IN． 15 ばンの1

$$
p-7.3
$$

Analysis of the Space Shuttle Main Engine Simulation

J．Alex De Abreu－Garcia and John T．Welch
University of Akron
Akron，Ohio

January 1993

Prepared for
Lewis Research Center
Under Grant NAG3－1031

TABLE OF CONTENTS

1. INTRODUCTION1
2. SUMMARY OF RESULTS3
3. LINEAR MULTISTEP INTEGRATORS: A REVIEW 11
4. INTEGRATION METHODS IN THE SSME SIMULATION 31
5. IMPLEMENTING INTEGRATION IN THE SSME SIMULATION 54
6. INTERPOLATION IN THE SSME SIMULATION 59
7. ENERGY BALANCE CONVERGENCE DIAGNOSIS AND CONTROL 64
8. REAL EXPONENTIATION 66
9. AN OUTPUT SYSTEM FOR THE SSME SIMULATION 67
10. A ROUGH ESTIMATE OF SPEEDUP 68
11. REFERENCES 70
APPENDEX A. REPORT VERSION CODE 71
APPENDIX B. SUPPORTING INPUT DATA FILES 254
```
ANALYSIS OF THE SPACE SHUTTLE MAIN ENGINE SIMULATION
J. Alex DeAbreu-Garcia and John T. Welch
    Univeristy of Akron
    Akron, Ohio 44325
```

ABSTRACT
This report analyzes the digital code used to simulate dynamic performance of the Space Shuttle Main Engine. This simulation program is written in Fortran. The purpose of the analysis is to identify a means to achieve faster simulation execution, and to determine if additional hardware would be necessary for speeding up the simulation. The analysis included the use of custom integrators based on the Matrix Stability Region Placement method. In addition to speed of execution the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files were examined. A revised code implementing the study recommendations was implemented but not verified for accuracy.

1. INTRODUCTION

This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken by the authors in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center.

The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method.

In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files.

Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing.

The useability of the simulation system affects the productivity of ICS designers. The simulation system should support a large number of runs, with reliable tracking, archiving, and retrieval of run results. Setting up simulation runs and reviewing results should be easy to do, and not be subject to hard to detect errors.

Simulation of intelligent control methods for the main shuttle engine is expected to involve considerable manipulation of the shuttle engine control systems. The ICS design studies will take into account new perturbation modes, and may consider variations in shuttle engine design.

Thus the studies will place high maintainability requirements on the simulation code. The SSME Simulation Program must be readable, and organized to permit easy and safe alteration.

Long exposure to the SSME code compels us to acknowledge with special appreciation the work of Ten-Huei Guo of NASA Lewis Space center, whose extensive interpretive comments made the source intelligible enough for analysis. We have preserved most of his commentary in the report version. A careful reading of the SSME simulation code, as received by NASA Lewis space Center, would
affirm that our criticisms of the coding do not apply to Dr. Guo's work, or that of NASA Lewis Research Center.

Organization of this Report
The report begins with a summary of results and recommendations. It ends with a suggested implementation and tuning sequence for the simulation.

The next three chapters are devoted to numerical integration methods. Multi-step integration methods and the basis for their analysis are explained in Chapter 3. The next chapter presents the analysis results obtained in the study. Chapter 5 then describes the integration function module of the report version, explaining the numerical and coding techniques implemented.

The remaining chapters cover interpolation methods, energy balance monitoring and control, exponentiation, and simulation output.

The remainder of the report is a set of appendices defining a Fortran 77 code and set of supporting data files. This represents the form of the simulation recommended for ICS design studies. This version is also delivered with the report as ASCII files on diskette. For convenient reference, the appended listing will be called "the report version" throughout this report. The code and run data we received from NASA Lewis, for purposes of study, we will call "the study version".

The research was expected to produce analysis results, rather than a revised code. However, it became obvious on examination of the study version that the line-by-line optimization and the new function modules required could not be adequately defined without a full code revision. The report version is a revised code fully implementing the immediate recommendations, but is not verified to be in accurate running condition, as this report goes to print.

The report version code is itself an important product of the research study. It shows in specific detail how the recommendations may be followed, and can contribute directly to their full implementation. If a majority of the recommendations are accepted, then the report version would certainly be a time-saving source of implementation code, if not the basis for a rapid implementation.

2. SUMMARY OF RESULTS

Study of the SSME Simulation Program revealed many problems that could seriously impede ICS development, if left uncorrected. In the form given to us, the program

- is unacceptably slow in running time.
- produces too much output for reasonable review and handing of results.
- is difficult to set up accurately.
- is of questionable numerical accuracy in some subsystems.
- is difficult to maintain as a testbed simulator for new control methods.

The report version of the system, reprinted in Appendix A, addresses all of these issues in specific terms.

Speedup Results
Slow running time was a primary focus of the study. Lack of significant improvements in this area would have indicated a requirement for hybrid computing hardware. The original proposal anticipated analyis of implementation technique in ADSIM on the ADI AD100 system.

Instead, many opportunities for speedup were found, which can be exploited independently, and therefore work as multiplying factors to produce a very high expected speedup. A negative aspect of this is that the opportunities were so ample and interwoven, that we were hard pressed within the time available to adequately define all of the contributing changes, or to construct more than a conservatively low estimate of the achievable speedup. We predict a speedup in running time of about 20. It could be higher.

With this kind of speedup available, the use of special purpose hardware for the SSME Simulation is not recommended. We believe the additional programming costs and limited access associated with special hardware can be avoided in this case. In fact, with the decrease in bulk of program and data that is demonstrated by the report version, we can recommend that the ICS project use desktop 386 PC Systems or similar workstations to house the SSME simulation, perhaps with management of results data on mainframe systems.

The identification of many available methods of speedup leads us to recommend also a course of action that exploits the most readily available speedup first, and defers the most difficult until it is known to be necessary. Most of the available speedup can be achieved with the following steps, listed by decreasing expected effect:

1. Replacing formatted character output of every output variable by selective output in unformatted binary form. Conversion can be done offline, along with printing and/or plotting. Conversion and output transfer of character strings representing data, and output of headings identifying data, compares with computations in running time. With no changes here, significant improvements in computation time would be severely limited in effect.
2. Replacing Euler integration with a modified version of the multistep Adams-Bashforth Second Order integration formula (MAB2). This integration method, developed by our colleague, Dr. Tom Hartley, permits a step size five times greater than the Euler method used in the study version. An integration module supporting this change is provided in the report version.
3. Replacing interpolation routines implemented with varying levels of efficiency with a single set of routines coded as efficiently as possible. These routines are provided in the report version.
4. Improving code which computes results unnecessarily, code which uses unnecessarily many operations, code which uses divisions where equivalent multiplications are available, and code which makes unnecessary reference to costly special functions. These improvements have been made in the report version.
5. Monitoring the convergence of energy balancing loops more closely and introducing under-relaxation and over-relaxation factors to minimize convergence iterations. A convergence control module is provided in the report version.
6. Confining the use of double precision to the integration process where it is actually required. Using exact integer arithmetic, rather than double precision, for the accurate advancement of time.
7. Replacing high precision, software supported real exponentiation by linear interpolation or by forms better supported in hardware on the host computer system.

All of the above methods are implemented, with every module
undergoing revision, in the report version of the code.
It is the conclusion of the study that, due to changing modes of the model, and its size, a full matrix version of MSRP would not be practical. The number of variables would make both the analysis and implementation impractical.

Step sizes of up to 100 times those achievable with the modified AB2 can be obtained with local versions of MSRP, but at the cost of a more complex and less flexible integration process, requiring additional analysis of the SSME model. The theoretical gain in step size could not be fully realized, since important dynamics of the system would not be followed at such large step sizes. Also there is the fact that evaluation of the SSME model at every time step requires sensitive energy balancing. Since the effect of SSME dynamics on energy balancing at larger time steps is unknown, it seems more prudent to implement the other methods of speedup before undertaking a conversion to local MSRP. The required analysis for local MSRP is continuing beyond the study, in master's thesis work described later.

The report version integration module allows for the progressive extension to higher order multistep integrators, and can accomodate local forms of MSRP, should they prove later prove desirable.

Accuracy results

The time step set in the study version was barely within stability limits for the integration method used. This generally implies that considerable distortion is being introduced by the numerical integration process itself. Reasonable accuracy limits on the time step are definitely exceeded in the valve dynamics module, according to the analysis, even though a higher sampling rate is used in this module.

The analysis"shows that the recommended modified AB2 is an integration method better suited to the shuttle engine model, and produces less integration distortion than Euler's method, even when operated at the larger time step recommended for decreased running time.

Two potential floating point roundoff problems are noted, and corrected in the report version. All integration was converted to use a double precision accumulator, to avoid losing significant digits when small integration increments are added to large integrand variables in floating point.

The same floating point roundoff effect causes a significant drift in the time scale as the time step is repeatedly added to
the current time, but double precision is not the best answer to this problem. Instead, the report version keeps time as an integer number of step increments, which stays exact.

A potentially serious source of inaccuracy in the study version was the practice of limiting the input variable to keep it within the input range of an interpolation table. This has the effect of extrapolating the table by a constant value, without warning to the user when it is being done. Since interpolation tables can be readily extended, with little storage cost, there is no justification for this policy. The report version interpolators give a specific complaint and stop the simulation when a range is exceeded. The user can then extend the table by word processing an ASCII file. The simulation can then be rerun without change.

Finally, accuracy of the simulation is potentially enhanced by a new method of storage recommended for tabulated functions. The new method allows more points to be assigned to one function, without incurring a storage penalty on all other functions, and with minimal impact on running time.

Useability Recommendations
A sufficiently fast and accurate simulation program could still fail as a tool for the ICS desigh studies if it were too difficult to operate. The study version had several other major shortcomings of this nature, which are addressed in the report version.

One failing in this area has already been mentioned, an inflexible output system that dumps everything on every run. Adding to this burden on the program's users is the automatically echoed output of every input parameter. This flood of mostly unread data is no virtue. Aside from the running time it costs, uncontrolled amounts of output inhibits simulation activity and makes archiving añ retrieval of simulation results unmanageable. Results are consequently lost or never obtained.

The recommended system of selectable binary output, along with a faster running simulation, offers a better approach to data archiving. Simulations can be rerun to repeat and amplify interesting results. The requirement to restart the simulation, which is difficult to support with higher order integrators, can be dropped.

Quality of simulation runs can be improved, when tuning of conditions leading up to archived results can be done without running at full output mode. The report version decouples the selection of input parameters and output configuration,
supporting this mode of operation.
Selected binary data is a much more practical form of archived simulation data than fully annotated hard copy. Results can be viewed and correlated in new ways, deferring hard copy until significant results are observed.

As important as running time and manageable archiving of data are, the opportunities for greater exploitation of NASA Lewis' graphics hardware in the interpretation of simulation results, made possible by a more flexible output system, may contribute as much to the success of the ICS design studies.

Another hurdle to the effective use of the SSME simulation by an ICS design team is the study version's file design for the bulk of the input data. This design mixes run parameters and interpolation data in the file 'dtminp. dat'. Run parameter values appear in this file without identifiers or limiters of any kind. Users are rightly advised to be cautious in altering the file.

We recommend replacing 'dtminp.dat' by two files, one for interpolation tables and another for run parameters. Both files contain identifers and field markings that are not read by the program, but make it easy to find the field to be changed and to be sure that the change is made within the desired field. Since thesee files contain identifying headers, they can serve as documentation for the run parameters and function generation data used in a run. This relieves the program of echoing input data, with identifiers. Examples are provided in Appendix B.

Finally, we consider it a potential useability hazard to depend on Fortran IV, through use of obsolete language features like NAMELIST. The superseding Fortran 77 standard was adopted in 1978, and only the most forgiving of maintained compilers still accepts Fortran IV. Reliance on Fortran IV unnecessarily limits the portability of the program, and will shut off, more and more, opportunities to nouse it in more productive ways.

Evidence of the above can be offered from our own experience in the study. We were unable to get our copy of the original code to run without eliminating NAMELIST data, although it compiled without complaint. No manual was available, because the compiler we had to use is not actively supported at our facility. We did get around it, but the experience makes the point.

Having the use of the latest in compilers is an advantage soon realized in working with the SSME code. Many artifacts of past changes, which should have been removed when their function became obsolete, were identified in the listings.

The report version is written in Fortran 77. NAMELIST input was absorbed into the run parameter file, where it is almost as convenient to access as it was in the NAMELIST file 'start4.dat'. An added advantage is that there is only one place to set input parameters. The danger in having two entry points for a data item, with one overriding the other, is obvious.

An interim plan to divide the input parameter file into two similar files was abandoned. The idea was to have frequently changed parameters in a smaller file, and infrequently changed parameters in a longer one. It complicates parameter setting to have two possible sites for the value to be changed. With "find" commands in modern word processors, this division is unnecessary.

Maintenance for ICS Design Studies
A serious failing of the study version from the maintenance standpoint was that all executing code was packaged as a single file, a form which forces a complete compilation to accomplish any change in any module. In the report version, source code for each major subroutine is on a separate file. Only changed modules need be compiled on a revision.

The study version included a line number on every line, a format which requires most systems to support the blank space with space characters. Files were cut by about 45% in size by eliminating nine out of every ten line numbers, ending all lines with a line return character following the last nonspace character. Every tenth line number was. retained, to allow for reference in the report version back into the study version. These line numbers should also be eliminated when this function is no longer served.

Better overall readability of the code was obtained in the report version by insertion of punctuating white space. Many originators seemed to think it a virtue to pack all of the information into as little space as possible.

Readability was improved considerably in some sections by reduction of spaghetti code sequences to structured code, using nested block IF constructions. This improvement would not be available in Fortran IV. An especially counterproductive style used in some of the study version's "spaghetti" sequences parked GO TO statements far to the right of the line. These statements often escape the attention of readers, misdirecting them as to the effect of the code.

Another change made for the sake of readability was to eliminate selection of a special mode of a subroutine by the value of an integer argument. For the major system component
subroutines, the subroutine was divided into an initialization entry and a time step entry, using different entry names for the two functions. This also eliminates the subroutine having to test to see which mode it is in.

Finally, it should be observed that the study version's output system places an unnecessary burden on the maintenance of the simulation. In the main program of the study version, output variables were renamed and saved again, and new combinations of output variables were computed for the sake of output alone. In some cases, data was saved again on separate files for the expressed purpose of plotting. These represent special needs for simulation output, many probably no longer current, but not removed. Undoubtedly, less obvious extra computations of this type remain in the simulation.

In the recommended output system, no alterations of the simulation program are made to create plot files or to output computed combinations of output variables. Instead, small programs are written for these purposes, all reading the same binary data files, but presenting the data in differing ways offline. These programs have in common the SSME output file format. Some of them, designed to run on machines other than the host of the SSME compiler, might require binary floating point conversions of the data. Each such program builds upon the SSME simulation system, and does not require additional maintenance on it.

A Procedure for Tuning the SSME Simulation
The the report version of the SSME Simulation anticipates the following recommended procedure for tuning the simulation to its highest level of efficiency for the ICS design studies:

1. Run the report version, comparing with previous study version results. Account for differences. Changes made for faster execution should not significantly affect results. Euler's method remains as the default integration method so that these verification runs can be made before changing integration methods.
2. Decrease the step size in the valve dynamics module to recommended values. This is to establish a baseline of runs known to be more accurate, but consistent with previous results and real data.
3. Examine energy balance convergence and adjust relaxation factors, under-relaxing slow converging sections and overrelaxing fast converging sections. Look into relaxation of convergence criteria, and for accuracy problems which might account for residual slow convergence.
4. Attempt to eliminate cubic spline interpolation, and to select the most efficient form of real exponentiation for host system.
5. Switch to recommended integration methods and increase step sizes gradually, monitoring effects on energy balancing convergence and adjusting relaxation factors accordingly. Continue to recommended step sizes and beyond, pulling back to assured accuracy levels.

3. LINEAR MOLTISTEP INTEGRATORS: A REVIEW

This chapter gives a brief review of the derivation of and definitions associated with linear multistep methods. Although implicit methods provide more accurate results than explicit methods, they require greater computational times. Therefore, implicit methods are, in general, not used in real-time applications. As a result, only explicit methods will be considered here. It should be pointed out that the material presented in this chapter borrows heavily from the results of references [1] and [2].

In the study version of the SSME simulation numerical integration is done using Euler's method. One of the main reasons being that Euler's method is well understood and simple to implement. However, it will be seen that care must be exercised when choosing the Euler's integration timestep to provide a more accurate simulation. Increased accuracy requires that very small timesteps be used at the expense of a considerably slower running simulation. In this analysis the concept of stability region of an integrator is used to show that it is possible to obtain a faster and more accurate simulation of the SSME should other linear multistep methods be used. Custom designed integrators will also be considered.

This chapter is organized as follows: first, the general linear multistep method is developed. Included in this development are the important notions of order, accuracy, consistency, and zero-stability. Both Euler's method and AB-2 are derived. Then, the concept of stability region of an integrator is discussed. Comparisons are made between the stability region of Euler's integrators and the stability region of $A B-2$ type integrators. It is shown that $A B-2$ integrators may result in a more accurate and faster running simulation. To guarantee a stable simulation of those modules whose eigenvalues have large imaginary parts with respect to their real parts, a modified AB2 integration method is presented [3]. To conclude this analysis, the applicability of the matrix stability region placement method of [4] to the SSME simuration is discussed.

A. LINEAR MULTISTEP METHODS

The general linear multistep method can be written as follows:

$$
\begin{equation*}
\sum^{r} a_{\jmath} x_{k+\jmath}=T \sum^{r} b_{\jmath} \dot{x}_{k+\jmath} \tag{1}
\end{equation*}
$$

$\mathrm{J}=0 \quad \mathrm{~J}=0$
where $\dot{x_{k}}$ is the first derivative of x_{k}, a_{j} and b_{j} are constants, a_{0} and b_{0} are not allowed to be both zero, and, to avoid ambiguity, it is assumed that $a_{r}=1$.

The method of equation (1) is said to be explicit if $b_{r}=0$, and implicit if $b_{r} \neq 0$. For an implicit method the present value of the output is a function of present and past values of the output and the input. For an explicit method only past values of the output and the input are required to determine the present value of the output. Here
we will be concerned only with explicit methods as implicit methods are not suitable for real-time simulation.

Associated with the linear multistep method of equation (1) is the operator:

$$
\begin{equation*}
L[x(t), T]=\sum_{J=0}^{F}\left[a_{j} x(t+j T)-T b_{j} \dot{x}(t+j T)\right] \tag{2}
\end{equation*}
$$

where $x(t)$ is an arbitrary continuously differentiable function on some closed interval.

Expanding $x(t+j T)$ and $\dot{x}(t+j T)$ as Taylor series about t, and grouping similar terms yield:
$L[x(t), T]=C_{0} x(t)+C_{1} T x^{1}(t)+\ldots .+C_{q} T{ }^{q} x^{q}(t)+\ldots .$.
where $C_{q}: q=0,1,2, \ldots$ are constants, and $x^{q}(t)$ refers to the $q t h$ derivative of $x(t)$.

The integrator of equation (1) is said to be of order p if the C_{1} coefficients are such that c_{1} : $i=0,1,2, \ldots, p$ are all zero and C_{p+1}. 0 . Clearly, knowledge of the C_{1} 's allows the derivation of linear multistep methods of a given order and structure. It turns out that the order of accuracy of the integrator is the same as the order of the operator L[.] of equation (3). Notice that this order is precisely the number of constants c_{1} which are identically zero. From equation (3) it is possible to determine expressions for the constants C_{1} as follows:

$$
\begin{align*}
& C_{0}=a_{0}+a_{1}+a_{2}+\ldots+a_{r} \\
& C_{1}=a_{1}+2 a_{2}+\ldots \ldots+a_{r}-\left(b_{0}+b_{1}+b_{2}+\ldots \ldots+b_{r}\right) \tag{4}\\
& C_{q}=\frac{1}{q!}\left(a_{1}+2^{q} a_{2}+\ldots r_{1}+r^{q} a_{r}-\frac{1}{(q-1)!}\left(b_{1}+2^{q-1} b_{2}+\ldots \ldots+r^{q-1} b_{r}\right) \quad q=2,3, \ldots .\right.
\end{align*}
$$

B. EULER'S METHOD

Euler's method can be easily derived by letting $r=1$ in equation (1): that is, a one step method. Then equation (1) implies that:
$a_{0} x_{k}+a_{1} x_{k+1}=b_{0} T \dot{x}_{k}+b_{1} T \dot{x}_{k+1}$.
Using the expressions (equation (4)) for the C_{1} 's it follows that:
$C_{0}=a_{0}+1$ (recall that $\left.a_{r}=a_{1}=1\right) \Rightarrow C_{0}=0$ if $a_{0}=-1$
$C_{1}=1-b_{0}-b_{1} \Rightarrow C_{1}=0$ if $b_{0}=1$ (recall that $b_{r}=b_{1}=0$ for an explicit method) $c_{2}=1 / 2-b_{1} \Rightarrow c_{2}=1 / 2$ since $b_{1}=0$.

Then, substituting these values into equation (5) yields the already familiar Euler's integration method:
$X_{k+1}=X_{k}+T \dot{x}_{k} \Rightarrow H(z)=\frac{T}{z-1}$.
Clearly, Euler's method is only first order accurate as C_{0} and C_{1} are both zero while C_{2} is different from zero.

C. ADAMS-BASHFORTH TWO STEP METHOD (AB-2)

Following the procedure just used to derive Euler's method, an $\mathrm{AB}-2$ integrator can be obtained by letting $r=2$ in equation (1) and solving equation (4) for the appropriate C_{1} 's; that is,
$a_{0} x_{k}+a_{1} x_{k+1}+a_{2} x_{k+2}=T b_{0} \dot{x}_{k}+T b_{1} \dot{x}_{k+1}+T b_{2} \dot{x}_{k+2} \quad$.
$C_{0}=a_{0}+a_{1}+a_{2}$ (recall that $a_{r}=a_{2}=1$)
$c_{1}=a_{1}+2 a_{2}-b_{0}-b_{1}-b_{2}$ (recall that $b_{r}=b_{2}=0$ for an explicit method)
$c_{2}=1 / 2\left(a_{1}+4 a_{2}\right)-\left(b_{1}+2 b_{2}\right)$
$c_{3}=1 / 6\left(a_{1}+8 a_{2}\right)-1 / 2\left(b_{1}+4 b_{2}\right)$
Substituting $a_{2}=1$ and $b_{2}=0$ in these equations gives:
$C_{0}=a_{0}+a_{1}+1 \Rightarrow a_{0}+a_{1}+1=0$
$c_{1}=a_{1}+2-b_{0}-b_{1} \Rightarrow a_{1}+2-b_{0}-b_{1}=0$
$c_{2}=1 / 2\left(a_{1}+4\right)-b_{1} \Rightarrow\left(a_{1} / 2\right)+2-b_{1}=0 \Rightarrow a_{1}=-4+2 b_{1}$
$c_{3}=1 / 6\left(a_{1}+8\right)-1 / 2 b_{1}$
Solving the resulting set of equations yields the following values: $a_{0}=0, a_{1}=-1, b_{0}=-0.5, b_{1}=1.5$, and $c_{3}=5 / 12$. Therefore, the two-step Adams-Bashforth ($\mathrm{AB}-2$) integration method can be written as:
$X_{k+2}=X_{k+1}+T\left(1.5 \dot{x}_{k+1}-0.5 \dot{x}_{k}\right) \Rightarrow H(z)=\frac{T(1.5 z-0.5)}{z^{2}-z}$.
Clearly, $A B-2$ is second order accurate as C_{0}, C_{1}, and C_{2} are zero while C_{3} is nonzero. This implies that for a given timestep $T A B-2$ will result in a more accurate simulation than Euler's method.

D. CHARACTERISTICS OF LINEAR MULTISTEP METHODS

Two important concepts associated with linear multistep integrators are the concepts of consistency and zero stability. A
linear multistep method is said to be consistent if it has order greater or equal to one (1). Zero stability is defined via two polynomials. These polynomials are usually referred to as the first and second characteristic polynomials, and are given as:
$\rho(\zeta)=\sum_{j=0}^{n} a_{j} 5^{j}$, referred to as the first characteristic polynomial $\sigma(5)=\sum_{j=0}^{n} b_{j} 5^{\jmath}$, referred to as the second characteristic polynomial $\mathrm{J}=0$

The method is said to be consistent if the first characteristic polynomial always has a root at +1 . The method is said to be zerostable if the roots of the first characteristic polynomial $\rho(5)$ lie on or inside the unit circle with any root on the unit circle being simple. And the method is convergent if and only if it is consistent and zero-stable.

E. STABILITY REGION OF AN INTEGRATOR

Another important concept in the analysis of linear multistep methods is that of stability region. Essentially, the stability region of an integrator is that region where the λT-product should lie in order for the simulation to be stable. Within this region the degree of accuracy of the simulation changes depending on where the λT-product is located. Thus, when designing integrators for a specific application it is important to use the integrator's stability region as a criterion for determining the maximum allowable timestep T. This will not only guarantee a stable simulation but also an accurate one. To determine the stability region of a given integrator it is expedient to work in the frequency domain. Hence, consider the Z-transform of equation (1):
-
$\left[\sum_{j=0}^{r} a_{j} z^{j}\right] X(z)=\left[T \sum_{j=0}^{r} b_{j} z^{j}\right] \dot{x}(z)$
$\Rightarrow \rho(z) X(z)=T \sigma(z) \dot{X}(z)$
From this equation it follows that the open loop transfer function of the integrator is:
$X(z)=\frac{T \sigma(z)}{\rho(z)} \dot{X}(z)$
Now, the frequency response of the integrator is obtained by replacing 2 by exponential(jwT); that is,
$z=e^{j \omega T}$

The performance of the integration process on an actual dynamic system is determined using closed loop stability analysis. This closed loop stability analysis is accomplished by introducing the linear test equation:
$\dot{x}=\lambda x+u$
$\Rightarrow \dot{X}(z)=\lambda X(z)+U(z)$
To close the loop substitute the above linear test equation into equation (8) to yield the closed loop transfer function, viz.
$\rho(z) X(z)=T \sigma(z)[\lambda X(z)+U(z)]$
$\Rightarrow X(z)=\frac{T \sigma(z)}{\rho(z)-\lambda T \sigma(z)} U(z)$
Clearly, the stability of the integrator is determined by the poles of the closed loop transfer function of equation (12); that is, the root of the equation:
$\rho(z)-\lambda T \sigma(z)=0$
Notice that in equation (13) the product λT can be thought of as the gain of the closed loop system. Thus, a root locus can be plotted. Therefore, it is always possible to determine the region of the λT-plane where the integration is stable by considering the expression:

$$
\begin{equation*}
\lambda \mathrm{T}=\frac{\rho(z)}{\sigma(z)} \tag{14}
\end{equation*}
$$

Hence, mapping the z-plane unit circle into the λT-plane the stability region of the integrator can be obtained, viz.
$z^{n}=e^{j n \theta}=\cos (n \theta)+j \sin (n \theta)$
The stability regions corresponding to Euler's method (AB-1) and $A B-2$ method are shown in Figures 1 and 2. For a given integrator the simulation will be stable provided that the λT-product is inside the integrator's stability region. For the simulation to be accurate, the λT-product should be within the region where the "squares" are the least distorted. Notice that although Euler's integrator has a larger stability region, it requires very small timesteps in order to produce an accurate simulation (The λT-product should lie within the squares that are closest to the origin). This is especially the case when the systems being integrated have eigenvalues of large magnitude. This problem is further aggravated by situations where the eigenvalues of the system under consideration are complex with large imaginary parts relative to the real parts. As the stability region of Euler's method touches only the origin of the λT-plane, it is almost impossible to guarantee that the timestep T can be chosen small enough so that the
λT-product lies inside the stability region. In sharp contrast, the stability region of $A B-2$, although smaller than that of Euler's method, allows the use of larger timesteps with improved accuracy. Moreover, the problem associated with large complex eigenvalues is alleviated due to the fact that $A B-2$'s stability region is asymptotic to a larger portion of the imaginary axis of the $\lambda T-p l a n e$. Thus, it can be said that although Euler's method is simple to use and implement, care must be exercised when choosing the integration timestep to guarantee a stable and accurate simulation. It should be pointed out that $A B-2$ integrators do not provide a significant improvement over Euler's method in situations such as those just mentioned. However, using $A B-2$ it is possible to improve running times by a factor of about five with improved or comparable accuracy.

AB1 Stability Region

real lambda•T

Figure 1. Stability Region of Euler's Method (AB-1)

Figure 2. Stability Region of AB-2

F. MODIFIED ADAMS-BASHFORTH TWO STEP METHOD (MAB-2)

To obtain more stable and accurate simulations of systems whose eigenvalues are complex with large imaginary parts relative to their real parts a modified $A B-2$ method can be used. This modified method can even be used in situations where purely imaginary roots are to be stably integrated [3]. The modification of $A B-2$ is possible due to the flexibility presented by the C_{1} 's of equation (4). Notice that this flexibility is greatly reduced if it is demanded that the integration method be of maximal accuracy (that is, that as many c_{1} 's as possible be set to zero). However, if accuracy requirements can be relaxed, then the extra freedom that is gained can be used to tailor the integration method to the particular system's dynamics. In this case it is desired to modify the $A B-2$ method so that the imaginary axis is just enclosed by the stability region of the new integrator.

Recall that $A B-2$ is second order accurate. This implies that C_{0}, C_{1}, and C_{2} are all equal to zero while C_{3} is different from zeró ($C_{3}=5 / 12$). Recall further that, for a two step explicit method, the C_{1} 's satisfy the following set of equations:

$$
c_{0}=a_{0}+a_{1}+1
$$

$$
c_{1}=a_{1}+2-b_{0}-b_{1}
$$

$$
\begin{equation*}
c_{2}=1 / 2 a_{1}+2-b_{1} \tag{16}
\end{equation*}
$$

$c_{3}=1 / 6 a_{1}+4 / 3-1 / 2 b_{1}$
Next, suppose that the order of accuracy is relaxed so that only C_{0} and C_{1} are required to be zero. Since there are three equations in four unknowns (the equation involving C_{3} does not count in this case) it follows that there are two free parameters. Without loss of generality these free parameters can be chosen to be $a_{0}=\alpha$ and $b_{0}=\beta$. Since C_{0} and C_{1} are both zero, equation (16) can be solved for a_{1} and b_{1} to yield the modified $A B-2$ integrator (MAB-2), viz.

$$
\begin{equation*}
\left.x_{k+2}=(\alpha+1) x_{k+1}-\alpha x_{k}+T(1-\alpha-\beta)\left[\dot{x}_{k+1}+\beta /(1-\alpha-\beta) \dot{x}_{k}\right)\right] . \tag{17}
\end{equation*}
$$

The transfer function of the MAB-2 integrator (equation (17)) is:
$H(z)=\frac{T(1-\alpha-\beta)[z+\beta /(1-\alpha-\beta)]}{z^{2}-(1+\alpha) z+\alpha}$
Notice that equation (17) is indeed the transfer function of an integrator. This is seen once it is realized that the poles of equation (18) are located at $z=1$ and $z=\alpha$. It should be kept in mind that the pole at $z=\alpha$ must lie inside the unit circle to maintain open loop stability. Therefore, α is allowed to vary between +1 and -1 . Notice as well that the zero of equation (18) lies at $z=\beta /(1-\alpha-\beta)$. The flexibility offered by the arbitrary location of this zero allows an entire family of integrators to be generated for different pole locations. It turns out that setting α to zero and β to -0.6 results
in an integrator whose stability region closely approximates that of $A B-2$. The only difference between the stability regions of MAB-2 and $A B-2$ is that the stability region of $M A B-2$ just encloses the imaginary axis of the $\lambda T-p l a n e$. Thus, allowing systems with complex poles and purely imaginary poles to be stably simulated. The actual integrator and corresponding transfer function are given as:

$$
\begin{equation*}
x_{k+2}=x_{k+1}+T\left(1.6 \dot{x}_{k+1}-0.6 \dot{x}_{k}\right) \Rightarrow H(z)=\frac{T(1.6 z-0.6)}{z^{2}-z} \tag{19}
\end{equation*}
$$

The difference between the stability region of $A B-2$ and the stability region of $M A B-2$ can be clearly seen from Figure 3. Although these stability regions are almost identical, there are several important points to be noticed. The stability region of MAB-2 is slightly shifted to the right of the λT-plane and thus it encloses the jw-axis of this plane. The portion of the stability region where the λ T-product gives an accurate and stable simulation is slightly distorted relative to the corresponding region for an $A B-2$ integrator. This implies that $M A B-2$ is not as accurate as $A B-2$. This should not come as a surprise as MAB-2 was derived assuming that accuracy could be traded off with the ability to stably integrate systems with either purely imaginary eigenvalues or eigenvalues with large imaginary parts. However, in actuality MAB-2 is expected to produce as good a simulation as $A B-2$. The reason for this being that the level of distortion of the stable and accurate region of MAB-2 is not too severe. This can be easily seen by considering the C_{1} coefficients. Recall that these coefficients determine the order of accuracy of the integration method. Some simple arithmetic gives that for MAB-2 these coefficients are $0,0,-0.1$, and $11 / 30$ corresponding to C_{0}, C_{1}, C_{2}, and C_{3} respectively. A comparison of these values with those of $A B-2$ is given in Table 1 below.

Table 1. Order of Accuracy of $A B-1, A B-2$, and $M A B-2$

c_{1} Coefficient $a_{r}=1 \quad b_{r}=0$	Integration Method		
	$A B-1$	$A B-2$	MAB-2
$c_{0}=a_{0}+a_{1}+a_{2}$	0	0	0
$C_{1}=a_{1}+2 a_{2}-b_{0}-b_{1}-b_{2}$	0	0	0
$C_{2}=1 / 2 a_{1}+2 a_{2}-b_{1}-2 b_{2}$	$1 / 2$	0	$-1 / 10$
$C_{3}=1 / 6 a_{1}+8 / 6 a_{2}-1 / 2 b_{1}-2 b_{2}$	$*$	$25 / 60$	$22 / 60$
order of Accuracy	first	second	first

Notice that although MAB-2 is first order accurate, the difference between the C_{1} 's for MAB-2 and the C_{1} 's for $A B-2$ is rather small. r.hus, MAB-2 should perform almost as well as AB-2.

Figure 3. Stability Regions of $A B-2$ (top) and MAB-2 (bottom)

G. TWO STEP MATRIX INTEGRATORS (MSRP-2)

In this section the two step matrix integrator (MSRP-2) presented in [4] is reviewed. This method is the generalization of the method of [5] to vector systems of differential equations. It is shown that this type of integrators can be very useful in the real-time simulation of stiff systems. The material presented in this section is essentially that of [4] however.

When performing numerical integration it is important to maintain the overall system transient response while the integration operator maintains the character of an integrator. This is normally done by deriving integrators that reproduce the transient response better as the timestep goes to zero [5]. However, for a specific system, the SRP method derives an integrator that improves the transient response for a given nonzero timestep.

The SRP method has the minimum number of coefficients necessary to maintain both the transient response and the integration property for a scalar system, while also allowing arbitrary choice of timestep [5]. MSRP-2 extends the SRP method to vector systems.

The linear MSRP-2 integrator can be written as:
$x_{k+2}=-A_{1} x_{k+1}-A_{0} X_{k}+T\left(B_{1} \dot{x}_{k+1}+B_{0} \dot{x}_{k}\right)$.
where T is the integration timestep, $k T$ is the time, x is the $n-$ dimensional state vector at time t, and A_{1} and $B_{i}: i=0,1$ are the $n \times n$ regression coefficient matrices.

As in the general linear multistep method, the performance of MSRP-2 is evaluated using a linear test equation of the form:
$\dot{X}_{k}=J X_{k}+G u_{k}$.
where, u is an m - yector of input functions, and J and G are the system and input matrices, respectively.

To close the loop substitute equation (21) into equation (20) to yield a closed-loop discrete-time linear system, viz.
$X_{k+2}=-A_{1} X_{k+1}-A_{0} X_{k}+T\left(B_{1} J X_{k+1}+B_{0} J X_{k}\right)+T\left(B_{1} G u_{k+1}+B_{0} G u_{k}\right) \quad$.
Notice that this system is $2 n$-dimensional and thus has 2 n eigenvalues. The n principal roots are those corresponding to the mappings of the eigenvalues of J. The remaining n roots are due to the fact that the first order differential equation (21) is being replaced by a second order difference equation (21). These roots are spurious roots and act as noise sources in the simulation. It is clear that the location of the $2 n$ eigenvalues of the system of (22) determines the stability of the integration process. Taking the z transform of equation (22) yields:
$\left[z^{2} I+\left(A_{1}-T B_{1} J\right) z+\left(A_{0}-T B_{0} J\right)\right] X(z)=\left[B_{1} z+B_{0}\right] T G U(z) \quad$.

The transfer function matrix (TFM) $H(z)$ of the system of (23) is: $H(z)=\left[z^{2} I+\left(A_{1}-T B_{1} J\right) z+\left(A_{0}-T B_{0} J\right)\right]^{-1}\left[B_{1} z+B_{0}\right] T G$.

Recall that the regression coefficients ($A_{1}, B_{1}: i=0,1$) are square $n \times n$ matrices. Therefore, there are $4 n^{2}$ unknowns to be determined which place the 2 n eigenvalues of equation (24). It is clear that the poles of the resulting closed-loop system can be arbitrarily placed in an infinite number of locations. The problem is how to determine the regression coefficients A_{1} and $B_{1}: i=0,1$ so that the system transient response is maintained while still having equation (20) perform as an integrator.

To solve the first problem, place the n principal roots at the exact z-plane mapping of the eigenvalues of J, that is, the usual discrete-time system matrix $e^{J T}$. To guarantee the accuracy of the method, place the n spurious roots as close to the origin in the $z-$ plane as possible [4]-[5]. This pole assignment requires that A_{1} and $B_{1}: i=0,1$ satisfy the following matrix equations:
$A_{1}-T B_{1} J=-e^{J T}$.
$A_{0}-T B_{0} J=0$, where 0 is the $n \times n$ null matrix.
Note that there are $2 n^{2}$ equations and $4 n^{2}$ unknowns. Therefore, more constraints are required. The remaining $2 n^{2}$ constraints are obtained by forcing equation (20) to act as an integrator. Recall that for a linear multistep method, and thus MSRP2, to be convergent it is necessary and sufficient that the method be consistent and zerostable. Equivalently, the steady state gain of the discrete-time system should be that of the continuous-time system, and an open-loop integrator pole should be at $\mathrm{Z}=+1$, respectively. Algebraically, these constraints can be written, again respectively, as (see [4]):
$A_{1}-B_{0}-B_{1}=-2 I$, where I is the $n \times n$ identity matrix.
$I+A_{0}+A_{1}=0$.
It is shown in [5] that these constraints imply that the integrator is first order accurate.

Equations (25a)-(26b) provide $4 n^{2}$ equations to be solved for the $4 n^{2}$ unknowns of the A_{1} 's and B_{1} 's. Provided that J is invertible (for the case when J has zero eigenvalues refer to [6]), this set of equations can be solved using linear algebra techniques as follows:

Postmultiplying the first row of this equation by (JT) ${ }^{-1}$ and adding the result to the second row yields:

$$
\left[\begin{array}{c}
I: I \tag{27b}\\
: \\
0 \\
:
\end{array}\right]\left[\begin{array}{c}
A_{0} \\
\ddot{A_{1}}
\end{array}\right]=\left[\begin{array}{c}
-I \\
e^{j T}(\dot{J} T)^{-i}-2 I-(\dot{J T})^{-1}
\end{array}\right]
$$

From this equation it is seen that A_{1} and A_{2} are given as:
$A_{1}=e^{J T}(J T)^{-1}-(J T)^{-1}-2 I$.
$A_{0}=-e^{J T}(J T)^{-1}+(J T)^{-1}+I$.
While the $B_{1} ' s$ follow directly from the A_{1} 's as:
$B_{1}=\left[A_{1}+e^{J T}\right](J T)^{-1}$.
$B_{0}=A_{0}(J T)^{-1}$.
The above expressions for the A_{1} 's and B_{1} 's can be easily computed using a software package such as PC-Matlab [7] by inputting T and J.

Using equations (25a)-(26b) in conjunction with the regression coefficients, a state space representation for $H(z)$ can be written as:

$$
\begin{align*}
& x(k+1)=\left[\begin{array}{cc}
0 & 0 \\
\hdashline: & 0 \\
I & : \\
:
\end{array}\right] x(k)+\left[\begin{array}{c}
T B_{0} G \\
\hdashline \mathrm{~TB}_{1} G
\end{array}\right] U(k) \quad \Rightarrow \quad x(k+1)=A x(k)+B u(k) \tag{30}\\
& y(k)=[0: I] x(k)=x_{2}(k)=x_{k} \quad \Rightarrow \quad y(k)=C x(k)=x_{2}(k)=x_{k} \quad .
\end{align*}
$$

Notice that this is the well known observable canonical form. Thus, using MSRP-2 it is always possible to recover the state of the system being integrated as this representation is guaranteed to be observable.

The integration method just presented can also be implemented using recursive identification of J and G to adaptively determine the regression coefficients. However, this variant of the method will not be considered here as it is believed that due to the nature of the SSME simulation this method will not provide any significant speedup. The main reason being the computational burden associated with the identification and updating required per time step. Moreover, at present there are no numerically reliable techniques for updating the matrix exponential on-line.

H. COMPUTATIONAL ASPECTS OF LINEAR MULTISTEP METHODS

In this section some computational aspects of linear multistep methods are considered. It is important to realize, however, that
while Euler's method, $A B-2$, and MAB-2 are localized integrators, in MSRP-2 the integrators are no longer localized, that is, one per system state. As a consequence, the computational burden associated with matrix integration increases rapidly with the number of states (approximately $4 n$-squared multiplies in addition to the derivative function evaluation). Therefore, it is necessary that techniques for reducing the number of computations be considered. Also, a detailed analysis of the computational burden associated with MSRP integrators is in order. These are the major topics of this section.

Before proceeding further it should be mentioned that comparisons among integrators and numerical details of the different algorithms being used will be done using the number of floating point operations (flops) of each algorithm. A flop is approximately the amount of work involved in a floating point add, a floating point multiply, and the required subscripting [8]. In mathematical terms, this is equivalent to the amount of work associated with the following statement:
$s:=s+a_{k} b_{k j}$.
which in terms of the well-known fortran computer language can be
written as:

$$
\begin{equation*}
S=S+A(I, K) * B(K, J) \tag{32}
\end{equation*}
$$

H.1. COMPUTATIONAL COST ASSOCIATED WITH AB-1, AB-2, AND MSRP-2

Regarding the real-time simulation methods considered here, the bulk of the computations results from products of the type Ax, where A can be either an $n \times n$ or an $n \times m$ matrix and x is either an n-dimensional or an m-dimensional vector, accordingly. It is not hard to see that when A is an $n \times n$ matrix, the product $A x$ requires n^{2} flops. On the other hand, when A is $n \times m$ this product can be performed in $n m$ flops. The amount of work associated with multiplying a given vector by a scalar quantity requires approximately n flops. At this time, it is important to point out that these flop counts are simply rough approximations that are used by computer theorists in an effort to acknowledge the countless operations that take place during program execution (paging, subscripting, etc.). The approximate number of flops required by $A B-1, A B-2(M A B-2)$, and MSRP-2 for every timestep is
given in Table 2.

It is clear from this table that while Euler's method and AB-2 (MAB-2) cost about the same, MSRP-2 requires approximately 5 times more computations than either one of them. Therefore, to break even, the timestep for MSRP-2 must be at least 5 times that of either Euler's method or AB-2 (MAB-2). Letting the timestep for either one of the latter methods be the normal timestep, the speedup factor is:
speedup $\cong \frac{T_{\text {MSRP-2 }}}{5 T_{\text {NORMAL }}}$.

Therefore, MSRP-2 can be made more numerically efficient than either Euler's method or $A B-2$ ($M A B-2$) provided that the timestep for MSRP-2 is chosen appropriately. This is clearly illustrated by the results obtained in the simulation of the valve dynamics module using these integration methods (more about this later).

Table 2. Computational cost associated with AB-1, AB-2, and MSRP-2

Required Operations (real-time)	Number of Flops	Total Number of Flop [s
Linear test equation		
$\dot{\mathrm{x}}=\mathrm{J} \mathrm{x}+\mathrm{Gu}$	$\mathrm{n}^{2}+\mathrm{nm}$	$n^{2}+n m$
Euler's ($\mathrm{AB}-1$)		
$\mathrm{X}_{\mathrm{k}+1}=\mathrm{X}_{\mathrm{k}}+\mathrm{T} \dot{\mathrm{X}}_{\mathrm{k}}$	n	$\mathrm{n}^{2}+\mathrm{n}+\mathrm{m}$
$A B-2$ (MAB-2)		
$\mathrm{x}_{\mathrm{k}+2}=\mathrm{x}_{\mathrm{k}+1}+\mathrm{T}\left(1.5 \dot{\mathrm{x}}_{\mathrm{k}+1}-0.5 \dot{\mathrm{x}}_{\mathrm{k}}\right)$	2 n	$n^{2}+2 n+n m$
MSRP-2		
$\mathrm{X}_{\mathrm{k}+2}=-\mathrm{A}_{1} \mathrm{X}_{\mathrm{k}+1}-\mathrm{A}_{0} \mathrm{X}_{\mathrm{k}}+\mathrm{T}\left(\mathrm{B}_{1} \dot{\mathrm{x}}_{\mathrm{k}+1}+\mathrm{B}_{0} \dot{\mathrm{x}}_{\mathrm{k}}\right)$	$4 n^{2}$	$5 n^{2}+n m$

It should be pointed out that the comparison established in Table 2 above is based on the assumption that a linear system is being integrated. For nonlinear systems the computational burden is usually much larger. Thus, MSRP-2 is expected to provide better results with a timestep less than five times the timestep of either Euler's method or $A B-2$ (MAB-2).

H.2. IMPLEMENTATION OF MSRP-2

In Table I above the approximate flop count for MSRP2 is given assuming that the integration is performed using the original system. However, in an effort to reduce the number of computations in realtime, it is always possible to first transform the coordinates of the original system. This transformation can be done off-line and the results stored. Then the integration process can be carried out on the resulting system. Of special interest here are transformations which yield diagonal or Jordan, Schur, and Hessenberg forms of the original system matrix J. The diagonal form gives essentially the classical linear multistep method, that is, one integrator per system state. It is important to keep in mind that, although this may seem
appropriate, computing the diagonal form of a matrix is, in general, not a numerically reliable process. This is especially the case when the matrix being diagonalized has repeated eigenvalues [8]. In contrast, The well-known Schur and Hessenberg decompositions of a matrix are easily obtained via orthogonal transformations. Since orthogonal matrices are perfectly conditioned, these decompositions are considered to be very stable and numerically robust [8]. Furthermore, both Schur and Hessenberg decompositions of a matrix result in quasi-triangular forms. Thus, it is possible to reduce the number of on-line computations during the integration process by using these matrix decompositions. These approaches are considered next in what follows.

The first approach consists of transforming the initial system to either diagonal or Jordan co-ordinates, then performing the integration process. Recall that, in general a diagonal form results when the system poles are all distinct, while a Jordan form results when the system has multiple poles. As the regression coefficients of MSRP-2 are a function of (JT) ${ }^{-1}$ and $e^{J T}$, and as these functions of J have a triangular structure whenever J is in Jordan form, and finally, as the Schur and Hessenberg forms of J are also triangular matrices, the case when J is in Jordan form is considered a part of the approach in which the A_{1} 's and B_{i} 's are triangular matrices.

The foregoing indicates that localized integrators can only be obtained provided J is diagonalizable. Recall that diagonalizing a matrix involves determining its eigenstructure. Further, recall that J is, in general, an unsymmetric matrix. In the usual situation, the standard procedure to diagonalize an unsymmetric matrix involves three steps. First, the matrix is reduced to upper Hessenberg form using Householder transformations. Then the $Q-R$ algorithm is used to produce the upper real Schur form of the matrix resulting from step one to yield $H=Q^{\prime} J Q$ (Q ' is the transpose of Q). These two steps require about $15 n^{3}$ flops [8] (this includes the computation of both Q and H) Finally, to obtain the diagonal form of J, a block diagonalization method requiring approximately n^{3} extra flops is used. Therefore, the diagonalization of J can be accomplished in about $16 n^{3}$
flops. flops.

Having determined the eigenstructure of J, a transformation matrix whose columns are the eigenvectors of J can be formed and its inverse computed off-line and stored. The latter computation is usually done via the singular value decomposition method, thus requiring about $7 \mathrm{n}^{3}$ flops [8]-[9]. Then this transformation matrix is used to transform the system of (21) into diagonal coordinates. This process is given in what follows, assuming that the original system is that of equation (21); that is,
$\dot{x}_{k}=J X_{k}+G u_{k}$.
First, let P be the matrix whose columns are the eigenvectors of J. Then it follows that $P^{-1} J P=\Lambda$, where Λ is a diagonal matrix with the eigenvalues of J along its main diagonal. Next, use P as a coordinate transformation matrix to obtain localized integrators, viz.
$X_{k}=P z_{k} \Rightarrow\left[\begin{array}{l}z_{k}=\mathrm{P}^{-1} \mathrm{X}_{\mathrm{k}} \\ \dot{z}_{\mathrm{k}}=\mathrm{P}^{-1} \dot{\mathrm{X}}_{\mathrm{k}}\end{array}\right.$
At this point it only remains to carry out the integration process, using one integrator per system state, as follows:
$z_{1 k+2}=-a_{11} z_{1 k+1}-a_{10} z_{i k}+T\left[b_{12} \dot{z}_{1 k+1}+b_{10} \dot{z}_{1 k}\right]$
for $i=1,2,3, \ldots, n$.
As a last step, use P to determine the state vector, x, in the original set of coordinates by transforming the state vector z obtained from the integration process, viz.
$\mathrm{X}_{\mathrm{k}+2}=\mathrm{Pz} \mathrm{k}_{\mathrm{+}} \mathrm{Z}$
This completes the first approach of diagonalization and integration. It is worth mentioning at this point that determining the a_{1} 's and b_{1} 's requires approximately 4 n flops. However, these computations are done prior to the actual run and the results are stored. Therefore, the total number of off-line computations is $23 n^{3}+4 n$ flops. Also, notice that, when J is diagonal, the total number of flops required per timestep is $4 n^{2}+(4+m) n$. of this total, the function evaluations of equation (34) constitute the bulk of the computations, that is, $n^{2}+n m$ flops. The coordinate transformations of equation (35) require n^{2} flops each for z and its derivative. Finally, the computations of equation (36) represent a total of 4 n flops, while the transformation of equation (37) requires n^{2} extra flops.

The second approach, or triangular approach, consists on reducing the original system matrix J to an upper quasi-triangular form. There are several methods to do this. One of these methods involves using a sequence of Householder transformations to reduce the system matrix J to its upper Hessenberg form. Equivalently, determine U and H such that $H=U$ IJU, where U (orthogonal) is a product of Householder matrices and H is upper Hessenberg, that is, $h_{1 j}=0$ whenever $i>j+1$. This process requires $(7 / 3) n^{3}$ flops [8]. A second method is to compute the Schur decomposition of J, that is, determine an orthogonal matrix U such that $H=U ' J U$, where each H_{1}, is either a scalar or a 2×2 matrix having complex conjugate eigenvalues. This decomposition can be done using the $Q-R$ algorithm in approximately $15 n^{3}$ flops [8]. At this point it is important to mention that these two processes are very numerically stable.

The third and last approach considers the Jordan reduction of J . As mentioned before, the Jordan form of a matrix can be obtained in approximately $16 n^{3}$ flops. However, it should be emphasized that this reduction is, in general, ill-conditioned. A common aspect among these three methods is that they all yield upper quasi-triangular integrator coefficients. Thus, the total number of on-line computations
decreases as compared to the number of computations required for the unreduced system. However, there might be an increase in the total number of off-line computations. This is seen by considering the amount of work involved in determining the A_{1} 's and B_{1} 's. A detailed description of this process is given next as follows.

As just mentioned, the latter three methods being considered here for reducing the number of computations of the integration process all result in upper quasi-triangular matrices. Therefore, without loss of generality, the number of flops required to compute each integrator coefficient is given next assuming that these coefficients are strictly upper triangular matrices.

For simplicity, the expressions for the A_{1} 's and B_{1} 's for MSRP-2 are repeated here as a function of H the corresponding form of J, viz. $A_{1}=e^{H T}(H T)^{-1}-(H T)^{-1}-2 I$
$A_{0}=-e^{H T}(H T)^{-1}+(H T)^{-1}+I$
$B_{1}=e^{H T}(H T)^{-1}+A_{1}(H T)^{-1}$
$B_{0}=A_{0}(H T)^{-1}$.

1. Computatipn of $e^{H T}$: The matrix exponential is usually computed using Pade approximations. Although the number of flops for this algorithm is a function of $||H||_{\infty}$, a typical number is somewhere between $8 n^{3}$ and $10 n^{3}$ flops. However, since H is upper triangular, only about $6 n^{3}$ flops are required [8].
2. Computation of (HT) ${ }^{-1}$: This matrix inversion can be easily done via the singular value decomposition of H. From [9], this algorithm takes about $5 n^{3}$ flops for an upper triangular matrix.
3. Computation of matrix products: All the required matrix products involve- only upper triangular matrices. Therefore, these products require only $(1 / 6) n^{3}$ flops each [8].

From the foregoing it is seen that once that $e^{H T}$ and (HT) $)^{-1}$ have ksen determined and the results stored, the integrator coefficients can be computed in approximately (1/2) n^{3} flops. Notice that in this process the product $\mathrm{e}^{\mathrm{fT}}(\mathrm{HT})^{-1}$ is computed only once and then stored.

The approximate flop counts just given are only for those operations which can be done off-line. Therefore, it still remains to consider the number of on-line computations required per timestep. These computations include the function evaluations of equation (34), the state vector coordinate transformations of equations (35)-(36), and the integration process of equation (20) with the coefficients replaced by the matrices of equation (38). As in the case when J is diagonalizable, the function evaluations and coordinate transformations require $4 n^{2}+n m$ flops. Each of the products in the integration process requires $(1 / 6) n^{2}$ flops, for a total of $(2 / 3) n^{2}$ flops. Therefore, when the integrator coefficients are upper
triangular, the total number of on-line computations can be approximated to $(14 / 3) n^{2}+n m$ flops. Notice that this flop count compares very favorably with that of the case when J is diagonalized. At the same time, however, this flop count is very close to the one obtained when the original system is used in the integration. That is, $5 n^{2}+n m$ flops. For ease of comparison, the results just given in the paragraphs above are compiled in Tables 3 and 4 below. The quantities inside the round brackets in these tables indicate the number of times a particular operation is done.
Table 3. Off-line computational cost associated with MSRP-2

Required Operations	System Matrix J (Computational Cost in Flops)				
	Original	Diagonal	Jordan	Hessen.	Schur
Coordinate X-formation	0	$16 n^{3}$	$16 n^{3}$	$7 n^{3} / 3$	$15 n^{3}$
Matrix Inversion	$7 n^{3}$	$7 n^{3}$	(2) $12 n^{3}$	$5 n^{3}$	$5 n^{3}$
Matrix Exponential	$10 n^{3}$	0	$6 n^{3}$	$6 n^{3}$	$6 n^{3}$
Matrix Product	$3 n^{3}$	$4 n$	$1 n^{3} / 2$	$1 n^{3} / 2$	$1 n^{3} / 2$
Off-line Computation	$20 n^{3}$	$23 n^{3}+4 n$	$69 n^{3} / 2$	$83 n^{3} / 6$	$53 n^{3} / 2$

Table 4. On-line computational cost associated with MSRP-2

Required Operations	System Matrix J				
	Original	Diagonal	Jordan	Hessen.	Schur
Function Evaluations	$n m+n^{2}$				
Coordinate X-formation	0	(3) $3 n^{2}$	(3) $3 n^{2}$	(3) $3 n^{2}$	$3 n^{2}$
Integration Process	$4 n^{2}$	$4 n$	$2 n^{2} / 3$	$2 n^{2} / 3$	$2 n^{2} / 3$
On-line Computation	$n m+5 n^{2}$	$n m+4 n+4 n^{2}$	$n m+14 n^{2} / 3$	$n m+14 n^{2} / 3$	$n m+14 n^{2} / 3$

From these tables it is clear that transforming the original system to upper Hessenberg form prior to performing the integration process requires the least number of off-line computations, while the number of on-line computations compares well with that of the case when the original J matrix is used. This, coupled with the fact that the Hessenberg decomposition of a matrix can be obtained via orthogonal transformations, makes this approach highly desirable. Moreover, the excellent numerical properties of this decomposition guarantees the reliability of the computations.

Notice that although diagonalizing J requires the least on-line computational effort, it should be kept in mind that, in general, not all matrices are diagonalizable and that this process can be numerically ill-conditioned. However, matrix diagonalization is a common practice in actual applications.

Associated with specific hardware and software implementations there are several aspects of MSRP that should be emphasized. As MSRP2 only involves adds and multiplies, and as most hardware and software packages support these two basic arithmetic operations, MSRP-2 allows real-time simulation on a wide variety of computer systems and software packages. Therefore, the usual constraints associated with the real-time simulation of physical systems are no longer encountered when using MSRP-2 integrators. It should be realized, however, that although MSRP-2 allows timesteps much larger than would be normally possible, the hardware which is attached to the simulator may restrict the stepsize. Hence, the only constraining factors in real-time simulation using MSRP-2 are those due to hardware constraints.

MSRP-2 can be implemented in three steps. The first step consists of obtaining the computation time for the given system. The second step involves choosing the desired timestep T. And the third step designing MSRP-2 by solving for the integrator coefficients using the appropriate formulas.

4. INTEGRATION METHODS IN THE SSME SIMULATION

In the SSME simulation numerical integration is done using Euler's method. This method is very attractive because of its simplicity and ease of implementation. However, care must be exercised in selecting the appropriate integration timestep. This is important since the stability and accuracy of the simulation are a direct function of the integration timestep. It is shown here that a faster and more accurate simulation of the SSME can be obtained by replacing Euler's integrators by a two step method. More specifically, the valve Dynamics and the oxidizer Turbopump modules are used as case studies to demonstrate that it is possible to speed up the SSME simulation without requiring additional hardware.

This chapter is organized as follows. First a brief description of the valve dynamics module is given. Then, the results obtained from simulating this module using Euler's method, and AB-2 and MSRP-2 integrators are presented. This is followed by a brief review of the oxidizer turbopump module along with some recommendations to provide a faster simulation.

A. VALVE DYNAMICS MODULE: CASE STUDY I

To throttle the SSME there are a total of five control valves. These valves are:

```
MFV - Main Fuel Valve
MOV - Main Oxidizer Valve
FPV - Fuel Preburner Valve
OPV - Oxidizer Preburner Valve, and
CCV - Coolant control Valve
```

These five valves reside in the valve dynamics module of the SSME simulation. Figure 4 shows the block diagram for valve position control, and Figure 5 gives the fortran code for the main integration loop of the valve dynamics module. From these figures it is seen that position control of each valve is described by a 6 th order system. Moreover, the valve position control system is linear within the integration timestep as the nonlinearities (stiction, backlash, and wind-up) introduced by valve linkage remain constant within the integration loop. Notice that multirate sampling is used as the outer timestep $D T=2 \times 10^{-4}$ is added to 10^{-5} and divided by Delta $=2 \times 10^{-5}$. Some simple arithmetic shows that the timestep being used within this module is ten times smaller than the external timestep. The main integration loop is run 5 times, one for each valve. Therefore, in actuality this module represents a 30 th order system (6 states times 5 valves). Since each main integration loop is run 10 times, the simulation basically sees 300 integrations per outer timestep. It is clear that the computational demands of this particular module can considerably slow down the SSME simulation. In a situation such as this there are two possible solutions to the problem. One solution is to use additional hardware. The other solution is to provide integrators which would allow the use of larger timesteps and thereby reduce simulation time. The latter is the purpose of this study.

FORM ค 131 +H.16 REV. 2.78

Figure 4. Functional block diagram of valve position control

C
EVP $=$ THETAC(I):CRUDT-VR(I) -

DDESA	
DDESV	
DTHETA(1)	$=C L(1) \pm C S V(I) / A(I) * E S V(1)$
DVR	- THETA (I)*CRUDT \#CRS/TRS-VR(I)/TRS

INTEBRATORS

	(
SA(I)	$=\operatorname{ESAC}(\mathrm{I})$		
DESA(I)	= DESA(I)	+ ALIM(DDESA)	DELTA
ESV(I)	- ESU (1)	+ ALIM(DESU(1)	DELTA
DESU(I)	- DESV(1)	+ ALIM(DDESV)	- DELTA
THETA(I)	- THETA(I)	ALIM(DTHETA(I))	- DELTA
UR(I)	VR(1)	IM(DUR)	- delta

LIMITS ON INPUT AMPLIFIER ARE +-23 VOLT8.

```
IF (ESA(I).GT.23.) ESA(1)=23.
IF (ESA(I).LT.-23.) ESA(I)=-23.
IF (ABS(ESA(I)).LT.0.25) ESA(I)=0.0
```

LIMITS ON SERVO AMPLIFIER ARE +-20 VOLTS.
IF (ESV(I).GT.20.) ESV(1)=20.
IF (ESV(I).LT.-20.) ESV(I)=-20.
$\operatorname{THETA}(I)=\operatorname{AMAX} 1(0.0, \operatorname{AMIN} 1(\operatorname{THETA}(1), \operatorname{THETMAX}(1)))$
C
210 CONTIMUE -

END OF INTEGRATION LOOP

218 CONTIMUE

BACKLASH IS DEFINED AS THE AMOUNT OF ACTUATOR OUTPUT SHAFT TRAVEL REQUIRED TO REVERSE DIRECTION OF VALVE BALL MOTION UNDER CONDITION

C OF ZERO LINKAGE WINDUP AND TORQUE LOADING. THE VALUES USED HERE I
C HALF OF THE AMOUNT OF THE TOTAL TRAVELING, WELL HALF ON EACH SIDE.
C
$F A C=1.0$
IF (I.EQ.3.AND. (THETA (I).GT. 33.B.AND.THETA(I).LT. 日4.0)) FAC=0.0 IF (I.EQ.4.AND.(THETA(I).GT. J8.3.AND.THETA(I).LT.75.8)) FAC=0.0 IF (ABS(THETA(1)-THETA1(1)).GE.(THETBL(1)\&FAC)) ©O TO 212

Figure 5. Valve dynamics main integration loop fortran code

An integration analysis of the valve dynamics module requires that a mathematical model describing the valve position control system be determined. It turns out that a state space model of this system can be obtained directly from the main integration loop of Figure 5, viz.

