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FINAL TECHNICAL REFORT

Summary:

This research started in July 1578 at Rice University,

Houston TX  as MNaSsa~-4Ames Grant MSGE 7490 with Hen Billman as

sehnical monitor. In July 1580, the grant terminated aﬁ Rice
and fthe affort was moved to the University of California st
Santa Barbara, T4 under MNASs-Ames Grant MNAG 2-48 for its
completicn in Jums 19833 the technical monitor then was R. L.

Mockenzise. The research goal was the theoretical understanding

Im 1573, FELs were Just barsly a;n idea; the first
arpaeriment at Stanford University had just been completed

months betore, there had been only one publication, and no

other thegretical or experimental groups were =sven  awars of
the concepts. At present there are many major sdpeEriments

mroeeds HA0, 00, 000 vear., The =simple FEL design uses a
static, pericdic, ftranmsverse magnetic +fisld to urndul ate
relativistic electrons traveling slong 1t7s axisy this allows

couwpling to a co-propagating optical wave and results in
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aticn. The advantages of the
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praduce coherent radil
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-z L. are continuous Tunakbility, operation at urnl gque

wavelangths  ranging  from  centimeters to angstroms, and high
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magrnetic fisld.

This grant initiated and developed the basic theorstical
concepts that are now the most widely wused in the FEL fisld.
Whilz the title oFf the grant indicates & narrow application
to the initial storage—-ring FEL design,. the research guickly
hecame generalizsd to Full  FEL  theorvy.
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ohivsics, and conventicnal atomic lassr  theory, but  with

mechanism is classical. The electrans enteiring the
interaction region of an operating FEL  respond to  the

combined forces of the static magmetic field and the licht
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that even from spontansous emission thesre 1s enough initial

Cl

coherence  to use the slowly-varving amplitude and phase
approximation in the optical wave eguation. This reducss 1t

to the parabolic wave eguation. While the pendulum esguation

a

fisld=s do not usually wse the parabolic wave sguation to
describe electromagnetic radiation. Im accelerators, the
2lectromagrnetic wave typically does not svolve sincs bt is

PR 52 e e [ - " T — “ s - . 1 - i B s o e g o, 1 ene £ =
contined g an N t_avlt‘_,.'. In FLasma p.‘ 2L TS, the +iesl



sglectraostatic as well a
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more broad-band.

After  several vears of development  the basic theory

usimy the coupling pendulum for e

il

wave eqguaticn +or  light has  grown more scphisticated. The

rangs of wvalidity includes high gairmg, low  gain, collective
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harmonics, and mul timode operation in each dimension. We feel
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worth & substantial effort. Secondly, a ftairly simple  theary

grart was the development of the basic @quations ard
theoretica cancepts which describes FEL operation. Duwring the
coursg of the research some obther closely related topics were
also =uplorad. The research resulted in glesven referesd

S [ I . PSR e = P o e ] 5 - -
publications ang +five non—-refersed pL&L«l.w_a:«.



Cid. Im was fournd that the interaction of free elsctrons  and

rae  slectromagnetic radiation, in the presence of & uniform
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magnetic Field, can result  in stimul at

absorpticon. WHe analyzed the dynamics of single electrons by
solving the classical, relativistic Lorsntsz force sguations
of wmoticon in these combined Fislds., an elzctron may gain
SOergy TEOGOM, or  lose energy  to, the radiation fisld,
depending crucially on the phase and ocscillation fregusncy of

the elegctron’s helical motion within the superposed,
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sircularly polarized light  wave., T

radiation. field strength, eslectrons in a moncenergetic,

urniformly  distributed beam becos

T

sumched, but

=
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spatially
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there is no net energy change. To second corder, howsver, the

D@am  may  sdpgriencs a gain or loss of energy, corrssponding
tio attenuation or amplification of radiation. We comparsd the
Bunching of +this laser process  to the bunching processes
involved in (1) the Stanmford free-electron laser and (23 the
cyolotron massr, and Find significant differences in each
caze. Ouw analvitic results provide a clear, simple pictuwre  of
the interaction process, and can be useful in sxploring light
dmpll fication in astrophvsical magnatic the
maghetosphers, o in 1 ;s devices,

With & group i the Bpace Sclar FPowsr Rgsgaroh Frogranm



at Rice University, J. Freedma
L3 two new devicss which
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have

may

deploved solar ensrgy conversion and transmission
the '"mphotoklystron”" and the FEL. The photoklvyvshiro
solar energy directly to R.F.  power. It operate
principle of the klvstron with  the cathode rep
photoami tbir surtacs. He tested & model a2t Rics

svet
n Cony
= on
1 Fop—
Laced

which oscillated at 20 MHz. The laboratory model reguired
low=—voltage bias voltages. Concepts for a2 self-bilasing des
are also being considered. The photoklystron is expecte

e an alternmnative to

te

solar cells which

current. The second dsvice, the FEL, converts energy +Trom
relativietic electrons Lo marrow band electromagnstic sSnsrgy
which is  twnakle from the infared to the wiltravioclet. Such a
svetem 1s now being studied st NASR Lewis Research Center +for
SOARCE Cominumi tions applications.

fgain in collaboration with S.E. Ride [233, it was shown
that a laser can efficiently accelerates charged particles i1
a magnetic field i1s  introduced to 1mprove e oupling
hetween thne particle and the wave. Solving the relativistic
sguations of moticn for  an 2lectron in o a uniform magnetic
fimld and superpocsed, circularly peolarized elesctromagnstic
WEVE, =) found that in energy-position phase-spacs  an
zlectron traces out a cwtate cycloid: it alternately gains
amd loses  energy. I+, however, the paramelers are chogsen =0



that the electron™s ogscillaticns in the two Fisglds are
resonant, it will continuallsy accelerate  or decelsrate

depending on 1ts initial position  within a wavelenagth of
light. & labaoratory accelerator opsra
resonant conditions appears attractive: in a magnetic +ield

o B IR [ e e — oo, L3 =1 — R - P — - e -
ot LM kgauss, and the fislds of a 5 teralatt, 12 micron

wavaelength laser, an optimally positiconed
MeV in only 10 meters.

I collaboration with 5. E. Ride [41, the spontanecus

a bending magrnet. The wmodes of @ an FEL  evolve from the

spontaneous radiation emitted by relativistic electrons

rt

raveling in "small pitch angle” helical orbits in & magnetic

P

figld., The details of FEL operation depend on the angular and
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slope of the spontanzous emissicon
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trajectory determines the spec

graming the specific case of spontansous emission inn an FEL
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detector on-axis at infinity. The result 1s & spectrum of
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ror electrons guided by (1) a pericdic, transversze magnetic

.

field, and ()] A uniforas, lengitudinal magnetic field, and

=N

Brotean, and J. Hester of Rice Uniwversity, we agaln explored
the photoklystron device [51. Mow we were able to maks the

device oscillates at R.F. freguencies simply by illuminating

b T —— . - R ~ 1o e - = Ty . \ g ——
T Oy llght. It was or lgl!‘xcﬂ.llﬁ_f concelved a=s retdl e Llwvstron

wilth the termianic electron SOUrTE replaced 2y a
mphotosmitter. In practice, the photcklystron has besn found
toe have different. properties from what might be skosctsd by
simply scaling a rafles klvstron to lowsr elsctron energiss
amd  oscillation Ffrequencies These include electron snsrgy
exchangs with the R.F. Ffield onm multiple oscillatiocns  and

plazma effects. The device can be made to

that 1is, no sstzrnal sccslerating bilias volhage 1s necsssary.
The energy to sustain oscillation is derived solely from the
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simulation results can be represented by 2 single universal
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conversion for any set of wvalues of initizal @lsctron  energv.
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consistent, nonlinsar description of the free slectron lazer
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= and Maxwsll"s wave eguation

bunching drives the amplitude and
phase of the optical wave. This is the first paper whers the
wave egauation was self-consistently coupled to the elsctron
pendulum sguation. A method of sampling only a Few particles
was developed +to save computer time in numerical approaches.

The system of eguations containg  the non-lingar aspects  of

{ s e — oo oves b - -
the FEL mechanism.

of problems
optical pulse
effects  in

Fanl S e - - N I T fm oo - - L - - g -~ - de e e g U
stansord. = TpEerimencs. The excellent comparison ST WE SN CITE Oy
- JRR UV 1 -y de = £ - - F o v due 2 e I R oo Joe - oot pran o s bore
and  edperiment gave the first 1mplicaticon fthat the approsch



EESTE &
was going to be anally usetul.
There 1s alsg an analysis of how electron
spread  and emittance can decrease the gain in FEL=s.
This had practical applications in the design of experiments.
& long time-scals averaging oprocedurs wWas Wil oh
allowed us to relate the FEL gscillator to s orider
phase  tramsition. &s coherence grows in the laser field, ths
Frange order G oWS 2= in a magnetic solid. Tha

T o the evolutiaon of t©h
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Yearbook of Science and Technology [101.

WAS in simple terms and  the
conventional  atomic lasers was outlined. Several of  the
sxizsting @xperimental contfigurations wers mentioned.

fe anather ension of our theory the nonlineasr
c &nd self-cornsistent pendulam eguation wers used
to generalize FEL opsration to higher hearmonics Diid. This
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ipling  to higher harmonics

strength  and the mcagnet

the coupling is not small.

oy - P I T T T [, . P T - =
rour sxperiments that have now operated as
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Farmonics. Anobthesr sxperiment has measwred gain in the  thivd
Farmonic.

In further work [12] the theory is used to skiplore the
dvnamics of the laser Ffield’s amplitude and phase for a wide

rangs  of paramsters using familiszs of normelizesd gain curves

L& to both the fundamental and nigher harmonics. The

inguish bstween ths
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Coulomb forces can be included 1in & gs parndul um
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aguation and collect effescts in FELs are fypically

2 plasmae oscillation
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Faris, Qrsay, France, we study [12] the glectron phase-spacs

avolution and gain of FELs  whose short-wavelength radiation

has  Gaussian spherical wavetsronts.  Several FEL designs are
considaered: the pericdic magnetic +field wundulator, tapersed
wavelength  undulator, arnd the op
betwesn two short undulators. We find that the gain spectrum

is nmot proportional to the slopes of the forward spontanscus

e o ol s e p pmmm e b s em g e e o - R £ o o S R T, J—
made which maximizes the energy exbraction from  the slectron
eam in FElLs.
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Several , atter the initial short oulszse ments
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~d University, another round

m@aswrenesnts wers bDelng made. Mow  the credibility of the

theaory had grow to the extent that the imentalists were

usin simdlations to hel design ths messwwemesnt techni gue.
S -

Ffredictions had been made by owr research effort L1141 as  to
the results. bservations involved a =hift in optical

-+
3
il
%]
i
I
]
p
jif
i
P
-
il
i
m
-
]
ii
T
ri
i
n
[}
i8]
[
[
M
1]
s
[N
i
pu
a
Ti
i
ot
fit
m
[
Ll
th
3
cL
i

dramatic ohange in the optical spectrum and pulse shape when

the resonator langth 1s adjus

short oulse effects in  tapersd wavelsngth undulstors DLIZEI.
This kind of magnetic undulator design was being sxolored at

I oollaboraticn with . Bosco, & 2 oraduate stadent

F. Frezednan,

O

sunportesd by this grant in the last vesr, an

the problem of oscillator svolution and mode competition i

was studisd [15). Relativistic guarntum field theory was
wsed to calcuwlarte the slectron wave functioms, fths angul ar
distribution of <pontansows emission, and the transiticon
rates  for stimulated emission and abszorption inm
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regime was presented. This rate esqguation was applied to

gEcillator  evolution with a conventional undulator. the two-

stage ocptical klwvstraon, arnd the tapered wndulator. The
eftects of classical shot noise and optical guantum nolse are
hrigfly discus=zed. In gach case, nolse is found to havs  only

With the M358 supported wdent, F. Bosco, ths
spEctrum, angular distribution, polarization and cohsrence
properties of the radiation emitted by relativistic slscirons

undulating through & guasiperiodic tapered magnestic +isld
4. —_— e

weres  studisd 1581, Tapering the wavelength and/or field

strength a&long the wndulator’ has +the esffect of
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spraading the gpectral linme to higher frequenclaes;
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interference over this broader sos

determined by the transverse polarizstion of the wundulator,

Ut the polarization changes off axis. The radiation patterns

predicted are distinct from  those of untaspered wndulator
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in free-slectron—laser oscillators Wi Mg L:\p'\—: ed undulators.
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Abstract. The interaction of free el ns and free

presence of a uniform magnetic fleld, can result in stimulated emission or absorption. We

nnnlyze the dynamics of single e}

by solving the classical, relativistic Lorentz force

ion in these bined fields. An electron may gain energy from, or Jose
energy to, the radiation field, depending crucially on the phase and oscillation frequency of
the eleciton’s helical motion within the superposed, circularly potarized light wave. To first

getic, uniformly distributed

order ln the rndlmon field strength, ek ina

beam b ly bunched, but there is no net energy change To second order,

f

however, the beam may experience a gain or loss of energy, corresp g to or
amplification of cadiation. We the bunching of this laser pmm to the bunching
processes involved in 1) the Sllnfotd free-electron laser and 2) the cyclotron maser, and find
significant differences in each case. Our analytic resutts provide a clear, slmple picture of the
interaction process, and can be useful in exploring liglﬂ smplification in astrophysical

'

ic fields, the mog phere, or in | y

PACS: 41, 42.55, 95

neccnlly there hau been o great deal of interest in the

of a frec-el faser, a device in which
ullrn relatlvistic electrons, following helical orbits in a
periodic, transverse magnetic ficld, amplify coherent
radiation [1]. This laser open(el on the principle that

the free sp itted in & narrow
cone nboul the forward direction, remains in the
b wnh \he 1 lndls heref
iable to sti

The encrgetic electron beam need only Iose s smafl
fraction of its encrgy to smplify s powerful short-
wavelength pulse stored in an optical cavity. In 1976,
Madey built a prototype frec-electron taser, which has
operated both as an oscillator [2] and amplifier [3).

Can a fice-clectron laser operate in static ficlds other
than the periodic transverse ficld? In this paper, we
will show that this type of laser action is also possible
in & uniform, longitudinal magnetic field (symbolized

+ Supported in part by Army Contract No. DASG 60-77-C-.008)
and NASA Orant NSO-7490.

B,). The characteristics of such a laser differ both
qualhnllvely and quantitatively from those of the laser
employing a periodit se magnetic field (uym-
bolized ).

The process we Invulipte is shown schematically in
Fig. 1. Relativistic electrons spiral with small pitch

SPONTANEOUS
RADIATION. UIFORM MAGHETIC
/ / niELo
——
——
- 3 —
g ———
o ———
AMPLIFIED
ELECTRONS. RADIATION
:o':',;: “ L— INTERACTION LENGTH ‘I
Fig. 1. Relativistic clectrons tpirl! llon] lhe ﬁtld lines of & umkmn
magnetic ficld, and emit -

diation in the forward direction. The radiation indiices the emission
of taser light from electrons fusther along in the beam

" 0340-3793/79/0020,0041/502.00
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angles in a uniform magnetic field. Circulaily polarized
radiation (like that emitted spontaneously) passes over
these electrons, and ' further radiation pro-
cesses. 1t should be noted that the device proposed
here is different from a well-known cyclotron maser
[4 7). The stimulating fickds are free radiation fields,
not modes of a cavity operating near cutoff (as with the
cyclotron mases): the result is a different gain mecha-
nism and a correspondingly different gain curve. The
two devices are compared in detail in Appendix A

In this paper. we adopt a single pasticle approach
simifar to that used by L.amb {8} and Gaponov [9] 10
model conventional lasers and the cyclotron maser,
and by Colson [10] to modet lhe B -l'eld free-clectron
faser. We inc the (ully relativistic Lorentz force
cquations and solve them order by order in the
radiation ficld strength to obtain analytic expressions
for the electron teajectory and energy as functions of its
initial position within a wavelength of light. To first
order, a ditute, spatially uniform, getic elec-
tron beam becomes bunched, but there is no net encrgy
transler. To second order, however, the energy change
of the beam does not average to zero, and if the
parameters of the device aré chosen judiciously, the

- the radiation field and el

f elect ic wave, of well dcfined fre-
%uency and phase, and travelling along the axis of the

field. The dynamics of the electron are described by
lhe Lorentz force equations

deg._
GR=- ZE 4 Bx(B +B)] w

4. _.
.77’=7=-—»'-"-I»E.. @

whese fc is the velocity of the clectron of charge
€= —|e}, mass m, and encrgy yme?, B_ is the magnetic
field in the 2-ditection,

B_=(0.0.8,). (k)]

E, and B, are the radiation electsic and magnetic fields.
Equation (2) shows that the work done on the electron
by the radiation ficld is proportional (o §-E,, the
ari jon of the determines whether the
electron loses or gains energy. If it loses energy, there
has been stimulated emission ; if it gains energy, there
has been absorption. The fonger §-E, retains a particu-
lar value, the more energy will be transfesred between
. This suggests that to
the enctgy transfer rate, we should choose

system should lase. We derive analytic expressions for
the longitudinal and s¢ bunching (both are
important), and for laser gain,
This general procedure can be employed to derive the
low gain behavior of other free-clectron devices. We
have used it to derive the particle trajectorics and gain
ion' of the cycl maser and B,-field free-
clectron laser. The results of these mlculalmns are
presented in Appendices A and B, respectively; the
bunching mechanisms and gain curves of these devices
are compared to those of the “uniform ficld free-
electron laser™.
By investigating laser action in a ﬂ -field, we are
exploring a process which, like the cyclolron maser
and 8, -ficld laser, has polenlnzl as a laboratory device ;
more mlriguing, however, is the possibility that this
process, which requires neither a cavity nor an mln

the radiation to be circularly polarized such that the
electron sees an electric field which rotates in the same
sense as its velocity vector. We therefore take the
radiation ficld to be of the form'

E, =E,[cos(k,z—w,t+¢@) —sin(k,z—w,t +¢),0},
B =E,[sin(k,2-w,t+d)cos(kz—w,t +$)0].

Equation (4) describes a plane wave of constant ampli-
tude E,, frequency w,=kc, and phase @, travelling
with velocity c2. It is assumed that (a) E, Is large
enough that it (and the phase ¢) remains substantially
constant during the amplification process (low gain),
yet (b) E, is small enough that the effect of radistion on
the clectron dynamics may be handled periur-
batively.

We petform the analysis for a light wave of arbitrary

“

cate ficld structure, could occur sp

the laboratory. The basic ingredients, rclauvmuc elec-
trons and uniform Gelds, are p . for
example, in the eanh's ,‘ . the diati
belts of Jupiter, the mag heres of pul and

quency, but show thst only frequencies near a
“resonant™ value will result in significant encrgy trans-
fer. Near resopance §, and E, rotate together and
setain their oricntation through many oscillations. The

f
other astrophysical sitvations.

1. Physical Problem

To examine whether taser action could be sustained in
a uniform magnetic field (B,) we will consider the
following maodel problem: a single relativistic etectron
entering a region of space containing a circularly

freq y of oscillation is given by the cyclotron

frequency w, =lelBy/yme, and the l’requcncy at which

rndnuon passes over the electson is (1 — 8- fko,. The
~ is defined as

v

.lmsl;% ~afl-p-8. {3

' U the particles were positively charged. or i the magnetic fickd
were reversed, polarization of the opposite sense wouki be
appropriste.
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“On resonance” {Jm =), exactly one wavelengih of
Hight wilt pass over the electron as it trasels thsough
one oscillation in the magnetic field. For ulira-
relaivistic electrons (y large, §-2=1), and reamnahle
taboratory magnetic fields, the radiation wa h

cin be made quite small.
lir a taser oscillator, or free-space laser, the initial
radiation would be spontancously emitted by the
clecttons accelerating through helical orbits with small
pltch angles. We ize that such radiation has
just the right direction, polarization, and frequency to
initiate amplification when passing over electrons fur-
ther “upstream™ in the uniform magnetic ficld. The
radidtion is emitled into o small range of frequencics
aboul the resonance frequency given in (5), and into 2
narrow lonuud cone of angular widih y™*. The ra-
ion yielding the highest net gain will eslabhsh the
finat laser fine. In an umphncr the initial stimulating
radlation is specified. In this calculation, we assume an
initlal electromagnetic wave of arbitrary frequency and
phase, and search for the conditions ncoessary for
amplification (gain) as the wave passes over an electron
beats travelling through a uniform magnetic field.
The Lorentz force equations describing an clectron's
in the bined ficlds (3) and (4) lorm a
plicated set of Jed, nonlincar differential equa-
lions We will cmploy a pcrlurballon approach to
obtain 8 solution. Before turning to this spproxima-
tion method, we can make some progress loward an
exact solution. The ¢ ¥ t of (}) can be com-
bined with (2) 10 yicld a relation between the energy
and the velocity in the 2-direction

wofi -ﬂ,il)]:-consl . 6

Thcrcfo’ﬁ. il the encrgy of the ek s changed, its

[NER1 —Il.i=cuns|..
Wi =-=-= m,cnsll —ont + Y

- IlI sin(k,z—m,t+¢1) .

Unable to integrate further. we scek a solution by
means of a perturbation expansion in the ficld strength
E,. That is. we assume that the electron’s trajectory is
determined by the static field. and that the radiation
ficld produces small perturbations abous this motion.
We choose 10 perform our analysis in weak radiation
ficlds where the encrgy transfer is small, and require
only that the amplitude be large enough that we are
dealing with a classical wave.

W is possible to self-v ly solve the equations of
motion (7) order by ordet in E,. To zcroth order, the
electron moves in the uniform magnetic field alone
with trajectory v, =(x,.»,.2,)

Bioc

)= —un(mHﬂ,l.

y)= - Tcos(m,HOo) N

.

1) =204 B et
Y, =const.=(l _Mo "ﬂ:o)- LI

where w,=lelBy/yme is the eclativistic cyclotron fre-
quency: the arbitrary constants B,4¢, 2. B¢, and 0,
are the clectron’s initial longitudinal vetocity aand
position, and transverse velocity and phase, respec-
tively. These constants of motion define a class of
trajectories which spiral symmetrically about the
$-axis.

We now proceed 1o first order in the radiation field

velocity in the 2-direction is necessarily changed: since
1.8,.and p, are related through y~ = (1 - §7 - ), the
velocity In the transverse direction must also change.
As a second sicp towards solution of the equations of
motion, we can integrate the £- and f-components of
1) immediately by noting that the right-hand sides are
petfect time derivatives. We thercfore have the follow-
ing set of exact equations

) )‘ﬂ.“ 'ﬂ-‘l (smﬂ 2—wi+ )

—sinth,z, + $1)- l-(-l—}! +const.,

b)), = ——= [cos(l 2—w,t + P)~costk,z, t ¢})

lfww‘
+ e +const., M

h. and write the sotutions in the form
)=o) 430,000+ ...,
W)=y, +8p,000+ ...,

where 81, =(8x,,8y,.62,) and &y, arc small, pro-
portional 1o E, and must vanish a1 1 =0, Substitute
these expressions into the Lorentz force equations. and
retain lerins only to first order in small parameters,
Equation (7d) becomes

67"— = =y fl,ocos(dwt +0), (1)

L)

&}

where 0sk,2, + ¢ + 0o, g =lelEgA; me). and dm =,

~w() = fo). Equation {10) can be imcgrared immedi-
atcly to give the first order change in the eleciron
energy

Jr.ll) ﬂmc

“E [sindAan +0) - sin 0] . (1)

“ 5. K. Ride and W, B. Cohson

From (6) it is clear that we can selate 8y, to 42, order
by order. In particular, after ¢ the

2. Particle Dynamics

Wl-f,)at =0, we find

}] &
6—1 =(~fl ).

Therelore,

a2, g
-t “am" ﬂ.o, ”.

[cos(dmt + 0)—cos 0+ A sinfl] . 2

éx, and 4y, can be found from combining 7(a) and (b}
into an exponential form. They are

To d order in the radiation field, the fractional
change in the electron encrgy evolves as

s _M-w, S by
2'. I3 7 12}
A pnnicleu evolution depends, in a ficated way.

(n

on ils initial parameters ﬂ“, B0 and z,.

In a real clectron beam, particles enter the interaction
region with 8 range of initial conditions, Dilute beams
(where Coulomd forces may be neglected) can be
accurately described by summing over all electrons in
the beam. We assume that realistic beams are not “pre-

AT lcos (k20 + - t)~cos{k 2, + ¢ —wil - ,ou] + cosik,zq +¢)—cos(k 2, +¢ ~w, )]
]

¢ o, 4w w,
4‘:;2;!:0:(.»,«+o.,)[—cos|4ux+o)+coso-auu.ino) 3

and,

sin(k 2o + ¢ —w 1) - sin(k 24 + 1

c u), Ao

Y

@}_ (o¢[s|n[l.°+¢ w1 —f,¢]— lin(k:°+¢-mn

Bl
*de

The expansion can now be extended to second order
in @ similar fashion.

“7”— wwgcos{h 2, +d-wit—B,.4]
"
. I’— Aoz, - 2
<
+uygsin(kzo+ ¢~ (1 - FoN)
~|“_-k,az,+'3!'-' . i )
¢ ¢

When the zero-order and first-order results are in-
serted, (15) can be integrated directly.

! 151
oy (-5"—ﬂ;‘-’- [~ cost.dwt + ) cos 0 +cos’0
P dw
+ §ousi20 + 2301 - oo 20
+ At cos (St +0)sin 0]

"»’9 (1 = B,oM0 —cos d) . 16

Note that the second-order change in energy results
from first-order changes in both longitudinal and
transverse position. Also, all phases (2. . and ) have
combined into the single phase .

w,

e

32 sin(w,¢ +0,)[ - cos(dw +6) + cos 6 - dwtsin 6] . (14)

bunched™, and thereft der, as a specific exam-
ple, 2 monoencrgetic, uniformly spread beam entering
the interaction region st a particular angle. The initial
positions are uniformly populated over many wave-
fengths of light so that the phase should be averaged
over intervals of 2x. At any given time, to first order in
the sadiation field exactly half the clectrons within &
radiation wavelength gain encrgy and move ahead of
the average beam fow; the other half lose energy and
fall behind. This causes spatial bunching of the beam
and a spreading of the initially narrow ecnergy
distribution.

To first order in fickds, the form of the electeon energy
distribution is glven , [3yL. () - 4y*)"* where
;1 (= (wlypl /24011 - cos dwt) with two spik-

es at 14y, 00 and oscillates with quucncy A
The second-ordes corrections (proportional to w]) aré
asymmetric and causc the distribution to become
slightly distorted. [t is these distortions that are re-
sponsible lor net amplification ot laser gain.

If the clectron beam is initiatly bunched, gain may
result from the first-order encrgy changes. This gain
mechanism can be importani in long wavelength appli-
cations. In short wavelength radiations ficlds, gain can
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only be abtained by means of “self-bunching” a1 the
radistion wavelength. ss described above.

As an aside, we wish to siress the importance of the
“bunched” electron beam produced by the free-
electron lases. This analysis shows that an external
laser (or the laser oscillator) may be used in com-
bination with 8 uniform longitudins! magnetic field 10
coherently modulate a relativistic electron beam at
optical wavelengths {10]. Such a beam may be used,
for example. 10 drive a high gain, powerful optical
klystron [11).

3. Gain Equation

‘To calcutate “gain™, the fractional ch in radiati

energy, we must compute the energy lﬂined orlost by .

the cleciron beam as a whole. The energy change per
clectson, (dy)mc’, ls obtained by averaging (17) over a
weighted distribution of initial positions and veloci-
ties: multiplying this by the number of electrons yiclds
the energy change of the beam. We now identify the
encrgy lost (or gnined) by a section of the beam of
volume V. containing g,V clectrons, as the energy
gained (or lost) by radiation fic!d in that volume. Gain,
G(1), can therefore be written

(dyyme’e,V .
Gina — mm—-, . (s

where 2E2V/Bx is the radiation energy (in cgs units)
orginally present in volume V. Thus, using encrgy
conservation, the small growth of the field amplitude is

EfNsEcaplGya). w9

In genesal, growth is not exponential, since G1) is not
necessarily linear in time,

We perform the average for a uniformly spread, mono-
encrgetic besm. tn short-wavelength (Ilvge 1) npph-
cations, even short electron pulses are sp

mately umlormly, over many optical wnvelenglhs
Note that averaging oves all injtiat lony!udinll phases
k,2,. or over all initial transverse phases 6, is equiva-
lent and renders the result independent ol any phase.

s
Thus, ( )& ! d&{ ). The first-order terms in £q. (1)

average to zero, but the second-order do not. The
result is

2 2
Gl = ,_—"%";, ({80 + 21 - B oM (cos Jut - 1)

4 il ydwot sin Aeat) . 020

This is the fractional change in the energy of the
sadiation ficld as it passes over an electron beam

spiralling through a uniform magnetic fictd (By). Under
the proper conditions. energy can be transferred to the
radiation field.

The gain is propurtional to the clectron density.
inversely proportional to particle mass and kinetic
encrgy, and decreases if far fiom resonance (4o large).
We can acquire insight inlo the gain mechanism by
examining the nor ivistic limit of Eq. (20)

Gin= i—;——,—lcosﬁmh") Q2n
where f,4.0,,41. dw=w, —w, Resonance occurs
when the electron cyclnuon fuqucncy equals the
radiation frequency. Nole lhal in this limit gain cannot
be positive - net stimut is not possible for
any choice of parameters.

We can understand this result by considering the
eleciron beam as a system of classical osciflators. N is
well known that a set of randomly phased harmonic
oscillators absorbs encrgy from an clectromagnetic
wave —.net stimulated emission can only occur if the
oscillators are anharmonic (12, 9]. In the non-
relativistic fimit of our problem, the efectron beam is
just 8 collection of harmonic oscillators; if, however,
the electrons are even slightly refativistic, they are
anharmonic oscillators - then, as indicated in (20)
stimulated emission can dominate.

1t is appropriate to examine gain at the end of an
interaction region of length L. The time required by
the unperturbed beam to travesse this length is L/B, ¢
Since shifs in the position and velocity are small, this
is very nearly the time sequired by each election to
cover that length.

The final gein is then,

2ng,e’L? |[B1o+ A1 - B,,)]

G = 3t ot
Bl owsinw
c(cosw— N+ ~“o5——|. 22)
Beow

where w is a dimensionless resonance parameter,

4wl flelB, l L

H e O e — - T .

@ [ me wdl B0} Boc 23
Note that, for a fixed L., w can be changed by varying
any of the parameters y,, f,0. 0, 0f By,

We can examine Glw) in (22) by fixing, for example, y,.
f.,0. 3nd w,, and sampling various resonance parame-
tess by changing the magnetic filed gth. In Fig. 2,
Gl (in units of 2ng,e’ L7y me?) is ploticd versus .
Maximum attainable gain is proportional to L. We
have chosen y, = 50 and show the gain curves for three
different injected pitch angles, @, =#, /f,,. Exactly cn

4% S. K. Ride snd W. B Cobson

Gruar il (1 '—',-:!;—i; vo)

'l L. (] i '

fi' 1 thuhmdalnmllpﬂchmlko 2P, 48, the

-20 -0 o [ 20
OIMENSIONLESS RESONANCE PARAMETER, w

resonance {w =0) the “gain” is negative; in the specific

tlimit B,,=1. it is independent of the inj angle

' 12

G0l = — _r_’_lp,e . . 24
yome

Further, if the beam is injected-exacily on-axis, there is
no value of w which can lcad to net stimulated
emission.
l( however. the beam is injected slightly off-axis, net
d emiss} ible for certain values of w.
The device will then opcrﬂle as a laser if gain is larger
than the losses. Maximum gain is achieved if o= £ 7.5.
The ptinciple of operation is the same as that which
governs the Stanford free-clectron lases : if the narrow
spomtancous radiation cone {of angular width 3%,
(10]) remains on-axis (that is, if B,qy, ' S 1) it will
excile a narrow fundamental emission line in the
resonant cavity.
in contrast to the ﬂ -field laser and the cycl

electron bum shows several gain pull on :ulh:v
side of = {w =0} only sb
can oocur

In af) these frec-clectron processes (and, in fact, any
laser process), the length of the interaction region is a
crucial factor in determining the conditions required
for positive gain. This can be understood by referring
to Fig. 2, and noting that the resonance parameter

* depends on the product of L and dw. If L, is fixed, as is

usually the case in laboratory situations, 4w can be
chosen to maximize the gain. Creating 8 laser is
therefore simply a matter of extracting the electron
beam and radiation ficld at the right time.

Conchusions

We have p d a calculation which d ates
that under certain conditions laser action can be
sustained by relativistic electrons spiralling through a
uniform magnetic fictd. We find that 1o first order in

diation field st h, the electron beam becomes

maser, the gain curve of the By-fictd lascr is sy
in the resonance parameler. Allhough to zero order.
the electrons in each of these devices move in helical
trajectories, the Irajectorics evolve differently. In the
cyclotron maser, the electrons become azimuthally
buuched (this is sometimes called “phase bunching™)
and the second-order changes in energy (ic.. gain)
result from these transverse pertubations, dx,, and dy,
sce Appendix A) In the B -field ﬁcc{lcclmn taser,
the electrons become Ionglludmally bunched, and
sevond-order energy changes arise from penmbmim\s
dz, tscc Appendix Bl Again, the result is an anii-
symmetric gain curve. fHlowever, in the § -fietd laser,
both tansverse and longitudinal bumhmg contribute
to d7,. or gain. Their contributions oppese. and elim-
inate the usuaf cyclotron mases gain mechanism. There
is however another (less eflicient) mechanism at work:
that mechanism is the one described in this paper.

ially bunched in bolh the longitudinal and trans-
verse directions, and spread in energy. The net energy
teansfer is zero to first order (for a unifosmly spread.
monoenergetic beam), but the sell-bunching achicved
to this order results in gain to second order. To achieve
taser action in the uniform magnetic field, the electrons
must be relativistic, they must be injected slightly ofl-
axis, and they must oscillate slightly off-resonance. The
gain mechanism is not that of a cyclotron maser or the
periodic-field laser.
A laboratory device similar 10 the pesiodic, transverse
field free-electron laser currently operating at Stanford
could be made by placing mirrors of a resonant cavity
beyond each end of the region of the uniform axial
magnetic field. The condition f,4r,'>1 would
maximize available gain, yei alow the narrow spon-
taneous emission conie to excite the resonator on-axis.
The uniform-Gield lases would enjoy the same poteatial
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admulngcs [H} a3 the periodic-fiedd device: it would
e ¢ ble, and capable of high pewer
with good emclcnty However, for a given lield strength
angd dectron energy, the onifoum field dasey typi-
catly grroduces dess gain and operates at fouger wave-
fengihy. Since the ultva-relativistic clectron beaw hay
such a high energy density, even this fow gain can
Fustain a powerful taser pulse. The eaciting possibility.
of conse, is that the unifoim field laser mechanisin
described in this paper way operate ia nature,
Alihough 8 specific relationship between the clectean
wotion and the radiation field is required for taser
gain, the spuntancous emisxion produced by electrons
n cefativistic helical motion will pass over elecirons
further aloug in & beain, and bathe them in radiation
uhrch hu the ngm pfopeﬂlc! ta jnduce stimulated

tion might therefore nocur
natually !ot a whaole range of magoetic field strengths,
from weak interstellar ficlds 1o the huge Belds neas the
surfaces of neution stas,

by probiem can now he sohed ax ootlined e the 108, Phe e
order slutions are
. - “;“f Sinbu 4+ A3,

¥

v == ey, o
w,

Hmia Bt
DRTT B P T
wheoe again so =i, v, and the slectrons are initially focated st
anguiss phases 1, and Jongitadinal positions =,
At the clectronrs oscitlate theaugh theit betical acbits, the oscittating
wise does wink on them The lasgesk enrrgy tanstes is possible near
tesonance. defined by

Aoy ~w, 8, . (2]

Note that sbis by similar fo the resonance parameter for the vniform
fieid farer. Bt the frequency of the osciltating ficld & nat Dappler
hifed ’

To Brss osder in £y, the liactional change in encrgy v

The s!gmuuu of this hser process wou!d be snom- M. “;—'L‘;:{muu-uo,p sint~$4 8,1
y bright, directi 8 8 narr *
emission line; the emission freq ,wou*dbc fated +{pon- term [t}

to the magnetic field st h and ¢l

through the resonance coudition 3} 4 must be em-
phasired, however, that these properties may be dis-
guised or divtoried a3 the radiation propagates fiom ity
sowrce 1o our defectors. This suggests that more
specific analyses ought to be performed, 2nd the model
prablem adapied to particular physicat situations, in
ordet to explore the importance of this radiation
mechunism.

Appendix A

In ordes o rompere the vhilorm-fleld freeelecteon baser M the
cyclotton waser, we will describe the tatter devie using the voe-
body analyais of the text, Both devices use & sistic unilorm magrietic
Beid. but hecausz we propose sn espermental configuration similar
o the Sianford free-clectron Imscr [2, 3) (making wae of

shitted lize radiation). the gain mechanisms are quite different. We
adogt & simple modet of the cyctotron mases, employed by severat
previous suthors {345, 43, dwming IM stisulsting field 1o be s
made of 2 k g near cutofll, Thbs choke
cimplifies the mnb«vm&s m “n«:mm the umﬂhi‘ ph)xh of the
deer. kn parni it & g mrchs-

aism™ {6, 1. 1)

Agtin ue begin with the refativistic equations of mothis §13 end 414
1t caciBlating field of the cyclatran muves is

€, = Eqteottend + $1.0.00, 29

wnd theat i no asociated magnetic field. The static magnetic fietd it
the xaine ks that in the unifarm.field boechection taser,

8 -000,. 26

whete g =iqE,ipgor. Sivoe the giases will be opeisted news -
sonence, the vesonsnt plecey i (291 fpraportional to A ') will
domsinnte. For brevity we do not wrile out the pon-resonsnt terms.
Wk cane b done o ar by the clectron ¢ the sign of 3y, depends on
the electron’s inliied phase 8, setstive (o the phase of the oxciltating

Beld, 4.
The Brst-ordie changes in position aee

“‘« fil!‘.'fl! confus £ 01 {coridun~ P +8,)

~0os{~ $ 48,0 Auusint ~@+80) 4 ..,
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We bave oot tnctaded the fon-resonant terms.

We use these fiest.ordes changes In position 10 catevlase she second-
otder change in energy. Here we Gind the imponeat diffetence
Betwoen the :y<ltmon maser wod the By ficld free.clecivon taser, ta
the taser anetyred n the text, o to 8y, were found to
tesult from both tansverse shilfls {8y, and v} and Jongitradinal
vhifte (53,1 These contributions neatly canceifed, learing onty &
soell cosidua? energy shilt. The crcltron maser, however, o
ploys » cavity mnede (bmmd dinti ip npses fhiv flation. In
this osciffating fiel ita} buacking ctnnet affect the cacegy
fvw {35,V heteen Iln dectrons and the o dmmp field; enmegs Row
Is & rexult of teansverse hunching stomr .
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shan ¢, and recover the fongi h but foding
the tansverse mechanivm 16, 7. 15} The ‘ucm of the cosults wie
similae,
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sition, 1, and the phase §. 37, Svernges 10 roso. therelne

Wiy <
1Y W
“" U i Bk ot 08 At 8 --~~~98»A«m
Bt LW 7Y
+ tumatler, non-cesonant teems) . ' 34
itere, the Seading nonaesonant term has been wiitien out for

with published cosatts, It is et 40 rewrite this
mﬂmn for the ﬁmkmxt eoergy flow rae

(:.;} w‘m( "'"z‘ a)(ﬂm)

+ ematier nonesouant teronst. o

~ -

hxhhbamummchimumionwmhm
biained vaing (a}1he linearized B 9 o (bl g
havkcs (2. 14). Yo pare {32) to Schaeider's arigina g

anechamicnt cexslt I 5. T)unmuwwwy(hhmmmlm
# with his “coltision time™ 1; Schavider slso

“responwe function”, which differs Grom the {xinx/x} !w!kmy e
Hved deve. The Sist 2econ b {32} Is symemetric, aod aiways posidee
{ootresporiding to 1hmrpﬂou}‘ the wecond fenm, rovofiing from
dativisth e and can dead 1w gain
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oet Bow of eoergy from ihe electron beam into 1he oaciliasing fiekd
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discussion following (21) in the ten).

The rate of energy chaage can be integrated to deseribe taser guio.
Thwe parsmcters of 8 working eyclotron mase would be chosen such
hat the absorption term in 132} (the Bt term) woukd be wrall
campared to the ¥ gain tecm”, Conidering anly this sccond tevm, we
Gnd that the gain {ibe frections] change in (e enrigy of (he
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Appendix B

n this appendia, we e the singhe partiche, pertutbative snatyvis to
derive the gain equation of & tansverse, periadic fiedd (8} free-
ehectron taser. This will fusther demonsisate the validity of the
technique {the resufts we obtaia in this low gain cegime wocursiely
dewcrite the device cucvently apecating st Stanford) and will esabic
s 10 drnw & direes cnmparison beswren she B, eld laser 328 the
Sekd faver.

1n the B, feld Wnser, the rebativistic elections teavel slong the sxis of
& transverse, perodic magietic ficld of the form

B, = B dcouk,raind 100 130

where B, is the field steagih, and iy = 1jd, i the naselengph, ¥
sheve is no fight present, stetioaary solutions describing the heticat
wotion afang the magnet #ais are
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0 Wanrverse drid.
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ae L for the Night cmm:d
tponunmd; by er electron in telicat arbie of 1392 As belote, this
oscillating weve shess the clectron’s oebis dightly, and cen do mork.
in this laser, the 2lectron’s prbital freguency it deiermined by the
wavelength of the helical ek ; the resoneace condition {where €,. 8,
and §, ety with The same requency] i given by
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The test step i to solve the vqulmm o‘ mclion The tranyvene
s can be lnteg: Thw of
§ ape chorea sack that the mtmnn solutions sathly the

Interactinn vegion, ¥ w L.8,,0. the gain funciion is anthsy
Aws This b in wiriking contrans 1o the gain curve of the uniform-fickd

fizeglecteon faser, whochu ic in the pu
tsee Fig. 3.
The opeeation of the zych masey i intimately tied to i cavity

devign, 11 the canity mode i chiken pmrcdy (6. 1 15k dhe device i
w0 excellent, and highly efficient amplifier. In # device similar to the
Stanford fasee (1-3] tco-axisl fice tadistion and ulwra.cclativigtic
ahecteonst, the aacmal Sychuteos masee mechaniom & sat poseitde.
he derivation in the teet shows that even siter the cancettation of
she Jongitudinel and tranurerse bunching mechanivm, » vwetol fow-
grin mechaniem il esiny (Faddien, Peielin {18] haa discupsent
suother uReaoselotisistic mechanism usiag watlonary ¢hecteons
o 01 Dot this dives po mske vee of she Doppler 1hift 4o doster
warelenpibs e doen the Stanford scheme ¢

wquitions of mocion Bt =8, Provecding &y in the text, Bssume dm
the radiation field induces small pertorhations abovt the o

solutionn, #nd caiculte theas changes ta feat, thee accond, ocder it
the cudiation Beld sirenpth, {in previousty published works {10.17),
the !mpomut the momentum Fq ) and m :nu“ Eq th
wore i 8 bn the pend
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Free-Electron Laser in a Uiniform Magnetic Fiekd 4“9

where #ath, o k32, + 8, + &, The first-order shifts in pusition are

Ut i st~ )
Uttt

[vosthot 4 B)-cos 8 + hutsin®)

+ (non-resonant terms),

- (mlwll Br-0)

-cos m(l - B omsinl}. 19

— (sin{w, () - B,40- &)
o
+sind —wit - ncosll .

where (-l,.. +¢. Note thar the transverse perturbations are ra-
pidly varying. snd are small (non-resonant) compared to the longity-
dinal periurbations. In this taser, untike the uniform-field laser, it is
only longitudinal bunching that resulis in laser sction; the trans-
verse bunching is negligible.

The second-order change in election energy is,

colleH 20)~cos 20

.Jw 4 -

4 €O8 Suxf ~ St gin Bcos (Aot + B)
+ (non-resonant terms) , 40)

where dw is given in (37) for this ficld configuration, and we have
drapped the non-resonant terms.

In & realistic beam. the electrons enter the interaction region with s
random distribution of phases. To describe the evolution of the
entire beam. we msy average over either azimuths! phases, 8, or
longitudinal phases, (&, + k)2, k,2q (since A, >R, in the ultra-
relativistic case). These are equivalent, and performing either average
yickds an answer indcpendent of all initial phases. As usual, the first
order encrgy shift sverages to zero, bul the second-order encrgy
change does not

G _ G _ wle! 1 2% )
g -——E;‘(:omu te 3 sin At

N T
4 {non-resonant ferms) . “n
The gain {defined by (181 &8
8xe*Blo, (
Glr)w e l‘T‘r“'! 1 —cos 4h ~ 4-5- ™ sin AM) “y

An estensive discussion of this gain equation can be found in [10).
has previousty been derived using semiclassical radistion theory (1,
10. 18], quanium electrodynamics [10], the coupled Maxwefl-
Bolizmann equations [19). and the single particle equations of
motion {10, 17, 20]. Although (42} is similas in form 10 the gain
cquation of the cyclotron maser {33), the detailed mechanisms are
quite distinct: the cyclotron maser relies on azimuthal bunching.
while the B, -ficld fases selies on Jongitudinal bunching In the
B, field taser of the text, both these mechanisms are present, but
unul 10 leave a smafler, but non-zeso semnsnt o3 the gain process
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Abstraoct

. This ﬁuper discusses two new devices
which may have application to space de-
ployed solar energK conversfon and trans-
mission systems, the photoklystron” and
the free electron laser. The photokly-
stron converts solar energy directly to
R.F. radiation. 1t operates on the
principle of the ll‘stron with the cath-
ode veplaced by a photoemitting surface.
We have tested a model which oscillates
at 30 MHz. This laboratory model requi-
res two low-voltage bias voltages which
can be supplied by D.C. solar cells.
Concepts for s self-biasing device are
slso being considered. The photoklystron
is expected to be easier and less expen-
sive to manufacture than solid state
solar cells. A photoklystron array
could replace the high voltage solar
cell array, slipring and klystron trans-
mitter in the SPS. The second device,
the frec electron lsser (FEL), converts
energy from a relativistic electron

beam to narrov band eltectromagnetic
energy, tuneable from the infrared to
the ultraviolet., Becsuse the lasing .
electrons are not bound in atomic energy
levels the ultimate efficiency of the
FEL is expected to exceed that of con-
ventional lasers, possibly making lasers
a practical means of energy conversion
and transmission In space systems,

Introduction

As presently concelved, the solar
power satellite (SPS) requires a high
voltage D.C. solar cell array, a massive
hus bar and slipring D.C. current distri-
bution system, and high Eoner klystrons
to generate an ultra-high-frequency ra-
dio energy beam. The use of high voltage
solar cell systems in space is, at hest,
challenging and will certainly lead to
losses from parasitic currents, even at
the geostationary orbit! The massive
siipring concepts being considerved
appear awkward and demanding of -techno-
logy and resourcey, For this reason,

‘ProTessor, Space Physics and Astronomy
Member AlAA

the Rice Space Solar Power Research Pro-
gram has focused on other possible approa-
ches to the solar to R.F. conversion pro-
blem and has examined free electron lasers
(FEL) as an alternative concept, should
the microwave beam prove impractical.

The Photoklzs(tén

We have designed a working model of
a device which converts sunllggt into co-
herent narrowband R.F. radiatign. The
device, called a photoklystron”, tokes an
electron beam from a photoemitting surface
and through electron Kunchlng allows the
beam to reinforce oscillations in a reso-
nant circuit.  The mechanism is that of @
reflex klystron with a photocathode as
the electron source.

Because of the simplicity of the
photoklystron, the cost of production is
expected to be lower than that of solar
cells, and manufacture in space is con-
celvably possible.

A Solar power Satellite configura
tion is envisioned where the R.F., radia-
tion from each photoklystron is beamed
directly to the earth, The potential
advantages of the photoklystron as app-
lied to the Solar gouer Satellite are as
follows:

1. High voltage solar cell arrays are
eliminated.

2. D.h. bus bars are greatly reduced
in quantity.

3. The necessity for sliprings is
eliminated.

4. Lifetime problems associated with
with high power kiystrons are
eliminated.

S. Heat rejection of the R.F. ele-
ments becomes less important.

6. The cost of manufacture of the

M)A Institwie of "e
Avrouetics. fuc., 1999, AN rights ceserved.

photoklystron should be much less
than that of solar cells.

How the Photoklystron Works

Figure 1! is a schematic of the pho-
toklystron. In version (a) solar photons
pass through a transparent substrate and
emit electrons from a photoemitting ma-
terial. The photoelectrons are then
accelerated and pass ‘through a pair of
grids connected to an inductor and on
which an oscillating voltage is esta-
blished. After passing through the two
grids the electrons are repelled by a
negatlive-biased reflector electrode.

They return to the two ¥rlds and are
bunched uccording to reflex klystron
theory?. When the reflection voltage is
adjusted properly the returning bunched
electrons will be phased such as to add
energy to the A.C. electric field between
the grids. This energy from the electron
beam reinforces the oscillations in the
tuned resonant circuit. Ener’y can be
extracted from the resonant circuit by
transformer coupling or bK an antenns
stub in the case of very lgh frequencies.
The version of this device being tested
is designed to oscillate at about 30 MHe.
The frequency is determined by the time
of flight of the electrons during relec.
tion. The resonant frequency of the LC
circuit must be tuned to match this
frequency. Fine tuning is accomplished
by adjusting the accelerating or reflec-

‘tion electrode voltage.

An alternative photoemitter configu-
ration is shown in Figure 1b, 1In this
case, the principle of operation is the
same except the photoemitter is now
coated on an opaque metallic plate and
the photons pass through the grids first.
(a) Ys called the transmission type end
(b} the reflection type. "1t appears

ossible to design a device that uses
Eo!h the transmission and reflection
photoemission processes simultaneously

to optimize the photoclectron yieild.

For operation at higher frequencies, the
A.C. grids may be replaced by s resonant
cavity which is part of a waveguide. As
a vacuum tube the device is idésl for
space application without a vaccum enclo-
sure.

A motivation leading to the concep-
tion of the photoklystron was to increase
the useable portion of the photoelectron
energy spectrum over D.C. solar cells,
While not atl the photoelectrons in the

hotoklystron contribute energy to the
R.F. power (because bunching cannot be
made perfect) we have an approach for
optimizing the averaged photoelectron
energy contribution and the final output
is in a desirable energy form, R.F.
energy.
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FIGURE 1; SCHEMATICS OF TWO VERSIONS OF
T THE PHOTOKLYSTRON

Status

.Rice University has designed a proof-
of-concept working model of the ghotokly-
stron. he device, pictured in Figure ¥,
operates at about 30 MHz. Multiple modes
at higher and lower frequencies can be
obtained by tuning the bias voltages. It
has also been operated at higher frequen-
cies by emrloying s swmaller inductor.
Energy conversion efficiency data are not
yet available, however the R.F. signal
from the first and second upper harmonics



is readily dctected by a small trans-
istor radio several meters from the
photoklystron without @ tuned antenna
and with 10 oW of tight input. The os-
cillations are strong and oscillation
begins readily without a trigger pulse.
The proof-of-concept model described
above uses an S-4 CsSb photocathode. In
order for the photoklystron to be used
in space an efficient photocathode of
high stability at high light levels and
temperatures will be required.

EAGURE 2° THE PHOTOKLYSTRON TEST MODEL
—————— AND IT'S RF SIGNAL

An_SPS Configuration Suitable for the

Photoklystron

With the photoklystron, the R.F. is
generated near the point of incidence of
the solar energy. ach photoklystron is
a transmitter. Moreover, the propagation
vector of the R.F. wave is at a right
angle to the direction of incidence of
the solar radistion. A configuration
must be found in which the entire photo-
klystron array can serve as a large
transmitter array and the R.F. wavefront
can propagate to the earth. This re-
quires that either the solar radiation

or the R.F. radiation be reflected through
90*. One configuration in which the sun-
light is reflected is shown in Figure 3,
The photoklystron arrav need not be con-
nected to the veflector/concentrator.
Moreover, with the attachment of a suit-
able counter-weight, gravity-gradient
torques could be uscd to maintain aligment
of the photoklystron array toward the
earth. Furthermore.the larger transmitter
area should allow a more efficient micro-
wave beam than the conventional 1 km dia-
meter klystron array.

