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Abstract

We present a new descriptor for activity recognition from
videos acquired by a depth sensor. Previous descriptors
mostly compute shape and motion features independently;
thus, they often fail to capture the complex joint shape-
motion cues at pixel-level. In contrast, we describe the
depth sequence using a histogram capturing the distribution
of the surface normal orientation in the 4D space of time,
depth, and spatial coordinates. To build the histogram, we
create 4D projectors, which quantize the 4D space and rep-
resent the possible directions for the 4D normal. We initial-
ize the projectors using the vertices of a regular polychoron.
Consequently, we refine the projectors using a discrimina-
tive density measure, such that additional projectors are
induced in the directions where the 4D normals are more
dense and discriminative. Through extensive experiments,
we demonstrate that our descriptor better captures the joint
shape-motion cues in the depth sequence, and thus outper-
forms the state-of-the-art on all relevant benchmarks.

1. Introduction

Depth sensors have been available for many decades.

Though, their applications have been limited due to the

high cost and complexity of operation. However, the re-

cent emergence of low-cost depth sensors such as Kinect

[18], triggered significant attention to revisit problems such

as object detection and activity recognition using depth im-

ages as input instead of color.

Compared with conventional color images, depth maps

provide several advantages. For example, depth maps re-

flect pure geometry and shape cues, which can often be

more discriminative than color and texture in many prob-

lems including segmentation, object detection, and activ-

ity recognition. Moreover, depth images are insensitive to

changes in lighting conditions. In this context, it seems nat-

ural to employ depth data in many computer vision prob-

lems. However, it is also intuitive to wonder whether con-

Figure 1. Surface normals overlayed on three examples from MSR

Actions 3D dataset [12]. The surface normals capture the shape

cues at a specific time instance, while the change in the surface

normal over time captures the motion cues. In this paper, we use

4D normals computed in the space of depth, time, and spatial co-

ordinates in order to obtain rich descriptors of activities. Note that

in the figure we illustrate 3D surface normals since it is difficult to

visualize the 4D normals used in the paper.

ventional RGB-based methods would also perform well in

depth sequences?

In activity recognition, which is the topic of this paper,

two significant aspects arise when adopting conventional

color-based methods for depth sequences. First, the cap-

tured depth images are often contaminated with undefined

depth points, which appear in the sequence as spatially and

temporally discontinues black regions [1]. This hinders the

application of local interest points detectors such as Dollar

[5] and STIP [10], which falsely fire on these regions in-

stead of the regions where important events are occurring.

To verify that, we conducted an experiment using MSR-

Daily Activity Dataset [24], and found that 60% of the de-

tected Dollar interest points were fired on locations irrel-

evant to the action of interest. Therefore, the correspond-

ing classification accuracy is very low (52%). To handle

that, recent approaches resorted to selecting the informative

points using the joints from a skeleton detector [18], as in

[24], or using a discriminative sampling scheme as in [23].
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Second, and more importantly, the depth images provide

natural surfaces which can be exploited to capture the ge-

ometrical features of the observed scene in a rich descrip-

tor. For instance, it was recently shown in [20] that for the

purpose of object detection, the shape of the object can be

better described using the normal vectors in depth images,

instead of the gradients in color images.

Our work in this paper proceeds along this direction.

We propose a novel activity descriptor for depth sequences,

which is analogous to the histogram of gradients in color

sequences [4, 9], and extends the histogram of normals in

static images [20]. As the depth sequence represents a depth

function of space and time, we propose to capture the ob-

served changing structure using a histogram of oriented 4D

surface normals (HON4D). In order to construct HON4D,

the 4D space is initially quantized using a regular 4D exten-

sion of a 2D polygon, namely, a 600-cell Polychoron [3].

Consequently, the quantization is refined using a novel dis-

criminative density measure, which we compute along the

quantized directions in the 4D space. Figure 2 summarizes

the steps involved in computing HON4D.

Our proposed histogram operates in the 4D space, thus,

jointly capturing the distribution of the changing shape and

motion cues along with their correlations, instead of an

adhoc concatenation of features as in [24]. Additionally,

our descriptor is a holistic representation for the entire se-

quence; therefore, it is robust against noise and occlusion,

from which local methods often suffer [23]. Moreover, it

does not require a skeleton tracker as in [24] and [19]. Com-

pared to the other holistic methods, we model the distribu-

tion of the normal vectors for each cell in the 4D space,

which is richer and more discriminative than the average

4D occupancy used in [21]. Furthermore, unlike [26], the

temporal order of the events in the sequence is encoded

and not ignored. More importantly, as we will demonstrate,

HON4D is superior in performance to all previous methods.

