DOCUMENT 361-83

CAPE CANAVERAL, FLORIDA

RANGE REFERENCE ATMOSPHERE 0-70 KM ALTITUDE

FEBRUARY 1983

METEOROLOGY GROUP RANGE COMMANDERS COUNCIL

WHITE SANDS MISSILE RANGE KWAJALEIN MISSILE RANGE YUMA PROVING GROUND

PACIFIC MISSILE TEST CENTER NAVAL WEAPONS CENTER ATLANTIC FLEET WEAPONS TRAINING FACILITY NAVAL AIR TEST CENTER

EASTERN SPACE AND MISSILE CENTER ARMAMENT DIVISION WESTERN SPACE AND MISSILE CENTER AIR FORCE SATELLITE CONTROL FACILITY AIR FORCE FLIGHT TEST CENTER AIR FORCE TACTICAL FIGHTER WEAPONS CENTER

88

170

10

いい

THE FILE COPY

53

AD AJ 255

MG

	FOURTY OF ASSIETCATION OF THIS DAGE OF	Entered	
SI	CONTROL CLASSIFICATION OF THIS PAGE (WANT Date		
	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
Γ	REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Ĺ	DOCUMENT 361-83	AD-A 125553	
4	. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
	RANGE REFERENCE ATMOSPHERE		
		6. PERFORMING ORG. REPORT NUMBER	
Ļ	AUTHORAL	CONTRACT OF CRANT NUMBER(2)	
	Mateorology Group		G. CONTRACT ON GRART RUMBER(S)
	Kange Commanders Louncil White Sanda Missila Pango NM 8800		
	White Salus Hissile Range, NH 8800	<u> </u>	
],	PERFORMING ORGANIZATION NAME AND ADDRESS		AREA & WORK UNIT NUMBERS
	Same as Block 7		
h	1. CONTROLLING OFFICE NAME AND ADDRESS	• 7	12. REPORT DATE
	Secretariat, Range Commanders Cound	C1	February 1983
(White Sands Missile Range. NM 8800	2	13. NUMBER OF PAGES
⊢	4. MONITORING AGENCY NAME & ADDRESSIL different	t from Controlling Office)	LIJ 15. SECURITY CLASS. (of this report)
			UNCLASSIFIED
	Same as Block 11		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16	APPROVED FOR PUBLIC RELEASE; DISTR	IBUTION UNLIMITED). m Report)
16	APPROVED FOR PUBLIC RELEASE; DISTR	IBUTION UNLIMITED). m Report)
16	8. SUPPLEMENTARY NOTES	IBUTION UNLIMITED). m Report)
16	5. DISTRIBUTION STATEMENT (of the Report) APPROVED FOR PUBLIC RELEASE; DISTR 7. DISTRIBUTION STATEMENT (of the electract entered) 8. SUPPLEMENTARY NOTES Suppressed on Document 204-63 "Atlant	IBUTION UNLIMITED). m Report)
16	APPROVED FOR PUBLIC RELEASE; DISTR 7. DISTRIBUTION STATEMENT (of the abetract entered i 8. SUPPLEMENTARY NOTES Supersedes Document 104-63, "Atlant Parts 1 and 2) AD451780 and AD75158	IBUTION UNLIMITED In Block 20, If different from tic Missile Range 31.). m Report) e, Cape Kennedy, Florida,"
16	APPROVED FOR PUBLIC RELEASE; DISTRI APPROVED FOR PUBLIC RELEASE; DISTRI DISTRIBUTION STATEMENT (of the electract entered in s. SUPPLEMENTARY NOTES Supersedes Document 104-63, "Atlant Parts 1 and 2) AD451780 and AD75158	IBUTION UNLIMITED in Block 20, if different from tic Missile Range 31.). m Report) e, Cape Kennedy, Florida,"
16	APPROVED FOR PUBLIC RELEASE; DISTRI APPROVED FOR PUBLIC RELEASE; DISTRI DISTRIBUTION STATEMENT (of the abetract entered in B. SUPPLEMENTARY NOTES Supersedes Document 104-63, "Atlant Parts 1 and 2) AD451780 and AD75158 KEY WORDS (Continue on reverse elde II necessary and Range reference atmosphere, data qu parameters, wind models, orthogonal derived monthly mean, annual mean m	IBUTION UNLIMITED in Block 20, if different from tic Missile Range 31. d Identify by block number) Jality control, c l axes, data samp nodel atmcspheres). m Report) e, Cape Kennedy, Florida," coordinate system, statistication ples, altitude levels, s, thermodynamic quantities.
16 / 17 18 () 18 () () () () () () () () () () () () ()	APPROVED FOR PUBLIC RELEASE; DISTRI APPROVED FOR PUBLIC RELEASE; DISTRI DISTRIBUTION STATEMENT (of the abetract entered in a supplementary notes Supersedes Document 104-63, "Atlant Parts 1 and 2) AD451780 and AD75158 KEY WORDS (Continue on reverse side if necessary and Range reference atmosphere, data qu parameters, wind models, orthogonal derived monthly mean, annual mean m	IBUTION UNLIMITED in Block 20, if different from tic Missile Range 31. d identify by block number) Jality control, co 1 axes, data samp nodel atmcspheres (Identify by block number) FOREWORD). m Report) e, Cape Kennedy, Florida," coordinate system, statistica bles, altitude levels, s, thermodynamic quantities.
16 / 17 17 18 / 18 / 19 / 19 / 19 / 19 / 19 / 19 /	APPROVED FOR PUBLIC RELEASE; DISTRI APPROVED FOR PUBLIC RELEASE; DISTRI DISTRIBUTION STATEMENT (of the abetract entered in supersedes Document 104-63, "Atlant Parts 1 and 2) AD451780 and AD75158 . KEY WORDS (Continue on reverse eide if necessary and Range reference atmosphere, data qu parameters, wind models, orthogonal derived monthly mean, annual mean m ABSTRACT (Continue on reverse eide H necessary and See attached.	IBUTION UNLIMITED in Block 20, if different from tic Missile Range 31. d identify by block number) Jality control, co 1 axes, data samp nodel atmcspheres (Identify by block number) FOREWORD). m Report) e, Cape Kennedy, Florida," coordinate system, statistic bles, altitude levels, s, thermodynamic quantities.
16 / 17 17 18 () 19 () () () () () () () () () () () () ()	APPROVED FOR PUBLIC RELEASE; DISTRI APPROVED FOR PUBLIC RELEASE; DISTRI DISTRIBUTION STATEMENT (of the abetract entered i s. SUPPLEMENTARY NOTES Supersedes Document 104-63, "Atlant Parts 1 and 2) AD451780 and AD75158 KEY WORDS (Continue on reverse side if necessary and Range reference atmosphere, data qu parameters, wind models, orthogonal derived monthly mean, annual mean m ABSTRACT (Continue on reverse side if necessary and See attached.	IBUTION UNLIMITED in Block 20, if different from tic Missile Range 31. d Identify by block number) Jality control, c l axes, data samp nodel atmcspheres Identify by block number) FOREWORD). m Report) e, Cape Kennedy, Florida," coordinate system, statistic oles, altitude levels, s, thermodynamic quantities.
	APPROVED FOR PUBLIC RELEASE; DISTRI APPROVED FOR PUBLIC RELEASE; DISTRI APPROVED FOR PUBLIC RELEASE; DISTRI DISTRIBUTION STATEMENT (of the ebetrect entered is a supplementary notes Supersedes Document 104-63, "Atlant Parts 1 and 2) AD451780 and AD75158 KEY WORDS (Continue on reverse side if necessary and Range reference atmosphere, data que parameters, wind models, orthogonal derived monthly mean, annual mean m ABSTRACT (Continue on reverse side if necessary and See attached. D 1 Jan 73 1473 EDITION OF 1 NOV 65 IS OBSOL	IBUTION UNLIMITED in Block 20, if different from tic Missile Range 31. d identify by block number) Jality control, co 1 axes, data samp nodel atmcspheres Identify by block number) <u>FOREWORD</u> ETE UNCL). m Report) e, Cape Kennedy, Florida," coordinate system, statistica oles, altitude levels, s, thermodynamic quantities. ASSIFIED

•

•

•

1

•

والمرجعة والمعارية والمعارية والمعارية والمعارية والمعارية والمعادية والمعارية والمعالمة المعالمة المعالمة المعالمة المعالية

DOCUMENT 361-83

これに加加したたち ちょういん たたな たい

••••

.

.1 1.

•

CAPE CANAVERAL, FLORIDA

RANGE REFERENCE ATMOSPHERE 0-70 KM ALTITUDE

February 1983

Prepared by

Range Reference Atmosphere Committee Meteorology Group Range Commanders Council

Published by

Secretariat Range Commanders Council White Sands Missile Range, New Mexico 88002

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

TABLE OF CONTENTS

-

.

••

l,

4

à

0

.

.

. .

CHAPTER I.	INTRODUCTION	1
	 A. Definition and Purpose of the Range Reference Atmosphere B. Scope of the Range Reference Atmosphere 	1
	and Arrangement of Tables	1
	C. Data Quality Control Procedures	2
	D. Organization of the Chapters	3
CHAPTER II.	WIND STATISTICS AND MODELS	5
	A. General Considerations B. Coordinate System and Computation of	5
	Statistical Parameters	8
	C. Statistical Wind Models	10
	D. Statistical Parameters with Respect to Any Orthogonal Axes	25
CHAPTER III.	STATISTICS OF THERMODYNAMIC QUANTITIES AND MODELS	27
	A General Considerations	27
	B. Establishing Data Samples at the Required	20
	Altitude Levels	30
	Tables II and III	35
	D. Derived Monthly Mean and Annual Mean	
	Model Atmospheres	38
	E. Thermodynamic Quantities Derivable from the Basic Tables	38
CHAPTER IV.	CONCLUSIONS AND RECOMMENDATIONS	45
REFERENCES		46
CONVERSION	UNITS	49
APPENDIX A.		105
APPENDIX B.		158

LIST OF ORGANIZATION ACRONYMS

ر المرجع المعرفة المعرفة المرجع المعرفة المحرمة المحرمة المحرمة المحرمة المحرمة المحرمة المحرمة المحرمة المحرمة

1

ł

AD	Armament Division
AFFTC	Air Force Flight Test Center
AFSC	Air Force Systems Command
AFSC/AFGL	AFLC/Air Force Geophysics Laboratory
AFSCF	Air Force Satellite Control Facility
AFTFWC	Air Force Tactical Fighter Weapons Center
AWS	Air Weather Service
BMD	Ballistic Missile Division
DOD	Department of Defense
DOE	Department of Energy
DOE/NTS	DOE/Nevada Test Site
DPG	Dugway Proving Ground
ESMC	Eastern Space and Missile Center
ETR	Eastern Test Range
KMR	Kwajalein Missile Range
NASA	National Aeronautics and Space Administration
NASA/MSFC	NASA/Marshall Space Flight Center
NASA/WFC	NASA/Wallops Flight Center
NOAA	National Oceanic and Atmospheric Administration
NWC .	Naval Weapons Center
PMTC	Pacific Missile Test Center
SAMTO	Space and Missile Test Organization
USA/DTA	U.S. Army/Deseret 'n st Center
USAECOM	U.S. Army Electronics Command
USAFETAC	United States Air Force Environmental Technical Applications Center

iv

· · · · · · · · · · · · · · · · · · ·		
1		
•	UTTR	Utah Test and Training Range
•	WSMC	Western Space and Missile Center
	WSMR	White Sands Missile Range
	WTR	Western Test Range
	YPG	Yuma Proving Ground
	6585TG	6585th Test Group
	TSCF	Targeting Systems Characterization Facility

-

•

. .

-.

•

.

:

--

FOREWORD

Ī

٩

Atmospheric parameters are essential to the research and development of missiles and aerospace vehicles. The need for realistic atmospheric models derived in a consistent manner for each of the several major test ranges was recognized in the early 1960's. An atmospheric model which is derived from statistical data for a particular geographical location is referred to as a reference atmosphere.

Following the first Range Reference Atmosphere (RRA) by the Inter-Range Instrumentation Group (IRIG) for Cape Kennedy, Florida, issued in 1963 and additional publications for several ranges up to 1974, improved upper-air data bases have become available from which to develop the RRA. This is the result of the extended period of records and improvement in the upper-air measuring program by rocketsondes for altitudes above the rawinsonde ceiling of 30 km altitude. Revised and improved RRAs are justified because:

1) Needs for more definitive statistical atmospheric models have arisen due to changes and advances in aerospace technology. The Space Transportation System (Space Shuttle) is one example.

2) There is now an extended and improved upper air data base for most ranges from which to develop a more definitive RRA.

3) There are requirements for RRAs for new ranges and range sites.

4) There have been scientific advances in understanding the upper atmospheric structure and physical relationships.

5) Advances in statistical modeling techniques have been made due to the general availability of high-speed electronic computers. This has led to the adoption of advanced concepts in atmospheric modeling. For these reasons the Range Reference Atmosphere Committee (RRAC) was tasked by the Range Commander's Council/Meteorology Group (RCC/MG) to establish new and improved RRAs. The purpose, scope, and objectives of this task are:

<u>Purpose</u>: This committee, Task MG-1, establishes RRAs for the several ranges as provided by the RCC. An RRA is a model of the Earth's atmosphere over a geographical location of interest for use by DOD and other U.S. Government range users. The RRA is used to provide planning data for evaluating environmental constraints for the particular configurations of environment-sensitive systems and components being developed or undergoing tests.

<u>Scope</u>: Using the best available upper atmosphere data base to include rawinsonde, rocketsonde and possibly other high-altitude data sources for the range location, the task is to establish a model of certain statistics for wind and thermodynamic quantities derived in a uniform manner and published in a standardized format. Objectives: The wind statistics shall be, insofar as practical, modeled to be consistent with rigorous mathematical probability properties of the multivariate normal probability theory. The thermodynamic quantities statistics shall be, insofar as practical, modeled to be consistent with the hydrostatic equation, the equation of state, and the probability principles which are related through these physical equations. The document shall serve as an authoritative source of information and as an atmospheric model for a particular range. The first in the series of revised RRAs to be published is for Kwajalein Missile Range (KMR) (publication date December 1982). The altitude range required for KMR is 0 to 70 km. The order of priority for the subsequent publications is:

J

	Range	Attitude Range Required
1.	AFFTC/Edwards AFB, CA	$0 - 70 \text{ km}^{\alpha}$
2 .	ESMC/Cape Canaveral AFS, FL	0 - 70 km
3.	WSMC/Vandenberg, AFB, CA	0 - 70 km a
4.	WSMR/White Sands, NM	0 - 70 km
5.	PMTC/Point Mugu, CA	0 - 70 km
6.	UTTR/Dugway (Michales AAF), UT	0 - 30 km ^b
7.	AD/Eglin AFB, FL	0 - 30 km
8.	ESMC/Ascension Island	0 - 70 km (Terminates at 66 km because of insufficient data)
9.	NASA/Wallops Flight Center, VA	0 - 70 km
10.	Taquac (Guam)	0 - 30 km
11.	PMTC/Barking Sands, HI	0 - 70 km

In keeping with the RCC's objective of standardization, the modeling techniques, basic text, and tabulation format are to be the same for all RRAs. These new and revised RRAs present not only the mean values of the thermodynamic quantities (pressure, temperature, virtual temperature, and density) but also include a statistical measure for the dispersion, i.e., standard deviations and skewness coefficients. New quantities presented are water vapor pressure and dewpoint temperature. The statistical modeling for the wind is entirely new. The new approach uses the properties of the bivariate normal probability distribution function.

a. Use rocketsonde data from PMTC/Point Mugu for altitudes above 30 km.

b. Consider augmenting data base from Ely or Salt Lake City.

All final computations were performed by the United States Air Force Environmental Technical Applications Center (USAFETAC) in response to a task from Eastern Space and Missile Center (ESMC).

The text was prepared jointly between USAFETAC and the NASA/ George C. Marshall Space Flight Center's Space Sciences Laboratory, Atmospheric Sciences Division. The editing and preparation of the manuscript master was performed by the NASA/MSFC organization.

The co-chairmen express their gratitude to all RRAC members and their respective colleagues who have made significant technical contributions to the establishment of these RRAs.

Special thanks are tendered to Lt. B. Novogard for his diligence in performing the many computations and the development of the primary Tables, I through IV. Special thanks goes to Lt. F. Wirsing for editing and formulating the equations for the derivable thermodynamic equations. These gentlemen performed this outstanding work under the direction of Major B. Lilius, USAFETAC.

Grateful acknowledgment goes to Mrs. Annette Tingle, NASA/MSFC, for editing the manuscript.

The RCC/MG Range Reference Atmosp! re Committee consists of representatives from the U.S. Air Force, U.S. Army, National Aeronautics and Space Administration, U.S. Navy, and National Oceanographic and Atmospheric Administration. The committee members for the RRA for the first publication are:

G. G. Boire, WSMC

. 1.5

2

ţ

O. H. Daniel, ESMC

R. de Violini, PMTC

F. G. Finger, NOAA/NWS

E. E. Fisher, HQ AFSC

B. R. Hixon, PMTC

J. M. Hobbie, KMR

E. J. Keppel, AD

S. F. Kubinski, WSMR

F. J. Schmidlin, NASA/WFC

O. E. Smith Maj. B. W. Galusha Co-Chairman, NASA/MSFC Co-Chairmar, USAF/ETAC

CHAPTER I. INTRODUCTION

A. Definition and Purpose of the Range Reference Atmosphere

A.1 Definition

.

A reference atmosphere is a statistical model of the Earth's atmosphere derived from upper-air measurements over a particular geographical location. Hence, the atmospheric models developed by the Range Reference Atmosphere Committee (RRAC) in response to a task by the Range Commander's Council/Meteorology Group (RCC/MG) and published by the Secretariat, Range Commander's Council (RCC) are called Range Reference Atmospheres (RRAs). This organization group, formerly called the Inter-Range Instrumentation Group/Meteorology Working Group (IRIG/MWG), published a series of RRAs during the period 1963 through 1974.

A.2 Purpose

A series of revised and expanded RRAs are to be published for locations of interest to the RCC. These publications are to serve as an authoritative reference source on certain upper air statistics and as atmospheric models for a particular range site (location). The technical usefulness of these documents for the ranges, range users, U.S. aerospace industries, and the scientific community is recognized because of the standardization of the development techniques and the presertation of the tabulations.

