
NASA Contractor Report 182006

IAPSA II Small-Scale System Specification

G. C. Cohen

Boeing Advanced Systems

Seattle, Washington

T. C. Torkelson

Boeing Advanced Systems

Seattle, Washington

NASA Contract NAS1-18099

March 1990

N/LqA
Nat/onai Aeronautics and

Space Administra_on

langley Research Centor

Hampton, Virginia 23665

£.!..:A-£"-_ ,2_0,:.,) I_;'_.A 2
'3MAI. L-SCALL SYSTLH

C. _;C t 1,'"

. r?_:_ ,._-4 I c_ j

PREFACE

This report describes the IAPSA II Small-Scale System Specification.

This work was supported under NASA contract NAS1-10899, Integrated

Airframe/Propulslon Control System Architecture (IAPSA II).

The NASA technical monitor for this work is Daniel L. Palumbo, of the

NASA Langley Research Center, Hampton, Virginia.

The work was accomplished by the Plight Controls Technology organization

of Boeing Advanced Systems in Seattle, Washington. Personnel responsible

for the work performed include:

D. Gangsaas Responsible Manager

T. M. Richardson Program Manager

G. C. Cohen Principal Investigator

T. C. Torkelson Flight Controls Technology

ii

TABLE OF CONTENTS

1.0

2.0

3.0

SUMMARY

INTRODUCTION

DISCUSSION

3.1 General Simulation Host Hardware Description

3.1.1 VMEbus CPU Card

3.1.2 Bulk VMEbus Memory

3.1.3 VME-MIcroVAX Interface

3.1.4 DIU Simulators

3.1.5 I/O Network Fault Insertion

3.1.6 Experiment Control and Experiment Bus

3.1.7 VMEbus Experiment Time and Fault Insertion Delay

3.2 Development Support Hardware

3.2.1 Development Host Computer

3.2.2 Terminal Server

3.2.3 Line Printer

3.2.4 Logic Analyzer

3.2.5 Microprocessor Emulators

3.3 General Software Description

3.3.1 Experiment Software Interaction

3.3.2 Experiment Host Software

3.3.3 Simulation Host Software

3.3.4 DIU Simulator Software

3.3.5 AIPS FTP Software

3.3.6 Development Host Support Software

3.4 Hardware Modifications to AIPS Building Blocks

PAGE

1

3

9

9

9

9

9

13

15

15

16

16

16

16

17

17

17

17

17

19

20

21

21

21

22

iii

PRECEDING PAGE BLANK NOT FILMED ¢_,.....L./_tI_H_M,£,_ BLANK

3.5

3.6

REFERENCES

APPENDIX A:

APPENDIX B:

APPENDIX C:

TABI_ OF CONTENTS (Continued)

Simulation Host Hardware Details

3.5.1 VHgbus System Configuration

3.5.2 Experiment Host - Simulation Host Interface

3.5.3 VMEbus Backplane Modifications

3.5.4 DIU Simulator

3.5.5 I/O Network Fault Inserter

3.5.6 Miscellaneous Wire Wrap Board Functions

3.5.7 VMEbus Computer Timekeeping

Software Details

3.6.1 AIPS FTP System Services

3.6.2 AIPS FTP Pseudoapplications

3.6.3 VME System Kernel and Utilities

3.6.4 DIU Kernel

3.6.5 DIU Simulator

3.6.6 I/O Network Probe

3.6.7 DIU Data Formatting

3.6.8 Fault Insertion Control

3.6.9 VME Experiment Control

3.6.10 MicroVAX Interface Software

3.6.11 Experiment Control Command Files

SMALL-SCALE SYSTEM EXPERIMENT SYNCHRONIZATION

AIPS I/O NETWORK INTERFACE REQUIREMENTS

SMALL-SCALE SYSTEM DIU SIMULATOR

PAGE

22

22

24

33

35

48

52

54

54

54

55

55

56

56

58

59

59

59

60

60

62

A-I

B-1

C-1

iv

TABLE OF CONTENTS (Continued)

APPENDIX D:

APPENDIX E:

APPENDIX F:

APPENDIX G:

APPENDIX H:

APPENDIX I:

APPENDIX J:

Documentation Package A:

Documentation Package B:

Documentation Package C:

Documentation Package D:

Documentation Package E:

SMALL-SCALE SYSTEM NETWORK FAULT

INSERTION REQUIREMENTS

SMALL-SCALE SYSTEM NETWORK/DIU CONFIGURATION

SMALL-SCALE SYSTEM I/O NETWORK TRANSACTIONS

EXPERIMENT BUS DESCRIPTION

VULTURE PROGRAM DETAILS

SOFTWARE TAPE LISTING

DOCUMENTATION PACKAGES

VMEbus Simulation Computer

Configuration

OPIO-I Parallel

Interface Modification

VMEbus-MicroVAX

Parallel Interface Adapter

ISIO-2/DIU

Simulator Daughter Board

Fault Insertion

and Control Wire Wrap Board

PAGE

D-I

E-I

F-I

G-I

H-I

I-I

J-I

J-I

J-9

J-23

J-29

J-97

v

IrIGUltE

2.0-1

2.0-2

3.1-1

3.1-2

3.1-3

3.1-4

3.3-1

3.5-1

3.5-2

3.5-3

3.5-4

3.5-5

3.5-6

3.5-7

3.5-8

3.5-9

3.5-10

3.5-11

3.5-12

3.5-13

3.5-14

3.5-15

3.5-16

LIST OF FIGURES

Experiment Test Configuration

Small-Scale System Block Diagram

CPU-29 and Memory Block Diagram

OPIO-I and MicroVAX Interface Block Diagram

Wire Wrap Board-Network Fault Insertion/

Experiment Control Block Diagram

DIU Simulator Block Diagram

Small-Scale System Software Block Diagram

VMEbus System Overview, Small-Scale System

Experiment Host-Simulation Host Interface Detailed

Block Diagram

VMEbus and MicroVAX Byte Stacking Order

Data Transfer Without Hardware Byte Swapping

Data Transfer With Hardware Byte Swapping

Experiment Host to Simulation Host Transfer

Simulation Host to Experiment Host Transfer

DIU Simulator Detailed Block Diagram

Block Diagram RX Clock EPLD

HDLC Input Edge Detect and Deglitch State Machine

RX Clock EPLD Timing Diagram

Sync Enable State Machine

P,X Clock Generator State Machine

Flag Shutdown State Machine

Fault Insertion, Control Interface Detailed

Block Diagram

Network Fault EPLD Block Diagram

PAGE

4

5

I0

ii

12

14

18

23

25

28

3O

30

31

34

36

38

40

41

42

43

45

49

5O

vi

1.0 St_[AR¥

This document presents the specifications used to implement hardware and

software for those portions of the IAPSA II small-scale system supplied

by Boeing. Portions of the system provided by the Charles Stark Draper

Laboratory (CSDL) are not included.

A small-scale system was implemented to embody the essential

characteristics of a flight-crltical system modeled earlier in the

IAPSA-II contract. It was used to investigate the critical issues

identified by those efforts in both normal and faulted operation.

The system under test was composed of existing proof-of-concept AIPS

building-block hardware and software plus simulated device interface

units (DIU). The entire system was controlled from a MicroVAX II

experiment host computer.

Commercially available VMEbus building-blbck hardware and software were

used to create the simulation host and DIUs. Hardware used to inject

faults into the system I/0 networks was built on a VMEbus wire wrap card

and controlled by an off-the-shelf VMEbus parallel I/O card.

Pseudoapplication Ada software was used to simulate the computational

loading of the FTP processors. Dummy data representing the total volume

of flight control traffic was sent over the I/0 network. DZU dummy

response data were sent over the I/0 network to answer dummy command

data.

The revision level of these specifications reflects the system delivered

to NASA Langley Airlab for testing.

2

2.0 INTRODUCTION

This document presents the details necessary to implement the small-scale

system experiment test configuration shown in figure 2.0-1. Off-the-

shelf components were used wherever possible to minimize development

cost. All discussions pertain to the small-scale system used for

experimentation at NASA Langley facilities.

A brief description of off-the-shelf components is provided to help

understand system operation. More detailed information on building

blocks may be found in manufacturers' specifications and operation

manuals, referenced at the end of this document.

The discussion section that follows focuses on the details of

modifications to the standard building blocks and on implementation of

custom interfaces.

Specifications in the appendixes were derived from meetings and telephone

conversations wlth CSDL personnel, Advanced Information Processing System

(AIPS) schematics, Ada software templates supplied by CSDL, preliminary

AIPS documentation, and discoveries made during integration testing at

CSDL.

System Under Test Description. The FTP shown in figures 2.0-1 and 2.0-2

is a triplex, bit synchronous 68010-based AIPS building block. Each of

its three channels has a computational processor (CP), an input/output

processor (IOP), local memory, shared memory (SM), one or more

input/output sequencers (IOS) to connect the fault-tolerant processor

(FTP) to I/0 networks, and a test port to allow control of the FTP by the

experiment host computer.

The I/0 network connected the FTP to DIUs via a circuit-switched network

rich in redundant interconnections, enabling reconfiguration around

network faults.

PRECED;NG PAGE BLANK NOT FILMED
___INTI:NTIONALL_ 8LANIi

Simulation host

VME simulation

computer

o=,11DIUOTP

VME DIU simulators

I Fault insertion [

LI
Failure simulation links

!1

I Network and synchro- Inization adapters

I_ links

MicroVAX I
console I Ethernet

I

MicroVAX _..experiment host

FTPOTP

AIPS I/0 networks

:loot links

FTP

System under test Test facility

Figure 2.0-1. _.xperiment Test Configuration

DIU
simulator -

Simulation host

[1
VME bus | VME I aicroVAX

I "1_ 68020CPU I /"_ console I Ic°ns°'. I
• 16MBRAM II , , I _ J /

I Dram I II ICPU_ _
I I I I / IRS232 Experiment /- ¢"" RS-232
! I I I 32 bit par I/O , host

PI VME-MicroVAX
1 O O interface

168010 SER I/O II I - _ /

daughter board mI II I Expcontro=I _ L'TTJ
II .I..,l. I andnetwork I _---_- II

DiU _tch I I fault insertion l IAIPS test I I
,.,o,,_- I I _ m L, /'-'lpencontro,er....... ne po

v_ I _ I r • I ' Ethernet
I

DIU I _ ..
Speciat

Simulator __ SipIpl_sial

I HDLC

BAS - - - -1

DIU links CSDL

AIPS
I/0

networks

T'stp°rtI,,'
VME sync FTP FTP

FTP sync RS 232

FTC
reference

Root links (4)

Figure 2.0-2. Small-Scale System Block Diagram

Ada pseudoapplication software was run on the FTP under the control of

AIFS system services.

The AIPS system building blocks used in the small-scale system were

proof-of-concept components that were still in development and for which

no firm specifications existed. Without CSDL's close assistance and

cooperation, integration of the small-scale system would not have been

possible.

Simulation Host Description. The test facility depicted in figures 2.0-1

and 2.0-2 was designed to support generic, general-purpose test systems

that require special interfaces in hardware-in-the-loop simulation

environments. It is VMEbus-based and uses standard VMEbus boards

obtained from Force Computers, Inc. The base-level test system

configuration includes a CPU card, bulk memory, seven intelligent serial

interface cards, and a high-speed parallel interface between the

simulation host and the experiment host.

Figure 2.0-2 shows the base-level test system after the addition of

modifications to support small-scale system hardware-in-the-loop

requirements. The upper half of the simulation host block is the base

configuration of the general-purpose test system, including the bulk

memory, CPU, and interface to the experiment host. The lower half of the

simulation host block represents the additions and modifications required

to create DIU simulators and special interfaces for the small-scale

system. Daughter boards were designed and built for the serial interface

cards; a custom wire wrap board was built; and modifications were made to

the parallel interface board.

The configurations of each of the main components of the test system are

described in greater detail in the discussion section that follows.

Experiment Rost Description. The experiment host shown in figure 2.0-2

was a Digital Equipment Corporation (DEC) MicroVAX II computer with 10 MB

of memory, two RD-53 70-MB hard disks, a TK-50 93-MB cassette tape, a

DEQNA Ethernet controller, and a DRQ3B parallel, DMA interface card. An

AIPS test port controller card was installed to control the AIPS FTP from

the experiment host.

Small-Scale System Softvare Operation. Figure 2.0-1 shovs major softvare

elements: VHE Operational Test Program (VMEOTP) and DIU Operational Test

Program (DIUOTP) in the simulation host, and FTP Operational Test Program

(FTPOTP) in the AIPS FTP. The interaction of these softvare elements is

described later in this document.

Section 6.0 of reference 1 is a discussion of small-scale system testing

that presents additional information concerning the configuration of the

system and the use of the the experiment test configuration.

3.0 DISCUSSION

3.1 GENERAL SIMULATION HOST HARDgARE DESCRIPTION

3.1.1 VMEbus CPU Card

As shown in figure 3.1-1, the CPU-29 contains 128K x 32 bit (1MB) high-

speed static ram, 128K x 32 bits of EPROM, a real-time clock, and two

serial I/0 ports controlled over a local bus by a Motorola 68020

mlcroprocessor/68881 math coprocessor combination operating at 16.7 MHz.

The VMEhus interface is controlled by the 68020 when it gains access to

the VMEbus as a bus master. None of the resources on the CPU-29 are

accessible to other VMEbus masters.

3. I. 2 Bulk VMEbus Heaory

The VMEbus DRAM-Exxx bulk memory system shown in figure 3.1-2 has 16 MB

of 32-blt-wide dynamic memory. The dynamic ram is slower than the CPU-29

local static RAM but provides relatively low-cost, fast bulk storage for

experiment programs and data. The DRAM storage system consists of two

cards; the master DRAM controller card has 4 MB of memory and the VMEbus

interface; and the slave card, holding 12 MB of memory, connects to the

master over a private intercard bus.

3.1.3 VME-MicroVAX Interface

The OPIO-I card is used for several purposes, as shown in figures 3.1-2

and 3.1-3. This card has four Motorola 68230 programmable interface/timer

(PI/T) chips and a Hitachi 68450 four-channel direct memory access (DMA)

controller. The PI/T chips provide a total of 32 bits of input, 32 bits

of output, 16 handshake lines, and four 24-bit timers. The DMA

controller was not used in the small-scale system.

PRECEDING PAGE BLANK NOT FILMED

9

P'+A+_'_ 4J +_tt++_JO4_,,,,l,..YBMHK

32 bit
VMEbus

32 bit

v

I
/

128K x 32 bit L

SRAM

128Kx32bit ----
EPROM

Local bus

Force: CPU-29

68020

RT clock

Serial I/O

Force: DRAM-E4-M4

4 MB dynamic ram

II
Force: DRAM-E4-S12

12 MB dynamic ram

Figure 3. 1- I. CPU-29 and Memory Block Diagram

VME
console

To debug
console
ordownload

sedalpo_

10

Experiment
bus

32bit
VMEbus

Four-channel
DMAC

16bit P1

//_ I

8 bit out,

I strobes,

I discmtes

/ Reference
/ FTC in

i /

to DIU simulators
and wire wrap board

Spare
timers

(2)

I Force: OPIO-1

16 bit
out +
controls

16 bit
in +
controls

Spare 8
bit in

..._ VME
expedment
time

..._ Fault delaytime

VME-MicroVAX
interface

16bit +

c°ntr°,!s

16bit +
controls

Figure 3,1-2. OPIO-1 and MicroVAX Interface Block Diagram

MlcmVAX II

DRQ
3B

11

Experiment
bus

VMEbus

',16 MHz

and power P1
only

P2

Wire wrap board

(8) Fault control _nnels

Net I/O

Status LED_

VME FTC generator
and FTC ref select

FTC gen
and
control
EPLDs

VME FTC

VME

Status LEDs .,)

Fault
channe

(8)

O
O

0 in 0
Oout0

O'
©

_ StatusLEDs

VME

sync
•--Ib.-ou t

FTP

sync
in

VME
FTC

out
Ext

FTC
in

Figure 3. 1-3. Wire Wrap Board---Network Fault insertion/Experiment Control Block Diagram

12

As illustrated in the upper half of figure 3.1-2, half of the OPIO-1110

capability is used for a hlgh-speed 16-bit parallel communications llnk

between the simulation host and the experiment host. The interface is

used to download VMEbus programs, to control the simulation host from the

experiment host during experlmentst and to upload VMEbus experiment data

after experiments. Data transfer rates are on the order of 500 KB per

second.

Additional functions monitored or controlled using the OPIO-1 card are

discussed in sections 3.1.5, 3.1.6, and 3.1.7 below.

3.1.4 DIU Simulators

Figure 3.1-4 shows a block diagram of the AIPS-compatible DIU simulators

based on modified Force Computer ISIO-2 boards from the base-level

simulation host. These boards are intelligent peripheral boards: each

board has a local I0 MHz Motorola 68010 microprocessor, 128 KB of

local/VMEbus dual-ported hlgh-speed static RAM and eight channels of

hlgh-speed serial interface capable of supporting the hierarchical data

link control (HDLC) protocol at up to 4 MHz.

Local ISIO-2 resources are not directly available to the VMEbus, and the

VMEbus is not directly accessible to the local ISIO-2 CPU; all

communications in the small-scale system between the ISIO-2 and the

VMEbus were via the dual-port ram.

A daughter board and AIPS I/O connectors were added to the existing

boards to implement the special AIPS I/O requirements for clock

synchronization and flag shutdown. An additional Motorola 68230 PI/T

chip provided status, timekeeplng, and synchronization functions. The

experiment bus (see below) was routed to each of the DIU simulator cards

to synchronize the simulators with the VHEbus and AIPS FTP.

The small-scale system used one complete I/O network and one partial

network. The design of the ISIO-2 daughter boards enables each simulator

13

DIU
simulator

patch panel

0 Norm
OMon
O Node

Status C) 1

LEDs 03 02

0 5 0 4

0 7 06

O s

©
©
©

Network O

I/0 _ 0

o0

t°nnec" 0

connectors

0

ISIO-2 board

Daughter board

LED
driver

EPLDS

r 68010

I

EPROM 1

(16K x 16 sys, I""
48K x 16 user)/

/

X Two'channel
HDLC chips
(4)

.__ Local exp

time and

start sync

Force: IS10-2

Local J

bus

18 bit

u,

\
Transfer

N data

\ to I/O net

Node sim
EPLD

(1)

| •

t Rag (e)
shutdown
EPLD

TX data to I/O net

-el--
RX clock <_ =-'
sync (8)

TX
---- clock
i EPLD

16 MHz

f _ 2 MHz| EPLD RXC

HDLC_IN _ XDNetwork
adapter from I/O __ 16 MHz

net

32 bit
VMEbus

lib

Experi-
ment
bus

(n) indicates number of replications

Figure 3.1-4. DIU Simulator Block Diagram

14

board to act either as eight independent DIUs with individual IlO

connectors or as eight independent DIUs sharing a single I/O connector.

Each DIU simulator board can also be used as a network probe to view all

activity on an I/O network for debugging purposes.

3.1.5 I/O Network Fault Insertion

Figure 3.1-3 is a block diagram of the wire wrap card. The top portion

of the block diagram shows the network fault insertion channels. Each

channel consists of an in and out connector, which are used to break a

link in the I/O network. Eight physical fault channels are present on

the card. Each of the channels can be mapped to a logical channel for

fault control purposes. Failing a logical channel causes all physical

channels mapped to that logical channel to fall simultaneously to the

same fault condition.

The fault channels support three different modes: normal, in which inputs

are routed directly to outputs; passive, in vhlch outputs are failed to a

low state; and active, in which outputs are failed to a high state. The

state of each fault channel in and out connector output is indicated by a

bl-color LED: green for normal; off for passive; and red for active.

Small-scale system faults were identically applied to both in and out

connectors.

3.1.6 Rxperiment Control and Experiment Bus

The wire wrap card shown in figure 3.1-3 was also used to interface the

simulation host to the AIPS FTP to control experiment synchronization and

timing. The VME sync output was used to signal the FTP when the

simulation host was ready to proceed; the FTP sync input was used to

synchronize all experiment time keeping functions in the simulation host.

The state of the the sync signals is indicated by bi-color LEDs: red for

stop and green for run.

15

A common timebase is used for all experiment timekeeping in the

simulation host. Two timebase options are provided: either the FTC

generated by the VMEbus wire wrap card or an external FTC can be used.

The small-scale system used an external FTC provided by the FTP so that

experiment timekeeping in the FTP and the simulation host would

correlate.

Tlmebase, synchronization, and control signals are routed to each DIU

simulator and the wire wrap board from the OPIO-I card via spare pins in

the PMEbus P2 connector, which form the experiment bus.

3.1.7 VBEbus Experiment Time and Fault Insertion Delay

The OPIO-I card shown in figure 3.1-2 was modified to add a clock control

daughter board that synchronizes VMEbus timing signals with all DIU

simulators and the external system under test. One of the OPIO-I PIIT

timers is the source of VMEbus experiment timekeeping; another is used

as a delay timer for controlling fault insertion timing. Two spare

timers remain on the OPIO-1.

3.2 DIiVELOPNEL'T SUPPORT HARDWARE

3.2.1 Development Host Computer

All software and hardware were designed using software tools installed on

a DEC VAXstation 2000. The VAXstation was equipped with 6 MB of RAM, an

internal RD-53 70-MB hard disk, an external RD-54 150-MB hard disk, and

an external TK-50 tape drive.

3.2.2 Terminal Server

A DECserver 200 was included in the development support hardware to allow

flexible access to serial devices. Using the terminal server in the

development system allows serial port access to the simulation host

computer from local CRTs or the VAXstation; use of a single serial

16

printer for both experiment host and development host; access to

emulators from CRTs or development host; and access to either the

development or experiment host computer from local CRTs.

3.2.3 Line Printer

A Mannesmann Tally MT660 line printer provided both text and graphics

output for the VAXstation and the experiment host computer.

3.2.4 Logic Analyzer

A Tektronix DAS 9200 logic analyzer with two 92A90 modules, a 92A16

module, a 68010 PGA adapter pod plus software, a 68020 adapter pod plus

software, and a parallel graphics printer were used to aid in hardware

and software debugging and performance evaluation. The logic analyzer

was also used to view activity on the AIPS I/0 network.

3.2.5 Microprocessor Emulators

Applied Microsystems emulators equipped with C source level debugging

software were available for debugging hardware and software problems in

both the Motorola 68010-based ISIO card and the Motorola 68020-based

CPU-29 card.

3.3 GENERAL SOFTWARE DESCRIPTION

The major software development efforts were the implementation of DIU

simulator software, creation of FTP pseudoapplications, and production of

experiment control programs.

3.3.1 Experiment Software Interaction

Figure 3.3-1 is a block diagram of small-scale system software as it was

used during an experiment run.

17

Experiment Host

MicroVAX II

VAX
VMS 4.7

DCL command files

VULTURE I

I Data andcontrol

VRIP

VULTURE
VRTX32
IFX

Fault task

Control

Unload

Simulation host

VME bus computer

SLIT

I DIU kernel

DIU simulator

Figure 3.3-1.

Data and control

--_ I/0network faults

AIPS FTP

lOP
AIPSDEBUG 1

I
AIPS systems services I
.CP

Pseudo

app

Synchronization l

I
II

DIU
simulation

I/0networktraffi_

I
I

Sma//-Scale System Software B/ock Diagram

18

Experiments were controlled by DCL command files running in the

experiment host. Experiment control commands were routed to the AIPS FTP

using the VRIP/AIPSDEBUG interface and routed to the simulation host

using the VME Ultimate User Environment (VULTURE) interface. The

VRIP/AIPSDEBUG interface was used to start initialization programs in the

ftp, activating aips systems services and pseudoapplication programs.

VULTURE commands to the simulation host loaded DIU software in simulator

boards and started the VMEbus computer control, fault task, and unload

programs. The simulation host control program was used to synchronize

operation of the FTP pseudoapplication, the fault task, and the DIU

simulation program.

Upon completion of an experiment run, the unload program in the

simulation host removed and reformatted data from the DIU simulator for

uploadtng to the experiment host disk using VULTURE commands.

VRIP/AIPSDEBUG commands were used to remove experiment application data

from the FTP for storage on the experiment host disk.

3.3.2 Rxperi_.nt Host Software

The experiment host MicroVAX II ran version 4.7 of the VAX VMS operating

system.

Software in the experiment host was responsible for controlling the

overall operation of both the simulation host and the FTP. The main

experiment control programs were DEC DCL command files. The simulation

host was controlled using the VULTURE commands; the FTP was controlled

usingVRIP/AIPSDEBUG commands.

All executable programs for the simulation host and the FTP were stored

on disk in the experiment host. These programs were downloaded to their

appropriate target machines using either VULTURE or VRIP/AIPSDEBUG.

Upon completion of experiment runs, data were uploaded from the

simulation host and the FTP to disk files on the experiment host, where

they were transferred to magnetic tape for archiving.

19

Experiment host resident analysis software was used to perform

preliminary analysis on collected data. The direction of experimentation

was guided by the ability to perform timely data analysis.

3.3.3 Simulation Host Software

A portion of the software in the simulation host is located in EPROM to

control the operation of the simulation host at power up. The EPROMS

contain Ready Systems VRTX-32 and IFX, a board support package to adapt

VRTX-32 and IFX to the CPU-29; VMEPROM, which is shipped with the CPU-29,

the VMEbus resident portion of the VULTURE program; and a sharable copy

of Ready Systems Real Time C library.

A portion of simulation host RAM is configured as two RAM disks: DRAM:

which is located in the DRAM-E4XXX boards, and SRAM:, which is in CPU-29

static RAM. All files in these two RAM disks obey MS-DOS file-naming

conventions. Files in the RAM disks can be either contiguous or

noncontiguous.

Programs downloaded from the experiment host to the simulation host can

reside on either of the two RAM disks. Executable programs are required

to be in contiguous files in RAM disk. Optimum performance of CPU-29

targetted programs is obtained when they reside on the SRAM: disk.

CPU-29 programs will also run on DRAM: disk but with slightly reduced

performance. When a CPU-29 program is started using the VULTURE VRUN

command, the program executes the image of the program in the contiguous

ram disk file.

Data collected by the simulation host during an experiment run were

stored in noncontiguous files in the DRAM: disk and later uploaded to

disk files in the MicroVAX II experiment host.

Repeated creation and deletion of RAM disk files may cause disk

fragmentation; no attempt is made to repack memory. No fragmentation

problems were encountered during operation with the small-scale system.

2O

3.3.4 DIU Simulator Software

Executable versions of DIU simulator software were stored on disk in the

experiment host. They were downloaded from the experiment host to

contiguous RAM disk files in the DRAM: disk in the simulation host. At

the start of an experiment run, the DIU simulator software was loaded

from the DRAM: disk into the active DIU simulator boards.

The ISIO-2 DUSCC chip initialization portion of firmware, supplied by

Force Computers in EPROM on the ISIO-2 boards, was modified to prevent a

hardware conflict for the DUSCC chip serial clock source.

A DIU simulator control kernel was developed to supply synchronization

and system-level functiQns for the DIU simulator software. The kernel

software must be loaded before any DIU software can be run.

DIU simulator software was configured to respond to specific AIPS I/O

network addresses. See appendix E and software tape for more details.

3.3.5 AIPS _ Software

The pseudoapplication programs run in the AIPS FTP were based on Ada code

templates provided by CSDL. The code templates were modified to meet

small-scale system testing requirements of reference I.

Some modifications of the AIPS runtlme software were made to support the

testing requirements of reference i.

Pseudoapplication software is discussed in reference i. Listings are

found in the software tape.

3.3.6 DevelopMent Host Support Software

The VAXstation 2000 development host computer system was supplied with

software packages to support both hardware and software design. All the

software ran under version 4.7 of the VAX VMS operating system.

21

Software included DEC Ada to support the data analysis program, DEC C to

support the VAX portion of the VULTURE interface, and DEC FORTRAN to

support recompilation the VRIF interface for the MicroVAX II.

Third-party software included Autodesk AutoCAD for documentation and ISI0

daughter board layout, Data I/O Abel to support the design and production

of EPLDs for small-scale system (SSS) custom hardware, Verdix 68010 Ada

for compilation of FTP pseudoapplications, and Microtec C and Assembler

to support VMEbus CPU and DIU simulation software.

3.4 HARDWARE MODIFICATIONS TO AIPS BUILDING BLOCKS

To provide a common timebase in both the FTP and the simulation host, the

test port controllers for all three channels of the SSS FTP were modified

to provide a differential driver ftc output. Only the Channel A

connector panel at the rear of the FTP was modified to connect the

differential FTC output to one of the spare connectors. This signal was

used by the simulation host for all of its local experiment timekeeping

functions.

No other modifications were required to AIPS hardware building blocks.

3.5 SIMULATION frOST HARDWAREDETAILS

3.5.1 V_bus System Configuration

Figures in documentation package A show the allocation of cards and

special interfaces in the slots of the VMEbus card cage. All slots are

used when all seven DIU simulator boards are installed. The small-scale

system can operate with four DIU simulators boards when no simulator

boards are required for network I/O debugging.

Figure 3.5-1 is a detailed block diagram of the VMEbus system simulation

host configured for use in the small-scale system.

22

m

¢N

i

t_

]

i

-'_ |I

_ !,_
_ _I_

J

!
!

©}.i_iNAL PAGE IS

OF POOR QUALITY

23

U)

U_

(d

3.5.2 Experiment Host - Simulation Host Interface

Figure 3.5-2 is a detailed block diagram of the interface between the

VMEbus simulation host OPIO-1 card and the MicroVAX II experiment host

DRO3B card. The MicroVAX connector panel shown serves four functions:

to cross-connect the VMEbus and MicroVAX II data lines for correct

transfer of ASCII data; to provide miscellaneous function lines for

cross-system signaling; to buffer board IlO signals; and to condition the

handshake lines of the two interface cards to ensure correct data

transfers.

See documentation package B for OPIO-I layout and schematics.

DRQ3B inputs and outputs are 74S series TTL terminated with 330/220 pull

up/down resistors. Inputs must be driven from devices with 22 mA

pull-down capabilities. (See ref. 2 for additional DRO3B information.)

The OPIO-I card uses high-speed opto-isolators on all input and output

lines. The output of the opto-isolators is insufficient to drive the

DRO3B, and there is no real need for output isolation. The output opto-

isolators were removed and jumpers inserted to directly connect the

output of the opto-isolator driver chips to the DRO3B inputs.

It was desirable to leave the inputs to the OPIO-I opto-isolated to

minimize the possibility of damaging the inputs to the MC68230 parallel

interface timer (PI/T) chips. The output from the DRQ3B does not pull up

high enough at logic I out to guarantee that the opto-isolators will shut

off. To solve this problem, the input LEDs of the opto-isolators were

run from a supply one diode drop below 5V. This was adequate to

guarantee that the isolators will be shut off at DRQ3B logic 1 out.

Documentation package C contains the drawings used to produce the wire

wrap interface and connector panel for the VME-MicroVAX interface.

24

o!1

",II

:-I

(J

!

II

I

t_

E

ORIGINAL PAGE IS

OF POOR QUALITY

25

Documentation package C illustrates the interface panel design used for

the SSS. The only deviation from this design was that a standard rack

width U chassis with side panels was used for shielding the interface

board instead of the protective cover shown.

The protective cover shown is preferable because it is permanently

affixed to the connector panel. The U chassis is secured with the same

screws that hold the connector panel to the equipment rack, raising the

possibility of damage to the interface wire wrap board or ribbon cables

during installation.

The ribbon cables that connect the wire wrap board to the VMEbus OPIO-I

card are held in place with the edge of the side panels attached to the U

chassis. The exposed edges of the side panels are covered with alligator

grommet to prevent insulation damage to the ribbon cables.

Documentation package C shows the placement of components on the wire

wrap interface board and illustrates the routing of cables from the

OPIO-1 to the interface board for an installation in which the interface

connector panel is mounted in the VMEbus chassis. No spare slots were

available in the small-scale system VMEbus chassis for a connector panel,

so the interface board was mounted at the rear of the equipment rack,

with the ribbon cables routed up through the top of the card cage to the

adapter in the back of the equipment rack.

Documentation package C is a schematic for the wire wrap adapter. The

left side of the schematic shows the connections and function names for

the VMgbus OPIO-I board; the connections and function names on the right

side of the schematic are for the Micro WAX II DRQ3B interface.

Data Representation and Effect on Data Transfer Interface. Close

inspection of the interface wire wrap interconnection schematic reveals

that the upper and lower data bytes of the interface lines between the

MicroVAX and the VME system are reversed. An explanation of this

apparent inconsistency is necessary both to understand the design of the

26

hardware interface and to appreciate the subtleties encountered when

attempting to transfer data between a Motorola 68020-based VMgbus system

and a DEC VAX system.

The underlying reason for byte swapping the Interconnectlons was a

difference in the byte stacking order in the 68020 VMEbus and MicroVAX

systems, The VMEbus system is based on a Motorola 68020 microprocessor.

The 68020 byte stacking order is reversed from that of the MIcroVAX

system except for byte data. (The MicroVAX byte stacking order is the

same as that used by Intel systems.)

Figure 3.5-3 shows the byte stacking orders of three types of arrays as

stored in the two systems. The array data types are long (32 bit), short

(16 bit), and char (8 bit). The examples are shown as hexadecimal bytes

arranged from lowest address to highest address. The partial C source

code to generate these representations is also shown.

For data to retain the same value in both systems, the byte stacking

order must be translated when transferring data. To translate the byte

stacking order it is necessary to know the type of data being

transferred. For systems that use data structures composed of mixed

types it is impossible to perform byte stacking order translation without

having access to the definition of every specific data structure being

transferred.

The solution chosen for this problem was to use C library functions to

convert all binary data to ASCII before transfer between the two systems.

This has the disadvantage that up to twice as much data storage may be

required, and additional time is required to convert binary data to

ASCII. Note that data may still be collected in any desired format

during real-time operations as long as it is converted to ASCII before

transfer to the MicroVAX.

27

Partial C code used to generate arrays.

I* array allocation *I

unsigned char array I[8];
unsigned short array 2[4];

unsigned long array_4[2l;

/* assign values to unsigned character array */

array_l[O] = 0xll;

array_ill] = 0×22;

array I[2] = 0×33;

array_l[3] = Ox44;

array_l[4] = OxAA;

array 115] = OxBB;

array_l[6] = OxCC;

array_l[7] = OxDD;

/* assign values to unsigned short array */

array_2[O] = 0x1122;

array_2[1] = 0x3344;
array_2[2l = OxAABB;

array_2[3] = OxCCDD;

/* assign values to unsigned long array */

array_4[O] = 0x11223344;
array_4[ll = OxAABBCCDD;

The above code generates the following data arrays in the VMEbus and uVAX

systems.

........ VMEbus

0 I 2 3 4 5 6 7

-- char array
II 22 33 44 AA BB CC DD

-- word array
22 11 44 33 BB AA DD CC

-- long array
44 33 22 II DD CC BB AA

uVAX

0 1 2 3 4 5 6 7

II 22 33 44 AA BB CC DD

iI 22 33 44 AA BB CC DD

II 22 33 44 AA BB CC DD

Figure 3.5-3. VMEbus and MicroVAX Byte Stacking Order

28

Figure 3.5-3 shows that ASCII data is stacked in the same order in both

the VMEbus and MicroVAX systems, implying that there is no reason to swap

the upper and lower bytes in hardware. The physical interfaces, however,

treat all transferred data as word (16 bit) data. When the VMEbus system

transfers word data, the most significant byte located at address 0 is

sent to bits 8 through 15 of the interface; the least significant byte

from address 1 is sent to bits 0 thru 7. Because the data being sent are

actually ASCII, the bytes are swapped by the VMEbus system. Swapping the

high and low byte lines corrects the problem.

Figures 3.5-4 and 3.5-5 illustrate the transfer of different types of

data using both unswapped and swapped lines.

The limitations of this solution have not affected VMEbus system

performance adversely enough to require an alternative solution.

Experiment Host to Simulation Host Transfer Protocol. See figure 3.5-6

for typical interface handshake waveforms. Fort B of 0PIO-1PI/T devices

J3 and J4 serve as the 16-bit VMEbus input port. They are both configured

to operate as double-buffered input devices with interlocked input

handshakes. (PIIT Port B is set up to operate mode 0, submode 00,

double-buffered input, interlocked input handshake protocol.) The input

!STROBE is received by both PI/Ts on their H3 pins. The PI/T lACK output

originates on the H4 pin FI/T J3. (A PI/T IACK output is also available

from pin H4 on FI/T J4, but is not used.)

The two handshake protocols have no logical conflicts; however, handshake

timing must be modified because of VMEbus PI/T data setup timing

requirements. DRQ3B !DAV Out is set low a minimum of 65 ns after data are

stable on the out nn lines. At least i00 ns of data setup must be allowed

before an input !STROBE is applied to the PI/T chip. To meet the setup

time requirements, a delay of approximately 100 ns is placed between the

DRQ3B IDAV output and the PIIT input !STROBE, leaving at least a 65 ns

margin. The delay is implemented using an RC delay and 74LS14 Schmltt

input Inverters. (See U1 and associated components in the schematic in

documentation package C.)

29

VMEbus uVAX

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

-- char array -- incorrectly transferred
11 22 33 44 AA BB CC DD 22 11 44 33 BB AA DD CC

I I I I
[+--- bits 0-7 bits 0-7 ---, [
+...... bits 8-15 bits 8-15 +

** word array -- CORRECTLY TRANSFERRED
22 II 44 33 BB AA DD CC II 22 33 44 AA BB CC DD

l i I I
[+--- bits 0-7 bits 0-7 ---+ [
+ bits 8-15 bits 8-15 +

-- long array -- incorrectly transferred
44 33 22 II DD CC BB AA 33 44 II 22 CC DD AA BB

I l I I
[+--- bits 0-7 bits 0-7 ---+ [
+...... bits 8-15 bits 8-15 +

Figure 3.5-4. Data Transfer Without Hardware Byte Swapping

VMEbus uVAX

0 1 2 3 4 5 6 7 0 I 2 3 4 5 6 7

** char array -- CORRECTLY TRANSFERRED
II 22 33 44 AA BB CC DD ii 22 33 44 AA BB CC DD

I l i I
[+--- bits 0-7 bits 8-15 --[--+

+...... bits 8-15 bits 0-7 ---+

-- word array -- incorrectly transferred
22 II 44 33 BB AA DD CC 22 II 44 33 BB AA DD CC

I I I I
[+--- bits 0-7 bits 8-15 --[--+
+...... bits 8-15 bits 0-7 ---+

-- long array-- incorrectly transferred
44 33 22 11 DD CC BB AA 44 33 22 11 DD CC BB AA

I I I I
] +--- bits 0-7 bits 8-15 --]--+
+ bits 8-15 bits 0-7 ---+

Figure 3.5-5. Data Transfer With Hardware Byte Swapping

30

DRQ3B Out :_

DRQ3B D--'A-V_ +C"
Strobe delay --'_ ' ' \

Figure 3.5-6. Experiment Host to Simulation Host Transfer

31

Note: symbols such as IACK signify inverted polarity logic.

7The modified MicroVAX to VME transfer operates as follows (see

fig. 3.5-6).

a,

b.

Data are placed on the DRO3B Out lines and the DRO3B IDAV Out is

pulled low.

After a lO0-ns delay, the DRO3B IDAV Out appears at PI/T ISTROBE in,

latching data in the PI/T input buffer.

c. After data are latched by the PI/T, PI/T !ACK Out is pulled low.

d. On receiving DRQ3B lACK In low, DR03B IDAV Out returns high.

eo If more space is available in PI/T input buffers, PI/T IACK Out

returns high and the next data transfer cycle begins. If the PI/T

input buffers are full, PI/T IACK remains low until the VMEbus

computer removes data from the PI/T input buffer, at which time PI/T

IACK returns high and another data transfer cycle begins.

Notes:

a. PI/T lACK Out timing is referenced to the falling edge of PI/T ISTROBE

In, not the rising edge.

b. PI/T lACK out will return high regardless of the state of PI/T !STROBE

In.

Simulation frost to Experiment Host Transfer Protocol. Without

modification, the PI/T to DRO3B transfer handshake protocol does not work.

A logical conflict exists, caused by different interpretations of the

meaning of the !ACK signal. The DRQ3B uses the !ACK line to first signify

receipt of data at the falling edge and then to signify ready for next

32

transfer on the rising edge. The PI/T, however, interprets the falling

edge of the IACK llne to mean data accepted and ready for next transfer.

Without modification, the PIIT begins its next data transfer before the

DRQ3B IACK Out line has returned high. Because the DRQ3B IACK Out llne is

still low, the DRQ3B ignores the ISTROBE signal and does not produce an

IACK Out handshake for the PIIT. This both causes the data being

transferred to be lost and the interface to hang up while the PI/T waits

forever for the DRQ3B IACK Out handshake.

A NAND R-S latch formed from gates in U2 resolves the conflict. The output

of the latch is buffered by U3 to provide adequate drive capability for the

DRQ3B input.

The operation of the modified interface is as follows (see fig. 3.5-7).

Note: Symbols such as lACK signify inverted polarity logic.

a. Data are placed on PI/T Out lines and PIIT !DAV Out goes low.

b. On DRQ3B ISTROBE In low, data on DRQ3B In lines are read and DRQ3B

IACK Out goes low, keeping ISTROBE In low in the U2 latch.

c. The rising edge of PI/T IACK In causes PI/T IDAV Out to return high

and the PIIT starts another output transfer cycle.

d. Data are placed on PIIT Out lines and PI/T !DAV Out goes low;

however, because DRQ3B IACK Out is still low, DRQ3B !STROBE In

remains high.

e. When DRO3B lACK Out finally returns high, DR03B _STROBE immediately

goes low and a new data transfer cycle begins.

3.5.3 VMEbus Backplane Modifications

Jumpers were installed between Pla-21 and Pla-22 to maintain the

continuity of the IIACKIN* IIACKOUT* daisy chain for unused VMEbus

connector positions at slots 5, 6, 9, Ii, 13, 15, 17, and 19.

33

XP, XR Out

CH0 In X

XP DAV Out
I '

Gate

CHO STROBE In

CHO ACK._.._Out
XP, XR, ACK In

Figure 3.5-7. Simulation Host to Experiment Host Transfer

34

A 64-conductor ribbon cable with special connectors was fabricated to

connect the experiment bus described in appendix G from VMEbus chassis

slot 4 P2 connector to P2 connectors in slots 7, 8, 10, 12, 14, 16, 18,

and 20. The uncommitted pins of the P2 connectors are used. (See

documentation package A.)

3.5.4 DIU Simulator

Figure 3.5-8 is a block diagram showing additions made to Force ISIO-2

VMEbus cards to adapt them to the interface requirements of the AIPS I/O

network as described in appendix B. The additions reside on a double

sided daughter board that plugs into five IC sockets on the ISI0-2 card.

All power and signal connections between the daughter board and the

1510-2 board are made via these five IC sockets.

