MULTISATELLITE ATTITUDE DETERMINATION/ OPTICAL ASPECT BIAS DETERMINATION (MSAD/OABIAS) SYSTEM DESCRIPTION AND OPERATING GUIDE
VOLUME 3
OPERATING GUIDE
Prepared for GODDARD SPACE FLIGHT CENTER

By COMPUTER SCIENCES CORPORATION

Under

Contract NAS 5-11999
Task Assignment 396

Prepared by:
M. Joseph

Date
J. Keat
K. S. Liu
M. E. Plett
M. A. Shear
T. Shinohara
J. R. Wertz

Approved by:
R. D. Cardwell Date

Technical Area Manager
$\overline{\text { F. J. Douglas }} \begin{aligned} & \text { Quality Assurance Assistant }\end{aligned}$
Date
R. L. Taylor
Project Manager

Page intentionally left blank

PRELIMINARY DRAFT

PREFACE

This volume is the third of four which make up the Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System Description and Operating Guide. The volumes are

Volume 1 - Introduction and Analysis
Volume 2 - System Description
Volume 3 - Operating Guide
Volume 4 - Program Listing and Sample Execution
This volume contains a complete description of all MSAD/OABIAS NAMELIST control parameters, a description and a sample of all printed output unique to OABIAS and of each IBM 2250 graphics display, an explanation of and user response for all error messages generated by the MSAD/OABIAS System, and a listing of the job control language (JCL) required to operate the system.

Volume 1 contains an introductory exposition of the MSAD/OABLAS System and describes the analytic basis for the OABIAS Subsystem. This includes a detailed discussion of the recursive estimator algorithm, each of the 12 state vector elements, and the 8 observation models used.

Volume 2 describes the system flow and the components of the MSAD/OABIAS System. The table language descriptions provide detailed information relating the operational displays on the IBM 2250 display device to specific COMMON areas and subroutines within the MSAD/OABIAS System.

Volume 4 contains the program listing with supplementary output and lineprinter plots of all IBM 2250 displays occurring during a sample execution of the program. This volume preserves, in source form, the MSAD/OABIAS System as it is presented in this document.

Page intentionally left blank

PRELIMINARY DRAFT

ABSTRACT

This document describes the Multisatellite Attitude Determination/Optical Aspect Bias Determination (MSAD/OABIAS) System, designed to determine spin axis orientation and biases in the alignment or performance of optical or infrared horizon sensors and Sun sensors used for spacecraft attitude determination. MSAD/OABIAS uses any combination of eight observation models to process data from a single onboard horizon sensor and Sun sensor to determine simultaneously the two components of the attitude of the spacecraft, the initial phase of the Sun sensor, the spin rate, seven sensor biases, and the orbital in-track error associated with the spacecraft ephemeris information supplied to the system. In addition, the MSAD/OABIAS system provides a data simulator for system and performance testing, an independent deterministic attitude system for preprocessing and independent testing of biases determined, anci a multipurpose data prediction and comparison system.

MSAD/OABIAS has extensive capabilities for an interactive graphics mode and makes use of the Graphics Executive Support System (GESS), formerly known as the Multisatellite Attitude Determination System (MSAD), services. MSAD/ OABIAS is a multisatellite system capable of supporting, in its present form, Small Scientific Satellite (S^{3}), Interplanetary Monitoring Platform (IMP), Atmosphere Explorer (AE), and Synchronous Meteorological Satellite (SMS) missions or any similar missions using optical or infrared horizon scanners and providing attitude data that can be read by the MSAD/OABIAS System.

Page intentionally left blank

TABLE OR CONTENTS

VOLUME 1--INTRODUCTION AND ANALYSIS

Section 1 - Introduction $1-1$
1.1 Motivation for Bias Determination 1-1
1.2 Historical Background 1-2
1.3 System Overview 1-4
1.3.1 OADRIV 1-6
1.3.2 ODAP 1-7
1.3.3 OASYS 1-7
1.3 .4 OABIAS 1-8
1.3.5 PLOTOC 1-9
1.4 OABLAS Recursive Least-Squares Filter 1-9
1.4.1 Introduction 1-9
1.4.2 Observation Models 1-11
Section 2 - Sensor Descriptions $2-1$
2.1 Sun Sensor 2-1
2.2 Horizon Detector 2-3
2.3 AE-C Wheel-Mounted Horizon Sensors 2-5
2.4 RAE-B Panoramic Attitude Sensor 2-6
Section 3 - Analysis 3-1
3.1 Introduction $3-1$
3.2 OASYS--Deterministic Attitude Determination Subsystem 3-4
3.2.1 Input to Deterministic Process 3-4
3.2.2 Design Assumptions 3-5
3.2.3 Deterministic Logic 3-6
3.3 The Recursive Estimator Approach 3-16
3.3.1 Comparison Between Recursive Processing and Batch Processing Estimation Methods 3-16
3.3.2 The Basic Recursive Estimator Algorithm 3-19
3.3.3 Discussion of Weighting Factors 3-25
3.4 Implementation of the Recursive Estimator Algorithm in OABIAS 3-28
3.4.1 Principal Inputs 3-28
3.4.2 Observation Models 3-29
3.4.3 State Vector Elements 3-30

PRELIMINARY DRAFT

TABLE OF CONTENTS (Cont'd)

Section 3 (Cont'd)

3.4.4 Iterative Operation 3-32
3.4.5 Single Observation Iteration 3-34
3.5 Basic Geometry 3-36
3.5.1 Coordinate Frame Flow Diagram 3-36
3.5.2 Coordinate Frames GI and GI 3-38
3.5.3 Coordinate Frames SI and SC and State Vector Elements $\mathrm{x}_{3}(\psi)$ and $\mathrm{x}_{9}(\omega)$ 3-40
3.5.4 Sun Sensor Geometry and State Vector Elements $x_{8}(\Delta \beta)$ and $x_{10} \quad(\epsilon)$. 3-43
3.5.5 Horizon Detector Geometry and State Vector Elements $\mathrm{x}_{4}(\Delta \gamma), \mathrm{x}_{5}\left(\phi_{\mathrm{H}}^{\mathrm{I}}\right), \mathrm{x}_{6}\left(\phi_{\mathrm{H}}^{\mathrm{O}}\right)$, and $x_{11}\left(\epsilon_{H}\right)$ 3-43
3.5.6 State Vector Element $x_{7}(\Delta \rho)$ 3-48
3.5.7 State Vector Element $x_{12}(\Delta t)$ 3-50
3.5.8 Transformation Matrix A and State Vector Elements $\mathrm{x}_{1}\left(\mathrm{~S}_{1}\right)$ and $\mathrm{x}_{2}\left(\mathrm{~S}_{2}\right)$ 3-50
3.5.9 Transformation Matrices B_{I} and B 3-53
3.6 Observation Models 3-54
3.6.1 Model 1--Sun Angle Model 3-55
3.6.2 Model 2--Sun Sighting Time Model 3-58
3.6.3 Model 3--Nadir Vector Projection Model 3-61
3.6.4 Model 4--Horizon Crossing Time Model 3-66
3.6.5 Model 5--Sun to Earth-In and Sun to Earth-Out Dihedral Angle Model 3-70
3.6.6 Model 6--Earth Width Model 3-74
3.6.7 Model 7--Small Target Model 3-77
3.6.8 Model 8--Sun to Earth Mid-Scan Dihedral Angle Model 3-79
3.7 Computation of Central Body Angular Radius ρ_{c} 3-83
3.8 Computation of Horizon Crossing Vector \widehat{D} 3-87
3.9 Weighting Factors of the Observation Models 3-92
3.10 Summary of Section 3 3-97
Appendix A - Model Observation Partial Derivatives
Appendix B - Derivation of Recursive Processing Algorithm Used in OABIASGlossary

PRELIMINARY DRAFT

TABLE OF CONTENTS (Cont'd)

VOLUME 2--SYSTEM DESCRIPTION

Section 4 - System Flow 4-1
4.1 Overview 4-1
4. 2 External Interfaces 4-4
4.3 System Flow, Nongraphic Mode 4-5
4.4 System Flow, Graphic Mode 4-6
Section 5 - Baseline Diagram and Subroutine Descriptions 5-1
5.1 Baseline Diagram 5-1
5.2 Subroutine Descriptions 5-1
Section 6-COMMON Area Descriptions 6-1
Appendix C - Description of GESS Tables
VOLUME 3--OPERATING GUIDE
Section 7 - Operating Guide $7-1$
7.1 Introduction 7-1
7.2 Resources 7-1
7.3 Card Input $7-1$
7.3.1 . NAMELIST CONTRL 7-4
7.3.2 GESS Array Allocation Sizes $7-5$
7.3.3 GESS Display Status Flags $7-5$
7.3.4 NAMELIST MAIN 7-6
7.3.5 NAMELIST LIST 7-19
7.3.6 NAMELIST OPMAN1 $7-31$
7.3.7 NAMELIST BIASNL. 7-40
7.3.8 Description of a Sample NAMELIST 7-49
7.4 OABIAS Data Set 7-60
7.5 AE Data Set 7-63
7.6 JPL Lunar and Solar Ephemeris File 7-64
7.7 SUNRD Lunar and Solar Ephemeris File 7-64
7.8 GTDS Spacecraft Ephemeris File 7-65
7.9 DODS Spacecraft Ephemeris File 7-65
7.10 Spacecraft Attitude Tape 7-66

PRELIMINARY DRAFT

TABLE OF CONTENTS (Cont'd)

Section 7 (Cont'd)

7.11 GESS Nonresident Tables 7-66
7.12 Printed Output 7-66
7.12.1 Printed Output From the GESS Executive 7-66
7.12.2 Printed Output From OADRIV 7-68
7.12.3 Printed Output From the ODAP Subsystem 7-68
7.12.4 Printed Output From the OASYS Subsystem 7-68
7.12.5 Printed Output From the OABIAS Subsystem 7-68
7.13 CalComp Plot Tape 7-93
7.14 GESS Displays 7-93
7.14.1 Display Status Flags and Key Assignments 7-93
7.14.2 Array Allocation Sizes 7-97
7.14.3 Main Control Display 7-97
7.14.4 Options for Copying AE Data Set 7-97
7.14.5 Simulation Options Display 7-97
7.14.6 NAMELIST LIST Display 7-102
7.14.7 Options for Reading Data 7-102
7.14.8 Reader Record Displays 7-102
7.14.9 Data Record Display 7-102
7.14.10 Data Selection Options for OASYS 7-103
7.14.11 NAMELIST OPMAN1 Display 7-112
7.14.12 OASYS Block Average Display 7-112
7.14.13 OASYS Plots of Single Frame Results 7-112
7.14.14 NAMELIST BLASNL Display 7-118
7.14.15 Final Results From OABIAS 7-118
7.14.16 . Table of Errors From OABIAS 7-118
7.14.17 Table of Correlation Coefficients From OABIAS 7-126
7.14.18 State Component Plots From OABIAS 7-126
7.14.19 Plots of Uncertainties in State Components 7-126
7.14.20 Residual Plots From OABIAS 7-126
7.14.21 Options for Data Prediction 7-126
7.14.22 Plot of Predicted and Observed Rotation Angles 7-126
7.14.23 Plot of Predicted and Observed Earth Widths 7-134
7.14. 24 Core Storage and Time Remaining Display 7-134
7.15 Control With Interactive Graphics 7-138
7.15.1 Programmed Function Keys 7-138
7.15.2 Asynchronous Calls 7-140
7.16 Error Messages 7-142
7.16.1 Messages Displayed in a Graphic Mode 7-142
7.16.2 Printed Message From the ODAP Subsystem 7-149

PRELIMINARY DRAFT

TABLE OF CONTENTS (Cont'd)

Section 7 (Cont'd)

7.16.3 Printed Messages From the OASYS Subsystem 7-155
7.16.4 Printed Error Message From OABIAS $7-156$
7.17 Job Control Language 7-162
VOLUME 4--PROGRAM LISTING AND SAMPLE EXECUTIONAppendix D - Program Listing
Appendix E - Sample Execution

Preliminary draft

LIST OF ILLUSTRATIONS

Figure

1-1 MSAD/OABIAS Functional Subsystems 1-5
2-1 Sun Sensing Geometry. 2-2
2-2 Horizon Detection Geometry 2-4
2-3 RAE-B PAS Geometry 2-7
3-1 Coordinate Frame Flow 3-37
3-2 Criteria for Rotation of Frame GI 3-41
3-3 Geometry of Frames GI, SI, and SC 3-42
3-4 Sun Sensor Geometry at Sun Sighting 3-44
3-5 Horizon Detector Geometry at Central-Body-In 3-46
Crossing 3-46
3-6 Generation of Earth Radius Bias $\Delta \rho$ by Sensor Triggering Level Bias 3-49
3-7 Geometry for Model 1--Sun Angle Model 3-57
3-8 Geometry for Model 3--Nadir Vector Projection Model 3-62
3-9 Geometry for Model 4--Horizon Crossing Time Model 3-67
3-10 Geometry for Model 5--Sun to Earth-In and Sun to Earth-Out Dihedral Angle Model 3-71
3-11 Geometry for Model 6--Earth Width Model 3-76
3-12 Geometry for Model 7--Small Target Model. 3-78
3-13 Geometry for Model 8--Sun to Earth Mid-Scan Dihedral Angle Model 3-80
3-14 ρ_{c} Computation Geometry--Spherical Central Body 3-84
3-15 Resolution of Sign Ambiguity of Horizon Crossing Vector 3-90
4-1 . External Interfaces for the MSAD/OABIAS System 4-2
5-1 MSAD/OABIAS Baseline Diagram 5-2
5-2 DHMOD Flowchart 5-59
5-3 DIAMOD Flowchart 5-73
5-4j FRAPRO Flowchart 5-103
5-5 INITIL Flowchart 5-120
5-6 LNMOD Flowchart 5-146
5-7 LRMOD Flowchart 5-165
5-8 OABIAS Flowchart 5-176
5-9 OADRIV Flowchart 5-185
5-10 PRINTB Flowchart 5-287
5-11 SANMOD Flowchart 5-315
5-12 SCBMOD Flowchart 5-329
5-13 STMMOD Flowchart 5-343

PRELMMINARY DRAFT

LIST OF ILLUSTRATIONS (Cont'd)

Figure
7-1 NAMELIST CONTROL 7-67
7-2 NAMELIST MAIN 7-69
7-3 Input to OABIAS Table 7-71
7-4 OABIAS Attitude Summary--Heading Definition $7-74$
7-5 Attitude and State Vector Table From OABIAS 7-75
7-6 Uncertainty Table From OABIAS 7-77
7-7 Partial Derivative Table From OABIAS 7-79
7-8 Recursive Estimator Gain Table From OABIAS 7-80
7-9 Attitude, Observable, and Vector Table From OABIAS 7-81
7-10 Residual Table From OABIAS 7-82
7-11 Error Messages From OABIAS 7-84
7-12 Error Summary Count Table From OABIAS 7-86
7-13 OABIAS Filter Response in Right Ascension of Spin Axis $7-87$
7-14 OABIAS Filter Response in Declination of Spin Axis 7-88
7-15 Estimated Uncertainty in Right Ascension of Spin Axis. $7-89$
7-16 Estimated Uncertainty in Declination of Spin Axis 7-90
7-17 Residuals of Sun Angle Model 7-91
7-18 Residuals of Single Horizon Dihedral Angle Model. 7-92
7-19 Display Status Flags and Key Assignments. 7-94
7-20 Array Allocation Sizes 7-98
7-21 Main Control Display 7-99
7-22 Options for Copying AE Data Set $7-100$
7-23 Simulator Options 7-101
7-24 NAMELIST LIST 7-103
7-25 Options for Reading Data 7-105
7-26 Header Record Displays 7-106
7-27 Data Record Displays 7-109
7-28 Data Selection Options for OASYS. 7-111
7-29 NAMELIST OPMAN1 $7-113$
7-30 OASYS Block Average Results 7-116
7-31 Alphas Versus Frame Number, Including Rejected Points 7-119
7-32 NAMELIST BIASNL 7-120
7-33 Final Results From OABIAS 7-123
7-34 Table of Errors From OABIAS 7-125
7-35 Correlation Coefficients 7-127
7-36 Right Ascension Versus Frame Number 7-128
7-37 Uncertainty in Right Ascension Versus Frame Number 7-129
7-38 Residuals From Sun Angle Model 7-130
7-39 Options for Data Prediction 7-131

PRELMMINARY DRAFT

LIST OF ILLUSTRATIONS (Cont'd)

Figure

7-40 Predicted and Observed Rotation Angles Versus Time 7-135
7-41 Predicted and Observed Earth Widths Versus Frame Number 7-136
7-42 Core Storage and Time Remaining Display 7-137
7-43 Error Messages From ODAP 7-150
7-44 JCL to Compile, Link, and Execute MSAD/OABIAS 7-163
7-45 JCL to Execute MSAD/OABIAS 7-171
LIST OF.TABLES
Table
1-1 Dependence of Observation Models on State Vector Components 1-12
3-1 Coordinate Frames, Axes, and Unit Vectors 3-39
3-2 Weighting Factor Equation Used in OABIAS 3-95
5-1 Identification of the Elements of the Arrays Belonging to the State Vector Class of Arrays 5-25
5-2 Identification of the Elements of the Arrays Belonging to the Model Class of Arrays 5-26
5-3 Identification of the Elements of the Arrays Belonging to the Diagnostic Output Control Class of Arrays 5-27
5-4 Interpretation of Diagnostic Output Control by Array IDIAGN in COMMON INBIAS 5-28
7-1 OABLAS Error-Message Error - Table Correlation Matrix. 7-158

PRELIMINARY DRAFT

SECTION 7 - OPERATING GUIDE

7.1 INTRODUCTION

The purpose of Section 7 is to provide the user with the information required to operate the MSAD/OABIAS System in both graphic and nongraphic modes. The reader is assumed to be familiar with the material in Sections 1, 2, and 3, but not necessarily familiar with Sections 4, 5, and 6.

7.2 RESOURCES

The MSAD/OABIAS System was designed to run on the IBM System 360 Model 95. If all system options are exercised and the suggested overlay structure is used, approximately 450 K bytes of core storage are required.

A 2314 disk pack is required for the GESS nonresident tables and for the program load module. A 2250 or 2260 display device is required for operation in a graphic moce. The OABIAS data set will normally reside on disk or tape; in a simulation mode a scratch disk or scratch tape can be used. The A.tmosphere Explorer (AE) data set, if used, must reside on disk or tape. Control parameters are normally read from cards and output routed to a lineprinter, but job control language (JCL) modifications can alter this at the option of the user. The remaining data sets (attitude tape, CalComp plot tape, and ephemeris files) are optional and may reside on any stroage device (e.g., tape, disk, or data cell).

7.3 CARD INPUT; NAMELIST PARAMETERS

All of the following card input is normally read from FORTRAN unit 5, with the exception of NAMELIST CONTRL and the optional GESS control cards, which are read from FORTRAN unit 97. However, in a nongraphic mode the user may specify the FORTRAN unit number for NAMELIST BIASNL using the parameter REDUNT. The first NAMELIST BIASNL in each set must appear on unit 5.

PRELIMINARY DRAFT

Card input should be ordered as follows for a job in a nongraphic mode: FORTRAN unit 97:

1. NAMELIST CONTRL
2. GESS array allocation sizes (optional; read only if IRDART $=1$ in NAMELIST CONTROL; normally omitted)
3. GESS display status flags (optional; read only if IRDXST $=1$ in NAMELIST CONTRL; normally omitted)

FORTRAN unit 5:

1. NAMELIST MAIN
2. NAMELIST LIST (optional; read only if sumulation is specified ($\operatorname{ISIM}=1$) in NAMELIST MAIN)
3. NAMELIST OPMAN1
4. NAMELIST BLASNL
5. Additional sets of NAMELIST parameters for NAMELIST BIASNL: read only if REDUNT (1) $\neq 0$ in the previous NAMELIST BIASNL
6. NAMELIST MAIN
7. . NAMELIST LIST
8. NAMELIST OPMAN1
9. NAMELIST BIASNL
10. Additional NAMELIST sets, ordered the same as items $6-9$, above For the graphic mode, the same set of card input may be used, except that all card input following item 4 will be ignored.

Note that NAMELIST parameters are not reset to their default values after processing the first set. Thus, in a nongraphic mode, additional sets of

PRELIMINARY DRAFT

NAMELIST parameters need specify only those parameters which are to be changed from the previous set. A description of each NAMELIST follows. Each NAMELIST has been divided into logical subsets for purposes of description.

1

7.3.1 NAMELIST CONTRL

NAMELIST CONTRL is read by the GESS Executive and is read only once in a job.

Parameters in NAMELIST CONTRL are as follows:

Name	Type	Default	Description
IFTABL	I*4	96	FORTRAN unit number for GESS nonm resident tables
IFTUBE	I*4	23	FORTRAN unit number for graphics device
IFTPRT	I*4	6	FORTRAN unit number for GESS printout
IRDART 1	I*4	0	Array allocation sizes reading option: $=0$, do not read array allocation sizes $=1$, read array allocation sizes
$\operatorname{IRDXST}^{2}$	I*4	0	Display status flags reading option: $=0$, do not read display status flags $=1$, read display status flags
GSATID	R*8	'*'	Character string for satellite identification
GRUNID	R*8	1*'	Character string for run identification
IDIREC IRDTPD NUMSUB NUMCNC			-
NUMSCA KOFFEE IRYEAR IRMON IRDAY			Not applicable to MSAD/OABIAS

[^0]
PRELIMINARY DRAFT

7.3.2 GESS Array Allocation Sizes

GESS array allocation sizes may be read from cards to change the default array allocation sizes in a nongraphic mode. See Reference 13, page 4-25 for a description. This input is needed only if IRDART $=1$ in NAMELIST CONTRL. These array allocation sizes are normally omitted.
7.3.3 GESS Display Status Flags

GESS display status flags may be read from cards to change the display status flags in a nongraphic mode. See Reference 13, page 4-25 for a description. This input is needed only if IRDXST $=1$ in NAMELIST CNTRL. These display status flags are normally omitted.

