
X1 S3L 

USP-2 
00-26 

Drs. G.H. van 	KOLEF 
EERSTE MEDEWERKER 
BCRS PROGRAMMABUREAU 

Towards the real-time use 
of Quîkscat winds 

A. Stoffelen 
J. de Vries 
A. Voorrips 

BCRS 00-26 MD 





rft)11fl1flft1 lfl 
1 	Rij ks\vatrtaaI 

p 

Towards the real-time use of Quikscat winds 

A. Stoffelen 
J. de Vries 
A. Voorrips 

Royal Netherlands Meteorological Institute 
(KNMI) 

USP-2 report 00-26 
USP-2 project 1.1/DE-04 
ISBN 90 54 11 3308 

February 2001 

This report describes a project carried out in the framework of the User Support Programme 
(USP-2) under responsibility of the Netherlands Remote Sensing Board (BCRS) 



EXECUTIVE SUMMARY 

ERS scatterometer observations have proven important for the forecasting of dynamical 
weather, such as tropical cyclones. Recently, SeaWinds scatterometer measurements from QuikScat 
have become available. SeaWinds on QUikSCAT provides great coverage over the oceans. However, 
quality monitoring, ram contamination, wind direction noise characteristics, and wind direction 
ambiguity selection need further study to allow routine use in weather forecasting. 

We describe our work on QuikScat product validation and inversion of the backscatter data to 
winds. A new procedure to quality control (QC) SeaWinds scatterometer observations, in particular 
to screen Out rain-contaminated Wind Vector Ceils (WVC), and a new procedure to assimilate 
QuikScat observations are developed at KNMI. The QC method is based on a methodology that 
was used to screen anomalous ERS and NSCAT backscatter triplets or quadruplets respectively. The 
methodology checks whether the consistency of the backscatter measurements at a particular WVC 
is compatible with the consistency as predicted by the Geophysical Model Function (GMF). Ram 
contaminated points are screened Out effectively thus opening the way to effective wind information 
assimilation. 

The noise in the 25-km SeaWinds wind direction bas detrimental effects on usefulness of the 
winds. We attempted to reduce the noise by providing a coarser resolution product. We made 
checks that the inversion at 100-km resolution is performed without systematic biases in the winds, 
and verifled the better spatial consistency and at this resolution for low winds (tropics). However, 
further optimisation and validation of the GMF and the inversion process are recommended, in 
particular for the bigher wind speeds. Improved spatial consistency is beneficial for a successful 
ambiguity removal. 100-km SeaWinds first-rank solution appear much better as the 25-km winds. 

The ERS scatterometer two-dimensional variational ambiguity removal procedure, called 2D-
VAR, is generalised to deal with ambiguous solution sets with more than two solutions of varying 
probability and quality. ERS provides two ambiguities with about the same quality and probability. 
Extension of the assimilation procedure is essential to deal with the average 83% probability of the 
first rank SeaWinds solution and the occurrence of occasional high-probability third and fourth rank 
solutions. Moreover, it opens the way to the assimilation of the SeaWinds backscatter data in those 
WVC where the wind vector is not well determined, in particular the outer swath where only two 
azimuth looks are available. The on average high rank-one probability makes the ambiguity removal 
successful in many cases even though third and fourth rank solutions are often present. 

2D-VAR products were validated both objectively and subjectively. The objective validation 
resulted in a skifl comparable to the JPL product. Refined objective tests are recommended to 
highlight differences between the schemes. KNMI meteorologisis sub)ectively evaluated selected 
cases where SeaWinds deviates substantially from the numerical weather prediction reference wind 
fleld. It is found that the SeaWinds products are reliable in the so-called sweet parts of the swath, 
but of more variable quality in the nadir region; the outer swath was not considered here. Further 
sub jective evaluation is ongoing to help evaluate the tuning of the processing system. 

The real-time use of SeaWinds data can only be reliable if appropriate quality monitoring and 
control routines are operated. The quality information should be available and provided at the same 
time as the winds.  As was found for ERS, the WVC quality control rejection rate, the normalised 
inversion residual and the wind speed bias and wind direction standard deviation against a NWP 
model provide effective instrument and processing monitoring parameters. They can be used to 
provide guidance as to whether the real-time SeaWinds wind vector data are of nominal quality. 
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The SeaWinds quality control, inversion, monitoring, and 2D-VAR as described here are an 
excellent preparation for the assimilation of scatterometer winds in variauonal meteorological 
analyses, such as 3D-VAR in HIRLAM or 4D-VAR at ECMWF, since the methodologies are the 
same and the main challenge in the assimilation of scatterometer winds lies in the ambiguity 
removal. At the current level of processing, vanational analysis quality control schemes may become 
slightly more active than in case of ERS scatterometer data, although we did not inciude any of the 
common gross quality checks in 2D-VAR. Moreover, the 2D-VAR product is useful for operational 
meteorologists in nowcasting or short-range forecasting, and for use with 01 data assimilation. As 
such, we expect that the work described here paves the way to the successful use of SeaWinds for 
meteorological forecasts and analyses. 



PREFACE 

The work in this report was funded by the BCRS in the context of the Netherlands Remote 
Sensing Programme (NRSP). The objective of the work described in this report is the timely 
development of a good quality near-real time wind product from SeaWinds guaranteed in the time 
frame between now and the METOP mission. The weil-established scatterometer user community 
at large benefits from this activity, providing high-coverage scatterometer wind data in time. Here, 
we in particular demonstrate its benefit for NWP in Europe, and for the direct use by meteorologists 
at KNMI. KNMI has much experience on wind extraction from scatterometer data involving many 
projects. Within the Ocean and Sea Ice SAF the wind processing for ASCAT on METOP is 
prepared using ERS scatterometer data, serving the European user community at large. By using 
scatterometer winds with larger coverage such as SeaWinds, this preparation for ASCAT could be 
made more optimal. With the help of a EUMETSAT fellowship, KNMI participates in the work on 
the validation and interpretation of QuikScat data. In this work, KNMI coilaborated with NASA 
and other European entities, such as the ECMWF, to demonstrate the methodology for the 
interpretation of QuikSCAT data, inciuding aspects such as data validation, data quality control, and 
wind retrievat In the NWP SAF KNMI collaborates with ECMWF and the Meteorological Office 
of the UK to develop a methodology for assimilation and monitoring of SeaWinds observations. 
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1 INTRODUCTION 

ERS scatterometer winds have proven to be very useful for the forecasting of dynamic weather 
(Isaksen and Stoffelen, 2000). Increased coverage, such as from tandem ERS-1 and ERS-2 
measurements, clearly improve the forecasts of extreme events (e.g., Stoffelen and Beukering, 1998; 
Le Meur et al, 1997). Improved coverage from the Ku-band scatterometers NSCAT and SeaWinds 
have thus great potential (Atlas and Hoffman, 2000). See also figures 1.2-3. Preliminary attempts to 
assirnilate SeaWinds data have been carried out with mixed success and improved data 
characterisation and assimilation procedures are needed (Leidner and Isaksen, 2000). 

Severe storms that hit Europe often originate over the North Atlantic Ocean, where sparse 
meteorological observations are available. As a consequence, the initial stage of severe storms is 
often poorly analysed and their development poorly predicted (ESA, 1999, WMO, 2000). The 
SeaWinds data coverage is such that developing storms are likely hit, thus depicting their position 
and amplitude. For example, the Netherlands was hit by a storm in late May 2000 when three people 
were killed. Appropriate storm warnings for the public were issued by KNMI a day before the storm 
occurred. However, the meteorologist on duty had littie observational evidence of the precise 
position and amplitude of the meteorological disturbance leading to the storm and furthermore the 
available meteorological models were not consistent. SeaWinds data were available on the critical 
location and time and could have provided more confidence on the necessity to issue storm 
warnings. However, the SeaWinds product as available from NOAA was contaminated by serious 
ambiguity removal errors and did not provide any meteorological guidance, as depicted in figure 1.1. 
In such cases, SeaWinds product lmprovement as described in this report is essential. 

The SeaWinds on QuikSCAT mission from NASA is a "quick recovery" mission to fl11 the gap 
created by the loss of data from the NASA Scatterometer (NSCAT) after the ADEOS-1 satellite lost 
power in June 1997. QuikSCAT was launched from Vandenberg Air Force Base (USA) in June 19, 
1999. A similar version of the SeaWinds instrument will fly on the Japanese ADEOS-Il sateffite 
currently scheduled for launch in late 2001. SeaWinds on QuikSCAT and on ADEOS-Il in late 2001 
may provide a bridge between the ERS and METOP missions in case that the ERS-2 scatterometer 
instrument fails and then provide a continuous scatterometer data availability to suit the well-
established meteorological user community. Furthermore, the wide swath of SeaWinds is a 
potentially large resource for near-surface wind information. 

Because of the fortuitous antenna configuration of the ERS scatterometers, a practical and 
straightforward solution for the inversion problem exists (Stoffelen, 1998). In case of NSCAT, the 
antenna geometry is less ideal, but this is compensated by the use of a fourth measurement in 
horizontal polarisation for the mid beam; ERS uses only vertical polarisation measurements. The 
SeaWinds instrument is a conically scanning pendil-beam scatterometer, wbich in comparison with 
the NSCAT fan-beam scatterometer has the following advantages: higher signal-to-noise ratio, 
smaller in size, and superior coverage. On the other hand, the SeaWinds scanning scatterometer 
concept poses new challenges to an effective extraction of wind information. QuikSCAT has an 
antenna illumination pattern that is dependent on node number or cross-track location, due to its 
circular scans on the ocean. The skill of the wind retrieval algorithm depends very much on the 
number of measurements and their polarization (horizontal HH or vertical VV) and azimuth 
diversity, where "azimuth cliversity" is defined as the spread of the azimuth looks among the 
measurements in the WVC. The nadir region has fore and aft looks of both beams (HH and VV) 
nearly 180° apart. At the edges of the swath the outer VV beam fore and aft looks are nearly in the 
same direction and no inner HH beam information is available. In both areas, the skill of the wind 
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retrieval algorithm is decreased with respect to the rest of the swath (called the sweet zone) where 
there are four measurements (fore-HH, fore-VV, aft-H}-i and aft-VV) with enough azimuth 
diversity. 

To demonstrate the capabilities of QuikSCAT, we will focus on that part of the swath, 1100 km 
wide, where four backscatter measurements are available, with different azimuth and/or 
polarisation. In that case the interpretation problem is similar to NSCAT and a quality-assured wind 
product can be developed. The inversion software based on the ERS scatterometer processing 
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(Stoffelen, 1998) modified by Figa (Figa and Stoffelen, 1999) for NSCAT has been adapted for 
QuikSCAT. In was verified to closely mimic JPL's inversion (Portabella and Stoffelen, 2000) and is 
used throughout this report. SeaWinds simulations confirm a higher standard deviation of speeds 
and directions in the outer and nadir parts compared to the sweet zone of the swath. No significant 
bias is seen in any part of the swath. 

