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A finite-element method programmed for a high-speed computer was de­
veloped for determining the stresses in concrete slabs with load transfer 
at the transverse joints. The method is based on the classical theory of 
thin plates on Winkler foundations and yields numerical results that check 
closely with other available solutions as well as with the experimental 
measurements from the AASHO Road Test. Although a single value of the 
modulus of subgrade reaction can be selected to predict approximately the 
stresses for various slab thicknesses and axle loads, it was found that, 
under a given axle load, a better agreement between theoretical and ex­
perimental results could be obtained if greater subgrade moduli were used 
for thicker pavements, a fact contributing to the nonlinear behavior of 
subgrade soils. Numerical results are presented to illustrate the effect 
of loading position, load transfer, and loss of subgrade contact on critical 
stresses in rigid pavements. When load transfer is provided at the 
transverse joint, the most critical stress in highway pavements occurs 
when the load is near the edge and far from the joint. It is suggested that 
the edge stress, instead of the stress at the joint, be used for the design of 
highway pavements. 

eTHE determination of stresses due to wheel loads in concrete pavements has been a 
subject of major concern for more than four decades. In 1926 Westergaard (1), using 
the theory of elasticity by assuming the subgrade as a Winkler foundation, developed a 
mathematical method for determining the critical stresses in concrete highway pave­
ments resulting from three cases of loading: load applied near the corner of a large 
slab, load applied near the edge of a large slab but at a considerable distance from any 
corner, and load applied at the interior of a large slab at a considerable distance from 
any edge. In extending the method to airport pavements, he later developed new for­
mulas (2, 3) that give the stresses and deflections at an edge point far from any corner 
and at ari. fiiterior point far from any edge. These formulas were then employed by 
Picket and Ray (4) for developing influence charts, which have been used by the Port­
land Cement Association (5, 6) for the design of highway and airport pavements. 

In comparing the critical corner stress obtained from Westergaard's formula with 
that from field measurements, Pickett found that Westergaard's corner formula, based 
on the assumption that the slab and subgrade were in full contact, always yielded a 
stress that was too small. By assuming that part of the slab was not in contact with 
the subgrade, he developed a semi-empirical formula that was in good agreement with 
both theoretical and experimental results. Pickett's corner formula, with a 20 percent 
allowance for load transfer, was used previously by the Portland Cement Association 
(7) for the design of highway pavements. 
- All the preceding theoretical solutions are based on an infinitely large slab, with a 

load at the corner, on the edge, or in the interior, and therefore may not be applicable 
to today's 12-ft wide lanes with most traffic moving at some distance from slab edges 
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and corners. With the advent of high-speed computers and the powerful finite-element 
method, it is now possible to analyze rectangular slabs subjected to any wheel loads and 
bow1da1~y cunditiono. The pu.l'J;osc~ of this pa.per are (a) to prcncnt n finite element 
method programmed for a high-speed computer for determining the stress distribution 
in a rectangular concrete slab, with or without load transfer at the transverse joint; (b} 
to compare the results of the finite-element method with other theoretical solutions 
available as well as with the experimental measurements from the AASHO Road Test, 
so as to check the accuracy and validity of the method; and (c) to investigate the effect 
of loading position, load transfer, and loss of subgrade contact on the critical stress in 
some typical pavements, so as to shed light on current concepts of rigid pavement de­
sign. 

The finite-element method presented here is quite different from the discrete­
element method employed earlier by Hudson and Matlock (8) and later by Vesic and 
Saxena (9) for the analysis of concrete pavements. The discrete-element method is 
more orless similar to the finite difference method by considering the slab as an as­
semblage of elastic joints, rigid bars, and torsional bars. The finite-element method 
is based on the theory of minimum potential energy by dividing the slab into small ele­
ments interconnected only at a finite number of nodal points. The major advantages of 
the finite-element method are that elements of varying sizes can be easily incorporated 
in the analysis and that no special treatment is needed at a free edge. As a result, the 
finite-element method generally yields a stiffness matrix that is symmetric, positive, 
and definite, and the large number of simultaneous equations can be solved by an effec­
tive scheme, although this symmetric characteristic was not fully utilized in this study 
because of the assumption of load transfer at the joint. 

DESCRIPTION OF METHOD 

The finite-element method employed in this study is based on the classical theory of 
thin plates by assuming that the plane before bending remains plane after bending. In 
addition to the basic requirements that the slabs are homogeneous, isotropic, and elastic, 
it is further assumed that the subgrade acts as a Winkler foundation; i.e., the reactive 
pressure between subgrade and slab at any given point is proportional to the deflection 
at that point. The procedur e follows essentially th at of Zienkiewicz and Cheung (10, 
11) and will not be presented here. Only the general approach, the treatment of doweled 
joini::s, auU iiu:: ci1-1.1aUility of the cvn1put~i· pi"vg:ra:w. ;;"ill be br-icfly deecribed. 

