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Abstract

Infrared and visible image fusion aims to integrate com-
prehensive information from multiple sources to achieve su-
perior performances on various practical tasks, such as de-
tection, over that of a single modality. However, most ex-
isting methods directly combined the texture details and ob-
ject contrast of different modalities, ignoring the dynamic
changes in reality, which diminishes the visible texture in
good lighting conditions and the infrared contrast in low
lighting conditions. To fill this gap, we propose a dynamic
image fusion framework with a multi-modal gated mixture
of local-to-global experts, termed MoE-Fusion, to dynami-
cally extract effective and comprehensive information from
the respective modalities. Our model consists of a Mixture
of Local Experts (MoLE) and a Mixture of Global Experts
(MoGE) guided by a multi-modal gate. The MoLE per-
forms specialized learning of multi-modal local features,
prompting the fused images to retain the local informa-
tion in a sample-adaptive manner, while the MoGE focuses
on the global information that complements the fused im-
age with overall texture detail and contrast. Extensive ex-
periments show that our MoE-Fusion outperforms state-
of-the-art methods in preserving multi-modal image texture
and contrast through the local-to-global dynamic learning
paradigm, and also achieves superior performance on de-
tection tasks. Our code is available: https://github.
com/SunYM2020/MoE-Fusion.

1. Introduction
Infrared and visible image fusion focus on generating

appealing and informative fused images that enable supe-

rior performance in practical downstream tasks over that

of using single modality alone [24, 45, 41, 21]. In recent

years, infrared-visible image fusion has been widely used
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Figure 1. The importance of dynamic image fusion. In the SOTA

methods (DF [16], DIDF [49], and TDL [18]), the texture details

of objects (e.g., car, truck, and traffic sign) in the fused image are

suppressed by the contrast of infrared image, leading to terrible

detection results. Benefiting from the dynamic fusion, our method

can preserve clear texture details without being interrupted by un-

suitable contrast, achieving the best performance.

in many applications, such as autonomous vehicles [9] and

unmanned aerial vehicles [34]. According to the thermal in-

frared imaging mechanism, infrared images can be adapted

to various lighting conditions but has the disadvantage of

few texture details [25, 50, 19]. By contrast, visible images

contain rich texture detail information, but cannot provide

clear information in low light conditions. Therefore, how

to design advanced fusion methods such that the fused im-

ages preserve sufficient texture details and valuable thermal

information has attracted a lot of research attention.

Existing infrared-visible fusion methods [46, 38, 33, 42]

can be mainly categorized to traditional approaches (im-

age decomposition [15], sparse representation [47], etc.)

and deep learning-based approaches (autoencoder based

methods [16, 49, 17], generative adversarial network based
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approaches [18, 26], transformer based approaches [40,

36], etc.). However, most of these methods directly com-

bined the texture details and object contrast of different

modalities, ignoring the dynamic changes in reality, lead-

ing to poor fusion results and even weaker downstream task

performance than that of a single modality. As shown in

Fig. 1, the infrared image should adaptively enhance cars
in dim light while avoiding compromising the textural de-

tail of truck in bright light. However, the object textures in

these state-of-the-art fusion methods are significantly dis-

turbed by the infrared thermal information due to the lack

of dynamic learning of multi-modal local and global infor-

mation, resulting in terrible object detection performance.

In complex scenes, different modalities have different

characteristics: under good lighting conditions, the texture

of an object should not be disturbed by thermal infrared in-

formation; under low lighting conditions, the contrast of

an object also should not be suppressed by the darkness

of the visible image. Most existing methods perform im-

age fusion in a fixed correlation paradigm, ignoring the

dominant modality changes dynamically in reality, and of-

ten fall into domain bias. To break the traditional fixed

fusion paradigm, we pioneered sample-adaptive local-to-

global experts to dynamically enhance the dominant modal-

ity for image fusion. Fig. 1 show that the proposed method

not only eliminates domain bias but also achieves sample-

adaptive dynamic fusion, yielding the best detection results.

Specifically, we propose a dynamic image fusion frame-

work with a multi-modal gated mixture of local-to-global

experts, termed MoE-Fusion, which consists of a Mixture

of Local Experts (MoLE) and a Mixture of Global Experts

(MoGE) guided by a multi-modal gate. In MoLE, we intro-

duce the attention map generated by an auxiliary network

to construct multi-modal local priors and perform dynamic

learning of multi-modal local features guided by multi-

modal gating, achieving sample-adaptive multi-modal local

feature fusion. Moreover, MoGE performs dynamic learn-

ing of multi-modal global features to achieve a balance of

texture details and contrasts globally in the fused images.

