations.
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uncontaninated by limestone. Samples identified as
"dolomite and clay" in the geologic logs are different
from the "clean" dolostones on the everage' but it is
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populations overlap, so they ere subsequently treated
together.
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subsampfes, sumnarized in Figures 80 and El.

of limestone end dolostoner oh€ could estimate the four-variate joint

probabi I i ty densi ty f unction of CaC03 and l1g003 in I imestone and CaC03

and i'lgC03 in dolostone (assumed independent of limestone) and draur

samples from the conditional density defined by the intersection of this

density uith the intersection of

T1Ca1+Tdcad=Ttcat

Ttl'lgt + Tdt'lgd = Ttl'lgt
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uhere T=thicknessl 0f, Ca=CaCOs, llg=llgC0s, and the subscripts (l 'd, t) =

(limestone, dolostone, total sample). The great disadvantage of this

approach is that it uould involve a mighty amount of programming for

such an exotic appl ication.

A better and simpler solution rould be to use I stepuise conditional-

simulation approach' first simulating one rock type and conditioning the

anal yses subject to inequal i ty constraints (Section 3.7.5). The

constraints rould be the naximum and minimun values that an analysis of

a rock type could have uithout violating the rock's definition and

urithout rendering the knorn analysis of the total sample impossible.

For example, in a sample containing 502 limestone and 50? dolostone and

having an analysis of l0Z t'lgCOs, the dolostone certainly could not have

over 20% tlg003 and presumably could not heve less than l0Z l'1gC0s if the

dolostone is real ly more dolonitic than the I imestone. Once the

conditional simulation of the dolostone is completed, the conditioning

values for the associated linestones are fixed. They can then be used

to condition the limestone sinulation by ordinary kriging.

The data set used for this case study contains so nany contaminated

analyses that implementation of the steprise approach above uould

involve a great number of constraints and be costly end complicated to

perform, unless the area being simulated lere very localized. To nake

things easier' a deterministic approximation is used here that ensures

that the conditioning values ere reasonable but does not take spatial

infornation or randomness of any kind into account in obtaining them.

This approach still involves mathematical programning (uhich probably

l0r The limestone and dolostone have approxinetely the same density, so
thickness substitutes for ueight.
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rould be used in an implementation of the previous aPProach), but in the

form of many small problems instead of one very large one.

Suppose that ne are given a sample containing four rock tyPes:

I inrestoner clayey I imestone, dolostoner ilrd clayey dolostone. In

Figure 76, it is shonn that clayey limestones are virtually identical to

zclean" I imestones in this deposit, so they can be safely lumped

together. Clayey dolostones do, houever, differ on the average from

clean dolostones, although they appear to be overlapping variants of a

single population (Figure 77). At this stage of the study' the clean

and clayey dolostones are treated separately; subsequently thev uill be

combined into a single population. As an epproximate solution to the

contaminated-sample problem, the analysis of the total sample is

partitioned into "synthetic" ("take", if the reader prefers) analyses of

the individual rock types on e samPle-bv-samPle basis (taking no

spatially nearby data into account), in the folloping nanner.

Firstr d 6ineralogical constraint on dolostone composition (discussed

at the beginning of Section 4.2.2.6) is renoved by transforming CaCOg

and llg00o to stoichiometric "CALCITE" and "D0L0l'lITE" as f ol lotts:

0010['IITE = l{9C03 / 0.457

CALCITE = l',lgco3 + cacos - DoLot',llTE

Then xe can identify several linear constraints that the analyses of the

individual rock types should f ol lor.r. llithin any analyzed sampler the

composi tions of the component rock types shoul d sati sfy the tuo

nateri al -bal ance constraints

Trcr

TtDt

+

+

T4C4+T.C"=T1G1

T6D4+T606=T101
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Hhere T=thickness, C=CALCITE, D=DOLOI'lITE, and the subscripts (l,d,c,t) =

(limestone, dolostone, clayey dolostone, total sample). There are also

maxinun-sun constraints on the analyses of the individual rock typesr

i.e.,

C1

Ca

uhere the bound l'lax ( | 007.'

I imestone and dolostone

Final I y, the rock-type

sensei €.9. r the calcite

the dolostoner

And similarly,

And finallgr H€ have the

c

These constraints sti | |

(C1,0lrCdrD6,Cs'Ds), so

from those available.

+ 01 3 t'lax(1002, Ct+Dt)

+ O4 ( llax(1002, C1+01)

cc+DcSl00z

C 1+D 1) al I ots for the {act that scattered

analyses total to slightlv nore than 1002.

analyses should make comparative I ithologic

content of the I imestone should exceed that of

Cr - Ca l 0

Cr - Gc I 0

Da - 0l ) 0

Dc - Dt ) 0

Da - Dc ) 0

nonnegativi tylos 6sl"lraintsr

lr Dl, Cd, 061, C6r Dc ) 0

permit an infinite number of solutions for

sone rule nust be devised to select one solution

One could devise a complicated sequence of

t os 16lu1l I y, nonnegativi ty nas
the ratio l'19C03/CaC03 in
stoi chiometric dol omi te,
that sample. This problem
ct=o'

violated in one of the samples, because
the total sample exceeded the ratio in
resultinE in a negative value of C1 for
uas circumvented by temporarily setting
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if-then decisions to pick a "geologically reasonable" solution, but it

is easier and perhaps just as realistic to pick a single ogeologicallV

reasonable" objective function (a "subjective objective function") to be

optimized by nathematical programning. The question is uhat sort of

function to pick.

If a reasonable linear objective function can be devised, the problen

can be quickly solved by linear programming. For instance, it might be

thought geological ly reasonable to maxinize the calcite in the

limestone, the dolornite in the dolostoner ahd the negative of calcite in

the dolomitic clay, i.e.'

FIAXII'IIZE: X C1 + Y Da - Z Cc

there X, Yr and Z are positive reights subjectively chosen. The Problem

nith this sort of objective is that the solution found uill invariably

lie at a vertex defined by a set of constrsints; i.e.' the limestone

uill tend to becone l00Z calcite, the dolostone uill seek to be l00Z

dolomite, end the clayey dolostone uill tend to be devoid of calcite,

and perhaps of dolomite as uell if the sample contains clean dolostone.

The unfortunate effect of this is illustrated by the plot of dolostone

analysest05 in Figure 79, nhich contrasts sharply uith the plot of real

dolostone analyses provided at the top of Figure 77. The influences of

the maxinum-sum constraint'

CaC0s+l'lg003tl00Z

and the nineralogical constraint,

n9c03 z (Itgcos + cacos) g 0.457

105 The I inear-programming routine
subroutine ZX3LP (Il'lsL, l9E2).

used to obtain these analyses is Il'lSL
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ere pronounced in the synthetic data but subdued in the real data' nost

of uhich represent samples of rocks that are not so mineralogically

pure. An attempt uas made to get around this problem by averaging the

solutions obtained using several objective functions. For Figure 79,

six objectives rere used, obtained from the six permutations of (1,2,3)

for the coefficients (x,Y,Z). In general , di fferent objectives ui | |

tend to shift a solution to different vertices of the conyex feasible

regionr Bhd the averages of solutions lying at different vertices should

lie at interior (feasible) points of the region rather than on the

constraints. Houever for this problem most solutions appear to be not

very sensitive to changes in the objective coefficients, as no

noti ceabl e retreat from the constraints appeared unl ess fai rl y

unrealistic (zero or negative) choices for (X,Y,Z, uere included, end

these choices introduced other undesirable artifacts into the result.

Ideally, the scatterplots of the synthetic anelyses should resemble

those of the real analyses of zpure" sanples Presented in Figures 76

and 77. Ne should at least ask that the mean values of the synthetic

analyses be close to those of the real ones. This suggests a nonlinear

objective function, sirnilar to one described on pege 24, that mininizes

squared deviations from an t'aim" analysis. Using the sample mean

compositions listed in Figures 76 and 77 as the aim, i.e.'

(C1*rDl*rCd*rD6*,Cg*,Dsr) = (95.1' 2.2, 20.0' 75.l' 22.5, 60.6)

the objective becones:

l'llNIt'IIZE: U(C l-95. I )2

+ X(Dc-?5. l)2

v(Dr- 2.2r2 + l.|(C6-20.0)2

Y(Cc-22.5)2 + Z(Dc-60.6)2

+

+
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Figure 79: Summary of synthetic dolostone analyses oreated from
sarnples in Figure 78 by means of linear programminE.

l,le might expect this objective to produce a set of synthetic analyses

uith approximatelg the same means es the real analyses but uith more

peaked distributions, ouing to the fact that dispersion around the means

is being minimizedr subject to the eonstraints. The choice of peights U

through Z is problematical. In this case study tuo sets of ueights uere

tried: all reights equal to oner rhd ueights equal to the reciprocals

of the sample variances calculated from the pure analyses. The

reciprocals uere used in an ettempt to keep the additive terms in the

objective function approxinately equal in influence.
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The results of the tuo nonlinear-programming runsl0t turned out to be

nearly identical, and in nost respects not much different from the

linear-programming results. This suggests that the linear constreints,

nhich rere common to all FUhsr exerted a considerable influence on the

solutions; it further suggests that gU reasonable nethod used to

allocate these sample analyses among the component rock tyPes Probably

luould have Produced similar results for nost sanples. Results from the

nonlinear-programming run uith inverse-variance ueighting llere narrouly

judged to be the best o{ al I runs, and are reproduced in Figures 80

and 81. The advantage of the nonlinear objective.function is clear by

conparing the results at the top of Figure 8t uith Figure 79' This

improvement uas evident only in the dolostones and clayey dolostones.

The importance of the constraints is evident rhen one notices that many

of the nore uidely scattered points in Figures 79 and 8l are in

identical positions, regardless of the objective functions.

The synthetic analyses produced by this method are not designed to

account for spatial correlations and in a fet.t cases ere not typical of

their rock types, even though thev satis{y the constraints, so they are

not used in the estimation of semivariograms and other characteristics

that are described in succeeding sections. They are used onlY for

conditioning the simulations, to assure that the overall compositions of

the contaminated sanpl es in the data set ere reproduced in the

sinrulations.

lo? 51"n;ord subroutine
Neuton Algorithn"),
(19?2r, ras used in

package LCt'tNA ("1inearIy Constrained t'lodif ied
usi ng a method descr i bed bv G i I I and l'turrav

these runs.
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4.2.2.3 Adjustments for Geologic Structure

Semivariograms obtained fron sedimentary deposits typically reveal a

strong (usually zonal) anisotropy, uith a short range or a rapidly

fluctuating drift in the direction vertical to bedding, end nuch longer

ranges in directions paral lel to bedding. It is clearly desirable to

capture this anisotropy in simulations of sedimentary deposits.

Houever, in folded or faulted deposits bedding orientations nay change

so rapidly that the geologic structure obscures the variographic

structure. ln such cases it is necessary somehou to flatten out the

geologic structure before computing sample semivariograms.

The geologic structure in the llason City quarry is dominated by

several broad uarps in the beddihgr cohmonly several hundred feet across

but usually less than trenty feet in amplitude. Nevertheless' these

structures are severe enough to obscure the large-scale structure of

horizontal sampl e semivariograms. The short-scal e variographic

structure nay also be complicated by observed channeling, lenticular

bedding, and paleocol lapse features uithin the I imestone. The dril I

holes are too uridely spaced to reveal most of the local features clearly

if at all, but the broad uarps are evident in geologic cross sections

through the property (e.9., Figure 82(a)). Quarry personnel attempt to

recover nearly all of the linestone above the louermost dolostone bed

that is evident in Figure E2, pith the result that the quarry floor

tends to follou nost of the uarps in the bedding. Thus both the

structural analysis of the variables to be simuleted and the eventual

mining simulations to be performed on the conditional ly simulated



384

deposit rill be made simpler and nore accurate if the effects of the

Barps in the geologic structure are renoved from the data set.l08

Ideally' the ef{ects of broad structural uarps can be renoved sinply

by subtracting the elevation of some "datun" surface -- e merker bed in

the geologic section -- from all drill-hole elevations. The dolostone

bed just beneath the quarry floor is continuous across the entire

propertv, so its top rould seem to be a convenient datum to use.

Unfortunately, the top is rather irregular in some ereas (Figure 82),

and in one area the dolostone appears to interfinger uith the overlying

linestone. Furthermorer a feu holes stopped short of the datum. Hence

it is not possible to locate this datum rith certainty in all holes.

Furthermore it is not clear that the local irregularities in the datum

elevation extend upuard through the rhole section, so exact adjustments

according to this elevation in each hole night edd short-scale

variability to the overall structure uhile subtrectina the effects of

the broad lrarps. To get rid of just the large-scale effects' a smoother

datum is required.

A smooth datunr for this study uas obtained by kriging. (Any surface-

fitting method might have been used just as rell in this application;

the kriging softrare lres simply convenient.) Elevations of the top of

the lonest dolostone nere obtained from drill holes on a 400-foot aquare

grid. (Recall that the property ras drilled essentially on a 100-foot

grid.) Holes in rhich the position of the daturn las unclear uere

excluded. A tuo-dimensional kriging progrern (Stanford subroutine 0KB2D)

pas used to estimate datum elevations at all other locations, using a

smooth pouer-model semivariogFurlr y(p)=;322. The elevations from this

l08 6u1 see Section 4.2.6.
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Figure E2: Cross section along the lest boundary of the quarry
property, before and after adjustments for geologic
structure. Each vertical string represents one drill
hole nithin a north(right)-south(left) line of holes.
Section (a) shor.ts the original rarped structurer ahd
section (b) shons the same structure after removal of
the broad trend that is evident in the top of the
louernost dolostone bed in the section. The spacing
betueen holes is 100 feet. Nithin each hole, the
characters represent rock types observed at one-foot
intervals dosn the hole. "O" ?epresents overburden,
n-tt is I imestoi?2 trltt is dolostone' end "Yt (present
nainly in the lorer north end of the section) is
clayey dolostone (lumped uith dolostone in the
subsequent simulations). The line of holes depicted
in this section is located olong the nestern (left)
edges of Figures 73 and 83.
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smooth kriging (Figure E3) lere then subtracted

elevations at each hole, nhich are used to obtain the

core samples. The resulting "deuarped" structure

Figure 82(b).

from the surface

elevations of all

is exempl ified by

i
NORTH

Figure 83: llap of the kriged surface used to adjust hole
elevations for geologic structure. The larPed
structure evident in Figure 82(a) can be seen elong
the uestern (left) side of this map. (The nap extends
a bit farther north than the cross section.) Each
character on the nep represents a value to be
subtracted frorn the surface elevation at the
corresponding 100-foot grid node. t'.tt = less than l5;
t'+tt = 15 to 25i t'Xt' = 25 to 35i tt*t' = more than 35.
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4.2,2.4 Support Adjustments

A conditionally simulated realization exists only at discrete locations

in space -- usually grid nodes. Each simulated value may rePresent

either a point-support observation at that grid node or e non-Point

volume of material centered at that node. Although it is Possible in

prinoiple to construct a conditional simulation on one support from data

observed on another support (rigorously only if the data support is

snaller), the procedure is greatlY simplified if both supPorts are the

same. Yariable support is particularly difficul t to manage in anv

geostatistical studyr so it is common practice to perform some kind of

,,reconstitution" of the variable-suPport data to create a revised data

set r.rith constant support. For this cese study, core samples of

different lengths nust be reconstituted into samples of constant length.

The method is described by Journel and Huijbregts (197E, P. 202). To do

this it is assumed (outrageously) thet the material lithin a given

analyzed section of core has a constant composition represented by the

core analysis. Then to obtain e neu data set on e constant support' one

simply divides the core into a series of neu constant-length samples and

calculates a conposition for each neu sample fron the average of all old

samples that overlap the domain of the nell sample, ueighting the

analysis of each old sample by the proportion of its overlaP. Because

some old samples nill contribute to more than one nelt sample' this

operation has a snoothing effect that is most Pronounced in the short-

scale behavior of vertical semivariograms.

The original l-lason City data consisted of three observations: CaCO3'

19C0sr ahd rock type. Nithin thick beds of linestone or dolostone' the



388

core $as usually sampled at ten-foot intervals; i.e., the core Llas

divided at depths of .|0, 20, 30, etc., {eet frorn the surface of the

hole. Departures from this regular sampling pattern occurred rherever

there uas a change in rock tyPe that persisted for nore than a foot

or so. Thus a tto-foot-thick bed of dolostone uould be samPled

separately, but a l-foot-thick bed usual ly utould be included in the

sample of the surrounding limestone. (Problems resulting from these

,rpolluted" samples are resolved in Section 4.2.2.2., These variable-

support data Nere converted to a constant-support data set lith five

variables: CaC03 in limestone (CALS), l'lgC03 in limestone (tlcLS)r CaC03

in dolostone (cADoL), mgc03 in dolostone (t'lGD0L)' and percentage of

dolostone in each neu sample (PCTD0L). Nherever the percentage of

dolostone uas 0?f or t002, only tuo of the four chemical variables rould

be observed.

The vertical thickness chosen for the neur samples res three feet.

This choice ltas a compromise. 0n the one hand' the very inportant rock-

tvpe variable (responsible for nost of the variabilitv in the deposit'

as noted in Section 4.2.6) uas observed effectively at point supPort in

the original data set, because rock types uere defined in the

geologist's logs by their contacts, rether than by their Presence or

absence r.rithin a sample interval. Thus the constent-support data set

could have been defined on even a 0.1-foot vertical interval uithout

"creating neu information" on rock type. 0n the other hand, the

chemical data uere observed on larger supports: commonly about three

feet for dolostone analyses (as dolostone beds usually sre thin in this

deposit), and commonly ten feet for limestoner except nhere limestone
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Thus a great amount of vertical

srnoothing can be expected in the reconstituted chemical data. In the

I imestoner esPa6ial ly, this srnoothing results not only from local

reconstitution across the sample boundaries but frorn the fact that the

averege support has been greatly reduced by the reconstitution' such

that strings of tuo or three reconstituted linestone samPles commonly

uill have identical analvses.

Another consideretion in the choice of this spacing is its effect on

the size of the simulation grid (Section 4.2.3). tlith a three-foot

spacing, the uncondi tional simul ations li | | contain about one-hal f

million five-variate simulated data -- about as large as can be

conveniently and cheaply handled r.rith the computer faci I ities being

used. A smaller spacing, and thus a larger data setr ltould have been

too cunbersome and expensive to handle. Final ly, selective mining

operations that might be performed on this deposit could not be exPected

to separate one rock type from another very efficiently if the rock

units uere less than three feet thick. From an economic standpoint,

selection even at this level uould be prohibitive using the current

quarrying methods.

The vertical smoothing of the data rould be unacceptable if small-

scale vertical selective mining rere economically feasible' but it is

not. ln the mining sinulations of Section 4.2.5.1r ohly selectivity at

a nuch larger scale than three feet is consideredr so this smoothing is

of no consequence in practice.
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4.2.2.5 Structural Analysis o{ the Untransformed Data

l,tuch of the limestone deposit represented by the constant-support data

set has been mined out alreadyr ohd the remaining aFB?sr from casual

inspection of logs and cross sections and from field observations'

appear to differ someuhat fron one another. As a preliminary check on

the stationarity of the five variables to be simulated' the quarry

property, including mined-out EF€isr Has divided into five large regions

(Figure 73) and summary statistics, histograns' and scattergrams among

the variables uere calculated for each region. Synthetic chemical data

(section 4.2.2.2) uere excluded. Some of these statistics are reported

in Table 8. It is evident from inspection of these statistics and the

esso.ciated plots (not reproduced) that the five regions are reelly not

much different from one enother. Thus most conclusions to be draxn from

a simulation study of one region can, rith some cautiohr bo applied in a

general ray to the other regions. In this study, only Region 2

(Figure 73), on the rest side of the property, uas analyzed and

simulated in detail. This region las chosen because it appears to

exhibit a r.ride variety o{ geologic and mining situations, and because it

is a likely area for quarry expansion rithin the next several years.

The uhole deposit uas not simulated, simply because a sinulation of such

a large volume of material in suitable detail uould involve several

mi I I ion simulated analyses and rould be hopelessly time-consurning and

expensive to perform r.rith the time-sharing computer facilities being

used here.

Nithin Region 2,

semivariograms emong

in each of thirteen

each of the fifteen sample direct and cross

the five constant-support variables uas ealculated

directions' using e cross-semivariogram program
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TABLE E

Statistical summary of the constant-support data.

Variable Reqion Count l'linirnum l'lean l'laxinum Std. Dev.
I rils 0.0 24.102 100.0
2 2048 0.0 29.519 100.0
3 2785 0.0 26.410 100.0
4 3782 0.0 24.273 100.0q 3476 0 - 0 28. 950 100. 0

39. 9
42,2
39.5
38. 9
41.2

PCT DO L

T1G LS

CADOL

T'IGDOL

+0
0AD0L +0 +0

+0
t1E00L -0 +0

+0 +1

t 834
2 1383

0. 0 0. E64
0.0 I.t58

I 834 87. | 96.513 99.8
2 1383 74.7 95.83E 99.3

CALS 3 1933 El.3 96.288 99.0
4 2620 79. E 96.385 99.4
s 237 4 82 .4 96. 760 99. 4

1.92
2. 5E
2.04
I .96
1.83

3 1933 0.0
4 2620 0.0

0.880 13.8
t.053 | t.4

5 2374 0 - 0 0. 873 9.2

9.6
11.3

0.95
I .66
l .0l
t.30
0. 97

1 294
2 6ss
3 835
4 t054

| 294
655
835

50.0 63. 187
3E.2 59.217
44. E 52.351
36.8 57.3E1

6.7 3t . 25s
0.3 33.962
2.2 33.597
E.2 33.448
7.8 33.551

7.45
5.83
5. 60
5. 30
5. 01

Kev lg Absolute
Values gl Left

Et.7
8E. I
86. 9
E6. 4

43. 0
44.6
47. 5
4s.9
43. 7

6.52
7.24
5. 2l
7.47

5 1060 lE.8 6t.144 E9.2 6.02

2

3

Simpl ified correlation coefficients (r) for al I five regions:
PCTOOL CALS I''IGLS CAD0L Kev g Regions
-0

CALS -0 +0
+0 -0
+0

l.tGLS +0 +0
+0 +0 --6 -5

4 t054
5 1060

-5
-7 -5

-0 -0 +0 +l +0 +0

+2 -0
+0 +l +l +0

+0 -0 -5
+0 +0 -0 +0 -4 -6
+0 +0 +0 +0 -l -4

0

I
etc.

I
23
45

o.o(lrl<o.t
0.1(lrl<o.z

l'1ost data sets contain some "anomal ous" val u€si €.9. r some
ninimum ltcD0L values represent "clayey dolostone"' rhich has
compositions ranging from mostly clay to pure dolomite.
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designed for data on a regular grid (and allouing for the many missing

directions ere thosedata in the dri | | ing grid) The thi rteen

connecting all opposite sides, edges, and vertices of a cube rith edges

pointing north-south, east-restr ihd vertical.toe A unit lag in each

direction is equal to

t/t txs.100)2 + (EN.t00)2 + (vERT.3)a I

uhere NS, E!1, and VERT are the direction indicators -1, 0, or +lr ohd

the multipliers 100, 100, and 3 are the distances betueen holes on the

drilling grid and betueen adjacent dourn-hole sample centers for the

constant-support data. The north-south (1,0,0) direct semivariograms of

the five variabl es are displ ayed in Figure E4. The north-south

semivariograms tend to be better estinated (more pairs) than those uith

east-uest components, because Region 2 is longer in the north-south

direction and because the holes uere drilled 100 feet epart north-south,

usually 200 feet apart east-uest. The rock-type semivariogran (Figure

E4(a)) is nicer than the others because it uas calculated uith more

pairs (the rock type being observed et 3IL sample locations)r ahd

because the distribution of dolostone in the rock is a fairly regular-

looking phenomenon anyltay (Figure 82).

The smoothing effect of the support correction can be seen clearly in

the vertical semivariograms of the chemical data' such as the CALS

semivariogrem displ ayed in Figure E5. The first three lags,

representing distances of three, Six, and nine vertical feet, all lie

ni thin the typical ten-foot I ength of the original I imestone core

l0e components (southr€istrdoun)
(1,1,0), (0,1'0), (-1,1,0),
(t,0,-l), (l,lr-l), (0,,|'-l),

of these directions are: (1,0,0),
(1,0,1), (l'l,l), (0,1'l), (-l,l,l)'
(-lrlr-l), (0,0,1).
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sampl es. Li ttl e

in particular that

displays a large

semi var i ogram.

if any structure

the north-south

nugget effect'

is evident beyond nine

semivariogram of CALS

nhich disappears in

feet. Notice

(Figure E4(a))

the vertical

U'tnt

6.0

3.5

1.0 h -->
(un1ta of 3 ft.l

Figure 85: Vertical sample semivariogram of CaCOs in the
I imestone.

An interesting phenomenon appears in the sample semivariograms uith

east-test components (Figure 86). Even-nunbered I ags have been

calculated uith nany nore pairs than odd-numbered lags, because the

usual east-uest hole spacing is 200 feet. Thus the sampl e

semivariograms look much smoother if the odd-numbered lags are ignored.

Furthermore, the feu ereas nithin Region 2 nhere sdditional north-south
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4.0 t.0 0.0 4.0 8,0

Some sample semivariograms uith east-lest components,
exhibiting the "tuo-sample" effect. (a) Semivariogram
of PCTOOL in the NE-SN direction. (b) Semivariogram
of CALS in the E-N direction. The number adjacent to
each point represents the number of Peirs used in the
calculation.

columns of holes at 100-foot east-uest spacings lrere inserted are nearly

isolated from one another (Figure 73), so thst these edditional holes

contribute to the sample semivariograms alnost exclusivelv at odd-

numbered lags. Thus the even and odd lags have been calculated fron

very different, though overlapping, data setsr ahd in some cases seem to

suggest di fferent models. The ef fect persi sts af ter repeated

transformations. ln Section 4.2.2.7, nodel semivariograms are fitted to

sample semivariograms of the nornal scores of transformations of these

data. The even-numbered lags xere considered more reliable for fitting

(except in the north-south semivariograms), because they uere calculated

from more pairs, because they represented an even 100x200-foot grid of



396

data over

data from

the uhole region,

subjectively chosen

and because they uere

additional holes. I lo

not calculated uith

4.2.2.6 Transformations

Transformations lg gccount lgg gonstreints. The rau chemical data are

subject to a maximum-sum sonstraint of epproximately 1002. Furthermorer

the dolostone analyses should ordinarily respect the constraint:

l'lgC03/(CaC03+t'lgC03) t 0. 457

Analyses violating this constraint uould suggest that magnesite and

dolomite, rather than calcite and dolomite, uere the doninant carbonate

phases in the dolostone; geologically, this uould be a rare occurrence'

So that these constraints can be taken into account in the simulation'

the fol louing transformations Nere performedr 8s explained in

Section 3.5.2.4:

TgTLS=CALS+I|GLS.