General Appr oach 

Figure 1 shows a rectangular finite element with nodes i, j, k, and 1. At each node, 
there are three fictitious forces and three corresponding displacements. The three 
forces are a vertical force, Fw; a couple about the x-axis, F6x; and a couple about the 
y-axis, Fey• The three displacements are the deflection in the z-direction, w; a rotation 
about the x-axis, ex; and a rotation about the y-axis, 0y. These forces and displace­
ments are related by 

(1) 

in which [K] = stiffness matrix, the coefficients of which depend on the dimensions, a 
and b, of the element and the Young's modulus and Poisson's ratio of the slab; k = 
modulus of subgrade reaction; and at any given node i is 

F,,1 

F 1 = Foxi , l'i1 
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0 
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The stiffness matrix for a rectangular element was tabulated by Z ienkiewicz and CheWlg 
(10) and is used in the present analysis. By superimposing the stiffness matrices over 
air elements and replacing the fictitious nodal forces with the statistical equivalent of the 
externally applied loads, a set of simultaneous equations was obtained for solving the 
unknown nodal displacements. The nodal moments and stresses were then computed 
from the nodal displacements, using the stress matrix tabulated by Zienkiewicz and 
Cheung (10). Because the stresses at a given node computed by means of one element 
might be different from that by the neighboring elements, the stresses in all adjoining 
elements were computed and their average values obtained. 

Doweled Joints 

The finite-element analysis of concrete slabs with doweled joints as developed here 
is believed to be original and provides an effective method for solving this complex 
problem. Figure 2 shows a load applied on the left slab of a two-slab system connected 
by dowel bars at the joint. If no dowels are provided at the joint, each slab will act in­
dependently, and it is only necessary to consider the left slab. When dowels are pro­
vided, part of the wheel load will be transferred from the left slab to the right slab. 
The efficiency of load transfer can be defined as 

L = w. X 100 
W1 

( 2) 

in which L = efficiency of load transfer, w1 = deflection of the left or loaded slab at the 
joint, and w. = deflection of the right or Wlloaded slab at the joint. When no dowels are 
used, w. = O, and the efficiency of load transfer is zero. When w1 = w., or both slabs 
deflect the same amoW1t at the joint, the efficiency of load transfer is 100 percent. 

For the ease of explanation, each slab is divided into two elements (Fig. 2). There 
are a total of 12 nodes, each having three unknown displacements, or a total of 36 equa­
tions. These equations can be obtained by first assuming the discontinuity of the two 
slabs at the joint, so neither moment nor shear can be transferred through the joint. 
For example, let us look at the three equations at node 4. The 10th equation gives the 
vertical force, the 11th equation gives the couple about the x-axis, and the 12th equation 
gives the couple about the y-axis. The corresponding equations at node 7 are the 19th 
equation for the vertical force, the 20th equation for the couple about the x-axis, and 
the 21st equation for the couple about the y-axis. Because dowel bars cannot transmit 
moments from one slab to the other, the addition of the dowel bars will make no change 
in the 11th, 12th, 20th, and 21st equations. However, because of the transfer of shear, the 
sum of the vertical forces given by the 10th and 19th equations must be equated to the 
external force applied at node 4. In other words, the 10th and 19th equations are com­
bined to form a new equation replacing the original 10th equation. The original 19th 
equation is then replaced by Eq. 2, which is written as 

(3) 

Because two original equations are replaced by two new equations, the tqtal number of 
equations remains unchanged. The same procedure can be applied to nodes 5 and 8 as 
well as nodes 6 and 9. This modification destroys the symmetry of the stiffness matrix 
and results in an upper half band being greater than the lower half, so both the upper and 
lower bands must be stored. The Gauss elimination method with banded matrix pro­
vided by the IBM scientific subroutine package was used in this study to solve the si­
multaneous equations. 

Computer Program 

A general computer program was developed for determining the stresses in a pave­
ment system composed of a series of up to three slabs connected by dowels at the 
transverse joints. The three slabs are used because this is a general case with the 
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loads applied on the middle slab, which is connected at each end to a neighboring slab 
by dow1:1l ha.rS1. 'T'he use of more than three slabs is not necess:iry hec:iuRP. the. :iddi­
tional slabs are far from the load and have practically no effect on the stresses in the 
loaded slab. When the loads are applied near the transverse joint, only two slabs are 
generally sufficient, and the slab at the far end can be ignored. 

