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PREFACE 

This volume comprises the Proceedings of the Symposium on 

Mathematical Pattern Recognition and Image Analysis (MPRIA) held June 1-3, 

1983, at the NASA/Johnson Space Center, Houston, Texas. 

The Symposium was initiated with a brief Program Overview presented 

by Drs. Howard G. Hogg, NASA Headquarters, and R. P.Heydorn,· NASA/JSC. 

The first paper appearing in the Proceedings was prepared by 

Professor Robert M. Haralick in support of his excellent invited keynote 

.address. The remaining eighteen papers of the Proceedings present the 

results of various research efforts initiated during FY 1982 as part of 

NASAls Remote Sensing Research Program. Five of the papers present 

results from the four research efforts carried out by the following NASA 

principal investigators: 

R. P. Heydorn - NASA/Johnson Space Center 

David D. Dow - National Space Technology Laboratories 

Manouher Naraghi - Jet Propulsion Laboratory 

Daniel N. Held - Jet Propulsion Laboratory 

The remaining thirteen papers present results from the eleven research 

efforts initiated July 16, 1982, under ContractNAS 9-16664 and carried 

out by the following principal investigators: 

H. P. Decell, Jr./B. C. Peters, Jr. - University of Houston 

Carl Morris - University of Texas at Austin 

L. Schumaker/L. F. Guseman, Jr. - Texas A&H University 

K. S. Shanmugan - University of Kansas 

E. Parzen/W. B. Smith - Texas A&M University 

\ 
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A. H. Strahler - Hunter College 

Waldo Tobler - University of California, Santa Barbara 

E. M. Mikhail - Purdue University 

Grahame Smith SRI International 

L. Kanal - LNK Corporation 

L. S. Davis/A. Rosenfeld - University of Maryland 

In an attempt to group presentations of a similar nature, the 

Symposium was divided into three MATH/STAT SESSIONS and two PATTERN 

RECOGNITION sessions. This grouping also reflects the topical contents of 

the MPRIA Technical Workshops on MATH/STAT and PATTERN RECOGNITION held 

January 27-28, 1983 and February 3-4, 1983, respectively. 

The papers appear in the Proceedings in the order in which they were 

presented at the Symposium. An agenda and a list of attendees who 

registered for the Symposium are included in the Appendix. 

L. F. Guseman, Jr. 
Principal Investigator and 
MPRIA Program Coordinator 
Contract NAS 9-16664 

-. 

---
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KEYNOTE ADDRESS 

n 
RELATIVE ELEVATION DETERMINATION FROM LANDSAT IMAGERY 

R.M. Haralick, S. Wang 
,..... 

Dept. of Electrical Engineering and Computer Science 

Virginia Polytechnic Institute and State Universiti 

ABSTRACT - In LANDSAT imagery. spectral and spatial informa-

..... 
tion can be used to detect the drainage network as well as 

the relative elevation model in mountainous terrain. To do 

this. the mixed information of material reflectance and to-

pographic modulation in the nriginal LANDSAT imagery must be 

first separated. From the material reflectance information. 

big visible rivers can be detected. From the topographic 

modulation information. ridges and valleys can be detected 

and assigned relative elevations. Finally. a relative ele-

vation model can be generated by interpolating values for 

non-ridge and non-valley pixels. 

,-
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It is a common task for a photointerprete~ to examine 
.-., , 

the spatial pattern on an aerial image and by appropriate 

interpretation be able to tell the elevatio~ of one area re-

lative to another and be able to infer the stream network 

and the drainage network even though some of the streams may 

be below the resolution of the sensor. There is a wealth of 

information in spatial patterns on aerial imagery but most 

computer data processing of remotely sensed imagery. being 

limited to pixel spectral characteristics. does not make use 

of it. 

In this paper, we describe a procedure by whi~h a rela-

tive elevation model can be infered from a LANDSAT scene of 

mountainous and hilly terra~n. The processing has a number 

of distinctly different steps. First to appropriately pre-

pare the imagery for processing we must destripe it and per-

form haze removal. Destriping can be done by the Horn and 

Woodham [1979] technique. Haze removal can be done by the 

Switzer, Kowalik and Lyon [1981] technique. These two steps 

constitute the preprocessing and are not discussed in this 

paper. 

To a first order effect, after preprocessing the cause 

of the intensity value at any pixel is due to the combined 

effect of the angle at which the sun illuminates the ground 

patch corresponding to the pixel and the reflectance of the -. 



5 

surface material on the ground patch. To make sense of the 

spatial pattern first requires separating these two effects, 

For this purpose we modify the Eliason. Soderblom and Chavez 

[1981] technique to create two main images. from the LANDSAT 

imagery. The first image is a reflectance image and the 

second image is a topographic modulation image which has in-

formation related to surface slope and sun illumination, 

The detail~ of this technique are ·given in Section 2. 

As discussed in Section 3, the reflectance image can be 

used by the Alfoldi and Munday [1978] procedure for identi-

fication of all areas of water. The topographic modulation 

image can be used to identify the ridges and the valleys. 

- This is discus~ed in Section 4. With the valleys identi-

i I fied, each valley pixel may be assigned a relative elevation 

which increases as the valley path from the pixel to the 

river it empties in' increases. Ridges must be assigned ele-

vations higher than their neighboring valley~ a~d ~ach ridge 

pix e 1 can:b e assigned a relative elevation which decreases 

on the ridge path from the pixel to the saddl~ point where 

T the ridge crosses a valley. The ridge valley elevation as-

signment procedure is discussed in Section 5. Once ridges 

and valleys have been located and assigned relative eleva-

r tions, a complete elevation model can be generated by inter-

polating values for non-ridg~ and non-valley pixels. The 

interpolation procedures are discussed in Section 6. 

T 
r 
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Since the launch of the first Earth Resources and Tech-

nolo g y Sat e 11 i t e ( E RT S , 1 ate r r e n a me d LAN D S AT ) in J u 1 y 1 97 2 , 

much work in remote sensing has been done by using pattern 

analysis and picture processing techniques for image classi-

fication, restoration and e nh an c e men t • Few people have 

tried the scene analysis or artificial intelligence approach 

to describe the image in terms of the properties of objects 

or regions in the image and the relationships between them. 

Ehrich [1977] found global lineaments by partitioning the 

image into windows and applying long, straight linear fi1-

ters at different orientations in each window to extract 10-

cal evidence. Dynamic programming [Montanari, 1971; Martel-

Ii, 1972] was then used to form complete global lineaments. 

VanderBrug [1976] tested various detectors to ge t linear 

features in satellite imagery. This was only at the local 

level. Later VanderBrug [1977a] used relaxation to reduce 

noise in the output. Finally VanderBrug [1977b] defined a 

merit function that can be used to select pairs of segments 

to be merged so that local line detector responses can be 

linked together into a global repres~ntation of the curves. 

His work is closely related to the Shirai [1973] technique 

which employed sequential line following to find edges in 

scenes containing polyhedra. Li and Fu [1976] used tree 

grammars to locate highways and rivers from LANDSAT pic-

tures. The above investigations deal with the extraction of 

all the linear features from an image, but they do not deal 

.-.., , 
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'with the interpretation of these linear features. In the 

following investigations, knowledge about the desired fea-

tures are considered crucial in such analyses. 

Bajcsy and Tavakoli [1975] argued that an image filter 

is not meaningful unless one has a world model, a descrip-

: i 
tion of the world one is dealing with. They recognized ob-

n jects matching this description and filtered them out. Thi s 

n 
strategy is us edt 0 recognition of bridges, se que nee the 

rivers, lakes, and islands from satellite pictures. Nagao 

and Matsuyama .[1980] built an image understanding system 

that automatically locited a variety of objects in an aerial 

photograph by using diverse knowledge of the world. It is 

one of the first image understanding systems that ·has incor-

porated very sophiscated artificial intelligence techniques 

int6' the analysis of complex aerial photographs. Fischler, 

Tenenbaum and Wolf [1981] designed a low-resolution road 

l trac~ing (LRRT) algorithm for aerial imagery. The approach 

was based on a new paradigm for combining local information 

from multiple sources, map knowledge, and generic knowledge 

about roads. The final interpretation of th~ scene was ac-

hieved by using either graph search or dynamic programming. 

S i in, i 1 a r 1 y , knowledge is important in our problem which 

1 requires analysis both at the local and global levels. Lo-

cal level analysis will be discussed in Section 2 to 4 ; glo-

bal level analysis will be discussed in Section 5 to 6 . 

·l· '. 
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The brightness and darkness in each barid of LANDSAT im-

ages come from two main sources. First, they can be due to 

material properties. For example, in the spectral region 

(.8 - 1.1 Fm) of band 7, water bodies absorb infrared radia-

t i on, so they appear as clearly delineated dark bodies; 

living vegetation reflects strongly in this portion of the 

infrared, so areas of living green vegetation appear as 

bright regions. Second, they may be due to topography and 

sun illumination angle effects. The mountain side facing to 

the sun appears as a bright region; the mountain side facing 

-. 
away from the sun may appear as a shadow or dark region. 

Unfortunately, the LANDSAT data values are some combination 

of these two effects. Eliason, Soderblom, and Chavez [1981] 

address this problem by defining an illumination model in-

volving material reflectance and topographic modulation im-

ages. In the following, we will introduce a modified Lam-

bertian model in which the information of diffuse light and 

shadows is also included. 

--. 
For a pixel (x,y) which receives sunlight, the original 

LANDSAT image G measuring the amount of reflected light at 

band b is 

G(x,y,b) r(x,y,b)I(b) cos9(x,y) + r(x,y,b)D(b) + R(b) 

-
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where r is the surface ~eflectance, I is illumination flux, 

e is the angle between sun incidence direction and surface 

normal, ti is dif'fise light, and H is the haze due to atmos-

pheric scattering. On the 0 the r .h and, for a pix e I ( x , y ) in 

shadow, G is simply 

G(x.y,b) = r(x,y,b) D(b) + H(b) 

.After the haze HCb) is removed .by the Switzer', Kowalick 

and' Lyon [1981] technique, for pixels receiving sunliiht, 

the ratio image of bands b 1 and b
2 

is 

G'(x,y,b 1 ) GCx,y,b l ) - H(b!") 
---------- = -----------------
G'(x,y,b 2 ) G(x,y,b 2 ) - H(b 2 ) 

r(x,y,b l ) [I(bl)cos9(x,y) + D(b l )] 
= ----------------------------------

r(x,y,b 2 ) [I(b 2 )cos9(x,y) + D(b
2

)] 

r(x,y,b
l

) 
= a 

if we a: s sum e I (b l) = a I ( b 2) and D (b l) = aD (b 2) • 

Similarly, for pixels in shadows, 

G'(x,y,b
l

) r(x,y,b
1

>' 
---------- = a ---------
G'(x,y,b

2 
r(x,y,b

2
) 

In either case, the ratio is independent of cose. Thus, 

by clustering using differen~ ratio images. as features, the 

pixels grouped in one cluster should belong to the same ma-

9 
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torial reflectance group. The result is called a reflec-

tan~o cluster image. 

A window of 4-bands LANDSAT scene is shown in Figure 1. 

The image was taken in April 1976 over areas 

County, West Virginia and neighboring counties. 

images of 5/4, 6/5, 7/6 are shown in Figure 2, 

flectance cluster image is shown in Figure 3. 

Figure 1 - 4- bands LANDSAT scene in W. Va. 

in Nicholas 

The ratio 

and the re-
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Figure 2 - Ratio images of 5/4. 6/5 and 7/6 
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Figure 3 Reflectance cluster image 

The reflectance cluster image is a function 

R X x Y -) {l,2, N c c 

-
where X is the set of row coordinates. Y is the set of co-

lumn coordinates. and N is the total number of clusters 
c 

Each reflectance cluster cl is a subset of pixels defined by 
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C(cl) = {(x,y) I Rc(x,y) = cll, I i cl iNc 

The pixels in each C(cl) do not have identical gray tone 

intensities in the dehazed G' image. Th is is due to the 

fact that some pixels .are directly lit and others are in 

shadow. By performing a second clustering on G' within each 

C(cl), we can split each C(cl) into a bright sub-cluster 

CO(cl) consisting of directly lit pixels and a dark sub-

cluste.r C
1 

(cl) consisting of pixels in shadow. 

shadow image Sw can be defined by 

Sw: X x Y - > {o, 1} , 

Sw (x,y) = JO if (x,y) 8 CO(Rc(x,y» 

\1 if (x,y) 8 C
1

(R
c
(x,y». 

This is shown in Figure 4. 

Figure 4 - Binary shadow image • 

A binary 
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After the lit and shadowed pixels are identified, we ex-

tract a diffuse light image D
f 

which contains in each pixel 

(x,y) the value r(x,y,b)D(b), a reflectance image R which 

contains in each pixel (x,y) the value r(x,y,b)I(b), and a 

topographic modulation image T which contains in each pixel 
p 

(x,y) the value cos9(x,y). Thus, for directly lit pixels 

and for shadowed pixels 

G'(x,y,b) = Df(x,y,b) 

Since shadowed pixels contain the information of diffuse 

light only, the mean dehazed G' value of pixels in CI(cl) 

can be used to represent the reflected diffuse light infor-

mation for cluster cl. T~e diffuse lit image D
f 

is defined 

by 

G'(u,v) 

where cl R (x,y). 
c 

If the reflectance cluster image were 

perfect, we would have 

.A~~,!!!!U!.1.!..Q'!! 1. : r(x,y,b) is a constant i(cl,b) for all (~,y) 

in C(c!) with cl = R (x,y). 
c 

In this case, 

;(cl,b)D(b) 

= r(cl,b) D(b) 

1 

# CI(cl) 

.-...., , 

---; , 
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Since directli lit pixels contain the information of 

diffuse light as well as direct ~un illumination, the mean 

G' - Df value of pixels in CO(cl) can be used to. represent 

the reflected sun illumination information for cluster cl. 

If pixel (x,y) is in r~flectance cluster cl, that ·is, if 

R (x,y) = cl, then the refl~ctance image R c can be defined by 

R(x.y,b) = 
G'(u,v,b) - Df(u,v,b) 

where X ·is c 

= r(cl,b) I(b) 

Co(c!) 

= i(cl,b) I(b) X (cl) 
c 

cosS(u,v) 

the spatial average of cosS for pixels in 

It is meaningfu~ to look at R image only if we make 

the following assumption. 

X (c!) 
c takes the same vaiue X for all re

c 

flectance clusters • 

Finally, from equation (*), 

T ·(x,y) = 
p 

G'(x,y,b) - Df(x,y,b) 

R(x,y,b) 

cosS(x,y) 
= -----------

X 
c 

which contains the information about the cosine of the angle 

between the 

The D
f

, R, 

5,6, and 7. 

surface normal and the illumination direction. 

and T images for Figure 1 are shown in Figure 
p 
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Figure 5 - Diffuse light image. 
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Figure 6 - Reflectance image. 
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Figure 7 - Topographic modulation image. 
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Visible river detection can play an important part in 

generating an elevation model since elevations away from the 

river must increase. Visible rivers can be detected using 

the material reflectance image created by the technique dis-

cussed in the last section. In the spectral region (.8 -

1.1 Fm) of band 7, water bodies absorb infrared radiation. 

so visible rivers appear as dark curves, and lakes appear as 

dark regions. In the material reflectance image 6fband 7. 

these dark features become more clear because shadows are 

removed. However, not all dark features are water bodies; 

the real water bodies can be identified by the following 

process [Alfoldi and Munday, 1978]. 

(1) A band 4 green coe1ficient x of every pixel is cal-

culated as the ratio of the radiance of band 4 over the ra-

diance sum of bands 4, 5 and 6. Similarly a band 5 red 

coefficient y is calculated for every pixel. X and yare 

called LANDSAT chromaticity coordinates. 

( 2 ) In this coordinate system, Munday [1974] has deter-

mined a curve (Figure 8) which is the locus of the positions 

of chromaticity values of water bodies. I'f, for some pix-

els, the x, y values calculated in 1 are close to this 

curve, the~ those pixels can be identified as portions of 

water bodies. 
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In this section, we describe how to extract shadowed and 

bright areas, create linear features o~ the borders between 

these areas, and then olassify these linear features into 

ridge and valley segments. In the next two sections, we 

discuss how to generate a relative elevation model. 

From the shadow image of Figure 4, we can get the con-

nected components of bright and shadowed regions. Beca use 

valleys and ridges exist on the borders between these re-

gions, the perimeters of these bright and shadowed regions 

are segmented into border segments according to their left 

reg ion s, rig h t reg ion s, and, 0 r i e n tat ion s • A border segment 

is a maximally long sequ~nce of connected pixels which are 

on the border between two given.regions . Because the detec-

tion of ridges and valleys is highly orientation-dependent 

and the sun illumination comes fro~ east in Figure 1,· each 

border segment is further broken into several pieces ~ccord-

ing to orientation: all the east-west parts ~an beseparat-

ed from the north-south parts. The result is .shown in Fig-

ur e 9 .. 
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As the sun illumination comes from east, those border 

segments which are valley segments or ridge segments can be 

identified according to the brightness of their left and 

right regions. Because most of the trees in this area in 

April are unfoliated, the strongest region boundaries are 

shadow boundaries rather than tonal boundaries, and the 

strongest boundaries are those at the extremes of steep 

slopes oriented normal to the sun direction. Because the 

sun illumination is predominantly east-west, a boundary that 

is dark on the left and bright on the right will correspond 

to a ridge, and the reverse will correspond to a valley. 

East-west region boundaries are classified according to 

the labeling of neighbori~g north-south boundaries as.well 

as their orientation relative to the east-west boundaries. 

As shown in Figure 10, east-west boundaries have the same 

labeling of the north-south boundary which makes the angle 

between them larger. The results of ridge.-valley finding 

are shown in Figure 11. Assignment of relative elevation to 

ridge. and valley is discussed in the next section. 



24 

-

Valley Ridge 
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Ridge 

Figure 10 - Classifying east-west border segm~nts. 



r-, 

: I 

-' : I ' 

'--,---

--
: I 

-I, 
: I 

i. 
'! 

r 
,.-. 
'I ., 
L 

r 

,.-. 

.. 
·t~ .. 

~+;1: 

Figure 11 -:- a. 

, .. .. .. .. 
} 

.'!;. .. 
. ;~~ 

~~; ... ' . 
... .... ":: 

25 

Valley map consisting of the border s~gments 

which are identified as valleys. 
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Figure 11 - b. Ridge map consisting of the border segments 
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In this section, we describe how to estimate the rela-

tive ~levations of the ridges and valleys. First we will 

describe a model which oin do the elevation assignment job, 

then we will give the equations of elevation assignment. 

Assuming that we have a stream network in a mountainous 

area, and we know where the biggest rivers are, we can trace 

the network, starting from the biggest rivers, to find the 

flow directions of all the stre~m segments becau~e water al-

ways flows from higher looations to lower looations. In 

other words, if the valley segments detected in the 'last 

section formed a net war k , . the n s tar tin g from th e vis i b Ie 

riv~rs detected in Section 3, we can trace the network ~nd 

assign relative elevations to all the segments. Unfortu-

nately, tke observed valley segments do not form a networkp 

there ar,e ~any gaps. As shown in Figure 12, if it is dark 

on the right and bright on the left of strea~ Vb, th en V g 

cannot bedete,cted due to the shadow on the right of Vb, and 

a gap exists between Vb and a smaller stream Vs • 
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Vb 

b 

Figure 12 - The gap between a smaller and a larger stream. 

-, 

The knowledge that the cross-sections of valleys are Y-
: 

shaped can be used to bridge the gaps. If one looks at to-

pographic maps. the elevation contours of valleys such as in 

Figure 13 can be frequently found. Thus. if one draws a 

line ab perpendicular to the valley Ya. the elevations are 
,-. 



, 1 

· I 

,..... 
; i 

. ; I 

• I 

-· I' 

r I 
1 

! I 

--
: I 
.1 

-.. 
: I 
i I 

..-
: I 

, I 

--I 
, I 

T 

29 

i~creasingfrom point 0 to point a and also from point 0 

to'point b • However, if a ridge point is encountered .duririg 

the process, the increasing has to stop because the eleva-

tion starts to decrease. Thus the route of growth is di-

rected both by the valleys and by the ridges, in other 

words, by global information. 

20CO 

Figure 13 - The elevation ~attern of valleys and its rela-

tion to elevation growing 

Applying this idea to Figure 12 and assuming that growing 

propagates away from valley segment Vb, the end a of valley 

segment Vs'will be to~ched fir~t by this growing, and it is 
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deduced that end b of Vs must be higher than end a. Th is is· 

the basic idea for determining the higher-lowe~ ends of all 

the valley segments. The elevations of all the points in 

one segment can be calculated if we know its slope. On the 

other hand. ridges get elevations when the growing stops at 

them. Now. we will give the simple equations of elevation 

assignment. 

Our elevation growing model simply assumes that eleva-

tion in~reases monotonically from valleys to ridges or .along 

valley segments from rivers to the saddles where a valley 

crosses a ridge. It can be used for assigning initial rela-

tive elevations to each pixel. Because no attempi is made 

to realistically account for the topographic shape of the 

hillsides from the valley to the ridge. the initial relative 

elevations will be more accurate for the ridge or valley la-

beled pixels than the non-ridge and non-valley labeled pix-

e 1 s • Section 6 discusses a more realistic procedure for 

hillside elevation estimation using the ridge valley eleva-

tions calculated in this section. 

There are two ways a pixel can get assigned an elevation 

depending on whether the pixel belongs to a valley segment 

or whether the pixel does not belong to a valley segment. 

Let U be the set of valley segments~ Two slopes arc associ-

ated with each valley segment Vs in U: Sv (.Vs) and Sp(Vs). 

--, 
I 
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Sv(Vs) is the slope along Vs itself. Sp(Vs) is the slope of 

lines outside of Vs and perpendicular to Vs. 

The elevation growing model constructs the elevation 

function El: Zr X Zc -) Ip, where Zr is the set of row coor-

din ate s ,. Z cis the set 0 f col um nco 0 r din ate s , and Ip is the 

set of zero and' positive integers. If p is a pixel belonging 

to a valley segment Vs and pI is the lower end pixel identi-

fied as in Figute 12, then 

El(~) = El(pl) + Sv(Vs) * Dist(p, pI) 

wher'c Dist is the Euclidean distance between two pixels. 

If p does not belong to any valley segment, and its ele-

vation is originated from pixel pr of valley s e gm en t V s, 

then 

El(p) = El(pr) + Sp(Vs). * Dist(p, pr). 

In a small area, one can assume the elevations of visi-

ble rivers are lowest. Assigni~g some initial elevation va-

lues to the pixels of the valley segments classified as· vi-

sible rivers, the elevations of all the other ~ixels in the 

image window can be ~elated to the initial elevations of vi-

sible river segments by repeatedly using the above two equa-

tions. The relative heights of valley segments created by 

elevation. growing model are indicated by arrows in Figure 

14, and the ground truth is shown in Figure 15. 
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Figure 14 - Relative elevations of valley segments. The ar-

row are from high ends to low ends. 
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Figure 15- Stream map created from ground truth. 
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When several valleys and ridges point toward a junction, 

very often this juction is a peak (peak at junction). The 

peak itself is formed by the junction of several ridges that 

radiate outward from the peak. (The idealized situation '-. 
represented in Fi~ure 16 shows four symetrically oriented 

ridges; in our area, are often formed by junc-

tions of two or three ridges.) Ridges,of course are sepa-

rated by valleys, so the higher tips of valley segments tend 

to point toward peaks. The ridge segments intersect to form 

a peak, whereas j ~alley segments tend to point towards peaks, 

without actually joining. In this subsection, we d,i scus s 

the criteria which can be u~ed to identify peak junctions. 

Because ridge segments are the major features of ,peaks, 

we make the constraint that the number of ridge. se&ments'at 

a junction 'is larger than the number of valley segments. -, 

For many situations, it seems reasonable to relate the 

heights of peaks to the lengths of ridges that form the 

peaks~ For our class of topographic forms (for example), it 

is unlikely that very high peaks can be formed by the inter-

section of very short ridges. As a result, to exclude very 

low peaks and' false peaks from consideration, we impose a 

rather arbitrary constraint upon definitions of peaks. Cur-

rently, we define a peak junction as a junction composed of 
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four border segments, with the number of its ridge segments 

larger than the number of valley segments, and the length of 

its longest ridge segment longer than 800 meters. The peaks 

thus located in Figure 1 are marked as triangles in Figure 

11 • b. The correspondence between this result and the topo-

graphical map is suprisingly good. 

R 
v PERSPECTIVE VIEW 

v 

: V 

PLAN VIEH 

V 

Figure 16 - Idealized relationships between peaks, valleys, 

ridges. 
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In the last section all pixels were assigned elevations, 

but because realistic shape of the hillsides from valleys to .-, 

ridges were not taken into account, only the relative eleva-

tions of the ridges and valleys are held to be accurate. In 

this section we describe a few interpolation procedures 
.-, 

which permit more realistic elevation assignment to non-val-

ley and non-ridge pixels. 

The first interpolating surface has the given elevation 

values at ridges and valleys and has a 3 X 3 digital Lapla-

cian of zero at all non-ridge and non-valley pixels. This 

will be referred to as the Laplacian surface. The system of 

linear equations which this constraint gives rise to can be 

written as 

A x :::: b. 

The vector x is the solution and represents the values to be -. 
assigned to each 'variable' (non-ridge non-valley) pixel in 

the elevation model. The A matrix is defined by applying 
.-, 

.' 

the digital Laplacian mask operator (Figure 17) to each va-

riable pixel. A mask operator is applied to a pixel by 

placing the mask over the image so that the central (large 

positive) mask value is directly over the pixel whose value 

is to be computed. The pixel value is changed to make the 

sum of the mask values times the corresponding image values 

under them equal to zero. For the Laplacian surface only, 
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Neumann boundary conditions are enforced along the outside 

rows and columns of the elevation model image. Tha tis, th e 

outer-most row or column is repeated so that the mask opera-

tor can be applied to the outside pixels. There is one row 

in A for each variable pixel in the elevation model ~nd one 

coefficient value in that row for each variable. A is a 

sparse matrix since no variable is constrained by more. than 

four other variables (due to the definition of the. digi~al' 

Laplacian mask operator). The b vector is the right hand· 

side of each of the linear equations in the system. The 

constants on the left hand si~e of each equation (that re-

suit from applying the ~aplacian ~perator to a variable pix-

el that .has a known pixel 4-adjacent to it) are carried to 

the right hand side and appear i~ b. For equations repre-

senting variable pixels not. 4-adjacent to known pixels, the 

cor~esponding b element i~ zero. 

-1 

-1 4 -1 

-1 

Figure. 17 - A digital Laplacian mask 

The second interpolating surface has the given boundar~ 

values and minimizes the quadratic variation of the result-
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ing surface [Grimson, 1981] • The boundary conditions with 

which the surface' must agree are depth values along th e 

zero-crossings. If the surface elevation function is E and 

subscripts denote 

surface E minimizes 

JJ 

partial differentiation, 

+ E2 ) d 
yy x 

d 
y 

then the final 

Since the surface function can be converted to a discrete 

grid format, the differential operators can be, converted to 

difference operators, and the double integral can be con-

verted to double summation, the solution of the above func-

tion can be formed by setting up a discrete corresponding 

set of linear equations 

Q x = b. 

The x and b vectors have t~e same meaning as in the Lapla-

cian case and are constructed similarly. The Q matrix 'is 

likewise similar to the A matrix of the Laplacian. Instead 

of using Neumann boundary conditions at the edge of the im-

age, the quadratic variation surface is defined by using 

special masks to fit the rows and columns near the outside 

edges. The six masks (Figure 18) are rotated as necessary 

and applied to the only appropriate variable pixels of the 

elevation image to define Q. Mask two is applied to corner 

pixels, mask three is applied to pixels in the outside row 

or column that are adjacent to a corner pixel, mask four is 

applied to other pixels in the outside rows and columns. 

1 , , 
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-. 
I 
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mask five is applied to pixels in the next-to-the outside 

row and columns that are 8-adjacent to corner pixels, mask 

six is applied to other pixels in the next to the outside 

rows and columns, and mask 1 is applied to all other varia-

ble pixels in the image. 

2 
4 -16 4 

2 -16 40 -16 2 
4 -16 4 

2 

(1) 

2 
4 -12 4 

-8 20 -12 2 

(3) 

2 
4 -16 4 

-12 36 -16 2 
4 -12 4 

(S) 

2 
-8 
8 -8 2 

(2) 

2 
4 -12 4 

2 -12 22 -12 2 

(4) 

2 
4 -16 4 

2 -16 38 -16 2 
4 -12 . 4 

(6) 

Figure 18 - Six masks for the quadratic variation method. 
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The third kind of interpolation surfaces can be created 

with~ut using any mask. For each non-boundary pixel. we can 

first find its distances to the nearest valley pixels and 

nearest ridge pixels. From these distances and the eleva-

tions at these nearest valley pixel and nearest ridge pixel •. 

either a linear. cubic. or fifth order fit interpolation can 

be used to calculate the elevation of this nori-boundary pix~ 

e I . If cubic. fit is used. the first 

zero at ridge and valley pixels. If 

order derivative is 

fifth order fit is 

used. both the first and second·order derivatives a~e zero 

at ridge and valley pixels. The. resulting images with high-

er brightness indicating higher elevationand the corres-

ponding surface plots are shown in Figure 19. The· image and 

surface plot of the elevations read from digital terrain. 

tape [NCIC, 1980] for this area are shown in Figure 20. The 

reconstructed LANDSAT images by using diffuse light image 

(Figure 5), reflectance image (Figure 6). elevation model 

(Figure 19a). and an artificial sun at specified azimuth and 

elevation angles are shown in Figure 21. 

able reconstructions. 

They are reason-

.~ 

--. 

.--. 
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Figure 19a. Elevation Model by Method I, Laplacian Mask 
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Figure 19b. Elevation Model by Method 2. Quadratic variation 
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Figure 19c. Elevation Model by Method 3. Linear fit 
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Figure 19d. Elevation Model by Method 3. Cubic fit 
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Figure 1ge. Elevation Model by Method 3. Fifth order fit 
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Figure 20 - Elevation model from digital terrain tape. 
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Figure 21 - Re£onstructed LANDSA~ imagery 



48 

In order to reconstruct 3D spatial information from 

LANDSAT imagery, we need to identify shadowed and directly 

lit pixels as well as local slope information. A mode 1 in-

volving reflectance, topography, diffuse light, and haze has 

been discussed and a technique for computing this informa-

tion has been given. The shadow reflectance, and elevation 

images look quite good by comparing with the topographic map 

of the same area and our understanding of the vegetation 

surface cover. 

Once the shadow image and local slope information is 

determined, ridge and valley segments are detected and then 

an elevation growing model is used to assign relative eleva-

tions to them. Interpolati~n generates surface elevation at 

all locations from the known values at ridge and valley 

segements. 
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ABSTRACT 

This paper considers mixture models of the form 

where 0j is a translation parameter. An approach is discussed which 

makes use of a Caratheodory theorem on the trigonometric moment problem 

to determine M and 0j, j=1,2, ••• ,M. This theorem is also applied to 

show that translates of many common distributions lead to identifiable 

mixtures. 
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INTRODUCTION 

Let F = {fE;; E;f:. /RN} be a family of probability density func

tions and let G be a distribution function on ~N where RN is the set 

of real vectors of dimension N. For the given GWe define a mixture 

density h as 

(1) h = J fE;;dG(~) 

Since all the members of F are used in this definition, it makes 

sense to say that according to equation (1) F defines a mapping, say 

F, from the set of all G-distributions, say G , to the set of all 

induced h-densities, say H. If F:G + H is one-to-one and onto then 

we say that H is identifiable. This formulation is essentially due 

to Teicher [1]. Thus, identifiability implies that, for a given mix-

ture density h, a knowledge of the family F will allow us to uniquely 

determine G. This has practical implications for estimating the propor-

tion of a material class on the ground using remotely sensed observa-

tions of that material. To illustrate the point, we offer the follow-. 

ing example. 

Suppose we are given spectral measurements, x, of points (pixels) 

on the ground which have been obtained from a satellite-multispectral 

scanner system. We imagine that these XIS are observations on some 

random variable X distributed according to density h. Suppose that 

through experimentation we have found that any given material class on 

the ground gives rise to measurements that are normally distributed and 

that in a given region the mixture model that applies is: 

(2) hex) = 
M 1 -(1/2)(x~p·)2/(o2) 
'" " • r;;"""? ej J 
L. I\j v2no-

j=1 
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With reference to equation (1) we see that in this example G 

assigns a point probability Aj to the points (~j, a), j=1,2, ••• ,M. 

This is an example of a finite mixture model. Since the M material 

classes are associated with the parameters (~j' 0), j=I,2, ••• ,M, Aj 

can be considered as the a-priori probability of observing the j-th 

class or Aj is the proportion of the j-th class present in th~ 

given region. The primary aim is to determine the Aj-values but to 

do that one has to estimate M, ~j' a, j=1,2, ••• ,M. Studies within 

the AgRISTARS program suggest that a multivariate version of the model 

given in equation (2) fits reasonably well to agricultural data, as 

well as to data from natural vegetative classes, c.f., Lennington et 

ale [2J. In those studies maximum likelihood estimation methods were 

used to estimate the Aj's,the means, and the covariances. The 

number of classes, M, was determined by applying a heuristically de-

rived algorithm. 

In this paper we" consider a finite mixture model of the form 

( 3) h 

where El j is a location parameter and f~ may depend upon other 
j 

parameters (this is.the reason for using the superscript UjU)"in addi-

tion to El j • In the simplest case we have the pure translation 

family, Pf = {fEl:El£~} where each member is a translate of some 

given f. The model in equation (2) is a specific example. 

Our approach will make use of a theorem of Caratheodory on a trig-

onometric moment problem as discussed in Grenander and Szeg8 [3J. Of 

particular interest will be the constructive proof (due to Szeg8) 
: - ) 

I 

- j 
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which provides a means for computing M and 0j, j=1,2, ••• ,M in equation 

(3). We begin by discussing the pure translation case. For that case 

it is possible to compute the proportions Aj in addition to M and 0 j 

for j=1,2, ••• ,M. Since in the more general case each f~ can depend 

upon more than just a location parameter our methods do not lead to 

values for the Aj'S. However, for certain families of densities 

knowing M and each 0 j may simplify the estimation of these other 

parameters (e.g., see Redner [4]). 

(4) 

For f8 € Ff let 
j 

h 

THE PURE TRANSLATION CASE 

M 

I Aj f0. 
j=l J 

Since f is a density with a characteristic function F, the characteris-

tic function of h is [note: in this paper w is in radians] 

M iwe 
H(w) = I AjF(w)e j 

j=l 

For any w that is not a zero of F, 

(5) 
M iwe 

H(w)/F(w) = I Aje j 
j=l 

The following theorem due to Caratheodory applies to the form 

given by equation (5). 

59 
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THEOREM 1 

Let cl,c2, ••• ,cn be complex constants where cv*O for some v. 
i8 

There exists an integer M, I(M(n and constants Aj , e j such that 

each Aj is real and positive and 8k*8j, k*j and 

M iv8 
Cv = L Aje j v = 1,2, ••• ,n 

j=1 

where M, A j , and 8j are unique. 

For a proof see Grenander and SzegB [3] pages 56 to 61. 

COROLLARY 1 

Ff leads to an identifiable mixture. 

PROOF: 

~ iw0 
Since H(w)/F(w) = L Aje j 

j=1 
this representation must be 

unique by Theorem 1. 

This corollary, which is an immediate consequence of the 

Caratheodory theorem, was also proved in a different manner by Yakowitz 

and Spragins [5]. We now consider the determination of M and 0j , 

J=1,2, ••• ,M by methods developed by SzegB [3]. 

Since F is (uniformly) continuous and F(O)=l, there exists an in-

terval about w=O for which the magnitude of F is positive. Let (-b,b) 

be the largest such interval and for k=O,l,2 ••• ,n let wk=kS where 

27f 
S = min(---------

(n+l)max l0j I 
b 

) 
n+l 

-, 
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C-k = (H(wk)/F(wk» and consider the Hermitian matrix 

¢ = 

From' (5) with wk = ka • 

M 

¢ = L Aj 
j=l 

1 

-iae 
e j 

-inaS. 
e J 

• • • • • • • 1 

(1, 
iaej inaej e , ••• , e ) 

Thus ¢ is a linear combination of M rank one matrices, and since the Aj 

are unique the rank of ¢ must be M. The Toeplitz form v~ ¢ v is 

M M iae k 2 
v~¢v = L Aj I L ,vk(e j) I 

j=l k=O 

Since n>M, there must be at least one zero eigenvalue of 

be the corresponding eigenvector, i.e., v~¢v=O. Since Aj>O 

for j=1,2, ••• ,M the complex polynomial 

where Z = e 

n 
P(z) L 

k=O 

iae 
must have roots at Zj = e j • 

¢. Let v 

We see therefore that the rank of ¢ determines the number of distinct 

translates and the roots of P(z) are the distinct translations. The 

61 
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proportions, AI, A2, ••• , An can be determined by substituting 

specific x-values in equation (4) and solving the resulting system of 

linear equations. 

THE GENERAL CASE 

We now consider the general form given by equation (3) •. For this 

case we choose £amiliesof the form 

whereP is the set of rational numbers and RN is the set of N-dimen-

sional real vectors. We will show that at least for certain cases, 

e.g., when fO is an exponential, double exponential, gamma, or 

beta this family leads to unique determination of 0 from a mixture. 

Since F is not generated by one function as was Ff, we cannot 

proceed exactly as we did in the previous section. Our approach for 

this case will exploit the limiting behavior of Fg(w) as w gets 

large where F% is the characteristic function of f%. 

THEOREM 2 

M 
Let h = L Ajf~ , f~ € F and let the characteristic 

j=I j j 

function of f~ be of the form 

aa + aj (iw) + •.. + aj(iw)P 

O(~~_P+l~ F~(W) P + 
ba + bl<iw) + ••• + bj(iw)q q 

a j a j 
p for each j 

p < 0 for each j • with q>p, > 0 or 
bj bj 

q q 

......... , 

-......... 

-......, 

-......... 

......... 
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21T 
ke + 21Tn, e = , k=O,l, ••• ,K, 10M, 

(K+1)max IEl j I 

n=1,2, •••• 

then 

a) If there exists a vector v so that for Ell, 02, ••• , OM 

K iekEl. 
i) IVke J = 0 

k=l 

b) If there exists a vector v so that 

ii) 

Before we prove this theorem, consider the example density func-

tions given in Table 1. We see that the exponential and gamma dens i-

ties each ·fit the forms given by Theorem 2. In the case of the gamma 

density y can be any positive number but n must be known. In the case 

of the beta density, em,n, whose characteristic function is Bm,n 

notice that Bm~n(W) = Bn,m(-w)e iW • That is, when m and n are 

reversed the characteristic function can be gotten from the original 

characteristic function by changing w to -wand multiplying by e iw • 

Thus, for example, if we have en ,l(x) = (n+2)I/n!)xn(1-x) 

then the leading term in the characteristic function contains e iw • 

To make Theorem 2 apply in this case we must multiply H(w) by 

e-iw or replace El j by El j +1 for j=1,2, ••• ,M. In the case of 

e 1,n(x) = (n+2)!/nl)x1(l-x)n Theorem 2 applies directly. 
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TABLE 1: Characteristic Functions of Some Common Distributions 

Function Characteristic Function 

Exponential (b)O) 

fO(x) = {: 
,. x<O 

b 

b-iw 

Double Exponential (a)O, b)O) 

ab ax 
, xC;;O a+b e 

fO(x) = 
ab ~bx 

. ab 
FO(w) = 

(a+iw) (b-iw) 
a+b e x)O 

Gamma (y)O) 
1 

FO(W) 
1 

= 
(l-iwy)n+l .., 

.-, 

Beta (n)2) 

fO(x) = 
o xC;;O, x)1 

(n+2) ! 
--- xn(1-x) 0<x<1 

nl 
FO(w) 

(n+2) ! 
[ e

iw 2n 
eiw - --

n! (iw)2 (iw)3 
., 

i 

+ (w~4) ] -......., 

Beta (n)3) 

(n+3) ! 

nl2 

(n+3)! [2e iW 6n iw 
FO(w) = nl2 l(iW)3 - (iW)4+ e 

fO(x) 
o 
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In addition, we could consider a convolution of a given density, f, 

with members of Table 1, i.e., the family F" whose members are of the 

form f*fO' fO £ F and fa a member of Table 1 (where "*" denotes convo-

lution). To make this theorem apply we need to modify the theorem 

slightly by considering H(w)!F(w) in place of H(w) where F is the char-

acteristic function of f. 

PROOF OF THEOREM 2: 

and 

a~ al 
aj -+ + ... + 

(iw)P (iw)p-l P 

(iw)q-PF~(W)= + ~{~ J b~ bl 
+ bj --+ + ••• 

(iw)q (iw)q-l 
q 

Thus 

M aj 

e
iw0j 

Q(w) !J. (iw)q-PH(w) - n(w) I Aj 
P = = 

bj j=1 q 

where 

M aj 

e
iW0j 

n (w) L Aj«iW)q-PF~(W)- -p_) 
j=1 bj 

q 

Now 

(6) 
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Thus given a vector v that satisfies i) 

(7) 
K 

I 
ikt30J" 12 I 

1: vke 
k=l 

and since lim In(wkn)I=O and r vkeikt30j = 0, the assertion in a) holds. 
k=l 

a j 
p 

bj 
q 

n+co 

Next consider b). We assume > 0 for each j; otherwise, .if 

< 0 for each j we need only multiply equation (6) by·-l before 

we begin our argument. Given E >0 suppose that in equation (7) we can 

find a vector v that satisfies ii) but 

K ikt30 
I L vke j I > E 

k=l 
nlj .. 

Since the OJ are rational, they are of the form OJ = --- where nlj' 
Il2j 

n2j are integers. Thus, we can choose a subsequence of (n) of the form 

M 
(n~) = « IT n2j)t), where t=1,2, ••••• , so that 2rrn~Oj is of the form 

j=l 
i2rrn~O" 

±2ITt where t is an integer. Hence e .J = 1 for all j which means . 

M a j 
e i2rrn~ej iksej M a j 

I L Aj -L I L 121> E2 L L --L > 0 • 
1{ 

vke 
j=l J bj j=l k q 

But this implies (noting that over (n') all limits exist) 

i 
; 
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K K 
0 = lim sup I 2 2 VkV R. Q(WR.-k n) I 

N+oo n)N k=l R.=1 ' 

K K M aj 

= lim I 2 2 vkvR.Q(wR.-k,n' ) = e: 2 2 Aj .-L > 0 
n '+00 k=l R.=1 j=l bj 

q 

which is a contraction, and this completes the proof. 

Theorem 2 says that any vector vector, v, for which 

goes to zero as n gets large must be a vector that makes the 
iaG. 2 

Toeplitz form II, vk(e J)kl zero. Hence the theory for finding M 
k 

and Gj, j=1,2, ••• ,M discussed in the previous section applies here 

for large W provided we decide on M by looking at eigenvalues Yn 

whose magnitudes are small and also account for the fact that 

{H(wR.-k n)} is not necessarily Hermitian, but "approximately so." , 

We now show that the densities given in Table 1 lead to identifi-

able mixtures. Recall that in a finite mixture identifiability implies 

that the representation given by equation (3) is unique. By the methods 

we have discussed so far, Theorem 1 will only guarantee that M and Gj 

for j=1,2, ••• ,M are unique. The problem here is that the Aj values 

and some of the nontransl~tion parameters appea~ as products in the 

limiting form of the characteristic function. Thus, to guarantee 

identifiability we must consider a subfamily of F in which the non

translation parameters in the density f~j are in one-to-one 

correspondence with the translation parameters. 
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Let p' be a slight modification of the family P. Namely, let 

{ a p a a'} P' = fO:OEP, aER , 0=0' implies fO = f O' 

Thus P' is the subfamily of P for which no two members can have the' 

same translation value, 0, but still be unequal. 

COROLLARY 2 

Let f~EP have a characteristic function as given by 

Theorem 2. 

a) P leads to a unique determination of M and the translation 

parameters. 

b) P' leads to an identifiable mixture. 

PROOF: 

aj 

We assume -f- ) 0, as we did in Theorem 2; otherwise, we con
bj 

q 

M . 
sider -H(oo) in place of H(oo). Let h = I A. f~ • 

j=l J j 

equation (6) 

M 

Q(ookn ,) = I Aj 
j=l 

. i2IIn 'OJ ikf30j 
e e 

with 
M 

n' = ( II n2j )t, 
j=l 

the proof of Theorem 2) 

M 
lim (iOOk n') q-PH(ookn') = I Aj 
n '+00 ' j=l 

t=1,2, •••• 

Then, as in 

Thus following 

And since the right side of this expression satisfies Theorem 1, 

the representation is unique. This proves assertion a). 

.-. 
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In particular Aj j=1,2,~ •• ,M are unique. But since the 

0j' j=1,2, ••• ,M are also unique, it follows from the definition of F' 

that a~, b~, j=1,2, ••• ,M are unique and therefore the Aj , j=1,2, ••• M 

are unique. This completes the proof. 

IIi the case of the betas 8n ,1 and Sn,2 given in Table 1, we 

M 
need only consider h(x+1) = L Aj f j (x+1+ej ) in p1a~e of the above 

j=1 

form for h. In the case of 81,n and 82,n' we need not translate h • 

NUMERICAL EXAMPLES 

In order to explore the numberica1 behavior of these methods, 

simulation studies were conducted. Some examples of the simu1tation 

results are presented. The characteristic function of a mixture of 

normals, with equal variances, or a mixture whose component densities 

were exponential, or double exponential, or gamma or beta (as in 

'Table 1) was used. In. each case' the mixture contained three densities. 

Table 2 shows the case where the t,hree densities are beta densi-

ties. The two end distributions (0=1'and 0=2) are held fixed and the 

center distribution (1<0<2) is considered for several values of the 

translation parameter. The results show that when two of the 0's are 

close together, the error in the determination of their values is 

larger than for the case where they are far apart, as would be ex-

pected. In each case the ¢ matrix had three large eigenvalues (i.e., 

substantially larger than zero) so that it was an easy matter to say 

that, for numerical purposes, the rank of ¢ should be 3. 
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TABLE 2: Determining Location Parameters for a Mixture of Betas 

A 

3 . 
h(x) = I Aj fj (x-f)j ) 

j =1 

8 n -
1/3,1/3,1/3 1 8,4,4 

True El 

1,1.01,2 

1,1.05,2 

1,1.2,2 

1,1.4,2 

1,1.6,2 

1,1.8,2 

El.<x<El.+1 
J J 

True e -Estimate 

.18852, .00826, .00002 

-.00091,-.00560,-.00003 

.00002,-.00001, .00006 

-.00001,-.00029, .00006 

-.00001,-.00027,-.00009 

-.00001,-.00104,-.00068 
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In Tables 3-6. the same basic experiment was repeated for the 

normal (equal variances) and the exponential. double exponential. and 

gamma. In these cases values of 0 close to 1 were studied. Except in 

the case of amixture of normals with the means.Ol apart. in each case 

the rank of ¢ was judged to be 3. The same difficulties with deter-

mining 0-values occurred as were noticed with the beta mixtures. 

2IT 
Theorem 2 uses a scale factor a = 

(K+1)max I0jl 
The precise 

value of a is not important to this theorem. We need only choose a 

scale factor so that e ika0 • k=O.l ••••• K does not repeat. In 

Tables 3-6 we explored the use of a=l and a=l.5 and we noted that. 

there can be considerable differences in the determination of the 0-

values. In a real case. the choice of a would also presumably in-

fluence the accuracy of the answers. however. at this time we have not 

studied its effect enough to comment on possible appropriate values. 

CONCLUDING REMARKS 

To apply these methods one must know F in advance in order to 

determine the appropriate operator. e.g. (iw)q-P. to apply to the 

characteristics function of the mixture. H. There is. however. Some 

leadway. For example. we see from Table 1 that one could have a mix-

ture of double exponentials. of gammas (n=l). or of betas of the form 

(n~f)!(x-o)(l-x+0)n. O<x<l. and still determine M and 0-values 

by using the operator (iw)2. Thus. some inexact knowledge of the 

underlying mixture model can be tolerated. Since. we have not as yet 

explored the estimation problems associated with these methods we 
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TABLE 3: Determining Location Parameters for a Mixture of Normals 

hex) = 
3 1 
I Aj - e 

j=l 1/2Tf 

True 8 True 8 -Estimate 

.5,.3,.2 1.0 1,1.01,2 -.00031,not found*,.00011 

1,1.03,2 -.00038,-.00008,0 

1,1.05,2 .00233, .00641,0 -
1,1.1,2 -.00012,-.00026,-.00001 

-....., 

.5,.3,.2 1.5 1,1.01,2 -.00372,not found*,.OOOII 

1,1.03,2 .00059, .00146, .00001 
-, 

1,1. 05,2 .00005, .00004,0 

1,1.1,2 -.00007,-.00001,0 

*The computer program could not distinguish between 8=1 and 8=1.01. 
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TABLE 4: Determining Location Parameters for a Mixture of 
Exponentials 

3 
h(x) L Aj fj (x-0j ) 

j =1 

-b(x-0j) 
be' . , x)Sj 

b True e True e -Estimate 

.5,.3,.2 1 1,5,2 1,1.01,2 .19612, .00249, .00003 

1,1.03,2 .00266, .00366, .00002 

1,1.05,2 .00415, .00014, .00001 

1,1.1,2 .00192, .00076, .00001 

.5,.3,.2 1.5 1,5,2 1,1.01,2 -.00614,-.01134, 0 

1, L03;2 -.00002,-.00005, 0 

1,1.05,2 -.00018,-.00011, 0 

1,1.1,2 -.00004,-.00002, 0 
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TABLE 6: Determining Location Parameters for a Mixture of Gammas 

A 

.5,".3,.2 

.5,.3,.2 

3 
h(x) = I Aj fj (x-0j ) 

j=l 

1 

nlyn+1 

0, 

S y n True e -
1 4 3 1,1.01,2 

1,1. 03,2 

1,1.05,2 

1,1.1,2 

1.5 4 3 1,1.01,2 

1,1. 03,2 

1,1.05,2 

1,1.1,2 

True e -Estimate 

2.72623, .00628, .00011 

-.01094, .01407,-.00001 

-.01472 , .02170, 0 

.00022, .00086,-.00001 

.00650, .00618, .00001 

.00042, .00235, 0 

.00007, .00015, 0 

.00001, .00007, 0 
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cannot comment on whether or not such an inexact knowledge of the mix-

ture will translate over to more general lack-of-fit problems when real 

data is encountered. 

In this paper we have only considered the univariate case. However, 

at least in the case of mixtures of normals, it would appear that the 

multivariate extension is straightforward provided one is clever about 

choosing the sampling values of w. In future work we hope to consider 

multivariate extensions. 
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ABSTRACT 

In this paper we describe our current efforts to develop methods 

and computer algorithms to effectively represent multivariate data com-

monly encountered in remote sensing applications. This ma'y involve 

scatter diagrams but we are emphasizing multivariate representations of 

nonparametric probability density estimates. The density function pro-

vides a useful graphical tool for looking at data and a useful theoreti-

cal tool for classification. We call our approach a thunderstonu data 

analysis. 
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1. Graphical Tools ~n Data Analysis 

A recent theme in multivariable data analysis as advocated by. for 

example. John and Paul Tukey [13] emphasizes graphical techniques for 

ri looking for multidimensional structure in data. The bivariate scatter 
, , 
, I 

diagram has been a very useful tool in this approach. For data in more 

-I i than two dimensions, careful selection of bivariate projections can 

r-
1 ; 
/ ' , I 
: , 

!'-

" , i 
, I 

reveal structure in higher dimensions; see. for example. a description 

of the projection pursuit algorithm [3]. Alternately gly'phs may be 

drawn instead of dots in a bivariate scattergram and data values not 

displayed are represented by features in the glyph. such as length. 
r
I! ' II. a!lgle, etc. Computer graphics workstations have recently made trivari-

,.... ate scatter diagrams feasible. A true three-dimensional effect may be 
, ' 

had by either continuous rotation of the scatter diagram or by a variety 

of stereographic techniques using red/green or polarized glasses. Holo-

grams' and rapidly vibrating mirrors also can proved 3-D effects. For 
,-. i I data with more than three variables. side-by-side scatter diagrams of 

; ! 

" i 

(7', 
, I 
; I 

i! , , 

! i 

"... 
,i' , , 
, ! 

'-, 
: i __ 
• i . ., 

subsets of variables with visual links (such as coloring the same point 

1n the different diagrams) allow a representation of the data. 

Scatter diagrams do have limitations in data analysis. The most 

important ,problems relate to sample size. For moderately large samples 

( n > 500) data replication (or over striking on the graphical medium) 

begins to occur frequently. This problem has been referred to as the 

problem of "too much ink" [12]. In one example of a fairly large 3-D 

scatter diagram with n = 22.932 on a 512 by 512 graphics terminal. only 

4.000 pixels were observable [5]. With continuous rotation many more 

points are viewable but current computer technology limits real-time 
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rotations to about one thousand points. Secondly. clusters of points 

that are close together are difficult to detect in scatter diagrams. In 

other words scatter diagrams provide only modest indications of the den-

sity of points in a given region. Thirdly. our impression of data frOt;} 

the same underly ing density function 1S highly depend,~i.t on the sample 

size. This makes comparisons of scatter diagrams with different sample 

sizes nontrivial. The eye naturally leaves the center of the data and 

focuses on outliers and apparent structure (lines) in outlying regions. 

Such features mayor may not be of great importance depending on the 

objectives of the data analysis. In a recent example of a bivariate 

scatter diagram of 412.776 points. a frequency polygon analysis revealed 

that over 97% of the points fell inside the 1% contour (that is. points 

where 1{x.y) = 1% of 1{mode» which occupied less than 1\ th of the 

display area [6]. Almost half of the pixels in the display area were 

illuminated. On a 256 by 256 display. many points were replicated over 

300 times and one more than 1000 times. 

He also advocate using scatter diagrams for looking at data. How-

ever since we are interested in discovering structure such as modes and 

high density regions. we have found that the density function is a more 

useful tool when taking a preliminary. look at data in several dimen-

sions. The density function does not change with sample size. although 

the quality of estimation changes. In a sense the scatter diagram 

points to the density function. as Jim Thompson has described it. In 

the next sections we describe our current '-lark based on multivariate 

nonparametric density estimation. 
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2.. Computat~onal and Representational Problems -. ! 

:1 in l1ultivariate Density Estimation 
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Nonparametric density estimation methods for multivariate data are 

often simple extension of wen-studied univariate versions. The mul-

tivariate histogram is a computationally efficient estimator but suffers 

from empty bin problems and bin edge effects. Statistically more effi-

cient and smoother multivariate estimators may be obtained by kernel or 

nearest neighbor methods; see Tapia and Thompson [10J. Efficient algo-

rithms for the latter have been developed but little is known about 

nearest neighbor global properties beyond some pointwise results. Some 

empirical evidence indicates nearest neighbor estimates tend to peak at 

modes and some optimal binning studies seem to draw the same conclusion 

[1 I] • Some special· attention and techniques are needed 1.n the tails 

since the raw estimate does not have a finite integral. 

Thus we believe at this time the fixed multivariate kernel estima-

tor of Cacoullos [2J 1.S a useful technique for data in 2-4 dimensions. 

Unfortunately computational requirements grow rapidly in higher dimen-

sions if one desires to evaluate the estimate of a representative mul-

tivariate mesh. The estimator also requires the entire raw data in 

order to compute the pointwise estimates. Some research has focused on 

one and two dimensional numerical approximations to kernel estimates in 

order to achieve computational efficiency [9J. However few results are 

currently available for more variables. 

Another approach is to construct a frequency polygon estimator 

(formed by connecting with straight lines the mid-bin values of a histo-
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gram). This estimator has the same order of statistical efficiency as 

the kernel estimator and also the computational efficiency of the histo-

gram. However bin edge effects still can be a problem for small samples 

and in higher dimensions. Thus we have recently proposed a new density 

estimator based on a frequency polygon of the averaged shifted histogram 

(ASH) estimator [7]. The ASH is simply the pointwise average of m his-

tograms with common equally spaced bins of width h but different bin 

l. origins to +;. i = 0 •••• m-I. Thus the ASH looks like a histogram \'lith 

bin width him. As m-+-oo the ASH is identical to the statistically effi-

cient triangular kernel estimate. Values of m between 3 and 10 are suf-

ficient for most purposes. Multivariate versions are easily constructed 

by shifting and averaging in all co-ordinate directions. 

Representational difficulties have been addressed for three and 

four variable density estimates (function surfaces in four and five 

dimensions. respectively) by displaying appropriate contour plots. For 

trivariate data a contour of ~(x.y.z) will be a set of points 

S = { (x.Y.z) € R3 : 1(x.y.z} = c } • 
c 

The set S will be a surface in &3 (or more than one surface if the 
c 

density is mul timodal at this level). On a graphics terminal \Ie have 

chosen to represent S by intersecting it with a series of equally 
c 

spaced planes orthogonal to the x-axis. say. and then drawing the con-

tours defined by these intersections. The resulting "wire" diagrams 

give a strong 3 dimensional impression. If color is available. several 

contour levels may be simultaneous ly displayed by using a different 

color for each level. We refer to our picture as a thunderstorm data 

representation. 
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It is helpful to imagine what this representation looks like for 

trivariate Gaussian data. For the independent variable case. S is sim, c 

ply a sphere so that a color display would show several' concentric 

spheres with the mode located at the center. This is roughly illus-

trated in Figure 1. If the data are correlated we will see ellipsoids 

rather than spheres. 

To represent the density estimate of four variables. 1(x.y.z.t). 

we look at the sets 

, 3 /). 
S = { (x.y.z) E: It ,: r(x.y.z.t) = c } • 
t.c 

Here we have arbitrarily chosen one variable and placed it 1n a refer-

ence frame which may conveniently be thought of as a "time" axis. By 

looking at a time-lapse sequenc'e of representations of S we obtain a 
t.c 

useful view of the data which highlights important features such as 

modes. outliers. symmetry. skewness. and covariance structure. This 

sequence is similar to a time-lapse movie of" a thunderstorm from its 

original formation to peak of storm ,to its eventual end. 

Again it is useful to construct this representation for quadravari-

ate Gaussian data. For a fixed contour level c. as t moves through the 

relevant interval of support (t . • t ). S will be a sequence of 
m1n max t. c 

initially "expanding spheres (ellipsoids) which continue to grow until 

the mode is reached and then contracting and finally vanishing when S 
t.c 

becomes the null set. 

We have recently experimented with these representations using 

Landsa t remo te sensing reflectance intensity data sets . &3 1n (n = 
23.000) and with a particle physics data set in &4 (n = 500); see 
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Scott [5] and Scott and Thompson [8]. A 16mm color film was used to 

record the time-lapse thunderstorm representation of the particle phy-

sics data set. These data have been analyzed by Friedman and Tukey [3] 

and by Tukey and Tukey [13] using exploratory data and scatter diagram 

techniques. Our representations seem to be successful in uncovering 

important data features and structure and seem to require less training 

in the four dimensional case than required for four dimensional rotating 

scatter diagram methods. 

3. Graphical and Model-Based Discrimination 

and Classification 

We shall assume that our data samples are labelled so that super-

vised clustering and discrimination. are feasible. As a preliminary 

step. side-by-side scatter diagrams may be displayed to get a rough 

feeling for the separability of cluster classes. This may also be 

accomplished by display ing side-by-side density contour plots for the 

cluster classes. For large training samples the latter is more useful 

(see the comparison of a scatter diagram and contour plot for 412.776 

points mentioned in section 1). The scatter diagram might indicate no 

separation at all. 

When the preliminary density estimates have been refined by optimal 

data-based choices of smoothing parameters. classification may be accom-

plished using a Bayesian classifier. Evaluation of the averaged shifted 

histogram for each class involves only a bin location operation (sub-

traction and division) and then a table lookup for each training class 

(hash function. perhaps). This is a computationally efficient operation 
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although large memory requirements are necessary in several dimensions • 

We plan to implement this strategy, 'and report on our results shortly. 

Examples 

We shall consider the scatter diagram approach discussed in section 

'3 as a prel iminary step towards producing a nonparametric classif ier. 

The data are trivariate and come from a model applied to individual pix-

els 0.1 acre) using temporally measured. Landsat data. Approximately 

bh"eekly 4-channel remote sensing relectance intensity data were con-

verted into a single "greenness" time series by looking at a certain 

linear combination'of the 4-channel data. The time series was fitted by 

Badhwar's [1] growth model which looks somewhat like a bell-shaped 

curve. For each pixel three parameters from Badhwar's model were 

extracted: x. the time of peak greenness; y. the ripening or reproduc~ 

tion period; and z. the peak greenness level. Each measurement was 

.recorded on a discrete scale from 0 to 249. The data are processed Ln a 

segment which is 5 by 6 nautical miles and contains 22.932 (117 by 196) 

pixels. Ground truth was obtained by sending observers to the fields. 

In Figure 2 we show a view of the 3-D scatter diagram for segment 

1380 Ln Minnesota. 1978. Notice the orienta~ion of the aies (located at 

the true origin) in this projected and rotated view. The projected x-

axis is defined by the vector (-.71 •• 71.0) and the y-axis is defined by 

(-.58.-.58 •• 58). This scatter diagram is a mixture of "pure" and 

"mixed" pixels. In Figure 3 we show a scatter diagram of 3.947 pure 

pixels of corn from segment 1380. Figure 4 depicts the 5.162 pure pix-

els of soybeans. A quick impression of the separability of corn and 
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soybeans is possible from these graphs. but again recall that a large 

fraction of the data are hidden. making the discrimination judgment very 

difficult. 

Small grains present a difficult problem for a classifier. In Fig-

ure 5 we view segment 1899 in North Dakota. 1977. using the same projec-

tion plane as before. The two segments look quite different in this 

representation. Figure 6 represents 1.756 pure pixels of sugar beets. 

Figure 7 represents 3.355 pure pixels of spring wheat. Finally. Figure 

8 shows 4.362 pure pixels of barley. These classes present a challenge 

for any discrimination procedure. 

5. Conclusion 

He have attempted to illustrate how nonparametric density methods 

may be brought to bear directly on multivariate remote sensing problems. 

Hultivariate parametric models based on mixture models [4J have many 

advantages. both conceptually and in production mode. The fitting prob-

lems in the parametric case are usually quite difficult. He hope to 

investigate how nonparametric models may provide guidance to the fitting 

and verification of such parametric models. This would be a direct use 

of the exploratory capabilities of the nonparametric models. 
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Figure 1. Representation of Contours of Three 
Dimensional Density Estimate if Gaussian 

Figure 2. Projec.ted and Rotated Three Di.mensional 
Scatter Diagram of Segment 1380 (1978). 
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Figure 3. Pure corn pixels in segment 1380 (n=3,947). 

Figure 4. Pure soybean pixels in segment 1380 (n=5,162). 
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Figure 5. Scatter diagram of segment 1899 (1977) (n=22,932). 

Figure 6. Sugar beet pixels in segment 1899 (n=1,756). 
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Figure 7. Spring wheat pixels in segment 1899 (n=3,355). 

Figure 8. Barley pixels in segment 1899 (n=:::lj.,362). 
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ABSTRACT 

A scene segmentation approach is presented which is based on gen
erating autoregressive field models for each scene component (class) 
from its a priori spatial statistics. A methodology is also described 
for using these models in achieving optimal segmentation of a scene. 
The derivations are presented for the case of single band imagery, how
ever, the method is believed to be extendable to multispectral data. 
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1. Introduction 

A subject of central importance in image pattern recognition and 

analysis has been scene segmentation and classification of scene com

ponents. In addressing this subject, a number of different methodolo

gies and approaches hava been proposed and implemented. These range, 

from simple thresholding concepts to methods that define a scene compo

nent by a set of texture measures and achieve segmentation using such 

measures [1]. 
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This research, being reported ih this paper, is concerned with the 

development of techniques for segmentation when the scene components 

(referred to as classes) are or can be described statistically. Specifi

cally; the ~oncepts and procedures that are developed apply to the cases 

where the scene components are members of a two-dimensional and station

ary Gaussian process. Though, the final goal of this activity is to have, 

segmentation techniques for multispectral data, this report covers the 

approach for a single band image. The extension of the derived methods 

for application to multispectral data are currently under investigation. 

Statistical description of scene components has been established as 

a viable approach in pattern recognition and image analysis [1]-[4]. In 

the following, thi approach taken is that of first describing each class 

by an autoregressive model using the a prior; statistics of that class 

and then employing these models in achieving segmentation. After the 

general notation is established in Part 2, the modeling technique is de

rived in Part 3. In Part 4 the segmentation technique which uses the 

derived models is presented and discussed. 
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2. Preliminaries and Notations 

For a single band image let there be M classes wl ' .... , wM' where 

the intensities of pixels in each class are a sample function of a two

dimensional (2-D) Gaussian and stationary random process with known a 

priori means ~, .... , ~M and autocorrelations Rl ('1"2)' •... , RM(~1"2)' 

So for the kth class, the a priori mean ~k and the autocorrelation 

Rk('1"2) are defined by 

(2.1) ~k = E I k( i ,j) 

Rk('1"2) = E[lk(m,n)-~kJ[lk(i,j)-~k] 

where '1 = Im-il, '2 = In-jl, Ik(i,j) denotes the intensity value at 

pixel location (i,j) in the kth class and E is the expectation operator. 

In the subsequent sections, autoregressive models of various orders 

will be defined and used. Figure 1 defines what is meant by specifying 

various autoregressive model orders on a two-dimensional grid. Thus a 

first order model for location (i,j) contains the pixe1s{(i-1,j),(i,j-l), 

(i-l,j-l)} and a second order model contains the pixels {(i-l,j), 

(i,j-l), (i-l,j-l), (i-2,j), (i, j-2), (i-2,j-l), (i-l,j-2), (i-2,j-2)} 

and so on. Index i represents the line (row) indicator and j is the 

sample (column) indicator on a 2-D grid. 

0-0-0-Oif3rd order 

6 0-0-0 2nd order 
I I st o 0 0-0······1 order 
I I I o 0 0 ~ (i ,j) 

Fig. 1 
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3~ Autoregressive Modeling Procedure . 

Autoregressive models have been analyzed and used in the area of 

image processing and analysis for some time [1]-[3]; [5]-[6]. In gen

eral, for a zero mean Gaussian random process x(i,j), these models are 

of the form [7] 

(3. 1) 

where, 

x(i,j) = LLClpq x(i-p,j-q) + U(i,j) 
(p ,q)€D 

(3.2) 0 = {(p,q):-M s p ~ M, -N s q s N, (p,q) r (O,O)} 

and U(i,j) are a set of independent Gaussian random variables, where 

(3.3) E U(i,j) = a --Ii if i:k & j=1 
E U(i,j) U(k,t) 

a otherwise 

i and Clpq are constants if x( i ,j) is stationary and they are a function 

of (i,j) if x(i,j) isnonstationary. 

A causal form of the model in (3.1) is the subject of interest in 

thi s paper. In thi s causal form (3.1) is written as 

(3.4) 

P P 

x(i ,j) = L L Clpq x(i-p,j-q) + U(i ,j) 
p=O q=O 
p+q r a 

where, again with stationarily, Clpq are constants and U(i,j) are a set 

of identically distributed random variables satisfying (3.3). Here P is 

the order of the autoregressive model corresponding to the definition of 

the model order given in Figure 1. An example of such a causal model is 

97 
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the first order model 

(3.5) x(i,j)=aOl x(i,j-l)+alO x(i-l,j) + all x(i-l,j-l) + U(i,j) 

which has a two-dimensional separable correlation function [6J of the 

fonn 

(3.6) 

The thrust of modeling in segmenting a scene is to transform the 

information provided a priori about each class (namely the correlation) 

into an autoregressive model and use these models in subsequent de

velopment of segmentation methods. Clearly the choice of autoregres

sive forms is arbitrary and there is no claim made here that all classes 

can be modeled by such forms. However, the causality restriction that 

has been imposed (and will be adhered to throughout this paper) ;s 

necessitated by the particular modeling procedure described in 3.1 and 

the properties of the derived models which are descussed in 3.2. 
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3.1. The Autoregressive Modeling Technigue 

In the following a procedure is developed for deriving the model 

from the given a priori correlation. Since this process is done for 

each class, then the class indicator (superscript k) is omitted from all 

arguments in the ensuing discussion. 

For a given 2-D and stationary correlation function R( 1'1,1'2)' let 

us assume a model order P. First we will develop a technique for defin

ing the model for a given P and then we'll show how the "best" order P 

is chosen. For a given order P, the model is 

(3.7) 

P P 

x(i,j) = :E L: a'kt x(i-k,j-t) + U(i,j) 
k-O t=O 
k + i r 0 

This model is completely defined if the values of all the constants aki 

and the variance of the zero mean white noise process U(i,j) are known. 

Thus, for a given order P, there are (P+l)2,unknowns to be comput'ed 

where (P+l)2_l of these are the unknowns akt and one unknown is 0
2 where 

(3.8) 

The criterion adopted here for computing these unknown parameters 

is that of minimum variance of U(i,j). Thus aktare found such that 

E U2(;,j) is minimized and i is taken to be that minimum value. From 

(3.7) 

(3.9) 

p P 

E U2(i,j) = E[x(i,j) - L: L: akt x(i-k,j-t)]2 
k=O t=O 
k+t f 0 
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Differentiating (3.9) with respect to ak~'s and setting it equal to zero 

results in the (P+1)2_1 equations 

(3.10) 
P P 

E[x(i ,j) - L: L: ak~ x(i-k,j-l)] x(m,n) = 0 
k=O ~=O 
k + ~ ~ 0 

m=i,i-1, .... , i-P 

n=j,j-l, .... , j-P 

(m,n) ~ (i,j) 

Carrying the expectation operator through in (3.10) and rearranging the 

terms results in a system of linear equations of the form 

(3.11) A g = b 

where elements of the vector g are the coefficients ak~ and the elements 

of the matrix A and the vector b are values of the correlation function 

R(Tl'T2)· 

Having solved for the coefficients akt in (3.11), it remains to 

determine the quantity 0
2 in order to have the model defined. Expanding 

the quadratic form in (3.9), 0
2 can be written as 

(3.12) 0
2 = E U2(i,j) = E[X(i,j) - ~ ~ ak~ X(i-k,j-~)] x(i,j) 

k=O t=O 
k + t ~ 0 

[ 
. p P ][P P J 

-E :xCi ,j) - L: L: akt x(i-k,j-t) , L: Lakt x(i-k,j-t) 
k=O t=O k=O ~=O 
k + t ~ 0 k + t ~ 0 
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But from the relations in (3.10) 

ErX(i,jl - f ~ "kt X(i-k,j-J [f ~ "kt X(i-k,j-tlJ = 0 
L k=O ~=O J k=O t=O 

k+~~O k+~~O 

Thus 

P P 

(3.13) 2 = C1 E[x(i ,j)]2 - L: L: <lkt E x(i ,.j) x(i-k,j-t) 
k=O t=O 
k + t ~ 0 

P P 

= R(O,O) - L: L: <lkt R(k,t) 
k=O ~=O 
k + ~ ~ 0 

To have completely defined the modeling process, it remains to show 

how the model IS order.P is chosen. Before stating the process that al

lows one to choose the optimal order, let us review what is the objec

tiveof the modeling endeavour and what is meant by optimal. As stated 

before, the objective is that of generating an autoregressive model 

whose second moment characteristics (the correlation function) approx~ 

imates the given a priori correlation function 'R(Tl ,T2} as closely as 

one wishes~ However, the criterion chosen for defining the model has 

been minimization of the white noise variance. Besides the intuitive 

appeal of this criterion, it will be shown in the next section that this 

criterion also satisfies the stated objective above. Hence finding the 

best order is achieved by generating models of various orders and choos

ing the one whose white noise has minimum variance. In general, then 
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successively higher order models are assumed and their parameters a:
i 

2 and 0p , P = 1. 2, .... , are computed. Optimal choice of P is made 

according to one or more of the following: 

1. 
2 2 _ 2 

0p does not change with increasing P i.e., 0p+l - 0p. This 

is the case where the underlying process has an exact auto

regressive model of order P as will be shown in Section 3.2. 

2. Only few values of the a priori correlation function R(Tl ,T2) 

are specified which limits how high the order P that can be 

chosen. 

3. Rate of decrease of op2 as P increases. This is the case 

where the underlying process does not lend itself to a small 

order regression model in which case an approximate model is 

chosen on the basis of trade-off between the decrease in op2 

and additional segmentation cost and complexity due to the ' 

increase in the number of model coefficients. As an example 

of 02 varies as in Figure 2 as a function of P, then the value 
,.. 
P could be taken as the best order . 

• • 
2 • 

o • 
• 

• • • • • 
,.. P 
P 

Figure 2. 
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3.2 .. Properties of the Modeling Technique 

The properties are: 

1. If the underlying 2-D process satisfies a finite order auto

regressive model, this procedure will find that model. The 

proof of this property is given in Appendix A. 

2. When an approximate model of orderP is chosen, the correla

tion generated by this model matches the a priori correlation 

at, at least, (P+l)2 pOints. The proof of this property is 

given in Appendix B. 

3. In deriving the model, only numerical values of the correla

tion R(Ll'L2) are needed and no analytic form is required. 

Therefore in practice, R(Ll'L2) can be obtained numerically 

using training areas. 

4. Though, beyond the scope of present considerations, this 

method is believed to be applicable when stationary constraint 

is removed and nonstationary processes are to be modeled. 