The major additions and modifications required to adapt the ISIO-2 card

to DIU simulator service were:

a. Operation of DUSCC chips with external 2 MHz receive and transmit

clocks and isolation of DUSCC I/O lines from the ISIO-2 board.

b. Addition of AIPS IlO network compatible differential line drivers,

receivers, and termination resistors.

c. Addition of external receive clock synchronization circuitry.

d. Addition of transmitter output flag shutdown circuitry.

e. Addition of a 2-MHz transmitter clock generator.

f. Addition of a second 68230 PI/T chip and address decoder for

timekeeping, daughter board control, and vectored interrupt

selection.

35

Q

(,.)

rn

F

!

I

i))

i-__:_

le
3

)
!

.o g
,?-,,

u
_.o

rn

0

o !

I

!

!

I

,)

36

ORiGiNAL PAGE iS

OF POOR QUALITY

The daughter board and its components are described in detail In this

section.

Network Connector Panel. The DIU interface to the AIPS IIO network is

vla DIN audio connectors mounted on the IlO network connector panel.

Fabrication details for the sheet metal and silkscreen of the DIU

slmulator front panel are In documentation package D.

DIU Z/O connectors and status LEDs are soldered to a small PC board

located behind the panel. Two ribbon cables connect this PC board to the

ISIO daughter board: a 50-conductor ribbon cable is used exclusively for

IlO connections, and a 20-conductor ribbon cable is used for status LEDs.

Differential Drivers and Receivers. Differential drivers, receivers,

isolation resistors, and termination resistors are located on the

daughter board. Components used are in accordance with appendix B to

ensure DIU IIO interface compatabillty with AIPS I/0 network

requirements.

F,Z Clock C__nerator RPLD. Data sent over the AIPS I/O network are

transmitted at 2 Mb per second. To receive these data each DIU simulator

channel must independently regenerate a clock synchronized to Its

incoming data. Clock stability and synchronization requirements are

specified in appendix B.

An Altera EP600 erasable programmable logic device (EPLD) was designed to

use three interdependent state machines to synchronize the DIU clock to

incoming RX data, meet the clock timing requirements of the DUSCC chip,

and to provide deglltching of the received data. All three state

machines are driven by the same 16-HHz system clock. Figure 3.5-9 shows

their interdependence.

Each RX clock EPLD also provides three outputs capable of driving the

mode LEDs on the network interconnection panel. See documentation

package for listings of EP600 RX CLOCK files.

3v

Input
from AIPS I/O

HDL_

I EDGE _, _=._,_,,_._,; _ _ RXC to

c ,,cc
_ RX_SAMPLE

Note: All state machines are clocked at 16 MHz

Figure 3.5-9. Block Diagram RX Clock EPLD

38

The HDLC_IN signal from the I/0 network is conditioned by the edge detect

and deglitch state machine. The state transition diagram in

figure 3.5-10 shows that only input logic levels that remain for longer

than one clock cycle will be passed to the RXD output. Single clock

cycle duration inputs that place the state machine in either state 010 or

101 are ignored. Edge detection occurs whenever the RXD output changes

from 0 to I or I to O. Both the RXD and EDGE outputs are delayed two to

three clock cycles from HDLC IN. The rising edge of the RXC signal sent

to the DUSCC chip is synchronized with this delay, ensuring correct

operation as shown in the timing diagram in figure 3.5-11.

According to AIPS I/O requirements in appendix B, the RX clock signal

must not be synchronized until edges have been absent from the I/O

network for at least eight RXC periods. The sync enable state machine

shown in figure 3.5-12 is used to prevent erroneous synchronization. The

state of EDGE is tested at the falling edge of each RXC (RX SAMPLE). If

no edge is present, the state machine advances to the next state until no

edges have been detected for eight RX samples. The state machine stays

in state 1000 until an edge is detected. Any edge occurring before

reaching state 1000, regardless of RX_SAMPLE, resets the sync enable

state machine to state 0000.

The RX clock generator state machine design guarantees that the RXD

signal from the first state machine is sampled halfway between

transitions. DUSCC chip input timing restrictions require that the

minimum pulse width of the RXC output be at least 100 ns. The RXD output

to the DUSCC chip receive input is sampled on the rising edge P,XC. The

state transition diagram of figure 3.5-13 and the timing diagram in

figure 3.5-11 illustrate its operation. State 11 ensures that the clock

generator meets DUSCC chip timing specifications.

The clock generator will not synchronize to an HDLC IN edge unless the

SYNC ENABLE signal is present. Because incoming data transitions are not

initially synchronized to the state machine internal RXC output, the RX

39

Input: HDLC_IN

Outputs: EDGE = HO H1 RXD + HO H1 RXD
RXD

"glitch"

EDGE on

next clock

0

EDGE on

next clock

State representation

Figure 3.5-10.

HDLC_IN
r

"glitch"

HDLC Input Edge Detect and Deglitch State Machine

40

HDLC
edge

HDLC_IN

e(ges_ync edgeRxc

output sample
delay / delay

RXD EDGE Rising HDLC HDLC
e¢ge ed¢;e

16 MHz
clock

H0 _I 1 r_

H1 I I

RXD I I

EDGE _1

15 16 1710 1 2 3 114 15 16 1710 1 2 3114 15

14 15 16 171 1 2 3 r-

3 J14 15 IS l 1 2 3 r-

2 3J_-mt 2 3F

1 2 3114 1112 3[--

-70 1 2 3 1 2 3[--

1710 1 2 I 2 31"--

16 1710 1 1 2 3[--

Figure 3.5-11. RX Clock EPLD Timing Diagram

41

Inputs: EDGE, RX_SAMPLE
Output: SYNC_ENABLE = SE3

State representation

v

E

E E E E E E E"

Notes:

1. SYNC_ENABLE is true at state 8 only.

2. NE - no edge was present at RX_SAMPLE of HDLC clock.

3. E - edge detected.

4. EDGE comes from edge detect and deglitch state machine.

5. RX sample comes from RX clock generator state machine.

Figure 3.5-12. Sync Enable State Machine

42

Inputs:EDGE,8YNC_ENABLE

Output: RX._CLOCK
RX_SAMPLE = 1000

ix

State number

SYNC_ENABLE & EDGE
y

Notes:

1. SYNC_ENABLE comes from the sync enable state machine.
2. EDGE comes from the HDLC input edge detect and deglitch state machine.
3. X means don_ care.

Figure 3.5-13. RX Clock Generator State Machine

43

clock state at the input synchronizing edge cannot be predicted. The

timing diagram in figure 3.5-11 shows the action of the state machine for

all possible HDLC IN edge/RX clock state conditions.

TX Clock EPLD. An Altera EP320 EPLD implements a state machine used to

generate a common transmit clock for all the DUSCC chips and flag

shutdown EPLDs on the ISIO daughter board. The DUSCC chip outputs TX

data on the falling edge of the external transmit clock. The output

delay from the falling edge of the clock is too long to guarantee

adequate data setup time for the flag shutdown EPLD, which samples the TX

data output on the rising edge of the TX clock. To allow adequate data

setup time for the flag shutdown EPLD and still meet DUSCC chip external

clock specification, the transmit clock is high for 125 ns and low for

375 ns. This allows maximum setup time in the flag shutdown EPLD while

still meeting DUSCC chip requirements.

This EPLD also generates chip select signals for both the existing ISIO-2

68230 PI/T chip (U100) and the new PI/T chip (U20) added to the daughter

board.

Flag Shutdown EPLD. One of the requirements of appendix B is that I/O

network lines be left in a logic low state, called flag shutdown. Flag

shutdown must be synchronized with data sent from the ISIO DUSCC chips to

prevent spurious data from appearing on the I/O network. Because of the

high output data rate, it is not possible to control the DUSCC chip

accurately enough to guarantee these requirements without additional

hardware.

The flag shutdown EPLD uses an Altera EP320. The state machine in the

EPLD detects HDLC flags in the transmitted output data stream. When the

flag shutdown enable (FSE) input is high, the state machine searches for

an output flag that meets shutdown requirements. When the FSE input is

low, the state machine searches for the conditions necessary to reconnect

the DUSCC chip output to the I/O network. Figure 3.5-14 shows a state

transition diagram for this state machine.

44

Eoo×]

Doo]

State representation:

Abbreviations:
FSE_L latched flag shutdown enable
L input logic level
TXD HDLC transmit data

Figure 3.5-14.

FFSE_L-L.TXD_

Flag Shutdown State Machine

Eoxo3

Flag shutdown
state

45

The flag shutdown EPLD also ensures that its associated DUSCC chip

transmitter output is not connected to the I/0 network at power up. Two

inputs ensure that this does not happen: 2SYS_RESET is brought low

whenever the VMEbus RESET signal is active; FORCE FSD is connected to an
1

output of the additional PIIT, which always is pulled high at system

reset. The local ISIO-2 68010 CPU must program the FORCE FSD llne low

before the flag shutdown enable input can be recognized by the EPLD.

Before FORCE FSD is pulled low, the TX CLOCK input must be present to the

flag shutdown EPLD to ensure that the EPLD remains in the flag shutdown

state. Failure to follow this sequence will cause the DUSCC transmitter

output to be connected to the I/O network on initial power-up,

potentially corrupting the entire I/O network.

I2/}Driver EPLD. Several bi-color (red/green) LEDs are provided on the

network interconnection panel to provide status information concerning

operation of the DIU simulator. Two of these EFLDs are provided to

control the eight-channel status LEDs. See LED DRIVER EPLD listings for

details.

Simulated Node EPLD. A Cypress Semiconductor 22V10 EPLD is used to

condition DUSCC chip inputs and outputs to support the required operating

modes of the DIU simulator.

Normal mode directly connects the inputs and outputs of each DIU

simulator channel to its appropriate differential drlver/recelver and I/0

connector.

The partially simulated network of the small-scale system required a full

complement of DIU simulators, but with reduced interconnection

capabilities. To meet this requirement, the node mode of the 22V10 mixes

data in a way similar to an AIPS node; each DUSCC input channel receives

the output of all other DUSCC channels on the board plus input signals

from the active IIO connectors.

46

In probe mode, the 22V10 disables transmitter output to the two active

I/O connectors. It also combines input and output data that appear on

the active I/O connector input and output pins, enabling one DUSCC chip

to monitor all data on the I/O network. (This mode of operation is used

only for troubleshooting I/O network problems and is not used during

experiments.)

Delay Generator. Experiment tlmekeeping in the DIU simulators is

performed by the 24-bit timer in the added PI/T. The input tlmebase is

the reference fault-tolerant clock (FTC) signal on the P2 connector

experiment bus.

When a PI/T timer is read by the local CPU, the three bytes of the 24-blt

timer must be read individually. There is no way to snapshot the value

in all three bytes of the timer with a single operation. This can lead

to rollover errors caused by reading the timer while its value is

changing. Four consecutive bytes are allocated to the timer in the PI/T,

allowing use of the 68010 MOVEP.L instruction to obtain all timer bytes

with a single, noninterruptlble instruction, the rollover problem is

still present, however. The first byte read by the MOVEP.L instruction

is a dummy byte, which always returns a value of 0.

A delay generator EPLD using an Altera EP600 was designed that monitors

the dummy read address of the timer. When a dummy byte read access is

detected, the input FTC is disabled for the four read cycles of the

MOVEP.L instruction necessary to obtain the dummy byte and three timer

bytes. Any FTC pulse that occurs during the disable period is made up

with an extra clock pulse at the end of the last read cycle. This

guarantees that the timer bytes will never be read while they are

changing and that no input FTC pulses will ever be missed.

External timer input restrictions for the PI/T limit its clock period to

eight times the PI/T clock period. The ISIO-2 board PI/T chips use a

7.3728 MHz clock, limiting the external timer input to 1.09 Us. Because

the delay generator chip may insert an extra clock pulse after a timer

47

read cycle, the input period must be greater than the duration of the

four read cycles generated by the MOVEP.L instruction + 1.09 Us. For the

ISIO-2 board, this restricts the external timer input period to 3.26 Us

or longer. The AIPS FTC period is between 4 and 4.25 Us, which meets

these restrictions.

The delay generator EPLD also synchronizes the start of tlmekeeping in

the DIU simulator. Inputs are provided that inhibit the FTC untll the

local inhibit slgnal is removed and both the VME sync and FTP sync

signals from the experiment bus are at the RUN state.

3.5.5 IlO Netvork Fault Inserter

Additional details of fault inserter construction are located in the

documentation for the wire wrap board in documentation package E.

The eight network fault insertion channels are located on the VMEbus wire

wrap board and are controlled by signals from the experiment bus

described in appendix G. Figure 3.5-15 shows an overall block diagram of

the wire wrap board. Figure 3.5-16 shows the design of a network fault

insertion channel in greater detail.

Two Altera EP320 EPLDs are used for each fault insertion channel. The

NET FAIL SELECT EPLD contains a 3-bit logical address register used to

map the physical channel address to a logical address. The NET FAIL MODE

EPLD contains a 4-bit fault register that controls the in and out faults.

Channel physical addresses are hard-wlred to the SAO-SA2 inputs of the

NET FAIL SELECT EPLD.
m

To initialize a physical fault insertion channel, its logical address

register and fault register must be programmed. This can only occur

while the V-SYNC line is low (simulation host VME sync llne in STOP

state).

48

Q

U

m

[

ts_

e_

I

"D
t.,
0
0
m

o

16

u ..
w o

W

II

Li

b-.

_J

_] i lassi

• I I [

i IJ, ,,,',lj,
,,

I _ _ . I

..... ,.......... ,F---L

c_

<.J

m

c_
q)

q_

OF POOR QU_,LITY

49

U

50

!

lJ

II
L_
-- --IA

I_Id

Die

• i
i

T_

i !

I'll I

C_I

]

O

E

Q

'w....

c_

...,.

,.z
Ub

ORIGINAL PAGE IS

OF POOR QUALITY

Initialization proceeds as follows:

a. With Fault Strobe high, the fault bus is set to select the desired

physical to logical address mapping: FD7 low, FD4-6 specifies the

physical channel address, and FDO-2 specifies the logical address.

So The Fault Strobe is brought low to store the logical address in the

logical address register of the NETFAIL_SELECT EPLD.

Co The initial condition for the NET FAIL MODE EPLD is placed on FD0-3
Q

while the Fault Strobe is still low. The state of FD4-7 remains

unchanged.

dl The Fault Strobe is brought high, storing the initial fault condition
m

in the fault register of the NET FAILMODE EPLD. Note that the

initial fault condition is written to a physical address, not a

logical address.

When the simulation computer enters the run state, the V_SYNC line in the

experiment bus goes high. This changes the fault insertion system from

physical to logical address control.

To cause a fault to a logical address the following actions occur:

a. The fault bus is set to select the desired logical address and fault

condition: FD7 low, FD4-6 specifies the logical address, and FDO-3

specifies the desired fault condition.

So The rising edge of the Fault_Strobe stores the fault condition in the

fault registers of all channels programmed to the selected logical

address, causing the fault.

Note that the fault bus can be set up with Fault Strobe at either a high

or low level and that only the rising edge of the Fault_Strobe has any

51

effect. In practice the Fault Strobe is always left high when the fault

bus is not in use.

3.5.6 Miscellaneous Wire Vrap Board Functions

Detailed documentation of the wire wrap board is found in documentation

package E.

The miscellaneous wire wrap board functions are implemented with two

Altera EP320 EPLDs (FTC_GEN and FTC_CONTROL) and AIPS I/O compatible

differential line drivers, receivers, and terminators.

FTCGeneration. The FTC_GEN EPLD is primarily used to generate a

4.125 usec period FTC that can be used for the timebase of the simulation

host. This clock source is available on the front panel of the wire wrap

board. A bi-level LED indicates amber when the clock is operating

correctly. The output of the VME FTC is high for 2.0 _s and low for

2.125 ,s to match the normal operation of the AIPS FTP FTC.

VME Sync. VME sync is generated by PI/T Jl H4 output on the OPIO-I board

and routed to the wire wrap board in the experiment bus. It is converted

to a differential output signal that meets the AIPS I/O network

requirements of appendix B and routed to an AIPS I/O connector the front

panel of the wire wrap board. The FTC CONTROL EPLD drives a bi-color LED
m

on the front panel that indicates the state of the VME sync signal: red

for V STOP, green for V RUN.
m

FTP Sync. The FTP Sync signal originates on an AIPS I/O connector on the

front panel of the wire wrap board. AIPS I/O network-compatible

differential driver and termination resistors convert it to an experiment

bus level signal. The FTC-CONTROL EPLD drives a bi-color LED on the front

panel that indicates the state of the FTP Sync signal: red for F STOP,

green for F RUN.

52

Reference FTC Select. The FTC CONTROL EPLD is used to select the source

of the reference FTC used for the experiment tlmebase in the simulation

host. Either the VME-generated FTC or an external FTC can be selected.

As wlth fault insertion setup, the reference FTC source can only be

selected when the V SYNC llne is low.

To select the FTC source and external event polarity in the FTC CONTROL

EPLD:

a. Nith FSTB N high, set FD7 high and set FIX) low to select the internal

FTC or FIX) high to select the external reference. Set FDI to the

desired external event polarity (see below).

b. Cycle FSTB N low, then high, while keeping the FIX) and FD7 values

stable.

Two LEDs on the wire wrap front panel indicate the clock reference

selection. The VME FTC bl-color LED, driven from the FTC CONTROL EPLD is

illuminated when the VME FTC is selected. The EXT FTC bi-color LED,

driven from the FTC GEN EPLD, is illuminated when the external FTC is

selected. The appropriate LED is amber when the selected FTC is

functioning correctly and red or green when the selected FTC is stuck at

logic high or logic low.

External Event Detection. AIPS I/O external event input is provided on

the wire wrap board front panel. The active polarity of the event is

programmable as described for FTC source selection, above. The logic

level of the external event input on the experiment bus is inverted if

FD1 is low at programming and non-inverted if FD1 is high. The external

event bi-color LED reflects the logic level of the external event signal

on the experiment bus. The LED is green for logic low and red for logic

high.

The external event signal on the experiment bus is routed to PI/T Jl H3

on the OPIO-1 board.

53

The external event input was not used in the small-scale system.

3.5.7 VMEbus Computer Tinekeeping

The master experiment clock used by the VMEbus system is the timer in

PI/T Jl on the OPIO-I board. A small daughter board adds a delay

generator EPLD to control the action of the external timer input. Its

output is bused to all other PI/T chip external timer inputs on the OPIO-

1 board. The OPIO delay generator operates the same as the DIU simulator

delay generator.

The timer in PI/T J3 is used for the fault injection delay timer.

3.6 SOFI"WAKEDETAILS

3.6.1 AIPS FTP System Services

KIPS system services were modified by CSDL to support the special

requirements of small-scale system testing discussed in reference i.

Modifications included adding the means to:

a. Control the time phasing of FDIR execution in both the CP and IOP

with respect to experiment start reference time.

b. Disable background self-test routines.

c. Select the amount of RAM included in the exhaustive RAM background

self-test.

d. Disable I/0 network spare link testing.

e. Selectively control the start of the CRT display tasks.

54

3.6.2 AIPS _ Pseudoapplications

Requirements for pseudoappllcation software is discussed in reference i.

Listings of pseudoappllcatlons are included on the software tape (see

appendix I).

3.6.3 VI_ System Kernel and gtilltles

The VMEbus CPU-29 uses silicon software components from Ready Systems.

The Ready Systems concept is that additional functions in EPROM can be

added to a core operating system kernel (VRTX32) as required with very

little need for custom configuration. The components can be verified to

operate correctly independent of the hardware platform on which they will

ultimately reside.

The Ready Systems silicon software components installed in EPROM include

VRTX32, IFX, and RTscope. A board support package (BSP) from Ready

Systems was modified to support the specific requirements of the general

purpose test system. The Ready Systems Real Time C (RTC) library,

although not a software component, was also placed in EPROM. The RTC

library is a sharable library; its inclusion in EPROM alloys smaller

load modules to be developed for the CPU-29.

The IFX extension to VRTX32 provides MS-DOS compatible RAM disks and

allows multiple user tasks to share physical devices such as the

simulation host console. Each task can send messages to the console to

log its progress.

Further information on the Ready Systems products used can be found in

references 3 through 13.

To interface the VMEbus simulation system with the MicroVAX experiment

host computer system, the VULTURE program was written. Portions of the

VULTURE program reside in both the VMEbus system and the MicroVAX system.

Appendix H presents a detailed discussion of this program.

55

Noncopyrighted portions of the VME system kernel and utilities are

included in the software tape (see appendix I).

3.6.4 DIU Kernel

The ISIO-2 board from Force Computers comes with a small operating system

kernel that was not adequate for the operation of the DIU simulators for

the small-scale system. The firmware operating system was only used to

load the DIU kernel, at which point the onboard ISIO-2 firmware was

disabled and DIU simulator software was loaded. All kernel functions are

implemented as TRAP instructions. User access to kernel functions is via

macros that complete the setup for the traps. COMMAND KERNEL.INC on the

software tape discusses the operation of the specific macros.

All DIU kernel operation is polled; no interrupts are used. This allows

minimum latency for user programs that use interrupts and kernel

functions.

The kernel operates in supervisor mode; user programs may operate in

either supervisor or user mode.

3.6.5 DIU Simulator

The core source files for creating DIU simulator software are DIU_INIT,

DIU_START, and DIU_SVC. These files are linked with NxDIUy files that

define unique DIU configurations. Four unique DIU configurations were

created for the small-scale system and reside in absolute files

NIDIUI.ABS, NIDIU2.ABS, N2DIUI.ABS, and N2DIU2.ABS.

The NxDIUy.SRC files are created by a DEC C program called

MAKE_FRAME_FILES that takes frame definitions from FRAME_DATA.C, DIU.H,

and unique DIU definition NxDIUy.DEF files to create the source files.

The source files are assembled using the Microtec Assembler on the

development host to produce linkable DIU configuration files for

inclusion with the core DIU files.

56

If modification of transaction definitions or timeouts is required, the

FRAME DATA.C file is modified, recompiled, and MAKE FRAME FILES is

re-llnked.

To modify the allocation of DIU addresses to simulator board absolute

files the NxDIUy.DEF files are modified, and the DCL command file

MAKE TABLES.COM is used to create the source and object files. Command

file LINK DIU.COM creates the new DIU absolute files.

The new absolute files are copied to the experiment host computer for

loading in the simulation host and DIU simulators.

The new set of DIU absolute format files must be converted to executable

form in the simulation host and saved on the experiment host hard disk as

follows:

ao DOWN LOAD NxDIUy.ABS NxDIUy.ABS downloads the absolute flle to the

DRAM: disk in the simulation host.

bB VCONVERT NxDIUy.ABS NxDIUy.EXE converts the Motorola S record format

absolute file to an executable image file. Note that the VCONVERT

command automatically makes the executable image file a contiguous

file.

Co UP LOAD NxDIUy. EXE NxDIUy.EXE saves the executable image in the

experiment host.

DIU simulator software uses a double buffering scheme in the ISIO-2 dual

port RAM to collect data during experiment runs. Each buffer is capable

of holding 46 kB of data. A handshake scheme with the VMEbus computer

was established to allow control of the buffers and to notify the VMEbus

computer when a buffer was full. Software locks prevent data corruption

in either buffer while allowing real-time buffer flushing by the VMEbus

CPU and buffer filling and swapping by the ISIO-2 CPU.

57

Small scale system tests were short enough in duration that the DIU

simulator buffers did not overflow during normal operation and were

unloaded at the completion of each experiment run.

The DIU_START module controls the sequencing of operations of the DIU

simulator during an experiment. It is responsible for calling

subroutines in the DIU_INIT file which set up peripheral chips,

initialize interrupts, disable interrupts, etc. The DIU START module

also signals the VMEbus CPU to perform a final buffer flush at the end of

an experiment run before returning DIU simulator operation to the DIU

kernel. The DIU simulator software is interrupt driven during experiment

operation. Interrupt service routines in the DIU SVC module are used to

remove data from the DUSCC chip FIFOs when a frame passes address

screening. The DIU_SVC module also validates a received frame, prepares

an appropriate response, logs data and errors, and controls the eight

channel LEDs on the front panel.

3.6.6 I/O Network Probe

I/O network probe software used all the core DIU simulator routines,

replacing DIU_SVC with FAST_PROBE_SVC. No address screening is used in

the probe; all data received is logged in the double buffer scheme.

Because of the amount of data collected by the probe, the VMEbus CPU is

required to flush buffers in real time.

The turn around time of some of the network transactions is so fast that

the probe software may not have time to recover and may erroneously

record bad data. The validity of probe data can be determined by

comparing DIU simulator and probe data and by the selected probe location

in the network.

Operation of the probe during small scale system integration showed that

the buffers could hold a maximum of 30 seconds of data before overflow

occurred. The VHEbus CPU polled each probe every 500 msec to ensure that

its buffers were promptly flushed.

58

3.6.7 DIU Data Fonmttlng

Data from DIU simulators was recorded in the ISIO-2 dual port RAM in

binary form to maximize storage capacity. When data are removed from the

dual port RAM, the VMEbus CPU program first removes the binary format

data to a temporary binary file in DRAM: disk. At the completion of an

experiment, the temporary file is then converted to an ASCII data file in

the DRAM: disk. Only the DIU simulator data fields required by the data

analysis program are saved.

The UNLOAD program operates slightly differently on probe data. It is

used in real time during an experiment to remove data from the ISIO-2

probe buffers. Post experiment formatting saves all data for later use.

3.6.8 Fault Insertion Control

The fault insertion control program, FAULT, is an optional program for

use only during experiments requiring I/O network fault insertion. It

runs autonomously after it is loaded and started on the VMEbus CPU. It

requires that a FAULT.DAT file be present on the DRAM: disk which defines

the data required to initialize each fault channel, perform physical to

logical mapping, set up a time delay to the fault, and define the fault

condition.

3.6.9 V]_ Experiment Control

A master simulation host experiment control program (CONTROL) was used to

sequence the simulation host through experiment synchronization

handshakes discussed in appendix A. The CONTROL program uses a

CONTROL.DAT file in the simulation host DRAM: disk to determine which DIU

simulators are active. This file must agree with the actual use of DIU

simulators controlled by the experiment control command files.

The CONTROL program controls the VME Sync output to the FTP. It also

59

monitors the FTP Sync input. The program can be aborted at any time it

is active by manually cycling the VME Sync output using VG0 and VNO

commands.

3.6.10 NlcroVAX Interface Software

The MtcroVAX interface to the VMEbus simulation computer is controlled by

VULTURE software which resides in both the VMEbus computer and on disk in

the micro vax. Appendix H discusses this software in detail.

The DR03B interface to the VMEbus system is controlled by a DEC supplied

driver. DEC C programs were written to interface VULTURE protocol to the

DR03B driver.

Details on the operation of the VRIP interface which is used to control

the FTP are available from CSDL.

3.6.11 Experiment Control Cosmand Files

All experiment operation was controlled from the experiment host. When

the experimenter logged in, the account which was active set up several

V'RIP related aliases. The first operation was to initialize the VRIP

interface, providing access to the FTP in the system under test.

Following successful initialization of the VRIP system, the experimenter

then set up the environment for data collection, executable image

loading, and simulation computer control.

Several classes of DEC DCL command files were used:

a. VRIP initialization control files were supplied by CSDL and are used

to set up the interface and screen for FTP control.

b. Definition command files created symbols which accessed command

files. VULTURE.COM and SYMBOLS.COM set up the experiment environment.

6O

c. Simulation computer loading was controlled by VME_LOAD_EXE.COM.

d. FTP computer loading was controlled by LD_xx.COM files in experiment

directories.

e• FTP program patch files were used to correct problems in FTP lOP

programs caused by the VRTX Ada compiler.

f. FTP experiment setup command files defined unique experiment

parameters.

g•
Program execution was controlled by the RUN_EXP command file• It

accessed other command files which loaded DIUs and extracted data

from both the simulation computer and the FTP.

h. FTP data collection was controlled by the GET_FTP command file. The

command file used the known configuration of FTP memory to extract

experiment data without additional operator input.

j •
Simulation computer data collection was controlled by the UNL_DIU

command file. It controlled the post experiment operation of the

UNLOAD programs.

It was not possible to totally automate the control of small scale system

testing because of the need to manually record the FTP logs.

61

REFERENCES

I. G. C. Cohen, et al., Design of an Integrated Airframe/

Propulsion Control System Architecture, NASA CR-182004, March 1990.

2. DRQ3B Parallel DMA I/O Module User's Guide, DEC order number

EK-47AA-UG-O01.

o VRTX32/68020 Versatile Real-Time Executive for the MC68020

Microprocessor User's Guide, Software Release I, Ready Systems

document number 541331001, April 1987.

4. VRTX32 C Versatile Real-Time Executive User's Guide, software

release I, Ready Systems document number 542101001, April 1987.

. RTscope 68000 Real-Time Debugger and VRTX32 System Monitor for

Motorola 68000 Family User's Guide, Ready Systems document number

531311001, November 1987.

o IFX I/O and File Executive for Real-Time Systems External

Specification, Ready Systems preliminary document number

521311X07, March 1988.

7. Getting Started With Silicon Software Components, Ready Systems

document number 590023004, July 1987.

8. How To Write a Board Support Package for VRTX, software release 3,

Ready Systems document number 5900430003, November 1986.

9. VRTX Technical Tips, Ready Systems document number MC071000,

September 1986.

I0. VRTX and Custom Queues, Application Note, Ready Systems document

number 40001, November 1983.

62

_S (Continued)

11. VRTX32/680xO Timing Reference, software release i, Ready Systems

document number 540011001, May 1987.

12. Portable C RTL/68000 Installation Guide, Ready Systems document

number 61A203002, June 1988.

13. RTC Run Time Library User's Guide, Ready Systems document number

615003004, June 1988.

14. Force Computers CPU-29 User's Manual.

15. Force Computers DRAM-E4 User's Manual.

16. Force Computers ISIO-2 User's Manual.

17. Force Computers MOTH User's Manual.

18. Force Computers OPIO-I User's Manual.

19. Force Computers PNR-20 User's Manual.

63

64

APPEMDIX A: SMALL-SCALg SYSTEM EXPERIMENT SYNCHRONIZATION

Introduction

The AIPS FTP and the VMEbus simulation computer require a means of

signaling each other of their status for coordination of experiments.

The start synchronization interface between them implements this

requirement.

Start Synchronization Physical Interface

Interconnections

VMgbus to FTP: [V_SYNC] signals VMEbus simulation computer status

FTP to VMEbus: [F_SYNC] signals FTP status

Signal levels correspond to AIPS I/O network signal levels

V RUN is logic high
m

V STOP is logic low

F RUN is logic high

F STOP is logic low

Connectors, differential drivers, receivers, and terminators conform to

requirements of reference 1.

VMEbus Simulation Computer States

Initialize [V_STOP]

VMEbus simulation computer hardware and software are initialized.

Experiment clocks are initialized to 0.

Ready [V_RUN]

The VMEbus simulation computer signals that it is ready for

simulation by changing [V_SYNC] from [V_STOP] to [V RUN].

A-1

In this state DIU simulator initialization is complete. Data logging

has not started and the experiment clock is not yet running.

Run [V_RUN]

Transition to the Run state is signaled by the FTP changing [F_SYNC]

from [F_STOP] to [F_RUN].

The simulation computer and DIU simulator experiment clocks are

started. Data logging starts here.

Abort [V_STOP]

[V_SYNC is manually changed from IV_RUN] to [V_STOP] to abort all

VMEbus actions before the normal end of an experiment run. Data

collection is terminated, experiment clocks are stopped, and all logs

are scrubbed. No data are saved in the VMEbus system.

Halt_ACK [V_STOP]

In response to an FTP request to end the current experiment, [V_SYNC]

is changed from [VRUN] to [V_STOP], data collection is terminated,

data logs are flushed, the ending time of the experiment is recorded,

and experiment clocks are stopped.

Idle [V_STOP]

Experiment is complete. The VMEbus system waits for further user

commands with experiment clocks stopped.

Error [V_STOP]

Reached because of a sequencing error during small-scale system

initialization. The FTP must be manually halted by experiment

operator.

A-2

_LIPSPTP Computer States

Initialize [F_STOP]

AIPS FTP hardware and Ada software are initialized, up to the point

of determining the absolute time for tO.

Wait [F_STOP]

The FTP waits in this state until [V_SYNC] is at [V_RUN]. If

[V_SYNC] is already at [V_RUN], the FTP passes through this state to

Ready without error.

Ready [F_STOP]

The absolute time for tO is determined for scheduling FDIR and

application tasks. All tasks are scheduled. A task that will place

[F_RUN] llne at [F_RUN] is created and scheduled to run 1 sec before

tO.

Run [F_ UN]

The FTP signals the start of an experiment by changing [F_SYNC] from

[F_STOP] to [F_RUN].

Halt [F_STOP]

Experiment has run for the specified duration. [F_SYNC] is changed

from [F RUN] to IF STOP] to request the VHEbus simulation computer to

end the experiment.

The FTP de-schedules user application tasks and performs any cleanup

operations required.

Idle IF_STOP]

Experiment is complete. The FTP waits for further user commands.

A-3

Start Synchronization Protocol

Figures A-1 and A-2 illustrate the handshaking between the FTP and the

VME system during experiment operation.

Normal operation

Both the VMEbus simulation computer and the AIPS FTP begin in their

Initialize states with sync lines at [V_STOP] and [F_STOP]

respectively.

The AIPS FTP proceeds to the Wait state when its initialization is

complete regardless of the status of [V_SYNC]. If [V_SYNC] is at

[V_RUN], it proceeds directly to the Ready state.

When the VHEbus simulation computer is ready it changes from the

Initialize to the Ready state and signals the FTP by changing

[V_SYNC] from [V_STOP] to [V_RUN].

In the Ready state the FTP schedules FDIR, application tasks, etc.

The Run state may be entered immediately or after a delay to allow

the system to settle into normal operation. The FTP signals that it

has arrived at the Run state by changing [F_SYNC] from [F_STOP] to

[F_RUN]. Transition to [F_RUN] in the small scale system occurs 1

sec before the FTP begins normal operation.

The AIPS FTP can request termination of an experiment by changing its

F SYNC line from F RUN to F STOP.

VMEbus-requested termination

The VHEbus simulation computer is manually forced to abort its action

and enters the Abort state, changing [V_SYNC] from [V_RUN] to

[V STOP], terminating data collection, scrubbing its logs, and

stopping the experiment clocks. VMEbus computer enters the Idle

state.

A-4

VMEbus Simulotion Computer

Initiolize

IF_RUN]

[r_stop]

Reody
[V_RUN]

[F_XXX]

IF_RUN]

Run
[End

IV_RUN]

Abort

Holl

HOI t- Ack

[V_STop] IV_RUN] ,, ,tote of [V_SYNC]
[V_XXX] = [v_s'mc] don't co,e

[F_STOP] [F_RUN] - ,tote of [F_SYNC]

[F_XXX] ,- [F_SYNC] don't core

Figure A-1. VMEbus and FTP Experiment Handshaking and Synchronization

A-5

CP

lOP

VME

VRUN

@

ooo /
FSTOP

°°°

Oelta-T

T N

I

lOP
completed ready

Notlll:

• FRUN and FSTOP are states of the FTP sync line

• VRUN is a state of the VME sync line

v I

TO

FRUN

l.=DeltaFRUN.

000

Activity

Sync CPs
Start FDIR

Set FSTOP

Sync lOPs
Start FDIR

Wait for CP_Completed

Q Prepare for experiment
Set VRUN

Read time TI(Too(curs
Delta_T ticks from here)
Create IORs

Initialize data collection

Set CP_Completed

_Grow networks
Create application IORs

Set lOP_Completed

Q Schedule application

tasks to start at T 0
Schedule FDIR at

(TI + DeltaT) + CP_DT
Set TO ready
Set FRUN

_ _edule FDIR at

(T I + Delta_T) + IOP_DT

Figure A-2. Small-Scale System Application Initialization

A-6

AIPS FTP requested termination

The AIPS FTP enters the Halt state, changes [F_SYNC] from [F RUN] to

[F_STOP], terminates data collection, flushes its data logs, and

records the ending time of the experiment. It remains in the Halt

state until the VMbus simulation computer signals that it is in the

Halt_ACK state by changing [V_SYNC] from IV_RUN] to [V_STOP].

The experiment clocks are stopped by the change of the [F_SYNC] llne,

and the VMEbus computer and the AIPS FTP enter the Idle

Error operation

The only error considered in the accompanying state diagram is the

error that occurs when the AIPS FTP is in the Run state before the

VMEbus simulation computer enters the Ready state. When this occurs,

the VMEbus simulation computer passes through the Error state,

ensuring that [V_SYNC] is [V_STOP].

REFERENCES

I. AIPS If0 Network Interface Requirements.

A-7

A-8

APPENDIX B: AIPS I/O NETgORK INTERFACE REQUIREMENTS

1.0 AIPS I/O HETgORK

The AIPS I/0 network is a dynamically reconfigurable communications

network using modified HDLC synchronous serial protocol for data

communications between FTPs, nodes, and DIUs. This document describes

the physical interface and software protocol necessary to use the

network.

2.0 PHYSICAL SPECIFICATIONS

2.1 CABLII_

The FTPs, nodes, and DIUs that make up the AIPS I/O network are

interconnected by two pair, AVG 24 tvlsted foil shielded palr cable

(Belden Datalene 9729). Shields for each pair are isolated from each

other. The nominal cable impedance is lOOg, velocity of propagation 78%,

12.5 pF per foot between conductors and 22 pf per foot to shield. See

figure B-1.

2.2 CONNECTORS

Patch cords and panels for the AIPS I/O network as implemented at CSDL

use Svitchcraft 5 contact DIN audio connectors. Cable connectors with

socket contacts are Switchcraft P/N 06AL5F; panel connectors with pin

contacts are P/N 57KD5M. See figures B-I and B-2.

2.3 DIFFERENTIAL LINE DRIVERS

The AIPS I/0 network uses RS-422-compatible differential line drivers

(26LS31 or equivalent). The drivers are always connected to the

B-1

_J

+ I

ql'_ I/IIleIBIN

¢,L

g v
_ o

0. _ o
i;

o

u
°-

/i
C '

+!

i c

I-- IIo ,_

_r

B-2

F :1:2.0 v
r'_ | 200 +OUT

--1 z_c_._ 200 -I:_T

-i 0.4 v

' I SHLD

+5

Figure B-2. AIPS I10 Network Interface

B-3

network and enabled; no tri-state operation is allowed. Minimum VOH for

a driver output is 2.5V (3.2V typical); maximum VOL is 0.5V (0.32V

typical).

Differential driver outputs are connected to the AIPS I/O network

through 200fl resistors that are the boundary of the AIPS IOS - AIPS I/O

network fault containment region (see fig. B-2.)

2.4 DI_ LINE RECEIVERS

The AIPS I/0 network uses RS-422-compatible differential llne receivers

(261S32). The receiver differential input voltage sensitivity is +/-

0.2V minimum (+/- O.06V typical) over a common mode voltage range of +/-

7V. Input hysteresis is typically O.03V.

Interconnecting cables are terminated at the differential receiver with

a IOOQ resistor connected between the nonlnvertlng and inverting inputs.

The noninverting input of each differential receiver is pulled to ground

by a 2,000Q resistor, and the inverting input is pulled up to +5V dc by a

2,000g resistor (see fig. B-2.)

2.5 I/0 SIGNAL LEVELS

Signal levels on the AIPS II0 network with respect to llne driver local

common wlll be VOL - 1.30V, VOB = 1.70V worst case (VOL - 1.47V,

VOH = 2.05V typical). The differential voltage between the signal lines

in the interconnecting cables will be between +/- 0.40V worst case (+/-

0.5 V typical) assuming negligible cable resistance.

See figure B-2 for a typical differential driver/receiver configuration.

B-4

2.6 I/O LOGIC L_ AND NOISE MARGIN

Logic levels in this specification refer to the differential voltage

levels between signal conductors in II0 network cables. Low is

synonymous wlth logic 0; high is synonymous with logic 1.

A device driving I/0 network signal lines must ensure that the

nonlnverted signal line is at least 0.40V more positive than the inverted

signal llne for logic i and 0.40V more negative for logic O.

A receiving device connected to the I/0 network must detect a logic I

when the noninverted signal llne is at least 0.20V more positive than the

inverted signal and detect a logic 0 when 0.20V more negative. The

receiver should incorporate input hysteresis to minimize noise effects at

svitchlng thresholds.

These specifications ensure a differential noise margin of +/- 0.20V

minimum.

2.7 COMMON NODE VOLTAGE RANGE

The voltage difference between the commons of interconnected elements of

the AIPS IlO network shall be less than +/-TV.

3.0 k'ETI/ORKPOLIA/IG AND NgTVORK TRAFFIC

3.I NgTgOP,K POLLING

Logic levels are used by the AIPS I0S to poll for unsolicited inputs.

Note: The small-scale system does not poll for unsolicited inputs.

B-5

3.2 _CNORK TRAFFIC

Network traffic is represented in NRZI format where a 0 is signified by

a transition and a I is signified by the lack of a transition. NRZI data

in the AIPS system is sent at at 2 megabits per second (Mbps). Network

traffic is organized into HDLC frames, which are described below.

4.0 AIPS HDLC PROTOCOL

The AIPS HDLC protocol modifies standard HDLC protocol by adding "Flag

Shutdown" and by deleting the "Abort" and "Idle" HDLC commands. Physical

conditions that represent "Abort" and "Idle" are found on the AIPS IIO

network; however, they do represent these commands.

4.1 HDLC DATA

An HDLC data stream is distinguished from an HDLC command by the number

of consecutive NRZI Is allowed. No more than five consecutive NRZI ls

are allowed for a valid HDLC data stream; after five consecutive NRZI is,

a NRZI 0 is inserted (zero insertion). Inserted NRZI 0s are

automatically removed by the receiving HDLC interface chip (zero

deletion). Zero insertion and deletion guarantees that HDLC commands

can always be distinguished from HDLC data and that edges are always

available within a data stream for the synchronization of data clocks.

4.2 BDLC COImANDS

HDLC commands contain at least six consecutive NRZI ls. Only the HDLC

Flag is defined in the AIPS HDLC protocol. HDLC Abort and HDLC Idle are

not recognized by the AIPS system because of a conflict with the Laning

Poll protocol. (See ref. 4, appendices A and C.)

B-6

a. HDLC Flag is composed of one NRZI 0, six NRZI is, and one NRZI 0.

An HDLC Flag opens and closes all HDLC data frames.

b. HDLC Abort contains seven or more NRZI Is. (Not used by AIPS.)

c. HDLC Idle contains 15 or more NRZI is. (Not used by AIPS.)

4.3 AIPS HDLC FRAMES

Two types of frames are used in the AIPS system: command frames and

response frames. Command frames originate in the AIPS IOS, and

response frames originate from either AIPS nodes or DIUs. Response

frames occur only at the request of a command frame. (See

transactions below.)

AIPS BDLC FRAMES. (See fig. B-3 and appendices A and C of ref. 4.)