With the proposed dynamic fusion paradigm from local to

global, our model is capable of performing a reliable fusion

of different modal images.

We summarize our main contributions as follows:

• We propose a dynamic image fusion model, provid-

ing a new multi-modal gated mixture of local-to-global

experts for reliable infrared and visible image fusion

(benefiting from the dynamically integrating effective

information from the respective modalities).

• The proposed model is an effective and robust frame-

work for sample-adaptive infrared-visible fusion from

local to global. Further, it prompts the fused images to

dynamically balance the texture details and contrasts.

• We conduct extensive experiments on multiple

infrared-visible datasets, which clearly validate our su-

periority, quantitatively and qualitatively. Moreover,

we also demonstrate our effectiveness in object detec-

tion.

2. Related Works
2.1. Infrared and Visible Image Fusion

The infrared and visible image fusion task focuses on

generating a fused image containing sufficient information

through the learning of multi-modal features [24, 45, 20,

22, 12, 8]. Ma et al. [23] defined the goal of image fusion

as preserving more intensity information in infrared images

as well as gradient information in visible images. Li et
al. [16] use the autoencoder to extract multi-modal over-

all features and fuse them by designed fusion rules, which

inspired a series of subsequent works [14, 17]. Zhao et
al. [49, 50] proposed the deep learning-based image de-

composition methods, which decompose images into back-

ground and detail images by high- and low-frequency in-

formation, respectively, and then fuse them by designed fu-

sion rules. Recently, some GAN-based methods [26, 25, 18]

and Transformer-based methods [40, 36] have also attracted

wide attention. These works, despite the different ap-

proaches adopted, all focus on learning on the representa-

tion of the overall multi-modal features. However, they ig-

nore the dynamic changes in reality, which diminishes the

visible texture in good lighting conditions and the infrared

contrast in low lighting conditions. We propose a dynamic

image fusion framework that enables sample-adaptive fu-

sion from local to global. This approach prompts the fused

images to balance the texture details and contrast with spe-

cialized experts dynamically.

2.2. Mixture-of-Experts

Mixture-of-Experts (MoE) [10, 30, 27] can dynamically

adjust its structure according to different inputs. Shazeer et
al. [32] constructed a sparsely-gated MoE layer that uses a

gate network to select multiple experts and assign weights

to each selected expert. The final result of the MoE is a

weighted sum of the outputs of the different experts. This

work also serves as the basis for subsequent research. Re-

cently, some researchers [13, 27] have focused on explor-

ing learning mechanisms in MoE, trying to solve the prob-

lems of unbalanced expert load and the number of acti-

vated experts faced by MoE during training. Other re-

searchers [6, 52, 3, 39] focuses on the combination of MoE

and Transformer. They expect to use MoE to build sparse

models. Zhu et al. [52] introduced Conditional MoE into

the generalist model and proposed different routing strate-

gies to mitigate the interference between tasks and modal-

ities. Existing MoE-related methods focus on modeling
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Figure 2. The architecture of MoE-Fusion. MoE-Fusion consists of a Mixture of Local Experts (MoLE), a Mixture of Global Experts

(MoGE) guided by the multi-modal gate, a set of infrared and visible feature encoders, and the auxiliary network.

generic knowledge by using the dynamicity and sparsity

of MoE, resulting in each expert does not know what they

should be expert in. In contrast, we extend the idea of MoE

to image fusion tasks for the first time, constructing a multi-

modal gated mixture of local-to-global experts, assigning

specific tasks to each expert, and enabling sample-adaptive

specialized learning, which yields superior performance.

3. Method
3.1. Overall Architecture

In this paper, we propose a dynamic image fusion frame-

work with a multi-modal gated mixture of local-to-global

experts, termed MoE-Fusion. In Fig. 2, MoE-Fusion con-

tains two encoders, a Mixture of Local Experts, a Mixture

of Global Experts, and the auxiliary network.

In Fig. 2 (b), we send a pair of infrared image II ∈
R

H×W×1 and visible image IV ∈ R
H×W×3 into the in-

frared and visible encoders (EncI and EncV ) to extract

the features, respectively. The structure of encoders fol-

lows [16]. The output of the encoder has two parts: the

feature maps of the last layer (xI
enc and xV

enc) and the dense

feature maps (xI
dense and xV

dense). More details of the struc-

ture are provided in the supplementary material. We send

the xI
enc and xV

enc to the MoLE along with the attention

map which is learning from the auxiliary network. In this

paper, we use Faster-RCNN [29] as the auxiliary network.