T0T00L=CA00L+MGDOL

R,ATLS = 100. 0 * (mGLs+O. 0l )/(T0TLS+0. 0l )

RATD0L = 100. 0 r+ (1.1G001+0. 0l )/(T0TD0L+0. 0 | )

The numerators and denominators of the ratio transformations RATLS

and RATDOL uere "started" bv 0.01 for tuo reasons. First, it is a good

idea aluays to start the denominators of ratio transformations by a

small value so the ratios do not fly off tourard infinity if the major

tern in the denominator approaches zero (actually not a Problem in this

data set). The numerators uere started as a partial "despiking" measure

Ito 16" geologist asked
be dri I I ed in areas
stratigraphv betueen

that the additional north-south columns of holes
rhere he uas having trouble correlating the

holes at 200-foot spacings.
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for the limestone data. The IIGLS data contain nany zero values, uhich

lould produce a spike of zero RATLS values as uell' regardless of the

associated CALS values. But it ras felt that a zero IIGLS and a large

CALS real ly should transf orm to a smaller RATLS value than a zero I'IGLS

and a small CALS, because a zero value for a chemical variable really

means ,rbelou detection limitzr rrot zero. This despiking is accomplished

by adding 0.01 to the nunerator. (Actually, this measure alone is not

sufficient to remove the ill effects of the zero spike' es ue shall see

later in this section. )

Normal-scores transformation. The next step is to transform the four

neu chemical variables, plus the untransformed PCTDOL variable' into

univariate gaussian data by means of the normal-scores transformation,

discussed in Section 3.5.2.2. As in the case study of Section 4..|, the

convenient lllNITAB "nscores" function llas used to obtain the normal

scor€sr al though indirectly. A straightf orr.rard plug-in of the data to

obtain this transformation rould be unsatisfectory, for trto reasons:

first, the PCTD0L distribution contains tuo huge spikes at 0? and l00Z

(Figure E7), corresponding to three-foot thick samples of pure limestone

or pure dolostoner F€sPectively; and second, there are so many data to

be transformed that the inverse transformation of the simulated data by

I inear interpolation (Section 3.5.2.2) uould becone extremely tine-

consuming because of the necessity of sifting throuEh a large number of

ordered bounds to find the appropriate interval for interpolation.

Although ordering the sinulated data nould elirninate the second problem,

the task of ordering hundreds of thousands of deta presents some

problems o{ its oun. Both of these problems are discussed in the

paragraphs that fol I ou.
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Figure 87:
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Histogram of the percentage of dolostone uithin
Region 2 of the quarry property. The tlo spikes at 02
and l00Z correspond to the large number of three-foot
core intervals containing pure limestone or pure
dol ostoner Fesp€ctivel y.

Clearly ue cannot allou MINITAB to assign the sarne normal score to

all data uithin each spike in the PCTD0L distribution, as the resulting

"gaussian" distribution rould still contain tuo spikes. Sone method

must be adopted for ordering the tied data or at least for decomposing

the large spikes into severel much smaller ones. Clues to the kinds of

despiking methods that Bould be appropriate can be obtained from the

discussion of indicator simulations in Section 3.8.3. I ndi cator

simulations are relevant here because the PCTDOL data really consist of

a regularization of point-support indicator data (0=l imestone,

100=dolostone) over a three-{oot vertical support. This support is

smal I enough to al lou the regularized data to retain much of the

indicator character (i.e., the spikes) of the original data.

Unfortunately, there seems to have been litile theoretical uork done on
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the derivation of appropriate gaussian conditioning data for simulations

of this type (Sections 3.E.3..1)r so the approach used here is very much

ad hoc. This is unfortunate, as the percentage of dolostone in the rau

material is the major contributor to variations in the anount of t'lg00:

in the material delivered to the cement plant (Section 4.2.5). Horeverr

the density of drilling on the property should prevent the simulation

from going far astrayr €voo if the model employed for the unconditional

simul stions is inappropriate. | | |

The PCTDoL data must be transformed into a data set that appears to

have been draun from a realization of a three-dimensional gaussian

process. This process probably should have a yery regular character,

because the percentage of dolostone in the geologic section is a very

regular-looking phenofi€hor'rr at least at short scales. Dolostone beds

observed in the quarry faces (Figure 88) normally change thicknesses

very graduallyr and the PCTD0L sample semivarioErans (e.g.r in Figures

84 and 86) shour fairly smooth behavior rith lol relative nugget

constants (at I east, I ott conPared to those of the chemical

semivariograms). This regular character is reflected in the "distance"

despiking method, described belor, rhich ras applied to the 0Z and l00Z

PCTD0L data.

For each 0Z or l00Z datum,

pith different PCTD0L values

OISTANCE =

zstructural distance/ to al I other data

calculated by

NSz + ENI + 4TGVERTz )

lll Horever, in Section 4.2.4 it is shorn that the despiking procedure
used here results in some unfortunate smoothing of the short-scale
PCTDOL semivariogram structure, uhich cannot be corrected by
conditioning. Houever' this does not mean that the procedure nould
be inappropriate for gnJ data set.

a

)tes

'/c
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H I0 ft. .PPror.

Sketches of I imestone
the quarry faces. The
hachures.

and dolostone beds exposed in
dolostone beds are indicated

Figure E6:
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uhere NS, EN, and VERT are "data-grid" distences in the corresponding

directions (l Erid unit equals 100 feet horizontal lyr 3 feet

vertical ly). The vertical grid distance uas effectively doubled to

account for the lesser long-range continuity of the phenonenon in the

vertical direction, as observed in the PCTD0L semivariograms. The

nininum (rrl.llNDISTr,) of al I such distances, i.e., the distance to the

structurally closest datum that is not in the same spike, las stored and

used subsequently for despiking. The idee here is that 0Z data (pure

limestone) lying structurally very far from eny non-zero data should be

transforned to a louer gaussian value than data close to a dolostone

contact. Similarly, 100? data (pure dolostone) should receive a higher

gaussian value if no limestone is nearby.

Use of this distance criterion alone uill not do a very thorough job

of despiking, because many data uill have the same distance value, thus

the big spikes lill simply be broken into a set of smaller spikes. To

decompose these smaller spikes further' a second despikinE criterion, a

"noving-utindou" approach (Section 3. E.3.4), is introduced. This

criterion ("COUNT") is the nunberlr2 of PCIDOL data nithin a structural

distance of 5.0 that are different frorn the datum being despiked. In

other lords, a 0Z value surrounded by nonzero values lould receive a

higher oount than a 02 value uith only a fex nonzero values nearby.

This secondary despiking operates nost effectively uhen tuo data are

located at the same short ninimum distance fron a contact, but one is

surrounded by the contact on nost sides (large C0UNT)r uhereas the other

is not.

I l2 Actual ly the proportion uould
alnays decreases near the edges

have rorked better, as the number
of the sanpled donain.
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The final despiking is then performed as follotts.

PCTOOL is 0.0, the despiked PCTD0L is:

lf the original

Neu PCTD0L = 0.0 - 0.01 ( I'IINDIST - 0.01 couNT ) - 0.2

If the original PCTD0L is 100.0:

Neu PCTD0L = 100.0 + 0.01 ( IIINDIST - 0.0t couNT ) + 0.2

Thus each despiked value is given a nore extreme value i{ l'lINOlST is

large, but is then rendered a little less extreme if C0UNT is also

large. The most extreme values uill thus be those that are a long uey

{rom any data from outside the spike. The least extreme values uill be

those completely surrounded by data from outside the same spike. These

al ternatives are depicted in Figure E9. The effect of the total

despiking procedure is to put deep "valleys" in the normal scores of the

PCTDOL data uherever there is a larEe volume of uncluttered linestone,

high ,'mountains,' uherever there is s large volune of unadulterated

dolostoner trd middting values near the contacts. The constants 0.2 are

subtracted from or added to the 0?t or l00Z datar resPectivelv' to ensure

that all 0Z values are despiked to values less than 02, and all l00Z

values are despiked to values greater than 1002. In this uay, the

despiked values cannot overlap data lying inside the (0f,1002) interval.

In the exposition of the normal-scores transformation in Section

3.5.2.2, and in the previous case study of Section 4.1, 3ll of the

original data and their normal scores rere used to define a series of

I inear-interpolation bounds for the inverse transformation of the

simulated date. In this case study, this approach Presents a problem'

because there are between 655 and 2048 original data for each variable,

and about 350,000 conditionally sinulated data to be back-transformed.
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If Ne simplistically sifted through an average of about 300-1000 bounds

(about hal{ of the original data) to find the right pairs for each

interpolation, the 100 million to 350 million comparisons involved for

each of the five variables uould consume an inordinate amount of

computer time. The search is greatly simplified if the simulated data

are ordered first (as in subroutine LINT, listed by Yerlyr 1984b), but

the sorting of 350,000 data for each of five vsriables also consumes a

lot of time and storage. One of several simple uays to reduce the

amount of time needed for the inverse transfornation is to reduce the

total number of bounds used in the inverse trensfornation. This

requires that linear interpolation be used for both the inverse and
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foruard gaussian transformations, if the original data values are to be

reproduced by the simulation. The fornard transfornation then does not

produce "exact" normal SCor€Sr but rather I ineerl y interPol ated

approximations of nornal scores. The exact normal scores are used only

at the bounds. The method is illustrated in Figure 90. Fi rst the

normal scores of all data are obtained (nith I'IINITAB in this example).

Then several pairs of original and transformed data are picked out of

the resulting data sets to serve es foruard and backuard linear-

interpolation bounds. The number o{ pairs selected is greater for data

uhose original distributions do not look very smooth, such that e nore

detai led pieceuise-l inear approximation is needed. Also, more bounds

are used in the tails of each distribution than in the middle' so that

the sensitive tail portions of the gaussian distribution are better

reproduced. For instance, in this case study, the folloning numbers of

original and transformed data lere selected:

Yariable

PCT DO L

TOTLS
RATLS
TOTDO L

RATDOL

Number of 0riginal
Data Pairs

2048
| 383
I 383
655
655

Number of Pairs
Selected as Bounds

6t
t08
123
5l
62

The final step in the foruard transformation is to re-transforn the

original data to a nearly gaussian data set by linear interpolation.

This ensures that the eventual inverse trensformation of the

conditionally simulated data nill reproduce the original data exactly.

Despiked 02 and l00Z data in the tails of the PCTDOL distribution

uere not transformed by interpolation; the original normal scores

generated by ttlNITAB uere retained instead. In the eventual inverse
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Figure 90: Normal-scores transformation using using both fortard
and inverse linear interpolation. Datum Z uould be
transformed to interpolated normal score Y' instead of
exact score Y. A simulated score Y uould be back-
transforned to interpolated datum Z' instead of exact
datun Z. These inaccuracies decrease as the linear
approximations approach the true distribution
funct i ons.

transfornation of the simulated gaussian PCTDOL data, ell simulated data

in the tails are simply transformed back to 0Z and t002, respectively.

Thus the spikes are restored eutomatical ly by the inverse

transformat i on .

These transformations uere first performed only

from Region 2 -- not on the synthetic data

structural analysis of the transformed phenomena.

on the zreal" data

to get data for e

To get data for

including a foruardconditioning' the same sequence of transformations,
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linear interpolation using the same bounds,

set of data from Region 2.

uas performed on the entire

Results g[ the trans{ormations. Statistics of the "?eal" trensformed

data from Region 2 are summarized in Table 9,t13 and scatterplots of

selected pairs of data are displayed in Figure 91. The histograms, not

shounr of course appear very gaussian. The statistics are not so nice

as those that nould be obtained from a set of true nornal scores of

fully despiked data: such data uould have nean z€For variance very

close to .|.0 (but not exectly -- see Section 3.5.2.2)r alrd equal naximum

and minimum values. Nevertheless, these data are certainly close enough

to the correct univariate gaussian statistics to be treated as standard

normal data for simulation purposes.

The scatterplots reveal some initiallv shocking features, horever.

Under the multigaussian hypothesis (Section 3.5.1), one uould expect all

scattergrams to look something I ike that betreen POT(T0TLS) and

PGT(T0TD0L), depicted in Figure 9l (d). This plot (and in {act most

plotsr hot shoun here) exhibits the elliptical character typical of

bivariate normal data. Horever, all scatterplots containing PGT(PCTDOL)

exhibit the "truncated-normal" pattern of Figures 9t(a) and (b), and the

PGT(RATLS) - PGT(T0TLS) scatterplot in Figure 9l(c) contains a strange

"tail" corresponding to the lorest values of RATLS.

The peculiar appearance of the scatterplots containing PGT(PCTOOL)

can be understood uhen ue recall that the four chenical variables have

been "preferentialIy sampled" urith respect to PCTDOL. llhen PCTD0L:0

tt3 ln Table 9 and subsequently, the notation "PGT( )" denotes the
"piecerise gaussian transfornation" discussed above. lt is
approximately equal to "G-tF*( )" as in Section 3.5.2.2, except that
both G'l and Fr are approximated by a coarse linear interpolation.



407

TABLE 9

Statistical summary of the linearly interpolated nornal scores
fron Region 2.

Variabl e Count t'linimum llean l'laximum Std. Dev.

pGT(pcrDoL) 2048 -3.3289 -0.002 3.3288 0.997
pGT(TOTLS ) l3S3 -3.2394 -0.002 2.9999 1.00
pGT(RATLS ) t3s3 -3.2395 -0.009 2.9413 l.0l
pcr(T0TDoL) 655 -3.0549 -0.019 2.6402 0.991
pGT(RATDoL) 655 -3.0336 0.000 2.7E84 0.998

Corre I at i on l'latr i x

PGT(PCTDOL) PGT(TOTLS ) PGT(R,ATLS ) PGT(TOTDOL)

PGT (T0TLS ) -0. 054
PGT(RATLS ) 0.t19 -0.025
PGT(TOTDoL) a.277 0.377 0.045
pcr(RATDoL) -0.065 -0.125 -0.062 -0.077

((0, despiked), there can be no observations of TOIDOL end RATD0L;

sirnilarly, nhen PCTDOL=t00 ()100, despiked), there are no observations

of T0TLS and RATLS. Nevertheless the simulation nodel described in the

next section is formulated as though three feet of linestone g!'d three

feet of dolostone could coexist at each grid node, regardless of the

value of PCTD0L. (The simulated values of PCTD0L ere used only in the

final stage of the simulation to proportion the sirnulated compositions

of the tuo rock types into a final simulated composition for each three-

foot interval . ) Thus the data set behaves as though ue had taken some

of the normal scores of the chemical data corresponding to each sPike of

the PCTD0L distribution and simpl y thror.rn them auey. The correl ation

coefficients in Tables E and 9r and sny other measures of joint
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vari ebi I i ty among the data,

measure the behavior of this

joint-normal variables only if

"preferential ly sampled" data

total (unreal izable) phenomenon

The sane hypothesis must be

behavior of chemical variables

such as cross semivariogFansr actual ly

hypothetical sinulation model for five

ue hypothesize that the behavior

accurately reflects the behavior

of

of

the

the

being simulated.

invoked uhenever re measure the joint
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Figure 9l: Scattergrams of selected pairs of normal scores.

from tuo dif{erent rock types. For
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example, sample cross senivariograms betteen PGT(T0TLS) and PGT(T0TD0L)

can be calculated using only data fron samples in nhich 0(PCTD0L(100 --

only 225 out of 2048 samples from Region 2. If this uere thought to be

seriouslv biasing the calculations, the noncentered cross-covariance

function betueen these variebles might be calculated instead of the

cross semivariogptmr as explained in Section 3.E.4. Houever, the

structural analysis of tlrese sample semivariograms presented in the next

section (and the correlation natrix in Table 9) strongly suggest that in

this data set the chernical compositions of the tuo rock types are

essentially uncorrelated. In eny case, the conditioning data for these

simulations are so ideally located that careful modeling of their joint

vari abi I i ty ui I I not be cri ti cal .

The peculiar appearance of the plot in FiEure 9l(c) is e consequence

of the spike of zero iIGLS values, producing a similar concentration of

near-zero RATLS values. These values are not exactly zero because the

numerator of RATLS nas "started" by a constent value of 0.0,| in the

transformat i on :

RATLS = IOO.O

Among the samples nith zero

exactly determined byr ihd

entered in the denominator

TOTLS=CALS+T.IGLS

are also exactly determined by the CALS values. Thus the large spike of

zero IIGLS values is dissolved not into a eloud of bivariate-normal-

looking values but into a series of small spikes in uhich RATLS and

TOTLS are inversely related. This relationship persists into the normal

* (l.tcLs+o. 01) z (cALS+tlGLs+0.01)

l'IGLS val ues, the cal cul ated RATLS val ues are

inversely proportional to, the CALS values

of the transformation. The values of
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scor.ssr as illustrated by the tail on the left side of Figure 9l(c).

This tail represents 215 of the 1383 limestone analyses in the data set

and nust therefore be regarded as a nontrivial departure from the

assumption of rnultivariate nornality that must be made in order for the

simulations to reproduce the original spatial distribution of limestone

grades. In practice, houever, this departure is really not very

important. Although the simulations uil I not reproduce this pecul iar

scatterplot, any simulated value fal I ing belor.r the highest PGT(RATLS)

value in the spike uill still automatically be assigned to I'IGLS=0.0,

CALS=ToTLS. And although the semivariogram model adopted for PGT(RATLS)

may not be exactly appropriate for reproducing the spatial distribution

of limestone compositions, this distribution appeers to be almost a Pure

nugget effect (according to the semivariograms of both the rau and the

transformed data) lith a vary lou variance (in the rau data). The

cornposition of the I imestone is thus not an imPortant factor in

determining the chemical variabi I ity of the nine output. The

composition of the dolostoner and particularlg the anount of dolostone

(pCTD0L), are far more important. Exceedingly accurate reproduction of

the CALS and l,tGLS distributions are thus of little Practical importance

in this study.

lurther. )

(Section 4.2.6 carries this I ine of thought a bit

4.2.2.7 Structural Analvsis of the

North-south sample semivariograms of

in Figure 92. Semivariograms in the

Transformed Data

the normal scores are i I I ustreted

other horizontal directions are not

so clearly defined, for reasons explained in Section 4.2.2.5.
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The semivariogran of PGT(PCTDOL) in Figure 92(a) shotts no apparent

sill, in contrast to the plot of Figure E4(a). This drift in the north-

south direction, and in al I other horizontal directions except

northurest-southeast, is probably the result of long-range trends irnPosed

by the despiking formula (Section 4.2.2.6). The nugget component of the

original phenomenon has also disappeared -- also probably the result ol

the smooth transitions betueen limestone and dolostone scores imposed bv

the despiking procedure. (This turns out to be unfortunate, as

demonstrated in Section 4.2.4.>

The sernivariograms of the chemical variables retain the relatively

high nugget components observed in the untransformed data. An attempt

ltas nade to gain additional infornation on the size of the nugget

component by examining semivariograms of the interpolated normal scores

of five pairs of "tuin" holes (shorn by the symbol t'2" in Figure 73)

scattered around the quarry Property (none in Region 2). In these five

cosESr holes uere dri I led at nominal ly the same coordinate locations

during both the 1955 and t967 dri||ing progransr Possiblv by mistake.

gbviously the holes could not have been drilled at exactlv the same

locations, but assuning reasonable surveying accuracy, it is likely thet

they nere less than ten feet apart, Versus the usual 100- to 200-foot

spacings in the rest of the data set. Tuo holes also uere in-filled at

fifty-foot spacings in one srnall area in the eastern part of the

property (shoun by "!' in Figure 73), and short-scale semivariograms

using these hotes uere examined as uell. Ouing to the small number of

pairs available (especial ly for P0T(TOTDOL) end PGT(RATDOL))' the

numerical values of the resul ting semivariograms uere not rel ieble.
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Houever, the scattered velues from the tuin holes did suggest the actual

short-scale senivariogram structure is probably not very different from

the structure obtained by simply extrapolating larger-scale trends back

to the origin. This uas the method actually used to obtain nuggets for

the senivariogram nodels used in the simulation. Semivariograms

calculated from the fifty-foot holes uere dramatically louer than those

from the tuin holes and the main data set. It las concluded that these

results probably reflected only the local structure of the small area

nhere these holes uere drilled, so the results uere discarded.

Sample direct and cross semivariograms rere calculated for the normal

scores in the same thirteen directions used for the untransformed data'

as described in Section 4.2.2.5. In nost of these directions' the

sample plots lere fairly ragged oning to the small number of pairs, the

"tuo-sample" phenomenon discussed in Section 4.2.2.5, and the

pecul iari ties of the I ocal domain of observation (Region 2).

Nevertheless, preliminary models fitted by eye independently to each of

these ragged plots generally rnade sense rhen conpiled together on polar

contour plots of the sample semivariogram functions, as illustrated in

Figure 93 for the PGT(PCTDOL) senivariogram. The final models for the

direct semivariograms nere obtained after a careful revieu of the polar

plots. The most questionable fits uere those of the nugget constants

for the chemical veriables, uhich appeared consistently high but seemed

to vary erratically rith direction.

In most cases the cross semivaiiograms ltere even more ragged than the

direct plots, rnaking them difficult to fit' Fortunately' houeverr" these

plots nearly allays appeared to shour zero nugget components and definite
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departures trom zero only at long lags. The only exception las the

cross semivariogram betueen PGT(T0TLS) and PGT(TOTD0L), rhich seemed to

shor a nugget of about 0.1, still snrall enough to be ignored nithout

seriously biasing the sirnulation.ltt Because cross associations among

the variables become apParent only at longer lags (and in some cases not

even there), these associations lill automaticallv be imparted to the

simulations by conditioning.lts Thus it appears that the "total" and

,,ratio" transformations epplied to the chemical data have had the

{ortunate effect of rendering the four chemical variebles practically

uncorrelated except for large-scale trendsr eo in practice they can be

nodeled and sinulated independently. Reliance is placed on condition'ing

and on the inverse transformations to restore nhatever cross

associations nay be present emong the original variables. Fortuitously,

it eppears that pGT(PCTDOL) is not correlated llith the chemical

variables' either.

ttr Of alI pairs of chemical variablesi these tro shotl the strongest
cross association, even though thev uere measured in different rock
types. They shou the highest correlation coefficient in Table 9 and

the only noticeably elliptical, rather than circularr cFoss-chernical
scatterplot (Figure 9l(d)). The reason {or this association nay be

that the percentage of clay end other noncarbonate materiel in the
rock (approximately equivalent to l00Z-T0TD0L in the dolostone,
|00Z-T0TLS in the limestone) ras fixed during deposition of the
sediments, uhereas patchy dolomitization of the sediments probablv
occurred later. Neighboring areas of dolornitized and undolomitized
linestone uould thus retain similar amounts of clay (resulting in
cross-correleted T0TD0L and T0TLS) but have radically di{ferent and

unrelated amounts of tlg00s (resulting in uncorrelated R'ATDOL and

R,ATLS). This relationship could be expected to deteriorate rapidlV
rith increasing distance betreen the I imestone and dolostone
samples; houever, only samples containing bgLh rock tyPes can be

used to calculate a cross semivariogram.

I l5 Houever, only 225 of the 2048 data contain both I inestone and

dolostone analyses, so the cross semivariograms betueen these rock
types nill not be very uell conditioned.
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Al I five direct semivariograms Nere fitted independently uith

isotropic nugget constants and anisotropic linear nodels, summarized in

Tab.le 10. To obtain isotropic nugget constants, the vertical smoothing

effect of the reconstitution of core supportr yisible in the four

chemical semivariogrornsr had to be ignored. Extrapolation of the large-

scale behavior of the vertical sample semivariograms to the origin,
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ignoring short-scale smoothing, produced estimated nuggets acceptably

close to those obtained from the horizontal plots. Conditioning should

re-smooth the vertical variability of the sirnulated dota verv close to

the dril I holes but leave them relatively untouched onlv a short

distance auay, because of the high nugget components in the data. As

the smoothing is arti ficial anylreyr the rel ative roughness of the

sirnulations should make them more realistic.

For the unconditional simulations, anisotropic spherieal nodels uith

the sane short-scale slopes as the linear nodels Nere used. The linear

models uere used for kriging, except for PGT(RATLS)r Nhich has a very

short east-uest range. The larger-scale discrepancies betueen the

spherical and linear nodels are unimportant, because in the final

simulation, large-scale behavior is imposed by

3.7.2).

conditioning (Section

4.2.3 Simul ation Procedure

The sirnulation domain (Region 2) nas discretized into a grid of l4l

(north-south) by l0l (east-uest) bv 4l (vertical) points (Figure 94),

each of nhich uas associated urith a set of five independent

unconditional ly simulated data. The grid spacing llas ten feet

horiaontally and three feet vertically. Subroutine TB3D (Appendix B)

Has used to perform the unconditional simulations, using sphericel

semivariogram nodels uith short-lag slopes equal to the slopes of the

linear semivariogram models summarized in Table 10. The larger-scale

structures of the simulations in general uere di{ferent from those

inferred from the data, but because of the density of conditioning'
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Nugget constants and

TABLE IO

I inear semivariogram
nornal scores.

slopes fitted to the

Variable Isotropic
Nugge t

PGT(PCTOOL) O. O

PGT(TOTLS) 0.6

PGT(RATLS) 0.8

PGT(TOTDOL) 0.3

PGT(RATDOL) 0.7

All cross semivariograms

North-South
Sl ope

0. 106

0. 040

0. 040

0.011

0.030

uere modeled as

East-l.lest
Sl ope

0. t06

0. 040

0. 400

0.029

0. 030

zero at al I

Yert i cal
Sl ope

0. t80

0. 040

0.0t3

0. 140

0. 043

I ags.

departures at large lags in the unconditional simulations lere of no

importance (Section 3.7.2r. Because the simulations ltere so large' a

modification ras made to the subroutine to allou the nugget components

of the models to be simulated simultaneously uith the single sPherical

structures. (0theruise l!-rjg big files -- sphericalr nuggetr and total

-- of l4txl0lx4t = 5E3,881 data rould have to be created and stored for

each of the four chemical vari.ables, driving up disk-storage

requirements.) The nugget conponents uere simulated by It-lSL subroutine

GGNIIL (ItlSL, 1982)r 8 hormal(0,1) generator. A call of this subroutine

uas inserted into the TB3D code at a point just before the subroutine

urites a column of spherical data to the output file (i.e., shortly

before statement 4 of the listing shoun in Appendix B). The vector of

nornal(0,t) data returned by GGNIIL uas nultiplied by the square root of
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the semivariogram

spherical values'

nugget constant,

and then rritten to

the colunn of simulated

file as usual.

added to

the output
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Figure 94: l'lap vieu of the domains of the conditionsl and
unconditional simulations. Actual drill-hole
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Kri gi ng for

model s, except

conditioning lras performed

that variable PGT(RATLS)

using I ineer semivariogram

uas kriged using a spherical
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model because the range o{ the sample semivariogram in the east-uest

direction uas too short for an acceptable linear approximation. (A

linear model is preferable to a spherical nodel for s large kriging job

because the covariances can be calculated more rapidly.) The fact that

the holes nere drilled on a regular l00xl00-foot grid (rith several

missing holes) alloued the kriging to be speeded up considerably. To

take advantage of the regular grid' kriging ltas performed in tuo stages.