Figure 3 shows the finite-element network of a three-slab system under a single- or 
tandem-axle load, which will be subjected to later analysis. The input parameters, 
which control the size and division of the slabs in this case, are number of slabs = 3; 
number of y-coordinates = 7; number of x-coordinates for slab 1 = 4; number of x­
coordinates for slab 2 = 7; number of x-coordinates for slab 3 = 4; y-coordinates = 0, 
17, 34, 57, 80, 105, and 144 in.; x-coordinates = 0, 70, 130, 180, 180, 232, 256.5, 281, 
305.5, 330, 360, 360, 400, 470, and 540 in. The same program can be used for two slabs 
by setting the number of horizontal coordinates for slab 1 to O, and for one slab by 
setting the number of horizontal coordinates for both slab 1 and slab 3 to O; the hori­
zontal coordinates must also be changed accordingly. 

The tire imprints are converted to rectangular areas, and the coordinates of their 
sides must be given, so that the program can distribute the wheel loads among adjacent 
nodes by statics (10, 11). The program can compute several different loadings at the 
same time. The additional computer time due to these additional loads is very small 
because Gauss elimination of the coefficient matrix is carried out only once regardless 
of the number of loads involved. 

If the problem to be solved exhibits symmetry with respect to one or both axes, it is 
only necessary to consider one-half or one-quarter of the pavements, which saves a 
great deal of computer time. 

The program can be used to investigate the effect of partial subgrade contact on 
stress distribution. The nodal numbers at which subgrade reaction resulting from loss 
of subgrade contact does not exist can be assigned, and the second term on the right 
side of Eq. 1 will be automatically eliminated at these nodal points when forming the 
simultaneous equations. 

The program was written in FORTRAN IV for the IBM 360 computer, Model 65, avail­
able at the University of Kentucky. 

COMPARISON WITH AVAILABLE SOLUTIONS 

To check the accuracy of the finite-element method and the correctness of the com­
puter program, it is desirable to compare the finite-element solutions with other the­
oretical solutions available, especially with those involving discontinuities such as the 
stress at the free edge of a slab. Westergaard's original work and Pickett and Ray's 
influence charts can be used for such purposes. Because these available solutions are 
based on an infinite slab, a very large slab was used in the finite-element analysis. 

Westergaard's Solutions 

The finite-element solutions were obtained by using a large slab, 20.C. long by lOt 
wide, where t is the radius of relative stiffness. Because the problem is symmetrical 
with respect to the y-axis, only one-half of the slab was considered. The slab was 
divided into rectangular finite elements as shown in Figure 4. The x-coordinates are 
O, rrt / 8, rrt/ 4, ,rrt/ 2, rrt, 5,t., 7t, and lOt, and the y-coordinates are 0, rrt / 4, rrt/ 2, rrt, 
1.5 rrt, 2 rrt, 2.5 rrt, and lOt. The Poisson's ratio of the concrete is 0.25, as was as­
sumed by Westergaard. 

Figure 4 shows a comparison between Westergaard' s exact solutions for an infinite 
slab with a concentrated load, P, on one edge far from any corner, as indicated by the 
solid curves, and the finite-element solutions, as indicated by the small circles. The 
moment, M, and deflection, w, along the edge of slab and the deflection at a distance of 
rrt/4 and rr-t./2 from the edge are presented. It can be seen that the finite-element solu­
tions check very closely with Westergaard's results, thus indicating the accuracy of the 
authors' finite-element formulation. 



Figure 1. Rectangular plate element. 
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Figure 2. Two-slab system with doweled joint. 
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Figure 3. Three-slab system with doweled joints. 
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PCA's Solutions 

The Portland Cement Association has made use of the iniluence chart deveioped by 
Pickett and Ray (4) for determining the stress on a pavement edge due to tire loads. 
Figure 5 (12) shows the application of the chart for determining the moment at point O 
under a 36-kip tandem-axle load having an 11.5-in. dual-tire spacing, a 49- in. tandem­
axle spacing, and a 71-in. spacing between the centers of the two sets of dual tires. 
The load on each tire is 4, 500 lb. The actual contact area is 67 in. 2, consisting of a 
rectangle with two rounded ends but was converted to a rectangle of 6. 79 by 9.87 in. 
The Poisson' s ratio of the concrete is 0.15. 

The moment, M, at point O in Figure 5 (due to each of the tire loads) can be deter­
mined from the number of blocks enclosed by each tire imprint, tabulated as N-counts 
in the figure, by 

q ,i,2 N 
M = 10,000 (4) 

in which q = contact pressure= 67.2 psi and t = 50 in. As tire 1 yields the same mo­
ment as tire 2 and tire 5 the same as tire 6, there are actually six different tire posi­
tions, some close to point O and some far from it, which can be used for comparison. 

In the finite-element analysis, only one-half of the slab was considered because the 
problem could be made symmetric by placing an image tire on the left corresponding 
to each tire on the right. The moment thus determined was divided by two to give the 
moment resulting from one tire only. The horizontal and vertical coordinates for 
finite-element subdivisions were 0, 24, 48, 72, 96, 128, 160, 208, and 300 in. 