REFLECTOR/CONCENTRATOR
SOLAR ORIENTED
”~

N>
AN
SUNLIGHT i i l
-
—aR.F. TO EARTH
—
§ ——
§ —

PHOTOKLYSTRON ARRAY ROTATES
TO FOLLOW EARTH

EIGURE 3:  , 5oaR POWER SATELLITE CON-
FIGURATION THAT EMPLOYS A
PHOTOKLYSTRON ARRAY. SUNLIGHT IS RE-
FLECTED THROUGH 90° BY AN OVAL REFLECTOR
WHECH MAY ALSQ SERVE AS A CONCENTRATOR.
THE REFLECTOR/CONCENTRATOR PRODUCES A VER-
TICAL CYLINDRICAL BEAM OF LIGHT WHICH
FALLS OM AN OVAL PHOTOKLYSTRON ARRAY
TILTED AT 45°. THE PHOTOKLYSTRON ARRAY
ROTATES ABOUT AN AXIS PARALLEL TO THE
LIGHT BEAM AXIS SO THAT THE ULTRA-HIGH-
FREQUENCY RADIO BEAM REMAINS POINTED AT
THE EARTH, THE ENTIRE PHOTOKLYSTRON
ARRAY 1S THE TRANSMITTING ANTENNA.

The Free Electron Laser

As man begins spending more time inm
space, there will be a growing need for
transmitting energy over great distances.
R.F. and microwave beams spread out in
relatively short distances, but short
wavelength light enables us to beam
energy over larger distances. The dis-

tances 2z over which laser light may be

transmitted without spreading more than
40% is determined by its wavelength, A,
and the sender size, s.

zeas?/A

For a fixed sender size s, the distance
over which laser energy can be effli-
ciently beamed decreases in proportion
to the wavelength of light. Generally,
speaking lasers give an advantage of

10 over microwaves. This can be used
to increase the distance and/or decrease
the sender-receiver sizes., Many ideas
utilizing lasers in space’ depend cru-
cially on the compact size of the beams;
some of the specific ideas involve
powering airbreathing a.rcraft from
space solar power stations, laser pro-
pulsion of spacecraft, materials pro-
cessing, and beaming large amounts of
energy from space to earth for electri-
cal power generation.

Several practical questions remain
unanswered regarding the use of microwave
beams for the SPS. These include bio-
effects, ionosphere and troposphere

effects, R.F, and electromagnetic inter-

ference and the availability of land.
Should microwaves prove ingrnc!icnl.
lasers might offer a suita

Conventional lasers are generally consi-
dered too inefficient. f new device,
the free electron laser (FEL) offers
promise of higher efficiency. For this
reason, we are examining the use of the
FEL for the solar power satellite.

How The Free Electron Laser Works

The free electron laser® uses an
ultra-relativistic electron beam tra-
veling through a static, periodic mag-
netic field in a laser cavity to effi-
ciently produce continously tuneable,
powerful optical radiation. To under-
stand some of the advantages of the FEL,
it is useful to view it as an advanced,
relativistic electron tube. Both avoid
the problems of dealing with atomic
structure, which fixes the wavelength of
most lasers, and causes inherent ineffi-
ciencies. The FEL is a laser reduced to
its bare essentials; only the electrons
and a static magnet field are present in
the laser cavity.

Figure 4 describes the operation of
the FEL. Successive electron pulses (or
a continous beam) are guided through the
periodic, transverse magnetic field.

The source of these electrons may be a
storage rving, a linear accelerator, or
electrostatic accelerator. As relati-
vistic electrons pass through the perio-
dic magnet, they oscillate and radiate
prlmarily in the forward direction. This
light is stoved in 8 resonant cavity
formed by two mirrors; one at each end
of a long periodic magnet. When pulsed,

le alternative.

subsequent electrons are synchronized so
that the stored light pulse and electron
pulse merge together when entering the
magnet. The emission of light in the pre-
sence of light is “stimulated emission";
lasing occurs and energy from the electron
beam is converted into coherent radiation.
It should be noted that the energy density
in a relativistic electron beam is large.
1€ any reasonahble fraction of the electron
energy is converted into coherent radia-
tion, the laser is powerful. Typically,
the fractional energy loss of the electron
beam is small (~1%), so the electrons re-
tain most of their original energy. The
unused electron energy can be recycled in
a8 storage ring or deceleration system.

The relationship between the laser
wavelength, A, and tne magnet wavelength
s, depends on the electron energy E:

A=Ay /BE? (MeV),

neglecting magnetic fleld corrections.

For a 100 MeV electyon beam, the reduction
factor is ~10%, therefore 8 1 cm wave-
length magnet {ields 1 micron radiation.
Furthermore, the wavelength is continously
tuneable by merely changing the electron
energy. Since the lasing medium consists
of electrons, and a statfc magnetic field
in a vacuum, the device is inherently
efficient and powerful.

Free Electron Lssers for Space Systems

The only existing laser of this kind
is presently at Stanford University®.
The laser wavelength obtained in these
experimonts was 3 microns from s 3 cm
wavelength magnet with an overall length
of S meters; the sagnetic field strength
was 2.4 kilogauss. The electron energy
was 40 MeV with peak current of .bout
1 awp. This produced ~10* watts/cm? peak
power in short pulses. The average power
was low due to the limited current avail-
able from the accelerator. These experi-
ments serve to prove the concept and lead
the way toward more powerful systems.
The Stanford effort is directed towards
more efficient operation of the FEL in a
storage ring. Other alternative recovery
deslgns are being proEosed. Studics show
promise that future FEL systems may
approach the efficiencies of their pre-
decessors, the microwave electron tubes.
A recent veport by Bain® reviews lasers
aﬁplled to space systems and discusses
the FEL. Inprovements are immanent in
the peripheral technologies needed for
FEL developaent, particle accelerators
and storage rings.

The efficiency of the FEL depends on
recovery of the electron beam energy.
One of the ideas for an efficient EEL is
to incorporate it as part of a storage
ring as shown In Figure 5. After passing
through the periodic magnet the electron
beam is re-accelerated by an R.F. field
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FIGURE 5: IM A STORAGE RING, RECIRCU-

LATING ELECTRONS TRANSFER
ENERGY FROM AN ACCELERATOR SECTION TO
THE LASER SECTION.

to replace the energy lost to radiation.
The FEL then operates as a frequency
converter uhlcﬁ transfers R.F. power
directly to optical power. (By the way,
the photoklystron Is a possible source
of R.F. energy for this Eur ose.)

The ef(fclency of the FEL and stor-
age ring combination has been estimated
ot around 50%, based on existing storage
rings. The ultimate feasibility of the
storage ring FEL rests on the laser's
interaction with the circulsting electron
beam, and its final operating efficiency
Is yet to be determined. Even though
Storaoge rings are quite massive, §t has
been estimated® that the power/welight
ratio nl?ht be 0.1 kg/kW.  This is sig-
nificantly less than the total solar
power satellite which has becn estimated
at 10 kg/kw,

Another sxstem under considcration
recirculates the electron beam through
an electrostatic decclerator. This
recovery scheme is used in non-relativis-
tic electron tubes. The power may be
collected as a D,C. voltage, or as R.F,
using a series of accelerator cavities
in reverse. Estimates suggest it may be
possible to produce 10 to SO kN of CW
go:er with an overall efficiency of ahout
08,

In parallel with the above, several
researchers are studying improved

periodic magnets with the hope of extrac-

ting more energy from electrons on a

single pass. This s an opportunity

which is not feasible in atomic lasers,

The magnet wavelength, or field strength

can be modified slowly along its length. .
As an electron pulse travels down the H
magnet, and the electrons changes their
energy, the magnet design can change
nnproprla(ely. This js equivalent to
changing atomic structure during the
emission process in normal tasers. While
the constant period helical design tvpi-
cally extracts approximately 1% of the
electron energy, studies of improved
designs have achieved 30% extraction for

a targe fraction of the beam®.

While lasers are becoming an impor-
tant consideration for trnnsm?ssion of
power in space, the FEL is developing into
a promising laser. The FEL is in it’s
infancy, and basic research is nceded to
allow the device to reach it's full
potential. When comparcd to R.F. methods
for transmitting power in space, klystromns,
the FEL can be considered an exteniion to
optical transmission which reduces the
sender-recejver sizes and/or increases
the range. In essence, the FEL creates a
tasing medium In a morc efficient, and
controilable manner than does an atomic
laser; it is a laser with the advantages
of a klystron. Moreover, when used in
tandem with the photoklystron, we have a
system which converts bronsd band incohe-
rent solar radiation into high power,
narrovw band, coherent rldlatgnn and which
is tuneable form ultraviolet to infrared -
frequencies. )

Sammary

. We have described here the photo-
klystron and the free electron laser, two
devices which we feel should be more com-
pletely investigoted for their potential
application to space energy conversion
.and transmission. These devices, used
separately or together, seem to offer
considerable promise of simplicity, hlgh
efficiency and flexibility in choice o
transmission wavelength.

* Patent applied for
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Abstract. We show that a laser can efliciently accelerate charged particles if a magnetic field
is introduced to improve the coupling between the panticle and the wave. Solving the

ic field and superposed.

relativistic equations of motion for an el ina

circularly polarized electromagnetic wave, we find that in energy-position phase space an
electron traces out a curtate cycloid: it alternately gains and loses energy. I, however, the
parameters are chosen so that the clectron’s oscillations in the two fields are resonant, it will
continually accelerate or deceletate depending on its initia! position within a wavelength of

tight.

A luboratory accelerator opcralmg under these resonant conditions appears atiractive:ina
magncllc ﬁcld ol' 10° Gauss, and the ficlds of a $x 10'? W, 10pm wavelength laser, an

(4 ,l

PACS: 42.55

.

High-energy accelerators use electromagnetic fields to

§ el would accelerate to 700 MeV in only 10m.

in a helical path ; il the radiation is circularly polarized. it

transfer energy to charged particles. The ficld gthin
a typical ¢f accelerating cavity is considerably smallee
than can be achieved in modern lasers, so we might
expect lasers to be useful as particle accelerators; in 8
typical laser-particle interaction, however, littlc encrgy
is exchanged. The energy transfer rate is proportional to
B-E,. where Pe is the particles’ velocity vector, and E, is
the radiation electric fictd. E, oscillates so rapidly that
|B- E,| ncarly averages tozero over any macroscopic time
scale. The key 1o achieving large energy transfers is to
make P rotate rapidly (with E ) for long times. Palmer
{13, and tater Komplner and Chowd (2]. showed
that a periodic. s1atic. transverse magactic feld could be
used to“guide” relativistic particles in a helical p.nh and
increase the distance over which the interaction can
efficiently transfer energy.

In this paper. we investigate another “laser accelerator™
scheme : one in which the guiding ficld is a static, uniform
magnetic field. paraliel to the direction of propagation of
the light. Iere. 100, the magnetic field guides the charge

* Supported by NASA Gram NSG-7490

is possible toch initial parameterssuch that pand E,
rc(am their retative otientation through many oscil-
lations, and allow significant energy transfer to occur.
We solve the relativistic Lorentz force equations, de-
scribing the motion of a charge in a static, uniform
magnetic ficld, and a superimposed circularly polarized
plane wave of constant amplitude (Fig. 1). We were able
to obtain the analytic solution, and determine the energy
of a particle as it travels through the interaction region.
For most choices of initial parameters. the encrgy is an
oscillatory function of time ; a particle alternately gains
andloses encegy. {{the parametersaresuch thatpand E,
rolate synchronously, the particle’s energy is not a
periodic function but increases or decreases monotoni-
cally (the sign depending on the initial orientation of p
and E,). If we choose the electromagnetic field strength
and frequency of the laser light such that the interaction
is resonant, then inject a monoenergetic beam of
electrons, half the electrons will decelerate, hall will
accelerate. The final encrgies. and the spread in those
energies. depend on the length of the inleraction region
and the values of the initial parameters.

03403793 79 0020 0061 SOE ()
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Ynifmm Magnetic Field

neoming Laser

Beam pirailing Electrons

Fig. 1. A circularly polarized laser beam can accelerate clevirons
spiralling in a uniform magnetic fictd

1. Particle Dynamics

The dynamics and energy change of a single charged
particle in the ficlds produced by the solenoid and Inser
are governed by the relativistic Lorentz force eq

where { =k,z~ w1t + ¢. The last two equations can be
combined to produce a relation between cnergy arid
-velocily

Al =B )=const =z, . t5)

This constant of motion, determined by initial con-
ditions, describes the velocity of a particle as a function
of its energy. if the energy increases, f, increases: the
transverse velocity which can be expressed in terms of ¢
and j,
gl —
1spiepla 2_"_;‘,_' ®

dccreascs The pitch angle of an acceleraling particle

Fi0P= (5 4BxB_ B, o
dy . e .
ai =1 b E @

where e and mare the particle’s charge and mass, c is the
speed of light, Be and ymc? are the particle's velocity and
energy. respectively, and y~? = -~ p-p. The motion is
influenced by both the uniform magnetic [ficld,
B_=(0.0.8,). and the radiation ficlds, E, and B,
Equation (2) shows that the energy transferred to the
particle will be maximized if the vectors p and E, are
parallel, and retain their orientation over many oscil-
lations. In this field, an el s velocity
vector and the electric ficld vector rotate in the same

. senseilthe radiation iscircularly polarized, with positive

helicity*
E, = Ecostk,z ~ w1 + $). ~sin(k,z ~w, i+ ¢).0),
B, = Eyfsinik,z —w,t + ), costk 2 ~ e, + $).0).

These are the fields of a plane wave traveling in the
Z-direction with frequency w, =k,¢, phase ¢, and con-
stantamplitude E,. Weassume that only a sinall fraction
of the laser energy is transferred to the particles.
Using the fields above, the Loreniz force cquations
become

(&)

d E,

="y _prcosg— Mg (4a)
1 B)= ME ~P)sin {4+ — MB" - (4b)
. I!I y L.

;ﬁ(.l’:)= - III cosy — fi,sin{). (4¢)

!

fﬁm = "' 2B, cos T~ f,sin ). (4d)

' Alm\e.uecmmdcrihemn\linvunu(ntpli\clychargtdparliu’lts.Sin«
positive particles spiral in the opposite sense in B, a radiation field of
negative helicity would be reyuired

as it moves through the interaction
region.

We can construct a second constant of motion by taking
$. and B, from (4b) and (4a), respectively, substituting
these results into (4¢), and extracting the overall time
derivative. The result is

nsAn I—%ﬂlmsinom =const, )

where

4w =lelBo/yome — (1 - B, ),

wy={elEofrome, and yome? and B c are the electron's
initial encrgy and f-velocity. 8(1) is the angle between
the rotating clectric ficld vector and the rotaling
perpendiculas component of the electron’s velocity
vector: f-E, =8, E, cos. As the energy of the particle
changes, the orientation of these vectors must also
change. The nonlinear charac(er of the system is
pp: : this changing ori ion fecds back to
alier the rate of change of energy.
We can use (6) and (7) to write #,(¢) and 01) in terms of
1), then substitute these results into (2) to get a first-

order differential eq for the el energy as a
function of time

d Y

T):'—')=—,Tg[w:ﬂr,‘—:’—l)—Jm’ly—q)’]' 1, (8)

The more relevant quantity is the cnergy of the electron
asa function ofits distance down the accelerating region.
From (5),

di=[; - o)dzie.
Then, integrating,

()‘DJm

):=|—('I*2ri-}"|' 2
¢

—1r-4:lsiu"(i )]
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where
1_qp2 w}
q=-n'~(c ‘H’A-;;” ren+ond/do?,

and the right-hand side must be evaluated at the fimits of
integration y and y,,.

This form of the solution is rather unwietdly, and can-
nol be inverted analytically. However, it is possible to
rewrile (9) as two equivalent parametric equations

{~do=ay~beosy,
I'=a+bsiny, o
where

(H)';Am:/t. Iey—e, a=r-g,

and

b=irteq)t:

¢o. determined from the initial conditions, is
So=[b"=(a+e—75)1)"? +asin"" [(a+s—y,)/b].

and y is an arbitrary angle. These are equations of a
“curtate cycloid”, and generate the curve shown in
xFig. 2. from the properties of curtate cycloids, we can
n d -’ luahle inf: ion on the be-
havior of y as a function of 2. First, the curve is periodic
in 2. The electron alternately gains and toses enetgy, and
the dist b encrgy ims {minima) is 2xa.
The maxi energy obtained is I’ =a+b, or

Yo = + e0}/ d0?

2 (1]
We {1 Wg
t ol z*.;M’-'fhn) . an

Similarly, y_ . =a~b+e The mazima occur at
S=(n 4+ Nan/2+ ¢y, or

[ an
1:-;_-..." m(“""")‘? +en'-
n=012 ., 2

The maximuin of the curtate cyloid depends on severa?
parameters. tn particular,

(8) ¥y will increaseif the power of the taser is increased.
(b[ Yonaa Will i ifthe injection angle (and therefore
t) is increased. This is apparent from (2)and (6). As y
g[o:yf. f, asymptotically becomes proportional 1o
v As the electron accelerates, it loses transverse
velocity, and the acceleration process “turns off™.
Therefore, if iwo elecirons are injected with the same
energy but different pitch angles, the electron with the
l::.vgcr pitch angle can accelerate longer, and achicve a
higher energy.

(€) Yok ifldwlisd d. Thisisillustratedin
Fig. 3, and will be discussed in detail below.

E ,
£

Lengih Parameter, ¢

Fig. 2. Equations {10} generate a curtate cycloid, the path traced by a

point intide a circle as that circle 1olls along the I-axis
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+ Fig. 3. This family of curves illustrates the inftuence of the parametey

w=lriBy/yyme —(1 B, kv, on the amplitude and period of the
energy cycloid. If B, =0, |dwfsd is large, and the particle energy
wdl:nu: ugy‘kny. 1 |4 is decreased (eg. by increasing Bg), the

200 Mas leration is

3od of th tald i

thecy

achieved if dosm0

Fmi.n(Z). we expect maximum acceleration for negative
particles (e= —{el} if p and E, antialigncd (@=n). In
general, their relative phase evolves in time, but under
certain conditions that evolution will be slow, and the
two veclors can rotate nearly synchronously. Physically,
we expect them (o be synchronous if exactly one
wavelength of light passes over the electron as it travels
through one complete osciflation. In the magnetic field
alone, the electron would oscillate with the cyclotron
frequency w, = Je|B,/y,mc :asit spirals down the z-axis, it
sces @ Dopples-shifted radiation field of freq y
w,(1 - p,). The parameter Ao is the difference between
these frequencies.

The family of curves in Fig, 3 shows the dependence of
Nz} on 4w For a given laser and electron injection, dw
can be varied by varying the magnetic ficld strength, If

o A Laser Accelerator

Particle Density

Vm‘z Mevi

0 50 oo
Temd
Fig. 4. An eleciron entering the interaction region with 8, »x and
Aw =0 experi i Teration, y2) is plotted assuming

2=001 and y, = 50. The electron reaches an energy of 700MeV in
10m, All electrons with initis! phases between =/z and 3a/s are
sccelerated. The inset thows their final energy distribution (~0.1%
FWHM)

By =0,{4w]is large ; the cycloid period is short, and onfy
minimal acceleration occurs?, As By, is increased, |do)
becomes smaller ; both the cycloid period and maximum
clectron energy then increase. Finally, if B, is chosen
such that dw =0, we find that y{z) is described by a
ycloid of infinite wavelength, and continues to i
with z. We can examine this casc further by setting
Aw=0 in (8) and integrating

¢ \ey-2-2)

wherey,mc? is the finalenergy of the electron. In the limit
that y, is large, the enctgy increases as 2%,

Ifa he N |§c|;\, beam of electr is
i d into the i region with 4w =0, the
energy change of a particular electron depends on its
initial position within a wavelength of light : those with
0, between n/2 and 3n/2 are accelerated, the others are
decelerated. From the synchronism argument, we know
that those with 0, = n initially experience the greatest
acceleration. But(7) indicates that if sw=0and f,=n,
Az})is constant: Pand E, rotate at exactly the same rate,
and the electron continues to experience acceleration.
This would be true for all initial phases if the electron’s
oscillation [requency were determined solely by the

T Note that energy is exchanged in the absence of a static magnetic
ficld, The laser could be used alone 10 accelerate patticles, bul the
encrgy transfer is small

static field. But the laser ficlds influence its trajectory,
and, in g 1, 82) evolves as the el travels down
the interaction region. In the special case 4w =0, (z)
does not oscillate, but evolves monotonically toward =.
Although the accelerations felt by electrons with dif-
ferent initial phases can be initiafly quite different, their
phases evolve rapidly and are soon all near r. The
electrons’ energies then evolve at nearly the same rate.
Figure 4 shows the energy as a function of interaction
ilength of an electron injected “on-resonance” (4w =0,
8, = r}; the sketch in the upper corner shows the final
energy distribution of the electrons from a homo-
geneous, monoenergetic beam with initial phases be-
tween n/2 and In/2. A ing a static ic field of
10° Gauss and a $ x 10'? W laser with a wavelength of
101m, we (ind that an electron injected with y, =50
could be accelerated to 700MeV in only 10m?. The
distribution of final energies of those accelerated elec-
trons is narrow: ~0.1% in the above example.

2. Discussion

Equation (9) is an exact analytical result, describing the

" acceleration of an electron in a uniform magnetic field

and a circularly polarized laser field. Efficient energy
fer is possible b the magnetic field guides the
electron through a spiral trajectory, and thereby im-
proves the coupling between the particle and the
radiation field. The electron’s energy is, in general, a
periodic function of 2; as the rate of rotation of §
spproaches that of E,, the maximum energy that the
electron can attain increases. If P and E, rotate syn-
h ly, the i ction is ; under these
conditions, half the electrons in 8 monoenergetic beam
decelerate, but half accelerate. Those that begin to
sccelerate continue to accelerate, and can reach ex-
tremely high energies over laboratory distances. In the
timit of large energies, (15) can be inverted to find the
asymptotic form for y as a function of 2

eE\ [ A\ (eB V] ais
7~ ) T 1o
where A, = 2xc/a, is the wavelength of the laser light, and
(S) with Aw =Ohas been used to write sin terms of B, and
A, To maximize y{z), we should maximize B, and choose
the laser 1o maximize the product 4, EJ. As technology
progs higher lab gnetic fields, and more
powerful, longer-wavetength lascrs will make an accele-
rator based on these principles quite attractive.

An edditional int on the p s, not em-
bodied in (17), is that the electron must remain in the

* The electric field strength £, bs related to the laser power P through
the beam diameter &: P/e = (E,4/4)". ln theexample in the text. a besm
diameter of 0.5 cm (or greater) will remain substantislly constant over
the Rayleigh range of 10m
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laser beam ifaccelerationisto inue. Thisimplics firsy
that the laser pulse must be sufficiently long that the
radiation docs not pass completely over the electron

- before the end of the designated interaction region. In

the example considered above, a 107t 5 lases pulse will

led to the el over the 10m length.
Second, lhe diameter of the electron’s spiral trajectory
must not become greater than the diameter of the laser
beam. In the asymptotic limit, d=2|/x* + y* grows as
11 In our example, d_,, ~0.2¢m, so the laser beam
dinmeter is determined mstcad by the Raylelgh range.
In the above ! i
spiral through a ftw hundred helical cycles while being

4B/B,, should be less than ~ 0.1 %, and the optical wave
should be coherent over ~ 1000 wavelengths. These are
not stringent constraints.

The calculation presented here is also applicable to
certain situati ide the lab y. Fore '
our results could describe the interaction of whistlers
(very low frequency waves in the magnetosphere) with
the charged particle spiralling in the carth's magnetic
field. This mech has been proposed as a means of
precipitating electrons from the radiation belts {3].
Further, it has recently been shown [4] that free clectron

d with y,=50  fascractioncan be sustaincd in a uniform magncuc field.
If coby diation is p duced, I‘or example, in the
gocetic ficlds iated with p or quasars, this

accelerated. We assume that during this leration the
electron beam evolution is not influcnced by collisions :
since the injected beam is relativistic, the eflects of
Coulomb interactions are quite small (and can, of
course, bemade assmallas deslred by reducing the beam
density). Tomaintain theop feration (4w x0)
in a practical hine, the inh ities in the
magnet and laser ficlds must be small enough that they
do not cause the relative phase of § and E, to evolve
significantly (< x). This implies that, for our example,

acceleration mechanism could operate over astrophysi-
cal distances.
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ABSTRACT

The modes of a free electron laser evolve from the spontaneous
radiation emitted by relativistic electrons travelling in "small
pitch angle" helical orbits in a magnetic field. The details of free
electron laser operation depend on the angular and spectral characteristics
of the emission spectrum, and laser gain is prdportiona] to the slope of
the spontaneous emission line.

We first obtain an exact, fully relativistic expression for the
radiation emitted by a charge travelling in a finite helical trajectory
(the finite length of the trajectory determines the spectral line width).
We then examine the specific case of spontaneous emission in a free
electron laser where the narrow radiation cone continually excites a
detector on-axis at infinity. The result is a spectrum of sharp, well-
~ separated harmonics, at frequencies that depend critically on the
observation angle. We discuss the spectrum for electrons guided by
- (1) a periodib, transverse magnetic field, and (2) a uniform, longitudinal
magnetic field, and show that a knowledge of the spontaneous spectrum,
and its debendencé on the field parameters, could be exploited to tune
the laser, or induce. gain in the higher harmonics. ‘



I. Introduction

In a free electron 1aser,1’2’3 highly relativistic electrons are guided
in helical orbits and forced to emit spontaneous radiation. The laser mode
grows from the spontaneous emission "noise" because this radiation acts
back on the spiralling electrons to stimulate:further emission. The prOp-'
erties of spontaneous emission are obviously crucial to laser operation.
Since these lasers employ electron beams (produced by modern high energy
accelerators or storage rings) which are nearly monoenergetic and have
Sma]] angular divergence, the detailed spectral properties of the narrow
radiation cone are not washed out, If the laser is to realize its full
potential, these spbhtaneous emission features must be understood and
utilized.

Work on the problem of spontaneous emission by a charge in periodic
motion dates back to 1912, when Schot't4 derived the spectrum of radiation
produced by charged particles in relativistic and non-relativistic circular
orbits. These results were re-derived and extended by Schwinger,‘s and have
been discussed more recently by Takakura6 who also considered particles in

-helical mdtion;7 The type of radiation analyzed in this work has been

discussed by Epstein8 in connection with astrophysical objects. In 1951,
Motzgk(and, more recently, Kincaidlo) showed how helica]\motion can be
harnessed as a 1aboratory radiation source, and Co‘lson3 related the process
to the free electron laser.

In the present paper, we first obtain the exact, fully relativistic
description of the spectral characteristics and angular distribution of

" the radiation emitted by a classical charged particle in a finite helical

orbit. The finite extent of the trajectory is an important consideration,



and has not been included in previous works. We relate this general result
to limiting cases derived elsewhere, then focus on radiation emitted by the
highly relativistic electrons in a free electron laser as they spiral
through their small pitch angle trajectories.

The resulting radiation, an interesting composite of two well-known
1imiting cases (emission into a single frequency by non-relativistic
circular motion, and emission of a broad synchrotron spectrum by relativistic
circular motion), is emitted into a few narrow, well-separated harmonics at
multiples. of the fundamental emission frequency. The details of the
discrete spectrum depend crucially on the observation angle; and several
"harmonics" may be observed at a sihgle frequency by varying the observation
angle slightly. Radiation into a small detector can therefore be continuously
tuned over a wide frequency range by simply changing its angular location.

The properties of the spontaneous radiation can be used to good advantage
in the operation of a free electron laser. For example, the oscillator
~ mode could be changed by storing and amp11fy1ng radiation emitted slightly
off-axis. This cou]d allow continuous tuning of the frequency over a small
range, or operation at significantly shorter wavelengths by inducing gain
in the higher harmonics. Furthermore, 1t has been shown (both theoret1ca11y
and expelr"lmenta'll_y.I ) that free e]ectron laser gain is proportional to the
slope of the spontaneous emission spectral line. It is the finite length
of the trajectory, the number of oscillations the charge undergoes, that
determines the spontaneous emission line shape; this feature is essential
if the spontaneous and stimulated emission prdcesses are to be related.



II. General Expression

In this section we calculate the intensity distribution of the radiation
produced by a charged particle travelling in a helical orbit. Motion in a
helix of radius a, with angular frequency b, is described by the equation

re (a..cm(l,t'h() a co(btro), get) « (x,4,2 2,) (1)

This is a general expression, and assumes no particular form for the fields
producing the motion; in particular, this motion could be produced by a
uniform magnetic field, a spatially periodic magnetic field (as in the
existing free electron 1aser at Stanford’ ), or a time-varying electric
field. In (1) (xo, Yoo zo) is the initial position of the charge, 8,C its
ve]ocity+along the z-axis (a constant if we neglect the effects of radiation
Tosses). ' '

If the trajectory of the charge is known, the Lienard-Wieckert potentials
provide a complete description of the resulting radiation fields (neglecting
radiation reaction). The intensity distribution in the radiation zone is

d=_r(:.>)= e*w lfnx(nx‘a)ew(t ‘._*) lz

do dw T dt (2)

where Jff/élﬂa&u is the energy radiated per unit solid angle (A4) per
unit frequency (9(0) lgc = d7/dt is the velocity of the radiating charge,
and 0 is the d1rect1on to the observer. Although the explicit dependence

on the charge's acceleration has been removed by'partia] integration, there is

no radiation if the velocity is constant; the integration should be,performed

over the time interval during which the charge accelerates.

The integral in (2) determines the character of the radiation emitted by

+In the free electrgg'1aser operating at Stanford, the spontaneous power emitted
amounts to only 10 © of the charge's total energy.



a charge in a particular trajectory. It is possible to make substantial
progress toward a solution without reference to a specific particle trajectory.
First, notice that the radiation can be.decomposed into two linearly polarized -
components. Taking the scalar product of the vector integral with each of

two unit polarization vectors enables us to calculate the intensity distri-
bution of radiation with these polarizations, This decomposition not only
yields information on the polar1zat1on of the radiation, but also great]y
reduces the computational complexity of the problem.

We choose the polarization vectors to be b ( & measured from the + Z-axis)
and 4’ ( ¢ measured from the + x -axis), the unit vectors transverse to n.
Writing the vector integral (2) in terms of components along 6,3, and ?,
and using vector identities which relate the members of this right-handed

tr‘iad, aﬁ ( A -' ;-;) Z
. . 4 o N t 4
J!I e%‘g “f A = 2160 t -‘—' A tl-? r
4 22 J5|céF)e +?’ ?)e< At
dadw 97°C __( /4 o _ ( f ' (3)
The absense of a component along fi reflects the fact that the radiation fields :
‘are transverse. Equation (3) can be rewritten as
AL _ ‘(.zra . d.zI.f . : A4~'
Andw  dodw | dedw (4)
s : A A
where I, and I, are the intensities of radiation polarized along €and ¢ ,
respectively. Writing these exp]icit]y in terms of the observation angles .
L A .eaa-_‘.”) A |
EfJ = yﬂ.gc -m&mi’ FI :l't - w&4“ V/F e:D( C ﬁt’ z‘
- ’ = to(i‘- ir_-?) }
*-4{j%# At - (5)
2
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To this point we have made no assumptions about the trajectory.

To obtain the radiation emitted by a charge in a helical orbit, sub-
stitute the trajectory, (1), into (5). The transverse velocities, By and

By’ are trigonometric functions of time, and B, = B2o is a constant. The



periodic nature of the motion enables us to write the limits of integration
in terms of the number of oscillations, N, that the charge travels
through (if the charge accelerates fromt = -oco to t =00, N is infinite).
It is N which determines the width of the spontaneous emission line.

To evaluate the integrals in (5), use the Bessel function identity
; _ in’§ zn'ﬂ‘/z .
it 2 (706 o . (6)
R A 2mpe

This extracts the time dependence from the arguments of the trigonometric
functions, and leaves us with the fo]1owing integrals to perform:
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where A’ = exp [- %ﬁ’(x,,e»;&g,cf +‘7..4A&Aé.$’+z~,cag is a phase and
depends on the initial conditions, Jn,(g') is a Bessel function of order n’
and argument & = (wa /D)o, L= &(1-g,, c08) , and the integration
variable is now » = bt. :

To put these results into a more physical form, we re-sum the series
to collect the contributions to the intensity at a given frequency. We
introduce Kronecker deltas in a new index, h, and rewrite equations (7) as,

A= zlg%ﬁ Z- .om[ﬂﬂ'(/'lv)] 8-11-(-“?-?)( (5) - (sa)

he=po ( h)

sab ¢ ”4»}.[&11‘( "l')] -:l.(‘“‘{-ﬂ') -z(v. ,(y )
S A2 Tr o T e [T T ()= T 6] (o)

_ e:— Z", “‘[‘m(}-‘l')] -3‘(’“""”_.)[e;z.(?-ﬂ‘)(.')h"'T (g)

= % e
dr=p (/ }') (8C)
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In terms of A, S and C, the intensity distributions are,
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When A, S, C, and their comp1ex conjugates, A*, s*, and C*, are substituted
into (9), these expressions exactly describe the radiation emitted into the
radia_tion zone by a charge oscillating through N periods of a helical trajectory.

_ Equations (9), though exact, are unwieldly. Although the overall phase
disappears (A*A = 1), the intensity distributions depend explicitly on N,&,¢




and @ , as well as the parameters of the trajectory, through products of
infinite sums of Bessel functions. We have evaluated the expressions
numerically to study the intensity, po]ariiation, and harmonic structure
of the radiation as a function of both frequency and observation angle.
Figure 1 shows the intensity distribution, as a function of & and &, for

- a particular choice of initial parameters. This particular case is appropri-

ate to the radiation emitted by the relativistic electrons in the free
electron laser, and will be discussed in detail later. Before addressing
the detailed properties of the radiation, we will make some approximations
which enable us to proceed further analytically, and reduce (9) to a more
tranéparent result. The computer results, generated from (9), can be-used
to verify the validity of our approximations in the regimes of interest.

In particular, we will first investigate the role of the parameter N,

"the number of oscillations the charge goes through, and determine when the

large N limit is appropriate. As noted above, the intensity distributions
involve products of infinite sums of Bessel functions through the factors
A*A, S*A, etc. Each term in each sum over h contains a factor ]

ain Lo (& —0)] |
( i "F)"
We defiﬁe
| A - (alh | |
> - 6“()\) s (A) . . (11)
c l.;o- < (h) ) )

. ,). . . - o B
and rewrite the intensity distribution displaying the double sums,

o -

d"°T, e Z Z pﬂ(},)S‘(/-')j;(ll,lli) ' (12)

dadw ~ ek’

ha-o» "l-”

where j; is related to the bracketed terms in (9):

T (hh) s 0in?? ALY () + oot PR CLN) = ot ¥ com L RIS(H) + %K) ()]

4T, ‘
i can be written in a similar way. The double sum in (12) can formally

be rewritten as an infinite series of single sums
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o = T ) l) $(1,8) + Z r{:.)e*(w)fa k1)

s -0 he-e " (13)

+ Zs"(l.)c“(l.rz).ﬁ(/a, be2) + ..... -
IR - . _

The size of each term depends on the overlap of the functions &(A) and s°(4').

This is clearly a maximum for h = h/, and decreases rapidly as ah = | h-}|

- increases. .J cantherefore be thought of as a perturbation series, with

Ah the parameter which determines the "order." To evaluate the relative

sizes of the terms note that ¢ (h’) peaks at a frequency w= AA'(I—,S,,Mé‘)

- and has width = 1 /N - For relativistic motion nearly along the z- ax1s,

the separation between a‘(h) and ¢*(h’), for the lower harmonics (<N ),

is much greater than the i/N width, Even for small N, the over]ap is

. small, and is negligible for N = 10. Note that N-»ee, the sum reduces exactly

to

4 - Zs“(}.)f(‘)f(tl) | e

ha=-o0e

The first order correction, 'for finite N, is just the second term in (13).
Further, since ¢'*h) is a sharply peaked 'function' for large N, the harmonic
frequencies are centered on ( /b -£)=o;_the argument can never vanish for
h< 0 (since » must be pbsitive), therefore the sum can be taken over positive
values of h. '

In the approximation (14),

4? I, w® ain [‘:‘”‘( ("/’aw) -4 )]
Zado " 4T e bt (£ (-, cv0)- 4)

[z/s,. a»e-f(;')+ C

. "Lc”&'(lf ()+T (;))_']
(15)

411-,‘ et o Mﬂ‘( (1-,@,.%0') -0
do b Y (b (l-'f%-cpa)-‘)

(42) [r ()+ T ()-27 ()T ()]

These results are independent of ¥ . The exact answer (9) does not
have azimuthal symmetry because the trajectory has a finite extent: a



"beginning" and an "end."



III. Limiting Cases and Previous Results

It is easier to pick out the features of the spectrum from (15). First,
if g =0 (the particle moves with uniform velocity g c), there is no radi-
ation. '-Second, the on-axis result reduces to

LT . etw? oo ‘[yi‘(‘?‘(l-fa‘ D] 2224 2, j_,__ (o
J.ﬂ-lﬁ) /0'10 - qﬂ' © L‘ g [ (l /‘éo) /'7 ( )(J;H( )+ Aot D (]6)

Both polarizations contribute equally (circular po'larization) as would be
expected from the symmetry of the orbit. Since all Bessel functions
except ‘Jo vanish 'at'.‘z'ero, only h=1 contributes to the sum: all "harmonics"
vanish on-axis, and there is radiation only in the fundamental. The
frequency, u-L/(:-p”),selected by the delta-function is easily understood:
cyclotron motion producés radiation at harmonics of the orbital frequency
b; since the particle is also moving along the 2Z-axis, this frequency is
Doppler-shifted to the va'lug' above.

We can, of course, reéover the cyclotron spectrum from (15) simply
by letting §°'= 0. In this Hmit

2z e mr( -4) 2 '
A dw {, v 'qr ‘Z : [ (I+c»’o)(3;:(%_béﬁ)+ e (Aa&..a)) (17) -
-2 -- LIPRY I (%““‘;‘9)3;_! (i:‘:bai-&)J

As N-eo , the Tine shape approaches that of a delta-function and we obtain,
after some manipulation of Béssel functions, the power (per cycle) emitted

by a charge in circular motion into a particular harmo_nic”‘f'
df ek * 1% s co? 8
£ O e pesin] o
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Returning to (15), we can evaluate the expression for &-#/2 , an observer
in the plane of the circular motion:

diL _ ab '“;‘tﬂ(%‘l') T 9_ uA-]
Jﬂa/w&' WI‘CL‘( )hg (2-4)? ,W»C- ( )

In the non-relativistic ]im1t, ab/c << 1, and we can expand the Bessel
functions to obtain the result that radiation is emitted primarily at the
particle's orbital frequency,o= b, For extreme relativistic motion,

ab/c = 1, and the argument of the Bessel functions is no longer small. We
therefore expect radiation into the high harmonics. Further; since

the width of the lines is ~1/N, harmonics with h= N will overlap and produce
the broad, "continuous" spectrum normally associated with synchroton
radiation. ' : |

(19)



‘IV. AppliCation‘to the Free Electron Laser

We now turn to the specific limiting case of 1nterest in this ‘work:
that which applies to the operation of free electron lasers. The laser
mode grows from spontaneous emission radiated by the.relativistic electrons.
The intensity of the spontaneous emission which will contribute to a par-
ticular oscillator mode is found by integrating (9) over the angle and
frequency which define that mode:-

E: ff.,au dade T @

The expression for.anﬂlilv can be simplified when we make the appropriate
approx1mat1ons. The electrons are injected in such a way that their motion
along the axis of the helix is h1gh1y relativistic while their motion transverse
to the axis is not: g =1 , and g =7 4% ..4 . Because of these con-
ditions, the radiation cone (with angular width - ¥ ') is directed nearly

along the axis of the helix. Assume ¥ 1is large; the pitch angle of the

helical motion will be less than the width of the radiation cone if:

a.& ' '
| (= )<(l ,-*’a,)'-‘}; | (21)
where 2,_/141, :
If this condition is met (as it is, for examp]e, in the free eiectron
laser at Stanford), a detector placed on-axis at infinity receives radiation
continuously. Assuming that the electron oscillates through many cycles -
in the magnetic field, this detector is able to resolve the Doppier-shifted
frequency of the motion.+ The Tine shape and angular dependence of radiation

*This d1st1ngu1shes the radiation produced in this process from normal
synchrotron radiation, in which the radiation cone rotatés through 2Tat the
fundamenta] particle mot1on frequency (the "search -light" effect).
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are both involved in the .in*x/z* factor in (15). This factor is essentially
a §-function for N3220, so the spectrum consists of sharp spikes. The on-
axis (&= 0) spectrum contains only a sharp spike at & =8/(1-4.) . There
is no radiation in the higher harmonics (the argument of the Bessel functions
vanishes at &= 0; J], corresponding to fundamental, is the only contributer
to the spectrum).

As the detector at infinity is moved slightly off-axis it records a’
different spectrum. Since the radiation cone wobbles about ¢ = 0 as the
electron spirals down the magnet, the detector samples (in a periodic manner)
different regions of the cone. Off-axis the sampling is asymmetric (radiation
from some parts of the orbit is sampled more often than that from others)
and harmonics appear in the spectrum. The harmonic frequencies are given

by

) 17 244 r:'
aJ;. -(“l‘?'w&) d “_();.9)2: | . (22)

{the approximate relation is true for.¥ large and fﬁ,=‘i ).

For a given detector location (a specific &), the spectrum will consist
of a series of spikes at the frequencies in (22) corresponding to h =Q1, 2,-
-3, ...). As the angle is‘changed, the spéctrum is changed. Although the
radiation is emitted primarily into angles &5’ , even slight excursions
off-axis produce significant changes in the frequency. For example, the
frequency of the "fundamental" (h=1) goes down by a factor of 2 from &= 0
to &= ¥_' . This dependence of emission frequency on angle for the first

ten harmonics is shown in figure 2.

The fundamental is found at the locus of points satisfying (22) for

~ h =1, the first harmonic appears at the curve generated for h = 2, and so
on. If we were to plot a third dimension, £ 7424w, coming out of figure 2,
each value of h would éorrespond to a thin (width~1/N) "curtain" of
radiation. These curtains are sketched in figure 3.

We now examine the intensity of the radiaiton emitted into each harmonic
(the "height" of each curtain); this is a function of the observation angle,
and will change if the parameters of the electron trajectory are changed.

13
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The amount of radiation emitted at a given frequency and éngle is weighted by
the Bessel function J($) in (15). Using (22) at the emission spikes, and
the small angle approximation (valid in this regime),

&7,
$= 274 (%)n(g’)‘ (23)

From (2) we know that & is less than unity. When it is very small, Jh=1

is the main contributor to the infinite sum in (15) and emission (at all
angles) is primarily into the fundamental. This is illustrated in figure
‘4(a): the higher harmonics are small. Note again that the frequency of the
“fundamental" (the radiation associated with h = 1) changes with angle.

When <€ is near unity, (figure 4(b)) the ratio ﬁuu?g, is higher, the oscillation
~ is more pronounced, and emis§ion into the harmonics therfore becomes more
important. The overall scale of figure 4 (the heéight of the "curtains")
depends,-of course, on the electron's acceleration. As either b (the
oscillation frequency) or a (the orbital radius) increases, the intensity
increases. The total instantaneous power can be computed exactly using the

relation
é

2 Ve"f "‘ — | ‘- ] j _
P =< S . ) f F3 (& .-)‘3- ‘ (24}-.
For a chargé in a helical orbit, (1),

ot 2, Y - .z , |
»,og ;(%‘r‘_)(%;‘)[l_ﬂ‘z)_ 4_5_‘_.5“1,‘(2(51.‘4-4))] - (25)

Our results, to this point, have been formulated in terms of the
parameters of a helical trajectory; we have made no reference to the fields
which produce that trajectory. We now consider two particular field con-
figurations which guide particles in helical paths, and could be used in
free electron laser design: a periodic transverse magnetic field, and a
uniform longitudinal magnetic field.

1) Periodic Transverse Field. This is the field configuration

employed in the Stanford free electron laser. The relativistic
electrons are injected nearly along the symmetry axis (z-axis)

14



of a field B= 8, (c» %% 4% o ), which is periodic in z (with
wavelength 2 =27¢/,), and has strength 3, (in the Stanford laser,
A =32 em, B, =2.4x07 Gavss ), The electrons
follow the helical paths of (1) with

w,e
“ g, bt 2
where «,: e8, f¥me , and fe, ¢ 1is the electron's initial z-velocity.

2)  Uniform Longitudinal Field. It has recently been shown]3 that laser
action could be sustained in a magnetic field of the form Z- 8,(0,0,1),

Again, relativistic electrons injected nearly along the z-axis will
follow helical trajectories; in this case, the orbit parameters are

o A
- ' = O, 27
a w’ . ) [ ‘ ( )
where again w, - eg, /rme, and fuo © is the electron's initial
transverse velocity.

With (26), (27),'énd the results of this and the previous sections, we
can immediately describe the spontaneous emission of a particular free electron
laser in terms of its magnétic field structure.- The frequency of the radiation
is, of course, determined by the Doppler-shifted frequency of the particle's

- motion: .
Periodic Field . ~ Longitudinal Field B
h 20 w‘ A . Aw‘
14) z : w - e e
V(7 4, co®) hS (= fa con®) (28)

In the periodic field, the field strength has no affect on the emission
frequencies--those are determined by the periodicity of the field. In the
longitudinal field, however, the emission frequencies can be "tuned" by
dhanging the field strength. The two lasers would operate at quite
different frequencies for a given electron injection scheme and a given
 field strength, 8, . In the Stanford machine, electrons are injected with
Y=so , and emit on-axis radiation into the fundamental mode at a wave-
length of ~ 10 microns; those same electrons injected into a longitudinal
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field of comparable strength (-2,4“x ]03 gauss) would radiate at ~ 500
microns (at &= 0, h = 1).

The intensity of the radiation, and the relative importance of the
harmonics,‘depend on the parameter 2b/. In the helical-field free electron
laser, abd/e = wp/e, . This suggests that a larger fraction of the radiation
is emitted into the harmonics if either the period of the imposed magnetic
field, or the strength of the field, is increased. In the longitudinal
field, ad/c-f., : the combination of the electron's energy and injection
angle determine the intensity (indirectly, since p.. determines N, the number
of oscillations over a fixed length), and the relative importance of
harmonics (since Puo controls the wobbling of the radiation cone in
detector plane).

Either of the above lasers is continuously tunable: the operating
fkequency can be changed by changing the electron energy or the periodicity
of the field (in a periodic field) or the field strength (in a longitudinal
field). It is also possible to tune the laser by adjusting the mirrors
of the cavity to store and amplify radiation emittéd into some small,
off-axis angle & .. Selecting & selects a freduency. This may be an
- advantage for lasers operating in storage rings; where the detection angle
can be altered more easily than the electron energy.

‘The off-axis radiation may enable us to extend the operating range
of free electron lasers to shorter wavelengths. At all angles except #= 0,
there is emission into many discrete, well-separated harmonics. It should
be possible to induce laser gain in these higher harmonics3, and therefore .
operate the ]aser at much higher frequencies without altering the field
structure. ' - ' |
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V. Discussion

Wé have derived the spectral and spatial characteristics of the spon-
taneous radiation emitted by a charge in a helical trajectory of finite
length. The charge could be guided through this orbit by any one of several
field configurations: a 1ongifudina]-magnetic field, a périodic transverse
magnetic field, a periodic (in time, or in one space dimension) electric
field, or a circularly pq]arized'light'wave. Our exact analytic result,
(9), is formulated in terms of the parameters of a helical trajectory;
writing these parameters in terms of the fields producing the motion
immediately yields the spontaneous emission in as a function of the fields.

The character of ‘the radiation depends crucially on the pitch angle of
the particle trajectory. If the pitch angle is large (/g,,yg, >4 ),
the radiation cone of a relativistic charge sweeps through the detector,
and the harmonics cannot be resolved: the result is a broad, synchrotron-
like spectrum. As the pitch angle decreases, the radiation cone deviates
less and less from the forward direction, and harmonics characteristic of
periodic motion can be resolved. If b % 5?', a detector near &= 0 is
always illuminated by some part of the radiation cone; the spectrum it
sees consists of sharp, well-separated harmonics, at frequencies which
depend critically on the observation angle. This particular limiting case
‘describes the spontaneous emission from a free electron laser.

The radiation produced by the electrons as they spiral in the fields
of a free electron laser cavity is funadamental to the laser's operation.
It is stored in the cavity, and can therefore act back on the electrons,
stimulating further radiation and resulting in laser action. In a future
paper, we will include the spontaneous emission "noise" in the laser
evolution equations. In this paper we were able to derive the spectral line
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shape, which relates the stimulated emission rate to the spontaneous emission
rate, because to get (15) we integrated over a finite number of oscillations.
The free electron laser gain is proportional to the slope of this spectral
line.

If the features of spontaneous emission are understood, they can be used
to great advantage in free electron laser technology. For example, since
" the free electron laser employs an overmoded optical cavity, the laser
modes are not determined by cavity"modes, but by the spontaneous emission modes.
It should be possible to make use of the off-axis properties of the radiation
to tune the laser, either by amplifying the off-axis radiation into the funda-
mental modes, or by stimd]ating gain in the higher harmonics. Harmonic gain
should éxtend the operating range of free e]ectrdn lasers to considerably
shorter wavelengths.

An understanding of the spontaneous emission process is important to
an understanding of the stimulated (laser) process in free electron devices.
It is also possible to run this argument in reverse: stimulated radiation
(from an external laser beam) could be used to probe the intricacies of the
spontaneous emission spectrum. If the laser were tuned to the appropriate
frequency, it would stimulate further emission from the radiating electron
beam; the "appropriate frequency" is a function of angle and "harmonic,"
as discussed above. The spontaneous modes could be mapped by slowly sweeping
the external laser beam through angle and frequency, providing a means to
. study the angular and spectral characteristics of the spontaneous spectrum
experimentally. '
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Figure 1

Figure 2

Figure 3

Figure 4

The intensity distribution, /3Z/d2da> | is plotted
vs observation angle, &, for values of & ranging from
$Wy B 204 (& b/(1-4,)) is the funda-
mental frequency at & = 0), This was calculated from
equation (9), with 10 elements of the sum, for N=20,

a =Sxwdem and b = éx/0” radians/sec.

The emission frequencies of the first 10 "harmonics”

(h =1, 2, ... 10) are plotted as a function of the
observation angle in units of & - A/Q77§,), the frequency
of the fundamental (h = 1) at' & = 0. We assume the charge
is spiralling in a helix with g, -.777¢ , the value

.attained by electrons in the Stanford free electron laser.

This three dimensional sketch shows the dependence of the
radiated intensity, {T/4aJw, as a function of frequency and .
angle. The-thin "curtains" correspond to the harmonics for
h =1, 2, and 3, and have width <1/N. Note that only the
fundamental (h = 1) contributes to the spectrum on-axis.

We again plot 4’//2dw vys observation angle for values of
& ranging from .54% to 2.0 & (U,- 5/(/-,4,.) for (a) N = 20,

a=5x10"3m, b =6 x 1019 rad/sec (this is identical to

figure 1, and is reproduced here for the purposes of com-
harison) and (b) N =20, a =5 x 10’3cm, b=9x 1O]0rad/sec.

~ As abfc is increased (as it is by 50% from (a) to (b)), the

overall intensity increases, and a larger fraction of the
radiation is emitted into the harmonics.
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THE PHOTOKLYSTRON
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Abstract — This paper discusses a new device which oscillates at radio frequencies when
illuminated by light. It was originally conceived as a reflex kiystron with the thermionic
electron source replaced by a photoemitter. In practice, the photoklystront has been found
to have different properties from what might be expected by simpiy scaling a reflex klystron
to lower electron energies and oscillation frequencies. These inciude electron energy ex-
change with the rf field on multiple oscillations and plasma effects. The device can be made
to *‘seif-oscillate;’" that is, no external accelerating bias voltage is necessary. The energy to
sustain osciilation is derived solely from the photoelectrons. An electrical efficiency of 1%
has been demonstrated for the first tést model photokiystron. An ultimate efficiency of 10%
appears possible. A solar power sateilite configured with photoklystrons might be weight
and cost competitive with solar cell designs.

INTRODUCTION

The Solar Power Satellite is basically a system for converting broadband, incoherent
electromagnetic radiation (sunlight) into narrowband, coherent, ultra-high frequency
electromagnetic radiation. In the conventional SPS concept this is accomplished by
the conversion of sunlight to dc high voltage electricity which is then converted to
microwaves via an array of high power klystrons. A solid state system is also being
studied in which the solar cells and microwave amplifiers are an integral module.

It occurred to us that some increase in efficiency might be possible if photoelec-
trons could be used to generate the rf directly, possibly overcoming bandgap energy
limitations inherent in solar cells (1).

