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PREFACE

This first Annual Report covers the initial effort on the NASA
HOST program titled "Constitutive Modeling for Isotropic Materials"
conducted under Contract NAS3-23925. The NASA program manager for
this project is Mr. Albert Kaufman. The program manager at Southwest
Research Institute is Dr. Ulric Lindholm. Contributors to this report
are Dr. Kwai Chan and Mr. Andrew Nagy of SwRI, Messrs. Jeff Hill and
R. M. Weber of Pratt & Whitney Aircraft, and Dr. Kevin Walker and Prof.
Sol R. Bodner, consultants.
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1.0 INTRODUCTION

The objective of the present program is to develop a unified con-
stitutive model for finite-element structural analysis of turbine engine
hot section components. This effort constitutes a different approach for
non-linear finite-element computer codes which have heretofore been based
on classical inelastic methods. The unified constitutive theory to be
developed will avoid the simplifying assumptions of classical theory and
should more accurately represent the behavior of superalloy materials
under cyclic loading conditions and high temperature environments. This
class of constitutive theory is characterized by the use of kinetic
equations and internal variables with appropriate evolutionary equations
for treating all aspects of inelastic deformation including plasticity,
creep and stress relaxation. Model development is directed toward iso-
tropic, cast nickel-base alloys used for air-cooled turbine blades and
vanes. Recent studies have shown that this approach is particularly
suited for determining the cyclic behavior of superalloy type blade and
vane materials and is entirely compatible with three dimensional inelastic
finite-element formulations. More efficient and accurate inelastic
analysis of hot section components--turbine blades, turbine vanes, com-
bustor liners and seals--fabricated from "age hardenable" isotropic super-
alloy materials will be realized as the result of these developments.

The program is being conducted in two phases. A basic program
(Tasks A through I) and an optional follow-on program (Tasks J through M).
In the Basic Program of twenty six months' duration, a unified consti-
tutive model will be developed for the prediction of the structural re-
sponse of isotropic materials for temperatures and strain range character-
istics of cooled turbine vanes in advanced gas turbine engines (Task A).
A data base of uniaxial and multiaxial material properties required for
the constitutive model development will be obtained for the base material
(Tasks C and E). The constitutive model will then be incorporated into
a finite-element computer code (Task D). An evaluation will be made of
the capability of the analytical method to predict the structural response
for multiaxial stress states (Task E) and nonisothermal conditions by con-
ducting thermomechanical loading and benchmark notch verification experi-
ments and analysis (Task F). As a final evaluation of the analytical model,
a structural analysis will be performed for a hot section component fabri-
cated from the base material for simulated engine operating conditions
(Task G). In the optional program material property test procedures will
be further developed to minimize the amount of testing required, and to
study the possibility for estimating the material model constants from
conventional property data (Task J). Further development of the model
will be undertaken to consider thermal history effects and to correct any
deficiencies indicated in the model or the computational algorithms in
the code (Task K). In addition, the constitutive model development will
be verified for an alternate material (Task L).
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The work under this program is being conducted as a joint effort
between Pratt & Whitney Aircraft (PWA) and Southwest Research Institute
(SWRI) with technical assistance from Prof. Sol R. Bodner and Dr. Kevin
Walker in the area of constitutive model development. The work and data
base generated is being coordinated closely with another NASA funded
HOST program at PWA (NAS3-23288) to develop advanced life prediction
techniques for isotropic superalloy vane and blade materials.

Progress to date on this program has included completion of the
review of unified constitutive models (Task A), substantial effort on
specimen fabrication (Task B), uniaxial testing (Task C), initiation of
effort on the implementation of models in MARC finite-element code (Task D),
and multiaxial testing (Task E). A report on technical progress and future
plans is given in the following sections.
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2.0 TASK A.  REVIEW AND SCREENING OF CANDIDATE CONSTITUTIVE MODELS

2.1 Literature Survey

A Titerature survey has been conducted to assess the state-of-the-art
of time-temperature dependent elastic-viscoplastic constitutive theories
which are based on the unified approach. This class of constitutive theories
is characterized by the use of kinetic equations and internal variables with
appropriate evolutionary equations for treating all aspects of inelastic de-
formation including plasticity, creep, and stress relaxation. The review
identifies more than ten such unified theories which are shown to satisfy the
uniqueness and stability criteria imposed by Drucker's postulate and Ponter's
inequalities. These theories are compared on the basis of the types of flow
law, kinetic equation, evolutionary equation of the internal variables, and
treatment of temperature dependence. The similarities and differences of
these theories are first outlined in terms of mathematical formulations and
then illustrated by comparisons of theoretical calculations with experimental
results which include monotonic stress-strain curves, cyclic hysteresis loops,
creep and stress relaxation rates, as well as thermomechanical loops. Numer-
ical methods used for integrating these stiff time-temperature dependent con-
stitutive equations are also reviewed.

Because of its length, this review has been included as Appendix A of
this report.

2.2 Model Selection for Subsequent Study

As a result of the literature survey and based upon SwWRI recommendations,
two constitutive models have been selected and approved for further study.
These are the models of Bodner and Partom [1] and of Walker [2]. These two
models are both representative of the class of unified models considered in
the review process but differ significantly in the choice of particular
functional forms for the basic flow law, the kinetic relationship, the para-
meter used as a measure of hardening and the evolutionary equations for the
internal variables describing strain hardening. Thus, a direct comparison
between these two models and the experiments should illustrate well the conse-
quences of a wide range in constitutive modeling approach. It is also signi-
ficant that both models have already found significant application to analysis
of gas turbine materials and to hot section components. Therefore, they are
further along in their development and evaluation than most of the other
comparable models.

2.3 Identification of Model Modifications

As a result of the literature survey and of direct experience in
working with existing models, three specific areas have been identified which
will potentially require modification to the models as they currently exist.
These areas are Tisted and discussed below.
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1. Multiaxial, non-proportional load or strain histories. There is
existing data which indicates that the rate of strain hardening varies
with a change in direction of the strain rate vector; i.e., when the ratio
of the plastic strain increments is not held constant as in a uniaxial or
proportional loading history. This has been demonstrated for both monotoni-
cally increasing and cyclic loading. This poses potential problems in
formulation of the evolutionary equations for the hardening variables which
will require some measure of the rate of change in direction of the strain
increments and the functional inclusion of this measure in the hardening
relations. Additional practical difficulties will accrue if the material
constants associated with the non-proportional hardening cannot be obtained
from uniaxial tests, since the availability of multiaxial test facilities is
low and the generation of such data is quite expensive relative to uniaxial
testing.

2. Non-isothermal strain cycles. It is not evident at this time that
isothermal test data will be sufficient input for a model adequate to handle
non-isothermal problems. At elevated temperatures, metallurgical processes
affecting strength may be occurring which depend not only on the current
temperature but upon time at temperature or rate of change of temperature.
Such effects are generally not incorporated in current models. Again, a
requirement for non-isothermal testing in order to determine constitutive
model constants would be a practical limitation.

3. Description of hardening over a wide strain range. Some current
experience indicates a difficulty in developing hardening behavior which is
accurate for both small (near yield) and large (saturation) plastic strain
values. Multiple functions may be required for a general model. The corres-

ponding increase in number of material constants required is the penalty
incurred.

2.4 References

1. S. R. Bodner and Y. Partom, ASME J. of Applied Mechanics, Vol. 42,
p. 385, 1975.
2. K. P. Walker, NASA Contract Report NASA CR 165533, 198].
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3.0 TASK B. SPECIMEN FABRICATION

3.1 Material Selection

A B1900+Hf was selected as the model material for study in the base
program and MAR-M247 the material for consideration in the optional tasks.
Both materials are extensively utilized in the gas turbine industry and
considerable benefit will derive from their characterization. A major
factor in the selection of B1900+Hf is the availability of cyclic and
monotonic constitutive data from a concurrent NASA HOST program, NAS3-23288,
conducted by PWA to develop 1ife prediction analysis methodology for iso-
tropic blades and vanes. Selection of the same material, material process-
ing, and specimen configurations in both efforts significantly enhances the
data base available for life prediction and constitutive model development.

Sufficent material of each type was procured to satisfy specimen
requirements in the program.

The B1900+Hf material was part of a single heat, designated W-0098,
obtained from Certified Alloy Products Inc., Long Beach, California. The
chemical composition of this heat is compared to nominal specification
in Table 3.1I.

TABLE 3.1

CHEMICAL COMPOSITION OF B1900+Hf (HEAT W-0098)

Element Nominal (% Heat W-0098
C 0.11 0.09
Cr 8.0 7.72
Co 10.0 9.91
Mo 6.0 5.97
Al 6.0 6.07
Ta 4.3 4.21
T4 1.0 0.99
B 0.015 0.016
Ir 0.08 0.04
Fe 0.35* 0.17
W 0.1* 0.04
Cb 0.1* 0.08
Bi 0.5 ppm 0.1
Pb 106.0 ppm 0.1
Hf 1.5 1.19
Ni Remainder Remainder

*Ma ximum
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Casting configurations, pour and mold temperatures for the B1900+Hf
specimens were selected to assure that grain size, material structure and
integrity match, as closely as possible, those in the PWA test specimens.
Goals for this phase of the fabrication effort were:

1. A grain size of ASTM No. 1 to 2 in the Gage section when
measured using standard procedures.

2. A porosity-free casting, see Figure 3.1.
3. Ay' size of .9 um in the fully heat treated condition.

Following casting, all B1900+Hf test bars were fully heat treated
according to the following schedule:

Solution: 1079+14°C (1975+25°F) for 4 hours; air cool
Precipitation:  899+14°C (1659+25°F) for 10 hours; air cool.

3.2 Specimen Fabrication

The gage sectijon geometries of the monotonic tensile/creep, isothermal
cyclic, thermomechanical cyclic, and isothermal biaxial test specimens were
chosen to correspond to the gage section geometries of the corresponding
specimens in the concurrent 1ife prediction contract. Major differences,
however, in the specimen gripping systems between SwRI and PWA resulted in
different overall specimen and casting configurations, Figure 3.2. The
use of colletted grips at SwRI considerably simplified the specimen design,
but added to the length and diameter of each casting. A number of casting
trials and specimen design changes were evaluated before suitable specimen
and casting configurations were chosen to satisfy grain size and integrity
goals. Additional details on the fabrication are provided below for each
specimen type:

o Tensile and Creep Specimens - The increase in cast bar length
from a standard configuration of 4 inches to 7.2 inches did
not appreaciably alter specimen integrity or grain size.
Twenty-two test specimens were prepared from the cast bars by
centerless grinding. All specimens were subsequently electro-
polished prior to shipment to SwRI for testing.

® Thermomechanical Constitutive Specimen - A common, constant
0D 2.74 cm (1.08 inch) cast bar configuration of 20 cm
(8 inch) length was proposed from which each type of uniaxial
constitutive specimen could be machined. Grain size and
porosity goals could not be satisfied simultaneously with a
casting of this confiquration. Casting of "net shape" bars
of two lengths was then attempted. Microstructural evaluation
indicated that an adequate casting could be obtained if the
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Original casting procedure

Modified casting procedure 12X

FIGURE 3.1. COMPARISON OF CAST BAR POROSITY.
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total cast bar length were limited to 6-1/2 inches.
Figure 3.3 indicates the acceptable level of micro-
porosity in the gage section of the 6-1/2 inch speci-
men. Twenty-five castings of this configuration are
available. Cylindrical buttons of .8 inch length are
being electron beam welded to the ends of each speci-
men to increase the stock length to the required

8 inches.

Isothermal Constitutive Specimen - Difficulties in

casting the 2.74 cm 0D x 20 cm L (1.08 inch x 8.25 inch L)
solid bars prompted a reappraisal of the recommended speci-
men configuration. A reduction in specimen length to

17.78 cm (7.0 inches) and diameter to 1.43 cm (.563 inches)
was agreed upon. This change permitted use of the tensile/
creep specimen casting configuration. Twenty-eight cast-
ings have been obtained and are being machined.

Multiaxial Tension-Torsion Specimen - A constant 0D 30.2 cm
(1.19 inch) cast bar configuration of 20.3 cm (8 inch)
Tength was initially evaluated. Grain size and porosity
levels could not be satisfied simultaneously. A second
casting attempt was made with a revised gating scheme, but
microporosity and grain size results were equally unsatis-
factory. A decision was reached to cast these specimens
with a hollow core. Hitchiner Mfg. of Milford, N.H, has
been contracted to provide the castings.
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4.0 TASK C. UNIAXIAL EVALUATION OF CONSTITUTIVE MODELS

4.1 Tensile, Creep and Cyclic Property Testing

The BI1900+Hf specimen requirement for the base program is presented
in Table 4-I. A total of 39 smooth uniaxial bar specimens will be fabri-
cated to provide constitutive response data for the loading conditions
in Task C. A total of 20 biaxial specimens will be prepared for response
data under multiaxial stress states for the effort under Task E. Ten
notched benchmark specimens will be available for the work in Task F.

A1l testing is being performed at SwRI. The specimens are being fabri-
cated by PWA as described in the preceding Section 3.

The matrices for tensile and isothermal cyclic testing are given in
Tables 4.I1 and 4.I11, respectively. All the tensile and five creep tests
have been completed. The cyclic testing is just being initiated. Cor-
relations with cyclic data given below are based on results from PWA
Contract NAS3-23288.

A1l the uniaxial tests are being conducted in a closed-loop, servo-
hydraulic test machine under strain control. Figure 4.1 shows the con-
figuration of the test specimen, the hydraulic collet grips, the induction
heating coil and the externally mounted extensometer with quartz reach-
rods attached to the specimen. The plastic tubing carries cooling water
to the hydraulic collets and copper face plates. Temperature variations
over the specimen gage section are within ASTM specifications for short
term tests.