B. Scope of the Range Reference Atmosphere and Arrangement of Tables

B.1 Scope

The RRA contains tabulations for monthly and annual means, standard deviations, skewness coefficients for wind speed, pressure temperature, density, water vapor pressure, virtual temperature, dew-point temperature, and the means and standard deviations for the zonal and meridional wind components and the linear (product moment) correlation coefficient between the wind components. These statistical parameters are tabulated at the station elevation and at 1 km intervals from sea level to 30 km and at 2 km intervals from 30 to 90 km altitude. The wind statistics are given at approximately 10 m above the station elevations and at altitudes with respect to mean sea level thereafter. For those range sites without rocketsonde measurements, the RRAs terminate at 30 km altitude or they are extended, if required, when rocketsonde data from a nearby launch site are avairable. There are four sets of tables for each of the 12 monthly reference periods and the annual reference period.

B.2 Arrangement of Tables

The statistical parameters for the RRA models are presented in four tables.

.

Table I contains all the wind statistical parameters. This table gives the monthly and annual means and standard deviations of the zonal and meridional wind components and the linear (product moment) correlation coefficient between these two components; the mean, standard deviation and skewness coefficient of the wind speed; and the number of wind observations (sample size).

Table II contains the monthly and annual means, standard deviations, and skewness values of pressure, temperature, and density, and the number of observations used for each of these thermodynamic quantities.

Table III contains the monthly and annual means, standard deviations and skewness values of the water vapor pressure, virtual temperature and dew point, and the number of observations for each of these moisturerelated quantities. The statistical parameters for water vapor pressure and dew point terminate at 15 km altitude. Above 15 km the statistical parameters for virtual temperature are considered to be the same as those for temperature.

Table IV contains the monthly and annual mean atmospheric models for the thermodynamic variables: pressure, virtual temperature, and density. This table is derived from the monthly and annual mean virtual temperature versus altitude (geometric) using the hydrostatic equation and the equation of state. Also presented is the geopotential height corresponding to the tabulated geometric altitudes.

The physical unit for all wind parameters is m/s. The physical unit for pressure is mb; for temperature and virtual temperature, K; for density, gm/m^3 ; and for water vapor pressure, mb. In all cases the skewness coefficient and the correlation coefficient between wind components are unitless. All reference to altitude is geometric altitude and has the unit km. All reference to height is geopotential height and has the unit geopotential m or km. All geometric altitudes and geopotential heights are with respect to mean sea level.

C. Data Quality Control Procedures

A small proportion (less than 10 percent) of the soundings in the data base used to calculate the RRA tables contained erroneous data values. The soundings which contained these erroneous values were eliminated from the data base using the following procedures:

1) Soundings containing gaps in their height data g_eater than 200 mb were rejected. This step was taken because some soundings only contained height values at their "mandatory" pressure levels, which were occasionally missing, resulting in soundings with no height information at all.

2) An initial set of RRA statistics was computed using all the remaining soundings. This initial set of statistics was used to determine data limits for the temperature, pressure, U and V components of the wind, and the dew point (for the 0-30 km portion of the RRA) or the density (for the 30-90 km portion of the RRA). The lower (upper) data limits were set at the mean value for a specific parameter, minus (plus) six standard deviations of that quantity. One pair of data limits was computed for each of these parameters, month of the year and data level.

3) This initial set of data limits was then used to screen the data base. All the soundings which contained values outside these data limits were rejected. A new RRA was then computed using the screened data base. This second RRA was used to generate a second set of data limits.

4) The second set of data limits was then used to screen the data base further. A new RRA was again generated. The skewness values in this RRA were then evaluated according to empirical criteria specified in Section II.A.3 of this document for the winds and according to criteria in Section III.A.3 for the thermodynamic quantities. If these criteria were satisfied, the new RRA was then used to generate a final set of data limits, which were used to quality control the data base for the final version of the RRA.

5) Occasionally, the third RRA which was generated did not satisfy all of the skewness criteria. This indicated that some incorrect values were still present in the data base. To complete quality control, the data limits-to-RRA-to-data-limits cycle was continued for additional iterations (usually one or two) until the resulting RRA satisfied the skewness criteria. At that point, a firal set of data limits was generated. This final set of data limits was then used to quality control the data base and generate the final RRA.

D. Organization of the Chapters

Because there are plans to publish a series of RRAs, comments on the special organization of the document are in order. The RRA document is arranged in four chapters. Chapter I is the Introduction. Chapter II, Wind Statistics and Models, contains the techniques used to arrive at the wind statistical parameters, Table I, and the probability functions which are to be used as wind models to derive several wind statistics. Chapter III, Statistics of The: modynamic Quantities and Models, contains the techniques used to arrive at the thermodynamic and moisture-related statistical parameters given in Tables II and III and the atmospheric thermodynamic model presented in Table IV. This chapter also contains sets of equations to calculate several atmospheric properties. Chapter IV contains the general conclusions and recommendations. These four chapters are reprinted without change for each documented RRA to assure consistency and for expediency in preparing the documentation. To account for variations particular to a specific RRA, two appendixes have been included. Appendix A, Examples of Wind Statistics, is designed to give a few illustrative examples of wind statistics for the specific RRA and cursory observations, comparisons, or comments on wind statistics. Appendix B, Range Specific Information, is designed to present specific information particular to the range, such as geographical location, data base, etc., and any curso y observations or comments on the thermodynamic quantities.

Read these appendixes! They are located as the last two units in the document because they may vary in length depending on the circumstances. Appendixes A and B and the principal Tables I, II, III, and IV are the only changes to be made to each RRA documen. published in this new RRA series.

CHAPTER II. WIND STATISTICS AND MODELS

A. General Considerations

· · · ·

A.1. Objectives

.

• -

.

.

ł

ł

An objective of the RRA is to furnish minimum tabulation for the wind statistics. To meet this objective, the bivariate normal probability distribution was adopted as a statistical model for the wind treated as a vector quantity at the RRA data levels. Only five statistical parameters are required to completely describe this probability function. In Cartesian coordinates these parameters are the means and standard deviations of the two orthogonal components and the correlation coefficient between the two components. These five statistical parameters for the zonal and meridional (meteorological coordinates) components are given in Table I. The statistical properties of the bivariate normal probability distribution are used to derive many wind statistics that are of interest to the ranges and range users. This procedure produces consistent wind statistics that are connected through rigorous mathematical probability functions. By using these functions, extensive tabulations of wind statistics are avoided.

The statistical properties of the bivariate normal probability distribution presented for the vector wind statistical model are:

1) The wind components are univariate normally distributed.

2) The conditional distribution of one component given a value of the other component is univariate normally distributed.

3) The wind speed is of the form of a generalized Rayleigh distribution.

4) The frequency distribution of wind direction can be derived.

5) The conditional distribution of wind speed given a value of wind direction (wind rose) can be derived.

6) The five tabulated wind statistical paramete: ; which are with respect to the meteorological zonal and meridional coordinate system can be derived for any arbitrary rotation of the orthogonal axes.

The probability distribution functions and sets of equations to derive wind statistics for the previously stated properties of the vector wind model are presented. Illustrative examples are presented in Appendix A. No attempt is made to give the derivation of the probability functions. The reader is referred to Smith (1976) for some derivations and several applications of the probability distribution properties for wind statistics.

TABLE A. LIST OF SYMBOLS USED IN CHAPTER II

•

N - The number of wind measurements in Table I r - A general variable for the bivariate normal probability distribution in polar coordinates R - A generalized Rayleigh variable used for derived wind speed probability distribution R (U, V) - The linear (product moment) correlation coefficient between the zonal and meridional wind components in Table I SK (W) - Skewness parameter for wind speed in Table I S(U) - The standard deviation of the zonal wind component in Table I S (V) - The standard deviation of the meridional wind component in Table I S (W) - The standard deviation of wind speed in Table I t - A standardized normal variate used in text Table A U - The zonal wind component UBAR - The mean value of the zonal wind component in Table I V - The meridional wind component VBAR - The mean value of the meridional wind component in Table I W - Wind speed or modulus of wind vector, a scalar quantity WBAR - The mean value of wind speed in Table I X - A general component variable or coordinate axes Y - A general component variable or coordinate axes \overline{X} - A general component mean value in the [x,y] coordinate system \overline{Y} - A general component mean value in the [x,y] coordinate system α (alpha) - P ration angle for the [x,y] coordinate system

6

TABLE A. (Concluded)

 $\dot{\sigma}$ (theta) - Wind direction in the polar coordinate system $\lambda_{()}$ (Lambda) - A parameter in the bivariate normal probability distribution in text Table B

 ξ (Xi) - The mean value in the standardized normal probability distribution used in text Table A

 π (Pi) - Constant = 3.14159 ...

 ρ (Rho) - The general linear correlation coefficient between the two component variables in the [x,y] coordinate system

 σ_x, σ_y - The general standard deviations of the x and y component variables in the [x,y] coordinate system.

A.2. Data Quality Control

. . • •.

1

.

•

2

Ľ

۰.

.5

.

1

1

1

The U and V components of the wind were used to generate data limits which were set at plus and minus six standard deviations from the mean for each of the quantities. These data limits were used to screen the wind data base, as described in Section I.C. The data base was considered to be free from errors if:

1) The skewness of the wind speed was below 4.0 at data levels where the mean wind speed was less than 15 m/s, and

2) The skewness of the wind speed was below 2.5 at data levels where the mean wind speed was greater than 15 m/s.

A.3. Limitations

For the wind statistics, the correlation coefficients for like wind components and unlike wind components between altitude levels were not computed. Therefore, wind statistics with respect to altitude (profile) cannot be derived from the RRA statistics. For wind profile modeling techniques the user is referred to Smith (1976). However, the wind statistics at discrete altitudes are valid; all of the probability distribution functions given in Chapter II can be derived from the five wind component statistical parameters contained in Table I, and the derived distributions can be considered as wind models at discrete altitudes By convention, in the statistical literature Greek letters are used for population or theoretically known parameters, and sample estimates are denoted by English alphabetical letters or with a "hat" ($\$) over the Greek letters. In Chapter II Greek letters are used for the variances and the linear correlation coefficient, and the means are denoted by \overline{X} and \overline{Y} when dealing with the bivariate normal distribution. It will always be understood that Table I contains sample estimates of the statistical parameters and they are with respect to the meteorological zonal (U) and meridional (V) coordinate system.

B. Coordinate System and Computation of Statistical Parameters

B.1. Coordinate System

_

•.'

ł

Wind measurements are recorded in terms of magnitude and direction. The wind direction is measured in degrees clockwise from true north and is the direction from which the wind is blowing. The wind magnitude (the modulus of the vector) is the scalar quantity and is referred to as wind speed or scalar wind. A statistical description that accounts for the wind as a vector quantity is appropriate and requires a coordinate system.

For the RRA the standard meteorological coordinate system has been chosen for the wind statistics, all tables of statistical parameters, and related discussions because the coordinate system used in aerospace and related applied fields has not always been consistent.

Using Figure 1, the polar and Cartesian forms for the meteorological coordinate system are defined:

- W = w ind speed, scalar wind, or magnitude of the wind vector in v/s.
- i = wind direction. θ is measured in degrees clockwise from true north and is the direction from which the wind is blowing.
- U = zonal wind component, positive west to east in m/s.
- V = meridional wind component, positive south to north in m/s.

The components ϑ and W define the polar form, and the U-V components define the Cartesian forms:

$$U = -W \sin \theta \quad , \quad 0 < \psi < 350^{\circ}$$
 (1)

$$\mathbf{V} = -\mathbf{W} \cos \vartheta \qquad (2)$$

Figure 1. The meteorological coordinate system.

It is helpful to note the difference between the mathematical convention for a vector direction and the meteorological convention for wind direction, viz.:

 θ met = 270 - θ math (3)

when 0 < c < 270 degrees

Ş.

•

۰.

 θ met = 360 + (270 - θ math)

when 270 < θ < 360 degrees.

B.2. Computation of Statistical Parameters

The wind statistical parameters in Table I for the means and standard deviations of the zonal and meridional wind components and wind speed and the skewness parameter of wind speed were computed using the sums technique presented in Chapter III.C.3. In addition, the linear (product moment) correlation coefficient between the zonal and meridional wind components, r(u,v) in Table I, was computed. This correlation coefficient is defined as

$$r(u,v) = \frac{\sum_{i=1}^{n} (U_i - \overline{U}) (V_i - \overline{V})}{N s(u) \cdot s(v)} . \qquad (4)$$

These statistical parameters are with respect to the Standard Meteorological Coordinate System.

C. Statistical Wind Models

M

.

.•.`

C.1. Wind Component Statistics

The universate normal (Gaussian) probability distribution function is used to obtain wind component statistics. In generalized notations, this probability density function (pdf) is

$$f(t) = \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}}$$
, (5)

where $t = X - \xi/\sigma_x$ is the standardized variate with ξ defining the mean and σ_x the standard deviation. The probability distribution function (PDF) is

$$F(t) = \int_{-\infty}^{t} f(t) dt . \qquad (6)$$

Because this integral cannot be obtained in closed form, it is widely tabulated for zero mean and unit standard deviation. For a convenient reference for the RRA, selected values of F(t) are given in Table B. To emphasize the connotation of probability, F(t) is shown in Table B as $P\{X\}$. The t values in Table B are used as multiplier factors to the standard deviation to express the probability that a normally distributed variable, X, is less than or equal to a given value as

$$P\left\{X \leq \text{mean} + t \sigma_{\mathbf{x}}\right\} = \text{probability}, p \qquad (7)$$

t	P(X)	x	$\mathbf{P}\{\mathbf{X}_1 \leq \mathbf{X} \leq \mathbf{X}_2\} \ (\%)$
-3.0000	0.00135	ξ - 3.0000 σ	r
-2.5758	0.00500	ξ - 2.5758 σ	
-2.3263	0.01000	ξ - 2.3263 σ	
-2.2365	0.01266	ξ - 2.2365 σ	T
-2.0000	0.02275	ξ - 2.0000 σ	
-1,9602	0.02500	ξ - 1.9602 σ	
-1.6449	0.05000	ξ - 1.6449 σ	
-1.2816	0.10000	ξ - 1.2816 σ	
-1.0000	0.15866	ξ - 1.0000 σ	
-0.8416	0.20000	$\xi = 0.8416 \sigma$	
-0.6745	0.25000	ξ - 0.6745 σ	1.7() 55)-1.7() 27)-227)-
-0.2533	0.40000	ξ = 0.2533 σ	(0,0)
0,0000	0.50000	ξ	0 (50 0 (50 0 (40 0 (20 0 (20 0 (10 0 (10) 0 (10 0 (10 0 (10) 0 (10 0 (10) 0 (10) 0 (10 0 (10) 0 (10
0,2533	0.60000	ξ + 0.2533 σ	
0.6745	0.75000	$\xi + 0.6745 \sigma$	
0.8416	0.80000	$\xi + 0.8614 \sigma$	
1.0000	0.84134	$\xi + 1.0000 \sigma$	+
1.2816	0 . 90000	ξ +1.2816 σ	+
1.6449	0.95000	$\xi + 1.6449 \sigma$	+
1.9602	0.97502	ξ +1.9602 σ	<u>+</u>
2.0000	0.97725	$\xi + 2.0000 \sigma$	
2.2365	0.98734	ξ +2.2365 σ	<u>+</u>
2.3263	0,99000	$\xi + 2.3263 \sigma$	_
2.5758	0.99500	ζ + 2.5758 σ	ŧ
3,0000	0.99865	ξ 3.0000 σ	t
			where $X_1 = \xi - t\sigma$ and $X_2 = \xi + t\sigma$

TABLE B. VALUES OF t FOR STANDARDIZED NORMAL
(UNIVARIATE) DISTRIBUTION FOR PERCENTILES
AND INTERPERCENTILE RANGES

.

۰.

S

•

. .

•

: : :

• 1 •

ł

.

11

For example, when t = 1.6449, the probability that X is less than or equal to the mean plus 1.6449 standard deviations is 0.95. That value of X which is less than or equal to the mean plus 1.6449 standard deviations is called the 95th percentile value of X. Also given in Table 2 are the numerical values to express the probability that X falls in the interval X_1 and X_2 ; i.e.,

 $P\left\{X_{1} \leq X \leq X_{2}\right\} = \text{Interpercentile Range}$ where $X_{1} = \overline{X} - t \sigma_{x}$ $X_{2} = \overline{X} + t \sigma_{x}$ (8)

For t = 1.9602 the probability that X lies in the interval X_1 and X_2 is 0.95. The values of X_1 and X_2 in this example comprise the 95th interpercentile range.

For a normally distributed variable, the mode (most frequent value) and the median (50th percentile value) are the same as the mean value. The means and standard deviations of the zonal and meridional wind components from Table I are used in equations (7) and (8) to compute the percentile values and interpercentile ranges of the zonal and meridional wind components. When equation (7) is illustrated on a normal probability graph, a straight line is formed.

C.2. The Vector Wind Model

•

ر

•

.

Because wind is a vector quantity having direction and magnitude which can be expressed as two components in an orthogonal coordinate system, a probability model which describes the joint relationship is the bivariate normal probability distribution. In general component notation, the bivariate normal probability density function (BNpdf) is

$$f(X,Y) = \frac{1}{2\pi\sigma_{X}\sigma_{y}} \sqrt{1-\rho^{2}} \left[\exp \frac{-1}{2(1-\rho^{2})} \left\{ \frac{(X-\bar{X})^{2}}{\sigma_{X}^{2}} - \frac{2\rho(X-\bar{X})(Y-\bar{Y})}{\sigma_{X}\sigma_{y}} + \frac{(Y-\bar{Y})^{2}}{\sigma_{y}^{2}} \right\} \right] - \infty \leq X \leq \infty \text{ and}$$
$$-\infty \leq Y \leq \infty \quad , \qquad (9)$$

where the five parameters are \bar{x}, \bar{y} , the component means, σ_x, σ_y , the component standard deviations, and φ , the correlation coefficient between the two component variables, X and Y.

and the second second

For many applications the interest is in determining the probability that a point $\{X,Y\}$ will fall within a contoup of equal probability density. The exponential terms of equation (9), when set equal to a constant, λ^2 , give a family of ellipses depending on the value of the constant. The ellipses have a common center at the point $\{\overline{X},\overline{Y}\}$. Integration of equation (9) over the region bounded by the contours of equal probability density gives

 $P(\lambda) = 1 - e^{\frac{-\lambda^2}{2(1 - \rho^2)}} .$ (10)

Solving for λ^2 and replacing P(λ) by p gives

$$\lambda^2 = -2 (1 - \rho^2) \ln (1 - p) \quad . \tag{11}$$

Now define

and the mean and the second second

$$\lambda_{e} = \sqrt{2} \sqrt{-\ln(1-p)}$$
 (12)

For ready reference and comparisons, λ_e is shown in Table C for selected values of p.