7-5

PRELIMINARY DRAFT

7.3.4 NAMELIST MAIN

NAMELIST MAIN is read by OADRIV, the main control module of MSAD/
OABIAS.
The parameter for subsystem selection is as follows:

Name	Type	Default	Description
ISIM	I*4	1	```Subsystem selection indicator: \(=1\), simulate data \(=2\), read data from OABIAS data set \(=3\), display data already in core \(=4\), copy AE data set to OABIA.S data set \(=-5\), terminate```

7-6

PRELIMANARY DRAFT

MAIN
Simulation
The following parameters apply only for simulation (ISIM $=1$):

Name	Type	Default	Description
NFRAME	I*4	200	Number of frames to simulate
IREWND	I*4	1	Rewind indicator for simulated data set: $=0$, do not rewind before writing simulated data $=1$, rewind before writing simulated data
OMEGA1(2)	R*4	100.,0.0	Spin rate coefficients (degrees per second, degrees per second ${ }^{2}$)
TOMEGA(6)	R*4	6*0.0	Reference time for spin rate (universal time (UT): year, month, day, hours, minutes, seconds). The spin rate at time t is computed as: OMEGA1 1) + (t - TOMEGA) * OMEGA1(2)
IDISK	I*4	50	FORTRAN unit number for simulated OABLAS data set

PRELIMINARY DRAFT

MAIN
Copying AE Data Sct
The following parameters apply only to copying the AE data to the OABIAS data set (ISIM = 4):

Name	Type	Default	Description
IBLK1	I*4	1	First block on AE data set to be copied
IBLK2	I*4	99999	Last block on AE data set to be copied
IAEUN	I*4	49	FORTRAN unit number of the AE data set
ICSKIP	I*4	1	Record skipping indicator. Copy every ith wheel horizon sensor frame on the AE data set, where $i=$ ICSKIP
AESENS(4)	R*4		Sensor mounting angles for AE (degrees)
(1)		104.0	Wheel horizon sensor 1
(2)		118.0	Wheel horizon sensor 2
(3)		110.0	Body horizon sensor 1 or 2
(4)		110.0	Not used
IBSKIP	I*4	1	Record skipping indicator for body horizon sensor data. Copy every ith body horizon sensor frame on the AE data set, where $\mathrm{i}=$ IBSKIP
BHSREF	R*4	90.0	Azimuth of AE body horizon sensor with respect to Sun sensor (degrees)
IS UNSP	I*4	0	Inertial spin period indicator: $=0$, use spin periods reported with data $=1$, use Sun times to generate inertial spin periods
OLDRPM	R*4	0.0	Initial inertial spin period value rem ported for first frames until valid inertial period available from sun times. Valid only if ISUNSP $=1$
IBOLOF	I*4	0	OABIAS AE data set indicator: $=0$, do not write OABIAS AE data set $=1$, write OABIAS AE data set on FORTRAN unit number specified by IBOLOU
IBOLOU	I*4	49	FORTRAN unit number for OABIAS AE data set

PRELIMINARY DRAFT

MAIN
Reading Data
The following parameters apply to reading the OABIAS data set ($\mathrm{ISIM}=2$):

Name	Type	Default	Description
IREC1	I*4	1	Record number of first record to read
IREC2	I*4	99999	Record number of last record to read
IADD	I*4	0	Option for combining newly read data with data already in core: $=0$, replace old data $=1$, add new data to old data (concatenate) $=2$, compress old data, deleting frames which are flagged; then add new data to old data
ISKIP	I ${ }^{*} 4$	1	Record skipping indicator. Select every ith record, where $i=I S K I P$
IPLOT	I*4	0	Rotation angle plot indicator: $=0$, plot Earth-in and Earth-out on same plot $=1$, plot Earth-in and Earth-out on separate plots only; used to avoid exceeding 2250 buffer size
IEFMFG	I*4	0	Ephemeris vector indicator: $=0$, do not preserve ephemeris vectors with data $=1$, preserve ephemeris vectors with data ('input data records' master number must be 200 or less; data sent to Optical Aspect Attitude Determination System (OASYS) must start with frame number 1)
IHEADR	I*4	3	Selection indicator for header records and/or data records: $=1$, save data records only $=2$, save header records only $=3$, save both header records and data records

Name	Type	Default	Description
$\operatorname{ICBSEL}(4)$	I*4		Array specifying central body selection based on central body flag on OABIAS data set: $=0$, do not select this central body (skip records with this central body) $=1$, select this central body
(1)		1	Earth
(2)		1	Moon
(3)		0	Sun
(4)		1	Unidentified
ICNSEL(8)	I*4	8*1	Array specifying selection of configuration flag: $\operatorname{ICNSEL}(\mathrm{i})=0$, do not select configuration flag i (skip records with this configuration) $=1$, select configuration flag i (the sensor configurations are described in Section 7.4)
IDISK	I*4	50	FORTRAN unit number for OABIAS data set
IXXIXX	I*4	0	Periodic reading indicator $=0$, read all data $=1$, read data periodically PERIOD, BNDWTH, and TRE F6 apply only if $\operatorname{IXXIXX}=1$. If $\operatorname{IXXLXX}=1$, then only data in the intervals $\mathrm{T}=$ TREF $6+$ $\mathrm{N} *$ PERIOD to TREF6 + N*PERIOD + BNDWTH are read. N is any integer, positive or negative
PERIOD	R*4	0.0	Period for periodic reading (see above)
BNDWTH	R*4	0.0	Interval width for periodic reading (see above)
TREF6(6)	R*4	0.0	Reference time for periodic reading (year, month, day, hour, minute, second) (see above)

PRELIMMINARY DRAFT

The following parameters apply only to selecting a block of data for processing by OASYS (TSIM = 3):

Name	Type	Default	Description
NFRAMI	I*4	1	First frame number of block of data to pass to OASYS
NFRAM2	I*4	200	Last frame number of block of data to pass to OASYS
IEPHEM	I*4	1	Option for using ephemeris data from OABIAS data set: $=0$, do not use ephemeris data from OABIAS data set $=1$, use ephemeris data from OABIAS data set (data set must have been read with IEFMFG = 1)
ITERM	I*4	1	Option for using terminator flags on OABIAS data set: $=0$, do not use terminator flags $=1$, use terminator flags (reject all triggerings identified as terminators)
ICB	I*4	1	Not used
TADJ	R*4	0.0	Time adjustment (seconds). Added to all times to be passed to OASYS
INOISE	I*4	3	Option for adding noise to data to be passed to OASYS: $=1$, process data twice, once without noise and once with noise (applies in nongraphic mode only) $=2$, process data once, with noise $=3$, process data once, without noise NOTE: If INOISE $=3$, then the re^{-} maining parameters in this section do not apply
STDV (6)	$\mathrm{R}^{*} 4$	6*0.0	Standard deviation of Gaussion noise to be applied to data
(1)			Telemetry frame time (seconds) (not used)
(2)			Sun time (seconds)
(3)			Time in (seconds)

Name	Type	Default	Description
STDV(4)	R*4	6*0.0	Time out (seconds)
(5)			Spin rate (degrees per second)
(6)			Sun angle (degrees)
BIAS(6)	R*4	6*0.0	Biases to be added to data (same order and units as for STDV)
PROB(6)	R*4	6*0.0	Probability of telemetry error (bit change); same order as for STDV
IRAND	I*4	123456789	Initial number for random number generator (any odd integer)
BGAM	$\mathrm{R} * 4$	0.0	Bias to be added to each sensor mounting angle (degrees)
SQUANT	$\mathrm{R} * 4$	0.0	Sun angle quantization (degrees): $=0.0$, no effect $\neq 0.0$, each Sun angle is quantized as follows: $\beta=(\beta /$ SQUANT $) *$ SQUANT + SQUANT/2.0 where β is the Sun angle, and the quantity in parentheses is truncated to an integer
ABETA1	R*4	0.0	Sun angle coefficient for linear fit (degrees) (see note below)
ABETA2	R*4	0.0	Rate of change of Sun angle (degrees per hour) (see note below)
TBETA(6)	R*4	6*0.0	Reference time for Sun angle fit (UT: year, month, day, hours, minutes, seconds)
			NOTE: If ABETA1 $=0.0$, and $\mathrm{ABETA} 2=0.0$, then the Sun angle from the OABIAS data set is used, and the Sun angle fit parameters (ABETA1, ABETA2, TBETA) are ignored.
			If ABETAI $\neq 0.0$, or ABETA $2 \neq 0.0$, then the Sun angle computed as follows

Name	Type	Default	Description
TBETA(6) (Cont'd)	R*4	6*0.0	replaces the Sun angle from the OABIAS data set: $\beta(\mathrm{t})=\mathrm{ABETA1}+\mathrm{ABETA} 2^{*}$ (t - TBETA) where $\beta(t)=$ the Sun angle at time t. If TBETA is earlier than September 1, 1957 (e. g., if TBETA $=6 * 0.0$), then the initial time from the block of data is used in place of TBETA in the above expression.
OMEG1	R*4	0.0	Spin rate coefficient for linear fit (degrees per second) (see note below)
OMEG2	R*4	0.0	Rate of change of spin rate (degrees per second ${ }^{2}$) (see note below)
TOMEG (6)	R*4	6*0.0	Reference time for spin rate (UT: year, month, day, hours, minutes, seconds)
			NOTE: If $\mathrm{OMEGI}=0.0$ and $\mathrm{OMEG} 2=$ 0.0 , the spin rates from the OABIAS data set are used. If OMEG1 $\neq 0.0$ or OMEG $2 \neq 0.0$, then the spin rate computed as follows replaces the spin rate from the OABIAS data set: $\omega(\mathrm{t})=$ OMEG1 + OMEG2* (t - TOMEG) where $\boldsymbol{\omega}(\mathrm{t})=$ spin rate at time t If TOMEG is earlier than September 1, 1957, then the initial time from the block of data is used in place of TOMEG.

The following parameters apply only to the data prediction subsystem, PLOTOC. Parameters whose description begins with an asterisk (*) have three components which refer to plot 1,2 , and 3 , respectively.

ALF(3) R*4 0.0 *Right ascension (geocentric inertial

$\operatorname{DEL}(3)$	$\mathrm{R}^{*} 4$	0.0	*Declination (G.I.) (degrees)
$\operatorname{BETA}(3)$	$\mathrm{R} * 4$	0.0	*Sun angle (degrees) between Sun vector and spin axis at block start time
$\operatorname{PHI}(3)$	$\mathrm{R}^{*} 4$	0.0	*Phase of attitude on Sun cone (degrees) at block start time; defined as the di- hedral angle from the plane defined

Name	Type	Default	Description
PHI(3) (Cont'd)	R*4	0.0	by the Sun vector and the Z -axis (G.I.) to the plane defined by the Sun vector and the spin axis
BSIGMA (3)	R*4	0.0	*Bias to be added to sensor mounting angle (degrees)
BRHO(3)	R*4	0.0	*Bias to be added to the angular radius of the central body (degrees)
BA1 (3)	R*4	0.0	*Bias to be added to observed intriggering (degrees)
BA2(3)	R*4	0.0	*Bias to be added to observed outtriggering (degrees)
BTIME (3)	R*4	0.0	*Time adjustment to be added to telem etry times (seconds)
.	\bigcirc	.	NOTE: For all values of ISTATE, the program fills in the values appropriately for $A L F, D E L$, BETA, PHI, BSIGMA, BRHO, BA1, BA2, and BTIME, and these values can be examined the next time this display appears. For example, if ISTATE $=1$, then the attitude specified by ALF and DEL is converted to the coordinate system for BETA and PHI, and BETA and PHI are set. If ISTATE $=2$, then BETA and PHI are converted to ALF and DEL. If ISTATE $=3$, then the OABIAS final state is used to set ALF and DEL, and this attitude is converted to set BETA and PHI. The biases (BSIGMA, BRHO, BA1, BA2, and BTIME) are set to the corresponding bias values from the OABIAS final state.

Name	Type	Default	Description
ICENT (3)	I*4	1	*Central body indicator: $=1$, Earth is central body $=2$, Moon is central body
RADE (3)	R*4	6378.16	*Effective radius of Earth (kilometers)
RADM (3)	R*4	1738.	*Effective radius of Moon (kilometers)
DANGE (3)	R*4	89.7	*Dark angle of Earth (degrees)
DANGM(3)	R*4	89.7	*Dark angle of Moon (degrees)
IOBLAT(3)	I*4	1	$\begin{aligned} & \text { *Oblateness indicator: } \\ & =0, \text { use spherical Earth with radius } \\ & \text { RADE }+ \text { HT } \\ & =1, \text { use oblate Earth } \end{aligned}$
HT(3)	R*4	0.0	*Height of atmosphere above Earth surface (kilometers)
IPSKIP (3)	I*4	1	*Frame skipping indicator. Generate two frames of predicted data for every ($\mathrm{i}+2$)th frame, where $\mathrm{i}=\operatorname{IPSKIP}$ (used to reduce execution time)
IWIDTH	I*4	0	Scan width indicator: $=0$, plot both rotation angles and scan widths $=1$, plot scan width only.
ITIME	I*4	0	Parameter for selecting equal time increment plotting (applies to all plots): $=0$, plot at the frame times $=1$, plot at NPTS equal frame points between TSTART and TEND (see note below) NOTE: NPTS, TSTART, and TEND apply only if ITIME = 1
NPTS	I*4	200	Number of points for equal time increment plotting; must be 200 or less. If NPTS $=0$, the number of frames of observed data is used

Name	Type	Default	Description
TSTART(6)	R*4	0.0	Start time for data prediction (UT: year, month, day, hours, minutes, seconds). If TSTART is earlier than September 1, 1957, then the start time of the observed data is used
TEND (6)	R*4	0.0	Final time for data prediction (UT: year, month, day, hours, minutes, seconds). If TEND is earlier than September 1, 1957, then the end time of the observed data is used
IORBC (3)	I*4	1	Orbital motion correction indicator: $=0$, do not correct for orbital motion within a spin period. Compute prediction based on spacecraft position at the in-triggering time $=1$, correct for orbital motion during a spin period. Compute prediction for in-triggering based on spacecraft position at the in-triggering time and prediction for outtriggering based on spacecraft position at the out-triggering time
			NOTE: Execution time for predictions is approximately doubled if IORBC $=1$
ISAME	I*4	1	Duplicate parameters indicator: $=0$, use specified parameters for each plot $=1$, use plot 1 parameters (ICENT on only) for plot 2 and plot 3
IDATA	I*4	1	New data plot parameter: $=0$, use old data plot $=1$, generate new data plot
IVSTAT(3)	I*4	1,2,0	*IVSTAT(i) retains the value of ISTATE(i) used to generate the current plot i
ISAVTM	I* 4	0	ISAVTM retains the value of ITIME used to generate the current plots
		\cdots--...-
	7-17		
	PRELIVINARY DRAFT		

Name	Type	Default	
	RMEGAP	0	Spin rate used to generate time for predicted data for flagged frames. Automatically set to spin rate calcu- lated by OABIAS (degrees per second)
NRDF	$\mathrm{I} * 4$	1	Number of revolutions per frame of data; (used to generate time for predicted data for flagged frames)

PRELIMINARY DRAFT

7.3.5. NAMELIST LIST

NAMELIST LIST is read by subroutine ODAPIN and contains parameters specifying the simulation conditions.

Spacecraft attitude parameters are as follows:

Name	Type	Default	Description
ALPHA	R*4	0.0	Right ascension (G.I.) of the spin axis (degrees). Valid range: $0 \leq \mathrm{ALPHA}<$ 360. This parameter does not apply if IATAPE $=0$
DELTA	R*4	0.0	Declination (G.I.) of the spin axis (degrees). Valid range: $-90 \leq$ DELTA \leq 90. This parameter does not apply if IATAPE $=0$
IATAPE	I* 4	0	Attitude tape indicator: $=0$, get attitude from attitude tape $=1$, use fixed ALPHA and DELTA read from cards

PRELIMINARY DRAFT

Simulation time parameters are as follows:

Name	Type	Default	Description
T0(6)	R*4	6*0.0	Starting time for data simulation (UT: year, month, day, hours, minutes, seconds). If T0 is not specified and IATAPE $=0$, then the starting time is taken as the start time of the attitude tape. If IATAPE $=1$, T0 must be specified
TF (6)	R*4	6*0.0	Not used; should not be specified
DELTAT	R*4	60.0	Time interval at which simulated data will be generated (seconds). Valid range: DELTAT >0. This parameter does not apply if IATAPE $=0$ and INTERP = 0
INTERP	I*4	0	Interpolation indicator for attitude tape: $=0$, use the time spacing on the attitude tape, without interpolation (i. $e_{\text {。 }}$. start at the first time on the attitude tape greater than or equal to T0 and use each suceeding time). Note that the time spacing on the attitude tape need not be uniform $=1$, use linear interpolation with the attitude tape to obtain the attitude at the desired times, using the specified value of DELTAT. INTERP does not apply if IATAPE $=1$

PRELIMINARY DRAFT

Simulation orbital elements (in the arrays dimensioned (2), subscript $=1$ applies to spacecraft orbit around Earth or Moon, subscript $=2$ applies to orbit of Moon around Earth) are as follows:

Name	Type	Default	Description
A(2)	$\mathrm{R} * 4$	2*0.0	Semimajor axis (kilometers)
E (2)	R*4	2*0.0	Eccentricity (unitless)
EYE (2)	$\mathrm{R} * 4$	$2 * 0.0$	Inclination (degrees)
EMO(2)	R*4	2*0.0	Mean anomaly at epoch time (degrees)
WO(2)	R*4	2*0.0	Argument of perigee (degrees)
RANODE (2)	R*4	2*0.0	Right ascension of ascending node (degrees)
ORBITE (6)	$\mathrm{R} * 4$	6*0.0	Epoch time of orbital elements for spacecraft (UT: year, month, day, hours, minutes, seconds)
ORBITM(6)	R*4	6*0.0	Epoch time of orbital elements for Moon (UT: year, month, day, hours, minutes, seconds)
ISUN	I*4	1	Sun ephemeris indicator: $=1$, use SUN1 to obtain Sun position (equinox of date) (see Reference 6) $=2$, use SUNRD to obtain Sun position (uses a direct-access data set on FORTRAN unit 14; either equinox of date or equinox of 1950.0 depending on data set accessed) (see Appendix B) $=3$, use RJPLT to obtain Sun position (accesses a Jet Propulsion Laboratory (JPL) ephemeris data set on FORTRAN unit NRJPLT; equinox of date) (see Reference 5)
ISPC	I*4	2	Spacecraft ephemeris indicator: $=1$, use ORBGEN to generate space craft orbit, using orbital elements for an orbit around the Earth (see module description of ORBGEN)

Name	Type	Default	Description
IMOON	I*4	0	$=2$, use SUNRD to obtain Moon position (accesses a direct-access data set on FORTRAN unit 14; either equinox of date or equinox of 1950.0 , depending on data set accessed) (see Appendix B) $=3$, use RJPLT to obtain Moon position (accesses a JPL ephemeris data set on FORTRAN unit NRJPLT; equinox of date) (see Reference 5) NOTE: The orbital elements and epoch time for the spacecraft must be specified if ISPC $=1$ or 4 . Orbital elements and epoch time for the Moon must be specified if $\mathrm{IMOON}=1$ 。
NRJPLT	I*4	28	FORTRAN unit number for JPL ephemeris data set, read by RJPLT
NORB1	I*4	30	FORTRAN unit number for DODS EPHEM data set, read by DTAPRE
NGTDS	I* ${ }^{\text {4 }}$	29	FORTRAN unit number for GTDS ORBIT file, read by GETHDR/GETVCT (only if a sequential file is used,, $\operatorname{LEVEL}=0$; see below)
LEVEL	I*4	0	Level number for GETHDR/GETVCT: $=0$, use sequential orbit file, FORTRAN unit number NGTDS >0, level number on direct-access orbit file, FORTRAN unit number 31

PRELIMINARY DRAFT

LIST
Printout
Parameters which control simulation printout are as follows:

Name	Type	Default	Description
IPRINT	I*4	0	Print indicator: $=0$, print every output line (i.e., do not suppress printing) $=1$, suppress printout of an output line if the data condition flag for this line is the same as the data flag for the previous line (i.e., print an output line only for those times at which the data flag changes). The output line for the first time in the prediction interval is always printed, regardless of the value of the data flag. The output line for the final time is also printed, unless this problem terminates $a b$ normally
IREPOR	I*4	0	Report generation indicator: $=0$, generate final report summary $=1$, do not generate final report

Simulation control parameters are as follows:

Name	Type	Default	Description
OBLAT1	$\mathrm{R} * 4$	0.0033528	Earth oblateness parameter (see note below)
OBLAT2	R*4	0.0	Earth oblateness parameter for asymmetric Earth (see note below) NOTE: The Earth radius is computed using the formula $\begin{aligned} \mathrm{R}= & 6378.16(1.0-\text { OBLAT1 } \\ & \left.* \sin ^{2} \phi+\text { OBLAT2 } * \sin \phi\right) \\ & +\mathrm{HT} \\ \text { where } \mathrm{R}= & \text { effective Earth radius } \\ & \text { in kilometers } \\ & \phi=\text { geocentric latitude } \end{aligned}$
EPS	R*4	0.0	Angular field of view of sensor (degrees). Valid range: $0 \leq$ EPS ≤ 180. This parameter is used to determine if the sensor field covers the entire view of the central body or if part of the sensor field hits the central body
THETAC	R*4	45	Sensor cutoff angle (degrees). The sensor is disabled when the dihedral angle from the plane defined by the spin axis and the Sun vector to the plane defined by the spin axis and the optical axis of the horizon telescope is less than THETAC or greater than $360-$ THETAC. Valid range: $0 \leq$ THETAC ≤ 180
DANGE	R*4	90.0	Dark angle of the Earth, in degrees measured between the vector to the terminator and the negative of the Sun vector
DANGM	R*4	90.0	Dark angle of the Moon (degrees). Note that the dark angle is approximately 90 degrees $-h_{S}$, where $h_{S}=$ half the angle subtended by the Sun $=0.27$ degree. However, the dark angle may depend on the extent of the central body's atmosphere and the sensitivity of the sensor. For an infrared sensor, both DANGE and DANGM should be set to -90)

Name	Type	Default	Description
DELPHI	$\mathrm{R} * 4$	0.5	Angular increment (degrees) used when searching for pairs of terminator crossings. If there are two terminator crossings for which the spacecraft rotation angles are closer then DELPHI, these crossings may be overlooked. Valid range: DELPHI >0. Values of DELPHI less than 0.40 should not be used, unless the routine TERMIN is modified to allow more than 1000 steps in the terminator search. Larger values of DELPHI may be used to reduce execution time
PHITOL	R*4	0.01	Maximum allowable error in the phase angle of a terminator crossing. The half-interval search is terminated when the interval becomes smaller than PHITOL. Valid range: PHITOL>0. Values of PHITOL less than 0.001 should not be used, due to the limited precision of REAL *4 arithmetic (degrees)
ISKIP	I*4	0	Data condition skipping indicator: $=0$, simulate one frame of data for each time point; do not skip time points $=1$, skip any time point if the data condition flag for this time point is blank (i.e., do not store the data for this time point in the simulated data arrays). Continue incrementing the time until a frame is obtained for which the data condition flag is not blank. (This option must be used in conjunction with a value for IFLAG. See below)

IFLAG

Flag indicator:
$=1$, normal flag function
$=2$, set flag to blanks if no sensor triggering occurs for this frame; otherwise, use normal flag function
$=3$, set flag to blanks if no sunlit horizon triggerings occurred; otherwise, use normal flag function
$=4$, set flag to blanks if a triggering was caused by a terminator crossing or if no triggerings occurred; otherwise, use normal flag function
$=5$, use normal flag function if at least one triggering occurred at a terminator; otherwise, set flag to blanks

PRELIMINARY DRAFT

Simulation uncertainty parameters are used mainly for simulation summary printout to indicate the expected quality of an attitude solution based on a given frame of data given the following uncertainties. If all uncertainties equal 0.0 , no attitude uncertainty is computed. Simulation uncertainty parameters are as follows:

Name	Type	Default	Description
ERRBET	R*4	0.0	Uncertainty in Sun angle (degrees)
ERRGAM	R*4	0.0	Uncertainty in sensor mounting angle (degrees)
ERRA	$\mathrm{R} * 4$	0.0	Uncertainty in rotation angle of spacecraft from Sun crossing to horizon crossing (degrees)
ERRAD	R*4	0.0	Uncertainty in angular radius of the central body (degrees)
ERRTIM	R*4	0.0	Uncertainty in absolute time of horizon crossings, or uncertainty in ephemeris information (seconds)
IDEBUG	I*4	0	Debug indicator for uncertainty printout: $=0$, no debug printout >0, generate debug printout on FORTRAN data set reference number IDEBUG

PRELIMAINARY DRAFT

LIST
Orbital Motion Correction

Parameters controlling corrections for orbital motion in data simulation are as follows:

Name	Type	Default	Description
TOL	$\mathrm{R} * 4$	0.0001	Desired tolerance for sensor triggering time (seconds). If no iteration is desired, a large value may be used (e.g. . 1. $0 \mathrm{E}+50$,) so that convergence will always occur on the first iteration
MAXIT	I*4	10	Maximum allowed number of iterations

PRELIMINARY DRAFT

7.3.6 NAMELIST OPMAN1

NAMELIST OPMAN1 is read by subroutine OPINIT and contains parameters specifying the processing options for OASYS.

