NASA Contractor Report 182006

IAPSA II Small-Scale System Specification

G. C. Cohen
Boeing Advanced Systems
Seattle, Washington

T. C. Torkelson
Boeing Advanced Systems
Seattle, Washington

NASA Contract NASI-18099
March 1990

NASA

National Aeronautics and

Space Administration
Langley Research Center
Hampton, Virginia 23665
(MaTa-UT =Y 20na) 1ARTA 5 MALL-SCALL 5Y5TeM e
it 1 ATION Final weport ("erinyg Advanced
<\ii*m;—‘~. Ce Y Yo et 147
a¥ - : * ‘ uncl.os

nalot UG Taba

PREFACE

This report describes the IAPSA II Small-Scale System Specification.
This vork was supported under NASA contract NAS1-10899, Integrated
Airframe/Propulsion Control System Architecture (IAPSA II).

The NASA technical monitor for this work is Daniel L. Palumbo, of the
NASA Langley Research Center, Hampton, Virginia.

The work was accomplished by the Flight Controls Technology organization
of Boeing Advanced Systems in Seattle, Washington. Personnel responsible

for the vork performed include:

D. Gangsaas Responsible Manager

T. M. Richardson Program Manager

G. C. Cohen Principal Investigator

T. C. Torkelson Flight Controls Technology

ii

1.0 SUMMARY
2.0 INTRODUCTION
3.0 DISCUSSION
3.1 General
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

3.1.7

TABLE OF CONTENTS

Simulation Host Hardware Description
VMEbus CPU Card

Bulk VMEbus Memory

VME-MicroVAX Interface

DIU Simulators

I/0 Network Pault Insertion
Experiment Control and Experiment Bus

VMEbus Experiment Time and Fault Insertion Delay

3.2 Development Support Hardware

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3 General
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

3.3.6

Development Host Computer
Terminal Server

Line Printer

Logic Analyzer
Microprocessor Emulators
Software Description
Experiment Software Interaction
Experiment Host Software
Simulation Host Software
DIU Simulator Software
AIPS FTP Software

Development Host Support Software

3.4 Hardware Modifications to AIPS Building Blocks

iii

PRECEDING PAGE BLANK NOT FILMED BAGK_ || INIENIIONALLY BLANK

PAGE

13
15
15
16
16
16
16
17
17
17
17
17
19
20
21
21
21
22

3.5

3.6

REFERENCES
APPENDIX A:
APPENDIX B:

APPENDIX C:

iv

TABLE OF CONTENTS (Continued)

Simulation Host Hardware Details

3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7

VMEbus System Configuration

Experiment Host - Simulation Host Interface
VMEbus Backplane Modifications

DIU Simulator

I/0 Network Fault Inserter

Miscellaneous Wire Wrap Board Functions

VMEbus Computer Timekeeping

Software Details

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9
3.6.10

3.6.11

AIPS FTP System Services

AIPS FTP Pseudoapplications

VME System Kernel and Utilities
DIU Kernel

DIU Simulator

I/0 Network Probe

DIU Data Formatting

Fault Insertion Control

VME Experiment Control

MicroVAX Interface Software

Experiment Control Command Files

SMALL-SCALE SYSTEM EXPERIMENT SYNCHRONIZATION

ATPS I/0 NETWORK INTERFACE REQUIREMENTS

SMALL-SCALE SYSTEM DIU SIMULATOR

PAGE
22
22
24
33
35
48
52
54
54
54
55
55
356
56
58
59
39
59
60
60

62
A-1
B-1

Cc-1

TABLE OF CONTENTS (Continued)

APPENDIX D: SMALL-SCALE SYSTEM NETWORK FAULT
INSERTION REQUIREMENTS

APPENDIX E: SMALL-SCALE SYSTEM NETWORK/DIU CONFIGURATION

APPENDIX F: SMALL-SCALE SYSTEM I/0 NETWORK TRANSACTIONS

APPENDIX G: EXPERIMENT BUS DESCRIPTION

APPENDIX H: VULTURE PROGRAM DETAILS

APPENDIX I: SOFTWARE TAPE LISTING

APPENDIX J: DOCUMENTATION PACKAGES

Documentation Package A:

Documentation Package B:

Documentation Package C:

Documentation Package D:

Documentation Package E:

VMEbus Simulation Computer
Configuration

OPI0O-1 Parallel
Interface Modification

VMEbus-MicroVAX
Parallel Interface Adapter

ISI0-2/DIU
Simulator Daughter Board

Fault Insertion
and Control VWire VWrap Board

PAGE

D-1

E-1

J-9

J-23

J-29

J-97

FIGURE
2.0-1
2.0-2
3.1-1
3.1-2

3.1-3

3.1-4
3.3-1
3.5-1

3.5-2

3.5-3
3.5-4
3.5-5
3.5-6
3.5-7
3.5-8
3.5-9
3.5-10
3.5-11
3.5-12
3.5-13
3.5-14
3.5-15

3.5-16

vi

LIST OF FIGURES

Experiment Test Configuration

Small-Scale System Block Diagram

CPU-29 and Memory Block Diagram

OPIO-1 and MicroVAX Interface Block Diagram

Wire Wrap Board-Network Fault Insertion/
Experiment Control Block Diagram

DIU Simulator Block Diagram
Small-Scale System Software Block Diagram
VMEbus System Overview, Small-Scale System

Experiment Host-Simulation Host Interface Detailed
Block Diagram

VMEbus and MicroVAX Byte Stacking Order

Data Transfer Without Hardware Byte Swapping
Data Transfer With Hardvare Byte Swapping
Experiment Host to Simulation Host Transfer
Simulation Host to Experiment Host Transfer
DIU Simulator Detailed Block Diagram

Block Diagram RX Clock EPLD

HDLC Input Edge Detect and Deglitch State Machine
RX Clock EPLD Timing Diagram

Sync Enable State Machine

RX Clock Generator State Machine

Flag Shutdown State Machine

Fault Insertion, Control Interface Detailed
Block Diagram

Network Fault EPLD Block Diagram

PAGE

10
11

12

14
18
23

25

28
30
30
31
34
36
38
40
41
42
43
45
49

50

1.0 SUMMARY

This document presents the specifications used to implement hardware and
softwvare for those portions of the IAPSA II small-scale system supplied
by Boeing. Portions of the system provided by the Charles Stark Draper
Laboratory (CSDL) are not included.

A small-scale system vas implemented to embody the essential
characteristics of a flight-critical system modeled earlier in the
IAPSA-II contract. It was used to investigate the critical issues

identified by those efforts in both normal and faulted operation.

The system under test was composed of existing proof-of-concept AIPS
building-block hardware and softvare plus simulated device interface
units (DIU). The entire system was controlled from a MicroVAX II

experiment host computer.

Commercially available VMEbus building-block hardware and softvare were
used to create the simulation host and DIUs. Hardware used to inject
faults into the system I/0 networks vas built on a VMEbus wire wrap card
and controlled by an off-the-shelf VMEbus parallel I/0 card.

Pseudoapplication Ada software was used to simulate the computational
loading of the FTP processors. Dummy data representing the total volume
of flight control traffic was sent over the I/0 network. DIU dummy
response data were sent over the I/0 network to answer dummy command

data.

The revision level of these specifications reflects the system delivered

to NASA Langley Airlab for testing.

2.0 INTRODUCTION

This document presents the details necessary to implement the small-scale
system experiment test configuration shown in figure 2.0-1. 0ff-the-
shelf components were used wherever possible to minimize development
cost. All discussions pertain to the small-scale system used for

experimentation at NASA Langley facilities.

A brief description of off-the-shelf components is provided to help
understand system operation. More detailed information on building
blocks may be found in manufacturers’ specifications and operation

manuals, referenced at the end of this document.

The discussion section that follows focuses on the details of
modifications to the standard building blocks and on implementation of

custom interfaces.

Specifications in the appendixes were derived from meetings and telephone
conversations with CSDL personnel, Advanced Information Processing System
(AIPS) schematics, Ada software templates supplied by CSDL, preliminary
AIPS documentation, and discoveries made during integration testing at
CSDL.

System Under Test Description. The FTP shown in figures 2.0-1 and 2.0-2
is a triplex, bit synchronous 68010-based AIPS building block. Each of
its three channels has a computational processor (CP), an input/output
processor (IOP), local memory, shared memory (SM), one or more
input/output sequencers (10S) to connect the fault-tolerant processor
(FTP) to I/0 networks, and a test port to allow control of the FTP by the

experiment host computer.

The I/0 network connected the FTP to DIUs via a circuit-swvitched network
rich in redundant interconnections, enabling reconfiguration around

netvork faults.

PRECEDING PAGE BLANK NOT FILMED P
G2 _INTENTIONALLY BLANK

VME

console
] Simulation host
VMEOTP DIUOTP |}o o of : DIUOTP Parallel
interface|
VME simulation VME DIU simulators
computer
. Network and synchro-
Faultinsertion nization adapters

Failure simulation links

[1

oo

DIV links

-

MicroVAX
Ethernet

MicroVAX
experiment host

FTP

FTP
AlPS
nodes Root links

AIPS /O networks

System under test

Figure 2.0-1. Experiment Test Configuration

l
|
I
!
I
l
l
I

console

Test facility

Simulation host

T T uaE e T
VME bus VME MicroVAX
isMBRAM || 88020CPU ! console console
oem RS-232 Experiment RS-232
| 32 bit par /O host
|___| VME-MicroVAX
| - OPio interface DRQ3B
|68010 SER /O
Wire wrap
ISIO-2 board
DIU Network adapter H DEQNA
simulator - [daughter board | | Execontol
Il 2= 1 and network
DiU patch fault insertion AlPS test
panel panel /" |port controlter
\ Ethernet
. DIy . -
Simulator Special
¢Z- AIPS
HDLC
serial /0

................. S

Test port
VME sync FTP FTP
FTP sync :

= 1 RS 232
FTC |
reference :

L
Root links (4)

Figure 2.0-2. Small-Scale System Block Diagram

Ada pseudoapplication software was run on the FTP under the control of

AIPS system services.

The AIPS system building blocks used in the small-scale system were
proof-of-concept components that were still in development and for which
no firm specifications existed. Without CSDL’s close assistance and
cooperation, integration of the small-scale system would not have been

possible.

Simulation Host Description. The test facility depicted in figures 2.0-1
and 2.0-2 vas designed to support generic, general-purpose test systenms
that require special interfaces in hardvare-in-the-loop simulation
environments. It is VMEbus-based and uses standard VMEbus boards
obtained from Force Computers, Inc. The base-level test system
configuration includes a CPU card, bulk memory, seven intelligent serial
interface cards, and a high-speed parallel interface between the

simulation host and the experiment host.

Figure 2.0-2 shows the base-level test system after the addition of
modifications to support small-scale system hardvare-in-the-loop
requirements. The upper half of the simulation host block is the base
configuration of the general-purpose test system, including the bulk
memory, CPU, and interface to the experiment host. The lower half of the
simulation host block represents the additions and modifications required
to create DIU simulators and special interfaces for the small-scale
system. Daughter boards were designed and built for the serial interface
cards; a custom vire wrap board was built; and modifications were made to

the parallel interface board.

The configurations of each of the main components of the test system are

described in greater detail in the discussion section that follows.

Experiment Host Description. The experiment host shown in figure 2.0-2
vas a Digital Equipment Corporation (DEC) MicroVAX II computer with 10 MB

of memory, two RD-53 70-MB hard disks, a TK-50 93-MB cassette tape, a
DEQNA Ethernet controller, and a DRQ3B parallel, DMA interface card. An
AIPS test port controller card was installed to control the AIPS FTP from

the experiment host.

Small-Scale System Softvare Operation. Figure 2.0-1 shows major software
elements: VME Operational Test Program (VMEOTP) and DIU Operational Test
Program (DIUOTP) in the simulation host, and FTP Operational Test Program
(FTPOTP) in the AIPS FTP. The interaction of these software elements is

described later in this document.

Section 6.0 of reference 1 is a discussion of small-scale system testing
that presents additional information concerning the configuration of the

system and the use of the the experiment test configuration.

3.0 DISCUSSION
3.1 GENERAL SIMULATION HOST HARDWARE DESCRIPTION
3.1.1 VMEbus CPU Card

As shown in figure 3.1-1, the CPU-29 contains 128K x 32 bit (1 MB) high-
speed static ram, 128K x 32 bits of EPROM, a real-time clock, and two
serial I/0 ports controlled over a local bus by a Motorola 68020
microprocessor/68881 math coprocessor combination operating at 16.7 MHz.
The VMEbus interface is controlled by the 68020 when it gains access to
the VMEbus as a bus master. None of the resources on the CPU-29 are

accessible to other VMEbus masters.
3.1.2 Bulk VMEbus Memory

The VMEbus DRAM-Exxx bulk memory system shown in figure 3.1-2 has 16 MB
of 32-bit-wide dynamic memory. The dynamic ram is slower than the CPU-29
local static RAM but provides relatively low-cost, fast bulk storage for
experiment programs and data. The DRAM storage system consists of two
cards; the master DRAM controller card has 4 MB of memory and the VMEbus
interface; and the slave card, holding 12 MB of memory, connects to the

master over a private intercard bus.
3.1.3 VME-MicroVAX Interface

The OPIO-1 card is used for several purposes, as shown in figures 3.1-2
and 3.1-3. This card has four Motorola 68230 programmable interface/timer
(PI/T) chips and a Hitachi 68450 four-channel direct memory access (DMA)
controller. The PI/T chips provide a total of 32 bits of input, 32 bits
of output, 16 handshake lines, and four 24-bit timers. The DMA

controller was not used in the small-scale system.

9

PRECEDING PAGE BLANK NOT FILMED wi 9§
‘\ﬁqmmuaumx BLANK

VME
console

\ To debug

10

32 bit
VMEbus
68020
128K x 32 bit
SRAM
128K x 32 bit AT clock
EPROM
32 bit Local bus Serial VO
e~
Force: CPU-29
- 32 bit » Force: DRAM-E4-M4
4 MB dynamic ram
Power only
B S Force: DRAM-E4-S12
12 MB dynamic ram
I
/

Figure 3.1-1. CPU-29 and Memory Block Diagram

console
or download
serial port

32 bit

Force: OPIO-1

16 bit

out +

controis

16 bit
in+
controls

VME-MicroVAX

interface

16 bit +
controis

16 bit +
controls

VMEbus
gl Four-channel
DMAC
16 bit -Lm
-3~
E P2
Y 8 bit out,
—] strobes,
discretes
Experiment
bus ==
1
/ a Reference
/ FTC in

4

Spare 8
bit in

Spare
timers

()

VME
experiment
time

Fault delay
time

to DIU simulators
and wire wrap board

Figure 3.1-2. OPIO-1 and Micro VAX Interface Block Diagram

MicroVAX II

DRQ
38

11

Experiment
bus

N

N VMEbus

Wire wrap board

(8) Fault control channels

P1

Fault Fault
selact gen
EPLD

EPLD | Status LEDS—————»-

VME FTC generator

((

N

Net /'O

Fault
channel

(8)

and FTC ref select
FTC gen VME FTC
and Ext FTC Jy
control et
EPLDs
VME

E sync |

FTP

Status LEDs

ety
<]

N\

J

—-

@) Status

@) LEDs

VME

(sync
| Omn Or*™out

Oout Ore— ¢p

\ sync

in

VME
Ot FTC

t
O &

FTC

Figure 3.1-3. Wire Wrap Board—Network Fault InsertiorvExperiment Control Block Diagram

12

As illustrated in the upper half of figure 3.1-2, half of the OPIO-1 I/0
capability is used for a high-speed 16-bit parallel communications link
betveen the simulation host and the experiment host. The interface is
used to download VMEbus programs, to control the simulation host from the
experiment host during experiments, and to upload VMEbus experiment data
after experiments. Data transfer rates are on the order of 500 KB per

second.

Additional functions monitored or controlled using the OPIO-1 card are
discussed in sections 3.1.5, 3.1.6, and 3.1.7 below.

3.1.4 DIU Simulators

Pigure 3.1-4 shows a block diagram of the AIPS-compatible DIU simulators
based on modified Force Computer ISIO-2 boards from the base-level
simulation host. These boards are intelligent peripheral boards: each
board has a local 10 MHz Motorola 68010 microprocessor, 128 KB of
local/VMEbus dual-ported high-speed static RAM and eight channels of
high-speed serial interface capable of supporting the hierarchical data
link control (HDLC) protocol at up to 4 MHz.

Local ISIO-2 resources are not directly available to the VMEbus, and the
VMEbus is not directly accessible to the local ISIO-2 CPU; all
communications in the small-scale system between the ISI0-2 and the
VMEbus were via the dual-port ram.

A daughter board and AIPS I/O connectors were added to the existing
boards to implement the special AIPS I/0 requirements for clock
synchronization and flag shutdown. An additional Motorola 68230 PI/T
chip provided status, timekeeping, and synchronization functions. The
experiment bus (see below) was routed to each of the DIU simulator cards
to synchronize the simulators with the VMEbus and AIPS FTP.

The small-scale system used one complete I/0 network and one partial
netvork. The design of the ISIO-2 daughter boards enables each simulator

13

Diu
simulator
patch panel

32 bit

ONom
OMon
QO Node

.

Status
LEDs

o
connec-
tors

Networ?

Force: ISIO-2 VMEbus
N\
Local ™ N
68010 bus
|
128 KB P1
EPROM ;:ahlﬁpon 16 bit
(16K x 16 sys,
48K x 16 user)
P2I
| ISi0-2board _ _ _ .
Daughter board S Y
X ™ < .
7/ Two-channel N Y
RX | HDLC chips N
/- (4) \\
T emHz O« L
>
f VME sync
FTP sync
Local exp \Rﬁf FTC
LED time and
driver start sync
EPLDS |« 1L
Experi-
= —) ment
\~ bus
<)
XD
Y
™
— F:'agd(a) clock
shutdown
EPLD EPLD
Node sim
EPLD TX data to /O net
Transf
il %) L 16 MHz
10 /O net RX clock
. — sync (8) 2 MHz
EPLD RXC
RXD

Network HDLC_IN
adapter from VO
net

{_16 MHz

{n) indicates number of replications

14

Figure 3.1-4. DIU Simulator Block Diagram

board to act either as eight independent DIUs with individual I/0
connectors or as eight independent DIUs sharing a single I/0 connector.
Each DIU simulator board can also be used as a network probe to view all

activity on an I/0 netvork for debugging purposes.

3.1.5 I/0 Network Fault Insertion

Figure 3.1-3 is a block diagram of the wire wrap card. The top portion
of the block diagram shows the network fault insertion channels. Each
channel consists of an in and out connector, which are used to break a
1link in the I/0 network. Eight physical fault channels are present on
the card. Each of the channels can be mapped to a logical channel for
fault control purposes. Failing a logical channel causes all physical
channels mapped to that logical channel to fail simultaneously to the

same fault condition.

The fault channels support three different modes: normal, in which inputs
are routed directly to outputs; passive, in which outputs are failed to a
lov state; and active, in which outputs are failed to a high state. The
state of each fault channel in and out connector output is indicated by a
bi-color LED: green for normal; off for passive; and red for active.
Small-scale system faults were identically applied to both in and out

connectors.

3.1.6 Experiment Control and Experiment Bus

The wire wrap card shown in figure 3.1-3 was also used to interface the
simulation host to the AIPS FTP to control experiment synchronization and
timing. The VME sync output was used to signal the FTP when the
simulation host was ready to proceed; the FTP sync input was used to
synchronize all experiment time keeping functions in the simulation host.
The state of the the sync signals is indicated by bi-color LEDs: red for

stop and green for run.

15

A common timebase is used for all experiment timekeeping in the
simulation host. Two timebase options are provided: either the PTC
generated by the VMEbus wire wrap card or an external FTC can be used.
The small-scale system used an external FTC provided by the FTP so that
experiment timekeeping in the FTP and the simulation host would

correlate.

Timebase, synchronization, and control signals are routed to each DIU
simulator and the wire wrap board from the OPIO-1 card via spare pins in

the VMEbus P2 connector, which form the experiment bus.

3.1.7 VMEbus Experiment Time and Fault Insertion Delay

The OPIO-1 card shown in figure 3.1-2 was modified to add a clock control
daughter board that synchronizes VMEbus timing signals with all DIU
simulators and the external system under test. One of the OPIO-1 PI/T
timers is the source of VMEbus experiment timekeeping; another is used
as a delay timer for controlling fault insertion timing. Two spare
timers remain on the OPIO-1.

3.2 DEVELOPMENT SUPPORT HARDVARRE

3.2.1 Development Host Computer

All software and hardware were designed using software tools installed on
a DEC VAXstation 2000. The VAXstation was equipped with 6 MB of RAM, an
internal RD-53 70-MB hard disk, an external RD-54 150-MB hard disk, and
an external TK-50 tape drive.

3.2.2 Terminal Server
A DECserver 200 was included in the development support hardware to allow
flexible access to serial devices. Using the terminal server in the

development system allows serial port access to the simulation host

computer from local CRTs or the VAXstation; use of a single serial

16

printer for both experiment host and development host; access to
emulators from CRTs or development host; and access to either the

development or experiment host computer from local CRTs.
3.2.3 Line Printer

A Mannesmann Tally MT660 line printer provided both text and graphics

output for the VAXstation and the experiment host computer.
3.2.4 Logic Analyzer

A Tektronix DAS 9200 logic analyzer with two 92A90 modules, a 92416

module, a 68010 PGA adapter pod plus softvare, a 68020 adapter pod plus
softvare, and a parallel graphics printer vere used to aid {n hardwvare
and software debugging and performance evaluation. The logic analyzer

was also used to view activity on the AIPS I/0 network.

3.2.5 Microprocessor Emulators

Applied Microsystems emulators equipped with C source level debugging
softvare were available for debugging hardware and software problems in
both the Motorola 68010-based ISIO card and the Motorola 68020-based
CPU-29 card.

3.3 GENERAL SOFTWARE DESCRIPTION

The major software development efforts were the implementation of DIU
simulator software, creation of FTP pseudoapplications, and production of
experiment control programs.

3.3.1 Experiment Software Interaction

Figure 3.3-1 is a block diagram of small-scale system software as it was

used during an experiment run.

17

Experiment Host SuUT

MicroVAX | i
VAX I
VMS 4.7 l
| AIPS FTP
DCL command files | lop
I b iy | AIPSDEBUG|— — — —
ata and contro
VULTURE vRP [| — |
AIPS systems services |
| .CP |
Data and |
control | = /O network faults Pseudo |
l app |
Fault task : 1
Synchronization
VULTURE Y ,
VRTX32 Control
IFX
Unload .
DIy tea—lQ network traffic
Simulation host simulation
VME bus computer DIV kernel
DIU simulator I

!
Figure 3.3-1. Small-Scale System Software Block Diagram

18

Experiments were controlled by DCL command files running in the
experiment host. Experiment control commands were routed to the AIPS FTP
using the VRIP/AIPSDEBUG interface and routed to the simulation host
using the VME Ultimate User Environment (VULTURE) interface. The
VRIP/AIPSDEBUG interface was used to start initialization programs in the
ftp, activating aips systems services and pseudoapplication programs.
VULTURE commands to the simulation host loaded DIU software in simulator
boards and started the VMEbus computer control, fault task, and unload
programs. The simulation host control program vas used to synchronize
operation of the FTP pseudoapplication, the fault task, and the DIU

simulation program.

Upon completion of an experiment run, the unload program in the
simulation host removed and reformatted data from the DIU simulator for
uploading to the experiment host disk using VULTURE commands.
VRIP/AIPSDEBUG commands were used to remove experiment application data

from the FTP for storage on the experiment host disk.
3.3.2 Experiment Host Softwvare

The experiment host MicroVAX II ran version 4.7 of the VAX VMS operating

system.

Software in the experiment host was responsible for controlling the
overall operation of both the simulation host and the FTP. The main
experiment control programs were DEC DCL command files. The simulation
host was controlled using the VULTURE commands; the FTP was controlled
using VRIP/AIPSDEBUG commands.

All executable programs for the simulation host and the FTP were stored
on disk in the experiment host. These programs were downloaded to their
appropriate target machines using either VULTURE or VRIP/AIPSDEBUG.

Upon completion of experiment runs, data were uploaded from the
simulation host and the FTP to disk files on the experiment host, where

they vere transferred to magnetic tape for archiving.

19

Experiment host resident analysis software was used to perform
preliminary analysis on collected data. The direction of experimentation
was guided by the ability to perform timely data analysis.

3.3.3 Simulation Host Software

A portion of the software in the simulation host is located in EPROM to
control the operation of the simulation host at power up. The EPROMS
contain Ready Systems VRTX-32 and IFX, a board support package to adapt
VRTX-32 and IFX to the CPU-29; VMEPROM, which is shipped with the CPU-29,
the VMEbus resident portion of the VULTURE program; and a sharable copy
of Ready Systems Real Time C library.

A portion of simulation host RAM is configured as two RAM disks: DRAM:
vhich is located in the DRAM-E4XXX boards, and SRAM:, which is in CPU-29
static RAM. All files in these two RAM disks obey MS-DOS file-naming
conventions. Files in the RAM disks can be either contiguous or

noncontiguous.

Programs downloaded from the experiment host to the simulation host can
reside on either of the two RAM disks. Executable programs are required
to be in contiguous files in RAM disk. Optimum performance of CPU-29
targetted programs is obtained when they reside on the SRAM: disk.
CPU-29 programs will also run on DRAM: disk but with slightly reduced
performance. When a CPU-29 program is started using the VULTURE VRUN
command, the program executes the image of the program in the contiguous
ram disk file.

Data collected by the simulation host during an experiment run were
stored in noncontiguous files in the DRAM: disk and later uploaded to
disk files in the MicroVAX II experiment host.

Repeated creation and deletion of RAM disk files may cause disk

fragmentation; no attempt is made to repack memory. No fragmentation

problems were encountered during operation with the small-scale system.

20

3.3.4 DIU Simulator Softwvare

Executable versions of DIU simulator software were stored on disk in the
experiment host. They vere downloaded from the experiment host to
contiguous RAM disk files in the DRAM: disk in the simulation host. At
the start of an experiment run, the DIU simulator software was loaded
from the DRAM: disk into the active DIU simulator boards.

The ISIO-2 DUSCC chip initialization portion of firmware, supplied by
Force Computers in EPROM on the ISIO-2 boards, was modified to prevent a

hardvare conflict for the DUSCC chip serial clock source.

A DIU simulator control kernel was developed to supply synchronization
and system-level functions for the DIU simulator software. The kernel

softvare must be loaded before any DIU software can be run.

DIU simulator software was configured to respond to specific AIPS I/0

network addresses. See appendix E and software tape for more details.
3.3.5 AIPS FTP Softwvare

The pseudoapplication programs run in the AIPS FTP were based on Ada code
templates provided by CSDL. The code templates were modified to meet

small-scale system testing requirements of reference 1.

Some modifications of the AIPS runtime software were made to support the

testing requirements of reference 1.

Pseudoapplication software is discussed in reference 1. Listings are

found in the software tape.

3.3.6 Development Host Support Software

The VAXstation 2000 development host computer system was supplied with
software packages to support both hardware and software design. All the

softvare ran under version 4.7 of the VAX VMS operating system.

21

Software included DEC Ada to support the data analysis program, DEC C to
support the VAX portion of the VULTURE interface, and DEC FORTRAN to
support recompilation the VRIP interface for the MicroVAX II.

Third-party software included Autodesk AutoCAD for documentation and ISIQ
daughter board layout, Data I/0 Abel to support the design and production
of EPLDs for small-scale system (SSS) custom hardware, Verdix 68010 Ada
for compilation of FTP pseudoapplications, and Microtec C and Assembler
to support VMEbus CPU and DIU simulation software.

3.4 HARDVARE MODIFICATIONS TO AIPS BUILDING BLOCKS

To provide a common timebase in both the FTP and the simulation host, the
test port controllers for all three channels of the SSS FTP were modified
to provide a differential driver ftc output. Only the Channel A
connector panel at the rear of the FTP was modified to connect the
differential FTC output to one of the spare connectors. This signal was
used by the simulation host for all of its local experiment timekeeping

functions.

No other modifications were required to AIPS hardwvare building blocks.
3.5 SIMULATION HOST HARDVARE DETAILS

3.5.1 VMEbus System Configuration

Figures in documentation package A show the allocation of cards and
special interfaces in the slots of the VMEbus card cage. All slots are
used vhen all seven DIU simulator boards are installed. The small-scale
System can operate with four DIU simulators boards when no simulator

boards are required for network I/0 debugging.

Figure 3.5-1 is a detailed block diagram of the VMEbus system simulation

host configured for use in the small-scale system.

22

WaISAS B[BIS-IBWS ‘MBINBAD WAISAS SNGIWA “L-6°€ 9Inbl4

MG APANINO "IN ey
a J 8 v
et v 3LVO g i
/vy A weetey L CNMYHO wsjshg 9OO§ pOWS
107 SUCONYPOW/ SUOIRPOY &
waighg 802§ jPwWS
M21AJBA0 WOISAS SNQINA 14
||| A
SWILSAS AIINVAQY ONIFOE r i
|
!
| wojousg (G PUHWEY § o) dn "
" ° |
I ° 1
_ ° !
1
o soaten o g morg ¢ proog ® | es0m1u pues !
o1Nurg W] © .= b4 “.no __!!!0.." "
}38uv0) v by
suoenog wosie O/t L R TR vomion ==+ 7 I €
|
! i
) |
!
san smoig * .
] 1oy yomien »
U IMN0Y TR o/t m_uleul.iﬂ.m.llnnv wor "
L Ll L | VYO ©QoD Rzt
v J14 Suemey 113 ————M smorg © nd —
' oLs I ———] MO s e [
w WS dl bl T
10 IS I\ ————| b NG POD Gy 4
! 3 s
“ (1300003 24) 0Q Jumunedn) !
1 ! mnduwor)
080 e [. ‘nOUd = dopnaq
[] x<>un¢..- pooa :u ooey A 03040\ Nn..uﬁ._m..n.uu..,_ -:.u Hi-sy sy
830281\ WOg BTSSIOvS 1 0y YO \U9Y "0Z0a9 .
preoy HV VAN _ =00 A ey =1 YT oome3
Ll 1 |
- :.!..uﬂn.tu e | }
N neso $naIM —/
l
li
g wiowm o) wadup wou peae)| S/VE| -
NOU IS UvQg [AJY
4] o} g /

23

OF POOR QUALITY

3.5.2 Experiment Host - Simulation Host Interface

Figure 3.5-2 is a detailed block diagram of the interface between the
VMEbus simulation host OPIO-1 card and the MicroVAX II experiment host
DRQ3B card. The MicroVAX connector panel shown serves four functions:

to cross-connect the VMEbus and MicroVAX II data lines for correct
transfer of ASCII data; to provide miscellaneous function lines for
cross-system signaling; to buffer board I/0 signals; and to condition the
handshake lines of the two interface cards to ensure correct data

transfers.
See documentation package B for OPI0O-1 layout and schematics.

DRQ3B inputs and outputs are 74S series TTL terminated with 330/220 pull
up/down resistors. Inputs must be driven from devices with 22 mA
pull-down capabilities. (See ref. 2 for additional DRQ3B information.)

The OPIO-1 card uses high-speed opto-isolators on all input and output
lines. The output of the opto-isolators is insufficient to drive the
DRQ3B, and there is no real need for output isolation. The output opto-
isolators were removed and jumpers inserted to directly connect the

output of the opto-isolator driver chips to the DRQ3B inputs.

It vas desirable to leave the inputs to the OPIO-1 opto-isolated to
minimize the possibility of damaging the inputs to the MC68230 parallel
interface timer (PI/T) chips. The output from the DRQ3B does not pull up
high enough at logic 1 out to guarantee that the opto-isolators will shut
off. To solve this problem, the input LEDs of the opto-isolators were
run from a supply one diode drop below 5V. This was adequate to

guarantee that the isolators will be shut off at DRQ3B logic 1 out.

Documentation package C contains the drawings used to produce the wire

vrap interface and connector panel for the VME-MicroVAX interface.

24

weibeIqg ¥o0)g pajieieq 82eu8lu] 1SOH UOHEINWIS—ISOH Juswadxy g-G°¢ 8inbi4

25

we e UUVO
w/tv/or AN wervey 3L INMYHO

wosboiq 35018
4 #50}:81u) 0IdO

SWILSAS GIONVAQY INIF08

ORIGINAL PAGE IS
OF POOR QUALITY

|
L}
r _ |
) : :
. 1 H
| .]
| — _
Do ! :
—] _ | m m
1 " 3
L}
A
i []
pase #ibroe _ | ¢ mﬂbl, ! R wem Il
M) i Suq M mss) By = ' | L 4l od
poiorm o0 miemven bomq N4 e W TON ' 4 w i !
¢ |I_ " ' j L] “n-.lt
1 &
- _ U | LT louﬂi
| ! I = Nk
L L]
| | B Ik T
I v H BV W | .
— ' ————— - o Y e
| SRRy \ _ |)
M 1 v g al oom =]
0 1o 00 S 1 s vl w .ﬂn.u.hl.. =Yy
1 . €=C 1o s . ! I ‘I1L.h ot]
wxywo |F] mrow IR b [£ [l s ot £ 3
z o 5 15 ==] |1 Rl L]
S-0 10 Lo — jlﬁ m — 61Lu. “
VO T R W [) -
T M K e | - _
H I
]
wsare i = s i !
|||||||||||||||| ”m
Ly] v i ¥ ey squng ~ I hnd H B —...M—“U’ L) |
10 Y =0 i — Hars uﬂ; smeg w ey 1
Lon il " - [T : m w N o v “
|-/ (L] i
ey I W A Jis B e] !
- e e e e e e e = —— == U e [ws "¢].nhs v o] 1
i o N 1
l ' wh
1 |
| L e | =)
[S S —————————— e S et I b
L]
| o
RO a5 30 31v0 |A3H
a 0] _ 8 _ v

Documentation package C illustrates the interface panel design used for
the SSS. The only deviation from this design was that a standard rack
vidth U chassis with side panels was used for shielding the interface

board instead of the protective cover shown.

The protective cover shown is preferable because it is permanently

affixed to the connector panel. The U chassis is secured with the same
screvs that hold the connector panel to the equipment rack, raising the
possibility of damage to the interface wire wrap board or ribbon cables

during installation.

The ribbon cables that connect the wire wrap board to the VMEbus OPIO-1
card are held in place with the edge of the side panels attached to the U
chassis. The exposed edges of the side panels are covered with alligator

grommet to prevent insulation damage to the ribbon cables.

Documentation package C shows the placement of components on the wire
wrap interface board and illustrates the routing of cables from the
OPIO-1 to the interface board for an installation in which the interface
connector panel is mounted in the VMEbus chassis. No spare slots were
available in the small-scale system VMEbus chassis for a connector panel,
so the interface board was mounted at the rear of the equipment rack,
with the ribbon cables routed up through the top of the card cage to the

adapter in the back of the equipment rack.

Documentation package C is a schematic for the wire wrap adapter. The
left side of the schematic shows the connections and function names for
the VMEbus OPIO-1 board; the connections and function names on the right

side of the schematic are for the Micro VAX II DRQ3B interface.

Data Representation and Effect on Data Transfer Interface. Close
inspection of the interface wire wrap interconnection schematic reveals
that the upper and lower data bytes of the interface lines between the
MicroVAX and the VME system are reversed. An explanation of this

apparent inconsistency is necessary both to understand the design of the

26

hardvare interface and to appreciate the subtleties encountered when
attempting to transfer data betveen a Motorola 68020-based VMEbus system
and a DEC VAX system.

The underlying reason for byte swapping the interconnections was a
difference in the byte stacking order in the 68020 VMEbus and MicroVAX
systems. The VMEbus system is based on a Motorola 68020 microprocessor.
The 68020 byte stacking order is reversed from that of the MicroVAX
system except for byte data. (The MicroVAX byte stacking order is the

same as that used by Intel systems.)

Figure 3.5-3 shows the byte stacking orders of three types of arrays as
stored in the two systems. The array data types are long (32 bit), short
(16 bit), and char (8 bit). The examples are shown as hexadecimal bytes
arranged from lowest address to highest address. The partial C source

code to generate these representations is also shown.

For data to retain the same value in both systems, the byte stacking
order must be translated when transferring data. To translate the byte
stacking order it is necessary to know the type of data being
transferred. For systems that use data structures composed of mixed
types it is impossible to perform byte stacking order translation without
having access to the definition of every specific data structure being

transferred.

The solution chosen for this problem was to use C library functions to
convert all binary data to ASCII before transfer between the two systems.
This has the disadvantage that up to tvice as much data storage may be
required, and additional time is required to convert binary data to
ASCII. Note that data may still be collected in any desired format
during real-time operations as long as it is converted to ASCII before

transfer to the MicroVAX.

27

Partial C code used to generate arrays.

/* array allocation */
unsigned char array 1[8}];
unsigned short array 2[4];
unsigned long array &[2];

/* assign values to unsigned character array */

array 1{0]) = Ox11;
array 1[1] = 0x22;
array 1[2] = 0x33;
array 1{3] = Ox44;
array 1[4] = OxAA;
array 1[5] = OxBB;
array 1[6] = OxCC;
array 1[7] = 0xDD;
/* assign values to unsigned short array */
array 2[0]) = 0x1122;
array 2{1] = 0x3344;
array 2{2] = OxAABB;
array 2(3] = 0xCCDD;
/* assign values to unsigned long array */
array 4[0] = 0x11223344;
array 4[1] = OxAABBCCDD;

The above code generates the following data arrays in the VMEbus and uVAX
systems.

——————— VMEbus - ——————— ——————-—— UVAX e~

0 1 2 3 4 5 6 7 01 2 3 4 5 6 7
-- char array

11 22 33 44 AA BB CC DD 11 22 33 44 AA BB CC DD
-- word array

22 11 44 33 BB AA DD CC 11 22 33 44 AA BB CC DD
-- long array

44 33 22 11 DD CC BB AA 11 22 33 44 AA BB CC DD

Figure 3.5-3. VMEbus and MicroVAX Byte Stacking Order

Figure 3.5-3 shows that ASCII data is stacked in the same order in both
the VMEbus and MicroVAX systems, implying that there is no reason to swap
the upper and lower bytes in hardware. The physical interfaces, however,
treat all transferred data as word (16 bit) data. When the VMEbus system
transfers word data, the most significant byte located at address O is
sent to bits 8 through 15 of the interface; the least significant byte
from address 1 is sent to bits O thru 7. Because the data being sent are
actually ASCII, the bytes are swvapped by the VMEbus system. Swapping the
high and low byte lines corrects the problem.

Figures 3.5-4 and 3.5-5 illustrate the transfer of different types of

data using both unswapped and swvapped lines.

The limitations of this solution have not affected VMEbus system

performance adversely enough to require an alternative solution.

Experiment Host to Simulation Host Transfer Protocol. See figure 3.5-6
for typical interface handshake vaveforms. Port B of OPIO-1 PI/T devices
J3 and J4 serve as the 16-bit VMEbus input port. They are both configured
to operate as double-buffered input devices with interlocked input
handshakes. (PI/T Port B is set up to operate mode 0, submode 00,
double-buffered input, interlocked input handshake protocol.) The input
ISTROBE is received by both PI/Ts on their H3 pins. The PI/T !ACK output
originates on the H4 pin PI/T J3. (A PI/T !ACK output is also available
from pin H4 on PI/T J4, but is not used.)

The two handshake protocols have no logical conflicts; however, handshake
timing must be modified because of VMEbus PI/T data setup timing
requirements. DRQ3B !DAV Out is set low a minimum of 65 ns after data are
stable on the out nn lines. At least 100 ns of data setup must be allowed
before an input !STROBE is applied to the PI/T chip. To meet the setup
time requirements, a delay of approximately 100 ns is placed between the
DRQ3B !DAV output and the PI/T input ISTROBE, leaving at least a 65 ns
margin. The delay is implemented using an RC delay and 74LS14 Schmitt
input inverters. (See Ul and associated components in the schematic in

documentation package C.)

29

30

01 2 3 4 5 6 7 01 2 3 4 5 6 7
-- char array -- incorrectly transferred
11 22 33 44 AA BB CC DD 22 11 44 33 BB AA DD CC
.
| +--- bits 0-7 ——-—_ bits 0-7 ---+ |
e bits 8-15 —-—-- bits 8-15 ---—- +
** word array -- CORRECTLY TRANSFERRED
22 11 44 33 BB AA DD CC 11 22 33 44 AA BB CC DD
| |
| +--- bits 0-7 -——_——- bits 0-7 -——+ |
o bits 8-15 ——--- bits 8-15 ——-—- +
-- long array -- incorrectly transférred
44 33 22 11 DD CC BB AA 33 44 11 22 CC DD AA BB
| [
| +--- bits 0-7 --___ bits 0-7 --—+ |
e bits 8-15 -——-- bits 8-15 —---- +

Figure 3.5-4. Data Transfer Without Hardware Byte Swapping

——————— VMEbus —————-__ ———==—-—- UVAX - ___
01 2 3 4 5 6 7 01 2 3 4 5 6 7
** char array -- CORRECTLY TRANSFERRED
11 22 33 44 AA BB CC DD 11 22 33 44 AA BB CC DD
[|
| +--- bits 0-7 _—___ bits 8-15 —-|--4
e bits 8-15 —-——- bits 0-7 -—-+
-~ word array -- incorrectly transferred
22 11 44 33 BB AA DD CC 22 11 44 33 BB AA DD CC
[
| +--- bits 0-7 -_-__ bits 8-15 —-|--+
to——m - bits 8-15 --——- bits 0-7 -—-+
-- long array -- incorrectly transferred
44 33 22 11 DD CC BB AA 44 33 22 11 DD CC BB AA
[|
| +--- bits 0-7 -—--_. bits 8-15 —-|--4
$mmm o bits 8-15 ----- bits 0-7 ---4

Figure 3.5-5. Data Transfer With Hardware Byte Swapping

—

DRQ3B Out

X9

7

X
DRQ3B DAV —é]___ C:r
TC

PUT In

=
3

Strobe delay —
PUT STROBE In

PVT ACK Out

DRQ3B ACK In

A

Figure 3.5-6. Experiment Host to Simulation Host Transfer

31

Note: symbols such as !ACK signify inverted polarity logic.

7The modified MicroVAX to VME transfer operates as follows (see
fig. 3.5-6).

a. Data are placed on the DRQ3B Out lines and the DRQ3B !DAV Out is
pulled low.

b. After a 100-ns delay, the DRQ3B !DAV Out appears at PI/T !STROBE in,
latching data in the PI/T input buffer.

c. After data are latched by the PI/T, PI/T !ACK Out is pulled low.
d. On receiving DRQ3B !ACK In low, DRQ3B !DAV Out returns high.

e. If more space is available in PI/T input buffers, PI/T !ACK Out
returns high and the next data transfer cycle begins. If the PI/T
input buffers are full, PI/T !ACK remains low until the VMEbus
computer removes data from the PI/T input buffer, at which time PI/T

IACK returns high and another data transfer cycle begins.
Notes:

a. PI/T !ACK Out timing is referenced to the falling edge of PI/T !STROBE
In, not the rising edge.

b. PI/T !ACK out will return high regardless of the state of PI/T !STROBE
In.

Simulation Host to Experiment Host Transfer Protocol. Without
modification, the PI/T to DRQ3B transfer handshake protocol does not work.
A logical conflict exists, caused by different interpretations of the
meaning of the !ACK signal. The DRQ3B uses the !'ACK line to first signify
receipt of data at the falling edge and then to signify ready for next

32

transfer on the rising edge. The PI/T, however, interprets the falling

edge of the !ACK line to mean data accepted and ready for next transfer.

Vithout modification, the PI/T begins its next data transfer before the
DRQ3B !ACK Out line has returned high. Because the DRQ3B !ACK Out line is
still low, the DRQ3B ignores the !STROBE signal and does not produce an
1ACK Out handshake for the PI/T. This both causes the data being
transferred to be lost and the interface to hang up while the PI/T waits
forever for the DRQ3B !ACK Out handshake.

A NAND R-S latch formed from gates in U2 resolves the conflict. The output
of the latch is buffered by U3 to provide adequate drive capability for the
DRQ3B input.

The operation of the modified interface is as follows (see fig. 3.5-7).

Note: Symbols such as !ACK signify inverted polarity logic.

a. Data are placed on PI/T Out lines and PI/T !DAV Out goes low.

b. On DRQ3B !STROBE In low, data on DRQ3B In lines are read and DRQ3B
1ACK Out goes low, keeping !STROBE In low in the U2 latch.

c. The rising edge of PI/T !ACK In causes PI/T !DAV Out to return high

and the PI/T starts another output transfer cycle.

d. Data are placed on PI/T Out lines and PI/T !DAV Out goes lov;
hovever, because DRQ3B !ACK Out is still low, DRQ3B !STROBE In
remains high.

e. VWhen DRQ3B !ACK Out finally returns high, DRQ3B !STROBE immediately

goes lov and a nev data transfer cycle begins.

3.5.3 VMEbus Backplane Modifications

Jumpers were installed between Pla-21 and Pla-22 to maintain the
continuity of the I!ACKIN* I!ACKOUT* daisy chain for unused VMEbus
connector positions at slots 5, 6, 9, 11, 13, 15, 17, and 19.

33

34

XP, XR Out
CHO In Dg X

XP DAV Out

\N‘

Gate delays
CHO STROBE In

CHo ACK Out
XP, XR, ACK In

Figure 3.5-7. Simulation Host to Experiment Host Transfer

A 64-conductor ribbon cable with special connectors was fabricated to
connect the experiment bus described in appendix G from VMEbus chassis
slot 4 P2 connector to P2 connectors in slots 7, 8, 10, 12, 14, 16, 18,
and 20. The uncommitted pins of the P2 connectors are used. (See

documentation package A.)

3.5.4 DIU Simulator

Figure 3.5-8 is a block diagram showing additions made to Force ISI0-2
VMEbus cards to adapt them to the interface requirements of the AIPS I/0
network as described in appendix B. The additions reside on a double
sided daughter board that plugs into five IC sockets on the ISIO-2 card.
All power and signal connections between the daughter board and the

ISI0-2 board are made via these five IC sockets.

The major additions and modifications required to adapt the ISIO-2 card

to DIU simulator service were:

a. Operation of DUSCC chips with external 2 MHz receive and transmit
clocks and isolation of DUSCC I/0 lines from the ISIO-2 board.

b. Addition of AIPS I/0 network compatible differential line drivers,

receivers, and termination resistors.
c. Addition of external receive clock synchronization circuitry.
d. Addition of transmitter output flag shutdown circuitry.
e. Addition of a 2-MHz transmitter clock generator.
f. Addition of a second 68230 PI/T chip and address decoder for

timekeeping, daughter board control, and vectored interrupt

selection.

35

wesBelq %20/g pajteleq Joleinwis Nid ‘§-G € 8inbly

ORIGINAL PAGE IS
OF POOR QUALITY

wh iy V0 ol mdey
Wive A3 ooty 31 TNAVE0
CTTTTToms T T T T T T T T T T T T T T T T T T e e e e e o
] <Hm<H
_ . =
| i
wo.Boig %0018 soroiung ia / O1SI| | = Exl [
- t
| ! = _
SW3LSAS GIONVAQY INIFO8 _ | e e n ou !
I 1 a by nVRLS 1
| ! &5 =
} ' "o 1on oy - vouy 1 :
" | Ty “ 1
| “ [e e L
" 1 I!ﬁ_l. | may sog " I
| ! oy ooy — _ |
I “ “ . o e 1 o | .
_ SS_mEe e || :
| m “ ’) 8 boy -y 1 H
H 3 =0 u on \ H
| m O N LB L} b .
. ‘
o B LT 00 o 22 " : ¥ | |
Bl Iy By} W AR Sugam) 2 I m LI v i m
K | 8 u s
momoim 3500 2. 1o ove 400 3 Eom “ . ! = Hm.m ﬁ o Miws wre —<—torew
[H i oot -) o e
I : I s I - "X W <t—+—=my
] H) - "0 | e - 1 ¢
1 w 1 uoon == 1 H
!) ! =] T
! ' e — ~ Vo |
| I o ¥ otn = 1 |
] I ch ! !
) ! “
1 =g
| o — —] ™] “
" — = | |
f
" — .
i 1 L) I |
| ! wR | !
|
“ g ETOOYS Ve | g e] } H |
|||||||||| Lvn-l.lll.l.||||||llllll.|||||.l|.l|||l|||||||||.l||lr||||L
NOUL XIS 30 31v0 | A3N
0 > | @ | v

36

The daughter board and its components are described in detail in this

section.