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{6}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-w_{a}^{2} & -2 s_{a} w_{a} & 0 & 0 & 0 & -c_{a} w_{a}^{2} \\
0 & 0 & 0 & 1 & 0 \\
w_{S V}^{2} & 0 & -w_{S V}^{2} & -2 s_{s v} w_{s v} \\
0 & 0 & \frac{\left[C_{1} c_{S Y}\right](I)}{A(I)} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{C_{r v d t} C_{r s}}{T_{r s}} \frac{-1}{T_{r s}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]+\left[\begin{array}{c}
0 \\
c_{a} w_{a}^{2} c_{r v d t} \\
0 \\
0 \\
0 \\
0
\end{array}\right] \theta_{c}(I)
$$

Using the notation of Figure 5 , the states x_{1} through x_{6} correspond to the actual states as: $x_{1}=$ ESAC, $x_{2}=$ DESA, $x_{3}=E S V, x_{4}=$ DESV, $\mathrm{x}_{5}=T H E T A$, and $\mathrm{x}_{\mathrm{B}}=\mathrm{VR}$.

Although there are five different valves, it was found that three of them are described by the same set of data while the other two are described by another set of data. As a result, only two different systems were considered. However, it turned out that both these systems have the same set of eigenvalues. These eigenvalues are:

$$
\begin{gathered}
\lambda_{1}, \lambda_{2}=-3499.7 \pm j 3570.4 \\
\lambda_{3}, \lambda_{4}=-48.9 \pm j 136.5 \\
\lambda_{5}=-2184 \\
\lambda_{6}=1058.5
\end{gathered}
$$

Clearly, this system is very stiff. Therefore, to obtain a stable and accurate simulation a very small timestep must be used. Notice as well that the complex poles have very large imaginary parts. This can make the selection of a suitable integration technique a
difficult task.

Recall that for a simulation to be stable it is required that the λT-product be inside the stability region of the integrator being used. In addition, the simulation will be accurate if the $\lambda \mathrm{T}$-product is inside the region where there is minimum distortion. Therefore, for Euler's method the largest timestep that could be used to obtain an accurate and stable simulation of the valve dynamics module is $\mathrm{T}=2 \times 10^{-5}$. A larger timestep would not guarantee accurate results. For a timestep $T=3 \times 10^{-4}$ the integrator would be operating on the verge of instability, with the slightest roundoff error making the simulation unstable. This timestep would also give very inaccurate results. This
is clearly seen in Figures 6 through 9 , which show the results of simulating the system under consideration using Euler's method with different timesteps. The exact solution was obtained using Euler's method with a timestep $\mathrm{T}=10^{-5}$. Notice that when a timestep $\mathrm{T}=2 \times 10^{-4}$ is used, the simulation is not very accurate, with the initial transient being almost lost. Therefore, if the transient is important in the simulation, Euler's method should not be used with a timestep larger than $T=2 \times 10^{-5}$. However, should either an AB-2 or an MSRP-2 integrator be used to simulate this system, timesteps of $T=10^{-4}$ and $\mathrm{T}=10^{-2}$ could be used, respectively. Although these timesteps would not approximate the transient too well, the results will be more accurate. Figure 10 shows the corresponding allowable timesteps for $A B-2$. From Figure 11 it is seen that if $A B-2$ is used with a timestep of 2×10^{-4} the simulation will be unstable. However, for a timestep $T=10^{-4} \quad A B-2$ performs quite well, this can be seen in Figures 12 through 14. Thereby given an improvement of a factor of 5. Recall that, for a linear system, MSRP-2 requires five times more computations than either $A B-2$ or $A B-1$ and thus its timestep must be five times as large. It turns out that MSRP-2 gives very accurate and stable results even for timesteps as large as $\mathrm{T}=10^{-2}$. Figures 15 through 17 give the response using MSRP-2 with $T=2 \times 10^{-3}$ while Figures 18 through 20 give the results of using MSRP-2 with $\mathrm{T}=10^{-2}$. Clearly, MSRP-2 offers the best simulation results with the largest possible timestep for this particular module.

Notice that this module has some of the largest eigenvalues present in the SSME simulation. In addition, their magnitudes differ by several orders of magnitude. Thus, this system is very stiff. It is well known that the real-time simulation of stiff systems poses some of the most challenging problems to the control engineer. Hence, this module could be thought of as typifying some of the problems associated with the SSME simulation.

Although MSRP-2 integrators provide excellent results with a substantial speed improvement, it is only recommended that they be implemented locally within each module. The nature of the SSME simulation coupled with the wide range of operating points do not make this problem amenable to an easy implementation using this type of integrators. However, if AB-2 integrators were used in place of Euler's method, a reasonable speedup could be expected. This would involve only a fraction of the work and complexity should MSRP-2 integrators be used.

Recall that to design an MSRP-2 integrator for a nonlinear system requires that the system be linearized about some operating point. Thus, to replace the integrators of the SSME simulation by MSRP-2 integrators, it would be necessary to linearize the different modules about the operating points of interest. This would involve a tremendous effort as the SSME simulation is highly nonlinear. Although this approach was considered, the time constraints associated with this project did not allow its realization.

A further point worth mentioning is the fact that the eigenvalues of this system are complex with very large imaginary parts. Recall
that this type of eigenvalues can cause instability problems when Euler's method is used. This is due to Euler's stability region being asymptotic to only the origin of the NTT-plane. Thus, in order to stably and accurately simulate systems with this type of eigenvalues very small timesteps are required. Since the stability region of $A B-2$ is asymptotic to a larger portion of the imaginary axis of the NTplane, it is expected that $A B-2$ would perform better in this type of situations. However, if the magnitude of the imaginary parts of the eigenvalues is much larger than their real parts, MAB-2 may be used. That is, the instability problems that may arise due to almost purely complex eigenvalues can be alleviated by replacing the classical AB-2 method by the modified $A B-2$ method. Keep in mind, however, that the simulation results may not be as accurate as MAB-2 is only first order accurate.

Finally, the concept of stability region in the simulation of nonlinear systems must be used with care. This is due to the fact that for nonlinear systems the margin of the stable region cannot be clearly distinguished from the unstable region. Essentially, there will be an inner region in which the simulation will be stable, an outer region where the simulation will be unstable, and a "fuzzy" region in between these two regions.

B. OXIDIZER TURBOPUMP MODULE: CASE STUDY II

This module presents some of the most challenging integration problems in the SSME simulation. An analytical study of this module was carried out to determine the range of frequencies of the system. Although it is recognized that this is not the best approach to linearizing this type of systems, the intent was to obtain an approximate frequency range of the system's eigenvalues. It is felt that for integration purposes this approximate range suffices. This analytical study was done because the maps describing the nonlinear functions in this module make it very hard to determine an accurate model of the system. Determining an accurate model of the oxidizer turbopump module requires a considerable amount of time and effort; both of which are beyond the scope of this project. Therefore, the 37 th order nonlinear model was linearized analytically using the Jacobian method. By considering the maximum and minimum values specified in the maps, a reasonable estimate of the eigenvalues of the actual system could be obtained. It was found that the stable eigenvalues of the linearized system vary from -20 to about -8000. This range agrees well with the actual range of frequencies specified in [10]. The few unstable eigenvalues are believed to be a result of our crude approach to linearization. The numerical values of the eigenvalues of the linearized system are listed in Table 5. Although, it was expected that some lightly damped modes were going to be present in this module, only two sets of complex eigenvalues with a damping ratio of about 0.2 were found. At this time the authors cannot provide any further insight into this last aspect as it was very difficult to determine whether the ducts were actually being modeled inside or outside the module. However, further analysis is being done to determine a linearized model of the entire SSME
simulation by recording the change in the states due to perturbations introduced into each state. This analysis will provide linearized models and thus more accurate accounts of the eigenvalues of the system at different operating points. Another study being done is the determination of reduced order linear models of the SSME. This study will consider several techniques to obtain the reduced order models. As the transient response is of essence in the SSME simulation, singular perturbation cannot be used as a model reduction technique as it reduces the order by deleting the fast dynamics of the system.

Table 5. Approximate location of the eigenvalues of the oxidizer turbopump linearized model

i	$\lambda_{1} \times 10^{3}$
$1 \rightarrow 12$	0
$13 \rightarrow 18$	-0.020
19	-7.9452
20	-0.0116
21	-0.0050
22	-2.5104
$23 \rightarrow 24$	$0.0088 \pm 0.0373 i$
25	-0.0393
26	-0.0237
27	-0.0113
28	$\because-0.0344$
29	0.0022
30	0.0013
31	-0.0025
32	-0.0023
$33 \rightarrow 34$	-0.0002 $\pm 0.0010 i$
35	-0.0147
36	-0.0062
37	-0.0039

From Table 5 it is clear that the oxidizer turbopump module is a stiff system. Therefore, the discussion just given for the valve dynamics module also applies to this system. Notice that this implies that if Euler's method were to be replaced by $A B-2$, a speedup factor of approximately 5 could be realized. However, if MSRP-2 were used the time savings will be much larger. Since this module and the Fuel. F module are very similar in nature, it is expected that the eigenvalues of Fuel.F be within the same range. These two modules comprise most of the states in the SSME simulation.

The complexity of the linearized system can be observed from the following pictorial representation of the system A matrix, viz.

Figure 6. Simulation of the valve dynamics module using Euler's

Figure 7. Response of x_{1} and x_{2} of valve dynamics using Euler's

Ti me

Ti me
Figure 8. Response of x_{3} and x_{4} of valve dynamics using Euler's

Figure 9. Response of x_{5} and x_{6} of valve dynamics using Euler's

Figure 10. Simulation of valve dynamics module using $A B-2$

Figure 11. Simulation of valve dynamics module using AB-2 (unstable)

Ti me
Figure 12. Response of x_{1} and x_{2} of valve dynamics using $A B-2$

Time
Figure 13. Response of x_{3} and x_{4} of valve dynamics using $A B-2$

Figure 14. Response of x_{s} of valve dynamics using $A B-2$

Figure 15. Response of x_{1} and x_{2} of valve dynamics using MSRP-2

Figure 16. Response of x_{3} and x_{4} of valve dynamics using MSRP-2

Time
Figure 17. Response of x_{5} and x_{6} of valve dynamics using MSRP-2

Figure 18. Response of x_{1} and x_{2} of valve dynamics using MSRP-2

Time

Time
Figure 19. Response of x_{3} and x_{4} of valve dynamics using MSRP-2

Figure 20. Response of x_{5} and x_{6} of valve dynamics using MSRP-2

5. IMPLEMENTING TNTEGRATION IN THE SSME SIMULATION

The previous two chapters explain our recommendations of the modified AB2 integration method, over Euler's method. Local MSRP methods, which could be used for much larger step sizes, were also explained. This chapter deals with the practical implementation of the SSME integration methods. It ends with a description of the report version integration module 'integ.for'. A log showing all references to the integration module is included in Appendix C. This log is also available as the file 'integ.log' on the report version diskette.

Numerical Accuracy of an Integration Step
The SSME study version simulation addressed the numerical accuracy of each Euler integration step

$$
x=x+x d o t * d t
$$

by selecting DOUBLE PRECISION as the type for dt. The code generated by Fortran does the following steps:

1. Convert xdot to double precision.
2. Multiply xdot * dt.
3. Convert x to a double precision temporary.
4. Add in double precision.
5. Truncate the sum back to single precision for storage.

Since x and $x d o t$ are carried in single precision, extra digits beyond single precision that are generated by the product are not actually significant to the result. The useful part of the above sequence is the way it preserves the significant digits of the product by doing the addition in double precision. Floating point -addition of the relatively small increment tends to lose significant digits of the increment, as the increment's mantissa is shifted for binary point alignment with the variable's mantissa. Double precision addition uses a longer register, limiting this loss to extreme cases.

In the report version integration module, all integrators use a method which preserves the significance of the time step increment, and also minimizes floating point conversions. The technique is generally known as "double precision accumulation". The method maintains a double precision variable as an accumulator for x. The time step $d t$ is of single precision REAL type, so that computations of the increment, such as the product x * xdot in Euler's method, are done in single precision. The increment is then converted and the addition is done in double
precision. The double precision accumulator prevents the truncation of significant digits from the time step increment, and x does not have to be re-converted to double precision on the next step. The output value of x returned to the simulation is of single precision type, so that its use in other computations in the simulation does not generate conversions and double precision operations.

Limiting Integration Outputs

When the outputs of integrators are limited, as they frequently are in the SSME simulation, some difficulties arise with both double precision accumulation and multistep integration technique. These complications should not be considered a reason for not implementing the methods, however, because in the SSME simulation, so much computation is required on every time step that almost any method which allows a larger time step is justified, regardless of complications.

If the output of an integrator is changed by a limit, there is the issue of whether or not to adjust the integration process to this change. The study version's Euler method simply replaces the integrated value of x with the limited value, in effect, restarting the integration process. Nothing is lost because Euler's method carries no information from time step to the next time step.

When the output of a multistep method is changed by a limit, the past values are compromised, if not invalidated. Several options are available:

- ignore the discrepancy, using the past values unmodified.
- adjust the past values, taking into account the difference between the unlimited and limited outputs of the integrator.
- discard thé past values and use a starting integrator while the output value is on the limit, and for restarting the multi-step method when the output leaves the limit.

The third option is recommended in general for SSME, using Euler's open formula as the starting integrator, for the following reasons:

- it is a fast method, compared to the second option.
- as a starting formula, the Euler's method would only determine the output of the integrator when the integrated value is coming away from its limit. With the low order multi-step methods recommended, these periods are limited to

> one time step.

- using the linear approximation of Euler's to restart is at least as good as doing a linear extrapolated adjustment of past values, in the second option above.

The use of Euler's method as a restarting formula is not necessarily recommended for local MSRP implementation, because of the larger step size. A higher order restarting method may be required, but the question was not investigated.

Limiting the output also introduces complications in the double precision accumulation method. To apply the limit to the double precision accumulator, it is not appropriate to reset the accumulator unconditionally to either the output or the limit. This would render the accumulator single precision, despite its double precison type. Instead, it is necessary to know when the output is limited, and to replace the accumulator only then.

In double precision accumulation, efficiency demands that the limits be converted to double precision when the integrator is initialized, and kept in that form, so that continual reconversion of the limit is not required every time it replaces the accumulator. The report version handles limits in that manner.

It is possible that unlimited integrators are more appropriate for some limiting situations in SSME. In this method of limiting, the limits are applied after the integration and are not made known to the integration routine. This would be the case where an integrated process is unaffected by the limit except through feedback into the driving rate. A characteristic of this situation would be that the variable is not expected to come off the limit as soon as the rate changes direction, but only when the underlying unlimited integrator's value would cross the limiting value. It is beyond the scope of the study to distinguish these kinds of limiting situations from others, so all limiting situations are modeled in the report version code by limited integrators.

In situations where operation on the limit is not expected, a limit should not be silently imposed on an integrator, just to stay within bounds of tabulated data. In the report version, the corresponding unlimited integrator is used, and the interpolation routine stops the simulation with an identifying message, if the interpolated table's range is exceeded.

The Report Version Integration Module
The report version integration module 'integ.for' implements
the recommended modes of operation, and also provides a recoded form of the study version's Euler method integration. This makes it practical to operate the simulation with all other forms of speedup in place, but with no change in integration policy or step size, as called for in the earlier recommendations for tuning the SSME simulation. The integration method may then be changed to the modified AB2 with minor recommenting and recompilation of the 'integ.for' source code alone, followed by a relinking step.

A number of integration routines are required to handle the different situations encountered in the SSME simulation. The following short glossary covers the terminology used in the report and in the report version comments to distinguish integration routines:
primary integrator - an integrator used outside of any energy balancing loop. It produces a final value for the time step.
trial integrator - an integrator used in an energy balancing loop. It produces a trial value which is accepted as the final step value when the balancing loop has converged.
unlimited integrator - an integrator whose accumulator is controlled only by initialization and rate input.
limited integrator - an integrator whose accumulator is subject to limits given to it at initialization. The behavior of limited integrators was described above.
flow integrator - an unlimited integrator with the SSME gas flow rate calculation built in. In 'integ.for', it comes in primary and trial flavors.
method - the integration method, such as Euler's method, Adams-Bashforth Second Order, or MSRP.

The integration module consists of the following routines:

- initiation subroutines for limited and unlimited integrators of any method, and of either primary or trial, or flow types.
- primary integrators of limited and unlimited forms, and using Euler and modified AB2 methods. Comments in the source code of these routines are edited to switch integration methods throughout the simulation.
- trial integrators of unlimited form, using Euler and modified AB2 methods. These routines are selected by recommenting
whenever the primary integrators are.
- flow integrators of primary or trial types. These call the primary and trial integrators, and are not changed when switching integration methods.
- step update functions each method of the trial integrators. These are recommented to select the one corresponding to the trial integrator.

The flow integrators replace study version flow integrators based on solving an equation representing the implicit, or closed form of Euler's formula. This method computed the flow rate in double precision, even carrying out a square root to this accuracy. The method is costly in computing time, especially since the flow integration occurs frequently inside of energy balancing loops.

The effort of this calculation is not justified. The Euler formula is only first order, so the double precision results obtained represent only a linear approximation to a curve being followed to single precision accuracy. Implicit formulas are normally used in corrector formulas, where they represent one or more corrective iterations at the same time step.

Double precision in the flow rate calculation may have been adopted in the face of balancing convergence problems. If so, it is of no more than accidental value as a solution to those problems. A more detailed monitoring system and relaxation controls for balancing convergence is recommended instead.

The integration module hides past multi-step values, double precision accumulators, and trial accumulators from the rest of the program. Only the integration routines have access to them. The calling routines refer to these values by a unique number assigned by the programmer to the integrand value. A major reason for the log file is to have a compact record of the number assignments.

Space can be saved in the report version by having different sets of arrays supporting the hidden values for the different types of integrators, rather than one set of arrays for all. The hidden values are defined in the integrator module's labelled common block 'integ' in the file 'integ.com'.
6. INTERPOLATION IN THE SSME SIMULATION

Interpolation of values from tabulated data is a major consumer of computer time in the SSME simulation. Linear interpolation of unequally spaced data points is the prevalent form of interpolation. It is used for function generation, with (x, y) data read from the file 'dtminp.dat' in initialization sections of each module. Two dimensional linear interpolation on temperature and pressure surfaces was used for gas properties. Cubic spline interpolation was used in one such table.

Linear interpolation routines in the study version were not coded for optimum efficiency, and there was a large adverse effect on running time.

With unequally spaced data points, it is necessary on each interpolation to identify the interval

$$
\left(x_{i}, x_{i-1}\right) \quad \text { of the independent variable enclosing }
$$

the input value x. The study version's 'fgen' does a linear search from the low end of the table, comparing x to values x_{i} in increasing order. This is suitable for short tables, or for tables in which most of the simulation time is spent within the few lowest intervals. Otherwise the expected number of comparisons, half the size of the table, is excessive.

From one time step to the next, one would expect the input variable to be in the same interval as it was previously, most of the time. Accordingly, a generally better strategy is to test the endpoints of the previous interval, and if exceeded, search in that direction for the enclosing interval. The report version of 'fgen' does that, favoring the upward direction by testing the upper side of the interval first. Two comparisons are required when the input variable stays within the same interval, two are required when it moves up an interval, and three are necessary when it moves down an interval, for an average close to two.

Another serious fault with the study version function generation is the failure to precompute coefficients for the interpolation polynomial. The study version interpolation, given the interval index i, is of the form

$$
f(x)=y_{i-1}+\frac{\left(y_{i}-y_{i-1}\right) *\left(x-x_{i-1}\right)}{\left(x_{i}-x_{i-1}+10^{-20}\right)}
$$

For an inner loop operation of a major simulation, this coding is truly ugly. Three additions and the division can be done once,
when the function values are loaded. Instead they are done on every interpolation. The extra constant term guards against division by zero when x values are repeated in the table. Such an occurrence makes no sense in a function table. The program is spending simulation time to quiet the operating system's complaint about an error in the function data!

In the report version, the corresponding interpolation is of the form

$$
f(x)=a_{i}+b_{i} * x
$$

and the loading routine complains if x_{i} is too close to x_{i-1}.
The function generation module assigns each function table a unique number, to be used on interpolation calls. The number is a key to the previous interval, the starting point for the interval search. In the report version, this number locates precomputed coefficient values a_{i} and b_{i} as.well.

In the study version, tables were stored in a two dimensional array. The function number was a row index in the array. There were 15 values per row, so functions were limited to that many points. Functions shorter than 15 points did not fully occupy their rows. In the report version, a one dimensional arrays are used for x and y values. The function number locates the starting point and size of the table in the large array. This method places no constraint on the size of a function table, allowing more accurate approximations to be formulated where necessary, by using more than 15 data points. The method also avoids wasting memory where functions have fewer than 15 points.

In the SSME simulation interpolations within the same table can be used to obtain current values for several variables within the same time step. Therefore the function number, which identifies only the table, cannot be used to recall the previous interval expected to enclose the input value. Instead, a unique value is assigned to the variable within the routine which calls the interpolation module. The interpolation module provides array space for the index of the previous interval, and calling routine passes the variable's index to the interpolation module.

New functions are added to the simulation by placing (x, y) points in the file 'ssme.dat', adding a call to the function loading routine 'fgset', and adding interpolation function references to 'fgen'. All one dimensional linear interpolations should be treated this way, to take advantage of the optimal coding of fgen. The function TLIMIT in the control module 'cntrol.for' was redefined as an fgen reference.

Interpolation of Functions of Two Variables

Several forms of interpolation are used on gas property tables defining temperatures and pressures as functions of two variables. Data points were unequally spaced in both dimensions.

The study version interpolation routines used the search method recommended above to find the enclosing interval in each dimension. Running time was excessive, however, because interpolation coefficients were not precomputed.

The study version two-variable interpolations differed from the function generation routines in that the data tables were incorporated into the simulator as arrays initialized by Fortran DATA statements. There are no compelling reasons to prefer this method over loading from a data file. The DATA statement method does the conversion to binary at compile time, rather than during initialization, and input from a data file becomes input from the load module. With virtual memory the load module data is not actually loaded into memory until needed. But in the SSME simulation all of it is needed during initialization, for the precomputing of interpolation coefficients. It is doubtful that the saving in initialization time would be noticed.

In the event there is a simulation requirement to manipulate gas properties, such as investigation of the effect of impurities, gas property tables should be moved to data files, and an open, accessible format for editing the tables should be adopted, such as in 'ssme.dat.

Cubic Spline Interpolation
Cubic spline interpolation is used in the two dimensional interpolation routine 'O2PROP' (SSM52510). There was no explanation available as to why cubic spline interpolation was required for this table, when linear interpolation was sufficient for hydrogen and OXPROP oxygen properties. Perhaps it was adopted in an attempt to get convergence within energy balancing iteration of OPRIME, which calls O2PROP.

In O2PROP, two-way cubic interpolation is attempted, in the same manner that two-way linear interpolation is done in other modules. Spline interpolation is done on the two adjacent columns of the table which bound the row input value, then the spline interpolation routine is called to interpolate along the row. This procedure does not actually achieve cubic spline interpolation smoothing, however. To do that, additional row values would be required. Two are not enough to define the smooth curve which is desired.

For the report version, the erroneous application of the spline routine is replaced by linear interpolation. Apparently, true two-way spline interpolation is not actually required for energy balancing convergence, or whatever purpose it was intended to serve.

For the sake of speedup, the elimination of cubic spline interpolation from O2PROP should be attempted. The report version coding shows the large initialization time and coefficient space required. Better observations of the convergence problems, and relaxation adjustments will make energy balancing more robust, and will probably make spline interpolation unnecessary.

Without addressing further the need for cubic spline interpolation, which was outside the scope of the study, it was possible to assess the efficiency of cubic spline implementation in the study version, and to recommend an improved version for use where it may be required. In keeping with the modularization policy of the report version, cubic spline routines were added to the interpolation module 'fgen.for', so that cubic spline interpolation could be tried in other table lookup situations within the simulation, with a minimum of programming effort.

The deficiency of the study version's cubic spline implementation is that it does not carry precomputation of interpolation coefficients far enough. Ideally, once the index of the interval enclosing the input value has been determined, an interpolated value on the cubic arc for the interval can be computed with three multiplications and three additions, as

$$
f(x)=a_{i}+x *\left(b_{i}+x *\left(c_{i}+x * d_{i}\right)\right)
$$

The study version of the spline interpolation precomputes second derivative constants, instead of cubic polynomial coefficients, and the interpolation routine working with this precomputed data requires 7 additions or subtractions, 12 multiplications and a division. This is at least four times the cost of the report version's cubic polynomial evaluation.

True two-way cubic spline interpolation is very costly, compared to the interpolations used in the simulation, not only because many points are needed for interpolation in the row direction, but also because the precomputation of cubic segment coefficients is not possible.

The linear interpolation module
The report version module 'fgen.for' contains all routines of one and two dimensional linear interpolation, and cubic spline interpolation. Interval finding, precomputing of interpolation
coefficients and the interpolating routines are included. The file 'fgen. com' defines the labelled COMMON block used by the interpolation routines.

The study version's FGEN routine was replaced by a subroutine 'fgset' for loading function values and precomputing interpolation coefficients, and a separate linear interpolation function 'fgen'. Two-way linear interpolation is also provided in a split package, with precomputing handled in the subroutine 'xyset', and interpolation by the function 'xylint'. One interval searching routine, 'intval' serves for all interpolation with unequally spaced independent variable data.

A maintenance aid file 'fgen.log' records the references to the function generation routines 'fgset' and 'fgen'. A copy is included on the report diskette.

7. ENERGY BALANCE CONVERGENCE DIAGNOSIS AND CONTROL

Two energy balance iterations are performed at every time step in the SSME simulation. The fuel flow module contains an iteration loop carrying a sequence of calculations over 12 stages. The oprime module, called by by hotgas during the first 1.5 seconds, iterates over four stages.

Limits on these iterations were set within the study version source code at 30 iterations. Any difficulty in convergence of these energy balancing loops can be very costly in simulation running time. These loops involve flow rate calculations, which were implemented in a time-consuming manner in the study version.

The study version monitors the convergence of these iteration loops by writing out messages, and the last two iteration changes, when the iteration limits are exceeded. The number of iterations is also written as an output. While this monitoring is sufficient to determine when there is a convergence problem, it is not adequate to diagnose what could be wrong, and it provides no corrective tuning action.

The report version contains an energy balance diagnosis and control module, in the file 'change.for'. This module associates a unique number with each energy balance variable, and uses it as an index to store the number of iterations required for that particular variable to converge. Thus slow converging variables can be identified, and the computation of these variables examined for disturbances to convergence.

The warning system for energy balance convergence problems is similar to the study version's, but provides more information. A diagnostic file is written on any run in which the iteration limits are exceeded. The diagnostic file shows the number of iterations and the relative change level achieved, for each energy balance variable. After this information is written, the diagnostic data output is repressed for 100 iterations, so the simulation may continue to run, and information over a longer period of time may be collected.

A second means of monitoring is available, suitable for close inspection of troublesome intervals. The number of iterations for convergence of each variable can be chosen as an output variable, and thus can be collected at the data collection interval, throughout the simulation.
'Change.for' also provides for a commonly applied remedy to multi-variable convergence problems, the relaxation technique. A relaxation factor for each energy balance variable is included in
the run parameters on file 'ssme.run'. This factor can be changed to brake, or accelerate, the influence of newly calculated values on the iterated value. Instead of simply replacing the old value, the relaxation method computes the iterated value by
iterated $=$ factor $*$ new $+(1 .-$ factor $)$ * old,
where $\quad 0 .<$ factor < 2.0.
The normal default value is 1.0 , implementing a simple replacement. For a variable that tends to converge slowly, the factor is decreased, under-relaxing or damping the corrective calculations. Fast converging variables can be over-relaxed by increasing their factors above 1.0. Their convergence can often be accelerated in this way, providing more stable conditions for the slow convergers.

Contents of the 'Change' Module
The source file 'change.for' provides initialization routines for setting the relative change tolerances, and for initializing convergence iteration counts of energy balance variables at each time step. The FUNCTION 'relax' applies the relaxation factors, and counts iterations in which the variable change is above tolerance. A convergence alert routine 'wrchg' writes the diagnostic file 'ssme.cvg' and a message on the monitor screen.

8. REAL EXPONENTIATION

One possibility for speedup in a digital simulation system is to take advantage of the fact that the six to seven significant digits of accuracy normally delivered by software supported special functions may be more than is required. This is probably the case in the SSME simulation. It appears that a significant reduction in running time can be derived by using special means to compute the function

$$
f(x)=x(0.1 \star n)
$$

This function is used frequently in the simulation loop, in the form shown, and as the square root function ($n=5$). In the report version, a module is devoted to special methods to compute it.

Without hardware support, the function $x Y$, where y is a real data type, is normally computed by normalizing both x and y to unit intervals, and using economized series or rational approximations for a logarithm of x, and the exponent of ($y \log x$). The logarithm approximation is particularly slow to converge, and many terms are necessary for the 7 place accuracy normally required in Fortran libraries.

Many floating point hardware systems provide hardware support for real exponentiation, and the use of this hardware by the compiler makes special methods of computation unnecessary.

In the report version of the SSME simulation, all exponentiation and square root function calls have been replaced with calls to routines in the module 'xtoy.for'. The primary routine in this module does a two-way linear interpolation of

$$
f(x, n)=x(0.1 * n),
$$

in one of two tables of equally spaced points (x, n). One table covers normalized x values from zero to 0.2 , and the other covers normalized x from 0.2 to 1.0. Other routines in the module perform normalizations and call the primary module.

The module as implemented provides maximum speedup over a software supported exponentiation. The maximum relative error is close to 0.5 per cent. The accuracy could be improved, at the cost of more operations per exponentiation, by using more tables, or by going to a higher order interpolation. In cases where exponentiation is hardware supported, the 'xtoy' module routines can be replaced by simple routines using exponentiation expressions which take maximum advantage of the hardware support. No changes need be made in the calling simulation modules, to implement such a customized version.
9. AN OUTPUT SYSTEM FOR THE SSME SIMULATION

The advantages of selected binary output have been described earlier in the results summary of this report. A recommended implementation is provided in the report version of the code, and is described here.

The output system consists of several components:

1. An ASCII output definition file 'output.def' lists all output variable names, and can be edited to select those variables to be collected on a particular run. The selection file is identified by an 80 - character header.
2. An output initialization segment in the main program reads the output definition file, and sets collection index arrays for the run. The segment opens the output file and writes the input parameter header to identify the run set up, and the output selection header to identify the selection. The collection index array and corresponding variable names are written to the output file.
3. A code segment in the main program monitors the simulation loop counter and triggers output collection. The report version uses integer operations, and is simpler than the study version, offering a single collection frequency.
4. All potential output variables are contained in the COMMON block 'outvar', integer variables first.
5. The routine 'writer' views the 'outvar' COMMON block as an integer array and a real array. It reads output variable index numbers and collects the corresponding data from the COMMON block. It writes the collected data to the output file in one binary record, including the simulation time.
6. Offline print and plot programs read headers, variable names, and data from the output files, convert the data as necessary, compute functions of output data as required, and present the output.

An example of an offline output program of item 6 is the program RTable in the report version file 'rtable.for'. This program tabulates selected real data from the simulation run in up to 10 columns. Whenever there is a function of output variables to be plotted, or a new display device to utilize, a small program similar to RTable can be written, instead of altering the simulation program.

10. A ROUGH ESTIMATE OF SPEEDUP

Our time had to be spent on analysis of the SSME model, and the definition of changes needed for a faster and more accurate simulation program. An inspiration for this effort was the following rough model, offers some insight into the problem of how far to go optimizing the SSME simulation.

Assume the running time about equally divided between output operations and computation. Selective output will encourage more runs, but should reduce the output per run by at least a factor of 10. The encouraged extra runs are worth the price, and should not be assessed as penalty.

Doing data conversions offline relieves the simulation host of a huge load. Binary to decimal conversion is iterative, and floating point conversion to characters costs. Of course, this means that conversions will be repeated, as data is viewed, but on personal computers and workstations, this time is free.

If the output processing per datum is reduced by a factor of 10, we have achieved 100 to 1 speedup on the output operations side.

On the computation side, some of the savings are additive, some multiplicative. It is reasonable to assume the integration processing time is no more than one thousandth of the rate computation time on each integration time step. So if integration methods adopted are 10 times more costly than Euler's, if doesn't matter. Five times the step size still essentially means one fifth of the computation.

Given the size of tables, there is probably a factor of three saving in search time, and precomputation of slope data preserves that factor through interpolation computations on the interval. Optimization outside interpolation may be close to that. The saving on flow integration by going to single precision can be counted here. So can replacement of series evaluations for exponentiation. We believe there is an overall factor of three available from all numerical optimization sources.

A large part of the simulation is subject to a third factor, the reduction in the number of energy balancing iterations. Relaxation of energy balancing loops would dramatically reduce large iterations. Smaller ones would require less improvement to register a good factor of improvement. We estimate a factor of two for energy balancing optimization, applying to $1 / 3$ of the simulation. Roughly, we are assuming that energy balancing portions occupy a third and valve dynamics
requires a third. We ignore the initialization and loading time.
In this rough model of computing time, the half devoted to output is subject to a $10 * 10$ speedup. The time for energy balancing loops, say one third of computing time, or a sixth of total time, benefits from integration (speedup $=5$) and balancing relaxation (speedup $=2$). There is also a predominance of flow integration in this part, so we project a speedup of three from numerical optimization and elimination of the double precision closed Euler's scheme. To the nonbalancing part, we predict a numerical speedup closer to two.

According to this rough model, the running time is reduced by a factor of

Under these assumptions, suppose local MSRP were introduced, with a time step of 20 times the Euler step size. At worst, the computation costs might equal the numeric savings of the report version. We might expect to lose the speedup due to relaxation, due to larger "first guess" errors on energy balancing. The resulting running time factor would be about

$$
1 / 200+(1 / 20)(1 / 6+1 / 3)=1 / 33.3
$$

This would be a good result, but the resulting simulation would be only half again faster. On the other hand, it is possible that energy balancing iterations would increase significantly at this step size. If balancing iterations were to double the current values, in spite of the relaxation technique, then the resulting time factor could be

$$
1 / 200+(1 / 20)(2 / 6+1 / 3)=1 / 26.1
$$

largely negating the gain from MSRP.
Finally, consider what happens if integration and numeric speedup works as expected, but no action is taken on the output system. The first running time factor above becomes

$$
(1 / 2)+(1 / 5)((1 / 6)(1 / 3)(1 / 2)+(1 / 3)(1 / 2))=1 / 1.86
$$

and there is no prospect of doing much better, since infinite computational speedup results in a factor of $1 / 2$.

REFERENCES

1. J.D. Lambert, "Computational Methods in ordinary Differential Equations," Wiley, NY, 1973.
2. S.P. Chicatelli, "Graphical Stability Methods for Numerical Integration of Ordinary Differential Equations," M.S. Thesis, The University of Akron, Akron, OH, 1989.
3. D. Keck and T.T. Hartley, "A Comprehensive Study of Linear TwoStep Methods," Proceedings of the Seventeenth Annual Pittsburgh Conference on Modeling and Simulation, April 1986.
4. J.A. De Abreu-Garcia and T.T. Hartley, "Multistep Matrix Integrators for Real-Time Simulation," to appear in "Advances in Control and Dynamic Systems," Vol. XXXVI, Academic Press, 1990.
5. T.T. Hartley and G.O. Beale, "Integration Operator Design for Real-Time Digital Simulation," IEEE Trans. Ind. Elect., Vol. IE32, No. 4, pp. 393-398, Nov. 1985.
6. J.A. De Abreu-Garcia, T.T. Hartley, and F. Mossayebi, "On Matrix Integrators for Real-Time Simulation," to appear in IEEE Trans. Ind. Elect., Vol. IE-37, April 1990.
7. PC-MATLAB, The Mathworks Inc., Sherborn, MA (617-653-1415).
8. G.H. Golub and C.F. Van Loan, "Matrix Computations," Johns Hopkins Univ. Press, MD, 1983.
9. C.L. Lawson and R.J. Hanson, "Solving Least Squares Problems," Prentice-Hall Inc., Englewood Cliffs, $\mathrm{NJ}, 1974$.
10. J.P. Landauer, "Real-Time Simulation of the space Shuttle Main Engine on the Simstar Multiprocessor,' Electronic Associates, Inc., 185 Monmouth Parkway, West Long Branch, NJ 07764.
11. R.W. Hornbeck, "Numerical Methods," Quantum Publishers, New York, 1975.

APPENDIX A. REPORT VERSION CODE

We start with the simulation function modules. The interpolation module 'fgen.for' was constructed out of parts of the study version code, bringing all interpolation to the same level of optimization, and adding some features. The integration module 'integ.for' and balancing loop control module 'change.for' are new.

Additional files '*.def' and '*.log' are included on the report version diskette delivered with this report. The '*.def' files are reference prototypes which can be inserted or viewed when coding, as reminders of the form of the reference. The '*.log' files are copies of referencing lines, which aid in the maintenance of programmer assigned index numbers used in all of the function modules

The remaining report version code sections have similarly named counterparts in the study version code. All code is presented here without additional commentary, outside of report page numbering. For reference, we provide the following table of contents for Appendix A:


```
This module contains all interpolation routines
* General one dimensional interpolation:
* For initializations, see blockdata.for
```

```
    PARAMETER ( NCURVE = *, NWORD = *, NCALL = * )
```

 PARAMETER (NCURVE = *, NWORD = *, NCALL = *)
 COMMON / fcns /
 COMMON / fcns /
 + nstart(NCURVE), npts(NCURVE), last(NCALL),
+ nstart(NCURVE), npts(NCURVE), last(NCALL),
+ xp(NWORD), a(NWORD), b(NWORD), nOW

```
+ xp(NWORD), a(NWORD), b(NWORD), nOW
```

*
*

FUNCTION fgset(number)
Loads function points from run.dat file.
Precomputes coefficients a and b for linear interpolation in the form $a+b$ * x.
The coefficients go into large arrays, with starting
point and length defined.
Lengths are initialized to 0 , meaning 'undefined'.
INCLUDE 'units.com'
INCLUDE 'fgen.com'
IF (number > NCURVE) THEN PRINT *, 'Function ', number, ' has too many points.' STOP
ELSEIF (npts (number) . GT. 0) THEN
PRINT *, 'Function ', number, ' was previously defined.' STOP
ENDIF
READ (run, '(//2I5, A)') num, n, title
IF (num .NE. number) THEN PRINT *, 'Function ', num, ' read, expecting ', number. STOP
ENDIF
nstart (num) = now
npts(num) $=n^{\text {: }}$
nend = now +n - 1
$\operatorname{READ}\left(r u n, '(6(/ 2 X, G 10.0))^{\prime}\right)(x p(i), a 1(i), i=n o w, ~ n e n d)$
DO 10 i $=$ nend, now $+1,-1$
IF ABS ($x p(i)-x p(i-1)$) .LT 1.E-4) THEN
PRINT *, 'X difference too small in function ', num STOP
ENDIF

```
        slope = (al(i) - al(i-1) ) / ( xp(i) - xp(i-1) )
```

 \(\mathrm{aO}(\mathrm{i})=\mathrm{al}(\mathrm{i})-\mathrm{xp}(\mathrm{i}) *\) slope
 al(i) = slope
 10 CONTINUE
Initializes fgen's previous interval to first interval
last(num) $=2$

```
now = nend + 1
```

END
\star
FUNCTION fgen(nfcn, ncall, x)

* Linear interpolation of curve (nfcn) at x.
* Stops with error message if curve is undefined or x out of range.
* Supply a unique index for the interpolated variable in ncall.
* Previous interval index is saved under that index.
* Search for the new interval starts with previous interval.
* Coefficients for each interval are precomputed by fgset.

INCLUDE 'fgen. com'
C
IF (npts(number) $=0$) THEN PRINT *, 'Invoked function ', number, ' was not loaded.' STOP
END
iO = nstart (number)
CALL intval(last(number), x, npts (number), xp(io, nerr)
IF (nerr. NE. 0) THEN IF (nerr.LT. 0) THEN

PRINT *, 'Value too low for function ', number ELSE
PRINT *, 'Value too high for function ', number ENDIF STOP
ENDIF
itop $=i 0+$ last (number)
fgen $=a(i t o p)+x * b$ (itop)
END

* Two-way linear interpolation:
*

FUNCTION xylint ($x, y, n x, p x, n y, p y, s x$, vdy, table, itop, jtop)
 Two-way linear interpolation, with precomputed slopes $s x$ and * \quad differences dy.

REAL px (nx), py (ny), sx(nx, ny), vdy (*), table (nx, ny)

```
ilow = itop - 1
jlow = jtop - 1
dx = x - xp(ilow)
p = table( ilow, jlow) + sx(itop, jlow) * dx
q = table( ilow, jtop) + sx(itop, jtop) * dx
xylint = p + (q-p)* (y-yp(jlow) ) * vdy(jlow)
END
```

SUBROUTINE intval (itop, x, n, array, below, above) ***) * Locates enclosing interval, searching from last one.

* Interval is specified by index at higher value.
* Stops if out of range, with below or above message

CHARACTER*(*) below, above
REAL array(*)
DO $20 k=i t o p-2,1,-1$
IF x.GE. array (k) THEN
itop $=k+1$
RETURN
ENDIF
CONTINUE
PRINT *, below
STOP
ENDIF
END

SUBROUTINE XYset ($n x, x p, n y, y p, ~ t a b l e, ~ s x, ~ v d y)$
 * Precomputes slopes $s x$ and reciprocal differences vdy for linear * two - way interpolation

REAL xp(nx), yp(ny), table(nx, ny)
*
DO $20 j=2$, ny
DO 10 i $=2$, $n x$ $s x(i, j)=(t a b l e(i, j)-t a b l e(i-1, j)) /$

+ (xp(i) - xp(i-1))
10 CONTINUE
$\operatorname{vdy}(j)=1.0 /(y p(j)-y p(j-1))$
20 CONTINUE
DO 30 i $=2$, $n x$ $s x(i, n y)=(t a b l e(i, n y)-t a b l e(i-1, n y)) /$
$+$

30 CONTINUE
 END

*

FUNCTION spline($i, x, a, b, c, d)$

* Evaluates cubic segment for cubic spline interpolation
* with $x(i)<x<x(i+1)$.

REAL $a(*), b(*), c(*), d(*)$
*
spline $=a(i)+x *(b(i)+x *(c(i)+x * d(i)))$
END
*
SUBROUTINE splin0 ($n x, x, y, a, b, c, d$)
 * Precomputes cubic spline segment coefficients a, b, c, d for spline,

* given x, y coordinates.
* Coded with referencè to Hornbeck's Numerical Methods

PARAMETER (maxspl = 21)
REAL rhs (maxspl), dx(maxspl), gpp(maxspl),
$+\quad v d x(m a x s p l), x 2(m a x s p l)$
REAL $\mathrm{a}(*), \mathrm{b}(*), \mathrm{c}(*), \mathrm{d}(*)$
*
* Set up right hand side of equations (4.30)
*

nxml $=n x-1$
DO $10 \mathrm{i}=1$, nxm1
$\operatorname{rhs}(i)=y(i+1)-Y(i)$
$d x(i)=x(i+1)-x(i)$
$v d x(i)=1 . / d x(i)$

10 CONTINUE
DO $20 i=n \times m 1,2,-1$ $\operatorname{rhs}(i)=(\operatorname{rhs}(i)-\operatorname{rhs}(i-1)) / d x(i) * * 2$
20 CONTINUE

* Solve the tri-diagonal system (4.30) for gpp(i), the * second derivative divided by 6 ,
* by flowchart of Fig. 6.3, where $a(i)=c(i)=1, b(i)=4$

DO $30 \mathrm{I}=\mathrm{nxml}, 3,-1$ rhs(I-1) $=($ rhs(I-1) $-\operatorname{rhs}(I))$ * 0.3333333
30 CONTINUE
gpp (2) $=$ rhs (3)
DO $40 \mathrm{I}=3$, nxm1 $\operatorname{gpp}(I)=\operatorname{rhs}(I)-\operatorname{gpp}(I-1)$
40 CONTINUE
Use the natural cubic spline end conditions of (4.31) and (4.32)

$$
g p p(1)=0.0
$$

$$
\operatorname{gpp}(n x)=0.0
$$

Precompute cubic polynomial coefficients from (4.26)

$$
\begin{aligned}
\text { DO } 50 i & =1, n \times x \\
x 2(i) & =x(i)^{* *} 2
\end{aligned}
$$

50 CONTINUE
DO 60 i $=1$, nxml
$d g=\operatorname{gpp}(i+1)-g p p(i)$
$\mathrm{dxg}=\mathrm{x}(\mathrm{i}+1) * \operatorname{gpp}(\mathrm{i})-\mathrm{x}(\mathrm{i}) * \operatorname{gpp}(\mathrm{i}+1)$ $a(i)=(\operatorname{gpp}(i) * x 2(i+1)+y(i)) * x(i+1)$
$+\quad-(\operatorname{gpp}(i+1) * x 2(i)+y(i+1)) * x(i)$
$+\quad-d x g * d x(i)$
$b(i)=(3.0 *(\operatorname{gpp}(i+1) * x 2(i)-\operatorname{gpp}(i) * x 2(i+1))$
$+\quad+y(i+1)-y(i)) * v d x(i)-d g * d x(i)$ $c(i)=3.0 *-d x g$ $d(i)=d g * v d x(i)$
60 CONTINUE
END

* The file 'integ. com' contains:
** SUBRO
*
* Initializes any unlimited integrator.
* Loads double precision accumulator.

INCLUDE 'integ.com'
accum (npast) $=x$
nstart(npast) $=0$
END
SUBROUTINE lmintO(x, npast, botm, top)
 *

* Initializes any limited integrator.
* Loads double precision accumulator and double precision limits.
*

*
INCLUDE 'integ.com'
*
accum(npast) $=-x$
xlow(npast) $=$ botm
xhigh(npast) $=$ top nstart(npast) $=0$
END
*
*

FUNCTION pruEul (rate, $n h$, npast) selected unlimited integrator FUNCTION pruint (rate, nh, npast)
*

* Explicit Euler as the primary unlimited integrator.
* Does not use past values. Initialized by uninto.
*

*
DOUBLE PRECISION x
INCLUDE 'integ.com'
*
$x=\operatorname{accum}(n p a s t)+$ rate $* h(n h)$
accum(npast) $=x$
pruint $=\mathbf{x}$
pruEul $=x \quad$ reactivate to deselect, but compile Euler.
END
*
FUNCTION pruAB2 (rate, nh, npast)
FUNCTION pruint (rate, nh, npast) AB2 is not currently selected.
 *

* Modified Adams-Bashforth 2nd Order as unlimited primary.
* Uses one past rate (right hand side f) value.
* Euler is used once for starting value. Initialized by uninto.
*

*
DOUBLE PRECISION x
INCLUDE 'integ.com'

IF (nstart(npast) .EQ. 0) THEN
$x=\operatorname{accum}(n p a s t)+$ rate $* h(n h)$
nstart(npast) $=1$
ELSE
$x=\operatorname{accum}(n p a s t)$
$x=\operatorname{accum}(n p a s t)+h(n h) *$

+ (1.6 * rate - 0.6 * fml (npast))
ENDIF
$\operatorname{accum}(n p a s t)=x$
pruint $=\mathbf{x} \quad$ reactivate to select AB2
pruAB2 $=x$
fm1 (npast) $=$ rate
END

FUNCTION truEul (rate, $n h$, npast) selected unlimited trial integrat. FUNCTION truint (rate, nh, npast)

*

* Unlimited, trial Euler for use within balancing loops.
* Requires 'step' to accept trial value.
* Initialized with uninto.

DOUBLE PRECISION x
INCLUDE 'integ.com'
*
$\mathrm{x}=\operatorname{accum}($ npast $)+$ rate $* \mathrm{~h}(\mathrm{nh})$
$\operatorname{acctry}($ npast $)=x$
truint $=\mathbf{x}$
truEul $=\mathrm{x} \quad$ reactivate to deselect, but still compile truEul.
END
FUNCTION truAB2 (rate, nh, npast)

* FUNCTION truint (rate, nh, npast) AB2 is not currently selected
 *
* Unlimited trial Modified Adams-Bashforth 2nd Order.
* Requires 'step' to accept trial values and start itself.
* Initialized with uninto.
*

*
DOUBLE PRECISION x
INCLUDE 'integ.com'
*

*

```
    IF ( nstart(npast) .EQ. 0 ) THEN
        x = accum(npast) + rate * h(nh)
    ELSE
        x = accum(npast) + h(nh) *
    + ( 1.6 * rate - 0.6 * past(npast) )
    ENDIF
    acctry(npast) = x
    trfml( npast ) = rate
    truAB2 = x
    truint = x reactivate to select AB2
    END
```

DOUBLE PRECISION x
INCLUDE 'integ.com'
*
$x=\operatorname{accum}(n p a s t)+$ rate $* h(n h)$
IF (x.LT. xlow (npast)) THEN $x=x$ low(npast)
ELSE IF (x.GT. xhigh(npast)) THEN $x=x h i g h(n p a s t)$
ENDIF
accum (npast) $=x$
prlint $=x$
prleul $=\mathbf{x} \quad$ reactivate to deselect, but compile Euler.
END
\star
FUNCTION prlAB2 (rate, nh, npast)
FUNCTION prlint (rate, nh, npast) AB2 is not currently selected.

Modified Adams-Bashforth 2nd Order as the primary limited integrator. Uses a past rate. Initialized by lminto.

DOUBLE PRECISION x
INCLUDE 'integ.com'
\star
IF (nstart(npast) .EQ. 0) THEN
$\mathbf{x}=\operatorname{accum}(n p a s t)+$ rate $* h(n h)$
ELSE
$x=\operatorname{accum}($ npast $)+h(n h) *$
$+\quad(1.6 *$ rate $-0.6 * \mathrm{fml}$ (npast))
ENDIF
IF (x .LT. xlow (npast)) THEN
$x=x l o w(n p a s t)$
nstart (npast) $=0$
ELSEIF (x.GT. xhigh (npast)) THEN
$x=x h i g h(n p a s t)$
nstart(npast) $=0$
ELSE
fml(npast) $=$ rate

```
            nstart(npast) = 1
    ENDIF
    accum(npast) = x
    prlint = x reactivate to select AB2
    prlAB2 = x
    END
```

 FUNCTION trlEul (rate, nh, npast) selected limited trial integrator
 FUNCTION trlint (rate, nh, npast)

*

* Explicit Euler as the trial limited integrator.
* Does not use past values. Initialized by lminto.
* $x^{\prime}=\operatorname{accum}(n p a s t)+$ rate * $h(n h)$
IF (x .LT. xlow (npast)) THEN
$\mathrm{x}=\mathrm{xlow}$ (npast)
ELSEIF (x . GT. xhigh(npast)) THEN
$\mathrm{x}=\mathrm{xhigh}($ npast)
ENDIF
$\operatorname{acctry}($ npast $)=x$
trlint $=x$
trlEul $=x \quad$ reactivate to deselect, but compile Euler.
END
FUNCTION trlAB2 (rate, nh, npast)
FUNCTION trlint(rate, $n h$, npast) AB2 is not currently selected.
**)
*
* Modified Adams-Bashforth 2nd Order as the trial limited integrator.
* Uses one past rate value. Initialized by lminto.

DOUBLE PRECISION x
INCLUDE 'integ.com'
*
IF (nstart (npast) .EQ. 0) THEN
$\mathbf{x}=$ accum (npast) + rate $* \mathrm{~h}(\mathrm{nh})$
ELSE
$x=\operatorname{accum}(n p a s t)+h(n h) *$
$+$
(1.6 * rate -0.6 * fml (npast))
ENDIF
IF (\mathbf{x}.LT. xlow(npast)) THEN
x = xlow (npast)
limted (npast) $=$.TRUE.
ELSEIF (x . GT. xhigh (npast)) THEN
$x=x h i g h(n p a s t)$
limted $($ npast $)=$.TRUE.
nstart(npast) $=0$
ELSE
trfml (npast) $=$ rate
limted (npast) $=$.FALSE.
ENDIF
accum(npast) $=x$
trlint $=\mathbf{x} \quad$ reactivate when selecting $A B 2$
trlab2 $=x$
END

FUNCTION stpEul (npast) FUNCTION step(npast)

*

* Euler step. Accepts trial accumulator as step accumulator
* Returns accepted value in single precision

DOUBLE PRECISION x
INCLUDE 'integ.com'
$x=\operatorname{acctry}(n p a s t)$
accum(npast) $=x$
step $=x$
$\underset{\text { END }}{\operatorname{stp}}=x \quad$ reactivate to deselect, but compile stpEul
FUNCTION stpAB2 (npast)
FUNCTION step (npast)
*********************)

* Modified Adams-Bashforth 2nd Order step accepts trial accumulator and past rate, and starts itself.

INCLUDE 'integ.com'
$x=\operatorname{acctry}(n p a s t)$
accum(npast) $=x$
stpAB2 $=x$
step $=x \quad$ reactivate to select as acceptor of trial values
fml (npast) $=$ trfml (npast)
IF (limted(npast)) THEN
nstart(npast) $=0$

ELSE

```
        nstart(npast) = 1
```

ENDIF
END
FUNCTION trflow ($\mathrm{W}, \mathrm{Z}, \mathrm{R}, \mathrm{P}$, npast)

Trial unlimited flow integration, previously
FUNCTION FLOW($\mathrm{W}, \mathrm{Z}, \mathrm{R}, \mathrm{T}, \mathrm{P}$).
Trial integration of flow acceleration of form

$$
\mathrm{dW} / \mathrm{dt}=(\text { pressure }- \text { resistance } * W * * 2) / z
$$

THIS IS THE FUNCTION TO CALCULATE THE FLOW RATE OF A INCOMPRESSIBLE FLOW ON A GIVEN DUCT WITH KNOWN INERTIA (Z), AND NORMALIZED RESISTANCE
($\mathrm{R}=$ RESISTANCE/FLOW DENSITY).
INPUT PARAMETERS ARE PREVIOUS FLOW RATE (W), PRESSURE DIFFERENCE (P) AND INTEGRAL TIME INTERVAL (T).

SSM14600
COMPILER (LINK=IBJ\$)
DOUBLE PRECISION Z1,R1,T1,W1,P1,A,B,C
REAL W, Z, R,T,P
WILL COMPUTE NEGETIVE FLOW
$\mathrm{W}=$ LAST VALUE OF FLOWRATE
$\mathrm{Z}=$ INERTIA, L/AG
$\mathrm{R}=$ RESISTANCE
$\mathrm{T}=$ DELTA TIME
$\mathrm{P}=$ DELTA PRESSURE
UNDER THE GIVEN CONDITION THE FLOW ACCELERATION IS GIVEN BY:
DDW=(P-R*(W**2))/Z
IF W ' IS THE NEXT FLOW VALUE AFTER TIME INTERVAL T THEN
DDW $=\left(W^{\prime}-W\right) / T$
AND THE W^{\prime} CAN BE APPROXIMATED BY THE FOLLOWING STEADY STATE CONDITION
($\left.W^{\prime}-W\right) / T=\left(P-R *\left(W^{\prime * *}\right)\right) / Z$
W' IS THE ONLY UNKNOWN IN THE EQUATION.
DUMMY VARIABLES
SSM14700
$\mathrm{Z1}=\mathrm{DBLE}(\mathrm{Z})$
$\mathrm{R1}=\mathrm{ABS}(\mathrm{DBLE}(\mathrm{R}))$
$T I=\operatorname{DBLE}(T) \quad$ repeatedly converts an unchanging variable
$\mathrm{W} 1=\mathrm{DBLE}(\mathrm{W})$
P1 $=$ DBLE (P)
$A=Z 1 / 2 \cdot D 0 / R 1 / T 1$ requires two unnecessary divisions
$B=A * 2 . D 0 * W 1$
$C=P 1 / R 1$

```
FLOW=SNGL(DSIGN(-A+DSQRT(A**2+DABS (B+C)), B+C))
```

The above use of implicit Euler, without any iterative correction, is not justified, and is implemented in a costly manner.

The replacement uses the selected trial integrator, in limited and unlimited forms. The simulation step $h=d t$ is always used. The flow rate is computed in single precision, using the previous W. Because of the possible limit, the integrator is initialized by lminto, with a practically infinite upper limit.

A call to step is required to accept trial values.

```
IF ( R .GE. 0.0 ) THEN
    trflow = trlint( (P - R * W**2)/Z, 0, npast )
    ELSE
        trflow = truint( (P - R * W**2)/Z, 0, npast )
        ENDIF
    END
```

 FUNCTION prflow (\(\mathrm{W}, \mathrm{Z}, \mathrm{R}, \mathrm{P}\), npast)

Primary flow integration, for use outside of balancing loops.
Uses the selected primary integrator in limited and unlimited forms.
Initialized by lminto, with a practically infinite upper limit.
IF (R .GE. O.Q) THEN
prflow $=$ prlint ($(P-R * W * * 2) / Z, 0$, npast $)$
ELSE
prflow $=$ pruint (($P-R * W * * 2) / Z, 0$, npast $)$
ENDIF
END
change.com contains:
PARAMETER (maxchg = 16)
COMMON / change / chgtol, rxfact (maxchg), change(maxchg)
FUNCTION relax (okloop, xnew, xold, ix)
Applies relaxation factor to monitored variable changes.
counts iterations in which relative change is over tolerance.
Returns relaxed change value.
For converging values ix, increase rxfact(ix) above 1.0 to speed up
convergence. Keep it less than 2.0.
For slow converging values ix, try decreasing rxfact(ix) below 1.0 . ***) *

LOGICAL ok, okloop
INCLUDE 'change.com'
INCLUDE 'out.com'
*
diff = xnew - xold
change(ix) = diff / xold
ok $=\mathrm{ABS}($ change (ix)) .LE. chgtol
okloop $=$ okloop .AND. ok
IF (.NOT. ok) its(ix) $=$ its(ix) +1
relax $=$ xold + diff * rxfact(ix)
END
*
SUBROUTINE itsO

*

* Initialize balancing iteration counts
*
*
*

INCLUDE 'out.com'
INCLUDE 'change.com'
*
DO 10, $I=1$, maxchg its $(I)=0$
10 CONTINUE
END

SUBROUTINE wrchg (iter, nfirst, nlast, heading)

The x to the y module, supporting degrees of normilization. Implements x to y through table lookup and linear interpolation

FUNCTION Xnloth (Xnorm, Nloth)
Table lookup of (normed X$) ~ * *(0.1 *$ Nloth), for $0<$ Nloth <10, where $0.0<$ normed $\mathrm{X}<1.0$

REAL X10 $(0: 10,0: 18)$
DATA $(X 10(0, J), J=0,18) / 19 * 0.0 /$
DATA (X10(1, J), J = 0, 18) / $0.770, .7945, .8090, .8216, .8326$, + $0.0, .6780, .7254, .7551, .7770, .7945, .8090, .821, .896, .9896$, $+1.0 /$
DATA $(X 10(2, J), J=0,18) /$
$0.0, .4596, .5261, .5702, .6037, .6311, .6545, .6750, .6932$, +.7097, . 7248, . $7867, .8329, .8708, .9031, .9313, .9564, .9792$, $+1.0 /$
DATA $(X 10(3, J), J=0,18) /$
$0.0, .3113, .3816, .4305, .4690, .5013, .5295, .5545, ~ .5772, ~$ +.5979, . 6171, . 6976, . 7602 , . 8126, . 8582 , . 8987 , .9354, .9690,
$+\underset{\mathrm{DATA}}{1.0}(\mathrm{X} 10(4, \mathrm{~J}), J=0,18) /$

+ $\quad 0.0, .2108, .2767, .3250, .3643, .3983, .4284, .4555, .4805$,
+.5037, . $5254, .6186, .6937, .7582, .8154, .8672, .9147, .9589$,
$+\quad 1.0 /$
DATA $(\mathrm{X} 10(5, \mathrm{~J}), J=0,18) /$
$0.0, .1427, .2006, .2453, .2830, .3164, .3465, .3742, .4001$,

DATA $($ X10 $(6, J), J=0,18) /$
$+\quad 0.0, .0965, .1454, .1851, .2199, .2513, .2083, .3075, .3331$, $+.3575, .3808, .4862, .5775, .6601, .7363, .8076, .8748, .9390$, $+1.0 /$
DATA $(\mathrm{X} 10(7, \mathrm{I}), \mathrm{J}=0,18) /$
$0.0, .06519, .1053, .1397, .1708, .1996, .2268, .2526, .2773$,
 $+1.0 /$
DATA $(\mathrm{XlO}(8, \mathrm{~J}), \mathrm{J}=0,18) /$
$+0.0, .04401, .0762, .1054, .1326, .1585, .1834, .2075, .2309$, $+.2537, .2760, .3820, .4807, .5746, .6647, .7519, .8366, .9193$, $+1.0 /$
DATA $(X 10(9, J), J=0,18) /$
+ 0.0,.02969, .05525, .07953, . 1030, .1259, .1484, .1704, .1922, $+.2137, .2350, .3385, .4385, .5360, .6315, .7255, .8181, .9096$, $+1.0 /$

DATA $(\mathrm{X} 10(10, J), J=$	$0,18)$	1				
+	0.0,	0.02,	0.04,	0.06,	0.08,	0.10,
+	0.18,	0.2,	0.3,	0.4,	0.5,	0.6,

```
    + 1.0/
***********************************************************************
    IF ( Xnorm.GE. 0.2) THEN
                U = Xnorm * 0.1
        V = AINT(U)
        I=INT(V) + 8
    ELSE
        U = Xnorm * 0.02
        V = AINT(U )
        I = V
    ENDIF
    Xn10th = X10( N10th, I ) + (U - V) * X10( N10th, I + 1)
    END
*
    FUNCTION XlOth( X, Nloth )
***********************************************************************
* ( Unnormalized X ) ** (0.1 * Nloth), where 0 < N10th < 10
* Can be optimized further by substituting Xnloth code for both
* function references to Xnloth, eliminating overhead of call sequence.
****t*******************************************************************
    IF (X .GT. 1.0) THEN
        Xloth = 1.0/ Xnloth( 1.0/ X, N10th )
    ELSE
    Xloth = Xnloth( X, Nloth )
    ENDIF
    END
*
    FUNCTION XntoYn( Xnorm, Ynorm )
***********************************************************************
* ( normalized X ) ** ( normalized Y ), where
* 0.0 < normalized X, Y < 1.0
***********************************************************************
    UX = Xnorm * 0.1
    VX = AINT( UX )
    J = VX
    UX = UX - VX -
    UY = Ynorm * 0.1
    VY = AINT(UY )
    I = VY
    XnYlo = XlO(I, J) + UX * X10(I, J + 1)
    XnYhi = X10(I + 1,J) + UX * X10(I + 1,J + 1)
    XntoYn = XnYlo + (UY - VY) * XnYhi
    END
*
    FUNCTION XtoY( X, Y )
***********************************************************************
* (unnormalized X ) ** (unnormalized, positive Y )
***********************************************************************
    IF (Y.GT. 1.0) THEN
    UY = AINT(Y)
```

```
    N = UY
    VY = Y - UY * 10.
    IF (X .GT. 1.0) THEN
        XtoY = 1.0 / XntoYn( 1.0 / X, VY )
    ELSE
        XtoY = XntoYn( X, VY )
    ENDIF
    XtoY = XtoY * X ** N
ELSE
    IF ( X .GT. 1.0 ) THEN
        XtoY = 1.0 / XntoYn( 1.0 / X, Y )
    ELSE
        XtoY = XntoYn( X, Y )
    ENDIF
ENDIF
END
```

```
'output.com' contains:
    PARAMETER ( nints = 16, nreals = 551 )
    INTEGER inidx, rlidx
    COMMON /output/ ninsel, nrlsel,
    + inidx( nints ), rlidx( nreals )
```

 SUBROUTINE writeset (time, runid)
 Reads the set of write variables from the 'select.out' file
Saves set numbers and headings for collection of data during
the simulation run
Opens the output variable file, and writes on it:
- an 80-character identifying header from 'ssme.run'
- an 80-character identifying header from 'select.out'
- the time interval between data records
- the numbers of selected integer and real output variables
- indexes of selected integer and real output variables
- names of selected integer and real output variables

```
        INCLUDE 'units.com'
        INCLUDE 'output.com'
    CHARACTER*8 name
    CHARACTER*1 ok
        OPEN( UNIT = set, FILE = 'select.out', STATUS = 'OLD',
        + ERR = 1)
        GO TO 2
1 PRINT *, 'The ''select.out'' file was not found.'
        STOP
2 OPEN(UNIT = out, FILE = 'ssme.out', STATUS = 'NEW',
    + ERR = 3)
    GO TO 5
3 + PRINT *, 'Is it oK to overwrite the ''ssme.out'' file? (y/n) '
    READ *, ok
        IF( Ok..EQ. 'Y' .OR. Ok .EQ. 'Y' ) THEN
            OPEN(UNIT = out, FILE = 'ssme.out', STATUS = 'OLD' )
        ELSE
            STOP
        ENDIF
```

5 WRITE (out, '(A)') runid
READ (set, '(A)') slctid
WRITE(out, '(A)') slctid
WRITE(out) time

* Count integer variables and save integer indexes and headings

```
ninsel = 0
DO 10, i = 1, nints
READ( set, '( I1, 1X, A8 )' ) iyes, name
IF (iyes .EQ. 1 ) THEN
            ninsel = ninsel + 1
            inidx( ninsel ) = i
            inhead( ninsel ) = name
        ENDIF
10 CONTINUE
```

 WRITE(out) ninsel
 IF (ninsel .GT. 0) THEN
 WRITE (out) (inidx (\(i\)), \(i=1\), ninsel)
 WRITE (out) (inhead(\(i\)), \(i=1\), ninsel)
 ENDIF
 *

Count real variables and save real indexes and headings

```
    nrlsel = 0
    DO 20, i = 1, nreals
        READ( set, '( I1, 1X, A8 )' ) iyes, name
        IF (iyes .EQ. 1 ) THEN
            nrlsel = nrlsel + 1
            rlidx( nrlsel ) = i
            rlhead( nrlsel ) = name
        ENDIF
20 CONTINUE
* Write unformatted: # real outputs, and indexes and headings
    WRITE( out ) nrlsel
    IF ( nrlsel .GT. 0 ) THEN
        WRITE( out ) (rlidx( i ), i=1, nrlsel )
            WRITE( out ) ( rlhead( i ), i = 1, nrlsel )
        ENDIF
        END
    SUBROUTINE writer( STIME )
```

*
*

Collects and writes selected output data for one output interval

* The data is written unformatted.