The reflex klystron converts a monoenergetic electron beam to rf by passing the
beam through a pair of grids on which an rf signal already exists. The rf field velocity
modulates the electrons so that, upon reflection by a repelling electrode, the elec-
trons may be bunched together instead of randomly distributed in their return arrival
times at the grids. If the return arrival time of the bunch corresponds to a point in
time- at which the field between the grids is of such a polarity as to decelerate the -
electrons, the electrons give up some of their kinetic energy to the electric field thus

$Patent applied for.
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Fig. 1. Schematic disgram of a photokiysicon,

seinforcing the oscillations in a tuned LC circuit (2). The time average of the electron
encrgy imparted to the ¢f (ield is nonzero and positive because the electrons have
been bunched.

Il reflex klystron theory could be scated to very low eleciron energies, a few eV,
and il u sprend in energies comparable 1o that expected from a photoemitter could be
accommodated, it seemed possible that the photoelectron kinctic energy could be
used 1o drive oscillations. If we chose the appropriate frequency for oscillation it
appeared that conventional phototube photoemitiers could provide sufficient photo-
current 10 sustain oscitlations. To demonstrate that the concept was sound we had
custom manufuctured a proof-of-concept test model. Fig. 1 is a schematic of this
device. The photocmitter is a standard S-4, CsSh photocathode deposited on a glass
window. The (wo grids are 0.8 cm apart and separated | cin from the photocathode
and reflector electrode. The grids are coupled by an air core inductor, Fig. 2 is a
photograph of the test photoklystron.

I, TEST RESULTS

The initial tests were conducted with a small accelerating bias voltage on the grids,
positive retative to the photocathode. We found no trouble obtaining a variety of
modes of oscillations in the frequency range from 8 to about 240 MHz. To our
suiprise, most of these modes (combinations of accelerating and reflection bias
volages) did nol correspond to what would be expecied from reflex kiystron theory.
For example, we found that the photoklystron would oscillate with the reflection
vohtage less than the accelerating vnllngfe. Fig. 3 is'a mode chart showing the uncon-
ventional modes. !

Throughout these tests a smal) tungsten microscope lamp, producing about 16 mW
of light at the photocathode, was used. With no tuned antenna but with the inductor
serving as a poor magnetic antenna, harmonics of the 1f signal are detectable with a
small transistor radio several meters away. Oscilloscope and if voltmeter measure-
meats indicate that the oscillntions are strong and start spontaneously. A search coil
pickup has been used to measure the output power under a 50 () load. The measured
electrical efficicacy is about 1%. Using an ol voltmeter, the output voltages for the
strongest modes are about 2.0 V rms. An overall efficiency (including light energy
input) for this particular tube is not very meaningful since the photocathode has been
damaged and its quantum efliciency is now less than 1%. However, assuming an
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Fig. 4. An Applegate dingram for the photoklystron showing electron encrgy loss

10 the if field over successive cycles. This is a plot of clectron distance from the

photocathode vs time for 10 electrons which leave the photocathode at equal time
intervals and with 0 initial energy.

ultimate quantum efficiency of 25%, we estimate an overall efficicncy-of about 10%
under AMO solar itlumination. Furthermore, we wish to emphasize that this is the
first photoklystron ever built and no attempt has been made to optimize the design.

HI. THEORETICAL ANALYSIS

Since the strongest modes were those not atiribulable to conventional reflex klys-
tron theory, we initiated a program of computer simulation to attempt to understand
these modes. This computer code models the instant electric ficld within the
photoklystron and plots the resulling electron trajectorics vs time. Based on this, we
found a set of allowed conditions under which elecirons leaving the photocathode at
certain times and with certain energics can undesgo multiple oscitlations between the
grids losing encrgy to the if electric ficld all the while. Some electrons eventually fall
out of phase with the o field, however, after about five such oscillations 90% of these
electrons have hit the grids. Figure 4 illustrates such trajectory calculations.

It is evident from these trajectory calculations that a sclection process takes place.
Electrons which take energy from the rf field on the first pass are quickly climinated
by collision with the cathode. The remaining elcctrons transfer a portion of their
kinetic energy to the of field over a period of several cycles.

The heart of our present photoklystron theory is the condition that the “favor-
able”” electrons stay in phase with the of ficld. To illustrate how this is possible, we
calculate the total time required for an electron to perform a single cycle. We define
an electron cycle as the sum of the times required for two grid crossings and the iwo
turaacound limes. We then set the period of an electron cycle equal to an integral
mu{nbcr of rf periods. We have:

The Photoklystron
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n=integer e=the fundamental charge
f=frequgncy m=electron mass
v=velocity d=grid separation

V,.=accelerating vollage
V,.=reflecting voltage

8=cathode 1o first grid distance
e€=second grid to reflector distance

This equation contains (wo assumptions:

(l) The of field has negligible effect on the electron velocity on a single pass.

(i) No clectron-electron interactions occur.

From Eq. (1) we can gain some insight as to how the electrons can siay approx-
im.nlel.y in phase. As the electron velocity decreases so that the transit time between
grids increases, the tumaround times decrease. Figure $ represents a numerical
solution of Eq. (1). We can sce that for large v.the curve becomes linear and the slope
can be made small by careful choice of electrode separation distances and operating
conditions. For example, a factor of iwo change in electron energy from 20 to 10 ¢V
Icads to less than a 20% phase shift between the rf field and the electron cycle.

If we assume that the electrons derive alf their velocity from the accelerating field,
Eq. (1) predicts modes. Examples of these modes are shown in Fig. 6. Note the
excellent qualitative agreement between the location of the predicted modes shown
in Fig. 6 and the observed modes in Fig. 3.

IV. SELF-OSCILLATION

Owr first tests to understand the operation of the photoklystron were in the biased

4
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Fig. 6. Theoretical mode chart based on Eq. (1). Compare this with the actuul test resulis
showa In Fig. 3. The output amplitude is in aibitrary units,

mode, i.c. with an accelerating bias voltage on the grids used 1o boost the photoelec-
tron cnergy by scveral electron volts. Our photoemitter has a quantum yield which
peaks in the visible and uses a siandard glass window. With our tungsten lamp, the
measured photoelectron energy spectrumn peaks at about 0.5 eV. After investigating
the gencral properties of this photoklystron we began to investigate ways to lower
the minimum accelerating bias voltage for which oscillations could be obtained in
hopes that we could reach the point where oscillation could be sustained by the
kinetic energy from photoemission alone, about 0.5 eV. The required acceleraling
volige or electron energy can be lowered by lowering the resonant frequency. In our
test model, the capucitance is that of the two parallel grids and is fixed. The inductor,
however, is outside the vacuum senl and can be adjusted to a low or high inductance.

We found that ot a frequency of 5.2 MHz our test model photoklystron will
oscillate using only photoemission electron kinetic energy, that is, no external elec-
tron acceleration bias voltage is required. Switching from a tungsten lamp to a zenon
lamp (8 good solur spectrum approximation) greatly increases the of output amplitude
even though the CsSb photocathode material employed does not have a strong blue
light response. Photoelectron kinetic energy Is thus shown to be important in enhanc-
ing the oscillation amplitude. A small negalive bias vollage is sljll required on the
reflector elecirode, however, since the reflector draws no current there is no energy
drain on this bias supply. It may be possible to provide this bias volinge by lapping
off a portion of the rf output and rectifying it. A voltage supply would be necessary to
initiate oscillations but could be then removed.

We suspect but have not yet confirmed that space charge effects near the photo-
emilter play a role in shaping the photoclectron spectrum to a peaked spectum
suitable for interaction with the f field (Cooke, D. private communication, 1979). A
cloud of very low energy photoelectrons close 1o the photoemitter may vepel other
very low energy photoclectrons thus chopping off the low energy portion of the
spectrinn, Colson (private communication, 1979) has shown that a peaked spectrum
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is essential for net positive energy exchange with the ff field. A negative space
charge cloud near the photocathode may also provide the repelling voltage necessary
for multiple oscillations in the self-oscillation mode. The self-oscillation mode cannot
be fully understood in terms of the simplified analysis represented by Eq. (1). A fully
sell-consistent model including space charge is required. )

V. THE PROSPECT FOR INIGHER FREQUENCIES

The present test model photoklystron with an 8 mm grid separation sell-oscillates
at about 5 MHz or lower/ and in the biased mode, it has been operated at up 10 240
MHz. Somewhat higher frequency oscillations are presumably possible by winding
smaller inductors. To make the leap to ultra-high or microwave frequencies with the
grid type device would require changes in the grid separation distance. From Eq. (D
we sce (hat microwave frequency operation requires a substantial reduction in grid
separation distance. One design with a grid separation of 0.5 mm was run on the
computer and found {o provide oscillations at 2.45 GHz, however, the parasitic
capacitance of the grids at this distance is prohibitively high. Clearly the discreet
clements must be replaced by a resonant cavity at these frequencies. This appears
possible, however, additional research is necessary 10 determine if cavities with such
narrow gaps are practical.

Vi. ADDITIONAL RESEARCI

A problem found in some previous efforts to utilize photoclectric free electron
devices for dc solar energy conversion has been the low quantum yield (3). The
probfem is that thick photocathodes which provide a high photon interaction proba-
bility leave a long escape path for the photoctectron. Negative electron affinity
photoemitters have been tested which have quantum yields approaching 50% over a
substantial portion of the visible spectrum, however, they are carefully prepared
crystal swifaces. To solve the problem of low quantum yield, a photoklysteon design
may be possible which allows more than one photoemission surface to contribute to
the electron beam. It has been found that oscillation modes exist in which the
reflector electiode voltage is the same as the photocathode voltage relative (o the
grids. o this case, the electric fields are fully symmetric about a plane halfway
between the grids. The reflector elecirode can now be a photoemiiter and contribute
an independent stream of photoelectrons generated by photons which pass through
the front photoemitter. Moreover, if the reflector electrode photoemitter is backed
by a mirror, still unused photons traverse the tube backwards and can furiher liber-
ate photoelectrons. In (his way, it may be possible to design a photoklystron with a
very high effective quantum yleld.

An additional area for future research is the determination of an optimum photo-
emittes combining high quantum yield, stability and low cost. In order to maximize
the effectiveness of the conversion device, photoemissive materials must be used
which possess the lowest possible work function. A systematic search for stable and
econovmnical materials is presently underway. Al this time, certain interstitia)
transition-metal compounds conted with alkali metals and their oxides are being
tested for their photoemissive properties.
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{eft hand corner shows the total satellite. The secondary mirror and
photoklysiron array rotate 1o follow the carth.

Vil. PHOTOKLYSTRON APPLICATIONS

In the SPS application of the photoklystron, the entire solar array becomes the of
radiating surface. Instead of a cluster of high power klystrons we invision a large
array of low power photoklystrons. This system lends itself to modular construction
with radiating units being added as needed. This could reduce the high initial capitol
cost for a given system. Moreover, the lower radiation energy density would red
the hazard for astroworkers and make possible the addition of new modules without
shutdown of the entire system.

To be competitive with a solar cellklystron system (including bus bar and slip-

ring), efficiencies for the photoklystron of about 12% will have (o be demonstrated. '

Based on our present estimate of about 10% and the fact that reflex klystron ef-
ficicncies higher than this have been achieved, it appears possible to reach the 12%
figure.

In order to obtain a mass per unit area estimate of an SPS configured with photo-
klystrons, we have developed a hypothetical design using resonant cavities and
solar reflectors to concentrate sunlight on the photocathode surfaces. In this design,
each photoklystron excites the center of a resonant cavity which forms a wave guide
with adjacent resonant cavities. A traveling wave then moves down a line of adjacent
photoklystrons. Since the resonant cavity/wave guide occupies more cross-sectional
area than the photocathode surface, solar reflectors placed sunwayd of the resonant
cavity/wave guide concentrate sunlight onto the photocathode surface. A concentra-
tion ratio of 3 is used. The resonant cavity/wave guide walls arc made of aluminized
172 mil Kapton as are the solar reflectors. The photocathode consists of photoemis-
sive matcrial vapor deposited on a 1/2 mil Kaplon (or similar uv transparent material)
substrate. Wire grids are uscd at the resonant cavity gap. The reflector clectrode is
again an aluminized Kapton sheet. The resonant cavity/wave guide may be formed

by separating the two sheets of aluminized Kapton by diclectric spacers or hon- |

eycomb material and drawing the sheets together into contact at the edge. Figure 7 is
a sketch of this design.
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The mass per unit area of the photoklystron area of such a configuration is esti-
malted to be about 0.2 kg/m?. The resonant cavity/wave guide reflector area is esti-
mated at 0.25 kg/m?®.

For a CR3J satellite whose combined photoklystron and radiation efficiency are
10%, and which is required to radiate 6.75 GW (5 GW rectenna output), the required
photoklystron area is 16.6 km?® and the resonant cavity/wave guide reflector area is
33.3 km?, for a total of 50 km®. The resulling masses are 3.2x10° kg and 8.3x10* kg
for the photoklystron and resonant cavity/wave guide reflector areas respectively.
The total mass is 11.5% 10° kg. This compares very favorably with the 13.8x10* kg
and 27.6x 10° kg for the GaAlAs Cr2 and silicon CR1 NASA/DOE reference system
solar array masses (4){ especially since an additional 13.5% 10° kg must be added to
the solar cell configuration weights for the klystron antenna array and slipring. In this
photoklystron array weight estimate, no weight has been added explicitly for anten-
nas, phase control, primary or secondary mirrors, or structure. However, an overall
50% contingency factor has been added to cover these items. It is expected that the
antenna would be an integral pant of the wave guide, probably periodic slots or
horns, and would therefore add negligible weight. The overall satellite configuration
could be similar to that proposed for the solid state sandwich system proposed by
Rockwell International (3) with a primary and secondary mirror-turning the solar flux
through 90° and then onto the planar photoklystron cenfiguration with if radiating
out the opposite side. See Fig. 7. : i

This mass and area estimate naively assumes that photoklystrons can be designed
which will self-ascillate at the requisite frequency and efficiency. If it should turn out
that bias voliages are required, these could be provided by interspersing solar cells
among the photocathode surfaces in the trough. The solar cells would thus feed
nearby photoklystrons and the modular nature of the concept would be preserved.
The ratio of solar celi to photocathode area would depend on how much of the energy
to drive the photoklystrons had to be derived from the bias voliages.

Aside from the application 10 the solar power satellite, the photoklystron may
have other uses in space and on the earth. Communication satellites and telemetry
tr itters for satelliles and space probes have a need for highly reliable if sources.

A greal advantage of the photoklystron is its simplicity and hence reliability. ltisa
of oscillator with only passive elements. Further, we expect low cost per unit area
relative to solid state energy conversion devices because the photoemitter is vapor
deposited. ln space applications where large areas of photoklystrons are required, it
may be possible to manufacture the photoklystron in space and dispense with vac-
uum encapsulation.

We expect the photoklystron to be relatively insensitive to degradation from
charged particle radiation due to the thinness of the photoemitter.

Potential ground based applications of the photoklystron include direct production
of power for microwave transmission lines and use in lasge scale drying operations
such as drying lumber, grain or tobacco. When operated in the biased mode, the
output frequency is sensitive to the accelerating bias voltage so the device may be
used as a voltage controlled oscillator or alternatively as a simple precision vollage
measuring device. It might also be used as a transmitting light sensor for alarm
systems or to decode laser or fiber optic transmissions through f amplifiers.
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Abstract. A simple single particle model of a free-electron laser (FEL) amplifier has been
used in a computer simulation to determine the maximum fractional conversion of electron
kinetic energy to laser energy. The simulation results can be represented by a single
universal curve. A simple scaling relationship for the length of the optimized constant
period helix together with the universal curve permit one to predict maximum fractional

magnetic field amplitude, and magnet period.

PACS: 42.55

In a free-electron laser a fraction of the energy in a
relativistic electron beam is converted into coherent
short wavelength radiation as both travel together
through a periodic field which we will assume to be a
static magnetic field. This laser is continuously tunable
to short wavelengths and promises to be a powerful
efficient radiation source. We are studying the free-
electron laser as a potential fusion reactor driver [1, 2].
For this application we require short wavelength
radiation (< 1 um), and high beam currents. To protect
the focusing optics in a high-power laser system the
cross sectional area of the laser beam at the focusing
elements must be large. The cross sectional area of the
electron beam must be matched to that of the optical
beam in the laser amplifier, so that electron beam
diameters of the order of centimeters may be needed.
The period of a magnetic amplifier that can accom-
odate such a beam must be at least several centi-
meters to a few tens of centimeters. To obtain short
wavelength light with large magnet periods, electron
energies of several hundred MeV are required.

The existing technologies best suited for high current
beams at high energy are induction linacs [3] and
storage rings [4]. Both of these devices can produce

-energy conversion for any set of values of initial electron energy, initial laser intensity,

beams with very low energy spread (4E/E <107 3). The
storage ring has the additional advantage, that the
electrons may be repetively passed through an acceler-
ator section which replaces the energy converted to
radiation. The maximum peak current obtainable from
these devices is about 10k A for an induction linac and
a few kA for a storage ring. For the laser wavelengths
and electron energies and densities being considered,
the interaction of individual electrons with the magnet
and laser fields is the dominant effect. ‘
Microscopic distortion of the electron density, or
bunching, on the scale of an optical wavelength does
produce longitudinal electric fields of the order of
2mgl,, where g is the electron charge density and 4, is
the radiation wavelength. The effect of these micros-
copic fields on the highly relativistic electrons has been
calculated and is small for the parameter range studied
here. Electrostatic effects are therefore neglected in this
paper. :

Several previous studies of the FEL have already been
made. Both experimental and theoretical work has
been carried out at Stanford University [5-8].
Theoretical analyses of the FEL have been carried out
using the Maxwell-Boltzmann equations [9-11] and

0340-3793/80/0022/0219/501.40
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the Vlasov equation [12, 13]. For this paper we de-
scribe the FEL by numerically solving the single
particle Lorentz force equations in the combined mag-
net and laser fields. The goal of the study is to
determine the maximum fraction of the electron beam
energy that can be converted to radiation energy on a
single pass through a constant period helical magnet.
The electrons enter in a monoenergetic, uniform beam
and the laser light is taken to be monochromatic with
a self-consistency determined amplitude.

1. Basic Equations of the Single-Particle Model

The basic equations used in the single-particle model
of the FEL are the Lorentz force equations which
govern the electron trajectories. These are given in
Gaussian units by [14]

SOP= T [E,+Bx(B,+B,)], M
and

dy e

Z=—PE, @
where

“=1-p-p. @)

Here B is the electron velocity divided by the speed
of light ¢, y is the ratio of electron energy to electron
rest mass energy mc?, E, and B, are the electric and
magnetic fields of the electromagnetic wave, B, is the
magnetic field of the laser amplifier, and e is the charge
of an electron. Equations (1) and (2) are a set of four
equations, any three of which suffice to describe the
interaction.

The static magnetic field is taken to be of the form

B, =B, (cosk,z, sink,z,0), where k,, =2n/4, and 4, is
the magnetic period. This is an excellent approxima-
tion for the magnetic field near the axis of a helical
wiggler magnet as has been shown theoretically and
experimentally [15]. The electric and magnetic fields of
the laser beam are given by

E =E,(t)(cosy, —siny,0)
B,=B,(t)(siny,cos,0), 4

where y=k,z—w,t+¢, A, =2a/k,=2nc/w, is the opti-
cal wavelength, and ¢ is the optical phase.

Since all the fields are assumed to be transverse it is
convenient to rewrite (1) through (3) in terms of axial
and transverse components

d
0B = —[E, +B.x (B, +B,)]. )
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d
Z08)=—[B, x(B,+B,)], ©)
dy e
dt m_cE’ BL ’ (7)
and

“i=1-pi-B:. @

Because B, x B,=—B,E,, (5) becomes

d e 4

For the cases we are considering, 8.B,, > E, (t)(1 —B.),
so that we can neglect the first term on the right-hand
side in (9) giving

d e
=B~ —B.xB,. (10)

Using the transformation dt =dz/8,c, (10) can be easily
integrated. Limiting ourselves to the case for which B,
and k,, are constants we obtain,

eB,,

B, = +const. (11)

ymc?k,,

We will assume that the electrons start out in perfect
helical orbits, so that the constant of integration in
(11) equals zero.

Defining
eB,, L
= Wzkm’ | (12)
the magnitude of B, is given by
|t
B.= 7 (13)
From Eqgs. (8) and (13) we obtain
1+a?
U+a) _ g, (14)
Y
Differentiating and taking the limit §.=1 we obtain,
df, _(+aeh)dy _(1+27) e o g
dt ~ 9> dt =y mc "TH
2
““;“ ) = E,(0cos?, (15)
where
VY=(k,+k)z~ot+O. (16)

Equation (15) can be put into the form of the pen-
dulum equation in the low-gain limit [8].

An electron is said to be in resonance with the
electromagnetic wave when the electron moves a dis-
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tance of one magnet period during the time one
wavelength of light passes over it.
When this is the case

~

B. "7

where A, is the wavelength at resonance.
The position of an electron in the electron beam can be
written in the form :

z(t)=PBo,ct+2'(1), (18)

ag=2, 0B Ay oy (17)

where B, is the initial electron axial velocity. Using
(18) we can write (16) as

W=(k +k)7+AQ+¢

xkZ+AQt+ ¢, (19)
where
4Q=(k, +k,)By.c—0w,. (20)
From (20) we obtain _

A0
-I—_Toz =Wp—w,, (21)

where wy is the resonance frequency for electrons
moving with the initial electron velocity.

The relative angle ¥ between E, and B, determines
whether an electron loses or gains energy. From (19)
we see that at any instant of time this angle varies by 2z
radians over a distance of one wavelength of light and,
therefore, sections of an electron beam 4, in length will
evolve identically in time provided the electron and
laser beams are initially uniform. Electrons in a region
where cos ¥ is positive will be decelerated and elec-
trons in a region where cos¥ is negative will be
accelerated. This produces bunching of the electron
beam on a scale of the wavelength of the laser light. If
o, =wp there will be no explicit time dependence in the
phase factor ¥, and the electrons will bunch symmetri-
cally around the position ¥ = —n/2. For convenience
we define a new angle 0=%—-n/2 for which
sinf= —cos¥. Bunching at resonance then occurs
around @=m= (Fig. 1). Net transfer of energy to the laser
field as a result of the bunching process will be zero at
the resonance energy and there will be no laser gain.

If w, + wy then @ will be explicitly dependent on time,
the function sin@ will shift relative to a reference frame
moving with the initial electron velocity, and the
electron density distribution will no longer be sym-
metric about 8=mx. If AQ is positive, the shift of the
function sinf in the reference frame moving with the
initial electron velocity will cause more electrons to
lose energy than gain energy (Fig. 2). This produces
amplification of the electromagnetic wave. If 4Q were
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Fig. 1. Phase factor of the axial force on the electrons, sinf, and
electron density o, as a function of position over a distance equal

to one wavelength of light when the mean electron energy equals
the resonance energy

SIN ©

Fig. 2. For w,# wy the phase factor sin 8 shifts with time relative to
the position of the electron bunch. For the phase shift shown in this
figure w, <wy

negative more electrons would be accelerated than
decelerated, and the laser beam would give up energy
to the electrons.

It is assumed that energy lost or gained by the
electrons is transferred to or from the laser field. This’
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holds as long as the laser has a fixed frequency and
resembles a single-mode plane-wave, which is usually
the case. If the electron and optical beams are assumed
to occupy the same volume, the condition for energy
conservation can be written

E}(t)— EZ(0 Ne

MZﬂ—’(—)—]-d V=gyomc2dV— Y y,(tymc?, (22)
i=1

where yomc? is the initial electron energy, ¢ is the initial

uniform electron density, dV is the volume element in

the beam, and the sum is taken over all electrons in the

volume element.

2. An Upper Bound on Energy Extraction

Using the basic equations derived in the previous
section we can obtain an upper limit on the fraction of
the electron energy that can be converted to laser
energy in a single pass through a constant period
helical wiggler magnet. Using the fact that gdV =N,
we can rewrite (22) in the form

E}(0)/4n 4 Neto— Zri(t))

E%(t)=4ngyomc? (

@yomc® N.yo
=4ngyomci(s+1), (23)
where
_ EZ(0)/4n

is the initial ratio of field energy density to electron
energy density and

g Neto = Zf0) _ =1 % 4
Ne?O Ne i=1 Yo
is the fraction of the initial electron energy that has

been converted to laser energy at time t. Substituting
(11) into (7) we have

(25)

dy [ e’B,h,
dt (

The expression for E,(t) in (23) is now substituted into
(26) to give

znTzca';) Er(t) cosV. (26)

’B
ydy= (-e-—z';'—'l"') (dngy,mc2)V3(s+n)Y?cos Pdt, (27
m*c?2n
which describes the variation of electron energy with
time for a single electron. Summing both sides of (27)
over all electrons in the volume element dV and using
y; =70+ 47, assuming y,> 4y; we obtain
e’B_A

Ne .
7o |'=Zi dy;= (mz ng;-) (47tQ”/’omc2)”2

(s+mt? VZ. cos (t)d . (28)
i=1
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Integrating over the length of the amplifier and utiliz-
ing the definition of n in (25) we obtain
ny d', Nim/c (_ 1) Ne

)

1 ___K

E‘;(S‘*"I)Uz E‘; N, <1
dt

N2 jc’

Where 7, is the fractional energy conversion that has
been attained at the output end of the amplifier, NA,/c
is the time required for the electrons to traverse the
amplifier assuming 8,% 1, and

_ ¢’B . No'"

= 7,:1/2(,,,0”,62)3/2 .

-cos P (t) (29)

K (30)
The evolution of the phase angle ¥, is a complicated
function of time which we are able to determine by
calculating electron trajectories in a computer simu-
lation. To obtain an upper limit for the fractional
energy conversion n we assume that the electrons are
perfectly bunched to provide maximum energy transfer
to the electromagnetic field throughout the amplifier,
so that cos ¥, always has the value — 1. The integral on
the right-hand side in (29) therefore has the value of
unity. Performing the remaining integration in (29) we
obtain

o K KZ
o —
S 1/} 4s

where 7., is the upper limit on fractional energy
extraction. Equation (31) is a simple expression with

only two variables, /s and K/ Vs, which provides an
upper limit for the performance of all constant /,,.
constant B, amplifiers free electron laser. From
conservation of energy it can be shown that n/s=41/
Ly=(;—1y)/l,, where I,=EZ}0)c/4n is the input
laser intensity and I is the output intensity.

(1)

3. Computer Simulations

A computer code has been written incorporating the
basic equations of Sect. 1 which simulates the passage
of an electron beam through an FEL amplifier. Using
the computer code it is possible to calculate.the value
of the fractional energy conversion # for any given set
of initial conditions. A segment of the electron beam
one radiation wavelength long is followed through the
amplifier. The beam is represented by an array of
discrete charges initially positioned at equal intervals
within a laser wavelength. At each time step the change
in the electron energy, velocity, and position are
calculated and the amplitude of the laser field is
updated. Periodic boundary conditions are used. The
electrons are assumed to be initially monoenergetic
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Fig 3. Maximum single-pass fractional energy conversion, 7, as a
function of initiai electron energy E, for a helical magnetic amplifier.
Curves are shown for three values of the electron density g
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Fig. 4. Ratio of output laser intensity I, to input-intensity [, as a
function of initial electron energy E, for several values of the input
intensity and an electron density of 10*2cm ™3

and the laser beam traveling with the electrons is
assumed to be monochromatic with frequency w,.

To find the conditions under which the greatest frac-
tional energy conversion can be obtained for a given
magnet period 4,, magnet field strength B,, initial
electron energy E,, and input laser intensity I, a laser
frequency is chosen that differs from the resonance
frequency wg. by an amount dw. For this frequency,
0,=wg—A4w, electrons were permitted to progress
down the amplifier until net transfer of energy to the
laser field decreased to zero. This was done for a range
of values of 4w. The laser frequency w, for which laser
gain was a maximum was then assumed to be the
frequency of the light propagating in the amplifier and
the maximum fractional energy conversion was taken
to be the maximum value for this frequency. The
length of the amplifier was taken to be the length for
which greatest fractional energy conversion was ob-
tained and, therefore, varied as a function of initial
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Fig. 5. Maximum single-pass fractional energy conversion for con-
stant period helical amplifier. Data points are computer simulation
results, and the solid line is the analytically derived upper limit given
by 31)

electron energy E, and input intensity I,. The com-
puter simulation was used to find peak single-pass
fractional energy conversion values for a range of
values of initial electron energy, input laser intensity,
and electron density. Calculations were made for a
range of values of the laser frequency and magnetic
field strength. :
Figure 3 shows peak fractional energy conversion as a
function of electron energy for three values of the
electron density for an input laser intensity of
10° W/cm?, laser wavelength of 0.5 um, and magnetic
field of 1kG. Fractional energy conversion is signi-
ficantly higher at g=10'2c¢m™3 than at the lower
densities. At this density small changes in electron
energy produce large changes in laser intensity along
the amplifier. As the laser intensity increases the
magnitude of the forces that accelerate or decelerate
the electrons increases resulting in greater fractional
energy conversion. At lower densities the change in
laser intensity as a result of energy transfer is lower,
and a smaller fraction of the electron energy is con-
verted to photon energy. For sufficiently low densities,
fractional energy conversion will be essentiaily inde-
pendent of electron density.

The ratio of output intensity I  to input intensity /, for
a range of input intensities at an electron density of
1012 cm ™3 is shown in Fig. 4. It can be seen from Fig. 4
that over a large range of electron energies the ratio of
optimized output intensity to input intensity varies
approximately inversely with input intensity, so that
fractional energy conversion varies little with input
intensity. However, the amplifier length required to
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Fig. 7. Relative frequency difference at maximum gain as a function
of initial electron energy for selected values of laser wavelength,
amplifier magnetic field, electron density and initial laser intensity

obtain a given fractional energy conversion increases

with decreasing input intensity.

" In Fig. 5 data from the computer simulation are

_compared with the upper limit for n/s given by (31).
The computed values are, as expected, always lower
than the limiting value of the function 7,,,,/s. All of the
computed values for peak fractional energy conversion

lie along a single curve in the (y/s, K/ ]/;) parameter
space. The data which are plotted cover a range of two
orders of magnitude in electron energy (50 MeV to
5 GeV), three orders of magnitude in input laser power
- (107 to 10*? W/cm?), and two orders of magnitude in
electron density (10'° to 102 cm ™~ 3). They also cover a
range of laser wavelengths from 0.5 to 15um and
variations in magnetic field from 1 to 5 kG. We can fit
an empirical curve to the simulation results. A function

W. B. Colson and S. B. Segall

which fits this data is

K 1{ K\

5=032—|1+-|— .
" 1/;{ 4(1/;)
Equation (32) by itself is insufficient for determining
peak fractional energy conversion 5 given a set of
values y,, Iy, 0, B, and 4,, since the number of periods
in the magnet must be determined from the computer
simulation for any particular set of conditions. An
expression can be derived, however, which provides an
upper limit for the length of the amplifier. This limit
will be very close to the computed amplifier length
when the laser gain is low. To obtain this upper limit
we make the assumption that when the laser intensity
is approximately constant in the amplifier (low gain),
the evolution of the electron beam will be similar in all
cases. Only the rate at which the distribution function
evolves will be affected by the input parameters. The
rate of evolution is determined by the magnitude of the
axial acceleration. When the amplifier length has been
optimized for maximum gain, electrons in the beam
will move relative to each other a distance on the order
of one wavelength of light. Let us assume that on the

(32)

- average the motion of the bunched electrons can be

approximated by the formula

CA~1/2a42, o (33)

where a_ is the magnitude of the axial acceleration at
the input end of the amplifier. From (15) we have

4 1/2 1 2

[+

2

The transit time across the amplifier is t= L/c. Using
this and substituting (34) into (33) we obtain the
scaling for L in terms of system parameters

@) Yokt '?
Lec a oc o+ ]I (35
Since ,l,z'ik we can use (17) in (35) to obtain
Loc =12 (36)

LC—=77-
1/211/4
Bm IO

In Fig. 6 the amplifier length, as determined from the
computer simulation, is plotted as a function of
yo/(BL214/%). The straight line is a best fit to the low
gain data. Because amplifier length is only weakly de-
pendent on laser intensity calculated amplifier lengths
were within 5% of the value given by the straight
line for increases in laser intensity of up to a factor of
50. The data points which deviate from the straight line
fit are high gain cases with I, several hundred to over
10* times I,. For these cases I, was not a good
approximation to the average laser intensity in the
amplifier.
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The equation of the straight line in Fig. 6 is given by
L=59y,/BY2IY* 37

for B, in kG and I, in W/cm?. Equations (32) and (37)
give the scaling for optimized constant period helical
amplifiers in the low gain regime, and provide an upper
limit for amplifier length and fractional energy con-
version when laser gain is high.

The value of 4w that is needed to maximize laser gain
varies as a function of electron energy and density,
laser intensity, laser frequency, and magnetic field.
Typically values lie in the range between 1073 and a
few times 10~ 2 of the resonance frequency. Examples
of the variation of dw/w as a function of energy for
different values of electron density, magnetic field, and
laser wavelength are shown in Fig. 7.

All of the computer simulations described above have
been carried out for an initially monoenergetic electron
beam. In practice the electron beam will always have
some spread in energy which will tend to reduce laser
gain. To prevent serious degradation of laser perfor-
mance the initial energy spread should be less than the
difference between the mean electron energy and the
resonance energy. It can be shown by differentiating
(17) that

(wg—w,)/w, = 2AEo— Eg)/Eg, (38)

where Ey is the resonant electron energy at the laser
frequency. From the data of Fig. 7, we see that for
an amplifier with a constant period helical magnetic
field this energy spread is of the order of a few tenths
of a percent of the resonance energy. °

In conclusion, a simple model has been developed to
predict the optimum performance of constant period
free electron laser amplifiers with transverse helical
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magnetic fields. The model identifies the primary ef-
fects that can produce net laser gain in the single-
particle regime, provides the scaling of fractional en-
ergy conversion with the various system parameters,
and defines limits on the gain that can be obtained
from constant period amplifiers.
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We develop a self-consistent, nonlinear description of the free electron laser using single-particie dynamics and Maxwell’s
wave equation. Microscopic electron bunching drives the amplitude and phase of the optical wave.

In a free electron laser [1], ultra-relativistic elec-
trons travel through a static, periodic magnetic field,
and oscillate to amplify coherent optical radiation *!.
The electron trajectories are determined by both the
helical magnet and the slowly evolving optical wave;
the electron current drives Maxwell’s equations, and in
turn governs the evolution of the optical wave. We
handle this nonlinear process by self-consistently cou-
pling Maxwell’s equations to the single-particle Lorentz
force equations.

The single-particle formulation {4] provides a clear,
intuitive description of the free electron laser, that ac-
curately reproduces and extends the results obtained
using more complex analyses (coupled Maxwell—
Boltzmann equations [5], computer simulations [6],
plasma dispersion relations [7], and quantum electro-
dynamics [8]). In previous applications. of the single-
particle approach, energy, conservation was invoked to
relate the decreased electron beam energy to the am-

* The results of this paper were presented at the Free Elec-
tron Laser workshops at Stanford University (March 1979)
and at Los Alamos Scientific Laboratory (April 1979).

! Supported by NASA Grant NSG-7490.

*! Stanford university experiments have demonstrated both
amplification [2], and laser oscillation [3].

plified intensity of the optical wave. We go a step
further, and employ the single-particle dynamics to
determine the transverse current in Maxwell’s equations.
Coupling to Maxwell’s equations enables us to describe
the evolution of both the amplitude and phase of the
optical wave; employing the single-particle dynamics
enables us to obtain a self-consistent analytic solution.

1 Optical wave evolution. Maxwell’s equations govern
the evolution of a light wave in the presence of an elec-
tron current. The resulting wave equation is

(V2 - c7232/3t)A (x, )= —(dn/c) Jy(x, 1), (1)

where A is the radiation vector potential, ¢ is the speed
of light, and J| is the transverse current density (cgs
units). The electron trajectories will be determined
self-consistently in the next section.

When the laser is “turned on”, the optical wave
grows from spontaneous emission to a large amplitude
wave with a well-defined phase. After the coherent
wave is established, its amplitude and phase can still
evolve in time. To represent the laser optical wave
during these stages of evolution, we choose a waveform:
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A(x, )= [E(z, 1)/k,](sin ¥, cos ¥, 0), )

where € (z, 1) is the wave amplitude, and ¢ =k z

— wyt + ¢(z, t); the wave has frequency w, = k¢, and
phase ¢(z; t), and depends only on z and ¢. When the
amplitude and phase of this wave are held fixed, eq.
(2) describes a plane wave traveling in the z-direction.
We take the amplitude and phase to evolve slowly over
an optical wave length (€ < w, €, etc.); faster evolu-
tion would diminish the coherence and monochromi-
city. The left-hand side of eq. (1) can be rewritten by
inserting eq. (2), and neglecting terms containing two

derivatives. The remaining terms are *‘fast” rotating vec-

tors with “stow” coefficients. In order to establish true
slowly varying equations, we project the wave equa-
tion onto two unit vectors, &; = (cos ¢, —sin ¥, 0) and
&, =(sin Y, cos ¥, 0), to get

08/0z + c~10&/dt = —(2n/c)J, - &y ,

@3
&(0¢/3z + c~13¢/dr) = (2n/c)J, - g, . )

The second-order partial differential equation (1) has
now been reduced to two first-order differential equa-
tions (3), one describing the evolution of the ampli-
tude of the wave, the other describing the evolution of
its phase. When there is no source current (J, =0), &
and ¢ satisfy the free-space wave equation.

The waveform (2) contains no dependence on x .
and y; a proper description would give it some finite
transverse dimension. In order to address the essential
physics of the problem, we choose to avoid this com-
plication by describing dynamics well within the op-
tical wave (an appropriate “filling factor” could be in-
troduced to handle the overlap between the optical
mode and the electron beam [2,3]).

2. Single-particle current. The dynamics of electrons
in the combined static and radiation fields are governed
by the Lorentz force equations. A helical magnetic
field of the form

By, = By(cos kyz, sin kyz, 0) @)

produces the optical polarization in eq. (2). By is the
field strength, and Ao = 27r/k0 the wavelength of the
helical magnet. The radiation electric and magnetic
fields are obtained from the vector potential; inserting
the static and radiation fields into the fully relativistic
Lorentz force equations yields the “self-consistent pen-
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dulum” equation for an electron’s motion within an
optical wavelength [9]:
.. 4€2By&(z, kg1 — v(t)/koL]?

(1+K2)m2c2k, (5)

X cos(¢ +¢(z, 1)),

where ¢(£) = (K, + kg)z(t) — w,t, v(t) = §(O)L /e, L is
the magnet length, K = |e| ByAy/2nmc2, and e (m) is
the electron charge (mass). ¢ and v describe the elec-
tron’s microscopic bunching on an optical scale; its evo-
lution depends crucially on the initial conditions ¢
={(0) = (k, + kp)zg and vy =v(0) = [Bykyc — w,

X (1= Bg)]L/c, where z( and By are the electron’s
initial position and z-velocity. Since 7 is large, k, > &
and { is the initial electron phase within an optical
wavelength. If an electron is injected such that vy =0,
then exactly one wavelength of light will pass over it

as it passes through one wavelength of the magnet. v,
therefore measures an electron’s deviation from this
“resonant” condition, and will be termed the reso-
nance parameter. v(t) is related to the evolving electron
energy v(t)me? through v2 = 3(1+K2)k L/(koL — v).
In the low gain limit, & and ¢ are nearly constant, and
for small energy extraction, v < kg L; in this case eq.
(5) becomes the pendulum equation.

The self-consistent pendulum equation (5) correct-
ly describes electron dynamics up through saturation.
When the radiation field becomes large, the electron
becomes trapped in closed orbits of the pendulum
phase space. In the beam frame, the bunching electrons
will have moved on the order of an optical wavelength
(A¢ = 1); at this point gain stops, and the laser saturates.

For relativistic electrons, the transverse radiation
force is very small so the electron’s transverse velocity
(and therefore the transverse current) is determined al-
most entirely by the static magnetic field. Solving for
the velocity in the field (4) alone, and projecting the
single-particle current onto our two unit vectors &,
and éz .

TRk cos(¢ +9)8D(x — (1)),

6
. ezB AO ( )

Jli T8 = 2mwyme

sin(§ + ¢)6P(x —r;(1)),

where 7;(t) denotes the location of the ith particle at
time ¢. Note that the sinusoidal factors depend on the
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We develop a self-consistent, nonlinear description of the free ele\ﬁtrorylas‘er using single-particle dynamics and Maxwell’s
wave equation. Microscopic electron bunching drives the amplitude and phase of the optical wave.

In a free electron laser {1}, ultra-relativistic elec-
trons travel through a static, periodic magnetic field,
and oscillate to amplify coherent optical radiation *!.
The electron trajectories are determined by both the
helical magnet and the slowly evolving optical wave;
the electron current drives Maxwell’s equations, and i
turn governs the evolution of the optical wave. We
handle this nonlinear process by self-consistently ¢

pling Maxwell’s equations to the single-particle Lofentz

force equations.
The single-particle formuiation [4] provides 4 cleaf,
intuitive description of the free electron laser, fhat dc-

. curately reproduces and extends the results obtained

using more complex analyses (coupled Max ell7
Boltzmann equations [5], computer simulagions [6],

. . ) /
plasma dispersion relations {7], and quantiim électro-
dynamics [8]). In previous applications of t;re single-
particle approach, energy conservation “/as/mvoked to

relate the decreased electron beam ener )/to the am-

“ The results of this paper were presented’at the Free Elec-
tron Laser workshops at Stanford University (March 1979)
and at Los Alamos Scientific Laboratory (April 1979).

! Supported by NASA Grant NSG-7490.

*1 Stanford university experiments have demonstrated both
amplification {2], and laser oscillation {3].

A
plified intensity of the optical wave. We go a step
fuirther, and employ the single-particle dynamics to

Coupling to Maxwell’s equations enables us to describe
the evolution of both the amplitude and phase of the
optical wavi; employing the single-particle dynamics

/ enables us t¢ obtain a self-consistent analytic solution.

1. Opticalwave evolution. Maxwell’s equations govern
the evolutioniof a light wave in the presence of an elec-
tron current. The resulting wave equation is

(V2 = =202 A(x, D= ~(4nfc) T (x, 1), (1)

where A4 is the x;adiation vector potential, ¢ is the speed
of light, and J, i\s the transverse current density (cgs
units). The election trajectories will be determined
self-consistently in the next section.

When the laser\is “turned on”, the optical wave
grows from spontaﬁeous emission to a large amplitude
wave with a well-defined phase. After the coherent
wave is established, its amplitude and phase can still
evolve in time. To represent the laser optical wave
during these stages of evolution, we choose a waveform:
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determine \the transverse current in Maxwell’s equations.

il 1980

the free
nof
it de-
‘to
scrip-
aser
q.

of the
r dif-
of the
*qua-
cur-
orm
ma-
opic
(a

ge.

ag

al

1e

are



Physics of Quantum Electronics, Vol. 7, p. 377
(Addison-wesley Publishing Co., 1980), S. Jacobs, H. Pilloff,
M. Sargent, M. Scully, and R. Spitzer, eds.

The Free Electron Laser: Maxwell's Equations Oriven by
Single-Particle Currents -
W. B. Colson and S. K. Ride

1, INTRODUCTION

In a free electron laser (1], ultra-relativistic electrons travel
through a static, periodic magnetic field, and oscillate to amplify -
coherent optical radiation. The electron trajectories are determined by
both the helical magnet and the slowly evolving optical wave; the
electron current, the source term in Maxwell's equations, in turn governs
the evolution of the optical wave. This non-linear process can be
explored by self-consistently coupling Maxwell's equations to the
single-particle Lorentz force equations.

The single-particle formulation [2] provides a clear, intuitive
description of the free electron laser, and accurately reproduces results
obtained using considerably more complex analyses (coupled
Maxwell-Boltzmann equations [3], computer simulations [4], plasma
dispersion ;elatlons (5], and quantum electrodynamics [6]). In previous
appl}cations of the single-particle approach, energy conservation was

invoked to relate the decreased electron beam energy to the amplified

2

intensity of the optical wave. In this chaptér, the formulation is taken
a step further; the single-particle dynamics are used to determine the
transverse current in Maxwell's equations [7]). This procedure produces
immediate analytical benefits: Maxwell's equations describe the
évolution of both the amplitude and phase of the optical wave; the
single-particle dynamics describe the self-consistent electron evolution
in phase space..

A free electron laser can operate as an emplifer [8], or as an
oscillator [9]. In the first case, the electron beam amplifies an
existing wave during a single pass through the interaction region. In
the second case, a resonator is formed by placing mirrors at either end
of the interaction region (see Figure 1); the radiation stored in the
cavity bounces between the mirrors, and fresh electrons are either
supplied continuously, or injected to overlap the rebounding optical
pulse. The laser field groﬁs on each pass, and becomes large. The
equations developed in the next section will be used to describe laser
evolution over a single pass (this is the\finescale relevant to the
electron beam evolution), but will also be used to describe the laser
oscillator, following the evolution of the optical pulse (toward a steady
state) over many passes.

In the later sections of this chapter, the coupled equations, and -
the phase space diagrams they geherate, are applied to several aspects of
free electron laser operation. How is laser gain affected if the
electron beam has some angular divergence or energy spread? What are the
qualitative and quantitative effects of ultra-short pulses? And, in
particular, do experimental results show evidence of thesg effects?



The results dealing with initial pulse shapes and "imperfect"

initial conditions must be obtained numerically. It is possible,

—_ —>~\ELECTRON PATH L— , /—)- b
\ ¢ / however, to make significant progress analytically, and attain results
\\ Bo c / valid in the strong-field regime. The single-pass result can be
N — ,qi___ _ incorporated in the laser rate equations to describe the operation of an
laser oscillator analytically throughout its evolution to saturation.
MI{RROR PERIODIC MAGNET MIRROR
e - L —

OPTICAL RESONATOR

Figure 1. The electron pulse is injected into the resonator with
velocity P,c, and travels through the periodic magnetic fleld with
the optical pulse. The electron pulse is removed after a single pass,
the enhanced optical pulse is stored in the cavity. The parameters of

the Stanford free electron laser are summarized in tﬁe table.

B, = 2.4 kgauss )r= 3.4 microns

A =3.2cm mode area = 0.096 cm”

N = 160 L=12m

L =5.2m power loss per pass = 3.5%

Y = 84.524
peak current = 0.66 amps
electron pulse length = 0.13 cm

beam cross section = 0.0079 cm"




2. MAXWELL'S EQUATIONS

Maxwell's equations govern the evolution of a light wave in the

presence of an electron current. The resulting wave equation is

—

¥ 2 —
(v - C'—,-g?) AGY =-3r J e O

where A is the radiation vector potential, ¢ is the speed of light, and
3‘_._ is the transverse current density (cgs units). When the laser is
"turned on”, the optical wave grows from spontaneous emission to a large-
amplitude wave with a well-defined phase. After the coherent wave is
established, its amplitude and phase can still evolve in time. The
f‘oilowing waveform was chosen to represent the laser optical wave during

these stages of evolution:

A,t) = €z (sin ¥ e ¥, 0)

r

(2)

where £ (z,t) is the wave amplitude, and ¥= k,z -t +@(z,t); the wave
has frequency “‘-’r= k.c, and phase ¢(z,t), and depends only on z and t.
when the amplitude and phase of this wave are held fixed, (2) describes a
plane wave traveling in the z-direction.

The amplitude and phase of the wave evolve slowly over an optical
wavelength ( é << W, € , etc,); a faster evolution would diminish the
coherence and monochromicity of the radiation. The left-hand side of (1)
can therefore be rewritten by inserting (2), and neglecting terms

containing two derivatives. The remaining termms are "fast rotating

vectors with "slow" coefficients. Equations which are truly slowly-
varying can be constructed by projecting the wave equation onto two unit

A A
vectors, 6, = (cos ¥, -sin¥, 0) and 6‘= (sin 4‘, cos "', 0), to get

YA = _ 2% T ¢
()1+‘1{§f T ¢ J;'e

(1) - wLoh

I

(3

The second-order partial differential equation (1) has now been reduced
to two first-order differential equations (3); one describing the
evolution of the amplitude of the wa.ve, th\e other describing the
evolution of its phase., When there is no source current (3‘,_ = 0),

€ and § satisfy the free-space wave equation.

The waveform (2) contalns no dependence on x and y; a proper
description would give it some finite transverse dimension. In order to
address the essential physics of the problem, we choose to avoid this
complication by describing dynamics well within the optical wave (an
appropriate "filling factor® is inclluded in the definition of the
electron density to handle the overlap between the ‘optical mode and the
electron beam {1]).

The dynamics of electrons in the combined static and radiation
flelds are governed by the Lorentz force equations. A helical magnetic
field of the form

Bm = Bo(mk‘z:’dmk"z’o) (4)



. produces the optical polarization in (2), B, is the field strength,

A= 2W/k, the wavelength, and L = N), the length of the helical

magnet. The radiation electric and magnetic fields are obtained from the
vector potentlal; inserting the static and radiation flelds into the
fully relativistic Lorentz force equations yields the "pendulum" equation

for an electron's motion within an optical wavelength (10]:

5o (2EBEED) L ($rday)

Y!-m lclo

(5)

where B(t) = Mct/L + So + kAz(t), '5.-.: kyZ, is the initial electron
phase within optical wavelength, z(t) =zy+ 'act +Az(t) is its .position
along magnet axis, f is its Initiel velocity along the z-axis. If the
electron Is injected with a velocity g such that m= (L/c)(B, kec-
wr(l-p,)] = 0, exactly one wavelength of light will pass over the
electron as it passes thrpugh one wavelength of the periodic magnet. /u,
determined by the initial conditions, therefore measures an electron's
deviation from this “"resonant® condition, and will be termed the
resonance parameter. Equation (5) is the self-consistent, non-linear
equation for a electron's microscopic position; V(t) ='§(t)L/c is the
electron's microscopic velocity. "Perfect injection" into helical orbits
has been assumed. As the electron energy changes, az(t) describes
bunching on the optical scale. If the electrons are relativistic, as
they are in a free electron laser, k,>> k,. The electron energy,

Y(t)mc , can be updated to evolve with V, but in most cases this leads

to minor corrections (in the Stanford laser, an electron's energy changes
by less than ~0.1% on a single pass).

The pendulum equation correctly describes the electron dynamics
through laser saturation. When the radiation field becomes large, an
electron becomes "trapped" in the closed orbit region of the pendulum
phase space. In the beam frame, the bunching electrons will have moved
on the order of an optical wavelength (kaz ~1); at this point gain
stops, and the laser saturates.

For relativistic electrons, the transverse radiation force is very
small, so the electron's transverse velocity (and therefore the
transverse currer;t) 1s determined almost entirely by the static magnetic
field. Solving for the electron velocity in the fleld (4) alone, and
projeé:ting the single-particle current onto the two unit vectors

A

A
€, and €

j’li.@,' = B m(3+¢)sm(§ - Bi(v))

2AmY¥ me ©
_...A = e$ Bo)o H @ -
b = T8 (440152 - e

where ?i (t) denotes the location of the ith particle at time t. Note
that the sinusoidal factors depend on the longitudinal position of the
electrons through 3, the solution to the pendulum equation.

The total beam current is the sum of all single-particle currents.
The electrons can be labelled by their initial positions and velocities
(or, equivalently, resonance parameters); this definition is unique, and

rigorously defines the electron beam current (Jean's theorem). In



experimental situations, the electron pulse is large compared to an
optical wavelength, so on a microscopic scale the electrons are initially
spread uniformly over each wavelength of light. Although bunching occurs
within an optical wavelength, it does not affect the average density in
any macroscopic section of the beam. Similarly, although the energy
spread of the Injected electron beam would generally not be large enough
to result in distortion of the pulse as it travels down the magnet, it
may be 'large enough to result in a significant spread in resonance
parameters. Neither the bunching mechanism nor an initial velocity
spread alter the macroscopic electron pulse shape, and it travels
undistorted through the interaction region. Microscopically, however, an
electron's resonance parameter A and initial position witin a wavelength
of light % (i.g., its initial coordinates in the pendulum phase space)
are crucial in determining the result of its interaction with the wave.
The beam current density in a volume dv (which is large compared to an
optical wavelength, but small compared to the pulse length) is found by
averaging over M and $,, then weighting this result by the-macroscopic
particle density f’(Z) within that volume element. Combining (5) and (6),
and indicating the appropriate microscopic averages by (7/._ and ()5.the

coupled Maxwell and Lorentz force equations become:

(%_g +%§) = -e*B, Ao/o(z —p,ct)((m($+¢)>5o)

Yme?* o

E()z +134) 5’7%%%10(; -Act)((ain (3+¢)}i>‘
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where P(z - p.ct) is the density of the travelling electron pulse at
position z.

