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ON THE FLOW OF A COMPRESSIBLE FLUID BY THE HODOGRAPH METHOD
I-UNIFICATION AND EXTENSION OF PRESENT-DAY RESULTS

By I. E. Garrick and CarL Karran

SUMMARY

Elementary basic solutions of the equations of motion of a
compressible fluid in the hodograph variables are developed and
used to provide a basis for comparison, in the form of velocity
correction formulas, of corresponding compressible and incom-
pressible flows. The known approximate results of Chaplygin,
von Kdrmdn and Tsien, Temple and Yarwood, and Prandil
and Glauerl are unified by means of the analysis of the
present paper. Two new types of approximaiions, obtained
from the basic solutions, are iniroduced; they possess certain
desirable features of the other approximations and appear
preferable as a basis for extrapolation into the range of high
stream Mach numbers and large disturbances to the main
stream. Tables and figures giving velocity and pressure-
coefficient correction factors are included in order to facilitate
the practical application of the results.

INTRODUCTION

The present paper is concerned with a theoretical study
of the hydrodynamical equations of a perfect compressible
fluid in two dimensions, in which the so-called hodograph
variables are used as the independent variables. It is hoped
to achieve herein a unification of the present-day results
obtained in this field and also to provide a working basis for
further developments. The earliest contributors to the
hodograph method for treating compressible fluids were
Molenbroek (reference 1) and Chaplygin (reference 2). The
remarkable work of Chaplygin on gas jets appeared in
Russien in 1904 but remained relatively unnoticed. In
recent; years contributions to the hodograph method have
been made chiefly by Demtchenko (reference 3), von Karmén
(reference 4), Tsien (reference 5), Ringleb (reference 6), and
Temple and Yarwood (reference 7).

The chief reason, and perhaps the only reason, for pre-
ferring the hodograph variables to the physical plane co-
ordinates is that the equations of motion in the hodograph
variables are linear. This simplification is achieved, how-
ever, at the cost of more difficult boundary conditions and
at a loss of physical insight. The great simplification in the
mathematics due to linearity nevertheless makes it desirable

to pursue this line of attack as long as it appears profitable
to do so.

The mathematics for handling the flow equations re-
ceived a substantial impetus by the work of Bers and
Gelbart (reference 8), who developed & new function theory

‘analogous to ordinary analytic function theory. The

present paper utilizes the methods of this new function
theory to develop certain functions essential to the compres-
sible-flow problem. It is of historical interest that ideas
similar to those of Bers and Gelbart were explored by the
renowned mathematician Hilbert (reference 9) in the early
part of this century but do not appear to have been further
developed at the time.

The material to be treated is conveniently separated into
two parts. In part I, the present paper, basic particular
solutions of the hodograph flow equations are developed and
employed in unifying and extending the results obtained by
Chaplygin, von Karmén, and Temple and Yarwood. The
results obtained in part I are of immediate practical applica-
tion and are given in the form of tables and graphs of velocity
and pressure-coefficient correction factors. In part II,
general particular solutions of the hodograph flow equations
are developed and discussed. The material in part I, it is
hoped, will lead to a method for handling the actual boundary
problem of the flow of a compressible fluid past a prescribed
body.

ANALYSIS
FLOW EQUATIONS OF AN INCOMPRESSIBLE FLUID

It is well known that the relations between the velocity
potential ¢ and the stream function ¥ for the steady irrota-
tional two-dimensional motion of a perfect incompressible
fluid are

o¢__ oY
dz Oy
(1)
%__2Y
oy 0z

These equations are the Cauchy-Riemann equations and
therefore ¢4y is an analytic function f(2) of the complex
variable z=z4-1y.
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The complex velocity or reflected velocity vector u—1v is
obtained from the complex potential 7(2) by differentiation.

Thus,
u—iv=d%(,i)

=ge~ ¥

—_ e—lw+t log @) (2)

where ¢ is the magnitude of the velocity vector and 6 is the
angle the vector makes with the positive direction of the
z-axis.

The variables 8 and ¢ are sometimes referred to as ‘“‘the
hodograph variables.” The flow equations in the variables
0 and ¢ can be readily derived by introducing 847 log ¢ as the
independent complex variable in place of z-44y. Then, in
analogy with equation (1),

bqb oY
dlog ¢

o oY

dlogg o8

(3)

or
%_, oY
20~ 173¢
2_ 120
dq ¢ o8

@)

These equations are known as the hodograph equations for
the flow of an incompressible fluid.

FLOW EQUATIONS OF A COMPRESSIBLE FLUID

The equations corresponding to equation (1) are, for a
compressible fluid,
0% __pg 0¥

2z p Oy )

where p is the density of the fluid at any point (z,y) and p, is
a constant density, which for convenience is referred to a
stagnation point.

A short way to derive the hodograph equations for a
compressible fluid, attributed to Molenbroek, is as follows:

According to equations (5), with 'u,—gé and v= gz

dé+i % dy=(u dz-+v dy)+i(—v dz-+u dy)
= (u—1v) (dz-+1 dy)

=qe % dz
or

dz=}lw(d¢+i§°d¢) ®)

It follows from equation (6), by considering § and ¢ as
independent variables, that

21 g (%yi 2

L)
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Then, by assuming that p is a function of only g (equivalent
to assuming that the pressure is & function of only the

d ensity) )

[ 12, gg) aw] Ll (P DY
bgbﬂ —Fost 2g00 T p 0g00
and

Pua'/’ 1 0% | .p O
aeaq rt ( P aq>+ (aaaq+ p 200g

Since, by continuity, these two expressions are identical, it
follows that

K w(bcﬁ_l_ PO ) “I: 1 9¢
Hence, by equating real and imaginary parts,
S BT U BV L S T
oy we 20_pg 0¥
' ' -2 p g
O¢__ _d(po/pq) OV
g =1 o8

2322 D'I/

Q)

These are the hodograph equations, first obtained by
Molenbroek, for the flow of a compressible fluid and are
independent of the form of the pressure-density relation.
It is observed that, when p=p,=Constant, equations (7)
reduce to equations (4). Equations (7), in contrast with
equations (5), are linear in the dependent variables.

BERNOULLI’'S EQUATION AND EQUATION OF STATE

In the present section there is listed a collection of for-
mulas and definitions necessary in the analysis,
Bernoulli’s equation for a compressible fluid is

"424_

po P

=0 ®

tf{-‘

where
p static pressure in fluid
po static pressure at stagnation point (¢=0)
p density of fluid
q¢ magnitude of velocity of fluid
The adiabatic relation between the pressure and the

density is

P =(ﬂ>’

Do \pPo )
where
v adiabatic index (approx. 1.4 for air)

po density of fluid at stagnation point (g=0)
The local velocity of sound a is obtained from

d
3=
“=%
For the adiabatic case,
at=rZ (10)

p
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Radic=s] . . .
From Bernoulli’s equation (8) and from equations (9)
and (10), the following relations may be obtained:

1
F=ai—ly—1)¢*

p= po[l— (v— 1)92] & (11)
—’Po[l-—(‘)’ 1)I]_

where @, is the velocity of sound at stagnation point (¢g=0).

From equations (11) for ¥>1, a maximum velocity
g=@n is obtained for the limiting conditions p=p=a=0.
Thus,

=2fay’ (12)

where

The fundamental nondimensional speed variable, in
general, i8 g/a, but it is found useful in the analysis to employ
a nondimensional speed variable + defined as

1'—-5% (13)

For v>1, the range of the variable r is 0s7<1. The value
7==0 has a dual meaning; r=0 in the case of a compressible
fluid corresponds to a stagnation point (¢g=0), or 7=0 may
mean the limiting case of an incompressible fluid (gy=«=).

With the definitions of = and B, equations (11) become
a=ay(1—7)3 -
p=po(1— )" ' (14)
=po(1—7)8*!