*

DIMENSION idata(nints), rdata(nreals)
*

```
        INCLUDE 'units.com'
        COMMON /outvar/ ivar( nints ), rvar( nreals )
        DO 10 i = 1, ninsel
        idata(i) = ivar( inidx(i) )
    10 CONTINUE
    WRITE( out ) STIME, (idata(i), i = 1, ninsel)
    DO 20 i = 1, rlnsel
        rdata(i) = rvar( rlidx(i) )
        2O CONTINUE
        WRITE( out ) (rdata(i), i = 1, nrlsel)
        END
```

The next section presents data COMMON blocks. The BLOCK DATA module initializes labeled COMMOM blocks.

BLOCK DATA

```
**************************************************************************
*
* Labeled COMMON blocks are defined in files '*.com'
* This module initializes labeled COMMON
* COMMON blocks have been reorganized to the following exent:
    1) output variables of all modules have been moved to a single
        labeled COMMON block 'outvars' in 'outcom'
    2) other variables recognized as not shared between modules were
    removed from COMMON blocks
*
**************************************************************************
*
    COMMON /FUEL/ fuels(59)
    DATA fuels / 59 * 0. /
    COMMON /hgas/ gasses(55)
    DATA gasses / 55 * 0./
    COMMON /Oxid/ oxids(71)
    DATA oxids / 71 * 0. /
    COMMON /oxidil/ oxdils(13)
    DATA oxdils / 13 * 0. /
    COMMON / contrl / rcons(55), icons(8)
    DATA rcons, icons / 55 * 0., 8 * 0 /
    COMMOM / balc / balcs(73)
    DATA balcs / 73 * 0. /
    COMMOM / valves / vals(115)
    DATA vals / 115 * 0. /
    COMMOM / pogo / pogos(5)
    DATA pogos / 5 * 0. /
    COMMON /Outvar / ITS(16), outs(564)
    DATA outs / 564** 0. /
    INCLUDE 'fgen.com'
    DATA /now, (npts(i), i = 1, NCURVE) /1, NCURVE * 0 /
    INCLUDE 'integ.com'
    DATA nstart, limted / integs * 0, integs * .FALSE. /
    END
    SUBROUTINE IniCom
*
* Initializes blank common not otherwise initialized.
```

```
************************************************************************
out.com
    COMMON DT, STIME, Reals(28)
    DO 10 I = 1, 28
            Reals(I) = 0.
1 0
    CONTINUE
    END
    COMMON/outvar/
    + ITS(16),
    + ABMOV, ACCV,
    + AIN,
    + ATH,
    + DPOPAS,
    + DTPSTL,
    + DW3P,
    + DWCOD,
    + DWFI,
    + DWFPOI,
    + DWG,
    + DWHO,
    + DWMOV,
    + DWFN,
    + DWOIN,
    + DWOP3,
    + DWOPV,
    + DWOT2,
    + DWQNCH,
    + ELFC,
    + ELFOP,
    + EMRE,
    + EPC,
    + FAC,
    + FHEOP1,
    + H(13),
    + HCAVP1,
    + HOI2,
    + HT,
    + P(13),
+ P2NPSH,
+ PANS,
+ PCOPO,
+ PFP1,
+ PFS2,
+ PGCI,
+ PMOV,
+ POT1,
+ POP,
+ POS,
ACCV,
DDW1,
DQHEAT,
DW(13),
DW4P,
DWCOD1,
DWIF(6),
DWFPR1
DWGAS,
DWHOP,
DWO,
DWNIG (3)
DWOPF,
DWOP3C,
DWOS,
DWOTJ
DWRE,
ELFCM,
ELFOPM,
EMRF,
ERROR,
FCOMP,
FHEOT1,
H3.
HCAVP2,
HOS,
OD,
P1,
P3NPSH,
PCFPO,
PCTPERT,
PFPD1,
PFIS,
PGCO,
POD1,
POI2,
POPOI,
PPURG,
\begin{tabular}{|c|c|c|c|}
\hline AFPOV, & AGC, & AHPV, & 16
5 \\
\hline AMOV, & AOPOV, & APV, & 10 \\
\hline DDX, & DPFPAS, & DPOP1, & 15 \\
\hline DPHGMF, & DPHGMO, & DTPSTH, & 20 \\
\hline DW1 (3), & DW2 (3), & DW10P, & 41 \\
\hline DW7P, & DW8P, & DWC, & 46 \\
\hline DWCOD2, & DWF, & DWFBPV, & 51 \\
\hline DWFNP, & DWFPF, & DWFPO, & 61 \\
\hline DWFPR2, & DWFT1, & DWFT2, & 66 \\
\hline DWGO, & DWGOP, & DWH, & 71 \\
\hline DWLO, & DWMC, & DWMCP, & 76 \\
\hline DWOE2, & DWOE3, & DWFIG (3), & 83 \\
\hline DWFNBP, & DWOI, & DWOIG (3), & 92 \\
\hline DWOP1, & DWOP2, & DWOP2C, & 97 \\
\hline DWOPO, & DWOPOI, & DWOPR, & 102 \\
\hline DWOT1, & DWOTID, & DWOT1I, & 107 \\
\hline DWP, & DWPFI, & DWPOI, & 112 \\
\hline DWSFS, & ELCOM, & ELENT, & 117 \\
\hline ELFFI, & ELFFP, & ELFFPM, & 122 \\
\hline ELOIN, & EMRC, & EMRCR, & 127 \\
\hline EMRIG(3), & EMRFPO, & EMROPO, & 134 \\
\hline ETAFT1, & ETAFT2, & ETAOT2, & 139 \\
\hline FHEOD1, & FHEOD2, & FHEOI2, & 144 \\
\hline FR, & GF1, & GF2, & 149 \\
\hline H10P, & H7P, & H8P, & 166 \\
\hline HCAVP3, & HOD2, & HOD3, & 171 \\
\hline HOS1, & HOT1, & HP, & 176 \\
\hline & & & 178 \\
\hline P10P, & P1NPSH, & P2, & 195 \\
\hline P4(3), & P7P, & P8P, & 202 \\
\hline PCIE, & PCIG (3), & PCNS, & 209 \\
\hline PD, & PFI, & PFP, & 214 \\
\hline PFPOI, & PFPOV, & PFS, & 219 \\
\hline PFT1, & PFT1D, & PG, & 224 \\
\hline PHES, & PIF (6), & PIL(12) & 245 \\
\hline PODIM, & POD2, & POD3, & 250 \\
\hline POINJ, & POINVP, & POJ, & 255 \\
\hline POPOV, & POPRG, & POPVDN, & 260 \\
\hline PRES, & PRFT2, & & 264 \\
\hline
\end{tabular}
+ ABMOV, ACCV,
+ AIN,
+ ATH,
+ DPOPAS,
+ DTPSTL,
+ DW3P,
+ DWCOD,
+ DWFI,
,
+ DWHO
+ DWMOV,
+ DWFN,
+ DWOIN,
+ DWOP3,
+ DWOPV,
+ DWOT2,
+ DWQNCH,
+ ELFC,
+ ELFOP,
+ EMRE,
+ EPC,
+ FAC,
+ FHEOP1,
+ HCAVP1,
+ HOI2,
+HT ,
P(13),
+ P2NPSH,
+ PANS,
+ PCOPO,
+ PFP1,
+ PFS2,
+ PGCI,
+PMOV,
+ POT1,
+ POP,
+ POS,

'blank.com':
COMMON DT, STIME, par par
+ QIN2 (13), AOPTO, RFTIV, PA, RHOO3, PFPD, DWCCV, par par par + DWOPC, RHOOP2, RHOOP3, RFBV, ROBV, DPR, DPL, PINMC, TCUT
```

'fuel.com':
COMMON /FUEL/
par par par:4,5,6,12 par
+ VOL(13), R(13), AHT1(13), AHT2(13), PFP1R, PFP2R, TFT1
+ PRFT1, DWFT2C, TTI, UCFT1
'hgas.com'
COMMON /HGAS/ CFOI, RFPO, WFPF, WFPO,
+ TFPC, CPFP, GAMFP, EMWFP, RGCFP, WTFP, WFP,
+ WOPOI, COOI, ROPO, WOPF, WOPO, TOPC, CPOP,
+ GAMOP, EMWOP, RGCOP, WTOP, WOP,
+ WTOT1, WDUM, TOT1, POT1A, TOT1D, WTFI, GAMFI,
+ WFIF, WFIO, RGCFI, WCO, WC, WTC, TC, WCF, RGCC, GAMC,
par par par par
+ WOPOV, WFPOV, RFPIGB, ROPIGB, RHOOTF,
+ RHOFTF, RHOFI, DWFTF, PX, DWX, PXF, DWXF,
+ DWACV, DWPFS, DWBAF
'oxid.com':
COMMON /OXID/ DPOP2, DPOP3, PRIMOI,
+ WOI, RHOOP1, POP1R, POP2R, POP2A,

```

```

 + POP3R, DDWOS, QO, TOS, TOD2, WOV, H1, H2,
 par par
 + ZFPO, ZOPO, U1, U2, U3, HLPT1, HIOP2, H3I,
 + ULPOT, HLPOTD, TOD1, TOI2, TOD3,
 + UOD1, WOD1, RHOD1, HOD1,
 + UOI2, SUOI2, RHOI2, UOD2, UOT1, WOT1, ZCOM, RCOM,
 + ROIN, ZOIN, RJTPVD, TCAVP3,
 + UCOD1, WCOD1, RHOCD1, HCOD1, PCOD1,
    ```
+ UCOD2, WCOD2, SUCOD2, RHOCD2, HCOD2, PCOD2,
+ DWFPR2, DWFPTV, DWFPTI, PFPOT, POPRG, PFPRG, DWFPVI, DWFPI, + DWOPR2, DWOPTV, DWOPTI, DWOPTA, POPOT, DWOPVI, DWOPR COMMON/OXIDIL/ DWIL(12), RHOP2
```

'contrl.com':

```

COMMON /CONTRL/ TIMEVC, TIMEPR, TIMECP, TIMETR, TIMFME,
+ TIMFMC, TIMMRF, TIMFMA, TIMELM, EMRGC,
+ DXFPOV, EPCGC, DXOPOV, XCRV, PCOPOI, TO, DXMFV, XCCV, DXCCV, par par par par par par
+ TPA, PCMALF, ABCCV, ABMFV, ABOPO, ABFPO, RHOH,
+ DTMC, FRADS, ORADS, RHOO,
+ PIPF, PIPO, QFO, QO,
+ XCMOVC, DTFMRA, TSMFV, RESET, XOPLIM, par par
+ PNOISE, PFRNZ, PMRNZ, TOPEN, FRFZ, EMRFZ,
+ POPVNZ, PFPVNZ, PMOVNZ, PMFVNZ, PCCVNZ,
+ FZOPV, FZFPV, FZMOV, FZMFV, FZCCV,
+ NCF, NCO, IFIND, IOIND, KOUNTF, KOUNTO,
+ MODETST, IPFLAG
'valves.com ':
COMMON/VALVES/ out
\(+\operatorname{DTHETA}(5), \operatorname{ESAC}(5), \operatorname{DESA}(5), \operatorname{ESA}(5), \operatorname{DESV}(5), \operatorname{ESV}(5)\),
\(+\quad \operatorname{VS}(5), \operatorname{EMF}(5), \operatorname{DVM}(5), \operatorname{VM}(5)\),
\(+\operatorname{THET1L}(5), \operatorname{THET} 2 \mathrm{~L}(5)\),
\(+\operatorname{ISTIC}(5), \operatorname{IHYS}(5), \operatorname{VR}(5), \operatorname{DTHETL}(5)\),

'igni.com':
```

COMMON /IGNI/ TCIG(3), ELFIG(3), DW3(3), TF(3), PFU(3)

```
'balc.com':
```

 COMMON/BALC/ AHT14, AHT15, AHT16, AHT112,
 par par par par par par par
 + CDPFP1, CTQFP1, CDPFP2, CTQFP2, CTQFT1, CDPOP1, CTQOP1,
 par par par par par par par
 + CDPOP2, CTQOP2, CDPOP3, CTQOP3, CTQOT1, FT2S, AFT2, CTQFT2,
 par par par par par par par par par
 + EOT2S, AOT2, CTQOT2, AFI, EFFCM, ACN, THRSTC, AHTC4, AHTC5,
 par par par par par:2,3 par par par par
 + AHTC6, DMOT2, DMFT1, DMFT2, CP(5), ANOT1, BNOT1, CNOT1, AOT1,
 par
 + BOT1, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13,
 par par par par par par par par par
 + RFCOD, RFMCF, RFMCO, RACV, RBAF, RPFS, RSFS, RFPFI, ROPFI,
 par par par par par par par par par
 + RITN, RMCI, ROS, RFPOI, ROPOI, RFPOL, ROPOL, RFT2C, ROP2C,
 par par par par par par par
 + ROI, ROCOD, RMOVL, ROP3C, ROT1F, QHT412, TFACT
 'pogo.com'

```

COMMON /POGO/ P2, RHOREC, TGAS, XGC, XHPV

PROGRAM SSME
```

*

```
```

This version of the Space Shuttle Main Engine Simulation has been written to provide an efficient vehicle for the study of life-extending modes of operation through knowledge-based control.
PROGRAM FLOW:
Read Run Parameters from rundata file designated in the command line IF restart requested THEN
Initialize run data from restart file
ELSE
Initialize for normal zero start
ENDIF
REPEAT
$T<-T+D T$
IF perturbing THEN add perturbations(T)
ENDIF
CALL FUELF () FOR FUEL FLOW CALCULATION
CALL OXIDF() FOR OXID FLOW CALCULATION
CALL HOTGAS() FOR HOT GAS CALCULATION
CALL CNTROL() FOR CONTROLLER SIMULATION
CALL VALDYM() FOR VALVE DYNAMIC SIMULATION
Calculate closed loop variables
IF $T=$ output time THEN
Write archival and display output
ENDIF
UNTIL T = stop time
IF resume desired THEN
Generate resume file
ENDIF
END OF SIMULATION
INCLUDE 'change.com'
Call Inicomo -
Removed "no effect" initializations.
Removed commented out calls to ERRSET
FOLLOWING FILES ARE USED FOR SIMULATION INPUTS AND OUTPUTS
DTMINP.DAT: MAIN INPUT FILE FOR BASIC PARAMETERS
NZR100.DAT: RESTART AT 100\% STEADY STATE
START4.DAT: PATCH FILE USING "NAMELIST" READING
OUT2.DAT: MAIN OUTPUT FILE
PERTINP.DAT: PERTURBATION SERIES INPUT FILE
RESULTS.DAT: QUICK GLANCE OUTPUT FILE FOR PCIE AND MIX-RATIO STATE.DAT: OUTPUT FILE OF SELECTED IMPORTANT VARIABLES

```
* made global by Common /units/
    run \(=2\)
        dat \(=3\)
        prt \(=4\)
        str \(=6\)
        res \(=8\)
        out \(=9\)
        \(\mathrm{dsp}=1\)
*
* Input/output files are specified on the command line, when possible.
* For Fortrans giving no access to the command line, use pre-assigned
* file names:
        rundat \(=\) 'ssme.run'
        functs \(=\) 'ssme.dat'
        output \(=\) 'ssme.out'
        pertrb \(=\) 'ssme.ptb'
        restart \(=\) 'ssme.rst'
        atstop \(=\) 'ssme. end'
*
* HP-UX command line: ssme rundat output [ pertrb ] [ restart ] [resume]
* CALL getarg ( 2 , rundat)
* CALL getarg ( 3 , output ), etc.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{+
+} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{lll}\text { DT, DPR, DPL, } \\ \text { TPA, } & \text { PCMALF, DTVC, DTPR, TPUN, TSTOP, } \\ \text { DTCVP, DTTR, }\end{array}\)}} \\
\hline & & & & & & & \\
\hline
\end{tabular}
    + DTFMRE, DTFMC, DTMRFC, DTFMRA, DTMCX, DTIM
    READ ( run, '(//-2X, 2I12, 4F12.4)')
    + NONZRO, MODETST, PCTPERT, TOPEN, TPERT, DTPERT SSM42240
    READ ( run, 30) TSTART,TPRINT2,TPLOT2
    Relaxation factors for energy balance convergence
    READ ( run, 30) rxfact
    30 FORMAT (//2X,6(G10.4,2X))
    READ (run, 30)
    + AHTl (4), AHT1(5), AHT1(6), AHT1(12), CDPFP1, CTQFP1,
    + CDPFP2, CTQFP2, CTQFT1, CDPOP1, CTQOP1 CDPOP2
    + CTQOP2, CDPOP3, CTQOP3, CTQOT12, FT2S, AFT2,
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline + & CTQFT2, & EOT2S, & AOT2, & CTQOT2, & AFI, & EFFCM, & \\
\hline + & ACN, & THRSTC, & AHTC4, & AHTC5, & AHTC6, & ABMOV, & SSM42300 \\
\hline + & ABOPO, & ABFPO, & ABCCV, & ABMFV, & DMOT2, & DMFT1, & \\
\hline + & DMFT2, & CP(2), & CP (3), & ANOT1, & BNOT1, & CNOT1, & \\
\hline + & AOT1, & BOT1, & R(1), & R (3) , & R ( 4) , & R(5), & \\
\hline \(+\) & ( R(i) , & \(i=6,11\) & ), & & & & \\
\hline + & R (12) & R(13) , & RFCOD, & RFMCF, & RFMCO, & RACV, & \\
\hline + & RBAF, & RPFS, & RSFS, & RFPFI, & ROPFI, & RITN, & \\
\hline + & RMCI, & RFT1V, & ROS, & RFPOI, & ROPOI, & RFPOL, & \\
\hline + & ROPOL, & RFT2C, & ROP2C, & ROI, & ROCOD, & RMOVL, & \\
\hline + & ROP3C, & ROT1F, & QHT4 12 , & TFACT & & & \\
\hline
\end{tabular}

READ (run, 30) TLOW, THIGH, (TPRINC (I), \(I=1,6\) )
READ (run,' (//2X,3I12)' ' NOUTD, IREDAT, ISAVE
IF pertb THEN
OPEN( UNIT \(=\) prt, \(F I L E=\) pertrb,\(S T A T U S=' O L D{ }^{\prime}\) )
ENDIF
IF restrt THEN
OPEN( UNIT \(=\) str, FILE \(=\) restart, STATUS='OLD')
ENDIF
IF resume THEN
OPEN ( UNIT = res, FILE= atstop, STATUS='NEW')
ENDIF
*
* See perturb. for for perturbation code
* All NAMELIST input has been eliminated.
* Instead, edit the input parameter file ssme.run
* All initialization echo output is gone.
* Instead, save a copy of ssme.run as documentation

CALL fgset(24, nerr)
\(\mathrm{PA}=\operatorname{FGEN}(24,0.0)\)
RBPV=1. OE +30
TTEMP=AMIN1 (2.3,TSTOP) SSM43100
TIME=0.0
TIMEVC=DTVC -
TIMEPR=DTPR
TIMECP=DTCVP
TIMETR=DTTR
TIMFME=DTFMRE
TIMFMC=DTFMC
TIMMRF=DTMRFC
TIMFMA=DTFMRA
TIMELM=DTLM
SSM4 3200
C Initialize subsystems
CALL FUELFO
PRINT *, 'Fuel flow parameters loaded.'
CALL OXIDFO
```

 PRINT *, 'Oxygen flow parameters loaded.'
 DWFPB=DWFPF+DWOPF
 CALL HOTGASO
 PRINT *, 'Hotgas parameters loaded.'
 CALL CNTROLO
 PRINT *, 'Control parameters loaded.'
 SSM43400
 CALL VALDYMO
 PRINT *, 'Valve dynamics parameters loaded.'
 CALL TRBTRQ(0.,0.,0.,0.,0.,1,1,0.,0.,0.)
 CALL fgset(26)
 CALL fgset(27)
 CALL fgset(40)
 See 'nonzro.for' for restart code
 Identify output variables and ready file to save output
 CALL writeset(runID)
 Simulation loop
istop = tstop / dt
isec = 1.0/dt + .1
*
DO 400 itime = 1, istop
STIME = float(itime) * DT
PA = FGEN(24, 2, STIME)
CALL FUELF
CALL OXIDF
DWFPB=DWFPF+DWOPF
CALL HOTGAS
CALL CNTROL
CALL VALDYM
Open loop output was removed. Use offline output programs instead.
IF (MOD(itime, iwrite) .EQ. 0) THEN CALL writer (STIME) ENDIF
Write one line per second to display.
IF (MOD (itime, isec) .EQ. 0) THEN
PRINT *, 'Time $=$ ', STIME, ' seconds.' ENDIF
*
400 CONTINUE

```

PRINT *, 'Normal end of simulation' END

SUBROUTINE fuelfo
* fuelfo initializes variables.
* A second entry fuelrst does restart initialization and a time step.
* A third entry fuelf does a simulation time step only.
* IFCNTRL was eliminated.

1) INLET FROM FUEL TANK TO LOW PRESSURE FUEL PUMP (LPFP)
2) DUCT BETWEEN OUTLET OF LPFP AND INLET OF HPFP
3) DUCT BETWEEN OUTLET OF HPFP AND MAIN FUEL VALVE (MFV)
*4) UPPER NOZZLE COOLING FLOW
*5) MAIN COMBUSTION CHAMBER COOLING (BELOW THROAT)
*6) MAIN COMBUSTION CHAMBER COOLING (ABOVE THORAT)
7) COOLING CONTROL VALVE (CCV) FLOW
8) MIXER OF NOZZLE COOLING (4) AND CCV FLOW (7)
9) PREBURNER SUPPLY DUCT (DISTRIBUTER NODE)
10) COOLING FLOW FROM MFV TO NODE (11)
11) DOWN COOLING FLOW TO LOWER END OF NOZZLE
*12) COOLING FLOW OF LOWER 15\% OF NOZZLE
13) COOLING FLOW FROM MFV TO THROAT END

THOSE NODES WITH * ARE THE ONES THAT CONTACT WITH COMBUSTION CHAMBER OR
NOZZLE AND HAVING HEAT EXCHANGE BETWEEN THEM.

C INPUT:

OUTPUT:
VARIABLES
DWFPF, DWOPF, DWFBPV, DWFT2C, SF2, TW1
DW (2)
\(\mathrm{P}(3), \mathrm{P}(10), \mathrm{P}(7), \mathrm{P}(8), \mathrm{RHO}(3), \mathrm{RHO}(7), \mathrm{DW}(3), \mathrm{DW}(7)\)

SOURCE
HOTGAS
VALDYM
IGN
SSM15300

C

INTEGER Tstep
LOGICAL fuelok
DIMENSION ZH(13),A6(13), Z2(13), VVOL(13), DWA(13)
DIMENSION TUBEN(13), PIFP(6), DWIFP(5), QOUT (13)
DIMENSION ACS (13), ELEN (13), DHYD (13), WW1 (13), WW2 (13)
DIMENSION ELENF(6), ZFL(6), ZFC(6), RIF(6)
A runtime division was replaced by a multiplication.
PARAMETER ( V9336 = \(1.0 / 9336.0, \mathrm{~V} 386 \mathrm{p} 4=1.0 / 386.4\) )
PARAMETER ( Tstep \(=0\) )
Labelled COMMON blocks
INCLUDE 'units.com'
INCLUDE 'blank.com'
INCLUDE 'out.com'
INCLUDE 'fuel.com'
INCLUDE 'igni.com'
INCLUDE 'balc.com'
INCLUDE 'units.com'
NAMELIST/FUELFD/ELENF, ZFL, ZFC, RIF, DHYD, ELEN, AHT2 ,WW1, WW2,TW1, TW2
Namelists have been eliminated, in favor of an editable input parameter file.

Modern compilers default to dynamic memory allocation of local variables. The following statement requires memory for all local variables to be rettained between calls.

SAVE
UNEWF ( ) IS TO CALCULATE NEW SPECIFIC INTERNAL ENERGY (SU) FOR A GIVEN
rODE WHERE INPUT FLOW (DWIN), INPUT ENTHALPY (HIN), OUTPUT FLOW (DWOUT),
NEW PRESSURE (PNEW) AND NEW DENSITY (RHONEW) ARE KNOWN.
UNEWF (I, DWIN, HIN, DWOUT, PNEW1, RHONEW) =
\(+(\mathrm{RHO}(\mathrm{I}) * \mathrm{SU}(\mathrm{I})+\mathrm{VVOL}(\mathrm{I}) *\)
+ ( QOUT (I) + HIN - DWOUT*PNEW1/( RHONEW * 9336.0) ) * DT ) /
\(+\quad(\) RHO (I) + VVOL (I) *DWIN*DT)
Though the Euler form \(x+\) rate \(* d t\) appears, the function above is not taken to involve time integration in the usual sense. Else it should
be rewritten as the ratio of two trial integrations, as
UNEWF (I, DWIN, HIN, DWOUT, PNEW1, RHONEW) =
+ tryint( RHO(I)*SU(I), vVOL(I) *
\(+\quad(\) QOUT \((I)+\) HIN - DWOUT*PNEW1/(RHONEW * 9336.0\()\) ), N) /
+ tryint ( RHO(I), VVOL(I)*DWIN, N+1)
CHGX( ) was replaced by a more detailed monitoring system for balancing iterations

Statement functions \(Z 1\) and 22 were eliminated, to simplify maintenance.
SSM16000
rlimit(floor, ceiling, \(x\) ) \(=\) AMAXI( floor, AMIN1 ( ceiling, \(x\) ) )
Replacing rlimit with IF ( x .LE. floor ) THEN
\(x=\) floor
ELSE IF ( x . GT. ceiling ) THEN \(x=\) ceiling
END
would be faster, but only by straightline coding, not as a FUNCTION.
```

recpos(x) = AMAXI (0.,x)

```
\(\operatorname{recneg}(x)=\operatorname{AMIN1}(0 ., x)\)

As a mechanism for bypassing initialization code,
IF(FLAG.EQ.15.) GO TO 999
is obscure, and can be unreliable if FLAG is not initialized at load time. The function was accomplished more directly, and at no runtime cost, by the ENTRY statement.

In the initialization, the following were eliminated:
- statement function formal parameters, which created new variables unused by the simulation.
- initializations overwritten by reading input parameters
- local variables written before being read
\(\mathrm{CPH} 2=0.0\)
DDW2 \(=0.0\)
DSF1=0.0
DSF2 \(=0.0\)
DWFPFP=0.0
DWOPFP=0.0
\(\mathrm{HI}=0.0\)
```

 H1OIN=0.0
 H10P=0.0
 H11P=0.0
 H12P=0.0
 H13P=0.0
 H4P=0.0
 H5P=0.0
 H6P=0.0
 H7P=0.0
 H8P=0.0
 H9P=0.0
 PVFP1=0.0
 PVFP2=0.0
 P10P=0.0
 P11P=0.0
 P12P=0.0
 P13P=0.0
 P4P=0.0
P5P=0.0
P6P=0.0
P7P=0.0
P8P=0.0
P9P=0.0
Q1=0.0
Q2=0.0
SSM17000
SSM17100
RFS=0.0
RHOT=0.0
RITNV=0.0
RPI=0.0
RP2=0.0
DO 991 I=1,13
QOUT (I)=0.0
ZH(I) =0.0
991 CONTINUE
DO 993 I=1,5
DWIFP(I) =0.0 .
393 CONTINUE
Read INPUT Parameters
READ(run, 30) }\begin{array}{ll}{(ELENF(J),J=1,6), (ZFL(J),J=1,6),}
{+}\&{(ZFC(J),J=1,6),(RIF(J),J=1,6)}

```
\(=\)
\(\operatorname{READ}(5,30)\)
READ (run, 30) TRQF1B, TRQF2B, TDRAGF
READ (run, ' (//2X,3G12.4, I12)') GF1, GF2, PTOL, MAXL
FORMAT (//2X, 6G12.4)
SSM17910

Namelist input and formatted echo of input parameters were eliminated.
READ (7, FUELFD)
SSM1800G
WRITE (6, 29) (ELENF (J), \(\operatorname{ZFL}(J), \operatorname{ZFC}(J), \operatorname{RIF}(J), J=1,6)\), etc
This section loads fuel flow interpolated functions.
Calls to \(\operatorname{FGEN}(\mathrm{n}, 1, \mathrm{x})\), which reads the DTMINP file, were
replaced by calls to fgset ( \(n\) ), which reads the editable function
file attached to unit 'dat'. Initializations recognized as unnecessary were removed.

CALL fgset ( 30 )
CALL fgset ( 22 )
STIME=TIME
SSM18300
CALL fgset ( 9 )
\(\mathrm{PT}=\mathrm{fgen}(9,1, \operatorname{STIME})\)
Functions of the same variable use different call numbers unless the interpolation intervals are identical

CALL fgset ( 7 )
HT \(=\) fgen (7, 7, STIME)
CALL fgset ( 10 )
CALL fgset (51)
CALL fgset (52)
CALL fgset (53)
CALL fgset (54)
GAMF \(=\) H2GAMO ( PT, 40.0, 1 )
CALL PROPO
SSM18400
\(S F 2=0.01 \quad\).
QHT412 \(=0.464\)
RHOT \(=2.552 \mathrm{E}-3\)
\(\mathrm{SUT}=\mathrm{HT}-\mathrm{PT} /(\mathrm{RHOT} * 9336.0)\)
RHOT is reset from the \(t(u, r h o)\) table, \(x=\) throwaway temperature
CALL hyrt(SUT, RHOT, 1, PT, X)
WRITE \((6,37)\) DWF , PT, HT, RHOT, ELENT was removed.
The replacement of mandatory full output by selective unformatted output eliminated the destination fo: this initialization documentation. DWF and ELENT echo input, and are documented by the 'run' unit file. PT, HT, and RHOT appear in the selectable output as
```

 \(\mathrm{H}(J)=\mathrm{SU}(J)+\mathrm{P}(J) /(\mathrm{RHO}(J) * 9336.0)\)
 \(\operatorname{ACS}(J)=3.14 * \operatorname{DHYD}(J) * * 2 / 4.0 * T U B E N(J) \quad\) replaced by
 \(\operatorname{ACS}(J)=0.7854 * \operatorname{DHYD}(J) * * 2 * \operatorname{TUBEN}(J)\)
 \(\operatorname{VOL}(J)=\operatorname{ACS}(J) \quad * \operatorname{ELEN}(J)\)
 \(Z Z(J)=\operatorname{ELEN}(J) / \operatorname{ACS}(J) / 386.4\) replaced by
 \(Z Z(J)=\operatorname{ELEN}(J) /(\operatorname{ACS}(J) * 386.4)\)
 \(R R(J)=R(J)\)
    ```
\[
\text { A6 }(J)=H T C O N / D H Y D(J) * * 1.8 \quad \text { replaced by }
\]

A6 \((J)=\operatorname{HTCON} /(\operatorname{DHYD}(J) * X 10 t h(\operatorname{DHYD}(J), 8))\)
Interpolation of \(x^{* *}(-1.8)\) is not necessary as long as the function is used only in initialization.

DW (J) \(=\) DWF
QOUT1 (J) \(=0.0\)
QOUT2 \((\mathrm{J})=0.0\)
QIN1 (J) \(=0.0\)
QIN2 \((J)=0.0\)
CALL uninto ( TW1(J), J - 1 )
CALL unintO ( TW2 (J), J + 9 )
70 CONTINUE
\(\mathrm{ZFS}=\mathrm{ZZ}(2)+1.0 / 2 \mathrm{FCOD}+\mathrm{ZZ}(3)+1 . / \mathrm{ZPFPD}\)
\(\mathrm{ZZ}(6)=\mathrm{ZFT} 1\)
SSM18900
\(Z Z(10)=.5 * Z Z(11)\)
\(Z Z(11)=.5 * Z Z(11)\)
Configuration constants set during initialization are documented on an output file on unit 'init'.

WRITE (init, 90) (J, ACS (J), VOL(J), A6(J), ZZ (J), J=1, 13)
FORMAT ( 1 J ACS VOL A6 ZZ'
* /(1I3,1P4E11.3))

C
WRITE (init, 260) ZFS
FORMAT ('OSTART TRANSIENT ASSUMES PRECHILLED PUMPS AND LIQUID H2', *' THROUGH TO PUMP DISCHARGE'/ \(\quad\) ZFS'/1PE11.3) SSM19000
```

DWMC = 0.0
CALL unintO(DWMC, 36)
DWFNBP = 0.0
CALL unintO(DWFNBP, 37)
DWFT1 = 0.0
DWFPF =0.0
DWOPF = 0.0
undw2c = 0.0
CALL uninto(0.0, 23)
2FPF = ELEFPF/(ACSFPF*386.4)
ZOPF = ELEOPF/(ACSOPF*386.4)
SF1=0.01
CALL lmintO(SF1, 1, 0.1, 1.E20)
SF2=0.01
CALL lmintO(SF2, 2, 0.001, 1.E20)
TRQFP1=0.0
TRQFP2=0.0
PFT1 = 0.0

```
```

 PRFT1 = 1.0
 TFT1=T(6)
 fgen21 = 9340.0 * fgen(21, 2,0.0)
    ```
```

CALL chgo (PTOL)
IF (STIME .EQ. 0.0) RETURN
RESTART INITIALIZATION

```
```

 DWFASI = DWFIG(1) + DWFIG(2) + DWFIG(3)
    ```
    DWFASI = DWFIG(1) + DWFIG(2) + DWFIG(3)
    RHOP1C =.5* (RHO(1) + RHO(2) )
    PHIP1 = DW(2) / (RHOP1C * SF1)
    DP1 = fgen(51, 3, PHIP1) * RHOP1C * SF1**2 * CDPFP1
    DP1P = DP1
    PHIP2 = DW(2) / (RHO(3) * SF2)
    DP2 = fgen(53, 4, PHIP2) * RHO(3) * SF2**2 * CDPFP2
    DP2P = DP2
    PFSP = PFS
    DO 2010 J=1,6
        PIFP(J)=PIF(J) SSM19400
        DWIFP(J)=DWIF(J)
2010 CONTINUE
    DW2P=DW (2)
    CALI unintO( DW2P, 34 )
    CALL unintO( DW(10), 35 )
    DW100=DW (10) +DWMC+DWFNBP+DWFASI
    DW10I=DW(3)
    P4P=P(4)
    P5P=P(5)
    P6P=P(6)
    P7P=P(7)
    P8P=P(8)
    P9P=P(9) &. SSM19500
    P1OP=P(10)
    P11P=P(11)
    P12P=P(12)
    P13P=P(13)
    DO 2015 J=4,13
        SU(J) = H(J) - P(J) / (RHO(J) * 9336.0)
\O15 CONTINUE
    CALL unintO( RHO(10), 38)
    CALL unintO( DW(11), 39 )
    CALL unintO( RHO(11), 40)
    CALL unintO( DW(12), 41)
    CALL unintO( RHO(12), 42)
    CALL unintO( DW(4), 43)
    CALL unintO( RHO(4), 44)
```

```
    CALL unintO( DW(13), 45 )
    CALL unintO( RHO(13), 46 )
    CALL unintO( DW(5), 47 )
    CALL unintO( RHO(5), 48)
    CALL unintO( DW(6), 49 )
    CALL unintO( RHO(6), 50 )
    CALL unintO( DW(7), 51 )
    CALL unintO( RHO(7), 52 )
    CALL unintO( DW(8), 53 )
    CALL unintO( RHO(8), 54)
    CALL unintO( DWFPF, 55 )
    CALL unintO( DWOPF, 56 )
    CALL unintO( RHO(9), 57)
TIME TRANSIENT CALCULATIONS
    DWFASI = DWFIG(1) + DWFIG(2) + DWFIG(3)
        STIME = TIME
LOW RATE CALCULATIONS
FUEL PUMP SPEEDS (RAD/SEC)
IF (SFI. .LT. 11.0.AND. TRQFT1 .LT. TRQFP1+TRQF1B) THEN
        DSF1 = 0.0
ELSE
        DSF1 = (TRQFT1-TRQFP1)/GF1
END IF
Integral limited below by 0.1
SF1 = prlint( DSF1, delt, 1 )
IF(SF2 .LT. 11.0.AND. TRQFT2 .LT. TRQFP2+TRQF2B) THEN
        DSF2 = 0.0
ELSE
    DSF2 = (TRQFT2-TRQFP2-TDRAGF)/GF2
END IF
Integral limited below by 0.001
SF2 \(=\) prlint ( DSF2, delt, 2 )
QIN1 (12) \(=\) QIN1 (4) *QHT412
QIN1 (4) =QIN1 (4)-QIN1 (12)
SSM19800
DO \(2050 \mathrm{~J}=4,13\)
```

C

C

```
                VVOL(J) = 1.0 / VOL(J)
                ZH(J) = A6(J) * HTF(T(J),P(J))
    2050
        CONTINUE
    THE AVERAGE FLOW USED TO CALCULATE THE HEAT EXCHANGE IS THE AVERAGE OF
    1) THE FLOW OF CURRENT NODE
    2) THE FLOW OF UPSTREAM NODE (S)
THIS IS A VERY ROUGH ESTIMATION SINCE IT REALY DEPENDS ON THE TIME
INTERVAL OF THE SIMULATION AND THE LENGTH OF EACH SEGMENT.
```

```
DWA (4) =ABS (0.5* (DW (12) +DW (4)))
DWA (5) =ABS (0.5* (DW (13) +DW (5)))
DWA (6) =ABS (0.5* (DW (5) +DW (6)))
DWA (7) =ABS (0.5* (DWFNBP+DW (7)))
DWA (8) =ABS (0.5* (DW (7) +DW (4) +DW (8)))
DWA (9) =ABS (0.5* (DW (8) +DWFPF+DWOPF))
DWA (10) =ABS (0.5* (DW10I+DW100))
DWA (11) =ABS (0.5* (DW (10) +DW (11)))
DWA (12) =ABS (0.5*(DW(11) +DW (12)))
DWA(13)=ABS (0.5*(DWMC+DW (13)))
```

SECTION OF CODE WILL HAVE TO BE VERIFIED.

THERE ARE TWO TYPES OF HEAT FLOW OCCURED IN THE HEAT EXCHANGE

1) BY CONDUCTION DESCRIBED AS QOUT1 (J) AND QOUT2 (J)
2) BY CONVECTION DESCRIBED AS FUNCTION OUTPUT QFLUX().

IN THE FOLLOWING SECTION, THE REPRESENTATIONS ARE

1) QOUT1: HEAT TRANSFERED FROM MAIN COMB. CHAMBER AND NOZZLE WALLS
2) QFLUX (**1, ...) : BOILING HEAT FROM MCC AND NOZZLE WALLS
3) QOUT2: HEAT TRANSFERED FROM AMBIENT WALLS
4) QFLUZ (**1,..): BOILING HEAT FROM AMBIENT WALLS
5) QBM: HYDROGEN SATURATION ENTHALPY AT THE PRESSURE
U.ie unnecessary real**real has been eliminated, and the remaining
" real**. 55 and real**. 8 replaced by equally spaced linear interpolations.
```
    DO 2060 J=4,13
    IF(J.GT.6.AND.J.NE.12) THEN
        Q1=0.
        QOUT2(J) = ZH(J) * XtoY(T(J)/TW2(J),. . 55 ) *
                        XlOth(DWA(J), 8) * (TW2(J)-T(J))
    ELSE
        dwtemp = Xloth(DWA(J), 8)
```

 SSM20000
    ```
QOUT1(J)=2H(J) * XtoY(T(J)/TW1(J),.55) *
+ dwtemp * (TW1(J)-T(J))
    Q1=(QOUT1 (J) +QFLUX(TW1 (J),T(J),P(J),H(J))) *AHT1 (J)
TWI(J) = pruint(
+(QMNl(J) - Ql ) / ( fgen( 22, 1+J, TWl(J) ) * WWl(J) ),
+
QOUT2(J) = ZH(J) * XtoY( T(J)/TW2(J),. . 55 ) *
                                    dwtemp * (TW2(J)-T(J))
        END IF
        QBM = DWA(J)*( H2SATH( P(J) ) - H(J) )
        QB(J) = rlimit( 0., QBM, QFLUX(TW2(J),T(J), P(J), H(J) ) )
        Q2 = (QOUT2(J) + QB(J) )*AHT2(J)
        TW2(J) = print( TW2(J),
+ (QIN2(J) - Q2) / (fgen( 22, 11+J,TW2(J) ) * WW2(J) ), 0, J + % )
    QOUT(J) = Q1 + Q2

2060 CONTINUE
FUEL TANK CHARACTERISTIC AS A FUNCTION OF TIME
```

PT = fgen(9, 1, STIME)
HT = fgen(7, 7, STIME)
H(1) = HT
PIFP(1) = PT
SUT= HT - PT / (RHOT * 9336.0)
CALL hyrt(SUT, RHOT, 1, PT, X)

```
RHOFS \(=\) RHOT

LOW PRES FUEL TURBINE
THIS IS TO CALCULATE THE PERFORMANCE OF LPFT (FT1). HOWEVER, THE EQUATION USED HERE TO CALCULATE THE TURBINE PARAMETER (ETAFTI) AND THE SPECIFIC HEAT CONSTANT (CPH2) ARE NOT DESCRIBED IN THE DOCUMENT.
```

 TFT1=T(6)
 ETAFT1 = DMFT1 * SF1 * 33.0965/
 + X10th(AMAX1(0.0001, 9270. * TFT1 * (1.0/PRFT1- 1.0)), 5)
RITNV = RITN / fgen(30, 25, ETAFTI)**2
R6 = RITNV + RFTIV + RMCI
CPH2 = fgen(15, 26, TFT1) - 0.0887 +
+ (0.1241 * PFT1 - 3.732E-5 * PFT1**2) /
(AMAXI(51.,TFT1) - 50.)
TRQFT1 = TRBTRQ(SF1,UCFT1,TFT1,PFI1,PRFT1,1,CPH2,DWFT1,
* H2GAMA(PFT1,TFT1,7)) * CTQFT1
PFT1 = P(6) - RFTIV / RHO(6) * DW(6) * ABS(DW(6))

```
```

 PRFT1 = (PFT1 - RITNV/RHO(6)*DWFT1*ABS(DWFT1)) / PFT1
 PFTlD = PFTl * PRFTl
TFTID = TFT1 - (TRQFT1 * SF1) / (fgen21 * DWFT1 + 1.0E-06)

```

THE EXTRA COOLANT FLOW TO COOL THE HIGH PRESSURE FUEL TURBINE:
THE VALVE START TO OPEN AT DP=185 AND BECOME FULLY OPEN AT DP=195.
DWFT2C \(=\) FLOW ( DWFT2C, 0.1, RFT2C/RHO (3), P(3)-PFI, 23) SSM2040C
DWFT2C \(=\) DWFT2C * \(\operatorname{rlimit}(0.0,1.0,(P(3)-\operatorname{PFI}-185) * 0.1\).
If the rlimit < 1 , the effect is to drive DWFT2C down with a time consta dependent on the integration step size, which surely isn't intended.
The model is replaced by a variable limit imposed on an unlimited integrator.
undw2c = prflow ( undw2c, 0.1, RFT2C/RHO(3), P(3)-PFI, 23) SSM2040C
DWFT2C \(=\) undw2c * rlimit (0.0, 1.0, (P(3) - PFI - 185.) * 0.1 )
BEGIN PRESSURE FLOWRATE ITERATION
THE FUEL SYSTEM USES THE ITERATION METHOD TO CALCULATE THE NEXT STATE OF THE PRESSURE, FLOWRATE AND ENERGY BALANCE. THE ITERATION IS STOPPED WHEN THE MAXIMUM CHANGE OF THE PRESSURE OF THE FUEL SYSTEM IS LESS THEN THE TOLERANCE ALLOWANCE PTOL.

Initialize change monitor iteration counts
CALL its0
DO 4000 LOOPS \(=1\), MAXL
SSM20500
Reset change monitor for balance iteration test
fueloK = .TRUE.-
fHIS SECTION IS TO CALCUALTE THE CAVITATION FOR FP1 AND FP2.
IN THE FOLLOWING CALCULATIONS, THE FUNCTION PROP( ) IS USED TO FIND OUT THE STATUS OF THE CURRENT HYDROGEN GIVEN KNOWN PARAMETERS.
PROP ( ) IS A CHARACTERISTIC DATA MAP FOR HYDROGEN - RELATIONS AMONG INTERNAL ENERGY, DENSITY, PRESSURE, AND TEMPERATURE.
```

PVFP1 = H2VP(T(2))
PVFP2 = H2VP(T(3))
PFP1R = PVFP1 + PCFP1*SF1**2
PFP2R = PVFP2 + PCFP2*SF2**2
RHOP1 = 0.5 * (RHO(1) + RHO(2))
RHOP2 = RHO(3)

```

IF (PFS .GT. PFP1R) THEN
RHOP1C = RHOP1
ELSE
C
C

\section*{CAVITATION FOR FP1}

RHOP1C \(=\) RHOP1 * rlimit ( 0.25, 1.0,
SSM20600
\(+\quad 0.25+(\mathrm{PFS}-\mathrm{PVFP1}) \star .75 /(\mathrm{PFP1R}-\mathrm{PVFP1}+1.0 \mathrm{E}-10)\) )
END IF
TRQFP1 \(=\) fgen \((52,27, \operatorname{DW} 2 P /(\) RHOP1C * SF1) \() *\)
+ RHOP1C * SF1**2 * CTQFP1
TRQFP1 \(=A B S\) (TRQFP1)
IF ( PFS2.GT. PFP2R) THEN
RHOP2C \(=\) RHOP2
SSM20700
ELSE
C
C CAVITATION FOR FP2
C
```

 RHOP2C = RHOP2 * rlimit(0.05, 1.0,
 + 0.05 + (PFS2-PVFP2) * 0.95 /(PFP2R - PVFP2 + 1.0E-10))
 END IF
 TRQFP2 = fgen(54, 28, DW2P/(RHOP2C * SF2)) *
 + RHOP2C * SF2**2 * CTQFP2
 TRQFP2 = ABS (TRQFP2)
    ```

THIS IS THE FEEDLINE BETWEEN FUEL TANK AND LPFP
DO \(1060 \mathrm{~J}=1,5\)
\(\operatorname{DWIFP}(J)=\) trflow ( DWIF(J), ZFL(J), -RIF(J),
\(+\operatorname{PIFP}(J)-\operatorname{PIFP}(J+1)+\operatorname{ELENF}(J) * \operatorname{RHOFS} * \operatorname{DDX} * v 386 p 4, J+23)\)
1060 CONTINUE
DO \(1070 \mathrm{~J}=2\), 5
\(\operatorname{PIFP}(J)=\) truint \(((\operatorname{DWIFP}(J-1)-\operatorname{DWIFP}(J)) / \operatorname{ZFC}(J)\),
+ - Tstep, J + 27 ) SSM20800
1070 CONTINUE -
PNEW \(=\) truint \((\quad(\operatorname{DWIFP}(5)-\operatorname{DW} 2 P) / \operatorname{ZFC}(6)\), Tstep, 33\()\)

PFSP \(=\) relax ( fuelok, PNEW, PFSP, 1 )
part of a convergence
management system recommended to give more maintenance control over iterative energy balancing.
\(\operatorname{PIFP}(6)=\operatorname{PFSP}\)
PUMPS
LPFP AND HPFP AND FLOW BETWEEN FEEDLINE AND MFV

C
```

 IF(RMFV .GT. 1.OEIO) THEN
 DW2P = 0.
 ELSE
 RP1 = CP(2) * CDPFP1 / RHOP1C
 RP2 = CP(3) * CDPFP2 / RHOP2C
 RFS = RFCOD/RHO(2) + RP1 + RP2 + (RR(3) + RMFV) / RHO(3)
 DW2P = trflow(DW(2), 2FS, -RFS,
 + (PFSP - P1OP + DP1P + DP2P) + (RP1 + RP2) * DW2P * ABS(DW2P),
+ 34)
END IF
DDW2 = (DW2P-DW(2)) / DT
DW(1) = DW(2)
IF(DW2P.EQ.O.) THEN SSM2100C
H(2)=H(1)
H(3) =H(2)
ELSE
H(2) = H(1) + TRQFP1 * SF1 / (DW2P * 9336.)
H(3) = H(2) + TRQFP2 * SF2 / (DW2P * 9336.)
ENDIF
DW3P = DW2P - DWFT2C
pDW3P = recpos(DW3P)
PHIP1 = DW2P / (RHOP1C * SF1)
DW2A = (DW2P + DW(2)) * 0.5
DP1P = fgen(51, 3, PHIP1) * RHOPlC * SF1**2 * CDPFP1
P(2) = PFS + DP1 - DDW2 * ZZ(2)
PFS2 = P(2) - RFCOD/RHO(2) * DW2A * ABS(DW2A) - DDW2/ZFCOD
PHIP2=DW2P / (RHOP2C * SF2)
DP2P = fgen(53, 4, PHIP2) * RHOP2C * SF2**2 * CDPFP2 SSM21200
P(3) = PFS2 + DP2 - DDW2 * ZZ(3)
SU1 = HT - PFS / (RHO(1) * 9336.)
SU2 = H(2) - P(2) / (RHO(2) * 9336.)
SU3 = H(3) - P(-3) / (RHO(3) * 9336.)
CALL hyrt(SUl, RHO(1), 1, PFS, TTI)
CALL hyrt(SU2, RHO(2), 3, P(2), T(2))
CALL hyrt(SU3, RHO(3), 5, P(3), T(3))
T(2) = T(1) + T(2) - TTI
T(3) = T(1) + T(3) - TTI
MFV DIFFUSER

```
\(\mathrm{HI}=\mathrm{H}(3)\)
IF (DW (3).LT.0.0) \(\mathrm{HI}=\mathrm{H}(10)\)
DW10P \(=\) trflow ( \(\mathrm{DW}(10), \mathrm{ZZ}(10),-\mathrm{RR}(10) / \mathrm{RHO}(10), \operatorname{P10P-P11P,35)}\)
DWMCP \(=\) trflow ( DWMC, ZZ (13), -RR(13)/RHO (10), P10P-P13P, 36)
DWFNP \(=\) trflow ( DWFNBP, \(\mathrm{ZZ}(7),-\mathrm{RR}(7) / \mathrm{RHO}(10), \mathrm{P} 10 \mathrm{P}-\mathrm{P} 7 \mathrm{P}, 37\) )

Doing rectifications once instead of three times each.
DW10Pn = recneg(DW10P)
pDWMCP = recpos(DWMCP)
DWMCPn = recneg(DWMCP)
pDWFNP = recpos(DWFNP)
DWFNPn = recneg(DWFNP)
```

```
```

pDW10P = recpos(DW10P)

```
```

```
pDW10P = recpos(DW10P)
```

DW10OP $=$ pDW1OP + pDWMCP + pDWFNP + DWFASI - DW3Pn
DW10IP $=$ pDW3P - DW10Pn - DWMCPn - DWFNPn
RHOIOP $=$ truint (vVOL(10) * (DW10IP - DW100P), Tstep, 38)
H1OIN = pDW3P * HI - DWIOPn * H11P - DWMCPn * H13P-DWFNPn * H7P
SU1OP $=$ UNEWF (10, DW1OIP, H1OIN, DW10OP, P1OP, RHOIOP)
H1OP $=$ SU1OP + P1OP / (RHO1OP * 9336.)
CALL hypt (SU10P, RHO1OP, 10, PNEW, T(10))

SSM21500
P10P $=$ relax (fuelok, PNEW, P10P, 2)
DOWNCOMERS
DW11Pp $=$ recpos (DW11P)
DW11Pn = recneg (DW11P)
RHO11P $=$ truint (vVOL(11)*(DW1OP - DW11P), 40)
DW11I $=$ pDW10P - DW11Pn
HI = pDW1OP * H1OP - DW11Pn * H12P
DW110 = DW11Pp - DW10Pn
SSM21600
SU11P $=$ UNEWF (11, DW11I, HI, DW110, P11P, RHO11P)
H11P $=$ SUl1P + P11P/(RHO11P * 9336.)
CALL hypt (SUllP, RHO11P, 11, PNEW, T(11))
P11P = relax (fuelok, PNEW, P11P, 3)
LOWER 15\% OF NOZZE
$\operatorname{ssm} 21400$

```
DW11P = trflow( DW(11), ZZ(11), -RR(11)/RHO(11), P11P-P12P, 39)
```

```
DW11P = trflow( DW(11), ZZ(11), -RR(11)/RHO(11), P11P-P12P, 39)
```

```
DW12P = trflow(`DW(12), ZZ(12), -RR(12)/RHO(12), P12P-P4P, 41) 1700
DW12Pp = recpos(DW12P)
DW12Pn = recneg(DW12P)
RHO12P = truint( vVOL(12)*(DW11P - DW12P), 42 )
DW12I = DW11Pp - DW12Pn
HI = DW11Pp * H11P - DW12Pn * H4P
DW120 = DW12Pp - DW11Pn
SU12P = UNEWF( 12, DW12I, HI, DW12O, P12P, RHO12P )
H12P = SU12P + P12P/(RHO12P * 9336.)
CALL hypt( SU12P, RHO12P, 12, PNEW, T(12) )
P12P = relax( fuelOK, PNEW, P12P, 4 )
    NOZZLE REGEN COOLING FLOW
```

C

```
    DW4P = trflow( DW(4), ZZ(4), -RR(4)/RHO(4), P4P-P8P, 43)
    RHO4P = truint( vVOL(4)*(DW12P - DW4P), 44)
    DW4Pp = recpos(DW4P)
    DW4Pn = recneg(DW4P)
    DW4I = DW12Pp - DW4Pn
    HI = DW12Pp * H12P - DW4Pn * H8P
    DW4O = DW4Pp - DW12Pn
    SU4P = UNEWF( 4, DW4I, HI, DW4O, P4P, RHO4P )
    H4P = SU4P + P4P/(RHO4P * 9336.)
    CALL hypt( SU4P, RHO4P, 4, PNEW, T(4) ) SSM2190C
    P4P = relax( fuelOK, PNEW, P4P, 5 )
    MCC SUPPLY DUCT
    DW13P = trflow( DW(13), ZZ(13), -RR(5)/RHO(13), P13P-P5P, 45 )
    RHO13P = truint( vVOL(13)*(DWMCP - DW13P), 46)
    DW13Pp = recpos(DW13P)
    DW13Pn = recneg(DW13P)
    DW13I = DWMCPP- DW13Pn
    HI = DWMCPP*H1OP - DW13Pn*H5P
    DW130 = DW13Pp - DWMCPn
    SU13P = UNEWF( 13, DW13I, HI, DW130, P13P, RHO13P )
    H13P = SU13P + P13P/(RHO13P * 9336.)
    CALL hypt( SU13P, RHO13P, 13, PNEW, T(13) )
    P13P = relax( fuelOK, PNEW, P13P, 6 )
    MAIN COMBUSTOR REGEN COOLING FLOW
        NODE 5 BELOW THROAT
        DW5P = trflow( DW(5), ZZ(5), -RR(6)/RHO(5), P5P-P6P, 47)
    RHO5P = truint( vVOL(5)*(DW13P - DW5P), 48)
    DW5Pp = recpos (QW5P)
    DW5Pn = recneg(DW5P)
    DW5I = DW13Pp - DW5Pn
    HI= DW13Pp * H13P - DW5Pn * H6P
    DW5O = DW5Pp- DW13Pn
    SU5P = UNEWF( 5, DW5I, HI, DW50, P5P, RHO5P )
    H5P = SU5P + P5P/(RHO5P * 9336.)
    CALL hypt( SU5P, RHO5P, 5, PNEW, T(5) ) SSM22200
    P5P = relax( fuelOK, PNEW, P5P, 7 )
    NODE }6\mathrm{ ABOVE THROAT
DW6P = trflow( DW(6), ZZ(6), -R6/RHO(6), P6P - PINMC, 49 )
RHO6P = truint( vVOL(6)*(DW5P - DW6P), 50)
```

```
    DW6Pp = recpos(DW6P)
    DW6Pn = recneg(DW6P)
    DW6I = DW5Pp- DW6Pn
    HI = DW5Pp*H5P - DW6Pn*H6P
    DW60 = DW6Pp- DW5Pn 
    H6P = SU6P + P6P/(RHO6P * 9336.)
    CALL hypt( SU6P, RHO6P, 6, PNEW, T(6) )
    P6P = relax( fuelOK, PNEW, P6P, 8)
    CCV INLET DUCT
    DW7P = trflow( DW(7),.04, -(RCCV + RR(9) )/RHO(7),
    + P7P - P8P, 51 )
    RHO7P = truint( RHO(7), vVOL(7)*(DWFNP - DW7P), 52)
    SSM22400
    DW7Pp = recpos(DW7P)
    DW7Pn = recneg(DW7P)
    DW7I = pDWFNP- DW7Pn
    HI = pDWFNP*H1OP - DW7Pn*H8P
    DW70 = DW7Pp - DWFNPn
    SU7P = UNEWF( 7, DW7I, HI, DW70, P7P, RHO7P )
    H7P = SU7P + P7P/(RHO7P*9336.)
    CALL hypt(SU7P, RHO7P, 7, PNEW, T(7) )
    P7P = relax( fuelOK, PNEW, P7P, 9 )
MIXER
                                    SSM22500
DW8P = trflow( DW(8), ZZ(8), -RR(8)/ RHO(8), P8P-P9P, 53)
RHO8P = truint( vVOL(8)*(DW7P + DW4P - DW8P), 54)
DW8Pp = recpos(DW8P)
DW8Pn = recneg(DW8P)
DW8I = DW4Pp + DW7Pp - DW8Pn
HI = DW4Pp*H4P + DW7Pp*H7P - DW8Pn*H9P
DW80 = DW8Pp - DW7Pn- DW4Pn
SU8P = UNEWF( 8, DW8I, HI, DW8O, P8P, RHO8P )
H8P = SU8P + P8P/(RHO8P*9336.)
CALL hypt( SU8P, RHO8P, 8, PNEW, T(8) ) SSM22600
P8P = relax( fuelOK, PNEW, P8P, 10)
PREBURNER SUPPLY DUCT
DWFPFP = trflow( DWFPF, ZFPF, -RFPFI/RHO(9), P9P - PFP, 55 )
DWOPFP = trflow( DWOPF, ZOPF, -ROPFI/RHO(9), P9P - POP, 56)
DW9P = DWFPFP + DWOPFP
RHO9P = truint( vVOL(9)*(DW8P - DW9P), 57 )
SSM22700
DW9Pn = recneg(DW9P)
```

```
                    DW9I = DW8Pp- DW9Pn
    HI = DW8Pp*H8P - DW9Pn*H9P
    DW90 = recpos(DW9P) - DW8Pn
    SU9P = UNEWF( 9, DW9I, HI, DW90, P9P, RHO9P )
    H9P = SU9P + P9P/(RHO9P * 9336.)
    CALL hypt( SU9P, RHO9P, 9, PNEW, T(9) )
C
* IF( fuelOK.AND.LOOPS GT 2) GO TO 3500
IF( fuelOK) GO TO 3500
                                    was replaced by
```