For a' given correlation function, the described procedure will 

always generate a model. This model, however, may be unstable 

hence unacceptable for our purposes since it cannot represent 

a homogeneous process. Under these circumstances, then, tests 

must be performed to insure stability [lOJ. 
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4. Scene Segmentation 

Having found an either exact or approximate autoregressive model 

for each class, the following describes how these models are used in 

achieving optimal segmentation. The optimality criterion is derived 

in Appendix C and it is evident that this criterion is somewhat dif

ferent than the familiar classification criterion. This is to be ex-

pected since the segmentation process, by nature, not only is a 

classification process but is a partitioning process as well. 

Development of a general segmentation method that satisfies all 

the intrinsic conditions of the optimality criterion of (C-8) is 

currently under inv·estigation. In the next part, however, a segmenta.:.. 

tion method is presented which divides the image into blocks (a group 

of pixels) and classifies each block according to the optimality 

principle. 
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4. 1. Segmentation Procedure 

Let the models associated'with the M classes wl ' .... , wM be of 

orders Pl , .... , PM' respectively and let 

( 4.1) 
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The segmentation of the image is achieved by dividing the entire image 

blocks of (P+l)x(P+l) in size and classifying the individual blocks statt

ing at the upper left hand corner and in the row by row fashion. Let 

Bij designate the block in row i and column j. Within each block let 

the intensities of the image be y(k,~), k=l, .... , P and ~ = 1, .... , 

P and finally let the pixels in.Bij be rearranged in the vector Yij as 

follows: 

(4.2) Yij = {y(1,1),y(l,2), .... ,y(1,P),y(2,1), .... ,y(P,P}} 

{y(l,l), .... ,y(P,P)} E Bij 

A given block Bij is considered to be a starting block if the three 

blocks Bi-l,j' Bi,j-l and Bi-l,j-l either do not exist (i.e., Bij is on 

the uppermost or the left hand most part of the image) or these blocks 

do exist but they all have not been classified into the same class (i.e. 

if Bi,j-l E w2 and Bi-l,j E w4' for example). With this definition, 

then, the segmentation process will be totally defined by describing 

how a starting and a non-starting block are classified. 

Assuming equal a priori probability of occurence of each class, wl ' 

•••• , wM' 
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(4.3) 

a starting block Bij is classified to the class wk if 

Since 

(4.5) 

where 

N = (P+l)2, 1.I is an N x 1 vector whose 
-I. 

elements are the mean,value of class wi and ~i is the covariance matrix 

of the vector Yij as defined in (4.2). Note that for each class wi' the 

matrix ~i is determined from the a priori class statistics in (2.1), 
, 1 
hence l<I>i l and, <l>i- are computed only once for each class. 

Substituting (4.5) in (4.4) and taking natural logarithm and sim

plifying both sides yields the following rule for classifying a starting 

block B .. : 
lJ 

(4.6) B •. € wk if 
lJ 
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for all R. = 1, •••• , M 

Now if B1.J
· is not a starting block this means that B. 1 ., B.' . 1 l-,J 1,J-

and B· 1 . 1 have all been already classified into the same class, say 
1- ,J-

Wk. The block Bij is also classified in the class wk if 

(4.7) P(Y··IY~· . l'Y· 1 .,y. 1 . l'wk) > P(Y1·J~lwn) 1J 1,J- 1- ,J 1- ,J- - '" . 

for all R. = 1, .... , M 

Otherwise, B .. is classified in class.wn where 1J 

(4.8) 

for all R. = 1, .... , M 

n,R. 1 k 

In other words, if (4.7) is not satisfied, then Bij is determined not to 

belong to wk and is treated as a astarting block for any other class 

except wk. 

The right hand side of (4.7) and both sides of (4.8) are evaluated 

. using (4.5). The left hand side of (4.7), however, is to be evaluated 

using the autoregressive model of the class wk. Let the zero mean model 

of this class be 

Pk Pk 

x(i,j) = ~ ~ am~ x(i-m,j-n) + U(i,j) 
m=O n=O 
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which i~dicates that each element, of the vector Yij in (4.2) satisfies 

(4.9) 

Pk Pk 
y(r,q) - llk = L 2: 

m=O n=O 
m+n~O 

k r . . ] amn y(r-m,q-n) - llk + U(r,q) 

wh~re rand q now refer to the actual location on the two-dimensional 

grid in the image. For each element of Yij corresponding to location 

(r,q) on the image let 

(4.10) '.' 

Pk Pk 
. k [ y(r,q) = L L amn y(r-m,q-n)-

m=O n=O 
m +n 'f 0 

Substituting (4.10) in (4.9) results in 

(4.11) . y(r,q) - llk - ;(r,q) = U(r,q) 

But since U(r,q) are a set of independent variables, the left hand side 

of (4.7) is equivalent to 

(4.12) P = p(y··ly· . l' y. 1 ., y. 1 . l' wk)= 1J 1,J- l-,J 1- ,J-

where again (ri , qi)' is the location of the ith element of Yij on the 

image. Substituting (4.11) in (4.12) yields 

(4.13) 
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where ,.... 

2 
° = k 

, 

, / N = (P+1)2 

,..... 

As before, for the sake of comparison in (4.7) the quantity 

N 

(4.14) 2 1 ~ pi =:N 1 n (ok )+ -2 L.J 
ok t=l 

- is used in the actual implementation. 

{i 
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4.2 .. Optimal ity of the Segmentation Procedure 

In order to discuss the optimal characteristics of the procedure 

of 4.1 it must be pointed out that the procedure as presented takes a 

group of pixels. (a block) and classifies them (it) into a given class. 

Hence on the pixel by pixel basis, the procedure cannot be optimal 

since a class boundary can be such that it goes through a given block 

\'/hile the procedure, .as it stands now, will classify all the pixels in 

that block into a particular class. However, ignoring the misclassi

fication of the pixels around the boundaries and viewing the image in 

a block form, the question remains as to whether the blocks are 

classified optimally or not. 

At this stage, however, instead of considering the overall opti-

mality of the procedure let us consider implications of the optimality. 

rule when a non-starting block .is processed and classified. The reason 

for thi s 1 imited analysis, at this time, is the author's b'el ief that 

it is this part of the process that shed's the most light in the de

velopment of future optimal segmentation techniques. So let Bij be an 

arbitrary non-starting block and let us assume that the segmentation 

achieved up to Bij has been optimal. Let B be the set uf all the blocks 

previous to Bij (in the operational scheme of the last section) that 

has already been optimally segmented. For the sake of notational ease, 

and without loss of generality, let us further assume that B is 

classifiedinto a particular class wp. So 

(4.15) 

·--' 
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for all a, b=l, •... , M and all subsets Bm of B. Now if the procedure 

classified Bij into wp as well, then from (4.7) 

(4.16) p ( B .. ! B. . l' B. 1 ., B. 1 . l' w ) > p (B .. ! wk) 1J 1,J- 1- ,J 1- ,J- P - 1J 

for all k "I p 

But due to the Markov property of the process in class w~ 

(4.17) p(B .. !B .. l' B. 1 ., B. 1 . l' w ) = p(B .. !B,w ) 1J 1,J- 1- ,J 1- ,J- P 1J P 

Substituting (4.17) in (4.16) and multiplying both sides by (4.15) 

results in 

But 

(4.19) 

hence (4.18) becomes 

for all a, band k "I p and all subsets Bm' Thus (4.20) shows that when 

(4.7) is satisfied then the segmentation remains optimal. 

Similarly it can be shown that if (4.7) is not satisfied, the seg

mentation will remai~ optimal. 
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Appendix A 

Let the zero mean 2-D Gaussian process x(·,·) satisfy a pth order 

autoregressive model of the form 

P P 

(A.l) xCi ,j) = L:L <lkR. x(i-k,j-g,) + U(i ,j) 0 . 

k=O g,=0 
k+g,=O 

E U(i,j) = 0 

E U2(i,j) = 0
2 . 

then x(·,·) is a Markov process having the property 

(A.2) p[x(i ,j) Ix(i ,j-1), .... , x(i':'P,j-P), .... , x(i-P-m,j-P-m)] = 

p[x( i ,j) Ix( i ,j-1), ...• , x( i-P ,j-P)] 

for any m ~ 0.. From (A.2), then \,/ehave 

(A.3) E x(i~j)lx(i,j-l), x( i-P ,j-P), x(i-P~m,j-P-m) = 

E x(i,j)lx(i,j-1), ..... , x(i-P, j-P) 

But from (A.l) 

P p 

(A.4) E x(i,j)lx(i,j-l), .... , x(i.-P,j-P) = l: L <lkR. x(i-k,j-g,) 

k=O g,=0 
k+g,~O 

.-" 

, . 
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NO\'J suppose for an order P+m the model ing procedure of Section 3 finds 

the model: 

(A.5) 

P+m P+m 
( " ") -" "" X 1,J - ,,-' L.J 

k=O £.=0 
k+£.fO 

8k£. x(i-k,j-£.) + U' (i ,j) 

However the minimum variance criterion of (3.9) necessitates that 

. (A. 6) E x(i ,j) Ix(i ,j-l), ..•. , x(i-P,j-P), ...• , x(i-P-m,j-P-m) 

P+m P+m 

= L L 8k£. x(i-k,j-£.) 
k=O £.=0 
k+Q.fO 

Finally comparison of (A.4) and(A.6) with condition (A.3) necessitates 

that coefficients 8k£. have values: 

(A.7) ~ 
ok£. for k 2. P, Q. < P 

8kQ. = 
0.·' otherwi se 

Substitution of (A.7) in (3.13) will result in 

(A.S) 
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hence proving the lemma that if the underlying stationary and Gaussian 

2-D process can be modeled by a finite order autoregressive model, then 

the modeling procedure of Section 3.1 will result in that model. 

·---

--
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(B.1) 

Appendix B 

Let the pth order model obtained from the modeling procedure be 

.. p P 

x{i ,j) = L L (lk.e. x{i-k,j-.e.) + U{i ,j) 
k=O .e.=O 
k+.e.!O 

E U{i,j) = 0 

E U2{ i ,j) = i 

L~t vectors Z and W be defined as 

(B.2) 

Thus the first {P+l)2_1 elements of Z are the same as the elements of 

the vector ~ in (3.11). This allows us to combine (3.11) and (3.13) 

and state that the model parameters are found by solving a (P+l)2 system 

of linear equations of the form 

(B.3) 

where Al now is a (P+l)2 x (P+l)2 matrix and vectors Z and Ql are (P+l}2 

"x 1 size ve'ctors. But the elements of Al and Q, are elements of the 

vector W, hence the set of equations in (B.3) is also a linear set of 

equations in ROl' R02 ' .... , R10 ' R12 , .... , Rpp and ROO' Thus (B.3) 

can be rearranged to an equavlent form 

(B.4) 
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where now the elements of A2 and Q2 are the various elements of the 

vector Z or namely the model parameters .. 

Now suppose the first (P+l)2 cor~elations that are generated by 

the model in (B.1) are Cal' CO2 ' ... etc. and let 

(B.5) 

Since x(·,·) is zero mean and stationary, the correlation values Cal' 

CO2 ' .... etc. must satisfy (3.10) and (3.13). This system of linear 

equations has the form 

(B.6) 

Finally comparison of (B.4) and (B.6) yields 

A 

W = W 

and thus the proof of the stated property. 

.-, 
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Appendix C 

Optimal Segmentation Criterion 

For the sake of notational simplicity, the following discusson 

and derivations are presented in a one-dimensional setting. However, 

each step and the result hold true for two-dimensional signals as well. 

In an M class environment Wl , •... , WM let 

( C.l) 

be a set of observed data. The segmentation problem, then, is the 

process of partitioning x into disjoint subsets xl' .... , xM and 

assigning each subset to one of the classes Wl , .... , WM (one or more 

of the subsets can be empty). In accordance with Baye's criteria of 

optimality, namely minimization of average loss, the average loss ~ 

incurred by partitioning x into two subsets xl and x2 and assigning xl 

to class wk and x2 to class wt is 

(C.2) P= l{(wk, w
t
), (x

l
,x2)} 

M M 
= L I: C[(wk, wt ) I (wi ,wj )] p[(wi ,wj ) I (xl ,x2)] 

i=l j=l 

where C[(wk,wt)l(wi,wj )] is the cost associated with assigning xl' x2 to 

the classes wk' wt while in fact they belong to classes wi' wj , re

spectively. Assuming a symmetric cost function for C of the form 

(C.3) 
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where 

__ j1 if k=i and t=j 
o(k-i ,t-j) 

o otherwise. 

and substituting (C.3) in (C.2) results in 

(C.4) M M 
P = L L P[(wi ,wj )l(x1,x2)] -

i=l.j=l 

M M 
L: L o(k-i,j-£,) P[wi ,wj )l(x1,x2)] 
i=l j=l 

= 1 ~ P[(w~,Wt)l(x.,x2)] 

P[(x1,x2)I(wk,w£,)] P(wk~Wt) 
= 1 - ---=---=--:=-r--=-=---;:---":":"-"":':-P(x1,x2) 

But by definition 

and assuming independent class occurences 

(C.6) 

.---

-, 

--. 

j 
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So for a given partition xl' x2 of x, the classification xl E wk and w2 
i , E w£ is optimal if 

: ' 

i i _ 

(C.7) 

for all i, j = 1, .... , M 

where the densities on both sides satisfy (C.5) and (C.6). 

The discussion, so 'far, has been based on what the optimal rule 

will be if one is given a two segment partition xl and x2 of the set x. 

However, (C.4) holds true for all possible two segment partitions of 

x denoted by (xl ' ,x2
I
), • ~ •• ~' (xl P ,x/) where P is the total number of 

possible of such partitions. Hence a particular two-segment segmenta

tion of x (partitioning and classification) of the form xl
q 

E, wk and 

,x2
Q 

E w£ is, optimal if, 

(C.B) 

for all i, j = 1, •..• , M 

and m = 1, .... , P 

where, again, P is the total number of possible two-segment partitions 

on x. Finally, (C.2) through (C.B) can be expanded to include three or 

four or in general s-segment partitions on x. 
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ABSTRACT 

This paper concerns parametric mixture models appropriate for data 

presented in homogeneous blocks of varying sizes from several unidentified 

source populations. For most applications, the data elements within each 

block ·are dependent. Models are proposed for multivariate normal data 

incorporating two types of dependence, exchangeability of elements within 

blocks, and a Markov structure for blocks. The·consequences of assuming 

.exchangeability, when in fact the Markov structure holds, are explored. 

Computational problems for each model are considered, and results of a 

simple test of the exchangeability hypothesis.for LANDSAT data are pre-

sented. 

-i 

- I 
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Introduction 

The mixture density estimation problem considered in this paper may 

be described as follows. A sample of N independent observations 01' ... ' 

ON is given, each observation 0i consisting of a positive integer ni 
(block size) and a p x ni matrix 

whose columns Xij € mP are the basic experimental measurements. Each 

observation 0i comes from one of k populations IT l , ... , IT k, where k 

is known but the population of origin of each observation is unknown. Let 

qi > 0 denote the probability that an observation comes from ITi . 

Although the data blocks Xi are independent, the basic measurements 

Xij within each block are possibly dependent. For applications in remote 

sensing of agricultural resources, the parameters of primary interest are 

qi and E[niIITiJ, the mean block size for the ith population, where each 

block is a set of multispectral measurements from a single agricultural 

field belonging to a single crop class ITi . The product qiE[nilITiJ is 

related to the acreage in the sampling region covered by the class· ITi . 

The procedures suggested herein are automatic procedures capable of handling 

large sample sizes N as well as large dimensionality p, with human 

intervention restricted mainly to a posterior description of classes. It 

should be possible to modify these procedures, along the lines indicated 

by Walker [llJ, to provide for the inclusion of a relatively small number 

of labelled samples, whose class origins are known, and perhaps to improve 

upon the estimates of the parameters derived from the labelled samples at 
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a relatively small additional cost. 

Let the observations be generically denoted by e = (n, X) and let 

f(n, x I rr~) be the density function of e; given that e comes from 

rr~. Let f(x I n, rr~) be the density function of X, given n and given 

that e comes from rr~, and let f(n I rr~) be the density of n given . 

population rr~. The mixture density for e is 

k 
f(n, x) - 1: q~f(n, x I rr~) 

~ =1 . 
( 1.1) 

= 

and the log lik~lihood for the sample is 

( 1.2) L = 
N 
1: log 

i = 1 

We shall assume particular parametric forms for f(n I rr~) and f(x I 
n, rr~) which are simple enough that they are estimable from (1.2). In 

particular, we shall consider multivariate normal forms for f(x I n, rr~) 

which incorporate either exchangeability of observations within blocks 

or a first order autoregressive covariance structure. The consequences 

of the exchangeability hypothesis are presented in some detail, and the 

possibility of approximating the autoregressive form by exchangeability 

is considered. Finally, we present the results of a simple test of ex

changeability for LANDSAT data. 

-, 
I 

-i 
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Two Covariance Hypotheses 

Throughout the remainder of this paper it will be assumed that 

f(x I n, rr~) is a pxn-variate normal density function. To simplify 

notation,let Y = (Y11 ••• IYn) be a random p x n matrix having density 

f(x I n, rr~). We assume that the column process Y1, •• ·, Yn of Y is 

stationary with unknown meanlln~ and covariance function fnR,(h) = 

cov(Y j , Yj +h). Next to independence, the simplest assumption about 

fn~(h) is the exchangeability hypothesis that Y and YW have the same 

distribution for each n x n permutation matrix W (to denote this we 

write Y a YW). In terms of fn~' the exchangeability hypothesis can 

be formally expressed as 

if h;t 0 

E 

if h = 0 

for some (unspecified) symmetric p x p matrices 1/.In and I . satis
nR, 

fying the conditions that 1/.In~ and1/.lnR, + nIn~ are positive definite. 

Experiments in image texture generation [9] and studies of spatial 

correlation in LANDSAT images [4 ] suggest that the correlation of data 

elements as a function of spatial separation might be modeled as an auto

regressive process of low order. Accordingly, as an alternative to (E), 

we are led to consider the hypothesis (M) that fnR,(h) has a first order 

autoregressive, or Markov, structure. 

M 
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for some unspecified positive definite p x p matrix QnR, and symme

tric px n matrix A with spectral radius less than one. 

The theorems stated below exhibit some consequences of the exchange

ability hypothesis which are of importance in computation and in testing 

the hypothesis. 

notes the n x n 

In denotes the vector (1, I~ ... , I)Ixn' while In de

identity matrix. AI denotes the group of n x n ortho
n 

gonal matrices W such that WJn = I n. 

Theorem 1: If Y is a normally distributed p x n matrix whose distri

bution satisfies (E) then YW a Y for each member of A~. If· P is 

an n x (n - 1) matrix satisfying pTp = In_I and pTJn = 0, then Z = 

YP has columns ZI"'.' Zn_I which are independently distributed as 

1 n n· 
Np(O,1jJnR,)· The statistics Y = - . L:. Yi and S = . L: (Y i - Y)(Y i - V) 

n 1 _ 1 1=1· 

are independent, V is normal N (ll L: + 1 ,,, ) and S has the p nR,' nR, n ~nR, , 

Wishart distribution Wp(n-I, 1jJnR,)' 

As a corollary of Theorem 1, if n > p + 2 and (E) is true, then 

the distribution of 

F· = n - p - 2 zI (n ~ I Z. Z~ ) ZI 
P j=2 1 J 

is central F 2. This observation is used as a simple test of p, n-p- (E) 

described in a later section. It is .interesting to note that the distri

·bution of F does not depend essentially on the normality of Y. Using 

results of A.P. Dawid [5] it can be shown that if Y is any random 
n - 1 T 

P x n matrix such that YW a Y for each WEAl, and L: Z.Z. is 
. n j =2 1 J 

- . 

....., 

- , 

. ) 

....., 
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1 1 

r{h) = rlAlhlrl. 1\ 
Let f{y) be a normal density satisfying (E) with 

1\ 
column mean ~and covariance function 

~(h) = i 1\ 
L 

1\ 1\ 
L + a. 

h ;t 0 

h = 0 
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The degree to which ~ approximates f is measured by the relative entropy 

H(~, f) = f f(y)log flU dy 
IRpn ' , t(y) 

The relationship between this criterion and the L1 distance, which might 

be considered more meaningful, is not very clear. The sharpest relationship 

we have been able to find is given 
1\ 

theorem is that if H(f j , f) + 0 

by Gema n [ 8 ] • 

in the next theorem. A corollary of the 

then' f I~j - fl + 0, a result proved 

lR
pn

, 

,Theorem 3: Let ~ and f be arbitrary density functions on IRm. For 

each E > 0, 

'~ JI~(Y) - f(y)ldy ~ 
IRm 

E + 
, ,E 

E 1\ 

10g(1 + d H(f, f) • 

It is straightforward to show that if expectations are taken with 

respect to the true density f, then 

( 3 .1 ) E (V) = ~, 

1 1 

cov(V) = ~ n2B n2 , 
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almost surely positive definite, where Z is defined in Theorem 1, then 

F has the Fp, n-p-2 distribution. Therefore the test based on F is 

a distribution free test for the invafiance of the distribution of Y 

under right multiplication by elements of AI 
n 

By writing out the density of Y under (E) it is easy to see that 

(V, S) is sufficient for the family of all normal distributions satisfying 

exchangeability. Under very mild restrictions the sufficiency of (y', S) 

implies (E). Thus, unless (E) holds for all source populations rr~, 

some loss of estimation accuracy in the parameters of primary interest 

(ql and E[n i I rr~J) in the mixture model is to be expected when the 

data.within blocks is condensed to block means and scatters. 

Theorem 2: Let F be a family of normal distributions of a .p x n matrix 

Y and suppose that some member of F satisfies (E). If (V, S) is 

sufficient for F, then (E) holds for each member of F. 

Approximating the Markov Structure by Exchangeability 

Even if the Markov assumption is more appropriate for applications, 
. . 

the computations involved in estimating the mixture 'parameters are very 

much simpler if exchangeability is assumed. In this section we will show 

that approximating the Markov form by exchangeability leads to certain· 

conclusions about the dependence on n of the covariance parameters 

~nl and En~ of (E). 

Let f (y) be the norma 1 dens ity of a p X n ma tri x Y whose columns 

satisfy the Markov assumption with mean II and convariance function 

....... 
I 

...., 
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1 1 
and E(S) = nn - n2B n2 , 

B -_ ( ')-1( ) 2( )-2 n where I - A , I + A - ~ I ~ A, A(I - A ) 

", The log-likelihood for the density f is 

" log f{y) - - n 2 1 logl~1 

-' 21 "tr~-lS - !!. tr{~' + nA )-l{-y ~) (-y ~)T 
'I' 2 'I' ~ - I"" - I"" 

The parameters which maximize the expectation, with respect to f, of 

" log f{y) are 

t = E(V) 

$ = n: 1 E{S) 

" 1 E = cov(V) - n(n _ l)E(S). 

Combining these equations with equations (3.1), and replacing £ by 

/J: " " the new parameter I{ = 1jJ + nE = n cov,(V) we have 

Theorem'4: H{~, f) is'minimized when 

" l.l = l.l 

1 1 

~ 
n 1 n2

B n2 = n - 1 n n - 1 

1 1 

" n2
Bn

2 R = 
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where B = (I - A)-l(1 + A)- ~ A (I - A)-2(1 _ An) . 

Although it is not obvious, these parameters satisfy the required 

constraints; that is, ~ and ft are positive definite. As 

R and ~ tend to constants. This implies that ~ is 

. n. We will make use of this observation in the next section. 
A 

The maximum value of E[log f(Y)J is 

n - 1 A 1 A DE. 
- 2 10gl1J!1 - "210g1RI - 2 ' 

A A 
where 1J! and R are given in Theorem 4. 

For large values of n this is approximately 

- ~ login!. - ~ 10gl(r - A)-l(1 + A)I - ~ • 

Since 

n -+ 00, 

for large 

E[1og f(Y)J = -.. ~ 10glnl - n 2 1 10g11 - A21 - ~ . 

we have the following expression, for large values of n, for the minimum 

entropy: 

A n 2 
H(f, f) Z - "2 10glr - A I . 

Estimating the Mixture Parameters 

The most successful method for estimating the parameters in a mixture 

of distributions from a single exponential family is maximum likelihood 

[10J. When the component distributions of the mixture are parametrized 

- .. 

-i 

. j 
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in the right way, the EM procedure has a very natural and easily imple

mented formulation [10J, [6 J. For density functions f(x I n, IT~) 

corresponding to the Markov assumption the likelihood equations for the 

mixture parameters are extremely complicated, and there is no obvious 
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alternative to using a standard optimization procedure to maximize the. 

likelihood function. There are difficulties involved in 'obtaining exact 

maximum likelihood estimates with a sample sequence from a single auto

regressive series (see [ 7, p.329J and [ 1 J), and it is 'reasonable to 

think that these problems will be compounded in the mixture setting pro

posed,. resulting in multiple solutions, slow convergence, etc. In general, 

the situation when f(x I n, IT~) satisfies the exchangeability condition 

is not much better; however, the special case wherein Ln~ = ~~ and 

~n~ = ~~, and L~ and ~~ are independent ofn, is amenable to solu

tion by the EM procedure. For large values of n these assumptions are 

consistent with the remarks.at the end of the last section, if the Markov 

assumption holds with parameters independent of n. 

Let each f(x I n, IT~) have the form (E) with mean ~n~ = ~~ 

and covariance parameters ~n~= ~~, Ln~ = ~ L~ • . Define . R~ = I/I~ + L~. 
Then ~ R~ is the covariance matrix of the column-mean. X of an observed 

bl.ock of measurements given that the observation comes from IT~ and given 

the block size n. Suppose the density f(n I IT~) is from an exponential 

family 

f(n I IT ) = C(A )h(n)eF(A~)t(n) 
~ ~ 

n = 1, 2, ..• 

where the parameter A~ is the exp~cted value of t(n) under f(n I IT~), 
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[3J. From (1.1) and (1.2) the derivative of the log~likelihood with 

respect to A~. is 

(4.1) 
N 
E 

i = 1 

q~f(ni' Xiln~) 

f(n., X.) 
1 1 

By differentiating the equation 

[ _CI_(A..;.:..~) + F'(A }t(n.)] 
C(A } ~. 1 

~ 

wi th respect to A~, one sees that. 

C1(An} 
N = _ p. (A }A 

~ 9. 

(see [ 3 J). Hence aL = 0 if and only if 
aA9. 

(4.2) A = EN t(n.} E N 

N f(n i , Xilnn) . / N f(n i , Xilnn} 
~ i-I' f(ni' Xi) 1 i = 1 f(n i , Xi) 

Similarly, by considering 

we must have 

aL 
aq~ 

, one sees that for a maximum of L 

(4.3) 
N 

q = 1 E 
~ N i = 1 

q~f(ni' Xiln~) 

f(n i , Xiln~} 

Now let Xi and Si be the mean and scatter of the columns of Xi' Then 
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From these equations it follows that the derivatives of L with respect 

to llR.' WR, and RR, all vanish when 

(4.4) 

(4.5) 

(4.6) R = E 1 1 N n. eX. ) (x ) E N 

N f(n., x·lnJ :In f(n l·, X,·lnn) 
R, i= 1 f(n i , Xi) 1 1 ~ llR, i - llR, i = 1 f(n i , Xi) 

The iterative procedure suggested by equations (4.2)-(4.6), namely, 

evaluating the right hand sides with the estimates Aij ), qij ), llij ) , 

1/JP) '. RP) at the jth step, to obtain the estimates qij +1), llP+1), 

wij+1), R(j+l), at the (j+l)st step, can be shown to be a slightly 

modifi ed EM procedure (see [lOJ, and [ 6 ]). 
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Testing the Exchangeability Hypothesis 

Standard testing procedures for the two covariance hypotheses con

sidered would require large block sizes ni and a large sample of obser

vationssegregated as to block size and type. The remarks at the end of 

the second section concerning the distribution of the statistic F under 

the hypothesis (E) suggest a test which is much easier to implement. 

For ,the ith block of measurements Xi' let Zi = (Zi11 ••• IZi, n.-1) = 
1 

X.P., where Pl. isa n· x (n. - 1) matrix satisfying the conditions 
1 1 1 1 

given in Theorem 1. Let 

2 n. - 1 
ni - p - T (1 T ' )-lz. 

F. = Z·l ~ Z .. Z. . 'I 
1 P 1 j = 2 lJ lJ 1 

If (E) holds for all classes then each ~i is distributed as Fp, n.-p-2' 
1 

Thus the number of observed blocks for which Fi falls in some given 

quantile 'range of its distribution can be tabulated an'd compared to its 

expected value. Table 1 shows these,comparisons for 216 quasi-fields 

of LANDSAT agricultural data from LACIE segment 1645 and 57 quasi-fields 

from LACIE segment 1633. The quasi-fields are those found by an automatic 

image segmentation program (AMOEBA) and may not be representative,of real 

agricultural fields. The given i goodness of fit statistics are si9"'" 

nificant at levels between 10% and 20%. The hypothesis (E) appears to 

be rather weakly disconfirmed for this data. 

-' 
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TABLE 1 - Disbribution of F-Ratios 

- Segment 1645 - 216 Fields 

Percentiles o - 5% 5 - 10% 10 - 90% 90 - 95% 95 - 100% 

Number 18 14 163 9 12 

Frequency 8.2% 6.5% 75.5% 4.2% 5.6% 

x2 = 6.72 

,... 

Segment 1633 - 57 Fields 

Percent il es o - 5% 5 - 10% 10 - 90% 90 - 95% 95 - 100% 

Number 6 1 44 "4 2 

Frequency 10.5% 1.3% 77.7% 7.0% 3.5% 

"x2 = 5.45 
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Appendix 

Proofs of the Theorems 

Proof of Theorem 1: The covariance of Y can be written as ~n~ 9 In + 
T 

En~ 9 JnJn , where 9 denotes the kronecker product. For W E A~ • 

YW = Ip 9 WT(y} has covariance (Ip ~ WT}(~n~ ~ In + En~ 9JnJ~}(Ip 9 W) 

= ~n~9 In + En~ 9 JnJ~. The mean of YW is ~ntJ~W = ~n~J~. Therefore, 

YW a Y. By a similar argument, if pTJn = 0, pTp = In_1 and Z = YP, 

then E(Z} = 0 an~ .cov(Z} = (Ip ~ pT}(~n~ 9 In + En~ 9 JnJ~}(Ip 9 P) = 

~n~ 9 In_I. Therefore the columns of Z are independently distributed 

as Np(O, ~n~}. To prove the last assertion let 

where P has the same properties as above. In block form, the covariance 

of YQ = (V I Z) is 

1 ~ + E 0 n nt n~ 

Therefore, V and Z are independent and V ~ Np(~n ' ~ ~n~ +·En~). 
Moreover, S = ZZ T and by the first part of the theorem S ~ ·Wp(n-l, ~n~). 

Proof of Theorem 2: Let fo be a density function in F satisfying the 

hypothesis (E). Define 
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for f E F. By a version of the Neyman-Fisher theorem (Theorem 6.1 of 

[2]), if (y, S) is sufficient, 
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almost everywhere, where gf is a Borel measureable function on the space 

of (Y, S). For a given f E F and W E A~, the set 

is an open set contained in B1 u B2, where 

and 

By Theorem 1, the pr .• measure AO correspondi ng to f 0 is i nvari ant 

under A~. Since Ao(B1) = 0 if follows that Ao(B2) = 0 also, and 

hence, AO(U) = O. Therefore U is empty and hf is an invariantfunc

tion. This implies that each f E F is invariant under l\~ and must 

satisfy (E). 

Proof of Theorem 3: The function 

E 

€ - logO + d 
1\ 

is positive and strictly decreasing on (0, 00). Thus, if ~ - 1 ~ E 

we have 
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A A A 

f f f r - 1 s 9 ( € ) [ r - 1 :- 1 og r ]. ~ 

\ 

Therefore, 

A A 

= f 
(r ~ l)f + 

f (r - l)f 

= € + g(€) J f log(~) 
m f 

IR 

A 

= € + g(€)H(f, f) • 
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ABSTRACT 

Multi-channel Landsat data are collected in several passes over 
agricultural areas during the growing season. This paper considers " 
how empirical Bayes modeling can be used to develop crop identifica
tion and discrimination techniques that account for spatial correla
tion in such data. Our approach models the unobservable parameters 
and the data separately, hoping to take adva"ntage of the fact that the 
bulk of spatial correlation lies in the parameter process. The pro
blem is then framed in. terms of estimating posterior probabilities 
of crop types for each spatial area. Some empirical Bayes spatial 
estimation methods developed earlier for this project are used to 
estimate the logits of these probabilities. 
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1. Introduction 

Multi-channel satellite image data, collected by Landsat,are 

re~orded as a multivariate (four dimensional, fof four channel~) time 

series (multiple passovers ~ five to seven times, spanning a several 

month long growing season) in two spatial dimensions. These data 

are part of the "fundamental research data base" described in an 

appendix to Guseman (1983), each file covering a 30 square nautical 

mile agricultural site divided into 22,932 pixels (picture segments, 

which are the measurement units). Also available for each site is 

"ground truth", being discrete (categorical) parameters indicating 

crop or ground cover type. Continuous parameters might,additionally, 

need to be estimated, but only discrete parameters are considered in 

this paper. 

Figure 1 illustrates the set-up, centering on pixel i. There, 

Vi might most generally be the 20 = 4 x 5 dimensional vector consis

ting of responses for four channels and five acquisition times. Here 

we often will assume that this dimension is reduced, perhaps by using 

Badhwartransformations (Badhwar, 1982) or a linear summary of the 

data. Thus Vi may be univariate or multivariate. Pixel i has coor

dinates Xi = (x il ' xi2 )', and ground truth parameter 6i • These para-' 

meters label crop types, which, of course, are highly correlated with 

those in nearby pixels due to spatial continuity of crop types. 
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P. /I -1 Pi 
/I 

Pi 
/I 

1 +1 

Pi: pixel i . • P. 1 P;+l 
. . . 

1- x; 

Vi' 6· 
1 

P. I 1 
1 -

P. I 
1 P;'+1 

.. , 
.. 
• 
• 

FIGURE 1. Areal problem organized into pixels or pix~l-groups, 

centered at pixel i. Pixel coord;n~tes are xi = (i;l' xi2 ). 

Responses are Vi' True parameters 6 i may be continuous 

or discrete labels. 
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Our goal is to estimate the probabilities of each crop type for 

each pixel, using the data {Y i }, incorporating the spatial information. 

That is, we must determine for each i = 1, ••• , n (n = number of 

pixels), the probabilities 

(1.1) P(8 i = m,ldata), m = 1, 2, ••• , M = no. crop types. 

Having the classification probabilities (1.1) permits construction of 

a "probability map" of crop types. This formulation also handles 

"split pixels" naturally, interpreting probabilities as fractions of 

each crop. type in a pixel. 

One can use the probability map to answer many questions. The 

fraction of a crop type may be obtained for any specified region by 

summing probabilities for the relevant pixels. Field boundaries may 

be determined as occurring when classification probabilities change 

abruptly. Thus we concentrate on the classification probabilities, 

by pixel. Of course, the spatial methods developed here are applica

ble to groups of pixels, as well as to pixels themselves, and the best 

grouping size must be considered. For simplicity of exposition, 

however, the remainder of the discussion will be framed in terms of 

pixels. 

Formula (l.l) suggests a Bayesian type of calculation. We shall 

consider Bayesian and empirical Bayesian (EB) approaches to this 

problem. 
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b.. Empi ri ca 1 Bayes Model i ng 

Empirical Bayes models, Morris (1983b), involve two stochastic 

. processes: one for the parameters a, and one for the data Y •. In 

general, we assume that 

(2. 1 ) 

(2.2) 

y::' {Vi} has density f(y.!a) if the true 

values are a = {e.} 
1 

a =' {ail has density 7l'(a), with 7l' e: II, 

a class of "priors." 

We call this an empirical Bayes (EB) statistical problem. It is a 

parametri c empiri ca 1 Bayes (PEB) probl em if II =" bT on 0:: parameter a 

set: a e: G}, G a parameter set describing the prior. 

(2.3) 

The marginal distribution 

hCvla} = r f(yla}rr(ala}de 
o 

provides a basis for estimating a e: G, and for estimating Bayes rules, 

e.g., for estimating the Bayes estimator 

,. 
(2.4) aa = E[aIY,a]. 

In Landsat applications, however, the parameters a will correspond to 

crop labels, and thus it is more meaningful to replace (2.4) by (2.5) 

and estimate the posterior probabilities: 

........ 
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(2.5) Py(a) = P(6 = mIY,a). 

Note that because a (index of the stochastic process'determining 6) 

is unknown, (2.5) is a quantity requiring estimation. 

Empirical Bayes theory assumes that the prior distributions (2.2) 

exist, but w £ IT is not known (IT will be highly restricted relative to 

all priors on 6, however). This differs from the Bayes approach in 

that the data are used to estimate the prior. ° Methods that result 

from this approach, however, also often have good frequency operating 

characteristics, e.g., James-Stein (1962), Efron-Morris (1973, 1975). 

Spatial applications suggest that the prior densities w incorporate 

dependence between the parameters 6i • 

The most deve1opeod examples of (2.1), (2.2) include Y.16.i~dN(6.,V), 
1 1 1 

V known, and 6ilai~dN(z~a,A), a = (a, A), A ~ 0, a £oRP, zi a known 

vector. In spatial applications, zi will depend on xi' The estimate' 

of the mean 

,. ,. ,. 
(2.6) 6i = (l-B)Yi + B (z~a) 

,. 
with B and a estimated from the marginal distribution of Y is an 

empirical Bayes version of Stein's estimator, which has been proved 

superior to the estimator Vi' Generalizations and other applications 

of this theory are reviewed in Morris (1983b) and Efron-Morris (1975). 

Empirical Bayes applications to spatial problems have been par

ticularly plentiful. Examples cited in (Morris, 1983b) include: 
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(a) Revenue Sharing. Fay and Herriot (1979) show that estimates 

of per capita census income in "sma 11 areas II can be improved 

by combining data from' neighboring areas. 

(b) Insurance. The insurance industry uses "credibility" 

(empirical, Bayes) methods to determine to what extent risks 

in neighboring territories should be used to estimate risks 

in a particular territory. 

(c) Fire Alarms. Carter and Rolph (1974) develop empirical Bayes 

estimates for spatial data (alarm box locations) to deter

mine better estimates of false alarm rates. 

(d) - Epidemiology. Efron and, Morris (1975) show that empirical 

Bayes estimates of toxoplamosis prevalence improve substan

tially upon area-specific estimates in El Salvador. 

(e) Forestry. Burk and Ek (1980) improve sample estimates of 

forestry volume for specific areas by developing empirical 

Bayes estimates that use information from neighboring areas. 

In these cases empirical Bayes methods were demonstrated to work 

better'than standard methods in the most convincing way: by showing 

that had they been used with real data, that better predictions, and 

decisions, would have resulted. The demonstrated success of these 

spatial empirical Bayes applications encourages interest in developing 

and extending such methodology for remotely sensed image spatial data. 

However, this latter application is substantially more complex than 

its predecessors, and therefore substantial additional development 

will be required. 

'--, 
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~ An Approach to Estimati ng Spati a 1 Probabil iti es 

The empirical Bayes framework models parameters and observations 

as being realizations of separate stochastic processes. This section 

considers these processes in more depth, in the context of Landsat 

data. 

3.1. The parameter process. The bulk of Landsat spatial infor-

mation is captured in the parameter process, i.e. in the distribution 

of crop labels. Statistical procedures that incorporate this infor

mation will 'perform better than those that ignore it. In practice, 

the parameter process is unobservable. However, IIground truth" data 

are available from Landsat experiments, and may be used to construct 

discriminant prodedures. 

The ground truth discrete parameter process is very complicated, 

involving the distribution of areal segments and the crop types with

in them. Work on' this project by M. Naraghi (on random fields), by 

H. J. Newton (on spatially homogeneous processes), and by H. P. Dece11, 

Jr. and C. Peters ~n special covariance structures), is reported in 

(Guseman, 1983). 

These papers provide approaches to modeling the covariance, or 

autoregressive structure required for spatial parameter processes. 

However, we additionally require those to be discrete categorical 

processes, thereby introducing further modifications. 

The ,simplest labeling ~rocesses are those that involve only two 

labels, "zero-one processes". At various initial stages in this 
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research, it is desirable to consider simplified models, binary pro

cesses being one possible choice. Autologistic models provide another 

method for model i ng zero-one data (Ri p 1 ey, 1981). 

The empirical Bayes approach permits unknown parameters to exist 

in the prior distribution, requiring that their values be estimated 

from data available in the actual application. Thus, one needn't 

'--. 

completely specify the parameter process. . ~ 

3.2. The data process. Data {Yi} are provided for each.pixel, 

with distributions dependerit on the parameter values. Spatial infor

mation in this process is important only if it affects the conditional 

distribution of' ~i} given {Si}. Spatial correlation induced in the 

'~ij values via the' mil correlations alone is most easily ignored, 

and therefore is a desirable simplification, if the data permits. 

If the spatial aspects of the y values (permitted to be continu-

ous) can be justifiably ignored, then we may use data for which ~round . 

truth is available to estimate the density function of the intensity 

measurements associated with crop type m: 

(3.1) fm(y), m = 1, 2, ••• , M. 

These density functions might be adequately estimated as sample pro

portions in certain cases, but more effective choices are likely to 

result from density' smoothing procedures, for example, as discussed 

by for Landsat data by D. W. Scott (for multi-dimensional data) and 

E. Parzen (univariate and multivariate density quantile estimators), 

....... 
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both in (Guseman, 1983). Also see Wahba (1981). 

Now consider the following implemention of these ideas. We will 

use Yi' the data in pixel i alone, to estimate 

(3.2) p. :: P (e. = lly) 
1 1 

~mong the possible labels m = 1, 2, ••• , M. Note that, in this 

approach, Yi may be multivariate. Any time-aspects of Landsat data 

are ignored, for now. Let TIl' ••• , TIM be the prior probabilities of 

the M crop types. Then we may calculate (3.2), usi~g Bayes' rule, 

(3.3) = TI /1 (Yi) 
p i =M=----=~.!---

ETI . f . (y.) 
1 J J 1 

This may be viewed, without essential loss of generality, as a 

two-label parameter process, by collapsing the last M-l labels into 

one "null" 1 abel: 

(3.4) 

and 

(3.5) 

Letting 

(3.6) 

we have, equivalent to (3.3), 

log(~) TI o 

153 



154 

(3.7) z. = ~. + 1 og ~fi (Yi )~ 
1 1 f (y.) 

o 1 

Thus, the familiar logarithm of likelihood ratio estimates the log-

odds (logit) of (3.2). 

R. Heydorn and R. Basu (on mi'xturemodels), in (Guseman, 1983) 

adopt a formulation similar to the preceding. They show how to esti

mate M and the TIl' ••• , TIM values by considering the fj(Y) to be normal 

distributions, and hence, taking (3~5) .to be a mixture of normal 

distributions. 

Even if the Heydorn-Basu distributional assumptions must be dropped 

,in favor of more complicated (non~normal, multivariate, etc.) likeli

hood functions, (3.7) is an easily comprehended function and an optf-

mal data summary. Thus, (3.7) deserves much study in the light of 

real Landsat data. 

We have thus far ignored the time dimension. The values assumed 

for the'Yi may incorporate this via Badhwar profile: features, computed 

from the ~greenness'l time series. Alternatively, the likelihood ratio 

criterion here may indicate other time-summaries, induced by allowing 

the Yi to be the matrix of time and band dependent values. 
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~ A Simple Discriminant Example 

The simple example here uses the univariate logarithm of likeli

hood ratio data zi"' (4.2) below, as appropriate data summaries. We 

then improve them, considered as 10git estimates, by incorporating 

other Zj values from neighboring pixels. In the case of homoskedastic 

(equal variances and covariances for the groups -- an assumption not in 

good ag~eement with Landsat data) normal distributions and M=2, the 

zi are simply Fisher's discriminant functions. They are thus nonnally 

distributed and are candidates for continuous parameter empirical Bayes 

estimation, as described for the' ~i} values of section 2. 

For independent homoskedastic normal measurements 

( 4.1) 

where m is one of two labels, a or 1, depending on which label applies 

in pixel i, it is easy to show that 

(4.2) ~ [Yi ...;~] z· =z· + 15--1 1 cr 

~ 

withz i = 10g( 1T 1hr
o )' ~ = (lll +llo)/2, cr 2 = Var(Yi)' cS = (lll-llo)/cr. 

Given (4.2), we estimate p. as 
1 

,. 
(4.3) Pi = exp(zi)/[l + exp(zi)]' 
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'" 
Table 1 lists the Pi as the probability of soybean (8= 1) versus 

an unassigned category (8=0), taking n =nl=.5. Here 0 = 1.5, ~ = 52 o 

and cr = 6 are estimated from a small amount of Band 3, Acquisition 4 

data from one transect. (This example is kept quite simple in order 

to illustrate the concepts most clearly.) 

-, 

-. 

--. 
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Table 1 

-
i Thirteen pixels, in one west-east transect, first six unassigned~ 

last six soybean, middle pixel split. Yi = Band 3 value from Acqui-
,. -

,., 
sition 4 (July 1978). Pi = probability of soybean using Yi only. 

pT is based on three point smoothing of the Yi values (yl). Average 
,., 

Pl error slightly improves on average of Pi for estimating true ai 
(average errors are .22 and .24). Pi estimates use strong spatial 

-- information involving prior knowledge of groups of six pixels, with 

average error • 03. See text • 

- .-
1 

Pixel i True a Yi p. y'I! p'l! p. 
1 1 1 1 

r 1 0 38 .03 39.3 .04. .00001 

2 0 42 .08 41.3 .06 .00001 

I 3 0 44 .12 44.3 .13 .00001 

4 0 47 .22 46.7 .21 .00001 -
1 5 0 49 .32 47.7 .25 .00001 

r 6 0 47 .22 46.0 .18 .00001 

7 .5 42 .08 44.3 .13 . .08 
~ 8 1 44 .12 46~3 .20 .9997 I 
: 

9 1 53 .56 52.0 .50 .9997 

10 1 59 .85 58.7 .84 .9997 

r- 11 1 64 .95 61.3 .91 .9997 

12 1 61 .90 63.0 .94 .9997 

13 1 64 .95 63.0 .94 .9997 

Average lai-Pi l :. .24 .22 .03 

j 

r-
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Stein-type estimators, described later, would shrink the logit 

values zi toward a smoothed version of the zi. Here we smooth by 

using a three point moving average zi involving the z - values in 

the preceding and next pixel along the transect as recorded in Table 1. 

We would ordinarily expect to use neighboring pixels to the north 

and south too, but did not do so in this simple example involving just 

one transect. The probabilities p~ are in average slightly closer to 
1 . 

A 

the trueS i than are the Pi. The amount of shrinkage·toward zi is 

* estimated to be full (8 = 1), in this example, and thus Pi is also 

the Stein, or empirical Bayes, estimator. However, the shrinking 

factor used, in Morris (1983b), and discussed here in Section 5, 

assumes the Yi' given the Si' to be ind~pendent. In these data, the 

Yi appear to be spatially correlated, and, if so, shrinking factors 

accounting for this must be developed. 
A 

The Pi in Table 1 can be improved enormously if one has more 

spatial informatio~. Suppose, for example, that we know that the 

last six pixels are'· the same~ either all are soybean, or ~ 

are soybean. The zi values are then should be summed over the six 

pixels before computing the estimate of the soybean probability. That 

. probability, called Pi in Table 1, is .9997 for each of the last 
A 

six pixels. Compare this with Pi = .12 for i = 8! We also get 

Pi = .00001 as the soybean probability in the first six pixels 

(llunassigned ll
). The only non-negligable error is the P7= .• 08. 

value for the middle (split) pixel. 
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Weaker forms of spatial information than that just discussed 

can, and should, be used. For example, suppose it were known that 

the 13 pixels fn Table 1 begin with pixels in the unassigned category, 
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and switch to soybeans after a random pixe1~osition "1". Then, 

assuming equally likely probabilities for I = 1, ••• , 12 a priori, and 

independent Yi values, the posterior probabilities of I are proportional 

to the likelihood 

(4.4) 
13 fi(Yi) 

L(i) = IT i = 1, ••• , 12. 
i+1 fo (Yi) 

Formula (4.4) provides probabilistic basis for estimating the change 

point (areal boundary), and the probabilities. Of course, more com

plicated models must be considered in realistic situations. 

Other forms of logistic regression and discriminant analysis 

have been proposed to deal with spatial correlation, see, for example, 

(Switzer, 1980) ~ 



160 

5. Shrinkage Estimation Using Affinity Matrices. 

We developed the notion of lIaffinity matrices ll in an earlier 

report (Morri~, 1983a). These n x n matrices, n = number of pixels, 

indicate the spatial affinity of pixels. An affinity matrix A is a 

stochastic matrix, the rows of A being probability vectors: Ae = e; 

e:: (1, •••• 1) I being the vector of units. Generally A wi 11 be a 

sparse matrix, only a few nei~hboring pixels being chosen to help 

estimate any particular one. Estimates z* like those in (5.1) below 

are similar to moving average estimates. 

The log-odds zi for pixel i are based on the raw data Yi for 

that pixel. Stein-type shrinkage estimators, used in conjunction 

with affinity matrices, and applied to the zi values, can improve. 

the logit estimate zi by shrinking zi to a smoothed value zi computed 

as an average of responses over neighboring values. That is, 

letting 

( 5.1) 

A an affinity matrix, then z* is a vector of spatially smoothed log-odds 

estimates. We need to choose between zi and zi' however. A Stein-type 

shrinkage rule allows the data to determine the degree to which z* 

should· be used in preference to z, by-employing a shrinking factor B 

in 

(5.2) z· = (1 - B)z. + Bz~, 
1 1 1 

-
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with B calculated as 

(5.3) B = (k-r-2)V 
E,· { z . - z~ )2 • , , 

The value r in (5.3) is chosen to account for the use of A, being the 

trace of A if A is symmetric (Morris, 1983a) , and V is the common, 

known variance of the zi' being 02 in the formulation of (4.2). 

Minimax results with respect to squared error loss for some estimators 

of this type are given in (Morris, 1983a). 

For spatial data, which are only locally homoegenous, an estimator 

with a localized shrinkage factor can be expected to improve upon 

estimators like those of (5.2), (5.3), which use a single, global, 

shrinkage factor. When the shrinkage factor is calculated separately 

for each pixel, (5.2) becomes 

(5.4) z. = (1 - B.)z. + B.z~. , ." " 
If A= (ai~), then a choice of B; is, from (Kostal, 1983), 

(5.5) diV 
B; = Ea~.(z. _ z~)2 

j'J J , 

Here di is a suitably chosen positive constant depending on A, allow

ing the shrinkage in pixel i to be determined by the Zj values for 

pixels to which the affinity matrix assigns nonzero weight. 
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6. Empirical Bayes for Time Series Analyses 

Thus far, this paper ignores the time-series characteri?tics of 

the data, but Landsat data includes a time series' {Yit} for each pixel 

i (typica'-'y, 5 times). For simplicity, we shall first consider the 

time series' {Ytl for a given pixel. 

A Bayesian structure for 'time series analysis is given by Harrison 

and Stevens (1976). Their DLM (dynamic linear model) consists of an 

observation distribution 

(6.1) 

with independent error terms. The parameter distribution, also with 

independent error terms, is specified as 

(6.2) 

The series is initi'alized by specifying 

(6.3) 8 1m ,C - N(m ,C ) ~ 
00000 

The posterior distribution of ut given yt = (yl, ••• , Y1) I is 

(6.4) 

where mt and Ct , given recursively by the Kalman filter, are the 

posterior mean vector and covariance matrix. The posterior mean mt 
provides an estimate of Bt •· These moments cannot be calculated 

unless all the process parameters are known. If there are' unknown 
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process parameters, such as m and C (the prior moments), they often o 0 

can be estimated using the marginal distribution of yt. These 

estimates then are used to estimate the posterior mean mt and thus at. 

When several time series'{Yit} follow (6.1) - (6.2) independently 

with different initializing distributions 

(6.5) e . 1m., C • - N (m ., C .), 
01 01 01 01 01 

empirical Bayes methods lead to estimates of moi with smaller mean 

squared error than those obtained from the marginal distributions 

of yt for pixel i alone. 

The parameters Ft , Vt , G, Wt , mo and Co in (6.1) - (6.3) will 

depend on the crop type in the pixel. Let ~ denote the model which 

obtains when the pixel contains crop type m (m = 1, ••• , M). The 

prior probability of each model is the prior probability of each 

crop type 'IT = ('lTl' ••• , 'lTM)'. Thus the response density (3.1.), 

f~{yt), is the marginal density of yt for pixel i under model ~. 

This density would be used to obtain the logit zi' ~s in (3.6), 

Thus incorporating the time-aspect of the Landsat data into the 

probabilistic structure of Section 3. 
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Abstract 

This paper is concerned with the use of .spline functions in the 

development of classification algorithms. In particular, a method is 

formulated for producing spline approximations to univariate density 

functions when each density function is described by a histogram of 

. measurements. The resulting approximations are then incorporated into a 

Bayesian classification procedure for which the probability of misclassi~ 

fication can be readily computed. Some preliminary numerical results are 

presented to illustrate the method. 
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§1. Int roduct ion. 

This paper is concerned with the use of spline functions as a tool in 

statistical pattern classification algorithms. In particular, we show how 

splines can be used to estimate the conditional density functions for the 

'classes of interest and to find the associated classification regions. 

Moreover, we also show how to compute the probability of misclassification 

associated with the algorithm. 

The paper is divided into 6 sections. In Section 2 we discuss the 

general Bayes classification procedure. In Section 3 we present a method 

for estimating densities based on polynomial splines. The problems of 

computing the related classification regions and the probability of 

misclassification are treated in Sections 4 and 5, respectively. We 

close the paper with a discussion of examples and future research •. 

§2. The Bayes Classification Procedure. 

Let nl and n2 be distinct classes of interest with known ~-priori 

probabilities UI and U2, respectively. Let X : ni U n2 + R be a random 

variable, where X(w) = x is the measurement in R taken from an element w 

of IT I U IT 2 Suppose that the measurements of elements from each of nl 

and n2 are characterized by density functions PI and P2' respectively. 

Then the Bayes optimal classifier is defined as follows: 
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Assign an element w to ~i if its measurement x = X(w) belongs 

to Ri, i = 1,2, where R1 and R2 are the Bayes Decision 

Regions defined by 

(2.1) Rl = {x E R: UIPI(X) ~ uzpz(x)} 

Rz = R rv R l' 

The numerical implementation of this classification procedure re

quires the determination of the sets Rl and R2, which in turn amounts to 

finding the roots of the equation uIP1(X) - u2P2(X) = 0 • 

Associated with this classification scheme, we define the probability 

of misclassification (cf. [1,2]) by 

(2.2) 

In general, the evaluation of G is a difficult numerical problem, 

even when PI and P2 are known density functions. One case where G can be 

computed exactly (along with the Bayes decision regions RI and R2) is the 

case where PI and P2 are known or estimated univariate normal density 

functions (cf. [12] and [13]). 

In most practical problems, the densities PI and P2 will not be 

known, and an essential first step in performing Bayesian classification 

is to compute reasonable estimates of these densities. This is a 

classical problem in statistical analysis. One of the standard 
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nonparametric approaches to this problem is to approximate Pl and pz by 

fitt; ng hi stograms constructed from measurements taken 'fromel ements of 

the corresponding classes. We discuss this fitting problem in the 

following section. 

§3. Estimating Densities Using Splines. 

In this section we discuss the problem of fitting a.spline function 

to a histogram. We begin with some notation. Suppose that tl < t2 < 

••• < tN+I and hI, ••• ,hN 'are given real numbers. These numbers 

~ describe a histogram function h: R + R, defined by 

-
1 hoi (3.1) h(x} = 

otherwise. 

The values t;, l..s. i ..s. N+ 1, descri be the edges of the bi ns of the 

histogram, while the values hi, 1..s. i ..s. N, describe the heighi of each· 

bin (cf. Figure I). 

Several techniques have been developed for approximating histograms 

using spline functions. In what appears to be the first paper on the' 

subject, Bedau [3] constructs the natural spline s which interpolates the 

histogram in the sense that S(Xi} = hi , i = I, ••• ,N, where xi = 

(ti + ti+l}/2 are the centers of the bins. later Boneva, Kendall, & 

Stefanov [7] and Schoenberg [17] analyzed the problem of. finding a spline 

s (the integral of a natural spline) which fits the histogram in the sense 

that 

171 



172 

t. 1 f 1+ s{t)dt = 
ti 

h. (t. 1 - t.) 1 1+ . 1 i = 1, ••• ,N. 

This condition assures that the area under the spline between each pair of 

points ti and ti+1 exactly matches the area in the corresponding bin 

of the hi stogram. These authors referred to thei r approximations as 

histosplines. Schoenberg [17] also considered fitting histograms using 

smoothing natural splines (and referred to the resulting fits as 

spl i nograms). But as observed 1 ater by the above authors and others (cf. 

[8J), a major drawback of methods based on natural splines isth~ tendency. 

of the fitting spline to dip below the axis near the ends of its support 

set. 

Another ap~roach to fitting a histogram h{x) using splines is to 

attempt to construct an approximating s{x) as a linear combinatjon of 

B-splines. To discuss B-splines,' we now introduce further notation. 

Suppose that Yl < Y2 < ••• < Yn+m is a set of real numbers. Then 

associated with these points there is a set of B-splines 

B1{X), ••• ,Bn{x) with the properties: 

B;{x) is a piecewise polynomial of order m with join points (knots) 

located at the points Yi, ••• ,Yi+m; 

Bi{X) has m-2 continuous derivatives on R; 

Bi (x) is positive on (Yi 'Yi+m) and vanishes elsewhere; 

Bi{X) can be computed efficiently and accurately. 

An example of quadratic B-splines (m=3) defined for equally-spaced knots 

is presented in Figure 2. 
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B-splines possess a variety of other important properties which make 

them ideal for approximation purposes, (cf. the books [9,18]). In 

particular, linear combinations of the form 

n 
(3.2) s(x) = I C B (x) 

j =1 j j. 

are easy to manipulate on a digital computer. The use of B-spline series 

of this form also has the advantage that s has support on the interval 

[Y1,Yn+m], and if we choose all the coefficients to satisfy the 

constraint 

(3.3) c.) 0 ,j=l, ••• ,n, 
J -

then s will also be a nonnegative function. 

The first author to use B-spline series as in (3.2) to fit densities 

appears to be Marsaglia [15]. His approach was to find coefficients 

c1, •• ~,cn to maximize c1 + ••• + cn subject to (3.3) and the 

constraint that s(x) i p(x), all x E R. This can be recast as a linear 

programming program. Although Masaglia obtained reasonably good results 

. with this technique for smooth functions p, when applied to histogram. 

functions h it tends to produce a spline s which lies substantially under 

. the hi stogram. 

Another approach to constructing a spline s of the form (3.2) fitting 

a histogram h as in (3.1) is to choose c1, ••• ,cn to minimize in some 

sense the vector e = [e1, ••• ,eN] with ei = s(xi) - hi, and, as 

before, xi = (ti + ti+1)/2, i = 1, ••• ,N. 
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Berinett [4,5] considered the cases where the quantity to be minimized is 

either the t1 or t~ norm of the vector e. Both of these problems 

(subject to the constraint (3.3)) can be cast as linear programming 

problems. 

Since we are working with histograms as approximatjons to a density 

function, it seems to us that it is important to match areas (cf •. the 

above discussion of the methods of splinograms and histosplines). Thus we 

propose the following alternative to the above spline methods: .Find 

CI, •.• ,cn satisfying the constraint (3.3) such that the resulting 

splihe minimizes the expression 

(3.4) 

Thi s problem can be recast as: 

(3.5) minimize E1 + E2 + ", + EN 

over cj ~ 0, 1.5. j .5. nand Ei ~ 0 , 1 < i < N, subject to the constrai nts 

(3.6) -E. < 
1 

n 
~ c. I.. 

j=1 J lJ 
< e: • 

1 
i = 1, ••• ,N 

where Ai = hi (t i+1-t i ) is the area of the i-th bin, and 

(3.7) I.. = 
lJ 

i - 1, ••• ,N and j = 1,.;.,n. 

Problem (3.5) is easily translated into a standard linear programming 

program which can be solved using readily available packages. The' numbers 

Iij in (3.7) can be computed easily by well-known B-spline algorithms 
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(cf. p. 200 of [18]). The application of this method to a practical 

problem requires the selection of the order m of the spline as well as the 

number and location of the knots. In general, we recommend that m be 

taken to be 2,3 or 4 which leads to linear, quadratic, and cubic splines, 

respectively. 

The selection of the knots is a more difficult problem. So far our 

numerical tests have been conducted with visual selection of the knots. 

Our experience suggests that it is reasonable to select the first and last 

knots at tl - wand tN+l + w, where w is the average bin wldth. A 

reasonable choice for the remaining knots is to place one at the center of 

each bin for odd orders, and at the bin edges for even orders. If 

additional knots are desired, they should be added in regions where the 

histogram has rapid changes in height. It is even possible to insert 

multiple knots (where a given knot location is selected two or more 

times). Multiple knots reduce the smoothness of the spline while adding 

to its flexibility. For a given order m, it is clear that the difference 

between the spline s and the histogram h measured in the L1-norm decreases 

as we add more and more knots. 

§4. Finding the Bayes Decision Regions. 

Suppose now that we are attempting to build a Bayes classifier 

correspondi ng to two cl asses as inSect ion 1, and that we have 

approximations Sl and Sz to the corresponding densities Pi and Pz. We 

now address the problem of finding the Bayes decision regions 

A A 

{x E R CllSdx) > ClZSZ(X)} and Rz = R rv Rl 
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As noted in Section 1, this problem is equivalent to finding the 

zeros of the function 

If ~l and s2 are both splines of the same order m based on the same set of 

knots., then r is also a spline of the same type, and our problem is 

reduced to 1 ocat i ng its zeros. In general, however, we may choose s 1 and 

S2 to be splines of different orders (say ml and mz) and based on . 

different knot ~equences III and llz. In this case the following 

observation is important. 

THEOREM: If si are splines of order mi corresponding to knot 

sequences lli, i = 1,2, then the function r defined in (4.1) is a spline 

of order m = max(mltm2) with knots II = ·1l1 U 112. 

Proof: It is clear that both sl and s2 are piecewise polynomials of 

order m between the knots of ll, and it follows that r is also. The fact 

that r has m-2 continuous derivatives on R is easily c~ecked. 0 

In order to translate this theorem into a useful algorithm for 

finding the zeros of r, it is desirable to rewrite both 51 and Sz as 

B-spline expansjonsin terms of B-splines of order m defined on the knot· 

sequence ll. Fortunately, there are stable algorithms for converting a 

B-spline expansion of given degree with given knots to an equivalent 
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B-spline expansion of another degree with a larger set of knots, (cf. 

[6,11]). There is no need to examine these algorithms in detail here; we 

have programmed them for our classification pa~kage. 

After writing sl and s2 as linear combinations of a common set of 

B-splines, the. problem of finding the zeros of the function r defined in 

(4.1) reduces to the problem of finding the zeros of a given B-spline 

expansion. This problem can be attacked by converting the B-spline 

expansion to a piecewise polynomial representation and ·then finding the 

zeros of each polynomial piece. However, more robust and efficient 

methods for finding zeros of splines are being developed (cf.[14]). 

§5. Computing the Probability of Misclassification. 

Suppose again.that sland S2 are spline approximations to the 

densities PI and P2, and suppose that we have found the associated Bayes 
,. ,. 
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decision regions Rl and R2• Then it is clear that an approximation to the 

probability of misclassification G associated with the densities Pl and P2 

is given by the expression 

(5.1) G = + a2 JR s2(x)dx. 
2 . 

Since both sl and S2 are B-spline series and the sets Rl and R2 are 

unions of intervals, to compute G we need to be able to integrate a given 

B-spline series over any given finite interval [a,b]. But there exist 

standard, highly efficient and accurate algorithms for just this purpose 

(cf. p. 200 of [18]). We have implemented such a package and (up to 

roundoff) it produces the values of G exactly. 
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§6. Discussion. 

The spline classification algorithm outlined in this paper has been 

implemented as a FORTRAN package. The package consists of a set of 

subrout i nes whi ch performs dens ity fi ts for gi ven hi stograms, fi nds the 

classification regions, and computes th~ associated probability of 

misclassification. In addition, the package includes various subroutines 

for eval~ating; integrating, graphing, and finding the zeros of B-spline 

series. A FORTRAN implementation of an algorithm of Ravindran [16] is 

used to solve the linear programming problem (3.5) - (3.7). 

Some preliminary fits to the histogram given in Figure 1 were made 

usi ng quadrat i c and cubi c B-sp 11 nes. In Fi gures 3 and 4 we present the 

fits obtained using quadratic B-splines with different interior knot 

selections and multi~le knots at the endpoints. Figures 5 and 6 present 

the fits obtained using cubic B-splines with interior knots at the bin 

centers and multiple knots at different left ·endpoints. An additional 

knot was inserted (at 0.0) for the fit presented in Figure 7. 

Using the results of the quadratic B-spline fit (Figure 4) to the 

original histogram and its translate (by 4 units) we determined the Bayes 

" " decision regions Rl and Rz and, assuming equal a priori probabilities, 

" computed the resulting value of G. These results appear in Figure 8. 

In this paper we have concentrated on the classification problem. for 

two classes. It is clear that most of what we have said carries over to 

. the case of three or more classes. In particular, the histograms for each 

class can be fit with splines in the same way as described here. To find 

the classification regions now will require pairwise comparison of the 

spline fits to the densities.. The probabi1.ity of misclassification can 

then be found as before. 
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This paper has dealt only with univariate classification. We intend 

to apply similar techniques to the multivariate case. In particular, we 

intend to fit multivariate histogram functions using either tensor~product 

splines or mUltivariate B-splines defined on triangulations. In either 

case we expect to be able to accurately find the classification regions 

and to compute the probability of misclassification. 
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ABSTRACT 

Quantile data analysis and functional statistical inference methods 
are introduced and applied'to provide representations of spectral data 
which may lead to simple statistical discriminators effective for the 
estimation of ground truth from ,satelite spectral measurements. 

To estimate the ground truth of a pixel, we propose to estimate the 
probability of each poss'ible ground truth, given observed (estimated) 
quantile-theoretic statistical characteristics of the multi-spectral 

, , 

image data corresponding to the pixel and its neighboring pixels. This 
paper describes a research strategy for determining which statistical 
characteristics discriminate best. 

Results are reported of quantile data analysis of an extensive 
collection of training files of image data. 
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1. Introduction 

To conduct research in image analysis, one must define its data, 

ends, and means. 

The data consists of files. An image file consists of measure

ments taken on a specified date at a specified 5 x 6 nautical mile 

site on the earth's surface. A site is divided into a rectangular 

grid of (more than 20~OOO) surface elements [approximately 1 acre] 

called pixels. On each pixel, spectral measurements are made by 

sa.telite on four (and perhaps seven) channels [of the electromagnetic' 

energy spectrum]. Each spectral measurement is an integer from 0 to 

256. 

The ends [goals] of image analysis is to estimate ground truth 

within the pixel; labels for ground truth include alfalfa, corn, 

soybeans, sugar beets, spring wheat, spring oats,grass, pasture, 

trees; water. 

A file is called a training file if a ground truth record is 

available; each pixel is divided into six 'sub-pixels and ground truth 

is recorded for each sub-pixel. 

The means of image analysis are currently under investigation by 

many investigators. A probability approach considers ground truth as 

a parameter [denoted e]. A formal Bayesian statistical solution to 

the estimation of ground truth from data is to calculate p(eldata), 

the posterior probabi 1 ity di stri buti on of e [the ground truth parameter] 

giv~n the data. A formal maximum likelihood solution to the estimation 

of ground truth from data consists of two steps: (1) calculate the 

193 



194 

likelihood function of e, which equals p(data\~), the conditional 

distribution of the data given thatitis observed from a pixel with 

ground truth e, and (2) use optimization algorithms to determine e·, 
the parameter value which maximizes likelihood. The foregoing formal 

statistical procedures are often described as being theoretically 

1 0ptima1." But they may not be "good" in practice in the sense of 

correctly identifying ground truth with high probability. 

To obtain high probability of discrimination, we recommend 

(1) measuring suitable characteristics of probability models of 

the data,' (2) treating the measured characteristics as new data, and 

estimating the likelihood function p(measured characteristics 

of data\e), and (3) determining characteristics whose distributions for 

different va.1ues of e are as wide apart as possible [the likelihood 

function is not flat and its optimum is ea~i1y·determined]. 

This paper investigates the use of quantile data analysis to 

obtained measured characteristi~s of image data which have good power 

of discrimination between different values of ground truth. Only 

univariate analysis methods are used on channel 2 and channel 3 spectral 

observations. Future research will be concerned with bivariate ana1y~s 

of the joint distribution of channel 2 and channel 3 measurements. Our 

approach to quantil e data ana1ysi s strongly recommends that bi vari ate 

analysis be built on a foundation of univariate analysis .. Therefore. 

the univariate analysis techniques developed in-this paper will not be 

rendered obso1eie by the bivariate techniques to be developed in future 

research .. 
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2. Outline of Quantile-Data Analysis of a Pixel 

Let us describe a proposed method of statistical data analysis 

based on cha.racteristics of the sample quantile functions of batches of 

measurements. Given a pixel whose ground truth we would like to 

estimate, let (tl ,t2) be its coordinates which represent its position 

within the rectangular grid of pixels into which the scene has been 

divided. 

Define A
v
(tl ,t2), the v-neighborhood of a pixel; to be the set of 

. pixels with coordinates (tl + jl' t2 + j2)' where jl ,j2=O,.!.1, ... ,.!.v. 

For example Al (tl ,t2) contains 9 pixels, A2(tl ,t2) contains 25 pixels, 

A3(tl ,t2) contains 49 pixels. 

For k=2 and 3, the channel k measurements of the pixels in Av(tl , 

t 2) are collected to form a data batch whose sample quantile function 

Q(u) is formed. The "measured data characteristics" we associate with 

a pixel are various characteristics of the sample quantile function of 

a batch of measurements formed from the pixels surrounding a given 

pixel. The remainder of this section reviews quantile data analysis 

and defines the summary statistics that it suggests. 

The probability law of a random variable X is usually described 

by its distribution. function F(x)=Pr[X<x], -<~x<~, and probability 

density functi on f(x)=F I (x). The quanti 1 e approach uses [see, for 

example, Parzen (1983)] 

(l) 'Q(u) = F-1 (u) = inf {x:F(x)~u} , 

(2) q(u) = QI(U) 
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( 3 ) fQ ( u ) = f( Q ( u )) = { q ( u) } - 1, and 

(4) J(u) = -(fQ)'(u) 

A quick measure of location is the median Q(O.5). A quick index of 

scale is the interguartile range Q(0.75) - Q(0.25), formed for the 

quartiies Q(0.25) and Q(0.75). 

Quick measures of distributional shape are provided by values (as 

u.tends to Oand 1) of the informative guantile 'function [recently 

introduced by Parzen]. 

( ) _ Q(u) - Q(0.5) , 
Iq u ~ 2{Q(O.75) _ Q(0.25)} O<u<l. 

We cannot emphasize how powerful the IQ,function appears to be in . 

practice as a tool for the diagnosis of distributional shapes. 

The IQ function is independent of location and scale parameters. 

It ;s approximately equivalent to normalizing a quantile function to 

, have the properties Q(O.5) = 0, QI (0.5) ~ 1. The IQ graph of the 

function provides us at a glance with a vague estimate of,tail behavior 

as defined by tail exponents. 

A fundamental description of the tail behavior of distributions 

is provided by the left tail exponent ao and the right tail exponent 

al defined as follows: 

u + 0 

fQ(u) = (l_u)a l Ll (u) as u + 1 

, where LO(u) and Ll (u) are slowly varying functions. 
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A function L(u) is slowly varying as u + a if, for every y > 0, 

Tail behavior is defined in terms of a tail exponent as follows: 

a<l: short tail 

a=l: medium tail 

a> 1 : long ta i 1 

Medium tail (a=l) distributions are further classified by the value of 

lim f'("u' h = ~ . a u+0 u 
lim f'("u' h = ~ 1 u+11-u 

the letter h is suggested by the notion of hazard function. We define 

h =.0: medium-long tail 

a < h < 00: medium-medium tail 

h = 00: medium-short tail 

Extensive calculations of informative quantile functions indicate" 

that the value IQo of IQ(u) for u near a is a quick indicator of 

left tail behavior: 

-0.5 < IQ <:·0 
. - 0 

short left tail, 

-1.0 ~ IQo ~ -0.5: medium-short left tail, 

IQo < -1.0: medium-medium to long left tail. 

Similarly the value IQl of IQ(u) for u near 1 is a quick indicator of 

right tail behavior: 

a < IQ1 ~ 0.5: short right tail, 

0.5 < IQ1 < 1.0: medium-short left tail, 
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1.0 < IQ1: medium-medium to long right tail 

An important family of distributions is the Weibull with shape 

parameter 8. Its quantile function Q(u) is of the form 

where 

its density-quantile 

. Its right tail exponent is a = l.~ and its left tail exponent is 

a o =·1-8. Insight into the interpretation of informative quantile 

functions is obtained by. computing them for Weibul1· distributions. 

Given dat~,.wedistinguish three types of estimators of population 

parameters, which~~·c~11:(l) fully non-parametric, (2) full~ 

parametri c, and (3). fun~tional-parametric.. Fully non-parametri c 
. . 

estimators assume no model, and provide quick estimators. Fully 

para!'l1etri c estimators assume a model known up to a fini te number of 

parameters which must be estimated. Functional-parametric estimators 

are based on methods of functional statistical inference~ 

.A fully non-parametric estimator Q(u) of Q(j), given a sample of 

n distinct values Xl;n < X2;n< ... <Xn;n' ;s defined by (for j=?l, ... ,.n) 

Q(u) = Xj;n 
j-l j. 
- <U <-n - n 

For a large s!lmple, or for grouped values, we form a histogram before 
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computing Q(u) by linear interpolation at an equi-spaced grid of values 

kh, k=1,2, ... ,[l/h] where usually h = 0.01. 