4.2 Comparison of Experiment and Bodner-Partom Model

The material constants in the Bodner-Partom elastic-viscoplastic
constitutive theory were evaluated for B1900+Hf. Most of the constants
were evaluated from uniaxial tensile and isothermal cyclic data. Creep
data were occasionally used for evaluating the cgnsta?ts in the thermal
recovery terms when slow strain rate (é< 4 x 107%sec™!) tensile data were
not available. A summary of the Bodner-Partom theory and an outline of
a systematic procedure for evaluating the Bodner-Partom model constants
analytically are shown in Figures 4.2 and 4.3, respectively, while the
various material constants are shown as a function of temperature in
Figures 4.4(a) and 4.4(b). It is worthy to note that for B1900+Hf most
of the material constants in the Bodner-Partom theory are independent
of temperature; in the temperature range of 25-1093°C, only three param-
eters (n, Z,, and A) vary with temperature. Another material input to
the Bodner-Bartom theory is the elastic modulus which was determined
from uniaxial tensile data and found to decrease with temperature also,
as shown in Figure 4.5,

4-1



TABLE 4.1
B1900+Hf SPECIMEN FABRICATION REQUIREMENTS FOR THE BASE PROGRAM

Specimen Type Base Program Task Fig. 3.2
Tensile Specimens 1 o (a)
Creep Specimens 5 C (a)
Isothermal Cyclic Constitutive Specimens 20 C (b)
Thermomechanical Constitutive Specimens 3 o (c)
Multiaxial Cyclic Constitutive Specimens 20 E (d)
Benchmark Notch Specimens 10 F *

* To be determined.
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TABLE 4.11
INTEGRATED TENSILE TEST MATRIX

Strain Rate Temperature (°F)

(sec71) RT 1200 1400 1600 1800 2000
4 x 1077 * *
4 x 1078 * 1 1 1
4 x 107° 1,* 1 1, 2 2 2,
4 x 107 * ] 1 1
4 x 1073 * «
4 x 1072 x *
1,2 = Test requirements, Contract NAS3-23288,

* =

Additional test conditions under this contract.
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TABLE 4.111
ISOTHERMAL CYCLIC CONSTITUTIVE TESTS

Test # Temp(°F) R é(sec'l) aey dep de3 Agq

0 tffect of Temperature and Strain Rate

1 RT 0 ax10~4 X X X X

2 800 0 ax10~4 X X X X

3 800 0 4x10-2* X X X X

4 800 0 4x10~8 X X X X

3 1200 0 ax10~4 X X X X

5 1200 0 4x1072* X X X X

7 1200 0 4x10-° X X X X

3 1400 - ax10-2” X X X X

Thermal memory erasure cycle

9 1600 -1 4x10-4 X X X X

10 1800 -1 Thermal memory srasure cycle

1 2000 -1 4x10~6 X X X X
0 £Effect of Mean Strain

12 1200 -1 4x10~4 Same as 5 except fully reversed

13 1400 0 4x10‘2x Same as § except one way tension

14 1400 —~ 4x10'2* Same as 8 excspt one way compression
18 1600 — ax10~¢ Same as $ except one way ccmpressibn
18 2000 - 4x10-5 Same as 17 axcept one way compression
0 Strain Holds to Probe for Sack Stress

17 1200 0 ax10~4 X X X X

18 1400 -1 ax10™¢ X X X X

18 1600 -] 1x10™ X X % X

20 2000 -1 axig=¢ X X X X

4 . ‘ L . v -2 o=
*It may be desirabls to reduce this uoper strain rata (4x106°° S7') hased on
actual component ratas and on measurement accuracy Tor small inelastic strains.
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BODNER - PARTOM'S MODEL

Flow Law:
. .. e . D
SR IR Y
. P . P L
EiJ = A Si.] ) Ekk = 0

- io. -1
with Sij = °ij 3 Gijakk

Kinetic Equation:

o
N‘D
n
=
o
N
(L]
x
hel
P,
'
—
&l
~N ~n
[ F——
3
[ —

with 7 =20 + 2P
P.l.p.p
Dy = 7 &3 €43
Jd, =Ls.s
2 =7 5455
2 _ 4P
=0, 1,

Evolution Equations of Internal Variables:

a. Isotropic Hardening

-
- m, [z]+ aly - ZI] o - Az, [Zf-i;igl]
where & =m, (1 - a) Wp sin@
8 = cos”! (Vijvij) or 8= cos”! (“ij Uij)
Vij © Bij/(5k13k1)]/2, V}j - éij/(ék]ék])”2
Uiy = oii o) e, Uiy 0/ G
p

. I _ L = . . = n. =
with 7% (o) = Z5 ; wp 935845 Wp (0) =0; a(0) =0

b. Directional Hardening

r
- (BKk18k1)
i = Mo (23 uij - Biﬁ) Wp - AZZ] [—__ET——— Vij

0 D (

B

with 7" = y 27 (o) =0, 8..{o) =0

81345

m
my 7; (1+sin8) [1 + exp(-m3ZD)]
Material Constants: 0,, Z,, Zy, Z3, 23, my, mp, m3

A, AZ, ry, ro, n, and elastic constants

FIGURE 4.2. A SUMMARY OF BODNER-PARTOM'S MODEL.
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fit o and P to a polynominal and obtain
Yy = l—ék%-(tensi]e data)
€

g
obtain my, mo, and r from the slopes
of y vs. o (tensile data); set D,

Y

obtain n from the slope of saturation

stress vs. strain rate (tensile data)

Y

calculate the sum of Zy7 and Z3 from saturation
stress, n and &P (tensile data)

Y

obtain Z3 from isothermal cyclic data;

calculate Z]

obtain Z, by fitting to tensile
stress-strain curves; set 7, =7,

Y

calculate A from slow rate tensile data
or steady state creep rate

END

FIGURE 4.3. A FLOW CHART SHOWING A SYSTEMATIC PROCEDURE FOR
EVALUATING THE MATERIAL CONSTANTS IN THE
BODNER-PARTOM THEORY.
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FIGURE 4.4(a). THE VALUES OF Z,, Zy, Z3, mj, AND m;
FOR B1900+Hf AT VAR}OUS TEMPERATURES.
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FIGURE 4.4(b). THE VALUES OF Dy, n, A, AND r FOR
B1900+Hf AT VARIOUS TEMPERATURES.
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The Bodner-Partom model was used to simulate the uniaxial tensile
behavior of B1900+Hf as a function of both temperature and strain rate.
Stress-strain curves were first calculated and the results were then used
to obtain the "yield stress" at .2% plastic strain for various imposed
strain rates and temperatures. Figure g.S sh?ws that the calculated
.2% €P yield stresses at ¢ = 8.3 x 107° sec™! at various temperatures are
in good agreement with the experimental values. The effects of strain
rate on the .2% eP yield stress at 760°C, 871°C, and 982°C are summarized
in Figure 4.6. The results indicate that the rate effect is relatively
small compared to that of temperature, in good agreement with experimental
observations. Figure 4.7 shows the stress-strain curves at ¢ = 8.3 x 10-2
sec”' at 538, 871, and 982°C. Both the experimental and the calculated
curves show that the flow stress at a given strain decreases with tem-
perature while the apparent hardening rate is increased as the temperature
is increased.

The Bodner-Partom model was used to calculate the isothermal cyclic
hysteresis loops at various strain ranges using the same set of constants
shown in Figures 4.4(a) and 4.4(b). The calculated cyclically-saturated
hysteresis loops at various strain ranges are compared with experimental
data in Figures 4.8 and 4.9 for 538°C and 871°C, respectively. The com-
parisons indicate reasonably good agreement between theory and experiment
for both small (near yield) and large plastic strain hysteresis loops.

Cyclic hardening is also predicted by the Bodner-Partom theory. Figure 4.10(a)
shows that both the calculated hysteresis loops after 1-2 cycles and at cyclic

saturation; these calculated loops are in fair agreement with the experimental

Toops shown in Figure 4.10(b).

4.3 Comparison of Experiment with Walker Model

A very large quantity of constitutive information has already been
generated as part of the data acquisition efforts in the HOST Isotropic
Fatigue Contract (NAS3-23288). Much more data will be generated as that con-
tract continues, as well as in the present contract. An important need in
the present contract effort and in other related HOST programs is the ability
to deal expeditiously with this information while still maintaining a high
level of insight into the underlying physical processes. A computer program
to do this utilizes the COPES/CONMIN Optimization Code written by L. E.
Masden and G. N. Vanderplaats. The COPES/CONMIN deck has been coupled with
PWA codes which provide interactive access for real time use of the COPES/
CONMIN system and direct access to PWA graphics/file manipulation routines
and the data base established for the HOST Isotropic Fatigue Contract data.

A flow chart describing these decks and their interrelations is shown in
Figure 4.11. A summary of Walker's model is shown in Figure 4.12.

In addition to the motivation to use optimization techniques resulting

from the large volume of constitutive data available and the heuristic nature
of the current constitutive theories, the 1imited deformation observed in the
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testing of the precipitation aged materials is also a prime factor. No
single series of tests can be performed (stress dip tests to probe for back
stress, etc.) that will identify in a straightforward manner the evolution
of the internal variables for materials of this type. If "trial and error"
is required, optimization techniques can considerably facilitate the search.

As a result of the studies performed to date, several aspects of the
use of optimization were found to be especially important. In addition,
several variations of the basic approach were evaluated and still other
variations identified for continued investigation. A description of these
findings and the procedures used follows.

The interactive computer code which was developed as part of this
effort is outlined in Figure 4.11(a) with additiona] details presented in
Figure 4.11(b). The procedure normally followed in the use of the code begins
with the selection of the data set from the HOST data base to be used in
the optimization process. This data set is returned to the interactive
control program as shown in Figure 4.11(a). The user then exercises a series
of options as outlined in Figure 4.11(b). These include: 1) the option to
reduce the number of data points in the file selected in order to control
computation time, 2) the option to provide a weighting matrix to bias the
least squares fit toward those aspects of the data (data fit at strain
reversal point, for example) deemed most significant, 3) the ability to set
1imits or constraints on the magnitude of the constants based on prior in-
formation or physical Timits, and finally, 4) to supply general control
information such as convergence criterion and the type of optimization in-
formation desired.

The derivation of constitutive theories stems generally from two
sources. The first source is the jsolated mechanical behaviors observed
in Taboratory tests. Second, constitutive theories are derijved from con-
cepts and theories of physical metallurgy. Neither of these sources is
entirely exclusive of the other or clearly sufficient in itself.

It is for this reason that a viable approach to the determination of
model constants might proceed on the notion that the most appropriate tests
from which to determine constants are those which most closely represent the
application where the model is to be utilized. Preferably, this set of base
or reference tests for model constant determination would span the range of
conditions that are reasonably expected in hot section blade and vane ap-
plications; 1imited only by the usual limits imposed by use of laboratory
equipment.

Based on the considerations outlined above, a study was initiated to
determine to what extent useful constitutive model constants could be de-
termined using cyclic data alone. More specifically, it was hypothesized
that the most reliable source of constants would be obtained from a fatigue
test with the most involved loading wave form. This approach was tested
using 1600°F and 1800°F data from the HOST Isotropic Fatigue program. The
results and conclusions are presented below.
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The response of the material during a fully reversed dwell fatigue
test (Specimen 27B) was selected as the base or reference data for selection
of the model constants at 1600°F.

The model constants were found by optimizing a sum of squares param-
eter based on the residual deviations between the model predicted stress
and the measured stress at each recorded data point. No constraints on the
Walker constitutive model constants were imposed. The optimum fit of the
data is compared against the measured data in Figure 4.13. The fit shown
appears reasonable with the maximum difference at any strain between model
predicted stress and data no more than 5% of the total stress range. However,
a more interesting test of the validity of determining constants from cyclic
data is to use the model constants to predict cyclic data at conditions which
were not used to determine constants. This was done for a variety of test
conditions, shown in Table 4.IV. The resulting comparisons of model pre-
diction versus data at 1600°F are shown in Figures 4.14, 4.15, and 4.16 for
one way rapid cycle, one way slow cycle, and fully reversed rapid cycle large
strain conditions. The maximum deviations between model predicted stress
and data are similar in magnitude to that found for the reference Specimen
(27B) used to determine model constants at 1600°F.

While the approach of determining constants from cyclic data was suc-
cessful in predicting the behavior at other cyclic load conditions at the
same temperature, it was not successful in predicting the material behavior
during a monotonic tensile test. Comparisons of the ability to predict high
strain tensile data at two strain ramp rates from cyclically determined con-
stants are shown in Figures 4.17 and 4.18. As readily noted, the high strain
data fit is poor. Figure 4.19 presents a repeat of the condition of Figure
4.17, but with model constants determined from the data itself to illustrate
that the optimization.can readily tailor constants to individual data sets.

An additional approach to evaluating the validity of a constitutive
model formulation is to compare the optimized constants from each test con-
dition and observe the scatter between individual loading conditions. This
comparison is shown for a partial list of the constants from the cyclic con-
ditions at 1600°F in Table 4.V. It was found that the optimum constants
were not influenced by varying cyclic strain rate, R-ratio, and loading
wave form (triangle wave vs. hold periods).

Not unexpectedly the strain hardening exponent and the principal com-
ponent of the drag stress, K;, were influenced by a change in strain range
as shown by a comparison of the constants for Specimens 31B and 27B in
Table 4.V. This trend is similar to that observed from the comparisons of
model prediction versus data for the tensile tests.

Constants for Walker's model were also determined at 1800°F. A com-
parison of the model using optimized constants with the corresponding data
is shown in Figure 4.20 for a slow cycle fully reversed test. Figure 4.21
shows a comparison of model prediction with the tensile test data at 1800°F,
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TABLE 4.V

PARTIAL LIST OF CONSTANTS FOR WALKER'S MODEL
DETERMINED BY OPTIMIZING ON CYCLIC DATA FROM INDIVIDUAL TESTS

SPECIMEN TEST DESIGNATION*
21B (1600°F) ZIA [1600°F)

278 (1600°F) 31B (1600°F) 298 (1800°F)

n (Strain Hardening 6.203 6.250 6.090 7.107 4,476
Exponent)
Initial Equilibrium  -2828.7 -2829.1 -2828.7 -2827.0 -3435,
Stress Value (psi)

K, Principal Component  .2288 x 10°  .2286 x 10 & .2288 x 10 © .1704 x 10°  .1839 x 10°
of Drag Stress

n .01340 .01337 .01338 .01336 .01338

n, 1018 x 100 1019 x 107 .1018 x 10°  .1015 x 10° 9890 x 10

N, 1990 x 10% 1990 x 10*  .1990 x 10*  .1997 x 10  .2022 x 10°

n 472 472 472 472 472

6 w %

n, 10.215 10.219 10.215 10.202 10.154

g 340. 65 340.26 340.65 240.0 333.4

" .9989 x 107 .1000 x 108  .9989 x 107 .9975 x 10’ .9973 x 107

m 1.0224 1.0197 1.0220 1.0337 1.2000

E Young's Modulus 20.13 x 10°  20.04 x 105 20.12 x 10° 20.13 x 10° 16.84 x 10°

Remaining constants were not included either because they have been found not to

contribute for preci

loading.

*Test conditions for each specimen shown in Table 4.I1I.

**Constants n,, n
stress in wélke

s Nay Ny N, N
;'s %ode n79con

Is the rate of cyclic hardening.
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the constants derived from the cyclic test were used for this comparison.
The same trends observed at 1600°F were found at 1800°F.