SSM2 2800
for a speedup of 3 when

```
names was eliminated as unnecessary for a simulation monitoring
function.
4000 CONTINUE
C
C There is a convergence failure when the END OF ITERATION LOOP is reache
C
    CALL wrchg( IT, 1, 11, 'Fuelflow convergence failure:' )
* Set stepped values to final trial values:
C
    3500 DO 4100 J = 2, 6
    PIF(J) = step(J + 27) SSM23000
    4100 CONTINUE
            DO 4110 J = 1,5
            DWIF(J) = step(J + 23)
    4110 CONTINUE
C
    PFS=PFSP
    DP1=DP1P
    DP2=DP2P
    DW(2) = step( 34)
    DW (3) =DW3P
    DWFNBP = step( 37)
    DWFN=DW10P
    DWMC = step( 36)
    DW100=DW100P
    DW10I=DW10IP
O
    P(4)=P4P
    RHO(4) = step(44 )
    SU(4)=SU4P
    H(4)=H4P
    DW (4) = step(43)
C
```

```
SU(5)=SU5P
```

$\mathrm{H}(5)=\mathrm{H} 5 \mathrm{P}$
DW(5) $=$ step (47)

C
$\mathrm{P}(6)=\mathrm{P} 6 \mathrm{P}$
RHO (6) = step(50)
SU (6) $=$ SU $6 P$
H(6) $=$ H6P
SSM2336
DW (6) $=\operatorname{step}(49)$
DWFT1=DW6P
C
P(7) $=$ P7 P
RHO (7) = step(52)
SU (7) =SU7P
H(7) $=\mathrm{H} 7 \mathrm{P}$
DW (7) $=$ step (51)
C
$P(8)=P 8 P$
SSM23400
RHO (8) = step (52)
$\mathrm{SU}(8)=\mathrm{SU} 8 \mathrm{P}$
$\mathrm{H}(8)=\mathrm{H} 8 \mathrm{P}$
DW (8) $=$ step (53)
C
$\mathrm{P}(9)=\mathrm{P} 9 \mathrm{P}$
RHO (9) $=$ step (57)
SU (9) $=$ SU9P
$\mathrm{H}(9)=\mathrm{H} 9 \mathrm{P}$
DW (9) $=$ DW9 9
SSM23500
DWFPF $=$ step (55)
DWOPF = step (56)
C
P(10) $=$ P10P
RHO (10) $=$ step (38)
SU(10)=SU10P
H (10) $=$ H10P
DW (10) $=\operatorname{step}(-3.5)$
C
$\mathrm{P}(11)=\mathrm{P} 11 \mathrm{P}$
SSM23600
$\mathrm{RHO}(11)=\operatorname{step}(40)$
SU(11)=SU11P
$\mathrm{H}(11)=\mathrm{H} 11 \mathrm{P}$
DW (11) $=\operatorname{step}(39)$
C
$\mathrm{P}(12)=\mathrm{P} 12 \mathrm{P}$
RHO (12) $=$ RHO12
SU (12) $=$ SU12P
$\mathrm{H}(12)=\mathrm{H} 12 \mathrm{P}$
DW(12) = step(41)
SSM23700

C
$P(13)=P 13 P$

```
    RHO(13) = step( 46)
    SU(13)=SU13P
    H(13)=H13P
    DW(13) = step( 45 )
```

```
QF IS FUEL FLOW IN GALLON/MIN
        QF=0.25974*DW2P/RHO(2)
        TFP1=T(2)
        PFP1=P(2)
            PFPD1=P(2)
            PFPD=P(3)
            RETURN
            END
HTF FUNCTION IS TO CALCULATE THE HEAT TRANSFER COEFFICIENT
SUCH AS THE ONES IN PAGE 31 OF THE DOCUMENT.
I BELIEVE THIS IS THE SIMPLIFIED VERSION OF CALCULATION.
FUNCTION HTF(T,P)
HTF = 0.1425 + (2.85E-4 + 1.8E-8 * P) * T
RETURN
END
```

```
    'hyprop.for':
```

 subroutine propo
 C
c

```
SUBROUTINE PROP(SU,SRHO,N,P,T,NN)
```

PURPOSE: HYDROGEN PROPERTY DATA PARAMETERS CAN BE FOUND.

```
C SU = SPECIFIC INTERNAL ENERCY, BTU/LB
C SRHO = DENSITY, LB/IN3
C P = PRESSURE, PSI
C T = TEMPERATURE, DEG R
C T = TEMPERATURE, DEG R
```

 PROP was divided into four separate entries:
 propo - precomputes slopes for all interpolations
 hypt - interpolates \(P\) and T, given SU and SRHO
 hyrt - interpolates SRHO and T, given \(S U\) and \(P\)
 hyut - interpolates \(S U\) and \(T\), given SRHO and \(P\)
 PARAMETER (NCALL=50, NU=14, NRHO=18, NSAT = 7)
 PARAMETER (V1728 = 1728.)
 Hydrogen data, saturation curves:
DIMENSION U(NU)- RHO (NRHO), PRES(NU,NRHO), TEMP(NU,NRHO),
$+\quad$ RSAT (NSAT), PSAT (NSAT)
Precomputed slopes: (DRHO was inverted)
DIMENSION XP(NU,NRHO), TXP(NU,NRHO), VDRHO (NRHO),
$+\quad \operatorname{UVsP}(N U, N R H O)$, RHOVSP(NU, NRHO),
$+\quad$ RSVsU (NSAT), PSVsU(NSAT), vPS (NSAT), DRSAT (NSAT)

Call point identifiers, initially at lowest interval
DIMENSION ICALL(NCALL), JCALL(NCALL), R(2)
DATA ICALL / NCALL*2 /, JCALL / NCALL*2 /

THIS TABLE IS THE ENERGY MAP OF HYDROGEN PROPERTY. IT IS ABOUT THE RELATIONSHIP AMONG SPECIFIE ENERGY (SU), DENSITY (SRHO), PRESSURE (P) AND TEMPERATURE. PRESUMELY, FOR ANY GIVEN TWO PARAMETERS, THE OTHER

DATA RSAT / 4.6, 4.44, 4., 3.33, 2.5, 1.9, 1.25 /

```
            DATA PSAT / 5.4, 12.5, 49.9, 121.9, 181., 188., 200./
            * DATA 79., 88., 113., U 147,% 181., 200., 225., 250.,
    * 79., 88., 113., 147., 181., 200, 20., 20., 205., 250.,
        DATA RHO/
        * .0050, .0125, .0250, .0500, . 1000, . 1250, . 2500, . 5000,
    * 1.0000, 1.2500, 1.9000, 2.5000, 3.3300, 4.0000, 4.4400, 4.6000,
    * 4.9000, 5.5000/
```

Pressure (su, rho)

		(PRES (I)	I	1				SS
*	. 000,	.000,	. 0000 ,	. 000 ,	. 000 ,	. 0000	. 000,	. 000 ,
*	. 000,	. 000 ,	. 000,	. 000,	5.953,	25.800%		

part of table omitted
DATA (PRES (I, 18), $I=1,14) /$

* $4014.0,4715.0,6267.0,8170.0,9887.0,10808.0,11949.0,13029.0$,
* $14030.0,14979.0,16704.0,18270.0,20000.0,20000.0 /$

TEMPERATURE AS A FUNCTION OF SU AND RHO

part of table omitted
ロ^TA (TEMP (I, i8), $I=1,14)$ /

* $37.26,44.66,60.93,81.27,100.50,110.76,123.77,136.08$, * 147.70, 158.74, 179.14, 197.82, 264.75, 987.65/
subroutine propo

INITIALIZE SLOPES

DO $26 \mathrm{~J}=1$, NRHO
RHO (J) $=$ RHO (J) * V1728
26 CONTINUE
CALL XYset(NU, U, NRHO, RHO, PRES, XP, VDRHO)
CALL XYset(NU, U, NRHO, RHO, TEMP, TXP, VDRHO)

```
        DO \(30 \mathrm{~J}=2\), NRHO
            drho \(=\operatorname{RHO}(J)-\mathrm{RHO}(J-1)\)
            DO \(25 \mathrm{I}=2\), NU
                \(\operatorname{UvsP}(I, J)=1.0 / X P(I, J)\)
            \(\operatorname{RHOvsP}(I, J)=\) drho \(/(\operatorname{PRES}(I, J)-\operatorname{PRES}(K, J-1))\)
25 CONTINUE
30 CONTINUE
    DO \(40 \mathrm{I}=2\), NU
            \(\mathrm{du}=\mathrm{U}(\mathrm{I})-\mathrm{U}(\mathrm{I}-\mathrm{I})\)
            \(\operatorname{RSvsU}(I)=(\operatorname{RSAT}(I)-\operatorname{RSAT}(I-1)) /(\mathrm{du} * 1728.0)\)
            \(\operatorname{PSVSU}(I)=(\operatorname{PSAT}(I)-\operatorname{PSAT}(I-1)) / d u\)
            \(\operatorname{vPS}(I)=1 . /(\operatorname{PSAT}(I)-\operatorname{PSAT}(I-1))\)
            \(\operatorname{DRSAT}(I)=\operatorname{RSAT}(I)-\operatorname{RSAT}(I-I)\)
40 CONTINUE
    RETURN
    ENTRY hypt( SU, SRHO, N, P, T )
```

*
* Pressure and temperature from energy, density.
* Added precomputing of pressure saturation slopes.
CALL intval(icall(N), SU, NU, U,
$+\quad{ }^{\prime}$ Hydrogen internal energy is below the table.'.
$+\quad$ 'Hydrogen internal energy exceeds the table.', 0)
CALL intval (jcall(N), RHO, NRHO, RHO,
$+\quad$ 'Hydrogen density is below the table.',
$+\quad$ 'Hydrogen density exceeds the table.', 0)
* PRESSURE COMPUTATIONS
C
200 UP1 $=S U-U(I-1)$
RHOP1 $=(S R H O-R H O(J)) \star$ vdrho (J)
$\mathrm{Pl}=\operatorname{PRES}(I-1, J)+\mathrm{XP}(I, J) * \operatorname{UP1}$
$P 2=\operatorname{PRES}(I-1, J+1)+X P(I, J+1) \star \operatorname{UP1}$
IF (SU. LT. 225.) THEN
RHOSAT $=\operatorname{RSAT}(I-1)+\operatorname{RSVSU}(I) *$ UP1
$\mathrm{RI}=\mathrm{RHO}(\mathrm{J})$
$\mathrm{R} 2=\mathrm{RHO}(J+1)$
IF ((SRHO.GT.RHOSAT).AND. (RHOSAT.GT.RI)) THEN
R1=RHOSAT
$\mathrm{P} 1=\mathrm{PSAT}(\mathrm{I}-1)+\operatorname{PSVSU}(I) * \operatorname{UPI}$
ELSE IF ((SRHO.LT.RHOSAT) .AND. (RHOSAT.LT.R2))THEN
R2 $=$ RHOSAT
P2 $=\operatorname{PSAT}(I-1)+\operatorname{PSVSU}(I) * U P 1$
END IF
$P=P 1+(P 2-P 1) *(S R H O-R 1) /(R 2-R 1)$
ELSE

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P} 1+(\mathrm{P} 2-\mathrm{P} 1) * \mathrm{RHOP} 1 \\
& \mathrm{IF}
\end{aligned}
$$

```
T = xylint( SU, SRHO, NU, U, NRHO, RHO, TXP, VDRHO, TEMP,
+ RETURN icall(N), icall(N) )
                                    SSM78900
```

ENTRY hyrt (SU, SRHO, N, P, T)

```
**
    C RHO AND T FROM U AND P (Uses call number N + 1 )
            CALL intval( icall(N), SU, NU, U,
            + 'The hydrogen energy is below the table.',
            + 'The hydrogen energy exceeds the table.', 0 )
```

*
* intval could not be used below, because consecutive row elements
* of PRES are not consecutive in memory. The table escape error stop
* was added, however.
$\mathrm{K}=\mathrm{icall}(\mathrm{N})$
$\mathrm{K}=\mathrm{I}-1$
$J=J C A L L(N)$
310 IF (PRES (K,J).LT.P) GO TO 330
320 IF (PRES (K,J-1).LE.P) GO TO 340
$J=J-1$
GO TO 320
SSM79000
$330 \mathrm{~J}=\mathrm{J}+1$
GO TO 310
340 IF (J .LT. 2) THEN
PRINT *, 'The hydrogen pressure is below the table.'
STOP
ELSE IF (J .GT. NRHO) THEN
PRINT *, 'The hydrogen pressure exceeds the table.'
STOP
END IF
IF(K.EQ.I-1) jcall(N) = J
$\mathrm{R}(\mathrm{K}-\mathrm{I}+2)=\mathrm{RHO}(\mathrm{J}-1)+(\mathrm{P}-\operatorname{PRES}(\mathrm{K}, \mathrm{J}-1))$ * RHOVsP(K,J-1)
IF (K.EQ.I) GO TO 350
$\mathrm{K}=\mathrm{I}$
GO TO 310
C
C ASSUME RHO LINIER WITH U
C PROVIDE FOR LIQUID SIDE OF SATURATION LINE ONLY
C
$350 \mathrm{Ul}=\mathrm{U}(\mathrm{I}-1)$
$\mathrm{U} 2=\mathrm{U}(\mathrm{I})$
IF (I.LT. 8 .AND. J.LE.17-I) THEN

```
            X=( P-PSAT(I-1) ) * vPS(I)
            U2 = U1 + X * ( U2 -U1 )
            R(2) = ( RSAT(I-1) + X * DRSAT(I) ) * v1728
        END IF (1) (1) (IO-U1) * (SU-U1)
        SRHO = R(1) + (R(2)-R(1) ) / (U2-U1) * (SU-U1)
```

 Now \(T\) is found from input \(S U\) and interpolated RHO. We use the next call
 number to remember the previous interval of the above interpolated RHO.
 CALL intval(icall(N+1), SRHO, NRHO, RHO,
 $+\quad$ 'The interpolated density is below the table.',
$+\quad$ 'The interpolated density exceeds the table.', 0)
$T=$ xylint (SU, SRHO, NU, U, NRHO, RHO, TXP, VDRHO, TEMP,

+ icall(N), icall(N+1))
RETURN
ENTRY hyut (SU, SRHO, N, P, T)

CALL intval(icall(N), SRHO, NRHO, RHO,
$+\quad$ 'The hydrogen density rho is below the table.', ${ }_{+}+\quad$ The hydrogen density rho exceeds the table.', 0
$\mathrm{K}=\operatorname{icall}(\mathrm{N})$
CALL intval (jcall(N), P, NU, PRES(1, K-1),
+
+
'The hydrogen pressure is below the table.',
'The hydrogen pressure exceeds the table.', 0)
$\mathrm{U} 1=\mathrm{U}(\mathrm{M}-1)+(\mathrm{P}-\operatorname{PRES}(\mathrm{M}-1, \mathrm{~K}-1)) \quad * \operatorname{UvsP}(\mathrm{M}, \mathrm{K}-1)$
CALL intval (jcall(N), P, NU, PRES(1, K),
$+\quad$ The hydrogen pressure is below the table.',
+ 'The hydrogen pressure exceeds the table.', 0)
$M=j \operatorname{call}(N)$
$\mathrm{U} 2=\mathrm{U}(\mathrm{M}-1)+(\mathrm{P}-\operatorname{PRES}(\mathrm{M}-1, K) \quad \star \operatorname{UvsP}(\mathrm{M}, \mathrm{K})$
$\mathrm{SU}=\mathrm{U} 1+(\mathrm{SRHO}-\mathrm{RHO}(\mathrm{K}-1) \quad) * \operatorname{vdrho}(\mathrm{~K}-1) *(\mathrm{U} 2-\mathrm{U} 1)$

* Now T is found from interpolated $S U$ and input RHO. We use the next call
* number to remember the previous interval of the above interpolated SU.

```
            CALL intval( icall(N+1), SU, NU, U,
            + 'The interpolated energy is below the table.',
            + 'The interpolated energy exceeds the table.', 0,
    T = xylint( SU, SRHO, NU, U, NRHO, RHO, TXP, VDRHO, TEMP,
    +
            END
    'h2gama.for':
    FUNCTION H2GAMO( XPRES, XTEMP, N)
*
* Initializes temp, pressure points, returns value at XPRES, XTEMP
*
C
C PURPOSE: COMPUTATION OF HYDROGEN SPECIFIC HEAT RATIO
            AS A FUNCTION OF PRESSURE AND TEMPERATURE
                        CALCULATES GAMMA FOR PARA HYDROGEN
C******ARGUMENTS******
    INPUT:
        XPRES = PRESSURE, PSI
        XTEMP = TEMPERATURE, DEG R
        N = CALLER NODE INDEX
    OUTPUT:
        H2GAMA = GAMMA
        H2GAMAO does initialization and lookup (NN .LE. O )
        The main entry H2GAMA does lookup alone.
***********************************************************************
            DIMENSION TEMP(20),PRES(25),GAMA (20,25),I1(10),J1(10),XP(20,25), 9700
            1DPRES (25) -
            INCLUDE 'units.com'
\star
*
* Reads temperature and pressure points, tablulated values.
    READ(dat,ll)NTEMP,NPRES,(TEMP (I), I=1,NTEMP), (PRES (I),I=1,NPRES)
        11 FORMAT(//2X, 2(2X,I10)/(//2X,6(2X, G10.0)) ) SSM79750
            READ(dat, 12)((GAMA (I,J),I=1,NTEMP),J=1,NPRES)
        12 FORMAT (/ (//3X,12(1X,F6.0) S ) SSM79770
* Precomputation of slopes for two-way interpolation was moved to the
* interpolation module.
```

*

CALL XYset (ntemp, temp, npres, pres, gama, xp, dpres)
DO $23 \mathrm{I}=1,10$
$I 1(I)=2$
JI (I) $=2$
SSM80000
23 CONTINUE
ENTRY H2GAMA (XPRES, XTEMP, N)

*

* This is the simulation loop entry, with no initialization.
* Keeps track of last entry location for each caller, identified by N.
* If it is really desired to return H2GAMA $=1.4$ temperature is off the
* table, then intval can be used instead of the special code below, by
* adding one point to TEMP, and a column to GAMA defining the range where
* this return is OK.
$I=I I(N)$
IF (xtemp .GT. temp (i)) THEN
Search from there up DO $10 \mathrm{k}=\mathrm{i}+1$, ntemp

IF (xtemp. LE. temp (k))THEN
$i=k$
GO TO 30
ENDIF
10 CONTINUE
Here, xtemp is above the table
$i=$ npres
H2gama $=1.4$
RETURN
ELSEIF (xtemp . LT. temp(i - 1)) THEN
Search down from there
DO $20 \mathrm{k}=\mathrm{i}-2,1,-1$
IF (xtemp . GE. temp(k)) THEN
$i=k+1$
GO TO 30
ENDIF
20 CONTINUE
PRINT *, 'Temperature is below H2GAMA table.'
STOP
ENDIF
Error traps were added in case input variables escape the table. The table can be readily extended, after all.

30 CALL intval(j1(N), xpres, npres, pres,
SSM80200
$+\quad$ 'Pressure is below H2GAMA table.',

```
+ 'Pressure is above H2GAMA table.', 0 )
H2GAMA = xylint( xtemp, xpres, ntemp, temp, npres, pres,
+ xp, dpres, gama, i, jl(n) )
```

* And to support H2GAMO as a function:

H2GAMO $=$ H2GAMA
END

```
DIMENSION RIL(12),ELENO(12),ZIL(12),ZIC(12), TPR(6)
```

DIMENSION N1(3), N4(3), N5(3), N6(3)
LOGICAL adjOK, XMOVPF, PRIMIF

C

```
COMMON/PVCHEK/ POTVP, DWOP1L, DUMME1, DUMME2, INONZ,
2 POSX,TAU,ABKFLO,FHECD1,FHECD2
3 ,FLI2,FL2,PCOD1L, PCOD2L, POD1L, POD2L, POI2L,VHECD1,VHECD2
```

C
INCLUDE 'blank.com'
INCLUDE 'out.com'
INCLUDE 'contrl.com'
INCLUDE 'igni.com'
INCLUDE 'oxid.com'
INCLUDE 'hgas.com'
INCLUDE 'balc.com'
INCLUDE 'pogo.com'

COMMON/PURGE/DWGัN2,TCUTPR, DWFN2F, DWGN2O
Often used constant reciprocals:

```
PARAMETER ( v386p4 = 1. / 386.4, v9336 = 1. / 9336.,
+ v41p34=1./ 41.34, v8p866 = 1./ 8.866,
+ V77 = 1. / 77. )
    PARAMETER ( TOOBIG = 1.E50 )
```

Obsoleted printout control
DATA TPR / 10*100.0/, 1 PR / $2 /$, FLAG / $0.0 /$
DATA PRIMIF / .TRUE. /, QBKFL2 / O.0/, XMOVPF / .TRUE. / SSM57800
DATA TL $/ 0.0 /, \mathrm{TH} / 0.0 /$

```
DATA ROP3IN /O.0/
DATA WTOP1 / 14.4/
```

```
recpos(x) = AMAX1( 0.0, x )
```

recpos(x) = AMAX1(0.0, x)
recneg(x) = AMIN1(0.0, x)
recneg(x) = AMIN1(0.0, x)
rlimit(x, floor, ceiling) = AMAXl(floor, AMIN1(ceiling, x))

```
rlimit(x, floor, ceiling) = AMAXl( floor, AMIN1( ceiling, x ) )
```

WTHE () IS THE FUNCTION TO CALCULATE THE HELIUM CONTENT OF A FLOW MIXER.
WTHE (DWHE1, FHE1, FHE2, DWHE2, FHE3, DWHE3, FHE4) =

+ FHE2* (recneg (DWHE1) - recpos (DWHE2) + recneg (DWHE3)) +
+ FHE1*recpos (DWHE1) - FHE3*recneg (DWHE2) + FHE4*recpos (DWE3)
ENINOX() IS THE FUNCTION TO CALCULATE THE ENTHALPY OF AN ACCUMULATOR.

```
ENINOX(WI, WO, H1, HO, HU) = H1 * recpos( WI ) +
+ HO * ( recneg(WI) - recpos(WO) ) - HU * recneg( WO )SSM57900
```

Name this function appropriately

```
quadr( x ) = 620.15 + x * ( 19.1202 + .149371 * x )
```

READ (IUN, 30) POT, ZOS , DUM, RHOOT, ZMOV, ZOP1, ZOP2 ,TQOT1B, TQOT2B, ZOI
1,TOS, WOV, TDRAGO
READ (run, 30) GO1, GO2
READ (IUN, 30) ELOT1, AAOT 1, RMOVUG, RMOVD, VOLOP1, VOLOP2 , VOLOP3 , VOLOT1

* , WCOD, WOTD

READ (run, 30) PVOP1, PVOP2, PVOP3, PCOP1, PCOP2, PCOP3
$\operatorname{READ}(\operatorname{run}, 30)(\operatorname{ELENO}(J), J=1,12),(\mathrm{ZIL}(J), J=1,12),(Z I C(J), J=1,12)$,
1 (RIL (J) , J=1, 12)
READ (run, 30) AOS , AHE, XLO, XL1, XL2 , VTOT, PHES , GAMHE
30 FORMAT (//2X,6G12.4)
READ (run, '(//2X,3I12)') INONZ, IRHOP2, ICAVMD
READ (run, 30) TCUT2, TCUT3, BASEAR, BOS , TDCOM, RL1, RPV, ZJTPV, ROP3IN,
1ELJPV, BOJ, BOPVDN, WOCOM, WOIN, DTPV, TCLPV, ABK2 , THEADD, VOLOD1,
2VOLOI2, VOLOD2, VOLCD1, VOLCD2, TCAV1, TCAV2, TIMCAV, GLOPC, TL1, TH1,
3TL2,TH2
DUCTS $=1$.
ELENT $=0.0$
FAC $=8.0$
$\mathrm{THE}=180$.
SSM58100
HOI2AD $=-41$.
C
DUMME1 $=$ WOCOM
DUMME2 = WOIN
STIME=TIME
CALL fgset (5)

```
    HOS \(=\operatorname{FGEN}(5,8, \operatorname{STIME})\)
    CALL fgset ( 37 )
    POT \(=\operatorname{FGEN}(37,9, \operatorname{STIME})\)
    PIL(1) \(=\) POT
    DO \(90 \mathrm{~J}=2,8\)
        PIL (J) \(=\) PIL (J-1) +ELENO (J-1) *RHOOT
    DWIL(J) \(=0.0\)
90 CONTINUE
    DWIL (1) \(=0.0\)
    POS \(=\) PIL (8) +ELENO (8) *RHOOT
    POSX=POS
    POD1=POS
    POD2=POS
    POD3 \(=\) POS
    POI2 \(=\) POS
    POINJ=PA
    SOl=1.0E-10
    \(\mathrm{SO} 2=1.0 \mathrm{E}-10\)
    solsq \(=\) SO1 \(* * 2\)
    so2sq \(=\) SO2 ** 2
    WOI \(=0.0\)
DWOI \(=0.0\)
DWOP1 \(=0.0\)
DWOP2 \(=0.0\)
\(\begin{array}{ll}\text { DWOP3 } & =0.0 \quad \text { SSM58800 }\end{array}\)
DWCOD=0.
DWMOV \(=0.0\)
DWOT1=0.0
DWOP2C \(=0.0\)
DWOP3C=0.
DDX=386.4
DPOP1=0.0
DPOP2 \(=0.0\)
DPOP3=0.0
TRQOP1 \(=0.0\)
SSM58900
TRQOP2 \(=1.0 \mathrm{E}-10\)
prior function loads created unused variables
CALL fgset ( 44 )
CALL fgset ( 45 )
CALL fgset ( 46 )
CALL fgset ( 47 )
CALL fgset ( 48 )
CALL fgset ( 49 )
CALL fgset (50)
CALL fgset (58)
ELCOM \(=\) fgen (58, 29, 0.)
CALL fgset (59)
RCOM \(=\) FGEN \((59,30,0\).
CALL fgset ( 60 )
\(\mathrm{ZCOM}=\operatorname{FGEN}(60,31,0\).
```

```
    CALL fgset( 61)
    ELOIN = FGEN (61, 32, 0.)
    CALL fgset( 62 )
    ROIN = FGEN (62, 33, 0.)
    CALL fgset( 63)
    ZOIN = FGEN(63, 34, 0.)
    CALL fgset( 64)
    APV = FGEN(64, 35, 0.)
    CALL fgset( 65 )
    DWOE2 = FGEN (65, 36, 0.0)
    CALL fgset( 66)
    CALL fgset( 67)
    CALL fgset( 68)
    CALL fgset( 69)
    CALL fgset( 70)
    CALL fgset( 71 )
    CALL fgset( 72 )
    CALL fgset( 73 )
    CALL fgset( 74 )
    CALL fgset( 75 )
    CALL fgset( 76 )
    CALL fgset( 77 )
    CALL fgset( 78 )
    CALL fgset( 79)
    CALL fgset( 81)
    CALL fgset( 82 )
C CALL O2DFPE (HOS,POS,RHOOS,TOS , 4, -1, 1)
    CALL O2 PROP(HOS , RHOOS, 1, POS ,TOS , -1)
    CALL O2 PROP (HOS, RHOOS,1, POS,TOS , 3)
TOD2=180.
RHOP1=RHOOS
RHOOP1=RHOOS
RHOP2=RHOOS
RHOOP2=RHOOS
RHOP3=RHOOS SSM59300
RHOOP3 = RHOOS
RHODI=RHOOS
RHOD2=RHOOS
RHOT1=RHOOS
RHOI2 = RHOOS
RHOCD2 = RHOOS
fgset ( 3 ) SSM58000
PRIMOI = FGEN(3, 37, 0.0)
    ZOT1 = ELOT1 / ( AAOT1 * 386.4)
hZOT1 = ELOT1 / ( AAOT1 * 772.8)
ROTIN=ANOT1
SSM59400
COV=1.0
HCAVP1=1.
HCAVP2=1.
HCAVP3=1.
```

```
        TCAVP1=1.
        TCAVP2=1.
        TCAVP3=1.
        WHEOD1=0.0
        FHEOD1=0.0
        HOS1=HOS
                            SSM59500
        WHECD1=0.0
        FHECD1=0.0
        WHECD2=0.0
        FHECD2=0.0
        WHEOI2=0.0
        FHEOI2=0.0
        WHEOD2=0.0
        FHEOD2=0.0
        WHEOT1=0.0
        FHEOT1=0.0
        DWOTJ=0.
        DWOE3=0.
        DWOPV=0.
        RJTPVD=3.05E-6
        DWOIN=0.
        POINVP=15.
        VOLPV=0.
        QBKFLO=0.
        HLPT1=HOS
        HIOP2=HOS
        SSM59700
        H3I=HOS
        H3=HOS
        HOD2=HOS
        HODI=HOS
        HOD3=HOS
        HOT1=HOS
        HOI2=HOS
        HLPOTD=HOS
        CALL POGOO
        WRITE(init,100)-(PIL(J),J=1,8)
    100 FORMAT( ' PIL(1) PIL(2) PIL(3) PIL(4) PIL(5)
        1 PIL(6) PIL(7) PIL(8)' /lP8Ell.3)
    Initialization was extended to include the following:
        IF (FLAG .GT. 0.0) GO TO 1160 obsoleted method of
        FLAG = 100.0
        IF ( DWOP1 .GE. 0. ) HOP = HOS
        VOLOI2 = VOLOI2 + VOLCD1 + VOLCD2
            IF (TIME .GT. O.001) GO TO 1160 Apparently an error. It calls for
    adjustment to occur only if start time < .001
```

POT	$=$ FGEN $(37,9$, STIME)
HOS	$=$ FGEN $(5,8$, STIME)
ELCOM	$=$ FGEN $(58,29$, WOCOM)
ELOIN	$=$ FGEN $(61,32$, VOLPV)
IF (TCUT2	$. \operatorname{LT.~STIME)~DWOE2~}=0.0$
IF (TCUT3	.LT. STIME) DWOE3 $=0.0$
RHOLO	$=-1.0$
RHOHI	$=-1.0$
ICOUNT	$=0$

THE FOLLOWING "ERROR CHECKING" (FROM HERE TO STATEMENT 1100)
IS TO FIND THE CONSISTANCY AMONG THE GIVEN INITIAL CONDITIONS
OF THE OXID LINE INPUTS, POS (OXID INPUT PRESSURE), SU (INTERNAL
SPECIFIC ENERGY), AND RHOOS (OXID LINE INPUT DENSITY). IF THE CALCULATE
VALUE OF PRESSURE FROM SU AND RHOOS IS NOT TOO FAR OFF FROM "POS" THEN
RHOOS IS ADJUSTED TO MATCH THE CONDITION.

The adjustment loop described above is executed when restarting at nonzero time. Its omission from the restart procedure may account for the restart transients mentioned elsewhere. Reporting on the restart convergence is handled by the change monitor.

CALL chgo (. 0001,1)
adjok $=$.TRUE.
DO 10, $I=1,30$

```
        POS = POT + RHOOS * DDX * (ELCOM + ELOIN) *V386p4 SSM60000
```

 SUt \(=\) HOS - POS \(/(9336.0 *\) RHOOS \()\)
 CALL OXPROP(PANS, HOX, RHOOS, RHOLI2, RHOGI2,
 HGI2, HLI2, FLI2, SUt, N4)
 CALL chgmnt(adjOK, PANS, POS, 1)
 IF (adjok) GO TO 1100
 IF (PANS . LE. POS) THEN SSM60100
 RHOLO \(=\) RHOOS
 IF (RHOHI -LE. 0.0) THEN
 RHOOS \(=1.002 *\) RHOLO
 ELSE
 RHOOS \(=(\) RHOLO + RHOHI \() * 0.5\)
 ENDIF
 ELSE
 RHOHI \(=\) RHOOS
 IF (RHOLO .LE. 0.0) THEN
 RHOOS \(=0.998 * \mathrm{RHOHI}\)
 ELSE
 RHOOS \(=(\) RHOLO + RHOHI \() * 0.5\)
 ENDIF
 ENDIF
 10 CONTINUE
SSM60200
CALL wrchg (init, 1, 'OXIDF initial adjustment error')
The following re-initializations are necessary because of the restart
adjustment.
*
1100 CONTINUE
POJ $=$ POT + RHOOS * DDX * ELCOM * v386p4
POPVDN $=$ POJ + RHOOS * DDX * ELJPV * v386p4
SUOIN $=$ HOS - POS $/(9336.0 *$ RHOOS $)$
UOIN $\quad=$ SUOIN * WOIN
HOD1 $=$ HOS
SUOD1 = SUOIN
RHOD1 $=$ RHOOS
WOD1 = VOLOD1 * RHOOS
UOD1 $=$ SUOIN * WOD1
POD1 $=$ POS
POD1L $=$ POS
HOI2 $=$ HOS
SUOI2 $=$ SUOIN
RHOI2 $=$ RHOOS
WOI2 $=$ VOLOI2 * RHOOS SSM60400
UOI2 = SUOIN * WOI2
POI2 $=$ POS
POI2L $=$ POS
HOD2 $=$ HOS
SUOD2 $=$ SUOIN
RHOD2 $=$ RHOOS
WOD2 = VOLOD2 * RHOOS
UOD2 = SUOIN * WOD2
POD2 $=$ POS
POD2L $=$ POS
HOT1 $=$ HOS
SUOT1 = SUOIN
RHOT1 $=$ RHOOS
WOT1 $=$ VOLOT1 * RHOOS
UOT1 $=$ SUOIN * WOT1
POT1 $=$ POS
POT1L $=$ POS
HOD3 $=$ HOS
POD3 $=$ POS
RHOCD2 $=$ RHOOS SSM60600
*
CALL unintO (UOD1, 58)
CALL uninto (WOD1, 59)
CALL uninto (WHEOD1, 60)
CALL uninto (UOI2, 61)
CALL uninto (WOI2, 62)
CALL uninto (WHEOI2, 63)
CALL unintO (UOD2, 64)
CALL unintO (WOD2, 65)
CALL uninto (WHEOD2, 66)

```
            CALL unintO( UOT1, 67)
            CALL uninto( WOTl, 68)
            CALL uninto( WHEOT1, 69 )
            CALL lmintO( DWOP2, 74, 0.0, TOOBig)
            CALL lmintO( DWOT1, 75, 0.0, TooBig )
            CALL lmintO( DWOP2, 76, 0.0, TOOBig)
            CALL lminto( HCAVP1, 77, 0.0, 1.0)
            CALL lmint0( TCAVP1, 78, 0.0, 1.0)
            CALL lminto( HCAVP2, 79, 0.0, TooBig)
            CALL lmint0( TCAVP2, 80, 0.0, TooBig)
            CALL lmintO( HCAVP3, 81, 0.0, TooBig)
            CALL lminto( TCAVP3, 82, 0.0, TooBig)
            CALL lmintO( WOCOM, 83, 0.0, TOOBig)
            CALL lmintO( DWOPV, 84, 0.0, TOoBig)
            CALL uninto( POPVDN, 85)
            CALL lmintO( VOLPV, 86, 0.0, TOOBig)
            CALL unintO( UOIN, 87)
            CALL unintO( WOIN, 88 )
            CALL unintO( POSX, 89 )
            CALL unintO( HOS1, 90)
            CALL lmintO( WOI, 91, 0.0, TOOBig )
            CALL lminto( WOV, 91, - TooBig, 0.001)
            CALL lmintO( SO1, 93, 1.0E-10, TOOBig)
                            CALL lmintO( SO2, 94, 1.0E-10, TOOBig)
*
* 1160 CONTINUE for reference to original
    RETURN
ENTRY OXIDF
THE CALCULATION OF OXID FLOW IS IN GENERAL THE BALANCE OF ENERGY FLOW AND THE BALANCE OF MATERIAL. IN THIS SECTION AND ALSO FOLLOWING SECTIONS, THE NOTATIONS ARE AS FOLLOWS:
PXYZ: PRESSURE OF DUCT XYZ
RHOXYZ: DENSITY OF DUCT XYZ
Hxyz: ENTHALPY OF DUCT XYz
SUXYZ: SPECIFIC HEAT OF DUCT XYZ
UXYZ: TOTAL INTERNAL ENERGY OF DUCT XYz
DWXYZ: FLOW OF DUCT XYZ
Wxyz: MASS OF DUCT xyz
WHEXYZ: HELIUM WEIGHT OF DUCT XYZ (BECAUSE OF POGO SYSTEM, HELIUM DOES
APPEAR IN THE OXIDIZER SUPPLY DUCTS)
VHEXYZ: HELIUM VOLUMN OF DUCT XYZ
FHEXYZ: FRACTION OF HELIUM INDISE DUCT xyz
WHERE \(x y z\) CAN BE ONE OF THE FOLLOWING:
OS: OXIDIZER SUPPLY
OD1: LPOP OUTLET DUCT (COD IS ALSO USED FOR FLOW)
OI2: HPOP INLET DUCT
```

C OTI: LPOT INLET DUCT
IF(DWOP1.LE.O.)HOP=HOD1
IF(DWOP1.LE.O.)HOP=HOD1
HXD1=HOD1
HXD1=HOD1
IF (DWCOD .LT. O.0) HXD1 = HOI2
IF (DWCOD .LT. O.0) HXD1 = HOI2
UOD1 = pruint(DWOP1*HOP + (1. - ABKFLO)*TRQOP1*SO1*V9336
UOD1 = pruint(DWOP1*HOP + (1. - ABKFLO)*TRQOP1*SO1*V9336
1 + DWOT1*HOT1 - DWCOD*HXD1 - TRQOT1*SO1*V9336, 0, 58)
1 + DWOT1*HOT1 - DWCOD*HXD1 - TRQOT1*SO1*V9336, 0, 58)
SSM60700
SSM60700
WOD1 = pruint(DWOP1 + DWOT1 - DWCOD, 0, 59)
WOD1 = pruint(DWOP1 + DWOT1 - DWCOD, 0, 59)
SUOD1 = UODI / WOD1
SUOD1 = UODI / WOD1
WHEOD1 = pruint(
WHEOD1 = pruint(

+ WTHE(DWOP1, 0.0, FHEOD1, DWCOD, FHEOI2, DWOT1, FHEOT1), 0, 60)
+ WTHE(DWOP1, 0.0, FHEOD1, DWCOD, FHEOI2, DWOT1, FHEOT1), 0, 60)
FHEOD1 = WHEOD1 / WOD1
FHEOD1 = WHEOD1 / WOD1
VHEOD1 = .99*VHEOD1 + .01*WHEOD1 * 4632.*THE/AMAXI(POD1L-3.,
VHEOD1 = .99*VHEOD1 + .01*WHEOD1 * 4632.*THE/AMAXI(POD1L-3.,
VHEOD1 = .99*VHEOD1 + 46.32 * WHEOD1 * THE /
VHEOD1 = .99*VHEOD1 + 46.32 * WHEOD1 * THE /
+ rlimit(PODIL-3., POD1L+3., POD1)
+ rlimit(PODIL-3., POD1L+3., POD1)
RHOD1 = WOD1 / AMAXI(1., VOLOD1 - VHEODI)
RHOD1 = WOD1 / AMAXI(1., VOLOD1 - VHEODI)
RHOP1 = WODI / VOLOD1
RHOP1 = WODI / VOLOD1
PODIL = POD1
PODIL = POD1
SSM60800
SSM60800
CALL OXPROP(POD1,HOD1,RHOD1,RHOLD1,RHOGD1,HGD1,HLD1,FLD1,SUOD1,N1)
CALL OXPROP(POD1,HOD1,RHOD1,RHOLD1,RHOGD1,HGD1,HLD1,FLD1,SUOD1,N1)
HOD1 = SUOD1 + PODI / (RHODI * 9336.)
HOD1 = SUOD1 + PODI / (RHODI * 9336.)
HPOP INLET DUCT
THIS IS THE DUCT RIGHT BEFORE THE HIGH PRESSURE OXID PUMP.
THE INPUTS TO THIS DUCT ARE:
DWCOD: FROM LPOP OUTLET DUCT
DWOP2C: BYPASS FLOW FROM DOWNSTREAM OF HPOP BOOSTER STAGE
DWOP3C: BYPASS FLOW FROM DOWNSTREAM OF HPOP
DWGOP: OXID FLOW FROM POGO SYSTEM IN GAS PHASE (CAN BE + OR -)
THE OUTPUTS OF THIS DUCT ARE:
DWO: OXID FLOW TO POGO SYSTEM IN LIQUID PHASE (CAN BE + OR -)
DWOP2: HPOP FLOW
UOI2 = pruint(DWCOD*HOD1 + DWOP2C*HOD3 + DWOP3C*HOD2
UOI2 = pruint(DWCOD*HOD1 + DWOP2C*HOD3 + DWOP3C*HOD2
1 - DWO*HOI2 - DWOP2*HOI2 + 75.0*DWGOP + 1.25*(530.-TGAS)*DWHOP
1 - DWO*HOI2 - DWOP2*HOI2 + 75.0*DWGOP + 1.25*(530.-TGAS)*DWHOP
2 + QBKFL2*WOI2 / AMAX1(10.0, WT2BK), 0, 61)
2 + QBKFL2*WOI2 / AMAX1(10.0, WT2BK), 0, 61)
WOI2 = pruint(
WOI2 = pruint(
+ DWCOD + DWOP2C + DWOP3C - DWO - DWOP2 + DWGOP, 0, 62) SSM60900
+ DWCOD + DWOP2C + DWOP3C - DWO - DWOP2 + DWGOP, 0, 62) SSM60900

```
        SUOI2 = UOI2 / WOI2
        WHEOI2 = pruint(
    + WTHE (DWCOD, FHEOD1, FHEOI2, DWOP2, FHEOD2, DWHOP, 1.0), 0, 63 )
        FHEOI2 = WHEOI2 / WOI2
        VHEOI2 = .99*VHEOI2 + 46.32 * WHEOI2 * THEADD /
    + rlimit( POI2L - 3., POI2L + 3., POI2))
    RHOI2 = WOI2 / AMAX1(1., VOLOI2 - VHEOI2)
    FHEOI2 = WHEOI2 / WOI2
    POI 2L=POI2
    CALL OXPROP(POI2,HOI2,RHOI2,RHOLI2,RHOGI2,HGI2,HLI2,FLI2, SSM61000
    1 SUOI2,N4)
    HOI2 = SUOI2 + POI2 / (RHOI2 * 9336.)
    HPOP DISCHARGE DUCT TO MOV
THIS DUCT IS THE CONNECTION BETWEEN HPOP AND MOV.
THE INPUTS TO THIS DUCT ARE:
DWOP2: HPOP FLOW
THE OUTPUTS FROM THIS DUCT ARE:
DWOP3: OXID FLOW TO HPOP BOOSTER STAGE
DWOP3C: BYPASS FLOW BACK TO HPOP INLET DUCT
DWMOV: OXID FLOW TO MAIN OXID VALVE
DWOT1I: FLOW TO HPOT INLET DUCT
    UOD2 pruint( DWOP2*HOI2 + TRQOP2*SO2*v9336 -
+ (DWOP3 + DWOP3C + DWMOV + DWOT1I)*HOD2 -
+ QBKFL2*WOI2/AMAX1(10., WT2BK), 0, 64 )
    WOD2 = pruint( DWOP2 - DWOP3 - DWOP3C - DWMOV - DWOT1I, 0, 65 )
    SUOD2 = UOD2 / WOD2
    wHEOD2 = pruint(
    + WTHE(DWOP2,FHEOI2,FHEOD2,DWOT1I,FHEOT1,-DWMOV,FHEOD2), 0, 66 ) }10
    FHEOD2 = WHEOD2 / WOD2
    VHEOD2 = .995*VHEOD2 + 23.16 * WHEOD2 *THE /
    + rlimit( POD2L - 3., POD2L + 3., POD2)
    RHOD2 = WOD2 / AMAX1(1., VOLOD2 - VHEOD2)
    vRHOD2 = 1. / RHOD2
    RHOP2=WOD2/VOLOD2
    IF (IRHOP2 .EQ. 1) RHOP2= WOI2/VOLOI2
    POD2L=POD2
    CALL OXPROP(POD2,HOD2,RHOD2,RHOLD2,RHOGD2,HGD2,HLD2,FLD2,
1 SUOD2,N5)
    SSM61200
    HOD2 = SUOD2 + POD2 /(RHOD2 * 9336.)
        LPOP TURBINE SUPPLY DUCT
    THIS IS A SIMPLE ONE INPUT ONE OUTPUT DUCT FROM HPOP OUTLET TO LPOT INLE
INPUT TO THE DUCT:
DWOTII: FROM HPOP OUTLET
OUTPUT FROM THE DUCT:
```

DWOT1: TO HPOT INLET

```
        UOT1 = pruint( DWOTII*HOD2 - DWOT1*HOT1, 0, 67 )
        WOT1 = pruint( DWOTII - DWOT1, 0, 68)
        SUOT1=UOT1/WOT1
        WHEOT1 = pruint(
+ WTHE(DWOTII,FHEOD2,FHEOT1,DWOT1,FHEOD1,0.0,0.0), 0, 69)
        FHEOT1=WHEOT1/WOT1
        VHEOT1 = .99*VHEOT1 + 46.32*WHEOT1*THE /
+ rlimit( POTIL - 3., POT1L + 3., POTl )
    RHOT1 = WOT1 / AMAX1(1., VOLOT1 - VHEOT1)
    RHOT1A=WOT1/VOLOT1
    POT1L=POT1
    CALL OXPROP(POT1,HOT1,RHOT1,RHOLT1,RHOGT1,HGT1,HLT1,FLT1,
    1 SUOT1,N6)
    HOT1 = SUOT1 + POT1 / (RHOT1 * 9336.)
```

 HPBP DISCHARGE
 SSM61400
 THE HPBP DISCHARGE DUCT HAS:
INPUTS TO THE DUCT:
DWOP3: HPOP BOOSTER PUMP FLOW
OUTPUTS FROM THE DUCT:
DWOP2C: BYPASS FLOW BACK TO HPOP INLET DUCT
DWOPOV: OXID SUPPLY TO OXID PREBURNER OXID CONTROL VALVE
DWFPOV: OXID SUPPLY TO FUEL PREBURNER OXID CONTROL VALVE
HOWEVER, FOLLOWING EQUATION USES AN EMPERICAL EQUATION TO ESTIMATE
THE NEXT STATE OF SPECIFIC ENTHALPY. THE EXECT MEANING OF THE EQUATION
IS UNKNOWN. BUT IT SEEMS TO CONSIDER THE TIME DELAY OF THE DUCT AND
USE DT/O.2 AS A SMOOTH FACTOR.
HOD3 = HOD $3+$ DT $/ .2 *(T R Q O P 3 * S O 2 /(A M A X 1(.3 * S Q R T(A M A X 1(100 ., D P O P 3))$,
1 DWOP3) *9336.)-HOD3+HOD2)
HOD3 $=$ pruint (5.* (TRQOP3*SO2 /
+ (AMAX1(.3*XIOth(AMAX1(100., DPOP3), 5), DWOP3)*9336.) -

+ HOD3 + HOD2), 0, 70)
POD3 $=$ POD2 + DPOP3 - DWOP3 * ABS (DWOP3) * ROP3IN / RHOP2
CALL O2DFPE (HOD3, POD3, RHOP3,TOD3, 3, 1, 1)
CALL O2PROP (HOD3, RHOP3, 1, POD3,TOD3,3)

FLOW RATES

ALL THE OXID FLOW CALCULATED EXCEPT OPOV, FPOV AND POGO SYSTEM.
DWOP1L=DWOP1
CALL uninto (HOD3, 70)
CALL lminto (DWOP1, 71, 0.0, TooBig)
DWOP1 = prflow (DWOP1, ZOP1 + ZOIN, -. $4 *$ ROCOD/RHOPI - ROIN,

+ POPVDN + ELOIN*RHOOS*DDX*V386p4 + DPOP1 - POD1, 71) SSM61500

```
    rorhoi = - ROCOD / RHOI2
    CALL lmintO( DWCOD, 72, 0.0, TOOBig )
    DWCOD = prflow( DWCOD, ZOCOD, rorhoi, POD1 - POI2, 72 )
    IF ( DWOP2.GE.O.) THEN
    CALL lmintO( DWOP2, 73, 0.0, TOOBig )
        DWOP2 = prflow( DWOP2, ZOP2, rorhoi, POI2 + DPOP2 - POD2, 73 )
    ELSE
        DWOP2 = prflow( DWOP2, ZOP2, -.3*ROCOD*VRHOD2, POI2,
    +
    ENDIF
    DWOT1I = prflow( DWOT1I, hzOT1, -ROT1F*VRHOD2, POD2 - POT1, 74 )
    DWOT1 = prflow( DWOT1, hZOT1, -ROT1N/RHOT1A, POT1 - POD1, 75 )
    ROIX = ROI * PRIMOI
    DWMOV = prflow( DWMOV, ZMOV,
+ - (COV*RMOV + RMOVL + ROIX)*VRHOD2, POD2-PCIE, 76 ) SSM61600
    DWOP3 = DWOPO + DWFPO + DWOP2C
    DWOP2C = X10th( recpos( (POD3 - POI2)*RHOP3/ROP2C ), 5 )
    DWOP3C = X10th( recpos( (POD2 - POI2)*RHOD2/ROP3C ), 5 )
    PHIOT1 = SO1 / (DWOT1+1.E-10)
    ROT1N=ANOT1+BNOT1*PHIOT1-CNOT1*PHIOT1**2
    ROT1N = ANOT1 + PHIOT1*( BNOT1 - CNOTI*PHIOT1 )
    PROT1=POD1/AMAX1(POT1,.01)
    DWO1A = recpos( DWOP1 )
PUMP/TURBINE PERFORMANCE
```

IN THIS PUMP/TURBINE SECTION, THE NOTATIONS ARE:
FLOCOE: FLOW COEFFICIENT
DPXYZ: PRESSURE CHANGE ACROSS THE PUMP/TURBINE
TRQXYz: TORQUE REQUIRED
CDPXYZ: PRESSURE RAISE COEFFICIENT (CONSTANT, PUMP CHARACTERISTICS)
CTQXYZ: TORQUE COEFFICIENT (CONSTANT, PUMP CHARACTERISTICS)
hCAVxyz: CAVITATION FACTOR FOR PRESSURE RAISE
TCAVXYZ: CAVITATION FACTOR FOR TORQUE
WHERE XYz IS ONE OF THE FOLLOWING
OP1 (OR P1): LOW .PRESSURE OXID PUMP
OP2 (OR P2): HIGH ${ }^{\circ}$ PRESSURE OXID PUMP
OP3 (OR P3): HIGH PRESSURE OXID PUMP BOOSTER STAGE
was $1 / 3$ optimized
rhosol $=$ RHOP1 * SO1
FLOCOE $=$ AMAX1 (-39.5, DWOP1 / rhosol)
rhoso = rhosol * SOl
DPOP1 $=\operatorname{FGEN}(45,38$, FLOCOE $) ~ * ~ r h o s o ~ * ~ C D P O P 1 ~ * ~ H C A V P 1 ~ 1 ~$
TRQOP1 $=$ FGEN (46, 39, FLOCOE) * rhoso * CTQOP1 * TCAVP1
rhoso2 $=$ RHOP2 * SO2
FLOCOE = DWOP2 / rhoso2
rhoso $=$ rhoso2 * SOl
DPOP2 $=\operatorname{FGEN}(47,40$, FLOCOE $)$ * rhoso * CDPOP2 * HCAVP2
TRQOP2 $=$ FGEN (48, 41, FLOCOE) * rhoso * CTQOP2 * TCAVP2
rhoso3 $=$ RHOP3 * SO2

```
FLOCOE = DWOP3 / rhoso3
rhoso = rhoso3 * SO2
DPOP2 = FGEN(49, 42, FLOCOE) * rhoso * CDPOP3 * HCAVP3
TRQOP2 = FGEN(50, 43, FLOCOE) * rhoso * CTQOP3 * TCAVP3
```

replaces typical
DPOP3 $=$ FGEN $(49,2$, DWOP3 $/($ RHOP3*SO2 $) ~) ~ * R H O P 3 * S O 2 * * 2 * C D P O P 3 * H C A V P 3$
TRQOP3 $=\operatorname{FGEN}(50,2, \mathrm{DWOP} 3 /(\mathrm{RHOP} 3 * S O 2)) * \mathrm{RHOP} 3 * S O 2 * * 2 * \mathrm{CTQOP} 3 * T C A V P 3$
Eliminated formatted output here

```
IF ( GLOPC .GT. 0. ) THEN
```

 DDX \(=386.4\) * GLOPC * PCIE
 ELSE
DDX $=386.4$
ENDIF

PUMP CAVITATION DESCRIPTIONS
PUMP CAVITATION IS RATHER COMPLICATED IN NATURE. SINCE I DON'T HAVE THE DOCUMENT OR NBS TABLE ON HAND, I CAN ONLY FOLLOW THE CODE AND TRY TO EXPLAIN WHAT IS MEANT BY THE PROGRAM.

THE FIRST SECTION OF THE PROGRAM SEEMS TO FIND THE CAVITATION STATUS OF LPOP AT LOW OR NO FLOW CONDITIONS. THIS IS THE SITUATION WHEN THE ENGIN IS SHUTTING DOWN AND THE OXID PREVALVE IS CLOSING.
(PREVALVE IS THE VALVE BEFORE THE LPOP INPUT LINE TO CONTROL THE FLOW OF OXIDIZER FROM THE OXID TANK FOR AN INDIVIDUAL ENGIN.)

TIMCAV:
AN INPUT VARIABLE, CAVITATION HAPPENS ONLY AFTER TIMCAV
POINVP: OXID INPUT LINE VAPOR PRESSURE
PINPSH: NET POSITIVE SUCTION HEAD (NPSH) VARIABLE OF P1
ICAVMD: FLAG TO SELECT THE METHOD OF CALCUALTING CAVITATION AT ZERO OXID FLOW OF P1 WHEN PREVALVE IS CLOSING

```
IF (STIME .GT. 'TIMCAV) THEN
    PINPSH = (POS - POINVP)/(12.0*RHOOS)
    FLOC1 = AMIN1(.8, DWOIA/rhosol*V41p34)
    X1 = P1NPSH/(1. + solsq)
    IF ( FLOCl .LT. 0.3) THEN
        IF (ICAVMD .EQ. 1) THEN
            DUMY= AMAXI(0.,APV)
            dubasl = AMIN1(1. , DUMY/BASEAR)
            dubas2 = 1. - dubasl
        ELSE
            ZERHFL= FGEN(66,44,X1)
            ZERTFL= FGEN(67,45,X1)
```

 ZERHFL= dubasl*FGEN(66, 44, X1) + dubas2 * FGEN(81, 56, X1) 2100
 ZERTFL= dubas1*FGEN \((67,45, \mathrm{X1})+\) dubas2 * \(\operatorname{FGEN}(82,57, \mathrm{Xl})\)

ENDIF

THE FOLLOWING CONDITION IS WHEN THE DWOP1 IS LESS THAN 0.0 (FLOW BACK) AND THE CAVITATION IS COLLAPSING IN DIRECT PROPORTIONAL TO FLOW.

```
IF (DWOPI .LT. 0.0) THEN
    accel = - DWOP1 / (RHOP1 * WTOP1)
    HCAVP1 = prlint( accel, 0, 77 )
    TCAVP1 = prlint( accel, 0, 78 )
```

INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.0 AND 0.3 OF
TCAV1 IS THE TIME CONSTANT TO GENERATE (OR COLLAPSE) CAVITATION.

