
LANS: A Layout-Aware Neural Solver for Plane Geometry Problem

Anonymous ACL submission

Abstract

Geometry problem solving (GPS) is a chal-001
lenging mathematical reasoning task requiring002
multi-modal understanding, fusion, and rea-003
soning. Existing neural solvers take GPS as004
a vision-language task but are short in the rep-005
resentation of geometry diagrams that carry006
rich and complex layout information. In this007
paper, we propose a layout-aware neural solver008
named LANS, integrated with two new mod-009
ules: multimodal layout-aware pre-trained lan-010
guage module (MLA-PLM) and layout-aware011
fusion attention (LA-FA). MLA-PLM adopts012
structural-semantic pre-training (SSP) to imple-013
ment global relationship modeling, and point-014
match pre-training (PMP) to achieve alignment015
between visual points and textual points. LA-016
FA employs a layout-aware attention mask to017
realize point-guided cross-modal fusion for fur-018
ther boosting layout awareness of LANS. Ex-019
tensive experiments on datasets Geometry3K020
and PGPS9K validate the effectiveness of the021
layout-aware modules and superior problem-022
solving performance of our LANS solver, over023
existing symbolic and neural solvers. The code024
will be made public available soon.025

1 Introduction026

Automatic geometry problem solving (GPS) is a027

long-standing and challenging research topic in028

both computer vision and natural language process-029

ing communities (Bobrow, 1968; Chou et al., 1996;030

Seo et al., 2015). Each geometry problem consists031

of a geometry diagram and a textual problem in032

different modal forms, complementing each other.033

GPS necessitates comprehensive mathematical rea-034

soning and multi-modal understanding, making it035

a pivotal testbed for evaluating the high-level mul-036

timodal reasoning ability of artificial intelligence.037

Past research works of GPS were mainly focused038

on symbolic solvers (Seo et al., 2015; Sachan and039

Xing, 2017; Lu et al., 2021), which are criticized040

in respect of complex rules and poor adaptabil-041
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Textual Problem：Find the measure of ∠9 .
Structural Clauses：line A B , line D C B , ⊙E lieson B C 

Semantic Clauses：m ∠CBA = m ∠9 , m �BC = 120 (N0) 

Solution (a)：60 (Multiple V0 C2 N0 Get V0) 

Solution (b)：120 (Sum N0 V0 C360 Multiple V1 C2 V0 Get V1)  

Figure 1: Examples of plane geometry problems. The
geometry diagrams (a) and (b) share the same textual
problem, structural clauses, and semantic clauses but
have different solutions, where structural clauses and
semantic clauses are parsed from diagrams. Layout
information plays a crucial role in this situation.

ity. With the development of deep learning, neural 042

solvers (Chen et al., 2021, 2022; Zhang et al., 2023, 043

2024), treating GPS as a special vision-language 044

reasoning task, have attracted dominant attention 045

recently. 046

Layout information is typically defined as posi- 047

tional coordinates of elements such as text, para- 048

graphs, tables, and figures within images (Xu et al., 049

2020; Gupta et al., 2021). Supplying layout de- 050

tails for elements in document images facilitates 051

parsing reading sequences, executing information 052

extraction, and enhancing document comprehen- 053

sion (Appalaraju et al., 2021; Wang et al., 2021; 054

Hong et al., 2015). In the layout of geometric dia- 055

gram, the coordinate positions of geometric points 056

and symbols play a crucial role in understanding 057

the elements within geometric diagrams. For exam- 058

ple, the coordinate positions of geometric symbols 059

"A" as shown in Figure 1, determine which geo- 060

metric points are named A, while the coordinate 061

position of the non-geometric symbol "120◦" deter- 062

mines the numerical assignment of ̸ ABD instead 063
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of other angle.064

Despite considerable efforts devoted to construct-065

ing proficiently crafted representations for geomet-066

ric diagrams, the explicit fusion of positional in-067

formation into geometric diagrams remains unex-068

plored. Existing neural solvers have adopted dif-069

ferent diagram representation schemes, such as fea-070

ture maps (Chen et al., 2021; Cao and Xiao, 2022;071

Ning et al., 2023), image patches (Chen et al., 2022;072

Ning et al., 2023) and textual clauses (Lu et al.,073

2021; Zhang et al., 2023). For methods based on074

image patches and feature maps, several represen-075

tative geometric problem solvers have employed076

extensive pre-training strategies, such as jigsaw077

location prediction (Chen et al., 2021), geometry078

elements prediction (Chen et al., 2021), masked079

image modeling (Ning et al., 2023), and character080

alignment (Ning et al., 2023), to bridge the gap081

between geometric and natural scene images (An-082

derson et al., 2018; Yu et al., 2019; Ding et al.,083

2022). Although rough image pre-training meth-084

ods have achieved some effectiveness, they often085

fail to capture finer-grained details. Conversely,086

methods based on text clauses extract the crucial087

structural and semantic information of geometric088

problems in the form of clauses. Currently, clause-089

based approaches yield superior inference results090

through clause-based deductive reasoning (Lu et al.,091

2021) or clause pre-training (Zhang et al., 2023).092

We attribute this to the structured nature of clauses,093

which makes them more adept at capturing struc-094

tural information in geometric problems. For exam-095

ple, The structural clause “line B C D" describes a096

structural relationship that points “B", “C" and “D"097

lie on one line in order. The semantic clause “m098

B̂C = 120" illustrates a semantic relationship for099

the degree of arc “B̂C" and text “120◦".100

Although the textual clauses are capable of cap-101

turing the primary layout relationships within the102

images, they lose significant spatial information103

during the conversion process of diagram parsing104

(Lu et al., 2023; Trinh et al., 2024). They can-105

not distinguish the geometry diagram (a) and (b)106

displayed in Figure 1 because of loss of position107

information. For example, “ CBA" in Figure 1(a)108

and (b) need the spatial relationship to determine109

whether it is acute or obtuse. The lack of positional110

indicators for geometry elements (such as "A," "B,"111

etc.) makes it challenging for neural solvers based112

on text clauses to distinguish between these am-113

biguous scenarios.114

Considering the under-representation of geom-115

Bidirectional GRU Encoder

Self-limited GRU Decoder

• line B C D
• line A D
• line E C A
• ⊙A lieson E B D

• BD⊥EA on C
• EC = 2(N0)
• CA = 3(N1)

Sum N0 N1 V0 Gougu N1 V1 V0 Multiple V1 C2 V2 Get V2

Step1 Step2 Step3 Step4

Textual Problem 

Multimodal Layout-Aware 
Pre-trained Language Model  

Diagram

Find BD.