The method just described utilizes optimization of an objective
function based upon the least squares parameter calculated from the residual
deviation at each measured data point. Four rather specific strategies for
the use of numerical optimization were tried. 1) Unrestrained optimizations
on all constants simultaneously. 2) Progressive optimization on several
types of cyclic tests using increasingly tight constraints on those constants
determinable from prior data fitting, e.g., elastic constants. 3) A pro-
cedure which allowed constants to be fixed (equality type constraints), once
determined, so that optimization can proceed on the remainder of the con-
stant set. Of these three approaches, the first has surprisingly proven to
be the most advantageous to date. The second approach was initially expected
to be the ideal one, but the optimization algorithms used in this study tended
to terminate the search procedures prematurely when the search limits (upper
and lower bounds) were set close to one another. This limitation of the
optimization procedures has been noted by the author of the CONMIN code, Dr.
G. H. Vanderplaats.

The third strategy involved the temporary removal of the constrained
variable from the list of those to be optimized. Removing a model constant
from the variable list this way amounts to a practical way of providing an
equality constraint on the constant. This approach yielded good results
initially and will be explored further. The principal disadvantage of this
approach is that it assumes that a particular constant is known exactly rather
than within a narrow uncertainty band. This should not be a serious drawback
in practice, however.

A fourth approach was the use of weighting factors applied to those
points in the data cycle deemed most significant. The trials (e.g., increased
significance given to data fit near strain reversal or null load points) using
this approach showed no advantage on the limited data set evaluated.

Other strategies which remain to be explored are the use of constraints
on dependent variables associated with the model and model constants and
secondly, the use of alternative forms of the objective function. Two ex-
amples of dependent variable constraints which may prove useful are: 1) a
narrow band around the actual measured response (e.g., measured stress) which
might be made progressively more narrow in order to guide the optimization in
the desired direction, and 2) a similar bound on the maximum residual deviation
(e.g., the maximum absolute value of the differences between the measured and
calculated stresses for all data points). This same maximum deviation should
also be explored as an alternative to the sum of the squared deviations as an
objective function to be minimized. It is considered 1ikely that this would
be a more sensitive parameter than the more usual sum of squared residuals.

It may have the drawback, however, that it is overly sensitive to random
fluctuations, or noise, in the measured stress data set and may not converge
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due to minor discontinuities. A second alternative to the objective function
which could possibly avoid sensitivity to data set noise would be weighted
combination of the sum of squared residuals and the maximum deviation.

To summarize the experience with the use of optimization for deter-
mination of constitutive model constants, it is to a large degree a very
successful approach. It is too early to say that the specific strategies
used are the best ones to use. No one method has been found completely
satisfactory at this time. However, it is clear that reasonable constant
values can be determined with the relatively small expenditure of analysis
time, which was the primary goal of the study to date.
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5.0 TASK D. IMPLEMENTATION IN FINITE ELEMENT COMPUTER CODE

Any constitutive model being developed must be included in a struc-
tural analysis program. In this and two previous contract efforts [1 and 27,
the MARC nonlinear finite element computer program was the vehicle for incor-
porating the viscoplastic models. The following section will be divided into
three parts: 1) a brief discussion of the MARC code and the procedure for
implementing a viscoplastic model, 2) a review of various integrating methods
for viscoplastic theories considered to date in conjunction with the MARC
code, 3) a summary of the approach being taken in Task D.

5.1 Description of the MARC Program

In References 1 and 2, the viscoplastic constitutive theories were in-
corporated into MARC program by means of an initial stress technique. A1l of

ment equilibrium equations. Because the viscoplastic constitutive theories
for a "stiff" system of differential equations, it is necessary to form the
incremental constitutive equation appropriate to the finite element load
increment by means of a subincrement technique.

In the subincrement technique the finite element load increment is
split into a number of equal subincrements and the viscoplastic constitutive
theories are integrated over the small subincrements to form an accurate re-
presentation of the incremental constitutive equation over the finite element
Toad increment. Integration over each subincrement is accomplished by a
number of techniques. Provided the subincrements are sufficiently small (so
that the stability level of the integration method is not exceeded), the
technique has been found to work efficiently and accurately, even for large
finite element load increments. However, it is difficult for the user to
pick efficient subincremental steps, and there is a considerable incentive to
use as few subincrements as possible, consistent with the stability of the
differential equations comprising the constitutive theory.

The MARC code allows the user to implement very general constitutive
relationships into the program by means of the user subroutine HYPELA. With-
in this subroutine the user must specify the values of the elasticity matrix
Dij and the inelastic stress increment vector Azi in the incremental vector
constitutive relationship

A% =%jmj-%aA@ - AL (5.1)

The inelastic stress increment vector AL; is computed in HYPELA from the visco-
plastic constitutive relationships.

In Equation (5.) o denotes the coefficient of thermal expansion and aj is the
vector Kronecker delta symbol,
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1if0=j=3
6. = (5.2)
0if3<j=<6

For the class of nonlinear viscoplastic constitutive relationships
under consideration in this contract, the incremental inelastic stress
vector Az; depends in a highly nonlinear manner on the jncremental strain
vector Aej.

The solution of the incremental equilibrium is accomplished within
the MARC code by the following algorithm. At the start of the increment
the user subroutine HYPELA is entered to determine the elasticity matrix
Di; and the incremental inelastic stress vector Az;. On entry to the sub-
routine the input consists of the strain increment vector Aej, the tempera-
ture increment Ae, the time increment At over which the incremental exter-
nal load vector AP; is applied to the structure, and the values of the stress,
strain, temperature and viscoplastic state variables at the beginning of the
increment. Since the incremental strain vector, Aej = Bjj Auj, can only be
accurately determined after the solution to the incremenlﬂ] equilibrium re-
lationship has yielded the correct incremental solution Auj, the strain in-
crement vector Aej initially used to generate the azj is assumed to be the
value obtained for Ae; in the preceding increment. 6n exit from subroutine
HYPELA the elasticity matrix Djj and the estimated inelastic stress incre-
ment vector Az are passed into the main program. After the values of Djj
and Az are obtained for each integration point in the structure, the incre-
mental equilibrium relationship is assembled and solved for the incremental
node displacement vector auj. The incremental strain vector, Aej = Bij Aujs
is then computed and compared with the initial guess for Aej used to generate
the inelastic incremental stress vector Az;. If this incremental strain vec-
tor is equal, within a user specified tolerance, to the incremental strain
vector used to compute Azj in the assembly phase, the solution is assumed to
have converged. Otherwise, the updated strain increment vector, obtained from
the solution of the equilibrium relations is passed into subroutine HYPELA, a
new vector, Az, is computed, and the equilibrium equations resolved to yield
an improved value of Auj and Aej. The process is repeated until the value of
the vector aAej on the assembly phase is equal, within a user specified toler-
ance, to the value of the vector aej on the solution phase. After convergence
is achieved, the temperature, stress vector, strain vector and viscoplastic
state variables are updated by adding the incremental values generated during
the current increment to the values of these variables at the beginning of the
increment. The program then passes on to the next load increment where the
process is repeated.

5.2 Integration Methods for Viscoplastic Theories in the MARC Code

The values of Dij and Az; in the incremental constitutive relation,

Aoi = Dij(AeJ. - nSJ. oAQ) -« Agi (5.3)
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are obtained by a subincrement method. Incremental values of the variables
A6, At and (Ae; and 8§ aA©) for the current finite element load increment
are split into NSPLIT equa] values, and the constitutive equations are inte-
grated over the NSPLIT subincrements to prov1de accurate values of Dj; and
Ag;. Each load increment in a MARC analysis is divided into NSPLIT sub1ncre—
ments The integration of the constitutive equations is currently performed
by using explicit Euler forward differences with a step size determined by
dividing the MARC Load increment by NSPLIT.

Three methods for integrating the constitutive equations were examined
in [2}: (1) an explicit Euler difference scheme with error estimates for re-
vising the time step, (2) a backward difference scheme, and (3) integration of
an integrdl form of the equations.

The forward difference integration, similar to [3], is based on an
error estimate, €, given by

2 (5.4)

where

JgAepAe

ei; is the inelastic strain

Sij is the deviatoric stress

A of a quantity is the change in the quantity over time step At. If the
error estimate is too large

€ > €, (5.5)

then the time step is halved and the step is repeated. If the error estimate
is too small

€ <€ (5.6)

then the time step is doubled for the next integration step.
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A backward difference algorithm was also developed in [2]. Although
the forward difference worked adequately for all test cases considered, the
backward difference convergence was slow in cases where the term ng, in
Walker's equation, was not equal to zero and the strain rate was smaller
(i.e., on the order of 1076/sec). A quadratic Newton's method was also used
to solve for AG and Qijk+] but there was no benefit over a Tinear Newton's
method. Therefore, in"these cases, a sufficiently small step size was re-
quired.

The equations for the modified Walker's theory have also been recast
in integral form, [1].

The implicit integration for the evaluation of the integral form of
the equations can be illustrated by considering the first order differential
equation

yit) = flt) - y(t)f (t) (5.7)

where fO and f] are known functions of time, subject to the initial condition
y(0) = Yo (5.8)

Equations (5.7) and (5.8) have the solution

t
y(t) =yoe-0(t) . /‘ o-LQ(t)-Q(£)] O (5.9)

where

Q(¢) = ff](-r)d (5.10)

From [11, for large times, Equation (5.9) is

fo_fo ffg*f (5.11)
Zrt
i 3

y(t) =
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Equation (5.9) can be readily cast in an incremental form as

ot
- [0l -0l t)] f Lol )-a(e)]

Yityy) = yit e folé)dé (5.12)

ty

An approximate numerical integration of Equation (5.12) using Equation
(5.11) is

- [Q(ty )-00t )] fo(t., )
Yity,) = ylt e N+] NS, 0" BN+ (5.13)
S ATt
- Lol )-Q(t )] fqlty) Af Af
where _ N+1 N 0'"N 1 + 0 _ 1
¢ ,0E,) Fo(E,) ~ F(E,)
Afy = foltya) - folty), and Af = fi(t ) - f(t))

_The evaluation of Q(t) is given by Equation (5.10)

Q(tNH) = Q(tN) +j f](T)d‘r
ty

and Equation (5.12) can be approximated by using a convenient numerical inte-
gration rule. For example, a rectangular rule gives

Qty,q) = Qe + £ (t ) At (5.15)
where

Bt =ty - by

or if desired, a trapezoidal rule can be used, then
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Wtyy) = Qlty) € 3 LF (1) + £ (6,100 At (5.16)

For large time steps, from Equation (5.13)

filt, )
0!t

Yty ) ~ (5.17)
N R TR

which is the first term in Equation (5.11), and for small time step

Yty ) ~ y(t () At - y(t)F, (1) At (5.18)

which is a first order Euler integration.

5.3 Summary of Approach to be Taken

Several numerical methods for implementing Bodner's and Walker's
theory in the MARC finite element computer program are being considered in
this Task. These include, but may not be limited to:

1) Explicit Euler integration with both a fixed and self-
adaptive time step. This approach has been used success-
fully in the past with Walker's theory.

2) The NONSS method of Miller and Tanaka. This approach has
been used successfully with Bodner-Partom's model. Recent
work by Brockman have suggested a method for improving the
efficiency of this approach [4].

3) Implicit integration of the integral form of the equations,
as described above.

4) For completeness, a second order Runge-Kutta method with a
self-adaptive time step will be considered. The existing
HYPELA model for Walker's theory will be modified first.
Each theory will be finally coded with at least two numeri-
cal integration algorithms.
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6.0 TASK E. MULTIAXIAL EVALUATION OF CONSTITUTIVE MODELS

The literature review conducted in Task A reveals that several struc-
tural alloys including Hastelloy-X exhibit considerably more cyclic hardening
when deformed under nonproportional loading paths than under proportional
loads. To take into account this type of loading-path-proportionality-
dependent hardening behavior, both the Bodner-Partom and the Walker models
were modified by introducing new parameters in the evolution equation of the
internal variables such that additional cyclic hardening would result under
nonproportional paths. Summaries of the updated Bodner-Partom and Walker
models are shown in Figure 4.2 and Figure 4.12, respectively. Preliminary
calcu]ations of cyclic stress-strain response of Hastelloy-X subjected to
90" out-of-phase combined tension/torsion loading indicate good correlation
between experiment and theories, as shown in Figure 6.1. However, it should
be noted that the cyclic stress-strain curve shown in Figure 6.1(b) for the
Bodner-Partom model was obtained using uniaxial tensile data as input only,
while the result shown in Figure 6.1(c) was obtained by fitting the Walker
model to the experimental data in Figure 6.1(a).

The phase angle between the deviatoric stress and the plastic strain
rate vectors of Hastelloy-X under 90° out-of-phase tension/torsion loading
was also determined and the results are shown in Figure 6.2. Comparison of
experimental data with preliminary calculations of Walker and Bodner-Partom
models, also shown in Figure 6.2, indicate that the Walker model predicts non-
coaxiality between the deviatoric stress and the plastic strain rate vectors,
and the predicted phase angles which are approximately 5-15° are smaller than
those observed experimentally. On the other hand, in the Bodner-Partom model,
the plastic strain rate vector is always taken to be coaxial with the devia-
toric stress vector. As a result, the predicted phase angles are always zero,
as shown in Figure 6.2.
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7.0 SUMMARY OF CURRENT RESULTS

During the first year of effort, the following tasks were accom-
plished and preliminary results obtained:

e A literature review of existing unified constitutive
models for time and temperature dependent inelastic
behavior of high temperature alloys was completed.
A1l models contain three essential components - a
flow law, a kinetic relationship between stress,
inelastic strain rate and temperature, and evolu-
tionary equations for the internal variable(s) de-
scribing work hardening. Ten different models were
compared relative to these components.

® A review of numerical integration procedures applicable
to these "stiff" equations was completed also.

e The particular models of Bodner and Partom and of
Walker were selected for further detailed study and
implementation in a FE code.

® The alloy selected for testing under the basic program
was cast B1900+Hf. Specimens are being fabricated at
PWA from a single heat of this material.

¢ Uniaxial tensile and creep tests have been completed
at SwRI for a matrix including temperatures from room
temgerature to 2000°F and strain rates from 10~/ to
1072 sec™!,

e Initial correlations of the uniaxial data, both
monotonic and cyclic, with the Bodner-Partom and
Walker models indicate reasonable to good correlation.
Procedures for determining best-fit constants for
these models are being developed but need further re-
finement.

¢ Both models are being implemented in the MARC finite
element computer code. At least two numerical inte-
gration algorithms will be used with each model.