In MoLE, we send visible and infrared features to specific

local experts separately to achieve dynamic integration of

local features under the guidance of multi-modal gating.

We concatenate the outputs of MoLE with the dense fea-

ture maps as the input to the MoGE. Each expert in MoGE

has the ability to decode global features, and a multi-modal

gate network is used to dynamic select which experts are

activated to decode multi-modal fusion features. The final

fused image IF ∈ R
H×W×1 is generated by a weighted

sum mechanism of the different global experts.

The MoE-Fusion is optimized mainly by calculating the

pixel loss and gradient loss between the fused image IF and

two source images (II and IV ). In addition, we also intro-

duce the load loss to motivate each expert to receive roughly

equal numbers of training images. The auxiliary detection

networks are optimized independently by the detection loss.

3.2. Mixture of Local Experts

In infrared-visible image fusion tasks, specialized learn-

ing of multi-modal local information by a sample adaptive

manner helps to overcome the challenge of multi-modal fu-

sion failure in complex scenes. To realize this vision, we

need to address two questions: (1) How to find local regions

in multi-modal images; (2) How to learn the local features

dynamically due to the differences in various samples.

As shown in Fig. 2 (a), we propose a Mixture of Local

Experts (MoLE) to dynamically learning the multi-modal

local features. We use the auxiliary detection networks with

a spatial attention module to learn the attention maps. Then

we can find the local regions in multi-modal images accord-

ing to the guidance of the learned attention maps. Specif-

ically, we introduce attention modules in two auxiliary de-

tection networks for extracting visible attention maps and

infrared attention maps, respectively. The modal-specific

attention map AttV /AttI is generated by the attention mod-

ule between the feature extractor and the detection head in

the detection networks, which consists of a Conv(1 × 1)-

BN-ReLU layer and a Conv(1× 1)-BN-Sigmoid layer. The

AttV and AttI are concatenated and fed into 2 convolu-

tional layers, the maximum of which output is the Att. In

MoLE, we multiply the xV
enc and xI

enc with Att to obtain

xV
local and xI

local, respectively. Then we concatenate the

xV
local and xI

local to get the xlocal, which is the input of

the multi-modal gating network. The MoLE is consist of
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Figure 3. Qualitative comparisons of various methods on represen-

tative images selected from the M3FD dataset.

a multi-modal gating network Glocal and a set of N expert

networks {Elocal
1 , ..., Elocal

N }. The structure of each expert

network is 2 convolution layers and 1 ReLU layers.

In MoLE, we flatten the input xlocal ∈ R
H×W×C to

slocal ∈ R
D. The gate network Glocal takes the vector

slocal as input and produces the probability of it with re-

spective to N experts. The formalization of the gate net-

work is as follows,

Glocal(slocal) = softmax(topK(slocal ·Wlocal)), (1)

where Wlocal ∈ R
D×N is a learnable weight matrix and the

top K outputs are normalized via softmax function.

To achieve specialized learning of different modalities,

we input visible local features xV
local into one set of ex-

pert networks {Elocal
1 , ..., Elocal

N/2 } and infrared local fea-

tures xI
local into another set of non-overlapping expert net-

works {Elocal
(N/2)+1, ..., E

local
N }. Each expert network pro-

duces its own output Elocal
i (xj

local). The final output ylocal
of the MoLE is calculated as follows,

ylocal =

N∑

i=1

Glocal(slocal)iE
local
i (xj

local), (2)

where j represents I or V . Then we concatenate the ylocal,
xI
dense, and xV

dense to obtain the global multi-modal fusion

feature xf .

