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ON THE FLOW OF A COMPRESSIBLE FLUID BY THE HODOGRAPH METHOD
I+JNIFICATION AND EXTENSION OF PRESENT-DAY RESULTS

By I. E. GAIUUCKanflCAELKAPLAN

SUMMARY

Ebnen?5ry bti solwiions oj the eqw.uiiona oj motion of a

compremi.bk j?uid in the hodagraph w-iabl.tx are developed and

ueed to prooide a basia jor compankm, in the form of velooiiy

corredbn jormwi’u.s, oj mrreeponding compresibf.e and incom-

presibk j%uw T& known approximti r& oj Llwplygin,

con K&m& and T8ien, Temple and Yarwood, and Prandtl

and Qh.e7t are un@d by memw of the anulysi.e of the

preeen# paper. Two new typtx of approximations, oln!uimxl

from the baaic 8olutimw, are introduced; they pos8es8 certain

dw”rable feaiuree of the other approxima.timw and appear

nrejerable as a bti jor &apol.uiion into the range oj high

8tream Mach number8 and large dtiurbancee to the main

8tream. Tab14 and jigures girnng veloeiiy and premwe-
coe#iii.W convdion jador8 are included in order to facihkie

thf pract&xz/ apphkutiun of the resd%

INTRODUCTION

The present paper is concerned with a theoretical study
of the hydrodynamical equations of a perfect compressible
fluid in two dimensions, in which the so-oalled hodograph
variablea are used as the independent variables. It is hoped
to achieve herein a unification of the presentiday results
obtained in this field and also to provide a working basis for
further developments. The earliest contributors to the
hodograph method for treating compressible fluids were
Molenbroek (reference 1) and Chaplygin (reference 2). The
remarkable work of Chaplyfi on gas jets appeared in
Russian in 1904 but remained relatively unnoticed. In
recent years contributions to the hodograph method have
been made chiefly by Demtohenko (reference 3), von Khr.rnfm
(reference 4), Tsien (reference 6), Ringleb (reference 6), and
Temple and Yarwood (reference 7).

The chief reason, and perhaps the only reason, for pre-
ferring the hodograph variables to the physical plane co-
ordinates is that the equations of motion in the hodograph
variablea are linear. This simplification is aohieved, how-
ever, at the cost of more diflicult boundary conditions and
at a loss of physical insight. The grmt simp~cation in the
mathematics due to linearity nevertheless makea it desirable

to pursue this line of attack as long as it appears profitable
to do SO.

The mathematics for handling the flow equations re-
ceived a substantial impetus by the work of Bers and
Golbart (reference 8), w-ho developed a new function theory
amilogous to ordinary analytic function theory. The
present paper utilizes the methods of this new function
theory to develop certain functions essential h the campres-
sible-flow problem. It is of historical interest that ideas
similar to those of Bers and Gelbart were explored by the
renowned mathematician Hilbert (reference 9) in the early
part of this century but do not appear to have been further
developed at the time.

The material to be treated is conveniently separated into
two parts. Ii part I, the present paper, basic particular
solutions of the hodograph flow equations are developed and
employed in unifying and extending the resuh%obtained by
Chaplygin, von K&rm6n, and Temple and Yarwood. The
results obtained in part I are of immediata praotical applicw
tion and are given in the form of tables and graphs of velocity
and prewm-coeilieient correction factors. In part II,
genaral particular solutions of the hodograph flow equations
are developed and discussed. The material in part IIj it is
hoped, will lead to a method for handling the actual boundary
problem of the flow of a compressible fluid past a prescribed
body.

ANALYSIS

FLOW EQUATIONS OF AN INCOMPES3SIBLEFLUID

It is well lmown that the relations between the velocity
potential @ and the stream function # for the steady irrota-
tional two-dimensional motion of a perfect incompressible
fluid are

ad ah )

(1)
ad a+I

..—=.—
ay ax

These equations are the Cauchy-Riemann equations and
therefore d++ is an analytic function f (z) of the eompl~
variable z=z+iy.
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The complex velocity or reflected velocity vector u—iv is
obtained from the complex potential -f(z) by differentiation.
Thus,

~-tw+; log q). (2)

where q is the magspitudeof the velocity vector and 9 is the
angle the vector makw with the positive direction of the
z-axis.

The variables o and g are sometimes referred to as %he
hodograph variable.” The flow equations in the variables
o and g can be readily derived by introducing o+i log g as the
independent complm variable in place of z+iy. Then, in
mmlogy with equation (l),

a$.——%&j beI
or

(4)

These equations are known as the hodograph equations for
the flow of an incompressible fluid.

FLOW’ EQUATIONS OF A COMPRESSIBLE FLUID

The equations corresponding to equation (1) are, for a
compressible fluid,

a+_h a+
TX–; Z@
a+

1

(5)
~ a+—. ———

ay p ax
where p is the densi~ of tbe fluid at any point (z,y) and POis

a constant density, which for convenience is referred to a
stagnation point.