1.1 APPROACH 

To demonstrate SeaWinds on QuikSCAT the following steps need to be taken: 

ocean backscatter calibration and validation (e.g., Stoffelen, 1999; Stoffelen and Anderson, 
1998; Stoffelen, 1997; Stoffelen and Beukering, 1997; and Figa and Stoffelen, 1999); 

wind retrieval algorithm (e.g., Stoffelen and Anderson, 1998 and 1993; Figa and Stoffelen, 
1999); 

wind and radar backscatter quality control algorithms (Stoffelen and Anderson, 1998 and 
1997; Stoffelen and Beukering, 1997; 

inciuding rain detection (Figa and Stoffelen, 2000; Portabella and Stoffelen, 2000); 

ambiguity removal (Stoffelen and Anderson, 1997; de Vries and Stoffelen, 2000); and 

monitoring methodology (Stoffelen, 1998b; Le Meur et al, 1998); 

After ocean calibration and noise characterisation of the backscatter measurements as reported 
in section 2, the existing wind retrieval metbodology can be applied over that part of the swath with 
sufficient azimuth and polarisation coverage. Section 3 discusses a better way of scatterometer wind 
validation. Section 5 discusses the implications of retrieving winds at 100-krn resolution. The 
residual of the retrieval is used for ambiguity solution selection and (geophysical) quality control, as 
described in sections 4 and 6 respectively. It is a generalisation of what is being applied in PreScat at 
KNMI and ECMWF or as was developed for NSCAT at KNMI (Figa and Stoffelen, 2000; 
Portabella and Stoffelen, 2000). In particular rain elimination is very critical for SeaWinds (section 4). 
After the quality control and selection of potential solutions at each node, the ambiguity removal 
scheme is run. 2D-VAR (de Vries and stoffelen, 2000) is applied here as detailed in section 7. The 
performance of the processing scheme is validated both objectively and subjectively as discussed in 
section 8, whereafter in section 9 we discuss monitoring in near-real time, and a recommendation 
for operational implementation is made in the conciusive section 10 of the report. 

1.2 QUIKSCAT DATA 

For the simulations we used Seawinds BUFR data that had been disseminated by 
NOAA/NESDIS in near real time on March ISt  and March 2nd 2000. The data was retrieved from 
the MARS archive at ECMWF. 

Seawinds BUFR data has a record structure. A BUFR record contains observed Earth-located 
radar backscatter measurements and retrieved wind vector information, available at the time of 
processing, collocated in 25 x 25-km wind vector ceils (WVC's). Each BUFR record consists of a 
row of between 1 and 76 WVCs depending on the number of observations present. 1f there are no 
observations the row is not stored. A row of WVCs corresponds to a single cross-track cut of the 
Seawinds instrument measurement swath and is uniquely identified by its row number and orbit 
number. In addition each WVC has a umque ceil number. An orbit that covers the circumference of 
the Earth contains 1624 rows. 
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The backscatter measurements in the BUFR data are WYC-composites that are appropriately 
averaged finer grained ci°  data. The finer grained o °  data can be either whole radar pulses or 
"eggs" or egg slices, which are range resolution elements of an egg. Per WVC four "flavours" of 
backscatter measurements (beams) can be present. Based on the antenna geometry we distinguish 
between a for-inner, fore-outer, aft-inner and aft-outer beam. For each WVC the antenna geometry 
is different so additional parameters/flags are present describing the measurement conditions. 
Described are beam geometry, o°  -location, antenna polarisation, noise characteristics, the Earth's 

surface condition and o°  -quality. Here we report generally on data from WVC's 13-28 and 49-64, 
corresponding to the "sweet part" of the swath. 
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2 BACKSCATTER DOMAIN 

2.1 VISUALISATION 

It is useful to visualise sets of measured u 0  observations for (Stoffelen and Anderson, 1997a) 

checking the validity of the geophysical model function (GMF) that is used in the inversion; 

a visual check of the data to characterise noise and to identify outliers; 

depicting the geometry of the inversion problem 

The most fruitful visualisation of the backscatter measurement (phase) space that was applied 
for ERS scatterometer data was to make a selection of O re  + 0 	constant, and to plot 

fore - O mid p against oro. Why this is fruitful can be understood by elaborating on a rough 
expres sion of the GMF 

ci° (V,Ø;9,a,p)= 4 + 4 cos(Ø —a)+ 4 cos(20 - 2a) 	 (2.1) 

where V is wind speed, Ø wind direction with respect to the mid beam pointing direction, p the 
polarisation, 0 the incidence angle, and a the azimuth look direction with respect to the mid beam 
pointing direction; A, = A.(V,0,p), and, particularly for V-polarisation, A, «A2 .. 1f, as for the 

ERS scatterometers, we further realise a fore  = afi we find 

0 re  +a 0  = 24 +2A2  cos 2a cos 2Ø aft

ore - o = 	2A2  sin2asin2q$ 
(2.2) 

where a is really afore.  Since for ERS afore = 450 and amid = 00 we find the three independent 
coordinates 

re + cajl   =24 

aforeqfl =2A2 sin2çb 
	

(2.3) 

4m+Am COS 2 

This means that taking a cross-section o +  aft = constant, comes down to keeping the wind 
speed (almost) constant. Therefore, in such a cross-section where the axes are determined by the 
other two coordinates, one can easily draw the GMF curve that (almost) describes a double elliptical 
shape for varying 0, together with the measurement points, and hence simply check the validity of 
the GMF or the relative calibration of the fore and aft beams. Note that 4 and  4 increase with 
increasing wind speed such that in three dimensions the GMF describes a cone-like surface 
(Stoffelen, 1998). 

The NASA scatterometer, NSCAT, on board the Japanese ADEOS-I was tested in a similar 
way. Here, a complication lies in the fact that in addition to vertical polarisation, horizontal 
polarisation is used on the mid fan beam, where no longer A, «4 applies. The second 

complication is that the mid beam is at am,d = 25°. Nevertheless, Figa and Stoffelen (1999) found a 
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Lissajous revolutions are now clear/y discernible. Cross sections of this 'jIe are being used to validate aspects of the 
GMF dejinition. 

convenient transformation, revealing relevant properties of the GMF. The transformation has 
however not been extensively tested in the inversion procedure. 

For QuikScat the situation is more complicated, because a is varying with the distance from the 
sateffite ground track and hence with WVC number. In fact, it is not dear what would be a sensible 
cut through the (2- or 4-dimensional) cone. Alternatively, we can simpiy plot 	re against o for 
all quadruplets, but separated for \TV  and HH. Examples are shown in figures 2.1-3. Figure 2.1 
shows scatter plots for simulated data, without noise, for various parts of the swath. The Lissajous-
type curves represent NSCAT-2 curves for constant wind speed and varying wind direction. It is 
dear that the form of these curves depends very much on the azimuth angle a. Note that for 
a = 450 in the lower-left panel, the modulation of 0re  + 	for given wind speed is indeed small. 
Already it is dear that the outer edge of these curves should coincide with the outer edge of the 
cloud of measurements, if the NSCAT-2 GMF is perfect and the measurements contain no noise. 
Also dear is that, due to the geometry of the GMF, the desity of points increases when the Lissajous 
curves are parallel to the diagonal. Figures 2.2-3 show the same scatter plots, but respectively with 
noise added according to the K values in the measurement files, and for the actual observed data. 
It is dear that the picture is blurred compared to the no-noise curves, and also that the density 
jumps associated with the diagonal di.rection of the Lissajous curves are less dear. But already we 
can conciude that the QuikScat measurements follow the NSCAT-2 GMF to a fair degree over the 
whole swath, and with a noise level that is realistically estimated from the observed data. This is, 
figures 2.2 and 2.3 appear very similar. 

Figure 2.4 shows a refined analysis of the above, where twodimensional log-density contoured 
histograms are made of the scatter plots, and sections through these are plotted. In the contour plot 
(left) we have added for reference the theoretical outer edge of the Lissajous curves as shown before 
in figures 2.1-3, allowing easier comparison with the data points. In the right panel, the section 
through the contour plot shows nicely this outer edge. Moreover, an inner edge is observed at the 
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other location where the Ussajous curves are parallel to the diagonal and the data density peaks. One 
can infer that the inner distribution limited by the inner edges is mainly due to points with 

E (- 900,900), and that the rest of the distribution with the outer edge peaks correspondsto all 
other Ø. As such, this type of plot aliows a more detailed analyses of the quality of the QuikScat 

GMF. Approaches inciude the sep arate plotting of points with Ø e (- 900,900) and those with all 
other values of g$, and compare the expected distributions with the real ones. We note that all WVC 
obey to the saine GMF with ony different a; the combination of cross-sections for all WVC thus 
reveals in principle sufficient relevant information on the wind speed and direction dependency of 
the GMF. 
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scatterometer wind direction skill, thereby taking into account the ambiguous nature of these 
observations. 
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Figure 3.1: Example ofjoint distribution of the JPL inverted and NCEP wind ipeeds (ltft) and directions (right). 
Directions are with reipect to the cross-track direction and JPL 'i closest to NCEP is used. 
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Figure 3.2: Joint distribution of the JPL inverted and KNMI inverted wind speeds (lft) and directions (nght). 
Directions are with respect to the cross-track direction and KNMI's closest to JPL is used. 
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3.1 WIND DIRECTION SKILL 

As illustrated in figure 3.1, one can validate the inverted wind directoion against a reference wind 
direction, such as from NWP models or buoys, by taking the closest to the reference, and 
computing the RMS difference. However, it is dear that the more ambiguous solutions are provided 
by the inversion, the smaller the RMS will be, because the chance that one of the solutions will be 
close to the wind reference will increase. In the limite of an infinite amount of observations, the 
RMS will even be zero, while the information content of the set of solutions in reality decreases with 
an increasing number of solutions, because there is no a priori way to say which of the solutiuons is 
the correct one. To avoid this problem, one can validate the selected (by AR) or the rank-1 
solutions, but since both rank-1 skill and AR skill are not perfect, these approaches reveal a 
pessimistic view on the inherent information content of the scatterometer regarding wind direction. 
One may expect that the rank-1 skill and the AR skill generally decrease with an increasing number 
of solutions. 

Therefore, we attempt here to define a "normalised" RMS (NRMS) difference, which reflccts in 
a fair way the quality of the closest solution. This NRMS contains a normalisation factor which is 
equal to the expected value in the case that there is no skill in the system 

NRMS = RMS 
ØCØT 

[ 

«0C 
0Ty)J 

(3.1) 

where q$T is the truc wind direction, q5C is the solution closest to the truc solution, and ( ) denotes 

the expected value in case that there is no skill. This is in the case (/$ is randomly distributed with 

respect to q$, or vice versa 5T is randomly distributed with respect to q$. Of course always 

I
0c_0T_<ff. 

To define the NRMS, we have to specify the denominator. We followed two approaches. 

1) 	Suppose that we have N solutions, sorted such that 0 :!~ q$ <02 ....... < ON <2ff. We 

compute the a priori expected variance of this solution pattern in case of no wind 
direction skill. For convenience, we define 0 	- 2'øN+1 	+ 2ff. The boundaries 

between the solutions, which define their angular sector of representation, are defined by 

0B = 	 1 = {1. .... N+l} 	 (3.2 

We take the case of no skill in the solutions as a random probability of 0T with respect 

to the solutions, i.e., p (0i-)= (2ff)' . Then we get 

N
8 

	
N 

=_!_ 	'J(c OT)2døT =—(o+ -ok) 
0 	 2ff i1 

(3.3) 
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where, in the last equality the boundaries as defined before have been substituted. 