3. Example and Interpretation of a Quantile Data Analysis 

To illustrate the uses of measured data characteristics provided 

by quantile data analysis, ·let us consider the analysis of a training 

file which contains both image data and ground truth data .. We search 

through the ground' truth fi 1 e to see what codes appear more than a fe\'1 

times. The codes found to be present corresponded to the ground truth 

values listed in Table A. For a ground truth value j, we created a 

data batch consisting of all the channel 2 values observed in a pixel 

'one of whose sub-pixels had a ground truth equal to the value j. We 

created a similar data batch of channel 3 observations. Table A lists 

the sample sizes of the number of observations in·these data batches 

and the medians and interquartile ranges of the channel 2 and channel 

3 observations. One immediately sees a pattern which might provide a 

discrimination statistic ~ to be used in determining ground tr~th~ 

One might be able to readily distinguish the category IIgrass, pasture, 

trees ll from II corn, soybeans, sugar beets, spri ng wheat, spri ng oats ll 

by the values of 

~l = median (channel 3) - median . (channel 2) 

~2 
3 
2 

The values of these statistics are given in Table A. Note that ~l > 2 

for grass, pasture, and trees, and ~l < 2 for crops. Of the crops, 
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alfalfa is closest in statistical characteristics to grass, pasture, 

and trees; this conclusion is reached also in Table B. 

Table A lists statistics based on comparisons of location and 

. scale estimators; Table B lists discriminators which are based on shape 

and tail characteristics. We consider the following four character-' 

istics as statistics which might discriminate between (ground truth) 

distributions: 

. _ MEAN - MEDIAN. 
63 = MEAN IQ - 2 x INTERQUART!lE RANGE 

STANDARD DEVIATION 
64 .= STD IQ = 2 x INTERQUARTILE RANGE 

65 = IQo = IQ(u)' for u near a 

66 = IQl = IQ(u) .for u near 1 

The values of these statistics in this example indicate that trees, 

pasture, and grass have spectra~ observations with distributions closer 

to normal, while crops have spectral observations with distribut'ions 

further from normai. 

It should be strongly emphasized that these empirical patterns 

found in one file are not intended to be general algorithms applicable 

to all files. They are presented only as an illustration of the kinds 

of facts about image data which quantile data analysis proposes to 

discover through extensivecomputation on training files. 
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TABLE A 

Lll 
Sample Median Median Median {3~ - Size Channel 2 Channel 3 -Median(2 ; 

AHa1 fa 377 19 20 1 

Corn 8,755 15 14 -1 
Soybeans 11,000 15 13. -2 
Sugar Beets 793 14 12 -2 

. Spri ng Wheat 2,296 18 16 -2 
Spring Oats 558 18 16 -2 
Grass 174 23 26 3 

r-
Pasture -248 -21 28 7 
Trees 95 20 24 4 

r-
Lll 

I 
IQ Range IQ Range Log IQ(3} 
Channel 2 Channel 3 -Log IQ(2} 

I 
Alfalfa 9 16.75 .62 

Corn 5 6.5 .26· 
Soybeans 5 8· .47 

r Sugar Beets 4 4.5 .12 
Spring Wheat 6 9 .41 
Spring Oats 8 11 .32 
Grass 8 12.5 .45 

f Pasture 5 13 .96 
Trees 6 11 .61 
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TABLE B 

Mean IQ Mean IQ STO IQ STO IQ 
Channel 2 Channel 3 Channel 2 Channel .3 

Alfalfa -.08 -.07 .32 .27 
Trees -.08 . -.01 .38 .35 
Pasture -.04 -.06 .41 .32 
Grass - .01 .02 .36 .34 

Spring Wheat .07 .11 .38 .41 
Spring Oats' . 09 .12 .36 . .35 
Sugar Beets .14 .06 .42 .49 
Corn . 17 .10 .. 44 . .51 
Soybeans . 17 . 13 .46 .41 

IQo IQo IQl IQ1 
Channel 2 Channel 3 Channel 2 Channel 3 

A lfa1 fa -.34 -.32 1.05 .68 

Trees -.75 -.72 1.0 .68 
Pasture -1.0 -.76 1.1 .65 
Grass -.75 -.72 .81 .68 

Spring Wheat -.58 -.44 2.08 1.66 
Spring Oats -.43 - .36 1.18 1.0 
Sugar Beets -.37 -.44 2.25 . 2.55 
Corn -.40 -.46 2.8 3.0 
Soybeans -.40 -.31 2.7 1. 93 

Note: STO IQ = .37 for normal. Abovei1ine characteristics close to 
normal. Below line characteristics far from normal. 

...., . 
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4. Quantile Data Analysis of Statistical 

Characteristics Estimated from Pixel Nieghborhoods 

A program of fundamental 'research on the quantile data analysis 

approach to picture segmentatlon poses many detailed problems for 

,research. This section gives an example of one sample quantile data 

analysis. (1) Consider all pixels in a file whose ground truth is a 

specified crop (spring wheat is considered here). (2) For each such 

pixel form a 5 by 5 neighborhood of pixels (with the specified pixel 

203 

at the center). ,(3) For each neighborhood form a data batch of 

spectral observations (channels 2 and 3 are considered here). (4) For 

each data batch, form its sample quantile function and estimate typical 

univariate quantile theoretic statistical characteristics: ~edian, IQR 

(i nterquartil e range), mean IQ (mean of informative quanti 1 e function), 

STDIQ (standard deviation of IQ function), IQ(.Ol), IQ(.99), average 

log spacings (which is a fully non-parametric estimator of entropy of 

the IQ function), and log a [where a is the score deviation, defined 
,00 ' 

as the sum of products of the spacings of the IQ function and a 

,specified density-quantile function foQo(U)]' The specified density 

quantile'functions that we use'are the logistic distribution 

and the Weibull distribution with quantile shape parameter B [we 

choose a = 0.7J 
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Step (5) is to form, for each statistical characteristic, a 

data batch of the several thousand estimates of that characteristic 

corresponding to the pixels in the training file with the specified 

ground truth [here, spring wheat (code 100)]. Step (6) is to do a, 
one~samp1e quantile data analysis of this data batch. These analyses, 

are presented in detail for the following estimators: median channel 2, 

mean IQ channel 2, median channel 3, mean IQ channel 3. 

The following table lists some basic summary measures for a 

one~sample statistical analysis of a ,data batch of statistical 

characteristics of Spring Wheat pix'e1 neighborhoods: 

Median Median Mean IQ Mean IQ 
Channe 1 2 Channel 3 Channel 2 Channel 

Median 18 16 .02 .04 
IQR 5 7.75 .14 . 13 
Mean IQ .04 .09 .03 .01 
Std IQ .41 .36 .44 .49 
Av. Log Spacings -.68 -.59 .43 .43 
(1

0 
Weibu11, , .67 .61 ' .78 .80 

°0 Logi sti c .34 .20 .22 .22 

3 

We give for these variables: (1) printer plots of the 

inforrnativ~,quantile functions; (2) estimated density quantile 

functions, computed by the method of autoregressive density estimation; 

using the logistic andWeibull distributions as bases; and (3) 

diagnostic distribution functions (to be compared with the uniform) 

that help us decide which autoregressive order ,to accept as providing 

a "parsimonious" estlmator. 
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S TAT 1ST I CAL ANA L Y SIS S Y S T E M 20:12 WEDNESDAY. MAY 18. 1983 

SEG=1380 YR=1978 DY= 115 CH= 2 GT= 100 
INFORMATIVE QUANTILE - LILEAR INTERPOLATION FROM UNGROUP ED DATA 
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ABSCISSA IS U. ORDINATE IS IQ(U) 

Spring Wheat Pixel Neighborhood Channel 2 

Medians: IQ Plot indicates not normal but 

possibly Weibull. To test Weibull, we do 

not currently estimate shape parameter 8, 

but choose 8 = 0.7. 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 

SEG=1380 YR=1978 DY= 115 CH= 2 GTe 100 
DENSITY-QUANTILE FUNCTION LOGIS~IC CASE ORDER ~ 3 

20:12 WEDNESDAY. MAY 18. 1983 
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Spring Wheat Pixel Neighborhood Channel 2 

Medians: Autoregressive density quantile 

estimator (with logistic base and tirder 3) 

indicates bimodal density. 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 20:12 WEDNESDAY, MAY 18, 1983 

SEG=1380 YR=1978 DY= ·115 CH= 2 GT= 100 
DBAR PLOTTED AGAINST D(U)=U (*) LOGISTIC CASE ORDER = 3 
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ABSCISSA IS U. ORDINATE' IS DBAR(U) 

Spring Wheat Pixel Neiqhborhood Channel 2 

Medians. Diagnostic of fit of AR density

'quantile estimator (with logistic base and 

order 3) . 
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Spring Wheat Pix~l Neighborhood Channel 2 

Medians: Autoregressive density quantile 

analysis (with Weibull shape parameter .7 

base and order 2) indicates bimodal 
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1.000 +--------~---------------------------------~--------------~OO 
I 001 
101 

I *0 I 
I 02 I 

0.900 + DOD I 
I 0 I 
I 02 I 
101 

I 0020 I 
'0.800 + * I 

I 0 I 
I 202 I 
I ·0* I 
I * I 

0.700 + *0 I 
I * I 
I * I 
I 020220 I 
I 2200 I 

0.600 + * I 
I * I 
I 0* I 
I * I 
I * I 

0.500 + * I 
I 22022 I 
I 20* I 
I * I 
101 

0.400 + *0 I 
I 220 I 
I 0* I 
I * I 
I 022 I 

0.300 + * I 
I 0 I 
I * I 
I 2022020 I 
I. * I 

0.200 + * I 
I 0* I 
I * I 
I * I 
I *200 I 

0.100 + 02202 I 
I * I 
I • I 
101 

1* I 
0.0 +20-~-+-----+-----+-----+-----+-----+-----+~----+-----+-----+ 

0.0 0.1 0.2 0.3 0.4' 0.5 0.6 0.7 0.8 0.9 1.0 
ABSCISSA IS U .• ORDINATE IS OBAR(U) 

Spring Wheat Pixel Neighborhoods Channel 2 

Medians: Diagnostic of fit of AR density 

quantile estimator (with Weibull shape 

parameter .7 base and order 2). 

9 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 20: 12 WEDNESDAY. MAY 18. 1983 37 

SEG=1380 YR=1978 DY= 115 CH- 2 GT= 100 
INFORMATIVE QUANTILE - LILEAR INTERPOLATION FROM UNGROUPED DATA 

1.000 +---------------------~------------------------------------00 

I ·1 
I I 
I 01 
I I 

0.800 + I 
I 0 I 
1'1 

I 0 I 
I 0 .1 

0.600 + a '1 
101 

I 2. I 
I 00 * I 
10* I 

0.400 + 02* . I 
I 2* I 
I 02 I 
I 02 I 
I 200 I 

0.200 + *02 . I 
I *22 I 
I 020 I 
I *200 I 
1002 I 

0.000 +----------------------------2020---------------------------1 
1 02 I 
I 022 1 
I 022 I 
I 22 I 

-0.200 + 20 1 
I 002 I 
I 20 I 
I *20 I 
1 *02 I 

-0.400 + * 2 I 
I • 02 . I 
121 
101 

I' 0 I 
-0.600 + 0 I 
101 

I I 
101 

I I 
-0.800 +0 I 

I I 
10 I 
I I 
I r 

-1.000 +-----+-----+-----+-----+-----+~----+-----+-----+-----+~--~-+ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ABSCISSA IS U·. ORDINATE IS IQ(U) 

) J J 1 J I J 

Spring Wheat Pixel Neighborhood Channel 2 

t4ean IQ: IQ plot. indicates almost perfect 

normal ity. 

. ) J 

N -o 
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S TAT 1ST I CAL A N A L Y S· ISS Y S T E M 20: 12 WEDNESDAY, MAY 18, 1983 40 

PHI2( 1) 
PHI2( 2) • 
PHI2( 3) 
PHI2( 4) 
PHI2( 5) 

PHI2( 1) 
PHI2( 2) 
PHI2( 3) 
PHI2( 4) 
PHI2( 5) 

0.00099923 
0.00039880 
0.00049510 
0.00095499 
0.00067322 

0.07646000 
0.03759194 
0.02402839 
0.02089854 
0.01483078 

AUTOREGRESSIVE PARAMETRIC SELECT ANALYSIS 
------------------~-------------------------

Mean IQ Logistic Base 
SQUARED MODULUS OF FOURIER COEFFICIENTS 

.. .. .. .. .. 

AUTOREGRESSIVE PARAMETRIC SELECT ~NALYSIS 

SQUARED MODULUS OF FOURIER COEFFICIENTS 
Mean IQ Weibull Case 

............................................................... .. .. .. .. .. 

Spring Wheat Pixel Neighborhood Channel 2 Mean IQ: Pseudo-correlations square 

nodulus (phi 2) accept logistic ,distribution, reject Weibull distribution fit. 

N ..... ..... 
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RAW DISTRIBUTION D(U) LOGISTIC CASE 
D+ = 0.1000 AT U = 0.9900. D- = -0.3745 AT U = 0.4400 

1.000 +----------------------------------------------------------00 
1 * I 
1 001 
I *00 I 
1 ·0 I 

0.900 + *20 I 
1 00 I 
I 00 1 

"I ·00 I, 
I *2 I 

0.800 + *2 I 
I, 00 ',I 
I 00 I 
I *00 I 
I *If I 

0.700 + *00 I 
I *00 I 
I *2 I, 
I * 2 I 
I *00 I 

0.600 + *00 I 
I *00 I 
I *2 i 
I * 2 I 
I *00 I 

0.500 + * 0 I 
I *02 I ' 
1 *2 I 
I * 0 I 
I * 00, I 

,0.400, + '* .2 I 
·1 . * 2 I 
.I *00 I 
I * 00 I ' 
I * 00 I 

0.300 + *02 I 
I *00 I 
I *0 I 
I * 00 I 
I * 00 I 

0.200 + * 2 I 
1*2 I 
I *00 I 
I * 00 I 
I ' ,,* 00 I 

0.100 + *02 1 
I 000 I 
I 00 I 
'I *00 I 
1*2 I 

0.0 +2----+-----+-----+-----+-----+-----+-----+-----+~----+-----+ 

O~O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
ABSCISSA IS U. ORDINATE IS D(U) 

.J .J J J . J J , .. 1 J 

Spring Wheat Pixel Neighborhood Channel 2 

Mean rQ: Cumulative weighted spacings 
-D(u) plot indicates accept fit of'logistic 

distribution. 

J ' J 

N ..... 
N 
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S TAT 1ST I CAL A N A L Y SIS 

SEG=1380 YR=1978 OY= 115 CH= 2 GT= 100 
DBAR PLOTTED AGAINST O(U)=U (*) WEIBULL CASE ORDER 

1.000 +----------------------------------------------------------00 
I 201 
I 020* I 
I 000* I 
I 20 * I 

0.900 + 20 * I 
I '02 * I 
I 2 * I 
I 2 * I 
I 00 * I 

0.800 + 00 * I 
I 00 * I 
I 2 * I 
I 2 * I 
I 0 * I 

0.700 + 2 * I 
I 2 * I 
I 00 * I 
I 0 * I 
I 2 * I 

0.600 + 00 * I 
I 0 * I 
I 2 * I 
I 00 * I 
I 00 * I 

0.500 + 0 * I 
I 0 * I 
I 02 * I 
I 0* I 
I 00* I 

0.400 + 00* I 
I 000* I 
I 00 * I 
I 00* I 
I 2 * I 

0.300 + 2 * I 
I 20 * I 
I 2 * I 
I 20 * I 
I 02 * I 

0.200 + 2 * I 
I 2 * I 
I 00 * I 
I 00 * I 
I 00 * I 

0.100 +0 * I 
I * I 
10* I 
10* I 
1* I 

0.0 +0----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
0.0 O. t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t.O 

ABSCISSA IS U. ORDINATE IS OBAR(U) 

1 1 J 1 

( 

S Y S T E M 23:45 WEDNESDAY. MAY 18. 1983 

Spring Wheat Pixel Neighborhood Channel 2 

Mean IQ: Cumulative weighted spacings 

D(u) plot indicates reject Weibull 

distribution fit. 

41 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 20:12 WEDNESDAY. MAY 18. 1983 42 

SEG-1380 YR-1978 DYa 115 CH= 2 GTe 100 
DENSITY-QUANTILE FUNCTION LOGISTIC CASE ORDER c 1 

1.111 +-----------------------~220220------------------------------
I 020 

. I 00 
I 2 
I 2 

1.000 + 0 
I 0 
I 0 
I 2 

.1 .0 
0.889 .+ 0 

I 0 
I 
I 0 
I 0 

0.777 + 0 
I 0 
I 
I 0 
I 0 

0.666 + 
I 0 
I 0 
I 
I 0 

0.555 + 0 
I 
I 0 
.1 
I 0 

0.444 + 0 
1 
1 0 
1 
1 0 

0.333 + 
1 0 
I 
1 0 
I 

0.222 + 0 
I 
I 0 
I 
1 0 

0.111 + 
10 
I 
I 
I 

22 
02 

2 
02 

2 
o 

2 
o 
00 

o 
o 

2 
o 
o 
o 
.0 
o 
o 
o 
o 

o 
o 
o 

o 
o 
o 

o 
D 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I . 
I 
I· 

o I 
I 

o I 
o I· 

I 
o . I 

I 
o I 

:1 
o I 

I 
o I 

I 
01 

I 
or 

I 
0.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
ABSCISSA IS . U • ORDINATE IS FQ(U) 

J J J J I J . . J J 

Spring Wheat Pixel Neighbo~hood Channel 2 

Mean lQ: Autoregressive density-quantile 

estimator (with logistic base and order 1) 

indicates norma1~like density. 

I .I I r J 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 23:45 WEDNESDAY. MAY 18. 1983 42 

SEG=1380 YR=1978 DY= 115 CH= 2 GT= 100 
DENSITY-QUANTILE FUNCTION WEIBULL CASE ORDER ~ 

1_315 +-----------------------------0220---------------------------
I 
I 
I 
I 

1. 183 + 
I 
I 
I 
I 

1.052 + 
I 
I 
I 
I 

0_920 .+ 
I 
I 
I a 
I a 

0.789 + a 
I a 
I a 
I 0 
I a 

0_657 + a 
I a 
I 00 
I 0 
I 00 

0.526 + 00 
I 02 
I 200 
I 02 
I 2 

0_394 + 
10 
I 
I 
I 

0_263 + 
I 
I 
I 
I 

0_132 + 
I 
I 
I 
I 

a 
a 

a 
a 

a 
a 
a 

a 
a 

a 
a 
a 

02 
o 

00 
a 

20 
a 

00 
a 
a 
a 
a 
a 
a 
a 

a 
a 
o 

a 
a 
a 

a 
a 

o 
a 

a 
a 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
·1 
I 
I 
I 

a I 
a I 

I 
a I 
a I 
a I 

I 
a I 
a I 
a I 
a r' 

·1 
a I 
a I 
a I 
a I 
a I 
a I 
a I 
001 

01 
0.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.S. 0.9 1.0 
ABSCISSA IS u. ORDINATE IS FQ(U) 

Spring Wheat Pixel Neighborhood Channel 2 

Mean IQ: Autoregressive density-qupntile 

estimator (with Weibull base and order 1) 

indicates density which is symmetric and 

unimodal but less normal-like. 

N .... 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 23:45 WEDNESDAY. MAY 18. 1983 139 

SEG~1380 YR=1978 DY~ 115 CH~ 3 GT~ 100 
INFORMATIVE QUANTILE - LILEAR INTERPOLATION FROM UNGROUP ED DATA 

1.000 +----------------------------------------------------------00 
I 01 
I 0 I 
I I 
I 00 I Spring Wheat Pixel Neighborhood Channel 3 

O. BOO + I 
I 0 I 
I I Medians: IQ plot indicates not normal 
I I 
I 00 I 

0.600 + 00 I 
but possibly Weibull. 

I I 
121 

I * I 
I 2· * I 

0.400 + 020 *. I 
I * I 
I 2200 I 
I * I 
I 020 I 

0.200 + 0200 I 
I *0 I 
I 00220 I 
I 2020 I 
I * I 

0.000 +---------------------------0202----------------------------1 
I * I 
I 0202200 I 
I 202200 I 
I * I 

-0.200 + 02202* I 
I 22022 * I 
I * I 
I 20 * I 
I * I 

-0.400 +0202* I 
10 * I 
I I 
I I 
I I 

-0.600 + I 
I I 
I I 
I I 
I I 

-0.800 + I 
I .1 
I '1 
I I 
I I 

-1.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ABSCISSA IS U • ORDINATE IS IQ(U) 

J .J J J. ) 1 

N 
...... 
0'\ 

I . 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 20: 12 WEDNESDAY. MAY 18. 1983 142 

PHI2( 1) 
PHI2( 2) 
PHI2( 3) 
PHI2( 4) 
PHI2( 5) 

PHI2( 1) 
PHI2( 2) 
PHI2( 3) 
PHI2( 4) 
PHI2( 5) 

0.03838847 
0.00517420 
0.01129055 
0_00169468 
0.01800444 

0.00177358 
0.00257716 
0.00229294 
0.00134046 
0.01826305 

AUTOREGRESSIVE PARAMETRIC SELECT ANALYSIS 

SQUARED MODULUS OF FOURIER COEFFICIENTS 

* 
* 

* 
* 

AUTOREGRESSIVE PARAMETRIC SELECT ANALYSIS 

SQUARED MODULUS OF FOURIER COEFFICIENTS 

* 
* 

* 
* 

Median Channel 3 Logistic 

* 

Median Channel 3 Weibull 

* 

Spring Wheat Pixel Neighborhood Channel 3 Medians: Pseudo-correlations square 

modulus (phi 2) accept Weibull distribution, reject logistic distribution fit. 

N .... 
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RAW DISTRIBUTION D(U) WEIBULL CASE 
0+ 0.6672 AT U = 0.5900. 0- = -0.3180 AT U = 0.0600 

1.000 +---------------------------------------------~------------20 

I 02*1 
I 2 * I 
I 0* I 
I 00 I 

0.900 + 2* I 
I 2* I 
I 0* I 
I 02 I 
I 0200 I 

0.800 + 0 * I 
I 0 * I 
I 02 * I-
I 0* I 
I 020* I 

0.700 + 0 * I 
I 0 * I 
1 0022 • I 
I * I 
I 0 • I 

0.600 + 202 * I 
I * I 
I 0 * I 
I • I 
I 0200 I 

0.509 + 
I 
I 
I 
I 

0.400 + 
I 
I 
I-
I 

0.300 + 
-I 

I 
I 
I 

0.200 + 
I 
I 
I 
I 

0.100 + 
I 
I o 
I * 
10200 

o· 
• 

020220' 

o * 
220· 

20 * 
• 

• 
• 

o • 
02200 

* 
o * 

0020 
20 * 

C * 
* 

2* 
* 

* 

• 

• I
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.0 +0----+-----+-----+-----+-----+-----+-----+-----+-----+~----+ 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
ABSCISSA IS U. ORDINATE IS D(U) 

] .. J J 1 1 J ) 

Spri~g Wheat Pixel Neighborhood Channel 3 

Medians: Cumulative weighted spacings 

D(u) plot indicates accept fit of Weibull 

distribution (shape parameter 8 =0.7). 

I' J _ J .I J 
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RAW DISTRIBUTION D(U) LOGISTIC CASE 
0+ 0.1876 AT U = 0.9400. D- = -1.7301 AT U = 0.4500 

1.000 +----------------------------------------------------------20 
I 
I 
I 
I 

0.900 + 
I 
I 
I 
I 

0.800 + 

0.700 + 
I 
I 
I 
I 

0.600 + 
I 
I 
I 
I 

0.500 + 
I 
I 
i 
I 

0.400· + 
I 
I 
I 
I 

0.300 + 
I 
I 
I 
I 

0.200 + 
I 
I 
I * 
I * 

0.100 + * 

* 
* 

1*0 
I * 22020 
1*0 
1* 02 

* 
* 

* 
* 

0 
02200 

* 
* 

* 
* 

0 
2022 

* 
* • 

* 
* 

220 
020 

0 

* 
* 

* 
* 

* 
* 

202 

0 

0200 

o 

* 
* 

* 
* 

* 
* 020 

* 0 

o 
0020 

o 

o 

2*1 
00* I 
o I 

o I 
*0 I 

00 I 
*0 I 

* 0 I 
* 

* 
* 02 

* 0 
* 220 

* o 
2 

o 
o 

o I 
o I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I . 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.0 +2200-+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ABSCISSA IS U, ORDINATE IS D(U) 

Spring Wheat Pixel Neighborhood Channel 3 

Medians: Cumulative weighted spacings 

D(u) plot indicates reject fit of 

logistic distribution. 

N -1.0 
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SEG=1380 YR-1978 DY= 115 CH= 3 GT= 100 
DENSITY-QUANTILE FUNCTION WEIBULL CASE ORDER = 1 

1. 118 +---------~2022022022----------------------------------------
I 
I 
I 
I 

1.006 + 
I 
I 
I 
I 

0.894 + 
I 
I a 
I 
I a 

0.783 + 
I 
I 
10 
I 

0.671 + 
I 
I 
I 
I 

0.559 + 
I 
I 
I 
I 

0.447 + 
I 
I 
I 
I 

0.335 + 
I 
I 
I 
I 

0.224 + 
I 
I 
I 
I 

0.112 + 
I 
I 
I 
I 

002 022020 
00 ' 002 
a 200 

00 02 
a 

a 

a 

a 

00 
00 

00 
2 

2 
a 
a 
00 
a 
a 
a 
a 

2 
a 
a 
a 
a 

a 
a 
a 
a 
a 
a 
a 

a 
a 

a 
a 

a 
a 
a 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I . 

I 
I 
I 
I 
I 
I 

o I 
o I 
a I 

I 
a I 
o I 

I 
01 
01 

I 
0.000 +- ----+-----+-----+-----+-----+-----+-----+--.-..:-+-----+-----0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
ABSCISSA IS U, ORDINATE IS FQ(U) 

.1 J . J 1 J 1 J 

Spring Wheat Pixel Neighborhood Channel 3 

Medians: Autoregressive density-quantile 

estimator (with Weibull base and order 1) 

J } . J 

N 
N 
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SEG:1380 YR:1978 DY: 115 CH= 3 GT: 100 
DENSITY-QUANTILE FUNCTION LOGISTIC CASE ORDER: 1 

1.377 +-----------------0220---------------------------------------
I 2 
I 2 
I 0 
I 0 

1.239 + 0 
I 0 
I 0 
I 
I 0 

1.102 + 0 
I 
I 0 
10 
I 

0.964 + 0 
I 
I 0 
I 
I 0 

0.826 + 
I 0 
I 
I 0 
I 

0.689 + 0 
I 
I 0 
I 
I 0 

0.551 + 
I 
I 0 
I 
I 0 

0.413 + 
I 0 
I 
I 0 
I 

0.275 + 
I 0 
I 
I 0 
I 

0.138 +0 
I 
I 
I 
I 

2 I 
2 I 
o I 

2 I 
o I 
o I 
o I 
o I 
o I 
o I 
o I 
o I 
o I 
o I 

2 I 
o I 
o I 
o 1-
o I 
00 I 

o I 
00 I 

00 I 
20 I 

002 I 
200 I 

020 I 
2 I 

2 I 
00 I' 
o I 
o I 
o I 
o I 
o I 
o I 
o I 

I 
o I 
o I 

I 
o I 

I 
o I 

I 
01 

I 
01 

I 
0.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
ABSCISSA IS U. ORDINATE IS FQ(U) 

Spring Wheat Pixel Neighborhood Channel 3 

-Medians: Autoregressive density-quantile 

estimator (with logistic base and order 1). 

N 
N .... 

1 



) 

1 J J J 

I 
S TAT 1ST I CAL A N A L Y SIS S Y S T E M 

SUMMARY OF AR PARAMETRIC SELECT ANALYSIS FOR LOGISTIC CASE 

ORDER RES_VAR LOG(RES_VAR) AIC CAT 

1 0.96161 -0.03914 -0.01914 -1.01922 
2 0.94997 -0.05133 -0.01133 -1.01100 
3 0.93683 -0.06525 -0.00525 -1.00444 
4 0.92880 -0.07387 0.00613 -0.99229 
5 0.91700 -0.08665 0.01335 -0.98433 

OPTIMAL ORDER BY CAT CRITERION IS MAXIMUM ORDER CHECKED IS 5 

OPTIMAL ORDER BY AIC CRITERION IS MAXIMUM ORDER CHECKED IS 5 

SUMMARY OF AR PARAMETRIC SELECT ANALYSIS FOR WEIBULL CASE 

ORDER RES_VAR LOG(RES_VAR) AIC CAT 

1 0.99823 -0.00177 0.01823 -0.98184 
2 0.99556 -0.00445 0.03555 -0.96461 
3 0.99366 -0.00636 0.05364 -0.94667 
4 0.99218 -0.00785 0.07215 -0.92837 
5 0.97480 -0.02552 0.07448 -0.92561 

OPTIMAL ORDER BY CAT CRITERION IS 0 MAXIMUM ORDER CHECKED IS 5 

OPTIMAL ORDER BY AIC CRITERION IS 0 MAXIMUM ORDER CHECKED IS 5 
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Median Channel 3 

Median Channel 3 

N 
N 
N 

Spring Wheat Pixel Neighborhood Channel 3 Medians: AIC AR order 

determining analysis. 
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SEG=1380 YR=1978 DY= 115 CH= 3 GT= 100 
INFORMATIVE QUANTILE - LILEAR INTERPOLATION FROM UNGROUP EO DATA 

1.000 +-----------------------------------------------------------0 
I I 
I 01 
I I 
I I 

0.800 + I 
I 01 
101 

I I 
101 

0.600 + 0 I 
I I 
101 

I 00 * I 
I 00* I 

0.400 + 2 I 
1 02 1 
1 02 1 
I *000 1 
1 *020 1 

0.200 + * 22 1 
1 *020 1 
1 0200 I 
1 *200 I 
I 002 I 

0.000 +----------------------------0020---------------------------1 
I 020 1 
I 22 1 
I 020 I 
I 200 I 

-0.200 + *02 'I 
I *22 I 
I *20 I 
I * 02 I 
I * 02 I 

-0.400 + * 00 I 
I * 02 I 
I 00 I 
I 2 I. 
I 0 I 

-0.600 + 00 I 
101 

I I 
I 0 I 
I I 

-0.800 + 1 
10 1 
I I 
I I 
10 I 

-1.000 +-----+-----+--~--+-----+-----+-----+-----+-----+-----+-----+ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
. ABSCISSA IS U. ORDINATE IS IQ(U) 

Spring Wheat Pixel Neighborhood Channel 3 

Mean IQ: IQ plot indicates normality. 
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N' 
W 



) ) 

S TAT 1ST I CAL A N A L Y SIS S Y S T E M 20: 12 WEDNESDAY. MAY 18. 1983 175 

RAW DISTRIBUTION O(U)" LOGISTIC CASE 
0+ 0.0999 AT U = 0.9900. 0- = -0.3870 AT U = 0.9200 

1.000 +----------------------------------------------------------00 
I *1 
I * I 
I * 001 
I * 00 I 

Spring Wheat Pixel Neighborhood Channel 3 
0.900 + * 2 I 

I * 2 I 
I *20 I 

Mean IQ: Cumulative weighted spacings D(u) 
I * 2 I 
I *20 I plot indicates accept fit of logistic 

0.800 + *2 I 
I 00 I 
I 00 I 

distribution. 
I *00 I 
I *2' I 

0.700 + 02 I 
I 2 I 
I 2 I 
I 00 I 
I 00 I 

0.600 + 00 I 
I 2 I 
I 2 I 
I 00 I 
I 00 I 

0.500 + 00 I 
121 

I 0 I 
I 000 I 
I 00 I 

0.400 + *0 I 
I DO I 
I 00 I 
I * 0 I 
I *00 I 

0.300 + *00 I 
I * 0 I 
I *20 I 
I * 0 I 
I * 00 I 

0.200 + * 2 I 
I * 2 I 
I *00 I 
I * 00 I" 
I * 00 I 

0.100 + *02 I 
I *00 I 
I 02 I 
I 000 I 
100 I 

0.0 +0----+-----+-----+-----+-----+-----+-----+-----+-----+-----+" 
0.0 0.1 0.2 0.3 0.4 "0.5 0.6 0.7 0.8 0.9 1.0 

ABSCISSA IS U • ORDINATE IS O(U) 

.. J J ' .. .1 J j J . .. J J ) .1 .. 1 . .1 1 

N 
N 
~ 
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S TAT 1ST I CAL A N A L Y SIS 

SEG"1380 YR"1978 DY" 115 CH" 3 GT" 100 
DENSITY-QUANTILE FUNCTION LOGISTIC CASE ORDER" 

1.100 +-----------------------------0220220------------------------
I 
I 
I 
I 

0.990 + 
I 
I 
I 
I 

0.880 + 
I 
I 
I 
I 

0.770 + 
I 
I 
I 
I 

0.660 + 
I 
I 
I 
I 

0.550 + 
I 
I 
I a 
I 

0.440 + a 
I a 
I 
I a 
I 

0.330 + a 
I a 
I 
I a 
I 

0.220 + a 
I 
I a 
I 
I a 

0.110 + 
10 
I 
I 
I 

a 
a 

a 
a 

a 

o 
o 

o 
a 
a 

a 
a 
a 

00 
00 

00 
2 

a 
00 

o 
o 

2 

2 

22 
20 

20 
00 

2 
2 
a 

2 
a 
a 
a 
a 
a 
a 

o 
a 
a 
o 

a 
a 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a I 
a I 

I 
a I 

I 
0 I 
a I 

I 
a I 

I 
a I 

I 
a I 

I 
a I 

I 
a I 

I 
0 I 

I 
a I 

I 
a I 

I 
01 

I 
01 

I 
0.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
ABSCISSA IS U • ORDINATE IS FQ(U) 
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Spring Wheat Pixel Neighborhood Channel 3 

Mean IQ: Autoregressi ve density-quantil e 

estimator (with logistic base and order 1) 

indicates norma1~like density. 

" - ) 
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N 
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SEG~1380 YR~1978 DY= 115 CH= 3 GT= 100 
DENSITY-QUANTILE FUNCTION WEIBULL CASE ORDER = 2 

1.249 +---------------------------------------220------------------
I 
I 
I 
I 

1. 124 + 
I 
I 
I 
I 

0.999 + 
I 
I 
I 
I 

0.875 .+ 
I 
I 
I 
I 

0.750 + 
I 
I 
I 
I 

0.625 + 

0.500 + 
I 
I 
I 
I 

0.375 + 
I 
I 

a 
00 

I 200 
10 

0.250 + 
I 
I 
I 
I 

0.125 + 
I 
I 
I 
I 

a 

a 
a 

a 
a 

a 

o 
a 

a 
a 

a 

a 

a 
a 

a 

o 

0220 
2 20 

a 00 
a 2 

o 
a 

a 
a 

00 
a 

2 
20 20 

2 

a 

00 
a 

a 
a 

a I 
a I 
a I 
a I 

o I 
I 

a I 
I 

a I 
a I 

I 
a I 

I 
I 

a I 
I 

a I 
I 

a I 
I 

a I 
I 
I 

a I 
I 

o I 
I 

a I 
I 
I 

a I 
I 

a I 
I 

a I 
I 

o I 
I 

o I 
I 

o I 
o I 

I 
o I 
a I 
o I 
o I 

01 
01 

0.000 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ABSCISSA IS U. ORDINATE IS FQ(U) 

J . __ 1 ... , J ... 1 J .1 1 

Spring Wheat Pixel Neighborhood Channel 3 

Mean IQ: Autoregressive density-quantile 

estimator (with Weibull base and order 2) 

indicates a density not in accord with 

logistic analysis, thus casting doubt on 

current reliability of AR order determining 

techniques. 
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S TAT 1ST I CAL A N A L Y SIS 

SEG=1380 YR=1978 DY= 115 CH= 3 GT= 100 
DBAR PLOTTED AGAINST D(U)=U (*) WEIBULL CASE ORDER = 2 

1.000 +----------------------------------------------------------00 
I 001 
I 000 I 
I 020 I 
I 02 * I 

0.900 + 00 * I 
12* I 

I 2 * I 
I 00 * I 
I DO * I 

0.800 + 0 * I 
I 00 * I 
I 00 * I 
I 00* I 
I 0 * I 

0.700 + 00* I 
I 0* I 
I 00* I 
I 00 I 
I 00 I 

0.600 + 2* I 
I 2* I 
I 00* I 
I 20 I 
I 00* I 

0.500 + 00* I 
I 000* I 
I 00 * I 
I 00* I 
I 2 * I 

0.400 + 0 * I 
I 00* I 
I 2 * I 
I 2* I 
I 0* I 

0.300 + 2* I 
I 2* I 
I 00* I 
I 00 I 
I 00 I 

0.200 + 2* I 
I 2* I 
I 00* I 
I 20 I 
I 20* I 

0.100 + 2· I 
I 00 • I 
10* I 
10* I 
1* I 

0.0 +0----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 
0.0 O.t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

ABSCISSA IS U. ORDINATE IS DBAR(U) 
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Spring Wheat Pixel Neighborhood Channel 3 

Mean IQ: Diagnostic of fit of AR density

quantile estimator (with Weibull base 

and order 2) indicates that it "overfits" 

and might generate spurious modes in the 

density. 
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SUMMARY OF AR PARAMETRIC SELECT ANALYSIS FOR WEIBULL CASE 

OROER RES_VAR LOG(RES_VAR) AIC CAT 

1 0.90931 -0.09507 -0.07507 -1.07785 
2 0.88209 -0.12546 -0.08546 -1.08899 
3 0.86845 -0.14104 -0.08104 -1.08376 
4 0.86084 -0.14984 -0.06984 -1.07086 
5 0.85631 -0 .. 15512 -0.05512 -1.05400 

OPTIMAL ORDER BY CAT CRITERION IS 2 MAXIMUM ORDER CHECKED IS 5 

OPTIMAL ORDER BY AIC CRITERION IS 2 MAXIMUM ORDER CHECKED IS 5 

SUMMARY OF AR PARAMETRIC SELECT ANALYSIS FOR LOGISTIC CASE 

ORDER RES_VAR LOG(RES_VAR) AIC CAT 

1 0.99882 -0.00118 0.01882 -0.98126 
2 0.99655 -0.00346 0.03654 -0.96365 
3 0.99392 -0.00610 0.05390 -0.94643 
4 0.99086 ,..0.00918 0.07082 -0.92966 
5 0.98756 -0.01251 0.08749 -0.91315 

OPTIMAL ORDER BY CAT CRITERION IS 0 MAXIMUM ORDER CHECKED IS 5 

OPTIMAL ORDER BY AIC CRITERION IS 0 MAXIMUM ORDER CHECKED IS 5 

Spring Wheat Pixel Neighborhood Channel 3 Mean IQ: AIC AR order 

determining analysis . 
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Mean IQ Channel 3 

Mean IQ Channel 3 
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Appendix: Quantile and FUN.STAT Data Analysis 

This appendix presents some of the new characterizations of 

probability laws which are being developed under the names of quantile 

data analysis, and functional statistical inference analysis. 

Estimators of these characteristics are currently available for one 

sample and two samples, univariate and bivariate [Parzen (1979), 

(1983), Woodfield (1982)]. 

229 

These methods seem to have much potential to contribute to the 

solution of the problem of digital image representation: the 

determination and modeling of basic characteristics or features of the 

digital image which can be incorporated into the process of identifying 

classes and attributes in a scene. They provide new approaches to 

determining scene probability density functions and class conditional 

density functions of digital image data in order to understand spectral 

characteristics and extract desired information. They can provide data 

representations which reduce the dimensions of multivariate image data 

while preserving information pertaining to scene classes and attributes. 

A. One Sample: Univariate 

Let X be continuous random variable of which we observe a random 

sample. To estimate distribution function FX(x) = Pr[X~x] and 

probability density f(x) - F'(x), we estimate: quantile function QX(u)= 

Fxl(u); quantile density qX(u) = QX(u); density quantile fQX(u) = 

fX(QX(u)). A quantile data analysis of the random sample 

1. Forms sample distribution function Fx(x), sample quantile 
- -

function QX(u), sample quantile density q(u) at a grid of 

values of u in O<u<l. 
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2. Plots sample version of informative quantile function 

( ) _ Q(U~-Q(0.5) 
IQ u - 2{Q 0.75) - Q(0.25)} 

whose values as u tends to 0 and 1 indicates the tail 

exponents of the probability law of X. 

3. Determines standard distribution functions Fo(x) to test 

H : F(x) = Fo(~) or Q(u) = ~ + a Q (u) o a 0 

for location and scale parameters ~ and a to be estimated. A 

test of H which does not require estimation of ~ and a can be o . 

based on [Parzen (1979)] 

- -
d(u) = foQo(u) q(u) + 0

0 

- 1 -
0

0 
; fo foQo(t) q(t) dt 

which estimate respectively 

d(u) = foQo(u) q(u) + 0 0 

0 0 = f~ foQo(t) q(t) dt. 

4. Form successive autoregressive estimators 

whose negentropy 

,.. 1'" A 

H = f - log d (u) du = - log Km mo. m 

~ A 

is used to determine optimal orders m. Note that Hm estimates 

the entropy difference 
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1 1 
~ = {log ao - fo log foQo(u)} - {- fo log fQ(u) du} 

5. Estimate fQ(u) by 

" where m is. chosen equal to an optimal order m. 

B. Two Sample: Univariate 

Let X and Y be continuous random variables with random samples 

X1,··.,Xm and Yl' ... 'Yn respectively, and with respective distribution 

functions F(x) = Pr[X<x], G(x) = Pr[Y~]. The pooled sample 

X
1

, ... ,Xm, Y1' ... 'Yn can be regarded as a random sample from the 

distribution function 

H(x) = A F(x) + (l-A) G(x), 
_ m 

A -m+n 

To test the hypotheses of equality of distributions, H : F(x) = o 
G(x) = H(x), it is customary in non-parametric statistics to introduce 

with densities [equivalent to likelihood ratios] 

Note that h H-'(u) = A f H-'(u) + (1- A) g H-'(u); therefore 

d (u) = A + (l-A) g H (u) { -1} -, 
X fH-1(u) 

231 
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Parzen (1983) shows that all conventional two-sample nonparametric 

test procedures are functionals of the following raw estimator of 

Trom which one can form "pseudo-correlations" p(v) and linear rank 

statistics ~(J) with score function J(u), 

~(v) = f~ e2~iuv d DX(u) , ~(J) = f~ J(u) dDX(U) 

,. 

and autoregressive estimators dX,m(u) of dX(u). 

When one observes several variables X(l), X(2), ... ,X(j);·· one 

estimates functionals of Dj(U) = FX(j) (H-l(u)) or Djk(U) = 

F (j)(F-h)(u)). 
X X 

c. One Sample: Bivariate 

Let (Xl' X2) be jointly continuous random variables with 

distribution function F
X1

'X
2 

(xl ,x2) = Pr[Xl<x , X2~x2] and density 

f
Xl

,X
2 

(x
l
,x2). The joint density quantile function is defined by 

To estimate fQ we define 

which is the distribution function of Ul = FX (Xl)' U2 = FX (X2); it 
1· 2 

has. density 

.--, 

-

-, 
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--.. , . 



-

.-. 
, 

r 
., 
L 

r 
I 

I 

r 
I , 

sati sfyi ng 

fonn 

D(u
1

,u
2

) 
aU2 

- - -
D

x1
,x

2
= FX1 'X

2 
(QX

1
(u1), QX

2
(u2)) 

" -
and a raw estimator dXl,X2(ul,u2)' We smooth log dXl,X2(ul'U2) by a 

" smooth estimator log dX X (u1,u2) 
l' 2 

minimizing a criterion similar to 

where log dm(u1,u2) has the parametric representation 

log dm(u1,u2); L 6\1 \I exp i (U1\11 + U2\12) - ~(6 ) 
\I \I l' 2 . \11,\12 
1, 2 

where the summation is over \11,\12 = 0, + 1, ... ,+m, and ~(6 ) is an - - \11' \12 
integrating factor to make dm(u1,u2) a probability density. The 

foregoing estimators have been implemented in T. J. Woodfield [1982]. 

The problem of choosing a best value of the order m is approached by 

evaluating the entropy of dm. 

233 
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D. Two Samples: Bivariate 

Let (X1,X2) and (Y1,Y2) be random vectors with respective 

distribution functions F(x1,x2) and G(Y1'Y2)' and respective random 

samples 

( (j) (j)) ._ ( (k) (k)) _ 
Xl' X2 ' J-1, ... ,m and Y1 'Y2 ' k-1,2, ... ,n. 

Let H(x1,x2) denote the distribution function of the pooled random 

sample, with marginal distribution functions H1(x1) and H2(x2). Define 

From D1 (u1 ,u2) and D2(u1 ,u2) one can form raw estimators d1 (u1 ,u2) and 

d2(u1,u2) of the densities 

f(Hi 1(u1), H2'(u2)) 
d1(u1,u2) = 1 

h1Hi 1(u1) h2H2 (u2) 

Therefore 

The likelihood ratio f(x1,x2)/g(x1,x2) can be effectively estimated by 

estimating log d1(u1,u2) - log d2(u1,u2). It seems most natural to 

--
- , 

-. 
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-, 
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estimate [using exponential model representations] 

where dll(ul ) and d12(u2) are the marginal densities of dl (ul ,u2) which 

are estimated separately by methods of two samples: univariate. 

The final output are contour plots of the classification statistic 

A point (xl ,x2) is classified in population 1 or 2 by whether L(xl ,x2) 

exceeds a threshold which depends on the prior probabilities and loss 

function. 
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Appendix: Exploratory Quantile Data Analysis 

of Training Files 

The basic tool for determining statistical characteristics that 

are good discriminators is to determine (for each file, ground truth, 

and channel) a data batch of measurements in the specified channel on 

all pixels with the specified ground truth. The statistical 

characteristics of these data batches are summarized (as on the 

attached pages)' and studied to determine patterns which can 

discriminate between different ground truths. The file numbers are 

those used in the Fundamental Research Data Base [see Guseman (1983)J. 

-. 
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S TAT 1ST I CAL A N A L Y SIS S Y S T E M 21:09 TUESDAY. MAY 17. 1983 441 

G S L L L L 
F C R M M L a a S a G 
I H P E S a G G I G 
L A T L A T I I G G S 
E N R Q Q Q N D Q Q Vi F M S 0 

a N U S Q S S 0 A I 
B N E T I 2 5 7 I I 0 9 P P Q G W 
SOL H Z 5 0 5 R Q Q 1 9 C C 0 0 0 S 

1 1 2 90 377 15.000 19 24.0000 9.0000 0.08564 0.322475 -0.3456 1.05556 -1.3536 -1.5800 -0.90686 0.50636 -0.68050 
212 92 8755 14.000 15 19.0000 5.0000 0.17327.0.442017 -0.4000 2.80000 0.1066 -0.5821 -0.90812 0.80297 -0.21943 
312 97 10573 14.000 15 19.0000 5.0000 0.17437 0.463493 -0.4000 2.70000 -1.3959 -1.8841 -0.90812 0.65714 -0.41986 
412 98 793 13.000 14 17.0000 4.0000 0.14415 0.416479 -0.3750 2.25000 -1.1693 -1.5917 -0.90686 0.61600 -0.48451 
512100 2296 15.000 18 21.0000 6.0000 0.07333 0.448731 -0.5833 2.08333 0.0933 -0.6163 -0.90686 0.82098 -0.19726 
6 1 2 104 558 15.000 18 23.0000 8.0000 0.09492 0.382529 -0.4375 1.18750 -2.0936 -2.4581 -0.90812 0.58059 -0.54370 
7 12111 174 19.000 23 27.0000 8.0000 -0.013310.326849 -0.75000.81250 -5.1738 -5.5843 -0.90812 0.60793 -0.49770 
8 12113 248 19.000 21 24.0000 5.0000 -0.00419 0.407626 -1.0000 1.10000 -1.5537 -2.3137 -0.90812 0.86235 -0.14809 
9 1 2 114 95 18.000 20 24.0000 6.0000 0.08244 0.381941 -0.7500 1.00000 -1.8184 -2.3698 -0.90812 0.69993 -0.35677 

10 1 2 164 2980 15.000 19 22.0000 7.0000 0.00592 0.373707 -0.5714 1.50000 -0.0626 -0.6454 -0.90812 0.72225 -0.32539 
11 1 2 242 1326 15.000 19 21.0000 6.0000 -0.00299 0.367563 -0.6667 1.58333 -0.0152 -0.6651 -0.90812 0.77239 -0.25827 
12 1 3 90 377 14.000 20 30.7500 16.7500 0.07147 0.274792 -0.3284 0.68657 -1.0524 -1.1649 -0.90686 0.45186 -0.79437 
13 1 3 92 8755 11.500 14 18.0000 6.5000 0.09520 0.506777 -0.4615 3.00000 0.1017 -0.5798 -0.90812 0.79720 -0.22665 
14 1 3 97 10573 10.000 13 18.0000 8.0000 0.13187 0.407418 -0.3125 1.93750 -0.1479 -0.6297 -0.90812 0.65293 -0.42629 
15 1 3 98 793 9.500 12 14.0000 4.5000 0.06506 0.492558 -0.4444 2.55556 -0.6937 -1.3238 -0.90812 0.75730 -0.27800 
16 1 3 100 2296 12.500 16 21.5000 9.0000 0.11257 0.407630 -0.4444 1.66667 -0.5910 -1.0575 -0.90812 0.64299 -0.44162 
17 1 3 104 558 13.000 16 24.0000 11.0000 0.11668 0.345959 -0.3636 1.00000 -0.8114 -1.1307 -0.90812 0.55493 -0.58891 
18 1 3 111 174 20.500 26 33.0000 12.5000 0.02218 0.339094 -0.72000.68000 -3.7113 -4.1667 -0.90812 0.63589 -0.45273 
19 1 3 113 248 20.000 28 33.0000 13.0000 -0.05665 0.319116 -0.7692 0.65385 -1.3456 -1.8080 -0.90812 0.64040 -0.44567 
20 1 3 114 95 18.000 24 29.0000 11.0000 -0.01359 0.347879 -0.7273 0.68182 -4.1139 -4.6001 -0.90812 0.65577 -0.42194 
21 1 3 164 2980 13.000 18 24.0000 11.0000 0.05420 0.367705 -0.4545 1.40909 -0.5273 -0.9115 -0.90812 0.59221 -0.52390 
22 1 3 242 1326 14.500 20 26.0000 11.5000 0.03849 0.350681 -0.5217 1.43478 -2.1322 -2.4893 -0.90812 0.57637 -0.55101 
23 6 2 19 84 26.000 27 29.0000 3.0000 0.10974 0.422269 -0.8333 1.33333 -7.7867 -8.4229 -0.90686 0.76287 -0.27066 
24 6 2 20 84 24.025 27 28.9375 4.9125 -0.02021 0.313054 -0.5089 1.01781 -7.0616 -7.3181 -0.90686 0.52187 -0.65034 
25 6 2 21 68 26.780 27 29.0000 2.2200 0.300700.676187 -1.1261 2.25224 -6.9264 -7.9460 -0.90812 1.11795 0.11149 
26 6 2 22 138 26.000 28 30.0000 4.0000 0.05138 0.400085 -0.7500 1.12500 -7.2153 -7.9296 -0.90812 0.82389 -0.19372 
27 6 2 24 75 29.000 30 33.0000 4.0000 0.08499 0.314726 -1.0000 0.75000 -7.9774 -8,4502 -0.90812 0.64713 -0.43521 
28 6 2 25 98 31.880 33 36.0000 4.1200 0.02669 0.411211 -1.3349 0.84951 -7.2732 -8.1135 -0.90812 0.93442 -0.06783 
29 6 2 26 59 28.700 29 32.0000 3.3000 0.08760 0.436342 -1.0606 1.06059 -6.8373 -7.6235 -0.90812 0.88522 -0.12192 
30 6 2 27 66 29.000 29 31.0000 2.0000 0.17336 0.514212 -1.7500 1.50000 -7.3150 -8.3163 -0.90812 1.09776 0.09327 
31 6 2 29 90 26.920 29 30.0000 3.0800 -0.14964 0.638682 -1.1364 1.13636 -5.8349 -7.1081 -0.90812 1.44067 0.36511 
32 6 2 30 147 30.000 33 36.0000 6.0000 -0.00780 0.289214 -0.9167 0.66667 -7.0916 -7.5682 -0.90686 0.65036 -0.43023 
33 6 2 80 262 29.000 33 35.0000 6.0000 -0.103900.357624 -0.9167 0.58333 -1.7481 -2.5181 -0.90812 0.87100 -0.13811 
34 6 2 90 110 27.000 29 31.0000 4.0000 0.04559 0.37611.8 -0.8750 1.12500 -7.0515 -7.5858 -0.90812 0.68816 -0.37374 
35 6 2 92 70 30.000 32 33.0000 3.0000 -0.07507 0.374930 -1.6667 0.50000 -8.1278 -8.8591 -0.90812 0.83789 -0.17687 
36 6 2 94 719 29.000 31 33.0000 4.0000 0.03415 0.538090 -1.1250 1.62500 -4.4185 -5.5421 -0.90812 1.24040 0.21543 
37 6 2 95 802 29.000 30 33.0000 4.0000 0.09802 0.471782 -1.0000 1.50000 -0.4534 -1.3925 -0.90812 1.03154 0.03105 
38 6 2 100 7449 29.000 31 33.0000 4.0000 0.000000.435172 -1.1250 1.37500 0.2642 -0.7829 -0.90812 1.14906 0.13894 
39 6 2 101 667 29.000 32 34.0000 5.0000 -0.04075 0.413778 -1.0000 1.40000 -0.3265 -1.1803 -0.90812 0.94716 -0.05429 
40 6 2 103 166 29.000 33 35.0000 6.0000 -0.09408 0.388473 -0.9167 0.75000 -6.3937 -7.0892 -0.90812 0.80842 -0.21268 
41 6 2 104 286 29.000 30 33.0000 4.0000 0.07518 0.449739 -1.0000 1.25000 -0.6947 -1.7583 -0.90812 1.16820 0.15547 
42 6 2 111 3033 27.500 30 33.0000 5.5000 -0.05079 0.472771 -0.7273 1.09091 -0.2712 -1.3387 -0.90812 1.17272 0.15933 
43 6 2 112 52 29.000 30 32.0000 3.0000 -0.01842 0.545337 -1.3333 1.33333 -6.3356 -7.4244 -0.90812 1.19797 0.18063 

N 44 6 2 164 3344 28.000 30 33.0000 5.0000 0.049010.460380 -0.8000 2.10000 -0.3333 -1.2640 -0.90812 1.02287 0.02262 w 
45 6 2 240 581 15.000 20 29.0000 14.0000 0.06107 0.257827 0.0714 0.78571 -1.3245 -1.3068 -0.90812 0.39618 -0.92590 ........ 
46 6 2 242 1724 25.000 29 33.0000 8.0000 -0.02228 0.402009 -0.4375 0.81250 0.0246 -0.8394 -0.90812 0.95689 -0.04407 
47 6 2 250 430 29.000 32 33.0000 4.0000 -0.10988 0.482274 -1.2500 1.87500 -0.7696 -1.6981 -0.90812 1.02054 0.02033 
48 6 3 19 84 25.000 26 29.0000 4.0000 0.15562 0.428386 -0.5000 1.12500 -7.5269 -8.0800 -0.90686 0.70208 -0.35371 
49 6 3 20 84 23.000 26 29.0000 6.0000 0.09133 0.417561 -0.3333 1.25000 -6.1938 -6.6268 -0.90812 0.62182 -0.47511 
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50 6 3 21 68 28.000 28.0000 30.0000 2.0000 0.27126 0.704507 -1.5000 2.00000 -6.2044 -7.4344 -0.90686 1.38154 0.32320 51 6 3 22 138 26.000 29.0000 31.0000 5.0000 -0.06978 0.379523 -0.70000.70000 -2.1660 -2.9263 -0.90812 0.86258 -0.14783 
52 6 3 24 75.29.000 32.0000 33.0000 4.0000 -0.10535 0.368432 -1.2500 0.62501 -7.1877 -7.8403 -0.90812 0.77452 -0.25551 
53 6 3 25 98 32.880 34.0000 36.0000 3.1200 0.02724 0.504708 -1.9231 0.96153 -1.4831 -2.5190 -0.90812 1.13631 0.12719 54 6 3 26 59 32.000 34.0000 39.4499 7.4500 0.06483 0.372958 -0.8054 0.87249 -4.6571 -5.2885 -0.90686 0.75918 -0.27551 
55 6 3 27 66 28.000 29.0000 31.5849 3.5849 0.10743 0.357394 -0.9763 0.83684 -7.1108 -7.7215 -0.90812 0.74273 -0.29742 
56 6 3 29 90 25.375 29.0000 33.0000 7.6250 0.00003 0.375881 -0.45900.78688 -1.6667 -2.3720 -0.90812 0.81641 -0.20284 
57 6 3 30 147 32.000 34.0000 36.9999 4.9999 -0.01149 0.378298 -1.20000.70001 -5.5537 -6.3597 -0.90812 0.90293 -0.10211 
58 6 3 80 262 31.000 35.4999 38.0000 7.0000 -0.08160 0.412245 -0.9643 0.75001 -1.5098 -2.4394 -0.90812 1.02177 0.02154 59 6 3 90 110 35.000 37.0000 39.1799 4.1799 -0.00605 0.457698 -1.7943 1.07657 -6.1105 -7.1068 -0.90812 1.09219 0.08818 60 6 3 92 70 33.000 34.5000 36.0000 3.0000 0.01198 0.453114 -2.0833 1.41667 -7.3690 -8.3061 -0.90812 1.02944 0.02901 61 6 3 94 719 32.000 35.0000 37.0000 5.0000 -0.07525 0.529481 -1.3000 1.20000 -4.9297 -6.1265 -0.90812 1.33465 0.28867 62 6 3 95 802 29.000 32.0000 36.5000 7.5000 0.04627 0.390512 -0.6667 1.13333 -0.4756 -1.0958 -0.90812 0.74982 -0.28793 
63 6 3 100 7449 29.000 33.0000 36.0000 7.0000 -0.019810.343015 -0.7857 1.42857 -0.0980 -0.7663 -0.90812 0.78671 -0.23990 
64 6 3 101 667 31.000 34.0000 37.0000 6.0000 0.008710.441873 -1.0000 1.16667 -0.9997 -1.8437 -0.90812 0.93786 -0.06415 
65 6 3 103 166 29.000 33.0000 36.0000 7.0000 -0.04188 0.368805 -0.7857 0.71429 -2.2483 -2.9266 -0.90812 0.79469 -0.22981 
66 6 3 104 286 29.500 32.0000 35.0000 5.5000 -0.02102 0.403830 -0.9091 0.90909 -6.8991 -7.7758 -0.90812 0.96907 -0.03142 
67 6 3 111 3033 30.000 34.0000 37.0000 7.0000 -0.08816 0.522955 -0.8571 1.28571 0.2503 -0.9520 -0.90812 1.34200 0.29416 68 6 3 112 52 36.000 40.0000 44.0000 8.0000 -0.047100.376295 -1.12500.43750 -1.3283 -2.1256 -0.90686 0.89624 -0.10955 
69 6 3 164 3344 29.000 33.0000 36.0000 7.0000 -0.02656 0.429949 -0.7857 1.85714 0.0516 -0.8871 -0.90812 1.03101 0.03054 70 6 3 240 581 10.000 18.0000 29.7498 19.7498 0.05451 0.268453 0.1013 0.70887 -1.4929 -1.4949 -0.90812 0.40409 -0.90613 
71 6 3 242 1724 25.500 32.0000 36.0000 10.5000 -0.08133 0.404946 -0.4762 0.90476 -3.2287 -4.0342 -0.90812 0.90245 -0.10264 
72 6 3 250 430 34.000 37.0000 41.5000 7.5000 0.03987 0.398162 -1.0000 1.06667 -1.6581 -2.4186 -0.90812 0.86273 -0.14766 
73 11 2 2 97 38.000 40.0000 42.0000 4.0000 0.09039 0.419874 -0.6250 1.75000 -7.3856 -7.9428 -0.90686 0.70493 -0.34966 
74 11 2 3 59 40.000 42.0000 44.0000 4.0000 -0.00626 0.363281 -0.8750 1.00000 -7.0617 -7.6737 -0.90686 0.74464 -0.29486 
75 11 2 11 112 38.000 40.0000 40.9375 2.9375 -0.04870 0.314599 -0.8511 0.68086 -8.3158 -8.8274 -0.90686 0.67351 -0.39526 
76 11 2 14 68 38.000 40.0000 42.0000 4.0000 0.01268 0.309138 -0.62500.62500 -8.1671 -8.6187 -0.90812 0.63311 -0.45711 
71 11 2 15 154 37.000 38.0000 39.0000 2.0000 -0.05372 0.460384 -0.7500 1.00000 -8.3292 -9.3228 -0.90812 1.08931 0.08555 78 11 2 16 176 35.000 37.0000 40.0000 5.0000 -0.00641 0.352234 -0.2000 0.80000 -1.4149 -2.0477 -0.90812 0.75936 -0.27529 
79 11 2 20 89 34.000 35.0000 38.0000 4.0000 0.10804 0.419158 0.0000 1.25000 -6.8548 -7.4064 -0.90812 0.70017 -0.35644 
80 11 2 21 61 34.000 35.0000 35.0000 1.0000 -0.16516 0.970326 0.0000 2.49996 -6.7873 -8.3991 -0.90812 2.02124 0.70371 81 11 2 22 187 35.000 36.0000 38.0000 3.0000 0.125410.518729 -0.1667 3.00000 -1.4564 -2.1781 -0.90812 0.82991 -0.18644 
82 11 2 23 276 40.000 41.0000 42.0000 2.0000 -0.02924 0.511546 -1.5000 1.50000 -7.8764 -8.9025 -0.90812 1.12527 0.11802 83 11 2 27 184 35.000 37.0000 38.0000 3.0000 -0.10586 0.363504 -0.3333 1.00000 -1.1591 -1.8038 -0.90812 0.76842 -0.26342 
84 11 2 80 327 35.000 37.0000 38.0000 3.0000 -0.03545 0.467447 -0.3333 1.33333 -1.8450 -2.7436 -0.90812 0.99053 -0.00952 
85 11 2 90 137 32.000 35.0000 38.0000 6.0000 -0.03985 0.376386 0.00000.58333 -6.5088 -7.3084 -0.90812 0.89714 -0.10855 86 11 2 99 1268 38.000 40.0000 42.0000 4.0000 0.00589 0.548328 -0.6250 2.62500 0.1869 -0.8899 -0.90812 1.18372 0.16866 87 11 2 100 1258 32.000 33.0000 35.0000 3.0000 0.12269 0.614127 0.3333 2.00000 -1.1158 -2.4396 -0.90812 1.51549 0.41574 88 112 101 908 36.000 38.0000 41.0000 5.0000 0.02581 0.477375 -0.3000 1.30000 -2.6301 -3.7291 -0.90812 1.21036 0.19092 89 11 2 104 145 22.000 30.0000 35.0000 13.0000 -0.00894 0.271717 0.1923 0.65385 -6.4074 -6.4934 -0.90812 0.43950 -0.82211 
90 11 2 105 1215 30.500 33.0000 36.0000 5.5000 0.12760 0.647085 0.1818 5.36363 -0.5111 -1.1246 -0.90812 0.74478 -0.29467 
91 11 2 107 12998 30.000 32.0000 36.5000 6.5000 0.19345 0.565437 0.2308 4.69231 -0.0432 -0.6174 -0.90812 0.71613 -0.33389 
92 11 2 175 804 36.000 38.0000 40.0000 4.0000 0.013800.362123 -0.3750 1.12500 -0.4216 -1.1079 -0.90812 0.80097 -0.22193 
93 11 2 176 75 40.000 40.0000 42.0000 2.0000 0.17919 0.557002 -1.2500 1.75000 -6.9107 -7.9306 -0.90686 1.11974 0.11310 94 11 2 179 248 40.000 41.0000 42.0000 2.0000 0.00876 0.672536 -1.5000 1.50000 -1.5916 -2.8273 -0.90812 1.38751 0.32751 
'j~ 11 2 240 813 35.000 38.0000 50.0000 15.0000 0.156510.383497 -0.1000 1.46667 -0.3297 -0.7312 0.90812 0.60252 -0.50664 96 11 3 2 97 44.000 46.0000 48.3599 4.3599 -0.05873 0.461914 -1.1468 0.80276 -6.7082 -7.6067 -0.90686 0.99164 -0.00839 
~7 11 3 3 59 41.700 44.0000 46.0000 4.3000 0.00828 0.362519 -0.9302 0.81395 -7.4606 -8.0711 -0.90812 0.74262 -0.29757 
913 11 3 11 112 41.000 43.0000 44.8750 3.8750 -0.04080 0.373627 -0.9032 0.90324 -7.7439 -8.3910 -0.90812 0.770?6 -0.26103 
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OBS FILE_NO CHANNEL GR_TRUTH SMPL_SIZ 0_25 0_50 0_75 I_O_R MEAN_1O 

99 11 3 14 68 41.0000 44.5000 48.7499 7.7499 0.00934 
100 11 3 15 154 41.0000 42.0000 44.0000 3.0000 -0.01168 
101 11 3 16 176 35.0000 37.0000 39.0000 4.0000 0.04833 
102 11 3 20 89 35.0000 37.0000 39.0000 4.0000 0.08762 
103 11 '3 21 61 36.0000 37.0000 39.0000 3.0000 0.10095 
104 11 3 22 187 36.0000 38.0000 39.0000 3.0000 0.10243 
105 11 3 23 276 41.0000 42.0000 44.0000 3.0000 0.07719 
106 11 3 27 184 37.0000 38.0000 39.0000 2.0000 -0.05223 
107 11 3 80 327 38.0000 39.0000 41.0000 3.0000 0.09934 
108 11 3 90 137 38.0000 41.0000 44.0000 6.0000 -0.08112 
109 11 3 99 1268 42.0000 45.0000 47.0000 5.0000 0.00174 
110 11 3 100 1258 34.0000 35.0000 37.0000 3.0000 0.11312 
111 11 3 101 908 37.0000 39.0000 44.0000 7.0000 0.07129 

. 112 11 3 104 145 22.0000 29.0000 37.0000 15.0000 0.02661 
113 11 3 105 1215 38.0000 39.0000 44.0000 6.0000 0.19637 
114 11 3 107 12998 35.0000 37.0000 41.0000 6.0000 0.14851 
115 11 3 175 804 38.0000 39.0000 42.0000 4.0000 0.15476 
116 11 3 176 75 39.0000 42.0000 44.5699 5.5699 0.01077 
117 11 3 179 248 41.0000 44.0000 45.0000 4.0000 -0.13473 
118 11 3 240 813 37.0000 41.0000 49.8197 12.8197 0.12388 
119 2 2 90 377 18.0000 22.0000 26.7500 8.7500 0.01643 
120 2 2 92 8755 17.0000 19.0000 21.0000 4.0000 0.08750 
121 2 2 97 10573 18.0000 20.0000 24.0000 6.0000 0.10750 
122 2 2 98 793 19.0000 20.0000 23.0000 4.0000 0.21854 
123 2 2 100 2296 15.0000 18.0000 21.0000 6.0000 0.07270 
124 2 2 104 558 14.0000 15.0000 18.0000 4.0000 0.15617 

OBS STD_IO 10_01 10_99 LOG_SPC LOG_WSPC LOGJOOO SIGMA_O LOG_SIGO LG_SO_WS 

99 0.235690 -0.5484 0.35484 -8.2709 -8.3490 -0.90812 0.43605 -0.83000 
100 0.388799 -1.0000 0.83333 -8.6831 -9.3572 -0.90686 0.79239 -0.23270 
101 0.485654 -0.1250 1.25000 -1.5900 -2.5285 -0.90812 1.03079 0.03032 
102 0.389348 -0.1250 1.25000 -7.2055 -7.6596 -0.90812 0.63511 -0.45395 
103 0.412752 -0.1667 1.16667 -7.0332 -7.6502 -0.90812 0.74746 -0.29108 
104 0.758390 -0.3333 4.50000 -6.4167 -7.3487 -0.90812 1.02421 0.02393 
105 0.435878 -0.8333 1.33333 -8.1175 -8.8666 -0.90686 0.85400 -0.15782 
106 0.529777 -0.5000 1.75000 -7.8936 -8.9375 -0.90812 1.14551 0.13585 
107 0.438788 -0.5000 1.66667 -2.0614 -2.8461 -0.90812 0.88397 -0.12333 
108 0.449681 -0.4167 0.50000 -2.1215 -3.1952 -0.90812 1 . 18011 0.16561 
109 0.453383 -0.9000 2.00000 0.1700 -0.7820 -0.90812 1.04488 0.04391 
110 0.683917 0.1667 2.00000 -1.0996 -2.6160 -0.90812 1.83730 0.60830 
111 0.377377 -0.2143 0.92857 -1.1503 -2.0485 -0.90812 0.99014 -0.00991 
112 0.278329 0.2333 0.63333 -1.4291 -1.5725 -0.90812 0.46546 -0.76473 
113 0.587574 -0.2500 4.83333 0.0025 -0.7074 -0.90812 0.82017 -0.19824 
114 0.566747 -0.0833 4.58333 0.0080 -0.6664 -0.90812 0.79156 -0.23375 
115 0.427600 -0.3750 1.75000 0.0988 -0.7925 -0.90812 0.98332 -0.01682 
116 0.286119 -0.5386 0.89768 -7.8258 -8.0574 -0.90686 0.50897 -0.67536 
117 0.441134 -1.0000 0.87500 -7.2207 -7.9961 -0.90812 0.87576 -0.13266 
118 0.415452 -0.1950 1.67711 -0.6044 -1.1408 -0.90812 0.68958 -0.37167 
119 0.343387 -0.5269 1.20000 -0.9547 -1.3491 0.59900 -0.51249 0.83658 

N 120 0.572547 -0.6250 3.37500 0.3307 -0.6199 1.04465 0.04368 0.66354 w 
121 0.442594 -0.5000 2.33333 0.0775 -0.6228 0.81336 -0.20658 0.41624 1.0 