ELSE
fact2 $=$ FLOC1 * 3.33333
factl $=1$. - fact 2
HCAVP1 = prlint((fact1*ZERHFL +
+ fact $2 * \operatorname{FGEN}(72,46, \mathrm{X1})-\mathrm{HCAVP1}) / \mathrm{TCAV1}, 0,77$)
TCAVP1 $=$ prlint((factl*ZERTFL
fact $2 * \operatorname{FGEN}(74,47, \mathrm{XI})$ - TCAVP1) / TCAV1 , 0, 78)

ENDIF
INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.3 AND 0.8 OF ELSE
fact $1=1.6-2 . *$ FLOCl
fact $2=1 .-$ factl
HCAVP1 $=$ prlint ((factl*FGEN (72, 46, XI) +
$+\quad$ fact $2 * \operatorname{FGEN}(73,48, \mathrm{X1})$ - HCAVP1) / TCAV1, 0, 77) SSM62300
TCAVP1 $=$ prlint (factl*FGEN $(74,47, X 1)+$
fact $2 * \operatorname{FGEN}(75,49, \mathrm{X1})$ - TCAVP1) /TCAV1, 0,78)
ENDIF
FLOC2 $=$ rlimit $(.2, .8, ~ D W O P 2 /$ rhoso2 * v8p866)
POI2VP $=$ quadr (HOI2 $)$ P2NPSH $=($ POI2 - POI2VP) / (12.0*RHOI2)
$\mathrm{X} 2=\mathrm{P} 2 \mathrm{NPSH} /(\mathrm{so} 2 \mathrm{sq}+1$.
IF (FLOC2 .LT. 0.5) THEN
INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.0 AND 0.5 OF
fact1 $=1.66667-3.33333 *$ FLOC2
fact $2=1$. - fact 1
HCAVP2 $=$ prlint $($ factl $* \operatorname{FGEN}(68,50, X 2)+$
$+\quad$ fact2 * FGEN (76, 51, X2) - HCAVP2)/ TCAV2, 0, 79)
TCAVP2 $=$ prlint $($ factl $* \operatorname{FGEN}(69,52, X 2)+$
$+\quad$ fact $2 * \operatorname{FGEN}(78,53, \mathrm{X} 2)-\operatorname{TCAVP} 2) / \mathrm{TCAV} 2,0,80$)
INTERPOLATION OF CAVITATION FACTOR FOR FLOW COEF BETWEEN 0.5 AND 0.8 OF

ELSE
SSM62400
fact $1=2.66667-3.33333 *$ FLOC2
fact $2=1$. fact1
HCAVP2 $=$ prlint $($ factl $* \operatorname{FGEN}(76,51, ~ X 2)+$

```
+ fact2 * FGEN(77, 54, X2) - HCAVP2 ) / TCAV2, 0, 79 )
    TCAVP2 = prlint( ( fact1 * FGEN(78, 53, X2) +
                        fact2 * FGEN(79, 55, X2) - TCAVP2 ) / TCAV2, 0, 80)
        ENDIF
```

POD2VP=620.15+19.1202*HOD2+.149371*HOD2**2
P3NPSH=(POD2-POD2VP)/(12.*RHOD2)
$\mathrm{X} 3=\mathrm{P} 3 \mathrm{NPSH} /(1+\mathrm{SO} 2 * * 2)$ it matters
POD2VP $=$ quadr (HOD2)
P3NPSH $=($ POD2 - POD2VP)*.833333*VRHOD2
$\sin 62500$
$\mathrm{X} 3=\mathrm{P} 3 \mathrm{NPSH} /(1 .+\operatorname{so2sq})$
HCAVP3 $=\operatorname{prlint}((\operatorname{FGEN}(70,58, \mathrm{x} 3)-\operatorname{HCAVP3}) / \operatorname{TCAV} 2,0,81)$
$\operatorname{TCAVP3}=\operatorname{prlint}((\operatorname{FGEN}(71,59, \mathrm{X} 3)-\operatorname{TCAVP3}) / \operatorname{TCAV} 2,0,82)$
Cavitation formatted output was eliminated. Output variables are
included in the regular output list
ENDIF
SSM62600

OX INLET LINE DESCRIPTION

OXID TANK SUPPLIES THREE ENGINS. DWOE2 AND DWOE3 ARE THE FLOWS FROM
TANK TO ENGIN \#2 AND ENGIN \#3 RESPECTIVELY.
THE NOTATIONS USED IN THIS SECTION ARE:
TDCOM: TIME TO DETACH OXID TANK
WOCOM: OXID WEIGHT IN THE COMMON DUCT (FOR ALL THREE ENGINS)
POT: TANK PRESSURE AS FUNCTION OF TIME
ELCOM: ELEVATION OF OXIDIZER IN COMMON DUCT (VERTICAL FEEDING)
RCOM: RESISTANCE OF OXID COMMON DUCT
ZCOM: INERTIA OF OXID COMMON DUCT
ELOIN: ELEVATION OF OXID IN INLET DUCT (BETWEEN PREVALVE AND LPOP)
ROIN: RESISTANCE OF OXID INLET DUCT (BETWEEN PREVALVE AND LPOP)
ZOIN: INERTIA OF OXID INLET DUCT (BETWEEN PREVALVE AND LPOP) RJTPVD: THE RESISTANCE BETWEEN JUNCTION AND DOWN SIDE OF PREVALVE

```
IF (STIME .GE. TDCOM) THEN
    WOCOM = prlint( -DWOTJ, 0, 83 )
ENDIF
POT = FGEN(37, 9, STIME)
ELCOM = FGEN(58, 29 ,WOCOM)
RCOM = FGEN(59, 30, WOCOM)
ZCOM = FGEN(60, 31, WOCOM)
ELOIN = FGEN(61, 32, VOLPV)
```

```
ROIN = FGEN (62, 33, VOLPV)
ZOIN = FGEN (63, 34, VOLPV)
APV = recpos( FGEN (64, 35 ,(STIME - TCUT - TCLPV) / DTPV) )
RJTPVD = RL1 + RPV / AMAXI(1.E-10, APV)**2
```

THIS SECTION CALCULATE THE BACK FLOW OF PUMPS. THE EQUATIONS USED TO DESCRIBE THE BACKFLOW AND MINIMUM WEIGHT OF PUMP INPUT LINES ARE NOT IN THE DOCUMENT.
QBKFLO: ENERGY BACK FLOW RATE TO THE UPSTREAM OF THE PUMP, BTU/SEC WTIBK, WT2BK: DEFINITION NOT CLEAR, DIMENSION = LB

```
    FLCOE1 = DWO1A / rhosol
    EFF= recpos(FLCOE1 * (.03066 - .0003709*FLCOE1) )
    flcoe = ( 1. - FLCOE1*V41p34 )
    QBKFLO = recpos( TRQOP1*SO1*V9336*(1.-EFF)*flcoe )
    WT1BK = AMINI(800., 33. + 2.74E+06 * P1NPSH / solsq,
    1 1310. - 1.14E+06 * P1NPSH / solsq) * flcoe SSM62800
    IF ( VOLPV .GE. 10. )
    + WT1BK = AMIN1( WOIN,WT1BK)
    ABKFLO = QBKFLO*9336./( AMAX1(1., TRQOP1)*SO1)
    FLCOE2 = recpos( DWOP2/(RHOP2*SO2) )
    EFF2 = recpos( FLCOE2 * ( .1537 - .008667 * FLCOE2 ) )
    QBKFL2 = ABK2 *
    + recpos( TRQOP2*SO2*V9336*(1.-EFF2)*(1.-FLCOE2*V8p866) )
    WT2BK = AMIN1(270., so2sq*(2.583E-4 - 2.91E-5*FLCOE2) )
```

this part calculates the energy balance and flow between oxid tank and
LPOP. THE LAYOUT OF THE HARDWARE OF THE SYSTEM IS:
TANK -------------> JUNCTION ---------------> PREVALVE -----------------> LPOP
TO OTHER
ENGIN
(TOP) COMMON DUCT ELI OIN (DOW
FLOW: DWOTJ • DWOPV DWOPI
PRESSURE:
POT
POPVDN
POS
HOTNK $=$ FGEN (5, 8, STIME)
POTVP = quadr (HOTNK)
factl $=$ AMIN1 $(1.0,3.33333 *$ APV)
POTVP $=$ factl * POTVP + (1. - factl) * POINVP
DWOTJ $=$ DWOPV + DWOE2 + DWOE 3
SSM62900
IF (WOCOM .LE. 0.0) DWOTJ $=0.0$
OXID FLOWS TO ENGIN \#2 AND ENGIN \#3 ARE TIME SCHEDULED

```
        DWOE2 L=DWOE2
        DWOE2=FGEN(65, 36, STIME-TCUT2)
        DDWOE2=(DWOE2-DWOE2L)/DT
        DWOE3 L=DWOE3
        DWOE3=FGEN (65, 60, STIME-TCUT3)
        DDWOE3 = (DWOE3-DWOE3L)/DT
        DWOPVL=DWOPV
Originally DWOPV step was computed at some expense, then discarded
if WOCOM .LE. O.
    rhdd4 = RHOOS * DDX * v386p4
    IF ( WOCOM .LE. O.0) THEN
        DWOPV = 0.0
    ELSE
        CALL prflow( DWOPV, ZCOM+ZJTPV, -RJTPVD,
+ POT + (ELCOM + ELJPV)*rhdd4 - POPVDN -
+ RCOM*DWOTJ*ABS (DWOTJ) - (DDWOE2+DDWOE3) * ZCOM, 84 ) 3000
ENDIF
DDWOTJ = DDWOE2 + DDWOE3 + (DWOPV - DWOPVL) / DT
POJ = POT + ELCOM*rhdd4 - RCOM*DWOTJ**2 - ZCOM*DDWOTJ
IN THE FOLLOWING CALCULATION, THE CONSTANT "BOPVDN" USED FOR CALCULATING
POPVDN IN THE CASE OF FLOW CHANGE IN THE INPUT LINE IS SUSPECIOUSLY
THE VALUE OF "BOPVDN" GIVEN IN THE FILE "START4.DAT" IS 5.0 (PSI/LB).
WHILE AN EQUIVALENT CASE IN OPOV LINE, "CFACT"=400000. (PSI/LB).
I BELIEVE THE VALUE SHOULD BE CHANGED ESPECIALLY IN THE TRANSIENT STUDY.
CONDITION FOR OUTPUT FLOW > INPUT FLOW WHERE EMPTY SPACE CAN BE GENERAGE
WITH THE PRESSURE EQU}AL TO VAPOR \overline{PRESSURE OF THE OXID LINE.
VOLPV: EMPTY SPACE VOLUMN FILLED BY OXID VAPOR IN PREVALVE SIDE
In the original, if DWOP1 .EQ. DWOPV, UOIN and WOIN get integrated twice.
pDWOPV = recpos( DWOPV )
IF ( DWOP1 .GT. 0.0) THEN
    IF ( DWOPI .GE. DWOPV ) THEN
        CALL uninto( POPVDN, 85)
        POPVDN = pruint( BOPVDN*(DWOPV-DWOP1), 0, 85)
        POPVDN = AMAX1(POTVP, POPVDN ) variable lower limit is implemented
by re-initializing the integrator.
    IF ( POPVDN .LT. POTVP ) THEN
                POPVDN = POTVP
                CALL unintO( POTVP, 85 )
    ENDIF
    IF ( POPVDN .LE. POTVP + .001) THEN
                VOLPV = pruint( ( DWOP1 - pDWOPV )/RHOOS, 0, 86)
    ENDIF
```

```
* No change in VOLPV if POPVDN .GT. POTVP + .001 ?
                            UOIN = pruint( pDWOPV*FGEN (5, 8, STIME) -
                            DWOPI*HOS + QBKFLO*WOIN/AMAX1(77.,WT1BK), 0, 87 )M63100
                            WOIN = pruint( pDWOPV - DWOP1, 0, 88)
        CONDITION FOR INPUT_FLOW > OUTPUT_FLOW WHERE EMPTY SPACE (IF EXISTS)
        ARE BEING FILLED. OR THE PRESSURE MAY RAISE IF THERE IS NO EMPTY SPACE.
        ELSE
            VOLPV = prlint( (DWOP1 - DWOPV)/RHOOS, 0, 86)
            IF( VOLPV .GE. .O01) THEN
                POPVDN = POTVP
            ELSE
                POPVDN = pruint( BOPVDN*(DWOPV- DWOP1), 0, 85 )
                IF ( POPVDN .LT. POTVP) THEN
                POPVDN = POTVP
                CALL unintO( POTVP, 85 )
            ENDIF
            ENDIF
            IF( DWOPV .GT.O.) THEN
            HOPV = FGEN (5, 8, STIME)
            ELSE
                HOPV = HOS
            ENDIF
            UOIN = pruint( DWOPV*HOPV - DWOP1*HOP +
    + QBKFLO*WOIN/AMAXI(77.,WTlBK), 0, 87)
            WOIN = pruint( DWOPV - DWOP1, , 0, 88)
        ENDIF
BACK FLOW FROM THE PUMP, FILLING UP THE EMPTY SPACE
        ELSE
            IF ( VOLPV .GT. 0.001 ) THEN
            VOLPV = prlint( (DWOP1 - pDWOPV)/RHOOS, 0, 86)
            POPVDN = POTVP
            CALL unintO( POTVP, 86 )
            UOIN = pruint( pDWOPV*FGEN(5, 8, STIME)
                    - DWOP1*HOD1+QBKFLO*WOIN/AMAX1(77., WT1BK), 0, 87 )
            WOIN = pruint( pDWOPV-DWOP1, 0, 88)
BACK FLOW FROM THE PUMP, WITHOUT EMPTY SPACE IN THE LINE
    ELSE
                                    SSM63300
            POPVDN = pruint( BOPVDN*(DWOPV - DWOP1), 0, 85 )
            IF ( POPVDN .LT. POTVP ) THEN
                POPVDN = POTVP
            CALL unintO( POTVP, 85 )
        ENDIF
```

```
```

 IF(DWOPV .GT. 0.0) THEN
    ```
```

 IF(DWOPV .GT. 0.0) THEN
 UOIN = pruint(DWOPV*FGEN(5,8,STIME) - DWOP1*HODI + +
    ```
```

 UOIN = pruint(DWOPV*FGEN(5,8,STIME) - DWOP1*HODI + +
    ```
```



```
```

 ELSE
    ```
```

 ELSE
 UOIN = pruint(DWOPV*HOS - DWOP1*HOD1 +
 UOIN = pruint(DWOPV*HOS - DWOP1*HOD1 +
 QBKFLO*WOIN/AMAX1(77., WT1BK), 0, 87)
 QBKFLO*WOIN/AMAX1(77., WT1BK), 0, 87)
 END
 END
 WOIN = pruint(DWOPV-DWOP1, 0, 88)
 WOIN = pruint(DWOPV-DWOP1, 0, 88)
 ENDIF
 ENDIF
 ENDIF
 ENDIF
 POS = POPVDN + ELOIN*rhdd4 - ROIN*DWOPI*ABS(DWOP1) -
 POS = POPVDN + ELOIN*rhdd4 - ROIN*DWOPI*ABS(DWOP1) -
 + ZOIN*(DWOP1 - DWOPIL)/DT
+ ZOIN*(DWOP1 - DWOPIL)/DT
IF (POS .LT. POINVP) POS = POINVP
IF (POS .LT. POINVP) POS = POINVP
POSX = pruint(TAU*(POS - POSX), 0, 89)
POSX = pruint(TAU*(POS - POSX), 0, 89)
SUOIN = UOIN/WOIN
SUOIN = UOIN/WOIN
HOS = SUOIN + POS/(RHOOS*9336.)

```
```

HOS = SUOIN + POS/(RHOOS*9336.)

```
```

FOLLOWING IS AN ESTIMATION OF THE SPECIFIC ENTHALPY OF THE "OIN" LINE.
IT SEEMS THIS IS ONLY TRUE FOR A STEADY STATE FLOW.
BASED ON THE EQUATION BELOW, IT SUGGESTS THAT THE FILLED UP WEIGHT OF TH
"OIN" LINE IS 77LB.
IF (DWOP1 .GT. 0.) THEN
HOS1 = pruint (DWOP1*V77* (HOS-HOS1), 0, 90)
ELSE
HOS1 $=$ pruint $(-$ DWOP1*V77* (HOD1 - HOS1), 0, 90$)$
ENDIF
POINVP $=$ quadr $($ HOS1 $)$
TRQOT1 = (AOT1 - BOT1*PHIOT1)*DWOT1*ABS (DWOT1)*CTQOT1
POGO SYSTEM BALANCE IS CALLED AS PART OF THE OXID FLOW.

CALL POGOS

PRIME MAIN CHAMBER
PRIMING OF MOV AND OXID INJECTOR IS DEFINED AS SIMPLE FUNCTIONS OF FILLED UP RATION OF THE PARTICULAR SPACE.
WOV: WEIGHT TO BE FILLED, INITIAL VALUE $=-2.0$, FILLED $=0.0$
WOI: INJECTOR OXID WEIGHT, INIT VALUE $=0.0$, FILLED $=46.2$
IF (XMOVPF .AND. WOV.GT.-.1) THEN $\operatorname{COV}=1 .+10 . * \mathrm{WOV}$
IF (WOV.GT.-.001) THEN
WRITE (event,' (A, E12.4)') ' MOV BUBBLE PRIMED AT ', STIME
$\mathrm{XMOVPF}=. \mathrm{FALSE}$.
SSM63600
END IF
ELSE IF (WOV .LT. -. 001) THEN
$C O V=0.025$
ELSE

```
        COV=1.0
```

 END IF
    ```
    WOI = prlint( DWMOV*COV - DWOI, 0, 91)
    WOV = prlint( DWMOV*(1.0 - COV), 0, 92)
    rhomov = VOLOD2 / WOD2
    PRIMOI=FGEN(3, 37, WOI)
```

 IF (PRIMIF . AND. WOI .GT. 40.) THEN
 WRITE (event,'(A,E12.4)') ' MC PRIMED AT ', STIME
 SSM63700
 PRIMIF \(=\).FALSE.
 END IF
 DWOI \(=\) DWMOV \(*\) PRIMOI * COV
 POINJ \(=\) PCIE + ROI *DWOI **2 * rhomov
 PMOV \(=\) POD2
 IF (TIME.GE.TLI.AND.TIME.LE.TH1)WRITE (6,1410)TIME,WOCOM,ELCOM, etc
 IN FUEL FLOW SUBROUTINE, QF IS TOTAL FUEL FLOW IN GALLON/MIN.
QO IN THE FLOWWING EQUATION DOESN'T SEEM TO REPRESENT SIMILAR QUANTITY.
$\mathrm{QO}=(1.0-0.002789 *(T O S-160)) *.(17.5339+6.19891 *(\mathrm{DWOTPR}+\mathrm{DWMOV}+\mathrm{DWOP} 3$
$1-$ DWOP2C) +0.208812*SO2) *AMIN1 (1.0, (DWOTPR+DWMOV+DWOP3-DWOP2C) *
2 .1)

```
    dWsum = DWOTPR + DWMOV + DWOP3 - DWOP2C
    QO = (1.0 - 0.002789*(TOS - 160.) ) *
    + (17.5339 + 6.19891*dwsum + 0.208812*SO2 )*
    + AMIN1(1.0, dwsum*.1)
    OXIDIZER PUMP SPEEDS
```

IN THE FOLLOWING CALCULATIONS:
TQXYZB: BREAKAWAY TORQUE OF PUMP XYZ
IF (SO1.LT. 11:0) THEN
IF (TRQOT1-TRQOP1 .LT. TQOT1B) THEN
DSO1=0.0
ELSE
DSO1 $=($ TRQOT1 - TRQOP1 $) / G O 1$
ENDIF
ELSE
DSO1 $=($ TRQOT1-TRQOP1 $) /$ GO1
ENDIF
SO1 $=$ prlint (DSO1, 0, 93)
solsq $=$ SO1 ** 2
trqsum $=$ TRQOT2 - TRQOP2 $-T R Q O P 3$
IF (SO2 .LT. 11.0) THEN
IF (trqsum .LT. TQOT2B) THEN 2021,2025,2025

```
        DSO2=0.0
        ELSE
            DSO2 = (trqsum - TDRAGO)/GO2
    ENDIF
ELSE
    DSO2 = (trqsum - TDRAGO)/GO2
ENDIF
SO2 = prlint( DSO2, 0, 94 )
so2sq = SO2 ** 2
RETURN
END
```

Precomputed slopes:

```
    REAL SUvsRS(NSU), AvsSU( NSU, NRHO ), vdRHO(NRHO),
+ RLvsP( NSAT ), RGvsP( NSAT ), SLvsP( NSAT ), SGvsP( NSAT )
```

| DATA PSC | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.10, | 1.33, | 1.61, | 1.92, | 2.29, | 2.71, | 3.19, |
| 3.74, | 4.36, | 5.06, | 5.85, | 6.73 , | 7.71, | 8.80, |
| * 10.01, | 11.34, | 12.81, | 14.42, | 16.18, | 18.11, | 20.20, |
| * 22.47, | 24.94, | 27.60, | 30.47, | 33.56, | 36.88, | 40.43, |
| * 44.24, | 48.31, | 52.65, | 57.28, | 62.19, | 67.41 , | 72.95, |
| * 78.81, | 85.01, | 91.56, | 98.47, | 105.75, | 113.42, | 121.48, |
| 129.95, | 138.84 | 148.16, | 157.93 | 168.15 | 178.83, | 190. |

```
* 201.66, 213.83, 226.52, 239.74, 253.50, 267.82, 282.71,
* 298.19, 314.26, 330.95, 348.27, 366.23, 384.86, 404.16,
* 424.16, 444.87, 466.32, 488.53, 511.52, 535.32, 559.97,
* 585.49, 611.92, 639.30, 731.38/
```

DATA SLC /

| $*-71.21$, | -70.41, | -69.62, | -68.82, | -68.02, | -67.22, | -66.42, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $*-65.62$, | -64.82, | -64.02, | -63.22, | -62.42, | -61.61, | -60.81, |
| $*-60.00$, | -59.20, | -58.39, | -57.58, | -56.77, | -55.96, | -55.15, |
| $\star-54.34$, | -53.52, | -52.70, | -51.89, | -51.07, | -50.24, | -49.42, |
| $\star-48.59$, | -47.77, | -46.94, | -46.10, | -45.27, | -44.43, | -43.59, |
| $\star-42.74$, | -41.90, | -41.04, | -40.19, | -39.33, | -38.47, | -37.60, |
| $\star-36.72$, | -35.85, | -34.96, | -34.07, | -33.18, | -32.27, | -31.37, |
| $*-30.45$, | -29.52, | -28.59, | -27.64, | -26.68, | -25.71, | -24.73, |
| $\star-23.73$, | -22.72, | -21.69, | -20.65, | -19.59, | -18.51, | -17.41, |
| $\star-16.29$, | -15.13, | -13.95, | -12.73, | -11.46, | -10.14, | -8.76, |
| $*-7.29$, | -5.72, | -3.98, | 4.95, | | | |

SSM64600

SSM64700
DATA SGC /

| $*$ | 19.68, | 19.97, | 20.27, | 20.57, | 20.86, | 21.15, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $*$ | 21.72, | 22.00, | 22.28, | 22.56, | 22.83, | 23.10, |
| $*$ | 23.63, | 23.89, | 24.14, | 24.39, | 24.64, | 24.88, |
| $*$ | 25.35 .12, | | | | | |
| $*$ | 26.82, | 25.58, | 25.80, | 26.02, | 26.23, | 26.43, |
| $*$ | 26.63, | | | | | |
| $*$ | 27.98, | 28.12, | 27.19, | 27.36, | 27.53, | 27.69, |
| $*$ | 28.76, | 28.84, | 28.90, | 28.37, | 28.48, | 28.59, |
| $*$ | 29.06, | 29.05, | 29.03, | 29.06, | 29.00, | 29.03, |
| $*$ | 28.09 .05, | | | | | |
| $*$ | 28.69, | 28.57, | 28.42, | 28.26, | 28.95, | 28.88, |
| $*$ | 27.30, | 26.97, | 26.60, | 26.17, | 25.68, | 27.84, |

DATA RGC /

| . 00001 | . 00002, | . 00002, | . 00002, | . 00003, | . 00003, | . 00004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 00005, | . 00005, | .00006, | . 00007, | . 00008 , | .00009, | 00010 |
| . 00011, | .00013, | . 00014, | .00016, | . 00018, | . 00020, | . 00022 |
| . 00024, | . 00026, | .00029, | . 00032, | . 00035, | 00038, | |
| 00045 | 00049 | 00053 | | | | |

| \star | .00077, | .00083, | .00089, | .00096, | .00102, | .00110, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | .00117,

SSM65000

| DATA SU $/$ |
| :--- |
| $\star-64.00,-63.75$, |$-63.50,-63.25,-63.00,-62.75,-62.50$,

SSM65100

DATA RS /

| \star | .04281, | .04275, | .04269, | .04263, | .04257, | .04251, | .04245, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \star | .04239, | .04233, | .04227, | .04221, | .04215, | .04209, | .04203, |
| \star | .04197, | .04191, | .04185, | .04172, | .04160, | .04148, | .04136, |
| \star | .04123, | .04111, | .04099, | .04086, | .04074, | .04061, | .04049, |
| $\star .04036$, | .04024, | .04011, | .03998, | .03985, | .03973, | .03960, | |
| $\star .03947$, | .03934, | .03908, | .03882, | .03855, | .03829, | .03802, | |
| $\star .03775$, | .03748, | .03720, | .03692, | .03664, | .03607, | .03549, | |
| $\star .03490$, | .03429, | .03367, | .03304, | .03239, | .03172, | .03104, | |
| $\star .03033$, | .02960, | .02884, | $.02805 /$ | | | | |

DATA RH
$\star .70000, .75000, .80000, .85000, .90000, .95000,1.00000$, $\star 1.00002,1.00004,1.00006,1.00008,1.00010,1.00012,1.00016$, *1.00020,1.00025,1.00030,1.00035,1.00040,1.00050,1.00060, $\star 1.00080,1.00100,1.00120,1.00160,1.00200,1.00240,1.00300$, $\star 1.00360,1.00420,1.00480,1.00600,1.00840,1.00960,1.01080$, $\star 1.01200,1.01440,1.01680,1.01920,1.02280,1.02640,1.03000$, *1.03360,1.03720,1.04080,1.04440,1.04800,1.05160,1.05520, $\star 1.05880,1.06240,1.06600,1.06960,1.07320,1.07680,1.08040$, *1.08400,1.08760,1.09180,1.09540/

| | (A) 1 , | $I=1,6$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | . 37 , | . 39 , | . 41 , | . 43 , | . 45, | . 47 , | |
| * | . 49 , | . 51, | . 54, | . 56, | . 58, | .61, | |
| * | . 64, | . 66, | . 69, | . 72, | . 75 , | . 82 , | |
| * | . 88 , | . 95, | 1.03, | 1.11, | 1.19, | 1.28, | |
| * | 1.37, | 1.47, | 1.57, | 1.68, | 1.80, | 1.92, | |
| * | 2.04, | 2.18, | 2.32, | 2.46, | 2.62, | 2.77, | SSM65400 |
| * | 2.94, | 3.30, | 3.68, | 4.10, | 4.55, | 5.04, | |
| \star | 5.56, | 6.13, | 6.73, | 7.37, | 8.05, | 9.55, | |
| * | 11.24, | 13.11, | 15.18, | 17.45, | 19.93, | 22.61, | |

most of table omitted

```
    * 10000.00, 10000.00, 10000.00, 10000.00, 10000.00, 10000.00,
    * 10000.00, 10000.00, 10000.00, 10000.00, 10000.00, 10000.00,
    * 10000.00, 10000.00, 10000.00, 10000.00, 10000.00,
10000.00,SSM71900
    * 10000.00, 10000.00, 10000.00, 10000.00, 10000.00, 10000.00,
    * 9815.73, 8760.81, 7130.06, 6397.53, 5773.35, 5155.16,
    * 4661.49, 4221.40, 3813.73, 3432.45, 3054.53, 2743.86/
```

*

*

* Unnecessary initializations were removed.
*
* Precomputing slopes:
* DO $10 \mathrm{I}=2$, NSU
$\operatorname{SUvsRS}(I)=(S U(I)-S U(I-1)) /(\operatorname{RS}(I)-\operatorname{RS}(I-1))$
10 CONTINUE
DO $20 \mathrm{I}=2$, NSAT
VDPRES $=1.0 /(\operatorname{PRES}(I)-\operatorname{PRES}(I-1))$
$\operatorname{RLvsP}(I)=(\operatorname{RLC}(I)-\operatorname{RLC}(I-1)) * \operatorname{VDPRES}$
$\operatorname{RGvsP}(I)=(\operatorname{RGC}(I)-\operatorname{RGC}(I-1)) *$ VDPRES
$\operatorname{SLvsP}(I)=(S L C(I)-S L C(I-I)) *$ VDPRES
$\operatorname{SGVSP}(I)=(S G C(I)-S G C(I-1)) *$ VDPRES
20 CONTINUE
CALL xyset (NSU, SU, NRHO, RH, A, AvsSU, vdRHO)
ENTRY OXPROP (P; H, RHO, RHOL, RHOG, HG, HL, FL, SUIN, icall)
*
* This entry bypasses initialization
*
* Interpolation with $T A B L X$ and $T A B L X Y$ was replaced by interpolation
* with the reorganized interpolation module routines. Extrapolation
* to the table boundary value was therefore changed to an error stop
* if an input value escapes its table. Also interpolation is based on
* precomputed slopes.

CALL intval(isu(icall), SUIN, NSU, SU,
$+\quad$ 'Oxygen energy is below the table.',

+ 'Oxygen energy exceeds the table.', 0)

```
            iu = isu(icall)
            R = RHO / xlint( SUIN, NSU, SU, RS, SUvsRS, iu)
            CALL intval( irho(icall), R, NRHO, RH,
    + 'Oxygen density is below the table.',
    + 'oxygen density exceeds the table.',0 )
            ir = irho(icall)
            P = xYlint( SUIN, R, NSU, SU, NRHO, RH, AVSSU, vdRHO, A, iu, ir )
            H=SUIN + P / (9336.0 * RHO) SSM72200
            IF (R .GE. 1.0) THEN
                    FL=1.0
            ELSE
            CALL intval( ipres(icall), P, NSAT, PSC,
                    'Oxygen pressure is below the table.',
                    'oxygen pressure exceeds the table.', 0)
            ip = ipres(icall)
            RHOL = xlint( P, NSAT, PSC, RLC, RLvSP, ip )
            RHOG = xlint( P, NSAT, PSC, RGC, RGvsP, ip )
            SLIQ = xlint( P, NSAT, PSC, SLC, SLVSP, ip )
            SGAS = xlint( P, NSAT, PSC, SGC, SGvsP, ip )
            FL = (SUIN - SGAS) / (SLIQ - SGAS)
            HL = SLIQ + P/ (9336.0 * RHOL)
            HG = SGAS + P/(9336.0 * RHOG)
    END IF
    RETURN
    END
    'o2prime.for':
    SUBROUTINE O2PRMO
C
C SUBROUTINE O2PROP(SU,SRHO,N,P,T,NN)
SSM52500
PURPOSE: OXIGEN PROPERTY DATA
    THIS SUBROUTINE IS THE OXIDIZER PROPERTY TABLE LOOK-UP. (NOT HYDROGEN)
    THERE ARE ACTUALLY TWO TABLES.
    FIRST ONE IS THE TWO DIMENTIONAL CURVES: PRESSURE(U, RHO)
    SECOND ONE IS THE TWO DIMENTIONAL CURVES: TEMPERATURE(U, RHO)
    SPECIFIC ENTHALPY U RANGE FROM -57.5 TO 110.0
    DENSITY RHO RANGES FROM 0.08 TO 80.0
    THE PROGRAM ONLY DO INTERPOLATION AND WILL BE KICKED OUT IF THE RANGE IS
    OUT OF REACH.
C******ARGUMENTS******
    NN = 0 INITIALIZATION
    CONDITION 
```

 156


```
C
**********************************************************************
C
    DO 26 J = 1, NRHO
        RHO (J)=RHO (J)/1728.
        DO 25 I = 2, NU
            UvsP(I,J)=(U(I)-U(I-1) )/(PRES(I,J) - PRES(I-1,J) )
            TXP(I,J)=(TEMP(I,J) - TEMP(I-1,J))/(U(I) - U(I-1))
    25 CONTINUE
        IF(J.NE.NRHO) THEN
            DRHO = RHO(J+1)/1728.- RHO(J)
            VDRHO(I) = 1. / DRHO
        ENDIF
    26 CONTINUE
    This overcomplicated precomputation replaced by a more efficient,
    more straightforward, and generally reusable cubic spline system.
                            GET U CURVATURE, H AND
            RHO CURVATURE, G, FOR SPLINE INTERPOLATION
        DO 30 J = 1, 21
        CALL splinO( 15, RHO, PRES(1,J),
    + apo2(1,J), bpo2(1,J), cpo2(1,J), dpo2(1,J) )
            CALL splinO( 15, RHO, TEMP(1,J),
                        ato2(1,J), bto2(1,J), cto2(1,J), dto2(1,J) )
    + contiNUE
    Removed echo of O2 tables
    RETURN
    ENTRY o2pt( SU, SRHO, N, P, T )
```



```
C NN=1, PRESSURE COMPUTATIONS
C
**
    I = Il(N)
    CALL intval( I, SU, 2l, U,
    + " Specific enthalpy SU is below the O2 enthalpy table",
    + " Specific enthalpy SU is above the O2 enthalpy table", 0 )
    140 J = J1(N)
    CALL intval( J, SRHO, 21, RHO,
    + " Density RHO is below the o2 density table",
    + " Density RHO is above the O2 density table", 0 )
*
\[
\text { P1 = spline( } I-1, \text { SRHO }
\]
```

```
+ apo2(1,I-1), bpo2(1,I-1), cpo2(1,I-1), dpo2(1,I-1) )
    P2 = spline( I, SRHO
    + apo2(1,I), bpo2(1,I), cpo2(1,I), dpo2(1,I))
    RHOP1=(SRHO - RHO(J)) * vDRHO(J)
$
    U1 = U(I-1)
    U2 = U(I)
    JS =JSAT(I)
    JSI=JSAT(I-1)
    IF((J.EQ.JS.AND.JS.NE.JSI) .OR. (I.EQ.7.AND.J.EQ.JS+1)) THEN
        USAT=U2+(Ul-U2)*(SRHO-RHO(JS))/(RHO (JS1) -RHO (JS))
        PSAT=PRES(I-1,JS1)+(PRES (I,JS)-PRES (I-1,JS1))/(U2-U1)
                    *(SU-U1)
        IF( SU.GT.USAT ) THEN
            PI=PSAT
            U1=USAT
            H1=0.0
        ELSE
            P2=PSAT
            U2=USAT
            H2=0.0
        END IF
    END IF
    P=SPLINE(P1, P2,H1,H2,SU-U1,U2-SU)
```

C
*

The above spline fit of pressure parallel to the enthalpy axis is misapplied. Only two points have been found on the surface at the * interpolated cross section. To fit a spline, it would be necessary

* to find more than four cross section points. It might be desirable to
* find four points and interpolate with a cubic through them. Here, we * substitute a linear interpolation in SU.
$U P 1=S U-U(I-1)$
$P=P 1+U P 1 * v d u(I) *(P 2-P 1)$
$T 1=\operatorname{TEMP}(I-1, J)+\operatorname{TXP}(I, J) * U P 1$
$\mathrm{T} 2=\operatorname{TEMP}(I-1, J+1)+\operatorname{TXP}(I, J+1) \star \mathrm{UP} 1$
$\mathrm{T}=\mathrm{T} 1+(\mathrm{T} 2-\mathrm{T} 1) * \mathrm{RHOP1}$
900 RETURN
ENTRY rto2 (SU, SRHO, N, P, T)

C
C NN=3, RHO AND T FROM U AND P

C
300 CONTINUE

```
        K=I-1
```

```
                            J=J 2(N)
    310 IF(PRES (K,J).LT.P) GO TO 330
    220 IF (PRES (K,J-1).LE.P) GO TO 340
            J=J -1
            GO TO 320
330 J=J+1
                            GO TO 310
*
*
*
*
*
    340 J=MAXO(2,MINO(J,NRHO))
    IF(K.EQ.I-1) J2(N)=J
*
*
*
*
    R(K-I+2)=RHO (J-1)+(P-PRES (K,J-1))/(PRES (K,J)-PRES (K,J-1))
    $ *DRHO(J-1) should use precomputed slope
    R(K-I+2)=RHO(J-1)+(P-PRES(K,J-1)) * RvsP(K,J)
    IF(K.EQ.I) GO TO 350
    K=I
    GO TO 310
C ASSUME RHO LINIER WITH 1/U
    350 SRHO=R(1)+(U(I) -U(I)*U(I-1)/SU)*(R(2)-R(1))/(U(I)-U(I-1))
    GO TO 140
    ENTRY uto2( SU, SRHO, N, P, T )
************************************************************************
C
C GET U AND T FROM RHO AND P
C
***********************
    IF(RHO(K).GT.SRHO) GO TO 1030
    1010 CONTINUE
    K = NRHO
    1030 IT=1
    K=MAXO (2,K)
    1035 DO 1040 M=1,NU
    IF(PRES (M,K-1).GT.P) GO TO 1050 SSM56200
    1040 CONTINUE
    M = NU
    1050 IF(IT.NE.1) GO TO }106
        Should be recoded to halt with message, not limit M
        M=MAXO (2,M)
        Ul=U(M-1)+(P-PRES (M-1,K-1))/(PRES (M,K-1)-PRES (M-1,K-1))* (U(M)-
    1 U(M-1))
        U1=U(M-1)+(P-PRES (M-1,K-1)) * UvsP(M,K)
```

```
            IT=2
            K=K+1
            GO TO }103
    1060 M=MAXO (2,M)
```

```
    U2=U(M-1)+(P-PRES (M-1,K-1))/(PRES (M,K-1) - PRES (M-1,K-1))*(U(M)-
```

 U2=U(M-1)+(P-PRES (M-1,K-1))/(PRES (M,K-1) - PRES (M-1,K-1))*(U(M)-
 l U(M-1))
l U(M-1))
U2 = U(M-1) + (P-PRES(M-1,K-1)) * UVSP(M,K)
U2 = U(M-1) + (P-PRES(M-1,K-1)) * UVSP(M,K)
SU=Ul+(RHO (K-1)-RHO (K-1)*RHO (K-2)/SRHO)/(RHO (K-1)-RHO (K-2)) *
SU=Ul+(RHO (K-1)-RHO (K-1)*RHO (K-2)/SRHO)/(RHO (K-1)-RHO (K-2)) *
\$ (U2-U1)
\$ (U2-U1)
SU=U1+(SRHO-RHO(K-2))/(RHO (K-1)-RHO(K-2))*(U2-U1)
SU=U1+(SRHO-RHO(K-2))/(RHO (K-1)-RHO(K-2))*(U2-U1)
SU = Ul + (SRHO-RHO(K-2)) * vdrho(K-1)*(U2-Ul)
SU = Ul + (SRHO-RHO(K-2)) * vdrho(K-1)*(U2-Ul)
UP1 = SU - U(I-1)
UP1 = SU - U(I-1)
T1 = TEMP(I-1,J) + TXP(I,J) * UP1
T1 = TEMP(I-1,J) + TXP(I,J) * UP1
T2 = TEMP(I-1,J+1) + TXP(I,J+1) *UP1
T2 = TEMP(I-1,J+1) + TXP(I,J+1) *UP1
T = T1 + (T2 - T1) * RHOP1
T = T1 + (T2 - T1) * RHOP1
RETURN
RETURN
END

```
    END
```


INCLUDE 'balc.com'
INCLUDE 'fuel.com'
INCLUDE 'contrl.com'
INCLUDE 'out.com'
INCLUDE 'units.com'

C

```
    DATA TINIT / 460.0 /
    DATA AFPRI / 0.0142 /
    DATA AFPR2 / 0.04323 /
    DATA AFPTAB/ 0.100, 0.0013,0.0013,0.0 SSM26100
    DATA AOPTAB/ 0.1513, 0.00166,0.00166, 0.0 /
    DATA AOPRG / 0.0039 /
    DATA ASFPC / 0.53899 /
    DATA ASOPC / 0.53899 /
    DATA PHES / 750.0 /
    DATA PRINLO/ 100.0
    DATA RHES / 50000. /
    DATA TAUH / 0.01 /
    DATA TFPDH / 250.0 /
    DATA TOPDH / 250.0 SSM26200
    DATA TPRG / 520.0 /
    DATA TPRC / 250.0 /
    DATA WFPTAB/ 0.0, 2.2, 3.2, 3.3 /
    DATA WOPTAB/ 0.0, 0.8, 2.0, 2.1 /
    DATA WTASI / 0.06643'/
    DATA WTIGN / 0.0154 /
    DATA RHGFM / .0340E-4/
    DATA RHGOM / .1060E-4 /
    DATA IGOFU / 1
    DATA IGOOX / 1
                /
                                    SSM26300
    DATA FSFTAB / 0.0, 946.9, 2470., 4117., 5352., 6999., 8192./
    DATA FPRF /1.0,1.204,1.307,1.411,1.515,1.619,1.7,1.8,2.0,2.4,3./
    DATA FSOTAB / 0.0, 3000., 4000., 5000., 6000., 7000. /
    DATA FPRO /1.0, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.4, 3./
    DATA DWFTAB/
    * 0.0,2.740,3.015,3.140,3.204,3.225,3.235,3.240,3.240,3.240,3.240,
    1 0.0,2.528,2.844,3.016,3.104,3.143,3.158,3.175,3.195,3.200,3.200,
    2 0.0,2.258,2.607,2.822,2.939,3.009,3.040,3.075,3.120,3.160,3.160,
    3 0.0,2.068,2.409,2.636,2.776,2.867,2.920,2.970,3.034,3.095,3.100,
    4 0.0,1.988,2.311,2.529,2.670,2.771,2.823,2.876,2.960,3.041,3.060,
    5 0.0,1.937,2.221,2.421,2.564,2.658,2.715,2.780,2.870,2.965,3.000,
6 0.0,1.930,2.193,2.382,2.507,2.599,2.655,2.710,2.795,2.900,2.960/

DATA DWOTAB/
* \(0.0, .8780, .9560,1.020,1.046,1.055,1.060,1.060,1.060,1.060,1.060\),
\(10.0, .7433, .8229, .8924, .9418, .9737, .9905, .9989,1.018,1.025,1.025\),
\(20.0, .7156, .7888, .8538, .9086, .9459, .9681, .9818,1.002,1.013,1.013\),
\(30.0, .6989, .7656, .8263, .8785, .9191, .9471, .9662, .9865,1.000,1.000\),
\(40.0, .6906, .7522, .8090, .8574, .8973, .9280, .9498, .9740, .9900, .9900\),
\(50.0, .6843, .7466, .7968, .8414, .8805, .9124, .9344, .9600, .9780, .9800 /\)
\(\star\)

> DATA CDWFT2 / \(1.0 /\)
> DATA CDWOT2 / \(1.0 /\)
*
```

recpos(x) = AMAX1 (0.0, x)
recneg(x) = AMIN1(0.0, x)
rlimit(floor, ceiling, x) = AMAX1(floor, AMIN1(ceiling, x))
SAVE

```
*
*
*
*
CALL sxset ( sawop, 4, WOPTAB, AOPTAB )
CALL sxset ( sawfp, 4, WFPTAB, AFPTAB)
CALL xyset ( NPREF, FPREF, NFSF, FSF2, DWFTAB, sdwfp, vdfs )
CALL xyset ( NPREO, FPRO, NFSO, FSO2, DWOTAB, sdwofp, vdfso2 )
*
C INITIALIZE LOCAL VARIABLES AND ARRAYS WHICH AREN'T ASSIGNED VALUES
C THIS IS A NECESSARY REQUIREMENT FOR SUCCESSFUL EXECUTION ON THE IBM
C
```

A=0.0
AFPOI=0.0
AFPTA=0.0
AFPTI=0.0
AFPTV=0.0
AFPVI=0.0
AOPT2=0.0
AREAF=0.0
AR4=0.0
CFACT=0.0
DIAT=0.0
DPOPAS=0.0
DWACV=0.0
DWBAF=0.0
DWFPBI=0.0
DWFPR1=0.0
DWPFI=0.0
DWPFS=0.0
EW=0.0
FDWFT2=0.0
FDWOT2=0.0
FOPTV= .TRUE.
FSF2=0.0
FSO2=0.0
GAM6=0.0
IF1=0.0
IF2=0.0
ISV=0.0

```
```

 OPOVPF = .TRUE.
 PFPBFB=0.0
 RC=0.0
 initializations omitted
 WOPTA=0.0
 WOPTI=0.0
 WOPTV=0.0
 WOPVI=0.0
wtason = .TRUE.
wtigon = .TRUE.
ZFPOI=0.0
9999 CONTINUE
DATA INPUT
READ (run , 30) ZFPO, VOLFP, ZOPO, VOLOP, AOPTO, VOLOT1, VOLFI, VOLC, AR4, AR5 1, AR6, EMC5, EMC6, EW, DIAT,RC, WOPOV, WFPOV,RFPIGB, ROPIGB
30 FORMAT (//2X,6g12.4)
READ (IUN , 30) AHTMCF , TKMCF, AHTMCO , TKMCO, VOLMCF, VOLMCO, VOLFTD, VOLOTD
*, RFPVUG, ROPVUG
READ (run, 30) CDWFT2, CDWOT2, DPRNT, PRINLO, PRINHI, PHES
Added here to eliminate a simulation loop division:
vVOLC $=1.0 / \mathrm{VOLC}$
$\mathrm{ROPO}=0.0$
CALL IGNO (1, PFPOV, PFPOI, RHOO3, P (9), RHO (9), PFP)
CALL IGNO (2, POPOV, POPOI, RHOO3, P (9), RHO (9), POP)
CALL IGNO (3, PMOV, POINJ, RHOMOV, P (9), RHO (9), PCIE)
WOPOI $=0.0$
SSM28900
$E M C 7=1.0$
AR7 $=1.0$
WFPOI $=0.0$
ELFFP=0.0
CALL fgset(15)
CPH2 $=$ fgen(15, 61, TINIT)
CALL fgset(1)
COOI $=\operatorname{FGEN}(1,62$, WOPOI $)$
CALL fgset (2)
CFOI $=\operatorname{FGEN}(2,63, \mathrm{WFPOI})$
CALL fgset (4)
$\operatorname{SC4}=\operatorname{FGEN}(4,64, \operatorname{AR4})$
CALL fgset (8)
$\mathrm{BC} 4=\operatorname{FGEN}(8,65, \operatorname{AR4})$
CALL fgset (20)
TFPC $=\operatorname{FGEN}(20,66$, ELFFP)
SSM29000
CALL fgset(21)
$\operatorname{CPFP}=$ FGEN $(21,67$, ELFFP)
CALL fgset(13)
GAMFP $=$ FGEN (13, 68, ELFFP)
CALL fgset(12)

```
```

 EMWFP = FGEN(12, 69, ELFFP/(1.-ELFFP))
 CALL fgset(25)
 EMUC = FGEN (25, 70, ELFFP)
 CALL fgset(23)
 EKC = FGEN(23, 71, ELFFP)
 CALL fgset(28)
 ETAOT2 = FGEN (28, 72, 0.0)
 CALL fgset(29)
ETAFT2 = FGEN(29, 73, 0.0)
CALL fgset(41)
CFG = FGEN(41, 74, 0.)
CS=CSTAR(0,0.,0.)
INITIALIZATION
DWFPO=0.0
DWFPOI=0.0
RHOO3=RHOOP3
PFP=PA
WTFP=PFP*VOLFP/9270.0
ELFFPM=0.0
DWFT2=0.0
WFPO=0.0
SSM29200
WFP=WTFP/TINIT
WFPF=WFP
WOPOI=0.0
DWOPO=0.0
DWOPOI=0.0
POP=PA
WTOP=POP*VOLOP/9270.0
WOP = WTOP/TINIT
WOPF=WOP
WOPO=0.0
SSM29300
ELFOP=0.0
ELFOPM=0.0
DWOT2=0.0
TRQOT2=0.0
DWOTI=0.0
POT1=PA
PROTI = 1.0
PRFT2 = . 999
PROT2 = 0.999
WTOTl=POTl*VOLOT1/9270.0
SSM29400
WOT1=WTOT1/TINIT
TOTl=TINIT
TOP=TINIT
TFP=TINIT
TRQOT1=0.0
TOT1D=TINIT
PFI=PA

```
```

PFT2D=PFI
POT2D=PFI
WTFI = PFI*VOLFI/9270.0
SSN29500
TFI=TINIT
WFI=WTFI/TFI
WFIF=WFI
WFIO=0.0
GAMFI=1.4
RGCFI=9270.0
DWC=0.0
SC4 = FGEN (4, 64, AR4)
BC4 = FGEN (8, 65, AR4)
AA2 = EW * . 2
SSM29600
A3=0.8-AA2
A5 = Xloth(DIAT/RC, 1)
PCIE=PA
PCNS=PA
TC=TINIT
WTC=PCIE*VOLC/9270.0
WCO=0.0
WC=WTC/TC
WCF=WC
ELFCM=0.0 SSM29700
ELFC=0.0
GAMC=FGEN (13, 75, ELFCM)
GAM6=FGEN(13, 76, 0.0)
GAM4=GAM6
RGCC=18540.0/FGEN(12, 77, ELFC/(1.-ELFC))
RGC6=18540.0/FGEN(12, 78, 0.0)
WOPGN2=0.
WFPGN2=0.
RGN2=0.
RGC4=RGC6 SSM29800
WCN=0.
ENFC=0.
DWOI=0.0
DWFI=0.0
PFPOV=POD3
PFPOI=PA
POPOV=POD3
POPOI=PA
CFOV=1.0
RHOFTF=RHO (6)
SSM29900
RHOOTF=RHO (6)
PINMC=PA
PFIS=PA
RHOFI=RHO (6)
PPURG=50.0
DWSFS=0.
DWFTF=0.

```
```

DWX=0.
FFFTV = .TRUE.
FFPVI = .TRUE.
FFPTI = .TRUE.
FFPOI = .TRUE.
SSM30020
FFPTA = .TRUE.
FFPOT = .TRUE.
DWFPTV = 0.0
DWFPVI =0.0
DWFPSG = 0.0
WFPTV = 0.0576
WFPVI =0.5356
WFPTI =0.00376
WFPOT = 0.0128
WFPTA =0.0136
ZFPOI = 2.000 E-03
RFPOTV = 68.77
RFPOVT = 29.02
RFPOVI =-0.885
RFPOTI =-141.97
RFPOTA =-470.16
POPRG = PA
PFPRG = PA
AFPTV = 4.34 E-03
AFPVT = 6.677E-03
AFPVI = 3.82 E-02
AFPTI = 3.019E-03
AFPOI = 2.62 E-01
AFPTA = 1.659E-03
AFPRS = 1.761 E-02
RHOFTV = RHOOP3
RHOFVI = RHOOP3
RHOFTI = RHOOP3
RHOFOI = RHOOP3
RHOFTA = RHOOP3
CFACT = 400000.
FOPTV = .TRUE.
FOPVI = .TRUE.
FOPTI = .TRUE.
FOPOI = .TRUE.
FOPTA = .TRUE.
FOPOT = .TRUE.
DWOPTV =0.0
DWOPVI = 0.0
DWOPTI =0.0
DWOPTA = 0.0
WOPTV = 0.0587
WOPVI =0.5150
WOPTI =0.00376
WOPOT =0.01372

```
```

 WOPTA =0.01393
 ZOPOI = 2.00 E-03
 ROPOTV = 110.895
 ROPOVT = 46.853
 ROPOVI =-1.393
 ROPOTI = -100.20
 ROPOTA =-781.830
 POPOT = 700.0
 POPOV = 700.0
 AOPTV = 3.420 E-03
 AOPVT = 5.260E-03
 AOPVI = 3.048 E-02
 AOPTI = 3.590 E-03
 AOPTA = 1.290 E-03
 AOPR1 = 2.553 E-03
 AOPR2 = 2.502 E-03
 RHOOTV = RHOOP3
 RHOOVI = RHOOP3
 RHOOTI = RHOOP3
 RHOOOI = RHOOP3
 RHOOTA = RHOOP3
 DWXF=0.
 *
* Initiialization moved from simulation loop.

```
```

RFLEAK = 1.0 / (772.8 * (FGEN(18, 79, 20.) * ABFPO / 100.) ** 2)

```
RFLEAK = 1.0 / (772.8 * (FGEN(18, 79, 20.) * ABFPO / 100.) ** 2)
WFPOIZ = FGEN (2, 80, 0.999) + 0.01
WFPOIZ = FGEN (2, 80, 0.999) + 0.01
RHOFGN = RHOOP3
RHOFGN = RHOOP3
vTP46 = 1. / ( 4632. * TPRRC)
vTP46 = 1. / ( 4632. * TPRRC)
CALL unintO( DWFPO, 95 )
CALL unintO( DWFPO, 95 )
CALL unintO( DWFPOI, 96)
CALL unintO( DWFPOI, 96)
CALL unintO( WFPOI, 97 )
CALL unintO( WFPOI, 97 )
CALL unintO( WFPTV, 98)
CALL unintO( WFPTV, 98)
CALL unintO( DWFPTV, 99)
CALL unintO( DWFPTV, 99)
CALL unintO( WFPVI, 100)
CALL unintO( WFPVI, 100)
CALL unintO( DWFPVI, 101)
CALL unintO( DWFPVI, 101)
CALL unintO( WFPTI, 102 )
CALL unintO( WFPTI, 102 )
CALL unintO( DWFPTI, 103)
CALL unintO( DWFPTI, 103)
CALL unintO( WFPOT, 104)
CALL unintO( WFPOT, 104)
CALL uninto( WFPOI, 105)
CALL uninto( WFPOI, 105)
CALL unintO( DWFPOI, 106)
CALL unintO( DWFPOI, 106)
CALL unintO( WFPTA, 107)
CALL unintO( WFPTA, 107)
CALL unintO( DWOIG(1), 108)
CALL unintO( DWOIG(1), 108)
CALL unintO( PFPOV, 109 )
CALL unintO( PFPOV, 109 )
CALL unintO( PFPOT, 110)
CALL unintO( PFPOT, 110)
CALL uninto( PFPOI, 111)
CALL uninto( PFPOI, 111)
CALL lmintO( WFPF, 112, 0.0, TOoBig )
CALL lmintO( WFPF, 112, 0.0, TOoBig )
CALL lmintO( WFPO, 113, 0.0, TOOBig)
CALL lmintO( WFPO, 113, 0.0, TOOBig)
CALL lmintO( WTFP, 114, 0.0, TOOBig)
CALL lmintO( WTFP, 114, 0.0, TOOBig)
CALL lmintO( DWFIG(1), 115, 0.0, TOOBig )
```

CALL lmintO(DWFIG(1), 115, 0.0, TOOBig)

```
```

 CALL lminto(WOPOV, 116, 0.05, TOoBig)
 CALL unintO(WOPOI, 117)
 CALL lmintO(DWOPO, 118, 0.0, TOoBig)
 CALL uninto(WTIGN, 119)
 CALL unintO(WTASI, 120)
 CALL uninto(WOPTV, 121)
 CALL lminto(DWOPTV, 122, 0.0, TooBig)
 CALL uninto(WOPVI, 123)
 CALL lmintO(DWOPVI, 124, 0.0, TOOBig)
 CALL unintO(WOPOI, 128)
 CALL uninto(WOPTI, 125)
 CALL ImintO(DWOPTI, 126, 0.0, TOOBig)
 CALL unintO(WOPOT, 127)
 dwmax = .002 / DT
 CALL unintO(DWOPOI, 129)
 CALL unintO(POPOI, 134)
 CALL unintO(WOPTA, 130)
 CALL Iminto(DWOPTA, 130, 0.0, TOoBig)
 CALL uninto(POPRG, 131)
 CALL unintO(POPOV, 132)
 CALL unintO(POPOT, 133)
 CALL lmintO(WOPF, 135, 0.0, TOOBig)
 CALL lmintO(WOPO, 136, 0.0, TOOBig)
 CALL lmintO(WTOP, 137)
 CALL uninto(TFT2DI, 138)
 CALL lmintO(WTFI, 139, 0.0, TOOBig)
 CALL lmintO(WFIF, 140, 0.0, TooBig)
 CALL lmint0(WFIO, 141, 0.0, TOOBig)
 CALL lmintO(WTCl, 142, 0.0, TOOBig)
 CALL lmintO(WCO, 143, 0.0, TooBig)
 CALL lminto(WCF, 144, 0.0, TOOBig)
 CALL lminto(WCN, 145, 0.0, TooBig)
 ENTRY HOTGAS

```

```

 CFOI IS THE FACTOR OF TRANSFER FOR OXID INJECTOR
 THEY ARE FUNCTIONS OF THE PERCENTAGE OF FILL OF THE EMPTY SPACE.
**
The convoluted logic of the restart conditions was commented, for
the sake of maintenance. Single precision time is good enough for
state transition tests.
TRANSIENT CALCULATION SECTION
GO TO (1200, 1240, 1260, 1280, 1320), IGOFU
SSM30800
Test restart time once (IGOFU is changed).
1200 IF (STIME .GT. 2.5) THEN
$C F O V=1.0$
WFPOI $=$ WFPOIZ
$\mathrm{CFOI}=1.0$
WFPOV $=0.05$
SSM30900
FPIG $=$. TRUE.
Bypass OPRIME
IGOFU $=3$
GO TO 1260
ELSE IF (STIME .LT. 1.5) THEN
$\mathrm{CFOV}=0.025$
OPRIME until time $=1.5$
IGOFU $=2$
END IF
1240 CALL OPRIME (POD3, PFP-DPFPAS, RFPOV, DWFPOI, DWFPO)
RHOFGN $=$ PFPOV / (1159.0 * 200.0) was replaced by
RHOFGN $=$ PFPOV * 4.314064E-7
When time reaches 1.5 ,
stop OPRIME, start mainstage
IF (TIME.LT. 1.5) GO TO 1280
if $1.5<$ restart time < 2.5,
do OPRIME once, then start mainstage
IGOFU $=3$
GO TO 1340

* MAINSTAGE CALCULATIONS
$1260 \mathrm{RFPO}=(\mathrm{RFPOL}+\mathrm{RFPOV}+\mathrm{RFPOI}) /$ RHOOP3
DWFPO $=$ prflow (DWFPO, 2FPO, RFPO, POD3 - PFP + DPFPAS, 95) DWFPOI $=$ prflow (DWFPOI, ZFPOI,
+ RFPOI/RHOOP3, PFPOI-PFP+DPFPAS, 96)
IF (XFPOV .GT. 20. .OR. PFPOV .GT. PHES) GO TO 1280 , that is
IF (XPOV .LE. 20. .AND. PFPOV .LE. PHES) THEN

```
```

* TDWFPO = 0.
IGOFU = 4
END IF
C
C DPFPAS IS THE SUCTION PRESSURE DUE TO BERNOULLI EFFECT OF
C THE FUEL FLOW INSIDE THE FUEL PREBURNER
C
*1280 DPFPAS = ASFPC * (DWFPF / 258.0) ** 2 / (PFP/ (9272.0 * T(9)))
* is replaced by
1280 DPFPAS = ASFPC * DWFPF**2 * T(9) / PFP * 0.1392945
* PFPOI = PFP + RFPOI * DWFPO**2 / RHOOP3 - DPFPAS
PFPOV = (POD3 / RFPOV + PFPOI / RFLEAK) * (RFPOV * RFLEAK
SSM31400
1 / (RFPOV + RFLEAK))
IF (TIME.GT.TCUTPR .AND. PFPRG.LT.100.) PFPRG = AMIN1(PHES,PFPOV)
IF (IGOFU .LT. 4) GO TO 1340
IF (TIME .GT. TCUTPR .AND. PFPOI .LT. PHES) THEN
C
C CUT OXID LINES AND START HELIUM PURGE
IGOFU = 5
ELSE
DWFPOI = recpos(-DWOIG(1))
C
C!!!!! I CHANGE THE SECOND EQUATION TO THE ONE FOLLOWS. THIS IS THE SITUATI
C!!!!! WHEN THE FUEL LINE IS PURGED BY THE HELIUM.
C WFPOI = WFPOI - recneg(DWFPOI) * DT
WFPOI = pruint(- DWFPOI, Tstep, 97)
GO TO 1340
END IF
C
WFPTV = pruint(- ABS (DWFPTV), Tstep, 98)
FFPTV = WFPTV .GT. 0.0
DWFPTV = FLOW(DWFPTV, ZFPOI, RFPOTV/RHOOP3, DT, PFPOT - PFPOV)
IF (PFPOT .LT. PFPOV) DWFPTV = 0. - FLOW (DWFPTV,
1 ZFPOI, RFPOVT/RHOOP3, DT, PFPOV - PFPOT)
RHOFTV = PFPOT / 4632. / TPRC
DWFPTV = GFLOW (PFPOT, PFPOV, TPRC, 4632., 1.66) * AFPTV
IF (PFPOT .LT. PFPOV) DWFPTV = 0. - GFLOW (PFPOV, PFPOT, TPRC,

```
    The above sequence was replaced. It does an integration step, then
    if the wrong sign was used, does it again. The replacement code
    looks first, then does the integration step once.
    Also, since the second integration does not depend on RHOFTV,
    there is no need to test twice. Similar replacements are made
    below without comment.
    IF (PFPOT .LT. PFPOV) THEN
        DWFPTV \(=0 .-\)
\(+\quad\) prflow (DWFPTV, ZFPOI, RFPOVT/RHOOP3, PFPOV - PFPOT, 99 )
        DWFPTV \(=0 .-\)
    \(+\quad\) GFLOW (PFPOV, PFPOT, TPRC, 4632., 1.66) * AFPVT
        SSM31600
        ELSE
        DWFPTV =
+ prflow ( DWFPTV, ZFPOI, RFPOVT/RHOOP3, PFPOT - PFPOV, 99 )
        DWFPTV = GFLOW (PFPOT, PFPOV, TPRC, 4632., 1.66) * AFPTV
        END IF
        RHOFTV \(=\) PFPOT \(*\) VTP4 6
    END IF
THIS IS TO PURGE THE OXID CONTENT IN LINE FPVI (BETWEEN PFPOI AND PFPOV)
    IF ( FFPVI ) THEN
        WFPVI \(=\) pruint \((-\) DWFPVI, Tstep, 100\()\)
        FFPVI \(=\) WFPVI .GT. 0.0
        DWFPVI \(=\) prflow ( DWFPVI, ZFPOI,
\(+\quad\) RFPOVI/RHOOP3, PFPOV - PFPOI, 101 )
    ELSE
        RHOFVI \(=\) PFPOV * VTP46
        WFPVI \(=\) GFLOW (PFPOV, PFPOI, TPRC, 4632., 1.66) *AFPVI
    END IF
THIS IS TO PURGE THE OXID CONTENT IN LINE FPTI (BETWEEN PFPOT AND PFPOI)
    IF ( FFPTI .OR. FFPOT ) THEN
    IF (. NOT. FFPOT ) WFPTI = pruint ( - DWFPTI, Tstep, 102 )
    FFPTI = WFPTI .GT. 0.0
        SSM31700
    DWFPTI = prflow (DWFPTI, ZFPOI,
\(+\)
    ELSE
        RHOFTI \(=\) PFPOT * VTP46
        DWFPTI \(=\) GFLOW (PFPOT, PFPOI, TPRC, 4632., 1.66) * AFPTI
    END IF
    IF ( FFPOT) THEN
        WFPOT = pruint ( \(-(\) DWFPTV + DWFPTI+ DWOIG(1) ), Tstep, 104 )
        FFPOT \(=\) WFPOT.GT. 0.0
    END IF
    IF ( FFPOI ) THEN
```

 WFPOI = pruint(- DWFPOI, Tstep, 105)
 FFPOI = WFPOI .GT. 0.0
 WDFPOI = DWFPOI
 DWFPOI = prflow(DWFPOI, ZFPOI, -RFPOI/RHOOP3,
 PFPOI-PFP+DPFPAS, 106)
 DWFPOI = WDFPOI - AMIN1(WDFPOI - DWFPOI, 0.002)
 IF (DWFPOI.GT.WDFPOI)
 DWFPOI=WDFPOI + AMINI(DWFPOI - WDFPOI ,.O02)
 AREAF = TABLX (4, ISV, WFPOI, WFPTAB, AFPTAB) replaced with
 interpolator using precomputed slopes
 AREAF = xlint(WFPOI, 4, WFPTAB, AFPTAB, sawfp, ISV)
 DWPFI = GFLOW (PFPOI, PFP - DPFPAS, TFPDH, 4632., 1.66) * AREAF
 ELSE
 DWFPOI = 0.0
 DWPFI = GFLOW (PFPOI, PFP - DPFPAS, TPRC, 4632., 1.66) * AFPOI
 END IF
 PURGE IGNITOR INJECTOR LINE
IF (FFPTA .OR. FFPOT) THEN
SSM31900
IF (.NOT. FFPOT) WFPTA = pruint(- DWOIG(1), Tstep, 107)
FFPTA = WFPTA .GT. 0.0
DWOIG(1) = prflow(DWOIG(1), ZFPOI, RFPOTA / RHOOP3,
+
ELSE
RHOFTA = PFPOT * vTP46
DWOIG(1) = GFLOW(PFPOT, PFP, TPRC, 4632., 1.66) * AFPTA
END IF
DPFPAS = ASFPC * DWFPF**2 * T(9) / PFP * 0.1392945
DPFPAS = ASFPC * (DWFPF / 258.) **2 / (PFP / 9272 / T(9))
DWFPR1 = recpos(GFLOW(PHES, PFPOV, TPRG, 4632.0, 1.66) * AFPR1)
PFPOV = pruint(

+ DWFPRI + CFACT *(DWFPTV/ RHOFTV - DWFPVI / RHOFVI) *
+ PFPOV * vTP46, Tstep, 109) SSM32000
PFPRG = PFPOV +..9422 * 4632 * TPRG / PFPOV * DWFPR1 ** 2
PFPRG = PFPOV + 4364.3 * TPRG / PFPOV * DWFPR1 ** 2
DWFPR2 = recpos(GFLOW(POPRG, PFPOT, TPRG, 4632.0, 1.66) * AFPR2)
PFPOT = pruint(CFACT * (DWFPR2 -
+ (DWOIG(1)/RHOFTA + DWFPTI/RHOFTI + DWFPTV/RHOFTV) *
+ PFPOT * vTP46)), Tstep, 110)
PFPOI = pruint(CFACT * (
+ (DWFPTI / RHOFTI + DWFPVI / RHOFVI - DWFPOI / RHOFOI) *
+ (PFPOI * vTP46) - DWPFI), Tstep, 111)
END OF PURGE PROCESS