Structural Clauses Semantic Clauses

Layout-Aware Fusion Attention

Figure 2: Overview of LANS model. The red dotted
boxes are our newly proposed modules in comparison
to PGPSNet (Zhang et al., 2023).

etry diagrams, we propose a layout-aware neural 116

solver called LANS. LANS inputs the diagram im- 117

age, the textual clauses parsed from a diagram, and 118

the textual problem, and outputs the explainable 119

solution program to solve the geometry problem. 120

As shown in Figure 2, two new modules, multi- 121

modal layout-aware pre-trained language model 122

(MLA-PLM) and layout-aware fusion attention 123

(LA-FA), are proposed to endow LANS with lay- 124

out awareness. We introduce a point-match pre- 125

training (PMP) method within MLA-PLM. This 126

method, based on contrastive learning, aims to 127

model the relationship between text clauses and di- 128

agrams using layout information in a data-efficient 129

manner. When integrated with structural-semantic 130

pre-training (SSP) in PGPS solver (Zhang et al., 131

2023), it shows promising outcomes. Then, to bet- 132

ter utilize pre-trained multimodal representations, 133

LA-FA module with the layout-aware attention 134

mask is employed in LANS to fuse the diagram 135

and text clauses representation via point positions. 136

LA-FA further enhances the layout awareness in 137

cross-modal fusion. 138

The contributions of this work are summarized 139

in four folds: (1) We propose a layout-aware neu- 140

ral solver LANS for GPS, which can represent 141

and fuse geometry diagrams effectively. (2) We 142

introduce the MLA-PLM module with two pre- 143
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training strategies SSP and PMP, realizing global144