Table 1 gives a comparison of the moments at point O due to six different tire posi­
tions. It can be seen that the finite-element solutions check quite well with the in­
fluence chart solution, especially when the tire is close to point 0. The large discrep­
ancy for tire 7 is due to the fact that this tire straddles between positive and negative 
blocks and covers only two blocks. The percentage of discrepancy would become zero 
if the block enclosed was counted as 1. 2 instead of the two blocks counted by the PCA. 

COMPARISON WITH AASHO ROAD TEST 

Although the finite-element solutions check very closely with other available solu­
tions, the comparison is based on a large slab with free edges. Because no theoretical 
solutions are available for rectangular slabs with load transfer at the joint, it is desir­
able to compare the finite-element solutions with experimental measurements so that 
the validity of the method as applied to actual pavements with doweled joints can be 
tested. The results of the stress measurements from the AASHO Road Test (13) pro-
vide an excellent opportunity for making such comparisons. -

In the AASHO Road Test, two series of experiments were made to measure the 
stresses in concrete slabs. The first was conducted on the main traffic loops where 
the stress due to moving traffic was measured at a single point on the pavement edge 
far from any joint. The second was conducted on the nontraffic loop where the stresses 
due to a rapidly oscillating load were measured at 15 different points distributed over 
a 6- by 6-ft area at one corner. The length of slabs consisted of 15-ft nonreinforced 
sections and 40-ft reinforced sections. It was found that reinforcing, or slab length, 
had very little effect on the stresses measured, so only the 15-ft slab was employed in 
the finite-element analysis. 

The slabs were 15 ft long and 12 ft wide with dowels at the transverse joints and tie 
bars at the longitudinal joint. Because the dowels were much larger bars spaced at 
12 in. in centers and the tie bars were smaller and spaced at 30 in. apart, it was as­
sumed in the finite-element analysis that the efficiency of load transfer was 100 per­
cent at the transverse joint and O percent at the longitudinal joint, or the longitudinal 
joint was treated as a free edge. 

In computing theoretical stresses, it is necessary to know the Young's modulus and 
the Poisson's ratio of concrete and the modulus of subgr ade reaction, k. The Yotmg's 
moduli of concrete, as measured at the AASHO Road Test, were 6.25 x 106 psi for dy-



Figure 4. Comparison of finite-element solution with 
Westergaard's exact solution. 
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Figure 5. Contact imprints on influence chart and corresponding N-count. 
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namic loads and 5.25 x 106 psi for static loads, and the Poisson's ratio was found to be 
0.28. Because the type of loading does not have significant effect on the Young's mod­
ulue, a dymunic modulu!:! of 6.25 x 106 p!'.li waR used in the finite-element analysis as 
well as in the conversion from the measured strains to stresses. 

The determination of the subgrade k-values is much more difficult because they 
change appreciably with the time of the year and the type of loading. The k-values on 
the subbase obtained by the plate bearing test at the AASHO Road Test varied from 85 
to 135 lb/in.~ but these were measured during the spring when the subgrade was weak 
and by static or gradually applied loads. Because the stresses were measured at the 
AASHO Road Test mostly during the summer and fall and under dynamic or vibratory 
loads, larger k-values should be used. 

In comparing theoretical stresses with the results of the AASHO Road Test, Vesic 
and Saxena (9) indicated that the k-values should be inversely proportional to the thick­
ness of the siab and suggested the use of 90.4 lb/in. 3 for a 5-in. slab, 47.5 Lb/in. 3 for a 
9.5-in. slab, and 36.2 lb/in. 3 for a 12.5-in. slab. These k-values are too small for the 
reasons discussed previously. If these values are used in the finite-element analysis, 
the results do not check with the test data, as will be illustrated later. 

Dynamic Edge Stress 

In the AASHO Road Test, the dynamic strain at the edge of pavement 7. 5 ft from the 
joint was measured under various single- and tandem-axle loads, moving mostly at 5 
mph with the center of the dual at a distance of 20 in. from the pavement edge. statis­
tical equations were developed by the Highway Research Board (13) to predict the dy­
namic edge strains for various axle loads, slab thicknesses, andtemperature gradients. 
These strains can be converted to stresses using a dynamic Young's modulus of 6.25 x 
106 psi as determined from the AASHO Road Test. 

The finite-element network is shown in Figure 6. Because of symmetry, only one­
half of the pavement was considered. The x-coordinates for the finite-element grid 
were O, 30, 60, 90, 130, 1~0 and 270 in.; the y-coordinates were 0, 20, 40, 70, 90, 110, 
and 144 in. 