In the first stager orly locations on the l00xl00x3-foot data grid

(Figure 94) uere kriged (a bit more then lZ of the total points in the

domain). 0f the l5 (north-south) x 'll (east-uest) x 4l (vertical) =

6765 grid nodes in this category, only 2048 uere actually occuP,ied by

data, and only PGT(PCTO0L) ues observed at every one of these 2048 data

locations. Thus the first-stage kriging just filled in the gaps in the

regular data grid. Then in the second stage the kriged estimates at

these locations, conrbined uith the actual data' lere used to krige the

central part of the domain (Figure 94) on a lOxl0x3-loot grid spacing'

using a constant data configuration (Figure 95). To obtain a constant

kriging configuration over the uhole domain, the top and bottom levels,

lirst ten and last eleven coluhnsr and first ten and last eleven rous of

the uncondi tional domain had to be dropped from the condi tional

simulation, leaving a conditional domain of 39 levels, 80 coluhhsr and

120 rors.

The estimates obtained on the fine grid using this technique uere the

.S!!.tg as those that r,rould have been obtained if kriging had been done in

a single pass using the original irregular data configuration in the

same neighborhood (Journel and Huijbregts, l9?8' P. 351), but the
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regular configuration alloued the kriging reights to be calculated just

ohG€r in advance, for the fixed configuration, end then appl ied

repeatedly to krige the entire grid. This saved a vast amount of

execution time. For example, on Stanford's IBt'l 3084 the kriging of the

original 6765 dri I I ing-grid locations (including 2048 actual data

locations) for variable PGT(PCTDOL) required over an hourl l6 of

prooessing ('CPV", time, uhereas the final kriging of the 120 (north-

south) x 80 (east-uest) x 39 (vertical) = 374,400 data on the

t0xl0x3-foot grid required only about tuenty minutes.

The conditional ly simulated data uere back-transformed to the

original variables PCT00L, CALS, l'lcLS, CAD0LT aild t'tG00L bv applying

first a I inear-interpolation transfornation to invert the simulated

normal scores to PCTDOL, TOTLS, RATLS, TOTDOLr and RATDOL' and then

inverting the total and ratio transformations described in

Section 4.2.2.6. Finally, the PCTD0L data lere used to combine CALS and

CADoL to get the overall CaCOs (CA) content of each simulated interval,

and I'IGLS and llcD0l uere simi I arl y combi ned to get the MgC03 (l'lc)

content. The final data set used in the nining simulations then

consisted of three variables: PCTD0L, CA, and l'lG, describing the total

I ithologic and chemical makeup of each simulated three-foot-thick

section of drill core.

tl6 Actually nuch of this tine ras consumed by en inefficient method of
searching for the data, but even nith a nuch better search the
374,400 grid locations could not have been kriged in nearly so fast
a time rith irregular data. POT(PCTDOL), having the most data, took
the nost time because of the search.
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The domain of the conditional sirnulation extends tell above and belou

the elevations of the core-drill data used for conditioning' so many

data in the upper simulated levels correspond to samples above the

actual bedrock surfece. The vertical coordinates of the top samPles

from the core-drill data lere used to estinate the elevation of this

bedrock contact uithin the horizontal limits of the simulation domain.

Because the contact is naturally very smooth, there uould be no point in

trying to sinulate it, as the differences betueen estimated and

simulated values uould tvpically be less than the three-foot vertical

support of the simulated data. Inverse-distance-squared ueighting uas

used to obtain an estimated surface elevation (in grid spacings) st the

top of each of the 9500 simulated drill holes. This estimate llas

rounded to the nearest vertical grid coordinater and all simulated

values above this position uere set to a rnissing-value code. Thus the

final simulation extends upuard only to the approxinate level of the

actual bedrock surface. This "simulated" surface is unrealistic in

detail, as it varies in discrete three-{oot iumps instead of

continuously. But because the deposit is typical ly over fifty feet

thickr ehd because the mining simulations use deta everaged from groups

of five or nore holes, this approximation is of no consequence to the

final resul ts.

4.2.4 Simul ation Resul ts

Statistics. Table ll conpares statistics of the five conditionally

simulated variables and the corresponding five variables observed et the

original 2048 sample locations. ln most cases the comparisons are
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excellent. The larger discrepancies betueen real and simulated PCTD0L

data arise from the influence of domain errors and from some

oversmoothing committed by the despiking technique apPlied to this

variable (discussed belou). Domain errors result prirnarily from the

fact that the original 2048 data lrere col lected from a domain measuring

(in the horizontal directions) 10,000x14,000 feet (l0l columns x

l4l rons at a l0xl0-foot grid spacing in the unconditional simulation),

uhereas the conditional simulation occupies only columns ll through 90

and rous ll through 130. Variable PCTDOL' having a long FdD$ar a

relatively lol nugget component, and a high sill, is more sensitive to

domain errors than the chemical variables; thus the statistics for

PCTDOL differ more noticeably anong the three data sets. The I ouer

standard deviations of the simulated PCTD0L data probably arose nainlv

from smoothing (described belou).

Statistics rere not caloulated {or all simulated data, but rather for

tr.ro subsets extracted from every tenth rou and column starting uith

coordinate (lt,ll) for Subset I and (16,16) for Subset 2. Subset I is

,'in phase,, uith the dritling grid and contains many conditioning data;

Subset 2 is shifted to the southeast end contains no conditioning data.

In the vertical direction, the tuo subsets of simulated data ltere

collected only betneen the bedrock surface and en elevation six feet

(tr.ro three-f oot vertical grid spacings) bel ou the top of the I ouer

dolostone unit that underlies the quarry floor. This is about the same

vertical interval covered by the core drilling. Elevations of the

dolostone contact uere determined as described in the discussion of

mining simulations in Section 4.2.5.



TABLE T I

Statistical summaries of 2048 real data and tlo sets of 1987 and
1993 simulated data.

Variable Real Oata Sinulated Data Simulated 0ata
(Subset l) (Subset 2)

t'lean Std . Dev. l'lean Std. Dev. l'lean Std. Dev.

pcrD0L 29.5 42.2 21.7 37.3 20.6 35.8
CALS 95. 8 2.6 95. 8 2.6 96.0 2. 3
r,tGLS 1.2 1.7 1.2 1.8 1.2 1.8
cA00L 59.2 7.2 58.4 7.2 59.0 7.2
nGD0L 34.0 5.8 32.8 6.3 32.9 6.1

/ Real Data
Correlation Coefficients ( Subset I

\ Subset 2

PCT DOL CALS ]'IGLS CAOOL

-0.055
CALS 0.007

0. 102

0.049 -0.727
IfGLS 0. 028 -0.722

-0. 028 -0. 729

0.052 0.089 0. ll0
CADOL 0. 057 0. I | 8 -0. 032

0. l0l 0. l14 -0.043

-0. 002 0. 086 -0.096 -0. 434
l.tGDOL 0.128 0.023 0.000 -0.310

0. 083 0. 008 0. 023 -0. 46 |
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Scatterpjots. Figure

the simulated data from

bivari ate distributi ons

been ure I I reproduced '

96 shous scatterplots of the real data and of

Subsets I and 2. The general shapes of the

of CaC0s and llg0Os in the tuo rock types have

as e consequence of the "rhtio" and "total"



425

transformations applied to the data. The feu anonalies that appear in

the sirnulated data, particularly in the dolostone compositions' oue

their existence to the influence of a feu svnthetic conditisning data,

discussed in Section 4.2.2.2. The synthetic conditioning data lere used

not only in conditioning but in the loruard and inverse ratio and total

transformations. (At least a feu of them must be used as bounds tn ttre

transformations in order to reproduce the conditioning data.) These

anomal ies may have had some influence on semivariogram reproduction as

uel l, because they uere not included in the data sets used for

semivariogram modeling but uere used in conditioning.

Semivarioorams gl PCTDOL. figure 97 compares tno sets of east-xest

sample semivariograms of PCTD0L. The semivariogram of the original data

(narked by the letter "B") is the same in both plots. It ras calculated

only from data uithin the domain of the conditional simulation. In

plot (a), the sinulated data in Subset I, rith horizontal grid origin

(11'll)r rere used to plot semivariogram "A". This grid coincides uith

the drilling grid, so many of the data used in semivariograms uAz and

"B" Nere identical' and so the sample plots are similar. In Plot (b),

the simulated data in Subset 2, shifted 50 feet (five grid spacings)

south and east of the dri | | ing grid, ltere used to plot

semivariogran "A". The greater departure betueen the tuo curves is

striking.

For most directions the sample semivariograms of the simulated PCTD0L

data (even those of Subset l) are systematically louer than those of the

real data' as though the nugget effect had been smoothed out. This uas

not the case in the semivariograms of the "gaussian" PGT(PcTD0L)
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in Section 4.2.2.5.

conditioning data and of the resulting simulations, before application

of the inverse transf ormation. Those data shotted @, nugget ef f ect. It

appears that the foruard-transformed "gaussian" conditioning data did

not resemble a true realization of a stationtry gaussian random function

very closely, as in that cese the inverse transformation tould be

forced, in theory, to reproduce the spatial distribution, and thus the

semivariogt.arnr of the original data. The I ikely culprit is the

despiking formula on page 402, rhich tended to produce extremely smooth-

looking "gaussian" data in large areas of pure limestone or dolostone,
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uhereas data near the contacts uere littte affected. APParently one

effect of this smoothing uas obliteration of the nugget ef{ect in the

sample semivariograms of the PGT(PCTD0L) data. In the back-transformed

conditional simulation of PCTD0L, the nugget effect is Partly restored

in Subset l, uhich conteins many conditioning data; but because

conditioning can do I ittle to influenoe short-scale semivariogram

structure, the sample senivariograms of Subset 2 shor a short-scale bias

in the simulation.

Another practical effect of the overly smooth PCTD0L simulation is

that areas completely surrounded by dolostone conditioning data are

typi cal I y devoi d of simul ated I inestone I enses' and areas of pure

limestone conditioning data contain no simulated dolostone. A rougher

unconditional simutation and rouEher conditioning data uould be expected

to insert a fen lenses of dolostone in places rhere core drilling had

encountered none. In the mining simulations (Section 4.2.5), this

effect uouldr or the average, nake very dolostone-contaminated nining

blocks look even uorser ahd make nearly pure limestone blocks look even

better. This night make selective mining look a bit more effective than

it should.

Fortunately, the simulation of PCTDOL is so tightly conditioned that

these srnall-scale effects cannot Persist far enough to be of great

practical importance, and larqe-scale deviations from the truth cannot

occur at all. Because the rnining simulations involve blocks containing

five holes eachr r.thich subsequently are lumped into hornogenization piles

of up to 24 blocks, the bias in short-scale structure should be of

little consequence. This can be vieued in terms of a regularizationr
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tuo phenomena differing only in the sizes of their short-scale

structures uill become indistinguishable uhen regularized over a larger

supportr is t.€gularization subtracts the short-scale strueture from each

of them.

If this simulation uere to be used uithout being averaged into

blocksllT, the short-scale inaccuracy of the PCTD0L semivariograms uould

be impermissible. In that ctssr a different despiking epproach uould

have to be devised that uould not produce such smooth "gaussian" data.

The smoothness of the method used here arises mainly because the method

is deterministic Aiven the data (like a kriging), uhereas uhat is really

needed is a simulation. Eecause the PCTOOL data resemble indicator data

so closely, the methods suggested in Section 3.E.3.4 for generating

gaussian conditioning data for indicator simulations are applicable. In

particular, method (5) proposed on page 297 is very similar to the

approach used herer exc€pt that the suggested step of "roughening up"

the smooth conditioning data tas not, but should have been, taken. The

appropriate amount of roughening (probably accomplished by addition of

some nugget noise to the despiked values) uould have to be determined by

trial and error. The effects of the roughening on the appearance of the

PCTDoL cross sections (Figure l0l) might have to be considered in

selecting the structure of the roughening data.

fft Recall, houever, that the data ere on ttcore" supportr so for most
rnining applications it rould be inappropriate to use them uithout
first averaging the data into blocks. Fortuitously, the overly
smooth simulated data probably look nuch like the data that uould be
obtained by a change of support from three-foot core samples to
their associated 3xl0xl0-foot sinulation blocks.
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Semivarioqrams 95[ chemical variables. Some typical sample direct

semivariograms of the chernical variables are illustrated in Figure 98.

All of the semivariograms of the simulated data lere oalculated from

Subset 2. The discrepancies that eppear occur primarily in the nugget

structure and vary greatly rith direction. These discrepancies merely

reflect the fact that the semivariograms of the real chemical variables

are poorly estimated by the available data' rhich tend to suggest

different models in different directions. t'lodels of the gaussian data

uere based upon the average behavior of the models in all directions

(allouing for anisotropy). Because the variability among directions uas

pronounced in the nugget structuresr conditioning Nas not able to bring

the semivariograms of the simulated data entirely back into I ine,

efthough the Iarge-scale trends in curves t'At' and t'8" tend to be

parallel as the result of conditioning.

In some cases poor reproduction reflects the paucity of data used to

calculate the original semivariogFsilsr as illustrated by the north-south

plots for CALS and tlGD0L shoun in Figure 99. Tha gaussian transforms of

these variables uere modeled as independent, even though the very ragged

sample plots in some directions suggested Yarious types of cross

structurer especially at long lags. (Apparent cross structure at long

lags can usually be attributed either to drifts in the tuo variables or

simply to a smal I number of pairs. ) These cross structures rould

normally be imposed by conditioning, but it is obvious fron Figure 99(a)

that the cross structure "An of the simulated variables is still just

rhat the nodel of the unconditional simulation said it should be: zero.

The "A" plot for Subset I in Figure 99(b) hardly looks better, even
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though several of the same data uere used

Improvement in (b) is particularly negligible

the original 2048 data, and even feuer

conditional'simulation domain, contained both

f or both "A" and ttB".

here because only 255 of

of the data inside the

CALS and ].|GD0L values.
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Figure 99: Sample cross semivariogram betreen variables CALS and
l.lG00L. Plots ',4,' represent the simulation, plots rrBz
the real data.

Semivarioqrans s{ total rock conpositions. The variography of the

simulated chemical compositions of the linestone and dolostone combined

is most important in practice, as the mining simulations nill be carried

out on these data. Figure 100 shous plots for total CaC03 (variable CA)

and total lIgCO3 (variabl e l'tG) in the rau material . AI I pt ots are based

upon simulated Subset 2. Not surprisingly, these plots appear to be
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dominated by the smooth structure of the PCTOOL simulation, uhich

determines hol much simulated limestone and hott nuch sinulated dolostone

contribute to each total analysis. tn general, Plots 'A" and "8" are

similar but dif{er bv a fairly constant value ouing mostlv to the

snoothness of the PcTOoL data: the sirnulation plot "A" is

systematically closer to zero than the data plot "B". Again' the

effects of these discrepancies are largely filtered out in the mining

i

and homogenization simulations, because data from several simulated

'rhol es,, (at I east five hol es, ui th usual I y ten to tuenty simul ated

analyses per hole) contribute to the enalysis of each mined-out and

homogenized batch of stone.

Cross sections. To see that the percentage of dolostone in the

samples appears geolooical lv reasonable, eight north-south cross

sections lere plotted through the PCTDOL simulation at intervals o{

100 feet, starting sith colunn ll (of the tOl columns in Region 2, the

unconditional domain) and oontinuing to column 81. Four of these -- at

columns 21,41, 61, and Et -- are illustrated in Figure l0l. They shott

a realistic-looking lenticularly bedded deposit, much like the sketches

in Figure 88. Dolostone is concentrated in the upPer pert of the

section in the southuestern corner of the domain' and in the bottom of

the section (just belou the level of the present quarrv floor)

everynhere. The great thickness of the bottom dolostone in the cross

sections is a figrnent of extrapolation by kriging, abetted by the

snoothness of the PCTDOL despiking procedure. Flost core-drill holes

actually extended only a feu feet into the top of this unit, so that its

truE thickness is unknoun. In the simulation, the only reason that the
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unit cuts off at all at the bottom of each section is that the dounuard

extent of the neighborhood used in the firet stage of kriging Has

exceeded. The artificial thickness of this unit in the gimulation is of

no practical importance, as the mining simulations attempt to avoid it

entirely.

4.2.5 t'lininq ggg! Homoqenization Simulations

llining and homogenization simulations can be made rather sophisticated,

as in the mining simulations described by Deraisme and de Fouquet (1984)

and the detailed simulation of a linear stacker-reclaimer system

undertaken by Schofield (19E0, Chapter 4). Only very elementary

simulations have been performed for this case study. Nevertheless the

results clearly suggest some approaches that uould be most helpful in

deal ing pith the variations in rau-material qual itv that uil I be

encountered during the development of this part of the property.

4.2.5. I llining Al ternatives

Four mining alternatives and four homogenization alternetiv€s -- sixteen

combinations in all -- $ere tried out on this simulated deposit. In all

mining alternatives, the deposit uas mined out in eiqhtv ten-foot-uide

gl-j-g.€, those compositions Nere represented by single columns of 120

simulated ,'drill holes". The cross sections of Figure l0l represent

four such columns of holes. Each slice of 120 holes ras divided into 24

groups of five consecutive holes (Figure 102)r and the averege

composition of the simulated values uithin each group ltas considered to

be a fair representation of the everage composition of the associated
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As the simulated holes are arranged on a horizontal grid uith

10x10-foot spacings, each simulated block of five holes represents the

stone nined f rom r.ri thin a ten-f oot (east-uest) by f i f ty-f qot (north-

south) area of the quarry property. I'lost of the actual mining blocks

(individual ,,shots") currently being recovered in the quarry measure

about 25 x 400 feet horizontallv, so the smaller simulated blocks allou

more selectivity in the horizontal directions. These smaller blocks do

not necessari ly represent individual shots: several adjacent blocks

rnight be shot simultaneouslv, but different parts of the resulting pile

of broken stone could then be recovered separately.

Sel ectivi tv al ternatives. Tuto al ternative I evel s of sel ectivi ty uere

alloned in the vertical direction. One alternetive represents current

mining practice: the simulated analyses (each representing a three-

foot-thick sample of "drill core") {rom eech hole are recovered doun to

about three feet above the thick louermost dolostone that underlies the

present quarry {loor (clearly visible in the sections of Figure l0l).

Any dolostone lving in the upper part o{ the section is incorporated

into the mined rar material. This "nonselectivez alternative uorks uell

in those parts of the quarry uhere dolostone is confined to the bottom

of the section; in the absence of large-scale homogenizationr other

areas of the property must be avoidedr es is nou the practice. The

other, aselectiye/' alternative avoids both the upper and louer

dolostones and is sinrilar to current practice in the nearby quarry of

Northuestern States Portland Cement. The tuo alternatives are compared

in Figure 103, uhich shor.rs part of a cross eection similar to those in

Figure l0l
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These sel ect

simulated data

sequence, top to

kriging program

ivity al ternatives

for each variable

bottom; i.e., the

end by subroutine

luere programmed very simpl y. The

luere f irst stored in a "holeuise"

order of matrix storage used by the

TB3D (Appendix B) "rors rithin
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Figure .|03: A cross section shoring the stone recovered under
each of the tuo selectivity alternatives. The upper
diagram shors recovery (betueen the arrous) under the
"nonselective" al ternative. The I orer diagram shor.ts
"selective" recovery.
in Figure l0l.

Symbols are the same as those

columns uithin levelsr -- uas altered to -levels Hithin rous urithin

columns". Then a series of cross sections of the percentage of

dolostone uas generated along eight of the eighty colunns (columns

11,21,...,81, using the numbering of the ggconditional domain). Four of

these sections (columns 21,41,51, and 6l) ere displayed in Figure l0l.

Every tenth "hol e" ti thin each section (corresponding to robts

11,21,...' l2l) uas inspected to find the vertical coordinate of the top

of the lonermost dolostone. This top uas defined as the coordinate of

the highest sinulated core sample in the louer pert of the section uith
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at Ieast 50% dolostone (i.e., having sn t[t or 'l' symbol on the

section). Only ly. of the tops (i.e., tops from 96 of the 9600

conditional ly simulated holes) ltere picked by eye from the cross

sections in this uay; tops in the other holes uere estimated by inverse-

distance-squared Heighting and rounded to the nearest integer coordinate

val ue .

For the "nonselective" mining alternative, the samples to be "mined

out" from each hole are those at least ttlo grid points above this

estimated top, such that one sample nith less than 502 dolostone is left

in the quarry floor. Nevertheless" because the estimated top is very

smooth uhereas the actual top is locally uneven, a rare bit of louer

dolostone uill occasionally be included in the mined stone (as shoun in

Figure 103). This happens in much the same Hay in the actual euirrgr as

the floor is kept smooth and an attempt is made to stay only a fel feet

above the louermost dolostone.

tn the "selective" mining alternative, the botton of the uPper

dolostoner uhere an upper dolostone is present and at least six feet

thickr ris estimated in the same ray. ln this case the limestone

imrnediately underlying the estimated dolostone bottonr Has assuned to be

good material. No three-foot t'safety margin" ras left betneen "orez and

"raste" because it is more expensive to uaste good ore than sinply to

leave it in the ground, as uas done near the top of the louermost

dolostone. The bottom of the recovered limestone in the selective

alternative ras the same as that in the nonselective elternative (i.e.,

about three feet above the loper dolostone)' except in a feu locations

uhere thick dolostone lenses appeared in the middle of the section
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(e.g.' in the right side of the louer section in Figure 103), in uhich

cases the floor of the quarry uas raised. In the selective alternative

p stone iras recovered uhen the thickness betueen the upper and louer

contacts dropped belour l8 feet (six simulated core sanples); this ras

felt to be the thinnest limestone uorth recovering (e.g.r no stone is

recovered on the left side of the louer section in Figure 103).

The main difference betueen the simulated selective operation end a

real operation that might be undertaken in this area of the quarry is

that the limits of the mined stone ere smooth estinates (migrating in

three-foot hops) in the simulation, uhereas in an ectual operation a

constant thickness of dolostone rould probably be removed over large

ereas of the quarry, and then cut off suddenly. This difference is

illustrated in Figure 104. Houeverr after the individual holes are

grouped into blocks of five holes and the blocks ere eventually stacked

onto a homogenization pile' the correspondence betueen the simulated

pile compositions obtained in this uay and the ectual compositions that

uould be recovered from the same area should be very good.

Eecause the simuleted values rere stored t'holeuise"' the limestone

Has easily "mined out" by a simple computer program that read the

compositions in each hole and then averaged the compositions lying

betueen the previously determined upper and louer nininE limits. The

recovered tonnage uithin the l0xl0-foot area surrounding each hole

(about 23 short tons per three-foot vertical increment) uas accunulated

at the sane time, and then the ueighted-average compositions and total

tonnages uithin each five-hole mining block uere sini larly calculated

and stored.
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Figure 104: The likely difference betueen simulated and actual
mining cutoff surfaces. Each simulated surface
(solid line) resembles a sur{ace that might be
produced by riPping, but hard limestone and dolostone
rould more likely be drilled and blasted auav in
large rectangular chunks (broken line).

Recoverv alternatiyes. tn addition to the tuo selectivitY

alternatives, tuo sequences of block recovery Nere considered. In both

sequences, blocks uere recovered in ten-foot-uide, north-south slices,

starting uithin the existing mined-out quarry srea on the east and

uorking uestuard touard the proPerty boundarv. Several blocks from the

eastern slices correspond to stone that has actually been mined in the

past. The uesteihr much nore dolomitic, stone has so far been avoided.

l,lithin each slice, blocks tere recovered either "consecutively" south-

to-northr of "nonconsecutively", systematically taking one block and

skipping the next three, es illustrated in Figure t05. Because the

amount of dolostone in most slices varies fairly regularly from south to

north (see Figure l0l), the consecutive alternative should produce only

slight changes in the composition of the mined ore from one block to the

next uithin a slice, but a large cumulative change over the length of
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the slice and a large sudden change betueen the north end of one slice

and the south end of the next slice uestrard. The nonconsecutive

alternative, by contrast, uill tvpically result in larger changes block-

to-block. In the time series of mined block grades, the consecutive

alternative uould concentrate variability at louer frequencies (i.e.' a

hole-effect variogram or autocorrelation function uith a long period),

nhereas the nonconsecutive alternative nould slrift nuch of this

variability to higher frequencies.

4.2.5.2 Homogenization Alternatives

Four batch homogenization alternatives (Figure 105) uere applied to eech

of the four mining alternatives (tuo selectivity alternatives, tuo

recovery alternatives). The homogenization al ternatives are:

(l) homogenize each block internally; i.e.e ho homogenization beyond the

scale of the five-hole blocks; or (2) homogenize in piles of six blocks,

(3) tuelve blocks, or (4, 24 blocks (an entire north-south sli69).lte It

is assumed that a suf{icient number of layers (say 100) uill be built

uithin each pile so that the material reclaimed from each pile uill have

essential ly constant composition. (At leastr th!, variations in

composition should be slight and rapid enough to be filtered out by the

pouder homogenization systen.) llithin the total simulation domain there

are 1920 five-hole blocks' 320 piles of six blocks, 160 piles of tuelve

blocks, and eightv piles of 24 blocks. The four mining alternatives and

tl8 Notice that the simulated stockpi
tonnager particularly in the case
operation, all piles uould probabl
discrepancy uas tol erated in
progranmi ng.

les uill not all contain the same
of selective mining. ln an actual
y be built to the same size. This
the interest of much simpl er
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RecoVerV SEqUCNCE: CONSECUTIVE NONCONSECUTIVE
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Figure 105: Recovery and homogenization alternatives illustrated
on a single north-south slice of 24 mining blocks.
Each column of 24 numbers represents a north-south
slice of 24 ten-foot-uide nining blocks in the
quarry. The arrous shou the first three blocks
recovered under the consecutive and nonconsecutive
alternatives. Each number in each colunn represents
the nurnber of the pile onto Hhich the block at that
position nill be stacked. For exanple, the lEth
block to be recovered conseoutively utould be the llth
block recovered nonconsecutively. This block rould
enter the 3rd six-block stockpile if recovered
consecutively' the 2nd if recovered nonconsecutively.
The objective of nonconsecutive recovery is to
combine blocks from uidely scattered parts of the
active face into a single stockpile.
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four homogenization alternatives produce a total of sixteenlte tirne

series of homogenized stone compositions. The characteristics of these

sixteen series reveal much information about the pile-to-pile

variabi I i ty of the homogenized ore. ln a plant rith a pouder (or

slurry) homogenization system (i.e.r alnost eny cement plant)' the pile-

to-pi le (lor.r-f requency) variebil ity is by f ar the nost important

characteristic to be assessed for plant-design purposes. (See the

quotation that opens Section 3.9.2. l. )

4.2.5.3 Resul ts

The completion of a piece of research is not achieved until
the results are at least communicated, and oftenr particularly
in "useful" research, the results must be implemented before
the research can be considered complete. IGriffiths' 1967'
p. 4g3l

Statistics of the sixteen simulated time series are cornpiled in lables

12 and l3' for nonselective and selective mining alternatives'

respectively. The upper part of each table shous statistics calculated

over the uhole field of 1920 mining blocks. Because this area is so

heterogen€ousr statistics have also been compiled for four sets of

tr.renty north-south sl ices' grouped east-to-pest across the erea. (The

four cross sections of Figure l0l run donn the niddles of these four

subareas. )

For the total rt.€rr the statistics reported are: the total number of

homogenized piles; the nean tonnage per pile; the minimum, n€rhr and

maxinum CaC0e and l'lgC03 contents of the piles; the stendard deviations

of these contents; and (very important) the minimum, fiethr and maximum

t le 1s1ugl ly only
identical for

fourteenr os
consecutive and

the deta for piles of 24 blocks are
nonconsecutive recovery al ternatives.