Network Connector Panel. The DIU interface to the AIPS I/0 network is
via DIN audio connectors mounted on the I/0 network connector panel.
Fabrication details for the sheet metal and silkscreen of the DIU

simulator front panel are in documentation package D.

DIU I/0 connectors and status LEDs are soldered to a small PC board
located behind the panel. Two ribbon cables connect this PC board to the
ISI0 daughter board: a 50-conductor ribbon cable is used exclusively for

I/0 connections, and a 20-conductor ribbon cable is used for status LEDs.

Differential Drivers and Receivers. Differential drivers, receivers,
isolation resistors, and termination resistors are located on the
daughter board. Components used are in accordance with appendix B to
ensure DIU I/0 interface compatability with AIPS I/0 network

requirements.

RX Clock Generator EPLD. Data sent over the AIPS I/0 netwvork are
transmitted at 2 Mb per second. To receive these data each DIU simulator
channel must independently regenerate a clock synchronized to its
incoming data. Clock stability and synchronization requirements are

specified in appendix B.

An Altera EP600 erasable programmable logic device (EPLD) was designed to
use three interdependent state machines to synchronize the DIU clock to
incoming RX data, meet the clock timing requirements of the DUSCC chip,
and to provide deglitching of the received data. All three state
machines are driven by the same 16-MHz system clock. Figure 3.5-9 shows

their interdependence.
Each RX clock EPLD also provides three outputs capable of driving the

mode LEDs on the network interconnection panel. See documentation
package for listings of EP600_RX CLOCK files.

37

Input
from AIPS 11O

HDLC_IN

Edge detect
and deglitch
state machine

RXD to DUSCC chip

RX clock
generator
state machine

RXC to
DUSCC
chip

RX_SAMPLE

Sync enable
state machine

Note: All state machines are clocked at 16 MHz
Figure 3.5-9. Block Diagram RX Clock EPLD

The HDLC_IN signal from the I/0 network is conditioned by the edge detect
and deglitch state machine. The state transition diagram in

figure 3.5-10 shows that only input logic levels that remain for longer
than one clock cycle will be passed to the RXD output. Single clock
cycle duration inputs that place the state machine in either state 010 or
101 are ignored. Edge detection occurs whenever the RXD output changes
from 0 to 1 or 1 to 0. Both the RXD and EDGE outputs are delayed two to
three clock cycles from HDLC_IN. The rising edge of the RXC signal sent
to the DUSCC chip is synchronized with this delay, ensuring correct

operation as shown in the timing diagram in figure 3.5-11.

According to AIPS I/O requirements in appendix B, the RX clock signal
must not be synchronized until edges have been absent from the 1/0
netvork for at least eight RXC periods. The sync enable state machine
shovn in figure 3.5-12 is used to prevent erroneous synchronization. The
state of EDGE is tested at the falling edge of each RXC (RX_SAMPLE). If
no edge is present, the state machine advances to the next state until no
edges have been detected for eight RX samples. The state machine stays
in state 1000 until an edge is detected. Any edge occurring before
reaching state 1000, regardless of RX_SAMPLE, resets the sync enable
state machine to state 0000.

The RX clock generator state machine design guarantees that the RXD
signal from the first state machine is sampled halfwvay between
transitions. DUSCC chip input timing restrictions require that the
minimum pulse width of the RXC output be at least 100 ns. The RXD output
to the DUSCC chip receive input is sampled on the rising edge RXC. The
state transition diagram of figure 3.5-13 and the timing diagram in
figure 3.5-11 illustrate its operation. State 11 ensures that the clock
generator meets DUSCC chip timing specifications.

The clock generator will not synchronize to an HDLC_IN edge unless the

SYNC ENABLE signal is present. Because incoming data transitions are not

initially synchronized to the state machine internal RXC output, the RX

39

40

Input: HDLC_IN

Outputs: EDGE = HO H1 RXD + HO H1 RXD
RXD

"glitch”

EDGE on
next clock

0
EDGE on
next clock
State representation
HDLC_IN.

RXD Ht Ho

Figure 3.5-10. HDLC Input Edge Detect and Deglitch State Machine

HDLC RXD EDGE Rising HODLC HDLC

edge edge sync edge edge edge
RXC
RXD RXD
output sample
Adelay N delay
A i ‘ | i Y

HDLC_IN |

emiz LMLy uuryuyut

clock

Ho R | —

H1 - 1 1

RxD _— | |

EDGE 1 1

5 16 1710 1 2 3[74 15 16 170 _1_ 2 3 {14 15

14 15 16 1711 2 3

16 1710 _1 1 2 3[
Figure 3.5-11. RX Clock EPLD Timing Diagram

41

Inputs: EDGE, RX_SAMPLE
Output: SYNC_ENABLE = SE3

State representation

SYNC_ENABLE is true at state 8 only.

NE = no edge was present at RX_SAMPLE of HDLC clock.
E = edge datected.

EDGE comes from edge detect and deglitch state machine.
RX sample comes from RX clock generator state machine.

asLNp~

Figure 3.5-12. Sync Enable State Machine

42

Inputs: EDGE, SYNC_ENABLE

Output: RX_CLOCK
RX_SAMPLE = 1000

State representation:

@ State number
RXC Q, Qq Qq SYNC_ENABLE & EDGE

Notes:
1. SYNC_ENABLE comes from the sync enable state machine.

2. EDGE comes from the HDLC input edge detect and deglitch state machine.

3. X means don't care.
Figure 3.5-13. RX Clock Generator State Machine

43

clock state at the input synchronizing edge cannot be predicted. The
timing diagram in figure 3.5-11 shows the action of the state machine for
all possible HDLC_IN edge/RX clock state conditions.

TX Clock EPLD. An Altera EP320 EPLD implements a state machine used to
generate a common transmit clock for all the DUSCC chips and flag
shutdown EPLDs on the ISIO daughter board. The DUSCC chip outputs TX
data on the falling edge of the external transmit clock. The output
delay from the falling edge of the clock is too long to guarantee
adequate data setup time for the flag shutdown EPLD, which samples the TX
data output on the rising edge of the TX clock. To allow adequate data
setup time for the flag shutdown EPLD and still meet DUSCC chip external
clock specification, the transmit clock is high for 125 ns and low for
375 ns. This allows maximum setup time in the flag shutdown EPLD while
still meeting DUSCC chip requirements.

This EPLD also generates chip select signals for both the existing ISIO-2
68230 PI/T chip (U100) and the new PI/T chip (U20) added to the daughter
board.

Flag Shutdown EPLD. One of the requirements of appendix B is that I/0
network lines be left in a logic low state, called flag shutdown. Flag
shutdown must be synchronized with data sent from the ISIO DUSCC chips to
prevent spurious data from appearing on the I/0 network. Because of the
high output data rate, it is not possible to control the DUSCC chip
accurately enough to guarantee these requirements without additional

hardware.

The flag shutdown EPLD uses an Altera EP320. The state machine in the
EPLD detects HDLC flags in the transmitted output data stream. When the
flag shutdown enable (FSE) input is high, the state machine searches for
an output flag that meets shutdown requirements. When the FSE input is
low, the state machine searches for the conditions necessary to reconnect
the DUSCC chip output to the I/0 network. Figure 3.5-14 shows a state

transition diagram for this state machine.

44

Flag shutdown
state

State representation:

L [FSE_L-L-TXQ)
or

Abbraeviations:

FSE_L latched flag shutdown enable
L input logic level

TXD HDLC transmit data

Figure 3.5-14. Flag Shutdown State Machine

45

The flag shutdown EPLD also ensures that its associated DUSCC chip
transmitter output is not connected to the I/0 network at pover up. Two
inputs ensure that this does not happen: !SYS RESET is brought low
wvhenever the VMEbus RESET signal is active; FORCE_FSD is connected to an
output of the additional PI/T, which always is pulled high at system
reset. The local ISI0O-2 68010 CPU must program the FORCE FSD line low
before the flag shutdown enable input can be recognized by the EPLD.

Before FORCE FSD is pulled low, the TX CLOCK input must be present to the
flag shutdown EPLD to ensure that the EPLD remains in the flag shutdown
state. Failure to follow this sequence will cause the DUSCC transmitter
output to be connected to the I/0 network on initial power-up,

potentially corrupting the entire I/0 network.

LED Driver EPLD. Several bi-color (red/green) LEDs are provided on the
netvork interconnection panel to provide status information concerning
operation of the DIU simulator. Two of these EPLDs are provided to
control the eight-channel status LEDs. See LED DRIVER EPLD listings for
details.

Simulated Node EPLD. A Cypress Semiconductor 22V10 EPLD is used to
condition DUSCC chip inputs and outputs to support the required operating
modes of the DIU simulator.

Normal mode directly connects the inputs and outputs of each DIU
simulator channel to its appropriate differential driver/receiver and I/0

connector.

The partially simulated network of the small-scale system required a full
complement of DIU simulators, but with reduced interconnection
capabilities. To meet this requirement, the node mode of the 22V10 mixes
data in a way similar to an AIPS node; each DUSCC input channel receives
the output of all other DUSCC channels on the board plus input signals

from the active I/0 connectors.

46

In probe mode, the 22V10 disables transmitter output to the two active
1/0 connectors. It also combines input and output data that appear on
the active I/0 connector input and output pins, enabling one DUSCC chip
to monitor all data on the I/0 network. (This mode of operation is used
only for troubleshooting I/0 network problems and is not used during
experiments.)

Delay Generator. Experiment timekeeping in the DIU simulators is
performed by the 24-bit timer in the added PI/T. The input timebase is
the reference fault-tolerant clock (FTC) signal on the P2 connector

experiment bus.

Vhen a PI/T timer is read by the local CPU, the three bytes of the 24-bit
timer must be read individually. There is no way to snapshot the value
in all three bytes of the timer with a single operation. This can lead
to rollover errors caused by reading the timer while its value is
changing. Four consecutive bytes are allocated to the timer in the PI/T,
allowving use of the 68010 MOVEP.L instruction to obtain all timer bytes
with a single, noninterruptible instruction, the rollover problem is
still present, however. The first byte read by the MOVEP.L instruction

is a dummy byte, which always returns a value of O.

A delay generator EPLD using an Altera EP600 was designed that monitors
the dummy read address of the timer. When a dummy byte read access is
detected, the input FTC is disabled for the four read cycles of the
MOVEP.L instruction necessary to obtain the dummy byte and three timer
bytes. Any FTC pulse that occurs during the disable period is made up
with an extra clock pulse at the end of the last read cycle. This
guarantees that the timer bytes will never be read while they are

changing and that no input FTC pulses will ever be missed.

External timer input restrictions for the PI/T limit its clock period to
eight times the PI/T clock period. The ISIO-2 board PI/T chips use a
7.3728 MHz clock, limiting the external timer input to 1.09 us. Because

the delay generator chip may insert an extra clock pulse after a timer

47

read cycle, the input period must be greater than the duration of the
four read cycles generated by the MOVEP.L instruction + 1.09 us. For the
ISI0-2 board, this restricts the external timer input period to 3.26 us
or longer. The AIPS FTC period is between 4 and 4.25 us, which meets

these restrictions.

The delay generator EPLD also synchronizes the start of timekeeping in
the DIU simulator. Inputs are provided that inhibit the FTC until the
local inhibit signal is removed and both the VME sync and FTP sync

signals from the experiment bus are at the RUN state.
3.5.5 I/0 Network Pault Inserter

Additional details of fault inserter construction are located in the

documentation for the wire wrap board in documentation package E.

The eight network fault insertion channels are located on the VMEbus wire
wrap board and are controlled by signals from the experiment bus
described in appendix G. Figure 3.5-15 shows an overall block diagram of
the wire wrap board. Figure 3.5-16 shows the design of a network fault
insertion channel in greater detail.

Two Altera EP320 EPLDs are used for each fault insertion channel. The
NET_FAIL SELECT EPLD contains a 3-bit logical address register used to
map the physical channel address to a logical address. The NET_FAIL MODE
EPLD contains a 4-bit fault register that controls the in and out faults.
Channel physical addresses are hard-wired to the SA0O-SA2 inputs of the
NET_FAIL SELECT EPLD.

To initialize a physical fault insertion channel, its logical address
register and fault register must be programmed. This can only occur
while the V-SYNC line is low (simulation host VME sync line in STOP

state).

48

wesbelq ¥oolg poNeIdd eoeualu| [0JU0D ‘UOIESU| YN S| -G°€ aInbid

o) g v
"o 22 dev ‘Y0 SR -m ele)
w/ve A3 w—— > NWV®0| e
oot R M
|
woboyg wooig | 1 "] i)
4 pioog dosm Sam BN “ i = —] ¢
1 “ W o m
SWILSAS GIINVAQY INI308 1 | Y :(D_w
!] %1 M M I
| 1 Y
1 ' e e T :
! ' w1 peir] w1 SRR Ry H
“ | ~ig @) ban K 1] a1 G
| lﬁu
“ “ = _
i 1 |
| 1 - Y
n | m RE ===,
1 i H] 3
. !] J |,
) " i = :
s AR
- “ . : _— | T
| s H]
! M N Tm | e | H
“ . “ [_.1 v W "] m
d
| : | ., L]
4 | 1 - o wow|ia -4 _
i | - oetas _
1 1 Yo "o wi :ﬂﬁu I
| | somovy| 20)
| ! o water | g0
! ! v “matey v "
JE——— | | “ o Ma | f—
! | “ - ey <] rr 1
I | L) e/ oniag |
| “ 0 |
i BRI TP VST W
| | "
i
1 I 1 ! {
" ‘¥ “ “
EywE T
|) | |
" e i o - —— e — - - e - — - ———— D T —— e —— A e e e — e - am M M e e e - e e e e e
ey wiew o wadap hi wee | -
NOAL IS 0 1v0 | AN
0] 8 v

49

ORIGINAL PAacE 3

OF POOR QUALITY

wesbeiq %2019 073 §Ne WOMBN '94-§°€ 8inbly

g - 8 OMO WYITIIN Buwouspy
e8/01/0t 9981 ‘2 1Oy :3ivQ 0dl edoq
v AN VOSINIOL "J°L INMYHQ
X o 18y
Voo low 4 50 1 shue Bgy s e oy et armyy (T Y o
TR R R AT M T
X » 3 Boyaeme
boig w2018 Q143 103 RJom)aN O S At OVETVE o Ov TV 0 Wew v (sieRR L = b
op PEEw
0020 vo mm. L] 1 g
SWILSAS O3IONVYAQY 9NIF08 -, 29 5 e Vo owl w0 poveowt &) S 1T = vﬂq.ﬂ
™ - M exomm
2 5 ® T 1 [) .
o — ety RS — vy S
wunn {wlolo Frem—— e e - hrey _lJ!”M‘x‘!
umidmseg | o jonfn i L
WROR W7 1 IG W7 WS W W3 | I
- Wi } .
- HBHE 1
Puny = pon j0f0]0]0 © won w (i}
o _8_5*.3..& 1 wen v (1} ¢
BT R 1D SO o ssem 170 (T} -
A A AT o o D
(g mpmang) 2oy 0y g [o [3 |0
mumon lmolo]o
1 on]n N
[4
l
— Qv TvalOov-2vD ¥ (0=~ ¥ way » g wry
sebunp pabaangs ovs-2zvsJe{ov-2v]) ¥ (0~] * 93 émag
‘!Iq-““._.l’w.-“h“d l\-u..\-. v ¢ ovavh b ia il
NOU diS 30 V0 [AJY i
a J 8 v

ORIGINAL PAGE IS
OF POOR QUALITY

S0

Initialization proceeds as follows:

Vith Pault_Strobe high, the fault bus is set to select the desired
physical to logical address mapping: FD7 low, FD4-6 specifies the
physical channel address, and FDO-2 specifies the logical address.

The Fault_Strobe is brought lov to store the logical address in the
logical address register of the NET_FAIL_SELECT EPLD.

The initial condition for the NET_FAIL MODE EPLD is placed on FDO-3
vhile the Fault_Strobe is still low. The state of FD4-7 remains

unchanged.

The Fault_Strobe is brought high, storing the initial fault condition
in the fault register of the NET_FAIL MODE EPLD. Note that the
initial fault condition is written to a physical address, not a

logical address.

Vhen the simulation computer enters the run state, the V_SYNC line in the

experiment bus goes high. This changes the fault insertion system from

physical to logical address control.

To cause a fault to a logical address the following actions occur:

The fault bus is set to select the desired logical address and fault
condition: FD7 low, FD4-6 specifies the logical address, and FDO-3

specifies the desired fault condition.

The rising edge of the Fault_Strobe stores the fault condition in the
fault registers of all channels programmed to the selected logical

address, causing the fault.

Note that the fault bus can be set up with Fault_Strobe at either a high

or lov level and that only the rising edge of the Fault_Strobe has any

51

effect. In practice the Fault_Strobe is always left high when the fault

bus is not in use.
3.5.6 Miscellaneous Wire Wrap Board Functions

Detailed documentation of the wire wrap board is found in documentation

package E.

The miscellaneous wire wrap board functions are implemented with two
Altera EP320 EPLDs (FTC_GEN and FTC_CONTROL) and AIPS I/0 compatible

differential line drivers, receivers, and terminators.

VME FTC Generation. The FTC_GEN EPLD is primarily used to generate a
4.125 usec period FTC that can be used for the timebase of the simulation
host. This clock source is available on the front panel of the wire wrap
board. A bi-level LED indicates amber when the clock is operating
correctly. The output of the VME FTC is high for 2.0 us and low for
2.125 us to match the normal operation of the AIPS FTP FTC.

VME Sync. VME sync is generated by PI/T J1 H4 output on the OPIO-1 board
and routed to the wire wrap board in the experiment bus. It is converted
to a differential output signal that meets the AIPS I/0 network
requirements of appendix B and routed to an AIPS I/0 connector the front
panel of the wire wrap board. The FTC_CONTROL EPLD drives a bi-color LED
on the front panel that indicates the state of the VME sync signal: red
for V_STOP, green for V_RUN.

FTP Sync. The FTP Sync signal originates on an AIPS I/0 connector on the
front panel of the wire wrap board. AIPS I/0 network-compatible
differential driver and termination resistors convert it to an experiment
bus level signal. The FTC-CONTROL EPLD drives a bi-color LED on the front
panel that indicates the state of the FTP Sync signal: red for F_sToP,
green for F_RUN.

52

Reference FTC Select. The FTC_CONTROL EPLD is used to select the source
of the reference FTC used for the experiment timebase in the simulation
host. Either the VME-generated FTC or an external FTC can be selected.
As vith fault insertion setup, the reference FTC source can only be
selected when the V_SYNC line is low.

To select the FTC source and external event polarity in the FTC_CONTROL
EPLD:

a. WVith FSTB N high, set FD7 high and set FDO low to select the internal
FTC or FDO high to select the external reference. Set FD1 to the

desired external event polarity (see below).

b. Cycle FSTB_N low, then high, vhile keeping the FDO and FD7 values
stable.

Two LEDs on the wire wrap front panel indicate the clock reference
selection. The VME FTC bi-color LED, driven from the FTC_CONTROL EPLD is
illuminated when the VME PTC is selected. The EXT FIC bi-color LED,
driven from the FTC_GEN EPLD, is illuminated when the external FTC is
selected. The appropriate LED is amber when the selected FTC is
functioning correctly and red or green wvhen the selected FIC is stuck at

logic high or logic low.

External Event Detection. AIPS I/0 external event input is provided on
the vire wrap board front panel. The active polarity of the event is
programmable as described for FTC source selection, above. The logic
level of the external event input on the experiment bus is inverted if
FD1 is low at programming and non-inverted if FD1 is high. The external
event bi-color LED reflects the logic level of the external event signal
on the experiment bus. The LED is green for logic low and red for logic
high.

The external event signal on the experiment bus is routed to PI/T J1 H3
on the OPIO-1 board.

53

The external event input was not used in the small-scale system.

3.5.7 VMEbus Computer Timekeeping

The master experiment clock used by the VMEbus system is the timer in
PI/T J1 on the OPIO-1 board. A small daughter board adds a delay
generator EPLD to control the action of the external timer input. Its
output is bused to all other PI/T chip external timer inputs on the OPIO-

1 board. The OPIO delay generator operates the same as the DIU simulator

delay generator.

The timer in PI/T J3 is used for the fault injection delay timer.
3.6 SOFTVARE DETAILS

3.6.1 ATPS FTP System Services

AIPS system services were modified by CSDL to support the special
requirements of small-scale system testing discussed in reference 1.

Modifications included adding the means to:

a. Control the time phasing of FDIR execution in both the CP and IOP

with respect to experiment start reference time.

b. Disable background self-test routines.

c. Select the amount of RAM included in the exhaustive RAM background
self-test.

d. Disable I/0 network spare link testing.

e. Selectively control the start of the CRT display tasks.

54

3.6.2 ATPS FTP Pseudoapplications

Requirements for pseudoapplication softvare is discussed in reference 1.
Listings of pseudoapplications are included on the softvare tape (see

appendix I).

3.6.3 VME System Kernel and Utilities

The VMEbus CPU-29 uses silicon software components from Ready Systems.
The Ready Systems concept is that additional functions in EPROM can be
added to a core operating system kernel (VRTX32) as required with very
little need for custom configuration. The components can be verified to
operate correctly independent of the hardware platform on which they will

ultimately reside.

The Ready Systems silicon software components installed in EPROM include
VRTX32, IFX, and RTscope. A board support package (BSP) from Ready
Systems was modified to support the specific requirements of the general
purpose test system. The Ready Systems Real Time C (RTC) library,
although not a software component, was also placed in EPROM. The RTC
library is a sharable library; its inclusion in EPROM allovs smaller
load modules to be developed for the CPU-29.

The IFX extension to VRTX32 provides MS-DOS compatible RAM disks and
allows multiple user tasks to share physical devices such as the
simulation host console. Each task can send messages to the console to

log its progress.

Further information on the Ready Systems products used can be found in

references 3 through 13.

To interface the VMEbus simulation system with the MicroVAX experiment
host computer system, the VULTURE program was written. Portions of the
VULTURE program reside in both the VMEbus system and the MicroVAX system.

Appendix H presents a detailed discussion of this program.

55

Noncopyrighted portions of the VME system kernel and utilities are

included in the software tape (see appendix I).
3.6.4 DIU Kernel

The ISI0-2 board from Force Computers comes with a small operating system
kernel that was not adequate for the operation of the DIU simulators for
the small-scale system. The firmware operating system was only used to
load the DIU kernel, at which point the onboard ISI0-2 firmware was
disabled and DIU simulator software was loaded. All kernel functions are
implemented as TRAP instructions. User access to kernel functions is via
macros that complete the setup for the traps. COMMAND KERNEL.INC on the

softvare tape discusses the operation of the specific macros.

All DIU kernel operation is polled; no interrupts are used. This allows
minimum latency for user programs that use interrupts and kernel

functions.

The kernel operates in supervisor mode; user programs may operate in

either supervisor or user mode.
3.6.5 DIU Simulator

The core source files for creating DIU simulator software are DIU_INIT,
DIU_START, and DIU_SVC. These files are linked with NxDIUy files that
define unique DIU configurations. Four unique DIU configurations were
created for the small-scale system and reside in absolute files
N1DIUl.ABS, N1DIU2.ABS, N2DIU1l.ABS, and N2DIU2.ABS.

The NxDIUy.SRC files are created by a DEC C program called

MAKE_FRAME FILES that takes frame definitions from FRAME DATA.C, DIU.H,
and unique DIU definition NxDIUy.DEF files to create the source files.
The source files are assembled using the Microtec Assembler on the
development host to produce linkable DIU configuration files for

inclusion with the core DIU files.

56

1f modification of transaction definitions or timeouts is required, the
FRAME_DATA.C file is modified, recompiled, and MAKE_FRAME FILES is
re-linked.

To modify the allocation of DIU addresses to simulator board absolute
files the NxDIUy.DEF files are modified, and the DCL command file
MAKE_TABLES.COM is used to create the source and object files. Command
file LINK DIU.COM creates the new DIU absolute files.

The new absolute files are copied to the experiment host computer for

loading in the simulation host and DIU simulators.

The new set of DIU absolute format files must be converted to executable
form in the simulation host and saved on the experiment host hard disk as

follows:

a. DOWN _LOAD NxDIUy.ABS NxDIUy.ABS downloads the absolute file to the
DRAM: disk in the simulation host.

b. VCONVERT NxDIUy.ABS NxDIUy.EXE converts the Motorola S record format
absolute file to an executable image file. Note that the VCONVERT
command automatically makes the executable image file a contiguous
file.

c. UP_LOAD NxDIUy.EXE NxDIUy.EXE saves the executable image in the

experiment host.

DIU simulator software uses a double buffering scheme in the ISIO-2 dual
port RAM to collect data during experiment runs. Each buffer is capable
of holding 46 kB of data. A handshake scheme with the VMEbus computer
vas established to allow control of the buffers and to notify the VMEbus
computer when a buffer was full. Software locks prevent data corruption
in either buffer while allowing real-time buffer flushing by the VMEbus
CPU and buffer filling and svapping by the 1S10-2 CPU.

57

Small scale system tests were short enough in duration that the DIU
simulator buffers did not overflow during normal operation and were

unloaded at the completion of each experiment run.

The DIU_START module controls the sequencing of operations of the DIU
simulator during an experiment. It is responsible for calling
subroutines in the DIU_INIT file which set up peripheral chips,
initialize interrupts, disable interrupts, etc. The DIU_START module
also signals the VMEbus CPU to perform a final buffer flush at the end of
an experiment run before returning DIU simulator operation to the DIU
kernel. The DIU simulator software is interrupt driven during experiment
operation. Interrupt service routines in the DIU_SVC module are used to
remove data from the DUSCC chip FIFOs when a frame passes address
screening. The DIU_SVC module also validates a received frame, prepares
an appropriate response, logs data and errors, and controls the eight

channel LEDs on the front panel.
3.6.6 I/0 Network Probe

I/0 network probe software used all the core DIU simulator routines,
replacing DIU_SVC with FAST_PROBE_SVC. No address screening is used in
the probe; all data received is logged in the double buffer scheme.
Because of the amount of data collected by the probe, the VMEbus CPU is

required to flush buffers in real time.

The turn around time of some of the network transactions is so fast that
the probe software may not have time to recover and may erroneously
record bad data. The validity of probe data can be determined by
comparing DIU simulator and probe data and by the selected probe location
in the network.

Operation of the probe during small scale system integration showed that
the buffers could hold a maximum of 30 seconds of data before overflow
occurred. The VMEbus CPU polled each probe every 500 msec to ensure that
its buffers were promptly flushed.

58

3.6.7 DIU Data Formatting

Data from DIU simulators was recorded in the ISI0-2 dual port RAM in
binary form to maximize storage capacity. When data are removed from the
dual port RAM, the VMEbus CPU program first removes the binary format
data to a temporary binary file in DRAM: disk. At the completion of an
experiment, the temporary file is then converted to an ASCII data file in
the DRAM: disk. Only the DIU simulator data fields required by the data

analysis program are saved.

The UNLOAD program operates slightly differently on probe data. It is
used in real time during an experiment to remove data from the ISIO-2

probe buffers. Post experiment formatting saves all data for later use.
3.6.8 Fault Insertion Control

The fault insertion control program, FAULT, is an optional program for
use only during experiments requiring I/0 network fault insertion. It
runs autonomously after it is loaded and started on the VMEbus CPU. It
requires that a FAULT.DAT file be present on the DRAM: disk wvhich defines
the data required to initialize each fault channel, perform physical to
logical mapping, set up a time delay to the fault, and define the fault

condition.
3.6.9 VME Experiment Control

A master simulation host experiment control program (CONTROL) was used to
sequence the simulation host through experiment synchronization
handshakes discussed in appendix A. The CONTROL program uses a
CONTROL.DAT file in the simulation host DRAM: disk to determine which DIU
simulators are active. This file must agree with the actual use of DIU

simulators controlled by the experiment control command files.

The CONTROL program controls the VME Sync output to the FTP. It also

59

moni .ors the FTP Sync input. The program can be aborted at any time it
is active by manually cycling the VME Sync output using VGO and VNO

commands.

3.6.10 MicroVAX Interface Softwvare

The MicroVAX interface to the VMEbus simulation computer is controlled by
VULTURE software which resides in both the VMEbus computer and on disk in

the micro vax. Appendix B discusses this software in detail.

The DRQ3B interface to the VMEbus system is controlled by a DEC supplied
driver. DEC C programs were written to interface VULTURE protocol to the
DRQ3B driver.

Details on the operation of the VRIP interface which is used to control
the FTP are available from CSDL.

3.6.11 Experiment Control Command Files

All experiment operation was controlled from the experiment host. When
the experimenter logged in, the account which was active set up several
VRIP related aliases. The first operation was to initialize the VRIP

interface, providing access to the FTP in the system under test.
Following successful initialization of the VRIP system, the experimenter
then set up the environment for data collection, executable image
loading, and simulation computer control.

Several classes of DEC DCL command files were used:

a. VRIP initialization control files were supplied by CSDL and are used

to set up the interface and screen for FTP control.

b. Definition command files created symbols which accessed command
files. VULTURE.COM and SYMBOLS.COM set up the experiment environment.

60

Simulation computer loading was controlled by VME_ LOAD EXE.COM.

FTP computer loading was controlled by LD _xx.COM files in experiment

directories.

FTP program patch files were used to correct problems in FTP IOP

programs caused by the VRTX Ada compiler.

FTP experiment setup command files defined unique experiment

parameters.

Program execution was controlled by the RUN_EXP command file. It
accessed other command files which loaded DIUs and extracted data

from both the simulation computer and the FTP.

FTP data collection was controlled by the GET FTP command file. The
command file used the known configuration of FTP memory to extract

experiment data without additional operator input.

Simulation computer data collection vas controlled by the UNL_DIU
command file. It controlled the post experiment operation of the

UNLOAD programs.

It vas not possible to totally automate the control of small scale system

testing because of the need to manually record the FTP logs.

61

1.

10.

62

REFERENCES

G. C. Cohen, et al., Design of an Integrated Airframe/
Propulsion Control System Architecture, NASA CR-182004, March 1990.

DRQ3B Parallel DMA I/0 Module User’s Guide, DEC order number
EK-47AA-UG-001.

VRTX32/68020 Versatile Real-Time Executive for the MC68020
Microprocessor User’s Guide, Software Release 1, Ready Systems
document number 541331001, April 1987.

VRTX32 C Versatile Real-Time Executive User’s Guide, software
release 1, Ready Systems document number 542101001, April 1987.

RTscope 68000 Real-Time Debugger and VRTX32 System Monitor for
Motorola 68000 Family User’s Guide, Ready Systems document number
531311001, November 1987.

IFX I/0 and File Executive for Real-Time Systems External
Specification, Ready Systems preliminary document number
521311X07, March 1988.

Getting Started With Silicon Software Components, Ready Systems
document number 590023004, July 1987.

How To Write a Board Support Package for VRTX, software release 3,
Ready Systems document number 5900430003, November 1986.

VRTX Technical Tips, Ready Systems document number MC071000,
September 1986.

VRTX and Custom Queues, Application Note, Ready Systems document
number 40001, November 1983.

11.

12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES (Continued)

VRTX32/680x0 Timing Reference, software release 1, Ready Systems

document number

Portable C RTL/68000 Installation Guide, Ready Systems document

540011001, May 1987.

number 614203002, June 1988.

RTC Run Time Library User’s Guide, Ready Systems document number

615003004, June

Force Computers

Force Computers

Force Computers

Force Computers

Force Computers

Force Computers

1988.

CPU-29 User’s Manual.

DRAM-E4 User’s Manual.

ISI0-2 User’s Manual.

MOTH User’s Manual.

OPIO-1 User’s Manual.

PVR-20 User’s Manual.

63

64

APPENDIX A: SMALL-SCALR SYSTEM EXPERIMENT SYNCHRONIZATION
Introduction
The AIPS FTP and the VMEbus simulation computer require a means of
signaling each other of their status for coordination of experiments.
The start synchronization interface between them implements this
requirement.
Start Synchronization Physical Interface

Interconnections

VMEbus to FTP: [V _SYNC] signals VMEbus simulation computer status
FTP to VMEbus: [F_SYNC] signals FTP status

Signal levels correspond to AIPS I/0 network signal levels

V_RUN is logic high F_RUN is logic high
V_STOP is logic low F_STOP is logic low

Connectors, differential drivers, receivers, and terminators conform to

requirements of reference 1.
VMEbus Simulation Computer States
Initialize [V_STOP]

VMEbus simulation computer hardware and software are initialized.

Experiment clocks are initialized to O.
Ready [V_RUN]

The VMEbus simulation computer signals that it is ready for
simulation by changing [V_SYNC] from [V_STOP] to [V_RUN].

A-1

In this state DIU simulator initialization is complete. Data logging

has not started and the experiment clock is not yet running.

Run [V_RUN]

Transition to the Run state is signaled by the FTP changing [F_SYNC]
from [F_STOP] to [F_RUN].

The simulation computer and DIU simulator experiment clocks are

started. Data logging starts here.

Abort [V_STOP]

[V_SYNC is manually changed from [V_RUN] to [V_STOP] to abort all
VMEbus actions before the normal end of an experiment run. Data
collection is terminated, experiment clocks are stopped, and all logs

are scrubbed. No data are saved in the VMEbus system.

Halt ACK [V_STOP]
In response to an FTP request to end the current experiment, [V_SYNC]
is changed from [V_RUN] to [V_STOP], data collection is terminated,

data logs are flushed, the ending time of the experiment is recorded,

and experiment clocks are stopped.

Idle [V_STOP]

Experiment is complete. The VMEbus system waits for further user

commands with experiment clocks stopped.
Error [V_STOP]

Reached because of a sequencing error during small-scale system
initialization. The FTP must be manually halted by experiment

operator.

A-2

AIPS FTP Computer States
Initialize [F_STOP]

AIPS FTP hardware and Ada software are initialized, up to the point
of determining the absolute time for tO.

Vait [F_STOP]
The FTP vaits in this state until [V_SYNC] is at [V_RUN]. If
[V_SYNC] is already at [V_RUN], the FTP passes through this state to
Ready without error.

Ready [F_STOP]
The absolute time for t0 is determined for scheduling FDIR and
application tasks. All tasks are scheduled. A task that will place
[F_RUN] line at [F_RUN] is created and scheduled to run 1 sec before
to0.

Run [F_RUN]

The FTP signals the start of an experiment by changing [F_SYNC] from
[F_STOP] to [F_RUN].

Halt [F_STOP]
Experiment has run for the specified duration. [F_SYNC] is changed
from [F_RUN] to [F_STOP] to request the VMEbus simulation computer to

end the experiment.

The FTP de-schedules user application tasks and performs any cleanup

operations required.
Idle [F_STOP]
Experiment is complete. The FTP waits for further user commands.

A-3

Start Synchronization Protocol

Figures A-1 and A-2 illustrate the handshaking between the FTP and the

VME system during experiment operation.

Normal operation

Both the VMEbus simulation computer and the AIPS FTP begin in their
Initialize states with sync lines at [V_STOP] and [F_STOP]

respectively.

The AIPS FTP proceeds to the Wait state when its initialization is
complete regardless of the status of [V_SYNC]. If [V_SYNC] is at
[V_RUN], it proceeds directly to the Ready state.

When the VMEbus simulation computer is ready it changes from the
Initialize to the Ready state and signals the FTP by changing
[V_SYNC] from [V_STOP] to [V_RUN].

In the Ready state the FTP schedules FDIR, application tasks, etc.
The Run state may be entered immediately or after a delay to allow
the system to settle into normal operation. The FTP signals that it
has arrived at the Run state by changing [F_SYNC] from [F_STOP] to
[F_RUN]. Transition to [F_RUN] in the small scale system occurs 1

sec before the FTP begins normal operation.

The AIPS FTP can request termination of an experiment by changing its
F_SYNC line from F_RUN to F_STOP.

VMEbus-requested termination

The VMEbus simulation computer is manually forced to abort its action
and enters the Abort state, changing [V_SYNC] from [V_RUN] to
[V_STOP], terminating data collection, scrubbing its logs, and
stopping the experiment clocks. VMEbus computer enters the Idle

state.

WEbus Simulation Computer

Initiolize
[v_sTOP]

{F_RUN]

(F_sTOP]

[v&sr:)P | [F_RUN)

(F_xxx]

[F_sToP]

Holt—Ack
{v_STOP]

[v_STOP] [V_RUN] = stote of [V_SYNC]
[v_xxx] = [V_SYNC] don’t core

AIPS FTP

Iniliolize

[V_RUN]}

[V_RUN]

{End Exgeriment]

idie
[F_sTOP]

[F_S10P] [F_RUN] = slote of [F_SYNC]
(F_xxx} = [F_SYNC] don't core

Figure A-1. VMEbus and FTP Experiment Handshaking and Synchronization

ot — Delta-T

T|N
-0l fo\ fel

To

VRUN
CcP iop

completed completed

IOP °°° ®

TO ready

@

|

FSTOP FRUN

VME

000

Deita_FRUN
]

Notes:

« FRUN and FSTOP are states of the FTP sync line
» VRUN is a state of the VME sync line

aI Activity

Sync CPs
Start FDIR
Set FSTOP

Sync IOPs

Start FDIR
Wait for CP_Completed

@ Prepare for experiment

Set VRUN

Read time T, (T , occurs
Delta_T ticks from here)
Create IORs

Initialize data collection
Set CP_Completed

@ Grow networks

Create application IORs
Set IOP_Completed

@ Schedule application

tasks to start at Tg
Schedule FDIR at

(T P+ Delta_T) + CP_DT
Set Tg ready

Set FRUN

Schedule FDIR at
T+ Delta_T) + |OP_DT

Figure A-2. Small-Scale System Application Initialization

AIPS FTP requested termination

The AIPS FTP enters the Halt state, changes [F_SYNC] from [F_RUN] to
[F_STOP], terminates data collection, flushes its data logs, and
records the ending time of the experiment. It remains in the Halt
state until the VMbus simulation computer signals that it is in the
Halt_ACK state by changing [V_SYNC] from [V_RUN] to [V_STOP].

The experiment clocks are stopped by the change of the [F_SYNC] line,
and the VMEbus computer and the AIPS FTP enter the Idle

Error operation
The only error considered in the accompanying state diagram is the
error that occurs vhen the AIPS FTP is in the Run state before the
VMEbus simulation computer enters the Ready state. When this occurs,
the VMEbus simulation computer passes through the Error state,
ensuring that [V_SYNC] is [V_STOP].

REFERENCES

1. AIPS 1/0 Network Interface Requirements.

A-7

A-8

APPENDIX B: AIPS I/0 NETWORK INTERFACE REQUIREMENTS

1.0 AIPS I/0 NETWORK

The AIPS I/0 network is a dynamically reconfigurable communications
netwvork using modified HDLC synchronous serial protocol for data
communications between FTPs, nodes, and DIUs. This document describes
the physical interface and software protocol necessary to use the
network.

2.0 PHYSICAL SPECIFICATIONS

2.1 CABLING

The FTPs, nodes, and DIUs that make up the AIPS I/0 network are
interconnected by two pair, AWG 24 twisted foil shielded pair cable
(Belden Datalene 9729). Shields for each pair are isolated from each
other. The nominal cable impedance is 10092, velocity of propagation 78%,
12.5 pF per foot between conductors and 22 pf per foot to shield. See
figure B-1.

2.2 CONNECTORS

Patch cords and panels for the AIPS I/0 network as implemented at CSDL
use Switchcraft 5 contact DIN audio connectors. Cable connectors with
socket contacts are Switchcraft P/N 06ALSF; panel connectors with pin
contacts are P/N 57KD5M. See figures B-1 and B-2.

2.3 DIFFERENTIAL LINE DRIVERS

The AIPS I/0 network uses RS-422-compatible differential line drivers

(26LS31 or equivalent). The drivers are always connected to the

B-1

8IqBD YoIed YIOMIIN O/f YSdY! i-g ainbld

a 0/ 8 v

996¢L ‘0L AVA Avg

AN NOSTIMMOL 'L ‘NMYYNC

WOYENI0Q JO}IBUUED
318v) Oyl WOJ J00 UIDLS BQQNI OY| SAOWAY ¥

HOLYd XMOMLIN 0/1 vSdv! "810)9npu0d j0 YIBus| pepieysuN ST T

SWILSAS QIINVAQY ONIFOS SIOUIWIS) J0138UU0I 0}

SUO1IO0UU0) JBA0 Buness upys Aiddy 2

“JAYjouD U0
Wosp PIOIRS] MOWSs 18NW PIAYS 'L

‘SIION

(sad Z) 4STVH0 HOIIYIpMS

awms g,

i
N- € -~ Y Al 1no -
S = b 18
I |
i '
I i
1 <1z QWS
- S A QWS NIJHO JO NIVHQ Al
I XV e we
o + v v ETTT) LS N
826 vepieg _
_1 L _

NOU IS 3 uvo A

£ 20V + 0.4V 1
200 +0UT +IN 2000
4 \

200

—out _IN 261532
1

Figure B-2. AIPS I/O Network Interface

network and enabled; no tri-state operation is allowed. Minimum VOH for
a driver output is 2.5V (3.2V typical); maximum VOL is 0.5V (0.32v
typical).

Differential driver outputs are connected to the AIPS I/0 network
through 200Q resistors that are the boundary of the AIPS IOS - AIPS 1/0

network fault containment region (see fig. B-2.)
2.4 DIFFERENTIAL LINE RECEIVERS

The AIPS I/0 network uses RS-422-compatible differential line receivers
(261532). The receiver differential input voltage sensitivity is +/-
0.2V minimum (+/- 0.06V typical) over a common mode voltage range of +/-
7V. Input hysteresis is typically 0.03V.

Interconnecting cables are terminated at the differential receiver with

a 100Q resistor connected between the noninverting and inverting inputs.

The noninverting input of each differential receiver is pulled to ground
by a 2,000Q resistor, and the inverting input is pulled up to +5V dc by a
2,000Q resistor (see fig. B-2.)

2.5 I/0 SIGNAL LEVELS

Signal levels on the AIPS I/0 network with respect to line driver local
common will be VOL = 1.30V, VOH = 1.70V worst case (VOL = 1.47V,

VOH = 2.05V typical). The differential voltage between the signal lines
in the interconnecting cables will be between +/- 0.40V worst case (+/-

0.5 V typical) assuming negligible cable resistance.

See figure B-2 for a typical differential driver/receiver configuration.

B-4

2.6 I/0 LOGIC LEVELS AND NOISE MARGIN

Logic levels in this specification refer to the differential voltage
levels between signal conductors in I/0 network cables. Low is
synonymous with logic 0; high is synonymous with logic 1.

A device driving I/0 network signal lines must ensure that the
noninverted signal line is at least 0.40V more positive than the inverted
signal line for logic 1 and 0.40V more negative for logic O.

A receiving device connected to the I/0 netvork must detect a logic 1
vhen the noninverted signal line is at least 0.20V more positive than the
inverted signal and detect a logic O wvhen 0.20V more negative. The
receiver should incorporate input hysteresis to minimize noise effects at

switching thresholds.

These specifications ensure a differential noise margin of +/- 0.20V

minimum.

2.7 COMMON MODE VOLTAGE RANGE

The voltage difference between the commons of interconnected elements of

the AIPS I/0 network shall be less than +/-7V.

3.0 NETWORK POLLING AND NETVWORK TRAFFIC

3.1 NETVORK POLLING

Logic levels are used by the AIPS 10S to poll for unsolicited inputs.

Note: The small-scale system does not poll for unsolicited inputs.

B-5

3.2 NETVORK TRAFFIC

Network traffic is represented in NRZI format where a 0 is signified by
a transition and a 1 is signified by the lack of a transition. NRZI data
in the AIPS system is sent at at 2 megabits per second (Mbps). Network

traffic is organized into HDLC frames, which are described below.

4.0 AIPS HDLC PROTOCOL

The AIPS HDLC protocol modifies standard HDLC protocol by adding "Flag
Shutdown" and by deleting the "Abort" and "Idle" HDLC commands. Physical
conditions that represent "Abort" and "Idle" are found on the AIPS I/0

netvork; however, they do represent these commands.

4.1 HDLC DATA

An HDLC data stream is distinguished from an HDLC command by the number
of consecutive NRZI 1s allowed. No more than five consecutive NRZI 1s
are allowed for a valid HDLC data stream; after five consecutive NRZI 1s,
a NRZI 0 is inserted (zero insertion). Inserted NRZI Os are
automatically removed by the receiving HDLC interface chip (zero
deletion). 2ero insertion and deletion guarantees that HDLC commands
can always be distinguished from HDLC data and that edges are always

available within a data stream for the synchronization of data clocks.

4.2 HDLC COMMANDS

HDLC commands contain at least six consecutive NRZI 1s. Only the HDLC
Flag is defined in the AIPS HDLC protocol. HDLC Abort and HDLC Idle are
not recognized by the AIPS system because of a conflict with the Laning
Poll protocol. (See ref. 4, appendices A and C.)

B-6

a. HDLC Flag is composed of one NRZI 0, six NRZI 1s, and one NRZI 0.
An BDLC Flag opens and closes all HDLC data frames.

b. HDLC Abort contains seven or more NRZI 1ls. (Not used by AIPS.)
¢. HDLC Idle contains 15 or more NRZI 1s. (Not used by AIPS.)
4.3 AIPS HDLC FRAMES

Two types of frames are used in the AIPS system: command frames and
response frames. Command frames originate in the AIPS I0S, and
response frames originate from either AIPS nodes or DIUs. Response
frames occur only at the request of a command frame. (See

transactions below.)
AIPS HDLC FRAMEBS. (See fig. B-3 and appendices A and C of ref. 4.)

Note: Appendices A and C of reference 4 do not agree with respect to
maximum data field size for AIPS HDLC frames. It appears that
the maximum data field length is between 117 and 122 bytes.
small-scale system command and response frames are short
enough that the maximum data field length is not approached,
and the discrepancy will not be problem.

a. Flag (F) - opening HDLC flag (1 byte minimum; more than one flag
may be sent).

b. Address (A) - command frames: identifies a destination AIPS node or
DIU to which a frame is addressed. Hardvare address screening is
used by the physical interface devices in the nodes and DIUs to

filter out frames addressed to other devices (1 byte).

Response Frames: identifies the responding device. No address

screening is used in the IOS for response frames (1 byte).

B-7

— Frame -t

I¢ Packet .
Address of
input buffer
i*n cP
ot — Num_Data_Bytes_In -
Address of
output bufter
inCP
|< Num_Data_Bytes_Out L
Flag|Address Edng?eds%d Information g'ltlergk FCS|Flag

Figure B-3. HDLC Definitions

a. Control (C) - command frames: the 1S complement of the Address
field (1 byte).

Response Frames: not defined.

a. Data (D) - One or more bytes of data, the last byte of which is a sum

check that is defined to be the 2S complement of the modulo 256 sum

of the A, C (if present), and preceding D field bytes. Note that the

sum of the A field through the sum check byte is zero.
Command Frame: See note above regarding field length.
Response Frame: See note above regarding field length.
a. Residual bits (RB) - I0S/node communications: 3 residual bits.
10S/DIU Communications. 5 Residual bits.
a. PFrame check sequence (FCS) - 16-bit CRC-CCIT error checking field,
using G(X)=X"16+X"12+X"5+1, dividend preset to 1, sent inverted by
TX. A received CRC of FOB8 hex indicates valid data. All data
between the opening and closing flags are used to compute the FCS

(2 bytes).

b. Flag (F) - closing flag (1 or more bytes). (See Flag Shutdown,
below).