relationship modeling and cross-modal alignment145

of point primitives. (3) We design the LA-FA mod-146

ule, equipped with a layout-aware attention mask147

directed by point positions, to further strengthen148

the layout awareness of LANS. (4) Our LANS out-149

performs existing symbolic solvers, neural solvers,150

and current multimodal large models significantly151

on Geometry3K and PGPS9K datasets.152

2 Related Work153

2.1 Geometry Problem Solving154

GPS is a special type of multimodal reasoning that155

examines geometric spatial structure cognition and156

mathematical logical reasoning, and also requires157

the application of geometric theorem knowledge,158

which make it highly challenging. Existing works159

of GPS can be classified into two categories: sym-160

bolic solvers and neural solvers. The symbolic161

solvers (Seo et al., 2015; Sachan and Xing, 2017;162

Lu et al., 2021; Peng et al., 2023) parse the diagram163

and textual problem into a unified formal language164

first, and then perform symbolic reasoning by path165

search and condition matching based on the geo-166

metric theorem knowledge. However, symbolic167

solvers are carefully designed with complex rules168

and are hard to extend. The neural solvers treat169

GPS as a visual question answering task and de-170

sign a special interpretable program to represent the171

problem-solving process. NGS (Chen et al., 2021)172

and Geoformer (Chen et al., 2022) use auxiliary173

self-supervised tasks such as location prediction,174

elements prediction, and knowledge classification175

to boost cross-modal semantic representation. PG-176

PSNet (Zhang et al., 2023) expresses the geometry177

diagram with textual clauses and fuses multi-modal178

information through structural and semantic pre-179

training, data augmentation, and self-limited de-180

coding. SCA-GPS (Ning et al., 2023) tries to align181

characters in text and diagram and enhance the182

diagram understanding through multi-label classi-183

fication and masked image modeling pre-training.184

Although existing neural solvers have achieved im-185

pressive performance, they are still coarse-grained186

at the modal understanding and fusion, especially187

for geometry diagrams with complex layouts. In188

this paper, we propose a layout-aware neural solver189

to improve the understanding and fusion of geome-190

try diagrams and therefore promote GPS.191

2.2 Multimodal Pre-training & Layout-Aware 192

Learning 193

Multimodal pre-training realizes alignment and un- 194

derstanding between different modalities by a se- 195

ries of designed auxiliary tasks and then applies 196

to the specific downstream tasks. Common strate- 197

gies involve image-text contrastive learning (Rad- 198

ford et al., 2021), image-text matching (Kim et al., 199

2021), image-grounded text generation (Cho et al., 200

2021), and masked object classification (Li et al., 201

2020). With a large amount of pre-training data, 202

these strategies exhibit good performance in mul- 203

timodal tasks for natural images. However, their 204

alignment methods are coarse-grained and straight- 205

forward and do not fit for complex multi-level and 206

fine-grained tasks. Most relevant to our work is the 207

research on document analysis (Liu et al., 2023a). 208

Existing advanced document pre-training methods 209

(Xu et al., 2020, 2021) incorporate textual and vi- 210

sual blocks with fine-grained position embeddings, 211

and adopt masked visual-language modeling and 212

text-image alignment to pretrain document layout, 213

whereas they still do not apply to GPS due to the 214

specificity of geometry objects and small-scale of 215

GPS datasets. DocFormer (Appalaraju et al., 2021) 216

and LayoutReader (Wang et al., 2021) employ 217

meticulously designed attention mechanisms target- 218

ing information within text boxes to enhance their 219

perception abilities regarding document content. 220

Our LANS proposes targeted and data-efficient pre- 221

training methods and a geometry layout-aware at- 222

tention to implement geometry layout awareness. 223

3 Method 224

Before presenting the neural solver model, we first 225

describe the formal definition of GPS task here. 226

Given a geometry problem P including a geom- 227

etry diagram D and a textual problem Tprob, the 228

goal is to solve the problem by applying geometric 229

knowledge and obtaining the solution steps S, for- 230

mulated as P = {D,Tprob} ⇒ S. Then solution 231

steps are verified in the form of fill-in-the-blank, 232

multiple-choice, or logical reasons. 233

3.1 Overall Framework 234

To fully understand and represent the geometry 235

diagram, we propose a layout-aware neural solver 236

called LANS as displayed in Figure 2. First, the 237

diagram is parsed into the textual clauses using 238

the geometry diagram parser PGDPNet (Zhang 239

et al., 2022), where the structural clauses Tstru 240
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line  B   C   D    ,   line  A  D …   B   D   ⊥ E   A   on   C …    Find    B D    .

Structural Clauses Semantic Clauses Textual Problem Diagram Patches

… … … … …E B C D A

Point Matching 

Figure 3: Pipeline of multimodal layout-aware pre-training. The geometry problem is the same as that in Figure 2.
[M] denotes mask tokens. Class tags and section tags are the same as (Zhang et al., 2023).

describe the connection relations among geometric241

primitives and the semantic clauses Tsem depict242

the semantic relations between non-geometric243

primitives and geometric primitives (Zhang et al.,244

2023). Besides, the visual information of diagram245

image is represented as patches. Therefore, the246

input of LANS could be further expressed as247 {
D={di}ND

i=1 , T={Tstru, Tsem, Tprob}={tj}NT
j=1

}
248

after token concatenation, where ND is the di-249

agram patch number and NT is the text token250

number. Then, these modal tokens are fed251

into the multimodal layout-aware pre-trained252

language model (MLA-PLM) and input into the253

bidirectional GRU encoder to perform fusion254

encoding. Next, the mixed encoding context255

H = {hi}ND+NT
i=1 leverages the layout-aware256

fusion attention (LA-FA) to further boost diagram257

layout awareness. Finally, the enhanced context258

is decoded by the self-limited GRU decoder and259

generates the sequential solution program S in the260

manner of autoregressive.261

3.2 Multimodal Layout-Aware Pre-training262

Geometry problems are often solved by humans by263

depicting the geometric structure in visual form no264

matter whether it has the geometry diagram or not.265

Previous neural geometric solvers, such as the NGS266

(Chen et al., 2021), PGPSNet (Zhang et al., 2023)267

and SCA-GPS (Ning et al., 2023), do not utilize the268

diagram layout adequately, thus resulting in unsatis-269

factory performance of GPS. In this paper, we pro-270

pose the multimodal layout-aware pre-trained lan- 271

guage model (MLA-PLM), with two pre-training 272

strategies: structural-semantic pre-training (SSP) 273

and point matching pre-training (PMP) illustrated 274

in Figure 3, to boost the diagram layout-aware abil- 275

ity during the pre-training stage. 276

Revisit Structural-Semantic Pre-training To 277

enable the multimodal pre-training module to com- 278

prehend text clauses and gain a preliminary un- 279

derstanding of the content and layout of geometry 280

diagrams, we adopted the structural-semantic pre- 281

training (SSP) (Zhang et al., 2023) method used in 282

PGPS. MLA-PLM is trained to recover the masked 283

text in a unified text generation manner, and the 284

training loss denotes as LSSP . Concretely, inputs 285

of MLA-PLM include the diagram patch embed- 286

dings eDi and textual token embeddings eTj , where 287

eDi is obtained via patch projection and patch-level 288

positional encoding, and eTj fuses not only posi- 289

tional encoding but also embedding of class tag 290

and section tag following (Zhang et al., 2023) as: 291

eDi =PatchProj(di)+PosEmb(i), 1≤ i≤ ND

eTj =TokenEmb(tj)+PosEmb(j)+ClassEmb(tj)

+ SectEmb(tj), 1 ≤ j ≤ NT

,

(1) 292

where PosEmb(∗) is the sequential position encod- 293

ing of sequences instead of the spatial position of 294

the diagram layout. The concatenated eDi and eTj 295

are modeled by MLA-PLM and then output e′Di 296

and e′Tj . For SSP in MLA-PLM, we mask 30% of 297
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text tokens tj with mask token [M ] following (Cho298

et al., 2021) but keep tags unchanged.299

Point-Match Pre-training We propose the PMP300

based on contrastive, learning modeling to achieve301

cross-modal alignment between visual points (one302

type of geometric primitives in the diagram) and303

textual tokens of the points. For PMP, we match304

image patches and points inside image patches with305

the cosine contrastive loss (He et al., 2020; Grill306

et al., 2020) as follows:307

LPMP =
−1

|P|
∑
j∈P

log
exp(cos⟨e′Tj , e′

D
+⟩/τ)∑ND

i=1 exp(cos⟨e′
T
j , e

′D
i ⟩/τ)