The probability ellipse that contains p-percent of the wind vectors expressed in the most general form is the conic defined by

$$AX^{2} + BXY + CY^{2} + DX + EY + F = 0$$
, (13)

where

$$A = \sigma_y^2$$
$$B = -2\rho\sigma_x\sigma_y$$

	VALUES (OF λ FOR BIELLIPSES A	VARIATE N ND CIRCL	NORMAL DIS ES	TRIBUTI
	λ _c	λ _c		λ _e	λc
P('¿)	(ellipse)	(circle)	P(¹)	(ellispe)	(circle
0.000	0.0000	0.0000	65.000	1.4490	1.024
5.000	0.3203	0.2265	68.268	1,5151	1.071
10.000	0.4590	0.3246	70.000	1.5518	1.097
15.000	0.5701	0.4031	75.000	1.6651	1.1774
20.000	0.6680	0.4723	80.000	1.7941	1.2680
25.000	0.7585	0.5363	85.000	1.9479	1.377
30.000	0.8446	0.5972	86.466	2.0000	1.414
35.000	0.9282	0.6563	90.000	2.1460	1.517
39.347	1.0000	0.7071	95.000	2.4477	1.7308
40.000	1.0108	0.7147	95.450	2.4860	1.7579
45.000	1.0935	0.7732	98.000	2.7971	1.9778
50.000	1.1774	0.8325	98.168	2.8284	2.0000
54.406	1.2533	0.8862	98.889	3.0000	2.121:
55,000	1.2637	0.8936	99. 000	3.0348	2.1460
60.000	1.3537	0.9572	99. 730	3.4393	2.4320
63.212	1.4142	1.0000	99.9377	4.2426	3.0000

• • • • • •

.

-

-

.

.

-•

di data sere

ł

$$C = \sigma_{\mathbf{x}}^{2}$$

$$D = 2\sigma_{\mathbf{x}}\sigma_{\mathbf{y}} \ \rho \overline{\mathbf{Y}} - 2\sigma_{\mathbf{y}}^{2}\overline{\mathbf{X}} = - (B\overline{\mathbf{Y}} + 2A\overline{\mathbf{X}})$$

$$E = 2\sigma_{\mathbf{x}}\sigma_{\mathbf{y}} \ \rho \overline{\mathbf{X}} - 2\sigma_{\mathbf{x}}^{2}\overline{\mathbf{Y}} = - (B\overline{\mathbf{X}} + 2C\overline{\mathbf{Y}})$$

$$F = A\overline{\mathbf{X}}^{2} + C\overline{\mathbf{Y}}^{2} + B\overline{\mathbf{X}}\overline{\mathbf{Y}} - AC (1 - \rho^{2}) \lambda_{e}^{2}$$

and

$$\lambda_{e} = \sqrt{2} \sqrt{-\ln(1-\rho)}$$

For graphical presentations the range of the variable is important in order to arrange the scale. The largest and smallest values of X and Y for a given probability ellipse, p, are given by

$$X_{L,S} = \overline{X} \pm \sigma_{x} \lambda_{e}$$
(14)

$$Y_{L,S} = \overline{Y} \pm \sigma_{y} \lambda_{e} , \qquad (15)$$

where, as before, $\lambda_e = \sqrt{2} \sqrt{-\ln (1 - p)}$.

Although there are several approaches to graphing the probability ellipses, the following proced re is advantageous for electronic computer plotting. In establishing the computer plotting program, the sample estimates for $\overline{X}, \overline{Y}, \sigma_{X}, \sigma_{y}$, and ρ are constants in equation (13). The user makes the choice of probability ellipses desired. Thus, p in equation (12) is programmed as a parameter. The largest and smallest values for X and Y are computed by equations (14) and (15) for the largest probability ellipse selected. This sets the graphical scale. Values of X within the range of X smallest to X largest are obtained by incrementing X between these limits. Using the quadratic equation, a solution of equation (13) is made for Y for each value of X and plotted. The centroid $(\overline{X}, \overline{Y})$ for the family of probability ellipses is plotted as a point. Labeling and other identification completes the plotting program. For a given probability, equation (13) defines an ellipse which contains p-percent of the points X,Y. Since the entire area under the bivariate normal density function [equation (9)] is unity, upon integration for a given probability ellipse, that given ellipse contains p-percent of the total area. In the wind statistics p-percent of the wind motions tall within the specified probability ellipse. From this point of a specified probability ellipse gives the joint probability that p-per of the U-V components lie within the given ellipse.

When $\sigma_x^2 = \sigma_y^2 = \sigma^2$ and $\rho = 0$ in the bivariate normal distribution, the probability ellipses of equation (13) reduce to circles whose centers are at the means $\overline{X}, \overline{Y}$. The radii of the probability circles are $\sigma_{V1}^{\lambda}_c$, where

$$\sigma_{\rm V1} = \sqrt{2\sigma^2} \tag{16}$$

and

$$\lambda_{\mathbf{c}} = \sqrt{-\ln (1 - \mathbf{p})} \quad . \tag{17}$$

Values for $\lambda_{\mathbf{c}}$ for selected probabilities, p, are given in Table 3.

Because this function is simple, it can be easily graphed manually. However, the generalized plotting technique for electronic computer plotters as represented by equation (13) can be advantageously used.

C.3. Derived Distributions for Wind Statistics

In this subsection the probability distribution functions and sets of equations are presented to derive certain probability distribution functions for wind statistics. These derived probability distributions are:

1) The conditional distribution of wind components

- 2) The generalized Rayleigh distribution for wind speed
- 3) The distribution for wind direction

4) The conditional distribution of wind speed given a wind direction (wind rose).

The required five statistical parameters for these derived distributions for wind statistics are given in Table I.

C.3.1. The Conditional Distribution of Wind Components

y ha ha na manana na manana na manana ana manana na manana na manana na manana na manana na manana na hay ka k

Given that two random variables X and Y are bivariate normally distributed, the conditional distribution f(Y|X) is read as f(Y) given X, and ikewise f(X|Y) is read as f(X) given Y. The conditional probability distribution function F(Y|X) has the mean E(Y|X) and variance $\sigma^2(x|y)$, where

$$\mathbf{E}(\mathbf{Y} | \mathbf{X}^*) = \overline{\mathbf{Y}} + \rho \left(\frac{\sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}} \right) (\mathbf{X}^* - \overline{\mathbf{X}})$$
(18)

and

.

.

.

• • •

•

•

;

$$\sigma^{2}(\mathbf{y}|\mathbf{x}^{*}) = \sigma_{\mathbf{y}}^{2} (1 - \rho^{2}) \quad .$$
 (19)

The conditional standard deviation is

$$\sigma_{(\mathbf{y}|\mathbf{x}^*)} = \sigma_{\mathbf{y}} \sqrt{1 - \rho^2} \quad .$$
 (20)

By interchanging the variables and parameters, the conditional distribution function for $F(X | Y^*)$ has the conditional mean

$$E(X | Y^*) = \overline{X} + \rho \left(\frac{\sigma_x}{\sigma_y}\right) (Y^* - \overline{Y}) , \qquad (21)$$

conditional variance

$$\sigma^{2}(\mathbf{x} | \mathbf{y}^{*}) = \sigma_{\mathbf{x}}^{2} (1 - \rho^{2}) , \qquad (22)$$

and conditional standard deviation

$$\sigma_{(\mathbf{x}|\mathbf{y}^*)} = \sigma_{\mathbf{x}} \sqrt{1 - \rho^2} \quad .$$
 (23)

The preceding conditional probability distribution functions are univariate normal distributions for a (fixed) given value for one of the bivariate normal variables. Thus the t-values given in Table 2 are applicable for conditional probabilities statements. For example,

$$F(Y|X^*) = E(Y|X^*) + t\sigma_{(Y|X^*)}$$
 (24)

For t = 1.6449 there is a 95 percent chance that Y is less than or equal to $\overline{Y} + 1.6449 \sigma_{(y|x^*)}$ given that X = X*. In symbols this statement reads

$$P\left\{ Y \leq E(Y|X^*) + 1.6449 \sigma_{(y|x^*)} | X = X^* \right\} = 0.9500 .$$
 (25)

Interval probability statements can also be made; namely,

. . .

$$P\left\{Y_{1} = E(Y|X^{*}) - t\sigma_{(y|X^{*})} \leq Y \leq Y_{2} = E(Y|X^{*}) + t\sigma_{y} | X = X^{*}\right\}$$

where X* can take on any fixed value of X, but a convenient arrangement is to let $X^* = \overline{X} \pm t\sigma_x$.

The close connection of the regression function of Y on X to the conditional mean for the bivariate normal distribution is noted; namely,

$$\mathbf{Y} = \overline{\mathbf{Y}} + \rho \left(\frac{\sigma_{\mathbf{y}}}{\sigma_{\mathbf{x}}}\right) \left(\mathbf{X} - \overline{\mathbf{X}}\right) \quad .$$
 (26)

Similarly, the regression function of X on Y is

$$X = \overline{X} + o\left(\frac{\sigma_y}{\sigma_x}\right) (Y - \overline{Y}) \quad .$$
 (27)

These are linear functions and express the same results as would be obtained from a least-squares regression line.

C.3.2. The Generalized Rayleigh Distribution for Wind Speed

If two random variables, X and Y, are bivariate normally distributed, then the probability distribution for the modulus, R, can be derived in terms of the five parameters which define the bivariate normal distribution.

$$R = \sqrt{X^2 + Y^2}$$
(28)

The distribution of R so derived is called a generalized Rayleigh distribution because there are no restrictions on the parameters. For applications to the RRA, the variable R is recognized as wind speed or the modulus of the wind vector.

The probability density function for R is expressed as

$$f(R) = a_0^{R_e} -a_1^{R_e^2} \left[I_0(a_2^{R_e^2}) I_0(a_3^{R_e}) + 2\sum_{k=1}^{\infty} I_k(a_2^{R_e^2}) I_{2k}(a_3^{R_e}) \cos 2k\psi \right] R \ge 0 \quad .$$
(29)

The functions, $I_0(\cdot)$, $I_k(\cdot)$, and $I_{2k}(\cdot)$ are the modified Bessel function of the first kind for zero order, kth order, and 2kth order. The coefficients are:

$$\mathbf{a}_{0} = \exp\left[-\frac{1}{2}\left\{\frac{\bar{\mathbf{X}}^{2}}{\sigma_{a}^{2}} + \frac{\bar{\mathbf{Y}}^{2}}{\sigma_{b}^{2}}\right\}\right] / \sigma_{a}\sigma_{b}$$

where σ_a^2 and σ_b^2 are the rotated variances to produce zero correlation between X and Y. σ_a and σ_b are the positive and negative roots¹ of the expression

$$\sigma_{(+,-)}^{2} = \frac{1}{2} \left\{ \sigma_{\mathbf{x}}^{2} + \sigma_{\mathbf{y}}^{2} \pm \left[(\sigma_{\mathbf{x}}^{2} + \sigma_{\mathbf{y}}^{2})^{2} - 4\sigma_{\mathbf{x}}^{2} \sigma_{\mathbf{y}}^{2} (1 - 2) \right]^{1/2} \right\}$$
$$a_{1} = (\sigma_{\mathbf{x}}^{2} + \sigma_{\mathbf{y}}^{2})/4(1 - \rho^{2}) \sigma_{\mathbf{x}}^{2} \sigma_{\mathbf{y}}^{2} ,$$

1. See footnote on next page.

いたかいたい いいいい にんいいいいい いいしょう

:

.

ł

$$\mathbf{a}_{2} = \frac{\left[\left(\sigma_{\mathbf{x}}^{2} - \sigma_{\mathbf{y}}^{2}\right)^{2} + 4\rho^{2}\sigma_{\mathbf{x}}^{2}\sigma_{\mathbf{y}}^{2}\right]^{1/2}}{4(1 - \rho^{2})\sigma_{\mathbf{x}}^{2}\sigma_{\mathbf{y}}^{2}}$$

$$a_{3} = \left[\left(\frac{\overline{X}}{\sigma_{a}^{2}} \right)^{2} + \left(\frac{\overline{Y}}{\sigma_{b}^{2}} \right)^{2} \right]^{1/2}$$

and

•

1

$$\tan \psi = \frac{\overline{\mathbf{Y}}}{\overline{\mathbf{X}}} - \frac{\sigma_{\mathbf{a}}^2}{\sigma_{\mathbf{b}}^2}$$

Since this density function cannot be integrated in closed form from zero to R, numerical integration is used to obtain practical results for the probability distribution function; i.e.,

$$F(R) = \int_{0}^{R*} f(R) dR$$
 (30)

A number of special cases can be obtained from the general Rayleigh distribution [equation (29)], the most simple of which is to let $\sigma_x \equiv \sigma_y = \sigma_x$ and $\overline{X} = \overline{Y} = 0$ with independent variables X and Y. This gives

1. This computational form is obtained from the determinant

$$\begin{array}{ccc} \mathbf{y}^{2} - \mathbf{K} & \mathbf{x}^{\mathbf{y}} \mathbf{y}^{\mathbf{p}} \\ \mathbf{y}^{\mathbf{y}} \mathbf{y}^{\mathbf{p}} & \mathbf{y}^{2} - \mathbf{K} \end{array}$$

where K is $\sigma^2_{(+,-)}$, and σ_a and σ_b are analogous to the standard deviation of the major and minor axes of the bivariate normal probability ellipse.

$$f(R) = \frac{R}{\sigma^2} e^{-R^2/2\sigma^2}$$
, (31)

which is recognized as the classical Rayleigh probability density function. The density function, equation (31), can be integrated in closed form over any range of the variable R. Hence, the probability distribution function, F(R), for equation (31) is

$$F(R) = 1 - \exp\left\{\frac{-R^2}{2\sigma^2}\right\}$$
 (32)

C.3.3. The Derived Distribution of Wind Direction

Considering the wind as a vector quantity and bivariate normally distributed, the wind direction can be derived. This is done by first writing the bivariate normal probability density function in polar coordinates whose variables are

$$g(r, \theta) = rd_1 e^{-\frac{1}{2}(a^2r^2 - 2br + c^2)}$$
, (see footnote 2) (33)

where

.

•

3

Ì

,

.

1

1

-

$$a^{2} = \frac{1}{(1 - \rho^{2})} \left[\frac{\sin^{2}\theta}{\sigma_{x}^{2}} - \frac{2\rho \cos\theta \sin\theta}{\sigma_{x}\sigma_{y}} + \frac{\cos^{2}\theta}{\sigma_{y}^{2}} \right] ,$$

$$b = \frac{-1}{(1 - \rho^{2})} \left[\frac{\bar{x}\sin\theta}{\sigma_{x}^{2}} - \frac{\rho(\bar{x}\cos\theta + \bar{y}\sin\theta)}{\sigma_{x}\sigma_{y}} + \frac{\bar{y}\cos\theta}{\sigma_{y}^{2}} \right]$$

$$c^{2} = \frac{1}{(1 - \rho^{2})} \left[\frac{\bar{x}^{2}}{\sigma_{x}^{2}} - \frac{2\rho\bar{x}\bar{y}}{\sigma_{x}\sigma_{y}} + \frac{\bar{y}^{2}}{\sigma_{y}^{2}} \right] ,$$

^{2.} This expression, equation (33), in Smith (1976) is given with respect to the mathematical convention for a vector direction.

$$d_1 = \frac{1}{2\pi\sigma_x \sigma_y \sqrt{1-\rho^2}}$$

and $r = \sqrt{x^2 + y^2}$ is the modulus of the vector or speed and θ is the direction of the vector. After integrating $g(r, \theta)$ over r = 0 to ∞ , the probability density function of θ is

$$g(\theta) = \frac{d_1}{a^2} e^{-\frac{1}{2}c^2} \left[1 + \sqrt{2\pi} \left(\frac{b}{a}\right) e^{\frac{1}{2} \left(\frac{b}{a}\right)^2} c\left(\frac{b}{a}\right)\right] , \quad (34)$$

where a^2 , b, c^2 , and d_1 are as previously defined in equation (33) and

$$\oint \left(\frac{b}{a}\right) = \oint (x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$

is taken from tables of normal distribution functions or made available through a computer subroutine.

If desired, equation (34) can be integrated numerically over a chosen range of A to obtain the probability that the vector direction will lie within the chosen range; i.e.,

$$F(\theta) = \int_{\theta_2}^{\theta_1} g(\theta) d\theta . \qquad (35)$$

One application may be to obtain the probability that the wind will flow from a given quadrant or sector as, for example, onshore.

C.3.4. The Derived Conditional Distribution of Wind Speed Given the Wind Direction (Wind Rose)

Continuing with the considerations in Section C.3.3. of this chapter, the conditional probability density function (pdf) for wind speed, r, given a specified value for the wind direction, θ , can be expressed as

$$f(\mathbf{r} \mid \hat{\gamma}) = \frac{a^2 \mathbf{r} \mathbf{e}^{-\frac{1}{2}} (a^2 \mathbf{r}^2 - b\mathbf{r})}{1 + \sqrt{2\pi} \left(\frac{b}{a}\right) \mathbf{e}^{-\frac{1}{2} \left(\frac{b}{a}\right)^2} \div \left\{\frac{b}{a}\right\}} , \qquad (36)$$

a a success and a market of the success of the succ

where the coefficients, <u>a</u> and <u>b</u> and the function $\oint \left\{\frac{b}{a}\right\}$ are as previously defined in equation (33) and in equation (34).

From equation (36) the mode (most frequent value) of the conditional wind speed given a specified value of the wind direction is the positive solution of the quadratic equation,

$$a^2 r^2 - br - 1 = 0$$
 , (37)

which is

-

$$(\tilde{\mathbf{r}} \mid \theta) = \frac{1}{2a} \left[\left(\frac{b}{a} \right) + \sqrt{4 + \left(\frac{b}{a} \right)^2} \right]$$
 (38)

The locus of the conditional modal values of wind speed when plotted in polar form versus the given wind directions forms an ellipse.

The noncentral moment for equation (36) is expressed as

$$\mu'_{n} = \int_{0}^{\infty} \mathbf{r}^{n} \mathbf{f}(\mathbf{r} \mid \theta) \, d\mathbf{r} \quad . \tag{39}$$

Now the first noncentral moment is identical to the first central moment or the expected value, E $(r | \theta)$. The integration of equation (39) for the first moment is sufficiently simple to yield practical computations and can be expressed as

$$E(\mathbf{r} \mid \theta) = \frac{\left(\frac{b}{a}\right) + \left[1 + \left(\frac{b}{a}\right)^{2}\right] \sqrt{2\pi} e^{\frac{1}{2}\left(\frac{b}{a}\right)^{2}} \phi\left\{\frac{b}{a}\right\}}{a\left[1 + \left(\frac{b}{a}\right) \sqrt{2\pi} e^{\frac{1}{2}\left(\frac{b}{a}\right)^{2}} \phi\left\{\frac{b}{a}\right\}\right]} \qquad (40)$$

Hence, equation (40) gives the conditional mean value of the wind speed given a specified value for the wind direction.