122 0.712776 -0.7500 4.25000 -0.3916 -1.2954 0.99698 -0.00303 1.29241 
123 0.457327 -0.50:25 2.33333 -0.1113 -0.7367 0.75462 -0.28154 0.45512 
124 0.513247 -0.5000 3.1:2500 -1.7848 -2.2800 0.6625:2 -0.41170 1.868:25 
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125 2 2 111 174 15.0000 17.0000 19.0000 4.0000 0.029684 0.42386 -0.5313 1.8750 -6.3085 -6.7216 0.610 -0.49383 6.22773 126 2 2 113 248 19.0000 20.0000 23.0000 4.0000 0.096609 0.51549 -0.7500 2.2500 -2.1118 -2.8814 0.872 -0.13723 2.74415 127 2 2 114 95 14.0000 15.0000 19.7199 5.7199 0.135383 0.38424 -0.4371 1.5734 -1.9182 -2.2945 0.588 -0.53050 1.76402 
128 2 2 164 2980 18.0000 20.0000 23.7500 .5.7500 0.092174 0.52215 -0.6957 3.0435 0.2152 -0.6131 0.924 -0.07856 0.53450 129 2 2 242 1326 17.2500 20.0000 24.0000 6.7500 0.062222 0.39022 -0.5926 1.4815 0.0099 -0.6459 0.778 -0.25107 0.39487 
130 2 3 90 377 33.0000 43.0000 53.7500 20.7500 0.059363 0.39547 -0.5354 1.2048 -0.3070 -0.7531 0.631 -0.46080 0.29229 131 2 3 92 8755 24·.0000 29.5000 35.7500 11.7500 0.095745 0.49171 -0.5319 2.7021 0.0642 -0.5198 0.724 -0.32282 0.19700 132 2 3· 97 10573 24.0000 30.0000 36.7500 12.7500 0.082013 0.45035 -0.5490 2.2745 -0.7583 -1.2533 0.662 -0.41184 0.84146 133 2 3 98 79327 . .0000 31.0000 36.0000 9.0000 0.087718 0 . .47173 -0.6700 1.8889 -1.2208 -1.8513 0.759 -0.27636 1.57490 134 2 3 100 2296 40.0000 50.5000 59.0000 19.0000 -0.012375 0.36361 -0.7771 0.9868 -0.0037 -0.6066 0.738 -0.30399 0.30257 135 2 3 104 558 45.0000 55.0448 65.7500 20.7500 -0.035356 0.35698 -0.8445 0.7218 -0.5098 -1.1162 0.741 -0.30040 0.81584 136 2 3 111 174 45.8125 50.1250 56.0000 10.1875 0.024783 0.48401 -1.1227 1.2699 -2.9237 -3.8349 1.004 0.00429 3.83915 137 2 3 113 248 38.2500 47.0000 52.0000 13.7500 -0.054036 0.36826 -0.9640 0.9091 -0.7254 -1.4139 0.804 -0.21832 1.19561 138 2 3 114 95 43.2400 49.0000 56.0000 12.7600 0.002850 0.45506 -1.0580 1.2931 -2.3053 -3.1337 0.925 -0.07845 3.05528 139 2 3 164 2980 26.0148 35.0000 47.0000 20.9852 0.062615 0.32554 -0.4289 1.3104 -0.7642 -1.0185 0.521 -0.65263 0.36583 140 2 3 242 1326 36.0000 46.0000 54.0000 18.0000 -0.024542 0.33170 -0.7222 1.0000 -0.3208 -0.7943 0.648 -0.43342 0.36083 141 3 2 90 377 12.0000 14.0000 16.0000 4.0000 0.019298 0.39258 -0.6250 1.6250 -1.4727 -1.9344 0.641 -0.44521 1.48915 142 3 2 92 8755 11.0000 11.0000 13.0000 2.0000 0.350000 0.93136 -0.5000 7.7500 0.7991 -0.4952 1.473 0.38740 0.88257 143 3 2 97 10573 11.0000 13.0000 15.0000 4.0000 0.065000 0.47157 -0.5000 3.5000 0.1337 -0.5785 0.823 -0.19460 0.38393 144 3 2 98 793 13.0000 14.0000 15.0000 2.0000 0.096596 0.57447 -0.7500 3.7500 0.0860 -0.9220 1.106 0.10108 1.02305 145 3 2 100 2296 12.0000 14.0000 16.0000 4.0000 0.043784 0.42661 -0.5000 3.1250 0.1147 -0.6083 0.832 -0:18377 0.42457 146 3 2 104 558 12.0000 14.0000 15.8124 3.8124 0.022792 0.37163 -0.5246 2.0984 -1.2114 -1.6041 0.598 -0.51412 1.08997 147 3 2 111 174 11.0000 13.0000 14.8125 3.8125 0.026883 0.28774 -0.3934 0.7869 -1.0595 -1.3541 0.542 -0.61223 0.74191 148 3 2 113 248 13.0000 14.0000 16.0000 3.0000 0.081615 0.40880 -0.6667 1.0000 -0.2959 -1.1161 0.917 -0.08662 ·1.02951 149 3 2 114 95 11.0000 12.4800 14.0000 3.0000 0.044670 0.32296 -0.5800 0.7533 -2.2721 -2.6252 0.575 ~0.55372 2.07150 150 3 2 164 2980 11.0000 13.0000 15.0000 4.0000 0.096250 0.50341 -0.5000 3.6250 0.1843 -0:5748 0.863 -0.14767 0.42717 151 3 2 242 1326 12.0000 14.0000 16.0000 4.0000 0.071112 0.41081 -0.5000 1.6250 -1.4259 -1.9329 0.670 -0.39989 1.53298 152 3 ~ 90 377 39.0000 43.0000 48.0000 9.0000 0.047341 0.39573 -0.7222 1.0556 -1.7096 -2.2544 0.696 -0.36207 1.89231 153 3 3 92 8755 39.2500 43.5000 47.0000 7.7500 -0.009678 0.37780 -1.0000 1.5161 -0.0750 -0.8784 0.902 -0.10349 0.77487 154 3 3 97 10573 39.0000 44.0000 48.0000 9.0000 0.009338 0.40226 -0.9444 1.6667 -0.8617 -1.5676 0.818 -0.20099 1.36656 155 3 3 98 793 45.0000 50.0000 53.0000 8.0000 -0.096465 0.43597 -1.2500 0.8750 -0.5014 -1.4274 1.019 0.01915 1.44652 156 3 3 100 2296 37.0000 41.0000 45.7500 8.7500 0.030151 0.36095 -0.7429 1.3143 -0.9597 -1.5350 0.718 -0.33160 1.20336 157 3 3 104 558 37.0000 40.0000 43.0000 6.0000 0.020173 0.46660 -0.8333 1.7500 -6.3428 -7.0865 0.849 -0.16320 6.92327 158 3 3 111 174 37.0000 43.0000 48.7499 11.7499 0.018509 0.31700 -0.5213 0.7660 -5.1939 -5.5167 0.558 -0.58408 4.93257 159 3 3 113 248 39.0000 43.0000 46.1799 7.1799 0.040447 0.43400 -0.7319 1.5321 -5.8781 -6.5004 0.752 -0.28456 6.21582 160 3 3 114 95 39.0000·41:000044.0000 5.0000 0.012112 0.38422 -1.0000 0.9000 -6.6068 -7.2926 0.802 -0.22108 7.07153 161 3 3 164 2980 37.0000 42.0000 46.0000 9.0000 -0.015330 0.37170 -0.8889 1.3889 -0.5355 -1.1915 0.778 -0.250880,94057 162 3 3 242 1326 40.2500 43.0000 47.0000 6.7500 0.051269 0.42644 -0.9430 2.0741 -0.8711 -1.6134 0.848 -0.16458 1.44881 163 4 2 90 377 13.0000 15.0000 19.0000 6.0000 0.088114 0.36715 -0.4167 1.0833-2.0987 -2.4372 0.566 -0.56843 1.86873 164 4 2 92 8755 11.0000 12.0000 13.0000 2.0000 0.265000 1.07239 -0.5000 8.5000 0.8443 -0.4832 1.523 0.42060 0.90379 165 4 2 97 10573 11.0000 12.0000 14.0000 3.0000 0.250000 0.67607 -0.3333 4.6667 0.5014 -0.4751 1.072 0.06970 0.54485 166 4 2 98 793 15.0000 15.5000 18.0000 3.0000 0.130000 0.46486 -0.7500 2.5833 0.4238 -0.6269 1.155 0.14385 0.77074 167 4 2 100 2296 15.0000 19.0000 21.7500 6.7500 -0.022091 0.35933 -0.5926 1.2593 -0.0066 -0.6918 0.740 -0.30161 0~3~021 168 4 2 104 558 15.0000 20.0000 24.0000 9.0000 0.038804 0.37734 -0.5000 1.3333 -0.7724 -1.2062 0.623 -0.47307 0.73314 169 4 2 111 174 14.0000 15.0000 18.0000 4.0000 0.113748 0.40674 -0.5000 1.5000 -0.3056 -0.9627 0:779 -0.24976 0.71297 170 4 2 113 248 16.0000 19.0000 22.0000 6.0000 0.078022 0.48477 -0.6667 1.4167 -0.9834.-1.6811 0.811 -0.20925 1.47180 171 4 2 114 95 12.0000 14.0000 17.0000 5.0000 0.128838 0.45227 -0.4000 1.6000 -1.4567 -1.8520 0.600 -0.51155 1.34042 172 4 2 164 2980 12.0000 13.0000 15.0000 3.0000 0.236666 0.74993 -0.5000 4.1667· 0.5905 ~0.5309 .1.249 ·0.22254 0.76144 173 4 2 242 1326 13.0000 15.0000 19.0000 6.0000 0.120547 0.39356 -0.4167 1.7500 -1.3534 -1.7234 0.585 -0.53691 1.18648 
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174 4 3 90 377 47.0000 51.0000 57.0000 10.0000 0.11187 0.54211 -0.9720 1.8000 -1.0773 -1.9210 0.939 -0.06316 1.85783 
175 4 3 92 8755 49.0000 54.0000 59.0000 10.0000 0.00794 0.40551 -1.2000 1.7500 0.0179 -0.8324 0.945 -0.05657 0.77584 
176 4 3 97 10573 0.0000 0.0000 0.0000 0.0000 0.54000 5.40000 0.0000 54.0000 5.6519 -0.2058 141.298 4.95087 5.15666 
177 4 3 98 793 61.0000 71.0000 77.7500 16.7500 -0.04775 0.33029 -0.8060 
178 4 3 100 2296 43.0000 49.0000 56.0000 13.0000 0.03077 0.39067 -0.8077 
179 4 3 104 558 40.0000 47.0000 53.0000 13.0000 0.01238 0.39469 -0.6538 
180 4 3 111 174 46.2500 55.0000 62.0000 15.7500 0.00690 0.32112 -0.6349 
18143113 248 44.0000 49.0000 53.0000 9.0000 -0.00196 0.37798 -0.8333 
182 4 3 114 95 47.0000 51.0000 55.0000 8.0000 -0.03403 0.50460 -2.1875 
183 4 3 164 2980 47.0000 53.0000 59.0000 12.0000 0.01909 0.42414 -1.0913 
184 4 3 242 1326 49.2500 54.0000 59.0000 9.7500 0.05192 0.44531 -1.0769 
185 5 2 90 377 14.0000 16.0000 24.0000 10.0000 0.16075 0.37199 -0.2500 
186 5 2 92 8755 12.2500 14.0000 15.0000 2.7500 0.23235 0.89847 -0.5455 
187 5 2 97 10573 12.0000 12.5000 15.0000 3.0000 0.30333 0.84649 -0.4167 
188 5 2 98 793 15.0000 16.0000 18.0000 3.0000 0.198~3 0.65293 -0.8333 
189 5 2 100 2296 20.0000 26.0000 32.0000 12.0000 0.02053 0.36533 -0.5833 
190 5 2 104 558 20.8124 29.5000 37.0000 16.1876 -0.00049 0.32287 -0.5405 
19152111 174 15.2500 18.7500 21.8125 6.5625 0.03371 0.35199 -0.4571 
192 5 2 113 248 18.0000 21.0000 23.7500 5.7500 -0.00767 0.33992 -0.7826 
193 5 2 114 95 14.0000 17.0000 20.0000 6.0000 0.06910 0.47639 -0.5833 
194 5 2.164 2980 13.0000 15.0000 19.0000 6.0000 0.16106 0.53115 -0.3333 
195 5 2 242 1326 14.0000 18.0000 22.0000 8.0000 0.06258 0.39451 -0.4375 
196 5 3 90 377 49.0000 55.3899 62.0000 13.0000 0.03732 0.33783 -0.4804 
197 5 3 92 8755 50.0000 54.0000 58.0000 8.0000 0.06437 0.47052 -1.1250 
198 5 3 97 10573 60.2500 68.0000 74.7500 14.5000 -0.01621 0.33677 -0.7586 
199 5 3 98 793 65.0000 74.0000 77.8748 12.8748 -0.10873 0.35418 -1.0486 
200 5 3 100 2296 49.0000 53.0000 58.0000 9.0000 0.05001 0.46307 -1.0000 
201 5 3 104 558 47.8124 53.0000 57.7500 9.9376 0.01209 0.42672 -0.8050 
202 5 3 111 174 45.1250 54.0000 61.7499 16.6249 -0.00587 0.28341 -0.5113 
203 5 3 113 248 47.0000 50.0000 55.0000 8.0000 0.09465 0.47385 -1.5331 
204 5 3 114 95 44.0000 49.0000 54.0000 10.0000 0.01776 0.45430 -1.1000 
205 5 3 164 2980 50.0000 55.0000 62.0000 12.0000 0.05976 0.39738 -0.9167 
206 5 3 242 1326 50.0000 54.5000 61.7500 11.7500 0.08167 0.40925 -0.7447 

0.7463 -0.9628 -1.4863 
1.5385 0.0063 -0.6597 
1.8077 -0.3133 -0.8261 
0.7302 -3.7986 -4.1619 
1.0000 -1.3375 -1.9590 
1.0625 -0.9529 -2.2132 
1.5833 -1.2025 -1.9647 
1.5897 -0.5454 -1.3403 
1.3500 -1.4246 -1.6591 
6.0000 -0.4299 -1.3389 
5.5833 0.5960 -0.4769 
3.6667 0.5786 -0.5688 
1.1667 -0.0841 -0.6151 
0.7568 -1.3346 -1.6888 
1.6953 -5.8105 -6.0374 
0.9565 -1.2237 -1.7680 
1.8333 -1.3445 -1.8854 
3.0000 -0.1000 -0.7010 
1.6250 -1.9339 -2.3006 
1.1388 -4.9206 -5.2071 
2.1875 0.1278 -0.7405 
1.0000 -0.1971 -0.7710 
0.5825 -0.6155 -1.3129 
1.9444 0.1266 -0.7220 
1.4591 -4.8370 -5.4721 
0.6015 -4.4886 -4.7421 
1.5000 -1.3288 -2.3599 
1.3000 -3.4513 -4.2417'. 
1.4167 -0.5358 -1.2137 
1.4681 -0.7698 -1.3693 . 

0.682 -0.38332 1~10298 
0.786 -0.24087 0.41878 
0.670 -0.40002 0.42011 
0.581 -0.54366 3.61820 
0.752 -0.28540 1.67357 
1.424 0.35340 2.56656 
0.865 -0.14471 1.81998 
0.894 -0.11194 1.22837 
0.510 -0.67239 0.98671 
1.002 0.00215 1.34102 
1. 181 0.16602 0.64293 
1.272 0.24050 0.80929 
0.687 -0.37587 0.23926 
0.575 -0.55274 1.13603 
0.507 -0.67999 5.35745 
0.696 -0.36247 1.40558 
0.694 -0.36594 1.51947 
0.736 -0.30590 0.39508 
0.583 -0.54022 1.76037 
0.538 -0.62028 4.58686 
0.962 -0.03859 0.70192 
0.717 -0.33296 0.43803 
0.811 -0.20954 1.10331 
0.943 -0.05830 0.66370 
0.762 -0.27180 5.20027 
0.520 -0.65337 4.08873 
1.132 O. 12421 2.48407 
0.890 -0.11649 4.12522 
0.795 -0.22891 0.98481 
0.735 -0.30730 1.06203 

N 
-+=>0 ...... 
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ABSTRACT 

The objective of this research is to investigate the robustness of 
discriminant functions to non-normality. This study will assess the 
performance of procedures relative to measures of the difference between 
the actual distribution of the observations and the usual assumption of 
normal densities. For example, the two population, mixed distributions 
problem with equal costs of misclassification will be considered. The 
parameters will be estimated by maximum likelihood and recently proposed 
robust methods. 
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the LDF and the quadratic discriminant function (QDF) when covariance 

matrices are unequal. She restricted the covariance matrices to differ 
2 2 by only a scalar multiple, ~2 = 0 ~l' 0 > O. 

Adopting a canonical form from Dunn and Holloway [5] the densities 

were transformed to N{Q, 1) in ITl and N(~, 0
21) in IT 2. The LDF did 

satisfactorily in a moderate range of 0
2 (near one) and improved as the 

distance between populations increased. Marks and Dunn [13] also in-

vestigated the performance of discriminant functions when covariance 

matrices differed. They considered a more general model which has 

canonical form N(Q, I) in ITl and N(~, A), in IT 2, where A = diag 

(A, ... , A, 1, ... , 1). Using Monte Carlo methods the sample LDF out

performed the sample QDF only in a small range of A2 near one. 

Several studies have been performed to investigate the LDF under 

non-normality. Lachenbruch, Sneeringer, and Revo [11] used three types 

of non-linear transformations discussed in Johnson [10] to study the 

LDF under non-normal conditions. They performed a Monte Carlo experi

ment to simulate sampling from non-normal populations and compared the 

misclassification probabilities to those expected when both populations 

"are normal. The sample LDF exhibited substantial differences from ex

pectations when sampling from normal populations, and the overall mis

classification probabilities increased for some of the transformations. 

Moreover, the authors found the misclassification probabilities for one 

population to be larger than expected while the other population was 

smaller than expected. They did note that the range of the variables 

affected the performance of the sample LDF; a bounded variable produced 

less effect than an unbounded variable. Their study was restricted to 

245 
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independently distributed variables. 

Ashikaga ([2], [3]) has studied the LDF using the mixed-normal dis-

tribution. The model is 

f (X) = (1 - a(l}}N(~ (1), E ) + a(l) N(~ (1) + a_, a2E1) 
1 - -1 1 -1 

and 

f2(~} = (1 - a(2))N(~1(2}, El } + a(2} N(~1(2} + ~, a2El }, a2 
> o. 

In canonical form these models reduce to 

gl(~) = (1 - a(l}}N(Q, I) + a(l}N(CI~, a2I} 

and 

9 (X) =(1_a(2)}N(CI(~(2}_~(1»,I)+a(2)N(C,(~(2)_~(l» + Cia, a2I), 
2 - -1 -1 -1-1-

where El = cel. In choosing mixture proportions (a(l) and a(2», 

Ashikaga considered both populations to have mixed-normal distributions 

(a(l) = a(2}} and the case where one population had an assumed normal 

distribution while the other had a mixed-normal distribution 

(a(l) = 0, a(2) 10}. 

The distinctive feature of Ashikaga's study was the introduction of 

two measures of non-normality which illuminate relationships between the 

robustness of the LDF and the extent of non-normality. The first measure 

was based on a multivariate skewness statistic of Ma1kovitch and Afifi 

[12]~ A second measure derived by the author was an overall measure of 

non-normality, it being the sample size necessary to test a simple hy-

pothesis that an observation is from a normal population versus the al

ternative that it was from a mixed normal population. When a(l} = a(2) 

with identical distributions, the LDF did well if TIl and IT2 had 

sufficient separation, (say, ~2 > 4, where ~2 is Mahalanobis distance). 

.... 
\ 
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In the case of one population having a normal distribution and the other 

a mixed-normal distribution, the LDF performed poorly for all values of 

/),2. 

Randles and others [14] constructed two discriminant functions to 

be robust to changes in the population model. The first is a general

ization of Fisher's [6] approach to derive the linear discriminant 

function by maximizing the separation of the groups, 

§'(g(l) _ g(2))/I§'S§. 

If ~ = (g(l) + g(2))/2, then Randles found the vector §o which maxi-

mizes 

~l 1.~11 L([§'{~i - ~)]/I§IS~) + 1 ~2 L ([§I(~ - ~i)]/I~'S~) , 
n2 i=l 

where L is a nondecreasing and nonconstant, odd function. The function 

L is selected to reduce the influence of observations far away from the 

center, ~. 

The second procedure is to substitute Huber-type estimates for the 

parameters in the linear discriminant function. This method replaces 

each mean and covariance matrix with robust estimators 

and 

. n. n. x; = LJ w.x./ LJW. 
- . 1 1-1 . 1 1 1= 1= 

. n. 2 . . n. 2 
S; = LJ w.{x. - i 1)(x. - x1)1/ LJ w., j=l, 2, 

i~l 1 -1 - -1 - i=11 

respectively. The weights are 

wi = 2/di , if di > 2, 

=1,ifd.<2 
1 -

and the distance di is defined by 
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[( -)'{ j)-l{ -)]! d. = x. - x S x. - x . 
1 - 1 - -1-

Randles has found five iterations are sufficient to reduce the effect 

of outliers by computing new distances and weights at each stage using 

the robust estimates of the previous stage. 

2. Bayes' Classification and Mixture Distributions 

An observation is classified into one of q populations (denoted by 

IT" IT2, .•. , ITq) on the basis of a discrimination rule and a p-vector 

observation, x = (xl' x2' .•. , xp)'. Assume that the populations have 

equal costs of misc1assification, but possibly different prior probabi

lities (denoted by 1Tl' 1T2, ••. , 1Tq). Also, assume that the distribution 

of ~ is a composition or mixture of m component distributions. Thus, if 

represents the p.d.f. for IT j , then 

f.{x) = ~ Cl.{j) g.{j) (x), 
J - i=l 1 1 -

where gi{j){!) is the ith component p.d.f. and Cli{j) is the ith comp6n
ent mixing proportion for population j; i=.l, ~ •• , ri1 and j=.l, ~ .. , q. 

Equation (l) allows for a richer and more flexible class of p.d.f.'s 

than used in previous studies. 

In general, a classification rule should depend upon whether or not 

the source component of an observation can be identified and this infor

mation incorporated. For example, let the q populations represent for

est/terrain types. Then multispectral scanner measurements on each 

population could be represented as a mixture of components (equation 

ell). Additionally, if in sampling a sub-pixel could be pure and 

identified as having a observation from a particular component (say, 

. ; 

'-
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1. LiteratureReview 

Recall, that Fisher [6] proposed the linear discriminant function 

,(LDF) to classify an individual into one of two populations, TIl and TI 2• 

Let S be the pooled covariance matrix and ~ = R(l) - R(2) be the 

difference between means from samples drawn from the two populations. 

Then the sample LDF is 

!(~) = (~ - 1(8(1) + 8(2»). s-ld. 

While derivation was independent of any distributional assumption, it 

required that the populations have the same covariance matrix. 
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Welch [16] obtained the Bayes' classification rule which minimizes 

the average probability of misclassification when prior probabilities 

that an individual was selected from TIl or TI2 are known. He established 

that the LDF was optimal (in the Bayes sense) if the observations in 

both populations are normally distributed with the same covariance 

matrix. Later, Wald [15] generalized this procedure to include costs of 

misclassification and also replaced any unknown parameters by their 

maximum likelihood estimates. Hoel and Peterson [8] extended these re

sults to include more than two populations. 

However, in practice the assumptions under which the linear discri

minant function is Bayes are seldom satisfied. Nonetheless, the linear 

discriminant function with parameters estimated from training samples 

(sample LDF) is widely used and serves as a benchmark by which other 

procedures are judged. 

A number of studies have considered the behavior of the LDF when 

assumptions under which it is optimal are violated. Gilbert [7] compared 



250 

slash pine), then this information should be used both in estimation 

and classification. For other applications, see Chang and Afifi [4]. 

It is more likely however, that such additional information is un

available. Hosmer and Dick [9] present a fisheries example to illustrate 

this situation. The case in which the observation's component is not 

known will be the basic model for this study, but the known component 

case will also be considered. 

2. Component Identity Known 

Suppose ~ is known to come from component a and define an indicator 

vector ~ = (Yl' Y2' •.. , Ym)', such that 

{

l' k = a 
Y = 

k 0, k of a . 

In this case ~ follows a multinomial distribution with parameters n=l and 

( 1) ( 1) ( 1) . L t th . d· t . 1 d· t . b t· f X al ,a2 , .•. , am ln IT j • e e can 1 lana 15 rl Ulan a _ 

given ~ be ga(j) (~) for component a in ITj . Then the joint distributions 

are 

in IT j j=l, •.• , q. For Ya = 1 the Bayes' classification rule is: 

Assign observation ~ to ITk if 

(3) rr a (k)g (k)(x) > rr.a (j)g (j)(x) 
k a a - - J a a -

for all jofk. If .(3) is satisfied for more than one 

population ITk, then assign the observation to population min(k). 

, 
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I 



.r 
I 

I 
\. 

[ 

[ 

I ~ 

r 
I 

r 

r 

251 

Then d (x) = n'~a(j)g (j}(x) is the discriminant score for observations 
a J a - . 

from IT j given the Ya = 1. In this case probability of correct c1assi-

fication is 

(4) PCorr(a} 

nk~a(k) 

= i q (.Q.) J g (k) (x)dx, 
k=l E n ~ Dkl a --.Q.=1 .Q. a a 

q 
where D = kU1Dkl~' Dkla n Dk'ia = ~, k~k', is a partition of the sample 

space of ~ determined by the Bayes rule. And the total probability of 

correct classification is 

(5) 

= i ~ n ~ ~ k) J g ~ k} (x) dx 
k=l i=l k 1 Dk Ii 1 --

A special case of the above result is given by Chang and Afifi (1974) 

by considering the two population case when the conditional distribution 

of ~ given y = l is multivariate normal (see Table 1). 

TABLE 1 

Chang and Afifi's [4] ~ode1 for Barbituate Overdosers 

Prior Probability 

Component 1 
(Short-acting Drug) 

Component 2 
(Long-lasting Drug) 

Population 1 
(Survivors) 

(1) - 1 9 
~1 -: - 1 

gP)=N(~;~l,E) 
(1) 

~2 = 91 

g~l) = N(~; ~1 + L\,'E+r) 

Population 2 
(Died) 

~~2) = 1-92 

g~2) = N(~; ~2'E) 
(2) 

~2 = 92 

g~2) = N(~; ~2 +L\,E+r) 
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The Bayes' classification procedure results in a "double" LDF rule: 

(6) 

If ~ belongs to component 1, then assign ~ to ITl if. 

) ,-1(. ) ,-l( -i(~l + ~2 I ~l - ~2 + ~ r ~l - ~21 

+ log (e l /e2) ~ log (TI2/TIl). 

Likewise, if ~ belongs to component 2, 

then assign ~ to ITl if 

-t(~l + ~2)'(I+r)-1(~1 - ~2) + ~'(I+r)-l(~l - ~2) 

If x is not assigned to IT l , then assign ~. to IT2. 

2. Component Identity Unknown 

When the component indicator vector Y is unknown the only data 

ava i 1 ab 1 e i s ~. The component may be unknown because the pi xe 1 may be • 

mixed, or the data could be retrospective or too costly to obtain. The 

class component densities are given in equation (1), an~ Bayes rule is: 

Assign ~ to ITk if 

TIk ~ a~k)g~k)(x) > TI. ~ a~j)g~j)(x) 
"111 - - J·l 11 -1= 1= 

(7) 

for j=l, •.. , 1, and k is the smallest 

index for which the inequalities hold~ 

The probability of correctly classifying ~ is 

_ q m (k) (k) 
(8) PCorr(D) - I TIk "I ai J D gi (~)d~ 

k=l 1=1 k q 
where D = UDk is a Bayes' rule partition of the sample space. 

k=l 

-i 

.--' , 
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Risk Characterization 

Let R~k)(~) be the risk that an observation (~) .is from the ith 

component, given that ~ E IT k; i=1, 2, ... , m; k=l, 2, ..• , q. Thus, 

(9) 

R~k)(~) = P{~E Component il~ = ~EITk} 

. = P{y, = 11 X = x E IT } , - - k 
= a~k) g~k)(~) 

m (k) 
~ a 

9,= 1 9, 

Now relate the Bayes' classification rule when the component of ~ 

is unknown to the m possible Bayes' classification rules when the com

ponent of ~ is known. Define 

(10) 
1T ~ a~k) f~k)(x) 

k ' 1 ' ,-lI'j,k = _....:.'_= _____ _ 
1T, ~ aP) 

J i=l ' 

o to be the weighted likelihood ratio for IT j and ITk under model (2). 

Similarly, define 

(11) A~i) = 1T a~k)g~k)(x)/1T,a~j)g~j)(x) 
J,k k, , - J 1 1 0 - • 

Theorem 1: If oR~k) (~) > 0 fori=l, •.• , m then Aj ,k(~) > 1 if and only 

if 

Proof: From (10) Aj,k(~) > 1 implies that 

moo 
~ (1Tka~k)g~k)(x) - rr,a~j)g~j)(x))> O. 
'1 ' , - Jl , --,= 
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Algebraic manipulations yield the result. 

For a particular value of x and R~k)(x) > 0 for i=l, 2, 
- 1-

.. . , m. 

note that the Bayes' classification rule when the component is uniden

tified is a convex combination of the m alternative rules in the compo

nent of IT k. Now compare the Bayes' rules for-component known model with 

model with component unknown. First, define the indicator function as 

foll ows: 

{ 

1, if x E: Component Q, 

I (x) = -
- 0, if ~ i Component ~ 

(12) 

Bayes' rule: Component of ~ known: 

Assign ~ to IT1, if 

m (i)-1 
i:1Ii{~)Aj,k{~) ~ 1 

for j, k = 1, 2, .•• , q. If this inequality holds 

for more than one value of k, then assign ~ to the 

population with smallest k. 

Bayes' rule: Component of ~ known and R~k)(~) ~ 0 for 1=1, 2, ~ .. , m: 

Assign ~ to ITk if 

~ R~k)(x)A(i)(x) < 1 
i=l 1 -J,k-

for j, k = 1, 2, ••. , q. If this inequality 

holds for more than one value of k, then assign ~ to 

the population with smallest k. 

Example 1: Let population j have ari m-component distribution where 

;th component has p-variate normal distribution with 

-I 

--. 



r 
[ 

1, 

r· 

Qi,~(~) is a QDF and 

L(j,k)(~) is the LDF. 

Theorem 2: 

If R~k)(~) = 0 for i£!Oc{1, 2, •.• , m}, then Aj,k(~) ~ 1 if and only if 

[A. k(x)]-l I R~j)(x) + I R~k)(x) [). ~i)rl < 1 
J, - . 10 1 - '~Io 1 - J,k 1£ 1~ . 

Proof: 

Tf ~ a~k) 
= k i=l 1 > 1 

Tf. ~ a~j) 
J . 1 1 1= 

Coroll ary: 
(i) 

If ).. k > 1 for i = 1,2, ... , m, then assign the observation (whose J, -
component is unknown) to IT k• 

Proof: 

This is a direct result of (11) and (16). Thus, all observations which 

255 

would be classified into TIkregardless of their component of origin, will 

be assigned to ITk when the component is unknown. Those observations 
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mean = ~. + e~j) 
"1 -1 

variance = a~I: 

and mixture parameters a~j), j=l, •.. , q. 

weighted likelihood function, to be 

( k) 
Also, define ~i,~ , the 

(15) 0~k) = a(k)g(k)(x)/a~k)g~k)(x) = R(k)(x)/R~k)(x). 
1,~ ~ ~ - 1 1 - ~ - 1 -

Then, ~~k~ represents the weighted likelihood ratio between the densities 
1,,,-

of an observation ~ from the ith component of ilk to the density from the 

1th component of ilk. In this case, the Bayes' rule is as follows: 

Classify ~ into ilk if 

or 

where 

m (k) 2 TI k • I: a.N(~. + e. ,a.I:) 
;=1 1 -1 -1 1 > 1 j=l ,2, ... , p. 

m (j) 2) TI
J
.• I: a.N(~. + e. ,a.I: 

i=l 1 -1 -1 1 

m [a., N(~. + e~k), a?I:) J~ [TIkak(i}N(~i + e~k) ,a?I:) ]-1 = I: 1 -1 -1 1 • - -1 1 

;=1 m (k) 2 (i) (j) 2 
I: an • N(~l' + en ,a.I:) TI.a .. N(~. + 81 a.I:) 1= 1 "- - - "- 1 J J -1-1 

= ~ [1 + ~ exp{Qi 1(~)}J-l [exp{L(j,k)(~)}J~. 1, 
i=l 1=1 ' 

11f 

-
• I 

- ! 

l 
. I - , 
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classified into ilk by the Bayes· rule when the component is identified 

but with at least one A}:~ < 1, are not necessarily assigned to ilk with 

the component information unknown. 

3. Simulation Studies 

A simulation experiment was conducted to investigate the robustness 

of the LDF with plug-in estimates under moderate non-normality. Section 

3.1 describes the simulation experiment. The Bayes· rule and sample LDF 

errors are described using measures of non-normality in Section 3.2, 

while the difference in their classification performances is studied in 

Section 3.3. Lastly, the performances of the sample LDF using maximum 

likelihood estimates and Huber-type estimates are compared in Section 

3.4. 

3.1 The Simulation Experiment 

The simulation experiment to investigate the robustness of the sample 

LDF to non-normality is based on the two-component mixed-normal distri

bution. The classification model studied was the canonical form of the 

distribution with proportional component covariance matrices. The 

result, due to Ashikaga [3] is 
2 

f1(~) = (1 - a) N(Q, I) + aN(~,cr I) in ill and 

f2(~) = (1 - a) N(~, I) + aN(~+~,cr2I) in il2, 
2 where ° < a < 1, cr > 1, ~ = (ll.l' 0, ... ,0)', and ~ = (6" 62, 0, ... ,0)'. 

Table 2 lists the parametric configurations which were studied. 
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TABLE 2 
Parameter Values Studied 

a = 0, .1, .2, .3, .3, .5, ~6, ~7, .8, ~9 

I lei I = ( ~ e~)i = 0, 1,2,3 
i=l 

2 .1 , 4, 9, 16 (J = 

t/ = 1 , 4 

The LDF was studied when the parameters were replaced by maximum like~ 

lihood estimates as in Anderson [1] and by Huber-type estimates as in 

Randles and others [14]. 

The robustness .criterion was the difference in misclassification 

errors between the LDF with plug-in parameter estimates and the Bayes' 

rule ~/ith parameters known. The LDF misclassification errors were com

puted from 100 repetitions of the following scheme: 

(1) Draw training samples of size nl from ill and n2 from IT2 and 

compute the LDF. 

(2) Draw an index sample of size 50 from ITl and size 50 from IT 2. 

Classify the index samples and compute the average misclassi

fication probability. 

The Bayes' rule errors wer,e also computed using Monte Carlo procedures 

due to the difficulty of the numerical computation. 

The misclassification errors were indexed by Mahalanobis distance 

between populations ~2 and measures of non-normality. Two measures 

introduced by Ma1akovich and Afifi [12] and studied by Ashikaga [3] were 

multivariate skewness 

. , 

,-

-, 

...... , 
! 

....... 
! 

- , 

...... 
I 

, J 



sr = max {Sl(~'~)} 
c 

and multivariate kurtosis 

S* = max {[S (c'x) - 3]2}, ' 
2 c 2 - -

where 81 and 82 are the univariate skewness and kurtosis measures. 

3.2 Probabilities ofMisclassificationvs~a1and a2 
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Prior to looking at various plots of differences in misclassification 

errors between the Bayes' rule and sample LDF classifiers, it is helpful 

to consider the relationship between the actual level of misclassifica-

tion error and indictors of non-normality. 

The overall Bayes' misclassifi~ation errors are plotted against the 

skewness measure 81 in Figure 3.1 for /),2 = 1 and Figure 3.2 for /),2 = 4. 

For the particular mixed-normal pdf's under study the largest errors 

occured when the pdf was symmetrical. The maximum errors decrease as 

the skewness 81 rises to moderate values (3 to 4). Representative 

graphs 'of the overall misclassification error for the class of LDF's 

with plug-in parameter estimates are given in Figures 3.3 and 3.4 for 

6
2 = 1 and 62 = 4, respectively. Here the LDF was estimated by Huber

type estimators as in Randles and others [14]. The training samples had 

25 observations from each population. These graphs are similar to the 

plots of the Bayes' error, except that the maximum errors were approxi

mately two percent larger than the Bayes' errors at 6
2 = 1, but only one 

percent larger at 6
2 = 4. While the graphs for the Bayes' errors and the 

sample LDF are similar for the largest errors at various levels of 
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two classifiers, ~ut for training samples of size 25 from each popula

tion. No differences are noted from the situation with smaller train-

ing samples. 

Figures 3.13 through 3.16 plot the differences between the sample 

LOF and Bayes' classification errors when the parameters of the LOF were 

replaced by Huber-type estimators. Once more there is a drop in the 

difference between the errors from approximately 9 percent at ~2 = 1 to 

less than 2.5 percent at ~2 = 4. As with the maximum likelihood esti

mated LOF, no relationship was shown between skewness and the difference 

in overall errors. 

The differences between the sample LOF with maximum likelihood esti-

* mators and the Bayes' rule errors vs 62 are plotted in Figures 3.17 

through 3.20. There appears to be a decrease in the largest differences 

for higher values of kurtosis when ~2 = 1. These differences are much 

smaller when ~2 = 4. It has been previously shown by Ashikaga [3] that 

the LDF is the Bayes' rule for scale-contaminated mixed-normal models. 

Thus, for this sub-class of mixed-normal models, the effects of kurtosis 

on the differences between the sample LOF and the Bayes' classifier 

errors present themselves solely through the plug-in parameter estima

tors. For training sample sizes of 25 from each population those models 

with only scale-contamination exhibited under two percent difference 

between the errors of the two procedures at ~2 = 1. For the entire group 

of mixed-normal m0gels studied, the difference between these two errors 

ranged up to 9 percent when kurtosis was o. 

- , 

..... 

l 
.... 
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3.4 Sample LDF Misclassification Errorsvs. el* and 82* 

Figures 3.21 and 3.22 plot the differences between overall mis

classification errors when the parameters of the LDF are replaced by 

Huber-type estimators and maximum likelihood estimators versus er. Here 

we have training samples of size 25 from each population. We see that 

the largest differences between these two plug-in schemes decrease from 

approximately two percent for ~2 = 1 to 1.25 percent at ~2 = 4. For 

~2 = 1 the largest differences in the two errors seem to shrink as 8i 
increases but is based on relatively few pdf's with moderate skewness. 

Similar results are obtained for 82 in figures 3.23 and 3.24. In the 

sub-class of scale-contaminated distributions, the difference in these 

two error rates was under 0.5 percent for ~2 = 1 and 0.3 percent for 

~2 = 4. 
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skewness, these plots do not reveal relationships between the Bayes' 

errors and sample LDF errors for particular distributions. We will need 

to examine the actual differences between the two classification schemes 

for particular distributions in order to study the robustness of the 

sample LDF. The overall misclassification errors were also plotted 

against the kurtosis coefficient S~. Figures 3.5 and 3.6 graph the 

Bayes' error against S~ and Figures 3.7 and 3.8 the sample LDF with 

Huber-type estimates against S~. The largest errors occur when S~ is 

near zero and decrease quickly for S~ greater than five. 

A drawback of Malakovich and Afifi's [12] multivariate kurtosis 

measure is that the linear combination of x with univariate kurtosis 

most different from 3, the value of S2 for a univariate normal distribu

tion, can correspond to either a flat or peaked distribution. Reinspec

ting Figures 3.5 and 3.6, the points with largest misclassification 

errors (circled) correspond to platykurtic or normal pdfs • 

. . 

3.3 Differences between the Sample LDF and Bayes I Errors 
for Sl*·and 62*. 

Figures 3.9 and 3.10 plot the differences between the errors for the 

sample LDF and the Bayes' classifiers (P(Sample LDF) - P(Bayes)). Here 

the LDF was estimated by maximum likelihood from training samples of 

size 15 from each population. The maximum differences between miss

classification errors were approximatei y 9 percent for ~2 = 1 and dropped 

to less than 2.5 percent for ~2 = 4. Neither graph indicated any rela-

tionship between the skewness coefficient and the difference in errors. 

Figures 3.11 and 3.12 also plot the diffe.rences between errors for these 

- j 
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...... 
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Figure 3.3 
fIHtAt;O-S 

u r-cNIIJ II • J n81\, It • 2 0"5. rTC. 
r!WIPI.( 
38 I 

31 

36 

34 

32 

11 

30 

:8 

21 

26 

24 

:2 

21 

18 

16 

rSMF1[ 

14 

13 

I~ 

II 

10 

I 
I 
I 
IA 
I A 
I 
I 
• A 
I A A 
I A t 
I 
Ie A 
t 
Ie 

A 

A IA 
til 
ID 
II 
.n 
If 

A A 
A 
r. 
A A 

Ie • 
fA A 
Ie 
I~ 
tJ 
IA 
Ie A 
IA 
I 
IA 
t 
I I' I 
I 
I • IA 
IA 
t 
I 
I 
t 
I 
I 
t 

A 
A 

A 

A 

A 

A 

A 

A 

A 

A 

A 
A 

• A 

A 

A 

A 
A 

A 
A 

A 
A 

A 

A 
A 

A 
A 

A 
A 

A 

A 

A 

A 

-I-----t-----I---t----I-----t-----I-----t----t-----t----I-----+---t----t---I----t---I-----+-----,-----+-----·· 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.' 2.6 2.A l.O 3.2 1.4 3.6 1.E •• ' 

81STAR 

nr.i.TASQa.4 
Figure 3.4 

FLOT Of t!Wlt1.C181 ST AR lrr.cNnl A • 1 OYS ••• , n~s. ETC. 

+ 
I 
I 
IA 
t 
I 
I 
I 
t A 
I 
I A 
I A 
IA 
I 
I 
ID 
fA A 
IG A 
II A 
IF A A 
IG e 
IG A 
IA A 
IA A 
fa A A 
I A. A A 
ID A 
I 
t8 
18 A A 
I A II 
IA A 
t A II 
I A 
18 A ~ A 
I A 
+ A 
IA A 
I A 
I 
1 A 
I 
I. A 
I A A 
I A 
I A 
I 
I 
t 
-t-----+---..... t-----t--....... + .......... -t-----+ ... ----t-----t---- ... t--.. --t .. - ..... -+---... -+-----t .. ----+---.. -t-----+-.. ---+-...... -+-----t- .. - ....... -
0.0 ".: 0.4 0.6 0.8 1.0 I.:! 1.4 I.A 1.8 :.0 :!.: 2.4 :.6 :.8 J.o 3.2 3.4 3.6 l.B 4.(. 

BISTAR 

....... 

....... 
J 



,..... 
I 

-, 

,-

265 

Figure 3.5 
PO.I TA~O'I 

"~ATES 
I.FGf.'Hllt II '1 I" 01lt5. II • :' o"s, rTC. 

16 t 

15 

J4 

11 

11 

10 

29 

26 

21 

20 

20 

19 

19 

17 

16 

15 

r~.TES 

I' 

11 

12 

11 

10 

I 
I 
+ 
I 
I 
t 

:8 
t 
t 
I~ 
t~ A 
Ijil!" A. 

~ AA A 

fP."AA • 
t • 
I • 
I A 
tA A 
I. 
I. AA 
t 
I 

• 

I A •• 
t A A • 
I 
I 
t 
I 
I 
t 
I 
I. 
t 
I 
I 
t 

• • 
• 

• 

A • 

• 

A • 

-t---------t---------t--------t--------t------t --------t--------t------t---------+---------t---------+---------. _. o :. 10 15 20 ~ JO lS· 40 4~ ~o 5!o .. ' 

t 
I 
I 

!Q 
I 

i , 
leA A 
I~ A 
ID8 • A 
I Ale A 
I n 
t itA A 
I • 
I A A 
I AAAA • 
t • 
I 
I • 
I 

D2STIIR 

Figure 3.6 
'-£"EtlD: A .. 1 0(1:5. It • 2 08$. ETC. 

t • 
I A. 
I A A 
I A • 
t • A 
I 
I A 
I • 
t 
I 
I A 
I 
+ -t---------t---------t---------+--------+--------t---------t--------t---------+--------+---------t--------t---------t--o :; 10 15 ~o 25 30 J:5 ,",0 45 !to 55 60 

~2STAR 



266 

31 

34 

31 

30 

21 

2' 

24 

21 

20 

19 

18 

17 

16 

/'SNII'I.£ 

. 1~ 

14 

13 

12 

11 

10 

, 

t 
I , 
• I 
1 A 
i A 
1 
I 
i A I. 
I A 
+ 
I A 
1£ • IIA 
IlIA 
tH 
10 

~t 
If 
1l1li 
ttll 
I til 
I l AlIA 

• A • I ~A II 
ICAA 

• IIA I 

: II , 
, ,. IIA 
+ 
I , 
+ 
I , 
• 1 , 
• I 
I 

II II 

II 

II 

! .. ,---+'-

i , , 

o S 

, A 
+ 
I , , 
• II I 
I A 
I A 
tllA 
I 
III 
I til 
tI 
IJA 
Ik 
IG 
tJ 
IN I. 
~~ 
IACII 

'"'' I A 

• A A , AMe 
I A A 
, AA 
+ A A 
I A 
, A A A 
I • , , 
I 
+ 
I 
1 , 
• I 
I 
I 
+ 

II 
II II 

II 

DCI. TA!qI01 Fil!ure 3.7 
Lrr.CNDI II ° 1 o~s •• ° 2 Ifll's. £TC. 

A 

A II 

II 

_ .. '---+I---+'----II~--_+_I ---+-1- +------+------.. ----... _--...... 
~ ~ ~ ~ ~ U 40 ~:s ~o ~~ ,," 

125TIIII 

Figur~ 3.8 

II 
A 
A 

ntl.TIIsD-4 

UIIDIIII II ° I DIS •• ° 2 Ol!h £TC. 

A 

1--;-----ir---ri----~--_;;--~-~----40'tI----4;---5r----~;;_-----;~-. 

l 



r 

,..... 

-! 

-

,..... 

10 

8 

6 

t 
I 
I 
I 
t A 
I 
I 
I 
t 
I 
I 
I 
t 
I 
I 
I 
t 
I A 
IA A 
I 
f 
I 

PD1FSA" I 
I 

o 

-I 

-2 

fA 
I 
I 
I 
t 
I 
I. 
I A 
to • 
18 A A 
IC A 
18 A 
fP 
IF 8 
IN A 
Ir. 8 
t6 
IA 
I 
IC 
t 
I 
I 
I 
t 

A 

A 

A 

A 

A 
A 

A 

A 
A 

A 
A 

267 

"~ITnsa'l Figure 3.9 
PLOT nr PPJrFMf~lF,lA~ I tr.rHII: n • I O~~. ~ • , O~~. nr.. 

POlFSAI1-P (LDFw/HLE) -P (BAY!S) IIl-1I2-1S 

A 

A 

A 

-.-----t-----t-----f-----.-----t-----t-----t-----t-----t----t-----t-----t----t-----t-----f-----f-----f-----f-----I - - - - - •• 
0.0 0.1 0 • ., 0.6 0.8 1.0 1.: 1.4 1.6 t.8 1..0 2.2 2.4 2.6 2.8 3.0 3.' 3.4 3.1. 1.g ~. 

I:I~TAR 

Figure 3.10 
LEG£HOI A - I PBS. J - , nJ~. FTC. 

2.50 + 
I 
I 
I A 

~.25 t 
I A II 
I A 
I A 

:!.OO t A 

I A 
I A 

I.~ t A 
I 
I 
IA A 

1.50 t A 
I 
I A A 
IA A 

1.2~ tAn 
18 A A A 

f'OIFSA" I A 
I ~ A A A 

1.00 tB A 
I 
I. A 
I~ 

0.75 tC A A 
IC A 
I. A 
IC A 

o.~o tP J 
IE A A 
I. A A 
Ir. A 

0.25 tH AI 
18 
Ie A 
IC 

0.00 to I. 
ID A 
IA A 

"0.25 + 
IA 
I 
I 

-O.~O !t-----t-----t-----t-----f----f-----t-----t----t-----f-----t----t-----f-----t-----t-----t-----t-----t-----t-----t-----.-
0.0 0.2 0.4 O.A O.A 1.0 1.2 1.4 I.' 1.8 2.0 2.2 ~.4 2.6 1..8 3.0 3.2 3.' 3.6 3.8 4.~ 

BISTAR 



268 

10 

, 

• 
7 

5 

• I 
I 
I A • I 
I 
I 

t 
I 
I 
f 
I 
I 
I 
f A 
I 
IA 
I 
.. A 
I 

A 

A 
POlf'IAII I 

4 

1 

2 

o 

-I 

I 

t 
I 
IA 
t 
IA 
I 
I 

A 
A 

A 
A 

fJ A A A 
18 A A A 
IA J A 
IF A A 
fC A 
IJ A 
IK A 
IF 
to 
IF A 
10 
I • I 
I 
I 

A 
A 

A 

A 

III 

A 

A 
A 

A 
A 

III A 
A 

A 

DEI.TASP-I Figure 1.11 
PLOT or PDlfSA~"I~lI>1( ur.EN"! ~ - I ~P'5. 

POlrSAII-p (LIlP'v/IILE) -P (IATES) 

It • 2 Otts. [Tt. 
• "I-N2- 25 

A 

A 

A 

A 

A 
A 

A 

A 

-2 f t t _t__+----t-----t----t---t-----t-----t-----t-----.----· 
;;!O---O!;--~:;---O!6--o!ii---~O-I!2---i!i-i.;-i.ii---M M M ~.. loB ~.o 3.~ M 3.1. 3.. • 

lItLI.!'D-4 Figure 3.12 
f'lOT OF PDlfSAIIltUTM lrr.EHnI A • I DIS. 8 • 7 085. ETC. 

2.~ + A 
I 
I 
I 

2.00 f 
I A 
I • 
I A A A .. 

1.75 f A 
I 
IA A 
I 

1.50 t A A 
I A A 
I. A A 
I • A III 

1.25 tit ,. A A 
IA A 
I A A 
I III 

1.00 tC • A III 
I A 

PDlf!'Aft " • A 
II • 

0.7:1 t~ • .. A • 
IE 
Ir. 

0.50 tr A A III 
IC A 
I. A A 
IE A A 

0.:5 tD e A 
IC A 
Ie 
18 A 

0.00 +A 
18 
Ie 
IA A 

-0.:5 tA 
I 
I 
I 

-0.50 t 
I 
I 
IA 

-0.7:1 f -t-----t-----t-----t-----t-----t-----t-----t-----t----t-----t---f---t-----t----+---+----t----t-----t-----t-----0-
0.0 o.~ 0.4 0.4 0.8 1.0 I.~ 1.4 1.6 I.~ ~.o 2.2 2.. 2.6 2.8 3.0 3.2 3.4 3.4 3.S '.r 

JlSTAII 

-, 



-r 

,-

10 + 
I 
I 
r 
+ A 
I 
I 
I 
+ 
I 
I 
I 
t 
I 
I 
I 
t 
I A 
IA A 
I 
+ 
I 

POIFSM I 
I 
tA 
I 
I 
I 
+ 
I A 
IA 
IA 
+~ C 

A A 

ID A A A 

-I 

-2 

18 A A 
IA 
+F 
IF P 
Il A 
IH ~ 
+H 
IA 
IA 
I~ 
+ 
I 
I 
I 
+ 

A 

A 
A 

A 

[In T~sn.1 Fi~ure 3.13 
f'tt'lT OF f'rltF!i\'d''l'~J5TA~ UGrHII:" It , nJc!i\, II • , 01«5. nt. 

PDI rs AII- P (LDFv IHUB) -p (BAYES) N1-N2-15 

A 

A 

A 

A 

A 

A 

1: 

A 
A A 

A 

A 

A 

-t-----t----t-----t-----t---t-----I----I-----t-----t-----t-----t-----t----t-----t-----t-----t-----t-----t-----t-----t--
0.0 0.1 0.4 0.6 0.8 1.0 1.2 I.. 1.6 1.8 2.0 ~.2 1.4 2.6 1.8 J.o 1.2 3.4 1.6 1.1' _.r. 

2.50 t 
I 
I 
I 

2.~ t 
I A 
I 

~.oo + 
I 
I 
I 

1.75 t 
I 
IA 
I 

1.50 t 
I 
I 
IA 

1.~S + 
18 

POIFSAII I A 
I A 

1.00 + 8 
1£ A 
It A 

0.75 tE 
I 
18 A 
IA A 

o.~o tr A 
ID 

A 

A 

A 

IP A A 
IE A 

o.~ tF A 
IC 
It 
IA 

0.00 +C 
IP 
IP 
18 

A 

·0.25 +A A A 
I 
I 
IA 

-0.50 t 

A 
A 

A 
A 

A 
A 

A 
A 

A 

A 

A 

A 

A 

BlSTAR 

PElTASn-4 Figure 3.14 
lrG£Nn: A • 1 08S. J • 1 08S. nc. 

A 

A 

A 

A 

-t-----t-----t----t----t-----t-----t----t----t----t----t-----t---t---t----t-----t----t----t----t-----+-----+--
0.0 0.2 0.. 0.1. O.R 1.0 I.': 1.4 I.~ 1.8 ':!.o Z.Z ':!.4 '2.6 ':.8 3.0 1.2 3.4 3.6 3.8 4.0 

VIS TAr. 

269 



270 

10 

• 
7 

, 

+ 
I 
I 

I " + 
I 
I 
+ 
I 
I 
I 
+ 
I 
I 
I · " I 

'" I 
+" A I 

~DIF!"" I 
I 
+ 
I 
I 
IA 

l + 
'" A I " 

2 
I 
fA ." 

• " " " t " 

" " 

" " 

" A 

.t " " I " 

-I 

•• 
tD A " " II A 
•• I 
.E 
+f 

10 " .t ." + 
• • • 

" 
" 

-7 + -t___t___t--t 
0.0 0.2 0.4 0.4 

:.00 • 
I 
I 
I 

1.75 t 
• . " I 

I.SO • 

I " I 

" " 

." " " 1.2:1 t I."""" · " .1 

." 1.00 tl I 
I .. " It 

" 
0.75 +t " 

.1 " " I 
PDIFSNI ." II 

O.SO +D •• . ~ 
.t 

O.::! +F 
• E ,. 
'" 

A 
I " A • • 

" " 
" 

" " 
A 

" 

" 

A 

0.00 tt " A '1 •• •• -O.::! t " ." , 
.:0.:10 ! 

• I ." -0.75 t 
I 
• • -1.00 • 

• 0.8 

Figure 3.15 
PLM OF rnlF5A11ltiSTAR LI"S[NDI A - lOIS. I - ~ 08S. nc. 

PDIFSAH-P (Lllrv/Jl1m)-p (IAUS) 1'1-"2-25 

" 

" 

" . " • 

I .• I t---t I I • I • t--t---t-----+-----.-----· 
1.0 1.2 1.4 1.' 1.8 2.0 :.2 :.4 2.6 2.1 3.0 J:.:! 3.4 l.6 l.S .&. 

'1STf.R 

Of.LTASDe4 Figure 3.16 
PLOT (If' PDIFSAftUISTAR U'GEND: " • 1 nltt. •• 2 QQ. ETC. 

• " 
" 

" 
" 

" 
" " 

II. 

A 

-t---t---t---t--t-----t----+---t---t----t---t--t---t--t---t_--t---t_---+----t-----t-----+--
0.0 0.2 0.. 0., 0.. 1.0 1.~ 1.4 1.6 I," 2.0 2.2 1.. 2.6 2.. 3.0 3.: 3.. 3.4 3.8 4.0 

.I5TAR 



.-
t 

r--. 
N

 

L_ 
l 

:: • 'Z
 

.
.
 

~
 

...... 
...-I 

• J<
 

t: 
M

';
 

'" c 
QJ .. 
'"' . 
::l. 
b

O
. 

.,.., .. 
~
a
 

;5" 
. :~ 
Q

 
=

-
~ 
~
~
 

..J
 

.... -
".AI 

-
' W

 
., 

s! 
.. 1 
~
e
 

<
 .... 

i~ 
::~ 

ff 
I!: ... c C

 

c 

e 

e 

c c 
e 

e 
c ~
 

c .. e 

c 

c 

e 

e 

H
 

• 

! . .. -r'" 
i io I·' 
I L i ~ tSl 

I: I 'r. P-

I' r I .. 
e

c
C

e
 

r 
C

O
l
I
C

 
C

 
<II 

C
K

 
C

 
~c 

c,' 
c 

c
c
 

c 
c 

.. " 
c 

c 
c 

c 
c 

c 
c

.
.
 

<
IIe

U
e

 
a

u
 

.x
..U

.Id
 ..... "

_
 ... C

 
• 

+
0

 
.---+

---+
---+

---+
---.---.---+

---+
---+

---+
---+

---+
. 

~
 

... 

L
 

( 

~
 

.. ~
 

.. . 
.. l. 

.. 
o 

l 
L

 

i' L. .. , 

~
 

... ., .. .. 

co 
...-I 

• 
• 

u 
M

I: 

Q
J! 

'"' .. 
::l 

• 
b

O
. 

.,.., 
~
=
 D e 

i .. 
c B

 
~ 

~ 
~
 ~ . " ~ .. ... ;; 

A
-

I!! ... ~ 

( 
---

e 

e 

e 

c 

e 
c 

e 

e 

e 

e 
c 

e
«

 
e 

c 

c e 

J-o 

i· , , ... I'" 
I I , +
~
 

I r lSI 

1 .. 1M 

t 'o ! 
M

 
V

. 

I 
tl 

tr. I I" +
 .. 
,-I 10 t-I· 

e
e
l
 

c 
c 

c 
c 

C
 

c 
«

e
 

C
 

• 

C
 

C
 

<
lie 

.. 
:-

I 
• __ ~+~-!+-:_!--~+_~!.~_~!-!~;~~!~~~=~~~~~~~_+~-_+ro 
~
 

h 

( 

FJ .. 
g <~ 

~ 
r:! 

L 
L 

r. ! 
g 

.: 
~
 

.. ... c_ 

r:! .; 
o .. .; 

r. .; 
~ 

r. ~ 
~
 

~ 

L 
l._ 



272 

10 t 

I 
IA 
t 
I 
I 
I 
t 
I A 
I 
I 

7 + Ii 
IA 
I A 
IA 
+M 
IA 
I A 
I A A 
+IA 
IA A 

rDlFSNI I 
I A 
+M 
IA 
I II I. +. A 
It A A 
I 
I 

% +IA M 
IMMA A 
It. 
1110\. A 
+D A 
IlIA Ali 
IJIi II 
ICM A 
+D A 
18 
ICM 
I 

-I + 
I 
I 
I 

-2 + 

Ii 

Ii 

Df.I.TASO-1 Figure 3019 
PLOT OF pnIFS,,"U~~TM UO(HIU Ii - I nRS. ~ • ] nUt nr.. 

Pl!tr'&IIooP.(LDFv/HLE) -, (IATES) :1l-H2-U 

" " 

-~+------4I--------+I----' --+-·----+I-------~I 
20 :s 30 lS 

+-----+--------+--_ ... _---_ .. 
o , 10 I' 

2.:5 t 
I 
I 
I 

2.00 + 
I A 
I 
IA. A 

\.7:1 t 
I 
III 
I 

I.SO + A 
IA I' It 

I.:S tn Ii 
IA Ii 
IA 
I AM 

1.00 tf.AJ 
I • 

PDIFSNI 1M 
I' A 

0.75 +f.M 
1M 
Ie 
I~ 

o.SO +F 

Ii 

IMM 
IIA A 
IDA 

O.:S +0 
It I' 
18 " 0.00 +A .. 
1M " I. 

-o.:s + 
I 
I 
I 

-o.SO + 
I 
I 
I" -0.75 + .• 

Ii 

" 
A 

Ii 

" A 

Ii 

PLOT rtF PDJFSNlIt2STIIII 

40 45 50 :;~ .' 

r.sT1III 

DElTAs004 Figure 3020 
l£srHDI Ii - I 085 •• - 2 085. £lco 

A 

-+-----.----+-----+----+-----+-----+------t----+---+------+-----+------+-
OSlO IS :0 :s 30 lS 40 'S SO 55 60 

I25TIIII 



-

.-. 

,-
I 

I 

r 

r-
.I 

I 

1.00 +A 
I 
I 
I 

0.75 t 
I 
I 
I 

O.SO t 
I II 
I 
I 

0.'" t 
I 
II 
IK 

0.00 t' r A A 
III C D A • 10 • II II 
IC • • II 

-0.25 t II 
I A 

PDlrSNI I' 
IA 

-o.so +J A 
I 
I 
I 

-0.75 t 
I 
I 
I 

-1.00 t A 
I 
I 
I 

-1.25 t 
I 
I 
I 

-1.SO t 
I 
I 
I 

-1.75 t 
I 
I 
I 

-2.00 t 
-t---t___+-
0.0 

PDIFSNI 
0.8 t 

I 
I 

0.1 t 

I 
0.6 t 

I 
I 

O.S t 
I 
I 

0.4 t 
I 
I 

0.3 t 
I 
I 

0.2 t 
IA 
IA 

0.1 t 
IG • 
1ft 

0.2 

II • 

0.4 

A A 

273 

Dr.1 TA~O·I Figure 3.21 
PlOT or PDlrSAIIUISTAR lr.nCHDI A • I DU. a • 1 nas. nco 

P'ItrSA.'I-P(LIlFv/HtJJ )., (LIlFv/KL!) !ll-"Z-ZS 

A 
A 

A 
II 

A A 
II II I A 
8 

A 
A A 

II A 

A A 
II 

II 

I I t--t----+--t----+___+--t--t---t___+_--t--+--t---+-----+-----+ 
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 l.O 3.2 3.4 l.A l.t 

II 
• A 

II 

BlSTIIR 

Dr.t.TA$0&4 • Figure 3. 22 
P1.DT or PDlrSMlJlSTAR LEG£NII! II • 1 DIS ••• 1 nlS. £TC. 

A 

0.0 t~ B 
IF , 

-0.1 tE A 
IA A 
IA 

-0.: + 
A • A A • I 

I 
-0.3 t 

I 
I 

-0.4 t 
I 
I 

-o.!I t 
I 
I -0.. t 
I 
I 

-0.1 t 
I 
I 

-0.8 t 

A II A A 
J 

-t--t----+----+---t-----t---+---t--t---t___+--t----+---t---t---t----t-----t---t---+----t-
0.0 0.2 0.4 0.4 0.8 1.0 1.2 1.4 1.A 1.8 2.0 ~.2 2.4 2.6 ~.8 3.0 3.: 3.4 3.6 1.8 •. ('. 

BISTM 



274 

mTASO"1 Figure 3.23 
~CT Of' ~nlrSAII"ZlITAR IIn£HUI A " I DIS. I " 1 0)5, [lC. 

1.00 IA PDITSA.'t"P (LDrv/RUJ)-P (LDrv/Hl.!) "l""l-U 
I 
I 
I 

0.75 I 
I 
I 
I 

MO fA 
I 
I 

0.2' t 
II A 
II A A 

0.00 tIM ... : 
IJA 
10'" A A 

-0.2' IC A 
II " 

~OlrsAII I A" A 
1M A 

-o.~ IA A 
I A 
I A 
I 

-0.75 I A 
I A 
I 
I 

-1.00 r' A 

I 
I 

-1.2' + 
I 
I 
I 

-1.~ + 
I 
I 
I 

-1.75 + 
I 
I 
I 

A 
A 

A A 
A " A 

A 
A 

-2.00!+ --11----,-+----+1----41>---..,11-----11----..... 1 ___ +-1' _ --+1 -----1------+--------. o , ~ U ~ ZS ~ ~ ~ 

rotFSNI 0.' + 
I 

o.7l 
I 
I A D.. + 
I 
I 0.' + 
I 

0.4 t 
I 
I 

0.3 + 
I 
I 

0.: + 
IA 
I A 

0.1 I 
IrM A 
11M A 

0.0 tHAI AM A 
IKe A 

mtAR 

N.1.TAS004 

~OT Of' PDI FSAII'IZlIT AR 
Figure 3.24 

LrGeNDI A - I CIS, M " 2 OIS. £lC. 

IkC A A A 
-0.1 IF AM A 

1M' A A 
IrA A A 

-0.2 +" A A 
I 
IA A A A A A 

4' SO •• 

-0.3 + A A A 
I 
I A 

-0.4 + 
I A A 
I 

-0.' t 
I 
I 

-0.' + " I 
I 

-0.7 + A 
I 
I 

-0.' + -+-----+----+---t---I--____ ---t----+----t-----+------+--
o , 10 U ~ zs ~ ~ ~ 4' ~ SS 60 

.ZlITAR 



..... 

-, 

"-

References 

[lJ Anderson, T. W., Introduction to Multivariate Statistical 
Analysis, (John Wiley andSons, New York, 1958). 

[2J Ashikaga, T. and Chang, P. C., Robustness of Fisher's Linear 
Discriminant Function Under Two-Component Mixed Normal Models, 
Jrn1. of Amer. Stat. Assn: "64 (1981) 676-680. 

[3J Ashikaga, T., Robustness of the Linear Discriminant Function for 

275 

a Mixed Normal Model, Ph.D. dissertation, University of California, 
Los Angeles (1973). 

[4J Chang, P. C. and Afifi, A. A., Classification Based on Dichotomous 
and Continuous Variables, Jrn1. of Amer. Stat. Assn. 69 (1974) 
336~339. ---

[5J Dunn, O. J. and Holloway, L. N., The Robustness of Hote11ing's T2, 
Jrn1. of Amer. Stat. Assn. 64(1967) 1399-1412. 

[6J Fisher, R. A.,The Use of Multiple Measurements in Taxonomic 
Problems, Ann. of Eugenics Z (1939) 179-188. 

[7J Gilbert, E. S.,The Effect of Unequal Variance-Covariance Matrices 
on Fisher's LDF, Biometrics ~ (1969) 505-516. 

[8J Hoe1, P. G. and Peterson, R. P., A Solution to the Problem of 
Optimal Classification, Ann. of Math. Stat. 20 (1949) 433-438. 

[9J Hosmer, Jr. D. W. and Dick, N. P., Information and Mixtures of Two 
Normal Distributions, Jrn1. of Stat. Compo and Simu1. 6 (1977) 
137-148. -

[10] Johnson, N. L., Systems of Frequency Curves Generated by Methods of 
Translation, Biometrika 36 (1949) 149-176. 

[11] Lachenbruch, P. A., Sneeringer, C., and Revo, L. T., Robustness of 
the Linear and Quadratic Discriminant Functions to Certain Types of 
Non-Normality, Comm. in Stat. 1 (1973) 39-56. 

[12] Ma1kovich, J. R., and Afifi, A. A., On Tests of Multivariate Normal
ity, Jrnl. of Amer. Stat. Assn:"68 (1973) 176-179. 

[13] Marks, S. and Dunn, O. J., Discriminant Functions When Covariance 
Matrices are Unequa.1, Jrn1. of Amer. Stat. Assn. 69 (1974) 555-559. 



276 

[14] Randles, R. H., Broffitt, J.D., Ramberg, J. S., and Hogg, R. V., 
Genera1ized Linear and Quadratic Discriminant Functions Using 
Robust Estimates, Jrnl. of Amer. Stat. Assn~ 73 (1978) 
564-568. -

[15] Wald, A., On a Statistical Problem Arising in the Classification 
on an Individual into Two Groups, Ann. of Math. Stat. 15 (1974) 
145-163. ..-

[16] Welch, B. L., Note on Discriminant Functions, Biometrika ~ (1939) 
218-220. 

-i 



-I 
REPEATED-MEASURES ANALYSIS OF I~1AGE DATA 

H. J. Newton 
Texas A&M University 

277 



278 

ABSTRACT 

It is suggested that using a modified analysis of-variance 
procedure on data sampled systematically from a rectangular array of 
image data can provide a measure of homogeneity of means over that 
array in single directions and how variation in perpendicular 
directions interact. The modification of analysis of variance 
required to account for spatial correlation is described theoretically 
and numerically on simulated data. 
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1. Introduction 

Incorporating spatial correlation into the analysis of multi

variate image data observed in the plane leads to massive data 

management and computational problems. In this paper we describe an 

initial attempt to answer problems in the plane by sampling the data 

in parallel transects so that one need only consider correlation in 

one direction. Thus given a (K x T) array of d-dimensiona1 

observations, divide the K rows into g groups and select ni rows 

for the ith group so that rows within a group are essentially 

uncorre1ated. Then the correlation within rows can be modeled using 

ordinary time series techniques and can be incorporated in an analysis 

of variance procedure in analogy with that for long repeated measures 

designs. 

T )T , ... , ~iTk be a (Td x 1) random vector 

representing the T d-dimensiona1 vectors for the kth observation in 

the ith group of observations, k=l, ... ,ni , i=l, ... ,g. Assume 

(1) y. ·k = u .. + n· ·k _lJ _lJ -lJ 

where the nls are zero mean random vectors which are uncorre1ated for 

different i IS and/or kls but ~ijklS having the same j are correlated. 

Thus in (196 x 117) 4-dimensiona1 image data one might let g be 

between 3 and 5 and the nils be 4 or 5. In this paper then we 

visualize analyzing the means of small number of groups of time series 

(here the "time" index j represents position within a row, i.e the 
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East-West location of an observation). 

In Section 2 we consider the univariate case, i.e using data on 

only one channel or some function of four channels at each location. 

Then in Section 3 we discuss possible extensions to the general 

d-dimensional case. 

2. Univariate Long Repeated Measures Analysis 

vJhen d is one, equation (1) appears to be describing a two-factor 

analysis of variance model with the factors being group number and time 

(i.e column index). Such data is often called repeated measures data 

since, because of the correlation, one can think of YOk as containing _1 

repeated measurements on the same experimental unit. 

There are three basic hypotheses one is interested in testing; 

1) equality of group means averaged over time (denoted HG), 2) 

equality of time means averaged over group (HT), and 3) no interaction 

between group and time means (denoted HGT ), i.e the graphs of the 

group means over time are "parallel". In analyzing image data we 

visualize using the test of HG to measure homogeneity in the North

South direction, HT to measure homogeneity East-West, and HGT to 

measure whether variability in the North-South direction is constant 

over East-West location. Also, arrays at varying locations can be 

fairly quickly classified using such a procedure. In Table 1 we list 

the statistics used to test these hypotheses and their null 

distributions in the case of no correlation within rows. We then 

describe how these tests can be modified to account for correlation. 

-, 
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Table 1. The Usual Two Factor ANOVA 

Hypothesis Test Statistic Null Distribution 

F g-l, N-g 

F = SST/(T_l) MST 
T SSE2/(T_l}(N_g) = MSE2 

F T - 1 , (T - 1 ) (N- 9 ) 

F = SSGT/(T-l)(g-l) _ MS GT 
GT SSE2/(T_l)(N_g) - MSE2 F(T-l)(g-l),(T-l)(N-g) 

-
n. , 

N = ~ n., 
i=l ' 

e.g. y . 
• J • = ~ I Y iJ·k/N k=l i=l 

n. 
~ . ~ - 2 

SSG = L n,. (y, ... -y ... ) , SSEl 
~ ~' - - 2 = L L (y. k-Y . ) , 

i=l ·lkl ,. , .. ,= = 

~ ~ SSGT = L L n. 
i=l j=l ' 

(- - - - 2 y .. -yo -y. +y ... ) 'J. 1.. .J. 

To incorporate correlation into the analysis, we let tik be the 

(T x T) covariance matrix of ~ik. In this paper, we shall assume that 

*·k = * for all i and k. Thus we are assuming that the Y.k are , _ , 
independent NT(~i'*) random variables where ~il = (uil' ... ,uiT ). The 

following theorem indicates how the analysis can be modified when 
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t t 02Ir 
Theorem 1 (Geisser and Greenhouse [2]) 

a) The null distribution of FG is unaffected by correlation. 

b) The null distributions of FT and FGT are approximately 

where the degrees of freedom reduction factor. e: is given by 

e: = [tr(At)]2 

(T-l)tr(AtAt) 

1 T where A = IT - f ~T ~T and ~T is a T-vector of ones. 

1 c) A lower bound for e: is e: ) ~ and thus conservative (l-a) 

level tests for HT and HGT are to compare FT and FGT to Fa,l,N-g and 

Fa,g-l,N-g respectively. 

(2) 

Note that E can be written as 

[ ~ I 
1 ~ i (At) ] 2 

1 =1 e: = -=-~--=--:;-----=~-T-1 
(T-l) I "t(At) 

i=l 

where Al(A t) ) ... ) AT_l(At) are the T-l nonzero eigenvalues of the 

rank T-l matrix At. Thus from (2) it is easy to see that e: = 1 (and 

using the F tests with no degrees of freedom reduction for correlation 

are correct) if and only if all the eigenvalues of At are the same. 

The results above are for a general, symmetric, positive definite 

matrfx t. It seems clear in the image data problem that it is 
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reasonable to assume that * is Toeplitz, i.e 

*. = Toepl (a(O), a(l), ... ,a(T-l), 

i.e the (j,k)th element of * is a number a(\j-k\). Thus we are 

assuming that for each i,k, nilk, ... ,niTk is a sample realization from 

a covariance stationary time series having autocovariance function a(·). 

Two questions naturally arise: 1) Is there a higher lower bound 

for Ethan 1/(T-1) when * is Toeplitz, 2) Can one use an estimator 

of E in the test rather than routinely performing the conservative 

test? 

Epsilon for Toep1itz Matrices 
1 T 

We let *T = Toepl (a(0), ... ,a(T-1)), AT = IT - f ~T~T ' and also 

index E with a T, i.e 

While there appears to be no easily written lower bound for tT in 

terms of series length T, experience with a large number of possible 

autocovariance sequences indicates that ET rarely falls more than one 

or two percent below its limit as T+oo. This limit is given in the 

following theorem. 

Theorem 2 (Spector and Newton [7J) 

If the covariance sequence {a(v), v=O,~l, ... } is absolutely 

summable then 
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1 i m _ .::..0_2
.1.:( O;..L) ___ = _1=--__ _ 

T -)-<lO £T - co co 
I 02(V) L 

V=-co v=-co 

where p(v) = o(v)/o(O) is the autocorrelation function corresponding to 

0(0). Further, if f(w), w£[-~,~], is the spectral density function 

corresponding to 0(0) then 

E = [l f{W)d~ 2 

T ~ 
2~ ff2(w)dw 

-~ 

We note that these quantities and their estimation have arisen 

elsewhere in time series analysis (see Parzen [5], p. 984 for example). 

Suppose 0(0) is the autocovariance sequence of a covariance 

stationary autoregressive process of order p with coefficients 

a = (al, ... ,ap)~ and residual variance 02(denoted AR(p,a,02)), i.e 

I a·o (j-v) = 
j=O J 

, V ~ 0 

where ao = 1 and 0v is the Kronecker delta. Then for p=l and p=2 we 

have the following corollary. 

Corollary 1 

If 0(0) corresponds to an AR(l) or AR(2) process we have 

......, 
i 
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1 im E = 
T-roo T , p=l 

(1 - ~~)[(1 + ( 2)2- a~J 
-2-----2-----2----2' p=2 
a1 (1-4a

2+ ~2) + (1 + ( 2)(1 + ( 2) 
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In Figure 1 we graph the limiting values of ET for p=2 for values 

of a1 and a2 that make the process stationary, i.e values for which the 

zeros of 1 + a1 z + a2z2 are outside the unit circle. 

For example ·if T = 101 and a1 = -1, a2 = .4 then 1/(T-l) is .01 

while effectively a lower bound for ET is .28. Thus if one had good 

estimators of al and a2 a much less conservative test of HT and/or 

HGT could be determined. 

Using an Estimator of E 

We consider five estimators of E. 

Each consists of forming an estimator of * from the N residual 

time series :ik = (ei1k,···,eiTk)T where 

- - -
eijk = Yijk - Yij. - Yi.k + Yi .. ' 

and then substituting this estimator of * into (2) to estimate E. 

1) ~ - Ignoring the Toep1itz form of t, one can estimate t as one 

would in ordinary multivariate analysis, i.e 
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Figure 1. Limit of Epsilon for an AR(2) Process 

e = (1 r 
N i =1 

This is the traditional 

estimator (Huynh and Feldt [3]) used for general t. 
2) ;(np) - Nonparametric (i.e not assuming an AR model) Pooled 

estimators of ~(O), ... ,~(T-l) of o(O), ... ,o(T-l) can be calculated and 

-
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A 

then *(np) = Toepl (;(O), ... ,;(T-l)). 
A(p) 

3) e - Parametric (i.e assuming an AR model) pooled estimators 

~(O), ... ,~(T*) of a(O), ... ,a(T*) can be calculated and i(p) = Toepl 
- -(a(O), ... ,a(T*)). The integer T* > T-l. 

4) ~(oo,np) - Nonparametric limit of epsilon estimator 

A A 

e(oo,np) = a2 (0) 
I ;2(V) 

Ivl<T-l 

5) ~(oo,p) - Parametric limit of epsilon estimator 

A 

d 00, p) = _a_2~( 0;..t...) __ _ 

I a2 (v) 
Ivl~T* 

To compare the performance of these estimators in terms of the 

size of the test of HT and HGT we generated 100 sets of nine zero mean 

time series of length 50 from each of twenty AR processes. These 

processes were chosen to present a wide range of time series types. 