Figure 6 shows a comparison of the edge stress when the temperature in the slab is 
uniform or the temperature gradient is zero. It can be seen that the experimental mea­
surements (as indicated by the solid curves) check reasonably well with the finite­
element solutions (as indicated by the dotted cu es) for a variety of loads and slab 
thicknesses when a k-value of 300 lb/in. 3 is assumed. Nearly in every case, the ex­
perimental curves have a steeper slope than the theoretical curves. The curves can 
be made more compatible by increasing the stress in thinner slabs by decreasing the 
k-value, or by decreasing the stress in thicker slabs by increasing the k-value. In 
other words, the k-values should increase with the increase in slab thickness. This is 
in contradiction to the contention by Vesic and Saxena (9) that the k-values to be used 
should increase with the decrease in slab thickness. Their conclusion is valid only 
when the subgrade soils are linearly elastic. In order to obtain solutions based on 
Winkler foundation comparable to those based on elastic solid, we must increase the 
k-value with decreasing thickness. However, because the subgrade soils are not linearly 
elastic and are much stiffer under small stresses and deflections, it is not difficult to 
explain why under a given load the k-value should increase with the increase in thick­
ness. 

The selection of a k-value of 300 lb/ in. 3 needs explanation. This value appears quite 
reasonable for the conditions of the subgrade and subbase and the types of loading avail­
able at the AASHO Road Test. It is well known that the stress in concrete slabs de­
pends on the radius of relative stiffness, ,i, which is a function of the ratio between 
Young's modulus of concrete and the k-value of the subgrade. If a k-value of 300 lb/in. 3 

is considered too high, it is quite possible that a Young's modulus of 6.25 x 106 psi is 
also too high. Thus, the same stress would be obtained if both were reduced propor­
tionately. In fact, the k-value is a fictitious parameter not characteristic of soil be­
havior. If a k-value that gives a good prediction of the stress for various axle loads 
and slab thicknesses can be found, it is a most reasonable value to be used. Fortunately, 
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the value of k does not have a large effect on the computed stress. If a smaller k-value 
were used, the finite-element solutions, as indicated by the dotted curves, would move 
slightly upward, but the general trend still remains the same. 

Stress Distribution Under Vibratory Loads 

In the AASHO Road Test, a rapidly oscillating load at a frequency of 6 cps was ap­
plied to the pavement through two wooden pads, each having 11- by 14-in. area and 
spaced on 6-ft centers. The center of the outer pad was placed 1 ft from the pave­
ment edge, thus simulating a single-axle load in the traffic loops. The major and 
minor principal strains at 15 points, distr ibuted over a 36-ft2 region bounded by the 
pavement edge and a transverse joint, were determined. These strains were then con­
verted to principal stresses, and graphs of the major and minor principal stresses 
were published by the Highway Research Board (13). 

Four loading positions were employed, with the center of the load at a distance of 
0.5, 2, 4, and 6 ft from the transverse joint. The loading position, the location of points 
at which stresses were measured, and the finite-element subdivisions are shown in 
Figure 7. Because the slab on the left of the loaded slab has very little effect on stress 
distribution, only two slabs were considered with 100 percent load transfer at the 
transverse joint and O percent at the longitudinal joint. A k-value of 900 lb/ in. 3, which 
is three times greater than the 300 lb/ in .3 used previously for computing the edge 
strain, was assumed because the vibratory load was applied at a frequency of 6 cps, 
which is much faster than the vehicle speed of 5 mph. 

Figure 8 shows a comparison of principal stresses for three cases: a 5-in. slab 
with 12,000-lb axle load, 9.5-in. slab with 22,400-lb axle load, and 12.5-in. slab with 
30,000-lb axle load. In line with the sign convention used in the finite-element analysis, 
the stress is considered positive when the surface is in compression and negative when 
in tension, which is opposite to the sign convention reported by the Highway Research 
Board (13). The finite-element solutions are indicated by the solid lines for the major 
principal stresses and dotted lines for the minor principal stresses . The experimental 
data, which were obtained from the graphs of major and minor principal stresses pub­
lished by the Highway Research Board, are indicated by the small circles. For loading 
position 1, the stresses are those along the joint. For other loading positions, they are 
under the respective axle at various distances from the edge. 

Figure 8 shows that the finite-element solutions check quite well with the experi­
mental measurements, except for the minor principal stress in the 5- and 9.5-in. slabs. 
Although it is possible to improve the agreement between theoretical and experimental 
data for loading position 1 by decreasing the efficiency of load transfer for the 5-in. 
slab to 40 percent and the 9. 5-in. slab to 50 percent, these corrections do not improve 
significantly the situation for other loading positions. It is believed that these dis­
crepancies are due to the curling of slabs because the experimental data were taken 
during the early morning hours when the corners and edges of the slab were curled 
upward and part of the slab is not in contact with the subgrade. Even if this curling 
effect were not considered, the agreement in stress distribution between theoretical 
and experimental data is certainly surprising and clearly indicates the applicability of 
the method for predicting the stresses in concrete pavements. 