TABLE 12

Statistical sumrnary: nonselective mining.

Recovery Sequence: CONSECUTIYE
Pi le Size (blocks): | 6 12
l{umber of Piles: 1920 320 160

SUBDIVISIONS OF THE TOTAL DOTIAIN
Eastern Quarter
l'fean Pi I e Tons: 1769 | 0612 21224
CA(n=94.9) s.d.: t.E 1.3 t.2
I'lG(m= 2.4) s.d.: 1.6 1.3 1.2
CA abs.dif .r !n€8h: 0.8 1.3 1.9
llG abs.dif .r m€ih: 0.7 1.3 l.E
l'lideast Quarter
l'fean Pi le Tons: 1726 1035E 20717
CA(m=93.5) s.d. : 2.1 1.4 l. I
llG(m= 3.5) s.d.: 1.9 1.3 1.0
CA abs.dif.r it€8h: 1.3 1.8 0.9
l1G abs.dif ., nean! 1.2 .|.6 l.l
f'li duest Quarter
l'lean Pi I e Tons : 1683 10099 20 t 97
CA(m:89.l) s.d.: 4. | 3.7 3.4
MG(m= 5.7) s.d.: 3.4 3.0 2.7
CA abs.dif. r m€ih: 2.0 3.5 4.2
l'l8 abs.dif.r n€th: 1.6 3.0 3.6
llestern Quarter
tlean Pi I e Tons: 162 | 9724 19447
CA(m=E6.5) s.d. : 6.5 5. | 5. E

t'lG(n= 6.3) s.d.: 5.3 5.0 4.9
CA abs.dif.r nr€er: 2.6 7.0 lt.3
ItG abs.dif .r meih: 2.1 5.7 9.5

NONCONSECUT I YE

1612
| 920 320 | 60

24
EO

24
80

TOTAL DOMAIN
fiean Pile Tons: 1700 10198 20396 40793 1700 t0198 20396 40793

min.: 67.0 76.4 77.1 83.2 67.0 82.E E3.0 83.2
CaC03 (CA) nax.: 97.4 97.1 96.9 96.0 97.4 96.3 96.2 96.0
mean=g1.0 s.d. : 5.3 5.0 4.8 3.6 5.3 3.7 3.7 3.6

min.: 0.1 0.2 0.6 t.4 0.1 l.l 1.2 1.4
l'1gC0s (l'lG) max.: 23.5 ,l6.4 t6.l ll.0 23.5 tl.3 lt.l lt.0
mean=s.2 s.d.: 4. | 3.9 3.8 2.6 4. | 2.6 2.6 2.6
Absolute differences betleen successive piles:

min.: 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
CaC03 (CA) nean: 1.7 3.4 4.6 0.5 3.3 0.7 0.7 0.5

max.: 15.2 16.4 13.7 1.7 t9.E 3.2 2.5 1.7
min.r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

t19C03 (l'lG) mean: 1.4 2.9 4.0 0.4 2.E 0.6 0.6 0.4
max.: 12.7 t3.0 lt.3 t.5 15.9 2.4 2.0 t.5

42449
0.8
0.?
0.3
0.3

4t433
0.9
0.8
0.4
0.3

40395
t.8
1.2
0.5
0.4

3EE94
t.4
t.t
0.8
0.6

t769 t06t2
l.E 0.E
I .5 0.7
1.5 0.4
1.4 0.4

1726 10358
2.1 t. I
t.9 t.0
2.3 0.7
2.0 0.6

1683 10099
4.1 1.9
3.4 t .3
3.7 0.E
3.t 0.7

f62l 9724
6.5 t.5
5.3 1.2
5.9 t.0
4.7 0.E

21224 42449
0.E 0.E
0.7 0.7
0.4 0.3
0.4 0.3

2s717 4t433
t.0 0.9'0.9 

0.E
0.8 0.4
0.7 0.3

20t97 40395
t.8 t.8
1.2 1.2
0.6 0. 5
0. 6 0.4

t9447 3EE94
1.4 t.4
t.t t.1
0.9 0.E
0.E 0.6
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TABLE t3

Statistical summary: selective nining.

Recovery Sequence: C0NSECUTM
Pile Size (blocks): I 6 12

Number of Piles: 1920 320 160

SUBDIYISIONS OF THE TOTAL DOI'IAIN

Eastern Quarter
l'lean Pi I e Tons: 1753 10578 2l 155
CA(rn=94.9) s.d. r 1.8 1.3 t.3
IIG(m= 2.4) s.d.: 1.6 1.3 1.2
CA abs.dif., mean:0.E 1.3 1.9
]'lG abs.dif ., mean: 0.7 1.3 l.E
l,ti deast Quar te r
tlean Pile Tons: l5E9 t0t34 20267
CA(m=93.8) s.d. r 2.0 1.3 0.9
f'lG(m= 3.3) s.d.r 1.8 1.2 0.E
CA abs.dif.r m€ih: 1.2 1.5 0.7
l'lG abs.dif .r m€dh: l.l 1.4 0.t
l'1i duest Quarter
l'lean Pi I e Tons: | 5E4 9502 t 9004
CA(m:90.4) s.d.: 2.9 2.2 l.E
t'lG(m= 5.5) s.d.: 2.3 1.7 t.3
CA abs.dif ., mean: 2.0 2.4 2.2
l'lG abs. di f . , nean: 1.6 .|.8 1.8
Nestern Quarter
llean Pi I e Tons: '1246 7474 | 4948
CA(m=90.2) s.d.: 3.5 2.8 2.6
l1G(m= 5.0) s.d.: 2.E 2.2 2.1
CA abs.dif ., nean! 2.3 3.2 4.7
t'fG abs.dif.r m€rh: 1.9 2.4 3.7

NONCONSECUTI YE

t61224
t920 320 t60 80

24
80

TOTAL DOI'IAIN
llean Pile Tons: 1570 9422 lEE44 376E7 1570 9422 1E844 376E7

min.: 76.7 E3.6 E4.9 E8. t 76.7 87.8 EE.l 88. t
CaC0g (CA) max. r 97.4 97. | 96.9 96.0 97.4 96.3 96.2 96.0
mean=92.3 s.d.: 3.4 2.9 2.7 2.2 3.4 2.3 2.2 2.2

min.: 0.1 0.2 0.6 1.4 0.1 l.l 1.2 1.4
i1g00s (t'lG) max.: 15.2 10.3 9.3 6.7 15.2 7.3 6.t 6.7
mean=4. I s.d. : 2.5 2. I t.9 1.4 2.5 t.5 1.5 t.4
Absolute differences betteen successive piless

min.: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CaC03 (CA) mean: 1.6 2.1 2.4 0.5 2.6 0.7 0.6 0.5

max.: ll.2 E.2 6.9 1.9 ls.E 4.3 2.2 1.9
min.: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

l'lgC0g (l'lG) nean: 1.3 1.8 2.0 0.4 2. | 0.6 0.5 0.4
nax.3 9.0 6.3 5.6 t.5 lt.E 3.3 l.E ,|.5

4231 I
0.E
0.7
0.3
0.3

40534
0.t
0.7
0.4
0.3

3800E
l. I
0.7
0.6
0.5

29E97
t.0
0.8
0.7
0.5

1763 t0s78
| .8 0.8
| .6 0.7
1.5 0.4
t .4 0.4

1689 10134
2.0 0.9
l.E 0.E
2.2 0.5
2.0 0.6

l5t4 9502
2.9 1.2
2.3 0.E
3. t 0.7
2.5 0.6

1246 7474
3.6 t.3
2.8 t.0
3.4 1. t
2.6 0.9

2t r55 423,| |
0.8 0.E
0.7 0.7
0.4 0.3
0.4 0.3

20267 40534
0.E 0.E
0.7 0.7
0.5 0.4
0.6 0.3

t9004 38008
t.l 1.1
0.7 0.7
0.5 0.6
0.4 0.5

1494E 29897
t.0 t.0
0.E 0.8
0.7 0.7
0.5 0.5
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of the absolute values g[ the dif f erences in CaCOc and t'lg00s betueen

successive piles. The differences ere especial ly important because

sudden big jumps in composition can ureek process- and quality-control

havoc in a cement plant. The nean tonnag€sr compositional neans and

standard deviations, and mean absolute differences in composition are

also reported separately for the four east-to-rest sets of trenty

sl ices. A discussion of the most important resul ts f ol lor.rs. Emphasis

is placed on the sensitive l'lgC03 grade.

Selective versus nonselective minins. These alternatiyes are nearly

equivalent in the eastern half of the domain uhere there is little

dolostone in the section. For nonselective mining, recovered tonnages

decrease sl ightly restuard because of a thinning of the total section;

for selective nining' the resternnost tonnage is onlv 2/3 of that in the

east. For nonselective nining, llg0Os grades increase {rom 2.421 in the

east to 8.32 in the rest. For selective mining the corresponding

increase is 2.4?, to 5. lZ. Further selectivity rould probably be

uneeonomicalr so the restern stone nould probably be blended uith better

stone from another area to decrease the l'lg003 content. Selectivity

decreases the pile-to-pile variabil ity of the restern stone someuhat'

particularly nhen consecutive block recovery is employed. Houeverr the

primary benefit of selectivity is in the reduotion of the mean l'lg00s

grader paid for by a reduction in tonnage and an increase in mining

costs.

Consecutive versus nonconsecutive recoverv. The general effects of

these al ternatives can be clearly visual ized in the autocorrelation



functions (ACFs) of the time series.l20
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Figure 106 shous ACFs of l'lgC0c

for the uestern quarterr using nonselective mining and single- and

tuel ve-bl ock pi I es. Both alternatives yield a standard deviation of

5.32 l'lgC0r for single-block piles. Houever, for blocks consecutively

recovered (Figure 106(a)), this variability is concentrated in a peak at

lag 24r coFF€sponding to the 24 blocks recovered consecutively from one

slice through the simulation donain. If recovery shifts to every fourth

block (b), the peak occurs at every sixth lag, corresponding to the six

blocks recovered from each nonconsecutive pass through the sl ice.

Because successive blocks in the nonconsecutive tine series come from

different parts of the deposit, the nean block-to-block absolute

dif ference in l'lgC03 is 4.72, versus only 2.lZ for consecutive nining, so

clearly consecutive nining is preferable in this cese.

This comparison reverses dramatically uhen the mininE output is

blended into tuelve-block piles. The ACF for consecutive mining (c)

then shors a rapid alternation betueen high- and lor-Mg00s piles,

uhereas the ACF for nonconsecutive piles (d) shorls only mild

alternations superimposed on a drift, uhich represents a gradual east-

uest change in stone composi tions. The mean absolute di fference

correspondingly decreases from an astounding ll.32 for consecutive

mining to 0.92 for nonconsecutive nining. And the standerd deviations

are no longer equal c 4.9? for consecutive, l.lY, for nonconsecutive

mining. The advantage of blending stone from different parts of the

quarry is real ized only uhen the stone is real Iy physical ly blended;

otheruise control problens are made rorse rather than better.

t2o 15s autocorrelation
function y(h) by the

function p(h) is rel ated to the semivariogram
f ormul a p (h) =(y(o)-y(h) )/z(o) .
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Size g{ homoqenization piles. Xith

influence of pile size is straightforuard:

nonconsecutive mining, the

as soon as the pile size

standard deviations and nean

Further increases in the

i ncreases

abso I u te

pile size

from one to six blocks, both the

differences decrease dramatically.
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Figure 106: Autocorrel ation f unctions of t'lgC0e f rom the uestern
quarterr using tuo recovery and tuo homogenization
alternatives. (a) single-block piles' consecutive;
(b) single-block piles, nonconsecutive; (c) tuelve-
block pi les, consecutive; (d) trelve-block pi les,
nonconsecut i ve .

cause only very modest further decreases in these values.
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l.lith consecutive mining, the standard deviations decrease modestly lith

increasing pile size, shor.rinE a dramatic decrease only for piles of 24

blocks. The absolute differences generally increase nodestly (in the

east) to severely (in the rest) as the pile sizes increase to tuelve

blocks, then decrease dramatically (especially in the uest) at tuenty-

four blocks. The large buildup in the rest reflects the fact that the

southern part of this area is very dolomitic and the northern part is

not.

In general, the effect of pile size in anv deposit being mined

consecutively should depend essentially on the conparison betueen the

distance rithin the nine over uhich material in the pile has been

collected and the range of the variogram of ore grades. If the distance

greatly exceeds the renger such that a variety of ore grades is being

averaged, then successive pi les should be very nuch al ike; if the

distance is less than the range, the pile-to-pile veriability uill

increase uith the size of the pile, rith undesirable results. These

effects can be quantified in terns of regularizations of the original

point-support ore grades over volumes of different sizes, representing

the pile sizes. The clear advantage of nonconsecutive mining in

conjunction uith pi le homogenization is that the individual blocks

contributing to each pile can effectively cover a large volume of the

deposit uhile contributing only a small tonnage to the pile. In this

lulv, large compact volumes of rau naterial i.n gi-!g are essential ly

discretized into sets of a feu scattered small volumes (the blocks), the

everages of uhich are little more variable than the total compositions

o{ the large volumes.
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The simulation domain used in this case study las deliberately chosen

to encompass e variety of conditions, rhich ere reflected in the

disparate results of the four subareas represented in Tables l2 and 13.

Thus the results obtained here can be generalized uith some confidence

to the rest of the property. Furthermore, the gross statistics of the

five large regions of the propertv sunmarized in Table 8 suggest that

the simulation domain -- essential ly Region 2 -' is statistical ly

similar to other regions. The resul ts ol earl y suggest that

contributions from six or so ridely scattered mining blocks, uhen

averaged into a pi le of about 10,000 tons (i.e. r hohconsecutive

recovery, piles of six blocks)r ilould normally achieve yery effective

reduction of the variabi I i ty of the incoming l imestone. l'lodest

selective mining (principally local stripping of the dolomitic caprock)

in some dF€isr combined uith deliberate blending of the output of these

areas rith stone from lou-ll9C03 Bi€esr rould allou maximization of the

renaining reserves uhile keeping t190 levels and fluctuations in the

cl inker under control . The realth of available core-drill data,

supplemented by blast-hole analyses in problem ri€rsr should al lou

accurate predictions (by geostatistics or less fornal neans) of stone

quality in all ereas of the property. These estimates could then be

used to proportion stone from different active faees into each blending

pile, further reducing the pile-to-pile variability of the stone beneath

the levels suggested by these simulation results. Average pile-to-pile

differences in the neighborhood o{ 0.1-0.32 l1gC0s should be obtainable

rith these methods. The existing conditional simulation -- coupled nith
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detailed sinulations of blast-hole sampl ing, lrt grade estination'

miningr propot"tioningr iod homogenization -- could be used to refine

these val ues

Pile hornogenization uithout blending from the quarry, and quarry

blending nithout some type of in-plant honogenization' rould be much

less efficient and possibly counterproductive. If a stockpile

prehomogenizer is not installed' the bssic requirement is that the mean

residence time of the existing porder homogenization system should

greatly exceed the ravelengths at rhich most of the mine output

variability is concentrated. For example, if stone is delivered

successively from six different faces in successive thirty-ton trucks,

the honogenization systen should have e mixing capacity of uell over lE0

tons and preferably oyer 900 tons to ensure that the homogenized output

does not vary unduly because of large temporal differences in the

composition of the input. The capacity rould not need to be so large if

the stone delivered frorn the six faces uere dumped onto six piles and

then fed to the crusher in successive bucketloads by e front-end loader,

thus shortening the uavelengths of the input series. The effeetiveness

of a ponder homogenization system can be determined analytically or by

simulation, provided that the statistical charecteristics of the input

time reries are knoun end the capacity (for e betch system) or

l2l Because the conditional simulation uas performed on zcore' support,
simulated blast-hole data can be draun directly from the simulation
file. Some noise might be added to the dats to reflect the fact
that blast-hole data are typically of lesser quality than core data.
The properties of the noise could be inferred by comparing the
statistics of analyses of core-drill samples and blast-hole samples
taken from the same area.
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residence-time distribution (for a cascade svstem)

are al so avai I abl e.

of the homogenizer

4.2.6 Simpl er Al ternatives

Remember that comPlexity and accurecy are not synonymous!
there is ng merit in using enornously detailed sub-nodels if
the globat result desired is insensitive to such deteils.
IBratley et al., 1983, P. 331

usual I y there is no singl e ,rcorrect" ugy to perform a condi tional

simulation. tn the I'lason city cese study, for example' choices among

alternative approaches uere available at every step. Because this case

study uas performed primarily to illustrate a variety of techniQUBSr

simplicity tas not a najor consideration uhen these choices uere made.

But in a /production" simulation directed touard solving a practical

problem quickly and cheaplv, simPlicitv is important. ln this short

concluding section, some alternatives are suggested that nould have

simplified the study and probably uould have yielded practical results

at least as acceptable as those actually obtained. These alternatives

might have introduced problems of their oun, but nithout actually trying

them it is hard to say uhat, or hou bad, the problens lould be. Unless

theoretical flaus can be pointed out, it can be difficult to judge the

relative merits of different procedures until they have been tried out

and the results conpared.

$ne nay to simplify a study such as this is to make a feu small

compromises sith reality. Some aspects of the phenomenon under study

may not greatlV influence the results and so may not need to be modeled

exactly, if at all. For instance, the najor source of difficulty in the

tlason City study r.ras that five variables uere involved, and that the
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relationships among these variables uere not straightforuard (e.9., see

Figure 91). Yet for prsctical purposes only one variable -- the total

l,lgC0s content of the mined stone (l imestone and dolostone combined)

is vitally important. Thus the easiest simplification to nake nould be

to ignore all other variables and focus on this one.

There are tuo nays in nhich the total I'lg0Os content could be

quantified: either directly through the llg00s analyses of the stone,

startinE uith the snalyses of the original irregular-support core deta;

or indirectlv through the distribution o{ dolostone in the deposit,

starting uith the geologist's logsr effectively et point support, of the

occurrences of limestone and dolostone in the core.

There are good reasons for thinking that the indirect approach might

actually represent less of a compronise. Rock type is measured on

arbitrarily small supportr so no support corrections' rith their

attendant snoothihgr need to be made. Also, the chemical compositions

of the rocks have very high nugget components (especial I y the

limestones), so that any averaging of simulated values during mining

simulations rapidly reduces their variabi I ity. In such a caser I ittle

information is lost by simply replacing the linestone and dolostone

analyses by their averege values over the uhole deposit, attributing all

variability in composition to variability in rock type. Finally, rock

type accounts f or 95.12 of the total l'lgC0s variabil ity in the original

constant-support data. (The correlation coefficient betueen variables

ilG and POTDOL is 0.975.) This is true because the average compositions

of the limestone and dolostone are so different, $hereas their internal

variability (particularly in the linestone) is rather slight.
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During miningr vet^iability uithin rock tvPes is rapidlv smoothed out,

such thet the relationship betueen l'lG and PCTD0L should be strengthened

-- particularly in the case of nonselective rnining rhere nore dolostone

is included in the mined stone. This is supported by the nining

simulation results. Table l4 shons the correlation coefficients betueen

PCTDoL and l,tG f or the real and simul ated datar and f or the sixteen

nining and homogenization alternatives discussed in Section 4.2.5. For

nonconsecutive selective mining lith six-block piles e I ikely

strategy for practical homogenization at llason City -- PCTD0L accounts

f or 97.4'A of the variabil itv in I'18. Furthermore, the correlation

coefficients betneen t'10 and CA are consistently greater than 0.99 for

nonselective mining and around 0.97 for selective mining, making it

clear that a simulation of t'lG (perhaps via PCTDOL) rould provide

satisfactory information on CA as uel l.

Nith only one variable to simulate, more effort could be devoted to

accurate reproduction of sample senivariograms and other characteristics

of the data. In the case study reported here, the senivariograms of the

simulated PCToOL data, and of the simulated CA and l'lG data that depend

so heavily on PCTDoLT poorly reproduced the semivariograms o{ the

conditioning data because their very short-scale structures llere biased

by the despiking formula. In a simpler simulation there uould be more

time to try out several alternative despikings (e.g.r oll€ of the

simulation epproaches in Section 3.8.3.4) if the short-scale structure

rere criticat to the study. Simulation of only PCTDOL uould rid us of

the problens of support corrections (Section 4.2.2.4rr assignment of

synthetic analyses to conditioning data (Section 4.2.2.2r, reproduction
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TABLE 14

Correlation coefficients betueen percentage of dolostone (PCTOOL)

and total l'lgC0s content (mG) in Region 2.

0r i g i nal data: 0. 975
Simulation Subset lr 0.971
Simulation Subset 2: 0.967

t'lining and homogenization simulations, Region 2:

Recovery
sequence: CONSECUTIVE N0NCONSECUTIVE

Pi le size
(blocks): t 6 12 24 | 6 12 24

Nonsel ecti ve
minins: 0.992 0.994 0.996 0.997 0.992 0.997 0.997 0.997

Sel ecti ve
minins: 0.976 0.975 0.9E2 0.988 0.976 0.987 0.987 0-988

of chemical constraints by neans of transformations (Section 4.2.2.6>,

and a host of nodeling chores, plus the signifioant prooessing costs for

simulating and kriging five variables. So in a "production" study of

the t*tason City situation, this rould certainly be the approach to take.

Another sirnplification that nright be undertaken in this study nould

be to skip the adjustments for geologic structure. The structural

trends estinated bv kriging in Section 4.2.2.3 are broad enough to be

irnposed by conditioning. Short-scale structural {eatures that might

influence short-scale semivariogran modeling uere not removed by this

adjustment anyuay. Some mininE-simulation methods might still require

the imposition of a reasonably ftat quarry floor, but the methods
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actually used in Section 4.2.5.1 did not, because recovery uas performed

betueen tuo estimated surfaces uhich could just as 51el I have

incorporated the large-scale structural trends.



Chapter V

CONCLUDING REI.IARKS

5.1 GEoSTATISTICS APPLIED Jg CEmENT PRoBLEIiS

Portland cement is remarkable among mineral commodities because it is

nearly allays nanufactured fron a mixture of ran materials uith diverse

compositions" A sinale rau material can rarelv be declared

intrinsical lv suitable for cenent manufacture. 0nly suites of rall

materials can be declared iointlv suitable. The sole exception is a

"cement rock" (a shaly limestone) that happens to possess an ignited-

basis analysis compareble to that of a cement clinker. The concepts of

"purityt'or ttg?adE'used to describe nost mineral resources have limited

value in discussions of individual cement rau materials, except in a

negative sense. For example' a bg-nagnesiun I imestone or lou-alkal i

clay might be regarded as "high-gradeu. A I imestone averaging

992 CaC03, though certainly a high-grade source ol calcium, actually

uould rarely be more valuable for cement making than one averaging 952.

Usage of the 99'/. linestone rould simply require that more clay be added

to the mix. The concepts of "cutoff grade" end "recoverable reserves"

that figure so prominently in many geostatistical studies also have

limited value in a cement context, except again in a negative sense;

and even in that sense the cutoff grade and recoverable reserves can be

determined only uhen the characteristics of gLL materials being used in

the nix are taken into account.

-459-
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In most mineral industries, knorledge of the variebility of the ral

materials is important for tuo reasons: first, local excursions of rau

material quality above or belolr an established cutoff grade can effect

recoverable reserves and influence the choice of mining procedures;

second, highly variable mined materials may present control problens in

the mill and require expensive redesigning of the process. For the

reasons cited above, the first consideration is rarely important for

cement rau materials Selective mining is rarely practiced except on a

gross scale, €.9.' by uasting of thick dolostone beds or avoidance of

large areas of a property uhere quality problems or other difficulties

are knoun to exist. (The lou unit value of the product and the lor

profit margins experienced by most cenent plants also make expensive

selective mininE undesirable.) Even in those cement operations rhere a

cutoff grade has been established, occasionel violations can usually be

quickly corrected by blending. Hence the most common applications of

mining Eeostatistics -- local estimation of ore grades and global

estimation of recoverable reserves

cement operation.

The one inportant contribution

study of cement rau materials is

are of little use in a typical

that geostatistics can make to the

in the assessment ol rau-material

variabil ity for design and control appl ications. Adaptations and

extensions of standard geostatistical technieuesr particularlr the

techniques of conditional simulation, to deal rith these applications

have been the subject of this dissertation. Plant designs, process-

control methods, and qual ity-control procedures should be specifical ly

tailored to the time-series characteristics of the rar materials to be
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delivered to the plant. These time series are the products of comPlex

interactions betueen the spatial realizations of the individual rabl

naterials in situ end the mining procedures used to extract the

materials. Before mining begins, the best uay re can hope to forecast

the characteristics of these time series is by-conditional simulation of

the in-situ real izations and simulation of the mining procedures

operating on these realizations. The only alternatives are to rely on

experience from other "similar" operations' or simPly to guess at the

characteristics ol the time series and incorporate I iberal safety

factors into the design to allou for bad guesses.

One najor obstacle to the use of geostatistics i.n cement applicetions

is the nearly universal paucity of data. Because the recoverable-

reserves and local-estimation problems faced by metals operations are

uninportant in most cenent projects, and also for several historical

reasons discussed in Section 2.4.3, the cement industry has established

e tradition of collecting only enough data on rau-material compositions

to assess the everaqe compositions and total tonnaqes of available rau

materials, but rarely enough data to characterize the compositional

variabilitv of the materials. There is a particularly critical shortage

of closely spaced data, uhich are needed for the assessment of

variability at short scales -- either spatially, in the ground, or

temporally, in the plant. Even the quality of the data that are

avai I abl e

prec i si on

products,

commonl y poor, because i t is fel t that eccuracy and

sampl ing and analysis is important only for finished

for ran naterials.

is

in

not
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An obvious, but far from easyr solution to this problem is to collect

more and better data. Unfortunatel y data are expensive' cement

conpanies are commonly short of cashr and old traditions die hard. One

contribution that this dissertation might make is to demonstrste that

the expense of gathering data adequate for a geostatistical study can

actually be uorthuhile in some situations.