In their general form, the non-linear equations (5) and (7) are
valid for low-gain and high-galn' systems, in weak or strong optical
fields, and describe the evolution of an arbitrary electron pulse, and
the anplitude and phase (and therefore structure and spectrum) of the
optical pulse. The remainder of this chapter is dedicated to exploring

the content of these equations, both numerically and analytically.
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3. ELECTRON PHASE SPACE EVOLUTION

The physics contained in equations (5) and (7) can be understood by
appealing to the electron phase space diagrams. Consider the microscopic
current within a small voluhe of the beam. If the coefficient f}L/c =
(28.6)'IaeL/1mc’ .ln (5) were truly constant, the electron phase space-

would be exactly that of a single pendulum, as shown in Figure 2.

v OPEN ORBITS
(POSITIVE GAIN)

\/\~_----J

AL CLOSED ORBITS
¢ (SATURATION)
'\ u
| {
} = (OPEN ORBITS
'BUNCHING NEGATIVE GAIN)
™ "LenetH 1

Figure 2. The pendulum phase space ( §(t), ¥ (t)) is periodic in the
optical 'wavelength which defines the bunching length. Electrons
evolve along their paths in either the open or closed orbit regions.
The optical field st;ength € determines the height of the closed
orbit region 4aflL/c.
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Two sample electrons are included in the figure; each electron's initial
conditions determine the evolution of its "velocity" V(t) = i(t)L/c and
"pbsitlon" 4(t), and therefore constrain it to follow a particular path
in phase space. The height of the "closed-orbit region®, 4AL/c, is
determinéd by the optical field strength, and is important in determining
the character of electron evolution and hence the laser gain process.

Equations (5) and (7) indiéate that an electron's evolution is not
governed by the exact pendulum equation, but by a "self:-consistent"
pendulum equation; at any instant in time, however, an electron's motion
can be determined from the pendulum phase space defined by the value of
40L/c and $ at tﬁat instant. The phase space picture therefore remains
a valuable t601 in understanding beam evolution. Figures 3-6 show the
evolution of a monoenérgetic beam with the parameters of Stanford's laser
(Figure 1) in terms of the phase space of an “evolving pendulum". Since
the electrons in a pulse are spread uniformly over an optical wavelength,
and the pendulum phase space is periodic in the optical wavelength; it is
only necessary, then, to consider a sample of electrons distributed
uniformly over one optical wavelength.

In low gain, weak-field lasers, electron evolution can be described
quite accurately by the exact pendulum phase space; this is evident in
Figure 3. All electrons are injected with M= 2.6, the maximum gain
point in wesk fields. With the optical power only 5x10° W/om?, all
electroﬁs fall in the open orbit region. The beam acquires an energy
spread, and some bunching can be detected. The gain equation and
electron distributions have previously been derived in this regime by
expanding the peni:hlun equation in the field strength {10]; in section 6,
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we solve Maxwell's equations analytically in this same regime.

v v
o0o0000000 c oo 0000000 ;
ST S
t=0 t=tL/c
14 1 4
0600000008 c et L LI C
>bo-a— -
_2
t=3L/ t=L/c

Figure 3. In weak optical fields (power = 5x103 W/cm’), electrons

evolve in the open-orbit region and acquire a small spread in energy.

NI TN N AN TN L

NN ANCOX
t=0 | t=4L/

>€ . s > ><E :; .E.E g
t=2L/c t=L/c |

Figure 4. In stronger flelds'(power = 10‘ W/cma).ﬂ. is larger; '
bunching becomes evident at the end of the laser.
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In Figure 4, the optical field is stronger (10" Wcm") ; the closed-
orbit region has expanded,. and now contains some of the electrons. The
energy spread is larger, and bunching is more evident.

In Figure 5, the field is larger enough (5x10‘ W/cma) that

saturation begins to occur:

t=L/c

Figure 5. Saturation occurs when the fields become so strong (power =
3
5x10 W/cm‘) that nearly gll electrons are "trapped" in the

closed-orbit region.

electrons gain and lose enérgy in a nearly symmetric way, and the gain
(originally ~15&§) has dropped to ~5%. When the laser oscillator
reaches the point that gain per pass = loss per pass, if runs in a steady

state.
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, Each of these figures are derived from the self-consistent
equations, so the phase is also allowed to evolve. As it evolves, the
separatrix (the path which separates the closed and open orbit regimes)
shifts. For low gain the shift is slight, and is barely perceptible in
Figure 3 through 5. However, this effect is larger if taking into
account the laser cavity nnde. In the Stanford laser, radiation is
stored In an over-moded resonant cavity, 12 m long. Although the mode
geometry causes only a small change in the field's amplitude along the
laser, it results in a significant changegthe phase of the wave. In
Figure 6, the effect of the cavity is included. The separatrix clearly
shifts with the phase; the qualitative behavior of the electrons remains
the same, but there are slight quantitative differences.

kv v
\- secosdee g \t o.“.o‘“ »C
NSNS
t=0 t=3 L/c
Av v
\L . Q’\}_ é_! NS
| A ANY
§ = %L/c t =L/

Figure 6. Now & finite length resonator (L= 12 meters) is included;
the major effect is a shift in the phase of the optical wave along the
magnet length. This is evident as a shift in the pendulum separatrix
at each point in time (compare to Figure 4).
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4. GAIN DEPRESSION

The phase space diagrams of the previous section show how the gain
of a monoenergetic beam depends on its resonance parameter, and on the
field strength. The electrons in a beam populate the horizontal
% (position)-axis of an element of phase space uniformly, and Figures 4-6
show that the history of an individual electron depends critically on its
location along that axis. This section addresses population of the
vertical axis as well. A range of resonance parameters results from a
range of z-velocities,‘)t's. A perfectly injected, monoenergetic
electron beam is characterized by.a single resonance parameter; ény
realistic beam, however, will enter the laser with a range of Mm's. The
electron beam powering Stanford's free electron laser is supplied by a
superconducting linear accelerator with excellent beam guality;
measurements indicated a fractional energy- spread of only. ~0.05%, and an
emittance (angular divergence at a given beam diameter) of - ~0.06 mm-mrad
over 1 mm. This beam can be characterized by a single . Other
electron sources, which may power future free election®lasets, “are
capable of supplylng higher average currents, but with. lower peam
quality; the fractional energy-spread and the emittance may be -a factor
of ten to hundred higher, and in some recirculation schemes (storage
rings, for example) the beam quality may deteriorate with time. Itiis
clearly important to evaluate the effects of these factors on laser |
performance. The "gain depression" which occurs if the beam quality is
low has been explored.for weak fields [11,12],land also for high density
beams (in which collective effects are importent, and the single pass
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gain is very large [4.,5]).

The equations of section 2 allow en exploration of this phenomenon
16 strong, as well as weak, optical fields. Extenstion to strong-fields
is important for free electron laser oscillators, which operate in this
regime.

A weight f\hctlon, f(,l) can be introduced to populate the velocity
dimension of phase space and appropriately reflect the range of au's.

w0
The gain which results is then an average gain{g) = L f(/a)ggu)d)-. A
wide distribution will tend to yield a small {g), depressed gain, since
99‘) is anti-symmetric. The distribution in s(centered at i) which
results from an initial distribution in electron energies, is defined as
fe(pa, po); the distribution in M (positioned at o) which results from
a distribution in injection angles, is defined at fg( M Me).

If the gain is low, the gain curve in weak fields is anti-symmetric,
and peaks at a resonance parameter m= 2.6 (i.e., if the parameters of
the system are chosen such that a= 2.6, the laser will operate at
maximum gain). In weak fields, gain has been shown to be proportional to
the slope of the spontaneous emission line, sin;(/«/2)/94/_2)" [10]; if the
field strengths are increased, the gain curve is altered. The effect is
examined for parameters of a low gain laser similar to Stanford’s:

B, =2x10°gauss, A, = 5 om, ¥ = 100, N = 200, and A,= 2x10 ¥ om (these
parameters lead to ~10% galn). Figure 7 shows a family of gain curves,
derivéd for this system, in increasingly strong optical fields. The peak
of the gain curve decreases, and shifts to higher M, as stronger optical
flelds (B,E 2 0.85(¥mc?/eL)'’®) are imposed.
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Gain g(u)
Electron Distribution f(s)

Resonance Parameter g

Figure 7. In weak optical fields (curve a, power = lell)3 W/cma), g(/4)
is anti;synmetrlc and peaks at u= 2.6; the width of the closed-orbit
region is shown. At stronger fields (curve b, power = 10" W/cm;), the
closed-orbit region is wider than the gain region. Saturation occurs
when the _fields are sufficiently strong (curve c, power = 2x10‘ wlem‘)
to significantly reduced gain. The maximum available gain occurs '

at /A."-' 4 (in b) and 4.5 (in c). Inserted is an electron distribution

distorted by an energy spread and imperfect injection.

In higher gain lasers (up to ~100% gain has been examined with this
approach) the positive gain "bump" begins to swell, while the absorption
region shrinks. An energy spread and angular spread have similar effects

on the average gain; in fact, a single distribution function, which takes
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into account both the angular and energy distribution, can be found from

fE and fo‘

Yall
: , )
Fppo) = S fe O’ i) £ (e, ) die ®
-0
A typical distribution, with both an energy spread and angular spread is
shown in Figure 7. It is clear that the location and size of the
distribution, relative to the gain curve, are crucial in determining the

~average gain.

Electron Enerqy Distribution. The strong-field results will be obtained

numerically from (5) and (7). It is possible, however, to derive the
weak-field average gain analytically in the low-gain 1limit [11,12].
Assuming the spontanecus emission line-shape to be gaussian introduces
negligible error, but simplifies the analysis considerably. Tht; gain,
proportional to the slope of the line-shape, is then 9 /u.e—/‘ /r’
where ¢ should bé chosen so that the peaks of the approximate gain curve
occur at the correct values of/t(r = 2.6 J2°).

Consider a beam with a range of energles sY. The range of resonance
parameters is related to the fractional energy spread in s simple way,
YWY = y.l/lurN. Taking fe(/‘) to be a normalized ga]ssian centered at
M= 2.6, with a 1/e half-width of yt, the average gain is

‘ N)a, /(s ")]
(g% = (855N e 8202 (P2 ﬂh@;a[_iii Z2 o

The constant of proportionality has been determined by comparing { g)!
for Az 2.6 and ap= 0 to the correct maximum gain [10].
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On resonance, M,= 0, (g). is zero reQardless of ap; if A}L <« ,
the weak-field, low gain formula result (for a gaussian line-shape) is
recovered. If the beam quality is "poor", so that 5/4 »a, (9) shows
that the maximum possible gain decreases as A}L-:L The characteristic
spread is e‘l,zﬂ“ . Note that the maximum average gain occurs for
M= Jm As the beam quality decreases (A)L increases),
it becomes beneficlal to move the mean resonance parameter Mo further
away from resonance, toward larger M a' less severe penalty 1s incurred
(the gain. depression is less), if fs(}i) is shifted to the right (to
overlap zero gain regions) instead of being allowed to overlap negative
galn regions. Gain begins to deteriorate when the spread in resonance
parameters-is larger than the characteristic width of the positive gain
region ;Q'phase space (ApM 20” ).

Géin depression In the strong-field regime must be calculated using
numerical techniques. Each appropriately populated "bin" in the electron
phase space ( §, Y ) is allowed to evolve and drive Maxwell's equations
((5) and (7) are solved self-consistently). The resulting gain
depression, as a function of the initial energy spread of the electron
beam is shown in Figure 8 for lasers of different optical power levels.
The uppermost curve is for weak optical fields, and agrees with the
analytic result (9). For stronger fields, the average gain is depressed
even if A/.l =.0; further depression occurs as ap increases. Each curve
in Figure 8(a) is plotted assuming the laser is turned on with a,= 2.6
(the value which gives maximum gain in weak fields); Figure 7, however,
shows that in strong fields this Mo is no longer the optimum .resonance
parameter. In Figure 8(b), each curve is plotted with M, equal to the
value that gives maximum gain for. the particular field strength.
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(d)

(b)

Figure 8. If the electron beam has an initial energy distribution,

laser gain is depressed. The curves show the gain as a function of

energy spread au= 4WN $Y/¥ for the three power levels in Figure 7:

in 8(a), with M = 2.6; in 8(b), with Mo chosen optimally for each

power level parameter.
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All curves decrease with ap in qualitatively the same way as in Figure
8(a). Note that the characteristic spread ap = 4 causes approximately
a factor of two decrease in gain for strong or weak fields, but ap, is
somewhat' larger for higher power levels (this roughly agrees with the

analytic result above).

Electron Beam A An&laf Spread. All electron beams have a finite
emittance, so ﬁot all the electrons in a beam can be injected into
perfect helical orbits. Physically, a poofly injected electron will
drift off-axis and fall behind "perfectly injected" electrons with the
same initial energy and z-velocity. A small angular misalignment 8,
translates directly into an altered resonance parameter: e }‘;+ S)u

where

S/L = "4"N7191/(1+Ka) (10)

and K = eB A, /2 rm:". For typical parameters, an angular s'pread of a
few tenths of a milliradian gives a unit shift in §u.

A finite-emittance electron beam contains a distribution of @'s; we
take this distribution to be gaussian centered about 6 = 0, with
characteristic angular spread a@. The distribution of M populated by
(10) is not gaussian, because §u is quadratic in 6 :

atp [ o pl “]/ (ma (/lo-/t)'u) < e

folu) = 0 > Mo (11)
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where a8 = 4N 7’A9’7(1+K1) and fg has been normalized. This
distribution has a spike at M= o (corresponding to = 0), and is zero
above (since imperfect injection can only lower the resonance
parameter). Figure 7 shows a composite f(}-l), which combines the effects
of a gaussian energy spread and this asymmetric angular spread. ‘

The gain depression in weak and strong fields, determined
numerically from (5) and (7) for Mo= 2.6, 1s shown in Fi;;ure 9(a); in
each case the average gain peaks at A@= O (no angular spread) and
decreases substantlally for an angular spread of only 2 milliradians. In
Figure 9(b), the laser is started at its optimum rescnance parameter for
that power level. Remarkably, we find that if the laser is operating in
the saturated regime (st;ong field), and at the optimum resonance
parameter, there is conpbratlvely little penalty for these angular
spreads. If we compare the strong-field gain curve in Figure 7 to the
shape of f;, the reason becomes clear: increasing 4@ produces a
distribution which can expand and fill the positive region in the gain
curve without much gain depression; no negative or zero' gain regions are
populated. In fact, given a beam with some angular spread, the gain can
be larger for strong fields than for weak.

The free electron laser experimentalist (who is given an electron
beam of fixed emittance), may find it beneficial to accept a larger
angular spread in order to obtain a smaller electron beam diameter. The
increased beam density will yield higher gain, while the angular spread
will cause only modest depression in the strong-field regime if the

résonance parameter is optimized.
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(a)
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Figure 9. If the electron beam has an intial angular spread, A8
laser gain is depressed. The curves show gain as a function of AB
for the three power levels in Figure 7: 1n 9(a), with = 2.6, in
9(b), with Mo chosen optimally for each power level,
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S. ULTRA-SHORT PULSE PROPAGATION

To this date, the free electron laser at Stanford University is the
only such device to have demonstrated amplification and oscillation.
Detaliled comparison between experimental results and theoretical
predictions have been difficult because analyses have assumed long
optical and electron pulses, while the experimental device produces
ultra-short pulses. The system of equations, (5) and (7), can be salved
iteratively, step-by-step along the laser, and take into account the
spatial structure of both the optical and electron pulses.

The behavior of the free electron laser is, in fact, modified by
short-pulse effects [13]. The shape of the optical pulse, its Fourler
transform (which shows the laser line shift), and the optical pulse
"slippagg", are all sensitive to the pulse length. This is not
particularly surprising, since each of these depends on the overlap
between the optical pulse and the electron beam--which for ultra-short
pulses is continually changing. In Stanford's system, for example, as
the short ( ~ 1 mm) pulses travel together down the 5.2 m magnet
(Figure 1), the optical pulse gradually passes part of the way over the
electron pulse. Each section of the optical pulse sees a varying
electron density; similarly, each seqtion of the electron pulse sees a
varying optical field. The evolution is therefore quite complex.

In the working laser oscillator, the optical pulse remains in the
resonator, bouncing between mirrors at either end. On each roung-trip
3.5% of the pulse's power is lost at the mirrors. To maintaln the pulse,

a fresh electron beam is injected every cycle, and timed to overlap the
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rebounding optical pulse. The evolution of a low amplitude, coherent
wave, can be followed through many hundreds of cycles in the resonator;
the parameters chosen are those in Figure 1, so the results of this

section can be compared directly to Stanford results.

Optical Pulse Slippage. One might think that to "synchronize® each

electron pulse with the rebounding optical pulse (to have it overlap the
optical pulse in the same way on each pass), the electrons should be
injected every 2&/c seconds (&L is the resonator length). But while
2.t/cvls the bounce time of a photon, it is not the bounce time of the
centroid of the optical pulse. The physics: since there is more gain at
the end of a free electron laser than at the beginning [10], the trailing
edge of an ultra-short optical pulse experiences more amplification than
its leading edge. The net éffect is that the centroid of the optical
pulse passes over the electrons at a speed less than c(1- A, ), and would
therefore intercept the next electron pulse later than the expected 2XL/c.
If the experimenter does not compensate for this effect, the optical
pulse centroid will continually "slip" back, énd after many passe§ will
no longer adequately overlap the electron pulse; when this occurs, the
absorption per pass exceeds the gain, and the equilibrium oscillator
power is zero. ‘

In the Standford experiment, the resonator length was varied until
maximum steady-state power was achieved. The experimenters found that
the power was sensitive to changes on the order of microns, but did not
measure the absolute length of the cavity. It is now clear that the

resonator must have been slightly shortened (by Ad~ microns), to
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decrease the 2X/c bounce time, and compensate for the optical pulse
"slippage". Figure 10 shows the steady-state power as a function of
cavity length; our results agree well with the "detuning curve" found

experimentally [14].
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Figure 10. The length of the resonator nust be “tuned” to compensate
for optical pulse "slippage". The steady-state power 1s a sensitive
“function of the length. The inset shows Stanford's experimental

"detuning curve", which is similar to the theoretical curve, but only

5 microns wide.

Optical Pulse Structure. Once the cavity has been properly adjusted, the
ultra-short pulse in a free electron laser can evolve to, and operate in,
a_steady state. In Figure 11 we show a predicted optical pulse in the

Stanford laser; after ~600 passes the pulse evolution slows considerably
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and has nearly reached a steady state. The Stanford group has not yet
had the opportunity to measure the structure of the optical pulse; when
the measurement is performed, it will be an excellent test of the
predictive powers of this analytic technique., Various pulse shapes are
possible depending on the cavity length; often a large peak is followed
by a smaller bump.

o
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Figure 11. After 600 passes, with al = -0.5 microns, the.optical
pulse has grown to ~3x101W/cm3. It can evolve through various
shapes which depend on al ; multiple peaks can occur as can single
wider shapes. The multiple peak spacing is ~0.8 mm.

The multiple peak structure in Figure 11 does, however, explain an

observed feature of the power spectrum. The peaks (~ 0.8 mm apart) would
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correspond to approximately a 60 GHz modulation in the laser line shape.
The Stanford experiments do report a 60 GHz modulation. This can be
interpreted as indirect evidence for multiple peak structure.

The spatial Fourier transform of the steady-state optical pulse
yields the laser power spectrum shown in Figure 12. A low amplitude pulse
starts at maximum weak-field gain 9)‘ = 2.6); after many passes the
pulse amplitude grows large and the power spectrum shifts to/uf ~q fqp
maximum strong-field gain (see Fig. 7). The structural cause for the ‘
shift is a linear phase change along the pulse profile so that ¢ = dkz where

6k/kr & -0.0015; the resonance parameter is shifted by 9u = -2nN6k/kr = +1.5,

7\ EXPERIMENT
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Figure 12. The power spectrum is obtained by taking the spatial Fourier

transform of the pulse.

The theoretical width and shape of the power spectrum is in excellent
agreement with experiment, but the reported laser line appears to be shifted
towards resonance 5}L= 0) as determined by comparison with the spontaneous

emission line-center. A possible cause for this discrepancy is a slight
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misadignment of the detector from the magnet axis during the spontaneous
emission measurement. This alignment is so delicate that 0 = 0.0007 radians
would shift the spontaneous line-center up by @p.= ZHNYZBZ/(1+K2) = 2.5
and make the laser line appear to be shifted towards resonance by the amount
shown. Note that there is no other determination of resonance in the Stanford
experiment and such a misalignment can only cause the laser line.to appear
shifted towards resonance.

No mgtter how the lasef pulse gro@s, BZ(N 1) remains nearly constagt

for all electrons and the electron pulse retains its shape. On
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Figure 13. As the steady-state optical pulse passes over the monoenergetic

electron beam, an energy distribution' results? 'Vf = L[ﬂf k, '(1 ’A)kr],

each pass all electrons are injected with the same energy, but as they respond
to the local optical field a small microscopic energy change alters the
resonance parameter. Figure 13 shows the resultant energy distribution w{thin
the electron pulse envelope; experimental agreement is consistent with the

resolution of the spectrometers.
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6. PANALYTIC STRONG-FIELD TECHNIQUES

The results presented to this point have been derived numerically
from the self-consistent coupled equations.. It is possible, however, to
make progress analytically in the 1imit of low gain and long pulses**,
Wave dynamics depends only on the average phase shifts {cos($ *))so and
{sin( 3 *))s’ (where 4* = § +$ ). These phase averages cannot be performed
analytically since the solutions to the full pEndulun equation (5) are
elliptic integrals. In the low gain limit, however, $# can be written as
an expansion in powers of £ : §* =¢*(d 4 gx) . gx@ 4 ., where the
superscript indicates the power of € ( §*®) is proportional to € , eté.).
We expand (cos.( _f,*))s’ » then perform a partial resummation of important

terms. This can be diagrammed in the following way:
| ' ¥ ) *0) (1) 2

(m(s“))so = (1)1- <5‘!(§ + 2 + 59 .0) >$o

L[ 0, pruy, ¢*O) )") +...
*<4z(§ + 5704 7% ) /g (12)

W)
R ACw )
(o (8274 577))y

where the resummation retains the underlined terms, § *®) and ¢+, to

= =

all powers in £ . We do the same for (sin( 3'))5 . A selective
. - (-4

sunmation which retains only $#® vanishes when averaged over initial

**A monoenergetic, perfectly injected beam, a good approximation for the

Stanford laser, is agaln assumed.
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phases. If §# {5 retained as well, the net average current can be
non-zera, and will drive the wave's evolution. We will see that this
resumation, rather than a straight-forward expansion in powers of € , 1is
necessary to retain the essential features of the strong-field effect.

The quantity (§#(? + ¢#() ) is obtained by expanding the full
pendulum equation, (5), to order € , and integrating twice with respect
to time. Inserting the result into (12), and performing the average over
initial positions within the optical wave,

G

('.oindwt +Awt‘akot) J ( ;(Aw't) bE)
Jr (Awt) (13)

(aim ($¥14 50, =

("1+ woawt + Awtd«awt) J.(f{:(:"::;,gl
a

where b": 8e4B:'/(Ync4w)', Flawt) B (1+(awt)*/2-cos swt- awtsin awt),
and Aw = umc/L. In this low gain case, the microscopic sverage is
independent of tf, and the only dependence on the flelds is in the
argument of the Bessel functlon. Further, the functional form (13) is
non-analytic in the coupling constant, e, and therefore could not be
obtained to any finite order in perturbation theory.

Summing an infinite class of diagrams, then performing the
microscopic average, ylelds a result which describes the growth of the
wave to saturation. When the amplitude is small, (9) is proportional
to €, so the field's growth rate is proportional to its amplitude. As
the field grows, problems with the expansion might be expected: the
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argument of the Bessel function contains the same expansion parameter
used to calculate the electron single-particle currents; the results are
consistent (the Bessel function description is applicable) only so long
as this parameter does not grow too large. Fortunately, before this
parameter becomes too large, the Bessel function approaches its first
zero--the growth rate decreases, and the laser begins to saturate. In
other words, the result remains consistent with the perturbation
expansion of the pendulum equation, and is therefore a reliable
description of laser behavior through saturation.

Further analytic progress can be made, and the essential physics
retained, if the Bessel function is approximated by the first two terms
in its expansion: J,(x) = (x/2)(1-x*/8+...). Since the expanded form
has the same functional dependence as J, up to its first zero, this
formulation still allows a description of the laser through saturation.

The differential equations, (7), can be simplified by choosing- to -
follow the evolution of a single point (} = Z - ct) within the optical
pulse as it travels down the magnet. The amplitude and phase of this

portion of the wave evolve in time according to

Jé} B g(} (l-ﬂ.,)ct)f (mamt Awtmnwt) S(awt)

(Ymc )’Aw

(14)
44,) e BL,o(} (l-p,)ct)(lvrtouwt +awt dn awt) S(awt)
(¥me)aw*

where S(awt) = [1-(b E)f(awt))/ﬂl is called the "saturation function”.
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If the fleld is small, S = i, and (14) reduces to the weak field gain
equation. As the field grows, S -0, and evolution stops. An important
point is that S(aw) is a function of the laser frequency, and has no
nodes: for any w,, S(w,) will saturate at some value of g .* These
equations therefore can describe the evolution of the amplitude and phase
through saturation. '

*Previous perturbative approaches, with no resummation of terms, give

divergent results [15), and cannot describe laser saturation.
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7. LASER. OSCILLATOR EVOLUTION: A PHASE TRANSITION

In a laser oscillator the optical wave grows slightly during each
pass, and requires many passes to achieve saturation. 4 Its growth, dE,
over a number of round:trlps, dn (which is >1, but small compared to the
characteristic evolution time of the wave), is $Edn, where $€ is the
growth per pass. $E will have contributions from two sources: the
wave will grow or decay as a result of its interaction with electron
pulse; it will also decay due to losses inherent in the optical cavity.
The fractional power lost on each round-trip is modelled by the resonator
Q; The growth due to the wave's interaction with the electron beam is |
found by integrating (14) over the interaction time, t =0 to t = L/c, on
a single pass. In the low galn limit, € and ¢ change very little over
this timescale, and can therefore be taken outside the time integrals. on
the 'right:-hand side. Performing the resulting integrals produces terms
propartional to € and € 3, with constant coefficlents. The long term

behavior of € and ¢ are described by the followlng equations:

Jf - g
o o=« £ £
(15)

‘ - R
%ﬁ:d -/AE

where n is the nurber of round-trips of the optical pulse in the
‘resonator, and we have assumed that the pulse is long enough that every
point , evolves in the same way (we therefore drop the subscript }). The

coef flcients‘ are

36
« = le"B:).eL:’(l—m/u —/JM/A) - L
(Ymeu)? 2 9
' 3 |
oA = 2843.a1a£L (,Am/u -,f(“—m/))

(YMc:u)’

-
"

8,4 7
Lt (A 2077

rjpongn +4G) =2 8) o

8,4 7
= 2 B 1L - 2.
f (vfm‘cw""( 4 (30 30%) + Lllina

e (2 pi12 Jeoops + (' § Joim 3 + Jpucm i)

Note that 2« 1is the gain per pass, and is identical to the gain
coefficient derived by other techniques [10]; (.'J'Jl is the fractional power
loss per pass.

These differential equations can be solved for the amplitude and

phase of the wave:
2 2 dan + 2um
= &
€y = ¢, € /(1+%e )

B) = goron - L an (1485 M)

(17)
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where Eo and 4:, are the initial amplitude and phase at t = 0, and it is
a
assumed that the laser starts far from saturation, £, <¢o/p. The
2
square of the amplitude is related to the power in the wave, 2€°c/8w,

plotted in Figure l4.
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Figure 14. Laser power grows exponentially from noise to saturation.
The laser frequency shifts during amplification, and again near

saturation.

in the early stages of evolution, the power grows exponentially in time,
and the phase shifts linearly in time. Near saturatiocn, e a"'"‘»1, and
the power asymptotically approaches the constant value a(c/lm'a . The

phase changes linearly in time, as before, but now the coefficient of the
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linear growth is different: ¢ -, = (&' - «g'/p)n.

In the laser oscillator, £ and w), are not externally prepared, but
evolve in a manner determined by the system parameters: p, B,, A, .Y,
N. The changing phase can again be interpreted as an evolving laser
frequency, and a correspendingly evelving resonance parameter, m . The
definition of u, and the form of the optical wave, imply st(n) = p2(0) +
34(n)/3In L“y‘m. The conditions € = ¢ = O define the stationary
points of the system (determined by €= « /8, «p=p'e). In
general, the rate at which ¢ evolves 1s determined by «' and/or ot ;
since they are roughly the same magnitude as the gain in the system, the
shift in au(0) is small (only 2% of its initial value of 2.6 at maximum
gain). During oscillator growth, the resonance parameter 1s shifted away
from resonance; after saturation it moves back towards resonance. The
net shift is small and positive. Note that this result, for a long
pulse, is much smaller and opposite to that for the ultra-short pulses.

The theoretical growth rate, power at saturation, and frequency
shift are shown in Figure 14 where we plot (17) for the set of physical
parameters appropriate to the Stanford free electron laser.

This formulation is important for the physical insight i% provides
into free electron laser operation. Equation (15) can be rew'ritten in
the form é = -38(E)/IE, where § (&) = -al€°72 + FE'/A. The dynamic
equation for the amplitude of the laser field is then desribed by the
overdamped motion of the coordinate £ in the generalized potential
$(E.. This potential has the form shown in Figure 15. It is evident
from the graph that the behavior of £ depends critically on the sign of

of. If o€ 0, the losses in the system exceed the gain, and the
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steady-state amplitude of the field is zero. Now suppose the electron

current density, /’,B, ¢, were slowly increased.

GENERALIZED POTENTIAL, &(£)

<0

wlg

] 1 N

7)0 ]

A

Figure 15. If the electron current is raised above threshold, the

generalized potential §(€) chenges shape; fluctuations drive the
. T

field from zero to the new steady-state minima (ot /8)"%.

,

As long as o< 0, this has no effect on the only stable point of the
system: £ = 0. At some critical value of the current, the value for
which £=0 is now an unstable point, and fluctuations will drive the
system to a new steady-state configuration, € = («/8 )"a'.

The potential ®(E) has the same foﬁn as the thermodynamic
" potentials which describe ferroelectricity, ferromagnetism (in the

Ginzburg-Landau formulation), superconductivity, and laser action in
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atomic lasers [16]. Each of these phenomena can be described by a
mean-field theory, with the result that the system (described by a
potential of the form € above) changes from a disordered state to an
ordered state when an external parameter attains some critical value.

The low-gain analysis of the free electron laser presented above ls also
a self-consistent, mean-field theory: each electron is influenced by the
radiation fields produced by the otvher electrons. € can be identified
as the "order parameter” of the system, analogous, for example, to the
magnetization In a ferromagnet. If the optical field strength is small,
there are only.a few photons, and the laser phase is disordered; if € is
large (the system has "lased"), the optical wave becomes ordered and
coherent, The free electron laser is a system which undergoes a

second-order phase transition.



41

8. DISCUSSION

The single particle analysis of the free electron laser has proven
to be a valuable description of laser performance. If the single
particle currents are coupled to Maxwell's equations (section 2) the’
resulting set of self-consistent, non-linear equations describe the
evolution of the electron beam and the amplitude and phase of the laser
field. The two keys to the formulation of section 2 were (a) the slowly
varying amplitude and phase approximation, an approximation commonly
applied to laser systems, and (b) the distinction between microscopic and
macroscopic scales, which distinguishes the microscopic bunching from the
macroscopic pulse progagation.

The coupled equations lend themselves to numerical analysis, and
such analysis is instructive for both experimenters and theorists. The
aﬁalysis of gain depression, for example, directs the experimenter to run
his laser far off-resonance for poorer quality electron beams (the
electron distfibution function should be "moved" to populate zero-gain
regions instead of the negative-gain region just below resonance). The
fact that the fractional gain depression is largely independent of the
gain makes these results quite general.

The capabilities of this new theoretical approach become apparent
when its predictions for the ultra-short pulse free electron laser are
compared to the experimental data. The optical pulse evolution,
determined simply and accurately, agrees well with observations. This
moves free electron laser theory into a new regime, making it a tool

which can be used to explain detailed experimental observations.
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_ Although the coupled equations are easily solved numerically, it is
instructive to investigate them analytically. A selective summation
(involving terms to all orders in € ) can be performed to obtain
non-divergent analytic results which capture the physics of the processes
occuring in the closed-orbit regions of the pendulum phase-space. When
these results are incorporated in a set. of laser rate equations, the
laser oscillator can be folliowed analytlcaliy through saturation. This
description correlates well with numerical analyses, but can only
describe evolution of long pulses. Its real value comes from the insight
it yields into the physics of the free electron laser: the form of the
equations reveals that this laser, like an atomic laser, is a self-
ordering, many-body system which undergoes a second-order phase

transition.

We are grateful for the support (of W. B. C.) by NASA Grant NSG-7490.
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FREE ELECTRON LASER WAVE AND PARTICLE DYNAMICS

William B. Colson

Quantum Institute
University of California Santa Barbara
Santa Barbara, CA 93106

INTRODUCTION

In a free electron laser, a beam of relativistic electrons passes
through a static periodic magnetic field to amplify a superimposed
coherent optical wave (Figure 1). Here, the lasing process has been
reduced to its most fundamental form and is manifestly classical in
nature. This point.is at the root of many of the free electron lasers
potential advantages over conventional atomic lasers; many properties
of atomic lasers such as efficiency, are limited by quantum mechanics.
This new laser is free from the bonds constraining atomic lasers to
a particular wavelength and therefore is continuously tunable. The
optical cavity contains only light, radiating electrons and the
magnetic field so that intense optical fields may propagate without
the degrading non-~linear effects (self-focussing, etc.) of denser media.
The advanced technology of high-energy electron accelerators and storage
rings promises efficient recirculation of the beam energy.

The earliest coherent radiation sources, radar and microwave
electron tubes, used classical non-relativistic electron beams to
amplify long wavelength radiation (10 cm to 0.1 cm). These devices
satisfied a wide range of applications with hundreds of varied designs,
but it was not possible to generate shorter wavelengths until the early
sixties when atomic and molecular lasers were developed. A necessary
technical advance at the time was the replacement of "closed'" microwave
cavities with "open" optical resonators. J.M.J. Madey's conceptionl
of the free electron laser in 1971 showed how relativistic electrons
and "open'" resonators could extend the advantages of electron tubes
to the optical regime.
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Fig. 1. Successive electron pulses travel through the periodic
magnet with z-velocity B,C; the optical pulse is amplified
as it slowly passes over oscillating electrons.

Madey and his collaborators at Stanford University demonstrated
free electron laser amplification? in 1976 and laser oscillation in
1977. 1In the oscillator experiments, a nearly monoenergetic 43 MeV
electron beam from a superconducting linear accelerator was passed
through a 5.2 m long helical magnet with a field strength of B=2.4
kGauss and wavelength Ao=3.2 cm. Short &4 gicosecond electron pulses
of 1 amp peak current produced 2x107 W/em peak optical power at
A = 3.4 y wavelength with circular polarization.

The fundamental physics of free electron lasers is now well under-
stood; several theoretical viewpoints adequately describe its behavior.
Semi-~classical quantum theory, or quantum elec:trodynan:xics,15""6
explains the laser action as stimulated Compton back=scattering of
the virtual photons in the periodic magnet, or equivalently, as
stimulated magnetic Bremsstrahlung. In this view, the finite length
magnet and the resulting electron kinematics allow stimulated emission
to exceed absorption. Viewed classically,’ the electron beam is a
cold relativistic plasma;8-10 dispersion relations from the Boltzmann ,
equation can properly characterize the evolution of the electron
distribution in the optical wave. The most fruitful and widely used
theory calculates the dynamics of individual electrons!1-13 as they
are affected by the fields in the laser cavity; the total transverse
current then drives Maxwell's non-linear wave equation.l“ Reference
15 and this volume review most of the current theoretical and experi-
mental work on the free electron lasers.

Al
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In the next section we develop the equations governing wave and
electron dynamics. The electron phase-space, and the optical wave
evolution are each examined separately. Finally, the short pulse
problem of Stanford's laser is reviewed.

Formalism

In the FEL oscillator, mirrors are placed at each end of the
interaction region to store radiation; fresh electrons are either
supplied continuously or injected to overlap the rebounding optical
pulse. As electrons enter the laser cavity, they are acted on by
the static magnetic field, and the oscillating electric and magnetic
components of the nearly free optical plane-wave; interparticle
Coulomb forces are small for the high energy, low density beam of .
the Stanford experiment. The magnet guides an electron through N
periodic oscillations as it travels the length of the magnet (L=NX )
with z-velocity Bzc(Bz~l); the small transverse accelerations prodgce
a small amount of spontaneous radiation carrying the polarization
of the magnet geometry: circular polarization for a helical magnet,
linear polarization for alternating poles. The emission is
confined to within an angle =)y (ymc? is the electron energy) about
the forward motion, and within a narrow (=4N) spectral line-width
about the fundamental A=), (1-B;)%Ay(1+<?)/2y? for y>>1 and
k=eBAo/2mmc? where e=|e| and m are the electron charge magnitude and
mass, B is magnetic field strength, c is the speed of light. If
k<1, as is usually the case, there will be a small amount of emission
into a few well-separated higher harmonics. The Stanford experiment
gives typical values for these parameters, and has demonstrated the
tunable characteristic of the laser frequency by varying the acceler-
ator energy. In future machines the tunable wavelength range is
estimated to be about a decade; this is primarily determined by the
dynamic range of the electron source.

The radiation from multiple passes of the electron beam is

stored in the resonant cavity. Maxwell's wave equation governs the
evolution of a light wave in the presence of an electron current:

('V*z_ i—z a—ii-) ix,t) = - -iﬂ L&, 0 (1)

where K is the radiation vector potential, and EL is the transverse
current density (cgs units). When the laser is '"'turned on'", the
optical wave grows from spontaneous emission to a large amplitude
wave with a well-defined phase. After the coherent wave is
established, its amplitude and phase can still evolve in time.

The following waveform was chosen to represent the laser optical
wave during these stages of evolution:
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E(z.t)
k

where E(z,t) is the wave amplitude; the carrier frequency is
w=kc, and the phase is ¢(z,t). When the amplitude and phase of
this wave are held fixed, (2) describes a plane wave traveling
in the z-direction.

X(;,t) = (sin(kz-wt+$(z,t)), cos(kz-wt+p(z,t)),0) (2)

The waveform (2) contains noc dependence on x and y; a proper .
description would give it some finite transverse dimension. In
order to address the essential physics of the problem, we choose o
to avoid this complication by describing dynamics well within the
optical wave (an appropriate "filling factor" is included in
the definition of the electron density to handle the overlap
between the optical mode and the electron beam?!).

The dynamics of electrons in the combined static and radiation
fields are governed by the Lorentz force equations. A helical
magnetic field of the form

gﬁag = B(cos koz, sin kyz,0) (3)
produces the optical polarization in (2) and A,=2m/k, is the magnet
wavelength. The radiation electric and magnetic fields are obtained
from the vector potential using the slowly varying amplitude and
phase approximation explained below. When both of these fields
are inserted into the transverse components of the relativistic
Lorentz force equations, their contributions nearly cancel in
comparison to the magnet (2): B,B>>(1-8,)E when B,=1. If inject-—
ing perfectly, the large scgle, or macroscopic, helical motion is
then §¥B°£+ . where EL?—IeIBma /Ymczko. This motion alone appears
uninteresting, but it allows e%ficient energy exchange with the
purely transverse radiation field (2) if near "resonance':
Bokok(1-8,) .

Substituting E; into the fourth component of the Lorentz force
we have

dy _ exE
o " o cos (Z+$) (4)
and
fo= 28 < (B kyk(1-8,)) © N

where Y2=(1+K2)/(1-B§), and Z=(k+k,)z-wt is the electrons phase
within an optical wavelength. If an electron has a velocity
such that v=0, then exactly one wavelength of light is passing
over the electron as it travels through one magnet wavelength.

‘s,
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voEv(t=0) is determined from initial conditions and is called the
resonance parameter. E and ¢ are to be interpreted as the local
radiation field and phase in the superimposed macroscopic (covering
several optical wavelengths) part of the optical beam; the phase-
space coordinates (C,V) describe the evolution of electrons on a
microscopic scale ($A). The coordinates (&, Y) may also be used
since V”“"N(Y-YR)/YR near resonance where YR —k(1+K )/ 2k (r>>1).
The number of periods N is usually large, a few hundred, so that
small changes in y give large changes in v. This point means
that, in general, fractional changes in y are small during a single
pass through the laser, and to a good approximation (4) and (5)
become

.- 2 2
Z - (ﬂ >cos<c+¢> - (Q—°) cos (z+0) (6)

(Yome) z L
where Yomc2 is the initial electron energy, and kz(l+x? Ykg /2Y
has been used. 48 is the height of the closed orbit separatrlx
in the dimensionless pendulum phase-space.

Electron dynamics (6) have now been put into a form where we
see that the fundamental phase-space is that of the simple
pendulum. While exact for low gain, where E and ¢ are nearly
constant, the pendulum phase-space is only slightly modified when
more complicated effects are self-consistently included. It
therefore has been and remains a valuable tool for experiments and
theorists.

The optical wave evolves on a slower time scale than do
individual electrons. The changes in E and ¢ then act back to
slightly alter the phase-space paths guiding electrons. The ampli-
tude and phase of the wave evolve slowly over an optical wavelength
(E<<w,.E, etc.); a faster evolution would diminish the coherence
and monochromicity of the radiation. The left-hand side of (1)
can therefore be rewritten by inserting (2), and neglecting terms
containing two derivatives, either spatial, temporal, or both. The
remaining terms are '"fast' rotating vectors with "slow" coefficients.
Equations which are truly slowly-varying can be constructed by
projecting the wave equation onto two unit vectors, §1=(cosw,-sin¢,0)
and §2=(sinw,cosw,0) to get
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The second-order partial differential equation (1) has now been
reduced to two first-order differential equations (7); one
describing the eveolution of the amplitude of the wave, the other
describing the evolution of its phase. When there is no source
current (J,=0), E and ¢ satisfy the free-space wave equation.

For relativistic electrons, the transverse radiation force is
very small, so the electron's transverse velocity (and therefore
the transverse current) is determined almost entirely by the
static magnetic field. We project the single-particle currents,
ef,c, onto the two unit vectors €, and £,.

The total beam current is the sum of all single-particle
currents. The electrons can be labelled by their initial positions
and velocities (or, equivalently, resonance parameters); this
definition is unique, and rigorously defines the electron beam
current (Jean's theorem). In experimental situations, the electron
pulse is large compared to an optical wavelength, so on a
microscopic scale the electrons are initially spread uniformly
over each wavelength of light. Although particle redistribution
(bunching) does occur within an optical wavelength, it does not
affect the average density in any macroscopic section of the beam
several wavelengths long. Similarly, although the energy spread
of the injected electron beam would generally not be large enough
to result in distortion of the pulse as it travels down the magnet,
it may be large enough to result in a significant spread in
resonance parameters. On a macroscopic scale neither the bunching
mechanism nor an initial velocity spread alter the macroscopic
electron pulse shape, and it travels undistorted through the
interaction region. Microscopically, however, an electron's
resonance parameter, vV, and initial position within a wavelength
of light To (i.e., its coordinates in the pendulum phase-space)
are crucial in determining the result of its interaction with the
wave. The beam current density in a volume dV (which is large
compared to an optical wavelength, but small compared to the pulse
size) is found by averaging over v, and G, then weighting this
result by the macroscopic particle density p(z) within that volume
element. Indicating the appropriate microscopic average by () the
equation becomes

3E , 1 3E _ _ cos (T
32 T o 3c) = ~2mex p(z-Byer) < Y > (8)
E E + E aié = 2mex D(Z-BOCC) < Y > (9)

where p(z-B,ct) is the density of the traveling electron pulse.
Within the slowly varying amplitude and phase approximation,
macroscopic sections of the electron beam (those covering several

“.
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Fig. 2. The pendulum phase-space (Z(t),v(t)) is periodic in the
optical wavelength which defines the bunching length.
Electrons evolve along their paths in either the open or
closed orbit regions.- The optical field strength E
determines the height of the closed orbit region 4Q.

optical wavelengths) can be accurately represented in the periodic
pendulum phase~space by a single section of phase-space A long.
Equations (8) and (9) are coupled through the pendulum equation (6),
or the more general equations (4) and (5). In more complicated
magnet structures, the electron equations (4) and (5) may be
altered, but the wavelength equations (8) and (9) retain a similar
form.

In their general form, the non-linear equations (8) and (9)
are valid for low-gain and high-gain systems, in weak or strong
optical fields. They describe the evolution for an arbitrary
electron pulse shape, and the resulting amplitude and phase (and
therefore the structure and spectrum) of the optical pulse. The
remainder of this work explores the content of these equatioms.

ELECTRON PHASE SPACE EVOLUTION

The electron physics can be understood by appealing to the
electron phase~space diagrams. Consider the microscopic current
within a small volume, of the beam. If the pendulum equation
coefficient Q=(2B°E);ieL/Ymc2 were truly constant, the electron
phase-space would be exactly that of a single pendulum, as shown
in Figure 2. Two sample electrons are included in the figure;




196 W. B. COLSON

each electron's initial conditions determine the evolution of its
"velocity" v(t)= Z(t)L/c and "position" r(t), and therefore constrain
it to follow a particular path in phase-space. The height of the
"closed-orbit region', 48, is determined by the optical field
strength, and is important in determining the character of electron
evolution and hence the laser gain process. A large  "traps" a
large area of the phase-space in closed orbit paths.

The fully coupled equations indicate that an electron's
evolution is not govermed by the exact pendulum equation, but by
a "self~consistent"” pendulum equation; at any instant in time,
however, an electron's motion can be determined from the pendulum
phase-space defined by the values of §! and ¢ at that instant. The
phase-space picture  therefore remalns a valuable tool in under-
standing beam evolution. Figures 3- 5'® show the self-consistent
evolution of a monoenergetic beam with the approximate parameters
of Stanford's laser (except that the optical pulse is assumed to
be long and the optical cavity mode structure has not been
included). The electrons phase-space paths are almost indistin-
guishable from pendulum paths; the self-consistent separatrix is
included for reference. Since the electrons are spread uniformly
over an optical wavelength, and the pendulum phase-space is periodic
in the optical wavelength; it is only necessary, then, to consider
a sample of electrons distributed uniformly over one optical
. wavelength.

In Figure 3, all electrons are injected with v =2.6 for
maximum gain in weak fields.!! With the optical power only 10° W/ em?,
all electrons fall in the open orbit region. The beam acquires a
small energy spread, and some bunching about =T can be detected.
The gain equation and electron distributions have previously been
derlved in this regime by expanding the pendulum equation in powers
of E.

In Figure 4, the initial optical field is stronger (10% W/cem?);
the closed~orbit region has expanded, and now contains some of the
electrons. The energy spread is larger, and bunching is more
evident. Note that in both Figures 3 and 4 the =7 is overpopulated
at the end of the laser to amplify E in (8).

In Figure 5, the field is large enough (107 W/cem?) that
saturation begins to occur: electrons gain and lose energy in a
nearly symmetric way, and the gain (originally ~15%) has dropped .
to V5%. When the laser oscillator reaches the point where gain per -
pass equals the loss per pass, it runs in a steady state. Note here
that the [=T phase is overpopulated before the end of the laser!
The electrons become spread again at the end of the laser and do 3
not efficiently drive the wave. In the Stanford experiment, only .
a small fraction (=vo/4ﬂN=O.1%) of the electron beam energy
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Fig. 3. In weak optical fields (power=10° W/cm?), electrons evolve
in the open-orbit region and acquire a small spread in
energy.

is extracted at saturation.

The character of the gain process is analogous to the energy
exchanged between two weakly coupled pendula (the optical wave and
electron beam). For very short times, little energy can be transfr-
red, and for very long times, the exchange averages to zero. But for
the appropriate finite time, defined by Vv, in our case, energy flows
in one direction only, giving a net transfer to the optical wave.
Note that the energy density in a relativistic electron beam can be
quite large; any reasonable fraction that can be transferred to an
optical wave produces a sizable laser field.

Electron dynamics may also be derived from a self-consistent
pendulum potential; V(z)=-(Qc/L)2sin(z+¢) and ?=-V'(z) give (6).
The potential changes slowly and self-consistently with @ and ¢
coupled to the wave equations. From this viewpoint, when electrons
enter at the resonant velocity clgy/(Ay+A), they are initially
stationary on the V(z)-surface (Vo=0); an equal number of particles
"roll" ahead and back exchanging equal amounts of energy with the
optical wave. There is no gain in this case. If electrons enter
at a slightly higher velocity, then all electrons are initially
"rolling" along the r-axis of the corregated V-surface. For optimum
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Fig. 4. 1In stronger fields (power=106'w/cm2) 2 is larger; bunching
becomes evident at the end of the laser. T

gain conditions the "rolling" is slow; none will "roll" past more than
one crest during the interaction time, and the electron beam will

then lose energy to the optical wave. This is the gain mechanism.
During amplification the initially monoenergetic, uniform beam becomes
bunched at the optical wavelength and spread in energy; the fractional
energy spread is 8y/y<Q/TN for weak fields and =1/4N at saturation.
Maximum gain for weak fields occurs when the "'rolling" velocity is
Vo=2.6. Absorption is predicted and observed for vo£0. For typical
parameters, each ampere of beam current within the optical mode

cross section gives a few percent gain; one to one~hundred amps of
peak current can be provided by accelerators or storage rings. The
useful energy range is roughly ten to several hundred MeV; this

spans a range of wavelengths from submillimeter to x-rays. Higher
energies (with the best feasible magnets) result in very low gain.

After many passes of the electron beam, the intracavity optical
amplitude becomes large, V(Z) becomes large, and saturation occurs.
When Q22.6, there is no value of Vo, which can prevent the nearly
symmetric falling of particles into the potential troughs, the
electrons become 'trapped,” and gain decreases. In future experiments,
the deep troughs may be put to an advantage, increasing the energy
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Fig. 5. Saguratlon occurs when the fields become so strong (power=
10’ W/cm®) that nearly all electrons are "trapped” in the
closed~orbit region.

extracted from the electron beam and extending the laser performance.
At large field strengths, electrons are trapped in the beginning
stages of the magnet; the magnet (called a '"tapered wiggler™) is
designed with a slowly decreasing wavelength so the guiding phase-
space paths move down. Computer simulations show that about half
the electrons remain trapped in the deep decelerating "buckets' with
=10% (possibly 507%) energy extraction. This is the same mechanism
(in reverse) used in linear accelerators; in fact, a periodic magnet
with a slowly increasing wavelength and a powerful laser pulse may
be used as a particle accelerator. The possibility of modified
magnet geometries is an important flexibility in free electron

laser design; in an atomic laser, this would correspond to altering
the atomic structure, seen by an excited electron, during the
emission process.

Optical Wave Evolution

After concentrating on electron dynamics, we now consider the
result wave evolution. In a small section within long pulses, we can
take P, E, and ¢ to be spatially uniform in z. Furthermore, assume
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small electron energy extraction (Y3Y,) and low gain so that the
pendulum equation is valid. The phase averages are difficult to
perform, since the solutions to the full pendulum equation 7 are
elliptic integrals. The averages start at zero since the phases
are uniformly populated, but the electrons response to the wave
leads to non-zero values. In weak optical fields, the pendulum
equation and averages may- be expanded to first-order in E and the
integrals performed; this gives a maximum gain Gy oy = 0.27
e*BZpr(L/yome?) ? when v, =2.6.

In reference 15 (Colson and Ride, Chapter 13) an approximate
solution was found for these phase averages with higher order
E-dependence included. On each pass through the magnet, E and ¢ are
nearly constant; they evolve on a slower time-scale than the
electrons. A more appropriate time-scale for light is the evolution
over many passes. The light will bounce between the mirrors many
times, and if electrons are continuously supplied (or injected in
pulses to overlap the optical pulse), it will grow during each pass
until saturation. Its growth, dE, over a number of round-trips, dn
(which is 21, but small compared to the characteristic evolution
time), is 6Edn, where OE is the growth per pass. OE will have contri-
butions- from two sources: the electron beam interaction, and the
inherent losses of the optical cavity. The net growth over a single
pass is found by integrating (8) and (9) from t=0 to t=L/c. E and ¢
change very little over this time-scale and the resulting integrals
produce terms proportional to E and E® with constant coefficients.
The long term behavior of E and ¢ are described by

dE

- 3
in aE BE

(10)
49 _ v _ grp2
dn @ B'E
where n is the number of round-trips of the light in the resonator

(pulses must be long enough so that every part of the pulse evolves
in the same way) and the lowest order coefficients are

2e"B%A L% 1
o = —(——2_)3 (l-COS \)0 - ;i\)o sin \)o = Z-Q
Yomc \)o
(11)
2¢"B%A L% |
a' = ————— (sin v, - %V, (1+cos Vy))

(Yome2vg) 3
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Note that 20 is the gain per pass and is identical with the gain coef-
ficient derived using energy conservation;!! Q! is the fractional
power loss per pass. o and o' are exact in the weak-field, low-gain
limit and are therefore fundamental results for the free electron
laser. The coefficients B and B' are lengthy expressions not
presented here; they are written out in reference 15. Furthbermore,
they are less fundamental since they are dependent on the specific
higher order approximation scheme. Both ¢ and B are antisymmetric
functions of v, centered about resonance (vg=0), but they are not
exactly the same shape. Both a' and B' are symmetrlc functions of
Vo, and also differ 1n detalled shape. B and B' are proportional to
[(2e°B*A L p)/(Yomc Vo )71 times a function of Vo

The differential equations (10) can be solved for the amplitude
and phase of the wave after any pass n.