Note: Appendices A and C of reference 4 do not agree with respect to

maximum data field size for AIPS HDLC frames. It appears that

the maximum data field length is between 117 and 122 bytes.

small-scale system command and response frames are short

enough that the maximum data field length is not approached,

and the discrepancy will not be problem.

a. Flag (F) - opening HDLC flag (I byte minimum; more than one flag

may be sent).

b. Address (A) - command frames: identifies a destination AIPS node or

DIU to which a frame is addressed. Hardware address screening is

used by the physical interface devices in the nodes and DIUs to

filter out frames addressed to other devices (I byte).

Response Frames: identifies the responding device. No address

screening is used in the IOS for response frames (i byte).

B-7

m FI,'IIII_

I d

Address of

input buffer
in CP

Address of

output buffer
in CP

F-

Packet

Num_Data_Bytes_ln

Num_Data_Bytes_Out

T I

v

Rag Address Encodedaddress
Information Sum FCS Flagcheck

Figure B-3. HDLC Definitions

B-8

a. Control (C) - command frames: the IS complement of the Address

field (I byte).

Response Frames: not defined.

ao Data (D) - One or more bytes of data, the last byte of which is a sum

check that is defined to be the 2S complement of the modulo 256 sum

of the A, C (if present), and preceding D field bytes. Note that the

sum of the A field through the sum check byte is zero.

Command Frame: See note above regarding field length.

Response Frame: See note above regarding field length.

a. Residual bits (RB) - IOS/node communications: 3 residual bits.

lOS/DIUCommunlcatlons. 5 Residual bits.

ao Frame check sequence (FCS) - 16-bit CRC-CCIT error checking field,

using G(X)=X'16+X'12+X'5+l, dividend preset to 1, sent inverted by

TX. A received CRC of FOB8 hex indicates valid data. All data

between the opening and closing flags are used to compute the FCS

(2 bytes).

b. Flag (F) - closing flag (1 or more bytes). (See Flag Shutdown,

below).

4.4 DATA CLOCK SPECIFICATIONS

The transmit and receive data clock specifications are adequate to

ensure sampling of incoming data at the nominal location, 50g between

expected transitions, within +/- 12.5Z of a bit time, for a frame

length of at least 128 bytes.

B-9

4.4.1 Transmit Data Clock

NRZI data must be transmitted at 2 Mbps +/- 0.01%.

4.4.2 Receive Data Clock

To decode data from the I/O network, signal lines must be sampled by a

clock synchronized to the incoming NRZI data stream.

After 4 Us of transitlon-free operation on the I/O network,

synchronization of the receive clock is enabled. The first transition

on the network after the 4 _s quiet time defines the middle of the

sampling clock period; 0.25 Us (50% bit time) after the transition,

the logic level on the network is sampled. Sampling continues every

0.5 Us (bit time) thereafter.

The local receive clock must be stable enough to maintain sampling

0.25 us after a transition with a maximum clock skew of +/- 0.125 _s.

After synchronization, the receive clock must be stable to +/- 0.01%.

5.0 I/O NETgORK STATES

5.1 IDLE

For the small-scale system, the I/O network is idle if it has been low

for at least 4 us.

5.2 POLL

Not used in small-scale system.

5.3 BUSY

The I/O Network is busy if HDLC data or flags are being sent (a

transition has been detected within the last 4 _s).

B-10

5.4

The network is stuck if it has been high for 4 _s or more.

6.0 NORMAL SMALL-SCALE SYSTEM NETWORK STATE TRANSITIONS

6.1 IDLE TO BUSY

Transition from the Idle state to the Busy state occurs when the

network goes from logic 0 to logic 1 on the rising edge of a Flag

byte. At least one complete Flag byte must appear on the network

before the address field is sent. (See fig. B-4.)

6.2 BUSY TO IDLE (FLAG SHUTDOWN)

Transition from the Busy state to the Idle state is called flag

shutdown.

The network is set to logic 0 on the falling edge of a Flag byte. At

least one complete Flag byte must be sent at the end of an HDLC frame

before the network is placed in Idle. (See fig. B-4.)

7.0 I/0 NETWORKTRANSACTIONS

7. I OUTPUT TRANSACTION

An output transaction is a single HDLC frame transmitted by an FTP to

a specific AIPS node or DIU for which a response frame is not

required. A typical output transaction sends a command to a DIU.

B-II

Case 1 i_ Opening flags (3)F

FSE

FSD

Net M

Vl-I • i= Closing flags (3)

)1

f,

¢¢

Case 2 I--_ Opening flags (3)

"rxo _.! U II

FSE

FSD

Net I I1

-J '- Closing flags (3)
rl I-

I _/'/,J/A I LI II

Figure B-4. Flag Shutdown Waveforms

B-12

7.2 II_IJT _5AC_ION

An input transaction involves two HDLC frames. The first frame is a

command frame transmitted by the FTP to a specific node or DIU. It

may contain commands and/or request information from the addressed

device. The second frame of the transaction is a solicited response

frame from the addressed device that is sent to the FTP. The FTP

receives all response frames regardless of the address field of the

frame.

7.3 CHAINS

A chain is an ordered group of transactions sent by an FTP over the

IlO network. Chains are typically associated vlth application

processes that run at different application frame rates. (Not to be

confused vlth HDLC frames.) Chains may contain output, input, or a

mix of transaction types.

Chains either run to completion or are terminated by the sending FTP

when faulty responses are received.

8.0 DATA POLARITY

AIPS I/O network data passed between the FTP and the IOS are inverted

with respect to the definition of NRZI 1 and NRZI O, above. This

requires inversion of both transmitted and received data by devices

connected to the AIPS I/O network that use HDLC interface chips vlth

nonlnverted data buses.

The HDLC interface chip used by AIPS has an inverted data bus. This

is transparent to AIPS elements because they all use the same

interface chip; however, other designers using newer HDLC interface

chips with a noninverted data bus will be required to invert data in

software before it can be used.

B-13

The inversion of FTP data on the I/O network is not specifically

stated in any known CSDL AIPS documentation. It can be inferred from

a statement in paragraph 5.1.2 of appendix C of reference 4:

"Definitions of bit polarity and sense have been modified to reflect

what is seen by the AIPS system."

The effect of this bus inversion is as follows for an HDLC interface

chip with a noninverted data bus:

a.
A field - the device address must be inverted for a match. For

example, if a device is to have address 16#80#, the address must

be programmed as 16#7F#.

So C field -

inverted.

address.)

for a command frame the encoded address must be

(This results in the control field being the device

c. D field - all data must be inverted.

d. SC field - sum check must be computed for noninverted A, C, and D

field data, then inverted.

e. RB field - no action required as value does not matter.

f. FCS field - no action required; this value is computed within the

HDLC chip and is correctly sent and received by either inverted or

non-inverted bus HDLC interface chips.

P_Iq_S

i. IAPSA II Small-Scale System Description.

2. IAPSA II DIU Simulator Specifications - VMEbus Implementation.

B-14

3. VME Simulation Computer Experiment Bus Specifications.

o NASA Contractor Report: Advanced Information Processing System:

Input/0utput System Services, The Charles Stark Draper Laboratory,

Inc., Cambridge, MA, contract NAS1-18565, March 1989.

B-15

B-16

APPenDIX C: SMALL SCALE SYSTEM DIU SIMULATOR

1.0 INTRODUCTION

Implementation of the small-scale system of reference 1 requires

simulation of DIUs. DIUs interface sensors and actuators to the AIPS I/O

network and AIPS FTP.

The DIU simulator must be compatible with the hardware and software

protocols of the AIPS I/O network as described in references 2 and 5.

Their operation must also obey the experiment configuration and control

requirements of references 3 and 6.

2.0 I/O NETWORK INTERFACE REQ_S

See reference 2.

3.0 DIU SIMULATOR OPERATIONAL REQUIREMENTS

3.I COMMAND/RESPONSE PROTOCOL

Each DIU in the small-scale system must have a unique HDLC address.

All transactions in the small-scale system are input transactions that

consist of both a command frame from the FTP and a response frame from

the DIU simulator. Reference 5 specifies the command and response frame

formats used in the small-scale system.

A DIU simulator must screen each frame to determine whether it must

respond. A DIU simulator may only respond to command frames that include

its unique address. The HDLC address and encoded address fields should

be screened using hardware address screening capabilities typically found

in HDLC interface chips.

C-1

After a command frame passes address screening, the following conditions

must be met before a response frame is generated:

a. The sum check of all data received must be correct. (See ref. 2.)

b. No hardware detected errors may be present. (See below.)

c. The correct number of residual bits must have been received.

d. The frame ID portion of transaction must be defined for this DIU

address.

e. The correct number of bytes must have been received for the frame

ID.

%'hen a command frame meets validation criteria, the response frame

defined in reference 5 must be sent.

3.2 DIU RESPONSE TIME

The time required for an addressed DIU to validate a command frame and

begin transmission of a response frame to the FTP is called DIU response

time. An FTP that has requested a response frame will time out the

transaction if an addressed DIU does not reply within a user specified

time limit.

A DIU must respond no sooner than 4 _s and no later than 512 _s after

the closing flag of a command frame. Individual DIUs in a system may

have different response times.

The DIU default response time should be minimized. DIU response times

must be configurable to be greater than the default.

C-2

3.3 DIU SINULATOR P.F_OVERY TIME

The time required by an addressed DIU simulator CPU to complete action on

a transaction before it becomes ready to receive another frame is called

the DIU recovery time. During recovery time, the DIU simulator CPU is

unable to receive another frame.

Nhen more than one DIU simulator shares the same CPU, the interaction of

the DIU response time with the AIPS IOS turnaround time must be

considered when designing network chains and allocating DIU simulator

addresses to specific CPUs.

3.4 DIUERRORHANDLINC

The following error handling descriptions assume that a transaction that

contains an error has passed the HDLC interface chip's hardware address

screening.

3.4.1 Software-Detected Errors

The following errors must be detected by DIU simulator software:

a. Sum check (SC): A sum check error is logged by the DIU and no

response frame is sent.

b. Frame ID: A frame ID error is logged by the DIU and no response

frame is sent.

C. Data count:

incorrect

sent.

A data count error is logged by the DIU if the

number of bytes is received and no response frame is

d. Residual bits: A residual bit error is logged by the DIU and no

response frame is sent. (Node frames have 3 residual bits; DIU

frames have 5).

C-3

e. Long frame: If the received frame contains more than a specified

maximum number of bytes, a long frame error is logged by the DIU

and no response frame is sent.

3.4.2 ffardware Detected Errors

BDLC interface chips possess error detection logic. The following errors

must be detected by reading the appropriate register of the HDLC

interface chip:

as Zero Residual Bits. All transactions in the small-scale system

use non-zero residual bits. A transaction with 0 residual bits is in

error. The occurrence of zero residual bits is logged by the DIU and

no response frame is sent.

So Data Overrun. Occurs when data is not removed from a DIU interface

chip receive buffer fast enough to prevent overwriting data already

in the buffer. Data overrun is logged by the DIU and no response

frame is sent.

C. Frame check sequence (FCS) - used to detect transmission errors. It

is computed by the HDLC interface device in the DIU as a frame is

received. FCS error is logged by the DIU and no response frame is

sent.

d. Short frame - occurs when a closing flag is detected before all

expected BDLC fields have been received. Short frame is logged by

the DIU and no action is taken on FTP commands and requests.

Abort detect and Idle detect are not used in the AIPS RDLC protocol.

Both of these "errors" occur during normal network operation. They must

not be logged by the DIU and must not affect simulator operation.

C-4

3.5 NODES OF OPERATION

3.5.1 One-Port Single DIU Simulator

This mode simulates the operation of a typical DIU. Hardware address

screening should block frames not addressed to the DIU. Multlple

transactions in different chains for which different DIU responses are

required must be identified by a frame IV that occupies the Control field

of the FTP output frame. (See ref. 5.)

A separate physical interface to the I/O network must be provided for

each simulated DIU.

3.5.2 One-Port Multiple DIU Simulator

The operation of this mode must be identical to previous mode with the

exception that multiple DIUs must be accessible via a single physical

interface to the I/O network.

3.5.3 Network Probe

As a network probe, the DIU simulator should monitor and record all

network traffic occurring on both transmit and receive signal lines.

Limited error checking should be performed on data, and address screening

should not be used. No responses frames may be generated. Both FTP and

node transactions must be recorded.

3.6 EXPERIMENT SYNCIIRONIZATION

Intercomputer experiment synchronization is provided by the DIU simulator

sync and AIPS FTP sync lines. The status of these lines is present on

lines of the experiment bus within the simulator (see ref. 4).

Reference 3 describes the operation of the sync lines and the state

transitions for both the DIU simulator and the AIPS FTP.

C-5

An FTP sync line is provided to synchronize the DIU simulator to the

start of an experiment in the FTP. When the FTP sync line is in the STOP

state, no experiment is in progress. When an experiment begins, the FTP

sync llne is placed in the RUN state.

The DIU simulator sync line must be used as a handshake and qualifier for

use with the FTP. During initialization, the DIU simulator sync line

must be left in the STOP state. When the DIU simulator has completed

initialization, the line must be changed to the RUN state.

3.7 LOCAL EXPERIMENT TIME

Experiment time in the DIU simulator must begin with the transition of

the FTP sync line from STOP to RUN. Each tick is equivalent to one fault

tolerant clock (FTC) period of 4.125 _s. Experiment time must be

maintained as a 24-bit value representing the number of FTC ticks since

the start of an experiment.

3.8 FAILURE SIMULATION

No DIU failures will be used in the small-scale system testing.

3.9 DATA COLLECTION

Each DIU simulator must record internally generated timing data and

information received from the I/O network for later analysis. The

minimum data recorded shall include:

a. Number of bytes received, not counting flags or FCS bytes (I byte).

b. Time frame received relative to experiment start synchronization (3

bytes).

c. DIU address - the value of the address in the HDLC address field

(I byte).

C-6

d. Frame ID - the value of the frame ID field as defined in reference 5

(I byte).

e. Sequential frame count - the value received in the SFC fields of

reference 5 (2 bytes).

f. Error status of both hardware and software (2 bytes).

I

In lieu of the DIU address, frame ID, and sequential frame count, all

data received by the DIU simulator may be recorded.

REFERENCES

. NASA Contractor Report, Design of an Integrated Airframe/

Propulsion Control System Architecture, NASA contract NASI-18099,

May 1989.

2. AIPS I/0 Network Interface Requirements.

3. Small Scale System Experiment Start Synchronization.

4. VMEbus Experiment Bus Definition.

5. Small-Scale System I/O Network/DIU Configuration.

C-7

C-8

APPENDIX D: SMAI/.-SCALE SYSTEM IlO NETWORK FAULT INSERTION REQUIREMENTS

1.0 INTRODUCTION

The I/0 network fault inserter is used to cause failures in the small-

scale system I/O network for the purpose of studying the fault recovery

behavior of the AIPS system. This specification defines the requirements

that govern the design of the fault inserter.

2.0 I/O NETWORK INTERFACE

The I/O network fault inserter must be compatible with the AIPS II0

network as described in reference 2. Two connectors must be provided to

allow failing I/O network links and nodes: an in channel connector that

is electrically closest to the FTP and an out channel connector that is

farthest from the FTP.

3.0 I/O NETWORKCHAN_L FAILURE MODES

Each fault insertion channel must support the following faults on each

connector.

3.I NORMAL

Signals on the in and out connectors are passed through the fault

inserter with no modification other than a signal delay caused by the

fault insertion circuitry. This delay must be no greater than 100 ns.

3.2 PASSIVE FAILURES

When a passive failure is inserted, the output lines of the failed

connector must be set to logic 0. This failure will not actively

D-1

propagate to other devices connected to the AIPS I/0 network and will

only be detected by the lack of a response from a device that uses the

failed llnk.

3.3 A_ FAILURES

Vhen an active failure is inserted, the output lines of the failed

connector must be set to logic 1. The failure may be immediately

detected by the FTP if it is inbound; if it is outbound it may not be

detected until an addressed device fails to respond. An active failure

can block traffic to devices that do not use the failed link to connect

into the network.

4.0 FAILURE MODE CONTROL

All failure channels must be controllable by the simulation host VMEbus

computer. Scheduling of failures and their location must be easily

conflgurable by the experimenter.

4.1 FAULT INSERTION CHANNELS

Each physical I/0 network fault insertion channel must be assigned a

unique physical address. Enough channels must be available to fail from

one to five links simultaneously.

Each physical fault channel must be capable of being assigned to a

logical channel that will be the actual channel failed. Multiple

physical channels may be assigned to a single logical channel.

4.2 MAPPING PHYSICAL TO LOGICAL CHANNELS

Physical channels may be mapped to logical channels in any manner desired

as long as configuration of the fault inserter is easily accomplished by

the experimenter.

D-2

4.3 INDI"VZI}IIAL COI_]ECTOR FAULT CONTROL

Fault channel in and out connector modes must be individually

programmable. It must be possible to operate the two connectors in

similar and/or dissimilar modes.

Small-scale system testing requirements do not require this capability at

this time.

4.4 FADLT _K_I3EDIJL_I4G

Fault occurrence must be specified in microseconds after the occurrence

of FRUN (see ref. 3). The fault delay timer must operate from the common

simulation computer FTC reference timebase. User input in microseconds

must be converted to the required number of FTC ticks.

Accuracy of fault insertion timing shall be +/- I00 _s minimum with

respect to the transition to FRUN.

REFERENCES

i. NASA Contractor Report, Design of an Integrated Airframe/Propulsion

Control System Architecture, NASA contract NASl-18099, May 1989.

2. AIPS I/O Network Interface Requirements.

3. Small Scale System Experiment Synchronization.

D-3

D-4

APt_qDIX E: SMALL-SCALE SYSTEM NETWORK/DIU CONFIGURATION

The confiEuration of the small-scale system I/0 network is based on

the flight control computer reference configuration with the exception

that only two network interfaces are used.

Note: All addresses and IDs are in hexadecimal.

I.O IIDLC _SS AND FRAME ID ASSIGNMENTS

HDLC address allocation:

Root nodes: 0 - F

Network I: odd

Network 2: even

DIU nodes: 10 - 7F

Network i: I0 - 1F

Network 2: 20 - 2F

DIU: 80 - FE

Network 1: 80 - 8F

Network 2: 90 - 9F

Command frame IDs:

I00 Hz command:

Network 1:

Network 2:

0 - IF

O0 - OF

i0- IF

50 Hz command:

Network 1:

Network 2:

40 - 5F

40 - 4F

50 - 5F

25 Hz command:

Network 14

Network 2:

80 - 9F

80 - 8F

90 - 9F

E-I

Response frame IDs:

100 Hz response:

Netvork 1:

Netvork 2:

20 - 3F

20 - 2F

30 - 3F

50 Hz response:

Netvork 1:

Netvork 2:

60 = 7F

60- 6F

70 - 7F

25 Hz response:

Netvork 1:

Netvork 2:

AO - AF

AO - AF

BO - BF

Network I: fully simulated

Node na_e Node address

FC1 1

FC3 3

Sl 10

$2 11

CP1 12

CP2 13

CDL 14

CDR 15

N 16

LER 17

OFL 18

OFR 19

IFL IA

IFR 1B

TEL 1C

TER ID

RL 1E

RE 1F

E-2

DIU

name

DIU Command HDLC frame ID Response HDLC frame ID

address 100 Hz 50 Hz 25 Hz 100 Hz 50 Hz 25 Hz

Sl

$2

CP1

CP2

CDL

CDR

N

LER

OFL

OFR

IFL

IFR

TEL

TER

RL

RR

80 0

81 1

82

83

84

85

86

87

88 8

89 9

8A A

8B B

8C C

8D D

8E

8F

40

41

42

43

44

45

46

47

4E

4F

80

82

20

21

28

29

2A

2B

2C

2D

60

61

62

63

64

65

66

67

6E

6F

A0

A2

E-3

Network 2: partially simulated

Node name

FC2

FC4

DIU

name

S3

S4

CP3

CP4

CDL

CDR

N

LEL

OFL

OFR

IFL

IFR

TEL

TER

RL

RR

Node address

DIU Command HDLC frame ID Response HDLC frame ID

address 100 Hz 50 Hz 25 Hz 100 Hz 50 Hz 25 Hz

90 i0

91 11

92

93

94

95

96

97

98 18

99 19

9A IA

9B IB

9C IC

9D ID

9E

9F

50

51

52

53

54

55

56

57

5E

5F

9O

92

30

31

38

39

3A

3B

3C

3D

70

71

72

73

74

75

76

77

7E

7F

BO

B2

E-4

2.0 l_TgOgK TOPOLOGY

The network connections specified are derived from the flight control

computer reference configuration with the exception that only two root

nodes are used along with two FTP network interfaces.

Node ports are designated: node-address - node-port-number.

Ports are generally assigned as follows for a node:

-0 For root node, this is the inboard port that connects

to the nvtvork interface in the FTP.

For DIU nodes, this is the inboard port that results

from default network growth.

-1

-2

-3

Ports for network tnterconnecttvity

-4 Normal connection port for DIU

E-5

Network 1 connections:

Root node Port Node name Port Cable

FCl 1-0

1-1

1-2

1-3

1-4

GPC A NI

S2

FC3

Sl

IOS-1

11-0

3-1

10-0

FC3 3-0

3-1

3-2

3-3

3-4

GPC B NI

FCl

RR

RL

IOS-I

1-2

IF-2

IE-O

DIU node Port Node name Pot t Cable

Sl 10-0

10-1

10-2

10-3

10-4

FCl

OFL

CPI

DIU-SI

1-3

18-2

12-2

S2 Ii-0

ii-I

11-2

11-3

11-4

FCl

CP2

OFR

DIU-S2

1-1

13-0

19-0

E-6

DIU node Port Node name Port Cable

CP1

CP2

CDL

CDR

N

LER

12-0

12-1

12-2

12-3

12-4

13-0

13-1

13-2

13-3

13-4

14-0

14-1

14-2

14-3

14-4

15-0

15-1

15-2

15-3

15-4

16-0

16-1

16-2

16-3

16-4

17-0

17-1

17-2

17-3

17-4

CDL

CP2

Sl

DIU-CP1

$2

CDR

CPI

DIU-CP2

IFR

N

CPI

DIU-CDL

CP2

LER

IFL

DIU-CDR

RL

OFL

CDL

DIU-N

CDR

OFR

RR

DIU-LER

14-2

13-2

10-2

11-1

15-1

12-1

IB-I

16-2

12-0

13-1

17-0

IA-1

IE-2

18-1

14-1

15-2

19-1

IF-0

E-7

DIU node Port Node name Port Cable

OFL 18-0

18-1

18-2

18-3

18-4

IFL

N

S1

DIU-OFL

IA-0

16-1

I0-i

OFR 19-0

19-1

19-2

19-3

19-4

$2

LER

IFR

DIU-OFR

11-2

17-1

1B-O

IFL IA-0

IA-I

IA-2

IA-3

IA-4

0FL

CDR

TEL

DIU-IFL

18-0

15-3

1C-2

IFR IB-0

IB-I

IB-2

IB-3

IB-4

0FR

CDL

TER

DIU-IFR

19-2

14-0

ID-O

TEL iC-O

IC-I

IC-2

IC-3

IC-4

TER

RL

IFL

DIU-TEL

ID-2

IE-I

IA-2

E-8

DIU node Port Node name Port Cable

TER 1D-O

1D-1

1D-2

1D-3

1D-4

IFR

RR

TEL

DIU-TER

IB-2

IF-I

1C-0

RL IE-O

IE-I

1E-2

1E-3

1E-4

FC3

TEL

N

DIU-RL

3-3

IC-I

16-0

RR 1F-0

IF-I

1F-2

IF-3

1F-4

LER

TER

FC3

DIU-RR

17-2

1D-1

3-2

E-9

Network 2 connections:

Root node Port Node name Port Cable

FC2 2-0 GPC B IOS-2

2-1

2-2

2-3 FC4 4-3

2-4 DIU-FC2

FC4 4-0 GPC C IOS-2

4-1

4-2

4-3 FC2 2-3

4-4 DIU-FC4

3.0 DIU SIMULATOR BOARD ASSIGNMENTS

Network I:

DIU board/-port -I -2 -3 -4 -5 -6 -7 -8

NIDIUI S1 OFL IFL TEL CPI CDL N RL

NIDIU2 $2 OFR IFR TER CP2 CDR LER RR

Network 2:

DIU board/-port

N2DIUI

N2DIU2

-I -2 -3 -4 -5 -6 -7 -8

$3 OFL IFL TEL CP3 CDL N RL

$4 OFR IFR TER CP4 CDR LEL RR

E-IO

4.0 I/O CH_DgI_ONS

The I/O chains for the small-scale system are described below for the

test configuration using all input transactions. Each frame named

below corresponds to the previously defined HDLC frames.

Network I chains:

100 Hz:

$1, $2, OFL, OFR, IFL, IFR, TEL, TER

50 Hz:

SI, $2, CPI, CP2, CDL, CDR, N, LER, RL, RR

25 Hz:

Sl, CPI

Network 2 chains:

I00 Hz:

S3, S4, OFL, OFR, IFL, IFR, TEL, TER

50 Hz:

S3, $4, CP3, CP4, CDL, CDR, N, LEL, RL, RR

25 Hz:

$3, CP3

E-11

E-12

APPENDIX P: SHALL-SCALE SYSTEM I/O NEI"WOP,K _SACTIONS

The small-scale system is composed of 18 nodes with 16 DIU simulators on

network 1 and 2 nodes and 16 DIU simulators on network 2.

The command format to a DIU from the FTP is:

DIU address,

Encoded DIU address (complemented DIU address),

HDLC frame ID,

Sequential frame count (high byte),

Sequential frame count (low byte),

Padding characters (as required),

Sum check

DIU addresses are unique in networks 1 and 2.

HDLC frame IDs are unique in networks 1 and 2.

Padding characters may be changed at a later date.

The response format from a DIU to the FTP is:

DIU address,

Sum check,

HDLC frame ID,

Sequential frame count (high byte),

Sequential frame count (low byte),

Padding characters (as required),

Special pad character

F-1

Notes:

a. The DIU address in the response frame is the address of the DIU

generating the response frame.

be The special pad character (spec-pad) is required by a problem vlth

the design of the SCN68562 HDLC interface chip. The placement of the

sum check immediately following the DIU address in the response frame

does not violate AIPS protocol because no encoded address is used for

response frames and the definition for sum check only requires the

sum of all bytes sent to be zero.

Abbreviations used in the message definitions are:

sfc-lo - sequential frame count low byte

sfc-hl = sequential frame count high byte

sum-chk = sum check

spec-pad = special pad character

Note: All numbers in HDLC frame formats are in hexadecimal.

F-2

Network i DIU command HDLC frame format:

i00 Hz

Sl

S2

OFL

OFR

IFL

IFR

TEL

TER

80, 7F, 00, sfc-hi, sfc-lo, sum-chk

81, 7E, 01, sfc-hi, sfc-lo, sum-chk

88, 77, 08, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

89, 76, 09, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

8A, 75, OA, sfc-hl, sfc-lo, i0, 20, 30, 40, sum-chk

8B, 74, 0B, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

8C, 73, OC, sfc-hl, sfc-lo, i0, 20, 30, 40, sum-chk

8D, 72, 0D, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

50 Hz

Sl

S2

CPI

CP2

CDL

CDR

N

LER

RL

RR

80, 7F, 40, sfc-hi, sfc-lo, sum-chk

81, 7E, 41, sfc-hi, sfc-lo, sum-chk

82, 7D, 42, sfc-hi, sfc-lo, sum-chk

83, 7C, 43, sfc-hi, sfc-lo, sum-chk

84, 7B, 44, sfc-hl, sfc-lo, I0, 20, 30, 40, sum-chk

85, 7A, 45, sfc-hl, sfc-lo, I0, 20, 30, 40, sum-chk

86, 79, 46, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

87, 78, 47, sfc-hi, sfc-lo, i0, 20, 30, 40,
50, 60, 70, 80, 90, AO, B0, CO, sum-chk

8E, 71, 4E, sfc-hi, sfc-lo, 10, 20, 30, 40, sum-chk

8F, 70, 4F, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

25 Hz

S1

CPI

80, 7F, 80, sfc-hi, sfc-lo, sum-chk

82, 7D, 82, sfc-hi, sfc-lo, sum-chk

F-3

Network 1 DIU response HDLC frame format:

I00 Sz

S1

S2

OFL

OFR

IFL

IFR

TEL

TER

50 Hz

Sl

S2

CPI

CP2

CDL

CDR

N

LER

RL

RR

25 Hz

Sl

CPI

80, sum-chk, 20, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8
9, A, B, C, spec-pad

81, sum-chk, 21, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, spec-pad

88, sum-chk, 28, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

89, sum-chk, 29, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

8A, sum-chk, 2A, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,

spec-pad

8B, sum-chk, 2B, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,
spec-pad

8C, sum-chk, 2C, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

8D, sum-chk, 2D, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,
spec-pad

80, sum-chk, 60, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

81, sum-chk, 61, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

82, sum-chk, 62, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

83, sum-chk, 63, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

84, sum-chk, 64, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

85, sum-chk, 65, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

86, sum-chk, 66, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

87, sum-chk, 67, sfc-hi, sfc-lo, I, 2, 3, 4, 5, 6, 7, 8,

9, A, B, C, spec-pad

BE, sum-chk, 6E, sfc-hi, sfc-lo, I, 2, 3, 4, spec-pad

8F, sum-chk, 6F, sfc-hi, sfc-lo, I, 2, 3, 4, spec-pad

80, sum-chk, AO, sfc-hi, sfc-lo, 1, 2, spec-pad

82, sum-chk, A2, sfc-hi, sfc-lo, 1, 2, spec-pad

F-4

Network 2 DIU command HDLC frame format:

100 Hz

S3

S4

OFL

OFR

IFL

IFR

TEL

TER

50 Hz

$3

$4

CP3

CP4

CDL

CDR

N

LEL

RL

RR

25 Hz

$3

CP3

90, 6F, I0, sfc-hi, sfc-lo, sum-chk

91, 6E, ii, sfc-hi, sfc-lo, sum-chk

98, 67, 18, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

99, 66, 19, sfc-hi, sfc-lo, i0, 20, 30, 40, sum-chk

9A, 65, IA, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

9B, 64, IB, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

9C, 63, IC, sfc-hl, sfc-lo, I0, 20, 30, 40, sum-chk

9D, 62, ID, sfc-hi, sfc-lo, i0, 20, 30, 40, sum-chk

90, 6F, 50, sfc-hi, sfc-lo, sum-chk

91, 6E, 51, sfc-hi, sfc-lo, sum-chk

92, 6D, 52, sfc-hi, sfc-lo, sum-chk

93, 6C, 53, sfc-hi, sfc-lo, sum-chk

94, 6B, 54, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

95, 6A, 55, sfc-hi, sfc-lo, i0, 20, 30, 40, sum-chk

96, 69, 56, sfc-hi, sfc-lo, i0, 20, 30, 40, sum-chk

97, 68, 57, sfc-hi, sfc-lo, I0, 20, 30, 40,

50, 60, 70, 80, 90, A0, B0, CO, sum-chk

9E, 61, 5E, sfc-hi, sfc-lo, I0, 20, 30, 40, sum-chk

9F, 60, 5F, sfc-hl, sfc-lo, i0, 20, 30, 40, sum-chk

90, 6F, 90, sfc-hi, sfc-lo, sum-chk

92, 6D, 92, sfc-hi, sfc-lo, sum-chk

F-5

Network 2 DIU response HDLC frame format:

100 Hz

Sl

$2

OFL

OFR

IFL

IFR

TEL

TER

50 Hz

Sl

S2

CPI

CP2

CDL

CDR

N

LEL

RL

RR

25 Hz

Sl

CP1

90, sum-chk, 30, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, spec-pad

91, sum-chk, 31, sfc-hl, sfc-lo, I, 2, 3, 4, 5, 6, 7, 8,

9, A, B, C, spec-pad

98, sum-chk, 38, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

99, sum-chk, 39, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

9A, sum-chk, 3A, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,

spec-pad

9B, sum-chk, 3B, sfc-hi, sfc-lo, i, 2, 3, 4, 5, 6, 7, 8,

spec-pad

9C, sum-chk, 3C, trans-id, sfc-hi, sfc-lo, I, 2, 3, 4, 5, 6,

spec-pad

9D, sum-chk, 3D, sfc-hi, sfc-lo, I, 2, 3, 4, 5, 6, 7, 8,

spec-pad

90, sum-chk, 70, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

91, sum-chk, 71, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

92, sum-chk, 72, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

93, sum-chk, 73, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, spec-pad

94, sum-chk, 74, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

95, sum-chk, 75, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

96, sum-chk, 76, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

97, sum-chk, 77, sfc-hi, sfc-lo, 1, 2, 3, 4, 5, 6, 7, 8,

9, A, B, C, spec-pad

9E, sum-chk, 7E, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

9F, sum-chk, 7F, sfc-hi, sfc-lo, 1, 2, 3, 4, spec-pad

90, sum-chk, BO, sfc-hi, sfc-lo, 1, 2, spec-pad

92, sum-chk, B2, sfc-hi, sfc-lo, 1, 2, spec-pad

F-6

APPENDIXG: EXPERIMENT BUS DESCRIPTION

1.0 BACKGROUND

The simulation computer requires various handshaking lines, clock signals,

and so forth. These signals must be routed to the ISIO-2 DIU simulator

cards and the wire wrap card.

The OPIO-1 interface card does not use all of the VMEbus F2 connector pins.

The remaining pins are used to implement the experiment bus.

2.0 EXPERIMENT BUS SIGNALS

FTP Start Sync [F_SYNC]

TTL level signal: low = FTP stop high - FTP run

VME Start Sync [V_SYNC]

TTL level signal: low - VMEbus stop high = VMEbus run

External Event [X_EVENT]

TTL level signal: level is selectable under software control

Reference Fault Tolerant Clock [R_FTC]

TTL level signal: waveform, 4.125 _s period

Fault Strobe [FSTB]

TTL level signal: high - FDn data invalid low = FDn data valid

Fault Ack [FACK]

TTL level signal: high - waiting for data low = data accepted

Fault Data [FDO..FDT]

TTL level signals: high = logic 1 low = logic 0

G-I

3.0 EXPERIM]_]T BUS PIN _S'rGIQ4mqT

P2-

lC

2c

3c

17c

18c

19c

20c

20a

21c

21a

22c

22a

23c

23a

Name

[F_SYNC]

[V_Sn C]

[x_zvz rr]

[R_FTCI

[FACKI

[FSTB]

[FDO]

[FD1]

[FD2]

[FD3]

[FD4]

[FD5]

[FD6]

[FD7]

Description Logic

FTP Start Sync

VME Start Sync

External Event

Reference FTC

Fault Ack

Fault Strobe

Fault data bit 0

Fault data bit 1

Fault data bit 2

Fault data bit 3

Fault data bit 4

Fault data bit 5

Fault data bit 6

Fault data bit 7

Run / [Stop

Run / IStop

soft. select

n/a

active low

active low

non-inverted

non-inverted

non-inverted

non-inverted

non-inverted

non-inverted

non-inverted

non-inverted

Source

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

OPIO-I

G-2

APPENDIX H: VULTURE PROGRAMDETAILS

1.0 SUMMARY

The VME Ultimate User Environment (VULTURE) is a user-friendly set of

programs that provide the user with the tools required to quickly and

effectively comnunlcate wlth a VMEbus system. The purpose of VULTURE is

to remove users from the unfriendly confines of the VMEbus test system

and place them in an environment with which they feel comfortable.

Three basic capabilities are provided with the VULTURE system. The first

feature allows the user to establish or reestablish a communication link

between the MlcroVAX and the VHEbus system. The second capability allows

transfer of byte-orlented data between the two systems. The third

feature provides the user vlth a set of commands to manage and manipulate

files on the VHEbus system.

2.0 THIRD PARTY SOPT_ARE

VULTURE uses three software silicon components from Ready Systems. The

Versatile Real-Time Executive (VRTX) provides a real-time, multitasking

operating system for embedded microprocessor applicatlons. The I/O and

File Executive (IFX) provides input/output and file management

facilities. The C Runtime Library (RTL) provides a C programming

language interface to VRTX and IFX. The VULTURE software relies upon

these Ready Systems components to assist in managing the VMEbus system

and executing user commands.

3.0 FUNCTIONAL DESCRIPTION

Embedded systems often have a very unfriendly user environment. VULTURE's

function is to provide a well-known and robust environment for the user.

By using digital command language (DCL), VULTURE is able to provide the

user with the desired result.

H-1

Conceptually, VULTURE provides a subset of the VAX/VMS operating system

on a VMEbus platform.

4.0 C01OftINICATIONS PII(Ylq)COL

This section gives an overview of the three basic protocols used by

VULTURE. All communications between the MicroVAX and VHEbus system

originate in the MicroVAX. No unsolicited commands are recognized from

the VMEbus system.

All communications between the MicroVAX and the VMEbus system use VULTURE

command and response protocol via two hlgh-speed 16-bit parallel

interfaces, one for input and one for output. Each command or response

is sent as a 64-byte header record shown in figure H-I. Figure H-2 a

llst of each VULTURE command and the header fields they uses. Each

header record is followed by a long word sum check that is used to ensure

error free communications.

The three classes of protocols for communications between the MicroVAX

and VMEbus system are shown in figure H-3. Class 1 is used to initialize

or relnltialize the interface between the two systems. Class 2 is used

for most system management commands. Class 3 is used when data transfer

between systems is required.

4.1 CLASS 1 PROTOCOL

Class 1 protocol operates as follows:

a. The MicroVAX sets the interface function lines to a known state,

requesting a function line response from the VMEbus system.

So If a function line echo has been received within a timeout period,

the MicroVAX attempts to send a VRESET header to the VMEbus system,

followed by a long word sum check.

H-2

FUNCTION CODE

FLAGS

SPECIFICATION 1

SPECIFICATION 2

TRANSFER SIZE

STATUS

IDENTIFIER

PRIORITY

Data type No. bytes

unsigned int 4

unsigned int 4

I char array 20char array 20

int 4

unsigned int 4

unsigned int 4

unsigned Int 4

Total 64

Figure H-1. VULTURE Command�Response Header Format

1.1-3

DOWN LOAD

[CONTIGUOUS]

"v_IE dest filespec

VAX filesize

status

3

VCOPY

[CONTIGUOUSI

_IE somce file spc

*v'_lE dest file spec

status

2

VRENAME

VME source file spc

VME dest file spec

status

2

VSETDATE

VAX date and thne

status

UP LOAD

_,_IE som'ce file spc

_,_IE file size

status

I

3

i

_,rl)ELETE

%_IE som'ce file spc

status

I

_t

VRESET

[ISIO)CPUI

status

[ISIO ad&'ess]

112

VSTATUS

listing size

status

VCONVERT

[CONTIGUOUS]

VME source file spc

VbIE den filespec

status

_t

VDIR

[DATE] [SIZE]

_,'_IEdisknmue

listingsize

stoaus

3

I

VRUN

[ISlOl

W_IE file @ec

status

ISIO adth" I task id

task priority

x_

VSTOP

[HARD I ISIO]

status

ISIO atkh. Itaskid

Note:

,., 3 2
J,I

F'rotocol cl::-3..-;sis listed belc, w es/i._h header; header fortnat is shovm in figure H-1

Figure H-2. VULTURE Command Header Format
I-I-4

Class 1: Interface Reset

Function line VAX reset Send interface

I reset request tLfunction lines reset headerto VME • MicroVAX to VME Check sum

Micro- J l"_-interfacereset'_"V,/////'l 11
VAX _ A Acknowledge

/ request Echo of
header

VME

I_._E reset function lines

VME interface reset...

Check
sum

V////A B

Class 2: Simple Action Request

Command Check
Micro- header to VME sum

VAX I/////_
to

VME VME performs Response/
requested action status header

VME ',= = V/////,i

Check
sum

Class 3:

Micro-
VAX

Complex Action Request/Data Transfer

Command Check
header sum

r/////J

VME

Data
* Data check sum

Response/ Check . Data Response/ Check
status header sum Data check sum status header sum

P'/////] 9 k\\\'_'k\\'i _ I/////A

* Data are only sent in one direction at a time. The originator will depend on the command.

Legend:

Header

B Check sum

Data

J'_. Function line

Figure H-3. VUL TURE Communication Protocols

I-[-5

C. The VHEbus system sends a response header followed by a check sum.

If the header and sum check are correct, the interface has been

successfully reset.

Any tlmeouts or protocol errors result in an error message appearing on

the MicroVAX user's console.

4.2 CLASS 2 PROTOCOL

Class 2 protocol operates as follows:

a. The MicroVAX sends a header that identifies the function to be

executed followed by a sum check.

b. The VMEbus system executes the requested function and sends a

response header followed by a sum check. The status field of the

header is used to indicate errors which occurred during function

execution.

4.3 CLASS 3 PROTOCOL

Class 3 protocol operates as follows:

a. The MicroVAX sends a header that identifies the function to be

executed followed by a sum check.

b. The VMEbus system performs preliminary actions necessary to execute

the requested function and sends a response header followed by a sum

check. The status field of the header is used to indicate errors

that occurred during function execution.

C. The data are transferred. The number of bytes sent must match the

value in the appropriate command or response transfer count field.

The data transfer is followed by a check sum.

Ii-6

do The VMEbus system sends a response header followed by a check sum.

The status field of the header is used to indicate errors that

occurred during function execution.

5.0 ERROR HANDLING

Any errors that might occur during the execution of a command are

displayed on the user's MicroVAX terminal. The error messages are

generated by the VMS operating system based on the error code placed in

the STATUS field of the header returned by the VMEbus system. If an

unexpected error occurs on the VMEbus system, the VMEbus error code

(generated by VRTX or IFX) is returned to the MicroVAX to be displayed

along with a message telling the user that an unanticipated error has

occurred. The user can then reference the Ready Systems user's manuals

to determine the cause of the error.

6.0 BYTE SWAPPI_

Because of the differences in how the MicroVAX and VMEbus systems

internally represent data, a limitation must be imposed on what kind of

data can be transferred. Figure H-4 shows how the VAX and Hotorola chips

represent bytes, words, and longwords internally. As can be seen from

this figure, only byte-oriented data are stored in the same format.

Figure H-5 shows what happens to data after they have been sent from the

MicroVAX to the VMEbus system via the 16-bit parallel interface. Byte

data are again the only type of data that are consistent across the two

architectures.

Because most executable files can be created in an ASCII S record format,

and data files are usually in ASCII format, it was decided that all data

transfers would be byte oriented. If users want to use a different data

size, they should write a VMEbus-based program that unscrambles data

based on the specifications in figure H-5.

H-7

Data

VAX Internal

Representation

Motorola Internal

Representation

A B C D

3 2 1 0

Figure H-4a - Byte Data

3 2 1 0

F ©F Fa

AB CD

Figure H-4b - Word Data

ABCD

Figure H-4c - LongWord Data

Figure H-4. Intemal Data Representation

H-8

Data
VAX Internal

Representation

Motorola Internal

Representation After Transfer

A B C D

Figure H-5a - Byte Data

AB CD

Figure H-Sb - Word Data

ABCD

3 2 1 0

Figure H-Sc - Long',l.,,'ord Data

Figure H-5. Internal Data Representation After Transfer

H-9

7.0 MEMORY LAYOUT

Figure H-6 shows how the RAM on the VMEbus is arranged. This memory map

is reconflgurable by the user. The board support software routines

define how RAM is to be configured. See section ii for more information

on modifying the board support package.