3.3. Mixture of Global Experts

Traditional image fusion algorithms use the same net-

work structure and parameters to learn the fusion features

of different samples. In contrast, we propose the MoGE to

dynamically integrate multi-modal global features, which

can adaptively adjust its own structure and parameters

when dealing with different samples, thus showing supe-

rior advantages in terms of model expressiveness and self-

adaptability. The main components of the MoGE include a

Table 1. Quantitative comparison of our MoE-Fusion with 9 state-

of-the-art methods. Bold red indicates the best, Bold blue indicates

the second best, and Bold cyan indicates the third best.
M3FD Dataset [18]

EN SF SD MI VIF AG SCD Qabf

DenseFuse [16] 6.4134 0.0364 8.5987 2.9524 0.6572 3.0700 1.5069 0.3838
RFN-Nest [17] 6.9208 0.0345 9.2984 2.9301 0.7806 3.1698 1.5410 0.3772

IFCNN [48] 6.6555 0.0599 9.2456 2.9954 0.7522 5.0932 1.5448 0.5755
PIAFusion [35] 6.8167 0.0707 10.1228 3.8337 0.8447 5.6560 1.3065 0.5540
DIDFuse [49] 6.6116 0.0420 9.3409 2.9955 0.7382 3.5668 1.5875 0.4342

AUIF [50] 6.5233 0.0399 8.8759 2.9793 0.6796 3.3224 1.5314 0.4124
SwinFuse [40] 6.9819 0.0696 9.6400 3.2004 0.9114 5.6234 1.5395 0.5166

YDTR [36] 6.5397 0.0496 9.2631 3.2128 0.7276 3.8951 1.5076 0.4812
TarDAL [18] 7.1347 0.0528 9.6820 3.2853 0.8347 4.1998 1.5334 0.3858
MoE-Fusion 7.0018 0.0715 10.1406 4.1949 1.0034 5.6742 1.5433 0.6661

FLIR Dataset [44]

EN SF SD MI VIF AG SCD Qabf

DenseFuse [16] 6.9479 0.0304 10.5928 2.9254 0.6413 3.0524 1.3132 0.2947
RFN-Nest [17] 7.4277 0.0267 10.8747 2.9669 0.7260 2.7664 1.6731 0.2603

IFCNN [48] 7.1367 0.0638 10.6668 2.9263 0.7567 6.1081 1.3521 0.4894
PIAFusion [35] 6.9968 0.0551 10.6563 3.0927 0.8178 5.1849 1.1615 0.4388
DIDFuse [49] 7.2754 0.0670 11.6318 2.5022 0.6649 5.8815 1.4913 0.3469

AUIF [50] 7.2853 0.0463 10.2108 2.8893 0.7099 4.4471 1.5823 0.3240
SwinFuse [40] 7.4163 0.0582 10.6077 2.9404 0.8104 5.7587 1.6739 0.3751

YDTR [36] 6.8948 0.0364 10.6571 3.0820 0.6749 3.2993 1.3379 0.3333
TarDAL [18] 7.4866 0.0588 10.6948 3.0228 0.7665 5.1955 1.3182 0.3896
MoE-Fusion 7.4925 0.0603 10.7007 3.1209 0.8212 5.7604 1.6818 0.4991

LLVIP Dataset [11]

EN SF SD MI VIF AG SCD Qabf

DenseFuse [16] 6.8314 0.0426 9.3800 2.6764 0.6894 3.2640 1.2109 0.3093
RFN-Nest [17] 7.1408 0.0300 9.7184 2.5042 0.7294 2.7853 1.4612 0.2287

IFCNN [48] 7.2139 0.0688 9.7633 2.9479 0.7797 5.4136 1.4269 0.5845
PIAFusion [35] 7.3954 0.0787 9.7320 3.3690 0.8860 6.0846 1.5300 0.5789
DIDFuse [49] 6.0372 0.0550 7.8074 2.5137 0.5054 3.4474 1.2574 0.2436

AUIF [50] 6.1947 0.0636 7.8418 2.3966 0.5533 3.8588 1.2840 0.2764
SwinFuse [40] 5.9973 0.0608 7.6525 2.1846 0.5962 3.7344 1.2629 0.2620

YDTR [36] 6.6922 0.0474 8.8701 2.9152 0.6322 3.2043 1.0881 0.2907
TarDAL [18] 7.3504 0.0647 9.7676 3.4655 0.7769 4.6094 1.3607 0.4431
MoE-Fusion 7.3523 0.0862 9.8664 3.1061 0.9202 6.1316 1.7841 0.5932

global multi-modal gating network Gglobal and a set of N

expert networks {Eglobal
1 , ..., Eglobal

N }. In MoGE, we flat-

ten xf to get sf and feed it into Gglobal. The corresponding

gating weights of the N expert networks are calculated as

follows,

Gglobal(sf ) = softmax(topK(sf ·Wglobal)), (3)

where Wglobal is a learnable weight matrix and the top K
outputs are normalized via softmax distribution.