BEZ V-1
EZ(n) = Ezezan<l+ _C_)_ eZOm)
o o1

(12)

B' BEZ 2an
¢(n) ¢ +a' 11-2—8 In |1+ — 3

where E, and ¢, are the initial amplitude and phase and it is assumed
that the laser starts far from saturation, E2<<a/B The phase
initially accumulates as a'n; then after saturation (when e20n551)
¢(n)+(a'-aB'/B)n. 1In the early stages of evolution, the power grows
exponentially then asymptotically approaches the constant value
ac/4mB.

In the laser E and A are not externally prepared, but evolve as
determined by the system parameters: p, B, A, Y,» N and Q. We
chose p=1. 9x10° cm~3, B=2.4 kGauss, A,=3.2 cm, =85, N=160, and
Q~!=0.35 to describe the Stanford laser 2 The cganglng phase ¢(n). .
is to be interpreted as an evolving laser frequency w=2mc/X which
slowly changes the resonance parameter V. From the definition of
v and the form of the optical wave (2), we identify v(n)=vo+
Bv(n)/3n|v=v . The shift in Vv is small (only 2% of its initial value

o

of 2.6 for maximum gain). We previously neglected this shift in the
low gain limit; here we see that this was justified. During growth
the shift is away from resonance (and the maximum gain point at 2.6);
after saturation v moves nearly back to the maximum gain point.

The formulation above enables us to describe the onset of free
electron laser operation as a second-order phase transition.
Equatlon (10) may be rewritten in the form E=-3%(E)/3E, where ¢(E)=
—aE2?/2 + BE*/4. The dynamic equation for the amplitude of the laser
field is then described by the overdamped motion of the coordinate E
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GENERALIZED POTENTIAL, ¢(E)
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Fig. 6. If the electron current is raised above threshold, the
generalized potential ¢(E) changes shape; fluctuations
drive the field from zero to the new steady-state minima

+(a/B)*.

in the generalized potential ®(E). It is evident in Figure 6 that
the behavior of E depends critically on the sign of a. If a<O,
losses in the system exceed the gain, and the field amplitude
fluctuates near zero. At the critical current density pB,c (for
which @=0) the laser reaches threshold; for greater currents the
potential takes on a different form and fluctuations cause evolution
to a new steady-state configuration at E?=q/R. It is important we
found that V(n)*v, for all n so that only the amplitude evolution
needs to be followed in developing ¢(E); therefore, B and B' need
only be accurate near vy =2.6 (as they are), the maximum gain point

in weak fields.
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The potential ®(E) has the same form as the thermodynamic
potentials which describe ferroelectricity, ferromagnetism (in
the Ginzburg-Landau formulation), superconductivity, and laser
action in atomic lasers.!’ Each of these phenomena can be
described by a mean-field theory, with the result that the system
changes from a disordered state to an ordered state when an
external parameter attains some critical value. This low-gain
analysis of the free electron laser is also a self-consistent mean-
field theory. The "order parameter" is Eanalogous, for example,
to the magnetization in a ferromagnet). If E is small, the
photon density (E2?/4Tikyc) is small, and the laser phase ¢ has no
long range order. If the system has "lased", E? goes to its large
value of a/B; the laser phase becomes ordered over many optical
wavelengths (the coherence length) producing a classical electro-
magnetic wave. The role of spontaneous emission has been included
in a quantum mechanical description of this same evolution.®

Short Pulse Evolution

Now that the electron and wave evolution has been explored for
long uniform beams, we consider the short pulse dynamics. The
system of equations (6), (8) and (9) can be solved to take into
account the spatial structure of both the optical and electron pulses.
The behavior of the free electron laser is, in fact, modified by
short-pulse effects.!® The shape of the optical pulse, its
Fourier transform (which shows a laser line shift), and the optical
pulse "slippage" over the slightly slower electrons, are all
sensitive to the pulse length. This is not particularly surprising,
since each of these depends on the overlap between the optical
pulse and the electron beam--which for short pulses is continually
changing. In Stanford's system, for example, as the short (V1 mm)
pulses travel together down the 5.2 m magnet (Figure 1), the
optical pulse gradually passes part of the way (.5 mm) over the
electron pulse. Each section of the optical pulse sees a varying
electron density; similarly, each section of the electron pulse sees
a varying optical field. The evolution is therefore quite complex.

In the Stanford laser, radiation is stored in an over-moded
resonant cavity, £ =12 m long. The mode geometry causes a small
change in the field's amplitude along the laser, and a more signi-
ficant change in the phase of the wave. The self-consistent
separatrix shifts with the phase (A¢/pass=m/4), but the qualitative
behavior of the electrons remains the same. The undriven wave's
amplitude and phase vary as they propagate alon% tge laser magnet
axis. E varies in proportion to (1+(2z-1)%/ £ *)™% and the optical
phase changes by -tan~!((2z-L)/X). These undriven changes in the
wave are included at each step in the systems evolution. This mode
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also changes the coupling in (8) and (9) and is included by
introducing a "filling factor' F(z)=F_/(1+(2z-L)%/ 1 ?) which
multiplies p everywhere. F is the ragio of the electron beam area
to the optical mode area and equals F =.082 at z=L/2.

In the working laser oscillator, the optical pulse remains in
the resonator, bouncing between mirrors at either end. On each d
round-trip 3.5% of the pulse's power is lost at the mirrors. To
maintain the pulse, a fresh electron beam with fixed gaussian shape
is injected every cycle, and timed to overlap the rebounding optical
pulse. The evolution of a low amplitude, coherent wave, can be
followed through many hundreds to a thousand cycles in the resonator.

It would appear that to "synchronize" each electron pulse with
the rebounding optical pulse (to have it overlap the optical pulse
in the same way on each pass), the electrons should be injected
every 2&€/c seconds. But while 2&/c is the bounce time of a photon,
it is not the bounce time of the centroid of the optical pulse.
Since there is more gain at the end of a free electron laser than at
the beginning,11 the trailing edge of an ultra-short optical pulse
experiences more amplification than its leading edge. The net
effect is that the centroid of the optical pulse passes over the
electrons at a speed less than c(1-8,), and would therefore
intercept the next electron pulse later than the expected 2&L/c. 1f
the experimenter does not compensate for this effect, the optical
pulse centroid will continually move back, and after many passes will
no longer adequately overlap the electron pulse; when this occurs,
the absorption per pass exceeds the gain, and the equilibrium
oscillator power is zero.

In the Stanford experiment, the resonator length was varied
until maximum steady-state power was achieved. The experimenters:
found that the power was sensitive to changes on the order of microns,
but did not know the absolute length of the cavity within microns.
We can now infer that the resonator must have been slightly shortened
by AL, to decrease the 2% /c bounce-time, and compensate for the
slower speed of the optical pulse. Figure 7 shows the steady-state
power as a function of AL. Our result is in fair agreement with the
curve found experimentally, but is wider for the precise parameters
reported.‘9 One of the less well-known experimental quantities
is the electron pulse length (a factor of two uncertainty), which
could clearly have a serious effect on the slippage curve width.
The average current is actually well-known, so that uncertainties .
in the electron pulse length translate into uncertainties in p and .
therefore, gain. We have seen numerically that larger gain widens
the.curve in Figure 7 (50% gain/pass and 10% loss/pass make the curve
*30 microns. wide) so that less gain from a slightly longer electron
pulse could conceivably give closer agreement to experiment. At this
point, however, there are too many uncertainties to meaningfully
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Fig. 7. The length of the resonator must be adjusted to compensate
for reshaping of the optical pulse. The steady-state power
is a sensitive function of the length, AL . The inset shows
Stanford'‘s experimental curve, which is similar to the
theoretical curve, but not as wide.

pursue better agreement; future experiments will improve this
situation.

Once the cavity has been properly adjusted, the free electron
laser can evolve to, and operate in, a steady state. In Figure 8
are shown two optical pulses evolving in the Stanford laser; after
several hundred passes the pulse evolution slows considerably to a
steady state. The multiple peaked structure is typical of short
pulses with small slippage compensation AX (<2 microms); in this
case the optical pulse 'rides" near the middle of the electron pulse.
If Ad is larger (22 microns), the optical pulse is longer with no
structure and "rides" near the front of the electron pulse. The
Stanford group has not yet had the opportunity to measure the
structure of the optical pulse; when the measurement is performed,
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Fig. 8. 1In (a), the laser runs with small AL (=) micron) to steady-
state, and in (b) the laser runs with larger AL (=2 micron).

it will be a.good test of the predictive powers of this analytic
technique.

The multiple peak structure in Figure 8 does, however, explain
an observed feature of the power spectrum, The peaks (V0.8 mm apart)
would correspond to approximately a 60 GHz modulation in the laser
line; the Stanford experiments do report a clear 60 GHz modulation
which is indirect evidence for this multiple peak structure.
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N\ EXPERIMENT

POWER SPECTRUM
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'OPTICAL WAVENUMBER (x 1073k )

Fig. 9. The power spectrum dP/dk (laser lines) is obtained by taking

’ the spatial Fourier transform of the pulse. The steady-state
line-center is calculated to move from kr(vo=2.6) to vf=4
(largely independent of AL), the resonance parameter for
maximum strong-field gain. We suggest that the experimental
line-center is placed too close to resonance (V=0) due to
detector misalignment (by ©~0.0007 radians) during the
spontaneous emission measurement.

Furthermore, as Af—is increased, the modulation is observed to
disappear and the power spectrum narrows; each feature is predicted
by the theory here.

The spatial Fourier transform of a steady-state optical pulse
yields the laser power spectrum dP(k)/dk as shown in Figure 9. A
low amplitude pulse should start at vo=2.6, the resonance parameter
for maximum weak-field gain; this determines the carrier wave-
number k. After many passes the pulse amplitude becomes large and
the power spectrum shifts to Vg¥4, the resonance parameter for
maximum strong-field gain.!® The structural cause for the shift
is a linear phase change along most of the pulse profile so that
¢p=8kz where §k/k=-0.0015; the resonance parameter as observed in a
detector outside the laser cavity is then shifted by &v=-2mN6k/k=1.5.
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The theoretical width and shape of the power spectrum are in
excellent agreement with experiment,2° but the experimental laser
line appears to be shifted towards resonance as determined by
comparison with the spontaneous emission line-center. A possible
cause for this discrepancy is a slight misalignment of the detector
from the magnet axis during the spontanecus emission measurement.?!
This alignment is so delicate that ©=0.0007 radians (well within the
relativistic emission cone of angular width y~!=1072? radians) would
shift the spontaneous emission line-center up by &v=2.5 (since
Sv=2mNy262/(14«?)) and make the laser line appear to be shifted
towards resonance by the amount shown in Figure 9. Note that there
is no other determination of resonance in the Stanford experiment
and such a misalignment can only cause the laser to appear shifted
towards resonance as found.

No matter how the laser pulse grows, for electromns Bz(zl)
remains nearly constant and- the electron pulse retains its shape.
On each pass all electrons are injected with the same energy, but as
they respond to the local optical field a small microscopic energy
change alters their -resonance parameter. In reference 15 the
resultant energy distribution is shown; experimental agreement is
consistent with the resolution of the spectrometers.!® For small
AL , the fraction energy spread is {}/7N. We found that large AL
produces anamolously small electron distributions by about a factor
of two. The electron moves out -of the back of the optical pulse
prematurely on each pass since the pulse is "riding" on the front
of the electron pulse. This early. decoupling fails to spread
electron energies the expected amount.

The author wishes to acknowledge sﬁpport by NASA Grant NSG-7490
and many helpful discussions with S.K. Ride, J.M.J. Madey, and
J. Eckstein and the numerical assistance of K. Lind and R. Zarnowski.
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Free Electron Lasers

#. B. Cblson

Quantum Institute and Department of Physics
University of California

Santa Barbara, California 93108

In a free electron laser, a beam of relativistic electrons passes through a
static periodic magnetic field to amplify a superimposed coherent optical wave.
Such a laser is free from the bonds constraining atomic lasers to a particular

wavelength and therefore is continuously tunable. The optical cavity contains

" only light, radiating electrons, and the magnetic field so that intense optical

ﬂelt:ls may propagate without the degrading non-linear effects (self-focusing.
etc.) of denser media. The advanced technology of high-energy electron
accelerators and storage rings promises efficient recirculation of the beam
ehergy. Here, the lasing process has been reduced to its most fundamental
form and is manifestly classical in nature. This point is at the root of many of
the free electron lasers potential advantages over conventional atomic lasers;
many pi‘operties of atomic lasers, such as efficiency, are limited by quantum

mechanics.

The earliest coherent radiation sources, radar and microwave electron
tubes, used classical nén—relativistic electron beams to amplify long wavelength
radiation (10 cm to 0.1 cm). These devices satisfled a wide range ol applications
with hundreds of varied designs, but is was not possible to generate shorter

wavelengths until the early sixties when atomic and molecular lasers were
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developed. Alnecessary technical advance at that time was the replacement of
“closed” microwave cavities with “open” optical reson.;tors. J. M. J. Madey's con-
ception of the free electron laser in 1971 showed how relativistic electrons and
“open" resonators could extend the advantages of electron tubes to the optical

regime.

Madey and his collaborators at Stanford University demonstrated free elec-
tron laser amplification in 1978 and laser oscillation in 1977. In the oscillator
experiments (Fig. 1), a nearly monoenergetic 43 MeV electron beam from a
superconducting linear accelerator was passed through a 5.2 m long helical
magnet with a field strength of By = 2.4 kG and wavelength Ao = 3.2 em. Short 4
picosecond electron pulses of ~1A peak current produced 2000 kW peak optical

power at A = 3.4u wavelength with circular polarization.

optical pulse optical pulse

—-—>\\electwn path /,—>———
eleclron pulse //
ﬂ. /
—— A
electron pulse
mirror penodlc magnel mifor

Figure 1. In the oscillator configuration, the electrons are guided into the
transverse periodic magnetic fleld with velocity B,c. the stored optical
pulse slowly passes over them and stimulated emission occurs. The elec-
trons are removed after each pass, and the enhanced optical pulse is stored
between the mirrors of the resonant cavity. A partially-transmitting mirror
_allows useful coherent radiation to escape.

The fundamental physics_ of free electron lasers is now well understood;
several theoretical viewpoints adequately deécribe its behavior. Semi-classical
quantumn theory, or quantum electrodynamics, explains the laser action as
stimulated Compton back-scattering of the virtual photons in the periodic mag-
net, or equivalently, as stimulated magnetic Bremsstrahlung. In this view, the
finite length maénet and the resulting electron kinematics allow stimulated

emission to exceed absorption. Viewed classically, the electron beam is a cold
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relativistic plasma; dispersion relations from the Boltzmann equation can prop-
erly characterize the evolution of the electron distribution in the optical wave.
The most fruitful and widely used theory calculates the dynamics of individual
electrons as they are affected by the flelds in the laser cavity; the total

transverse current then drives Maxwell's non-linear wave equation.

To simplily the discussion, only the essential physics of the Stanford oscilla-
tor experiment are explained. Mirrors are placed at each end of the interaction
region to store radiation; fresh e[ectrons are either supplied continuously or
injected to overlap the rebounding optical pulse. As electrons enter the laser
- cavity, they are acted on by the static magnetic field, and the oscillating elec-
tric and magnetic components of the nearly free optical plane-wave; interparti-
cle Coulomb forces are small for the high energy, low density beam of the Stan-
ford experiment. The magnet guides an electron through N periodic oscillations
as it travels the length of the magnet L = NAg with z-velocity f,c (8, ~ 1); the
small transverse accelerations produce a small amount ol spontaneous radiation
carx:ylng the polarization of the magnet geometry: circular polarization for a
helical magnet, linear polarization for alternating poles. The emission is
confined to within an angle ~ 1/ 2y (ymc? ‘ls the electron ene'rgy) about the for-
ward motion, and within a narrow (¥1/2N) spectral line-width about the funda-
mental A = Ag (1 = 8,) ® Ag(1 + K®)/ 29" tor v » 1 and K = eByy, / 2rmc?® where
e and m are the electron charge and mass, ¢ is the speed of light. If K <1, as s
usually the case, there will be A small amount of emission into a few well-
separated higher harmonics. The Stanford experiment gives typical values for
these parameters, and has demonstrated the tunable characteristic of the laser
frequency by varying the accelerator energy. In future machines the tunable
wavelength range is estimated to be about a decade; this is primarily deter-

mined.by the dynamic range of the electron source.
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The radiation from multiple passes of the electron mass is stored in the
resonant cavity. The magnet alone does no work on electrons (neglecting spon-
taneous emission), but does give a small transverse veloclty: f:. The radiation
fields alone have no significant effect on either the electron trajectory or
energy, since the forces due to the optical electric and magnetic fields nearly
cancel. In combination, the magnetic field guides electroné through a
transverse path so that the radiation electric field E can do work on an electfon
according to ¥ = (e/mc)f, -E. The fundamental emission frequency is such
that one wavelength of light passes over an electron as it passes through one
magnet wavelength; therelore, the transverse velocity ﬂ, retains its orientation
relative to & over many magnet periods and the energy exchange persists in the
same direction. The direction of energy flow ( ¥ being positive or negative) is
determined by the electron’s phase ¢ = 2n[(A™'4+Ag 1)z (t)-A"'ct ] within sections
of the electron beam, each an optical wavelength long. Evolution of electrons in
the ¢-coordinate space (the "resonant frame") is slow and simple; for low gain, ¢

is approximately governed by the pendulum equation ¢ = (%cos(¢ + ¢) where

1% = 2628, L/ (ymc ) and p is the optical phase,

Since any practical electron beam is many optical wavelengths long, the
potential V(¢) = —(P sin(¢ + ¢) is uniformly populated with electrons along the

¢-axis. I electrons enter at the resonant velocily cAg / (Ag + A), they are ini-

* tially stationary on the V(¢)-surface (¢(0) = 0); an equal number of particles

“roll" ahead and back exchanging equal amounts of energy with the optical wave.
There is no gain in this case. If electrons enter at a slightly higher velocity, then
all electrons are initially “rolling” along the {-axis of the corrugated V-surface.
For optimum gain conditions the "rolling" is slow; none will "roll” past more than
one crest during the interaction time, and the electron beam will. then lose

energy to the optical wave (Fig. 2). This is the gain mechanism. During

- ..
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amplification the initially monoenergetic, uniform beam becomes bunched at
the optical wavelength and spread in energy; the fractional energy spread is
6y/ vy~ L/ nNc for weak fields and NM1/2N at saturation. Maximum gain for
weak flelds I8 Gmex = 0.27e*B§pAo(L/ymc®?® when the 'rolling” velocity is
¢(0) = R.6¢c/ L, and the beam density is p. Absorption is predicted and observed
for '((O)L/ ¢ < 0. For typical parameters, eac'h ampere of beam current within
the optical mode cross section gives a few percent gain; one to one hundred
amperes of peak current can be provided by accelerators or storage rings. The
useful energy range is roughly ten to several hundred MeV; this spans a range of
wavelengths from submillimeter to x-rays. Higher energies (with the best feasi-

ble magnets) result in very low gain.
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Figure 2. In the resonant beam frame, sample electrons (spanning one opt-
ical wavelength) evolve in the potential ¥({). Maximum gain is achieved by
initially "rolling" particles along the ¢-axis. The peaks in V(¢{) cause spatial
bunching and decelerate the particles so that they give up their energy to
the optical beam: an cnergy spread results. (The potential V(¢) shown here
actually grows in amplitude and shifts in phase self-consistently, and almost
imperceptibly, according to Maxwell’'s wave equation; this shows the simple
pendulum to be an accurate concept.)
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The character of the gain process is analogous to the energy exchanged
between two weakly coupled pendula (the optical wave and electron beam). For
very short times, little energy can be transferred, and for very long times, the
exchange averages to zero. But for the appropriate finite time, defined by
$(0)L/ ¢ in our case, energy flows in one diréction only, giving a net transfer to
the optical wave. Note that the energy density in a relativistic electron beam
can be quite large; any reasonable fraction that can be transferred to an optical

wave produces a sizable laser field.

After many passes of the electron beam the intercavity optical amplitude
becomes large, V({) is large, and saturation occurs. When )L/ c = 2.8, there is
no value of '((0) which can prevent the nearly symmetric falling of particles into
the potential troughs: the electrons become "trapped.” and gain decreases. As
the gain decreases to equal the cavity loses, the laser runs in steady-state. In
the Stanford experiment, only a small fraction (&1/2N ~ 1/2%) of the beam

energy is extracted prior to saturation.

In future experiments, the deep troughs may be put to an advantage,
increasing the energy extracted from the electron beam and extending the laser
performance. At large field strengths, electrons are trapped in the beginning
stagés of the magnet; the magnet (called a "tapered wiggler") is designed with a
slowly decreasing wavelength so V({) moves to the left in the resonant frame.
Computer simulations show that about half the electrons remain trapped in the
deep decelerating "buckets" with 810% (to possibly 50%) energy extraction. This
is the same mechanism used in linear accelerators; in fact, a periodic magnet
with a slowly increasing wavelength and a powerful laser pulse may be used as a
particle accelerator. The possibility of modified magnet geometries is an impor-
tant flexibility in free electron laser design; in an atomic laser, this would

correspond to altering the atomic structure, seen by an excited electron, during A



the emission process.

For high density, low energy electron beams (where p/'y“.?.‘l()2 times
Stanford's parameters), interparticle Coulomb forces can influence a particle’s
motion in competition with V(¢). _The gain process is then collective; many elec-
Lrons oscillate together due to spatial beam instabilities and amplification is
non-linear in the current. Still, relativistic electrons are necessary to reach
short wavelengths and electron bunching is the key to gain; the emitted
wavelength is generally related to the system parameters through dispersion
relations containing the electron density. Groups at Columbia and TRW have
demonstrated free electron maser action in the collective regime with moderate

energy beams (7 < 2.4).

At present, free electron laser development is in its infancy; only the Stan-
ford laser has operated In the short wavelength regime. Several experiments
are now underway in the U.S. and Europe and many new designs are being con-
sidered. The necessity of high current, high energy electron beams appears to
dictate that, for the near future at least, free electron lasers will be large
machines; but, these facilities will be unique in that they are continuously tun-
able with high average power and high efficiency. Some l;aslc configurations
(;urrently under investigation are diagramed in Fig. 3. A specific single-pass
arrangem;ent (3(a)) uses an induction linac (50 MeV and 2 kAmps peak current)
a§ the electron source for a “tapered wiggler” magnet; collective effects are
important for this beam. With high energy extraction, an impressive opu.cal
pulse (50 GW) is developed; the degraded electron pulse would then be dis-

carded.

Figure 3. Some basic free elec-
tron laser systems.

- hr

With less energy extraction, the electron beam quality can bé maintained
and recirculated in a storage ring (3(b)); the electron energy lost per pass is
replaced with an RF linac in the ring. However, even small beam degradation
per pass can build up over many cycles until synchrotron radiation damping
eventually allows steady-state operation; analysis predicts that the available
laser power will then be only a small fraction (% 1/2N) of the synchrotron
power. Several possible "cures” for this "eilment” are described in the reter-
ences and now it appears that the laser output can greatly exceed the necessary
synchrotron damping. One method alters the periodic magnetic structure to
diminish the beam degradation; in another, the magnet structure is specifically
designed to operate with an energy broadened electron beam:; and another
method recycles the beam energy without recycling the electrons. Electrostatic
accelerators can also be used efliciently with lower energy beams (y < 10). The
electron current (¢10A) and energy can be recovered by electrostatic decelera-

tion of the beam after a pass through the laser {3(c)).

Several conceptual designs indicate 20% (to possibly 50%) “wall-plug"”
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efliciency is possible; Lhe greatest losses coming from bending magnets and.
power supplies. It is the classical and relativistic nature of the electron beam
whi_ch. in principle, allows efficient flow of energy into the electrons and then the
oplical wave. Efficient free electron lasers with an average optical output from

10 kW (at A > 10u) to MW (at A N 1) are proposed.

A review of all the proposed {ree electron laser schemes with their advan-
tages and disadvantages is lengthy. The above ideas just give the “flavor” of the
research. Scientific, industrial, and military applications look promising. Solid-
state, atomic, and chemical spectroscopy can reach wavelengths not previously
accessible. The military needs powerful far-reaching beams for communications,
radar, and weapons; in particutar, space applications require high efficiency.
lndustrigl photochemical processing looks promising in that free electron laser
light appears relatively inexpensive. Judging from the more mature technollo-
gies, electron masers and atomic lasers, several free electron laser
configurations will be required to satisfy differing needs; there won't be just one

free electron laser.
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The nonlinear wave equation and self-consistent pendulum equation are used to generalize
free-electron-laser operation to higher harmonics: this can significantly extend their tunable

range to shorter wavelengths.

INTRODUCTION

In a free-electron laser, a beam of relativistic elec-
trons travels through a static periodic magnetic field
and oscillates to amplify coherent optical radiation
with the same polarization as the magnet.! While the
laser radiation causes spatial ‘‘bunching’’ on the opti-
cal wavelength scale,? the large-scale electron trajec-
tories are primarily determined by the magnet.
Several theoretical approaches have been used to
describe the free-electron laser, and Ref. 3 compiles
many of these techniques. The picture of single-
particle electron currents driving the nonlinear optical
wave equation* provides a clear, intuitive description
of both electron and wave dynamics; we use this view
to analyze the feasibility of operating free-electron
lasers at selected frequencies which are odd multiples
of the fundamental 3w, Sw, .. ..

Theory and experiment have been primarily applied
to free-electron lasers using helical magnets, but
many proposed experiments will use linearly polar-
ized magnets, which are magnets with alternating
poles. A small periodic longitudinal motion of elec-
trons in the linear magnet causes spontaneous emis-
sion and gain in the higher harmonics; this has been
proposed as a method of extending their tunable
range.” Backscattering into higher harmonics has also
been described (Ref. 3, Chap. 32, Vol. 7). but this
process does not involve gain. Recently,® harmonic
gain has been calculated for the low-gain case, but an
incorrect result is presented; aiso, we are told of a
quantum-mechanical contribution to the topic.” We
derive a complete nonlinear, self-consistent wave
equation for the laser field and show how the cou-
pling between the electrons and light is aitered in a
nontrivial way. A useful notation allows simple scal-
ing arguments to compare operation in any selected
harmonic.

NONLINEAR WAVE EQUATION
General solutions to the electron motior_x_in a
purely transverse, periodic magnetic field B

= B(0, sinkgz, 0) with wavelength \g=27/kq are dif-

24

ficult; but the physical situation of interest occurs
when 8; =1 >> B,,8,. An electron’s path through
the magnet is nearly sinusoidal with oscillation ampli-
tude K/yoko. where K =eBrg/2mmcl, e =|e] is the
electron charge, m is the electron mass, and yome? is
the initial electron energy; smaller longitudinal oscil-
lations of amplitude K?/8y3k, cause spontaneous
emission and gain into a few higher harmonics.?

Calculation of the detailed properties of spontane-
ous radiation is straightforward using standard classi-
cal techniques.® In a long magnet (N =L /)y = 102),
emission is sharpiy peaked at well-separated harmon-
ics

So=2mef /(1 =B ho = 2ydfkoc/(1 + L K?)

in the forward direction, where Syc is the electron’s =
velocity; the spectral width is ~ 1/2N. Far away from
the linearly polarized magnet the element of optical
energy received in the fth harmonic per unit solid
angle, 4 Q, in the forward direction per unit frequen-
cy interval, d(fw), is

daw, eNyof | 32(£)

ind/w |1+ikt| < )

f=1,3,5717 ...,
where
X&) =K(=DY=D20, _\n(£8) =Jpanpn(f6)]
£=KH4(1 +K?)

The radiation is stored in a resonant cavity which
we take to be selective to only one of the harmonics.
In order to describe stimulated emission, we must
calculate the feedback of the light wave on the elec-
tron current using Maxwell's nonlinear wave equa-
tion. The detailed derivation of the wave equation is
presented eisewhere.® The optical wave amplitude
E (¢} and phase &{(1) slowly evolve into a coherent
laser beam.

Relativistic electrons in both B and the radiation
fields are governed by the Lorentz force equations.

The electron motion contains factors which oscillate
periodically each magnet wavelength, but we actually
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want to describe the slow evolution about these
periodic oscillations. This is accomplished by averag-
ing the motion over each magnet wavelength.® It is
then convenient to define a slowly evolving dimen-
sionless velocity v(1) = L[ (k + ko) B,(t) — k] using
the wave number of the fundamental X = w/c, and
the averaged electron z velocity 01_3,. The initial ve-
locity vo=wv(0) is called the ‘‘resonance parameter’’;
when v =0, exactly one wavelength of light passes
over an electron as it passes through one period of
the magnet and the coupling between light and elec-
trons is maximized. The dimensionless phase is

]

() ={(k +ko)z (1) — wil, where 7(1) = J; cB, (1) dt";
note that {=d{/dt=v, where r=1c/L. [ describes
electron dynamics on the optical wavelength scale.
The total beam current is the sum of all single-
particle currents which we label by initial positions
(spread uniformly) and velocities vy, we average over
sample electrons ( ), then weight this resuit by the
macroscopic particle density pp. Furthermore, we
note that in long, periodic magnets, the fractional
changes in y are always small { < (2N)71].

The coupled wave and electron equations are,
respectively,

G=—r{e7Mty, fi=1lalcos(f{+) . (2

where |a| =47 NefX,(€)LE/yimc?, and

r =8wNefK} £) L po/vdmc?, and a =|ale’®. The
second equation is recognized as the self-consistent
pendulum equation. The Bessel functions X,(£) ex-
press the reduced coupling between electrons and
light resulting from the time electrons spend in
periodic longitudinal motion (instead of transferring
energy to the optical wave). A helical magnet has
X,(£) — K throughout (2) and %Ial —]a] in the
pendulum equation. Since the pendulum equation

is periodic in f{, we only need to explore one 27
section of phase space; with the transformation

(L, v) —(f¢fv) the pendulum phase space can be
transformed into the same phase space of the funda-
mental (f =1). The separatrix vl =2|a|

x [1 +sin({, +#)] is a slowly evolving function of
|a| and ¢ which guides electrons into bunches about
the { = = phase; this drives the wave equation and is
the gain mechanism.>?

It is instructive to solve (2) for weak fields and low
gain. We expand the pendulum equation in-weak
fields (|a] << 1) and insert { into the wave equa-
tion. The resulting gain g (the fractional increase in
wave energy |a|?) and phase shift A¢ describe the
evolution of the optical wave:

& _1 d|cosx—1
roo2dx|  xT Jresy
€))
A¢ | d|sinx—x
r 4 .dx xt xapy,

These are fundamental results, and the effects of
stronger fields and higher gain are best described as
deviations from these expressions. The maximum
weak-field gain occurs at fvy=2.6056 and the max-
imum gain is g =0.067 52r; the gain curve is sym-
metric in fvy and A¢ is antisymmetric. For large 7, a
large optical phase shift causes the gain curve to dis-
tort and become more symmetric about vy=0. In
strong fields (|a| >> 1), electrons become trapped,
the gain curve becomes broader in vy, and decreases
in height; this is the saturation mechanism.

HARMONICS

We now examine Eqs. (2) with particular attention
paid to the possibility of operating in higher harmon-
ics (f=3,5,7, ...). Several points are explored
separately:

(1) The optical wavelength in higher harmonics is
given by A(1 +%K’)/27&[; the tunable range can

now be adjusted by fas well as K and y.

(2) The weak-field, low-gain expression (3) gives
us a good indication of many of the scaling results.
Maximum gain occurs closer to resonance in higher
harmonics than in the fundamental; v§** =2.6056//.
This creates a stiff requirement for the electron beam
energy and angular spreads since their initial range in
vo's must avoid the negative-gain region of the gain
curve.

(3) Since the natural energy spread of the electron
beam must fit into the narrower gain curve, we must
have 8vo < 7/f. In terms of a real fractional energy
spread this becomes 8y/y < 1/4Nf where N is the
number of magnet periods.

(4) For an initial angular spread, there is the simi-
lar restriction in f since a change in electron angle
also changes v through B,. The requirement is
A8 < (1 +3KD/2NYYS. '

These restrictions on the energy spread 5y/y and
the angular spread A# are the most serious problems.

(5) The gain in a free-electron laser is decreased in
higher harmonics due to the factor fJC} in r. See Fig.
1. Gain decreases rapidly in f, but the decrease can
be diminished using higher values of X. Practical
values'® can reach K =10, but K =2—4 seems to be
adequate to reach higher harmonics.

(6) After a pass through the laser, the final elec-
tron energy spread is given by 8y/y =|a|/8#Nfin
weak fields, and 8y/y = /4 Nf in strong fields.
These results may be important for recirculating elec-
tron beams in a storage ring® or Van de Graaff.'!

(7) The laser saturates when |a| > 2#; this gives
the final optical-field strength. The optical power at
saturation actually increases in the higher harmonics
in proportion to (/%)% .

(8) At shorter wavelengths, the optical-mode area
in the resonator tends to decrease. The mode area at
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FIG. I. Gain ris proportional to the new coupling factor
fx,2 in linearly polarized magnets. In higher harmonics

f=3.5.7, ... the coupling decreases rapidly unless K is
large.

the optical beam waist is mwg = zoA/f, where 2z, is
the confocal mirror spacing. As the harmonic
number increases, the resonator shouid be adjusted so
that the overlap with the electron beam cross section
is maximized. With f =10, for example, one could
decrease the beam waist wg by 2.15 and increase zg

by 2.15. If the increase in f is shared between w¢
and zg'', the optical cavity for higher harmonics can
be made reasonable.

CONCLUSION

The use of free-electron lasers in higher harmonics
is promising; a fixed facility then has a much broader

tunable range by another factor of / —~ 10 or 20. The
major limitation seems to be in the electron beam
quality (as usual); the necessary energy and angular
spreads decrease with /. A shorter magnet length L
may relieve this restriction somewhat. The gain also
decreases in higher harmonics. but if K =2—4 this
penalty does not seem too severe. Van de Graaff
free-electron lasers'! tend to have high gain (larger r
because of lower yq) and excellent beam quality, but
produce long wavelengths ~ 200 um; higher har-
monics may help to reach shorter waveiengths (~ 10
um) without changing ye. Storage rings also have
excellent beam quality, but not such large gain
(smaller r because of higher yo). Even so, with suf-
ficiently high K, higher harmonics could, in principle,
extend these free-electron lasers to new shorter
wavelengths in the uv and towards x rays. For in-
stance, when v is increased to achieve an 11-fold de-
crease in optical wavelength, the normal-gain process
(r ~ y5® and A — y52) drops by a factor of 36 (de-
creasing Ag is worse). But. if the /' =11th harmonic
is used with K =35, then only a factor of 2.5 in gain is
lost; comparisons of higher harmonics are even more
dramatic, but the excess beam quality necessary is
less likely.
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The Nonlinear Wave Equation for Higher Harmonics
in Free-Electron Lasers

WILLIAM B. COLSON

Abstract—~The nonlinear wave equation and self-consistent pendulum
equation are generalized to describe free-electron laser operation in
higher harmonics; this can significantly extend their tunable range to
shorter wavelengths. The dynamics of the laser field’s amplitude and
phase are explored for a wide range of parameters using families of
normalized gain curves applicable to both the fundamental and har-
monics. The electron phase-space displays the fundamental physics
driving the wave, and we use this picture to distinguish between the
effects of high gain and Coulomb forces.

INTRODUCTION

N a free-electron laser, relativistic electrons travel through a

static periodic magnetic field and oscillate to amplify co-
herent optical radiation with the same polarization as the
magnet [1]-[3]. The electron trajectories are primarily deter-
mined by the magnet, but the laser radiation causes “bunching”
on the optical wavelength scale and leads to gain [4}-]6]. Sev-
eral theoretical approaches have been used to describe the
free-electron laser; [7] gives a good description of many of
these techniques. While the first analyses used quantum me-
chanics (1] and quantum electrodynamics {8]-{10], classical
methods have been shown to be clear and accurate [4]-[7],
[11]-[21]. The coupled Maxwell-Boltzmann equations have
been developed into quasi-Bloch equations to enhance the
laser physics perspective [14], while plasma dispersion rela-
tions{15]-{17] and computer simulations [18], [19] empha-
size the role of interparticle Coulomb forces and collective
effects. The picture of single-particle currents driving Maxwell’s
nonlinear wave equation’is a mixture of these views and pro-
vides a clear, intuitive description of both electron and wave
dynamics [7], [20], [21].

In the past, theory and experiment have been primarily
applied to free-electron lasers using helical magnets, but most
proposed experiments will use linearly polarized magnets: a
magnet with alternating poles. In this paper, the wave equa-
tion technique is applied to linearly polarized magnets and
the possible use of higher harmonics. Although the basic
operation of the free-electron laser in either polarization mag-
net remains essentially the same, a periodic longitudinal
motion of electrons in the linear magnet causes spontaneous
emission and gain in higher harmonics of the optical field; this
has been proposed as a method to extend their tunable range
[9]. In arecent work [22] the electron trajectories in linearly

Manuscript received January 2, 1981; revised April 6, 1981. This
work was supported in part by NASA Grant NAS 2-48, NATO Col-
laborative Grant 1876. and Air Force Office of Scientific Research
Grant AFOSR-81-0061.

The author is with the Quantum Institute, University of California,
Santa Barbara, CA 93106.

polarized magnets and the gain in higher harmonics were cal-
culated; we extend the method developed there to derive a
complete nonlinear, self-consistent wave equation for the laser
field and electrons. We show how the coupling between the
electrons and light is altered in a nontrivial way. We then
consider some examples of high gain and low gain in both
weak and strong optical fields. A useful notation is proposed
which reduces the systern parameters and meaningfully relates
the remaining variables to the self-consistent pendulum phase-
space evolution. A simple extension of the theory includes
Coulomb forces [23] within the single-particle viewpoint, and
we show that these forces are not usually significant except for
very high gains. A distinction is made between the effects of
high gain (with an accompanying optical phase shift) and the
effects of Coulomb forces.

SIMPLE MAGNET TRAJECTORIES AND RADIATION

The character of radiation from a free-electron laser is ulti-
mately determined by electron trajectories in the periodic
magnet structure. If radiation losses and radiation feedback
are neglected, electron motion in an external magnetic field
B,, is governed by the Lorentz force:

a0B) . e =3

~ar " e (B X Bm) (1)
where e = |e|, m, and cﬁ are, respectively, the electron charge,
mass, and velocity, y"2=1- g8, and ¢ is the speed of light.
The electron energy ymc? in a magnetic field is a constant of
motion so that ¥ =y,, the initial gamma. Introduce a purely
transverse, periodic magnetic field

B, =iBe (2 X 7) )
with maximum strength B, wavelength A\, = 27/k,, and polar-

ization vector @. The transverse polarization vector (@ :Z = 0)
can describe various polarizations:

(0,-1,0) x linearly polarized magnet
-_)(1,0,0) v linearly polarized magnet
a7 (-1,4,0)  left circularly polarized magnet
(1,1,0) right circularly polarized magnet.

This representation of Em is only accurate near the Z-axis and
it is assumed that electrons only sample fields near that axis;
farther off-axis, the transverse field lines bend to satisfy Max-
well’s equations.

General solutions are difficult, even for specific choices of
4, but the physical situation of interest here is ; = 1 >>8,,

0018-9197/81/0800-1417300.75 ©1981 IEEE
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By. Since the deflection from uniform motion is proportional
to the magnetic field strength, a perturbation in powers of the
field is suggested:

l)\o

_£ iwor—>
2m \ 7o € a
KV ~
<_> elZUJ Yz( a) +-
Yo

where wo =koc, K= eB)\o/Zﬂmc and Byc is the uutlal elec-
tron Z-velocity. For 2 a circularly polanzed magnet @ - @ =0 and
the path is heli¢dl; ih & lihear magnet @ * 7 =1, giving a sinusoi-
dal path with sligh{ lorigi{hdmal corrections.

Radiation from relativistic particles is confined to a forward
cone of angular width ~y5!. If transverse motion has a large
amplitude (K/7v,), the radiation cone will periodically deflect
out of a detector placed on-axis at infinity (the “searchlight
effect’”). This will cause radiation from many harmonics to
appear (up to ~v} times the fundamental) and produce a
broad band of frequencies. The requirement for the cone to
stay in the detector is X < 1; then the radiation will have sharp
emission lines but still could have small contributions at well:
separated harmonics.

In the magnetic fields considéred here [24], accelerations are
small (K/vo <<'1). Calculation of the detailed properties of
radiation is straightforward using standard classical techniques
[91, [25]. Electrons accelerate, and hence radiate, only within
the length of the magnet L = N),, so that the radiating time is
. Lle. For a long magnet (large N), resonant terms become
sharply peaked about a spectrum of radiation frequencies w
satisfying

w = fwo/(1 - Bo cos §) 4)

where 6 is the observation angle away from Z, f is the harmonic
number: f=1 is the fundamental and f=2 is the next har-
monic, etc. A detector typically looks at each harmonic sepa-
rately because they are separated by ~NV times the linewidth.

Far away from a linearly polarized magnet, @ =(0,-1,0),
.the element of energy received dW, the per unit solid angle
dS2, the pér unit frequency interval dw, is

7() = Boctz + —

ix
LYY

167 G)

2| W -
- aw, ( o2 ) sin [(wo (1- 8 cos‘B) f)Nn]
= 2 2
dQddw 4ntc {&’_ (1 - By cos 8) - f]
Wo
f? .
. —————(l 5, 503 0 sin? 643
+ (TK) sin 26 cos A oA,
0
K 2
+ (j;‘) (1- sin? @ cos? §)A4?
- %(_K—) Sll'l2 0AOA2} (5)
0
where
= JK sin 8 cos ¢ fK%cos @
= J. ,
Ae ,,,,,Z;-, "(70(1 - Bo cos 0)) Tom (873(1 - Bo cos 0))

: (5n+2n’+a,f + 6n+2""°.f)'

. IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-17, NO. 8, AUGUST 1981

¢ is measured away from-X in the x-y plane and J,, is an nth
ordinary Bessel function of the first kind. Since the line shape
factor is narrow, the value for w in (4) has been used through-
out (5) except in the line shape itself. The complete spectrum
is a sum over all harmonics f.

The expression in (5) is plotted in Fig. 1(a) for the first three
harmonics of w and 8; ¢-dependence is small for large V. Each
harmonic has an increasing number of lobes (f = number of
lobes) within the forward cone § <! and is centered about
6 = 0. There is some radiation into higher harmonics because

= (.72 (the Stanford magnet [2]) is close to unity. If K is
made smaller, the harmonics retain the same shape but de-
crease relative to the fundamental. N has been taken large
enough (V=200) so that emission about each harmonic can
only occur in thin “sheets” or “curtains;” following these cur-
tains gives a large frequency shift in each harmonic when 6
covers the narrow range 0-vg!. At a fixed angle within this
range, a sweep through w would reach all harmonics. For fixed
w, the harmonics would be spaced at angles 6~ v/f- 1/
symmetric about § = 0. All this has been observedin the Orsay
free-electron laser experiments [26].

The radiation spectrum for a circularly polarized magnet
2=(-1,i,0) is given below:

de _( e2 )
dQdw  \4nic

f2
' (1 - B, cos 9)?

sin? [(wﬁo (1- Bocos8) - f)Nn}
[w—“: (1 - Bp cos 8) - f]z

{sin2 0|1 A|?

+ (K> (1 - sin? @sin? 9)IGI2  —
Yo
2
+ (ﬁ) (1 - sin? 8 cos? P)ISI?
Yo
<£> (A4*G+G*A4)sin 8 cos @ sin ¢
Yo
(7£ (4*S +S5%A4) sin 8 cos 8 cos ¢
0
K 2 G* *
T G*S+S*G)sin® 0 sin ¢ cos ¢ (6)
o

where

A= 3 U,

n.n'

(ﬂ(sin&sinq& )J <stinBCos¢>
vo(1- Bocos 8)/ " \7o(1 - Bo cos 8)

. ein'n/z(zsn n, f)

5n—n'—l,f' 5n-n'+1_f>
{

s=2 1,,(")1,,,(")6:':'"/2(

n,n

G= Z Jn(")Jn' (")ein'ﬂ/2 (5n- n-1,f + 5n-n’+1.f)'
nn'

The arguments of Bessel functions J, aud J,- in the expan-
sions § and G are the same as occur in A. For along magnet,
the electron motion attains a large amount of azimuthal sym-
metry, making the ¢-dependence unimportant as N~ . An
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o

(b)

Fig. 1. The spontaneous emission is a sharp function of the observation
angle 6 and radiation frequency w. In (a), a linearly polarized magnet
radiates in the forward direction (8 = 0) at odd harmonics f; while in
(b), a helical magnet only radiates into 8 # 0 for f > 1. Both cases
are for K = 0.72, yo = 100.

addition theorem (Neumann’s) for Bessel functions shows
analytically that the ¢-dependence may be removed from the
arguments of the Bessel functions, and ¢ explicitly disappears
as N =, As before, a complete spectrum would be a sum
over all harmonics.

A plot of (6) is shown in Fig. 1(b). The fundamental line
and first harmonic (f =1, 2) are nearly the same shape as for

the linear magnet, but each higher harmonic has only two sym-

metric lobes within the 75! radiation cone. On-axis, each har-
monic occurs at w = 2v3 fwe. In weak fields (6) gives twice
the total forward power as from a linearly polarized magnet.
This is because an electron in a circular magnet is experiencing
maximum acceleration at all times in its trajectory.

In principle, there is the possibility of laser gain wherever
there is nonzero spontaneous emission. In the exact forward
direction, however, only the linear magnet radiates at f=3, 5,
7, --. Itis for this case (§ = 0) that we develop the nonlinear
wave equation and examine stimulated emission. In the future,
stimulated emission for § #0 (in higher harmonics or the
fundamental) is an interesting problem theoretically and
experimentally.

SLow OpticaL WAVE EVOLUTION

Maxwell’s wave equation governs the evolution of the light
wave in the presence of an electron current. In the Coulomb
(or transverse) gauge

2_ - —L 7

- £ %) G000 ™
where Z(f, t) is the radiation vector potential and }l(;c’, 1) is
the transverse current density (CGS units). In order to de-
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scribe stimulated emission, we must calculate the feedback
of the light wave on the current; we must calculate the response
of J l(x t) to the presence of AGG, t). When the laser is started,
the optical wave grows from spontaneous emission to a large
amplitude wave with a well-defined phase; after the coherent
wave is established, its amplitude and phase can still evolve
further. The following waveform is chosen to represent the
laser optical wave during these stages of evolution:

£ )

A%,

- fwt+¢(z,1)),0,0) 8
where E(z, t) is the wave amplitude, f is the harmonic num-
ber so that fw is the carrier frequency [note that w was the
frequency in (4)-(6); from now on it is fw], w=kc is the
fundamental, and the phase is ¢(z, ). We imagine the laser is
operating at selected frequency fw and wavelength A/f = 2n/fk.
When the amplitude and phase of this waveform are held fixed,
we have a plane wave traveling in the Z-direction. The polariza-
tion is chosen to match the spontaneous emission from a
linearly polarized magnet @ =(1, 0, 0).

The waveform above contains no dependence on x and y;a
more complete description would give the wave some finite
transverse dimension; we avoid this complication and describe
only the essential physics of the problem in the longitudinal
direction.

We now employ the slowly varying amplitude and phase
approximation. The waveform above is inserted into the left-
hand side of the wave equation; we assume that all terrns con-
taining two derivatives are small compared to terms containing
fewer derivatives. The assumption of a slowly varying ampli-
tude and phase anticipates long-range coherence and nearly
monochromatic laser light; if the laser is well above threshold,
this is a good assumption. The resulting wave equation now
has only one component in the X-direction:

oF 1 oF a 19 2
(—5—z-+——>cosa E< 0 ¢>sma—- nJlx ]

c ot az c ot
where a = fkz - fwr + ¢. The left-hand side is not yet slowly
varying because of the “sin &” and “cos & factors. Multiply
(9) by cos a, then by sin @, to obtain two equations each with
slow and fast factors:

oF 1 oF ¢ 1 09
(Bz+c at>(1+cos2at) E<—+—at)sm2a

4n
=-—E—Jlx cos o

oE 1 oF 0 120
(—+ )sm2a E(jlwL 0

8z ¢ at 0z cat>(1-cos2a)

=_4—;T'Jlx sin a. 10)
At any point in time, the fast factors on the left oscillate like
cos{2fkz) over optical wavelengths. We therefore average over
many optical wavelengths so that the fast factors are removed;
we want (10) to describe the slow evolution of (£, ¢) over
many wavelengths. This gives

36,136 _ _4n

oz cat 3

(an
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where & = Ee’® is the complex radiation field and (7) implies
an average over many optical wavelengths. The current J, cei®
does not average to zero because both J,, and e'® oscillate
fast; when nearly resonant, we will see that the slow product
drives the optical wave.

The wave equation now describes the dynamics of electrons
and light over many optical wavelengths. Note that the last
averaging step is not necessary for the helical magnet case
[20]; the simpler algebra of the helical case is used in the
*“rotating wave’ approximation of laser physics. However,
the helical case is so simple (when 8 =0) that there are no
harmonics.

SINGLE-PARTICLE DYNAMICS

The dynamics of relativistic electrons in the combined
static and radiation fields are governed by the Lorentz force
equations‘

d(7B) e d'y e - —

—dr iy Eop+Bx(Bop+Bm)] E=";Eﬁ'E

(12)
where E op and Bop are the optical wave’s electric and magnetic
fields obtained from A(x t) in (8) using the slowly varying
amplitude and phase approximation. Now the electron en-
ergy ymc® will change in the presence of light-stimulated
emission. Of these four equations only three are needed to com-
pletely solve the problem We dispense with the z-component
equation since y~2=1- {3 B can relate the longitudinal and
transverse motions. The static magnet is represented by

m =B(0,sinkez, 0). (13)

When vy 23> 1 the electric and magnetic optical fields nearly
cancel in the transverse equation of motion; we neglect the
transverse optical force compared to the transverse force of
the static magnet: E(1 - 8,) << f,B,p. This allows exact inte-
gration of the transverse equation and 8, = -(K/v)(cos koz,
0, 0); perfect injection into long periodic orbits has been
assumed and removes the constants of integration. The single-
particle transverse current is now ecBlé(:’)(x - 7:(1)) where
7;(t) is the trajectory of the ith electron. The total current is
just the sum over all single-particle currents.

Insert 8 into the energy transfer equation to get

d KF

-‘% = e?m-—- cos koz cos & (14)
and, using y~* =1~ 8} - §2, we have

Bz ={1~v72(1 +1K?* + 1K cos 2kqz)] /2. (15)

Changes in 7 result in changes of 8, through (15);since y>> 1,
it is quite accurate to use the expanded form of the square
root.

All electron equations of motion contain factors which oscil-
late once per magnet wavelength; we actually want to describe
the slow evolution about these periodic oscillations. Start by
averaging (15) over one magnet wavelength to get §, =1 -
13721+ 1K), now an average change in ¥ is related to an
average change in §,. It is convenient to define a dimension-
less velocity in terms of the magnet wavenumber kg and the
wavenumber of the fundamental k:
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v(t) = L{(k + ko)B.(r) - k]. (16)

The initial dimensionless velocity of electrons vo =v(0) is
crucial in determining the phase-space evolution. When v =0,
note that exactly one wavelength of light passes over the elec-
trons as they pass through one period of the magnet; this gives
the maximum coupling between light and electrons. If we
integrate this dimensionless velocity in time, we get a dimen-
sionless electron phase:

SO=((k+kp)Z(t) - wit an

where Z(f) = J§ eB;(¢")dt' and we have multiplied by c/L;
note that { =dt/dr=v where r=tc/L. It is useful to think
of ¢ and v as only measured at the end of every magnet wave-
length; the fast periodic motion will factor out, leaving only
the small change after each period. It is important to appreci-
ate that { describes electron dynamics on the optical wave-
length scale and that these spatial variations are typically much
smaller than the magnet wavelength (by v2 ~ 10™%).