4.4 DATA CLOCK SPECIFICATIONS
The transmit and receive data clock specifications are adequate to
ensure sampling of incoming data at the nominal location, 50X between

expected transitions, wvithin +/- 12.5% of a bit time, for a frame

length of at least 128 bytes.

B-9

4.4.1 Transmit Data Clock

NRZI data must be transmitted at 2 Mbps +/- 0.01%.

4.4.2 Receive Data Clock

To decode data from the I/0 network, signal lines must be sampled by a
clock synchronized to the incoming NRZI data stream.

After 4 us of transition-free operation on the I/0 network,
synchronization of the receive clock is enabled. The first transition
on the network after the 4 us quiet time defines the middle of the
sampling clock period; 0.25 us (50% bit time) after the transition,

the logic level on the network is sampled. Sampling continues every
0.5 us (bit time) thereafter.

The local receive clock must be stable enough to maintain sampling

0.25 us after a transition with a maximum clock skew of +/- 0.125 ps.

After synchronization, the receive clock must be stable to +/- 0.01%.
5.0 I/0 NETVORK STATES

5.1 IDI.IB

For the small-scale system, the I/0 network is idle if it has been low

for at least 4 us.

5.2 POLL

Not used in small-scale system.

5.3 BUSY

The I/0 Network is busy if HDLC data or flags are being sent (a

transition has been detected within the last 4 us).

B-10

5.4 STUCK

The network is stuck if it has been high for 4 us or more.

6.0 NORMAL SMALL-SCALE SYSTEM NETVORK STATE TRANSITIONS
6.1 IDLE TO BUSY
Transition from the Idle state to the Busy state occurs when the
netvork goes from logic O to logic 1 on the rising edge of a Flag
byte. At least one complete Flag byte must appear on the network
before the address field is sent. (See fig. B-4.)

6.2 BUSY TO IDLE (FLAG SHUTDOWN)

Transition from the Busy state to the Idle state is called flag

shutdown.

The network is set to logic O on the falling edge of a Flag byte. At
least one complete Flag byte must be sent at the end of an HDLC frame
before the network is placed in Idle. (See fig. B-4.)

7.0 I/0 NETWORK TRANSACTIONS

7.1 OUTPUT TRANSACTION
An output transaction is a single HDLC frame transmitted by an FTP to

a specific AIPS node or DIU for which a response frame is not

required. A typical output transaction sends a command to a DIU.

B-11

Case 1 |<——— Opening flags (3) ———| o |<—— Closing flags (3) ———|
T M [Al 1 T

FSE | gr

FSD | g |

o M1 rm—\ M

Case 2 '<——- Opening flags (3) ———| Closing flags (3) ————1

rxo_l_run_m_ruuL

FSE |
FSD |

g il
U Lz |

Figure B-4. Flag Shutdown Waveforms

B-12

7.2 INPUT TRANSACTION

An input transaction involves two HDLC frames. The first frame is a
command frame transmitted by the PTP to a specific node or DIU. It
may contain commands and/or request information from the addressed
device. The second frame of the transaction is a solicited response
frame from the addressed device that is sent to the FTP. The FTP
receives all response frames regardless of the address field of the

frame.

7.3 CHAINS

A chain is an ordered group of transactions sent by an FTP over the
1/0 network. Chains are typically associated vwith application

processes that run at different application frame rates. (Not to be
confused with HDLC frames.) Chains may contain output, input, or a

mix of transaction types.

Chains either run to completion or are terminated by the sending FTP

vhen faulty responses are received.

8.0 DATA POLARITY

AIPS I/0 network data passed between the FTP and the IOS are inverted
with respect to the definition of NRZI 1 and NRZI O, above. This
requires inversion of both transmitted and received data by devices
connected to the AIPS I/0 network that use HDLC interface chips wvith

noninverted data buses.

The HDLC interface chip used by AIPS has an inverted data bus. This
is transparent to AIPS elements because they all use the same
interface chip; however, other designers using newver HDLC interface
chips with a noninverted data bus will be required to invert data in

software before it can be used.

B-13

The inversion of FTP data on the I/0 network is not specifically
stated in any known CSDL AIPS documentation. It can be inferred from
a statement in paragraph 5.1.2 of appendix C of reference 4:
"Definitions of bit polarity and sense have been modified to reflect
what is seen by the AIPS system."

The effect of this bus inversion is as follows for an HDLC interface

chip with a noninverted data bus:

a. A field - the device address must be inverted for a match. For
example, if a device is to have address 164#80#, the address must
be programmed as 16#7F#.

b. C field - for a command frame the encoded address must be
inverted. (This results in the control field being the device
address.)

c. D field - all data must be inverted.

d. SC field - sum check must be computed for noninverted A, C, and D
field data, then inverted.

e. RB field - no action required as value does not matter.
f. FPFCS field - no action required; this value is computed within the

HDLC chip and is correctly sent and received by either inverted or

non-inverted bus HDLC interface chips.

REFERENCES

1. IAPSA II Small-Scale System Description.

2. IAPSA II DIU Simulator Specifications - VMEbus Implementation.

B-14

3. VME Simulation Computer Experiment Bus Specifications.
4. NASA Contractor Report: Advanced Information Processing System:

Input/Output System Services, The Charles Stark Draper Laboratory,
Inc., Cambridge, MA, contract NAS1-18565, March 1989.

B-15

B-16

APPENDIX C: SMALL SCALE SYSTEM DIU SIMULATOR
1.0 INTRODUCTION

Implementation of the small-scale system of reference 1 requires
simulation of DIUs. DIUs interface sensors and actuators to the AIPS 1I/0
network and AIPS FTP.

The DIU simulator must be compatible with the hardware and software
protocols of the AIPS I/0 network as described in references 2 and 5.
Their operation must also obey the experiment configuration and control

requirements of references 3 and 6.

2.0 I/0 NETWORK INTERFACE REQUIREMENTS

See reference 2.

3.0 DIU SIMULATOR OPERATIONAL REQUIREMENTS
3.1 COMMAND/RESPONSE PROTOCOL
Each DIU in the small-scale system must have a unique HDLC address.

All transactions in the small-scale system are input transactions that
consist of both a command frame from the FTP and a response frame from
the DIU simulator. Reference 5 specifies the command and response frame

formats used in the small-scale system.

A DIU simulator must screen each frame to determine wvhether it must
respond. A DIU simulator may only respond to command frames that include
its unique address. The HDLC address and encoded address fields should
be screened using hardware address screening capabilities typically found

in HDLC interface chips.

c-1

After a command frame passes address screening, the following conditions

must be met before a response frame is generated:

a. The sum check of all data received must be correct. (See ref. 2.)

b. No hardware detected errors may be present. (See below.)

¢. The correct number of residual bits must have been received.

d. The frame ID portion of transaction must be defined for this DIU

address.

e. The correct number of bytes must have been received for the frame
ID.

Vhen a command frame meets validation criteria, the response frame

defined in reference 5 must be sent.

3.2 DIU RESPONSE TIME

The time required for an addressed DIU to validate a command frame and
begin transmission of a response frame to the FTP is called DIU response
time. An FTP that has requested a response frame will time out the
transaction if an addressed DIU does not reply within a user specified
time limit.

A DIU must respond no sooner than 4 us and no later than 512 us after
the closing flag of a command frame. Individual DIUs in a system may

have different response times.

The DIU default response time should be minimized. DIU response times
must be configurable to be greater than the default.

3.3 DIU SIMULATOR RECOVERY TIME

The time required by an addressed DIU simulator CPU to complete action on
a transaction before it becomes ready to receive another frame is called
the DIU recovery time. During recovery time, the DIU simulator CPU is

unable to receive another frame.

Vhen more than one DIU simulator shares the same CPU, the interaction of
the DIU response time with the AIPS IOS turnaround time must be
considered when designing network chains and allocating DIU simulator

addresses to specific CPUs.

3.4 DIU ERROR HANDLING

The following error handling descriptions assume that a transaction that
contains an error has passed the HDLC interface chip’s hardware address

screening.

3.5.1 Softvare-Detected Errors

The following errors must be detected by DIU simulator software:

a. Sum check (SC): A sum check error is logged by the DIU and no

response frame is sent.

b. Frame ID: A frame ID error is logged by the DIU and no response

frame is sent.

c. Data count: A data count error is logged by the DIU if the
incorrect number of bytes is received and no response frame is

sent.

d. Residual bits: A residual bit error is logged by the DIU and no
response frame is sent. (Node frames have 3 residual bits; DIU

frames have 5).

c-3

e. Long frame: If the received frame contains more than a specified
maximum number of bytes, a long frame error is logged by the DIU

and no response frame is sent.
3.4.2 BHBardware Detected Brrors

HDLC interface chips possess error detection logic. The following errors
must be detected by reading the appropriate register of the HDLC

interface chip:

a. Zero Residual Bits. All transactions in the small-scale system
use non-zero residual bits. A transaction with O residual bits is in
error. The occurrence of zero resjdual bits is logged by the DIU and

no response frame is sent.

b. Data Overrun. Occurs wvhen data is not removed from a DIU interface
chip receive buffer fast enough to prevent overwriting data already
in the buffer. Data overrun is logged by the DIU and no response

frame is sent.

¢. PFrame check sequence (FCS) - used to detect transmission errors. It
is computed by the HDLC interface device in the DIU as a frame is
received. FCS error is logged by the DIU and no response frame is

sent.

d. Short frame - occurs when a closing flag is detected before all
expected HDLC fields have been received. Short frame is logged by

the DIU and no action is taken on FTP commands and requests.

Abort detect and Idle detect are not used in the AIPS HDLC protocol.
Both of these "errors" occur during normal network operation. They must

not be logged by the DIU and must not affect simulator operation.

3.5 MODES OF OPERATION
3.5.1 One-Port Single DIU Simulator

This mode simulates the operation of a typical DIU. Hardware address
screening should block frames not addressed to the DIU. Multiple
transactions in different chains for which different DIU responses are
required must be identified by a frame ID that occupies the Control field
of the FTP output frame. (See ref. 5.)

A separate physical interface to the I/0 network must be provided for
each simulated DIU.

3.5.2 One-Port Multiple DIU Simulator

The operation of this mode must be identical to previous mode with the
exception that multiple DIUs must be accessible via a single physical
interface to the I/0 network.

3.5.3 Netvork Probe

As a network probe, the DIU simulator should monitor and record all
network traffic occurring on both transmit and receive signal lines.
Limited error checking should be performed on data, and address screening
should not be used. No responses frames may be generated. Both FTP and

node transactions must be recorded.

3.6 EXPERTMENT SYNCHRONIZATION

Intercomputer experiment synchronization is provided by the DIU simulator
sync and AIPS FTP sync lines. The status of these lines is present on

lines of the experiment bus within the simulator (see ref. 4).

Reference 3 describes the operation of the sync lines and the state
transitions for both the DIU simulator and the AIPS FTP.

C-5

An FTP sync line is provided to synchronize the DIU simulator to the
start of an experiment in the FTP. When the FTP sync line is in the STOP
state, no experiment is in progress. When an experiment begins, the FTP

sync line is placed in the RUN state.

The DIU simulator sync line must be used as a handshake and qualifier for
use with the FTP. During initialization, the DIU simulator sync line
must be left in the STOP state. When the DIU simulator has completed

initialization, the line must be changed to the RUN state.

3.7 LOCAL EXPERIMENT TIME

Experiment time in the DIU simulator must begin with the transition of
the PTP sync line from STOP to RUN. Each tick is equivalent to one fault
tolerant clock (FTC) period of 4.125 us. Experiment time must be
maintained as a 24-bit value representing the number of FTC ticks since
the start of an experiment.

3.8 FAILURE SIMULATION

No DIU failures will be used in the small-scale system testing.

3.9 DATA COLLECTION

Each DIU simulator must record internally generated timing data and
information received from the I/0 network for later analysis. The
minimum data recorded shall include:

a. Number of bytes received, not counting flags or FCS bytes (1 byte).

b. Time frame received relative to experiment start synchronization (3

bytes).

c. DIU address - the value of the address in the HDLC address field
(1 byte).

C-6

d. Frame ID - the value of the frame ID field as defined in reference S

(1 byte).

e. Sequential frame count - the value received in the SPC fields of

reference 5 (2 bytes).
f. Error status of both hardware and software (2 bytes).
e
In lieu of the DIU address, frame ID, and sequential frame count, all
data received by the DIU simulator may be recorded.
REFERENCES
1. NASA Contractor Report, Design of an Integrated Airframe/
Propulsion Control System Architecture, NASA contract NAS1-18099,
May 1989.
2. AIPS I/0 Network Interface Requirements.
3. Small Scale System Experiment Start Synchronization.

4. VMEbus Experiment Bus Definition.

5. Small-Scale System I/0 Network/DIU Configuration.

c-7

c-8

APPENDIX D: SMALL-SCALE SYSTEM I/0 NETWORK FAULT INSERTION REQUIREMENTS

1.0 INTRODUCTION

The I/0 network fault inserter is used to cause failures in the small-
scale system I/0 network for the purpose of studying the fault recovery
behavior of the AIPS system. This specification defines the requirements
that govern the design of the fault inserter.

2.0 I/0 NETVORK INTERFACE

The I/0 network fault inserter must be compatible with the AIPS I/0
network as described in reference 2. Two connectors must be provided to
allov failing I/0 network links and nodes: an in channel connector that
is electrically closest to the FTP and an out channel connector that is
farthest from the FTP.

3.0 I/0 NETWORK CHANNEL FAILURE MODES

Each fault insertion channel must support the following faults on each

connector.

3.1 NORMAL

Signals on the in and out connectors are passed through the fault
inserter with no modification other than a signal delay caused by the
fault insertion circuitry. This delay must be no greater than 100 ns.

3.2 PASSIVE FAILURES

Vhen a passive failure is inserted, the output lines of the failed

connector must be set to logic 0. This failure will not actively

propagate to other devices connected to the AIPS I/0 network and will
only be detected by the lack of a response from a device that uses the
failed link.

3.3 ACTIVE FAILURES

Vhen an active failure is inserted, the output lines of the failed
connector must be set to logic 1. The failure may be immediately
detected by the FTP if it is inbound; if it is outbound it may not be
detected until an addressed device fails to respond. An active failure
can block traffic to devices that do not use the failed link to connect

into the network.

4.0 FAILURE MODE CONTROL

All failure channels must be controllable by the simulation host VMEbus
computer. Scheduling of failures and their location must be easily

configurable by the experimenter.
4.1 FAULT INSERTION CHANNELS
Each physical I/0 network fault insertion channel must be assigned a

unique physical address. Enough channels must be available to fail from

one to five links simultaneously.

Bach physical fault channel must be capable of being assigned to a
logical channel that will be the actual channel failed. Multiple
physical channels may be assigned to a single logical channel.

4.2 MAPPING PHYSICAL TO LOGICAL CHANNELS

Physical channels may be mapped to logical channels in any manner desired

as long as configuration of the fault inserter is easily accomplished by

the experimenter.

N

4.3 INDIVIDUAL CONNECTOR FAULT CONTROL
Fault channel in and out connector modes must be individually
programmable. It must be possible to operate the two connectors in

similar and/or dissimilar modes.

Small-scale system testing requirements do not require this capability at
this time.

4.4 FAULT SCHEDULING

Fault occurrence must be specified in microseconds after the occurrence
of FRUN (see ref. 3). The fault delay timer must operate from the common
simulation computer FTC reference timebase. User input in microseconds
must be converted to the required number of FTC ticks.

Accuracy of fault insertion timing shall be +/- 100 us minimum with
respect to the transition to FRUN.

REFERENCES

1. NASA Contractor Report, Design of an Integrated Airframe/Propulsion
Control System Architecture, NASA contract NAS1-18099, May 1989.

2. AIPS I/0 Network Interface Requirements.

3. Small Scale System Experiment Synchronization.

APPENDIX E: SMALL-SCALE SYSTEM NETWORK/DIU CONFIGURATION
The configuration of the small-scale system I/0 network is based on
the flight control computer reference configuration with the exception
that only two network interfaces are used.
Note: All addresses and IDs are in hexadecimal.

1.0 HDLC ADDRESS AND FRAME ID ASSIGNMENTS

HDLC address allocation:

Root nodes: 0O-F
Network 1: odd
Network 2: even

DIU nodes: 10 - 7F
Network 1: 10 - 1F
Network 2: 20 -~ 2F

DIU: 80 - FE
Network 1: 80 - 8F
Network 2: 90 - 9P

Command frame IDs:

100 Hz command: 0 - 1F
Network 1: 00 - OF
Network 2: 10 - 1F

50 Hz command: 40 - SF
Network 1: 40 - 4F
Network 2: 50 - SF

25 Hz command: 80 - 9F
Network 1: 80 - 8F
Network 2: 90 - 9F

E-1

Response frame IDs:

100 Hz response:
Network 1:
Network 2:

50 Hz response:
Netwvork 1:
Network 2:

25 Bz response:

Network 1:

Network 2:

Netvork 1:

Node name

FC1
FC3
s1

S2

Crl
cp2
CDL
CDR

OFL
OFR
IFL
IFR
TEL

2 E g

fully simulated

Node address

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

20
20
30

60
60
70

A0
A0
BO

3F
2F
3F

7F
6F
7F

AF
AF
BF

DIU DIU Command HDLC frame ID Response HDLC frame ID

name address 100 Hz 50 Hz 25 Hz 100 Hz 50 Hz 25 Hz
S1 80 0 40 80 20 60 A0
S2 81 1 41 21 61

CP1 82 42 82 62 A2
CP2 83 43 63

CDL 84 44 64

CDR 85 45 65

N 86 : 46 66

LER 87 47 67

OFL 88 8 28

OFR 89 9 29

IFL 8A A 2A

IFR 8B B 2B

TEL 8c C 2C

TER 8D D 2D

RL 8E 4E 6E

RR . 8F 4F 6F

Network 2: partially simulated

Node name Node address

FC2

FC4
DIU DIU Command HDLC frame ID Response HDLC frame ID
name address 100 Hz 50 Hz 25 Hz 100 Hz 50 Hz 25 Hz
S3 90 10 50 90 30 70 BO
S4 91 11 51 31 71

CP3 92 52 92 72 B2
CP4 93 53 73

CDL 94 54 74

CDR 95 55 75

N 96 56 76

LEL 97 57 77

OFL 98 18 38

OFR 99 19 39

IFL 9A 1A 3A

IFR 9B 1B 3B

TEL 9C 1C 3C

TER 9D 1D 3D

RL 9E SE 7E

RR 9F 5F 7F

E-4

2.0 NETVWORK TOPOLOGY
The network connections specified are derived from the flight control
computer reference configuration with the exception that only two root
nodes are used along with two FTP network interfaces.
Node ports are designated: node-address - node-port-number.

Ports are generally assigned as follows for a node:

-0 For root node, this is the inboard port that connects
to the network interface in the FTP.

For DIU nodes, this is the inboard port that results
from default network growth.

-1 Ports for network interconnectivity

-4 Normal connection port for DIU

E-5

Network 1 connections:

Root node

FC1

FC3

DIU node

S1

S2

E-6

Port

1-0
1-1
1-2
1-3
1-4

3-0
3-1
3-2
3-3
3-4

Port

10-0
10-1
10-2
10-3
10-4

11-0
11-1
11-2
11-3
11-4

Node name

GPC A NI
S2

FC3

S1

GPC B NI
FC1
RR
RL

Node name

FC1

OFL

CPl

DIU-S1

FC1

cp2

OFR

DIU-S2

Port

I0s-1

11-0
3-1

10-0

I0s-1
1-2

1F-2

1E-0

Port

1-3
18-2
12-2

1-1
13-0
19-0

DIU node

Ccp1

cp2

CDL

CDR

Port

12-0
12-1
12-2
12-3
12-4

13-0
13-1
13-2
13-3
13-4

14-0
14-1
14-2
14-3
14-4

15-0
15-1
15-2
15-3
15-4

16-0
l6-1
16-2
16-3
16-4

17-0
17-1
17-2
17-3
17-4

Node name

CDL
cp2
S1

DIU-CP1

52
CDR
CP1

DIU-CP2

IFR
N
CPr1

DIU-CDL

Cp2
LER
IFL
DIU-CDR

RL

OFL

CDL

DIU-N

CDR

OFR
RR

DIU-LER

Port

14-2
13-2
10-2

11-1
15-1
12-1

1B-1
16-2
12-0

13-1
17-0
1A-1

1E-2
18-1
14-1

15-2
19-1
1F-0

-

E-7

DIU node

OFL

OFR

IFL

IFR

TEL

E-8

Port

18-0
18-1
18-2
18-3
18-4

19-0
19-1
19-2
19-3
19-4

1A-0
1A-1
1A-2
1A-3
1A-4

1B-0
1B-1
1B-2
1B-3
1B-4

1Cc-0
1c-1
1Cc-2
1Cc-3
1C-4

Node name

IFL

N
Sl

DIU-OFL

S2

LER

IFR

DIU-OFR

OFL

CDR

TEL

DIU-IFL

OFR

CDL

TER

DIU-IFR

TER

RL

IFL

DIU-TEL

Port

1A-0
16-1
10-1

11-2
17-1
1B-0

18-0
15-3
1C-2

19-2
14-0
1D-0

1D-2
1E-1
1A-2

DIU node

TER

RL

Port

1D-0
1D-1
1Dp-2
1D-3
1D-4

1E-0
1E-1
1E-2
1E-3
1E-4

1F-0
1F-1
1F-2
1F-3
1P-4

Node name

IFR

RR
TEL

DIU-TER

FC3

TEL

N

DIU-RL

LER

TER

FC3

DIU-RR

Port

1B-2
1F-1
1Cc-0

3-3
1c-1
16-0

17-2
1D-1
3-2

E-9

Network 2 connections:

Root node Port Node name Port Cable
FC2 2-0 GPC B I0s-2 = —e=——
2-1
2-2
2-3 FCé4 4-3 eeeee-
2-4 pIu-rc2 meme——-
FC4 4-0 GPC C 10s-2 —————=
4-1
4-2
4-3 FC2 2-3 eeeee
44 pDIy-rc4 - m=m=—-

3.0 DIU SIMULATOR BOARD ASSIGNMENTS

Network 1:

DIU board/-port -1 -2 -3 -4 -5 -6 -7 -8

N1DIUl S1 OFL IFL TEL CP1 CDL N RL
N1DIU2 S2 OFR IFR TER CP2 CDR LER RR
Network 2:

DIU board/-port -1 -2 -3 -4 -5 -6 -7 -8
N2DIUl S3 OFL IFL TEL CP3 CDL N RL
N2DIU2 S4 OFR IFR TER CP4 CDR LEL RR

E-10

4.0 I/0 CHAIN DEFINITIONS

The I/0 chains for the small-scale system are described below for the
test configuration using all input transactions. Each frame named
below corresponds to the previously defined HDLC frames.

Network 1 chains:

100 Hz:
Ss1l, S2, OFL, OFR, IFL, IFR, TEL, TER

50 Hz:
si, s2, Cpi1, CP2, CDL, CDR, N, LER, RL, RR

25 Hz:
S1, CP1

Network 2 chains:

100 Hz:
s3, S4, OFL, OFR, IFL, IFR, TEL, TER

50 Hz:
s3, S4, CP3, CP4, CDL, CDR, N, LEL, RL, RR

25 Hz:
S3, CP3

E-11

E-12

APPENDIX F: SMALL-SCALE SYSTEM I/0 NETWORK TRANSACTIONS

The small-scale system is composed of 18 nodes with 16 DIU simulators on
network 1 and 2 nodes and 16 DIU simulators on network 2.

The command format to a DIU from the FTP is:

DIU address,

Encoded DIU address (complemented DIU address),
HDLC frame ID,

Sequential frame count (high byte),

Sequential frame count (low byte),

Padding characters (as required),

Sum check

DIU addresses are unique in networks 1 and 2.
HDLC frame IDs are unique in networks 1 and 2.
Padding characters may be changed at a later date.
The response format from a DIU to the FTP is:

DIU address,

Sum check,

HDLC frame ID,

Sequential frame count (high byte),

Sequential frame count (low byte),

Padding characters (as required),

Special pad character

F-1

Notes:

a. The DIU address in the response frame is the address of the DIU

generating the response frame.

b. The special pad character (spec-pad) is required by a problem with
the design of the SCN68562 HDLC interface chip. The placement of the
sum check immediately following the DIU address in the response frame
does not violate AIPS protocol because no encoded address is used for
response frames and the definition for sum check only requires the

sum of all bytes sent to be zero.
Abbreviations used in the message definitions are:
sfc-lo = sequential frame count low byte

sfc-hi
sum-chk = sum check

sequential frame count high byte

spec-pad = special pad character

Note: All numbers in HDLC frame formats are in hexadecimal.

Network 1 DIU command HDLC frame format:

100 Hz

s1

s2

OFL
OFR
IFL
IFR
TEL

TER

50 Hz
sl
s2
CPl
cp2
CDL

CDR

RL

25 Hz
sl

CPl

80,
81,
88,
89,
84,
8B,
8cC,

8D,

80,
81,
82,
83,
84,
85,
86,
87,

8E,

8F,

80,
82,

7F,
7B,
77,
76,
75,
74,
73,

72,

7F,
7E,
7D,
7C,
7B,
74,
79,

78,
60,

1,

70,

7D,

00,
01,
08,
09,
0A,
0B,
oc,

oD,

40,
41,
42,
43,
4b,
45,
46,

47,
70,

4E,

4F,

80,

82,

sfe-hi,
sfc-hi,
sfc-hi,
sfe-hi,
sfc-hi,
sfec-hi,
sfe-hi,

sfc-hi,

sfe-hi,
sfe-hi,
sfe-hi,
sfec-hi,
sfe-hi,
sfe-hi,
sfc-hi,

sfc-hi,
80, 90,

sfc-hi,

sfc-hi,

sfc-hi,

sfc-hi,

sfe-lo,
sfc-1o,
sfe-lo,
sfe-lo,
sfe-lo,
sfe-lo,
sfc-1lo,

sfe-1lo,

sfc-lo,
sfc-lo,
sfe-1lo,
sfe-lo,
sfe-lo,
sfc-lo,
sfe-lo,

sfe-lo,
AO, BO,

sfec-1o,

sfe-lo,

sfec-1lo,

sum-chk
sum-chk
10, 20,
10, 20,
10, 20,
10, 20,
10, 20,

10, 20,

sum-chk
sum-chk
sum-chk
sum-chk
10, 20, 30,
10, 20, 30,
10, 20, 30,

10, 20, 30,
C0, sum-chk

10, 20, 30,
10, 20, 30,

sum-chk

sum-chk

40,

40,

40,

sum-chk
sum-chk
sum-chk
sum—ghk
sum-chk

sum-chk

sum-chk
sum-chk

sum-chk

sum-chk

sum-chk

Network 1 DIU response HDLC frame format:

100 Hz

s1

S2

OFL
OFR

IFL

IFR

TEL

TER

50 Hz
s1
S2
CP1
CP2
CDL

CDR

LER

RL

25 Hz

51

Cpr1l

F-4

80, sum-chk, 20, sfc-hi,
9, A, B, C, spec-pad

81, sum-chk, 21, sfc-hi,
9, A, B, C, spec-pad

88, sum-chk, 28, sfc-hi,
89, sum-chk, 29, sfc-hi,

8A, sum-chk, 2A, sfc-hi,
spec-pad

8B, sum-chk, 2B, sfc-hi,
spec~pad

8C, sum-chk, 2C, sfc-hi,

8D, sum-chk, 2D, sfc-hi,
spec-pad

80, sum-chk, 60, sfc-hi,
81, sum-chk, 61, sfc-hi,
82, sum-chk, 62, sfc-hi,
83, sum-chk, 63, sfc-hi,
84, sum-chk, 64, sfc-hi,
85, sum-chk, 65, sfc-hi,
86, sum-chk, 66, sfc-hi,

87, sum-chk, 67, sfc-hi,
9, A, B, C, spec-pad

8E, sum-chk, 6E, sfc-hi,

8F, sum-chk, 6F, sfc-hi,

80, sum-chk, AO, sfc-hi,

82, sum-chk, A2, sfc-hi,

sfc-lo,

sfc-lo,

sfe-1o,
sfc-lo,

sfe-lo,

sfc-lo,

sfec-lo,

sfc-lo,

sfc-lo,
sfe-lo,
sfe-lo,
sfc-lo,
sfc-lo,
sfc-1lo,
sfe-lo,

sfc-lo,

sfe-lo,

sfc-~lo,

sfc-lo,

sfec-lo,

1,

3, 4, 5, 6, 7, 8,

3, 4, 5, 6, spec-pad

3, 4, 5, 6, spec-pad

3, 4, 5, 6, 7, 8,

3, 4, 5, 6, spec-pad

3, 4, 35, 6, 7, 8,

3, 4, spec-pad

3, 4, spec-pad

3, 4, 5, 6, spec-pad
3, 4, 5, 6, spec-pad
3, 4, spec-pad

3, 4, spec-~pad

3, 4, spec-pad

3, 4, 5, 6, 7, 8,

3, 4, spec-pad

3, 4, spec-pad

spec-pad

spec-pad

Network 2 DIU command HDLC frame format:

100 Hz

50

25

s3
S4
OFL
OFR
IFL
IFR
TEL
TER
Hz
S3
S4
CP3
CP4
CDL

CDR

LEL

RL

Hz

S3

cp3

90,
91,
98,
99,
94,
9B,
9C,

9D,

90,
91,
92,
93,
94,
95,
96,

97,

50, 60, 70, 80, 90, AO, BO, CO, sum-chk

6F,
6E,
67,
66,
65,
64,
63,
62,

6F,

10,
11,
18,
19,
14,
1B,
1c,

50,
51,
52,

53,

sfc-hi,
sfc-hi,
sfc-hi,
sfc-hi,
sfe-hi,
sfe-hi,
sfe-hi,

sfc-hi,
sfe-hi,
sfe-hi,
sfe-hi,
sfc-hi,
sfc-hi,

sfc-hi,

sfc-lo,
sfc-lo,
sfe-~lo,
sfc-lo,
sfc-1lo,
sfc-lo,
sfec-lo,

sfc-1lo,

sum-chk

sum-chk

10,
10,
10,
10,
10,
10,

20,
20,
20,
20,
20,

20,

sfc-lo, sum-chk

sfc-lo, sum-chk

sfc-lo, sum-chk

sfc-lo, sum-chk

30,
30,
30,
30,
30,

40,
40,

40,

40,

40,

SfC—lO, 10, 20, 30’ 40,

sfc-lo, 10, 20, 30, 40,

sfc-lo, 10, 20, 30, 40,

68, 57, sfc-hi, sfe-lo, 10, 20, 30, 40,

9E, 61, SE, sfc-hi, sfc-lo, 10, 20, 30, 40,

9F, 60, 5F, sfc-hi, sfc-lo, 10, 20, 30, 40,

90, 6F, 90, sfe-hi, sfec-lo, sum-chk

92, 6D, 92, sfc-hi, sfc-lo, sum-chk

sum-chk
sum-chk
sum-chk
sum-chk
sum-chk

sum-chk

sum-chk
sum-chk

sum-chk

sum-chk

sum-chk

F-5

Network 2 DIU response HDLC frame format:
100 Hz

Sl 90, Sum—Chk, 30, Sfc—hi, SfC-lO, 1, 2’ 3, 4, 5’ 6, 7’ 8’
9, A, B, C, spec-pad

S2 91, sum-chk, 31, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, spec-pad

OFL 98, sum-chk, 38, sfc-hi, sfe-lo, 1, 2, 3, 4, 5, 6, spec-pad
OFR 99, sum-chk, 39, sfc-hi, sfe-lo, 1, 2, 3, 4, 5, 6, spec-pad

IFL 94, sum-chk, 3A, sfc-hi, sfe-lo, 1, 2, 3, 4, 5, 6, 7, 8,

spec-pad

IFR 9B, sum-chk, 3B, sfc-hi, sfe-lo, 1, 2, 3, 4, 5, 6, 7, 8,
spec-pad

TEL 9C, sum-chk, 3C, trans-id, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6,
spec-pad

TER 9D, sum-chk, 3D, sfc-hi, sfe-lo, 1, 2, 3, 4, 5, 6, 7, 8,
spec-pad

50 Hz

S1 90, sum-chk, 70, sfc-hi, sfe-lo, 1, 2, 3, 4, spec-pad

S2 91, sum-chk, 71, sfc-hi, sfe-lo, 1, 2, 3, 4, spec-pad

crPl 92, sum-chk, 72, sfc-hi, sfe-lo, 1, 2, 3, 4, 5, 6, spec-pad

CP2 93, sum-chk, 73, sfc-hi, sfe-lo, 1, 2, 3, 4, 5, 6, spec-pad

CDL 94, sum-chk, 74, sfc-hi, sfe-lo, 1, 2, 3, 4, spec-pad

CDR 95, sum-chk, 75, sfe-hi, sfe-lo, 1, 2, 3, 4, spec-pad

N 96, sum-chk, 76, sfc-hi, sfe-lo, 1, 2, 3, 4, spec-pad

LEL 97, sum-chk, 77, sfe-hi, sfe-lo, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, spec-pad

RL 9E, sum-chk, 7E, sfc-hi, sfe-lo, 1, 2, 3, 4, spec-pad

RR 9F, sum-chk, 7F, sfc-hi, sfe-lo, 1, 2, 3, 4, spec-pad
25 Hz

S1 90, sum-chk, BO, sfc-hi, sfe-lo, 1, 2, spec-pad

CP1 92, sum-chk, B2, sfc-hi, sfc-lo, 1, 2, spec-pad

APPENDIX G: EXPERIMENT BUS DESCRIPTION
1.0 BACKGROUND
The simulation computer requires various handshaking lines, clock signals,
and so forth. These signals must be routed to the ISI0-2 DIU simulator

cards and the wire wrap card.

The OPIO-1 interface card does not use all of the VMEbus P2 connector pins.

The remaining pins are used to implement the experiment bus.

2.0 EXPERIMENT BUS SIGNALS

FTP Start Sync [F_SYNC]
TTL level signal: 1low = FTP stop high = FTP run

VME Start Sync [V_SYNC]
TTL level signal: 1low = VMEbus stop high = VMEbus run

External Event [X_EVENT]
TTL level signal: level is selectable under software control

Reference Fault Tolerant Clock [R_FTC]
TTL level signal: waveform, 4.125 us period

Fault Strobe [FSTB]
TTL level signal: high = FDn data invalid low = FDn data valid

Fault Ack [FACK]
TTL level signal: high = waiting for data low = data accepted

FPault Data [FDO..FD7]
TTL level signals: high = logic 1 low = logic O

G-1

3.0 EXPERIMENT BUS PIN ASSIGNMENT

P2~ Name Description Logic Source
1lc [F_SYNC] FTP Start Sync Run / !Stop w

2c [V_SYNC] VME Start Sync Run / !Stop OPIO-1
3¢ [X_EVENT} External Event soft. select OPIO-1
17¢ [R_FTC] Reference FTC n/a W

18¢ [FACK] Fault Ack active low 0PIO-1
19¢ [FSTB] Fault Strobe active low OPIO-1
20c [FDO] Fault data bit 0 non-inverted OPIO-1
20a [FD1] Fault data bit 1 non-inverted OPIO-1
21c [FD2] Fault data bit 2 non-inverted OPIO-1
21a [FD3] Fault data bit 3 non-inverted OPIO-1
22¢ [FD4] Fault data bit 4 non-inverted 0PIO-1
22a [FD5] Fault data bit 5 non-inverted OPIO-1
23c [FD6] Fault data bit 6 non-inverted OPIO-1
23a {FD7] Fault data bit 7 non-inverted 0PIO-1

G-2

APPENDIX H: VULTURE PROGRAM DETAILS
1.0 SUMMARY

The VME Ultimate User Environment (VULTURE) is a user-friendly set of
programs that provide the user wvith the tools required to quickly and
effectively communicate with a VMEbus system. The purpose of VULTURE is
to remove users from the unfriendly confines of the VMEbus test system

and place them in an environment vith vhich they feel comfortable.

Three basic capabilities are provided vith the VULTURE system. The first
feature allows the user to establish or reestablish a communication link
betveen the MicroVAX and the VMEbus system. The second capability allows
transfer of byte-oriented data between the two systems. The third

feature provides the user with a set of commands to manage and manipulate

files on the VMEbus system.

2.0 THIRD PARTY SOFTVARE

VULTURE uses three software silicon components from Ready Systems. The
Versatile Real-Time Executive (VRTX) provides a real-time, multitasking
operating system for embedded microprocessor applications. The I/0 and
File Executive (IFX) provides input/output and file management
facilities. The C Runtime Library (RTL) provides a C programming
language interface to VRTX and IFX. The VULTURE software relies upon
these Ready Systems components to assist in managing the VMEbus system

and executing user commands.
3.0 FUNCTIONAL DESCRIPTION

Embedded systems often have a very unfriendly user environment. VULTURE'’s
function is to provide a well-known and robust environment for the user.
By using digital command language (DCL), VULTURE is able to provide the

user with the desired result.

Conceptually, VULTURE provides a subset of the VAX/VMS operating system
on a VMEbus platform.

4.0 COMMUNICATIONS PROTOCOL

This section gives an overview of the three basic protocols used by
VULTURE. All communications between the MicroVAX and VMEbus system
originate in the MicroVAX. No unsolicited commands are recognized from
the VMEbus system.

All communications between the MicroVAX and the VMEbus system use VULTURE
command and response protocol via two high-speed 16-bit parallel
interfaces, one for input and one for output. Each command or response
is sent as a 64-byte header record shown in figure H-1. Figure H-2 a
list of each VULTURE command and the header fields they uses. Each
header record is followed by a long word sum check that is used to ensure

error free communications.

The three classes of protocols for communications between the MicroVAX
and VMEbus system are shown in figure H-3. Class 1 is used to initialize
or reinitialize the interface between the two systems. Class 2 is used
for most system management commands. Class 3 is used when data transfer

between systems is required.
4.1 CLASS 1 PROTOCOL
Class 1 protocol operates as follows:

a. The MicroVAX sets the interface function lines to a known state,

requesting a function line response from the VMEbus system.
b. If a function line echo has been received within a timeout period,

the MicroVAX attempts to send a VRESET header to the VMEbus system,

followed by a long word sum check.

B-2

Datatype No. bytes

FUNCTION CODE unsigned int 4
FLAGS P unsigned int 4
SPECIFICATION1 chararray 20
SPECIFICATION2 chararray 20
TRANSFERSIZE | ~ int 4
STATUS unsigned int
IDENTIFIER unsigned int 4
PRIORITY unsigned int 4
Total 64

Figure H-1. VULTURE Command/Response Header Format

YCONVERT

[CONTIGUOUS]

YME sowce file spc

YME dest file spec

status

o
-

VDIR

[DATE] [SIZE]

YME disk name

listing size

status

3

VRUN

[1SIO]

VME file spec

status

ISIO addr | task id

task priority

o)
&

VSTOP

[HARD |ISIO]

status

ISIO addr | taskid

DOWN_LOAD UP_LOAD
[CONTIGUOUS]
VYME dest file spec VME sowce file spc
VAX file size YME file size
status status
3 3
YCOPY YDELETE
[CONTIGUOUS]
VME sowce file spc VME sowrce file spc
VME dest file spec
status status
2 2
VRENAME YRESET
[ISIO | CPUJ
YME sowrce file spc
YME dest file spec
status status
[ISIO address]
2 1]2
VSETDATE VSTATUS
YAX date and time
listing size
status status
2 3

H-4

2
-

Mote: Frotocol class iz listed below each header; header farmat is shown in figure H-1

Figure H-2. VULTURE Command Header Format

Class 1: Interface Reset

Function line VAX reset Send interface
reset requast function lines reset header
to VME . to VME Check sum
MicroVAX
Micro- | ~ [=interface reset={"/7 /77 /] R
VAX Acknowledge
T request —VME reset function lines Eggge‘:f guhr:‘: k

VME | ~=+—— VME interface reset . . . V7777718

Class 2: Simple Action Request

Command Check
header to VME sum

Micro-
VAX 777772 B
to
VME ’ Response/ Check
v }Q"QEJ;?;L°;"‘C,?O,, status header sum
o ———— e
VME = R
Class 3: Complex Action Request/Data Transfer
Command Check - Data
header sum Data check sum
Viee—— L2271 B ANNNEANNYE
Response/ Check Data Response/ Check
status header sum Data check sum status header sum

VME 77771 NNV B 777748

* Data are only sent in one direction at a tima. The originator will depend on the command.

Legend:
UZZ772 Header
B Check sum

AN\\\] Data
| [Function line

Figure H-3. VULTURE Communication Protocols

Any
the

4.2

The VMEbus system sends a response header followed by a check sum.
1f the header and sum check are correct, the interface has been

successfully reset.

timeouts or protocol errors result in an error message appearing on

MicroVAX user’s console.

CLASS 2 PROTOCOL

Class 2 protocol operates as follows:

4.3

The MicroVAX sends a header that identifies the function to be

executed followed by a sum check.

The VMEbus system executes the requested function and sends a
response header followed by a sum check. The status field of the
header is used to indicate errors vhich occurred during function

execution.

CLASS 3 PROTOCOL

Class 3 protocol operates as follows:

H-6

The MicroVAX sends a header that identifies the function to be

executed folloved by a sum check.

The VMEbus system performs preliminary actions necessary to execute
the requested function and sends a response header followed by a sum
check. The status field of the header ijs used to indicate errors

that occurred during function execution.

The data are transferred. The number of bytes sent must match the
value in the appropriate command or response transfer count field.

The data transfer is followed by a check sum.

y,

d. The VMEbus system sends a response header followed by a check sum.
The status field of the header is used to indicate errors that

occurred during function execution.

5.0 ERROR HANDLING

Any errors that might occur during the execution of a command are
displayed on the user’s MicroVAX terminal. The error messages are
generated by the VMS operating system based on the error code placed in
the STATUS field of the header returned by the VMEbus system. If an
unexpected error occurs on the VMEbus system, the VMEbus error code
(generated by VRTX or IFX) is returned to the MicroVAX to be displayed
along with a message telling the user that an unanticipated error has
occurred. The user can then reference the Ready Systems user’s manuals

to determine the cause of the error.

6.0 BYTE SWAPPING

Because of the differences in how the MicroVAX and VMEbus systems
internally represent data, a limitation must be imposed on what kind of
data can be transferred. Figure H-4 shows how the VAX and Motorola chips
represent bytes, words, and longwords internally. As can be seen from
this figure, only byte-oriented data are stored in the same format.
Figure H-5 shows what happens to data after they have been sent from the
MicroVAX to the VMEbus system via the 16-bit parallel interface. Byte
data are again the only type of data that are consistent across the two

architectures.

Because most executable files can be created in an ASCII S record format,
and data files are usually in ASCII format, it was decided that all data
transfers would be byte oriented. If users want to use a different data
size, they should write a VMEbus-based program that unscrambles data

based on the specifications in figure H-5.

H-7

VaX internal Motorola Internal
Data Fepresentation Representation

3 2 1 0O 3 2 1

A BCD |D|C|IBIlA DIIC||B

Figure H-4a - Byte Data

3 2 1 0 3 2 1

AB CD ClIDI|A]||B DIIC|IB

Figure H-4b - 'Word Data

3 2 1 O 3 2 1

ABCD AlBIC|HD DIIC||IB|A

Figure H-4c - Long%¥ord Data

Figure H-4. Internal Data Representation

WA K Internal totarola Internal

Data Representation Representation After Transfer
3 2 1 0 3 2 1 O
A BCD |D|C|iB|IA DlIC|IB]|A

Figure H-5a - Byte Data

3 2 1 0 3 2 1 0
AB CD CIID||A||B ClID||A]lB

Figure H-5b - ord Data

3 2 1 0 3 2 1 0
ABCD A[BHC|ID AllB||IC||D

Figure H-5c - Long'ord Data

Figure H-5. Internal Dala Representation After Transfer

7.0 MEMORY LAYOUT

Figure H-6 shows how the RAM on the VMEbus is arranged. This memory map
is reconfigurable by the user. The board support software routines
define how RAM is to be configured. See section 11 for more information

on modifying the board support package.

8.0 EXAMPLE USER SESSION

Before VULTURE can be used, the VMEbus system must be running. VULTURE
becomes active as soon as the power to the Force CPU-29 card is supplied.
The user can tell that the communications software is active when the
VULTURE logo appears on the operator console connected to the CPU-29

card.

The date and time of the VMEbus system are set by issuing the VSETDATE
command. This is the usually the first command issued because it sets the

VMEbus system time to be the same as the MicroVAX time.

Next, all code for tasks is downloaded in S-record format using the DOWN-
LOAD command. The files are then translated into executable files using
the VCONVERT command. If any data files are needed at this point, they

too are downloaded to the VMEbus system.
The tasks can now be started by issuing the VRUN command. Once running,
the tasks can be monitored using the VSTATUS command. Once the tasks are

completed, the UP-LOAD command is used to retrieve any files that might

have been created during the execution of the tasks.

9.0 ROTARY DIAL SETTINGS

The VEMbus system has three modes of operation. The mode of operation is

specified by setting the rotary dials on the front of the CPU-29 card.

H-10

0000
0000
0000
0000
0000
0001
0003
0010
00FC
FC00
FCO02
FC04
FCO06
FCo8
FCOA
FCOC
FCFF
FFO0O
FF02
FFO03
FFO04
FFO04
FF04
FFO04

FFB0

0000
0400
04F8
04FC
0500
A000
A000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2000
6000
AQ00O

0000

Exception Vector Table

Malloc Table

xtaskws (longword used by C RTL)
xncpown (longword used by C RTL)
Work Space

Dynamic Memory

SRAM Disk (1792 512 byte sectoxs)
DRAM Disk (29952 512 byte sectors)
Maximum Local RAM Address

DIU Simulator #1 Controller and RAM
DIU Simulator #2 Controller and RAM
DIU Simulator #3 Controller and RAM
DIU Simulator #4 Controller and RAM
DIU Simulator #5 Controller and RAM
DIU Simulator #6 Controller and RAM
DIU Simulator #7 Controller and RAM
DMA Controller

VMEPROM

RTSCOPE

IFX

VRTX

C Runtime Library

Board Support Package Without RTSCOPE
Board Support Package With RTSCOPE

Local I/0 Devices

Figure H-6. VULTURE VMEbus Memory Use

H-11

To have VULTURE run as a standalone system, rotary dial 1 should be
pointing to 3. If a debugging environment is needed on the VMEbus
system, rotary dial 1 should be set to B. In a debugging situation,
VULTURE runs under RTSCOPE, the Ready Systems real-time debugger. The
third possible mode of operation is VMEPROM, the native operating system
on the Force CPU-29 card. To bring up VMEPROM, rotary dial 1 should be
pointing to F when the reset switch is toggled on the front of the CPU-29

card.

10.0 VRITING AND COMPILING PROGRAMS

All code that is intended to be run on the CPU-29 card, whether written
in C or assembly language, must be written as relocatable ccde with a
base address of zero. All files that are destined to be downloaded to
and run on the VMEbus system should use the following qualifiers vhen

compiling:

c68k
/noinit
/norom
cpu=68881q
/long
/code=pc
/data=pc
/opt=all
/define=IFX

/stringsintext

a68k
/nolist
/flags="case,brl,pcr,e, p=68020"

H-12

The interface libraries for IFX, VRTX, and the C runtime library must be
loaded along with the object code for the task. In addition, the public
symbol, C-RTL-BASE, must be specified as the base address of the C

runtime library in RAM. All code should be generated vith a base address

of zero. The following is an example of a linker/loader file:

CHIP 68020

LIST c,0,T,X

ORDER 0,9,14,15

PUBLIC C-RTL-BASE=$FF042000

BASE 0
%%%%x Put your own routines between here KKk
LOAD test

*kkkkkkxkkkxkkk*x and here Jekkdddkk ik kkkkkk
LOAD FC-LAB:[VME.LIBRARY.C—RTL]C—RTL-IL
LOAD FC-LAB:[VHE.LIBRARY.ASM—SRC]IFXIL.LIB
LOAD FC—LAB:[VME.LIBRARY.ASM—SRC]VRTXIL.LIB
FORMAT S

END

If the code is intended to be run on the ISIO cards, no 1/0 or dynamic
memory allocation can be used and the C interface library should not be
linked in. Instead, the actual C library should be linked in. The
following is an example of a 1inker/loader file for files that will be

run on the ISIO cards:

CHIP 68020

LIST c,0,T,X

ORDER 0,9,14,15

BASE 0

*x%k%x Put your own routines between here Kk
LOAD

test

skkkkkkkkkkikkxk and here ok dekkk kK kddkFhhkk

LOAD FC—LAB:[VME.LIBRARY.C—RTL]C—RTL.LIB

H-13

LOAD FC-LAB: [VME.LIBRARY.ASM-SRC)IFXIL.LIB
LOAD FC-LAB: [VME.LIBRARY.ASM-SRC]VRTXIL.LIB
FORMAT S

END

11.0 HOV TO BUILD VULTURE

Depending on user requirements, it may become necessary to reconfigure
VULTURE. The actual VULTURE code should not be changed; instead, the
board support package (BSP) should be modified. Once modified, the BSP
can be recompiled and loaded with little effort. The challenge comes
vhen trying to put the BSP in PROM.