The structure of each expert network consists of 4
convolution layers. Each expert takes the global multi-

modal fusion feature xf as input to produce its own output

Eglobal
i (xf ). The final output IF of MoGE is the linearly

weighted combination of each expert’s output with the cor-

responding gating weights. The formalization is as follows,

IF =
N∑

i=1

Gglobal(sf )iE
global
i (xf ). (4)

3.4. Loss Function

In MoE-Fusion, we use the fusion loss Lfusion to guide

the optimization of the image fusion network, and the aux-

iliary detection networks are optimized by their respective

detection loss [29] (LV
det or LI

det). We end-to-end train the

entire framework through these three loss functions. Specif-
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Figure 4. Qualitative comparisons of various methods on represen-

tative images selected from the FLIR dataset.

ically, the formula of fusion loss is as follows,

Lfusion = Lpixel + αLgrad + Lload, (5)

where the pixel loss Lpixel constrains the fused image to

preserve more significant pixel intensities originating from

the target images, while the gradient loss Lgrad forces the

fused image to contain more texture details from different

modalities. Lload represents load loss, which encourages

experts to receive roughly equal numbers of training exam-

ples [32]. More details about pixel loss, gradient loss and

load loss are provided in the supplementary material. α is

used to strike a balance between the different loss functions.

4. Experiments
4.1. Experimental Setting

Datasets and Partition Protocol. We conducted exper-

iments on three publicly available datasets: (M3FD [18],

LLVIP [11] and FLIR [37]).

M3FD: It contains 4, 200 infrared-visible image pairs

captured by on-board cameras. We used 3, 900 pairs of im-

ages for training and the remaining 300 pairs for evaluation.

FLIR: We used the “aligned” version [44] of FLIR in

this work. It contains 5, 142 infrared-visible image pairs

captured by on-board cameras. We used 4, 129 image pairs

for training and 1, 013 image pairs for evaluation.

LLVIP: The LLVIP dataset contains 15, 488 aligned

infrared-visible image pairs, which is captured by the

surveillance cameras in different street scenes. We trained

the model with 12, 025 image pairs and performed evalua-

tion on 3, 463 image pairs.

Competing methods. We compared the 9 state-of-the-art

methods on three publicly available datasets (M3FD [18],

LLVIP [11] and FLIR [37]). In these comparison methods,

DenseFuse [16] and RFN-Nest [17] are the autoencoder-

based methods, PIAFusion [35] and IFCNN [48] are the

CNN-based methods, TarDAL [18] is the GAN-based meth-

ods. DIDFuse [49] and AUIF [50] are the deep learning-

based image decomposition methods. SwinFuse [40] and

YDTR [36] are the Transformer-based methods.

Implementation Details. We performed experiments on a

computing platform with two NVIDIA GeForce RTX 3090

GPUs. We used Adam Optimization to update the overall

network parameters with the learning rate of 1.0 × 10−4.

The auxiliary network Faster R-CNN [29] is also trained

along with the image fusion pipeline. The training epoch is

set to 24 and the batch size is 4. The tuning parameter α
is set to 10. For MoLE and MoGE, we set the number of

experts is 4, and sparsely activate the top 2 experts.

Evaluation Metrics. We evaluated the performance of the

proposed method based on qualitative and quantitative re-

sults. The qualitative evaluation is mainly based on the vi-

sual effect of the fused image. A good fused image needs

to have complementary information of multi-modal images.

The quantitative evaluation mainly uses quality evaluation

metrics to measure the performance of image fusion. We

selected 8 popular metrics, including the entropy (EN) [31],

spatial frequency (SF) [4], standard deviation (SD), mutual

information (MI) [28], visual information fidelity (VIF) [7],

average gradient (AG) [2], the sum of the correlations of

differences (SCD) [1], and gradient-based similarity mea-

surement (Qabf ) [43]. We also evaluate the performance

of the different methods on the typical downstream task,

infrared-visible object detection.

4.2. Evaluation on the M3FD dataset

Quantitative Comparisons. Table 1 presents the results

of the quantitative evaluation on the M3FD dataset, where

our method achieves the best in 7 metrics and the second

and third best performance in the remaining metrics, respec-

tively. In particular, it shows overwhelming advantages on

VIF, MI,and Qabf , which indicates that our fusion results

contain more valuable information and are more beneficial

to the visual perception effect of human eyes. The highest

SF, SD and AG also indicate that our fusion results preserve

sufficient texture detail and contrast. Such superior perfor-

mance is attributed to the proposed dynamic learning frame-
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Figure 5. Qualitative comparisons of various methods on represen-

tative images selected from the LLVIP dataset.

work from local to global, which achieves state-of-the-art

fusion performance through the sample adaptive approach.