We now recall the fast periodic factor and add it onto the
slow motion:

Z() = E(t) - —— (£)2 sin 2wt = Z(¢) - -kE— sin 2wet (18)

where £§=K 2/4(1 +4K?). Within the argument of the fast
factor sin 2wqg?, we have neglected small changes in {; this
does not significantly alter the periodic motion through the
magnet wavelengths since A << 4. Also, the coefficient of
the fast factor varies slightly with y~2, but for long magnets
the maximum fractional change in v is small (SQN)™!), so ¥
can be replaced by v,. In fact, since the electron energy never
evolves far from resonance, we can also replace v in (18) with
the resonant energy (k(1 + 3K 2)/2ko)'? to evaluate the con-
stant coefficient ¢/k. Typically, K= 1 (and £ ~ 1/6) so the
fast, periodic. longitudinal motion occurs on the optical wave-
length scale and causes higher harmonics.

The energy transfer equation.can now be written more ex-
plicitly in terms of fast and slow variables:

dy eKF

dt  2yme
+cos(fE+¢-(f+Dwet- fEsinQuwo))].  (19)

The factors f+ 1 show how extra oscillations occur at each
magnet wavelength in the higher harmonics; since £ is not
necessarily small, the fast terms cannot be expanded outside
of the cosines to any finite order. Use the generating function
to expand the sinusoidal terms in Bessel functions and average
(19) over one magnet period to obtain

fcos(fE +¢ - (f- Dwot - fEsin(2wot))

d X EL

d—z = ezfrfi) cos(f + ) (20)
where

Ke®=KEDY 2T 11y, (F8) = Tipary2(FO)

forf=1,3,5---

The cylindrical Bessel functions in X (&) express a weighted
coupling between electrons and light; the weighting is mea-
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sured by fand £ (or K) and is due to the time electrons spend
in periodic longitudinal motion instead of transferring energy
to the optical wave. A helical magnet has K, (§) > 2K in (20).
The result (20) has been derived by Madey [22] [except for
some misprints in X(£)] and gain in the higher harmonics is
found using energy conservation (which is only appropriate for
low gain). We proceed now to the more general nonlinear
wave equation.

THE NONLINEAR WAVE EQUATION

The total beam current driving the wave equation is the sum
of all single-particle currents. To evaluate the single-particle
currents we use the same procedure as in (20). We follow the
current in a small volume element: 1) much larger than an
optical wavelength, 2) much smaller than the optical pulse
length, and 3) very much smaller than the magnet wavelength.
All electrons in the volume element experience the same fast
motion together. When averaging J, , ¢i® over a magnet period,
we experience the same integrals as in (20); the electron cur-
rent then becomes )

J ceie = e_2c > _& U NsC)F - 7).

- @y

In order to evaluate Z; we choose to label all electrons by
their initial positions {, and velocities vy; this definition is
unique and rigorously defines the electron beam current (Jean’s
theorem). The electrons are initially spread uniformiy over
. each optical wavelength. Although particles become redistrib-
uted over each optical wavelength, this does not affect the
average density in any macroscopic section of the beam sev-
eral wavelengths long. The energy spread and emittance of the
electron source are carefully chosen to give a minimal spread in
resonance parameters vo. Therefore, on a macroscopic scale
neither the bunching mechanism nor an initial velocity spread
alter the macroscopic electron pulse shape and it travels
undistorted through the interaction region. Microscopically,
however, the electron’s initial position within the wavelength
of light and its resonance parameter ({o,¥,) are crucial in
determining the result of its interaction with the wave. The
beam current density in a volume element dV (which is large
compared to an optical wavelength, but small compared to the
pulse size and magnet wavelength) is found by averaging over
sample electrons and then weighting this result by the macro-
scopic particle-density p(z) within dV. Indicating the appro-
priate microscopic average over ({o,v0) by (), the current
driven wave equation becomes

36 . 1 36 il
e + v -2me Kp(E)p(z - Boct)<e .

e

where p(z - foct) is the density of the traveling electron pulse
shape, and the average  );.g cr) flows along with a volume
element of the electron pulse at speed foc. The optical wave
only slowly passes over the relativistic electrons at speed
c(1 - Bo) = c/27v?; this situation is quite distinct from atomic
lasers.

The complete system of (20) and (22) with (16) and (17) is
now slowly varying. If we use B, =1- %7‘2(1 + %K’) and
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(16) to eliminate ¥ on the left side of (20), we see that the
electron dynamics are governed by the self-consistent pendu-
lum [5]

d*t - (21reLNKf(E)E

=l 2 ) cos(f§ +¢). 23)

v3me
It has been enlightening to consider the pendulum phase-space
paths as guiding electrons, even as the paths themselves are
being slowly changed by E and ¢ self-consistently [6], [27].

The coupled equations (22) and (23) [or (20)] are suitable
for solving pulse propagation problems in the free-electron
laser; we will not proceed with the pulse problem further, but
note that the form of the wave equation is the same as for the
helical magnet where several aspects of the problem have been
solved [6].

We assume that p(z) = p, is uniform and study a simpler wave
equation; 3/8z does not now occur in (22), or it can be re-
moved by the method of characteristics. It is convenient to
combine some constants in these equations so that we may
study their properties systematically and comprehensively.
For long, periodic magnets, it is useful to note that the
changes in v are always small [S(2N)"!']. We replace v
throughout the wave and pendulum equations with either its
initial value v, or the resonant energy (k(1 + 3K?2)/2ko)"/?
where v = 0; these choices are nearly equivalent and lead to no
significant error. Define a new field strength as

<2nNefo ® LE) ' <41r2Ne2fK} &)L,
————=— ] and r=

vime? v3mc?

= ) 4)
Now the wave and pendulum equations can be written more
compactly:

a=-re’%), |

fE=lalcos(f¢+¢) (25)

where (') = d( )/dr and a = |ale*®. We have assumed that the
electron beam is initially monoenergetic and uniformly spread
so that () contains only one parameter vy, as written ex-
plicitly above. Not only have the number of parameters been
reduced, but the values of these parameters give us an immedi-
ate “‘picture” of dynamics in the pendulum phase space.

To get a feel for the parameters {@| and r in terms of physical
variables, consider N = 102, the fundamental f= 1, Xy =1 (for
a magnet providing B~ 3 X 10* G and A\, ~ 3 cm), L =300
cm, Yo = 102, po = 10'° cm™3 (a current density of 50 A/cm?
usually over a 1 mm diameter beam), and £ = 200 stat - V/cm
(for a laser power of 10® W/cm?); then r~ 1 and Ja| = 10.
Such a laser would produce 3 um radiation.

The meaning of |a| << 1 is that we have weak optical fields
in the self-consistent pendulum equation; the closed orbit
region has height 2{a{!/? and is small. All electrons are in open
orbits if vo>2la{!/?, and some electrons are in closed orbits
when vy <2lal'/?. Significant energy transfer requires that v,
be not too far from resonance |yl £ 10, so, when |a|>>1,
the electrons become trapped in closed orbits and gain de-
creases. This is the saturation mechanism.

The parameter » determines the rate at which things happen,
and is a measure of gain in this system. In fact, the maximum
weak field, low gain [5] is just gmax =0.135047. The result



1422

Togv Ta0 1047

Nfeees :
N NN

104
3 . 7
4 ¢

e

Fig. 2. The electron phase space shows beam evolution and bunching at
optical wavelengths; the self-consistent separatrix serves as a guide to
the optical wave evolution.

can be obtained by a simple expansion of (25) in powers of
the field lat << 1. The fractional gain in power is defined as
g =(alag)® - 1 where aq is the initial field strength. If r= 1,
we expect about 10 percent gain per pass through the laser
(typical), and if 7 is larger the gain will be larger.

The coupled system of (25) contains a = lale’® and f¢ as
three dynamical variables; their evolution during the time
interval 0 <7 <1 is governed by four independent parameters:
laol and ¢ at 7 =0, r, and vo. The initial optical phase ¢ is
arbitrary, however, and we always start it at zero; this still
leaves three parameters ao, 7, and v,. It has been stated [21]
that an equivalent set of equations for the fundamental fre-
quency contains only two parameters; this appears to be-incor-
rect unless g, is taken to be arbitrarily small, as if started from
noise. The phase space ({, ¥) gives an excellent understanding
of electron beam dynamics for a given set of parameters a,, 7,
and vy. We only consider f= 1 now. Since the pendulum equa-
tion is periodic in {, we need only to look at one 2r section of
phase space; this is only one optical wavelength of the electron
beam. All other sections evolve in the same way. The beam
can be represented by a few sample electrons uniformly spread
along the ¢-axis and positioned at v =y, on the velocity (or
energy) axis. See Fig. 2atr=0.

The “separatrix” equation is a locus of the phase-space
points (¢, v;) which separate the closed orbits from open
orbits in the phase space:

v; (§5) = 2lal (1 +sin(s + 9)). (26)
Not only does the separatrix indicate the guiding phase-space
paths, but the dynamics of the separation itself tells us about
the optical wave through |a] and ¢. A shift in the separatrix
indicates a shifting phase ¢(7); growth of the separatrix height
(4lal*’? from peak to peak) indicates a change in the optical
wave amplitude. Thus, in a single “picture’’—the pendulum
phase space with a self-consistent separatrix—we can exhibit
the dynamics of all variables in the free-electron laser: (§;, v;)
for each electron and (lal, ¢) for the optical wave.

An example is shown in Fig. 2. Ten sample electrons start
out -at energy v =, and are uniformly spread from -n/2 to
3n/2, covering one 2m closed orbit section. With the inde-
pendent parameters dq =5, r =10, and v, = 2.6, the ten elec-
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trons closely follow the paths indicated by the separatrix,
even though it is only a guide. In this example, bunching
about the 7 phase is clear; this is necessary for gain [see (25)].
An energy transfer is also clear, since electrons have moved
down in phase space and lose energy to the optical wave. The
resulting wave growth and accompanying phase shift are visi-
ble in the separatrix. A characteristic energy spread is seen
to develop in the electron beam.

While Fig. 2 follows the evolution of slow coordinates,
it is interesting to consider the fast, periodic motion of (18)
in the same phase space. The fast term in (18) gives 6§ =
-£sin 2wot and &v=-4aNE cos 2wet. For N=10% and
K =1(§=1/6), the vertical excursions of each particle to
Sv =~ 200 are far off-scale; there are N =10% such oscilla-
tions during 7= 0 = 1. Fortunately, this “blur” of fast motion
closely follows (¢, v) which describes bunching and drives
the wave equation.

HARMONICS

Before examining the wave equation extensively, we discuss
free-electron laser operation in aselected higher harmonic [28].
Note that f can only have.odd values, since spontaneous emis-
sion is generated only in the odd harmonics when 8 =0:

kid [ eNvof V¥ KEE)
dﬂd(fw)a,o-<1__—+%Kz) ——= f=1,3,5---. (27)

Recall that the gain 7 in higher harmonics is also directly pro-
portional to X3($). '

We have carefully written (25) to clarify the pendulum and
wave evolution in higher harmonics. The dynamical variable
f¢ evolves just like ¢ alone in the fundamental. The occur-
rence of f¢ instead of { expresses that we are dealing with a
new wavelength in the higher harmonics; the pendulum equa-
tion is still periodic in {, but the range of phases to consider is
only 2n/f. If we merely change the phase-space coordinate
axes to (f¢, fv), the phase-space dynamics in higher harmonics
are the same as the fundamental.

However, the definitions of |a| and 7 show how X ; modifies
the real field and gain. In Fig. 3 we plot K as a function of X,
for a range of the harmonics 7. It is useful to view K, as a
coupling constant; it occurs in both the pendulum and wave
equation. For fixed f, Kf(§) is determined by the magnet
design through K =eBXo/2nmc?; §=K%/4(1 +1K?). For
K <1, the coupling constant decreases to zero for all har-
monics f. At large K, Ky« K with a slope determined by the
Bessel functions; the coupling constant is positive for f=1, 3,
9, etc., and negative for 3,7, 11, etc. But the wave and pendu-
lum equations are invariant to the transformation K—>-X,
and ¢ >¢+m (or E—>-F), so alternate harmonics merely
produce a wave that is 180° out of phase with the other
harmonics.

The practical possibility of extending free-electron laser
operation to higher harmonics is important. A given elec-
tron source (storage ring, Van de Graaf, linac, etc.) may be
“tunable” over a X3 range in v; this gives a X10 range in laser
wavelengths since A ~Xo/2y>. The use of higher harmonics
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Fig. 3. The coupling constant X &) depends on the magnet design and
the harmonic number f. Generally, the magnitude of K £ increases
with K and decreases with f; for f even Ky = 0, and the odd harmonics
alternate in sign.

can extend the tunable range by another factor of 10 or 20!
The limitation comes from the decrease in f K} gain for large
f. If K =1 and the experimentalist’s gain is X 10* above thresh-
old, he could run in the f=9th harmonic. With higher K
values, say K =2 — 10, operation in the higher harmonics is
more feasible. With K =6, the penalty for using the f=9th
harmonic is only X2. This may be most important for low y
free-electron lasers [29], which tend to have large r~10?
(plenty of gain), but to produce long wavelengths A ~ 200 um.

While the gain in higher harmonics is given by g¢/gf=; =
fX}, the final saturation still occurs at |a| 2 2m; the optical
power at saturation is given by Pr/Pr., = (K,/fKp)?.

Another interesting point that may be explored experi-
mentally is the operation of the free-electron laser at several
harmonics simuitaneously, say f=1 and 5 together. There is
no difficulty in imagining that the electron beam could be-
come bunched on multiple scales of the frequency, say A and
A/S.

HicH AND Low GAIN, WEAK AND STRONG FIELDS

We now turn to exploring the more general dynamics of the
wave equation. Since the only explicit occurrence of fin (25)
is ¢, and f can be removed by a coordinate transformation, we
need not discuss higher harmonics specifically. These results
also apply to the helical magnet; (25) can formally be con-
verted to the helical case with the prescription 1): Ky - K and
2): lal = 2lai in the pendulum equation. It is useful to give
the definitions ag, 7, and v, in terms of the physical variables
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Fig. 4. The normalized change in the optical field amplitude g/r =
(az/a% - 1)/r and phase 6¢/r as a function of the resonance parameter
vo form the gain curve. Asr increases, g/r becomes more symmetric,
and §¢/r becomes divergent for high absorption. The initial fields are
weak: ag = 1073,

_ e*BE(0)L?
°7 (yome?)?’
vo = L[(k + ko)B,(0) - k] (28)

so that if is clear that each can be manipulated separately. We
view ao as measuring the input laser field and r as the electron
density or gain. For a fixed initial electron beam velocity
B.(0)c, we think of the resonance parametier vo as a measure
of various optical modes, or ks, that could be excited by the
laser; the range of relevant resonance parameters is {vg} £ 10,
since there is little energy exchange for |y 2 10.

The changes in the optical wave during the evolution time
7=0-1 are measured by g =4*(1)/a*(0) - 1 and ¢ = ¢(1) -
$(0)=¢(1). These changes are a function of the resonance
parameter vy, with a4 and 7 as parameters. g(vo) is now known
as the “gain curve;” we propose generalizing this name to in-
clude 6¢(vy). Furthermore, since r is roughly a measure of
gain, it makes sense to plot a new “gain curve’” measured in
units of r: g(ve)/r and 8¢(vy)/r. This definition also has the
advantage of easily showing the effects of large and small gain
on a single scale.

In Fig. 4 we see g(vo)/r and 8¢ (vo)/r for small and large rates
r with weak initial fields ¢y = 10™3; we have simply integrated
the nonlinear coupled equation (25). For small ratesr = 1 and
weak fields we have the well-known antisymmetric gain curve
originally found in the first free-electron laser paper [1]. With
higher gains r= 10 and 20, gain is somewhat underestimated
by r alone and g becomes somewhat more symmetric about
resonance. This distortion of the normally antisymmetric gain

_ 3432 )\opoL 3
(Yomc?)?
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Fig. 5. In the case of large 7, the optical wave can shift its phase to
optimize the location of the electron bunch causing gain for v < 0.

curve has been presented previously [30], but with the impli-
cation that the cause was collective Coulomb forces; we find
here that the effect is merely due to high gain and the accom-
panying phase shift.

This can be understood by looking at 6¢. On resonance
" (vo = 0) we see the maximum phase shift and little gain.” When
gain r is large, that phase shift may be large since 6¢ < 7/|al; in
fact, the optical wave changes its phase so that the electron
bunching is in the optimal position within the optical wave-
length. In Fig. 5, for r =20 and weak fields g =0.1, we look
at vy =-1, which would typically give negative gain. The self-
consistent. separatrix shows that ¢(7) increases to move the
optical wave “under” the electron bunch that originally formed
at ~m/2; with 8¢ ~ 7/2, the phase-space arrangement has still
overpopulated the # phase and drives the wave. Note that the
optical phase shift ¢(r) should be interpreted as a change in
frequency of the optical wave; specifically, w(r) =w + c¢/L.

An interesting feature of 6¢ in Fig. 4 is its behavior around
vp ~ —; recall that |a| is experiencing negative gain or absorp-
tion here. Furthermore, the phase shift crudely goes as
8¢ ~rflal. So when |a| =0, we should find a discontinuity
and peculiar behavior .in §¢; ¢(7) is of little consequence,
however, when |a| = 0.

Fig. 6 represents gain curves for weak and strong fields
ao=0.1, 10, 15 in the low gain case r = 1. As the fields be-
come stronger, all modes in the free-electron laser eventually
saturate. An important feature of this process is that the point
of maximum gain moves away from resonance; it starts at 2.6
in weak fields and moves to ~5 or 6. The accompanying phase
shift also diminishes in stronger fields and becomes wider in v,.

The broadening of both g and 6¢ is due to the large closed
orbit region in strong fields (proportional to 4laj!/?), as shown
by the large separatrix in Fig. 7. Something like v ~ |a}!/? of
the electron beam energy can be extracted in these deep optical
“buckets’ and this occurs over a wide range of resonance pa-
rameters. Saturation occurs because the optical power needed
to achieve the deep buckets increases as |a}?; eventually deep
buckets must decrease gain.

For high gain and strong fields we see a more symmetric
gain curve, and a decrease in all modes due to high fields.
This is shown in Fig. 8 forr =10 now and ¢ = 0.1, 10, and 15.
These curves can give a better feeling for how the laser works
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Fig. 6. The gain and phase shift decrease in strong optical fields; maxi-
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Fig. 7. At saturation, the self-consistent separatrix is too large (4|a|1/ 2
peak-to-peak) and the electron bunch disperses at the end of the laser.

in a variety of situations; most of the important physics of
the wave and pendulum equations has now been displayed.

CouLomB FoRCEs

We have seen that the parameter r is proportional to the
electron density and would be a measure of the importance
of Coulomb forces. Within the single-particle philosophy, we
should try to calculate the force on a given electron due to the
presence of all the other electrons in the beam. A more tradi-
tional approach assumes a form for the plasma waves and
solves the nonlinear Boltzmann equation [7]. We do not
assume a form for p(z) other than its periodicity [23].

Consider the situation where some bunching in the electron
beam has already occurred; we calculate the Coulomb forces
due to an arbitrary, but periodic, density variation in the elec-
tron beam. The electron beam is taken to be of infinite ex-
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Fig. 8. The high gain and strong field effects in Figs. 4 and 6 merely
combine to distort the weak field, low gain curve.

tent in all directions, as in the previous calculations. Poisson’s
equation V - E' = -4mep in one dimension becomes

-0E,(2)

2 == = -4mep(z) = -4mep(z + N).

(29)
The one-dimensional Green’s function for this operator is
G(z-2z)=2n{8(z-2z")-6(z'-2)]. In one dimension, a
“point” source p ~8(z - zo) is an infinite disk which exerts
a force on a test charge independent of distance: E, < z/|z|;
our p(2) is a periodic density of such disks.

The long range periodicity of p(z) gives long-range period-
icity to E;(z), and E, can only respond to variations p(z) -
Do in the electron density. Then

Ez(z)=—21re<£jJ +£-z - Jj - f;’> (p(z)- poidz'. (30)

The two infinite integrals contain no z-dependence and their
infinite contributions must nearly cancel to leave a constant.

Since p(z) is periodic, we should be able to solve the prob-
lem for just one section of the electron beam from 0 <z <A,
The total charge for one section is conserved and is pgA; if
not, the long-range periodicity would be spoiled. We can
now write

E,(z) = constant - 4nme fz (p(z'_) - po)dz'.” €3]

E,(z) also must be periodic and averaging £, over a single
wavelength must give zero; otherwise electrons would feel a
net force to the left or right. Averaging (31) allows us to de-
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_termine the unknown constant. The electric field in the longi-

tudinal direction is now completely determined. To make
contact with our previous notation, define { = kz:

E;(§) =-4mepora(f) (32)
where
(4 ' ' n ' ¢ ” "
_[fegh & ¢ l-f Qf p(") a&t"
OG)__J; po 2m 2w *3 , 21 J, P 21

The scale factor 4mepyA measures the strength of Coulomb
forces. o(¢) is of order unity and is easily evaluated numer-
ically given the particle positions.

As an example, suppose all the charge is accumulated in one
sharp disk p(¢) =2mpo6($ - &o); this is a perfectly bunched
beam. The resulting field is

>
E.($)=-4mepy) (g—z - 2—§ﬂ + —;-) for (i < j_:). 33)

This is merely the field from an infinite series of equally
spaced disks.

We need to incorporate the new electrostatic Coulomb force
in the electron equation of motion. The longitudinal Coulomb
field does not occur in the transverse equations, so their
solution 8, remains the same. The energy transfer equation,
however, contains £, and adds a term to the self-consistent
pendulum equation. The coupled wave and pendulum equa-
tions are now

r

fg- = |a| COS(f§' + (p)— (4NE> a(fi-)

a=-rie’%,

(34)

where N is the number of magnet periods, and & = K?/4(1 +
iK %), The coefficient can be written as the relativistic plasma
frequency in dimensionless form: r/4NE=2mQ,(1 +1K?)
where Q2 = w2L?/y3c? and W} = 4me®py/mc? is the nonrela-
tivistic plasma frequency. Note that both the optical wave a(7)
and plasma frequency 2, drive the wave equation through the
pendulum equation; therefore, ¢(r) and the optical frequency
are affected by Q,.

When the beam is uniform, ¢({) is zero; nonzero Coulomb
forces develop when the optical wave causes bunching. To esti-
mate the maximum strength of Coulomb forces, set 0(§) > 1;
to estimate their effect, ask whether an electron can be moved
an appreciable fraction of an optical wavelength during a single
pass through the laser. This requires that r 2 167N ~ 10°.
We see that Coulomb forces are negligible except for extremely
high gains; most proposed free-electron lasers use 7 < 10. Our
point here is not that Coulomb forces are always unimportant
(although they are important in only a few cases), but that
severe high-gain effects occur long before r reaches 167/NVE.
Typically, only a tiny fraction of a plasma oscillation occurs
during 7 =0 - 1 with typical values of r.
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Fig. 9. Interelectron Coulomb forces only slightly distort the gain
curve for the parameters explored in this paper.
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Fig. 10. With Coulomb forces included, we can compare the electron
phase-space evolution to Fig. 2; there is little change. We tave im-
posed periodic boundary conditions so that electrons stay in -n/2 <
¥ < 3n/2.

We reexamine the gain curve with the inclusion of Coulomb
forces in Fig. 9. We chose do = 10 to get good bunching and
r=20 for a large density; N =100 and £=1/6, (K =1), so
that 7/4Ng = 3. We see that Coulomb forces play a minor role
even when 7 is as large as 20; at the same time, high-gain effects
are quite important. In Fig. 10 we compare the phase-space
evolution of electrons (with Coulomb forces included) to a
previous high-gain example o =5 and r =10, The electron
positions havé a discernable effect on each other, but bunch-
ing occurs in much the same way. (Periodic boundary condi-
tions restrict { to the interval -m/2-37/2 so that p({) can be
determined.) ‘
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Abstract. We study the electron phase-space evolution and gain in free electron lasers whose
short-wavelength radiation has Gaussian spherical wavefronts. Several free electron laser
designs are considered: the undulator, the tapered wavelength undulator, and the optical
klystron. We find that the gain spectrum is no longer proportional to the slope of the
forward spontaneous emission spectrum, and we determine the design of the Gaussian
mode which maximizes the energy extraction from the electron beam.

PACS: 42.50, 42.55, 52.60

Free electron lasers (FEL) use a beam of relativistic
electrons passing through a static periodic magnetic
field to amplify a co-propagating electromagnetic wave
at optical frequencies [1]. A schematic of a free
electron laser oscillator with the transverse dimensions
exaggerated is shown in Fig. 1. In both the free electron
laser amplifier [2] or oscillator [3], the electrons
interact with Gaussian optical beams which are formed
inside a spherical mirror optical resonator [4]. Our
topic is to study the electron dynamics in the combined
static magnetic field and the propagating Gaussian
optical wave. The fundamental interaction can be
described by the penduium equation [5] which is
parametrically  modified  during the laser
interaction.

Much of the knowledge which has been developed
about free electron lasers has assumed a plane-wave
representation of the optical waves. A particular theo-
rem which has found widespread use relates the slope
of the spontaneous emission radiation spectrum to the

* Supported by the Air Force Office of Scientific Research 81-0061,
the Office of Naval Research N00014-81-K-0809, NASA NAG-2-48,
and NATO Collaborative Grant No. 1876
** Supported partly by the Centre d’Etudes Nucléaires de Saclay,
DPC/SPP/SP and DRET, Contract 81-131

shape of the laser gain spectrum [6]. However,
this theorem is only valid for plane waves in the
forward direction, and does not hold when the
Gaussian beam of finite width is designed to maximize
the electron energy extraction or nominal gain. The
theorem originated from the quantum analysis of gain

Fig. 1. A schematic of the free electron laser oscillator shows the
Gaussian optical mode transverse size w(z) expanding away from the
waist w, centered in the static periodic magnet of length L. The
optical phase ¢(z) changes along L also. Two electron paths are
shown: one on-axis at r=0 and one off-axis at r>0

. 0721-7269/82/0029/0101/501.80
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[1,7,8], where a slight difference in the kinematics of
stimulated emission and absorption allows a Taylor
expansion (and therefore derivative) of their respective
probabilities. But the kinematic arguments are based
on single-mode relationships and a realistic Gaussian
beam contains a range of plane-wave states with a
spread of angles which complicate the simple kine-
matic reiations. In the plane wave limit there is vanish-
ingly small gain.

Another theorem [6] relates the “second moment of
the mean electron energy loss evaluated to first order
in the optical field strength (8y'"’mc2)” to the “mean
energy loss evaluated to second order in the optical
field strength (6yPmc?)”:

(GFPmey =45 (5 me?)

where ymc? is the electron energy. For all the magnet
designs' examined here, this theorem remains true.
Recent papers and preprints [9,10] have shown this
theorem to have a broad range of validity.

The main topic of this paper is the electron evolution
in Gaussian resonator modes. We restrict ourselves to
low gain so that the wavefront of the Gaussian optical
beam is not significantly distorted by the single-pass
laser amplification. While the complete problem of
coupled optical mode and electron evolution can be
complicated, optical resonators can be made suf-
ficiently selective of the laser runs in a single mode. We
are attempting to illuminate one aspect of the problem
without the complicating effects of the other. Our
analysis pertains more precisely to single-pass am-
plifier measurements which are often used as pre-
liminary tests in the development of free electron laser
oscillators.

Three important kinds of FEL are explored. The
fundamental magnet design is a long periodic un-
dulator. A tapered wavelength undulator uses a long
alternating magnet design with a slight increase in the
wavelength along its lenth [11-13]. The tapered un-
.dulator is designed to extend the operating limit of the

- laser to higher powers, but introduces some loss of

gain at low power. The last example is an optical
klystron where the periodic magnet is split into two
sections separated by a dispersive section [14,15]. The
optical klystron is designed to give high gain at low
power, but with some loss of gain at high power.

1. Theory

The form of an electromagnetic wave E(r,z) in a
fundamental Gaussian mode {4] is
k
ZR(Z))}’

£, z)———exp{x[kz—n(v)]— (
W

wiwi(z)

vz)
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where w2(2)= (1 + 2%/ ZY), R(z)=z+Z}/z,
n(z)=tan~Y(z/Z,), Z,=nw}/4 is the Rayleigh length,
w, is the mode waist at z=0, k=2n/4 is the carrier
wavenumber, r and z are cylindrical coordinates, and
E, is the electric field amplitude. Although we will only
consider the lowest-order Gaussian modes, results can
easily be extended to higher-order modes in the

Gaussian-Laguerre form using the following
prescription:
Eoe_’zlwéwz(z)—» 1 p! ( l/; )l

V1436, a(l+ p)! \wow(2)

2r? cos(16)
B L el
P(wéwZ(z)) (s @

n(z)—(2p+1+ n(z),
where L; are associated Laguerre polynomials, # is the

cylindrical coordinate angle, and [ and p are integers
labeling the mode {16].

In order to make better use of (1) it is convenient to
shift the origin z=0 to the beginning of the laser
magnet (Fig. 1). Define L as the magnet length and
introduce t=z/L, g=L/Z,=iL/awi. The new de-
finitions mean that in (1) we now have

wi1)=1+q*c—1,),

n(z)=tan"'[g(t—1,)], )
R(®)=Lit—1)[1+q Hz—1,)7 %],
where 1, is the position of the Gaussian mode waist
along the magnet length. We will take the mode to be

centered (tr,=1/2) throughout the rest of this paper
since this point is near a broad maximum in gain.

Writing the exponential in (1) in the form
exp[i(kz + ¢)] define

_ o’q(t—1/2
#)= —tan [q— /2] + LA D

1+g*(z~1/2)*’

where g=r/w,.

The simple undulator FEL has. a helical magnetlc field
represented by B(coskyz, sinkyz,0) where B is the
magnetic field strength and A, =2n/k, is the magnet
wavelength. If the electrons are perfectly injected near
the magnet axis their helical motion is given by
B, = —(K/y) (coskyz, sink,z,0) where B, c is the trans-
verse velocity, K=eBi,/2nmc?, and e=|e| is the
electron charge. We have assumed that the free electron
laser has established a well-defined classical wave
represented by (1). Furthermore, the wave has taken
the form for a Gaussian beam through successive
reflections from spherical resonator mirrors. We
assume only the fundamental mode is present for
simplicity. Generalizations from this work are straight-
forward.
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In the presence of both the static magnetic field and the
Gaussian optical wave, the electron energy changes
according to = —ep,-E(r, z,t)/mc where E(r,z1)
=E(r, z)éexp(—iwt), §=~(1,1,0) is the polarization
vector, and w=kc is the carrier frequency. The
transverse motion of the electrons allows efficient
energy exchange with the purely transverse radiation
field (1). [We note that the transverse form (1) is
approximate and provide justification for this approxi-
mation in Appendix A]. When the optical and magnet
forces are nearly resonant, the resulting rate of energy
exchange evolves slowly. The electron phase in the
combined optical-magnet potential well is given by
{(ty=(k+kg)z(t)— wt. When the number of magnet
periods N is large, the resulting changes in y are small
and the electron equation of motion takes the form of
the pendulum equation.

{=v=afr)cos[{+ )], : &)
where from now on (‘)=d()/dt,1=ct/L=z/L is the
dimensionless interaction time, v=_= L[(k + k¢)B, — k]
is the dimensionsless electron velocity, a(t)=a,
exp[ —0¥/wi(t)]/w(t), and ao=4nNeKLEy/y*mc? is
the dimensionless optical wave amplitude. (In a
linearly polarized magnet the coupling in a, is mo-
dified [17]: K—(K/2){Jo(&)=1,(&)] where I, , are
Bessel functions of the first kind and
&=K?/4[1+ K?/2].) The dimensionless time t varies
from O to 1 during one pass through the laser magnet
of length L=N4,. The electron coordinates ({, v) fol-
low pendulum phase space paths with parametrically
changing amplitude a(t) and phase ¢(z). The separatix
is given by curve vZ=2a[1 +sin({,+ ¢)] (Fig. 2). Each
periodic section of phase space corresponds to the
distance Alyf(4,+A)= A, the optical wavelength. The
dimensionless electron velocity v measures the re-
sonance between the optical wave and magnet forces.
If v=0, exactly one optical wavelength of light passes
over an electron as it passes through one magnet
wavelength and the forces are resonant. The initial
value v, =v(r=0) is important in determining whether
a monoenergetic electron beam “loses energy to” or
“takes energy from” the optical wave, and therefore
determines the gain. v, is called the “resonance param-
eter.” When Z,— oo, then w— 1, g—0 and ¢—0 and (5)
is exactly the pendulum equation. The parameter
q=L/Z, compares the length of the magnet L with the
Rayleigh range Z,,. Significant changes in the Gaussian
beam waist w and phase ¢ are measured by the size of
g. Our problem is the more complicated electron
evolution that occurs when a(z) and ¢(r) are para-
metrically altered because of the Gaussian optical
beam with ¢>0.

To illustrate some of the effects of the Gaussian beam,
consider g<1 so that we almost have plane waves.
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Fig. 2. The evolution (z=0—1) of ten sample electrons starts at
vo=5 in the ({,v) phase-space. The self-consistent separatrix v({))
acts as a guide to the distortion of phase-space paths caused by the
optical mode structure. Increased fields cause an increase in the
separatrix height 2q'2, and the shifting phase ¢(r) moves the
separatrix along the {-axis. Spreading in v and bunching in the
{-coordinate are visible at t=1

With g <1, w=1+0(g?) and ¢ = —g(1—0%) (t—1/2).
Now consider weak optical fields ay €1, so that we can
make a perturbation expansion in powers of a, To
lowest order v/@ =v, and (‘@ ={,+ v,1. To first order
in a,

B 0

8 .
=age” % cos{{, +1q(1—q?)+[vo—q(1 — 0¥}

NS i
new field

(6)

new phase  new resonance

parameter

The role of the non-planar Gaussian beam now be-
comes quite clear. The field strength or amplitude of
the modified pendulum equation contains the expo-
nential factor e™¢*(where ¢ = r/w,) which simply dimin-
ishes the field driving an off-axis electron. The electron
also has a new initial phase but since the beam is
uniformly spread over each optical wavelength the
shift in each phase is inconsequential. The average
energy loss is found by expanding to v¥ and averaging
uniformly over the initial phases 0<{, <2n.

The interesting modification is the shifted resonance
parameter v,—[v,—q(1—¢?*] which can cause a
measurable change in the operation of the laser. The
average loss (v¥) is  maximum  when
vIax=2 6+q(l — ¢?) is shifted to a higher resonance
parameter by the Gaussian beam with ¢>0. If we
assume this energy loss is the nominal gain in the wave
energy, gain is proportional to — {v®")/nw{ [5]. The
factor mw} appears because the optical wave’s energy is
proportional to its transverse mode volume. In weak
fields, the nominal gain spectrum g(v,) has the form
[1—cosv¥ —vi(sinv3)/2]/v&® where v§=v,—q(l —0?).
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The point of zero gain, v§=0, is now shifted away
from the exact resonance by an amount g(1 —g2). This
means. for instance, that a Gaussian mode storing ra-
diation of frequency w will not have its gain spectrum
centered about the traditional value of resonance v, =0.
The reason is the shifting phase @(t)= —g(l —o?)
-(t —1/2) of the Gaussian optical beam illustrated in
Fig. 1. The effect occurs because the Gaussian beam
mode is actually a superposition of plane waves.
In order to further illustrate the effects of Gaussian
beams on electron dynamics, we can follow the evolu-
tion of sample electrons in phase space. The phase-
space coordinates for each electron are ({;,v)) in the
phase space ({,v). In Fig.2 we show the evolution of
ten sample electrons initially spread uniformly over
one optical wavelength at the mode axis (¢ =0) with
g=4. We will show later that a mode with g=~4
maximizes the possible energy extraction from the
electron beam. The electrons begin their evolution at
t=0 at the energy v,=5. The fields are weak
(ay <v3/4) so that the separatix given by v({,) does not
intercept any particle’s path. As t—1 (the end of the
laser) an energy spread is acquired, and we can see a
small amount of bunching of the electrons. The sepa-
ratrix is shown as a guide to the evolving phase-space
paths. The distance between critical points is fixed at
2 as usual, but the height of the separatrix is 2(ay/w)'/?
and visibly changes throughout the interaction. As the
mode waist w(t) decreases, the height of the separatrix
increases. This effect is comparatively minor since the
height of the separatrix is only proportional tow ™2 A
much more important effect is the phase change ¢(t).
This causes the separatrix to shift to the right.
Electrons must then start at a higher phase-space path
(larger v,y) to compensate. The case shown for g=4
requires vo=>5 instead of the usual v,=2.6 to give
nearly maximum energy loss.
For large g we cannot expand w(t), but we can still
expand the pendulum equation in weak fields ay,
integrate; and phase average to get the electron energy
extraction or efficiency. The first-order phase-space
coordinates are

-

{MNY(r)= jt' dv’ §dt"a(t")cos[{o +vot” + $(1")] @)
o o

and v((t)={"(1). The second-order v'* is phase-
averaged to give the net efficiency at the end of the
laser magnet t=1.

1 T o
By = —1(defdr [ di"a(t)a(x”)
o o o :

-sinfvolr— ")+ @)+ o(z")]. ®)

This expression is compact but difficult to integrate
analytically. The result is easy to integrate numerically,
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however, and will be done to all orders in the field 4, in
the next section. We first generalize the procedure to
the more complicated magnet designs of the “tapered
undulator” and “optical klystron”.

The tapered undulator has a slow decrease in the
magnet wavelength 1, along the magnet length
[11, 13]. The electrons then experience a changing
magnet wavenumber so that k(1) +0. In a strong field
ag, electrons can become trapped in the closed-
orbit region of phase-space and experience a much
larger energy loss than in the normal undulator.
This free electron laser design works well at high
power, but at the sacrifice of low power gain. The
modified pendulum equation for the tapered undulator
is

f%&=5+a(1)cos[5+¢(r)], 9)

where §=k,(r)L. We have again assumed that
y=const; the fractional energy extraction can be small
and still much bigger than the normal undulator. We
also consider a special case of tapering where J is
constant. With this simplification, we retain the impor-
tant features of a tapered undulator. The second-order
efficiency is calculated just as for the undulator. The
result is

T

1 4
By = —L[dt|de | di"a(t)a(r")
o o 0

-sin[vo(t— 1) +38(t2 - "3 + P(1) + ()]
(10)

Setting 6 =0 we obtain the untapered result (8). The
prescription for generalizing (8) to include tapering is
(voT)=(vor +1677). :

In order to understand the equations of motion for the
optical klystron free electron laser it is necessary to
briefly discuss the dynamics of the dispersive element.
The dispersive section separates the first and second
half of the undulator magnet. The purpose of the
dispersive section is to magnetically deflect electrons
away from the beam axis so that they fall behind the
propagating optical wave in an energy dependent
manner. In this way, a small spread in energies created
in the first undulator section can cause electron phase
shifts to bunch electrons in the second undulator
section. This allows high gain in weak fields, but results
in low gain in moderately strong fields; the character-
istics are just opposite to those of the tapered
undulator.

We first choose a convenient representation for the
magnetic field in the dispersive section. Define J¢(z)

=(e/mc3):[B(z’)dz’ so A '(z)=eB(z)/mc®. With perfect
o

injection, B, = /y in the dispersive section. y is con-
stant in the dispersive section since the motion through
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B(z) is far from resonant with the optical wave. Since
vmc? is constant, the transverse deflection causes f.¢ to
decrease giving rise to a net shift 4¢ in the electron-
optical phase at the end of the dispersive section with

length d:
)
2 VZ

for large y. The first term in (11) is the phase shift which
would occur in the absence of the deflecting magnetic
field (k, occurs because of the definition of {) and is
less than the second term for a well designed dispersive
section. For large y we have v= L[k, — k(1 + K?)/27?]
and v can replace y which gives

{1+ A2()) dz

k }.[ (L)dZ

AC=d(ko (11)

“‘?=”£ (1+K) L
4L+ A%(2)]

The second term is large (~10°z typically) but is
independent of the electron energy, or v. A slight
adjustment in the design of B(z) can make the second
term equal to a multiple of 2z without seriously
affecting the first term. Since the electron phase space
is periodic in { with period 2=, the second term can be
dropped in this special case leaving the simple form

1+ A%2)] dz
where D= g 1x8) L
It is easy to show [15] that D= N,1,/L where N, is the
number of optical wavelengths from a plane wave
which would pass over a resonant (v=0 calculated in
the undulator) electron in the dispersive section. As an
example we can take a specific design for the dispersive
section. Let

By, O0<z<d/4,
—B,, d/4<z<3d/4,
B,, 3d/a<z<d.

d =

Note that j'B(z)dz 0, and j' jB(z Ydz'dz=0, so that

/
AC=Dv, (13)

B(z)= (14)

there is no net transverse dlsplacement nor an angular
displacement of the electron beam [15] in the disper-
sive section. The dispersive section is described by

. d 1+ eB(,)2 dz]
T L1+K?) mc?) 48|
A typical design (L=100cm, d=20cm, By=6 ki-
logauss, and K =1) gives D= 10, so that a spread in dv
~n/D=0.31 caused by the weak optical fields a,

~nvy/D~0.8 of the first klystron section can actually
result in bunches in the second klystron section. A

(15)
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large D makes a small a, more able to bunch
electrons.

We now calculate the average energy extraction from
an electron beam in a klystron with a superimposed
optical mode. The equations of motion are

v=a(t)[1-6(t—1,)6(z,—1)] cos[{ + &(7)],

, (16)
{=v[1+D6(t—r1,}]

with D'=D—(t,—1,) and where 9(x)={(1) for x20

and d(x) is the Dirac d-function. The second equation
governs the evolution of the electron phase { which
changes sharply at the end of the dispersive section at
7, when the electron enters the second stage of the
klystron. The optical wave does not drive electrons
from the time it leaves the first stage t, to the time it
enters the second stage 7,.
To lowest order with no optical field present, the
electron motion is given by
VO =y

> (17)
[ =+ voT+Dveb(r—1,).
The second order efficiency is again obtained by a
perturbation expansion:

2 t T
Py =~ —°} dr fdt jdr"qf ()1 +D'8(t - 1,)]
0 0

sin[Z(7)— Z(z")], (18)

where

e oW
w(7)
Z(t)=vyt+ D'vy 0t —1,) + P(7).

Y(r)= [1-6(t—17,)8(r,—1)],

Symmetric choices are (i) t, =1/3 and t, = 2/3, or (ii) ,
=1,=1/2 representing a very small d with D%0. In
order to recover the results for the undulator from (18),
let the dispersive displacement D—0 and let 7, ,> 1.
Note that (8), (10), and (18) assume an electron beam of
infinitesimal width positioned at radius g=r/w,=0. A
numerical integration over g is necessary for wider
beams.

2. Energy Extraction in Gaussian Optical Beams

We now examine how energy extraction, or the no-
minal gain, is modified by operating FEL's in realistic
Gaussian beams. The deviation of the Gaussian mode
from a plane-wave is measured by the parameter
qg=L/Z,=Li/aw}.1f g< 1 the Gaussian mode is nearly
a plane-wave. In this case the nominal gain spec-
trum g(vy)oc — vy /mwdac — q(v¥) has the same
shape as those previously published for the undulator
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Fig. 3. The nominai undulator gain or energy extraction

glvg)ec —g<{¥?) is plotted in relative units versus the resonance
parameter v, in weak fields for ¢=0.2, 1, 2, and 5. As q increases the
peak gain increases and shifts to larger vo. The forward spontaneous
power spectrum at each v, is shown for reference. Note that g(v,) is
not proportional to the slope of the forward spontaneous power
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Fig 4. The nominal optical klystron gain or energy extraction g(v,)
is shown in relative units for g=35, D=2, r,=0.42,and r,=0.58 and
is shifted away from resonance v,=0 by the Gaussian beam. The
forward spontaneous power is shown for reference

(5, 18], tapered undulator {11-13], and optical kly-
stron [15]. We show here the modifications that occur
in each gain spectrum g(v,) due to nonzero q. We find
that the maximum gain increases with q up to g=3-5.
Thus, the Gaussian modes which are designed for
maximum energy extraction actuaily lead to significant
changes in the gain spectrum.

When g <1, (8), (10), and (18) can be expanded in g and
complicated analytical results are obtained. However,
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as g—0, g(v,)—0; so the plane-wave design is poorly
optimized and uninteresting. More realistic work for
larger values of ¢ requires numerical analysis. The
equations of motion (5), (9), and (16) are therefore
solved numerically in this section to present the gain
spectra in weak fields a, for electron beams of in-
finitesimal width.

Figure 3 shows g(v,) in the simple undulator. Four
gain curves are shown for different values of ¢=0.2, 1,
2, and 5. When ¢=0.2, the system behaves as if the
laser were amplifying plane waves. g(v,) is nearly
antisymmetric, and g(v,) peaks at v,=2.6. However,
when q is increased, g(v,) is shifted to higher v, and
peak gain increases. At even larget ¢—5 a distortion of
the curve shape becomes evident ; the absorption peak
is slightly larger than the gain peak. At higher ¢4>35
(not shown), the shifting continues, but peak gain
decreases.

For reference, the shape of the forward spontaneous
emission spectrum is shown in Fig. 3. Spontaneous
emission power is shown as a function of v, at a given
wavenumber k. The spontaneous power for the un-
dulator peaks at v, =0 and is independent of q. As can
be seen g(v,) is not proportional to the slope of the
forward spontaneous power spectrum when g0 and
therefore is not in agreement with the wide spread use
theorem in [6].

We next move to the example of an optical kiystron.
Because of the complexity of g(v,) only the example
g=>5 is shown in Fig.4 for the parameters D=2,
1,=042, and 7,=0.58. Again the gain spectrum is
clearly shifted from the derivative of the forward
spontaneous emission spectrum. Note that the amount
of shift in the resonance parameter is about the same as
for the undulator at the same g=>5 (Fig. 3).

Our final example, Fig. 5, shows the tapered undulator
gain spectrum for g=0.2, 1, 2, and 5. When g=0.2, the
gain curve is located to the left of resonance v, =0 and
the overall gain is smaller than for the undulator. As g
increases, the available peak gain increases signi-
ficantly and the gain spectrum shifts towards re-
scnance. There is also a distortion in the shape of g(v,)
evident at g=35. Curves with 4> 5 distort further and
decrease in peak gain.

In the FEL designs presented, we can search through
v, for the maximum available gain as a function of gq.
We seek to optimize g(v,) in the (vo, q) plane. Figure 6
plots the gain in relative units as a function of g~ ! with
v, chosen for maximum g(v,). For ¢! large we have
plane waves. It is well known that the tapered un-
dulator has less gain than the undulator, and the
optical klystron has more gain than either of them.
With increasing g the Gaussian modes become more
pronounced, and we see that the tapered undulator
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Fig. 5. The nominal gain or energy extraction g(v,) of a tapered
undulator with d=5z is shown in relative units for g=0.2, 1, 2,
and 5. Peak gain is significantly increased and shifted to higher v,
when ¢ increases. The forward spontaneous power is shown for
reference

gain first drops off sharply after g~2.5. The undulator
then drops off more slowly after g= 3, and the optical
klystron sustains its broad maximum to g35.
Surprisingly, the peak gains in these quite different
magnet designs are all near g~ 5=L/Z,. This figure
can be useful to experimenters when chosing the
optical resonator mode for their particular magnet
design.

Figure 7 shows how gain can be affected by electrons
entering the laser off-axis. Four gain curves are pre-
sented for g=r/wy,=0, 0.4, 0.7, and 1 with g=5. As ¢
increases, the energy extraction decreases because elec-
trons are moving outside the mode to weaker optical
fields. In addition, the peak of the gain curve is shifted
back towards resonance v,=0. Electrons off-axis en-
counter smaller phase shifts than when on-axis. This
trend was predicted in (6). The gain curve for a real
_beam with a transverse dimension will be the average
over gain curves like those in Fig. 7. However, since
electrons on-axis have the maximum gain, the resulting
gain curve will have a shape close to the ¢=0 case.

3. Experimental Implications

The results of this paper lead to many new features
which can be experimentally observed. Gaussian opti-
cal modes will cause a shift in the gain spectrum g(v,)
away from the derivative of the forward spontaneous
emission spectrum. This is not the usual conclusion
derived from a widely used theorem [6], and occurs
because the Gaussian mode contains off-axis spectral
components which alter the resonance condition.
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Fig. 6. The peak gain or energy extraction (in v,) is plotted in
relative units versus ¢~ '. For small g (plane waves) the gain in each
magnet design falls off like g. The highest gain design, the optical
klystron, sustains high gain to quite large g and peaks at gx 5. The
undulator gain peaks for g=3, while the tapered undulator gain
drops off after g=2.5

5 Gain

Spont. ¢mission\

Fig. 7. The nominal undulator gain or energy extraction g{v,) shows
the affects of injecting electrons off-axis at g=r/wy =0, 0.4,0.7, and |
for g=35. Gain decreases and is shifted back towards resonance
vo =0 as predicted by (6}

Experiments in Orsay will explore the undulator and
klystron magnet designs, while groups at TRW,
Math Sciences Northwest, and Los Alamos National
Laboratory are planning to explore the tapered
undulator design.

It might be noted that the shift in the weak-field gain
away from the forward spontaneous power does not
constitute a problem for FEL oscillator start-up. The

. characteristic range of angles in a Gaussian modes is

06~ |/ qA/2rL which results in a characteristic shift in
the resonance parameter by dvx —4nNy?56*~ —q in
agreement with (6). Therefore, the shift in the gain
curves of Fig 3 through 5§ is such that the off-axis
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Fig. 8. The peak gain (in v,) is plotted versus ¢~ ! for 2=0.5, 1, 2, 5,
and 10. As x=(wgy/0) l/q/2 increases, characterizing narrower elec-
tron beams of width ¢, gain increases until 2~ 5. For 22 5, the beam
is a filament. The best available gain occurs at smaller g when x(g)
decreases ; larger electron beams work better in wider modes

q-l

plane-wave components of a rapidly diverging
“Gaussian beam (large g) experience gains comparable
‘to the plane-wave components of a slowly diverging
beam (small g).

The reasoning presented here gives a procedure for
designing FEL cavities. As we have shown, for an on-
axis electron ¢=0, there is a value of g that gives
maximum gain (Fig. 7). This value of g can be selected
by proper choice of the mirror’s radius of curvature
and spacing. An estimate of the best g has been made
by calculating the minimum cavity mode cross-section
averaged over the whole undulator length [19, 20]. It
was found that the best overlap with the electron beam

occurred for g equal to 2[/3; close to our numerical
optimum of g~3 for an undulator. However, the
actual optimum ¢ depends on the magnet design and
on the transverse size of the electron beam. Suppose
the electron beam is perfectly aligned along the cavity
mode and has a Gaussian shape with transverse
standard deviation ¢. Define the dimensionless param-

eter a=)/iL/2rna? =(wo/0)}/q/2. Figure8 plots the

Table 1. New filling factor f{g. 2(g)) with x=pwy/6))/ ¢/2

W. B. Colson and P. Elleaume

gain in relative units as a function of ¢g~! with v,
chosen for maximum gain {g(g,«)} and fora=0.5, 1, 2,
5,and 10 ({ } is now averaging over the transverse
electron positions). As « decreases (that is as the beam
size increases) the maximum gain occurs for a smaller ¢
and the maximum becomes broad.

In the gain calculation the overlap of the electron and
light beams can be taken into account by defining a
filling factor F(o)=1/(w3+40°) such that the maxi-
mum final gain {g(q =0, 2(0))} ¢ F(o)g(g =0, 0 =0). This
filling factor F(o) agrees with our calculation when
g <1, but for g2 1 there is a correction f(g,a):

{9(g, x(0)) } o F(0) f(9, (0))g(q =0, 6 =0). (19)

Values of f(g, ) for an undulator are given in Table 1
below.

The shift of the gain curve calculated for the Orsay
experiment with the superconducting undulator [19]
was too small to be seen ; however this is not expected
to be the case in the new series of experiments, where
the following parameters are applicable: ¢~0.3 mm,
A~0.5um, L~ 1.3m, 4y~ 8cm, ymc? ~240 MeV.
Therefore with «~1 Fig.8 shows maximum gain
occurs for g 'x0.6. For a 55m distance between
mirrors (1/4th the storage ring perimeter) we get an
optimum cavity mode for a mirror radius of curvature
R.~3m. This value is a larger than R_=2.8m giving

q~2\/§ and has the advantage of leaving the cavity
more stable [4] (the stability limit being R,=2.75m).
At this optimal cavity mode f(q~'=0.6, x=1}=0.89.
The gain curve is shifted to the higher electron energies
by &ymc*~ymc?iyq/4nL 1.8 MeV. Equivalently the
wavelength for maximum gain is increased by
01/AAgqf2nL~0.016. This shift is easy to measure
since it is going to correspond to a one period shift of
the fine structure in the gain curve of the optical
klystron with D~4.