```
FUEL PREBURNER COMBUSTION
```

C
1340 CONTINUE
C
C
IN THE FOLLOWING:
DWFPF: FUEL PREBURNER FUEL FLOW
DWFPBI: FUEL PREBURNER TOTAL INLET FLOW
WFPF: FUEL PREBURNER TOTAL FUEL
WFPO: FUEL PREBURNER TOTAL OXIDIZER
ELFFPM: FUEL PREBURNER OXIDIZER FRACTION
ELFFP: FUEL PREBURNER OXIDIZER FLOW FRACTION
FPIG: IGNITOR INDICATOR, = .TRUE. FOR FUEL PREBURNER IGNITED
TFPC: FUEL PREBURNER COMBUSTION TEMPERATURE
CPFP: SPECIFIC HEAT INSIDE FUEL PREBURNER
GAMFP: RATIO OF SPECIFIC HEAT (GAMMA) OF FUEL PREBURNER
EMWFP: MOLECULAR WEIGHT IN FUEL PREBURNER
RGCFP: GAS CONSTANT IN FUEL PREBURNER (PSI-IN**3/LB)
TFP: FUEL PREBURNER TEMPERATURE
PFP: FUEL PREBURNER PRESSURE
WFP: FUEL PREBURNER TOTAL MASS
WTFP: WEIGHT TIMES TEMPERATURE WITHIN FUEL PREBURNER
DWFPFA $=$ recpos (DWFPF)
SSM32100
posdwo $=$ recpos (DWOIG(1))
DWFPBI $=$ DWFPFA + DWFPOI + DWFIG(1) + posdwo
DURING THE PURGE FFPOI =.FALSE.
IF (. NOT. FFPOI) DWFPBI = DWFPFA + DWPFI + DWFIG (1) + posdwo
$W F P F=A M A X 1(0.0, W F P F+(D W F P F A+D W F I G(1)-(1.0-E L F F P M) * D W F T 2) * D T)$
$W F P F=$ prlint (DWFPFA + DWFIG(1)-(1.0-ELFFPM)*DWFT2, 0, 112)
WFPO $=$ prlint (DWFPOI + posdwo - ELFFPM * DWFT2, 0, 113)
ELFFPM $=W F P O /(W F P O+W F P F+1 . O E-6)$
ELFFP $=$ (DWFPOI + posdwo) /

+ (DWFPOI + DWFPFA + DWFIG(1) + posdwo + 1.0E-06)
IF (. NOT. FPIG) THEN
$T F P C=T(9)+20$.
SSM32200
IF (ELFFP.GE. 0.20 .AND. STIME.GT. 0.3) THEN
FPIG $=$. TRUE.
WRITE (6,*)' FPB IGN AT', TIME
END IF
ELSE
TFPC $=(1.0927 E-05 * \operatorname{PFP}+0.91985) * \operatorname{FGEN}(20,66, E L F F P)+T(9)$
END IF
CPFP $=\operatorname{FGEN}(21,81$, ELFFPM)
SPECIAL CONSIDERATION FOR SMALL O/F RATIO
IF (ELFFPM.GT. 0.1) $A=\operatorname{recpos}(1.0-10.0 * E L F F P M)$
SSM32300

```
```

 GAMFP = A * H2GAMA(PFP,TFP,1,2) + (1.0 - A)*FGEN(13, 68,ELFFPM)
 CPH2 = FGEN (15, 61,TFP) - 0.0887 + FPF * (0.1241 - 3.732E-5*PFP) /
 + (AMAX1 (51.,TFP) - 50.)
 CPFP = A*CPH2 + (1.0 - A)*CPFP
 GO TO 1380
 1360 GAMFP = FGEN (13, 68, ELFFPM)
 1380 CONTINUE
 EMWFP = FGEN(12, 69, ELFFPM/(1.-ELFFPM))
 RGCFP = 18540.0 / EMWFP
 TFP = AMAX1(10.0, WTFP / (WFP+1.OE-12)) SSM32400
 PFP = RGCFP * WTFP / VOLFP
 PFP = AMAX1(0.01,PFP)
 WTFP = prlint(GAMFP*(DWFPBI*TFPC - DWFT2*TFP), 0, 114)
 WFPGN2 IS NEVER DEFINED EXCEPT INITIALIZED TO 0.0 AT THE BEGINING
 WFP=WFPF+WFPO+WFPGN2
 FUEL PREBURNER IGNITOR
 MFPBFB = P(9) - RFPIGB/ RHO(9) * DWFPF**2
 CALL IGN (1, PFPOV, PFPOI, RHOFGN, PFPBFB, RHO(9), PFP, 2)
 PFPOT = P4(1)
 POPOT = P4(2)
 DWFPTV = -DW1(1)
 DWFPTI = DW2(1)
 END IF
 HIGH PRESSURE FUEL TURBINE PERFORMANCE
 TURBINE FLOW EFFICIENCY FDWFT2 IS THE FUNCTION OF EFFECTIVE PRESSURE
RATIO (PREFT2) AND NORMALIZED TURBINE SPEED (FSF2). A LOOK-UP TABLE
IS GIVEN AS DWFTAB WITH FPRF ARRAY AS X-AXIS AND FSFTAB ARRAY AS Y-AXIS.
THE ACTUAL EQUATIONS USED FOR SIMULATION IS NOT IN THE DOCUMENT RL00001.
GAMP1 = GAMFP + 1.
SSM32600
GAMM1 = GAMFP - 1.
PRFT2 = AMAX1 (1.0, PFP/PFT2D)
$X * * Y$ may require evaluation of a slowly converging series for the logarithm of X, and another series for the exponentiation, after the multiplication by Y. Replacement routines involving two - way linear interpolation in a table of equal intervals were defined.
PREFT2 $=$ (1. $-.166667 * G A M P 1 / G A M M 1 *$
(1. - PRFT2** (-GAMM1/GAMFP))) ** (-3.5)

```
```

preft2 = 1. - .166667 * GAMP1 /

+ (1. - 1./ XtoY(PRFT2, GAMM1/GAMFP))
PREFT2 = 1.0 / (preft2 ** 3 * Xloth(preft2, 5))
TCRFT2 = (GAMFP/GAMP1 * RGCFP * TFP * 5.15917E-6)

```
                                    (2.*32.174/12./1019.5**2)
The square root is taken immediately, since it is used more than
once. Since the \(X\) ** \(Y\) interpolation routines use a table of
\(X\) ** (.1 * \(n\) ) values, the square root can be obtained faster
as \(X\) ** .5 , than by the square root function.
    tcsqrt \(=\) X10th ( TCRFT2 )
    FSF2 \(=\) SF2 / tcsqrt * 9.5493
                                    (60./2*PI)
    FDWFT2=TABLXY (NPREF, IF1, PREFT2,FPRF,NFSF, IF2, FSF2, FSFTAB, DWFTAB)
was replaced by an interpolation using precomputed slopes.
    FDWFT2 \(=\) xylint ( PREFT2, FSF2, NPREF, FPRF, NFSF, FSF2,
+ sdwfp, vdfs FSFTAB, DWFTAB, IF1, IF2 )
    A table of EPSF vs GAMFP is needed here. It would be used for
    EPSO vs GAMOP as well.
    EPSF \(=.739594 /\) GAMFP* (2./GAMP1) **(-GAMFP/GAMM1)
    EPSF \(=.739594 /(\) GAMFP * XtoY ( \(2 . / G A M P 1, G A M F P / G A M M 1)\) )
    DWFT2 = FDWFT2*CDWFT2*PFP/(14.7*tcsqrt*EPSF)
    IF (STIME.LT.0.1) THEN
        TRQFT2 \(=0.0\)
    ELSE
        TRQFT2 =TRBTRQ (SF2, UCFT2,TFP, PFP, 1./PRFT2, 2, CPFP, DWFT2,GAMFP)
    1
                        *CTQFT2
    END
    IF ( DWFT2.LE. . Q) THEN
        TFT2D \(=\mathrm{TFP}\)
    ELSE
        TFT2D=TFP-rlimit ( \(0.0,300.0\), (TRQFT2 * SF2)/
    \(+\)
    ENDIF
    hpfi \(=0.5 * \mathrm{PFI}\)
    PFT2D \(=\) hpfi + SQRT( hpfi**2 + RHGFM*RGCFP*TFT2D*DWFT2**2)
OXID PREBURNER INJECTION FLOWS

IN THE FOLLOWING, IGOFU IS USED TO INDICATE THE STATE OF THE PREBURNER INJECTION FLOWS, THEY ARE:
```

C IGOOX=1:
C IGOOX=2
C IGOOX=3
C IGOOX=4:
C IGOOX=5
C
C
C
C
C
C
C
IF (WTIGN .GT. 0.0) RHOIGN = RHOOP3
GO TO (1500, 1540, 1560, 1580, 1680), IGOOX
1500 ROLEAK = 1.0/(772.8 * (FGEN(17, 82, 20.) * ABOPO / 100.) ** 2)
WOPOIZ = FGEN (1, 83,0.999) + 0.01
IF (STIME .GT. 2.5) GO TO 1520
COOV =0.025
IGOOX = 2
GO TO 1540}=1.
1520 COOV = 1.0
WOPOI = WOPOIZ
COOI =1.0
WOPOV =0.05
IGOOX = 3
GO TO 1560
C * * PRIME OPB OXIDIZER INJECTOR
C
*1540 WOPOV = AMIN1 (0.05, WOPOV + (1.0 - COOV) * DWOPO * DT)
*
1540 WOPOV = prlint((1.0 - COOV) * DWOPO, Tstep, 116)
CALL pruint(WOPOI, DWOPO * COOV - DWOPOI, Tstep, 117) SSM33000
COOI = FGEN(1, 62, WOPOI)
C IF (WOPOV .GT. 0.0) COOV = 1.0
C
IF(OPOVPF .AND: WOPOV.GT.-.05) THEN
COOV = 1. + WOPOV * 20.
IF(WOPOV.GT.-.001) THEN
PRINT *,' OPOV BUBBLE PRIMED AT',TIME
OPOVPF = .FALSE.
COOV=1.
END IF
END IF
C
IF(OPOIPF .AND. WOPOI.GT.1.75) THEN
PRINT *,' OPB INJECTOR PRIMED AT',TIME
OPOIPF = .FALSE.
END IF
C

```
```

 ROPO = (ROPOL + ROPOV * COOV + ROPOI * COOI * COOV) / RHOOP3
 DWOPO = prFLOW(DWOPO, ZOPO, ROPO, POD3 - POP + DPOPAS, 118)
 DWOPOI = COOI * COOV * DWOPO SSM33200
 RHOIGN = POPOV / (1159.0 * 200.0)
 RHOIGN = PFPOV * 4.314064E-7
 IF (WOPOI .LT. WOPOIZ) GO TO 1580
 WOPOI = WOPOIZ
 IGOOX = 3
 C * * * MAINSTAGE CALCULATIONS
C
1560 ROPO = (ROPOL + ROPOV + ROPOI) / RHOOP3
IF (ROPOV .LT. 1.OE+10) THEN
SSM33300
DWOPO = prflow(DWOPO, ZOPO, ROPO, POD3 - POP + DPOPAS, 118)
DWOPOI = DWOPO
ELSE
DWOPO = 0.0
DWOPOI =0.0
IGOOX = 4
END IF
*1580 DPOPAS = ASOPC * (DWOPF/ 120.)**2 / (POP / (9272. * T(9)))
1580 DPOPAS = ASOPC * (DWOPF**2 * T(9) / POP * 0.1392945
POPOI = POP + ROPOI * DWOPOI**2 / RHOOP3 - DPOPAS
POPOV = (POD3 / ROPOV + POPOI / ROLEAK) * (ROPOV * ROLEAK)
1 / (ROPOV + ROLEAK)
IF (IGOOX .LT. 4) GO TO 1800
COMPUTE OPB ASPIRATION BACKFLOW
SSM33400
DWOPOI = recpos(-DWOIG(2) * RHOOP3 / RHOIGN)
WOPOI = pruint(DWOIG(2), Tstep, 117)

* Changed next two tests to be independent of DT and consistent with
* previous approach.

```
    IF ( wtigon ) THEN
        WTIGN = pruiñt ( DWOIG (2), Tstep, 119)
        IF ( WTIGN .GT. 0.0) THEN
        WRITE (init, 1590) STIME
1590 FORMAT (1HO, 10X,
    \(+\quad * * * *\) BACKFLOW REACHED ORIFICE BLOCK AT TIME \(=1\),
    \(+\mathrm{F} 8.3,1 \mathrm{SECONDS} \star \star \star \star * 1)\)
                wtigon \(=\).FALSE.
                GO TO 1640
            END IF
    END IF
1600 RHOIGN \(=\) PCIG(2) / (9272.016 * T(9))
    IF ( wtason) THEN
        WTASI = pruint ( DW1 (2) * RHOOP3 / RHOIGN, Tstep, 120)
        IF (WTASI .LT. 0.0) THEN

WRITE \((6,1610)\) TIME
```

1G10 FORMAT (1HO, 10X,
+ ' * * * * BACKFLOW REACHED OPOV AT TIME = ',
+ F8.3, 'SECONDS * * * * 1)
wtason = .FALSE.
ENDIF
ENDIF
1640 IF (TIME .LT. TCUTPR) GO TO 1800
POPRG = AMIN1 (PHES, POP)
IF (POPOI .GT. PHES) GO TO 1800
IGOOX = 5
C ****** COMPUTE PURGE FLOW AND PRESSURE

```
C
    OXIDIZER PREBURNER OXIDIZER LINES HAVE THE SAME SET UP AS THOSE OF
    FUEL PREBURNER. SAME PURGE SEQUENCE APPLIED.
    The code was restored to read like 1320 above, where a logical
    variable shuts off the integration when its state change function
    is completed.
1680 IF (FOPTV) THEN
                                    SSM33600
    WOPTV = pruint ( - ABS (DWOPTV), Tstep, 121)
        FOPTV \(=\) WOPTV .GT. 0 .
        IF (POPOT .LT. POPOV) THEN
        DWOPTV \(=0 .-\) prflow (DWOPTV, ZOPOI, ROPOVT / RHOOP3,
    \(+\)
        ELSE
            DWOPTV \(=\) prflow (DWOPTV, ZOPOI, ROPOTV/RHOOP3,
    \(+\)
        POPOT - POPOV, 122 )
        ENDIF
    ELSE
        RHOOTV \(=\) POPOT \(*\) VTP4 6
        IF (POPOT . LT. POPOV) THEN
            DWOPTV \(=0 .-\)
    + GFLOW (POPOV, POPOT, TPRC, 4632., 1.66) * AOPVT
        ELSE
            DWOPTV \(=\) GFLOW (POPOT, POPOV, TPRC, 4632., 1.66) * AOPTV
        ENDIF
    ENDIF
    IF ( FOPVI ) THEN
        WOPVI \(=\) pruint \((-\) DWOPVI, Tstep, 123)
        FOPVI \(=\) WOPVI .GT. 0.0
        IF ( FOPVI) THEN
            DWOPVI \(=\)
            prflow ( DWOPVI, ZOPOI, ROPOVI/RHOOP3, POPOV - POPOI, 124 )
        ELSE
            RHOOVI \(=\) POPOV * VTP46
            DWOPVI \(=\) GFLOW (POPOV, POPOI, TPRC, 4632., 1.66) * AOPVI
        ENDIF
```

 ENDIF
 IF (FOPTI) THEN
 WOPTI = pruint(DWOPTI, Tstep, 125)
 FOPTI = WOPTI .GT. 0.0
 IF (FOPTI .OR. FOPOT) THEN
 DWOPTI = prflow(DWOPTI, ZOPOI, ROPOTI/RHOOP3,
 + POPOT - POPOI, 126)
 ELSE
 RHOOTI = POPOT * VTP46
 DWOPTI = GFLOW(POPOT, POPOI, TPRC, 4632., 1.66) * AOPTI
 END IF

END IF
1730 IF (FOPOT) THEN
WOPOT = pruint(- (DWOPTV + DWOPTI+ DWOPTA), Tstep, 127)
FOPOT = WOPOT .GT. 0.0
END IF
IF (FOPOI) THEN
WOPOI = pruint(- DWOPOI, Tstep, 128)
FOPOI = WOPOI .GT. 0.0
SSM33900
Limit integration increase or decrease to .002, obscurely.
WDOPOI = DWOPOI
DWOPOI = FLOW(DWOPOI, ZOPOI, ROPOI/RHOOP3,DT, POPOI-POP+DPOPAS)
DWOPOI = WDOPOI - AMIN1 (WDOPOI - DWOPOI, 0.002)
IF (DWOPOI.GT.WDOPOI) DWOPOI=WDOPOI +AMIN1(DWOPOI-WDOPOI ,.002)
Now modelled as an unlimited integration of a limited flow rate.
dwrate = rlimit(-dwmax, dwmax,

+ POPOI - POP + DPOPAS - ROPOI/RHOOP3*DWOPOI**2/ZOPOI)
DWOPOI = pruint(dwrate, Tstep, 129)
AREAO = xlint(WOPOI, ISO, WOPTAB, AOPTAB, sawop, 4)
DWPOI = GFLOW (POPOI, POP - DPOPAS, TOPDH, 4632., 1.66) * AREAO
ELSE
RHOOOI = POPOI * VTP46
DWOPOI = GFLOW(POPOI, POP - DPOPAS, TPRC, 4632., 1.66) * AREAO 4000
END IF
IF (FOPTA) THEN
WOPTA = pruint(- DWOPTA, Tstep, 130)
FOPTA = WOPTA .GT. 0.0
IF (FOPTA) THEN
DWOPTA = prflow(DWOPTA, ZOPOI, ROPOTA / RHOOP3,
+ ELSE
RHOOTA = POPOT * VTP46
DWOPTA = GFLOW (POPOT, POP, TPRC, 4632., 1.66) * AOPTA
ENDIF
ENDIF

```
```

 DPOPAS = ASOPC * DWOPF**2 / POP * T(9) * 0.1392945
 DWFPSG = GFLOW(PHES, POPRG, TPRG, 4632., 1.66) * AFPRS
 POPRG = pruint(
 + 48849. * (DWFPSG - DWFPR2 - DWOPR - DWOPR2),
+ Tstep, 131)
POPRG = AMIN1(PHES - .01, POPRG)
DWOPR = GFLOW (POPRG, POPOV, TPRG, 4632.0, 1.66) * AOPR1
POPOV = pruint(CFACT * (DWOPR +
+ (DWOPTV/RHOOTV - DWOPVI/RHOOVI) * POPOV * vTP46, Tstep, 132)
DWOPR2 = GFLOW (POPRG, POPOT, TPRG, 4632.0, 1.66) * AOPR2
POPOT = pruint(CFACT * (DWOPR2 -
+ (DWOPTA/RHOOTA + DWOPTI/RHOOTI + DWOPTV/RHOOTV) *
+ (POPOT * vTP46), Tstep, 133)
POPOI = pruint(CFACT * ((DWOPTI / RHOOTI + DWOPVI / RHOOVI
+ - DWOPOI / RHOOOI) * (POPOI * VTP46 - DWPOI), Tstep, 134)

```

OXID PREBURNER IGNITOR
POPBFB \(=\mathrm{P}(9)-\mathrm{ROPIGB} / \mathrm{RHO}(9)\) * DWOPF**2 CALL IGN (2, POPOV, POPOI, RHOIGN, POPBFB, RHO (9), POP)

OXID PREBURNER COMBUSTOR
IN THE FOLLOWING:
DWOPF: OXID PREBURNER FUEL FLOW
WOPF: OXID PREBURNER TOTAL FUEL
WOPO: OXID PREBURNER TOTAL OXIDIZER
ELFOPM: OXID PREBURNER OXIDIZER FRACTION
ELFOP: OXID PREBURNER OXIDIZER FLOW FRACTION
TOPC: OXID PREBURNER COMBUSTION TEMPERATURE
CPOP: SPECIFIC HEAT INSIDE OXID PREBURNER
GAMOP: RATIO OF SPECIFIC HEAT (GAMMA) OF OXID PREBURNER
EMWOP: MOLECULAR WEIGHT IN OXID PREBURNER
RGCOP: GAS CONSTANT IN OXID PREBURNER (PSI-IN**3/LB)
TOP: OXID PREBURNER TEMPERATURE
POP: OXID PREBURNER PRESSURE
WOP: OXID PREBURNER TOTAL MASS
WTOP: WEIGHT TIMES TEMPERATURE WITHIN OXID PREBURNER
```

 DWOPFA = recpos(DWOPF)
 WOPF = prlint(DWOPFA + DWFIG(2) - (1.0 - ELFOPM) * DWOT2,
 + 0, 135)
 posig = recpos(DWOIG(2))
WOPO = prlint(DWOPOI + posig - ELFOPM*DWOT2, 0, 136)
ELFOPM = WOPO / (WOPO + WOPF + 1.OE-6)
SSM34300
ELFOP = (DWOPOI + posig) /
+ (DWOPOI + DWOPFA + DWFIG(2) + posig + 1.0E-06)

```
```

 TOPC = FGEN (20, 66, ELFOP) +T(9)
 CPOP = FGEN(21, 67, ELFOPM)
    ```
C
C
C
    IF (ELFOPM.LE.0.1) THEN
        \(A=\operatorname{recpos}(1.0-10 . * E L F O P M)\)
        GAMOP \(=A *\) H2GAMA (POP, TOP, 2, 2) +
    \(+(1.0-A) \star \operatorname{FGEN}(13,68, E L F O P M)\)
    CPH2 \(=\operatorname{FGEN}(15,61\), TOP \()-0.0887+\)
\(+\quad\) POP * (0.1241-3.732E-5*POP)/(AMAX1(51.,TOP)-50.)
    \(C P O P=A * C P H 2+(1.0-A) * C P O P\)
    ELSE
        GAMOP \(=\operatorname{FGEN}(13,68\), ELFOPM)
    ENDIF
    EMWOP \(=\) FGEN \((12,69\), ELFOPM \(/(1 .-E L F O P M))\)
    RGCOP \(=18540.0 /\) EMWOP
    TOP \(=\) AMAXI (10.0, WTOP \(/(\) WOP \(+1.0 \mathrm{E}-12)\) )
    POP \(=\) RGCOP*WTOP/VOLOP
    POP=AMAX1 (0.01, POP)
    WTOP \(=\) priint ( GAMOP *
+ (recpos(DWOPFA) + DWOPOI + DWFIG (2) + posig)*TOPC
\(+\)
) SSM34500
    WOP \(=\) WOPF + WOPO + WOPGN2
    IF (POP.LT.PA) DWOPOI=0.
C

\section*{HIGH PRESSURE OXIDIZER TURBINE}

TURBINE FLOW EFFICIENCY FDWOT2 IS THE FUNCTION OF EFFECTIVE PRESSURE RATIO (PREOT2) AND NORMALIZED TURBINE SPEED (FSO2). A LOOK-UP TABLE IS GIVEN AS DWOTAB WITH FPRO ARRAY AS X-AXIS AND FSOTAB ARRAY AS Y-AXIS. THE ACTUAL EQUATIONS USED FOR SIMULATION IS NOT IN THE DOCUMENT RL00001.
```

 GAMP1 = GAMOP + 1.
 GAMM1 = GAMOP }~1
 PROT2 = AMAX1 (1.0, POP/POT2D)
 tmp = 1. - . 166667 * GAMP1 / GAMM1 *
 + (1. - XtoNY(PROT2, -GAMM1/GAMOP))
PREOT2 = 1./((X10th(tmp, 5) * tmp**3)
TCROT2 = GAMOP/GAMP1 * RGCOP * TOP * 5.15917E-6
tcsqrt = Xloth(TCROT2, 5)
FSO2 = SO2 / tcsqrt * 9.54927
FDWOT2 = xYlint(PREOT2, NPREO, FPRO, NFSO, FSO2,
 + sdwofp, vfsO2, FSOTAB, DWOTAB, IO1, IO2)
EPSO =.739594 / GAMOP * XtOY(. 5 * GAMP1, GAMOP/GAMM1)
DWOT2 = FDWOT2 * CDWOT2 * POP/(14.7 * tcsqrt(TCROT2) * EPSO)
TRQOT2=TRBTRQ(SO2,UCOT2,TOP, POP,1./PROT2,4, CPOP,DWOT2,GAMOP)
1 *CTQOT2
IF (DWOT2.LE..O) THEN

```
```

 TOT2D = TOP
 ELSE
 TOT2D = TOP - rlimit(0.0, 300.0,
 + TRQOT2 * SO2 / (9340.0 * CPOP * DWOT2 + 1.0E-6))
 SSM34700
POT2D = hpfi + Xl0th(hpfi**2 + RHGOM*RGCOP*TOT2D*DWOT2**2, 5)

```
    TFT2DI = pruint( - QFTMC*RGCFP*TFT2D/(CPFP*PFT2D*VOLFTD),
```

 TFT2DI = pruint(- QFTMC*RGCFP*TFT2D/(CPFP*PFT2D*VOLFTD),
 + Tstep, 138)
 Not an integration step:

```
\[
\text { TOT2DI }=\text { TOT2D }- \text { QOTMC*RGCOP*TOT2D } /(C P O P * P O T 2 D * V O L O T D) * D T
\]
```

 RHOOTF = rlimit(4.0E-03, 1.0E-06, PFIS/(TOTMC*9201.6))
 RHOFTF = rlimit(4.0E-03, 1.0E-06, PFIS/(TFTMC*9201.6))
 PINMC=PFI+RSFS*ABS(DWSFS)*DWSFS/RHOFI+RFMCF*ABS (DWFTF)*DWFTF/
 * RHOFTF

```
DWFTI SEPERATED INTO DWFTF AND DWOTF AND THEY MERGE AFAIN AT NODE FI
FOR A GIVEN PRESSURE DROP DP, THE STEADY FLOW EQUATION IS:
\(\mathrm{DP}=(\mathrm{Rl} / \mathrm{RHOL}) *(\mathrm{DW} 1) * * 2\)
    DWFTF \(=\) DWFT1 \(/(1.0+\) X10th (RFMCF*RHOOTF/(RFMCO*RHOFTF), 5) )
    DWOTF \(=\) DWFT1 - DWFTF
    IF (DWFTI.LE.O.) THEN
    TFIS \(=(\) TOTMC + TFTMC \() * .5\)
    RHOFI \(=\) RHO (6)
    ELSE
        TFIS \(=(\) DWOTF*TOTMC + DWFTF*TFTMC) \(/\) DWFTI
        RHOFI \(=(\) DWFTF + DWOTF \() /(D W F T F / R H O F T F+D W O T F / R H O O T F)\)
    ENDIF
    PFIS \(=\) PINMC - RFMCF*DWFTF*ABS (DWFTF) \(/\) RHOFTF
DEMON \(=\) TOTAL_FLOW / SQRT(RHO) IN STEADY STATE
    DEMON \(=\) X10th ( ABS (PFIS -PFI\() / \operatorname{RSFS}, 5)+\)
    \(+\quad\) Xloth ( ABS (PFIS - PCIE), 5 ) *
    \(+(1 . / X 10 \operatorname{th}(\operatorname{RACV}, 5)+1 . / X 10 \operatorname{th}(\mathrm{RBAF}, 5)+1 . / \mathrm{XiOth}(\mathrm{RPFS}, 5))\)
    IF (DEMON.EQ.0.0) THEN
        DWSFS \(=0.0\)
        DWACV \(=0.0\)
        DWBAF \(=0.0\)
        DWPFS \(=0.0\)
    ELSE
        DWSFS \(=\) DWFT1 \(*\) X10th (ABS (PFIS-PFI)/RSFS, 5) / DEMON
        DWACV \(=\) DWFT1 * X10th (ABS (PFIS-PCIE)/RACV, 5) / DEMON
        DWBAF \(=\) DWFTI * Xloth (ABS (PFIS-PCIE) /RBAF, 5) / DEMON
        DWPFS \(=\) DWFTI * X10th (ABS (PFIS-PCIE)/RPFS, 5) / DEMON
    ENDIF
    DPHGMF=PFIS-PFT2D
    SSM35100
    DPHGMO=PFIS-POT2D

MAIN CHAMBER FUEL (HOT GAS) INJECTOR
FUEL INJECTOR INPUTS ARE:
DWFT2: OUTPUT FROM FP THROUGH FP TURBINE DWOT2: OUTPUT FROM OP THROUGH OP TURBINE
DWSFS: FROM NODE FIS
DWFT2C: FT2 COOLING WHEN DP >=185 PSI
DWFBPV: BLEEDING VALVE FROM NOZZLE COOLING FLOW (NOT USED)
FUEL INJECTOR OUTPUTS ARE:
DWFI: EXIT TO MAIN COMBUSTION CHAMBER
```

 WTFI = prlint(GAMFI *
 + (DWFT2*TFT2DI + DWOT2*TOT2DI + DWSFS*TFIS + DWFBPV*T(4) +
 + DWFT2C*T(3) - DWFI*TFI), 0, 139)
WFIF = prlint(DWFBPV + DWSFS + DWOT2*(1.0 - ELFOPM) +
+ DWFT2*(1.0 - ELFFPM) + DWFT2C - DWFI*(1.0 - ELFFI)), 0, 140)
WFIO = prlint(DWOT2*ELFOPM + DWFT2*ELFFPM - DWFI*ELFFI, 0, 141)
WFI = WFIO + WFIF
TFI = AMAX1(10.0, WTFI/(WFI + 1.0E-12))
SSM35200
PFI = RGCFI*WTFI/VOLFI
PFI=AMAXI (PA,PFI)
IF(DWFT2.LE.O..AND.DWOT2.LE.O.) THEN
GAMFI = GAM6
RGCFI=RGC6
SSM35300
ELSE
GAMFI=(GAMOP*DWOT2 + GAM6*DWSFS+(DWFBPV+DWFT2C) *GAM4 +
1 DWFT2*GAMFP)/(DWOT2+DWSFS+DWFT2+DWFBPV+DWFT2C+1.0E-06)
GAMFI = rlimit(1.01, 10.0, GAMFI)
RGCFI=(RGCOP*DWOT2+RGC6*DWSFS+RGCFP*DWFT2+RGC4* (DWFBPV +
* DWFT2C))/(DWOT2+DWSFS +DWFT2+DWFBPV+DWFT2C+1.0E-6)
RGCFI = rlimit(100.0, 20000.0, RGCFI)
ENDIF
DWFIX = GFLOW(PFI,PCIE,TFI,RGCFI,GAMFI) *AFI
DWFI= DWFI + 0.05*(DWFIX - DWFI)
DWFI = recpos(DWFI)
ELFFI = WFIO/(WFI + 1.OE-6)
MAIN CHAMBER IGNITOR
CALL IGN(3,PMOV, POINJ,RHOMOV,P(10),RHO(10),PCIE)
MAIN CHAMBER COMBUSTOR
SSM35400
IN THE MAIN COMBUSTION CHAMBER, FOLLOWING NOTATION ARE USED:
ELFC: OXID FLOW / TOTAL FLOW IN COMBUSTION CHAMBER
ELFCM: OXID / TOTAL MASS IN COMBUSTION CHAMBER
TCC: COMBUSTION TEMPERATURE IN THE CHAMBER
GAMC: GAMMA IN COMBUSTION CHAMBER
WTC: WEIGHT TIME TEMPERATURE IN COMBUSTION CHAMBER
WCO: OXID WEIGHT IN COMBUSTION CHAMBER
WCF: FUEL WEIGHT IN COMBUSTION CHAMBER
WCN: NITROGEN WEIGHT IN COMBUSTION CHAMBER
DWC: EXIT FLOW OF COMBUSTION CHAMBER
DWGN2: NITROGEN PURGE DURING SHUT DOWN (NOT USED)
TC: TEMPERATURE IN COMBUSTION CHAMBER
WC: TOTAL MASS IN COMBUSTION CHAMBER
EMRC: O/F RATIO
PCIE: CHAMBER PRESSURE AT INJECTOR END
PCNS: CHAMBER PRESSURE AT NOZZLE END

```

EMWC: EQUIVALENT MOLECULAR WIGHT IN COMBUSTION CHAMBER
CPC: SPECIFIC HEAT RATIO IN COMBUSTION CHAMBER
EMUC: VISCOSITY WITHIN COMBUSTION CHAMBER
EKC: THERMAL CONDUCTIVITY WITHIN COMBUSTION CHAMBER
PRDC: PRANDTL NUMBER IN COMBUSTION CHAMBER
REYC: REYNOLDS NUMBER IN COMBUSTION CHAMBER
```

 dsum = DWOI + DWFI + DWACV + DWFIG(3) + DWBAF + DWPFS
 ELFC = (DWOI + DWFI*ELFFI) / (dsum + 1.OE-6)
 ELFCM = WCO/(WC+1.OE-6)
 TCC = FGEN(20, 84, ELFC) + T(9)
 GAMC = FGEN(13, 85, ELFCM)
 WTCl = prlint(GAMC*(dsum * TCC - DWC * TC), 0, 142)
 WCO = prlint(DWOI + DWFI*ELFFI - DWC*ELFCM, 0, 143)
 WCF = prlint(DWACV + DWBAF + DWPFS + (1.0 - ELFFI) * DWFI
 + - (1.0 - ELFCM)*DWC + DWFIG(3), 0, 144)
 IF (PA/PCNS .LE.
 + XtoNY(2./(GAMC + 1.0), GAMC/(GAMC - 1.0))) THEN
 DWC = PCNS * ACN * 32.2 / CSTAR(1, EMRC, PCNS)
 ELSE
 DWC = GFLOW(PCNS,PA,TC,RGCC,GAMC) * ACN
 ENDIF
 WCN = prlint(DWGN2*RGN2 - DWC*ENFC, 0, 145)
 IF(WCN.GT.O.O)
 ENFC = WCN/(WC + 1.OE-06)
 DWC = recpos(DWC)
 Unit 6 formatted output was removed

```
```

WC = WCO + WCF + WCN
TC = AMAX1(10.0, WTC/(WC + 1.0E-12))
Added for 'SIGMAi ='s
vTC = 1.0 / (2.0 * TC)
EMRC = WCO / (WCF + 1.OE-12)
PCIE = RGCC * WTC * VVOLC
PCIE = AMAXI(PCIE, PA)
PCNS = PCIE * EFFCM
Order was changed to calculate EMWC and CPC once,
and to test ENFC once.
IF (ENFC.GT.O.)
EMWC = ((WCO + WCF) * FGEN(12, 86, EMRC) + WCN * 28.0) / WC
CPC = ((WCO + WCF) * FGEN(21, 87, ELFCM) + WCN * 0.274) / WC
ELSE
EMWC = FGEN(12, 86, EMRC)
CPC = FGEN(21, 87, ELFCM)
END IF
RGCC = 18540.0 / EMWC
EMUC = FGEN(25, 88, ELFCM)
EKC = FGEN(23, 89, ELFCM)

```
```

GAMAC $=($ GAMC -1.0$) * 0.5$

```
\(\operatorname{PRDC}=(C P C * E M U C) / E K C\)
\(A 4 C=A B S(D W C) / A C N\)
REYC \(=\) CPC * Xloth (EMUC, 2) / Xloth(PRDC, 6)

FIXED NOZZLE HOT GAS SIDE HEAT TRANSFER
THE HEAT TRANSFER EQUATIONS USED FOR THE FOLLOWING CODES ARE DESCRIBED IN THE DOCUMENT 29-30 WITH A SLIGHT MODIFICATION.
SIMILAR EXPLANATIONS CAN BE FOUND IN HILL'S BOOK OF "MECHANIC AND THERMODYNAMICS OF PROPULSION".
!!!!! HOWEVER, THERE IS A MAJOR PROBLEM !!!!!
THE NODE 12 (DOWN-COMER) HEAT TRANSFER IS NOT CALCULATED HERE. AND, THE FOLLOWING CODE INCLUDES NODE 7 HEAT TRANSFER WHICH DOES NOT CONTACT WITH THE NOZZLE.
IN THE FOLLOWING:
EMC\#: MACH NUMBER AT SPECIFIC POINT
DIAT: THROAT DIAMETER
QIN1(): HEAT FLOW FROM HOT GAS TO WALL
```

 EMC4 = SC4 * GAMC + BC4
 EMFTR4 = 1.0 + GAMAC * EMC4**2
 SIGMA4 = 1.0 / (XtoY(TW1(4) * vTC * EMFTR4 + 0.5, A3) *
 + XtOY(EMFTR4, AA2))
    ```
    HTCC=0.026/DIAT**0.2*REYC*A4C**0.8*A5 x ** 2 is much cheaper
                                    than \(x\) ** 0.2
    HTCC \(=0.026 /\) DIAT**2 * REYC * X10th (A4C, 8) * A5
    HTCC4 \(=\) HTCC * Xloth (AR4, 9) * SIGMA4
    QIN1 (4) = HTCC4 * AHTC4 * (TC - TW1 (4) ) SSM36000
    IF ( PA . GT. 1.0 ) THEN
            IF (PCIE.LE. 700.) QIN1 (4) =QIN1 (4)*AMIN1 (5.6.9.68-.0236*PCIE+
        1 1.6E-05*PCIE**2)
            IF (PCIE.LE. 350.) QIN1 (4) =QIN1 (4) *AMIN1 (2.,
        1 AMAX1 (1.,1.t(350.-PCIE)/100.)) Tests PCIE in the wrong
                                order and wastes results.
        IF (PCIE.LE. 350.) THEN
\(+\quad\) QIN1 (4) \(=\) QIN1 (4) * rlimit ( 1., 2., 1. + (350.-PCIE)*.01)
        ELSE IF ( PCIE.LE.700.) THEN
        QINI (4) \(=\) QIN1(4) *
            AMIN1 (5.6, 9.68-PCIE * (.0236-1.6E-05 * PCIE) )
        END IF
        END IF
130 EMFTR5 \(=1.0\) + GAMAC * EMC5 **2
    EMFTR6 \(=1.0+\) GAMAC * EMC6**2
    EMFTR7 \(=1.0+\) GAMAC * EMC7**2
```

 SIGMA5 = 1.0 / (XtOY(TW1(5) * vTC * EMFTR5 + 0.5, A3) *
 + XtoY(EMFTR5, AA2)
 SIGMA6 = 1.0 / (XtoY(TW1(6) * VTC * EMFTR6 + 0.5, A3) *
 + XtoY(EMFTR6, AA2)
SIGMA7 = 1.0/ (XtoY(TW1(7) * VTC * EMFTR7 + 0.5, A3) *
+ XtOY(EMFTR7, AA2)
HTCC5 = HTCC * Xloth(AR5, 9) * SIGMA5
HTCC6 = HTCC * Xloth(AR6, 9) * SIGMA6
HTCC7 = HTCC * XlOth(AR7, 9) * SIGMA7
QIN1(5) = HTCC5 * AHTC5 * (TC - TW1(5))
QIN1 (6) = HTCC6 * AHTC6 * (TC - TW1(6))
QIN1(7) = HTCC7 * AHTC7 * (TC - TW1(7))
RETURN
END

```
```

 'ignt.for':
 SUBROUTINE IGNO(I, POU, POD, RHOO, PFU, RHOF, PC)
 c
 FURFOSE: SIMULATE THE IGNITION SYSTEM TRANSIENTS
 C
C******ARGUMENTS******
I = CHAMBER INDEX
1 = FPB
2 OPB C 3 = MCC
C
C Al = OXIDIZER VALVE PRESSURE,PSI
C A2 = OXIDIZER INJECTOR MANIFOLD PRESSURE,PSI SSM37800
C A3 = OXIDIZER VALVE DENSITY,LB/IN3
C A4 = FUEL SUPPLY PRESSURE,PSI
C A5 = FUEL SUPPLY DENSITY, LB/IN3
C A6 = IGNITOR CHAMBER DISCHARGE PRESSURE, PSI
c A7 = NOT USED
C N = INITIALIZATION FLAG inactivated
C
C IGNITOR ITSELF IS A SMALL COMBUSTION CHAMBER INSIDE (?) THE
C COMBUSTION CHAMBER.
C FUEL FEED LINES FOR IGNITORS ARE JUST LIKE REGULAR PIPE LINES
C WITH SMALLER SIZE. THE CALCULATION OF FUEL FEED LINE IS SIMPLE
C FOR A GIVEN CONDITION.
C OXID FEED LINES FOR IGNITORS ARE THE BYPASS LINES AFTER THE CONTROL
C OXID VALVES. THE FOLLOWING CALCULATION IS MAINLY DEALING WITH
C THE FLOW AND PRESSURE BALANCE OF THE IGNITOR LINES AND MAIN OXID LINES.
C THE SCHEMATIC OF THE OXID LINES FOR A COMBUSTOR IS:

```
```

 diagram omitted
    ```
                                    diagram omitted
C
C******COMMON USAGE******
C******COMMON USAGE******
INPUT:
INPUT:
    VARIABLE SOURCE SSM37900
    VARIABLE SOURCE SSM37900
        T(3),T(9) FUELF
        T(3),T(9) FUELF
OUTPUT:
OUTPUT:
        VARIABLE DESTINATION
        VARIABLE DESTINATION
        DWFIG,DWOIG,DW1,DW2,P4,PCIG HOTGAS
        DWFIG,DWOIG,DW1,DW2,P4,PCIG HOTGAS
        DWFIG FUELF
        DWFIG FUELF
                            SUBSCRIPT (1)=FUEL PB,(2)=OXID PB,(3)=MAIN CHAMBER SSM38000
                            SUBSCRIPT (1)=FUEL PB,(2)=OXID PB,(3)=MAIN CHAMBER SSM38000
C Eliminated superfluous arrays:
```

C Eliminated superfluous arrays:

```

DIMENSION POU(3), POD(3), RHOO(3), PC(3), RHOF (3)
REAL AN (3), TAUC(3), ZFIG(3),
```

 + RFIG(3), P4(3), ELI(3), EL2(3), EL3(3),
    ```
    \(+\quad\) R1I (3), R2I(3), R3I(3)
    INCLUDE 'blank.com'
    INCLUDE 'out.com'
    INCLUDE 'igni.com'
    INCLUDE 'units.com'
    INTEGER Tstep
    PARAMETER ( Tstep \(=0\) )

    IF ( I .EQ.1) THEN
        DO \(11 \mathrm{~J}=1,3\)
            READ (run, 12) R1I (J), R2I(J), R3I(J), AN(J), TAUC(J),
    \(+\quad\) ZFIG (J), RFIG(J), EL1 (J), EL2 (J), EL3 (J)
            \(\mathrm{R} 1(J)=\mathrm{R} 1 \mathrm{I}(\mathrm{J}) * 0.0412\)
        \(R 2(J)=R 2 I(J) * 0.0412\)
        \(R 3(J)=R 3 I(J) * 0.0412\)
    11 CONTINUE
    ENDIF
C
    P4 (I) = PA
    PCIG (I) \(=\) PA
    DWOIG (I) \(=1\). OE-30
    DW3 (I) =DWOIG (I)
    DW2 \((I)=1.0 E-30\)
    DW1 (I) \(=2.0 \mathrm{E}-30\)
    DWFIG (I) \(=1\). OE-25
    DWNIG \((I)=1.0 E-25\)
    \(\operatorname{ELFIG}(I)=0.0\)
    CALL uninto ( DWOIG (I), \(213+\mathrm{I}\) )
    CALL uninto ( DW1 (I), \(216+I\) )
    CALL uninto ( DWI (I), \(219+I\) )
    CALL uninto ( DWFIG(I), \(222+I\) )
    CALL uninto ( PCIG (I), \(225+\mathrm{I}\) )
    \(G A M=1.4\)
    \(\mathrm{R}=9270.0\)
    \(\mathrm{TC}=460.0\)
    XINT=1.0
    RETURN
    ENTRY IGN (I, POU, POD, RHOO, PFU, RHOF, PC)
    POU(I) \(=\) AI
    \(\operatorname{POD}(I)=A 2\)
\[
c-3
\]
```

RHOO(I)=A3
PFU(I)=A4
RHOF(I)=A5
PC(I)=A6
TF(1)=T(9)
TF(2)=T(9)
TF(3)=T(3)

```

THIS IS TO CALCULATE THE PRESSURE CHANGE OF THE SEPARATION NODE (P4) AS THE RESULT OF THE CHANGES OF NEIGHBOR NODES POD, POU AND PCIG WITHIN THE TIME FRAME DT. THIS IS A TRANSIENT CALCULATION, FOR A STEADY STATE CONDITION (DT = LARGE) AND THE LAST TERM DROPS OUT.
IN THE FOLLOWING:
```

E = DELTA_POU / DELTA_DW1
F = DELTA_PCIG / DELTA
G = DELTA_POD / DELTA_DW3

```
\(\mathrm{E}=2.0 * \mathrm{RI}\) (I)/RHOO (I)*ABS (DW1 (I)) +EL1 (I)/DT
\(F=2.0 * R 2\) (I) \(/\) RHOO (I) *ABS (DW2 (I)) +EL2 (I) \(/ \mathrm{DT}\)
\(\mathrm{G}=2.0 * \mathrm{R} 3\) (I) \(/ \mathrm{RHOO}(\mathrm{I}) * A B S\) (DWOIG (I)) +EL3 (I) \(/ \mathrm{DT}\)

SSM38800
\(A=(-\mathrm{P} 4(\mathrm{I})+\mathrm{POD}(\mathrm{I})+\mathrm{R} 2(\mathrm{I}) / \mathrm{RHOO}(\mathrm{I}) \star \operatorname{ABS}(\mathrm{DW} 2(\mathrm{I})) \star \mathrm{DW} 2(I)) / \mathrm{F}\)
\(\mathrm{B}=(-\mathrm{P} 4(\mathrm{I})+\mathrm{PCIG}(\mathrm{I})+\mathrm{R} 3(\mathrm{I}) / \mathrm{RHOO}(\mathrm{I}) \star\) ABS (DWOIG (I)) *DWOIG(I))/G
\(\mathrm{C}=(\mathrm{POU}(\mathrm{I})-\mathrm{P} 4(I)-\mathrm{RI}(\mathrm{I}) / \mathrm{RHOO}(\mathrm{I}) * A B S(\mathrm{DW} 1(I)) * \mathrm{DWI}(I)) / E\)
\(\mathrm{D}=1.0 / \mathrm{E}+1.0 / \mathrm{F}+1.0 / \mathrm{G}\)
\(D P 4=(A+B+C) / D \quad\) this is \(d(P 4) / d t * D T\)
\[
\mathrm{VRHOO}=1.0 / \mathrm{RHOO}
\]
rvt \(=2.0 *\) VRHOO * DT
abdw \(=\) ABS ( DWI (I) )
vedt \(=1.0 /\) ( IVt \(* R 1(I) *\) abdw \(+E L I(I))\)
cvdt \(=(\) POU - P4 (I) - R1 (I) *VRHOO * abdw * DW1 (I) ) * vedt
abdw \(=\) ABS ( DW2 (I) )
vfdt \(=1.0 /\) (rvt * R2 (I) * abdw + EL2 (I) )
avdt \(=(-\mathrm{P} 4(I)+\mathrm{POD}+\mathrm{R} 2(\mathrm{I}) \star \mathrm{VRHOO} * \mathrm{abdw} * \mathrm{DW} 2(\mathrm{I})\) ) * vfdt
abdw \(=A B S(\operatorname{DWOIG}(I))\)
vgdt \(=1.0 /\) (-rvt \(* \mathrm{R} 3(I) *\) abdw + EL3 (I) ) SSM38800
bvdt \(=\left(-\mathrm{P} 4(\mathrm{I})^{*}+\mathrm{PCIG}(\mathrm{I})+\mathrm{R} 3(\mathrm{I}) \star \mathrm{VRHOO} *\right.\) abdw * DWOIG(I) ) * gdt
dvdt \(=\) vedt \(+v f d t+v g d t\)
p4rate \(=(\) avdt + bvdt + cvdt \() /(\) dvdt * DT )
DWOIG(I) \(=\) prflow ( DWOIG(I), EI3(I), -R3(I)*VRHOO,
\(+\quad \mathrm{P} 4(\mathrm{I})-\mathrm{PCIG}(\mathrm{I}), 213+\mathrm{I})\)
DW1(I) \(=\) prflow ( DWl(I), ELI(I), -R1(I)*VRHOO,
\(+\quad\) POU - P4 (I), \(216+I\) )
SSM38900
P4 (I) \(=\) pruint ( p4rate, Tstep, \(219+\mathrm{I}\) )
\(R F=R F I G(I) / R H O F\)
DWFIG(I) \(=\) prflow ( \(\operatorname{DWFIG}(I), 2 F I G(I), \operatorname{RF}, \operatorname{PFU}-\operatorname{PCIG}(I), 222+I)\)
```

 ELFIG(I)=AMAX1(0.0,AMIN1(1.0,DWOIG(I)/(DWOIG(I)+DWFIG(I)+1.E-25)))
 dwigs = DWOIG(I) + DWFIG(I)
 IF (ABS(dwigs) .LT. 1.E-25) THEN
 ELFIG(I) = 1.0
 ELSE
 ELFIG(I) = AMAXI(0.0, AMIN1(1.0, DWOIG(I)/dwigs))
 ENDIF
 GAM = fgen(13, 120 + I, ELFIG(I))
 Example of limiting table input to avoid extending table,
instead of looking up ABS(DWOIG(I))/(ABS(DWFIG(I))+1.E-6))
IF (ABS(DWFIG(I) .LT. 1.0E-10) THEN
EMRIG(I) = 1.0
R = 1000.
ELSE
EMRIG(I) = DWOIG(I) / DWFIG(I)
dwigs = ABS(EMRIG(I))
IF (dwigs .GT. 9999.) THEN
R=600.
ELSE
R=18540.0 / fgen(12, 123 + I, dwigs)
ENDIF
ENDIF
TCIG(I) = AMAX1(40.0, fgen(20, 126 + I, ELFIG(I))+TF(I))
DWNIG(I) = DWNIG(I) + 0.3 *
+(GFLOW(PCIG(I), PC, TCIG(I), R,GAM) * AN(I) - DWNIG(I)) SSM39000
PCIG(I) = pruint((DWFIG(I) + DWOIG(I) - DWNIG(I))/TAUC(I),
+
EMRIG(I) = DWOIG(I) / (DWFIG(I)+1.0E-10) replaced by above
END

```
```

 'gflow.for':
 FUNCTION GFLOW(PU,PD,TU,R,G)
 C
C PURPOSE: COMPUTE ISENTROPIC IDEAL GAS FLOW FOR CHOKED
AND UNCHOKED ORIFICES
c
C******ARGUMENTS******
INPUT:
C PU = UPSTREAM PRESSURE, PSI
C PD = DOWNSTREAM PRESSURE, PSI
C TU = UPSTREAM TEMPERATURE, DEG R
C R = GAS CONSTANT, IN-LBF/(LBM-DEG RF)
C G = GAMMA, RATIO OF SPECIFIC HEAT
C
C OUTPUT:
C GFLOW = MASS FLOW RATE/AREA LB/IN2-SEC
C
**

```
slowl(gee) = 2.0 * xtoy( gee + 1.0, - gee / (gee - 1.0) )
```

slowl(gee) = 2.0 * xtoy(gee + 1.0, - gee / (gee - 1.0))
slow2(pr,gee) = xtoy(pr, 2.0/gee) - xtoy(pr, (gee + 1.0)/g)
slow2(pr,gee) = xtoy(pr, 2.0/gee) - xtoy(pr, (gee + 1.0)/g)
test = 772.8 * G / (R * TU * (G-1.0))
test = 772.8 * G / (R * TU * (G-1.0))
IF (test .LT. 0.0) THEN
IF (test .LT. 0.0) THEN
GFLOW = 0.0
GFLOW = 0.0
ELSE
ELSE
IF (PU .LT. PD) THEN
IF (PU .LT. PD) THEN
P1 = - PD
P1 = - PD
ratio = PU / PD
ratio = PU / PD
ELSEIF (PU .eq. PD) THEN
ELSEIF (PU .eq. PD) THEN
P1 = 0.0
P1 = 0.0
ratio = 1.0
ratio = 1.0
ELSE
ELSE
P1 = PU
P1 = PU
ratio = PD / PU
ratio = PD / PU
ENDIF
ENDIF
PR = AMAXl(slowl(G), ratio)
PR = AMAXl(slowl(G), ratio)
if (PR .LT. 0.0) THEN
if (PR .LT. 0.0) THEN
GFLOW = 0.0
GFLOW = 0.0
ELSE
ELSE
test2 = slow2(PR)
test2 = slow2(PR)
IF (test2 .LT. 0.0) THEN
IF (test2 .LT. 0.0) THEN
GFLOW = 0.0
GFLOW = 0.0
ELSE
ELSE
GFLOW = P1 * Xloth(test * test2, 5)
GFLOW = P1 * Xloth(test * test2, 5)
ENDIF

```
        ENDIF
```

```
                    ENDIF
                ENDIF
                END
            SUBROUTINE CNTRLO
**************************************************************************
THIS IS THE PROGRAM SIMULATE THE DIGITAL CONTROL FUNCTIONS OF SSME.
C IT IS APPARENT THAT THE DATA WERE READ AND WRITTEN EVERY 0.02 SECOND.
C D/A DELAY AND INSTRUMENT DELAYS ARE ACCOUNTED FOR BY TIME CONSTANTS
C TIMEVC, TIMECP, TIMEPR, AND OTHERS.
C THE PURPOSE OF THIS SIMULATION IS TO READ MEASUREMENT OUTPUT AND
C CALCULATE THE NECESSARY OUTPUT AS DEFINED BY THE CONTROL SCHEME.
C
C******ARGUMENT******
C ICCNTL = INITIALIZATION FLAG
C
C******COMMON USAGE******
C INPUT:
C VARIABLE
C DW(1),DW(2),P(3),T(2),RHO (2)
C PCIE,DWOPO,DWFPO
        DWMOV
        XOPOV
    OUTPUT:
        VARIABLE DESTINATION
            XCFPOV,XCOPOV,XCMOV,XCMPV,XCCCV VALDYM
    SUBROUTINES CALLED: EMCO
C
C
    LOGICAL RESET, first
    DIMENSION D(5),PIN(5),DEN(5),PD(5),XP(5),II(5)
    DIMENSION AT(5),BT(5)
    DIMENSION STHETA(5)
C
    INCLUDE 'blank.com'
    INCLUDE 'out.com'
    INCLUDE 'contrl.com'
    INCLUDE 'hgas.com'
    INCLUDE 'oxid.com'
    INCLUDE 'balc.com'
    INCLUDE 'valves.com'
    COMMON/PURGE/DWGN2,TCUTPR,DWGN2F,DWGN2O
```

c
Computation constants

```
```

 PARAMETER (PI = 3.141596, tpcnst = 8./(386.4 * PI ** 2),
    ```
    PARAMETER ( PI = 3.141596, tpcnst = 8./( 386.4 * PI ** 2 ),
    + piov2 = PI * .5 , twopi = PI * 2. )
    + piov2 = PI * .5 , twopi = PI * 2. )
    FARAMETER ( v1728 = 1./1728., v41p12 = 1./41.42,
    FARAMETER ( v1728 = 1./1728., v41p12 = 1./41.42,
+ v14p06 = 1./14.06, v29p95 = 100. / 2995.)
+ v14p06 = 1./14.06, v29p95 = 100. / 2995.)
    PARAMETER ( v29p95 = 100. / 2995. )
    PARAMETER ( v29p95 = 100. / 2995. )
    DATA XOPOMS/ 100.0 /
    DATA I1/11,14,16,32,36/
C
C INITIALIZE LOCAL VARIABLES AND ARRAYS NOT ASSIGNED VALUES
C THIS IS NECESSARY FOR SUCCESSFUL EXECUTION ON THE IBM
SSM02500
* Unnecessary initialization was eliminated. It created unused
* variables, due to confusion between 'O' and 'O' characters.
    IF(FLAG.EQ.15.) GO TO 9999
    C2=0.0
    EEMR=0.0
                            SSM03000
                    initializations omitted
YCOPVL=0.0
DO 9998 I=1,5
        D(I)=0.0
        DEN(I) =0.0
        PD(I)=0.0
                            SSM04300
        PIN(I)=0.0
        STHETA(I)=0.0
        XP(I)=0.0
9998 CONTINUE
        IPBCO=0
C
C*****************************************************************
C THESE PARAMETERS DETERMINE THE SCHEDULE, LEVEL VS. TIME, OF:
C 1) THRUST 'REQUESTS,
C 2) MIX-RATION REQUESTS,
C 3) OPEN-LOOP OPOV SETTINGS,
C 4) CLOSED-LOOP GAINS, K, KP AND KI, OF THRUST CONTROL (OPOV),
C 5) OPEN-LOOP FPOV SETTINGS,
6) CLOSED-LOOP GAINS, K, KP AND KI, OF MIX-RATION CONTROL (FPOV)
7) MAIN OXID VALVE (MOV),
8) MAIN FUEL VALVE (MFV),
9) COOLANT CONTROL BYPASS VALVE (CCV),
C*******************************************************************************
C
30 FORMAT(1X,6F12.0)
```

 2, FCO,TUT, DUM, OPOVCP,OPCR1, OPCR2, OPOVOP, RO1,RO2, RO3,OSTEP,CFG1
 3, CFG2,FPOVOP,RF1,RF2,RF3,DUM1,FSTEP, FPOVCP,FPCR1,FPCR2,OMVCR
 4, TSMOV, DMOVO, XMOVM, DMOVUT,TMS, DFMOV, FMOVC, CCV1, DCCV1,TCCV1, DCCVC
 5, DCCV2, CCV2, CCVM,DFCCV, FCCVC,TFRMFV, DMFV1, XMFVM, FMVM, CMFV,DFMFV
 6, P1MFV,DP1MFV, DTMFVR,DP2MFV,DTPURG, PCFACT,TMRC,OPCRO,OPOVCM
 7, OMVCRO, DTCOMF, DTCOCV,FA1,FB1,FC1,FD1,DCFG, CFGC, CCVC, DTPNC,DFRC
 8, CCV3,DCCV3,DCCV0,XCCCVO, DXCFPO, FPCRO,FPOVCM,OPOVPB,CFGMS,T1FPV
 9, T2FPV,FPVDX,T1OPV,T2OPV,OPVDX
 TCUTPR=TCUT+DTPURG
 C

* load function interpolation tables
CALL fgset(6)
CALL fgset(17)
CALL fgset(18)
CALL fgset(19)
CALL fgset(31)
CALL fgset(33)
CALL fgset(55)
YCMFV = FGEN (55, 90, 0.)
CALL fgset(56)
CALL fgset(57)
* Added for TLIMIT
CALL fgset (84)
XOPOV $=0.0$
$X F P O V=0.0$
$X M O V=0.0$
ROPOV $=1.0 E+12$
RFPOV $=1.0 E+12$
RMOV $=1.0 \mathrm{E}+12$
EMRGC=0.0
EMRFPO $=0.0$
$E M R O P O=0.0$
DXFPOV=0.0
$\begin{array}{ll}\mathrm{DXOPOV}=0.0 & \text { SSM05200 }\end{array}$
$\mathrm{PCOPO}=5.0$
$\mathrm{PCFPO}=0.0$
$\mathrm{FR}=60000.0$
$\mathrm{XCOPOV}=0.0$
$X C F P O V=0.0$
$X C M F V=0.0$
$\mathrm{XCMOV}=0.0$
$\mathrm{XCMOVC=XCMOV}$
$\mathrm{XCCCV}=100$.
SSM05300
$Y C F P O V=0.0$
YCOPOV=0.0
$Y C M O V=0.0$
$Y C C C V=100.0$
TFT2D=TFP
TOT2D=TOP

```
```

 EPCGC=0.0
 EPC=0.0
 TCUTFP=1000.0
 SSM05400
 TCUTOP=1000.0
 TCUTCV=1000.0
 TCUTFV=1000.0
 TCUTOV=1000.0
 TCUTFV=1000.0
 TMPL=1000.0
 DPRI=DPR
 DPLI=DPL
 DTI=DT
 IFIND=0
 SSM05500
 IOIND=0
 PIPF=-1.
 PIPO=-1.
 NCF=0
 NCO=0
 ICUT=1 SSM05600
 RESET = .FALSE.
 NMALF = 0
STEPO = 0.0
Resetting of TIMExX values in EMCO(1), now EMCOO, was eliminated.
Initializing timing values to STIME works for a restart as well.
TIMECP = STIME
TIMEPR = STIME
TIMETR = STIME
TIMEVC = STIME
TSMFV=AMIN1(TSMFV+TPA,TSMFV+TCUT)
CALL EMCOO
inkdt = 300000. * DT
dfldt = DF1 * DTMC
dfrcdt = DFRC * DTMC
frbias = 1. + .01 * PFRNZ
osdt = DTMC * OSLAM
opOdt = DTMC * OPCRO
opldt = DTMC * OPCR1
op2dt = DTMC * OPCR2
fpOdt = DTMC * FPCRO
fpldt = DTMC * FPCR1
fp2dt = DTMC * FPCR2
omvdt = OMVCR * DTMC
omvodt = OMVCRO * DTMC
omvfdt = OMVCRF * DTMC
ydtl = .32 - DTMC
ydt2 = DTMC / (.32 + DTMC)
dmovdt = DMOVO * DTMC
dcc3dt = DCCV 3 * DTMC

```
```

dcc2dt = DCCV2 * DTMC
dccvdt = DCCVC * DTMC
dccldt = DCCV1 * DTMC
dccodt = DCCVO * DTMC
dpldt = DP1MFV * DTMC
dp2dt = DP2MFV * DTMC
IF (ipflag .EQ. l) THEN
fzopvb = FZOPV
fzycf = FZFPV
fzycm = FZMOV
fzycc = FZCCV
fzycmf = FZMFV
ELSE
fzopvb = FZOPV * (1. + .01 * POPVNZ)
IF (fzopvb .GE. 100.0) fzopvb = FZOPV
fZYCf = FZFPV * (1. + .01 * PFPVNNZ)
IF (fzycf .GE. 100.0) fzycf = FZFPV
fZYCm = FZMOV * (1. + .01 * PMOVNZ)
IF (fzcm .GE. 100.0) fzycm = FZMOV
fzycc = FZCCV * (1. + .01 * PCCVNZ)
IF (fzycc .GE. 100.0) fzycc = FZCCV
fzycmf = FZMFV * (1. + .01 * PMFVNZ)
IF (fzycmf .GE. 100.0) fzycmf = FZMFV
ENDIF
dtm100 = 100. * DTMC
dtm200 = 200. * DTMC
CALL unintO(FRADS, 146)
CALL unintO(ORADS, 147)

```

ENTRY CNTROL

C CONTROLLER SIMULATION BEGINS HERE
PIN( ) : INPUT PRESSURE TO THE VALVE
D( ) : FLOW RATE TO THE VALVE
DEN( ) : DENSITY OF FLOW MEDIA
PD( ) :- DOWN STREAM PRESSURE
VPD ( ) : VALVE PORT DIAMETER
XP( ) : \% OPENNING OF VALVE ANGLE
READER SHOULD REFER TO THE SSME DOCUMENT FOR FURTHER DETAILS ON VALVE CHARACTERISTICS.
C***** NMALF IS THE FLAG OF PURGE REQUEST WHEN MALFUNCTIONS DETECTED *

IF ( NMALF .GT. 0 ) THEN
NMALF \(=1\)
TCUTPR \(=\) AMIN1 ( TCUTPR, TPA + DTPURG )
DT=DTI change in DT disallowed
IF ( STIME .LE. TPA + DTPNC ) RETURN
CALL EMCO (2)
```

 EMRE = (DWMOV + DWOPO + DWFPO) / (DW(1) + 1.OE-10)
 RETURN
 ENDIF
c
PIN(1)=PFPOV
PIN(2)=POPOV
PIN(3)=PMOV
PIN(4)=P(3)
PIN(5)=P(7)
D(1)=DWFPO
D(2)=DWOPO
D(3) = DWMOV
D(4)=DW (3)
D(5)=DW (7)
DEN (1)=RHOOP3
DEN(2)=RHOOP3 SSMO5800
DEN (3)=RHOOP2
DEN (4)=RHO (3)
DEN (5) =RHO (7)
PD(1)=PFPOI
PD (2) = POPOI
PD(3)=POINJ
PD(4)=P(10)
PD(5)=P(8)
XP(1)=XFPOV
XP(2)=XOPOV
XP(3)=XMOV
XP(4) =XMFV
XP(5) =xCCV
STIME = TIME
C
C******* CALCULATE HYDRAULIC AND SLIDING FRICTIONAL TORQUE TP()
C ALTHOUGH THE VALUE TP() SHOULD BE USED IN CALCULATING THE WIND-UPS
C AND STICTIONS, THIS VALUE IS REALLY NEVER USED IN THIS SIMULATION.
C THE WIND-UPS AND STICTIONS ARE SET TO BE CONSTANTS IN THE VALVE
C DYNAMIC SIMULATION SUBROUTINE VALDYN().