A short way to derive the hodograph equations for a

compressible fluid, attributed to Molenbroelr, is as follows:

According to equations (5), with u=~~ and v=%

oh+ : d+= (U Ck+fl dy)+i(–v dx+u dy)

= (lb-iO) (dz+i dy)

=qe-rn dz

or

dz=$f’(@+i##) (6)

Ll follows frow equation (6), by considering 0 and g as
independent variables, that

and

Then, by assuming that p is a function of only q (equivalent
to assuming that the pressure is a function of only the
densi~), ‘

and

Since, by continuity, these two expressions are identicnl, it
follows that

Hence, by equating real and imagimwy parts,

These are the hodograph equations, first obtained by
Molenbroek, for the flow of a compressible fluid and me
independent of the form of the pressure-density relation.
It is observed that, when p=%= Constant, equntions (7)
reduce to equations (4). Equations (7), in contrast with
equations (5), are linear in the dependent varinbles.

BEBNOULL1’S EQUATION AND EQUATION OF STATE

In the present section there is listed a collection of for-
mulas and definitions necessary in the analysis,

Bernoulli’s equation for a compressible fluid is

J
‘h+=~

mP
(s)

where
p static pressure in fluid
PO static presmn-eat stagnation point (g=O)
p density of fluid
q magnitude of velocity of fluid

The adiabatic relation between the pressure and the
density is

()
2=A7
Po h

(9)

where
7 adiabatic index (approx. 1.4 for air)
~ density of fluid at stagnation point (g=O)

The local velocity of sound a is obtiined from

das=
#-P

For the adiabatic case,

(lo)
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F~~%’ Bernoulli’s equation (8) and from equations (9)
and (10), the following reIations may be obtained:‘

a’=%’–;(~–l)f

1

[ !I

~

P=% +—o@

[
p=po l–

(11)

where % is the velocity of sound at stagnation point (g= O).
From equations (11) for ~>1, a mtium velocity

q=gm is obtained for the limiting conditions p=p=a=O.

Thus,
1 ~m2=& @

=2@l~ (12)
where

f3’J-y—1

The fundamental nondimensional speed variable, in
general, is qJ%but it is found useful in the analysis to employ
n nondimensional speed variable r defined as

.=&
!Zm2

(13)

For 7>1, the range of the variable r is OS~S 1. The value
r=O baa a dual meaning; r=O in the case of a compressible
fluid corresponds to a stagnation point (g= O), or r= Omay
merm the limiting case of an incompressible fluid (a= m).

With the definitions of ~ and ~, equations (11) become

a=ao(l —~)lfl

P=Po(~—~)~ (14)

P= PO(l”—W+l
.

‘1’I]o local Mach number M=: maybe expressedin terms

of the speed variable ~ in the following way:

or, by solving for r in terms of M,

‘“&

(15)

(16)

The value of r for which the local velocity of the fluid
eq urds the Iocnl velocity of sound (M= 1) is given by

1——
“-2f?+l

In the case of uniform flow past
pressure coefficient is de%ned ns

84311(3-3*19

(17)

a fixed boundary, the
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where the subscript 1 refers to the undisturbed stream. The
pressure coefficient for the incompressible case (ill=O) is

0
Cp,o=l– ~ ‘

Ii

The pressure coefficient for the compressible case is

For g=q, (sonic),

{[ T}2+ (~–l)kf~ 5
(%r,)s=v+, – 1+ 7+1

For q=qn (txuxnnn),

WAf,) al= –*

(18a)

(18b)

(18c)

(18d)

BASIC SOLUTIONS OF HODOGRAPH EQUATIONS

Consider the incompressible case represented by equa-
tions (3) or (4). It is clear that +=0 and ~=log q satisfy
these equations. In fact, any convergent power series in
w=tl+i log g represents an analytic function of which the
red and imaginary parts satisfy equations (3) or (4). The
class of analytic functions in w (and the concept of analytic
continuation) then yields all the particular solutions of these
equations.