Orbital elements (in arrays dimensioned (2), subscript $=1$ applies to spacecraft orbit around Earth or Moon, subscript $=2$ applies to orbit of Moon around Earth) are as follows:

Name	Type	Default	Description
A(2)	$\mathrm{R} * 4$	$2 * 0$ 。	Semimajor axis (kilometers)
E(2)	$\mathrm{R} * 4$	$2 * 0$.	Eccentricity (unitless)
EYE (2)	$\mathrm{R} * 4$	$2 * 0$	Inclination (degrees)
EMO(2)	$\mathrm{R} * 4$	2*0.	Mean anomaly (degrees)
WO(2)	$\mathrm{R} * 4$	2*0.	Argument of perigee (degrees)
RANODE (2)	$\mathrm{R} * 4$	$2 *$ 。	Right ascension of ascending node (degrees)
ISUN	I*4	1	Sun ephemeris indicator: $=1$, use SUN1 to obtain Sun position (equinox of date) (see Reference 6) $=2$, use SUNRD to obtain Sun position (uses a direct-access data set on FORTRAN unit 14; either equinox of date or equinox of 1950.0 , depending on data set accessed) (see Appendix B) $=3$, use RJPLT to obtain Sun position (accesses a JPL ephemeris data set on FORTRAN unit NRJPLT; equinox of date) (see Reference 5)
ISPC	I*4	2	Spacecraft ephemeris indicator: $=1$, use ORBGEN to generate spacecraft orbit, using orbital elements for an orbit around the Earth (see module description of ORBGEN)

Name	Type	Default	Description
ISPC (Cont'd)	I*4	2	$=2$, use DTAPRE to obtain spacecraft position (accesses a standard DODS EPHEM data set on FORTRAN unit NORB1; must be Earthcentered ephemeris) (see Refer-ence 3) $=3$, use GETHDR/GETVCT to obtain spacecraft position (accesses a GTDS ephemeris file, either direct access or sequential, depending on the value of LEVEL (see below); the ephemeris may be either Earthcentered or Moon-centered; the header record of the data set specifies the origin for the coordinates) (see Reference 4) $=4$, use ORBGEN to generate spacecraft orbit, using orbital elements for an orbit around the Moon (see module description of ORBGEN) $=5$, use DTAPRE to obtain spacecraft position (accesses a standard DODS EPHEM data set on FORTRAN unit NORB1; must be Moon-centered ephemeris) (see Reference 3)
IMOON	I*4	0	Moon ephemeris indicator: $=0$, do not obtain Moon position. This option must not be chosen if CBFLAG >2, or if a Moon-centered ephemeris file is used for GETHDR/ GETVCT, or if ORBGEN is used for a spacecraft orbit around the Moon (ISPC = 4), or if DTAPRE is used with a Moon-centered EPHEMT tape (ISPC $=5$) $=1$, use ORBGEN to generate orbit of Moon using orbital elements for an orbit around the Earth

Name	Type	Default	Description
IMOON (Cont'd)	I*4	0	$=2$, use SUNRD to obtain Moon position (accesses a direct access data set on FORTRAN unit 14; either equinox of date or equinox of 1950.0 , depending on data set accessed) (see Appendix B) $=3$, use RJPLT to obtain Moon position (accesses a JPL ephemeris data set on FORTRAN unit NRJPLT; equinox of date) (see Reference 5) NOTE: The orbital elements and epoch time for the spacecraft must be specified if ISPC $=1$ or 4 . Orbital elements and epoch time for the Moon must be specified if $\mathrm{IMOON}=1$.
NRJPLT	I*4	28	FORTRAN unit number for JPL ephemeris data set, read by RJPLT
NORB1	I*4	30	FORTRAN unit number for DODS EPHEM data set, read by DTAPRE
NGTDS	I*4	29	FORTRAN unit number for GTDS ORBIT file, read by GETHDR/GETVCT (only if a sequential file is used, LEVEL $=0$; see below)
LEVEL	I ${ }^{4}$	0	Level number for GETHDR/GETVCT: $=0$, use sequential orbit file, FORTRAN unit number NGTDS >0, level number on direct-access orbit file, FORTRAN unit number 31
TORBIT (6)	$\mathrm{R} * 4$	6*0.	Epoch time of orbital elements for spacceraft (year, month, day, hour, minutes, seconds)
TMOON (6)	$\mathrm{R}^{*} 4$	6*0.	Epoch time of orbital elements for Moon (year, month, day, hour, minutes, seconds)

Uncertainty parameters for OASYS data weighting are as follows:

Name	Type	Default	Description
ERRBET	R*4	0.0	Uncertainty in Sun angle (degrees)
ERRGAM	$\mathrm{R} * 4$	0.0	Uncertainty in sensor mounting angle (degrees)
ERRA	R*4	0.0	Uncertainty in rotation angle of spacecraft from Sun crossing to horizon crossing (degrees)
ERRAD	$\mathrm{R} * 4$	0.0	Uncertainty in angular radius of the central body (degrees)
ERRTIM	$\mathrm{R} * 4$	0.0	Uncertainty in absolute time of horizon crossing, or uncertainty in ephemeris information (seconds)
IDEBUG	I* 4	0	Debug indicator for subroutines UNCERT, UNCDBL, and UNCDH: $=0$, no debug printout >0, generate debug printout on FURTRAN data set reference number IDEBUG

NOTE: If it is desired to utilize the data weighting and uncertainty options of the system, the following parameters must be specified:

- The NAMELIST parameter IAPIOR must be 4 or 8 . The NAMELIST parameters APRA and APDEC must be specified. (See OPMAN1 Control.)
- One or more of the uncertainty parameters (ERRBET, ERRGAM, ERRA, ERRAD, and ERRTIM) must have a nonzero value.

Bias parameters for OASYS are as follows:

Name	Type	Default	Description
IOBLAT	I*4	1	Earth radius model indicator: $=0$, use spherical Earth model, with radius $=($ RADE +HT$)$ $=1$, use oblate Earth model, with atmosphere layer at height HTT above Earth surface (the value of RADE is ignored)
HT	R*4	0.0	Heirht of atmosphere layer above Earth surface (kilometers)
ABIASI	R*4	0.0	Miias added to the central body intriggering (degrees)
ABIAS2	R*4	0.0	Bias added to central body outtriggering (degrees)
BIASRE	R*4	0.0	bias added to angular radius of Earth (herrees)
BIASRM	R*4	0.0	Bias added to angular radius of Moon (derreces)
RADE	R*4	6378.16	Effective optical aspect radius of Earth (kilometers)
RADM	R*4	1738.0	Fiffective optical aspect radius of Moon (kilometers)
DANGE	R*4	89.7	1)ark angle of Earth (degrees)
DANGM	R*4	S9.7	lark angle of Moon (degrees)
BGAMMA	R*4	0.0	Bias on sensor mounting angle (degrees)
OBLAT1	R*4	0.0033.3:3	l.arth oblateness parameter (see note below)
OBLAT2	R*4	0.0	larth ohlateness parameter for asymnurtic Farth (see note below)
			NuTl: The effective Earth radius, R, in kilometers, is computed as i: : 6.378 .16 ($1.0-$ OBLAT1 ${ }^{*} \sin ^{2} \phi+$ OBLAT2 $\left.* \sin \phi\right)$ $+\mathrm{HT}$ where $\varphi=$ geocentric latitude
.			7-35
PRELIMINARY DRAFT			

PRELIMHARY DRAFT

OASYS printout control parameters are as follows:

Name	Type	Default	Description
IPLOT	I*4	5	Lineprinter plot level: $=0$, no lincprinter plots ≥ 1, plots of alpha versus frame number and delta versus frame number (including rejected points) 22 , plots of alpha versus frame number and deltal versus frame number (omitting rejected points) 23, plots of arc length uncertainty versus frame number ≥ 4, plots of nadir angle versus frame number $=5$, plots of dihedral angle versus frame number
DEBUG	I*4	8	Printout level indicator: $=0$, no printout $=1$, print cror messages $=2$, print averages 23, print input parameters $\because 4$, print single frame results $\therefore \therefore$, print pointer frames \therefore i, print input telemetry frames \therefore i, print Sun vectors $\therefore s$, print ephemeris vectors

OASYS control parameters are as follows:

Name	Type	Default	Description
IAPIOR	I*4	0	A priori attitude indicator: $=0$, no a priori attitude available $=4$, use a priori attitude only if deter ministic logic fails $=8$, use a priori attitude first to resolve all ambiguities
APRA	R*4	0.0	A priori right ascension (G.I.) (degrees)
APDEC	R*4	0.0	A priori declination (G.I.) (degrees)
EPSILN	R*4	50.0	Sensor cutoff angle (degrees)
EPS	R*4	1.4	Angular field of view of sensor (degrees)
ATTOL	R*4	360.0	Error limit on a priori attitude (degrees)
TRMCHK	I*4	0	$\begin{aligned} & \text { Terminator rejection flag: } \\ & =0 \text {, no restriction } \\ & =4 \text {, reject data if terminator is visible } \end{aligned}$
ITMAX	I*4	10	Maximum number of iterations allowed to resolve ambiguities in SPINAV (see Reference 8)
SPNSIG	R*4	3.	Rejection tolerance. An attitude is rejected if its deviation from the block average is greater than SPNSIG*STDV, where STDV is the computed standard deviation
SPNTOL	R*4	20.	Rejection tolerance. An attitude is rejected if its deviation from the block average is greater than SPNTOL (dem grees)
SRLOW	R*4	0.	Lower bound on spin rate (degrees per second)
SRIIIGH	R*4	1. E6	Upper bound on spin rate (degrees per second)
SUNLOW	R*4	0.	Lower bound on Sun angle (degrees)
SUNHI	R*4	180.	Upper bound on Sun angle (degrees)

Name	Type	Default	Description
CBFLAG	I*4	2	```Central body indicator: \(=1-2\), consider Earth only as central body \(=3-6\), consider both Earth and Moon as central bodies \(=7-10\), consider Moon only as central body```
DELPHI	R*4	0.5	Terminator search increment, used by predictor. A pair of terminator crossings may be overlooked if their angular separation is less than DELPHI (degrees)
PHITOL	R*4	0.01	Terminator angle tolerance. Used to terminate half-interval search in predictor (degrees)
DIHTOL	R*4	10.	Maximum expected error in degrees in dihedral angle computed from double horizon scan midtime. Used to resolve ambiguities in double horizon width method
IDISK	I*4	0	OABIAS data archive control parameter: ≤ 0, do not write archive data set >0, write archive data set on FORTRAN unit number IDISK: See Section 7.4 for a description of this data set
BDYCHK	I*4	0	Double horizon crossing flag: $=0$, use double horizon methods only if central body is fully sunlit $=1$, use double horizon methods onlly if a scan at the a priori attitude does not cross the terminator $=2$, use double horizon methods regardless of lighting conditions on central body
MIN	I ${ }^{4}$	1	Single horizon-in flag: $=0$, do not process with single horizonin method $=1$, process with single horizon-in method

Name	Type	Default	Description
MOUT	I* 4	1	```Single horizon-out flag: =0, do not process with single horizon- out method =1, process with single horizon-out method```
MDBL	I*4	1	Double horizon width flag: $=0$, do not process with double horizon width method $=1$, process with double horizon width method
MDIH	I*4	1	Double horizon dihedral flag: $=0$, do not process with double horizon dihedral method $=1$, process with double horizon dihedral method
SUNSIG	$R^{*} 4$	3.	Rejection tolerance. A Sun angle is rejected if it differs from its smoothed value by more than SUNSIG*STDV, where STDV $=$ the computed standard deviation
SUNTOL	R*4	20.	Rejection tolerance. A Sun angle is rejected if it differs from its smoothed value by more than SUNTOL (degrees)
ISNPRO	I* 4	0	```Sun angle processing indicator: =0, normal Sun angle processing (linear fit) = 1, do not smooth Sun angles```
SUNIN	R*4	0.0	Sun angle input: $=0.0$, no effect $\neq 0.0$, use the value SUNIN for every Sun angle; ignore the Sun angles in the telemetry, and ignore the value of ISNPRO (degrees)
NOTE:	lowing OABLA	ameters see Rofer	AMELIST OPMAN1 are not applicable for 8 for a discussion of these parameters:
		STIME1	SRSIG WTNAD
		FTIME0	SRTOL WTDII
		FTIME1	ISRPRO . WTNAD2
		IGCORE	WTSUN WTDIH2
7-39			
PRELIIITAARY DRAFT			

7.3.7 NAMELIST BIASNL

NAMELIST BIASNL is read by subroutine INITIL and contains parameters specifying processing options for the OABIAS Subsystem.

Parameters defining the initial state are as follows:

Name	Type	Default	Description
$\mathrm{XO}(1)$	R*8	0.0	Initial estimate of right ascension (G. I.) (degrees)
$\mathrm{XO}(2)$	R*8	0.0	Initial estimate of declination (G.I.) (degrees)
XO(3)	R*8	0.0	Initial estimate of phase (degrees) $=0.0$, program will compute the initial phase
$\mathrm{XO}(4)$	R*8	0.0	Initial estimate of bias in horizon scanner mounting angle from spin axis (degrees)
$\mathrm{XO}(5)$	R*8	0.0	Initial estimate of horizon scanner azimuth relative to the Sun sensor on central body in-triggering (degrees)
$\mathrm{XO}(6)$	R*8	0.0	Initial estimate of horizon scanner azimuth relative to the Sun sensor on central body out-triggering (degrees)
$\mathrm{XO}(7)$	R*8	0.0	Initial estimate of bias on the angular radius of the central body (degrees)
$\mathrm{XO}(8)$	R*8	0.0	Initial estimate of bias in Sun angle (degrees)
$\mathrm{XO}(9)$	R*8	0.0	Initial estimate of spin rate (revolutions per minute): $=0.0$, compute initial estimate using average of spin rates in INDATA
$\mathrm{XO}(10)$	R*8	0.0	Initial estimate of Sun sensor plane tilt (dcgrees)
$\mathrm{XO}(11)$	R*8	0.0	Initial estimate of horizon sensor plane tilt (degrees)
XO(12)	R*8	0.0	Initial estimate of orbit time adjustment (seconds)
			7-40
PRELİINARY DRAFT			

Name	Type	Default	Description
PO(12)	R*8	12*0.0	Estimate of the error in the initial state (units same as XO)
ATTOPT	I*4	2	Initial attitude options: $=1$, use OASYS block average results for both attitude and uncertainties; ignore $\mathrm{XO}(1), \mathrm{XO}(2), \mathrm{PO}(1), \mathrm{PO}(2)$ $=2$, use $\mathrm{XO}(1)$ and $\mathrm{XO}(2)$ for initial attitude; use $\mathrm{PO}(1)$ and $\mathrm{PO}(2)$ for initial uncertainties $=3$, use state vector and uncertainties from previous OABIAS run; ignore XO and PO entirely $=4$, use state vector from previous OABIAS run, and input values of - PO; ignore XO entirely $=5$, use OASYS block average results for attitude, and input values for PO ; ignore $\mathrm{XO}(1)$ and $\mathrm{XO}(2)$

PRELIMINARY DRAFT

BIASNL
Models

Parameters specifying OABIAS models are as follows:

Name	Type	Default	Description
MODEL(10)	L*4	10*F	Observation model selector. If true, the selected model is processed
(1)			Sun angle
(2)			Sun time
(3)			Nadir vector projection
(4)			Horizon time
(5)			Single horizon dihedral angle
(6)			Double horizon scan width
(7)			Small target nadir angle
(8)			Scan midtime dihedral angle
(9)			Unused
(10)			Unused
RESMOD(10)	L*4	10*F	Residual calculation selector. If true, the residual for that model is computed. RESMOD(i) is defined in the same way as MODEL(i)

PRELMMINARY DRAFT

BIASNL Processing Options

Parameters defining processing options are as follows:

Name	Type	Default	Description
REJOPT	I*4	0	Data rejection option: $=0$, process all data $=1$, reject an observation if it was rejected by the corresponding model in OASYS
IUPDAT	I*4	0	State vector updating sequence: $=0$, update after every model processing $=\mathrm{N}$, update at every Nth frame
NUMITR	I*4	0	Iteration controller: $=0$, no iteration $=\mathrm{N}$, allow up to N iterations on each state update
CONVRG	R*8	11*1. D-5	Array of convergence criteria for iteration loop. If $\Delta X<C O N V R G$, the iteration loop is completed (units the same as XO)
REDUNT (10)	I*4	5,9*0	In a nongraphic mode, if $\operatorname{REDUNT}(1) \neq 0$, another set of parameters for NAMELIST BIASNL will be read from the FORTRAN unit number specified by REDUNT(1). If REDUNT(1) $=0$, OABIAS will return after completing the processing requested in this NAMELIST. In a graphics mode, REDUNT has no effect. REDUNT (2) through REDUNT(10) are not applicable in MSAD/OABIAS
INTOUT	I*4	0	Results printout frequency controller: $=0$, print after each model processing $=\mathrm{N}$, print after each Nth frame
IOBLAT	I*4	0	Oblateness model indicator: $=0$, use spherical Earth model $=1$, use oblate Earth model
ITER	I*4	1	Maximum number of iterations for linearity fix: $=1$, do not use linearity fix $=\mathrm{N}$, maximum of N iterations
			7-43
nnellohidARY DRAFT			

PRELIMINARY DRAFT

Spin rate processing option: $=0$, use block average spin rate for processing every frame
$=1$, use spin rate from each telemetry frame for processing that frame ISPINR does not apply if $\mathrm{PO}(9) \neq 0.0$

PRELIMINAARY DRAFT

BIASNL

Printout

Parameters controlling OABIAS printout are as follows:

Name	Type	Default	Description
ERUNIT	I*4	19	Unit number for printout of error messages and diagnostic output
IDUMP L	I*4	0	Diagnostic output level controller: $=0$, print only summary of errors $=4$, print error messages and summary
IPLOT(12)	I* 4	12*3	Plotting option for printer plots of state vector and state uncertainties: $=0$, do not plot state or uncertainty $=1$, plot state only $=2$, plot uncertainty only $=3$, plot both state and uncertainty There is one indicator for each state component as listed for XO. Note that if $P O(I)=0.0$ for any state component, plots will not be generated for that state component, regardless of the value of IPLOT
IDIAGN(32)	I*4	32*0	Diagnostic printout flag for each subroutine: $=0$, print nothing ≥ 1, print header and trailer ≥ 2, input variables ≥ 4, output variables ≥ 6, internal variables before and after they are passed via an internal subroutine call 28, other internal variables
(1)			AMATRX
(2)			APARTS
(3)			BIASER
(4)			DIAFUN
(5)			DIAMOD
(6)			FRAPRO
(7)			INITIL
(8)			LCOMP
(9)			LNFUN
(10)			LNMOD
(11)			LPARTS

Name	Type	Default	Description
(12)			LRFUN
(13)			LRMOD
(14)			OABIAS
(15)			PRINT
(16)			PSIPHA
(17)			RECURS
(18)			ROTATE
(19)			SANFUN
(20)		-	SANMOD
(21)			STMFUN
(22)			STMMOD
(23)			DHFUN
(24)			DHMOD
(25)			SCBFUN
(26)			SCBMOD
(27)-(32)			Unused
IPRINT	I*4	20	FORTRAN unit number for results printout. Results are printed on units IPRINT, IPRINT +1 , IPRINT +2 , $\operatorname{IPRINT}+3, \operatorname{IPRINT}+4$, and IPRINT +5
ILEVEL	I*4	4	Results printout level controller: $=0$, print nothing $=2$, print time, state vector, α, δ, frame number, observation type $=4$, print above plus covariance matrix $=6$, print above plus gain matrix $=8$, print above plus matrix of partials, weights, residuals $=10$, print above plus observation and calculated observation $=12$, print above plus inertial vectors

PRELIMMINARY DRAFT

Parameters defining observation weights are as follows:

Name	Type	Default		Description
SANGRN	$\mathrm{R} * 4$	$1 . \mathrm{E}-4$		Sun angle granularity (degrees)
STMGRN	$\mathrm{R} * 4$	$1 . \mathrm{E}-4$		Sun time granularity (seconds)
OAGRAN	$\mathrm{R} * 4$	$1 . \mathrm{E}-4$	Timing granularity of the optical aspect (OA) telescope (seconds)	
RHOGRN	$\mathrm{R} * 4$	1.0	Granularity in central body angular radius for model 7 (degrees)	

PRELPMINARY DRAFT

BIASNL

Parameters defining OABIAS calculation tolerances are as follows:

Name	Type	Default	Description
TOLDEN	R*4	1. E-4	Minimum valuc allowed for $S_{1} R_{2}-S_{2} R_{1}$ in LCOMP subroutine
TOLDET	R*4	1. E-4	Determinant singularity tolerance in LPARTS subroutine
DELTAT	R*4	10.0	Time increment used for computing spacecraft velocity by numerical differentiation (seconds)
ROTLIM	R*4	20.0	Declination tolerance for coordinate transformation (degrees). A rotation is performed if the absolute value of the initial declination is < ROTLIM or $>90-$ ROTLIM
LINTOL(12)	R*8	12*1.D-5	Tolerances for linearity fix (units the same as for XO)
GAMDEG	R*8	--	Not used
IDISK	I*4	--	Not used

PRELIMMARY DRAFT

7.3.8 Description of a Sample NAMIELIST

This subsection describes a sample set of input cards. The input NAMELIST parameters together with the default values are designed to first simulate a spacecraft with an infrared (IR) sensor in an elliptic orbit. The simulated data span covers 6 minutes about 1 hour after perigee. The simulated data is first processed by OASYS and then by OABMAS. This sample problem provides the printout and graphs which are described in Sections 7. 12 and 7.14.