* The calculation of TP is left in, on the theory that the values can
* be monitored or later used in the simulation.
DO 250 I=1,5
IF(DTHETA(I) .EQ. O.DO) THEN
STHETA(I) = DTHETA(I) replaced to avoid unnecessary conversion
STHETA(I) = 0.
THK = 0.0
TP(I)=0.
ELSE
THK = FGEN(I1(I), 90 + I, XP(I)*.01)
TP(I) =
SIGN(AT(I)+(BT(I)+0.8*ESS(I))*(PIN(I)-8./386.4/DEN(I)*(D(I)/

```
```

 PI/VPD(I)**2)**2)+0.8*DSS(I) +CPS(I)+CS(I)*(PIN(I) - PD(I)),
 STHETA(I))+THK*D(I)**2/DEN(I)/VPD(I)/1728.
 TP(I) = SIGN(AT(I) + (BT(I) + 0.8*ESS(I)) *
 (PIN(I) - tpcnst/DEN(I)*(D(I) / VPD(I)**2)**2) +
 0.8*DSS(I) + CPS (I) + CS (I)* (PIN(I) - PD (I)),
 STHETA(I)) + THK*D(I)**2/(DEN(I)*VPD(I)*1728.)
 ENDIF
 250 CONTINUE
 C
C**
PFFM AND POFM ARE PRESSURES OF MFV AND MOV (?)
DENF AND DENO ARE CALCULATED DENSITIES
FRADS AND ORADS ARE ACCUMULATED VOLUMNS
SIN() OF FRADS AND ORADS MEANS ????????????
SINCE PIPF IS THE PREVIOUS VALUE OF SFRADS (DT=0.0002), THE FOLLOWING
CONDITION SEEMS TO INDICATE THE CHANGE OF SIGN FROM - TO +.
IF(IFIND.NE.2.OR. SFRADS.LT.O.) GO TO XX
IF(IFIND.NE. 2.OR. PIPF.GT.0.) GO TO XX
HOWEVER, NONE OF THE VARIABLES GENERATED IN THIS SECTION ARE USED
ANYWHERE IN THE SIMULATION OF THE SSME.
C***************t***
Unfortunately for simulation speedup, the code of this section does
affect the simulation. The KOUNTF and KOUNTO set NCF and NCO,
affecting EMRF.

```
```

 PFFM=P(3)-DW(2)*ABS (DW (2))/RHO(2)*2.87137E-06
    ```
    PFFM=P(3)-DW(2)*ABS (DW (2))/RHO(2)*2.87137E-06
    DENF}=((-1.4013E-03+3.09257E-06*PFFM)*T(2)**2+(6.5220E-02
    DENF}=((-1.4013E-03+3.09257E-06*PFFM)*T(2)**2+(6.5220E-02
* -2.14666E-04*PFFM)*T(2)+3.8956+4.27390E-03*PFFM)/1728. replaced b
* -2.14666E-04*PFFM)*T(2)+3.8956+4.27390E-03*PFFM)/1728. replaced b
    DENF = V1728*( 3.8956 + 4.27390E-03*PFFM + T(2) *
    DENF = V1728*( 3.8956 + 4.27390E-03*PFFM + T(2) *
+ (6.5220E-02 - 2.14666E-04*PFFM +
+ (6.5220E-02 - 2.14666E-04*PFFM +
+ (-1.4013E-03 + 3.09257E-06*PFFM)*T(2) ) )
+ (-1.4013E-03 + 3.09257E-06*PFFM)*T(2) ) )
    FRADS = pruint( DW(2)*v41p12/DENF, 0, 146)
    POFM = POD2 -
+ (DWOP2 - DWOT1)*ABS(DWOP2 - DWOT1)/RHOOP2*1.543474E-05 SSM06100
    DENO =( (-0.16603+5.6683E-06*POFM)*TOD2 + 98.5 -1.8237E-04*POFM)
+ * vl728
    ORADS = pruint((DWMOV+DWOPO+DWFPO)/DENO*V14p06, 0, 147 )
    IF(FRADS.GT.1.OE+20) THEN
        FRADS = 0.
        unint0(0., 146)
    ENDIF
    IF(ORADS.GT.1.OE+20) THEN
        ORADS = 0.
        uninto( 0., 147)
```


ENDIF

```
    SFRADS=SIN(FRADS)
    SORADS=SIN(ORADS)
    sin and arcsin series had been used, where
    only a mod function is required.
    sfrads = MOD( FRADS, twopi )
    sorads = MOD( ORADS, twopi )
    The selection sequence based on IFIND and IOIND was rewritten
    for clarity and to eliminate repeated tests.
    GO TO (40,50) IFIND
    GO TO 60
        case IFIND is 1
40 IF (SFRADS .LT. PI .AND. PIFP .LE. 0. ) THEN
    Statements of the form kountx = kountx + realexpression
    force the unnecessary conversion of kountx to REAL and
    reconversion of the sum to integer. They are replaced by
    a sequence requiring the minimum single conversion.
    KOUNTF=KOUNTF+300000.*ASIN(SFRADS) *DENF*41.12/DW(2) replaced by
        ink = 12.336E+6 * MOD(FRADS, piov2 ) * DENF / DW(2)
        KOUNTF = KOUNTF + ink
        IFIND=2
    ENDIF
    GO TO 60
        case IFIND is 2
50 IF ( SFRADS .GE. 0. .AND. PIFP .LE. 0. ) THEN
    ink = 12.336E+6 * ABS(MOD(PIPF, piov2) ) * DENF / DW(2)
        KOUNTF = KOUNTF + ink
        IFIND=3
        !
                            SSM06200
    ENDIF
The simulation loop invariant inkdt = 300000. * DT is computed in CNTRLO
    KOUNTF = KOUNTF + inkdt
6 0 \text { dwsum = DWMOV + DWOPO + DWFPO}
    GO TO(70, 80) IOIND
    GO TO }9
        case IOIND is 1
70 IF ( SORADS .LT. PI .AND. PIFO .LE. O. ) THEN
    ink = 12.336E+6 * MOD( ORADS, piov2 ) * DENO /
```

```
        + (dwsum + 1.0E-06)
            KOUNTO = KOUNTO + ink
            IOIND=2
            ENDIF
            GO TO 95
                case IOIND is 2
    80 IF ( SORADS .LT. PI .AND. PIFO .LE. 0. ) THEN
                ink = 12.336E+6 * ABS( MOD( PIPO, piov2 ) )* DENO /
        + (dwsum + 1.0E-06)
            KOUNTO = KOUNTO + ink
            IOIND = 3
        ENDIF
        KOUNTF = KOUNTF + inkdt
    95 PIPF = SFRADS
        PIPO = SORADS
                            SSM06400
        DPL = DPLI
        DPR = DPRI
        F = FCOMP
        EMRE = dwsum / (DW(1) + 1.OE-10)
C
C**** RESET INTEGRAL OF ERROR FOR PI CONTROLLER AT MAINSTAGE
    IF ( STIME .GE. TMS .AND. .NOT. RESET) THEN
        RESET = .TRUE.
        EMROPO = YCOPOV - STEPO
        EPCGC=0.
        PCOPOI=0. Ineffective assignment replaced by
        PCOPOP = 0.
        PCOPOI= -VPG*EPC
                            SSM06500
        EMRFPO = YCFPOV - STEPF
        EMRGC=0.
        ENDIF
C
C***************************************************************************
C THIS SECTION DESCRIBES THE SCHEDULE OF THE SHUTDOWN PROCESSS
C IT INCLUDES THE VALVE CLOSING, AND LINE PURGE SEQUENCES.
C***************************************************************************
C
    IF ( TPI .GT. 0.0 .AND. STIME .GE. TPI ) THEN
C
C***** SIMULATION OF THE PNEUMATICAL CUT-OFF OF THE POWER *****
C
    IF ( STIME .IT. TPI + DTPS) RETURN
                                    SSMO9200
        IF( STIME .LT. tpm ) THEN
* Eliminated unnecessary save and restore of TIMEXX.
```

```
tpm = TPI + DTMCR
TPA = TPI + DTPS
    CALL EMCO(2)
    EMRE = (DWMOV+DWOPO+DWFPO)/(DW(1)+1.OE-10)
    RETURN
    ENDIF
```

This section makes obscure timing interval adjustments that should be explained. Perhaps it compensates for roundoff errors accumulated in time advance. The first one is partially interpreted below. Relief from roundoff time advance roundoff error should be obtained by going to a frequency based, integer time advance. With all important time intervals as multiples of the sampling interval.

IF (TIMFMA .LE. tpm) THEN
TLMC $=$ TIMFMA - DTFMRA
IF (TIMECP . LT. TLMC) THEN TIMECP $=$ DTMC + TIMECP
advances controller interval
TIMECP=TIME+TIMECP-TLMC
essentially TIMECP $=$ TIMECP + DT, with
perhaps some accuracy dependent effect
IF (TIMEPR.LT.TLMC) TIMEPR=DTMC+TIMEPR
TIMEPR=TIME+TIMEPR-TLMC
IF (TIMEVC.LT.TLMC) TIMEVC=DTMC+TIMEVC
SSM09400
IF (TIMFME.LT.TLMC) TIMFME=DTMC+TIMFME
TIMFME=TIME+TIMFME-TLMC
IF (TIMFMC.LT.TLMC) TIMFMC=DTMC+TIMFMC
TIMFMC=TIME+TIMFMC-TLMC
IF (TIMETR.LT.TLMC) TIMETR=TIMETR+DTMC
TIMETR=TIME+TIMETR-TLMC
IF (TIMMRF.LT.TLMC) TIMMRF=TIMMRF+DTMC
TIMMRF=TIME+TIMMRF-TLMC
IFIND=0
KOUNTF=0
IOIND $=0$
KOUNTO=0
TIMEVC=TIME+TIMEVC-TLMC
TIMFMA $=T I M E+D T F M R A$
ENDIF
IF (TIMEVC.GT.TPI+DTOPFS) GO TO 5020
TIMEVC=TIMEVC+DTMC
GO TO 5015
IF (STIME . GE. TPI + DTVFS) THEN
TPI=0.
$\mathrm{tpm}=\mathrm{DTMCR}$
$T P A=0$.
SSM09600

```
            TPA = DTPS
            GO TO 1008
        ENDIF
    5030 IF ( STIME .LT. TPI + DTOPFS ) THEN
        CALL EMCO(2)
        EMRE=(DWMOV+DWOPO+DWFPO)/(DW(1)+1.OE-10)
        IF(TIMEVC.LT.STIME) TIMEVC=TIMEVC+DTMC
            GO TO 1008
            ENDIF
    5040 XX=XCOPOV
    CALL EMCO(2) SSM09800
    XCOPOV=XX
    IF(TIMEVC.GT.TIME) GO TO 1008
    TIMEVC=TIMEVC+DTMC
    xCOPOV=YCOPOV
            GO TO 1008
        ENDIF
    IF ( TPA .GT. 0.0 .AND. STIME .GE. TPA ) THEN
* Initiates purge request from malfunction detected
C
    NMALF = 1
                                    SSM08600
    TCUTPR = AMIN1( TCUTPR, TPA + DTPURG )
    DT=DTI Change in DT was disallowed, no restoration necessary.
        IF ( STIME .LE. TPA + DTPNC ) RETURN
        CALL EMCO(2)
        EMRE = ( DWMOV + DWOPO + DWFPO ) / (DW(1) + 1.OE-10 )
            RETURN
        ENDIF
    GO TO (1002,1004,1006,1008),ICUT
    Case ICUT is 1
*1002 IF(TIME.GT.TCUT:AND.FR.LT.1500.) ICUT=2
* IF(TIME.GT.TCUT.AND.IPBCO.EQ.1) ICUT=2 Time vs TCUT once.
* IF (TCUT.LT.TMS.AND.TIME.GT.TCUT)ICUT=2
    1002 IF ( STIME .GT. TCUT .AND.
    + ( FR .LT. 1500. .OR. IPBCO .EQ. 1 .OR. TCUT .LT. TMS ) )
        + ICUT = 2
                        Delay transition state one DT
            GO TO 1008
                                    SSM06600
* Case ICUT is 2: transition state goes immediately into state 3 or 4
1004 TCUTFP = STIME
    TCUTOP = STIME
    TCUTOV = STIME
    ICUT = 3
```

```
*
* Case ICUT is 3: wait until XCOPOV .LE. OPOVPB, then
*
    1006 IF(XCOPOV.GT.OPOVPB) GO TO 1008
                    ICUT=4
                    TCUTFV = STIME + DTCOMF
            TCUTCV = STIME + DTCOCV
            TMPL = STIME
*
* Case ICUT is 4: all transitions completed
*
1008 CONTINUE
C
C****** FOLLOWING LINE CHECK WHETHER IT IS TIME TO ACTIVATE THE CONTROLLER
C****** THE CONTROLLER SAMPLING AND CYCLE TIME IS DTMC (=0.02)
DTMC is an input parameter, not a constant 0.02
    IF(TIME.LT.TIMECP.AND.ICCNTL.EQ.2) GO TO 4000 The ICCNTL test is
        unnecessary, provided TIMECP is initialized to the starting time.
            IF ( STIME .LT. TIMECP ) GO TO 4000
C
C CALCULATION OF CONTROL REFERENCE VALUES
C****** SAVE THE PREVIOUS CALCULATED VALUE WHICH WILL BE SENT OUT
C****** AT NEXT VALVE-COMMAND-OUTPUT TIME
C
    YCOPVL=YCOPOV
    YCFPVL=YCFPOV
    YCOMVL=YCMOV
    YCFMVL=YCMFV
    YCCVL=YCCCV
C
C
                    THRUST REFERENCE
    IF ( STIME . LE. TCUT ) THEN
        IF ( STIME . LE. TMOVRA ) THEN
        IF ( STIME .LE. TCLF) THEN
            FR=F1
        ELSE
            FR = AMAX1(FRZ, FR - dfldt)
        ENDIF
    ELSE
        IF( STIME .GT. TVC ) THEN
            FR = FGEN(33, 96, STIME)
        ELSE
            FR = AMIN1(F2 + DTF*(STIME - TMOVRA), FC )
        ENDIF
        ENDIF
    ELSE
```

restored DT after reset to 0.0001 . But unless time runs backward, each restoration is immediately undone by the next statement.

IF (TIME.GT.TCUT+0.5) DT=0.0001 was deleted. It reset the time step of the entire simulation to a constant, overriding the input parameter DT. This disrupts all multistep integrators, and cannot be permitted. The philosophy is questionable, allowing the simulated controller to interfere with the simulation itself. There is no need to supply a local version of DT for the controller to manipulate, since it doesn't use DT. Increasing the time step DT with better integrators, speeding up the simulation, and going to selective output should eliminate the need for changing DT after TCUT.
$F R=A M A X I(F C O, F R-d f r c d t)$
ENDIF
SSM06900
THRUST CONTROL OF OXID PREBURNER OXID VALVE
THRUST AND PREBURNER OVERTEMP ERRORS
THE FOLLOWING LINE IS USED TO SIMULATE A PERTURBATION ON THE REFERENCE INPUT FR (CHAMBER PRESSURE) REQUEST DURING THE CLOSEDCONTROL. PFRNZ IS THE \% NOISE APPIIED TO THE REFERENCE INPUT FR PFRNZ is a constant bias set by the main program perturbation section but initialized to zero in CNTROL.

```
FR = FR*(1. + PFRNZ/100.) was moved to CNTRLO
```

$F R=F R$ * frbias
C C***** TOPEN IS A PARAMETER ADDED TO OPEN THE CONTROL LOOP TO SIMULATE OPEN LOOP CONDITION OF THE SSME MAIN STAGE OPERATION. IT TURNS OUT THAT THE SSME IS A STABLE SYSTEM AS SIMULATED Does the last comment mean open loop simulation is no longer needed? if so TOPEN and its activated sections should be removed. Assuming that open loop'tests will continue, open loop operations were were consolidated, with one test per iteration for open loop conditions. Control through IPFLAG, described below, was implemented.

```
IF (STIME .LT. TOPEN .OR. IPFLAGG .EQ. O ) THEN
    EPC = FR - PCIE
    EPCGCL = EPCGC
```

C
PCGC IS THE GAIN FACTOR DETERMINE HOW MUCH THE POSITION ERROR IS
USED FOR PI CONTROLLER.
C
PCGC $=$ rlimit (GMIN, 1., GPC1 + GPC2*FR)
$E P C G C=E P C * P C G C$
C

```
C***** THE NEXT LINE SHOULDN'T BE HERE. IT IS ABOUT THE MIX-RATIO CONTROL AND AN EXECT SAME LINE IS IN SSMO7570. THIS IS THE DEAD-BAND OF CONTROLLER. I ADDED THE LINE AFTER THAT FOR CHECKING EPCGC.
IF (ABS (EMRGC).LT.DBMR) \(E M R G C=0.0\)FOR T > TUTPPEN-LOOP, NO CONTROL
```

POSITION CONTROL ONLY, KI=0 PI CONTROLLER APPLIES

IF (STIME .LE. TUT) THEN
VIG $=0.0$
VPG=0.01444
ELSE
VIG=VIGMS
VPG=VPGMS
ENDIF
OPOVIP $=$ FGEN $(56,97$, STIME + DTMC $)$
IF (STIME .LT. TMS)
EMROPO=OPOVIP
SSM07100
IF (STIME .LT. TCLF) THEN
$\mathrm{PCOPO}=0.0$
ELSE
PCOPOP $=$ VPG*EPCGC
PCOPOI = AMIN1 (XOMAX, 0.5*(EPCGC + EPCGCL)*VIG*DTMC)
PCOPO $=$ rlimit ($-100 ., 100 .$, PCOPOP + PCOPOI)
ENDIF
C
OXID PREBURNER OXID VALVE POSITION
IF (STIME .GE. TCUTOP) THEN
SSM07200
C
C***** CUT-OFF SCHEDULE OF OPOV
OSLAM was added as a input parameter, and invariant multiplies removed from simulation loop

```
```

IF (STIME .GT. TCUTOP + DTSLAM) THEN

```
```

IF (STIME .GT. TCUTOP + DTSLAM) THEN
YCOPOV = AMAX1(.00001, YCOPOV - osdt)
YCOPOV = AMAX1(.00001, YCOPOV - osdt)
ELSE IF (XCOPOV .GT. OPOVCM) THEN
ELSE IF (XCOPOV .GT. OPOVCM) THEN
YCOPOV = AMAX1 (.00001, YCOPOV - opOdt)
YCOPOV = AMAX1 (.00001, YCOPOV - opOdt)
ELSE IF (XCOPOV .GT. OPOVCP) THEN
ELSE IF (XCOPOV .GT. OPOVCP) THEN
YCOPOV = AMAXI (.00001, YCOPOV - opldt)
YCOPOV = AMAXI (.00001, YCOPOV - opldt)
ELSE
ELSE
YCOPOV = AMAX1(.00001, YCOPOV - op2dt)
YCOPOV = AMAX1(.00001, YCOPOV - op2dt)
ENDIF

```
ENDIF
```

```
    C*****
    C
        ELSE
            IF ( STIME .LT. TUT ) THEN
            IF( STIME .GT. TCLF) THEN
                RO}=\textrm{RO}
            ELSE IF ( YCOPOV .LT. OPOVOP ) THEN
                RO = RO1
            ELSE
                RO = RO2
            ENDIF
            IF ( STIME . LE. TOPOV ) THEN
                YCOPOV = 0.0
            ELSE
                YCOPOV = AMIN1( EMROPO + PCOPO, YCOPOV + RO*DTMC )
            ENDIF
            ELSE
        STEPO = OSTEP
```

```
* * OPOV COMMAND LIMIT
```

* * OPOV COMMAND LIMIT
Function TLIMIT was replaced by a call to fgen, which
Function TLIMIT was replaced by a call to fgen, which
does linear interpolation in an optimal manner.
does linear interpolation in an optimal manner.
TLIMIT data was reconstructed and added to SSME.DAT file.
TLIMIT data was reconstructed and added to SSME.DAT file.
TLIMIT was optimized, but extrapolated beyond the table.
TLIMIT was optimized, but extrapolated beyond the table.
fgen halts the simulation and identifies the table
fgen halts the simulation and identifies the table
if the input escapes the interpolation table.
if the input escapes the interpolation table.
EFFPL = 100.0 * FR / 2995.0 + 1.5 * XOPOMS - 97.5
EFFPL = 100.0 * FR / 2995.0 + 1.5 * XOPOMS - 97.5
YCOPOV = TLIMIT (FR, XOPLIM, XOPOMS, YCOPOV, NMR)
YCOPOV = TLIMIT (FR, XOPLIM, XOPOMS, YCOPOV, NMR)
EFFPL = v29.95 * FR + 1.5 * XOPOMS - 97.5
EFFPL = v29.95 * FR + 1.5 * XOPOMS - 97.5
YCOPOV = rlimit(.00001, 100.0, EMROPO + PCOPO + STEPO)
YCOPOV = rlimit(.00001, 100.0, EMROPO + PCOPO + STEPO)
YCOPOV = fgen(84, 114, EFFPL)
YCOPOV = fgen(84, 114, EFFPL)
IF (YCOPOV .LT. XOPLIM) THEN
IF (YCOPOV .LT. XOPLIM) THEN
NMR = 1
NMR = 1
ELSE
ELSE
NMR = 0
NMR = 0
YCOPOV = XOPLIM
YCOPOV = XOPLIM
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
C
C
MRC REFERENCE
MRC REFERENCE
IF (TMRS .GE. 1.0 .AND. STIME.GE. TMRS) THEN
IF (TMRS .GE. 1.0 .AND. STIME.GE. TMRS) THEN
EMRCR = 5.5
EMRCR = 5.5
ELSE
ELSE
EMRCR=6.026

```
    EMRCR=6.026
```

ENDIF

```
EMRCR = EMRCR * pmrnzb
```

THE DEFINITION OF THE ERROR IS DIFFERENT FROM THE COMMON DEFINITION.
HERE: ERROR= - (REFERENCE - OUTPUT/MEASUREMENT)
WHICH IS BECAUSE OF THE NEGATIVE GAIN OF FPOV VS. MIX-RATIO.

```
IF ( TIME .LT. TMRC ) THEN
    EEMR=0.0
            EMRGCL=EMRGC
ELSE
    EEMR=EMRF-EMRCR
    EMRGCL=EMRGC
ENDIF
GCEMR = rlimit( GMRMIN, GMRMAX, GMR1 + GMR2 * FR )
EMRGC=EEMR*GCEMR
IF ( ABS (EMRGC) .LT. DBMR ) EMRGC=0.0
C***** THE ADJUSTMENT OF FPOV IS IN PROPORTIONAL TO THE OPOV ADJUSTMENT
C***** THIS RATIO IS A FUNCTION OF TIME
```

c
C
IF (STIME .GE. TMS) THEN
PCFPO $=$ CFGMS * PCOPO
ELSE
PCFPO $=$ PCOPO * rlimit(CFG1, CFG2,
DCFG* (STIME - TCLF) + CFGC)
ENDIF
C
C*****
C
C
IF (STIME . GE. TMRC) THEN
c
C****
C
THE INTEGRAL GAIN IN THIS CASE IS 40.0 AND KP $=\operatorname{VPM}(=7.0)$
20. $=40 . / 2$.
EMRFPO $=$ rlimit(.00001, 100., EMRFPO +
DTMC*20.*(EMRGC + EMRGCL) + VPM* (EMRGC - EMRGCL))
C***** START-UP SCHEDULING OF FPOV *******
C
ELSE

```
    IF ( STIME .LE. -0.1 ) THEN
    EMRFPO = 0.0
    ELSE
    FPOVIP = FGEN (57, 98, STIME + DTMC)
    IF ( STIME .GT. TCLF) THEN
        RO = RF3
                            SSM07700
    ELSE IF ( YCFPOV .LT. FPOVOP) THEN
        RO = RF1
    ELSE
        RO=RF2
    ENDIF
    EMRFPO = AMIN1( FPOVIP, EMRFPO + RO*DTMC )
    ENDIF
ENDIF

IF (TIME .LE. TCFG) PCFPO \(=0.0\)
STEPF \(=\) FSTEP
IF (TIME . LT. TUT) THEN
STEPF \(=0.0\)
IF ( STIME . LT. TCUTFP ) THEN
YCFPOV \(=\) AMIN1 (EMRFPO + PCFPO, YCFPOV + RO*DTMC)

FPOV CUT-OFF PROCESS
ELSE IF ( XCFPOV - XCOPOV .GE. DXCFPO
.OR. XCOPOV . LE . 10. ) THEN
SSM07800
IF ( XCFPOV .GT. FPOVCM ) THEN
YCFPOV \(=\) AMAX1 (.00001, YCFPOV - fpodt ) ELSE IF ( XCFPOV .GT. FPOVCP) THEN

YCFPOV \(=\) AMAX1 (.00001, YCFPOV - fpldt) ELSE

YCFPOV \(=\) AMAX1 (. 00001, YCFPOV - fp2dt) ENDIF
ENDIF
ELSE IF ( STIME .LT. TCUTFP ) THEN
IF ( STIME . LE. TMPL .OR. TMPL . GE. TMRC) THEN
YCFPOV \(=\) rlimit (.00001, 100.0, EMRFPO + PCFPO + STEPF) SSM07900 ENDIF
ENDIF
IF (TIME .LT. TIFPV) YCFPOV = AMIN1 (FPOVMX, YCFPOV)
MOV POSITION
MOV OPENING IS TIME SCHEDULED BEFORE THE MAIN STAGE AFTER THAT, IT IS PROPORTIONAL TO THRUST REQUEST (FR)

XCMOVL \(=\) XCMOVC
IF ( STIME . LT. TCUTOV ) THEN
IF ( STIME .GE. TMOVRA ) THEN
IF ( STIME .GT. TMS ) THEN
```

 XCMOVC = AMIN1(100., DFMOV*FR + FMOVC)
 ELSE
 XCMOVC = AMIN1(XMOVM, XMOVST + (STIME - TMOVRA)*DMOVUT) M08100
 ENDIF
 ELSE IF (STIME .LT. TMPL) THEN
 IF (XCFPOV - XCOPOV .LT. DXCFPO) THEN
 XCMOVC = XCMOVC + omvOdt
 ELSE
 XCMOVC = AMAX1 (.00001, XCMOVC - omvOdt)
 ENDIF
 ELSE IF (STIME .GT. TIMOV .AND. STIME .LT. T2MOV) THEN
 XCMOVC = XMOVPT
 ELSE
 IF (T2MOV .GE. 1. .AND. STIME .GE. T2MOV) omvdt = omvfdt M08000
 XCMOVC = AMAX1(.00001, XCMOVC - omvdt)
 ENDIF
 YCMOV=(YCMOV*(2.0*.16-DTMC)+DTMC*(XCMOVL+XCMOVC))/(2.0*.16+DTMC)
 Is this correct? Was average xcmov intended? Invariants were
 removed.
 YCMOV = YCMOV * ydt1 + (XCMOVL + XCMOVC) * ydt2
 ELSE IF (STIME .GT. TSMOV) THEN
 XCMOVC = AMIN1(XMOVST, XCMOVC + dmovdt)
 IF (SF2 .GE. SF2R) XMOVST = XMOV2
 YCMOV = YCMOV * Ydt1 + (XCMOVL + XCMOVC) * ydt2
 ENDIF
COOLANT CONTROL VALVE
THE CCV OPENING IS MAINLY TIME SCHEDULED
HOWEVER, WHEN T > 2.8 AND FR > 1500, CCV IS PROPORTION TO FR
THE VALVE POSITION IS FULLY OPEN DURING THE MAIN STAGE OPERATION
IF(TIME.LT.TCUT+.5) GO TO 1800
YCCCV=AMAXI (75..,YCCCV-DCCVI*DTMC)
GO TO 1800
IF (STIME .LE. TCUT) THEN
IF (FR .GE. 1500.) THEN
C
C CCV NOT RATE LIMITED HERE - THRUST SCHEDULED
IF (STIME .GT. 2.8) THEN
YCCCV = AMIN1(DFCCV*FR + FCCVC, 100.)
ENDIF
ELSE IF (STIME .LT. TCUTCV) THEN
IF (STIME .GT .TCCV1) THEN
IF (STIME .GE. TMOVRA) THEN

```
```

 YCCCV = AMAX1(CCV3, YCCCV - dcc3dt)
 ELSE
 YCCCV = AMAX1(YCCCV - dcc2dt, CCV2)
 ENDIF
 ELSE
 YCCCV = AMIN1(YCCCV + dccvdt, CCVC)
 ENDIF
 ELSE IF (STIME . LT. TMPL + DTMFVR) THEN
 YCCCV = AMIN1 (CCV1, YCCCV + dccldt)
 ELSE
 YCCCV = AMAX1 (.00001, YCCCV - dccodt)
 ENDIF
 ELSE IF (ICUT .EQ. 1) THEN
 C
C CCV NOT RATE LIMITED HERE - THRUST SCHEDULED
IF (STIME .GT. 2.8) THEN
YCCCV = AMIN1(DFCCV*FR + FCCVC, 100.)
ENDIF
ELSE IF (STIME .LT. TCUTCV) THEN
IF (XCFPOV - XCOPOV .GE. DXCFPO . AND. XOPOV .GT. OPOVPB) THEN
YCCCV = AMAX1 (XCCCVO, YCCCV - dccOdt)
ENDIF
ELSE IF (STIME .LT. TMPL + DTMFVR) THEN
YCCCV = AMIN1 (CCV1, YCCCV + dccldt)
ELSE
YCCCV = AMAX1 (.00001, YCCCV - dccodt)
ENDIF
C
C MAIN FUEL VALVE
C
MFV OPENING IS MAINLY TIME SCHEDULED AT THE BEGINING
C***** WHEN T > TFRMFV, THE OPENING IS PROPORTIONAL TO FR
C
IF (TCUT .GE: 5.0.OR. STIME.L.LE. TCUT) THEN
C
C***** SHUT-OFF PROCESS
C
IF(STIME .LE. TMPL + DTMFVR) THEN
YCMFV = AMAX1(P1MFV, YCMFV - dpldt)
ELSE
YCMFV = recpos(YCMFV - dp2dt)
ENDIF
ELSE IF (STIME.GT.TFRMFV) THEN
YCMFV = rlimit(FMVM, XMFVM, CMFV + DFMFV * FR)
ELSE
YCMFV = FGEN (55, 90, STIME + DTMC)

```
```

 ENDIF
 ENDIF
 ELSE
 Open loop operation
 EPC = 0.
 EPCGCL=0.
 C
C***** FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V
C***** OPENINGS AT THE MAIN STAGE.
IPFLAG = O FOR CLOSED-LOOP CONTROL
1 ~ F O R ~ O P E N - L O O P ~ N O ~ P E R T U R B A T I O N S ~
2 FOR OPEN-LOOP AND PERTURBATIONS ON VALVE OPEN
ipflag = 2 had not been implemented. Since it involves changing the
constant setting of the frozen control valve, it was
implemented in CNTROLO.
YCOPOV = FZOPV * (1 + POPVNZ/100)
IF(YCOPOV.GE.100.0)YCOPOV=FZOPV was replaced by
YCOPOP = fzOPvb
EEMR=0.0
EMRGCL=0.
*
C***** FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V
C***** OPENINGS AT THE MAIN STAGE.
C
and invariant operations moved to CNTROLO.
C
YCFPOV = fZYCf
C
C***** FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V
C***** OPENINGS AT THE MAIN STAGE.
C

* IF(TIME.LT.TOPEN) GO TO 1488
* YCMOV = FZMOV * (1 + PMOVNZ/100)
* IF(YCMOV.GE.100.0)YCMOV=FZMOV
*1488 CONTINUE
* YCMOV = fZYCm
C
C***** FOLLOWING FOUR LINES ARE ADDED TO SIMULATE PERTURBATION ON THE V
C***** OPENINGS AT THE MAIN STAGE.
C
* IF(TIME.LT.TOPEN) GO TO 1888

```
```

 YCCCV = FZCCV * (1 + PCCVNZ/100)
 * IF(YCCCV.GE.100.0)YCCCV=FZCCV
*1888 CONTINUE
* YCCCV = fzycc
C
C*****
C
C
* IF(TIME.LT.TOPEN) GO TO }158
* YCMFV = FZMFV * (1 + PMFVNZ/100)
* IF(YCMFV.GE.100.0)YCMFV=FZMFV
*1588 CONTINUE
* YCMFV = fZYCmf
ENDIF
IF(ICCNTL.EQ.2) TIMECP=TIMECP+DTMC
TIMECP = TIMECP + DTMC
C
C***** THESE VALUES ARE TO FREEZE THE OPENINGS OF CONTROL VALVES
*

Simulation loop invariant perturbations added.
IF (IPFLAG .EQ. 0 .AND. STIME + DTMC .GE. TOPEN) THEN
FZOPV = YCOPOV
fzopvb = FZOPV * (1. + .01 * POPVNZ)
IF (fzopvb .GE. 100.0) fzopvb = FZOPV
FZFPV = YCFPOV
fzycf = FZFPV * (1. + .01 * PFPVNZ)
IF (fZYCf .GE. 100.0) fzYCf = FZFPV
FZMOV = YCMOV
fzYCm = FZMOV * (1. + .01 * PMOVNZ)
IF (fzcm.GE. 100.0) fzycm = FZMOV
FZMFV = YCMFV
fzycmf = FZMFV * (1. + .01 * PMFVNZ)
IF (fzycmf.GE. 100.0) fzycmf = FZMFV
FZCCV = YCCCV
fzYCC = FZCCV * (1. + .01 * PCCVNZ)
IF (fzYCC .GE. 100.0) fzYCC = FZCCV
IPFLAG = 1
ENDIF
C
C***** FOLLOWING IS THE SCHEDULE OF HANDLING DIFFERENT INSTRUMENTATION
C***** TIME DELAYS DURING THE SAMPLING TIME PERIOD DTMC (=0.02) OF
C***** CONTROL LOOP.
C
4000 IF (STIME .GE. TIMEPR .OR. first) THEN
PCF = PCFACT * PCIE
IF (.NOT. first) TIMEPR=TIMEPR+DTMC

```
```

ENDIF
IF (STIME .GE. TIMETR .OR. first) THEN
TO=TOD2
IF(.NOT. first) TIMETR=TIMETR+DTMC
ENDIF
C
C***** EXECUTION OF VALVE OPENING COMMANDS ************
C***** CURRENT CALCUALTED VALUES ARE TO BE SENT OUT IN NEXT TIME INTERV
C THE RATE OF CHANGE IS LIMITED TO 200% OPENING/SEC.

* Method changed to eliminate a multiply and divide per value.
IF (STIME .GE. TIMEVC .OR. first) THEN
IF (TIME .GT. TCLF .AND. TIME .LT. TCUT) THEN
XRFPV = dtm100
ELSE
XRFPV = dtm200
ENDIF
yxdiff = YCFPVL - XCFPOV
abdiff = ABS(yxdiff)
IF (abdiff .LT. XRFPV) THEN
XCFPOV = XCFPOV + SIGN(abdiff, YXdiff)
ELSE
XCFPOV = XCFPOV + SIGN(XRFPV, YXdiff)
ENDIF
Yxdiff = YCOPVL - XCOPOV
abdiff = ABS(Yxdiff)
IF (abdiff.LT. dtm200) THEN
XCOPOV = XCOPOV + SIGN(abdiff, YXdiff)
ELSE
XCOPOV = XCOPOV + SIGN(dtm200, yXdiff)
ENDIF
Yxdiff = YCOMVL - XCMOV
abdiff = ABS(`Yxdiff)
IF (abdiff.LT. dtm200) THEN
XCMOV = XCMOV + SIGN(abdiff, YXdiff)
ELSE
XCMOV = XCMOV + SIGN(dtm200, Yxdiff)
ENDIF
Yxdiff = YCCVL - XCCCV
abdiff = ABS(yxdiff)
IF (abdiff.LT. dtm200) THEN
XCCCV = XCCCV + SIGN(abdiff, Yxdiff)
ELSE
XCCCV = XCCCV + SIGN(dtm200, yxdiff)
ENDIF

```
```

 *
    ```
        yxdiff = YCFMVL - XCMFV
        abdiff \(=\) ABS ( Yxdiff )
        IF ( abdiff. LT. dtm200 ) THEN
            XCMFV \(=\) XCMFV + SIGN ( abdiff, yxdiff )
        ELSE
        XCMFV \(=\) XCMFV \(+\operatorname{SIGN}(\operatorname{dtm} 200, y x d i f f)\)
        ENDIF
ENDIF
*
IF (ICCNTL.EQ.2) TIMEVC=TIMEVC+DTMC
IF ( STIME .GE. TIMFMA) THEN
    IF (IFIND.EQ.0) IFIND=1
    IF (IOIND.EQ.O) IOIND=1
    TIMFMA=TIMFMA + DTMC SSM08900
ENDIF
IF ( STIME .GE. TIMFME ) THEN
    TIMFME \(=\) TIMFME + DTMC
    IF ( IFIND .EQ. 3) THEN
                \(\mathrm{NCF}=\mathrm{KOUNTF}\)
                KOUNTF=0
                IFIND \(=0\)
    ENDIF
    IF ( IOIND .EQ. 3 ) THEN
        NCO=KOUNTO
        KOUNTO=0
        IOIND=0
    ENDIF
ENDIF
* \(Q F O=67.11 * 300000 . /(N C F+1.0 E-5) \quad\) Computations for output only
* \(\quad Q 0=22.95 * 300000: /(\mathrm{NCO}+1.0 \mathrm{E}-5)\)
* \(\quad\) RHOH=DENF
* \(\quad\) RHOO=DENO
*
    4060 IF (TIME.LT.TIMMRF) RETURN
C
C***** EMRF IS THE CALCULATED MIX-RATION FROM MEASURED VARIABLES OF
C***** CHAMBER PRESSURE AND FUEL FLOW RATE
C
IF ( STIME .GE. TMRC) THEN
    IF (NMR . EQ. 1) THEN
        \(\underset{E M R F}{ }=\) PCNS / (C2 * DW (2)) - 1.0 SSM09100
    ELSE
        \(E M R F=F R /(C 2 * D W(2))-1.0\)
    are to be done in offline
plotting programs, not in the
simulation

ENDIF ENDIF

Here is where the KOUNT variables affect the simulation. There is an effect only when TIME.GE. TMRC
```

IF (TIME .LT. TMRC) THEN
EMRF = 6.0

```
ELSE IF ( NCO.EQ. O .OR. NCF.EQ.O) THEN
    \(E M R F=0\).
ENDIF
\(F=(F A 1 * P C F+F B 1 * E M R F * P C F+F C 1 * E M R F+F D 1) * T F A C T\)
\(F=A I N T(F / 512) *\).512 .
TIMMRF \(=\) TIMMRF + DTMC
\(F C O M P=F\)

END
* fgen. Its data was reconstructed from the interpolation
* coefficients below.
    FUNCTION TLIMIT(FR, OXPLIM, XOPOMS, YCOPOV, NMRO
    PURPOSE: COMPUTE THE OPOV COMMAND LIMITS USING FLIGHT 38 - MERGE
```

C TLIMIT = LIMITED YCOPOV

```
C
\(\star \star\)
C
```

 DIMENSION EPLTAB(11), A1TAB(11), AOTAB(11)
 DATA EPLTAB/ 0.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0,
 1 105.0,110.0,1000./
 DATA A1TAB / 0.0,.100,.118, . 218, . 340, .414, .428,.447,
 1 .689,1.564,3.722/
 DATA AOTAB/0.0,49.55,48.29,40.79,31.03,24.74,23.48,21.71,
 1 -2.57,-94.4,-331.78/
 DATA M / 8/
    ```
    The \(y\) value is available from the interpolation coefficients
```

 a0(i), al(i) as Y(i-1) = a0(i) + al(i) * x(i-1)
 where }x=EPLTAB and y = TLIMIT:
 TLIMIT = 49.55, 56.55, 57.14, 58.23, 59.93, 62.0, 64.18,
 66.33, 69.82, 77.64, 3390.
    ```
TLIMIT vs. EPLTAB was put in 'ssme.dat', as fon \# 84, after
                        fon \#57
    'emco.for':
SUBROUTINE EMCOO
C
PURPOSE: COPUTE ACTUATOR POSITIONS DURING PNEUMATIC SHUTDOWN
    DURING THE EMERGENCY CUT-OFF THE VALVE COMMANDS HAS A SPECIAL
    CIRCUIT FOR SEQUENTIALLY SHUT-DOWN (OR OPEN) THE VALVES.
\(!!!!!\) THIS PORTION OF PROGRAM HAS NOT BEEN CHECKED OUT BECAUSE OF THE LACK
C !!!!! OF DOCUMENT ON THE ACTUAL SHUT-DOWN PROCEDURE AND DYNAMICS
C
C SSM10500
C******ARGUMENT******
C INPUT:
    \(\mathrm{N}=\) INITIALIZATION ARGUMENT was eliminated
C
\(C * * * * * *\) COMMON USAGE*
C INPUT:
C VARIABLES
C PFPOV, POPOV, DWFPO, DWOPO, PFPOI, POPOI
C PMOV, DWMOV,RHOOP3, RHOOP2, POINJ
C \(\quad \mathrm{P}(3), \mathrm{P}(7), \mathrm{RHO}(3), \mathrm{RHO}(7), \mathrm{P}(10), \mathrm{P}(8)\)
C XFPOV, XOPOV, XMOV, XMFV, XCCV
    OUTPUT:
    VARIABLES \(\quad\) DESTINATION
    THETA, DTHETA

DESTINATION HOTGAS OXIDF FUELF SSM10600 VALDYM

DESTINATION VALDYM
            DOUBLE PRECISION DTHETA, ESAC, ESA, DESA, ESV, DESV SSM10700
            DOUBLE PRECISION TIME
            DIMENSION FRDEL (5), FS (5), TL (5), PCT (5), A1 (5), A2 (5), A3 (5), B1 (5), S (5) 0800
    1 , D(5), E(5), CKT1 (5), CKL1 (5), HKT1 (5), HKL1 (5), CKT2 (5), CKL2 (5),
    2 HKT2 (5), HKL2 (5), CKT3 (5), CKL3 (5), HKT3 (5), HKL3 (5), HTO (5, 3), W2 (3)
    3 , H2 (3), H3 (3), ORFMAX (3), ORFMIN (3), TOMAX (3), TOMIN (3), PNFRIC (3)
    4 , PNLOAD (3), PNORGX (3) , PNK (3) , WTO (3), Y (5), AO (5) , PHID (5) , X2DOT (5)
    \(5 \quad, F Y 1(5), F Y 2(5), X 1 D O T(5), I 1(5), X 1(5), D Y(5)\)
    \(\begin{array}{ll}5 & , F Y 1(5), F Y 2(5) \\ 6 & \text { N1 (5), PIN (5) }\end{array}\)
    7
                                \(W(5), \operatorname{DEN}(5), \operatorname{PD}(5), A 4(5)\)
```

 REAL L(5),M(5),MU(5),KT1(5),KL1(5),KT2(5),KL2(5),KT3(5),KL3(5),
 * KTO(5),K3
 DIMENSION XP(5), vG1(5), XHE(5)
 LOGICAL JK(5)
 REAL dmesq(5), twod(5), sqm(5), slx(5)
 PARAMETER (PI = 3.141597, degprd = 180. / PI,
 + vperi = 8.0/(386.1 * PI))
INCLUDE 'blank.com'
INCLUDE 'units.com'
INCLUDE 'out.com'
INCLUDE 'contrl.com'
INCLUDE 'oxid.com'
INCLUDE 'hgas.com'

```
    DATA I \(1 / 11,14,16,32,36 /\)
    DATA JK, FY1, FY2, D1, D2/ 5 * .TRUE., 10*0., -1.085, 1.02/

THE FOLLOWING TIME CONSTANT WERE SET TO 0.0 DURING THE CUT-OFF. HOWEVER, DURING THE INITIALIZATION OF THE PROGRAM THESE VALUES SHOULD be saved before the emco (1) was called during the data reading.
```

TIMEVC=0.0
TIMEPR=0.0
TIMECP=0.0
If there are values to save, then don't
change them.

```

TIMETR \(=0.0\)
```

TPT=TPA
PRC=PR
PPB=PHE

```

TEMP IS THE TEMPERATURE INDICATOR, \(1=\) COLD, \(2=\) NORMAL, \(3=\) HOT
```

 IF(TEMP.LE.1.0)GAM=SQRT(.86158)
 IF(TEMP.EQ.2.0)GAM=SQRT(.83974)
 IF(TEMP.EQ.3.0)GAM=SQRT(.7895)
 IT=TEMP+0.1
 G2=4.*146.2*.62*W2(IT)*H2(IT)/GAM
 W3=(ORFMAX(IT)-ORFMIN(IT))
 K3=4.*146.2*.62*W3*H3(IT)/GAM
 XV=(PPB*.1398-PR*.1398-PNFRIC(IT) -6.0*PNLOAD (IT)-6.0*PNORGX(IT)
 1 *PNK(IT))/(PNK(IT)*6.0)
IF(XV.LT.O.)XV=1.E-5
IF(XV.GT.WTO(IT)) XV=WTO(IT)
G3=(K3*(XV-ORFMIN(IT)))/(ORFMAX(IT) -ORFMIN(IT))
IF(XV.LT.ORFMIN(IT))G3=.000001
IF(XV.LT.ORFMIN (IT))G2=.000001
IF(XV.GE.ORFMAX(IT))G3=K3
GE=SQRT(1./((1./G3)**2+(1./G2)**2))
1 = FPOV
2 = OPOV
3 = MOV
4 = MFV
5 = CCV
DO 720 I=1,5
KT1(I)=CKT1(I)
KL1(I)=CKL1 (I)
KT2(I)=CKT2(I)
KL2 (I) = CKL2 (I)
KT3 (I) = CKT3 (I)
KL3 (I) =CKL3 (I)
IF(TEMP .GE. 2.0) THEN
SSM12200
KT1(I)=HKT1 (I)
KLI(I)=HKL1 (I)
KT2(I)=HKT2 (I)
KL2 (I) =HKL2 (I)
KT3 (I) = HKT3 (I)
KL3 (I) =HKL3 (I)
ENDIF
CGO = (D(I)**2 + M(I)**2 + L(I)**2 - E(I)**2)/
+(2.*D(I)*SQRT(M(I)**2 + L(I)**2))
SGO = SQRT(1. - CGO**2)
GAO = ATAN2(SGO,CGO)

```
```

 BEO = ATAN(M(I) / L(I))
 AO(I) = PI - GAO - BEO
 KTO(I) = 146.2*.62*HTO(I,IT)/GAM
 XHE (I)=0.
 IF(XV.LE.TOMIN(IT)) THEN
 vGl(I) = 1.E6
 ELSEIF (XV .GT. TOMAX(IT)) THEN
vGl(I) = 1.0 / (KTO(I)*(TOMAX(IT) - TOMIN(IT)))
ELSE
vGl(I) = 1.0/(KTO(I)*(XV - TOMIN(IT)))
ENDIF
720 CONTINUE
DO 5 I = 1, 5
Y(I) = THETA(I) / PCT(I)
DY(I) = -1.OE-5
CALL uninto(Y(I), 198 + I)
X2DOT(I) = DY(I)
XIDOT(I) = DY(I)
XI(I) = Y(I)
dmesq(I) = D(I)**2 + M(I)**2 - E(I)**2
twod(I) = 2. * D(I)
sqm(I) = M(I) ** 2
slx(I) = L(I) + S(I) - XI(I)
5 CONTINUE
RETURN
ENTRY EMCO
1000 CONTINUE
PIN (1)=PFPOV
PIN (2)=POPOV
PIN (3) = PMOV
PIN(4)=P(3)
PIN(5)=P(7)
W(1) = DWFPO
W(2)=DWOPO
W(3) = DWMOV
W (4) = DW (3)
W(5) = DW (7)
SSM12500
DEN (1) =RHOOP3
DEN (2)=RHOOP3
DEN (3) =RHOOP2
DEN (4)=RHO (3)
DEN (5)=RHO (7)
PD(1)=PFPOI
PD (2)=POPOI
PD(3)=POINJ
PD(4)=P(10)
PD(5)=P(8)
SSM12600
XP(1) = .01 * XFPOV

```
```

XP(2) = .O1 * XOPOV
XP(3) = .01 * XMOV
XP(4) =.01 * XMFV
XP(5) = .01 * XCCV
X1DOT(5)=DTHETA (5)
DO 2000 I=1,5
IF(I.EQ.1.AND.THETA(2).GT.TSFPOV) GO TO 2000
IF(I.EQ.3.AND.THETA(2).GT.TSMOV) GO TO 2000
IF(I.EQ.4.AND.TIME.LE.TSMFV) GO TO 2000
SSM12700
IF(I.EQ.5.AND.TIME.LE.TSMFV) GO TO 2000 requires too many tests of I
GO TO (15, 50, 20, 40, 40), I
GO TO 50
IF (THETA(2) .GT. TSMOV) GO TO 2000
GO TO 50
IF (STIME.LE.TSMFV) GO TO 2000
CONTINUE
IF (Nl(I) .EQ. O) GO TO 422
Y(I) = THETA(I) / PCT(I) Moved to EMCO
DY(I) = -1.OE-5
X2DOT(I) = DY(I)
XIDOT(I) = DY(I)
XI(I) = Y(I)
N1(I)=1
IF(Y(I) .LE. O.) GO TO 2000
X2 = Y(I)

```
CG=(D(I)**2+M(I)**2+(I) I +X2)**2-E(I)**2)/(2.*D(I)*SQRT(M(I)** 2+(
```

CG=(D(I)**2+M(I)**2+(I) I +X2)**2-E(I)**2)/(2.*D(I)*SQRT(M(I)** 2+(

* L(I)+X2)**2)) was replaced by
* L(I)+X2)**2)) was replaced by
x2l = X2 + L(I)
x2lsq = x2l ** 2
vdenBE = 1. / xloth(sqm(I) + x21sq, 5)
CG = (dmesq(i) + x2lsq) * vdenBE / twod(I)
SG = Xloth(1. - CG**2, 5)
GA = ATAN2(SG, CG)
BE = ATAN(M(I)/x2l)
A = PI - GA - BE
PHI = A - AO(I)
PHID(I) = degprd * PHI
IF(X2DOT(I) .EQ. O.) THEN
TP = 0.
SSM12900
ELSE

```
```

 THK=FGEN(I1(I),2,XP(I)/100.)
 TP(I)=SIGN(AT(I)+(BT(I)+0.8*ESS(I))*(PIN(I)-8./386.1/DEN(I)*(W(I)/
 * PI/VPD(I)**2)**2)+0.8*DSS(I)+CPS (I)+CS(I)*(PIN(I) - PD (I)),
 X1DOT(I))+THK*W(I)**2/DEN(I)/VPD(I)/1728. was replaced by
 THK = fgen(Il(I), I + 103, xp(I))
TP = SIGN(AT(I) + (BT(I) + 0.8*ESS(I)) *
+ (PIN(I) - vperi/DEN(I)*(W(I)/VPD(I)**2)**2) + 0.8*DSS(I) +
+ CPS(I) + CS(I)*(PIN(I) - PD(I)), X1DOT(I)) +
+ THK*W(I)**2 / (DEN(I)*VPD(I)*1728.)
ENDIF
FB1=MU(I)*ABS (FY1 (I))
FB2=MU(I)*ABS (FY2(I))
BV1 = B1 (I)*.5
BV2 = BV1
SSM13000
IF(ABS(X2DOT(I)).LT..9E-4) JK(I)=1
JK(I) = JK(I) .OR. X2DOT(I) .LT. .9E-4
IF(JK(I)) THEN
FRIC1 = -SIGN(FS(I)*.5, X2DOT(I))
FRIC2 = FRIC1
ELSE
IF(I.LT.3.OR.I.EQ.5) FR=FGEN(34,2,PHID(I)) Why lookup twice for I =
IF(I.GT.2)FR=FGEN(35,2,PHID(I))
replaced by
IF(I .LT.3) THEN
FR = FGEN(34, 108 + I, PHID(I))
ELSE
FR = FGEN(35, 108 + I, PHID(I))
ENDIF
FR = FR + FRDEL(I)
FRIC1 = -SIGN(FR*.5, X1DOT(I))
FRIC2 = -SIGN(FR*.5, X2DOT(I))
SSM13100
ENDIF
SINA=SIN(A)
COSA=COS(A) replaced by
sinBE = M(I) * vdenBE
cosBE = x21 * vdenBE
SINA = SG * cosBE + CG * sinBE
cosA = SG * sin}BE + CG * cosBE
U1 = D(I) * SINA

```

```

 replaced by
 dmul = M(I) - Ul
 U2 = -. 5/ Xloth(E(I)**2 - dmul**2, 5) * twod(I) * dmul * COSA
    ```
```

 UA = (U1 + U2) / (U1 - U2)
 TAND1 = dmul / (slx(I) - D(I)*COSA)
 TAND2 = dmul / (D(I)*COSA + x2l)
 XDHE = -X2DOT(I)
 XHE(I) = S(I) - X2
 SIGN1 = SIGN(1., X2DOT(I))
 Q1 = Al(I) * X1DOT(I)
 Q2 = A2(I)*X2DOT(I) + A4(I)*XDHE
 IF (XV .LE. TOMIN(I)) Q1=0.
 IF (XV .LE. ORFMIN(I)) Q2=0.
 Q3 = Q2 - Q1
 PR1 = (KT3(I)*ABS(Q3) + KL3(I))*Q3 + PR
 Cl = (KTl(I)*ABS(Q1) + KLI(I))*(-Q1)
 C2 = (KT2(I)*ABS(Q2) + KL2(I))*Q2
 P1 = PR1 - SIGN1*(A1(I)*X1DOT(I)*VG1(I))**2
 IF(XV .LE. .046) THEN
 P2 = PHE
 ELSE
 P2 = SIGN1*(((A2(I) - A4(I))*X2DOT(I))*VGE)**2 + PR1 SSM13300
 ENDIF
 D1 = -TAND1*D(I)*COSA - U1
 vD2 = 1.0 / (U1 - TAND2*D(I)*COSA)
 FX1 = (P1 + C1 - PRC)*AI(I) + FRIC1 - BV1*X1DOT(I)
 FX2 = (TP + FX1*D1)*VD2
 FY1(I) = -FX1 * TAND1
 FY2(I) = FX2 * TAND2
 VA=(-(A2(I)-A4(I))*((A2(I)-A4(I))/GE)**2+D1/D2*A1(I)*(Al(I)*UA/G1 400
 X (I))**2)*SIGN1
VB=-BV2-D1/D2*(-BV1*UA)
VC=-(PR1+C2)*(A2(I)-A4(I))-PHE*A3(I)+FRIC2-1./D2*(TP(I)+D1*(A1(I)*
X PR1+Cl*A1(I)+FRIC1-PRC*A1(I)))+PRC*A2(I)
VA=((A2(I) - A4(I))**2 * VGE)**2 +

+ D1*VD2*(Al(I)*(AI(I)*UA*VGI(I))**2)*SIGN1 SSM13400
VB= D1*VD2*BV1*UA - BV2
VC = FRIC2 - (PRI + C2)*(A2(I) - A4(I)) - PHE*A3(I)
- vD2*(TP + D1*(A1(I)*(PR1 + C1 - PRC) + FRIC1))
+ PRC*A2(I)
VRAD = VB**2 - 4.*VA*VC
IF (VRAD .GE.O.) THEN
X2DOT(I) = (-VB - SQRT(VRAD))/(2.*VA)
DY(I) = X2DOT(I)
PHIDOT = X2DOT(I) / (U1 - U2) * degprd
X1DOT(I) = UA * X2DOT(I)
SSM13500
XI(I) = - twod(I)* cosA + S(I) - X2
THETA(I) = PHID(I)
DTHETA(I) = PHIDOT
Y(I) = pruint(DY(I), Tstep, 198 + I)

```
```

 JK(I) = .FALSE.
 ELSE
 WRITE(event, 1510) STIME, I
 FORMAT(' AT ',F10.4,' VALVE',I3,' MOVING IN WRONG DIRECTION')
 ENDIF
 2000 CONTINUE
RETURN
SSM13600
END

```

C

\section*{PURPOSE: SIMULATE POGO SUPPRESSOR OPERATION}

POGO SUPPRESSOR SYSTEM IS THE "STABILIZER" OF THE OXIDIZER SYSTEM.
IT USES THE PRESSURIZED HELIUM SYSTEM TO SUPPLY ENOUGH OXID LINE PRESSURE AT THE BEGINNING OF THE OPERATION. A BACKFLOW LINE IS ALSO USED TO DRAIN THE OVERFLOW OF THE EXCESS OXIDIZER DURING THE OPEATION.

POGO SYSTEM HAS THREE DUCTS/VALVES CONNECTED:
OI2: HOPO INPUT DUCT, DOWN SIDE OF THE POGO ACCUMULATOR
RIV TUBE: OVERFLOW TUBE BACK TO OXID TANK
DIFFUSER VALVE: INPUT VALVE FOR EITHER PRESSURIZED HELIUM OR PRESSURIZED LOX FROM HPOP OUTLET.
c
C******ARGUMENT******
c INPUT:
C I INITIALIZATION ARGUMENT inactivated SSM80400 C
C******COMMON USAGE******
C INPUT:
c VARIABLES
POI2, POD2, POJ
SOURCE
POI2, POD2, POJ OXIDF

OUTPUT:
VARIABLES DESTINATION
DWO, DWGOP, OWHOP OXIDF

DOUBLE PRECISION TIME replaced by STIME
INCLUDE 'blank.com'
INCLUDE 'pogo.com'
INCLUDE 'oxid.com'
PARAMETER ( \(\operatorname{NPTS}=4, ~ M P T S=12\) ) SSM81100
DIMENSION WGTAB(NPTS), FACTAB(NPTS), PGTAB(MPTS), SATTAB(MPTS),
\(+\quad\) SATVPG (MPTS), FACVWG(NPTS)
C
INTEGER Tstep
PARAMETER ( Tstep \(=0\), TOOBig \(=1 . E 50\) )
PARAMETER ( workc \(=12.0 * 778.16\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline data wgtab & 1 & 0.0 & 0.2 & 0.3 & 1.0 & 1 & \\
\hline data factab & / & 0.0 & 0.2 & 0.9 & 1.0 & 1 & SSM80900 \\
\hline DATA PGTAB & / & 0.022 & 6.7 & 20.2 & 52.6 & 98.5 & , 148.2 \\
\hline + & & 201.7 & 298.2 & 404.2 & , 511.5 & 611.9 & , 731.38/ \\
\hline DATA SATTAB & / & 97.831 & 150.0 & 168.0 & 186.0 & 204.0 & , 216.0 \\
\hline + & & 226.0 & 240.0 & 252.0 & 262.0 & 270.0 & , 278.24/ \\
\hline
\end{tabular}
```

 DATA DTPSTH / 4.0 /
 DATA DTPSTL / 0.0 /
 DATA QINT / 0.01792 /
 DATA QNCON / 955.5 /
 DATA QNEXP / 2.006 // SSM81000
 DATA QSLP / 0.00491 /
 DATA TGOX / 650.0 /
 DATA THE / 520.0 /
 DATA THTHI / 2.0 /
 DATA THTLO / 1.4 /
 DATA TLOX / 180.0 /
 Is Z below a function of the step size? If so, compute it so
 step size can be changed.
 DATA Z / 0.0005 /
 R(X)=1./(772.8*X*X+1.0E-12)
 DQHEAT=0.0
 ISAVE = 1
 JSAVE = 1
 TSAT=0.0
 WLOX=0.0
 WORK=0.0
 X=0.0
 C
READ (run,50) ATH, AIN, AHPV, AGC, RGC, RS, RGHS, RREC, ZREC, HP,
+ PHES, TGC, THEO, RHS, THEC, RGVO, ZCD, RGSL, VTOT,
+ RHPV, DTPSTL
50 FORMAT(//2X,6G12.4)
P1=POI 2
P2 = POI2
PD = POI2
TPRINT = TPR(1) - 0.1 * DT replaced by one print interval
Input echo eliminated.
CALL fgset(42)
CALL fgset(43)
DO 60 I = 2, MPTS
SATvPG(I) = (SATTAB(I) - SATTAB(I-1))/
O CONTINUE
DO 70, I = 2, NPTS
FACvWG(I) = (FACTAB(I) - FACTAB(I-1))/
+
(WGTAB(I) - WGTAB(I-1))

```
CALL lmintO( XHPV, 204, 0.0, 100.0)
CALL lmintO( XGC, 205, 0.0, 100.0 )
CALL uninto( UG, 206)
CALL lmintO( WLOX, 207, 0.00001, TOOBig )
CALL lmintO( WGOX, 208, 0.00001, TOOBig)
CALL lmintO( WHE, 209, 1.0E-08, TOOBig)
CALL unintO( DWO, 210)
CALL unintO( DWGAS, 211)
CALL unintO( PD, 212 )
CALL unintO( DWRE, 213 )
* The following restart section is added to initialization.
dwfac2 = 500. * DT
IF ( dwfac2 .LE. 1.0 ) THEN
            dwfacl = 1.0 - dwfac2
ELSE
            PRINT *, "Time step assumed less than 1/500 in pogosup."
            STOP
END
tgox5 = 579.5 * TGOX
rhfac2 = 20. * DT
rhfac1 = 1. - rhfac2
VRHOHE = 4636.0 * THE / PHES
TGAS = 470.0
WLOX = 16.24
WGOX = 1225.0 * POI2 / (579.5 * TGAS)
WHE = 25.0 * POI2 / (4636.0 * TGAS)
UG = TGAS * (0.17811 * WGOX + 0.74824 * WHE)
RHOREC = 0.01
IPR = 2
```