The particular solution w=8+i log g can be obtained by
means of an integration that is instructive in the generakm-
tion to the compressible caae. It is well lmovm that

F(vJ)=~~(w) dw

can be represented ss the sum of two line integgals

F(w) =J-(Pd8-Qdlog g)+iJ-(Q de+P dlog @

whcre
,f(w) =P+iQ

Thus, given a pair of functions P and Q that satis~ equations
(3) or (4), this process yields another pair of solutions,
namely, the real and the imaginary parts of F(w). For
example, if P=l and Q=O,

F(w) =W=t+i log q (19)

Again, if P=O and ~=1,

F(w) =’iW= –log q+~ (20)

The physical interpretation of equations (19) and (20),
considered as flow patterns, is of some interest in connection
with later developments. It is clear that equations (19)
and (20) represent a vortex and a source located at the
origin, respectively.
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The generalization to the compressible csse of the fore-
going elementmy reaulta was accomplished by Bera and
ChJbart (reference 8) by means of simple yet fertile ideas.
Bem and Gelbart treat equations of the form

(21)

rmd show as is readily verified that, if P and Q are a pair
of solutions, the real and imaginary parts of the following
sum of line integrals

f[Po–MdQ dd+if[Qd-0+~P a] (22)

are also solutions of equations (21). .
In particular, corresponding to the pair of solutions P= 1

and Q= O, there is obtained

s’Tv=o+i” & @ (23)

rind, for P=O and Q=l,

J
W=i[e+i A&) Clij (24)

By repeated application of the process of integration, indi-
cated by expreaaion (22), a genersl set of particuhy solutions
of equations (21) may be obtained These particular solu-
tions are discussed in part II; in the present paper, only the
solutions given by equations (23) and (24) are needed.

The general hodograph equationa (7) are of the form of
equations (21) with

and

For the rest of this paper, the adiabatic pressure-density
relation (9) is used. By means of equations (9) and (14)
and the relation

obtained from the differential form of Bernoulli’s equa-
tion (8), it follows that

(25)

The evaluation of the integrals in equations (23) and (24)
is made unique by requiring that the results reduce to the
incompressible case when the speed of sound is infinite
(that is, when ~=0. Then,

J
L= (l–.)@ ~

=log g+j(,)
where

.

(26)

f(T) =;~ [(1–T)@–11$

and

J
z. $g.j#$— o

=Iog q+g(T) (27)
where

H

1 r 1–(2/3+1). _l &r
9(7)=5 ~

1(1–T)~’ T

and it is observed that the functions j(~) and g(7) vanish
for 7=0.

Equations (23) and (24) can be written in the form

w=e+iL
and

iw=i(e+ti)

It is important to note that, in the incompressible case,
W and ifi reduce tow and iw, since L and ~ reduce to log g.
Thus, there are in the compressible case two basic functions
L and ~ corresponding to the one function log q in the in-
compressible case. It is of interest to mention that the

functions W and ifi, considered as flow patterns in a com-
pressible fluid, can again be interpreted aa a vort~ and a
source.

EVALUATION OF FUNCTIONS f(.) AND g(r) FOR VARIOUS VALUES OF ~

In general, the integrals in equations (26) and (27) repre-
senting the functions J(7) and g(7) are expressible by infinite
series. For the important case of air, however, with the
adiabatic index 7 put equal to 1.4 instead of the usual value
1.408, these functions can be obtained in closed forms.
Thus, with /3=2.6,

J
f(r)=; :[(1 –T)’fl-1] $

=; (1–W+; (1–T)’fi

+(1–T)’~
1+(1 —T)l@–~–log ~ (28)

and

H l—6r _l &r
9(T)=; ; (1_T)7/2

1 T

1
= – (l_.) 6@,+; (1–17)3/2

+(1 –lTyn

1+(1—T)@
–;–log z (29)

Table 1 contains values of f(r) and g(~), and figure 1(a)
shows these functions plotted against ~. 0bs6rve that ~(~)
and g(7) are well-behaved functions in the range OSr< 1.
In figure 1(b), these functions are plotted against the local
Mach number M in the practical Apeedrange.
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Other interesting cases for which the functions j(7-) rmd

g(r) &n be expressed in closed forms are y= CO,7=2, -Y=~~

and ~= —1. For ~= ~ (6=0, a=~, incompressible case),

f(r) =g(T) =0
For 7=2 (13=1),

–— –+ log (l–T)9(~)=1 ~:T -
For 7=1~ (13=2)

j(T)= –T+&f

1 1 1+7
—–+ logg(7)=g–~ (l_T)z .

FO’7=-’(’=-+)’

(1–7)

j(T) =g(T)=–-log 1+(1;’)’2

For the isothermal case y= l(g=~), the velocity of sound
a=m=Constant~and the functions j and g are obtained as
infinite series in the ratio gjaQ. Thus, in the limit p~~,

For arbitrary~valuesof 7 (or p) the ~ressions forj(~) and
(r), obtained with the aid of the binomial expansion, are

=–+ -$++ (2–7) ($)– . . .

and

()
–~ 2n–lTn

9(T)=–; n~ (–l)X ~ y

=–* f?+ 13(19+W– . . .

=+$-g. ($y- . . .
The significant feature of this general result is that, if powers
of ~ao higher than the third are negleci%d,

(30)

and does not involve explicitly the adiabatic index 7. This
circumstance underlies tbe preaentiay approximate methods
for obtain@ velocity and pressure-coefficient correction
factors; in the following sections, this point is brought out
more clearly.