A k-value of 900 lb/ in. 3 seems rather large and falls outside the range recom­
mended for use in practical design. However, if the concrete has a Young's modulus 
of 6.25 x 106 psi, as determined at the AASHO Road Test, the only way to make the 
theoretical and experimental results comparable is by the use of a large k-value. The 
solutions presented are certainly correct as can be proved by using the influence chart 
shown in Figure 5 for loading pos ition 4, which is quite far away from the joint. For 
example, let us work with the 9. 5-in. pavement. For a k-value of 900 lb/ in.3, the max­
imum stress on pavement edge determined from the influence chart is 183 psi, which 
checks with the 182 psi obtained by the finite-element method, even though the former 
assumes a Poisson's ratio of 0.15 and the latter 0.28. If a k-value of 47.5 lb/ in.3, as 
suggested by Vesic and Saxena (9), is used, the stress obtained from the influence chart 
is 332 psi, which is much greater than the observed stress of 181 psi. It appears that 
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Table 1. Comparison of moments. 

'a.A',·,1>•~nf. (;n.-lh\ 

Tire 
Number 

By Inlluence 
Chart 

By Finite­
Element Method 

Percentage of 
Discrepancy 

2 
3 
4 
6 
7 
8 

1,831 
-202 
-235 

420 
-33 
- 67 

1, 861 
-204 
-260 
393 
-20 
- 73 

+1.6 
+1.0 

+10.6 
-6 .4 

-39.4 
+9.0 

Figure 6. Comparison of theoretical and experimental 
stresses at pavement edge. 
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under a vibratory load the use of 900 lb/ in. 3 for k-value is more reasonable than that 
of 47.5 lb/ in. 3

• However, it should be reiterated that the exact value of k is not im­
portant; the most important question is whether a k-value can be found that gives a 
good prediction on the stress distribution for various axle loads and slab thicknesses. 
This study clearly shows that such a k-value does exist and that the finite-element 
method presented here gives a reasonable prediction of the stress distribution in con­
crete pavements. 

IMPLICATIONS FOR PAVEMENT DESIGN 

The computer program developed in this study is very effective in solving stresses 
in concrete pavements. Results accurate enough for design purposes can be obtained 
even if a coarse network is used. For the system shown in Figure 3, it took only 20 
sec of compiling time and 1 min of execution time to calculate the stresses at various 
nodal points under 16 different loading positions. By running the program on some 
typical cases, interesting conclusions, which may or may not be in agreement with cur­
rent design concepts, were obtained. 

Critical Loading for Airport Pavements 

The design method for airport pavements as developed by PCA (6) is based on in­
terior loads because it is considered that the most critical stress in a slab occurs 
when the load is in the interior of the slab rather than at the doweled joint. The com­
puter program can be used to determine how much greater the stress at the interior 
will be as compared to the stress at the joint. For example l~t us use a 12.5-in. slab 
with a Young's modulus of 4 x 106 psi, a Poisson's ratio of 0.15, a subgrade k-value of 
100 lb/ in.3, and a single wheel load of 40,000 lb applied over a rectangular area 11.74 
by 17.04 in. If the load is applied at the center of a 15- by 15-ft slab with a given ef­
ficiency of load transfer at two opposite joints, the maximum interior stress will be 
332 psi for 100 percent efficiency, 331 psi for 80 percent efficiency, and 320 psi for 0 
efficiency. If the load is applied adjacent to the joint midway between two corners, the 
maximum stress at the joint will be 289 psi for 100 percent efficiency, 323 psi for 80 
percent efficiency, and 600 psi for O efficiency. This indicates that the efficiency of 
load transfer has relatively small effect on the interior stress but a large effect on the 
stress at the joint. The stress at the joint can be kept smaller than that in the interior 
by installing a very effective load transfer device, (e.g., one more than 70 percent ef­
ficient). Teller and Sutherland (14) investigated the efficiency of various joints and 
found that in many cases the deflections at the joint for both the loaded and the unloaded 
slabs were equal, thus indicating that this efficiency could be easily obtained in the 
field. 

Critical Loading for Highway Pavements 

In view of the fact that, on modern pavements with 12-ft lanes, traffic has moved 
inward from outside corners and edges, PCA (5, 12) has discontinued the use of the 
corner formula for pavement design. With the outer face of the exterior tire mostly 
about 2 ft from the pavement edge, PCA indicated that the most critical loading position 
was at the transverse joint, and design curves based on the influence charts shown in 
Figure 5 were developed for determining the maximum stress at the joint. PCA's con­
clusion was based on two simplifying assumptions: There is no load transfer at the 
joint, and the load is applied far from the corners, so that the influence chart for an 
infinite slab applies. Both assumptions yield a stress at the joint, as determined by 
the PCA method, considerably greater than the actual stress. The negligence of load 
transfer for highway pavements is inconsistent with PCA design method for airport 
pavements, which relies heavily on the load transfer at the joint. The following ex­
ample illustrates the effect of loading positions on the critical stress. 