8.0 EXAMPLE USER SESSION

Before VULTURE can be used, the VMEbus system must be running. VULTURE

becomes active as soon as the power to the Force CPU-29 card is supplied.

The user can tell that the communications software is active when the

VULTURE logo appears on the operator console connected to the CPU-29

card.

The date and time of the VMEbus system are set by issuing the VSETDATE

command. This is the usually the first command issued because it sets the

VNEbus system time to be the same as the MicroVAX time.

Next, all code for tasks is downloaded in S-record format using the DOWN-

LOAD command. The files are then translated into executable files using

the VCONVERT command. If any data files are needed at this point, they

too are downloaded to the VMEbus system.

The tasks can now be started by issuing the VRUN command. Once running,

the tasks can be monitored using the VSTATUS command. Once the tasks are

completed, the UP-LOAD command is used to retrieve any files that might

have been created during the execution of the tasks.

9.0 ROTARY DIAL SETTINGS

The VEMbus system has three modes of operation. The mode of operation is

specified by setting the rotary dials on the front of the CPU-29 card.

H-IO

0000 0000

0000 0400

0000 04F8

0000 04FC

0000 0500

0001 A000

0003 A000

0010 0000

00FC 0000

¥C00 0000

FC02 0000

FC04 0000

FC06 0000

FC08 0000

FCOA 0000

FC0C 0000

FCFF 0000

FF00 0000

FF02 0000

FF03 0000

FF04 0000

FF04 2000

FF04 6000

FF04 A000

FF80 0000

Exception Vector Table

Malloc Table

xtaskws (longword used by C RTL)

xncpown (longword used by C RTL)

Work Space

Dynamic Memory

SRAM Disk (1792 512 byte sectors)

DRAM Disk (29952 512 byte sectors)

Maximum Local RAM Address

DIU Simulator #i Controller and RAM

DIU Simulator #2 Controller and RAM

DIU Simulator #3 Controller and RAM

DIU Simulator #4 Controller and RAM

DIU Simulator #5 Controller and RAM

DIU Simulator #6 Controller and RAM

DIU Simulator #7 Controller and RAM

DMA Controller

VMEPROM

RTSCOPE

IFX

VRTX

C Runtime Library

Board Support Package Without RTSCOPE

Board Support Package With RTSCOPE

Local I/O Devices

Figure _& VULTURE VMEbus Memo_ Use

H-II

To have VULTURE run as a standalone system, rotary dial 1 should be

pointing to 3. If a debugging environment is needed on the VMEbus

system, rotary dial 1 should be set to B. In a debugging situation,

VULTURE runs under RTSCOPE, the Ready Systems real-time debugger. The

third possible mode of operation is VMEPROM, the native operating system

on the Force CPU-29 card. To bring up VMEPROM, rotary dlal i should be

pointing to F when the reset switch is toggled on the front of the CPU-29

card.

I0.0 WRITING AND COMPILING PROGRAMS

All code that is intended to be run on the CPU-29 card, whether written

in C or assembly language, must be written as relocatable code with a

base address of zero. All files that are destined to be downloaded to

and run on the VMEbus system should use the following qualifiers when

compiling:

c68k

/noinit

/norom

cpu=68881q

/long

/code=pc

/data=pc

/opt=all

/define=IFX

/stringsintext

a68k

/nolist

/flagsf"case,brl,pcr,e,pffi68020"

H-12

The interface libraries for IFX, VRTX, and the C runtlme library must be

loaded along with the object code for the task. In addition, the public

symbol, C-RTL-BASE, must be specified as the base address of the C

runtlme library in RAM. All code should be generated with a base address

of zero. The following is an example of a linker/loader file:

CHIP 68020

LIST C,O,T,X

ORDER 0,9,14,15

PUBLIC C-RTL-BASE=$FF042000

BASE 0

**** Put your own routines between here ****

LOAD test

**************** and here ******************

LOAD

LOAD

LOAD

FORMAT

END

FC-LAB:[VME.LIBRARY.C-RTL]C-RTL-IL

FC-LAB:[VME.LIBRARY.ASM-SRC]IFXIL.LIB

FC-LAB:[VME.LIBRARY.ASM-SRC]VRTXIL.LIB

S

If the code is intended to be run on the ISIO cards, no IlO or dynamic

memory allocation can be used and the C interface library should not be

linked in. Instead, the actual C library should be linked in. The

following is an example of a linker/loader file for files that will be

run on the ISIO cards:

CHIP 68020

LIST C,O,T,X

ORDER 0,9,14,15

BASE 0

**** Put your own routines between here ****

LOAD

test

**************** and here ******************

LOAD FC-LAB:[VME.LIBRARY.C-RTL]C-RTL.LIB

H-13

LOAD
LOAD

FORMAT

END

FC-LAB:[VME.LIBRARY.ASM-SRCIIFXIL. LIB

FC-LAB:[VME.LIBRARY.ASM-SRCIVRTXIL.LIB

S

11.0 HOV TO BUILD VULTURE

Depending on user requirements, it may become necessary to reconflgure

VULTURE. The actual VULTURE code should not be changed; instead, the

board support package (BSP) should be modified. Once modified, the BSP

can be recompiled and loaded with little effort. The challenge comes

when trying to put the BSP in PROM.

To make VULTURE and the BSP programmable, the following qualifiers were

used during compilation:

c68k

Inoinit

/norom

Icpu=68881q

/long

/code=pc

Idata=abs

/opt=all

Idefine=IFX

Istringsintext

a68k

/nolist

Command files assist in the building of all software that goes into PROM.

All of these command files can be found in the software tape.

H-14

The first command file is BUILD-C-RTL.COM. This command file creates

both the C runtime interface library and a programmable version of the C

runtlme library. After the command file completes, two files should be

used. The first file, C-RTL-IL.OBJ, should be included in all C code that

is designed to run under VULTURE. The second file, PROM-RTL.ABS, is the

relocatable C runtime library, ready to be placed in PROM.

The second command file is BUILD-BSP.COM. This command file creates the

basic board support software. Before executing this command file, the

user should make sure that the old BSP.LIB has been deleted. In

addition, at the time this document was prepared, the MRI C compiler

generated bogus code when compiling IFX-SETUP.C. If an error occurs

assembling the file the C compiler generates, simply change the BRA.S on

the flagged line to a BRA in the IFX-SETUP.SRC file. If the BSP.LIB file

still exists when the new library file is attempted, an error will occur

and the new library will not be created. Two important files are created

from this command file. The first file, BSP.OBJ, must be the first file

included in the option file for the communications software discussed

later. The second file, BSP.LIB, is a library file that should also be

included in the options file for the communications software. The file,

CPU29.INC, determines whether RTSCOPE will be linked with the BSP or not.

To configure RTSCOPE, uncomment/comment out the corresponding lines in

CPU29.INC, which can be found approximately 50 lines down from the top of

the file.

The third command file is BUILD-COMM.COM. This file creates the

relocatable code for the VULTURE communications software. This file

compiles all the software and then links it together with the board

support package. The file BSP.ABS contains the relocatable

communications software once the command file has finished executing.

The user should create two versions of BSP.ABS, one that has RTSCOPE

linked in and one that does not.

H-15

Once a relocatable version of VULTURE exists (BSP.ABS) it can be burned

into PROM. The following instructions show how to burn VULTURE into

PROM. All VMEPROM commands are prefixed with a question mark (?), and

all VMS commands are prefixed with a dollar sign ($).

i. Clear the memory on the VMEbus system.

? BF 6000 FBFFFC 0 L

2. Move the current relocatable copies of VMEPROM, RTSCOPE, IFX

and VRTX from PROM to RAM.

? BM FF000000 FF041FFF A00000

3. Using the serial port LTA4:, download the relocatable C runtime

library. The code will "land" at 10000.

? LO <2

$ COPY PROM-RTL.ABS LTA4:

4. Place the C runtime library right after the silicon software

components that were downloaded from PROM in step 2.

? BM I0000 13FFF A42000

5. Using the serial port LTA4:, download the board support package that

does not use RTSCOPE. The code will "land" at 80000.

? L0 <2

$ COPY BSP-NO-RTSCOPE.ABS LTA4:

6. Place this version of the board support package after the C runtime

library.

? BM 80000 83FFF A46000

H-16

7,

So

Using the serial port LTA4:, download the board support package that

does use RTSCOPE. The code will "land" at 80000.

? L0 <2

$ COPY BSP-RTSCOPE.ABS LTA4:

Place this version of the board support package after the other

version of the board support package.

? BM 80000 83FFF A4A000

9. Modify the board support package located at 80000 so that it does not

zero DRAM.

? DI 80000

80000

80006

8000A

8000C

8000E

80010

80014

8001A

8001E

80022

80O28

8002A

MOVE.L #$88,A0

LEA.L ($80010,PC),AI

NOP

MOVE.L AI,(A0)

TRAP #2

MOVE.W #$3700,SR

MOVE.L #$A30,A7

JSR ($8083C,PC)

JSR ($80224,PC)

CLR.L ($191C4).L

MOVEQ.L #0,DI

MOVE0.L #$I,D2

More (cr) ?

? AS 8001A

<--- enter a period, .

H-17

8001A

8001C

8001E

user input \

: JSR ($8083C,PC) \

: NOP <- I

: BTST.B #$BA,-(AO) [

: NOP < I

:JSR ($80224,PC) /

: . <-

? DI 80000

80000

80006

8000A

8000C

8000E

80010

80014

8001A

8001C

8001E

80022

80028

8002A

MOVE.L #$88,A0

LEA.L ($80010,PC),AI

NOP

MOVE.L AI,(AO)

TKAP #2

MOVE.W #$3700,5R

MOVE.L #$A30,A7

NOP

NOP

JSR ($80224,PC)

CLR.L ($191C4).L

MOVEQ.L #0,DI

MOVEQ.L #$I,D2

More (cr) ? <--- enter a period, •

10. From a terminal server, connect to VME-AUX.

LOCAL> C VME-AUX

H-18

11. Run the modified board support package.

? GO 80000

12. Enter a GO at the RTSCOPE prompt on VME-AUX. This will cause the

VULTURE software to begin execution.

RC> GO

13. Load the executable version of the S record split program to the

SRAM disk of the VMEbus system. The file it resides in is called

SPLIT.EXE.

$ DOWN-LOAD/CONTIGUOUS SPLIT.EXE SRAM:SPLIT.EXE

14. Execute the split program.

$ VRUN/TASK-ID=II SRAM:SPLIT.EXE

15. On the VULTURE op console, enter the addresses from which the split

of memory should occur. The addresses should correspond to the

location on RAM where the programmable software resides.

Starting address: A00000 <

Ending address: A4DFFF <.... /

user input

16. Wait for the split task to complete. The VSTATUS command can be

used to monitor its activity.

17. Upload the files from the DRAM disk that contain the split of

memory.

$ UP-LOAD SPLIT0.S SPLITO.S

$ UP-LOAD SPLITI.S SPLITI.S

$ UP-LOAD SPLIT2.S SPLIT2.S

$ UP-LOAD SPLIT3.S SPLIT3.S

H-19

18. Initialize four INTEL 27010 PROMs by placing them under the

ultraviolet light for 20 min.

19. Hook the DATA I/O prom burner up to the TXA7: port on the MicroVAX.

20. Allocate and set host to TXA7: on the MicroVAX.

$ ALLOCATE TXA7:

$ SET TERM/HOST TXA7:

$ SET HOST/DTE TXA7:

21. Change the NULL COUNT on the DATA I/0 prom burner.

press SELECT

press D9

press START

press 01

press START

22. Put the prom burner in remote terminal mode. This should cause a

menu to be displayed on the MicroVAX.

press SELECT

press E1

press START

23. Cancel the terminal mode on the prom burner.

press SELECT

24. Return the MicroVAX to the DCL level.

press CTRL\

H-20

25. Choose Motorola S record format for the prom burner.

press SELECT

press 87

press START

26. Clear the prom burner's RAM.

press SELECT

press A4

press START

27. Prepare the prom burner to receive the first split file. You must

know how big the memory that was split is. This can be calculated

by subtracting the starting address used in step 15 it from the

ending address, then adding 1 to it. Divide this number by four.

This is the size of each split file.

press INPUT

enter 0

press START

enter 13800

press START

press 0

press START

press START

<-- port input address

<-- the size of each split file

<-- input RAM address

<-- this causes the prom burner to wait for data

28. Copy the split file from the MicroVAX to the prom burner.

$ COPY SPLITO.S TXA7:

29. Take note of the check sum displayed at the completion of the

transfer.

H-21

30. Place an INTEL 27010 chip into the prom holder on the prom burner.

31. Burn the PROM.

press PROG

enter 0

press START

enter 13800

press START

enter 0

<-- starting address

<-- size of code in prom burner's RAM

<-- program RA/4 address

if prom burner displays "P6 FAM xx PIN xx" then

press SCROLL

press START

press SCROLL until "INTEL" appears

press START

press SCROLL until "27010" appears

press START

end if

press START

32. Make note of the check sum and be sure the last four digits match

the last four digits of the check sum given in step 29. If they

don't, the INTEL 27010 chip must be reinltialized as described in

step 18, and steps 26 through 31 must be repeated.

33. Repeat steps 26 through 32 for the remaining split files (i.e.,

SPLIT1.S, SPLIT2.S, and SPLIT3.S).

34. Carefully replace the prom chips on the CPU-29 card, remembering

that the SPLIT0, SPLIT1, SPLIT2 and SPLIT3 files represent the UPPER

UPPER, UPPER MIDDLE, LOWER MIDDLE, and LOWER LOWER bits,

respectively.

B-22

12.0 (}{Y_CX REFERENC_ GUIDE

DOWN-LOAD [/[NO]CONTIGUOUS] mlcrovax-filename vme-filename

Transfers a file from the MicroVAX to the VMEbus.

UP-LOAD vme-filename microvax-filename

Transfers a file from the VMEbus to the MicroVAX.

VCONVERT [/[NO]CONTIGUOUS] source-filename dest-filename

Translates an S record file on the VMEbus into an executable image.

VCOPY [/[NO]CONTIGUOUS] source-filename dest-filename

Duplicates a file on the VMEbus.

VDELETE vme-filename

Removes a file on the VMEbus.

VDIR [/DATE] I/SIZE] [/OUTPUT=filenamel disk-name

Transfers a directory of the VMEbus to the MicroVAX.

VRENAME old-filename nev-filename

Changes a filename on the VMEbus.

VRESET [/CPU] [/ISIO=address]

Reestablishes the communication link between the MicroVAX and VMEbus

or resets the CPU-29 or ISIO cards.

H-23

VRUN /TASK-IDffinumber [/PRl0RITYfnumberl vme-filename

VRUN /ISIOfaddress vme-filename

Begins execution of a file on the VMEbus or ISI0 card.

VSETDATE

Assigns the date on the VMEbus to be equal to the MicroVAX date.

VSTATUS

Displays the task ID, priority, and status of all the tasks residing

on the VMEbus.

VSTOP [/HARD] [/ISI0=address] [task-id]

Terminates execution of a task created with the VRUN command.

13.0 USER'S MANUAL

13.1 DOll LOAD

This command transfers a file from the MicroVAX to the VMEbus system.

Format

DOWNLOAD microvax filename vme filename

Parameters

microvax filename

Specifies the name of the microvax input file to be downloaded.

Nildcards cannot be used in the file specification.

H-24

vine filename
m

Specifies the name of the VMEbus system output file into which the

input file will be copied, gildcards cannot be used in the file

specification.

Description

The DO_NLOAD command copies a file residing on the MicroVAX to a VMEbus

system file. If a file exists on the VMEbus system with the same file

name as the user-specified output file, the existing file is replaced by

the downloaded file. The creation date for the new file is set to the

current time and date of the VMEbus system.

Qualifier

/CONTIGUOUS

/NOCONTIGUOUS (default)

Indicates whether the output file is to be contiguous, that is, whether

the file must occupy consecutive physical disk blocks. This qualifier is

only applied to the output file.

This qualifier should be used if the output file will be executed using

the VRUN command after it has been downloaded.

13.2 UP LOAD

This command transfers a file from the VMEbus system to the MicroVAX.

Format

UPLOAD vme filename microvax filename

H-25

Parameters

vme filename

Specifies the name of the VMEbus system input file to be uploaded.

Wildcards cannot be used in the file specification.

microvax filename
m

Specifies the name of the MicroVAX output file into which the input file

will be copied. Wildcards cannot be used in the file specification.

Description

The UPLOAD command copies a file residing on the the VMEbus system to a

MicroVAX file. The creation date for the new file is set to the current

time and date of the MicroVAX system.

13.3 VCONVERT

This command translates a VMEbus S record file into an executable file.

Format

VCONVERT source filename dest filename

Parameters

msource filename

Specifies the name of the input file to be converted. Wildcards

cannot be used in the file specification.

H-26

dest filename

Specifies the name of the output file into which the input file will

be converted. Vildcards cannot be used in the file specification.

Inscription

The VCONVERT command translates an S record file on the VMEbus system

into an executable file. The new executable file also resides on the

VMEbus system.

Specifying the same filename for both the source file and the destination

file is not recommended. The probability of corrupting the data in the

file is quite high.

The creation date for the new file is set to the current time and date of

the VMEbus system.

Qualifier

/CONTIGUOUS (default)

/NOCONTIGUOUS

Indicates whether the output file is to be contiguous, that is, whether

the file must occupy consecutive physical disk blocks. This qualifier is

only applied to the output file.

This qualifier should be used if the output file will be executed using

the VRUN command.

13.4 VCOPY

This command duplicates a file on the VMEbus.

H-27

Format

VCOPY source filename dest filename
m

Parameters

source filename

Specifies the name of the input file to be copied. Wildcards cannot

be used in the file specification.

dest filename
i

Specifies the name of the output file into which the input file will

be copied. Wildcards cannot be used in the file specification.

Description

The VCOPY command creates a new file, which is identical in contents and

attributes to the input file.

Specifying the same filename for both the source file and the destination

file is not recommended. The probability of corrupting the data in the

file is quite high.

The creation date for the new file is set to the current time and date of

the VMEbus system.

Qualifier

/CONTIGUOUS

/NOCONTIGUOUS (default)

H-28

Indicates whether the output file is to be contiguous, that is, whether

the file must occupy consecutive physical disk blocks. This qualifier is

only applied to the output file.

This qualifier should be used if the input file is in executable format

and the new output file will be executed using the VRUN command.

13.5 VDELE'I_

This command removes a file on the VMEbus.

Format

VDELETE vme filename

ParaReter

vme filename

Specifies the name of the file to be deleted. _ildcards cannot be

used in the file specification.

Description

The VDELETE command removes a file residing on the VMEbus system.

It is important to remember that an executable file should never be

deleted until it is certain that there are no tasks executing out of

that file. Deletion of a file that a task is executing out of could

potentially have disastrous effects on the entire VMEbus system.

13.6 VDIR

This command provides a directory listing of a VMEbus disk.

H-29

Fo1_at

VDIR disk name

Parameter

diskname

Specifies the disk on the VMEbus system from which the directory

information is to be obtained.

Description

The VDIR command obtains directory information of a given VMgbus

disk. This information can then be displayed on the screen or routed

to a file.

Qualifiers

/DATE

Indicates that the date and time of last modification should be

displayed along with the file name. The date and time of last

modification can be either the creation date of the file or the

last date the file was changed. The date and time are displayed in

MM-DD-YY HH:MM:SS format.

/SIZE

Specifies that the size of the file should be displayed in addition

to the file name. The size of the file is specified in bytes.

H-30

/OUTPUT=filename

Indicates that the listing of the directory should be sent to a file

instead of to the screen. If this qualifier is left off, the output

of the directory defaults to the screen.

13.7

This command changes the name of a file on the VMEbus.

Format

VRENAME old_ft len.ame new_.f i lename

Parameters

old fllename

Specifies the name of the input file to be renamed. Nildcards cannot

be used In the file specification.

new filename

Specifies the name to which the input file should be changed.

Description

The VRENAME command changes the file name of a VMEbus system. No other

attributes of the file are affected by the file name change.

13.8 VRESET

This command reestablishes the communication link between the MicroVAX

and VMEbus.

H-31

Format

VRESET

Description

The VRESET command resets different aspects of the VMEbus system.

If no qualifiers are specified, this command reopens the communication

link between the MicroVAX and VMEbus after the link has hung. If the CPU

qualifier is specified, the CPU-29 card is reset. If the ISIO qualifier

is specified, the ISIO card identified by the inputed address is reset.

To reestablish the communication link, the VMEbus communication task is

deleted and any pending I/O requests are cancelled. The VHEbus

communication task is then recreated, thus reopening the communication

llnk between the two systems.

If the system is still hung after a VRESET command is issued, the system

must be reset via a hard reset. A hard reset causes the system to return

to its initial state. This will cause all files to be lost and all task

to be deleted.

The VRESET command will not affect the execution of any user created

tasks or the state of any files used by these tasks.

Care should be taken when using the VMEbus system so that the VRESET

command does not need to be issued. It is possible that very large

segments of dynamic memory could be lost if a VRESET is done because

a file transfer was abnormally exited (e.g., entering CTRL-C during a

DONN-LOAD or UP-LOAD). This could cause the transfer rates to deteriate

dramatically, and if done too frequently may cause the VMEbus system to

hang, necessitating a hard reset.

H-32

Qualifiers

/CPU

Indicates that the CPU-29 card should be reset without resetting any

peripheral cards. This is done by transferring control to the board

level support code. This qualifier cannot be used in conjunction

with the /ISI0 qualifier.

/ISIO.address

Indicates that an ISI0 card should be reset. The entered address

specifies which card will be reset.

This qualifier cannot be used in conjunction with the /CPU qualifier.

13.9 VRUN

This command begins execution of a file on the VMEbus or ISI0 card.

Format

VRUN vme filename

Parameter

vme filename

Specifies the name of a VMEbus file that should be executed. This

file must be in executable format. To change an S record file into

an executable file, use the VCONVERT file.

If this file is to be executed on the VMEbus it must be a contiguous

file. Contiguous files can be generated using VCONVERT, VCOPY, or

DOWN LOAD.

H-33

Description

The VRUN command begins execution of a file.

If the ISI0 qualifier is specified, the VMEbus file is copied into the

given ISIO card address. The copied file is then executed by the 68010

processor on the ISIO card.

If the ISIO qualifier is absent, a task is created to begin executing

out of the VMEbus file. This means that the file will be executed on

the CPU-29 card in a multitasking environment.

Qualifiers

/TASK-IDJnumber

Indicates the integer value that will be associated with the task

that is created to execute the file.

This qualifier cannot be used in conjunction with the /ISIO

qualifier. If the /ISIO qualifier is not specified, then the

/TASK ID qualifier must be used.

Valid task identifiers are integer values between 0 and 255. All

task identifiers must be unique, except for the special identifier

of 0. Many tasks can be created with an identifier of O, but tasks

with this identifier are special tasks. They cannot be deleted via

the VSTOP command. In addition, they will not be displayed when the

VSTATUS command is issued. For further information on tasks with

identifiers of 0 see the VRTX32/68020 User's Guide.

All tasks are created in user mode with interrupts enabled (interrupt

level 0).

H-34

The task identifiers of 2 and 3 are reserved for use by the

communication tasks.

/PRIORITYfnumber (default=64)

Specifies the priority at which the created task should run.

This qualifier cannot be used in conjunction with the /ISIO

qualifier.

Valid priorities are integer values between 0 and 255, with 0 being

the highest priority.

/ISIO-address

Indicates the address of an ISIO card to which the VMEbus file should

be copied to and run.

This qualifier cannot be used in conjunction with either the /TASK-ID

or the /PRIORITY qualifier.

The address should be specified in hexadecimal format, and should lie

in the CPU-29 address space.

The contents of the VMEbus file are copied to the given address.

address is then masked to determine the starting address in ISIO

address space. The starting address is then written to the

appropriate ISIO card, and the 68010 processor on the ISIO begins

execution of the code.

The

Files executed on an ISIO card will not appear when the VSTATUS

command is issued.

H-35

13. I0 VSE'rl)ATE

This command assigns the date and time on the VMEbus to correspond to the

MicroVAX.

Fonmt

VSETDATE

Description

The current date and time of the MicroVAX are read and sent to the VMEbus

system. The VMEbus upon receipt of the information sets its internal

clock to the date and time specified.

By default, the VHEbus system initializes to 01-01-70 00:00:O0 for a

date and time. If the VSETDATE command is not issued, all files will

be time stamped relative to the default date and time.

13. II VSTAI_JS

This command displays the task ID, priority, and status of all the tasks

executing on the VMEbus.

Format

VSTATUS

Description

The VSTATUS command shows the state of the multitasking environment on

the VMEbus system. All tasks, except those with identifiers of zero, are

displayed by showing their task identifier, priority, and current status.

Please refer to the VRUN command for more information of the identifier

H-36

and priority of a task. Please see the VRTX32/68020 User's Guide for

more information on how to interpret a task's current status.

Any files executing under the control of processors other than the 68020

on the CPU-29 card are not displayed. This means that files executing on

an ISIO card would not be displayed using the VSTATUS command.

13.12 vs'roP

This command terminates execution of a task created with the VRUN

command.

Fo_mt

VSTOP task id

Parameter

task id

Specifies the identifier of the task to be deleted.

identifier is the same as the one specified in VRUN.

The task

Description

If no qualifiers are specified the VSTOP command issues an IFX_ TDELETE

command to delete the specified task. The task will not be deleted until

it completes its current I/O call or until it makes its next I/O call.

If the HARD qualifier is specified, the VSTOP command issues a SC-TDELETE

command to delete the specified task. The task will be deleted without

regard to its current state or activity.

If the ISIO qualifier is specified, the halt program opcode will be

written to the ISIO card identified by the address entered.

H-37

The VSTOP command should not be used indiscriminately. It may cause

files to be left open and/or dynamic memory to be lost (the VMEbus system

does not do garbage collection). When these adverse affects accumulate,

the VMEbus system may hang, necessitating a hard reset.

Qualifiers

/_D

Requests that the task be deleted without waiting for the next I/0

operation to begin or complete.

This qualifier cannot be used in conjunction with the /ISIO

qualifier.

/ISIO=address

Indicates that the RALTPROG opcode should be written to an ISIO card.

The entered address specifies which card will be stopped. It is up

to the operating system on the ISI0 card to stop the currently

executing program.

This qualifier cannot be used in conjunction with the /BARD

qualifier.

N-38

APPENDIX I- Software Tape Listings

1.0 INTRODUCTION

This software tape contains copies of source files used to create the

small-scale system. No object, absolute, or listing files are included.

The source listings on this tape represent the software delivered with

the small-scale system for experimentation at NASA Langley in May, 1989.

2.0 TAPE FORMAT

The tape is 1600 bpi DEC VMS version 5.1 BACKUP format.

3.0 TAPE DIRECTORY STRUCTURE

The tape directory structure from the root SCRATCH directory is as

follows:

AIPS

SSS SW

FTPOTP A

FTPOTP B

FTPOTP C

FTPOTP D

FTPOTP E

FTPOTP F

FTP Ada software from CSDL templates

Ada software common to lower directories

Experiment I0

Experiment ii, tests 1 and 2

Experiment ii, test 3

Experiment 12 and 13

Experiment 14

Experiment 15

DIU

C

FRAMES

COMMON

DIU related utilites and source code

DEC VAX C for DIU addr screen and frame def

DIU addr assignment and frame def files

source files defining common memory params

I-i

INCLUDE

KERNEL

NORMAL

PROBE

include files for common symbols

DIU Kernel assembly 68010 assy language

DIU assembly 68010 assy language

Probe assembly 68010 assy language

EXPERIMENT

COM

Ell

T1

T2

T3

El2

El3

El4

El5

OTP

A

B

C

D

E

F

Experiment control *.COM files

common to all experiments

unique to Experiment ii

unique to test I

unique to test 2

unique to test 3

unique to Experiment 12

unique to Experiment 13

unique to Experiment 14

unique to Experiment 15

FTPOTP D patches

FTPOTP E patches

FTPOTP F patches

VME

CLOCK

CONTROL

FAULT

OPI0

SYNC

DNLOAD

VMEbus CPU experiment control and utilities

FTC source selection

Experiment control

Fault insertion control

OPIO interface test program

Manual synchronization routines

DIU data unload and formatting

VULTURE

BSP

COMM

VULTURE source for simulation computer control

Board support initializiation routines

VMEbus VULTURE source

I-2

C RTL

INCLUDE

SPLIT

VAX

Code to make C library sharable

Common include files

Split code for EPROM generation

VAX VULTURE source and .CLD files

3.0 TAPE DIRECTORY LISTING

Directory FC LAB:[SCRATCH]

AIPS.DIR;1

DIU.DIR;1

EXPERIMENT.DIR;1

VME.DIR;1

VULTURE.DIR;1

1 22-JUN-1989 16:12:50.57

1 22-JUN-1989 17:29:34.28

1 22-JUN-1989 17:49:04.95

1 22-JUN-1989 16:12:47.04

1 22-JUN-1989 16:12:42.83

Total of 5 files, 5 blocks.

Directory FC LAB:[SCRATCH.AIPS]

SSS SW.DIR;I 2 22-JUN-1989 16:13:39.84

Total of 1 file, 2 blocks.

Directory FC_LAB:[SCRATCH.AIPS.SSS_SW]

EXPERIMENT CONTROL.A;47

EXPERIMENT CONTROL B.A;10

FTPOTP A.DIR;1

FTPOTP B.DIR;I

FTPOTP C.DIR;I

FTPOTP D.DIR;I

FTPOTP E.DIR;I

FTPOTP F.DIR;I

11 7-APR-1989 16:45:51.24

10 5-MAY-1989 18:31:17.38

1 22-JUN-1989 16:13:52.63

1 22-JUN-1989 16:13:53.83

1 22-JUN-1989 16:13:55.52

1 22-jUN-1989 16:13:57.23

1 22-JUN-1989 16:13:59.18

1 22-JUN-1989 16:14:00.76

I-3

IOSS_COMM_SPEC_TASK_B.A;12 13 I-MAY-1989

IOSS DPM MAP B.A;9 55 31-MAR-1989

IOSS IOR SPEC B.A;55 73 3-MAY-1989

IOSS NET MGR CONFIG B.A;2 99 28-MAR-1989

IOSS_PONERUP_IOP_B.A;5 12 I-MAY-1989

SSS CENTRAL DATABASE B.A;2 79 27-MAR-1989

SSS CONSTANTS.A;10 11 29-APR-1989

SSS GLOBAL MEM UTIL B.A;4 14 12-APR-1989

SSS I0 REQUESTS.A;16 36 27-APR-1989

SSS_IO_REQUESTS_B.A;43 103 4-MAY-1989

SSS NET TYPES CONST.A;4 29 8-MAR-1989

TEST SHARED MEMORY DEFS.A;6 5 I-MAY-1989

14:36:47.22

14:06:34.32

11:01:28.87

13:04:44.83

14:18:44.71

11:41:22.97

11:08:48.37

11:22:35.22

17:57:23.03

15:00:08.67

15:46:21.66

20:33:12.80

Total of 20 files, 556 blocks.

Directory FC_LAB:[SCRATCH.AIPS.SSS_SW.FTPOTP_A]

SSS MAIN INIT CP.A;6 6 8-FEB-1989

SSS_MAIN_PROG_CP.A;5 17 28-MAR-1989

SSSMAINPROG_IOP.A;7 8 28-MAR-1989

17:12:35.84

18:23:27.94

18:21:55.94

Total of 3 files, 31 blocks.

Directory FC_LAB:[SCRATCH.AIPS.SSS_SW.FTPOTP_B]

SSS MAIN INIT CP.A;I 3 26-APR-1989 18:15:14.93

SSS MAIN INIT CP B.A i0 29-APR-1989 16:58:06.01

SSS MAIN PROG CP.A;7 8 29-APR-1989 14:30:33.95

SSS MAIN PROG IOP.A;32 13 29-APR-1989 15:51:13.87

SSS OD APPLICATION TASKS.A;1 3 23-DEC-1988 10:27:18.25

SSS OD APPLICATION_TASKS B.A;63 79 29-APR-1989 17:03:44.68

Total of 6 files, 116 blocks.

I-4

Directory FC_LAB: [SCRATCH. AIPS. SSS_SN. FTPOTP C]

SSS MAIN INIT CP.A;19 11 29-APR-1989 17:22:46.47

SSS MAIN PROG CP.A;4 6 29-MAR-1989 11:38:07.50

55S MAIN PROG IOP.A;48 15 29-AFR-1989 17:01:37.84

SSS OD APPLICATION_TASKS.A;1 3 23-DEC-1988 10:27:18.25

SS$_OD_APPLICATION_TASKS_B. A _73 69 5-MAY-1989 18:40:33.29

Total of 5 files, 104 blocks.

Directory FC_LAB: [SCRATCH. AIPS. SSS_SW. FTPOTP_D l

IDLE_TIMER.A; i0 5 4-HAY-1989 04:03:12.24

SSS_MAIN_PROG_IOP. A; 14 15 1-MAY-1989 22:51:52.35

SSS OD APPLICATIONTASKS.A;2 4 29-APR-1989 19:40:21.09

SSS 0D APPLICATIONTASKS_B.A;65 86 22-JUN-1989 16:46:07.68

SSS 0D MAIN INIT CP.A;12 13 I-MAY-1989 23:24:25.85

SSS OD MAIN PROG CP.A;9 7 29-APR-1989 20:07:35.40

SSS_PER_APPLICATION_TASKS.A;4 4 29-APR-1989 20:09:15.05

SSS PER APPLICATION TASKS B.A;53 78 22-JUN-1989 16:52:02.66

SSS_PER_MAININIT_CP. A; 15 13 I-HAY-1989 23:23:49.18

SSS PER MAIN PROG CP.A;8 6 29-APR-1989 20:06:23.52

Total of 10 files, 231 blocks.

Directory FC_LAB: [SCRATCH. AIPS. SSS_SW. FTPOTP_E]

FAULT_SHARED_MEMORY_DEFS. A; 4 3 4-MAY-1989 19:27:31.59

IOP.A_ 1 18 3-HAY-1989 22:15:44.48

SSS MAIN PROG IOP.A;17 20 4-MAY-1989 19:37:54.63

SSS 0D MAIN_INIT_CP.A;15 21 4-HAY-1989 19:51:19.27

SSS OD MAIN PROG CP.A;9 7 29-APR-1989 20:07:35.40

SSS PER MAIN INIT CP.A;19 21 4-MAY-1989 20:00:25.85

SSS_PER_MAIN PROG_CP.A;8 6 29-APR-1989 20:06:23.52

I-5

Total of 7 files, 96 blocks.

Directory FC_LAB:[SCRATCH.AIPS.SSS_SW.FTPOTP_F]

SSS_IOREOUESTS.A;4 37 29-APR-1989

SSS IO REOUESTS_B.A;17 105 4-MAY-1989

SSS OD APPLICATION_TASKS_B.A;72 89 22-JUN-1989

SSS_PER_APPLICATION_TASKS_B.A;59 81 22-JUN-1989

21:03:47.63

21:07:17.34

16:52:07.20

16:55:48.46

Total of 4 files, 312 blocks.

Directory FC LAB:[SCRATCH.DIU]

C.DIR;I 1 22-JUN-1989

COMMON.DIR;I 1 22-JUN-1989

INCLUDE.DIR;1 1 22-JUN-1989

KERNEL.DIR;1 1 22-jUN-1989

NORMAL.DIR;1 1 22-JUN-1989

PROBE.DIR;I 1 22-JUN-1989

17:30:57.31

17:30:58.87

17:31:03.45

17:31:04.39

17:31:06.02

17:31:10.19

Total of 6 files, 6 block_.

Directory FC LAB:[SCRATCH.DIU.C]

DIU ADDR.H;I 3 7-MAR-1989

DIU CONSTANTS.H;1 3 16-NOV-1988

FRAMES.DIR;I 1 22-JUN-1989

FRAME DATA.C;1 18 13-APR-1989

FRAME ID.H;I 6 I-MAR-1989

FRAME TYPES.H;I 2 15-NOV-1988

MAKE_FRAME_FILE.C;1 21 7-APR-1989

NODE ADDR.H;1 2 7-MAR-1989

17:15:10.89

15:12:44.28

17:31:15.39

11:25:22.04

11:24:27.75

16:38:59.71

11:01:06.70

17:14:24.96

I-6

Total of 8 files, 56 blocks.

Directory FC LAB:[SCRATCH.DIU.C.FRAMES]

ALL DATA.DEF;I

ALL DATA.SRC;I

MAKE TABLES.COM;I

NIDIUI.DEF;I

NIDIUI.SRC;I

NIDIU2.DEF;I

NIDIU2.SRC;I

N2DIUI.DEF;I

N2DIUI.SRC;I

N2DIU2.DEF;I

N2DIU2.SRC;I

3 7-APR-1989 10:58:59.39

56 2-MAY-1989 11:13:27.17

2 2-MAY-1989 11:08:51.24

3 2-MAY-1989 11:04:42.33

23 2-MAY-1989 11:13:10.38

3 2-MAY-1989 11:05:03.40

20 2-MAY-1989 11:13:14.51

3 2-MAY-1989 11:05:25.40

22 2-MAY-1989 11:13:18.68

3 2-MAY-1989 11:05:13.31

20 2-MAY-1989 11:13:23.67

Total of ii files, 158 blocks.

Directory FC LAB:[SCRATCH.DIU.COMMON]

BUFFER ALLOCATION.SRC;I

BUFFER CONTROL.SRC;I

INTERFACE RAM.SRC;I

4 8-MAR-1989 16:19:54.91

9 9-APR-1989 22:11:20.81

5 II-APR-1989 10:34:07.02

Total of 3 files, 18 blocks.

Directory FC LAB:[SCRATCH.DIU.INCLUDE]

COMMAND KERNEL.INC;I

DEFS KERNEL.INC;I

DIU_ADDR.INC;I

DIU_ERROR.INC;I

DIU_SCREEN.INC;I

FRAME_ID.INC;I

31 9-APR-1989 18:03:51.64

5 22-FEB-1989 12:17:15.16

2 28-0CT-1988 15:16:34.21

2 I-MAR-1989 15:40:55.81

4 3-MAY-1989 23:49:21.72

5 28-0CT-1988 15:16:32.58

I-7

FRAME TYPES.INC;I

INCLUDE FILES.SRC;1

INTERFACE KERNEL. INC; 1
m

ISIO.INC;1

MC68230.INC;1

SCN68562.INC;1

3 22-MAR-1989 13:03:46.05

3 4-MAY-1989 00:07:23.59

9 11-APR-1989 10:26:15.96

15 25-FEB-1989 17:13:09.10

9 24-FEB-1989 ii:20:43.06

12 30-MAR-1989 11:04:52.14

Total of 12 files, I00 blocks.

Directory FC LAB:[SCRATCH.DIU.KERNEL]
D

KERNEL.OPT;I

KERNEL.SRC;I

2 1-MAR-1989 11:19:37.31

78 8-MAR-1989 16:30:30.55

Total of 2 files, 80 blocks.

Directory FC LAB:[SCRATCH.DIU.NORMAL]

ASM DIU.COM;I

DIU INIT.SRC;I

DIU_START.SRC;I

DIU_SVC.SRC;1

LINK_DIU.COM;1

NIDIUI.OPT;1

NIDIU2.0PT;I

N2DIUI.OPT;I

N2DIU2.0PT;I

1 31-MAR-1989 10:17:24.37

42 10-APR-1989 20:47:44.44

28 3-MAY-1989 14:03:03.41

95 3-MAY-1989 14:59:39.53

1 30-MAR-1989 18:04:04.83

3 2-MAY-1989 11:10:02.43

3 2-MAY-1989 11:10:12.28

3 2-MAY-1989 11:10:36.37

3 2-MAY-1989 11:10:27.15

Total of 9 files, 179 blocks.

Directory FC LAB:[SCKATCH.DIU.PROBE]

ADDR SCREEN.SRC;I

FAST PROBE SVC.SRC;I

23 3-MAY-1989 14:06:45.35

61 27-APR-1989 10:22:23.02

I-8

FPROBE.OPT;1 3 27-APR-1989 10:44:49.38

Total of 3 files, 87 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT]

COM.DIR;I

EII.DIR;I

EI2.DIR;I

EI3.DIR;I

EI4.DIR;I

EI5.DIR;1

OTP.DIR;1

1 22-JUN-1989 17:51:36.20

1 22-JUN-1989 17:52:05.91

1 22-JUN-1989 17:52:25.63

1 22-JUN-1989 17:52:28.38

1 22-JUN-1989 17:52:30.55

1 22-JUN-1989 17:52:35.83

1 22-JUN-1989 17:52:50.98

Total of 7 files, 7 blocks.

Directory FC LAB:[SCEATCH.EXPERIMENT.COM]

FAIL HI.COM;I

FAIL LO.COM;I

FAIL_NORM.COM;I

GET_DIU.COM;3

GET FTP.COM;2

RUN_DIU.COM;5

RUN EXP.COM;12

SET FTP.COM;I

SYMBOLS.COM;I1

UNL_DIU.COM;3

VME LOAD EXE.COM;I
-- m

VULTURE.COM;2

1 6-MAY-1989 01:37:19.21

1 6-MAY-1989 01:36:40.31

1 6-MAY-1989 01:58:38.29

3 17-MAY-1989 16:52:38.91

17 19-MAY-1989 11:46:23.55

3 17-MAY-1989 16:34:47.92

6 19-MAY-1989 12:33:06.56

7 19-MAY-1989 11:44:02.20

2 19-MAY-1989 12:26:14.44

2 17-MAY-1989 16:47:35.52

3 5-MAY-1989 22:48:32.21

2 5-MAY-1989 22:55:13.21

Total of 12 files, 48 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.Ell]

I-9

T1.DIR;1

T2.DIR;1

T3.DIR;1

1 22-JUN-1989 17:52:11.31

1 22-JUN-1989 17:52:13.36

1 22-JUN-1989 17:52:15.10

Total of 3 files, 3 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.EII.TI]

LD_B.COM;I 4 5-MAY-1989 23:21:35.56

Total of 1 file, 4 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.Eli.T2]

LD_B.COM;2

LD B.COM;I

4 22-JUN-1989 17:58:10.96

4 5-MAY-1989 23i21:35.56

Total of 2 files, 8 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.EI1.T3]

LD_C.COM;2 4 6-MAY-1989 00:35:41.62

Total of i file, 4 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.EI2]

LD_OD.COM;I

LD_PER.COM;I

1 18-MAY-1989 17:58:35.70

1 18-MAY-1989 17:58:19.52

Total of 2 files, 2 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.El3]

I-i0

1 18-MAY-198917:58:35.70

1 18-MAY-198917:58:19.52

Total of 2 files, 2 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.E14]

LD_0D.COM;4

LD_PER.COM;3

1 18-MAY-1989 18:07:25.88

1 18-MAY-1989 18:07:57.11

Total of 2 files, 2 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.E15]

LD 0D.COM;5

LD PER.COM;4

1 18-MAY-1989 18:10:19.37

1 18-MAY-1989 18:10:40.34

Total of 2 files, 2 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.OTP]
w

A.DIR;I

B.DIR;I

C.DIR;I

D.DIR;I

E.DIR;I

F.DIR;I

1 22-JUN-1989 17:52:58.55

1 22-JUN-1989 17:52:59.87

1 22-jUN-1989 17:53:01.53

1 22-JUN-1989 17:53:02.76

1 22-JUN-1989 17:53:04.82

1 22-JUN-1989 17:53:06.92

Total of 6 files, 6 blocks.