The main contributions of this paper are: First, we pro-

pose a novel descriptor for activity recognition from depth

sequences, in which we encode the distribution of the sur-

face normal orientation in the 4D space of depth, time, and

spatial coordinates. Second, we demonstrate how to quan-

tize the 4D space using the vertices of a polychoron, and

then refine the quantization to become more discriminative.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 describes the process

of computing the 4D surface normals. In Section 4, we

describe the quantization of the 4D space, and show how

to build the HON4D. Section 5 describes the 4D quantiza-

tion refinement approach. The experimental results are pre-

sented in Section 6. Finally, Section 7 concludes the paper.

2. Related Work
Early methods for activity recognition from depth se-

quences attempted to adopt techniques originally developed

for color sequences. For instance, in [12], Li et al. proposed

to obtain a bag of 3D points (analogous to a bag of words)

by sampling points from the silhouette of the depth images,

then clustering the points in order to obtain salient postures

(vocabulary). Consequently, a GMM is used to globally

model the postures, and an action graph [11] is used for

inference. On the other hand, parallel to the approaches de-

veloped for temporal modelling of human actions in color

videos such as [15, 2], Lv and Nevatia in [14] employ a hid-

den Markov model (HMM) to represent the transition prob-

ability for pre-defined 3D joint positions. Similarly, in [8],

the 3D joint position is described using another generative

model, which is a conditional random field (CRF).

Adopting local interest point-based methods to operate

in depth sequences is difficult because, as discussed earlier,

detectors such as STIP [10] and Dollar [5] are not reliable in

depth sequences. Additionally, standard methods for auto-

matically acquiring motion trajectories in color images as in

[25, 22] are also not reliable in depth sequences. Therefore,

recent methods for activity recognition in depth sequences

resorted to alternative approaches in order to obtain reliable

interest points and tracks. For instance, in [24], Jiang et al.

extract the skeleton of the human using the skeleton track-

ing algorithm in [18]. Consequently, the joints of the skele-

ton are used as interest points. In that, the shape of the area

surrounding the joint along with the joint location informa-

tion are captured using a local occupancy pattern feature

and a pairwise distance feature, respectively. These features

are extracted for each joint at each frame, then the fourier

transform coefficients are employed to describe the tempo-

ral variation of the features. On the other hand, in [23], ran-

dom subvolumes are selected from the space of all possible

subvolumes in the depth sequences. The subvolume selec-

tion is based on LDA [16], where the most discriminative

subvolumes are retained.

Furthermore, holistic approaches for activity recognition

from depth sequences are recently becoming popular. In

that, instead of using local points, a global feature is ob-

tained for the entire sequence. For example, in [26], the

depth video is summarized in one image (a motion map),

which is the average difference between the depth frames.

Consequently, a single HOG descriptor is extracted from the

motion map. This method collapses the temporal variations,

and thus suffers when the temporal order is of significance.

On the other hand, in [21], the sequence is divided into a

spatiotemporal grid, then a simple feature called the global

occupancy pattern is used, where the number of occupied

pixels is recorded for each grid cell.

Our proposed method in this paper falls in the holis-

tic methods category. Evidently, holistic methods such as
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Figure 2. The various steps for computing HON4D descriptor.

[26, 21] are generally simpler, computationally efficient,

and often outperform local approaches. We demonstrate

that our method captures the complex and articulated struc-

ture and motion within the sequence using a richer and more

discriminative descriptor than [21] and [26]. We addition-

ally bypass the use of a skeleton tracker, which can often be

unreliable. Though, we still outperform the methods which

rely on the skeleton detector such as [24]. Moreover, since

global descriptors generally assume coarse spatiotemporal

alignment, we show that a local version of our descriptor

can be derived and employed for significantly unaligned

datasets.