,

(2)308

where P = {j | Class(tj) = [P], 1 ≤ j ≤ NT } is309

the index list of text tokens corresponding to points,310

e′D+ is the embedding of the diagram patch that311

the point tj is located in, and τ is the temperature312

coefficient that empirically set as 0.1. Combining313

SSP and PMP, our pre-training loss is a multi-task314

learning loss with the mixed training loss Lall =315

LSSP + LPMP .316

By combining two pre-training strategies SSP317

and PMP, the solver strengthens the cognition of318

complex geometry layout. In SSP, the modeling of319

local relationships leads to the global relationship320

understanding, for example, we can infer that the321

mask token in the semantic clause “BD ⊥ EA on322

[M]” is “C” according to structural clauses “line B323

C D” and “line E C A”. Via PMP, the textual points324

become aware of layout position from positional325

encoded image patches by alignment. We do not326

adopt the simple and direct way of fine-grained327

2D position embedding such as in LayoutLM (Xu328

et al., 2020, 2021). This is because existing GPS329

datasets do not support large-scale layout under-330

standing pre-training. It is also akin to human geo-331

metric cognition in that accurate positioning is not332

required to understand geometry layout.333

3.3 Layout-Aware Fusion Attention334

Although LANS has already acquired a certain335

level of layout understanding through the pre-336

training strategies above, this ability can fade to337

some extent during downstream training because338

of the different training targets of GPS. To com-339

pensate for the loss of layout awareness in the GPS340

training phase, we propose layout-aware fusion at-341

tention (LA-FA) to enhance the intra-modal and342

cross-modal token fusion. LA-FA is located be-343

tween the bidirectional GRU encoder and the self-344

…     B     C      D    …

…

B

C

D

…

Layout-Aware Attention Mask

B C D

B

C

D

Layout-Aware 
Self-Attention

Add & Norm
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Add & Norm

V K Q

Cross-Modal Invisible

Cross-Modal Visible

Intra-Modal Visible

Figure 4: Schematic of Layout-Aware Fusion Attention.

limited GRU decoder. 345

As shown in Figure 4, the LA-FA module is simi- 346

lar to the transformer encoder block (Vaswani et al., 347

2017) which also contains layer normalization, 348

feed-forward layer, and residual connection except 349

the layout-aware self-attention. Our layout-aware 350

self-attention uses the carefully designed layout- 351

aware attention mask which allows visibility to all 352

intra-modality tokens but restricts cross-modality 353

visibility if the textual point is not inside the image 354

patch in the visual space. Specifically, we con- 355

struct the mask matrix Mi,j (1≤ i, j≤ND+NT ), 356

which consists of value 0 as invisible and value 1 357

as visible: 358

Mi,j=


1, if (i, j) ∈ VV
1, if (i, j) ∈ TT
1, if (i, j) ∈ VT&Pos(tj) ∈ Reg(di)
0, otherwise

(3) 359

where VV = {(i, j) | 1≤ i, j ≤ND} is the mask 360

region of visual intra-modality, TT = {(i, j) |ND+ 361

1 ≤ i, j ≤ ND+NT } is the mask region of tex- 362

tual intra-modality, VT = {(i, j) | 1 ≤ i, j ≤ 363

ND+NT }−VV −TT is the mask region of cross- 364

modality, Pos(tj) denotes the visual position of 365

point token tj and Reg(di) refers to the visual re- 366

gion of image patch di. Moreover, layout-aware 367

fusion-attention (LA-FA) could be computed by: 368

LA-FA(Q,K, V,M)=softmax
(
QKT

√
mk

·M
)
V

(4) 369

where Q,K, V are query matrix, key matrix, and 370

value matrix all transformed from encoding context 371

H , and mk is the dimension of the key vector. 372

In summary, in the process of cross-modal fu- 373

sion, LA-FA leverages the point position to guide 374
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the attention between diagram and text, strength-375