The sample NAMELISTs together with the default values are given in Section 7.3.8.1. A description of the effects of each NAMELIST is given separately in the following subsections.
7.3.8.1 Sample NAMELIST

Card Input
Default Values Assumed

Column 2

\&CONTRL

$$
\begin{aligned}
& \text { IFTABL }=96 \\
& \text { IFTUBE }=23 \\
& \text { IFTPRT }=6 \\
& \text { IRDART }=0 \\
& \text { IRDXST }=0^{\prime} \\
& \text { GSATID }={ }^{\prime} * \prime \\
& \text { GRUNID }={ }^{\prime} * \prime
\end{aligned}
$$

\& END
\&MAIN

$$
\operatorname{ISIM}=1
$$

$$
\text { NFRAME }=25
$$

$$
\begin{aligned}
& \mathrm{IREWND}=1 \\
& \mathrm{OMEGA1}=100 ., 0 \\
& \mathrm{IREC1}=1 \\
& \mathrm{IREC}=99999
\end{aligned}
$$

PRELI:TMARY DRAFT

$$
\operatorname{IADD}=0
$$

$$
\text { ISKIP }=1
$$

$$
\text { IHEADR }=3
$$

$$
\operatorname{ICBSEL}=1,1,0,1
$$

$$
\text { ICNSEL }=8 * 1
$$

```
IDISK \(=51\)
```

$$
\text { NFRAM1 }=1
$$

NFRAM2 $=25$

IEPHEM = 0
ITERM $=0$
$I C B=0$

$$
\mathrm{TADJ}=0.0
$$

INOISE $=2$

$$
\operatorname{STDV}=4 * 0.005
$$

$$
2 * 0.0
$$

$$
\begin{aligned}
& \text { BIAS }=6 * 0.0 \\
& \text { PROB }=6 * 0.0 \\
& \text { IRAND }=123456789 \\
& \text { BGAM }=0.0
\end{aligned}
$$

SQUANT $=0.5$

$$
\begin{aligned}
& \mathrm{ABETA} 1=0.0 \\
& \mathrm{ABETA} 2=0.0 \\
& \mathrm{OMEG1}=0.0 \\
& \mathrm{OMEG} 2=0.0
\end{aligned}
$$

\&END

PRELIMINARY DRAFT

$$
\begin{aligned}
& \mathrm{T} 0=1974 ., 1 ., 4 ., \\
& 23 ., 4 ., 0 . \\
& \text { DELTAT = 15. } \\
& \mathrm{A}=24548 ., 0 . \\
& \mathrm{E}=0.73264,0 . \\
& \mathrm{EYE}=28.3,0 . \\
& \\
& \text { WO = 180. , 0. } \\
& \text { RANODE = } 260 ., 0 . \\
& \text { ORBITE = 1974., } 1 ., \\
& 4 ., 22 ., \\
& 51 ., 26 .
\end{aligned}
$$

$$
\mathrm{EMO}=0 ., 0 .
$$

$$
\text { ISUN }=1
$$

ISPC $=1$

$$
\begin{aligned}
& \text { IMOON }=0 \\
& \text { IPRINT }=0 \\
& \text { IREPOR }=0
\end{aligned}
$$

ISKIP $=1$
IFLAG $=2$
SIGMA $=86$.
STEP $=0.0$

IOBLAT $=0$

$$
\begin{aligned}
& \text { BIASRE }=0.0 \\
& \text { RADE }=6378.16
\end{aligned}
$$

$$
\mathrm{HT}=0.0
$$

$I C B=1$

$$
E P S=0.0
$$

THETAC $=0.0$
DANGE $=\mathbf{- 9 0}$.

PRELIMINARY DRAFT

```
DELPHI =0.5
PHITOL = 0.01
```

```
ERRBET = 0.25
ERRGAM = 0.1
ERRA = 0.1
ERRAD = 0.5
ERRTIM = 30.
```

IDEBUG $=0$
$\mathrm{TOL}=0.0001$
MAXIT $=10$
\&END
\&OPMAN1

$$
\text { ISUN }=1
$$

```
ISPC = 1
```

$\mathrm{IMOON}=0$
TORBIT = 1974., 1., 22., 51., 26.
$A=24548 ., 0$.
$\mathrm{E}=0.73264,0$.
$E Y E=28.3$, 0 .
$\mathrm{EMO}=0.0,0$.
$\mathrm{WO}=180 ., 0$.
RANODE $=260$, 0 .
$\mathrm{ERRBET}=0.25$
ERRGAM $=0.1$
ERRA $=0.1$
ERRAD $=0.5$
ERRTIM $=30$.

PRELIMINARY DRAFT

PRELIMINARY DRAFT

$$
\mathrm{IDEBUG}=0
$$

IOBLAT $=0$

$$
\begin{aligned}
& \mathrm{HT}=0.0 \\
& \mathrm{ABIAS} 1=0.0 \\
& \mathrm{ABIAS2}=0.0 \\
& \mathrm{BIASRE}=0.0 \\
& \mathrm{RADE}=6378.16
\end{aligned}
$$

DANGE $=-90.0$

$$
\begin{aligned}
& \mathrm{BGAMMA}=0.0 \\
& \mathrm{IPLOT}=5 \\
& \mathrm{DEBUG}=8
\end{aligned}
$$

LAPIOR $=8$
$A P R A=350$.
$\mathrm{APDEC}=-19$.
EPSILN $=0.0$

$$
\begin{aligned}
& \mathrm{EPS}=1.4 \\
& \text { ATTOL }=360 \\
& \text { TRMCHK }=0 \\
& \text { ITMAX }=10 \\
& \text { SPNSIG }=3 . \\
& \text { SPNTOL }=20 \\
& \text { SRLOW }=0 . \\
& \text { SRHIGH }=1 . \text { E6 } \\
& \text { SUNLOW }=0 . \\
& \text { SUNHI }=180 .
\end{aligned}
$$

$C B F L A G=1$

PRELIMINARY DRAFT

$$
\begin{aligned}
& \text { DIHTOL }=10 . \\
& \text { IDISK }=0 \\
& \text { MIN }=1 \\
& \text { MOUT }=1 \\
& \text { MDBL }=1 \\
& \text { MDIH }=1 \\
& \text { SUNSIG }=3 . \\
& \text { SUNTOL }=20 .
\end{aligned}
$$

$$
\text { ISNPRO }=1
$$

$$
\text { SUNIN }=0.0
$$

\&END
\&BIASNL

$$
\begin{aligned}
& \mathrm{XO}=12 * 0.0 \\
& \mathrm{PO}=3 \text { * 100., } \\
& \text { 9*10., } \\
& \text { ATTOPT }=5 \\
& \text { MODEL }=6 \text { * T, } F \text {, } \\
& \text { T, } 2 \text { * } \mathrm{F} \\
& \text { RESMOD }=6 * T \\
& \text { F, T } \\
& 2 * \text { F } \\
& \text { REJOPT = } 1 \\
& \text { IUPDAT }=0 \\
& \text { NUMITR }=0 \\
& \operatorname{REDUNT}(1)=0 \\
& \text { INTOUT }=0 \\
& \operatorname{IOBLAT}=0 \\
& \text { ITER }=1 \\
& \text { ERUNIT }=12 \\
& \text { DDUMPL }=4
\end{aligned}
$$

PRELIMINARY DRAFT

$$
\begin{aligned}
& \text { IPLOT }=12 * 3 \\
& \text { IDIAGN }=32 * 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { IPRINT }=6 \\
& \text { ILEVEL }=12 \\
& \text { SANGRN }=30 . \\
& \text { STMGRN }=0.1 \\
& \text { OAGRAN }=0.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { TOLDEN }=1 . \mathrm{E}-4 \\
& \text { TOLDET }=1 . \mathrm{E}-4 \\
& \text { ROTLIM }=20 .
\end{aligned}
$$

\&END

7.3.8.2 NAMELIST CONTRL

The GESS nonresident tables will be read on FORTRAN unit mumber 96, and the graphic device specified on FORTRAN unit number 23 will be used (default: IFTABL $=96$; default: $\operatorname{IFTUBE}=23$). GESS output will be printed on FORTRAN unit number 6 (default: IFTPRT =6).

7.3.8.3 NAMELIST MAIN

Twenty-five frames of data (NFRAME = 25) will be simulated (default: ISIM $=1$) using the constant spin rate of 100 degrees per second (default: OMEGAI $=100 .$, 0.). The data will be written on a device specified by FORTRAN unit number 51 (IDISK $=51$). The device will be rewound prior to being written on (default: IREWND = 1).

The ephemeris data, terminator flags, and central body flags on the OABLAS data set will not be used in the OASYS and OABIAS runs (IEPHEM $=0$, $\operatorname{ITERM}=0, I C B=0$). These options will let OASYS obtain the ephemeris data and identify the central body and terminator crossings. The data will be

PRELIPANARY DRAFT

processed once with noise (INOISE $=2$) generated by the standard deviations specified by $\operatorname{STDV}(6)$. No biases will be added to the simulated data (default: BIAS $=6$ * 0.0; default: $B G A M=0.0$; default: $\operatorname{TADJ}=0.0$), but the Sun angles will be quantized ($\operatorname{SQUANT}=0.5$).

7.3.8.4 NAMELIST LIST

This NAMELIST contains parameters specifying the simulation conditions. The data will be simulated every 15 seconds (DELTAT = 15.), starting at 2304 hours, January 4, 1974 ($\mathrm{T} 0=1974 ., 1 ., 4 ., 23 ., 4 ., 0$.), based on the attitude ($\mathrm{ALPHA}=351 .$, DELTA $=20$.) read from cards $($ IATAPE $=1)$.

The Earth is the only central body considered here (ICB = 1), and the Moon position is not required (default: IMOON $=0$). The spacecraft orbit will be generated by subroutine ORBGEN (ISPC = 1) using the orbit parameters A, E, EYE, EMO, WO, RANODE, and ORBITE. The Sun position will be obtained by subroutine SUNI (default: ISUN = 1).

It is assumed that the horizon sensor has a mounting angle of 86.0 degrees $($ SIGMA $=86.0)$ and an angular field of view of 0.0 degree and that there is no cutoff angle (THETAC $=0.0$). Because the sensor mounting angle is constant, STEP must be set to zero (STEP $=0.0$). No bias on the angular radius of Earth is considered (default: BIASRE $=0.0$). Note that all biases except BIASRE are in NAMELIST MAIN. This is because the bias on the angular radius, unlike the other biases, cannot be simply added to unbiased data. A spherical Earth model is used (IOBLAT $=0$). In this example an IR sensor is assumed so that the terminator has no influence. In order to ensure both horizon in- and out-triggerings, the dark angle of Earth must be set to -90.0 degrees (DANGE $=-90$). The IR sensor is assumed to trigger at the surface of Earth; i. e., the effective height of atmosphere layer is zero (default: HT $=0.0$). The expected quality of the attitude solutions obtained by OASYS will be printed out in terms of the uncertainty in the attitude caused by uncertainties in Sun

PRELIMINARY DRAFT

angle, sensor mounting angle, rotation angle, angular radius of Earth, and absolute time of horizon crossing (ERRBET $=0.25$, ERRGAM $=0.1$, $E R R A=0.1, E R R A D=0.5, \operatorname{ERRTIM}=30).$.

7.3.8.5 NAMELIST OPMAN1

This NAMELIST contains parameters specifying the processing options for the OASYS Subsystem.

The spacecraft orbit and the Sun position will be obtained in the same way as in the simulation (default: $\operatorname{ISUN}=1, \operatorname{ISPC}=1$; default: IMOON $=0$). The orbit parameters, A, E, EYE, EMU, WU, RANODE, and TORBIT, should be the same as those in NAME LIST LIST. Note that the epoch time here is dem noted by TORBIT while ORBITE is used in LIST.

The computation of the uncertainty in the determined attitude will be based on the uncertainty in the Sun angle, sensor mounting angle, rotation angle, angular radius of the Earth, and absolute time of the horizon crossing ($\operatorname{ERRBET}=0.25$, ERRGAM $=0.1, \operatorname{ERRA}=0.1, E R R A D=0.5, E R R T I M=30).$.

As in the simulation, the spherical Earth model with zero effective atmosphere layer and a dark angle of -90.0 degrees will be used (IOBLAT $=0$; default: $H T=0.0 ;$ DANGE $=-90$.). No bias adjustment will be made in determining the attitude (default: $A B I A S 2=0.0$; default: $\operatorname{BIASRE}=0.0$, default:
$B G A M M A=0.0)$.
As in the simulation, only the Earth will be considered as a central body (CBFLAG = 1). The Sun angles will not be smoothed (ISNPRO = 1). Note that the Sun angles in this example problem are quantized as described in LIST.

All four attitude determination methods, the single horizon-in and horizon-out, double horizon width, and double horizon dihedral method, will be processed to determine the attitude (default: MIN = 1; default: MOUT = 1 ; default: $\operatorname{MDBL}=1$; default: MDIH =1). The a priori attitude is used first to resolve

PRELIMANARY DRAFT

all ambiguities ($\mathrm{APRA}=350$., $\mathrm{APDEC}=19 .$, IAPIOR $=8$). All solutions will be included prior to the block averaging (default: ATTOL $=360$.). An attitude will be rejected if it deviates from the block average by more than 20 degrees or by more than 3 times the computed standard deviation (default: $\operatorname{SPNTOL}=20$; default: SPNSIG = 3.). The attitudes, uncertainties, nadir angles, and dihedral angles obtained from the four attitude methods will be plotted by the lineprinter (IPLOT = 5) .

7.3.8.6 NAMELIST BIASNL

This NAMELIST contains parameters specifying processing options for the OABIAS Subsystem. In this sample problem, the user is assumed to have no a priori estimate of the attitude and biases. The best choice, then, is $\operatorname{ATTOPT}=5$, which allows OABLAS to use the block average attitude from OASYS as the initial estimate. Zero bias will be used 35 the initial estimate (default: $\mathrm{XO}=12 * 0.0$). The initial estimate of the uncertainties will be given by PO. All 12 elements of the state vector will be corrected. Note that $\mathrm{PO}(\mathrm{J})=0.0$ restricts J th component of the state vector to its initial value. All models but the small target nadir angle model will be processed, and the residuals for each model will be computed (MODEL $=6 * T, F, T, 2 * F$, RESMOD $=6 * T, F, T, 2 * F)$. Generally, updating the state vector after processing each observation (default: IUPDAT $=0$) with no iteration (default: NUMITR $=0$) gives the best results. Since the spherical Earth model is used in simulation, the use of that model is appropriate (default: IOBLAT $=0$). Usually, the attitude estimated by OASYS is sufficiently close to the true state, unless unexpectedly large biases are present. The linearity fix, then, is not necessary (default: ITER = 1). The data rejected in each model by the block averaging in OASYS will be rejected in processing of the curresponding model (REJOPT = 1) in OABLAS.

PRELIMAINARY DRAFT

The printout will include the state vector, uncertainties, partial derivatives vector, gain vectors, observation and weight, and the statistics of the residuals (ILEVEL $=12$) on FORTRAN units numbered 6, 7, 8, 9, 10, 11, respectively (IPRINT = 6). Both the state vector and uncertainties will be plotted (default: IPLOT $=12 * 3$) on FORTRAN unit number 6 (IPRINT = 6). Note that the residuals for a model will be plotted on FORTRAN unit number 6 (IPRINT =6) if the corresponding array element of RESMOD is true. A line of printout will occur for every observation, and a point will be plotted at every frame (default: INTOUT $=0$). The error messages and error summary table will be printed (IDUMPL = 4) on FORTRAN unit number 12 (ERUNIT = 12). No diagnostic printout will be generated (default: IDIAGN $=32 * 0$).

The granularities required for each model are shown below:

Model		Granularity Required
Sun angle model		SANGRN
Sun time model		STMGRN
Nadir vector projection model	OAGRAN	
Horizon time model	OAGRAN	
Single horizon dihedral angle model	STMGRN, OAGRAN	
Double horizon scan width model	OAGRAN	
Small target nadir angle model	RHOGRN	
Scan midtime dihedral angle model	STMGRN, OAGRAN	

Since all models but the small target nadir angle model will be processed, all granularities but RHOGRN are required (SANGRN $=30 ., \operatorname{STMGRN}=0.1$, OAGRAN $=0.5$) .

When any two vectors of the horizon vector, $\widehat{\mathrm{L}}_{\mathrm{H}}$; spin axis vector, $\widehat{\mathrm{S}}$; and spacecraft position vector, \widehat{R}, are either nearly parallel or nearly antiparalllel, a singularity in computing the partial derivatives of $\hat{\mathrm{L}}_{\mathrm{H}}$ is encountered. Whenever the estimate and geometry result in a matrix whose determinant is

PRELIMINARY DRAFT

less than TOLDET, the processing of that observation is terminated (default: TOLDET $=1 . E-4$). TOLDET is required for the horizon time model, single horizon dihedral angle model, and double horizon scan with model.

The G.I. coordinate system will be rotated if the absolute value of the initial estimate of the declination of the spin axis is less than 20 degrees or between 70 and 90 degrees (default: ROTLIM = 20.).

The NAMELIST parameters that have no effect in this sample problem are CONVRG, RHOGRN, DELTAT, and LINTOL. If an iteration on each state update is needed ($N U M T T R \neq 0$), CONVRG is required. If the linearity fix is attempted (ITER >1), LINTOL is required. If the correction of the in-track time error is required and the central body is the moon, DELTAT must be specified.

7.4 OABIAS DATA SET

The OABLAS data set is written by the Radio Astronomy Explorer-B (RAE-B) Attitude Determination System or written by the OASYS Subsystem running under the SSS-A, SMS-A, or IMP-J Attitude Determination Systems. In a simulation mode, the simulator within MSAD/OABIAS also writes a data set in this format. For the AE spacecraft, the subroutine AECOPY copies the AE data set into this format.

The data set consists of one or more blocks of data, with each block preceded by a pair of header records. Each block of data consists of one or more frames; each frame consists of two records, an in-triggering followed by an out-triggering.

The data set is a FORTRAN A-format data set (i.e., all parameters are read and written in an A format); it resides on FORTRAN unit IDISK, where IDISK is a parameter in NAMELIST MAIN (default value $=50$).

PRELIMINARY DRAFT

The two 50-byte header records which precede each block of data are as follows:

Record 1:

Name	Description	Type
IHFLAG	Header flag $=\mathbf{- 9 9 9}$	I*2
TREF	Current time of job running (local time) (year, month, day, hours, minutes, seconds)	R*8
TFIRST	Time of first sample (UT: seconds from 0 hours, September 1, 1957)	R*8
THE ${ }^{1}$ (1)	Upper SAS zenith reference angle from +Z (degrees)	R**
(2)	Lower SAS zenith reference angle from +Z (degrees)	$\mathrm{R}^{*}{ }^{\text {a }}$
(3)	PAS1 null zenith reference angle from +Z (degrees)	R*4
(4)	PAS2 null zenith reference angle from +Z (degrees)	R*4
PAD (1)	Padding (ignored)	R*8
(2)	Padding (ignored)	R*8
Record 2:		
Name	Description	Type
NSAMP	Number of samples $=$ number of data records following this header	I*2
PHI ${ }^{1}$ (1)	Upper SAS azimuth reference angle from +X (degrees)	R*4
(2)	Lower SAS azimuth reference angle from +X (degrees)	R*4
(3)	PAS1 null azimuth reference angle from +X (degrees)	$\mathrm{R}^{* 4}$
(4)	PAS2 null azimuth reference angle from +X (degrees)	R**

[^1]
PRELIMINARY DRAFT

Name	Description	Type
$\begin{equation*} \mathrm{PHI}^{1} \tag{5} \end{equation*}$	PAS1 Sun azimuth reference angle from +X (degrees)	$\mathbb{R}^{*} 4$
(6)	PAS2 Sun azimuth reference angle from +X (degrees)	$R^{*}{ }^{4}$
RHOEB	Bias on Earth angular radius (degrees)	$\mathrm{R}^{* 4}$
RHOMB	Bias on Moon angular radius (degrees)	$\mathrm{R} * 4$
PAD (1)	Padding (ignored)	R*8
(2)	Padding (ignored)	R*8

The 50-byte data records (always occurring in pairs) which constitute each frame on a block of data are as follows:

Name	Description	Type
INVERT ${ }^{1}$	Inversion flag: $=0$, normal $=1$, inverted	I*2
TTRIG	Time of horizon triggering (UT: seconds from 0 hours, September 1, 1957)	$\mathrm{R} * 8$
BETA	Sun angle (degrees) (0-180)	R*4
GAM	Sensor mounting angle (degrees) (0-180)	R*4
RPM	Spin rate (revolutions per minute)	$\mathrm{R} * 4$
A	Dihedral angle from Sun to horizon (degrees) $(0-360)$	$\mathrm{R} * 4$
PASPHI ${ }^{1}$	Phase angle used in computing A (degrees) ($0-360$)	$\mathrm{R}^{*} 4$
RMINUS (3)	Unit vector from spacecraft to center of central body, inertial coordinates	$\mathrm{R}^{* 4}$
RMIAG	Distance from spacecraft to center of central body (kilometers)	$\mathrm{R}^{*}{ }^{4}$
KCNFLG	Configuration flag (see note below)	I*2

[^2]| Name | Description | Type |
| :---: | :---: | :---: |
| CBPAS | $\begin{aligned} & \text { Central body indicator: } \\ & =E \text {, Earth } \\ & =M \text {, Moon } \\ & =S \text {, Sun (central body vector ignored) } \\ & =\text { U, unknown (central body vector ignored) } \end{aligned}$ | L*1 |
| HORTER | Horizon terminator indicator:
 $=\mathrm{H}$, horizon
 $=\mathrm{T}$, terminator
 $=\mathrm{U}$, unknown | L*1 |

NOTE: For the RAE-B spacecraft, the configuration flag is defined as follows:

KCNFLG	Sun Angle	Sun Sensor Used for Sun Triggering	Horizon Sensor Used
$=1$	<90	SAS	PAS1
$=2$	<90	SAS	PAS2
= 3	<90	PAS1	PASI
$=4$	<90	PAS2	PAS2
$=5$	>90	SAS	PAS1
$=6$	>90	SAS	PAS2
$=7$	>90	PAS1	PAS1
$=8$	>90	PAS2	PAS2

For the AE spacecraft, the configuration flag is defined as follows:
$=1$, wheel horizon sensor 1 , gimbal Sun sensor .
$=2$, wheel horizon sensor 2 , gimbal Sun sensor
$=3$, body horizon sensor 1 or 2 , digital Sun sensor
For all other spacecraft, the configuration flag is fixed at 1.

7.5 AE DATA SET

The AE input data set is written by the AE-C Attitude Determination System. This data set can be accessed only through the use of subroutine RDBUFF from the AE libraries. See Reference 14 for a description of this data set. The AE input data set is read from FORTRAN unit number IAEUN, a parameter in NAMELIST MAIN.

PRELIMINARY DRAFT

Not all of the data brought in to subroutine AECOPY is used in OABIAS processing. Since some of the data which is not used is of interest in modeling the performance of the bolometer for the AE wheel mounted sensors, the option exits to write wheel horizon sensor data on FORTRAN unit number IBOLOU. IBOLOU is a parameter in NAMELIST MAIN. The AE bolometer data set consists of one or more frames of data with each frame in the following format:

Name	Description	Type
WHSTIM	Wheel horizon sensor triggering time for each frame (UT: seconds from 0 hour, September 1, 1957)	R*8
EW1	Earth width times for wheel horizon sensor 1 (seconds)	R*4
EW2	Earth width times for wheel horizon sensor 2 (seconds)	$\mathrm{R}^{* 4}$
SI	Split-to-index pulse times (seconds)	R* ${ }^{\text {a }}$
WHSSP	Wheel spin period for each frame (seconds)	R*4
WHSFLG	Wheel horizon sensor flag: $=0$, (EBCDIC) good frame $\neq 0$, bad frame	L*1
7.6 JPL LUNAR AND SOLAR EPHEMERIS FILE		
The JPL ephemeris file contains lunar and solar ephemeris information accessed by subroutine RJPLT. The file is required if the parameter ISUN $=3$ or IMOON $=3$ in NAMELIST LIST or OPMAN1. (See Sections 7.3.5 and		
7.3.6.) The FORTRAN unit number is specified by the parameter NRJPLT in		
NAMELIST LIST or OPMAN1 (default value $=28$).		
See Reference 5 for a description of this data set.		
7.7 SUNRD LUNAR AND SOLAR EPHEMERIS FILE		
The SUNRD ephemeris file contains lunar and solar ephemeris data accessed by subroutine SUNRD. The file is required if the parameter ISUN $=2$ or		
	7-64	
	PRELIMMANARY DRAFT	

PRELIMINARY DRAFT

IMOON $=2$ in NAMELIST LIST or OPMAN1. (See Sections 7.3.5 and 7.3.6.) The FORTRAN unit number for the file is 14.

See Appendix B in Volume 1 for a description of this data set.

7.8 GTDS SPACECRAFT EPHEMERIS FILE

The GTDS ephemeris file contains spacecraft ephemeris data accessed by subroutine GETHDR/GETVCT. The file is required if the parameter ISPC $=3$ in NAMELIST LIST or OPMAN1. (See Sections 7.3.5 and 7.3.6.) If the parameter LEVEL $=0$, then the FORTRAN unit number is specified by the parameter NGTDS (default value $=29$); if LEVEL $\neq 0$, the FORTRAN unit number is 31 . See Reference 4 for a description of this data set.