3. The 4D Surface Normal
Given a sequence of depth images {I1, I2 . . . IN} con-

taining a person performing an activity, our goal is to com-

pute a global descriptor which is able to discriminate the

class of action being performed. The depth sequence can

be considered as a function R
3 → R

1 : z = f(x, y, t),
which constitutes a surface in the 4D space represented

as the set of points (x, y, t, z) satisfying S(x, y, t, z) =
f(x, y, t) − z = 0. The normal to the surface S is com-

puted as

n = ∇S = (
∂z

∂x
,
∂z

∂y
,
∂z

∂t
,−1)T . (1)

Only the orientation of the normal is relevant to the shape

of the 4D surface S; therefore, we normalize the computed

normal to a unit length normal n̂. Note that the compo-

nents of the surface normal are the gradients in space and

time, along with a scalar (−1). Therefore, the normal ori-

entation might falsely appear as equivalent to the gradient

orientation, and thus one might expect a histogram of 4D

normal orientation (HON4D) to coincide with a histogram

of 3D gradient orientation (HOG3D). In fact, there is an

inherent difference, which allows the HON4D to capture

richer information. The normal orientation has one extra di-

mension; therefore, the corresponding distribution over the

bins is significantly different. Note that in a unit normal,

the fourth dimension encodes the magnitude of the gradient

−1/||(fx, fy, ft, 1)T ||2. This allows the HON4D to select

different bins based on the gradient magnitude (i.e. two nor-

mals with different corresponding gradient magnitudes may

fall into different bins). In contrast, in the histogram of gra-

dient orientation, the magnitude is either ignored or only

used as a weight for the bins.

To better illustrate that, consider for example the shapes

in figure 3, which shows two space-time surfaces, where

surface 1 has a higher inclination than surface 2. The gradi-

ent orientation is similar for both surfaces because the com-

ponent of the gradient along the shape dimension is negligi-

ble. In contrast, the orientation of the normal is significantly

different. Therefore, a histogram of normal orientation can

differentiate between these surfaces, while a histogram of

gradient orientation cannot. We argue, and verify by ex-

periments, that the depth sequences provide natural surface

functions, from which we can compute rich geometric prop-

erties such as the distribution of the normal orientation in

4D, without having to resort to less informative representa-

tions such as the gradient orientation. In the coming section

we demonstrate how we compute the histogram of oriented

normals in the 4D space.

4. Histogram of 4D Normals
Given the surface normals computed as in equation 1 us-

ing finite gray-value difference over all voxels in the depth

sequence, we compute the corresponding distribution of 4D

surface normal orientation. This requires quantizing the

corresponding space into specific bins. In HOG, the gra-

dient is two-dimensional; therefore, it is trivial to quantize

a circle in order to obtain the bins of the histogram. Most

recent implementations such as in [6] use predefined ori-

entation vectors, and project the gradient to these vectors

in order to obtain the corresponding response per direction.

Consequently, either the maximum response is selected as

the corresponding bin (hard-decision), or all the responses

are accumulated (soft-decision). Similarly, HOG3D [9] em-

ploys an analogous process. In contrast, in the depth se-
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Figure 3. Example showing the difference between the gradient

orientation histogram and the normal orientation histogram. For

better visualization, in this example, we assume we have only one

spatial dimension; therefore, we have 2D gradients and 3D nor-

mals instead of the actual 3D gradients and 4D normals of a depth

sequence. The orientation of the gradient is determined by an an-

gle Θ, while the orientation of the normal is determined by two

angles, Θ and Φ. Top: Two surfaces produced as a result of a

shape (line) moving in time, where surface 1 has a higher inclina-

tion than surface 2. Middle: The histogram of gradient orientation

for surface 1 (left), and surface 2 (right). Bottom: The histogram

of normal orientation for surface 1 (left), and surface 2 (right).

The gradient direction for the two surfaces is similar (because the

derivative along the shape dimension is negligible). Therefore, it

cannot differentiate between the two surfaces. On the other hand,

the direction of the normal for surface 1 is significantly different

than surface 2, and the corresponding histogram of normal orien-

tation evidently captures this difference.

quences, the obtained normal vectors live in a 4D space. In

order to quantize the 4D space, we consider 4D regular ge-

ometric objects called polychorons [3, 7]. These objects are

4D extensions of a 2D polygon. A regular polychoron di-

vides the 4D space uniformly with its vertices; therefore, it

is a proper quantization of the 4D space. In particular, from

the set of regular polychorons, we consider the 600-cell for

two reasons: First, it has 120 vertices, which is a proper di-

mensionality size (compared for example to 600 vertices in

the 120-cell). Second, empirically, the performance using

the 600-cell is superior to the others.