APPLICATION OF BASIC FUNCTIONS L AND ~

In this section, the basic functions L and L are employed
to set up relations between velocities in “corresponding”
compressible and incompressible flows. These relations aro
of the nature of “stretching factors” or velocity correction
formulas and contain the results of Chaplygin, von IMrmfm,
Temple and Yarwood, and CHauert and Prandtl. It is
important to recognize at the outset that no single velocity
correction formula can represent in an exact woy the cor-
respondence of flow patterns past a prescribed body in
a compressible and an incompressible fluid. A single velocity
correction formula is actually feasible in only two cases:
(1) The stream Mach number is small (even though tho
disturbance to the main stream due to the presence of the
body may be large) so that the compressible-flow pattern
difTersonly slightly from the incompressible-flow pattern or
(2) the disturbance to the main stream is vanishingly small
(even though the stream Mach number may be high) so that
the effect of the shape of the solid boundary is small. Tho
various velocity correction formulas discussed in the premnt
paper diifer essentially only in the degree to which tho
requirements of these two cases are satisfied. Despite their
limitations, single velocity correction formulas are extrap-
olated, in vievy of the lack of more rigorous solutions, into
the range of large disturbances to the main stream and high
Mach numbers. This extrapolation can be justified by
further theoretical investigations and by comparison with
experimental results.

Consider again the corresponding pairs of functions

W=e+i log q
w=e+iL }

(31)

and

(32)
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It haa previously been noted that the pairs of functions in
equations (31) and (32) denote respectively a vortex and a
source in an iucompremible and a compressible fluid. Each
pair of functions can be employed to define a correspondence
of flow patterns in which corresponding points are identified
by the same values (4, #). Thus, in the cam of the vortex
(equations (31)),

4*=~e=e

where the subscripts i and c refer to the incompressible and
to the compressible case, respectively. It follows that

=q&f (r) (33)

Similarly, in the case of the source (equations (32)),

@f=@, =–log q,=–z

+,=*c=e
and

g,=&

=qc’e’(” (34)

At the end of the preceding section it was pointed out that,
to a first approximation, the functiom.f(~) and g(r) are equal.
This fact implies that, to a first approximation, a single veloc-
ity correction formula is feasible. The assumption is now
made that either equation (33)or equation (34) can be adopted
to provide a correspondence of flow patterns in the case of
uniform flow past a body in an incompressible and a com-
pressible fluid. With the undisturbed streams as con-
vonicnt references, the following nondimensional forms of
equations (33) and (34) can be written:

(i9i=(a% (36)

nnd

(at=(i)% (36)

where the subscript 1 refers to the undisturbed stream.
The use of the undisturbed stream as reference in the non-
dimensional form of the velocity correction formula was
introduced by Tsien in reference 5, where also the details of
the von K6rmfin approximation are developed. It is shown
in the following section that either of equations (35) or (36)
contains the result of Chaplygin, von K&mLn, and Temple
and Yarwood. As has been previously pointed out, the
concept of a single velocity correction formula is feasible in
only two cas=, namely, small stream Mach numbers and
vanishingly small disturbances to the main stream. It is
desirable then to seek a single velocity correction formula
that combines the features of these two cases. From this
point of vimv, equation (36) or equation (36) is not the best
choice. A better choice of a single velocity correction for-

mula appeaxs to be the following combination of equations
(35) and (36), based on the arithmetic mean off(~) and g(r):

(37)

In a later section, still another combination referred to as
“the geometric-mean type of approximation” is introduced;
in the section dealing with the Glauer&Prandtl approxima-
tion, certain features of the foregoing arithmetic-mean type
of approximation and of the geometric-mean type are
discussed. -

At this point it is desirable tQdiscuss the practical applica-
tion of equation (37). According to equation (16),

w
‘=2=

M,’
“=-’

and

(i).=(:)”

‘Er%%$y”
(38)

Equation (37) then yields, for a given set of values of the
stream lMach number 341 and the local Mach number ikf, a
value for the ratio (gjg,) i of the local velocity q and the
stream velocity ql in an incompressible fluid. Table 2 shows
corresponding values of (q/qJ. and (q/gl)f for various values
of the stream Mach number fMl with 7=1.4 @=2.5). This
tabulation is performed, for the purpose of comparison, for
the three cases represented by equations (35), (36), and (37).

w b~ed from equationsValues of (gjg,) f, (gjgJ,, ~d ~~ql); o

(37) and (38), are plotted against the local Mach number M
in figure 2 for various values of the stream Mach number Ml.
Table 2 also shows values of the pressure coefficients 02.0
and CPNI calculated by equations (18a) and (18b) for
these corresponding values of (gJqJ, and (gjq,).. Figure 3
shows the curves of preswre coefficients corresponding to the
curves of velocities of figure 2.’ Useful crow ploti of the
curves in figure 3 are shown in figure 4, in which CB~l is
plotted against Ml for various values of CP,O. In addition,
curves are shown in figure 4 for (C2,~l), ~d (C-l).
calculated by equations (18c) and (18d), respectively. The
curve for (CAMI), corresponds to the sonic value fM= 1 or