7.9 DODS SPACECRAFT EPHEMERIS FILE

The DODS ephemeris file contains spacecraft ephemeris data accessed by DTAPRE (an entry point of RO1TAP). The file is required if ISPC $=2$ or 5 in NAMELIST LIST or OPMAN1. (See Sections 7.3.5 and 7.3.6.) The FORTRAN unit number is specified by the parameter NORB1 (default value $=30$).

See Reference 3 for a description of this data set.

7.10 SPACECRAFT ATTITUDE TAPE

The spacecraft attitude tape is a standard Multisatellite Attitude Prediction (MSAP) attitude data set which is used by the simulator to simulate a spacecraft with a slowly varying attitude. This data set is required if the parameter IATAPE $=0$ in NAMELIST LIST. The FORTRAN unit number for the attitude tape is 12.

See Reference 20 for a description of this data set.

PRELIMINARY DRAFT

7. 11 GESS NONRESIDENT TABLES

The GESS nonresident tables reside on a partitioned data set and contain the display tables which describe each GESS display in the system. The tables are accessed one at a time by the GESS Executive as required. The FORTRAN unit number is specified by parameter IFTABL in NAMELIST CONTRL (default value $=96$).

See Reference 13 for a description of this data set.

7.12 PRINTED OUTPUT

Printed output is generated by the GESS Executive, the OADRIV control module, the Optical Aspect Determination Prediction (ODAP) Subsystem, the OASYS Subsystem, and the OABIAS Subsystem.

Printed output may be generated on FORTRAN unit numbers $6,9,10,94$, and 95, plus the unit numbers specified by the parameters IFTPRT (in NAMELIST CONTRL), ERUNIT (in NAMELIST BIASNL), and IPRINT through IPRINT +5 (in NAMELIST BIASNL). Thus if IFTPRT $=$ ERUNIT $=$ IPRINT $=6$, then units $6,7,8,9,10,11,94$, and 95 may be used. The following data definition (DD) card is required for each unit:

$$
\begin{aligned}
& / / F T \mathrm{xx} \text { F001 DD SYSOUT }=\mathrm{A}, \mathrm{DCB}=(\mathrm{RECFM}=\mathrm{VBA}, \\
& / / \quad \mathrm{LRECL}=137, \mathrm{BLKSIZE}=7265, \text { BUFNO }=1)
\end{aligned}
$$

The block size for each data set should be chosen to optimize input/output (I / O) time and core requirements based on the amount of printout expected for each unit. A DUMMY DD card should be provided for any unit number from which printout is not desired.

7.12.1 Printed Output From the GESS Executive

Printed output from the GESS Executive consists of a listing of the parameters in NAMELIST CONTRL (see Figure 7-1) on FORTRAN unit IFTPRT. The

	NAMELIST/CONTAL,
IFTABL $=96$	fortran unit inumber for display tables
tftuee = 23	fortran unit number for the graphics device
IFIPRT $=6$	fittran unit number for the printer
IRDART $=0$	eq 1. read in master numbers ne 1. do not read in master numbers
IRDXST $=0$	En 1. pead in cisplay status flags ne 1. do not read in display status flags
IDIREC $=0$	EQ O. DO NOT READ IN DIRECTORY ARDAYS NE O. READ IN OIRECTIRY ARRAYS
IRDTPD $=0$	eq o, do not read namelist/tposet/ ne o. read namelist/tpdset/
numsua $=3$	number of major subsystems
NUMCNC $=0$	number cf conversion and corpection routines
NUMSCA $=$. 0	number of. special capability routines
KOFFEE $=0$	eq o. terminate after fine attituoe EQ 1. recycle to relemetry processing
GSATID = ********	Satellite toentification
GRUNID $=$ *******	run tiontification
IRMON = 9	month of reference date
IRDAT $=1$	cay of refepence date
IRVEAR $=1957$	year cf reference date

Figure 7-1. NAMELIST CONTRL

PRELIMINARY DRAFT

only other printout from GESS consists of printed copies of character displays; see Section 7.14 for examples of these displays.

In addition, the GESS Executive will generate a core dump on the data set SYSPRINT if the MSAD/OABIAS System abends in a graphics mode and the GESS Executive is able to intercept the abend. A DUMMY DD card can be provided for this data set to minimize the time required to recover from an abend in the graphic mode.

7.12.2 Printed Output From OADRIV

The only printed output from OADRIV consists of a listing of the parameters in NAMELIST MAIN on FORTRAN unit 6 (see Figure 7-2). In a nongraphic mode, this printout is generated following the reading of each new set of NAMELIST parameters for NAMELIST MAIN; in a graphic mode this printout is generated following each display at which the operator could have changed any parameters in NAME LIST MAIN.

7.12.3 Printed Output From the ODAP Subsystem

Printed output from ODAP includes all printout described in Reference 20.

7.12.4 Printed Output From the OASYS Subsystem

Printed output from OASYS includes all printout described in Reference 8, with the exception of the printout from GCONES.

7.12.5 Printed Output From the OABIAS Subsystem

The printed output of OABIAS results consists of tables and plots of the state vector, other quantities relevant to the recursive estimator, and the statistics. The printout is controlled by the NAMELIST parameters, ILEVEL, IPRINT, IDUMPL, ERUNIT, INTOUT, and IPLOT(12). The printout generated by OABIAS in the sample problem (Section 7.3.8) is shown in Figures 7-3 through 7-18.

PRELIMIMARY DRAFT

Figure 7-2. NAMELIST MAIN

PRELIMINATETY DRAFT

PRELIMINARY DRAFT

7.12.5.1 Input to OABLAS Table

The input to OABIAS is printed on FORTRAN unit number IPRINT. At the beginning of each pass through OABLAS, all necessary parameters in BIASNL are printed. This printout can be eliminated by setting ILEVEL to zero.

Figure 7-3 shows the input to OABIAS table generated by the sample problem.

7.12.5.2 OABIAS Attitude Summary--Heading Definition

The definition of the column headings of subsequent tables is printed on FORTRAN unit number IPRINT when ILEVEL is greater than 0 . Figure 7-4 shows an example of this table.

7.12.5.3 Attitude and State Vector Table

The attitude and state vector table includes the attitude and biases estimated at each frame and the final estimate of the uncertainties. This table is printed on FORTRAN unit number IPRINT when ILEVEL is greater than or equal to 2. The first and last pages of this table generated in the sample problem are shown in Figure 7-5. Note that the right ascension and declination of the spin axis are printed rather than the state vector components, S_{1} and S_{2}.

7.12.5.4 Uncertainty Table

The uncertainty table includes the square root of each diagonal element of the covariance matrix, P (uncertainty), estimated at each frame. This table is printed on FORTRAN unit number IPRINT +4 when ILEVEL is greater than or equal to 4 . Figure $7-6$ shows the uncertainty table generated in the sample problem. Note that the uncertainty in the right ascension and declination are printed rather than those in the state vector components, S_{1} and S_{2}.

7.12.5.5 Partial Derivative Table

The partial derivative table includes the partial derivatives, G, of the observation with respect to each element of the state vector evaluated at each frame.

ESTIMATES CF UNCERIAIITY IN INITIAL STATE ESTIMATE ESTIMAYES CF
DEGREES(ERAOR IN XC(1)
CEGRELS(EFFOR IN XC(2)

CEGREESIEFFOR IN XE(2))
CEGREES(EFFOR IN XO(3))

CEGREESIERFOK IN XL(C))
CEUREES(ERFUR IN XC(7))
CLGRLLS(EFGOR IN XC(U))
GFM(LRAUR IN XC(S))
LEUREES(EFFUR IN XC(10))
DEGAEES(EFITIOR IN XC(11)

$x 0(1)$
$x 0(2)$
$x 0(2)$
$x 0(4)$
$x 0(E)$
$x 0(c)$
$x 0(7)$
$x 0(c)$
$x 0(5)$
$x 0(10)$
$x 0(11)$
$x 0(12)$

PRELIMINARTV DRAFT

PRELIMINARY DRAFT

	0.300000 t
	$0.1090 C O L$
	$0.500 C C O L$
	0.2JOC:Ot

$0.10 c 000 \mathrm{n} .02$

PROCESSING CPTEONS (CUNTINUELD

Figure 7-3. Input to OABIAS Table (2 of 3)

7-72

PRELIA:INARY DRAFT

Ptount
ARRAY OF UNIT NUMBERS FOF REAUING ACLITIGNAL NAMEL IST EACH ELEMENT CCRFESFONUS TJ THE DLOCK OF CATA.
IF $=0$. DO NGI READ AN ACCITIONAL ULOCK IF =N, KEAU AN AUUITIONAL NAMELISI GN UN
GEDUNT 3) $=0$ RECUNT $(4)=0$ REDUNT $(5)=0$
GEDUNT $(d)=0$ REDUNI $y)=0 \quad$ NEUUNT(ic) $=0$

(UIAGN(4$)=0$ (DIAFUN) UIAGN(E) $=0$ (LCUMP) LUIAGN(IC) $=$ OUN(IC) $=0$ (PSIFHA). SARMUSI
CHMCO 1. 0
3
2
1
0
2

Figure $7-3$. mput to OABLAS Table (3 of 3)

PRELIMINARY DRAFT

$$
\begin{aligned}
& \text { Ei: sum five moun }
\end{aligned}
$$

$$
\begin{aligned}
& \text { UOUdLE HORILUN OCAN WIOTH MUUEL }
\end{aligned}
$$

> AI KNO CF FRAML
> SLIN SEITJUF SLIT PLAFIE IILT
> $\begin{aligned} & \text { HAS SENSOH TILT } \\ & \text { IN-TFACK TIME゙ A }\end{aligned}$
> $\begin{aligned} & \text { HCCURSIVE ESIIMATJR UAIN MAIRIX ELEME゙NT } \\ & \text { HAFTIAL UF OUSEFVATIEN ITA RESPLCT TU THE STATE VARIABLE }\end{aligned}$
> NJIイタ甘アSHJ
> CALCULAIEE CBSERVATIUN
> $\begin{aligned} & \text { LUSERVATICN RESIUUAL } \\ & \text { CESERVATICN WEIGFT }\end{aligned}$
> 7クロロW 37กNv NOS

ALPHA
UELJA
PSIO
UELTAL
OELTAL
PMIIH
PHIOH

上
trfe

PRELIMINARY DRAFT

(
3 Gamenemabea.

PRELIMANARY DRAFT

Figure 7-5. Altitude and State Vector Table From OABIAS (2 of 2)

PRELIMINARY DRAFT

GABIAS SUMAARY OUTPUT FOR 7A／I／
$*$
$02 * 0.100$
$C 2$
200
$-\stackrel{\circ}{i}$
 －家 ＊＊＊
\square

 óo o o oo o o o o o o oo o
 oo o o o o o o d o o o o o o do o co o
 $02 * 0.100$
020.340
$01 * 6.310$
110.280
$2 * 0.10 \mathrm{c}$
$2 * 0.10 \mathrm{C}$
$1 * 0.590$
100.98 C
 $02 *$
$02 * 0$
$02 * 0$
0.0 $1 * 0.550$
10.470
$\$ 0.47$ 23つつつ3 0.7 ± 0
$0.55 u$
0.540
0.240
 $01 * 0-b^{2}$
$01 * 0.80$ ． ${ }_{3}^{3}$ 0．0．92 M
0
0
0
0
0 3
0
\vdots
0
0

 2
+
0
0 22
3
0
0
0
0
0 22
0
0
0
0 $* 0 \cdot \gamma 10$
00.10
00.11 $* 0.810$
$.0 . i 10$ $\stackrel{3}{7}$

示 ${ }^{n} 2$ ？${ }^{2}$ 응 ： 3
0
0
0
0
0 ca＊0．000
 ： 3
0
0
0
0
0
 0
0
0
0
0

0 | $2 * * 0.80 C$ |
| :--- |
| $2 * 0.30 \mathrm{C}$ | $2 * 0.970$

$20 c \mid y 70$ $02 * 0+350$

 $2 * 0.170$
20.100
20.100
20.100
$1 * 0.100$ $1 * c 10$
100150
$10010 u$ 1100.100
0170.100
$010610 u$ $01 * 0.100$
0.0 .100 1100100
0140.100 $01 \cdot 0 \cdot 110$
$01+0.10$,
0100110 $01+0.9 y \mathrm{u}$
$01+0 . \mathrm{siv}$ 3
0
0
0
0
0
 2
2
0
0
0
0
0
0
0
3
0
0
0
0 コココココロロコココロココロロー
\qquad ヘ シ
 0140
$01 * 0$
$01 * 0$ 3
 $\bullet 0.900$
100.100
.0 .5 Sus 100. Sou
$1 * 0.80 \mathrm{~J}$ $1 * 0.500$
$1+0.5 .50$
$1+0.5 .50$ 100.950
$1+0.54 \mathrm{u}$
$1+0.540$ $1+0.54 \mathrm{u}$
10.94 J $01 * 0.94$
$01 * 0.94 \mathrm{u}$
$01 * 0.44 \mathrm{u}$

 yed
900
Ho

 ล2 0.870
0.50
0.400
0.900 ． 560 .0 .960
.0 .900
.0 .900

 －© ：© ： วे ${ }^{\circ}$ à E ${ }^{3}$ ว 0
0
0
0
0
0

0
\qquad

 ？ | $* 0.42 \mathrm{u}$ |
| :--- |
| $* 0.420$ |
| | 0.420

.0
.420 0.424
0.424
0.330 $\bullet 0.331$
0.130 0.33
00.33
0.35 $\begin{array}{r}0.33 \\ 00.33 \\ 0.15 \\ \hline\end{array}$
 200.200 3
$\stackrel{3}{3}$
\vdots
\vdots
\vdots
0 $2 * 0.200$
$=0.200$
 $* 6.200$
$* 0.250$
 ${ }^{3}{ }^{3}{ }^{2} \mathrm{~N}$ $\stackrel{\rightharpoonup}{\sim} \stackrel{\rightharpoonup}{\sim}$ $\grave{N}^{3} \begin{gathered}n \\ i\end{gathered}$

的的し ${ }^{5}$ ？ 160
1150
150
150
144

구를 그․

 \div | 120 |
| :--- |
| $12 J$ |
| 120 |

.122
-120
.122 $\underset{\sim}{3}$N \square
\square
\square

 ．敛
 $\stackrel{\circ}{\circ}$ nisim

PRELIMINARY DRAFT

This table is printed on FORTRAN unit number (IPRINT + 2) when ILEVEL is greater than or equal to 6 . Figure $7-7$ shows the partial derivative table generated in the sample problem.

7.12.5.6 Recursive Estimator Gain Table

The recursive estimator gain table includes the elements of the gain vector, K , for each element of the state vector estimated at each frame. This table is printed on FORTRAN unit number (IPRINT +1) when ILEVEL is greater than or equal to 8. Figure $7-8$ shows the recursive estimator gain table generated in the sample problem.

7.12.5.7 Attitude, Observable, and Vector Table

The attitude, observable, and vector table consists of the attitude, the residual, the inverse of the weight, the observation, the computed observation, and the three components of the Sun and position vector at each frame. This table is printed on FORTRAN unit number (IPRINT +3) when ILEVEL is greater than or equal to 10. Figure 7-9 shows the attitude, observation, and vector table generated in the sample problem.
7.12.5.8 Residual Table

The residual table includes the mean residual and the standard deviation of the residuals computed at each frame. This table is printed on FORTRAN unit number (IPRINT +5) when ILEVEL is greater than or equal to 12. The first and last page of the residual table generated in the sample problem are shown in Figure 7-10.
7.12.5.9 Error Messages

The error messages are printed on FORTRAN unit number ERUNIT when IDUMPL is greater than or equal to 4. Some of the messages generated in the sample problem are shown in Figure 7-11. See Section 7.16.4 for a detailed description of the error messages.

PRELliAMNARY DRAFT

PRELIMINARY DRAFT

\square 0
1
0
0
0
0 \circ ä or 믕ㅇ

 C.EYU-O1*0.450-010.

 $0.350-01+0-300-01 *-030-0240.550-02 * 0.120-02 *-.53 L-02 *-.560-02 * 0.380-020-.680-\mathrm{C} 34-0460-0240.470-03 *-.204-01$ $0.430-02 * 0.320-01+-.330-01 * 0.190-01 *-.450-01 *-.330-034-.200-01 * 0.250-01 * 0.140-04 *-250-01+0.230-020-19000$

Figure 7-8.

PRELIMINARY DRAFT

PRELIMINARY DRAFT

PRELlimitary DRAFT

23.	9110	22	1
23	9／16	\＆ 2	2
231	9／16	${ }^{2} 2$	3
231	$9 / 16$	2	3
$23 /$	9／16	22	4
$23 /$	9116	22	
231	9／16	32	5
23	$9 / 16$	：2	5
23.	9／16	¢ 2	－
23	y／10	12	8
231	9／11	： 3	1
23	9121	43	2
231	9／31	± 3	3
23	9／31	${ }^{\text {a }}$	3
231	9811	23	＊
23.	9／E1	5^{3}	4
231	9131	83	5
231	9／31	82	5
23	9／31	${ }^{3}$	6
231	－1／1	${ }^{2}$	8
23	5／45	5_{4}	1
231	5／45	${ }^{4} 4$	2
231	9／45	${ }^{4} 4$	3
$23 /$	9／45	84	3
$23 /$	8／45	24	4
$23 /$	1／4E	24	4
231	9／4E	：4	5
23	9／45	14	5
23	9／45	${ }^{4}$	6
23	9／4＝	24	－
¢3）	1018	35	1
23	1010	25	2
23	10， 0	：	3
23	1010	as	3
［3）	101	${ }^{5} 5$	4
23	$10 / \mathrm{c}$	is	4
23	$10 /$	： 5	5
23	101 C	is	5
231	1010	：	－
23	101%	¿5	${ }^{\circ}$
23	1010	¢	14
23	1010	［5	14
231	1010	${ }^{\text {c }}$	14
23	1010	as	14
23	101	：5	14
23	$10 /$	85	14
23	10／ 0	¢ 5	14

$0.237400-00$ $0.245710-03$ $0.276170-03$
$0.270310-03$ $0.10 \leq 4 e \mathrm{c}-02$ $0.105550-02$ 0.104440 －02 $0.1 E 5010-02$ $0.116570-02$ $0.1447100-03$ $0.2519 \mathrm{EC}-06$ 0.26 SSくに0」 $0.294200-03$ $0.105 d 3 c-02$ $0.120100-02$ 0.10 E445－02 0.2115 E゙J－02 c． $13 \mathrm{Bazac}-02$
$0.23 \in 790-03$ $0.236790-03$
$0.20115 \mathrm{C}-00$ $0.20115 \mathrm{c}-00$ $0.20502 L-03$
$0.2 y E 430-03$ $0.300322-03$ $0.1212 e 0-02$
$0.130745-02$ $0.21290 c-02$ $0.222=2 c-02$
$0.13305 c-02$ $0.13305 心-02$
$0.2427 c c \mid-03$ $0.30315 \mathrm{C}-00$ $0.2737 c \mathrm{c}-03$ 0.3 cel $1 \leq \mathrm{L}-03$ $0.13105 c-02$ $0.132 \mathrm{j} 1 \mathrm{c}-02$ $0.2<2040-02$ $0.22235 \mathrm{C}-02$ 0.131140302 c．20231c－03 $0.3037 \mathrm{sc}-06$ $0.2757 \mathrm{CO}-03$
 $0.222 \mathrm{BEC}-02$ $0.13314 \mathrm{C}-02$
$0.2 \mathrm{~J} 310-03$
$0.204970-02$
$0.5 \$ 7460-02$
$-.410120-02$
－． $.3735300-02$ $0.26325 u-01$ $0.252090-01$ $0.233690-01$ $0.220770-01$ $0.273040-01$ $-.220000-02$ $0.217240-02$
$0.199430-02$ $0.199430-02$
$-.425830-02$ －． $845590-02$ －． $237590-01$ $0.357070-01$ $0.251230-01$ $0.411360-01$ $0.303570-01$ $0.739590-02$ $0.234530-02$
$0.174070-02$ $0.174080-02$
$-.734640-02$
－． $100470-01$ c． $391050-01$ $0.48+420-01$ $0.444460-01$ $0.540270-71$ $0.430540-01$ $0.141770-01$ $0.249500-02$
$0.4422<0-02$ $0.4922<0-02$
$-.10093 u-01$ －． 1132 du 01 $0.505590-01$ $0.544200-01$ $0.52040 \mathrm{u}-\mathrm{n} 1$ $0.530420-01$ $0.447375-01$ $0.1344 \dot{\text { OUOL }} 01$ $0.244504-02$ $.4922<L-02$
$-.1132 日 t i o n ~$ $0.644200-01$ $0.510420-01$ $0.440570-01$ $0.134490-01$
$0.931050-04$
$0.271575-01$ $0.27157 C-01$
$-.110440-03$ $.110840-03$
$-943020-09$ $-.941020-04$
$0.711445-03$ $0.665510-03$
$0.631280-03$ $0.631280-03$
$0.560585-01$ $0.5 \operatorname{coset-01}$ $0.12411 \mathrm{C}-02$ $-.157140-0.3$ $0.85345 \mathrm{~L}-04$
$0 . \operatorname{to7100}-04$ $0.507110 L-04$
$-.109140-03$ －． $109190-03$ $0.60920 \mathrm{~L}-03$ 0． $\mathrm{B} 920 \mathrm{CL}-03$
 $0.102840-n 2$
$0.10644 \mathrm{~L}-\mathrm{Ca}$
 $0.877200-64$
0.12700 C $0.12700 L-64$
$-.17 y 196-0 J$ ． $253506-03$ $0 . \sum \leq 37 s L-C 3$ 0．11029L－C2 $0.10 \times 3 \mathrm{BC}-02$ $0.1300 \mathrm{ct}-\mathrm{cz}$ $0.11939 \mathrm{Li}-02$ 0．ctescici－cj $0.8 y d 25 C-94$
$0.196 a y c-c 3$
 $-.254400-03$ $0.117070-02$ $0.1236 \Delta L-02$ $0.122000-\mathrm{c} 2$ $0.120550-c 2$
$0.1701500-02$ $0.170150-02$
$0.151040-0.1$ ． $151090-01$ $0 . y 902=L-04$ $0.1808 .20-03$ $0.12306 c-02$
0．1205Ec－cz
$0.170150-02$
$0.191090-03$
$0.470540-04$
$0.343710-02$
$0.343710-02$
$0.376150-02$ $0.376150-02$
$0.273 C 90-02$ c． $\pm 36480-02$ c．52ss40－02 $0.713650-02$ c．104e 70－02 $0.140 c 00-02$ c． 3 31330－02 $0.471420-04$
$0.347200-02$ $0.3472=0-02$
$0.269500-02$ $0.269501-02$
$\mathrm{c} .273 \mathrm{~B} 2 \mathrm{D}-\mathrm{CR}$ C．554100－c2 $0.5475 \mathrm{ED}-\mathrm{Cz}$ c．escta00－02 $0.129150-02$ c． CE E170－02 C．ACECSD－02 O．47E510－04 $0.271160-02$ c．a7a130－02
 0.5 522éD－c2 0．721200－02 c．124esc－02 $0.738100-02$ $0.4241310-02$
 o．acsisu－ca 0．zcsisD－cá $0 . \operatorname{ctc} 430-62$
$0.545740-02$ $0 . \leq 4 C \in 3 D-02$ $0.117120-02$ c．Icsasu－c2 c． $72200 \mathrm{C}-\mathrm{C} 2$
 C． $477260-04$ c．áctasu－02
 cisfce30－02
c．1cs $490-0 z$ C．7Cs480－02
c．722eco－ca $0.412 \in 20-02$

Flgure 7－10．Residual Table From OABIAS（2 of 2）

PRELIARANARY DRAFT

	EFRUA	1 N	FRAME	4	FRCM	LNMCD－	UATA	FEJECT	REJUPT＝	1.	FEJ＝	C
	EFAOF	IN	FFAME	4	FRCM	D】AMCO－	CATA	HEJECT－	REJOPT $=$	1.	FとJ＝	C
ああぁああ	Efrum	IN	FRAMË	4	FROM	DIAMCD－	DATA	REJECT－	REJOPT $=$	1.	REJ＝	0
ああ女あ	ERROF	LN	FRAME	6	FRCM	LKMOD－	CATA	R日JECT－	FEJOPT＝	1.	Fどう $=$	0
	EFROF	1 N	FRAMC	6	FRUM	LNMOD－	DATA	REJECT－	REJOPT＝	1.	FEJ＝	0
＊＊ ＊$^{\text {＊}}$	EFÃOR	IN	FRAME	6	FROM	UIAMCD－	UATA	FĊJECT－	REJOPT＝	1	RE゙」＝	n
＊＊\＃＊	tfron	1 N	FRAME	0	FFCM	DIAMCD－	UATA	HEJECT	REJUPT	1	Rej $=$	0
	Erí̃ul	IN	FFAME	7	FHOM	LRNUD－	DATA	REJECT	REJOPT	1.	FëJ＝	0
あもあが	ERRUF	IN	FRAME	7	FRCM	LNNLD－	UATA	FEJECT	REJCPT	1	REJ＝	0
	ERTOF	1 N	FR AME	7	FRCim	UIAMCD－	UATA	HEJECt	RLJOHT	1.	Rej $=$	0
せもあもあ	EFFJE	IN	FRAIAE	11	FRCM	LRNJJ－	DATA	REJES：	FEJOPT	1.	RE゙J	0
＊れ＊＊＊	Efricior	1 N	FRAME	11	FFCM	LNNOD－	LATA	REJビ心T \rightarrow	REjupt	1.	HんJ $=$	0
㚣あああ	EFFOA	1 N	FRAME	11	FFill	UIAMCL－	DATA	FEJECT	FEJOPT	1.	RcJ $=$	0
あれあ产あ	EFROA	1 N	FRAME	11	FROM	DIAMCO－	UATA	FEJECT	FEJOPT	1.	REJ＝	0
	E゙F月0R	IN	FRAME	10	FFLM	DIAMCD－	OATA	REJECT－	REJOPT	1.	REJ＝	0
	EFRCF	1 N	FRAME	18	FROM	DIAMCO－	UAIA	HENECT－	FEJUPT	1.	REJ＝	． 0
あれあああ	EFFEF	1 N	FRAME	21.	FHCM	JIAMCD－	UATA	FE゙JECT－	REJOPT＝	10	REJ＝	0

PRELIMMANARY DRAFT

7.12.5.10 Error Summary Count Table

The error summary count table contains the number of errors that occurred in each subroutine during the pass. This table is printed on FORTRAN unit number ERUNIT. If IDUMPL is set to zero, only this table is printed and the error messages shown in Figure 7-11 are not printed. Figure 7-12 shows the error summary count table generated in the sample problem. See Section 7.16.4 for a description of the error messages corresponding to the locations in the error summary count table.