ening the understanding of diagram layout. For376

mitigating the optimization burden, we only use377

one LA-FA block, as adding more blocks does not378

bring extra improvement according to our experi-379

ments.380

4 Experiments381

4.1 Setup382

Model Architecture The patch projection mod-383

ule for diagram chooses the CNN architecture, se-384

lecting a light-weight ResNet10 (He et al., 2016)385

to extract feature map before meshing. Feeding386

with diagram images resized as 256×256, the patch387

projection module maps diagram into 8×8=64 im-388

age patches. In default, we employ a 6-layer,389

8-head, 256-input, and 1024-hidden dimensional390

transformer (Vaswani et al., 2017) as the architec-391

ture of MLA-PLA, and a multi-head attention with392

the same head number and feature dimension for393

LA-FA. The bidirectional GRU encoder and self-394

limited GRU decoder in LANS are adopted follow-395

ing the same architecture as PGPSNet (Zhang et al.,396

2023). Besides, a dropout layer with the value 0.2397

is added behind the patch projection module to398

prevent overfitting during the training stage.399

Training Hyperparameters Details We choose400

the AdamW optimizer (Loshchilov and Hutter,401

2017) with the weight decay 1× 10−2 and the step402

decline schedule with the decay rate of 0.5, and403

the training batch size is set as 128. We provide a404

more detailed description of the remaining parame-405

ters we use during the pre-training and fine-tuning406

stages in the appendix B.1.407

Datasets and Metrics We evaluate the perfor-408

mance of proposed LANS on two plane geometry409

problem datasets: Geometry3K (Lu et al., 2021)410

and PGPS9K (Zhang et al., 2023). They all have411

fine-grained diagram annotation and interpretable412

solution programs. The textual clauses and point413

positions used in this paper are converted from the414

diagram annotation. The solution program con-415

sists of several solving steps, each step consists416

of an operator and associated operands, where the417

operator corresponds to a geometric theorem and418

operands are arranged according to the theorem419

formula. The paired program executor based on420

Python calculates the numerical results of solution421

programs. The MLA-PLA module of LANS is422

pre-trained from scratch on PGPS9K dataset that423

masks solution programs, because of the shortage 424

of geometric corpus and the great distribution gap 425

in contrast with natural corpus. 426

Similar to PGPSNet (Zhang et al., 2023), we 427

use three evaluation metrics to assess the numeri- 428

cal performance of our LANS, namely Completion, 429

Choice, and Top-3. In the Completion, the neural 430

solver selects the first executable solution program 431

as the Completion result. The Choice is defined as 432

choosing the correct option from four candidates 433

but selecting one randomly if the outputted answer 434

is not in. In the Top-3, the solution is considered 435

correct if it is among the top three confidence solu- 436

tions. We set the Completion as evaluation metric 437

for ablation study in section 4.3 by default. Given 438

the outstanding capabilities of multimodal large 439

models in addressing multimodal reasoning prob- 440

lems, we compared popular existing open-source 441

multimodal large models in Table 1 with the cur- 442

rently most powerful multimodal model, GPT-4V. 443

Evaluation was conducted in both Completion and 444

Choice modes, where in Completion mode, the 445

large model was required to directly provide an- 446

swers, and in Choice mode, reference options were 447

added to the prompt for the large model. 448

4.2 Comparison with State-of-the-art Solvers 449

We compare LANS with state-of-the-art models, in- 450

cluding neural solvers, symbolic solvers, and mul- 451

timodal large models in Table 1, in terms of both 452

performance and parameter quantity. The results 453

indicate that our LANS achieves excellent model 454

performance by incorporating efficient parameters. 455

As to symbolic solvers, InterGPS (Lu et al., 456

2021) solved geometry problems by searching and 457

matching with unified formal language. According 458

to the input source of formal language, InterGPS 459

presents three types of results, e.g., “Predict" means 460

that all formal language is predicted by its parsers, 461

“Digram GT" denotes that formal clauses of dia- 462

gram use ground truth, and “All GT" indicates that 463

formal clauses of diagram and textual problem are 464

all ground truth. GeoDRL (Peng et al., 2023) im- 465

proved the search strategy of Inter-GPS with logical 466

graph deduction and deep reinforcement learning. 467

Experimental results show that our LANS outper- 468

forms symbolic solvers on all datasets and in all 469

evaluation metrics. Even compared with InterGPS 470

(All GT) which uses annotated formal clauses de- 471

signed carefully, LANS gains a 3.1% improvement 472

in Completion and a 6.4% improvement in Choice 473

mode on Geometry3K Dataset. 474
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Method
Geometry3K PGPS9K

Parameters
Completion Choice Top-3 Completion Choice Top-3

Human Expert (Lu et al., 2021) - 90.9 - - - - -
InterGPS (Predict)* (Lu et al., 2021) 44.6 56.9 - - - - -
InterGPS (Diagram GT)* (Lu et al., 2021) 64.2 71.7 - 59.8 68.0 - -
InterGPS (All GT)* (Lu et al., 2021) 69.0 75.9 - - - - -
GeoDRL (Predict) (Peng et al., 2023) - 68.4 - - - - -

Baseline (Neural Solver) (Lu et al., 2021) - 35.9 - - - - -
NGS& (Chen et al., 2021) 35.3 58.8 62.0 34.1 46.1 60.9 80M
Geoformer& (Chen et al., 2022) 36.8 59.3 62.5 35.6 47.3 62.3 267M
SCA-GPS (Ning et al., 2023) - 76.7 - - - - > 310M
PGPSNet (Zhang et al., 2023) 65.0 77.9 80.7 62.7 70.4 79.5 23M

LLaVA-v1.5 (Liu et al., 2023b) 7.6 11.2 - 6.3 9.1 - 7B
mPLUG-Owl2 (Ye et al., 2023) 12.1 17.4 - 10.1 13.1 - 7B
Qwen-VL (Bai et al., 2023) 22.1 26.7 - 20.1 23.2 - 7B
GPT-4V (Achiam et al., 2023a) 38.7 41.4 - 30.2 35.7 - -

LANS (ours) 72.1 82.3 82.8 66.7 74.0 82.2 26M

Table 1: Performance comparison among state-of-the-art GPS solvers. * denotes results re-produced with the open
source code. & denotes methods re-implemented by us.

As to neural solvers, NGS (Chen et al., 2021)475

and Geoformer (Chen et al., 2022) relied primar-476

ily on textual problems to solve problems. Even477

though re-implementing them with the textual478

clauses parsed from the diagram and the same aug-479

mentation strategies, performance gaps between480

these two solvers and our LANS are still signifi-481

cant, 32.6% and 31.1% lower in Completion on482

PGPS9K, respectively. SCA-GPS (Ning et al.,483

2023) shows similar performance as InterGPS (All484

GT) because diagram understanding methods, char-485

acter alignments, and masked image modeling, are486

coarse-grained and ineffective. PGPSNet (Zhang487

et al., 2023) employed textual clauses to model dia-488

gram layout but lost lots of visual information. Our489

LANS is enhanced at modal alignment and fusion490

for better layout awareness and surpasses PGPSNet491

by 7.1% and 4.0% in Completion on Geometry3K492

and PGPS9K. The improvements in Top-3 are less493

than in Completion because most of the correct494

solutions are concentrated among highly confident495

candidates.496

Our approach far surpasses the performance of497

current multimodal large models. This may be at-498

tributed to the presence of complex symblic OCR499

information, layout details, and abstract elements500

in geometric images, where the perception capabil-501

ities of the Gemini (Team et al., 2023) and GPT-502

4V (Achiam et al., 2023b) models are insufficient.503

Similar phenomena have also been observed in the504

MathVista (Lu et al., 2024) benchmark. For evalu-505

ation results and detailed information on the Com-506

pletion and Choice multimodal large-scale models, 507

please refer to section C. 508

4.3 Ablation Study 509

Effect of Modules To examine the effect of our 510

proposed modules in LANS, we conducted ablation 511

experiments on the Geometry3K dataset, taking 512

PGPSNet solver (Zhang et al., 2023) who owns the 513

SS-PLM module but without the LA-FA module 514

as the baseline. Experimental results presented in 515

Table 2 illustrate that MLA-PLM module with mul- 516

timodal pre-training is superior to SS-PLM module 517

with only text-modal pre-training and obtains a 518

5.4% improvement. LA-FA module further boosts 519

GPS via multi-modal feature fusion in the training 520

phase and achieves a 72.1% accuracy, over baseline 521

7.1%. 522

Module Accuracy

Baseline 65.0
+ MLA-PLM 70.4 (+5.4)
+ MLA-PLM + LA-FA 72.1 (+7.1)

Table 2: Ablation study of modules on Geometry3K.