In each set the nine series were randomly divided into three groups 

of three. Thus T=58, g=3, and nl =n2=n3=3. For each data set, the. 

five estimators of e were calculated and for a given estimator E* the 

p-value of the test determined (assuming FT~Fe*(T-l),e*(T-l)(N-9) 

and FGT~FE*(T-l}(g-l)'E*(T-l)(N-g))' Now if the test using e* has 

the correct size then the 100 p-values for each of the twenty AR 

models should appear to be a random sample of size 100 from a uniform 
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distribution on the interval zero to one (Lehmann [4J, p. 150). In 

Table 2 we list the results of testing the p-values for uniformity 

using the Cramer-von Mises statistic as well as descriptive 

statistics for five estimators. From this table we note: 

l} The traditional estimator; is woefully inadequate for the 

types of data we're considering. 

2} Using ~(~,np) leads to a poor test. 

3} Any of ;(np), ;(p), and ~(~,p) lead to tests having good size. 

Studying the power of the tests of HT and HGT numerically is of 

course very difficult as there are so many possible alternatives. To 

get some idea of the power, we generated 100 sets of 6 series of 

length 50 (allocated to 2 groups of 3 series) for each of the 20 AR 

models (these are the Dijk's) and then formed 

where 

= ~ij t 
i=1,2, jflO 

i=l, j=lO 

for A = 0, 2, 4, 6, 8, 10. Thus the means are all zero except the 

lath observation in gl"OUP one is L In Figure 2 we give a typical 

empirical power curve again showing that the tests using ~(p) and 

~(np) are competitive with the test using the true E. 

-
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Table 2. Results of Using Five (; Estimators for 20 AR Processes 

o.rder Coeffs ::::: ~(np) :::::(p) ~(oo,np) ~(oo,p) 
£:50 (; (; 8 

00 

s~ s~(np) s~(p) s~(oo,np) s~(oo,p) 

CVMTa CVMGTb (; (; (; , (; (; 

CVMT CVMGT CVMT CVMGT CVMT CVt1GT CVMT CVr~GT CVMT CVMGT 

1 -.8 .2403 .2195 .0827_
4 

.2246 .3192 .1289 .3074 
.7xl0 .0021 .0028 .0016 .0031 

.077 .076 1.45 .975 .106 .097 .063 .175 .708 .424 .054 .158 

1 -.5 .6127 .6000 .1018_4 
.4923 .6584 .2786 .6497 

.3xl0 .0041 .0045 .0060 .0048 
.881 .031 3.13 2.09 .935 .043 .910 .043 1. 39 .'446 .908 .040 

1 .5 .6114 .6000 .1009_4 .4870 .6151 .2978 .6019 
.3xl0 .0037 .0038 .0058 .0040 

.263 .197 2.58 1. 98 .323 .162 .245 .183 .764 .420 .247 .176 

1 .8 .2331 .2195 .0800_4 .1971 .2553 .1283 .2415 
.8xl0 .0021 .0029 .0014 .0029 

.056 .090 1.21 .681 .098 .033 .075 .102 .431 .198 .067 .008 

2 -.971 .464 .4688 .4710 .0962_ll .3676 .4658 .2227 .4633 
.4xl0 . .0011 .0014 .0023 .0017 

.157 .186 2.22 1. 96 .226 .242 .171 .192 .640 .673 .173 .192 

2 .019 .746 .3085 .2845 .0874_4 .2653 .3477 .1735 .3237 
.8xl0 .0021 .0027 .0017 .0028 

.143 .131 1. 73 1. 76 .220 .250 .140 .101 .624 .657 .153 .131 

2 1.746 .868 .1436 .1233 .0665_4 .1280 .1796 .0889 .1618 
.7xl0 .0004 .0005 .0003 .0006 

.111 .082 .606 .641 .088 .106 .206 .107 .301 .320 .135 .080 N 
(Xl 
\0 



Table 2 (Continued) 
N 
1.0 
0 

Order Coeffs ~ ~(np) ~(p) ~(ex>,np) ~(ex>,p) e: 50 e: e: e: e: e: ex> 

2 -1.84 .861 .0724 .0808 .0482_4 .0729 .1111 .0435 .1164 
. 7xl 0 .0002 .0002 .0001 .0002 

.060 .153 .461 .560 .072 .177 .125 .106 .705 .719 .159 .121 

3 -~690 -.771 .1827 .1862 .0723_4 .1576 .2216 .0968 .2219 
.612 .7xl0 .0006 .0008 .0007 .0008 

.354 .099 .896 .519 .311 .050 .428 .207 .534 .230 .431 .209 

3 1.174 .252 .2616 .2498 .0815_4 .2112 .2722 .1394 .2596 
-.121 .6xl0 .0007 .0006 .0010 .0006 

.703 .078 1.85 1.45 .726 .201 .714 .076 1.05 .640 .705 .093 

3 -1. 404 1. 188 .4409 .4383 .0949_4 .3495 .4502 .2131 .4458 
-.474 .5xl0 .0014 .0011 .0026 .0014 

.118 .078 2.08 1.40 .188 .056 .124 .081 .661 .310 .125 .078 

3 -1 .227 .0426 .0646 .0340 .0455_4 .0676 .1031 .0409 .0779 
.5106 .9xl0 .0002 .0002 .0001 .0003 

.226 .087 .821 .178 .233 .084 .025 .355 1.13 .288 .119 .135 

4 -.250 .7287 .4836 .4602 .0965_4 .3890 .5005 .2414 .4771 
.0126 .2951 . .5xl0 .0029 .0032 .0031 .0034 

.037 .058 2.39 1.93 .128 .120 .030 .050 .610 .544 .041 .054 

4 -2.304 1.972 .1123 .1079 .0586 .1023 .1405 .0671 .1398 
- .7915 . 1724 .0001 .0003 .0004 .0002 .0006 

.133 .301 869 .432 .198 .265 .096 .455 .677 .332 .089 .440 

J . J ,. 1 J .1 '. _ I _ J . J . __ } .' J . __ .1 .J J .J ] J .I 



-1 

Order 

4 

4 

5 

5 

5 

5 

'I. 
j 

Coeffs 

1.672 1.800 
.9796 .3439 

.0152 -1.039 

.1036 .4777 

-.602 .7191 
.2561 .0322 
.1136 

.3898 -1. 135 

; ._" , 1 

e: 50 

.3632 

.114 .491 

.4014 

.111 .279 

.1670 

.059 .137 

.1944 
-.5186 .7926 

.4913 .062 .095 

-2.119 1.788 .0566 
-.2257 -.8062 
.5863 .125 .223 

-1.848 1.983 .2769 
-1. 476 .6256 
-.1861 .088 .071 

Unif. Tests 2 1 
Rejected (a = .05) 

-J .. J I ", } ; '] ) "I I') 

Table 2 (Continued) 

A A(np) A(p) ~( ,np) e: e: e: e: 
00 

.3438 .0907_4 .2948 .3790 .1899 
.5xl0 .0013 .0015 .0016 

1.71 2.06 .137 .571 .132 .510 .443 .940 

.3929 .0938_4 .3285 .4151 .2040 
.4xl0 .0016 .0016 .0023 

1. 73 2.21 .086 .398 .048 .257 .460 .974 

.1425 .0731 .1587 .2105 .1084 
.0001 .0011 .0014 .0008 

.988 .525 .094 .119 .048 .253 .415 .203 

.1115 .0761 .1888 .2767 .1119 
.0001 .0024 .0036 .0012 

1.297 1.13 .129 .124 .111 .041 .683" .632 

.0226 .0420_4 .0588_4 .0923 .0324_4 .5x10 .9x10 .0001 .5x10 
.391 .617 .127 .233 .355 .058 .930 1.10 

.2053 .0873 .2741 .4055 .1498 
.0001 .0031 .0024 .0026 

1.52 1.29 .095 .086 .217 .165 .634 .571 

19 18 2 1 2 0 15 10 

aCVMT : Cramer-Von Mises Statistic for Testing Uniformity of p-va1ues for 
HT (5% critical value = .461) 

bCVMGT: Same as CVMT except for HGT 

.) I - 1 1 

~ ( ,p) 

.3579 

.0016 
.123 .518 

.4029 

.0018 
.049 .271 

.1865 

.0015 
.047 .174 

.2130 

.0041 
.088 .065 

.0624 

.0002 
.128 .195 

.3857 

.0036 
.178 .135 

2 1 

N 
~ 
I-" 
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Main Effect Test 
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Figure 2, Empirical Power Curves of Tests of HT and HGT , 
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3. Extension to Multivariate Analysis of Variance 

The extension of the method of Section 2 to the case where Yijk 

is a vector rather than a scalar is not obvious. We are currently 

investigating the effect of having correlation across the levels of 

one factor in a two factor multivariate analysis of variance (MANOVA) 

as this is how the correction factor £ was first discovered in the 

univariate case (see Box Q]). A promising area of investigation is 

to note that the distribution of a statistic that is a transformation 

of Wilk's lambda can be well approximated by a random variable 

having an F distribution (see Rao [6], p. 556). 

293 
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ABSTRACT 

Synthetic aperture radar images are degraded by speckle. In 

this paper, we present a multiplicative speckle noise model for 

SAR images. Using this model, we derive a Wiener filter by 

minimizing the mean-squared error using the known speckle 

statistics. Implementation of the Wiener filter is discussed and 

experimental results are presented. We conclude with a discussion 

of possible improvements to this method. 

-, 
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Introduction 

Synthetic aperture radar (SAR) is a coherent imaging system 

[1J. SAR imagery suffers from speckle noise degradation. The 

speckle noise results from coherent illumination of a rough 

surface and its characteristics are well known [3J. In the 

following, we derive the Wiener filter based ona multiplicative 

noise model, discuss the filter implementation, and show the 

experimental results of the filtering. We conclude the paper by 

outlining planned future work. 

Wiener Filter 

The speckle noise intensity is described by an exponential 

probability density with identical mean and standard deviation. 

In order to use the speckle statistics in reducing the noise in 

SAR intensity images, we propose the following signal processing 

model. 

297 

y(n m) = s(n m) d(n m) (1 ) 

where y(n m) = SAR intensity image 

s(n m) = scene 

d(n m) = speckle noise 

The probability density function 

d(n m), is 

I e-O 

pdf (0) = 0 

of the speckle noise, 

O~ 0 

0< 0 
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with mean = 1 and variance = 1. The mean and the standard 

deviation of y{n m) are equal to the scene, s{n m). 

Using (1), we design a Wiener filter to estimate s{n m) given 

y{n m). The Wiener filter is the optimal linear filter in the 

sense that it minimizes the expected value of the mean squared 

error between the true and the estimated signals [4]. The 

estimate of the scene is denoted ~(n m) and is determined by 

filtering y{n m) such that ~(n m) = h{n m) * y{n m) 

where h{n m) denotes the Wiener filter and * indicates 

convolution. In frequency domain, 

wh~re capital letters denote the Fourier transformed functions. 

We minimize error = E{{s{n m) - ~(n m))2) where E{.) denotes the 

expected value. Using the orthogonality principle, which states 

that the best linear estimate is obtained if the error between the 

desired and estimated is uncorrelated with the observations, we 

have 

Rys{n m) = h{n m) * Ryy{n m) 

where Rys{n m) = E(y{l k) s{l-n k-m)) 

Ryy(n m) = E(y{l k) y{l-n k-m)) 

and stationarity is assumed. 

Equation (2) is the Wiener-Hopf equation for this problem. 

(2 ) 

-,' 
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From the model (1) and assuming the scene and the noise are 

uncorrelated, (2) becomes, in the frequency domain, 

= (3 ) 

where 

Ps(ut ~) is the power density spectrum of s(n m) 

P d( ut ~) is the power density spectrum of d(n m) 

and * denotes convolution. 

The Wiener filter, given by (3), requires the knowledge of the 

power density spectra (PDS's) of both the noise and the scene. We 

now discuss a method of determining the power spectra and 

implementing of the filter. 

Implementation 

As derived by Goodman [3J, the autocorrelation function of 

the speckle noise is the sum of a constant term and a function 

which is dependent on the scattering area. We assume that the 

scattering area is such that the PDS of the noise is a bandlimited 

white spectrum with an impulse at DC corresponding to a constant 

offset in the correlation domain. Using the fact that half of the 

noise power is contained in the DC component and half at other 

frequencies [2J, we have 

where b(W1 w2) = two-dimensional impulse function 

(4 ) 
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Using (4) in (3), the Wiener filter becomes 

and using 

(5) 

Equation (5) describes the Wiener filter to be implemented. Note 

that only the PDS of the image is required. 

We estimate the PDS of y(n m) by averaging its periodograms. 

the underlying process is white Gaussian, the variance of the 

averaged-periodogram estimator is reduced by l/,;N if N 

peridograms are averaged [6J. In this work, we average four 

periodograms to estimate Py(C1, ~) and determine H(C1, ~). 

Because the filter is of infinite duration, it must be 

truncated. -In practice, most of the energy is concentrated near 

the origin thus truncation does not cause much difficulty. 

In practice, the Wiener filter of (5) is approximated using 

the discrete Fourier transforms. Using the averaged-periodogram 

If 

-, 
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estimate of PDS of y(n m), denoted by Py(k 1k2), (5) is replaced by 
1 N-! N-l 

Py(k1k2) - --r L: L:Py (k 1k2) 
H(k1k2) = 2 N k,'Ok;'O (6) 

Py (k 1k2 ) 

where N is the discrete Fourier transform length. 

Figure 1 shows the algorithm based on (6). 

Experimental Results 

We have applied the signal processing algorithm as described 

in Fig. 1 on a SEASAT SAR image of an agricultural field (SEASAT 

orbit number 1355). Figure 2(a) is the given intensity image and 

Fig. 2(b) is the Wiener filtered image. These images indicate 

that filtering reduces the speckle noise significantly. 

Figure 3(a) is the Wiener filter in the frequency domain which has 

the low-pass characteristic since the data is basically a low-pass 

signal as shown in 3(b). Figure 4 shows the slices of the impulse 

response of the truncated filter which indicates that most of the 

energy is indeed concentrated near the origin. 

We define the "equivalent number of looks" (ENL) of the image 

by ENL = mean/standard deviation. The ENL of an area with uniform 

refl ect i vi ty is equal to 1 because of the exponenti a1 probabil ity 

density function of speckle noise. For the filtered image of Fig. 

2(b), the computed ENL is approximately 2.2. Figure 5 shows the 

2-look image obtained by incoherent averaging of the image [7J. 

By comparing Figures 2(b) and 5, we conclude that, qualitatively, 

the speckle noise of the filtered image is, as expected, reduced 

to that of the 2-look image. 
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Conclusions 

In this paper, we have derived the Wiener filter for 

multipicative speckle noise model using a priori knowledge of the 

noise POSe An algorithm for implementation of the Wiener filter 

was discussed. The results of Wiener filtering were given and 

compared to the 2-look image. The Wiener filtering significantly 

reduced the speckle noise. 

We conclude the paper by outlining three extensions of the 

work which are to be investigated. First, segmentation of the 

image will be examined. In the derivation of the Wiener filter, 

we assumed that the scene was stationary. In general, the scene 

is not stationary and by segmenting the image into smaller pieces, 

we can improve the "stationarity" of the scene. Second, other POS 

estimators will be examined. In the implementation, we used the 

averaged periodogram to estimate the POS's. POS estimators such 

as MLM or MEM [5J, which have better resolution, might be employed 

to improve the estimate. Third, an alternative signal processing 

model which includes the system response function will be 

examined. By using (1), we assume that the system response 

function of the imaging system is an impulse. By using an 

alternate signal processing model which includes the imaging 

system response function, we can remove the effect of the 

imperfect imaging system. 

-, 
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Fig. 1 Wiener filtering algorithm 
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Fig. 2(a) Original noisy image 
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Fig. 2(b) Filtered image 
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Fig. 3(a) Wiener filter in frequency domain 
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Fig. 3(b) Fourier transform of original image 
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Fig. 52-look image 
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ABSTRACT 

This report describes an image matching system specifically de
signed to match dissimilar images. A set of blobs and ribbons is 
first extracted from each image, and then generalized Hough transform 
techniques are used to match these sets and compute the transforma
tion that best registers the image. An example of the application of 
the approach to one pair of remotely sensed images is presented. 
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This report describes progress to date on our research into the 

problem of matching "dissimilar" images. The dissimilarity may be due 

to significant changes in the scene being imaged or to the utilization 

of somewhat different sensors to image the same scene. In either event, 

one cannot expect to be able to match, or register, such images using 

conventional image registration techniques based on either direct inten-

sity cross correlation or even on somewhat more sophisticated feature 

(e.g., edge) correlation techniques. Instead, we suggest that the images 

to be matched be subjected to a rather complex analysis in order to 

construct descriptions :of the images in terms of relatively high level 

pieces (in the examples shown in this paper the pieces are blobs and 

ribbons). These pieces can, in principle, be interpreted in the context 

of a model for the classes of entities that are likely to appear in 

the images, and it is the resulting symbolic descriptions which are 

matched to register the images. This interpretation step is not dis

cussed in this paper, but is a topic currently under investigation in 

our laboratory. Related work on symbolic image matching appears in 

Price [5J. 

Blob and Ribbon Detection 

In an image, blobs and ribbons extracted usually correspond to 

interesting objects. For example, in aerial imagery, blobs extracted 

maY correspond to houses and ribbons may correspond to roads. What 

follows is a description of algorithms for blob and ribbon extraction. 
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Blob Extraction: 

A blob is a compact homogeneous region. In order to extract blobs, 

we first segment the image into homogeneous regions. Then we compute 

the properties of each homogeneous region and extract those regions which 

satisfy the blob criteria. 

To segment the image into homogeneous regions, we first convolve 

the image with a Laplacian operator. The places where the convolved 

result changes sign correspond to the locations of intensity changes in 

the original image [3]. If we assume the intensity of the regions to 

be extracted is lighter than the intensity of the background, the re

gions to be extracted are those regions with positive value in the 

convolved image. 

The scale of the Laplacian operator determines the scale of the 

positive regions in the convolved image. If we know the scale of the 

blobs we want to extract, we can select a Laplacian operator with the 

appropriate scale. 

In our method, the Laplacian operator is a difference of averages be-

tween two square windows; the Laplacian I s scale is specified by the 

sizes of the two windows used. Uniform weight is assigned to every 

point in the mask. 

After the positive regions in the convolved image are extracted, 

we need to compute their properties. Assume the size of a region is 

A and its perimeter is P. The compactness of the region is defined as: 

p*p 
compactness = ~ 

.... 
i 

.... 

.... , 
I 
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-j In the experiment presented in the next section, 18 is used as the 

upper bound on the compactness of regions. All regions with com

pactness smaller than 18 are considered to be compact. The value 18 

is obtained by computing the compactness measurement for a rectangle 

whose 1 ength is twi ce as long as its wi dth. 

All the regions which satisfy the compactness criterion areblobs. 

However, since we apply a large scale Laplacian operator to the image, 

there may be some artifacts in the convolved image. For example, two 

separated compact regions in the image may be merged into a connected 

positive region in the convolved image. The merged region is usually 

not compact. To recover from such artifacts, we apply an 8-connected 

shrinking operation to the convolved image. This may break some re

gions into several smaller regions. All the newly generated regions 

which satisfy the compactness criterion are also blobs. 

Ribbon Extraction: 

A ribbon is an elongated homogeneous region. As discussed above, 

we can extract homogeneous regions by an edge detection operation. We 

need to decompose these regions into subregions which are elongated 

and whose width along the skeleton of the region is some constant. In 

the following, the term "ribbon" refers to a constant width ribbon 

with some minimal length. 

In our method, we first apply a topology preserving 8-connected 

thinning operation [6J to the convolved image. This operation pro

duces the skeleton map of the regions in the convolved image. We want 

to decompose the skeleton into line segments such that all points on 
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the same 1 ine segrrent have nearly the same distance to thei r nearest 

background points. 

A branch point is a point on the skeleton map which is adjacent 

to at least three different skeleton points. After we compute the 

skeleton of a region, we delete all branch points on the skeleton. 

For each connected (B-connected) line segment in the resulting 

skeleton map, we corrputed the ideal width for it by histogramming 

the widths along the skeleton and choosing the most frequently en

countered wi dth. 

The ideal width of a skeleton line segment is used to determine 

whether a point on the skeleton line segrrent is part of the skeleton 

of some ribbon. Suppose the ideal width of a skeleton line segment 

is w. A point P on the line segrrent is on the skeleton of some ribbon 

(i.e-:, is a ribbon point) iff: 

w-e < width at P < w+e 

Long, connected sets of ribbon points constitute ribbons. In the 

experiment described in the next section, only blobs are used to com

pute the registration; we are currently extending our registration 

system to include ribbons. 

Image Matching 

Once a description of the ribbons and blobs in two images has been 

computed, these descriptions can be used to match the two images using 

Generalized Hough Transforms (GHTs). The GHT is a generalization of 

the classical Hough transform algorithms which were used to detect 

simple shapes such as lines, circles and ellipses in images (Ballard 

[lJ, Yam and Davis [9J describe the generalizations). ..... 
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The GHT can be simply illustrated by considering the problem of 

matching point patterns under simple transformations. Let P=[{pl , ..• , 

pn} be one set of points in the plane (p might correspond to the loca-

tions of features in one of two images that we are attempting to re

gister) and let Q={ql, ... ,qm} be the second of the two point patterns 

(Q might be the locations of features in a small window of the second . . 

image). The problem is to determine if Q matches well against a sub

set of P with respect to a given set of point transformations (such 

as translations and rotations). One straightforward way of deter

mining how well Q matches P is to apply the transformations, one at 

a time, to Q and, for each transformation, count how many points from 

Q are mapped onto points in P. In practice, there are only a finite 

number of transformations because of the bounded size of the images 

from which P and Q are extracted, and the limited precision to which 

we represent the positions of the points in P and Q. We should point 

out that simple binary correlation algorithms for matching under trans

lation work exactly in this Iway since they slide an image containing Q 

over all positions in the image containing P. If T is the number of 

possible transformations, then this straightforward algorithm requires 

time proportional to Tmn. 

This turn out, however, not to be the computationally most eff;-

cient way to match Q and P. If we are able to commit extra storage, 

then we can dramatically cut down on the amount of computation. The 

storage required is proportional to the number of possible transforma

tions (although later we will briefly discuss methods which often re

duce the amount of storage·required). One needs to construct an 
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array of accumulators, with one accumulator for each of the possible 

transformations. After the GHT algorithm operates, the value stored 

in any of these accumlators will be the number of points in Q mapped 

onto (or, more accurately, tolerably close to) some point in P by the 

transformation represented by that accumulator. Consider the special 

case now where T contains only translations. Let HT be the array of 

accumulators. Then the GHT algorithm is: 

For each point q = (xq,yq) in Q 

For each point p = (xp,yp) in P 

Let dx = xp-xq 

Let dy = yp-yq 

HT(dx,dY) = HT(dx,dY) + 1 

In this simple case, the comparison of a point in P with a 

point in Q results in incrementing only a single accumulator in the 

array HT. This is because, of course, only two points are needed to 

completely determine the transformation. More generally, however, 

comparing a single point in P with a single point in Q will not spe

cify a unique transfonmation, but will rather specify a family of 

transformations corresponding to some subspace of the space of trans-

formations represented by the array HT. One can ordinarily cut down 

on the size of this subspace by comparing, e.g., pairs of points from 

P against pairs of points from Q. However, unless one can introduce 

some heuristics to limit the number of such pairs (or, more generally, 

triples, quadruples, etc.) such an approach quickly becomes computa-

. tionally unfeasible. 

-I 
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Consider next the slightly more complicated situation where T 

consists of not only translations, but image plane rotations as well. 

Now, the array HT is a three dimensional array, the third dimension 

needed to represent the rotation parameter. The GHT algorithm in 

this case is: 

For each q = (xq,yq) in Q 

For each p = (xp,yp) in P 

For r = 0, 2rr, by dr 

xql = xq cosr 

yql = yq sinr 

dx = xql-xp 

dy = yql_yp 

HT(dx,dy,r) = HT(dx,dy,r) + 1 

Here, we first apply a rotation to point q and then determine 

the unique translation that will map the rotated version of q onto p. 

Notice that it would not have been appropriate to have fixed, e.g., 

dx and then attempted to determine a dy and r which would map q onto 
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p since for most dx no such dy and r would exist. We should also point 

out that the values of r, dx and dy computed by the above algorithms 

have to be subjected to some truncation so that they can be associated 

with an accumulator in HT. 

The above algorithm can be easily adapted to matching pairs of 

blob patterns. We associate a position (e.g., the centroid) with 

each blob, and then the remaining attributes of the blob (e.g., size, 

orientation, compactness) can be used both to limit the pairs of blobs 
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which are considered as possible matches, and to bound the possible 

transformations which can relate the blobs. For example, one can com

bine the compactness and orientations of two blobs to limit the number 

of rotations which need be considered when the two blobs are compared. 

Intuitively, if both blobs are very compact (i .e., nearly round) 

then one cannot place too much confidence in the estimate of orienta

tion of the blob so that perhaps all possible rotations must be con

sidered. On the other hand, if both blobs are relatively elongated, 

then one might only consider a small set of rotation angles centered 

around the orientational difference of the axes of the two blobs. 

We now turn to the problem of representing the space of trans

formations. The most straightforward representation is to construct 

an n-dimensional array, one dimension for each parameter in the set of 

transformations. While this is reasonable for low dimensional trans-

formations (such as translations), it is not a reasonable approach for 

higher dimensional transformations. We can identify at least three al

ternative approaches to direct representation of the higher dimensional 

array. 

1) Multiresolution - initially, use a very coarsely quantized 

high :dimensional array (for example, for rotations and trans

lations we might initially quantize the translation parameters 

to every 10-20 pixels and the rotation parameter to every 10-

20 degrees). This will make 'the size of the higher dimensional 

array manageable. Compute the GHT using this coarse represen

tation, and find the most likely transformation(s). Using the 
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same storage, compute a second GHT, but with the range of 
. . 

the parameters now restricted by the coarse match. This 

approach was used by Stockman [8]. 

2) Projections - Compute various projections of the high di

mensional array, and search for consistent and highly 

likely transformations in the projections. For example, 

if the set of transformations includes translations (dx, 

dy) and image plane rotations (r), then we can compute 

the (dx,r) and (dy,r) projections of the three-dimensional 

(dx,dy,r) parameter space, and choose the peaks from (dx, 

r) and (dy,r) that agree on the rotation. This is the 

approach used in the experiments presented in the next 

section. 

3) Adaptive quantization - Several data structure have been 

proposed which essentially provide a form of adaptive 

quantization for representing data distributions in high 

dimensional sapces. These data structures are based on 

a recursive decomposition of the space into pieces; by at

tempting to equalize the probability that a data point 

falls into any element of the decomposition, parts of the 

space that have hi gher densi ty of data points are rep

resented at hi gher resol uti on.. Examples of such data 

structures are Sloan [ 7] and 0 I Rourke [4]. In the 

former, the decomposition is regular (i.e., subs paces are 

split in "halfn at each stage of the decomposition), while 
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the latter constructs an irregular decomposition. 

It is also possible to utilize the GHT algorithm to match 

images based on descriptions of the ribbons that appear in the 

images. In Davis [2], we described a GHT algorithm for matching 

patterns of geometric entities, such as straight line and circular 

arc segrrents. This algorithm can be~-easi1y adapted to the case 

where the segrrents have additional properties, such as the width 

property that is associated with ribbons. 

Experimental Results 

We have applied the GHT matching algorithm to blob representations 

of several image pairs; in this section we will present the results of 

one such experirrent. Figures 1-2 contain two images from a pai r of aeri-

al photographs of a suburban area. Figure 2a contains just that part 

of the second photograph that we will match against Figure 1a. Figures 1b and 

2b show the blobs detected by the algorithm described in Section 2, and 

Tables 1-2 contain descriptions of the blobs (position, orientation of 

principal axis, size, and compactness) extracted from the two images. 

The GHT algorithm assumed that the matching transformation con

sisted of an image plane translation and rotation, so that the Hough 

transform is a three-dimensional space. We adopted the strategy of com

puting only projections of the three-dimensional space, and chose the 

(dx,r) and (dy,r) projections. The projected Hough transforms are 

displayed in Figure 3. The registration accuracy is correct to one 

pixel in translation and 20 in rotation. 

-. 
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x y size angle x y size angle x y si ze angle 

12 193 13 5 15 117 46 7 21 86 21 13 

28 102 22 169 37 90 31 38 37 137 20 169 
44 112 48 144 53 135 23 155 53 238 27 150 --. 
91 136 20 166 96 151 15 144 98 239 127 177 

132 191 31 172 134 240 27 32 149 60 10 141 -
~ 

152 35 47 174 .158 188 36 170 163 46 24 158 
168 137 40 166 181 186 40 171 185 221 41 1 

191 117 42 179 195 135 51 179 196 200 28 176 

202 31 12 0 207 85 20 2 212 232 39 2 

227 200 20 179 230 179 40 171 .--.., 

Table 1. (Number of blobs = 29) 

x y size angle x y size angle x y size angle 

28 110 113 7 60 11 17 178 61 25 17 147 
64 114 13 142 78 76 37 178 78 114 14 34 """""I 

86 24 37 2 103 83 37 178 108 33 42 21 
126 90 39 177 131 39 39 173 156 46 45 5 
160 29 36 3 173 102 46 169 179 54 10 135 

Table 2. (Number of blobs = 15) 



(a) (b) 

Figure 1. Frame 1 (a) and extracted blobs (b). 

(a) (b) 

Figure 2. Section of frame 2 (a) and extracted blobs 
(b) 
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Figure 3. 

(a) 

(b) 

Projected Hough transforms for (O,x)(a) 
and (O,y)(b). 
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ABSTRACT 

Geometric and probabilistic models for subpixel accuracy are 

developed. The geometric models bound the error in offset estimation 

using the pixels in an observed digital straight line. One probabilis

tic model bounds the estimate of error offset for continuous images. 

The other model bounds the error for discrete images given that one is 

in the correct pixel. 
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NOTATION 

L x greate,st integer ~ x 

x 1 - least integer ~ x 

(m,n) - greatest common divisor of m and n 

L(a,b) - line joining points a and b 

<p (n) - Euler totient function - the number of positive integers 
less than or equal to n which are relatively prime to n 

~(n) is the Moebius function defined as follows: 

ll(l) = 1; 

if n> 1, 'let 
a l ~ 

n = PI , ••• ,PK be the prime 

decomposition of n. Then 

~(n) ... ~ e' = a = 1 
K 

ll(n) a otherwise 
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Section 1.0 Introduction 

The problem of aligning a sensed image to a reference image to 

less than a pixel accuracy has received considerable attention in recent 

years, but no theoretical basis for these efforts has been established. 

This report describes our work in the development of models for the 

analysis of subpixel accuracy. We have 'pursued several independent 

avenues of research in this initial study. These analyses will be com-

bined in the coming year to provide a more complete analysis of the 

problem. 

Two complementary approaches to the subpixel registration problem 

were undertaken in this study. The first approach has a deterministic 

geometric orientation, while the second is primarily statistical. In 

the first approach, we assume an approximate registration of a sensed 

image containing a linear feature to a reference image is available. 

Using the location of the observed pixels and the information that the 

corresponding reference feature is straight, we derive bounds on the 

accuracy to which the reference and sensed image can be matched. These 

error bounds are related to the properties of the feature, such as its 

length and angle. These relationships can then be used to establish 

criteria for the selection of good reference images. In our most re-

strictive model we find that subpixel accuracy is readily achievable. 

As we examine less restrictive models in the continuation of this work 

we hope to achieve more realistic bounds. 

This report focusses on modeling of the subpixel registration to 

obtain bounds on registration accuracy and to develop model based methods. 



Consequently, we generally refer to previous subpixel algorithms, only 

when they are relevant to the modeling and analysis problems. A previous 

survey of subpixel methods [Ka] ultimately led to the present study. 

The current study consists of three main segments. First, we 

studied the registration accuracy which could be achieved by matching 

geometric figures, such as straight lines, between images. This work, 

described in Section 2, assumes the geometric figure has been extracted 

from the sensed image, and is known to lie in the reference image. The 

essence of the approach is that a slight shift in a real world edge can 

cause a substantial change in the digitization of that edge. We propose 

three progressively, more realistic models. The first model was analyzed 

and it was shown that a high degree of subpixel accuracy can be attained 

under the assumptions of the model. Future work will deal with the less 

restrictive forms of this model. 
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The second segment of our study develops bounds on subpixel registra

tion accuracy using statistical bounds. Two cases are considered, 

matching of continuous images and matching of discrete images. In the 

continuous case we derive bounds on registration accuracy, while in the 

discrete case we derive bounds on subpixel accuracy given that we are 

on the current pixel. 

The third part of our study dealt with the problem of maximum like

lihood based estimation of the registration offset. Since the first 

two phases of the work assumed pixel registration was available, we felt 

it necessary to examine the credibility of this assumption. A maximum 

likelihood procedure was developed for estimating the location of a 

corner such as a field boundary in an image. Interpolation of the 
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correlation function did not prove to be useful in synthetic imagery 

from this model, though this work is in a preliminary stage. 

Maximum likelihood, correlation and least squares are all used in 

image matching. Confusion as to the interrelationships between these 

methods pervades the literature. We have included a section describing 

work in which we establish conditions under which these methods are 

equivalent. 

We have developed both geometric and stochastic models for subpixel 

accuracy. Under restrictive model assumptions, the geometric method 

leads to bounds on subpixel accuracy. The statistical modeling has lead 

to error bounds which will be examined in experimentation in the continua-

tion of this work. There will also be a fusion of parts of the geometric 

and stochastic modeling. We think this initial work has provided useful 
, 

models and opened up many paths for continued exploration into progres-

-i 

sively more realistic models for subpixel accuracy. 

-
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Section 2.0 Geometric Accuracy 

Matching edges in sensed and reference images can be used for 

registration. The degree to which the position of a real-world edge, 

such as a field boundary, can be located in imagery depends heavily upon 

ones knowledge of the scene and the sensors. Edge detectors can be used 
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to locate reasonable candidates for edge points and then an edge can be 

more precisely fit using these points. Alternatively, an estimate of 

subpixel edge location can be formed directly from the grey levels [Hy -Ba] 

Hyb~id approaches may also be adapted. In this section,.we study the 

accuracy attainable using the first of these approaches, which we call the 

geometric accuracy approach • 

Before launching into a description of our models for geometric accur

acy, it is useful to consider those aspects of the registration problem 

we wish to capture in our models. The heart of our approach is to estimate 

the position of an image edge to subpixel accuracy and use this information 

to define a translation between the sensed and the reference image. In 

the ideal case, the grey levels on each side of the edge are constant off 

the edge pixels and the edge pixel grey levels are a simple weighted aver

age of these two grey levels. If all grey levels are possible and the 

edge pixels are all known then the position of the edge can be exactly 

determined. Such a situation is clearly unrealistic but it serves as a 

starting point for approximation. 

Most current methods for attaining subpixel accuracy employ some type 

of interpolation of the correlation fucntion. If such a method is to 

achieve subpixel accuracy, the digital correlation function must be able 

to achieve pixel accuracy. In our work, we assume pixel accuracy is avail-
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able either through correlation or other methods. Thus, in the simple 

case of a one-dimensional shift any real world point can be determined to 

lie within a 3xl pixel strip. Our results can be improved drastically if 

we assume we know, from registration, we are in the correct pixel, but 

this is a highly unrealistic assumption. 

The analysis described in this section pertains to the problem of 

one-dimensional translations. This is not particularly restrictive since 

the two-dimensional problem can be easily decomposed into one-dimensional 

shift estimates. In the line location estimation problem, we are trying 

to locate a real world l.ine' y = mx + b in the image. A shift (f1x,f1y) 

between real world and image coordinates yields a line y = m(x - /).x) + 

b + f1y in the image. This may be written as y = mx + b + (f1y - mf1x) 

which is the original line shifted only in the y direction and by an amount 

f1y - m/).x. Our l-d estimation procedures enable us to estimate f1y - mf1x. 

Given two lines, we can solve (possibly using least squares) for /).x and 

f1y separately. From this point on, we will confine ourselves to l-d 

shifts. 

The models described in this chapter assume a set of pixels labelled 

edge pixels are provided by an edge detection procedure. Three cases 

are considered. First, the set of edge pixels are exactly the digital 

edge corresponding to a line in the real world. This model is unduly 

restrictive since an edge which comes very near a pixel boundary can show 

up in the next pixel due to noise. Second, we consider a model in which 

the set of edge pixels given is a subset of the digital edge corresponding 

to the real edge. This approach is more realistic since it enables us to 

discard some pixels whose classification as edge pixels in in doubt. 

-
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Finally, we give a model in which some pixels lying on the digitization 

of the real edge are given and some incorrect pixels are given. 

For the first model, in which a complete digital edge is available, 

a tight upper bound for the registration error as a function of the line 

parameters is given. Probabilistic error estimates are underway but we 

have not completed these calculations. For the second model, in which 

some pixels may be missing from the digital edge, we give a procedure 

which can, given any subset of a digital line, produce a tight upper 

bound on the registration erroroand the expected error. As the number of 

subsets of digital lines is large, a complete description of the error 

as a function of subset parameters is not readily available. We are 

currently working on analytical results to eliminate this problem. The 

third model has not yet been explored. 

The three geometric models can be extended to include additional 

information such as gradient values. For the present, we decided that 

the additional complexities added by this information would make analysis 

extremely difficult. By first developing the simpler geometric models, 

we obtain a standard for subpixel accuracy which can provide a firm basis 

for such extensions. The reliability of digital edges extracted from real 

imagery is not considered in this report, though it is clearly important 
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in applying the geometric accuracy results. Future work using the Landsat 

data base will be directed toward establishing the reliability of edge pixels. 
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Section 2.1 Digital Straight Line Segment Parameter Estimation 

Estimation of the location parameters of a real world edge giving rise 

to an image edge is discussed in this section. The ideas discussed are 

a summary of those parts of [Do-Sm] which are useful for subpixe1 registra-

tion. Their basic result is a determination of all lines whose digiti-

zation is a specified chain code. In later sectionR,this set of lines 

will be used to derive error bounds on registration accuracy. 

Several line digitization procedures are commonly used in graphics and 

image processing. Given a line segment in the upper right hand quadrant 

of the plane, with slope and y-intercept both between 0 and 1, we define 

its digitization as follows. To each intersection (a,b) between the line 

and a line y = a, a an integer, we associate the pixel with lower left 

hand corner (a,LbJ). (see figure 2.1). The chain code (see Fig. 2.1) 

of the sequence of pixels with lower left hand coordinates (O,bO)' (1,b1), 

••. , (N,bN) is the sequence 0l, ••. ,ON where 

The restrictions on the slope and y-intercept of the lines under considera-

tion are made for simplicity of presentation. By symmetry the results can 

be extended to remove these conditions. 

To determine the lines with specified chain code, it is useful to have 

a parameterization of the set of all chain codes of digital line segments 

resulting from digitizing the class of lines specified above. In [Do-Sm] 

the following parameterization is given. A digital line segment chain 

code (C1 , ••• CN) is given by a quadruple of integers (N,p,q,s). N is the 

--, 
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Figure 2.1 Chain code of a digital line. The 
digitization of the dark diagonal line 
has pixels with lower 1efthand vertices 
(0,0), (1,0), (2,0), (3.1), (4.1), (5,1). 
The resulting chain code indicated by 
the arrows is 00100 
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length of the chain code, i.e., the number of O's and l's. Next, q is 

defined to be the smallest integer such that there exists an extension 

CN+l ,CN+2 , ••• , with Cl 'C2 'C3 ' ••• periodic with smallest period q. Define 

p to be the numbers of ones in a period. The fourth parameter, s, provides 

a normalization of the chain code for one period. Geometrically, s may 

be interpreted as follows. Any chain code corresponds to a line segment 

with rational slope. Among all such segments, select the slope p/q with 

(p,q) = I which has the minimum q. This q is the period. The standard 

chain code corresponding to the first period of this chain code is the 

chain code of the digitization of the first q pixels of the line through the 

origin,-y= (p/q)x. The ith element C., of the chain code is given by . l. 

c. = Li£ . .1 - L(i - 1)£qJ, i = 1,2, ••• a 
l. q 

The parameter s, of a code string of length N, is defined by the condition 

that the standard code string of p/q starts at the (s + l)th element of 

the original chain code. Given the parameters N,q,p,s of a codestring, 

the ith element of the original codestring can be obtained by 

Ci - L(i - s)*J - L(i - s - 1)~J, i = 1,2, ... ,N 

The parameters satisfy the constraints 0 ~ p ~ q ~ Nand 0 < s < q - 1. 

A point which will be particularly important for the registration problem 

is that there are other constraints on the parameters other than the above 

inequalities. These additional constraints, described in Section 2.4 appear 

to be rather complicated. Our interest in these matters stems from the 

need to enumerate the digital:. lines satisfying various conditions. If 

not for these messy constraints, the enumeration problems would often be 

straightforward. Without these additional constraints for fixed N, we 

would obtain all digital line segments of length N by independently 
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varying s,p,q subject to the constraints 0 ~ p ~ q ~ Nand 0 ~ s ~ q - 1. 

We now give an example of the computation of the parameters for a 

chain code. 

EXAMPLE. cRain code 10010100 

N = 8: there are 8 digits in the code 

q = 5: the above code is part of the infinite code 
• 100101001010010 . • • 

p = 2: the number of l's in the period 10010 is 2 

s = 1: the standard codestring of 2/5 is 00101. The 
standard codestring starts at the 2nd element 
of the chain code. Hence s = 1. 

The primary result of [Do-Sm] is a description of the set of all lines 

whose digitization over the x-interval [O,N] is a set of pixels specified 

by a chain code. This result is of great importance for our registration 

accuracy results since it provides a hold on the errors which may arise by 

approximating the true edge.by a feasible edge. The set of lines is 

described by a quadrilateral in the (e,a)-plane where e is the y-intercept 

of aline and a is the slope. The proof of the following formula has not 

yet appeared [Do] so we shall only present the results, which is all we 

need for the current work. Define functions F and L by: 

F(s) s - Ls/qjq 

and L(s) = s + leN - s)/qjq 

and let l be defined by the equation : 

1 + ll%J ~ l~ = l/q and 0 < l < q. 

The set of feasible lines is a quadrilateral in (e,a)-space with vertices 

A, B, C, D given by: 

A = (IF(s)~J - F(S)~, *) 
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B = .EoJ E. P.. (LF(s)q - F(S)q' q) 

c = (1 + rF(s + l)*l - F(s + l)E. E.) q' q 

D = (1 + fF(s + l)~l - F(s + ,t)E.:. E.:.) q-' q-

where 

q+ = L(s + l) - F(s), p+ = (pq+ + l)/q 

q- = L(s) - F(s + l), p- = (pq_ - l)/q 

The above expressions for the vertices of the feasible quadrilateral 

will be discussed in greater detail in later sections. A generalization 

of the above result to subsets of a digital line will be presented, 

though the manner in which it can be reduced to the above formula.is 

unclear. 

-. 
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Section 2.2 Feasible Region Shape 

The description of the set of all lines whose digitization is a 

specified chain code of a straight line segment will now be used to obtain 

a worst-case bound on the subpixel accuracy with which we can locate a 

point in the image. We will show that given a period q chain code of 

the digitization of a straight line segment, there exists a real number 

x such that the total spread on y-values at the point x of all line seg-

ments with the given chain code is l/q (see Fig. 2.V. Thus by selecting 

the midpoint of this set of (x,y)'s we have estimated the position of a 

point on the line to within an error of 1/(2q). This provides our error 

bound. In Section2.~ we will examine the distribution of 1/(2q) corres-

ponding to a probability distribution on lines. 

I. To see the correctness of the l/q spread, we first observe that lines 

Band C of the feasible region (Sec.2.I1) are parallel each with slope p/q. 

r- We show that their vertical separation is l/q. These lines may be thought 

of as providing a channel where we can find x values where the spread is 

r 
I l/q. Next, the relationship between the location of the feasible region 

vertices in (e,a)-space and the location of points on possible real line 

segments with the appropriate digitization is established. This will 

yield a polyhedral region in (x,y)-space which is the union of all feasible 

lines. Finally, we show that there exists a real number x such that the 

extent of the feasible region over x is determined only by the lines B 

and C, hence is of width l/q. 

The proof that Band Care l/q units apart vertically is now given •. 

In the case of the infinite digital line, the calculation that the spread 

is l/q everywhere is straightforward. By passing to the finite case, we 
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Figure 2.2 Feasible region for a digital line. 
The digital line consisting of those 
pixels with darkened boundaries has 
the shaded area as its feasible region. 
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introduce boundary effects which cause the spread to be greater near the 

ends of the chain code, but the following proposition shows that at least 

one point of the l/q width channel is preserved. 

PROP. 2.1 Using the notation of Sec. 2.1, Let Band C be the vertices of 

the feasible region for a chain code with pflrameters (N,q,p,s) 

corresponding to a straight line segment. Then the difference 

of the y intercepts of the lines corresponding to C and B is 

l/q. 

PROOF. Let W denote the difference in the y-interceptB. Then W is given by 

W = 1 + LF(s + l)~J - F(s + l)~ - rF(s)~l + F(S)~ 

By definition, 

F(s + l) = s + l -L(s + l)/qJq 

Since 0 ~ s ~ q - 1 and 0 < l < q, we have o < s + l < 2q 

Thus L(s + l)/qJ = o of s + l< q 

lifs+l~q 

We examine these two cases separately. 

Case (1): s + l < q 

F(s + l) = s + l 

Thus: W = 1 + L(s + l)p/qJ - (s + l)p/q - fsp/ql + sp/q 

(As an aside, we note that if s = 0, i.e., we normalize the posi-

tion of the chain code, then W = l/q follows immediately from the 

definition of l.) To simplify the expression for W, we recall 

the definition of l 

1 + Llp/qJ - lp/q l/q 

lp/q = 1 + Llp/qJ -l/q 

(s + l)p/q sp/q + lp/q 
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= sp/q + 1 + [lp/qJ - l/q 

[(s + l)p/qJ = 1 + [lp/q] + [sp/q - l/qJ 

[(s + l)p/qj - (s + l)p/q = Lsp/q - l/qj - sp/q + l/q 

Hence W = 1 + Lsp/q - l/qj - sp/q + l/q - rsp/ql + sp/q 

W = 1 + lsp/q - l/qJ - rsp/ql + l/q 

To complete our evaluation of W, we consider two subcases. 

Subcase (1): sp/q is not an integer, In this case, [sp/q] = 

[sp/q] + 1. Thus substituting into W, we have 

W = 1 + Lsp/q - l/qJ + l/q - Lsp/qj - 1 

= Lsp/q - l/qJ - Lsp/qj + l/q 

If sp < q, then (sp - l)/q < 1, sp/q < 1, so we get W = l/q 

The situation where sp/q is an integer is considered in Subcase 

(2), so we may assume sp > q, sp/q is not an integer. Hence, there 

exists an integer 1 ~ r ~ q, and an integer k > 0 such that 

Thus 

sp = kq + r 

sp/q = k + r/q 

lsp/qJ = k 

sp/q - l/q = k + (r - l)/q 

Since r - 1 < q, we see that 

[sp/q - l/qJ k 

Thus Lsp/q - l/qJ - [sp/qj = 0 

Hence W = l/q 

Subcase (2): sp/q is an integer 

We have Lsp/qJ = [sp/ql. Then 

W = 1 + Lsp/q - l/qJ + l/q - Lsp/qJ 

Since sp/q is integer, Lsp/q - l/qj = sp/q - 1 = Lsp/qJ - 1 

--
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Intersections for the feasible region. 
The four boundary lines A, B, C, and 
D of a feasible region are shown. The 
intersection of A and D always lies 
between the parallel lines Band C. 
These lines in the x,y space correspond 
to the vertices A,B,C,D of the feasible 
quadrilateral in the (e,a) parameter space. 
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Thus W = l/q 

Case (2): s + l ~ q 

Using l(s + l)/qj = 1, and F(s + l) = s + l - q, we get 

W = 1 + L(s + l ~ q)p/qj - (s + l - q)p/q - rsp/ql + sp/q 

l(s + l - q)p/qj = L(s + l)p/qj - p 

(s + l - q)p/q = (s + l)p/q - p 

Thus W = 1 + L(s + l)p/qJ - (s + l)p/q - fsp/ql + sp/q 

At this point, the arguments of Case (1) can be applied and we get 

W = l/q. 

We have established that lines Band C are separated by a vertical 

distance l/q. Next we show that, given an x value and the four lines 

A, B, C, D evaluated at x, the part of the feasible region lying over x 

is the convex hull of the four values. 

PROP. 2.2 Let L be a digital line of length N with vertices A, B, C, D 

for the corresponding feasible region. Let A, B, C, D 

correspond to the equation y = miX + bi , i = 1, •. ,4. For any 

i = 1, .•• ,4} and 

i = 1, ..• 4}. Then a point (xo,y) lies on 

a line segment with digitization L if and only if P < Y ~ M. 

PROOF. Let Xo [O,N] and let y = mx + b be the line corresponding to any 

point in the quadrilateral given by A, B, C, D. Then, since the 

quadrilateral is the convex hull of the set A, B, C, D, there exists 

real numbers tl,t
2
,t3,t

4 
such that the following conditions hold: 

1) 0 ~ ti ~ 1 for i = 1, ••• ,4 

2) 
4 
E t 

i=l i 
1 
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3) 

Thus 

4 
E (mix + bi)t. ffiX + b for each i 

i=l 1. 

4 
ffiXO + b = E (mixO + b.)ti . 1 1. 

1.= 

4 
< MEt 

i=l i 

= M 

Similarly we have ffiXO + b > P. Thus any feasible point (xo,y) 

satisfies P ~ Y ~ M. Now let YO~[P,M]. If Yo = miX + bi for 

some i then y obviously lies on a feasible line. If yO is not 

one of these four values then there exists i,j such that 

Hence there exist t.,t. such that 
1. J 

Setting the other two t's to 

zero we have a quadruple tl, ••• ,t
4 

such that yo 

Thus (xo'YO)lies on the feasible line given by 

y = (timi + tjmj)x+ (tibi + tjbj ). 

The next step in finding a point Xo at which the feasible region has 

height l/q is to determine the way in which the lines A and D intersect 
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the parallel lines B and C. We will show there is an interval [a,b] c [O,N] 

such that lines A and D lie between lines B and C over the interval [a,b]. 

To do this we establish the following facts (see Fig. 2.3): 

Let I(·,·) denote the x-coordinate of the intersection of the two 

arguments, 

1) The y-intercept of A is less than or equal to the y-intercept of D 

2) The y-intercept of C is less than or equal to the y-intercept of D 

3) I(D,C) ~ I(A,C) 

4) I(A,B) ~ I(D,B) 
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5) I(D,C) ~ N, I(A,B) ~ N 

From the diagram, we can see that selecting a = max(I(A,B),I(D,C» and 

b = min(I(A,C),I(B,D», the feasible region has height l/q on the interval 

[a,b]. 

IEMMA 2.3 The y-intercept of A is less than or equal to the y-intercept of B. 

PROOF: Denoting the y-intercepts by YA and Y
B 

we have 

YB - YA = rF(s)p/ql - F(s)p/q - rF(s)p/ql + F(s)p+/q+ 

= F(s) (p+/q+ - p/q) 

Since F(s) = s ~ 0, we are done if we show p+/q+ - p/q > O. 

By the definition of p+,q+, 

p+/q+ - p/q = (pq+ + l)/(qq+) - p/q 

= p/q + l/(qq+) - p/q 

=-l/(qq+) 

It suffices to show q+ > O. By definition, 

q+ = L(s + l) - F(s) 

s + l + L(N - (s + l)/qJq - s 

= l + LN - (s + l)/qjq 

Since l > 0, we have q+ > O. 

~2.4 The y-intercept of D is greater than or equal to the y-intercept 

of C. 

PROOF: Denoting the y-intercepts by YC and YO we have, using the same type 

of arguments in the previous lemma 

YD - Y
C 

= F(s + l)(p/q - p_/q_) 

s+l 
F(s + l) = s + l - L Jq q 

=ls + l if s + l < q 

S + l - q if s + l ~ q 

-, 
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In either case F(s + t) ~ 0 

We are done if we can show q_ ~ O. If q_ < 0 then p/q < p_/q_. 

This implies the slope and y-intercept of D are greater than the 

slope and y-intercept of C. Hence, over the interval [O,N], the 

line C lies entirely below the line D and entirely above the line 

B. Thus there is a whole neighborhood around the point C in 

(e,a) space which lies in the feasible region contradicting the 

fact that C is on the boundary of the feasible region. We con-

clude that q_ > O. Notice q_ = 0 is precluded by the form of the 

slope for D. Since q_ > 0, we see that YD - YC > O. 

LEMMA 2.5 I(D, C)< I (A, C) 

PROOF: Given lines y = mix + bl and y = m2x + b2 , their intersection 

occurs at x = (bl - b2)/(m2 - ml ). 
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1 + LF(s + t)p/qJ - F(s + t)p/q - rF(s)p/ql + F(s)p+/q+ I(A,C) = ____________________ _ 

We consider two cases: 

Case (1): s + t < q 

In this case F(s + t) = s + t. Recalling p+/q+ - p/q = l/(qq+) 

we have 

Subcase (1): sp/q not an integer 

rsp/ql = Lsp/qJ + 1 

I(A,C) = qq+(l + L(s + t)p/qJ - (s + t)p/q + sp+/q+ - rsp/ql) 

By the proof of Lemma 2.1 we have 
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I(A,C) - qq+(lsp/q - ~1 - sp/q + l/q +sp/q + sp/q+ - Lsp/qJ) 

qq+(l/q + s/qq+) by the proof of Lemma 

q+ + s 

Subcase (2): sp/q an integer 

Once again, using the proof of Lemma 2. Lwe obtain 

I(A,C) = qq+(l + L(s + l)p/qJ (s + l)p/q - sp/q + sp/q +s/(qq+) ) 

= qq+(l + L(s + l)p/qJ - (s + l)p/q + s/(qq+» 

qq+(l + Llp/qJ - lp/q + s/(qq+» 

= qq+(l/q + s/(qq+» 

= q + s + 
We now compute I(D,C) 

I(D,C) 
F(s + I) (p_/q_ - p/q) 

pjq- - p/q 

= F(s + R:) 

= s + I - L(s + l)/qJq 

s + I since s + I < q in Case (1) 

I(A,D) q+ + s 

= (s + l) + L(N - (s + l»/qJq + s 

> s + l 

= I(D,C) 

Case (2): s + l > q 
(s + I) 

In this case F (s + I) = s + I - L -'-q- - J q 

I(A,C) = qq+(l + L(s + l)p/qJ - L(s + l)/qJp - (s + l)p/q 

+ L(s + l)/qJp - [F(s)p/ql + F(s)p+/q+) 

After cancelling the terms ~ [(s +l)/q]p, we are reduced to Case 

-, 

-, 

-. 



(1) and we obtain I(A,C) = q+ + s. As in Case (1) 

I(D,C) = F(s + i) 

- =s+i- L(s+i)/qjq 

> s + i 

From the proof of Case (1), we had I(A,D) > s + i 

Thus I(A,D) = I(D,C) 

The proof that I(A,B) ~ I(D,B) follows the lines of the above proofs 

and is omitted. For possible application in later work we give the inter-

sections 

I(A,B) = s 

I(D,B) = s + i + q_ if s + i < q -! 
I = s + i + q_ - q if s + i ~ q 

The intersections of A and D with Band C have been computed explicitly 

and we can see that 

-i I(D,C) < N 
I 

and I(A,B) < N. 
r--. 

Thus by our earlier remarks we are guaranteed of the existence of a real 

number 0 < x < N such that the feasible region over x has height l/q. 

From the results of this section we may conclude that given a digital 

line with period q in the sensed image such that the underlying real edge 

has slope between zero and one, then we can determine the vertical offset 

between sensed and reference images to an accuracy of 1/2q pixels • 

. ~ 

353 



354 

Section 2.3 Infinite Digital Lines 

The feasible region for infinite digital lines is easily computed 

using the results of Section 2.2. This analysis is divided into two 

parts. For any infinite digital line of period q, we show the channel 

consists of two parallel lines, which are a vertical distance l/q apart. 

Thus since the channel extends over the whole x-axis, there is no flaring 

at the end as in the finite case. If the infinite digital line is 

aperiodic, then we show the channel extends over the whole x-axis, but 

consists of a single line. Thus the maximum error is 1/2q of the digital 

line if the digital 1ine.has period q and zero if the digital line is 

aperiodic. The aperiodic infinite digital lines are precisely those 

infinite digital lines which are the digitizations of lines with irrational 

slope. Since the irrationals are a set of measure one in the unit interval, 

using the uniform probability measure, we see that the error is zero with 

probability one for infinite digital lines. 

Before considering the periodic and aperiodic lines separately, we 

note that any two infinite lines with the same digitization are parallel. 

Let y = mx + band y = nx + c be two lines. Then the difference, h(x), 

in the y values of these lines at x is given by h(x) = (m-n)x + (b-c). 

If m and n are not equal then there exists a K>O such that Ih(x) 1>1 for all 

x such that Ixl>K. Thus the two lines cannot have the same digitization. 

We now consider the case of infinite digital lines of period q. By 

the feasible region description in Section 2.1, the lines corresponding 

to the vertices, A,B,C, and D of the feasible region in (e,a) space have 

--.;, 
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slopes p_/q_, p/q, p+/q+. Fixing p,q, and s and letting N go to in

finite, we see the above result on the slopes of infinite lines having 

the same digitizationimplyp_/q_ and p+/q+ must approach p/q. Inserting 

these limits into the formulas for the vertices A and D, we see that, 

in the limit A=B and C=D. We have shown in Section 2.2 that Band C 

are a vertical distance l/q apart. This establishes the result for 

the infinite periodic digital line. 

The infinite aperiodic line requries a different approach. We 

first cite a version of a classical result [Wa] on lines with irrational 

slope. Let f(x) = mx + b be a line with m irrational. Then the set 

{mx + b - lmx + b j: x is an integer} is dense in the unit interval. 

It has already been shown that two lines with the same digitization have 
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the same slo~and can only vary in their y-intercepts. Let £>0 be given. 

Then the digitization, L, of the line y = mx + b (m irrational) is aperiod-

ic so_there exists integers Kl and K2 such that mKl + b - lmKl + bj< t 

and mK2 + b - lmKz + bj> 1 - £ •. T,hus decreasing b by more than £ would 

change the digitization at Kl and increasing b by more than £ would change 

the digitization at K2 • Thus for any £~O, we cannot change b by more than 

£ without changing the digitization. Hence b is fixed. Since m is also 

fixed, the channel is the single line y=mx + b 
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Section 2.4 Invariant Line Measure 

A probabilistic analysis of geometric accuracy requires a probability 

distribution in the fundamental objects, the lines. It is tempting to 

place a uniform distribution on the coefficients of the lines represent

ed in some parametric form. Unfortunately, there is no canonical para

metrization and the measure will not be uniform with respect to other 

parametrizations. A customary escape from this quandry is to impose 

some parametrization independent conditions which single out a probabi

lity measure. In geometric probability problems, one generally assumes 

the measure is invariant under translation and rotation of the geometric 

figures, in our case the lines. This uniquely determines a coordinate 

system, the (p,~) polar coordinates of a line, in which the distribution 

is uniform with respect to the parameters. To avoid the problem of 

taking a uniform distribution on an unbounded set, we restrict the 

parameters to lie in a bounded set. The measure of this set is to be 

normalized to one. The above measure provides a probability measure 

on lines whose digitizations belong to any specified set of digital lines. 

This induces a probability measure on digital lines which can be used to 

perform a probabilistic analysis of geometric accuracy. 
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Section 2.5 Digital Line-Probabilistic Analysis 

A worst case bound on registration accuracy using a digital edge was 

developed in Section 2. 2. More realistic error information can be obtained 

using probability. In this section we consider the question of obtaining 

probabilistic information on the registration error assuming the real world 

edge giving rise to the digital edge is generated by a natural distribu-

tion on edges. We have procedures for estimating these probabilities, 

but due to the considerable computational cost involved in evaluating these 

in special cases, we prefer to first seek analytical simplifications. 

Many probabilistic questions pertinent to the geometric accuracy ques-

tion can be formulated. Several of the most basic are 

1) Given a maximum allowed registration error, what is the probability 

that the actual error will not exceed this? 

2) What is the expected value and the variance of the registration 

error? 

3) Given a maximum allowed registration error and a maximum allowed 

probability of error find the largest region of lines (in some 

sense) such that lines coming from this region will result in an 

acceptable size error an acceptable percentage of the time? 

We now turn to an analysis of the first question. We wish to determine, 

for any acceptable error level in the estimated offset between sensed and 

reference image, what is the probability that a random edge will result in 

a digitization which permits estimation to less than that error level. 

Though a formula for these probabilities as a function of digital line 

length is not available, a procedure for calculating these probabilities 
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for any given line length, N, is described and results for the case N = 10 

are presented. In addition we present asymptotic upper bounds on the error. 

The basic approach to computing the error probabilities is quite simple. 

A probability density function is given on the set, A, of all lines with 

slope between ° and 1, going through the pixel with lower left vertex 

(0,0). Since a line has only one chain code, the sets of lines with dif

ferent chain codes gives a partition of the set A. Hence the density on 

lines induces a density on chain codes. For a chain code with period q, 

the maximum error is 1/2q as was shown in Section 2.2. Thus for any 

specified error h, we must calculate the probability of the following set, 

-, 

B, of line chain codes. -. 

B = {(N,q,p,s): 1/2q < h} 

The set of all linear chain codes of length N can be enumerated. "For each 

chain code in B, the corresponding feasible quadrilateral can be calculated 

as in Section 2.1. The density function on lines can then be integrated 

over the quadrilateral and the sum of these integrals over all members in 

B computed. This sum yields the desired probability. A program to perform 

these computations is under development. 

The problem of enumerating linear chain codes was discussed in [Ro-We] 

where an algorithm for generating the set of linear chain codes was presented. 

We have not found any estimates in the literature on the number of chain 

codes joining two points. Since we are initially dealing with very short 

lines ~.g.length 10) we have taken a naive but rapidly implementable approach 

to the problem of line generation. First, generate a set of real lines 

whose digitizations are guaranteed to include all digital lines of specified 

--. 
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length N = 10 and slope between 0 and 1. Next digitize these lines and 

finally remove duplicates. 

The set of all lines of the form y = (p/q)x + m/q, O<p~q, (p ,q) = 1, - -'-

m = 0, • eo· , q - 1, q = 1, ••• , N together with the line y = x gives rise - to all digital lines of length N with slope between zero and one and going 

through the pixel with lower-left hand coordinate (0,0). This follows 

from the result proved in Section 2.2 that a digital line segment with 

-j parameters (N,p,q,s) can be extended to an infinite digital line which is 

a digitization of a line of slope p/q. Thus the digital lines (N,p,q,s) 

r will be generated,if we generate all lines, y = (p/q)x + r, r real, 

o < r < 1. As r increases from zero to one the chain code of the line can 

change only when the line passes through a lattice point. Let (v,w) be 

any lattice point through which a line of the form y = (p/q)x + r passes. 

Then the height of the line changes by an amount rp/q as x goes from zero 

to r. Since the line goes through (v,w), the height at x = 0 must be 

r· 
w = rp/q. Rewriting this as (wq - vp)/q and noting that the height must 

be between zero and one and that wq - vp is an integer we see that r = m/q 

where 0 ~ m < q. 

An upper bound on the number of chain codes of line q with specified 

starting pixel and slope between zero and one can be obtained using the 

-. fact that all lines of the form y=(p/q)x + m/q, (p,q) = 1, 0 2 p 2 q, 

o < m ~ q - 1 give rise to all chain codes. Using the number-theoretic 

functio~, 0(q),'given by 

o (q) = number of integers ~ q and relatively prime to q, 

we now derive an upper bound,L*(N), on the number of digital lines as a 

function of the length of the chain code. It is easily seen that 
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N 
L*(N) = 1 + r q¢(q), 

q=l 

which is obtained by counting the number of lines y = p/qx + m/q described 

above. Unexpectedly, this is not the same as the number of distinct 

digital lines. this is due to the fact that, when q is sufficiently close 

to N, a line of the form y = (p/q)x + m/q can give rise to a line of period 

less than q. In fact, for each q > N/2, there are lines of the form 

y = (p/q)x + m/q which give rise to a digital line of period strictly less 

than q. For example,consider the line 

y = (1/3)x + 113 

This has a chain code of length 3 given by 010 which has period 2 while 

y = (1/3)x and y = (1/3)x + 213 have chain codes 001 and 100 respectively, 

each of period three. More generally, for chain codes of length N, of the 

m possible chain codes arising from ~ines of the form y = (l/N)x + mIN, 

only the case m = 0 and m = N - 1 have period N. To see this we note that 

the chain codes of the two cases are 

m chain code 

o 00 •••••• 01 

N-l 100 •••••• 0 

Any other value of m shifts the one so the chain code has O's on both ends. 

Any chain code with the same digit at both ends automatically has period 

less than N. Using the same principle, given any q ~ N/2 + 1, there exists 

lines of the form (l/q)x + m/q which have chain codes of period less than 

q. The total number of lines of this form which have period q is N - q + 2. 

The situation is considerably more complicated when p ~ 1. We can show 

-, 
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using the above principle, that the function L*(N) is a lower bound 

on the number of lines, where 

L (N) = 1 + 
* 

LN/2 j+l 
L 

q=l 

N 
q~(q) + L (N - q + l)~(q) 

q=LN/2j+2 

For N = 10, the true number of digital lines, L~O) is 136, L*(lO) = 102 

* and L (10) = 218 

We have derived an upper bound and a lower bound for the number of 

lines. Using L*and L*, we can develop asymptotic upper and lower bounds 

respectively for the expectation of the maximum registration error per 

chain code. 

We now show that L* is actually a lower bound on the number of lines. 
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PROP. 2.6 L*(N) is a lower bound for the number of digital lines of length 

Nwith 0 ~ p/q ~ 1 

PROOF: Clearly the period of a chain code is bigger or equal to that of 

a sUbchain code. Consequently, given a real line which is digitized 

over a segment of length N, the period doesn't diminish when we 

extend the interval. Thus the period of y = (p/q)x is q when 

(p,q) = 1 and q ~ N. Recall that all digital lines (N,q,p,s) 

(even those of period < q) are generated by digitizing lines of the 

form y = (p/q)x + m/q where 0 ~ p ~ q, (p,q) = 1, 0 ~ m < q. 

Changing m produces a permutation of the chain code within the first 

q elements, the second q elements, etc. The line (N,q,p,s) has 

the standard chain code starting at the (8 + l)st place. Hence, 

as long as s + q ~ N, one gets a full standard chain code as a 

subchain of the original chain code. Thus the original code has 

period at least q,and thus exactly q. Consequently one gets for 
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a given N, q and for each p there are at least min(q,N-q+l) chain 

codes of period q. This follows from the observation that as -: 

long as s + q ~ N, a standard chain code is present in the chain 

code. 

When 2q - I ~ N then all possible s satisfy s + q ~ N so 

shifting (N,q,p,O) by modifying s, all lines have period q. For 

2q - I ~ N, one obtains the count 

2~N+I 
I + L q<j>(q) 

q=l 

for these lines. This gives the first two terms in the definition 

of L*. When 2q > N + 1 we get at least N - q + I lines of period 

q. This contributes 

N 
L (N - q + l)<j>(q) 

ce(N/2)+l 

lines which is the last term in L*. 

We know that L* is not a sharp lower bound. On the other hand, when p = 1 

and 2q ~ N + 1 then a sharp lower bound is N - q + 2. Furthermore, the 

fact thatq_is positive provides a necessary constraint on the possible 

s for a given N, q, and p: 

s + l < q implies N - s ~ q 

where l is given in Section 2.1 and satisfies 

o < l < q lp = - l(modq). 

We don't know whether or not this last condition is sufficient to deter-

mine the possible s. 

A form of expected error will now be defined. Let C(N,q) denote the 

number of digital lines of length N and period q, and let L(N) denote the 

-, 
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total number of lines of length N given by 

N 
L(N) = r C(N,q). 

q=l 
N 

Define S(N) = I + r C(N,q)/q. The expected value of the channel width 
q=2 

(i.e., twice the maximum error in our estimation), E(N), is given by 

E(N) = S(N)/L(N) 

This expected value is with respect to a distribution on digital lines on 

which all lines are equally likely rather than using the invariant proba-

bility measure on real lines. The invariant one is difficult to handle in 

evaluating the probability of the set of feasible lines corresponding to 

a chain code. Preliminary computations indicate that all digital lines 

have similar probabilities with respect to the invariant measure. For 

fixed N, the exact probabilities using the invariant measure can be done 

exactly. To get a rough estimate of the probabilities, the invariant 

measure can be replaced by uniform measure. 

The expected maximum estimation error can be computed asymptotically. 

2 
PROP. 2.7 Up to an error term o (logN/N ), the following holds: 

5 7 
4N ~ E(N)~N 
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PROOF: We now compute asymptotic formulas for L*(N) and L*(N). Recall that 

if II is the Moebius func tion [H't~Wr} .tl.hen 

¢(q) = q r ll(d)/d 
dlq 

From [HW] we also obtain 

q>(N) 
N __ 3N2 

- E ¢(j) + O(NlogN) 
j=l -;i 
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For any N, 
N N 

L*(N) = 1 + Eq~(q) = 
q=l 

1 + E q2 E ~(d)/d 
q=l dlq 

We now write q = dd' and substitute in the last term: 

L*(N) = 1 + E d2(d,)2~(d)/d 
dd'<N 

N 
1 + E d~(d) E (d,)2 

d=l d'<N/d 
2 

The term E (d') 1/3(N/d)3 + O(N2/d2). Inserting this in 
d'~N/d 

L*(N), we obtain 
1 3 N 2 2 

L*(N) = IN E ~(d)/d + O(N logN). 
d=l 

Note we have used 
N 

I E d~(d)N2/d21 
d=l 

00 

But E~(d)/d2 6/TI2 [HW]. 
1 

N 
< N2 E lId = O(N2logN) 

d=l 

N 2 2 
Hence E~(d)/d = 6/TI + O(l/N). Substituting this into L*(N), we get 

1 

We now get an asymptotic formula for L*(N) 

(N/2)+1 N 
E q<P(q) + 
1 

E (N + 1 - q)~(q) 
(N/2)+2 

Using the forumla for L*(N/2), we obtain 

N3 N 
L*(N) = --2 + O(N2logN) + (N + 1) E ~(q) 

4TI (N/2)+2 
N 

But E ~(q) = ~(N) - ~(¥ + 1) 
(N/2)+2 

N 
E q~(q) 

(N/2)+2 

.-
I 
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3N2 3N2 
:r -2 - - + O(N1ogN) 

'If 47T2 

9N2 
= 7:[+ O(N1ogN) 

47T 

Using ~ q ~(q) = L*(N) - L*(N/2 + 1) 
(N/2)+2 

= 2N3/7T2 -(2/7T1(N/2)3 + O(N21ogN) 

3 2 2 = 7N 147T + O(N logN) 

Finally, we get L*(N) = 3N3/47T2 + O(N
2
1ogN) 

We now proceed to give an upper bound for E(N). Notice that 

N 1 
~(N) = ~ - ~(q) ~ S(N) + (L*(N) - L(N»/N 

1 q 

and ~(N)/L*(N) = 3/2N + O(logN/N2) ~ 3/2N 

2 From now on we neglect errors of the form O(logN/N). From these 

observations we have 

S(N)/L*(N) + (L*(N) - L(N»/(NL*(N» < 3/2N 

(L*(N) - L(N»/(NL*(N» = lIN - (l/N)L(N)/L*(N) 

On the other hand, be definition 

S(N) = E(N)L(N) 

We conclude 

(E(N) - l/N)L(N)/L*(N) + lIN < 3/2N 

We now estimate, from below, the term L(N)/L*(N). 

L(N)/L*(N) ~ L*(N)/L*(N) ~ 3/8 

Thus (~N) - l/N)3/8 + lIN < 3/(2N) 

(E(N) - l/N)37-8 : 1/(2N) 

E(N) .< 4/3N + lIN 

= 7/3N 
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We now have an asymptotic upper bound 

E(N) ~ 7/3N + O(10gN/N2) 

It is clear that E(N) ~ l/N. Let S*(N) = ~(N). Then we have: 

NS*(N/2) > L*(N/2) (since in S*(N/2) we divide by q, q ~ N/2) and 

if a > b we have ~ ! ~ ~ (taking derivatives) 

hence E(N) 

N 
S*(N/2) + /E l/q C(q,N) 

N 2+1 

L*(N/2) + L(N) - L*(N/2) 

S*(N/2) + l/N(L(N) - L*(N/2» 
L L*(N/2) + L(N) - L*(N/2) 

1 NS*(N/2) + L(N) - L*(N/2) 
= N L*(N/2) + L(N) L*(N/2) 

>! NS*(N/2) + L*(N) - L*(N/2) 
- N L*(N/2) + L*(N) - L*(N/2) 

= 
S*(N/2) + l/N(L*(N) - L*(N/2» 

L*(N) 

(3/n2)(N2/4) + 1/N«2N3/n2) _ (2/n2)(1/8)N3) 
:::-- 2N3/n2 

= S/4N 

So we get S/4N 2 E(N) + O(10gN/N2). 