® Preliminary data from the literature indicates cyclic
biaxial hardening to be greater than under uniaxial or
proportional cycling. Existing models do not include
this effect. Several modifications were attempted to
correct this situation with reasonable success.
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8.0 FUTURE WORK

During the second year of the base program, the following work will

be completed:

Experimental test data will be obtained for B1900+Hf under
isothermal and non-isothermal uniaxial strain controlled
cyclic conditions, and proportional and non-proportional
biaxial tension-torsion loading.

The Bodner-Partom and Walker models will be implemented in
the MARC finite element code. This code will then be util-
ized to correlate all the uniaxial and bjaxial data.

A notched specimen geometry will be selected and tested to
provide benchmark data under a non-homogenous strain condi-
tion. This benchmark data will be compared with a FEM
analysis of specimen utilizing the optimum constitutive
model.

A hot section component, probably a turbine blade, will be
analyzed using the FEM code and optimum constitutive model
to demonstrate advanced modeling capability.

Finally, the FEM code with advanced unified constitutive
model will be installed on the NASA Lewis computer facility.
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1.0 INTRODUCTION

Constitutive theories based on the classical concepts of plasticity and
creep generally decompose the inelastic strain rate into a time-independent
plastic strain rate and a time-dependent creep rate with independent constitu-—
tive relations describing plastic and creep behavior. While this approach
can be rationalized on historical grounds and perhaps on computational conve-—
nience, experimental evidence collected on structural alloys at elevated tem—
perature indicates inherent time-dependency and creep/plasticity interactions
[1,2]. This suggests that inelastic deformation might be primarily controlled

by a single overall mechanism and should be treated in a unified manner.

Although much of the essential physics of time—dependent inelastic de-—
formation of metals has been known for some time, attempts at a unified ana-
lytical formulation have been relatively recent. This seems to have been due
to the success of elastic-plastic analyses in many areas of engineering and
the tendency to treat time-dependent effects as special phenomena. Probably
the first attempt at a unified treatment was that of J. J. Gilman and W. G.
Johnston in the late 50's and early 60's who did some of the basic work in the
field of ''dislocation dynamics' [3-5]. They showed that a reasonably real-
istic stress—strain curve could be obtained by integrating expressions for the
elastic and plastic strain rates which were both considered to be nomnzero

throughout the loading history.

In recent years, a number of formulations of elastic-viscoplastic con-
stitutive equations have been presented in the engineering literature. Such
equations are sometimes referred to as "unified' since inelastic deforma—
tions are represented and treated by a single kinetic equation and a discrete
set of internal variables. In this context, creep, stress relaxation, and
plastic flow are different manifestations of time—dependent inelastic deforma-
tions under particular loading conditions with consequently different response

characteristics.

There are more than ten unified constitutive theories in the literature.
A few of them were proposed in the last five years. These sets of constitu-
tive equations have some common properties and some essential differences

which have been reviewed recently by Walker [6]. Since then, there have been
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more advances in the development of the unified theories. The purpose of this
survey is to update Walker's previous work by reviewing the state—of-the—art
and the numerical integration techniques for these unified theories.

This survey also serves to identify areas for further model developments.

The unified theories which are reviewed in this survey include those of
Walker [6], Bodner and Partom [7-9], Miller [10-12], Krieg, Swearengen and
Rhode [13], Chaboche [14], Robinson [15], Hart and co-workers [16,17],
Stouffer and Bodner [18,19], Lee and Zaverl [20], Ghosh [21], and Kagawa

and Asada’s modification of Miller’s model [22].
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2.0 GENERAL CHARACTERISTICS OF UNIFIED CONSTITUTIVE EQUATIONS
FOR ELASTIC-VISCOPLASTIC MATERIALS

Constitutive equations for elastic-viscoplastic material could be formu-
lated either with or without the use of a yield criterion. A basic assumption
for this class of constitutive theories is that in the range where inelastic
strains are present, the total strain rate éij can be divided into elastic and

inelastic components which are both nonzero, i.e.

do= &S o+ b (1)
1] 1] 1]
This equation is applicable for the small strain case and a similar decompo-
sition is assumed to hold for the deformation rates in the case of large

strains. These are equivalent to strain rates if the strains are small.

For elastic response the stresses are directly related to the deforma-
tion gradients with no memory effects. The elastic response is fully re-
coverable both thermodynamically and geometrically. In the case of small
strains, as considered here, the elastic strain rate is given by the time

derivative of Hooke's Law.

In the literature, see e.g. [23,24], there are alternative definitions

for ei?, the inelastic strain. For our purposes here, and in the context

of a "unified" theory, the inelastic strain rate éi?

will be considered to
include all strains that are not elastic, i.e. the difference between the

total strain rate, éij’ and the elastic strain-rate éi?’ (Eq. 1). Thus, the
expression "unified" applied to the theories reviewed is taken to mean that

all aspects of inelastic behavior such as plastic flow, creep, and stress
relaxation characteristics for different loading histories. This broad de-
finition of "unified" would admit theories with or without a yield criterion

and with alternative specifications for éi?' Alternative definitions of the
inelastic strain increment that depend on a residual strain after loading and
unloading from a stress increment are discussed by Lee [23] and Drucker [24].
Particular definitions of this type lead to the '"normality' condition associated
with strong material stability. With both loading and unloading increments time

and temperature dependent, determination of an equilibrium residual plastic



strain component is difficult. Alternate uniqueness and stability criteria
for unified theories with internal variables are discussed in Section 2.5.
It is noted that the precise definition of inelastic strain rate in a con-

stitutive theory is given by the equations themselves.

Constitutive theories which are formulated without the use of a yield
criterion include that of Bodner and his associates [7-9], Walker [6], Miller
[10-]2], Krieg, Swearengen and Rhode [13]. Since these models do not con-
tain a completely elastic regime, the function that describes the inelastic
strain rate should have the property that the inelastic strain rate be very
small for low stress levels.

For theories with a yield criterion, éi?

is identically zero until an
invariant function of the stress reaches a prescribed value; the function, by
definition, is independent of strain rate. For stresses at or exceeding the

yield value, Equation (1) applies and éi?

and the stresses Oij are function-
ally related. The fully elastic state, i.e. éi? = 0, would apply only for
stress states less than the rate independent yield value, and loading and un-
loading paths above that are controlled by the loading conditions through the
constitutive equations. Theories of this type have been developed by Perzyna
[25] for the case of isotropic hardening and by Chaboche [14], Robinson [15]
and Lee and Zaverl [20] for the case of both isotropic and directional harden-

ing. 1In these theories, loading above the elastic limit value and unloading

to it would generally not be fully elastic.

All the unified models are formulated on the basis of internal or struc-
tural variables which depend on the loading history. The essential features
of these unified theories are: (1) a flow law which functional form depends
on the method of treatment of directional (kinematic) hardening, (2) a kinetic
equation which is the temperature dependent functional relationship between
the strain rate and stress invariants and includes internal variables, and
(3) a set of evolution equations for describing the growth of the internal

variables. Here, the internal variables are used to represent the current
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resistance to inelastic flow of the deformed solid. Two deforming solids with
identical values of their internal variables would have identical inelastic
responses under the same imposed stress state. Both the choice and the number
of internal variables vary with the unified models. The number of independent
internal variables that have been suggested ranges from one to as many as six
reflecting the relative complexity of the model. Most of the unified models,
however, use two internal variables or one variasble with two components: one
to represent isotropic hardening and another to represent directional (kine-
matic) hardening. In most models, the isotropic hardening variable is repre—
sented by a scalar quantity, either the drag stress (K) or the yield stress
(Y), while directional hardening is represented by a second order tensor nij

or a scalar function of such a tensor.

2.1 Basic Flow Laws

Four basic forms of the inelastic flow law have been identified. Plas-

tic incompressibility is always assumed and these flow laws are:

. P _ . P _
(1) 8ij xlsij , &y 0 (2a)
.
(2) &P = azx.. = a(S,. -42.) 2P =0 (2b)
ij 27ij 2 7ij ij ? kk
M p = o p = o p 3
(3) eij lijkl Skl v eijkk 0 (2¢)
. p _ _0f . P _

where Sij’ Gi" and zij are the deviatoric, direct and effective stresses,

respectively. The tensor Qi represents the '"equilibrium stress'" which has

j
also been referred to as the "'back stress' and the '"rest stress''. The para-
meter f is a yield function or a flow potential. It should be noted that the
first three laws can be considered or can be derived from Equation (2d4) if

they are associated with a flow potential.

Equation (2a) is the Prandtl-Reuss flow law associated with the von
Mises yield criterion. However, it can be considered as a basic material

equation in its own right independently of a yield condition. As such, this
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equation is usually taken to be applicable for proportional loading conditions
for which isotropic hardening would be appropriate. The equation states that
the material response (i.e., the plastic strain rate) to stress is isotropic
even though 11 could be stress history dependent. Since stress is direc—
tional, 11 could have a directional character within the context of incremen—
tal isotropic response and thereby account for induced directional hardening
effects. This situation would be analogous to finite strain elasticity in

which the coefficients are stress history dependent.

Equation (2b) is the flow law obtained by introducing the kinematic
hardening variable of Prager into the classical plasticity formulation to ac-
count for directional hardening (the Bauschinger effect) [26]. In this con-—
text, the term ﬂij would represent the new origin of a translating von Mises
yield surface in deviatoric stress space, and Equation (2b) would be the asso—
ciated flow rule. As before, Equation (2b) can be taken to be a basic mate-
rial equation in a formulation without a yield criterion and the "equilibrium

stress' tensor Qij is generally intended to serve the following functions:

(a) to account for directional hardening (the multi-dimensional
Bauschinger effect), and for the non-coaxiality of éi? and Si under non-

j

proportional loading histories (Figure 1);

(b) to account for reversed plastic straining effects, e.g. reversed
creep, relaxation through zero stress, when the effective stress Zij is nega-

tive;

(c) for theories without a fully elastic range (i.e., a yield criteri-

on), to account for low plastic straining within a given range.

Equation (2b) has been used by many investigators as the basic flow rule
and appears to be particularly useful in representing directional hardening
effects. In Equation (2b), 12 is a scalar function of the isotropic hardening
variable K and the tensor nij' The evolution equation for nij is generally
dependent on a hardening term in the direction of éi? and on so called 'dynam—
ic" and "static" (or thermal) recovery terms in the direction of nij' As

such, nij is a deviatoric quantity, i.e. traceless.

Although attempts have been made to interpret nij physically in terms of

residual stresses, this turns out to be difficult but is not essential from
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FIGURE 1. GRAPHICAL REPRESENTATION OF THE BASIC FLOW LAWS USED IN

THE UNIFIED CONSTITUTIVE THEORIES. For theories based
on an equilibrium stress, the inelastic strain rate
vector £R. is coaxial with the effective stress zjj and
normal to“the flow potential f if such a concept is

used, For theories which do not include an equilibrium
stress, é?- is coaxial with the deviatoric stress Sjj

for both 150tropic and incrementally isotropic cases %ut
is noncoaxial with Sij for generalized anisotropic cases.
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the viewpoint of its possible utility in constitutive equations. The term

"equilibrium stress' is usually applied to Q since it would correspond to

the asymptotic stress state under relaxationiionditions, but such a stress
state is difficult to determine by direct experimentation. A possible criti-
cism of Equation (2b) is that the "equilibrium stress" is a load history de-
pendent material property which is subtracted from the applied stress which is
a kinetic quantity. It is noted that difficulties are experienced in general-
izing the flow law (2b) to the case of large strains because different trans-
formation rules are required for Sij and for ﬂi

Lee [27].

j* e.g. recent papers by E, H.

For cycling under proportional stress states, Equation (2a) with a
stress history dependent coefficient can be shown to be equivalent to Equation
(2b). The real differences in these equations would show up for non-propor-

tional loading histories,

Equation (2¢) is the general anisotropic form of the Prandtl-Reuss flow
law which can be rewritten in a 6D stress and strain rate space to take the

form,

EP = AT ¢ = 1,—6 (3)

=]
Q
h -]
‘o
W™
|
b
1
-

where éa and T, are related to the usual plastic strain rates and stresses in

p

a simple manner, see [18,19], and AaB is the 6x6 matrix of coefficients, If
the material is initially isotropic and the law for plastically induced direc-
tional hardening does not lead to off diagonal terms, then Aaﬁ is initially
and remains diagonal. Under these conditions, Equation (2c) is equivalent to
Equation (2b) since 6 material constants determine the anisotropic flow be-
havior (Qij in Equation (2b) has 6 components). All the flow equations, Equa-
tions (2a,b,c), would be equivalent for the case of proportional loading, in—

cluding cyclic conditions.

Although Equation (2¢) can be used for materials that are initially non-
isotropic with regard to inelastic response, it is obviously a complicated
equation to manage., There has been relatively little experience in using

Equation (2¢) for such cases.
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For constitutive theories with a flow potential, both the flow law and
the growth law of the kinematic hardening variable nij are derivable from a
single flow potential, Equation (2d). A basic form of such a flow potential

is [13,28].

f = f (aij' nij) = F(Jz) + G(Tz) (4)
where 12 = ;/2 (cij - “13’ (aij - nij)
Tb = 1/2 nij nij

’
If the function F(Jz) is taken as [15]

n+l
K2 2

(5)

4
where F =.%% = 1 is the von Mises yield function, n and p are material para-
meters, and recalling that K is the isotropic hardening variable. The associ-—

ated flow law, from Equation (2d) then becomes

n-1
éi? = -%ﬁ F 2 (aij - nij) for inelastic loading (6a)
and 51§ =0 for elastic unloading (6b)

The conditions for inelastic loading and elastic unloading have been identi-
fied in [15]. It can be easily seen that (6a) and (2b) are equivalent. In
both cases, the direction of the inelastic strain rate vector is coaxial with
the current effective stress vector (see Figure 1). Robinson [15] has recog-
nized the equivalence and pointed out that the existence of a flow potential
is not strictly necessary for the development of the flow law represented by
(6a); the flow law can simply be stated without reference to their derivabil-
ity from a potential function, as done in models which do not include a yield

surface or flow potential,

2.2 Kinetic Equations

The flow laws, Equations (2a) and (2b) can be squared to give respec-—
tively,

_ P 1/2
11 = [D2 /12] (7a)



_ P,y',1/2
12 = [D2 /12] (7b)

where sz is the second invariant of the plastic strain rate, sz = (1/2) éif

’
, and J, and 12 are the second invariants of the deviatoric stress and

s P
8ij

2
effective deviatoric stress, respectively,
12 = (1/2) Sij Sij (8a)
'
J2 = (1/2) (Sij - nij)(sij - nij) (8b)

Fundamental to all "unified" viscoplastic formulations based on flow
laws of the forms listed in Equations (2) is that inelastic deformations are
governed by a functional relation between sz and J2 (or J;) that could in-
volve load history dependent variables. These variables are intended to re-
present properties of the inelastic state with respect to resistance to plas—
tic flow, e.g. bardening and damage. Some functions that have been suggested

are the following.