Let us use a concrete pavement having a thickness of 7 in., a Young's modulus of 
4 x 106 psi, a Poisson's ratio of 0.15, and a subgrade k-value of 100 lb/ in. 3

• The pave­
ment is subjected to a typical 18-kip single-axle load and a 36-kip tandem-axle load. 
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According to PCA (12), the most critical stress occurs when the load is at the trans­
verse joint a.nu is 2'8"5 pai Ior ~ingle a...1ele 3nd 336 psi for ta.-1dem a..~le. The pavement 
was subjected to finite-element analysis using the finite-element network shown in 
Figure3. The center ofthe outerdualis 34in. fromthe edge, ortheface ofthetire2ft 
from the edge. The load moves from left to right, and the maximum major and minor 
principal stresses, when the single axle (or the front axle of the tandem) is at various 
distances from the joint, are given in Table 2. The efficiencies of load transfer for 
the two extreme cases of O and 100 percent are assumed. It can be seen that, if no load 
transfer is provided, the most critical stress takes place when the load is nearest the 
transverse joint. However, the computed stresses of 221 psi for single axle and 230 
psi for tandem axle are much smaller than the 285 and 336 psi computed by PCA, as a 
direct result of PCA's assumption that the slab is infinitely wide and the load is far 
from the corner. If complete load transfer is provided, the most critical stress occurs 
when the load is at a considerable distance from the joint. The critical stresses of 
225 psi for single axle and 207 psi for tandem axle are also smaller than those by PCA. 
The smaller stress under the tandem-axle load is caused by the compensative effect of 
the two axles. The actual stress of only 104 psi at the joint with 100 percent load 
transfer under the 18-kip single-axle load is far below the 285 psi by PCA. 

The preceding discussion should not be interpreted that the current PCA method 
gives a design that is too conservative because there are other factors that may cause 
an increase in stress. The exterior tire may be closer to the pavement edge than the 
2 ft assumed in the finite-element analysis. Pumping of the subgrade, blowing of the 
subbase, and curling of the slab may result in the loss of subgrade contact. It will 
therefore be interesting to investigate these extreme cases and compare the critical 
stresses with those by PCA. 

Loss of Subgrade Contact 

It is well known that concrete slabs are curled upward in early morning when the top 
of the slab is colder than the bottom, thus resulting in unsupported edges and corners. 
Loss of subgrade support may also be caused by pumping and blowing. If the conditions 
of contact at various points are known, the stresses in the slabs can be determined by 
the finite-element analysis using a method of successive approximations. However, 
for a qualitative comparison of critical stresses between full and partial contact, it is 
assumed that the two rows of nodes (Fig. 3), one on and the other next to the pavement 
edge, are not in contact with the subgrade; therefore, the reactive pressure at these 
points can be neglected. 

Table 3 gives the effect of subgrade contact on critical stresses in the extreme case 
when the outer face of the tire is adjacent to the pavement edge. It was found that the 
maximum major principal stress always occurs when the load is far from the joint, 
whereas the maximum minor principal stress always occurs when the load is at the 
joint. Note that, when the pavement and subgrade are in full contact, the maximum 
major principal stress is always greater than the maximum minor principal stress, 
indicating that the critical stress occurs when the load is far from the joint. The 
critical stress of 391 psi for single axle is much greater than the 285 psi by PCA, 
whereas that of 343 psi for tandem axle is only slightly greater than the 336 psi by 
PCA. When the outside edge of pavement is not in contact with the subgrade, the crit­
ical stresses increase considerably, especially the minor principal stresses; however, 
the most critical stress still occurs when the load is far from the joint, except in the 
case of the tandem-axle load when no load transfer is provided. 

It can be seen that, when the outer tire is nearest the pavement edge and the edge is 
not in contact with the subgrade, the critical stresses obtained by the finite-element 
method are much greater than those by PCA. Because most traffic does not travel 
near to the edge, except on modern freeways in urban areas, the actual stress should 
be much smaller. To avoid the difficulty involved in evaluating the loss of subgrade 
contact, it is suggested that full contact be assumed in the design of pavements. How­
ever, the assumed position of the outer tire should vary with the lane width and the type 
of highways and be closer to the pavement edge than anticipated to take into account the 
additional stress due to curling and the loss of subgrade contact. 



Figure 8. Comparison of theoretical and experimental distribution 
of major and minor principal stresses. 
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Table 2. Critical stresses with outer tire 2 ft from edge. 