7.12.5.11 State.Vector Plot

Each element of the state vector is plotted on FORTRAN unit number IPRINT if IPLOT for the corresponding element is 1 or 3 . As examples, Figures 7-13 and 7-14 show the plots of the right ascension and declination of the spin axis generated in the sample problem.

7.12.5.12 Uncertainty Plot

The square root of each diagonal element of the covariance matrix (uncertainty) is plotted on FORTRAN unit number IPRINT if IPLOT for the corresponding element is 2 or 3 . As examples, the uncertainty plots for the right ascension and declination of the spin axis generated in the sample problem are shown in Figures 7-15 and 7-16, respectively.

7.12.5.13 Residual Plot

The residual for each model is plotted on FORTRAN unit number IPRINT if RESMOD for the corresponding model is .TRUE. .

As examples, the residual plots for the Sun angle model and single horizon dihedral angle model are shown in Figures 7-17 and 7-18, respectively. The mean residual and standard deviation at the end of the block are also shown in these plots.

PRELIMAINARY DRAFT

PRELIMINARY DRAFT

PRELIAAINARY DRAFT

7-88
PRELIMINARY DRAFT

PRELIANINARY DRAFT

7-89
Prelmminary draft

PRELIMINARY DRAFT

PRELIMINARY DRAFT

PRELlinllivary DRAFT

PRELIMMARARY DRAFT

PRELIPAINARY DRAFT

7. 13 CALCOMP PLOT TAPE

The GESS Executive can be used to generate a CalComp plot tape of the GESS plot displays. If CalComp plots are desired, a DD card must be included for the tape. See Section 7.18 for a description of the DD card.

Following termination of the job, the tape must be taken to the CalComp plotter in the basement of Building 1 (GSFC). The user should specify plain white paper, 12 inches wide, for the plots. The number of CalComp files on the tape should be specified as 999. CalComp plotting time will be approximately 5 min utes per plot. A maximum of about 200 plots will fit on 1 reel of tape.

7. 14 GESS DISPLAYS

This subsection describes each GESS display and provides a hard-copy example. For each control parameter display (e.g., NAMELIST display), the hard-copy example is annotated with the variable name associated with each parameter, unless the descriptor line on the display already includes the variable name. Note that certain integer control flags are displayed as alphanumeric fields rather than integers (e.g., the parameter IOBLAT is displayed as YES or NO rather than 1 and 0). In each case where this occurs, the descriptor line on the display lists all possible alphanumeric keys which are valid. The hardcopy is annotated with the corresponding parameter values in the same order. The displays are described in the order in which they normally appear. This order should be noted so that the operator can move efficiently forward or backward to the desired display in a graphic mode.

7.14.1 Display Status Flags and Key Assignments

Figure 7-19 shows the display status flags and key assignments display generated from the GESS Executive. The user may alter the status of any control point from this display, as described in Reference 13. The key assignments,

Figure 7-19. Display Status Flags and Key Assignments (1 of 3)

Figure 7-19. Display Status Flags and Key Assignments (2 of 3)

Figure 7-19. Display Status Flags and Key Assignments (3 of 3)

PRELIRAINARY DRAFT

shown on the second page of this display, are for information only. The user may move asynchronously to this display at any time by depressing key 30 .

7.14.2 Array Allocation Sizes

Figure $7-20$ shows the array allocation sizes display. The user may change array allocation sizes from this display. The values of 200 for OABIA.S 'Data Records" may be decreased, if desired, to save core but should not be increased to more than 200. The value of 300 for "Input Data Records" may be increased to allow additional input data records for data selection purposes. Approximately 1300 input data records is the maximum that can be displayed by the 2250 display device. The value of 20 for RAE-B "Header Records" may be increased, if desired, to allow saving more than 20 header records. The user may return to this display at any time by depressing key 0 . The other array sizes should not be changed by the operator.

7.14.3 Main Control Display

Figure 7-21 shows the main control display generated from OADRIV. This display contains the parameter ISIM from NAMELIST MAIN described in Section 7.3.4.

The user may return to this display at any time by depressing key 1.

7.14.4 Options for Copying AE Data Set

Figure 7-22 shows the display of options for copying the AE data set to the OABIAS data set format. This display includes parameters from NAMELIST MAIN, described in Section 7.3.4.

7.14.5 Simulator Options Display

Figure 7-23 shows the simulator options display. This display contains simulation parameters in NAMELIST MAIN, described in Section 7.3.4.

PRELIMMIARY DRAFT

Figure 7-20. Array Allocation Sizes

PRELIMINARY DRAFT

PRELIMIINARY DRAFT

Figure 7-22. Options for Copying AE Data Set

Figure 7-23. Simulator Options

PRELIMINARY DRAFT

7.14.6 NAMELIST LIST Display

Figure 7-24 shows the display of parameters in NAMELIST LIST. See Section 7.3.5 for a description of these parameters.

7.14.7 Options for Reading Data

Figure 7-25 shows the display of options for reading the OABIAS data set. This display includes parameters from NAMELIST MAIN, described in Section 7.3.4.

7.14.8 Header Record Displays

Figure 7-26 shows the three displays which contain data from the OABIAS header records. For a description of the data on the header records, see Section 7.4.

7.14.9 Data Record Display

Figure 7-27(1) shows the OABIAS data records display. The data on this display are described in Section 7.4, with the following exceptions:

Heading	Description
REC. NO.	Record number on data set
FRM NO.	Frame number, the index in the internal arrays (1-200)
FLAG	A four-character flag:
First character	```= I, inversion case (out-triggering occurred before in-triggering) = Blank, normal case = X, inversion flag invalid (not 0 or 1)```
Second character	$\begin{aligned} & =1-8, \text { configuration flag } \\ & =\mathrm{X}, \text { configuration flag invalid (not } 1-8 \text {) } \end{aligned}$
Third character	$=\mathrm{E}, \mathrm{M}, \mathrm{S}, \mathrm{U}$, central body flag
Fourth character	$=\mathrm{H}, \mathrm{T}, \mathrm{U}$, terminator/horizon flag

PRELIMINARY DRAFT

Heading

R

Description

Data rejection flag (set automatically by OADRIV, and may be changed by operator): = '.', valid frame $\not{ }^{\prime}{ }^{\prime}$ ', flagged frame

The following character is used by OADRIV for flagging data:
$=\mathrm{X}$, configuration flag invalid (not 1-8 or central body flag invalid (not E, M, S, or U)

Following the data records display are six sets of plots of the data. Each set consists of a plot of data versus time followed by a plot of data versus frame number. The data plotted are the same as those tabulated in the data records display. Points may be flagged from the plots by use of the GESS FLAGPT options.

The light pen is used to touch the FLAGPT option, each point to be flagged, and the END option. The six plot displays are as follows:

1. Sun angle (degrees)
2. Spin rate (degrees per second)
3. Rotation angle, Earth-in (degrees) and Earth-out (degrees)
4. Earth-in (degrees)
5. Earth-out (degrees)
6. Earth width (degrees) $=$ Earth-out minus Earth-in

Figure 7-27(2) shows the plot of rotation angles versus time. The other plots are similar.

7.14.10 Data Selection Options for OASYS

Figure 7-28 shows the display of data selection options for OASYS. These parameters are in NAMELIST MAIN described in Section 7.3.4.

PRELIAAINARY DRAFT

ORICINAL PAGE R OF. POOR QUALITY

Figure 7-24. NAMELIST LIST (1 of 2)

PRELIMINARY DRAFT

Figure 7-24. NAMELST LIST (2 of 2)

Figure 7-25. Options for Reading Data

LIVZO AXYNIWITZVd
$\stackrel{\rightharpoonup}{1}$
$\stackrel{\rightharpoonup}{8}$
8

Figure 7-26. Header Record Displays (1 of 3)

PRELIMINARY DRAFT

Figure 7-26. Header Record Displays (2 of 3)

Figure 7-26. Header Record Displays (3 of 3)

PRELIMINARY DRAFT

Figure 7-27. Data Record Displays (1 of 2)

PRELIMINARY DRAFT

PRELIMAINARY DRAFT

PRELIMINARY DRAFT

Figure 7-28. Data Selection Options for OASYS

PRELIMINARY DRAFT

7.14.11 NAMELIST OPMAN1 Display

Figure 7-29 (1 and 2) shows the NAMELIST OPMAN1 display. These parameters are described in Section 7.3.6. Figure 7-29(3) shows the source of the orbit to be used for processing (ephemeris tape, GTDS file, or orbit generator) and the orbital elements from either the header record of ephemeris tapes or GTDS files or the input parameters to the orbit generator.

7.14.12 OASYS Block Average Display

Figure 7-30 shows the display of block average results from OASYS. These values are stored in COMMON AVRAGE.

7.14.13 OASYS Plots of Single Frame Results

There are seven plot displays of the single frame results from OASYS. Each plot includes up to four curves, corresponding to the four different attitude computation methods in OASYS. If the GESS IDENTIFY option is used (see Reference 13), a number will appear on each curve to identify it as follows:
$=1$, single horizon method, in
$=2$, single horizon method, out
$=3$, double horizon width method
$=4$, double horizon dihedral method

The seven plots are as follows:

1. Alpha, including rejected points--This plot shows right ascension alpha, versus frame number, plotting the selected attitude from each ambiguous pair and including attitudes rejected in block averaging.
2. Alpha, omitting rejected points--This plot is the same as plot 1, but attitudes rejected in the block average are omitted.

PRELIAMINARY DRAFT

Figure 7-29. NAMELIST OPMAN1 (1 of 3)
,

PRELIMINARY DRAFT

Figure 7-29. NAMELIST OPMAN1 (2 of 3)

PRELIMINARY DRAFT

Figure 7-29. NAMELIST OPMAN1 (3 of 3)

Figure 7-30. OASYS Block Average Results (1 of 2)

Figure 7-30. OASYS Block Average Results (2 of 2)

PRELIMINARY DRAFT

3. Delta, including rejected points--This plot is the same as plot 1 but is for declination.
4. Delta, omitting rejected points--This plot is the same as plot 2 but is for declination.
5. Arc length uncertainty--This plot shows arc length uncertainty in attitude versus frame number. Points for which the uncertainty is undefined are omitted, but points rejected on the block average are included.
6. Nadir angle plot--This plot shows nadir angle versus frame number, including points rejected in the block average.
7. Dihedral angle plot--This plot is the same as plot 6 but is for dihedral angles.

Figure 7-31 shows an example of plot 1. The other plots are similar.

7.14.14 NAMELIST BLASNL Display

Figure 7-32 shows the NAMELIST BIASNL display. These parameters are described in Section 7.3.7.

7.14.15 Final Results From OABIAS

Figure 7-33 shows the display of final results from OABIAS. These parameters are stored in COMMON TABCOM.
7.14.16 Table of Errors From OABIAS

Figure 7-34 shows the display of errors from the OABIAS Subsystem. The errors are described in Table 7-1, Section 7.16.4.

PRELIMINARY DRAFT

PRELIMMINARY DRAFT

Figure 7-32. NAMELIS' BIASNL (1 of 3)

Figure 7-32. NAMELIST BIASNL (2 of 3)

PRELIMINARY DRAFT

Figure 7-33. Final Results From OABIAS (1 of 2)

Figure 7-33. Final Results From OABIAS (2 of 2)

Figure 7-34. Table of Errors From OABIAS

PRELIMINARY DRAFT

7.14.17 Table of Correlation Coefficients from OABIAS

Figure 7-35 shows the display of correlation coefficients from the OABIAS Subsystem. Each value in the table is computed as follows:

where P is the final covariance matrix. Since the matrix is symmetric, the lower diagonal portion is filled with zeroes on the display.

7.14.18 State Component Plots From OABIAS

Figure 7-36 shows one example of a state component plot. The state component right ascension is plotted versus frame number.

7.14.19 Plots of Uncertainties in State Compsnents

Figure 7-37 shows one example of a plot of the uncertainty on the state components. The uncertainty in right ascension is plotted versus frame number.

7.14.20 Residual Plots From OABIAS

Figure 7-38 shows one example of a residual plot. The residuals from the Sun angle model are plotted versus frame number.

7.14.21 Options for Data Prediction

Figure 7-39 shows the display of options for data prediction. These parameters appear in NAMELIST MAIN and are described in Section 7.3.t.

7.14.22 Plot of Predicted and Observed Rotation Angles

Figure 7-40 is an example of the plot of predicted and observed rotation angles versus time. The X -axis is in units of minutes from the start time of the prediction. The plot shows dihedral angles from the Sun to Earth-in and the Sun

$$
7-126
$$

PRELIMINARY DRAFT

PRELIMINARY DRAFT

PRELIMINARY DRAFT

Figure 7-37. Uncertainty in Right Ascension Versus Frame Number

PRELIMINARY DRAFT

Figure 7-39. Options for Data Prediction (1 of 3)

PRELIMINARY DRAFT

Figure 7-39. Options for Data Prediction (2 of 3)

PRELlifinary DRAFT

7-133

PRELIMIINARY DRAFT

to Earth-out. The observed rotation angles appear as points. The predicted rotation angles appear as lines. There are up to four segments for each predicted plot: first horizon, first terminator, second terminator, and second horizon. There are up to three predicted plots, corresponding to the three sets of inputs in the plot option table shown in Section 7.14.21. The three predicted plots are identified by the numbers 1,2 , and 3 when the GESS IDENTIFY is used to identify the curves. Numbers 4 and 5 in the identify option referred to observed Earth-in data and Earth-out data, respectively. The plot of predicted and observed rotation angles versus frame number is identical to the plot in Figure 7-40 except that the X -axis is frame number. The frame number plot is only available if ITIME $=0$ (see Section 7.14.21).

7.14.23 Plot of Predicted and Observed Earth Widths

Figure 7-41 is an example of the plot of predicted and observed earth widths versus frame number. The three predicted plots and the observed plot correspond to the same data as the rotation angle plots (see Section 7.14.22). The Earth width equals the Earth-out dihedral angle minus the Earth-in dihedral angle. The plot of predicted and observed Earth width versus time is identical to the frame number plot, except that the X -axis is measured in minutes from the start time of the prediction.

7.14.24 Core Storage and Time Remaining Display

Figure 7-42 shows an example of the core storage and time remaining display. This display is generated whenever the operator enters the command 'CORTIM' into the WHAT NOW field of any display. The display indicates the amount of free core storage within the user's region, the extent of core fragmentation, and the computer processing unit (CPU) and I/O time remaining in the job.

Figure 7-40, Predicted and Observed Rotation Angles Versus Time

PRELIMINARY DRAFT

Figure 7-41. Predicted and Observed Earth Widths Versus Frame Number

$$
7-136
$$

PRELIMINARY DRAFT

7.15 CONTROL WITH INTERACTIVE GRAPIIICS

This subsection describes the ways in which the operator can modify program flow in a graphic mode. The reader is assumed to have a knowledge of the general capabilities of GESS graphics systems (see Reference 13, pages 6-14 ff.).

7.15.1 Programmed Function Keys

The MSAD/OABIAS System uses 20 programmed function keys, in addition to keys 0,30 , and 31 which are normally provided in any MSAD system. The functions of these keys are listed below:

Key	Function
0	Causes move to array allocation sizes display. Allows the operator to change array allocation sizes. Always a backward move to the beginning of the system
1	Causes move to main control display in OADRIV
4	Causes move to tabular display of input data
5	Causes move to plot of Sun angle data versus time
6	Causes move to plot of spin period data versus time Causes move to plot of rotation angle data versus time. NOTE: If IPLOT = 1 in the data reading options display, then key 7 will cause a move to the Earth-in data versus time plot. See Sec- tion 7.3.4.)
8	Causes move to plot of Earth width data versus time
10	Causes move to display of options for selecting data for OASYS Causes move to NAMELIST OPMAN1 display in the OASYS Subsystem
11	Causes move to character display of block aver- age results from OASYS

PRELIAAINARY DRAFT

Key

Causes move to plot of alpha (including rejected points) from OASYS

Causes move to plot of delta (including rejected points) from OASYS

Causes move to plot of arc length uncertainties from OASYS

Causes move to plot of nadir angles from OASYS
Causes move to NAMELIST BIASNL display in the OABIAS Subsystem

Causes move to character display of final results from OABIAS

Causes move to plot display of first state component in OABIAS

Causes move to plot display of uncertainty in first state component in OABIAS

Causes move to plot display of residuals from first model in OABIAS

Causes move to display of options for data prediction in PLOTOC Subsystem (NAMELIST MAIN)

Causes move to plot of predicted and observed rotation angles versus time

Causes move to plot of predicted and observed Earth-widths versus time

Causes move to GESS XSTOPS display used to control graphics displays and check key assignments

Causes move to GESS PRINT; prints lineprinter plot of character displays and CalComp plot of plot displays

NOTE: Once the OABIAS Subsystem has been entered, the operator can leave this subsystem only by making a backward move (usually either key I or key 10). In a graphic mode, the OABLAS Subsystem is in an infinite loop, always returning to the NAMELIST BIASNL display to accept new parameters for reprocessing.

PRELIMINARY DRAFT

The programmed function keys are assigned for convenient use with the 2250 graphic display device. The four long rows on the key console correspond to the four major subsystems of OABIAS--OADRIV, OASYS, OABIAS, and PLOTOC. The keys are normally used as follows: if the operator desired to return to the main control display in OADRIV from any point in the system, (e.g., to read new data or terminate), key 1 is depressed. Within OADRIV the first long row is used to move rapidly back and forth to examine data tables and displays, flag data, and select data for further processing. Within the first long row, key 4 shows the tabular data display, keys 5 through 8 show plots of the input data, and key 8 shows the options for adding noise or biases to the data and selecting data for further processing. The second long row controls OASYS processing and result displays. The first key in the row shows the OASYS processing parameters. The second key is depressed to obtain the tabular results of the OASYS processing. The remainder of the keys are used to move quickly back and forth among the plots of OASYS results. The third row is the OABIAS Subsystem and is similar in structure to the second row. The first two keys are processing parameters and final results table, respectively. The next three keys show plots of OABIAS results. The fourth long row controls the PLOTOC Subsystem. The first key of the row'shows the options for data prediction. The next two keys show the predicted and observed rotation angle and Earth-width plots. Finally the last two keys on the console bring up the XSTOPS display and provide the PRINT option.

See Section 2.4 for a detailed example of controlling system flow in a graphic mode.

7.15.2 Asynchronous Calls

The following control point names may be used for asynchronous calls. For an asynchronous call, the control point name is entered into the WHAT NOW field of any display; the specified control point is then invoked. Following execution
of the actions specified at that control point, control returns to the display from which the asynchronous call was made.

Control Point Name	Action
HEADER	Generate displays of OABLAS header records (three displays) Generate tabular display of OABIAS telemetry data
BETA	Generate plot display of Sun angle versus time and versus frame number
OMEGA	Generate plot display of spin rate versus time and versus frame number
EOANGL	Generate plot display of rotation angles versus time and versus frame number
CORTIM	Generate plot display of Earth width versus time and versus frame number
	Generate core storage and time remain- ing display

Control point HEADER would be invoked asynchronously only if the operator desired to look at the header record information. Control points DATDIS, BETA, OMEGA, ROANGL, and EWIDTH could be invoked asynchronously to allow the operator to examine the data or to change the rejection flags. The rejection flags from the data display are re-examined each time processing is performed in OASYS or OABIAS, and the rejection status of the data is modified appropriately.

Control point CORTIM can be invoked whenever the operator wishes to examine core fragmentation or the amount of CPU or I/O time remaining in the job.

PRELIMINARY DRAFT

7.16 ERROR MESSAGES

7.16.1 Messages Displayed in a Graphic Mode

Two types of error messages appear in a graphic mode: ADDMSG messages appear on a single line at the bottom of the display; MESAGE messages appear on a separate display. For messages not listed below, see Reference 13.