1
~ and in effect divides the region of flow into a sub-T=.T*=—

sonic and a supemonic part. The curve of (Oxl)m corre-
sponds to the maximum value M= m or 7=1 and represents
the outer limit of the supersonic region (or a perfect vacuum).
In order to exhibit the main diflerencea between the various
correction formulas (35), (36), and (37), the ratios of the
sonic values (CP.MJ, and the corresponding incompressible
values C’r,o are plotted against the stream Mach numbar
M, in figure 5.
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Observe in iigure 2 that the (gJqJ~curves have maxi-
mum pointi. This fact means that the value of (gjqJ6
associated with a value of (g/gl)*is not unique. Analytically,
the criterion for the maximum point is equivalent to

%!lzl) ?_.
dr (39)

or, from velocity correction formula (37),

(1–7)*’–(2fl+l), +l=o

For IS=2.5 this equation has only one positive root, 7=2

or .kf~ 1.16. It is intiMi@ ~ nob fiat v~o~~ ~mection
formula (36) yieldsas the criterion for the maximum point

1–(W+l)T=O

The root of this equation is ~=r,=~ and, for f?=2.5, is

r=: or M= 1. Velocity correction formula (35) yields no

,maximum value of ~ or .M.
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Meaning can be given to the value r=+ (M=l) in the

cam of equation (34) with reference to the originfd inter-
pretation of the flow pattern as that of a source. It can be

@l
()

shown that the acceleration q ~ along a streamline .is

infinite at all points for which the’local lMach number is

()
unit-y ?=~ and that a flow discontinui~ exists there.

In the case of the vortex flow pattarn (equation (33)), no
flow discontinuity occurs for M< ~. The velocity cmrec-
tion formula (37) suggests a “limiting” value ~- 1.16 for a
spiml flow, since equation (39) is analogous to a condition
of inilnite acceleration. Thus, the exisbance of a mixed
subsonic and supersonic region of flow without discontinuities
is indicated. Since the occurrence of this limiting value of
M is a consequence of the simple form assumed for the
velocity correction formula, no undue significance should
be attached to any particular value at the present time.

THE CHAPLYGIN APPIfOXIMATION

From the point of view of the present paper, Chaplygin’s
approximation for subsonic speeds assumes a simple and
lucid form. Ohaplygin introduces in place of g a new inde-

pendent speed variable q equivalent to the quanti~ given
on the right-hand side of equation (33), namely,

~=@rl

The hodograph flow equations (7) then assume the form

(40)

=1–13(213+l)&; B(2B+1)(25+2)+– . . .

VaJuw of the function F(7), for several values of Y (or p),
are given in table 3 and are plotted in figure 6 against the
local Mach number M. Chaplygin noted that, in the case
of air (p=2.5), F(7) differs but little from unity over about

•$

one-half the subsonic range Os rs ~ His approximation in

the r~ge of low subso~~ spe@s consists in neglecting powers
of r lugher than the fit or in replacing F(r) by unity.
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Equations (4o) can then be written in
form

a+ b~—.—
ao a 10g q
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the Cauchy-Riemann

and ++ir therefore is an analytic function of the comples
variable o+i log q. Chaplygin’s approximation thus leads
to the velocity c.arection formula

(41)

where-powersof r higher than the tit are neglected through-
out. The use of equation (34) instead of equation (33) also
leads to this result to the same order of approximation.

THE VON ILiRbliN APPROXIMATION

Von KhrmAn’s approximation corresponds to the case

7=-1 (or’=+”It folIows at once from the integral

expressio& for f(r) and g(~) given by equations (26) and
(27), respectively, that for this case

j(T) =g(7) =–log 1+ (12–’)1n

or, with the use of equation (16),

This function, plotted against 34, is included in figure 1(b).
Corresponding to equations (35) and (36), there is a single
equation

(1)Replacing ~ by rl } ~
M?and rl by ~ according to equa-
l—

tion (16) yields

Then, by solving for (g/qJ. in terms of (q/gJt md the stream
Mach number Ml,

(43)

The pressure coticient C.ml, expressed in tams of the
incompressible pressure coeilicient CP,O,is easily obtained

from the general formula (18b) by putting ~= – 1 and
making use of equations (43) and (18a). Thus,