The local Mach number M=% may be expressed in terms

of the speed variable 7 in the following way:

(15)

or, by solving for = in terms of M,

T=Zﬁ%'2ﬂ-g (16)

The value of v for which the local velocity of the fluid
equals the local velocity of sound (AM=1) is given by

1
=381 17)
In the case of uniform flow past a fixed boundary, the
pressure coefficient is defined as
843110—30——19
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where the subscript 1 refers to the undisturbed stream. The
pressure coefficient for the incompressible case (M=0) is

Coo=1— @):

The pressure coefficient for the compressible case is

Cpses =173 (—1+{1+§(v—1)M1’[1—(g;)j]’l:‘) (18b)

For g=g, (sonic),

_ A
R =

For g=¢n (vacuum),

(182)

_ 2
’)’Ml

BASIC SOLUTIONS OF HODOGRAPH EQUATIONS

(Gp.M 1) m= (1 8d)

Consider the incompressible case represented by equa-
tions (38) or (4). It is clear that ¢=0 and y=log ¢ satisfy
these equations. In fact, any convergent power series in
w=0-+1 log ¢ represents an analytic function of which the
real and imaginary parts satisfy equations (3) or (4). The
class of analytic functions in w (and the concept of analytic
continuation) then yields all the particular solutions of these
equations.

The particular solution w=0+41 log ¢ can be obtained by
means of an integration that is instructive in the generaliza-
tion to the compressible case. It is well known that

F(w)={ f(w) dw
can be represented as the sum of two line integrals
F(w)=f(Pd0—leog D +1i[(Q do+P dlog g)

where

fw)=P+1Q

Thus, given a pair of functions P and ¢ that satisfy equations
(8) or (4), this process yields another pair of solutions,
namely, the real and the imaginary parts of F(w). For
example, if P=1 and @=0,

Fw)=w=0+1log ¢ (19)
Again, if P=0 and @=1,
Fw)=iw=—log ¢+ (20)

The physical interpretation of equations (19) and (20),
considered as flow patterns, is of some interest in connection
with later developments. It is clear that equations (19)
and (20) represent a vortex and a source located at the
origin, respectively.
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The generalization to the compressible case of the fore-
going elementary results was accomplished by Bers and
Gelbart (reference 8) by means of simple yet fertile ideas.
Bers and Gelbart treat equations of the form

%¢__ oy
8 )\1(.‘1) Tﬁl
(21)

and show as is readily verified that, if P and @ are a pair
of solutions, the real and imaginary parts of the following
sum of line integrals

[P a-rn@eui+i[[Qatis Pa] e |

are also solutions of equations (21). o
In particular, corresponding to the pair of solutions P=1
and =0, there is obtained

W—=64i f ﬁ dq (23)
and, for P=0 and Q=1, )

W=ilo-+i f (@ ddl (24)

By repeated application of the process of integration, indi-
cated by expression (22), a general set of particular solutions
of equations (21) may be obtained. These particular solu-
tions are discussed in part IT; in the present paper, only the
solutions given by equations (23) and (24) are needed.

The general hodograph equations (7) are of the form of
equations (21) with

kl‘(_(l) —'—-%g'

h@=—q%’ﬂ

For the rest of this paper, the adiabatic pressure-density
relation (9) is used. By means of equations (9) and (14)
and the relation

and

obtained from the differential form of Bernoulli’s equa-
tion (8), it follows that

M(!l)=(—1£7)7;
_1—@2+1)r
M=

The evaluation of the integrals in equations (23) and (24)
is made unique by requiring that the results reduce to the
incompressible case when the speed of sound is infinite
(that is, when 7=0. Then,

(25)
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L=f(1—f)f’ d—q‘-‘ ‘
=log ¢+f(v) (26)
where
A =3 [ 1a—p—1i%
and
1—(28+ 1)1'
I iy u

=log ¢+g(r) (27)

where

g(r)—lf [1—(254-1)7 l:l_d_r

and it is observed that the functions f(r) and g(r) vanish
for r=0.
Equations (23) and (24) can be written in the form
W=6+4iL
and
iW=i(6+iL)

It is nnportant to note that, in the mcompressnble case,
W and iW reduce to w and 7 iw, since L and L reduce to log g.
Thus, there are in the compressible case two basic functions
L and L corresponding to the one function log ¢ in the in-
compressible case. It is of interest to mention that the
functions W and iﬁ7, considered as flow patterns in a com-

pressible fluid, can again be interpreted as a vortex and a
source.

EVALUATION OF FUNCTIONS f(v) AND g(r) FOR VARIOUS VALUES OF §

In general, the integrals in equations (26) and (27) repre-
senting the functions f(+) and g(+) are expressible by infinite
series. TFor the important case of air, however, with the
adiabatic index v put equal to 1.4 instead of the usual value
1.408, these functions can be obtained in closed forms.
Thus, with §=2.5,

e)=5 [ 10— &
=% ¢! —T)5n+% (A1—7)3

e g LU= (o

1:' dr
(1—7)5/2 "‘3 a —T)aff

11 14(—n"
ta—pm sl 0D 29)

and

10=3), [a=5m-

Table 1 contains values of f(r) and g(s), and figure 1(a)
shows these functions plotted against 7. Observe that f(7)
and g(r) are well-behaved functions in the range 05r<1.
In figure 1(b), these functions are plotted against the local
Mach number M in the practical dpeed range.
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Other interesting cases for which the functions f(+) and
. 3
g(r) can be expressed in closed forms are y=w, y=2, T=5

and y=—1. For y=o (=0, a=, incompressible case),
f(r)=g(1)=0
For y=2 (=1),
f)=—3r
g(r)=1—12—5log (1—7)
For 'r= (8=2)

Jy=—rtin

F) =gty =—log LEAZD"

For the isothermal case y=1(8=w), the velocity of sound
a=a,=Constant]and the functions f and g are obtained as
infinite series in the ratio g/ae. Thus, in the limit f—e,

fg/a) =l 5 f . [(1 2Baq* ] 9/(10

1 [ ‘(;*a-? )_@@
0

2 q/a;
d » (@/a))"
=2 (=" 3o
and ( )
ao| 17\1155) a2 . |d(g/ag)
9@/%)—3222f 1__£_ i q/ao

fas % ]d(/ )

o [ S O
1L 20

—1—e "+ 5

For arbitrary_values of ¥ (or 8) the expressions for f(r) and
(1), obtained with the aid of the binomial expansion, are

fo=35 0" (6) 2

1
o) ﬁf-l-s g(B—1)7*— .

== %a‘? g5 @~ ‘Y)<(l0>
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and

1=—353 v~ (F0) 2
1 3
=—3 Br—g BB+~ . ..

~Z(&)- ...

The significant feature of this general result is that, if powers
of g/a, higher than the third are neglected,

f=g~—3 L (30)

and does not involve explicitly the adiabatic index y. This
circumstance underlies the present-day approximate methods
for obtaining velocity and pressure-coefficient correction
factors; in the following sections, this point is brought out
more clearly.

APPLICATION OF BASIC FUNCTIONS L AND L

In this section, the basic functions L and L are employed
to set up relations between velocities in ‘‘corresponding”
compressible and incompressible flows. These relations are
of the nature of “stretching factors” or velocity correction
formulas and contain the results of Chaplygin, von Kérmdn,
Temple and Yarwood, and Glauert and Prandtl. It is
important to recognize at the outset that no single velocity
correction formula can represent in an exact way the cor-
respondence of flow patterns past a prescribed body in
a compressible and an incompressible fluid. A single velocity
correction formula is actually feasible in only two cases:
(1) The stream Mach number is small (even though the
disturbance to the main stream due to the presence of the
body may be large) so that the compressible-flow pattern
differs only slightly from the incompressible-flow pattern or
(2) the disturbance to the main stream is vanishingly small
(even though the stream Mach number may be high) so that
the effect of the shape of the solid boundary is small. The
various velocity eorrection formulas discussed in the present
paper differ essentially only in the degree to which the
requirements of these two cases are satisfied. Despite their
limita.t.ions, single velocity correction formulas are extra-
polated, in view of the lack of more ngorous solutions, into
the range of large disturbances to the main stream and high
Mach numbers. This extrapolation can be justified by
further theoretical investigations and by comparison with
experimental results.