The integration of equation (36) for the limits r = 0 to $r = r^*$ gives the probability that the conditional wind speed is $\leq r^*$ given a value for the wind direction, θ . This conditional probability distribution (PDF) can be written as

$$\Pr\left\{\mathbf{r} \leq \mathbf{r}^{*} \mid \boldsymbol{\theta} = \boldsymbol{\theta}_{0}\right\} = 1 - \left[\frac{e^{-\frac{1}{2}\mathbf{r}_{s}^{2}} + \sqrt{2\pi}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)\left\{1 - \boldsymbol{\Phi}\left(\mathbf{r}_{s}\right)\right\}}{e^{-\frac{1}{2}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)^{2}} + \sqrt{2\pi}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)\boldsymbol{\Phi}\left\{\frac{\mathbf{b}}{\mathbf{a}}\right\}}\right], \quad (41)$$

where $r_s = \left[a r^* - \left(\frac{b}{a} \right) \right]$.

By definition equation (41) is an expression for a "wind rose". Empirical wind rose statistics are often tabulated or graphically illustrated giving the frequency that the wind speed is not exceeded for those wind speed values which lie within assigned class intervals of the wind direction. After evaluation of equation (41) for various values of wind speed, r^* , and the given wind directions, θ . interpolations can be performed to obtain various percentile values of the conditional wind speed.

For the special case when <u>b</u> in equation (33) (i.e., for $\overline{x} = \overline{y} = 0$), the conditional modal values of wind speeds [equation (38)], the conditional mean values of wind speeds [equation (40)], and the fixed conditional percentile values of wind speeds [interpolated from evaluations of equation (41)], when plotted in polar form versus the given wind directions produce a family of ellipses.

For the special case when $\overline{x} = \overline{y} = 0$, equation (36) reduces to the following simple case:

$$\Pr\left\{\mathbf{r} \leq \mathbf{r}^{*} \mid \boldsymbol{\theta} = \boldsymbol{\theta}_{0}\right\} = 1 - e^{-\frac{\mathbf{a}^{2} \mathbf{r}^{*}}{2}} .$$
(42)

There is a special significance of equation (42) when related to the bivariate normal probability distribution. If r^* and θ are measured from the centroid of the probability ellipse, then the probability that $r \leq r^*$ is the same as the given probability ellipse. Further, solving equation (42) for r^* , gives

$$r^* = \frac{1}{a} \sqrt{-2 \ln (1 - P)} \qquad . \tag{43}$$

If a probability ellipse P is chosen, equation (42) gives the distance of r along any θ from the centroid of the ellipse to the intercept of the specified probability ellipse. If there is an interest in conditional probability of winds for a given θ relative to the monthly means, equation (43) is applicable. If it is desired to find the magnitude of the wind along any θ relative to the monthly mean to the intercept of a given probability ellipse, equation (43) is applicable.

D. Statistical Parameters With Respect To Any Orthogonal Axes

.

..

-

ļ

The five wind statistical parameters presented in Table I are given with respect to the standard meteorological coordinate system; i.e., these parameters are for the zonal and meridional components. For many aerospace vehicles and range applications there is a need for wind statistics with respect to or hogonal axes other than west to east and south to north. For example, it may be required to present wind statistics with respect to a flight azimuth of an aerospace vehicle whose flight azimuth is α degrees from true north measured in a clockwise direction. The following sets of equations are presented to compute the five parameters for the new coordinate axes rotated α degrees clockwise from true north.

a. Rotation of the means through α degrees:

$$\overline{X}_{\alpha} = \overline{X} \cos (90 - \alpha) + \overline{Y} \sin (90 - \alpha)$$
(44)

$$\overline{\mathbf{Y}}_{\alpha} = \overline{\mathbf{Y}} \cos \left(90 - \alpha\right) - \overline{\mathbf{X}} \sin \left(90 - \alpha\right) \quad . \tag{45}$$

b. Rotation of the variances through α degrees:

$$\sigma_{\mathbf{x}_{\alpha}}^{2} = \sigma_{\mathbf{x}}^{2} \cos^{2} (90 - \alpha) + \sigma_{\mathbf{y}}^{2} \sin^{2} (90 - \alpha) + 2\rho \sigma_{\mathbf{x}}^{\sigma} \sigma_{\mathbf{y}} \cos (90 - \alpha) \sin (90 - \alpha)$$
(46)

$$\sigma_{\mathbf{y}_{\alpha}}^{2} = \sigma_{\mathbf{y}}^{2} \cos^{2} (90 - \alpha) + \sigma_{\mathbf{x}}^{2} \sin^{2} (90 - \alpha)$$

- $2\rho\sigma_{\mathbf{x}}\sigma_{\mathbf{y}} \cos (90 - \alpha) \sin (90 - \alpha)$. (47)

$$\rho_{\alpha} = \frac{\operatorname{cov} (X, Y)_{\alpha}}{\sigma_{x_{\alpha}} \sigma_{y_{\alpha}}} , \qquad (48)$$

where cov $(X,Y)_{\Omega}$ is the rotated covariance,

 $cov (X,Y)_{\alpha} = cov (X,Y) [cos^{2} (90 - \alpha) - sin^{2} (90 - \alpha)]$

+ cos (90 - α) sin (90 - α) ($\sigma_v^2 - \sigma_x^2$)

and

$$cov (X,Y) = \rho \sigma_x \sigma_y$$

By using these rotational equations, the bivariate normal distribution with respect to any desired rotated coordinates can be obtained from sample estimates that have been computed with respect to a specific axis. The marginal distributions after rotation are also normally (univariate) distributed. By using the rotational equations, computational efforts are greatly reduced for applications requiring statistics with respect to several coordinate axes.

Appendix A presents some illustrative examples for the wind statistics of the specific RRA.

CHAPTER III. STATISTICS OF THERMODYNAMICS QUANTITIES AND MODELS

A. General Considerations

A.1. Objectives

С 1

٠4

4

The objectives inherent in developing the thermodynamic section of the RRA were to describe the thermodynamic characteristics of the atmosphere using a minimum of data tabulations. A set of parameters was selected which, together, thermodynamically describe the climatological state of the atmosphere. These parameters are the pressure, temperature, density, dew point, virtual temperature, and water vapor pressure. Used together, these parameters permit the calculation of a large number of derived quantities. Some of these quantities, such as the speed of sound, are dealt with in Section III.E.

The probability distribution of each of the six thermodynamic RRA parameters is described by its mean value, its standard deviation, and its skewness. Several of these parameters (temperature, pressure, dew point and density) have probability distributions which are close to a univariate normal distribution; the others do not. The skewness parameter gives an estimate of the asymmetrical departures of a probability distribution.

Hydrostatically modeled mean values of pressure and density were calculated (Table IV), so that users may determine the departure of the actual climatological values of these parameters from hydrostatic conditions. This was done by hydrostatically integrating the pressure from the lowest RRA data level to the termination altitude of the particular RRA.

TABLE D. LIST OF SYMBOLS USED IN CHAPTER III

C _s	- Speed of sound
c _d	- Collision diameter
Е	- Vapor pressure
₿. ^Ф	– Gravity at latitude 🌵
Н	- Geopotential height
н _п	- Geopotential height at a mandatory radiosonde data level
H _s	- Geopotential height at a significant radiosonde data level

27
TABLE D. (Continued)

.

. . .

.

•

-

. . . .

. .

• • •

•

К _t	- Coefficient of thermal conductivity
L	- Mean free path length
М	- Mean molecular weight of air at sea level
M3q	- Annual third moment of quantity Q
M3q	- Monthly third moment of quantity Q
n	- Refractive modulus
N	- Refractive index
NA	- Avogadro's constant
Nq	- Number of values of quantity Q
Р	- Pressure
P _m	- Pressure at a mandatory radiosonde data level
P _s	- Pressure at a significant radiosonde data level
P _h	- Hydrostatically integrated mean monthly or annual pressure
Q	- Any tabulated RRA quantity
R*	- Universal gas constant
R'	- Specific gas constant of dry air
r', r*	- Parameters used in converting z to h and vice versa
S	- Sutherland's constant, used in the calculation of dynamic viscosity
т	- Temperature
т _d	- Dew point
т _v	- Virtual temperature
т _{vm}	- Virtual temperature at a mandatory radiosonde data level
T _{vs}	- Virtual temperature at a significant radiosonde data level
v	- Mean air particle speed

28

and the second second

TABLE D. (Concluded)

v _c	-	Mean collision frequency
w	-	Parameter used in the hydrostatic interpolation of pressure and density
Z	-	Geometric altitude
	-	Wavelength
α <mark>Q</mark>	-	Skewness of quantity Q
ß	-	Constant used in the equation for viscosity
Ŷ	-	Ratio of specific heat at constant pressure to specific heat at constant volume
η	-	Kinematic coefficient of viscosity
μ	-	Dynamic coefficient of viscosity
ρ	-	Density
ρ h	-	Mean monthly or annual density derived from Ph
σ	-	Standard deviation of the quantity Q

A.2. Data Quality Control

Data limits derived from the following parameters were used to screen the thermodynamic portion of the RRA data base: temperature, pressure, dew point (for the 0-30 km portion only), and density (for the 30-70 km portion only). These limits were set to plus and minus six standard deviations from the mean values of each of these quantities. These limits were used to screen the thermodynamic portion of the RRA data base, according to the procedures described in Section I.C. The data base used to generate the thermodynamic portion of the RRA (Tables I, II, and IV) was considered to be free from errors if:

a) The skewness values of the pressure and temperature were between -2.5 and 2.5 at all data levels.

The skewness values of the density were between -3.5 and 3.5 b) at data levels between 0 and 30 km.

The skewness values of the density were between -3.0 and 3.0c) at data levels between 30 and 70 km.

The skewness values of the dew point were between -2.5 and d) 2.5 at all data levels with more than 10 data values.

•

.

•

Ī

٠,

ì

ĥ

1

.

•

.

The correlation coefficients between the thermodynamic quantities and the a pisture-related quantities were not calculated at discrete altitudes nor were any of the correlations between altitudes. Therefore, valid statistical dispersion models that require the relationship between two or more of these quantities at the same altitude or between altitudes cannot be derived. Approximations for the correlation coefficients between pressure, virtual temperature, and density at discrete altitudes may be obtained from the coefficients of variation as developed by Buell (1970). The coefficient of variation is the standard deviation divided by the mean. "he mean values and the standard deviations are taken from Table II. A model for the profile of monthly and annual mean pressure, virtual temperature, and density that is in excellent agreement with the respective statistical mean values is given by Table IV. This agreement results because the physical relationships, given by the hydrostatic equation and the equation of state, were used to derive Table IV. When only the monthly or annual mean values for pressure, virtual temperature, and density are required, it is recommended that Table IV be used.

B. Establishing Data Samples at the Required Altitude Levels

This section describes the computational procedures used to establish data samples of the thermodynamic RRA parameters at the RRA data levels. References are cited only when an equation given is one of many available in the literature or when an equation is stated in an unusual form.

B.1. Conversion of Data Recorded in Geopotential Heights to Geometric Altitude

The upper air rocketsonde observations used to obtain the table values above 30 km were recorded in terms of geometric altitude and can be interpolated directly to the altitude intervals shown in the tables. However, the radiosonde observations used to obtain the tabular values below 30 km were recorded in terms of geopotential heights. The change of coordinates from geopotential height to geometric altitude (h to z) is accomplished by calculating a table of geopotential heights which correspond exactly to the geometric altitudes at which the atmospheric parameters are tabulated. The radiosonde observations are then interpolated to these geopotential heights. The relationship used to calculate geometric altitude from geopotential height is

$$H = (r'z)/(r*z)$$
 , (49)

where

$$r' = gr*/9.80665$$

and

ï

$$\mathbf{r}^* = -2\mathbf{g}_{\phi} / (\partial \mathbf{g}_{\phi} / \partial \mathbf{z}_{o})$$

 g_{ϕ} is the sea level gravity at the latitude ϕ corresponding to the proper location. This value is given by (List, 1968)

$$g_{\phi} = 9.780356 \ (1 \pm 5.2885 \times 10^{-3} \sin^2 \phi - 5.9 \times 10^{-6} \sin^2 (2\phi))$$
 .

 $\frac{\partial g_{\phi}}{\partial z_{o}}$ is the rate of change of gravity at the sea level. This quantity is given by the equation

$$\frac{\partial g_{\phi}}{\partial z_{o}} = -3.085462 \times 10^{-6} + 2.27 \times 10^{-9} \cos(2\phi) - 2 \times 10^{-12} \cos(4\phi)$$
(51)

The units used for gravity are m/s², while the units for $\frac{\partial g_{\phi}}{\partial z_{\phi}}$ are s⁻².

The resulting table of values of H obtained by using even increments of 2 in equation (49) is shown in Table IV of the RRA. The values of H above 30 km are not used in the interpolation of original data but are included for the convenience of the user.

B.2. Calculations on the Original Rawinsonde Data Records

It was necessary to interpolate the information from the original rawinsonde data records to the geometric altitudes specified as the RRA data levels. The parameters for which this interpolation was required were the temperature, dew point, and pressure. The other parameters were calculated from the interpolated values at each RRA data level. These "derived" parameters were the water vapor pressure, density, and virtual comperature.

B.2.1. Calculation of the Geopotential Height at Significant Levels

Two somewhat different interpolation procedures were used to obtain data at the levels shown in the tables from radiosonde and rocketsonde observations. The procedure used to interpolate radiosonde observations begins with the calculation of virtual temperature at each data level in a sounding. The virtual temperature was computed by

$$T_v = T/(1. - 0.379 (e/p))$$
, (52)

where T_{v} and T are in degrees K and e and p are in millibars.

The radiosonde soundings contain a mix of data taken at "mandatory" and "significant" levels. Pressure, temperature, and dew point information was given in these soundings at both types of levels. However, geopotential height information was only given at the mandatory levels. The heights at the significant levels were "filled in" (calculated) hydrostatically using pressure and temperature data from these levels. This procedure permitted the use of most of the significant level data in the calculation of the RRA tables. The equation used for this process was

$$H_s = Hm + 29.2712617 * (\frac{T_{vs} - T_{vm}}{2} * \ln (P_s/P_m))$$
, (53)

where the subscripts s and m denote quantities at significant and mandatory levels. This equation was not used if the difference between two adjacent mandatory levels was greater than 200 mb. All soundings with such data gaps were rejected for use in compiling the RRA.

B.2.2. Temperature

Radiosonde temperatures were interpolated logarithmically with respect to pressure using the equation

$$T = T_{U} + (T_{L} - T_{U}) \frac{\ln p - \ln p_{L}}{\ln p_{U} - \ln p_{L}}$$
, (54)

where the subscripts U and L indicate values at the nearest data levels in the actual sounding above and below the interpolated level.

B.2.3. Pressure

The pressure values in each radiosonde sounding were interpolated to the RRA data levels using the equation

$$p = pL \exp\left(\frac{H_{L} - H_{U}}{29.2712617 (0.5) (T_{v_{U}} + T_{v_{L}})}\right)$$
(55)

where the subscript L indicates virtual temperature, geopotential, and pressure values at the data level below and closest to the level at which data were required.

والمحاوية المراجع والمراجع ومحاور والمراجع والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاجة والمحاجة

B.2.4. Dew-Point Temperature

. .

۰.

۰.

•

-•.

1

1

Dew-point values were interpolated logarithmically with respect to pressure using the equation

$$T_{d} = T_{dU} + (T_{dL} - T_{dU}) \left(\frac{\ln p - \ln p_{L}}{\ln p_{U} - \ln p_{L}} \right) .$$
 (56)

The subscripts U and L indicate data at the nearest upper and lower data levels in a sounding.

B.2.5. Derived Water Vapor Pressure

The water vapor pressure is calculated from the interpolated dewpoint values at the RRA data levels using Teten's approximation:

$$7.5(T_d - 273.15)/(T_d - 35.86)$$

e = 6.11 mb × 10 . (57)

B.2.6 Derived Density

The density values derived from radiosonde observations were calculated at the RRA data levels using the equation

$$\rho = 348.36787 \text{ p/T}_{..} \quad . \tag{58}$$

B.2.7 Derived Virtual Temperature

The virtual temperature values are calculated at the RRA data levels for each sounding using the equation

$$T_v = T/(1 - 0.379(e/p))$$
 , (59)

where Tv and T are in degrees K and p and e are the pressure and vapor pressure, respectively, in millibars.

B.3. Calculations on the Original Rocketsonde Data Records

The rocketsonde data records used to calculate the RRA table values above 30 km were given in terms of geometric altitude. For this reason, slightly different calculations were required to convert the recorded data values to values at the RRA data levels. The pressure, temperature, and density were all interpolated to the RRA data levels; moisture-related parameters (virtual temperature, water vapor pressure, and dew point) were not calculated, since atmospheric moisture at altitudes above 30 km was considered to be negligible.

No interpolation was done across gaps in the pressure or temperature data within a sounding larger than 7000 m. Data values at the RRA levels within such a gap were set to missing.

B.3.1. Temperature

·*. •*.

3

.

۰.

Ĩ

ļ

. **X**

Rocketsonde temperatures were interpolated linearly with respect to geometric altitude using the equation

$$T = T_{U} + (T_{L} - T_{U}) \frac{Z - Z_{L}}{Z_{U} - Z_{L}}$$
 (60)

where the subscripts U and L indicate values at the nearest data level in the actual sounding above and below the interpolated level.

B.3.2. Pressure

The pressure values in each rocketsonde sounding were interpolated to the RRA data levels using the equation

$$P = P_{L} \exp \left(-\frac{g_{\phi}}{R^{*}} \frac{M(Z - Z_{L})}{\overline{T}v} \cdot W^{2}\right)$$
(61)

where
$$\overline{T_v} = \frac{Tv_U + Tv_L}{2}$$
 and $W = \frac{r^*}{\left(r^* + Z + \frac{Z - Z_L}{2}\right)}$

B.3.3 Density

•

Rocketsonde density values were interpolated using the equation

$$\rho = \rho_{\mathbf{L}} \exp\left(-\frac{\mathbf{g}_{\phi} \mathbf{M}}{\mathbf{R}^{*}} \frac{(\mathbf{Z} - \mathbf{Z}_{\mathbf{L}})}{\overline{\mathbf{T}_{\mathbf{v}}}} \cdot \mathbf{W}^{2}\right) , \qquad (62)$$

where W is specified in Section III.B.3.2.

C. Computation of Statistical Parameters for Tables II and III

The procedure used for computing the monthly and annual means, standard deviations, and skewness values from the data values at the RRA data levels was accomplished in three steps. Initially, certain statistical sums were calculated and stored as the soundings in the data base were processed. These sums were then used to calculate the monthly statistics given in the RRA tables. The annual statistics were then calculated from these stored sums and the monthly statistics.