5.2 cosTs AND BENEFITS gI SImULATI0N STUDIES

The llason Ci ty quarry property described in Section 4.2 has been

explored by over 40,000 feet of core drillingr allocated emong over 700

holes and over 5000 analyzed core samples. Closely spaced holes are in

short supply, but in all other respects this data set is perfectly

adequate for a geostatistical study. Adequacy is achieved xhen the

follouing conditions are fulfilledr (l) the spatiel coverage of

dri l I ing data and the number of dri | | ing data are sufficient for

accurate modeling of the semivariogram struoture at all distances and

directions h of interest to the study (Section 3.1.3); (2) the data are

sufficient to infer the nultivariate distribution at least at h=0

(Section 3.5.2); and (3) the density of data in ell parts of the

property is such that several data at distances uithin the range of the

semivariogram are available to calculate a kriged value at any point of

interest. The l.lason City data set is vastly larger than nost data sets

available for cement properties, because the critical tlgC0g content of

the rau materials at that site is unusually variabler ard because the

geological staff apparently did a good job of convincing nanagement of

the value of dril I ing infornation in that kind of situation. For
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estimation or conditioning purposesr I smaller property or I proPerty

nith better-behaved naterials could be adequately covered uith nany

feuer data, provided that the data uere still adequate for inference of

the local semivariogram and distribution et h=0. For instance,

epparently quite good simulation results (for only tuo dimensions and e

relatively coarse discretization) uere obtained in Section 4.1 from a

set of only 129 rell placed five-variate data.

In principle, the minimum number end density of data needed for data

analysis, structural analysis, and kriging (and therefore for

simulation) cannot be specified a priori, because the estimation

variances and fluctuation yariances of the senivariogram and

distribution at h=0 depend on the semivariogran and distribution to be

estimated. Horeyerr the practical edvice of Journel and Huijbregts

(1978, p. 194) that at least thirty to fifty data pairs should be

available at each lag of the sample semivariogram can be used as a guide

to the nunber of data needed for semivariogram estination. Unless the

data set contains many variables and a complicated transformation to

norrnal ity is needed, the number of data required to estimate a

semivariogram should ordinarily be adequate to estimate the distribution

at h=0 and to derive a reasonable transformation.

Nhatever the case' the data are apt to cost many times nore than the

geostatistical study itself. For instance, the combined ilason City

drilling progrems uould have cost over half a million dollars et today's

prices' snd the total costs of sampling and analysis might have been

comparable. The case study of Section 4.2 (uhich did not extensively

use most of the data), including the actual rriting of Section 4.2,
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required only about six months of rork, of uhich about three nonths uere

spent in typing, proofreading, and otheruise verilying over 8,000 lines

of rau data. About trto months llere consumed in the complicated data

analysis and structural analysis described in Section 4.2.2.

conditional simulation required about one month, and the mining and

processing simul ations (the interesting part) tuo days. In

Section 4.2.5, it is pointed out that the uhole simulation project could

easily have been reduced to a nuch simpler simulation of one variable

uith little loss of accuracy, probably reducing the time required for

the structural analysis and simulations to e total of one month. If the

data uere already typed in and verified, the total cost of the study

uould have been one month's salary and expenses for one professional,

plus computing and uord-processing expenses (a feu thousand dollars at

the mostr. ahd perhaps free if done in-house). These costs compare to

the cost of the data set as a cent compares to a dol larr and perhaps

only l0Z of that single cent is actually spent on simuletion. About 902

of the human and computer time involved in a conditional-simulation

project is spent on data enalysis, structural analysisr and kriging, all

of rhich rould be performed in virtually any geostatistical study. The

additionat effort involved in simulation consists mainly of selecting a

feu parameters for the simulation routih€r geh€rating the unconditional

sinulations, and then performing a fet simple nanipulations of the

simulated and kriged data. If very detailed simulations of mining,

processingr and control alternatives are performed instead of the simple

simulations described in Section 4.2.5, the cost of the study might

increase from one cent per dollar of data to e feu cents.

The
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In nining and

mineral-processing applications, the benefits arrive in the form of

better forecasts of rau-material variabitity for use in the design of

mining, processing, and control systems. These systens together cost

several million dollars to install, so it pays to design them correctly.

It is particularly important to avoid "overdesigning" or

"underdesigning" the capabi I i ties of a system simpl y because the

characteristics of the rau materials, including their variability, are

poorly knoun. An example of an overdesigned systen is a stacker-

reclaimer homogenization system uith a 40,000-ton capacity that actually

uses materials that could have been adequately homogenized uith a less

expensive 10,000-ton system. A 10,000-ton system nould be underdesigned

if it had to be enlarged to 40,000 tons after the plant disastrously

failed to produce uithin specifications because the rau feed ltas

inadequatel y homogenized.

One can imagine sitr.lations in uhich a conditional simulationr of €VeIl

an entire simulation study as described in this dissertation, uould be

of little practical use. For instancer 8 cohditional simulation uould

be pointless if the drilling data uere so closely spacedr ahd the mining

blocks so large, that several holes fell inside each mining block. In

such a case (exceedingly rare, even for metallic deposits), an gstimated

block composition obtained by averaging the drilling data rithin a block

(or by kriging) nould scarcely differ from a conditionally simulated

Erader so mining simulations could just 8s rel I be performed on

estimated block grades. Conditional simulation (or eny other

geostatistical study) uould also be of little use if the rau materials



466

to be used by a nel plant rere so nearly constant in composition that

the variability caused by contamination or segregation during handling

clearly nould overxhelm the effects of the in-situ variability of the

materials. This is in fact the tvpical situation in sedimentarv

deposits, including probably a majority of dePosits currently being

mined as cement raul materials. Only in the case of e deposit nith

marked intraformational changes in composi tion is a conditional

simulation potentially uorthurhile; but as more and more of the best

deposits in favorable narket ereas are mined out or made unavailable by

land developnentr Dor'€ dnd more of these variable deposits uill be

pressed into service. The greater sensitivity of neu manufacturing

processes to rar-material variability makes it particulerly likely that

the in-situ variability of cenent rau materials uill become an

increasingly important issue to be considered in plant design end cenent

manufacturing operations in the future. Situations in rhich

conditional-sirnulation studies rill be of value utill therefore become

nore common.

5.3 RESEARCH NEEDS

If I knou uhat I knou and I knou uhat I don't knou, then I !g
knou i t al I . I Larry Kl ein' in Stereo 8.evjg, Jul y 1979,
p. t6. I

5.3. I l'lethods

The field of indicator simulation is in its infancyr and much uork

remains to be done. The methods described in Section 3.E.3 all depend

on simulations of gaussian process€sr r{hich are transformed to indicator
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sinulations by application of e cutoff. But not all indicator phenomena

can be reproduced in this uay (e.9.r s€€ Figure 57). Thus neu nethods

not based on gaussian simulations are needed. The natrix method of

Davis (l9E5b) is a good start, but methods capable of sinulating

hundreds of thousands of indicator data quickly and cheaply and capable

of reproducing specified nongaussian patterns are apparently

unavailable. Nongaussian sinulations of continuous phenonena such as

those in Figure 53 also are needed. Conditional simulations of stream

netuorks or fracture patterns, possiblv integrated uith simulations of

the surrounding topography or rock characteristics, could have valuable

applications in hydrology and rock mechanics.

Even in the case of gaussian-based indicator simulations, further

research is need on the simulation of gaussian conditioning data to

correspond to the available indicator conditioning data. Several

untested al ternatives sre proposed in Section 3. E.3.4. Practical

comparisons of these methods, and perhaps derivations of better ohosr

remain to be performed.

Univeriate gaussian transfornations of nongaussian data (Section

3.5.2.2) may be good enough to transform most nongaussian coregionalized

data into acceptably gaussian-looking data sets for simulation purposBsr

but so fer practical simulations of coregionalized data have been done

that this preliminary conclusion may turn out to be false. In any case

a fast and easy multivariate (at h=0) transfornation (Section 3.5.2.3)

tould certainly be preferable to independent transformations of the

marginal distributions. Development of softlare to imptenent such

transfornations and experinrentation on real coregionalized data sets are

needed.
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5.3.2 Appl ications

Simulations of proportioning and control operations in cement plants

using conditional simulations of several rau materials uere not

performed for this dissertation, because no suitable multivariate data

sets for nultiple rau materials uere found. Some uays in uhich several

conditional simulations could be used to design proportioning facilities

are suggested in Section 3.9.2.2, but these suggestions need to be tried

out in practice. These sinulations could also be used to check the

sensitivity of deterministic nix-design solutions (Sections 2.3.2

and 2.3.3) to variability in the conpositions of the rau materials.

Constrained oluster analysis (Section 3.10. l) and methods of

nul tivariate graphical data analysis (e.g., l'lcDonald, t982) appear to

have numerous applications in the earth sciences. These methods nay be

use{ul for isolating members of ditferent populations included in a data

set to be used for conditional simulation, and could be of further use

in "dissecting" continuous single populations rith long ranges or drifts

into quasi-stationary regions. ln a cement operation, for instance, it

may be desirable to dissect a deposit having vaguely bounded patches

uith different compositions into tuo or more subpopulations to be mined

out and possibly homogenized separately.

Conditional simulation has nou been nidely used to produce simulated

realizations of rar materials to be rnined and of reservoir parameters

for applications in grounduater hydrology. Petroleum epplications are

nearlv identical to those in hydrology but have received less attention.

Appl ications in agricul ture, forestryr Soi I sciphcer rock and soi I

nechanics, oceanographv, neteorology, and other areas there spatiallv
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0ther

geostatistical techniques (primarily various types of kriging) have been

employed in several of these areas (some described in Verly et al.,

1984), but conditional simulation remains underutilized. The shortage

of data that commonly afflicts geostatistioal studies of cement rall

materials is a problen in many of these fields as uell, so the usage of

subjective information for conditioning and model inference is a final

area uhere additional research, as rell as testing and refinement of

existing methods, is uarranted.
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Appendix A

SUBR0UTINE C52D : "CIRCULAR SII'IULATIONS, 2 DIt'lENSIOils"

Subroutine CS2D simulates up to ten independent realizations from a

stationary gaussian rendom function $i th mean=0.0, semivariogram

sill=1.0, using a noving-average nethod (Section 3.3.1.2). Each

simulated realization consists of data located on a rectangular grid

utithin a tuo-dimensional rectangular donain. Depending on the value of

input parameter "lW"' the model random function can have either a

(possibll anisotropic) circular variogram (I1.1*l), or some other

variogram predetermined by the user (Il.l=l) through the choioe of a

noving-average ueight function (stored in discretized form in

matrix rW'}. This subroutine is yery sinple, and the listing provided

in this appendix is thoroughly commentedr so no extended explanations or

flou charts should be needed to understand it.
A circular simulation can be produced by smoothing a field of

independent randon numbers, averaging the numbers nithin e moving

circular uindour rlhose diameter is the required variogram range. This

subroutine eccomplishes the same thing uhen option IN*l is selected, but

in a slightly different fashion. The actual method is explained belou,

in the discussion of the first demonstration run.

If IN* I ' the noving-average ueight rnatrix ,rN,, is cal cul ated by the

subroutiner uhich assigns ueights of "1" ta points on or inside a circle

of diameter "DlAv't "0" to points outside the circle. ln the case of

-47r-
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isotropic (square) grid specings (parameters DL=DC) ' the resul ting

moving-average simulations have an isotropic circular semivariogram

model, derived in Section 3.3.l.2r rith range=DIAI'1. A geometric

enisotropy parallel to the grid directions can be inrposed by simply

manipulating the grid spacings, as illustrated in Figure 47 of Section

3.7.4.1. For example, to produce a circular simulation rith range=20 in

the east-uest direction (along grid rousr oF lines) and range=|0 in the

north-south direction (along grid colunns) and a final grid spaoing of

lxl, one can specify olAt'l=10.0, DL=1.0' 0c=0.5; then tuenty grid

spacings (actual I y tuenty-one points) uri I I be incl uded ui thin the

circular moving nindou in the east-uest direction, ten in the north-

south direction.

General tuo-dimensional moving-average simulations (lll=l) can be

performed by supplying a predeterrnined ueight matrix t'\A", uhich nay be

derived to correspond to some other seniveriogrem nodel (using the

relation on page l14). ln practice, this option should be necessary

only rarely, as the sample semivariograms of most geologic data sets can

be nicely nodeled using one or nore nested circular models and a nugget

constant. Houever, the option might also be used to specify uniform

elliptical ueight functions for circular sinulations having anisotropies

oblique to the grid directions.

Subroutine CS2D automatically adjusts the sinulated values in the

data natrix ttlt' to an expected mean=0.0, sill=1.0. Exact

standardization of the simulated data to mean=O.0, veriance=1.0 is not

perforned by this subroutiner Elthough the user is certainly free to

standardize the data matrix "Y" after it is returned to the main program
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by the subroutine, if this is appropriate. Standardization is avoided

here because all characteristics of natural realizations of a random

function should exhibit fluctuation variances if the real izations are

observed uithin a finite spatial domain (Section 3.7.2).

Standardiaation of the simulated realizations uould artificially drive

the fluctuation variances of the nean and dispersion varience uithin the

sirnulation domain to zeror 8hd also distort the fluctuation variances of

other characteristicsr bias the senivariogram sill, and possibly bias

the short-scale semivariogram structure of the individual simulations

(Section 3.7.2).

This subroutine employs a uidely used multiplicative congruential

pseudorandom-number generator, of the {ol loling form (constants in

parentheses are REAL*8 numbers):

l. Initial ize DSEED, en integer on the interval (l'2**31-l),

stored as a REAL*8 constant.

Then, for each neu pseudorandom number X to be generated,

DSEED=01|00 ( (7*n5) *DSEED, ( 2**31- | ) )

x:DSEED/(2**3t )

uhere Dt'100(A, B) is a Fortran bui I t-in f unction def ined by

DT.IOD(A,B) =A-K*B
uhere K = integer part of (A/B).

This generator is described in the textbooks by Kennedy and Gentle

(1980, p. 147r, R.ubinstein (1981, p. 25), Lau and Kelton (1982, p. 226r,

and Bratley et al. (1983, p. 198). Notice that the value of DSEED is

reset after the generation of each neu randon number. If subsequent

simulated values are to be assured of independence from previous values,

2.
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the parameter oSEED nust not be otheruise reset during execution of the

program. Houeverr i{ a string of randon numbers is to be repeated

exactly for soln€ Feisonr all that is necessary is to reset DSEED to its

original value. Thus, the sequence of random numbers is actually

deterministic, hence the name "pseudorandom". To ensure that

simulations from different runs are independent, one cen start a

subsequent run using the final value of DSEED printed out by subroutine

CS2D at the end of the previous run. Alternatively, one can use a table

of seeds for this generator provided by Bratley et al. (1983' P. 213).

Thei r tabl e I ists thi rty seeds spaced l3l,072 apart. Bratley et al.

(1983, pp. 200-202) point out that the product (7**5)*DSEE0, calculated

as a REAL*8 numberr Grrl require as much as 46-bit accuracy, and thus

uil I rork f ine on an IBI'|-370 type of computer but not on some others.

They provide F0RTRAN code (on their p. 2A2) for a generator using only

32 bits, including the sign bit' rhich might be substituted lor the

generator above if this subroutine is to be executed by a snal I

computer.

The s,ubroutine uill urrite the simulated data directlV to the output

device designated bv logical unit number l0UT if parameter INRT=1.

l'latri x "1" and the associated output vector are i I lustrated in

Figure tl2. This output is convenient if unit I0UT is a sequential disk

file that can be edited later for input to other programs. otheruise,

the data returned by the subroutine should be stored in sone form by the

main program.

Ttto denonstration runs of subroutine CS2D are provided in this

appendix. The first run is executed using the main progran listed

belour:
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$NATFIV TIl.IE=30O
SASSIGN E TO FILE CS2DOUT OUTPUT
c*x*n*
C***iC* INTERACTIVE (ORVYL) PROGRAI'I .. FOR BATCH RUNS, DELETE
c**n*lt ALL mESSAGES T0 TERmINAL I,IARKED BY "C**lt**" BELol.l.
c*****
c
C DEIIONSTRATION RUN OF SUBR,OUTINE CSzD -- }IAIN PROGR,A]'I

c
C DIT1ENSIONS FOR SUEROUTINE CSzD
c

D I mENS I0N Fl.tr ( E ) , yl.tEAN ( 2 ) , YYAR ( 2 ) , Y ( 50 , 50, 2 ) , l.l ( 9, 9 )
DIt'tENSI0N LHLF ( 52 ), LNLL ( 52 ), LHCF ( 56), LNCL ( 56), X (2)

c
C DII.IENSIONS FOR SUBROUTINES HIST, GAI.I2, AND SII.IAP
c

DUIENSt0N VR(5000), ltr (5000), xFR(20),T (2)
0ItlENSI0N I D(4), JD (4),ND (2), U0 (2), VD(2), Np( | 60), GAn( I 60),UG ( 160)
OIT.IENSION CHAR(50)

DOUBLEPRECISION NAT.I( IO), DSEED

c
C OUTPUT OF CS2D IS IN THE PROPER OROER FOR INPUT TO HIST AND GAI'I2

c
EQUIYALENCE (VR(.|),Y(I, I, I))

c0m1.l0N lNP, I ouT, DUl,ll.tY, Nv, NAtl
c
C OATA FOR OUTPUT FORI'IAT, VARIABLE NAI.IES, R. N. GENERATOR SEED
c

DATA Fl-lT/'(lH ' t'tSFl'rt0.4l'r' ' 
" 

'rt t,r r 12 '/
OATA NA}I( I ),NAI.I(2)/'TEST ONE'I 'TEST TUO' / 

' 
DSEED/1702.D0/

c
C DATA FOR VARIO. DIRECTIONS, VARIO. TESTSI HIST. 1.ITS.

c
DATA ID/1,0, l,-l/,JO/O, l, l, 1/,T/2r,-100. 0/rl.lTl5000*1. 0/

c
c NUmBERS IN Col.rtroN
c

I NP=5
IouT=8
NV=2

c
C RUN 2 SII-IULATIONS
c

CALL C52D(50,50,2,1.0,0.5,3.1,6,1,FilT,0S880,9'9,0'YI'IEAN,YVAR,Y'}1,
*Ll.lLF, Ll.lLL ' LNCF, LIICL 

' 
X )

c
C R,UN HISTOGRATIS, VARIOCRA]'IS, AND IIAPS
c

D0 200 LY=l,NV
200 cALL HIST(yR,HT, 2500, LV, 0, t, 0. 0, 0. 0, 0. 0,-t00. 0,xFRrur Y,N, 0)

c*****
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C COI'IHENT TO TERI.IINAL
l.tRITE(6,800 I )

600I FORI,IAT(' STARTING GA['I2')
c*****

CALL GAT.I2 ( 20, T, 50, 50, 4, I D, JD, VR, ND, UD, VD, NP, GAI.I, UC, I )
CALL SIT'IAP(50, 50, 2, Y, CHAR)

c*****
C COII}IENT TO TERI.IINAL

ITRITE(6,E006)
tOO6 FORI1AT ( ' ALL DONE' )

c**lt**
STOP
END

The subroutines HIST, GAf'12, and SII'IAP, lrhich are not I isted here, merely

calculate sample histograms, seniyariograms, and line-printer maps of

the simulated data. The first page of output from CS2D (i.e.r all

output except the data l isting) appears in Figure 107, sample

semivariogrems of the tuo real izations in Figure 108, and maps of the

tuo realizations in Figure 109. The ueight natrix t'W" is calculated by

the subroutine (option Itl*l) using the parameters DL=,|.0, DC=0.5,

DlAt'l=3. l, resul ting in an "el I iptical" moving uindou of the f orm

0

I
0

ltrl0
tttlt
lltl0

as illustrated in Figure ll0. The subroutine simulates NV=2 independent

50x50 arrays of data by generating tuo 52x55 sets of uni form

pseudorandom numbersr NV=2 numbers at a tine (Figure lll). Each randonr

number is added to all elements of the corresponding 50x50 sirnulation

array that lie uithin the elliptical uindou (described above) rhen it is

centered on the location of the random number being generatedr 8e shoun

in the upper-left corner of Figure | | t. The random numbers are

generated in a columnrise sequence, and the center of the uindou noves

accordingly.
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The expected value ol random numbers independently and uniformly

distributed on the interval (0'l) is l/2, and their variance should

be l/12. Because each grid location in the simulation arrey is

overlapped by the circuler nindou seventeen tirnes (corresPonding to the

seventeen positive elements of matrix "N" in this example), each element

of the data matrix tY" accumulates the contributions of seventeen

independent uniform random numbers and thus is ePProximately normally

distributed (central limit theorem) nith an expected value of l7/2. The

theoretical variance of the simulated values, if they uere distributed

over an infinite-sized domain, rould be 17/12. This corresponds to the

expected sill of the semivariogram. The object of subroutine CSZD is to

simulate realizations from a random function nith tn€ar=0r sill=1,

allouing for fluctuation variances. The erunadjusted" data, uhose sanple

means and dispersion variances are sumnarized in Figure 107, are

therefore "adjusted" (Og;;! standardized) to have expected neans of 0.0

and sills of 1.0 by transforming each element "y2' ol matrix "1" tot

y' = ( y - 17/2 > / J( 17/12'.t

The adjusted sample neans and variences are also reported in Figure t07.

The second demonstration run is executed using the nain program

I isted belou:

iNATFIV TI}18=3OO
iASSIGN 8 TO FILE CS2DNIN OUTPUT

c*****
C***** INTERACTIYE (ORYYL) PROGRA}I -- FOR BATCH RUNSI DELETE

c***** ALL nESSAGES T0 TERnINAL l.lARKEo BY "C*****" BELoU|.

c*r***
c
c
c
c
c

DEIIONSTRATION RUN OF SUBROUTINE CS2D -. IIAIN PROGRAT'I

DIT.IENSIONS FOR SUBROUTINE CS2D

D I tlENS I 0N FnT ( 8 ) , Yl.tEAN ( 2 ) , YVAR ( 2 ) , Y ( 50 ' 50 ' 2 ) ' N ( 9, 9 )

Dtl.tENSI0N LILF ( 58), LNLL ( 5E), L]lCr ( 58), LtICL ( 5E), X (2)
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c
C DI]IENSIONS FOR SUBROUTINES HIST, GAI.Iz, AND SII.IAP
c

D I t'tENSt 0N VR ( 5000 ), ltT ( 5000 ), xFR ( 20 ), T ( 2 )
DIt,|ENSI0N I D (4), JD ( 4), ND (2 ), UD (2 ), yD (2 ), Np( | 60 ), GAl,t( I 60), UG ( | 60 )
OITIENSION CHAR(50)

DOUBLEPRECISION NAI.I( IO), DSEED
c
C OUTPUT OF CS2D IS IN THE PROPER ORDER FOR INPUT TO HIST AND GAI'I2
c

EQUIVALENCE (VR(I},Y(I, I, I))
c

cof'lt'loN INp, IouT, DUI*lmy, Nv, NAl|
c
C DATA FOR OUTPUT FORI,IAT, YARIABLE NAI'IES, R. N. GENERATOR SEEO
c

DATA FllT/r(lH 
".r'Fl.rt0.4)"' 

tr. 
"r 

r,r t,r ,/,
0ATA NAl|( | ),NAt't(2)./TTEST 0NET, TTEST TitO' /,DSEED/1702.D0/

C OATA FOR YARIO. DIRECTIONS, VARIO. TESTS, HIST. 1.ITS.
c

DATA ID/1,0, 1 t-7/,JD/o, 1, 1, 1/,T /2*-100. 0/,1{T/5000*1. 0./
c
C DATA FOR SPECIAL }IINDON I1ATRIX "}I''
c

DATA N/ | . , I . , 0 . , 0 . , 0 . , 0 . , 0 . , | . , | . ,
* l. ' 1.,1. r0. r0. r0. r 1.,l. r l.,
* 0.r1. 12.12.r0.r2.r2.r.|.r0.,
* 0.r0.r2.12.12.12.12.r0.'0.,
* 0. ,0. ,0. ,2. r 3. r 2. , 0. ,0. ,0. ,
* 0.r0. 12.12.12.12.r2.r0.r0.,
* 0.r1. 12.12.r0.,2.12.r1.r0.,
* l. ' l. r l. '0. r 0. r0.,1.,l. r l.,
* 1.r1.,0.r0.,0.r0.r0.,1.r1./

c
c NUI.|BERS IN C0t'il10N
c

I NP=5
I ouT=8
NV=2

c
C RUN 2 SIT,IULATIONS
c

cALL CS2D(50,50,2,1.0,0.5,3.1,6,1,Ft'tT,DSEED,g,g,l,yt.lEAN,YVAR,y,l.l,
*LllLF, LHLL 

' Ll.lCF, Ll.lCL, X )
c
C RUN HISTOGRAI.IS, YARIOGRAT,IS, AND ].IAPS
c

D0 200 Lv:l,NV
200 cALL HIST (VR,NT, 2500, Ly, 0, l, 0. 0, 0. 0, 0. 0, -t 00. 0,xFR,u,v,N, 0)

c*****
C COIII.IENT TO TERI1INAL

HRITE(6,t00.|)
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800 t
c**x**

crcx**)a
c

8006
c*xx**

FOR}IAT(' STARTING GA}I2')

CALL GAt'12 ( 20, T' 50, 50' 4, I D, J0' VR, ND, UD, VD, NP, GAI'I' UG, | )
CALL SITlAP(50,50,2, Y, CHAR)

COI'lI'lENT TO TERI.IINAL
ltRITE(6,8006)
FORI.IAT(' ALL DONE')

STOP
ENO

The first page of the output appears in Figure ll3, sample

semivariograms in Figure lt4' and maps in Figure ll5. For this t'uhr an

arbitrary anisotropic, though symmetrical' ueight matrix ttW" is defined

by a DATA statement in the main program and passed directly to the

subroutine, using option IN=1. The four-fold symmetrical ueight matrix

dreamed up for this run is depicted belout:

lt00000ll
rrt000ltl
0t2202210
002222200
000232000
002222200
0t2202210
ltt000ltl
It00000ll

The model semivariogram is unknorn, although it is clear from inspection

of this matrix that the range should be about gJtZl in the NE-St^l and

NN-SE directions, ebout 9 in the N-S end E-N directions, and generally

more continuous (louer semivariogram values at short lags)

and Ntl-SE di recti ons. This is borne out in the sanple

and maps of Figures l14 and lt5. The "crossed" snisotropy

matrix is evidently responsible for the cross-hachured

Figure lt5. The concoction of unusual ueight functions

error might el lou the production of simulations that

in the NE-SN

semi var i ograms

of the ueight

appeerance of

by trial and

uould better
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reproduce the types of phenomena illustrated in Figure 53. Before

conditioning such a simulationr oh€ should nake sure thet the sample

semivariograms of the simulations reasonably match those of the real

data.