Finally it is to be noticed that we only predicted the
gain curve changes for colinear electron and photon
beams. Misaligned beams add further modifications
which can further reduce gain. '

2=10 x=3 1=3 1=2 *=1 2=0.5 1=03 x=0.1
g '=100 1.00 1.00 1.00 .00 1.00 1.00 1.00 1.00
g '=10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
g '= 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
g '= 3 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
g '= 2 097 0.98 0.98 0.98 0.98 0.99 0.99 0.99
g '= 1. 0.87 0.88 0.90 091 0.94 0.95 0.96 096
g '= 08 0.83 0.84 0.86 0.89 0.93 0.94 0.94 0.94
g '= 06 0.74 0.76 0.80 0.84 0.89 0.90 0.90 0.90
g '= 04 033 0.59 0.65 0.72 0.79 0.80 0.81 0.80
g '= 03 041 0.46 0.54 0.62 0.70 0.71 0.71 0.70
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Neglecting the Longitudinal Electric Field in Gaussian Beams

In the derivation of Gaussian resonator modes it is assumed that the
amplitude and phase of the optical wave are slowly variyng along the
length of the cavity axis and that the electromagnetic wave is purely
transverse. At the same time the optical wave is not traveling
precisely along the cavity axis, but expands outward from the waist
to the mirrors. The modes actually violate Maxwell’s equations since
a small longitudinal component of the field is neglected. The
Question arises as to the work done on electrons by the actual
longitudinal electric field of Gaussian modes.

In order to estimate the longitudinal electric field we use V-E=0. In
this estimate let £,=0 and assume g=L/Z, is small. Then the
transverse field component

E xE el e (20)
and the longitudinal field is

4E ikz —-rw}
E= F (1)
kwg Wo

We find the work done on an electron in the whole undulator is non-
resonant and is given by

re"z""é)
nZy /
This energy change has been previously neglected. It is relevant to
compare 4y, to the work done by the transverse fields 4y, in the

Gaussian modes. In this case the interaction is resonant and the ratio
is

dyymc? =eEo}£0( (22)

dyy _yremM

—_ (23)
4y, =nKNZ,

Typically y/rKN~1, but r/Z,<1 for electrons in the Gaussian
cavity. Therefore, the longitudinal optical field is always negligible
compared to the transverse field in FEL.

109

Acknowledgements. The authors are grateful to D. A. G. Deacon,
J. M. J. Madey. R. Freedman. and Y. Petroff for many helpful
discussions.

References

1. J.M.J. Madey: J. Appl. Phys. 42, 1906 (1971)
2. L.R. Elias. W.M. Fairbank. J.M.J. Madey, H. A. Schwettman.
T.1. Smith: Phys. Rev. Leit. 36, 717 (1976)
3. D.A.G. Deacon, L.R. Elias, J.M.J. Madey, G.J. Ramian, H. A.
Schwettman, T.1. Smith: Phys. Rev. Lett. 38, 892 (1977)
4. A. Yariv: Quantum Electronics (Wiley, New York 1975) Chaps. 6
and 7
5. W.B. Colson: Phys. Lett. A64, 190 (1977)
6. J.M.J. Madey: Nuovo Cimento B50, 64 (1979)
7. W.B. Colson: Phys. Lett. A59, 187 (1976)
8. W.B. Colson: Ph. D. Dissertation, Stanford University 1977
9. N.M. Kroll: In Physics of Quantum Electronics, Vol. 8
(Addison-Wesley, Reading, MA 1982) Chap. 12
10. N.A. Vinokurov: Preprint, INP 81-02, Novosibirsk (1981)
11. J.M.J. Madey: U.S. Patent No. 3,822,410 (1974)
12. P. Sprangle, C.M. Tang, W.M. Manheimer: Phys. Rev. Let1. 43,
1932 (1979)
13. N.M. Kroll, P.L. Morton, M.N. Rosenbluth: [EEE J. QE-17,
1436 (1981)
14. N.A. Vinokurov, A.N. Skrinsky: Preprint INP 77-59,
Novosibirsk (1977)
15. P. Elleaume: In Physics of Quantum Electronics, Vol §
(Addison-Wesley, Reading, MA 1982) Chap. 5
16. A.E. Siegman: An Introduction to Lasers and Masers (McGraw-
Hill, New York 1971) p. 330
17. W.B. Colson: [EEE J. QE-17, 1417 (1981)
18. W.B. Colson: In Physics of Quantum Electronics, Vol. 5
(Addison-Wesley, Reading, MA 1978) Chap. 4
19. D.A.G. Deacon, L.R. Elias, J.M.J. Madey, H. A. Schwettman,
T.1. Smith: Proc. Society of Photo-Optical Instrumentation
Engineers 181, 89 (1977)
20, R. Barbini, G. Vigrola: Internal report LNF-80/12(R) Frascati
(Rome) .



published in Phys. Quantum a
Electronics, 8-9 (Addison~ |
Wesley, 1982) eds. Jacobs,
Moore, Pilloff, Sargent III
. Scully and Spitzer, ’

e —d

OPTICAL PULSE EVOLUTION IN THE STANFORD
FREE ELECTRON LASER AND IN A TAPERED WIGGLER

W.B. Colson
University of California

INTRODUCTION

The Stanford free electron laser oscillator'™? is
driven by a series of glectron pulses from a high quality
super-conducting linac. The electrons pass through a trans-
verse and nearly periodic magnetic field, a "wiggler", to
oscillate and amplify a superiéposed optical pulse. See
Fig. 1. The rebounding optical pulse must be closely synch-
ronized with the succession of electron pulses from the
accelerator, and can take on a surprising range of structures
depending on the precise degree of synchronism. Small
ddjustmeﬁts in desynchronism can make the optical pulse

either much shorter or longer than the electron pulse, and

can cause significant subpulse structure. In the first part
of this chapter; the oscillator start-up from low level
incoherent fields is discussed. In the next section, the
effects of desynchronism on coherent pulse propagation are
presented and compared with the recent Stanford experiments.
In the last part, the same pulse propagation effects are
studied for a magnet design with a tapered wavelength in
which electrons are trapped in the ponderomQtive potential.

There is a good deal of theory on free electron
lasers and the tapered wavelength wiggler. Recent collections
of research papers cover the most important topics."’s
Specific work on short pulse propagation started with the
original experiments,l’z and was followed shortly after with
the quasi~Bloch theoretical description of "lethargy."®
Later, the multimode Hamiltonian plcture of pulse dynamics
was developed.7 Concurrently, the single-particle electron
model® was coupled to Maxwell's non-linear wave equation.®
This last-named approach has proven to be a clear and
accurate method in both weak and strong optical fields.1% ! -
The wave-particle equations are reduced to contain only four .
independent parameters to allow scaling to other free
electron laser systems. Improved theoretical and experimental
techniques have brought excellent agreement between them.
All predicted qualitative trends'! have been confirmed by
experiment, and quantitative agreement is as good as can be
meaningfully ascertained from the available measurements.
These trends characterize how the laser power spectrum, pulse
shape, and electron velocity distribution all depend on the
electron-optical pulse desynchronism. Limit cycle behavior
and complicated pulse structure are presented.

The tapered wiggler pulse problem explored here shows

similar trends. The growth from weak fields is shown not to

2
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Fig. 1. A succession of electron pulses is injected into the

resonator to overlap a rebounding optical pulse. The

synchronism of the pulses is adjusted by moving the
end-mirror an amount A . While "wiggling" through
the trangverse periodic magnet in the presence of the
superimposed light, the electrons bunch within each
optical wavelength to drive the radiation field.

be a problem as previously reported, but the steady-state
operation may not lead to the expected electron trapping when
degynchronism is not optimized. Optical subpulse structure
is observed for both the tapered and untapered wigglers when
fields are large. This may be an example of the Kroll-
Rosenbluth!? sideband instability proposed earlier. If so,
we find that this fnstability is not limited to tapered
wigglers, but can occur under much mote'general cénditions

than anticipated.

OSCILLATOR "START-UP" DISCUSSION.

duces a sequence of ~2 x 10" electron pulses spaced 1:2= 25 m

The Stanford linac pro-

apart. Initially, no light i1s present in the resonator, but
magnetic bremsstrahlung is emitted from electrons "wiggling"
through the periodic magnet of wavelength Ao = 2n/k0 = 3.3 cm,
length L = NXO = 5.3 m, and field strength B = 2.3 kgauss.

3

The resonator mirror spacing must be sufficiently close to
I:/Z to ensure that the spontaneous emission of magnetic
bremsstrahlung repeatedly builds on the same synchronized
optical pulse. The build-up from the start of the electron
pulse to just before laser saturation requires np ~ 1800
passes.?
The quantum mechanical forward transition rate for

bremsstrahlung per unit solid angle dQ into the dimensionless

frequency interval dv, = 2nNdw/w is

sin(vk/Z)
v/2)

dw
dﬂdvk

= 20k c ALS

(1)
6=0 °f 2 + k¥

where A = 2me/w = 2n/k = 3.3 ym is the radiation wavelength,

a = e?/fic is the fine structure constant, K = eB)‘o/ancz =
0.71, ymc? = 43 MeV is the electron energy, and'vk =

L[ko - k(1 + K?)/2y?} is the dimensionless frequency referenc-
ed to the magnet design and electron energy. For a long
magnet, light is emitted into a narrow (~1/2N) frequency range
about W = ZYZk0 c¢/(1 + K?). The number of photons emitted
into dfidv, by one electron in a single pass is L/c times the
differential transition rate (1). The radiation cone for
relativistic beams has a small angular width 6 < Y'l so

fdQ ~ m8%. We estimate the solid angle collected by the

solid angle of the Stanford end-mirror (~4 cm diameter) at

an- average distance of 6 m: 8 ~ 2 ¢cm/600 cm = 3.3 x 1073,

Both the classical and quantum mechanical gain

13, 1w $ 0 lead to

calculations show that photons with v

k
stimulated absorption and photons with Vi 2 0 lead to stimu-
lated emission. Integrating over the positive gain modes
gives W the number of transitions per pass for one

characteristic electron:

q



Wy, = TNa(YOK/ (L + K2, 2)

where WT = 0.07 for the Stanford experiments.’® Note that for
any value of the magnet field K, it is not at all likely that
an electron emits even a single photon in the forward direct-
ion as it passes through one magnet period. Therefore, for-
ward magnetic bremsstrahlung caunnot be a classical process in
free electron lasers even though a classical calculation gives
the correct average rate. After several passes the radiation
will spread out from the electron beam to begin to form the
resonator mode. The density of the emitted photons is pFan
where n 13 the number of passes, F = .075 is the "filling
factor" = (electron beam area)/(average density optical mode
area), and p = 2 x 10'° cm~? is the Stanford electron density.

A particularly relevant volume element for photon
counting is one of length NA and cross gection A2, The
clagsical gain process requires that N coherent wavelengths
of light pass over an electron during a single pass through
the magnet so that all electrons sample the volume element
NA%, If optical phase fluctuations occur within the siippage
distance NA, a "gain" electron can become an "absorption"
electron. Net gaiﬁ results when the ensemble average of
electrons drive the optical wave amplitude. After each pass
the photon number n in the volume element NA? increases by
An = DFNA’WT % 0.6 photons/pass. Each volume element also
suffers a measured’ ~2.8% loss per pass due to the transmis-
sive end-mirror. Together with some gain g(7) that might
be present in the laser, .the growth of the average photon
number ; over many passes ig described by

dn

Sh=an+ (g - @A (3)

5

where Q = 35 describes the 2.8% loss and. n is the pass number.
The early growth of radiation when T << An/(g - Q~})

is given by n(n) * nAn and is independent of either gain or

loss. Gain g .05 -~ .06 is measured® in the iater stages

of evolution in the Stanford experiment when T = 10°. But

this gain cannot persist to arbitrarily weak fields because

electrons will experience an optical phase uncertainty due to

low photon number: §¢8n > 1. This decrease in optical coher-

ence length NCX in effect corresponds to a shorter magnet

length and decreases gain. As an example, consider evolution

)5

~ 5 and 8¢ = 0.6T. These phase fluctuations would certainly

at § ~ 20 photons with Poisson statistics so that 8n = ﬁ

decrease gain, but just how much is not yet clear. The
classical low-gain formula in weak fields® 1s independent of
7 and therefore wrong for.very low Ni. g(n) must decrease to
zero as N ~ 0.

During normal gain, growth progresses to saturation
atn~ 3 x 10° photons, and has been analyzed classically.
If the measured g = .05 is used in (3), the number of
passes necessary for saturation is nT ~ 700 which 1is lower
than the value n_,, = 1800 measured in the experiments. How-

T
ever, if we postulate that the average gain is diminished to

g = .035 due to phase fluctuations at low photon number, then

(3) gives n, ~ 2000. A more careful analysis of just how

T
g(M) evolves at low photon number 1s needed, but since a,
is so sensitive to g just about any decrease will explain
the observed Dpe For 1nstanqe, in the next section the

optical pulse shape is seen to evolve and exhibit different

*
This gain® is lower than expected from the fundamental gain
formula® because of short pulse effects, but can be calcu-
lated numerically as will be shown in the next section.

6



amounts of gain while taking on different shapes. This
alone could explain why the specific gain measured at a
single point in the evolutioﬁ of the system is not consis-
tent with the ne observed. Regardless of these complications,
our main point here is that g(n) should decrease at low N due
to quantum phase fluctuations. Although the full explanation
of np remains as a more complicated problem, quantum fluctua-
tions will incregse fip (by decreasing g(n)) over the classi-

cally calculated np.

STANFORD PULSE PROPAGATION. We row study optical pulse
evolution after the electromagnetic wave has developed signi-
ficant coherence. The goal 1is to calculate a final optical
pulse shape which reproduces 1itself after many passes in
steady state. The result is the "fixed point" or "limit
cycle” solution to this complicated classical non-linear
problem,

The derivation of the coupled non-linear wave equation-
and the self-consistent electron "pendulum" equation has
been presented elsewhere? !} but is reviewed again here. The
helical magnet 1is represented by B(cos.koz, sin koz, 0) on
axis. If electrons are perfectly injected near the magnet
axis (as we will assume) their helical motion is EL = ~-(K/vy)
*(cos koz; i}n kbz, 0). The corresponding optical wave has
the form A(x,t) = k™ 'E(z,t)(sin ¥, cos ¥, 0) where X 1s the
vector potential, w = kc is the carrier frequency, E(z,t)
is the optical electric field strength, ¥ = kz - wt + ¢(z,t),
and ¢(z,t) is the optical phase. After the coherence of this
wave form is established, its amplitude E and phase ¢ can
still evolve in shape and time.

In the presence of these fields the electron energy

7

yme? changes according to dy/dt = (eKE/ymc)cos(y + ¢) where

the electron phase is ¢ = (k + ko)z—mt. When the number of
magnet periods is large the resulting changes in y are small
(8y/y < 1/2N). In this event the electron equation of motion

becomes the pendulum equation:®’!S$

EZ' = \.)3' = |8(Z)|COS(C3' + ¢(Z)), (‘l)

where z' =z + s(t - %), 1 = ct/L, (.) z2d( )/dt, v = ¢ is
the electron's dimensionless velocity, a = |a|ei¢, |a| =
lmNeKLE/Yzmc2 is the dimensionless optical field amplitude,
and Y, the initial electron energy. The position =z = z/A

and the "slippage'" s = NA/A have been normalized to A, the
electron pulse half-width at half-maximum. The dimensionless
time 1 changes from 0 to 1 during one pass through the laser
magnet. The height of the closed orbit sepagatrix in the
dimensionless pendulum phase space (z,v) is 2|a[%,

The optical wave is driven by the total beam current
which is the sum of all single patticle‘currents determined
by (4). The resulting changes in a(z) then act back self-
consistently to alter the electron phase space paths. The
slowly varying amplitude and phase approximation describes
an envelope a(z) that evolves slowly over optical wavelengths.
The terms 1in Maxwell's wave equation involving double deriva-
tives (E,$,E",¢",ﬁ$, etc.) are negligible compared to terms
involving single derivatives. The wave operator (3/3z
+c '3/3t) is made into a single derivative L7579 by sub-
stituting z = ¥ + ct and t = tL/c (the method of characteri-

stics). Projecting out the slow driving current the wave

equation becomes
A = -<ee 1D, (5)

v

i
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where r(z') = roll-k(z')zl is the dimensionless electron pulse
shape with z' = 3 + s(t - %), r, = 8N(neKL)2poF/Y;mc2. and
Po is the actual peak electron density at position z’=& The

ic at the position z' is taken over

average value of re
sample electrons labeled by their initial phase space co-
ordinates (Co,vo) and is denoted by < >z" As electrons
evolve in the pendulum phase space, they can at most move a
few optical wavelengths relative to the electron pulse
centroid. This redistribution of charge affects e 1%
locally, but is not sufficient to alter the pulse shape which
is many wavelengths long. The electron pulse shape given by
r(2) remains fixed throughout the evolution T = 0 » 1, but
drifts back in the coordinate z by a distance s. We havé
taken r(z) to be parabolic with a half-width at half-maximum
of unity (r(1) = %ro). Previous pulse propagation
atudies'?!! used Gaussian shapes for r(z), but real pulses
from accelerators are probably better described by a shape
without extended tails. Furthermore, a real three-dimensional
pulse becomes narrower im the transverse dimension as the
on-axis density decreases away from its peak. The narrower
regions of the beam have increased diffraction losses (the
optical wavefront spreads beyond the transverse width of the
end-mirror), making the cutoff parabolic density an even more
reasonable representation of the system. The coupled non-
linear equations (4) and (5) form the basis of our problem.
They are valid for low gain and high gain systems (r s 10%)

in both weak and strong optical fields (107% ¢ |a] < 10%).

A "fresh" electron pulse enters the resonator cavity on
each round trip bounce of the optical pulse. The new
electrons are uniformly spread over % between -n/2 and 37/2
covering one closed orbit section of the separatrix. The

geparatrix 1is given by the locus of phase space points

9

(Cs,vs) at z satisfying v; = 2|a(z)|(l + sin(cS + ¢(2)).
The Stanford beam is nearly monoenergetic so that each
electron starts with the same initial dimensionless velocity

Vo = 2.6 called the resonance parameter. This gives maximum

.gain g = (a%inallaé - 1) = 0.13r, for low current (e, < 20)

and initially weak uniform fields aj (<1). Alternatively,
selecting Vo T 2.6 can be thought of as predicting the
carrier wave frequency w which will first establish coherence
by means of mode competition. After the electrons are
started at T = 0 the pendulum equation (4) forces them to

"bunch"” in response to the presence of the optical wave.

" When this bunching is around [ x 7 the optical wave grows

according to (5). To illustrate the electron phase space
dynamics, Fig. 2 shows twenty sample electrons starting at

v, = 2.6 in strong fields a = 30 with r, = 1. Here the
pulse structure is ignored (A + =), Maximum gain g(t) occurs
near T ~'% and "over-bunching" actually absorbs light near

T ~ 1. The net gain and phase'shift are diminished in
strong fields causing saturation.

16 that the form of equations (4) and

It has been shown
(5) applies to a linearly polarized magnet and its on-axis
harmonics as well as to the helical magnet. The proper
transformation to the f*P harmonic in a linearly polarized
magnet is |a| ~ Y%|a| 1in (4); ¢ + £C in both (4) and (5);
and K? - KzlJz(fE) - J£+l(f§)]2 in both |a| and r where
E=K¥4(l + %K?) and g = (f - 1)/2.

Integration of (4) and (5) with respect to T starts

with a wave form on the nth

‘pass and gives a new modified
wave form for the (n + 1)th pass. Only two parameters govern

this change: the nominal gain r_ = 1.6 and the slippage

o
s = 1.2 for Stanford. After passing through the laser magnet,

the optical pulse then strikes the resonator mirrors. The

o
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Fig. 2. Twenty sample electrons representing a current
density r = 1 start at 1= 0 with dimensionless
velocity v_ in the self-consistent pendulum phase
space (L,v). The self-consistent separatrix is
drawn for reference to the evolving phase space
paths. For strong flelds a, = 30 there is bunching
near § ~ W at T ~ %. However, because the electrons
perform a full synchrotron orbit about § ~ w/2 there
is a decrease in gain g(t) at T = 1. The phase
shift ¢(t) 1s also shown.

end mirror has some small transmission which is described by
a resonator Q such that a’(n) « e—n/Q in the absence of gain.
A value of Q = 35 is measured at Stanford.

In the Stanford experiment one of the resonator mirrors
can be moved to adjust the synchronism between the electron
and optical pulses. The length adjustment AL is again
normalized to A and defines the desynchronism d = AL/A. With
no gain or loss the optical pulse would advance by a distance
2d with respect to the electron pulse on each pass. The many

3

experimental parameters of the Stanford pulse problem” have

been grouped together leaving only four independent

dimensionless variables: r, =1.6, Q=235 s=1.2, and d
spanning the range 0 + 0.1.

The procedure for solving (4) and (5) is to start the
oscillator from coherent weak fields (ao = 1) with either a
Gaussian or uniform optical pulse shape. The goal of
iteration is to find an optical pulse profile which reproduc-
es itself on successive passes n. This {s either the "fixed
point” or "limit cycle" solution to our non-linear pulse
problem. Typically a solution is reached after about 500
passes, and we observe the pulse to about 1000 passes.

The role of the phase pfofile $(3) 18 to change the optical
pulse frequency. When ¢(z) acquires a linear slope in 2z,
this can be directly interpreted as a change in the optical
wave number and hence the resonant parameter through Sv =

-3 ¢'(3). We define Vi = Y + §v as the modified resonance
parameter. Typically we find &v moves the laser from Vo <
2.6 to Vi ™ 7 which gives higher gain in strong fields. The
final "fixed point" behavior is independent of the starting
field strength a, and resonance parameter Vo since we can
alter these yariables and arrive at the gsame solution.

It is instructive to consider the gain curves g(vo).

We again ignore the pulse structure here. In weak fields

(ao < 1) and for low gain (ro 5.1) g(vo) = ro(l - cos v -
v,
range -50< v <25 for field strengths from a, = .1 to 100.

sin vo)/v;. Figure 3 plots low gains g/ro over the

When a, 2 10, the gain curves distort, so that peak gain
decreases (this is saturation) and occurs at increasing v,
For these curves alone, we should expect that steady-state
occurs when a, is somgwhere between 10 and 100 and Vi is
between 2.6 and 10. This 1s what we will in fact find.

Our first observation is that the steady-gstate solution

for d = 0 is [a(z)| = 0. Figure 4 illustrates this effect.

12
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Fig. 3. Gain curves g(vo) are plotted in units of r, for
various optical field strengths a_ = .1 + 100. For
moderate gain (r, § 10), the curves are antisymmetric
about resonance (\)° = 0). 1n weak fields (a_ < 1)
peak gain occurs at v, = 2.6, but in strong ?1elds
peak gain 1s found at Y, ~ 7. The laser oscillator
evolves along the points of maximum gain. (8§ = 0
indicates that this 1s an untapered wiggler).

It is surprising that exact synchronism (d = 0) of the
electron and optical pulses results in no power from the

free electron laser oscillator. The fundamental reason for
the desynchronism effect 1s clearly seen in Fig. 4. Even in
the strong fields gain does not develop until T~Y%. This
delay m;ans that the leading edge of the optical pulse
experiences little gain and in fact a net loss after absorp-
tion. The trailing edge of the optical pulse overtakes the
electrons after bunching has occurred so that higher gain is
experienced. The net result is that the optical pulse is
reshaped so that its centroid moves back on each pass through
the laser magnet. Effectively the optical pulse is traveling
slower than the speed of light even though the individual
photons are traveling at the speed of light. Figure 4

shows the digtortion and subsequent decay of a pulse

13
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Fig, 4. The amplitude of the optical pulse shape a(z) is
plotted at T = 1 every 150 passes through the
resonator up to n = 1500 passes. The fields start
at |a| = 1, and are diven by the parabolic current
density r(z') = r (1 - %4(a')?) where 2' =2+ s(1-%)
With no desynchronism d = 0, the light moves away
from the electrons and eventually decays with the
resonator Q. The fixed point solution 1is therefore
zero.

evoiving with d = 0. The optical pulse a(2) is plotted at
T = 1 after each 150 passes up to 1500 passes. The electron
pulse peak moves from z = s/2 to -s/2 on each pass, and has
a half-width at half-wmaximum of unity.

To achieve non-zero steady state power, we must have
d > 0. Then electrons continue to add light to the trailing

edge of the optical pulse, but the desynchronism mechanism

- moves the light forward to support the front edge. The

laser characterisgtics are significantly modified as d
increases. Figure 5 shows a plot of the steady-state optical
pulse energy_fzhz(z)dz versus d, called the "desynchronism

curve"”. Near d = 0 the peak power grows rapidly with d.

1
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Fig. 5. The steady-state optical pulse energy, or laser out-

put power, is non-zero only over a small range in
desynchronism d > 0. Maximum energy occurs when

d ~ 0, then steadily decreases as d increases. The
experimental desynchronism curve agrees very well

with theory in overall width but differs somewhat
in shape.

When d is too large the desynchronism mechanism moves the
pulge power forward too fast for gain to support the trailing
edge of the pulse so that the pulse energy decreases back to
zero. The character of the steady-staﬁe optical power
spectrum, the optical pulse shape, and the electron velocity
distribution all change with the operating desynchronism d.
Figure 6 shows the evolution to steady-state after n =

1500 passes for small desynchronism d = .00l. The optical

pulse a(2) is only one-fourth the length of the electron

pulse and has multiple peaks which can have high field

strengths |al ~50. This 1s a remarkably short optical

15

pulse of 0.25 mm length with high power ~10? watts in the

Stanford case. The multiple peaks in a(3) are caused by

"ringing" synchrotron oscillations in the electron phase
space following the large optical spike. They are spaced a
distance slightly less than s in strong fields.

We measure
the final electron z-velocities at T = 1 by their final

OPTICAL PULSE IN FEL
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Fig. 6. At small desynchronism d = .001, the Stanford

parameters produce an optical pulse shape a(z)
whose length is four times shorter than the electron
pulse and has a large peak field. This gives a
broad power spectrum P(Vy) centered at V ~ 6, and
a broad electron velocity distribution f}ve) due to
the high field strength. The driving current con-
tinually reshapes the optical pulse to compensate
for desynchronism, and the phase profile $(2) shifts
P(vk). The pulse energy (or laser power) reaches
steady state after n ~ 10° passes, and the final
results are shown on the lower left.
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dimensionless velocity v, = L{(k + ko)Bz - k), and f(ve) is
the distribution of ve's. The width of f(Ye) is generally
given by the height of the separatrix 4|a|? = 30 in this
case, and 1is characteristically wide for small d. The
Stanford experiment also shows wide f(ve) for d, but does
not show the sharp peak structure because of insufficient
resolution in their spectrometer. The large peak at

Vg * ~15 is observed and the overall width of f(ve) is in
good agreement with experiment. The Fourier transform of
the pulse structure gives its power spectrum P(vk). Each
component is measured by Vi TV s’ (2). P(vk) is
telatively wide and centered around the Vi ~ 6. The shift
in vy from v, accomplished by a sloping phase profile ¢ (z)
shown in the lower right of Figure 6. We interpret the
experimental results as giving Gvk ~ 2 centered at vk ~ 4,
but there is some uncertainty in determining resonance. The
current driving la(z)] at T = 1 is shown in the bottom-
center. This shows how the oscillating current can cause
multiple peaks. The final pulse profile |a(z)|, ¢(2),
power spectrum, and electron velocity distribution are
shown at the lower left.

In Figure 7 is shown the optical pulse evolution result-
1né from larger desynchronism d = .003. It is significantly
broader with multiple peaks of weaker fields Ial ~ 25 spaced
slightly larger than s. The optical pulse centroid is
ahead of the electron pulse. The power spectrum and electron
velocity distribution are both narrower than for the small
d case. The limit cycle behavior is the most prominent

feature of this example. This is observed in the Stanford

experiment and has not been previously reported theoretically.

It is remarkable that a given pulse shape can disappear and

reproduce itself hundreds of passes later. The pulse energy
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Fig. 7. With d = .003 we see clear limit-cycle behavior of
the laser pulse energy. Subpulses in a(2) start at
the trailing edge and pass through the pulse
profile to continually modify its shape.

or power oscillations are quite periodic in the upper-right
plot. The power variations are caused by "marching subpulses"
which start at the trailing edge and pass through to the
frout of the optical pulse over hundreds of passes. Higher
pulse energy occurs when there are two peaks, and diminishes
when only one peak is present.

At large desynchronism d=,042 the optical pulse has
much weaker fields and is three times longer than the
electron pulse 8z ~ 6. This is depicted in Figure 8. Its
centroid runs farther ahead of the electron pulse with little

or no subpulse structure. Much of the pulse's area lies

18
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Fig. 8. With lérge desynchronism d = .042, the steady-state

pulge energy 1s small and the fields are weak.
optical pulse is now three times longer than the
electron pulse. The electron velocity distribution

f(ve) is narrow as 1is the power spectrum P(vk).
which 13 centered about vk ~ 3.

outside of the “window" shown and decéys away exponentially

with Q-'l gince it 1s decoupled from the electrons (r(z) = 0

for 2 > s8/2 + ¥2). The rate of the decay is given by

Ja(z*)| exp(-2/4Qd) where z* = 2 is the last point calculated

in Fig., 8. Since there is no subpulse structure, there is

no limit cycle behavior and the power spectrum is narrow

Gvk ~ 2. Since the fields are weak the pdver spectrum

remains centered near Vi ~ 3. A power spectrum width of

8v, ~ 1 is observed experimentally. The resulting electron

velocity distribution is narrover (Gvé ~ 5) with a single

9.

The

peak. This is in part because of weaker fields, but also

because electrons drop back out of the optical pulse at

about T ~ !5 on each pass. The single peaked f(ve) with

width Gve ~ 6 is observed experimentally.
In total, the characteristic trends presented in the

examples of Figs. 6, 7, and 8 are in excellent agreement

with the experimental results available at this time. Even

the quantitative agreement is good, but cannot be perfect

because of a few minor experimental uncertainties. The

simple set of equations (4) and (5) are rich in the variety
of solutions they can present and many of these are now

verified by the recent Stanford experiments.

PULSE PROPAGATION IN TAPERED WIGGLERS. The original pro-

posal for a variable parameter wiggler magnet in a free
electron laser was made by .J.M.J. Madey concurrent with his

original proposal for the free electron laser.'”"!'? This

proposal makes uge of a fundamental advantage of free

electron lasers. The periodic magnetic field can be con-

structed in a variety of ways to meet various needs. The

magnetic field strength, the magnet wavelength, or both may

be varied along the magnet length to achieve the desired

result. All of these variations were explored theoretically

early in the development of free-electron lasers with the

goal of improving free electron laser characteristics for

storage-ring operation. However, after the development of

the pendulum equations accelerator physicists realized the
similarity between the free electron laser and a linear
accelerator.2?’?! Based on this understanding, it was

proposed that an increasing wavelength magnet could trap

electrons and decelerate electrons, and thereby
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persistently drive a large amplftude optical wave.

The modified electron equation for a variable parameter
magnet is derived by starting from a new form for the
magnetic field im = Bo(z)(cos o, sin a,” 0) where
o = 4:ko(z')dz' and Ao(z) = 2ﬂ/ko(z). For algebraic
convenience we take a special case where K = eBo(z)Ao(z)/
2nmc? 1s constant even though Bo and Ao can vary with z. The
derivation proceeds as before to give the same energy trans-
fer equation, but a somewhat different definition of the ‘
efectron phase: now ¢ = ézko(z')dz' + kz - wt and v = £,

() =d( )/dt, and T = tc/L as before. The new feature in

v =Lk (t) + K)B, - k] = Lik (1) - k1 + K2)/2y%1 is an
evolving magnet wavenumber ko(T). Electrons trapped near
resonance (v # 0) by a large amplitude optical field must
follow a decreasing AO(T) by decelérating, thereby lowering
Y. Their energy loss drives the optical wave.

If the electron energy extraction is large, corresponding
to a large change in XO(T), then the equations of motion are
best left in the form above using Y. If the amount of taper
is more modest, the fractional energy changes can be small,
but still much larger than for the untapered wiggler. In
this case the electron energy can be eliminated from the
tapered wiggler equations (y % yo) to give

Z, = Gz, = 6§+ |a(2)| cos(z, + ¢(2)) 6)
where z' = z + s(7-%). The modified pendulum equation (6)
has a new additive term § = Lk;(T). If the amount of taper
is small, 6 1is nearly constant and § = ZHNAAD/AO where
AXO/AO is the fractional decrease in AO. The wave equation
retains precisely the same form as (5) in the case of the

tapered wiggler and only the pendulum equation is modified.

21

The main new feature in the pendulum equation, the term
§, leads to significantly altered evolution. 1If the optical
field is absent or very weak (|a| = 0), all electrons evolve
according to y = Vot 18 and g =g+ ™, + 157125, Their
phase space paths are given by parabolas y2 = Vg + 28(¢ - co).
When |a| evolves slowly compared to the electron evolution,
as is typical, we can consider the self-consistent phase
space paths given by %% - [ + |a|sin(; + ¢)} = constant.
These paths evolve slowly with Ial and ¢, but instantaneous-
ly are a good guide. The corresponding potential V(z) =
-[z8 + |a|sin(z + ¢)) gives (6) through E = -3v(£)/3c. V()
is "tilted" toward positive { and has ripples caused by
la]sin(C + ¢). These ripples act as electron traps when Ial
is large enough. .

In strong fields (]a| » v28) the phase space parabolaé
are 41storted so that electfons near vo =z 0 and Co = 1 can
be trapped. This is shown in Fig. 9 where pulse structure
is ignored and § = 5m, v, = 0 for twenty sample electrons
representing a current density r, = 1, and a = 25. This
example could be a N = 50 period magnet with a 5% decrease
in magnet wavelength Ao from vt = 0 + 1. The untrapped
electrons eventually become random in phase, while the
trapped electrons remain near [ = 7 to drive the optical wave
through & = -r<e_1c>. The wave growth, or gain g(t), is
shown at the right with the éccompanying optical phase shift
¢(t). Since g(r) helps determine how the optical pulse is
reshaped on each pass, we can‘generally expect tapered -

wigglers to act differently than untapered wigglers. Note

.that the main feature of tapered wigglers is the presence

of a term like 8. For more severe tapers, the actual time

dependence of § and y only modifies the central ideas
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Fig. 9. Twenty sample electrons representing a current
density r = 1 start on resonance in the self-
consisten? phase space (g,v) of a tapered wiggler
with § = 57, About half the electrons are trapped
near resonance by strong optical fields a_ = 30.
The wave is driven in a non-uniform way as shown
by the gain g(t) and shifting phase ¢(1).

described above.

The coupled equations (5) and (6) Ean be solved
analytically when gain is low (ro < 1), fields are weak
(|a| < 1), and pulse structure is ignored. The gain and phase

are

1011’
glr, = fff stafy (x - ) + L8(r? - t"?)1dr"dr'dt
o "0 "o
€]
1oT 7'
A¢/ro =fff cos[vo(T -1") + %6(t2 ~ ") )dr"dt'dr.
o200
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These solutions are more general than earlier work?? and
are shown among the curves presented in Fig. 10 (ao = 0.1 to
1). The integrals can be written in terms of Fresnel

integrals,23

but the result is no more transparent than (7).
In Fig. 10 gain curves are plotted in units of r, with
§ = 5m = ZWNAXO/AO. Maximum gain now occurs at a negative
resonance parameter (\)o z -%§), and is less than the
available gain in an untapered wiggler.

The advantage of tapered wigglers comes at large a .

In the untapered case, saturation occurs when |al is large

Gem.}

e i,

' Gov §0.
s Qe =100.
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Fig. 10. Gain curves g(vo) are plotted in units of r_ for
a tapered wiggler with § = 5t. Peak gain 18 weak
fields (a_ = .1 to 1.) now occurs at negative
Vg = -1%5.° In strong fields where trapping occurs
(a0 2 VEG), peak gain occurs on resonance vV_ = 0.
Note that there is sufficient weak field gagn
available for oscillator start-up.

causing bunching to center about £ ~ n/2. But when § > 0
and |a|> /28 1in the tapered case the trapping near resonance

causes electrons to be centered about £ ~ w. At high fields

a4



the tapered wiggler exhibits gain superior to that of the
untapered wiggler so that more energy can be extracted from
the electron beam. Figure 10 shows the ‘evolution of gain
from weak to strong fields. Gain decreases with increasing
a just as in the § = 0 case, but comparison with Fig. 3
shows more gain 1s available at strong fields (ao > 25).
The point of maximum gain moves to vy = 0 in strong fields
since trapping occurs at resonance. We should anticipate
that a tapered wiggler laser oscillator will start at wave-
lengths corresponding to v,z -%§ and then move to V= 0. We
will observe this in the numerical solutions to the pulse
problem.

In Fig. 11, gain curves for the same field strengths are
shown with & = 10n. This could be a N = 50 period magnet
with 10% taper. The result is even more distortion of the
weak field gain curve. There are now several peaks which
have competitive gains. Unlike the § =5y examples, it
appears that weak coherent fields may build up in many modes.
It 1s not clear what will happen to some of these modes in
the evolution of gain to strong fields. The modes starting
at v, -8 move -to resonance, but the modes starting at
v, =22 could not really reach resonance in an obvious way.
We therefore leave this example for further study and
restrict ourselves to the more modestly tapered wigglef
example § = 5m. Note also that in both of these examples
there 18 always more weak field gain available than
strong field gain. There is no start-up problem in modestly
tapered wigglers as often reported; the gain is just not on
resonance. With larger §, weak field gain can become small
enough to cause problems, but it should be appreciated that

these examples still represent a significant improvement

as

Fig. 11. Gain curves g(vo) for a more severely tapered
wiggler (6 = 10x) show significantly less gain in
weak fields, and have several competitive gain
maxima. Such a system may give experimental
difficulties. -

over tapered wiggler energy extractionm.

In order to facilitate comparison with an untapered
wiggler, we choose parameters similar to the Stanford system:
L 2, Q =35, and s = 1 with a modest taper § = 5. If we
imposed a 1.5% taper on the Stanford laser magnet the
nominal extraction efficiency would be increased by a factor
of 5 and give § = 5%.

We solve the § = 5w oscillator problem in the same manner
as in the previous section. . Electrons are injected with
v, = -2n to give nearly maximum gain in weak fields.

Figure 12 shows twenty sampl? electrons (ro = 1) evolving

in weak fields a = 1. Starting at vo = -2m, they follow
quasi-parabolic phase space paths toward and past resonance.
Some bunching develops so that gain is achieved near ¢ ~ 1.

However, absorption occurs first at T = 2/3.
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Fig. 12. Phase space evolution shows how gain is achieved in
weak fields in a tapered wiggler with § = 5m,

Twenty sample electrons start at v, = -2 represent-—

ing a current density of r, = 1. Electrons follow
nearly parabolic phase space paths, but bunch due
to the weak field a. = 1. g(t) shows there is
actually absorption at 1 ~ 2/3 followed by final
gain.

An optical pulsge with no desynchfonism d = 0 disappears
after ~1000 passes as in the § = 0 case. The evolution is
similar to that shown in Fig. 4.

With a small amount of desynchronism d = .001, we find
that the laser slowly grows to high power (|a| ~ 40). See
Fig. 13.
peak indicating some electrons are trapped in the optical

The energy distribution f(Ve) shows a double
potential. Note the power spectrum has shifted from

Ve = -2 to resonance Ve ® 0 as expected. This is again

accomplished by the optical phase profile ¢(z2) developing
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Fig. 13. Tapered wiggler pulse evolution with § = 57 and
small desynchronism d = .00l results in a short
optical pulse a(2) with subpulse structure. Trap-
ping is evident in the final electron distribution
f(ve) when fields are strong. The power spectrum
P(vk) is broad and its center smoothly evolves from
v, = -2% to resonance v, = 0 as strong fields begin
to trap electrons. This example corresponds to the
Stanford laser with a 1%% taper of the magnet wave~
length during T = 0 + 1, and 25% more current
(r = 2).

o

the slope shown in the lower right. As in the untapered case,
a complicated pulse structure a(z) develops due to the driving
current. The final results are shown on the lower left. The
subpulse structure indicates the "ringing” of the electron

synchrotron oscillations within the trapping potential. This
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can also be caused by untrapped electrons absorbing light
as they pass by § ~ 0 1in a bunch. The narrow subpulse
structure causes a broad power spectrum with sideband
structufe. As indicated by the pulse energy or power
evolution (upper right), this computation may not as yet have
reached steady state after 1000 passes.

In the next example, we consider a larger amount of de-
synchronism d = .005. See Fig. 14. The optical pulse
centroid is in front of the electron pulse. The optical

TAPERED FEL PULSE
$+8x,02.,Q-35, de 0085, 8=1.

1000
POWER EVOLUTION n

ﬁ a(z) fiv,) Pln)

 ——————————— ]

- ————— ] — %
e [+ ] [ ¥4 .40 o ‘gl

OPTICAL AMPLITUDE ELECTRON DISTRIBUTION LA-SER LINESHAPE
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L 20 " e _— o(x)
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/\
40 ~NS— - ——
~—~N —_—
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STEADY-STATE RESULTS  ORIVING CURRENT OPTICAL PHASE

Fig. 1l4. Tapered wiggler pulse evolution with § = 51 and
large desynchronism d = .005 results in a weaker
and longer optical pulse with no structure. Only
modest trapping occurs because the fields are
weaker and because most electrons drop back out of
the optical pulse at T ~ %. The power spectrum
P(vk) is narrow.
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pulse is broad with no structure so the power spectrum is
narrow. Again it 1s clear that as the fields become strong
the maximum gain drives the waves toward resonance, but the

fields in this case never become strong enough for efficient

trapping and never reach resonance. Steady state operation

is reached more quickly for larger d. For even larger d,
there is less steady-state power.and fields a(2) are so weak
that trapping cannot take place. There is sufficient gain
to sustain the pulse however, and the results are similar in
character to the § = 0 case shown in Fig. 8.

The desynchronism curve for tapered wigglers has the
same shape as the untapered case shown in Fig. 5. A direct
comparison with Fig. 5 taking § = 0 + 57 gives a desynchron-
ism curve which has half the width in d and about half the
peak power. For this short pulse example, the tapered wig-

gler performance was inferior to the untapered wiggler.
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ABSTRACT

‘The problem of oscillator evolution and mode competition in
free electron lasers is studied. Relativistic quantum field theory is
used Lo calculate electron wave functions, the angular distribution
of spontaneous emission, and the transition rates for stimulated
emission and absorption in each mode. The photon rate equation
for the weak-field regime is presented. This rate equation is
applied to oscillalor evolution with a conventional undulator, a
two-stage optical klystron, and a tapered undulator. The effects of
noise are briefly discussed.

1. Introduction

A free eleclron laser (FEL) amplifies coherent radiation stored in a resonant
optical cavity by means of a relativistic electron beam passing through an undu-
lating Ltransverse magnetic ficld (Fig. 1) [1-3). From a classical point of view the
electrons execute transverse oscillations which enhances their coupling to the
radiation fields through the lorentz force [4-8). From a quantum mechanical
point of view, the electron wave function is modulated by the undulating field:
this distorlion in the presence of radiation allows stimulated inverse Compton
scallering Lo occur [9-15). References [16-17] are collections of works on the

FEL trom many points of view.

Madey's original paper [1] led to the practical realization of the first FEL

-2-

and made use of the Weizsicker-Williams method to calculate the quantum
mechanical transition rates and to describe the gain. When classical approaches
were subsequently introduced [4], they proved both to be adequate in describing
the important features of the FEL and to be more tractable in dealing with the
strong optical field regime [5,6.12-13,18-23]. For weak optical fields both quan-

tum and classical approaches give similar resuilts for comparable effort.

INJECTED EXITING
ELECTRON ELECTRON

BEAM BEAM
g UNDULATING MAGNET o

RSLAN)

vt - "l l .
MIRROR AL MIRROR

OPTICAL RESONATOR

Figure 1. Relativistic electrons enter the FEL optical resonator, interact
with the magnetic field of the undulator and with the stored optical radia-
tion, and leave the resonator after a single pass.

Some of the quantum calculations presented in the literature have worked
in a relativistic moving frame [24,25), with results similar to those lound in the
laboratory trame. Other authors have used quantum mechanics to study photon
stalistics in an FEL [26.27]. including inlerest{ng problems such as the rise of
long range coherence in the radiation field [28,29]. Other quantum approaches
have made use of the Bloch equations [30] by exploiting some similarities
between conventional lasers and the FEL. Finally some papers have dealt with

single mode Compton scattering [31,32].

What has not been done either classically or quantum mechanically is to
describe the early stages of the evolution and competition between modes of
radiation stored in an FEL oscillator. While some work has examined the mode
behavior in strong fields [33], the weak-field problem is important for under-

standing the onsel of laser operation in an FEL. Our analysis is based on a rate
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equation for the photon distribution function beginning from a fully quantum
mechanical foundalion in weak optical fields [11,12). This is obtained using
quantum electrodynamics: standard diagrammatic expansions are used to
determine the rates for spontaneous emission and for stimulaied emission and
absorption. The rate equation is used to calculate the photon distribution func-
tion over many passes both below threshold and above threshold in the weak-
field regime. The simplicity of the rate equation makes it possible to study vari-
ous magnet designs, including the conventional undulator, the tapered undula-
tor and the optical klystron. Since Planck’s constant does not occur in the final
rate equation, our results are classical and could have been derived from classi-
cal arguments. The motivation for using a quantum formalism is to eventually
extend the calculations to include noise. The connections with the classical pic-

ture are pointed out in the paper whenever possible.

In section 2 we solve the Dirac equation to second order in the static fleld
for electrons in an undulator. In section 3 we study the quantum mechanical
spontaneous emission rates. In section 4 stimulated emission and absorption is
investigated, and the resultant rate equation is stated explicilly in section 6. In
section 6 the rate equation is used for the various magnet .designs to obtain the
multimode gain. The effects of nolse are briefly discussed and found to be negli-

gible,

2. Flectron wave functions

The character of radiation from a free electron laser is determined by elec-
tron wave funclions In the undulator structure. In this section these wave func-

tions are calculated using the Dirac integral equation:
Y(z) = ¥z) + e fa'z' P o(z ~z) y AV (z)(z) . (2.1)

d* et (z-¢)
2m)! (iyq+m) "’

and  yO(z) = e\‘/p; U(p.o)

where  GPrec(z-z') = -f(
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We use notatlon as in Sakurai {34] so that z, = (2,it), ¥, = (7.74). and g = 7,9,
with repeated indices summed. The speed of light and Planck's.constant over 2n
are sel equal Lo unity, the electron mass is m, the eleclron charge magnitude is
e=|e}, and A,‘.’ = (A% 0) is the veclor potential of the undulator magnetic field.
The unscattered electron wave function ¥{9(z) is taken to be a plane wave:
Pu = (B.ipy) = (B.iym) is the unscattered electron lour-momentum, ¥ is the
electron Lorentz factor, and U(p.o) is the four-component Dirac spinor. The
normalization volume V is chosen to have longitudinal dimension L equal to the
undulator length. We use m-»m-~dig to ﬁroperly define the Green's function
GPrec(z ),

To incorporate the static magnetic field into the Dirac equation we have the

vector potential
N BAO tkys o —thge
A¥(z) = ?[O(z +L/2)~9(z ~L/2))(de"%" + d’a ®") | (2.2)

where the peak magnetic fleld strength is B and the magnet wavelength is
Ao = 2n/k, The complex polarization vector of the magnet ¢ is transverse
(@2 = 0) and is not hecessarlly a unit vector. For example, a helical magnet
has & = ~(i,1,0) and a linearly polarized magnet has ¢ = (1,0,0). The undulator

magnet extends for a length L = N); where the number of periods N » 1. It is
assumed that electrons sample the field only near the £-axis so that (2.2) is
accurate {35]). Farther off the undulator axis the transverse field lines bend to
satisfy Maxwell's equations. A typical undulator design has Ay =3.0 cm,

B = 2500 kilogauss, and L = 150 cm so that N = 50.

A single iteration of the Dirac equation estimates the full wave function y(z)
on the right-hand side of (2.1) with Lhe noninteracting wave function ¥{9{z). The

result is [12]

. —i kA (z~2" e et _ , E AN Y]
y)z) = ikm fd“z'fd‘q(-g'w—)—[rae'“' +ya’e w)ﬂ_}_ﬁu)__ (2.9)

2(2m)* iyq+m)



-5-

where K = eB)Xo/2nm. The integrals over 'y’ and t' give 6-functions. The
electron is allowed to interact with the magnet for an infinite time, but because
the magnet length L is finite the integral over z' does not give a §-function. The

first order result is

iKL: sin(g —kg)L/ 2)
vi(z) = ["M"‘} Jua—g, L/ 2] (2.4)
e9iy.g T M JOz)

i(ypt+gys)tm 1(7 P-grs)tm|

where ¢ is the z-momentum transferred to the electron. The most probable
momentum Lransfer is kg with a fractional spread of ® N~!. Since N > 1 there

is a narrow range of momentum transfers from the magnet to the electrons.

Iterating once more produces the second-order result [12]:

. .
(ikim . sin[(g —kq)L/ 2] sin[(g’'—ko)L/ 2]
W‘”’(I)-lq‘m Jda [ [(a~ko)L/2]  [(g'-ko)L/ 2]

‘(V'q)"ln 8“'7& +
i pramtardim ilrpraydim

e-‘(qfq‘)'7.a' e'w‘7-a’
+ = " ~ +
i(yp-qys—¢'va)tm i(yp—gys)tm

(2.5)

atl9-ediyq e Wiyqg’
+ - v - +
i(yp+gy—g'ra)+m i(yp-qrad+m

’“9’?)'7 u 9‘9 y'a
Y I pgantar)rm i(yprarim

l W(o)(z)-

The pattern of higher order terms is clear. These lengthy expressions may be
written symbolically in terms of Feynman diagrams as shown in Fig. 2. The
directional interactions correspond Lo positive or negative momentum transfer
from the magnet. It will be evident later that one direction of momentum

transfer is kinematically associaled with emission of radiation and the other
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with absorption. The strength of each such interaction is proportional to
Am/p = K/7. In practice K is never much larger than unity and vy is always
large, so that K/ « 1 and perturbation theory is valid. In principle the elec-
tron wave functions can be written to any order in K/y with spin effects

included.

. + + I~

-~ > ~x >~
+ + + +
4 x - -~

Figure 2. In the diagrammatic expansion for the electron wave function
¥(z), solid lines endmg in circles represent the noninteracting electron
wave function ¥%z). Other solid lines represent electron Green's func-
tions GP'*°, Wiggly lines with directional arrows denote interactions with
the undulator field in which momentum is transterred either to or from the
undulator.

It is also possible to write the Dirac equation in differential form including
all orders in X/v. We ignore the boundary conditions due to the finite length L
of the magnet and concentrate on the character of the higher order eflects in
K/ 7. We write the four-component first-order differential equation as two two-
component second-order differential equations for the upper and lower com-
ponents of the wave function ¥(z). The two-component wave functions differ
only by the magnitude of the spin energy. The spin-dependent and spin-
independent terms proportional to K/ 7y differ by a factor ky/ym which is
7 10722 for typical parameters, so that the spin-dependent terms may be
neglected [12,36]. The two second-order differential equations are then identi-
cal and are just the one-dimensional Klein-Gordon equation with a sinusoidal
potential,i.e. the Mathieu equation. For a linearly polarized magnet this equa-

tion is

(k,::z)z - .’e —zcos (‘-oz) + L‘ ¢z)=0 . (2.8)
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To zeroth order In fields (K/y = 0) the solutions are plane waves representing

electrons propagating unperturbed along the magnet axis.

Since deviations from linear motion along the z-axis of the magnet are
small, an eikonal or WKB approximation is suggested as a limiting case of
Mathieu's equation. Expanding to second-order in the small parameter K/y
gives [12]

l\""

‘!(z)=q1+672

cos(Bk,z)+ - - - ]exp[ﬂl[koz - E’;—sln(ZkozH - ]] , (.7)

where ! Is an integer labeling the energy level. The electron wave function (2.7)
is modulated in amplitude and frequency due to its interaction with the linearly
polarized magnet. Classically, the electrons undergo periodic acceleration
which modifies their z-momentum so that their energy remains constant. in a
helical magnet the acceleration is constant in magnitude along z so that there

is no modulation of the electron wave function.