Directory FC LAB:[SCRATCH.EXPERIMENT.OTP.D]

PATCH IOP.COM;I 1 18-MAY-1989 17:47:01.10

I-ll

Total of 1 file, 1 block.

Directory FC LAB:[SCRATCH.EXPERIMENT.OTP.E]

PATCH IOP.COM;2 1 18-MAY-1989 18:05:36.48

Total of I file, 1 block.

Directory FC LAB:[SCRATCH.EXPERIMENT.OTP.F]

PATCH IOP.COM;I 1 18-MAY-1989 18:09:22.36

Total of 1 file, 1 block.

Directory FC LAB:[SCRATCH.VME]

CLOCK.DIR;1

CONTROL.DIR;1

C SYMBOLS.COM;2

FAST_OPIO.0PT;2

FAST OPIO.SRC;2

FAULT.DIR;I

INIT UTIL.SRC;5

OPIO.DIR;1

OPIO INIT.SRC;18

SYNC.DIR;I

UNLOAD.DIR;I

1 22-JUN-1989 17:39:04.81

1 22-JUN-1989 17:39:06.53

1 22-JUN-1989 17:48:32.12

1 16-jUN-1988 16:31:07.40

7 7-JUN-1988 15:19:00.30

1 22-JUN-1989 17:39:08.78

7 16-JUN-1988 17:29:01.46

1 22-JUN-1989 17:36:40.73

8 26-0CT-1988 16:57:51.98

1 22-JUN-1989 17:39:10.70

1 22-JUN-1989 17:39:12.52

Total of ii files, 30 blocks.

Directory FC LAB:[SCRATCH.VME.CLOCK]

VFTC.C;1 4 6-APR-1989 11:14:51.73

1-12

VFTC. OFT; 1 2 6-APR-1989 11:16:51.57

Total of 2 files, 6 blocks.

Directory FC LAB:[SCRATCH.VME.CONTROL]

CONTROL.COM;1

C0brlRROL.DAT;4

C0brrROL.EDIT;I

CONTROL.01_;2

CONTROL TASK.C;41

1 6-APR-1989 11:06:03.03

2 6-APR-1989 14:16:52.89

2 5-APR-1989 18:01:32.42

2 5-APR-1989 19:28:25.12

28 11-APR-1989 10:41:33.70

Total of 5 files, 35 blocks.

Directory FC LAB:[SCRATCH.VME.FAULT]

FAULT.DAT;1

FAULT.EDIT;1

FAULT.FDL;2

FAULT BUS INIT.C;4

FAULT_ISR.SRC;17

FAULT_TASK.C;77

FBUSINIT.OPT;1

FINSERT.OPT;3

LOAD TIMER.SRC;6

PRINT_FAULT.C;ll

2 5-APR-1989 17:54:35.34

3 4-APR-1989 19:29:31.57

1 5-APR-1989 09:11:03.00

4 10-APR-1989 12:00:46.33

6 5-APR-1989 13:28:44.58

12 IO-APR-1989 11:36:09.34

2 lO-APR-1989 11:43:30.42

2 4-APR-1989 19:16:06.22

3 5-APR-1989 10:35:10.75

3 9-APR-1989 20:08:48.33

Total of I0 files, 38 blocks.

Directory FC LAB:[SCRATCH.VHE.SYNC]

ASSERT.C;2

ASSERT.OPT;2

FBUS.C;2

3 10-APR-1989 00:39:22.05

2 IO-APR-1989 00:44:32.15

3 IO-APR-1989 00:59:07.61

1-13

FBUS. OPT; 1

FSYNC. C; 14

FSYNC. OPT; 1

GSYNC.C; 1

GSYNC. OPT; 1

VSYNC. C; ii

VSYNC. OPT; 3

2 10-APR-1989 00:44:44.77

4 10-APR-1989 01:07:49.60

2 9-APR-1989 20:30:26.84

4 13-APR-1989 14:19:49.86

2 13-APE-1989 14:20:27.58

3 9-APR-1989 20:44:34.13

2 3-APR-1989 16:43:40.04

Total of 10 files, 27 blocks.

Directory FC LAB:[SCRATCH.VME.UNLOAD]

CONVERT.C;37

GET_EXPERIMENT_TIME.C;5

PRINT UTILITIES.C;10
Q

READ_TIMER.SRC;7

UNLOAD.C;84

UNLOAD.COM;9

UNLOAD.OPT;6

UNLOAD_BUFFER.C;9

8 4-APR-1989

3 28-MAR-1989

5 9-APR-1989

6 28-MAR-1989

32 11-APR-1989

1 27-MAR-1989

2 27-MAR-1989

3 3-APR-1989

15:17:09.13

08:45:05.06

23:18:17.88

13:50:20.85

12:28:43.61

15:32:16.01

15:30:50.18

16:55:15.87

Total of 8 files, 60 blocks.

Directory FC LAB:[SCRATCH.VULTURE]

BSP.DIR;I

COMM.DIR;I

C_RTL.DIR;I

INCLUDE.DIR;I

SPLIT.DIR;I

VAX.DIR;I

1 22-JUN-1989

2 22-JUN-1989

1 22-JUN-1989

1 22-JUN-1989

1 22-JUN-1989

2 22-JUN-1989

16:13:24.17

16:13:26.13

16:13:28.50

16:13:29.89

16:13:31.99

16:13:34.46

Total of 6 files, 8 blocks.

1-14

Directory FC LAB: [SCRATCII.VULTURE.BSP]

BUILD_BSP •COM; 1

IFX_SETUP. C; 1

INIT_C_RTL. C; 1

INIT DRAM. SRC; 1

INIT_UTIL. SRC; 1

OPIO INIT. SRC; 1

RECEIVE INIT. SRC; 1

VAX I SR. SRC; 1

1 24-JAN-1989 08:36:14.43

4 12-JAN-1989 15:04:37.31

7 25-JAN-1989 07:19:36.28

3 18-JAN-1989 10:30:33.58

7 6-DEC-1988 13:44:31.86

10 16-JAN-1989 10:38:43.75

2 5-DEC-1988 11:10:11.42

4 24-JAN-1989 08:38:42.58

Total of 8 files, 38 blocks.

Directory FC LAB:[SCRATCH.VULTURE.COMM]

BSP.OPT;I

BUILD_COMM.COM;I

CHECK ADDRESS.SRC;I

COMM.C;1

DOWN_LOAD.C;1

ESTABLISH_LINK.C;1

MAIN.C;2

RESET CPU.SRC;I

RESET_LINK.C;1

STAT TO VAX.C;1

TOOL.C;1

UP_LOAD.C;1

VCONVERT.C;I

VCOPY.C;I

VDELETE.C;I

VDIR.C;I

VRENAME.C;I

VRESET.C;I

VRUN.C;I

3 25-JAN-1989

2 24-JAN-1989

5 24-JAN-1989

7 16-JAN-1989

6 21-NOV-1988

5 14-NOV-1988

3 2-FEB-1989

1 23-jAN-1989

1 22-SEP-1988

6 20-jAN-1989

21 16-JAN-1989

5 14-NOV-1988

16 18-NOV-1988

4 17-NOV-1988

2 29-NOV-1988

18 29-NOV-1988

2 14-NOV-1988

6 23-JAN-1989

II 23-JAN-1989

07:23:02.30

08:36:50.11

14:56:41.04

07:45:05.67

16:39:35.46

13:38:12.77

13:38:01.32

11:18:16.39

11:04:26.00

12:54:03.12

07:40:26.68

13:38:48.35

16:07:21.65

10:13:21.13

10:17:53.03

10:38:48.28

13:40:45.52

11:26:31.25

09:26:34.07

1-15

VSETDATE.C;1

VSTATUS.C;1

VSTOP.C;1

3 10-NOV-1988

5 28-NOV-1988

4 23-JAN-1989

08:42:07.86

15:00:19.99

09:19:51.98

Total of 22 files, 136 blocks.

Directory FC_LAB:[SCRATCH.VULTURE.C_RTL]

BUILD_C_RTL.COM;1

C RTL IL.INC;1

C RTL IL.SRC;I

PROM RTL. SRC;I

1 23-JAN-1989 14:17:02.07

6 22-NOV-1988 10:21:45.27

15 18-NOV-1988 10:47:40.48

ii 22-NOV-1988 10:20:56.32

Total of 4 files, 33 blocks.

Directory FC LAB:[SCRATCH.VULTURE.INCLUDE]

DRQ3B.H;20

HXSDEF.H;I

OPIO.H;9

OPIO.INC;17

OPIO_DEF.H;45

6 23-JAN-1989 09:41:18.22

9 2-MAY-1988 09:30:45.82

16 27-0CT-1988 09:42:39.75

14 18-0CT-1988 14:47:37.19

7 23-JAN-1989 09:41:42.37

Total of 5 files, 52 blocks.

Directory FC LAB:[SCRATCH.VULTURE.SPLIT]

SPLIT.C;2

SPLIT.OPT;I

ii 2-FEB-1989 13:36:07.62

1 23-JAN-1989 08:35:31.95

Total of 2 files, 12 blocks.

Directory FC LAB:[SCRATCH.VULTURE.VAX]
Q

1-16

CLRAR.C;1 2 16-DEC-1988 15:24:24.40

DOWN LOAD.C;2 16 16-jAN-1989 10:49:41.09

DOWN LOAD.CLD;2 1 11-JAN-1989 07:53:41.00

DR03B LIB.C;2 19 16-JAN-1989 12:30:01.88

ESTABLISH LINK.C;1 8 2-NOV-1988 14:08:50.28

ESTABLISH LINK.CLD;I 1 II-AUG-1988 14:00:39.63

UP LOAD.C;2 15 16-JAN-1989 10:51:39.95

UP LOAD.CLD;2 1 II-JAN-1989 07:53:54.00

VCONVERT.C;I 8 2-DEC-1988 15:38:05.20

VCONVERT.CLD;2 1 II-JAN-1989 07:54:09.00

VCOPY.C;1 8 2-DEC-1988 15:38:19.64

VCOPY.CLD;2 1 11-jAN-1989 07:54:33.00

VDELETE.C;I 7 2-DEC-1988 15:38:32.23

VDELETE.CLD;2 1 11-JAN-1989 07:54:46.00

VDIR.C;2 14 16-JAN-1989 11:01:55.94

VDIR.CLD;2 1 11-JAN-1989 07:54:55.00

VRENAME.C;1 7 2-DEC-1988 15:39:06.10

VRENAME.CLD;2 1 11-JAN-1989 07:55:12.00

VRESET.C;5 10 23-JAN-1989 09:47:36.38

VRESET.CLD;4 1 23-JAN-1989 09:43:18.68

VRUN.C;4 11 19-JAN-1989 08:56:17.24

VRUN.CLD;2 1 11-jAN-1989 07:55:38.00

VSETDATE.C;1 7 2-DEC-1988 15:39:44.84

VSETDATE.CLD;2 1 11-JAN-1989 07:55:52.00

VSTATUS.C;1 9 2-DEC-1988 15:40:06.64

VSTATUS.CLD;2 1 11-JAN-1989 07:56:11.00

VSTOP.C;4 8 17-JAN-1989 07:33:03.45

VSTOP.CLD;7 1 17-JAN-1989 07:23:49.24

Total of 28 files, 162 blocks.

Grand total of 44 directories, 279 files, 2865 blocks.

1-17

1-18

APPENDIX J: DOCUMENTATION PACKAGES

DOCUMENTATION PACKAGE A: VMEBUS SIMULATION

COMPUTER CONFIGURATION

Subject :
Date:

Rev:

VMEbus Simulation Computer Addressing

June 16, 1988

August 4, 1988

INTRODUCTION:

This document describes the basics of VMEbus memory addressing and the

use of each memory area by the CPU-29 and DMA VMEbus masters in the

VMEbus simulation computer.

The example used for discussion of memory addressing herein is the

implementation of DIU simulators for the IAPSA Small Scale System

using the VMEbus simulation computer as a base.

There are three types of memory present on the VMEbus in this example:

local memory, such as CPU-29 local RAM, accessable only to devices on a

particular board; global memory, such as the DRAM-E4-xxx dynamic RAM,

accessable to all VMEbus masters; and dual port memory, such as that on

the ISIO-2, accessable to both local devices and VMEbus masters.

DISCUSSION:

VMEbus Data Size and Addressing:

The VMEbus specification supports three types of board addressing:

extended 32 bit, standard 24 bit and short 16 bit addressing. A board

may recognize or ignore the 8 or 16 upper address bits depending on its

design. Board data may be 8, 16, 24, or 32 bit.

The VMEbus specification includes 6 lines in addition to the address and

control lines which are used to qualify board selection. These are

called the address modifier (AM) lines. An address modifier code is

output by a bus master any time the VMEbus is accessed. The codes used

in the VMEbus simulation computer specify the addressing mode: extended

(A32), standard (A24), or short (AI6); the privilege: supervisory (S) or

non-privileged (N); and the type of access: program (PA) or data (DA}.

(For example, A32:NPA represents extended addressing non-privileged

program access.)

CPU-29 VMEbus Interface:

The CPU-29 uses a Motorola 68020 to implement a full 32 bit VMEbus.

Local memory and I/O devices occupy a portion of the 32 bit (4 GB) 68020

address range. Local memory and I/O devices are not accessible from the

VMEbus. Access to these devices by the local 68020 causes no activity

on the VMEbus.

J-I

VMEbusSimulation ComputerAddressing
Small Scale SystemDIUSimulator Example

August 4, 1988
Page2 of 5

To accomodate the access requirements of different boards residing on

the VMEbus, the CPU-29 maps its address space for different types of

accesses. The bus sizing for several of the address ranges, below, is

software programmable to be either DI6 or D32. The DIU simulation

computer is programmed to use the D32 bus size for these ranges. Only

boards which have a 32 bit data path can be located in a D32 address

range. DI6 boards which are accessed as D32 boards will only drive the

D0 thru DI5 data lines and because of the VMEbus termination, data

appearing on DI6 thru D31 will at logic i.

Note that bus sizing does not affect the instructions which can be used

in the 68020. The bus sizing only affects the way in which the data are

obtained from the boards. A D32 board may be placed in DI6 address

space, but at the price of additional access cycles for long word

access.

The Table i, below, describes the mapping of the CPU-29 68020 address

space to the VMEbus address space, including addressing mode and data

bus size:

TABLE I: CPU-29 to VMEbus Mapping

CPU-29

0000 0000 - 000F FFFF

0010 0000 - FAFF FFFF

VMEbus addr:data size

(no access: CPU-29 local RAM)
0100 0000 - FAFF FFFF A32:PROGRAMMABLE

FB00 0000 - FBFE FFFF

FBFF 0000 - FBFF FFFF

FB00 0000 - FBFE FFFF

FBFF 0000 - FBFF FFFF

A24:PROGRAMMABLE

AI6:PROGRAMMABLE

FC00 0000 - FCFE FFFF

FCFF 0000 - FCFF FFFF

FC00 0000 - FCFE FFFF

FCFF 0000 - FCFF FFFF

A24:DI6

AI6:DI6

FD00 0000 - FEFF FFFF FD00 0000 - FEFF FFFF A24:PROGRAMMABLE

FF00 0000 - FF7F FFFF

FFS0 0000 - FFFF FFFF
(no access: CPU-29 local EPROM)

(no access: CPU-29 local I/O)

NOTES: i. A24 devices on the VMEbus ignore the upper two address

bytes. Addresses xx00 0000 thru xxFE FFFF are decoded
as 00 0000 thru FE FFFF.

2° AI6 devices on the VMEbus ignore the upper four address

bytes. Addressess xxxx 0000 thru xxxx FFFF are decoded
as 0000 thru FFFF.

3. PROGRAMMABLE access areas are defined as D32.

Global RAM (DRAM-E4xxx) VMEbus Interface:

The 14.75 MB VMEbus RAM is a D32 two board set configured to respond to

A32:NPA, NDA, SPA, SDA and A24:NPA, SPA access. The VMEbus address range

of the memory is XXI0 0000 to XXFB FFFF, repeating every 16 MB.

J-2

VMEbusSimulation Computer Addressing

Small Scale System DIU Simulator Example

August 4, 1988

Page 3 of 5

DIU Simulator (ISIO-2) VMEbus Interface:

The DIU simulators (ISIO-2 boards) are DI6 boards, with 128 KB of RAM,

120KB of which is dual port RAM. They are configured to respond only to

A24:NDA and A24:SDA access with base addresses in the range of XX00 0000
to XX0C 0000.

DMA Controller (OPIO-I) VMEbus Interface:

As a slave, the DMA controller (OPIO-I board) is configured to respond

only to AI6:NDA and AI6:SDA accesses. As a bus master (when performing

DMA operations) it only supports A24:DI6 transfers using one of NDA,

NPA, SDA, or SPA software programmable address modifiers.

Fault Insertion Controller (OPIO-I) VMEbus Interface:

The fault insertion controller is implemented using devices located

on the OPIO-I board. It is accessed as a VMEbus slave device.

Description of Board Addressing Scheme:

The board addressing scheme described above, allows access to the VMEbus

RAM and the DIU simulator dual port RAM by both the CPU-29 and the DMA

controller. It also provides a degree of protection to inadvertently

accessing data in the DIU simulator dual port RAM when using the DMA

controller to transfer data between the VMEbus and the uVAX II.

The CPU-29 accesses local and VMEbus RAM as contiguous A32:D32 RAM

from 0 thru 00FB FFFF, giving it access to a total of 15.75 MB of

contiguous RAM. (VMEbus RAM is accessed by the CPU-29 as either

A32:D32:NDA, NPA, SDA, or SPA.) The DIU simulator dual port RAM is

accessed as A24:DI6:NDA or SDA over the address range FC00 0000 thru

FCOD FFFF. The DMA controller is accessed as AI6:DI6:NDA or SDA

with a base address of FCFF 0000.

The DMA controller has access to the 14.75 MB VMEbus RAM using

A24:NPA, SPA over the address range of i0 0000 thru FB FFFF. The DIU

simulator dual port RAM is accessed using A24:NDA or SDA over the

address range of 0 thru 0D FFFF. By using the NPA or SPA AM codes for

DMA access to VMEbus RAM and NDA or SDA AM codes for DMA access to the

DIU simulator dual port RAM, inadvertent access to either area is

prevented.

The VMEbus specification states that A32 boards MUST monitor all 32
address lines; A24 devices MUST monitor the lower 24 address lines and

MAY monitor the upper 8 address lines. The DRAM board responds to both

A32 and A24 addressing while ignoring the upper 8 address lines. This

is not strictly in accordance with the VMEbus specification for an
A32 device.

J-3

VMEbusSimulation Computer Addressing

Small Scale System DIU Simulator Example
August 4, 1988

Page 4 of 5

CPU-29 VMEbus Address Definitions:

Table 2 shows the CPU-29 addressing assignments used for the boards in

the VMEbus simulation computer for the Small Scale System:

Table 2: CPU-29 Addressing

Address range VMEbus Axx:Dxx:AM

0000 0000 - 000F FFFF n/a

Description

Local CPU-29 SRAM

XXI0 0000 - XXFB FFFF A32:D32:NDA, NPA, SDA, SPA VMEbus 14.75 MB DRAM

FC00 0000 - FC01 FFFF A24:DI6:NDA, SDA

FC02 0000 - FC03 FFFF A24:DI6:NDA, SDA

FC04 0000 - FC05 FFFF A24:DI6:NDA, SDA

FC06 0000 - FC07 FFFF A24:DI6:NDA, SDA

FC08 0000 - FC09 FFFF A24:DI6:NDA, SDA

FCOA 0000 - FCOB FFFF A24:DI6:NDA, SDA

FCOC 0000 - FCOD FFFF A24:DI6:NDA, SDA

DIUSIMI Cntrl and RAM

DIUSIM2 Cntrl and RAM

DIUSIM3 Cntrl and RAM

DIUSIM4 Cntrl and RAM

DIUSIM5 Cntrl and RAM

DIUSIM6 Cntrl and RAM

DIUSIM7 Cntrl and RAM

FCFF 0000 - FCFF 01FF AI6:DI6:NDA, SDA DMA Controller

FF00 0000 - FF3F FFFF n/a
FF80 0000 - FFFF FFFF n/a

Local EPROM

Local I/O Devices

NOTE: Some of the boards are also accessable at other addresses.

Only the addressing defined above will be used by the CPU-29.

DMA Controller Address Definitions:

Table 3 shows the DMA controller addressing assignment for VMEbus boards

in the Small Scale System:

Table 3:

Address range

00 2000 - 01FFFF

02 2000 - 03 FFFF

04 2000 - 05 FFFF

06 2000 - 07 FFFF

08 2000 - 09 FFFF

0A 2000 - 0B FFFF

0C 2000 - 0D FFFF

I0 0000 - FB FFFF

DMA Controller Addressing

VMEbus Axx :Dxx :AM Description

A24:DI6:NDA, SDA

A24:DI6:NDA, SDA

A24:DI6:NDA, SDA

A24:DI6:NDA, SDA

A24:DI6:NDA, SDA

A24:DI6:NDA, SDA

A24:DI6:NDA, SDA

DIUSIM0 Dual Port RAM

DIUSIMI Dual Port RAM

DIUSIM2 Dual Port RAM

DIUSIM3 Dual Port RAM

DIUSIM4 Dual Port RAM

DIUSIM5 Dual Port RAM

DIUSIM6 Dual Port RAM

A24:DI6:NPA, SPA VMEbus 14.75 MB DRAM

J-4

VMEbus Simulation Computer Addressing

Small Scale System DIU Simulator Example

Physical Board Setups:

DRAM-E4M4 / DRAM-E4SI2 Setup:
Address start

First not on board address

AM

ISIO-2: DIUSIM0

ISIO-2: DIUSIMI

ISIO-2: DIUSIM2

ISIO-2: DIUSIM3

ISIO-2: DIUSIM4

ISIO-2: DIUSIM5

ISIO-2: DIUSIM6

OPIO-I:

board base = $00 0000

board base = $02 0000

board base = $04 0000

board base = $06 0000

board base = $08 0000

board base = $0A 0000

board base = $0C 0000

board base = $FF 0000

August 4, 1988

Page 5 of 5

= SXXI0 0000

= SXXFC 0000

= A32:NDA, SDA,NPA, SPA,

A24:NPA, SPA

AM = A24:NDA, SDA

AM = A24:NDA,SDA

AM = A24:NDA, SDA

AM = A24:NDA, SDA

AM = A24:NDA, SDA

AM = A24:NDA, SDA

AM = A24:NDA, SDA

AM = AI6:NDA, SDA

J-5

a

(z)

<

b' ,_

_ oi ",,"

•_ _ |_

_.__.

" I| __. iI i

a. I !

,. 8 i _

. _1_

> ,...,
| i i

Is

o

E._8

i

_E

," o

8_

'_'_o

7

n"

m

¥

5

J-6

a

m

!
|

:!

tl
II

!i
i

t,

|:

i 19

r_

[i]!.
!

• [

W

tlJ _

- I_.C) N

O-_ ImIB _.LcOz_ L4Z_.I

--m--O

O--_ O--S i..no_ID- L4_IW.d

--m--O _1

LD--_R e_--2l _.mOb L4W_

--m--O

,,,_ _',_ ".'_._.'.'0:,_;_:,_.

'B"_ k [e'_"

I

;I,

.2

tili._

k.I

i

J

!

li

ORIGINAL PAGE IS

OF POOR QUALITY

0'-'7

J-8

DOCUMENTATION PACKAGE B: OPIO-1 PARALLEL

INTERFACE MODIFICATIONS

Subject:

By:
Date:

Rev:

OPIO-I Modifications for Simulation Computer
T.C. Torklson

May 27, 1988

September 29, 1988

Introduction:

To use the Force OPIO-I as an interface to the DEC uVAX II DRQ3B

interface will require an adapter board and some modifications to the

OPIO-I itself because of DRQ3B interface logic levels.

Modifications:

I. Remove HP optoisolators from J13-J18, J25-J30, J37-J42, and
J49-J54.

2. Install .3" shorting plugs between pins 2/7 and 3/6 of J13-J18,

J25-J30, J37-J42, and J49-J54. (48 locations)

3. Install .3" shorting plugs between JP4-1/JPI4-1, JP4-2/JPI4-2,

JP5-1/JPI5-1, JP6-1/JPI6-1, and JP7-1/JPI7-1

4. Install a diode capable of sustaining i00 mA between JP5-2/JPI5-2,

JP6-2/JPI6-2, and JP7-2/JPI7-2. A device in a small signal diode

package is preferred, as it will plug directly into the sockets at the
JP locations. Cathode of diodes are connected to JPS-2, JP6-2 and

JP7-2.

5. Install the OPIO DELAY GENERATOR daughter board.

a. Remove the chip at Jl.

b. Connect wire wrap wire jumpers between J4-32 / J3-32 / J2-32.

c. Install daughter board in place in Jl.

d. Connect wire wrap jumper from J2-32 to pin I of daughter board.

e. Connect wire wrap jumper from J4-13 to pin 2 of daughter board.

f. Connect wire wrap jumper from daughter board pin 3 to P2-17c.

g. Install 68230 and OPIO DELAY GENERATOR EPLD in the sockets

provided on the daughter b_ard -

PRECEDING PAGE BLANK NOT FILMED J-9

Subject:

By:

Date:

Reference:

Allocation of OPIO-I I/O Connections

T.C. Torkelson

May 12, 1988

OPIO-I Modifications for Simulation Computer

NOTES: i. All signals appearing on Z2 also appear on the
VMEbus P2 connector, labelled Zl in the OPIO-I manual.

2. Blank entries are unused or spare.

Connnector OPIO Name Signal name Chip

F SYNC -J4-13

Z2-2c XQHA V SYNC Jl,16

Z2-2a XPQGND gnd

Z2-3c XQHB EXT EVENT Jl-15

Z2-3a XQDD

Z2-4c XQD0 Jl-17

Z2-4a XQDI Jl-18

Z2-5c XQD2 Jl-19
Z2-5a XQD3 JI-20

Z2-6c XQD4 JI-21

Z2-6a XQD5 JI-22

Z2-7c XQD6 Ji-23

Z2-7a XQD7 JI-24

Z2-8c XPQVCC +5 vdc

Z2-Sa XPQGND gnd

Z2-9c

Z2-9a

XSHA CHI !CLR IN J2-16

XRSGND gnd

XSHB J2-15

XSDD

XSD0 FUNCT OUT 0 J2-17

XSDI FUNCT OUT 1 J2-18

XSD2 FUNCT OUT 2 J2-19

XSD3 FUNCT OUT 3 J2-20

XSD4 FUNCT OUT 4 J2-21

XSD5 FUNCT OUT 5 J2-22

XSD6 CH0 !INIT OUT J2-23

XSD7 CHI !INIT OUT J2-24

XRSVCC +4.4 vdc

XRSGND gnd

Z2-10c

Z2-10a

Z2-11c

Z2-11a

Z2-12c

Z2-12a

Z2-13c

Z2-13a

Z2-14c

Z2-14a

Z2-15c

Z2-15a

Z2-16c

Z2-16a

(HI) in

(H4) out

(H3) in

(PB0) In

(PBI) in

(PB2) In

(PB3) In

(PB4) in

(PB5) in

(PB6) in

(PB7) _n

(H4) out

(H3) in

(PB0) in

(PBI) in

(PB2) in

(PB3) in

(PB4) in

(PB5) in

(PB6) in

(PB7) in

J-10

Allocation of OPIO-I I/O Connections May 12, 1988

Page 3 of 4

Connnector OPIO Name

Z2-17c

Z2-17a

Z2-18c XTHA

Z2-18a XTUGND

Z2-19c XTHB

Z2-19a XTDD

Z2-20c XTD0

Z2-20a XTDI

Z2-21c XTD2

Z2-21a XTD3

Z2-22c XTD4

Z2-22a XTD5

Z2-23c XTD6

Z2-23a XTD7

Z2-24c XTUVCC

Z2-24a XTUGND

Z2-25c

Z2-25a

Z2-26c XVHA

Z2-26a XVWGND

Z2-27c XVHB

Z2-27a XVDD

Z2-28c XVD0

Z2-28a XVDI

Z2-29c XVD2

Z2-29a XVD3

Z2-30c XVD4

Z2-30a XVD5

Z2-31c XVD6

Z2-31a XVD7

Z2-32c XVWVCC

Z2-32a XVWGND

Signal name

R FTC

!FACK

gnd
!FTSB

FB0

FBI

FB2

FB3

FB4

FB5
FB6

FB7

+4.4 vdc

gnd

F SYNC

g_d

CH0 !CLR IN

FUNCT IN 0

FUNCT IN 1

FUNCT IN 2

FUNCT IN 3

FUNCT IN 4

FUNCT IN 5

STROBE !CLR

CH0 !EOP IN

+4.4 vdc

gnd

Chip

J3-13 (HI) in

J3-14 (H2) out

J3-30 (PC0) out

J3-4 (PA0) out

J3-5 (PAl) out

J3-6 (PA2) out

J3-7 (PA3) out

J3-8 (PA4) out

J3-9 (PA5) out
J3-i0 (PA6) out

J3-11 (PA7) out

J4-13 (HI) in

J4-14 (H2) out

J4-30 (PC0) out

J4-4 (PA0) out

J4-5 (PAl) out

J4-6 (PA2) out

J4-7 (PA3) out

J4-8 (PA4) out

J4-9 (PA5) out

J4-10 (PA6) out

J4-11 (PA7) out

J-11

Allocation of OPIO-I I/O Connections May 12, 1988

Page 2 of 4

Connnector OPIO Name

Z3-1c

Z3-1a

Z3-2c XPHA

Z3-2a XPQGND

Z3-3c XPHB

Z3-3a XPDD

Z3-4c XPD0

Z3-4a XPDI

Z3-5c XPD2

Z3-5a XPD3

Z3-6c XPD4

Z3-6a XPD5

Z3-7c XPD6

Z3-7a XPD7

Z3-8c XPQVCC

Z3-Sa XPQGND

Z3-9c

z3-ga

Z3-10c XRHA

Z3-10a XRSGND

Z3-11c XRHB

Z3-11a XRDD

Z3-12c XRD0

Z3-12a XRDI

Z3-13c XRD2

Z3-13a XRD3

Z3-14c XRD4

Z3-14a XRD5

Z3-15c XRD6

Z3-15a XRD7

Z3-16c XRSVCC

Z3-16a XRSGND

Signal name

CH0 !ACK OUT

gnd
CH0 !STROBE IN

CH0 IN 0

CH0 IN 1

CH0 IN 2

CH0 IN 3

CH0 IN 4

CH0 IN 5

CH0 IN 6

CH0 IN 7

+5 vdc

gnd

CH0 !ACK OUT

CH0 IN 8

CH0 IN 9

CH0 IN i0

CH0 IN ii

CH0 IN 12

CH0 IN 13

CH0 IN 14

CH0 IN 15

+4.4 vdc

gnd

Chip

Jl-13

Jl-14

Ji-30

Ji-4

Ji-5

JI-6

JI-7

JI-8

JI-9

Jl-10

Jl-ll

J4-13

J2-14

J2-30

J2-4

J2-5

J2-6

J2-7

J2-8

J2-9

J2-10

J2-11

(HI) in

(H2) out

(PC0) out

(PA0) out

(PAl) out

(PA2) out

(PA3) out

(PA4) out

(PA5) out

(PA6) out

(PA7) out

(HI) in

(H2) out

(PC0) out

(PA0) out

(PAl) out

(PA2) out

(PA3) out

(PA4) out

(PA5) out

(PA6) out

(PA7) out

J-12

Allocation of OPIO-1 I/O Connections May 12, 1988

Page 4 of 4

Connnector OPIO Name

Z3-17c

Z3-17a

Z3-18c XUHA

Z3-18a XTUGND

Z3-19c XUHB

Z3-19a XUDD

Z3-20c XUD0

Z3-20a XUDI

Z3-21c XUD2

Z3-21a XUD3

Z3-22c XUD4

Z3-22a XUD5

Z3-23c XUD6

Z3-23a XUD7

Z3-24c XTUVCC

Z3-24a XTUGND

Z3-25c

Z3-25a

Z3-26c XWHA

Z3-26a XVWGND

Z3-27c XWHB

Z3-27a XWDD

Z3-28c XWD0

Z3-28a XWDI

Z3-29c XWD2

Z3-29a XWD3

Z3-30c XWD4

Z3-30a XWD5

Z3-31c XWD6

Z3-31a XWD7

Z3-32c XVWVCC

Z3-32a XVWGND

Signal name

CHI !ACK IN

gnd
CHI !DAV OUT

CHI OUT 0

CHI OUT 1

CHI OUT 2

CHI OUT 3

CH1 OUT 4

CHI OUT 5
CHI OUT 6

CH1 OUT 7

+4.4 vdc

gnd

gnd
CHI !DAV OUT

CHI OUT 8

CHI OUT 9

CHI OUT i0

CHI OUT Ii

CHI OUT 12

CHI OUT 13

CHI OUT 14

CHI OUT 15

+4.4 vdc

gnd

Chip

J3-16 (H4) out

J3-15 (H3) in

J3-17 (PB0) in

J3-18 (PBI) in

J3-19 (PB2) in

J3-20 (PB3) in

J3-21 (PB4) in

J3-22 (PB5) in

J3-23 (PB6) in

J3-24 (PB7) in

J4-16

J4-15

J4-17

J4-18

J4-19

J4-20

J4-21

J4-22

J4-23

J4-24

(H4) out

(H3) in

(PB0) in

(PBI) in

(PB2) in

(PB3) in

(PB4) in

(PB5) in

(PB6) in

(PB7) in

J-13

r 1_t.%_. ,,,=it |tltttli

I

llllilll illill fl_

B.,,,_ Hii! |_

L

l

i
I
l
!
i

i
J

I

I,,,,i

>..,_ _ i =

c_

_l I.,

I

.: II
III, i lit

1
l

•- I <_ I

!

i

J-14

ORIGINAL PAGE IS

OF POOR QUALITY

0

o

0

o

_o

t" 0 m

0 ,", <

|

e_

<

ORI(3-1N,",LPAGE IS

OF POOR QUALITY

J-15

" FILENAME: OPIO DELAY GEN.ABL Declarations unique to OPIO delay

" DATE: January 317 1989
" BY: Tom Torkelson

module opio_delay_gen

flag '-r3','-t0'

title 'OPIO FTC Delay Generator EPLD for MC68230

BOEING ADVANCED SYSTEMS

Designed by: T.C. Torkelson Latest Revision: 31 JAN 89'

" This module is used with the MC68230 PIT to prevent the timer_register from

" changing when the timer register is being read. This module was designed
" with the consideration that the MOVEP instruction must be used to access

" the timer register on the MC68230.

" The first byte is read by the MOVEP instruction is actually a dummy byte

" which is read as zero. The CS for the dummy byte causes the EPLD to skip

" the next rising edge of the FTC, whether it occurs during the read of the

" timer or not. The next rising and falling edges each generate a pulse to

" the 68230, making up for the swallowed rising edge.

" A limitation on the 68230 is that clock pulses must not be spaced closer

" than the input clock frequency of the chip / 8. The OPIO 68230 is clocked

" at 8 Mhz, thus the minimum spacing between pulses is 1 usec. This
" works with the 4.125 usec FTC clock.

" declarations

OPIO DELAY GEN device 'E0600'; "uses the Altera EP600 chip

" inputs unique to OPIO DELAY GEN

!INH 1 -pin 97

!INH--2 pin i0;

INH 3 pin II;

" get common code for delay generator

" TICK inhibit, active low

" TICK inhibit, active low

" TICK inhibit, active high

@INCLUDE 'DELAY GEN. INC'

end opio_delay_gen

J-16

" FILENAME: DELAYGEN.INC FTCpulse delay generator commonlogic
" DATE: January31, 1989
" BY: Art Pannek
**

" REV DATE BY DESCRIPTION
i, -------m

" A 10/31/88 TCT
1!

t!

t!

t!

" B 1/30/89 TCT

" C 1/31/89 TCT

,!

Placed test vectors separate .TST file

Changed pin allocation for pc board

Changed INHB A & B pol to active low
Added INHB C7 active high

Changed pi_ numbers of inhibits for ISIO

Changed design of EPLD to always swallow

one rising edge, then make it up with a

falling edge later

Changed state progression, separated out .abl
code common to ISIO DELAY GEN & OPIO DELAY GEN

D 2/ 2/89 TCT Changed FTC latch to FTC D flop clocked

async by falling edge of CLK3

" define ABEL .. commands

C, K, P, X = .C., .K., .P., .X.;

H, L = i, 0;

" inputs

CLKI pin i; " MC68230 clock

CLK2 pin 13; " MC68230 clock

CLK3 pin 23; " MC68230 clock

!CS pin 2;

RSI pin 4;

RS2 pin 5;

RS3 pin 6;

RS4 pin 7;

RS5 pin 8;

FTC pin 14;

" outputs

FTC TICK pin 3;

CNTRX SELECT pin 22;

CNTRX SELECT istype

CNTRX-SELECT.C istype

CNTRX-SELECT.AR istype

CNTRX SELECT LATCH
CNTRX SELECT LATCH

pin 21;

istype

FTC LATCH

.... Rev D -TCT 2/2/89

FTC LATCH

FTC--LATCH.C

pin 20;

istype

istype

" CS active low to select MC68230

" MC68230 register select bits

"Fault Tolerant Clock; 8 MHz / 33

" Tick output to 68230

" CS of cntrx register detected

'pos, reg_D, feed reg';
'eqn'; " async clock

'eqn'; " async reset

'pos, com, feed_pin';

'pos, reg_D, feed_reg';
'eqn' ;

J-17

FTC LATCH istype 'pos, com, feed pin';

FTC LATCH DELAY pin 19;

--FTC LATCH DELAY istype 'pos, reg_D, feed_reg';

SKIP0, SKIP1 pin 17, 18;

SKIP0, SKIP1 istype 'pos, reg_D, feed_reg';

INH LATCH pin 16;

--INH LATCH istype 'pos, com, feed_pin';

TICK
TICK

pin 15; " outputs pulses w/o regard to INH

istype 'pos, reg_D, feed_reg';

" define states

rs = [RS5..RSI];

KS CNTRX = ^bl0110;

RS--CNTRH = ^bl0111;

RS-CNTRM = ^bll000;

KS--CNTRL = ^bll001;

" input register select

" select dummy

" select high byte

" select middle byte

" select low byte

inh = [INH I,INH_2,INH 3];
TICK ENABLE = ^b000;

" inhibit

clk = [CLKI,CLK2,CLK3];

CLK C = [C,C,C];

CLK-H = [H,H,H];

CLK-L = [L,L,L];

"Clock the same inputs

"Clk_Group is Clocked

"Clk Group is High

"Clk Group is Low

ftc = [FTC LATCH, FTC_LATCH_DELAY];
FTC RITE EDGE = ^bl0;

FTC--FALL--EDGE = ^b01;

" rising edge of FTC

" falling edge of FTC

skip = [SKIPI,SKIP0];
SKIP RESET = ^bOO;

SKIP-INHIBIT = ^b01;

SKIP-PASS HI = ^bll;

SKIP--PASS--LO = ^bl0;

" FTC edge skip states

" pass + edges
" inhibit all

" pass + edge

" pass - edge

" macros

" latch on gate level, pass thru on !gate level

LATCH macro (out, in, gate)

{?out = ?out & ?gate # ?in & !?gate;}

equations

CNTRX SELECT := (rs = RS CNTRX);

CNTRX-SELECT.C = CS; " clock on leading edge of CS

" The following is really not required unless only one CS is received.

CNTRX SELECT.AR = (skip == SKIP PASS_LO) & !FTC LATCH & FTC_LATCH DELAY;

" synchronize with input clock, hold when clock low, pass clock high

LATCH (CNTRX SELECT_LATCH, CNTRX SELECT, !CLK3)

.... Rev D TCT 2/2/89

" LATCH (FTC_LATCH, FTC, !CLK3)

J-18

LATCH (INH_LATCH, (INH_I # INH_2 # INH_3), ?CLK3)

-- Rev D TCT 2/2/89

FTC LATCH := FTC;
FTC-LATCH.C = !CLK3; " clock on falling edge of CLK3

" FTC delayed one input clock pulse

FTC LATCH DELAY := FTC LATCH;

" FTC tick conditioned by skip states and inhibits
FTC TICK := !INH LATCH &

-- (_skip == SKIP_RESET) & (ftc == FTC RISE EDGE)

(skip = SKIP_PASS_HI) & (ftc == FTC_RISEZEDGE)

(skip -- SKIP_PASS_LO) & (ftc == FTC_FALL_EDGE)
);

" TICK output for test purposes, not affected by INH

TICK := (skip == SKIP_RESET) & (ftc == FTC_RISE_EDGE)
(skip == SKIP PASS HI) & (ftc == FTC RISE EDGE)

(skip == SKIPZPASSZLO) & (ftc == FTCZFALL_EDGE>

state_diagram skip

" This state machine is clocked by the system clock. After the

" initial state change, state changes only occur on edges of FTC.