Qualitative Comparisons. To better show the superior-

ity of our model, we assigned the color information of

the 3-channel visible image to the single-channel fused im-

age through the color space conversion between RGB and

YCbCr. We mark the background region with the green

rectangular box and the foreground region with the red rect-

angular box. As shown in Fig. 3, our fusion results have the

best results in both local and global regions. Compared to

PIAFusion, YDTR, AUIF, IFCNN and DIDFuse, our fusion

results show better contrast, and our fusion results show

better texture details compared to TarDAL and SwinFuse.

In daytime scenes, our model adaptively learned sufficient

texture detail and significant contrast, such as containers

and people. Especially for people, our method significantly

avoids the effect of smoke and preserves the contrast in-

formation of infrared. In local regions, we successfully

preserve the rich texture information of containers, outper-

forming other methods. In global regions such as moun-

tains, grass and sky, our fusion results also effectively retain

texture information, indicating that our method has better

visual effects due to dynamic learning of local and global

information of different modalities.

4.3. Evaluation on the FLIR dataset

Quantitative Comparisons. Table 1 reports the perfor-

mance of the different methods on the FLIR dataset for 8
metrics. Our method achieves the best results in 5 met-

rics. Among them, the highest EN and MI indicate that

our method can preserve abundant information of the multi-

modal images well. The best performance of our method on

SCD and Qabf also indicates that our fusion results can bet-

ter learn the multi-modal complementary information and

edge information, which makes our fusion results have bet-

ter foreground-background contrast and richer texture de-

tails. Moreover, the highest VIF also demonstrates that our

method can generate fused images with better visual effects

that are beneficial to human observation. In addition, the

third best results on SF, SD, and AG also indicate that our

method is highly competitive. The quantitative results on

the FLIR dataset also validate the superiority of our method

in dynamically fusing multi-modal complementary infor-

mation from the local to the global.

Qualitative Comparisons. We mark the background re-

gion with the green rectangular box and the foreground

region with the red rectangular box. We also show their

zoomed-in effects for easier comparison. As shown in

Fig. 4, our fusion results have the best results in both local

and global regions. In night scenes, our fusion results adap-

tively learn sufficient texture detail and contrast, for exam-

ple on buildings, trees, mountains and traffic lights. Espe-

cially for the traffic lights, our method effectively avoids the

effects of glare and best preserves the entire outline of the

traffic lights. On the local regions, our fusion results pre-

serve the best contrast information of the pedestrians and

the rich detail information of the vehicles. These compar-

isons illustrate that our method has better visual effects due

to the effective dynamic learning of local information from

different modalities. The superiority of the proposed MoE-

Fusion also reveals that specialized knowledge of multi-

modal local and global in fusion networks can effectively

improve fusion performance.

4.4. Evaluation on the LLVIP dataset

Quantitative Comparisons. The quantitative results of the

different methods on the LLVIP dataset are reported in Ta-

ble 1. Our method outperforms all the compared methods

on 6 metrics and achieved the second and third best results

on the remaining 2 metrics, respectively. Specifically, the

highest SF and AG we achieved indicate that the proposed

method preserves richer texture details in the multi-modal

images. As well as the highest SD also indicates that our fu-

sion results can contain the highest contrast information be-

tween the foreground and the background. SCD and Qabf

denote the complementary information and edge informa-

tion transferred from multi-modal images to fused image,

respectively, and our highest results on these two metrics
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Table 2. Ablation studies on three infrared-visible datasets.
M3FD Dataset [18]

EN SF SD MI VIF AG SCD Qabf

w/o MoLE 6.7856 0.0692 9.1636 2.7214 0.8100 5.5509 1.5153 0.6535
w/o MoGE 6.8351 0.0695 9.2491 2.8138 0.8261 5.6521 1.5346 0.6375
Att-Local 6.8656 0.0693 9.1894 2.7320 0.8271 5.5809 1.5190 0.6390

MoE-Fusion 7.0018 0.0715 10.1406 4.1949 1.0034 5.6742 1.5433 0.6661

FLIR Dataset [44]