RETURN
ENTRY POGO

COMPUTE GAS FLOWRATES INTO THE POGO ACCUMULATOR

VALVE OPENING SCHEDULE TIMES ARE:
THEO: HELIUM VALVE OPENING TIME
THEC: HELIUM VALVE CLOSING TIME
TCUT: SYSTEM POWER CUT DOWN TIME
DTPSTL: SYSTEM POWER CUT TO PURGE DELAY
DTPSTH: TIME PERIOD OF HELIUM PURGE DURING POWER CUT DOWN
TGC: LOX VALVE OPENING TIME, THIS WORKS WITH "THEC"

```
    IF ( STIME .LT. THEO
    + .OR. ( STIME .GT. THEC .AND. STIME .LT. TCUT + DTPSTL )
    + .OR. STIME .GT. TCUT + DTPSTH ) THEN
```

TIME PERIODS WHEN HELIUM FLOWS ARE NOT EXISTING, START OR MAIN STAGE
XHPV = prlint (- RHPV, Tstep, 204)
IF (XHPV .GT. 0.2) GO TO 260
IF (STIME .GT. TGC) THEN
XGC $=$ prlint(RGC, Tstep, 205)
ENDIF
IF (XGC .GT. 0.01) GO TO 300
IF (XHPV .LE. 0.01) THEN
DWG $=0.0$
DWH $=0.0$
GO TO 400
ENDIF
ELSE

SSM82200

```
    260 RAHPV = R(XHPV * AHPV / 100.0)
    IF (XHPV .LT. 0.2) THEN
            DWH = SQRT( ABS (PHES - P1) / ( vRHOHE * RAHPV ) )
        ENDIF
        dwsr = vRHOHE * DWH ** 2
        PHPV = PHES - RHS * dwsr
        P1 = PHPV - RAHPV * dwsr
        IF (P1 .LT. P2) P1 = P2
        PGCO = P1
        DWG = 0.0
        DWH = dwfacl* DWH +
    + dwfac2 * AIN * GFLOW(P1, P2, P1*VRHOHE, 1.0, 1.684) SSM82300
        P2 = PG + RGHS * DWH ** 2 * vRHOHE
        GO TO 400
        * * * COMPUTE GOX FLOW INTO THE ACCUMULATOR
        THIS IS THE FLOW FROM DUCT "OD2" TO THE DIFFUSER IN GAS OXID FORM TO
        SUPPLY PRESSURE FOR POGO SYSTEM DURING THE MAIN STAGE OPERATION.
        GAS OXID FLOW INTO ACCUMULATOR, HELIUM FLOW MUST BE ZERO (OR ALMOST ZERO
        THE FOLLOWING SECTION OF PROGRAM CALCULATE THE HELIUM FLOW BY:
        1) COMPUTE INITIAL FLOW VALUE WHEN XGC < 0.2%
        2) WHEN XGC > 0.2%, USES THE SMOOTHING FACTOR OF 500*DT=0.1 TO
        CALCULATE THE NEXT FLOW VALUE: DWG (NEXT)=0.9*DWG (OLD)+0.1*DWG (IN)
        (500*DT CAN BE CONSIDERED AS THE TIME DELAY OF THE DUCT.)
        FOLLOWING NOTATIONS ARE USED:
        PGCI: PRESSURE OF INPUT SIDE OF THE RETURING GOX VALVE
        PGCO: PRESSURE OF OUTPUT SIDE OF THE RETURING GOX VALVE
    300 RAGCV = R(XGC * AGC / 100.0)
        vRHOGO = tgox5 / POD2
        IF (XGC .LT. 0.2) THEN
            DWG = SQRT(ABS(POD2 - P1) / (VRHOGO * RAGCV) )
        ENDIF
        dWgr = vRHOGO * DWG ** 2
        PGCI = POD2 - RGSL * dwgr
        SSM82400
        PGCO = PGCI - RAGCV * dwgr
        P1 = PGCO - RGVO * dwgr
        IF (P1 .LT. P2) P1 = P2
        IF (PGCO .LT. P1) PGCO = P1
        DWH = 0.0
        DWG = dwfacl * DWG + dwfac2 *
    + GFLOW(P1, P2, P1/RHOGOS, 1.0, 1.4) * AIN
    P2 = PG + RGHS * DWG ** 2 * vRHOGO
C
        PROPERTIES IN THE ACCUMULATOR IS DEFINED BY THE FOLLOWING:
C UG: TOTAL ENERGY OF THE GAS PHASE IN THE ACCUMULATOR
```

DQHEAT: HEAT TRANSFERRED BETWEEN LOX AND GAS PHASE
WORK: WORK DONE BY GAS PHASE IN PUSHING LOX (= P * Delta V)
DWLOX: LOX FLOW INTO THE ACCUMULATOR, INCLUDING:
DWO: LOX FLOW FROM DUCT "OI2"
DWQNCH: LOX FLOW FROM GAS PHASE DUE TO QUENCHING EFFECT
DWLO: LOX FLOW FROM THE ACCUMULATOR TO OXID TANK
DWGOX: GAS OXID FLOW INTO THE ACCUMULATOR, INCLUDING:
DWG: GAS OXID INPUT FROM "OD2" THROUGH XGC VALVE
DWQNCH: GAS FLOW TO LIQUID PHASE DUE TO QUENCHING EFFECT
DWGOP: GAS FLOW TO DUCT "OI2"
DWGO: GAS FLOW TO OXID TANK IN BACK FLOW TUBE
DWHE: HELIUM FLOW INTO THE ACCUMULATOR, INCLUDING:
DWH: HELIUM FLOW FROM HELIUM SUPPLY THROUGH XHPV VALVE
DWHOP: HELIUM FLOW TO DUCT "OI2"
DWHO: HELIUM FLOW TO OXID TANK IN BACK FLOW TUBE
400 DLTUG $=1.24471$ * (DWH * THE - (DWHOP + DWHO) * TGAS)
$1+0.24017$ * (DWG * TGOX - (DWGOP + DWQNCH + DWGO) * TGAS)
2 +DQHEAT - WORK
UG $=$ pruint (DLTUG, Tstep, 206)
DWLOX $=$ DWO + DWQNCH - DWLO
WLOX = prlint (DWLOX, Tstep, 207)
DWGOX = DWG - DWQNCH - DWGOP - DWGO
WGOX = prlint(DWGOX, Tstep, 208)
DWHE $=$ DWH - DWHOP - DWHO SSM82600
WHE = prlint(DWHE, Tstep, 209)
VL $=$ WLOX / 0.04061
VG $\quad=\operatorname{AMAX1}(1.0$, VTOT - VL)
TGAS $=$ UG / (0.17811 * WGOX + 0.74824 * WHE)
PG $\quad=(579.5 *$ WGOX $+4636.0 *$ WHE) * TGAS / VG
RHOHE $\quad=\mathrm{PG} /(4636.0$ * TGAS)
RHOGOX $=\mathrm{PG} /(579.5 *$ TGAS $)$
COMPUTE FLOWRATES
$\star \quad * \quad * \quad$ FLOWRATES AT THE ACCUMULATOR NECK SM82700
THIS SECTION IS TÓ CALCULATE THE CONDITIONS OF THE LIQUID AND GAS FLOW OF THE POGO SYSTEM. FOLLOWING NOTATIONS ARE USED:
ALIQ: FRACTION OF THE LOX IN THE DUCT BETWEEN "OI2" AND NECK
ALIQ=1 FOR LOX FILLED DUCT, ALIQ=0 FOR GOX FILLED DUCT, AND $0<A L I Q<1$ FOR PARTIALLY FILLED DUCT
FAC: DIFFUSING FACTOR TO CALCULATE GAS FLOW IN A GAS MIXTURE

```
ALIQ = AMAX1(1.0E-10, AMIN1(1.0, VL/130.6))
DWO = prflow(DWO, 2, -RS/(RHOCD2*ALIQ**2), POI2-PG, 210)
```

The translation below is accurate, but the intent is doubted.
IF (VL . GE. VTOT - 1.0 .AND. DWO .GE. 0.0) THEN CALL uninto (0., 210)

```
            DWO = 0.0
            PG = POI2
        ENDIF
500 IF (ALIQ .GE. 0.9999) THEN
        DWGOP = 0.0
        DWHOP = 0.0
    ELSE
```

```
THE CONDITION OF PARTIALLY FILLED DUCT BETWEEN "OI2" AND POGO NECK.
DWGAS: TOTAL GAS FLOW (HELIUM AND GOX)
```

```
    wgx = WGOX/AMAX1(1.OE-12, WGOX+WHE)
```

 wgx = WGOX/AMAX1(1.OE-12, WGOX+WHE)
 CALL intval(ISAVE, wgX, NPTS, WGTAB,
 CALL intval(ISAVE, wgX, NPTS, WGTAB,
 + 'Below WG table in pogosup.',
+ 'Below WG table in pogosup.',
+ 'Above WG table in pogosup.', 0)
+ 'Above WG table in pogosup.', 0)
FAC = xlint(wgx , NPTS, WGTAB, FACTAB, FACVWG, ISAVE) SSM82800
FAC = xlint(wgx , NPTS, WGTAB, FACTAB, FACVWG, ISAVE) SSM82800
RHOG = PG / (TGAS * (579.5 * FAC + 4636.0 * (1.0 - FAC)))
RHOG = PG / (TGAS * (579.5 * FAC + 4636.0 * (1.0 - FAC)))
DWGAS = prflow(DWGAS, 2, RS/(RHOG*(1.0-ALIQ)**2), PG-POI2, 211)
DWGAS = prflow(DWGAS, 2, RS/(RHOG*(1.0-ALIQ)**2), PG-POI2, 211)
IF (WHE .GE. 1.OE-07) THEN
IF (WHE .GE. 1.OE-07) THEN
DWGOP = FAC * DWGAS
DWGOP = FAC * DWGAS
DWHOP = (1.0 - FAC) * DWGAS
DWHOP = (1.0 - FAC) * DWGAS
ELSE
ELSE
DWGOP = DWGAS
DWGOP = DWGAS
DWHOP = 0.0
DWHOP = 0.0
ENDIF
ENDIF
ENDIF
ENDIF
* * * COMPUTE THE FLOWRATES OUT THE RIV TUBE
BACK FLOW TUBE CONDITIONS:
HP: LOX HEIGHT IN POGO ACCUMULATOR
AREAH: LOX AREA INSIDE BACK FLOW TUBE (RIV TUBE)
DWDUM: GAS FLOW OF RIV TUBE, (WHEN AREAH < ATH)
PD: PRESSURE OF THE DUCT OF RETURNING LOX, BEFORE CHECK VALVE
DWRE: RECIRCULATING FLOW INTO OXID TANK
700 HP = FGEN(42, 119, VL)
AREAH = FGEN (43, 120, HP)
DWDUM = GFLOW(PG, PD, PG*VG/(WHE+WGOX), 1.0,
1 (1.684*WHE+1.4*WGOX)/(WHE+WGOX)) * AMAX1(0.0, ATH-AREAH)
IF (WHE .GE. 1.OE-07) THEN
DWGO = DWDUM * WGOX / (WHE + WGOX)
DWHO = DWDUM - DWGO
ELSE
DWGO = DWDUM
DWHO = 0.0
ENDIF
800 DWLO = SIGN(SQRT(ABS (PG-PD) * RHOCD2 / R(AREAH)), PG-PD)
PD = pruint((DWDUM + DWLO - DWRE) / ZCD, Tstep, 212)

```
```

C
C CALCULATING RECIRCULATING DUCT DENSITY USING TIME AVERAGE 20*DT(=.004)
LOOKS LIKE THE DUCT IS VERY HUGE AND TAKES LONG TIME TO FILL
RHOREC = rhfacl * RHOREC + rhfac2 *
1 (ABS (DWLO + DWGO + DWHO) / AMAX1 (ABS (DWLO / RHOCD2
2 + DWGO / RHOGOX + DWHO / RHOHE), 0.00001))
DWRE = prflow(DWRE, ZREC, -RREC/RHOREC, PD-POJ, 213)
* * * COMPUTE HEAT TRANSFER AND LOX QUENCHING
DQHEAT IS THE HEAT FLOW FROM LOX TO GAS. AS TO WHY IT IS A FUNCTION OF
IS UNKNOWN.
DQHEAT = (QSLP * AMAX1 (DWO, O.O) + QINT) * (TLOX - TGAS)
IF (TIME .GT. THTHI). GO TO 860
STIME=TIME SSM83100
DQHEAT = DQHEAT * AMAXI (0.0,(STIME-THTLO) / (THTHI-THTLO))
sequence replaced by
IF (STIME .LE. THTHI) THEN
DQHEAT = (QSLP * AMAXI (DWO, 0.0) + QINT) * (TLOX - TGAS)
ELSE
DQHEAT = DQHEAT * AMAX1 (0.0,(STIME-THTLO) / (THTHI-THTLO))
ENDIF
TSAT: THE SATURATING TEMPERATURE UNDER THE PRESSURE PG.
CALL intval(JSAVE, PG, MPTS, PGTAB,
+ 'The pressure PG is below SATTAB in pogosup.'.
+ 'The pressure PG is above SATTAB in pogosup.',0,
TSAT = xlint(PG, MPTS, PGTAB, SATTAB, SATVPG, JSAVE)
DWQNCH = WGOX * QNCON *
+ XtOY(AMAX1(1.0, TGAS-TSAT), - QNEXP)
WORK = -PG * (DWO + DWQNCH - DWLO) / (WOrkc * RHOCD2)
Eliminated PRINT OUT DATA
END

```
```

'valdym.for':

```

SUBROUTINE VLDYMO
```

PURPOSE: COMPUTE VALVE DYNAMICS
THIS SUBROUTINE SIMULATE THEDYNAMICS OF THE VALVE SERVO SYSTEM AND
VALVE MOTION INCLUDING STICTIONS AND BACKLASHES. THE INPUTS ARE:
XCXYZV: POSITION COMMAND TO MOVE VALVE XYZ.
THETA(): CURRENT VALVE POSITION, DEG
DTHETA(): CURRENT VALVE VELOCITY, DEG/SEC
C
C******ARGUMENTS******
N = INITIALIZATION FLAG eliminated
C
C******COMMON USAGE******
INPUT:
VARIABLE
XCFPOV,XCOPOV,XCMOV,XCMFV,XCCCV
XCFPOV, XCOPOV,XCMOV,XCMFV,XCCCV
OUTPUT:
VARIABLE DESTINATION
RFPOV,ROPOV
RMOV
RMFV,RCCV
XFPOV,XOPOV,XMOV, XMFV,XCCV
XOPOV
SOURCE
CNTROL
DESTINATION
HOTGAS
OXIDF
SSM83600
Double precision is probably unnecessary with double precision
accumulators in the integration routines. It should be restored only
on evidence of actual accuracy problems outside of integration.
DOUBLE PRECISION EVP, DDESA, DDESV, DVR, DELTA, ALIM, Q
DOUBLE PRECISION DTHETA, ESAC, ESA, DESA, ESV, DESV
DOUBLE PRECISION TIME
DIMENSION DPPC(5),THETAC(5),CL(5),CSV(5),A(5)
DIMENSION THETHY(5), THETST(5), DTHET1(5), DTHET2(5)
DIMENSION WINDUP(5), THETSK(5), THETBL(5), THETWU(5), THETMAX(5)
REAL CVA(5), vdppc(5)
C
INCLUDE 'blank.com'
INCLUDE 'out.com'
INCLUDE 'units.com'
INCLUDE 'contrl.com'
INCLUDE 'valves.com'

```

SAVE
WINDUP IS ADDED TO THE SIMULATION IN DATA FORMAT
THETMAX IS THE MAXIMUM ACTUATOR STROKE LIMIT
DATA WINDUP/0.091, \(0.115,0.1,0.141,0.067 /\)
DATA THETMAX/79.0, 79.0, 84.25, 84.25, 80.0/

DATA SLOPF /0.0/ added to input parameters
Please rename this function.
```

 Rename(Z)}=1.0/(772.8* Z**2+1.0E-12)
    ```

ALIM biases the magnitude of \(Q\) down minutely. IF \(Q\) is small enough, it is replaced by 0. Do. It probably had been intended to function differently. As it stands, ALIM was not considered of value and was discarded. The reimplementer should note that double precision outside the integrators has been eliminated.
```

ALIM(Q) = DMAXI(0.DO, DABS(Q) - 1.D-20) * DSIGN(1.DO,Q)

```
rlimit(floor, ceiling, \(x\) ) = AMAX1 (floor, AMIN1 (ceiling, \(x\) )

IF (FLAG.EQ.15.) GO TO 9999 is obsolete
Unnecessary initializations were eliminated
READ (run, '(//2X, 6G12.4 )')
\(+\quad C A, W A, S A, ~ C S V, W S V, S S V, A, C L, C R S, T R S, C L S\),
+ TLS, CMF, TMF, CM, WM, SM, CRVDT, CLVDT,
\(+\quad(\operatorname{THETHY}(I), \operatorname{THETST}(I), \operatorname{DPPC}(I), I=1,5)\),
The following input parameters were transferred from NAMELIST input
+ AR1, AR2, TL; TH, XOMAX,
SSM84100
+ OPLEAK, OPX1, OPX2, FPLEAK, FPX1, FPX2, SLOPF,
+ IBKLASH, IWUSTN,
DELTA was made an input parameter.
+ DELTA
Functions of DELTA for Euler and AB2 integrators
\(h(1)=\) DELTA
\[
\begin{aligned}
& \text { DO } 30 I=1,5 \\
& \operatorname{DESA}(I)=0.0
\end{aligned}
\]
```

ESA(I) =0.0
DESV (I) =0.0
ESV (I)=0.0
THETA (1)=DPPC (1)*XCFPOV
THETA (2)=DPPC (2)*XCOPOV
THETA (3)=DPPC (3) *XCMOV
THETA (4) =DPPC (4)* XCMFV
THETA (5)=DPPC (5)*XCCCV SSM84900
VS (I) =0.0
EMF (I) =0.0
DVM(I) =0.0
VM(I) =0.0
THET1L(I)=0.0
THET2L(I) =0.0
THETA1 (I) =0.0
THETA2 (I) =0.0
ISTIC(I)=1
IHYS (I)=1
DTHETL(I)=0.01
ESAC(I)=0.0
VR(I)=0.0
CVA(I) = CL(I) * CSV(I) / A(I)
vdppc(I) = 1./ DPPC(I)
30 CONTINUE
fbklsh = FLOAT(IBKI_ASH)
fwustn = FLOAT(IWUSTN)
LOOP=(DT+0.00001)/DELTA
twosa = 2. * SA
twOSSV = 2. * SSV
vTRS = 1. / TRS
crvs = CRVDT * CRS
vfpx = 1. / (FPX2 - FPX1)
abfp = ABFPO * . 01
vopx = 1.0 / (OPX2 - OPX1)
abopf = ABOPO * 0.01
abmov = ABMOV * 0.01
abmfv = ABMFV **0.01
abccV = ABCCV * 0.01
RFBV = 1.0E +12
DELTA=0.0001
DELTA IS CHANGED TO 0.00002 SECOND TO BETTER SIMULATE THE ANALOG SERVO OF THE VALVE DYNAMIC. THIS IS NECESSARY WHEN APPLYING STEP INPUTS TO THE VALVE OPENINGS.
$D E L T A=0.00002$ DELTA was made an input parameter.
Initialize integrators:

```

CALL uninto ( DESA (I), \(147+\mathrm{I})\)
CALL lminto ( ESA (I), \(152+\mathrm{I},-20.0,20.0\) )
CALL uninto ( DESV (I), \(157+\mathrm{I}\) )
CALL lminto (ESA (I), \(162+\mathrm{I},-20.0,20.0\) )
CALL lminto ( THETA (I) , \(167+\mathrm{I}, 0.0\), \(\operatorname{THETAMAX}(\mathrm{I})\) )
CALL uninto ( VR (I), \(172+\mathrm{I}\) )
GO TO 310
ENTRY VALDYM

200 CONTINUE
THETAC (1) =DPPC (1) *XCFPOV
THETAC (2) =DPPC (2) *XCOPOV
IF (STIME.GE. TL.AND. STIME.LE. TH) THETAC(2)=DPPC(2)*1000.
THETAC (3) =DPPC (3)*XCMOV
THETAC (4) =DPPC (4) *XCMFV
THETAC (5) =DPPC (5) *XCCCV
SCALING FOR BACKLASH, WINDUP, AND STICTION FROM \% OPENING TO DEGREE
DO \(205 \mathrm{I}=1,5\)
THETBL (I) \(=\) THETHY (I) * DPPC(I) * fbklsh
THETWU (I) \(=\) WINDUP(I) * DPPPC(I) * fwustn
THETSK \((I)=\operatorname{THETST}(I) * \operatorname{DPPC}(I) *\) fwustn CONTINUE DO \(300 \quad \mathrm{I}=1,5\)

IF ( TPA.GT.0.0 . AND. STIME.GE.TPA) THEN
DO \(210 \mathrm{~J}=1\), LOOP
\(\mathrm{EVP}=\mathrm{THETAC}(\mathrm{I}) * \mathrm{CRVDT}-\operatorname{VR}(\mathrm{I})\)
SSM85200
\(D D E S A=C A * W A * * 2 * E V P-W A * * 2 * E S A C(I)-2.0 * S A * W A * D E S A(I)\) replaced by DDESA \(=(\) (CA*EVP \(-\operatorname{ESAC}(I)) * W A-t w O S a * \operatorname{DESA}(I)) * W A\)
\(\operatorname{DDESV}=((\operatorname{ESA}(I)-\operatorname{ESV}(I)) * W S V-t w o s s V * D E S V(I)) *\) WSV DTHETA(I) \(=\) CVA(I) * ESV(I)

CVA(I) is CL(I)*CSV(I)/A(I)
DVR \(=T H E T A(I) * C R V D T * C R S / T R S-V R(I) / T R S\) replaced by DVR \(=(\operatorname{THETA}(I) * \operatorname{crvs}-\operatorname{VR}(I)) *\) vTRS

THE POWER AMPLIFIER LIMIT SHOULD BE PUT AT THE OUTPUT END NOT IN THE MIDDLE.

IF (ESA (I).GT. 23..AND.DESA (I).GT.0.) DESA (I) \(=0.0\)
IF (ESA (I).LT. -23..AND. DESA (I).LT.0.) DESA \((I)=0.0\)

The statements above illustrate how to limit the internal double precision accumulator of an integrator, by zeroing the input rate. The effect of the commenting out is to substitute an unlimited accumulator, for the limited one, with limits applied to the output of the integration. This is the approach used throughout other modules of the simulation.
```

ESAC(I)=ESAC(I)+ALIM(DESA(I))*DELTA

```
```

ESA(I)=ESAC(I)

```

Without arguments to the contrary, it appears that the integration of of ESA and ESV with old rates must be in error. Accordingly, the higher order integrations are done first.

LIMITS ON INPUT AMPLIFIER ARE +-23 VOLTS. AND LIMITS ON SERVO AMPLIFIER ARE + 20 VOLTS.
```

IF(ESA(I).GT.23.) ESA(I)=23.
IF(ESA(I).LT.-23.) ESA(I)=-23.
IF(ABS(ESA(I)).LT.0.25) ESA(I)=0.0 replaced by
DESA(I) = pruint(DDESA, 1, 147 + I)
ESA(I) = prlint(DESA(I), 1, 152 + I)
IF (ABS(ESA(I)) .LT. 0.25) THEN
ESA(I) = 0.0
CALL lminto(0.0, 152 + I, -20., 20.)
ENDIF

```
    DESA \((I)=\operatorname{DESA}(I)+\) ALIM (DDESA) *DELTA was moved ahead of ESA integration
        \(\operatorname{IF}(\operatorname{ESV}(I) . G T .20 . \operatorname{AND} \operatorname{DESV}(I) . G T .0 .0) \operatorname{DESV}(I)=0.0\)
        \(\operatorname{IF}(\operatorname{ESV}(I) . \operatorname{LT} .-20 . \operatorname{AND} \cdot \operatorname{DESV}(I) . \operatorname{LT} .0 .0) \operatorname{DESV}(I)=0.0\)
    \(\operatorname{ESV}(I)=\operatorname{ESV}(I)+\operatorname{ALIM}(\operatorname{DESV}(I)) * \operatorname{DELTA}\)
\(\operatorname{IF}(\operatorname{ESV}(I) . G T .20.) \quad \operatorname{ESV}(I)=20\).
\(\operatorname{IF}(\operatorname{ESV}(I) . \operatorname{LT} .-20.) \operatorname{ESV}(I)=-20\).
    DESV (I) = pruint ( DDESV, 1, \(157+\mathrm{I}\) )
    \(\operatorname{ESV}(I)=\operatorname{prlint}(\operatorname{DESV}(I), 1,162+\mathrm{I})\)
\(\operatorname{DESV}(I)=\operatorname{DESV}(I)+\operatorname{ALIM}(\operatorname{DDESV}) * \operatorname{DELTA}\)
THETA \((\mathrm{I})=\operatorname{THETA}(\mathrm{I})+\) ALIM (DTHETA (I)) *DELTA

CALL intgrl( THETA(I), DTHETA(I), DELTA, \(167+\mathrm{I})\)
ACTUATOR STROKES ARE LIMITED TO THE MAXIMUM THETA
THETA \((I)=\) rlimit \((0.0, \operatorname{THETMAX}(I), \operatorname{THETA}(I))\) \(\operatorname{VS}(I)=V S(I)+A L I M(D V S) * D E L T A\)
```

IF(EMF(I).GT.12.5.AND.DEMF.GT.0.0) DEMF=0.0

```
```

IF(EMF(I).LT.-12.5.AND.DEMF.LT.0.0) DEMF=0.0

```
IF(EMF(I).LT.-12.5.AND.DEMF.LT.0.0) DEMF=0.0
EMF(I)=EMF(I)+ALIM(DEMF)*DELTA
VM(I)=VM(I)+ALIM(DVM(I))*DELTA
DVM(I) =DVM (I) +ALIM(DDVM)*DELTA
VR(I)=VR(I)+ALIM(DVR)*DELTA
```

210
$\operatorname{VR}(I)=\operatorname{pruint}(D V R, 1,172+I)$
CONTINUE
ENDIF

NEW PROGRAM

BACKLASH IS DEFINED AS THE AMOUNT OF ACTUATOR OUTPUT SHAFT TRAVEL REQUIRED TO REVERSE DIRECTION OF VALVE BALL MOTION UNDER CONDITIONS OF ZERO LINKAGE WINDUP AND TORQUE LOADING. THE VALUES USED HERE IS HALF OF THE AMOUNT OF THE TOTAL TRAVELING, WELL HALF ON EACH SIDE.

```
    IF ( I .EQ. 3 .AND.
                        THETA(I) .GT. 33.8 .AND. THETA(I) .LT. 84.0 ) THEN
            FAC = 0.0
        ELSE IF( I .EQ. 4 .AND.
            THETA(I) .GT. 38.3 .AND. THETA(I) .LT. 75.8, THEN
        FAC=0.0
```

 ELSE
 \(F A C=1.0\)
 ENDIF
 IF (ABS (THETA (I) - THETAI (I)) .LT. THETBL (I)*FAC) THEN
 DTHET1 (I) \(=0.0\)
 THET1L(I) \(=\) THETA1 (I)
 ELSE IF (ABS (DTHETA (I)).LT.1.0E-06) THEN
 DTHET1 \((I)=0.0\)
 IF (THETAl (I) . LE.THETA (I)) THEN
 THETAI (I) \(=\) THETA (I) - THETBL(I)*FAC
 ELSE
 \(\operatorname{THETAl}(I)=\operatorname{THETA}(I)+\operatorname{THETBL}(I) * F A C\)
 ENDIF
 ELSE
 IF (THETAI (I).LE.THETA (I)) THEN
 THETAI (I) \(=\) THETA (I) - THETBL (I)*FAC
 ELSE
 THETAI \((I)=\operatorname{THETA}(I)+\operatorname{THETBL}(I) * F A C\)
 ENDIF
 DTHET1 (I) \(=\) DTHETA (I)
 ENDIF
 WINDUP IS DEFINED AS THE AMOUNT OF ACTUATOR OUTPUT SHAFT TRAVEL REQUIRED
AFTER LINKAGE BACKLASH HAS BEEN ABSORBED TO INITIATE VALVE MOTION.
STICTION IS DEFINED AS THE AMOUNT OF VALVE BALL OVERTRAVEL RESULTING

310 CONTINUE

 IF (SLOPF .GT. . 01) THEN XFPOV $=\mathrm{XCFPOV}$ELSE
XFPOV $=$ rlimit ($0.0,100.0, \operatorname{THETA2(1)*} \operatorname{vdppc}(1)$)
ENDIF
AFPOV $=\operatorname{FGEN}(18,99, \mathrm{XFPOV})$
$+\quad+$ FPLEAK * rlimit (0.0 , abfp, (XFPOV - FPX1) * vfpx)
RFPOV $=$ Rename (AFPOV)
OXIDIZER PREBURNER OXIDIZER VALVE
SSM85900
IF (SLOPF.GT.. 01) THEN XOPOV $=$ XCOPOV

```
    ELSE IF( STIME .GE. TL .AND. STIME .LE. TH ) THEN
```

 \(\mathrm{XOPOV}=\mathrm{XOPOV}+210 . * \mathrm{DT}\)
    ```
    XMOV = THETA2(3) * vdppc(3)
```

 AMOV \(=\operatorname{FGEN}(6,101, \mathrm{XMOV}) ~ * ~ a b m o v\)
 RMOV \(=\) Rename (AMOV)
 MAIN FUEL VALVE
 \(\mathrm{XMFV}=\mathrm{THETA} 2(4) \quad\) * vdppc (4)
 SSM86100
 AMFV \(=\operatorname{FGEN}(31,102, \mathrm{XMFV}) * \mathrm{abmfv}\)
 RMFV \(=\) Rename (AMFV)

COOLANT CONTROL VALVE

 \(\mathrm{XCCV}=\operatorname{THETA} 2(5) * \operatorname{vdppc}(5)\)
 \(\mathrm{ACCV}=\operatorname{FGEN}(19,103, \mathrm{XCCV}) * \operatorname{abccV}\)
 \(\mathrm{RCCV}=\) Rename \((\mathrm{ACCV})\)
 FUEL BLEED VALVE
SSM8 6200

IF (TIME.LE.TFBV) GO TO 400
RFBV=AMIN1 (1.OE+12,0.012/(AMIN1 (20.0* (STIME-TFBV), 1.0)))
GO TO 410
410 CONTINUE
RETURN
END

```
    'cstar.for':
```

 FUNCTION CSTARO (EMR, P)
    ```
c
C PURPOSE: INTERPOLATE C* FROM TABLE VS PRESSURE AND MIXTURE RATIO
C
C******ARGUMENTS******
C INPUT:
C N = INITIALIZATION FLAG inactivated
C EMR = MIXTURE RATIO
C P = PRESSURE, PSI
C
OUTPUT:
C CSTAR = CHARACTERISTIC VELOCITY, FT/SEC
C
*******************************************************************
    DIMENSION CS(12,9), PR(12)
    REAL MR(9), scspr(12), vdmr(9)
    INCLUDE 'units.com'
*
    READ(run, 10)NPR,NMR
    READ(run,l1) (PR(I),I=1,NPR),(MR(I),I=1,NMR)
    10 FORMAT(//2X,2I12)
    l1 format(//2X,6G12.4)
    READ(run,12)((CS(I,J),I=1,NPR),J=1,NMR) SSM36900
    12 FORMAT(2X,12F6.0)
    CALL xYset( NPR, PR, NMR, MR, CS, scspr, vdmr )
    RETURN
    FUNCTION xylint( x, y, nx, xp, ny, yp, sx, vdy, table,
    + itop, jtop )
    SUBROUTINE xyset( nx, xp, ny, yp, table, sx, vdy )
    ENTRY CSTAR( EMR, P )
    CALL intval( II, EMR, NPR, PR,
    + 'EMR below range of PR in CSTAR.',
    + 'EMR above range of PR in CSTAR.', 0 )
    CALL intval( J1, P, MPR, MR,
    + 'P below range of MR in CSTAR.',
    + 'P above range of MR in CSTAR.', 0)
    CSTAR = xylint( EMR, P, NPR, PR, NMR, MR, scspr, vdmr, CS, Il, J1)
    END
```

```
    'qflux.for':
```

C

FUNCTION H2SATH(P)

```
C
C PURPOSE: CALCULATE HYDROGEN SATURATION ENTHALPY
C
C******ARGUMENTS******
C INPUT:
C P : PRESSURE, PSI
C OUTPUT:
C H2SATH : SATURATION ENTHALPY, BTU/LB
C
C ENTER PRESSURE,P IN PSIA
                                    SSM24400
C RETURN SATURATED VAPOR ENTHALPY IN BTU/LB (NBS REF H + 200)
C
*******************************************************************************
```

DIMENSION H(10), DH(10)
C
DATA H / 275., 283.8,287.3,287.3,285.3,281.7,276.4,269.5,260.,243./
DATA DH / . $44, .175,0 .,-.1,-.18,-.265,-.345,-.475,-.85,-3 . /$
C

*
IF (P .LT. 187.5) THEN
H2SATH $=0$.
ELSE
SSM24500
*

* $\quad \mathrm{I}=\operatorname{INT}(\mathrm{P} / 10) / 2+$.
* $\quad \mathrm{H} 2 \mathrm{SATH}=\mathrm{H}(\mathrm{I})+\mathrm{DH}(\mathrm{I}) *(\mathrm{P}-20 * \mathrm{I}+20)$ was replaced by
*

H2SATH $=\mathrm{H}(\mathrm{I})+\mathrm{DH}(\mathrm{I}) *(\mathrm{P}-20.0 * \operatorname{AINT}(\mathrm{P} * 0.05)$)
END IF
END
C
FUNCTION QFLUX(TW,TF, P, HF)
PURPOSE: CALCULATE hydrogen BOILING heat flux
c
C******ARGUMENTS******
INPUT:
C TW = WALL TEMPERATURE, DEG R
C TF = FLUID TEMPERATURE, DEG R
C $\mathrm{P}=$ FLUID PRESSURE, PSI
C $\mathrm{HF}=$ FLUID ENTHALPY, BTU/LB
$\stackrel{C}{C}$ OUTPUT:

```
C QFLUX = HEAT FLUX TO FLUID, BTU/IN2-SEC
*
    HS = H2SATH(P)
    IF ( TW .LT. 80.0 .OR. HF .GT. HS) THEN
            QFLUX = 0.0
    ELSE
        X=ALOG10(AMAX1(0.01,TW-TF))
        Y=AMAXI((2.0+4.0*X-2.0*X**2)*AMIN1(1.0,AMAX1 (0.0,(100.0-TF)/40.0))
    * , 2.1 + X )
        QFLUX=10.0**(AMAX1(0.01,AMIN1(5.0,Y)))/5.184E+05
        test = TW - TF
        IF (test .GT. 0.01 ) THEN
            X = ALOGIO( test )
            Y = AMAXI(2.1 + X, 0.05* (1.0 + X * (2.0 - X) ) *
    + rlimit( 0.0, 40.0, 100.0 - TF ) )
                    QFLUX = 1.0/
                        Xntoyn( 0.1, rlimit( 0.01, 5.0, Y ) * 1.929E-6 )
            ELSE
                    QFLUX = 1.0
            ENDIF
                                    SSM24800
        ENDIF
    END
C
C
C
    'h2vp.for':
        FUNCTION H2VP(T)
C
C PURPOSE: CALCULATE HYDROGEN SATURATION PRESSURE
C IT IS USED FOR CALCULATING CAVITATION OF HYDROGEN PUMPS.
```

```
C FOR A GIVEN TEMPERATURE, IF THELIQUID HYDROGEN PRESSURE
C IS LESS THAN THE VAPOR PRESSURE AT CERTAIN POINT THEN BUBBLES
C WILL START TO GROW. THIS HAPPENS ESPECIALLY ON THE FOLLOWING
C EDGE OF THE PUMP BLADE WHERE THE PRESSURE IS LOWEST.
C
C******ARGUMENTS******
    INPUT:
    T = TEMPERATURE, DEG R
    OUTPUT:
    H2VP = SATURATION PRESSURE, PSI
                            SSM24100
    H2VP can be speeded up considerably by using an fgen linear
    approximation. One function can be used for all three segments,
    eliminating the tests for segment boundaries 29.0 and 32.976
*
*
```



```
    + CF, CG /
    + -5.926E-5, 3.913E-6 /
*
* TK=T/1.8 replaced by
    TK = T * . 555555
        IF( TK. LT. 32.976) THEN
            ALOGPV =CA + CB/(TK + CC) + CD * TK
            H2VP = XtoY( 10.0, ALOGPV )
            IF(TK .GT. 29.0) THEN
                    tk29 = TK - 29.0
                tk29sq = tk29 ** 2
            H2VP=
                                    is faster than
                    PVAPOR=PVAPOR+CE*(TK-29.0)**3+CF*(TK-29.0)**5+CG*(TK-29.0)**7)
                ELSE
                        H2VP= H2VP * 14.696
            END IF
        ELSE
            H2VP=0.
        END IF
        END
    'oprime.for:
    SUBROUTINE OPRIMO
* Initializes integrators for OPRIME
```


INTEGER Tstep

PARAMETER (NVOL=4, MAXN=6, MAXC=5)
PARAMETER (MAXIT $=30$, TOL $=.0005$)
PARAMETER (Tstep $=0$, Toobig $=1 . E 20$)
LOGICAL FLAG, prpOK

DATA R /0.0, $2 * .5 \mathrm{E}-4,1 . \mathrm{E}-4,-78.0 \mathrm{E}-4 /$
DATA Z /.020, 2*.0065,.0080, .013 /

Statement function UNEWF deleted. It is only used once.

```
CHGF (CHG, XNEW,OLD) = AMAX1 (CHG,ABS ( XNEW-OLD )/(ABS (OLD) +. 1 ))
replaced by relaxation system.
OXHPF(RH )=AMAX1(.0149,.0149+.013*(RH -5.E-4)/.0389) replaced by
OXHPF(RH )=AMAX1(.0149,.0149 + .3342*(RH - 5.E-4))
```

c
*
CALL lminto (WPOV, 178, -TooBig, . 05)
CALL uninto (WPOVP, 179)
CALL lminto ($P(1), 184,37 .$, TooBig)
CALL uninto (DWLINE, 185)
CALL uninto (DW (1), 186)
DO $10 \mathrm{I}=2$, MAXN-1
CALL uninto (TW (I), $178+\mathrm{I}$)
CALL uninto ($\mathrm{DW}(\mathrm{I}), 185+\mathrm{I})$
CALL uninto (RHOP (I), 189+I)
CALL uninto ($\mathrm{RHO}(\mathrm{I}) *(1 .+\mathrm{U}(\mathrm{I})), 193+\mathrm{I})$
10 CONTINUE
RETURN
ENTRY OPRIME (PO, PC, RVALVE, DWINJ, DWVALV)
C
C PRIME VALVE BUBBLE
WPOV $=$ prlint ((RHOSL/RHOVAL - 1.) * DWVALV, Tstep, 178)
IF (FLAG) THEN
$X=1$. - WPOV/WPOVI
$\mathrm{HT}=$ AMIN1 ($100 ., 100 .+(\mathrm{X}-.5) *(\mathrm{HV}-100) * 2.5$.
$H(1)=A M I N 1(H T,(H V+.900 / .100 *(H V-H S L))-X *(H V-H S L) / .100)$ replaced by

```
hvhsl \(=\mathrm{HV}-\mathrm{HSL}\)
\(\mathrm{H}(1)=\) AMIN1 (HT, HV + hvhsl* (9.0 - 10.*X) )
\(X=(H(1)-H S L) / h v h s l\)
IF ( X.LT. 1.) THEN
    RHOVAL \(=1 . /(\mathrm{X} / \mathrm{RHOV}+(1 .-\mathrm{X}) /\) RHOSL \()\)
ELSE
    RHOVAL \(=\) RHOV \(* \mathrm{HV} / \mathrm{H}(1)\)
END IF
IF (WPOV .GT. -. 001) THEN
```

SSM5 1100

* The effect of the reset is hold wPov output at 1.0 , but
* compute X above with a wPOV of .05 . If this is right, it
* should be recoded to look intentional.
$\mathrm{WPOV}=1$.
CALL lminto (WPOV, 178, -TOOBig, . 05)
WPOVP = pruint (DWVALV, Tstep, 179)
IF (WPOVP .LT. . 04) THEN
hlhsl $=\mathrm{HL}-\mathrm{HSL}$
$\mathrm{H}(1)=\mathrm{HSL}+25 . *$ WPOVP * hlhsl
RHOVAL $=$ RHOSL $+(H(1)-H S L) / h l h s l *(R H O P 3-R H O S L)$
ELSE
RHOVAL=RHOP3
$\mathrm{H}(1)=\mathrm{HL}$
FLAG $=$.FALSE.
ENDIF
SSM51200
ENDIF
ENDIF
C
$\mathrm{H}($ MAXN $)=\mathrm{H}($ MAXN-1)
$P(M A X N)=P C$
RHOP (1) = RHOVAL
RHOP $($ MAXN $)=$ RHOP $($ MAXN -1$)$
C
DO $110 \mathrm{I}=2, \mathrm{MAXN}-1$
$\mathrm{QC}(\mathrm{I})=.0227 / \mathrm{D}(\mathrm{I}) * * 1.8 * \operatorname{OXHPF}(\mathrm{RHO}(\mathrm{I})) * \mathrm{AHT}(\mathrm{I}) * 1.5$ replaced by
$\mathrm{QC}(\mathrm{I})=.03405 /(\mathrm{D}(\mathrm{I}) *$ X10th ($\mathrm{D}(\mathrm{I}), 8)$) * OXHPF(RHO(I))*AHT(I) M51300
$T W(I)=$ pruint $(-Q O U T(I) /(W(I) * \operatorname{FGEN}(22,113+I, T W(I)))$,
$+$
Tstep, $178+\mathrm{I}$)
110 CONTINUE
C
C BEGIN ITERATION LOOP
C
200
C
prpok = .TRUE.
DO 310 ITER $=1$, mxopit
P1 = trlint(XLINE*(DWLINP - DWP(1)*RHOP3/RHOVAL),
Tstep, 184)

$$
\text { DO } \underset{J=I-1}{300} I=2, \text { MAXN-1 }
$$

$$
\text { DWNEW }=\operatorname{trflow}(\mathrm{DW}(\mathrm{I}), \mathrm{Z}(\mathrm{I}),-\mathrm{R}(\mathrm{I}) / \mathrm{RHOP}(\mathrm{I}), P(I)-P(I+1),
$$

IF (I.LT.MAXN-1) THEN DWP $(I)=$ DWNEW
ELSE
DWP $(I)=.5 *(\operatorname{DWP}(I)+$ DWNEW $)$
ENDIF
RHOP (I) $=$ truint (($\operatorname{DWP}(J)-\operatorname{DWP}(\mathrm{I})) / \operatorname{VOL}(\mathrm{I})$, Tstep, 189+I) DWIN $=$ recpos (DWP (J)) - recpos(DWP (I)) HIN $=$ recpos (DWP (J)) * H (I-1) - recneg (DWP (I)) * H (I+1) DWOUT $=$ recpos $(\operatorname{DWP}(I))-\operatorname{recneg}(\operatorname{DWP}(J))$
QOUT $(I)=Q F(I)+Q B(I)$
CONTINUE
RHOP (MAXN) $=$ RHOP (MAXN-1)
IF (prpok) GO TO 400
310 CONTINUE

* Convergence failure if do loop is completed
DO $500 \mathrm{I}=2, \mathrm{MAXN}-1$
DW $(I)=\operatorname{step}(185+I)$
RHO (I) $=\operatorname{step}(189+I)$
$U(I)=\operatorname{step}(193+I)$
500 CONTINUE
C
DW(1) $=\operatorname{step}(186)$
P1 = step (184)
DWLINE $=$ step (185)
DWINJ $=$ DW (MAXC)
DWVALV $=$ DW(1)
C

END
FUNCTION OXBOIL(TW, T)
SSM52400

C
C THIS FUNCTION IS THE BOILING HEAT TRANSFER OF THE OXIDIZER INSIDE THE
c INJECTOR. THE OUTPUT IS THE HEAT TRANSFER RATE BTU/IN**2 FROM THE WALL
C

```
    PARAMETER ( twlo = 10.**.4217, twhi = 10.**1.135,
    +
    X=ALOG10(AMAX1 (.01,TW-T))
    Y=AMAX1(5.15-2.3*(X-1.)**2,1.75+1.02*X)
    OXBOIL=10.**Y*1.929E-6 is faster when reduced to
    twmt = TW - T
    IF ( twmt .LE. .O1 ) THEN
        OXBOIL = oxbOl
    ELSEIF ( twlo. .LE. twmt .AND. twmt . LE. twhi ) THEN
        OXBOIL = tenl * XtoY( twmt, 1.02 )
    ELSE
        X = ALOG10( twmt )
        OXBOIL = XtoY( 10., 5.15 - 2.3 * (X - 1)**2 )
    ENDIF
    END
```

'trbtrq.for':
FUNCTION TRBTQO
C
C FUNCTION TRBTRQ(S,UC,T,PI,PRII,NCH,IFLG,CP,DW,G)
SSM37300
C
C PURPOSE: COMPUTE TURBINE TORQUE AS A FUNCITON OF INPUTS
C
C THE EQUATIONS AND FUNCTION TABLES USED ARE DESCRIBED IN PAGE C 37-38 (ANALOG SIMULATION) OF THE DOCUMENT. THE EQUATIONS IN PAGE 24 C ARE INCOMPLETE.
C C******ARGUMENTS******
C INPUT:

C	S	$=$ SPEED, RAD/SEC
C	T	$=$ TEMPERATURE, DEG R

C PI $=$ NOT USED eliminated
C PRII = PRESSURE RATIO, OUT/IN
C $\mathrm{NCH}=$ TURBINE DESIGNATION, $1=$ LPFT, $2=$ HPFT, $4=$ HPOT SSM37400
C IFLG $=$ FLAG $=0$ FOR INPUT MODE eliminated
C CP $\quad=$ SPECIFIC HEAT AT CONSTANT PRESSURE, BTU/LBM-DEG R
C DW $=$ FLOWRATE, LB/SEC
$\mathrm{C} \mathrm{G} \quad=\mathrm{GAMMA}$
${ }^{C}$ C output:
C UC = ISENTROPIC VELOCITY RATIO
C TRBTRQ $=$ TURBINE TORQUE
C
©
DIMENSION NFG(4),D(4)
PARAMETER (const = 12. * 0.1446)
DATA NFG/38,39,0,40/
DATA D/7.4,10.19,6.0,10.09/
CALL fgset (38)
CALL fgset (39)
CALL fgset (40)
Next to make TRBTQO a function so the entry TRBTRQ will be one.
TRBTQO $=0.0$ RETURN
C
ENTRY TRBTRQ(S, UC, T, PRII, NCH, CP, DW, G)
SSM37500

C
$\mathrm{DH}=\mathrm{AMAX1}(1.0 \mathrm{E}-04, \mathrm{CP*T*}(1 .-\mathrm{XTOY}(\mathrm{PRII},(\mathrm{G}-1) / \mathrm{G}$.$)))$ sqrtdh $=$ Xloth ($\mathrm{DH}, 5$)

```
UC = D(NCH)*S / ( 5371.2 * sqrtdh )
EF = fgen( NFG(NCH), 129 + NCH, UC)
TRBTRQ = const * EF * DW * sqrtdh * D(NCH)
RETURN
END
```


APPENDIX B: SUPPORTING INPUT DATA FILES

This appendix shows the contents of input data files supporting the report version of the SSME simulation.
'ssme.run' is an edit-and-run file of input parameters defining the run. The top line is a run identifying header, which is reproduced on the output file.

baldata file RESTRT false	FROM RKDYN RESUME false	10/84 MOD FOR PERTB false	FUEL2/NEW iwrite 100	PROP, O2PROP,	tart data
$\begin{gathered} \mathrm{DT} \\ 0.000 .2 \end{gathered}$	$\begin{aligned} & \text { DPR } \\ & 0.01 \end{aligned}$	DPL $.00567$	$\begin{aligned} & \text { DPUN } \\ & 15 . \end{aligned}$	$\begin{aligned} & \text { TPUN } \\ & 40 . \end{aligned}$	$\begin{aligned} & \text { TSTOP } \\ & 4.00 \end{aligned}$
$\begin{aligned} & \text { TPA } \\ & 40.0 \end{aligned}$	$\begin{aligned} & \text { PCMALF } \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { DTVC } \\ & .008 \end{aligned}$	$\begin{aligned} & \text { DTPR } \\ & .005 \end{aligned}$	$\begin{aligned} & \text { DTCVP } \\ & .0035 \end{aligned}$	$\begin{aligned} & \text { DTTR } \\ & .015 \end{aligned}$
$\begin{aligned} & \text { DTFMRE } \\ & .012 \end{aligned}$	$\begin{array}{r} \text { DTFMC } \\ .013 \end{array}$	$\begin{aligned} & \text { DTMRFC } \\ & .017 \end{aligned}$	$\begin{aligned} & \text { DTFMRA } \\ & .001 \end{aligned}$	$\begin{gathered} \text { DTMCX } \\ .02 \end{gathered}$	$\begin{gathered} \text { DTLM } \\ .006 \end{gathered}$
NONZRO 0	MODETST 0	$\begin{gathered} \text { PCTPERT } \\ 0 . \end{gathered}$	$\begin{gathered} \text { TOPEN } \\ 116.9999 \end{gathered}$	$\begin{aligned} & \text { TPERT } \\ & 100 . \end{aligned}$	$\begin{aligned} & \text { DTPERT } \\ & 100 . \end{aligned}$
$\begin{gathered} \text { rxfact }(1) \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact (2) } \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact (3) } \\ 1.0 \end{gathered}$	rxfact (4) 1.0	$\begin{gathered} \text { rxfact }(5) \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact }(6) \\ 1.0 \end{gathered}$
$\begin{gathered} \text { rxfact }(7) \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact (} 8 \text {) } \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact }(9) \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact (10) } \\ 1.0 \end{gathered}$	$\begin{gathered} \operatorname{rxfact}(11) \\ 1.0 \end{gathered}$	$\begin{gathered} \operatorname{rxfact}(12) \\ 1.0 \end{gathered}$
$\begin{gathered} \text { rxfact (13) } \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact }(14) \\ 1.0 \end{gathered}$	$\begin{gathered} \operatorname{rxfact}(15) \\ 1.0 \end{gathered}$	$\begin{gathered} \text { rxfact (16) } \\ 1.0 \end{gathered}$		
$\begin{gathered} \mathrm{AHT1}(4) \\ 1.4049 \mathrm{E} \quad \end{gathered}$	$\begin{gathered} \text { AHT1(5) } \\ 3.8770 \mathrm{E} 03 \end{gathered}$	$\begin{gathered} \text { AHT1(6) } \\ 2.6510 \mathrm{E} \quad 03 \end{gathered}$	AHT1(12) 3.4395 E 04	CDPFP1 1.0000 E 00	$\begin{gathered} \text { CTQFP1 } \\ 1.0000 \mathrm{O} 00 \end{gathered}$
$\begin{gathered} \text { CDPFP2 } \\ 1.0000 \mathrm{E} 00 \end{gathered}$	$\begin{gathered} \text { CTQFP2 } \\ 1.0000 \mathrm{E} 00 \end{gathered}$	$\begin{gathered} \text { CTQFT1 } \\ 8.9498 \mathrm{E}-01 \end{gathered}$	$\begin{aligned} & \text { CDPOP1 } \\ & 1.0000 \mathrm{E} 00 \end{aligned}$	$\begin{aligned} & \text { CTQOP1 } \\ & 1.0000 \mathrm{E} 00 \end{aligned}$	$\begin{gathered} \text { CDPOP2 } \\ 1.0000 \mathrm{E} 00 \end{gathered}$
$\begin{gathered} \text { CTQOP2 } \\ 1.0000 \mathrm{E} 00 \end{gathered}$	$\begin{gathered} \text { CDPOP3 } \\ 1.0000 \mathrm{E} 00 \end{gathered}$	$\begin{gathered} \text { CTQOP3 } \\ 1.0000 \mathrm{E} 00 \end{gathered}$	$\begin{gathered} \text { CTQOT12 } \\ 1.0000 \mathrm{E} 00 \end{gathered}$	$\begin{gathered} \text { FT2S } \\ 8.7225 \mathrm{E}-01 \end{gathered}$	$\begin{gathered} A F T 2 \\ 9.4153 \mathrm{E} \end{gathered}$
$\begin{gathered} \text { CTQFT2 } \\ 1.0072 \mathrm{E}+00 \end{gathered}$	$\begin{gathered} \text { EOT2S } \\ 9.3861 \mathrm{E}-01 \end{gathered}$	$\begin{gathered} \text { AOT2 } \\ 2.9433 \mathrm{E}+00 \end{gathered}$	$\begin{gathered} \text { CTQOT2 } \\ 1.0000 \mathrm{O} 00 \end{gathered}$	$\begin{gathered} \mathrm{AFI} \\ 2.4725 \mathrm{E}+01 \end{gathered}$	$\begin{gathered} \text { EFFCM } \\ 1.0000 \mathrm{E}+00 \end{gathered}$
$\begin{gathered} \mathrm{ACN} \\ 8.1810 \mathrm{E}+01 \end{gathered}$	THRSTC $1.5626 \mathrm{E}+02$	$\begin{gathered} \text { AHTC4 } \\ 2.7770 \mathrm{E}+03 \end{gathered}$	AHTC5 $2.0200 \mathrm{E}+02$	$\begin{gathered} \text { AHTC6 } \\ 2.4600 \mathrm{E}+02 \end{gathered}$	$\begin{gathered} \text { ABMOV } \\ 1.4460 \mathrm{E}+01 \end{gathered}$

ABOPO	ABFPO	ABCCV	ABMFV	DMOT2	DMFT1
3.7982E-01	2.4034 E 00	6.8180 E 00	1.5590 E 01	1.0090 El	6.6300 E 00
DMFT2	CP (2)	$C P(3)$	ANOT1	BNOT1	CNOT1
$1.0190 \mathrm{E}+01$	$1.9595 \mathrm{E}-06$	1.2981E-04	4.1430E-03	$1.6814 \mathrm{E}-04$	
AOT1	BOT1	R(1)	R (3)	R(4)	R (5)
1.0998 E 00	$1.6443 \mathrm{E}-01$	1.2981E-04	$7.0952 \mathrm{E}-06$	7.2660E-05	2.4327E-03
R(6)	R(7)	R(8)	R (9)	$\mathrm{R}(10)$	$R(11)$
$1.3170 \mathrm{E}-03$	$3.0090 \mathrm{E}-04$	4.0210E-06	7.7691E-05	5.1824E-05	4.8890E-05
R(12)	R(13)	RFCOD	RFMCF	RFMCO	RACV
1.3370E-04	$4.4319 \mathrm{E}-04$	$6.7547 \mathrm{E}-06$	5.3910E-05	9.9706E-05	1.7584E-01
RBAF	RPFS	RSFS	RFPFI	ROPFI	RITN
9.4648E-04	$1.1741 \mathrm{E}-02$	5.5757E-03	1.3360E-04	5.3980E-04	1.1030E-03
RMCI	RFTIV	ROS	RFPOI	ROPOI	RFPOL
$6.8150 \mathrm{E}-05$	$2.0600 \mathrm{E}-04$	$4.1367 \mathrm{E}-07$	7.9780E-03	5.6486E-02	6.3310E-04
ROPOL	RFT2C	ROP2C	ROI	ROCOD	RMOVL
$3.8800 \mathrm{E}-03$	$4.9240 \mathrm{E}-01$	7.1738E+00	3.5000E-05	1.1683E-06	
ROP3C	ROT1F	QHT4 12	TFACT		
$3.9354 \mathrm{E}+01$	2.1890E-04	$8.2044 \mathrm{E}-02$	$1.0110 \mathrm{E}+00$		
ELENF (1)	ELENF (2)	ELENF (3)	ELENF (4)	ELENF (5)	ELENF (6)
43.0	72.0	82.0	90.0	40.0	0.0
2FL (1)	2FL (2)	2FL (3)	ZFL (4)	2FL(5)	ZFL (3)
$9.159 \mathrm{E}-4$	$3.003 \mathrm{E}-3$	3.163E-3	$1.928 \mathrm{E}-3$	8.520E-4	0.
ZFC(1)	2FC(2)	2FC(3)	2FC(4)	ZFC (5)	2FC(6)
0.0	$9.615 \mathrm{E}-4$	2.191E-3	1.129E-3	$8.944 \mathrm{E}-4$	6.213E-4
RIF (1)	RIF (2)	RIF (3)	RIF (4)	RIF (5)	RIF (6)
$1.026 \mathrm{E}-5$	3.379E-5	3.027E-5	$2.766 \mathrm{E}-5$	2.092E-5	0.0
DHYD(1)	DEHYD (2)	DEHYD (3)	DEHYD (4)	DEHYD (5)	DEHYD (6)
11.0	6.0	3.51	4.73	2.16	1.53
DEHYD (7)	DEHYD (8)	DEHYD (9)	DEHYD(10)	DEHYD(11)	DEHYD(12)
2.455	3.6	2.637	3.68	2.49	7.17

The function generation tables are contained in the editable file 'ssme.dat':

1.
$\begin{array}{cccc}\text { NO. } & \text { Pts } & \text { OXID TANK ENTHALPY VS TIME } \\ 5 & 2 & 0 .-56.56\end{array}$

No. 37	Pts	$\begin{aligned} & \text { OXID TANK } \\ & 0 . \end{aligned}$	PRESSURE 55.
		40.	55.

1.40	10.0	1.00
1.1250	25.	1.254
1.510	40.	1.635
1.890		

DELTA-P/RHO*N**2 VS DW/RHO*N FOR HPOP

4714	0 .	. 01418
. 0143	4.0	. 01426
. 0140	6.50	. 01386
. 01329	8.0835	. 01266
. 01109	9.3598	. 01025

TORQ/RHO*N**2 VS DW/RHO*N FOR HPOP

48	0.	. 110
. 1182	4.0	. 1216
. 1327	6.50	. 1361
. 1414	8.0835	.1439
. 1415	9.3598	.1390

2.0
5.00
7.0
8.509
12.00

.01428	3.0
$-0-01417$	6.00

2.0

5.00
7.0
8.509
12.0

4913	0.	. 0086
. 00884	.30	. 00902
. 00974	. 60	. 01012
. 00944	. 90	. 00893
. 00781	1.5	. 00545

file is truncated - full file on diskette

The data for output is selected by editing the 'select.out'
Study Run Identifying header line.

0 ITS (PFSP)
0 ITS (P10P)
0 ITS (P11P)
0 ITS (P12P)
$0 \operatorname{ITS}(\mathrm{P} 4 \mathrm{P})$
0 ITS (P13P)
0 ITS (P5P)
0 ITS (P6P)
.
.

1 ABMOV
1 ACCV
1 AFPOV
1 AGC
1 AHPV
1 AIN
1 AMFV
1 AMOV
1 AN
1 AOPOV
1 APV
1 ATH
1 DATA
1 DDW1
-
-

1 XMFV
1 XMOV
1 XOPOV
1 YcccV
1 YCFPOV
1 YCMFV
1 YcMOV
1 YCOPOV
1 ZCOM
1 ZFIG
1 ZOIN

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188
Public reporting bunden for this collection of information is estimated to average 1 hour per response, including the lime lor reviewing instructions, searching existing data sources, gathering and maintaining the data needed. and completing and reviewing the collection of information. Send comments regarding this burdon astimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services. Directorate for inlormation Operations and Repons, 1215 Jeftierson 				
1. AGENCY USE ONLY (Leave blank	2. REPORT DATE January 1993	3. REPORT TYPE AND DATES COVERED Final Contractor Report		
4. TITLE AND SUBTITLE Analysis of the Space Shutle Main Engine Simulation				5. FUNDING NUMBERS
6. AUTHOR(S) J. Alex De Abreu-Garcia and John T. Welch			$\begin{aligned} & \text { WU-590-21-11 } \\ & \text { NAG3-1031 } \end{aligned}$	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Electrical Engineering University of Akron Akron, Ohio 44325			8. PERFORMMNG ORGANIZATION REPORT NUMBERE-7567	
9. SPONSORING/MONITORING AGENCY NAMES(S) AND AD National Acronautics and Space Administration Lewis Rescarch Center Cleveland, Ohio 44135-3191			10. SPONSORINGMONITORING AGENCY REPORT NUMBER NASA CR-191063	
11. SUPPLEMENTARY NOTES Project Manager, Carl Lorenzo, Instrumentation and Control Technology Division, NASA Lewis Rescarch Center, (216) 433-3733.				
12a. DISTRIBUTIONAVAILABILITY STATEMENT Unclassified-Unlimited Subject Category 15			12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) This report analyzes the digital code used to simulate dynamic performance of the Space Shutle Main Engine. This simulation program is written in Fortran. The purpose of the analysis is to identify a means to achieve faster simulation execution, and to determine if additional hardware would be necessary for speeding up the simulation. The analysis included the use of custom integrators based on the Matrix Stability Region Placement method. In addition to speed of execution the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files were examined. A revised code implementing the study recommendations was implemented but not verified for accuracy.				
14. SUBJECT TERMS SSME; Simulation; Multistep integration				15. NUMBER OF PAGES 260 16. PRICE CODE Al2
17. SECURITY CLASSIFICATION OF REPORT Unclassificd	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	$\begin{aligned} & \text { 19. SECURITY CLASSIFICATION } \\ & \text { OF ABSTRACT } \\ & \text { Unclassificd } \end{aligned}$		20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89) Prescribed by ANSI SId. Z39-18 298-102	

Lewis Research Center
ADORESS CORRECTION REQUESTED

Ometal Bualinets
Penemy for Prtvete toe \$sed
Postage and F ees Paw National Aeronaulics and Space Admunislralion NASA 451