In [3], it is shown that in the 4D space, the vertices of a

600-cell centered at the origin are given as:

• 8 vertices obtained by permutations of (0, 0, 0,±1).
• 16 vertices obtained by permutations of

(±1/2,±1/2,±1/2,±1/2).
• 96 vertices obtained by even permutations of

1/2(±ϕ,±1,±1/ϕ, 0), where 1/ϕ is the edge length

of the 600-cell, and is set to a constant called the

golden ratio 2/(1 +
√
5) [3].

We quantize the 4D space using these vertices, and refer

to each vertex vector as a “projector”. Therefore, given the

set of 120 projectors P = {pi}, and the set of unit normals

N = {n̂j} computed over all the spatiotemporal locations

of the depth sequence, we compute the component of each

normal in each direction by an inner product with the corre-

sponding projector

c(n̂j ,pi) = max(0, n̂T
j pi). (2)

Therefore, the distribution of the 4D normal orientation

for a depth sequence is estimated by accumulating the con-

tributions from the computed normals, followed by a nor-

malization using the sum across all projectors, such that the

final distribution sums to one:

Pr(pi|N ) =

∑
j∈N c(n̂j ,pi)∑

pv∈P
∑

j∈N c(n̂j ,pv)
. (3)

Hence, we obtain a 120 dimensional HON4D descrip-

tor for the video. In order to further introduce cues from

the spatiotemporal context, we divide the sequence into

w×h×t spatiotemporal cells, and obtain a separate HON4D

for each. The final descriptor is a concatenation of the

HON4Ds obtained from all the cells.

5. Non-Uniform Quantization
Histogram-based descriptors (for example SIFT [13],

SIFT 3D [17], HOG [4], HOG3D [9], and our proposed

HON4D), mostly employ uniform space quantization in or-

der to build their histograms. It is, however, not difficult to

find examples where such quantization is not optimal. For

instance, consider the case where two different classes of

activities are quite close in the feature space such that their

samples mostly fall in similar bins. This results in a signif-

icant confusion between the two classes, which could evi-

dently be avoided through a finer quantization at the regions

of confusion. As the dimension of the space to be quantized

becomes larger (4D in our case), different possible quan-

tizations could potentially be employed, and therefore this

observation becomes more prominent.
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Finding the optimal projectors (bins of the histogram) is

unarguably a highly non-convex optimization process, since

in principle, it should involve learning both the classifier

and the projectors jointly. It is also likely that the result-

ing classifier will suffer from overfitting. Therefore, finding

the optimal projectors is still an open-ended problem, which

we leave for future work, and instead, we resort to relaxing

the problem into refining the projectors to better capture the

distribution of the normals in a discriminative manner. In

particular, given a dataset with training HON4D descriptors

X = {xk}, note that each descriptor xk is obtained for a

video k by projecting the corresponding set of surface nor-

malsNk = {n̂j} on the projectors P = {pi} as in equation

2. Therefore, we can compute the density of the projectors

by estimating how many unit normals fall into each of them

D(pi) =
∑
k∈X

∑
j∈Nj

c(n̂k,j ,pi), (4)

where n̂k,j is the unit normal number j from depth se-

quence k. It is obvious that the density in equation 4 is

not discriminative, meaning that a bin with higher density

does not necessarily contribute more in deciding to which

class the sample xk belongs. Now, consider a SVM classi-

fier which scores a sample xk using:

score(xj) =
∑
s

αsw
T
s xk, (5)

where w is a support vector and α is the weight correspond-

ing to the support vector, which are learned by minimizing

a loss function such as the hinge loss. The final class de-

cision is made by thresholding the score (typically using 0
threshold if a bias is also learned). Note that the set of sup-

port vectorsW = {wi} correspond to videos selected from

the training data and weighted in order to best discriminate

between classes. Therefore, these specific samples directly

contribute in the decision value. Based on that, a discrimi-

native version of equation 4 can be formulated as

Ddisc(pi) =
∑
j∈W

∑
k∈Nj

αjc(n̂k,j ,pi). (6)