(a) 021’ = Dox“ (9a)
(b) sz = Do exp [;(é%)n] (9b)
(¢) D= D [sinh(x)"’]“ (9¢)

where X 3J'2/K2 , or 31;/K2
and n, m, and Do are constants. The inelastic strain rate components can then
be obtained as a function of the stress by the use of Equation (2a) or (2b)
and one of Equations (9). Expression (9b) has some advantage over (9a or c)
in theories without a yield criterion in that the value of sz is almost zero
for some extended range of 12 regardless of the value of n. In (9b), Do is
the limiting value of the inelastic strain rate in shear; (9a) and (9b) do not
contain such a limit. These differences between the kinetic equations are
illustrated in a normalized plot of log (sz/Do) vs X in Figure 2 for the case
of n =3 and m = 1.0. Experimental support for Equation (9b) is shown in
Figure 3 which indicates that a limiting inelastic strain rate of 2x105 sec_'1

occurs in 1100-aluminum [29]. On the other hand, the power law expression has
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FIGURE 2.

KINETIC RELATIONS

FUNCTIONAL BEHAVIOR OF THE KINETIC EQUATIONS USED IN THE
UNIFIED CONSTITUTIVE THEORIES. The exponential formula-
tion in Bodner-Partom's theory is seen to give a limit-
ing inelastic strain rate of Dg.
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FIGURE 3. STRAIN RATE AS A FUNCTION OF STRESS FOR 1100 ALUMINUM
‘ INDICATING A LIMITING STRAIN RATE OF 2 x 105 SEC-T,
FROM [27]



been found to overpredict values of stress in a constant strain rate tensile

test when the strain rates are greater than 10-“2 sec_1 [13,30].

In all the preceding equations (9a,b,c) the exponent n influences the
slope of the D,, 12 relation and therefore has the major influence on strain
rate sensitivity. That parameter also affects the overall level of stress-—

strain curves although the level also depends on the hardening parameter K.

Temperature (T) dependence of plastic flow is a first order phenomenon
comparable to strain rate sensitivity and should appear directly in the ki-
netic equation. In the case of Equations (9a,b), this can be achieved by
taking the exponent n to be a function of T, e.g. n = c/kT (k is Boltzmann's
constant and ¢ a material constant) which leads to stromg temperature depend-
ence of the stress parameter X=3J'2/K2 (or 3J;/K2). Numerical results for this
dependence are shown in Figure 4 for both the vower law and exponential kinet-—
ic equations at different non-dimensionalized strain rates. These trends ap-
pear to be consistent with experimental results shown in Figures 5 and 6 which

are plotted in a similar manner.

The method of including temperature dependence in Equations (9) can be
derived from an activation emergy formulation. Table I 1lists temperature-
dependent kinetic equations based on four different functional expressions for
the activation energy. Some of the consequences of the various relations are

discussed in [29].

Another procedure for including temperature dependence in the kinetic
equations is to multiply the stress function, the right hand side of equa-
tions (9) by a temperature function. The temperature factor can again be
motivated by thermal activation considerations and the Arrhenius expression
seems to be the reasonable function to use at the higher temperatures. This
is the approach taken in [10]. Additional discussion of temperature effects

in the constitutive equations is given in a subsequent section.

2.3 Evolutionary Equations for Internal Variables

An important feature of the unified approach is the use of a set of dis—

crete evolutionary equations to describe the change in hardening behavior of
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2"(}{) (Exponential Kinetic Equation)

FIGURE 4,

FUNCTIONAL BEHAVIOR OF TEMPERATURE-DEPENDENT KINETIC
EQUATIONS UTILIZED IN BODMNER-PARTOM AND WALKER

THEORIES
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TABLE I

FIVE FORMS OF TEMPERATURE-DEPENDENT KINETIC EQUATIONS WITH
THE CORRESPONDING ACTIVATION ENERGY FUNCTION

Activation Energy Temperature-Dependent Kinetic Equations

C/kT

Ho - Va(Jp
- - P . .0
AH = Hy Vg(Jz) 02 Doexp[ T 1
2 2
_ H*K P _ _hH* (K
AH 33, Dy = Dgexp|- (= <3J2>
K2 C/kT ; K2 C/kT
AH = kT 53; 02 = Doexp - 3J2

n

30\
Doexp[- T%J[sinh (?22~) ]

where C, Dp, H*, Ho, Q, m, and n are constants; V is the activation
volume; and k is the Boltzmann's constant,

AH

1}
L
o
o
"
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materials undergoing inelastic deformatiom. The same set of internal vari-
ables and evolutionary equations is used to govern all aspects of inelastic
deformation including plastic flow, creep, end stress relaxation. The general
framework of the evolutionary equations of internal variables is based on the
now well-accepted Bailey—Orowan theory [31-32] which theorizes inelastic de-
formation to occur under the actions of two simultaneously competing mech-—
anisms, a hardening process proceeding with accumulated deformation and a re—
covery or softening process proceeding with time. The evolution rate of an
internal variable is then the difference between the hardening rate and the
recovery rate as given by

xi = hl(xi) Ml - :l(xi, T) (10)

where ii is the evolution rate of the internal variable Xi. and h1 and Ty are

the hardening and the thermal recovery functions, respectively. h1 and r, are
functions of X, i’ temperature (T), and the hardening measure (M ) is either
or W depending on the model. A summary of the hardening measures uti-

ij
lized in the various unified theories is shown in Table II.

(1.) Isotropic Hardening

The quantity K in Equation (9) is usually interpreted as the iso-—
tropic hardening internal variable and is often referred to as the drag
stress. Evolutionary equations for the isotropic hardening parameter general-
ly follow the hardening/recovery format shown in Equation (10). A comparison
of these hardening and recovery functions in various unified theories is shown
in Table III. The rate of isotropic hardening is usually given by a function
of the hardening variable K, which may saturate to a l1imiting value, shown as
K1 in Table III, multiplied by a measure of the hardening rate. Both the in-
elastic work rate and the effective inelastic strain rate have been proposed
as the scaler hardening measure. At present, it is not obvions which harden—
ing measure leads to better overall agreement with experiments. A recent pro-—
posal is to take the measure to be a functional of the straim rate history
[33]. On the other hand, the rate of softening or recovery is often taken to

be a pover function of K and a temperature—dependent constant Ko which value

represents the reference state for that particular temperature.
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TABLE III

THE SPECIFIC FORMS OF ISOTROPIC HARDENING AND STATIC THERMAL RECOVERY
FUNCTIONS USED IN THE SELECTED UNIFIED CONSTITUTIVE THEORIES

Model

K = hy(K)M = vy (T.K)

v s ?_-p.p
where M] = €3 e—\/3e1.j Eij

It

or M] Wp (Bodner-Partom's Theory)

Static Thermal
Hardening Function, h1(K) Recovery Function, r1(T,K)

Bodner-Partom
Walker
Krieg et al
Robinson
Chaboche
Lee and Zaverl
Hart
Ghosh

Miller

Cy(Ky - K) Cy(k-K )P
&y (Ky - ) -
C, Co(K-K )P
c

1 -
C](K]- K) + f](e, €, Qij) -

*
c1(|<] -K)/@ -

-q p

IR . p
¢ [K; - C4(sinh™Teq €)™ C,[sinh €, K"]

. *
where C], CZ’ C3, C4, C5, m, Ps Qs Ko’ and K] are material constants; K]

is the saturated value of K; K; is governed by an evolutionary equation

which is function of ¢ and .
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This recovery model, sometimes credited to Friedel [34], theorizes that
recovery occurs only when the current internal state exceeds the reference

state.

(2.) Directional or Kinematic Hardening

Probably the main difference in the various unified theories is
the treatment of directional or kinematic hardening. Differences exist not
only in the choice of the flow law but also in the evolutionary equations,
The general framework of these evolutionary equations follows the hardening/
recovery formulation represented in Equation (10) with indexes to indicate

the directions of hardening and recovery.

oij = h2 (nij)uij - d(Qij ij + O(Qij.T)T wij (11)

where h,, d, and r, are the hardening, "dynamic recovery", and static thermal

,» N, - (2, . ,")V
ij 2 ij

recovery functions, respectively. O represents hardening and/or recovery as—
sociated with the rate of temperature change. M.., N.., V.. and W.. are the
ij° 4§t dj ij
directional indexes of hz, d, Ty and O, respectively. The main differences
among the various theories, as summarized in Table IV, are in the choices of

the directional index and the hardening and recovery functions.

As indicated in Table IV, unified models based on the equilibrium
stress utilize the inelastic strain rate as the directional index for harden—-
ing and contain a "dynamic recovery' term in the hardening function. The pro-
posed hardening rule is thus similar to the Prager rule [26] in conventional
plasticity which requires the translation of a yield surface to occur in the
direction of the plastic strain increment. On the other hand, the evolution-—
ary equation proposed in conjunction with Equation (2a) is based on the direct
stress as the index for directional hardening [8,9]. This formulation avoids
the cross-softening effect associated with inelastic strain rate as the index
and the theory is more compatible with Ziegler's modification [35] of the

Prager hardening rule.

The directional index for "dynamic recovery' is generally in the

opposite direction of the directional hardening variable 0 The '"dynamic

ij*
recovery' term is treated in [7-9] as a saturation term in the direction of
the direct stress but the index has recently been modified to be in the direc—

tion of - 8ijj also [36].
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The unit vector which represents the direction cosines of the
directional hardening variable is usually taken to be the directional index
for static thermal recovery. Recovery always occurs in the opposite direction
of the unit vector and tends to reduce the magnitude of the directional (kine-
matic) hardening variable. Most unified theories utilize Friedel'’s recovery
model and take zero magnitude of Qij as the reference state. Table IV shows
that a temperature rate term is also included in the theories of Walker and

Chaboche. In principle, similar terms could be added to the other theories,.

The various hardening terms in the evolution equation of the
directional hardening variable have profound effects on the shape of the cy-
clic hysteresis loops. Unified models which contain at least two hardening
terms to describe the evolution of the equilibrium stress with strain history
include that of Walker [6], Hart and co-workers [17], and Miller [12]. The
contribution to the equilibrium stress from each of the four gardening terms
used in the Walker theory may be seen in Figure 7. The term nij describes the
difference between the tensile and compressive behavior of the equilibrium
stress variable, and this difference gives a stress—strain response which
differs in tension and compression. The linear term nléi? allows the asymp—
totic stress—strain response to exhibit a linear behavior at large strain val-
ues., The integral term containing n, allows the equilibrium stress to grow and
saturate rapidly when cycling under small strain amplitudes, while the inte-
gral term containing ng gives a more gradual growth of the internal variable.
These two integral terms allow the cyclic hysteresis behavior to be reproduced

for both small and large strain amplitude loading conditions.

2.4 Temperature Dependence of Inelastic Flow

Temperature effects are taken into account in most unified models by
assuming the material constants in the kinetic equation and the evolutionary
equations of the internal variables to be temperature dependent. Lindholm and
Bodner [29] recently examined this issue and made an attempt to model tempera-
ture dependence of inelastic flow by incorporating a reaction rate theory inmto
Orowan's kinetic relation. By assuming appropriate functions for the activa-
tion emergy, Lindholm and Bodner were able to obtain four different formula—
tions of temperature-dependent kinetic relations. These kinetics relations

and the corresponding activation energy are rewritten in terms of deviatoric

A-23



—.':Oor_

= Q+ KeP

t
L P - - cP
neP nzfe-LG-l(t) -6 (811 3% 4 g [ (B (8] 2%y,
0 0

i/o

t t X P
Q= a + n]Ep"’ nzfe-[s‘l(t) 'G](E)] g_gpde + "8[ e'[sz(t) ‘BZ(E)] g_g
0 0

e T‘ -[Gz(t) - Gp(£)] 3 aep
4 )

t
[n'zfe'-[GMt) - G;(g)] %E_Pdg
0

FIGURE 7.

CONTRIBUTIONS OF E ?

ILIBRIUM STRESS TERMS TO THE
STRESS-STRAIN BEHAVIOR IN WALKER'S MODEL

A-24



invariants, summarized in Table I. Figure 4 demonstrates the similarities
between the functional behavior of the first and fourth formulations which
correspond to the kinetic relation utilized in the Walker and Bodner models,
respectively. Experimental evidence in Figures 5 and 6 for aluminum [29] and
iron [37], respectively, tend to indicate both formulations are adequate and

justified.

Another approach for incorporating temperature dependence into a unified
theory is taken by Miller [10]. Temperature dependence of inelastic flow is
modeled on the basis of creep'phenomenology and an Arrhenius expression is
modified to reflect the temperature dependence of the activation energy for
diffusion (or creep). To cover a wide range of temperature, both lattice dif-
fusion and pipe diffusion have been considered. The resulting Arrhenius ex-
pression which is also shown in Table I is included in both the kinetic rela-
tion and the recovery term of the evolutionary equations. With the exception
of the elastic constants, material constants in Miller’'s model are independent
of temperature. There are, however, indications that the model would yield
better results for thermomechanical loading if some of the material constants

are allowed to change with temperature [6].

Walker and his co-workers at Pratt $ Whitney Aircraft have compared the
predictive capabilities of three unified models for applications under thermo-
mechanical cycling conditions. Their experience with the unified models to
date indicates that all the material constants in the formulations would de-
pend on temperature and must be evaluated at a namber of base temperatures.
Suitable interpolation methods must be developed for evaluating the values of
these material constants at other temperatures. The predicted results would

therefore depend on the interpolation method [6].

The temperature dependence of the internal variables is also important.
Comparisons of experimental and theoretical results on thermomechancial con-
stitutive behavior of Hastelloy-X in Reference 6 indicate that the shape of
the predicted thermomechanical loop depends critically on the growth of the
equilibrium stress with temperature. Most thermomechanical loops are neces-
sarily of small strain amplitude. Hence, at the points of strain reversal,
the equilibrium stress is in the initial growth phase and is changing rapidly

with strain. Depending on the rapidity with which the equilibrium stress
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grows with inelastic strain after a strain reversal, the equilibrium stress
may be in the process of almost saturating at the next strain reversal. This
can change the predicted shape of the thermomechanical stress—strain hyster—

esis loop quite dramatically.