C.1. Stored Statistical Sums

The sums which were calculated were

$$\sum Q$$
, $\sum Q^2$, and $\sum Q^3$

where Q is any one of the quantities given in the thermodynamic part of the RRA.

C.2. Calculation of the Monthly Statistics

C.2.1. Monthly Means

The mean monthly values of the thermodynamic RRA quantities were calculated using the equation

 $\overline{\mathbf{Q}} = \sum \mathbf{Q} / \mathbf{N}_{\mathbf{Q}}$

where N_Q is the number of observed values of the quantity Q for a given month.

C.2.2 Monthly Standard Deviations

- 古古寺にあるが、豊からたたら大都市ででは、アイス、東京大学があるが、日本としたがない「東京であるため」の表示というが、東京がたけがです。

The monthly standard deviations of the thermodynamic RRA quantities were calculated using the equation

$$\sigma_{\mathbf{Q}} = \sqrt{\frac{(N_{\mathbf{Q}}\boldsymbol{\Sigma}'\boldsymbol{Q}^2) - (\boldsymbol{\Sigma}\boldsymbol{Q})^2}{N_{\mathbf{Q}} \cdot (N_{\mathbf{Q}} - 1)}} \quad . \tag{63}$$

C.2.3 Monthly Skewness Values

The monthly skewness values of the wind speed and of the thermodynamic RRA quantities are calculated using the equation

$$\alpha_{\mathbf{Q}} = \frac{\mathbf{M} \mathbf{3}_{\mathbf{Q}}}{\sigma_{\mathbf{Q}}}$$

where M3 is the third moment of the quantity Q, $\sigma_{\!Q}$ is its standard deviation, and

$$M_{3Q} = \left[\frac{\Sigma_Q^3}{N_Q} - \frac{3\Sigma_Q\Sigma_Q^2}{N_Q^2} - \frac{2\Sigma_Q^3}{N_Q^3}\right] \cdot \frac{N_Q^2}{(N_Q^{-1})(N_Q^{-2})} \quad .$$
 (64)

C.3. Calculation of the Annual Statistics

Equations (63) and (64), used to calculate the monthly values of the standard deviations and skewness values, involve taking the differences between two pairs of large sums containing Q^{**2} and Q^{**3} , where Q is any thermodynamic RRA quantity. Using these equations to compute the annual statistics would have resulted in a substantial loss of precision, as these sums become larger by several orders of magnitude in such a case. This problem was avoided by calculating the annual means, standard deviations, and skewness values from the monthly statistics.

C.3.1. Annual Mean Values

The annual mean values of the thermodynamic RRA quantities were calculated using the equation

$$Q_{ANN} = Q_A / N_Q$$

where Q_A is the total of all observed values of Q and N_Q is the total number of observations of Q.

C.3.2. Annual Standard Deviations

The annual standard deviations of the thermodynamic RRA quantities were calculated using the equation

$$\sigma Q_{ANN} = \sqrt{\frac{1}{N_Q} \sum_{i=1}^{12} (N_{Qi} \sigma_{Qi}^2) + \frac{1}{N_Q} \sum_{i=1}^{12} (N_{Qi} \bar{Q_i}^2) - Q_{ANN}^2},$$
(65)

where N_{Qi} = the number of data values for Q in month i (i = 1 to 12) and Qi = the monthly mean of Q and σ_{Qi} = the standard deviation of quanti⁺y Q in month i.

C.3.3. Annual Skewness Values

The annual skewness values of the thermodynamic RRA quantities are calculated using the equation

$$M_{3Q}_{ANN} = \frac{1}{N} \sum_{i=1}^{12} (N_{Qi} M_{3Qi}) + \frac{3}{NQ_{ANN}} \sum_{i=1}^{12} (N_{Qi} \overline{Q}_{i} \sigma_{Qi}^{2})$$

+
$$\frac{1}{NQ_{ANN}} \sum_{i=1}^{12} (N_{Qi} Q_i^3) - \frac{3\bar{Q}_{ANN}}{NQ_{ANN}} \sum_{i=1}^{12} (N_{Qi} Q_i^2)$$

$$-\frac{3\overline{Q}_{ANN}}{NQ_{ANN}}\sum_{i=1}^{12} (N_{Qi} \sigma_{Qi}^{2}) + 2\overline{Q}_{ANN}^{3} , \qquad (66)$$

where M_{3Q} = the third moment about the mean of quantity Q in month i and M_{3Q} = the annual third moment about the mean of the quantity Q.

D. Derived Monthly Mean and Annual Mean Model Atmospheres

A set of mcdeled monthly mean and annual mean hydrostatic values of pressure and density was calculated from the lowest RRA data level (0 km, mean sea level) upwards to 30 km, and from 30 km upwards to 70 km. The integration from 0 to 30 km was computed independently of the integration from 30 to 70 km because of the difference in data sources. The two different values for 30 km are provided for comparison. When 30 km data are required, the values given in the 0 to 30 km table should be used. These hydrostatically modeled mean values, which are given in Table IV, are useful as a check on the validity of the pressure and density values given in Table II. In most cases, the values in Tables II and IV for any given data level are within 1 percent of each other. The hydrostatic pressure values in Table IV were calculated using the equation

$$p_{1} = p_{0} \exp\left(-\frac{0.034162 (H_{1} - H_{0})}{0.5 (T_{v_{1}} + T_{v_{0}})}\right), \qquad (67)$$

where, $H_1 - H_0$ is in meters and a "0" subscript refers to values at the RRA data level immediately below the level being checked. p_0 at the lowest data level is set equal to the RRA mean pressure; p_1 , calculated for the next highest data level, is taken as p_0 for the level above that. This process is repeated for all the other RRA data levels. The hydrostatic density corresponding to the hydrostatic pressures is calculated from these pressures and the RRA virtual temperature values using the formula

$$\rho_{\rm H} = 348.36786 \ P_{\rm H}/T_{\rm v} , \qquad (68)$$

where $\rho_{\rm H}$ and $P_{\rm H}$ are the hydrostatic density and pressure shown in Table IV of the RRA.

E. Thermodynamic Quantities Derivable from the Basic Tables

Several other quantities can be calculated from the statistics listed in Tables II and III. The equations given in this section can be used to calculate the approximate mean values of these quantities at each RRA data level. It is not possible to infer or derive any information concerning the standard deviation or skewness values of these quantities from the data in Tables II and III of the RRA.

TABLE E. LIST OF PRIMARY PHYSICAL CONSTANTS

P = standard atmospheric pressure at sea level $= 1.013250 \times 10^5$ Newton/m² = 2116.22 lb/ft² = standard atmospheric density at sea level $= 1.2250 \text{ kg/m}^3 = 0.076474 \text{ lb/ft}^3$ То = standard temperature at sea level = 288.15 K = 15.0°C = 59.0°F = standard gravity at sea level at latitude 45°32'33" g_ $= 9.80665 \text{ m/s}^2$ = Sutherland's constant used in calculation of dynamic viscosity S = 110.4 K T_{I} = ice-point temperature at P_{O} = 273.15 K 3 = constant used in calculation of dynamic viscosity = 1.458 × 10^{-6} kg/sec m K^{$\frac{1}{2}$} = 7.3025 × 10^{-7} lb/sec ft R^{1/2} = ratio of specific heat of air at constant pressure to specific heat of air at constant volume = 1.4 C_{D} = mean effective collision diameter of air molecules $= 3.65 \times 10^{-10}$ m $= 1.1975 \times 10^{-9}$ ft $N_a = Avogodro's constant$ $= 6.022169 \times 10^{26}$ /kg mol $= 2.73179 \times 10^{26}$ /lb mol R* = gas constant = 8.31432 Joule/mol K = gas constant for dry air = 2.8704×10^2 Joule/kg K R' Μ = molecular weight of dry air = 28.966 gm/mol

E.1. Mean Air-Particle Speed

Ī

•

÷

ł

. . . .

•.*

The mean air particle speed, V, is the arithmetic average of the speeds of all air particles in the volume element being considered. For a valid average to occur, there must be a sufficient number of particles involved to represent mean conditions. The equation for "V" for dry air is:

$$V = \sqrt{\frac{8}{\pi} \cdot \frac{R^*T}{M}} \quad . \tag{69}$$

A computational form for dry air, using tabulated values, is:

$$V = \sqrt{7.3094 \times 10^2 \times T}$$
, (m/s) (70)

where T is the temperature in degrees K from Table II. Equation (69), when corrected for moist air, becomes:

$$\mathbf{V} = \sqrt{\frac{8}{\pi} \cdot \mathbf{R}' \mathbf{T}_{\mathbf{V}}} \quad . \tag{71}$$

The computational form for moist air is:

$$V = \sqrt{7.3094 \cdot 10^2 \cdot T_v}$$
, (m/s) (72)

where T_v is the virtual temperature in degrees K from Table III.

E.2. Mean Free Path

The mean free path, L, is the mean value of the distance traveled by each neutral air particle, in a selected air parcel, between successive collisions with other particles in that parcel. A meaningful average requires that the selected parcel be large enough to contain a substantial number of particles. The equation for L is given by:

$$L = \left(\frac{\sqrt{2}}{2\pi}\right) \left(\frac{R*T}{N_a C_d^2 P}\right) , \qquad (73)$$

where C_d is the effective collision diameter of the mean air molecules. The 1976 standard atmosphere value of 3.65×10^{-10} is valid for the range of altitudes in the RRA.

A computational form for moist air, using tabulated values, is:

L = 2.335 ×
$$10^{-7} \frac{T}{P}$$
 (meters) , (74)

where T is the temperature in degrees K from Table II and P is the pressure, in mb, from Table II.

A form of (73) to correct L for moist air is:

$$L = \left(\frac{\sqrt{2}}{2\pi}\right) \frac{R'MT_v}{N_a C_d^2}$$
 (75)

The computational form for moist air is:

L = 2.3325 ×
$$10^{-7} \frac{T_v}{P}$$
 (meters) , (76)

where T_V is the virtual temperature in degrees K from Table III and P is the pressure in mb from Table II.

E.3. Mean Collision Frequency

NEW A NEW ALLENS NEW YORK

•.

The mean collision frequency V is considered to be the average speed of air particles contained in an air parcel divided by the mean free path of the particles inside that parcel. Computationally this is equivalent to:

$$V_{c} = \frac{V}{L} (sec^{-1})$$
 (77)

To determine V_c for dry air, use V and L from equations (70) and (74). To determine V_c for moist air, use V and L from equations (72) and (76).

E.4. Speed of Sound

The expression for the speed of sound, C_s , in dry air, in m/s is

$$C_{s} = \sqrt{\frac{\gamma R^{*}T}{M}} \quad . \tag{78}$$

To compute C_s for dry air from tabulated values, use:

$$C_s = \sqrt{4.0185 \times 10^2 \times T}$$
 , (m/s) (79)

where T is the temperature in degrees K from Table II. One form for the speed of sound in moist air is:

$$C_s \approx \sqrt{\gamma R' T_v}$$
, (80)

where T_V is the virtual temperature from Table III. A computational form for moist air is:

$$C_{s} \approx \sqrt{4.0185 \times 10^{2} T_{v}}$$
, (m/s). (81)

E.5. Dynamic Coefficient of Viscosity

The coefficient of dynamic viscosity, μ , is defined as a coefficient of internal friction developed where gas regions move adjacent to each other at different velocities. The following expression is taken from the U.S. Standard Atmosphere (1976):

$$\mu = \frac{\beta \cdot \mathbf{T}^{3/2}}{\mathbf{T} + \mathbf{S}} \quad . \tag{82}$$

The computational form is:

* • • • • •

$$\mu = \frac{(1.458 \times 10^{-6})}{T + 110} \frac{T^{3/2}}{4} , \qquad \left(\frac{\text{kg}}{\text{s} \cdot \text{m}}\right)$$
(83)

where T is temperature in degrees K from Table II.

E.6. Kinematic Coefficient of Viscosity

The kinematic coefficient of viscosity, designated as η , is defined to be the ratio of the dynamic coefficient of viscosity of a gas to its density. or:

$$\eta = \mu / \rho \quad . \tag{84}$$

The computational form is:

$$\eta = 1.0 \times 10^3 \,\mu/\rho$$
 , (m²/s) , (85)

where μ is the dynamic coefficient of viscosity from equation (83) and ρ is the density in g m⁻³ from Table II.

E.7. Coefficient of Thermal Conductivity

The empirical expression used for the coefficient of thermal conductivity, designated as K_{+} , is given in the 1976 Standard Atmosphere as:

$$K_{t} = \frac{2.65019 \times 10^{-3} \cdot T^{3/2}}{T + 245.4 \times 10^{-(12/T)}} , \quad (watts/m-deg K)$$
(86)

where T is in degrees K.

E.8. Refractive Modulus and Refractive Index

The refractive modulus or refractivity (Selby and McClatchey, 1975; Smith and Weintraub, 1953) is defined as N, where

$$N = (n - 1) + 10^6$$
 (87)

and n is the refractive index.

For microwave frequencies below approximately 30 GHz (equivalent to wavelengths above 1 cm), N, the refractive modulus, is given by the empirical equation

N = 77.6
$$\frac{P}{T_d}$$
 + 3.73 × 10⁵ $\frac{e}{T^2}$ (dimensionless) , (88)

where E and P are in millibars and T and T_d are in degrees K.

The following expression is valid for the visible and infrared wavelengths shorter than approximately 30 μ m (0.03 mm).

N = 77.6
$$\frac{P}{T}$$
 + 0.584 $\frac{P}{T\lambda}$ dimensionless , (89)

where λ is the wavelength in microns and T is in degrees K.

The expression for N for the wavelength from 0.03 mm to 1 cm is an extremely complex function of wavelength.

CHAPTER IV. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

and a the state of the state of the

This document satisfies the technical objectives established for the Range Reference Atmosphere committee by the Range Commanders Council Meteorology Group. Upper air statistics and models for wind and thermodynamic quantities for the specific site have been derived in a consistent and uniform manner which will be used in publications for all other assigned site locations. These Range Reference Atmospheres represent an improvement over the previously published Range Reference Atmospheres because of the availability of more extensive upper air data bases and the adaptation of more advanced statistical techniques. A statistical measure of central tendency (mean values) and a measure of dispersion (standard deviation with respect to the mean values) for monthly and annual reference periods have been tabulated for all variables in a consistent manner from data bases that have been edited and quality controlled in the same manner. Further, a statistical measure for symmetry (skewness coefficient which involves the third statistical moment) has been tabulated for all variables except the zonal and meridional wind components. Even with these improvements, the user of these Range Reference Atmospheres must recognize certain limitations of the statistical tabulations. Namely:

1) The wind profile structure with respect to altitude cannot be modeled from the RRA statistics because the inter-level and cross-level correlations were not computed.

2) The profile structure with respect to altitude for any of the thermodynamic variables or any quantities derivable from these variables cannot be modeled because the prerequisite correlations were not computed. However, the profile of monthly and annual means for pressure, virtual temperature, and density are in agreement (Table IV) with the hydrostatic equation and the equation of state.

The preceding limitations are cited to prevent a misuse of the RRAs. More extensive statistical tabulations were beyond the scope of this committee's task. As greater insight is gained through uscge of these RRAs, many adaptations of the statistical tabulations for specific engineering and scientific applications are envisioned.

Recommendations

It is recommended that the wind and thermodynamic statistical tabulations and attendant models contained in the RRAs be used as a standard reference source, as may be appropriate, by the Ranges and Range users. It is further recommended that the respective Range Staff Meteorologist or responsible agency staff member be consulted for the applicability of the Range Reference Atmospheres for specific engineering applications.

REFERENCES

Buell, Eugene C.: Statistical Relations in a Perfect Gas. Journal of Applied Meterology, 9, 1970, pp. 729-731.

F.

•.

•

-

. •

l

1

1

List, R. J., Editor: Acceleration of Gravity, Smithsonian Meteorological Tables, Sixth Ed. Smithsonian Institution, Washington, D.C., 1968, p. 488.

Selby, J.E.A.; and McClatchey, R.A.: AFCRL-TR-75-0255, Atmospheric Transmittance from 0.25 to 28.5 μ m - Computer Code Lowtran 3., Air Force Cambridge Research Laboratories. Available through the National Technical Information Service, Washington, D.C., 1975.

Smith, E.K.; and Weintraub, S.: The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proceedings of the Institute of Radio Engineers, 41. 8, August 1953, pp. 1035-1037.

Smith, O.E.: NASA TM X-73319, Vector Wind and Vector Wind Shear Models at 0-27 km Altitude for Cape Kennedy, Florida, and Vandenberg AFB, California. Prepared under sponsorship of the National Aeronautics end Space Administration. Available through the National Technical Information Service, Washington, D.C., July 1976.

U.S. Standard Atmosphere, 1976. Prepared under the sponsorship of the National Aeronautics and Space Administration, United States Air Force, and United States Weather Bureau, Available through U.S. Government Printing Office, Washington, D.C., October 1976.

PREVIOUS RANGE REFERENCE ATMOSPHERES PUBLISHED BY IRIG

Atlantic Missile Range Reference Atmosphere for Cape Kennedy. Florida (Part I), Document 104-63, April 16, 1963, (AD 451 780).

White Sands Missile Range Reference Atmosphere for White Sands Missile Range, New Mexico (Part I), Document 104-63, June 28, 1964. (AD 451 781).

Fort Churchill Missile Range Reference Atmosphere for Fort Churchill, Manitoba, Canada (Part I), Document 104-63, August 7, 1964, (AD 634 727).

Pacific Missile Range Reference Atmosphere for Eniwetok, Marshall Islands (Part I), Document 104-63, September 1, 1964, (AD 479 264).

Fort Greely Missile Range Reference Atmosphere for Fort Greely, Alaska (Part I), Document 104-63, October 6, 1964, (AD 634 726).

REFERENCES (Concluded)

Eglin Gulf Test Range Atmosphere for Eglin AFB, Florida (Part I), Document 104-63, January 25, 1965, (AD 472 601).

Pacific Missile Range Reference Atmosphere for Point Arguello, California (Part I), Document 104-63, April 1965, (AD 472 602).

Wallops Island Test Range Reference Atmosphere (Part I), Document 104-63, July 10, 1965, (AD 474 071).

Eastern Test Range Reference Atmosphere for Ascension Island, South Atlantic (Part I), Document 104-63, July 1966, (AD 645 591).

Johnston Island Test Site Reference Atmosphere (Part I), Document 104-63, January 1970, (AD 782 652).

Lihue, Kauai, Hawaii Reference Atmosphere (Part I), Document 104-63, January 1970, (AD 782 653).

「大学が加えたがないない」「「大学ななな」」「「大学ななな」」「「大学な」」「大学なななない」」「「大学なななな」」「「大学なななな」」「「「「大学なななな」」「「「「「「「」」」」「「「」」」「「」

•

•. •

Cape Kennedy, Florida Reference Atmosphere (Part II), Document 104-63, September 1971, (AD 753 581).