Role of Pre-training Strategies To validate the 523

role of pre-training strategies within MLA-PLM, 524

we did ablation experiments on both SSP and PMP 525

pre-training strategies. Ablation experiments in- 526

volved two processes: first pre-training with vari- 527

ous strategies and then fine-tuning on Geometry3K. 528

Table 3 verifies that SSP and PMP pre-training 529

strategies all improve GPS, where SSP promotes 530
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Problem: 
 Find z.
Choices: 
 A 132.0 ;  B 138.0;  C 142.0;  D 148.0
Answer: C
Structural Clauses
• line A I K
• line B H G
• line C E F
• line J I H E D

Problem:
 Find the measure of ∠9.

Choices: 
A 60.0;  B 120.0;  C 240.0;  D 300.0

Answer: C
Structural Clauses
• line A B C
• line A D E
• ⊙H lieson C G E
• ⊙F lieson B D G 

Semantic Clauses
• AB = 23 (N0)
• DA = x (N1)
• CB = x-5 (N2)

Semantic Clauses
• CF // BG // AK
• m ∠ HIK = 2y+8 (N0)
• m ∠ JIK = 142 (N1)
• m ∠ IHG = 4x+6 (N2)
• m ∠ DEC = z (N3)

NGS:              Multiple V0 C5 N0 RNgon_B_Area C5 V0 V1 Get V1
PGPSNet:      Multiple V0 C6 N0 RNgon_B_Area C5 V0 V1 Get V1
LANS & GT:   Multiple V0 C6 N0 RNgon_B_Area C6 V0 V1 Get V1

NGS: Sum N0 C90 V0 Sum N1 V0 V1 Get V1
PGPSNet:       Multiple V0 C2 N0 Get V0

LANS & GT:    Sum N0 V0 C360 Multiple V1 C2 V0 Get V1

NGS:              Equal V0 N2 Sum V0 N0 C180 Get z
PGPSNet:     Sum N1 N3 C180 Get z
LANS & GT:   Equal N1 N3 Get z

C E F

B H G

A
I

K

N3

N2

N0
N1

(a)

J

D

V0

(b) Problem: 
Find the area of the figure. Perimeter = 90 
(N0) centimeters.

Choices: 
A 387.1;  B 540.0;  C 584.6;  D 21044.4

Answer: C
Structural Clauses
• line K L
• line M L
• line H J

• line G M
• line J K
• line G H

Semantic Clauses
• GH = GM = HJ = 

LM = KL = JK

(d) N0 N1

V0

N2

Problem: 
Assume the segments that appear to be 
tangent are tangent. Find the length of AC.

Choices: 
A 18.0;  B 23.0;  C 41.0;  D 46.0

Answer: D 

PGPSNet:         Equal N0 N2  Sum N0 N2 V0 Equal V0 V1 Get V1
LANS:                Equal N0 N1  Sum N0 N2 V0 Equal V0 V1 Get V1 
GT:                    Equal N0 N1  Sum N0 N2 V0 Get V0

NGS:                 Equal N0 N1 Equal V0 N2 Get V0

G
HF

Structural Clauses
• line A B 
• line D C B
• ⊙E lieson B C

Semantic Clauses
• m ∠ CBA = m ∠ 9 
• m �𝐵𝐵𝐵𝐵 = 120 (N0)

C

BA

D

E
N0

V0

(c)

Figure 5: Case analysis on PGPS9K. Solving above problems requires layout awareness of geometry diagram. (a),
(b) and (c) are the problems LANS answered correctly, (d) is the problem LANS answered incorrectly.

global relationship recognition and PMP aligns vi-531

sual points and textual points. The comparison532

between row 2, row 3, and row 4 demonstrates that533

the combination of SSP and PMP realizes complex534

layout understanding synthetically, thus promoting535

problem-solving together.536

Pre-training Strategy Accuracy

None 38.2
+ SSP 55.4 (+17.2)
+ PMP 66.9 (+28.7)
+ SSP + PMP 72.1 (+33.9)

Table 3: Ablation study of pre-training strategies on
Geometry3K dataset.

Role of Attention Mask To validate the role of537

attention mask within the LA-FA module, we com-538

pare three types of attention masks: w/o LA-FA,539

vanilla attention mask (Vaswani et al., 2017), and540

layout-aware attention mask. Compared with the541

vanilla attention mask with global visibility, layout-542

aware attention mask guided by point positions543

promotes modal fusion and strengthens diagram544

understanding. The results in Table 4 also indicate545

the significance of layout-aware attention.546

Mask Type Accuracy

w/o LA-FA 70.4
w Vanilla Attention Mask 70.6
w Layout-Aware Attention Mask 72.1

Table 4: Ablation study of attention mask on Geome-
try3K dataset.