Consider again the corresponding pairs of functions

w=0-11log ¢
Web+iL } (31)
and
w=1(0-1 log q)}
Wei(o+iLy (82)



ON THE FLOW OF A COMPRESSIBLE FLUID BY THE HODOGRAPH METHOD—I

It has previously been noted that the pairs of functions in
equations (31) and (32) denote respectively a vortex and a
source in an incompressible and a compressible fluid. Each
pair of functions can be employed to define & correspondence
of flow patterns in which corresponding points are identified
by the same values (¢,¢¥). Thus, in the case of the vortex
(equations (31)),

o=@, =0
i=v¥.=log ¢;=L

where the subscripts 7 and ¢ refer to the incompressible and
to the compressible case, respectively. It follows that

gi=e*
=¢./" (33)
Similarly, in the case of the source (equations (32)),

$i=¢.=—log gi=—L

'l’£=‘l/c=0
and
gi=e"
=q'" (34)

At the end of the preceding section it was pointed out that,
to a first approximation, the functionsf(r) and g(r) are equal.
This fact implies that, to a first approximation, & single veloc-
ity correction formula is feasible. The assumption is now
made that either equation (33) or equation (34) can be adopted
to provide a correspondence of flow patterns in the case of
uniform flow past a body in an incompressible and a com-
pressible fluid. With the undisturbed streams as con-
venient references, the following nondimensional forms of
equations (33) and (34) can be written:

( ) (gl c% (85)

O)-0).%

where the subscript 1 refers to the undisturbed stream.
The use of the undisturbed stream as reference in the non-
dimensional form of the velocity correction formula was
introduced by Tsien in reference 5, where also the details of
the von Kdrmdn approximation are developed. It is shown
in the following section that either of equations (35) or (36)
contains the result of Chaplygin, von Kérmén, and Temple
and Yarwood. As has been previously pointed out, the
concept of a single velocity correction formuls is feasible in
only two cases, namely, small stream Mach numbers and
vanishingly small disturbances to the main stream. It is
desirable then to seek a single velocity correction formula
that combines the features of these two cases. From this
point of view, equation (35) or equation (36) is not the best
choice. A better choice of a single velocity correction for-

and
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mula appears to be the following combination of equations
(35) and (36), based on the arithmetic mean of f(r) and g(r):

¢ W+l 37)
(&)~(8). S

In a later section, still another combination referred to as

“the geometric-mean type of approximation’ is introduced;

in the section dealing with the Glauert-Prandtl approximae-

tion, certain features of the foregoing arithmetic-mean type

of approximation and of the geometric-mean type are
discussed.

At this point it is desirable to discuss the practical applica-
tion of equation (37). According to equation (16),

_ M
"=+ L

M2
"2

#)-G)"

<2,3+Iti A2 (38)

and

Equation (37) then yields, for a given set of values of the
stream Mach number M, and the local Mach number M, a
value for the ratio (g/g,): of the local velocity ¢ and the
stream velocity ¢, in an incompressible fluid. Table 2 shows
corresponding values of (¢/q;). and (¢/q;)+ for various values
of the stream Mach number M, with y=1.4 (8=2.5). This
tabulation is performed, for the purpose of comparison, for
the three cases represented by equations (35), (36), and (37).

Values of (¢/q))+, {(¢/q))., and fgjl_gl)b’ obtained from equations

(87) and (38), are plotted against the local Mach number M
in figure 2 for various values of the stream Mach number ;.
Table 2 also shows values of the pressure coefficients C,,
and Cpar, calculated by equations (182) and (18b) for
these corresponding values of (¢/q:): and (¢/q1).. Figure 3
shows the curves of pressure coefficients corresponding to the
curves of velocities of figure 2 Useful cross plots of the
curves in figure 3 are shown in figure 4, in which C,ar, is
plotted against M, for various values of C,, In addition,
curves are shown in figure 4 for (Char)s and (Char)m
calculated by equations (18¢) and (18d), respectively. The
curve for (Cpar,), corresponds to the sonic value M=1 or

r=r,=g and in effect divides the region of flow into a sub-

sonic and a supersonic part. The curve of (Cpar)m corre-
sponds to the maximum value M= « or r=1 and represents
the outer limit of the supersonic region (or & perfect vacuum).
In order to exhibit the main differences between the various
correction formulas (35), (36), and (37), the ratios of the
sonic values (Cj.r,), and the corresponding incompressible
values C,, are plotted against the strcam Mach number
M, in figure 5.
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Observe in figure 2 that the (g/g;)rcurves have maxi-
mum points. This fact means that the value of (g/q).
associated with a value of (¢/g;)is not unique. Analytically,
the criterion for the maximum point is equivalent to

dapi_, -

or, from velocity correction formula (37),

(1—7)%H—(26+1)r+1=0

24
or M=~1.15. Itisinteresting to note that velocity correction
formula (36) yields as the criterion for the maximum point

1—(@2s+1)r=0

The root of this equation is r=7,=

For g=2.5 this equation has only one positive root, 7=

1

28+1
T=% or M=1. Velocity correction formula (35) yields no

and, for =2.5, is

-maximum value of = or M.
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F1GURE 6.—Tho function F against Mach number M for several values of the adisbatic Index .

Meaning can be given to the value -r=% (M=1) in the

case of equation (34) with reference to the original inter-
pretation of the flow pattern as that of & source. It can be

shown that the acceleration (q% along a streamline is
infinite at all points for which the local Mach number is
unity (1'—-:% ond that a flow discontinuity exists there.

In the case of the vortex flow pattern (equation (33)), no
flow discontinuity occurs for M<». The velocity correc-
tion formula (37) suggests a “limiting” value M =~1.15 for a
spiral flow, since equation (39) is analogous to a condition
of infinite acceleration. Thus, the existence of a mixed
subsonic and supersonic region of flow without discontinuities
is indicated. Since the occurrence of this limiting value of
M is a consequence of the simple form assumed for the
velocity correction formula, no undue significance should
be attached to any particular value at the present time.

THE CHAPLYGIN APPROXIMATION

From the point of view of the present paper, Chaplygin’s
approximation for subsonic speeds assumes & simple and
lucid form. Chaplygin introduces in place of ¢ & new inde-

pendent speed variable 5 equivalent to the quantity given
on the right-hand side of equation (33), namely,

ﬂ=gef(r)
The hodograph flow equations (7) then assume the form
o _, 2%
o 1 on
le] [e] 0
7 b—j= —F(r) —5‘%
where

A
—1—BEA+1)r 2 BRE+D) 2B+2)P— . . .

Values of the function F(7), for several values of v (or B),
are given in table 3 and are plotted in figure 6 against the
local Mach number M. Chaplygin noted that, in the case

of air (8=2.5), F(r) differs but little from unity over about .
one-half the subsonic range 0575 %- His approximation in

the range of low subsonic speeds consists in neglecting powers
of = higher than the first or in replacing F(r) by unity.
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Equations (40) can then be written in the Cauchy-Riemann
form

o Oy

6 olog g

o) _o¢Y
dlogn o8

and ¢4y therefore is an analytic function of the complex
variable 8-} log 4. Chaplygin’s approximation thus leads
to the velocity correction formuls,

5
(%) <91 q— Zr (1)

wherepowers of 7 higher than the first are neglected through-
out. The use of equation (34) instead of equation (33) also
leads to this result to the same order of approximation.