ADDMSG Messages are as follows:

Message	Description
U700 REQUESTED ${ }^{\text {IN- }}$	The requested block(s) from the
TERVAL COPIED.	AE data set have been copied to
NORMAL COMPLETION	the OABIAS data set. At least one
OF AECOPY	frame was copied
	User response: None
U701 END OF FILE ON	An end-of-file was encountered on the
COMPLLETION OF AECOPY	AE data set before the end of the rem
	quested interval was encountered. At least one frame was copied.
	User response: None
U702 END OF FILE ON AE DATA SET. REQUESTED INTERVAL NOT FOUND	An end-of-file was encountered on
	the AE data set before the beginning
	No records were copied
	User response: Specify a valid interval, or an interval beginning with block 1
U703 NO RECORDS ON AE DATA SET	An end-of-file was encountered
	while attempting to read the first
	block from the AE data set. The
	AE data set is empty. No records
	User response: Obtain a valid AE data set
U801 END OF FILE OR I/O ERROR. NAMELIST /BIASNL/	An end-of-file or I/O error was
	encountered while reading
	NAMELIST BIASNL in INITIL.
	See description of U920, below
	7-142
PRELIAIINARY DRAFT	

PRELIMINARY DRAFT

Message
U901 END OF FILE ON OABLAS DATA SET

U902 ARRAYS FILLED

U903 INVALID DATA INTERVAL SELECTED

U904 NO DATA RECORDS IN CORE

An end-of-file was encountered on the OABIAS data set before reading of the requested interval was completed

User response: None
Either the header record arrays or the data record arrays were filled before reading of the requested interval was completed

User response: None
The data interval specified by IREC1 and IREC2 in NAMELIST
MAIN (for a read request) or NFRAM1 and NFRAM2 in NAMELIST MAIN (for a processing request) is invalid

For a read request:
IREC1 $>$ IREC2 or
IRECI ≤ 0
For specifying data to be passed to OASYS:
NFRAM1<1 or
NFRAM1 $>$ NFRAM2 or
NFRAM2 $>$ the number of frames of data currently in core
NFRAM2 - NFRAM1 >200
User response: Correct the invalid parameter, and repeat the request

Following processing of the read request, there are still no data records in core because the user requested reading of header records only, or the specified data interval is not on the data set

User response: Read some data records into core by specifying the correct parameters

U905 ERROR RETURN AXX FROM ODAP

U906 START TIME = XXXXXX. XXXXXX

U907 FIRST FRAME NO. TO BE PROCESSED
MUST BE 1 IF EPHEM
VECTORS SAVED

U908 TO SAVE EPHEM VECTORS SET INPUT DATA RECORDS MASTER NO. . LE. 200

U909 EPHEM VECTORS
NOT PRESERVED

Subroutine ODAP returned before completing simulation of the requested block, probably because invalid parameters were input to NAMELIST LIST. See the description of error code xxx in Section 7.16.2

User response: Repeat the simulation request, and specify valid parameters in NAMELIST LIST

This message always appears on plot displays of data versus time. START TIME is the time of the first unflagged frame of data (expressed as YYMMDD. HHMMSS) and is the zero point for the X -axis coordinate

User response: None
An incorrect interval for passing data to OASYS has been requested. If ephemeris vectors are to be saved with the data, the data interval passed to OASYS must be 1 to N . $1 \leq \mathrm{N} \leq 200$

User response: Set NFRAM1 = 1 on "Select Data for OASYS" display or IEFMFG $=0$ on "Options for Reading Data" display

An attempt was made to save the ephemeris vectors passed with the data with an invalid "Input Data Records" master number

User response: Set IEFMFG=0 in "Options for Reading Data" clisplay or return to array allocation sizes display (key 0) and set "Input Data Records" master number to 200 or less

An attempt was made to use the ephemeris information on the OABIAS file when that information was not preserved

U920 END OF FILE NAMELIST/LIST/

U930 END OF FILE
NAMELIST/OPMAN1/

U947 ERROR
RETURN xxx FROM
EPHEMG

User response: Set IEPHEM = 0 on "Select Data for OASYS" display or re-read data with IEFMFG $=1$. NOTE: See restrictions on preserving ephemeris vectors in error messages U907 and U908)

An end-of-file was encountered while reading NAMELIST LIST in ODAPIN. The NAMELIST cards are probably missing or in the wrong order

User response: Supply the necessary NAMELIST parameters via the display

An end-of-file was encountered while reading NAMELIST OPMAN1 in OPINIT. See description of U920, above

Subroutine EPFEMG returned an error
code while attempting to access ephemeris data for the plot of prem dicted and observed rotation angles. The error codes from EPHEMG are as follows:
$=0$, normal return
$=1$, time before start of tape (DTAPRE)
$=2$, time after end of tape (DTAPRE)
$=3$, I/O error on tape (DTAPRE)
$=4$, interpolation error (DTAPRE)
$=5$, too many tapes (DTAPRE)
$=6$, time before start of tape (RJPLT)
$=7$, time after end of tape (RJPLT)
$=8$, requested body not on file (SUNRD)
$=9, \mathrm{I} / \mathrm{O}$ error (SUNRD)
$=10$, orbit level not found (GETHDR)
$=11,1 / O$ error reading header (GETHDR)
$=12$, time not on file (GETVCT)
$=13, I / O$ error reading data record (GETVCT)
$=14$, input code is invalid (ISUN, ISPC, or IMOON, in COMMON/ORBIT1/)
$=15$, central body flag returned by GETHDR is not 1 or 2
$=16$, exceeded maximum iterations in solution of Kepler's equation (ORBGEN)

User response: Depress key 2 to return to the NAMELIST OPMAN1 display and correct the ephemeris option

The ephemeris data places the spacecraft within the central body

User response: Correct the ephemeris options on the NAMELIST OPMAN1 display or correct the effective central body radius on the display of options for data prediction

This message always appears on the plot of predicted and observed rotation angles versus time. T0 is the start time of the prediction in the form YYMMDD. HHMMSS. STDV and RESD are the standard deviation and mean residual, respectively, of the predicted rotation angles minus the observed rotation angles. The three values are for plots 1,2 , and 3 , respectively

User response: None
An attempt was made to obtain plots with different X-axis coordinates, such as plotting at data times combined with equal time increment plotting

User response: Regenerate all plots by setting ISTATE to 4 or less for each plot

Two plots have different X-coordinate elements for the XXXth point

User response: Check source of Xarray for probable error

PrELHMNARY DRAFt

Message
U952 T0 = XXXXXX. XXXXXX
STDV = X.XXX, X.XXX,
X.XXX, RESD = X.XXX,
X.XXX, X.XXX

> U953 ILLEGAL USE STATE AT PLOT X HAS BEEN CORRECTED. PROCEED.

MESAGE MESSAGES:
END OF FILE NAMELIST/MAIN/

TERMINATION REQUESTED

HEADER RECORD AT ODD POSITION ON DATA SET

Description
This message always appears on plot of predicted and observed Earth width versus time. Same interpretation as U949 above with Earth width substituted for rotation angle

User response: None
An invalid use state was requested for plot X. The use state has been changed to reflect the current contents of that plot array

User response: Proceed

An end of file was encountered while reading NAMELIST MAIN in OADRIV. The NAMELIST cards for MAIN are probably missing
User response: Continue. Supply the necessary parameters via the display. All other NAMELISTS in the deck will have been skipped over also

The operator has requested termination of the job

User response: If termination is desired, continue. If termination is not desired, depress key 1
A header record was encountered on the OABIAS data set as the second record of a pair of records

User response: Continue. The first record in the pair will be ignored. Correct the program which operated the OABIAS data set to generate a valid data set

An end-of-file was encountered while attempting to read the second record in a pair of records

OABIAS
BIAS DETERMINATION
IN PROGRESS
XX FRAMES PROCESSED
XXX. XX UNCERTAINTY

IN ALPHA = XXX. XX DEG.
UNCERTAINTY IN DELTA = XXX. XX DEG

OABIAS
DATA PREDICTION IN PROGRESS PLOT NO. X

Description
OABIAS processing is proceeding. After XX frames of data have been processed, the uncertainties in right ascension and declination are as given

User response: None

PLOTOC data prediction is proceeding. Plot number X has been generated

User response: None

7.16.2 Printed Messages From the ODAP Subsystem

All error messages are written on FORTRAN unit number 6, as shown in Figure 7-43. Each error message provides the following information:

Heading
FRAME NUMBER

ERROR CODE
CENTRAL BODY

MESSAGE

Description
A number corresponding to the frame number which appears in the detailed printout. With this number, a user can determine at what time in the simulation the error occurred. If the frame number $=0$, then the error occurred in the initialization phase of the program
A number identifying the error type
Either EARTH, MOON, or blanks. If this error occurred while processing for a particular central body, then the central body is indicated. If this column is blank, it does not apply

A message describing the error

The following is a list of all error messages produced by the program. Those messages with an error code less than 100 are warning messages only; an
PRELIMINARY DRAFT

PRELIMINARY DRAFT

appropriate fixup is taken, and execution of the problem continues. Those messages with an error code greater than or equal to 100 result in termination of the simulation, with the additional message:

EXECUTION OF THIS PROBLEM TERMINATED DUE TO SEVERE ERROR

Control then returns to OADRIV, and message U905 is displayed. (See Section 7.16.1, above.)

Error

Code
\qquad

CONES DO NOT INTER-SECT--ODAP1

DIHEDRAL ANGLE UNDEFINED--ODAPI

MAX ITERATIONS IN TERMIN--DELPHI TOO SMALI

POINT DOES NOT LIE ON CENTRAL BODY-TERMIN

Meaning

The CONES routine indicates that the sensor scan does not intersect the central body, although a previous computation indicated that the scan should intersect the central body. This error may occasionally result due to truncation error with REAL*4 arithmetic

User response: None
The spin axis is parallel to the sun vector or the sensor mounting angle is zero or. 180 degrees, so rotation angles cannot be computed.

User response: None
The terminator search exceeded 1000 steps. This error cannot occur if the default value of DELPHI is used

User response: Increase DELPHI
In the search for a terminator crossing, a point in the scan failed to lie on the central body, although a previous computation indicated that all points in this segment of the scan should lie on the central

Error Code	Message	Meaning
31-46	INVALID INPUT TO SUBROUTINE xxxxxx	xxxaxx will be the name of one of the uncertainty routines, UNCERT, UNCDBL, or UNCDH. An exror return was encountered from EPHEMG, with error code 1-16, respectively. See description of EPHEMG
70	EOF ON ATTITUDE TAPE--NORMAL TERMINATION	An end-of-file was encountered while attempting to read a data record on the attitude tape User response: None
80	EXCEEDED MAX ITERATIONS IN ODAP	The maximum number of iterations specified by the user to be used in the iterative process to correct for orbital motion has been exceeded User response: None
101-116	ERROR IN EPHEM ROUTINE	Erzor return 1-16 respectively from subroutine EPHEMG. See description of EPHEMG
130	STOP TIME COMES BEFORE START TIME	The specified value of TF is earlier than the specified value of $T 0$. (NAMELIST LIST) ${ }^{\circ}$ User response: Do not specify TF
150	SPACECRAFT IS WITHIN EARTH	The spacecraft coordinates place it within the Earth User response: Correct the orbital elements or orbit tape
160	SPACECRAFT IS WITHIN MOON	See Error Code 150
200	EOF ON ATTITUDE TAPE WHILE READING HEADER RECORD	An end-of-file occurs within the header record, or there is an illegal, missing, or DUMMY DD card for the attitude tape User response: Check the attitude tape DD card
7-153		
	PRELIMIMARY	DRAFT

PRELIAHNARY DRAFT

Error
Code

Message
ATTITUDE TAPE DOES NOT COVER ANY OF THE DESIRED TIME INTERVAL

TIME REVERSAL-BACKSPACING IS NOT PROVIDED FOR ATTITUDE TAPE

The range covered by the attitude tape, as indicated on the header record, does not include any of the requested time interval, as defined by TO and TF (NAMELIST LIST); or the attitude tape has fewer than two data records; or the header record does not correctly indicate the start and stop times of the data records

User response: Check the printout of the header record to see if the tape covered the requested interval

Interpolation has been specified (INTERP $=1$, NAMELIST LIST), and the requested time is earlier than the time interval covered by the two records which have been saved. This error should not occur

User response: Correct the program so that the error does not occur

The following unnumbered message is provided:

Message
END OF FILE ON
UNIT 5--NAMELIST/
LIST/NOT FOUND

Meaning

An end-of-file was encountered on FORTRAN data set reference number 5 , while attempting to read NAMELIST LIST for the first problem. This message is always accompanied by the graphics message U920 described in Section 7.16.1

User response: Supply the NAMELIST parameters via the display device, if this is a graphics run

PRELIMINARY DRAFT

7.16.3 Printed Messages From the OASYS Subsystem

All error messages from the OASYS Subsystem are written on FORTRAN unit number 6. The following messages are provided:

Message
A PRIORI ATTITUDE
WAS USED TO RESOLVE AMBIGUITIES IN SPINAV

NO A PRIORI ATTITUDE AVAIIABLE--AMBIGUITIES CANNOT BE RESOLVED IN SPINAV

SPINAV DIVERGED--NO AVERAGES AVAIIABLE

Description
The a priori attitude provided was used to resolve ambiguities, either because the deterministic logic failed or because IAPIOR $=8$ (NAMELIST OPMAN1)

User response: Warning message only. The correctness of the results may depend on the accuracy of the a priori attitude

The search technique for resolving ambiguities failed to yield any set of selections which contained more than one useful attitude

User response: Increase the block size and/or the time range of the block. Increase values of SPNSIG and SPNTOL. Try using IAPIOR $=4$ and providing an a priori attitude (NAMELIST OPMAN1)

In the process of iterating to improve the selections for ambiguous pairs of attitudes, every attitude in the block was rejected as spurious

User response: Increase rejection tolerances SPINSIG and SPNTOL. Try using IAPIOR $=8$. Increase the block size and/or the time range of the block (NAMELIST OPMAN1)

PRELMMARARY DRAFT

SPINAV FAILED TO CONVERGE--RESULTS ARE GIVEN FOR LAST ITERATION

FITTING OF SUN DATA FAILED DUE TO ZERO DETERMINANT IN BLOCK XX

FAULTY POINTER INFORMATION IN SUNPRO

Description
The process for selecting the correct attitude from ambiguous pairs failed to converge within ITMAX iterations. The selections which are given for the last iteration are not necessarily consistent with the average obtained using those selections

User response: Increase ITMAX. Try using IAPIOR $=8$ and specifying an initial attitude estimate. Increase the block size and/or the time range of the block (NAMELIST OPMAN1)

In attempting to perform a linear fit to the Sun angles as a function of time, a zero determinant was obtained

User response: Set ISNPRO=1 (NAMELIST OPMAN1). Check Sun angles and Sun times for extreme erroneous values, and flag these frames

The pointer information in COMMON/POINT/ is invalid. This error should not occur

User response: Correct the program so that the error does not occur

7.16.4 Printed Error Messages From OABIAS

Error messages from the OABIAS Subsystem are written by subroutine BIASER on the FOR'TRAN unit number specified by ERUNIT. All messages start with the frame number and the name of the subroutine in which the error occurred. This information is followed by the error message.

prellminary draft

In many cases, the same error message may be printed by several subroutines. Therefore the error messages are given below in the order in which they appear in the OABLAS error summary table. (See Section 7.14.16 for an example). Table 7-1 provides the correlation between the error summary table and the error message descriptions.

The subroutine BIASER prints the appropriate error message based on the variable IERR which it receives via the calling sequence. IERR is a four-digit number. The first two digits indicate which subroutine has encountered an error. The next two digits are the index for the error which was encountered within the subroutine, i.e., the first, second, or third. The numbers which identify the subroutines are given in Table 7-1. The indices utilized by each subroutine are indicated in Table 7-1 by a reference to an error message number. A blank space indicates no error message for that index. The values of IERR which can cause an error message to be written are listed in the message descriptions.

In some cases, the message contains parameters which may be useful in determining the exact cause of the error. For example,
***** ERROR IN FRAME 32 FROM DIAMOND - DATA REJECT - REJOPT $=1$, REJ $=8$
where REJOPT is the data rejection option in NAMELIST BLASNL, and REJ is the data rejection flag for frame 32 in COMMON/REJCOM/. This message was caused by $\operatorname{IERR}=0511$. In the error messages given below, the characters ' XXXX^{\prime} will be used to indicate the printing of a variable in that place in the message.

PRELIMMARY DRAFT

Table 7-1. OABIAS Error-Message Error-Table Correlation Matrix

Number	Subroutine \qquad	$\begin{gathered} \text { Error } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Error } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Error } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { Error } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Error } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Error } \\ 6 \\ \hline \end{gathered}$
1	AMATRX						
2	APARTS						
3	BIASER						
4	DIAFUN	2	3	4	5	6	7
5	DIAMOD	8	9	10	11	12	13
6	FRAPRO						
7	INITIL						
8	LCOMP	14	15		16	17	
9	LNFUN						
10	LNMOD	8	11	12	13		
11	LPARTS	18	19				
12	LRFUN	16	17				
13	LRMOD	8	11	12			
14	OABIAS				.		
15	PRINTB						
16	PSIPHA					.	
17	RECURI						
18	ROTATE				-		
19	SANFUN	20					
20	SANMOD	9	10	12			
21	STMFUN						
22	STMMOD	9	10	12			
23	DMFUN	21					
24	DHMOD	8	11	12	13		
25	SCBFUN	16		22	17		
26	SCBMOD	8	11	12			

PRELIMMARY DRAFT

The OABIAS error messages fall into two classes: warnings and information. The warning error messages are associated with computational failures. The program action is to bypass the observation which caused the error. If any user response is required, it is indicated after the description of the error message. The information messages record data rejection. If an observation has been flagged, it is not processed. No user response is required.

Warning error messages are as follows:

Message Number	IERR	Message	Description
2	0401	DOT PRODUCT OF SUN VECTOR AND SPIN VECTOR IS 1 or - 1	The Sun vector and spin axis vector are parallel or antiparallel (the computed Sun angle is zero or 180 degrees)
3	0402	SENSOR MOUNTING $\text { ANGLE }=0.0$	Computed sensor mounting angle is zero
4	0403	ARGUMENT OF SQRT, DELR, IS NEGATIVE	Argument of square root is negative in computing the variable $D E L R$ in subroutine DIAFUN
5	0404	ARGUMENT OF SQRT, DELP, IS NEGATIVE	Argument of square root is negative in computing the variable DELP in subroutine DIAFUN
6	0405	$\begin{aligned} & \text { TOP } * * 2 / \mathrm{BOT}^{* *}=-1, \\ & \text { TOP } * * 2=\mathrm{XXXX} \\ & \mathrm{BOT}^{* * 2}=\mathrm{XXXX} \end{aligned}$	A denominator in computing the single horizon dihedral angle model function is zero
7	0406	ARGUMENT OF ARCSIN, (TE, TH) . GT. 1.0	The argument of arcsine of quantities in computing the single horizon dihedral angle model function is greater than 1.0

Message Number	IERR	Message	Description
8	$\begin{aligned} & 0501 \\ & 1001 \\ & 1301 \\ & 2401 \\ & 2601 \end{aligned}$	EARTH SIGHTING TIME IS NEGATIVE. EINOUT $=1$ ($0=$ EARTH-OUT) (1 = EARTH-IN) INITIM $=\mathrm{XXXX}$ EARTH-IN TIME $=\mathrm{XXXX}$ EARTH-OUT ITME $=\mathrm{XXXX}$	The observation is not processed because the central body sighting time is negative (data rejection flag). EINOUT indicates the type of triggering. INITMM is the block reference time in from September 1, 1957
9	$\begin{aligned} & 0502 \\ & 2001 \\ & 2201 \end{aligned}$	SUNSIGHTING TIME IS NEGATIVE, SUNTIM $=$ XXXX	The observation is not processed because the sun sighting time is negative (data rejection flag)
10	$\begin{aligned} & 0503 \\ & 2002 \\ & 2202 \end{aligned}$	SUNANG $($ NOBS $)=X X X X$ IS LT 0 OR GT PI	Sun angle observation is either negative or greater than π. Error in the telemetry
11	$\begin{aligned} & 0504 \\ & 1002 \\ & 1302 \\ & 2402 \\ & 2602 \end{aligned}$	DATA REJECT REJOPT $=$ XXXX REJ $=\mathrm{XXXX}$	Data is rejected because it was rejected by the corresponding model in OASYS
12	$\begin{aligned} & 0505 \\ & 1003 \\ & 1303 \\ & 2003 \\ & 2203 \\ & 2403 \\ & 2603 \end{aligned}$	BAD ESTIMATE, FIXUP BY NORMALIZATION $\mathrm{S} 1=\mathrm{XXXX}, \mathrm{S} 2=\mathrm{XXXX}$	The sum of $\mathrm{S}_{1}{ }^{2}$ and $\mathrm{S}_{2}{ }^{2}$ exceeds unity. S_{1} and $\mathrm{S}_{2_{2}}$ are adjusted so that $\mathrm{S}_{1}+\mathrm{S}_{2}^{2}<1$ User response: If this occurs frequently, use smaller PO
13	0506	L VECTOR NOT OBTAINED IN LCOMP $7-160$	The current estimate of the attitude and biases yields a scan which misses the central body. The model calling subroutine LCOMP is not processed

Message

Number	IERR	Message
14	0801	$\begin{aligned} & \mathrm{D}=\mathrm{XXXX}, \mathrm{XXXX}, \mathrm{XXXX} \\ & \text { LT TOLDEN }=\mathrm{XXXX} \end{aligned}$
15	0802	ARGUMENT OF SQRT = XXXX NEGATIVE IN QUADRATIC EQUATION
16	$\begin{aligned} & 0804 \\ & 1201 \\ & 2501 \end{aligned}$	POSITION VECTOR IS ZERO
17	$\begin{aligned} & 0805 \\ & 1202 \\ & 2504 \end{aligned}$	ERROR IN EPHEMV
18	1101	THE DETERMINANT XXXX LT THE SINGULARITY TOLERANCE $=\mathrm{XXXX}$

Description

Denominator (D) in computing the horizon vector, L_{H}, is less than a specified tolerance (TOLDEN in NAMELIST BIASNL)

A complex solution for the horizon vector, $\widehat{\mathrm{L}}_{\mathrm{H}}$, was obtained. This implies that the current estimate of the attitude and biases does not yield a scan of the central body

The position vector is zero. Error in the telemetry

Observation is not processed because error oc-curs in subroutine EPHEMV

The matrix to be inverted in computing the partial derivatives of the horizon vector, $\widehat{\mathrm{L}}_{\mathrm{H}}$, is singular

User response: If this occurs frequently, decrease the tolerance. This error is inevitable if the nadir angle is close to 180 degrees or the central body is extremely small. If this is the case, use the nadir vector projection model and/or scan mid-time dihedral angle model only

Message Number	IERR	Message	Description
19	1102	ERROR IN MINVM	Observation is not processed because error occurs in subroutine MINVM
20	1901	$\begin{aligned} & \text { CHI GE } 1 \text {, } \\ & \text { CHI }=\mathrm{XXXX} \\ & \operatorname{COS}(\mathrm{X}(10))=\mathrm{XXXX} \end{aligned}$	The cosine of the computed Sun angle exceeds 1.0
21	2301	$\mathrm{BOT}=0.0$	The denominator BOT in subroutine DHFUN is zero
22	2503	ABS (RCHI) . GT. 1.0	Cosine of the computed mounting angle is greater than 1.0

7.17 JOB CONTROL LANGUAGE

Figure 7-44 shows the JCL required to load the required source modules from tape to disk: perform GESS table generation, compile the source modules, perform linkage editing with overlay, and execute the MSAD/OABIAS System. The source library on file 1 of the tape contains OADRIV and its associated modules and routines for the ODAP and OASYS Subsystems which were modified for use with MSAD/OABIAS. File 2 contains the modules in the OABIAS Subsystem. All other required routines come from the non-executable load module libraries referenced in the link step.