2.5 TUniqueness and Stability Criteris

All the proposed kinetic and evolutionary equations of the internal
variables are based on a combination of phenomenology end physical mechanisms.
There aré certaiﬁ continunm properties which are required of these constitu—-
tive relationships in order to ensure that the resulting boundary value prob-—
lems are well-posed. The required properties are the uniqueness and the
stability of the solution. For stability, unified theories with internal
variables must, according to Ponter [38], obey the following inequality:

. P - d
doy; i ax, aX, 30 (12)

where doij’ déi?. dxi. and dii represent jncremental changes in stress, in-
elastic strain rate, the current value and the evolution rate of the internal
variables. The inequality admits classical plastic flow, creep, and stress
relaxation behavior. It also admits recovery phenomena involving negative
jnelastic work provided that the corresponding changes in the internal vari-
ables are sufficiently large to make the inequality inm Equation (12) remain
valid. The basic requirement of Equation (12) is that the dissipation rate

must be nonnegative.

For a constant internal state, a small change in aij results in a cor-

responding change in éi? so that [38]

. P s

doij daij y 0 , X 0 (13)
The inelastic work inequality which is identical to Drucker's postulate [39]
in classical plasticity requires that for a stable material flow the plastic
work done must be nonnegative. For proportional loading the kinetic equations
represented in Equation (9a) to Equation (9c) all yield convex flow potea—

tials to which the inelastic strain rate vectors are normal. The consequence
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is that the inelastic work is always positive, and unified theories based on
Equation (9a) to (9¢) obey the inelastic work inequality.

For loading involving constant aij as in creep, the inequality in Equa-
tion (12) requires that a small change in dXi produces a change in the evolu-

tion rate such that

- dXi dXi » 0 , duij = 0 (14)

It is clear that both Equation (13) and (14) would be obeyed by any constitu-

tive model if these two conditions are satisfied:

(1) An increase in strain rate (déi§ Y 0) results in an

increase in flow stress (doij ¥ 0) or vice versa; and

(2) An increase in the value of an internal variable
(dXi ¥ 0) results in a decrease in the evolution

rate(dii € 0) or vice versa.

Some of the ramifications of Drucker's inequality in classical rate
independent plasticity are that the stress—strain curve must have a positive
slope for stable flow and strain must be a single-valued function of stress
for uniqueness. Ponter's inequality exerts similar ramifications on visco-
plastic unified theories. For uniqueness, it appears that the inelastic
strain rate must be a single-valued function of stress and internal variables.
To satisfy the requirement for stable flow, Equation (12) dictates that stress-
strain curves at constant strain rate must have positive slope but must decrease
with increasing strain. On the other hand, stress-strain curves at constant
value of plastic strain or plastic work must have positive slope, but the slope

may either increase or decrease with increasing strain rate [38].

Most (if not all) of the unified theories listed in Table II satisfy the
Ponter inequalities and meet the uniqueness and stability requirements. The
stability requirement is, however, not essential for constitutive theory de-
velopments. Unified theories admit unstable inelastic flow and are generally
modeled by including softening mechanisms such as thermal softening and con—
tinuum damage in the evolution and/or kinetic equations. Negative strain rate
sensitivity and strain (or work) softening phenomena have also been modeled
[11,12].
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2,6 Constitutive Behavior Under Nomproportional Loading

Cyclic constitutive behavior of materials subjected to nomproportional
loading conditions is still poorly understood. Recent studies on Hastelloy-X
{361, copper [40], 1% Cr—-Mo-V steel [41], and 316 stainless steel [42] all
indicate that these materials exhibit considerably more cyclic hardening when
tested under nonproportional paths of combined tension and torsion than under
proportional paths of tension or torsion only. A comparison of the hardening
behavior of Hastelloy-X alloy subjected to tension, torsion, and combimned,
nonproportional tension-torsion loading is shown in Figure 8 [36]. Imn this
plot of effective stress vs cumulative effective plastic strain, where the
effective stress and strain are computed based on the von Mises criterion, and
the cumulative effective plastic strain is number of cycles times the effec—
tive plastic strain range per cycle, an apparent increase of hardening is ob-—
served in the case for 90° out-of-phase loading. This apparent hardening can
arise from three different sources: (1) nonproportional loading induces addi-
tional hardening; (2) the von Mises criterion is not appropriate for this ma-
terial; and (3) testing was not done at the same '"effective" strain levels.
Efforts to delineate the relative contribution of these factors indicate the
first factor to be important. As a result, all of the constitutive models
need to be modified to take into account the hardening behavior due to out-of-

phase loading.

Another question concerning the nonproportional, multiaxial deformation
is whether or not the inelastic strain rate vector is coaxial with the devi-
atoric stress vector under nonproportional loading paths. The works of Ohashi
and co-workers [43-45], and Meguid [46] indicate that the deviatoric stress
and the inelastic strain rate vectors become noncoaxial just after an abrupt
change of deformation path but become coaxial again as inelastic deformation
develops along the subsequent path. Current work by the authors oa 90° out-
of-phase cyclic loading of Hastelloy—X under combined tension and torsion in-
dicates that the inelastic strain rate vector leads the deviatoric stress
vector by an angle which ranges from 10 to 40 degrees [36]. These findings
tend to suggest that, as a result of the apparent noncoaxiality, the isotropic

Prandtl-Reuss flow laws might not be adequate for nonproportional loading
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paths. On the other hand, the noncoaxiality between inelastic strain rate and
deviastoric stress can be accounted for by using either a generalized anisotro-

pic Prandt1-Reuss flow law or a flow law based on nn'hqnilibrinn stress.
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3.0 REVIEW OF NUMERICAL METHODS FOR INTEGRATING
UNIFIED CONSTITUTIVE EQUATIONS

3.1 Numerical Integration Techniques

A literature review indicated that no systematic studies which compare
the integrability of unified constitutive equations have been performed. The
evaluations that have been done support the existing consensus that this fam—
ily of differential equations can be characterized as mathematically "stiff."
That is, in these equations, dependent variables are susceptible to large
changes from small increments of the independent variables or from small time
steps. This "stiff'" behavior occurs usually with the onset of a significant
amount of inelastic strain in the loading cycle and is due to the gemerally
nonlinear nature of the functional forms that are employed in the kinmetic

equations of these theories.

Probably of greater importance than differences in stiffness of indi-
viduoal constitutive theories are the methods used to integrate them. A sys—
tematic comparison of a variety of approaches has been reported by Kumar,
Morjaria, and Mukherjee [47]. Specifically, they compared simple Euler for-
ward method, two—step Adam’s method, predictor—-corrector method, and the Gear
method. This study concluded that for the constitutive theory of Hart, a re—
latively simple Euler integration method, together with a time step control
strategy, was optimal when compared with the more sophisticated methods. Sim—
ilar conclusions were obtained by Krieg [48] who rearranged various unified
constitutive theories into a skeletal model to illustrate the numerical dif-
ficulties in the integration of constitutive equations and to discuss the

viability of various integrators.

Tanaka and Miller recently developed a noniterative, self-correcting
solution (NONSS) method for integrating stiff time-dependent constitutive
equations [49]. The NONSS method is basically an extension of the a-method
which is used in creep and heat transfer analysis [50]. In this approach, the
stress, inelastic rate, and evolutionary rate of the internal variables at

t+aAt are expressed as:

o(t+aAt) = (1-a)o(t) + ac(t+At)
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§(t+aAt) = (1-a)&(t) + ag(t+At) (15)
ii(um) - (l-a)ii(t) + aii(t+At)

with 0 { @ { 1. The method reduces to the Euler forward difference method
when @ = 0 and is an implicit technique when a > 0, because the unknown quan-
tities o(t+At), &(t+At), and ii(t+At) enter into the solution. Implicit quan-
tities are removed in the NONSS method by Taylor expansions of o, e, and

ii' The method is unconditionally stable for a) 1/2 and noniterative, but
requires setting up of a Jacobian matrix and solving a set of linear equations
at each time-step. Accuracy is maintained through self-adaptive time control
and by correcting previous errors at the current step. This method has been
used in one—element applications only. The applicability of this approach to

finite—element analysis remains to be seen.

At Pratt and Whitney Aircraft and at the United Technologies Research
Center, work has been done using the Euler single step approach usually with-
out automatic time step control, but rather by determining an optimum step
size for each problem experimentally. Efficiency obtained by using this ap-
proach has been acceptable and has shown considerable improvement over more

sophisticated approaches such as higher order Runge-Kutta methods.

One way of incorporating a self-adaptive time control technique into the
integration procedure is by expressing the inelastic strain at time t+At in a
Taylor series and ensuring that the higher order terms are small in comparison
to the first order term. For example, the inelastic strain at time t+At may

be written in the Taylor series

g(t+At) = &(t) + & At + 1/2 ¢ (At)2 S (16)

The time step At can then be chosen so that the third term in the series is
some small fraction, y say, of the second term in the series. In this way one

obtains

z

At = (17)

where lé| and |é| are the magnitude of the maximum components of & and e,

respectively,
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Alternatively, implicit methods can be used. An implicit method for use
with an integral constitutive formulation was outlined in Reference 6 and the

technique gave good results.

A summary of these various numerical techniques and their applications
to several unified theories as well as to Norton’s law for integrating a uni-
axial stress—strain curve to a total strain of 1-2% is shown in Table V. As
illustrated in Table V, the explicit Euler method is stable when the size of
the strain increment is kept below 10-4. The size of the strain increment can
be increased by using an implicit method such as the NONSS or a-method with
a =1 (implicit Euler). By restricting the comparison to the explicit methods
only, it appears that there is no substantial difference between the integra-
bility of Walker [6,51] and Miller [52] theories nor between these unified
theories and the classical Norton law [52]. The size of the strain increment
is, however, somewhat sensitive to the values of model constants which de-

scribe material strain rate sensitivity.

3.2 Integration of Unified Theories in Finite Element Analysis

The question of which integration method to use for integrating unified
theories in finite element analysis appears to be code and problem dependent.
For example, the MARC code solves the finite element equilibrium equations by
&8 Picard, or successive substitution, method. The finite element equilibrium

equations may be written in the form
T
L/, B olu)av =P (18)

P being the applied load sector and o(u) being the corresponding stresses due

to the nodal displacement u.

The MARC program solves the incremental form of equation, viz.

(z fv BTDBdV) Au,

T
41 = AP - zfvn Az (Au,)av, (19)

where Az is the inelastic stress increment in the relation

Ao = DAe + Az , (20)
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and Ani+1 are the nodal displacement increments in the (i+l) the interationm.
The load AP in Equation (19) represents the current load increment plus the

out-of-equilibrium load from the previous increment.

For crack problems the preceding interation method can converge very
slowly and very small finite element load steps must then be taken. The
ABAQUS code solves the finite element equilibrium equations directly by a
Newton-Raphson method, so that Equation (18) is solved in the form

T (3o T
5 g9 = -
( fv B (ae> de> Ci+1 P :f B o(ui)dv (21)
where
LTS vy * Ci+1

and Ci+1 is the (i+1) th interative correction to the total nodal displace-—
ment at the end of the increment. For crack problems small steps must still
be taken, but now the convergence of the finite element equilibrium equations
is quadratic, as opposed to the slow linear convergence of the successive

substitution method.

To obtain the guadratic convergence it is necessary to evalunate the
Jacobian matrix dc/de. Since subincremental procedures are usually used to
integrate the unified models over the finite element increment, the Jacobian
matrix cannot be obtained analytically. It may be determined by perturbing
each component of the strain increment tensor and obtaining do/de numerically.
It is then necessary to use the same number of subincrements in each of the
perturbations so that 3o/de is consistent and does not include contributions
from changes in the number of subincrements. In this case it is better not to
use a self adaptive integration procedure. A maximum strain increment of, say
10—4, can be prescribed. The finite element strain increment can then be di-
vided by 10-4 to obtain the number of subincrements in the step at the parti-
cular Gauss integration point. If instability is detected during the fimite

element load step, the integration can be repeated using triple the number of
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subincrements until the stability criterion is met. This number of subincre-—
ments is then used in each integration of the perturbed strain increment

tensor to obtain the Jacobian matrix 9¢/ds.

This procedure has been implemented in the ABAQUS code to solve crack
growth problems with a unified model [53]. Typically at the integration point
closest to the crack tip, as many as fifty subincrements may be required.
However, since the strain increments at integratiom points far removed from
the crack tip are small in comparison with those at the crack tip, omly two
subincrements may be needed at most of the other integration points in the
structural model. Since small finite element increments are required to solve
crack problems, and only two or three subincrements are required at most of
the Gaussian integration points away from the crack tip vicinity, it may ac-
tuoally be computationally inefficient to use an implicit integration method

for the unified models for this class of structural problems.

3.3 Comparison of the Integrabilities of Unified and Classical Theories

In order to better understand the problem of efficient computing algo-
rithms for utilizing unified constitutive models, a summary of computing times
for typical non-linear finite element analyses has been compiled along with a
comparison with classical approaches for the same analysis cases. A summary
of this study is shown in Table VI. This table lists two small structural
models and some single element models which were performed at Pratt and
Whitney using the MARC non-linear finite element code. Each of the three
structural models shown in Table VI was run using two or more approaches for
modeling the material behavior as indicated. It should be noted that each of
the variations was run on a single computing system, but that analyses 2 and
3 were run on a computing system that was approximately 30% slower than for
the structural model used for analysis number 1, the Burner Liner Crack Anal-
ysis. Thus, any attempt to make comparisons between structural models may be
misleading. Aside from this limitation, it can be seen that experience to
date using the unified model of Walker has involved more computing time than
the classical approach using a time independent plasticity model and alternate

load increments using a time dependent creep model. Also shown in Table VI
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TABLE VI
RUN TIME COMPARISONS FOR UNIFIED CONSTITUTIVE MODEL APPLICATIONS

Burner Liner Crack Analysis

Problem Size: 50 elements, 181 nodes, 350 degrees of freedom, 40 load
increments

Computing Time

Method (Seconds)
a. Classical plasticity/creep 365
b. Integral form of Walker's theory 322
c. Walker integral form with 2 subincrements 382
d. Walker integral form with 5 subincrements 493

Hot Spot Blister Analysis

Problem Size: 23 elements, 103 nodes, 198 degrees of freedom, 51 or €4
Toad increments

Computing Time

Method (Seconds)
a. Classical plasticity/creep 444

(64 load increments)
b. Differential form of Walker's model 614

(51 Toad increments)

Unjaxial Analysis

Protlem Size: 1 elements, 8 nodes, 12 degrees of freedom, 35 or 48 Toad
increments

Computing Time

Method (Seconds)
a. Elastic Analysis 14
(35 load increments)
b. Classical plasticity/creep 18
(35 load increments)
c. Walker's theory, integral form 32
(42 load increments)
d. Walker's theory, integral form 48

(48 load increments with 5 subincrements
per load step)
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are comparisons of computing time for variation of integration method for
Walker’s constitutive theory. These should not be regarded as a measure of
efficiency in any absolute sense since no attempt was made to optimize the
approaches used, but rather are intended to provide some indication of current
experience for computing times and to provide an informal basis against which

to judge the computing efficiency of the unified theories.
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4.0 REVIEW OF SPECIFIC UNIFIED THEORIES

There are at least 12 viscoplastic constitutive theories which are based
on the unified approach in the literature. These theories are reviewed indi-

vidually as follows.