THE VON EARMAN APPROXIMATION
Von Kfrmdn’s approximation corresponds to the case
It follows at once from the integral

v==—1 { or B=_f—13' -

expressions for f(r) and g(s) given by equations (26) and
(27), respectively, that for this case .

14+ (11—t
Sy =g(r)=—log THEZ
or, with the use of equation (16),

J@)=g(r)=—log % [1+(1—_ﬂl([z)'—m]

This function, plotted against M, is included in figure 1(b).
Corresponding to equations (35) and (36), there is a single

equation (g) (g

2
Replacing 7 by =, (g—l)c and r; by HI’ITI according to equa-
tion (16) yields

_ 1+(1—-M5)~
(g'l)‘—(g;)c (l—Mx’)”’-I-I:l—Mf—I-Ml’ (g;>:]m 42)

Then, by solving for (g/q:). in terms of (g/g:); and the stream
Mach number M;,

(,;1_) <ql:1 #<

pr— M12
i+ a—MH"

1+(1—T1)m
A+ A—D7F

(43)

qQ1/1
where

The pressure coefficient C,ar,, expressed in terms of the
incompressible pressure coefficient C,,, is easily obtained
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from the general formula (18b) by putting y=—1 and
meaking use of equations (43) and (18a). Thus,
1 44
Coar 1=0p.0 M3 Ooo ()

A Ty A

Observe that for this case the function F(+) introduced by
Chaplygin and given in equation (40) is exactly equal to
unity. From the point of view of the present paper then,
von Karmén’s approximation appears to be equivalent to
that of Chaplygin, who approximates F(r) by unity. It
follows that the range of validity of von Kfrméan’s approxi-
mation and that of Chaplygin, in a strict sense, coincide.
Furthermore, it is pointed out that the von Xarmén approxi-
mation does not permit a supersonic region. Von KarmAan's
choice of y=—1 has the advantage, however, of yielding
simple explicit expressions for (¢/q,). in terms of (g/q,) and
for Cpar, in terms of C,,. Several values of 0. calcu-
lated by equation (44) are included in figure 4. For the
purpose of comparison with the other approximations, there
is plotted in figure 5 the ratio of (Char)s to Cpp against the
stream Mach number A/; in the case of von KArman’s approxi-
mation. The values of C,, are obtained with the use of
velocity correction formula (42) for the local Mach number
M=1, but the values of (C;ar,), are calculated with y=1.4.

THE TEMPLE-YARWOOD APPROXIMATION

The functions ¢ and ¢ related by the first-order simultane-
ous equations (21) separately satisfy the second-order
equations

o b¢>

2 TMO 5[ % [—@ =0

321[1 1 oY (45)
F TR g ["*@ Tq}

In terms of the nondimensional speed variable 7 and with
the values of A (g) and M:(g) for the adiabatic case given by
equations (25), these equations take the form

1 (1—7)8 % r(1— )8t
i~ 7 oetor [‘1_— (2_‘la+ )7 or = =

l 1—(23-[-1 T 521,0 0 I:
‘r(l—-r) Y b‘r (1—7)# br

Formel solutions of these equations were given by Cha.plygin
in the form of two infinite series

¢=Ba+§B.,¢m(-r) sin (m+e,)

(46)

) @7
¢=—DBy(1) —EB,,(#“(T) cos (ml+te,,)

where the functions ¥.(r) and ¢a.(7) are obtained from
hypergeometric series and B, B,, and e, are arbitrary
constants.

A disadvantage of the formal solution, as remarked by
Temple and Yarwood, is that it is unsuitable for numerical
computation because the hypergeometric functions involved
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are complicated and are not tabulated. Temple and Yar-
wood therefore looked for approximations that are of
practical value in calculations of compressible flows. By
means of a skillful analysis, they found such approximations
and showed that the simplest forms for ¢. and ¢., are of

the type
V(7)) =n(0)]"
bu(7) =[] (48)
¢o(7) =~log &(r)
where 5(7) and £(r), independent of the index m, are
r=t=(1-37)q (49)

Significantly, from the point of view of the analysis of the
present paper, the functions 5 and £ approximated by

(1-— %-) g are none other than the functions defined on the

right-hand sides of equations (33) and (34). The approxima-
tion of Temple and Yarwood then leads to the same velocity
correction relation as was obtained by means of Chaplygin’s
approximation (equation (41)).

The velocity and pressure-coefficient correction formulas
obtained by Temple and Yarwood are more involved than
the explicit expressions (43) and (44) obtained by von

2
Kérmén. Replacing rin equation (41) by TI(Q;>C thusyields

—~4n (m)

(&) -() g =y ©0
where
M2
TR FME
The solution of this cubic equation for (g/g:). is
ORCHERE S

where

cos a=§32—/§ (1 —-g n) (g Tl)lﬂ(%),

and o<a,§g-

lated by equation (18b). Some values of the pressure
coefficient O}, calculated w1th the aid of equation (51) are
7-1[1)!

The pressure coefficient O, i, is then calcu-

shown in figure 4; a curve of ( plotted against M, is

included in figure 5. It is rem&rked that, with the use of
equation (39), the velocity correction formula (50) yields a
limiting value M =~1.35.

APPROXIMATION BASED ON GEOMETRIC MEAN OF dL AND df

Without going into its deep significance in the present
paper, it is of interest to introduce another function related
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to L and I and to the general particular solutions. This
function, which like L and L reduces to log g for =0, is
defined by

H(r)=[(dL dL)» (52)

It is remarked that H(r) is closely related to a function K (7)

employed by Temple and Yarwood (reference 7) in the

determination of their approximation. In the next section,

it will be seen that the function H(r) plays an important role

in connection with the Prandtl-Glauert approximation.
From equsations (26) and (27),

1
dL=1 dg=(—rp Y

and
PRV
Then,
@z dlye=(32) g FmEEENT A ()
and, from equation (52),
H(r)=log q+h(7) (54)

where
o4 [[=en] -

The function A(r) can be obtained in & closed form for any
value of ¥ (or 8) and is

[(1-—1-)1/3-[-(1——) ﬁ] [(1_.,.)1# (re—7)1 7—:

h(r)=—log
31— T
(558)
where r,=%+1 and where this expression is valid in the

2
subsonic range 0=5r=7, With r replaced by 23% and
0= M <=1, the expression for A(s) becomes

1+(1—Mf')w 1— w’.l 1— BI—M’)M

h(r)=—log e —
Jf*l 1+417_._(F1;/~_M”)‘ (55b)

It is observed that, for the supersonic region 7, €751 or
M>1, H(7) as defined by equation (52) becomes a complex
function; but, for present purposes, only the real function
of the subsonic range is utilized.

The function H(s) may be utilized to obtain a velocity
correction formule in the same manner as the functions
L(r) and L(r). Thus, analogous to equation (35), (36),

or (37), ea(f)
<) <91)

(56)
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It is instructive to compare equation (56) with the approxi-
mation given by equation (37). Equation (37) may be
written as

o/ YD)

(q,) [efi(deL)]f -
and equation (56) may be written as
gf @L dhyn

(m) [ ezatya] apye]

Thus, the power of the exponential is in one case the integral

of the arithmetic mean dL+dL

and in the other case the in-
tegral of the geometric mean (dL dL)¥2. Table 1 shows val-
ues of the functions@l(f) and A(r) in the case of air

(7—14 8=2.5, and r,== ) and figures 1(s) and 1(b) show

these functionsplotted aga.mst,r and M, respectively. Observe
that these functions, and consequently the velocity correction
formulas (37) and (56), differ only slightly-in the subsonic
range 0<A{< 1. Figure 5 exhibits graphically a comparison
of the velocity correction formulas (37) and (56) for M=1.
The limiting value of M (defined by equation (39)) is M=1
in the case of equation (56) as compared with M =1.15 in the
case of equation (37).