The variance expression thus obtained depends on the number and on the distribution 
of the solutions. Some appealing features of this definition can be easily derived. The 
first one is that the variance decreases with an increasing number of solutions, hence 
giving a higher "penalty"in the NRMS. For instance, if the solutions are regularly 

	

distributed such that 	—q = 2,r/N, we find ((øc _r)2 )0 = r 2 13N 2 . Another and 

nice property is that, in the case that artificial "double minima" solutions are produced 

	

by the inversion procedure, such that 	- çb 	0 for certain j, this will have no effect 

on the normalisation. 

2) Now let us first select the solution closest to the reference and then compute the 
expected variance in case of no skill. Using the above equations and if we first order the 
solutions such that always 0, = q$C we can define 

( p(OT)_ r g bp 

	

—)-' ifOB <0 r 	B <O 

1 	
(3.4) 

	

0 	otherwise  

Then we find 

((Oc T )2 
)o - [(02 - 01 

)3 
+ (0 	

)3] 

(3.5) 
- 	 12(02-00) 

For N = 1 and N = 2, the variance expression yields the same as before, i.e., the knowledge of 
which solution is selected is irrelevant. Also in the case that the solutions are regularly spaced this is 
the case, as one may expect. However, in other cases, the variances computed by both methods are 
different. 

The most important difference is that the first approach yields a method that is only dependent 
on the distribution of solutions, whereas the second approach yields a variance that only depends on 
what turns out to be closest solution and its neighbour solutions. 1f the solution pattern is random 
with respect to q$T then both equations work very similarly. However, imagine the simplest case that 
we get three solutions with 01 = 0'02= 0,03 = 0,0 :!~ 0 :5 .ir. In figure 3.3 the expected variances by 
both approaches are plotted after carefully evaluting the expressions. We note that as long as the 
angular sectors are not too small, both approaches yield a very similar result, and the same at 
0 = ir/3. However, if the sector of the closest solution approaches zero, i.e., in this case when 

O =02 if 0 goes to zero, then the second approach provides an expected variance that goes to 

zero. In practise this is not a problem because also the term 0c - 	goes to zero, and 0 = 0 
corresponds to a case with one solution. 

Using the above example, let us examine a pathetic case to better understand the differences 
between both approaches. We assume that we always have three solutions with 

01 = 0'02= 0,03 = 0,0 :!~ q$ :!~ r. In case of no skiil both methods provide the same skill over a large 
data sample, since the computed "no skill" variance is by definition equal to the denominator of the 
NRMS. However, in the other extreme, the high skill case, a difference occurs. Let us assume that 

O =02 and that SD(0' 0T)_ 	e «0. This means that the orientation of the solution 
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pattern is closely correlated with q5T Figure 3.4 depicts the resulting NRMS for a case with relatively 
large Ø and small ç Approach 1) gives a relatively low NRMS when the three solutions are close 
together (small q$), whereas approach 2) give a relatively high NRMS in this case. The reason for this, 
is that approach 2) takes into account the correlation of the orientation of the solution pattern with 

T whereas approach 1) does not take this into account. In scatterometer data one often observes 
that the solution pattern and its orientation depend on 0 T . As such, inciuding the skill of the 
orientation of the solution pattern with respect to 0T seems most appropriate generally and 
therefore approach 2) is recommended. 

1.0 

Fzgure 3.3: Variance <(0 
C 
- 

1)2> for the case N = 3 with solutions Ø = —0102 0,03 = 010 ::~ q$ :!~ .2T, as a 

function ofb. The solid line gives the results obtained with approach 1); the dotted line is approach 2) with Ø c = 02 
and the dotted line appraoch 2) with either of the two other solutions. 
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II 
Approach 1 ((q$C_ 0 T)2) 	NRMS 

1 	1>11 	11>1 

1 	11>1 	1>11 

F:gure 3.4: Illustration of case withfixed solutionpattern aspromded infigure 3.3 for a narrow true wind vector 
distribution depicted b'y the thin contour line. Example 1 (top) and II (bottom) are such that = <q. The table 
(nght) compares the apriori "no skill" variance <(qfi C - T)2> and the NRMS of the two examples for the two 
approaches discussed in this section. 
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4 QUALTTY CONTROL AND RAIN ELIMINATTON 

In contrast with C-band scatterometers such as on ERS and ASCAT, Ku-band scatterometers 
are sensitive to ram and procedures need to be developed to screen Out rain-contaminated 
measurements. Besides ram elimination, geophysical anomalies exist in 1 or 2 % of cases and where 
the retrieved winds are detrimentally affected in case of the ERS scatterometers. 

A quality control procedure has been developed for SeaWinds based on the QC methodology 
for the ERS scatterometer (Stoffelen and Anderson, 1997; Stoffelen, 1998). In addition to a 
screening similar to ERS, the procedure acts to remove rain contaminated points (Figa and 
Stoffelen, 2000; Portabella and Stoffelen, 2000). The methodology checks whether the consistency 
of the backscatter measurements at a particular Wind Vector Ceil (WVC) is compatible with the 
consistency as predicted by the Geophysical Model Function (GMF). A measure of this consistency 
is provided by the inversion residual or MLE (Maximum-Likeihood Estimator). A limitanon of this 
approach is obviously that anomalous geophysical conditions that are stiJl compatible with the GMF 
are not screened Out, such as a few rain points that appear as 15-20 m/s winds. Such points should 
ideally be rejected by the standard QC procedures of NWP data assimilation systems. 

Alternatively, one could use the backscatter polarisation ratio, but this has the same limitation 
and is more restricted (Wentz, 1999), i.e., the polarisation ratio discrimination is implicitly inciuded 
in the MLE check. Particularly in those parts of the SeaWinds swath where azimuth view diversity or 
polansation coverage is lacking, notably around nadir and in the far swath, the wind vector may be 
underdetermined and QC by a consistency check, such as in the above-described methodology, 
impossible. The part of the swath where this occurs is limited fortunately. 

Another alternative is to use the SeaWinds passive noise measurement to detect ram, though this 
has low accuracy (of 13 K) and a relatively large footprint (> 75 km; Jones, 1999). Combining MLE 
information and the passive noise measurement JPL developed a rain elimination routine that has 
recently been implemented in the near-real time product. Vadidation of this QC fiag is ongoing at 
KNMI. SeaWinds on ADEOS-TI may profit from AMSR for rain elimination, when all parts of the 
swath may be checked for ram. Work remains to be done to develop procedures to extract the wind 
information in those swath parts with poor azimuth or polarisation diversity. 

In the QuikScat processing used tbroughout this report, we implemented the KNMI ram 
elimination algorithm (Portabella and Stoffelen, 2000). 
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5 OBSERVATION SMOOTHING 

SeaWinds data are nominally provided with a sampling of 25 km, whereas most NWP models 
use observations at at least a 100-km density. The smail-scale structures observed by a scatterometer 
cannot be fitted well by the relatively broad spatial structure functions, and statistical noise in the 
analyses resuits. For many observing systems data thinning procedures are in use (see e.g., Rohn et 
al, 1999; Anderson et al, 1999; Leidner and Isaksen, 2000, McNally, 2000). The size of the spatial 
structure functions used in meteorological analysis for spatial extrapolation of the observed variables 
is mainly determined by the poor observation of the upper air flow (ESA, 1999). For scatterometer 
data, in order to reduce systematic wind retrieval errors it is better to reduce noise and average 
backscatter measurements, cr0, to lower resolution before the non-linear wind retrieval process. For 
ERS and ASCAT observations the same applies, but where as a first step it has been shown that 
averaged winds compare better to the HIRLAM (2000) first guess than thinned data (Stoffelen and 
Beukering, 1998). In a second step, de Vries and Stoffelen (2000) applied observation grouping in 
one location, whereby the ambiguity pattems of all individual 50-km ERS scatterometer wind 
observations are kept, but si-ill a spatial averaging effect in 2D-VAR was achieved thereby avoiding 
smail-scale noise and phase errors in the 2D-VAR analysis and ambiguity removal. 

The above problem of numerically analysing smail-scale weather patterns provides an important 
motivation to present scatterometer wind data to operational meteorologists for nowcasting and 
short-range forecasting purposes (see e.g. figure 1.1-3). However, sliM appropriate quality of the 
retrieved winds and ambiguity removal has to be achieved in order to present a reliable product. The 
cases presented in figures 1.1-3 indicate that this is not achieved in the 25-km near-real time 
QuikSCAT BUFR product. In order to improve quality and reliability we investigate here the effect 
of spatial smoothing of the backscatter data. 

A procedure is tested and incorporated in the inversion module to average backscatter 
measurements in a resolution ceil of varying size, a so-called Super WVC or SWVC. In line with the 
requirements for NWP we first assess QUikSCAT wind quality at 100 km resolution. 

—- 

Figure 5.1: L.eft: Schematic depiction of GMF at two drent resolutions. 1f the GMFfor a IVVC is defined by the 
black line, the GMF for a SU7VC is better defined by the grey line. if the typical vind variabilify is taken into 
account. The four black dots represent backscatter data atfour W/VC, and the grey dot is their average representative 
for a SW/VC. Rzght: Vaîation of the wind b5 W7VC in a SW7VC. 
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5.1 BACKSCATTER DATA AT 100 KM 

We address first how from the given backscatter observations at 25 km resolution (a°25) 
composites at 100 km resolution (o.0i)  can be derived as an intermediate step, where there are 
several issues to take mto consideration 

GMF definition: Figure 5.1 depicts four WVC constituting one super WVC or SWVC. The 
mean wind in a WVC is Vwvc  = Vswvc  + ó Vwhere Vswvc  is the mean wind in the SWVC 
and óVan increment vector drawn from a normal distribution in the wind components u 

and v with zero mean and standard deviation of variance cr = = o. cr2  is the integral of 
the expected wind component variability density spectrum from the scale of the WVC to 
that of the SWVC. Note that by this definition the dynamic range of winds is increased by 
increasing resolution (see also Stoffelen, 1998b). The WVC backscatter quadruplet data 
corresponding to these winds relate to them in a harmonic and non-linear way. The SWVC 
quadruplet does thus not obey the same internal consistency as the WVC quadruplets do, as 
depicted in figure 5.1. In other words, the GMF at WVC resolution is not identical to the 
GMF at SWVC resolution. We investigate the first order magnitude of this effect in a 
simulation experiment, where we compare the backscatter distributions at 25 and 100 km for 
diverse wind conditions. The resulting mean difference is used in a calibration experiment to 
assess its importance on the retrieved winds. 

Noise: Moreover, the statistical distributions of 0 025 and o°  differ due to the level of 
instrument noise and geophysical noise (due to wind variability). The instrument (speckie) 
noise is reduced by a factor of four, i.e., the same factor as by which resolution is reduced. 
Reduced noise will result in more accurate retrieved winds. The effect of geophysical noise 
will however counteract the effect of reduced instrument noise. We thus need to investigate 
noise effects in the averaging process and 100-km wind retrieval. We do this in a simulation 
experiment. 