White Sands Missile Range Reference Atmosphere (Part II), Document 104-63, September 1971, (AD 782 654).

Wallops Island Test Range Reference Atmosphere (Part II), Document 104-63, September 1971.

Fort Greely Missile Range Reference Atmosphere (Part II), Document 104-63, September 1971.

Edwards Air Force Base Reference Atmosphere (Part I), Document 104-63, September 1972, (AD 782 651).

Kwajalein Missile Range keference Atmosphere for Kwajalein, Marshall Islands (Part I), Document 104-63, October 1974.

CONVERSION UNITS

Physical Constants and Conversion Factors

.

.

ľ

• • •

•

P

.

Numerical values in this document are given in the International System of Units (SI, Système International d'Unités). The values in parentheses are equivalent U. S. Customary Units, which are English units adapted for use by the United States of America. The SI and U. S. Customary Units provided in Table F are those normally used for measuring and reporting atmospheric data.

By definition, the following fundamental conversion factors are exact:

Type	U. S. Customary Units	Metric
Length	1 U. S. yard (yd)	0.9144 meter (m)
Mass	1 avoirdupois pound (lb)	453.59237 gram (g)
Time	1 second (s)	1 second (s)
Temperature	1 degree Rankine (°R)	9/5 degree Kelvin (°K)

To aid in the conversion of units, conversion factors based on the above fundamental conversion factors are given in Table F.

temp. Anney temp. Autors 1 or R 1 . A.S4 6.7 1 + 454 6.7 1. - 273.15 1. ايا لنا . = E **NOISH IANOD** 4,370 × 10⁶ 2,288 × 10⁶ 0.3048* 0.3048* 0.3048* 2,2369 0,44704 1,943K 0,51444 0.43700 2.2683 10⁴ 3.2MMK 0.304N ŝ 0.5556 1.8° 1.00° 1.00° 1.00° 1.00° 0.5556 • 8.1 1 32 C K 489.67 K 233.15 FACTORS FOR CONVERSION UNITS Multiply t or K ¥ н Т Abbreviation L. 11 12 the state U.S. CUSTON NRY - × -¥ = = prain per subs. Iout deprec Runkine depose Lahrenhett degree Nankine וואר מכו איריימין nuk per hour knots l'nir 3 1 Abbreviation -, = TABLE F. _ **∡** 4 -E a -ML LAK eran per cubic meter gram per cubic sentimeter incret per second Ĭ degree Celvius degree Kelvin degree Celsuis derres kelvin meter micron Water Vapor Vapor Concentration CAbsolute Numidity J and Ambient Density Vinter at Lemperature houperature filamere Lype of Data H NELKATI KI Wind Speed DISTANCI 11157 10 i crieth (INIW

•

Defined evact conversion tast .

• • •

ł

Vasstrom unu

·. ·

• • •

2 * 2 *

50

· • · •

· ·

inue
conti
F .
ABLE

	NI LKIC		יד גיווג. ו.א.רוצו	IONARY		CONVI RSION	
NPC of Data	1411	Abbrev lation	1 101	Vbhrev iution	Multiply	ŝ	10.061
VNCT (Concluded)						10 ⁴⁶ 10407×10 ⁷⁵ 10400 3.947×10 ¹⁹	i i i i
	- IIFES	-	147-1117 147-1117			. 1 1 1 1 1 1 1 1	4
:	. Adokram	, 34 , 36 	Pund	5 £	1 £ 3	-21242.18t	ž ±
	•					15.4324	1 7 u
sst Ri							
sepherae	intro perits induction	newton ni ²	pound torve per square meh	ر. ا	nt Par	•••••••	ja f
	millimeter of Mercury	mult	neli of Mercury	10.11 ₅	new test mi	-	11.
					the without mini-	1.4504 × 10 ³	Ib m newscen m ²
	hur	Ĩ			du ,	2,01 × 10511	с. и 4
	dyne per stuare	dun (m ⁻²			15 in	6%.94N	
	centimeter runciohari	•			dyne cm²2	: 1	ŧ
	kilogram force per square meter	he m'			Bin ⁻²		dyner m ²
	-				dy ne cui *	1.4504 × 10	
			•		kp m ⁻²	0.0980655	4
		•			E E	701,5,046466	() () () () () () () () () () () () () () () () () () (
						2.95.30 × 10.2	andre 12 L
			_			13, 75(MIG	mulle of C
					m.Hg (2 1)	25.40*	multe at C
							dai .
					I mile (32.1)	13. No.19	_

* Defined exact conversion factor

· · · · · · · · · · · ·

ur, stratu

TABLE I-1. WIND STATISTICAL PARAMETERS

JANUARY

.

- 21YUMA	- 14/940	ር አስቲ ፣	LANAVERAL						
Z	MEAN U	5.0. U	R(U,Y)	HEAN V	5.D. V	MEAN WS	5.D. HS	sken ns	NOBS
KP1	H/S	M/S		M/S	H/3	H/S	H/S		
.003	.82	2.82	2097	84	3.42	3.92	2.36	.52	665.
1.000	5.85	7.05	0201	1.49	6.45	8.72	5.04	.95	89 3.
2.000	7.9:	7.96	.0973	1.70	6.11	10.05	6.17	1.01	891.
3.000	10.81	7.43	.0934	2.00	6.46	12.85	7.23	.82	699.
4.000	14.32	8.14	.13 71	2.40	7.03	16.16	8.06	. 59	698.
5.000	17.36	. 9.07	.1567	5.81	7.70	19.64	9.09	.53	889 .
6.000	21.47	9.90	.1961	3.45	8.46	23.30	9.99	.48	895.
7.009	24.94	11.03	1755.	4.01	9.62	26.99	11.15	.42	882 .
8.000	28.44	15.53	.2577	4.42	10.73	30.67	15.38	.43	879.
Э.000	31.76	13.32	.2781	4.75	11.55	34.15	13.41	. 39	872.
10.000	34.72	13.99	.2953	4.85	15.63	37.22	14.11	. 30	865.
11.000	37.49	14.42	.2952	4.78	13.40	40.08	14.45	.26	847.
15.000	39.83	14.12	.2857	4.85	13.43	42.33	14.21	. 14	846.
13.000	40.66	13.28	.2931	4.83	12.25	42.72	13.35	. 30	835.
14.000	28.45	11.78	.2844	4.47	10.40	40.05	11.89	. 30	823.
15.000	34.54	10.42	.2736	4.46	8.99	35.95	10.48	.47	819.
16.000	29.94	9.21	.2269	4.01	7.95	31.19	9.27	. 39	808.
17.000	24.62	9.27	.2596	3.34	6.71	25.74	8.24	. 58	779.
13.000	18.57	7.71	.2374	2.53	5.62	19.65	7.57	.71	. דדר
19.000	12.95	6.83	.2701	1.73	4.41	13.90	5.61	.85	759.
20.000	9.10	6.31	.3336	1.01	3.41	10.06	5.84	1.04	747.
21.000	6.62	6.58	. 3858	.43	3.02	9.06	5.61	1.34	723.
55.000	5.12	7.59	.3181	14	3.36	7.94	5.67	1.58	719.
23.000	4.69	7.58	.2195	.04	3.15	7.83	5.29	1.33	707.
24.000	4.50	6.95	.2204	.29	3.64	0.79	6.03	1.45	698.
50.000	5.04	9.60	.1206	.47	3.91	9.68	6.57	1,40	673.
26.000	5.71	11.04	.0750	.95	3.91	10.85	7.26	1.35	656.
27.000	6.07	12.05	.0355	1.55	4.42	12.02	7.70	1.18	600.
20.000	6.42	13.26	0100	2.2	5.13	13.45	8.20	.94	580.
29.000	8.09	13.75	.0307	2.70	5.46	14.76	8.57	. /1	463.
30.000	9.87	14.74	.0363	3.75	5.75	10.44	9.47	.01	40
32.000	13.44	10.04	.0751	e.83	C.5/	19.33	10.12	.31	133
34.000	16.72	16.04	.1054	1.30	1.09	21.47	11.58	.04	140.
90.000	15.45	10.94	.0855	~.16	8.04	21.00	12.16	. /3	140.
38.000	14.54	:/.11	, 1495	1.17	0.83	50.00	11.88	.58	142.
40.000	15.63	17.69	,3303	2.03	10.07	21.18	19.75	.97	(47.
42.000	11.74	19.38	.1351	3.30	10.07	27.70	10.93	./3	140.
44.000	10.52	19.77	1247	8.4/	10.82	23.30	12.03	.03	147.
40.000	10.70	20.31	.1207	3.33	12.17	24.43	12.40	.00	1.47.
50 000	17.59	22.70	1122	7.75	12.70	29.02	12.37		1-0.
53.003	15.30	22.35	,1103	0.77	15.19	20.02	13.71	.00	1.46.
54 000	19.70	23.23	1650	0.07	10.19	71 66	15.02		176
56 000	24 72	2.03	1352	0 07	14.35	75 43	17.15	26	125
59 000	77.76	24 52	2119	12 22	13 62	40 73	10 50	.19	112
60 000	40 6	23 30	7187	12.11	15.02	46.79	19.20	.15	80
62.010	48 19	25.50	6750	0 53	16.05	52 22	22 70	- 30	
59,000	52 01	20.00	.4161	3 91	17.14	56 80	25.96	- 25	50
66.000	57 41	33.10	3465	-3.08	19.24	63 09	27.84	- 17	44.
59.000	55.53	33, 31	.1332	-9.47	18.04	63.19	25.64	11	42
70.000	55.17	39.91	012	-15.67	20.80	65.05	29.11	.04	42
							~ ~		

..

-

TABLE I-2. WIND STATISTICAL PARAMETERS

FEBRUARY

STATION	• 747940	CAPE	CANAVERAL						
Z	HEAN U	S.D. U	R(U,V)	MEAN V	S.D. V	HEAN HS	S.D. HS	SICH HS	NOBS
ICH .	H/S	M/S		M/S	M/S	H/S	N/S		
.003	.95	2.88	2441	6+	3.76	4.21	2.45	. 59	796.
1.000	3.89	7.10	.0019	1.31	6.92	9.24	5.45	.92	797.
2.000	8.25	7.61	.0703	1.58	6.69	11.32	6.72	. 88	797.
3.000	12.24	7.98	.0992	1.80	7.12	14.43	7.69	.68	796.
4.000	15.88	8.77	.1049	2.34	7.69	17.82	8.71	.55	789.
5.000	19.75	9.85	.1214	3.00	8.59	8 7.15	9.98	.52	788.
6.000	23.62	10.89	.1674	3.61	9.32	25.58	11.04	.40	789.
7.000	27.33	15.01	.2255	4.23	10.15	29.43	15.08	.29	787.
8.000	31.10	13.27	.2382	4.56	11.33	33.41	13.26	.23	780.
9.000	34.85	14.57	.2235	4.74	12.50	37.36	14.42	. 10	774.
10.000	38.72	15.66	.2339	4.67	13.52	41.35	15.45	02	765.
11.000	41.70	16.01	.2396	4.25	14.03	44.28	15.78	06	741.
12.000	44.48	15.41	.2197	4.46	14.02	45.85	15.40	.03	738.
13.000	44.20	14.10	.2531	4.46	13.03	46.28	14.12	.13	726.
14.000	40.97	13.01	.2632	4.00	11.09	42.68	12.04	.23	710.
15.000	36.52	11.15	.2558	3.53	9.08	37.82	11.05	. 12	707.
16.000	31.36	9.84	.2305	3.13	7.95	35.25	9.76	. 14	702.
17.000	25.66	8.80	.2221	2.41	6.84	26.70	8.70	.21	690.
18.000	19.71	8.35	.2387	1.69	5.69	20.65	8.19	.31	687.
19.000	13.57	7.52	.2877	1.29	4.46	14.47	7.26	.63	684.
20.000	9.00	6.84	. 3468	.68	3.43	10.17	6.06	.91	682.
21.000	6.17	7.07	. 3594	~.05	3.29	8.18	5.65	1.37	670.
22.000	4.78	8.04	.3615	42	3.60	8.17	5.81	1.39	663.
23.000	4.07	7.62	.3222	46	3.18	7.51	5.34	1.25	659.
24.000	3.72	8.71	.3311	31	3.39	8.19	5.84	1.31	648.
25.000	3.70	9.51	.2351	.06	3.44	8.60	6.20	1.30	638.
26.000	4.20	9.49	.2374	. ¹ 44	3.42	9.04	6.14	1.12	616.
27.000	5.16	9.85	.2+66	. 76	3.48	9.65	6.56	1.09	563.
28.000	6.15	10.22	. 1955	1.30	3.81	10.51	6.92	.96	533.
29.000	8.25	10.82	.2804	1.86	4.16	15.53	. 7.41	. 84	372.
30.000	10.50	11.23	. 3000	2.48	4.31	19.01	8.02	.68	361.
32.000	15.09	13.11	.4269	2.73	6.68	17.89	11.43	.51	111.
34.000	16.58	14.64	. 3381	1.22	5.99	19.30	12.39	.73	112.
36.000	14.53	15.36	.2546	75	6.57	18.95	11.42	.53	116.
38.000	12.09	16.60	.2769	.01	7.22	19.08	10.40	. 34	117.
40.000	10.20	18.41	.0337	1.04	7.87	19.56	11.00	1.07	119.
42.000	9.38	19.01	.0105	3.46	8.18	19. 68	11.75	.62	120.
44.000	10.98	19.16	.0869	6.39	9.58	85.15	15.04	.73	120.
45.000	12.92	21.05	.1373	7.43	10.87	24.07	14.14	.73	150.
48.000	15.67	22.74	. 1909	8.18	11.41	27.29	14.54	.66	150.
50.000	18.89	22.86	.1345	8.67	15.80	29.59	15.45	.61	118.
52.000	22. 59	23.26	. 1939	8.81	12.55	32.29	15.48	.45	117.
54.000	27.28	22.0 8	.2773	8.57	13.34	34.96	16.05	.29	115.
56.000	34.85	21.34	.2476	12.28	14.50	41.65	17.13	. 15	110.
58.000	41.01	20.84	. 3470	14.98	13.60	47.00	17.69	14	95.
60.000	46.86	20.79	.2436	15.12	13.99	51.89	18.87	33	85.
62.000	50.67	55° 38	.3723	11.54	14.38	54.32	51.91	45	53.
64.000	55.74	10.40	. 1697	6.51	15.74	58.43	17.76	47	44.
66.00 0	57.25	19.22	. 1879	45	17.40	59.87	18.88	12	39.
68.000	56.07	17.87	.2619	-8.14	13.65	58.57	16.67	. 13	30.
70.000	49.27	50.58	.2182	-10.89	17.35	53.93	18.35	04	27.

TABLE I-3. WIND STATISTICAL PARAMETERS

• •

the state of the second

.

* * * - - -

MARCH

• -

Ì

ŀ

· ·

•

• • •

. . .

STATION	- 747940	CAPE C	ANAVERAL						
Z	HEAN U	S.D. U	R(U,V)	HEAN V	5.0. V	HEAN HS	5.D. HS	sken hs	NOBS
KM .	H/S	H/S		M/S	H/5	H/S	M/S		
.003	. 28	5.98	2163	21	3.57	4.00	2.40	. 54	· 866.
1.000	5.64	6.85	.0037	1.66	6.38	8.66	4.72	.80	870.
2.000	6.65	7.38	.0380	1.24	6.01	9.93	6.13	.83	872.
3.000	10.34	8.14	.0776	1.00	6.46	12.75	7.29	.83	872.
4.000	14.04	9.08	.0922	.75	6.84	15.96	9.48	.72	871.
5.000	17.80	. 10.09	.1597	.66	7.27	19.50	9.57	.73	870.
6.000	21.31	10.93	.1961	.72	7.85	22.96	10.41	.60	069.
7.000	24.88	11.75	.1988	.98	8.69	26.63	11.31	50	865.
8.000	28.38	15.85	.1720	1.12	10.00	30.31	15.35	.47	856.
9.000	31.76	13.50	.1718	.92	11.41	33.95	13.01	.27	848.
10.000	35.62	14.54	.1723	.74	15.90	38.05	14.10	.25	842.
11.000	38.89	14.77	.1724		14.05	41.49	14.35	.17	629.
12.000	41.71	14.24	.2047	. 14	14.04	44.09	13.95	. 18	828.
13.000	41.89	15.63	.2369	.48	12.14	43.67	12.41	.51	814.
14.000	39.07	11.09	.2390	.74	10.04	40.41	10.85	.23	807.
15.000	35.15	9.84	.2243	1.08	9.62	30.00	9.6/		798.
16.000	29.77	8.38	.1639	.97	7.37	30.14	8.1/	.07	790.
17.000	23.61	1.21	.1269	. /3	0.03	24.49	7.11	.07	773.
19.000	17.12	6.68	.1918	.50	3.23	17.97	5.63		700.
19.000	11.10 C.05	2.93	.2041	- 73	7.16	16.06	5.00	. / 3	763.
20.000	7.00	5. IC 8. 71	.2709	•.x	3.10	7.79 6.03	7.57	1 10	700.
22.000	3.09	5.31	.2221	-1.11	2.10	8.79	3.30	1.10	747.
22.000	1.93	5.77	.1113	- 90	7 07	5.50	3.70	1 79	724
23.000	. 33	5.54	0553	50	3.50	6 33	3.57	1 89	715.
25,000		7 14	0708		3.50	6 50	5.04	1.75	702.
25.000	1.26	7.57	.0675	014	3.23	6.86	4.71	1.03	683.
27.000	2.44	9.11	.1405	. 35	3.39	7.51	5.19	1.54	624.
28.000	3.76	8.93	1928	.92	3.52	8.47	5.94	1.40	510.
29.000	6.24	9.48	.2422	1.31	3.75	10.06	6.58	1.10	438.
30.000	8.24	10.24	. 3232	1.70	4.00	11.76	7.30	.89	420.
32.000	14.72	10.32	. 3831	2.63	4.67	17.08	7.72	07	136.
24.000	17.21	12.87	.2496	.80	5.86	19.93	9.95	12	135.
36.000	15.16	13.72	.1118	81	5.65	18.41	10.54	.27	135.
38 .000	13.76	14.24	.2286	. 19	6.14	17.66	10.82	.55	134.
40.000	14.35	16.24	.3232	2.53	6.75	19.43	11.96	.64	135.
42.000	15.31	18.19	.3171	4.21	7.75	21.89	12.73	.72	136.
44.000	16.92	19.45	. 1444	4.42	7.94	24.13	12.76	.59	141.
46.000	18.60	20.24	.9734	6.31	8.74	26.76	12.40	.60	140.
48.GCO	20.75	20.09	.0975	7.86	7.81	27.91	13.27	. 30	140.
50.000	24.21	20.95	.1093	0.3i	8.02	31.01	13.96	.21	140.
52.000	27.09	21.27	0191	7.90	9.58	33.74	14.12	. 15	134.
54.000	27.57	50.58	1321	\$.53	11.47	34.67	13.76	. 16	135.
56.000	29.09	20.35	.0237	10.74	10.16	35.50	14,71	.50	124.
58.000	30.60	21.01	.2356	11.67	10.41	36.85	16.17	. 16	110.
60.000	34.30	21.79	.3368	12.47	13.05	41.39	15.11	03	90.
52.000	55.54	51.60	.2/94	10.01	15./3	41.72	10.06	13	D/.
64.000	33.95	23.00	.3191	/.54	13.40	40.15	18.09	.00	۵Ų. ۱
	C/.0/	C3./1	.3133	-7.10	13.04	70.05	11.03	.63	73. ZE
70 000	13.34	27.00	.0003	-3.13	10.00	77,77	17.00	. 16	27
10.000	12.33	c1.19	. 3007	-0.04	11.13	21.16	11.03		33.