As discussed in Section 3.3.1.2, this subroutine executes very slouly

if the dimensions of matrices N and Y are large. Furthermore the entire

simulated data set Y is kept in nemory during execution of the program.

For these i€ssonsr subroutine CS20 is not recommended for very large

simulations.

Listinq of Subroutine CS2D:

SUBROUTINE CS2D(NLI,NCO,NVX,DL,DC,DIAHIITERT'I,II.IRT,FI'IT'DSEEO,NI,N2,
*I N, YtlEAN, YVAR, Y, N, LNL F r Ll^tLL, LNC F, LNCL, X )

c
c
C *I3*** "CIRCULAR SIT.IULATIONS, 2 DII'IENSIONS" *****
c
C (I.IITH AN OPTION FOR GENERAL I'IOYING-AVERAGE SII.IULATIONS)
c
c
C SUBROUTINE TO GENERATE RECTANGULAR ARRAYS OF DATA DRANN FRO]1
C A 2-OII,IENSIONAL STATIONARY GAUSSIAN RANDOT.I FUNCTION I.IITH AN
C ISOTROPI C CIRCULAR SEI'IIVARIOGRAI'I T.IODEL

c
C AUTOCORRELATIONS HITHIN THE DATA ARE ACHIEVED BY EFFECTIVELY
C SI1OOTHING AN ARRAY OF INDEPENDENT UNIFORII(0,1) RANDOT.I NUIIBERS
C BY AVERAGING INSIDE A DISCRETIZEO CIRCULAR I'IOVtNC NINDOI.I.
c
C A GEOMETRIC ANISOTROPY PARALLEL TO THE 6RID DIRECTIONS CAN BE
C I]IPOSED BY APPROPRIATE ADJUSTI'IENTS OF THE GRID SPAEINGS.
c
C A GEO}IETRIC ANISOTROPY OBLIqUE TO THE GRID OIRECTIONS, OR A
C NONCIRCULAR SET.IIVARIOGRAI.I T.IOOEL, CAN BE I}IPOSED BY PASSING A
C PREDETERI'IINED I'IATRIX "W" FROI'I THE I,IAIN PROGRATI. THIS ALLONS THE
C SUBROUTINE TO BE USED FOR GENERAL T'IOVING-AVERAGE SII.IULATIONS IN
c Tlto 0ItlENsI0NS.
c
C UP TO I() INDEPENDENT REALIZATIONS OF THE SAI'IE RANDOI.I FUNCTION
C CAN 8E SII'IULATEO IN ONE CALL OF THE SUBROUTINE.
c
C YERSION OF DECEIIBER, 1984, BY G. R. LUSTER
c
c
C **XX* INPUT PARAT.IETERS (SEE ALSO "COT,IMON VARIABLESO BELOI.I) *****
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

NLI

D I A].I

I T ERI1

I NRT

Fl,tT ( 8 )

DSE ED

NI,N2

NUT'IBER OF LINES OR ROI,IS (E. C. , TRENDING E-N) IN THE
SIIlULATION DOI.IAIN

NU}IBER OF COLUI1NS ( E. G . ,

EQUAL TO COT1I1ON VAR,IABLE
SUBROUTINE STATE}IENT AS

TRENDING N.S)
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SPECIFIEO IN THE
ARRAY "Y"

NV -- nUST
A DII.IENSION

BE

OF

SPAC I NG

-. NOT

SPACING
-. NOT

BETNEEN LINES (ALONG COLUI,INS)
usE0 IF IH=l

8ET].IEEN COLUI.INS (ALONG LINES)
USED IF II.I=I

DIAI1ETER OF T.IOVING NINDON (RANGE OF CIRCULAR
SEI'IIVARIOGRA}I) -. HOT USED IF I}I=1

LOGICAL UNIT NUTIBER FOR NRITING TERI.IINAL I.IESSAGES
TO SHOI.I HOI.I FAR EXECUTION HAS PROGRESSED
-- ***************** IIARNING ****lt*********tc*tt*

T1ESSAGES MARKED ''C***.**" SHOULD BE REI.IOVED FOR

BATCH RUNS.

THIS SUBROUTINE NRITES OUT THE SI''IULATED YALUES IN
I1ATRIX "Y'' (ON UNIT IOUT) ONLY IF }IRT=I.
OUTPUT IS AS FOLLONS! LINE NUI-IBERS (LL=I,NLI) ARE
NESTED I.IITHIN COLUT'IN NUIIBERS (LC=I,NCO), NHICH ARE
NESTEO NITHIN YARIABLE (REALTZATION) NUI.IBERS (Lv=I,Nv).

VARIABLE FORIIAT FOR }IRITING OUT THE SIIIULATED VALUES.- THE FORT.NT IS PASSED FROT'I THE I,IAIN PR,OGRAI-I

IN A YECTOR OF E 4-BYTE CHARACTER STRINGS
(TOTAL OF 32 SPACES AVAILABLE).

-- THESE CHARACTERS T.IUST INCLUDE BLANKS FOR UNUSED
SPACES, E.G.r 'fiH,5F10.4) t.

INTEGER INITIALIZTNG THE RANDOI'I-NUI.IBER GENERATOR
-- TREATED AS A REAL*E NUT.IBER

-- I1UST LIE BET}IEEN I AND (2II*3I).I
-- UPDATED EACH TII,IE A NEI.I NUI.IBER IS CENER.ATED
-- n*tfxntf****tH(**** NARNING ****************

THIS GENERATOR NEEDS AS I'IUCH AS 46.8IT ACCURACY
AND l.lAY FAIL 0N SOl.lE I'|ACHINES; REFER T0 THE
USER'S T1ANUAL.

DIT.IENSIONS OF NINDOI.I INDICATOR (NEICHT) I.IATRIX ''N''
(SEE ''NORKING ARRAYS", BELON)

OPTION FOR GENERAL ].IOYING-AVER,AGE SII'IULATIONS:
IF II.I=I, A PRESPECIFIED TI,IATRIX "N" (SEE "I.IORKtNG
ARRAYS", BELON) TIUST BE PASSEO FROI-I THE I'IAIN PROGRAT,I;

IN THIS CASE THE VALUES OF DL, DC, AND DIAI.I ARE
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

IRRELEYANT.

***** ouTpuT DATA AND STATISTICS *****

ANPT

BN PT

YVAR ( NV )

RAT I.IINDON OISCRETIZATION RATIO -- THE R,ATIO OF ''ANPT"
T0 THE PRoDUCT 0F THE DII'IENSIoNS 0F ARRAY "N" BEL0].|
-- THE ACCURACY OF THE DISCRETIZATION GENERALLY

II.IPROVES AS THIS RATIO APPROACHES PIl4 = 0.7854,
}IHICH IS THE RATIO OF THE AREAS OF AN INSCRIBED
CIRCLE AND ITS SqUARE.

-- NOT USED IF IN=I

Y}1EAN(NV) I'IEAN OF THE SII.IULATED VALUES IN EACH REALIZATION
BEFORE ADJUSTI1ENT .. SHOULD BE CLOSE TO ANPT/2.0.
AFTER ADJUSTI.IENT, THIS VECTOR CONTAINS THE AOJUSTED
T1EANS (SEE "Y'' BELON) I }IHI CH ARE RETURNED BY THE
SUBROUTINE.

THE SUI.I OF ALL ELET.IENTS OF ARRAY "I.I" (EQUAL TO THE
NUT.IBER OF POINTS INSIDE THE CIRCULAR I.IINDOI.I, UNLESS II.I=I )

THE SUII OF SqUARES OF ALL ELET-IENTS OF ARRAY "I.I" (EqUAL
TO ANPT UNLESS II.I=I )

VARIANCE OF THE SII'IULATEO YALUES IN EACH REALIZATION
BEFORE AOJUSTI1ENT -- IF RANGE (( DO}IAIN DII.IENSIONS,
THIS SHOULD BE CLOSE TO BNPT/I2.0. AFTER AOJUSTT,IENT,
THIS YECTOR CONTAINS THE ADJUSTED VARIANCES (SEE ''Y''
BELOI.I), NHICH ARE RETUR,NED BY TIIE SUBR,OUTtNE.

Y(NLI,NCO,NV} 3-D }IATRIX OF SII.IULATED YALUES, }IRTTTEN COLUNN-
}IISE' NLI YALUES AT A TII'IE; TOTAL OF NCO COLUTINS
PER REALIZATION; NV REALIZATIONS
-- VALUES FOR EACH REALIZATI0H ARE ADJUSTEO T0r

I.IEAN= (Y]'IEAN ( LV ) -ANPT /2.0 )/SQRT ( BNPT/I2. O )
VARIANCE=YVAR ( LV )/( BNPT/ I 2.0 )

-. THESE ADJUSTl.IENTS RESULT APPROXTI.IATELY IN
}IEAN=0, SILL=I. .EXACT STANDARDIZATION IS
AVOIDED TO PRESERVE FLUCTUATION YARIANCES.

-- THE I'IATRIX AND FILE ARE STORED IN THE CORRECT
OROER FOR USE IN STANFORD SUBR,OUTINES HIST,
GAI'Iz, ETC.

ARRAYS AND DIHENSToNS ****nrc**** l.l0RK I NG

NOTE 0N DIIIENSIONS: THE DIt'tENSIONS 0F ttATRIX lt(Nl,NZ)
I1UST BE PASSEO FR,OI'I THE T1AIN PROGRAI'I
IN THE CALL STATEI'IENT.
IF IN=I, THESE VALUES I.IUST BE EqUAL TO THE
VALUES SPECIFIED BELOI.I. OTHERI.IISE THEY ].IAY
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BE GREATER.

1.I(2*NLH+I,2TNCH+I) ARRAY OF INDIEATORS OETERI'IINING NHICH
GRID POINTS IN A SqUARE }IOVING I,IINOOI.I

LIE O}I OR INSIDE THE INSCRIBEO CIRCLE

LI.ILF(NLI+2*NLH)
LNLL(NLI+2*NLH)
Lt^lCF (NC0+2*NCH )
LHCL(NC0+2*NCH)

x(Nv) Nv

::

I.IHERE

LOOP RANGES USED TO DETERI,IINE I.tHICH
PARTS OF THE SQUARE }IATRIX SURROUNDING
THE CIRCULAR ]'IOVING I.IINOON OVERLAP THE
SIl.IULATION DOI-lAIN AS THE }IINDOI.I T'IOVES

UNIFORI.I(0, I ) R,ANDOM NUMBERS CONTRIBUTING TO THE
SIIlULATED REALIZATIONS
GENERATED INOEPENDENTLY AT EACH GRID LOCATION

NLH=INT(0.5*DIAI.I/OL) INTEOER HALF-SPANS (HALF.AXES)
NCH=INT(0.5*DIA}1/DC) OF THE CIR,CULAR NINDOI.I

0Rr IF Il.l=1,

NLH=(N 1-1>/2
NCH=(N2- I )/2

HHERE NI AND N2 ARE THE
DII'IENSIONS OF THE PRESPECIFIED
I.IATRIX 1.I(NI,N2). NOTICE THAT
NI AND N2 I.IUST BE OOD.

**r** c0ml10N vARIABLES t**r*

INPUT UNIT

OUTPUT UNIT

NOT USED

NUI1BER OF INDEPENDENT REALIZATTONS (UP TO IO)
-- EACH REALIZATION I.IUST HAVE THE SAT,IE PARAI.IETERS.

E-CHARACTER VARIABLE NAI'IES (UP TO IO OF THETI)
COR,RESPONDING TO THE NV INDEPENDENT REALIZATIONS

INP

I 0uT

DUITr|Y

NV

NAt'l( 10)

***** lNspEcTI0N 0F INPUT PARAmETERS *****

D I tlENSI 0N y (NL l, NC0, NVX ), Ft1T ( g ), I.t (N l, N2 ), X il ), yl,tEAN il ), yVAR il )
DInENSI0N LILr( | ), Ll.|LL( I ), Ll.tCF( | ), LHCL( I )

OOUBLEPRECISION DSEED, NAI.I( IO)
co].|Noil INp, IouT, Dut'illyr NV, NAtl

I.IRITE OUT THE INPUT PARAT.IETERS

I.IRITE(IOUT, I()OO) NLI,NCO,NV, (NA],I(I ), I=I,NV)
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I.IRITE(IOUT, IOOI) INRT, FJ'IT, DSEED,NLI,NCO,NV,NI,N2
IF(IN. Eq. I ) NRITE(IOUT,2OOI )

c
C LOOP PARAI.IETERS USED BELOI.I
c

NL=N 1

NC=N2
c
C THE FOLLOI.IINO PARANETERS, AND THE OISCRETIZATION SECTION BELOI.I,
C ARE NOT USED IF IN=I.
c

IF(Il.t.EQ.l) c0 T0 t50
NRITE(IOUT,30OI ) DL, OC, DIAI,I

c
C TEST GRID FINENESS I.IITH RESPECT TO THE SEI,IIVARIOGRAT,I RANGE
C -- I.IE }IANT AT LEAST 3 LAGS INSIDE THE RANGE FOR THE RANGE
C TO BE VISIBLE IN SAI-IPLE SET.IIVARIOGRAI.IS IN ANY DIRECTION
c

IL=INT(DIAt.I/DL)
IC=INT(DIAI.I./DC)
I 2=I NT ( D IA[.I./SqRT ( DL*OL+DC*DC ) )
IF(IL.LT. 4) l.IRITE(IOUT, IOO2) IL
IF(IC.LT.4) NRITE(IOUT, IOO3) IC
IF(I2. LT. 4) NRITE(IOUT, IOO4)

c
c
C **X*IT DISCRETIZATION OF CIRCULAR I,IOVING NtNDOI.I .r***II
c
c
C INTEGER HALF-SPANS (HALF-AXES) OF THE CIRCULAR I.IOVING NINDOI.I
C -. CALCULATEO HERE IN CASE LAROER YALUES ARE GIVEN FOR NI AND N2
c

NLH:I NT ( (l. 5*DIAT.I/DL )
NCH=I NT (0. 5*D IA]l/DC )

c
C CALCULATE INDICATORS FOR POTNTS INSIDE THE CIRCULAR T'IOVING }IINOOI^I
C .. THE I.IINDON HAS SPANS (AXES) OF LENGTHS (IN TERI'IS OF GRID
c P0INTS) NL = 2*NLH+1, NC = 2*NCH+I
C -. TO DISCRETIZE THE I.IINDOI.I, NE ASSIGN A VALUE OF ''7" TO THE
C INDICATOR ''N" IF THE POINT IN QUESTION IS NITHIN THE RADIUS
C (OIAN/z) OF THE CIRCLE
c
c RAD2 = RADIUS**Z 0F cIRcLE, (NL,Nc) = DII.tENsIoNs 0F NINDoH ilATRIx
c

RAD 2 =D I AI'IXD I AT'I/4 . O

NL:2*NL H+ I
NC=2*NCH+ I

c
C INITIALIZE INOICATOR ARRAY "N", OCCUPYING A SqUARE
C CIRCUI1SCRI BINS THE CIRCULAR I.IINDOH
c

0090I=l,NL
0090J=l,NC

c
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90 l.t(LJ)=1.0
c
C IF EITHER NLH OR NCH IS ZERO, NE HAVE A I.D I.IINDOI.I, GENERATING
C NO CORRELATIONS IN THE OTHER DIRECTION, AND HAVING NO OFF-AXIS
C POINTS. IF BOTH ARE ZERO, }IE ARE JUST INEFFICIENTLY FILLING
C THE ARRAY "Y" I.IITH UNIFORI'I RANDOT'I NUI'IBERS.
c

rF(NLH.EQ.0.0R.NCH.Eq.0) C0 T0 150
c
C CHECK OFF-AXIS ELEI,IENTS OF "VI,, IO SEE I.IHETHER THEY LIE ON OR
C INSIDE THE CIRCLE .- IF OUTSIDE, SET TO ZERO
c

D0 100 Ltc=l,NcH
00 100 LIL=1,NLH

c
l.ll ND:1 . 0
HYPOT=LIL*LIL*OL*DL + LIC*LIC*DC*DC
IF(HYPOT. GT.RAD2) I.IIND:0. O

c
c SYIII|ETRICAL oFF-AXIS ASSIGNnENTS IN 4 qUADRANTS OF '.N"
c

Ll(NLH+ l-LI L, NCH+l-L I C) =NI ND
H(NLH+ I+LI L I NCH+ I-LI C ) =I.tIND
N(NLH+I-L I L, NCH+I+L I C) =NI NO

100 !l(NLH+l+LI L, NCH+t+LI C)=HIND
c
C CALCULATE SUI-I AND SUI'I OF SQUARES OF NINDOI.I ELET,IENTS
c

150 ANPT=o.0
BNPT=0. O

c
D0 170 I=lrNL
D0 170 J=l,Nc

c
ANPT=ANPT+I.I(I,J)

I 70 BNPT=BNPT+t^t( t, J)**2
c
c DISORETIZATION RATIO -- THE cL0sER lo Pt/4, THE BETTER
c

RAT=ANPT/FLOAT ( NL*NC )
c****t?
C COIII1ENT TO TERI-IINAL

NRITE(ITERI.I,8OO2)
8OO2 FORI"IAT(' STARTING I.IOVINO 1{INDOI.I SII.lULATION')

c**n*tr
c
c
C ****X GENERATE REALIZATIONS BY T-IOVING-I.IINDON TECHNIqUE **IT*IG
c
c
C ARRAY Y(NLI,NCO'NV) INITIALLY IS USED TO AC0UI{ULATE THE SUI'ISC OF CONTRIBUTIONS FROI.I THE RANDOI,I.NUI'IBER ARRAY (OF DII.IENSIONSc NLI+2*NLH' N00+!xpg11, NV)' oF l.lHIcH 0NLY oNE sET oF Nv vALuESC IS STORED AT ANY ONE TII'IE. EACH OF THE NV REALIZATIONS I.IITHIN
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C Y IS THEN ADJUSTED TO APPROXIIIATELY tlEAN=0, SILL=I.
C EXACT STANDARDIZATION OF THE SIT.IULATEO REALIZATIONS TO I-IEAN=o,
C VARIANCE=I IS NOT PERFORI.IEO.
c
C NOTICE T}IAT NE ARE ADDING THE CENTRAL X VALUE TO ALL Y VALUES
c IN THE NIND0I'|, INSTEAD 0F ADDING ALL x VALUES IN THE lllNDotl
C TO THE CENTRAL Y YALUE -- ACHIEVES SAI'IE RESULT.
c
C INITIALIZE ARRAY "Y"
c

lE0 D0 200 LIC=t,NC0
00 200 LI L=l , NLI
D0 200 LV=l,NV

c
200 Y(LIL,LIC,LV)=0.0

e

C I.IE DO NOT I.IANT TO LOOP OVER THE I.IHOLE NINDON NHEN PART OF IT
C LIES OUTSIDE THE SIIIULATION DOI.IAIN, SO I.IE CALCULATE AND STORE
C I.IINDON LOOP RANGES AS A FUNCTION OF POSITION OF THE }IINDOI.I
C CENTER IN THE RANDOT.I-NUNBER ARRAY (COORDS. T.IL,I.IC).
c
C NINDON LINE LOOP RANGES LI.|LF,L}ILL AS FUNCTIONS OF 1.IL

c
IlLL=NLI+NL-I
D0 510 l,tL=l,t'tLL
LNLF O'tL) =t'|AX0 ( L t+NL-mL )

5I 0 LILL(tlL)=t.|IN0 (NL, 1+nLL-t.|L)
c
C NINDoN CoLUmN L00P RANGES LNCF,LI,ICL AS FUNCTIoNS 0F ttc
c

ilcL:Nco+Nc- t
00 520 nc=l,mcl
Ll.tcF (r,tc ) =t'lAx0 ( l, l+Nc-ttc )

520 Ll.lcL (l.tc ) =l,tl N0 (Nc, l+l|cL-l'tc )
c
C LOOP I.IINDON CENTER OVER R,ANDOT'I-NU]1BER ARR,AY,
C UPDATING I.IINDOI,I LOOP RANOES EACH TII1E
c

D0 530 l.tc= I ,l'lcL
c**x*lc
C COT,I[.IENT TO TERT'IINAL

ltRtrE(ITERm, E003) ttC
E003 F0Ri'1AT(' R. N. CoLUttN NO, r,I5)

crc***x
c

NNCF=Ll.tCF (l.tc)
NllcL=LNCL O'tC )

c
D0 530 llL=l,nLL

NNLF=LI.ILF (T.IL)

Nl.lL L=Ll.tLL (mL )
c
c GENERATE Nv uNIFoRll(0,l) RANDot'l NullBERs AT EA0H P0SITI0N
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C IN THE RANDOII.NUMBER ARR,AY

c sEE illt**NARNING*I*** IN DESCRTPTI0N 0F INPUT PARAmETERS (ABoVE)
c

D0 540 LY=l,Nv
DSEED=Dm0D ( | 6807. Do*DSEED, 2 | 47483647. D0 )

540 X(LV)=0SEED/2147 483648. 00
c
C ADO EACH OF THE NV RANDOT'I NUI.IBERS X TO THE ELE].IENTS OF Y THAT
C INTERSECT THE NINDON ON EACH OF THE NV LEYELS OF Y
c

DO 530 LNC:NNCF,NNCL
DO 530 L}IL=NI^ILF, NI.ILL
D0 530 LV=l,NV

c
530 Y ( t1L-NL+LNL, nC-NC+LNC, LV ) =y ( tlL-NL+LHL, l,tC-NC+Ll.lC, LV ) +X ( Ly )

**l.l ( L!lL, Ll.lc )
c*x**tt
C COTII'IENT TO TERI.IINAL

NRITE(ITERI'I,8OO4)
8OO4 FORI'IAT(' STARTING STATS A OUTPUT')

c*x***

c
c ***x* STATISTICS 0F THE SInULATI0NS *****
c
c
C CALCULATE UNAOJUSTED }IEANS AND VARIANCES
c

00 600 Lv=l,Nv

Yl.1=0. 0
YV=o. 0
T0T=0.0

D0 700 LC=l,Nco
DO 7OO LL=I,NLI

T0T=T0T+1.0
Yl.l=Yll+Y(LL,LC,LV)
IF(T0T.1T.2.0) G0 T0 700
yv=yv+ ( yn-ToTxy ( LL, Lc, Lv ) )*t32l(T0T*(T0T- t . 0 ) )

7OO CONTINUE

Y]'IEAN(LV)=Y1.I/TOT
600 YVAR(LV)=YYIT0T

c
C THEORETICAL UNAOJUSTEO I.IEAN AND SILL
C -- EXPECTATIONS FOR A LINEAR COI.IBINATION OF INDEPENDENT
C UN I FORI.I( O, I ) RANDOI.I DATA
c

EXl'IEAN:ANPT /2.0
EXVAR=BNPT /12.0
EXSTD=SQRT ( EXVAR )

c

c
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c
IF(II.I.NE. I ) NRITE(IOUT, IOtl5) EXI'IEAN,EXVAR,ANPT,RAT
IF(II.I. EQ. I ) l.IRITE(IOUT, 2OO5) EXT'IEAN,EXVAR

c
C I.IRIIE UNADJUSTED I.IEANS AND VARIANCES
c

IIRITE(I0UT, 1006) (NA}|(I), I=l,Nv)
NRITE(I0UT, 2006) (YtlEAN(l ), I=l,Nv)
tIRITE(I0uT, 3006) (YYAR(I ), I=l,NV)

c
C I.IRITE ADJUSTED T1EANS AND VARIANCES
c

D0 750 LV=l,Nv
Y}1EAN ( LV ) = (YHEAN ( LY ) -EXMEAN )/EXSTD

750 YVAR(LV) =YVAR(LV)/EXVAR
NRITE( IOUT, 2OO7) (YI,IEAN(I )' I=I'NV)
ltR I T E ( I 0UT , 30 0 7 ) ( YVAR ( I ) , I = | , Nv )

c
C }IRITE FINAL VALUE OF DSEED

c
}IRITE(IOUT, I(lOE) DSEED

c
c
c *t+*** ADJUSTHENTS AND oUTPUT *****
c
c
C ADJUST THE SIMULATIONS APPROXII1ATELY TO I'IEAN=OI SILL=I ' AND

C I.IRITE THE RESULTS, LINES NITHIN COLUI1NS NITHIN VARIABLES
c

tF(lr.tRT. Eq. I ) NRITE(l0UT, 1009)

D0 900 Lv=l,Nv

D0 900 Lc=l,Nco
DO 8OO LL=I,NLI

c
800 Y ( LL, Lc, Lv ) = (Y ( LL, LC, LV )-EXI'IEAN )/EXSTD

c
IF(INRT.Eq. I) }IRITE(IOUT,FI'IT) (Y(LL,LC,LV),LL=I,NLI)

9OO CONTINUE
c
c
c r*x** ouTPuT FoRl.tATs **lt**
c
c

IOOO FORI'IAT('ISUBROUTINE CS2O -- TI.IO.DII'IENSIONAL I'IOVING-AVERAGE ',
l'SI|.IULATION'//' 0THE INPUT PARAI'IETERS ARE r'//' GRID ',
2'DII'IENSI0NS 0F SIIIULATI0N DOt'lAIN.'/' NUI1BER 0F LINES = 'r
3'NLl = t,16/t NUmBER 0F C0LUI'|NS = NCo = ',14//
4' NUI.IBER, OF INDEPENDENT REALIZATIONS (ALL NITH THE SAIIE 'T
5'PARAI'IETERS) = NV = 

"I2//' 
NAI.IES OF THE REALIZATIONS:'/' 

"65(A8, 3Xr/'', 5(A8, 3X) )
IOOI FORI,IAT('OLISTING OF SIT.IULATED DATA BELOI.I?"