EN SF SD MI VIF AG SCD Qabf

w/o MoLE 6.9021 0.0587 10.2859 2.3666 0.5371 5.6961 1.0976 0.3187
w/o MoGE 7.3172 0.0548 10.6654 2.9208 0.7747 5.2525 1.6629 0.4796
Att-Local 7.3070 0.0602 10.6403 2.6673 0.7448 5.7265 1.4788 0.4838

MoE-Fusion 7.4925 0.0603 10.7007 3.1209 0.8212 5.7604 1.6818 0.4991

LLVIP Dataset [11]

EN SF SD MI VIF AG SCD Qabf

w/o MoLE 6.9077 0.0661 9.8090 2.5039 0.5812 4.9358 1.1739 0.4732
w/o MoGE 7.2740 0.0847 9.6034 2.7067 0.7621 5.5960 1.6260 0.5110
Att-Local 7.2528 0.0858 9.5483 2.7129 0.8599 6.1099 1.6393 0.5735

MoE-Fusion 7.3523 0.0862 9.8664 3.1061 0.9202 6.1316 1.7841 0.5932

indicate that our method can learn more valuable informa-

tion from multi-modal images. Moreover, the highest VIF

also means that our method can generate the most appeal-

ing fused images that are more suitable for human vision.

These quantitative results demonstrate that the proposed

MoE-Fusion can effectively learn multi-modal knowledge

and generate informative and appealing fusion results.

Qualitative Comparisons. We mark the background re-

gion with the green rectangular box and the foreground

region with the red rectangular box. We also show their

zoomed-in effects for easier comparison. As shown in

Fig. 5, we can find that the proposed method best preserves

the texture details of the local and global in the multi-modal

image compared with the state-of-the-art methods, while

highlighting the contrast information of the local dynami-

cally. Specifically, for the background region, our fusion

results show the sharpest effect on the edge texture of the

zebra crossing. For the foreground region, our fusion results

preserve the most significant contrast and the richest texture

detail in pedestrians and cyclists. Qualitative comparisons

show that our MoE-Fusion can balance the texture details

and contrasts with the specialized experts dynamically.

4.5. Ablation Study

We conducted ablation studies on the M3FD, LLVIP, and

FLIR datasets and reported the results in Table 2.

MoLE. To verify the effectiveness of MoLE, we removed

MoLE from MoE-Fusion and then extracted multi-modal

features by two encoders only, and they were sent to MoGE

after concatenation. As shown in Table 2, all the metrics

show a significant decrease after removing MoLE, indicat-

ing that MoLE is very effective in learning multi-modal tex-

ture details and contrast information. Among others, the

decrease on SCD also shows it is difficult to learn com-

plementary multi-modal local information sufficiently with-

out MoLE, which strongly supports our motivation to de-

sign MoLE. The local dynamic experts of MoLE adap-

tively boost dominant local (foreground and background)

information induced from the auxiliary detector of different

FG Expert #1

Fusion Feature

FG Expert # 4

Fusion result

FG Expert #2 FG Expert #3

Visible image Infrared image

BG Expert #1 BG Expert # 4BG Expert #2 BG Expert #3

Figure 6. Visualization of the features learned by each expert in

MoLE. FG denotes foreground, BG denotes background.

modalities for dynamic fusion, specialized to local regions.

MoGE. We replaced the MoGE with a common decoder

with the same structure as that of a single expert in the

MoGE. As shown in Table 2, all the metrics appear to be

significantly decreased, strongly verifying that the MoGE

can help fused images preserve more contrast and texture

detail information. Moreover, these results also demon-

strate that MoGE can effectively motivate the image fusion

network to dynamically adapt to different samples, learn-

ing better feature representations, and thus achieving better

fusion performance. The global dynamic experts of MoGE

further enhance the dominant modality from a global per-

spective while refining the potential errors that may occurr

in local fusion.

Attention-based Local Feature. We want to explore how

the fusion performance changes when dynamic learning is

not performed for local features and only local feature priors

constructed by attention maps are used as local features. We

designed an attention-based local feature learning module

(Att-Local), and to keep the output channels consistent, we

followed the Att-Local module with a 1 × 1 convolution

layers. In Table 2, all metrics cannot exceed the results of

MoE-Fusion with the use of Att-Local, but most of them

are higher than w/o MoLE, which demonstrates on the one

hand that our proposed MoLE is indeed effective, and on

the other hand that the dynamic integration of the effective

information from the respective modalities is beneficial to

improve the performance of multi-modal image fusion.