Several limitations on the utility of the ca1cu1at'ions should be empha-

sized. Of the two limitations to be described, one tends to make the error 

estimate low while the second makes it high. The extent to which these 

factors may influence our estimates has not yet been determined, however, 

we are currently working on extensions of our methods to provide more 

realistic estimates. The strongest assumption lowering accuracy in the use 

of the above methods is that the edge pixels on the digital edge are known 

exactly. A weakening of this assumption is discussed in Section 2.6. On 

-, 
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l 
~, the other hand, our calculations have provided bounds and the expected 

value for the maximum error per digital line. We expect the average error 

to be much less. 

We now turn to a discussion of the finite sample behavior of the 

error. A closed form expression for the statistics of the error as a 

, ..... function of code length is difficult to derive. In order to get some 

feeling for the error we computed the maximum error 1/2q associated with 

each digital line of srope q. This error represents the maximum error 

in estimating the registrat,ion offset, given the digital line of slope -, 
q. The errors were calculated for all digital lines of length ten with 

the usual slope and origin conditions. There are 136 digital lines of 

length ten. Table 2.1 provides a summary of our results. The first 

entry, ERROR, in each row is a registration error and the second entry 

,represents the probability that the maximum error is less than ERROR. 

- This number is obtained as follows. Given a value ERROR, we compute 

the total number of digital lines for which 1/2q< ERROR. This number is -
then divided by 136, the total number of digital lines to determine the 

- percentage of digital lines with 1/2q <: ERROR. Thus we see from the 

table that the registration error exceed 0.25 pixels less than in 2% 

of the digital lines of length ten. Similarly, the error exceeds one 

tenth of a pixel in less than 14% of the digital lines. 

The information in Table 2.1 provides exact probabilities (except 

for rounding error) for the digital lines of length ten. Given any 

longer digital line, it contains a subsegment of length ten, so these 

results provide worst case bounds on the maximum error for longer 
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lines. It should be noted that the assumption that the digital lines 

are equally probable is not as plausible as the assumption that the 

probability measure on real lines is rotation and translation invariant. 

This calculation will be performed in the follow-on work, but we do 

not expect the results to differ greatly. We also note that the 

worst possible error 1/2q was assumed for each digital line. The 

expected error over all real lines giving rise to the digital line will 

be much smaller. 

We conclude that a very high level of subpixel accuracy is attain

able in the restricted model discussed in this section. Furthermore, 

the calculated variation in error with line slope provides a good criteria 

for selecting features for registration. Future work will determine the 

extent to which this accuracy diminishes as we examine looser models. 
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ERROR PROBABILITY (MAX ERROR) > ERROR 

0.5000 0.0000 

0.2500 0.0147 

0.1666 0.0294 

0.1250 0.0735 

0.1000 0.1323 

0.0833 0.2794 

0.0714 0.3676 

0.0625 0.6323 

0.0555 0.7794 

0.5000 0.9412 

0.000 1.0000 

Given an entry, a, in the first column, the corresponding entry 
in the second column is the percentage of digital lines of 
length ten whose maximum registration e~ror exceeds a. 

Line length = 10 

Table 2.1 Error Probabilities for 
digital lines without 
points missing. 
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Section 2.6 Digital Lines - Points Missing 

The determination of the exact set of pixels lying on the digi-

tization of a real-world edge is not feasible, due to noise and geo-

metric distortions. In this section, we relax the condition that a 

digital line segment be available to the weaker condition that only a 

subset of a digital line be detected. This situation is likely to 

arise if we try to fit a real line to suspected edge pixels and select 

those edge pixels for which the difference in areas between the two 

parts of the pixel separated by the line is not great. These pixels 

are more likely to be correct edge pixels. As we are unlikely to be 

able to guarantee the correctness of our pixels, this approach is re-

strictive. We think, however, that this work will provide a basis for 

the analysis of the more complex case in which incorrect pixels are 

present. This section describes methods for the analysis of the regis-

tration accuracy attainable by estimating the position of a real line 

using a subset of a digital line. Computer programs to estimate this 

accuracy are currently under development. 

The description of the feasible line region for a subset of a 

digital line does not appear to be easily described in terms of para-

meters characterizing the subset. A simple observation leads to a 

method for calculating this feasible region in any particular case. 

We note that a line with slope between zero and one traversing a pixel 

must cross the main diagonal of the pixel (see figure 2.4) • Given a 

subset of a digital line, the set of feasible lines is exactly the set 

of lines crossing the main diagonal of each pixel in the subset. Let 

S={Sl"",Sn} be a subset of a digital line of slope between zero and 
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Figure 2.4 Intersection of a line with the main 
diagonal of a pixel. This intersection 
is used to derive constraints on the 
feasible set. 
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une an4 let sl and sn be the leftmost and rightmost pixels respectively. 

Let the lower lefthand vertices of sl and sh be (xl'Yl) and (xn'Yn). 

Then it can be shown that any line whose digitization contains these 

two pixels is a convex combination of the lines L«xl+l,y
l
), (xn,yn)), 

L«xl+l'Yl),(xn'Yn+l)),L«xl'Yl+l),(xn'Yn))' and L«xl'Yl+l),(xn,yn+l)). 

Thus the feasible region is a quadrilateral in y-intercept, slope space. 

Each additional pixel which our feasible lines are constrained 

to pass through restricts us to a subset of the feasible quadrilateral, 

namely the subset consisting of all lines passing through the main dia-

gonal of the intermediate pixel. Let L be a line passing through sl,sn 

and an intermediate pixel si. Assume L is in the interior of the feasi-

ble quadrilateral for sl and s • 
n 

Then any sufficiently small change in 

the slope and y-intercept of L will keep it in the feasible region. If 

L does not enter si at a vertex of si' then a sufficiently small change 

in its slope and y-intercept will not change the fact that si is in its 

digitization. If L does enter si from the left through a vertex, then 

any increase on the y-intercept if it enters at the top and decrease if 

it enters at the bottom will change the digitization of L to exclude si. 

Thus the boundary of the feasible region for lines going through sl,si' 

and sn is obtained from the feasible region for si and sn by cutting 

the region by those curves corresponding to all lines passing through 

the lower and upper lefthand vertices of s .. 
1. 

These curves are actually 

straight lines. Let (xi'Yi) denote the lower lefthand corner of si. 

Then any line through (xi'Yi) satisfies yl=mxi+b or equivalently m= 

(y.-b)/x .• Thus the set of all lines passing through (x.,y.) is given 
1. 1. 1. 1. 
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by the set l (b, Y /xi - b/xi ) J b~RI. This set is just a line in y-

intercept, slope space. This argument may be extended inductively 

to obtain the feasible region for any subset of a digital edge by 

adding one pixel at a time. Each feasible region is obtained from 

the previous one by intersecting it with the region contained between 

the two parallel lines indicated above. 

The computation of the feasible region can be performed rapidly 

by testing each vertex going sequential around the feasible polygon to 

determine whether it lies between or outside the next pair of lines. 

This procedure tells us between which pairs of vertices the parallel 

lines intersect the polygon. Thus only four intersections need be 

computed for each extension. 

Given a feasible polygon, it is possible to compute a y-va1ue at 

which the width of the feasible region in x-y space is minimized. This 

is anala~ous to the channel of thickness l/q discussed in section 2.3. 

As in the case of the feasible region in x-y space for a digital line 

segment, the feasible region in x-y space for a subset of a digital line 

segment is obtained by drawing the lines corresponding to the vertices 

of the feasible polygon. For each x-value the feasible region extends 

from the lowest point on these lines to the highest point over the 

specified x value. The minimum width can be shown to be achieved at a 

point where two of the lines cross. Thus to compute the minimum width, 

evaluate the width at each intersection of lines. For n ~ines, we have 

n(n-1)/2 intersections so for moderate size subsets, say 8-10 points 

this computation is quite fast. 
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We are now able to assign to each subset of a digital line , apoint 

at which its feasible region width is minimized. Using the midpoint of 

this strip as an estimate for a point on the line, we can now give an 

upper bound on the registration error for any given subsets. 

The above procedure can be used to provide error bounds for any 

given subset, but we would like to get some general measure of the 

success of the method. One approach would be to compute the maximum 

error for every subset of every digital line through the pixel at the 

origin and with slope between zero and one and specified length, say 

ten pixels. If we generate each digital line and take all its subsets 

we generate approximately 136,000 sets, though they need not all be 

distinct since lines can share subsets. By computing the error for each 

of these subsets, it is possible to determine the expected maximum error 

for subsets of a given size. It would also be possible to determine 

those approximate slopes of digital lines which are best in that the 

expected maximum error is minimized. 

We plan to carry out the registration accuracy studies described 

above. These results will then be used to assess the quality of edge 

detection needed to assure subpixel registration accuracy. We then 

would like to use additional information such as gradients to provide 

further accuracy. 
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Section 2.7 Digital Line - Points Missing, Points Added 

For most images it is impossible to guarantee that any set deemed to 

be a subset of the digitization of a real line is correct. In Section 2.6 

we discussed the accuracy attainable when a,subset of a digital line is 

available. The modeling of the further accuracy resulting from the 

presence of incorrect pixels appears to be quite complex. Our initial 

plans for study of this problem will involve the addition of varying 

numbers of incorrect points to a small number of subsets of digital lines 

to determine the resulting error. The planning of this work is in an 

early stage. 

One aspect of the incorrect points problem deserves mention. The 

knowledge that the digital edge comes from a straight edge provides a 

powerful constraint on the feasible lines. Given a set of pixels, it is 

possible to determine for each digital line, how many pixels it has in 

common with the observed pixel set. If we know the approximate beginning 

and ending of the line segment, the number of digital lines passing 

through a substantial percentage of the observed pixels will be small. 

The feasible region for the digital line maximizing the number of pixels 

hit is a reasonable candidate for the correct digital line. If more than 

one line maximizes this quantity the feasible region can be extended to 

the union of the feasible regions of these digital lines. We intend to 

pursue this approach in our later work. 
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Section 3.0 Subpixel Translation-Registration of Stationary Random Fields 

Consider the problem of registering (i.e., finding an appropriate 

overlay by relative translation of) a sensed planar image with respect to 

a larger reference image supposed to contain it. In typical remote-sensing .. 

applications, both the sensed and reference images will be given, at the 

same resolution, as arrays of gray-level values, one value for each pixel. 

Both images will typically be noisy, due to minor changes in weather or 

ground features;. to sensor characteristics; to preprocessing and detrend-

ing; and possibly also to nonlinear filtering of gray-level images, for 

example by edge-enhancers and thresholding. 

The primary model assumptions for our discussion of this problem are: 

(a) there exist underlying continuous sensed and reference images ZS(~) 

and ZR(~) before discretization into pixels, where ~ = (xl ,x2) are planar 

coordinates, such that ~(.) and ZS(·) are jointly strictly stationary 

random fields (Le., have translation-invariant statistics) with rapidly 

decaying dependence between the fields (ZR(~ + ~), Zs(~ + ~» and 

(ZR(Z), Zs~» as a function of Ixl = (xi + x;)1/2 (see [De] for precise 
<X> 

conditions and definitions: ZR and Zs must be ¢-mixing with E r¢1/2 (r) < 
r=l 

<X» ; 

(b) there exists an unknown translation-parameter ~ = (81 ,82), a known 

pixel width h, and a known kernel-function K(·,·) such that the observed 

sensed and reference gray-level arrays are 

XS(j,k) = h-2f~f~ K(s,t)ZS(jh + 81 + s, kh + 82 + t)dsdt 

The fields ZR and Zs are of course assumed to be highly correlated 

-\ 

-

~; 
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images representing the same ground truth, and for identifiability of 

location it is quite important that the correlation between Z (x) and 
R-
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ZS(~ + ~) be small except for y close to O. The parameter ~ is then iden-

tifiab1e in principle from large images (ZR(~»I I I I 
xl ' x2 <Mh 

and 

(ZS(~ + ~»I I I I < Lh' To see whether and to what extent e remains 
Y1 ' Y2 -

identifiable from data {XR(j,k): Ijl,lkl'::'M} and {XS(j,k): Ijl,lkl < L} 

is precisely our problem. Note that the kernel function K models the 

linear transformation of a pixel image to a gray level. For simplicity 

(although all our results can be extended to general known K), and in 

apparent agreement with previous researchers, we assume in what follows 

that K(s, t) :: 1. 

Our model assumptions are in some respects similar to, but substantially 

generalize, those of [Y.o - Sm] (who were, however, interested also in the 

effects of affine distortion). In addition to (a), [M 0 - S m.l assumed that 

ZR(') and ZS(, +~) are directly observable and jointly Gaussian. This 

restrictive assumption is not necessary for an understanding of the asympto-

tic distribution theory, for large sensed images, of the maximum-correlation 

estimator e* for e (see below). Moreover, [Mo - Sm] do not take into account 

the transformation of ZR'ZS which renders only XR,XS directly observable 

Thus their analysis, which we extend and improve in Section 3.1 of this report, 

is relevant only to the problem of consistent estimation of e in the sense 

of "correct local registration". We consider in Section 3.2 theoretical 

approaches based on model (a)-(b) above to the evaluation of sub-pixel 

accuracy of estimation. A summary of our findings, together with proposals 

for further empirical and Monte Carlo studies, concludes this section. 
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Section 3.1 Neighborhood-Consistency of Maximum-Correlation Estimation 

The reason that we.do not need to assume Gaussian distributions for 

gray-levels is simply that the fixed-offset "correlation" statistic for 

ZR (. ), Zs ( •. + ~) 

(*) C<,~) = 

given by 

(2T)-2( T ( T '-T '-T T:: Lh, 

is asymptotically weakly convergent as a random process in t as L + 00 to 

a Gaussian random field, under the precise condition of [De] on decay of 

dependence mentioned in (a). If ZR(·) and ZS(· +~) are directly observable, 

then a natural statistic to estimate e is 

e* :: maximizer of C(·) on [-T,T] x [-T,T]. 

The most easily interpreted figures of merit for this (and any other) 

estimator are of the form 

or 

QT (T) :: p{ sup C(x) 
o x: Ix-e I<T -

- ---
sup C(x)} 

X:. 11~111~TO -

where I I~I 11 = max(xl,xZ) and TO is a fixed size of window inside 

which may assume ~lies. We note that since [Mo - Sm] did not treat 

C(·) as a random field, they did not propose to evaluate quanti-

ties QTO(T) but rather to compare the asymptotically (in T) normal single

offset correlations C<,~) with either specified or "sidelobe" thresholds. 

Evaluation of QT (T) is clearly a problem about random processes - not 
o 

simply finite-dimensional distributions - for which we now formulate an 

asymptotic solution, assuming (a). 

Let D(t) denote the expectation EC(~). Joint stationarity of ZR(·) 

and ZS(· +~) implies 

D(~) = EC(~) = E{ZR(~)ZS(~)} 

which would be consistently estimated when T is large by the expression 

C(!) in (*). (In other words, [De]'s conditions imply a law of large ,numbers 

, .. , , 
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for C(t) for each t). The stationary covariance function 

-2 
T cr(~ -~) as T + 00 

(which defines the asymptotic covariance cr('» can likewise be consistently 

estimated by a fourfold integral expression (of. [Mo - Sm], where some 

simplifications occur if ZR and Zs are jointly Gaussian). The following 

Lemma and corollary apply in particular to estimate the probability 

* > T}) where CT(·) is the 

Gaussian random field with the same mean and covariance as C(·) for fixed 

T. For more general conditions of applicability, see Appendix. 

LEMMA 3.1 Let Y(!) be a real-valued separable random field on [-TO,TOld 

and S be the complement in [~O,TO]d of a convex set such that 

sup{II..~11 1 : t ESc}.:: TO _ n-2 , 

where n is a fixed integer ~ 3. Suppose also that for ~, ! E S, for fixed 

r > 0 and a non-decreasing continuous function ~('), that 

(t) 

are each stochastically smaller than the absolute value of a standard 

normal random variable where f7~(exp(-x2»dx < 00. 

1 

1/2 
Then for any x ~ (4dlogn) , 

p{sup IY(t)1 > x(r + 2 foo~(n-U2)du)} < Cd(n)(ooe-u2/2du 
tES - - 12 -1 1 - 'x 

where 

Cd(n) =!z/n(i+ d (12 - 1)-1 4d1ogn 1) • <r2Ton21)d 
2d + 1 4d1ogn -

and r 1 denotes "roof function". 

The proof, which we omit, is a direct adaptation of the method of 

[Mal, in which proper attention was not drawn to the very weak use made of 

the Gaussian assumption: the assumption (t) above is of course satisfied 

if Y(')is Gaussian with r = sup [E(y 2(!»]1/
2 

and 
tES 
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SUI;> E[Y{s) - Y_(t)]2 ~ 1jJ2{u). The method of [Ma] does permit 
~,.£ES=II~-.£lll~u -

some further relaxation of (t) at the cost of more complicated estimates. 

COROLLARY 3. 2 Assume (a), (*), and fix T > O. Let TO be such that 

II~II -~ TO - ii? for fixed n ~ 3. Define for fixed T 
1 

HT :: inf{D{~) - D{.£): 11.£ - ~II ~ T, 11£ll l ~· TO} 

Assume also that (t) of the Lemma holds with Y{.£) :: C{.£) - C{~) - D{.£) + D{~), 

d = 2, S = {.£ ~ 11.£11 2. TO' 11.£ - ~II ~ T}, and 1jJ{u) ~ a ub with b > O. Then 
1 

P{sup{C(~) 

whenever 

2a { 00 2 1/2 
x*:: Rr/{rz _ 1 J 1 exp[-bu logn]du + r) is ~ (8logn) • 

The corollary follows immediately from the Lemma using Y{·) defined 

above since 

P{sup {C<'E): 11£lll~ TO' II.£-~II ~ Tl ~C{~» ~p(supIY<.~)1 ~HT)· 
sES 

To make the conchs ion of the Corollary more specific, we note that if C(·) 

were Gaussian then r can be taken (2V(0»1/2 ~ (2a(0»1/2/T while 1jJ1u) 

can be taken = 2{V(0) - V(u»; if V{·) can be assumed differentiable at 

o (or, more conservatively, to allow covariances such as ecp(-!ul), Holder 

continuous of exponent 1/2), then b ~ 1/4 and a will be of order T-~. 

Choosing n = LT2 J, and assuming the hypotheses of the Corollary, we' find 

(A) 
2 exp[-(H/,{f+t:» /2] 

~/(r+E) 
O -l-b 

E = (T ). 

This bound, which should be quite good for sensed images of practical sizes, 

suggests as figure of merit for local accuracy of registration the ratios 

H2/V(0). These ratios can, for instance, be estimated accurately from a 
T -

large reference image alone if the noise field ZS(· +~) - Z&(·) is 

independent of ZR(·) with known covariance structure. It remains as a 

,-; 
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subject for numerical experimentation, with real and simulated images of 

various sizes, to test both the validity and stringency of the bound (A). 

Results related to (A), with bounds giving exponential decrease 

with T of probabilities of misregistration, have been obtained for a 

somewhat different model in unpublished research of C. Herman. Herman 

considers a model in which pixel gray-levels are independent and regionally 

identically distributed for a finite (small) number of geometrically 

identifiable homogeneous regions. Thus his work, while more special in 

its model of nOise, does allow for some nonhomogeneity over the sensed and 

reference images. This suggests (and we propose in Section 4) that the 

empirical testing of (A) should cover nonstationary images as well. 

See Appendix I for some modifications of the Corollary in this direction. 
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Section 302 Interpolation Using Pixel-Discretized Images 

We turn now to the question of estimating ~ to sub-pixel accuracy 

based on data XRCo), XSCo)o That is, given observations 

{~Cj ,k), Xs (j ,k)} I j I • fk I <L • and supposing it is known that 

jh 2 81 < (j* + l)h, k*h 2 82 < (k* + l)h, we want to know which charac

teristics of the random fields ZR and Zs control the possibility of a 

finer estimation of 8 0 For simplicity and definiteness, we assume in 

this Section, in addition to (a), (b) above with K = 1 : 

(c)ZN(o) = Zs(o + ~) - ZR(o) is independent of ZR(o)o 

Under our assumptions, the "correlation-statistics" at offset 

x - (ah,Sh) 

(**) 
L 

C(ah,Sh) _ l: 
j=-L 

L 
l: Xs(j,k)~(j + a, k + 13) 

k=-L 

have expectation (assuming the means of ZR' Zs have been centered to Q) 

where G(o) is defined by 

Now as T = Lh gets large, the covariances among all C(~) variables go to 

0, and the statistical aspect of finding the!* which maximizes C(o) disappears~ 

all that remains is the interpolation problem of finding a numerically 

estimated maximizer ~ for D(o) on [j*h,j*h + h)x[k*h,k*h + h)o In fact, 

since D(o) is "observable" (through C(~» only at lattice-points (ah,Sh) 

where a and 13 are integers, it is clear that without some assumptions on 

the functional form of D(o) or some prior knowledge about approximate 

constancy of curvature of D(o) on [j*h,j*h + h)x[k*h,k*h + h), no precise 

.-

,-' 
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subpixel estimation is possible. 

In order to derive an index of how precisely one can hope to estimate 

e from {D(ah,Sh): a,S integers}- -- and it is clear that for finite T, 

the observability of C rather than D can only degrade the accuracy of 

prediction -- we expand the Fourier-Stieltjes representation of D(~) in 

a Taylor series about~. For this we require the following assumption, 

which would follow from but can be slightly weaker than mean-square differ-

entiability of Za(·): 

Under assumptions (a) - (d), we can write by the Mean Value Theorem 

(B) 

+ 

where x' lies on the line between ~ and~, and Iyl ~ 1. We now suppose that 

x, and thus also x', lies in the pixel P = [j*h,j*h + h]x[k*h,k*h + h] 

containing~, and remark that if, in addition to (d), ZR(·) is twice mean

square differentiable then ~h is uniformly bounded in h. 

From (B) it follows that the maximizer of D(~), known to lie in the 

pixel P containing ~, is at most a distance Kh from~, where 

K = (iz ~h/al)l/Zh 
smallest characteristic value of the quadratic form 
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Moreover, asymptotically for small h, K gives the approximate best-possible 

fraction-of-pixel accuracy attainable if D(o) is maximized via a local 

quadratic approximation 0 That is, knowledge of ~ and q(o) alone would 
h 

allow no better bound on accuracy of numerical maximization of D(o)o 

Thus in the limit of infinite T = Lh the parameter K is an easily 

interpretable figure of merit for subpixel estimation of ~ based on locally 

biquadratic surfaces fit to D(o) (or equivalently, to C(o»o It remains 

to suggest approximate computational procedures, for use with real or 

simulated images XR(o), XS(o), to estimate ~ and Ko In fact, for very small 

h (that is, ra~id correlation decay for processes XR, Xs over distance scale 

h, at least if Za(o) is twice mean-square differentiable) ~h should be ~ 

closely approximated by 

and similarly the quadratic form q(y) is approximately by 

where for any function f(?!.) on R2, 'illhf(x):: f(x) - f(xl - h,x2) and 

'il2hf(?!.) :: f(?!.) - f(xl ,x2 - h), and for function g(j,k), 

'illg(j,k) = g(j,k) - g(j - l,k), 'il2g(j,k) = g(j,k) - g(j,k - 1)0 

Now stationarity and ergodicity of ~(o) implies that consistent estimators 

(as L ~ 00) are given by 

-2 L L 2 2 
~h - (2L) . E E [('ill + "2) ~ (j ,k) ] 

J=-L k=-L 

. -
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Letting al denote the smallest characteristic value of the quadratic form 

q('), we can define the estimated figure-of-merit for subpixel accuracy 

A = h(~ ~ /~ )1/2 
K 12 h 1 

As with the figure-of-merit defined in Section 3.1, we must still perform 

numerical experiments with real and simulated pixel-discretized images to 

test both the correctness and informativeness of the subpixel-accuracy 

bound K. 

If the estimated accuracy K is < .5 and at the same time the estimated 

bounds for 1 - Qr(2h) from Section 3.1 are extremely_tight (say <.001), 

there still remains the problem of constructing an interpolation-estimator 

for the maximizer ~ of D(')based on the noisy values C(ah,Sh). The best 

developed methodology for estimating (interpolated) values D(~) linearly 

from observations {C(ah,Sh)} D' called "kriging" (see [Du] and [Ril, 
a,1J 

Section 4.4) suffers from one glaring defect in this context, namely: it 

requires that the covariances for C(·) be known (or estimated) at all 

points ~, not simply at lattice points (ah,Sh). If for experimental pur-

385 

poses (as in [Mo - Sm])we assume a special parametric form for the covariance 

functions of ZR(') and Zs('), then a parameter-estimation step followed by 

kriging-interpolation and maximization (using the kriging equations given 

by [nul and [Ri]) will give a usable procedure for subpixel registration. 

This has not yet been tried. 
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Section 3.3 Summary and Proposed Numerical Experiments 

We collect in this brief final Section our main theoretical results, and 

the corresponding numerical tests they suggest on real and simulated image-

data. 

(i) For large continuous sensed images with conditionally Gaussian noise 

given the reference image (see Appendix), formula (A) in Section 2 bounds 

the probability of misregistration by more than distance T. Numerical work 

with pixel-discretized real and simulated images is needed to test the 

validity and usefulness of the bound. 

(ii) When translation-registration to the nearest pixel has already been 

accomplished, and all imagery can be assumed spatially homogeneous with 

rapidly decaying correlations on the pixel distance-scale h, the estimator 

K from Section3.lapproximately limits the subpixel accuracy possible if the 

sensed and reference images were infinitely large with noise- and reference-

images stochastically independent. Again, numerical experimentation will 

empirically determine whether these assumptions and figures-of-merit are 

valid or useful. 

(iii) The kriging-interpolation and maximization of C(·) should certainly 

be tried, as sketched at the end of Section 3.2, using simpl~ parametric forms 

for the covariances of ZR and ZS. 

(iv) Finally, if the experiments in (i) - (iii) prove successful, theoretical 

and empirical extensions of this work, to the case of registration with 

respect to affine distortion considered by [Mo - 8m], seem both desirable 

and possible. 

-, 
- ! 

,--~ 
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APPENDIX. Probability Bound on Local Registration Error for Conditionally 
i Gaussian Sensed Images. 
I ' 

.., , 

In this appendix we state and prove a Theorem giving the most important 

case (including that of [Mo-Sm] in nonstationary settings) in which the 

hypotheses of the Lemma and Corollary of Section 3.1 can be proved. 

THEOREM A.l. Suppose that ZR(·) and ZS(· + _), with _ 1 _ TO - n-2, 

are (nonhomogeneous) real-valued separable random fields on R2 for which 

ZN(·) ZS(· + _) - ZR(·) is conditionally given ZR(·) a Gaussian random 

field, and for which the covariance function R(~,!) of ZR(·) is continuous 

and satisfies for b,c 0 

(c) sup {R(~,~) + R(!,!) - 2R(~,!): I I~ -!I I ~ u} ~ c.ub (_logu)-1/2, 

Let: 

o < U < 1 

MN(!) = E[ZN(!)I{ZR(·)}] 

PN(~'!) = E[ZN(~)ZN(!) - MN(~)~(!)I{ZR(·)}] 

D(!) = E[C(!)I{ZR(·){] where C(·) is as in (*) for fixed T, 

V(;) = E[ (C(~) - D(!»21 {ZR(·)}] 

1'2 = sup {V (!) : 11!lll ~ TO . 

~2(u) = 2 • su~ (2T)-4 [ZR(x + s) - ZR(~ + !)1 • 
11.~lIl' 1I!lll <TO [-T, T]4 - -

'II~ - !lll<u 

HT = inf{D(~) - D(!):J IE - ~II ~~, II~II ~ TOL 

Then whenever x = H /~~ ~ n-bu2du + r) > (8logn)1/2, where 
T 2 - 1 1 

A = sup{~(u)/ub: 0 < u < l} 
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Co 2 
C () -u /2d 

~ 2 n e u 
x 

PROOF: First we remark that the condition (c) implies [Ad 

Theorem 3.3.3 and Lemma 3.4.1] that ZR(·) is uniformly Holder continuous 

with exponent b on 2 [-T - TO,T + TO] , hence uniformly bounded, and the 

random variable A has finite varaince. The Lemma of Section 3.1 noW a?plies 

(with moments and probabilities all taken conditionally given ZR(·» to 

the conditionally Guassian random field y(~) = C(~) - C(~) - D(~) + D(~). 

Here as in the Lemma, the conditionally Gaussian assumption could 

be replaced by an assumption (t). 

We observe also, as in Section3.1, that PN_~nd MN_~re either known 

or can be assumed to have a given form, then all other quantities in the 

Lemma are defined in terms of a given (realization of the) reference 

- , 
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Section 4.0 Maximum Likelihood Corner Detection 

The reliable detection of edges, angles, and other geometric con-

figurations in sensed imagery is a key factor in many algorithms de-

signed to achieve subpixe1 registration accuracy. In particular, loca-

ting image points to the correct pixel in a reference image, allows a 

decoup1ing of the pixel and subpixe1 registration problems. In this 

chapter, we describe a maximum likelihood estimation procedure for 

matching a sensor image corner with a reference image corner. . This work 

is related to work of Novak [No] on the estimation of curve matching 

between a sensed and reference image. 

Novak proposes a solution to the problem of finding a particular 

edge shape in a picture (which is usually called the sensor image): the 

edge is embedded in a binary template and, using an edge ratio statistic, 

the template is matched to the sensor image. 

An edge, Figure 4.2, is defined to be a curve separating two homo gene-

ous regions of differing grey levels. A template consists of an edge 

along with a narrow band of pixels on both sides of the edge. It is as-

sumed that the pixels in the sensor image are statistically independent, 

each being distributed exponentially. The pixels which lie on the dark 

side of the curve have mean 0, and those on the light side have mean A. 

The edge ratio statistic is z=gl/g0' where gl is the sum of the grey 

levels of the pixels under the dark region of the template, and go is the 

sum under the light region. The statietic is evaluated at all points of 

the sensor image, and that point at which z is a maximum is selected as 

the match point. 
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The selection by Novak of the edge ratio statistic appears to be 

based on its "good" performance on several test cases, and on the fact 

that its distribution can be reasonably approximated by the F distri-

bution. In this section Novak's model will be altered so as to admit 

of a closed form MLE. 

, 
--. 

\ 
! 
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:::: 

Figure 4.2 Corner image and window for corner detection analysis. 
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Section 4.1 The MOdel 

In the modified model the template is assumed much iarger than the 

sensor image, and the problem takes the following form. Imagine that 

the template represents a binary photograph (noiseless) of a scene in 

which an edge separates a dark from a light region, as in figure 4.2. 

A noisy photograph (the sensor image) is taken of a part of this scene ~ 

in general containing a segment of the edge. Thus given the template 

and the sensor image, we seek the correct overlay point. 

Formally we view the template T as the lattice of nm points 

tu t12 tIm 

t21 t22 t2m 

tnl tn2 tom' 

in which each thk is either 0 or 1. Thus T is partitioned into the 

sets RO and Rl , where 

Ra={(h,k): thk=a, lShSn, lSkSm} , a=O,l. 

The sensor image S is the lattice of independent random variables 

S11 S12 SIp 

S2l S22 S2p 

.. 

Sq1 Sq2 Sqp 

in which the value Sij represents the grey level of the (i,j)th pixel in 

the sensor image. 

-, 
I 

.-

....,\ 

I 



The distribution of each Sij depends on where S is overlaid on T. 

If Sll is placed over t hk , l~Sn-q, lSk-<m-p, then the conditional den

sity of Sij (lSiSq, lSjSp) is 

fij(s:h,k) = f(s,80)IO[i,j] + f(s,8
1
)I1[i,j], 

where {f(s,e)} is a family of densities indexed by the parameter e, and 

1, if (i+h-1,j+k-1)ERa 

0, otherwise, 

a=O,l. The dependence of Ia on (h,k) has been suppressed for notational 

convenience. 
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Section 4.2 Results 

Let ~ represent the b by m matrix [sij]' where Sij is the observed 

value of Sij' Then the joint conditional density of S, given that Sll 

is placed over t k' is 
h, 

q 
fs(~:h,k) = ·tt 

i=l 

P 
II f

i
. (s .. :h,k) 

j=l J 1.J 

= IJr {f(sij,6
0
)IO[i,j] + f(sij,61)I1 [i,j]}. 

i,j 
In view of the discussion at the beginning of the section, we 

will let fS(~:h,k) be the conditional density of the sensor image given 

that the correct overlay point is (h,k), i.e., Sll is placed over t hk • 

The likelihood function, which we take to be the logarithm of fS(~:h,k), 

is 

L(s',h,k) = .E. I O[i,jl1ogf(s ... ,8 ) + E I 1 [i,jl1ogf(s1..J.,61). 
- 1.,J 1.J 0 i,j 

Thus the maximum likelihood estimate of the correct overlay point is a 

point (a,b) for which 

L(~,a,b) = max{L(s,h,k): 1~<n, l~kSm}. 

Novak assumes each Sij is exponentially distributed, and we shall do 

the same. Letting f(s,6) = exp{-s/6}/6 (6)0, s~O), 60=mO' and 61=m1 , we 

get 

L(~,h,k) = -{logmo L IO[i,j] + (l/mO) .L. IO[i,j]sij 
i,j 1.,J 

+ logm1 E. I 1 [i,j] + (1/m1) L. I 1 [i,j]sij} 
i,J i,J 

= -{nO logmo + gO/mO + n1 logm1 + gl/m1}' 

where n = E I [i,j], and g = L I [i,j]s .. , a=O,l. 
ai,j a ai,j a 1.J 

There are two nuisance parameters in the likelihood function, mO and 

~. 

_ J 

....... 

-" 
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~. To eliminate them, we replace them with their MLE's conditioned on 

their correct overlay point being (h,k). Setting partial derivatives to 

zero, 

2 
aL/am = -n /m + g /m = 0, or m = g /n (a=O,I). 

a aa aa a aa 

Replacing m by i , a a 

L(~,h,k) = -{nO log(gO/nO) + nl log(gl/nl ) + nO + nl}' 

Note that nO+n1 = E IO[i,j] + E II[i,j] = qp, a constant. Hence 
i,j i,j 

maximizing L(~,h,k) is equivalent to minimizing 

which in turn is equivalent to minimizing 

nO nl 
(gO/nO) (gl/nl ) 
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Section,,4.3 Conclusions 

The statistic arrived at in this paper is different from Novak's 

edge ratio statistic. It would be of interest to compare their perfor

mance on Novak's problem, even though this would entail altering the 

MLE statistic. An analysis of the asymptotic behavior of the MLE sta

tistic, as well as a comparison of the MLE of the overlay point for a 

variety of distributions, would shed light on the practicality of our 

approach to the problem. The elimination of the nuisance parameters in 

the maximum likelihood estimate requires justification. We hope to soon 

complete our analysis of the effect of replacing these parameters by 

their conditioned MLE's. Our results indicate that the convergence to 

the true parameter values is exponential, thus providing a high level 

of confidence in the estimates. 



Section 4.4 Interpolation Experiments 

The maximum likelihood estimation procedure for detecting 

corner location on a pixel level, suggests the possibility of extending 

this analysis to give a maximum likelihood subpixel estimate for corner 

or intersection detection. We intend to examine this possibility in the 

second phase of our work. As a prelude to this work, we performed ex-

periments to determine the subpixel accuracy attainable using inter-

polation of the correlation function with the synthetic corner images. 

The results of those experiments will be compared with the maximum 

likelihood estimates obtained in future work. 

The generated imagery consisted of a dark rectangle (as in Sec. 

4.1) forming the upper right hand quadrant of the image. The rectangle 

was shifted in the x and y directions by uniform random shifts of less 

than a pixel. The rectanble was then rotated by O~, 22.5°, and 45° to 

give three types of reference images. Grey-levels in the dark and light 

regions were generated from Gaussian distributions with different means. 

Gaussian noise was then added to the entire image. A 20x20 reference 

image and a lSx15 sensor image were used. The sensor image was corre-

lated against the reference image to get correlation points in a 5xS 

neighborhood of the center pixel. A biquadratic polynomial was then 

fit to this neighborhood and the peak of the polynomial was located. 

For each rectangle angle o 0 0 o ,22.5 , 45 , one hundred offsets were 

generated and the offset was estimated using the above procedure. The 

mean and variance of the error were computed. The mean and variance 

of the erro~assuming the center of the pixel was the estimate, were 

also computed. The results are given in Table 4.1 Note that in each 
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case the interpolation gave a larger mean error than that obtained by 

selecting the center of the pixel. 

The results of this limited experimentation indicate that even at 

low noise levels, the interpolation procedure provides low accuracy 

on the model imagery. During the follow-on work, we wish to extend 

the maximum likelihood estimates to the subpixel case and compare with 

these experimental results. We then wish to extend these results to 

edge images obtained from these synthetic images. The failure of inter

polation in the experiments should not be viewed as a condemnation of 

the methods, for much of the application of these methods is on edge

enhanced imagery. 
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Section 5.0 A Comparison of Correlation, LSE and MLE for Image Matching 

The most common methods of image matching are least squares estima-

tion, maximum likelihood estimation, and correlation. Authors in the 

field (e.g., [Ho-Ba] and [Pr~ often claim that for their applications, two 

or more of these methods can be assumed equivalent. The exact conditions 

under which these equivalences hold are seldom presented. This paper is 

written to fill this lacuna. 

For the purpose of conciseness, all definitions contained in this 

paper are presented forthwith. They are taken from [Ka-Ta] and 

[Ro-Ka] . 

A function, call it R, from the xy-plane to the real line is a 

discrete random field if at each lattice point (i,j) of the plane, R(i,j) 

is a random variable defined on the probability space (n,F,p). Thus at 

each (i,j), R(i,j) is a function from n to the real line. This can be 

made explicit by denoting R as a function of three variables R(i,j,w), 

where we:n. At each (i,j) the expectation of R(i,j) is 

E[R(i,j)]= f R(i,j,w) dP~) 
n 

Since no confusion can arise from deleting m, from now on we denote R 

as a function of two variables only. 

The discrete random field R is homogeneous (or wide-sense stationary) if 

(i) E[R(i,j)] = ~ < 00, where ~ is independent of (i,j) 

and 

(ii) for all integers il,iz,jl,jz,a, and 8, 

E[R(i1 ,jl)R(i2,j2)] = E[R(il+a, j1+8) R(i2+a, jZ+S)] < 00. 

It follows from (ii) that there is a function r, which depends only on 

a and 8, such that 

r(a,8) = E[R(i + a, j + 8) R(i,j)], (1) 

for all (i,j). 
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Let B be a bounded region of the xy-plane and n the number of lattice 

points in B, and suppose B grows to eventually encompass the entire plane. 

The homogeneous random field R is called correlation ergodic _.if, for every 

integer pair (a,S), 

r(a,B) = lim k r R(i,j)R(i +a,j + B). 
n~ (i,j )e:B 

The convergence is in probability. This means that the product moment 

of R(i,j) and R(i+a,j+S) (often called the auto-correlation), can be 

approximated by taking the average, shown on the right side of the equation, 

over a sufficiently large bounded region. 

The restriction of a discrete random field T to a bounded region B 

is called an image. Usually the region of restriction, B, need not be 

explicitly indicated, so to increase the readability of equeations, the same 

symbol, say R, will be used to denote an image and the discrete random field 

from which the image is derived. Hence BR refers to the region of restric

of the image R. The value that the random variable R(i,j),(i,j)e:BR, 

assumes is called the ~ level of the image R at the point (i,j). Before 

continuing, we point out that throughout this paper, the variables i,j,a, 

and S can assume integer values only. Lastly, the notation IBRI refers to 

the number of lattice points in the region BR• 

Suppose R and S are images with IBsl « IBRI - we call R the reference 

image and S the sensor image. The least squares estimate (LSE) of the 

match point between Sand R is any point (a,S) at which 

L(a,S) - r [S(i,j) - R(i +a,j +S)]2 
(i,j )e:BS 

(2) 

is a minimum. The correlation estimate of the match point is any point 

(a,S) at which 

--
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E S(i,j)R(i +a.,j +13) 
(i,j )e:BS 

C(a,S) -

(3) 
E S2(i,j) 

(i,j )e:BS 

v2 
E R2(i +a.,j +13) 

(i ,j )e:BS 

is a maximum. 

In practice, it is desirable to render the correlation estimate indepen-

dent of a uniform shift in the grey level of either S or R. Hence correla-

tion is applied to S' and R' , 

s' (i,j) - S(i,j) E S(i,j) 
nS (i,j )e:BS 

1 

and, 

R' (i,j) - R(i,j) E R(i,j), 
(i,j )e:BR 

.where nS is the number of pixels (i.e., lattice points) in BS and·n
R 

is the 

number in B
R

• This transformation is presumed throughout the remainder of 

this paper. 

Section 5.i Correlation and LSE 

A sufficient condition that (3) and (4) give rise to the same match 

point is that 

(4) E 
(i,j )e:BS 

2 
R (i +a.,j +13) 

be constant in (a,S). 

[Ho-Ba] and [Prj claim that if (4) varies slowly as the sensor 

image S mover over R, then (4) can.be assumed essentially constant 

and ignored. The vague~ess of the condition 'varying slowly' 

can be replaced with the rigor of the following definition. 

We say the discrete random field R is almost constant if for each 

e: > 0 there exists some integer M such that for every n > M and for every 

bounded region B with n lattice points 
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P {lr(O,O) 
1 
n E 

(i,j )EB 
(S) 

Note that (S) requires that (4) be a convergent (in P) sequence for all 

(a,S), and that the rate of convergence be uniformly (in (a,S» bounded 

from below. 

If R is an uncorrelated and identically distributed discrete random 

field with finite fourth moments - i.e., for all (i,j) E[R4(i,j)] < 00 

then R is homogeneous, and by (1) E[R2 (i,j)] = r(O,O), a constant. By a 

variant of the Law of Large Numbers (see [eh]), R· is almost constant. 

It is worthwhile pointing out that a homogeneous random field R is 

not necessarily almost constant, and in fact even if R is correlation 

ergodic it need not be almost constant. 

Suppose R is an almost constant discrete random field and S is any 

image. Clearly the LSE and correlation estimate of the match point of R 

and S need not be the same. However, LSE and correlation are equivalent in 

-+ 
the sense of the following theorem. A few definitions first. Xc (a two-

dimensional vector) is a point at which the correlation formula (3) 

-+. 
attains its maximum, and X is a point at which the least squares formula 

s 

(2) attains its minimum. 

Theorem S.l 

If there is an E > ° such that 

P {C(X ) > (4r + E y/2 C(x) } > 1 
1 

c 4r - E - 7i" E 

and 

-+ -+ 
for all X :f X (note r :: r(O,O» 

c 

P {L (Xs ) < L (X) -} n E} > 1 

for all X :f X , 
s 

1 _ 
- - Co 

4 

(6) 

(7) 

and if n :: I B I is suff ic iently large to satisfy (S) with E replaced 
s 

by Ef4, then 

-



Proof 

-+ 
Let Xo be a point at which 

U(a,S) = r S(i,j)R(i +a,j +S) 
(i,j )£B 

s 
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attains its maximum, and define the following sets: 

If = Ir - 1:. r R2 (i,j)1 n (i,j)£Bs 

A = -+ -+ 
(X "i X ), a = s,c, a o a 

~ = C(-+X) > r + £ C(y ) (4 )
1/2-+ 

C c 4r - £ '~ 

and r a = Aa n ~ a n '1', a = s, c • 

On the set r s' 

L(~) < n(r - ~ £) 

<1:.£ 
4 

< n(r _ 1 £) 
- 7i -2U(X)+1:. n £ 

s 2 

< L(X ) + 1:. n £ 
s 2 < L(X ). 

o 

It follows from this contradiction that p(rs ) 

On the set r , 
c 

[n(r + i £)]1/ 2 > 

1/2 

> C (X ) ( 4r - £) > C (~ ). 
c 4r + £ ''0 

1 Thus p(r ) = 0, implying P(A ) < _ E. 
C c 2 

Combining the above results we get: 

-+ -+ -+ -+ -+ 
P(Xs = Xc) > P(X = X = X ) soc 

p{ (Xs · = Xo) n (Xo = Xc)} 
> 1 - P(Ac) + 1 - P(As) - 1 

> 1 - £. 

1 
= 0, hence P(As) < 2 £. 

.(r 4r' - £ t/2 

---;:;-;-;J 
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This theorem imposes rather strong conditions on the points Xc 

~ 

and X , however with monor modifications to the proof, these condi
s 

tions can be weakened. It is sufficient that the two probabilistic 

inequalities (6) and (7) be true, respectively, on neighborhoods of 

Note that no restrictions have been placed on S. Hence the equiva-

lence of LSE and correlation hold in the case 

S(i,j) = R(i +a, j +S) + N(i,j), (i,j )e:Bs 

where the noise N(i,j) are iid, and R satisfies the conditions of the 

theorem. 

We turn our attention to a reference image R containing two homogeneous 

regions with means ~ and v. If the sensor image S is offset by (a,S), some 

of the sensor pixels will overlay region I of R and the remainder of the 

sensor pixels will overlay region II. The following shorthand notations 

will be used, in which, from context, it is understood the offset is (a,S): 

and 

l: 
I 

l: _ 
II 

{(i,j): 

{(i,j): 

l: 
(i + a, j +S) e: region I} 

L -
(i + a, j +8) e: region II} 

In this case the LSE is given by the minimum of 

+ l: S2(i,j) 
(i,j )e:Bs 

2l:1 S(i,j) R( i + a, j +8) 

- 2l:I1 S(i,j)R(i + a, j +S), 

and the correlation estimator by the maximum of 
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l:I S(i,j)R(i + a, j +S) + l:U S(i,j)R(i + a, j +S) 
C(a, S) = 

As before we require that 

D(a,S) = l: R2(i + a, j + S) + l: R2(i + a, j + S) 
I II 

be approximately constant with respect to (a,S) in order to ensure that LSE 

and correlation give rise to the same match point. This condition is sat is-

fied in the following circumstances. 

If S is large, then shifting the offset by a few pixels will not 

drastically alter D(a,S), since the set of pixels included in D(a,S) remains 

r essentially unchanged. But the cross-product term (the numerator in the 

correlation function) will change, because all product terms are different. 

r 
I Thus in a neighborhood of say, the LSE match point, LSE and correlation 

will result in the same solution. 

Suppose R is restricted to being a binary image, whereas S remains a 

grey level image. If R consists of two contiguous regions, then matching 

Sand R is euqivalent to finding an edge, of known shape and size, in S. 

This edge separates two homogeneous regions with different mean grey levels. 

We can assign to the pixels of R a conditional estimate of the means 

in each region. If S is offset by (a,S), then the conditional estimate of ~ 

and \) are 

and 

Here n(I) and n(II) are the number of pixels of the sensor image which over-

lay, respectively, regions I and II of R at offset (a,S). The dependency 

of n(I) on (a,S) has been suppressed, although it is implicitly understood. 

Thus, at offset (a,S), the reference pixels in region I are aSSigned the 
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value ~aS' and those in region II VaS' 

The correlation at offset (a,S)·is given by 

C(a, S) 

2 2 1/2 
[n(I)~aS + n(II)VaS ] 

[r S2(i,j)]1/2 

(i,j )£Bs 

and the LSE is the minimum of 

L(a,S) ~ S2(l.',]") (I) 2 
t... - n ~aS 

(i,j )£Bs 

In this instance, then, correlation and LSE are equivalent, 



-, 

r 
! 

407 

Section 5.2 LSE and MLE 

An advantage of least squares estimat.ion and correlation estimation 

is that they are distribution independent, whereas maximum likelihood 

estimation is highly distribution dependent. In order to use MLE, more 

stringent requirements must be imposed on the underlying model, often 

rendering it less realistic. 

Suppose Sand R are related as follows, 

S(i,j) = R(i + a, j + S) + N(i,j) 

where (a,S) is the offset we seek, and the N(i,j) are iid Gaussian with 
. 2 

mean 0 and variance a. The log likelihood function of S is 

- E. log (27Ta2) -.1:.2 1: [S(i,j) - R(i + a, j + S)]2. 
2 2a (i,j)£Bs 

This expression attains a maximum when 

1: [S(i,j) - R(i + a, j + S)]2 
(i,j )£B 

s 

attains a minimum. This is, of course, the LSE. Note that R is not a 

random field, and because at the correct offset (aO'SO) 

E[S(i,j)] = R(i + a, j + B), 

S is, in general,not a homogeneous random field. 

If R is a binary image, as described at the end of Section 5.1, 

then MLE is equivalent to LSE which is equivalent to correlation. 
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Section 6.0 Conclusions and Future Work 

We have developed statistical and geometric models for subpixel 

accuracy. Using a restrictive geometric model, we were able to derive 

bounds on subpixel accuracy. These bounds are useful for both error 

prediction and for selection of features for registration. Under the 

assumptions of our model, a high level of subpixel accuracy is possible. 

We are currently extending these results to more realistic models. 

Several bounds on registration accuracy were derived under the 

assumption of statistical models for the images and noise. Two cases 

were considered. First, the reference and sensed image~ 'were assumed to 

be contin~and bounds on the offset error were derived. In the second 

model, ~t was. assumed that the image was digitized and that a registration to 

the. correct pixel is available. In addition, a consistent maximum like

lihood estimator was developed for corner detection under a stochastic 

model for such features. Finally, conditions were established under 

which maximum likelihood, correlation and least squares methods for image 

matching are equivalent. 

The extension and testing of our geometric modeling methods will be 

a key part of our continuing work. The level of sub pixel accuracy 

attainable under our restricted model was sufficiently high to warrant 

detailed investigation of less restrictive models. For the case of the 

digitization of a real line, we will complete the probabilistic analy-

sis using the invariant measure on lines for several lengths of digital 

lines. This will give more realistic informAtion on subpixel accuracy. 

The subpixel accuracy attainable will be shown to be even better than 



409 

,-

our present results indicate since we have chosen a worst case bound. 

We will also examine the case of a digital angle formed by two digital 

lines intersecting at a specified angle. Once again, this situation, 

which models road intersections, can only improve the subpixel accuracy. 

The case of digital lines with points missing will first be investi-

gated experimentally. Using the methods outlined in Section 2.6, we can 

compute bounds on the offset estimation error. The bounds derived in 

this manner will be adequate to describe this more general model, but we 

will attempt to model this situation to aid us in the still more general 

r models. Our most general model in which points are missing and extran-

r 
eous points are added to the digital1ine will be investigated next. The 

i 

exact form of this study will depend upon the previous results. 

We will experiment with LANDSAT and simulated data to estimate the 

accuracy to which we can detect the pixels on a digital line. Using these 

observations we will develop each accuracy model to be used in evaluating 

the set of all digital lines to determine procedures for selection of ,-
good registration features, e.g., which line slopes are best. 

Experimentation will be necessary to determine the usefulness of 

the statistical bounds developed in Section 3. We review briefly the 

proposed work in this direction. 

(i) For large continuous sensed images with conditionally Gaussian noise 

given the reference image (see Appendix), formula (A) in Section 3 bounds 

the probability of misregistration by more than distance T. Numerical work 

with pixel-discretized real and simulated images is needed to test the 

validity and usefulness of the bound. 
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(ii) When translation-registration to the nearest pixel has already been 

accomplished, and all imagery can be assumed spatially homogeneous with 

rapidly decaying correlations on the pixel distance-scale h, the estima

tor K from Section 3 approximately limits the subpixel accuracy possible 

if the sensed and reference images were infinitely large with noise- and 

reference-images stochastically independent. Again, numerical experi

mentation will empirically determine whether these assumptions and fig 

ures-of-meritare valid or useful. 

(iii) The kriging-interpolation and maximization of C(;) should certainly 

be tried, as sketched at the end of Section 3, using simple parametric 

forms for the covariances of ZR and ZS. 

(iv) Finally, if the experiments in (i) - (iii) prove successful, 

theoretical and empirical extensions of this work, to the case of regis

tration with respect to affine distortion conditions of [Mo-Sm], seem 

both desirable and possible. 

The corner detector, used to locate a highly reliable match point 

for registration will be studied. This study will consist of analytical 

modeling for subpixel accuracy as well as experimental studies. 
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ABSTRACT 

Complete sensor/platform modelling is derived and used for the 
generation of synthetic data and for rectification studies of satellite 
scanner data. All satellite position and sensor attitude parameters are 
recovered. Rectification accuracy improves marginally when using more 
than 25 control points, and is highly sensitive to errors in image 
point identification. 

-, 
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1. INTRODUCTION 

1.1 General 

Remote sensing imagery produced by various sensors, such as frame 

cameras, scanners, etc., may be considered as a transformation of the 

object space, e.g. ground surface, into the image space which may be 

415 

a plane, a cylindrical surface, etc. Scanner imagery, with which this 

paper is concerned, is the result of transforming the three-dimensional 

ground surface into equivalent cylindrical surface, which when developed 

becomes a two-dimensional image space. 

Rectification is essentially the process of defining the inverse 

transformation which will allow us to recover the ground surface from 

corresponding imagery. We can fully recover the ground surface from 

imageries only if we have multiple coverage of the same ground area from 

different acquisition locations. Since the inverse transformation is 

from a two-dimensional surface (the imagery) into a three-dimensional 

surface (the ground), rectification usirig single coverage imagery 

requires that one of the three-dimensions of the ground space, usually 

the elevation, be known or assumed known a-priori. 

Another process, which is very similar to rectification, is 

registration. In rectification, we determine the ground position of 

points in a given imagery, while in registration, we locate these points 

on other imageries covering the same area. The effectiveness of 

registration depends on how close to each other are the acquisition 

points of the different imageries. Because rectification and registra

tion are very similar, methods suited for one can be applied to the 

other, with slight modifications. 
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As is well known, an imagery consists of picture elements called 

pixels. If the position of the exposure station, i.e. the platform 

(satellite) position, and the direction of· the vector from the exposure 

station to the pixel are known, its ground position can be deiived. In 

general, every pixel is imaged at a different time, hence a given pixel 

has a unique exposure station and a unique vector direction. If the 

satellite position corresponding to all pixels and if all pixel direc

tions are known to the required accuracy, the problem of rectifying an 

image is solved. Unfortunately, either because of cost, because it is 

not technically possible, or both,the positiori of the satellite, 6r 

the ephemeris, and the direction of pixel vectors are not available 

with the required accuracy. 

An alternative procedure for rectifying imagery, is through the 

use of ground control points. These are points the positions of which 

are known both in the imagery and on the ground. A mathematical model 

exists which relates the position of a point on the imagery, the 

corresponding satellite position, pixel vector direction and ground 

position. Suppose there are points with known positions both in the 

imagery and on the ground (control points); then presumably, using 

the mathematical model, we can solve for the satellite position and the 

pixel vector direction. This is only possible if the satellite position 

and pixel vector directions are expressed in parametric form since each 

pixel has a unique direction and a unique ~orresponding satellite 

position. A pixel vector direction can be broken down into two com-

ponents, namely, the attitude or orientation of the sensor coordinate 

system and the direction of the pixel with respect to the sensor 

-I 
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coordinate system which is usually observed. Then only the sensor 

attitude need be modelled in parametric form. 

This approach to. rectification has three main elements: (1) the 

type of mathematical model used, (2) the method of adjustment used, 

and (3) the manner in which a-priori information is exploited. 

1.2 Mathematical Models Used for Rectification 

The two main types of models are the implicit and explicit models. 

The implicit model relates the point on the imagery to the correspond

ing point on the ground using parameters that have no direct physical 

significance, i.e., satellite position and sensor attitude cannot be 

derived from these parameters. These types of models are more commonly 

known as interpolative or surface fitting models. The explicit model, 

on the other hand, relates the point on the imagery to the point on the 

ground using parameters that have real physical meaning. These para

meters include either the satellite position and sensor. attitude them

selves, or other parameters which are related to them. The group of 

explicit models are commonly known as parametric models. Each of the 

two types of models is discussed separately. 

1.2.1 Interpolative or Surface Fitting Models 

The most commonly used model of the interpolative type is the 

polynomial function. This includes similarity, affine and higher order 

polynomials. Normally, the ground is first projected into a mapping 

plane. If necessary, the image is also projected into an equivalent 

plane. The general form of the polynomial function is as follows: 

417 
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(lola) 2 2 2 2 X = aO + alx + a2y + a3xy + a4x + asy + a6x y + a7xy + 

(l.lb) Y = bO + blx + b2y + b3xy + b4x2 + bsy2 + b6x2y + b7xy2 + 

where X,Y are the map coordinates"x,y are the image coordinates (or 

pixel locations) and aO' bO' al , bl , a2, b2, are the mapping para

meters. Polynomials are global in the sense that only one set of para

meters is used for the whole image frame. 

If the density of the control points is high, global functions 

might not be appropriate. Then the frame might be divided into segments 

and a different polynomial function applied to each segment. If 

conditions of continuity are inforced at the boundary of the different 

segments, the approach becomes known as the method of splines. 

A totally different approach applicable also if the control point 

density is high, is the method of moving averages. In this method a 

different polynomial is used for every point to be interpolated. Each 

polynomial is centered on the point of interest. The degree of each 

polynomial might be low and the effective area might be small but still 

this method is computationally expensive. 

After rectifying an image, the residuals or differences between 

computed and observed coordinates of control points, can be calculated. 

Again if the density of· the control points is high, it may be desirable 

to perform additional processing to reduce the magnitude of the resi-

duals. The method of linear least squares prediction is best suited 

for this type of processing. The method assumes that the residuals 

belong to a random field. 

-

-

--. 



.-

I. 

419 

1.2.2 Parametric Models 

Parametric models follow closely the geometric and physical proces

ses which produced the imagery. Because of this, parametric modelling 

can be logically divided into sensor modelling and platform modelling. 

Parametric models also depend on the assumed figure of the earth surface. 

Sensor models reflect the type of sensor used. They are independ

ent of the platform (satellite) used and the type of surface being 

imaged (e.g. earth). The results of sensor modelling are either cor

rected sensor vector directions corresponding to each pixel, or pixel 

positions projected on a plane. For scanner type sensor, projection 

of pixel positions on a plane corrects for the panoramic effect. Other 

corrections applicable are due to non-linearity of scanning, unequal 

number of pixels per scan, and the effect of scan line corrector (for 

Thematic Mapper Only). Sensor modelling is sometimes known as internal 

modelling. 

The platform model describes the behavior of the satellite which 

is the platform for imaging. Platform modelling primarily consists of 

two parts:' sensor attitude modelling and satellite position and orbit 

modelling. Attitude models can be polynomials, harmonic series or auto

regressive models. The independent parameter for attitude models is 

usually time. Satellite position and orbit models can be grouped into 

three general types. The first group defines the satellite position in 

terms of the satellite position vector, and the satellite orbit is 

defined in terms of both the satellite position and velocity vectors. 

Both vectors vary with time. The second group defines the satellite 

orbit in terms of the five orbital parameters as defined in orbit 
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mechanics. In this case, these orbital parameters vary with time. The 

satellite position is defined in the orbital plane as a function of 

time~ The third group is similar to the second in the sense that the 

satellite orbit is also defined in terms of orbital parameters and 

that the satellite position in the orbital plane is also defined as a 

function of time. The main difference is that in the last group, the 

orbital parameters are independent of time, i.e., they are constant for 

a given frame. As a consequence, the shape of the orbit has to be 

defined. The shape of the orbit can be assumed to be a straight line, 

a circle or an ellipse. As a further consequence for assuming the 

orbital parameters constant, the deviation of the actual satellite 

position from its computed position using the orbital parameters 

has to be modelled. Satellite position deviation models can be poly-

nomials, harmonic series or auto-regression models similar to the 

attitude models. Again these models are functions of time. 

The last element in parametric modelling pertains to the assumed 

shape of the earth. The shape of the earth is important because no 

computation can be done on its surface unless its shape is known. For 

purposes of rectification, the surface of the earth can be a map projec-

tion plane, a sphere or an ellipsoid. 

1.2.3 Other Model Considerations 

Given a selected model with redundant data, an adjustment method 

is applied. There are two types of adjustment currently in use: the 

least squares method and Kalman filter approach. The former is a batch 

type of adjustment. All observations are adjusted in one pass and the 

parameter estimates are then computed. Inherent in this method is the 
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assumption that the model is fixed. The second approach is inherently 

sequential in nature. Observations are incorporated into the adjust

ment in small groups. The precision of the parameter estimates increas

es up to a certain limit as the number of observations incorporated into 

the adjustment increases. The model used in this adjustment is consid-

ered random, hence it gets adjusted together with the observations. 

During rectification adjustment using ground control points, the 

sensor attitude and satellite position parameters are unknown. In 

reality, some or all of these parameters may be measured but to a 

precision which is inadequate for rectification. These measurements, 

and others that are related to them, constitute a-priori information. 

Instead of using these measurements as initial approximations for the 

corresponding parameters, they are used as a-priori estimates with 

proper a-priori covariance matrices. In this manner, they are allowed 

to vary in the adjustment. The amount of variation is commensurate 

with the a-priori variances and covariances. 

1.3 Review of Literature 

The earliest and easiest approach to rectification of satellite 

scanner data, is the use of polynomial models. Many authors have 

reported that the resulting accuracy is comparable to other methods 

(Forrest [10], Trinder [20], Bahr [3], Dowman [7]). Because of its· 

reported accuracy and ease of use, polynomials are still presently 

the most commonly used rectification method. 

The earliest parametric model applied to satellite scanner data 

assumes that the orbit is a straight line and that th~ earth surface 

is projected onto a mapping plane (Kratky [12], Konecny [11], Dowman 
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[7]). In effect, the treatment of s~tellite scanner data is the same 

as that of aircraft scanner data. Parameters describing the variations 

in attitude and elevations were recovered. 

The next improvement in parametric modelling is due to Caron and 

Simon. They defined the satellite orbit and position in terms of 

satellite position and velocity vectors (Caron and Simon [6], Puccinelli 

[16]). They also did away with the use of map projection during the 

adjustment process. They assumed instead that the earth is a sphere 

and performed computations on its surface (Caron and Simon [6], Bahr 

[4], Sawada [18]). The parameters recovered during the adjustment 

were the same as those in the previous method. They are further 

credited with the use of Kalman filter to solve for the parameters in 

the adjustment. 

Bahr was the first to define the satellite position in.terms of 

orbital parameters that are functions of time (Bahr [4]). He recom

mended that only parameters describing the attitude and elevation 

variations should be recovered. 

Next the orbit was defined in terms of constant orbital parameters. 

This assumption requires that the shape of the orbit be defined and that 

the deviation of the actual satellite from its predicted position be 

modelled in terms of time. The shape of the orbit had been modelled as 

a circle (Forrest [9]f Levine [13], Synder [19]) and as an ellipse 

(Bahr [4], Sawada [18]). Only Levine so far has incorporated in his 

model all three components of satellite position deviation (Levine [13]). 

Like the others, however, he also recommended that only the parameters 

defining the variations in attitude and elevation be recovered. 
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Regarding the shape of the earth a few authors have recommended 

that an ellipsoid of revolution be used (Pucine11i [16], Forrest [9], 

Levine [13], Synder [19]). Because of the complex nature of the 
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resulting formulas, no exact closed form have been derived so far. 

Computations on the surface of the earth's ellipsoid involving eleva

tions as recommended by the above authors require approximations and/or 

iterations. 

1.4 Preview of the Investigation 
- -

The parametric model derived for this investigation is suitable 

for Landsat MSS type imagery. With slight modification of its sensor 

dependent parameters, this model is also applicable to TM type imagery. 

It is sufficiently general as to encompass various specific cases 

published by other researchers. In addition, it extends the modelling 

of the satellite position to include all of its three components, while 

others have limited consideration to only one component, its elevation. 

With this general model, we are able to both generate synthetic data 

and study rectification. This model is also used to study the effect 

on ground position of target points due to both individual as well as 

combined errors in the various parameters. 

The major factors affecting rectification accuracy are: (1) the 

type of model used, (2) density of ground control, (3) accuracy of 

ground control, and (4) the accuracy of the derived image coordinates 

or directions. Using synthetic data produced using the derived model 

we studied the effects of these different factors. The different cases 

of the model used are: (a) polynomial model, (b) model with straight 

line orbit and earth surface projected on a plane, (c) model with 
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circular orbit and spherical earth, (d) model with circular orbit and 

ellipsoidal earth, and (e) model with elliptical orbit and ellipsoidal 

earth. The last three models fully accounted for the satellite position 

deviation (three components) and the sensor attitude (three elements). 

2. MATHEMATICAL MODELLING 

2.1 Principles of Parametric Modelling 

Figure 1 shows the geometry involved in the relationship between 

image and object spaces, where: 

X Y Z is the ground coordinate system; 

Xl yl Zl is the transformed sensor coordinate system parallel to 

the ground coordinate system; 

S is the satellite position defined by the vector 

[Xs Ys Zs]T; 

p is the pixel position defined by [x~ y~ z~]T; 

G is the pixel ground position defined by the vector 

[XG Y G ~] T; 

h is the elevation of G, and 

N is the radius of the prime vertical corresponding to G. 

Since the two coordinate systems are parallel, then 

(2. 1 ) = A 

where A is a scale factor. 



,-

r 
I 

r 

-

425 

Let the original sensor coordinate system be x y z. This coordi

nate system is not necessarily parallel to the ground system. Let MT 

be the transformation which rotates x y z into Xl yl Zl. Applying this 

transformation to the original pixel coordinates results in 

(2.2) [~~J = MT [~:] 
Substituting equation (2.2) into equation (2~1) produces the following 

[~:] [G -Xs] (2.3) = A M YG - \ 
ZG - Ys 

This equation is called the col linearity equation. 
t The process of deriving the pixel position vector [xp yp zpJ in 

the image space from pixel row and column numbers is called sensor 

modelling. The process of defining the satellite position vector 

[Xs Ys ZsJ t in terms of orbital parameters, time and satellite position 

deviation parameters is called orbit modelling. Orbit modelling plus 

the process of defining M in terms of the orbital parameters, time, 

satellite position deviation parameters and sensor attitude parameters 

is called platform modelling. 

Before we proceed, we will first list without proof formulas from 

related fields which we will need later in our derivations. 

2.2 Formulas from Related Fields 

Orbital mechanics provides us with the necessary formulas for 

establishing the position of satellite in orbit. The following 
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formulas assumes that the earth is a sphere of uniform mass. 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.5) 

E - €s sin E = ~Me/As3 ts 

cos v = (cos E - €s)/(l - €s cos E) 

sin v = ~ - €s2 sin E/(l - €s cos E) 

R = As (1 - €s cos E) 

ts = ~s3/GMe { 2 tan- l [1(1 - €s}/(l + €s} tan (v/2)J -

€ 2 sin (v/2)/[1 + € cos (v/2)J} s . s 

See Figure 2 for aid in defining the terms: 

As in the semimajor axis of the satellite orbit, 

€s is the eccentricity of the satellite orbit, 

R is the distance of the satellite from the earth's center, 

v is the true anomaly defined as the angle as viewed from the 

center of the earth between the satellite and the point on the 

satellite orbit nearest the earth (perigee), 

ts is time where ts is zero at perigee, 

T is the period of the satellite orbit, 

E is the eccentric anomaly, 

G is the gravitational constant, and 

Me is the mass of the earth. 

In Figure 2, 0 is the center of the orbit; P is the perigee; S is 

the satellite; Fl and F2 are the focii of the elliptical satellite 

orbit; Fl coincides with the center of the earth; R is distance of 
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the satellite from the earth's center; As is the semi-major axis of 

the satellite.orbit; and v is the true anomaly. 
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Given t s ' the parameters As and €s' and the constants G and Me' 

the polar coordinates R and v of the satellite position can be solved 

for using equations (2.4a) to (2.4d). Equation (2.4a) has to be solved 

iteratively for E, the eccentric anomaly. Conversely given v and the 

same set of constants, ts can be solved for using equation (2.5). 

The next field where other required formulas are available is 

geometric geodesy. The following formulas are useful for computing on 

the surface of the earth. The major assumption here is that the earth 

is arr ellipsoid of revolution. 

(2.7a) 

(2.7b) 

(2.8) 

(2.9a) 

(2.9b) 

(2.9c) 

N = A /11 - € 2 sin2 
<t> e e 

oN = ee2 N 

R = A 11 - € 2/(1 - € 2 s in2 
<t» avg e e e 

x = (N + h) cos <t> cos A 

Y = (N + h) cos <t> sin A 

Z = (N + h - oN) sin <t> 

Figures 3a and 3b will help clarify the following terms: 

Ae is the semi-major axis of the ellipsoid, 

€e is the eccentricity of the ellipsoid, 

<t> is the geodetic latitude, 

A is the geodetic longitude, 

h is the elevation of a point, 

N is the radius of the prime vertical, 

oN is that part of N below the equator for points in the 
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northern hemisphere and above the equator for points in 

the southern hemisphere 

Ravg is the average radius of curvature of a point on the 

earth's surface, and 

[X y Z]t is the vector defining the position of a point. 

Map projections is the last area where necessary formulas can be 

found. Although other types of projection may be applicable, only one 

type, namely, the oblique Mercator projection, was arbitrarily chosen. 

The main assumption here is that the earth is a sphere. 

(2. lOa) 

(2.10b) 

u = - R tan -
-1 [ sin (A - Ap) cos <P J 

cos <P cos <Pp cos (A - Ap) - sin <Pp sin <P 

[

1 + sin <P sin <Pp + cos <P cos <Pp COS'(A Ap)] 
V= - ~ R log 1 _ sin <P sin <Pp - cos <p cos <Pp cos (X - Xp) 

Figures 4a and 4b are included for clarification of the following 

symbols: 

<Pp and Ap are the latitude and the longitude respectively of the 

prOjection pole P; the projection pole is the point of 

intersection with the sphere of a line normal to the 

central circle and passing through the earth's center; 

<p and A are the latitude and longitude, respectively, of the 

point to be projected; 

U and V are the resulting map coordinates after projection; and 

R is the radius of the best fitting tangent sphere to the 

earth surface at the point of interest. 
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2.3 Sensor Modelling 

The main purpose of sensor modelling is to recover the true 

direction of the pixel vector at the moment of pixel imaging with 

respect to the sensor coordinate system. The sensor coordinate system 

is arbitrary, but for sensors of the scanner type, the following is a 

convenient coordinate system (see Figure 5). The origin coincides 

with the perspective center of the sensor optical system; the z-axis 

bisects the scanning angle and is positive away from the object; the 

y-axis is parallel to, and positive in, the scanning direction and it 

is also perpendicular to the z-axis; the x-axis completes a right 

handed coordinate system. In Figure 5, 0 is the origin, 2 a is the 

scan angle, and the x-, y-, and z-axes are as shown. Every scan has 

its own unique coordinate system. The pixel direction can be expressed 

either as a unit vector or as a pair of coordinates in a plane per

pendicular to the z-axis. In the latter case, the z-coordinate of a 

pixel is always constant. We will use the latter in our derivations. 

Sensor models are derived for both the multispectral scanner (MSS) 

and the thematic mapper (TM). Essentially, from the point of view of 

sensor modelling, the MSS and the TM are the same, except for the fact 

that the TM uses a scan line corrector to compensate for the motion of 

the satellite during scanning. This is necessary because unlike the 

MSS which uses only the forward scan for imaging, the TM uses both the 

forward and the reverse scan. For both the MSS and the TM, every frame 
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of imagery consists of a number of scans, every scan consists of a 

number of lines and every line consists of a number of samples or pixels. 
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The position of a point in an imagery is defined by its row (r) 

and column (c) numbers, which are not necessarily integers .. The column 

number c has to be corrected for the deviation of the number of samples 

in one scan from the nominal, which is known as the line length 

correction, and for the non-linearity of scanning. The line length 

correction is applied by simply multiplying c by a constant factor 

resulting in 

(2.11) [
N' - 1J 

c' = N: c - 1 

where Ns is the observed number of samples in one scan, N~ is the 

nominal number of samples in one scan, and c' is the column number with 

line length correction applied. The formula assumes that the scanning 

is linear in time or equivalently, that the velocity of scanning is· 

constant. To correct for the non-linearity in scanning, the deviation 

of c' from the nominal is modelled as a polynomial series resulting in 

(2.12) ~Cl - a + a c l + a C
,2 + a3 C

,3 + a4 C
,4 + - 0 1 2 

where c' is defined in eqoation (2~11), ~c' is the deviation of c' from 

its correct value and aO' a1, a2, a3, a4, ..•. are the coefficients of 

the polynomial series measured during sensor calibration. The final 

column number corresponding to a point is as follows: 

(2.13) c ll = c' + ~Cl 

where c ll is the column number with both the line-length and scanning 

non-linearity correction applied. 

For the MSS, the row number r of a point needs no correction. For 

the TM, the row number is compensated for the effect of the scan line 
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corrector. The scan line corrector is an image motion compensation 

device which attempts to cancel the relative motion between the 

satellite and the ground during image acquisition in every scan. In 

the TM, if no image motion compensation is applied, the ground coverage 

of the forward and the reverse scan will not be parallel. The 

compensation for the row number in the forward scan has the following 

form: 

(2.140) ArF = s: -[r~~ s~ lJ [COO - 11 

For the reverse scan, the compensation is just the opposite for that of 

the forward scan, hence, 

(2.14b) ArR = - :;. + [N; s~ lJ [COO - ll, 

where: 

~rF and ~rR are the compensations for the row number in the forward 

cit 

N' s 

Sp 

and the reverse scans respectively; 

is defined in equation (2.13); 

is the nominal number of samples in one scan; 

is the distance travelled, in pixels, of the satellite 

ground track in one scan. For aid in visualizing the 

effect of the scan line corrector see Figures 6a, 6b, 

and 6c • 

The corrected row number for both the TM forward and reverse scan is 

given by 

rl = r + ~r 

where rl is the corrected row number and ~r is either ~rF or ~rR as 
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defined in equation (2.14). The problem of determining whether a point 

was imaged during the forward or reverse scan, by the TM will be discus

sed presently. 

We first assume that an image frame consists only of whole scans. 

Then the scan number to which a point belongs is 

(2.15) i = lr -O.5j + 1 
s NL 

where L Jmeans the largest integer not exceeding the value inside, r 

is the uncorrected row number, and NL is the number of lines in one scan. 