COMPARISON OF RESULTS OF PRESENT PAPER WITH PRANDTL-
GLAUERT APPROXIMATION

The well-kknown Prandtl-Glauert approximation is based
on the assumption of vanishingly small disturbances to the
main stream. The Prandtl-Glauert velocity correction
formula may be expressed as

(.,

@ Je

g—lgl> ~T= (57)
Q1 /1

where ¢—¢, is vanishingly small. The left-hand side of this
equation is actually the differential coefficient a(a/q).

ad(g/q)+
evaluated at the main stream velocity g=¢; (or r=7,). An

exact form of the Prandtl-Glauert approximation then is

|55 ==z 58)

The differential coefficient in equation (58) is now evaluated
for the various approximations treated in the present paper.

For the arithmetic-mean approximation of the present
paper given by equation (37) (y or 8 arbitrary),

(5] ’“’*_(1—n>ﬁ+2l—w.—‘1(f‘i+1)f*
2(1 +5z

T1ta— Ml’)(l+23)

REPORT NO. 789—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

—1+gMet St B

+1os m’%ﬂmﬁ% CeL (59

For the Chaplygin or the Temple-Yarwood approximation
given by equation (41) (y=1.4 or §=2.5),

1——mn
[ =5

1——M,

1‘——M1

—1+E a2 st (80)
- 2 140

For the von Kérmén approximation given by equation (42)

(7=—1 or f= —%):

[d(g/!b)i r-rl— (1_ T)lﬂ
~a=1mm oy

For the geometric-mean approximation of the present
paper given by equation (56) (y or 8 arbitrary),

[d(q/ql) ::I oty [1

-7

("ﬁ'l-l)‘ﬂ:l :

Equation (62) is independent of the value of the adiabatic
index v and includes the von Kérmén approximation. Ob-
gerve that the geometric-mean approximation yields the
Prandtl-Glauert result exactly, whereas the arithmetic-mean
approximation yields the Prandtl-Glauert result insofar as
terms inclusive of M;® are concerned. The Chaplygin or the
Temple-Yarwood approximation contains the Prandtl-
Glauert result only insofar as the A,’-term is concerned.

RESUME. AND CONCLUDING REMARKS

1. Basic elementary solutions of the hodograph equations
have been employed to provide a basis for comparison, in
the form of velocity correction formulas, of corresponding
compressible and incompressible flows.

2. The velocity correction formulas obtained by Chaplygin,
by von Kérmén, and by Temple and Yarwood have been
unified by means of these basic solutions and shown to be
essentially equivalent.
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3. In the present paper two types of approximations have
been introduced by means of the basic elementary solutions,
namely, the ‘“arithmetic-mean’” type and the ‘““geometric-
mean’’ type. These approximations include those obtained
by Chaplygin, by von Kdrmdin, and by Temple and Yarwood.

4, The approximations discussed in the present paper
have been compared with the well-known results of Prandtl
and Glauert. For this purpose, it has been emphasized that
the Prandtl-Glauert result is valid for vanishingly small dis-
turbances and, in a strict sense, is the slope term in a Taylor
expansion in a quantity which measures the disturbance.
It was found that the arithmetic-mean type yields the
Prandtl-Glauert result to a higher order of approximation
than the Chaplygin or the Temple-Yarwood type and that
the geometric-mean type contains the Prandtl-Glauert result
exactly. The two types of approximations introduced in
the present paper then appear to be preferable to the others
a8 o basis for extrapolation into the range of high stream
Mach numbers and large disturbances to the main stream.

5. The results of the present paper have been obtained
without consideration of any particular boundary. The
actual boundary problem of determining the flow past a
prescribed body is of a high order of difficulty and involves
in general all the particular solutions of the hodograph
equations,

6. The particular solutions discussed in the present paper
are well-behaved functions in both the subsonic and the
supersonic regions. The hodograph equations give no reason,
in general, to suppose that a discontinuity necessarily occurs
in the solution when local sound speed is atteined. Rather,
it appears that the first breakdown of the solution is as-
sociated with the vanishing of the Jacobian of the trans-
formation from the physical to the hodograph variables.
Indeed, von Kfrmén has made an equivalent suggestion in
that the appearance of infinite accelerations in the flow
golution is o condition for flow discontinuities. Interesting
speculations on this matter are suggested by the results of the
present paper since the ‘“limiting’”’ curves discussed in the
present paper are defined by & condition that is equivalent
to the condition for infinite acceleration. The arithmetic-
mean type of approximation thus yields a limiting value of
the local Mach number M =1.15, and the geometric-mean
type of approximation yields a limiting value of the local
Mach number M=1. The value M=1 appears to be exact
for vanishingly small disturbances; that is, local Mach
number M=stream Mach number ;=1 (Prandtl-Glauert

approximation). However, for finite disturbances to the
main flow due to the presence of 2 body in the fluid, infinite
accelerations may occur, for stream Mach numbers less than
unity, in regions where the local Mach number is greater
than unity. In this regard, the arithmetic-mean type of
approximation, considered as an extension of the Prandtl-
Glauert relation to finite disturbances, indicates the pos-
sibility of a mixed subsonic and supersonic flow without
discontinuities. It is important, however, to recognize
that in general the limiting value of the local Mach number
M is a function of shape parameters and is a result of the
blending of many particular solutions of the hodograph flow
equations according to the boundary conditions.

LanerLey MEMORIAL AERONAUTICAL LLABORATORY,
NarioNaL ApvisorY COARITTEE FOR AERONAUTICS,
LaneLeYy FieLp, Va., January 12, 1944.
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TABLE 1.—VALUES OF §, g, fif, h, AND THEIR EXPONENTIALS FOR y=1.4

.M r ! g %’ B o er . Ly o

0 0 0 0 100 1.00 1.00 1.00
.1 . 00200 —. - - 90750 - 90749 - 00760 - 90760
i3 > 00734 —> 00989 —.01013 - 99016 - 58092 : - 09004
3 -or7es —. 02196 —. 0318 So78e8 oL *97760 - 97760
o <03101 03831 — 04208 -96241 - 95870 - 98060 96060
s SodTea —. 05847 —. 06760 S94381 103463 -93800 + 03880
.8 . 06716 —. (8188 —. 10059 . 92140 . 90430 91281 .01271

. .85 : — 09457 —12023 L0977 88671 -89817 -8o702

70 : —. 10787 14216 189775 -85748 : -gs218
.75 10112 —.12167 -.16857 . 88544 . 84666 . 86578 . 86516
.80 11348 —. 13588 —. 10363 87205 82307 84810 .84700
1825 L1182 —14313 - 88684 -81202 - 83889 o
1850 $1262 —15045 - 185033 *70068 . -82768
.875 . 13279 —.15785 —_ . . 78601 . 81976 .81732
2900 t13842 116530 —.2% -84 17374 © 80685 $80064
.925 . 14612 —. 17281 —. 27423 . 84130 . 76016 . 70069 . 79562
1050 : —. 18038 - 807 U617 - 78633 -78386
.98 . 15563 . —, 18339 —. 30047 . . 74047 . 78511 . 77899
.68 .16113 —. 18946 —. 31624 . 82741 . . T7658 . 76880