4.6. Analysis and Discussion

Visualization of MoLE. In the MoLE, we can obtain local

feature priors according to the attention map Att, which we

define as foreground local features (FG), and we also use

1 − Att to obtain background local features (BG). We vi-

sualize what each expert has learned in MoLE. As shown
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Figure 7. Experiments on the number of experts.

Table 3. Object detection evaluation on the FLIR dataset.

Methods car person bicycle mAP

Visible 55.90 27.20 33.20 38.70
Infrared 68.70 45.60 30.80 48.40

DenseFuse [16] 65.80 44.70 31.40 47.30
RFN-Nest [17] 58.80 36.50 26.20 40.50

IFCNN [48] 67.80 45.70 34.70 49.40
PIAFusion [35] 62.60 40.90 31.50 45.00
DIDFuse [49] 64.20 41.70 32.10 46.00

AUIF [50] 61.70 36.80 29.60 42.70
SwinFuse [40] 65.60 41.30 29.70 45.60

YDTR [36] 65.00 44.20 32.50 47.20
TarDAL [18] 62.50 35.40 30.80 42.90
MoE-Fusion 72.90 55.00 39.50 55.80

in Fig. 6, we see that the four foreground local experts can

clearly learn foreground information, while the four back-

ground local experts can also learn rich background fea-

tures. These results show that MoLE can successfully let

each expert know what it should specialize in.

Detection Evaluation. Good fused images should have bet-

ter performance in downstream tasks. For different image

fusion methods, we perform the evaluation on the object de-

tection task and use the mean average precision (mAP) [5]

as the metric. Following [51], we first train the object de-

tection model using infrared images and visible images, and

then we input the fused images generated by different im-

age fusion methods into the object detection model for in-

ference and evaluate their detection performance. In this

paper, we use Faster R-CNN [29] as the object detection

algorithm and set the IoU (Intersection over Union) thresh-

old for evaluation to 0.5. According to Table 3, our MoE-

Fusion outperforms all the compared methods and achieves

the highest mAP. It is worth noting that our method has an

overwhelming advantage on all categories, which demon-

strate the proposed dynamic image fusion method is more

beneficial for downstream tasks. The detection evaluation

on other datasets is provided in the supplementary material.

Number of Experts. In Fig. 7, we performed 4 sets of

experiments on the FLIR dataset, E2k2, E4K2, E6K2, and

E8K2, to explore the effect of the number of experts on the

Figure 8. Hyperparameter sensitivity analysis on the FLIR dataset.

fusion results. As an example, E4K2 means that the MoE

contains 4 experts and sparsely selects top 2 experts for in-

tegration. We found that E4K2 was higher than E2K2 in

7 metrics, E6K2 in 6 metrics, and E8K2 in 5 metrics, sug-

gesting that a higher number of experts may not be better. In

addition, we also set up 3 sets of experiments, E4K1, E4K3

and E4K4, to verify the effect of sparse selection of experts

in MoE on the fusion results. In Fig. 7, we find that E4K2

can outperform E4K1 and E4K3 in 7 metrics and E4K4 in

all metrics. Therefore, in this work, we set 4 experts for

each MoE and sparsely select 2 experts for integration.

Hyperparameter. As shown in Fig. 8, we choose five val-

ues for tuning parameter α (1, 5, 10, 20, and 40) and exper-

iment with them in turn. When α is less than 10, the fusion

results fail to exceed the performance on all metrics with α
equal to 10. When α is greater than 10, there is an improve-

ment in only 2 metrics (SF and AG) compared to α equal to

10, but the other 6 metrics show a decrease. Therefore, in

this work, we set α to 10 to obtain better results.

5. Conclusion

In this paper, we propose a novel dynamic image fu-

sion framework with a multi-modal gated mixture of local-

to-global experts (MoE-Fusion), which can produce reli-

able infrared-visible image fusion results. Our framework

focuses on dynamically integrating effective information

from different source modalities by performing sample-

adaptive infrared-visible fusion from local to global. The

MoE-Fusion model dynamically balances the texture de-

tails and contrasts with the specialized local experts and

global experts. The experimental results on three chal-

lenging datasets demonstrate that the proposed MoE-Fusion

outperforms state-of-the-art methods in terms of visual ef-

fects and quantitative metrics. Moreover, we also validate

the superiority of our MoE-Fusion in the object detection

task. In future work, we will explore leveraging the uncer-

tainty of different images to guide the fusion, and inves-

tigate developing an uncertainty-gated MoE paradigm for

dynamic image fusion.
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