Observe that for this case the function F(7) introduced by
Chaplygin and given in equation (4o) is exactly equal to
unity. From the point of view of the present paper then,
von Khnmin’s approximation appears to be equivalent to
that of Chaplygin, who approximates F(r) by uni~. It
follows that the range of validity of von K&m&n’s approxi-
mation and that of Chaply~ in a stict sense, coincide.
Furthermore, it is pointed out that the von Kfmmfm approxi-
mation does not permit a supersonic region. Von Kfmnfm’s
choice of ~= —1 has the advantage, however, of yielding
simple explicit expressions for (q/ql). in terms of (gjgl)t and
for cpJflin termsof Cp,o. SeveraI valuea of Op,~l calcu-
lated by equation (44) are included in figure 4. For the
purpose of comparison with the other approximations, there
is plotted in iigure 5 the ratio of (CP&J, to Cr,oagainst the
streamMach number Ml in the case of von IG3rmfm’sapproxi-
mation. The values of CP,Oare obtained with tbe use of
veloci~ correction formula (42) for the local Mach number
M= 1, but the values of (Cp,ul], are calculated with y= 1.4.

THE TRMPLE-YARWOOD APPROXIMATION

The functions 1#1and 4 related by the first-order simultane-
ous equations (21) separately satisfy the second-order
equation9

%+A’@aiii+il=O

%iii&b%l””! ,--,

In terms of the nondimensional speed variable r and with
the vah.waof Al@ and &(@ for the adiabatic case given by
equations (25), these equations take the form

.

-—=+df%iwl=o

1 (1–T)~ 3%$ a
T

:4 1
1 m+:[c%w=ol “’)

I 1—(29+1 r a*t
4 7(1–7)

Formal solutions of these equations were given by Clmplygin
in the form of two iniinite series

w19+m*.+.(7)sin (me+%)

I

(47)
.

4= –%(r) –mqm&(T) Cos (W+%)

where the functions #.(T) and @m(r) are obtained from
hypergeometric series and B, B=, and ~m are mbitrary
constants.

A disadvantage of the formal solution, as remarked by
Temple and Yarwood, is that it is unsuitable for numerictd
computation because the hypergeometric functions involved
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me complimentedand are not tabuk%d. Temple and Yar-
wood therefore looked for approximations that are of
practical value in calculations of comprwsible flows. By
means of a skillfd analysis, they found such approximations
and showed that the simplest forms for ~m and $. are of
the type

W&) s [~(T)lm
4%(7)= [$(dla1 (48)

If@ slog ~,)

where q(r) and t(r), independent of the index m, are

()V=[= 1–:7 q (49)

Significantly, horn the point of view of the analysis of the
present paper, the functions q and & approximated by

( ‘)
1– & g are none other than the functions defined on the

r&h&h&d sides of equations (33) and (34). The approxima-
tion of Temple and Yarwood then leads to the same velocity
correction relation as was obtained by means of Chaplygin’s
approximation (equation (41)).

The velocity and pressure-coefficient correction formulas
obtained by Temple and Yarwood are more involved than
the explicit expressions (43) and (44) obtained by von

K6rm6n. Replacing r in equation (41) by r,
0

$ ~ thusyields

(50)

where
M:

n =Iijijti

The solution of this cubic equation for (g/gJ~ is

where

cos”=Y(l-:”’)(:’’)”6)i

and O<u$O The pressure coefficient Cp&l is then calcu-

lated by equation (18b). Some valuea of the pressure
coefficient C!9,KIcalculated with the aid of equation (61) are

(Cvml).shown in figure 4; a curve of 7 plotted against Ml is

included in figure 5. It is remarked that, with the use of
equation (39), the velocity correction formula (50) yields a
limiting value M= 1.35.

APPROXIMATION BASED ON GEOMETRIC MEAN OF dL ANB &

Without going into its deep aigniflcance in the present
paper, it is of interest to introduce another function related

to L and ~ and to the general particular solutions. This
function, which like L and ~ reduces to log q for r=O, is
deiined by

H(T) =JliZ dz)’fl (52)

It is remarked that H(7) is closely related to a function K(r)
employed by Temple and Yarwood (reference 7) in the
determination of their approximation. In the next section,
it will be seen that the function H(7) plays an important role
in connection with the Prandtl-Glauert approximation.

From equations (26) and (27),

—
and

Then,

-(w@=[-l”? ’53)(d.LdE)l~–

and, from equation (52),

H(T) =log q+h(T) (54)
where

h(r) =; s{[r 11

1—(2(3+1)T lfl_l dr—
l—r T

The function h(7) can be obtained in a cIosed form for any
value of Y (or 6) and is

●

~(,,=_log[(l-’)’@+(’-:)q[(fl’’’fl-(”*-’’’B]*
1

(56a)

1
—— and where this expression is valid in the‘hae “-2f?+l

subsonic range Os r S 7*. With r replaced by &-* and

os MS 1, the expression for h(7) becomes

(rob)

It is observed that, for the supersonic region r, ST= 1 or
~1, H(r) as deiined by equation (52) becomss a complex
function; but, for present purposw, only the red function
of the subsonic range is utilized.