L00 £16667 —. 19556 iy : 71705 *76701 L5763

102 17204 —~. 20168 —.34958 81737 .T0498 .75010

1.04 17785 —_ —. 36718 . . 60268 . 75016

L08 . 18349 —. 21391 —. 38542 . 80742 . 68017 . 74106

1.08 . 18915 —. 22003 - . . 66743 . 78185

110 . 19485 —. 22616 - . 79750 . 65440 . T2251

113 - 20036 - — 44417 70a73 -64188 S 71303

115 20917 —. M4 —. 47594 . ‘78660 . 62130 . 60859

118 .21782 —. 25059 - . T7834 . 60087 . 68387

L20 : —. 25085 - S 7T864 -58706 - 67302

130 : 28673 —. 66139 175072 - 51613 182247

1.40 . 28161 —. 31604 -—. 81292 . T2003 . 443568 . 568685

160 . 31034 -— - . 70868 . 37147 . 51307

2.00 . —. 46775 -2 39742 . 62641 . 09095 . 23869

2.50 - 55566 —. 55625 —& 12014 5TI8d - 00598 106844

3.00 . —. 670 —9. 90177 . 53542 . 00004 . 00495

4.00 . 76190, -7 —31..27238 . 40392 . 00000 . 00000

500 . —. 74934 —80. 81740 . 47268 . 00000 . 00000
@ 1.00 —. 84019 —m . 43162 0 0
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TABLE 2.—VALUES OF (g/a1)s, (a/a)s S(—g% Co0y AND C, 3,
FOR vy=1.4 AND FOR VARIOUS VALUES ‘OF M