To make VULTURE and the BSP programmable, the following qualifiers were

used during compilation:

c68k
/noinit
/norom
/cpu=68881q
/long
/code=pc
/data=abs
/opt=all
/define=IFX

/stringsintext

a68k
/nolist

Command files assist in the building of all software that goes into PROM.

All of these command files can be found in the softwvare tape.

H-14

The first command file is BUILD-C-RTL.COM. This command file creates
both the C runtime interface library and a programmable version of the C
runtime library. After the command file completes, two files should be
used. The first file, C-RTL-IL.OBJ, should be included in all C code that
is designed to run under VULTURE. The second file, PROM-RTL.ABS, is the
relocatable C runtime library, ready to be placed in PROM.

The second command file is BUILD-BSP.COM. This command file creates the
basic board support software. Before executing this command file, the
user should make sure that the old BSP.LIB has been deleted. In
addition, at the time this document was prepared, the MRI C compiler
generated bogus code when compiling IFX-SETUP.C. If an error occurs
assembling the file the C compiler generates, simply change the BRA.S on
the flagged line to a BRA in the IFX-SETUP.SRC file. If the BSP.LIB file
still exists vhen the new library file is attempted, an error will occur
and the new library will not be created. Two important files are created
from this command file. The first file, BSP.0BJ, must be the first file
included in the option file for the communications software discussed
later. The second file, BSP.LIB, is a library file that should also be
included in the options file for the communications software. The file,
CPU29.INC, determines whether RTSCOPE will be linked with the BSP or not.
To configure RTSCOPE, uncomment/comment out the corresponding lines in
CPU29.INC, which can be found approximately 50 lines down from the top of
the file.

The third command file is BUILD-COMM.COM. This file creates the
relocatable code for the VULTURE communications software. This file
compiles all the software and then links it together with the board
support package. The file BSP.ABS contains the relocatable
communications software once the command file has finished executing.
The user should create two yersions of BSP.ABS, one that has RTSCOPE

linked in and one that does not.

H-15

Once a relocatable version of VULTURE exists (BSP.ABS) it can be burned
into PROM. The following instructions show how to burn VULTURE into
PROM. All VMEPROM commands are prefixed with a question mark (?), and
all VMS commands are prefixed with a dollar sign (S).

1. Clear the memory on the VMEbus system.

? BF 6000 FBFFFC O L

2. Move the current relocatable copies of VMEPROM, RTSCOPE, IFX
and VRTX from PROM to RAM.

? BM FFO00000 FFO41FFF A00000

3. Using the serial port LTA4:, download the relocatable C runtime
library. The code will "land" at 10000.

? LO <2
$ COPY PROM-RTL.ABS LTA4:

4. Place the C runtime library right after the silicon software

components that were downloaded from PROM in step 2.

? BM 10000 13FFF A42000

5. Using the serial port LTA4:, download the board support package that
does not use RTSCOPE. The code will "land" at 80000.

? LO <2
$ COPY BSP-NO-RTSCOPE.ABS LTA4:

6. Place this version of the board support package after the C runtime

library.

? BM 80000 83FFF A46000

H-16

Using the serial port LTA4:, download the board support package that
does use RTSCOPE. The code will "land" at 80000.

? LO <2
$ COPY BSP-RTSCOPE.ABS LTA4:

Place this version of the board support package after the other

version of the board support package.

? BM 80000 83FFF A4A000

Modify the board support package located at 80000 so that it does not
zero DRAM.

? DI 80000

80000 MOVE.L #$88,A0
80006 LEA.L ($80010,PC),Al
8000A NOP

8000C MOVE.L Al, (AO)
8000E TRAP #2

80010 MOVE.VW #$3700,SR
80014 MOVE.L #$SA30,A7
8001A JSR ($8083C,PC)
BOO1E JSR ($80224,PC)
80022 CLR.L ($191C4).L
80028 MOVEQ.L #0,D1
8002A MOVEQ.L #$1,D2

More (cr) ? {--- enter a period, .

? AS 8001A

H-17

10. From

H-18

user input \

8001A : JSR ($8083C,PC)
: NOP o
8001C : BTST.B #$BA,-(A0)
: NOP {mmmmm -
8001E :JSR ($80224,PC) /
? S,
? DI 80000
80000 MOVE.L #$88,A0
80006 LEA.L ($80010,PC),Al
8000A NOP
8000C MOVE.L Al,(AO)
8000E TRAP #2
80010 MOVE.V #$3700, SR
80014 MOVE.L #$A30,A7
8001A NOP
8001C NOP
8001E JSR ($80224,PC)
80022 CLR.L ($191C4).L
80028 MOVEQ.L #0,D1
8002A MOVEQ.L #S$1,D2
More (cr) ? {--- enter a period,
a terminal server, connect to VME-AUX.

LOCAL> C VME-AUX

11. Run the modified board support package.
? GO 80000

12. Enter a GO at the RTSCOPE prompt on VME-AUX. This will cause the
VULTURE software to begin execution.

RC> GO

13. Load the executable version of the S record split program to the
SRAM disk of the VMEbus system. The file it resides in is called
SPLIT.EXE.

$ DOWN-LOAD/CONTIGUOUS SPLIT.EXE SRAM:SPLIT.EXE
14. Execute the split program.
$ VRUN/TASK-ID=11 SRAﬁ:SPLIT.EXE
15. On the VULTURE op console, enter the addresses from which the split

of memory should occur. The addresses should correspond to the

location on RAM where the programmable software resides.

Starting address: A00000 (e user input
Ending address: A4DFFF {amun/

16. Vait for the split task to complete. The VSTATUS command can be

used to monitor its activity.

17. Upload the files from the DRAM disk that contain the split of

memory.

$ UP-LOAD SPLITO.S SPLITO.S
$ UP-LOAD SPLIT1.S SPLIT1.S
$ UP-LOAD SPLIT2.S SPLITZ2.S
$ UP-LOAD SPLIT3.S SPLIT3.S

H-19

18.

19.

Initialize four INTEL 27010 PROMs by placing them under the
ultraviolet light for 20 min.

Hook the DATA I/0 prom burner up to the TXA7: port on the MicroVAX.

20. Allocate and set host to TXA7: on the MicroVAX.

21.

22.

23.

24.

$ ALLOCATE TXA7:
$ SET TERM/HOST TXA7:
$ SET HOST/DTE TXA7:

Change the NULL COUNT on the DATA I/0 prom burner.
press SELECT

press D9

press START .

press 01

press START

Put the prom burner in remote terminal mode. This should cause a

menu to be displayed on the MicroVAX.

press SELECT

press El

press START

Cancel the terminal mode on the prom burner.
press SELECT

Return the MicroVAX to the DCL level.

press CTRL\

H-20

25. Choose Motorola S record format for the prom burner.

26.

27.

28.

29.

press
press

press

Clear

press

press

press

Prepare the prom burner to receive the first split file.

know how big the memory that was split is.

SELECT
87
START

the prom burner’s RAM.
SELECT

A4
START

You must

This can be calculated

by subtracting the starting address used in step 15 it from the

ending address, then adding 1 to it.

This is the size of each split file.

press
enter
press
enter
press
press
press

press

Copy the split file from the MicroVAX to the prom burner.

Divide this number by four.

INPUT

0 <-- port input address

START

13800 {-- the size of each split file

START

0 <{-- input RAM address

START

START <-- this causes the prom burner to wait for data

$ COPY SPLITO.S TXA7:

Take note of the check sum displayed at the completion of the

transfer.

H-21

30. Place an INTEL 27010 chip into the prom holder on the prom burner.

31. Burn the PROM.

press PROG

enter 0 {-- starting address

press START

enter 13800 ¢-- size of code in prom burner’s RAM
press START

enter O <-- program RAM address

if prom burner displays "p6 FAM xx PIN xx" then

press SCROLL

press START

press SCROLL until "INTEL" appears
press START

press SCROLL until ®27010" appears
press START

end if

press START

32. Make note of the check sum and be sure the last four digits match
the last four digits of the check sum given in step 29. If they
don’t, the INTEL 27010 chip must be reinitialized as described in
step 18, and steps 26 through 31 must be repeated.

33. Repeat steps 26 through 32 for the remaining split files (i.e.,
SPLIT1.S, SPLIT2.S, and SPLIT3.S).

34. Carefully replace the prom chips on the CPU-29 card, remembering
that the SPLITO, SPLIT1, SPLIT2 and SPLIT3 files represent the UPPER
UPPER, UPPER MIDDLE, LOWER MIDDLE, and LOWER LOWER bits,

respectively.

H-22

12.0 QUICK REFERENCE GUIDE

DOWN-LOAD [/[NO]CONTIGUOUS] microvax-filename vme-filename

Transfers a file from the MicroVAX to the VMEbus.

UP-LOAD vme-filename microvax-filename

Transfers a file from the VMEbus to the MicroVAX.

VCONVERT [/[NO]JCONTIGUOUS] source-filename dest-filename

Translates an S record file on the VMEbus into an executable image.

VCOPY [/[NO]CONTIGUOUS] source-filename dest-filename

Duplicates a file on the VMEbus.

VDELETE vme-filename

Removes a file on the VMEbus.

VDIR [/DATE] [/SIZE] [/OUTPUT=filename] disk-name

Transfers a directory of the VMEbus to the MicroVAX.

VRENAME old-filename new-filename

Changes a filename on the VMEbus.

VRESET [/CPU] [/ISIO=address]

Reestablishes the communication link between the MicroVAX and VMEbus

or resets the CPU-29 or ISIO cards.

H-23

VRUN /TASK-ID=number {/PRIORITY=number] vme-filename
VRUN /ISIO=address vme-filename

Begins execution of a file on the VMEbus or ISIO card.

VSETDATE

Assigns the date on the VMEbus to be equal to the MicroVAX date.

VSTATUS

Displays the task ID, priority, and status of all the tasks residing

on the VMEbus.

VSTOP [/HARD] [/ISIO=address] [task-id]

Terminates execution of a task created with the VRUN command.

13.0 USER’S MANUAL

13.1 DOWN_LOAD

This command transfers a file from the MicroVAX to the VMEbus system.

Format

DOWNLOAD microvax_filename vme_filename

Parameters

microvax_filename

Specifies the name of the microvax input file to be downloaded.

Wildcards cannot be used in the file specification.

H-24

vme_filename

Specifies the name of the VMEbus system output file into which the
input file will be copied. Wildcards cannot be used in the file

specification.

Description

The DOWNLOAD command copies a file residing on the MicroVAX to a VMEbus
system file. If a file exists on the VMEbus system vith the same file
name as the user-specified output file, the existing file is replaced by
the downloaded file. The creation date for the new file is set to the

current time and date of the VMEbus system.

Qualifier

/CONTIGUOUS
/NOCONTIGUOUS (default)

Indicates whether the output file is to be contiguous, that is, whether
the file must occupy consecutive physical disk blocks. This qualifier is

only applied to the output file.

This qualifier should be used if the output file will be executed using

the VRUN command after it has been downloaded.
13.2 UP_LOAD
This command transfers a file from the VMEbus system to the MicroVaX.

Format

UPLOAD vme_filename microvax_filename

H-25

Parameters

vme_filename

Specifies the name of the VMEbus system input file to be uploaded.

Vildcards cannot be used in the file specification.

microvax_filename

Specifies the name of the MicroVAX output file into which the input file
will be copied. Wildcards cannot be used in the file specification.

Description

The UPLOAD command copies a file residing on the the VMEbus system to a

MicroVAX file. The creation date for the new file is set to the current
time and date of the MicroVAX system.

13.3 VCONVERT

This command translates a VMEbus S record file into an executable file.

Format

VCONVERT source_filename dest_filename

Parameters

msource_filename

Specifies the name of the input file to be converted. Wildcards

cannot be used in the file specification.

H-26

dest_filename

Specifies the name of the output file into which the input file will
be converted. Wildcards cannot be used in the file specification.

Inscription

The VCONVERT command translates an S record file on the VMEbus system
into an executable file. The new executable file also resides on the
VMEbus system.

Specifying the same filename for both the source file and the destination
file is not recommended. The probability of corrupting the data in the

file is quite high.

The creation date for the new file is set to the current time and date of

the VMEbus system.

Qualifier

/CONTIGUOUS (default)
/NOCONTIGUOUS

Indicates whether the output file is to be contiguous, that is, whether
the file must occupy consecutive physical disk blocks. This qualifier is

only applied to the output file.

This qualifier should be used if the output file will be executed using
the VRUN command.

13.4 VCOPY

This command duplicates a file on the VMEbus.

H-27

Format

VCOPY source_filename dest_filename
Parameters

source_filename

Specifies the name of the input file to be copied. Wildcards cannot

be used in the file specification.
dest_filename

Specifies the name of the output file into which the input file will

be copied. Wildcards cannot be used in the file specification.
Description

- The VCOPY command creates a new file, which is identical in contents and

attributes to the input file.
Specifying the same filename for both the source file and the destination
file is not recommended. The probability of corrupting the data in the

file is quite high.

The creation date for the new file is set to the current time and date of

the VMEbus system.
Qualifier

/CONTIGUOUS
/NOCONTIGUOUS (default)

H-28

Indicates whether the output file is to be contiguous, that is, whether
the file must occupy consecutive physical disk blocks. This qualifier is
only applied to the output file.

This qualifier should be used if the input file is in executable format
and the new output file will be executed using the VRUN command.

13.5 VDELETE

This command removes a file on the VMEbus.

Format

VDELETE vme_filename

Parameter

vme_filename

Specifies the name of the file to be deleted. Wildcards cannot be
used in the file specification.

Description
The VDELETE command removes a file residing on the VMEbus system.
It is important to remember that an executable file should never be
deleted until it is certain that there are no tasks executing out of
that file. Deletion of a file that a task is executing out of could
potentially have disastrous effects on the entire VMEbus system.

13.6 VDIR

This command provides a directory listing of a VMEbus disk.

H-29

Format

VDIR disk_name

Parameter

diskname

Specifies the disk on the VMEbus system from which the directory

information is to be obtained.

Description
The VDIR command obtains directory information of a given VMEbus
disk. This information can then be displayed on the screen or routed
to a file.

Qualifiers

/DATE
Indicates that the date and time of last modification should be
displayed along with the file name. The date and time of last
modification can be either the creation date of the file or the
last date the file was changed. The date and time are displayed in
MM-DD-YY HH:MM:SS format.

/SIZE

Specifies that the size of the file should be displayed in addition

to the file name. The size of the file is specified in bytes.

H-30

/0UTPUT=filename
Indicates that the listing of the directory should be sent to a file
instead of to the screen. If this qualifier is left off, the output
of the directory defaults to the screen.

13.7 VRENAME

This command changes the name of a file on the VMEbus.

Format

VRENAME old filename new_filename

Parameters

old_filename

Specifies the name of the input file to be renamed. Wildcards cannot

be used in the file specification.

nev_filename

Specifies the name to vhich the input file should be changed.

Description

The VRENAME command changes the file name of a VMEbus system. No other

attributes of the file are affected by the file name change.

13.8 VRESET

This command reestablishes the communication link between the MicroVAX
and VMEbus.

H-31

Format

VRESET

Description

The VRESET command resets different aspects of the VMEbus system.

If no qualifiers are specified, this command reopens the communication
link between the MicroVAX and VMEbus after the link has hung. If the CPU
qualifier is specified, the CPU-29 card is reset. If the ISIO qualifier

is specified, the ISIO card identified by the inputed address is reset.

To reestablish the communication link, the VMEbus communication task is
deleted and any pending I/0 requests are cancelled. The VMEbus
communication task is then recreated, thus reopening the communication

link between the two systems.

If the system is still hung after a VRESET command is issued, the system
must be reset via a hard reset. A hard reset causes the system to return
to its initial state. This will cause all files to be lost and all task
to be deleted.

The VRESET command will not affect the execution of any user created

tasks or the state of any files used by these tasks.

Care should be taken when using the VMEbus system so that the VRESET
command does not need to be issued. It is possible that very large
segments of dynamic memory could be lost if a VRESET is done because

a file transfer was abnormally exited (e.g., entering CTRL-C during a
DOWN-LOAD or UP-LOAD). This could cause the transfer rates to deteriate
dramatically, and if done too frequently may cause the VMEbus system to

hang, necessitating a hard reset.

H-32

Qual

/CPU

/1ISI

ifiers

Indicates that the CPU-29 card should be reset wvithout resetting any
peripheral cards. This is done by transferring control to the board
level support code. This qualifier cannot be used in conjunction
with the /ISIO qualifier.

O=address

Indicates that an ISIO card should be reset. The entered address

specifies which card will be reset.

This qualifier cannot be used in conjunction with the /CPU qualifier.

13.9 VRUN

This command begins execution of a file on the VMEbus or ISIO card.

Format

VRUN vme_filename

Parameter

vme_filename

Specifies the name of a VMEbus file that should be executed. This
file must be in executable format. To change an S record file into
an executable file, use the VCONVERT file.

If this file is to be executed on the VMEbus it must be a contiguous
file. Contiguous files can be generated using VCONVERT, VCOPY, or
DOWN_LOAD.

H-33

Description
The VRUN command begins execution of a file.

If the ISIO qualifier is specified, the VMEbus file is copied into the
given ISIO card address. The copied file is then executed by the 68010
processor on the ISIO card.

If the ISIO qualifier is absent, a task is created to begin executing
out of the VMEbus file. This means that the file will be executed on
the CPU-29 card in a multitasking environment.

Qualifiers
/TASK-ID=number

Indicates the integer value that will be associated with the task

that is created to execute the file.

This qualifier cannot be used in conjunction with the /ISIO
qualifier. If the /ISIO qualifier is not specified, then the
/TASK_ID qualifier must be used.

Valid task identifiers are integer values between O and 255. All
task identifiers must be unique, except for the special identifier
of 0. Many tasks can be created with an identifier of 0, but tasks
with this identifier are special tasks. They cannot be deleted via
the VSTOP command. In addition, they will not be displayed when the
VSTATUS command is issued. For further information on tasks with
identifiers of O see the VRTX32/68020 User’s Guide.

All tasks are created in user mode with interrupts enabled (interrupt
level 0).

H-34

The task identifiers of 2 and 3 are reserved for use by the

communication tasks.
/PRIORITY=number (default=64)
Specifies the priority at which the created task should run.

This qualifier cannot be used in conjunction with the /ISIO

qualifier.

Valid priorities are integer values between 0 and 255, with O being

the highest priority.
/1SI0=address

Indicates the address of an ISIO card to vhich the VMEbus file should

be copied to and run.

This qualifier cannot be used in conjunction with either the /TASK-ID
or the /PRIORITY qualifier.

The address should be specified in hexadecimal format, and should lie
in the CPU-29 address space.

The contents of the VMEbus file are copied to the given address. The
address is then masked to determine the starting address in ISIO
address space. The starting address is then written to the
appropriate ISIO card, and the 68010 processor on the ISIO begins

execution of the code.

Files executed on an ISIO card will not appear when the VSTATUS

command is issued.

H-35

13.10 VSETDATE

This command assigns the date and time on the VMEbus to correspond to the
MicroVAX.

Format

VSETDATE

Description

The current date and time of the MicroVAX are read and sent to the VMEbus
system. The VMEbus upon receipt of the information sets its internal
clock to the date and time specified.

By default, the VMEbus system initializes to 01-01-70 00:00:00 for a
date and time. If the VSETDATE command is not issued, all files will

be time stamped relative to the default date and time.

13.11 VSTATUS

This command displays the task ID, priority, and status of all the tasks
executing on the VMEbus.

Format

VSTATUS

Description

The VSTATUS command shows the state of the multitasking environment on
the VMEbus system. All tasks, except those with identifiers of zero, are

displayed by showing their task identifier, priority, and current status.

Please refer to the VRUN command for more information of the identifier

H-36

and priority of a task. Please see the VRTX32/68020 User’s Guide for

more information on how to interpret a task’s current status.
Any files executing under the control of processors other than the 68020

on the CPU-29 card are not displayed. This means that files executing on
an ISIO card would not be displayed using the VSTATUS command.

13.12 VSTOP

This command terminates execution of a task created with the VRUN

command.

Format

VSTOP task_id

Parameter

task_id

Specifies the identifier of the task to be deleted. The task

identifier is the same as the one specified in VRUN.

Description

If no qualifiers are specified the VSTOP command issues an IFX TDELETE
command to delete the specified task. The task will not be deleted until

it completes its current I/0 call or until it makes its next I/0 call.

If the HARD qualifier is specified, the VSTOP command issues a SC-TDELETE
command to delete the specified task. The task will be deleted without

regard to its current state or activity.

If the ISIO qualifier is specified, the halt program opcode will be
written to the ISIO card identified by the address entered.

H-37

The VSTOP command should not be used indiscriminately. It may cause
files to be left open and/or dynamic memory to be lost (the VMEbus system
does not do garbage collection). When these adverse affects accumulate,

the VMEbus system may hang, necessitating a hard reset.
Qualifiers
/HARD

Requests that the task be deleted without waiting for the next I/0

operation to begin or complete.

This qualifier cannot be used in conjunction with the /ISIO

qualifier.

/ISI0=address
Indicates that the BALTPROG opcode should be written to an ISIO card.
The entered address specifies which card will be stopped. It is up

to the operating system on the ISIO card to stop the currently

executing program.

This qualifier cannot be used in conjunction with the /HARD

qualifier.

H-38

APPENDIX I: Softvare Tape Listings

1.0 INTRODUCTION

This software tape contains copies of source files used to create the

small-scale system. No object, absolute, or listing files are included.

The source listings on this tape represent the software delivered with
the small-scale system for experimentation at NASA Langley in May, 1989.

2.0 TAPE FORMAT

The tape is 1600 bpi DEC VMS version 5.1 BACKUP format.

3.0 TAPE DIRECTORY STRUCTURE

The tape directory structure from the root SCRATCH directory is as

follows:
AIPS FTP Ada software from CSDL templates
SSS_SW Ada software common to lower directories

FTPOTP_A Experiment 10

FTPOTP_B Experiment 11, tests 1 and 2
FTPOTP_C Experiment 11, test 3
FTPOTP_D Experiment 12 and 13
FTPOTP_E Experiment 14

FTPOTP_F Experiment 15

DIU DIU related utilites and source code
c DEC VAX C for DIU addr screen and frame def
FRAMES DIU addr assignment and frame def files
COMMON source files defining common memory params

I-1

INCLUDE
KERNEL
NORMAL
PROBE

EXPERIMENT

VME

COoM
El1

T1

T2

T3
E12
E13
El4
E15
oTP

b T - N = B o T - - I

CLOCK
CONTROL
FAULT
OPIO
SYNC
UNLOAD

VULTURE

I-2

BSP
COMM

include files for common symbols

DIU Kernel assembly 68010 assy language
DIU assembly 68010 assy language

Probe assembly 68010 assy language

Experiment control *.COM files
common to all experiments
unique to Experiment 11

unique to test 1

unique to test 2

unique to test 3
unique to Experiment 12
unique to Experiment 13
unique to Experiment 14

unique to Experiment 15

FTPOTP_D patches
FTPOTP_E patches
FTPOTP_F patches

VMEbus CPU experiment control and utilities
FTC source selection
Experiment control
Fault insertion control
OPIO interface test program
Manual synchronization routines

DIU data unload and formatting

VULTURE source for simulation computer control
Board support initializiation routines
VMEbus VULTURE source

C_RTL
INCLUDE
SPLIT
VAX

Code to make C library sharable

Common include files

Split code for EPROM generation
VAX VULTURE source and .CLD files

3.0 TAPE DIRECTORY LISTING

Directory FC_LAB:[SCRATCH]

AIPS.DIR;1

DIU.DIR;1

EXPERIMENT.DIR;1

VME.DIR;1

VULTURE.DIR;1

[

Total of 5 files, 5 blocks.

Directory FC_LAB:[SCRATCH.AIPS]

SSS_SW.DIR;1

Total of 1 file, 2 blocks.

Directory FC LAB:[SCRATCH.AIPS.SSS_SV]

EXPERIMENT CONTROL.A;47 11
EXPERIMENT CONTROL B.A;10 10

FTPOTP_A.DIR;1
FTPOTP_B.DIR;1
FTPOTP_C.DIR;1
FTPOTP_D.DIR;1
FTPOTP_E.DIR;1
FTPOTP_F.DIR;1

- b e e e

22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989

22-JUN-1989

7-APR-1989

5-MAY-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989

16:12:50.57
17:29:34.28
17:49:04.95
16:12:47.04
16:12:42.83

16:13:39.84

16:45:51.24
18:31:17.38
16:13:52.63
16:13:53.83
16:13:55.52
16:13:57.23
16:13:59.18
16:14:00.76

I-3

I0SS_COMM_SPEC_TASK_B.A;12 13 1-MAY-1989
I0SS_DPM_MAP B.A;9 55 31-MAR-1989
10SS_IOR_SPEC B.A;55 73 3-MAY-1989
I0SS_NET_MGR_CONFIG_B.A;2 99 28-MAR-1989
10SS_POWERUP_IOP_B.A;5 12 1-MAY-1989
SSS_CENTRAL DATABASE B.A;2 79 27-MAR-1989
SSS_CONSTANTS.A;10 11 29-APR-1989
SSS_GLOBAL_MEM_UTIL B.A;4 14 12-APR-1989
SSS_I0 REQUESTS.A;16 36 27-APR-1989
SSS_I0 REQUESTS_B.A;43 103 4-MAY-1989
SSS_NET_TYPES_CONST.A;4 29 8-MAR-1989
TEST_SHARED MEMORY DEFS.A;6 5 1-MAY-1989

Total of 20 files, 556 blocks.

Directory FC_LAB:[SCRATCH.AIPS.SSS_SV.FTPOTP_A]

SSS_MAIN INIT CP.A;6 6 8-FEB-1989
SSS_MAIN PROG_CP.A;5 17 28-MAR-1989
SSS_MAIN PROG_IOP.A;7 8 28-MAR-1989

Total of 3 files, 31 blocks.

Directory FC_LAB:[SCRATCH.AIPS.SSS_SV.FTPOTP_B]

SSS_MAIN_INIT CP.A;1 3 26-APR-1989
SSS_MAIN INIT CP B.A 10 29-APR-1989
SSS_MAIN PROG_CP.A;7 8 29-APR-1989
SSS_MAIN_PROG_IOP.A;32 13 29-APR-1989
SSS_OD_APPLICATION TASKS.A;1 3 23-DEC-1988
SSS_OD_APPLICATION TASKS_B.A;63 79 29-APR-1989

Total of 6 files, 116 blocks.

14:36:47.22
14:06:34.32
11:01:28.87
13:04:44.83
14:18:44.71
11:41:22.97
11:08:48.37
11:22:35.22
17:57:23.03
15:00:08.67
15:46:21.66
20:33:12.80

17:12:35.84
18:23:27.94
18:21:55.94

18:15:14.93
16:58:06.01
14:30:33.95
15:51:13.87
10:27:18.25
17:03:44.68

Directory FC_LAB:[SCRATCB.AIPS.SSS_SV.FTPOTP_C]

$SS_MAIN_INIT CP.A;19 11
SSS_MAIN PROG_CP.A;4 6
SSS_MAIN PROG_IOP.A;48 15
$SS_OD_APPLICATION_TASKS.A;1 3
SSS_OD_APPLICATION_TASKS_B.A;73 69

Total of 5 files, 104 blocks.

29-APR-1989
29-MAR-1989
29-APR-1989
23-DEC-1988

5-MAY-1989

Directory FC_LAB:[SCRATCH.AIPS.SSS_SV.FTPOTP_D]

IDLE TIMER.A;10 5
SSS_MAIN_PROG_IOP.A;14 15
SSS_OD_APPLICATION_TASKS.A;2 4
$SS_OD_APPLICATION TASKS_B.A;65 86
SSS_OD_MAIN_INIT CP.A;12 13
$SS_OD_MAIN_PROG_CP.A;9

SSS_PER_APPLICATION TASKS.A;4 4
SSS_PER_APPLICATION_TASKS B.A;53 78
SSS_PER_MAIN_INIT CP.A;15 13
SSS_PER_MAIN_PROG_CP.A;8 6

Total of 10 files, 231 blocks.

4-MAY-1989
1-MAY-1989
29-APR-1989
22-JUN-1989
1-MAY-1989
29-APR-1989
29-APR-1989
22-JUN-1989
1-MAY-1989
29-APR-1989

Directory FC_LAB:[SCRATCH.AIPS.SSS_SW.FTPOTP_E]

FAULT_SHARED_MEMORY DEFS.A;4 3
IOP.A;1 18
SSS_MAIN_PROG_IOP.A;17 20
SSS_OD_MAIN_INIT_CP.A;15 21
SSS_OD_MAIN PROG_CP.A;9 7
SSS_PER_MAIN_INIT CP.A;19 21
$SS_PER_MAIN_PROG_CP.A;8 6

4-MAY-1989
3-MAY-1989
4-MAY-1989
4-MAY-1989
29-APR-1989
4-MAY-1989
29-APR-1989

17:22:46.47
11:38:07.50
17:01:37.84
10:27:18.25
18:40:33.29

04:03:12.24
22:51:52.35
19:40:21.09
16:46:07.68
23:24:25.85
20:07:35.40
20:09:15.05
16:52:02.66
23:23:49.18
20:06:23.52

19:27:31.59
22:15:44.48
19:37:54.63
19:51:19.27
20:07:35.40
20:00:25.85
20:06:23.52

I-5

Total of 7 files, 96 blocks.

Directory FC_LAB: [SCRATCH.AIPS.SSS_SW.FTPOTP_F]

Total of 4 files, 312 blocks.

Directory FC_LAB:[SCRATCH.DIU]

Total of 6 files, 6 blocks.

Directory FC_LAB:[SCRATCH.DIU.C]

I-6

SSS_IO_REQUESTS.A;4
SSS_IO_REQUESTS B.A;17
SSS_OD_APPLICATION TASKS B.A;72
SSS_PER_APPLICATION TASKS B.A;59

C.DIR;1
COMMON.DIR; 1
INCLUDE.DIR; 1
KERNEL.DIR;1
NORMAL.DIR; 1
PROBE.DIR; 1

DIU_ADDR.H;1
DIU_CONSTANTS.H;1
FRAMES.DIR; 1
FRAME_DATA.C;1
FRAME_ID.H;1
FRAME_TYPES.H; 1
MAKE_FRAME FILE.C;1
NODE_ADDR.H;1

37

105

89
81

(e S S S S S WU

18

21
2

29-APR-1989

4-MAY-1989
22-JUN-1989
22-JUN-1989

22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989

7-MAR-1989
16-NOV-1988
22-JUN-1989
13-APR-1989
1-MAR-1989
15-NOV-1988
7-APR-1989
7-MAR-1989

21:03:47.63
21:07:17.34
16:52:07.20
16:55:48.46

17:30:57.31
17:30:58.87
17:31:03.45
17:31:04.39
17:31:06.02
17:31:10.19

17:15:10.89
15:12:44.28
17:31:15.39
11:25:22.04
11:24:27.75
16:38:59.71
11:01:06.70
17:14:24.96

Total of 8 files, 56 blocks.

Directory FC_LAB:[SCRATCH.DIU.C.FRAMES]

ALL_DATA.DEF;1
ALL DATA.SRC;1
MAKE_TABLES.COM;1
N1DIU1.DEF;1
N1DIU1.SRC;1
N1DIU2.DEF;1
N1DIU2.SRC;1
N2DIU1.DEF;1
N2DIU1.SRC;1
N2DIU2.DEF;1
N2DIU2.SRC;1

56

23

20

22

20

Total of 11 files, 158 blocks.

Directory FC_LAB:[SCRATCH.DIU.COMMON]

BUFFER_ALLOCATION.SRC;1 4

BUFFER_CONTROL.SRC; 1
INTERFACE RAM.SRC;1

o]

Total of 3 files, 18 blocks.

Directory FC LAB:[SCRATCH.DIU.INCLUDE]

COMMAND KERNEL. INC;1
DEFS_KERNEL. INC;1
DIU_ADDR.INC;1
DIU_ERROR.INC;1
DIU_SCREEN.INC;1
FRAME_ID.INC;1

7-APR-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989
2-MAY-1989

8-MAR-1989
9-APR-1989
11-APR-1989

9-APR-1989
22-FEB-1989
28-0CT-1988
1-MAR-1989
3-MAY-1989
28-0CT-1988

10:58:59.39
11:13:27.17
11:08:51.24
11:04:42.33
11:13:10.38
11:05:03.40
11:13:14.51
11:05:25.40
11:13:18.68
11:05:13.31
11:13:23.67

16:19:54.91

22:11:20.81

10:34:07.02

18:03:51.64
12:17:15.16
15:16:34.21
15:40:55.81
23:49:21.72
15:16:32.58

I-7

22-MAR-1989 13:03:46.05
4-MAY-1989 00:07:23.59
11-APR-1989 10:26:15.96

FRAME TYPES.INC;1
INCLUDE_FILES.SRC;1
INTERFACE_KERNEL.INC;1

ISIO0.INC;1 15 25-FEB-1989 17:13:09.10
MC68230.INC;1 9 24-FEB-1989 11:20:43.06
SCN68562.INC;1 12 30-MAR-1989 11:04:52.14

Total of 12 files, 100 blocks.

Directory FC_LAB:[SCRATCH.DIU.KERNEL]

KERNEL.OPT;1 2 1-MAR-1989 11:19:37.31
KERNEL. SRC;1 78 8-MAR-1989 16:30:30.55

Total of 2 files, 80 blocks.

Directory FC_LAB:[SCRATCH.DIU.NORMAL]

ASM_DIU.COM;1 1 31-MAR-1989 10:17:24.37
DIU_INIT.SRC;1 42 10-APR-1989 20:47:44.44
DIU_START.SRC;1 28 3-MAY-1989 14:03:03.41
DIU_SVC.SRC;1 95 3-MAY-1989 14:59:39.53
LINK DIU.COM;1 1 30-MAR-1989 18:04:04.83
N1DIU1.0PT;1 3 2-MAY-1989 11:10:02.43
N1DIU2.0PT;1 3 2-MAY-1989 11:10:12.28
N2DIU1.0PT;1 3 2-MAY-1989 11:10:36.37
N2DIU2.0PT;1 3 2-MAY-1989 11:10:27.15
Total of 9 files, 179 blocks.
Directory FC_LAB:[SCRATCH.DIU.PROBE]
ADDR_SCREEN. SRC;1 23 3-MAY-1989 14:06:45.35

FAST_PROBE_SVC.SRC;1 61 27-APR-1989 10:22:23.02

I-8

FPROBE.OPT;1 3 27-APR-1989 10:44:49.38
Total of 3 files, 87 blocks.

Directory FC_LAB:[SCRATCH.EXPERIHENT]

COM.DIR;1 1 22-JUN-1989 17:51:36.20
E11.DIR;1 1 22-JUN-1989 17:52:05.91
E12.DIR;1 1 22-JUN-1989 17:52:25.63
E13.DIR;1 1 22-JUN-1989 17:52:28.38
E14.DIR;1 1 22-JUN-1989 17:52:30.55
E15.DIR;1 1 22-JUN-1989 17:52:35.83
OTP.DIR;1 1 22-JUN-1989 17:52:50.98

Total of 7 files, 7 blocks.

FAIL HI.COM;1 1 6-MAY-1989 01:37:19.21
FAIL_LO.COM;1 1 6-MAY-1989 01:36:40.31
FAIL NORM.COM;1 1 6-MAY-1989 01:58:38.29
GET_DIU.COM;3 3 17-MAY-1989 16:52:38.91
GET_FTP.COM;2 17 19-MAY-1989 11:46:23.55
RUN_DIU.COM;5 3 17-MAY-1989 16:34:47.92
RUN_EXP.COM;12 6 19-MAY-1989 12:33:06.56
SET_FTP.COM;1 7 19-MAY-1989 11:44:02.20
SYMBOLS.COM;11 2 19-MAY-1989 12:26:14.44
UNL_DIU.COM;3 2 17-MAY-1989 16:47:35.52
VME_LOAD_EXE.COM;1 3 5-MAY-1989 22:48:32.21
VULTURE.COM; 2 2 5-MAY-1989 22:55:13.21

Directory FC_LAB:[SCRATCH.EXPERIHENT.COH]

Total of 12 files, 48 blocks.

Directory FC_LAB:[SCRATCH.EXPERIHENT.EII]

T1.DIR;1 1 22-JUN-1989
T2.DIR;1 1 22-JUN-1989
T3.DIR;1 1 22-JUN-1989
Total of 3 files, 3 blocks.
Directory FC_LAB:[SCRATCH.EXPERIMENT.E11.T1]}
LD B.COM;1 4 5-MAY-1989
Total of 1 file, 4 blocks.

Directory FC_LAB:[SCRATCH.EXPERIMENT.E11.T2]

LD_B.COM;2 4 22-JUN-1989
LD_B.COM;1 4 5-MAY-1989

Total of 2 files, 8 blocks.

Directory FC_LAB:[SCRATCH.EXPERIMENT.E11.T3)

LD_C.COM;2 4 6-MAY-1989

Total of 1 file, 4 blocks.

Directory FC_LAB:[SCRATCH.EXPERIMENT.E12]

LD_OD.COM; 1 1 18-MAY-1989
LD_PER.COM; 1 1 18-MAY-1989

Total of 2 files, 2 blocks.

Directory FC_LAB:[SCRATCH.EXPERIMENT.E13]

I-10

17:52:11.31
17:52:13.36
17:52:15.10

23:21:35.56

17:58:10.96
23:21:35.56

00:35:41.62

17:58:35.70
17:58:19.52

LD OD.COM;3 1
LD_PER.COM;2 1

Total of 2 files, 2 blocks.
Directory FC_LAB:[SCRATCH.EXPERIMENT.E14]

LD_0D.COM; 4 1
LD_PER.COM;3 1

Total of 2 files, 2 blocks.
Directory FC_LAB:[SCRATCH.EXPERIMENT.E15]

LD_0D.COM;5 1
LD_PER.COM;4 1

Total of 2 files, 2 blocks.
Directory FC_LAB:[SCRATCH.EXPERIMENT.OTP}

A.DIR;1
B.DIR;1
C.DIR;1
D.DIR;1
E.DIR;1
F.DIR;1

I =

Total of 6 files, 6 blocks.

Directory FC_LAB:[SCRATCH.EXPERIMENT.OTP.D]

PATCH_IOP.COM;1 1

18-MAY-1989
18-MAY-1989

18-MAY-1989
18-MAY-1989

18-MAY-1989
18-MAY-1989

22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989

18-MAY-1989

17:58:35.70
17:58:19.52

18:07:25.88
18:07:57.11

18:10:19.37
18:10:40.34

17:52:58.55
17:52:59.87
17:53:01.53
17:53:02.76
17:53:04.82
17:53:06.92

17:47:01.10

I-11

Total of 1 file, 1 block.
Directory FC_LAB:[SCRATCH.EXPERIMENT.OTP.E]
PATCH_IOP.COM;2 1 18-MAY-1989 18:05:36.48
Total of 1 file, 1 block.
Directory FC_LAB:[SCRATCH.EXPERIMENT.OTP.F]
PATCH_IOP.COM;1 1 18-MAY-1989 18:09:22.36

Total of 1 file, 1 block.

Directory FC_LAB:[SCRATCH.VME]

CLOCK.DIR;1 1 22-JUN-1989 17:39:04.81
CONTROL.DIR;1 1 22-JUN-1989 17:39:06.53
C_SYMBOLS.COM;2 1 22-JUN-1989 17:48:32.12
FAST_OPIO.OPT;2 1 16-JUN-1988 16:31:07.40
FAST_OPIO.SRC;2 7 7-JUN-1988 15:19:00.30
FAULT.DIR;1 1 22-JUN-1989 17:39:08.78
INIT_UTIL.SRC;5 7 16-JUN-1988 17:29:01.46
0PI0.DIR;1 1 22-JUN-1989 17:36:40.73
OPIO_INIT.SRC;18 8 26-0CT-1988 16:57:51.98
SYNC.DIR;1 1 22-JUN-1989 17:39:10.70
UNLOAD.DIR;1 1 22-JUN-1989 17:39:12.52

Total of 11 files, 30 blocks.

Directory FC_LAB:[SCRATCH.VHE.CLOCK]
VFTC.C;1 4 6-APR-1989 11:14:51.73

I-12

VFTC.OPT;1 2 6-APR-1989 11:16:51.57

Total of 2 files, 6 blocks.

Directory FC_LAB:[SCRATCH.VHE.CONTROL]

6-APR-1989 11:06:03.03
6-APR-1989 14:16:52.89
5-APR-1989 18:01:32.42
5-APR-1989 19:28:25.12
28 11-APR-1989 10:41:33.70

CONTROL. COM; 1
CONTROL. DAT ; 4
CONTROL. EDIT; 1
CONTROL. OPT; 2
CONTROL_TASK.C;41

NN

Total of 5 files, 35 blocks.

Directory FC_LAB:[SCRATCH.VHE.FAULT]

FAULT.DAT;1 2 5-APR-1989 17:54:35.34
PAULT.EDIT;1 3 4-APR-1989 19:29:31.57
FAULT.FDL;2 1 5-APR-1989 09:11:03.00
FAULT_BUS_INIT.C;4 4 10-APR-1989 12:00:46.33
FAULT_ISR.SRC;17 6 5-APR-1989 13:28:44.58
FAULT TASK.C;77 12 10-APR-1989 11:36:09.34
PBUSINIT.OPT;1 2 10-APR-1989 11:43:30.42
FINSERT.OPT;3 2 4-APR-1989 19:16:06.22
LOAD_TIMER.SRC;6 3 5-APR-1989 10:35:10.75
PRINT_FAULT.C;11 3 9-APR-1989 20:08:48.33

Total of 10 files, 38 blocks.

Directory FC_LAB:[SCRATCH.VME.SYNC]
ASSERT.C;2 3 10-APR-1989 00:39:22.05
ASSERT.OPT;2 2 10-APR-1989 00:44:32.15
FBUS.C;2 3 10-APR-1989 00:59:07.61

I-13

FBUS.OPT;1

FSYNC.C;14
FSYNC.OPT;1
GSYNC.C;1

GSYNC.OPT;1
VSYNC.C; 11
VSYNC.OPT;3

D WD N

Total of 10 files, 27 blocks.

Directory FC_LAB:[SCRATCH.VME.UNLOAD]

CONVERT.C; 37
GET_EXPERIMENT TIME.C;5
PRINT UTILITIES.C;10
READ_TIMER.SRC;7
UNLOAD.C;84
UNLOAD.COM; 9
UNLOAD.OPT; 6

UNLOAD BUFFER.C;9 3

D U W

32

P2

Total of 8 files, 60 blocks.

Directory FC_LAB:[SCRATCH.VULTURE]

BSP.DIR;1
COMM.DIR; 1
C_RTL.DIR;1
INCLUDE.DIR;1
SPLIT.DIR;1
VAX.DIR;1

[S S W S

Total of 6 files, 8 blocks.

I-14

10-APR-1989
10-APR-1989
9-APR-1989
13-APR-1989
13-APR-1989
9-APR-1989
3-APR-1989

4-APR-1989
28-MAR-1989
9-APR-1989
28-MAR-1989
11-APR-1989
27-MAR-1989
27-MAR-1989
3-APR-1989

22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989
22-JUN-1989

00:44:44.77
01:07:49.60
20:30:26.84
14:19:49.86
14:20:27.58
20:44:34.13
16:43:40.04

15:17:09.13
08:45:05.06
23:18:17.88
13:50:20.85
12:28:43.61
15:32:16.01
15:30:50.18
16:55:15.87

16:13:24.17
16:13:26.13
16:13:28.50
16:13:29.89
16:13:31.99
16:13:34.46

Directory FC_LAB:[SCRATCH.VULTURE.BSP]

BUILD BSP.COM;1
IFX SETUP.C;1

INIT C_RTL.C;1
INIT DRAM.SRC;1
INIT UTIL.SRC;1
OPIO INIT.SRC;1
RECEIVE_INIT.SRC;1
VAX_ISR.SRC;1 4

~N W N e

10

[(%)

Total of 8 files, 38 blocks.

Directory FC_LAB:[SCRATCH.VULTURE.COMM]

BSP.OPT;1
BUILD_COMM.COM;1
CHECK_ADDRESS. SRC; 1
COMM.C;1
DOWN_LOAD.C;1
ESTABLISH LINK.C;1
MAIN.C;2
RESET_CPU.SRC;1
RESET_LINK.C;1

STAT TO_VAX.C;1
TOOL.C; 1
UP_LOAD.C;1
VCONVERT.C;1
VCOPY.C;1
VDELETE.C;1
VDIR.C;1
VRENAME.C;1
VRESET.C;1 6
VRUN.C;1 11

A = = WLy NDW

- [
s O o=

18

24-JAN-1989
12-JAN-1989
25-JAN-1989
18-JAN-1989

6-DEC-1988
16-JAN-1989

5-DEC-1988
24-JAN-1989

25-JAN-1989
24-JAN-1989
24-JAN-1989
16-JAN-1989
21-NOV-1988
14-NOV-1988

2-FEB-1989
23-JAN-1989
22-SEP-1988
20-JAN-1989
16-JAN-1989
14-NOV-1988
18-NOV-1988
17-NOV-1988
29-NOV-1988
29-NOV-1988
14-NOV-1988
23-JAN-1989
23-JAN-1989

08:36:14.43
15:04:37.31
07:19:36.28
10:30:33.58
13:44:31.86
10:38:43.75
11:10:11.42
08:38:42.58

07:23:02.30
08:36:50.11
14:56:41.04
07:45:05.67
16:39:35.46
13:38:12.77
13:38:01.32
11:18:16.39
11:04:26.00
12:54:03.12
07:40:26.68
13:38:48.35
16:07:21.65
10:13:21.13
10:17:53.03
10:38:48.28
13:40:45.52
11:26:31.25
09:26:34.07

I-15

VSETDATE.C;1
VSTATUS.C;1
VSTOP.C;1

Total of 22 files, 136 blocks.

Directory FC_LAB:[SCRATCH.VULTURE.C RTL]
BUILD_C_RTL.COM;1
C RTL_IL.INC;1 6
C_RTL_IL.SRC;1 15
PROM_RTL.SRC;1 11

Total of 4 files, 33 blocks.

Directory FC_LAB:[SCRATCH.VULTURE.INCLUDE]

DRQ3B. H; 20 6
HXS$DEF . H; 1 9
0PIO.H;9 16
OPI0.INC;17 14
OPIO DEF.H;45 7

Total of 5 files, 52 blocks.

Directory FC_LAB:[SCRATCH.VULTURE.SPLIT]

SPLIT.C;2 11
SPLIT.OPT;1 1

Total of 2 files, 12 blocks.