Note that the density now is computed using only the

weighted set of support vectors, which makes it more ro-

bust and discriminative. In other words, not only the pro-

jector with higher discriminative density Ddisc has higher

accumulation of normal vectors, but also it has a higher

contribution in the final classification score. Therefore, it

is intuitive to place more emphasis on that direction. To

that end, we sort the projectors according to their discrimi-

native density, and induce m random perturbations of each

of the highest l projectors according to their density, where

m is computed for a projector pi as:

m(pi) =

{
λ D(pi)∑

pv∈P D(pv)
if i ≤ l

0 if i > l,

and λ is a parameters reflecting the total number of pro-

jectors to be induced. The random perturbations for pro-

jector pi constitute a new set of projectors {pi,q|q =
1 . . . �m(pi)�}, which we compute as

pi,q =
pi + βrq

||pi + βrq||2 , (7)

where r ∈ R
4 is a unit random vector, and (0 < β 	 1) is

the perturbation amplitude.

We augment the density-learned projectors to the origi-

nal 120 projectors, and obtain the final set of projectors. Us-

ing that, we compute the final HON4D descriptors and train

a new SVM. It is rather important to note the following:

First, the initial SVM from which we learn the discrimina-

tive density is different from the final SVM we use for the

classification. The final SVM is trained on newly induced

projectors which have never been seen in the initial SVM.

Second, only the training set is involved in learning the den-

sity. Therefore, the process of refining the projectors, as we

verify in the experiments, is far from overfitting. We use a

polynomial kernel in all experiments, though the proposed

method of refining the projectors using the discriminative

density is general enough to apply to any kernel.

6. Experiments
We extensively experimented on the proposed ideas us-

ing three standard 3D activity datasets including MSR Ac-

tions 3D [12], MSR Gesture 3D [23], and MSR Daily Ac-

tivity 3D [24]. We additionally collected a new type of 3D

dataset, which we refer to as “3D Action Pairs” dataset.

The actions in the new dataset are selected in pairs such

that the two actions of each pair are similar in motion (have

similar trajectories) and shape (have similar objects); how-

ever, the motion-shape relation is different. This empha-

sizes the importance of capturing the shape and the motion

cues jointly in the activity sequence as in HON4D, in con-

trast to capturing these features independently as in most

previous methods. We discuss this in more detail in subsec-

tion 6.3. Both the code and the datasets are available on our

website http://www.cs.ucf.edu/˜oreifej/.

In all experiments, we initialize the projectors using the

120 vertices of the 600-cell polychoron, and compute the

initial HON4D descriptors. Consequently, we learn the dis-

criminative density, refine the projectors, and compute the

final descriptors set. We finally end up with a number of

projectors typically ∼ 300, which becomes the dimension-

ality of the HON4D descriptor obtained per cell. All the pa-

rameters are learned using cross-validation. The frame size

in all datasets is 320 × 240, and each video sequence is di-

vided into spatiotemporal cells, which are typically 4×3×3

718718718718720720
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Figure 4. Example frames from different actions obtained from

MSR Action 3D dataset [12], MSR Hand Gesture dataset [23],

and MSR Daily Activity 3D [24].

in width, height, and number of frames, respectively. We

compare with several recent methods including: (1) Yang et

al. [26], where motion maps are obtained by accumulating

the differences in the depth frames, and then HOG is used

to describe the motion maps. (2) Klaser et al. [9], which

employs a histogram of gradients in space-time (HOG3D).

(3) Jiang et al. [24], where the local occupancy pattern fea-

tures (LOP) are used over the skeleton joints. (4) Jiang et al.

[23], where the depth sequence is randomly sampled then

the most discriminative samples are selected and described

using LOP descriptor. (5) Interest point detection within a

bag of words framework, where the interest points are de-

tected using Dollar detector [5] and STIP [10], then the de-

scriptors are computed (spatiotemporal derivatives [5] and

HOG/HOF [10]). Consequently, the descriptors are quan-

tized and represented using a histogram of video words’

frequency.

6.1. MSR Action 3D Dataset

MSR Action 3D dataset [24] is an action dataset of depth

sequences captured by a depth camera. It contains twenty

actions: “high arm wave”, “horizontal arm wave”, “ham-

mer”, “hand catch”, “forward punch”, “high throw”, “draw

x”, “draw tick”, “draw circle”, “hand clap”, “two hand

wave”, “sideboxing”, “bend”, “forward kick”, “side kick”,

“jogging”, “tennis swing”, “tennis serve”, “golf swing”,

“pick up & throw”. Each action was performed by ten sub-

jects for three times. Example depth sequences from this

dataset are shown in figure 4.