The function H(r) may be utilized to obtain a velocity
correction formula in the same manner as the functions
Z(r) and ~(~) . Thus, analogous to equation (35), (36),
or [37),. .

(a=(i)% (56)



..- . ..-... ———- ..— ——

300 REPORT NO. 7S *NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

It is instructive to compare equation (56) with the approxi-
mation given by equation (37). Equation (37) may be
written as

[(-l\ # i(dL+di)

(;J,=[#w+dq
T-T,

and equation (56) may be written as

Thus, the power of the mponential is in one case the integral
dL+-d~

of the arithmetic mean and in the other case the in-

tegral of the geometric m: (oZ d~)~’. Table 1 shows val-

ues of the functions f(’)~g(”) and h(r) in the we of air

( )7=1.4, f?=2.5, and 7,=* and figures 1(a) and 1(b) show

tkesefunctionsplotte dagainstr and.M, respectively. Observe
that thcae functions, and consequently the veJocity correction
formulas (37) and (56), d.ifler only slightly-in the subsonic
range 0<.M< 1. Figure 5 exhibits graphically a comparison
of the velocity correction formulas (37) and (56) for M= 1.
The limiting value of M (deiined by equation (39)) is M= 1
in the we of equation (56) as compared with M= 1.15 in the
cnse of equation (37).

COMPARISON OF RESIJL~ OF P~RNT PAPER WITH PRANDTL-
GLAURRT APPROXIMATION

The well-known Praadtl-Glmmrt approximation is based
on the assumption of mmishingly small disturbances to the
main strewn. The Prandtl-Glauert velocity correction
formula may be expressed as

QIJ=

()

~1 (l–ii?)’”
(57)

!?1 i

where q—ql is vankhingly small. .The left-hand side of this

equation is actually the diflenmtial coefhcient =

evaluated at the main stmmmvelocity g=ql (or T= 7J. An
erect form of the Prandfl-Glauert approximation then is

(58)

The differential coefikient in equation (58) is now evaluated
for the vmious approximations heated ti the present paper.

For the arithmetic-mean approximation of the present
paper given by equation (37) (~ or 19arbitrary),

=* —
2;

For the Chaplygin or the Temple-Yarwood approximation
given by equation (41) (7=1.4 or p=2.5),

Mw.,=;-i’rl
4

1–* M,*
=

1–gM:

=1+; M?+; M++ . . . (60)

For the von Kfirm&napproximation given by equation (42)

( )
7=—1 orp=–~ )

[$t!kkl,-r~(l-T)’”

=&i (61)

For” the geometric-mean approximation of the present
paper given by equation (56) (7 or S arbitrary),

w%lrti,=[dhr

‘(1–;!,2)’/’ (62)

Equation (62) is independent of the value of the adiabatic
index 7 and includes the von IUirmfin approximation. Ob-
serve that the geometric-mean approximation yields the
Prandtl-Glauert result exactly, whereas the arithmetic-mean
approximation yields the Prandtl-Glauert result insofar ns
terms inclusive of Ml” are concerned. The Clmplygiu or the
Temple-Yarwood approximation contains the Pmndtl-
Glauert result only insofar as the M,’-term is concerned.

RI%WJMli. AND CONCLUDING REMARKS

1. Basic elementary solutions of the hodogmph equmtions
have been employed to provide a bnsis for comparison, in
the form of velocity correction formulas, of corresponding
compressible and incompressible flows.

2. The velocity correction formulas obtained by Ohaplygin,
by von K6rm6n, and by Temple and Yarwood have been
unified by means of these basic solutions and shown to be
ewentially equivalent.
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3, In tho present paper two types of approximations have
been introduced by means of the basic elementary solutions,
namely, the “arithmetic-mean” type and the “geometric-
merm” type. These approximations include those obtained
by Chaplygin, by von KArm6n, and by Temple and Yarwood.

4. The approximations discussed in the present paper
have been compared with the well-known results of I?randtl
and Ghmert. For this purpose, it has been emphasized that
the Prandtl-Glauert result is valid for vanishingly small dis-
turbancca and, in a strict sense, is the slope term in a Taylor
expansion in a quantity which meamqws the disturbance.
It vm.s found that the arithmetic-mean type yields the
Prandtl-Glauert result h a higher order of approximation
than the Clhaplygin or the Temple-Yamvood type and that
the geometric-mean type contains the l?randtl-Glauert result
exactly. The two types of approximations introduced in
the present paper then appear to be preferable to the others
M a baais for extrapolation into the range of high stream
hfach numbers and large disturbances to the main stream.

6. The results of the present paper have been obtained
without consideration of any particulm boundary. The
actual boundary problem of determiningg the flow past a
prescribed body is of a high order of difficulty and involves
in general all the particular solutions of the hodograph
equations.