" The state machine inhibits an output pulse on the first rising

" edge following the selection of CNTRX. The second rising edge

" and the following falling edge both generate output pulses.

state SKIP RESET: if CNTRX SELECT LATCH then SKIP INHIBIT

else SKIP RESET7

state SKIP INHIBIT: if (ftc == FTC RISE EDGE) then SKIP PASS HI

- else SKIP INHIBIT; -- - -

state SKIP_PASS_HI: if (ftc == FTC_RISE_EDGE) then SKIP_PASS_LO

else SKIP_PASS_HI;

state SKIP_PASS_LO: if (ftc == FTC_FALL_EDGE) then SKIP_RESET
else SKIP PASS LO;

J-19

ABEL(tin) 3.00b - Document Generator

OPIO FTC Delay Generator EPLD for MC68230

02-Feb-89 05:42 PM

BOEING ADVANCED SYSTEMS

Designed by: T.C. Torkelson

Equations for Module opio delay_gen

Latest Revision: 31 JAN 89

Device OPIO DELAY GEN

Page 1

- Reduced Equations:

CNTRX SELECT := (!RSI & RS2 & RS3 & !RS4 & RS5);

CNTRX SELECT C = (!~CS);

CNTRX SELECT RE = (!FTC LATCH & FTC LATCH DELAY & .!SKIP0 & SKIP1);

CNTRX_SELECT_LATCH = (CLK3 & CNTRX_SELECT # !CLK3 & CNTRXSELECT_LATCH);

INH LATCH = (CLK3 & INH 3

-- # CLK3 & !=INH 2

CLK3 & !~INH--I

!CLE3 & INH_T_TCH);

FTC LATCH := (FTC);

FTC LATCH C = (!CLK3);

FTC_LATCH_DELAY := (FTC_LATCH);

FTC TICK := (!FTC LATCH & FTC LATCH DELAY & !INH LATCH & !SKIP0 & SKIP1

FTC LATCH & !FTC LATCH DELAY & !INH LATCH & SKIP0 & SKIP1

FTC LATCH & !FTC LATCH DELAY & !INH LATCH & !SKIP0 &

!SKIP1),

TICK := (!FTC LATCH & FTC LATCH DELAY & !SKIP0 & SKIP1
FTC LATCH & !FTC LATCH DELAY & SKIP0 & SKIP1

FTC--LATCH & !FTC-LATCH-DELAY & !SKIP0 & !SKIP1);

SKIP1 := (!FTC LATCH DELAY & SKIP1
FTC LATCH & SKIP1

SKIP0 & SKIP1

FTC LATCH & !FTC LATCH DELAY & SKIP0);

SKIP0 := (FTC LATCH DELAY & SKIP0

!FTC LATCH & SKIP0

SKIPO & !SKIP1

CNTRX SELECT LATCH & !SKIP1);

J-20

ABEL(tm)3.00b - Document Generator

OPIO FTC Delay Generator EPLD for MC68230

02-Feb-89 05:42 PM

BOEING ADVANCED SYSTEMS

Designed by: T.C. Torkelson

Chip diagram for Module opio_delay_gen

Latest Revision: 31 JAN 89

Device OPIO DELAY GEN

Page 2

CLKI

~CS

FTC TICK

RSI

RS2

RS3

RS4

RS5

~INH 1

~INH 2

INH 3

E0600

\ /
\ /

1

2

3

4

5

6

7

8

9

i0

Ii

12

24

23

22

21

20

19

18

17

16

15

14

13

CLK3

CNTRX SELECT

CNTRX SELECT LAT

FTC LATCH

FTC LATCH DELAY

SKIP1

SKIP0

INH LATCH

TICK

FTC

CLK2

end of module opio_delay_gen

J-21

_"

J-22

DOCUMENTATION PACKAGE C : VMEBUS-MICROVAX

INTERFACE ADAPTER

Subject: Fabrication of VMEbus'/uVAX Interface

By: T.C. Torkelson

PARALLEL

Date: June 14, 1989

Introduction:

The interconnection of the DEC uVAX II DRQ3B and the Force VMEbus

system OPIO-I requires a few mechanical and electrical adaptations: a

connector panel must be produced which adapt the DEC interconnect

cables to the Force OPIO-I board; modifications are also required to

the Force OPIO-I card; an additional protocol conversion board must be

produced.

Mechanical:

Instead of the VME chassis mounted connector panel, a rear mounted rack

panel is used. This requires routing longer 64 conductor ribbon cables

from the OPIO-I Z2 and Z3 connectors to the back of the equipment rack.

These cables should be as short as possible to reach the adapter panel

withoutundue strain. They must be long enough to allow connection to

the OPI0-1 card while it is out of the VME chassis.

The cables are routed up through the top of the VME chassis, between

two card guides, then into the adapter chassis.

Adapter Board:

The adapter board is a small vector board adapter. Its primary

function is the correct interconnection of the OPIO-I and DRQ3B.

also corrects some of the protocol problems discussed elsewhere.

It

The board is mounted behind the DEC compatible I/O connectors on

standoffs. No unusual precautions other than standard shop practices
need to be observed.

J-23

PRECEDING PAGE BLANK NOT FILMED _Gt ,_-_.1 I_T[NTK_t_ALL? _L-_:,_,

Subject:

Date:

By:

Test program to verify OPIO-I operation

January 5, 1989
T.C. Torkelson

To test the OPIO-I card, the FAST OPIO.ABS program must first be downloaded to
the CPU-29 card using VMEPROM and--VAX VMS DCL commands.

Commands on the VAX side are preceded by "$". The commands on the VMEPROM

side are preceded by "?"

Initial setup:

$ ALLOCATE LTA4:

$ SET TERM/HOSTSYNC LTA4:

? BP D02 i 1

Actual program transfer:

? LO <2

$ COPY FAST OPIO.ABS LTA4:

To run the test program, the loop back cable must be installed to jumper
the two ports on the VME to uVAX interface box to each other.

The VMEPROM command to run the program:

? GO 80OO
9

At the return prompt, receive buffer in memory at 20000 through 2FFFF

should be byte swapped from transmit buffer in memory at i0000 through
IFFFF.

After setting

J-24

i1!.!! i_ "lilllit81 lllStlil
llltlllil Itt I ,.-,,,,_,,,,,,,, ti ifffflifi flflfffi
uuuu fll i iflf . .-_-_ ----

llIlil f Ill t tilltllli8 ...,.-o II,,,.l

-- I _ I "_ 1 -'

ORIGINAL P_C-_ gS

OF POOR QU/tLI';V

r-_

¢j

t.n

<

II

J-25

1.,.,

IIIIIIIIII1111

(.3

I:D

,,(

J-26

-_I;1_1_i_

Jl l,I

Yi.
lillll+

I

I)

! : "q'-_

I _,'°

'_1 ' -,.,

I_ ulo

"!7¢

+I

Iz)

ORIGINAL PAGE IS
OF POOR QUALITY

I

Q

lIl

<

0

I!
i

I

J

I
I

I

I

I

I

d

0

d
/

"< j_l

' tf_

I.lll -

l
I

_i ti-t:-<T
.4

Q

¢_)

[]

<

I

ORIGINAL PAGE IS

OF POOR QUALITY

J-27

J-28

DOCUMENTATION PACKAGE D: ISIO-2/DIU SIMULATOR DAUGHTER BOARD

Subject:
Date:

Revised:

ISIO-2 Modifications for IAPSA DIU Simulation

August 23, 1988
June 14, 1989

By: T.C. Torkelson

References: i. IAPSA II DIU Simulator Specifications - VMEbus Implementation

2. AIPS I/O-network Interface Requirements

3. Small Scale System Experiment Start Synchronization

4. Experiment Bus Descripion

5. VMEbus Simulation Computer Addressing

INTRODUCTION

As presented in Reference 2, the VMEbus simulation computer and the FTP

must be able to signal each other of their status. The DIU simulator

must also be controlled for proper experiment synchronization.

REQUIREMENTS

The DIU simulator as implemented on the ISIO cards does not have access

to the VMEbus. Communications with VMEbus masters is through a message
exchange protocol using the ISIO dual port RAM.

The presence of a message for the VMEbus master is signalled by a VMEbus

interrupt caused by the ISIO. Similarly, the local ISIO CPU can be

signalled of the presence of a message from a VMEbus master by a write to a

special ISIO address which causes an ISIO local interrupt.

The local CPU must maintain 24 bit experiment time. Each tick represents

one FTC tick. The start of experiment time is controlled by the FTP

sync line going from !Stop to Run.

The network adapter daughter board is used to interface ISIO hardware to

[V SYNC], IF SYNC], and [R_FTC] signals which are present on the experiment
bu_

IMPLEMENTATION

The daughter board for the ISIO-2 attaches to the elevated IC sockets for

the 68562 DUSCC chips and the 68230 PIT. The daughter board allows the

disconnection of ISIO-2 board signals from chip pins, freeing the chips for

special use on the daughter board. Some of the disconnected chip pins from

the ISIO 2 are used to connect signals from the experiment bus to the

daughter-board.

Experiment time is maintained using an added (U20) (the 68230 PIT). The

reference FTC on the experiment bus is conditioned by an EP600 EPLD which

prevents the 68230 PIT counter from being incremented when the PIT timer is

being read or when the FTP sync is at STOP.

The ISIO-2 board uses the TIN pin of the J100 PIT as PC2 for controlling the

sysfail function of the ISIO-2. This must be considered in the software

for controlling the DIU simulator.

J-29

PRECEDING PAGE BLANK NOT FILMED PA_NTF.NTIONALL_(BLANII

ISIO-2 Modifications for IAPSA DIU Simulation

ISIO-2 MODS

June 14, 1989

Page 2 of 4

i. Remove unused ICs and shorting jumpers

B23-I thru B38-4

J57-J66

J68-J77

J79-J88

Jg0-J99

2. Remove ICS to be moved to daughter board

J56, J67, J78, J89, Jl00

3. Set addressing for as required. (See ISIO manual and reference 5.)

4. Add Jumpers

a. Miscellaneous

From To Name

Pl-10a JSl-ll 16 Mhz VME sys clock

b. Connections to Daughter Board

From To Via Name

P2-1c B23-2 J56-34 [F_SYNC]

P2-2c B23-I J56-33 [V_SYNC]

P2-17c B23-3 J56-39 [R_FTC]

J51-9 B23-4 J56-40 16MHz

B41-1 B25-I J56-16 Intr. vector mode

Daughter Board Mods (See sh 2 of board loading diagram)

Component side of board:

i. Cut the trace to UI00-13.

2. Cut the trace to U100-15.

J-30

ISIO-2 Modifications for IAPSA DIU Simulation

Circuit side of board:

June 14, 1989

Page 3 of 4

I. Cut trace from U19012 to the feed thru near UI7-1 at both ends.

connect a 5.5" wire wrap jumper from U19-12 to U7-1.

2. Cut trace from U19-14 at U19-14. Connect a 226 ohm resistor

from U19-14 to the trace. Connect a 332 ohm resistor from U19-14

to U19-20.

3. Cut trace from U20-40 to U21-1. Bridge the cut with a 44.2 ohm

resistor.

4. Cut traces from U17-4 and U17-5 to ground bus. Connect U17-4

to the feedthru of the trace to U8-2. Connect U17-5 to the

feedthru of the trace to U8-23.

5. Install 24 pin screw machine SIP strip sockets and daughter

board connection pins at locations U56, U67, U78, U89, and UI00.

SIP sockets must be used to allow access for soldering the pins.

To assemble, install the SIP socket for pin 1-24, then install the pins

associated with the socket. Next install the socket for 25-48 and

associated pins. Installation must be in this order or it will not

be possible to solder all the components in the restricted space
available.

The use of resistance soldering for pin installation is strongly

recommended.

Advanced Interconnections KSAI00-79G pins are installed at the

following locations:

U56: 1-4, 6-7, 16, 18-24, 25-31, 33-34, 42-43, 45-48

U67 :

U78:

U89:

1-4, 6-7, 18-24, 25-31, 42-43, 45-48

1-4, 6-7, 18-24, 25-31, 42-43, 45-48

1-4, 6-7, 18-24, 25-31, 42-43, 45-48

UI00: All locations except 14 and 16.

To protect the pins, install two 24 pin screw machine DIP sockets
on the bottom of each of the completed pin installations. (These

sockets are also be used at final assembly.)

6. Connect daughter board pin 13 to UI00-13 and daughter board

pin 15 to UI00-15.

7. Connect a jumper from the feedthru opposite U100-13 to UI00-14.

8. Connect a jumper from the feedthru opposite U100-15 to UI00-16.

J-31

ISIO-2 Modifications for IAPSA DIU Simulation June 14, 1989

Page 4 of 4

CAUTION: It is very important that proper static sensitive device

handling precautions are observed during all the following

operations!

It is especially important that all tools used are

grounded. If a screwdriver with an insulated handle is

used during installation or removal of the daughter board,

it MUST be held in such a way that its metal parts are at

the same potential as the person performing the operation.

Daughter Board Installation

i. Install all ICs an resistor networks in the daughter board.

2. Make certain that all the protective 24 pin dip sockets are

installed on the daughter board pins.

3. Carefully position the daughter board over the elevated ISIO-2
sockets to which it will mate.

4. Press down uniformly to firmly seat all the contacts in the

elevated sockets.

5. Install spacers and #4-40 hardware in the two mounting holes near

the P1 and P2 connectors.

6. Plug the ribbon cables from the DIU front panel into Jl and J2 on

the daughter board. Check that no parts on the front panel board will

either short out or mechanically interfere with the operation of the

ISIO-2 board.

Daughter Board Removal

i. Unplug the DIU front panel board from Jl and J2.

2. Remove the #4-40 hardware holding the two boards together.

3. Carefully pry the daughter board off the elevated ISIO-2 sockets.

A large screwdriver can be used for this purpose. Make certain that no

components on the ISIO-2 board are in danger of being mechanically

damaged and observe the CAUTION, above.

4. Remove any 24 pin DIP sockets which remained stuck in the ISIO-2

elevated sockets and IMMEDIATELY re-install them on the daughter board

pins.

J-32

(J

rn

!!

t

-- I

m

,,<

8
12

ORIGINAL PAGE iS

OF POOR QUALITY

J-33

122

J-34

ii
ll

I

311

ii
l! 8 i! '"

!
"11

ORIGINAL PAGE IS

OF pOOR QUALITY

_. o ..! |i

r. 0_0 i

ii it it || |l II _ |1

tlt I"ttttttt , t"ttttt' tttt ,

= "t!!'!!"t!!!

i i i i]l I I

Illlllll II

_ ,,
|lllitllllil

, ,, I!
_11_11_11_1 I_1_1_1_1
|lfitHIittt Itltlliiilll

ORIGINAL PAGE IS
OF POOR QUALITY

<:

J-35

0

m

,(

|lfiilil
99999999
Ilillill

il '

i

J-36

ORIGINAL PAGE IS

OF POOR QUALITY

Q

cj

<{

u_

q_

pl,,i

c_

v

0

CI

o-_

¢J

=E
0 C

"5_,o
U1G.

CN

O0_,

v, r_ ,.
vw

1

I11- ']m -
l|i e a a ! I ! _ !

|:iilitiiiillliill

_!,
allq
Ill]

(t,
I

1!
i

"5lai

f

"_f_'_ '_f '_i_f'_ff '_f "_f_ '_tIIIIll IIIIIt IIIIIt IIIIII IIIIII IIIII_11111_II
11111 IIIIII IIIIii JJJJJJ _ _ I IIIII _ _,_,J- _ - - _- _-_. • .__,.x__ L_.'

¢"s

(J

rn

.<

,,,,s

i

ORIGINAL PAGE IS

OF POOR QUALITY

J-37

Q

(.3

frs

<

i+l

Jl

<_I

+l

J++

+;

+il" I

!I :_,+,_:!i
,_JA ,,_'+l

.@

i

I - l _ I

_J

en

%
0

|
.P

J-38

ORI_iN.,L PAGE IS

OF POOR QUALITY

a

o

w

)0000000000

_00000

)000000

i,,--r_ o
000

00000000 O0

r--_O0
0000000

oooooooooR R OOO

C_

_J

03

ORIGINAL PAGE IS

OF POOR QUALITY

J-39

Q

0

m

<

C

F
o

<

i

%
!

t
i

J-40

ORIGINAL PAGE IS

OF POOR QUALITY

c_

,,D

r-.

ao

c-,i

,,¢

1,3

(',1

Pq

,+

u
) (

oJ

t
L_._

r]

z .T-

o.i i

d,
(3

0
P3

,_._.J-'L-_

m

L LJ f 1

L

i_ LUl

F'T- Ir_1 [I

t_.J.J

L I _LJ

=n q.Jr--
¢z:_: o_ LuJ

"_: r_ f

__ (.+_ U28

_d uj

'¥26-' 1 RN3

+ '/,I+26LS3l

0

_ [, RN2
E3

I_ rool[U24

LLI
-J b- _
79 2I_

<_ C25

rill

f U2068230

"-C22 _

U100 6t.t2.50

U67 68562

U 78 68562

U89 6_b62

_' j[

LOjf26LS32

[2 1

} '_1[_ U26]
_ j['26LS32

°2,]DELAY_G[N

_C 30 _

;+ 1f U17 If " _[

tj i[HX . CLOCK

i r _{} u;'

+, 17;
r I Ir_[

Rx ,utoc* I_',(

Io1[tJ+ If+'_'l_1

t t'3 i[j RX_CI O(. K J,G{

/,f °+RX _(.LOCK _ j

"'I °_ i'_'l
LU I RX _CLOCK t

''I °' I+"I_j RX CLOCK _+

uIB

DIUNOOE

c'_
-.)

t AG SD

UI5 It t At;_SO

UI4 }(LAG_SO

U13]t LAG_SD

U12]ILAG SD

UII]FI AG_SD

lJlO }+.t AG _SO

FLAG _SD

-,,,,,

L_J
Z

F--

0

L:

>.,
0

ORIGINAL PAGE IS

OF POOR QUALITY

J-41

F ol F o 1

I
I

Iooooo

oo

J-42 ORIGiNfiL P,_GE IS

OF POOR QUALITY

L I

ORIGINAL PAGE IS
OF POOR QUALITY

J-43

_3

0"-44

OF POOR _UALiYY

+ ++
.I.

+

+

: +-

+

i 4-

i ÷

I +-

,I+

+

+

+

+I-

I+

+

+

i

+

+

+

+ _- ,I+

+" +-41

."+I

÷+I

4++I

+" ++I

@ _-+I

-l- +- +1

-_ ++I

++I

+ +i

+ + ++

+ ::L
4- ::1

++1

r+++l

4" + I-I

I+ +-+I

- +- +-+I

+ +l

+- +-I

I- +-I

++1

I-

÷

+

+.

+

+

<-

+
+

4-

+

÷

+

........ ' F
<+ I ++-4-
I+ I + ++<.+++-+-+-I-+ +- +-_-_-+÷+-++++l-F

+
+- I +++ + + i-

+- I + + +- _+-i++ +-++-+-I.+- +. ++++++++',++-+I-++ ++

+ 4- ++
+ I +I+++ +. +" + +I-++÷+-,+ r'+++ +" ++++--+++'+I+++++ ++"

+ I i- I+ +. +4.

++ ÷+ ÷ +++ +. ++-
+I- +- I ++ + 4+ 4+ +I+ +'+r ++ +'+ +" i" 4+ J.+ + +'+++'+++÷++I+++I+÷ ++

+ +-l- +- I 4-+ +- +- ++

++'+-+ I _.++ : + +
+'+" +- I +" ++

+ +-+" 4"4" ++

+ + I +'+" +" + +++ ,+++++++++ + +-+ .,-+-+-+ 4.-+I+++ +*++++ ++
4.-

+. ++" +" I +-+ ++ _ +++

+.4-++ t ++- + 4- + ++I-+-+I-+-_+ ++ ++-++++I++I.++ +-_-

+'+ ÷ 1 -I-+ ÷ +- + .I- + + +I-+I+-
+ + + • 1+ + + +4-

+" + + + ++-+-+-4-4-+-4- + ++ + +- I- +- + + + +- + +
I +- +" + + + ++ +- + I- +I.++ + +-+I+

--'_ I ++ ++ + +++ :+:

+ _+ I ++

+ _+ I I+ 4- ,+ F+-i+ I. i + + ++ + i +'++. ++ +++

+ I- _+ j F i + 4 + @ I I F _-+ + +- +_
<++ +-I- l+i I+ J'+ + ++4-+++++ + +4++I++++ ++

+ + _+ l 4++ +-+ +- +. + +, + + + ++,

+I- _ + I 1-4- ++ + ÷ + . + + <++ + ar

++ I ++ ++ + 4- + + ++++++++ ++ +++÷++++ ++

_ I ++ ++ + + -I- + + +

++ _+ I 4..i+ +4 4+ + + ++ ++ + ++

_+ ++ 4+ _+ + + ++ + ++ ++

+ +: + +

+ • 4++ +++ + • + _ + +

4+ _ + l ++ ++

-+ I ++. +I- + ++ ++÷

"+ ++ +..I.- ---- +i + ++ +++ +++ + + +++++++++++ I+ + +++

• i÷ 4-+. ++ + I+

+ . _+ +÷ _+ + + + +

4+ ++ _- +++++÷+4 ++ _++-+_+ + +++++ + + ++ +_

+ " 4 ++. +'+ + + I. + _

+ ;2 ++ ++'+ +++-+ +I++ <.+ + +
÷+ ++ +++ + ++

+ +
++ ++ F++ + ++ +4_4 1 @+++ F +1 1 I +FFt F # •i

I#_I - +-4 ++ + [i.
L

++ ¥ I- ++ +- # i + # + <+ 4 4 +- t + +-+ I.+ I+ F4 + + +.4 *
I-

++ + + +
+ + +

+ _-I +' + _+'r. ,....

+ +

+ +- I +
+ + _ + + + + + i + + + + i t + + t i I + I i +

+ltlllil illllitl +tt tlltl t t + I I I t i + + ,l I + i t <* t + t + t + + + i+
I+ i+ i ++ l.l i i.+ F i + i # i + I + i I I i # I + +

l. it.l + I- t +. + + I+ t_t-t 4 F + t (t I I i + I- I- + + F I+ _++-4.+ i ++ + @4 _
+ +- I

• , +
+ I + +if+ +_ + ++

,I- + ++ i ++ + <+ + I I I t + l I <* + # i t t t # # l F + + i t t t
+ t fil##-t #-+-t+tl _- I + + t _ + ++ + _* l

4- + + +- + _ +

I- +- I+ ++ ++ ,+ + _- .'- + + + + I + + +. I+++ I +_ + + + •++l+t i t _ ++it # + i + +_. i.i + + i + + + + +
+. + ÷ +_ + i. i. i. :+ + + + + + + + i. i. +i. + + + + + + + +

+ + + + +++÷ + + ++_+ + +++ + + + + + + + ÷ + t I + 4- + + + # ¥ + I i + + ++ + + + + + I-+ ++I+

++ + i+ ++ + +. + i_++++.+._+++ ,+++<" + +++.+ +++.++++

+ +- _- I- +" ++.
+I+ ++ + + + +

+ +- I.I-++++-+ i+-+++ + +r ,++I+++_'4++ +
+I" + +

i I I++ +++++ +'+--I +'+ + *+++++++++
_+ + + <+ + + ++ _. + i. + + +. +. + I+ + + _+ + ++ + ._ + +

++ ++ +. <+ i. I. i. ++ i :+ ++ + ÷ ++ ++ ++ + + i ++ + + + +
+ <- +. + ÷ ++ +. + I+ + + + I- +. i ÷ ,_ I+ t. i. I- + + + + + . +

+. +I +- ++ + i. ++ ++ + +. ++ + I+ + ++ I+ I. + + I. + I. + + ++ ++ ++ +

+ +-I-I+ I- + + ÷ I+ +:++.+++ .++,_+I-+ + ++++<++ I-+-+ + + +

+. +- i+:+÷+ +-+++ ++++:+_, # ++++++4++++ +

<. + + +

I _. + +i+

,_ i.:+÷+++++.++ +.i.i+ ,. +_+r +÷++++++':" +++++ t ++++ ++++ +++i + i i i + ++ i
++-+ ,l.<++++++_._++_.l++.+++<+l++.l+ + ++ +- +.I+.I+++-++++++-4- + +++++4++++ +-

+ + + ++ + + +i. + + + + + +. ++ +. ++ +. i. _. _+ + + + + +
+. + + ÷ + +I+ I. <+ + + .I+ +- +- ÷ +- +. + + + + + + +- +

++ + + * % + +.+.+

+ + + i I-I I ++++ + + 4+F I +++ + +++++I++ +

2_- +++ + +_ ¥ F *_+ + + + +- + ++++ ++ F 4-+++-+++++1- *

/ +]+ '+ ' +" tt+i,@_,t_+,_1 _t i i i i t i it
-- Ii_i I*i l*t++llll*t i i i t it _ t I I) _ _ * I t * I * I i _- _- ++ * _, * + I- +-

n _

taJ

z
+-

_.+

q_

j

ORIGIN.,"+.LPAGE IS

OF POOR QUALITY

J-45

0

n_

<

J-46

c_

c_

<

,|

i

OF POOR QUALITY

1

i

I

I!
cl

_'lli

eli

!
cl

!
ci

',It

ORJGIHAL P.*_,GE IS

OF POOR QUF_LITY

.¢

J-47

a

I.}

oQ

,<

II

J-48

m
CD

A

f..v
I

o_

_o

f.v

f_.v

oMJ,

IO,F'%

,o;_
:8:R
0

,,,'0
"-0
,=.0
iO

t

C3

-F"

|

(

I
t

|

I

I

I

UlII 41

_L. _1

l|
I1
J!

|

,,_ ¢-

_ P ,.,

_ 3 .

m

i:

i
_ E

ORiGiNAL PAGE iS

OF POOR QUALITY

-********************_**_,

" FILENAME: INPUT MODE.STATE mode line states

" DATE: October 31, 1988

" BY: T.C. Torkelson

" This file defines input modes on lines M1, M0 of the ISIO daughter board.

" All devices which have M1 and M0 inputs should include this file for
" consistent definitions.
It

input mode = [M1, M0];

NORMAL INPUT = 0;
MONITOR INPUT = i;

NODE INPUT = 2;

RESET INPUT = 3;

" input on NET IN

" input on NET--IN and MONITOR_IN
" input on NODE SIM IN

" no inputs

J-49

" FILENAME: EP600 RX CLOCK.ABL AIPS RX Clock EPLD
" DATE: October 31, 1988

" BY: T.C. Torkelson

**

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT separated test vectors from .abl

" revised pinout to match circuit board

" B 6/13/89 TCT changed glitch eqn to state machine

" fixed error in clock sync state machine

" revised bit assignments for HCSxx to fit EPLD

module ep600 rx clock

flag '-r3','-tl'

title 'AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88
I

" REVISED BY

" 2/18/88 TCT

" 5/18/88 TCT

" 8/29/88 TCT

" 8/31/88 TCT

" 9/7/88 TCT

" 10/31/88 TCT
,!

" 11/20/88 TCT

t!

"Declarations :

DESCRIPTION

added glitch filter to prevent erroneous edge detect
revised for ABEL 3.0

added inputs for monitor, node simulator, mode select

changed SES to D FF, used state diagram instead of eqn
changed pinout, changed MONITOR IN to macro,
provided MONITOR IN1 and MONITOR IN2

separated out test vectors, matched pinout to circuit brd

added LED driver outputs

revised LED driver output pin assignment

made RXD high for input_mode == RESET INPUT

disabled RXC output until input mode 7 RESET INPUT

changed Reset LED output to OUTPUT ENABLE -

EP600 RX CLOCK device 'E0600';

" define ABEL .. commands

C,K,P,X,Z = .C.,.K.,.P.,.X.,.Z.;

" inputs:

SYS CLOCK1 pin i;

SYS_CLOCK2 pin 13;
" 16 Mhz system clock from VME bus

" 16 Mhz system clock from VME bus

NET IN pin Ii;

NODE_SIM_IN pin 14;
" HDLC data from I/O network

" input from node simulator

MI,M0 pin 23,2; " mode select inputs

" outputs:

RXC,Q2,QI,Q0 pin

EDGE, RXD, HI,H0 pin
" RX clock registers

" Edge detect registers

RXC,Q2,QI,Q0 istype

EDGE, RXD, HI,H0 istype

RXC.OE istype

'pos, reg_D, feed_reg';

'pos, reg_D, feed_reg';

'eqn'; " control for RXC clock output

J-50

SE3, SE2, SEI, SE0 pin

SE3,SE2,SEI,SE0 istype

OUTPUT ENABLE pin

OUTPUT-ENABLE istype

!Normal LED pin

!Normal--LED istype

!Monitor_LED pin
!Monitor LED istype

!Node LED pin

!Node-LED istype

19,20,21,22; " Edge detect enable registers

'pos, reg D, feed reg';

18; " high to enable RXC output

'com, feed_pin';" not enough terms for RXC out enable

17;

,cornp ;

16;

'corn' ;

15;

'com';

" low for Normal operation

" low for Monitor operation

" low for Node operation

" states:

sys_clock = [SYSCLOCK2,SYS_CLOCKI];

edge_state = [RXD, HI, H0];

HS0 = ^b000;

HSI = ^b001;

HS2 = ^b010;

HS3 = ^b011; " positive edge

HS4 = ^bl00; " negative edge

HS5 = ^bi01;

HS6 = ^b110;

HS7 = ^b111;

sync_state = [SE3, SE2, SE1, SE0];

SES0 = 0;

SES1 = 1;

SES2 = 2;

SES3 = 3;

SES4 = 4;

SES5 = 5;

SES6 = 6;

SES7 = 7;

SES8 = ^o10; " edge sync enabled

hdlc clock = [RXC, Q2, Q1, Q0];

HCS0 = 0;

HCSI = 1;

HCS2 = 3;

HCS3 = 7;

HCSll = ^o13;

HCS14 = ^o17;

HCS15 = ^o16;

HCSI6 = ^o14;

HCS17 = ^oi0;

@INCLUDE ,[-]INPUTMODE.STATE'

" macros:

SYNC ENABLE macro {SE3};

SYNC--EDGE macro {(SYNC_ENABLE & EDGE)};

" The following macro selects NET_IN for normal operation,

J-51

" NODE SIM IN for either monitor or node operation, and causes

" HDLC_IN to be high for reset operation

HDLC IN macro ((

-(input_mode == NORMAL INPUT) & NET IN #

(input_mode == MONITOR INPUT) & NODE SIM IN #

(input_mode == NODE INPUT) & NODE--SIM-IN #

(input_mode == RESET_INPUT) -- -

));

RX_SAMPLE macro {(hdlc clock == HCSI7)};

equations

OUTPUT ENABLE = (input mode != RESET_INPUT);
RXC.OE-= OUTPUT_ENABLE;

EDGE := (edge_state ==- HS3) # (edge_state == HS4);

Normal LED = (input_mode --= NORMAL_INPUT);

Node LED = (input_mode = NODE_INPUT);

Monitor_LED = (input_mode == MONITOR_INPUT);

state_diagram hdlc_clock

state HCS0: goto HCSI;

state HCSI: if SYNC EDGE then HCSI

else HCS2;

state HCS2: if SYNC EDGE then HCSI

else HCS3;

state HCS3: if SYNC EDGE then HCSI

else HCSI4;

state HCSI4: if SYNC EDGE then HCSII

else HCSIS;

state HCSII: goto HCS2;

state HCSI5: if SYNC EDGE then HCSI

else HCSI6;

state HCSI6: if SYNC EDGE then HCSI

else HCSI7;

state HCSI7: if SYNC EDGE then HCSI

else HCS0;

state_diagram sync_state

state SES0: if RX SAMPLE & !EDGE then SESI

else SES0;

state SESI: if RX SAMPLE & !EDGE then SES2

else if EDGE then SES0

else SESI;

state SES2: if RX SAMPLE & !EDGE then SES3

else if EDGE then SES0

J-52

state SES3:

state SES4:

state SES5:

state SES6:

state SES7:

state SES8:

else SES2;

if RX SAMPLE & !EDGE then SES4

else _f EDGE then SES0

else SES3;

if RX SAMPLE & !EDGE then SES5

else _f EDGE then SES0

else SES4;

if RX SAMPLE & !EDGE then SES6

else _f EDGE then SES0

else SES5;

if RX SAMPLE & !EDGE then SES7

else _f EDGE then SES0

else SES6;

if RX SAMPLE & !EDGE then SES8

else _f EDGE then SES0

else SEST;

if EDGE then SES0

else SES8;

state diagram edge_state

state HS0: if HDLC iN then HS1

else HSO;

state HSI: if HDLC IN then HS3

else HS2; " glitch

state HS3: if HDLC IN then HS7

else H$6;

state HS7: if !HDLC IN then HS6

else HS77

state HS6: if !HDLC IN then HS4

else HS5T " glitch

state HS4: if !HDLC IN then HS0

else HSI7

" glitch states
state HS2: if HDLC IN then HSI

else HSO;

state HS5: if !HDLC IN then HS6

else HS7T

" Comment out the following line for production parts
v!

" @INCLUDE 'EP600 RX CLOCK.TST'

end ep600 rx clock

J-53

" FILENAME: EP600 RX CLOCK.TST RX clock test vectors

" DATE: October 31, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT separated test vectors from .abl
" B 11/21/88 TCT added vectors to check RESET INPUT
**

" NOTE: A complete test of the state machines is made in TEST RX CLOCK

" files which provide special inputs to test the individual state
" machines.
t!

test vectors 'Test Edge Detector'

([sys_clock, NET_IN, input_model -> [EDGE, RXD, HI, H0])

" place in known state

[C,0,NORMAL_INPUT] -> [X,X,X,X];

[C, 0, NORMAL_INPUT] -> [X,X,X,X];

[C,0,NORMAL INPUT] -> [0,0,0,0];

" test no edge condition - input low

[C, 0,NORMAL_INPUT] -> [0,0,0,0];

[C,0,NORMAL_INPUT] -> [0,0,0,0];

" test high glitch - one sample

[C,I,NORMAL_INPUT] -> [0,0,0, I];

[C,0,NORMAL_INPUT] -> [0,0, I,0];

[C,0,NORMAL_INPUT] -> [0,0,0,0];

" test positive edge - two samples

[C,I,NORMAL INPUT] -> [0,0,0, i];

[C,I,NORMAL_INPUT] -> [0,0, i,I];

[C, 0,NORMAL_INPUT] -> [i,i,I,0];

[C, 0,NORMAL_INPUT] -> [0,i,0,0];

[C, 0, NORMAL_INPUT] -> [i,0,0,0];
[C,0,NORMAL INPUT] -> [0,0,0,0];

" test positive edge - three samples

[C,I,NORMAL_INPUT] -> [0,0,0,

[C,I,NORMAL_INPUT]

[C,I,NORMAL_INPUT]

[C, 0,NORMAL_INPUT]

[C,I,NORMAL_INPUT]

[C,I,NORMAL INPUT]

[C, 0,NORMAL_INPUT]

[C, 0,NORMAL_INPUT]

[C, 0,NORMAL_INPUT]

[C, 0,NORMAL_INPUT]

[C, 0,NORMAL_INPUT]

-> [0,0 I,

-> [i,i I,

-> [0,i i,

-> [0,i 0,

-> [0, i I,

-> [0,i i,

-> [0,i 0,

-> [i,0 0,

-> [0,0 0,

-> [0,0 0,

i];
I];
i];
0];
i];
i];
0];
0];
0];
0];
0];

" this is a + glitch

" next clock detects + edge

" next clock detects - edge

" next clock detects + edge

" this is a - glitch

" next clock detects - edge

" test vectors 'Test Sync Enable State Machine'

" ([NET IN, input_mode, sys_clock, sync_state,

" -> Tsync_state, hdlc clock, edge_state])

hdlc_clock, edge_state]

test vectors ' Test various input modes'

([sys clock, input_mode,NET_IN,NODE_SIM_IN]

[HO,_XC]);

->

[C,NORMAL_INPUT, 0,0] -> [0,X];
[C, NORMAL INPUT, I,0] -> [I,X];

[C, NORMAL_INPUT, 0,1] -> [0,X];

[C, MONITOR_INPUT, 0,0] -> [0,X];

J-54

[C,MONITORINPUT,I,0] -> [0,X];
[C,MONITOR_INPUT,0,1]-> [I,X];

[C, NODE_INPUT, 0,0] -> [0,X];

[C, NODE_INPUT, I,0] -> [0,X];

[C, NODE_INPUT, 0,1] -> [I,X];

[C, RESET_INPUT, 0,0] -> If,Z];

[C, RESET_INPUT, I,0] -> [I,Z];

[C, RESET_INPUT, 0,1] -> If,Z];

test vectors ' Test LED outputs'

-- (inputmode -> [OUTPUT_ENABLE, Normal_LED, NodeLED, Monitor_LED])

RESET INPUT

NORMAL INPUT

NODE I_TPUT

MONITOR INPUT

-> [0, 0,0,0] ;

-> [i,i,0,0];

-> [i,0,i,0];

-> [i, 0,0, i];

J-55

ABEL(tm)3.00b - DocumentGenerator 21-Jun-89 05:55 PM
AIPS I/O NetworkHDLCReceivedDataClock SyncPAL

BOEINGADVANCEDSYSTEMS
Designedby: TomTorkelson Current rev: 10/31/88

Equations for Moduleep600rx clock

Device EP600RX CLOCK

Page 1

- Reduced Equations:

OUTPUT ENABLE = (!M0 # !MI);

RXC_E = (OUTPUT_ENABLE);

EDGE := (!H0 & !HI & RXD # H0 & HI & !RXD);

~Normal LED = ! (!M0 & !MI);

-Node LED = ! (!M0 & MI);

~Monitor LED = !(M0 & !MI);

RXC := (!EDGE & !Q0 & Q2 & RXC

!Q0 & Q2 & RXC & !SE3

Q0 & Q1 & Q2 & RXC

!EDGE & Q0 & Q1 & Q2

Q0 & Q1 & Q2 & !SE3);

Q2 := (!EDGE & Q1 & Q2 & RXC

Q1 & Q2 & RXC & !SE3

!EDGE & Q0 & Q1 & !RXC

Q0 & Q1 & !RXC & !SE3);

Q1 := (Q0 & Q1 & RXC

!EDGE & Q0 & Q1

Q0 & Q1 & !SE3

!EDGE & Q0 & !Q2 & !RXC

Q0 & !Q2 & !RXC & !SE3);

Q0 := (EDGE & !Q0 & !QI & RXC & SE3

EDGE & !Q0 & Q2 & RXC & SE3

Q0 & Q1 & !Q2

Q0 & Q1 & !RXC

EDGE & Q0 & Q1 & SE3

!QI & !Q2 & !RXC);

SE3 := (!EDGE & !SE0 & !SEI & !SE2 & SE3

!EDGE & !Q0 & !QI & !Q2 & RXC & SE0 & SEI & SE2 & !SE3);

J-56

Page 2

ABEL(tm) 3.00b - Document Generator 21-Jun-89 05:55 PM

AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module ep600 rx clock

Device EP600 RX CLOCK

SE2 := (!EDGE & !SE0 & SE2 & !SE3

!EDGE & Q0 & SE2 & !SE3

!EDGE & QI & SE2 & !SE3

!EDGE & Q2 & SE2 & !SE3

!EDGE & !RXC & SE2 & !SE3

!EDGE & !SE1 & SE2 & !SE3

!EDGE & !Q0 & !Q1 & !Q2 & RXC & SE0 & SE1 & !SE2 & !SE3);

SEI := (!EDGE & Q0 & SEI & !SE3

!EDGE & Q1 & SEI & !SE3

!EDGE & Q2 & SE1 & !SE3
!EDGE & !RXC & SEt & !SE3

!EDGE & !SE0 & SEI & !SE3

!EDGE & !Q0 & !QI & !Q2 & Rxc & SE0 & !SEI & !SE3);

SE0 := (!EDGE & Q0 & SE0 & !SE3

!EDGE & QI & SE0 & !SE3

!EDGE & Q2 & SE0 & !SE3

!EDGE & !RXC & SE0 & !SE3

!EDGE & !Q0 & !QI & !Q2 & RXC & !SE0 & !SE3);

RXD := (H0 & RXD # HI & RXD # H0 & HI);

HI := (H0);

H0 := (M0 & M1

M1 & NODE SIM IN

M0 & NODE-SIM-IN

!M0 & !MI--& NET_IN);

J-57

ABEL(tm) 3.00b - Document Generator 21-Jun-89 05:55 PM

AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module ep600 rx clock

Device EP600 RX CLOCK

SYS CLOCK1
w

M0

RXC

RXD

Q2

Q1

Q0

EDGE

HI

H0

NET IN

E0600

..........\ /
\ /

1 24

2 23

3 22

4 21

5 20

6 19

7 18

8 17

9 16

i0 15

II 14

12 13

M1

SE0

SEI

SE2

SE3

OUTPUT ENABLE

-Normal LED

~Monitor LED

~Node LED

NODE SIM IN

SYS CLOCK2

end of module ep600 rx clock

Page 3

J-58

" FILENAME: TEST RX CLOCK.ABL AIPS RX Clock EPLD

" DATE: October 31, 1988

" BY: T.C. Torkelson
**

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT separated test vectors from .abl

" revised pinout to match circuit board

" B 6/13/89 TCT changed glitch eqn to state machine

" fixed error in clock sync state machine

" revised bit assignments for HCSxx to fit EPLD

" - changed title and eliminated LED outputs to allow testing by breaking

" path from ENABLE and SE3 to other state machines

module test rx clock

flag '-r3','-tl'

title 'AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88
¢

" REVISED BY

" 2/18/88 TCT

" 5/18/88 TCT

" 8/29/88 TCT

" 8/31/88 TCT

" 9/7/88 TCT

" 10/31/88 TCT

" 11/20/88 TCT

"Declarations :

DESCRIPTION

added glitch filter to prevent erroneous edge detect
revised for ABEL 3.0

added inputs for monitor, 'node simulator, mode select

changed SES to D FF, used state diagram instead of eqn

changed pinout, changed MONITOR IN to macro,

provided MONITOR IN1 and MONITOR IN2

separated out test vectors, matched pinout to circuit brd

added LED driver outputs

revised LED driver output pin assignment

made RXD high for input_mode == RESET_INPUT

disabled RXC output until input_mode _ RESET_INPUT

changed Reset LED output to OUTPUT ENABLE

TEST RX CLOCK device 'E0600';

" define ABEL .. commands

C,K,P,X,Z = .C.,.K.,.P.,.X.,.Z.;

" inputs:

SYS CLOCK1 pin i;

SYS-CLOCK2 pin 13;

NET IN pin ii;

NODE SIM IN pin 14;

MI,M0 pin 23,2;

" 16 Mhz system clock from VME bus

" 16 Mhz system clock from VME bus

" HDLC data from I/O network

" input from node simulator

" mode select inputs

v, outputs:

RXC,Q2,QI,Q0 pin 3,5,6,7;

EDGE, RXD,HI,H0 pin 8,4,9,10;

" RX clock registers

" Edge detect registers

RXC, Q2,QI,Q0 istype 'pos, reg_D, feed reg';

J-59

EDGE,RXD,HI,H0 is-type 'pos, reg_D, feed_reg';

RXC.OE istype 'eqn'; " control for RXC clock output

SE3,SE2,SEI,SE0 pin 19,20,21,22; " Edge detect enable registers

SE3, SE2,SE1,SE0 istype 'pos, reg_D, feed_reg';

OUTPUT ENABLE pin 18;

OUTPUT_ENABLE istype 'com, feed_pin';

" high to enable RXC output

" not enough terms for RXC out enable

" these are inputs added for test purposes

EDGE IN pin 17;

SYNC--ENABLE IN pin 16;

RX SAMPLE - pin 15;

" states:

sys_clock = [SYS_CLOCK2,SYS_CLOCK1];

edge_state = [RXD, HI, H0];

HS0 = ^bOO0;

HSI = ^b001;

HS2 = ^b010;

HS3 = ^b011;

HS4 = ^bl00;

HS5 = ^bl01;

HS6 = ^bll0;

HS7 = ^hi11;

" positive edge

" negative edge

sync_state = [SE3, SE2, SE1, SE0];

SES0 = 0;

SESI = I;

SES2 = 2;

SES3 = 3;

SES4 = 4;

SES5 = 5;

SES6 = 6;

SES7 = 7;

SES8 = ^oi0; " edge sync enabled

hdlc clock = [RXC, Q2, QI, Q0];

HCS0 = 0;

HCSI = I;

HCS2 = 3;

HCS3 = 7;