The energy eigenvalues are

n
2o B
E =kt +m2+ My (2.8)

The electron has acquired an eflective mass m* = m(1+Kk%/ 2+ - - - % We may
understand this as follows. When an electron emits or absorbs radiation it
recoils. The electrons in the undulator magnet "resist” this action more than do
free electrons since they are constrained to lollow a transverse oscillatory path.
In a helical magnet the mass correction is twice as large because the average
transverse acceleration is twice as large. Henceforth we will assume that K is
sufficlently small that we may neglect this correction to the electron mass. The
discrete eigenvalues result from requiring that the wave functions remain invari-
ant under translation by an integral number of magnet wavelengths Ag. How-

ever, for relativistic electrons in a typical magnet ! ® 10'2. This gives essentially'
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a continuum of states indicating that a classical approach is accurate. Further-
more, If we were to impose the finite length boundary conditions on the wave
function the magnet would only include = 10? periods. It would therefore be
impossible to resolve energy level differences of one part in 10'2. From now on

we will therelore consider the electron energy to be a continuum variable.

The current density § =1iay 7 ¥ can be found from the wave functions in
(2.4) or (2.7). To lowest order in K the current density in a linearly polarized
magnet is proportional to [—(K/y)cos(kez). 0, 8, ] where 8, = 1-1/2y% The
current density is modulated in the x-direction in proportion to K. This agrees
with the classical current found from the Lorentz force equations in the pres-
ence of the magnet fleld alone. The procedure of finding the electron trajec-
tories in the magnetic fleld is the classical counterpart to solving for the elec-

tron wave functions in the magnetic field.

3. Quantum mechanical spontaneous emission
In this section we derive the transition rate. angular distribution, and fre-
quency dependence of spontaneous emission from an electron in an undulator.

This radiative process Is magnetic bremsstrahlung, and is fundamentally the

‘same process as occurs in the spontaneous decay of excited atomic states. A

distinction, however, is that the electrons in the excited atoms of conventional
lasers make transilions over discrete states, while the electrons in an FEL make
transitions over a continuum of states. The external magnectic field in the FEL is
necessary for emission to occur, since otherwise energy and momentum cannot

be conserved in the process.
The emission and absorption of photons is described by the creation and
annihilation operators ¢, and cg, for photons of wave vector £ and helicity A,

The number of photons per mode is given by the photon distribution function
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ik N = <BAE> . (31)

which is just the expectation value cf th» pholon number operator for the mode

(K.7). The lotal number of photons present in all medes is then
Nohoton = T J 4% n(EN) (32)
photon (2")3

In the calculation of spontaneous emission we assume that no pholons are ini-

tially present.

Figure 3. Feynman diagrams for spontznec:is emission are shown to lowest
order in the electron-undulator aad electren-photon interactions. Wiggly
lines without direclional arrows represent real photons. Vertices are
denoted by circles.

The Feynman diagrams that describe spontaneous emission to lowest non-
vanishing order in the undulator fleld strenglh arc shown in Fig. 3. The zero
order term in K does not contribute to emissicn since it does not conserve

energy and momentum. The resulting S-matrix is
S = —ie® | 20 " U(p'.a') x {76r mo—tee—y- A¥(p'+k —p) +  (3.3)
R P ' YE e -E)im Y P :
. 1
A (p'+k -P)WY'SA} U(p.o)
where

) i} in[(q~k¢)l/2]  Lsi ko)L/2
A a)=(2n)8(0,8(0,0(30) .2 ““S.[n([;{ikc)cL)/;]] *“»8'35320>"Z,21 ]} 0

is the Fourier transform of the undulator vector potential (2.2). The initial and

final electron four-momenta are p, and p',. k, = (£.ik) is the photon four-
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momentum, and (&)), = (8),,0) where Z, is the photon polarization vector.
Kinematically only the second term in A,‘;'(q). corresponding to a momentum
transfer from the undulator fleld to the electron, contributes to spontaneous
emission.

From (3.3), we find the square of the T-matrix:

lT}PI“=[@£"‘,#'—“-] 84:)6(a,)| Up.0) D Up.)IEs(4) . (35)

The matrix O is just the quantity in brackets { - - - { In (3.3) with Ay réplaced by
a, . The momentum transfer from the undulator is ¢ =p* + E - which must
vanish in the z and y directions. The range of momentum transfers possible in

the z direction gives the spontaneous emission line shape

sinf(ui8)/2) _ sin(vo/2)

s(he) = W 2) G2 (3.8)
where
V(.) = L(kﬂ —P's —kl +PJ)A
NL(ko—k (1-8)) =vg . 3.7

The approximate expression for 1) is valid in the relativistic limit. The function
s(v®)) is maximum for a momentum transfer from the undulator field of
d = koz. at which polnt the resonance parameter v(*? vanishes. The characteris-
tic width of s(v) in vg is n, corresponding to a fractional line width
6k/k = (2N)™". The photon wave number at the line center (i. e.. at "reso-

nance”) is

_ ko K
ks — Uwi‘ 0 [7—2] . (3.8)

This expression agrees with the classical result. In the forward direction

kpes = 27°kq. which shows the large Doppler shift of the radiation wave number
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relative to kg.

The transition rate is found by multiplying (3.5) by the density of final
states, which we take to correspond to a [ree final electron and a plane wave
photon. The spin sums are rather involved and a simple form is available only
for the case in which the electron moves along the z direction before entering
the undulator. In that case we find [12]

dxw __ _vEB?_[IB:(en) (@) + (e @) (1 ~ B, cosv)|?
dOdvy ~ 18rker? | (1 - B, cosy) *

s(vg) . (3.9)

where ro = 8%/ m is the classical electron radius and ¥ is the angle between the
2 direction and the photon wave vector £ = £ k. On axis, the radiation is polar-
ized in the same sense as the undulator polarization &, but the polarization
changes off axis. Due to the strong angular dependence of the denominator in
(3.9), the radiation emerges within a narrow forward cone with characteristic
opening angle ™ ~! around the undulato, axis. Within this cone the transition
rate (3.9), the resonant wave number Ic;.. and the optical polarization all change

slowly with 9.

A simple interpretation of the spontaneous emission process is as follows

(12]. The number of photons emitted per pass by an electron is found by muiti-

plying (3.9) by the emission time L = N)g and integrating over the line shape

s(vp). Approximating the transition rate in the integrand by its value at ¥ = 0
and esllrﬁattng the solid angle integral fdn by n/ 472 ( the solid angle of the

radiation cone ) gives

no. of photons
pass

- Bf:oj(mgl.) . (3.10)

The first term is the energy density of the static field divided by kg, the energy
of each virtual photon stored in the static field. The second term is the classical

volume swept out by the electron while moving through the undutator. Thus the
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total number of spontaneous photons emitted per pass is just the number of vir-
tual photons swept out by the electron in the undulator. For typical FELs the

number of photons emitted per pass is ® 0.1 per electron.

Typically not all photons emitted in a pass are stored in the FEL resonator
cavity. The rigorous mode overlap problem is lengthy, but a good estimate is to
use the solid angle subtended by the fundamental cavity mode. The characteris-
tic angular spread of a Gaussian mode Is (kzg)™' where z, is the Rayleigh length
of the cavity [37]. The resulting solid angle for a Gaussian mode is 7/ kzy. This
is smaller than the solid angle n/47% of the total emission cone by a factor
Ao/ 11zg. Since this factor is < 1 for typical resonator designs, only a smal! frac-

tion of the spontaneous emission remains within the resonator cavily.

All the results obtained above using quantum fleld theory can also be
derived by using the WKB wave functions calculated in the previous section. The
resulting 7-matrix then includes the electron-undulator interaction to higher
order in K. This result is not readily obtainable using diagrammatic techniques
since an infinite class of diagrams must be considered. The transition rate in
the forward direction obtained from the WKB wave functions is identical to (3.9)
with ¥ = 0 except for an extra multiplicative factor {Jo(2) ~ J,(Z)]%, where Jq

and J, are Bessel functions and Z = K%/ 4(1 + K%/ 2)[12,38]).

4. Stimulated emission and absorption

In a free electron laser oscillator, lhe spontaneous radiation is stored in a
resonant cavity formed by mirrors placed beyond either end of the undulator on
the common axis of the undulator and electron beam. New electrons which
enter the undulator on subsequent passes may then interact with this stored
radiation, so that stimulated emission or absorption occurs. Photons .may be
present at a variety of wave numbers as expressed by the photon distribution

function n(k A).



-13-

The Feynman diagrams for stimulated emission are shown in Fig. 4a to
lowest order in K. The square of the associated 7-matrix is the same as (3.5)
except for an additional factor of n(k .A) which arises from the action of the pho-
ton creation operator on the initial state. The differential probability per unit

time for stimulated emission is then

dw'®) = s () [n(E.N)+1]

(2m)e2K®m2L | U(p',0) BU(p 0)|?)
kv J

x (2m)26(VpE+mi+k —VpZim?) (4.1)

x 8(p;'+ky _Pz)d(py""ky ”py)
E + ’%
(a)
’2 + I\f
(b)
Figure 4. (a) Feynman diagrams for stimulated emission are shown to
lowest order in the electron-undulator and electron-photon interactions.
Photons other than that emilted by the electron do not interact directly

with the electron. (b) As (a) but for absorption. Photons other than that
absorbed by the electron do not interact directly with the electron.

We now specializé to the case where # and £ are along Lhe undulator axis,
and assume that Lhe electrons are highly relativistic. This is a good approxima-
tion for high quality electron beams and for resonalors with a large Rayleigh
length. The stimulated emission rale per wave number is then found by

integrating (4.1) over the density of final states for the electron, summing over

the final electron spin, and averaging over the initial electron spin. The result is

[12]
w)(p kA) = laﬂzNezzﬂan . s(V) [nkA) + 1), (42)
where, as in (3.7),
V) = Likg — (k/72Y5(1 + (k/p))) = vo — 2rNk/p . (4.3)

In this expression we have retained terms in the small quantity k/p ( typi-
cally & 10719 only in the argument 1A*) of the function s (v{*?). All other terms
in k/p are smaller by a factor N>>1. In the calculation of spontaneous emission
in the preceding section, terms in k/p were dropped altogether. As shown
below, however, k/p must be retained in the kinematic factor ) in order to to
properly describe gain.

In order to find the rate equation for the photon distribution function, we
also require the rate for absorption: The lowest-order Feynman diagrams for
this process are shown in Fig. 4b. The calculation of the rate for absorption is

similar to the calculation of the stimulated emission rate. The differences are:

(1) [n(E.\) + 1] is replaced by n(k.\), since it is now the photon annihilation
operator that acts on the initial state;

(2) the four-momentum transfer, which was givenby q, =p', + k, ~ P, for the
case of emission, isnow g, = p', -k, ~p,: and

(3) . only the first term in (3.4) for A¥(g) contributes to absorption. The result-

ing expression for the forward absorption rate is [12]

2n®NelK?| e\ d |®

R LRV (4.4)

w)p k) = [

where

Vo) = Lkg = (/7274 ~(k/pN] = vo + 2nNk/p . (4.5)
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The difference in kinematics beltween Lhe emission and the absorption rates
appears in the sign of the small quantity k/p appearing in /*) and v(®). This
results in a slight diflerence between the emission and absorption rates for fixed
kn.ko, and p. The magnet wave number kg and initial electron momentum p are
fixed by design, but the FEL oscillator contains a range of photon wave numbers
k. The rates for emission and absorption and the difference between these rates
vary with k, so that the net gain is a function of wave number. This is embodied

in the photon rate equation.

5. Photon rate equation

The number of photons evolves due to emission and absorption by the elec-
tron beam. The rate of change of 7(k .A) is found by integrating the difference ‘of

(4.2) and (4.4) over the electron momentum distribution function N, (p) :
d_'z%g\). = fdp N,(p) [ w®(p.kA) —wep k)] . (5.1)

We only consider the evolution of the expectation value of the photen number
operator ephcx, and not the expectation values of the creation operator o) or
the annihilation operator e,,. The commutation relations are therefore
neglected so that we ignore gquantum fuctuations. In ‘additlon, gain must be

small since we do not [ollow the evolution of the optical phase through & and

cea [39). Most present and proposed FELs indeed have small gain per pass and '

small quantum fluctuations.

The electron momentum distribution function N, (p) also changes with time
due to emission and absorption. A coatinuum of states is available to the elec-
trons so that the number of electrons per state is low and Fermi statistics do
not restrict transitions. Almost invariably N, (p) has an initial width large com-
pared to & and has no structure on the order of k. These attributes are not

changed by repeated emission and absorption during a single pass, which act
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only lo redistribute electrons in momentum. Furthermore, the initial widlh of
Ne(p) is typically small compared to the characteristic width in p of
[ w®)(p.kA) —w®p k)] in (5.1). Thus we may regard N,(p) as a narrow
function of p. Repeated cmission and absorption during a single pass can
significantly modify N,(p) when n{k.\) is large, since the transition rates
increase with n(k,A\). When n(k.\) becomes sufliciently large that N,(p)
acquires a fractional width in momentum ép/p ® (2N)~!, saturation occurs.
Our analysis is therefore restricted to weak optical fields (small n(k,A)) below
the saturation limit. This regime includes most of the dynamical evolution of an

FEL oscillator. With these approximations, the rate equation (6.1) becomes

dnkA) - n [ wlep k) —w@EEN] . (5.2)

dt

where N; is the total number of electrons within the quantization volume V.

Making use of (4.2) and (4.4), this may be written as

dnlk A) _ | No2n®NelK%|e,
a

2
K2V al } [s(u")) (n(k.A) +1] ‘S(U("')n(lc,)\)] (6.3)

Since the oplical gain per pass is low, n(k,A\) changes only slightly during a
single pas;s and the electron distribution remains constant over each pass. We
then rewrite {5.3) as an equation for the change of the photon distribution func-
tion over many passes through the undulator. We note from (4.3) and (4.5) that
vi*) and 1A?) differ only by the small quantity ~4mNk/p, so that a first-order Tay-
lor expansion may be used in (5.3). The resulting rate equation is

dn(k An) =j m Ao
dn 84N

5 S(Vo)+9(l'o)n(k.’\-n)} . (6.4)

where n is the pass number. The dimensionless electron current density j is, in

cgs units,

, 417"’N921(‘L2|t-a|2‘ N,
M-S R ©9)
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which is the same as occurs in classical calculations [ IEEE ]. The function g (vg)

arises from the Taylor expansion of s (vp):

_ 1 ds(v) _ (R — Rcosvg — vgsinyg)
glvo) = =5 dve - o . (5.8)

Equation (5.4) contains both a term due to spontaneous emission [indepen- ‘

dent of n{k A,n)] as well as a gain term [proportional to 7(k A n)} which arises

from the difference between the rates for stimulated emission and absorption.

This latter term is pr:esent as a consequence of the slight kinematical difference
between the emission and absorption process. Were this difference absent,
there would be no gain. The spontaneous and gain terms depend in different
ways on the relationship between the electron energy and photon wave number
expressed by Lhe resonance parameter vy. From {3.8), the increase in n(k An)
due Lo spontaneous emission is greatest for vy = 0, while from (5.8) the increase
due to the dominance of stimulated emission over absorption Is greatest for
vy & 2.8, corresponding to a wave number lower than that which is optimum for

spontaneous emission. As the photon number grows to

mc Ao

N 84n*Nyh 5.7)

T

(in cgs units), the stimulated gain term becomes important. This is the FEL
threshold condition. Below threshold (n < 7ngu) n(k.An) grows linearly,
increasing by m,s(vg) on each pass. Above threshold (n >>7n,,) growth is
exponential and the fractional gain per pass is given by jg(vg), in agreement
with classical calculations of the gain in weak optical flelds [5,12]. We note that
both the spontaneous and gain terms in (5.4) are identical to the classical
results. The relation (5.6) between s(vg) and g(vg) is a restatement of a
theorem due to Madey [1,40); like that theorem, it is only valid for weak optical

fields that are well approximated by forward plane waves [41].
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The solution to {5.4) is [12]

= Nuns (Vo) jglvgn _ ]
nlk.An) ——-————g(uo) e 1 . (5.8)

Initially (n = 0) no photons are present. When the gain function g (1) is positive,
(5.8) gives first linear and then exponential growth of the photon number. When
g(ve) is zero, the growth is linear and arises from spontaneous emission only.
For negative g(vp) the photon number tends to an asymptotic value for which
the emission and absorption rates are equal. We discuss these characteristics of

the solution {5.8) in more detail below.

8. Oscillator evolution

In this section we use the solution (5.8) for the photon distribution function
to study the light stored in an FEL oscillator. The total energy of the photons in
all modes stored in the volume V is Eppoten = (21)7° Vfdak hek n(E An) (in cgs
units). Since the characteristic solid angle for a Gaussian mode is f dQ = n/kzg
is small for large z¢>>L, it is appropriate to replace n{f A,n) in this integral by
the corresponding function n(k A.n) for on-axis photons given by (5.8). We may
then write the optical power per unit area as Ppuoon = Epnotont/ VR
he®(2n)-3(n/ kzo)fdk k® n(k An) in cgs units. For oscillators with smaller
values of zg ( & L) the optical phase changes substantially over the length of the
undulator, leading to changes in the resonance parameter and in the functions
s(vo) and g (vg) [41]).

We extend our study to include oscillator evolution for magnet designs
other than the simple undulator by replacing s(vg) and g(v) with the
corresponding functions describing each alternate magnet design. We consider
the additional examples of the two-stage optical klystron and the tapered undu-

lator. We also discuss the effect of spontaneous noise and shot noise on oscilla-
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tor evolution. In all of this the resonator losses are assunied to be negligibly
small compared to the gain. Greater losses can easily be included by subtract-

ing the losses from g (1) in (5.8).

(a) Conventional undulator

In Fig. 5 we show s(), g (1), and the corresponding evolution of n(k An)
for a linearly polarized undulator (Jexd|? = 1) with N = 50, Ay = 3.0 cmn, y = 50,
and a dimensionless electron current density j = 1.0. This value of J would arise
from the typical values K = 0.3 and N,/ V ~ 10" cm™ With these parameters
the center of the spontaneous line (g = 0) corresponds to an optical wavelength
A =86.0um. Other choices of parameters give somewhat different numerical

results, but the qualitative conclusions of Fig. 5 are unchanged.

CONVENTIONAL. UNDULATOR
0% Mhe49x10*  jo10

~|00
ne30
[ ]

Figure 6. The mode evolution for
an FEL oscillator using a conven-
tional periodic undulator shows a
definite peak after 100 passes.
Here j = 1.0, N =50, ¥ = 50, and
Ao = 3.0 cm, so that
M = 4.92x 10*. Upper graphs:
1{vp) tor pass numbers n = 1, 50,
and 100. Middlie graph: spontane-

10 ous emission function s(vp).
atv) osk /\M Lower graph: gain function g (uvp).
o . The range of vy depicted {s from
o bt -20 to 20. The maximum gain per
oz2[ ~ pass is 13.5 per cent at vy = 2.8.
9(',) 0 \/

As the pass number increases, the radiation becomes increasingly mono-

chromatic due to mode competition. The line center moves towards the max-
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imum gain point v % 2.6, at which point the gain per pass is 13.5 percent. After
only 100 passes, however, the center of the line is at a slightly lower value of v,
since the number of spontaneous photons is greater near vg = 0. The most nega-
Live value of g(vg) occurs at vy = —2.6; near this point the competing processes
of spontaneous emission and net absorption have nearly come to steady state

after 100 passes, giving a relatively small asymptotic value of n(k An).

We note that whlle_ other values of vp besides the peak value of ~ 2.6 pro-
duce positive gain, the gain at these other values is sufficiently small that after
100 passes these sidebands are suppressed by six orders of magnitude. This is
emphasized in Fig. 8 in which the photon distribution function after 50 and 100
passes Is shown on a linear scale. For an optical cavity with z¢ = 51 the optical
power per unit area after 100 passes is approximately 2.1 kW/cm®, essentially
100 percent of which is within the central peak of Fig. 5.

CONVENTIONAL UNDULATOR
Mh=49x1.0* =10

4x10"
ns l500
R n=50
ﬂ("o) (x500)
2x10"f
0 1 1
0 l 2 3 4 85

Vo

Figure 6. A comparison of central region of 1(vp) for an FEL osciliator using
& conventional periodic undulator after pass numbers n = 50 and 100 shows
significant Jaser line narrowing due to mode competition. The range of vy
depicted is from 0 to 5.
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In the preceding section we noted that our analysis is only valid if the value
of n(k An) is below saturation, so that the fractional change in momentum of an
electron after one pass is small compared to (2N)™. To determine the satura-
tion limit, we find the average momentum change per electron by equating the
momentum gain of the photons in a single pass to the momentum loss of the
electron beam. The resulting restriction is, in cgs units,

m3\gzoe?

B841°he AP N3 |ex- 4 |°g (Vmag)BV0 (8.1)

17“- ,A."l) < Near N

where g(vmax) is the maximum value of g (vp) and Ay is the width of the peak in
g. For the parameters used here 1y ® 10'3. Thus the calculation depicted in
Figs. 5.and 8. in which n(k A,n) is always less than 10'2, is well within the range

of validity of our approximations.

(b) Two-stage optical kiystron

An alternative magnet design to the conventional undulator is the two-stage
optical klystron {42,43). In an optical klystron the undulator magnet is divided
into two separate sections between which is placed either a long drift space or a
shorter dispersive magnet. In either case the spontaneous emission function
s(vg) changes shape due Lo interference between emission from the two sec-
tions, so that the variation with vy becomes more rapid as shown in Fig. 7. Con-
sequently the gain tunction g (vg), which from (5.6) is proportional to the deriva-
tive of s(vg), has larger maxima and the gain is enhanced. This is particularly

useful when the gain of a conventional undulator would be unacceptably low.

We study oscillator evolution for an optical klystron by replacing the func-
tion s (v} in {5.8) by the corresponding function for an optical kiystron as calcu-

lated classically {42]. For magnet sections of equal length, this is

[1=cos(ve/ 2)) [1+cosivg/ 2 + X)]

v/ 2 (6.2)

sox(ve) =
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where x = Nyg[ (vo/ 2N) — 21 ] and N; equals the number of optical wavelengths
which phss over an electron during its traversal of the dispersive section or drift
space {43]. For N4 =0, (6.2) reduces to the original form (3.6). As Ny
Increases, sog(vg) varies more rapidly with v5. The corresponding gain function

then has greater maxima:

gox(vo) = --é— 5‘%@ = { R—cos x—cos(vg+x)~(vo/ 2)sin(vetx)

—2cos(vy/ 2)+2cos((vy/ ) +x)~(v/ 2)sin(vy/ 2)+(vy/ 2)sin({ve/ 2)+x) (8.3)
+ (vo/ 2)(Na/ N){sin((ve/ 2)+X)—(1/ 2)sin(vp+x) (17 2)sinx ]} (o) -2
Note that if Ny is an integer we may drop the term —2mNy in the definition of x

since this term does not change sgk or gox.

OPTICAL. KLYSTRON
Tn=4.9x10¢ 202
=100

Figure 7. The mode competition
in a two-stage optical klystron
FEL with N4 = 250 shows many
more gain peaks than in the
periodic undulator in Fig. 6.
Here j = 0.2, N =50, y = 50, and
Ao =30 cm, so that
Ten = 4.82x 10*. The range of v,
depicted is from -10 to 10. The
maximum gain per pass is 15 per
cent at vy = 0.5.

"VAAI\AAAI\AVA
SPATTY

40 S ] o
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In Fig. 7 we show the evolution of the photon distribution function for an

optical klystron. This example is identical to the conventional undulator dep-
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icted in Fig. 5 but with the value of j reduced to 0.2. A dispersive section has
been introduced with Ny = SN = 250 to bring the peak gain per pass up to the
value obtained with the conventional undulator. The sidebands to either side of
the central peak in Fig. 7 are larger and more closely spaced than for the con-
ventional undulator. This is due to the higher sideband gain and more rapid
variation of g (vp). For this example only 63 percent of the optical power present
after 100 passes is within the maximum gain peak centered at vg ™ 0.5. Further-
more the power within this central peak is only 14 percent of ihe peak power
obtained with the conventional undulator. This reduction is due in part to the
narrowness of the peak and in part to the reduced value of s(vg) at the peak
gain point. The adjacent sidebands are suppressed by less than an order of mag-
nitude, compared to six orders of magnitude for the conventional undulator.
After many more passes, mode selection will be more complete and sidebands
will be further suppressed, but before mode selection is complete the laser will
reach the strong optical regime and saturation. In strong fields the gain func-

tion g (1) is altered and the mode selection problem changes.

(c) Tapered undulator

Another type of magnet design is the tapered undulator {or "tapered
wiggler") {23]. This design is intended to increase the gain in strong fields above
that obtained with a conventional undulator, thereby increasing the saturation
limit. This can be done by decreasing ("tapering”) the magnet wavelength Ay
along 2z, by decreasing the magnetic field strength, or by supplying a longitudi-
nal accelerating electric fleld. Each method results in a change of the electron
energy for resonance (vp = 0) for fixed wave number k. When the optical fleld is
strong, some electrons can become trapped in phase with the optical fleld.

resulting in enhanced energy transfer from the electrons to the optical field.
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As with the optical klystron, we study the evolution of a tapered undulator
FEL oscillator by replacing the spontaneous emission and gain tunctions in (5.8)
by the corresponding quantities for a tapered undulator. The spontaneous emis-
ston function S (tp) may be written as an opaque expression involving a
number of Fresnel integrals [44,45] which we do not present here. With lncréas-
ing amounts of taper Syper(lp) becomes broader and the peak value decreases
as shown in Fig. 8. Again the gain function Is obtained from the spontaneous
emission function by differentiation. Because of the broadening of the spontane-
ous emission function, the maximum slope of the line shape and hence the max-
imum amount of gain in weak flelds is therefore reduced relative to a conven-
tional undulator. Thus we expect a tapered undulator to perform less well dur-
ing the early weak-field stages of oscillator operation than does a conventional

undulator.

TAPERED UNDULATOR
0® Tmeq.9x10* je10

=100
n-:ﬁoo
10° n=

() Figure 8. The mode competition
108 in a tapered undulator FEL with a
five per cent taper of the undula-
. tor wavelength Ag shows behavior
0* distinct from that in Figs. 8 and
7. Here § =1.0, N =50, y =50,
and A =830 cm, so that

1or My = 4.92 x 10*. The range of vg
) osl depicted is from -20 to 10. The
hal maximum gain per pass is 8 per
Q . - cent at vg = -5.4.
()]
o) o \//\A
-01

o-
o

-20 -0

In Fig. 8 we show the evolution of the photon distribution function for an

undulator identical to that used in Fig. 5 but with a five percent taper in Ap from
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the beginning to the end of the undulator. In this example we have assumed
that both Ag and the undulator fleld strength B vary along the length of the
undulator so that K remains constant. After 100 passes the optical power is less
than the value with a conventional undulator by two orders of magnitude. After
500 passes the optical power becomes comparable to the power obtained after
100 passes with a conventional undulator. Unlike the situation with an optical
' klystron, the sidebands in this case remain small so that the stored light is quite
monachromatic in weak fields. With larger amounts of tapering, the sidebands

are enhanced and can remain comparable to the main peak after & 100 passes.

(¢) Quantum fluctuations and shot noise

The gain and spontaneous emission rates in the previous exam‘ples have
been taken to be constant with pass number. In fact there are fluctuations due
to quantum and shot noise that will vary the shapes of s(vc) and g (o) on each

pass. We show here that typically these fluctuations are small.

From (5.4) and (5.7), at fow photon number the growth of the photon distri-
bution function is given by dn(k.An)/dn =7, js(ve). The photon distribution
function integrated over the density of states gives the number of photons as in
(3.2). The solid angle in d3% is again the actual solid angle fdﬂ =n/ kzy cap-
tured between the spherical mirrors of the resonator. The cross-sectional area
of the mode waist is nw§ = 2r2z¢/ k. Since the mode area doubles in each dis-
tance 2, we can estimate the interaction volume in (3.2) as
V& L(nw§Ll/224) = nL%/ k. The wave number interval dk in (3.2) can be rewrit-
ten in terms of the resonance parameter: dv = 2nNdk/ k, where k ™ 27%k g near
resonance. This gives a convenient formula for the number of photons entering
the resonator each pass:

dszhown - L72 dﬂ ~ L“/z
dndyg 4nzg dn 4nzg

3 en SQrg) (6.4)
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The full range dvy, ® 2ir about resonance is excited by spontaneous emis-
sion, but the range of interest for gain is only dvg ¥ 1 about v = 2.8. For typical
free electron laser resonator designs L/ 2zg is of order unity, j & 1, y & 50, and
N, N 5x10% This results in a large number of photons (& 107) even after a single
pass through the laser. Assuming that Poisson statistics apply [27], the frac-

tional fluctuations in the photon number are small { & 3x10™4),

The optical mode length corresponding to the frequency interval in dvg & 1
is 20nN/k. The number of electrons in that length is given by the volume ele-
ment mw§(20nN/ k) times the electron density. Typically this number is & 10°.

The shot noise associated with such a large number of electrons will be small.
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ABSTRACT

The spectrum, angular distribution, polarization and coher-
ence properties of the radiation emitted by relativistic electrons
undulating through a' quasiperiodic tapered magnetic field are stu-
died. Tapering the wavelength and/or field strength _along the
undulator’s axis has the effect of spreading the spectral line to
higher frequencies; interference over this broader spectral range
resulls in a more complex line shape. The angular dependence, on
the other hand, is not affected by the amount of Ltaper. The polari-
zation of the radiation in the forward direction is determined by
the transverse polarization of the undulator, but Lhe polarization
changes off axis. The radiation patterns predicled here are dis-
tinct from those of untapered undulators, and their detection is
now feasible. They will provide useful diagnostics of electron tra-
jectories and threshold behavior in free-electron-laser oscillators

using tapered undulators.

PACS: 41.70

Introduction

Charged particles traveling along the axis of a static, undulating, magnetic
field execute transverse oscillations. The resulling acceleration radiation from
relativistic electrons ("magnetic bremsstrahlung” [1-7]) is emitted into a narrow
cone in the forward direction. The Doppler éhi(’ted spectrum is peaked at a
much higher frequency than the electron oscillation frequency. The polarization
of the radiation in the forward Qirection is determined by the configuration of
the undulat'mgAmagneLic fleld and resulting particle motion; a helical array of
magnets produces circularly polarized light while a linear array produces
linearly polarized light. As the detector is moved off axis the emission spectrum
shifts down in frequency, decreases, and the polarization changes [4-7]. A tra-
jectory with many, small transverse excursions produces a spectrum with a few
narrow peaké at the low-order harmonics. The magnetic fleld generating this
type of radiation is called an "undulator”, while the term "wiggler" is reserved
for magnetic fields with only a few periods and larger excursions which generate

broad band synchrotron radialion [4,5].

In a free electron laser (FEL) [8.9]. the magnetic bremsstrahlung is stored
in an optical resonator to provide feedback for subsequent stimulated magnetic
brémsstrahlung. The oplical gain at various frequencies, angles and harmonics,
depends on the undulator design and the resulting electron trajectories through
the undulator. The evolution from spontaneous to stimulated emission also
depends on Lhal design. These important characleristics are known for the sim-
ple pericdic undulator, but less is known about Lhe tapered undulator which
represents an important modification for high power FEL operation [10-12]. Ina
tapered undulator the magnet's wavelength and/or fleld strength are varied
along its length to preserve the same Doppler shift while the electrons lose

ehergy to the opticél field. This improves the energy extraction efficiency from
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the electrons when operating at high optical power levels. A physical picture of
this process can be given in terms of electron trapping and deceleration in the
potential "buckel” generated by the combined aclion of the laser and Lhe static

fields [11,12].

However, Lhe same tapered undulator design that improves energy extrac-
tion efficiency in strong optical flelds reduces Lhe electron-optical coupling in
weak flelds. This is caused by the bt?oader spectral rangé of the tapered undula-
tor, and the details of the reduced coupling can be investigated directly from
the sponlaneous emission spectrum. Furthermore, in any real experimental
situation one must include a study of the spectrum off axis since resonator
modes extend over a finite range of angles. Detailed knowledge of the emission
spectrum can be a useful diagnostic tool in determining the paths of electrons
through the undulator. The forward emission spectrum in the fundamental line
from a linearly tapered undulator has been calculated analytically {13]. We
present the spectrum’s full angular distribution in higher harmonics for a wide
range of tapers. The polarization of the emitted radiation is also examined. For
helical undulators we show that the polarization changes from circular to linear
at a well defined angle, regardless of the tapering. Because of its analytical sim-
plicity the focus is mainly on the helical undulator design, but some resuilts are

presented for the linearly polarized field design to highlight their differences.

1. Electron Trajectories

The spontaneous emission spectrum is determined by the electron trajec-
tories in the undulator. Neglecting radiation losses (¥ = 0), the equation of

motion for an electron in a magnetic field is-

a8 _ "
EA__ij(pxg) (1.1)
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where e =|e | is the electron charge, m is the electron mass, cﬁ is the electron
velocity, ymc? is the electron energy, and ¢ is the speed of light.

A circularly polarized magnetic field inside the undulator has the lorm
B = B(z) [ cos ¥(z), sin ¥(2), 0] (1.2)

where ¥(z)= [ dz' ky(z) = [1 + nz/2L(n))kez. Ao(2) = 2n/ko(z) s the
undulator's wavelength at 2 , and A, = 2n/k, is the undulator's wavelength at
2 = 0. The parameler n describes a linear taper ot the undulator’s wave vec-
tor. The length of the undulator L(n) is a function of taper 7 and is the sum
of all tapered wavelengths. This gives

)

i=1

o o | M) 2 | Nv-1)en-1)
'“{” -1 2 +(/v?ln’?[ 8 I']
2 - 3
- fi-ge (o] g] ] o

where N is lhe number of undulator periods. For long undulators (N > 1)

s, §Gal oy nllen) (1.4)

k+1

where L, = L(0) =N\, is the undulator length with no taper.

We consider the particular case in which the amplitude of the magnetic field
is also a linear function of 2z such that B(z) = B,{1 + nz/ L(n)] and the dimen-
sionless ratio K = aB(2)/k,(z)mc? is constant throughout the undulator. Typ-
ical values of K for an undulator are of order unity. (It K > 1, the array of
magnets becomes a broad band "wiggler" [4,6]). Both k,(z) and B(z) canbe
used to "tune” the Doppler shift along the undulator's length, but the special

case where K is constant is analytically simpler. The Stanford undulator,
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although untapered, gives typical values of A, =3.2cm and H, =2.4 kG, and
uses a 40 MeV electron beam (y = 80 ), so that K = 0.7. A typical tapered undu-
lator has [ ~160cm and 7~ 0.05 with fields and wavelengths similar to the
Stanford untapered case.

The transverse equations can be integrated immediately because K is con-

stant.

B:(t) = g-( | ~cos¥) +B:(0) . Bylt)=-— :/’ismwp,,(o) (1.5a)

B, = [l _ .(l‘;z_KZL] L 8, = const. (1.5b)

The constants of integration #;(0) and 8,(0) can be chosen to insure that the
beam does not drift in the transverse directions. This requirement gives the

conditions for “perfecl injection”

ao=-%  go=0, "(1.5¢)

~

Integrating (1.5b) gives z(t) = cfB,t + 2(0). The transverse oscillations are
obtained by direct integration of (1.5a) using z(¢) in ¥(2):

K\, s
78.
+ sin (2ns®) [S(q) - S(Zs)]] + z(0)

z(t)=-

lcos (2ns?) [C(q) ~ C(2s)] +

(1.8)

y(t) = - 1;;:8 Icos (2ns?) [S(q) - S(2s)] ~

- sin (ns?) [C(q) - C(2s)]] +y(0) .
where s = L(n)/2n)A,. ¢ =2 [1 +neft/ L(n)], S(g) and C(q) are Fresnel
integrals and z(0) =0 for simplicity. For undulators with a number of periods

N > 1 and with <1 the arguments of the Fresnel integrals are large. Using

their asymptotic expansions {14] and keeping only the leading term in ¢~ we .

obtain
z(1) = - % (S;L:%))— + z(0)
(.
uir) = - o [1 - s ¥ |4y ()
where .

Y¥(1r) =k, L) T(1 + n7/2)

and T=cf,t/L(n) sothat 0= T1=<1 for any trajectory. Both results (1.6) and
(1.7) are new and relevant to the explicit angular dependence of the spectrum

that will be calculated in Seé. IV,

The function z(7) is plotted in Fig. 1 for the values = 1.0, z,(0) =0, and
N =10 periods in the undulator. A similar plot would describe y(7). Both the
wavelength and the amplilude of the oscillations decrease while keeping K con-
stant. A typical amplitude of the transverse oscillations is KA,/ 2my ~ 1072 cm.
There is an upper limit on K/ = 0.369 for stable orbits in untapered undula-
tors [15].
A Y kox(7) |
1.0+

._Lo.

Fig. 1. Electron trajectories in a tapered undulator. The electron is shown to
"undulate” in phase with the magnetic fleld. The amplitude and wavelength
of the oscillations decrease to keep K =eB(z)/k,(z)mc?® constant along
z.
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To insure that all the electrons in a beam follow helical orbits ajong the
same axis of the undulator, we must choose the in'anl position z(0) and y(0)
so Lhat jol (1) dT = _/',' y(r)dT7=0. The integration can be performed
numerically to find thal for values of 7 less than unity |z(0)| < 0.057 KA,/ 2my.
ly(0)| < 0.998 KA,/ 2my. Since typical electron beams have a d ® 1 mm diame-
ter this condition cannot be met for all electrons. Most electrons travel in paral-
lel but identical helices. The characteristic emission angle for relativistic elec-
trons is 7' so that the light emitted with wavelength A adds coherently from
all electrons within a beam of diameter d if d < yA. This condition is not met
for typical experiments since yA ~ 0.2 mm, and coherent emission is only possi-
ble over a narrower range of emission angles. Fortunately in an FEL, the high Q
resonator selects a much narrower range of angles naturally so that all elec-

trons parlicipate coherently.

1. Total Energy Radiated :

We can use the formula of Liénard [16] to express the total electromagnelic

energy radiated:

heer 22| (2] [pst]]a e

Using (1.5) we obtain
Fit = 20272 K22 B, L1 + 9 4 0%/ 9) (22)

For small amounts of tapering and using (1.4)

2
E‘ut“%'ezyzxekoaﬂalm l"'%*‘%“""l . (2,3)

Notice that Fpy increases in proportion to 72K2% and increases with 7

because the alectron is torced into a tighter spiraling motion. Typical numerical
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values (y ™80, K 0.7, Iy & 1.8m, A, ¥ 3cm) givae Ffiyy ¥ 0.1 V. This justifies

neglecting radiation losses in Sec. § since Ejy <« ymc? .

1l. li¢énard-Wiechert Fields

The radiation fields from accelerating electrons can also be investigated by
using the Liénard-Wiechert fields [16]. The electric field al the observation posi-

tion § = DA = D(sin¥ cosp, sind sing, cosY) crealed by an electron at #(t) is

E‘(D.t):-{;‘g—

(08, ax(@-xapy ) ”m (3.1)

where R(t)=D -#(t) and «=1-7-3(1"). The quantity in brackets is
evaluated at the retarded time given by t' = ¢t — R(£')/c. In the far field limit
(R large) and in the forward direction (9=0), R(t)~(D —cf,t'). Using

(1.7) and ¥(r) defined there, we get

47%e Kk, (1+n71)

B®)],0™ Ry AW —ces ¥(r). 0] (32)
where . '
T et =D)_ .and 1

" (LK DLm)
The radiation is substantially Doppler shifted to higher frequencies for relalivis-
tic electrons due to the ® factor in ¥. This feature gives the FEL its wide tun-
able range to short wavelengths. For typical parameters the emitted wavelength
is ~ 3u. The eflect of tapering is to introduce more Fourier components into the
oscillation spectrum, thus complicating the line shape. The forward radiation is

circularly polarized because of the helical undulator design.

It is interesting to investigate whether quantum eflects might play a role in
the emission process. The number of photons emilted by a single electron per
pass through the undulator is approximately FEy,/hw, ighoring emission into

higher harmonics (K s 1) and the taper (n << 1). The photon Irequency [rom
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(3.2) is ™ 2y%, where w, = ck, . Then using (2.3) E/ hw < 1. The classical
results must therefore be interpreted as representing the average energy emit-
ted and the photon statistics left to another calculation.

Now consider the emission from a beam of Ny electrons. Interference
effects due to the phase differences introduced by the initial position #;(0) of
the j** electron have to be taken into consideration. The effects of the
transverse distribution of initial positions has been discussed. The effects of the
longitudinal distribution of initial electron phases ¢; = 2/%,2;(0)/ (1+K®) is

found by summing the contributions from all the electrons using (3.2)

. - l!Q _ 5 47ael(ko(1+7'7') : . _ ,
z«:,.,(e).‘);,‘i:,.(t)_;l TR (mr Loy 1518 7Y+ 85) .—cos (¥(r)+¢) 0

4 lekk,(14nT)A [ . _ :
= +KOE (D-rL(my 1o H+2). cos ((r)+Z) 0] (@3)
where
) N, Y ] <sin¢;>
AZ=N, + zgcos (=¢) . Z=tan™ <cos¢,>| '

W,
and <> = ."E (---). When N, > 1 and the phases are completely
i=

random A ~~/N,. The radiated power detected will then be proportional to
N; and during the initial stages of start-up in a resonator this is the relevant
case. After enough radiation build-up, the optical fleld begins to bunch elec-
trons in phase {; : so that the limit £y = N, is approached. In what follows,
only the emission from a single electron is calculated, and the result is con-

sidered characteristic of Lhe incoherent emission from the whole beam.

IV. Radiation Spectrum

The Fourier spectrum of the Liénard-Wiechert flelds can be used Lo solve for

the infinitesimal amount of electromagnetic energy d2E emitted into the solid
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angle d{} within the frequency range (o, » + dw) [Rel. 16)

LE o | [T apax(axB ) exp Lot ~nr(t)e) [ a)

Since an electron only accelerates inside the undulator, the limits of the time
integration are t =0 to L{(n)/f,c (T =01to1). For long helical undulators, the
emission spectrum does not depend on the azimuthal angle ¢ , so that we take
¢ =0 in i . The initial position #(0) introduces a phase factor that does not

affect the emission spectrum. Inserting (1) from (1.5) and #(7) from (1.7) we

obtain
d2E a?0fL%(n) 1 K .
= d7{2 | =cos?d ¥ + 9 v
Ao o™ anfodp? J, a7 Jcos™s cos (1) + 8, sin¥ cos

+ 2 | - p,sin®s - 7£sim$ cos? cos ¥(1)

|

where ¥(7) is defined below (1.7). The analytical integration is carried out in

+0 [ ‘;(—sin ¥(7)

|

2

X exp { %%’D—I(l ~ focos¥) T + Ksind sin ¥(7) ‘ (4.2)

7k, L(n) | (1 + n7)]

the Appendix, but the result is not transparent. Instead we numerically obtain
graphs of the spectral properties. Expression (4.2) reduces to the sum of the
squares of six real integrals that can be more efficiently evaluated numerically

than the result (A.3).

The spectrum's fundameqt.al line shape in the lorward direction is
presented for a wide range of values of 9 in Sec. IV A. Then, in Sec. IV B, the
angular fealures of the spectrum are examined in detail at a few selected values
of n. The values for the physical parameters are A, =3.2.cm, K = 0.747,

7 = 80, and the number of undulator periods is N=50.
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A The Forward Spectrum in the Fundamental

In Fig. 2 the forward emission spectrum of (4.2) is shown for the fundamen-
tal at sclected values of 1 between 0.0 and 0.48. ‘The figure shows that the line
becomes broader and more structured, as n increases, while the cenlter moves
towards higher frequencies. These features can be understood if we think of a
tapered undulator as a succession of untapered undulators, whose wavenumber
increases over the same length, so that the convolution of their spectra gives a
shifted line center at w,{(1 + n/2)/(1 = f,) for 9=0.

(cﬁ‘f(lokg)z )( dE )

26°N°K y! dldw

048

10

05
042

Gy

00

1.0 20

Fig. 2. The forward spectrum from a tapered undulator is shown with
0<79=<048,f=1, and ¥ =0. The energy emitted is plotted in units of
the forward power emission energy from an untapered undulalor using the
same electron energy and having the same physical parameters N, K, and
Ao .

For the tapered undulator the total spectral width can be approximated by
the sum of the untapered linewidth ~w,/ N(1 - 8,), and the shift in the line
center caused by tapering, which is ®w;n/2(1 —B,). The resulting linewidth

for tapered undulators is therelore & w,{(1 + N n/2)/ N(1 —8,) . This estimate
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gives the range of frequencies over which the emitled energy drops Lo M 5% of
Lhe‘peak value. In Fig. 2 we show forward spectra for a range 0< Nn/2< 12.
Note that the linewidth increases rapidly with increasing taper, because of the
large number of periods. In Fig. 3 the emitted energy at the line center is plot-
ted as a function of 7. The decrease in peak emission observed belween
n =00 and 1n =020 is due to the rapid increase in the spectral width,

together with the slower increase in the total energy radiated.

( cBe (1eK")* )/d‘E \
202NK*y*/\dQdw/

10

0.5

_ ‘ 7
00 05 o

Fig. 3. The forward emission of the fundamental at the llﬁe center is plot-
ted against the amount of taper 7 for 0sn=<1.

B. Angular Dependence (including higher harmonics)

The angular dependence of the radiation from a tapered undulator shows
the same characteristic behavior as for of the untapered undulator [8,7]. Fig. 4
shows the radiated energy as a function of frequency and angle in the fundamen-
tal and first three higher harmonics for the taper n = 0.06. Note that the peak
emission in each harmonic shifts down in frequency as the observation angle
away from the undulator axis ¥ increases; the line shape remains substantially
unchanged as the detector Is moved off axis. The same physical arguments as

presented in Sec. IV A show that the peak emission falls on a locus of points in
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the (v, ¥) plane described by the spectrum in lower harmonics. In Fig. 5 we show the shape of various spec-
fo,,(l +n/2) (4.3) tral lines, all calculated at the fixed characteristic emission angle 8=
—_— 4.
" (1 -, cos?) They are arranged in a square “matrix" whose rows correspond to various taper-
and Lhe linewidth in each harmonic is given by ings (n =0.05, 0.10, 0.15, 0.20 ) and whose columns correspond to the funda-
son wol1 + (Nf 1/ 2)] (4.4) mental and the first three higher harmonics (f =1,2,3,4). The emission
47 N(1 -8, cosd) energy and frequency scales are the same for all graphs, to allow for direct com-
where f =1, 2, 3, .. is the harmonic number ( f =1 isthe fundamental). parison. Notice that the matrix is nearly symmmetric about the diagonal, in that

the line shapes corresponding to the same value of f7n are similar.

cBE(1+KP)® \/ d®E | - |

[Gornere ’)(dﬂdm) | f=1 f=2 =3 f=4

0.7} 14 , o

-- r%——-«—-*-- N 8
_;Efagz_\_ "p l ‘ -

:__:} ,_::::>§:_: o

S Sttt o

L U -___?/‘{\-____:v-:\__.. s
______ ]\\‘-K—_-::M{\‘:——-—::%:-— 'F ‘ e -

'_':__.'___:_‘_‘Q\C_'_'_'_'_'_'_'_f;:_'_' o

10 20 30
w(l+Ke)/[2 y2uwe (14 4/2)]

Fig. 4. The fundamental and first three higher harmonics of the emission
spectrum from a tapered undulator with 7 = 0.05 are shown as a function
of frequency @ and angle in units y 9.

7=020 #=0I5

1
-

| aidh | essen

An interesting aspect of (4.4) is that the linewidth depends on n and f only : . )

Fig. 5. The spectral line shapes d2E(w)/dwdQ are shown for 1 = 0.05,

through their product. Therefore the spectrum in higher harmonics should have 0.10, 0.15, 0.20 and f =1, 2, 3, 4. Line shapes corresponding to the same
value of f7) are seen to be similar.

the same characteristic width as the one at lower harmonics with a higher

. As in the case of a circularl olarized untapered undulator [6,7], th
amount of taper. Likewise reducing the tapering gives a line shape resembling n ye P or [8.7] ¢

tapered undulator generates no forward radiation in higher harmonics. In Fig. 8
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we follow Lhe radiated energy measured at the line center w, givenin (4.3) asa

function of ¥ [for various harmonics and tapers. Each scparate graph refers to

‘the same harmonic number f = 1,2, 3 and 4, and shows the angular depen-'

dence of the peak emission for different values of taper n. At each angle the
peak energy radialed into lhe [requency interval around w; decreases mono-

tonically as 7 increases owing to the line broadening in (4.4).

tio =0 lo3s4

dmd.Q.)

) (

e

292 Nz Kayz

(

o 2 o0 2

Fig. 6. The radiated energy measured at the line center frequency w; for
the harmonics f =1, 2, 3, and 4 is plotted against y9¥ for taperings
n = 0.0, 0.05, 0.10, and 0.15 for the case of a circularly polarized undulator.

For comparison in Fig. 7 we plot the same quantity in a linearly polarized
undulator using the same physical parameters. There is now emission in the for-
ward direction of each odd upper harmonic, f = 3, 5, 7.... owing to the longitudi-

nal acceleration of the electrons {8,7).
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Fig. 7. The radiated energy measured at the line center frequency w, for
the harmonics f =1, 2, 3, and 4 is plotted against y¥ for taperings
n = 0.0, 0.05, 0.10, 0.15 for the case of a linearly polarized undulator.

V. Polarization of the Spontaneous Emission

The polarization of the spontaneous radiation can be studied directly by
using the Liénard-Wiechert fields (3.2). From (3.2) the ratio |E. |2/ (£, |2 s

seen to be unity at ¥ = 0 and to vanish at the particular angle ¥° defined by
79°=cos™ (B,) M VB (1 - B = (1 + KO © (5.1)

for any value of taper 7 . For a typical value of K =07, y9¥ = 1.24B. As ¢
increases from 0 to ¥°, the radlation changes polarization from circular to
linear independent of the amount of tapering.

The polarization of the spontaneous radiation calculated using (4.1) can be
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found by projecting the integrand onto a unit polarization veclor.,
£ = ( cosV cos$, cosy sind, —sin¥) (5.2)
1

The observation angle away from the undulator axis is ¥ and the polarization
angle is ¢. The spectrum shown in Fig. 8 plots the radiated energy
d®£(8)/dw dQ from a tapered undulator with 7 =005 as a function of ¥
measured at the line center of the fundamental for three different polarization
angles ¢ =0,n/4.n/2. The radiation off axis becomes progressively more
polarized in the y-direction and at ¥* the emission becqmes linearly polarized
as described by (5.1).
(Cﬁg(th)z ) ( dzE(i))
A dwdQ

292 Nﬁ K2 72

0Tl

Fig. 8. The energy radiated d?E(2)/dwdD with polanzahon € by a
tapered undulator with »n = 0.05 is shown as a function of ¥ ¥ at the line

center in the fundamental. The radiation changes its polarization from cir-
cular to linear at the angle y¥°= V1 + K2,

Conclusion

The results presented in this paper provide the first complete description of

the spontaneous emission spectrum from a tapered undulator. The frequency

-18-

and angular spectrum are presented for a wide range of taperings. The assumed

" linear dependence of k,(z) and K = const simplify the calculations but show

the same general features expected of a wide range of tapered undulators. .
Practical designs are likely Lo be more complex Lo optimize the electron beam
energy extraction during high power laser operation. The differences will show
in the detailed shapes of the spectral lines while the angular distribution and the
total energy emitted will remain comparable. These results should be useful to

experimentalists working on tapered FEL designs.
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Appendix
To perform the 7-integral in (4.2) we need to rewrite the integrand. Con-
sider the second term in the exponential of (4.2) and expand in plane waves with

Bessel function coeflicients [}4] to write

Ksind | sin ¥(r) 0 ) _
| oy [(WWT) ]} 2 [“T%Tr)‘]e""“"“"f)) (A1)

where u = wK sin ¥/ f,w,7 . The right hand side of (A.1) can be rewritten as fol-

lows [14]

1

o explin¥(1)] Jnop (1) 1*
) 2 (1+n7)?

ne (14T ) 2¢k!

1- (A.2)

it =0 only the k=0 term survives, the double series reduces Lo unity, and

the spectrum can then be expressed in terms of Fresnel integrails. If ¥ > 0 the
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T-integrals in (4.2) can be expressed in the general form

- . S k
oS Inoe{pde” [ dr{et¥n) se-tH ot gty (T RinT)” () o)
. _

nn—fizo 2k”k.’ (l+n1’)’”2k

where w = wl(n)(1 — A, cos¥)/ f,c . When the tapering parameter n « 1 (as

is typically the case) an expansion in n will have terms of the form
1
j; dr7Fexpli[(n £ 1)¥(r) +w(wd)r]] . (A.9)

Since ¥(7) is quadratic in T, all resulting integrals can be performed analyti-

“cally [14) and only the first few terms in the power series expansion need be

retained.
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