If the first scan is forward, then all odd scans are forward scans and 

all even scans are reverse scans and vice versa. The corrected line 

number of a point, once its scan number is known, is 

(2.l6a) 9.. = rl - (is - 1) NL 

and its corrected sample number is equal to the corrected column number, 

that is 

(2.16b) s = c" 

where 9.. and s are the corrected line and sample numbers of a point, 

respectively; and rl and c" are the corrected row and column numbers, 

respectively. 

The direction of a pixel vector with respect to sensor system can 

now be expressed in terms of 9.. and s. In Figure 7, a is proportional 

to s, that is, 

\jJ 
(9 -

\jJ 
a = Ni - , 1) - 2" ' 

s 
and B is proportional to 9.., that is, 
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e e s = Ni , (~ - 1) - 2 ' 
L -

where Wand e are the total sensor angular coverages across and along 

satellite track, respectively. Also in Figure 7, p is the point on the 

plane of the imagery (this plane is really part of a cylinder); pi is 

its projection on a plane perpendicular to Z; c is the principal 

distance of the sensor optical system; and xp' yp are the coordinates 

of point pi on the plane perpendicular to z. 

From Figure 7, the following relations are written 

(2.17a) 

(2.l7b) 

and 

(2.17c) 

yl = c tan a, 
p 

c 
xp = cos a tan S = c sec a tan S, 

Z l = - C P • 

These expressions for the coordinates of the pixel position projected on 

a plane is the objective of sensor modelling. 

2.4 Platform Modelling 

In platform modelling, first an expression for the position of the 

satellite in the ground coordinate system is derived. Then, a trans

formation is defined which makes the ground coordinate system parallel 

to the sensor coordinate system. Once these are done, the satellite 

collinearity equation (equation (?.3)) is then readily derived. 

The position of the satellite in terms of the ground coordinate 

system can be defined in at least three ways. The first expresses the 

satellite position in terms of its position ~ector R. This approach 

requires that the satellite orbit, needed for defining the sensor 

attitudei be expressed in terms of t and the ~elocity vector V. The 
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weakness of this approach is that we must express six variables as 

unknown fu~ctions of time, three for the components of ~ and three 

for the components of V, resulting in models with very weak geometry. 

The usual solution for this shortcoming is to assume that ~ and V are 

known a-priori. 

The second approach assumes that the parameters defining the 

satellite orbit are themselves functions of time. In this case, we 

must also express six variables as unknown functions of time. As in 

the first approach, the resulting model geometry is also very weak. One 

common solution for this problem in this case is to assume some of the 

parameters as fixed or known a-priori. 

The third approach assumes that the parameters defining the 

satellite orbit are independent of time. Once the orbit is defined 

using nominal parameters, the nominal position of the satellite in the 

orbit plane, specifically the instantaneous R and the true anomaly, v, 

can be defined using equations (2.4) and (2.5), if the orbit is assumed 

to be elliptical. If the orbit is assumed to be circular, the satellite 

position can be defined using equation (2.6) where,As is made equal to 

the radius of the circular orbit. This approach requires that the 

three components of the small deviation of the actual satellite position 

from the predicted position using nominal orbital parameters be modelled 

as functions of time. Compared to the previous two approaches which 

required that six parameters be expressed as functions of time, the last 

approach results in a much stronger geometry. Therefore, this last 

approach is used in the derivations of the selected model. 

The three components of the deviation of the satellite from its 

nominal position, are defined as follows: ~R is the component parallel 

--. 
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to and in the same direction as the position vector R of the satellite; 

~G is in the plane of the nominal orbit, perpendicular to ~R and 

positive in the direction of satellite motion; and ~p is perpendicular 

to the orbital plane. The set ~Gt ~Pt ~R forms a right handed coordinate 

system. Since these components are small, they can be modelled quite 

well by the following polynomial series: 

(2.l8a) ~G = GO + Gl (t t F) + G2 (t t )2 + 
F 

(2.l8b) ~P = Po + Pl (t t F) + P2 (t tF)2 + 

(2.l8c) ~R = RO + Rl (t - t F) + R2 (t - t )2 + 
F 

where GO' Gl , G2, •••• , PO' Pl ' P2, .•.• , RO' Rl , R2, •.•• are coef

ficients of the corresponding polynomial terms; t is time, tF is the 

time at the center of the frame; and t is zero at the ascending node. 

The ground coordinate system used is the geocentric system where 

the origin is the center of the earth, the X-axis passes through Green

wich meridian at the equator, the Z-axis is parallel to the rotational 

axis of the earth and the V-axis completes the right handed coordinate 

system. This coordinate system rotates with the earth. We define our 

inertial coordinate system to coincide with the ground coordinate system 

when the satellite is at the ascending node, that is, when the satellite 

crosses the plane of the earth's equator while travelling from south to 

north. The only difference between the ground coordinate and the 

inertial coordinate systems is that while the former rotates with the 

earth, the latter maintains a constant angle with the projection of the 

earth-sun line on the earth's equatorial plane. This convention regard

ing the inertial coordinate system results in a plane orbit in this 
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coordinate system for sun-synchronous satellites such as Landsat. In 

Figure 8, X Y Z is the ground coordinate system, and Xi yi Zi is the 

inertial coordinate system. In the same figure: 

A 

p 

s 

i 

w 

R 

t 

is the ascending node; 

is the perigee (the point in the satellite orbit 

nearest the earth); 

is the satellite; 

is the longitude of A with respect to the inertial 

coordinate system; 

is the inclination of the satellite orbit; 

is the argument of the perigee; 

is the true anomaly; 

is the radial distance of the satellite from center; 

is the angular velocity of the earth; 

is the time (t = 0 when the satellite is at the 

ascending node); and 

~G, ~P, ~R are the deviations of the satellite from its nominal 

position. 

To define the satellite position in the ground coordinate system 

we have to perform a series of rotations on the ground coordinate 

system. The first such rotation is around the Z axis which brings the 

ground coordinate system into the inertial coordinate system resulting 

in 

{2.l9} 

Xi 
[ cos 

yi = -sin 

Zi 

(- w t) e . 

(- we t) 

0 

sin (- W t) e 
cos (- we t) 

o ~ [;] 

-, 
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The second rotation is around the Zi-axis to make the Xi-axis coincide 

with the line of apsides (passes through A) which results in 

Xl 
[ cos (Q) sin (Q) 

~] 
xi 

(2.20) V1 
= -Si"O(fl) cos (Q) Vi 

Zl 0 Zi 

Substituting equation (2.19) into equation (2.20) , we get 

Xl 

[:] [ cos 
(Q - we t) sin (Q - W t) 

~] 
e 

(2.21) V1 = M, = -sin (Q - we t) cos (Q - W t) e 
Zl 0 0 

The third rotation is around the Xl-axis by the angle (n/2 + i), see 

Figure 9, or 

X2 xl 

[: 
0 

(n~2 + i] (2.22) V2 = M2 Vl = cos (n/2 + i) sin 

Z2 Zl -sin (n/2 + i) cos (n/2 + i) 

Xl 

x Vl 

Zl 

The x2_ and the Z2- axes lie on the orbit plane while the V2-axis is 

perpendicular to it. The next rotation is around the V2-axis such that 
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the Z2_axis passes through the satellite position that is corrected 

for the radi.al {toR} and orbital (toG) deviations. The resulting 

equations are 

x3 X2 cos (n/2 + w + v + 6G) 0 

(2.23a) y3 = M3 y2 = 0 1 

Z3 Z2 sin (n/2 + w + v + 6G) 0 

-sin (n/2 + w + v + 6G) X2 

0 y2 

cos (n/2 + w + v + 6G) Z2 

This can be seen more clearly in Figure 10 which shows the orbital plane 

only; wand v were defined previously; RG is the magnitude of the 

vector sum of R, toR, and toG. The angle 6G which corrects for the 

deviation of the satellite along the radial (toR) and orbital (toG) 

direction is defined as follows: 

-1 ( toG ) (2.23b) 9G = tan R + toR 

The last rotation needed to define the satellite position in the ground 

coordinate system corrects for the deviation of the satellite position 

perpendicular to the satellite orbit (toPY. In Figure 11, S' is the 

actual satellite position, then 

(2.24a) RG = ;(R + tlR)2 + tlG2 

(2.24b) R' = IfR + tlR)2 + tlG2 + tlp2 

and 

(2.24c) 
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r 
: Rotating around the X3-axis by - 8p brings the X3 y3 Z3 coordinate 

r- system into the XS yS ZS coordinate system. The set of equations 

r-

r 
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resulting from this rotation is 

XS X3 1 0 0 X3 

(2.24d) yS = M4 y3 = 0 cos (- 8p) sin (- 8p) y3 

ZS Z3 0 -sin (- ep) cos (- 8p) Z3 

The XS yS ZS is the satellite coordinate system. The origin of the 

system is still the center of the earth, the ZS-axis passes through 

the actual satellite position, the XS-axis is parallel to the nominal 

satellite orbit and positive in the direction of satellite motion and 

the yS-axis, which is not necessarily perpendicular to the nominal ' 

satellite orbit, completes the right handed system. 

Collecting equations (2.21), (2.22), (2.23a), and (2.24d) together 

we get, 

(2.25) 

Since Ml , M2, M3, and M4 are all orthogonal matrices, Ms is also 

orthogonal. It can be seen in Figure 11 that the vector which defines 

the actual satellite position in the XS yS ZS coordinate system is 

[0 0 R,]t where R' is defined in equation (2.24b). Therefore the 

position of the satellite in the ground coordinate system is 

Xs 

[:] (2.26) Ys = t4 T 
s 

Zs 
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Once the satellite position in terms of the ground coordinate 

system is defined, the next step in platform modelling is to define 

the transformation M, which makes the ground coordinate system parallel 

to the sensor coordinate system. Since the transformation Ms ' which 

brings the ground coordinate system into the satellite coordinate system 

is already defined (see equation 2.25), we only have to derive the 

transformation which brings the satellite coordinate system into the 

sensor coordinate system. This latter transformation consists of a 

series of rotations which correct for the fact that the vertical does 

not pass through the center of the earth and which properly account for 

the attitude of the scanner coordinate system. 

In Figure 12, the relative orientation between the satellite 

coordinate system XS yS ZS and the ground coordinate system X Y Z is 

shown. In the same figure, 

SI is the ground track of the satellite S; 

RI is the distance of the satellite from the center of 

the earth; 

6s is the latitude of the satellite; 

Ns is the radius of the prime vertical; 

eNs is that part of the prime vertical below the equator 

for points in the northern hemisphere and above the 

equator for points in the southern hemisphere; 

eZs = eN x s 
sin 6s is the projection of eNs on the Z-axis; and 

hs is the elevation of the satellite. 
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The prime vertical Ns and the elevation hs form a straight line which 

represents the vertical that passes through the satellite. It can be 

seen that the vertical does not pass through the center of the earth. 

It is necessary to compensate for the non-coincidence of the 

vertical with center of the earth because the vertical is the nominal 

direction of the z-axis of the sensor coordinate system as previously 

defined. This compensation can be done by making the ZS-axis parallel 

to the vertical or equivalently by making the ZS-axis pass through a 

point whose position is defined by the sum of the ~ectors RI and 

[0 0 CZs]t. The vector [0 0 CZs]t is a function of the satellite 

latitude as which in turn is related to the satellite coordinates Xs ' 

Ys ' Zs via equation (2.9). This can be seen more clearly in Figure 13 

which is a simplified version of Figure 12 • 

To define the angular rotations necessary for making the ZS-axis 

parallel to the vertical, we first have to transform the vector 
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[0 0 cZs]t into the satellite coordinate system XS yS Zs. The result 

of the transformation using equation (2.25) is 

(2.27) 

cXs 
s 

cYs = M s s 
cZs 

s 

o 
o 

The elements in equation (2.27) are also shown in Figure 13. 

The first rotation to make the ZS-axis parallel to the vertical 

is around the yS-axis by the angle ex (see Figure 14) which results in 
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x5 XS cos ex 0 -sin ex XS 

(2.28a) y5 = MS yS = 0 1 0 yS 

zS ZS sin ex 0 cos ax ZS 

where 

(2.28b) a = 
X 

tan- l [ oXs J 
R' + ;z~ 

R' is the radius of the satellite defined in equation (2.24b), and 

ox~, oz~ are defined in equation (2.27). 

The second rotation is around the X5-axis by the angle,ey (see 

Figure lS) such that 

(2.29a) 

where 

(2.29b) 

(2.29c) 

x6 X5 

y6 = M6 y5 

Z6 

e = tan- l 
y 

ZS 

+ oZS)2 + 
s 

oYS 
(~) 

1 

= 0 

0 

0 0 X5 

cos (- a ) y sin (- e ) y 
y5 

-sin (- e ) y cos (-e) 
Y 

Z5 

R', OX~, oZ~ are the same as in equation (2.28) and OY~ is defined in 

equation (2~27). 

After making the ZS-axis of the satellite coordinate system XS yS 

ZS parallel to the vertical, we then have to account for the attitude 

of the sensor coordinate system during pixel imaging. This is done 

through a series of sequential rotations to correct for the roll w, the 

pitch ~, and the yaw K, applied in that order. The first rotation is 

that due to the roll w, resulting in 

-, 
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x6 1 0 

(2.30) = Mw y6 = 0 cos w 

Z6 0 -sin w 

The next rotation is to compensate for the pitch ~ such that 

(2.3l) 

x<P 

y<P 

Z<P 

The last rotation which 

set of equations: 

(2.32) [;] = MK 

[

COS <P 

= 0 

sin <P 

o 
1 

o 

accounts for the yaw K, 

X<P 
[ cos K 

sin K 

y<P = -sin K cos K 

Z<P 0 

produces the following 

~l 
X<P 

y<P 

Z<P 

Since each pixel has its own unique attitude, we have to para-

meterize its components w, <p, K in terms of time in a similar manner 

to what was previously done to the components of the deviation of the 

satellite position. We also selected in this case polynomials, 

resulting in: 

(2.33a) 

(2.33b) 

(2.33c) K = KO + Kl 

wheret is time which is zero at the satellite ascending node and tF 

is the time of imaging of the frame center. 
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Combining equations (2.28a), (2.29a), (2.30), (2.3l), and (2.32) 

results in 

X] Xs Xs 

(2.34) yl = r~K Mcp Mw M6 M5 yS - Ma yS 

ZI ZS ZS 

All the matrices involved in equation (2.34) are orthogonal. Sub

stituting equation (2.25) into equation (2.34) gives 

(2.35) []= M M 
a s 

The coordinate system XI yl ZI with origin "at the center of the earth is 

parallel to the sensor coordinate system x y z. The derivation of M and 
" t 

the previous derivation of the satellite position vector [Xs Ys Zs] 

completes platform modelling. 

2.5 Combined Sensor/Platform Model and Applications 

The sensor and the platform models were derived independently of 

each other. A convenient method of relating them is to express at 

least some quantities involved in the platform model as functions of 

position of points in the imagery. Since pixel imaging is done 

sequentially with respect to time, it follows that pixel positions are 

also functions of time. We may then reverse the relationship and 

express time as a function of pixel positions. Furthermore, since some 

of the parameters in the platform model are functions of time, these 

parameters are also functions of pixel position. Thus, we are able to 

relate the platform model to the sensor model. 
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A convenient expression for time in terms of the pixel position 

for the MSS and for the odd scans of the TM is, 

6tc 6ts Ns 
t = tF + 2 (is - 1) --2-- + (c - 1) N1 _ , - :r 6tc 

p 
(2.36a) 

For the even scans of the TM, the corresponding expression is, 

(2.36b) 

Terms in both equations are defined as follows: 

t is the elapsed time which is zero at the satellite ascending 

\ 
c. 

node; 

is the time of imaging of the pixel center (approximate); 

is the scan line number to which a pixel belongs; 

is the uncorrected pixel column number; 

is the nominal number of pixels in one scan; 

is the actual number of pixels in one scan; 

Ns is the number of scans in one frame; 

6tc is the sensor cycling time; and 

6t is the one active scanning interval of the sensor. s 

If the odd scan for TM is the reverse scan (Np - c + 1) should be 

substituted for c in equation (2.36a) and if the even scan is the 

reverse scan (Np - c + 1) should be substituted for c in equation (2:36b). 

The main assumption in equatio~ (2.36) is that all pixels in one column 

for a given scan are sampled simultaneously. 

The combined sensor and platform model is expressed by the 

satellite collinearity equation given in Section 2.1, or 
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xp XG - Xs 

(2.1) yp = AM YG Ys 

zp ZG - Zs 

sensor modelling defined the vector [xp yp Zp]t in terms of the pixel 

image row and column numbers. Platform modelling defined the satellite 

position vector [Xs Ys Zs]t and the orthogonal matrix M in terms of the 

orbit parameters, satellite position deviation parameters, attitude 

parameters, and time. Then equation (2.36) related the sensor and 

platform models by defining time in terms of image pixel position. 

The satellite co11inearity equation can be used for producing 

simulated data useful for studying rectification. For:this application 

equation (2.1) is inverted to the form 

(2.37) = + 

Using equation (2.37), the ground position XG, YG, ZG of a pixel can be 

solved for given the following: the pixel row and column number in the 

image; the satellite orbit parameters n, i, w, As' and ES; the 

parameters defining the satellite position deviation components ~G, ~P, 

~R; the parameters defining the sensor attitude components w, ~, K; 

the parameters defining time (tF, ~t , ~t); the sensor constants Np' . c s 

N:, Ns ' c and the scanning non-linearity correction constants; the 

earth related constants Ae, Ee' we' G, Me; and the elevation hof the 

point. This procedure will, in effect, give us pixels whose ground 

positions are perfectly known. 
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For rectification, the original form of the satellite co11inearity 

equation (equation 2.1) is used. The vector [xp yp Zp]t is first com

puted using the sensor calibration constants and the pixel image row and 

column numbers; this vector is considered as the observation in the 

subsequent adjustment procedure applied. Then the right hand side of 

equation (2.1) is linearized in terms of the parameters defining 

satellite deviation components, the parameters defining time, and the 

ground coordinates. The ground coordinates are considered either as 

constants or as observations. The orbit parameters are estimated using 

a-priori information and assumed constant because effects of errors in 

their a-priori estimates are compensated for by the parameters defining 

the satellite position deviation. Using control points with known image 

and ground position, the unknown parameters are solved for in an adjust

ment procedure. Any a-priori information regarding the unknown para

meters can be incorporated into the adjustment using the proper 

variance-covariance matrices. 

3. ACCURACY STUDIES USING SYNTHETIC DATA 

3.1 Effect of Parameter Perturbations 

Essentially, all rectification methods require that we have know

ledge of the values of the parameters of the model being utilized. 

These parameters can be estimated using ground control points or they 

can be independently observed or both. Once these parameters are known, 

the ground position of pixels can be readily computed. Rectification 

accuracy, therefore, is directly affected by the accuracy of the para-

meter values. 
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One application of equation (2.37), which is the form of the 

satellite col linearity equation suited for simulation, is for computing 

the effect on pixel ground position of perturbations on the nominal 

values of the parameters. The effect on pixel ground positions of 

perturbation applied to a single parameter can be seen in Table I. In 

this table, the tabulated values are the individual perturbations; the 

resulting root mean square displacements in pixel ground position result

ing from each individual perturbation is shown in the heading. It can 

be seen that within the range of values of interest, the resulting dis

placement varies linearly with the applied perturbations for all the 

parameters listed. 

Also listed in Table I are the present accuracies of some indepen

dently observed parameters for the MSS and the TM together with the 

ground displacements (in brackets) produced by their standard deviations. 

• ! 

~ 

! 

It can be seen that for the MSS, inaccuracies in the observed values of ~ 

roll (w) and pitch (~) produced the largest ground displacement followed 

by errors in the satellite position deviation parameter along the orbital 

plane (G) and in the sensor cycling time (~tc). 

Table II shows the ground displacements when all the parameters are 

perturbed simultaneously. A set of perturbations corresponds to a 

column in Table I and is represented in the left column of Table II by 

the ground displacement produced by the individual parameters. Note 

that each perturbation in the set produces identical ground displacements 

when applied individually. The resulting ground displacements due to the 

combined perturbations are tabulated in the right column. 
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3.2 Comparison of Different Mathematical Models 

One factor which affects the accuracy of rectification is the type 

of model used. By its very nature, the geometry of the satellite 

imagery is very weak. Because of this, even the best models presently 

existing do not allow for the recovery of parameters defining the 

satellite position deviation components and the attitude elements at 

the same time. The model we proposed in Section 2 is capable of recover

ing all of these parameters at the same time with one exception; in

stead of the satellite position deviation component along the orbit, we 

recover the time of imaging of the frame center. Both of these para

meters cause the frame to be displaced along the orbit and for small 

deviations, one can satisfactorily take the place of the other. 

We used five models in our test. They are: (1) the full model in 

Section 2 which assumes that the earth is an ellipsoid of revolution and 

that the orbit of the satellite is an ellipse; (2) the same model in 

number (1) except that the orbit of the satellite is assumed a circle 

instead of an ellipse; (3) the same model in number (2) with the 

additional assumption that the earth is a sphere; (4) the model used 

for aircraft scanner data which assumes that the orbit is a straight 

line and requires that the earth be projected on a mapping plane; and 

(5) the polynomial interpolative model. Two cases are run for each model. 

The results for two cases are shown in Table III. Case I assumes 

that there is no error in identifying the control points on both the 

image and on the ground,and that there is no error in the derived or 

measured point position in both the image and the ground. There are 156 

control and 156 check points that are both well distributed. Case R 
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assumes:( that there is_no error in identifying control points on the 

ground; that the standard deviation of the measured ground position of 

control points in each of the axes is 15 m resulting in 26 m standard 

deviation when combined (21 m in plan); that the error in identifying 

points in the image is uniformly distributed from -0.5 to 0.5 pixel 

with the resulting standard deviation of 0.28 pixel in both across and 

along scan direction, and that the 'errors in the derived position of 

points in the image due to sensor instabilities not including identifica

tion errors are .01 and .5 pixel in the across and along scan directions 

respectively. The total error in position of points across and along 

scan are .29 pixel (23 m) and .58 pixel (34 m) respectively; the 

combined error is 41 m. 

Since the data for Case I are perfect, the resulting standard 

-d~viatio~ in both the control and check points can be considered as 

systematic errors caused by inadequate model. Table III shows that only 

the last two models are inadequate in describing the geometry of the 

imagery. Case R, however, shows that if the errors in both the image 

and ground position of points are not appreciably smaller than the 

systematic error introduced by the model, there is really no advantage 

in using more sophisticated ones. 

3.3 Effect of Different Control Densities 

Another factor which affects the accuracy of rectification is the 

number or density of control. This experi~ent simply involves the 

varying of the number of control points in the two cases (I and R) studied. 

The model used in both cases is Model (1) in Section 3.2. The assumptions 

regarding the accuracy of derived or measured position of points on both 
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the image and the ground in Section 3.2 for Case land Case R apply in 

this section as well. 
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The results are shown in Table IV. For Case I where the position 

of points in both the image and the ground are perfect, whenever the 

number of equations (2 per control point) exceeds the number of unknown 

parameters (19 in this case) rectification is almost perfect. Case R 

shows that any increase in the density of control points after a certain 

number is reached (approximately 25 points in this case) results only in 

a marginal increase in rectification accuracy. 

3.4 Effect of Different Control Point Ground Position Accuracy 

The next factor that sign~ficantly affects rectification accuracy 

is the accuracy of the measured ground position of control points. We 

assume that there is no identification error of control points on the 

ground; only measurement errors of ground position. Again, two cases 

are involved, Cases I and R. Both cases ~se Model (1) in Section 3.2 for 

rectification. Case I has 156 control points while Case R has only 25. 

Again, the assumptions for Cases I and R in Section 3.2 regarding the 

position of points in the image apply in this case. 

Table V shows the effect of varying the accuracy of control points 

ground position for both cases. In Case I where image position is 

perfect, roughly 80% of the error in the ground position of control 

points is compensated for by the rectifitation protess. In Case R 

decreasing the standard deviation of control point ground position below 

that of the corresponding standard deviation in the image will not 

increase rectification accuracy. 
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3.5 Effect of Derived Image Position Accuracy 

During the imaging process, the direction of the ray which produced 

the image of a given point is defined in the sensor coordinate system. 

The accuracy with which we can reconstruct thf~ direction in the sensor 

coordinate system depends on the -accuracy of the identification of point 

in the image and the geometric stabil ity of the sensor. 

Table VI shows the effect of image position errors on rectification 

accuracy. Again, two cases are presented. Both cases use Model (1) in 

Section 3.2 as the rectification model. Case I has 156 points and Case 

R has 25 points. The assumptions regarding the accuracy of ground 

position of control points in Section 3.2 apply here as well. 

It can be seen from Table VI that only a very small percentage of 

errors in the. image position is compensated for by the rectification 

process. This is true for both Cases I and R. 

4. CONCLUSIONS AND RECOMMENDATIONS 

1. It is possible to recover all parameters defining satellite position 

deviation and sensor attitude using appropriate models. 

2. Uncertainties in the roll (w) and the pitch (¢) of the sensor 

contribute the greatest errors in system corrected images followed 

by uncertainties ip the satellite position along the orbit and the 

sensor cycling time. 

3. Polynomial models and those that assume that the orbit is a straight 

line and that require the projection"of the earth's surface on a 

mapping plane cannot produce rectification accuracies better than 

half a pixel. 

-

-, 
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I 4. Marginal increase in rectification accuracy results by increasing 

I the number of control points above 25. 

-I 

-, 

5. A large percentage of errors in ground position of control points 

is compensated for by the rectification process. 

6. A very small percentage of error in image position is compensated 

for by the rectification process. 

7. Sub-pixel rectification is possible only if points on the image can 

be identified to sub-pixel accuracies. 

8. Improving the identification accuracy of points on the image is 

worth further investigation since rectification accuracy is highly 

sensitive to this error. 

9. With the sensor/platform model now available, several other registra

tion/rectification problems can be researched. These include: (1) 

investigation of image correspondence; (2) study of different 

control types, such as points, areas, relative control, and use of 

geometric constraints; and (3) analysis of the optimum registra-

tion/rectification sequence. 

10. Other fundamental research areas within the general problem of 

registration/rectification of remote sensing data include: (a) 

accuracy measures; (b) reduction (photogrammetric) of multiple 

spatial coverage with the same and different sensors; and (c) 

efficient means of rectification of sensor data to digital terrain 

models. 
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TABLE 1 EFFECT OF PERTURBATION ON A SINGLE PARAMETER ON GROUND POSITION 

AMOUNT OF INDIVIDUAL PRESENT* 
PARAMETER PERTURBATIONS ACCURACY (10) 

~) PAR' 0.80 8.00 80.0 800.0 MSS . TM 

TIME PARAMETERS 

Tf (m sec) .120 1.20 12.0 120. 120.0 
.(80.0 m) 

fiTc (m sec) .001 .010 .100 1.00 .400 
(320. m) -

fiTs (m sec) .205 2.05 205. 205. .003 
(neg.} 

ORBIT PARAMETERS 

n (deg x 10-3) .00716 .0716 .716 7. 16 

I (deg x 1O-3) .562 5.62 56.2 562. 45.0 45.0 
(64.0 m) (64.0 m) 

W (deg x 1O-3) 3.04 30.4 304. 3040. 

As (m) . 195 1.95 19.5 195 • 

E:s (x 1O-6) 1.65 16.5 165. 1650. 

* PRESENT RMS MEASUREMENT ACCURACY OF EACH PARAMETER AS REPORTED IN 
LITERATURE 

(continued next page) 
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TABLE I EFFECT OF PERTURBATION ON A SINGLE PARAMETER 

ON GROUND POSITION 

(continued) 

+ FOR SATELLITE POSITION PERTURBATION PARAMETERS 

AMOUNT OF INDIVIDUAL PRESENT 
PARAMETER PERTURBATIONS ACCURACY (1a) 

~ PAR 0,80 8.00 80.0 800. 

GO (m) .900 9.00 90.0 900. 500. 
(444. m) 

G1 (m/sec) .100 1.00 10.0 100. 

G2 (m/sec2) .0085 .085 .850 8.50 

Po (m) .900 9.00 90.0 900. 100. 
(89.0 m) 

P1 (m/sec) • 100 1.00 10.0 100 • 

P2 (m/sec2) .0085 .085 .850 8.50 

. RO (m) 12.5 125. 1250. 12500. 35 • 
(2.24 m) 

Rl (m/sec) 1.40 14.0 140. 1400. 

R2 (m/sec2) .115 1 :15 11.5 115. 
-- - - - - - - -- ~------- -

(continued next page) 
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TABLE I EFFECT OF PERTURBATION ON A SINGLE PARAMETER 
ON GROUND POSITION ./ 

(continued) 

+ FOR SENSOR ATTITUDE PARAMETERS 

AMOUNT OF INDIVIDUAL 
PARAMETER PERTURBATION 

~ PAR 0.80 8.00 80.0 

Ub (deg x lO- J
) .0504 .504 5.04 

wl (deg/sec x 10-3) .00555 .055 .555 

~ (deg/sec2 x 10-6) • 458 4.58 45.8 

U3 (deg/se~3 x 10-6) .0355 .355 3.55 

¢O (deg x 10-3) .0504 .504 5.04 

¢1 (deg/sec x 10-3) .00561 .0561 ".561 

¢2 (deg/sec2 x 10-6) .458 4.58 45.8 

¢3 (deg/sec3 x 10-6 .0355 .355 3.55 

KO (deg x 10-3) .802 8.02 80.2 
-3 K1 (deg/sec x 10 ) .0859 .859 8.59 

K2 (deg/sec2 x 10-6) 7. 16 71.6 716. 

K3 (deg/sec3 x 10-6) .561 5.61 56.1 

800. 

50.4 

5.55 

458 • 

35.5 

50.4 

5.61 

458. 

35.5 

802. 

85.9 

7160. 

561. 
. __ ._---

PRESENT 
ACCURACY (lcr) 

MSS TM 
100. " TU.O 

(1590. m) (l59. m) 
10.0 .001 

(1440. m) " (,144 m) 

TOO. 10.0 
(l590. m) (159. m) 

" 10.0 .001 
(1430. m) (.143 m) 

100. 10.0 
(100. m) (10.0 m) 

TO.O .001 
(93. m) (.009 m) 

--------- -
~ 
t.TI 
~ 
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TABLE II EFFECT OF COMBINED PERTURBATIONS 

IN ALL PARAMETERS ON GROUND POSITION 

RMS POSITION CHANGE RMS POSITION CHANGE 
DUE TO INDIVIDUAL DUE TO COMBINED 
PERTURBATION (m) PERTURBATIONS (m) 

0.80 5.28 

8.00 52.9 

80.0 536. 

800. 6,370. 

...... 

...... 

-.. 
! 
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TABLE III COMPARISON OF DIFFERENT MATHEMATICAL MODELS 

CASES 

MODEL/CASES I (RMS M) R (RMS M) 

CONTROL CHECK CONTROL CHECK 
POINT POINT 

(1) <1 <1 
(2) <1 <1 
(3) 2 2 
(4) 36 31 
(5) 38 38 

Case I: 156 Control Points 
156 Check Points 

'!control = 0 

'!pixel = 0 

Case R: 25 Control Points 
156 Check Points 

'!contro 1 : a = a = a = .x .y .Z 

'!plan = 21 m 

'!total = 26 m 

'!pixel: a = .x .29 pixel 

a = y .58 pixel 

(\ota1 = 41 m 

POINT POINT 

36 50 
38 48 
38 48 
45 43 
60 57 

15 m 

(23 m) 

(34 m) 
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TABLE IV EFFECT OF DIFFERENT CONTROL DENSITIES 

CA~t. I ll{M~ M) CASE R (RMS M) 
Number of Control Points/Cases CONTROL CHECK CONTROL 

POINT POINT POINT 

156 <1 <1 40 
25 <1 <1 36 
16 <1 <1 26 
12 <1 <1 24 
9 <1 74 24 
4 461 302 26 

Case I: Model: Ellipsoidal Earth, Elliptical Orbit 

a . 0 
-control' 
a . 0 -
-pixel' 

156 Check Points 

Case R: Model: Ellipsoidal Earth, Elliptical Orbit 

a . a = a = a = 15 m control' x y. z 

atotal = 26 m 

a pixe1 -: ax = .29 pixel (23 m) 

ay = .58 pixel (34 m) 

atota1 = 41 m 

. 156 Check Points 

CHECK 
POINT 

40 
50 
72 

64 
81 
283 

- ! 
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TABLE V EFFECT OF DIFFERENT CONTROL POINT 

GROUND POSITION ACCURACY 

CASES 
CONTROL ACCURACY 

I (RMS M) R (RMS M) 

cr = cr = cr (m) crtotal (m) CONTROL CHECK CONTROL 
x Y z POINT POINT POINT 

0 0 <1 <1 

5 9 2 1 

15 26 5 4 
25 43 8 7 

50 87 15 13 
75 130 22 19 
100 173 30 26 
150 260 45 39 
200 346 60 51 

Case I: Model: Ellipsoidal Earth, Elliptical Orbit 
156 Control Points 
156 Check Points 

crpixel: 0 

Case R: Model: Ellipsoidal Earth, Elliptical Orbit 
25 Control Points 

156 Check Points 

?pixel: ?x = .29 pixel (23 m) 

cry = .58 pixel (34 m) 

atotal = 41 m 

34 
35 
36 
41 
58 
83 
107 
154 
199 

CHECK 
POINT 

47 
48 
50 
52 
62 
80 
98 
135 
172 
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TABLE VI EFFECT OF DERIVED IMAGE POSITION ACCURACY 

Image Position Accuracy CASES 
. (PIXEL) 

I (RMS M) R (RMS M) 

d'~w . d'~t.. 
CONTROL CHECK CONTROL 

. - -POINT POINT POINT 

0 0 <1 <1 15 
.29 (23 m) .31 (18 m) 30 31 30 
.29 (23 m) .58 (34 m) 40 40 36 
.29 (23 m) .76 (44 m) 48 48 41 
.30 (24 m) 1.04 (60 m) 60 61 47 
.31 (25 m) 1.53 (89 m) 84 85 64 
.33 (26 m) 2.02 (117 m) 109 109 79 
.35 (28 m) 5.01 (291 m) 261 262 179 

Case I: Model: Ellipsoidal Earth, Elliptical Orbit 

156 Control Points 

156 Check Points 

a • 0 ·contro1· 

Case R: Model: Ellipsoidal Earth, Elliptical Orbit 

25 Control Points 

156 Check Points 

a . a = a = a = 15 m control· -x .y .z 

atota1 = 26 m 

CHECK 
POINT 

11 
43 
50 
56 
70 
96 
122 
289 
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ABSTRACT 

This investigation focuses on the geometric accuracy of the scene

to-map registration process for P-format Landsat MSS data for scenes 

from Kansas and Louisiana/Mississippi. Large scale row and column 

bias values and row and column standard deviation values were measured 

for the P-format data sets indicating a poor georegistration accuracy 

for these geometri ca lly corrected Landsat MSS scenes. Experimental 

work is underway with A-format Landsat MSS scenes from the same loca

tions to examine the influence of the number of ground control points 

and the spatial distribution of ground control points on geometric 

registration accuracy. An early conclusion from this work is that the 

root mean square approach for assessing how well the ground control 

points fit the mapping equations measures a different aspect of geo

registration accuracy than does the approach of evaluating the bias 

(offset) and standard deviation using independently chosen ground 

reference points. 
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INTRODUCTION 

The scene-to-map regi strati on process is a cruci a 1 step in the 

preprocessing of Landsat Multispectral Scanner (MSS) and Thematic 

Mapper (TM) data. Georeferenced Landsat MSS products approach the 

national map accuracy standards for the 1:250,000 scale (USGS, 1979a). 

This has resulted in the utilization of the Landsat data to develop 

map products, to serve as a component of a multisource data base, and 

~- in change detection of land cover categories through a comparison of 

post-classification products developed at two different pOints in 

time. The registration and rectification of Landsat data is accom

pani ed by geometri c offsets resul ti ng from the remappi ng techni ques 

emp 1 oyed and radi ometri c di storti ons resul ti ng from the resamp 1 i ng 

functi ons used. Thi s study focuses on the factors i nfl uenci ng 

geometric fidelity. The factors to be examined include the spatial 

r- distribution of the ground control points utilized and the number of 

ground control points employed. The influence of resampling functions 

-, 

on geometric errors should be less than half a pixel and would only 

become an important factor for georeferenci ng Landsat products at a 

sub-pixel level of accuracy. 

Landsat computer compatible tapes (CCT) are available in the 

A-format which has been radiometrically corrected and in the P-format 

whi ch includes radi ometri c and geometri c correcti ons. The A-format 

Landsat MSS data is processed through the Master Data Processor (MOP) 

at Goddard Space Flight Center to remove the gap problem inherent in 

MSS data, without resampling the data. The P-format Landsat MSS data 

comes in a geometrically converted form which in the standard product 
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employs a Hotine Oblique Mercator (HOM) projection as a map base and 

cubic convolution resampling. The users of Landsat data for 

geographi c i nformati on systems face the problem that the base map 

projection for their work most often utilizes the Universal Transverse 

Mercator (UTM) system, while the base for A- and P-format MSS data is 

the HOM system and for the Landsat 4 TM data is the Space Obl i que 

Mercator (SOM) system. The EROS Data Center Digital Image Processing 

System (EDIPS) in Sioux Falls, South Dakota has developed software to 

convert from one of the above map projection systems to another. The 

UTM system imparts a scale distortion of 1 part in 1,000 (1:1,000) 

compared to the 1 :10,000 distortion associated with the SOM and HOM 

projections (USGS, 1980, a, b, and c.). 

The number of ground control pOints (GCPs) used to geometrically 

correct P-format Landsat MSS tapes is listed in the CCT header record 

as the qual ity assessment number. The qual ity assessment number is 

the truncated integer of the expression (N + 7)/8, where N is the 

number of control points used. If no GCPs were utilized, then the 

P-format CCT is referred to as system corrected. Currently, all of 

the Landsat 4 TM tapes are system corrected to produce P-format 

products. For Landsat MSS products that have been system corrected, 

the georegi strati on accuracy wi 11 be withi n 60 pixel s 99 percent of 

the time. When 25 to 50 GCPs are used in a Landsat scene, the 

georegistration accuracy will be within 1 pixel more than 99 percent 

of the time. The georegistration accuracy is 10 pixels for 8 to 24 

GCPs and 20 pixels for 1 to 7 GCPs (Nelson and Grebowsky, 1982). A 

recent study by Graham and Luebbe (1981) showed that the qual ity 
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assessment number is not necessarily a good indicator of registration 

accuracy. 

Investigations of scene-to-map registration accuracy can be 

divided into theoretical and empirical studies. Some examples of each 

type of investigation will be discussed in the following sections, 

beginning with the theoretical approach. Sawada et ale (1981) 

developed an analytical model utilizing satellite orbit/attitude 

~ information from the Scene Image Annotation Tape (SlAT) plus data on 

characteristics of the MSS scanning mechanism to correct geometrical 

r 
r 

distortions to within one pixel accuracy utilizing 3 GCPs to estimate 

nonlinear scan mirror corrections and 20 GCPs for error estimation. A 

second approach is to fit MSS images to ground control by means of 

different mathematical models and to analyze the residuals for each 

mathematical model as a means of determining which model will produce 

the greatest geometri c accuracy gi ven a speci fi ed confi gurati on of 

GCPs (Wong, 1975; Steiner and Kirby, 1977; Dowman and Mohamed, 1981). 

Wong (1975) achieved the best results with a 20 term polynomial 

employing 25 to 30 ground control points with a reported limiting 

geometric accuracy of +55 meters. Dowman and Mohamed (1981) achieved 

a root mean square (rms) error of 83 meters using no GCPs, while the 

rms error was approximately 60 meters when 20 GCPs were used. 

The empi ri cal approach to the scene-to-map regi strati on accuracy 

assessment i nvol ves sel ecti ng a second set of independently chosen 

ground reference points (GRPs) and comparing their location on the map 

wi th that in the georeferenced Landsat MSS product. A system 

corrected P-format product accuracy assessment reported standard error 
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in both directions of 160 meters which was reduced to 50 meters after 

the application of a linear least-square analysis correction procedure 

(USGS, 1979a). A second study of P-format data which employed GCPs 

from a 1 :24,000 scale topographic map reported rms errors of 218 

meters in the east-west di recti on and 880 meters ina north-south 

direction (Colwell et al., 1980). The first 12 lines of Table 1 

presents the results of a recent investigation that examined 12 

different Landsat MSS scenes in the P-format and compared the location 

accuracy of the tick marks in the Landsat scene by using independently 

chosen GRPs (Graham and Luebbe, 1981). The row offset (bias) over 12 

Landsat scenes varied from -414.8 to 15.8, while the column offset 

(bias) varied from -0.8 to 9.5. In this case the results are given in 

multiples of the size of one georegistered pixel (57 meters). All of 

these studi es suggest a need for a systemati c i nvesti gati on of the 

problems with P-format MSS data that causes distortions in the 

scene-to-map registration process. 

METHODS 

The Landsat MSS frames to be used in this study were acquired over 

southeastern Louisiana and coastal Mississippi (path: 23; row: 39 of 

the the worldwide reference system) and over eastern Kansas and 

western Missouri (path: 29; row: 33). The Kansas data was collected 

on 11/9/81 and had a quality assessment number of 2, while the 

Louisiana data was gathered on 11/21/81 and had a quality assessment 

number of 3. Both Landsat MSS scenes had 10 percent cloud cover. The 

Louisiana Landsat scene includes open water (Lake Pontchartrain) areas 

and wetlands adjacent to the metropolitan New Orleans area in which it 

-. 
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is di ffi cul t to choose GCPs and GRPs. The Kansas Landsat scene was 

more amendable to choosing evenly spaced GCPs and GRPs. 

i The points to be utilized for GCPs and GRPs were chosen on 

1:24,000 scale, 7.5 minute quadrangle sheets produced by the U.S. 

Geological Survey (USGS). Where possible, three ground control or 

reference points were located on each 7.5 minute quadrangle sheet and 

the same points were identified on the Landsat scene of A-format MSS 

-- tapes. The ground poi nts map coordi nates were recorded in the UTM 

system as northings and eastings, while the Landsat coordinates were 

recorded as rows and elements. For the Louisiana P-format Landsat MSS 

scene 192 ground points were chosen, while 359 ground points were used 

for the A-format data. For the Kansas P-format Landsat MSS scene 145 

i 
l _ 

r 
I 

ground points were chosen and 356 ground points were picked for the 

A-format CCT. More pOints were utilized for the A-format data, since 

the poi nts had to be used for GCPs to carry out the georegi strati on 

procedure and GRPs to independently check the accuracy of the 

georegi strati on procedure. The types of features used as ground 

points included manmade (road intersections) and natural (river 

intersections) categories. Steiner and Kirby (1977) discuss the 

accuracy with which ground points can be chosen both on maps and in 

Landsat scenes. Since there is excellent registration between bands 

in the MSS (Colvocoresses and McEwen, 1973), it is not necessary to 

make corrections in ground point locations on the Landsat scene when 

different MSS bands have been utilized in detecting the ground 

features. 

The approach used to measure the accuracy of the GCPs as a set was 
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to compare them to a linear polynomial model of the form: 

(1) SL = A1 + A2 E + A3 N + e 

(2) CE = B~ + B2 E + B3N + e 

where "SL" represents the scan line coordinate, "CE" represent the 

corrected elements, "E" represents the UTM easting, "N" represents the 

UTM northing, "A1" to "A " and "B " to "B " are constants, and lie" 3·-,1 3 

represents the residual error. The root mean square (rms) determina-

tion quantifies how far the measured GCP coordinates differ from the 

GCP coordinates computed from the linear polynomial model. That is: 

(3) RMS = .J:E [SL measured (A1 + A2 E + A3N)] 2/dF 

(4) RMS = .J E[CE measured (B1 + B2 E + B3N)] 2/dF 

where the terms are defined as before and dF equal the degrees of 

freedom. 

When the residual error was large for a given GCP, this suggested 

the possibility that the ground point coordinates may have been 

misread from either the map or the Landsat image. A check was made of 

the coordi nates and correcti ons were made where necessary. If the 

point coordinates appeared to be accurate and the point had a large 

residual error, the point was kept. The rms value is a measure of how 

well the set of GCPs employed fit the mapping equations (linear 

polynomial model). 

To evaluate the georegistration accuracy of P-format Landsat MSS 

data, an independently chosen set of ground reference points (GRP) was 

sel ected. The procedure of Graham and Luebbe (1981) was used to 

quantify the georegistration accuracy in terms of RBIAS (row offset), 

CBIAS (column offset), RSD (row standard deviation) and CSD (column 
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standard deviations). High georegistration accuracy would be 

characterized by sub-pixel bias and standard deviation values. The 

equations for computing bias and standard deviation are: 

NP 

(5) 
~ (ROWl i - ROW2i ) 

RBIAS = i = 1 
~~------~Nrnp~-----

(6) RSD = 

NP 
~ 
i =1 

(ROWl i - ROW2i - RBIAS)2 

NP - 1 

where NP is the number of GRPs chosen, ROWl is the Landsat row deter

mined using the EROS software, and ROW2 is the Landsat row read from 

the Landsat imagery. For the A-format Landsat MSS tapes, ROW1 is the 

I , Landsat row determined using the mapping equations which are computed 

--j 

,--

from the GCPs. The ELAS module TRAN which contain's the EROS sub-

routi ne PIXGEO converts UTM coordi nates to Landsat row and col umn 

(elements) coordinates. The error introduced by the module TRAN is 

less then ~ 1/2 Landsat pixel (Graham and Luebbe, 1981). The opera

ti on of the modul e TRAN was checked by comparing the apparent and 

actual location of the tick marks on the P-format Landsat MSS tape. 

One of the objectives of this study is to determine how the 

spatial distribution of GCPs influences the resulting accuracy of the 

georegistration process. To characterize the spatial distribution of 

poi nts, the approach of measuri ng the di stance from a poi nt to its 

nearest neighbor, irrespective of direction was employed (Clark and 

Evans, 1954). The module CSPA was developed to compute the parameter 

"R" which compares the mean observed nearest neighbor distance to the 

mean nearest nei ghbor di stance if the popul ati on was di stributed at 
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random. The nR n val ues can range from 0 (maximum aggregati on or 

clumping of points) to 2.15 (maximum spacing or a regular distribution 

of points). In this analysis nR n values between 0.7 and 1.3 were 

tal<en to indicate a random distribution of points, values below 0.7 

indicated a clustered distribution and a value above 1.3 indicated a 

regular distribution of points. Figure 1 shows the spatial 

distribution of GCPs. 

RESULTS AND DISCUSSION 

The georegi strati on accuracy assessment of the P-format Landsat 

MSS tapes is given on the last two lines in Table 1. Both the Kansas 

and the Louisiana/ Mississippi P-format MSS data show high RBIAS and 

RSD values and fairly high CBIAS and CSD values. The other values in 

Table 1 are the results of Graham and Luebbe (1981) using the same 

accuracy assessment methodology. Data sets 5 and 6 of Graham and 

Luebbe (1981) which had high RBIAS values, attributed the error to 

inaccuracies in the ticl< marl< registration information on the CCT. 

The fact that for the 1981 data for Kansas and Louisiana/Mississippi 

had both high BIAS and SO values, suggests that some other factor is 

responsible for the very poor georegistration accuracy. A visual 

examination of the Kansas P-format data for 1981 revealed that the 

section boundaries which should have been squared on the Landsat image 

were instead rectangul ar and that roads that ran north-south on the 

map run northwest-southeast on the Landsat image. Thi s i nformati on 

suggests that the 1981 P-format data for Kansas and 

Louisiana/Mississippi is distorted in other ways besides a simple 

north-south translation. 

---
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The P-format ground points for the 1981 data for Kansas and 

Louisiana/Mississippi were divided into 8 to 32 randomly chosen GCPs 

with the rest of the ground points used as GRPs. The GCPs were run 

through the ELAS georegistration module BMGC and the BIAS and SO were 

computed as explained in equations (5) and (6). The results of this 

analysis is given in Table 2 where it can be seen that the ELAS 

georegistration procedures (Graham et al., 1980) operated on P-format 

data gave sub-pixel geometric accuracy. Since this procedure involves 

resampling the data twice, it presumably introduces radiometric 

distortions into the data. The RBIAS results for Louisiana and the 

CBIAS resul ts for Kansas suggest a trend of decreasing BIAS val ues 

through the use of i ncreas i ng numbers of GCPs. No fi rm conc 1 us ions 

,-. can be drawn in this regard, since the study was done without any 
1 

replicates. Table 3 presents a similar type of study using A-format 

MSS data without any repl icates. For a given number of GCPs the 

A-format data appears to have lower BIAS and SO values than does the 

P-format data. The important conclusion is that both the A-format and 

P-format data provi de sub-pi xel georegi strati on accuracy when as few 

as 8 GCPs are used on a whole Landsat scene. This study chose GCPs in 

groups of eight, so that when 16 GCPs were used in one run and 24 GCPs 

were utilized in the next run, the two sets of data shared 16, 

randomly chosen GCPs in common. This procedure was followed to reduce 

the variation in the different data sets. 

The next phase of the study was to examine the influence of the 

spatial distribution of GCPs on the accuracy with which it is possible 

to georegister A-format MSS data utilizing the ELAS scene-to-map 
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registration software (Graham et ale, 1980). The results of the 

initial phase of this investigation is presented in Table 4. This 

analysis involved 20% of a Landsat scene which utilized 8 GCPs to 

develop the mapping equations and the rest of the ground points to act 

as GRPs in order to quantify the georegi strati on accuracy. None of 

the numbers in Table 4 are statistically different at the P = 0.10 

level of significance for the 5 replicates measured for the Kansas and 

Louisiana data. The general trend is for the BIAS values for rows and 

columns to increase in magnitude as one goes from a random to a 

regular to a clustered distribution. There is no clear general trend 

apparent for SO results. The CSPA module with its numerical criteria 

was used as described in the methods to distinguish whether the 

distribution of 8 GCPs followed a random, regular or clustered 

pattern. 

The next phase of the study utilizing 20% of a Landsat scene 

examined the question of the relative importance of the number of GCPs 

versus the spati a 1 di stri buti on of the GCPs. Si nce the number of 

ground points in 20% of a Landsat scene varied from 28 to 40, it was 

decided to combine the Kansas and Louisiana data sets for this 

analysis. The results are presented in Table 5. The general trend is 

for the clustered distribution of points to have greater geometric 

inaccuracy (both BIAS and SO) than the random distribution of points, 

both for the case of 8 (statistically significant CBIAS results) and 

16 GCPs. In going from 8 GCPs with a random distribution to 16 GCPs, 

the random distribution exhibits greater georegistration accuracy for 

both BIAS and SO than does the clustered spatial distribution of 

-. 
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points. This is another area in need of additional work, but the 

preliminary analysis suggests that georegistration accuracy is more. 

sensitive to the number of GCPs used than it is to the spatial 

distribution of GCPs. 

A final question of interest is the relationship between the RMS 

method of assessing georegistration accuracy and the method of Graham 

and Luebbe (19Bl) that uses an independent set of GRPs to compute BIAS 

,- and SO values. Table 6 presents a correlation analysis to answer this 

question. The "N" is the number of observations, the "M" is the slope 

and the "b" is the intercept of the regression equation, and "r" 

. -

r 

,-

-! 

represents the correlation coefficient which varies between 1 and -1 • 

The fact that the correlations are not statistically different at the 

5 percent level of significance suggests that the RMS value and BIAS 

and SO measurements are quantifyi ng different concepts. One woul d 

expect this result from theory, but many Landsat practitioners falsely 

utilize the RMS value as a measurement of how accurate the scene-to

map registration process is. The georegistration accuracy needs to be 

measured independently and the procedure of Graham and Luebbe (19Bl) 

is one approach. 
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Figure 1. MAJOR CATEGORIES OF GROUND CONTROL POINT DISTRIBUTION 
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Table 1. P-Format Georegistration Accuracy Assessment. 

LANDSAT ASSESSMENT DATE GEN 
DATA SET MISSION NO NUMBER BY MOP 

1 2 5 7/23/79 

2 2 4 7/29/79 

3 2 1 8/30/79 

4 3 2 4/23/80' 

5 2 1 5/18/80 

6 (KS) 2 0 5/18/80 

7 2 3 5/12/79 

8 3 2 6/04/79 

9 3 2 9/15/80 

10 3 3 2/15/80 

11 2 2 8/05/79 

12 2 4 5/28/80 

LA/MS 2 3 11/21/81 

KS 2 2 11 /09/81 

: ~' ) ,I "-, '1 ;' "1 :, ", 'J 

RBIAS RSD 

0.5 1.1 

0.9 2.4 

0.2 1.3 

15.8 3.9 

-414.8 5.3 

-407.4 4.2 

0.7 1.1 

1.3 1.1 

0.3 1.1 

-3.6 1.7 

2. 1 1.5 

10.5 2.3 

-219.4 220.8 

251.8 226.7 

1 • ") 

CBIAS 

-0.3 

0.1 

-0.2 

0.6 

9.2 

9.5 

1.4 

... 0.8 

-0.8 

3.2 

0.2 

9.0 

-95.6 

100.3 

:, '.' "1 ! '''1 - '\ 

CSD 

1.3 

1.1 

1.0 

1.7 

0.9 

1.0 

1.0 

1.2 

1.2 

1.6 

2.5 

1.3 

48.8 

40.9 

~---_. __ " ______ . __ ··c_·· ... _" .. 

1 ~ .. '1 

CJ1 
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Table 2. P-Format Study of Whole Landsat Scene 

GCPs 
Location - Used 

La. - 8 

La. - 16 

La. - 24 

La. - 32 

KS - 8 

KS - 16 

KS - 24 

KS - 32 

RMS 

90 

83 

86 

97 

66 

92 

101 

96 

J ,', J , .. J .1 .. I ,J . J 

RBIAS 

-0.57 

-0.36 

-0.26 

-0.09 

0.10 

0.04 

0.11 

0.09 

. J 

RSD 

0.06 

0.06 

0.06 

0.07 

0.06 

0.06 

0.07 

0.07 

CBIAS 

0.49 

0.63 

0.60 

0.44 

-0.79 

-0.33 
\ 

-0. 18 

-0.15 

1 .-.J "'.1 

CSD 

0.11 

0.11 

o. 11 

0.11 

o. 12 

0.13 

0.13 

O. 14 

GRP 

184 

176 

168 

160 

145 

137 

129 

121 

".I :.'l __ ,J .',.1 "J . - ,) 
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Table 3. A-Format Study of Whole'Landsat Scene 

GCPs 
Location - Used 

La. - 8 

La. - 16 

La. - 24 

La. - 32 

KS - 8 

KS - 16 

KS - 24 

KS - 32 

RMS 

65 

73 

76 

71 

45 

41 

46 

51 

RBIAS 

-0.13 

0.06 

0.21 

0.17 

-0.02 

0.01 

0.06 

0.03 

RSD 

0.06 

0.05 

0.05 

0.06 

0.05 

0.05 

0.05 

0.,05 

CBIAS 

0.01 

-0.09 

-0.16 

-0. 14 

-0.20 

-0.09 

-0.10 

'-0.07 

CSD 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

GRP 

351 

343 

335 

327 

348 

340 

332 

324 
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Table 4. Influence of Spatial Distribution of Ground Control Points on Georegistration 
Accuracy 

Location 
and 
Type 

KS - Random 

KS - Regular 

KS - Clustered 

LA - Random 

LA - Regular 

LA - Clustered 

lmeters 

2pixels 

RMSl RBIAS2 

37.8 0.29 

49.6 0.32 

46.4 0.88 

48.0 0.15 

38.6 0.64 

46.8 0.80 

RSD2 CBIAS2 CSD2 

0.43 0.35 0.29 

0.39 0.36 0.25 

0.49 0.49 0.49 

0.24 0.29 0.20 

0.27 0.75 0.36 

0.34 0.83 0.30 

NOTE: Based on 20% of a Landsat Scene of A-Format data, 8 GCPs, and 5 Replicates; none of 
the above numbers are statistically different at the 10% level of significance. 
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Table 5. Influence of the Spatial Distribution and Number of Ground Control Points on 
Georegistration Accuracy 

Number 
and 
TlE,e 

8 - Random 

8 - Cl ustered 

16 - Random 

16 - Clustered 

lmeters 

2. 1 plxe s 

RMSl RBIAS2 RSD2 

52.6 0.39 0.24 

44.7 0.85 0.41 

55.0 0.28 0.27 

49.0 0.38 0.32 

* Statistically different at 10% level of significance 

CBIAS2 CSD2 

0.17* 0.27 

0.78* 0.42 

0.20 0.25 

0.39 0.37 

NOTE: Based on 20% of a Landsat Scene of A-Format Data and 7 Replicates (Louisiana and 
Kansas). 
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Table 6. Correlation Analysis: RMS vs. Absolute Value of BIAS and SO 

Statistical 
Parameter N M b r - Significance 

RBIAS 19 0.0047 0.0572 0.434 N.S. 

RSO 19 -0.0020 0.3695 -0.288 N.S. 

CBIAS 19 0.0041 -0.0968 0.406 N.S. 

CSO 19 -0.0016 0.3231 -0.224 N.S. 

NOTE: Based on a random distribution of points and 8 GCPs. 
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RELATING SPATIAL PATTERNS IN IMAGE DATA 
TO SCENE CHARACTERISTICS 

Alan H. Strahler 
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ABSTRACT 

In remote sensing, the primary goal is accurate scene inference, 
in which characteristics of the scene are inferred from the image data. 
More effective inference of scene characteristics can be accomplished 
through the use of techniques that use explicit models of spatial 
pattern. Spatial patterns in image data are functionally related to 
the size and spacing of elements in the scene and to the spatial 
resolution of the image data. At resolutions where variance is high, 
scene inference techniques should rely heavily on data from the spatial 
domain. As variance decreases, effective scene inference will increas
ingly rely on spectral data. 
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INTRODUCTION 

Central to the field of remote sensing is the problem of scene 

inference, in which the characteristics of the scene are inferred from 

the image data. Past attempts at scene inference have been dominated 

by spectral pattern recognition. However, remotely sensed measurements 

are typically arrayed in a systematic fashion corresponding to the 

areas on the ground from which the measurements were made. Thus, 

spatial data are also available for use in scene inference. 

This paper presents the results of the analysis of spatial patterns 

in image data by two methods for three environments. The results 

enhance our understanding of the relationship between spatial pattern 

in image data and the characteristics of the ground scene. However, 

these results should be viewed as intermediate in nature, because they 

are only one step in the larger process of developing improved methods 

of using spatial data in scene inference. To understand the role 

spatial data plays in scene inference, a conceptual model of the remote 

problem is necessary. 

This paper serves as the final report for the first year of NASA 

Contract 9-16664, Subcontract L200080, which is part of the NASA 

Fundamental Research f1"ogram on Mathematical Pattern Recognition and 

Image Analysis. In addition', this paper was presented at the 17th 

International Symposium on Remote Sensing of the Environment in Ann 

Arbor, Michigan in May 1983. 
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A Remote Sensing Model 

A remote sensor can be defined as a device which measures the 

intensity of electromagnetic radiation. Associated with a sensor is a 

resolution cell (or pixel), defined as the size and shape of the areas 

in the field of view over which the electromagnetic signal strength 

is integrated. The response time of the sensor is the time over which 

the received signal is integrated. Also associated with a sensor is a 

response function describing the integration over wavelengths in the 

electromagnetic spectrum, and a point spread function defining the 

integration over the field of view of the sensor. A measurement is the 

output of a sensor response to the above integrations. A scene is 

defined as the spatial and temporal distribution of matter and energy 

fluxes from which the sensor can draw measurements. An image is a 

collection of measurements from a sensor that are arrayed in a systematic 

fashion. In the context of this paper, spatial patterns refer to the 

spatial arrangement of measurements in an image. 

The measurements produced by a sensor can be seen as a function of 

the spatial and temporal distribution of energy and matter in the scene, 

the characteristics of the sensor, and the scattering and absorption 

that occurs in the atmosphere between the scene and the sensor. A remote 

sensing model, then, consists of three components: a scene model that 

specifies the form and nature of the energy and matter within the scene 

and their spatial and temporal order; an atmospheric model that describes 

-., 
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the interaction between the atmosphere and the energy emitted by the 

r- scene; and a sensor model that describes the behavior of the sensor 

r 

-
.-

in responding to the energy fluxes incident upon it and in producing 

the measurements that constitute the image. 

In general, the remote sensing problem can be presented as inferring 

the order in the properties and distributions of matter and energy in 

the scene from the set of measurements comprising the image. Whether 

explicit or not, scene inference always inplies the application of a 

remote sensing model. in that assumptions must always be made concerning 

the ground scene, atmosphere, and sensor. The problem of scene inference, 

then, becomes a problem of model inversion in which the order in the scene 

is reconstructed from the image and remote sensing model. 

__ The characterization of spatial patterns in image data is intended 

i.- to provide an improved understanding of scene models. However, an 

,
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important implication of this work concerns the relation between the 

size of the elements in the scene and the size of the resolution cells 

in the image. This fundamental property of the sensor system has important 

implications in the characterization of spatial pattern in image data and 

the inversion of the remote sensing model for scene inference. 

Scene Components 

In specifying scene models, it is necessary to define the entities 

or objects in the scene that are to be considered. These entities are 

actually an abstraction of a class of real objects in the scene, and 
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and they will be referred to as el ements. In thi s context, el ements 

are regarded as having uniform properties or parameters. These 

properties may be fundamental and invariant, or they may be stochastic 

in nature -- i.e., characterized by distributions. The elements in a 

scene can vary widely according to the interests of the interpreter. 

Several examples of scene elements are; leaf, branch, plant, crop row, 

tree, field, stand; lawn, house, car, street, garden, housing development; 

airplane, building, runway, truck, airport. In addition to these elements, 

which are essentially discrete entities, a particular type of element, 

the background, should-be recognized. The background is usually assumed 

to be spatially continuous with uniform properties and parameters and is 

typically obscured partially by other elements in the scene. Soil, rock, 

snow, and vegetative understory are examples of background elements. 

For the purpose of this paper, geographic distributions refer to the 

spatial arrangements of elements in a scene. 

Current Use of Spatial Scene Models in Scene Inference 

In all attempts at scene inference, assumptions must be made about 

the scene, sensor, and atmospheric models. For scene models, these 

assumptions can be either defaulted to nonspatial forms, or include 

implicit or explicit models of the geographic distribution of elements 

in the scene. Most remote sensing models default to nonspatial forms 

in which individual measurements are processed independently of their 

location in the image and the characteristics of their neighbors. 

........ , 
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Conventional supervised and unsupervised techniques both default to 

;- such nonspatial forms. Another group of remote sensing models with 
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nonspatial scene models are the proportion estimation, or mixture 

models. Most of these models estimate the mixture of elements within 

individual pixels {ll, 5, l}, but the CLASSY algorithm {lO}, estimates 

proportions of unknown elements for the entire image. 

Some remote sensing models, such as BLOB {7}, ECHO {8}, and AMOEBA 

{2}, implicitly assume isotropic high spatial autocorrelation in the 

scene model. In these approaches, empirically derived constraints 

are used to enhance the likelihood that adjacent pixels are classified 

the same. These approaches are most effective in agricultural areas, 

r-, where the assumption of high spatial autocorrelation is valid. However, 

to date there has been no attempt to determine the validity of this 

r· 

simple spatial model for other environments except through application 

of the model and evaluation of the results. 

Haralick's sloped facet model {4}, explicitly states the nature of 

the spatial pattern in the image data. This model allows for linear 

deviation in brightness values with distance, hense the sloped nature 
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of the facets. Again, there has been no attempt to determine the validity 

of that model for various combinations of scene elements and resolution 

cell sizes. Another remote sensing model with an explicit spatial model 

is the invertible coniferous forest canopy reflectance model of Strahler 

and Li {l3}. The model requires the assumption of multiple trees per 

resolution cell for inversion. A Neyman Type A model of the spatial 
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distribution of trees is the explicit spatial model used in the 

inversion process. 

One group of remote sensing models use measures of image texture 

as the basis of scene inference. Haralick {3}, provides an excellent 

review of the various approaches used in remote sensing as well as 

other applications which use image processing. In general, these 

texture-based approaches have implicit spatial models, and in some 

ways are similar to unsupervised classification. In both approaches, 

groups of pixels derived from the image data (on the basis of either 

spatial or spectral patterns) are related a posteriori to the elements 

in the ground scene. In these approaches, no attempt is made to under

stand the geographic processes in the scene that createq the spatial 

patterns in the image data. In this respect, all work relying on image 

texture has been empirical. 

METHODS 

Whenever remotely sensed data consist of images, an important new 

information component is added to the measurement output by the sensor 

-- its spatial position. Since the position of the measurement in the 

image is usually a quantifiable function of the position in the scene of 

the resolution cell from which it is derived, each measurement can be 

associated with a ground location and be positioned relative to other 

measurements. From a statistical viewpoint, the sensor's response 

then becomes a regionalized variable -- a random variable whose position 
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in time or space is known. (Due to sensor imperfections, individual 

measurements may not in reality be entirely independent of their 

neighbors. However, from the theoretical viewpoint presented here, 

each measurement is considered an independent observation.) 
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Assume that Y(~) is a regionalized random variable associated with 

location x. As an example, a digital image can be regarded as a single 

realization of the variables Y(x.), where the set of x., i=I, ... ,n. 
-1 -1 

correspond to the n resolution cells in the image. If the Y(~i) are 

uncorrelated, then the image will consist of random noise. If, however, 

the Y(x.), are in some way related, then the data will exhibit spatial 
-1 

structure. Perhaps the weakest assumption one can made about this 

structure is what Matheron {6}, refers to as the "intrinsic" hypothesis 

-- that the increments Y(x; + !!)-Y(~i) associated with a small distance 

h are weakly stationary. Under this assumption, the first moment of the 

increment, its expected value, is constant or at least only slowly 

varying with spatial position ~; and the second moment is also invariant 

with spatial position. 

The second moment, 

2y (h) = E {Y (~i + h) - Y (~i )} 
2 

, 

is referred to as the variogram; y(h) becomes the semivariogram {6}. 

Just as the variance characterizes the distribution of a nonspatial 

random variable. Geostatisticians have used the variogram as a primary 

tool to measure the zone of influence of each Y(~i) on the next, indicate 

intermeshed structures, reveal anisotrophy, and detect spatial 
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discontinuities {6}. The one dimensional case is presented for 

simplicity, but this approach is easily generalized to the multi

dimensional case by considering h to be a vector. 

A VICAR (Video Image Communication and Retrieval System) program 

VRIOGRM was written to calculate a two-dimensional variogram for image 

data. Ideally, a variogram should be computed using each pixel as a 

center or target point, against which all other pixels in the image are 

compared. Since remotely sensed images tend to be large, this approach 

is computationally unrealistic, and constraints need to be imposed. 

One constraint concerns the distance h over which the variogram is to 

be measured. This distance can be thought of as a IIwindow size ll when 

using image data and needs to be larger than the zone of influence and 

large enough for any periodicities in the data to be revealed. Since 

VRIOGRM produces a square variogram, (2h + 1)2 pixels are compared with 

any center point in the image. 

The second constraint concerns the selection of points in the image 

to be used as centers of windows. In VRIOGRM, the number of pixels in 

the image to be used as a center point in the calculation of the vario

gram is specified as a parameter. The actual locations to be used in 

the image are determined randomly. When the locations in the image used 

as center points is a sample of the entire image, it should be noted that 

the resulting variogram must be considered an estimate of the true vario-

. , 
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gram. The variograms shown in this paper are displayed as contour plots ---, 

of bivariate histograms. 
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A second method used to measure spatial pattern in image data was 

that of graphs of local variance as a function of spatial resolution. 

Calculation of these graphs is accomplished by measuring local variance 

in the image data, degrading the imagery to successively coarser resolu

tions, and then measuring local variance at each new resolution. The 

graphs provide insight into the size and nature of elements in the scene, 

and can be used to help define the elements that should be used in scene 

inference. At a time when remotely sensed data is becoming available 

at continually decreasing spatial resolutions, these graphs should prove 

invaluable in helping understand how spatial patterns will vary for given 

environments as a function of spatial resolution. 

For this work, local variance is measured for any image as the mean 

value of a texture image created by the VICAR program PIXSTAT. In this 

program, the standard deviation of a 3 x 3 moving window of pixels is 

computed, scaled, and placed in the location of the center pixel. Thus, 

for each window a value is produced that indicates the local tonal variance, 

and the mean value for the entire image serves as a reasonable measure of 

the overall local variance. 

The algorithm that has been used to degrade the imagery to success

ively coarser resolutions, simply averages resolution cells to be combined 

into a single larger resolution cell. This approach implies an idealized 

square wave response on the part of the sensor and is limited to degrada

tion at integer mUltiples. Although point spread functions obviously differ 

significantly from an idealized square wave response, the point at issue 
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here is the scene model, not the sensor model. Adopting such a simple 

sensor model avoids needless complexity at this stage of the research. 

The imagery used for the analysis of spatial pattern was digitally 

scanned from color aerial transparencies using a microdensitometer, thus 

allowing the analysis of spatial pattern at finer resolutions than are 

available from conventional spaceborne sensors. Three images were 

scanned at different resolutions: a forest scene in South Dakota where 

individual pixels are a.75m on a side; a forest scene in Colorado with 

pixels 1 .5m on a side; and an agricultural scene with pixels a.15m on 

a side. 

RESULTS 

South Dakota Forest Image 

Figure 2 shows the graph of local variance as a function of spatial 

resolution for the South Dakota forest image. Local variance is low 

at the resolution that the photo was scanned, or a.75m (Figure lA). At 

this resolution, if a pixel falls on a tree, its immediate neighbors 

are also likely to be on the tree, since many pixels comprise individual 

trees. In this situation, the pixels in a 3 x 3 window are likely to 

have similar DNs and the local variance will be low. Similarly, if a 

pixel lie~ on the background, its neighbors are also likely to be on the 

background, and local variance will again be low. Naturally, some pixels 

will fall along the borders of the trees or background, and as a result 

will have_ high local variance, but the mean local variance for the image 
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will still be low. 

As the size of individual resolution cells increase, the number of 

pixels comprising an individual tree decreases, and the likelihood that 

surrounding pixels will be similar decreases (FigurelB). In this 

situation, local variance increases. This trend continues until a peak 

in local vari~nce is observed at approximately the size of individual 

tree crowns, or 6m. At this resolution (Figure Ie), the pattern 

becomes very mottled as individual pixels tend to be alternatively 

either on a tree or on the background, and the local variance is very 

high. As the resolution increases past this peak, local variance 

decreases. This decrease is associated with individual pixels being 

increasingly characterized by a mixture of both trees and background. 

As this mixing of elements occurs, all pixels being to look similar and 

the local variance continues to decrease (Figure ID -IG) . 

There is considerable structure in the contour plot of the vario

gram of the South Dakota forest image (Figure 3). The strength of the 

relationship between a given pixel and its surroundings tend to decrease 

with distance until it reaches a plateau at about the eighth contour 

line. At this distance, the relationship between pixels is essentially 

as if they were selected at random. Ideally, this portion of the contour 

plot should be flat, but it appears to have local peaks and valleys. 

This effect may be attributed to the fact that the contour plot is 

derived from an estimated variogram. With increased sampling, this 

mottled appearance may be reduced or even disappear. 
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Another notable feature of the variogram is its anisotropy, which 

is directly attributable to the shadowirig related to the direction of 

illumination (Figure lA). The variogram is markedly elongated along 

an axis approximately diagonal from the upper right corner to the lower 

left corner. Since shadows look more like the trees than the background, 

the shadow of a tree tends to reduce the variance measured in the 

direction of the shadow. 

Colorado Forest Image 

A picture of the area in Colorado digitally scanned from an aerial 

transparency for analysis of spatial pattern is shown in Figure 4. The 

photo was scanned at a ground resolution corresponding to 1.5m on a side. 

The graph of local variance as a function of spatial resolution (Figure 5) 

has the same basic structure as was observed for the South Dakota forest 

image. The local variance begins relatively low, as individual trees 

are multipixel elements, peaks at approximately the size of an individual 

tree, and then decreases as resolution size increases. Interestingly, 

local variance peaks at approximately 9.Dm in this image (as opposed to 

6.0m in the South Dakota forest image); this effect is attributable to 

the larger tree crown diameters found in the Colorado frame. 

The structure of the variogram for the Colorado forest image (Figure 6) 

is again similar to the variogram of the South Dakota forest image. 

Variance is observed to increase with distance until it eventually reaches 

a plateau. The zone of influence, or distance from the center to the 
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plateau, is larger in the Colorado forest image, as would be expected 

due to the larger trees in the area. This difference in variograms is 

not obvious because the abscissa records the number of resolution cells 

rather than a direct measure of distance. Since the Colorado forest 

image data has resolution cells twice the size (on a side) as the South 

Dakota Forest image, its zone of influence is larger than it appears on 

the graph. As noted with the South Dakota forest image, anisotropy in 

the variogram is directly attributable to the direction of illumination. 

While the results of the Colorado forest image data are quite 

similar to those for the South Dakota forest image, they serve the use-

ful purpose of substantiating the interpretation of the results from 

these methods of the analysis of spatial pattern. Due to the highly 

experimental nature of these methods, it is reassuring to find their 

results consistehtly attributable to the characteristics of the two 

different scenes. Another factor that may be important for future 

analysis is that the Colorado forest image contains considerable 

variability in canopy density. It will be interesting to see how the 

variogram of this area changes when computed only in areas with certain 

densities of trees are included. These tests may allow for an improved 

understanding of the sensitivity of variograms to changes in scene 

characteristics. 
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Agricultural Image 

A picture of the agricultural area digitally scanned from an aerial 

transparency for analysis of spatial pattern is shown in Figure 7. The 

original resolution of the digital data is O.15m on a side, and was 

scanned at such a fine resolution in an attempt to analyze spatial 

structure within fields. Traditionally, the remote sensing community 

has viewed agricultural fields as homogeneous elements, largely due to 

the spatial resolution of the available data. However, as spatial 

resolution decreases on future sensors, more spatial structure within 

agricultural fields will be resolvable. 