HCSII = ^o13;

HCSI4 = ^o17;

HCSI5 = ^o16;

HCS16 = ^o14;

HCS17 = ^oi0;

@INCLUDE '[-]INPUT MODE.STATE'

" macros:

SYNC_EDGE macro {(SYNC_ENABLE_IN & EDGE_IN)};

" The following macro selects NET_IN for normal operation,

" NODE SIM IN for either monitor or node operation, and causes

" HDLC--IN to be high for reset operation

J-60

HDLCIN macro { (

-(input_mode == NORMAL INPUT) & NET IN #

(input_mode == MONITOR INPUT) & NODE SIM IN #

(input_mode == NODE INPUT) & NODE-SIM--IN #

(input_mode == RESET_INPUT) - -
));

equations

OUTPUT ENABLE = (input_mode != RESET_INPUT);
RXC.OE--= OUTPUT ENABLE;

EDGE := (edge_state == HS3) # (edge_state == HS4);

state_diagram hdlc_clock

state HCS0: goto HCSI;

state HCSI: if SYNC EDGE then HCS1

else HCS2;

state HCS2: if SYNC EDGE then HCSI

else HCS3;

state HCS3: if SYNC EDGE then HCSI

else HCSI4;

state HCSI4: if SYNC EDGE then HCSII

else HCSI5;

state HCSII: goto HCS2;

state HCSI5: if SYNC EDGE then HCSI

else HCSI6;

state HCSI6: if SYNC EDGE then HCSI

else HCSI7;

state HCSI7: if SYNC EDGE then HCSI

else HCS0;

state_diagram syncstate

state SES0: if RX SAMPLE & !EDGE IN then SESI

else SES0;

state SESI: if RX SAMPLE & !EDGE IN then SES2
else if EDGE IN then-SES0

else SESI;

state SES2: if RX SAMPLE & !EDGE IN then SES3
else if EDGE IN then-SES0

else SES2;

state SES3: if RX SAMPLE & !EDGE IN then SES4

else if EDGE IN then-SES0

else SES3;

state SES4: if RX SAMPLE & !EDGE IN then SES5

else if EDGE IN then--SES0

J-61

state SES5:

state SES6:

state SEST:

state SES8:

else SES4;

if RX SAMPLE & !EDGE IN then SES6

else if EDGE IN then-SES0

else SESS;

if RX SAMPLE & !EDGE IN then SES7

else if EDGE IN then-SES0

else SES6;

if RX SAMPLE & !EDGE IN then SES8
else if EDGE IN then-SES0

else SEST;

if EDGE IN then SES0

else SES8;

state_diagram edge_state

state HS0:

state HSI:

state HS3:

state HS7:

state HS6:

state HS4:

" glitch states
state HS2:

state HS5:

if HDLC IN then HSI

else HSO;

if HDLC IN then HS3

else HS_;

if HDLC IN then HS7

else HS6;

if !HDLC IN then HS6

else HS77

if !HDLC IN then HS4

else HS57

if !HDLC IN then HS0

else HSI_

if HDLC IN then HS1

else HSO;

if !HDLC IN then HS6

else HS7[

" glitch

" glitch

" FILENAME: TEST RX CLOCK.TST RX clock test vectors

" DATE: October 31, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT separated test vectors from .abl
" B 11/21/88 TCT added vectors to check RESET INPUT

test vectors 'Test Edge Detector'

([sys_clock, NET_IN, input_model

" place in known state

[C,0,NORMAL_INPUT]

[C, 0,NORMAL_INPUT]

-> [x,x,x,x];
-> [X,X,X,X] ;

-> [EDGE, RXD, HI, H0])

J-62

test
[C, 0,NORMAL INPUT] -> [0,0,0,0];

no edge conditio_ - input low

[C,0,NORMAL_INPUT] -> [0,0,0,0];

[C,0,NORMAL_INPUT] -> [0,0,0,0];

test high glitch - one sample

[C,I,NORMAL_INPUT] -> [0,0,0, I];

[C, 0,NORMAL_INPUT] -> [0,0, I,0];

[C,0,NORMAL_INPUT] -> [0,0,0,0];
test positive edge - two samples

[C,I,NORMAL_INPUT] -> [0,0,0,i];

[C,I,NORMAL_INPUT] -> [0,0,1,1];

[C,0,NORMAL_INPUT] -> [i,i,I,0];

[C, 0,NORMAL_INPUT] -> [0,i,0,0];

[C,0,NORMAL_INPUT] -> [i,0,0,0];
[C, 0,NORMAL INPUT] -> [0,0,0,0];

test positive edge - three samples

[C,I,NORMAL_INPUT] -> [0,0,0,i];

[C,I,NORMAL_INPUT] -> [0,0, I,I];

[C,I,NORMAL INPUT] -> [I,i,I,i];

[C, 0,NORMAL_INPUT] -> [0,i,i,0];

[C,I,NORMAL_INPUT] -> [0, I,0, I];

[C,I,NORMAL INPUT] -> [0, i,i,I];

[C,0,NORMAL_INPUT] -> [0,i,I,0];

[C,0,NORMAL_INPUT] -> [0,I,0,0];

[C, 0,NORMAL_INPUT] -> [i,0,0,0];

[C, 0,NORMAL_INPUT] -> [0,0,0,0];

[C, 0,NORMAL_INPUT] -> [0,0,0,0];

" this is a + glitch

" next clock detects + edge

" next clock detects - edge

" next clock detects + edge

" this is a - glitch

" next clock detects - edge

test vectors 'Test Various Input Modes'

_[sys_clock, input_mode,NETIN, NODE_SIM_IN] -> [H0,RXC]);

[C, NORMAL_INPUT, 0, 0] -> [0,X] ;

[C, NORMAL INPUT, I,0] -> [I,X];

[C, NORMAL_INPUT, 0,1] -> [0,X];

[C, MONITOR_INPUT, 0,0] -> [0,X];

[C,MONITOR INPUT, I,0] -> [0,X];

[C,MONITOR_INPUT, 0,1] -> [I,X];

[C,NODE_INPUT, 0,0] -> [0,X];

[C,NODE_INPUT, I,0] -> [0,X];

[C,NODE_INPUT, 0,1] -> [I,X];

[C, RESET INPUT, 0,0] -> [l,Z];

[C, RESET INPUT, I,0] -> [I,Z];

[C, RESET INPUT,0,1] -> [I,Z];

test vectors 'Test Sync Enable - Normal operation'

_[sys_clock, EDGE_IN, RX_SAMPLE, sync_state] -> [sync_state])

[P,0,0, !SES0] -> [SES0];

[C,0,0,X] -> [SES0];

[C, 0,1,X] -> [SESI];

[C, 0,0, X] -> [SESI];

[C, 0, I,X] -> [SES2];

[C,0,0,X] -> [SES2];

[C, 0,1,X] -> [SES3];

J-63

test

test

[C,0,0,X] -> [SES3];

[C,0, I,X] -> [SES4];

[C,0,0,X] -> [SES4];

[C,0, I,X] -> [SES5];

[C, 0,0,X] -> [SES5];

[C,0,1,X] -> [SES6];

[C,0,0,X] -> [SES6];

[C,0,1,X] -> [SES7];

[C,0,0,X] -> [SES7];

[C, 0, I,X] -> [SES8];

[C,0,0,X] -> [SES8];

[C, 0, I,X] -> [SES8];

[C,I,0,X] -> [SES0];

vectors

[sys_clock,

'Test Sync Enable - Normal edge reset'

EDGE_IN, RX_SAMPLE, sync_state] -> [sync_state])

[P,0,0, !SES0] -> [SES0];

[C,I,0, SES0] -> [SES0];

[P,0,0,!SESI] -> [SESI];

[C,I,0,SESI] -> [SES0];

[P,0,0,!SES2] -> [SES2];

[C,I,0,SES2] -> [SES0];

[P,0,0,!SES3] -> [SES3];

[C,I,0, SES3] -> [SES0];

[P,0,0,!SES4] -> [SES4]

[C,I,0, SES4] -> [SES0];

[P,0,0,!SES5] -> [SES5]

[C,I,0, SES5] -> [SES0];

[P,0,0,!SES6] -> [SES6]

[C,I,0,SES6] -> [SES0];

[P,0,0,!SES7] -> [SES7];

[C,I,0,SES7] -> [SES0];

vectors

[sys_clock,
Test Sync Enable - Edge / RX_Sample contention'

EDGE_IN, RX_SAMPLE, sync_state] -> [sync_state])

[P,0,0,!SES0] -> [SES0];

[C,I,I,SES0] -> [SES0];

[P,0,0,!SESI] -> [SESI];

[C,I,I,SESI] -> [SES0];

[P,0,0,!SES2] -> [SES2];

[C,I,I,SES2] -> [SES0];

[P,0,0,!SES3] -> [SES3];

[C,I,I,SES3] -> [SES0];

J-64

[P,0,0,!SES4] -> [SES4];

[C, I, I, SES4] -> [SE$0];

[P,0,0,!SES5] -> [SES5];

[C, I, I, SES5] -> [SES0];

[P, 0, 0, !SES6] -> [SES6];

[C, I, I, SES6] -> [SES0];

[P,0,0,!SES7] -> [SES7];

[C,I,I,SES7] -> [SES0];

test vectors 'Test Clock Generator State Machine Free Run'

_[sys_clock, EDGE_IN, SYNC_ENABLEIN, hdlc_clock] -> [hdlc_clock])

[p,0,0,!HCS0] -> [HCS0];

[C, 0,0,HCS0] -> [HCSI];

[C,0,0,X] -> [HCS2];

[C,0,0,X] -> [HCS3];

[C, 0,0,X] -> [HCSI4];

[c,0,0,x] -> [_CSlS];
[C,0,0,X] -> [HCS16];

[C,0,0,X] -> [HCSI7];

[c,0,0,x] -> [HCS0];

test vectors 'Test Clock Generator Sync Operation at HCS0'

_[sys_clock, EDGE_IN, SYNC_ENABLEIN, hdlc_clock] -> [hdlc_clock])

[p,0,0,!HCS0] -> [_cs0];

[C,I,I,HCS0] -> [HCSI];

[C, 0,0,X] -> [HCS2];

test vectors 'Test Clock Generator Sync Operation at HCSI'

_[sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlc clock] -> [hdlc_clock])

[p,0,0,!HCSI] -> [HCSI];

[C,I,I,HCSI] -> [HCSI];

[C, 0,0,X] -> [HCS2];

test vectors 'Test Clock Generator Sync Operation at HCS2'

_[sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlc clock] -> [hdlc_clock])

[p,0,0,!HCS2] -> [SCS2];

[C,I,I,HCS2] -> [HCSI];

[C,0,0,X] -> [HCS2];

test vectors 'Test Clock Generator Sync Operation at HCS3'

_[sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlcclock] -> [hdlc_clock])

[p,0,0,!HCS3] -> [HCS3];

[C,I,I,HCS3] -> [HCSI];

[C,0,0,X] -> [HCS2];

test_vectors 'Test Clock Generator Sync Operation at HCSI4'

J-65

test

([sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlc_clock] -> [hdlc_clock])

[P,0, 0, !HCSI4] -> [HCSI4] ;

[C,I,I,HCSI4] -> [HCSII];

[C,0,0,X] -> [HCS2];

vectors 'Test Clock Generator Sync Operation at HCSI5'

_[sys_clock, EDGE_IN, SYNC_ENABLE_IN, hdlc_clock] -> [hdlc_clock])

[P,0,0, !HCSIS] -> [HCSI5];

[C,I,I,HCSI5] -> [HCSI];

[C,0,0,X] -> [HCS2];

test vectors

[sys_clock,

[P,0,

[C, i,

[C, 0,

test vectors

7 [sys_clock,

[P,O,

Test Clock Generator Sync Operation at HCSI6'

EDGE_IN, SYNC_ENABLE_IN, hdlc_clock] -> [hdlc_clock])

0, !HCSI6] -> [HCSI6];

I,HCSI6] -> [HCSI];

0, X] -> [HCS2];

Test Clock Generator Sync Operation at HCSI7'

EDGE_IN, SYNC_ENABLE_IN, hdlc_clock] -> [hdlc_clock])

0,!HCSI7] -> [HCSI7];

[C,I,I,HCS0] -> [HCSI];

[C,0,0,X] -> [HCS2];

test vectors 'Test

_[sys_clock, EDGE_IN,

Clock Generator Enabled, No Edge'

SYNC_ENABLE_IN, hdlc_clock] ->

[P,0,0,!HCS0] -> [HCS0];

[C,0, I,HCS0] -> [HCSI];

[C, 0,I,X] -> [HCS2];

[C, 0,1,X] -> [HCS3];

[C,0,1,X] -> [HCSI4];

[C,0, I,X] -> [HCSI5];

[C, 0, I,X] -> [HCSI6];

[C,0, I,X] -> [HCSI7];

[C,0, I,X] -> [HCS0];

[hdlc_clock])

test vectors

[sys_clock,

'Test Clock Generator Disabled, Edge'

EDGE_IN, SYNC_ENABLE_IN, hdlc_clock]

[P,0,0,!HCS0] -> [HCS0];

[C,I,0, HCS0] -> [HCSl];

[C,I,0,X] -> [HCS2];

[C,I,0,X] -> [HCS3];

[C,I,0,X] -> [HCSI4];

[C,I,0,X] -> [HCSI5];

[C,I,0,X] -> [HCSI6];

[C,I,0,X] -> [HCSI7];

[C,I,0,X] -> [HCS0];

-> [hdlc_clock])

J-66

end test rx clock

J-67

ABEL(tm) 3.00b - Document Generator 21-Jun-89 03:21 PM

AIPS I/O Network HDLC Received Data Clock Sync PAL

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module test rx clock

Device TEST RX CLOCK

Page 1

- Reduced Equations:

OUTPUT ENABLE = (!M0 # !MI);

_RXC_E = (OUTPUT_ENABLE) ;

EDGE := (!H0 & !HI & RXD # H0 & HI & !RXD);

RXC := (!EDGE IN & !Q0 & Q2 & RXC

!Q0-& Q2 & RXC & !SYNC ENABLE IN

Q0 & Q1 & Q2 & RXC

!EDGE IN & Q0 & Q1 & Q2

Q0 & Q1 & Q2 & !SYNC_ENABLE_IN);

Q2 := (!EDGE IN & Q1 & Q2 & RXC

Q1 & Q2 & RXC & !SYNC ENABLE IN

!EDGE IN & Q0 & Q1 & .TRXC -

Q0 & Q1 & !RXC & !SYNC ENABLE IN);

Q1 := (Q0 & Q1 & RXC

!EDGE IN & Q0 & Q1

Q0 & Q1 & !SYNC ENABLE IN

!EDGE IN & Q0 &-!Q2 & TRXC

Q0 & TQ2 & !RXC & !SYNC_ENABLE_IN);

Q0 := (EDGE IN & !Q0 & !QI & RXC & SYNC ENABLE IN

EDGE IN & !Q0 & Q2 & RXC & SYNC ENABLE IN

Q0 &-QI & !Q2

Q0 & Q1 & !RXC

EDGE IN & Q0 & Q1 & SYNC ENABLE IN

!QI _ !Q2 & !RXC); - -

SE3 := (!EDGE IN & !SE0 & !SEI & !SE2 & SE3

!EDGE IN & RX SAMPLE & SE0 & SEI & SE2 & !SE3);

SE2 := (!EDGE IN & !RX SAMPLE & SE2 & !SE3

!EDGE IN & !SE0 & SE2 & !SE3

!EDGE-IN & !SEI & SE2 & !SE3

!EDGE--IN & RX SAMPLE & SE0 & SEI & !SE2 & !SE3);

J-68

ABEL(t_m)3.00b - DocumentGenerator 21-Jun-8903:21 PM
AIPSI/O NetworkHDLCReceivedDataClock SyncPAL

BOEINGADVANCEDSYSTEMS
Designedby: TomTorkelson Current rev: 10/31/88

Equations for Module test rx clock

Device TEST RX CLOCK

SE1 := (!EDGE IN & !RX SAMPLE & SE1 & !SE3

!EDGE IN & !SE0 & SEI & !SE3

!EDGE-IN & RX SAMPLE & SE0 & !SEI & !SE3);

Page2

SE0 := (!EDGE IN & !RX SAMPLE & SE0 & !SE3

!EDGE_IN & R_Sm_.LE & !SE0 & !SS3);

RXD := (H0 & RXD # H1 & RXD # H0 & H1);

H1 := (H0);

H0 := (M0 & MI

M1 & NODE SIM IN

M0 & NODE--SIM-IN

!M0 & !MI--& NET_IN);

J-69

ABEL(tm)3.00b - DocumentGenerator 21-Jun-89 03:21 PM
AIPSI/O NetworkHDLCReceivedData Clock SyncPAL

BOEINGADVANCEDSYSTEMS
Designedby: TomTorkelson Current rev: 10/31/88

Chip diagram for Module test rx clock

Device TEST RX CLOCK

SYS CLOCK1

M0

RXC

RXD

Q2

Q1

Q0

EDGE

HI

H0

NET IN

E0600

\ /
\ /

1 24

2 23

3 22

4 21

5 20

6 19

7 18

8 17

9 16

I0 15

Ii 14

12 13

M1

SE0

SEI

SE2

SE3

OUTPUT ENABLE

EDGE IN

SYNC ENABLE IN

RX SAMPLE

NODE SIM IN

SYS CLOCK2

Page 3

end of module test rx clock

J-70

.***

" FILENAME: DIU NODE 22V10.ABL Simulated node for DIUs

" DATE: OctOber 31, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Changed M1, M0 pinout to agree with PC board

" Separated out test vectors

module diu node 22v10

flag '-r2'

title 'AIPS Simulated I/O Network Node EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson
8

Current rev: 10/31/88

" REVISED BY DESCRIPTION

" This device is used on the network adapter to implement non-existent nodes.

"Declarations:

DIU NODE 22VI0 device

" inputs:

'P22VI0';

NODE_IN1, NODE_IN2

DIUI IN, DIU2 IN

DIU3_IN, DIU4--IN

DIU5_IN, DIU6--IN

DIU7 IN, DIU8_IN

MI, M0

pin

pin

pin

pin

pin

pin

2,3;

4,5;

6,7;

8,9;

10,11;

1,13;

" outputs:

NODE_OUT1, NODE_OUT2

DIUI OUT, DIU2 OUT

DIU3_OUT, DIU4-OUT

DIU5_OUT, DIU6--OUT

DIU7_OUT, DIU8-_OUT

NODE_OUT1, NODE_OUT2

DIU1 OUT, DIU2 OUT

DIU3SOUT, DIU4--OUT

DIU5 OUT, DIU6-OUT

DIU7_OUT, DIU8-OUT

pin

pin

pin

pin

pin

istype

istype

istype

istype

istype

23,22;

21,20;

19, 18;

17,16;

15,14;

'neg, corn';

'neg, corn' ;

'neg, com' ;

'neg, com';

'neg, corn';

" states

input_mode = [MI, MO];

J-71

NORMAL INPUT = 0;

MONITOR INPUT = i;

NODE INPUT = 2;

RESET INPUT = 3;

equations

NODE_OUT1 = (input_mode -----NODE_INPUT) &

(NODE_IN2 #
DIUI IN # DIU2 IN # DIU3 IN # DIU4 IN #

DIU5-IN # DIU6--IN # DIU7-IN # DIU8-IN) #

(input_mode == MON ITOR_INPUT)-&
(NODE IN2) #

(input mode == NORMAL_INPUT) &

(D[UI_IN) #

(input_mode == RESET_INPUT) &
(0);

NODE_OUT2 = (input mode --= NODE_INPUT) &

(NODE_IN1 #
DIUI IN # DIU2 IN # DIU3 IN # DIU4 IN #

DIU5--IN # DIU6--IN # DIU7--IN # DIUS--IN) #

(input_mode == MONITOR_INPUT)--&

(NODE IN1) #

(input_mode == NORMAL_INPUT) &
(DIU2 IN) #

(input_mode ---=RESET_INPUT) &
(0);

DIUI OUT = (input_mode == NODE INPUT) &

(NODE_IN1 # NODE IN2 #
DIU2 _N # DIU3 IN # DIU4 IN #

DIU5 IN # DIU6-IN # DIU7--IN # DIU8ZIN) #

(input_mode --= MONITOR INPUT)--&
(NODE IN1 # NODE IN2) #

(input_mode == NORMA_INPUT) &
(0) #

(input_mode == RESET_INPUT) &
(0);

DIU2 OUT = (input_mode -- NODE INPUT) &

(NODE_IN1 # NODE_IN2 #
DIUI IN # DIU3 IN # DIU4 IN #

DIU5--IN # DIU6 IN # DIU7--IN # DIU8ZIN) #

(input mode == MONITOR_INPUT)--&

(oT #
(input mode == NORMAL_INPUT) &

(oT #

(input_mode == RESET_INPUT) &
(0);

DIU3 OUT = (input_mode == NODE INPUT) &
(NODE_IN1 # NODE IN2 #
DIUI IN # DIU2 _N # DIU4 IN #

DIU5--IN # DIU6--IN # DIU7 IN # DIU8ZIN) #

(input_mode == MONITOR_INPUT)--&

(o) #
(input_mode = NORMAL_INPUT) &

(0) #
(input_mode == RESET_INPUT) &

J-72

(0);

DIU4 OUT = (input_mode _ NODE_INPUT) &

(NODE_IN1 # NODE IN2 #
DIUI IN # DIU2 _N # DIU3 IN #

DIUS--IN # DIU6--IN # DIU7-IN # DIU8_IN) #
(input mode == MONITOR_INPUT)-&

(oT t
(input mode _ NORMAL INPUT) &

(0T #
(input mode -----RESET_INPUT) &

(oT;

DIU5 OUT =
a

(input_mode == NODE INPUT) &

(NODE_IN1 # NODE IN2 #

DIUI IN # DIU2 _N # DIU3 IN # DIU4 IN #

-- DIU6--IN # DIU7-IN # DIUS_IN) #

(input_mode _ MONITOR_INPUT)--&
(0) #

(input_mode == NORMAL_INPUT) &
(0) #

(input_mode == RESET INPUT) &
(0);

DIU6 OUT = (input_mode _- NODE INPUT) &

(NODE_IN1 # NODE IN2 #
DIUI IN # DIU2 _N # DIU3 IN # DIU4 IN #

DIU5-IN # -- DIU7-IN # DIU8ZIN) #
(input_mode --= MONITOR_INPUT)-&

(0) #
(input_mode == NORMAL_INPUT) &

(0) #

(input_mode == RESET_INPUT) &
(0);

DIU7 OUT = (input mode == NODE INPUT) &

(NODE_IN1 # NODE IN2 #
DIUI IN # DIU2 _N # DIU3 IN # DIU4 IN #

DIU5--IN # DIU6-IN # - DIU8ZIN) #

(input mode = MONITOR_INPUT) &
(oT #

(input mode _ NOeL INPUT) &
(0) #

(input mode = RESET_INPUT) &
(0T;

DIU8 OUT = (input mode == NODE INPUT) &
(NODE_IN1 # NODE IN2 #
DIUI IN # DIU2 _N # DIU3 IN # DIU4 IN #

DIU5--IN # DIU6-IN # DIU7-IN --) #

(input_mode = MONITOR_INPUT)--&
(0) #

(input mode = NORMAL_INPUT) &
(0) #

(input mode == RESET_INPUT) &
(0);

" Comment out the following line to compile a production .JED file
It

" @INCLUDE 'DIU NODE 22VI0.TST'

J-73

end diu node 22vi0

J-74

" FILENAME: DIU NODE 22V10.TST Simulated node for DIUs test vectors
" DATE: October _1, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Separated out test vectors

test vectors ' Test Node Simulator EPLD'

([NODE INI,NODE IN2,DIUI_IN,DIU2 IN,DIU3 IN,
DIU4 IN, DIU5 IN, DIU6 IN, DIU7 IN,DIU8 IN,-input mode]

[NODE OUT1,NOD__OUT27DIUI_OUT, DIU20UT,DIU3 OUT,

DIU4OUT,DIU5OUT, DIU6_OUT, DIU7_OUT, DIUS_OUT])

test NODE INn

[0,0,0,O, 0,0,0,0,0,0,NORMAL INPUT] -> [0,0,0,0,0,0,0,0,0,0];

[1,0,0,0,0,0,0,0,0,0,NORMAL-INPUT] -> [0,0,0,0,0,0,0,0,0,0];

[0, I, 0, 0, 0, 0, 0,0, 0,0,NORMAL--INPUT] ->
test DIUn IN

[0,0,1,O, 0,0,0,0,0,0,NORMAL INPUT] ->

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, NORMAL--INPUT] ->

[0, 0, 0, 0, I, 0, 0, 0, 0, 0, NORMAL-INPUT] ->

[0, 0, 0, 0, 0, I, 0, 0, 0, 0, NORMAL--INPUT] ->

[0, 0, 0, 0, 0, 0, i, 0, 0, 0, NORMAL--INPUT] ->

[0, 0, 0, 0, 0, 0, 0, I, 0,0,NORMAL-INPUT] ->

[0, 0, 0, 0, 0, 0,0,0, i, 0, NORMAL-INPUT] ->

[0,0, 0, 0, 0, 0, 0,0, 0, I,NORMAL_-INPUT] ->

[0,0,0,0,0,0,0,0,0,0];

[I,0,0,0,0,0,0,0,0,0];
[0,I,0,0,0,0,0,0,0,01 ;
[0,0,0,0,0,0,0,0,0,01;
[0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0];
[0,0,0,0,0,0,0,0,0,0];

test NODE INn

[0,0,0,O, 0,0,0,0,0,0,MONITOR INPUT]

[I, 0, 0, 0, 0, 0, 0, 0, 0, 0, MONITOR--INPUT]

[0, i, 0, 0, 0, 0, 0, 0, 0, 0, MONITOR=INPUT]
test DIUn IN

[0,0,1,O, 0, 0, 0, 0, 0, 0,MONITOR INPUT]

[0, 0, 0, i, 0, 0, 0, 0, 0, 0, MONITOR--INPUT]

[0, 0, 0, 0, i, 0, 0, 0, 0, 0, MONITOR-INPUT]

[0,0,0,0,

[0,0,0,0,

[0,0,0,0,

[0,0,0,0,

[0,0,0,0,

-> [0, 0,0, 0,0, 0,0,0, 0, 0] ;

-> [0, i, I, 0,0, 0,0, 0, 0, 0] ;

-> [i, 0, i, 0,0, 0,0, 0, 0, 0] ;

->

->

->

0,1,0,0,0,0,MONITOR-INPUT] ->

0,0,1,0,0,0,MONITOR-INPUT] ->

0,0,0,1,0,0,MONITOR--INPUT] ->

0,0,0,0,1,0,MONITOR--INPUT] ->

0,0,0,0,0,1,MONITOR-INPUT] ->

[0,0,0,0,0,0,0,0,0

[0,0,0,0,0,0,0,0,0

[0,0,0,0,0,0,0,0,0

[0,0,0,0,0,0,0,0,0
[0,0,0,0,0,0,0,0,0 0]
[0,0,0,0,0,0,0,0,0 0]
[0,0,0,0,0,0,0,0,0 0]
[0,0,0,0,0,0,0,0,0,0]

0],
0],
0],
0],

t

" test NODE INn

[0, 0, 0,O, 0, 0, 0, 0, 0, 0, NODE_INPUT] ->

[i, 0, 0, 0, 0, 0, 0, 0, 0, 0,NODE_INPUT] ->

[0, i, 0, 0, 0, 0, 0, 0, 0, 0,NODE_INPUT] ->
" test DIUn IN

[0, 0, i,O, 0, 0, 0, 0, 0, 0,NODE_INPUT] ->

[0, 0, 0, I, 0, 0, 0, 0, 0,0,NODE_INPUT] ->
[0,0,0,
[0,0,0,
[0,0,0,
[0,0,0,
[0,0,0,
[0,0,0,

0, I, 0, 0,0, 0,0,NODE_INPUT] ->
0,0,1,0,0,0,0,NODE INPUT] ->

0, 0, 0, i, 0, 0,0,NODE-INPUT] ->

0, 0, 0, 0, i, 0, 0,NODE_INPUT] ->

0, 0, 0, 0,0, i, 0, NODE_INPUT] ->

0,0,0,0,0,0,1,NODE INPUT] ->

[0,0,0,0,0,0,0,0,0,0];
[0,i,i,1,i,1,I,I,i,i];
{i,0,i,I,i,i,i,i,i,I];

[i, I, 0, 1, I, 1, 1, 1, i, I] ;

[i, i, I, 0, i, i, i, I, i, 1] ;

[I, i, i, i, 0, I, i, i, i, I] ;

[i, i, I, I, i, 0, I, i, i, i] ;

[i, i, i, i, i, i, 0, i, i, i] ;

[i, i, i, I, i, i, i, 0, I, i] ;

[I, I, I, i, I, I, I, i, 0, I] ;

[i,i,i,l,l,1,1,i,1,0];

test NODE INn

[0,0,0,O, 0,0,0,0,0,0,RESET INPUT]

El, 0, 0, 0, 0, 0, 0, 0, 0, 0, RESET=INPUT]

[0,1,0,0,0,0,0,0,0,0,RESET INPUT]

-> [0,0,0,0,0,0,0,0,0,0];
-> [0,0,0,0,0,0,0,0,0,0];
-> [0,0,0,0,0,0,0,0,0,0];

->

J-75

test DIUn IN

[0,0,1,5,0,0,0,0,0,0,RESET INPUT]
[0, 0,0,I,0,0,0,0,0, 0,RESET-INPUT]

[0,0, 0,0,I,0,0,0,0,0,RESET-INPUT]
[0,0,0, 0,0,i,0,0,0,0, RESET--INPUT]
[0,0,0,0,0,0, i,0,0,0, RESET--INPUT]

[0, 0,0,0,0,0,0, I,0,0, RESET--INPUT]
[0, 0,0,0,0,0,0,0, i,0,RESET--INPUT]

[0, 0,0,0,0,0, 0, 0,0, i,RESET_--INPUT]

-> [0,0,0, 0,0,0,0,0,0,0] ;
-> [0,0, 0, 0,0,0,0,0,0,0] ;
-> [0,0,0,0,0,0, 0,0,0, 0],
-> [0,0,0,0,0,0, 0,0, 0,0],

-> [0,0, 0,0,0,0, 0, 0,0,0],
-> [0,0, 0,0, 0,0,0,0, 0,0],
-> [0,0, 0,0,0,0,0,0, 0,0]

-> [0, 0,0,0,0,0,0,0,0,0]

J-76

ABEL(tm) 3.00b - Document Generator
AIPS Simulated I/O Network Node EPLD

20-Dec-88 01:04 PM

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module diu_node_22v10

Device DIU NODE 22VI0

Page 1

- Reduced Equations:

NODE OUT1 = !(!DIUI_IN & !DIU2 IN & !DIU3 IN & !DIU4 IN & !DIU5 IN &
-- !DIU6 IN & !DIU7 IN--& !DIU8 IN--& !NODE IN2 --

!DIUI IN & !M0 & !MI

M0 & TNODE IN2

M0 & MI);

NODE OUT2 = !(M0 & M1
-- # !DIUI IN & !DIU2 IN & !DIU3 IN & !DIU4 IN & !DIU5 IN &

!DIU6 IN _ !DIU7 IN & !DIU8 IN & !NODE IN1-

!DIU2 IN & !M0 & !MI

M0 & TNODE IN1);

DIUI OUT = !(M0 & M1
-- # !DIU2 IN & !DIU3 IN & !DIU4 IN & !DIU5 IN & !DIU6 IN &

!DIU7 IN & !DIU8 IN & !NODE IN1--& !NODE IN2

!MI & !NODE I--N1& !NODE--IN2

!M0 & !MI);

DIU2 OUT = !(!DIUI IN & !DIU3 IN & !DIU4 IN & !DIU5 IN & !DIU6 IN &
-- !DIU7 IN-& !DIU8 IN-& !NODE IN_ & !NODE IN2 --

#MS - - -
!MI) ;

DIU3 OUT = !(M0
-- # !MI

!DIUI IN & !DIU2 IN & !DIU4 IN & !DIU5 IN & !DIU6 IN &
!DIU7 IN & !DIU8 IN & !NODE IN1--& !NODE IN2);

DIU4 OUT = !(M0

- # !Sl

!DIUI IN & !DIU2 IN & !DIU3 IN & !DIU5 IN & !DIU6 IN &

!DIU7 IN & !DIU8 IN & !NODE IN1-& !NODE_IN_);

DIU5 OUT = !(M0
-- # !MI

!DIUI IN & !DIU2 IN & !DIU3 IN & !DIU4 IN & !DIU6 IN &

!DIU7 IN & !DIU8 IN & !NODE IN1-& !NODE IN2);

DIU6 OUT = ! (M0
-- # !MI

!DIUI_IN & !DIU2_IN & !DIU3_IN & !DIU4_IN & !DIU5_IN &

J-77

ABEL(tm)3.00b - DocumentGenerator
AIPSSimulated I/O NetworkNodeEPLD

20-Dec-88 01:04 PM

Page 2

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module diu_node_22v10

Device DIU NODE 22VI0
w

!DIU7_IN & !DIU8_IN & !NODE_IN1 & !NODE_IN2);

DIU7 OUT = ! (M0

!MI

!DIUI IN & !DIU2 IN & !DIU3 IN & !DIU4 IN & !DIU5 IN &

!DIU6 IN & !DIU8 IN & !NODE IN1--& !NODE_IN_);

DIU8 OUT = !(M0
!MI

!DIUI IN & !DIU2 IN & !DIU3 IN & !DIU4 IN & !DIU5 IN &

!DIU6_IN & !DIU7_IN & !NODE_IN1-& !NODE_IN_);

J-78

ABEL(tm)3.00b - Document Generator

AIPS Simulated I/O Network Node EPLD

20-Dec-88 01:04 PM

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module diu node 22v10

Device DIU NODE 22VI0

Page 3

M1 1

NODE IN1 2

NODE IN2 3

DIUI IN 4

DIU2 IN 5
w

DIU3 IN 6

DIU4 IN 7

DIU5 IN 8

DIU6 IN 9

DIU7 IN 10

DIU8 IN II

12

P22V10

\ /-
\ /

24

23

22

21

2O

19

18

17

16

15

14

13

NODE OUT1

NODE OUT2

DIUI OUT

DIU2 OUT

DIU3 OUT

DIU4 OUT

DIU5 OUT

DIU6 OUT

DIU7 OUT

DIU8 OUT

M0

end of module diu node 22vi0

J-79

" FILENAME: EP320 TX CLOCK.ABL 2 MHz AIPS I/O transmit clock

" DATE: October 31, 1988
" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Modified to match ISIO PC board requirements

" Separated out test vectors

" B 11/17/88 TCT Changed input pin out to match PC layout

" C 11/21/88 TCT Added M0 and M1 inputs
" Added OUTPUT ENABLE

" Disable TXC while input_mode = RESET INPUT

module ep320 tx clock

flag '-r2'

title '68562 Transmit Clock Generator

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88
f

" rev description

" This EPLD buffers the system clock and provides a transmit clock for the DUSCC

" chip which provides a non-square waveform to meet the falling TXC to TXD outpu
t

" valid delay of 240 ns. The TXD clock will be low for 6 input clocks (375 ns)

" and high for two (125 ns).

"Declarations

EP320 TX CLOCK device 'E0320';

" define ABEL .. commands

C,K,P,X,Z = .C.,.K.,.P.,.X.,.Z.;

" inputs

SYS CLOCK pin i;N

!PIT CS pin 2;

A6 pin 3;

" 16 Mhz system clock

" chip select from UI00
" addr line 6 from ISIO card

M0, M1 pin 4,5; " DIU sim op mode input

" outputs

TXC, Q2,QI,Q0

TXC,Q2,QI,Q0

TXC.EN

pin 12,13,14,15;

istype 'pos, reg, feed_pin';

istype 'eqn';

!UI00 CS
Ul00 _s

!U20 CS

U20 _S

SPARE1

SPARE1

pin 19;

istype 'neg, com';

pin 18;

istype 'neg, com';

pin 16;

istype 'pos, com';

J-80

OUTPUTENABLE pin

OUTPUT-ENABLE istype

17;

'pos, com, feed pin';

" states

txc ctr = [TXC,Q2..Q0];

S0 = ^b0000;

Sl = ^b0001;

S2 = ^b0011;

S3 = ^b0010;

$4 = ^b0110;

$5 = ^b0100;

$6 = ^bll00;

$7 = ^bl000;

@INCLUDE 'INPUT_MODE.STATE'

equations
SPARE1 = 0;

OUTPUT ENABLE = (input_mode != RESET_INPUT);

TXC.EN = OUTPUT ENABLE;

UI00 CS = PIT CS & !A6; " select UI00 when A6 = 0

U20 _S = PIT--CS & A6; " select U20 when A6 = I

state_diagram txc_ctr

state SO: goto SI;

state SI: goto $2;

state $2: goto $3;

state $3: goto $4;

state $4: goto $5;

state $5: goto $6;

state $6: goto $7;

state $7: goto SO;

" Comment out the following line to compile a production .JED file

" @INCLUDE 'EP320 TX CLOCK.TST'

end ep320 tx clock

J-81

" FILENAME: EP320 TX CLOCK.TST 2 MHz AIPS I/O transmit clock vectors

" DATE: October 31, 1988

" BY: T.C. Torkelson
**

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Modified to match ISIO PC board requirements

" Separated out test vectors

" B 11/21/88 TCT Added test vectors for TXC output enable

test vectors ' Test Chip Selects '

([PIT_CS, A6] -> [UI00_CS, U20_CS])

[0, 0] -> [0, 0];
[0, I] -> [0, 0];
[I, 0] -> [i, 0];
[I, i] -> [0, i];

test vectors ' Set TXC Clock Generator to Known State'

([SYS_CLOCK, txc_ctr] -> txc_ctr)

[P, SO] -> SO;

test vectors ' Test TXC Clock Generator'

([SYS_CLOCK, txc_ctr] -> txc_ctr)

[C, SO] -> Sl;
[C, Sl] -> S2;
[C, $2] -> $3;

[c, s3] -> s4;
[C, $4] -> $5;

[C, S5] -> s6;
[c, S6] -> S7;
[C, s7] -> SO;

test vectors ' Test TXC output enable'

(input_mode -> [OUTPUT_ENABLE, TXC])

NORMAL INPUT -> [i, X];

NODE INPUT -> [i, X];

MONITOR INPUT -> [i, X];

RESET INPUT -> [0, Z];

J-82 I

ABEL (tin) 3.00b - Document Generator
68562 Transmit Clock Generator

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev:

Equations for Module ep320 tx clock

Device EP320 TX CLOCK

- Reduced Equations:

SPARE1 = (0);

OUTPUT ENABLE = (!M0 # !M1);

enable TXC = (OUTPUT_ENABLE);

~U100 CS = !(!A6 & !~PIT CS);

-U20 CS = !(A6 & !~PIT_CS);

TXC := (!Q0 & !QI & Q2);

Q2 := (!Q0 & Q2 & !TXC # !Q0 & Q1 & !TXC);

Q1 := (QI & !Q2 & !TXC # Q0 & !Q2 & !TXC);

QO := (!QI & !Q2 & !TXC);

21-Nov-88 04:36 PM

10/31/88

Page 1

J-83

ABEL(tm)3.00b - DocumentGenerator
68562Transmit Clock Generator

BOEINGADVANCEDSYSTEMS

Designed by: Tom Torkelson Current rev:

Chip diagram for Module ep320 tx clock

Device EP320 TX CLOCK

SYS CLOCK

~PIT CS

A6

M0

M1

E0320

\ /
\ /

1

2

3

4

5

6

7

8

9

i0

20

19

18

17

16

15

14

13

12

Ii

21-Nov-88 04:36 PM

10/31/88

~Ul00 CS

~U20 CS

OUTPUT ENABLE

SPARE1

Q0

Q1

Q2

TXC

Page 2

end of module ep320 tx clock

J-84

" FILENAME: ISI0 DELAY GEN.ABL Declarations unique to ISIO delay

" DATE: January 317 1989

" BY: Tom Torkelson

module isio_delay_gen

flag '-r3','-t0'

title 'ISIO FTC Delay Generator EPLD for MC68230

BOEING ADVANCED SYSTEMS

Designed by: T.C. Torkelson Latest Revision: 31 JAN 89'

" This module is used with the MC68230 PIT to prevent the timer register from

" changing when the timer_register is being read. This module was designed
" with the consideration that the MOVEP instruction must be used to access

" the timer_register on the MC68230.

" The first byte is read by the MOVEP instruction is actually a dummy byte

" which is read as zero. The CS for the dummy byte causes the EPLD to skip

" the next rising edge of the FTC, whether it occurs during the read of the

" timer or not. The next rising and falling edges each generate a pulse to

" the 68230, making up for the swallowed rising edge.

" A limitation on the 68230 is that clock pulses must not be spaced closer

" than the input clock frequency of the chip / 8. The ISIO 68230 is clocked

" at 7.38 Mhz, thus the minimum spacing between pulses is 1.08 usec. This
" works with the 4.125 usec FTC clock.