M 0.2 0.3 0.4 0.5 0.55 0.6 0.7 0.8 0.9 1.0 L1 1.2
T 0.00704 | 0.01768 0.03101 0. 04762 0. 05705 0.06716 0. 03925 0.11348 0.13942 0.16687 0.10485 0. 223580
M;=0.2
@/3)e L00 1. 40282 1. 97660 2. 44048 2. 68106 2. 00907 3.85340 3.78124 4.10121 4. 58255 4.95184 5.30790
Eq. (35) 1.00 L.47471 1.92120 2.33332 2, 52518 2,70708 3, 04051 3.33385 3. 58793 3.80500 3.99122 4.14722
(g/a)e Eq. (36) 1.00 1.47331 1.01444 231268 2.49243 2. 65748 2. 93870 3.14735 3. 27593 3.31887 3, 27590 3,14780
Eq. (37) 1.00 1. 47401 1.91782 2, 32206 2, 50875 268213 2.08917 323912 3.42841 3. 55441 3.61594 3.61309
%% 1,00 1.01263 1. 63085 1. 05448 1. 06868 1. 08461 1.12188 1.16737 122249 1. 28926 187028 1. 46007
® q?ffaa)) Eq. (37) 0 ~-1.17271 | —2.67803 | —~4.39614 | —5.20383 | —6.10382 | —7.93514 | —0.40190 | —10.75400 | —11.63383 | —12.07502 | —12 05442
Cy,
(Eq ’a‘,';b» 0 —L21250 | —2.82383 | —4.75500 | —5.81393 | —6.92214 | —0.23803 | —1L62214 | —14.00071 | —16.31357 | —18.51393 | —20.57000
M;=0.3
(glg1)e 0. 66997 1.00 1.32425 1.64107 1.79621 1.94898 2, 24672 2. 53331 2. 80707 3.07016 3.31958 3.55612
Eq.(35) | 0.67810 1.00 1.30277 158224 1.71233 1. 83567 2. 06177 2. 26066 243209 2, 58087 2. 70646 2.81225
(ala)e Eq. (38) | 0.67875 1.00 1.20942 1. 56071 1.69172 1.80374 1.99463 2.13626 2, 22355 2, 25304 2, 22352 2.13855
Eq. 37) | 0.67843 1.00 1.30110 1. 57596 1. 70200 1.81085 2.02793 2.19752 2, 325983 2,41140 2, 45317 2.45123
g%: 0.98753 1.00 101779 1.04131 1. 05535 107107 1.10789 1.15280 1. 20725 L2318 | 135318 1. 45075
(qufi%a)) Eq. @D | 0.5073 0 —0.60286 | —1.48365 | —1.89680 | —2. 81113 | —3.11250 | —3.82000 | —440985 | —4.81485 | —5.01804 | —5.00853
(Eg ’legb)) 0. 55794 0 —0.74111 | —1.62984 | —2.11683 | —2.62051 | —3.69238 | —4.78921 | —5.88302 | —6.04746 | —7.85968 | —8 00571
My=0.4
@/n)e 0.50592 | 0.75514 1.00 1. 23024 1.35640 1. 47174 1. 69659 1. 01300 2. 12040 2, 31840 2. 50674 2, 68536
Eq.(35) | o.5251 | 0.76759 1.00 1. 31451 1.81488 1. 40903 1. 53260 1.73510 1.86764 1.98105 207744 2,15885
@/ Eq.(36) | 0.52235 | 0.76057 1.00 1. 20801 1.30190 1.88811 1. 53503 1. 64401 1.71118 1.73387 1.71115 1.61422
Bq.(37) | 0.52143 | o0.76857 1.00 1.21124 1.30813 1.39853 1. 55362 1. 68897 1.78765 185338 1.88512 1.88304
alg
%EI%I)L: 0.97025 | 0.98253 1.00 1.02312 1.03650 1.05235 1.08852 1.13284 1.18614 1. 25092 1.3205¢ 1. 42540
(Eq,a’{fsa)) Eq.(370 | 072811 | 0.40930 0 —0.46710 | —0.71120 | —0.05580 | —1.42030 | —1.85262 | —2.19560 | —2.43404 | —2.55481 | —2 51923
(Ef ’("'lgb)) 0.76043 | 0.43714 0 —0.5420 | —0.81188 | —1.11259 | —1.74152 | —2.38866 | —3.03420 | —3.66205 | —4.25038 | —4.81750
Mi=0.5
(a/a))« 0.40825 | 0.60936 0. 80695 1.00 109454 1.18763 1. 36908 1. 54370 1.71106 1. 87084 2. 02231 2.16654
Eq.(35) | 0.42857 | 0.63202 0. 82338 1.00 1. 08222 1.16017 1. 30307 L42871 1. 53769 1.63115 1.71051 1. 77737
(@la): | Eq.(38) | 0.43240 | 0.63700 0. 82781 1.00 1.07773 1. 14909 1. 27069 1.36092 1. 41652 1.43531 ‘1. 41851 1.36110
Eq.G) | 0.43049 | 0.63454 0. 82560 1.00 1.07998 1.15462 1. 28679 1. 39440 1.47588 1. 53012 1. 55662 1. 55530
% 0.04834 | 0.96032 0,97741 1.00 1.01348 1.02859 1. 06393 1.10707 1. 15035 1. 22267 1.20941 1.39318
(Eqa’i'fsa)) Eq.(37) | 0.81468 | 0.59738 0,31838 0 —0.16838 | —0.33315 | —0.65583 | —0.04435 | —L17822 | —L34127 | —1.42307 | —1.41024
(E;" 'E;Islb)) 0.87771 | 0.65366 0. 35646 0 —0.1955¢ | —0.40000 | —0.82766 | —1.2675¢ | —1.70857 | —2.18343 | —2.53060 | —2.01003
2Ady=0.55
(a/a)e 0.37200 | 0.55672 0.73725 0.91363 1.00 1.08504 1. 25081 1.41035 1. 56328 1. 70923 1.84810 1.67078
Eq.(35) | 0.39601 | 0.58399 0. 76083 0. 92404 1.00 107202 1. 20408 1.32017 1. 42088 1. 50722 1. 53057 1.64235
(@/an)s Eq.(36) | 0.40122 | 0.59110 0. 76811 0. 92788 1.00 1. 08621 1. 17906 1. 26278 1.31434 1.33178 1.31435 1.26294
Eq. (37) | 0.30881 | 0.58783 0.76446 0. 92595 1.00 108011 1.10150 1.20114 1. 36857 1. 41680 1. 44133 1.44010
(”'): 0.03573 | 0.94756 0. 968441 0. 83669 1.00 1.01480 1.04078 1.09234 1.14393 1.20640 1.28222 1.37467
(ch’(fsa» Eq.@37) | 684111 | o.85481 0. 41560 0.14263 0 ~0.14300 | —0.41967 | —0.86704 | —0.86751 | ~—1.00732 | —L07743 | —1.07415
(Ef ’("gb» 0.01835 | 0.72685 0. 47349 0.16737 0 —0.17407 | —0.54078 | —0.91731 | —1.20200 | —1.65828 | —2.00590 | —2 33058
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TABLE 2.—Continued
Af 0.4 0.6 0.85 07 Q.75 0.8 0.85 0.9 10 1.1 1.2 1.3
r 0.03101 | 0.06716 0.07702 0.08925 0. 10112 0.11348 0. 12626 0.18042 0. 16667 0.10485 0. 22360 0. 25202
M;=0.6
(glade 0.67047 L00 1.07707 1.15277 1.22704 1.20981 1.37107 1. 44093 1. 57627 1.70324 1. 82400 1.93939
Eq.(5) | 0.70971 1.00 1.06348 1.12318 1.17014 1.23146 1.28018 1.32559 1. 40596 1.47438 1. 83201 1. 58014
(g/ae Eq.(36) | 0.72041 1.00 105612 110583 1. 14869 1.18435 1.21245 1.23289 1.24908 1.23272 1.18451 1.10691
Eq.(37) | 0.71504 L00 1.05970 111447 1.16382 1. 20767 1 24585 1.27841 1.32521 1. 34815 1.34708 1.32283
%;%3—3 0. 95025 100 1.01631 LO3437 1. 05432 1. 07630 1. 10051 1.12713 1.18869 1. 26339 1.35440 1. 40042
(qu"ﬁ'sa» Eq.(37) | 0.488%72 0 —0.12315 | —0.24204 | —0.35448 | —0.45847 | —0.535214 | —0.63433 | —0.75618 | —0.81761 | —0.81462 | —0.74908
——
mq.'algb)) 0. 56402 0 —0.15785 | —0.31920 | —0.48310 | —0.64774 | —0.81238 | —0.97600 | ~—1.20437 | —1.50763 | —1.88090 | —2.14151
M;=0.65 *
(@/q0. 0.63084 | 0.92843 100 1. 07029 113924 1. 20881 1.27296 1. 33765 1. 46255 1.58138 1. 69405 1. 80060
Eq. 35) 0.66734 | 0.94030 1.00 1.05615 1.10878 1.15797 1. 20377 1. 24630 1.32204 1. 33638 1. 44057 1.48682
(@/g)s Eq. (36) 0.68212 | 0.94685 100 1.04708 1. 087668 112142 1.14802 1.16723 1.18271 1.16723 1.13158 1, 04808
Eq.(37) | 0.67460 | 0.9435% 100 1 05150 109818 1.13853 1.17553 1.20612 1.25044 1.27209 1.27110 1. 24780
-((Z‘I’ng—i 0.93501 | 0.88306 100 L.01778 1.03741 1. 065904 1.08288 1.10905 1. 16063 1.24314 1.33274 1. 44202
(Eq.cfi%a)) Eq.(37) | o547 | 0.10069 0 —0.10584 | —0.20506 | —0.20853 | —0.38102 | —0.45473 | —0.56380 | --0.61821 | —0.61670 | —0.56723
G
(Eq.,('fs’b)) 0.64074 | 0.14002 ] —0.14333 | —0.28862 | —0.43478 | —0.5%086 | —0.72571 | —1.00852 | ~1.27767 | —1.62013 | —1.76024
M=0.7
(o/a))« 0.58842 | 0.86747 0. 93433 .00 1. 06442 1. 12756 1. 18936 1. 24880 1.36650 147753 1, 68280 168236
Eq.(3% | 0.63186 | 0.89032 0. 94683 1.00 1.04083 1.09641 1.13078 1. 18003 1.25175 1.31208 1.36308 1. 40081
(gl Eq.(38) | Q65146 | 0.90429 0. 85504 1.00 1. 03876 1.07099 109640 1.11476 1.12053 1.11476 1.07114 1. 00090
Eq.(370 | o.61159 | 0.89728 0.95004 1.00 1.04420 1. 08362 111788 1. 14695 1. 18909 1L 20069 1.20874 1. 18668
g’—lgg—; 0.01869 | 0.96678 0. 98233 100 101028 L 04055 1. 06384 1. 08967 1. 14620 1.22140 1. 30840 1.41772
(Eq‘?zf%» Bq.(37) | 0.53%36 | 0.18489 0.09571 0 —0.00054 | —0.17423 | —0.24866 | —0.31549 | —0.41384 | —0.40335 | —0.46105 | —0.40810
—_— -
(Eq.,a"sli))) 0.70580 | 025618 0. 12004 0 —0.18082 | —0.2625¢ | —0.39307 | —0.52440 | —0.77007 | —-0.02140 | —1.24781 | --1,46580
AMi=0.75
@/ 0.55374 | 0.81407 0.87778 0.93947 1.00 105831 1. 11737 1.17418 1. 28380 1.38810 1.48701 1. 58054
Eq. (35 0.60187 | 0.84807 0.90191 0. 95253 100 1. 04438 1. 63568 1. 12404 1.19235 1. 25028 1.20026 1. 34000
(g/a)e Eq.(36) | 0.62715 | 0.87058 0.91942 0. 96268 1.00 1.03105 1. 05550 1.07317 1.08740 107317 1.03120 0. 06302
Eq.@7) 0.61439 | 0.85924 0.91062 0.95759 1.00 1. 03768 1. 07047 1.09831 1.13868 1. 15840 1.16749 1. 13630
%’Z‘.’i‘: 0.90128 | 0.94848 0.96394 0.98108 1.00 1.02084 1. 64381 1 06506 1.12745 1. 10829 1.28408 1, 39088
(qu"’(fsa» Eq.(37) | dexs2 | 020171 0.17077 0.08302 0 —0.07678 | —0.14501 | —0.20028 | —0.20850 | —0.34180 | —0.33978 | —0.20131
G,
(Eq_’ggb» 0.76361 | 0.35197 0.23700 0.11937 0 —0.12005 | —0.23007 | —0.35803 | —0.50124 | —0.81227 | —L01872 | —1.20863
M =08
(glan) e 0.52274 | 0.76834 0.82864 0.88687 0. 94402 1.00 1.05482 . 110842 1.21103 1.31038 1.40375 1. 40204
Eq.(35) | 0.57681 | 0.81205 0.86358 0.91207 0.085753 L00 1. 03956 1. 07629 1. 14171 1.19725 1.24400 1. 28312
@/ Eq. (36) 0.60827 | 0.84435 0.89172 0.93371 0. 96990 1.00 102372 1 04085 1 05467 1. 04085 100014 0, 93460
Eq.(37) | 0.59200 | 0.82805 0.87756 0. 92283 0. 96370 1.00 1.03163 1.05843 1.09734 1.11633 1. 11846 1. 00510
%/%07: 0.88287 | 0.82010 0.94425 0.96103 0.97958 1.00 1.02249 1.04723 1.10443 1.17383 1.25840 1.30247
(qu"z-l'&)) Eq.(B7) | 0.64943 | 0.31433 0. 22989 0. 14838 0.07128 0 —0.06424 | —0.12027 | —0.20416 | —0.24619 | —0.24423 | —0.10024
[
(Eq_’(';'gb)) 0.81520 | 0.43547 0.32040 0. 22083 0.11074 0 —0.11085 | —0.22038 I —0.43484 | —0.63857 | —0.82004 | —Lood1l
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TABLE 2.—Concluded

M 0.4 0.6 0.825 0.85 0.876 0.9 0.925 0.96 Lo 11 L2 1.3

T 0.03101 | 0.06716 0.11982 0. 12628 0.13279 0.13042 0. 14612 0.15663 0. 16667 0.19485 0. 22360 0. 25262
M1=0.825

@/a1)e 0.50872 | 0.74871 1.00 1. 02653 1.05276 1.07870 1.10434 1.13972 1.17042 1.27524 1.36610 1. 45203