5.2 SIMULATION 

The truc wind reference for the simulation was chosen as follows: 

The NOAA BUFR product 25-km rank-1 wind field was assumed to be truth. We assume 
that this field resuits in a realistic backscatter field spatial variability and consistency. One 
could argue that the variability is too high, since the QuikScat data contain noise beyond the 
geophysical variations. This means that the geophysical noise effect on the GMF and the 
inversion is somewhat exaggerated in the simulation. 1f we would use NWP fields as truth 
there would have been no variability whatsoever on scales between 25 and 100 km, making 
the simulations meaningless. 

We used the rank-1 wind vector solution (WVS) fom the JPL inversion of the WVC closest 
to the centroid of the super ceil for validation. The fact that the rank-1 wind field is not 
always spatially and meteorologically consistent is thought to have little effect on the 
simulations. 
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Having chosen a truc wind reference we subsequently simulated a backscatter measurement 
(a20 ) using the NSCAT-2 GMF. We added Gaussian noise to the backscatter measurement to 

obtain cr20 N•  We considered three scenarios regarding the wind retrieval in each SWVC: 

Simply use per beam the up to 16 a5 N  values and the observed noise values of 

Kpa , K , 	azimuth and incidence angle from the WVC's for the valid data in the BUFR 
product. 

Construct a K -averaged backscatter value per beam representative for the super ceil from the 

up to 16 o N , i.e. 

(varo) = K paO•205  N2 + Ko°5 N  + K 7 	 (5.1) 

(varo]00)= N 	
1 	

(5.2) 

/
o I çVaro 5 ) 

IOO N = (V00). 	25 Ni 	 cr2, 	 (5.3) 

The value of (varo o ) is passed to the inversion by appropriately setting the values 

(varo.° loo) K'°°— 	 100_ 100_ 	 54 pa f 	\2' pfi py 
'Pioo N) 

The values of the azimuth and incidence angle are averaged per flavour for the 16 W\TC's. With 
this scenario we emphasise the importance of accuracy in the backscatter measurements and 
hypothesise that noise variability within a 100-km SWVC has a significant effect on the wind 
retrieval, especially at low wind speed. 

The same as scenario 2 except that we take the geometric mean of the 16 u205  N values as the 
backscatter value representative for the super ccli, i.e. 

IN 
a100 = 25N =025N, 

i=1 

5.3 CALIBRATION 

In section 5.1 it was explained that normal wind component variability on scales between 25 and 
100 km causes the GMF to be different at 25 and 100 km resolutions. For example, for a low value 
of o, it is probable that neighbours exbibit higher 	and as a result the associated cT is 25 	 100 

probably higher. For low a20  we expect thus o > o. However, we only have a GMF and 10 	25 

(725 N data processing scheme tuned (by e.g., 205 N calibration) to deal with 25-km data. A 

difference in o°  distribution due to resolution may result in a systematically wrong mapping of 
backscatter values the wind domain with less favourable wind error characterisucs like a high degree 

(5.5) 



21 

of skewness or wind direction aliasing. In particular at 10w c °  and thus wind speed this problem is 

accute. A possible method to overcome this inconsistency to first order, is to map the SWVC uO  100 N 

distribution onto the WVC O N 
distribution. In a calibration experiment we investigated whether a 

change in the mean of the distribution of T° N  compared to that of O N needs correcting for. 

We used simulation scenario three for the test described here. 

The 100km-minus-25km difference was obtained by comparing the closest to centroid <T O  25 N 

from <TO F4  As a reference we used the closest to centroid simulated backscatter values 02O5 s 

Figures 5.2 and 5.3 show the noise characterisucs for the inner beams (fore and aft) and outer 
beams. In the upper panels of these figures the separate contributions are shown. The noise 
characteristic at 25-km resolution (green line) is basically the zero mean Gaussian noise that was 
added in the simulations. The lower panels show that the wind variability gives rise to a fairly 
constant but small bias for low values of a° , corresponding to low wind speeds. This bias is 

different for inner and outer beams. We did not find a noticeable difference in the bias between fore 
and aft beams. The erratic behaviour for backscatter values upward of —20 dB is due to lack of data. 

Based on the result of figures 5.2 and 5.3, we applied a proportional a°  bias correction to 

aloo N For the inner beamscro 	was reduced by a factor of 0.9998 and for the outer beams by a 
factor 0.9997. This correction is aimed to reduce the bias for low backscatter values. However this 
correction did not have an impact on the wind statistics as they are shown in next section. Therefore 
we may conciude that a bias correction for the noise is not necessary. To verify whether the selected 
simulation was representative for real data we determined the 100-km and 25-km backscatter 
distributions after repeating scenario 3 with the observed backscatter measurements from the BUFR 
product instead of simulated ones. Figure 5.4 shows the resuits and verifles the minor effect found 
with the simulated data. 
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Figure 5.2: Noise characteristics inner beam, simulated data 
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5.4 INVERSION 

After the inversion we compared the retrieved rank 1 wind solution and the closest-to- truth 
wind solution with the true wind. The comparison gives insight into the systematic and random 
errors produced in the different scenarios when going from 25 km to 100 km. We can also 
determine the V rank skill for each scenario. We define the l rank skill as the percentage of WVC's 
for which the rank 1 ambiguity is the one closest to the truc wind. The Ist  rank skill depends on 
signal-to-noise (SNR) ratio, wind speed, and relative azimuths of the radar beam with respect to the 
local wind direction and polarisation. 

In figures 5.5-7, log-density contoured two-dimensional histograms are shown for the simulated 
versus Seawinds rank 1 (truc) wind comparison. In the histograms the highest valued contour is 
equal to the maximum value reduced by a factor 0.9, followed by lower contour levels that are half 
the value each time. 

Figures 5.5 presents the wind statistics for the scenario of using 16 CY25 N 	the wind inversion, 

which is scenario 1 of section 1.2. The wind speed distribution exhibits a positive bias for speeds 
between 1 and 15 m/s with simulated wind speeds higher than the truc wind speeds. This shows 
that scenario 1 overestimates the mean strength of the backscatter signal in the SWVC (i.e., o s). 
The wind direction distribution is not uniform for all directions. Peaks around 90 and 270 degrees 
suggest the sampling of winds with persistent direction over significant parts of the globe, such as 
the westerlies or the trade winds. The distributions in the upper left and lower right part of the 
histogram are caused by the periodicity of the wind direction domain. 

Figure 5.6 shows the result when using K -averaged 	's in the wind retneval. We can see that 

in the wind speed distribution the simulated wind speed is biased low between 5 and 15 m/s, with a 
skew wind speed error distribution. The presence of this bias is also found in the wind component 
distribution in the form of a distinct S-shape curvature. At high speeds the contouring is erratic due 
to lack of data. The wind direction distribution furthermore shows a wave-like curvature indicating 
directional biases. At low speeds the wind speed distribution is somewhat positively biased with 
estimated wind speeds higher than the truc wind speed. 

Figure 5.7 shows the resuits of the simulations with a geometric mean o° . The symmetry in the 
wind speed distribution from 5 to 15 m/s shows a good and symmetric fit between the truc wind 
and the simulated wind. Evidence of this is also found in the wind component distributions. Above 
15 m/s the distributions become erratic due to lack of data and it is difficult to make a statement for 
the fit at higher speeds. At low speeds in the wind speed distribution the simulated wind speed is 
biased slightly high. However, such wind speed effect can be easily taken out in a wind calibration, 
e.g. as in Stoffelen (1999). The directional distribution lies tighter on the diagonal than in figures 5.5-
6, rcsulting in a lower wind direction error standard deviation. 

Comparing the resuits of the different scenarios we can conciude that a SWVC mean a°  based 

on the geometric mean of the backscattcr values of the individual WVC's (scenario 3) gives the best 
fit between simulated winds and the truth. In line with this, the statistics in the legcnd of the 
histograms show that the standard deviation of the clifference (STD) and bias are smallest for 
scenario 3. 
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Figure 5.6: Bi-dimensional histogram of the wind statistics resultingfrom the simulations with Kp-averaged 
backscatter values in the wind retrieval. 
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6 SEAWINDS ASSIMILATION 

Lorenc (1988) provides a detailed and comprehensive description of the problem of data 
assimilation. He derives the equations for "optima!" nonlinear objective analysis that form the basis 
of many current variational data assimilation schemes, usmg maximum probability as the major 
constraint. Stoffelen (1998a; chapter VI) describes the problem of the analysis of variables that are 
related in a non-linear way to the NWP model variables, such as scatterometer backscatter 
measurements. He suggests that normal distnbuted noise can introduce systematic biases when 
constraining a minimum variance or maximum probability solution, if the relationsbip that is used in 
the analysis between observed and model variable is not linear. 1f the goal in data assimilation is to 
achieve an unbiased estimate of the model state then the term "optima!" for a maximum probability 
solution in combination with the phrase nonlinear appears mislead.ing. 

sc,Do r 

R. 
10 

7 	 4 	 6 	 10 
0 

Fgure 6.1: In the upper panel, number of inversion solutions occurring (solid line) and number of solutions closest to 
the NCEP wind veloci (dashed line) as aflinction of normalised residual R,forfive orbits of data andfor the sweet 

part of the swath. In the lower panel the ratio of these two quantities isplotted. 

As the most practical solution for the assimilation of scatterometer data, Stoffelen (1998) 
suggests to assimilate retrieved scatterometer winds. This approach is further pursued here for 
SeaWinds scatterometer observations. Scatterometer winds can be retrieved accurately, since 
backscatter noise is generally small for all scatterometer systems. Backscatter-on!y noise resu!ts in a 
wind vector uncertainty of only about 0.5 m/s after the non-linear inversion. As such, the biases are 
lirnited. However, the interpretation of a radar backscatter measurement, that is most directly related 
to the anisotropic roughness of the ocean topography on the cm-sca!e, as a wind at lOm height 
introduces a much larger uncertainty that can be well modelled by a norma! wind component error 
distribution (Stoffelen, 1 998b). Wind vector measurements from a scatterometer have an estimated 
accuracy of about 2 m/s. This larger uncertainty in the wind domain makes the assimilation of 
retrieved winds more attractive than the direct assimilation of backscatter measurements. 



10 

0 
a 1 2 3 4 5 	 4 55 10 12 14 

4 

20 

1 5 

10 

5 

30 

Moreover, in the direct assimilation of backscatter observations, one would transform the first 
guess errors and the uncertainty in the Geophysical Model Function (GMF) in a non-linear way to 
the backscatter space, resulting in a biased and skew error distribution in this space. The first guess 
vector error is about 1.5 m/s (Stoffelen, 1998). The precise form of the cT °  error distribution would 
depend on wind speed, wind direction, and view configuration. The maximum probability in a skew 
distribution does generally not overlap with the mean of the distribution, nor has the maximum 
symmetric properties. In line with this, the assumptions made to derive a quadratic cost ftinction in 
variational data assimilation (2D-VAR, 3D-Var, 4D-Var) that 

a priori all states of the control variable are equally likely; and that 

the deviation between true state and background can be described by a Gaussian distribution; 

are invalid in the backscatter space. The optimal observation cost function and observation operator 
is not a priori dear in such a case and requires considerable thought (Stoffelen, 1998; chapters V and 
Vi). By assimilating retrieved winds this problem disappears, since the above assumptions do hold 
by approximation in this domain. 