" declarations

ISIO DELAY GEN device 'E0600';

" inputs unique to ISIO DELAY GEN
!INH 1 -pin IT;

!INH-2 pin I0;

INH 3 pin 9;

"uses the Altera EP600 chip

" TICK inhibit, active low

" TICK inhibit, active low

" TICK inhibit, active high

" get common code for delay generator

@INCLUDE 'DELAY GEN.INC'

end isio delay_gen

J-85

" FILENAME: DELAY GEN.INC FTC pulse delay generator common logic

" DATE: January 31, 1989

" BY: Art Pannek
**

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Placed test vectors separate .TST file

Changed pin allocation for pc board

Changed INHB A & B pol to active low

Added INHB C7 active high

Changed pi_ numbers of inhibits for ISIO

B 1/30/89 TCT Changed design of EPLD to always swallow

one rising edge, then make it up with a

falling edge later

C 1/31/89 TCT Changed state progression, separated out .abl
code common to ISIO DELAY GEN & OPIO DELAY GEN

D 2/ 2/89 TCT Changed FTC latch to FTC D flop clocked

async by falling edge of CLK3

" define ABEL .. commands

C, K, P, X = .C., .K., .P., .X.;

H, L = 1, 0;

" inputs

CLKI pin i; " MC68230 clock

CLK2 pin 13; " MC68230 clock

CLK3 pin 23; " MC68230 clock

!CS pin 2; " CS active low to select MC68230

RSI pin 4;
RS2 pin 5;

RS3 pin 6;

RS4 pin 7;

RS5 pin 8;

" MC68230 register select bits

FTC pin 14; "Fault Tolerant Clock; 8 MHz / 33

" outputs

FTC TICK pin 3; " Tick output to 68230

CNTRX SELECT pin 22;
CNTRX SELECT

CNTRX-SELECT.C

CNTRX-SELECT.AR

istype

istype

istype

CNTRX SELECT LATCH pin 21;

CNTRX SELECT LATCH istype

" CS of cntrx register detected

'pos, reg_D, feed_reg';
'eqn'; " async clock

'eqn'; " async reset

'pos, com, feed_pin';

FTC LATCH

.... Rev D --TCT 2/2/89

FTC LATCH
FTC--LATCH.C

pin 20;

istype 'pos, reg_D, feed_reg';
istype 'eqn';

J-86

FTCLATCH istype 'pos, corn, feed_pin';

FTC LATCH DELAY pin 19;
--FTC LATCH DELAY istype 'pos, reg_D, feed_reg';

SKIP0, SKIPI pin 17, 18;

SKIP0, SKIPI istype 'pos, reg_D, feed reg';

INH LATCH pin 16;

-INH LATCH istype 'pos, com, feed_pin';

TICK

TICK
pin 15; " outputs pulses w/o regard to INH

istype 'pos, reg_D, feed reg';

" define states

rs = [RS5..RSI];

RS CNTRX = ^bl0110;
RS--CNTRH = ^bl0111;

RS-CNTRM = ^b11000;

RS-CNTRL = ^b11001;

" input register select

" select dummy

" select high byte

" select middle byte

" select low byte

inh = [INH I,INH 2,INH 3];
TICK ENABLE _ ^bOOT;

" inhibit

clk = [CLKI,CLK2,CLK3];

CLK C = [C,C,C];

CLK--H= [H,H,H];
CLK-L = [L,L,L];

"Clock the same inputs

"Clk_Group is Clocked

"Clk_Group is High

"Clk Group is Low

ftc = [FTC_LATCH, FTC_LATCHDELAY];
FTC RISE EDGE = ^bl0;

FTC-FALL--EDGE = ^b01;
" rising edge of FTC

" falling edge of FTC

skip = [SKIPI,SKIP0];
SKIP RESET = ^bOO;

SKIP--INHIBIT = ^b01;

SKIP-PASS HI = ^b11;

SKIP--PASS--LO = ^bl0;

" FTC edge skip states

" pass + edges
" inhibit all

" pass + edge

" pass - edge

" macros

" latch on gate level, pass thru on !gate level

LATCH macro (out, in, gate)

{?out = ?out & ?gate # ?in & !?gate;}

equations

CNTRX SELECT := (rs == RS_CNTRX);
CNTRX-SELECT.C = CS; " clock on leading edge of CS

" The following is really not required unless only one CS is received.

CNTRXSELECT.AR = (skip == SKIP_PASS_LO) & !FTC_LATCH & FTC_LATCH_DELAY;

" synchronize with input clock, hold when clock low, pass clock high

LATCH (CNTRX_SELECT_LATCH, CNTRXSELECT, !CLK3)

.... Rev D TCT 2/2/89

" LATCH (FTC_LATCH, FTC, !CLK3)

J-87

LATCH(INHLATCH,(INH_I # INH_2# INH_3), !CLK3)

.... Rev D TCT 2/2/89

FTC LATCH := FTC;

FTC-LATCH.C = !CLK3; " clock on falling edge of CLK3

" FTC delayed one input clock pulse

FTC_LATCH_DELAY := FTC_LATCH;

" FTC tick conditioned by skip states and inhibits
FTC TICK := !INH LATCH &

-- (7skip = SKIP_RESET) & (ftc == FTC_RISE_EDGE)

(skip --= SKIP PASS HI) & (ftc == FTC_RISE_EDGE)

(skip == SKIPZPASS_LO) & (ftc == FTC_FALL_EDGE)
);

" TICK output for test purposes, not affected by INH

TICK := (skip == SKIP_RESET) & (ftc -_- FTC_RISE_EDGE)

(skip == SKIP_PASS_HI) & (ftc == FTC RISE_EDGE)

(skip ==- SKIP_PASS_LO) & (ftc == FTC FALL_EDGE)

state_diagram skip

" This state machine is clocked by the system clock. After the

" initial state change, state changes only occur on edges of FTC.

" The state machine inhibits an output pulse on the first rising

" edge following the selection of CNTRX. The second rising edge

" and the following falling edge both generate output pulses.

state SKIP RESET: if CNTRX SELECT LATCH then SKIP INHIBIT

else SKIP_RESET_

state SKIP INHIBIT: if (ftc = FTC_RISE_EDGE) then SKIP_PASS_HI

else SKIP_INHIBIT;

state SKIP_PASS_HI: if (ftc --= FTCRISE_EDGE) then SKIP_PASS_LO
else SKIP PASS HI;

state SKIP PASS LO: if (ftc = FTC_FALL_EDGE) then SKIP_RESET
else SKIP PASS LO;

J-88

ABEL(tin) 3.00b - Document Generator

ISIO FTC Delay Generator EPLD for MC68230

02-Feb-89 04:59 PM

BOEING ADVANCED SYSTEMS

Designed by: T.C. Torkelson

Equations for Module isiodelay_gen

Latest Revision: 31 JAN 89

Device ISIO DELAY GEN

Page i

- Reduced Equations:

CNTRX SELECT := (!RS1 & RS2 & RS3 & !RS4 & RS5);

CNTRX SELECT C = (!~CS) ;

CNTRX_SELECT_RE = (!FTC_LATCH & FTC_LATCH_DELAY & !SKIP0 & SKIP1);

CNTRX_SELECT_LATCH = (CLK3 & CNTRX_SELECT # !CLK3 & CNTRXSELECT_LATCH);

INH LATCH = (CLK3 & INH 3
-- # CLK3 & !_INH 2

CLK3 & !~INH--I

!CLK3 & INH_LATCH);

FTC LATCH := (FTC);

FTC LATCH C = (!CLK3) ;

FTC_LATCH_DELAY := (FTC LATCH) ;

FTC TICK := (!FTC LATCH & FTC LATCH DELAY & !INH LATCH & !SKIP0 & SKIPI

FTC LATCH & !FTC LATCH DELAY & !INH LATCH & SKIP0 & SKIP1

FTC LATCH & !FTC LATCH DELAY & !INH LATCH & !SKIP0 &
!SKIPI)7 -- -- -

TICK := (!FTC LATCH & FTC LATCH DELAY & !SKIP0 & SKIP1
FTC LATCH & !FTC LATC--H DELAY & SKIP0 & SKIP1

FTC-LATCH & !FTC--LATCH-DELAY & !SKIP0 & !SKIP1);

SKIP1 := (!FTC LATCH DELAY & SKIP1
FT_ LATC_ & SKIPI
SKIP0 & SKIP1

FTC LATCH & !FTC LATCH DELAY & SKIP0);

SKIP0 := (FTC LATCH DELAY & SKIP0

!FTC LATCH & SKIP0

SKIPO & !SKIP1

CNTRX SELECT LATCH & !SKIP1);

J-89

ABEL(tin)3.00b - Document Generator

ISIO FTC Delay Generator EPLD for MC68230

02-Feb-89 04:59 PM

BOEING ADVANCED SYSTEMS

Designed by: T.C. Torkelson

Chip diagram for Module isio_delay_gen

Latest Revision: 31 JAN 89

Device ISIO DELAY GEN

Page 2

CLKI

~CS

FTC TICK

RSI

RS2

RS3

RS4

RS5

INH 3

~ INH 2

~INH 1
m

E0600

\ /
\ /

1

2

3

4

5

6

7

8

9

i0

ii

12

24

23

22

21

20

19

18

17

16

15

14

13

CLK3

CNTRX SELECT

CNTRX SELECT LAT

FTC LATCH

FTC LATCH DELAY

SKIP1

SKIP0

INH LATCH

TICK

FTC

CLK2

end of module isio delay_gen

J-90

" FILENAME: LED DRIVER.ABL FTC & misc control EPLD

" DATE: Nov-ember i, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 12/20/88 TCT changed Gx pinout to match PC board

module led driver

flag '-r3','-tl'

title 'ISIO daughter board LED drivers

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current re,: 12/20/88

"Declarations :

LED DRIVER device 'E0320';

" define ABEL .. commands

C,K,P,X = .C.,.K.,.P.,.X.;

" inputs:

C3,C2,CI,C0 pin

$3,$2,SI,S0 pin

" color: 1 = red, 0 = grn

" select: 1 = on, 0 = off

" outputs :

R3, R2, RI, R0

R3,R2, RI, R0

pin 19,18,17,16;

istype 'neg, com';

" low for RED

G3,G2,G1, GO

G3, G2, G1, GO

pin 12,13,14,15;

istype 'neg, com';

" low for GRN

" states, etc.

led red = [R3..R0];

led_-grn = [G3..G0];
color = [C3..C0];

select = [S3..S0];

RED OUT = [0,0,0,0];

GRN--OUT = [I,I,i,i];

OFF--_OUT = RED_OUT;

RED IN = [i,i,I,i];

GRN-IN = [0,0,0,0];

LED ON = [0,0,0,0];

LED--OFF = [I,I,i,I];

equations
led red = !color &

led_grn = color &

!select;
!select;

" Comment out the following command to compile production
,!

•JED files

J-91

" @INCLUDE 'LED DRIVER.TST'

end led driver

J-92

test vectors ' Test LED driver '
w

([color, select] -> [led red, led grn])

[RED_IN, LED OFF] -> [OFF_OUT, OFF_OUT];

[RED_IN, LED ON] -> [RED_OUT, !RED_OUT];

[GRN_IN, LED_OFF] -> [OFF_OUT, OFF_OUT];

[GRN_IN, LED_ON] -> (GRN_OUT, !GRN_OUT];

J-93

ABEL(tin) 3.00b - Document Generator

ISIO daughter board LED drivers

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson

Equations for Module led_driver

Device LED DRIVER

Current rev:

- Reduced Equations:

R3 = !($3 # C3);

R2 = !($2 # C2);

RI = !(SI # Cl);

R0 = !(S0 # C0);

G3 = !($3 # !C3);

G2 = !($2 # !C2);

G1 = !(SI # !CI);

GO = !(S0 # !C0);

03-Jan-89 02:51PM

12120/88

Page 1

J-94

ABEL(tm) 3.00b - Document Generator

ISIO daughter board LED drivers

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev:

Chip diagram for Module led driver

Device LED DRIVER

R3 C
N --

S3

S2

Sl

SO

C3

C2

Cl

CO

1

2

3

4

5

6

7

8

9

I0

\
\

E0320

/

20

19

18

17

16

15

14

13

12

11

03-Jan-89 02:51PM

12/20/88

R3

R2

R1

R0

GO

G1

G2

G3

Page 2

end of module led driver

J-95

J-96

DOCUMENTATION PACKAGE E: FAULT INSERTION AND CONTROL

WIRE WRAP BOARD

Subject:

By:

Date:

IAPSA II Wire Wrap Card Fabrication Notes
T.C. Torkelson

June 14, 1989

Introduction:

The wire wrap board which was fabricated for the small scale system

portion of the IAPSA II contract is fully documented in schematics and

layout drawings. The board was produced from that documentation.

Fabrication Notes:

I. A distinction is been made on the schematics between the symbol

for common (a triangle) and GND. Connections to GND are made to the

wire wrap board backplane with solder preforms. Connections to the

symbol for common are made with wire wrap connections to dedicated

ground pins on the wire wrap board.

2. A distinction has been made on the schematics between +5 and VCC.

Connections to VCC are made to the wire_wrap board frontplane with

solder preforms. Connections to the symbol for +5 are made with wire

wrap connections to dedicated power pins on the wire wrap board.

3. No assembly drawing was produced to show front panel construction.

The front panels are assembled in a manner similar to the DIU front

panel. Its drawings can be used as a guide for the wire wrap front

panel construction.

4. The ribbon cables which connect the wire wrap board with the front

panel boards must be routed and split to avoid interference with other
boards in the VME chassis. Two cables originate on the pin side of the

board; one on the front.

The cable on the front of the board is most likely to cause

interference. To shield it from other boards, a piece of perforated

Vector board was cut which spans the space from the BG45 to the AD45

connectors. This board is placed over the pins for these connectors

and held in place with wire wraps on several pins.

Care must be taken that the wire wraps which hold the shield on do not

short out any connector pins.

PRECEDING PAGE BLANK NOT FILMED

J-97

(..)

II_ " i

.@

-- : 0 =IO

e" 0 --
_Z

,,,J If: (,/' IO

_,E' I
c_ _ _ I_

• - I 0_)_

iI

/

0

I:O

<

=

0"-98 ORIGINAL PAGE IS

OF POOR QUALITY

I,IP
°1111i

Lltn

L)

CO

I

i" t_i _1"II .l-3
.I.I.h.I ill!

JJJJ
It-l- I

el_ Z_&P_HL_4LS

l_lI_lI_81_l

!

l,&J

I4

+:+a !2,
_m5

S_,5

m"-_ Jff
oo i_
0 II I)

1{=551

,3,3
88_

IiII
1999!

._.3'I

llIl

: 9999

I - I _ i

CO

ORIGIN-Z_L PA_E IS

OF POOR QUALITY

J-99

0

<

o0

,<

!:
, +

J-lO0

O_cii_L PA_E '_

OF POOR QUALITY

I,II
DII

L)

.(

gem fl|

I III
9 999

| in ',"

999

I

,_.
_1" -

li -
l, I

c_

| |I

!

rn

i.---..---

;ij!
ORIGINAL PAGE IS

OF POOR QUALITY

J-101

Q

(J

CD

<

F')

Q

<

l

J-102

_,JF_J_tt'_:_ _';/_(_E IS

OF POOR QUALITY

!1!
o|1!

I

J___
II_l__

(.)

{zi

- I _ I -> I

- I1' -
|| _
I E a I
! i t I I

ilii]]tt_t

1111111111III1tt1111

!

i,l.i

Izi

,,,i-

t !

I
i

i_ i'l'l ill:

f.._., v

,D {: ,_!
In I'i i.i.i

•*'_ _1

I i , ,
I I : i _

illll lllll _lllt lllll _lllt iilll

• --.............
Ilil- Illlll IIiI- lill- IIiI- S_I-

1

'l

,!

1

i

0

i
!
i

O_'GiN/tL PAGE IS

0E POOR QUALITY

J-f03

i

(.,)

OD

,.(

. t{! .
• li , Ii , f , li
! ! il il 9 ! ! {

i I i ! g I ii l,.,

;;{]7,. l,._,,_{
l_ssssssssas_

illiiiliilliiliigil99999il99999999

!

, r ,- O}

o" _l{i
(3 I_r" OI

01 I0 .1:

co. (jI.q

'.+_,,+1{

I ;'.I+!;'.I_!;'.I_!;:I_!;'.m ;:I_l;'.I_!_,:l_!

I • ;{ {I • II • _I

{

,,,-,,

(J

I::o

<ii+
I!

]ii+
5
12

J-f04

OF POOR QUALITY

.lii!
!

tJ

m

,(

. tlll,...-------_
,, 1 - li - i ,, li
! il ! il i g il il
! if i ii li II i I

| Issas3sssasais3!

I IllilllliIIIlill9_999_g9_999119

!

.d"

") I !

"o

_, i -=Q- _1

_l i ii i i i

"- I _ 1 '_ I "

I

11

r,,

<J

m

.aE

OR_GII_gL PAGE fS
OF POOR QUALITY

J-105

a

f,,b

J-f06

_e,

o

' c
W

I , |

I

p-

i

J

".5,i

_-,

i

I

I

ORIGINAL PAGE ,_¢"

OF POOR QUALITY

o

I N
L_

,)

I ,: .J|

eOO

o (
_._o o_(!

'11 o

L J, -0_.
ol J -OJ

_z ".8}

r

ii v

I J-'
!

•_ .,]

I

j-}
:_-.}

lit o

• ii

ill L

mO o

• I

ml I

II

-.}
-.)
:}

re(J!

n LJJ

_UI

nuJ

o_uJ
o_

"(JJ
"°° V "_

|

ORIGINAL PAGE IS

OF POOR QUALITY

¢J

en

l
.P

J-f07

" FILENAME: NET FAIL SELECT.ABL Network fault insert select

" DATE: October 51, 1988

" BY: T.C. Torkelson

11 REV DATE BY DESCRIPTION

" A 10/31/88 TCT Changed pin designations to match schematic

" Separated out test vectors

" NOTE: A3 input is the !CS input of the chip on the schematic.
11

module net fail select

flag '-r3' , '-t2'

title 'AIPS I/O Network Failure Insertion Select EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88
I

" REV BY DESCRIPTION

" 8/30/88 TCT changed to match NET FAIL.DWG

"Declarations :

NET FAIL SELECT device 'E0320';

" define ABEL .. commands

C, K, P, X, Z = .C., .K., .P., .X., .Z.;

" inputs

DS pin

!CS,A2,AI,A0 pin

D2,DI,D0 pin

!Setup pin

SA2, SAI, SA0 pin

" outputs

RA2, RAI, RA0 pin

RA2, RAI, RA0 istype

!Run Sel pin

!Run--Sel istype

!Setup_Sel pin

!Setup_Sel istype

" sets

setup addr_in = [SA2..SA0];

setup addr = [0,SA2..SA0];
run addr latch = [RA2..RA0] ;

run-addr- = [0,RA2..RA0];

add_ = [!CS,A2..A0];

i;

2,3,4,5;

7,8,9;

ii;

16,15,14;

" !Setup / Run

19,18,17;

'pos, reg, feed pin';

12;

'neg, com';

13;

'neg, com, feed or';

" RA3 unused

" !CS must be 0

" ?CS must be 0

J-lOS

data = [D2..D0];

" macros:

SETUP SELECT macro {(Setup & (addr == setup_addr))};

RUN SELECT macro ((!Setup & (addr == run_addr))};

equations

Run Sel = RUN SELECT;

Setup_Sel = SETUP_SELECT;

run_addr_latch := data & Setup Sel # run_addr_latch & !Setup_Sel;

" Comment out the following line to compile production .JED files
t!

" @INCLUDE 'NET FAIL SELECT.TST'

end net fail select

J-109

" FILENAME: NET FAIL SELECT.TST Network fault insert select vectors

" DATE: October 51, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Changed pin designations to match schematic

" Separated out test vectors

test vectors 'Test setup select logic'

([Setup, addr, setup addr_in] -> Setup_Sel)

" Test select with !CS = 0

[0, ^o00, 0] -> 0;

[i, ^o00, 0] -> i;

[0, ^o01, i] -> 0;

[i, ^o01, i] -> i;

[0, ^002, 2] -> 0;

[i, ^002, 2] -> i;

[0, ^o03, 3] -> 0;

[I, ^o03, 3] -> i;

[0, ^004, 4] -> 0;
[I, ^004, 4] -> i;

[0, ^o05, 5] -> 0;

[I, ^o05, 5] -> i;

[0, ^006, 6] -> 0;

[i, ^006, 6] -> i;

[0, ^o07, 7] -> 0;

[I, ^007, 7] -> i;

" Test select with !CS = 0

[0, ^oi0, 0] -> 0;

[I, ^oi0, 0] -> 0;

[0, ^oli, I] -> 0;

[i, ^oli, i] -> 0;

[0, ^o12, 2] -> 0;

[I, ^o12, 2] -> 0;

[0, ^o13, 3] -> 0;

[i, ^o13, 3] -> 0;

[0, ^o14, 4] -> 0;

[I, ^o14, 4] -> 0;

[0, ^o15, 5] -> 0;

[i, ^o15, 5] -> 0;

[0, ^o16, 6] -> 0;

[i, ^o16, 6] -> 0;

J-ll0

[0, ^o17, 7] -> 0;

[i, ^o17, 7] -> 0;

" Test a few selects with addr != setup addr

[0, ^o00, i] -> 0;
[I, ^o00, I] -> 0;

[0, ^o01, 2] -> 0;

[i, ^o01, 2] -> 0;

[0, ^002, 3] -> 0;

[i, ^O02, 3] -> 0;

[0, ^o03, 4] -> 0;

[1, ^o03, 4] -> 0;

[0, ^004, 5] -> 0;

[i, ^o04, 5] -> 0;

[0, ^o05, 6] -> 0;

[i, ^o05, 6] -> 0;

[0, ^o06, 7] -> 0;

[i, ^006, 7] -> 0;

[0, ^007, 0] -> 0;

[i, ^007, 0] -> 0;

test_vectors 'Test run select logic'

([DS, Setup, addr, setup_addr in, data] -> [run_addr_latch, Run_Sel]

" Test operation of run addr latch and Run Sel

[c, I, 0, 0, 0] -> [0, 0];
IX, 0, 0, x, x] -> [0, i];
[x, I, 0, x, x] -> [0, 0];

[C, 0, 0, 0, i] -> [0, i];

[C, I, 0, 0, i] -> [i, 0];
[X, 0, I, X, X] -> [i, I];

IX, i, I, X, X] -> If, 0];

It, 0, 0, 0, 2] -> [i, 0];

[C, i, 0, 0, 2] -> [2, 0];

[X, 0, 2, X, X] -> [2, i];

[X, i, 2, X, X] -> [2, 0];

[C, 0, 0, 0, 3] -> [2, 0];

[C, I, 0, 0, 3] -> [3, 0];

[X, 0, 3, X, X] -> [3, I];

IX, i, 3, X, X] -> [3, 0];

[C, 0, 0, 0, 4] -> [3, 0];

[C, i, 0, 0, 4] -> [4, 0];

[X, 0, 4, X, X] -> [4, I];

IX, i, 4, X, X] -> [4, 0];

[C, 0, 0, 0, 5] -> [4, 0];
[C, i, 0, 0, 5] -> [5, 0];

J-lll

[x, O, 5, x, x] -> [5, i];
[x, i, 5, x, x] -> [5, 0];

[c, o, o, o, 6] -> [5, 0];
[c, i, o, o, 6] -> [6, 0];

[x, O, 6, x, x] -> [6, I];
IX, i, 6, x, x] -> [6, 0];

[c, O, O, O, 7] -> [6, 0];
[c, i, O, O, 7] -> [7, 0];

[x, O, 7, x, x] -> [7, I];
IX, 1, 7, x, x] -> [7, 0];

[c, O, O, o, o] -> [7, 0];

J-l12

ABEL(tm) 3.00b - Document Generator 03-Jan-89 03:38 PM

AIPS I/O Network Failure Insertion Select EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module net_fail_select

Device NET FAIL SELECT

Page 1

- Reduced Equations:

-Run Sel = !(A0 & A1 & A2 & !-CS & RA0 & RAt & RA2 & ~Setup

A0 & A1 & !A2 & !-CS & RA0 & RA1 & !RA2 & -Setup

A0 & !A1 & A2 & !~CS & RA0 & !RAt & RA2 & -Setup

A0 & !A1 & !A2 & !-CS & RA0 & !RA1 & !RA2 & -Setup

!A0 & A1 & A2 & !-CS & !RA0 & RAt & RA2 & -Setup

!A0 & A1 & !A2 & !-CS & !RA0 & RAI & !RA2 & -Setup

!A0 & !A1 & A2 & !-CS & !RA0 & !RA1 & RA2 & -Setup

!A0 & !A1 & !A2 & !-CS & !RA0 & !RA1 & !RA2 & -Setup);

-Setup_Sel = !(A0 & A1 & A2 & !-CS & SA0 & SA1 & SA2 & !-Setup
A0 & A1 & !A2 & !~CS & SA0 & SAt & !SA2 & !-Setup

A0 & !A1 & A2 & !-CS & SA0 & !SAI & SA2 & !-Setup

A0 & !A1 & !A2 & !-CS & SA0 & !SA1 & !SA2 & !~Setup

!A0 & A1 & A2 & !-CS & !SA0 & SA1 & SA2 & !-Setup

!A0 & A1 & !A2 & !~CS & !SA0 & SA1 & !SA2 & !~Setup

!A0 & !A1 & A2 & !~CS & !SA0 & !SA1 & SA2 & !-Setup

!A0 & !A1 & !A2 & !~CS & !SA0 & !SA1 & !SA2 & !~Setup);

RA2 := (RA2 & -Setup_Sel # D2 & !-Setup_Sel);

RA1 := (RAt & -Setup_Sel # D1 & !~Setup_Sel);

RA0 := (RA0 & -Setup_Sel # DO & !-Setup_Sel);

J-113

ABEL(tm)3.00b - DocumentGenerator
AIPS I/O Network Failure Insertion Select EPLD

03-Jan-89 03:38 PM

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module net_fail_select

Device NET FAIL SELECT

DS

~CS

A2

A1

A0

D2

D1

D0

E0320

\ /--
\ /

1 20

2 19

3 18

4 17

5 16

6 15

7 14

8 13

9 12

i0 Ii

RA2

RAI

RA0

SA2

SAI

SA0

~Setup_Sel

-Run Sel

~Setup

end of module net fail select

Page 2

J-114

" FILENAME: NET FAIL MODE.ABL

" DATE: October 31, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Separated out test vectors

" B 1/3/89 TCT Changed led output to match as built

module net fail mode

flag '-r3','-t2'

title 'AIPS I/O Network Failure Mode EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson
l

Current rev: 10/31/88

"Declarations

NET FAIL MODE device 'E0320';

" define ABEL .. commands:

C, K, P, X, Z = .C., .K., .P., .X., .Z.;

" define logic states
HI, LO = I, 0;

" inputs

DSN pin i;

!Run Sel pin 2;

!Set_p_Sel pin 3;

D3,D2,DI,D0 pin 4,5,6,7;

Fail In RX pin 8;

Fail Out RX pin 9;

" outputs

Fail_Out_TX, Fail In . TX

Fail Out_TX, Fail In TX

pin 15,13;

istype 'pos, com';

Fail Out_LED, Fail In LED

Fail Out_LED, Fail In LED

pin 14,12;

istype 'pos, com';

FaiI_Out_LED.OE, Fail In LED.OE istype 'eqn';

In_Ml, In M0

In_Ml, InZM0

Out_Ml, Out M0

out__l, outZM0

" set S

pin 19,18;

istype 'pos, reg, feed_pin';

pin 17,16;

istype 'pos, reg, feed_pin';

fail out_mode = [Out_Mi,Out_M0];

J-115

fail out data = [D3..D2];

fail in mode = [In MI,InM0];
fail in data = [DI?.D0];

" states

" data in to mode out

NO CHANGE = ^bll;

OUT HIGH = ^bl0;

OUT-LOW = ^b01;

NORMAL = ^bOO;

" modes

UNUSED = ^bll;

OUT HIGH = ^bl0;

OUT-LOW = ^b01;

NORMAL = ^bOO;

" define levels for LED colors

RED = 0; " TCT 1/3/89

GRN = i; " TCT 1/3/89

OFF = .Z.;

" macros

SELECT macro ((Run_Sel # Setup_Sel)};

equations

fail out mode := fail out data & SELECT & (fail out data != NO CHANGE)

-- - # fail_out_mode & (!SELECT # (fai__ou__data -----NO_CHANGE));

fail in mode := fail in data & SELECT & (fail in data != NO CHANGE)

fail Yn mode & (!SELECT # (fail in data == NOCHANGE));

Fail In LED.OE = (fail in mode == NORMAL) # (fail in mode == OUT_HIGH);

Fail Out_LED.OE = (fail_out_mode == NORMAL) # (fail_out_mode == OUT_HIGH);

truth_table ([fail in mode, Fail Out_RX] -> Fail In TX)

[NORMAL, LO] -> LO;

[NORMAL, HI] -> HI;

[OUT HIGH, X] -> HI;

[OUT LOW, X] -> LO;
[UNUSED, X] -> LO; " treat unused as OUT LOW

truth table ([fail_out_mode, Fail In RX] -> Fail_Out_TX)

[NORMAL, LO] -> LO;

[NORMAL, HI] -> HI;

lOUT HIGH, X] -> HI;
[OUT LOW, X] -> LO;

[UNUSED, X] -> LO; " treat unused as OUT LOW

truth_table (fail out_mode -> Fail Out_LED)

NORMAL -> GRN;

OUT HIGH -> RED;

J-l16

OUTLOW -> X;
UNUS--ED -> X;

truth table (fail_in_mode -> Fail In LED)

NORMAL -> GRN;

OUT HIGH -> RED;

OUT-LOW -> X;

UNUSED -> X;

" Comment out the following instruction to compile production .JED files
t!

" @ INCLUDE 'NET_FAILMODE. TST'

end net fail mode
w m

J-117

" FILENAME: NET FAIL MODE.TST

" DATE: October 31, 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 10/31/88 TCT Separated out test vectors

test vectors 'Test affect of Data on Mode and LED, and output'

_[DSN, Run_Sel, Setup_Sel, fail in data, fail_out data, Fail_Out_RX, Fail In

__x] ->
[fail in mode, fail_out_mode, Fail In TX, FailOut_TX, Fail_In LED, Fail_Ou

t_LED])

" Test Channel 1

[C, i, i, NORMAL, NORMAL, LO, LO] -> [NORMAL,

[C, I, I, NOCHANGE, NORMAL, LO, LO] -> [NORMAL,
[X, X, X, X, X, HI, LO] -> [NORMAL,

[x, x, x, x, x, LO, HI] -> [NORMAL,
[X, X, X, X, X, HI, HI] -> [NORMAL,

NORMAL, LO, LO, GRN, GRN];

NORMAL, LO, LO, GRN, GRN];

NORMAL, HI, LO, GRN, GRN];

NORMAL, LO, HI, GRN, GRN];

NORMAL, HI, HI, GRN, GRN];

[C, 0, 0, OUT HIGH, NORMAL, LO, LO] -> [NORMAL, NORMAL, LO, LO, GRN, GRN];

[C, 0, I, OUT--HIGH, NORMAL, LO, LO] -> [OUT HIGH, NORMAL, HI, LO, RED, GRN];

[C, 0, i, NO__HANGE, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];

[X, X, X, X, X, HI, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];

[X, X, X, X, X, LO, HI] -> lOUT_HIGH, NORMAL, HI, HI, RED, GRN];

[X, X, X, X, X, HI, HI] -> [OUT_HIGH, NORMAL, HI, HI, RED, GRN];

[C, 0, 0, OUT_LOW, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];

[c, i, 0, OUT LOW, NORMAL, LO, LO] -> [OUT_LOW,
[C, i, 0, NO_CHANGE, NORMAL, LO, LO] -> [OUT_LOW,

IX, x, x, x, x, HI, LO] -> lOUT_LOW,
[X, X, X, X, X, LO, HI] -> [OUT_LOW,

IX, x, x, x, x, HI, Xl] -> lOUT_LOW,

[C, 0, 0, NORMAL, NORMAL, LO, LO] -> [OUT_LOW,

NORMAL, LO, LO, OFF, GRN];

NORMAL, LO, LO, OFF, GRN];

NORMAL, LO, LO, OFF, GRN];

NORMAL, LO, HI, OFF, GRN];

NORMAL, LO, HI, OFF, GRN];

NORMAL, LO, LO, OFF, GRN];

test vectors 'Test affect of Data on Mode and LED, and output'

_[DSN, Run_Sel, Setup_Sel, fail_out data, fail in data, Fail In RX, Fail_Out

_Rx] ->
[fail_out_mode, fail in mode, Fail_Out_TX, Fail In TX, Fail_Out_LED, Fail_I

n_LED])

" Test Channel 2

[C, i, I, NORMAL, NORMAL, LO, LO] -> [NORMAL,

[C, i, I, NO_CHANGE, NORMAL, LO, LO] -> [NORMAL,

[X, X, X, X, X, HI, LO] -> [NORMAL,

IX, X, X, X, X, LO, HI] -> [NORMAL,

[X, X, X, X, X, HI, HI] -> [NORMAL,

NORMAL, LO, LO, GRN, GRN];

NORMAL, LO, LO, GRN, GRN] ;

NORMAL, HI, LO, GRN, GRN];

NORMAL, LO, HI, GRN, GRN];

NORMAL, HI, HI, GRN, GRN];

[C, 0, 0, OUT HIGH, NORMAL, LO, LO] -> [NORMAL, NORMAL LO, LO, GRN, GRN];

[C, i, i, OUT HIGH, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL HI, LO, RED, GRN];

[C, 0, i, NO_CHANGE, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL HI, LO, RED, GRN];

IX, X, X, X, X, HI, LO] -> lOUT_HIGH, NORMAL HI, LO, RED, GP_N];

[X, X, X, X, X, LO, HI] -> [OUT_HIGH, NORMAL HI, HI, RED, GRN];

IX, X, X, X, X, HI, HI] -> lOUT_HIGH, NORMAL HI, HI, RED, GRN];

J-118

[C, 0, 0, OUT_LOW, NORMAL, LO, LO] -> [OUT_HIGH, NORMAL, HI, LO, RED, GRN];
[C, i, I, OUT LOW, NORMAL, LO, IX)] -> [OUT_LOW, NORMAL, LO, LO, OFF, GRN];

[C, i, i, NO_CHANGE, NORMAL, LO, LO] -> lOUT_LOW, NORMAL, LO, LO, OFF, GRN];

[X, X, X, X, X, HI, LO] -> lOUT_LOW, NORMAL, LO, LO, OFF, GRN];

IX, X, X, X, X, LO, HI] -> [OUT_LOW, NORMAL, LO, HI, OFF, GRN];

IX, X, X, X, X, HI, HI] -> [OUT_LOW, NORMAL, LO, HI, OFF, GRN];

[C, 0, 0, NORMAL, NORMAL, LO, LO] -> [OUT_LOW, NORMAL, LO, LO, OFF, GRN];

J-119

ABEL(tm)3.00b - DocumentGenerator
AIPS I/O NetworkFailure ModeEPLD

03-Jan-8903:41PM

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Equations for Module net fail mode

Device NET FAIL MODE

Page 1

- Reduced Equations:

Out M1 := (D3 & Out MI

Out MI-& ~Run Sel & ~Setup_Sel
!D2-& D3 & !~Setup Sel

!D2 & D3 & !~Run_Sel);

Out M0 := (D2 & Out M0

Out M0--& ~Run Sel & ~Setup Sel
D2 & !D3 & !~Setup_Sel

D2 & !D3 & !~Run_Sel);

In M1 := (DI & In MI

In MI--& ~Run Sel & ~Setup_Sel
!DO & DI & !USetup_Sel

!D0 & DI & !~Run_Sel);

In M0 :_ (DO & In M0

In M0 & ~Run Sel & ~Setup Sel

DO-& !D1 & !USetup_Sel

DO & !DI & !~Run_Sel);

enable Fail In LED = (!In_M0);

enable Fail_Out_LED = (!Out M0);

Fail In TX = (!In_M0 & In_M1 # Fail_Out_RX & !In M0);

Fail_Out_TX = (!Out M0 & Out_Ml # Fail In RX & !Out M0);

Fail_Out_LED = (Out M0 # !Out_M1);

Fail In LED = (In_M0 # !In MI);

J-120

ABEL(tin)3.00b - DocumentGenerator
AIPS I/O NetworkFailure ModeEPLD

03-Jan-8903:41 PM

BOEINGADVANCEDSYSTEMS

Designed by: Tom Torkelson Current rev: 10/31/88

Chip diagram for Module net fail mode

Device NET FAIL MODE

Page 2

DSN

-Run Sel

~Setup_Sel

D3

D2

D1

DO

Fail In RX

Fail Out RX

E0320

\ /
\ /

1

2

3

4

5

6

7

8

9

I0

20

19

18

17

16

15

14

13

12

11

In M1

In MO

Out M1

Out M0

Fail Out TX

Fail Out LED

Fail In TX

Fail In LED

end of module net fail mode

J-121

" FILENAME: FTC CONTR(_L.ABL FTC &misc control EPLD

" DATE: November , 1988

" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 11/2/88 TCT Added input for VME FTC, modified VME FTC LED

" B 1/3/89 TCT Added CS and !SETUP to transparent la_ches

module ftc control

flag '-r3' , '-tl'

title 'Wire Wrap Board FTC & Misc Control EPLD

BOEING ADVANCED SYSTEMS

Designed by: Tom Torkelson Current rev: 11/1188

"Declarations:

FTC CONTROL device

" define ABEL .. commands

C,K,P,X = .C.,.K.,.P.,.X.;

'E0320';

" inputs:

CLOCK pln i; " 16 Mhz clock

EXT EVENT

FTP SYNC

!SETUP

pin

pan

pln

2;

3;

4;

" external event input

" FTC sync input

" !Setup / Run

CS

DI,D0

!DS

VME FTC

" outputs:

pan

p_n

pan

pan

5;

6,7;

8;

9;

" chip select in, high to select

" data inputs from experiment bus

" low passes data to output, high latches

" VME FTP FTC input

CLOCK 8 MHZ

CLOCK 8 MHZ

X EVENT
X-EVENT

pin 19;

istype 'pos, reg_D, feed_reg';

pin 18;

istype 'pos, com';

EXT EVENT LED pin 17;

EXTZEVENT_LED istype 'neg, com';

FTP SYNC LED pin 16;

FTPZSYNC_LED istype 'neg, com';

VME SYNC LED pin 15;

VME--SYNC-LED istype 'neg, com';

" X_EVENT is pos true

" GRN no event, RED event

" RED waiting for sync, GRN sync

" RED waiting for sync, GRN sync

J-122

EXTEVENTPOL pin 14;

EXT--EVENT--POL istype 'pos, corn, feed_pin';

FTC SEL pin 13;

FTCZSEL istype 'pos, com, feed_pin';

VME FTC LED pin 12;

VME--FTC-LED istype 'pos, com, feedpin';

VME--FTC-LED.OE istype 'eqn';

FTC SEL output levels
--VME SEL = 0;

FTP--SEL = i;

" constant declarations for LED outputs

OFF = .Z. ;

RED = 0;

GRN = i;

" internal equates

VME SYNC = !SETUP;

VRUN = !SETUP;

VSTOP = SETUP;

;}

" macros

" form latch which passes in to out ONLY when in VSTOP, CS, and !DS

LATCH macro (out, in) {?out = ?out & (!CS # VRUN # !DS) # ?in & CS & SETUP & D:

equations

CLOCK_8_MHZ := !CLOCK_8_MHZ;

" Transparent latches:

" FTC SEL = DO & DS # FTC SEL & !DS;

" EXT--EVENT POL = D1 & DS # EXT--EVENT POL & !DS;

LATCH (FTC_SEL, DO)

LATCH (EXT EVENT_POL, DI)

VME_FTC_LED.OE = (FTC_SEL == VME_SEL); " enable LED on VME_SEL

truth_table ([FTC_SEL, VME_FTC] -> VME_FTC_LED)
It

" When the external FTC reference is deselected, the LED is off.
W

" When the external FTC reference is selected, the LED is RED for input low,

" GRN for input high, and AMBER for input oscillation.

[VME_SEL, 0] -> RED;

[VME_SEL, I] -> GRN;

[FTP_SEL, 0] -> X;

[FTP_SEL, i] -> X;

truth_table ([EXT_EVENT_POL, EXT_EVENT] -> X_EVENT)

J-123

[0, O] -> 1;

[0, 1] -> O;

[I, O] -> O;

[i, i] -> I;

truth_table (X_EVENT -> EXT_EVENT_LED)

0 -> GRN;

1 -> RED;

truth_table (FTP_SYNC -> FTP_SYNC_LED)

0 -> RED;

1 -> GRN;

truth_table (VME_SYNC -> VME_SYNC_LED)

0 -> RED;

1 -> GRN;

" Comment out the following command to compile production .JED files

" @INCLUDE 'FTC CONTROL. TST'

end ftc control

J-124

" FILENAME: FTC CONTROL.TST FTC & misc control EPLD test vectors

" DATE: November i, 1988
" BY: T.C. Torkelson

" REV DATE BY DESCRIPTION

" A 11/2/88 TCT Added input for VME FTC, modified VME FTC LED

" B 1/3/89 TCT Added CS and !SETUP to transparent latches
**

test vectors 'Test FTP SYNC LED output'

- (FTP_S C-> FTPj C_ DI

0 -> RED;

1 -> GRN;

test vectors 'Test VME SYNC LED output'

- (v _sn c -> v jn c-- D)

0 -> RED;

1 -> GRN;

test vectors 'Test FTC SEL and VME FTC LED output'

-- ([!DS, CS, !SETUP7 DO, VME_FTC] -_

[FTC_SEL, VME_FTC_LED])

" test low inputs

[i, l, 0, VME_SEL, 0] -> [X, X];

[_, I, 0, VME_SEL, l] -> [X, X];

[0, i, 0, VME_SEL, i] -> [VME_SEL, GRN];

[0, I, 0, VME_SEL, 0] -> [VME_SEL, RED];

[i, i, 0, VME_SEL, 0] -> [VME_SEL, RED];

[I, I, 0, VME SEL, i] -> [VME_SEL, GRN];
" test high inputs

[I, I, 0, FTP_SEL, i] -> [VME_SEL, GRN];

[I, i, 0, FTP_SEL, 0] -> [VME_SEL, RED];

[0, i, 0, FTP_SEL, 0] -> [FTP_SEL, OFF];

[0, I, 0, FTP_SEL, i] -> [FTP_SEL, OFF];

[I, I, 0, FTP_SEL, I] -> [FTP_SEL, OFF];

[I, I, 0, FTP_SEL, 0] -> [FTP_SEL, OFF];
" low inputs

[I, i, 0, VME_SEL, 0] -> [FTP_SEL, OFF];

[I, I, 0, VME_SEL, i] -> [FTP_SEL, OFF];

test vectors 'Test EXT EVENT logic'

- ([!DS, CS, !SETUP7 DI, EXT EVENT] ->

[EXT_EVENT_POL, X_EVENT, EXT_EVENT_LED])

" test low inputs

[i ,I, 0, 0, 0] -> IX, x, x];
" strobe in low polarity and test

[0 ,I, 0, 0, 0] -> [0, i, RED];
[i, l, 0, 0, 0] -> [0, I, RED];
[i ,I, O, O, i] -> [0, O, GRN];

[i ,i, 0, l, i] -> [0, 0, GRN];
[i, I, 0, i, 0] -> [0, i, RED];

" strobe in high polarity and test

[0 ,i, 0, l, 0] -> [I, 0, GRN];
[I ,I, 0, i, 0] -> [i, 0, GRN];

[i ,i, 0, i, I] -> [i, I, RED];

[i, I, 0, 0, I] -> [i, i, RED];

J-125

test vectors 'Test DS, CS, SETUP logic'
- ([!DS, CS, !SETUP, DI] -> [EXT EVENT POL])

" set to known state - test transparency

[0, I, 0, 0] -> 0;
[0, i, 0, I] -> i;

" see if DS works as latch

[I, I, 0, I] -> I;
[i, I, 0, 0] -> i;
[0, I, 0, 0] -> 0;
[i, I, 0, 0] -> 0;

[i, i, 0, i] -> 0;

[0, i, O, I] -> i;

- latch

" change input
" enable
" latch

" change input
" enable

" see if CS works as latch

[0, O, O, l] -> I;

[0, O, O, O] -> I;
[0, I, 0, 0] -> 0;
[0, 0, 0, 0] -> 0;
[0, O, O, I] -> O;

[0, i, O, i] -> l;

" latch

" change input
" enable
" latch

" change input
" enable

" see if !SETUP works as latch

[0, i, I, I] -> i; " latch
[0, i, I, O] -> I; " change input

[0, i, O, 0] -> O; " enable.
[0, i, i, O] -> O; " latch
[0, I, I, I] -> O; " change input
[0, i, O, i] -> i; " enable

J-126