Eq.@35 | 0.56104 | 0.70602 1.00 1.01005 103738 |  1.05508 107205 1.09475 1.11017 1.17363 1. 21850 1. 25781

(a/as)e Bq.(36) | 0.60068 | 0.83380 1.00 1.01083 1.02031 1.02785 1. 03380 1.03929 1.04147 1.02784 0. 88761 0. 92202

Eq.(G7 | 0.58253 | 0.81469 1.00 101497 102874 1.04138 1.05273 1.08685 1.07963 1.09833 1.09748 1.07744

gq/q: ‘ 0.87320 | 0.91901 1.00 1.01139 1.02335 1. 03586 104002 1.08850 109244 1.16107 1.24478 1. 34767

(qu"(f&» Eq.(37) | 0.66086 | 0.33628 0 —0.03018 | —0.05831 | —0.08443 | —0.10824 | —0.13774 | —0.16588 | —0.20633 | —0.20442 | —0.16088

® :’i;gb)) 0.83050 | 0.47330 0 —0.05320 | —0.10831 | —0.13010 | —0.21149 | —0.28409 | —0.36571 | —0.56234 | —0.74500 | —0.91487
My=0.85

(glan) e 0.40558 | 0.72038 0.97418 1.00 1. 02555 1.05082 1.07580 1.11026 1.14894 1.24228 1.33080 1. 41451

Eq.(35) | 0.55438 | 0.78114 0.08132 1.00 1.01799 1. 03532 1.05202 1.07430 1.09828 L 15171 1.19672 1.23432

(ofas)s Eq.(36) | 0.5%418 | 0.82478 0. 88920 1.00 1.00917 1.01673 1.02264 1.02805 1.03023 101673 0. 07697 0.01205

Eq.(30 | o.57384 | o0.80267 0. 98528 1.00 101357 1.02509 1.03721 1.05001 1.06371 1.08212 1.08128 1.06155

@ q:); 0.86347 | 0.90867 0.98873 1.00 1.01182 1. 02420 1.03721 1.05647 1.08013 1.14801 1. 23076 1.33249

(qu'(;’&» Eq.@37) | o.67050 | o.356572 0.02026 0 —0.02732 | —0.05268 | —0.07580 | —0.10441 | —0.13148 | —0.17088 | —0.16917 | —0.12089

(Ef’&‘lgb» 0.86288 | 0.50805 0.05147 0 —0.05129 | —0.10226 | —0.15284 | —0.22305 | —0.30100 | —0.49202 | —o0.66952 | —o.83214
My=0.875

(g/qn) e 0.48322 | 0.71118 0.04088 0.97508 1.00 1.02463 1. 04898 1. 08250 1.12031 1.21133 1.29763 1.37026

Eq.(36) | 0.54458 | 0.76734 0. 06396 0.98232 1.00 1.01703 1. 03340 1. 05530 1.07885 113134 1.17655 1.21248

(a/a)e Eq.(36) | 0.58877 | 81727 0. 98020 0. 99091 1.00 1.00748 101333 1.01870 1.02085 1.00749 0. 96807 0. 00464

Eq.@7) | 0.56626 | o0.79192 0.97207 0. 88661 1.00 101225 1.02331 1. 03684 L. 04047 1.06784 1.06678 1.04733

q/gg“ 0.85335 | 0.80805 0.97717 0.88831 1.00 1.01223 1.02509 104412 1. 06750 1. 13459 1. 21640 1.31693

(qu';fm) Eq.(37 | 0.67935 | 0.37289 0. 05508 0. 02660 0 —0.02465 | —0.04716 | —0.07504 | —0.10139 | —0.13088 | —0.13802 | —O0.096%0

Cr,y 0.88564 | 0.54277 0. 09960 0.04971 0 —0.04043 | —0.08846 | —0.16642 | —0.21286 | —0.42701 | —0.50898 | —Q.75712

(Eaq. (18b))

M;=0.9

(a/a)e 0.47160 | 0.69400 0. 92705 0.95164 0.97595 1.00 1.02376 1.05657 1.09338 1.18220 126844 1.34609

Eq.(35) | 0.53546 | 0.7540 0. 94783 0. 96587 0.98325 1.00 1.01610 1. 03764 1.06079 1.11240 1.15588 119218

(9/as)s Eq.(36) | 0.58430 | o.s1121 0.97291 0. 98355 0.99257 1.00 1. 00579 L01113 1.01327 1. 00000 0. 96089 0.80792

Eq.(37) | 0.55030 | 0.78233 0. 96029 0.97466 0. 88788 1.00 1.01091 1.02420 1.03678 1.05470 1.05387 1.03463

g%}; 0.84306 | 0.88731 0. 96530 0.97638 0.98792 1.00 101271 1.03151 1.05461 1.12089 1. 20170 1.30104

(ch’(-l"&)) Eq.(37) | 0.68708 | 0.38706 0.07784 0. 05004 0.02400 0 —0.02194 | —0.04917 | —0.07487 | —0.112390 | —0.1108¢ | —0.07048

Cp 1, 0.90787 | 0.57490 0. 14460 0. 09817 0.04799 0 —0.04762 | —0.11305 | —0.18788 | —0.38660 | —0.53362 | —0.68711

(Eq. (18b))

Ad;=0.925

/gy« 0.46056 | 0.07798 0. 00552 0. 92085 0.95331 <0. 97678 1.00 1. 03205 1. 06800 1. 15476 1.23704 1.31486

Eq.(35) | 0.52007 | 0.74253 0.93279 0.95057 0. 96768 0.08415 1.00 1.02119 1.04397 109478 1.13756 1.17329

(a/ar)s Eq.(36) | 0.53103 | 0.80854 0.96720 0.97787 0. 08636 0.99423 1.00 100532 1.00743 0.90424 0. 95534 0. 89276

Eq.(37) | 0.55335 | 0.77387 0. 94001 0.96418 0.97721 0.98019 1.00 1.01323 1. 02556 1.04332 1.04240 1.02347

(q/;:); 0.83249 | 0.87600 0. 95327 0.96413 0.97554 0. 98745 1.00 1.01857 1. 04138 1. 10681 1.18662 1.28471

(Eq?'zi%n)) Eq.(37) | 0.693%0 | o0.40113 0. 09767 0.07045 0. 04506 0.02150 0 —0.02684 | —0.05177 | —0.08852 | —0.03679 | —0.04749

(ch’agb)) 0.02063 | 0.060574 0.18708 0. 13991 0.09301 0.04633 0 —0.08425 | —0.13642 | —0.31038 | —0.47285 | —o0.02222
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TABLE 3—VALUES OF F(r) FOR SEVERAL VALUES OF vy

1—(25+Dr 1-M?
[F(‘Y) T—y+ (1+M’ =73

28
F
-
M Ay e G Liniing
- @
Adiabatic | Isothermal ! | E¥dmsulie | oo pres
analogy slblgi

1} 1.00 1.00 1.00 1.00
.2 . 89901 . 00918 .

.4 . 98328 . 885756 97977 8400
.6 90608 91733 . 80113 6400

65 .88113 84728 5775
.70 81394 . 83248 . TB050 . 5100
.75 ‘74558 . 74783 71822 L4376
.80 65738 .68273 62728 .

. . 54489 57153 51421 2775
.80 40258 42710 37504 1900
.95 . 22355 L24041 20534 0975
1.00 0 0 0
1.05 —, 7752 —. 30870 —. 246687 —. 1025
1.10 - -7 —. 54102 —.2100
120 —L. 55960 —1. 85711 —1.30158 —.4400
1.30 —2.95915 —3.73044 —2. 34862 —. 6800
1.60 —8.01227 —11.8597 —5. 64468 —1. 2500
2.00 —56. 6884 —163.79 —28. 9981 —3. 0000

T ym], Fee(l—MY)eM?
3 ymw, Fal—M?