In this dataset, the background is pre-processed to clear

the discontinuities created from undefined depth regions.

Nevertheless, this dataset is still challenging as many ac-

tivities appear very similar. Using HON4D we obtain the

state-of-the-art accuracy of 88.89% with the same experi-

ment setup as in [24] (first five actors for training, and the

rest for testing). Before refining the projectors, the obtained

Table 1. The performance of our method on MSR Action 3D

dataset, compared to previous approaches.

Method Accuracy %

HON4D + Ddisc 88.89
HON4D 85.85

Jiang et al. [24] 88.20

Jiang et al. [23] 86.50

Yang et al. [26] 85.52

Dollar [5] + BOW 72.40

STIP [10] + BOW 69.57

Vieira et al. [21] 78.20

Klaser et al. [9] 81.43

accuracy is 85.85%, which proves the advantage of our dis-

criminative density method. We compare with several re-

cent methods and summarize the results in table 1. It is im-

portant to note that in our method we do not use a skeleton

tracker, and yet we outperform the skeleton-based method

[24]. Additionally, note that the accuracy of [26] in table 1

is different than the number reported in their paper, the rea-

son is that their experiment setup is different; therefore, we

obtained their code and ran it within our experiment setup.

We further conduct a cross validation experiment to ver-

ify that the process of refining the projectors does not de-

pend on specific training data. We consider all the possi-

ble combinations of choosing half of the actors for train-

ing, which are 252 folds for choosing 5 actors out of 10
in this dataset. At each fold, we train using all the videos

from a certain combination of 5 actors, and test on the

rest. We conduct this experiment first using the uniformly

distributed projectors, and obtain an average accuracy of

79.38±4.40% (mean± std). Consequently, we conduct the

experiment again, however, with refining the projectors at

each fold, and obtain an average accuracy of 82.15±4.18%.

This provides a clear evidence that the refined projectors do

not depend on specific training data, and the corresponding

trained models are not overfit.

6.2. MSR Hand Gesture Dataset

The Gesture3D dataset [23] is a hand gesture dataset of

depth sequences captured by a depth camera. It contains

a set of dynamic gestures defined by American Sign Lan-

guage (ASL). There are 12 gestures in the dataset: “bath-

room”, “blue”, “finish”, “green”, “hungry”, “milk”, “past”,

“pig”, “store”, “where”, “j”, “z”. In total, the dataset con-

tains 333 depth sequences, and is considered challenging

mainly because of self-occlusion issues. Example frames

from different gestures are shown in figure 4. We follow

the experiment setup in [23] and obtain the accuracies de-

scribed in table 2, where our descriptor outperforms all pre-

vious approaches.
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Table 2. The performance of our method on MSR Hand Gesture

3D dataset, compared to previous approaches.

Method Accuracy %

HON4D + Ddisc 92.45
HON4D 87.29

Jiang et al. [23] 88.50

Yang et al. [26] 89.20

Klaser et al. [9] 85.23

6.3. 3D Action Pairs Dataset

This is a new type of activity dataset, which we collected

in order to emphasize two points: First, though skeleton tra-

jectories seem reliable when the person is in upright posi-

tion, many actions share similar motion cues; therefore, re-

lying on motion solely is insufficient. This was also pointed

out in [24]. Second, the motion and the shape cues are cor-

related in the depth sequences, and it is rather insufficient

to capture them independently. Therefore, in this dataset,

we select pairs of activities, such that within each pair the

motion and the shape cues are similar, but their correlations

vary. For example, “Pick up” and “Put down” actions have

similar motion and shape; however, the co-occurrence of

the object shape and the hand motion is in different spa-

tiotemporal order (refer to figure 6). This dataset is useful

to evaluate how well the descriptors capture the prominent

cues jointly in the sequence. We collected six pairs of ac-

tions: “Pick up a box/Put down a box”, “Lift a box/Place

a box”, “Push a chair/Pull a chair”, “Wear a hat/Take off

a hat”, “Put on a backpack/Take off a backpack”, “Stick a

poster/Remove a poster”. Each action is performed three

times using ten different actors, where the first five actors

are used for testing, and the rest for training. We compare

our performance in this dataset with three methods. First,

we compute skeleton-based pair-wise features and LOP fea-

tures as described in [24] and train a SVM on that. Second,

we enhance the previous features by applying a temporal

pyramid as described in [24]. Finally, we also compare with

the motion map method from [26]. We summarize the re-

sults in table 3, and demonstrate the confusion tables in fig-

ure 5. It is clear that our method significantly outperforms

the other approaches, which suffer from within-pairs con-

fusion. In [24] (Skeleton + LOP), though both motion and

shape features are obtained, they are simply concatenated;