• ·

TABLE I-4. WIND STATISTICAL PARAMETERS

. .

. . .

APRIL

....

- · ·

STALLON .	- 14/340	UAPE 1	GARATERAL						
Z	HEAN U	5.D. U	R(U.V)	HEAN V	\$.D. V	MEAN HS	5.D. HS	sken hs	NOBS
K1	H/S	M/S		M/S	H/S	M/S	M/S	•	
.003	62	3.09	1605	. 17	3.15	3.88	2.21	.45	870.
1.000	.53	6.26	03+1	1.19	5.26	7.29	3.93	1.04	861.
2.000	2.92	7.16	. 1468	. 34	4.95	7.97	4.73	1.21	860.
3.000	5.60	7.93	.1295	- 46	5.56	9.49	5.94	1.05	859.
4.000	8.27	8.56	. 1526	-1.12	5.91	11.34	7.02	.96	856.
5.000	10.03	9.32	. 1993	-1.52	6.30	13.47	8.04	.67	856.
6.000	13.56	10.17	.2198	-1.84	6.85	16.03	8.98	.70	859.
7.000	16.30	11.12	.2702	-5.08	7.61	18.91	9.87	.61	858 .
6.000	19.04	12.05	.2824	-2.29	6.55	21.66	10.81	.53	853.
9.000	51 .69	13.31	.3120	-2.67	9.76	24.76	12.03	.52	853.
10.000	24.93	14.55	.3263	-3.32	11.27	58 .50	13.26	.48	848 .
11.000	27.86	15.28	. 3295	-4.04	12.77	31.50	14.03	. 30	841.
12.000	30.98	15.58	.3305	-4.60	13.63	34.67	14.39	. 17	839.
13.000	32.72	14.47	. 3509	-4.28	13.34	36.00	13.42	.03	834.
14.000	31.24	12.88	. 3481	-3.70	11.60	33.83	12.06	.20	830.
15.000	27.78	10.70	.3582	-2.87	9.32	29.69	9.98	. 19	830.
16.COO	22. 98	9.14	. 3685	-2.51	7.79	24.64	8.44	. 30	821.
17.000	17.50	8.03	.3381	-2.25	6.47	19.10	7.26	.43	804.
15.000	11.51	7.06	.2694	-1.90	5.18	13.26	6.07	.74	799.
19.000	5.82	5.69	.3014	-1.56	3.96	8.02	4.47	1.19	793.
20.000	2.18	5.05	.2688	-1.36	3.09	5.56	3.27	1.48	783.
SI . COD	17	4.78	.1502	-1.26	2.65	4.81	5.63	1.25	773.
22.000	-1.62	4.42	.0710	-1.17	2.65	4.86	5.65	1.03	765.
23.000	-5.55	4.23	.1191	86	2.40	4.76	2.57	. 89	751.
24.000	-2 60	5.03	.1574	49	2.75	5.51	3.08	1.01	744.
25.000	-2.33	5.63	.2092	30	2.01	5.85	3.31	.97	737.
26.000	-1.47	6.07	.2308	.00	2.83	5.90	3.49	.95	701.
27.000	41	6.76	. 1933	. 37	3.09	6.39	3.82	. 89	632.
28.000	.93	7.40	.1792	.63	3.02	6.94	4.11	.91	606.
29.000	2.48	8.11	.1357	.64	3.23	7.91	4.47	. 83	461.
30.000	3.66	8.49	.1133	.69	3.34	8.48	5.00	S2.	448.
32.000	6.99	9.77	.1770	.82	4.57	11.29	6.14	. 64	155.
34.000	8.25	11.58	.1000	- , 144	5.07	13.25	7.18	53 .	123.
36.000	7.44	12.16	0395	-1.33	5.35	13.13	7.75	.52	123.
38.000	6.60	11.30	0402	-1.61	6.47	12.70	7.31	. 38	153.
40.000	5.79	11.21	.0782	.42	6.28	12.07	7.22	. 59	152.
42.000	5.31	10.77	.0872	.82	6.41	11.68	6.99	.66	127.
44.000	4.40	11.77	.1687	1.19	6.16	11.91	7.37	.91	128.
46.000	3.93	12.95	.0529	3.10	6.53	13.35	7.56	1.06	128.
48.000	3.41	14.19	.0089	3.86	7.02	14.19	8.64	1.23	158.
50.000	4.60	14.68	.0767	4.15	6.61	14.74	8.87	.03	129.
52.000	4.07	15.48	.0064	4.04	7.59	15.40	9.55	1.03	126.
54.000	2.80	15.34	.0034	4.35	7.03	15.14	8.97	.93	121.
56.000	1.77	14.04	.1471	5.13	7.99	14.91	8.15	1.07	119.
58.000	1.55	14.09	. 1572	5.59	8.29	15.16	8.32	.51	105.
60.000	1.92	16.93	. 1914	5.65	9.30	17.54	9.91	.40	91.
62.000	2.94	16.60	0659	8.12	8.98	19.41	9.38	.55	56.
64.000	5.93	16.96	0045	7.54	9.89	19.21	10.14	.29	52.
66.000	.76	15.82	0282	34	11.30	17.09	0.93	.50	44.
60 .00U	-6.67	16.71	.2001	-6.76	10.50	19.37	9.79	. 24	35.
70.000	-12.37	16.38	0647	-8.04	13.06	22.52	11.95	. 52	33.

TABLE I-5. WIND STATISTICAL PARAMETERS

MAY

;

:

....

<u>:</u>.

.

. .

21VITOUL A	- /4/340	UNPL L	ANA VE MAL						
Z	HEAN U	5.D. U	R(U,V)	HEAN V	5.D. V	MEAN HS	S.D. 😽	skeh hs	NOBS
KM	M/S	8/5		M/S	H/S	H/S	H/S		
.003	91	5.83	0352	. 30	5.28	3.37	2.06	.60	824.
1.000	13	4.99	.1511	1.10	4.48	5.90	3.37	1.06	823.
2.000	.66	5.71	.3425	. 33	4.60	6.34	3.74	1.18	855.
3.000	2.14	5.96	.2949	. 18	4.68	6.64	4.24	1.30	821.
4.000	3.61	6.43	.2242	10	5.13	7.53	4.69	1.25	820.
5.000	5.03	- 6.8 2	.5105	66	5.55	8.55	5.46	1.10	816.
6.000	6.56	7.12	2056	97	6.12	9.81	5.99	1.02	814.
7.000	0.13	7.80	.2098	-1.04	6.92	11.40	6.78	· .90	812.
8.000	9.66	8.79	.1895	-1.05	7.94	13.22	7.73	.83	809.
9.000	11.30	9.73	.1817	-1.13	9.27	15.35	8.60	.69	809.
10.000	13.33	10.83	.2046	-1.30	10.67	17.83	9.62	.60	806.
11.000	15.71	12.03	.2403	-1.81	15.53	20.74	10.75	.50	006.
12.000	19.27	13.01	.2759	-2.50	13.17	23.42	11.59	.43	806.
13.000	20.33	13.21	.3:08	-3.27	13.22	25.16	11.85	_ 44	802.
14.000	19.76	11.77	.3394	-2.65	11.28	23.70	10.38	. 37	801.
15.000	16.82	9.60	.3649	-3.43	8.96	19.95	8.31	.29	799.
15.000	12.70	7.88	.3389	-3.21	7.01	15.51	6.51	.48	795.
17.000	8.07	6.45	.2840	-2.97	5.51	10.99	4.99	.52	786.
18.000	3.52	5.50	.2087	-2.53	4.49	7.34	3.90	.81	780.
19.000	18	4.43	.2104	-1.96	3.31	5.15	2.82	.70	774.
C00.05	-2.94	3.92	.0956	-1.30	2.53	5.02	5.65	.54	768.
SI . 000	-4.90	3.76	0406	50	2.56	5 0.8	2.96	.43	755.
25.000	-5.99	3.72	0836	04	5.56	6.66	3.23	. 37	753.
23.000	-6.44	3.63	0453	. 19	2.08	6.94	3.28	. 36	743.
24.000	-6.70	3.96	.0327	. 42	2.61	7.43	3.51	. 37	736.
25.000	-6.57	4.51	.1146	.22	2.42	7.42	3.80	.55	717.
26.000	-6.50	4.98	.1043	.01	2.25	7.42	4.13	.62	682.
27.000	-6.28	5.56	.0175	12	2.73	7.69	4.32	.69	601.
28.000	-6.14	6.00	.0365	22	2.65	7.75	4.55	.81	579.
29.000	-6.01	6.68	.0717	39	3.14	8.22	4.81	. 99	453.
30.000	-5.73	6.98	.0952	10	3.05	8.22	4.81	.95	450.
32.000	-4.24	6.98	0790	1.02	3.42	7.45	4.85	.91	111.
34.000	-2.15	7.67	.0656	. 83	3.81	7.55	4.E1	.93	111.
3E.000	-3.61	8.24	.0384	74	3.26	8.39	4.63	. 36	111.
38.000	-6.75	8.34	2143	54	4.70	10.23	5.70	.47	111.
40.030	-8.80	7.52	2882	. 05	4.69	11.19	5.50	. 33	110.
42.000	-12.32	7.41	0327	02	4.72	13.79	6.19	.21	109.
44.000	-16.33	7.50	.1402	1.26	5.69	17.61	6.01	09	111.
46.000	-19.48	8.12	.0621	2.76	5.06	20.39	7.91	.01	111.
48.000	-20.76	8.97	.1379	2.79	5.95	21.90	8.64	.67	110.
50.000	-23.00	9.93	0409	4.31	5.97	24.39	9.31	.65	109.
52.000	-24.91	9.60	1081	5.55	6.99	26.54	9.36	. 31	104.
54.000	-25.5 5	10.60	0458	6.71	6.89	27.50	10.04	10	103.
56.000	-25.12	9.95	.0681	5.42	7.65	27.14	9.15	18	94.
58.000	-26.27	10.36	.0933	5.60	9.78	28.91	9.36	.24	85.
60.000	-29.74	10.85	.0154	4.31	7.69	31.17	10.37	.21	66.
62.000	-29.48	12.62	0630	1.57	10.97	31.80	11.67	02	41.
64.000	-29.03	13.14	.0226	1.91	12.93	32.49	11.17	17	35.
66.000	-31.63	16.84	.1811	.94	11.74	34.16	15.81	.26	31.
68.000	-32.61	17.76	.1501	-2.31	11.55	34.45	18.07	.68	29.
70.000	-36.98	16.86	.2281	-10.39	13.09	40.04	16.84	13	24.

TABLE I-6. WIND STATISTICAL PARAMETERS

•

Ţ

JUNE

STATION	- 747940	CAPE C	ANAVERAL						
z	HEAN U	S.D. U	R(U,V)	HEAN V	S.D. V	MEAN HS	S.D. HS	SKEH HS	NOOS
KM	M/S	M/S		M/5	N/S	M/S	M/S		
.003	57	2.64	.0950	.70	5.33	2.94	2.13	.79	776.
1.000	. 69	4.95	.1361	1.73	3.75	5.44	3.56	1.75	776.
2.000	1.31	5.09	.1968	1.43	3.80	5.55	3.65	1.91	776.
3.000	1.90	4.97	.1332	1.36	3.81	~. 62	3.61	1.66	774.
4.000	5.52	5.04	.0781	1.11	3.84	5.77	3.62	1.35	762.
5.000	5.60	5.22	.0785	.78	4.03	6.12	3.66	1.17	761.
6.000	5.68	5.51	.1567	.45	4.41	6.53	3.95	1.20	760.
7.000	3.24	5.90	.2169	.21	4.83	7.09	4.29	1.22	751.
8.000	3.79	6.65	.2456	.25	5.71	8.12	5.03	1.23	746.
9.000	4.49	7.83	.2685	.29	6.77	9.54	6.02	1.15	745.
10.000	5.26	9.21	.3170	.21	8.07	11.25	7.14	1.17	740.
11.000	5.98	10.66	.3537	13	9.56	13.07	8.37	1.13	738.
12.000	6.89	11.87	.3567	-1.16	10.66	14.77	9.23	1.03	736.
13.000	7.49	15.68	.3413	-2.42	10.99	15.69	9.85	1.02	754.
14.000	6.82	11.01	.3336	-3.50	9.55	14.44	9.00	.92	751.
15.000	7.90	8.83	.6994	-4.05	7.16	11.85	7.05	. 84	101.
16.000	1.97	7.38	.2556	-3.85	5.06	8.61	4,94	.80	/23,
17.000	-1.26	5.54	.1887	-3.16	3.73	6.50	3.58	. /•	/10.
19.000	-4.50	4.07	.1/60	-2.33	3.04	2.30	3.19	. /4	703.
19.000	-7.02	3.08	.1304	-1.76	5.00	7.79	3.31	.20	F07
21.000	-11 20	3.49	.0003	00	C.79 3 LB	3.00	3.30	- 17	697.
22 000	-11.20	3.70	.0300	. 35	2 10	11.75	1 20	.53	694
23 000	-11.03	3.30	- 0012	.35	1 04	12.16	1 25	.00	675
24 000	-12.24	3.25	- 6.294		2 72	12 48	1.61	.05	669
25,000	-12.74	3.89	0613	26	2.27	12.95	3.81	06	656.
26.000	-13.40	4.05	0191	56	2.21	13.62	4.00	11	636.
27.000	-14,17	4.56	.0163	60	2.76	14.49	4.45	.03	572.
28.000	-14.60	4.65	.0859	65	2.46	14.84	4.56	18	552.
29.000	-14.84	5.39	.0515	54	3.05	15.23	5.20	10	428.
30.000	-15.23	5.27	.0666	27	2.55	15.49	5.14	17	417.
32.000	-16.99	5.71	1207	1.20	3.75	17.48	5.58	33	122.
34.000	-17.31	6.19	0936	. 36	3.69	17.80	5.91	54	123.
36.000	-20.38	5.69	2265	56	4.03	20.89	5.50	19	124.
38.000	-24.57	5.88	1106	33	4.69	25.02	5.85	29	152.
40.000	-28.33	6.06	.0781	69	4.74	28.74	5.97	15	155.
42.000	-32.79	7.53	.1034	-1.29	5.00	33.22	7.42	06	129.
44.CCO	-37.36	8.15	.0227	16	5.40	37.74	8.20	14	129.
46 000	-39.91	7.48	0463	3.75	5.30	40.43	7.48	.04	130.
40.000	-41.72	8.17	.0838	E.49	6.67	42.81	7.83	.01	130.
50.000	-41.58	9.57	0483	7.29	7.19	42.88	9.28	22	131.
52.000	-43.74	8.79	0437	6.54	7.47	44.82	8 93	29	130.
54.000	-45.98	9,47	0283	4.87	8.25	46.96	9.49	15	120.
56.000	-49.04	12.03	0740	3.69	9.78	50.19	11.79		123.
58.000	-50.87	13.43	0851	2.97	10.61	52.11	13.17	cu.	110.
60.000 62.000	-52.99	11.92	1575	1.52	10.50	54.05	11.52	Ue	37. 70
DC.000	-08.05	15.77	-12121	50.	12.90	59./9 63.50	13.36	3u	7U. KØ
000.000	-00.04	12.11	2101	1.12	12.03	DC.C3 Kg 30	17.14	.67	61
69,000	-55.00	20.09	- 0300	2 01	17 57	50.00	20,80		30
70,000	-51 16	10.22	,1920	6.4A	18.05	57.55 Ru RA	18.72	.70	25

TABLE I-7. WIND STATISTICAL PARAMETERS

- -,

1

.-.

™4 1-2 1-

۰.

:

.

•

·. . .

•

.