NSCAT and SeaWinds use horizontal and vertical polarisation measurements, whereas ERS or 
ASCAT are solely based on vertical polarisation. This in combination with a varying measurement 
geometry resuits in a different wind direction ambiguity structure than for ERS or ASCAT. 

Fzgure 6.2: Scatter plot offirst rank normalised inversion residual R1  against second rank solution residual I{ on!y 
for cases with two solutions. Dots indicatepairs where the first rank is the one closest to the NW'P wind velociy; 

plusses are pairs where the second rank is selected. The left panel highlights on/y the lower range residuals of a total of 
1,500pairs, whereas the right panel ony shows hzgher rangepairs of a total of 15,000pairs. For R1  <3 the first 
rank is almost alwqys selected, unless R1  R2. For higher R1  either rank mqy be selected, indicating lesspredictive 
skill in the residual. Note however that allpoints in the rzght panel are screened bji our,QC. As such, Sea Winds 

ranking information appears to be an excellentpredictor. 
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6.1 A GENERIC SCATTEROMETER DATA ASSIMILATION APPROACH 

The ERS scatterometer cost function may be generalised to be able to cope with all 
scatterometer data. All scatterometer data can be characterised by multiple wind vector ambiguities 
that each have different probability and accuracy. A procedure is described here that estimates this 
probability and accuracy and as such provides the input for a general scatterometer cost function. 
The working of the cost function for ambiguity removal is tested and documented in next chapter. 

Generally data assimilation systems constrain to a background or first guess fleld and to 
observations (e.g., Lorenc, 1988; and Courtier, 1999) in a minimisation problem of the objective 
function 

(6.1) 

where J. is the observation cost function and .J,, the background fleld cost term. 

The observation term consists of a contribution from each observation and is related to the 
probability of a meteorological state, given the measurements. For scatterometer data we write 

JSCAT = —2 in 
	 (6.2) 

where, for a set of scatterometer data, a°0  we may write for the probability of the surface wind V 

1 v)= Y w{pfp,(R,)}N(v,,) 
N 

(6.3) 

where p,I)  is the prior probability of a solution t, i E [1, N], i.e., without knowledge of R. It is solely 
dependent on the wind direction sector that a solution represents and only relevant in case of more 
than two solutions, i.e., N> 2. For NSCAT or SeaWinds, the prior probability p just depends on 
the azimuths of the solutions (Figa and Stoffelen, 2000) and with equation (3.3) we define 

= 	
(6.4) 

p(R) is the probability of a solution based on the normalised residua.l of the solution i. We further 
discuss the combination of these probabilities and the formulation of the weight w in section 6.2. 

) is a normal distribution with maximum at the wind solution v and error width c. For ERS 

scatterometer data (Stoffelen, 1998) the values N = 2,pJ' = 0.5,p(Rn) = 1, w = 0.5, and c = (, Lv) 

with Lu = = 1.5 m/s are used. 

Stoffelen (1998) discussed at length the concept of measurement (phase) space. In this space a 
2D surface, called cone, exists spanned by the two wind vector variables (u,v) or (J/  ij.'). R is then 
denoted "distance-to-the-cone" and is a measure of how well a particular measured triplet fits the 
wind surface in the measurement space. Thus, a measured backscatter triplet is transformed into 
three independent variables, i.e., R u, and v. In the formulation above, the three variables p(R), Lu, 

and c determine the quality or information content of these three parameters. It thus appears 
logica1 to assume (ce, L) independent of R since these represent the independent wind variables. 

The generalised methodology presented here may also be adopted for those parts of the swath 
where the wind vector cannot be fully determined, because of limited azimuth or polarisation 
coverage, and where the ambiguity pattern can be of greater complexity. However, in these parts of 
the swath the solution minima may be less well defined than in the sweet zone, because of the wind 
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vector underdeterminacy. In that case, the width of the minimum can be decomposed into two 
independent wind components, e.g., along the wind vector solution and across, or any other 
orthogonal set that models the likely anisotropy of the retrieval solution minimum width. c, is then 
determined by the retrieval widths and the isotropic geophysical interpretation error of about 1.5 
m/s in a component. Another limitation is that for some parts of the swath QC may be difficult and 
assimilation therefore more risky (see section 2 above). AMSR on ADEOS-Il is likely to ease this 
problem. 

6.2 R DEPENDENCE OF THE COST FUNCTION 

In the case of QuikScat, the number of solutions ranges from 1 to 4 (as JPL, we truncate at four 
in this report with R strongly varying from one solution to the next. Since 

R 	_21n{p(v 1 co)} 	 (6.5) 

is a measure of the distance of a measurement from the wind cone (Stoffelen and Anderson, 1 997a), 
it seems reasoneable to assume that with increasing R, the probability decreases that a certain 
solution is the selected solution, i.e., the one closest to the truc wind velocity. To get a first 
impression of this we plotted figure 6.1. Here, the distribution of JPL inversion solutions is plotted 
as a function of normalised R together with the number of solutions closest to the NWP estimate4 . 

It can be seen that the fraction of selected (i.e., here taken as that closest to NCEP) decrease rapidily 
with increasing R indicating that R is a good measure of the probability of a solution. 

The result of figure 6.1 prompted us to look for a way to determine the weights w1  on the basis 
of R1 . To do this, we formulate the following 

Assumption: There exists afnnctionp5(x) such that, ifwe have a set of inversion solutions V, with normalised 
residual R, then the pro babilify that rankj is the one closest to the true wind, denoted here bj' sj, isgiven by 

P(s = j 1 R,,i e {1,N}) 
= p5(R) 

N 
p(R,) 

i=1 

To determine p(x), we concentrate first on only those cases which have exactly two solutions. 
Figure 6.2 shows a scatter plot of those cases. It can be seen again that in the left panel rank 1 is the 
selected one most of the time and rank 2 is only chosen if R2  is close to R,. For large residuals, as in 
the right panel, the difference between R2  and R, is a less good predictor for selection. However, 
note that R, > 4 corresponds to cases that we reject by our QC (section 4). 

By taking many more points than those shown in figure 6.2, we can construct a twodimensional 
histogram showing the relative probability of selecting either the first or the second rank, as a 
function of R. and R1. But according to our assumption, by applying (6.6) with N = 2, we find that 
the probability of selecting rank 1 is given by 

P(s = 11 R1,R2) = 
	p5(R1) 	

= {i + p(R2 )Ip(R1 )}' 	 (6.7) 
(i, ) + p (i?) 

(6.6) 

'R is defined as in section 4 but with the NCEP wind velocity taken in the normalisation function in stead of the retrieved velocity. 
However, the resuits presented hete do not depend strongly on the normalisation. 
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Hence, the two-dimensional bistogram gives us an estimate ofp(R2)/p5(R1) for every combination of 
R2 and R1. Figure 6.3, left panel, shows such experimentally detennined ratios as a function of R2 - 
R1. As can be seen, for not too high values of R1 the ratio seems to be a fairly constant function of 
R2 - R1, suggesling that p5(x) is a decaying exponential function of R2 - R1 when R1 increases. 
Therefore, we have attempted to fit the function 

p5(x)=exp[_(_
x 

[ a1+ax)j 

to the data. This function bas the nice asymptotical property that for large R2 and R1 the 
probabilities for selecting rank 1 and rank 2 become equal, which is the behaviour suggested in 
figure 6.2. We found a reasonable fit (figure 6.3, right panel) and for the values a1 a value of 0.30 

and for a2 

	

0.03 	 ; x:!~2.5 

a2 = 0.03 + 0.015(x - 2.5) ; 2.5 <x ~ 4.5 	 (6.9) 

	

10.06 	 ; x>4.5 

(6.8) 

Figure 6.3: Ratio of the number of realisations of R2 and the number of realisations of R1 as afunction of R2- R1, 
andfor values of R1 = 0.5 (solid), R1 = 1.1 (dashed), R1 = 1.7 (dotted), and R1 = 2.1 (dash-dot). The left plot is 
based on real data and the right plot is constructed using an exponential relationshitp5(R). The normalised residual 

can be well explained in terms of a wind solution pro babiliy. 
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All data 

Number of solutions 

2 3 4 All 

M 45,407 32,881 47,872 126,160 

Rank 1 88 (89) 77 (76) 71 (73) 79 (79) 

Rank 2 12(11) 18(19) 19(20) 16 (17) 

Rank 3 - 5 (5) 7 (5) 4 (3) 

Rank4 - - 3(2) 1(1) 

R2  - R, < 1 

Number of solutions 

2 3 4 All 

M 14,742 18,980 33,905 67,627 

Rank 1 70 (69) 65 (63) 62 (65) 65 (65) 

Rank 2 30 (31) 27 (28) 26 (26) 27 (28) 

Rank 3 - 8 (8) 8 (6) 6 (6) 

Rank4 - - 3(3) 2(1) 

R2  - R1 > 1 

Number of solutions 

2 3 4 All 

M 30,665 13,901 13,967 58,533 

Rank 1 97 (98) 94 (92) 93 (92) 95 (95) 

Rank 2 3 (2) 5 (6) 4 (5) 4 (4) 

Rank 3 - 1 (2) 2 (2) 1 (1) 

Rank4 - - 1(1) 0(0) 

Table 6. 1: Distribution in % of the "selected" rank, i.e., the solution closest to NCEP wind, over all ranks ranked 
in inoreasing order of R Data are stratijied wzth respect to the total number of solutions ivith columns of 2, 3, 4, and 
all solution cases. M is the number of cases in each column. The percentages between brackets are the actual observed 

distributions in 5 orbits of data; numbers without brackets are the predicted distributions using equations (6.6-9). The 
top table shows statistics over all data, the middele table over data wzth R2  - R1  -:5' 1, and the lower table over data 

with R2  - R> 1. 
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We can now use the formulation of p5(x) to predict how often a certain solution rank corresponds 
to the "true" solution for a varying number of solutions, and for varying distributions of R7... Table 
6.1 compares the predicted clistribution over the different ranks with the one actually observed in a 
sample of five orbits. Resuits are presented for all cases and for cases stratified using the conditions 
R2  - R1  :5 1 and R2  - R1  > 1. The correspondance is striking. Therefore, we can conclude that our 
assumption in the beginning of this section is a useful one, and that equation (6.8) can be used to 
determine the weights iv, in the scatterometer observation cost function in equation (6.3). 

We now determine how to combine the two probabilities that determine iv in equation (6.3). We 
assume that the solution pattern 1/, and the solution probabilities p(R) are two independent pieces 
of information that help to determine the probability iv, of each solution. A straightforward way to 
combine them is given by 

P(s = j 10,R,;i {1,1V}) = N 
	 (6.10) 

p5(R,)p7 

It turns Out that the sizes of the angular sectors are over a large data sample evenly distributed 
over the various ranks; hence, a table like 6.1 calculated on the basis of equation (6.10) in stead of 
(6.6) gives equal probabilities for all ranks, and a table based on (6.10) gives almost exactly the same 
resuits as a table based on (6.6). Nevertheless, equation (6.10) is likely the better choice as the basis 
for the cost function, since it, for each parucular wind solution pattern, takes into account the a 
posteriori probability of solution selection. Doing so, this resuks in a spatially consistent solution 
pattern and probability field (Figa and Stoffelen, 2000). 