4.4 Case Analysis and Fail cases 547

We also conducted a case analysis to discuss the 548

strengths and weaknesses of solvers. Figure 5 549

displays four plane geometry problems (a)-(d) in- 550

volving various geometric layouts, and they rely 551

on good layout awareness to solve them. In case 552

(a), the position of C relative to F determines if 553
̸ JIK and ̸ DEC are corresponding or alternate an- 554

gles. Results show LANS identifies corresponding 555

angles accurately, unlike other solvers. In case 556

(b), the perception of polygon edge number is the 557

key to solving this problem. Contrary to LANS, 558

other solvers cannot count edge numbers correctly 559

through the diagram or textual clauses, resulting in 560

a wrong solution. Case (c) is the same problem as 561

shown in Figure 1 in which textual clauses cannot 562

identify diagram uniquely. In contrast with PGP- 563

SNet, LANS can judge the orientation and type of 564
̸ ABC and get the right solution. 565

5 Conclusion 566

We propose a layout-aware neural solver LANS 567

to understand complex layouts of plane geometry 568

diagrams. Benefiting from the multimodal layout- 569

aware pre-training, LANS is endowed with abilities 570

of global relationship cognition and cross-modal 571

point alignment. Thanks to layout-aware fusion 572

attention, LANS further improves cross-modal fu- 573

sion directed by point positions. The experimental 574

results demonstrate the superiority of LANS en- 575

hanced with layout awareness. 576
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Limitations577

LANS is still limited to point primitives to carry578

out layout understanding. In the future, we will579

try to align higher-level geometric primitives to580

obtain better layout understanding and modal fu-581

sion. Besides, LANS may generate redundant solu-582

tion sequences. Case (d) in Figure 5 is a complex583

layout scenario that none of the solvers can solve584

correctly. In conclusion, the case analyses above585

fully indicate that LANS promotes GPS with en-586

hanced layout awareness. Integrating richer layout587

information and symbolic cues of elements through588

multimodal pretraining is a direction worthy of fur-589

ther exploration.590

Ethical Impact591

As a neural solver addressing multimodal mathe-592

matical problems, LANS has the potential for ap-593

plication in educational settings, specifically for594

the automatic resolution of mathematical problems.595

This utilization can contribute to promoting educa-596

tional equity.597
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diagram images. Table 5 provides a comparison 767
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PGPS9K featuring a wider variety of question types 769

and higher reasoning complexity.

Dataset #QA #Type #Avg OP #Avg PL

Geometry3K 3,002 4 1.98 5.35
PGPS9K 9,022 30 2.43 7.45

Table 5: Type, OP and PL represent problem type, oper-
ator number and program length, respectively
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B Training Details771

To ensure the reproducibility of the paper, we pro-772

vide here the key hyperparameters used during773

training, as well as the data augmentation meth-774

ods employed. Additionally, within our method775

framework, how Patch Projection is relied upon776

and the granularity of Patch division are crucial for777

achieving the effectiveness of our approach as de-778

scribed in the paper. We discuss here the impact of779

these parameters on the replicability of the model.780

B.1 Optimzation Parameters Details781

During the pre-training phase, the learning rate is782

initialized to 5× 10−4 and the learning rate decay783

is applied at 1,000, 1,800, 2,400, and 3,000 epochs784

with a total of 3,500 epochs. During the training785

stage, all modules of LANS train together with an786

initial learning rate as 1e−4 for language model787

MLA-PLM and 1e−3 for other modules, decaying788

at 160, 280, 360, 440 and 500 epochs uniformly789

with a total 520 epochs.790

All experiments were conducted on an 8-GPU791

Titan XP server. Training of the MLA-PLM mod-792

ule took approximately 20 hours on a 4-GPU ma-793

chine, while fine-tuning of LANS on 4 GPUs took794

8 hours.795

B.2 Data Augmentation Details796

We scale the image to 256 on the longest side and797

place it in the center of 256×256 blank screen. The798

diagram is flipped randomly and changes the point799

positions accordingly. For text, following the work800

(Zhang et al., 2023), we apply four augmentation801

strategies: token replacement, connection rotation,802

representation transposition, and clauses shuffle.803

These augmentation strategies not only improve the804

diversity of geometry problems but also provide ge-805

ometric solvers with basic geometric representation806

knowledge.807

B.3 Impact of hyperparameters808

Discussion on the Granularity of Patch Division.809

To assess the influence of image patches, we810

adopted four configurations of patch numbers:811

1×1, 4×4, 8×8, and 16×16. In Table 6, we812

observe that LANS benefits from fine-grained813

partitions of the diagram, based on the comparison814

of row 1 with rows 2, 3, and 4. However, according815

to the comparison of row 3 with row 4, problem-816

solving performance declines if the diagram is817

over-segmented. The possible explanation is818

that redundant and blank image grids, which are 819

generated from patch partition, interfere with 820

model attention while increasing the burden of 821

model computation. Therefore, considering overall 822

performance and speed, we choose the 8×8 823

configuration as our model setup. 824

825

Image Patch Num. Geometry3K PGPS9K

1 × 1 65.0 62.7
4 × 4 70.5 66.8
8 × 8 72.1 66.7
16 × 16 69.1 65.4

Table 6: Comparison of Different Image Patch Num-
bers.

Discussion on the Projection Method of Image 826

Patches. To validate the impact of patch projection 827

schemes, in Table 7, we tested three types of patch 828

projection modules: None, linear layer, and CNN 829

model. None refers to not using the patch projec- 830

tion module and also not inputting image patches. 831

In our experiments, we find that a redundant place- 832

holder in None does harm to GPS due to additional 833

meaningless optimizations. The linear-based patch 834

projection maps image grids linearly and produces 835

corresponding image patches, which is also com- 836

monly adopted in recent transformer architectures 837

(Kim et al., 2021; Li et al., 2022). However, this 838

module does not fit to geometry diagram because it 839

may damage the geometric structure. CNN-based 840

patch projection first extracts global features and 841

then mesh feature maps. That module could better 842

understand the overall layout, bringing with higher 843

solving performance and more stable training, and 844

it is also set as the default patch projection module. 845

Projection Type Geometry3K PGPS9K

None 64.2 61.3
Linear 69.4 65.5
CNN 72.1 66.7

Table 7: Comparison of different patch projections

C Mulitmodal LLM Eval Details 846

C.1 Eval Prompt Details 847

We illustrate in Table 8 with examples of how 848

the prompts used for evaluating the multimodal 849

large model vary across different Eval Mode. Our 850

Prompt consists of several components, including 851
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Eval Mode Prompt

Choice

Role Prompt: You are a geometric problem-solving robot. Please solve the following
geometry problems based on the contents of the diagram and the problem description.
Diagram: The Diagram is <img>images/img_3755.png</img>
Question: If RL = 5, RT = 9, and WS = 6, find RW.
Choices: (A) 5.4 (B) 6.6 (C) 6.0 (D) 7.5
Format Prompt: Please give reason process and provide the correct option, such as: the
answer is A/B/C/D:.