18-Kip Single Axle 36-Kip Tandem Axle 

0 Percent 100 Percent 0 P ercent 
Distance Load Transfer Load Transfe r Load Transfer 
From Axle 
to Joint Major Minor Major Minor Major Minor 
(in.) (psi) (psi) (psi) (psi) (psi) (psi) 

79 220 -27 218 -29 189 -21 
54.5 211 -37 225• -40 198 -21 
30 150 -54 200 -37 166 -57 

5.7 221· -152 104 -66 230' -121 

•Most critical stress for each case. 

Table 3. Effect of subgrade contact on critical stresses. 

18-Kip Single Axle 36-Kip Tandem Axle 

0 Percent 100 Percent 0 P e r cent 
Load Transfer Load Transfer Load Transfer 

Condition 
of Major Minor Major Minor Maj or Minor 
Contact (psi ) (psi ) (psi) (psi) (psi ) (psi) 

Full 376 -237 391 -104 314 -262 
Partial 450 -413 501 -204 406 -634 

100 Percent 
Load Trans fer 

Major Minor 
(psi) (psi) 

192 -26 
207" -23 
197 -59 
160 -54 

100 Percent 
Load Transfer 

Major Minor 
(psi) (psi ) 

343 -127 
508 -310 
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In view of the facts that load transfer is always provided in pavements and the critical 
stress always occurs when the load is far from the transverse joint, it is suggested that 
the edge stress, instead of the stress n.t the joint as recommended by PC ... A~, be used for 
design of highway pavements. It is recognized that the old PCA design method based 
on the corner loading was used for a long time and gave reliable results. The current 
PCA method generally yields a critical stress comparable to that in the old method and 
therefore should also ensure a satisfactory service. However, the authors do not agree 
with PCA on the way in which this critical stress is obtained. When the outer face of 
the exterior tire is 2 ft from the pavement edge, designated by PCA as case I loading, 
the critical loading position is definitely not at the doweled joint but at a considerable 
distance from the joint. It is believed that comparable results could be obtained from 
the edge stress by placing the exterior tire a few inches from the edge. The use of edge 
stress for highway pavement design has the following advantages: It is in line with the 
use of interior stress for airport design because both assume that sufficient load trans­
fer has reduced the stress at the joint to make it no longer critical; the edge stress is 
not affected significantly by the size of slab and the efficiency of load transfer at the 
transverse joint, so the influence chart developed by Pickett and Ray can still be used; 
lane width can be taken as a factor of design by specifying different distances between 
the outer tire and the pavement edge for various lane widths; and loss of subgrade con­
tact at the pavement edge has less effect on edge stress than on stress at the joint, and 
the additional resultant edge stress can be more easily estimated. 

CONCLUSIONS 

A finite-element method programmed for a high-speed computer was developed for 
determining the stresses in concrete slabs with load transfer at the joints. The method 
is very efficient and checks closely with Westergaard' s theoretical solutions as well as 
with those obtained from Pickett and Ray's influence chart. By the judicious selection 
of an appropriate k-value, it was found that the finite-element solutions also checked 
reasonably well with the stresses measured experimentally at the AASHO Road Test, 
thus verifying the validity of the method. Although a single k-value was used to com­
pute the stresses for various slab thicknesses and axle loads, a comparison of the dy­
namic edge stresses clearly shows that under a given axle load the subgrade k-value 
should increase with the increase in slab thickness. This can be explained from the 
nonlinear behavior of subgrade soils because the thicker the slab is, the less the pres­
sure on the subgrade is and the stiffer the soils are. 

Numerical data are presented to illustrate the effect of loading position, efficiency of 
load transfer, and loss of subgrade contact on critical stresses. An analysis of the data 
results in the following conclusions: 

1. In airport pavements, the most critical stress occurs when the load is in the in­
terior of the slab. Stress due to loading at the joint can be kept smaller than the critical 
stress in the interior by use of load transfer devices having an efficiency of more than 
70 percent at the joints. 

2. In highway pavements with the outer face of the tire 2 ft from the edge, the most 
critical stress occurs when the load is at the transverse joint if no load transfer is pro­
vided, but at a considerable distance from the joint if load transfer is provided. 

3. Inhighway pavementswiththe outerface ofthetireadjacent tothe edgeandthe slab 
in full contact with the subgrade, the most critical stress occurs when the load is at a 
considerable distance from the joint, regardless of the efficiency of load transfer. 

4. In highway pavements with the outer tire adjacent to the edge and part of the slab 
not in contact with the subgrade, the most critical stress may occur at the transverse 
joint if no load transfer is provided. However, if load transfer is provided, the most 
critical stress occurs when the load is at a considerable distance from the joint. 

5. In view of the fact that load transfer is always provided in pavements and the crit­
ical stress always occurs when the load is far from the transverse joint, it is suggested 
that the edge stress, instead of the stress at the joint as recommended by PCA, be used 
for the design of highway pavements. 
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