The graph of local variance as a function of spatial resolution for 

the agricultural image does not show the same structure as the graphs for 

the forest images, in that there is no initial low local variance (Figure 9). 

It was initially hypothesized that at very fine spatial resolutions, 

agricultural images would exhibit a similar pattern in local variance as 

was found in the forest images. In an agricultural setting, individual 

plants or crop rows would be multipixel elements, and local variance 

would be low. At the resolution approximately the width of the crop 

rows, the local variance would peak, and begin its familiar decline. 

However, Figure 9 shows that local variance simply decreases as a function 

of spatial resolution in the image data. 

One reason that the initial low local variance did not occur is that 

the spatial resolution of the data was not fine enough to detect the 

-, 

-. 



-! 

l 

r--. 

) 

~, 
\ 

r 

523 

homogeneity of the crop row as an element in the scene. The distance 

between crop rows is approximately 5 resolution cells at the resolution 

of O.15m that the data was originally scanned. In those five pixels 

are included the well illuminated portion of a crop row, the shaded 

side of the crop row, and the space between the rows. As a result, 

very few 3 x 3 windows in the image will have low variance. If resolu

tion were considerably reduced, variance within both the shaded and well 

illuminated portions of a single crop row would be low. However, for 

this affect to be observed, a spatial resolution on the order of 5 cm 

would be required for this image. Another factor that may be contributing 

to the lack of initial low variance is that the crop is in a mature stage, 

and the crop rows have grown close together. Thus, there is not a well 

developed background signal between rows, against which the crop rows 

would be highly constrasting. 

Variograms were computed for two of the agricultural fields in the 

image and the entire agricultural image as a whole. These variograms 

exhibit considerable structure related to the orientation and spacing 

of the rows. Figure 8A shows the variogram of the field in the upper 

left portion of the agricultural image (Figure 7). From the variogram 

it is easy to determine both the direction of the rows, and their spacing. 

The crop rows are oriented horizontally in this portion of the image, as 

can be seen by the low variance associated with horizontal movement in 

the image. Variance changes sharply with movement across the rows, 

with variance increasing up to one half of the distance between rows. 
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From that point, variance decreases, until a minimum is reached at the 

distance between rows. This cycle of high variance at the half width 

and low variance at even multiples of the distance between rows is 

repeated all the way to the edges of the variogram, and would continue 

if the variogram had been calculated for a larger window size. The 

distance between rows can be determined by counting the number of pixels 

between the ridges or valleys in the variogram. 

A physical explanation of the periodicity in the variogram is as 

follows. Regardless of where the starting point is relative to a crop 

row, if you move in the direction perpendicular to the rows the distance 

of one crop row, you are likely to be in the same position relative 

to a crop row. In this situation, since the pixels are positioned 

similar DNs and the resulting variance will be low. Conversely, if you 

move one half the distance between crop rows, the new location will be 

very different relative to a crop tow, and thus the difference in DNs of 

the pixels and the resulting variance will be large. 

For the field in the lower left portion of the image, the variogram 

(Figure 88) exhibits similar structure as the previous variogram except 

the row direction is rotated 90 degrees.' The same pattern of ridges 

and valleys occurs at the same spacing between rows. The pattern in 

the variogram for the entire agricultural image (Figure 8C) is easier to 

understand after looking at the variograms for the individual fields. 

The variogram for the entire image simply superimposes the variograms 
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from fields with rows in perpendicular directions. 

DISCUSSION AND CONCLUSIONS 

The results of this study indicate that measures of spatial pattern 

in image data can be related to the characteristics of the elements in 

the scene. The results of this analysis of spatial pattern should be 

viewed as a first step in understanding the relationship between scene 

models and spatial patterns in image data, and the eventual use of 

spatial data in scene inference. However, based on the results presented, 

some generalizations about the use of spatial data in scene inference 

can be made. 

The graphs of local variance as a function of spatial resolution 

give an indication of spatial resolutions where the use of spatial data 

will be important, as a function of the elements in the scene. At spatial 

resolutions where local variance is low the information in the spatial 

domain is low, and scene inference based solely on spectral data may be 

appropriate. However, at spatial resolutions where local variance is 

high, the use of spatial data becomes more important, as the use of only 

spectral data is likely to yield poor results. These graphs also demonstrate 

that local variance changes as a function of the scene characteristics for 

a given spatial resolution. For example, at spatial resolutions in the 

20-3Om range (where data from new sensor systems will soon be available), 

the forest images begin to exhibit higher spatial variability. However, 
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in the agricultural image, the local variance is still quite low at 

those resolutions. These results indicate that the use of spatial data 

in scene inference will be more important in forested scenes than 

agricultural scenes when using data from these new sensors. 

The graphs of local variance as a function of spatial resolution 

can be useful in helping to define the elements in a scene and the 

appropriate remote sensing model to be used in scene inference. The 

graphs for conifer forests presented above may help explain the results 

of previous studies designed to test the influence of spatial resolution 

on forest cl assification accuracy. Sadowski and Sarno {12} and La tty 

and Hoffer {9} both found that classification accuracies decreased in 

forested areas as the size of the resolution cells decreased. These 

decreasing accuracies are almost certainly an artifact of the definition 

of the elements in the scene and the remote sensing model used. 

Starting with large resolution cells, the elements in the scene are 

defined as forest stands, or areas large enough to be characterized by 

numerous trees. The classification of forest stands is based on descrip-

tions that generalize the characteristics of trees in stands, and can be 

thought of as forest types. In this situation, an element (or forest 

stand) is a mixture of a variety of smaller objects. A simple conceptual 

model of this mixture is a combination of trees and a homogeneous back

ground. With large resolution cells, individual pixels also will be 

characterized by a mixture of trees and background, and will generally 

be representative of the larger forest stand type. However, as the 
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resolution cell size decreases, individual pixels will be decreasingly 

characterized by mixtures of trees and backgrounds. Eventually, 

resolution cells tend to be either in the location of a tree or on the 
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background. At this point, the elements should switch from forest stand 

types to individual trees. However, in these studies the elements, or 

targets of classification, remained forest types throughout the study. 

The decreases in accuracy associated with shrinking cell size may be 

attributable to the increasing inappropriateness of the remote sensing 

model used for scene inference. From the point of view of the classifier, 

pixels are eventually differentiated into tree and background classes, 

all in areas originally designated as forest types. In one sense, at 

small resolution sizes the accuracy of the classification could surpass 

the ability of the techniques available to evaluate it. This situation 

suggests a restructuring of the question of what accuracy means as spatial 

resolutions change. 

In conclusion, the two methods of measuring spatial patterns in image 

data reveal useful and different information concerning the characteristics 

of the elements in the scene. Variograms illustrated the anisotropy in 

the data attributable to the direction of illumination, found periodicities 

in the data, and measured the zone of influence of pixels on their 

surroundings. Variograms are a method of measuring spatial patterns in 

image data that may be useful in future scene inference techniques that 

rely more on data from the spatial domain. The second method, graphing 

local variance as a function of spatial resolution, is most useful 
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because it readily displays the interaction between scene elements and 

spatial resolution. Through the use of these graphs, more informed 

decisions can be made concerning the nature of the scene inference 

techniques to be used, given the spatial resolution of the data 

available and the nature of the scene. 
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Figure lA. South Dakota Forest Image at the original 
resolution at which it was scanned. Each pixel is 0.75m 
on a side. 

Figure lB. South Dakota Forest Image after degradation. 
Each pixel in this image is 3.0m on a side and contains 
16 of the original pixels. 



Figure Ie. South Dakota Forest Image after degradation. 
Each pixel in this image is 6.0m on a side. 

Figure 1D. South Dakota Forest Image after degradation. 
Each pixel in this image is 9.0m on a side. 
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Figure IE. South Dakota Forest Image after degradation. 
Each pixel in this image is 12.0m on a side. 

Figure IF. South Dakota Forest Image after degradation. 
Each pixel in this image is I8.0m on a s"ide. 



Figure IG. South Dakota Forest Image after degradation. 
Each pixel in this image is 24.0m on a side. 

Figure 2. Graph of local variance as a function of spatial 
resolution for the South Dakota Forest Image data. 
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Figure 3. Contour plot of the Two-Dimensional Variogram 
of the South Dakota Forest Image. 
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Figure 4. Photograph of the Colorado Forest scene that was 
digitally scanned for analysis of spatial pattern. 

Figure 5. Graph of local variance as a function of spatial 
resolution for the Colorado Forest Image data. 
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Figure 6. Contour plot of the Two-Dimensional Variogram 
of the Colorado Forest Image. 
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Figure 7. Photograph of the Agricultural scene that 
was digitally scanned for analysis of spatial pattern. 
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Figure 8A. Contour plot of the Two-Dimensional Variogram 
of the field in the upper left portion of the Agricultural 
Image. 
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Figure 8B. Contour plot of the Two-Dimensional Variogram 
of the field in the lower left portion of the Agricultural 
Image. 
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Figure BC. Contour plot of the Two-Dimensional Variogram of 
the entire Argicultural Image. 
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Figure 9. Graph of local variance as a function 
of spatial resolution for the Agricultural Image. 
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Abstract 

We review previous efforts to recover surface shape from image irradiance in 

order to assses what can and cannot be accomplished. We consider the informa

tional requirements and restrictions of these approaches. In dealing with the ques

tion of what surface parameters can be recovered locally from image shading, we 

show that, at most, shading determines relative surface curvature, i.e, the ratio 

of surface curvature measured in orthogo.nal image directions. The relationship 

between relative surface curvature and the second derivatives of image irradiance is 

independent of other scene parameters, but insufficient to determine surface shape. 

This result places in perspective the difficulty encountered in previous attempts to 

recover surface orientation from image shading. 
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1. Introduction 

The determination of land cover from aerial imagery is a task thatphoto in-

terpreters accomplish by using both the image data and their knowledge of the 

structure of the world. The image data encodes the complex process whereby light 

is reflected from a surface. The surface shape, the surface albedo, the position of 

the lighting sources, and the functional form of the reflectance properties of the 

material are elements of this encoding. The human visual system interprets image 

data as a 3-D model of the seene, distinguishes among different surface materials, 

and· ascertains the position of the lighting sources. It is difficult to believe that 

a machine vision system can achieve, say, surface material differentiation without 

simultaneously being able to recover the surface shape and the other parameters 

that are needed to explain the detected image intensity. Of course, it may be pos

sible to use special sensors and multiple information sources to make it unnecessary 

to reconstruct a complete 3-D model of the scene, but it would be surprising if such 

specialization could retain sufficient generality to be useful over a range of remote 

sensing tasks, e.g., in both renewable and nonrenewable resources. 

The machine vision approach of simultaneously recovering all the parameters 

necessary to account for image intensity is expressed in the notion of intrinsic images 

[I] (or the 2!-D sketch [10]). These intrinsic images can be thought of as overlays, 

each specifying the value of one parameter that goes into the formula for calculating 

the image intensity. The images are not independent; if one is to be varied, the 

The research reported herein was supported by the DeCense Advanced Research Projects Agency 
under Contract MDA903-83-C-0027 and by the National Aeronautics and Space Administration 
under Contract NASA 9-16664. These contracts are monitored by the U.S. Army Engineer 
Topographic Laboratory and by the Texas A&M Research Foundation Cor the Lyndon B. Johnson 
Space Center. 
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others must be also - so that the predicted image intensity remains invariant (and 

equal to the observed value). The notional division of an image into particular 

intrinsic images would be of little merit unless one believed that estimates of each 

intrinsic image could be obtained by models that were largely independent of the 

other intrinsic images. While models have been proposed to recover various intrinsic 

images, there have been considerable efforts made to recover the scene's 3-D shape, 1 

in particular the surface orientation at each image point. These 'shape-from-... ' 

mod~ls embody a structure that would allow shape to be recovered principally from 

a single measure, e.g., texture, contour, or shading. While 'shape-from-... ' models 

are not seen as complete solutions to shape reconstruction, there is an implicit 

expectation in their title that shape estimates can be calculated from their respective 

measures. Here we review the work we and others have done towards the goal of 

recovering surface shape from image shading. Is it attainable - or is it myth? 

The importance of shape recovery is clear; if the shape is known, surface albedo, 

and the other parameters that determine image intensity are obtainable. Land 

cover differentation is dependent on knowing the [relative] surface albedo, rather 

than image parameters, such as intensity. If we cannot recover shape, the intrinsic 

image approach offers little as a model for perception. Shading is only one source 

of shape information. Edge information is of great importance, but there is little 

occlusion in aerial images. The ability to recover shape from shading seems more 

critical in the case of aerial imagery than for most other types of imagery. 

We first review three research efforts: those of Horn and his colleagues 

1 We use the expression surrace shape to denote both the intrinsic properties or the surface, e.g., 
cylindrical, and the orientation or the surrace in space. Elsewhere, shape is sometimes used to 
denote only the intrinsic properties or the surrace, not its orientation in space. 
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[6,7,9,14,15,16]' Pentland [11], and our own [12,13]' - to determine what can and 

cannot be accomplished, and to consider the informational requirements and limita-

tions of these approaches. We discuss the dilemma of local computation versus 

global constraint propagation and seek to ascertain what can be computed locally, 

and how information can be propagated across an image. Finally, we seem to be 

left with the conclusion that shading, when viewed as a single source of shape in-

formation, is an insufficient source for the recovery of surface shape. Shape cannot 

be obtained from shading alone. However, we are able to characterize the scene 

information that shading provides. 

An alternative approach to recovering shape from shading is model based. Can 

,-- we determine which model, from a set of models, best describes the image data? 

-, 
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This approach is dependent on discovering a small set of easily distinguishable 

models that adequately describe the surfaces encountered. Industrial inspection, 

rather than remote sensing of the environment, appears better suited to a model 

based procedure. In this assessment we do not consider this related, but essentially 

different approach. 

2. Approaches to Shape from Shading 

2.1 Horn and Colleagues 

A study by Horn·[6,7,8] of the relationship among image irradiance,2 surface 

shape, surface albedo, and illumination conditions led to formulation of the image 

2Image irradiance is the light flux per unit area falling on the image, i.e., incident flux density. 
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irradiance equation, which states that image irradiance is proportional to scene 

radiance. 3 This is expressed by the equation 

I=R , 

where I is the image irradiance as a function of the image coordinates, and R is 

the scene radiance as a function of the scene parameters. Of course, this equation 

relates the image irradiance at an position in the image to the scene radiance at 

its corresponding scene position. Implicit in this equation is an assumption of 

orthographic projection. However, such an assumption, to avoid complexity in the 

mathematical formulation, is a minor restriction and does not detract from the 

generality of the model. 

Image irradiance is a function of the image coordinates x and y, but scene 

radiance is a function of the illumination strength, its position, the surface albedo, 

and the surface orientation. For the formulations reviewed here, we find that 

a number of assumptions are made so that scene radiance can be considered a 

function of the surface orientation variables only; constant values are used for the 

illumination strength, its position, and for the surface albedo. That is, shape-

from-shading is analyzed for the simplified case of a constant light source and 

constant surface albedo. The restriction to a constant light source is not only a good 

approximation of the situation we experience daily (and an excellent app'roximation 

for a photograph), but also corresponds to the difficulty confronting the human 

visual system when this constancy is not met, e.g., under strobe lighting. The 

assumption of constant albedo is harder to justify, since nature obviously exhibits 

3Scene radiance is the light flux per unit projected area per unit solid angle emitted (rom the 
scene, i.e., emitted flux density per unit solid angle. 



variable albedo. Still, when we consider the manner in which facial make-up is used 

to alter the perceived shape of the face, it may well be that continuous changes 

in albedo are processed by the human visual system as if they were constant. 

Notwithstanding the justification for constant albedo, it is unlikely that shape-

from-shading can be solved for the case of variable albedo if it cannot be solved 

,...... for constant albedo. Such a restriction is in effect a case analysis to determine if 

shading provides sufficient shape information in a less-than-general model. 

In the formulations under review, various parameterizations of surface orien

tation have been used. The two we specify are (i) surface gradients, i.e., the partial 

derivatives of depth, z, with respect to the scene (and image) coordinates x and y, 

,- and (ii) components of the surface normal, i.e., 1 and m, the x and y components 

of the surface normal. Using the notation, p = ~, and q = .u, we note the 

r 
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equivalence of the parameterizations 

-I 
p = -;:;::=:::;::;==:::; 

Vl-12 - m2 

-m 
, and q = --;:==:;;::==:::;; 

Vl-/2 - m2 

The image irradiance equation is usually expressed as 

[(x, y) = R(p, q) ,or [(x, y) = R(l, m) 

and we shall use both forms to express the relationship between image irradiance and 

scene radiance for the case of constant illumination and constant albedo. .As p = 

g;, and q = ~, we see that the image irradiance equation is a first-order partial 

differential equation and, if [ and R are known, we could (at least in principle) solve 

the differential equation and recover the depth, z. 

To have an explicit form for R, we must have a model for the type of reflection 

occurring at the scene surfaces. In the work reviewed here the surface is assumed 
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to be a perfectly uniform diffuse reflector, i.e., the scene radiance is isotropic.4 

While this model is invalid as a description of specular reflection, scene radiance in 

the natural world, (except for specific situations, such as water surfaces), may be 

approximated by such a description. The expression for scene radiance in this case 

is [12J 

or, equivalently, 

R(l, m) = al + bm + cJl-12 - m2 

R( ) 
_ (-ap - bq + c) 

p, q - ~==~==~ 
Jl+p2 +q2 

where a,b, and c are constants expressing illumination strength, its position, and 

the surface albedo. 

The approach taken by Horn and his colleagues [6,7,9,14,15,16J is to solve the 

first-order partial differential equation, 

/( ) 
_ (-ap - bq + c) 

x,y -~;:::::::=~=-;:
Jl + p2 + q2 

assuming that a,b, and c are known - i.e., the surface albedo, and the illumination 

strength, and its position. While this need to know scene parameters may seem over-

restrictive, such information may come from other components of a vision system. 

The need to know the illumination position does not seem to be a major drawback of 

this approach, but the requirement that the scene albedo be known is troublesome. 

If the conceptual model of intrinsic images is to be followed, the inability to decouple 

surface orientation from surface albedo would seem fundamental. Regardless of this 

4This situation is also called Lambertian reflectance, after Lambert, who proposed a point reflection 
model (in which the reflected flux per unit surface area per unit solid angle varied as the cosine 
of the angle between the surface normal and the viewing direction) to account for the observation 
that matt surfaces looked equally bright from any viewing position. 
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difficulty, the question of whether shape can be recovered in a limited domain is 

basic to the investigation of vision. 

Two approaches to solving the image irradiance equation are direct integra

tion [6,7], and iterative/relaxation techniques [9,14,15,16]. The direct integration 

approach has been carried out generally in those circumstances in which [(x, y) and 

its derivatives can be determined for all x and y, i.e., for a spatially unquantized, 

continuous-tone image. The method used is the standard technique of characteristic 

strips for solving a first-order hyperbolic partial differential equation [6,7]. Starting 

with a point at which the surface orientation is known, integration moves along a 

curve in the image. This curve is dictated by the image. Adjacent curves generally 

are not 'parallel', which makes it difficult to get complete. coverage of the image. 

Interpolation between these curves - or strips, as they are usually called - to 

find initial values to commence an intervening strip integration, involves complex 

procedures. As far as digital images are concerned, direct integration would be hard 

to organize, even if we were first to model the intensities to obtain a continuous 

form for [(x, y). 

As is the case with most partial differential equations, it should be noted that 

the image irradiance equation has many soiutions [4]. The boundary conditions (in 

;- the above method the initial values for a strip) are vital inselecting the solution 

that describes the surface in the image. Should the image irradiance equation be 

'underconstrained' in the sense that, for a given [(x, y), it admits solutions that 

encompass a wide range of surface types with similar boundary values, we might 

then expect numerical error to defeat attempts at numerical integration. In such 

cases, errors 'mix in' other solutions that can eventually dominate the recovered 
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solution, even though they may be excluded by the boundary conditions. The 
, 

method of direct integration has been demonstrated on simple images [6]. These 

examples required only a small number of integration steps. Numerical instability 

has also been reported [4]. 

The other approach used to solve the image irradiance equation is relaxation. 

Relaxation procedures avoid numerical instability, but face the problem of conver-

gence. However, they do have the advantage of being directly applicable to digital 

images, i.e., spatially quantized, discrete-tone images. The relaxation (or iterative) 

approach views the image irradiance equation not as a differential equation, but as 

an algebraic constraint. For pixel (i, i), 

where Ii,;' is the image irradiance for the (i, nth pixel, and pi,j,and qi,;' specify 

the surface orientation of the surface patch that is imaged at pixel (i, n. As an 

algebraic constraint, the image irradiance equation relates image irradiance to the 

two surface orientation variables, pi,j,and qi,j' In viewing the image irradiance 

equation as a algebraic constraint, we lose the interrelationship of Pi,;', qi,j, and 

their neighboring values, a relationship inherent in the differential equation. To 

compensate for this loss, an additional constraint must be introduced that relates 

Pi,i ,and qi,j to their neighboring values. Such a relationship is essential for a 

relaxation procedure. The relationship usually introduced attempts to capture the 

notion of surface smoothness [2,9, 12,14]. The particular form of the smoothness 

constraint may, for example, require that pi,j,and qi,j be equal to the mean values 

of neighboring p's and q's. For any trial values for pi,j,and qi,j, the constraint 
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imposed by the image irradiance equation and the constraint resulting from surface 

smoothness will not be completely satisfied. The residual equation formed from 

each constraint specifies how well that constraint is satisfied. If €i,i is the sum of 

the [absolute values of thel residuals from both the image irradiance constraint and 

the surface smoothness constraint for the (i, i)th pixel, then, for trial values of p 

and q for every image pixel, the total residual error is 

€= L €i,i 
i,iEimage 

The allocation of surface orientations to all pixels should minimize this total error 

- that is, 

~=o op· . 
'" 
~=O oq· . 

'" 

'V i, j E image 

'V i, j E image 

From these equations we obtain an iterative scheme for updating the values of p 

r and q so that they are compatible with their neighboring values, as well as with 

:
I 

the image irradiance equation [9,12,141. If such a scheme is convergent, we have a 

procedure for obtaining shape from shading. 

It should be noted that the relaxation schemes, that use the foregoing approach 

are possible only because the smoothness constraint relates the values at one pixel 

to those of its neighboring pixels. The boundary conditions needed for selecting a 

particular solution from the solution set of the iterative scheme are propagated by 

the smoothness constraint, not the image irradiance equation. Compared with the 

direct-integration approach, information propagation in the relaxation scheme uses 

a different mechanism. We must remember this when we assess results. 

Success with these methods has generally been limited to small images, (usually 
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fewer than 30 x 30 pixels), of nearly spherical or saddle surfaces [3,g,12,14]. For an 

effective relaxation scheme, the initial solution should have no effect on the surface 

recovered. This unfortunately is not the case [12]. Boundary conditions are not 

propagated more than a few pixels by the smoothness constraints [12,14]. Surface 

recovery from large images, (bigger than 30 x 30 pixels), is ineffectual for this reason . 

. As a consequence of the fact that smoothness is used as information propagator, 

assumptions (albeit weak ones) have been made about surface shape. Shading as a 

constraint, and smoothness as a surface type, appears insufficient to provide a basis 

for an effective shape-from-shading algorithm. 

2.2 Pentland 

The approaches to solving the shape-from-shading task that we have discussed 

so far have all been based on constraint propagation. Direct integration is a 

spatially serial solution to the propagation problem, while relaxation attempts to 

achieve this propagation with a temporally serial solution; in other words, relaxation 

employs local processing, but it must iterate until enough cycles have passed to allow 

information to propagate spatially. Purely local computation of scene parameters, 

on the other hand, is not a propagation method. While this kind of computation 

can use neighboring data - and not just of the nearest neighbors - it must provide 

an instant solution. It cannot iterate and therefore it does not provide a temporally 

serial solution. Such an approach to scene parameter computation avoids the 

numerical instability of direct integration methods, as well as the convergence 

and propagation problems of relaxation, but it cannot use spatially distant scene 

information. A local computation can use global information, such as the position 
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of the light source, but it cannot use scene details, such as the position of a distant 

edge. Of course, the re'ason for carrying out purely local computation stems from the 

hypothesis that such scene detail is not involved in the computation at this level in 

the visual system. Can shading provide sufficient local information to allow recovery 

of surface shape by purely local computation? This is the question addressed by 

Pentland [11]. 

The inadequacy of local image measurements for specifying surface orienta-

tion can be understood by counting the variables needed to specify various image 

measurements. Let us consider the case of a uniformly diffuse reflecting surface. 

Image irradiance (1 measurement) is a function of surface orientation (2 parameters), 

;- the product of surface albedo and illumination strength (1 parameter), and the 

position of the light source (2 parameters). The gradients of image irradiance (2 -
! measurements) are functions of the same variables as image irradiance and, ad-

r 

ditionally, are functions of surface curvature (3 parameters). The second deriva

tives of image irradiance (3 measurements) are functions of all the variables men

tioned above, plus the rates of change of curvature (4 parameters). Because higher 

image-irradiance derivatives introduce more surface shape derivatives, we have more 

parameters than measurements. It should be noted that a knowledge of global 

r quantities, such as the illumination position and the product of surface albedo and 
! 

illumination strength, is not sufficient to allow the surface orientation to be com-

puted locally. If we make assumptions about the relationship among some of the 

above parameters, we can produce a system of equations from which surface orien-

tation can be calculated. 

Pentland investigates the case in which an image patch of a uniformly diffuse 
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reflecting surface can be considered identical to a point on an illuminated sphere 

whose reflection is also uniformly diffuse [11]. He calculates the orientation of the 

surface patch on the sphere that has the same appearance as the surface patch in 

the image. Not all image patches can be represented by points on an illuminated 

sphere. Spheres whose reflection is uniformly diffuse have the property 

Ixx > ° 
Iyy -

where subscripts denote partial differentation with respect to those subscripts. 

There are surfaces, e.g., a sinusoidal surface, for which F can be negative. The 
. ~~ 

procedure for estimating surface orientation that is based on the assumption that 

surfaces can be approximated by locally spherical patches is applicable only to 

parts of an image. Notwithstanding these restrictions, an important aspect of the 

assumption of local sphericity is that the surface orientation is calculated by using 

the second derivatives of image irradiance only, i.e., 

These equations are derived by differentiating the image irradiance equation and 

noting that, for a sphere, Ix = ~, ly = 0, mx = 0, and my = ~, where r is the 

sphere's radius. 

In this model, surface orientation is directly dependent on neither image ir-

radiance nor on'the first derivatives of image irradiance. It may be estimated even in 

images that exhibit linear changes in irradiance induced by artifacts, and in images 

that exhibit constant illumination levels induced by atmospheric effects, such as 
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backscatter. More importantly, the formulas are independent of the illumination 

parameters and the surface albedo. In exchange for acceptance of a restrictive as-

sumption with respect to surface type, one acquires not only a means of calculating 

surface, orientation, but a procedure that needs no information other than image 

measurements - a procedure, in effect, that is matched to the notion of intrinsic 

Images. 

Even in those areas of an image to which this approximation can be applied, the 

assumption that a surface can be approximated by a patch with the same curvature 

in any direction needs experimental verification. The world is obviously not com-

posed of such surfaces, but it is the difference between the estimated and the actual 

r-
I surface orientation that is more important than the error made in approximating 

the surface by a spherical patch. Application of the above formula yields qualita-

tive agreement between the estimated and actual shape in synthetic images and in 

r natural images of simple objects [11], (for which fu- is generally positive). Shape 
1111 

r 
estimates from synthetic images of ellipsoidal surfaces are 'flatter' than the actual 

shapes. It should be noted that shape estimates, which are integrated surface orien

tations, often appear 'better' than what might be expected on the basis of the 

surface orientation error. An algorithm based on approximating a surface patch by 

:- a spherical one seems better suited for computing the qualitative shape of a surface 

than the orientation of surface elements. Such an algorithm is applicable only to 

thoses image patches that are consistent with the interpretation of such patches as 

~ points on a sphere. The conditions necessary for enabling this kind of interpretation 

have not been fully characterized. Alternative models, that are applicable when an 

image patch is inconsistent with an interpretation that it is a point on a sphere, are 
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currently unknown. 

In principle, because image irradiance is not differentiable at boundaries, we 

cannot apply the above method there. However, unlike propagation methods re-

quire our knowing boundary positions in order to stop computation, the local-

computation approach may accomplish this simply by indicating (through its failure 

at a boundary) where the boundary is. 

Pentland's approach hinges on the local-sphericity assumption. In restricted 

circumstances he is able to estimate surface orientation directly from the second 

derivatives of the image irradiance. What other, perhaps less specific, assumptions 

can be made that allow shape to be estimated locally? Before attempting to answer 

this, we review the shape-from-shading formulation we have previously proposed 

[12,13]' - first, to assess its performance, then to provide the requisite analytical 

tools for answering questions about local computation. 

2.3 Smith 

The approach taken by Horn and his colleagues provides a formulation of the 

shape-from-shading task that requires knowledge of scene parameters, but places 

no restriction on the surface shape. Calculation of surface orientation is not a 

local process, and, if surface orientation is to be recovered, knowledge of boundary 

conditions is necessary. Pentland, on the other hand, restricts the surface shape 

but requires no scene parameters, no boundary conditions, and derives surface 

orientation by purely local computation. Is there an intermediate position? Is 

there a formulation that neither restricts the surface shape nor requires knowledge 

of scene parameters? Of course, local computation seems desirable - but is it 

-
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worth the concomitant cost of surface type restriction or the requirement that scene 

parameters be known a priori? The formulation previously described by us, takes 

such an intermediate position. 

For a uniformly diffuse reflecting surface, surface orientation is related to image 

irradiance by the second-order partial differential equations [12] 

where 

cdJlxx + j3Umxx - o:"(lxy - j3,,(mxy = XUlxx - X,,(Ixy 

o:(}lyy + j3Umyy - o:Olxy - j30mxy = X(}Iyy - xolxy 

0: = Ixmy - Iymx 

j3 = Iylx - Ixly 

"( = lx2(1- m2) + m x2(1-12) + 21xmxlm 

0= ly2(1- m 2) + m y2(1_12) + 21ymylm 

() = lxly{1- m2) + mxmy(1-12) + (lxmy + lymx)lm 

X = lxmll - lymx 

These equations are derived from the image irradiance equation. The assumption of 

uniformly diffuse reflection relates some of the scene parameters, thereby allowing 

elimination of parameters that specify surface albedo and illumination conditions. 

The assumption that surface reflection is uniformly diffuse is an assumption 

r- about the physics of image formation. While it does not describe the reflectance 

properties of all surface, it is a reasonable approximation to most surfaces that are 

encountered in the natural world. For any formulation of the relationship between 

shading and shape, some assumptions are necessary. Those describing properties 

found in nature are more palatable than restrictions for which little a priori evidence . 

is available. 

A desirable aspect of this formulation is that surface orientation is not related to 

image irradiance, but only to its derivatives. The existance of constant illumination 
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levels, from atmospheric scattering or fogging of photographic images, does not 

impede the potential for shape recovery. Linear changes in intensity, however, 

must affect the shape of any recovered surface. A more important aspect of this 

formulation is its independence of surface albedo. Again we reiterate that, if 

the notion of intrinsic images is to be useful we must find models that decouple 

surface shape from surface reflectance. The fact that knowledge of the illumination 

conditions is not required, is certainly an important aspect, but less so than the 

formulation's independence of surface albedo. 

The penalty for not making assumptions about surface type and for not presup

posing any knowledge of scene parameters, such as illumination conditions and sur

face albedo, is the introducti<:>D of higher-order derivatives of surface orientation in 

the formulation, as well as the inability to calculate surface orientation by purely 

local computation. Boundary conditions are necessary. To formulate a model that 

relates surface orientation to image irradiance is one thing; to solve it for that 

orientation is another. 

The second-order' partial differential equations (given above) relating surface 

orientation and image irradiance are satisfied by solutions to the first-order partial 

differential equation X = o. This is undesirable, as solutions of X = 0 satisfy the 

surface-orientation-image-irradiance equations independently of the image measure

ments, Ix'!y,!xx, IYYI and Ixy. The equation X = 0 characterizes the developable 

surfaces, e.g., a cylinder or cone (see Appendix B); derivation of the above surface

orientation-image-irradiance equations is impossible when the surface is develop

able, i.e., singularly curved. The surface-orientation-image-irradiance equations are 

appropiate only when the surface is doubly curved. For singularly curved surfaces, 
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the appropiate equations relating surface orientation and image irradiance are 

Ixmy - Iymx = 0 , 

Ixly - Iylx = 0 

(These equations are derived independently of any reflection function, i.e., they 

apply to all types of reflection, not just uniformly diffuse reflection. See Appendix 

C.) 

If the surface-orientation-image-irradiance equations were solved by analytic 

procedures, the problems posed by the X = 0 solutions would vanish, as such 

solutions would be ruled out by boundary conditions. However, the presence of 

such solutions heralds difficulties for numerical methods, as the inevitable numeri-

ca.l errors will mix these solutions into the recovered surface orientations. Two 

approaches to solving the surface-orientation-image-irradiance equations have been 

reported [13]. These approaches are direct integration, which is implemented by 

finite-difference formulas, ana relaxation. Both require additional information in 

the form of boundary conditions. Both fail to recover surface orientation. Direct in-

tegration correctly recovers the surface orientation in the vincinity of the boundary 

conditions, but is ineffective elsewhere. The reasons for failure of each method are 

: of interest; direct integration fails because numerical instability makes the spatially 

serial method of solution impractical; relaxation fails because non convergence makes. 

the temporally serial method of solution infeasible. These direct reasons for failure 

mask a deeper problem. The model is 'underconstrained' from the standpoint that 

the equations are insensitive to surface orientation. They are more sensitive to other 

surface parameters, such as surface curvature [13]. Underconstraint of the model 
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can account Cor lack oC convergence oC relaxation methods, but the numerical prob

lems in direct integration highlight the difficulty oC spatial inCormation propagation 

by a mechanism that is under the control oC higher-order derivatives. 

The surCace-orientation-image-irradiance equations alone do not Corm the basis 

Cor an algorithm to recover surCace orientation; they do provide a tool, however, 

Cor examining the constraint shading imposes on shape. We shall subsequently use 

them Cor that purpose. 

3. Local Computation Versus Global-Constraint 

Propagation 

'What can we learn Crom these varIOUS approaches to shape-Crom-shading? 

Direct integration oC a differential model is an inadequate computational tool. Horn 

and his colleagues, using a low-order partial differential equation, show that some 

propagation oC inCormation is possible - but numerical instability poses a difficulty 

even Cor a first-order equation. This limited success with direct integration is 

unlikely to be upgradable to a solution procedure Cor natural scenes. Since higher

order formulations are plagued with numerical instability they do not offer any 

prospect of success. 

A restricting factor in a differential model is the need for knowledge of boundary 

conditions. This seems to be a major limitation of such methods. These methods 

apply to continuous surface patches only and require a priori knowledge of solution 

values at some points within every region. This means that we must find regional 

boundaries - perhaps ascertain their type and estimate values oC surCace orientation 
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at some points within each region before we can attempt to recover shape. Is this, 

in effect, placing the cart before the horse? 

Models of the relationship between image measurements and scene variables 

that are formulated as low-order differential equations offer no relief from the neces

sity of knowing scene parameters. While information about illumination conditions 

may be obtainable from other sources within the image, or maybe calculated in 

parallel with shape, it is difficult to envisage a situation in which the surface albedo 

could be calculated before the surface shape. Albedo would seem less constrained 

than shape. The author's higher-order differential equations show that derivatives 

of image irradiance can be used to remove these parameters. 

While the relaxation schemes used to solve the image irradiance equation 

are not quite viable, their drawbacks may be attributed to the weakness of the 

surface shape constraint, namely smoothness, rather than an inherent deficiency of 

relaxation as a technique. For the higher-order surface-orientation-image-irradiance 

equations, insensitiveness to surface orientation does not allow assessment of the 

strength of surface continuity (the constraint used in the attempts to solve these 

equations by relaxation). The results reported from these relaxation procedures 

can be attributed to other aspects of the models they embody, rather than to any 

deficiency of the relaxation technique itself. Relaxation seems viable as a method 

that can satisfy global constraints without being dominated by numerical error. 

However, surface shape assumptions, that are more restrictive than those used in 

the work reviewed, appear necessary if information is to be propagated effectively 

over reasonable image distances. Relaxation schemes that implement low-order 

differential models seem practicable; schemes implementing higher-order differential 
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models are too sensitive to noise. 

In comparison with information propagation techniques, local computation of 

surface orientation, as reported by Pentland, requires strong restrictions on surface 

shape - and even these are not adequate to characterize all cases. However, local 

computation, particularly when it is based on a model involving derivatives of image 

irradiance only, does provide a means for recovering surface orientation without any 

knowledge of boundary conditions, without a priori regional segmentation (it may 

even help in this endeavor), and without knowing the scene parameters, especially 

albedo. Unfortunately, we shall not get a solution to surface orientation that is 

quantitively correct because the surface restriction is too great. Local computation 

offers the computational features we want, but the penalty to be paid - severe 

surface shape restriction - is far too great. 

\Vhat, then, seems practical? A relaxation scheme that is more constrained 

by surface type than those that have been examined? A scheme that implements 

a low-order model of information propagation? A scheme that does a lot of purely 

local computation? A scheme that can use boundary conditions wherever they are, 

but without being overly dependent on them? Of course, all this is one conjec

ture. There may well be a group of models that provide purely local computation, 

along with a means of determining when each model is applicable. Higher-order 

differential models, however, or low-order differential models that require too much 

a priori scene knowledge do not appear practicable. For any realistic model it seems 

inevitable that local processing must play an important role. Consequently, what 

can we compute locally from. the shading data? This is the question we shall now 

address. 
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4. Analysis of Local Computation 

The relationship between surface orientation and image irradiance for a 

j--- uniformly diffuse reflecting surface that is doubly curved is given by the surface-
J 

orientation-image-irradiance equations of Section 2.3. Parameter counting reveals -
that local image measurements are insufficient to specify surface orientation for the 

.- general case, but shape constraints can overcome these degrees of freedom. Since we 

j , 

,

J 

r 
I 
J 

wish to calculate surface shape locally, we consider the case in which we can assume 

a constant curvature over the small surface patch from which we draw information 

for the local calculation. Of course the curvature varies with direction; we only 

assume that we can ignore any change in curvature over the surface patch. Of 

course, this assumption is not valid in general; we are restricting our attention to 

this case to simplify the analysis. If we cannot determine what shape information 

is available in this restricted case, we are not likely to understand the general case. 

For this case, when we ignore curvature change, Ixx = Iyy = Ixy = mxx = myy = 

mxy = 0, and from the surface-orientat~on-image-irradiance equations we derive 

the expressions 

Ixx _ Ix2(1- m2) + mx2(1-/2) + 2/xmxlm 
Ixy - ixiy(1 - m2) + mxmy(1 _/2) + (lxmy + lymx)/m 

Iyy _ Iy 2(1_ m2) + m y2(1_/2) + 2iymylm 

Ixy Ixly(1 - m2) + mxmy(1 _/2) + (lxmy + lymx)/m 

Notice that these relationships are only between surface shape and the second 

derivatives of the image irradiance. It is the assumption of constant curvature, 

not the more restrictive sphericity assumption (used by Pentland to recover sur-

face orientation from the second derivatives of image irradiance), that is necessary 

to relate shape and just the second derivatives of the image irradiance. Image 
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measurements are generally dependent on scene parameters other than those en-

coding shape. The first and second derivatives of image irradiance depend on the 

lighting position and the surface albedo, but the ratios of second derivatives are 

independent of all scene parameters except surface shape. 

Can we use the above expressions to calculate surface orientation? We have 

previously [13] pointed to the insensitivity of surface-orientation-image-irradiance 

equations to surface orientation. The above expressions are also insensitive to sur-

face orientation. We see this in the following considerations. Algebraic manipulation 

of the above expressions yields 

Ixx Ix 2 + mx2 - (/xm -lmx)2 

Iyy = Iy 2 + my2 - (Iym -lmy)2 

Suppose that over an image patch we know values of I and m that satisfy the above 

expression. Consider now this expression for F when 
"" 

at each point of the image patch. Using finite-difference formulas to calculate the 

derivatives of the surface normal, we obtain 

I~x _ 1~2 + m~2 - (/~m' _1'm~)2 

I~y - l~ 2 + m~ 2 
- (/~m' _1'm~)2 

wI 21x 
2 + W2 2mx2 - W1 2W2 2(lx m -lmx )2 

-
W1 21/ + W2 2m y2 - W12w22(lym _lmy)2 

Note that, as the magnitude of WI or W2 is varied, the numerator and denominator of 

I' . I'k b th 'th . d I' . . I IF vary In I e manner; 0 el er Increase or ecrease; IF remaIns approxImate y 
"" "" 

equal to k The ratios of the second derivatives of image irradiance are not I yy ' 

-
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sensitive to surface orientation. We cannot get further shape information from 

other image measurements, as the first and second derivatives of image irradiance 

are dependent on the surface albedo and the lighting conditions, and the image 

irradiance is dependent on surface albedo, lighting conditions, and the level of 

:- constant illumination from such sources as atmospheric scatter and the dark current 
! 

-, 
of the sensor. Surface orientation can be computed locally only when very restrictive 

assumptions about surface shape are made. Without such restrictions there is not 

enough information in the shading to decouple surface orientation effects from those 

of albedo and illumination. 

If shading is insufficient to allow surface orientation to be recovered, what then 

does the shading specify? Does it specify curvature? Can we compute it locally? 

Consider the above expressions for ~, and !JiJL1
1 

• Suppose that we know the correct 
"II "II 

values for I and m at an image point and we want to calculate Ix,ly,mx, and my. 

If ix,iy,mx, and my is a solution, then so is wlx,wly,wmx, and wmy, where w 

is any constant. Curvature cannot be computed locally (without further shape 

r- assumptions). The ratios of second derivatives of image irradiance contain shape 
! 

r 

information, yet are insensitive to surface orientation and do not allow computation 

of the curvature. What information about the surface do they encode? 

To answer this question, we first rewrite the expressions for ~ll and!..JtJL III 
"II l"y 

vector dot product form: 

Ixx _ [1z(/, m, JI-/2 - m2)].[Iz(l, m, JI-/2 - m2)] 

Ixy - [#X(l, m, JI-/2 - m2)].[fy(/, m, JI-/2 - m2)] 

Iyy _ [/y(l, m, JI-/2 - m2)].[/y(/, m, JI-/2 - m 2)] 

Ixy - [Iz(l, m, JI-/2 - m2)].[t(l, m, \1'1-/2 - m2)] 

Using the notation N = (I, m, \1'1-/2 - m 2), for the unit surface normal, we obtain 

;-
I 
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where N x = i!}J- and Ny = W-. 
For the case studied - when curvature changes are ignored - the ratios of 

the second derivatives of image irradiance measure the relative squared curvature 

of the surface. In other words, the ratios measure the relative change of the surface 

normal as we move along orthogonal image directions. However, relative curvature 

calculated locally at each image point constitutes insufficient information to allow 

surface shape reconstruction in the absence of further information about surface 

parameters. From shading information alone shape is an unattainable goal. 

If we can find surface shapes, however, for which knowledge of relative cur-

vature implies stronger information about the surface, e.g., surface orientation as 

in the case of a sphere, and if these surface shapes are reasonable approximations 

of the surfaces found in nature, then we may be able to recover stronger shape 

information locally. Locally there is not enough information to calculate surface 

shape without further knowledge, or without additional assumptions about surface 

shape. Pentland's work shows that an assumption of sphericity is strong enough to 

allow surface orientation to be calculated locally. Is this ability to calculate surface 

orientation specifically related to sphericity - or is it a feature that is generally true 

when we restrict the surface shape to cases in which the number of free parameters 

is no more than that for a spherical surface? In the foregoing discussion we have 

assumed that the surface is doubly curved. We shall now consider the images of 

singularly curved surfaces. 
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Just as we did for doubly curved surfaces, we assume that the derivatives of 

surface curvature can be ignored when we consider local computation of surface 

parameters. Differentiating the image irradiance equation, we obtain the same 

expression as before for the doubly curved surface, namely, 

For a singularly curved surface (/xmy -Iymx = 0) when surface curvature is locally 

constant, the second derivatives of image irradiance are not independent, Ixxlyy = 
Ixy 2 • Consequently, we can derive only one expression relating shape and the second 

derivatives of image irradiance, rather than the two expressions we derived for 

doubly curved surfaces . .As before, it follows that 

At first, it might appear that there is more shape information in the first derivatives 

of image irradiance for 

Ixmll - IlImx = 0 

Ixlll - IlIlx = 0 

But this is not the case, as the first and second derivatives of image irradiance are 

not independent. For singularly curved surfaces, when we ignore curvature change, 

Ixx _ (h)2 
Iyy - Iy • 

For the singularly curved and doubly curved surfaces studied, local shading 

specifies the relative curvature of the surface along orthogonal image coordinates, 

which is the most we can hope to recover by local computation. In general, we 

cannot ignore curvature change over a patch. In this case, the information available 
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locally in the image combines data on relative curvature and curvature change. In 

the restricted case in which the the surface is assumed to be spherical the surface 

orientation can be calculated. However, this appears to be a very special situation 

based on the sphericity assumption rather than on a restriction in the number of 

parameters needed to specify the surface. Since surfaces in general are not locally 

spherical, one is forced to conclude that shading alone cannot enable prediction of 

surface shape by purely local computation. 

5. Conclusions 

The recovery of a scene's surface shape from its image is fundamental to 

the vision process. Our purpose in processing an image is the recovery of scene 

properties, not those of the image per se. In remote sensing it is these scene 

properties that we wish to measure, but, to extract them, we have to understand 

how these scene properties are manifested in the image data. A conceptual model of 

the relationship between scene and image parameters is provided by intrinsic images. 

Each intrinsic image specifies, for each point in the image, the value of one of the 

scene parameters that contribute to the measured image intensity. Vision models 

try to recover these parameters as best they can, whereupon a type of relaxation 

process adjusts their values so that they constitute a consistent interpretation of the 

scene's structure. Which parameters are specified by separate intrinsic images and 

which are composite is unknown, but it is essential that they be estimable without 

the need to know the values of the other intrinsic images. Shape-from-shading 

proposes a source of information, namely shading, from which shape information is 
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to be recovered - but what shape information does it actually encode? 

Local shading specifies no more than the relative curvature of the scene's 

surface along orthogonal image directions. In general, even the recovery of relative 

curvature is complicated by change in the curvature of the surface. However, surface 

shape variables are related to image measurements in a fashion that is not dependent 

on knowing the other scene parameters. Shading provides direct shape information, 

but this is not enough for reconstruction of the surface shape. Further relationships 

between shape variables and image properties must be established before shape 

recovery is possible. 

The various approaches reviewed have attempted to recover surface orientation 

-. from shading. To do so they have added extra information, such as known boundary 

conditions or constraints upon surface shape. The performance of these various 

models allows us to draw the following conclusions: 

• Direct integration of differential models of scene properties requires much a 

priori information and has to contend with major computational problems. 

• Local computation must playa major role in the recovery of scene parameters, 

-. but the models used have been overly restrictive in an effort to recover 

particular information. 

• A relaxation mechanism, based on a strong low-order differential model, seems 

:-. 
a viable means of propagating spatial information and constraints. 

Shading provides a basis for an intrinsic image, specifying relative surface 

curvature and curvature change, but this intrinsic image alone is insufficient for 

surface shape recovery. Other models incorporating other image measurements are 

needed to complement shading. Such models should utilize the advantages of local 
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computation. 
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Appendix A 

If a surface is twice differentiable, then 

We call this the surface continuity equation, even though surface continuity is less 
demanding than the requirement that the surface be twice differentiable. 
Proof: For a continuous twice-differential surface, 

Zxy'= Zyx . 

But P = Zx and q = Zy, so 

However, 

Hence, 

-I 
p = -;:::::::;;;:::::::::;: 

\1'1-/2 - m2 

-m 

ly(1 - m 2) + mylm 
py = - .l 

(1-/2 - m2)2 
m z(I-/2) + Izlm 

qx=-
(1-/2 - m2)i 

Then, substituting in py = qx yields 

Appendix B 

Developable surfaces are characterized by the differential equation 

Proof: With the exception of a cylinder whose axis is parallel to the Z axis, the 
differential equation defining all developable surfaces is [5] 

ZzxZyy - ZZy2 = 0 . 
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As the surface is twice differentiable, then Zxy = Zyx so 

ZxxZyy - ZxyZyx = 0 . 

As P = Zx and q = Zy then 

But 

Hence, 

-I 

-m 
q = --;;:::::::;:==::;; 

J1-/2 - m2 

Ix(l- m 2) + mxlm 
Px= 

(1-/2 - m2)~ 

ly(l- m 2) + mylm 
py =- a 

(1-/2 - m 2)2 
. mx(1-12) + lxlm 

qx=- (1-12-m2)t 

m y(1-12) + lylm 
qy =-

(1-12-m2)i 

SUbstituting in Pxqy - Pyqx = 0 gives 

Appendix C 

The relationships between surface orientation and image irradiance for a de
velopable surface are 

Ixmy - Iymx = 0 , 

IzllI - IlIlz = 0 . 

Proof: Differentiating the image irradiance equation, I(x, y) = R(l, m), we obtain 

Ix = Rl1x + Rmmx 

Iy = Rlly + Rmmy 
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Now 
Ix 2{my{I_/2) + Iylm) = Rl2lx{lxm y{1 _/2) + Ixlylm) 

+Rm2mx{mXmy{I-/2) + Iymxlm) 

+2RlRmlx{mxmy{I-/2) + Iymxlm) , 

1/(/x{1- m2) + mxlm) = Rl21y{IXly{l- m2) + lymxlm) 

+Rm 2my(/xmy{l- m2) + mxmylm) 

+2RlRmly{lxmy{l- m2) + mxmylm) 

But, for a developable surface Ixmy = Iymx, (see Appendix B); hence 

Ix 2{my{I_/2) + Iylm) = Rl2lx{lymx{1 _/2) + Ixlylm) 

+Rm 2mx{mxm y{I-/2) + Ixmylm) 

+2RtRmlx{mxmy{I-/2) + lxmylm) , 

1/(lx{1 - m2) + mxlm) = Rt2Iy{lxly{l- m2) + Ixmylm) 

+Rm2my{/ymx{l- m2) + mxmylm) 

+2RtRmly(lymx{l- m2) + mxmylm) 

Therefore, 

Ix 2(my{1 _/2) + Iylm) =(Rl2Ixly + Rm 2mxm y + 2RlRmlxmy)(mx{1 _/2) + Ixlm) , 

1/(lx(1 - m2) + mxlm) =(Rl2Ixly + Rm2mxmy + 2RtRmlymx)(ly(l- m2) + mylm) 

However, the surface continuity equation, (see Appendix A), is 

ly{l- m2) + mylm = mx{1-/2) + Ixlm . 

\Ve have the required result, i.e., that the relationship between surface orientation 
and image irradiance for a developable surface is 

Ix 2(m y{I-/2) + Iylm) = 1/{/x(l- m2) + mxlm) 

In terms of pand q, the equivalent form is 

Ix2qy - ly2px = 0 

In terms of depth z, the equivalent form is 

Note that, in addition, 

Ix2zyy - I.}zxx = 0 

Ixmy - Iymx = Rt(/xmy -Iymx) 

Ixly - Iylx = Rm{lymx -Ixmy) 

Hence, for a developable surface Ixmy - Iymx = 0, we obtain the required results 

Ixmy - Iymx = 0 , 

Ixly - Iylx = 0 
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ABSTRACT 

Texture is known to be important in the analysis of 

radar images for geologic applications. It has previously 

been shown that texture features derived from the grey-level 

co-occurrence matrix (GLCM) can be used to separate large 

scale texture in radar images. Here the influence of sensor 

parameters, specifically the spatial and radiometric 

resolution and flight parameters, i.e., the orientation of 

the surface structure relative to the sensor, on the ability 

to classify texture based on the GLCM features is 

investigated. It was found that changing these sensor and 

f'light parameters greatly affects the usefulness of the GLCM 

for classifying texture on radar images. 

\ 
- , 

-, 

...... 

-, 

-. , 



579 

I. Introduction 

Spectral, textural temporal and contextual features are 

four important pattern elements used in human interpretation -! 
of image data in general and SAR data in particular. 

,.... Spectral features describe the average band-to-band tonal 

variations in a multi-band image set, whereas textural 

,~ 

features describe the spatial distribution of tonal values 

within a band. contextual features contain information 

about the relative arrangement of image segments belonging 

to different categories, and temporal features describe 

changes in image attributes as a function of time. However, 

when small image areas within, say, a synthetic aperture 

radar (SAR) image are independently processed on a computer 

for automated analyses only the tonal and textural features 

are usually available in making decisions. 

In much of the automated procedures for processing 

radar image data from small areas, such as in 

crop-classification studies, only the average tonal values 

are used for developing a classification algorithm. 

Textural features are generally ignored on the basis that 

the poor resolution of radar imagery does not provide 

meaningful textural information for such applications since 

the areal extent of the target is usually small. However, 

there are many other applications such as the identification 

of large scale geological formations, land-use patterns, 

etc., where the resolution is more than adequate to provide 
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textural information. Indeed, in these applications texture 

is probably the most important image feature. It was 

previously shown [1] that texture features derived from the 

grey-level co-occurrence matrix (GLCM) can be used to 

discriminate texture in radar images. We describe in this 

paper the influence of sensor and flight parameters on our 

ability to quantitatively classify textures in radar images 

using the GLCM. The effect of spatial and radiometric 

resolution on texture classification was studied in one 

experiment. It was found that the classification was very 

sensitive to these sensor parameters, only the image with 

the best spatial and radiometric resolutions was 

quantitatively useful. Another experiment was conducted to 

determine how different flight paths, i.e., looking at the 

same terrain from different angles with the same sensor and 

incidence angle, changed the texture classification. 

Optical imaging systems rely on the sun to illuminate the 

scene and thus the sun angle becomes a factor; however, 

mission profiles for these sensors are usually designed to 

minimize this effect. For example, the LANDSAT series of 

sensors uses a high sun angle. On the other hand, imaging 

radars provide their own illumination and it is not clear 

what effect observing the same geologic structure from 

different angles will have on the automated analysis. 

In the following section the texture features used here 

to separate different surface structures are briefly 

-, 

-, 

-. 
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described. The sensitivity of these texture features to 

changes in radiometric and spatial resolution is discussed 

] ¥ 

next. Radar image simulation is then used to evaluate the 

sensitivity of GLCM texture features to changes in the 

orientation of the surface structure and the radar. The 

results of the two studies described in this paper indicate 

that the usefulness of textural features in automated 

analysis of radar images is sensitive to changes in the 

spatial and radiometric resolution of the system as well as 

the target/sensor geometry. 

II. The Texture Features 

The textural feature extraction algorithm employed here 

has been widely used [2-5] for analyzing a variety of 

photographic images. The procedure is based on the 

assumption that the texture information in an image block 

III is contained in the overall or I average I spatial 

relationship which the grey tones in the image III have to 

one another. This relationship can be characterized by a 

set of grey-level co-occurrence (GLC) matrices. We describe 

a procedure for computing a set of GLC matrices for a given 

image block and define a set of numerical textural 

descriptors (features) that can be extracted from the GLC 

matrices. These textural features can be used for automated 

analysis and classification of blocks of radar imagery. 

Image texture may be viewed as a global pattern arising from 

r--
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a deterministic or random repetition of local subpatterns or 

primitives. The structure resulting from this repetition 

could be very useful for discriminating between the contents 

of the image of a complex scene. A number of approaches 

have been suggested for extracting features that will 

discriminate between different textures [2-6]. Of these 

approaches, it has been found that textural features derived 

from grey-level co-occurrence matrices (GLCM) are most 

useful for analyzing the contents of a variety of imagery in 

remote sensing, biomedical and other applications [7-11]. 

The GLCM approach to texture analysis is based on the 

conjecture that the texture information in an image is 

contained in the overall or average spatial relationship 

between the grey tones of the image. 

The second-order grey-level co-occurrence matrix of an 

image is defined as follows. Let f(x,y) be a rectangular 

digital picture defined over the domain xe[O,n ), ye[O,n ), x y 

x,yeI. Let n be the number of grey levels in f. 
9 

The 

unnormalized, second-order GLC matrix is a square matrix 

P of dimension ng" The (i,j)-th entry in P, denoted 

by Pij , is a fUnction of the image tonal values and a 

displacement vector d = (d1 ,d2 ). The entries P .. are 
1) 

unnormalized counts of how many times two neighboring 

resolution cells which are spatially separated by d occur 

on the image, one with grey tone i and the other with grey 

tone j. That is, 



;
I 

r 
I ' 

= #{(ml,nl ), (m2 ,n2 ») I f(ml,n l ) = i, 

f(m2 ,n2 ) = j, and (m2 ,n2 ) - (ml,n l ) = d} , 

where # denotes the number of elements in the set, the 

( 1) 

indices m
l

, m2 and n l , n2 take on integer values in the 

intervals [O,nx )' [O,ny ). The normalized GLC matrix P 

with entries Pij is obtained from P by dividing each entry 

in P by the total number of paired occurrences. The 

definition of second-order GLC matrices can be extended to 

include third- and higher-order GLC matrices. While 

higher-order GLC matrices may be important in some 

applications, much of the recent work in texture analysis 

has been based on second-order GLC matrices. 

The second-order GLC matrices are computed for various 

values of the displacement vector d, and features derived 

from the GLC matrices are used for classifying the contents 

of an image. 

Some of the commonly used textural features derived 

from the GLC matrix are: 

1) Uniformity (sum of squares): 

I: P~j (2a) 

ij 

2) Contrast: 

I: I: (i_j)2 Pij (2b) 

i j 
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3) Correlation: 

I: I: (i-Ilx ) :j-:y) Pij 

i j x Y 

4) Entropy: 

I: :E Pij log Pij 
i j 

5) Inverse Difference Moment: 

I: I:' (Pij)P /1 i-j IV 

i j 
irj 

6) Maximum Probability: 

max p .. . . 1J 1,J 

(2c) 

(2d) 

(2e) 

(2f) 

For a variety of imagery (aerial, micrographic and x-ray) 

the relationship between these textural features, their 

values and what they represent in terms of visual perception 

of texture are reasonably well understood. Using features 

of the form given above, Haralick and Shanmugan [5-7] were 

able to classify a variety of images with over 85% 

classification accuracy. These features have also been used 

to separate texture in radar images [1]. 

I I I. Texture Analysis Of SAR Images With Different, 
Spatial And Radiometric Resolution 

Numerical descriptions of texture (specifically those 

derived from the grey-level co-occurrence matrix (GLCM) as 

in Section II) have been shown to separate some simple 

geological features [1]. To efficiently design a spaceborne 



SAR for geologic exploration it is of interest to determine 

,. ' how the ability to separate geological features using the 

GLOM desired features varies with important system 

,---. 
I 

----j 
I 

I 
I 
1 

I 
I 

parameters, e.g., spatial and radiometric resolution. 

A limited set of radar images with different spatial 

and radiometric resolutions were obtained (primarily from 

the Jet Propulsion Laboratory [12]). These images were 

generated by appropriate processing of the Seasat-A SAR 

video signal, and were of a geologically interesting area in 

Tennessee (Figure 1). The specific areas that were studied 

are outlined in white. The combinations of spatial and 

radiometric resolution contained in this data set were (25 

m, 4 looks), (50 m, 4 looks), (100 m, 4 looks), (50 m, 2 

looks), and (50 m, 1 look). Within the Tennessee test area, 

five distinct textures were identified (see Table 1 for a 

description of the geology and topography) and five to seven 

samples of each texture obtained (see Figure 1). A sample 

of a texture is an image (in this case 3.4 km x 3.4 km in 

size) containing only one texture type. Thus for each set 

of sensor parameters 30 texture samples were obtained, a 

total of 150 texture samples (images) were used in this 

study. For each texture sample a GLOM was calculated and 

texture features found. Specifically, uniformity, contrast, 

correlation, entropy, inverse difference moment~ and maximum 

probability were the texture features used here. Following 

[1] the GLOM were calculated for distances of 1, 2 and 4 at 
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angles of 0°, 45°, 90°, and 135°. The above texture 

features were calculated for each distance and angle. In 

laddition, the average over all angles for each texture 

feature was calculated. Thus each texture sample is 

described by a set of 30 numbers (6 texture features, 4 

angles, and the average for each feature). 

Scatter diagrams of the numerical values for one pair 

of texture features are shown in Figure 2. These plots are 

for distance 4 and result from averaging all four GLCM 

angles. All five textures can be separated using the 

correlation and maximum probability (Figure 2) features only 

for the system with a 25 m spatial resolution and with four 

independent samples averaged. As either the radiometric 

resolution is degraded (decreased number of independent 

samples or looks averaged) or the spatial resolution is 

degraded the ability to separate these textures is also 

degraded. This same result was found for other combinations 

of texture features [13]. In all cases only the images with 

25 m, 4 looks could be quantitatively used to separate these 

textures using the GLCM. 

This experiment reinforces the conclusions of our 

previous work [1]: automatically derived texture features 

can be used to discriminate texture in radar images of rough 

terrain. Additionally, this study shows that the ability to 

use the GLCM to classify texture is strongly dependent upon 

both the sensor's spatial and radiometric resolution. Even 
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though the data set used for this study was very limited 

these results do indicate that the usefulness of textural 

features for radar image analysis is sensitive to the 

spatial and radiometric resolutions of the sensor. This 

should be expected because it is well ~lOwn that for manual 

analysis the interpretability of radar images is sensitive 

to the radiometric and spatial resolutions [14-17]. Thus, 

this study demonstrated that this sensitivity also exists 

for automatic analysis. 

IV. A study Of The Effect Of Look Direction 
On Texture In SAR Images 

For an automatic texture analysis system for radar to 

be successful, a set of texture features must be found which 

are invariant to the flight path of the sensor. This 

invariance is clearly needed because the orientation of the 

terrain features relative to the sensor's flight path is not 

~own a priori. For the geologic analysis of radar imagery 

where terrain elevation plays a dominant role the imaging 

geometry of radar would seem to be a dominant factor. Also 

the question of invariance is important in the search for 

'optimum' sensor configurations. For example, it might be 

possible to classify certain terrain features at one sensor 

orientation but not at another. However, because the 

orientation of the sensor to the terrain features of 

interest will never be ~own a priori an optimum sensor 

configuration might not exist. 

587 



588 

The purpose of this section is to describe the results 

of an experiment which was aimed at determining the 

sensitivity of GLCM texture features, shown to be valuable 

as a discriminate, to the sensor flight direction, i.e., the 

target/sensor orientation. It was found (given the 

limitations of the experiment) that the texture features 

considered here could be classified for one or two 

target/sensor orientations but not for all the three 

orientations considered here. 

To isolate the effect of sensor look direction it was 

necessary to use radar simulation [18] to create a set of 

images with controlled terrain and sensor parameters. 

Further it was possible using the simulation approach to 

remove (i.e., not include) the effect of speckle [18]. 

Therefore, this study focused on how shadow, layover, and 

range compression changed the image manifestations of 

complex terrain structure as the look direction of the 

sensor was varied. 

In radar image simulation (for a complete description 

see [18]), the terrain to be analyzed is represented as a 

two-dimensional integer array referred to as a data base. 

This array is stored on a file containing fixed-length 

records. These correspond directly to rows in the array 

which contain a fixed number of words (columns). This 

relationship is shown in Figure 3. 

The three data bases used in this study were generated 



from data received from the u.s. Geological Survey in the 

form of three digital elevation models. These were received 

containing elevation values which correspond directly to a 

1:24000 (1 inch = 2000 feet) topographical map sampled at 30 

meter intervals in both the x and y directions. Let x 

define columns in our data base and y to refer to rows (see 

Figure 3). In these data x and y both represent 30 meters 

on the ground. Thus each elevation value was considered to 

be valid for an area of 30x30 square meters. 

The third dimension of the data base, h, represents the 

elevation of each cell above a given reference elevation. 

Each increment in elevation corresponds to ~h, which 

describes a scaling factor for determining the quantization 

of the actual elevation. In the digital elevation models 

used in this study, the value for ~h was equal to one meter. 

This led to a convenient one-to-one relationship for the 

elevations. 

The relationship among the values for ~x, ~y and ~h 

describes the degree to which the elevation changes over an 

area on the ground. Since only the relative structures of 

the terrain are of interest in this study, this relationship 

may be altered as needed. After first removing the 

reference elevation constant the data was scaled by 0.25. 

This allowed the ~x and ~y values to represent 7.5 meters, 

while the value for ~h remained equal to 1 meter. 

The simulation of synthetic aperture radar imagery is 
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made possible through the application of a computer program 

developed at the University of Kansas Remote Sensing 

Laboratory [18]. This algorithm will simulate the effects 

of a spaceborne SAR with a look direction parallel to the 

rows of the data base array. Since the simulation program 

always processes the data row-by-row, the only way to 

achieve a different look direction is to modify, i.e., 

rotate, the data base. Keeping this in mind, the unmodified 

data base is defined to be at a look direction angle of 0°. 

For this study simulated radar imagery was to be generated 

for the same areas'with look directions of 0°, 45°, and 90°. 

This required that the data bases be correctly oriented 

before the simulation was performed. For this, computer 

programs were applied to rotate the original data in order 

to simulate different look angles. Nine data bases were 

thus available for simulation (3 terrain models at 3 look 

directions). These nine data bases were then processed 

using the simulation program. The radar parameters used for 

the simulation were similar to those of the Seasat-A SAR. 

The altitude of the sensor was considered to be roughly 800 

kilometers, and the angle of incidence between the sensor 

and the first cell of the data base was given to be 20 

degrees. For the purposes of this study, it was assumed 

that all of the terrain data was of one scattering category. 

The scattering coefficient as a function of incidence angle 

is shown in Figure 4. 
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Using these parameters along with the assumed value of 

7.5 meters for both along-track and across-track 

resolutions, radar images were simulated, producing the 

desired set of controlled images. However, these images are 

now rotated relative to each other. To eliminate the 

rotational dependence of the GLCM the simulations were 

converted to one coordinate system. 

Visually the effect of changing the flight path is 

dramatic. Figure Sa-c contains the simulated radar images 

for one of the digital terrain models. In Figure Sa the 

sensor's look direction is from right to left. This is our 

reference direction and is referred to as the 0° look angle. 

The simulation of a 45° look angle (i.e., from the upper 

left to the lower right) is shown in Figure Sb and the 90° 

~-, simulation (i.e., from top to bottom) is shown in Figure Sc. 

Similarly, Figures 6a-c and 7a-c contain the image 

simulations for two other digital terrain models. Close 

analysis of these images reveals many features which are 

totally obscured by shadow at one look angle but not at the 

others as was shown in [17]. Also, the spatial structure 

changes as the look angle is varied from 0° to 45° to 90°. 

Beginning with the 0° look direction three distinct 

spatial structures, textures, were identified. 

TEXTURE 1 contained low relief with some small hills and 

ridges, maximum relief is about 100-300 feet. 
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TEXTURE 2 contained elongated ridges and mountains usually 

separated by steep gradient streams, maximum 

relief is about 500-700 feet. 

TEXTURE 3 contained long, narrow valleys with steep slopes 

and depths of about 300-400 feet. Valley streams 

have medium to low gradients. 

From each texture, 3 or 4 samples (subimages) were obtained. 

The same subimages were then sampled from the 45° and 90° 

look direction simulations. A total of 33 subimages 

provided the input for this experiment (11 subimages for 

each look direction). These subimages are shown in Figure 

8a-c. The specific research questions addressed by this 

experiment were (1) can these three textures be classified 

using GLCM features at any of the three look directions, and 

(2) can these three textures be classified using GLCM 

features independent of the look direction, i.e., are the 

texture features derived from the same spatial structure 

independent of the look direction of the sensor, thus, can 

the textures be classified using all three orientations 

simultaneously. 

For each of the 33 subimages described above a GLCM and 

the resulting texture features were calculated for distances 

of 4, 6, and 10 at 0°, 45°, 90°, and 135° (these angles will 

be referred to as GLC angles as opposed to the look 

direction angle). It was found [13] that distances 4 and 10 
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showed basically the same trend as 6 so only the distance 6 

results will be discussed. Also, it was found that 

averaging the texture features over the GLC angle as was 

done previously [1] destroyed our ability to separate 

textures one and two. This is expected from their spatial 

structure. Thus only results from individual GLC angles 

will be presented. The GLCM texture features were analyzed 

pair-wise as was also done previously [1]. 

Analysis of the data qualitatively showed that all 

three textures could be classified at one or two 

target/sensor orientations but not at all three 

simultaneously. For example, Figure 9a-c contains the 

scattergrams for the maximum probability and contrast 

texture features at GLC distance 6 and GLC angle of 0°. At 

a look direction of 0° (Figure 9a) none of the three 

textures can be separated, while at 45° (Figure 9b) all 

three textures can be classified. Analysis of other texture 

pairs shows the same trend, i.e., the textures considered 

here can be classified for one or two sensor look directions 

but not at all three [13]. If the texture samples for each 

terrain structure from all three look directions are 

combined it becomes obvious that the textures considered 

here cannot be classified independent of look direction (see 

Figure lOa-e). 

The purpose of this analysis was to determine the 

sensitivity that GLCM texture features show to changes in 
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the orientation of the surface structure relative to the 

sensor. Radar image simulation was used to generate a 

suitable set of images with the effects of the sensor flight 

path isolated. Within the limitations of this experiment, 

i.e., three different terrain structures, and three flight 

directions, it was shown that (1) the GLCM texture features 

can be used to classify the terrain structures at one or two 

flight directions but not at all three, and (2) the GLCM 

texture features cannot be used to classify these terrain 

structures independent of the flight path. The search of 

the optimum set of sensor parameters for geologic 

applications is thus complicated. That is, the results of 

this study indicate that the optimum sensor for classifying 

(using either manual or automatic techniques) surface 

structure is dependent upon the orientation of the structure 

to the flight path of the sensor. Because of the 

monostatistic nature of radar imaging the same surface 

structure imaged at two different flight angles can (and 

often do) appear totally dissimilar. A set of sensor 

parameters optimized to detect these structures at one 

flight angle might be totally different if the flight angle 

were changed. 

v. Conclusions And Recommendations 

Texture is an important characteristic of radar images 

of rough terrain. It was shown that the GLCM derived 
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texture features can be used ,to classify texture. In this 

paper we have demonstrated that GLCM derived texture 

features are sensitive to both sensor and flight parameters. 

In fact, we lose our ability to classify texture by these 

features if either the radiometric or spatial resolution is 

degraded. We also found that these texture features are 

sensitive to the sensor flight path. We could classify the 

surface structure for one or two target/sensor orientations 

but not for all three considered simultaneously. That is, 

GLCM texture features cannot be used to classify texture 

independent of the flight path. 

While general conclusions on the sensitivity of 

textural features to system and flight parameters can be 

made from the results of this study, there is a need to 

further refine these conclusions, specifically it is 

recommended that the sensitivity shown here be 

quantitatively studied. Quantitative results are needed to 

help guide system design and flight planning. Two 

approaches to obtaining quantitative results should be 

pursued in parallel. First, an analytic study of the 

relationships among surface, sensor and flight parameters 

and the GLCM is needed. Second, more radar images should be 

analyzed. With more data the qualitative discussion of the 

effects of spatial and radiometric resolution can be 

extended to a quantitative analysis, for example plots of 

the 'variance' of each cluster as a function of resolution 
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could then be studied. The ultimate goal of such an 

analysis would be an expression for the sensitivity of each 

texture feature as a function of resolution. This study 

also dealt with only radical changes in the flight direction 

over a fixed site. Further analysis is now needed to 

determine the effect of small angle changes, e.g., on the 

order of 5°. Also this study only considered one angle of 

incidence. It would be interesting to determine if there 

exist some incidence angle for which we could classify 

surface structure independent of the flight angle. 
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Figure 1. SEASAT-A SAR Image. 
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TS 

T4 

T1 

T3 

T2 

GEOLOGY TOPOGRAPHY 

Rocks of the Lower Mountains and ~idges with Steep 
Pennsylvanian Consisting of Slopes and a Maximum Relief of 
Alternating Beds of Sand- of About 1S00 Feet. 
stone and Shale with a Few 
Beds of Coal. 

Rocks of the Lower to Rolling Hills and Several Ridges 
Middle Ordovician Consis- with a Maximum Relief of 
ting Primarily of Dolomite 200-300 Feet. 
and Cherty Dolomite with 
Some Beds of Limestone, 
Shale, and Sandstone. 

See T4 Area of Overall Low ReI ief but 
wi th Many Sma 11 Hills that are 
Separated by Several Creeks and 
Streams. 

Cent ra 1 Region (See T4) Rolling Hills and Elongated 
Flanked on Either Side by Ridges Separated by a Trellis 
Rocks of the Upper Part Drainage Pattern and Having a 
of the Middle Cambrian in Maximum Relief of About SOO 
Beds of Dolomite, Lime- Feet. 
stone, and Slate. 

Rocks of the Upper Pre- Mountains and Hills with Steep 
Cambrian Consisting Slopes and a Maximum Relief of 
Primarily of Metasediments. About 1000 Feet. 

Table 1. Geology and Topography of the 
Tennessee Test Area 
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3:00 - 3:30 
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I Thursday, June 2: 
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I 
8:45 - 10:00 
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1: 30 - 2: 15 
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IIImage Matching Using Hough Transforms" 

Laveen N. Kanal, LNK Corporation 
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II Shape from Shadi ng: An Assessment II 
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