6. The particular solutions discussed in the present paper
me well-behaved functions in both the subsonic and the
supersonic regions. The hodograph equations give no reason,
in general, to suppose that a discontinuity necessarily occurs
in the solution when local sound speed is attained. Rather,
it appears that the tit breakdown of the solution is ~-
sociated with the vanishing of the Jacobian of the trans-
formation from the physical to the hodograph variables.
Indeed, von KArm&nhas made an equivakmt suggestion in
that the appearance of infinite accelerations in the flow
solution is a condition for flow &continuities. Interest&a
speculations on this matter are suggested by the results of the
present paper since the “limiting” curves discussed in the
present paper are defied by a condition that is equivahmt
to the condition for infinite acceleration. The arithmetic-
mean type of approximation thus yields a limiting value of
the local Mach number M= 1.15, and the geometric-mean
type of approximation yields a limiting value of the local
Mach number M= 1. The value M= 1 appears to be exact
for vanishingly small disturbances; that is, local Mach
number M=stream Mach number Ml= 1 (l?randtl-Glauert

approximation). However, for iinite disturbances to the
main flow due to the presence of a body in the fluid, infinite
accelerations may occur, for stream Mach numbers less than
unity, in regions where the local Ma& number is greater
than unity. In this regard, the arithmeti~mean type of
approximation, considered as an extension of the Prandtl-
Glauert relation to finite disturbances, indicates the pos-
sibility of a mixed subsonic and supersonic flow without
discontinuitiea. It is important, however, to recognize
that in general the limiting value of the local Mach number
M is a function of shape paramekrs and is a result of the
blending of many particular solutions of the hodograph flow
equations according to the boundary conditions.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMI~EE FOR AERONAUTICS,

LANGLEY J?IELD, VA., January 1$2, 194.4.
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TABLE 1.—VALUES OF ~, g, ~> ~ AND THEIR EXPONENTIAL FOR y= 1.4

N

o
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.3
.4
.5
.6
.65
.70
.75

.s3

.825

.&w
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.!m

.925

.W1

.m

i%

~.

LC@
LC19
L 10
L 12
L 1S
L 1S
L!Xl
L30

L40

k:
2bo

2%
&cm
m

r

L

f

o
.mam
.CQm4
.Olm
.03101
.04762
. IE716
.0m2
.Cs32b
. IOU2

. ma

. mm

.lmm

.132i9

.13942

.14612
:~

.16113

. 16m7

.17224

. lm

. W49

. 1s915
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.MtM

.m17

. ‘Z7W

.!mal

.m

.m61

.am

.44444

:Ex
.761930
.E333

L03

o
–. Cmw
–. a@53
–. mm
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–. W4s7
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–. mm
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o
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–. X4@
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–. !2s93’7
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–. m
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–. m
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–. m448
–. &3734

–L 43254
–2 m
–& 3@a4

–K @sW8
-40. 7E337

4-=-
0

–. m259
–. Olwl
–. Cr2256
–. WxM
–. m
–. aans
–. 107W
-. U341
–. 14484

–. leas
–. 17740
–. 1W27
–. 23173
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–. 2$3s3
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–. m?

--------- .
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..........
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. W)16
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.m

.78b51

.m
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.Slml

.m
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o
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:m
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.nm

.W
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.w%

.Com3

.m
o

1.m
.W7m
.W
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.E3Es9
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.W3
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.847M

.mu
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~“ C.,,, AND bf,TABLE 2.—VALUES OF @/qJ e, (g/L@J, ~q,q,)~>

FOR -y= 1.4 AND FOR VARIOUS VALUES OF M,

:* + ~~,” + ~: ~~, ~~ ~~ ~= ~~ +

M1-02

(m ● Loo L 48232 Lm 244048 2 mm ‘LW@37 8,85249 3.78124 4.Ku21 4.Es2b’5 4.W84 &WW

W (W LW L 47471 L8ZEll !LLu332 z 62618 lm 3.04061 .28SSJ 3.fW93 am 3.s9122 4.14728

(W{ Eq. (30) LW L 47WI L 91444 231!ms fL4$24a 206740 28s8m 3.1473s 8..Z76W x 31937 3.276W z 147WI

m. m Lm L 47401 L 917’S2 Zm 2 Lm37s 2.6S218 2 $@17 L mu 8.42W 365441 8.OIW 3.61WJ

B 1.al L 0~ LOW25 L05440 LWWII L W61 1.KU.% 1.10787 L !Z.2KI L= L87023 L4W7

(ml%))
Eq. (37) ‘J –L 17271 -2 07W13 –4. 3%+.14 -6. 2Wa3 –IL 1E382 –7. W614 –9. 491W -m. 764m -lL m –IL 07m –12 W2

C,,M*

@q. @b))
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