The effect of using residual and sector information on j0T  is shown in figures 6.4a and 6.4b. 
The contour values used in the figures are identical. In figure 6.4a it can be seen at the lower 
probability solution of the two closely spaced wind vector solutions is narrower than in th figure 6.4b, 
and therefore indeed less likely. Also the minimum for the isolated wind vector solution is deeper 
and has a larger "region of influence" in figure 6.4a compared to 6.4b. Region of influence can be 
understood as that part of the wind domain where the gradient points away from a particular 
solution (note the shift of the contour lines around the origin). The region of influence of a 
pamcular solution should be proportional to its probability. 
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u-component (m/s) 

Figure 7.3a Plot of the scatterometer costfunction with inversion residual and wind direction sector representation 
appivpnateLy inciuded. 
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Fzgure 7.3b : Plot of the scatterometer costfunction and gradient without accountingfor direction sector and inversion 
residual. 

6.3 OPTIMAL FORMULATION 

Equations (6.2-10) provide equations that can be used to formulate a generic cost function for 
scatterometer data. However, Stoffelen and Anderson (1997c) report the following features of this 
formalism for ERS data in case that Vis smaller than . 

Not quadratic in the minumum; and 

No minimum at either of the solutions, but at V = 0. 

These authors provide an alternative formulation that cures these features 

	

7N 	\l/F 

IflK, 1 

	

= N 	
(6.11) 

	

SCAT 	i=1 	1 

	

i=1 	) 

where they use P = 4 and we redefine 

IP  

r 

	

u u 	(-1 	-_1 +1 
v 	

'1 —21n 	 (6.12) K, = 

	

L 	) 	s,v ) 



In case of more than two solutions, such as with NSCAT or SeaWinds, there will be more occasions 
when two solutions are close together, i.e., 1 V, - V1 j < c. As such, it becomes more important 
wbich formulation to use. Here we will elaborate on this issue. 

Figure 7.4 shows a simple illustration of the different behaviour of equations (6.2-10) and (6.11-
12). It represents a case where the scatterometer observes a wind speed of 2 m/s on the ocean 
surface with 180 degree ambiguity. Using equations (6.2-10) result in a cost that is minimum at zero 
wind speed, indicating that this is the most likely wind speed. Physically speaking, this is certainly not 
right; the ocean capillary-gravity waves will correspond quite well with 2 m/s. 1f we would 
systematically use this cost function formulation for these cases, we would get a wind speed that is 
lower than 2 m/s, i.e., a bias with respect to the scatterometer observation. Apparently, the 
maximum probability solution that we adopt is biased. Stoffelen (1998; chapter 6) shows that in case 
of non-linear problems, it is not dear what objective resuits in the best analysis, since a zero bias, 
minimum variance, or maximum probability constraint can all result in a different answer. 

1f we adopt the approach that we want to minimise systematic error in the wind domain, it will 
be better to have a minimum in the cost function at or very near the wind solutions that are 
retrieved. In figure 7.4 it is illustrated that the cost function of equations (6.11-12) has these 
properties. In fact, in case one solution is the most likely at a particular wind then it will dominate 
the cost function, i.e., the formulation acts much like a solution selection algorithm. 
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Figure 7.4: Plot of the generic scatterometer costfunctionformulation in ufor an one-dimensional section along ii with 
solutions —u1  = u2  = es  = 2 m/s, and P, = P2  = 0.5. f1 and f2 present the quadratic contribution of the two 

solutions respective4i, whereasJ_o is the total cost using equations (6.2-10) and J_EC when using the alternative 
formulation of equations (6.11-12). In the latter case both solutions are kept as minima. 
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Often observation cost is used to monitor the RMS fit of the assimilation model control 
variables to the observations. To make such diagnostic more realistic for scatterometer data when 
using the above formulations, one could add for example 2 In P for each observation to the total 
cost. 

Either equations (6.11-12) or (6.2-10) can be used to allow variational quality control. In that 
case, one needs to add a solution with let us say Es » 100 and P, equal to the expected gross error 
rate. For the nadir and far swath parts this could be a way to use the winds, but with more strmgent 
QC. This needs to be further explored in the near future. 

Based on the above discussionwe recommend the use of equations (6.11-12). 
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7 AMBIGUITY REMOVAL 

Ambiguity removal (AR) is the process of selecung the wind vector solution at each observation 
point in a way that resuits in a spatially and meteorologically consistent wind field. AR is required 
when the V rank skill is not l00%. 

In section 7.1 we give a short description of the 2D-VAR method and the changes that are 
incorporated for Seawinds. For more details on 2D-VAR see (de Vries and Stoffelen, 2000). Section 
7.3 shows some validation of the approach. 

7.1 DESCRIPTION OF 2D-VAR 

In line with chapter 6, in 2D-VAR ambiguity removal is formulated as a minimisation problem 
of the objective function. 

= 	+ iscal 	 (7.1) 

where J0 is the observation cost function and ib the background field cost term. 2D-VAR is based 
on the analysis of wind increments with the control variable defined as 

~Uj 

	

(7.2) 

where x is the control state, Xb is the background state, u the west-to-east component of the 
wind, v and the south-to-north component. For the minimization a conjugate gradients method is 
used. 

The background term Jb in the cost function is based on a maximum probability formulation and 
the assumption that errors in the background field have a statistical distribution, wbich is Gaussian 
around the wind vector components. The background term quantifies the spatial context of 
background field errors and determines the spreading of observational information. It is expressed 
as 

gXT 
	 (7.3) 

The wind increment components in the background term are cross-correlated leading to a full 
error covariance matrix B. Given the size of B in practice, direct inversion makes the minimisation 
proces expensive if not intractable. To circumvent direct inversion we assume that the background 
error covariances are homogenous and isotropic i.e. a function of separation distance only. This 
allows for the efficient diagonalisation of the background error covariance matrix in the spectral 
domain by means of a unitary similarity transform. The similarity transform is in fact a rotation of 
the frame of reference that results in the wind being expressed in terms of longitudinal and 
transverse wind components (figure 7.1), i.e. 

1 = u cos 0+ v sin 0 	 (7.4) 

t=—usinû+vcos0 	 (7.5) 



: 

Fzgure 7.1 Definition of the longitudinal and transverse wind error component 

In the spectral domain the background error covariance matrix can be expressed as 

(7.6) 

where A is a diagonal matrix containing the Eigenvalues of the background error covariance matrix 
which is defined as 

A=diag(c1,c) 	 (7.7) 
nnt 

and R is a unitary rotation matrix with the following block cliagonal structure structure at each wave 
number pais m) 

Rm=I 
(

c0 
s0nm - sin 0„ 	(971 = arctan--. 	 (7.8) 

' sin0, cos0, ' 	 mI 

The coeficients c, , 	are determined by error covariance functions, which are functions of nnt 

distance only. These error covanances are usually determined empirically. In 2D-VAR the 
covariance functions consist of a constant variance, due to homogeneity and isotropy, and quasi 
geostrophic structure functions (error correlation functions, fig. 7.2) (Buel, 1972). 

The spectral implementation of the background term requires that in grid point space the control 
variable is defined on a so-called "extended grid" (see figure 7.3) to avoid that the periodicity of 
Fourier Transform affects the solution on the grid near the location of observations 

41 
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Figure 7.2 Structurefunctionsfor the longitudinal and transverse wind error component 
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Fzgure 7.3 The extendedgrid constructed around the bounding box that ho/ds the obseroations 
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To make the minirnisation proces more robust, preconclitioning is applied by introducing a new 
variable 

8=A 2 R T 	 (7.9) 5  

The cost function to be minimised is reformulated as 

J = <5Z T gZ  + JscAT 	 (7.10) 0   

The gradient of the cost function, which is required in the minirnisation, becomes 

VJ = V.Jb + 
agx  V ÖX J CAT  = 2z + A2RTV JSCAT 	 (7.11) o as; 	 - 

In the computation of the cost function, J0SCAT  is evaluated in grid point space for which 

8jç=RA2Sz 	 (7.12) 

is needed which requires convolution and an inverse Fourier Transform. The subsequent 
computation of the gradient of JCAT  requires a forward Fourier Transform and again convolution. 
With the implementation of 2D-VAR in this way the necessity of having to apply deconvolution and 
the explicit specification of the B -malnx in grid point space are avoided. Also the solution 
increments in the minimisation are expressed in terms of the spatial structure of the error 
covanances. 

As discussed in chapter 6, the observational term in the cost function JscAT  is 

N 
JSCAT 

= [ t-,] 	
(7.13) 

in each observation point with 

	

= _21nP(V84= (H(u)—u)
2  +(H(v)—v)2 	 (7.14) 
e S, 

where V' is a wind vector solution, u. , v, are the (observation-minus-background) wind component 

increments, H is an interpolation operator that maps the control variables onto the observations 
and S,, is the standard deviation of the expected total mean component wind error for 

scatterometer winds that currently is defined by s = 1.8 m/s. The parameterp has the value of 4. 

The gradient of the observational term at each observation point is 

N 	r N -i-'+" 	J 
VJSCAT = 	 (7.15) 

[1=1 	] 

To define solution probability (as in chapter 6) the expected value <MLE> for 100-km resolution 
scatterometer data was obtained according to the procedure described by Portabella and Stoffelen 
(2000). The <MLE> as a function of wind speed and WVC number is presented in figure 7.2. The 
expected MLE was computed as a function of rank-1 wind speed and SWVC number with 200 
orbits of observed Seawinds data averaged to 100-km resolution. We filtered the surface twice to 
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obtain figure 7.4 in order to reduce sampling noise. The filtering procedure was identical to that 
described by Portabella and Stoffelen (2000). 

After minimisation the analysis is obtained from 

Xa = X b + 8X 	 (7.16) 

which constitutes the best estimate for the surface wind field given the background fleld, the 
observations, and the objective function. 

Fzgure 7.4 The mean MLE suace usedfor normalisation. 
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7.2 QUALITY OF THE AMBIGUITY REMOVED WINDS 

To ifiustrate the quality of the 100-km winds we present a case of a storm in the Atlantic region 
west of Ireland. To be able to compare the 25-km SeaWinds product with the KNMI 100-km 
product we thin the JPL winds provided by NOAA to 100 km. Figures 7.5a and 7.5b show the JPL 
wind product and the KNMI 100-km product respectively of this storm on the 28th  of September 
2000. The red arrows represent the QuikSCAT winds in the products. The sky blue arrows represent 
a HIRLAM 3hr forecast. The grey-scaled infrared cloud image is from METEOSAT. 

The thinned JPL product and the KNMI 100-km product show that at the eye of the storm the 
centre of vorticity in the surface wind is somewhat shifted to the East compared to the rotation 
bigher up in the atmosphere, as depicted by the cloud structure. The saddie point between the center 
of the storm and a second low to the North is well defined in the JPL product but poorer in the 
KNMI 100-km product. The intensity of the secondary low at 15W and 60N in the KNMI product 
is lower than in the JPL product because of the inherent smoothing, but possibly also because of 
improved rain elimination. From figures 7.5a-b we can conciude that for this meteorologically 
significant case with a well-defmed structure of the wind field, important features present in the 25-
km product are generally preserved in the 100-km product. 