Note that in the link step subroutine RJPLT, which reads the JPL Lunar and Solar Ephemeris File, has been replaced by a dummy routine in order to save about 12 K bytes of core storage. Thus the option to read the JPL Ephemeris File will not be available; subroutine SUNRD can be used to obtain lunar and solar ephemeris. If the user requires subroutine RJPLT then the cards with sequence numbers 810 and 820 must be deleted.

Figure 7-44. JCL to Compile, Link, and Execute MSAD/OABIAS (1 of 4)

Figure 7-44. JCL to Compile, Link, and Execute MSAD/OABIAS (2 of 4)

PRELIMMARY DRAFT

Figure 7-44. JCL to Compile, Link, and Execute
MSAD/OABIAS (3 of 4)

PRELIAAINARY DRAFT

//FT13FOOI
//FTIGFON!
/FFTZ3FOO
/FFTZAFOO
$1 / F T 20 F O O$ OD NITSP=SHR, OSN
OUMMY
DUMMY GTOS SEOUIFNTIAL SPCL EPHEMERIS FILE (NGTOSI. DIMMY GTOS SEOUNAR ANO SOLAR EPHEMERIS FILE INRJPL SPHFMERIS FILE INGTOS:
DUMMY //FT2OFOO
$/ / F T 3 O F O O D$
DUMMY
DUMMY GTOSDS SPACECRAFT EPHEMERIS FILE FNORBI
///\%
\% SCRATCH data set for simillated nabias data.

 //GO. SYSNOUMP DD SYSOUT = A , SPACF = (CYL, $(0,2)$), UNIT $=(O I S K, 4)$
//* CalCTMP plot tape.
 00019900
00020000
00020100
00020200
00020300
00020400
00020500
00020600
00020700
00020800
00020900
00021000
00021100
00021200
00021700
00021400
00021500
00021600
00021700
00021800
00021900
00022000
00022100
00022200
00022300
00022400
00022500
Figure 7-44. JCL to Compile, Link, and Execute MSAD/OABIAS (4 of 4)

PRELIMINARY DRAFT

The following notes, which apply to the GO-step DD cards, describe alternatives available to the user. In all of the examples it is assumed that the FORTRAN unit numbers are as shown in the sample NAMELIST (default values for all unit numbers except IPRINT $=6$ (BIASNL), ERUNIT $=6$ (BIASNL), and IDISK $=51$ (MAIN). See Section 7.3.8.)

- The SYSPRINT data set may be directed to a printer if the user desires to obtain an MSAD SNAP dump if the system abends when operating in a graphic mode

The following DD cards are required

```
//SYSPRINT DD SYSOUT=A,DCE=(RECFM=V8A,LRECL=137,BLKSILE=7265,EUFNO=1), 00001740
```

// UNIT=(CISK,4),SPACE=(CYL,(C,2))

The user should note that if these cards are provided, it may take several minutes of real time for th: dump to be generated, during which time the program will not respond to the operator. If the program abends in a nongraphic mode, if the GESS Executive is unable to intercept the abend in a graphic mode, or if the operator does not attempt to recover or is unable to recover from the abend in a graphic mode, then a dump is always provided on the SYSUDUMP data set.

- If a spacecraft attitude tape is to be used to simulate data for a time-varying attitude then the following DD cards are required:
where XXXXX is replaced by the library number of the attitude tape.

PRELMMARY DRAFT

- If it is desired to obtain solar and lunar ephemeris data in equinox of 1950.0 rather than equinox of date, using the SUNRD routine, then the following DD card is required:
//FT14FCOI CD UNIT=OISK,DISP=SHR,VOL=SER=OODSO1,DSN=GTOS.SLP1G50.JAN71 COOO1900
- If a 2260 graphics device is to be used, then the following DD card is required:
$/ /$ FT23FCOL LU UNIT $=2260$
00001905
- If the run is to be made in a nongraphics mode, then the DD card with sequence number 1905 must be removed.
- If it is desired to obtain lunar and solar ephemeris data from a JPL Ephemeris File, then the following DD card is required:

```
//FT28F001 CD UNIT=24CO,DISP=(OLD,KEEP),DSN=2B2MP.JPL,LABEL={, ELP).
where XXXXX is the library number of the JPL Ephemeris tape. (Note that the link step must be changed to include subroutine RJPLT if the user desires to access the JPL tape. See the notes on the link step above.)
- If it is desired to obtain spacecraft ephemeris data from a GTDS sequential file then the following DD cards are required:
```

//FT29F001 CD UNIT=2400,DISP=(OLD,KEEP),OSN=2B2MSGTD,LABEL=(, RLP),
where XXXXX is the library number of the GTDS ephemeris tape.

PRELMHMARY DRAFT

- If it is desired to obtain the spacecraft ephemeris from a DODS EPHEM tape, then the following DD cards are required:

```
//FT3OFOOL CD UNIT=2400,DISP={DLD,KEEP\,DSN=2B2MSDOD,LABEL=(, ELP), 00001930
```

// $D C B=(R E C F N=V B S, L R E C L=28 C 4, B L K S I L E=2808, D E N=3, B U F N O=1 \%, V C L \times S E R=X X \times \times X \quad 00001935$
where XXXXX is the library number of the DODS EPHEM tape.

- If it is desired to obtain the spacecraft ephemeris from a GTDS direct-access file, then the following DD cards are required:
//FT3IFOO1 DO UNIT=OISK,OISP = SHR, VOL $=$ SER $=X X X X X X, D S N=Y Y Y Y Y Y$
00001940
where XXXXXX is the name of the disk pack on which the GTDS file resides, and YYYYYY is the data set name.
- If it is desired to read an AE data set, then the following DD card is required:
//FT49F001 OU UNIT=DISK,DISP=SHR,VOL=SER=XXXXXX, CSN=YYYYYY
where XXXXXX is the name of the disk pack on which the AE data set resides, and YYYYYY is the data set name.
- If it is desired to process real data from an OABIAS data set then the following DD card is required:
//FTSOFCOI CD UNIT=DISK,DISP=SHR,VOL=SER=XXXXXX,OSN=YYYYYY,DCE=BUFNO=1 00001960
where XXXXXX is the name of the disk pack on which the OABIAS data set resides, and YYYYYY is the data set name.

NOTE: To read this data set, the parameter IDISK (NAMELIST MAIN) must be restored to its default value of 50 . In order to avoid operator conconfusion, the convention has been established that unit 51 is used for a scratch OABIAS data set for simulating data or copying AE data; unit 50 is used for a real OABIAS data set, which should not be written over by the MSAD/OABIAS System.

PRELIMINARY DRAFT

- If printed output of the summary reports from the simulator are dosired, then the following DD cards are required:

```
//FT94FCOI CD SYSCUT=A,CCP=(RECFM=VBA,LRECL=137.BLKSIZE=1374,8UFNO=1).00002040
// LNIT=(DISK,4),SPACE=(CYL,(0,2)) 00002045
//FT95FCO1 CD SYSCUT=A.DCEx(RECFM=VEA,LRECL=137,BLKSIZE=1374, BUFNO=1). 00002050
// UNIT=(DISK,4),SPACE*(CYL.(0,2)) 00002055
```

(These units are normally dummied to save core storage).

- If it is not desired to generate CalComp plots of plot displays, then the DD cards with sequence numbers 2090 and 2100 must be deleted.

Figure 7-45 shows the JCL required to execute the MSAD/OABIAS System assuming that the executable load module resides on ATTIT. OPRLIB. LOAD and the GESS nonresident tables reside on ATTIT. AODA. OABIAS. NRT. DA.TA. The notes given above for the GO-step DD cards apply equally to this example. ample.

```
```

//2B2NSOO4 JOB (GH7001857A,T,C00431,004010),FFF,MSGLEVEL=(2,0) 00000010

```
```

//2B2NSOO4 JOB (GH7001857A,T,C00431,004010),FFF,MSGLEVEL=(2,0) 00000010
//2B2MS004 JOB (GH7001857A,T,C00431,004010), FFF,MSGLEVEL=(2,01
//2B2MS004 JOB (GH7001857A,T,C00431,004010), FFF,MSGLEVEL=(2,01
//* EXECUTE NSAD/OABIAS FRCM A LOAD MCDULE AND MSAD TABLES ON GISYS4.
//* EXECUTE NSAD/OABIAS FRCM A LOAD MCDULE AND MSAD TABLES ON GISYS4.
1/*
1/*
//GO EXEC PGM=OABIAS,REGICN=4COK
//GO EXEC PGM=OABIAS,REGICN=4COK
//STEPLIB LC LNIT=CISK,CISP=SFR,VOL=SER=G1SYS4,
//STEPLIB LC LNIT=CISK,CISP=SFR,VOL=SER=G1SYS4,
// OSN=GL.LBNEP.OABIAS.LIACMCD
// OSN=GL.LBNEP.OABIAS.LIACMCD
// OSN=GL.LBNEP.GABIAS.LCACMCD
// OSN=GL.LBNEP.GABIAS.LCACMCD
//GO.FTOSFCCI DD * NANELIST INPUT.,
//GO.FTOSFCCI DD * NANELIST INPUT.,
LNAIN ISI
LNAIN ISI
INCISE=2.STOV =4*0.005, SGUANI=0.5,
INCISE=2.STOV =4*0.005, SGUANI=0.5,
IEPHEM=0, ITERM=0, ICB=0, \&END
IEPHEM=0, ITERM=0, ICB=0, \&END
CLIST IATAPE=1,ICB=1,ICBLAT=C,
CLIST IATAPE=1,ICB=1,ICBLAT=C,
I SUN=1, ISPC=1,INCCN=0,
I SUN=1, ISPC=1,INCCN=0,
ALPHA=351.,DELTA=-20..
ALPHA=351.,DELTA=-20..
CREITE=1974..1..4.,22.,51.,26.,
CREITE=1974..1..4.,22.,51.,26.,
A=24548.,E=0.73264,EYE=28.3,EMO=0.,WO=180., RANODE=260.,
A=24548.,E=0.73264,EYE=28.3,EMO=0.,WO=180., RANODE=260.,
IFLAG=2,ISKIP=1, THETAC =0.1
IFLAG=2,ISKIP=1, THETAC =0.1
CANGE=-9C.,STEP=0.,SIGNA=86.,
CANGE=-9C.,STEP=0.,SIGNA=86.,
ERRBET=0.25,ERRGAN=0.1,ERRA=C.1,ERRAD=0.5,ERRTIM=30.,
ERRBET=0.25,ERRGAN=0.1,ERRA=C.1,ERRAD=0.5,ERRTIM=30.,
TO=1974..1.,4.,23.,04.,DELTAT=15., \&END
TO=1974..1.,4.,23.,04.,DELTAT=15., \&END
ECPNANI CBFLAG=1,EPSILN=C.,DEBLG=8,ISNPRO=1,ICBLAT=0,
ECPNANI CBFLAG=1,EPSILN=C.,DEBLG=8,ISNPRO=1,ICBLAT=0,
CANGE=-9C.%
CANGE=-9C.%
ISUN=1,ISPC=1,INCCN=0.
ISUN=1,ISPC=1,INCCN=0.
MCCN=0,
MCCN=0,
TCRBIT=1974..1..4.,22..51.,2t..,
TCRBIT=1974..1..4.,22..51.,2t..,
A=24548.,E=0.73264,EYE=2\&.3,EMC=0.,WO=180., RANODE=260.,
A=24548.,E=0.73264,EYE=2\&.3,EMC=0.,WO=180., RANODE=260.,
ERRBET=0.25,ERRGAN=0.1,ERRA=C.1,ERRAE=0.5,ERRTIM=30.,
ERRBET=0.25,ERRGAN=0.1,ERRA=C.1,ERRAE=0.5,ERRTIM=30.,
ERRBET=0.25, ERRGAN=0.1,ERRA=C.1, ERRA
ERRBET=0.25, ERRGAN=0.1,ERRA=C.1, ERRA
GEIASNL ATTOPT=5,REJCPT=1,RESMCD=6*T,F,T,MCOEL=6*T,F,T,
GEIASNL ATTOPT=5,REJCPT=1,RESMCD=6*T,F,T,MCOEL=6*T,F,T,
IFRIWT=6,ERUNIT=6,IUUMPL=4,ILEVEL=12,IPLOT=12*3,REDUNT=10*0,
IFRIWT=6,ERUNIT=6,IUUMPL=4,ILEVEL=12,IPLOT=12*3,REDUNT=10*0,
CAGRAN=.5,STNGRN=.1,SANGRN=3C.,RHOGRN=2..
CAGRAN=.5,STNGRN=.1,SANGRN=3C.,RHOGRN=2..
XC=12*C., PO=3*1CC.,G*10.% \&ENL
XC=12*C., PO=3*1CC.,G*10.% \&ENL
//** SYSOUT CAIA SETS. ASSUNING IPRINT=ERUNIT=6.
//** SYSOUT CAIA SETS. ASSUNING IPRINT=ERUNIT=6.
1/*
1/*
1/* PRINTCUT FROM NSAD, OADRIV, UCAP, CASYS, ANO OABIAS.
1/* PRINTCUT FROM NSAD, OADRIV, UCAP, CASYS, ANO OABIAS.
//GO.FTCGFCOI DD DCE= IRECFM=VEA,LRECL=137,BLKSIZE=7265,BUFNG=11.
//GO.FTCGFCOI DD DCE= IRECFM=VEA,LRECL=137,BLKSIZE=7265,BUFNG=11.
00001650
00001650
// SPACE={CYL,(2,2)),LNIT=(DISK,4),SYSCUT=A
// SPACE={CYL,(2,2)),LNIT=(DISK,4),SYSCUT=A
00001660
00001660
00001670
00001670
00001690
00001690
// PRINTCLT FROM DABIAS. (IFRINT+1).
// PRINTCLT FROM DABIAS. (IFRINT+1).
//FIOTFCOL CD SYSCUT=A,CCE=(RECFM=VBA,LRECL=137,BLKSI2E=1374, EUFNO=1), 00001720
//FIOTFCOL CD SYSCUT=A,CCE=(RECFM=VBA,LRECL=137,BLKSI2E=1374, EUFNO=1), 00001720
// LNIT=(DISK,4),SPACE= PCYL, (0,2))
// LNIT=(DISK,4),SPACE= PCYL, (0,2))
// LNII=(DISK,4),SPACE= FCYL,(O,2))
// LNII=(DISK,4),SPACE= FCYL,(O,2))
//SYSPRINT CD DUMMY MSAC SNAP DLMP DATA SET.
//SYSPRINT CD DUMMY MSAC SNAP DLMP DATA SET.
//= PRINTCLT FROM OABIAS. (IFRINT\&2).

```
```

//= PRINTCLT FROM OABIAS. (IFRINT\&2).

```
```

00000010 00001360 00001370 00001380 00001385 00001386 00001387 00001390

```
00001680
```

00001680
00001690
00001690
00001700
00001700
00001710
00001710
00001720
00001720
00001730
00001730
00001740
00001740
00001750

```
00001750
```

Figure 7-45. JCL to Execute MSAD/OABIAS (1 of 2)

//FTO8FCO1 DD SYSOUT=A, DCE=(RECFM=VBA,LRECL=137, BLKSIZE=1374, BUFNO=11

00001760
// LNIT=(CISK,4),SPACE=(CYL, (C,21)
//* PRINTCLT FROM COAP IEARTH AS CENTRAL BODY), AND OABIAS (IPRINT+3).
$/ / F T O G F C O 1$ CD SYSCUT=A, DCE = (RECFM=VBA, LRECL=137, BLKSILE=1374, BUFNO =1),
/1 UNIT=(DISK,4),SPACE=(CYL, (C,2))
1/* PRINTCLT FROM GOAP (MCON AS CENTRAL BODY), ANO OABIAS (IFRINT+4).
//FT10FCO1 CD SYSCUT=A,CCE=(RECFM=VBA,LRECL=137, BLKSILE=1374, $\mathrm{EUFNO}=11$.
// UNIT = (OISK,4),SPACE=(CYL, (C, 2))
//* PRINTCLT FRCM CABIAS. (IFRINT+5).
//FT1IFCO1 CO SYSOUT $=A$, DCE $=($ RECFM $=V B A, L R E C L=137, B L K S I 2 E=1374$, QUFNO $=1)$,
/ UNIT $=($ DISK,4),SPACE $=(C Y L,(C, 2))$
$1 / 4$
//FT12F001 CD DUNNY SFACECRAFT ATTITUDE TAPE
// SUNRD LUNAR AND SOLAR EPHEMERIS FILE.
//FTI4FCOI CD UNIT=OISK,DISP=SHR,VCL=SER=DODSOL,DSN=GTDS.SLPTCD.JAN7I
//FT23FCOI CD UNIT=2250 CRAPHICS CEVICE IIFTUBEI. FILE (NRJPLTI.
//FI2EFCO1 CD DUNFY JPL LLNAR ANO SOLAR EPMEMERIS FILE (NRJPLTI.
//FTZSFCOI DD DUMNY GTDS SEQLENTIAL SPC. EPHENERIS FILE INGTCSI.
//FT3OFCOI CC DUNMY DCDS SPACECRAFI EPHENERIS FILE (NCRBI).
//FT3OFCOI CC DUNMY DCDS SPACECRAFI EPHEMERIS FILE INCRG
//FT3IFCOI CD DUNMY GTOS DIRECT ACCESS SPC. EPHEMERIS FILE
//FT3IFCOI CD DUNMY
//FI4SFCOI DO DUMNY
//FISOFCOI CD DUMMY OABIAS DATA SET.
1/*
1/* SCRATCH DATA SET FOR SIMULATED oabias data.
//年
/(FTSIFOOI CD UNIT=(OISK,4),SPACE=(CYL, (2,2)),
// DCB = (RECFN=FB,LRECL=5C, ELKSIZE=2000, BUFNO=1)
//FTG4FCOI CD DUMMY OCAP REPORT PRINIDUT (EARTH AS CENTRAL BOOY).
$\begin{array}{ll}/ / F T 94 F C O 1 & \text { CD DUMMY } \\ \text { //FIGSFCOI CD DUWMY } & \text { OCAP REPORT PRINTOUT (EARTH AS CENTRAL BODY). }\end{array}$
//FI95FCOI CD DUNMY OCAP REPORT PRINITJUT IMOON
//FT96FCOI CD UNIT=DISK,DISP=SHR,VCL=SER=GISYS4.
/ 1 DSN=GI. LBNEP.CABIAS.TABLES
//FTGTFCOI CD F NSAD NANELIST
ECCNTRL EENC
//
//* Calccap plot tape.
$1 /$
//GC. PLCTAPE CD UNIT=7TRACK, DCB=DEN=1, LABEL=(, BLPI, DSN=ZB2MSPLT,
11
DISP=(CLD, KEEP):VOL=SER=31636H
//GC. SYSUCUMP DD SYSOUT=A,SPACE=(CYL, (C,2)),UNIT=(DISK,4)

00001770 00001780 00001780
00001790 00001790
00001800 00001800
00001810 00001810
00001820 00001830 00001840 00001840
00001850 00001850 00001860 00001870 00001880 00001890 00001900 $00 C 01905$ 00001910 00001920 00001930 00001940 00001950 00001950
00001960 00001960
00001970 00001980 00001990 00002000 00002010 00002040 00002040
00002050 00002050
00002056 00002057 00002058

00002060 00002070 00002080 00002090 00002100 00002110

prelmmary draft

REFERENCES

1. Computer Sciences Corporation, 5035-22300-05TR, Evaluation of Filtering Methods for Optical Aspect and Horizon Sensor Data, W. Pettus, G. Fang, and Dr. S. Kikkawa, June 1972
2. --, 9101-09700-01TN, Preliminary Design of the Optical Aspect Bias Determination System (OABIAS), Dr. M. Plett and A. Dennis, July 1972
3. --, 5035-19700-01TR, Definitive Orbit Determination System Module Performance and Design Descriptions, F. DeCain, et al., March 1972
4. NASA Goddard Space Flight Center, Goddard Trajectory Determination System (GTDS) User's Guide, February 1974
5. National Aeronautics and Space Administration, Technical Report 32-1181, JPL Development Ephemeris Number 19, C. J. Devine, November 1967
6. NASA Goddard Space Flight Center, X-552-73-20, Generation and Use of the Goddard Trajectory Determination System SLP Ephemeris Files, M. G. Armstrong and I. B. Tamaszews'i, January 1973
7. Computer Sciences Corporation, 9101-13300-02TR, Optical Aspect Data Prediction (ODAP) Program, System Description and Operating Guide, Version 2.0, M. Joseph and M. A. Shear, October 1972
8. --, 9101-13300-03TR, Optical Aspect Attitude Determination System (OASYS), System Description and Operating Guide, Version 2. 0 , M. Joseph and M. A. Shear, October 1972
9. --, Horizon Sensor Behavior of the Atmosphere Explorer-C Spacecraft, CSC/TM-75/6004, J. R. Wertz, et al., April 1975
10. --, 3000-06000-03TR, GRECRS and GRPLOT Package Descriptions and User's Manual, Dr. M. Plett, et al., August 1973
11. W. Denham and S. Pines, "Sequential Estimation When Measurement Function Nonlinearity Is Comparable to Measurement Error," AIAA Journal, June 1966, vol. 4, no. 6, pp. 1071-1076
12. Computer Sciences Corporation, 9101-06900-05TN, Multi-Satellite Attitude Determination System (MSAD) Executive System Structure, M. Cunniff, et al., October 1972

PRELIMINARY DRAFT

	--, 5035-2900-01TM, Multi-Satellite Attitude Determination (MSAD) Executive System, Preliminary User's Guide, D. Jahn, et al., March 1973
14.	--, 3000-25800-03TR, MSAD/AE-C System Description, M. Grelland, A. Dydley (in preparation)
15.	--, 3000-05300-02TR, RAE-B Attitude Support System Description and Operating Guide, Dr. R. Williams, et al., June 1974
16.	International Business Machines Corporation, Federal Systems Division, Multi-Applications Subroutines, Volume I, Contract NAS 5-10022, August 1968
17.	Computer Sciences Corporation, 9101-07000-01TR, Star Data Analysis Program (SDAP) System Description and Operating Guide, M. Shear, July 1972
18.	--, 5035-22300-03TR, Optical Aspect Simulator (MAINSIM) System Description and Operating Guide, M. A. Shear, October 1971
19.	--, 5035-22300-04TR, System Description and Operating Guide for the Orbit, Sun, and Attitude Geometry Program (OSAG), M. A. Shear, January 1972
20.	P. Swerling, "Modern State Estimation Methods From the Viewpoint of the Method of Least Squares," IEEE Transactions on Automatic Control. December 1971, vol. AC-16, no. 6, pp. 707-719
21.	Computer Sciences Corporation, 9101-16600-01TM, Recurs Subroutine Description and Operating Guide, S. E. Cheuvront, December 1972
22.	A. H. Jazwinski, Stochastic Processes and Filtering Theory. New York: Academic Press, 1970
23.	V. O. Mowery, "Least Square Recursive Differential Correction Estimation on Nonlinear Problems," IEEE Transactions on Automatic Control, October 1965, vol. 10, no. 5, pp. 399-407
24.	S. L. Fagin, "Recursive Linear Regression Theory, Optimal Filtering Theory, and Error Analysis of Optimal System, " IEEE National Convention, 1964, part 1, pp. 216-240

[^0]: ${ }^{1}$ See Section 7.3.2.
 ${ }^{2}$ See Section 7.3.3.

[^1]: ${ }^{1}$ Applies to RAE-B spacecraft only.

[^2]: ${ }^{1}$ Applies to RAE-B spacecraft only.