Other unified theories include that of Lee and Zaverl [20], Cernocky and
Krempl [30], and Anand [59]. The model of Lee and Zaverl is a generalized
anisotropic theory based on a yield surface concept. This model and that pro-
posed by Cernocky and Krempl have recently been reviewed by Walker [6].
Anand’s model is in uniaxial form with isotropic hardening only, and its for-

mulation is very similar to Bodner and Partom’s theory.

4,1 Robinson’s Theory

Robinson’s model [15] is based on 2 flow potential from which the flow
law and the growth laws of the internal variables are derived. For stress
states inside the flow potential, the material is elastic, while for stress
states on the flow potential, the material response is viscoplastic. Differ-
ent forms of flow and growth laws are derived for loading and unloading, to-
gether with inequalities defining boundaries across which the flow and evolu-
tionary equations change form discontinuously. The model employs an equili-
brium stress internal variable Qij and a drag stress internal variable K to
represent kinematic and isotropic hardeming, respectively. The use of differ-—
ent growth laws allows the equilibrium stress to grow rapidly with inelastic
strain just after a stress or strain reversal, but to grow more slowly with
inelastic strain at a large distance (in strain space) from the strain or
stress reversal, As a result, the model can reproduce rounded, cyclic hyster-
esis loops for both large and small strain amplitudes without employing two

hardening terms in the equilibrium stress evolutionary equations.

The model contains eight temperature—independent and four temperature-
dependent material constants. The model has been used for predicting material
behavior under monotonic, cyclic, creep, stress relaxation, and nonisothermal

cycling loading conditions. [53].

A-39



4.2 VWalker's Functional Theory

This theory was developed by modifying the constitutive relation for a
three-parameter viscoelastic solid. Two internal variables were introduced
into the viscoelastic theory to account for the effects of viscoplasticity.
The equilibrium stress “15 represents nonlinear kinematic hardening and ac-
counts for the Bauschinger effect, while the drag stress K represents isotro-
pic hardening and accounts for cyclic hardening of the material. Both the
integral and the differential forms of the theory are summarized in Reference
6.

The growth law for the equilibrium stress contains both dynamic recovery
and static thermal recovery terms. At high strain rates, the thermal recovery
term becomes insignificant in comparison with tﬁe dynamic recovery term, and
the equilibrium stress becomes independent of strain rate. The equilibrium
stress expression contains a temperature rate term, which allows the gquilib—

rium stress to change during nonisothermal elastic excursions, and a Q,, term

to account for asymmetric cyclic hysteresis behavior. Static thermal iicovery
terms have been omitted in the growth law for the drag stress. This form has
been found adequate in the modeling of Hastelloy-X behavior [6], but future
applications may require the inclusion of static thermal recovery in the drag

stress evolution law,

The kinetic relation is formulated in terms of a power law in [6]) and in
terms of an exponential law in [53]. The power law expression has been found
adequate for the representation of creep, stress relaxation, and strain rate
effects encountered in a combustor liner material under service conditions
where strain rates may vary from 10_6 seq.:_1 to 10_3 sec—l. However, it ap-
pears that an exponential law is necessary if strain rates greater than about
10__2 sec:_1 are encountered. In particular, at higher strain rates, the power
law expression for the imelastic strain rate and predicts values of stress in

a constant strain rate tensile test which are too large [13, 30].

The model contains 14 temperature-dependent material constants. The
model has been applied successfully for predicting creep, stress relation,

cyclic, and thermomechanical hysteresis behavior of Hastelloy-X alloy [6].
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4.3 Chaboche's Theory

Chaboche’s theory [14] is formulated on the basis of a yield surface.
Inside the yield surface it is assumed that no inelastic deformation can take
place. Different flow laws are thus required for loading and unloading. The
use of a yield surface permits isotropic hardening to be modeled by an in-
crease in the size of the yield surface rather than by an increase in the drag
stress. Hence, in this theory, K is assumed to be constant. Initially, the
jisotropic variable Y is assumed to be zero and inelastic deformation occurs
only when 3J;)K, where K is a constant. As Y grows with inelastic deforma-
tion, the yield surface expands and inelastic deformation takes place only
when 3J;)K+Y. Yield surface translation occurs as the equilibrium stress
changes with inelastic deformation. The growth law for the equilibrium stress
contains a temperature rate term which allows the equilibrium stress to change
with temperature during nonisothermal elastic excursions. The model contains
13 constants. All of the material constants are functions of temperature and

most be experimentally determined at each temperature of interest.

4.4 Bodner and Partom’s Theory

The elastic-viscoplastic theory of Bodner and Partom, (B-P), was prob-—
ably the first "unified" set of constitutive equations without a yield cri-
terion or loading/unloading conditions to be developed (described in the
literature in 1968) [59]. Those equations jnclude certain physical concepts
provided by the work on dislocation dynamics during the 1950's and early
1960's. The equations are placed in the context of multi-dimensional con-—
tinuum mechanics which makes them capable of solving problems by analytical
and numerical methods. One of the initial papers, in 1972, considered large
deformations [60] and another the same year included isotropic hardening [61].
At the present stage of development, the constitutive theory includes isotro-—
pic and directional hardening, thermal recovery of hardening, general tempera-—
ture dependence of plastic flow, and isotropic and anisotropic damage develop—
ment [7-9]. In primciple, the equations could provide for the pressure de—

pendence of plastic flow and could be expanded to include anelastic effects.
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The B-P theory differs from others of the same type in certain details, al-
though most all other proposed theories follow the same general principles.

The main points of difference of the B-P theory to others are the following:

1, The basic equation for plastic strain rate as a function of stress
and history dependent internal variables is taken to be of exponential form.
The initial work [59], before 1970, was based on a power law relation which
seems to have been adopted by other investigators. Properties of the exponen—
tial function used in the B-P formulation that may be especially useful are
its very low value, almost zero, at low stress levels and its limiting value
of plastic strain rate. As a consequence, that particular function seems to
be suitable to represent material behavior over a wide range of strain rates

including the very high rates, i.e. about 105 sec_l.

2, The scalar measure for hardening is taken to be the plastic work
rate. However, the overall theory is not dependent on this point and other
measures, e.g. plastic strain rate or a function of the plastic strain rate

history, are admissable within the context of the theory.

3. The treatment of directional hardening by Bodner and his associ-
ates has been based on the general anisotropic form of the flow law rather
than on the "back stress' concept. An incremental isotropic form of the flow
law has been proposed as an approximation which would simplify the numerical
computations. In the incremental isotropic equation, the scalar coefficient
is a function of both the isotropic and directional hardening variables which

depend on the loading history.

4, In the evolution equations for directional hardening, B-P theory
uses the direct stress as the directional index of hardening. The plastic
strain rate had been used previously for that purpose and most other theories

still rely on that variable.

5. Anelastic effects, i.e. reversible deformations with energy loss,
are taken to be given by a separate parameter in the B-P theory and are not

included in a "back stress' parameter.

Applications of the B-P constitutive equations have been made to

problems of steady and variable creep [57, 621, creep crack growth [63,64],
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static and dynamic response of metal matrix composites [65,661, dynamic frac-
ture mechanics [67,68], wave propagation [69), and adiabatic shear band forma-—
tion [70]. The equations have been adopted in various finite element and

finite difference computer programs, e.g. ADINA and DEPROSS [71].

4.5 Stouffer and Bodner's Theory

This theory [18,19] is an anisotropic gemeralization of Bodner and
Partom's theory for isotropic materials and is based on an anisotropic version
of the Prandtl-Reuss flow law. The inelastic deformation rate is related to
the deviatoric stress by a linear transformation (a fourth order temsor) whose
components are functions of stress, stress history, and the internal vari-—
ables. The procedure adopted by Stouffer and Bodner was to transform the
anisotropic flow equation into six-dimensional vector form with the matrix of
coefficients becoming a 6 x 6 second order tensor. Upon diagonalization of
the tensor, the strain rate component equation becomes uncoupled and allows
the coefficients to incorporate the hardening variables in a simple manner.
The hardening variables which represent both isotropic and directional hard-
ening are obtained from a proposed anisotropic work hardening law written in a
hardening/recovery format. The anisotropic formulation, however, does not
automatically lead to plastic incompressibility and results in plastic volume
changes [18]. The anisotropic theory was subsequently revised to enforce
plastic incompressibility by a relatively simple recalculation of the matrix
coefficients [19]. The model has been successfully used for the solution of a

number of dynamic penetration and impact problems [72].

4.6 Miller's Theory

Miller's model is based on a combination of creep phenomenology and phy-
sical mechanisms. Proposed in 1975 [10], the model uses the Garafalo hyper-
bolic sine relation for steady state creep as a starting point and introduces
two internal variables to describe non—steady state inelastic responses. The
two structural variables are the drag stress and the rest stress and they re-
present isotropic and kinematic hardening, respectively. The model has since
been modified to include the phenomenon of solute stremgthening [11) by adding
two solute strengthening internal variables to the drag stress. The more re—

cent version of the Miller’s model also takes into account of irradiation
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effects [73]. Excluding the solute strengthening variables, the latest ver-
sion of Miller's model consists of four internal variables [12]. The drag
stress and the rest stress are both decomposed into short range and long range
components. The two isotropic hardening variables represent the hardening
effects of obstacles such as total dislocation demsity, dislocation cells and
subgrain boundaries. On the other hand, the long range and short range rest
stress compoments represent the directional hardening effects due to disloca-
tion interaction with internal stresses with long characteristic wavelength

and short characteristic wavelength, respectively.

The evolution rate equations of the internal variables are written in
a hardening/recovery format. An Arrhenius expression is used to model the
temperature dependence of the activation enmergy for thermally-activated plas-
tic flow. A dynamic recovery term is later introduced in the four—variable
model. Both the two-variable and the four-variable Miller’'s model have the
capabilities to simulate monotonic and cyclic stress—strain behavior. In both
models, cyclic deformation behavior and the Bauschinger effect are modeled
through the rest stress term. In the two-variable model, a linear hardening
term is used and it results in the predictions of overly—square hysteresis
loops. This shortcoming has been resolved by using a nonlinear hardening co-
efficient which varies with the loading direction and becomes very large after
a load reversal [74]. The high hardening rate in turn results in rounded and

physically—-realistic hysteresis loops.

Cyclic hardening is modeled through the increase in both the drag stress

K and the rest stress ﬂi Cyclic saturation is represented by an interactiom

between rest stress and grag stress in the hardening coefficient in the drag
stress equation, and it requires a balance between strain hardening and dyna-
mic recovery. The level of K at cyclic saturation depends upon the average

absolute value of Qij which in turn is a function of the cyclic strain ampli-

tude.

Steady state inelastic deformation occurs when the evolution rate equa-
tions become zero (i.e., ii = 0), This condition occurs when the hardening

rate is equal to the sum of the dynamic and thermal recovery rates.
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The use of four internal variables in Miller’s model allows the sim—
ulations and predictions of a large variety of inelastic deformation behavior
including complex loading histories involving strainm rate changes, temperature
transients, and hold time. The model is, however, very complex and contains a
large number of material constants. Neglecting the constants for irradiation
effects and the solute strengthening terms, the latest four-variable model
contains 24 material constants. However, excluding the elastic modulus, the
material constants are all temperature independent and need not be evaluated

as a function of temperature.

4.7 Kagawa and Asada’s Modification of Miller's Model

Kagawa and Asada recently extended Miller’s two-variable model to multi-
axial form [22]. The extension is, however, quite different from Miller's
version [73], particularly in the choice of the flow rules for treating kine-
matic hardening. Kagawa and Asada separate the inelastic strain rate into
isotropic and anisotropic components. The isotropic compoment of the inelas-
tic strain rate is proportional to the deviatoric stress, while the anisotro-
pic component is a linear function of the inner product of the rest stress and
the effective stress. The evolution rate equations for the drag stress and

the rest stress are essentially identical to Miller's model.

The model has been used successfully to simulate and/or predict mono—
tonic and cyclic stress—strain behavior, creep, biaxial strain ratcheting

under cyclic loading, and equi-creep rate surface (flow potentials).

4.8 Krieg, Swearengen, and Rohde'’'s Theory

This theory uses a power—law kinetic relation and is formulated in terms
of two internmal variables [13]; the drag stress is used to model isotropic
hardening, while the back stress is used to model directional (kinematic)
hardening. The evolution rate equations are formulated in a hardening/re-
covery format. However, the hardening function in the drag stress evolution
rate equation has not been defined and is assumed to be a constant. Recovery
of drag stress is considered a thermally-activated process and is represented

using Friedel’s climb recovery model [34].
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Directional (kinematic) hardening is modeled using a nonlinear hardening
function in the back stress evolution rate equation. At large strain, the
hardening function saturates to a constant value. The recovery of back stress

is, again, by Friedel’'s climb recovery model.

This theory does not include a dynamic recovery term, The state vari-
ables thus saturate at large strain values when the static thermal recovery
term is balanced by the strain hardening terms. Recovery always occurs toward
an isotropic referenced or '"annealed' state. The recovery rate depends upon

the magnitude by which the current state differs from the annealed state.

The model contains nine temperature-dependent constant. Krieg et al
[13] obtained good results between model and experiment for momotonic, cyclic,
and creep loading conditions, but they also pointed out the inadequacy of the
model at high strain rates. Walker [6] has evaluated and applied the model
for predicting steady state hysteresis loops as well as thermomechanical cy-

clic loops.

4.9 Bart's Theory

Hart's theory [16] employs an equilibrium stress internal variable nij
with a constant drag stress K, Cyclic hardening is assumed to occur only in
the equilibrium stress., The equilibrium stress is a function of the parameter
c. which is referred to as the current "hardness'" of the deforming materials
by Hart [16] and his colleagues [17]. c. which occurs in the evolutionary
equations of ﬂij but not in the flow law nor in the kinetic equation serves
only to modify the equilibrium stress and may be considered as a secondary

internal variable.