Directory FC_LAB:[SCRATCH.VULTURE.VAX]

I-16

10-NOV-1988
28-N0OV-1988
23-JAN-1989

23-JAN-1989
22-NOV-1988
18-NOV-1988
22-NOV-1988

23-JAN-1989

2-MAY-1988
27-0CT-1988
18-0CT-1988
23-JAN-1989

2-FEB-1989
23-JAN-1989

08:42:07.86
15:00:19.99
09:19:51.98

14:17:02.07
10:21:45.27
10:47:40.48
10:20:56.32

09:41:18.22
09:30:45.82
09:42:39.75
14:47:37.19
09:41:42.37

13:36:07.62
08:35:31.95

CLEAR.C;1 2 16-DEC-1988 15:24:24.40
DOWN_LOAD. C;2 16 16-JAN-1989 10:49:41.09
DOWN_LOAD. CLD; 2 1 11-JAN-1989 07:53:41.00
DRQ3B_LIB.C;2 19 16-JAN-1989 12:30:01.88
ESTABLISH LINK.C;1 8 2-NOV-1988 14:08:50.28
ESTABLISH_LINK.CLD;1 1 11-AUG-1988 14:00:39.63
UP_LOAD.C;2 15 16-JAN-1989 10:51:39.95
UP_LOAD.CLD;2 1 11-JAN-1989 07:53:54.00
VCONVERT.C;1 8 2-DEC-1988 15:38:05.20
VCONVERT. CLD; 2 1 11-JAN-1989 07:54:09.00
VCOPY.C;1 8 2-DEC-1988 15:38:19.64
VCOPY.CLD;2 1 11-JAN-1989 07:54:33.00
VDELETE.C;1 7 2-DEC-1988 15:38:32.23
VDELETE. CLD; 2 1 11-JAN-1989 07:54:46.00
VDIR.C;2 14 16-JAN-1989 11:01:55.94
VDIR.CLD;2 11-JAN-1989 07:54:55.00
VRENAME.C;1 7 2-DEC-1988 15:39:06.10
VRENAME. CLD; 2 1 11-JAN-1989 07:55:12.00
VRESET.C;5 10 23-JAN-1989 09:47:36.38
VRESET.CLD; 4 1 23-JAN-1989 09:43:18.68
VRUN.C; 4 11 19-JAN-1989 08:56:17.24
VRUN. CLD; 2 1 11-JAN-1989 07:55:38.00
VSETDATE.C;1 7 2-DEC-1988 15:39:44.84
VSETDATE. CLD; 2 1 11-JAN-1989 07:55:52.00
VSTATUS.C;1 9 2-DEC-1988 15:40:06.64
VSTATUS.CLD; 2 1 11-JAN-1989 07:56:11.00
VSTOP.C;4 8 17-JAN-1989 07:33:03.45
VSTOP.CLD; 7 1 17-JAN-1989 07:23:49.24

Total of 28 files, 162 blocks.

Grand total of 44 directories, 279 files, 2865 blocks.

I-17

I-18

APPENDIX J: DOCUMENTATION PACKAGES

DOCUMENTATION PACKAGE A: VMEBUS SIMULATION
COMPUTER CONFIGURATION

Subject: VMEbus Simulation Computer Addressing
Date: June 16, 1988

Rev: August 4, 1988

INTRODUCTION:

This document describes the basics of VMEbus memory addressing and the
use of each memory area by the CPU-29 and DMA VMEbus masters in the
VMEbus simulation computer.

The example used for discussion of memory addressing herein is the
implementation of DIU simulators for the IAPSA Small Scale System
using the VMEbus simulation computer as a base.

There are three types of memory present on the VMEbus in this example:
local memory, such as CPU-29 local RAM, accessable only to devices on a

particular board; global memory, such as the DRAM-Ed-xxx dynamic RAM,

accessable to all VMEbus masters; and dual port memory, such as that on
the ISIO-2, accessable to both local devices and VMEbus masters.

DISCUSSION:

VMEbus Data Size and Addressing:

CPU-

The VMEbus specification supports three types of board addressing:
extended 32 bit, standard 24 bit and short 16 bit addressing. A board
may recognize or ignore the 8 or 16 upper address bits depending on its
design. Board data may be 8, 16, 24, or 32 bit.

The VMEbus specification includes 6 lines in addition to the address and
control lines which are used to qualify board selection. These are
called the address modifier (AM) lines. An address modifier code is
output by a bus master any time the VMEbus is accessed. The codes used
in the VMEbus simulation computer specify the addressing mode: extended
(A32), standard (A24), or short (Al16); the privilege: supervisory (S) or
non-privileged (N); and the type of access: program (PA) or data (DA).
(For example, A32:NPA represents extended addressing non-privileged
program access.)

29 VMEbus Interface:

The CPU-29 uses a Motorola 68020 to implement a full 32 bit VMEDbus.
Local memory and I/0 devices occupy a portion of the 32 bit (4 GB) 68020
address range. Local memory and 1/0 devices are not accessible from the
VMEbus. Access to these devices by the local 68020 causes no activity
on the VMEbus.

VMEbus Simulation Computer Addressing . August 4, 1988
Small Scale System DIU Simulator Example Page 2 of 5

To accomodate the access requirements of different boards residing on
the VMEbus, the CPU-29 maps its address space for different types of
accesses. The bus sizing for several of the address ranges, below, is
software programmable to be either D16 or D32. The DIU simulation
computer is programmed to use the D32 bus size for these ranges. Only
boards which have a 32 bit data path can be located in a D32 address
range. D16 boards which are accessed as D32 boards will only drive the
DO thru D15 data lines and because of the VMEbus termination, data
appearing on D16 thru D31 will at logic 1.

Note that bus sizing does not affect the instructions which can be used
in the 68020. The bus sizing only affects the way in which the data are
obtained from the boards. A D32 board may be placed in D16 address
space, but at the price of additional access cycles for long word
access.

The Table 1, below, describes the mapping of the CPU-29 68020 address
space to the VMEbus address space, including addressing mode and data
bus size:

TABLE 1: CPU-29 to VMEbus Mapping
CPU-29 VMEbus addr:data_size
0000 0000 - OOQF FFFF (no access: CPU-29 local RAM)
0010 0000 - FAFF FFFF 0100 0000 - FAFF FFFF A32:PROGRAMMABLE

FB0Q 0000 - FBFE FFFF FB0OO 0000 - FBFE FFFF A24 :PROGRAMMABLE
FBFF 0000 - FBFF FFFF FBFF 0000 - FBFF FFFF A16:PROGRAMMABLE

FCO00 0000 - FCFE FFFF FC00 0000 - FCFE FFFF A24:D16
FCFF 0000 - FCFF FFFF FCFF 0000 - FCFF FFFF Al6:D16

FDOO 0000 - FEFF FFFF FDOO 0000 - FEFF FFFF A24 :PROGRAMMABLE
FF00 0000 - FF7F FFFF (no access: CPU-29 local EPROM)
FF80 0000 ~ FFFF FFFF {no access: CPU-29 local I/0)

NOTES: 1. A24 devices on the VMEbus ignore the upper two address
bytes. Addresses xx00 0000 thru xxFE FFFF are decoded
as 00 0000 thru FE FFFF.

2. Al6 devices on the VMEbus ignore the upper four address
bytes. Addressess xxxx 0000 thru xxxx FFFF are decoded
as 0000 thru FFFF.

3. PROGRAMMABLE access areas are defined as D32.

Global RAM (DRAM-E4xxx) VMEbus Interface:

The 14.75 MB VMEbus RAM is a D32 two board set confiqured to respond to
A32:NPA, NDA, SPA, SDA and A24:NPA, SPA access. The VMEbus address range
of the memory is XX10 0000 to XXFB FFFF, repeating every 16 MB.

VMEbus Simulation Computer Addressing August 4, 1988
Small Scale System DIU Simulator Example Page 3 of 5

DIU Simulator (ISIO-2) VMEbus Interface:

The DIU simulators (ISIO-2 boards) are D16 boards, with 128 KB of RAM,
120KB of which is dual port RAM. They are configured to respond only to
A24:NDA and A24:SDA access with base addresses in the range of XX00 0000
to XX0C 0000.

DMA Controller (OPIO-1) VMEbus Interface:

As a slave, the DMA controller (OPIO-1 board) is configured to respond
only to Al6:NDA and Al6:SDA accesses. As a bus master (when performing
DMA operations) it only supports A24:D16 transfers using one of NDA,
NPA, SDA, or SPA software programmable address modifiers.

Fault Insertion Controller (OPIO-1) VMEbus Interface:

The fault insertion controller is implemented using devices located
on the OPIO-1 board. It is accessed as a VMEbus slave device.

Description of Board Addressing Scheme:

The board addressing scheme described above, allows access to the VMEbus
REM and the DIU simulator dual port RAM by both the CPU-29 and the DMA
controller. It also provides a degree of protection to inadvertently
accessing data in the DIU simulator dual port RAM when using the DMA
controller to transfer data between the VMEbus and the uVAX II.

The CPU-29 accesses local and VMEbus RAM as contiguous A32:D32 RAM
from O thru OOFB FFFF, giving it access to a total of 15.75 MB of
contiguous RAM. (VMEbus RAM is accessed by the CPU-29 as either
A32:D32:NDA, NPA, SDA, or SPA.) The DIU simulator dual port RAM is
accessed as A24:D16:NDA or SDA over the address range FCO0 0000 thru
FCOD FFFF. The DMA controller is accessed as A16:D16:NDA or SDA
with a base address of FCFF 0000.

The DMA controller has access to the 14.75 MB VMEbus RAM using
A24:NPA,SPA over the address range of 10 0000 thru FB FFFF. The DIU
simulator dual port RAM is accessed using A24:NDA or SDA over the
address range of 0 thru 0D FFFF. By using the NPA or SPA AM codes for
DMA access to VMEbus RAM and NDA or SDA AM codes for DMA access to the
DIU simulator dual port RAM, inadvertent access to either area is
prevented.

The VMEbus specification states that -A32 boards MUST monitor all 32
address lines; A24 devices MUST monitor the lower 24 address lines and
MAY monitor the upper 8 address lines. The DRAM board responds to both
A32 and A24 addressing while ignoring the upper 8 address lines. This
is not strictly in accordance with the VMEbus specification for an

A32 device.

VMEbus Simulation Computer Addressing
Small Scale System DIU Simulator Example

CPU-29 VMEbus Address Definitions:

DMA

Augus
Page

t 4, 1988
4 of S

Table 2 shows the CPU-29 addressing assignments used for the boards in
the VMEbus simulation computer for the Small Scale System:

Address

0000 0000
XX10 0000

FCO00 0000
FC02 0000
FC04 0000
FC06 0000
FC08 0000
FCOA 0000
FCOC 0000

FCFF 0000

FF00 0000
FF80 0000

NOTE: Some
Only

Tabl
range
000F
XXFB

FCO1
FCO03
FCO0S
FCO07
FCO8
FCOB
FCOD

FCFF

FF3F
FFFF

e 2:

FFFF
FFFF

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

01FF

FFFF
FFFF

CPU-29 Addressing

VMEbus Axx:Dxx:AM

n/a

A32:

A24
A24
A24
A24

A24
A24

Ale6

n/a
n/a

:D16
:D16:

:D16

D32

:D16:
:D16:
:D16
:D16:
A24:

Dle:

:NDA, NPA, SDA, SPA

NDA, SDA
NDa, SDA

:NDa, SDA

NDA, SDA
NDa, SDA

:NDA, SDA

NDA, SDA

:NDA, SDA

Description

Local CPU-29 SRAM

VMEbus 14.75 MB DRAM

DIUSIM1
DIUSIM2
DIUSIM3
DIUSIMY4
DIUSIMS
DIUSIM6
DIUSIM7

Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl
Cntrl

and RAM
and RAM
and RAM
and RAM
and RAM
and RAM
and RAM

DMA Controller

Local EPROM
Local 1/0 Devices

of the boards are also accessable at other addresses.
the addressing defined above will be used by the CPU-29.

Controller Address Definitions:

Table 3 shows the DMA controller addressing assignment for VMEbus boards
in the Small Scale System:

Address

00 2000 -
02 2000 -
04 2000 -
06 2000 -
08 2000 -
0a 2000 -
0C 2000 -

10 0000 -

ra

01
03
05
07
09
0B
0D

FB

Tabl

nge

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

FFFF

e 3:

DMA Controller Addressing

VMEbus Axx:Dxx:AM

A24

A24
A24
224
A24
A24

A24:

:D16:
A24:

D16:

:D16:
:D16:
:Dle6:
:D16:
:D16:

Dl6:

NDA, SDA
NDA, SDA
NDA, SDA
NDa, SDA
NDA, SDA
NDA, SDa
NDA, SDA

NPA, SPA

Description

DIUSIMO
DIUSIM1
DIUSIM2
DIUSIM3
DIUSIM4
DIUSIMS
DIUSIM6

Dual
Dual
Dual
Dual
Dual
Dual
Dual

VMEbus 14.75

Port RAM
Port RAM
Port RAM
Port RAM
Port RAM
Port RAM
Port RAM

MB DRAM

VMEbus Simulation Computer Addressing

Small Scale System DIU Simulator Example

Physical Board Setups:

DRAM-E4M4 / DRAM-E4S12 Setup:

Address start
First not on board address

AM

ISIO-2:
IS10-2:
IS10-2:
IS10-2:
ISIO-2:
ISIO-2:
IS10-2:

OPIO-1:

DIUSIMO
DIUSIM1
DIUSIM2
DIUSIM3
DIUSIM4
DIUSIMS

DIUSIM6G

board
board
board
board
board
board
board

board

base
base
base
base
base
base
base

base

500
502
$04
$06
$08
$0A
socC

SFF

$XX10 0000
$XXFC 0000

August 4, 1988

Page 5 of 5

A32:NDA, SDA, NPA, SPA,
R24:NPA, SPA

0000
0000
0000
0000
0000
0000
00600

0000

AM

B ¥k B B B K

A24
A24
A24
Az24
A24
a24

A24

A16;

:NDA, SDA
:NDA, SDA
:NDA, SDA
:NDA, SDA
:NDA, SDA
:NDA, SDA
:NDA, SDA

NDA, SDA

Y omodovy1sal swousyy

eesl "L e :AUVQ

AN Uos|®o) J°L NMVX(

uoijounbiyuon
oDy }69] WasAg 3pog |IDWS

Mo\ JDBY ooy

SWILSAS GIINVAQY INIFO8

¥dS30

007 ssAsed 30

L o)
duig semog

PUOJ JOJOBUUOD | XYAN

NOUWJINOS I 3UVO JAJY

MBIA JUOL4 3ODY

HO0J Jo
wo}joq 0} umop 400(4
uoj bujoos saop —\
' NV4 ONNOOD
o ¥OVY
¥
sTs puoy yuoig
i
nu..n AlddNS ¥3IMO0d
\ SNQINA
SLt (OIRG Jamod WA
SLt AVHL NVJ4 SNQInA
0ot SISSYHO SNQINA
§
TINVd HINYIE 4 v.
sei - voivinng \Jl
0081S3 onv
[7ArA)
yorvinng
0081S3 ony

v g
‘8|IbJ uo 81881 OORILSI
‘¥90J O opis O)
1 wnuwnp 1x.Z Xy

YIZATYNY D100
0006SvYQ
XINOHLMAL

—— Vv A018Q

;; 13 S, g
b
& ("]
0 R 35 |11
| S g $15% |4
i o 5 X NEEEE
' i}l i ¢ |38 |43
52 LR i§ . 8 8|3 :
i Y | 3 SlER |5
el {is i ! ¢ it ! 815
s t i i 7 gg il
B !
E §] ill
1 (N
o 0-3 #-3 wwoE- &<Eua 1 :::D | o
0=3 =3 wwOEZ- &<Zuwo 1 fo1[18) 0 J-bl I.
el R-1{1-1
6-3 w-3 caoE- L<Ews l 1(18) J-tt' I.
— a0 3L I
0-3 w3 wwoR- &emu ! i
i
T |
0-3 W-3 LKORr LaBwo l :’:
i
o 1
@ G-3 W-3 we0Er eeEw .l_] -
——o iL
b0 B.0.0.0.0.0.0.0 u%i
I 8833 88 3888 |
DM@ B, DB, [T ; 4 |
—| m&&é&@@@@@@@@ 3 I ; g —
b Bt DI OB VDB, qi(IM - d
e - 8 (O R A = i
oxen wmemn § Z[ER i
o4l welw ’ im]
<« wes ~e g :m []| <
;'. S 1
hin |4
- o~ ”) l < 53

ORIGINAL PAGE IS
OF POOR QUALITY

DOCUMENTATION PACKAGE B: OPIO-1 PARALLEL
INTERFACE MODIFICATIONS

Subject: OPIO-1 Modifications for Simulation Computer
By: T.C. Torklson

Date: May 27, 1988

Rev: September 29, 1988

Introduction:

To use the Force OPIO-1 as an interface to the DEC uVAX II DRQ3B
interface will require an adapter board and some modifications to the
OPIO-1 itself because of DRQ3B interface logic levels.

Modifications:

1. Remove HP optoisolators from J13-J18, J25-J30, J37-J42, and
J49~J54.

2. 1Install .3" shorting plugs between pins 2/7 and 3/6 of J13-J18,
J25-J30, J37-J42, and J49-J54. (48 locations)

3. TInstall .3" shorting plugs between JP4-1/JP14-1, JP4-2/JP14-2,
Jp5-1/JpP15-1, JP6-1/JPl6-1, and Jp7-1/JP17-1

4. 1Install a diode capable of sustaining 100 mA between JP5-2/JP15-2,
JP6-2/JP16-2, and JP7-2/JP17-2. A device in a small signal dicode
package is preferred, as it will plug directly into the sockets at the
JP locations. Cathode of diodes are connected to JP5-2, JP6-2 and
Jp7-2.
5. 1Install the OPIO DELAY GENERATOR daughter board.
a. Remove the chip at Jl.
b. Connect wire wrap wire jumpers between J4-32 / J3-32 / J2-32.
¢. 1Install daughter board in place in JI.
d. Connect wire wrap jumper from J2-32 to pin 1 of daughter board.
e. Connect wire wrap jumper from J4-13 to pin 2 of daughter board.

f. Connect wire wrap jumper from daughter board pin 3 to P2-17c¢.

g. Install 68230 and OPIO_DELAY_ GENERATOR EPLD in the sockets
provided on the daughter board

PRECEDING PAGE BLANK NOT FILMED - /Ig INTENTIONALLY BLANK

Subject:
By:

Date:

Reference:

NOTES:

Connnector

z2-1¢
zZ2-1a

Z2-2¢c
Z22-2a
z22-3c
Z22-3a
22-4c
22-4a
22-5c
22-5a
Z2-6c
22~6a
z2-7¢
z22-7a
22-8¢c
22-8a

22-9c
Z22-9%a

22-10c
Z22-10a
Z22-1lc
Z2-1la
22-12c¢
22-12a
Z22-13c¢c
z2-13a
22-14c
22-14a
22-15¢
22-15a
22-16c¢c
z22-16a

J-10

Allocation of OPIO-1 I/0 Connections

T.C. Torkelson

May 12, 1988

OPIO-1 Modifications for Simulation Computer

1. All signals appearing on Z2 also appear on the

VMEbus P2 connector,

2. Blank entries are unused or spare.

OPI0O Name

XQHA
XPQGND
XQHB
XQDD
XQDO
XQD1
XQD2
XQD3
XQD4
XQD5
XQD6
XQD7
XPQVCC
XPQGND

XSHA
XRSGND
XSHB
XSbD
XSDO
XsDl
Xsb2
XsD3
XSD4
XSDS
XSDé
Xsb7
XRSVCC
XRSGND

Signal name

F_SYNC

V_SYNC
gnd

EXT_EVENT

+5 vdc
gnd

CH1 !CLR IN

gnd

FUNCT

FUNCT

FUNCT

FUNCT

FUNCT

FUNCT

CHO !'I
CH1 'I
+4.4 v
gnd

ouT
ouT
ouT
ouT
ouT
ouT
NIT
NIT
dc

s W N O

ouT
ouT

Chip

-J4-13

J1-16
J1-15

Ji-17
J1-18
J1-19
J1-20
J1-21
J1-22
J1-23
J1-24

J2-16
J2-15

Je-17
J2-18
Jz2-19
J2-20
Jz2-21
Jz2-22
J2-23
J2-24

labelled Z1 in the OPIO-1 manual.

(H1)

(H4)
(H3)

(PBO)
(PB1)
(PB2)
(PB3)
(PB4)
(PBS)
(PB6)
(PB7)

(H4)
(H3)

(PBO)
(PB1)
(PB2)
(PB3)
(PB4)
(PB5)
(PB6)
(PB7)

Allocation of OPIO-1 I/O Connections

Connnector

22-17¢
22-17a

22-18¢c
z2-18a
22-19c
22-19a
22-20c¢
z22-20a
22-21c
22-21a
22-22¢
22-22a
22~23c¢c
22-23a
22-24c¢
22-24a

22-25¢
22-25a

22-26¢C
Z2-26a
22-27¢
z22-27a
22-28c¢c
z22-28a
22-29¢
z2-29a
22-30c
z2-30a
z22-31lc
z2-31a
22-32c
22-32a

OPIO Name

XTHA
XTUGND
XTHB
XTDD
XTDO
XTD1
XTD2
XTD3
XTD4
XTDS
XTDé6
XTD7
XTUvCC
XTUGND

XVHA
XVWGND

XVDD
XvDo
XVD1
XvD2
XVD3
XVD4
XVD5
XVD6
XvD7
XVWvCC
XVWGND

Signal name

R_FTC

{FACK
gnd
!FTSB

FBO
FB1
FB2
FB3
FB4
FB5
FB6
FB7
+4.4 vde
gnd

F_SYNC
gnd

CHO !CLR
FUNCT IN
FUNCT IN
FUNCT IN
FUNCT IN
FUNCT IN
FUNCT IN
STROBE !CLR
CHO 'ECP IN
+4.4 vdc
gnd

b WN O

May 12, 1988

Page 3 of 4
Chip

J3-13 (H1)
J3-14 (H2)
J3-30 (PCO)
J3-4 (PAD)
J3-5 (PAl)
J3-6 {PA2)
J3-7 (PA3)
J3-8 (PA4)
J3-9 (PAS)
J3~10 (PA6)
J3-11 (PA7)
J4-13 (H1)
J4-14 (H2)
J4-30 (PCO)
J4-4 (PAD)
J4-5 (PAl)
J4-6 (PA2)
J4-1 (PA3)
J4-8 (PA4)
J4-9 (PAS)
J4-10 (PAS)
J4-11 (PA7)

in

out
out
out
out
out
out
out
out
out
out

in

out
out
out
out
out
out
out
out
out
out

Allocation of OPIO-1 I/0O Connections

Connnector

23-1c
23-la

Z3-2c
23-2a
23-3c
23-3a
Z3-4c
Z3-4a
23-5¢c
23-5a
23-6¢C
23-6a
Z23-Tc
23-7a
Z3-8c¢c
Z3-8a

23-9c¢
Z23-9%a

23-10c¢
23-10a
z3-11lc
z3-11la
23-12¢
23-12a
23-13¢c
23-13a
Z3-14c
Z3-14a
Z3-15c¢
Z3-15a
Z3-16c¢c
23-16a

J-12

OPIO Name

XPHA
XPQGND
XPHB
XPDD
XPDO
XPD1
XPD2
XPD3
XPD4
XPD5
XPD6
XPD7
XPQVCC
XPQGND

XRHA
XRSGND
XRHB
XRDD
XRDO
XRD1
XRD2
XRD3
XRD4
XRD5
XRD6
XRD7
XRSVCC
XRSGND

Signal name

CHO !ACK OUT

gnd

CHO !STROBE IN

CHO IN
CHO IN
CHO IN
CHO IN
CHO IN
CHO IN
CHO IN
CHO IN
+5 vdc
gnd

CHO !'ACK OUT

CHO IN
CHO IN
CHO IN
CHO IN
CHO IN
CHO IN
CHO IN
CHO IN

N oaUs W HO

15

+4.4 vdc

gnd

May 12, 1988
Page 2 of 4
Chip

J1-13 (H1)
J1-14 {H2)
J1-30 (PCO)
Jl-4 (PAO)
J1-5 (Pal)
Ji-6 (PA2)
Jl-17 (PA3)
Jil-8 (PA4)
J1l-9 (PAS)
J1-10 (PR6)
Jl-11 (PA7)
J4-13 (H1)
J2-14 (H2)
J2-30 (PCO)
J2-4 (PAO)
J2-5 (Pal)
J2-6 (PA2)
Jz2-17 (PA3)
J2-8 (PA4)
J2-9 (PAS)
J2-10 (PA6)
Jz-11 (PA7)

out
out
out
out
out
out
out
out
out
out

in

out
out
out
out
out
out
out
out
out
out

Allocation of OPIO-1 I/O Connections

Connnector

z23-17¢c
23-17a

23-18c
z3-18a
23-19%¢c
Z3-19a
z3-20c
z3-20a
z3-21c
z3-21la
23-22c¢
23-22a
z23-23¢c
Z3-23a
Z3-24c
23-24a

23-25c
23-25a

23-26¢c
Z23-26a
23-27c
z23-27a
z23-28¢
Z3-28a
z23-29¢
z3-29%a
23-30¢c
z3-30a
23-31c
z3-31a
23-32c¢
Z23-32a

OPIO Name

XUHA
XTUGND
XUHB
XUDD
XUDO0
Xupl
XuD2
XUD3
XUD4
XUDS
XUD6
XUD7
XTUVCC
XTUGND

XWHA
XVWGND
XWHB
XWDD
XWDO
XWD1
XWD2
XWD3
XWD4

XWD6
XWD7
XVWVCC
XVWGND

Signal name

CH1
gnd
CH1

CH1
CH1
CH1
CH1
CH1
CH1
CH1
CH1

'ACK IN

!DAV OUT

ouT
ouT
ouT
ouT
ouT
ouT
ouT
ouT

SN WO

+4.4 vdc

gnd

gnd
CH1

CH1
CH1
CH1
CH1
CH1
CH1
CH1
CH1

!DAV OUT

ouT 8

ouT $

ouT 10
ouT 11
QUT 12
oUT 13
ouUT 14
OUT 15

+4.4 vdc

gnd

May 12, 1988

Page 4 of 4
Chip

J3-16 (H4)
J3-15 (H3)
J3-17 (PBO)
J3-18 (PB1)
J3-19 (PB2)
J3-20 (PB3)
J3-21 (PB4)
J3-22 (PBS)
J3-23 (PB6}
J3-24 (PB7)
J4-16 (H4)
J4-15 (H3)
J4-17 {PBO)
J4-18 (PB1)
J4-19 ({PB2)
J4-20 (PB3)
J4-21 (PB4)
J4-22 (PBS)
J4-23 (PB6)
J4-24 (PB7)

out

in
in
in
in
in
in
in
in

out
in

in
in
in
in
in
in
in
in

a 2 8 YV om0's0roido swoveny

j0 %8S ge6L 82 equiedes

Alvg

AN

UoSIeNIOL D'l NMYNO

JOJoINWIS NI WeISAS 3|Dog
IDWS 1o} SUORDIYIPOW |—OIdO

SW3LSAS GIONVYAGY ONIFOE

RReg OW0 W 2T Sunepl o) pmeg O MAU) g Way Sea

AN

NOLLJI¥DS)

alva

A3

\

Kivd OWo mfEy

(23
i i M] i 5L
o MM/ 294 d X201/, 2 24 2/
: 8d : o N ©d (]
- o4 - (] .l Yo vod
: B €34 N G
. B /204
v . ~IE 194
& 004 o4
ol (84 184
B o a4 nﬁ, [
T " iy (1]
:] wo il tad
135 M4 L3 B MWd L
N ose ond
ev B] ™ [(] [—
= ™ o) o™ 0wy
k.1 Kl 25 B ™ ny
o I | w .. []
1 <0 d] £ 20
ot . . (1. wd .0
0 (2] vl o0
] 1 rid *a
N cve caf® cofl v £
g Sve Ll E1 Ve 0
vd w B "] tvd 7]
Wéoczmm 00 oa N Wi 00
”n » ")

J-14

ORIGINAL PAGE IS
OF POOR QUALITY

a J 1<) v Buwousyy
8e/v1/9 :31v0
AW UoRR0L D 1 -NMvad|
spojaq Assy
pJioog Jayybnog
101053v29 Aojag 1/Id 1-0I1dO 4
SWI1SAS GIONVAQY INIFOE
Japoay jsod asonbs gzo" wd ¢ <
%S Mpv/L NZZ &‘/
ofisl]o Beg!
(s21d z¢) oom.w.oo.waooo of Otwoss9—ouow
818%208 91GR~00LIVSH A‘ N3O ><N._..u.o 01d0 WD LU S b
}33UU0213} U] PAJUDAPY | 900008028008 O

$8883882323328828882388828

0¢<Z89 .
pioog 13}ybnoQ 0140 in
(s2d gv) —
(epis }noa2) suid 62 ~00LVSH
193UU023}u| PIDUDAPY
i
NOUANEIS 30 31v0 [AN

J-15

ORIGINAL PAGE IS
OF POOR QUALITY

"***'k******************t********t********'k******************t*********t*******

" FILENAME: OPIO_DELAY GEN.ABL Declarations unique to OPIO delay
" DATE: January 31, 1989
" BY: Tom Torkelson

"t**t****************‘k**tt********t*********t********************************t

module opio_delay gen
flag ’'-r3’,’-t0’
title ‘OPIO FTC Delay Generator EPLD for MC68230

BOEING ADVANCED SYSTEMS
Designed by: T.C. Torkelson Latest Revision: 31 JAN 89’

" This module is used with the MC68230 PIT to prevent the timer_ register from
" changing when the timer register is being read. This module was designed

" with the consideration that the MOVEP instruction must be used to access

" the timer_register on the MC68230.

" The first byte is read by the MOVEP instruction is actually a dummy byte
" which is read as zero. The CS for the dummy byte causes the EPID to skip
" the next rising edge of the FTC, whether it occurs during the read of the
" timer or not. The next rising and falling edges each generate a pulse to
" the 68230, making up for the swallowed rising edge.

" A limitation on the 68230 is that clock pulses must not be spaced closer
" than the input clock frequency of the chip / 8. The OPIO 68230 is clocked
" at 8 Mhz, thus the minimum spacing between pulses is 1 usec. This
" works with the 4.125 usec FTC clock.
" declarations
OPIO_DELAY GEN device 'E0600’; "uses the Altera EP600 chip

" inputs unique to OPIO DELAY GEN

'INH 1 pin 97 " TICK inhibit, active low
'INH_2 pin 10; " TICK inhibit, active low
INH 3 pin 11; " TICK inhibit, active high

" get common code for delay generator
@INCLUDE ’'DELAY GEN.INC’

end opio_delay gen

J-16

"********k************************t*********************k******tk******t*****t

" FILENAME: DELAY GEN.INC FTC pulse delay generator common logic

" DATE: January 31, 1989

" BY: Art Pannek
"t******t*******t**t******kt*********************t*********t****t*************
" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Placed test vectors separate .TST file

" Changed pin allocation for pc board

" Changed INHB A & _B pol to active low

" Added INHB_C, active high

" Changed pin numbers of inhibits for ISIO

" B 1/30/89 TCT Changed design of EPLD to always swallow
" one rising edge, then make it up with a
" falling edge later

R o 1/31/89 TCT Changed state progression, separated out .abl
" code common to ISIO_DELAY GEN & OPIO_DELAY_ GEN

A 2/ 2/89 TCT Changed FTC latch to FTC D flop clocked

" async by falling edge of CLK3
“************************t******t*******************t********************t****

" define ABEL .. commands
c, K, p, X=.C., .K., .P., .X.;
H, L=1, 0;
" inputs
CLK1 pin ; " MC68230 clock
CLK2 pin 13; " MC68230 clock
CLK3 pin 23; " MC68230 clock
1CS pin 2; " CS active low to select MC68230
RS1 pin 4; " MC68230 register select bits
RS2 pin 5;
RS3 pin 6;
RS4 pin 7;
RS5 pin 8;
FTC pin 14; "Fault Tolerant Clock; 8 MHz / 33
" outputs
FTC_TICK pin 3; " Tick output to 68230
CNTRX _SELECT pin 22; " CS of cntrx register detected
CNTRX_SELECT istype ‘pos, reg D, feed reg’;
CNTRX_ SELECT.C istype ‘egn’; " async clock
CNTRX_SELECT.AR istype ‘eqn’; " async reset
CNTRX_SELECT_LATCH pin 21;
CNTRX_SELECT_LATCH istype 'pos, com, feed pin’;
FTC_LATCH pin 20;
" —— Rev D TCT 2/2/89
FTC_LATCH istype ’pos, reg D, feed reg’;
FTC_LATCH.C istype ‘eqgn’;

J-17

" FTC_LATCH istype ‘pos, com, feed_pin’;

FTC_LATCH_DELAY pin 19;

FTC_LATCH DELAY istype ’'pos, reg D, feed reg’;
SKIPO, SKIP1 pin 17, 18;
SKIP(Q, SKIP1 istype ’pos, reg D, feed reg’;
INH_LATCH pin 16;
INH_LATCH istype ’‘pos, com, feed pin’;
TICK pin 15; " outputs pulses w/o regard to INH
TICK istype ‘pos, reg D, feed reg’;

" define states

rs = [R§5..RS1]; " input register select
RS CNTRX = "“bl0110; " select dummy
RS _CNTRH = “b10111; " select high byte
RS_CNTRM = “b11000; " select middle byte
RS_CNTRL = "~bl1001; " select low byte

inh = [INH 1,INH 2,INH 3]; " inhibit
TICK_ENABLE = ~b000;

clk = [CLK1,CLK2,CLK3]; "Clock the same inputs
CLK C = [C,C,CI; ' "Clk_Group is Clocked
CLK H = [H,H, H]); "Clk_Group is High
CLK L = [L,L,L]; "Clk_Group is Low

ftc = [FTC_LATCH, FTC LATCH_DELAY];

FTC_RISE EDGE = “b10; " rising edge of FTC

FTC_FALL_EDGE = *b0l; " falling edge of FTC
skip = [SKIP1, SKIPO]; " FTC edge skip states

SKIP_RESET = "b00; " pass + edges

SKIP_INHIBIT = "b01; " inhibit all

SKIP PASS HI = ~bll; " pass + edge

SKIP_PASS LO = "“bl0; " pass - edge

macros
" latch on gate level, pass thru on 'gate level

LATCH macro (out, in, gate)
{?out = ?out & ?gate # 2in & !7?gate;}

equations

CNTRX_SELECT
CNTRX_SELECT.C

(rs == RS_CNTRX) ;
CS; " clock on leading edge of CS

" The following is really not required unless only one CS is received.
CNTRX_SELECT.AR = (skip == SKIP_PASS_LO) & !FTC_LATCH & FTC_LATCH DELAY;

" synchronize with input clock, hold when clock low, pass clock high
LATCH (CNTRX_SELECT_LATCH, CNTRX_SELECT, !CLK3)

" -- Rev D TCT 2/2/89
" LATCH (FTC_LATCH, FTC, !CLK3)

J-18

LATCH (INH_LATCH, (INH 1 # INH 2 # INH 3), !CLK3)

" -- Rev D TCT 2/2/89
FTC_LATCH FTC;
FTC_LATCH.C 'CLK3; " clock on falling edge of CLK3

Won

" FTC delayed one input clock pulse
FTC_LATCH_DELAY := FTC_LATCH;

" FTC tick conditioned by skip states and inhibits
FTC_TICK := !INH LATCH &

((skip == SKIP_RESET) & (ftc
} (skip == SKIP_PASS HI) & (ftc
$ (skip == SKIP_PASS LO) & (ftc
)i

FTC_RISE_EDGE)
FTC_RISE_EDGE)
FTC_FALL_EDGE)

" TICK output for test purposes, not affected by INH

TICK := (skip == SKIP_RESET) & (ftc == FTC_RISE_EDGE)
(skip == SKIP_PASS_HI) & (ftc == FTC_RISE EDGE)
(skip == SKIP PASS_LO) & (ftc == FTC_FALL_EDGE)

4
state_diagram skip

" This state machine is clocked by the system clock. After the
" initial state change, state changes only occur on edges of FTC.

" The state machine inhibits an output pulse on the first rising
" edge following the selection of CNTRX. The second rising edge
" and the following falling edge both generate output pulses.

state SKIP_RESET: if CNTRX_SELECT LATCH then SKIP_INHIBIT
else SKIP_RESET;

state SKIP_INHIBIT: if (ftc == FTC_RISE EDGE) then SKIP_PASS_HI
else SKIP_INHIBIT;

state SKIP_PASS HI: if (ftc == FTC_RISE EDGE) then SKIP_PASS_LO
else SKIP PASS HI;

state SKIP_PASS_LO: if (ftc == FTC_FALL_EDGE) then SKIP_RESET
else SKIP_PASS_LO;

J-19

Page 1

ABEL (tm) 3.00b - Document Generator 02-Feb-89 05:42 PM
OPIO FTC Delay Generator EPLD for MC68230

BOEING ADVANCED SYSTEMS
Designed by: T.C. Torkelson Latest Revision: 31 JAN 89
Equations for Module opio_delay gen

Device OPIO_DELAY GEN

- Reduced Equations:
CNTRX_SELECT := (!RS1 & RS2 & RS3 & !RS4 & RS5);
_CNTRX_SELECT C = (!~CS);

_CNTRX_SELECT RE = (!FTC_LATCH & FTC_LATCH DELAY & !SKIP0 & SKIP1);

CNTRX_SELECT_LATCH = (CLK3 & CNTRX SELECT # !'CLK3 & CNTRX_ SELECT LATCH);

INH_LATCH = (CLK3 & INH_3

CLK3 & !~INH_ 2

CLK3 & !~INH 1

!CLK3 & INH_TATCH);
FTC_LATCH := (FTC);
_FTC_LATCH C = (!CLK3);

FTC_LATCH_DELAY := (FTC_LATCH);

FTC_TICK := (!FTC_LATCH & FTC_LATCH DELAY & !INH LATCH & !SKIPO & SKIP1

FTC_LATCH & !FTC_LATCH DELAY & !INH LATCH & SKIPO & SKIP1

§ FTC_LATCH & !FTC_LATCH DELAY & 'INH_LATCH & !SKIPO &
ISKIP1);

TICK := (!FTC_LATCH & FTC_LATCH DELAY & !SKIPO & SKIP1
FTC_LATCH & !FTC_LATCH DELAY & SKIPO & SKIP1
FTC_LATCH & !FTC_LATCH DELAY & !SKIPO & !SKIP1);

SKIP1l := (!FTC_LATCH DELAY & SKIP1

FTC_LATCH & SKIP1

SKIPO & SKIP1

FTC_LATCH & !FTC_LATCH DELAY & SKIPO);
SKIPO := (FTC LATCH DELAY & SKIPO

!'FTC_LATCH & SKIPO
$# SKIP0O & !SKIP1
CNTRX_SELECT LATCH & !SKIP1);

ABEL (tm) 3.00b - Document Generator
OPIO FTC Delay Generator EPLD for MC68230

BOEING ADVANCED SYSTEMS
Designed by: T.C. Torkelson Latest
Chip diagram for Module opio_delay gen

Device OPIO_DELAY GEN

E0600
__________ \ /___-......___
} \ / |
[e |
CIK1 | 1 24 |
| |
~Cs | 2 23 |
I f
FTC_TICK | 3 22 |
| [
RS1 | 4 21 |
f |
RS2 | 5 20 |
| |
RS3 | 6 19 |
| !
RS4 | 7 18 |
| - |
RSS | 8 17 |
I |
~INH 1 | 9 16 |
| [
~INH 2 | 10 15 |
J f
INH 3 | 11 14 |
| |
| 12 13 |
[!
| I

end of module opio _delay gen

02-Feb-89 05:42 PM

Revision: 31 JAN 89

CLK3
CNTRX_SELECT
CNTRX_SELECT LAT
FTC_LATCH
FTC_LATCH_DELAY
SKIP1

SKIPO

INH_LATCH

TICK

FTC

CLK2

Page 2

J-21

J-22

DOCUMENTATION PACKAGE C: VMEBUS-MICROVAX PARALLEL
INTERFACE ADAPTER

Subject: Fabrication of VMEbus/uVAX Interface
By: T.C. Torkelson

Date: June 14, 1989

Introduction:

The interconnection of the DEC uVAX II DRQ3B and the Force VMEbus
system OPIO-1 requires a few mechanical and electrical adaptations: a
connector panel must be produced which adapt the DEC interconnect
cables to the Force OPIO-1 board; modifications are also required to
the Force OPIO-1 card; an additional protocol conversion board must be
produced.

Mechanical:

Instead of the VME chassis mounted connector panel, a rear mounted rack
panel is used. This requires routing longer 64 conductor ribbon cables
from the OPIO-1 22 and Z3 connectors to the back of the equipment rack.

These cables should be as short as possible to reach the adapter panel
without -undue strain. They must be long enough to allow connection to
the OPIO-1 card while it is out of the VME chassis.

The cables are routed up through the top of the VME chassis, between
two card guides, then into the adapter chassis.

Adapter Board:

The adapter board is a small vector board adapter. Its primary
function is the correct interconnection of the OPIO-1 and DRQ3B. It
also corrects some of the protocol problems discussed elsewhere.

The board is mounted behind the DEC compatible I/O connectors on
standoffs. No unusual precautions other than standard shop practices
need to be observed.

J-23

T-21 BlLaNk
PRECEDING PAGE BLANK NOT FILMED PAGE_J) 22 INTENTIORALLY

Subject: Test program to verify OPIO-1 operation
Date: January 5, 1989
By: T.C. Torkelson

To test the OPIO-1 card, the FAST OPIC.ABS program must first be downloaded to
the CPU-29 card using VMEPROM and VAX VMS DCL commands.

Commands on the VAX side are preceded by "$". The commands on the VMEPROM
side are preceded by "?2".

Initial setup:

$ ALLOCATE LTA4:
$ SET TERM/HOSTSYNC LTA4:

? BP D02 1 1
Actual program transfer:
? LO <2
$ copy FAST OPIO.ABS LTA4:

To run the test program, the loop back cable must be installed to jumper
the two ports on the VME to uVAX interface box to each other.

The VMEPROM command to run the program:

? GO 8000

?

At the return prompt, receive buffer in memory at 20000 through 2FFFF
should be byte swapped from transmit buffer in memory at 10000 through
1FFFF.

After setting

J-24

- ~) <+
RS | |
] b |} k : o g
i F s (8 5 E § ol |8
L 0| 53|-°
gt ' 11618 i H i |6| eElR
; l ﬂd! B 1t 3 2 8Fg
o % 1 ﬂ‘ii : 18 f; 2| Tme =)

e i HE
- oo [T -

- ﬂzh!z;ih}hg-*s ORF e || aatl
" 55'%5! X 21328 S
T T 1 0 K Q33|85
'xl"""“ 2 31 8 &| 3|

5%
‘3!! 3 % 5 REBRJ RSVII%_‘SER 29 3 ¥ S 3 lgﬁl‘ﬂ ARARARSA
1] i
3¢] 2% HARBINRE 2INDgeen n#' L] A3 ARRAZNRE !!22---;:
o |dE (&)
i
wm 2% ™ 29 E] x|
|] s - -] 8]] - 2 d
L] L) .& /) - " .Y
~s§ ag 1| [3 #
; . 3 3
1 ﬁ‘ ! Aé 2 P] ! -] ﬁ‘ ‘! du 2 i ‘ |
;..-. s Sece e . Sese 28 =zaz-sse 538I38s8
i g e B! ssoeean smmnaves 3@ f JSEE g SOEEOL Sonnenss
!Sis z?!? 58 35333888 85383218 555 © G o; sanans massanss
M | o e cm e e e e o e o e e e e = e e e m
'r$r L §-% =2w SreaenN— > a § L -3 222 ANC-Se 'v-nnov;uc-
il 4 [i {
RIT 8 55997 AR RARARNS: Nz anwn- r:sz $ 33T 23 ARNRAANAR: *Nzenan~
£3 s o ?
1! |2 I : —
1 it ; : 2
: 3 zebvw ot v ¥ ive ¥ v
8R82AR & aaﬁ:a ne RARGARZIR 25 I2%ZReen ﬂlnh_ﬂ F? RERE = aea:aaza !:’- !3!:!:-»
Yy “levd T4 1YYy 4 443404y M { 1
- i 11111 IR i -
gﬁl“ g 3242 4 AR332338 §2 22333333 ‘-,iiil $ 3333 ﬁ!! 2aRuRARE £¢ 2AAA234%
2%z8 ¢ 2K=8 _i! '5;;!28!;_!;_'5;8;;8_8;-;8-8;—! ;88; i-! 8—8883858 39 383213858
§~=§—£ “nss &Y —KF— NF —AF— “RI @5~ As —Ps— R5 —Rs— ¥
¥ E s
3333 B K,,, ¥ 3i3aaas = 3330335 ssssss
daa3 B R, o s o M g R T

J-25
ORIGINAL PAECE
OF POOR QUALITY

,
j
3
.

: w| 3 E
e == H LB PR
§ lai'iii : i |5 E8]
5 | dat, R
il Ritti (3|35 (1
i 2 N | A
: ' ' |8 AE N
§ 2 |3k
pal
S Uy USSR o
g b
Mo T 5 lEDl |
a1 e [2
° f fad ;:%;H % \ E . l
1 l‘ﬂ H;;u
S ‘ / i @33
£ 2 ¢ i
N i i .
3) z g
} N
i e
o M |)
= Aol e gl ggg
" it 8838
N ufl L
1L el |1l
. | é il W (B
- il K
- i1 »
Asrey g |8 § g
T e |l
RSN it i
1 i ¥ g ;g §§ I""" 7Y A?;
) ! |

L wre
=a -
(=]
;
1Y
1
2
L
Yy
-
-
[
Flenama WELNAULAYOUTONG A

ORIGINAL PAGE Is
OF POOR QUALITY

a o] 3] \} d Puwouep4
€081 '¢Z sUr dlva
AR GosRL 51 WAVEd| %00°% x0r 8 oM
TOF 0 EIWEIKL 1T
i o]
o P
18A00 puD bt |
jeuog Bununop @20481U XYAN IMA xvod oo S 4
SWAISAS AIINVAQY INIFO8 wowwny co° :PUSIoN
MXTYSRTTOTS
!83.’!..3.!.!.5!"!1'!.]/ [
1|
a0t
PABg My pugrbas an BB
/ ¢
oo [- N
Lo
NPT L T
MYI_Ir_ —
o xo
I o508 420
PUDg W0y WY B/L X 8L X ST PIOPUDIS USION
WU BUTINSN SSUST
(omemsd ¥) ooy Senvercy o 4
LT3] oso]8.-'4
[e]
= =
— 7 _ — l
- e
(o)
!
NOULAIOS30 AUV0 [A3Y
a 0] a8 v

J-27

& o=
A -
LI

¢ I
< D
o &>
—

=&
= O
G a
(14

cS

J-28

DOCUMENTATION PACKAGE D: 1810-2/DIU SIMULATOR DAUGHTER BOARD

Subject: ISIO-2 Modifications for IAPSA DIU Simulation

Date: August 23, 1988

Revised: June 14, 1989

By: T.C. Torkelson

References: . IAPSA II DIU Simulator Specifications - VMEbus Implementation

1
2. AIPS I/O-network Interface Requirements

3. Small Scale System Experiment Start Synchronization
4. Experiment Bus Descripion

5. VMEbus Simulation Computer Addressing

INTRODUCTION

As presented in Reference 2, the VMEbus simulation computer and the FTP
must be able to signal each other of their status. The DIU simulator
must also be controlled for proper experiment synchronization.

REQUIREMENTS

The DIU simulator as implemented on the ISIO cards does not have access
to the VMEbus. Communications with VMEbus masters is through a message
exchange protocol using the ISIO dual port RAM.

The presence of a message for the VMEbus master is signalled by a VMEbus
interrupt caused by the ISIO. Similarly, the local ISIO CPU can be
signalled of the presence of a message from a VMEbus master by a write to a
special ISIQO address which causes an ISIO local interrupt.