In fig.7.6a-b we show a typical tropical case with more moderate and low winds. In figure 7.6a, 
the JPL winds show a general preference to blow across-swath and to a lesser degree along-swath. 
Moreover, some erratic large wind vectors appear that are most likely caused by ram (Portabella and 
Stoffelen, 2000). The KNMI product in figure 7.6b has cured to a large degree both the directional 
preference and the erratic speed variations. This is fairly typical in the tropical area, thus indicating 
an improved performance at low and moderate wind speeds. 
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Fgure 7.5a The JPL windproduct of an Atlantic storm on september28 2000 thinned to 100 km resolution (red 
arrows). For reference a MeteoSat infrared image is used as background grej-scale) and the HIRLAM winds (blue). 
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Figure 7.5b As 7.5a, but the KNMI 100 km windproduct of the Atlantic storm on september28 2000. 
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Fgure 7. 6a The JPL wind product of a tropical area on september29 2000, thinned to 100 km. 
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8 QUALITY ASSESSMENT 

8.1 OBJECTIVE ANALYSIS 

To assess the quality of the retrieval and the ambiguity removal a comparison was made between 
the JPL 25-km BUFR wind product thinned to 100-km and the KNMI 100-km wind product. For 
the comparison wind speed, wind direction and wind components were computed for an 
independent reference and both the thinned JPL product and the 1 00-km KNMI product 

The comparison with the independent reference was carried out for the closest vector solution 
to the reference, for the rank 1 solution, and for the AR selected wind solution. A direct comparison 
was done for the rank 1 and selected solutions. In the thinned JPL product the 25-km wind closest 
to the centroid of the 100-km SWVC was used. The comparison was carried for the SWVC's in the 
sweet part of the swath where the best quality is expected. 

The reference was the ECMWF analysis of the 10-m wind. The analysis wind has been 
interpolated both in space and time to the location and observation time of the scatterometer 
measurements. The ECMWF does not assimilate SeaWinds scatterometer winds and both are thus 
independent. 

The wind speed, wind direction and wind components were accumulated in two-dimensional 
histograms for the measurements on days 252 to 255 of the year 2000. Figures 8.1 show density-
contoured plots of the two-dimensional histogram of KNMI versus ECMWF for the (a) closest-to-
reference, (b) the rank 1 and (c) the selected wind solutions. Figures 8.1d-f show the same plots for 
thinned JPL versus ECMWF. 

1f we consider the two closest-to-reference plots (figures 8.1a and 8.1d) we notice that both 
products have similar standard deviation and small systematic differences with ECMWF for the 
direction distribution. The JPL product has a somewhat larger systematic speed difference for high 
wind speeds than the KNMI product. As a result of the speed difference the component 
distributions are somewhat rotated in the JPL product. Remarkable is the small number of 
realisations of wind speed under 2 m/s in the KNMI wind product. This phenomenon is probably 
related to the inversion scheme and requires further study. The contours in the upper left and lower 
right corners in the direction plots are due to the periodicity of the wind direction domain. As such, 
these parts of the distribution have been taken as close-to-zero differences in the computation of the 
statistics. 

Looking at the JPL differences between the closest-to-reference and the rank 1 histograms (8.1d 
and 8.1e) it is evident from the distribution peaks around the lines of 180 degrees deviation in the 
direction plot that the JPL products have a directional ambiguity problem. The error in the JPL wind 
direction has increased significantly in the rank-1 plots due to this ambiguity problem. The 
ambiguity problem further results in the spikes perpendicular to the diagonal in the component 
distributions. In the KNMI product (8.1b) the rank-1 ambiguity problem is much reduced. The 
statistics show that the systematic wind speed difference and the standard deviation in the wind 
direction distribution of the rank-1 solution of the KNMI product are smaller compared to 
ECMWF than those of the thinned JPL product. This gives a strong indication that the retrieval at 
100-km improves the quality of the rank-1 solution at the ECMWF model resolution. 

Comparison of the density-contoured histograms for the distributions of the selected solutions 
(8.1f) with those for rank 1 (8.1e) show that the direction distribution has been improved 
considerably by the JPL ambiguity removal. The distribution peaks around the 1 80-degree deviation 
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lines have been removed. To a lesser extend (compare 8.1c and 8.1b) this is also the case in the 
KNMI product. 

1f we consider the solution distribution among ranks for the selected solution for all NSCAT-
like nodes for both products, tables 8.1a-b show that they are quite similar. Given the bigher quality 
rank-1 solution, KNMI should have a lower standard deviation in the wind direction difference than 
JPL. Yet the JPL wind direction difference standard deviation is smaller. Therefore, the ambiguity 
removal in the JPL product is more effective and there seems room for improvement for AR in the 
KNMI product. 

A reason for the lower AR score in the KNMI product could lie in some of the numbers 
provided in tables 8.1a-b, which show that the number of cases with 4 solutions in the KNMI 
product is high compared to that in the JPL product. To understand the consequences of these 
differences, the directional distribution patterns should be compared, which requires further study. 
Moreover, since JPL changed the GMF it is inverting in spring 2000, there is another difference 
between JPL and KNMI (old GMF) products than solely due to resolution. By recomputing the 25-
km product at KNMI the precise effect of the GMF in the solution pattern should be invesligated. 

JPL #ofsolutions 1 2 3 4 all 

#ofnodes 41 32828 33178 32369 98416 

Selected rank (%) (%) (%) (%) (%) 

1 100 92 82 75 83 

2 0 7 14 19 13 

3 0 0 3 4 2 

4 0 0 0 1 0 

Table 8. la Solution distribution among ran/es for the JJ-"L Jvzndptvduct 

KNMI #of solutions 1 2 3 4 all 

#ofnodes 20 14610 22306 55390 92326 

Selected rank (%) (%) (%) (%) (%) 

1 100 98 89 77 83 

2 0 1 7 14 10 

3 0 0 2 4 3 

4 0 0 0 3 1 

TI able 8. 1h 3o/ution distribution among ran/.sfor the IU\I1 Vii niznaproaucï. 
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product versus ECM!VF. 
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Figure 8. id: Wind speed, wind direction and wind component distributions of the JPL solution closest to ECMWF 
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Figure 8.1e: Wind speed, wind direction and wind component distributions of the rank 1 solution of the thinnedJPL 
product versus ECMWF 
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8.2 SUBJECTIVE COMPARISON 

8.2.1 VAUDATTON PROCEDURE 

In the period of October 1S  2000 to January 2001 a validation procedure was carried Out in 
wbich the 1 00-km QuikSCAT product of KNMI was compared with the original 25-km NOAA 
QUikSCAT product. During the validation effort the on-duty meteorologist received an e-mail 
notifying him/her when significant changes were present in the KNMI product between the 
Qu1kSCAT observations and NCEP model output for the lOm wind, wbich was used as reference. 
The mail also referred the meteorologist to web pages where the wind products were shown. At first 
the reference for the NOAA product was the web site at NOAA (cf. 
http://manan.wvb.noaa.gov/cuikscat). Because of frequent non-availability of the wind products 
on the NOAA website however it was decided to create a thinned 100-km NOAA QUikSCAT 
product based on the original data. From December 0 onwards this product was presented on the 
local web page along with the KNMI product. 

The meteorologist was asked to classify the meteorological conditions, to determine the 
usefulness of the wind products, to compare JPL and KNMI, select the better product, and report 
his/her findings on a form that was issued in advance (cf. appendix A). 

8.2.2 RESULTS 

The findings have been compiled into tables. From the tables a score matrix was derived (table 
8.3). Reports were used in the statistics if usefulness and the selection of the better wind product 
were mentioned. Scores ending on .5 result from assigning a particular case to two classes by the 
meteorologist. 

Judgement Classification Total 
Better  2b 3C 4(1  

1. KNMI 2 2.5 0.5 1 6 	( 8.80/,) 
2.NOAA 7.5 9 12 1.5 30(44.1%) 
3.Neither 11.5 12.5 5.5 2.5 32 (47.1%) 

Table 8-3 '1 he score matrix 

The scores show that the quality of KNMI product compared to the NOAA product is infenor 
for use in synoptic weather forecasting. In almost half of all cases there is however no important 
difference between the products. 

In the beginning of December the quality control for the KNMI wind product was altered 
temporarily for over a week. Information from NOAA on ram detection was included. This resulted 
in a noticeably higher level of rejection of wind observations. The meteorologists, who were not 

developing or decayrng weather systcm, saddlc point. 

b developed system with sharp pressure gradient(s). 

sharp fromt, ridge or trough 

d clifferent narnely 
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notified of the change did notice it and mentioned it in their reports. Reports from December 
indicate that the lack of winds in the KNMI product was reason for the meteorologist to favour the 
NOAA product. 

8.2.3 USEFULNESS OF THE WIND PRODUCTS 

From the report form it follows that in 15.5 % of cases the wind products are considered as 
essential information, in 48.8% as important and in 35.7% of cases rated as of littie use. It is 
apparent that a 100-km scatterometer wind product bas added value for synoptic meteorological 
analysis. The main reasons mentioned are: 

More and better information on the detailed structure of the wind field 

Accurate estimation of the position and movement of 10w pressure systems 

Positioning of fronts, troughs and ridges 

The great advantage of a large coverage; 

Confirming/refuting model forecasts/analysis 

During the current validation procedure we experienced difficulties that have hampered a 
smooth execution of the work that had to be done. The following may be improved 

Product quality, see section 8.1; 

For use in synoptic meteorological analysis by a meteorologist it appears better to develop a 50-
km product; 

The way information is presented in terms of geograpbical projection, data resolution, symbols 
(wind vectors/barbs) may be improved; 

The easy accessibility through the use of a cickable map is important to control the abundance 
of wind products with wbich the meteorologist is confronted; 

Untimely availability of the wind products renders them useless in many cases for the 
meteorologists. Familiarity with the products should be increased through user support. 
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9 MONITORING 

The last but not least important bit of the SeaWinds processing chain is the product monitoring. 
Product monitoring is implemented to guarantee that the products distributed do not suffer a 
common problem in the instrument functionality or data processing. In fact, a common problem 
could lead to serious problems in NWP data assimilation, since the analysis draws to incorrect 
winds, and as a consequence model forecasts may well be seriously corrupted. The monitoring of 
ERS data has led to the detection of a handful of cases with unexpected (by the user) instrument 
behaviour. The monitoring strategy for ERS is to 

Check that the number of rejected WVC is nominal; 

Verify that the normalised "distance to the cone" of the accepted WVC is close to unity; 

Compute the mean and standard deviation of wind speed difference between scatterometer and 
NWP model; and 

The mean and standard deviation of wind direction difference between scatterometer and NWP 
model. 

Here we investigate the adaptation of this strategy to SeaWinds. Figure 9.1 depicts the monitoring 
properties of the JPL SeaWinds product. For a number of variables m it shows 

(9.1) 

where n is the number of data points over wbich m is averaged. For large n, the in,, converges to a 

fixed number <m> with spread SD(m) as estimated in table 9.1. 