Written in a hardening/recovery format, the equilibrium stress grows
linearly with inelastic strain in the initial loading phase and reaches a sat-
uration when the static thermal recovery term containing the "hardness' vari-
able balances the linear hardening term. Since dynamic recovery terms are not
included, the saturated value of the equilibrium stress depends on the strain
rate. The linear hardening growth of the equilibrium stress, together with

the rapid growth of the static thermal recovery term at large strain values,

A-46



produces the trilinear stress—strain response characteristic shown in in
Delph's review paper [75]. Since the drag stress is assumed to be constant,

the theory can model only directional (kinematic) hardening.

Jackson et al [17] have recently modified Hart's model by introducing

-
two kinematic hardening varibles nij and ﬂij. The hardness variable o has
. s

also been separated into two components o, and 0ye The growth rates of Qij
and Qij ari gover:ed by two independent evolutionary equations formulated in
terms of %y and Gy The updated Hart model gives an improved correlation of
the monotonic stress—strain behavior as well as cyclic hysteresis behavior at
both large and small strain amplitudes. However, the deficiency of allowing
cyclic hardening only in the equilibrium stress, and not in the drag stress,

still remains.

The introduction of an extra term in the equilibrium stress, together
with a new hardening coefficient, o;, makes the determination of the material
constants more difficult. The updated Hart model contains 19 material con-
stants. The material constants which depend on temperature are not explicitly

stated in this formulation.

4.10 Ghosh's Model

Ghosh's model [21] uses only one internal state variable to describe the
evolution of microstructures and the microscopic mechanisms of inelastic de—
formation. The inelastic deformation processes are divided into those occur-
ring within grains, and along grain boundaries, Thus, the total strain rate
is the sum of the elastic strain rate, the microplastic strain rate which in-
cludes anelasticity, the inelastic strain rate due to slip within grains and,
finally, the inelastic strain rate due to grain boundary sliding. Different
power laws are used to describe the kinetics of each of the inelastic strain
rates. For deformation occurring within graeins, the internal variable g des-—
cribes the internal strength within the grains. The magnitude of the internal
strength variable g is assumed to be equal to that of the back stress. The
evolution rate of the internal strength variable is formulated in terms of

hardening and recovery. Both the hardening function and the recovery function
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are dependent on the current value of the internal strength variable., Two
modified forms of Friedel’s recovery model are used to describe two stages of

recovery which are referred to as 'dynamic' and "post—dynamic" recoveries.

The Bauschinger effect is incorporated in the model through the micro-
oplastic strain rate term. Inelastic loading and elastic unloading are de-
fined through the use of, and depends on whether the current stress exceeds,
the maximum value of the internal stremgth variable g§* obtained in the prior
deformation histories. Microplasticity occurs when |c|(g‘ and is modeled
through the back stress and the microplastic strain, which is allowed to be
"stored" and "recovered" in a time-dependent manner. The inelastic strainm
rate due to grain boundary sliding is taken as a Newtonian viscous type of
flow.

The model contaims 13 constants and they must be evaluated as a function
of temperature. The model has been used to simulate monotonic and cyclic
stress—strain behavior, creep, and stress relaxation. The model has been for—
mulated and applied in one~dimensional form only. Extension of this theory to
multidimensional form appears to be difficult because of the need to keep

tract of g* to define loading and unloading conditions.
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5.0 PREDICTIVE AND SIMULATIVE CAPABILITIES OF UNIFIED
CONSTITUTIVE THEORIES

The unique characteristic that distinguishes the unified theories
from constitutive theories based on classical plasticity or creep approaches
is the ability of the unified theories to predict or simulate material re-
sponses under momotonic, cyclic, creep, and stress relaxation loading con-—
ditions by using the same set of internal variables and material constants.
At present, not all unified theories can perform all the four categories of
inelastic behavior. The capacities of some of the models have been demon-—
strated through numerical exercises, but they have not been severely tested
by comparing with experimental data. Four of the more established models
which have been successfully applied for simulating and/or predicting mono-
tonic, cyclic, creep, and stress relaxation behavior are those of Robinson
(15], Walker [6], Bodner-Partom [7-9], and Miller [10-12]. Robinson’'s model
is based on a yield condition and utilizes loading and unloading criteria,
while the latter three do not. The kinetic equations commonly used in unified
theories without a yield surface or flow potential are based on the power—law,
exponential, and hyperbolic sine functions; these kinetic equations are repre-
sented in Walker, Bodner-Partom and Miller theories, respectively. The simu-—
lative and predictive capabilities of these four unified theories are illus—

trated below.

5.1 Monotonic Stress—Strain Behavior

All unified theories are capable of reproducing the monotonic stress-—
strain curve. Most unified theories use the monotonic stress—strain data as
part of the data base from which model constants are evaluated. Figure 9
shows an experimental uniaxial tensile stress—strain curve of Hastelloy-X
deformed at a strain rate of 1.3 x 10_4 sec-1 at 922°K and model simulation
using the Bodner-Partom theory. The computed curve includes contributions
from both work hardening and thermal recovery. The use of the exponential
function in the kinetic relation allows Bodner—Partom's theory to simulate
stress—strain response over a wide range of strain rates including those in

the dynamic range. Figure 10 shows the calculated and experimental static,

dynamic, and incremental shear stress—strain curves for copper at 298°F [54].
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It can be seen in Figure 10 that Bodner—Partom's model duplicates well the
4 -1

stress—strain of copper at both low (2 x 10 sec-l) and high (3 x 102 sec )

strain rates.

5.2 Cyclic Stress—Strain (Hysteresis) Behavior

The Bauschinger effect is represented in most unified theories by a
kinematic or directional hardening internal variable. Cyclic hardening, how-
ever, can be represented by increases in the isotropic hardening variable, the
kinematic hardening variable, or both., These different types of cyclic hard-
ening behavior are illustrated in Figore 11 for Walker's theory, which uses an
equilibrium stress for modeling kinematic hardening, and in Figure 12 for
Bodner—Partom’s theory which does not use an equilibrium stress. Cyclic hard-
ening depicted in the hysteresis loops of Figures 1la and b are due to the
increases of the equilibrium stress and the drag stress, respectively. On the
other hand, cyclic hardening in Bodner—Partom theory are the consequences of
the increases in (a) the directional component, and (b) both the isotropic and
directional components of the internal variable Z, as shown in Figure 12a and
b, respectively. Despite the different approaches in treating directiomal
hardening, both the Walker and Bodner—Partom theories yield realistically
rounded hysteresis loops. This is demonstrated in Figure 13 which shows com-—
parisons of theoretical calculations of saturated hysteresis loops based on
these two theories and experimental data of Hastelloy-X deformed at five dif-

ferent strain rates at 1144°K.

The use of different growth laws of the equilibrium stress in different
regions of stress space allows Robinson’s model to reproduce rounded hyster—
esis loops. Examples of cyclic saturated hysteresis loops calculated using
Robinson’'s model are compared with experimental results of 2-1/2Cr-1Mo steel
in Figure 14 [55].

5.3 Creep Responses

Most of the unified models can predict or simulate primary and secondary
creep responses of material subjected to constant load or stress. Steady
state creep rates are predicted by these unified models to occur when the evo-—

lutionary rates of the isotropic and/or directional hardening variable vanish
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(a) (b)

FIGURE 11. HARDENING OF HYSTERESIS LOOP IN WALKER'S MODEL.

(a) Hardening due to equilibrium stress; (b)
Hardening due to drag stress, from [6].

FIGURE 12.

5.9 -4.000 -2.0n0 .. o0 9.000 *m

(a) (b)

HARDENING OF HYSTERESIS LOOP IN BODNER-PARTOM'S MODEL.

(5) Hardening due to ZD; (b) Hardening due to ZI and
Y.
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as the hardening terms are balanced by the thermal recovery. Examples of cal-
culated steady state creep rates under constant stress and comparison with
experimental data are shown in Figure 15 and Figure 16 for Robinson’s model
[53] and Bodner-Partom’s model, respectively. According to the unified theo—
ries, the steady state creep rate is a function of stress and temperature
only; it should not depend on the loading histories. This is demonstrated in
both experimental data and predictions by Miller’s model in Figure 17 which
shows the response of a creep specimen subjected to a sudden decrease in ap-
plied stress from 27.6 MPa to 13.8 MPa after a creep strain of 16 percent.
Miller's calculation [56] indicates that the 16 percent strain at 27.6 MPa
results in an internal variable which is larger than the steady-state one at
13.8 MPa; hence, when the stress is decreased, the creep rate first drops
instantaneously but then gradually increases as recovery reduces the value of

the internal variable to one which is characteristic of the lower stress.

The instantaneous creep response of material subjected to an arbitrary
loading history depends on the current values and the growth laws of the in—
ternal variables. For unified theories based on an equilibrium stress and
without a flow potential, the creep response would, according to the flow law,
depend on the difference between the current stress and the equilibrium
stress. Different creep responses would result from the same imposed stress
(Points A and D in Figure 18) on the loading and unloading branches of a cy-
clically-saturated hysteresis loop because of differences in the equilibrium
stresses, as demonstrated in Figure 18 which shows both Walker's model pre-
diction and experimental data of Hastelloy-X at 1144°K [6]. Walker's model
also predicts that a compressive creep strain can occur under a constant ten-—
sile stress if the equilibrium stress is algebraically larger; this reverse
creep behavior is characteristic of unified theories which are based on the

equilibrium stress and without a yield surface.

5.4, Stress Relaxation Response

The behavior of unified constitutive models under stress relaxation is
analogous to the creep behavior. Under a constant strain condition, the re-
laxation rate would, again, depend on the current values of the internal vari-
ables and on the growth laws which describe their changes with time and in-

elastic deformation, Stress relaxation calculations based on Bodner—Partom's
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model and Walker's theory are compared with experimental data of Rene 95 [57]
and Hastelloy-X [6] in Figure 19 and Figure 20, respectively. Figure 20 shows
that cyclically saturated Hastelloy-X subjected to compressive strain hold at
1144°K relaxes from an initial compressive stress to a tensile one after ap-
proximately 3 seconds. This behavior is predicted qualitatively though not
quantitatively by Walker's model on the basis of & positive equilibrium

stress, as shown in Figure 20.

5.5 Thermomechanical Response

The behavior of unified constitutive theories under thermomechanical
cycling depends critically on the change of material constants with tempera-
ture. In particular, the shape of the predicted thermomechanical loop is
sensitive to the growth of the kinematic hardening variable (the equilibrium
stress) with temperature. Walker has also found that it is necessary to
include a temperature rate term in the evolutionary equation such that the
equilibrium stress can change during nonisothermal "elastic' excursions.
Walker’s model prediction of thermomechanical loop of Hastelloy-X is shown in
Figure 21 [6].

5.6 Multiaxial Behavior

All the unified theories utilize single—valued kinetic equations formu-
lated in terms of either 3J’2/K2 or 3J;/K2. For u constant value of the inter—
nal K, these kinetic equations predict a locus of constant inelastic strain
rate invariant (D2p = constant) in stress space; the shape of the predicted
"yield surface" or '"flow potential' is identical to von Mises yield functiomn
and is described by

[}
33, - k2 =0 or 33, - c2k? = o

where C is a constant, This is illustrated in Figure 22 which shows that for
proportional loading the "yield surface'" predicted by Bodner-Partom’s model

is identical to the von Mises one, and the inelastic strain rate vectors are
all normal to the ''yield surface.'" For unified models formulated based on the
equilibrium stress, Equation (10) remains valid. With J; given by Equation
(8b), the size of the 'yield surface' is given by CK, while the center of the

"yield surface' is at 0, , and translates according to the evolution rate of

ij
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nij' This is demonstrated in Figure 23 which shows the equi-creep rate
surfaces calcnlated for proportional loading under combined tension and tor-
sion using a modified Miller theory [22]. The broken line shows the initial
creep surface, and the solid line depicts the subsequent surface after a

3 x 10_1 prestrain in tension. The equivalent creep rate for both surfaces is
1x 10-5 sec-l. The subsequent creep surface shows both an expansion and a

translation of the origin in the prestrain direction.
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6.0 SUMMARY AND CONCLUSIONS

A review of more than ten time—dependent elastic-viscoplastic
constitutive theories indicates that these theories differ in
the choice of flow law, kinetic equation, and evolutionmary

equation of the internal variables.

The unified approach treats all aspects of inelastic deformation
including plasticity, creep, and stress relaxation using the same

set of flow law, kinetic equation, and internal variables.

The unified constitutive theories satisfy the uniqueness and
stability criteria imposed by Drucker's postulate for rate in-
dependent stable plastic flow and Ponter’s inequalities for con-

stitutive theories based on internal variables.

The unified theories can be formulated either with or without the
use of a yield criterion. Three basic flow laws are identified in
theories without a yield criterion. For theories with a yield
criterion, the associated flow law is derived from the yield

function or the flow potential.

Three different formulations of the kinetic equations are identified,

and they include the exponential, power law, and hyperbolic sine
functions. The exponential formulation gives a limiting inelastic
strain rate and appears to give better results for high strain rate
applications.

All forms of kinetic equations reviewed are functions of 3J /K2 (or

3J /K ) and result in "yield surfaces' and equi-creep rate sur—

faces which are described by the von Mises criterion.

The number of internal variables used in the unified theories range
from one to six. Most unified theories use two internal variables,
one to represent isotropic hardening and one to present kinematic
or directional hardening. The measure of hardening is either the

inelastic strain rate or the inelastic work rate.
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Directional (kinematic) hardening can be modeled with or without the
use of an equilibrium stress. The directional index of kinematic
hardening can be based on either the inelastic strain rate or the

direct stress.

Material constants in the unified models are necessarily temperature—
dependent and required to be evaluated at the temperatures of inter—
est., The change of material constants with temperature has a drastic
effect on the shape of the thermomechanical hysteresis loops. There
are indications that a temperature rate term is also required in the

unified theories,

All of the unified theories which are reviewed do not automatically
predict additional cyclic hardening under nonproportional loading
paths., Additional terms are needed in the unified theories to in—

clude such hardening behavior.

The equilibrium—stress—-based unified theories can describe reverse
creep and/or reverse stress relaxation behavior without further
modifications. Unified models which are not based on the equilibrium
stress would require modification by adding an anelastic term in order

to take into account these types of behavior.

The unified constitutive equations are stiff but can be integrated using
either explicit or implicit methods. The choice of a particular inte-
gration scheme in finite element analysis appears to be code and problem

dependent.
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