The local CPU must maintain 24 bit experiment time. Each tick represents
one FTC tick. The start of experiment time is contreclled by the FTP
sync line going from !Stop to Run.

The network adapter daughter board is used to interface ISIO hardware to
[V_SYNC}, [F_SYNC], and [R_FTC] signals which are present on the experiment
bus

IMPLEMENTATION

The daughter board for the 1S1I0-2 attaches to the elevated IC sockets for
the 68562 DUSCC chips and the 68230 PIT. The daughter board allows the
disconnection of ISIO-2 board signals from chip pins, freeing the chips for
special use on the daughter board. Some of the disconnected chip pins from
the ISIO_2 are used to connect signals from the experiment bus to the
daughter board.

Experiment time is maintained using an added (U20) (the 68230 PIT). The
reference FTC on the experiment bus is conditioned by an EP600 EPLD which
prevents the 68230 PIT counter from being incremented when the PIT timer is
being read or when the FTP sync is at STOP.

The ISIO-2 board uses the TIN pin of the J100 PIT as PC2 for controlling the
sysfail function of the 1SI0-2. This must be considered in the software
for controlling the DIU simulator.

J-29
PRECEDING PAGE BLANK NOT FILMED pach_J - 27 INTENTIONALLY BLANK

ISIO-2 Modifications for IAPSA DIU Simulation June 14, 1989
Page 2 of 4
ISI0-2 MODS
1. Remove unused ICs and shorting jumpers
B23-1 thru B38-4
J57-J66
J68-377
J79-J88
J90-J99

2. Remove ICS to be moved to daughter board
J56, J67, J78, J89, J100

3. Set addressing for as required. (See ISIO manual and reference 5.)
4. Add Jumpers
a. Miscellaneous
From To Name

P1-10a Js1-11 16 Mhz VME sys clock

b. Connections to Daughter Board

From To Via Name

P2-1c B23-2 J56-34 (F_SYNC]

P2-2¢ B23-1 J56-33 [V_SYNC]

P2-17¢c B23-3 J56-39 [R_FTC])

J51-9 B23-4 J56-40 16MHz

B41-1 B25-1 J56-16 Intr. vector mode

Daughter Board Mods (See sh 2 of board loading diagram)
Component side of board:
1. Cut the trace to U100-13.

2. Cut the trace to U100-15.

J-30

1SI0-2 Modifications for IAPSA DIU Simulation June 14, 1989
Page 3 of 4

Circuit side of board:

1. Cut trace from U19012 to the feed thru near Ul7-1 at both ends.
connect a 5.5" wire wrap jumper from U19-12 to U7-1.

2. Cut trace from Ul9-14 at Ul19-14. Connect a 226 ohm resistor
from Ul9-14 to the trace. Connect a 332 ohm resistor from Ul19-14
to U19-20.

3. Cut trace from U20-40 to U21-1. Bridge the cut with a 44.2 ohm
resistor.

4. Cut traces from Ul7-4 and Ul7-5 to ground bus. Connect Ul7-4
to the feedthru of the trace to U8-2. Connect Ul7-5 to the
feedthru of the trace to UB8-23.

5. Install 24 pin screw machine SIP strip sockets and daughter
board connection pins at locations U56, U67, U78, U89, and U100.

SIP sockets must be used to allow access for soldering the pins.

To assemble, install the SIP socket for pin 1-24, then install the pins
associated with the socket. Next install the socket for 25-48 and
associated pins. Installation must be in this order or it will not

be possible to solder all the components in the restricted space
available.

The use of resistance soldering for pin installation is strongly
recommended.

Advanced Interconnections KSA100-79G pins are installed at the
following locations:

us6: 1-4, 6-7, 16, 18-24, 25-31, 33-34, 42-43, 45-48
U67: 1-4, 6-7, 18-24, 25-31, 42-43, 45-~48
U78: 1-4, 6-7, 18-24, 25-31, 42-43, 45-48
U89: 1-4, 6-7, 18-24, 25-31, 42-43, 45-48
U100: All locations except 14 and 16.
To protect the pins, install two 24 pin screw machine DIP sockets
on the bottom of each of the completed pin installations. (These
sockets are also be used at final assembly.)

6. Connect daughter board pin 13 to U100-13 and daughter board
pin 15 to U100-15.

7. Connect a jumper from the feedthru opposite U100-13 to U100-14.

8. Connect a jumper from the feedthru opposite U100-15 to U100-16.

J-31

ISIO-2 Modifications for IAPSA DIU Simulation June 14, 1989

Page 4 of 4
CAUTION: It is very important that proper static sensitive device
handling precautions are observed during all the following

operations!

It is especially important that all tools used are
grounded. If a screwdriver with an insulated handle is
used during installation or removal of the daughter board,
it MUST be held in such a way that its metal parts are at
the same potential as the person performing the operation.

Daughter Board Installation
1. 1Install all ICs an resistor networks in the daughter board.

2. Make certain that all the protective 24 pin dip sockets are
installed on the daughter board pins.

3. Carefully position the daughter board over the elevated ISIO-2
sockets to which it will mate.

4. Press down uniformly to firmly seat all the contacts in the
elevated sockets.

5. Install spacers and #4-40 hardware in the two mounting holes near
the Pl and P2 connectors.

6. Plug the ribbon cables from the DIU front panel into J1 and J2 on
the daughter board. Check that no parts on the front panel board will
either short out or mechanically interfere with the operation of the
ISIO-2 board.

Daughter Board Removal
1. Unplug the DIU front panel board from J1 and J2.
2. Remove the #4-40 hardware holding the two boards together.
3. Carefully pry the daughter board off the elevated ISIO-2 sockets.
A large screwdriver can be used for this purpose. Make certain that no
components on the ISIO-2 board are in danger of being mechanically
damaged and observe the CAUTION, above.
4. Remove any 24 pin DIP sockets which remained stuck in the ISIO-2

elevated sockets and IMMEDIATELY re-install them on the daughter board
pins.

J-32

1
)
)
)

0| = I
] 2 "B Es g
3 0 \-§ 5| 3
: : 0182 |da
3 i .3 |§|eE?
g g; 2 ic 2 {22 § o
) |55 I
NEY: &
| ML
! S |=5~ : §l
L2 S|y |7
e B oe? |y
g dAa §_|_,§_‘L
. (&)
8
3 m
i
F¥1111]
PPN NPIPR P i I ." z;gg;;
; THTTHEEL G UL R e S TTHT -
n é TP
J] EE
: 5 £
i w2212 ssaszes: T 8
Vevy levroesiloselifvds g]
L
. | " | - | . ;

J-33

ORIGINAL PAGE IS
OF POOR QUALITY

PA— to 11810, L3413 M)

4

REV: 8/19/089
Sheet 2 of 5

BOEING ADVANCED SYSTEMS
August 29, 1988

ISIO—-2 Modifications for Small
Scale System DIU Simulator

DUSCC 3, 4

DRAWN: T.C. Torkeison

DATE:

AR ERREITY AENEY

237329 8suzssas Ilgiﬂiaiz i

il 13-

/
<
08

» 18- 1240 B0
o N18-9, U2¢-7 8O

+8

wpare 403

i
PR ITTEN

322323 Bs5¥33825 l!é

gaza i § 4

Flename: ISI0_MODS.OWG A

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

" <+
%] - Qﬂ
Blese |dz
0 1"58 |75
gl 5|32 |4
Q|evex
E! $ So% g ©
i S [gCe |52
21558 (1
’ o 335 |3
| & S0y |
S| £ (&) |2g =
) Slovg |fe
g LAz S_Lg
3 8 8
: i i
&Re RAG
FEEELERHS 111 14
sessy :
iitiadi i ©
FEFTEIEE]
8 : ;
3844 -
sasastil
gaanana
m
EEE RN
idid i 3§
LB i3
P P31 —
sEgsddid i ol :
I e B
11111111 i ¢
233 ¢ a
S Tl T 723731 (
EFEEERE kAt kit 1gErgEIgeng %
CEEEEEEEEREE FEEEEEPTTEEE i
§
| ” :

- o~ | -
- ,
= R 0
i b EfEs |E
éB I 3, 1 14 - B p 3
:]i i w53 |38
o E‘Ek A ZS . g .5; a
3 a3 T35 |42
b i IR TR
H! sigis 494 » GNN B HY o |83 Y3
" 223 g é‘
S| g § (\I‘Q;— §
EI _____ % o |gE
- 2o | E!f
H
pengstii paRedinl p
§8999880 94999888 i
iiliidn Hiltin .
B < I2EAgsen i _?*:. l
- 1
o 1 g5 I-:":;'” 7 o
ol .
8 inuauu, ginannung i iiﬂ
8ssnansual| [#8 acnonaual - = I
a f |
— H I
HH RS
? : ST
2:73a20e cver mennaeny RSB R || | || HH - M3
fa+] ga s £ "c-‘ ([4] Eli! o
i: zi
gszazzss BERdEN iil!S -. .
:
« 3 <
T "
g ¥ } —E
- o~ I -+ h'i-
J-36

ORIGINAL PAGE IS
OF POOR QUALITY

$/10/08 | Corrusted asnnssiions to DES wd OO

REV| DATE

- ~ Lt <+
0 (= &n
B|gs |
6192 |93
0152 1
§|g”
2122 gl o
I 80 §=f
RI5Es {9
¢ |385 |73
MAEE
Q|| @+ |
QIoTS |¥a
AAC [Ex
i‘;
HE o
by - 1 ~
gliiilliﬂlin i;;,
i
SIILILILILILILILIE: i
R AR R R R R R R R R R R R] ’
T IIN Li“ |
gq% 8888988838888383§% IR
fly-sevgaaaassaqaads
s
g
[as]
g
, i \
Papr Shaer SHaer Slgm Pham Fhm fin $e
a Jrv *m WAP S SANP il
TTTT? “Hl'i'TrTTiTT! H i H ﬁ
e e ey Yhed
et <
g
ik
it
- o~ L] I < lg

ORIGINAL PAGE IS
OF POOR QUALITY

J-37

1
)
.
.

i 2
s 550 5l s |3
B Sles l3s
§ E E 2 !é s Q82 ©
Y s 5.8 %2} E oy @, |g®
o & L RiH $38 |B°
E] :; 2 § 3 § % .5.;6 =2 Eg
- ~ e 2 B
dhihi ks 2152 5|48
e Bg 3 2 3 TEL 8170 ol
3 ‘Eggéigk- @ |90 9|flu
g‘s 23 3% §, nz 9|8k
8 S HEE B — —18s
I i | 1
g é L] 43 0 [24
Eoe g
i
H 4 &
o i 2 g Q
- :;r;;:‘ g 3..o“ooom00000l0000}' g..:
: ououo«looooeunoqr §§
:t 30- 00 00002000 ﬁ
B e
— : :.3::.::3 —
§§ f"\' iooooo:j
§§ ‘E.::: §|§ £:t. ooooj
m sggm— g ouotm} s @
2 g
2 3
1 .f
— i O 1| 8
TR e
s 7 33508800 20858%¢ «
.:::n AR]) ST P20 Ran)) 2
% . .3:"32‘5‘5"2‘..);..::».. OJ
< i e i) g)
i+ 10 G- Vg) 435, 1y I - z
!“ AV r-\irr T ORE nqu g g §|
2
;
- I o~ l Lp] ' <+ g
J-38

CRIGINAL PAGE IS
OF POGR QUALITY

a 5 | a | v
Tz W t//T ‘alva
e uoswoL 1 WAVHa 00, . 0O O 0O
s|i0y8Q pooT] il
103dopy pomieN 0O/1 SdIV : okl
pioog Ja3ybnoQg Z-OtsI - olllo
: slil 3
SWILSAS GIINVAQY INIFO08 - olllo 9
o , o
; " ;
te 1 2
o o | o
[+
of
°F
[+
°
: S
iId ok
° ay¥vos]
wld] ‘ YOLVIONIS Nia
e 0
Iq
<

, L—ov—0Zn 03 L—-Lin 8201} InD
ob—0ZN 01 L—-/LN ‘Joisisel WYo Z ¥
g—Lin 0} ruyipes; sedwing
S—LLN PUO $—LI O} §2204 IN)
¥=LIN 0} nuypes) sedwnp
o — rJyjpeej Joau 8d0J} InH
91—00IN 0} nuyipes; Jedwnp
wd 3o0jU02 0} GL-00LN HoyS
¥1-00LN 03 ruypady Jedwnp
uid 3o0jU0D 0} €1L—00LN IOUS
+1-61N 0} U] @30J puZ Jo)sisel WYo 9ZZ
$1-6lN PUD ZL—6LN O} 88204} IND
1—LN ©} ZL-6in Rdwnp g
0Z—61N 91 ¥L—6LN JOI8|S8) WYo Zog

L+

J-39

ORIGINAL PAGE IS
OF PCOR QUALITY

a d g V om080d 0l muoueyy
9861 ‘9 1890120 lva
AR UOSENIO] D] NMvEd
§)iD}d
io}sg gvd oove TV 13001 3INUNO ko)
423dopy sJomsN O/| Sdiv
pJoog Jsa3ybnoq zZ-0IS) 3 RPN | TR + 2 L4
' SN S AN
» 4 4 4
SHWILSAS GIINVAQY INIFOE ¢ R s M
‘R 1
> ” f” 48 ".
4 e 14 .4 4
’ + +e 14 ' 4 —
. : 11 L 3 PP 3 }
0 “ “” “ “ ;-3 A 2 A < A
- i1 G A
o] § 41500 1,
2 ET ¥ LR rd W 3 i 3
oacy ' $led ¢ :
: 4 MR .Amm BE: C: B CE: Gk ¢
+ + + + -
4 “ * + + 4 -
+
‘moyar puo Bunoed Myun e peueiUy X0 LD sene sOH ‘8 @“ : il m) 2t PRI 8383
4 + + * . e >
‘8 ML sy penowun (% ¥ L y 3 4] b4 H be mm .n
ouopde nngy Bupoyy FEEEEEALI[F]44244440 4440444004 m m nm unu
) ol
0zo0 ||\.0. N puooq uo TE] L2222 222 2 3 4444444 292224004 m m mﬂ ”“ s
+ 14 3
" 5P JURUOdWos USAOS i “ NS Pod bt
e s = || HENIIE (B
WP 1ROq WOW MPIOS Y i 8
Buioid Wy moyss pos Wi T W
L
UL ‘Mnba seddoo 20 | 8q 0} sepy N Bunoild T "m Zz
&
wedo w10 "seddos 10 | pop prp Axode 0B vid L01/L PYOIOR | SAON <
I N7 1] = O
e AAAN FT [oeio
e |¥ Cugditaarsgte eIIRIINLINAIIINIILLILIILIL. v
_ + 0.0 o.o 0-0 6.‘ + oono’ 00"00 oon?o ovn¢¢ . 4]
) }] oore g-d
VoJeasgegossnasonas $3833338333333833383383338383433 l
oxo|? ¢ 9 ¢ 0 9 a0 +
— + 00“00 00“00 00“00 00”00+ *e F
)]
NOL S¥2530 31v0 [AN
a 2 2] \/

BAGE IS

AL

)

ORIGI

J-40

OF POCR QUALITY

w4 g ueuodwo) pseog selybneq Nia

J-41

ORIGINAL PAGE IS
OF POOR QUALITY

a3 IMLNO 40T
l L
Nﬂ mw. w_ W_ ﬂ w, w_ w_ %_
— —_— w 1) 3) L) 2 It} 2 Q
3 2% 0% % 2% oF I o o3
—_ 2Z 52 3% 3= 5% 3= 5+ 3= 5%
UU
3
o~ -
] 3 o o O T T b B
> b ~ z o o 7y T2y s @) o wo s, 9
2 " 3 " ry —— - Sl 2, UL T e e e
87 &9 o, Cew ey 2 =T T e T
ow =273 - -
s ——) < b4 x x P x x
T T 5) O O % & —_— 2 3 3 ; 2 3 2
(€2 [: 1] Sl - = 9Ny YRY - -9 4 > = = ot ot o/ et
Sk e Rl S, % © ~ o573) 2 mO ~C -0
=34 ~3 =} = > .l.v.n7 B, Ux_ o) Ux_
o 29, x x x x 3 4 @
[=] x
» -]
o b - o~
> = z - z - e e, O I R TSRt e
& o ®] [25) [$4) T2 4% s 012 3] 22 0 9
av 29 SRl o Aol m mo e om0 80 e, LB, LT
=8 2& o™
ey D —— e — e o~ N
vy S8 L=} 82, o % ™~ - o ~ ~ N |
Wy ~ 0 © © e} i
- o _ ro ™~ ')] Ty] D
H NN¥a~AN wmﬁ w H ET g Al] e ke 0 x x
zn 3, INY zzn 3,8, e) It} v} 0
L = 2 ~ o o]
me _H QYvVOE ¥ZinaNva 2 D S N x
-] -
1 0ISI — ¥OLYINWIS nid -
Cwl L
N397AYI30
[4 mm
T = e
$2 o, =B =)
0289 A . .
in FRd [o oI B
8 1 by Yt
()) i \ [RYE] .J JINVd LNO¥4 ¥OLvINAIS Nid _
&r
6 O 1t ._ L ,
o:,F _ LGZvrl XA talvt £€GZ vl rel¥t rac7i gsIvt £3ZvlL
Z 14 9 8 \c Zr e L4 Gt anr ir ar
}CICIC 000y 6 | 3rivg LNGH3 LHISNI 1Nvd
L z I v 3 9 ¢ 8 ¢GeCrl [R4 AN cGZvl €SZrlL Tacvli [R4 A TGy L £GZvrl
\r zr er pi S r M ar

CRIGINAL PAGE IS
OF POCR QUALITY

Board Component Side Film

DiU Daughter

[N AT 0 %% % AN A SO s o000y S
‘fl,‘ '.- 8000000008 X’ -
i PN00000000 0 ¢ 000

®) . 0.0 0.0
QNRNARGEEEEEANNN

ONT

il
L.
)
i < Y
. RN
3 l R, N o
“ S = 5
[]
Y
iy

o XX XX . Iz “‘!
QAT g

DIU Daughter Board Circuit Side Film

(I
(e -
- -
- , =
a- O -
- X e
- z e
- O e
- © = oojpdolocsgocoe
- O °
- £ o
- (N -l - - ﬁ [XXX XY] oor
- L | ;
- ‘s’ - . = i f !
- | = - (X] i Sevecccsesd
- meo|loe e
o]y ewme|]ee - :
| ii® ese . B
-] 5, eme [a®m
wm|i eme]le Owrm
|l ese ° PRESS
w| L mwe|]e s
- | epe [o0
- - e 5_5
- [" on
[S | ~o
oP
e
2*;_0:: o
'd—‘o" £ o
Dy
o2 sesvssvee essscccccre oo
. :\ LI ! LA L e
S se
° =5 o Jocoooccceos § Bevoveceoorne oo
€ ¢ oo
3]
w ssssssese seesvecvsee .e
. ox Ll 1
x o L ee
coe Secscccocce § Jecocoooceee
L. - @

ORIGINAL PAGE IS

OF POOR QUALITY
J-43

...0.'.'...‘.

! cocee W ceeee

N

J-44

1

1

e
'

‘!!!!!!!!!!!!!

g33838s2ss §

peentaredBs: g

.
o %00 ﬂ;

[© 000000000000
[]

..:38..:....:!

O‘O................O oo .
e l....0...0.04'.........‘..

ww":::::.&..mwm

o *°%. ? g33s3sasessss s $33sssesss

m o‘oonoooooooo ° oﬁm

® %eees $883333388282233322200008 $22232223222288838 .'

mmm”&‘““m 2

. . $3sssssasess s sIstass

CRIGINAL
OF POOR

AR
.
Nt

DIU Daughter Board Sokder Mask Film

DUTUNE MASK

yer-
2ver:

GE 1S

5ALH f

wyiH Jebiey jjuqg pseog sepybneg nia

o

eTal U R INT X Wl
Lievy 3NT1LNC 4T~
! N
[|
B i Rab kI 2 2E 20 20 2 2R 2R O 2 b R o e S S e i St SR R S S S i + - + - + - - - 4 !
M B 2 I A o R A e e s e + - A + + . + * p
+ -
{ + -~ . + + & - + - + + - - - + 4 .+,_
A o + - - - - - -+ + -~ -+ + - - 4 tm
| - - o PPN - - L, - - + + -+ + 4+ + 4 + 4+ +
| . . . PAFAPA . - o . PO P P . P . .+ +]
! . -
i - + + + . - - - - -+ + - -+ -+ ++ ++ +
+ + o+ - - o - - - PO .- -+ -+ + 4+ -+ 6_
+ + o+ + o+ + + - + R + - R T T S e Y -4 e+
+ + o+ + o+ + o+ + + + ++ 4+ o+ + .+ Lt - L e T e S R e T T SR S -+ ¢+,_
+ + o+ + o+ + o+ -4+ ++ o+ + - -+, D I R T T T T T e ++ ..r_
+ + o+ + o+ + o+ + -+ + - + - + + . - + 4 + + -+ -+ + + -
+ + 4+ + o+ + o+ + -+ ‘- o+ o+ + o+ + . . . H
- - -~ - -
+ + o+ . 4 + - .+ e ———— o+ - + N PR e bl i e + [
! + + o+ + 4 + 4+ + 4+ -+, ‘.. - - -+ - + - s - - - -+ - -+ -
. - + o+ + o+ + o+ -4 PO + + + o+ - - - - - -+ - - - P -
i - + o+ + 4 + 4+ -+ 4 - - + - + . - - N .- - . + - + - -+ -+ PO
,w - + o+ + - ., ot ‘., . - +) M + - - - - + - -+ 4+ -4 -+ -+ -
+ - - P - - ~
: + + - PN “ - . + + - + + - - + -+ + - ++
| N - -+ + + . - - P - - -+ - - - - + + + - + + -
_ + -+ -+ - - + + . - - -, - - - - + + - - - - “ + -
. - - -+ - + + + + . - - t‘n‘ -+ - -~ -+ - - -+ - 4 + + -
: + + o+ -+ + o+ + o+ + o+ + + - + “+ - . D L & T S P . aa
) -+ + - -+ + + o+ + o+ -+ + - - -+ + + -, - 4 - - - -+ -+ -+ - -
| -+ + o+ 4+ o+ + o+ + 4+ -+ + + + + - -~ - R - - - - P P -+ -+ -
; + + o+ + o+ P + o+ e+ ., + + - + e 4 e - - - -+ -+ < - - - -+ - - -
m + o+ b + 4 + - e 4 + -+ + =~ * + < + : + -+ +
- - - .- - « -
| - + + -~ o+ + o+ + o+ + o+ + . - . PO - e ; b e e ; i
, + + o+ + o+ + o+ + o+ + 4 + + - - - PO P RN + »
! - - PRsags .
; + + o+ + o+ + o+ + o+ + o+ + + - o s .. PO N 0 Padig + I
) - 4 - . N - .- PR RS ot ﬁ
| + + 4+ + + -+ + + . - P T P PRt |
. + - - P e S P !
| - - - - e S ECS
! + - o i Py P P N
i + . g e 58 e -
B I T o o T o i T + - & - - PES - - -
) . - S e s e -
- - N s P T W S
- . P e s +5s -
. + < . .ot P .o .o
B i I I e R Rk + - - . e e + -~
+ S e s 8¢S s .
+ - - P P T IS PO
| - : o - . T -+ e IO K
| + For ettt et * + H; - -, . P . ‘oou . ‘Hom . oH&H . .
T . B . e
| + Rk -+ - + - + - R + - ‘- -
+ + PN . PPt <t e T4 . +
i + - - P e NS e +
_ - PP - -+ - . . -+ - +
- N N g ey +
- PPN e “Te S -
i - Eae P 4T S -
H - - - . - - - + -
N i P e Ay .
7 - e - Y e T -
. 4T L P P e -
| - e -+ - - ¢S -~
| < P DO ey -
- - & £ -
_0 + 4+ + | < P tlH . bOM <
P b d bbbt 4 [Padig Fad Pt Pt o
- . e oS 5 -
- W Y e e -
. e “te +e 00 -
! _ - < e S G +
| - e te - e +
Tdt44d+ 444444 [s - G S .. +
i - ES £ +5a e -
[+ttt bbbttt ; +
R R R R T e ~ " - " - + + + - + -
i by o DO
[| |- - + + - + R
A 1 _0 + -+ + - +
! PO b *
et dd bbbttt bttt et s btrsd _ - j
e e il e . f. il feeniis e e Sl . 0. e i e e e S
|
led 4 44 2 4a o4t o4+ \ _
! R R e 1
Rt At b g g d R I b R R IR AR AN O N G Y
R R R R
4+t A4 e 44 ranaY + 4+ .+ PO POFEN OO 4 a4
L J
E I I I A R I I T R R R R R I i R A AN G Y _
FA b bbbt bbb b bbbt s e b h bbb st :
FIR ey b4+ PO POy + 44+ O !
|

IT

+ s + 44

J-45

ORIGINAL PAGE i3
OF POOR QUALITY

v MO BNV LNOUS N0

Q lﬁ J g BUWOUS LY
[T 9981 'L #9050 AIva ASSV JOH 0 oeko)
AT USEERIol O 1 TMVHD

‘siD}op A9|quiassy qx o wiod way

fouDd juosy JOYDINWIS NIa PR 20 R UG SBREI Gl e s w N
UORGEEISW S (IT) }0 0P BeN H
wuod juon jo wou U venouex e1/| Anbnos sowe prows Bucode g1y §

. SWIISAS GIONVAQY INIFOF 2o sopron o0 4
veryy I:llfliSISeli!lzl
" o) pmog one Apmicdum) Uy RDOR D U SHOY O SeAE Waei T
wogeq o N 01 Sam onq jo apbusy oye sepg L CAUON

(o9d 9) mosde may 9/|

N £
N (e) @ ooo-d | (5) aa e
X, mpos 1oy W
(vond g) sroeuuns NG O/ Sav

443 445 i
DOADNIADA

AN

o)

J-46

GRIGINEL PAGE 3

OF POCR QUALITY

MO INYY LNONI MG

306 0 0 :8ioT

a

Z 19| g 9081 L 40130 ‘AUVQ

AN wosSPWoL) L NAYHD

[018W 1984S
jpuog 1u0sy JojoINWIS NIQ

SWILSAS GIINVAQY INIFO8

v £a0de POR weOTRS
(Buinss) srpevo oop Silpe GOV L0 IEHRI

(Supmme) T O X2 ® OCV]
[} Lo E]
" sor []
0 [~ {3 v
ALD 8 3N

£00°'¥ 00 BIONVETOL

(wrprry 001 0)
werd o Sbus JW PEROIE CIWVRILYR

X I swo 4 [0810
]
CREE XA A
T
058

J-47

ORIGINAL PAGE I3
OF POOR QUALITY

a 3 g v ga.ﬂaﬁ»zonﬁﬁic
T T 1 908t 'L #9010 3UV0 NIROSAUS JOH 0 Jekoq]
% UoePRRL 3 1 NAvY0
ueedg IS

[ouUDd juoJs4 JOIDINWIS NG

SWAISAS G3INVAGY ONIFOH

iu.ltil.i-
ey pepddns une noy wene W

won
I cocol o " q_
P OO0 0,0 0,000, 555111k °
NOUSEIE 30vo | A3

ORIGINAL PAGE (S
OF POOR QUALITY

J-48

"**********************************t***********************t******************

" FILENAME: INPUT_MODE.STATE mode line states
" DATE: October 31, 1988
" BY: T.C. Torkelson

"****i***t**t***t************tt*********tt*********tt*t***t**t*************tt*
L]

" This file defines input modes on lines M1, MO of the ISIO daughter board.
" a1l devices which have M1 and MO inputs should include this file for
" consistent definitions.

input_mode = [M1, MO];

NORMAL INPUT = 0; " input on NET_IN

MONITOR_INPUT = 1; " input on NET IN and MONITOR_IN
NODE_INPUT = 2; " input on NODE_SIM_IN

RESET _INPUT = 3; " no inputs

J-49

"**********t****t***********ti*****************************t**********t*******

" FILENAME: EP600 _RX CLOCK.ABL AIPS RX Clock EPLD

" DATE: October 31, 1988

" BY: T.C. Torkelson
"**k**t*ﬁ*t*****tt*********t********t*********************t**t*************t**
" REV DATE BY DESCRIPTION

" A 10/31/88 TCT separated test vectors from .abl

" revised pinout to match circuit board

" B 6/13/89 TCT changed glitch egn to state machine

" fixed error in clock sync state machine

" revised bit assignments for HCSxx to fit EPLD
"***t**t*t**i**t***************t********t**************t**********************

module ep600_rx clock
flag f-r3’,’-tl’
title 'AIPS I/0 Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelscon Current rev: 10/31/88
!
" REVISED BY DESCRIPTION
" 2/18/88 TCT added glitch filter to prevent erroneous edge detect
" 5/18/88 TCT revised for ABEL 3.0
" 8/29/88 TCT added inputs for monitor, node simulator, mode select
" 8/31/88 TCT changed SES to D FF, used state diagram instead of eqn
" 9/7/88 TCT changed pinout, changed MONITOR_IN to macro,
" provided MONITOR_IN1 and MONITOR IN2
" 10/31/88 TCT separated out test vectors, matched pinout to circuit brd
" added LED driver outputs
" 11/20/88 TCT revised LED driver output pin assignment

" made RXD high for input_mode == RESET_ INPUT
" disabled RXC output until input_mode T= RESET_INPUT
" changed Reset LED output to OUTPUT ENABLE

"Declarations:
EP600_RX CLOCK device "E0600’ ;
" define ABEL .. commands

C,K,P,X,Z = .C.,.K.,.P., .X.,.2.;

" inputs:
SYS_CLOCK1 Pin 1; " 16 Mhz system clock from VME bus
SYS_CLOCK2 pin 13; " 16 Mhz system clock from VME bus
NET IN pin 11; " HDLC data from I/0 network
NODE_SIM IN pin 14; " input from node simulator
M1,M0 pin 23,2; " mode select inputs

" outputs:
RXC,Q02,01,Q0 pin 3,5,6,7; " RX clock registers
EDGE, RXD,H1,H0 pin 8,4,9,10; " Edge detect registers

RXC,Q2,Q1,Q0 istype '‘pos, reg D, feed reg’;

EDGE,RXD,H1,H0 istype ’‘pos, reg D, feed _reg’;
RXC.CE istype ‘eqn’; " control for RXC clock output

J-50

SE3,SE2,SE1,SE0 pin 19,20,21,22; " Edge detect enable registers
SE3, SE2,SEl1,SEQ0 istype ’‘pos, reg_D, feed regq’;

OUTPUT_ENABLE pin 18; " high to enable RXC output
OUTPUT_ENABLE istype 'com, feed pin’;" not enough terms for RXC out enable
!Normal LED pin 17; " low for Normal operation
!Normal LED istype ‘com’;
!Monitor_LED pin 16; " low for Monitor operation
!Monitor_ LED istype ’‘com’;
!Node_LED pin 15; n low for Node operation
!Node_ LED istype 'com’;
" states:

sys_clock = [SYS_CLOCK2,SYS_CLOCK1];

edge_state = [RXD, H1, HO};

HSO = ~b000;
HS1 = “b001;
HS2 = *b010;
HS3 = "b01l1; " positive edge
HS4 = “bl00; " negative edge
HSS = *“bl01;
HS6 = *bl10;
HS7 = “blll;

sync_state = [SE3, SE2, SEl, SEO};

SESO = 0;
SES1 = 1;
SES2 = 2;
SES3 = 3;
SES4 = 4;
SESS = 5;¢
SES6 = 6;
SES7T = 7;
SES8 = “0l0; " edge sync enabled

hdle_clock = [RXC, Q2, Q1, Q0];

HCSO = 0;
HCS1 = 1;
HCS2 = 3;
HCS3 = 7;
HCS11 = "ol3;
HCS14 = ~ol7;
HCS15 = "olé6;
HCS16 = “0l4;
HCS17 = ~0l10;
@INCLUDE " [-1 INPUT_MODE .STATE'
" macros:

SYNC_ENABLE macro {SE3};
SYNC_EDGE macro { (SYNC_ENABLE & EDGE)};

" The following macro selects NET_IN for normal operation,

J-51

" NODE_SIM IN for either monitor or node operation, and causes
" HDLC_IN to be high for reset operation

HDLC IN macro {(

" (input_mode == NORMAL_INPUT) & NET_IN #
(input_mode == MONITOR_INPUT) & NODE_SIM_IN #
(input_mode == NODE_INPUT) & NODE_SIM IN #
(input_mode == RESET INPUT)

)Y;

RX_SAMPLE macro {(hdlc_clock == HCS17)};
equations

OUTPUT_ENABLE = (input_mode != RESET_INPUT);
RXC.OE = OUTPUT_ENABLE;

EDGE := (edge_state == HS3) # (edge_state == HS4);
Normal LED

Node_ LED
Monitor LED

NORMAL_INPUT) ;
NODE_INPUT) ;
MONITOR INPUT) ;

{input_mode
(input_mode
(input_mode

nonoa
i i

state_diagram hdlc_clock

state HCSO: goto HCS1;

state HCS1: if SYNC EDGE then HCS1
else HCS2;

state HCSZ2: if SYNC_EDGE then HCS1
else HCS3;

state HCS3: if SYNC_EDGE then HCS1
else HCS14;

state HCS14: if SYNC EDGE then HCS11
else HCS1S5;

state HCS11: goto HCS2;

state HCS15: if SYNC _EDGE then HCS1
else HCS16;

state HCS16: if SYNC_EDGE then HCS1
else HCS17;

state HCS17: if SYNC _EDGE then HCS1
else HCSO;

state_diagram sync_state

state SESO: if RX_SAMPLE & !EDGE then SES1
else SESO;

state SES1: if RX_SAMPLE & 'EDGE then SES2
else if EDGE then SESO
else SES1;

state SES2: if RX SAMPLE & !EDGE then SES3

else if EDGE then SESO

J-52

else SES2;

state SES3: if RX_SAMPLE & !EDGE then SES4
else if EDGE then SESO
else SES3;

state SES4: if RX_SAMPLE & 'EDGE then SESS
else if EDGE then SESO
else SES4;

state SES5: if RX_SAMPLE & !EDGE then SES6
else if EDGE then SESO
else SESS5;

state SES6: if RX_SAMPLE & !'EDGE then SES7
else if EDGE then SESO
else SES6;

state SES7: if RX SAMPLE & 'EDGE then SES8
else if EDGE then SESO
else SES7;

state SESS8: if EDGE then SESO
else SESS;

state_diagram edge_state

state HSO: if HDLC_iN then HS1
else HSO;
state HS1: if HDLC_IN then HS3
else HSZ; " glitch
state HS3: if HDLC_IN then HS7
else HS6;
state HS7: if 'HDLC_IN then HS6
else HS7;
state HS6: if {HDLC_IN then HS4
else HSS; " glitch
state HS4: if !'HDLC_IN then HSO
else HS1;
" glitch states
state HS2: if HDLC_IN then HS1
else HSO;
state HS5: if !'HDLC_IN then HS®6
else HS7;

" comment out the following line for production parts

" QINCLUDE ‘EP600_RX_CLOCK.TST'

end ep600_rx_clock

J-53

LEZEFEEESRSEE RSS2SR RS R AR s ARt Rt RRRARRREEERESE NS

" FILENAME: EP600_RX CLOCK.TST RX clock test vectors

" DATE: October 31, 1988

" BY: T.C. Torkelson

AR AR R R AR R R AR R R R A A AR AR AR AR R AR A AR AR A AR R ARARRNARRRAARRAARRRRR A AR A AR R A AR R A AR kAR Rk
" REV DATE BY DESCRIPTION

" A 10/31/88 TCT separated test vectors from .abl

" B 11/21/88 TCT

added vectors to check RESET INPUT

MR R R AR R RN R AR R R AR R R AR AR KA AR AR R AR AR AR R R R KRR A AR KA AR R A KRR R R AR R AR AR AR KK R TR K KK

L

" NOTE: A complete test of the state machines is made in TEST_RX_ CLOCK
" files which provide special inputs to test the individual state

" machines.

test_vectors 'Test Edge Detector’

{[sys_clock, NET IN, input_mode] -> [EDGE, RXD, Hl, HO])

" place in known state
[C,0,NORMAL INPUT] -> [X,X
[C,O,NORMAL_INPUT] -> X, X
[C,0,NORMAL INPUT] -> [0,0
" test no edge condition - input low
(C,0,NORMAL_INPUT] -> [0,0,0
[C,0,NORMAL INPUT] -> [0,0,0
" test high glitch - one sample
[C,1,NORMAL_ INPUT] -> [0,0,0,1]
[C,O,NORMAL_INPUT] -> [0,0,1,0]
(C,0,NORMAL INPUT] -> [0,0,0,0]
" test positive edge - two samples
[C,1,NORMAL INPUT] -> [0,0
(C,1,NORMAL INPUT] -> {0,0
[C,0,NORMAL INPUT] -> [1,1
1
0
0

PRy
(=3
R e
(=3
oA e
~ v .

e e

~

[C,0,NORMAL_ INPUT] -> [0,
[C,0,NORMAL INPUT]) -> [1,
(C,0,NORMAL_INPUT] -> (O,
" test positive edge - three samples
[C,1,NORMAL INPUT] -> [0,0,0,
[C,1,NORMAL INPUT] -> [0,0,1,

A T R

[C,1,NORMAL_INPUT] -> [1,1,1
[C,0,NORMAL INPUT] -> (0,1,1
[C,1,NORMAL_INPUT] -> (0,1,0,
[C,1,NORMAL INPUT] -> (0,1,1
[C,0,NORMAL INPUT] -> (0,1,1
[C,0,NORMAL INPUT] -> [0,1,0
[C,0,NORMAL INPUT] -> [1,0,0,
[C,0,NORMAL INPUT] -> [0,0,0
[C,0,NORMAL INPUT] -> {0,0,0

" test_vectors ‘Test Sync Enable State Machine’

this

next

next

next

this

next

is a + glitch

clock detects

clock detects

clock detects

is a - glitch

clock detects

" ([NET_IN, input_mode, sys_clock, sync_state, hdlc_clock, edge_state]

" -> Tsync_state, hdlc_clock, edge_state])
test_vectors ’ Test various input modes’
([sys_clock, input_mode,NET_IN,NODE SIM IN] ->
[HO, RXC}) ;
{C,NORMAL INPUT,0,0] -> {0,X];
[C,NORMAL INPUT,1,0] -> {1,X}:
{C,NCRMAL INPUT,0,1] -> [0,X];

{C,MONITCR_INPUT,0,0] -> [0,X];

J-54

+ edge

- edge

+ edge

- edge

[C,MONITOR_INPUT,1,0] -> [0,X];
[C,MONITOR_INPUT,0,1] -> [1,X];

[C,NODE_INPUT,0,0] -> ([0,X];
[C,NODE_INPUT, 1,0] -> (0,X];
(C,NODE_INPUT, 0,1} -> [1,X);

[C,RESET_INPUT,O0,0] -> [1,Z];
[C,RESET_INPUT,1,0] -> [1,2];
(C,RESET_INPUT,0,1] -> [1,2];

test_vectors ' Test LED outputs’
(input_mode -> [OUTPUT_ENABLE,

RESET_INPUT
NORMAL INPUT
NODE_INPUT

MONITOR INPUT

->
->
->
->

0,
i,
1,
1,

oo O

’
i
’
I

O OO

-~ N 0~

- o OO

-

Normal LED, Node_LED, Monitor LED])

]
]
]
]

e we

.
.
.

-

J-55

Page 1

ABEL (tm) 3.00b - Document Generator 21-Jun-89 05:55 PM

AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module ep600_rx clock

Device EP600_RX CLOCK

- Reduced Equations:
OUTPUT_ENABLE = ('MO # !'M1);
_RXC_E = (OUTPUT_ENABLE);
EDGE := ('HO & !'Hl1 & RXD # HO & Hl & !RXD);
~Normal LED = ! (!MO & !M1);
~Node_LED = ! (!MO & Ml);
~Monitor LED = ! (M0 & !Ml);
RXC := (!'EDGE & !Q0 & Q2 & RXC
100 & Q2 & RXC & !'SE3
$ Q0 & Q1 & Q2 & RXC

!EDGE & Q0 & Q1 & Q2
$# 00 & Q1 & Q2 & !SE3);

Q2 := (!EDGE & Q1 & Q2 & RXC

Q1 & Q2 & RXC & !SE3

4 !'EDGE & Q0 & Q1 & !'RXC

Q0 & Q1 & !RXC & !SE3);
Ql := (Q0 & Q1 & RXC

'EDGE & Q0 & Q1

$ 00 & Q1 & !SE3

'EDGE & Q0 & !Q2 & 'RXC

Q0 & !Q2 & 'RXC & !SE3);
Q0 := (EDGE & 'Q0 & !'Q1 & RXC & SE3

EDGE & !'Q0 & Q2 & RXC & SE3
£ 00 & Q1 & 'Q2

$ Q0 & Q1 & !RXC

EDGE & Q0 & Q1 & SE3

'01 & !Q2 & IRXC);

SE3 := ('EDGE & !SE0Q & !SEl & !SE2 & SE3
'EDGE & 'Q0 & !Q1 & 'Q2 & RXC & SEO & SE1 & SE2 &

J-56

'SE3);

Page 2

ABEL(tm) 3.00b - Document Generator 21-Jun-89 05:55 PM
AIPS I/0 Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev:; 10/31/88

Equations for Module ep600_rx_clock

Device EP600_RX_CLOCK

SE2 := (!EDGE & !SE0 & SE2 & ISE3

§ 'EDGE & Q0 & SE2 & !SE3

4 'EDGE & Q1 & SE2 & !SE3

4 'EDGE & Q2 & SE2 & !SE3

4 'EDGE & 'RXC & SE2 & 'SE3

4 'EDGE & 'SEl & SE2 & 1SE3

4 'EDGE & !Q0 & !Q1 & 102 & RXC & SEO & SEl1 & 1SE2 & !SE3);
SE1l := ('EDGE & Q0 & SE1 & 'SE3

4 'EDGE & Q1 & SE1 & !SE3

$ 'EDGE & Q2 & SE1 & !SE3

4 'EDGE & !RXC & SE1l & !SE3

4 'EDGE & !SE0 & SEl1 & ISE3 .

$ 'EDGE & !Q0 & !Ql & !Q2 & RXC & SEO & !SEl & !SE3);
SEQ := (!EDGE & Q0 & SEO & 'SE3

4 'EDGE & Q1 & SEO & !SE3

$ 'EDGE & Q2 & SEO & !SE3

$ 'EDGE & 'RXC & SEO & 1SE3

4 'EDGE & !'Q0 & 10l & !'Q2 & RXC & 'SEQ & !SE3);
RXD := (HO & RXD 4 Hl & RXD # HO & H1);
H1 := (HO);
HO := (MO & Ml

Ml & NODE_SIM_IN
M0 & NODE_SIM_IN
¥ 'MO & 'M1 & NET_IN);

J-57

ABEL(tm) 3.00b -~ Document Generator 21-Jun-89 05:55 PM
AIPS I/0 Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module ep600_rx clock

Device EP600_RX CLOCK

E0600
__________ \ /-____..____
! \ / J
SYS_CLOCK1 : o 24 :
MO : 2 23 : M1
RXC l 3 22 : SEO
RXD I 4 ' 21 : SE1
Q2 : 5 20 : SE2
Q1 : 6 19 : SE3
Q0 : 7 18 : OUTPUT_ENABLE
EDGE : 8 17 : ~Normal LED
H1 : 9 16 : ~Monitor LED
HO I 10 15 : ~Node LED
NET_IN : 11 14 I NODE_SIM IN
: 12 13 : SYS_CLOCK2
| |

end of module ep600_rx clock

J-58

Page 3

"*****t********************t*******************t******************************

" FILENAME: TEST_RX_CLOCK.ABL AIPS RX Clock EPLD

" DATE: October 31, 1988

v BY: T.C. Torkelson
"*******t************************t************t***************ti*t**t*********
" REV DATE BY DESCRIPTION

* A 10/31/88 TCT separated test vectors from .abl

" revised pinout to match circuit board

" B 6/13/89 TCT changed glitch eqgn to state machine

" fixed error in clock sync state machine
" revised bit assignments for HCSxx to fit EPLD
- changed title and eliminated LED outputs to allow testing by breaking

" path from ENABLE and SE3 to other state machines
“************************************t*********************************t******

module test _rx clock
flag t-r3’,’-tl’
title ‘AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88
’
" REVISED BY DESCRIPTION
" 2/18/88 TCT added glitch filter to prevent erroneous edge detect
" 5/18/88 TCT revised for ABEL 3.0 =
" 8/29/88 TCT added inputs for monitor, node simulator, mode select
" 8§/31/88 TCT changed SES to D FF, used state diagram instead of eqn
" 9/7/88 TCT changed pinout, changed MONITOR_IN to macro,
" provided MONITOR_IN1 and MONITOR_IN2
" 10/31/88 TCT separated out test vectors, matched pinout to circuit brd
" added LED driver outputs
" 11/20/88 TCT revised LED driver output pin assignment

" made RXD high for input mode == RESET_INPUT
" disabled RXC output until input_mode != RESET_INPUT
" changed Reset LED output to OUTPUT_ENABLE

"Declarations:
TEST_RX CLOCK device *E0600' ;
" define ABEL .. commands

C,K,P,X,2 = .C.,.K.,.P.,.X.,.2.;

" inputs:
SYS_CLOCK1 pin 1; " 16 Mhz system clock from VME bus
SYS_CLOCK2 pin 13; " 16 Mhz system clock from VME bus
NET_IN pin 11; " HDLC data from I/O network
NODE_SIM IN pin 14; " input from node simulator
M1,M0 pin 23,2; " mode select inputs

" outputs:
RXC,Q2,0Q1,Q0 pin 3,5,6,7; " RX clock registers
EDGE, RXD,H1,H0 pin 8,4,9,10; " Edge detect registers

RXC,0Q2,Q1,Q0 istype 'pos, reg_D, feed_reg’;

J-59

EDGE,RXD,H1,H0 istype 'pos, reg D, feed reg’;

RXC.OE istype 'eqn’; "“control for RXC clock output

SE3,SE2,SE1,SEQ pin 19,20,21,22; " Edge detect enable registers

SE3, SE2,SE1,SE0 istype ’‘pos, reg D, feed reg’;

OUTPUT ENABLE pin 18; " high to enable RXC output
OUTPUT_ENABLE istype ’‘com, feed pin’;" not enough terms for RXC out enable

" these are inputs added for test purposes
EDGE_IN pin 17;
SYNC_ENABLE IN pin 16;
RX_SAMPLE pin 15;

" states:

sys_clock = [SYS_CLOCK2,SYS_CLOCK1];

edge_state = [RXD, H1, HO};

HSO = ~b000;
HS1 = ~b001;
HS2 = *b010;
HS3 = "b011; " positive edge
HS4 = ~bl00; " negative edge
HSS = ~bl01;
HS6 = "bl10;
HS7 = "blll;

sync_state = [SE3, SE2, SEl, SEO0];

SESO = 0;
SES1 = 1;
SES2 = 2;
SES3 = 3;
SES4 = 4;
SESS = 5;
SES6 = 6;
SES7 = 7;
SES8 = ~0l10; " edge sync enabled
hdlc _clock = [RXC, Q2, Q1, QO0};
HCSO = 0;
HCS1 = 1;
HCS2 = 3;
HCS3 = 7;
HCS11 = "~0l3;
HCS14 = ~o0l17;
HCS15 = “~olé6;
HCS16 = "~ol4;
HCS17 = *0l0;
@INCLUDE ’ [-) INPUT_MODE.STATE’
" macros:

SYNC_EDGE macro { (SYNC_ENABLE_IN & EDGE_IN)};

" The following macro selects NET_IN for normal operation,
" NODE_SIM IN for either monitor or node operation, and causes
" HDLC_IN to be high for reset operation

J-60

HDLC_IN macro { ¢

equations

(input_mode
(input_mode
(input_mode
(input_mode

— h nnu
Woonoi

~—

~

NORMAL INPUT) a
MONITOR INPUT) & NODE_SIM_IN #
NODE_INPUT)
RESET_INPUT)

& NET IN #

& NODE_SIM_IN #

OUTPUT ENABLE = (input_mode != RESET_INPUT);
RXC.OE = OUTPUT_ENABLE;

EDGE
state_diagram
state

state

state

state

state

state

state

state

state

state_diagram

state

state

state

state

state

:= (edge_state == HS3) # (edge_state == HS4);

then HCS1

then HCS1

then HCS1

then HCS11

then HCS1

then HCS1

then HCS1

& 'EDGE_IN then SES1

& 'EDGE_IN then SES2

else 1f EDGE_IN then SESO

& 'EDGE IN then SES3

else 1f EDGE_IN then SESO

& 'EDGE IN then SES4

else if EDGE_IN then SESO

hdlc_clock
HCSO: goto HCS1;
HCS1: if SYNC_EDGE
else HCSZ;
HCS2: if SYNC_EDGE
else HCS3;
HCS3: if SYNC_EDGE
else HCS14;
HCS14: if SYNC_EDGE
else HCS15;
HCS1l: goto HCS2;
HCS15: if SYNC_EDGE
else HCS16;
HCS16: if SYNC_EDGE
else HCS17;
HCS17: if SYNC_EDGE
else HCSO;
sync_state
SESO: if RX_SAMPLE
else SESO;
SES1: if RX SAMPLE
else SES1;
SES2: if RX SAMPLE
else SES2;
SES3: if RX SAMPLE
else SES3;
SES4: if RX SAMPLE

& 'EDGE IN then SES5S

else if EDGE_IN then SESO

J-61

else SES4;

state SES5: if RX SAMPLE & !EDGE_IN then SES6
else if EDGE_IN then SESO0
else SESS;

state SES6: if RX_SAMPLE & !EDGE_IN then SES7
else if EDGE_IN then SES0
else SES6;

state SES7: if RX_SAMPLE & !EDGE_IN then SESS8
else if EDGE_IN then SESO
else SES7;

state SESS: if EDGE_IN then SES0
else SESS8;

state_diagram edge_state

state HSO: if HDLC IN then HS1
else HSO;
state HS1: if HDLC_IN then HS3
else HS2; " glitch
state HS3: if HDLC_IN then HS7
else HS6;
state HS7: if !'HDLC_IN then HS6
else HS7;
state HS6: if !'HDLC_IN then HS4
else HSS; " glitch
state HS4: if !'HDLC_IN then HSO
else HS1;
" glitch states
state HS2: if HDLC IN then HS1
else HSO;
state HSS: if 'HDLC_IN then HS6
else HS7;
LRSS 2RSSR R Rl e SR 2z R R S S R EE R R RS R RS SRR RS Y S
" FILENAME: TEST _RX_CLOCK.TST RX clock test vectors
" DATE: October 31, 1988
" BY: T.C. Torkelson
Nk AR AR AR TR R AR R R R AR R AR R R R R R N A AR R A A R AR R AR KRR AN AR AR A AR A AR A IR AR RRNRAR KA A N KR AR A kK%
" REV DATE BY DESCRIPTION
" A 10/31/88 TCT separated test vectors from .abl
" B 11/21/88 TCT added vectors to check RESET INPUT

LR e Ry R g L g N 222ttt

test_vectors 'Test Edge Detector’
([sys_clock, NET_IN, input _mode] -> [EDGE, RXD, H1l, HO])

" place in known state

[C,0,NORMAL INPUT] -> [X,X,X,X];
[C,0,NORMAL_INPUT] -> [X,X,X,X];

J-62

"

test_vectors
([sys_clock,inpu

[C,O,NORMAL_INPUT] -> [0,0,0,0];
test no edge condition - input low

{C, 0, NORMAL_INPUT]
(C, 0, NORMAL_INPUT]

->
->

test high glitch - one sample

[C,1,NORMAL INPUT]
{C,0,NORMAL INPUT]
[C,0,NORMAL INPUT]

->
->
->

[01010!0];
{0,0,0,0];

’

——
~

OO
o O

0,0,0,1}7
0,0,1, y:
0,0,0, 1;

14

test positive edge - two samples

(C,1,NORMAL_INPUT]
[C,1,NORMAL_INPUT]
(C, 0, NORMAL_INPUT]
(C, 0, NORMAL_INPUT]
[C, 0, NORMAL_INPUT]
[C, 0, NORMAL_INPUT]

->
->
->
->
->
->

[0,0,0,1);
(0,0,1,1]);
[11111r0];
[0,1,0,0];
(1,90,0,0);
[0,0,0,01;

test positive edge - three samples

{C,1,NORMAL INPUT]
{C,1,NORMAL_INPUT]
[C,1,NORMAL_INPUT]
(C, 0, NORMAL_INPUT]
(C, 1, NORMAL_INPUT]
[C,1,NORMAL_INPUT)
(C, 0, NORMAL_INPUT]
(C, 0, NORMAL_INPUT]
(C, 0, NORMAL_INPUT]
[C, 0, NORMAL_INPUT]
[C, 0, NORMAL_INPUT]

->
->
->
->
->
->
->
->
->
->
->

'Test Various Input Modes’
t_mode, NET_IN, NODE_SIM_IN

(0,0,0,11;
[orollrlli
(1,1,1,1);
[011/110];
[orlrorll;
{0,1,1,1);
[0,1,1,0);
{0,1,0,01;
(1,0,0,0];
[OIOIOIO];
[0101010]?