Completion

Role Prompt: You are a geometric problem-solving robot. Please solve the following
geometry problems based on the contents of the diagram and the problem description.
Diagram: The Diagram is <img>images/img_2056.png</img>
Question: Polygon ABCD ∼ AEFG, ̸ AGF = 108◦, GF = 14, AD = 12, DG = 4.5,
EF = 8, and AB = 26. Find ̸ ADC.
Format Prompt: Please give reason process and provide the correct option, such as: the
answer is 15.0:.

Table 8: The prompts used for Choice and Completion Modes in two specific questions.

Model
Name

Model Reposi-
tory Name/API
Version

Sampling Parameters

Qwen-VL Qwen/Qwen-VL-
Chat

do_sample = True, top-k
= 5, max_length = 512

LLaVA-
1.5

liuhaotian/llava-
v1.5-13b

do sample = True, tem-
perature = 0.2, max new
tokens = 1024

mPLUG-
Owl2

MAGAer13/mplug-
owl2-llama2-7b

do sample = True, top-k
= 5, max length = 512

GPT4V gpt-4-1106-
vision-preview

Chatbot URL: https://
chat.openai.com

Table 9: Generating parameters and Huggingface model
repository names for multimodal large models

Role Prompt, Diagram, Question, Choices, and For-852

mat Prompt. The Role Prompt specifies the type of853

problem the large model is tasked with solving and854

the actions it needs to perform. Diagram depict-855

ing the form’s content, textual description of the856

Question, and Choices. To ensure the large model857

generates standardized output for easy scoring, we858

have set a Format Prompt. The main difference in859

evaluation between Choice and Completion modes860

lies in that, in completion mode, the prompt does861

not provide reference options.862

C.2 Generation Parameter Details863

We list the relevant important parameters used for864

evaluation across different multimodal large mod-865

els in Table 9.866

C.3 Output detail and discussion of MLLM867

Table 1 demonstrates that multimodal large mod-868

els perform poorly in solving geometric problems.869

Some open-source models exhibit performance870

lower than random guessing for select questions. 871

We attribute this to the fact that the visual com- 872

prehension component of current multimodal large 873

models is primarily tailored to natural scene images 874

and struggles with abstract forms. For instance, in 875

Figure 6, both GPT4V and LLaVA-v1.5 fail to 876

grasp the relational elements within geometric dia- 877

grams, such as understanding the reference to An- 878

gle 1. Additionally, models like LLaVA-v1.5 may 879

also generate severe model hallucinations, even out- 880

put in an incorrect format like "So, the answer is 881

[28.0, 56.0, 62.0, 90.0]," which prevent the extrac- 882

tion of correct results and result in low accuracy. 883
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GPT4V: Since QRST is a rhombus, we know the following properties: 1. All sides of QRST are equal. 2. Opposite angles 
are equal (i.e., ∠QTS = ∠QRS and ∠QRT = ∠QST). The diagonals (Q to S and R to T) bisect each other at 90 degrees.
Given that ∠RST = 56 degrees and RST is part of the rhombus, this means that ∠QRT = 56 degrees as well, because they 
are opposite angles.
Since the diagonals of a rhombus are perpendicular, ∠RPT is 90 degrees. We have the measures of two angles in triangle 
PRT: ∠RPT = 90 degrees and ∠RST (or ∠QRT) = 56 degrees.
The sum of angles in a triangle is 180 degrees, so we can find ∠1 (or ∠PRQ) as follows: ∠1 = 180 degrees - ∠RPT -
∠RST.   ∠1 = 180 degrees - 90 degrees - 56 degrees. ∠1 = 34 degrees.

Question: Use rhombus QRST. Find ∠ 1 if  ∠ RST = 56.
Choice: A. 28.0   B. 56.0   C. 26.0   D. 62.0

LLaVA-v1.5: Diagram consists of four lines: QP, RT, QT, and RS. We are given that ∠PRQ = ∠1, ∠PRS = ∠2, and 
∠QPR = ∠3. Additionally, we are given that ∠RST = 56. We can start by using the properties of the rhombus QRST. A 
rhombus has all four sides equal in length. Let's assume that the length of QR = RS = ST = TQ = QR = 1. Now, we can 
use the information about the angles: ∠PRQ = ∠1 = ∠RST / 2 = 56 / 2 = 28. ∠PRS = ∠2 = ∠RST / 2 = 56 / 2 = 28 ∠QPR 
= ∠3 = ∠RST / 2 = 56 / 2 = 28. Since ∠RST = 56, we can find the measure of m∠1 by dividing 56 by 2: ∠1 = 56 / 2 = 28. 
So, the answer is [28.0, 56.0, 62.0, 90.0].

GT Answer: D. 

Structure Clauses
line Q P S line R P T
line Q T    line R S
line Q R   line T S

Semantic Clause
∠ PRQ = ∠ 1
∠ PRS = ∠ 2
∠ QPR = ∠ 3

Figure 6: Case of the multimodal large model LLaVA-v1.5 and GPT4V. The red ones are marked as generated
inference hallucinations (Zhang et al., 2023).
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