Variable m <M> <SD(m)> Threshold m 

Number of rejected WVC [%] 7 3 16 

Normalised Residual 0.82 0.1 1.12 

Wind Speed [m/s] 7.9 2.1 14.2 

SD of speed difference [m/s] 1.7 0.25 2.45 

SD Direction difference [deg.] 21 11 54 

Table 9.1: Mean, SD and threshold of the number of VVC rejections, mean normalised residual, mean wind speed, 
SD of wind ipeed dij'frrence between JPL SeaWinds and NCEP, and SD of wind direction difference between JPL 
SeaWinds and NCEP, estimatedfrom hundred orbits of data. The right column is computed over a quarter orbit of 

data. 
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From table 9.1 and figure 9.1 we note that not all of the monitoring parameters shown are 
equally valuable. For example, mean wind speed is quite variable from one quarter of orbit data to 
the next, whereas the SD of wind speed difference with NCEP is much more stable. This is caused 
by the fact that mean wind speed depends mainly on the geophysical wind regime sampled and not 
so much on SeaWinds wind quality, whereas the standard deviation of wind speed difference 
depends on both NCEP and SeaWinds wind quality. Mean wind speed difference between 
SeaWinds and JPL depends critically on the settings in the NCEP NWP model, wbich is why we did 
not use this vanable for monitoring. The SD of the difference between NWP model and JPL 
SeaWinds, on the other hand, is much less sensitive to parameterisation changes in the NWP model. 

The SD of wind direction difference is another variable of limited usefulness. 1f JPL SeaWinds 
wind directions would be random (no skill) with respect to the NWP wind dien the SD of their 
difdference would be 360/'112 = 104 degrees. The threshold provided in table 9.1 is thus not very 
sensitive to errors in the SeaWinds product. 

The monitoring procedure checks the variables in table 9.1 against their threshold. The 
threshold is a so-called 3-SD level, where the probability of exceeding one of the thresholds for any 
one quarter of orbit is about 1%. This percentage is stil quite high, so we suggest to flag a quarter of 
orbit as suspect when three out of five monitoring variables are above the threshold. 1f we assume 
that the monitoring variables are mutually independent, dien we have achieved a robust monitoring 
procedure. 

SeaWinds data are distributed in batches of about half a revolution. Since some of the orbits 
c0ntaln a lot of land, it makes sense to base the monitoring 0fl a quarter of orbit over the ocean, 
thereby excluding land and ice points. Over larger amoufits of data the threshold can be tightened. 
Looking at figure 9.1 we note that the variability in m decreases with increasing n, following by 

approximation a 'in law. This means that in the definition of the threshold as the expected mean 
plus three times SD(m), the SD(m) term can be made proportional to 1 /'ln. We suggest this more 
critical type of monitoring. 
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10 CONCLUSIONS AND RECOMMENDATIONS 

Within the EUMETSAT-funded NWP Satellite Application Facility, SAF, a SeaWinds 
processing package is bemg developed that checks, spatially averages, and mverts backscatter data. 
After these steps a 2D-VAR ambiguity routine is run to investigate the ambiguity removal properties 
of the cost function and observation operator as proposed here. After these tests, application in 3D-
or 4D-Var (e.g., Courtier et al, 1998) data assimilation systems is a straightforward development. 

Following our procedure, we expect that carefully screened, smoothed, and assimilated 
SeaWinds scatterometer data from QUikSCAT and ADEOS-Il have great potential in NWP. We 
applied a backscatter data averaging to 100 km before inversion, resulting in more smooth wind 
fields. 

We developed tools to visualise SeaWinds measurements in order to qualitatively check the data 
and the correspondance with the NSCAT2 GMF. It is pointed Out how these tools can be refined to 
provide more quantitative information. 

Portabella and Stoffelen (2000) developed a succesful quality control algorithm that eliminates 
most rain points. The method works poorly in the outer swath where only vertical polarisation 
information is available. SeaWinds on ADEOS-Il profits from AMSR for rain screening, when all 
parts of the swath can be checked for ram. Work remains to be done to develop procedures to 
extract high-quality wind information in those swath parts with poor azimuth or polarisation 
diversity. 

A normalised RMS error for wind direction has been defined, which is a more meaningful 
quality estimator of the wind inversion than existing methods. Existing methods either compute the 
RMS of ambiguous scatterometer winds by taking 

the closest solution with respect to to the reference wind; or 

the selected solution with respect to the reference wind. 

The first method is far too optimistic for those schemes that generate a large number of 
solutions. In this case always a very closeby solution exists. The second method can be too 
pessimistic on inversion skill, since ambiguity removal errors may dominate the RMS score. The 
normalised RMS error takes into account the ambiguity patterns in the wind direction skill score 
computation. 

The method of data assimilation of ERS scatterometer data can be generalised to inciude 
NSCAT and SeaWinds observations. The asimilation of retrieved winds is the most practicable, 
since retrieved winds are generally unbiased, and because uncertainties in the background winds and 
the scatterometer retrievals are well expressed as normal errors in the wind domain. However, in the 
backscatter domain,  these error distributions are skew, irregular, and dependent on the wind 
(direction), due to the non-linear transformation of these errors from the wind to the backscatter 
domain. As such, the assumptions generally used in meteorological data assimilation do apply if 
ambiguous scatterometer winds are assimilated, rather then backscatter data directly. 

The generic approach for scatterometer wind assimilation uses the normalised inversion 
residuals of the solutions and information on the solution pattern to determine the relative 
probabilities of the wind solutions. The estimated solution probabilities verify very well with the 
average skill of the ranked solutions. 

SeaWinds retrievals exbibit an increased number of wind vector solutions with respect to ERS. 
However, the rank-1 skill is around 80% and therefore ambiguity removal is less demanding than for 
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ERS. In objective tests of the performance of 2D-VAR it was found that work remains to be done 
to refine the validation tests in order to allow separate validation of the GMF, the procedure for its 
inversion, and the ambiguity removal. What is dear however, is that the KNMI 100-km inverted 
winds are of better quality than the JPL 25-km product. 

A robust monitoring scheme has been defined that acts satisfactorily on a quarter orbit or more 
of processed winds from SeaWinds. 

Challenges remain in the interpretation of the SeaWinds data at higher resolutions, and in those 
parts of the swath and geophysical conditions where the wind vector is poorly determined by the 
backscatter measurements available. 

We set up at KNMI a SeaWinds scatterometer processing system, with visualisation, inversion, 
quality control, 2D-VAR ambiguity removal, and validation tools. These tools form a good basis for 
further development and implementation. 

As such, data assimilation experiments can be carried Out to test the algorithms in more full 
meteorological systems, such as 3D-Var or 4D-Var. Moreover, the system can be adapted to work at 
a resolution of 50 km, where it will probably stil provide reiable high-quality synoptic-scale 
meteorological information of great potential in nowcasting and short-range forecasting by direct 
presentation to the on-duty meteorologists. 

In conciusion SeaWinds provides 

The great advantage of a large coverage; 

Information of acceptable quality on the detai.led structure of the wind field 

Accurate estimation of the position and movement of low pressure systems 

Positioning of fronts, troughs and ridges 

Confirmation or corrections of NWP model forecasts and analysis 

For the real-time operational application of our products we recommend 

NWP impact of SeaWinds should now be tested at ECMWF and in HIRLAM as planned; 

Further checks on product quality, in particular ambiguity removal may be further improved; 

For use in synoptic meteorological analysis by a meteorologist it appears better to develop a 50-
km product; 

The way information is presented in terms of geographical projection, data resolution, symbols 
(wind vectors/barbs) may be improved; 

The easy accessibility through the use of a cickable map is important to control the abundance 
of wind products of SeaWinds; 

Untimely availability of the wind products renders them useless in many cases for the 
meteorologists 

Familiarity with the products should be increased through user support. 
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12 ACRONYMS 

2D-VAR 2-dimensional AR 
3D-Var 3-dimensional variational meteorological analysis 
4D-Var Variational meteorological analysis in space and time 
ADEOS-I Advanced Earth Observation System (1 996-7) 
ADEOS-IJ Advanced Earth Observation System (2002) 
AMSR Advanced Microwave Instrument on ADEOS-Il 
AR Ambiguity Removal 
ASCAT Advanced scatterometer on METOP 
BCRS Beleidscornmissie Remote Sensing (Dutch) 
BUFR Binary Universal Format Representation 
ECMWF European Centre for Medium-range Weather Forecasts 
ERS European Remote Sensing Satellite 
ESA European Space Agency 
EUMETSAT European Organisation for the Exploitation of 

Meteorological Sateilites 
GMF Geophysical Model Function 
GMT Greenwich time 
HH Horizontal polarisation emitted-Horizontal received 
HIRLAM HIgh-Resolution Limited-Area Model 
JPL Jet Propulsion Laboratory 
KNMI Royal Netherlands Meteorological Institute 
METOP Meteorological Operational satellite (2003) 
MLE Maximum Likelihood Estimator 
NASA National Aeronautics and Space Administration (USA) 
NCEP National Centre for Atmospheric Prediction (USA) 
NOAA National Oceanographic and Atmospheric Administration 

(USA) 
NRMS Normalised RMS 
NRSP National Remote-Sensing Programme (Dutch) 
NSCAT NASA Scatterometer 
NWP Numencal Weather Prediction 
01 Optimal (statistical) Interpolation 
PreScat Processor of ERS scatterometer data at KNMI 
QC Quality Control 
QuikScat NASA scatterometer mission with SeaWinds 
RMS Root-Mean-Squared 
SAF EUMETSAT Sateffite Application Facility 
SAG Science Advisory Group 
SD Standard Deviation 
SDE Standard Deviation of Error 
SeaWinds NASA rotating pencil-beam scatterometer 
SNR Signal-to-Noise Ratio 
SSM/I Special Sensor Microwave Instrument 
SWVC Super WVC 



ri 

\TV 	 Vertical polarisation emitted-Vertical received 
WMO 	World Meteorological Organisation 
WVC 	 Wind Vector Ceil 
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APPENDIX A: 
BEOORDELINGSFORMULIER SEAWINDS PRODUKT 

(S.v.p. een formulier per bericht) 

DTG: 
Bericht No: 
Meteoroloog: 

A. CLASSIFICATIE 

Zou je deze situatie kenmerken als (omcirkelen s.v.p.): 
ontwikkelend of opvullend systeem, zadeivlak; 
ontwikkeld systeem met scherpe drukgradient; 
scherp front, rug, of trog; 
anders, namelijk ........ 

B. WAT KUN JE ER MEE DOEN? 

Is het produkt waardevol en bruikbaar voor de meteorologische analyse: 
1. Hoe zou je het kunnen gebruiken? 
2. Voegt het produkt: 

essentiele informatie; 
belangrijke gegevens; of 
weinig 

toe aan de bestaande analyse (omcirkelen s.v.p.)? 

C. VERGELIJKING MET NOAA/NASA 25-KM PRODUKT: 

1. Hoe is het KNMI-produkt vergeleken met het NASA/NOAA produkt: 
KNMI beter; 
NOAA/NASA beter; 
geen noemenswaardig verschil in kwaliteit? 

3. Is er een belangrijk verschil in het gebruik van de KNMI en NOAA/NASA 
produkten? 

D. EVENTUELE OPMERKINGEN 
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