[C,NORMAL_INPUT,0,0] -> [0,X]);
[C,NORMAL_INPUT,I,O] -> [1,X1:
[C,NORMAL_INPUT,O,I] -> [0,X]:

[C,MONITOR_INPUT,0,0] -> [0,X);
[C,MONITOR_INPUT,l,O] -> [0,X];
[C,MONITOR_INPUT,O,I] -> [1,X):

(C,NODE_INPUT,0,0] -> [0,X];
{C,NODE_INPUT,1,0] -> [0,X];
[C,NODE_INPUT,0,1] -> (1,X];

[C,RESET INPUT, O, 0]
(C, RESET_INPUT, 1, 0]
{C, RESET_INPUT, 0,1)

test_vectors 'Test Sync Enable
{[sys_clock, EDGE_IN, RX_SAMPLE,

->
->
->

- N

(,0,0,!SESO] -> [SESO};

{c,0,0,%X] -> [SESO];
(c,0,1,X] -> [SES1];

(c,0,0,X] -> [SESl};
[c,0,1,X] -> [SES2};

[Cc,0,0,X] -> [SES2]):
(c,0,1,X] -> [SES3]};

[1,2};
(1,23;
(1,2}

ormal operation’

"

this

next

next

next

this

next

] -> [HO,RXE]);

is a + glitch

clock detects

clock detects

clock detects

is a - glitch

clock detects

sync_state] -> [sync_state])

+ edge

- edge

+ edge

- edge

J-63

{C,0,0,X] -> [SES3];
{C,0,1,X] -> [SES4];

[C,0,0,X] -> [SES4];
{C,0,1,X] -> [SESS];

(C,0,0,X] -> [SES5};
[C,0,1,X] -> [SES6];

X] -> [SES6];
,X) -> [SES7]);

[C,0,0,X) -> [SES7]:
[C,0,1,X] -> [SES8];

{C,0,0,X]) -> [SES8];
(C,0,1,X] -> [SES8};

[C,1,0,X] -> [SESO};

test_vectors "Test Sync Enable - Normal edge reset’
([sys_clock, EDGE_IN, RX_SAMPLE, sync_state] -> [sync_state])

(p,0,0,!SES0] -> [SESO0];
[C,1,0,SES0] -> [SES0Q];

(p,0,0,!SES1] -> [SESl]);
(C,1,0,SES81) -> [SESO];

[p,0,0,!SES2] -> [SES2];
(C,1,0,SES2] -> [SESO0];

(p,0,0,!SES3] -> [SES3];
{C,1,0,SES3] -> [SESOQ];

(p,0,0,!SES4] -> [SES4];
[C,1,0,SES4] -> [SESO0};

{p,0,0,!SES5] -> [SES5);
{C,1,0,SES5] -> [SESO0];

{p,0,0,!SES6]) -> [SES6];
{C,1,0,SES6] -> [SES0];

(p,0,0,!SES7] -> [SES7]:
[C,1,0,SES?7) -> [SESO0};

test_vectors "Test Sync Enable - Edge / RX_Sample contention’
([sys_clock, EDGE_IN, RX SAMPLE, sync_state] -> [sync_state})

{P,0,0,!'SESO] -> [SESO0];
{C,1,1,SES0] -> [SES0];

[p,0,0,!SES1] -> [SES1l];
{C,1,1,SES1] -> [SESO0];

[P,0,0,!SES2] -> [SES2);
(C,1,1,SES82) -> [SES0};

(p,0,0,!SES3] -> [SES3};
(C,1,1,SE83] -> [SESO0};

J-64

(p,0,0,!SES4] -> [SES4];
[c,1,1,sSEs4] -> [SESO];

(p,0,0,!SES5] -> [SESS];
(Cc,1,1,SES5] -> [SESO0];

(p,0,0,!SES6] -> [SES6];
(c,1,1,SE86) -> [SESO];

(p,0,0,!SES7] -> [SES7];
[¢c,1,1,SES87] -> [SESO];

test_vectors 'Test Clock Generator

{[(sys_clock, EDGE_IN, SYNC_ENABLE_

(p,0,0,!HCS0] -> [HCSO];

{c,0,0,HCS0] -> [HCS1];
[c,0,0,X] -> [HCS2];
(C,0,0,X] -> [BCS3]);
{c,0,0,X] -> [HCS14]};
[¢c,0,0,X] =-> [HCS15];
{c,0,0,X] -> [HCS16]:
{c,0,0,X] -> [HCS17];
{c,0,0,X] -> [BHCSO};

test_vectors r1egt Clock Generator

{{sys_clock, EDGE_IN, SYNC_ENABLE

[p,0,0,!HCS0] -> [HCSO];

(c,1,1,HCS0] -> [HCS1];
{c,0,0,X] -> [HCS2];

test vectors 'Tast Clock Generator

{[sys_clock, EDGE_IN, SYNC_ENABLE_

{p,0,0,!HCS1] -> [HCS1];

[C,1,1,HCS1] -> [HCS1};
(c,0,0,X] -> [HCS2];

test_vectors ’Test Clock Generator

({sys_clock, EDGE_IN, SYNC_ENABLE_

{p,0,0,'HCS2] -> [HCSZ];

(C,1,1,HCS2] -> [HCS1];
[C,0,0,X] -> [HCS2):

test_vectors 'Test Clock Generator

([sys_clock, EDGE_IN, SYNC_ENABLE_

[P,0,0,!HCS3] -> [HCS3);

{c,1,1,HCS3] -> [HCS1);
(C,0,0,X] -> [HCSZ2];

test vectors *Test Clock Generator

State Machine Free Run’
IN, hdlc_clock] -> [hdlc_clock])

Sync Operation at HCSO’

IN, hdlc_clock] -> [hdlc_clock])

Sync Operation at HCS1'
IN, hdlc_clock] -> [hdlc_clock])

Sync Operation at HCS2'
IN, hdlc_clock] -> [hdlc_clock])

Sync Operation at HCS3’
IN, hdlc_clock] -> [hdlc_clock])

Sync Operation at HCS14’

J-65

({sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlc_clock] -> [hdlc_clock])
(P, 0,0, !HCS14] -> [HCS14]);

[C,1,1,HKCS14] -> [HCS11];
[C,0,0,X] -> [HCS2];

test_vectors ‘Test Clock Generator Sync Operation at HCS15/
{[sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlc_clock] ~> [hdlc_clock])

(p,0,0,!HCS15] -> [HCS15);

(C,1,1,BCS15] -> [HCS1];
(C,0,0,X] -> [HCS2];

test_vectors 'Test Clock Generator Sync Operation at HCS16’
([sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlc_clock] -> [hdlc_clock])

{p,0,0,!HCS16] -> [HCS16];

[C,1,1,HCS16] -> [HCS1]};
(C,0,0,X] -> [HCS2);

test_vectors 'Test Clock Generator Sync Operation at HCS17’
([sys_clock, EDGE_IN, SYNC_ENABLE IN, hdlc_clock] -> [hdlc_clock])

(p,0,0,'HCS17] -> [HCS17):;

{C,1,1,HCS0] -> [HCS1);
[C,0,0,X] -> [HCS2);

test_vectors 'Test Clock Generator Enabled, No Edge’
([sys_clock, EDGE_IN, SYNC_ENABLE IN, hdlc_clock] -> [hdlc_clock])

[P,0,0,'HCS0] -> [HCSO};

[C,0,1,HCS0] ~-> [RHCS1];
[C,0,1,X] -> [HCS2);
{C,0,1,X] -> [HCS3];
(C,0,1,X] -> [HCS14):
[C,0,1,X] -> [HCS15);
[C,0,1,X] -> [HCS16):;
[C,0,1,X] -> [HCS17);
[C,0,1,X] -> [HCSO]:;

test_vectors "Test Clock Generator Disabled, Edge’
([sys_clock, EDGE_IN, SYNC ENABLE 1IN, hdlc_clock] -> [hdlc_clock])

[P,0,0,!HCSO0] -> [HCSO];

{C,1,0,HCS0] -> [HCS1];
{C,1,0,X] -> [HBCS2];
[C,1,0,X] -> [HCS3};
{C,1,0,X] -> [HCS14]:
[CI 1! OIX] -> [HCSlS],’
[C,1,0,X] ~-> [HCS16];
(C,1,0,X] -> [HCS17};
{C,1,0,X] ~-> [HCSO];

J-66

end test_rx clock

J-67

Page 1
ABEL(tm) 3.00b - Document Generator 21-Jun-89 03:21 PM
AIPS I/0 Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module test rx clock

Device TEST_RX_CLOCK

- Reduced Equations:
OUTPUT_ENABLE = (!MO # !M1);
_RXC_E = (OUTPUT_ENABLE);
EDGE := (!HO & !'H1 & RXD # HO & H1l & !RXD);
RXC := (!'EDGE_IN & !Q0 & Q2 & RXC
'00 & Q2 & RXC & !SYNC ENABLE_IN
Q0 & Q1 & Q2 & RXC

'EDGE_IN & Q0 & Q1 & Q2
Q0 & Q1 & Q2 & !SYNC_ENABLE_IN);

]

('EDGE_IN & Q1 & Q2 & RXC

01 T Q2 & RXC & !SYNC_ENABLE IN

'EDGE_IN & Q0 & Q1 & 'RXC

00 & Q1 & !RXC & !SYNC_ENABLE IN);

Q2

(Q0 & Q1 & RXC

'EDGE_IN & Q0 & Q1

Q0 & Q1 & !SYNC_ENABLE_IN

'EDGE_IN & Q0 & !Q2 & 'RXC

Q0 & 7Q2 & !'RXC & !SYNC_ENABLE_IN) ;

Q1

(EDGE_IN & !'Q0 & !Ql & RXC & SYNC_ENABLE_IN
EDGE_IN & !Q0 & Q2 & RXC & SYNC_ENABLE_IN
§ Q0 & Q1 & 1Q2

Q0 & Q1 & !RXC

EDGE_IN & Q0 & Q1 & SYNC_ENABLE_ IN

#'01 & !1Q2 & !'RXC);

Q0 :

('EDGE_IN & !SE0 & !SEl & !SE2 & SE3
!EDGE_IN & RX SAMPLE & SEO & SEl & SE2 & }SE3);

SE3 :

('EDGE_IN & 'RX_SAMPLE & SE2 & !SE3

'EDGE_IN & !'SEQ & SE2 & !SE3

'EDGE_IN & !SEl & SE2 & !SE3

'EDGE_IN & RX SAMPLE & SEO & SEl & !SE2 & !SE3);

SE2

J-68

ABEL(tm) 3.00b - Document Generator 21-Jun-89 03:21 PM
AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module test rx_clock
Device TEST_RX_CLOCK
SEl := (!EDGE_IN & !RX_SAMPLE & SEl & !SE3

'EDGE_IN & !SEO & SE1 & !SE3
!'EDGE_IN & RX_SAMPLE & SEO & !SEl & !SE3);

SEQ := (!EDGE_IN & !RX SAMPLE & SE0 & !SE3
4 !EDGE_IN & RX_SAMPLE & '1SEQ0 & !SE3);
RXD := (HO & RXD # Kl & RXD # HO & H1);
Hl1l := (H0);
HO := (MO & M1

Ml & NODE_SIM_IN
MO & NODE_SIM IN
$# 'MO & !M1l & NET_IN);

Page 2

J-69

ABEL(tm) 3.00b - Document Generator 21-Jun-89 03:21 PM
AIPS I/0 Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module test_rx_clock

Device TEST RX CLOCK

E0600
__________ \ [
| \ / [
SYS_CLOCK1 : r 24 :
MO : 2 23 : M1
RXC : 3 22 : SEO
RXD : 4 21 : SE1
Q2 : 5 20 : SE2
Q1 : 6 19 : SE3
Qo0 : 7 18 : OUTPUT_ENABLE
EDGE : 8 17 : EDGE_IN
H1 I 9 16 : SYNC_ENABLE IN
HO : 10 15 : RX_SAMPLE
NET_IN I 11 14 : NODE_SIM IN
: 12 13 : SYS_CLOCK2
| |

end of module test rx clock

J-70

Page 3

"****t**********t**********t****tt******t***t*****t*****tt********************

" FILENAME: DIU_NODE_22V10.ABL Simulated node for DIUs

" DATE: October 31, 1988

" BY: T.C. Torkelson
"t**************t*****i***t**************************************t************
" REV DATE BY DESCRIPTION

* A 10/31/88 TCT Changed M1, MO pinout to agree with PC board

" Separated out test vectors
"***t********tt*********tt**********t**t*************tt***********************

module diu_node_22v10

flag f-x2’

title AIPS Simulated I/0 Network Node EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev:
[

" REVISED BY DESCRIPTION

"

”

" This device is used on the network adapter to implement non-existent nodes.

"Declarations:

DIU_NODE_22V10 device
" inputs:
NODE_IN1, NODE_IN2
DIU1l_IN, DIU2_IN
DIU3_IN, DIU4_IN
DIUS_IN, DIU6_IN
DIU7_IN, DIUS_IN
M1, MO
" outputs:

NODE_OUT1, NODE_OUT2
DIU1_OUT, DIU2_OUT
DIU3_OUT, DIU4_OUT
DIUS_OUT, DIU6_OUT
DIU7_0UT, DIU8_OUT
NODE_OUT1, NODE_OUT2
DIUl_OUT, DIU2_OUT
DIU3_0UT, DIU4_OUT
DIUS_OUT, DIU6_OUT
DIU7 OUT, DIUS_OUT

" states

input_mode = [M1, MO];

10/31/88

rp22v107;

Pin 2,3;
pin 4,5;
pin 6,7;
pin 8,9;
pin 10,11;
pin 1,13;
pin 23,22;
pPin 21,20;
pin 19,18;
pin 17,16;
pin 15,14;
istype 'neg,
istype 'neg,
istype 'neg,
istype 'neg,
istype 'neg,

com’ ;

com’ ;
com’ ;
com’ ;
com’ ;

J-71

NORMAL_INPUT = 0;
MONITOR_INPUT = 1;
NODE_INPUT = 2;
RESET_INPUT = 3;

equations

NODE OUT1 = (input_mode == NODE_ INPUT) &
- (NODE_IN2 # -
DIU1_IN § DIU2_IN § DIU3_IN # DIU4_IN #
DIUS_IN # DIU6_IN # DIU7_IN # DIUB_IN) #
(input_mode == MONITOR_INPUT) &

(NODE IN2) #
(input_mode == NORMAL_INPUT) &
(DIU1_IN) #

(input_mode == RESET_INPUT) &
(0);

NODE_OUT2 = (input_mode == NODE _INPUT) &
(NODE_IN1 #
DIU1_IN # DIU2_IN # DIU3_IN # DIU4_IN ¢
DIUS IN # DIU6_IN # DIU7_IN # DIUS_IN) #

(lnput mod MONITOR INPUT) &
(NODE IN1) $

(input_| mode == NORMAL INPUT) &
(DIU2 IN) #

(input_mode == RESET INPUT) &
(0);

DIU1_OUT = (input_mode == NODE_INPUT) &
(NODE IN1 § NODE INZ #
DIU2 IN # DIU3_IN # DIU4_IN #
DIUS IN # DIU6 IN # DIU7_IN # DIUS_ _IN) #
{(input__ mode == MONITOR INPUT) &
(NODE IN1 # NODE INZ) #
(input_ mode == NORMAL_INPUT) &
0y #
{input_mode == RESET_INPUT) &
(0);

DIU2 OUT = (input_mode == NODE_INPUT) &
(NODE_IN1 # NODE_IN2 #
DIU1_IN ¢ DIU3_IN # DIU4_IN #

DIUS IN §# DIU6 IN # DIU7 IN # DIUS _IN) #
{input mode == MONITOR INPUT) &

(0) #

(input_mode == NORMAL INPUT) &
(0) #

(input_mode == RESET_INPUT) &
(0);

DIU3 _OUT = (input_mode == NODE_INPUT) &
(NODE_IN1 # NODE_IN2 #
DIU1 IN # DIU2 IN # DIU4 IN #
DIUS_IN § DIU6 IN # DIU7_IN # DIUS_IN) #
(input_mode == MONITOR INPUT) &
(0) #
(input_mode == NORMAL_INPUT) &
(0) #
(input_mode == RESET_INPUT) &

J-72

(0);

DIU4 OUT = (input_mode == NODE_INPUT) &
(NODE_IN1 # NODE_IN2 #
DIU1_IN # DIU2_IN # DIU3_IN #
DIUS_IN § DIU6_IN # DIUT_IN # DIU8_IN) #
(input_mode == MONITOR_INPUT) &
(0) #
(input_mode == NORMAL_INPUT) &
(0)
(input_mode == RESET_INPUT) &
(0):

DIUS OUT = (input_mode == NODE_INPUT) &
(NODE_IN1 # NODE_IN2 #
DIU1_IN # DIU2_IN # DIU3_IN # DIU4_IN ¥
DIU6_IN # DIU7_IN § DIUB_IN) #
(input_mode == MONITOR_INPUT) &

(0)
{input_mode == NORMAL INPUT) &
(0) #
(input_mode == RESET_INPUT) &
(0);
DIU6_OUT = (input _mode == NODE INPUT) &

(NODE_IN1 # NODE_IN2 #
DIU1_IN # DIU2_IN § DIU3_IN # DIU4_IN #
DIUS_IN # DIU7_IN # DIUS_IN) #
(input_mode == MONITOR_INPUT) &
(0)
(input_mode == NORMAL_INPUT) &
(0) ¢
(input_mode == RESET_INPUT) &
(0)7

DIU7_OUT = (input_mode == NODE_INPUT) &
(NODE_IN1 # NODE_IN2 #
DIU1TIN # DIU2 IN # DIU3_IN # DIU4_IN #

DIUS_IN # DIU6_IN # DIUS_IN) #
(input_mode == MONITOR_INPUT) &

(0) ¢
(input_mode == NORMAL_INPUT) &

(0) #

(input_mode == RESET_INPUT) &
(0):

DIU8 OUT = (input_mode == NODE_INPUT) &
(NODE_IN1 # NODE_INZ #
DIUL_IN # DIU2_IN # DIU3_IN # DIU4_IN %
DIUS_IN # DIU6_IN # DIU7_IN)
(input_mode == MONITOR_INPUT) &
(0) #
{input_mode == NORMAL INPUT) &
(0)
(input_mode == RESET_INPUT) &
(0):

" Comment out the following line to compile a production .JED file

" @ INCLUDE ’DIU_NODE_22V10.TST’

J-73

end diu_node__Z 2v10

J-74

DIU2 OUT,DIU3 OUT,

input mode] ->
DIU7 OUT,DIU8 OUT])

KRARRKRKK KRR AR RRRRRARRAKRRR AR
IN,DIUS IN,

(

AR KRR K KRR RRRKRIRAKARRRAKRRRR N A AKX KK
-> [

Simulated node for DIUs test vectors

DIUS OUT,DIU6_OUT,

DIU6 IN,DIU7

DIU1 IN,DIU2 IN,DIU3_IN,

2,DIUl1_OUT,

NORMAL_INPUT] ->

NORMAL INPUT]

Separated out test vectors

DESCRIPTION

NORMAL INPUT)

1988

T.C. Torkelson
"t*********t************t******t*****************t

October 31,

BY

TCT
_IN1,NODE_IN2,
NODE_OUT1, NODE_OUT

DIU_NODE_22V10.TST

DIU4 IN,DIUS_IN,

([NODE
DIU4_OUT,

(

' Test Node Simulator EPLD’

E

FILENAME:
DATE:
BY:
DATE
A 10/31/88
NA AR KRR RAIRRRARARKRRARNR KRR AR KX IRRRAK KRS

REV

"***t********t********************

test vectors

"

T N N N LRLY
— e —
OCOOOOO0OO
P R
QOO O0OO0ODO0O0O0O
O T
OO OO0OO0OO0O
[S N T R
COO0OOOO0OO0O
llllllll
ODOO0OO0OO0OO0OOO
T L

QOO0 O0O00O

IIIIIIII

ERHEE e B
DODDDDDDD
[V YRV T TR T e T
ZZZZZZE 2
I_I_I_I_I_I_I_I
mmmmmmmm
000000380
ZEZEEE LA

i oNeoNaR, NolNeRels]

(R L L

= ﬂanAU NunUnU 1¢nununUnU.O

-

_ﬂv1.nvnvn-ﬁvﬁvnv

L N = N N L . L
=] 1.nUnUnUnU OO O
“« sH s s8N .~~~

Q nannUnUAU.U oo

C I S e

~
t.U.l.U HOOOOODVDOO

MONITOR_INPUT]
MONITOR_INPUT]

MONITOR INPUT]

’
4
14

0,0,0
0,0,0
0,0,0

L L L
]]]]]]]]

OOODDOOO0O
llllllll
COOOOOODOO0O
O S S
COO0OOODOOOOO0O
[N R

IIIIIII

AN
DOHDDDDDD
G apn R

ZZZZZZZ
I_I_I_I_I_I_I_I
o0 0 G B G o O
00000000
£ B 6 Ev B4 Ef BB
ZZZZZEE R
888808089
EEEEZEEEE
nunvnunvnvnanTM
cocooo Mo

COO0OOHAOOO
[N
nvﬂvﬁv1¢ﬁvﬂvﬁvﬁu

lllll

NnUnun.Nnuo.Lnuo.UnUO

L S S S

_O.LnVOAUnunUO
Y- « . « =~

nununVAU DO ﬂunVnUAU (& R

NODE_INPUT])
NODE_INPUT] ->
NODE_INPUT] -> {1
NODE INPUT]

P L N LR e

— e

—— e
A~ O

IIIIII

o I e e B e B B |
AAAANAANA
[T I I I |
e
EH B EH BB
ODbHObbbOD
[s TR TR T} m [aY R TR e 7]
A Zz Z A
SRR
G R] G D)
e aNajaRalapal
O00000QO0
ZZZZ2Z2Z A

IIIIIIII

ﬂvn-n-nv1.nvnv0

IIIII -~

ﬁuﬁvﬂu1.nvn~0~0

O T L

4 nvﬁvAU ZOOAOO0OO0O0

I L L

_0.1nv0AUnunv0

IIIII

ODHMOOOO nvnvnu

L O L

[=Na o) ﬂannUnU.U

J N o

J-75

{0
[0

RESET INPUT] ->

0, RESET INPUT] -> [0

0,RESET INPUT] ->

0,

0,0,
0,0,
IOIOI

[X e Lo L s Kan)]

00000000
00000000

.~ % oa N A
00000000
lllll
00000000
00000000
.~ % 8N s e .

00000000
~ S
00000000

OCOO0OO0O0ODOO0O
22222222
AAAAAAAA
LN R R I I R |
FHEEBRE DD
5E5DB5DBD
LY
P e
el e e
W 6K G EEE
aanngnagn
HEEERNEE

lllll
00010000
AR

N00100000
_01000000
[= .
010000000
N <
000000000

R L

toooooooo

U} Sod d e el G G bt s

]
&

J-76

ABEL(tm) 3.00b - Document Generator
AIPS Simulated I/0 Network Node EPLD

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson

Equations for Module diu_node 22v10

Device DIU_NODE_22V10

- Reduced Equations:

NODE_OUT1 =

Current rev:

Page 1
20-Dec-88 01:04 PM

10/31/88

! (!DIU1 IN & !DIU2_IN & !DIU3_IN & !DIU4_IN & !DIUS_IN &

IDIU6 IN & !DIU7 IN & !DIUS_IN & !NODE IN2

$ 'DIUL IN & !MO & 'M1

§ MO & TNODE_IN2
$ MO & Ml);

NODE_OUT2 = ! (MO & Ml

$ 'DIUL_IN & !DIU2_IN & !DIU3_IN & !DIU4_IN & !DIUS_IN &
'DIU6 IN & !DIU7_IN & !DIU8_IN & !NODE_IN1

$ 'DIU2 IN & 'MO & M1

$ MO & 'NODE_IN1);

DIUl_OUT = ! (MO & M1

'DIU2_IN & !DIU3_IN & !DIU4_IN & !DIUS_IN & !DIU6_IN &
IDIU7_IN & !DIU8_IN & !NODE_INl & !NODE_IN2
!'M1 & !NODE_INl & !NODE_INZ

$ 'MO & 'M1);
DIU2 OUT = ! (!DIU1_IN & !DIU3_IN & !DIU4_IN & !DIUS_IN & 'DIU6_IN &
'DIU7_IN & !DIU8_IN & !NODE_IN1 & !NODE_IN2
$# MO
$ IM1);
DIU3_OUT = ! (MO
§ M1
!'DIUL IN & !DIU2_IN & !DIU4_IN & !DIUS_IN & !DIU6_IN &
'DIU7 _IN & !DIUB_IN & !NODE INl & !NODE_IN2);
DIU4_OUT = ! (MO
$§ ™1
'DIU1_IN & !DIU2_IN & !DIU3_IN & !DIUS_IN & !DIU6_IN &
'DIU7_IN & !DIU8_IN & !NODE_IN1 & !NODE_INZ);
DIUS OUT = ! (MO
§ 'M1
§ !'DIV1 IN & !DIU2_IN & !'DIU3_IN & !DIU4_IN & !DIU6_IN &
'DIU7_IN & !DIUB_IN & !NODE_INl & !NODE_INZ2});
DIU6_OUT = ! (MO
§ M1
§ !'DIUL_IN & !DIU2_IN & 'DIU3_IN & !DIU4_IN & !DIUS_IN &

J-11

Page 2
ABEL (tm) 3.00b - Document Generator 20-Dec-88 01:04 PM
AIPS Simulated I/0 Network Node EPLD

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module diu_node_22v10
Device DIU_NODE_22V10
'DIU7_IN & !DIUS_IN & !NODE INl & !NODE_IN2);
DIUT_OUT = ! (MO
Ml
!'DIU1_IN & !DIU2_IN & !DIU3_IN & !DIU4_IN & !DIUS_IN &
'DIU6_IN & !DIUS_IN & !NODE_IN1 & !NODE_IN2);
DIUS OUT = ! (MO
$# M1

'DIUL IN & !DIU2_IN & !DIU3_IN & !'DIU4_IN & !DIUS_IN &
IDIU6 IN & !DIU7_IN & !NODE_IN1 & !NODE_INZ);

J-78

ABEL(tm) 3.00b - Document Generator

AIPS Simulated I/O Network Node EPLD

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson

Current rev:

Chip diagram for Module diu_node_22v10

Device DIU_NODE_22V10

P22V10
---------- \
I
|
ML | 1
|
NODE_IN1 | 2
|
NODE_IN2 | 3
I
DIUL_IN | 4
[
DIU2_IN | S
|
DIU3_IN | 6
I
DIU4_IN | 7
l
DIUS IN | 8
|
DIU6_IN | 9
|
DIU7 IN | 10
|
DIUS_IN | 11
|
| 12
|
I

end of module diu_node_22v10

24
23
22
21
20
19
18
17
16
15
14

13

20-Dec-88 01:04 PM

10/31/88

NODE_OUT1
NODE_OUT2
DIULl_OUT
DIU2_OUT
DIU3_OUT
DIU4_OUT
DIU5_OUT
DIU6_OUT
DIU7_OUT
DIUS_OUT

MO

Page 3

J-79

AR R KRN R R AR KRR AR AR R AR AN AR AR RARRARRAANRARRRRARR RN RN AN AR AR A A AR A ARk kA Ak Ak ok

" FILENAME: EPSZO_TX_CLOCK.ABL 2 MHz AIPS 1/0 transmit clock
" DATE: October 31, 1988

" BY: T.C. Torkelson
[R 2R 2R R 2222223332383 23 2233232222222 233822232 22222222222 st 2

" REV DATE BY DESCRIPTION -
" A 10/31/88 TCT Modified to match ISIQO PC board requirements

" Separated out test vectors

" B 11/17/88 TCT Changed input pin out to match PC layout

" C 11/21/88 TCT Added M0 and M1 inputs

" Added OUTPUT_ENABLE
" Disable TXC while input mode == RESET INPUT

"*******tﬁ*********t************t****************tt**!*;*************;********

module ep320_tx_clock

flag f-x2’

title ’68562 Transmit Clock Generator

BOEING ADVANCED SYSTEMS

D?signed by: Tom Torkelson Current rev: 10/31/88
" rev description

" This EPLD buffers the system clock and provides a transmit clock for the DUSCC
" chip which provides a non-square waveform to meet the falling TXC to TXD outpu

E valid delay of 240 ns. The TXD clock will be low for 6 input clocks (375 ns)
" and high for two (125 ns).
"Declarations
EP320_TX_CLOCK device 'E0320";
" define ABEL .. commands

c,K,p,X,2 = .C.,.K.,.P.,.X.,.2.;

" inputs
SYS_CLOCK pin 1; " 16 Mhz system clock
'PIT_CS pin 2; " chip select from U100
Ab pin 3; " addr line 6 from ISIO card
MO, M1 pin 4,5; " DIU sim op mode input
" outputs
TXC,02,Q1,Q0 pin 12,13,14,15;
TXC,Q2,Q1,00 istype 'pos, reg, feed pin’;
TXC.EN istype ‘eqgn’;
'U100_Cs pin 19;
U100_Cs istype ’'neg, com’;
1020_Cs pin 18;
U20_Cs istype ‘neg, com’;
SPARE1 pPin 16;
SPARE1 istype ’'pos, com’;

J-80

OUTPUT_ENABLE pin 17;
OUTPUT ENABLE istype ‘pos, com, feed pin’;

" states

txc_ctr = [TXC,Q2..Q0]);

S0 = ~b0000;
S1 = ~b0001;
S2 = “b0011;
$3 = “b0010;
S4 = *“b0110;
§5 = “b0100;
S6 = “bl100;
S7 = “bl000;
@INCLUDE 'INPUT_MODE.STATE’
equations
SPARELl = 0;

OUTPUT ENABLE = (input_mode != RESET_INPUT);
TXC.EN = OUTPUT_ENABLE;

PIT CS & !A6; " select U100 when A6 = 0
PIT CS & A6; " select U20 when A6 =1

U100_CS
U20_Cs

state_diagram txc_ctr

state SO0: goto S1;
state Sl: goto S2;
state S2: goto S3;
state S3: goto S4;
state S4: goto S5;
state S5: goto S6;
state S6: goto S7;
state S7: goto S0O;

" Comment out the following line to compile a production .JED file

" @INCLUDE 'EP320_TX_ CLOCK.TST'

end ep320_tx_clock

J-81

L2 22223222222 222222222 2SS RRSRSSRS2 2222222222222z s sl s]

" FILENAME: EP320_TX CLOCK.TST 2 MHz AIPS 1/0 transmit clock vectors
" DATE: October 31, 1988

" BY: T.C. Torkelson

AR AR R AR R AR A AR R AR R AR R AR RN A AR AR R AR R AR KRR AR R AR KRR RN RARAR AR RARK AR Rk A AN AR
" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Modified to match ISIO PC board requirements

" Separated out test vectors

" B 11/21/88 TCT Added test vectors for TXC output enable

B AR AR KRR R R R AR AR AR R R AR AR R R R R RN AR R AN R AR AR R AR R AR R R RA KRR AR AR AR AR AR RN AR AR AR AR

test_vectors ' Test Chip Selects '’
([PIT_CS, A6] -> [U100_CS, 020_Cs])

[or 0] -> [Ol 0];
[0, 1] -> [0, 0]:
(r, 01 -> (1, 0];
(1, 11 -> [0, 1};
test_vectors ' Set TXC Clock Generator to Known State’
{[SYS_CLOCK, txc_ctr] ~-> txc_ctr)

[PI SO] -> SO;

test_vectors * Test TXC Clock Generator’
([SYS_CLOCK, txc_ctr] -> txc_ctr)

{C, 80] -> si;
[C, 811 -> S82;
[C, §2] -> S3;
[C, 83] -> S4;
[C, S4] -> 85;
[C, 8§51 -> 86;
[C, 86] =-> §7;
[C, §7] -> 80;

test_vectors ! Test TXC output enable’
(input_mode -> [OUTPUT_ENABLE, TXC])

NORMAL INPUT -> [1, X];
NODE_INPUT -> [1, X);
MONITOR _INPUT -> (1, X];
RESET INPUT -> [0, Z];

J-82

ABEL (tm) 3.00b - Document Generator
68562 Transmit Clock Generator

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev:

Equations for Module ep320_tx_clock

Device EP320_TX_CLOCK

- Reduced Equations:
SPAREL = (0);
OUTPUT_ENABLE = ('M0 ¢ !M1);
enable TXC = (OUTPUT_ENABLE);
~J100_Cs = ' (A6 & !'~PIT_CS);
~U20_CS = ! (A6 & !~PIT_CS);

TXC := (!1Q0 & 'Q1 & Q2);

Q2 := ('Q0 & Q2 & !TXC # !'Q0 & Q1 & !TXC);
Q1 := (Q1 & 'Q2 & !TXC # Q0 & !Q2 & !TXC);
Q0 := ('Q1 & !Q2 & !TXC);

21-Nov-88 04:36 PM

10/31/88

Page 1

J-83

ABEL(tm) 3.00b - Document Generator 21-Nov-88 04:36 PM
68562 Transmit Clock Generator

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module ep320_tx clock

Device EP320_TX_ CLOCK

E0320
__________ \ /__________
| \ / |
SYS_CLOCK : o 20 :
~PIT CS : 2 19 I ~U100_CS
A6 } 3 18 : ~U20_CS
MO : 4 17 I OUTPUT_ENABLE
M1 : 5 16 : SPARE1l
e 151 Qo
: 7 14 : Q1
: 8 13 : Q2
I 9 12 : TXC
: 10 11 :
| |
| l

end of module ep320 tx clock

J-84

Page 2

“t******t**********t**t***********************************t*t*****************

" FILENAME: ISIO_DELAY GEN.ABL Declarations unique to ISIO delay
" DATE: January 31, 1989
" BY: Tom Torkelson

"***t*****************tt*t*****************t***t******************************

module isio_delay_gen
flag ’-r3/,’-t0’
title ’ISIO FTC Delay Generator EPLD for MC68230

BOEING ADVANCED SYSTEMS
Designed by: T.C. Torkelson Latest Revision: 31 JAN 89/

» This module is used with the MC68230 PIT to prevent the timer_ register from
v changing when the timer_register is being read. This module was designed

v with the consideration that the MOVEP instruction must be used to access

" the timer_register on the MC68230.

" The first byte is read by the MOVEP instruction is actually a dummy byte
» which is read as zerc. The CS for the dummy byte causes the EPLD to skip
" the next rising edge of the FIC, whether it occurs during the read of the
» timer or not. The next rising and falling edges each generate a pulse to
" the 68230, making up for the swallowed rising edge.

" A limitation on the 68230 is that clock pulses must not be spaced closer

" than the input clock frequency of the chip / 8. The ISIO 68230 is clocked
" at 7.38 Mhz, thus the minimum spacing between pulses is 1.08 usec. This

v works with the 4.125 usec FTC clock.

" declarations

ISIO_DELAY GEN device 'E0600’; "uses the Altera EP600 chip

" inputs unique to ISIO_DELAY GEN

VINH_1 pin 11; " TICK inhibit, active low
VINH 2 pin 10; » 7ICK inhibit, active low
INH 3 pin 9; " TICK inhibit, active high

" get common code for delay generator
QINCLUDE ‘DELAY_ GEN.INC’

end isio_delay_gen

J-85

"t*******t**t**t**************************t******t***************************t

" FILENAME: DELAY GEN.INC FTC pulse delay generator common logic
" DATE: January 31, 1989

" BY: Art Pannek
"*************t***t******************t*****ﬁ***********t**t*******************

" REV DATE BY DESCRIPTION

"

* A 10/31/88 TCT Placed test vectors separate .TST file
" Changed pin allocation for pc board

" Changed INHB A & B pol to active low
" Added INHB C, active high
" Changed pin numbers of inhibits for ISIO

" B 1/30/89 TCT Changed design of EPLD to always swallow
" one rising edge, then make it up with a
" falling edge later

"oC 1/31/89 TCT Changed state progression, separated out .abl
" code common to ISIO_DELAY GEN & OPIO_DELAY GEN

" D 2/ 2/89 TCT Changed FTC latch to FTC D flop clocked
" async by falling edge of CLK3

"******iti*******t*********t*****t***************************t****************

" define ABEL .. commands
C, XK, P, X=.C., .K., .P., .X.;
H, L=1, 0;
" inputs
CLK1 pin 1; " MC68230 clock
CLK2 pin 13; " MC68230 clock
CLK3 pin 23; " MC68230 clock
ICs pin 2; " CS active low to select MC68230
RS1 pin 4; " MC68230 register select bits
RS2 pin 5;
RS3 pin 6;
RS4 pin 7;
RSS pin 8§;
FTC pin 14; "Fault Tolerant Clock; 8 MHz / 33
" outputs
FTC_TICK pin 3; " Tick output to 68230
CNTRX SELECT pin 22; " C5 of cntrx register detected
CNTRX_SELECT istype ’‘pos, reg D, feed reg’;
CNTRX_SELECT.C istype ‘eqn’; " async clock
CNTRX_ SELECT.AR istype ‘eqn’; " async reset
CNTRX_SELECT LATCH pin 21;
CNTRX_SELECT_LATCH istype ‘pos, com, feed pin’;
FTC_LATCH pin 20;
" -- Rev D TCT 2/2/8%
FTC_LATCH istype ’'pos, reg D, feed reg’;
FTC_LATCH.C istype ‘'eqn’;

FTC_LATCH istype
FTC_LATCH_DELAY pin 19;

FTC_LATCH_DELAY istype
SKIPO, SKIP1 pin 17, 18;

SKIP0O, SKIP1 istype
INH_LATCH pin 16;

INH_LATCH istype
TICK pin 15;

TICK istype

" define states

= [RS5..RS1); " input
"RS_CNTRX = ~b10110;
RS_CNTRH = "b10111;
RS_CNTRM = "b11000;
= ~b11001;

inh = [INH_1,INH_2,INE 3];
TICK_ENABLE = Ab00D;

clk = [CLK1,CLK2,CLK3);

CIK C = [C,C,Cls
CLK_H = [HleH];
CLK L = (L,L,L]);

'pos,

'pos,

'pos,

‘pos,

" outputs pulses w/o regard t

'pos,

com, feed_pin’;

reg D, feed_reg’;

reg D, feed_reg’;

com, feed_pin’;

reg D, feed reg’;

reglster select
select dummy
select high byte
select middle byte
select low byte

"

n

inhibit

"Clock the same inputs
"Clk_Group is Clocked
"Clk_Group is High
"Clk_Group is Low

ftc = [FTC_LATCH, FTC_ LATCH_DELAY];

FTC_RISE_EDGE
FTC FALL , EDGE

~b10;
~b01;

skip = [SKIP1, SKIPO]};

SKIP_RESET = “b00;
SKIP_INHIBIT = “b01;
SKIP_ PASS HI = *“bll;
SKIP_ PASS 10 = “bl0;

" macros

rising edge of FIC
falling edge of FTC

edge skip states
pass + edges
inhibit all
pass + edge
pass - edge

» latch on gate level, pass thru on tgate level

LATCH macro {(out, in, gate)

{?out = ?out & ?gate ¥ ?in & !?gate; }

equations

CNTRX SELECT

¥ (rs == RS_CNTRX);
CNTRX_SELECT.C

CS;

» The following is really not require
CNTRX_SELECT.AR = (skip == SKIP_PASS_LO) &

" gynchronize with input clock, hold when clock low, pass clock high

" clock on leading edge of CS

LATCH (CNTRX_SELECT_LATCH, CNTRX SELECT,

" -~ Rev D TCT 2/2/89

LATCH (FTC_LATCH, FTC, 1CLK3)

d unless only one CS is received.
'FTC_LATCH & FTC_LATCH_| DELAY;

'CLK3)

J-87

LATCH (INH_LATCH, (INH_ 1 ¢ INH 2 § INE_3), !CLK3)

" -- Rev D TCT 2/2/89
FTC_LATCH := FTC;
FTC_LATCH.C = !CLK3; " clock on falling edge of CLK3

" FTC delayed one input clock pulse
FTC_LATCH_DELAY := FTC_LATCH;

" FTC tick conditioned by skip states and inhibits
FTC_TICK := !INH LATCH &
((skip == SKIP_RESET) & (ftc == FTC_RISE_EDGE)
(skip == SKIP_PASS_HI) & (ftc == FTC_RISE_EDGE)
(skip == SKIP_PASS_LO) & (ftc == FTC_FALL EDGE)
);

" TICK output for test purposes, not affected by INH

TICK := (skip == SKIP_RESET) & (ftc == FTC_RISE_EDGE)
t (skip == SKIP_PASS HI) & (ftc == FTC_RISE EDGE)
 (skip == SKIP_PASS_LO) & (ftc == FTC_FALL EDGE)

’

state_diagram skip

" This state machine is clocked by the system clock. After the
initial state change, state changes only occur on edges of FTC.