1' ("1" I'IEANS YES) = ll.lRT =',12/' F0RtlAT FOR 'r
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z'DATA LISTING = F}IT = 
"6A4//' 

INITIAL SEED FOR RANDOI'I.HUI'IBER 
"3'GENERATOR = DSEEO = ', DZO. I2//' OTT.IENSIONS OF DATA T.IATRIX ''I'' =' ,

4', (NLI,NC0,NV) = ( t ,14,' ,t rl4,t ,' ,14,' )t/' DtmENsloNs oF !lINDoNr,
5, INDI0AT0R (l,tEIGHT) ilATRIX 'r1,, = (Nl,N2) = (r,I3,,,,,!3,')'l

2OOI FORI.IAT('OA I,IOVING-AVERA6E NEIGHT FUNCTION (I1ATRIX o,l}Y" 

".I'HAS BEEN SUPPLIED BY THE USER. '/)
3OOI FORI'IAT('OGRID SPACINGS:'/

1' BETI.IEEN LINES (ALONG COLUIINS) = DL = 
"F1O.4I2' BETI.IEEN cOLUmNs (ALONG LINES) = Dc = ,,FIO.4/f. VARIO',

3'GRAI.I RANOE (DIAT,IETER OF CIRCULAR }IINDON) = DIAT'I = 
"F 

10.4II
4' THESE REALIZATIONS STIOULD EXHIEIT CTRCULAR SET'IIVARIOGRAT1S. '/)

IOO2 FORNAT('ONOTICE THAT THE RANGE IS ONLY"12,' LAGS LONG 
"1'BETNEEN LINES (ALONG COLUT'INS).')

IOO3 FORIIAT('ONOTICE THAT THE RANCE IS ONLY"I2,' LAGS LONG 
"I 'BETNEEN COLU]"INS (ALONG LINES). ' )

IOO4 FORI'IAT('ONOTICE THAT THE R,ANGE IS SHORT (IN TERI'IS OF GRID 
"I'SPACINGS) IN OIAGONAL DIRECTIONS.')

IOO5 FORIIAT('O'l'OSTATISTICS FOR SIT.IULATED R,EALIZATIONS:'Z
1' (0ATA ARE APPROXIIIATELY NOR['|AL(0, | ) AFTER AoJusrtlENT)'rr
2, THEORETICAL UNADJUSTED I,IEAN = ANPT/2.0 = , ,F12.4/
3, THEOREIICAL UNADJUSTEO SILL = ANPT/I2.0 = .,f12.4/
4' NurlBER 0F P0INTS I.IITHIN OIROULAR IlINDOl.t = ANPT = ',F12.4/5' DISCRETIZATION RATIO = RAT = 

"F7.4,' 
(APPROACHES PIl4 

"6'= 0.7854)r)
2005 F0Rl'tAT('0' /'0STATIsrIcs F0R sII'tULATED REALIzATI0NS:' /,

1' (0ATA ARE APPROXIIIATELY N0R[.1AL(0, I ) AFTER ADJUSTT1ENF>'/t
2' THEORETICAL UNADJUSTEO T.IEAN = 

"F12.4I3' THEORETI0AL UNAOJUSTEO SILL = ,,F12.4,
t006 F0Rl'lAT('0VARIABLE NAIIE i r, t0(2X,AE))
2006 F0R['1AT('OUNADJ. tlEAN. ', t0Fl0.4)
3006 FORI|AT(' UNADJ. VARIANCE:,, l0Fl0.4)
2007 FoRtlAT(roADJ. rEAN. 

" 
l0Fl0.4)

3007 F0RllAT ( ' ADJ. YARIANCE : ,, l0F 10. 4)
1008 FORi'|AT('0FINAL YALUE 0F RAND0I'|-NU1'IBER SEED = OSEED = ,,D20.12)
IOO9 TORMAT('ILISTING OF SII-TULATED DATA IN FORI,IAT ''FNT"'/11/)

RETURN

END



SUBROUTINE CS2O -- TWO-DIilENSIONAL MOVTNG'AVERAGE SIMULATION

THE INPUT PARAiIETERS ARE:

GRID OIMENSIONS OF SIMULATION DOMAIN:
NUMBER OF LINES = NLI = 50
NUMBER OF COLUMNS = NCO = 50

NUiIBER OF INDEPENDENT REALIZATIONS (ALL hIITH THE SAME PARAMETERS) = NV = 2

NAMES OF T|.tE REALIZATIONS:
TEST ONE TEST TWO

LISTING OF SIMULATED DATA BELOW? ("I" MEANS Y€S) = IV'RT = I

FORMAT FOR DATA LTSTING = FMT = (lH ,5F1O.4)

INITIAL SEED FOR RANDOM-NUMEER GENERATOR = DSEED = Q. ITO2OOOOOOOOD 04

DIMENSIONS OF DATA MATRIX 'V" = (NLI.NCO,NV) = ( 50' 50' 2)
OIMENSTONS OF WINOOW INDICATOR (WEIGHT) MATRtX "W'' = (NI,N2) = ( 9' 9)

GRID SPACINGS:
BETWEEN LINES (ALONG COLUMNS) = DL = I.OOOO
BETWEEN COLUMNS (ALONG LINES) = DC = O.500O

VARIOGRAM RANGE (OIAiIETER OF CIRCULAR WINDOW) = OIAM = 3'1000

TITESE REALIZATIONS SHOULO EXHIBIT CIRCULAR SEMIVARIOGRAMS.

NOTICE THAT THE RANGE tS ONLY 3 LAGS LONG AETWEEN LINES (ALONG COLUilNS).

NoTICE THAT THE RANGE tS sHoRT (IN TERMS OF GRID SPACINGS) IN DIAGONAL DIRECTIONS.

STATISTTCS FOR STMULATED REALIZATIONS:
(DATA ARE APPROXIIVIATELY NORMAL(O.I) AFTER AOJUSTMENT)

THEORETICAL UNADJUSTED MEAN = ANPT./2'O = 8.5OOO
THEORETICAL UNADJUSTED SILL = ANPT/I2.0 = I.4167
NUi|EER OF POINTS hIITHIN CIRCULAR wINDOh, = ANPT : I7'OOO0
OISCRETIZATION RATIO = RAT = 0.8095 (APPROACHES Pl/4 = 0.7854)

VARIABLE NAME: TEST ONE TEST TWO

UNADJ. IIEAN; 8.4112 8.4501
UNADJ. VARIANCE: 1.4r05 1.5417

ADJ. iIEAN: -0.0746 -0.0419
ADJ. VARIANCE: 0.9957 1.0883

FINAL VALUE OF RANoOrtl-NUilBER SEED = OSEED = Q.790862172OO0D 09

Figure 107: 0utput of the first demonstration run of subroutine
csz0.
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Figure 108: Sanple senivariograms fron the first demonstration
run of subroutine CS2D. Solid lines denote
semivariograms from the first sinulated realization,
dashed I ines the second reel ization. The syrnbol 'h'
denotes the east-rest direction, "en denotes the
north-south direction, and d{ and n{ denote the
45-degree diagonel directions.



r^P OF VARIAELE TEST ONE

LESS TfiAN -1.0
AT LEAST -I.O AUT LESS THAN O.O
AT LEAST O.O 8UT LESS THAN +I.O
AT LEAST +l.O

Figure 109: l'laps of the real izati
demonstration run of
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ANPT = 17.0 points (circled belout) inside circular rindon

Values stoled
in array 'tl'

0.0Ix

I
North

DINI-3.1

NLH = integer part of (0.S*DIAI1/DL)

= INT(0.5*3.1/1.0) = I

NCH = integer part of (0.sltDlAt'l/DC)

= INT(0.5*3.1/0.5) = J

Array N(2*NLH+1,2*NCH+l) = ll(3,7) contains the indicators:
1.0 = on or inside the circle, 0.0 = outside the circle

llodel semivariogram ftnll€sr in grid spacings:
North-South Range = DIAII/|.0 = 3. I
East - Nest Range = 0IAl'l/0.5 = 6.2

Diagonal Range = DIAt'l z t/l to.5)2 + (1.0)21 = 2.77

Figure ll0: Exarnple of a discretized circular noving uindout,
using parameters from the first demonstration run.

1.0
..1 q

I

r
Iool

DC-0.5
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Sinulation:
' XCO - 50 colunna

l-Rrndon Nunbers: 56 colunns
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Figure lll: Random-number end simulation grids used by Subroutine
CS2D. The inner grid (nrarked by +'s) represents one
of the NV=z levels of the simulation errev ,ryu uith
dimensions 50x50x2 in the first demonstration run.
The outer grid (merked by o,s) represents a level of
the random-number erray ,rYil uith dimensions 5lx56x2
in the first demonstration run. Actuallyr only NV:2
values of X are stored at any one time. The moving
ltindou is shoun in its initial position in the upper-
left corner of array X. The direction of movement is
columnuise top to bottom (indicated by arrous), then
left to right. In the first demonstratior t urtr tno
independent real izations are generated
simultaneously; only one set of corresponding grid
locations is shoun here.



First
Real ization:

Lv=l

Second
Real ization:

LY=2

Last
Real ization:

LV=NV

(l,l,l),(2,1,1),
(7,2,1),(2,2,1),
(lr3'l)r(2r3,1),

(l,NCo,l),

, (NLI, l, I )
,(NLI'2rl)
r (NLI,3, I )

,(NLI,NCO,I)

, (ilLI 'l ,2)
, (NLt ,2,2)
,(NLI,3,2)

,(NLI,NCO,2)

. ,(NLI,I,NV)

. , (NLI,2,NV)

. , (NLI,3,NV)

, (NLI,NCO,NV)

(3,lrl),
(3,2,1),

l' l: "'
( l, l, 2), (2, 1,2r,(3, l, 2),
( l, 2, 2), (2,2,2), (3,2,2),
( l, 3, 2>, (2,3, 2), (3, 3,2),

il,NCo,2),

(l,l,NV), (2,l,NV),
(l,2,NV), (2,2,NV),
(l,3,NV), (2,3,NV),

(l,Nc0,NV),

Figure ll2: Arrangement of the elements of data matrix t'Y" in the
data output vector rritten by subroutine CS2D. The
vector is uritten out one g-91_U!!!! of NLI values at a
tine, as represented by the individual rous above.
Each ror above corresponds to a single execution of
the NRITE statement. This peculiar order is the same
order in uhich the matrix Y is storedr 8s I vector'
in the machine. In the tuo denonstration runs
reported in this appendix' there are NLI=50 I ines,
NC0=50 columns, and NV=2 realizations. The output
arreyr 8s o vector of length 5000, thus begins uith
Y(l,l,l) and ends uith Y(50,50,2). An EQUIVALENCE
statement in the main program ellous this array to be
passed directly to subroutines HIST and GAtl2 as
vector VR(5000).
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SUBRoUTINEcs2D--Two-DIuENstoNAL}|oVING-AVERAGESIMULATIoN

THE INPUT PARAMETERS ARE:

GRIO OIMENSIONS OF SIMULATION OOIIAIN:
NUMBER OF LTNES = NLI = 50
NUMBER OF COLUI'NS = NCO = 50

NU'IIBER OF INDEPENDENT REALTZATIONS (ALL I^IITH THE SAIilE PARAMETERS) = NV = 2

NAMES OF THE REALIZATIONS:
TEST ONE TEST TWO

LISTING OF SIMULATED DATA SELOW? ("I'IIIEANS YES) = IWRT = I
FORMAT FOR DATA LISTING = FMT = (lH .5Ft0.4)

INITIAL SEED FOR RANOOii|-NUMEER GENERATOR = OSEEO = Q.ITO2OOOOOOOOD 04

DIilENSIONS OF DATA ITATRIX "v" = (NLI,NCO,NV) = ( 50. 50' 2,
oIMENSIONS OF WINDOW INOICATOR (WEIGHT) MATRIX .Y1. = (NI,N2) ! ( 9. 9)

A }IOVING-AVERAGE VIEIGF,IT FUNCTION (MATRIX'IY") HAS EEEN SUPPLIED BV THE USER.

STATISTTCS FOR SIMULATED REALIZATIONS:
(DATA ARE APPROXIMATELV NORIAL(O,I) AFTER ADJUSTMENT)

THEORETTCAL UNAoJUSTED IIEAN = 33.5000
THEORETTCAL UNAOJUSTED SILL = 9.4I67

VARIABLE NAiIE: TEST ONE TEST TwO

UNADJ. MEAN: 32.871? 33.3247
UNADJ. VARIANCE: 8.9063 10.3527

ADJ. IIEAN: -O.2049 -O.O57l
ADJ. VARIANCE: O.9458 t,0994

FINAL VALUE OF RANoOM-NUMBER SEED = DSEED = Q.2018887375000 l0

Figure ll3: 0utput of the second demonstration run of subroutine
cs2D.
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1.0 -,|b___-.Ez
plE: re-- 1--Jr''?

0.5
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0.0 5.0 10.0 15.0

Figure ll4: Sample senivariograms from the second denonstration
run o{ subroutine CSZD. Sol id I ines denote
semivariograms trom the first simulated realization,
dashed lines the second realization. The symbol ,ho
denotes the east-nest direction, tot' denotes the
north-south direction, and ,,4,, and n{' denote the
4S-degree diagonal directions.
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Figure 115: l'laps of the real izations produced in the second
demonstration run of subroutine CS2D.



Appendix B

SUBROUTINE TB3D: "TURNING BANDS, 3 0II'IENSIONS"

Subroutine TB3D simulates up to ten independent realizations from a

stationary gaussian random function lrith mean=0.0r semivariogram

si | | =1.0, using the turninE-bands method (Section 3.3. 1.4). Each

simulated realization consists of data located on a three-dimensional

rectangular grid fi I I ing a rectangular-prism-shaped simulation domain.

The semivariogram nodel may be either spherical (parameter A ) 0.0) or

exponential (A ( 0.0), the absolute value of A being the horizontal

scale parameter (renge, in the spherical case) of the semivariogram

(Journel and Huijbregts, 1978, p. 164). A geometric anisotropy parallel

to the grid directions can be imposed by nanipulating the grid spacings

(DL,DC,DN) as il lustrated in Figure 47, Section 3.7.4. lr ard in

Appendix A. This subroutine is an extensively revised version of

subroutine SII'lUL, I isted in Journel and Hui jbregts (1978, p. 538).

Unlike Subroutine CS2D (Appendix A), Subroutine TB3D can be used for

very large simulations, for tuo reasons: first' the turning-bands

algorithm executes rapidly, and second, the uhole array of simulated

data is not kept in memory simultaneously. The subroutine calculates

only NCO simulated values at a tirne and then immediately urites them

onto sequential output f i le IDATr according to a f ornat Fl'lT specif ied by

the user. The order in rhich the simulated values are uritten is

indicated in Figure I ,|6. A report of irnportant parameters and

-499-
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statistics is nritten to a different output file, IOUT. The value

parameter tl,lRT determines phat optional inf orrnation ril I be included

this report, including statistics of the l5 line simulations and

printout of the simulated values (as in file IDAT).

Subroutine IB3D automatical ly adjusts the simulated values to an

expected nean=0.0, sill=1.0' but exact standardization is not performed,

in order to preserve natural fluctuation variances and to avoid biasing

the short-scale structure of the semivariogram. (See Section 3.7.2 and

Appendix A for nore complete discussions. ) The method used for

adjustment is described by Journel and Huijbregts (197E, p. 536).

The same multiplicative congruential pseudorandom-number generator

used in Subroutine CS2D is employed here, end the caveat expressed in

Appendix A applies here as tell.

Results of a single demonstration run of Subroutine TB3D are included

belout. In this run, subroutine TB3D is called tuice. The first call

simulates tuo independent real izations from a spherical model uith

north-south (across rors) range 5.0, east-uest (across columns)

range 2.0' and vertical (across levels) range 5.0, using paraneters

A=,|.0, (DL,DC,DN) = (0.2, 0.5, 0.2). (Ranges are expressed in cubic

grid spacings.) The dimensions of the discretized simuletion domain ere

(rousr columns, levels) = (NLl'Nco,NLY) = (20,10,5). This choice of

spacings and dimensions uill not result in very good reproduction of the

model semivariogram, for tuo reasons: the spacing across columns is

yery coarse in conparison to the semivariogram range, lrielding poor

short-scale reproduction in that direction; and the size of the domain

is very small in conparison to the ranger €sp€cially in the vertical

of

in

a
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direction, rielding poor I arge-scale reproduction (ri ld fluctuations

about the si | | ). The essential "printed" output (excluding I ine

statistics and data printout) directed to file IOUT during the first

call of the subroutine is displayed in Figure ll7, and the sample

semivariograms in Figure tl8. The data file IDAT=9 is reuound by the

main program and the 2000 data simulated by the first call of TB3D are

read into vector VR(2000) for processing by subroutines HIST and GAt'13

(not listed). This night not be practical in e big production run of

TB3D' as vector YR might be too large and execution of GAt't3 to produce

exhaustive sample semivariograms might take too much time.

The second cal I of TB3D simulates tr.ro independent real izations of an

exponential model rith a "practicalz range equal to the spherical range

used in the first call. All other paraneters are the same. The

corresponding printed output and sample semivariograms are displayed in

Figures ll9 and 120. The simulated data in this case ere routed to a

different output fi le, IDAT=10, but fi le loUT=8 is used for al I

"printed" information fron both the spherical and the exponential

simulations. A listing of the main program for the denonstration run is

provided belour

$l.tATFIY Til'tE=300
3ASSIGN 8 TO FILE TB3DOUT OUTPUT
$ASSIGN 9 TO FILE TB3DSPH INOUT
TASSIGN IO TO FILE TB3DEXP INOUT
c*n*r(*
CIi*IC** INTERACTIVE (ORVYL) PROGRAI.I -- FOR BATCH RUNS, DELETE
c**13** ALL IIESSAGES T0 TERIIINAL I'IARKE0 By "C*****r' BELoN.
c*****
c
c
c
c
c

c

DEI.IONSTRATION RUN OF SUBROUTINE TB3O -- t.IAIN PR,OGRAI,I

DIT1ENSIONS FOR SUBROUTINE TB3D

D I l.|ENSI 0N Y ( | 5 I ), DX ( 500 ), yt'tEAN ( 2 ), yVAR ( 2 ), l.t ( I 6 I ), Fmr ( E)
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c
c

DII.IENSIONS FOR SUBROUTTNES HIST AND GAI13

DITTENSION VR(2000), NP(80), GAtl(80),UG (80), N0(2), UD(2),VD(2)
DIt.|ENSI0N T(2), I 0 (4), JD(4), KD(4),NT (2000), XFR(50)

DOUBLEPRECISION NAT.I(IO), NIS,N25,NIE,N2E, DSEED
c

c

c
c
c

c
c
c
c
c

c
c
c
c
c
c
c

c01"ll,l0N I NP, I 0uT, Dul'll,lY, Nv, NAtl

DATA FOR OUTPUT FOR}IAT, YARIABLE NAI'IES'

DATA Fl.lTl'( 1H rr rr 5F1" r0.4),,",.
DATA NIS,N2S,NIE,N2E/'SPH. I"'SPH.
DATA DSEED/52086.D0/

R,. N. GENERATOR SEED

t r, t r, t r, ,/,

2t t tEXP. l', 'EXP. 2't

c
c
c

c
c
c

c
c
c

DATA FOR, GRID DIllENSIONS, GRID SPACINGS

DATA NLI rNC0rNLV, DL, DC, DN/20, 10, 5, 0. 2' 0 .5,0.2t

DATA FOR VARIO. DIRECTIONS, VARIO. TESTS, HIST. NTS.

DATA ID/1,0,0, 1/,JD/0, 1 r0, 1/ rKD/0 r0r1, l/
DATA T/2*- | 00. 0/ ,Nr /2000|c1 . 0./

NUmBERS IN Col.tmoN

I NP=5
I oUT =8
NV=2

RUN 2 SPHERICAL AND 2 EXPONENTIAL SI}IULATIONS

FIRST, THE SPHERICAL SIIIULATTONS, RANGE:I' }IRITTEN TO FILE IDAT=9

A=1.0
NAll(l)=Nls
NAl'|( 2 ) =N25
I DAI=9

c***x*
C COT'II.IENT TO TERI'IINAL

NRITE(6,t001)
8OO t FORI'IAT ( ' STARTING SPHERI CAL SII'IULATIONS' )

c****r€
CALL TB30 (NLL NC0' NLV' DL' DC' DN'Ar 6, I' I DAT' Ft'lT' DSEED, YilEAN r YVAR, Y,

*0x, N)

RENIND FILE IDAT AND READ DATA INTO VECTOR VR

OUTPUT OF TB3D IS IN THE PROPER ORDER, FOR INPUT TO HIST AND GAI'I3

LOOP THROUGH NCO*NLY*NV COLUT1NS OF NLI DATA NRITTEN IN FORI'IAT FI'IT

REI.IIND IOAT
NNN=NC0*NLV*NV
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DO 4 I=I,NNN
Kl=NLI*(I-l)+l
K2 =NL I *I

4 READ(IDAT,FI'IT) (VR(J),J=KI,K2)
c
C RUN HISTOGRAI.IS AND VARIOGRAT.IS

c
NDD=NL I *NC0xNLV

D0 5 IV=l,NV
5 CALL HIST(VR,1.1T, NDD, Iy, 0, l, |. 0, I.0, 0. 0,-100. 0,XFR,U,V,N, 0)

c***rf*
C CO}IIIENT TO TERI'IINAL

t,|RITE(6,8003)
8OO3 FORI,IAT ( ' STARTING GAI.I3' )

c*nxx*

c
c
c

A=-0.3333
NAr.t(l)=illE
NAtl( 2 ) =N2E
IDAT=TO

c*****
C COT.I]'IENT TO TER,I'IINAL

NRITE(6,8002)
EOO2 FORI'IAT(' STARTING EXPONENTIAL SII'IULATIONS')

c****n
CALL TB30(NLI,NCO,NLV,OL,DC,DN,AI6'I'IDAT'F1'IT'DSEED,YI.IEAN'YYAR,Y,

*DX, N)
RE}IIND IDAT
D0 l4 l=l,NNN
Kl=NLI*(I-l)+l
K2=NLI*I

I4 R,EAD( IOAT, FI.IT) (VR(J),J=KI,K2)
D0 l5 IV=l,NV

|5 CALL flIST(VR,ur,NDD, IV,0, l, |.0, |.0,0.0,-|00.0,XFR,U,V,N,0)
crc**x*
C COI.II.IENT TO TERI'IINAL

NRITE(6,8003)
c****rf

CALL GAI'13( I 0, T, NLI r NC0, NLV, 4, I D, JD, KD, VR, ND,UD r VD' NP, GAll' UG, I )
STOP
END

CALL GAI.I3( I O, T, NLI, NCO, NLV, 4, I O, JD, KD, VR, NDr UD, VO, NP, GAT'I, UG, I )

NOt.I THE EXPONENTIAL SII.IULATIONS, PARAM. =I/3, NRITTEN TO I DAT=I O

subroutine TB3D coul d be used {or tuo-dimensional

bv setting one of the pararneters (NLI,NCO,NLV) to I or by

sl ice from a three-dimensional simulation fi le' the

Al though

simulations

drauing a
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distribution of the l5 lines in space is not uell suited for this

purposer so i tuo-dimensional turning-bands routine such es that used by

Flantoglou and l.lilson (.|981, 1982) uould be greatly pre{erable. No tuo-

dimensional routine has been developed for this dissertation. Oetails

on the distinction betueen txo- and three-dimensional turning-bands

simulations are provided in Section 3.3.1.4.

Listinq g{ Subroutine TB3Dr

SUBROUTINE TB3D (NL I, NCO, NLV I OL' DC' DN' A' I TERM' INRT I I DAT' F]'IT' OSEEO'
XYT.IEAN, YVAR, Y, DX, I.I)

***** ,TTURNING BANDS, 3 DII.|ENSIoNST' **lt**

SUBROUTINE TO GENERATE 3-D R,ECTANGULAR ARRAYS OF DATA DRAI.IN

FROI.I A 3.0 STATIONARY GAUSSIAN RANDOT'I FUNCTION NITH EITHER
A SPHERICAL OR AN EXPONENTIAL 3-O ISOTROPIC SE}IIYARIOGRAI'I I'IOOEL

A GEOI.IETRIC ANISOTROPY PARALLEL TO THE GRID OIRECTIONS CAN BE

IIIPOSED BY APPROPRIATE ADJUSTI'IENTS OF THE GRID SPACINGS.

UP TO IO INDEPENDENT REALIZATIONS OF THE SAI'IE RANOOT'I FUNCTION
CAN BE SII'IULATED IN ONE CALL OF THE SUBROUTINE.

THIS SUBROUTINE USES THE TURNING-BANOS I.IETHOD, DESCRIBED 8Y
A. G. JOURNEL AND CH. J. HUIJBREGTS ( I978), T'IINING GEOSTATISTICSI
PP. 498-508 AND 534.545, AND IS AN EXTENSIVE REVISION OF THEIR
SUBROUTINE SII'IUL, PP. 53E-545.

YERSTON OF AUGUSI, 1965, BY G. R,. LUSTER

*IC)TXIT INPUT PARATIETERS (SEE ALSO "COI.II'|ON VARIABLES" BELON) *****

NLI,NCO,NLV

DL, DC, DN

NUT'IBER OF LINES (ROI.IS), COLUl'INS, AND LEYELS
DEFININC THE SII'4ULATION DOT'IAIN

SPACINGS OF THE SII.IULATION GRIO BETNEEN LINES,
coLut't{s, ANo LEVELS

RANGE PARA}IETER:
) O. RANGE OF THE SPHERICAL I'IODEL
( O. PARAT.IETER "A'' OF THE EXPONENTIAL I'IODEL

(PRACTICAL RANGE IS 3A)

= !. NOT PERI.IITTED -- RUN TERIIINATES
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c
c
c
c
I
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

I TERI,I
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LOGICAL UNIT NUT'IBER FOR, NRITIilG TER,]'IINAL I'IESSAGES

TO SHOI.I HOI.I FAR EXECUTION HAS PROGRESSEO

-- ***********t***** llARNlNS II**********I*r*l
I'IESSAGES }IARKED "CT*T**" SHOULD BE RET1OVEO FOR

BATCH RUNS.

THE SI}IULATED YALUES ARE }IRITTEN TO UNIT IOUT
ONLY IF IABS(II^IRT)=I. THE ORDER IN NHICH THEY

ARE I.IRITTEN IS THE SAllE AS THAT IN UNIT IDAT.
STATISTI CS OF THE I5 LINE SII'IULATIONS ARE REPORTED

TO UNIT IOUT FOR EACH OF THE NV R,EALIZATIONS OHLY

IF II^IRT IS POSITIYE.

UNIT NUI.'IBER OF THE DATA FILE (SII'IULATED YALUES)'
THE OUTPUT IS AS F0LLOI.|S: LINE NUI'|8ERS (I=l,NLI)
ARE NESTED }IITHIN COLUT.IN NUI.|BERS (J=ITNCO), I.IHICH

ARE NESTED }IITHIN LEVEL NUI'IBERS (T1=I'NLV), NHICH

ARE NESTED NITHIN VARIAELE (TIELD) NU]IBERS
( IS=l , NV) .

VARIABLE FOR,I,IAT FOR, I.IRITING OUT THE SI}IULATEO VALUES

-- THE FORI'IAT IS PASSED FROI'I THE }IAIN PROGRATI

IN A VECTOR OF E 4-BYTE CHARACTER STRINGS
(TOTAL OF 32 SPACES AVAILABLE).