therefore, their relations are not encoded. Adding the tem-

poral pyramid captures the temporal order and improves the

accuracy, though still inferior to our method. Additionally,

in [26], the whole sequence is collapsed into one image,

which eliminates the temporal order of shape/motion cues,

and thus this method suffers in this dataset. Our HON4D

operates in the 4D space of shape and motion; therefore,

it captures both features jointly, and outperforms the other

methods significantly.

Table 3. The performance of our method on 3D action pairs

dataset, compared to previous approaches.

Method Accuracy %

HON4D + Ddisc 96.67
HON4D 93.33

[24] (Skeleton + LOP) 63.33

[24] (Skeleton + LOP + Pyramid) 82.22

Yang et al. [26] 66.11
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Figure 5. The confusion tables for 3D Action Pairs dataset. Top:

Pair-wise skeleton features and LOP features from [24] with-

out temporal pyramid (left), and with pyramid (right). Bottom:

HON4D features as is (left), and after refining the projectors using

the discriminative density (right).

Push / Pull Pickup / Put Down Wear /Take off Stick / Remove 

Figure 6. Example frames for four pairs from 3D Action Pairs

dataset. Each column shows two images from a pair of actions.

Note that, for example in the first column, both “Pick up a box”

and “Put down a box” have similar motion and shape; however,

they occur in different spatiotemporal order.
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6.4. Local HON4D

The HON4D descriptor discussed earlier is a holistic fea-

ture, similar in that to [26] and [21]. This intrinsically as-

sumes coarse spatial and temporal correspondence between

the spatiotemporal cells across the sequences. This is a

valid assumption for many practical scenarios, such as in

the datasets discussed above, and generally in videos cap-

tured for Kinect applications and games. This assumption

is also required (but often not explicitly mentioned) in some

non-holistic methods as in [23].

On the other hand, in the scenarios where the actors

significantly change their spatial locations, and the tempo-

ral extent of the activities significantly vary, we use a lo-

cal HON4D descriptor, which is computed exactly as the

global HON4D, except over spatiotemporal patches cen-

tered at skeleton joints obtained using [18]. We use a patch

size of 12 × 12 × 6, and divide it into a 3 × 3 × 1 grid,

where the numbers are selected using cross validation. To

capture the temporal variation in the features, we follow a

process similar to [24], however, replacing their LOP fea-

ture with the local HON4D. In particular, we compute the

local HON4D for each joint, and for each frame, then the

fourier transform is applied, and a SVM is trained on the

fourier transform coefficients. For evaluation , we use the

Daily Activity 3D Dataset [24], which contains 16 actions

of common daily behaviors such as talking on the phone or

reading a book . . . etc. We achieve an average accuracy of

80.00%, compared to 67.50% when the original LOP fea-

ture is used, which proves that HON4D is also superior for

significantly non-aligned sequences. It is important to note

that [24] proposes additional steps to improve the accuracy,

which generally apply to any descriptor. In our implementa-

tion, we do not include these steps, as our aim is to directly

compare our descriptor with theirs.

7. Conclusion

We presented a novel, simple, and easily implementable

descriptor for activity recognition from depth sequences.

Our descriptor captures motion and geometry cues jointly

using a histogram of normal orientation in the 4D space of

depth, time, and spatial coordinates. We initially quantize

the 4D space using the vertices of a 600-cell polychoron,

and use that to compute the distribution of the 4D nor-

mal orientation for each depth sequence. Consequently,

we estimate the discriminative density at each vertex of the

polychoron, and induce further vertices accordingly, thus

placing more emphasis on the discriminative bins of the

histogram. We showed by experiments that the proposed

method outperforms all previous approaches on all relevant

benchmark datasets.
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