The state machine inhibits an output pulse on the first rising
" edge following the selection of CNTRX. The second rising edge
" and the following falling edge both generate output pulses.

state SKIP_RESET: if CNTRX_SELECT_LATCH then SKIP_INHIBIT
else SKIP_RESET;

state SKIP_INHIBIT: if (ftc == FTC_RISE_EDGE) then SKIP_PASS HI
else SKIP_INHIBIT;

state SKIP_PASS HI: if (ftc == FTC_RISE_EDGE) then SKIP_PASS_LO
else SKIP_PASS_HI;

state SKIP_PASS_LO: if (ftc == FTC_FALL_EDGE) then SKIP RESET
else SKIP_PASS_LO;

J-88

Page 1
ABEL(tm) 3.00b - Document Generator 02-Feb-89 04:59 PM
ISIO FTC Delay Generator EPLD for MC68230
BOEING ADVANCED SYSTEMS
Designed by: T.C. Torkelson Latest Revision: 31 JAN 89
Equations for Module isio_delay_gen

Device ISIO_DELAY GEN

- Reduced Equations:
CNTRX_SELECT := ('RS1 & RS2 & RS3 & 'RS4 & RSS);
_CNTRX_SELECT_C = (!~CS);
_CNTRX_SELECT_RE = (!FTC_LATCH & FTC_LATCH_DELAY & !SKIPO & SKIP1);
CNTRX_SELECT_LATCH = (CLK3 & CNTRX_SELECT # 'CLK3 & CNTRX_SELECT_LATCH);
INH_LATCH = (CLK3 & INH_ 3
$ CLK3 & !~INH_2
$ CIK3 & !~INH_ 1
!'CLK3 & INH_LATCH);
FTC_LATCH := (FTC);
_FTC_LATCH C = (!CLK3);
FTC_LATCH_DELAY := (FTC_LATCH);
FTC_TICK := (!FTC_LATCH & FTC_LATCH_DELAY & 'INH_LATCH & 1SKIP0 & SKIPl

§ FIC_LATCH & !FTC_LATCH DELAY & !INH_LATCH & SKIPO & SKIPL

§ FTC_LATCH & !FTC_LATCH_DELAY & !INH_LATCH & !SKIPO &
1SKIP1)7

TICK := (!FTC_LATCH & FTC_LATCH DELAY & !SKIPO & SKIPI
§ FTC_LATCH & !FTC_LATCH DELAY & SKIPO & SKIP1
$ FTC_LATCH & !FTC_LATCH DELAY & !SKIPO & !SKIP1);

SKIP1 := (!FTC_LATCH DELAY & SKIP1

§ FTC_LATCR & SKIP1

§ SKIPO & SKIP1

§ FTC_LATCH & IFTC_LATCH_DELAY & SKIPO);
SKIPO := (FTC LATCH DELAY & SKIPO

¢ 'FTC_LATCH & SKIPO
$ SKIPO & !SKIP1
§ CNTRX_SELECT_LATCH & !SKIP1);

J-89

ABEL(tm) 3.00b -~ Document Generator
ISIO FTC Delay Generator EPLD for MC68230

BOEING ADVANCED SYSTEMS
Designed by: T.C. Torkelson Latest
Chip diagram for Module isio_delay_gen

Device ISIO DELAY GEN

E0600
__________ \ /-_-___..-__
| \ / I
I e |
CLK1 | 1 24 |
| [
~CS | 2 23 |
| |
FTC_TICK | 3 22 |
I |
RS1 | 4 21 |
! !
RS2 | 5 20 |
! ’ I
RS3 | 6 19 |
I |
RS4 | 7 18 |
I I
RS5 | 8 17 |
| [
INH 3 | 9 16 |
| [
~INH_2 | 10 15 |
| I
~INH 1 | 11 14 |
| !
| 12 13 |
I]
[I

end of module isio delay gen

J-90

02-Feb-89 04:59 PM

Revision: 31 JAN 89

CLK3
CNTRX_SELECT
CNTRX_SELECT LAT
FTC_LATCH
FTC_LATCH DELAY
SKIP1

SKIPO

INH_LATCH

TICK

FTC

CLK2

Page 2

"*****************************t********************************ﬁ**************

" FILENAME: LED_DRIVER.ABL FTC & misc control EPLD

» DATE: November 1, 1988

" BY: T.C. Torkelson
"*******************k*********t******************t***************************t
" REV DATE BY DESCRIPTION

" A 12/20/88 TCT changed Gx pinout to match PC board

"***************t******t**********************t**********t*tt**t*****t********

module led _driver
flag r-r3’, ' -tl’
title 'ISIO daughter board LED drivers
BOEING ADVANCED SYSTEMS
D?signed by: Tom Torkelson Current rev: 12/20/88
"Declarations:
LED_pRIVER device 'EQ3207;

" define ABREL .. commands
C,K,B, X = .Cc.,.K.,.P.,.X.;

" inputs:
¢3,c2,C1,C0 pin 6,7,8,9; " color: 1 = red, 0 = grn
$3,82,81,50 pin 2,3,4,5; " gelect: 1 = on, 0 = off
" outputs:
R3,R2,R1,R0 pin 19,18,17,16; " low for RED
R3,R2,R1,R0O istype ‘neg, com’;
G3,G2,G1,G0 pin 12,13,14,15; " low for GRN
G3,G62,G1,G0 istype ’neg, com’;

" gtates, etc.

led red = [R3..RO};

led grn = [G3..G0};

color = [C3..C0];

select = [S83..80];

RED OUT = [0,0,0,0]);

GRN OUT = [1,1,1,1];
OFF_OUT = RED_OUT;

RED _IN = (1,1,1,1];
GRN_IN = [OIOIOIO]’
LED_ON = {0,0,0,0]);
LED_OFF = [1,1,1,1);

equations

led_red = !color & Iselect;
led_grn = color & !select;

" comment out the following command to compile production .JED files

"

"

@INCLUDE ' LED_DRIVER.TST'

end led driver

J-92

"*********************************t************t***t*k*******************k****

" FILENAME: LED_DRIVER.TST FTC & misc control EPLD

" DATE: November 1, 1988

" BY: T.C. Torkelson
"*******t********************t*****************t********t***tt***t*****t****t*
" REV DATE BY DESCRIPTION

L
“*t*t*t***tt****t******t**************

test_vectors / Tegt LED driver '
{{color, select] =-> [led_red, led_grn])

[RED_IN, LED_OFF] -> [OFF_OUT, OFF_OUT];
[RED_IN, LED_ON] -> [RED_OUT, !RED_OUT];
(GRN_IN, LED_OFF] -> [OFF_OUT, OFF OUT];
[GRN_IN, LED ON] -> [GRN_OUT, !GRN_OUT];

J-93

ABEL (tm) 3.00b
ISIO daughter board LED drivers

BOEING ADVANCED SYSTEMS
Tom Torkelson

Designed by:

Equations for Module led driver

- Document Generator

Device LED _DRIVER

- Reduced Equations:

R3
R2
R1
RO
G3
G2
Gl

GO

J-94

!1(83
1(s2
'(s1
1(s0
' (83
(82
'(st

' (SO

#
t
$

$
$
$
#
L

C3):
C2);
Cl);
co);
1C3);
1C2);
1Cl);

1C0y;

Current rev:

03-Jan-89 02:51 PM

12/20/88

Page 1

Page 2
ABEL(tm) 3.00b ~ Document Generator 03-Jan~-89 02:51 PM
ISI0 daughter board LED drivers

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 12/20/88

Chip diagram for Module led driver

Device LED DRIVER

£0320

__________ \ /_...__-_-_.._
I \ / I
S |
R3C| 1 . 20 |
I !

s3 | 2 19 | R3
I I

s2 | 3 18 | R2
I I

s1| 4 17 | Rl
I I

S0 | 5 16 | RO

I [

c3 | 6 15 | GO
| |

c2 | 7 14 | Gl
| |

cL| 8 13 | G2
| |

co | 9 12 | G3
| I
| 10 1|
I |
I |

end of module led driver

J-95

J-96

DOCUMENTATION PACKAGE E: FAULT INSERTION AND CONTROL
WIRE WRAP BOARD

Subject: IAPSA II Wire Wrap Card Fabrication Notes
By: T.C. Torkelson

Date: June 14, 1989

Introduction:

The wire wrap board which was fabricated for the small scale system
portion of the IAPSA II contract is fully documented in schematics and
layout drawings. The board was produced from that documentation.

Fabrication Notes:

1. A distinction is been made on the schematics between the symbol
for common (a triangle) and GND. Connections to GND are made to the
wire wrap board backplane with solder preforms. Connections to the
symbol for common are made with wire wrap connections to dedicated
ground pins on the wire wrap board.

2. A distinction has been made on the schematics between +5 and VCC.
Connections to VCC are made to the wire wrap board frontplane with
solder preforms. Connections to the symbol for +5 are made with wire
wrap connections to dedicated power pins on the wire wrap board.

3. No assembly drawing was produced to show front panel construction.
The front panels are assembled in a manner similar to the DIU front
panel. Its drawings can be used as a guide for the wire wrap front
panel construction.

4. The ribbon cables which connect the wire wrap board with the front

panel boards must be routed and split to avoid interference with other

boards in the VME chassis. Two cables originate on the pin side of the
board; one on the front.

The cable on the front of the board is most likely to cause
interference. To shield it from other boards, a piece of perforated
Vector board was cut which spans the space from the BG45 to the AD45
connectors. This board is placed over the pins for these connectors
and held in place with wire wraps on several pins.

Care must be taken that the wire wraps which hold the shield on do not
short out any connector pins.

PRECEDING PAGE BLANK NOT FILMED ““‘J-'ﬁ&.lﬂlmmmu BLANK

q a _ y WISOON vk 3w
Suouegy
¥ 10 L U 9eSL €1 8050 aiva e i
ek A UOSSNIOL T NMVHd
§3JON {DJ9U3Y — 2DDjIR}U| ENG 4
‘woyosg sukg ‘DL4 ‘Hesuj Jnoy
dosp oM weysks @pdg jows w4) J v
SWIALSAS QIINVAQY INIFO8
mm
=)
Y
Py dom age mp un pmusdume
o 18 | W o wpmany ma s (eOK) W SRR Y 7/
un sgn g spow l"t‘l«.-‘n-lnnguo.ﬂ
‘wewnyd puneld A e N
g Ky Lol gl oy o Ao i
und dun 0 SPEI
Z0-9A0-FN -1 Wiy 1B Y PRIANES % pEeY oL |
oy s)
ooy
Ty v e
o ¥ e
o T e :
OpPUIe 1gn & papal "l..l....h.ﬁ /e
NOUL 530 31va [A3Y
d | a .

ORIGINAL PAGE IS
OF POOR QUALITY

J-98

- o~ <
® £ .
i 30 43 3+ 83 AEE LN
1 srdndundenl &less s
i
& i 5993833588 o t‘%g P
5 3 ﬁ 2 26 8o
i : e
PIUSBRERI3T Q - =
i y ® wen o |35 |3
"N t 3s 33 3s &3 § nee |H3
ks 2233 |8e
E 8 g N ig
Bs8.358 § 1% k‘!“‘!“ $8s
k‘l leEQSSSB ‘l zl!&:&!s!!
g ' i ﬁ 1 s3.3 |°
¥ FH 388 |5 331 $13 3333
ﬁi! é n:E usg 8 3!53 ﬁu:: zs8 8 g g :
b ias
{430
! E ' esn—
| i
| 3« 33 35 83 1.3 ; ; -
srdenlondped 3310 oo 3|, 28398
1 b
N
;gl |
(111 - o
EH | e Hi
3s 33 31 33 :
g 31 i
a85%a850 § 8 % Asu898 § 8%
k‘ia sazl 1 zaanan
; IERY
i e s an | ¥ | <
B 3:33 - EELL i g
133 B paze was s g §
T | e ;
’ :
§ i gi

ORIGINAL PAGE fg
OF POOR QUALITY

J-99

J-100

4

%) Qém -
5313 § §°E 2 E'e‘
117 L gl s
3994 8| g9
20 | § o
-1 § ,%‘t 5 sl:f
T9SASRNLRI2Y S T
! W e | 055 Y
55 5335 33 § AEE a8
“1822 |he
B § B § D ég_,
A8s,85 s ‘ g
J | 3 ¥ § !
i IFRy
3 : § Lo ‘. § _ﬂ s z s ; (&)
§ § 332 é g g3 33312
il B myz2 w3 n ‘TR
-z s 808188
tee ! ~ %A -
B {0
; |
l; 35 32 3= 3 2323
grdpndondd 3303
" (111]
" 3338
I o
- | RAZAAER, - -
W e HHE
32 33 3s 33 3 ;zhw
9s5.858 §38 533
F 3 2 3
g I i
i i <
§ ; i
|
; H
D : . ;
o je)
- | o | ” | * &t

ORIGINAL paGE 15
OF POOR QUALITY

v BUWCUSRY
T 10 v U 9uel fi #4050 mca_ g
/s AR UOSHOL L NAVYO
jo43uod O14
‘wieyss oukg ‘Ql4 ‘Hesuj jInoj
doup s washs 8joos {Ipws v
SWIALSAS JIINVAGY IONIF08
o
ASds aMan ¢
AIIW AN EN & n
o an
b
-3 3 g an ¢
oulg &4 @ O W
ouig BN CN GN € ong dum oan i
=
[)
ﬂ [a1
v-euxv —Shwe A
T-0CAY
L &<
-0y
*-0AV -
0 (moe) % O
48 X
5 e amdy —
on
G- o
25
% 0N
45 X~ pema) p)
e
Tae i au
0% X
nT & Nd ‘E
WOAY At 001 b wMeg)0
) S MAEMNED JMBEtwe) AON WMET MITIN
‘woupteny llﬂ-ll.-llflll! w/ove
NOWAH0530 31va [A3Y

J-101

ORIGINAL PAGE IS
OF POOR QUALITY

[75)
g - g
| o3 |
i it a5 |2
§ i
°| 7 ¢ 353509022 gi’ HERER
: IS EEER : 3|88 g';
: | NP
E 35— - " ELREE
. L =8 &2 ;
Pl ik Ll
pu— i ii uuﬁgﬁﬁéﬁg (3 h.; gi_gj
: HE
g ::; x-x x: ” o ° - oam-onoi coom
(&) [&]
2
Q
a
&
S
—— S e
£
s : a8
S L | L
R sss0s8 i
. mtit ol ol et & || | 3 .
‘;" :o=uuasu=-mu-=-umn 282 cecsecoot - :‘g
oso l:oo:ounzzo:mnzgn ,goo:oo:: - o
[] o [] [o (-] l_ :
4 - é‘,
O Pt : " 3 B
et s staed ||| Eg
TRaaAaR TR IR mm;: 232338 3
e e w%@“:m‘. ' ii
2o I RIS RRLI | B
< i xS <
% z
3
* :
2

Filsnome:

J~102
OrIGINAL PAGE 1S
OF POOR QUALITY

9 9 8 _ V omo L umsnr 1w suowy
€ 15 | 100S 9061 ¢ #0150 -Alv0 T]
00/0z/9 AR VoSI0] J'L SNMYVYG

sUOjIOUNY |05U0)
pioog Od leuod juosg
|9UDg4 uO|}JeEL| }IND4 uﬂx b
-A
SWILSAS GIINVAQGY INIF08 3
d o
!u Vﬁ’ on undg e
yr-ud ¢ v
4 ..7...— lv_T‘QO
$h !WHV e
*L"u [E TR T] =m..wu Mm! " ad ad
i 100~ lt—H
@v? 4 &4 oW G r o= ¢
as e w0 VT R, - i .-
244 W O an 200 oM WU o Bioy oo
L amep@f oo EEES
SOIIYERA0 TT 3 W) @ 6N L e o = on
BIETT =3 v 0 a@n [} “H_ w; e
ploc - 1ai- Wy s
e T R
n!-l-lﬁ pler owis 3 o an " T e
u” wig Iw W0 an - e Z
4 »- - oswig a4
BIAY INSOMIE) Uy e VIS &4 D [] on
\ 2 pr-ad yr-ud
- o TR
!- n!
100 308 zIvis B owo! oo o b
ino+! picz 10+ M+ ows WM
Ao~ l' E"l n-
» vmn SV Sqseuan) waiy
3!
“'
B <rrt l
wenpvee Wy o0 yew o bap peapey | 00/00/8 .I—
NOU IS 3va >w¢_

J-103

OR!IGINAL PAGE IS
OF POOR QUALITY

0 E,,
|
- [8153 1| o
3 hS [8) §
4 2 58 3 5;
] LY
r.' 2 |2a 5|4z
Ei § =2 = §
4 I HEE
— , ih ~ =L
x» § s B » B o §
8 8 8 8 B B8 B 3
§ §# 8 3 1 ﬁ%i 2
. RCILICICILICILIL .
2 ; i x ; a & 1 1 s 3 3 1 8 3 3
lsssasddaaasgsais
tododadotioduneis
‘9999955599995959
]
g
. , ;li . @
n § a n E . H
8 | | 8 !] i
gyr gy Figwr Fimer Gigwmr FEner $Eame Sham
« " 2 x] 1 5 ®
13587 BGEETT RRITT MGRETT aGRYT GpEETE RgTr ag@im
3 megye Eeg!! THE Hm omwe e omm o
< I - 5 3 3 2 3 3 3 <
g
i 3 8
i|§
3
|3
Y}
- o~ L] -+ fg
J=104

ORIGINAL PASE 15
OF POCR ¢uALITY

|
!

i 1L ‘.‘Eg?! i AL ‘;'Egﬂ
3 3 3 3

S U
3 3 3 3

FAAY

ORIGINAL PAGE 1
OF POOR QuaLiTy

Flaname: FAULT_INSERT.ONG A

| 3
14 s
i AL
il 81823 |40
' $[e 3|13
] o |B% 5|51
5 £ |ca 5|48
2 813t 34,
E___ /7 §E§ N\ La & gg
] 5] E L E |} E
g 2 8 8 § B 8 8
b[y[0[b[a[b[8]
B Es st iiii g B o
s 23352335588 25313
$331323333363c633331
TEEERRARERRRRER
‘sssgagaaeeesagss
!
7 :ii @
] E] E] E E
[L]] B § B]
iy W Waer pw Haim Sm T AL L
L] [] L] 3 q L] kﬁqw l&
Bt ST ST LGN OBGETT LGNTE 4 L

J-105

a o) g _ v g.ﬂu»zﬁidﬂﬁit

T 10 | 100y 9961 ‘L #0120 :31va 30H g 0 A0

AN VOSIIOL] L MAYNO

10181 }33us R INAINAIN A NP TN AN BB ,
S|pUDg JUOJ4 UONIBSU| }INO 4 w @@b@o@t@r@\@o@r AR o,ﬂo.o A&)

Mg Ju0s4

SWLSAS GIINVAGY ONIFOS s

wod yime sbus © » Puod yipa sgOp sy; o
SOy a0y 3y} 9980 Buacp Syl jO 2 wely

“u Pee0q £3008 I0G Buen
Wy payddnE ya Pusd JUOK Ui WS T

(o2 z) op 02" @ Moy 1 53 08 <f

oy 0 Bayesy
SN

4 8o
L4 601"

L L]
bL]
Q
2
e
]
3
-
DUOW

L 1Y sz’ v
-0 L=ALOD s nun

ZO'F Xx' COO'F XxXx' ‘SZINVEIIOL _-124

o e PERELTTR vt | o B R O L
{unwnry 0010) = _I|| N n||||®lmv * .” =
3 %

pmpuarg i weli TVINILYA E,

s—ﬂﬁ
(1e) ovy g / STV

a

NOUAINOS 30 uvQ [A3N

i
-~
o

ORICINAL PAGE |
OF POOR QUALITY

J-106

OMO RS LAISNCLNY S
a _ a _ v oy
PR 9081 'L #0120 AUVa NG3R0SHUS TOH 0 vlnj
A uosol D L INMYYQ
ueeJdg WIS) o 0, ~ 0/~ O~ 0~ O~ O~ 55600000
S19UDg JU0L4 UOILIGSUI HIND b OO O O FR%RM v
iai‘ﬂlﬁ
SWALSAS GIINVAQY INIF0E - i, Z o
§ T o« 1t T 1___._
“ IO M senpay “
- - - - - P e Yo Vot =
t) t . L] s LN LR R B ¢
P oamnmnt ety [T e -
ol] =] a "
L I RREN! r
010 1010 100 O rirsita
GO0 1010 (OO O it
D o o 0 OO ° [+ o g Py M D
SO, 00 = O OORII .
g judig pr——
Hesw| 04 VON
H]
!
NOWLJINOS 30 31va AN
a 9 8 v

J-107

ORICINAL PAGE IS
OF POOR QUALITY

"**************t***t****************************kt*******t******t****ttt******

" FILENAME: NET _FAIL SELECT.ABL Network fault insert select

" DATE: October 31, 1988

" BY: T.C. Torkelson
"********t*t*t*****t****t************************k**t*******t****t**********t*
" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Changed pin designations to match schematic

" Separated out test vectors
"t*t*t**t**t********t*t******t***************t*****t*****************t*t******

n

z NOTE: A3 input is the !CS input of the chip on the schematic.
module net_fail select

flag f-x3’,'-t2'

title "AIPS I/0 Network Failure Insertion Select EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88
!

" REV BY DESCRIPTION

" 8/30/88 TCT changed to match NET FAIL.DWG

"Declarations:
NET_FAIL_SELECT device ‘E0320';

" define ABEL .. commands
c, X, P, X, 2= .C., .K., .P., X, 2.3

" inputs
DS pin 1;
'CS,A2,a1,A0 Pin 2,3,4,5;
D2,D1,D0 pPin 7,8,9;
!Setup pin 11; " !Setup / Run
Sa2,SAal, SAQ pin 16,15,14;
" outputs
RA2,RAl,RAQ pin 19,18,17; " RA3 unused
RAZ,RAl,RAQ istype ‘pos, reg, feed pin’;
'Run_Sel pin 12;
'Run_Sel istype ‘neg, com’;
!Setup Sel pin 13;
!Setup Sel istype ’neg, com, feed or’;
" sets
setup_addr_in = [SA2..SA0];
setup_addr = [0,SA2..8Aa0]; " ICS must be 0
run_addr_latch = [RA2..RA0);
run_addr = [0,RA2..RAQ); " ICS must be 0
addr = [!CS,AZ2..A0]);

J-108

data = [D2..D0};
" macros:

SETUP_SELECT macro { (Setup & (addr == setup_addr}}};

RUN_SELECT macro {('Setup & (ad == run_addr))};
equations
Run_Sel RUN SELECT;

Setup_Sel = SETUP_SELECT;

run_addr_latch := data & Setup Sel # run_addr_latch & !Setup_Sel;
» Comment out the following line to compile production .JED files
"

" QINCLUDE ’NET_FAIL_SELECT.TST’

end net_fail select

J-109

"***************t***t*********t**#*t**

" FILENAME: NET_FAIL_SELECT.TST Network fault insert select vectors

" DATE: October 31, 1988

" BY: T.C. Torkelson
"*****t***********t***t******t********!***t*******t*****************t*********
" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Changed pin designations to match schematic

" Separated out test vectors

"*********t*************************t*********i*******t***********************

test_vectors 'Test setup select logic’
([Setup, addr, setup_addr_in] -> Setup Sel)

" Test select with !CS = 0

[0, %000, 0] -> 0;
{1, "000, 0] -> 1

(0, %001, 1] -> 0;
[lr AOOll l] -> 1;

[0, 002, 2] -> 0;
(1, ~002, 2] -> 1f

[0, "~003, 3] -> 0;
[lr A0031 3] -> 1;

[0, ~004, 4] -> 0;
[1, ~o04, 4] -> 1

[0, ~o005, 5] -> 0;
[1, ~005, 5] -> 1;

[OI Ao061 6] -> 0;
[1, ~o06, 6] -> 1;

[0, ~007, 71 -> 0;
[, ~o07, 7] -> 1;

" Test select with !CS = 0

(0, "ol0, 0] -> 0;
{1, "ol0Q, 0] -> 0;

(0, "ol1, 1] -> 0;
(1, “oll, 1] -> 0

[0, "0l2, 2] -> 0;
[1, "ol2, 2] -> 0

(G, "o0l13, 3} -> 0;
(1, %013, 3] -> 0;

[0, ~ol4, 4] -> 0;
(1, ~ol4, 4] -> 0;

[Or A0151 51 -> 0;
[1, ~ol5, 5] -> 0

[01 AOlsr 6] -> 0;
(1, ~ol6, 6] -> 0y

J-110

[0, ~ol17, 71 -> 0;

(1, *ol7, 71 -> 0;
" Test a few selects with addr != setup_addr
[0, ~000, 1] -> 0;
{1, ~o000, 1] -> 0;
[0, o001, 2] -> 0;
[11 AOOlI 2] -> 0;
(0, ~o02, 3] -> 0;
(1, ~002, 3] -> 0;
[01 A003r 4] -> 0;
{1, %003, 4} -> 0;
[0, ~o04, 5} -> 0;
(1, ~o04, 5] -> 0;
{0, ~005, 6] -> 0;
(1, 005, 6] -> 0;
[0, ~006, 7] -> 0;
{1, ~o06, 7} -> 0;
[or ~007, 0] -> 0;
(1, ~o007, 0] -> 0;
test_vectors ’Test run select logic’

([DS, Setup, addr, setup_addr_in, data] -> [run_addr_latch, Run_Sell)

" Test operation of run_addr latch and Run_Sel

(c,
(X,
X,

(C,
(c,
(X,
(X,

(c,
(c,
(X,
(%,

[C,
[C,
(X,
[x,

(c,
(c,
(X,
(X,

(C,
(c,

’

4

OO O

-~ 0~

~

KXPP XX O

-

WK OO

Moo

-

0]
X]
X}

1]
1]
X]
X]

2]
2]
X]
X]

3]
3]
X]
X]

4]
4]
X]
X]

5]
5]

->
->
->

->
->
->
->

->
->
->
->

->
->
->
->

->
->
->
->

-2
->

[0,
(0,
(o,

(0,
(1,
(1,
(L

(1,
(2,
(2,
(2,

(2,
(3,
(3,
(3,

(3,
4,
(4,
(4,

(4,
{5,

01;
1};
0}

1];
01;
17;
0):

01;
01;
1}
03;

01;
01;
1]
03;

01;
0};
11;
01

01;
01;

J-111

J-112

(X,
(X,

{c,
(c,
[X,
(X,

(c,
(c,
(X,
(X,

(c,

= O o
~ ~ o~ 0~

oo
<

- w0~

~N oo
-

~

?(X

XKoo
ARG gy

PR OO

o
-

X]
X]

6]

X]
X]

7]

X]
X]

=->
->

->
->

->
->
->
->
->

->

(35,
(3,

(3,
(6,
(6,
(6,

(6,
(7,
(7,
(7,

(7,

1];
0}1;

01;:
031
1};
01;

01:
0];
1};
0]:

0];

Page 1
ABEL (tm) 3.00b - Document Generator 03-Jan-89 03:38 PM
AIPS I/O Network Failure Insertion Select EPLD

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module net_ fail select

Device NET FAIL_SELECT

- Reduced Equations:

~Run_Sel = ! (A0 & Al & A2 & !~CS & RAQ & RAl & RA2 & ~Setup

A0 & Al & 'A2 & !'~CS & RAO & RAl & 'RA2 & ~Setup

A0 & 'Al & A2 & !'~CS & RAO & 'RAl & RA2 & ~Setup

A0 & !'Al & 'A2 & '~CS & RAO & !RAl & !RA2 & ~Setup

!'A0 & Al & A2 & '~CS & !RAO & RAl & RA2 & ~Setup

'A0 & A1l & 'A2 & !~CS & !'RAD0 & RAl & !RA2 & ~Setup

'A0 & 'A1 &€ A2 & !~CS & 'RAO & 'RAl & RA2 & ~Setup

'A0 & 'Al & 'A2 & !'~CS & 'RAD & !RAl & !RA2 & ~Setup);

~Setup Sel = ! (A0 & Al & A2 & !'~CS & SAQO & SAl & SA2 & !~Setup
A0 & Al & 'A2 & !'~CS & SAO & SAl & !SA2 & !~Setup
A0 & !'Al & A2 & !'~CS & SAO & !'SAl & SA2 & !~Setup
A0 & 'Al & 'A2 & !~CS & SAO & !SAl & !SA2 & !~Setup
'A0 & Al & A2 & !~CS & !SAD & SAl & SA2 & !~Setup
'A0 & Al & 'A2 & !~CS5 & !SAO & SAl & !SA2 & !~Setup
'A0 & 'Al & A2 & !~CS & !SAQO & !SAl & SA2 & !~Setup
'A0 & 'Al & 'A2 & !~CS & !SAO & !SAl & !SA2 & !~Setup);
RA2 := (RA2 & ~Setup_Sel # D2 & !~Setup_Sel);
RAl := (RAl & ~Setup_Sel # Dl & !~Setup_Sel);
RAQ := (RAO & ~Setup_Sel # DO & !~Setup_Sel);

J-113

Page 2
ABEL(tm) 3.00b - Document Generator 03-Jan-89 03:38 PM
AIPS 1/0 Network Failure Insertion Select EPLD

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module net_fail_select

Device NET_FAIL_ SELECT

E0320
__________ \ Y
I \ / I
b e I
DS { 1 20 |
~CS : 2 19 : RA2
a2 : 3 18 : RAl
Al : 4 17 : RAO
a0 : 5 16 : SA2
: 6 15 : SAal
D2 : 7 14 : sa0
D1 : 8 13 : ~Setup_Sel
D0 { 9 12 : ~Run_Sel
: 10 11 : ~Setup
| |

end of module net_fail select

J-114

"**t**************************k***

" FILENAME: NET_FAIL MODE.ABL

" DATE: October 31, 1988

" BY: T.C. Torkelson
"**i******t****************t
" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Separated out test vectors

" B 1/3/89 TCT Changed led output to match as built

"***

module net_fail mode
flag ! er3’,’~t2’
title ’AIPS I/O Network Failure Mode EPLD
BOEING ADVANCED SYSTEMS
D?signed by: Tom Torkelson Current rev: 10/31/88
"Declarations
NET FAIL_MODE device ‘E0320';

" define ABEL .. commands:
c, kK, P, X, 2= .C., K., .p., .X., .Z2.;

» define logic states
HI, L0 =1, 0;

" inputs
DSN pin 1;
!Run_Sel pin ;
!Setup_Sel pin 3;
p3,D02,D1,D0 pin 4,5,6,7;
Fail In RX pin 8;
Fail Out_RX pin 9;
" outputs
Fail Out_TX, Fail_In_TX pin 15,13;
Fail Out_TX, Fail_In_TX istype ‘pos, com’;
Fail Out_LED, Fail_In_LED pin 14,12;
Fail Out_LED, Fail In_LED - istype ’'pos, com’;

Fail Out_LED.OE, Fail_In LED.OE istype ‘eqn’;

In M1, In_MO pin 19,18;

In_M1l, In_MO istype ‘pos, reg, feed _pin’;

Out_M1, Out_M0 pin 17,16;

Out_M1, Out_MO istype ‘pos, reg, feed pin’;
" sets

fail out_mode = [Out_M1,Out_MO);

J-115

fail out_data = [D3..D2];

(In_M1,In_MO];
[D1..D0];

fail in mode
fail in_data

" states

" data in to mode out

NO CHANGE = “bll;
OUT HIGH = "bl0;
OUT_LOW = “b01;
NORMAL = *b00;
" modes
UNUSED = ~bll;
" OUT_HIGH = *bl0;
" OUT_LOW = “b01;
" NORMAL = ~*b00;
" define levels for LED colors
RED = 0; " TCT 1/3/89
GRN = 1; " TCT 1/3/89
OFF = ,Z.;
" macros

SELECT macro {(Run_Sel # Setup_Sel)};
equations

fail out mode := fail out_data & SELECT & (fail out_data != NO_CHANGE)
fail out_mode & (!SELECT # (fail out_data == NO _CHANGE)) ;

fail in mode := fail in_data & SELECT & (fail in data != NO_CHANGE)
¥ fail in mode & (!SELECT ¢ (fall in _data == NO _CHANGE)) ;

Fail In LED.OE = (fail in mode == NORMAL) # (fail_in_mode == OUT HIGH);

Fail Out_LED.OE = (fail out_mode == NORMAL) # (fail out_mode == OUT_HIGH);

truth_table ([fail_in mode, Fail Qut_RX] -> Fail In_TX)

[NORMAL, LO] -> 1O;
[NORMAL, HI} -> HI;
[OUT_HIGH, X] -> HI;
[OUT_LOW, X] -> LO;
[UNUSED, X] -> LO; " treat unused as OUT_LOW

truth_table ([fail out_mode, Fail In RX] -> Fail Out_TX)
[NORMAL, LO0] -> LO;
[NORMAL, HI] -> HI;
[OUT_HIGH, X] -> HI;
[OUT_LOW, X] -> LO;
{UNUSED, X} -> LO; " treat unused as OUT_LOW
truth table (fail out_mode -> Fail Out_ LED)

NORMAL -> GRN;
OUT_HIGH -> RED;

J-116

OUT_LOW -> X;
UNUSED -> X;

truth_table (fail_in_mode -> Fail In_LED)

NORMAL -> GRN;
OUT_HIGH -> RED;
OUT_LOW -> X;
UNUSED -> X;

v Comment out the following instruction to compile production .JED files
”

" QINCLUDE 'NET_FAIL MODE.TST’

end net_fail mode

J=-117

"*********t**********t******tt********************************t***************

" FILENAME: NET_FAIL_MODE.TST
" DATE: October 31, 1988

" BY: T.C. Torkelson
"*******t****tt***********t****i*t*t******t*******************************k*t*

" REV DATE BY DESCRIPTION
" A 10/31/88 TCT Separated out test vectors
"*******tt*******************************k*t*t***********t********************
test_vectors 'Test affect of Data on Mode and LED, and output’

([DSN, Run_Sel, Setup Sel, fail in_data, fail out_data, Fail Out_RX, Fail In
RX] ->

(fail in_mode, fail out_mode, Fail_In_TX, Fail Out_TX, Fail_In_LED, Fail Ou
t_LED])

" Test Channel 1

(C, 1, 1, NORMAL, NORMAL, LO, LO] -> [NORMAL, NORMAL, LO, LO, GRN, GRN];
[C, 1, 1, NO_CHANGE, NORMAL, LO, LO] -> [NORMAL, NORMAL, LC, LO, GRN, GRN];
(X, X, X, X, X, HI, LO} -> [NORMAL, NORMAL, HI, LO, GRN, GRN];
(X, X, X, X, X, LO, HI] -> [NORMAL, NORMAL, LO, HI, GRN, GRN];
[X, X, X, X, X, HI, HI} -> [NORMAL, NORMAL, HI, HI, GRN, GRN];
(C, 0, 0O, OUT_HIGH, NORMAL, LO, LO] -> [NORMAL, NORMAL, LO, LO, GRN, GRN];
[C, 0, 1, OUT_HIGH, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];
[C, 0, 1, NO_CHANGE, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];
(X, X, X, X, X, HI, LO} -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];
X, X, X, X, X, LO, HI]) -> [OUT_HIGH, NORMAL, HI, HI, RED, GRN];
X, X, X, X, X, HI, HI] -> [OUT_HIGH, NORMAL, HI, HI, RED, GRN];
(C, 0, 0, OUT_LOW, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];
(¢, 1, 0, OUT_LOW, NORMAL, 1O, LO] -> [OUT LOW, NORMAL, LO, LO, OFF, GRN] ;
[C, 1, 0, NO_CHANGE, NORMAL, LO, LO] -> [OUT_LOW, NORMAL, LO, LO, OFF, GRN];
(X, X, X, x, X, HI, LO] -> [OUT_LOW, NORMAL, LO, LO, OFF, GRN];
(X, X, X, X, X, LO, HI] -> (OUT_LOW, NORMAL, LO, HI, OFF, GRN];
[X, X, X, X, X, HI, HI] -> [OUT_LOW, NORMAL, LO, HI, OFF, GRN];
{C, 0, 0, NORMAL, NORMAL, LO, LO] ~> [OUT_LOW, NORMAL, LO, LO, OFF, GRN];

test_vectors ‘Test affect of Data on Mode and LED, and output’

([DSN, Run_Sel, Setup_Sel, fail_ out_data, fail in_data, Fail_In RX, Fail Out
_RX] ->
(fail out_mode, fail_in_mode, Fail_Out TX, Fail In_TX, Fail Out_LED, Fail I
n_LED])

" Test Channel 2

[C, 1, 1, NORMAL, NORMAL, LO, LO] -> [NORMAL, NORMAL, LO, LO, GRN, GRN];
(C, 1, 1, NO_CHANGE, NORMAL, LO, LO] ~> [NORMAL, NORMAL, LO, LO, GRN, GRN];
[X, X, X, X, X, HI, LO] -> [NORMAL, NORMAL, HI, LO, GRN, GRN];
[X, X, X, X, X, LO, HI] -> [NORMAL, NORMAL, LO, HI, GRN, GRN];
[X, X, X, X, X, HI, HI] -> [NORMAL, NORMAL, HI, HI, GRN, GRN];
[C, 0, O, OUT_HIGH, NORMAL, LO, LO} -> [NORMAL, NORMAL, LO, LO, GRN, GRN];
(C, 1, 1, OUT_HIGH, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];
[C, 0, 1, NO_CHANGE, NORMAL, LO, LO] -> [OUT HIGH, NORMAL, HI, LO, RED, GRN];
[X, X, X, X,~ X, HI, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];
{X, X, X, X, X, LO, HI] -> [OUT_HIGH, NORMAL, HI, HI, RED, GRN];
(X, X, X, X, X, HI, HI] -> [OUT_HIGH, NORMAL, HI, HI, RED, GRN];

J-118

[c,
(c,
(c,
(X,
(X,
(X,

(c,

OUT_LOW,
OUT_LOW,
NO_CHANGE,
X,

X,

NORMAL,

Lo,
Lo,
Lo,
HI,
Lo,
HI,

LO,

Lo}
1o]
LO)
10]
HI]
HI)

LO]

->
->
->
->
->
->

[OUT_HIGH,
[OUT_LOW,
{OUT_LOW,
[OUT_LOW,
[OUT_LOW,
[oUT_LOW,

[OUT_LOW,

NORMAL,
NORMAL,
NORMAL,
NORMAL,
NORMAL,
NORMAL,

NORMAL,

HI,
Lo,
Lo,
Lo,
Lo,
Lo,

LO,

Lo,
Lo,
Lo,
Lo,
HI,
HI,

Lo,

RED,
OFF,
OFF,
OFF,
OFF,
OFF,

OFF,

GRN] ;
GRN],
GRN] ;
GRN] ;
GRN] ;
GRN] ;

GRN];

J-119

ABEL(tm) 3.00b -~ Document Generator 03-Jan-89 03:41 PM

AIPS I/0 Network Failure Mode EPLD

BOEING ADVANCED SYSTEMS
Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module net_fail mode

Device NET_FAIL MODE

- Reduced Equations:

Out_M1 := (D3 & Out Ml
Out M1 & ~Run_Sel & ~Setup_Sel
$ 'D27& D3 & '~Setup_Sel
!D2 & D3 & !~Run_Sel);

Out_M0 := (D2 & Out_M0O

Out_MO & ~Run_Sel & ~Setup_Sel
D2 & !'D3 & !~Setup Sel
D2 & 'D3 & !~Run_Sel) ;

In_Ml := (D1 & In Ml
, $# In Ml" & ~Run Sel & ~Setup_Sel
!D0 & D1 & !~Setup Sel
$# !'DO & D1 & !~Run_Sel);

In MO := (DO & In_MO
$ In MO & ~Run_Sel & ~Setup_Sel
DO & !'Dl & !~Setup_Sel
DO & !D1 & !~Run_Sel);

enable Fail In LED = (!In_MO0);

enable Fail Out_LED = (!Out_M0);

Fail In TX = (!'In_MO & In_M1 # Fail Out_RX & !In_MO);

Fail Out_TX = ('Out_MO & Out_M1 # Fail_In_RX & !Out_MO);

Fail Out_LED = (Out MO # !Out MI);

Fail In_LED = (In_MO # !In_Ml);

J-120

Page 1

ABEL (tm) 3.00b - Document Generator
AIPS I/O Network Failure Mode EPLD

BOEING ADVANCED SYSTEMS

03-Jan-89 03:41 PM

Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module net_fail mode

Device NET_FAIL_MODE

E0320
__________ \ [———
! \ / I
rF - T I
DSN | 1 20 |
| I
~Run_Sel | 2 19 |
| I
~Setup_Sel | 3 18 |
| |
D3 | 4 17
I !
D2 | 5 16 |
| |
DL | 6 15 |
| |
Do | 7 14 |
| !
Fail In RX | 8 13 |
I I
Fail Out RX | 9 12 |
I I
| 10 11 |
| [
I |

end of module net_fail mode

In M1

In_MO

Out_Mil
Out_M0

Fail Out_TX
Fail_Out_LED
Fail In_TX

Fail In_LED

Page 2

J-121

LA SRS S SRSRRs SRR sl s sttt ittt s i ssal i iR 223X LR T

" FILENAME: FTC_CONTROL.ABL FTC & misc control EPLD
" DATE: November 1, 1988

" BY: T.C. Torkelson
MR AR R R R R KRR R R AR AR R AR R AR AR AR R A R R AR R R AR A AR A AR R R R R R AR R AR ARKA RN ANARRRAAR NS

" REV DATE BY DESCRIPTION
" A 11/2/88 TCT Added input for VME FTC, modified VME_FTC_LED
" B 1/3/89 TCT Added CS and !SETUP to transparent latches

MR AR AR AR AR AR RN R A R R A R A AR R R R R R R A AR AR R R A AR AR AR AR AN RN AR R A RARARRAARRA R RR

module ftc_control
flag f-r3’,’ -1’
title ‘Wire Wrap Board FTC & Misc Control EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 11/1/88
’
"Declarations:
FTC_CONTROL device "EQ320';

" define ABEL .. commands
c,K,p,X = .C.,.K.,.P., .X.;

" inputs:
CLOCK pin 1; " 16 Mhz clock
EXT_EVENT pin 2; " external event input
FTP_SYNC pin 3; " FTC sync input
! SETUP pin 4; " !Setup / Run
CS pin 5; " chip select in, high to select
D1,D0 pin 6,7; " data inputs from experiment bus
'DS pin 8; " low passes data to output, high latches
VME_FTC pin 9; " VME FTP FTC input

" outputs:
CLOCK_8_MHZ pin 19;
CLOCK_8 MHZ istype ’'pos, reg D, feed reg’;
X_EVENT pin 18; " X_EVENT is pos true
X_EVENT istype 'pos, com’;
EXT EVENT LED pin 17; " GRN no event, RED event

EXT EVENT LED istype ’neg, com’;

FTP_SYNC_LED pin 16; " RED waiting for sync, GRN sync
FTP_SYNC LED istype ’'neg, com’;

VME_SYNC LED pin 15; " RED waiting for sync, GRN sync
VME SYNC LED istype ’'neg, com’;

J-122

EXT_EVENT_POL pin 14;
EXT _EVENT POL istype ’pos, com, feed_pin’;

FTC_SEL pin 13;
FTC_SEL istype ’‘pos, com, feed pin’;
VME_FTC_LED pin 12;
VME FTC LED istype ‘pos, com, feed pin’;

VME_FTC_LED.OE istype ‘egn’;
" FTC_SEL output levels
VME_SEL = 0;
FTP_SEL = 1;

" constant declarations for LED outputs

OFF = .Z2.;
RED = 0;
GRN = 1;

* internal equates
VME_SYNC = !SETUP;

VRUN = !SETUP;
VSTOP = SETUP;

" macros :
" form latch which passes in to out ONLY when in VvSTOP, CS, and !DS

LATCH macro (out, in) {?out = ?out & (1CS # VRUN # !'DS) # ?in & CS & SETUP & DS
i}

equations
CLOCK_8 MHZ := 'CLOCK_8 MHZ;
" Transparent latches:

" FTC_SEL DO & DS # FTC_SEL & !DS;
" EXT_EVENT_POL = D1 & DS # EXT_EVENT_POL & !DS;

LATCH (FTC_SEL, DO)
LATCH (EXT_EVENT POL, D1)

VME_FTC_LED.CE = (FTC_SEL == VME_SEL); " enable LED on VME_SEL
truth_table ([FTC_SEL, VME_FTC} -> VME_FTC_LED)
"
" when the external FTC reference is deselected, the LED is off.

"

* when the external FTC reference is selected, the LED is RED for input low,
" GRN for input high, and AMBER for input oscillation.

[VME_SEL, 0] -> RED;
[VME_SEL, 1] -> GRN;

[FTP_SEL, 0} =-> X;
(FTP_SEL, 1] -> X;

truth_table ([EXT_EVENT_POL, EXT_EVENT] -> X_EVENT)

J-123

3

(0, 0] -> 1;

(0, 11 -> 0;
(1, 0] -> 0;
(1, 1] -> 1;

truth_table (X_EVENT -> EXT EVENT LED)

0 ~> GRN;
1 -> RED;

truth_table (FTP_SYNC -> FTP_SYNC LED)

0 -> RED;
1 -> GRN;

truth_table (VME_SYNC -> VME_SYNC_LED)

0 -> RED;
1 <> GRN;

" Comment out the following command to compile production .JED files

" @INCLUDE "FTC_CONTROL. TST'

end ftc_control

J-124

(Y E R R S R R R R RS SRS SRR SRS EEE SRR AR RS R Rttt s R s il s e s s XS
FTC & misc control EPLD test vectors

FTC_CONTROL.TST
November 1, 1988

T.C. Torkelson

ARZT2 2222222222222 22 2R st Rt i s ottt il s st il t it s s Es

" FILENAME:

" DATE:

" BY:

" REV DATE
L { 11/2/88
" B 1/3/89

BY
TCT
TCT

DESCRIPTION

Added input for VME FTC, modified VME FTC LED

aAdded CS and !SETUP to transparent latches

LAEZS3 R332 22222202ttt st R i b oo ittt e Rttt s sl]

test_vectors

test_vectors

test_vectors

‘Test FTP_SYNC_LED output’
(FTP_SYNC -> FTP_SYNC_LED)

0 -> RED;
1 -> GRN;

"Test VME SYNC_LED output’
(VME_SYNC -> VME_SYNC_ LED)

0 -> RED;
1 -> GRN;

'Test FTC_SEL and VME_FTC_LED output’
(['DS, Cs, !SETUP, DO, VME_FTC] ->

[FTC_SEL, VME_FTC_LED])

" test low inputs

{1,
(1,
(o,
(0,
(1,

’

’

’

!

o

’

0, VME_SEL, 0]
0, VME_SEL, 1]
0, VME_SEL, 1)
0, VME_SEL, 0]
0, VME_SEL, 0]

[i, 1, 0, VME SEL, 1]
" test high inputs

(1,
(1,
(0,
[0,
(1,
(1,

" low input

(1,
(1,

test_vectors

({!'pDs, Cs,

-
~

1,
1,

, FTP_SEL, 1)
, FTP_SEL, 0)
, FTP_SEL, 0]
, FTP_SEL, 1)
., FTP_SEL, 1)
, FTP_SEL, 0]

VME_SEL, 0]

0
0
0
0
0
0
S
0,
0, VME_SEL, 1]

->
-
->
->
->
->

->
->
->
->
->
->

->
->

(X, X];
(X, X];
[VME_SEL,
[VME_SEL,
[VME_SEL,
(VME_SEL,

[VME_SEL,
[VME_SEL,
[FTP_SEL,
[FTP_SEL,
[FTP”SEL,
[FTP_SEL,

[FTP_SEL,
[FTP_SEL,

’Test EXT EVENT logic’

" test low inputs

1,1, 01 or 0] => [X, X, X1

" strobe in low polarity and test
[0 ,1, 0, 0, 0] -> [0, 1, RED];
(1, 1, 0, 0, 0] -> {0, 1, RED];
f1 ,1, 0, 0, 1] -> [0, O, GRN];
(r,1, 0, 1, 1] -> [0, 0, GRN];
1, 1, 0, 1, 0] -> [Or 1, RED];

" gtrobe in high polarity and test
(¢ ,1, 0, 1, 0} -> [1, 0, GRN};
1,1, 0, 1, 0] -> [1, 0, GRN};
[1 llr OI 1, 1] -> [1r 1, RED];
[1r 1, 01 01 1] -> [ll 1, RED];

GRN] ;
RED} ;
RED]} ;
GRN}] ;

GRN] ;
RED] ;
OFF) ;
OFF];
QFF];
OFF];

QFF};
OFF} ;

'SETUP, D1, EXT_EVENT] ->
(EXT_EVENT_POL, X_EVENT, EXT_EVENT_LED])

J-125

test_vectors 'Test DS, CS, SETUP logic’
(['DS, CS, !SETUP, D1] -> [EXT_EVENT POL])

" set to known state - test transparency
[0, 1, 0, 0] -> 0;
{01 1I 01 1] ->1;

" gee if DS works as latch

(1, 1, 0, 1] ~> 1; " latch

(1, 1, 0, 0] -> 1; " change input
(o, 1, 0, 01 -> 0; " enable

(1, 1, 0, 01 ~> 0; " latch

(1, 1, 0, 1] > 0; " change input
(6, 1, 0, 1] -> 1; " enable

" gee if CS works as latch

[0, 0, 0, 11 ~> 1; " latch

[0, 0, 0, 0] -> 1; " change input
[0, 1, 0, 0] -> 0O; " enable

{o, 0, 0, 0] =-> 0; * latch

[0, O, O, 1] -> 0; " change input
[0, 1, 0, 1] -> 1; " enable

" see if !SETUP works as latc

[0, 1, 1, 1] ~> 1; " latch

(o, 1, 1, 0] ->» 1; " change input
{[o, 1, 0, 0] -> 0; " enable-

[01 11 ll 0] -> 0; " latch

[0, 1, 1, 1] -> 0; " change input
{0, 1, 0, 11 -> 1; " enable

J-126