-- THESE CHARACTERS I.IUST INCLUDE BLANKS FOR UNUSED

SPACES, 8.G., '(1H,5F10.4) '.

INTEGER INITIALIZING THE RANDOI'I-NUIIBER GENERATOR

-- TREATED AS A REAL*8 NUI'I8ER,

-. I.IUST LIE BETNEEN I AND (213*3I)-I
-- UPDATED EACH TII'IE A NEN NUI1BER IS GENERATED

-- **rcrc*n****lt*ls*lHt NARNING *****lt*****lt*lc**

INRT

I DAT

Fr.rT ( 8 )

THIS GENERATOR NEEDS AS T'IUCH AS 46.8IT ACCURACY

AND T,IAY FAIL ON SOI1E T.IACHINES; REFER TO THE

USER'S I.IANUAL.

**lHt* 0UTPUT STATISTICS ***ltlf

DSEED

YT'IEAN (NV )

YVAR ( NV )

SAI'IPLE I1EAN OF THE NLI*NCO*NLY SIT'IULATED YALUES

FOR EACH REALIZATION (IS=I'NV)

SAI1PLE VARIANCE OF THE NLII3NCO*NLV SII'IULATEO VALUES

FOR EACH REALIZATION (IS=I'NV)

***** utoRKlNG ARRAYS ANo 0ll.lENSloNs ***lt*

D I IlENSI ON PARAI'IETERS

UN = AI.IINI (DL,OC,DN)
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NX

KD

BAND (POINT) SPACING FOR LINE SIT'IULATIONS

= SQRT( (NLI*DL)*n2+(NCo*DC)**2+(NLV*DN)**2)/UN + 6

NUI'IBER OF POINTS SII'IULATEO ON EACH LINE,
CORRESPONDING TO THE DIAGOilAL OF A RECTANGULAR

PRISI'I (THE SIIlULATION DOI'IAIN), PLUS 5

SPAN OF THE LINE }IEIGHT FU}ICTION }I; I.8.,
THE TIUT1BER OF RANDOI1 NUI.IBERS CONTRIBUTING TO EACH

SII.IULATED POINT ON A LINE'
lN THE CASE 0F A SPTIERICAL l'l0DELr K0 = lrfif,+l
IN THE CASE 0F AN EXPONENTTAL l'lODELr KD = t*NR+l
ltitERE NR = llAx t ( ABS(A)/(2*UN) , 3E. )

NORKING ARRAYS

ARRAY CONTAININO:
-- FIRST: RAND0I'l NUI'IBERS F0R THE l-0 SIt'IULATIONS
-- THEN: THE NLI SIIIULATE0 VALUES 0N ANY SINGLE

COLUI'IN OF THE RECTANGULAR PRISIl
THE DIt'IENSI0N 0F Y IS: l'lAX0(KD,NLI )

}IORKING ARRAY CONTAIHING THE NX I-D
SII'IULATED VALUES ON THE I5 LINES

Y(

DX (NX*l 5)

uL(15)
YL(l5)

x(3)

xr (3)

sl(9)

s(3,3,4)

N(KD)

i***tc

INP

SX(T=I,9) CORRESPONDS TO A UNIT DIAGONAL I.IATRIX

SX(I=I0,45) CORRESPONOS TO THE FOUR TRANSFORI.I I.IATRICES }IHICH
ALLOI.I PASSAGE FROI'I THE FIR,ST TRIHEDR,ON TO ANY OF

THE FOUR OTHER TRIHEDRONS

SAI1PLE I'IEAN AND VARIANCE OF I-D VALUES
ON EACH OF THE 15 LINES

COORDINATES OF A 3-D SIt'IULATEO YALUE NITH R,EFERENCE

TO THE FIRST TRIHEDRON, HAVING AXES PARALLEL TO THE

THREE SIDES OF THE PRISI'I, ANO ORTGIN APPROXIT'IATELY

AT ITS CENTER

COORDINATES OF A 3-D SI}IULATED VALUE I.IITH REFERENCE

TO ANY OF THE FIVE TRIHEDRONS, SAI1E ORIGIN

TRANSPOSED ROTATION T'IATRIX "R," FROI'I JEH, P. 504

I.IORKING ARRAY USED TO DETERT'IINE THE YARIOUS

TRANSFORT.I T.IATRICES STORED IN SX

I.IEIGHT FUNCTION USED FOR THE I-D SII1ULATIONS

cot'tmoN vARIABLES *****

INPUT UNIT
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

I OUT

DUt'ttlY

NV

NAr,r( | 0 )

OUTPUT UNIT (NOT THE DATA FILE, IDAT)

NOT USED

NUIlBER OF INDEPENDENT REALIZATIONS (UP TO IO)
-. EACH REALIZATION I'IUST HAVE THE SAIIE PARAI'IETERS.

8-CHARACTER YARIABLE NAI1ES (UP TO IO OF THEN)
CORRESPONDING TO THE NY INDEPENDENT REALIZATIONS

c
c
c

c
c
c

t*rc** INSPEcTI0N 0F INpUT PARAmETERS *****

D I I.IENS I0N y ( | ) , DX ( | ) , ymEAN ( I ) , YVAR ( I ) , c ( t ) , Lt ( I ) , FI.|T ( | )
DItIENSt0N X(3),XI (3),SX(45),Sl (9),S(3, 3, 4)
0It'tENSI0N UL( l5),VL( l5)

DOUBLEPRECISION NAI,I( IO), DSEED

COIII'ION INP, IOUT, DUMMY INVINAI1
EQUMLENCE (S( l, l, l),Sl ( I ) ), (SX( l0),S( l, l, l))

DATA FOR ROTATION T1ATRIX

DATA Sl/0. 5, -0. E090 I 7, 0. 3090 17, 0. 8090 | 7, 0. 3090 17, -0. 5,
*0. 3090 I 7, 0. 5, 0. 8090 I 7/

}IRITE OUT INPUT PARAI.IETERS

INRTA=IABS( II.IRT )
NRI TE ( I OUT, I OOO ) NL I, NCO, NLV' NV, (NAI.I( IS), I S= I, NV )
l.IRITE( IOUT, IOOI ) INRTA,FI'IT, INRT, DSEEO

TEST GRID FINENESS I.IITH RESPECT TO THE SEI'IIVARIOGRAI'I RANGE
(PRACTICAL RANGE FOR AN EXPONENTIAL SEI'IIYARIOGRAI1)
-- I^IE }IAHT AT LEAST 3 LAGS INSIOE THE RANGE FOR THE R,ANCE

TO BE VISIBLE IN SAIIPLE SEI'IIVARIOGRAI'IS IN ANY DIRECTION

AA=ABS ( A )
A3=AA
IF(A. LT. 0. 0) A3:3. 0*A3
IF(A.GT.O.O) NRITE(IOUT, I(lO2) DL,DC'DN,
IF(A.LT.O.O) t.IRITE(IOUT, IOO3) DL,DC'DN'
IL=INT(A3/DL)
IC=INT(A3/DC)
I N=I NT (A3IDN )
I 2=I NT (A3/SqRT ( 0L*DL+DCl30C+DN*DN ) )

IF(IL.LT.4) I.IRITE(IOUT' IOO4) tL
IF(IC.LT.4) }IRITE(IOUT' IOO5) IC
IF(IN.LT.4) NRITE(IOUT, IOO6) IN
IF ( I2. LT.4) t^IRITE( IoUT, 1007)

c
c
c
c
c
c

A3
A3
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c
c
c
c
c
c
c

t2
ll
t0

c
c
c

c
c

c

c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c

**i3*lt CALCULATI0N 0F FURTHER PARAIIETERS *****

CO}1PUTE ROTATION ]'IATRIX SX OF THE 15 LINES
FIRST TRANSFORII = UNIT DIAGONAL T'IATRIX

FURTHER TRANSFORI.IS ARE SUCCESSIVE ROTATIONS

D0 I K=2,8
sx(K)=0.
SX( t )=1.
SX(5)=1.
SX(9)=1.
D0 l0 K=2,4
K0=K- |
D0 il I=1,3
D0 I I J=1,3
s(LJ,K)=0.
D0 l2 ll=1,3
s(I,J,K)=S(I,J, K)+S(l, I |,K0)*S(I l,J, | )
CONT INUE
CONT I NUE

GET BAND SPACING, LINE LENCTH, TOTAL GRID POINTS

UN=AI.IiNI (BL, DC, DN)
NX =SQRT (NL I ltN L I *DL*01+N Co*N Co*DCxD C+N LY*NLV*DN*oN )/UN + 6
NP=NL I *NC0*NLV

FIND CENTER COORDINATES OF PRISI'I AND SII'IULATED LINES

Nl=(NLI+l )/2
N2=(NC0+1 )/2
N3=(NLV+l )/2
NG=NX/2

VARIANCE CORRECTION FOR SII'IULATED VALUES SUI'IT'IED FROI'I I5 LINES

sqlS=SQRT(15.)

CALCULATE SII'IULATION PARAIIETERS

NUGGET-EFFECT SII.IULATIONS SHOULD NOT BE GENERATED BY TURNING BANDS

IF(A.NE.O.) GO TO 30
I.IRITE(IOUT, IOOE)
STOP

PARA].IETERS FOR SPHERICAL OR EXPONENTIAL SIt'IULATION

USEO T0 GET SPAN FOR C0NVOLUTI0N: NR

RANDOI1 NUI'IBERS PER LINE SPACING: ILAG

SPACING ON LINE: ALAG

RELATIVE SPACINO I EPS
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30 NR=AAI(z*UN)
I LAG= I
IF(NR.GE.20) GO TO 301
NR=l,tAX0(l,NR)
D0 300 ILAG=2,20
IF(NR*ILAG.GE.2O) GO TO 30I

30O CONTINUE
30I ALAG=UN/ILAG

EPS=ALAG/AA
NR=NR*I LAG

IF(A.LT.O. ) GO TO 3I
c
C PARAIIETERS FOR SPHERICAL SII'IULATION
c
C SPAN 0F IIEIGHT FUNCTION: KD

C NEIGHT FUNCTI0N: l,,l

C VARIANCE C0RRECTION FACT0R: CK

c
KD:2*NR+ I
D0 303 K=t,KD

303 H(K)=K-NR-l
cK:sqRT ( 36. /NR/(NR+ | )/( 2*NR+ I ) )
G0 T0 33

c
C PARAI.IETERS FOR EXPONENTIAL SITIULATION
C (ANALOGOUS TO SPHERICAL PARAIIETERS)
c

3l KD=gtcNR+ I
D0 32 K=l,Ko
XT=EPS*(K- I )

32 H(K)=( I.-XT)*EXP(-XT)
ct=1.-ExP(-2.*EPS)
cK=sqRT ( 12. *c l*c l/(c l-EPs*ExP(-2. *EPS) ) )

c
C LOOP OVER NV TNDEPENDENT REALIZATIONS
c

33 D0 4 IS=I,NV
cx*x*n
C COI1T1ENT TO TER]IINAL

HRITE(ITERT.I, 30O1 } ISI NAI'I(IS)
30OI FORT,IAT(' BEGINNING SIT'IULATION OF VARIABLE , ,12,2\,'(' ,A8,'I'I

c***lr*
c
c
c *l(*** LINE SlI'IULATIoNS Il3***
c
c
C INITIALIZE INDEX OF VECTOR DX OF LINE VALUES; LOOP OYER, 15 LINES

c
I P=O

D0 34 tD=1,15
c*nrf *rc
C COII}IENT TO TERI.IINAL

URITE(trERn,3002) lD
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3OO2 FORI,IAT(' SIARTING LINE 
"12'c*****

340 y(K)=DSEED/2147483648.00 - 0. 500

POINT SII.IULATION 8Y CONYOLUIION OF

UNCOR.RECTED SIl.IULATED LINE YALUE :

00 35 J:l,Nx
IP=IP+I
AD=0.
KK=T-IOD ( (J- I ) *I LAG, KD )
D0 350 K=I,KD
IF(KK.Eq.KD) KK=O

KK=KK+ I
350 AD:AD+N(K)*Y(KK)

INITIALIZE T1EAN AND VARIANCE ACCUI'IULATORS FOR IINE HO. ID

uL(t0)=0.0
vL(ID)=0.0

GET KD UNIFORM R,ANDOII NUIIBERS FOR THE FIRST SI}IULATED VALUE;
NUI'IBERS ARE AOJUSTED FOR THEIR EXPECTED VALUE OF 0.5;
sEE *****I.|ARNING***** IN DESCRIPTT0N 0F INPUT PARAIIETERS (ABoVE)

00 340 K=l,KD
DSEED=DnOD ( 1 6807. Do*DSEED, 2 I 474E3647. D0 )

c
c
c
c
c

c
c
c
c

c
c
c
c

c
c
c

KD RANDOI.I NUI'IBERS

AD

c
c
c

c
c
c

GET ILAG RANDOI'I NUI'IBERS FOR THE NEXT SI]'IULATED YALUE

sEE *****I.IARNING*I*** IN DESCRTPTI0N 0F INPUT PARAIIETERS (ABoYE)

D0 35.| K=l,lLAc
IF(KK.EQ.KD) l(K=0
KK=KK+ I
DSEED=Dt'loD ( t 6807. D0*0SEED ' 2147483647. 00 )

351 Y(KK)=DSEED/214748364E.00 - 0. 5D0

YARIANCE CORRECTIOX; SIT.IULATED LINE VALUE DX(IP)

DX(IP)=AO*CK

ACCUI'IULATE LtNE STATISTICS

UL(ID)=UL(ID)+Dx(IP)
rF(J.Eq.l) G0 T0 35
yL ( t D ) =vL ( I D )+(UL ( t D)-JiDX ( I P) )**2/( J*(J- | ) )

CONT I NUE

STATISTICS PER LINE

uL(ID)=UL(lD)/NX
VL(ID)=VL(ID)/NX
CONT I NUE

35

34
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38
c
c
c

39
c
c
c
c
c
c
c
c
c
c****n
c

I.IRITE LINE STATISTICS IF II.IRT IS POSITIVE

IF(INRT.LE.(l) GO TO 39
NRITE(IOUT, TO(t9) IS, NAI.I(IS)
00 38 lD=1,15
I.IRITE(IOUT,IOIO) ID, UL(ID), VL(IO)

SITIULATEO DATA ARE }IRITTEN ON UNIT IOUT IF TABS(INRT)=I

IF(INRTA. Eq. t ) IIRITE(IoUT, l0l4)

***** THREE-DIIIENSIoNAL Sll'IULATI0N I**n*

EACH NEN 3.0 VALUE IS SI}IULATED BY ADDINO
CONTRIBUTIONS FR,O].I I5 TINES

INITIALIZE ACCUI.IULATORS OF 3.0 STATISTICS

COT,II.IENT TO TERI'lINAL
l.tRt TE ( I TERt'1, 300 3)

30O3 TORI,IAT(' STARTINC 3.0 SI}IULATION'/)
c*****
c

c
c
c
c
c
c

T0T=0. 0

YTIEAN(IS)=0.
YYAR(IS)=0.

NESTED LOOPS OYER LEVELS ]'I' COLUI1NS J, TINES I

POINI COOROS. X, }IIIH ORIGIN AT PRISI'I CENTER:
c00RDs. FoR LEYEL (X(3)), C0LUI'1N (X(2)), LtNE (X(l))

D0 4 m=l,NLv
X ( 3) =-0. 5+ (t'l-N3) *DN/UN

D0 4 J=l,Nco
x ( 2 ) :-0. 5+ (J-Nz ) *DC/UN

00 40 l=l,NLI
X ( | ) =-0. 5+( I-N I )*01/UN

INITIALIZE SIIIULATED VALUE Y TO ZERO

Y(I)=0.
tN0=0

LOOP OVER 5 TRIHEORA (IR), 3

00 4l lR=1,5
K0:(IR-l)*3
D0 4l JD=1,3
xt(JD)=0.

CO}IPUIE THE COORDINAIES I{ITH

AXES (JD)

c
c
c

c
c
c

REFERENCE IO TR,IHEDRON IR
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e

42

D0 42 tL=|,3
INO=INO+I
xI (J0 ) =xI (J0)+x ( IL)*SX( IN0)
ARG=XI (JD)+0. 5

LK:ARG
IF(ARG.LT.O. ) LK=LK-I
LK:LK+HG
K0=K0+ |

COI.IPUTE SUM OF CONTRTBUTIONS FROI1 THE TURNING BANDS

I 2=LK+NX*(K0- | )
Y(I):Y(t)+DXu2)
CONT I NUE

ACCU}IULATE 3.0 STATISTICS

Y(I)=Y(t)/Sql5
T0T=T0T+l .0
ytlEAN ( IS) :ylEAN ( IS)+y ( I )
IF(TOT.LT.2.O) GO TO 4O
yvAR ( I S) =YVAR ( I S)+ ( ynEAN ( I S ) -ToT*Y ( t ) ) **2/(T0r*(T0T- I . 0 ) )
CONT I NUE

}IRITE COLUI'IN J ON FILE IDAT AND

NRITE(IDAT,FT.IT) (Y(t ), I=I,NLI )
IF ( ntRTA. Eq. t ) l,tRITE( loUT, Fl'lT)
CONT I NUE

**n** STATISTTCS 0F 3-D SIIIULATIoNS *****

I.IRITE I.IEANS AND YARIANCES

tF ( INRT. GT. O.OR. I}IRTA. Eq. I )
NRTTE(IoUT, t0ll)
D0 5 IS=I,NV
YI.IEAN ( I S ) =YT.IEAN ( I S ) /NP
YYAR(IS)=YVAR(IS)/NP

]^tRITE(IoUT,l0l5)

ltRI TE ( t0uT, | 0 
.| 

2 ) I S, NAn( I S), YI'IEAN ( I S), YVAR ( I S )

NRITE FINAL VALUE OF DSEED

lrRtrE(touT, l0l3) DsEE0

***** ouTPuT roR1,|ATS *****

c
c
c

c
c
c

c
c
c

c
c
c
c
c
c
c

c
c
c

c
c
c
c
c

4l

40

ON IOUT TF IABS(INRT)=I

(Y(I),I=l,NLl)
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IO(lO FORT1AT('ISUBROUTINE TB30 -- IHREE.DII.IENSIONAL TURNTNG-BANDS'I
l'SIt'IULATION'//'01HE INPUT PARAT'IETERS ARE z'//t GRID ',
2'DIt.IENSIONS OF SIIlULATION DO},IAIN;' /' }IUI.IBER OF LINES = 

"3'NLI = 'r16/' NUI,fBER 0F CoLUi.|NS = NCo = ' ,14/
4. NUTIBER OF LEVELS = NLY = ,,I5//
5' NUI,IBER OF INDEPENDENT REALIZATIONS (ALL NITH THE SAT1E ',
6'PARATIETERS) = NV = 

"I2/" 
NAI'IES OF THE REALIZATIONS:'/' 

"75(A8, 3Xr/r r, 5(A8,3X))
IOOI FORI1AT('OLISTING OF SI}IULATED DATA BELO}I?"

1, (',I,, I,IEANS YES) = IABS( INRT) =, ,I2//T FORI1AT FOR ,,
z'DATA OUTPUT = FNT = 

"EA4//3' REPOR,T OF LIIIE SIAIISTICS BELOI.I?"
4' (POSITIVE VALUE I,IEANS YES) = INRT = ',I2//5' INITIAL SEEO FOR RANDOII-NUI.IBER',
6' GENERATOR : DSEED = 

"020.12)1002 F0RtlAT('0cRID SPACINGS:'/
I' BETNEEN LINES = DL = 

"FI2.4I2' BETI.|EEN CoLU}INS = DC = 
"F70.4/3' BETI.IEEN LEVELS = DN = ' ,F II .4IT

4' VARIOGRAT.I RANGE = AA = ' ,F 10.4//
5' THE I,IOOEL RANDOI1 FUNCTION HAS A T*SPHERICAL** YARIOGRAN. ')

IOO3 TOR}IAT('OGRID SPACINGS :'/
BETI.IEEN LINES = DL = ',F72.4/
BETNEEN COLUIINS = DC = 

"FIO.4IEEII.IEEN LEVELS = DN = ',F17.4TI
4' PR,ACTICAL VARIOGR.AI'I RANGE = 3*AA = 

"FIO.ATI5' THE I.IODEL RANDO].I FUNCIION HAS AN **EXPONEilTIAL** VARIOGRAI,I.')
TOO4 FORTIAT('ONOTICE THAT THE R,ANGE IS ONLY" 12,' LAGS LONG 

"I '8ETl.IEEN LINES. ' )
IOO5 FORI'IAT('ONOTICE THAT THE RANGE IS ONLY' ,12,' LAGS LONG

I ' BETNEEN COLU}INS. ' )
I006 FORI1AT('ONOTICE THAT THE RANGE IS ONLY" 12,' LAGS LONG

T 'BETNEEN LEVELS. ' )
I()OT FORT,IAT('ONOTICE THAT THE RANCE IS SHORT (IN TERI{S OF GR,ID ',

I'SPACINGS) IN OIAGONAL DIRECTIONS.'}
1008 F0R11AT('0ZERO RANGE PARAT1ETER N0T ACCEPTABLE: ST0P,)
IO09 FORI'IAT('ILINE STATISTICS FOR SII,IULAIION NUI.IBER 

"12,' 
("A8,.'I' /

I'OEXPECTEO T'IEAN = O.O, YARIANCE = I.O (FOR AN INFINITE LINE)'/
2'00BSERVED YALUES: LINE IIEAN YARIANCET/)

l0l0 roRnAT(r r, 19x,13,2x,F6.2,3x,F6.2)
IOI I TOR}IAT('O'l'OSTATISTICS FOR SIIlULATED REALIZATIONS:'/

I'OTHEORETICAL T,IEAN = O.O, SILL = 7.0"
2'O R,EALIZATION T.IEAN VARIANCE'/)

l0l2 F0RnAT(r r r12,lx,r("Ag, r)rr3X rF7.4r3X,FE.4)
IOT3 FORI,IAT('(|FINAL VALUE OF RANDON-NUT.IBER SEED : OSEED = ,,020.I2)
IOI4 FORI.IAT(' ILISTING OF SII'IULATED OATA IN FORI,IAT 0FNT'''//)
t0l5 F0RmAI(rl,)

RETURN

END

t,
2t
3'
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SUSROUTINE T83D -- THREE-OIMENSTONAL TURNING-BANDS SIMULATION

THE INPUT PARAMETERS ARE:

GRIO DTMENSIONS OF SIMULATION DOIIAIN:
NUMBER OF LINES = NLI : 20
NUMBER OF COLUIINS = NCO = ,IO

NUIIBER OF LEVELS = NLV = 5

NUMEER OF INDEPENDENT REALIZATIONS (ALL VIITH THE SAME PARAII'IETERS) = XV = 2

NAMES OF THE REALIZATIONS:
SPH.'I SPH.'2

LISTING OF SIMULATED DATA BELOW? ("I" MEANS VES) = IABS(IU/RT) = I

FORMAT FOR DATA OUTPUT = FMT = (IFt '5FIO.4)
REPORT OF LINE STATISTICS BELOW? (POSITIVE VALUE MEANS YES) = IWRT = I

INITIAL SEED FOR RANDOM-NUMSER GENERATOR = DSEED = O.52O86OOOOOOOD 05

GRID SPACINGS:
EETWEEN LINES = DL = O.2OOO
BETWEEN COLUMNS = OC = 0.5000
BETWEEN LEVELS = ON = O.2OOO

VARIOGRAM RANGE = AA = I.OOOO

THE MODEL RANOOM FUNCTION HAS A I*SPI'IERICAL+' VARIOGRAM.

NOTICE THAT TI-IE RANGE IS ONLV 2 LAGS LONG BETV{EEN COLUMNS.

NOTICE THAT THE RANGE IS SHORT (IN TERMS OF GRID SPACINGS) IN OIAGONAL DIRECTIONS'

STATISTICS FOR SIMULATED REALIZATIONS:

TI.IEORETICAL IIEAN = O.O, SILL = 1.O

REALIZATTON TEAN VARIANCE

r (sPH. r l) -o.2772 0.9715
2 (SPH. r 2, -0.0614 0.9168

FINAL VALUE OF RANDOM-NUMBER SEED = DSEED = Q.ll0940t262OOD l0

Figure llTr 0utput from the first call of Subroutine TB3D in the
demonstration run.
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Figure I l8: Sample senivariograms fron the first call of
Subroutine TB3D in the denonstration run. Notice the
Eeometrio anisotropyr the poor model reproduction at
long lags (ouing to the smalI size of the domain in
comparison to the range), and the poor visibility of
short-scale structure in the east-lest (betueen
columns) direction (ouing to coarse discretization o{
the domain in comparison to the range).
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SUBRoUTINETB3D--THREE-DIMENSIoNALTURNING-BANDSSIMULATIoN

TIIE TNPUT PARAiiETERS ARE:

GRID DI'TIENSIONS OF SIMULATION DOMAIN:
NUMBER OF LINES = NLI = 20
NUMBER OF CoLUMNS = NCO = l0
NUMBER OF LEVELS = NLV = 5

NUMBER OF INDEPENOENT REALIZATIONS (ALL IVITH THE SAME PARAMETERS) = NV = 2

NAMES OF THE REALIZATIONS:
EXP.rl EXP.t2

LISTING OF SII,IULATEO OATA BELOIV? ("I. ilEANS YES) = IAES(IhIRT) = I

FORMAT FOR DATA OUTPUT = FMT = (tH ,5F10.4)

REPORT OF LINE STATISTICS BELOV{? (POSITIVE VALUE IIEANS YES) = IWRT = I

TNITIAL SEED FOR RANDOM-NUMBER GENERATOR = DSEED = O.IIO94OI262OOD IO

GRID SPACINGS:
BETWEEN LINES = DL = O.2OOO
BETh,EEN COLUI(NS = OC = 0.5000
BETWEEN LEVELS = ON = O.2OOO

PRACTICAL VARIOGRAM RANGE = 3'AA = 0.9999

THE MODEL RANOOII FUNCTTON HAS AN "EXPONENTIAL" VARIOGRAM.

NOTICE TI'IAT THE RANGE IS ONLV I LAGS LONG BETI{EEN COLUilNS.

NOTTCE THAT THE RANGE IS SHORT (IN TERIIS OF GRID SPACINGS) IN OIAGONAL OIRECTIONS'

STATTSTICS FOR SIMULATED REALIZATIONS:

THEORETICAL tEAN = 0.0, SILL = l.O

REALIZATION SEAN VARIANCE

| (ExP. r l) -0.4992 0.9642
2 (EXP. t 2) -0.0467 0.8564

FINAL VALUE OF RANOOM-NUMBER SEED : OSEED = 0.I42I242863000 IO

Figure lt9: Output from the second call of Subroutine TB30 in the
demonstration run.
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