JULY

Z PEAN V S.D. V PEAN V S.D. V PEAN V5 NOSE 1.000 3% 2.30 0%23 1.21 1.09 2.69 1.80 C 7%. 1.000 1.21 4.23 0%23 1.21 1.09 2.69 1.80 C 7%. 2.000 1.28 4.50 .079% 2.01 3.25 5.2% 3.01 1.08 7%2. 3.000 1.41 4.55 .070% 1.23 3.43 5.18 3.09 1.30 PM 5.01 1.30 PM 5.01 1.28 9.9771 778. 5.000 1.40 4.56 .090% 23 3.67 5.11 2.83 1.42 1.19 7777. 9.000 165 5.69 .2678 07 5.03 6.66 9.02 7.77 1.15 767. 10.000 163 8.79 2.22 5.33 9.16 9.05 755 750.	STATION	- 747940	CAPE CA	ANAVERAL						
kri Hr/S Leg 4.23 -0.0433 2.46 3.16 5.23 2.00 1.00 T/P2 3.000 1.40 4.65 .0706 1.61 3.30 5.23 3.11 2.03 778. 5.000 1.30 4.66 .0145 .94 3.43 5.18 3.09 .68 779. 6.000 .90 4.40 .04477 .72 3.67 5.11 2.63 779. 777. 8.000 -1.65 5.12 .1833 207 5.03 5.64 4.09 1.22 778. 11.000 -2.34 7.32 .3270 -3.19 6.65 10.37 5.78 75.75 11.000 -5.17 4.93 <t< th=""><th>Z</th><th>HEAN U</th><th>S.D. U</th><th>R(U,V)</th><th>HEAN V</th><th>5.D. V</th><th>MEAN HS</th><th>5.D. HS</th><th>SKEH HS</th><th>NOBS</th></t<>	Z	HEAN U	S.D. U	R(U,V)	HEAN V	5.D. V	MEAN HS	5.D. HS	SKEH HS	NOBS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K11	H/S	M/S		H/S	M/5	H/S	H/S		
	.003	34	2.30	0423	1.21	1.89	2.69	1.80	.40	79 .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.000	1.51	4.23	0443	2.48	3.16	5.23	2.84	.87	792.
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	5.000	1.29	4.50	.0794	2.01	3.25	5.24	3 01	1.09	792."
	3.000	1.41	4.65	.0706	1.61	3.30	5.23	3.12	1.03	784.
	4.000	1.40	4.58	.0850	1.29	3.43	5.18	3.09	.88	779.
	5.000	1.30	4.45	.0145	.94	3.56	5.15	2.92	.94	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.000	.90	4.40	.0477	.72	3.67	5.11	2.83	. 89	778.
	7.000	.40	4.56	.0904	.23	3.94	5.26	2.97	. 93	777.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.000	16	5.12	.1833	30	4,38	5.81	3.42	1.19	777.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.000	~.65	5.89	.2678	87	5.03	6.66	4.09	1.22	774.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.000	-1.60	5.74	.3201	-1.52	5.64	7.72	4.73	1.15	767.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.000	-2.34	7.92	.3275	-2.22	6.36	32.6	5.35	1.05	764.
	12.000	-3.01	8.66	.3220	-3.19	6.85	10.37	5.78	.87	758,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.000	-3.75	9.11	.2083	-4.17	/.20	11.35	5.21	.81	754.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.000	-4.37	8.13	. ~ 20	-4.03	D. /2	10.00	5.95	. 75	750.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.000	-4.75	5.38	.2751	-4.02	5.33	9.16	4.69	. /2	750.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.000	-5.17	4.59	. 3230	-2.04	3.88	7.51	3.81	. 54	746.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17.000	-0.14	3.43	-2901	-1.91	C.9C	7.16	3.23	.20	738.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.000	-0.13	3.02	.1343	-1.0/	2.00	8.74	2.93	04	739.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19.000	-11.06	2.60	.1049	-1.23	2.39	11.58	F 60	.07	7361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000	-13.74	2.86	.2043	22	2.40	13.96	2.81	01	/21.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.000	-15.57	3.52	. 119	.68	2.44	15.79	3.68	. 18	/03.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.000	-10.21	3.08	0107	1.50	e.12	16.40	3.00	. 39	696.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.000	-15.84	2.90	1188	1.05	1.98	10.99	2.69	. 31	673.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.000	-17.53	3.04	* 1309	. 30	2.22	10 77	3.03	04	6/4. EC7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000	-18.20	3.16	0471	29	2.20	18.33	3.11	00	630
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000	-10.64	3.50	.0090		2.2/	10.99	3.49	.01	600 ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000	-19.00	4.15	- 0061	90	3.01	20.00	7.11	.02	301.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000	-21.00	4.00	0551		2.09	20.90	5.37	• .05	1999. 1977
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000	-22.05	4.79 5.20	0006		3.30	27.12	4.75	. 33	413.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 000	-26.25	4.23	- 0799	1 64	3 62	26 54	4.67	- 77	112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 000	-27 01	5.07	- 1090	1.01	3.00	27 21	5.05	33	112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.000	-29.19	5.07 6 Ru		.05	3.70	20 66	6 60	- 58	112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 010	-12 15	5.40	0578		5.75	72 70	5 45	- 15	113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO 000	- 35 86	5 20	- 0015	50	5.03	36.22	5 23	- 17	111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 000	~60.25	5.25	- 1655	-1 64	5 71	40.72	6.06	- 13	117.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44 000	-46 74	6.07	0448	- 10	6.91	47.25	6.01	17	118.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.000	-49 20	7.90	2535	3.49	7.60	49.97	7.45	- 45	117.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48.000	-50.90	8.74	.2355	4.55	6.63	51.54	8.65	.19	117.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50,000	-51.89	8.76	0387	5.17	7.25	52.66	8.70	15	116.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52,000	-53.94	9.09	0807	5.74	7.95	54.74	8.98	22	115.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54.000	-53.81	10.32	.0069	5.93	10.82	55.21	10.24	19	114.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56.000	-52.11	12.03	.1768	5.55	11.13	53.68	11.52	52	105.
60.000 -45.41 16.66 .1015 4.52 13.28 48.01 15.09 05 71. 62.000 -44.14 25.35 .2682 4.18 17.21 48.93 22.37 .15 42. 64.000 -38.84 30.84 .1992 6.93 17.95 46.14 26.07 .10 28. 66.000 -34.14 29.55 .2306 6.50 19.14 42.70 24.49 .65 27. 68.000 -32.89 28.18 0928 11.59 22.23 44.36 22.37 .12 22. 70.000 -21.50 24.35 2041 97 20.04 33.05 18.22 .31 20.	58.000	-49.28	14.87	.0297	4.01	12.32	51.02	14.57	52	93.
62.000 -44.14 25.35 .2682 4.18 17.21 48.93 22.37 .15 42. 64.000 -38.84 30.84 .1992 6.93 17.95 46.14 26.07 .10 28. 66.000 -34.14 29.55 .2306 6.50 19.14 42.70 24.49 .65 27. 68.000 -32.89 28.18 0928 11.59 22.23 44.36 22.37 .12 22. 70.000 -21.50 24.35 2041 97 20.04 33.05 18.22 .31 20.	60.000	-45.41	15.66	.1015	4.52	13.28	48.01	15.09	05	71.
64.000 -38.84 30.84 .1992 6.93 17.95 46.14 26.07 .10 28. 66.000 -34.14 29.55 .2306 6.50 19.14 42.70 24.49 .65 27. 68.000 -32.89 28.18 0928 11.59 22.23 44.36 22.37 .12 22. 70.000 -21.50 24.35 2041 97 20.04 33.05 18.22 .31 20.	62.000	-44.14	25.35	.2682	4.18	17.21	48.93	22.37	. 15	42.
66.000 -34.14 29.55 .2306 6.50 19.14 42.70 24.49 .65 27. 68.000 -32.89 28.18 0928 11.59 22.23 44.36 22.37 .12 22. 70.000 -21.50 24.35 2041 97 20.04 33.05 18.22 .31 20.	64.000	-38.84	30.84	. 1992	6.93	17.95	46.14	26.07	. 10	28.
68.000 -32.89 28.180928 11.59 22.23 44.36 22.37 .12 22. 70.000 -21.50 24.35204197 20.04 33.05 18.22 .31 20.	66.000	-34.14	29.55	.2306	6.50	19.14	42.70	24.49	.65	27.
70.000 -21.50 24.35204197 20.04 33.05 18.22 .31 20.	68.000	-32.89	28.19	0928	11.59	22.23	44.36	22.37	. 12	.55
	70.000	-21.50	24.35	2041	97	20.04	33.05	18.22	. 31	20.

TABLE I-8. WIND STATISTICAL PARAMETERS

-,

. . .

.

.

•

.

٠.

AUGUST

CAPE CANALEDAS

SIALIUN	141340	LAPE C	ANAVERAL						
Z	HEAN U	S.D. U	R(U,V)	HEAN V	S.D. V	MEAN HS	S.D. HS	SKEH HS	NOBS
KM	M/5	H/S		M/S	K/S	M/S	H/S		
.003	62	2.10	.0723	.51	1.95	2.40	1.79	. 58	779.
1.000	02	4.13	.1315	2.10	3.21	4.94	5.76	1.07	775.
2.000	.08	4.29	.2260	1.88	3.40	5.05	2.83	1.05	775.
3.000	.40	4.35	.2185	1.71	3.55	5.07	2.98	1.00	767.
4.000	.76	4.34	.2133	1,60	3.77	5.22	2,99	. 94	760.
5 000	83	4.42	.1947	1.39	3.94	5.31	3.10	1.08	756.
5.000 5.000	.05	4.61	2364	1.16	4.10	5.38	3.11	1.24	756.
7 000		4.51	2508		4.26	5.53	7.14	1.72	755
9,000	.00	5.01	2665	- 76	L 65	5.04	3 42	1 31	755
0.000	- 93	5.01	2005		8 21	5.54	1 04	1 19	75.8
9.000	-1.85	5.57	1220	- 64	6 12	7 70	4 65	1 08	749
10.000	-1.20	7 66	7703	-1.19	7 10	9.15	5 42	1.16	749
17.000	-2.20	7.03	.3302	-1.06	7.00	10.20	5.05	1 02	746
12.000	76.00	0.37	.3230	-1.50	7.01	10.20	5.00	1.00	714
13 000	-2.00	0.04	.3120	-2.74	7.31	0.59	5.50	.0.	737.
14.000	-2.77	7.69	. 3421	-2.9/	0.00	3,00	5.30	. 70	730.
15.000	-3.20	5.91	.3129	-2.3/	4.93	7.54	9.00	.09	723
16.000	-4.20	4.17	.3144	-1.03	3.5/	0.20	3.21		766.
17.000	-5.66	3.16	.2543	-1.15	5.03	0.00	2.70	. 30	///.
18.000	-7.79	3.15	.0935	~1.54	2.48	0.55	2.98	06	717.
19.000	-10.99	2.71	.0408	98	2.52	11.29	2.04	.18	/01.
20.000	-13.61	5.89	.2387	11	2.43	13.04	2.84	.05	691.
21.000	-15.34	3.24	.1833	. 76	2.39	15.55	3.20	01	676.
55.000	-16.13	3.12	.0052	1.13	1.80	16.27	3.11	.10	669.
23.000	-16.71	5.88	0884	. 94	1.80	16.83	5.68	.01	660.
24.000	-17.34	2.93	0593	. 39	2.17	17.48	2.91	07	655.
25.000	-10.02	2.98	0100	09	2.14	19.15	2.96	. 03	647.
26.000	-18.70	3.23	.0059	54	2.05	10.82	3.20	07	608.
27.000	-19.50	3.69	.0001	-1.04	2.78	19.72	3.69	.05	548.
28.000	-20.55	3.42	0833	-1.14	2.42	20.73	3.29	. 05	526.
59.000	-21.53	4.17	0616	-1.27	3.36	21.84	4.10	07	401.
30.003	-22.39	3.88	0205	59	5.68	22.57	3.84	. 13	363.
32.000	-25.51	4.88	350C	1.75	3.13	25.76	4.88	03	101.
34.000	-25.64	4.97	0294	.88	3.61	52 53	4.96	08	101.
36.000	-26.65	5.83	1474	. 28	4.43	27.04	5.70	29	101.
38.000	-28.04	6.28	1343	. 32	4.83	28.4 8	6.17	. 14	101.
40.000	-30.03	7.68	.0309	. 13	4.65	30.44	7.77	17	104.
42.000	-33.37	8.63	2393	-1.01	5.44	33.07	8.44	-,17	105.
44.000	-37.86	8.45	2397	61	5.28	38.41	8.31	07	107.
46.000	-40.27	9.28	1644	2.24	7.74	41.07	9.22	12	107.
48.000	-40.35	11.76	0100	5.44	8.63	41.75	11.27	39	106.
50.000	-38.24	14.44	0461	6.73	8.90	40.07	13.74	11	105.
52.000	-34.78	14.95	1436	6.66	10.09	37.20	13.92	.45	104.
54.000	-30.10	15.69	.0302	4.72	10.44	32.84	14.27	43	104.
56.000	-25.23	18.81	.0970	2.48	11.72	29.63	15.92	.52	100.
58.000	-23.97	20.40	1566	4.95	13.48	29.58	17.85	.66	86.
60.000	-16 93	17.33	1461	4.60	13.67	23.49	15.47	.03	67.
62.000	-0.47	17.59	0316	.87	14.86	21.60	11.31	, 96	47.
64.000	-9.36	19.46	0067	-2.32	15.31	53.58	12.34	. 89	39.
66.000	-7.70	16.32	1599	-3.97	15.51	20.23	12.77	. 35	35.
68.000	-12.68	16.07	3039	-3.73	15.62	25.51	13.04	. 17	24.
70.000	-9.22	21.33	2599	-5.15	17.93	24.95	15.48	. 18	21.

TABLE I-9. WIND STATISTICAL PARAMETERS

_ · `_

and the state

SEPTEMBER

ι.

4

1

STATION	747940	CAPE	CANAVERAL	i					
Z	HEAN U	5.J. U	R(U,V)	HEAN V	S.D. V	MEAN HS	S.D. HS	skeh hs	NOBS
юч	H/S	M/5		M/S	M/S	M/S	2/5		
.003	-1.24	2.70	.1629	23	2.70	3.17	2.47	1.10	745.
1.000	-1.78	5.24	.3285	.76	4.65	6.03	4.0a	1.94	745.
5.000	84	5,55	. 3607	. 91	4.49	5.96	4.11	2.03	744.
3.000	.00	5.60	.3124	.92	4.39	5.92	4.05	1.90	739.
4.000	.65	5.78	.2809	.63	4.45	6.03	4,19	1.74	736.
5.000	.90	5.91	.2931	. 29	4. 64	6.34	'.13	1.63	736.
6.000	1.03	6,19	. 3066	~.03	4.96	8.84	4.15	1.74	735.
7.000	1.22	6.53	. 3376	~.23	5.41	7.34	4.42	1.56	732.
8.000	1.55	7.03	. 3774	~.56	6.00	8.01	4.89	1.36	725,
9.000	5.03	7.74	.3745	~.79	6.70	9.00	5.36	1.09	. 127 .
10.000	2.74	8.79	.3500	-1.01	7.58	10.41	5.90	.87	715.
11.000	3.36	10.05	.3151	-1.43	8.77	12.17	6.59	.73	717.
15.000	4.20	10.05	.2776	-2.24	9.50	13.28	7.06	.60	718.
13.000	4,45	10.86	.5290	-2.97	9.92	17.00	7.23	.60	714.
14.000	3.65	10.05	.5280	-3.54	9.01	12.78	6.60	.52	714.
15.000	1.94	8.26	.2758	-3.24	6.89	10.11	5.27	.57	704.
16.000	18	6.49	.2513	-2.65	4.89	7.51	4.09	. 62	702.
17.000	-2.20	5.08	.2388	-1.74	3.37	5.86	3.27	.96	690.
18.000	-3.86	4.27	.2466	75	5.83	5.71	3.05	.53	690.
19.000	-5.93	3.66	.2591	~.71	8.KD	6.69	3.17	. 1'5	684.
20.000	-8.33	3.64	. 1501	51	5 55	0.73	3.50	.06	681.
21.000	-9.95	3.61	.0852	. 50	£.30	10.27	3.47	. 18	665.
22.000	-10.79	3.32	0059	, lala	1.98	11.00	3.25	.25	663.
23.000	-11.41	3.20	.0060	. 26	1.95	11.60	3.14	03	641.
24.000	-11.99	3.54	.0187	. 04	2.36	12.25	3.43	16	637.
25.000	-12.35	3.56	.0615	12	2.2	12.56	3.51	10	622.
26.000	-12.64	3.83	. 1262	33	2.21	12.85	3.79	08	592.
27.000	-12.82	- 64	.0801	58	2.32	13.21	4.50	. 19	545.
28.000	-13.08	4.72	.1046	68	2.46	:3.35	4.65	. 15	533.
29.000	-13.52	5.26	.0791	68	3.12	13.95	5.15	12	422.
30.000	-13.68	5.55	.1057	52	2.55	13.98	5.42	15	415.
35.000	-14.59	6.75	.0961	1.60	3.70	15.40	6 10	09	90.
34.000	-11.96	7.79	0646	1.0%	3.46	13.05	5.81	. 37	90.
36.000	-10.10	8.46	2216	20	4.02	11 98	6.77	. 59	91.
38.000	-10.68	9.36	.0021	-1.13	4.52	13.50	6.96	.45	93.
40.000	-9.99	10.68	- 1656	70	5.80	14.02	7.09	. 76	95.
42.000	-10.93	10.44	0308	. 86	6.14	14.28	8.11	.51	94.
44.000	-10.77	10.91	0680	1.52	6.23	14.27	8.57	.68	98.
46.000	-9.40	12.03	1686	2.57	6.72	14.30	8.98	,97	98.
48.000	-8.39	14.07	1088	2.47	7.61	15.68	9.20	.76	98.
50.000	-5.42	14.99	.0095	3.20	7.41	15.02	9.58	.9ž	96 .
52.0(0	-1.60	14,56	0533	3.86	7.94	13.67	10.04	1.15	98.
54.000	1.84	13.75	1898	4.64	8.29	14.42	8.54	1.26	98.
56.000	3.13	12.36	- 1459	4.46	9.56	14 74	7.37	.79	93.
58.000	5.51	11.27	.0844	3.80	9.25	14.35	7.06	.53	84.
60.000	8.54	11.96	.1355	3.75	10.13	15.77	9.04	. 92	64.
62.000	10.16	10.99	1798	2.83	11.73	17.41	7.75	48	32.
64.000	9.70	12.53	.0291	2.39	12.14	17.87	8.66	14	23.
66.000	9.76	16.69	.0316	3.67	10.93	19.70	10.27	.56	20.
68.000	6.98	14.73	0372	1.93	15.20	19.67	9.62	. 59	18.
70.000	9.69	14.78	.0936	1.19	18.15	22.1 2	11.37	-2.	17.

TABLE I-10. WIND STATISTICAL PARAMETERS

. .

.

OCTOBER

3141104	- /7/370								
2	HEAN U	5.D. U	R(U,V)	HEAN V	5.D. V	HEAN HS	S.D. HS	SKEH HS	NOBS
101	M/5	M/S		H/S	H/S	M/S	H/S	•	
.033	79	3.29	.0249	-1.36	5.95	4.02	2.38	.53	781.
1.000	-1.71	5.95	.1953	-1.08	4.98	7.02	3.86	.77	779.
5.000	.56	6.21	.2608	16	4.94	6.01	4.10	1.16	778.
3.000	2.35	6.20	.2460	. 24	5.03	6.95	4.57	1.29	777.
4.000	4.01	6.57	.2531	.27	5.30	7.76	5.20	1.32	775.
5.000	5.78	7.08	.2535	. 16	5.93	9.22	5.80	1.24	774.
6.000	7.58	7.67	.2751	.24	6.68	10.06	6.56	1.09	772.
7.000	9.50	8.52	.2972	. 30	7.60	12.86	7.43	. 95	<i>71</i> 2.
8.000	11.72	9.73	.2825	. 41	8.93	15.41	8.60	.83	770.
9.000	13.95	11.07	.2651	.54	10.44	18.11	9.90	.74	767.
10.000	16.12	12.41	.2449	.60	12.09	20.87	11.15	.65	760.
11.000	18.37	13.40	.2437	.47	13.37	23.46	12.06	.42	758.
12.000	20.01	13.72	.2821	.28	13.81	25.02	12.37	.31	750.
13.000	20.44	13.50	.3197	22	13.24	25.02	12.20	. 30	756.
14.000	19.03	12.37	.3120	70	11.23	22.78	11.08	. 37	749.
15.000	15.96	10.46	.3040	89	8.90	18.90	9.32	.41	742.
16.000	11.67	8.43	.3085	89	6.60	14.01	7.42	.61	735.
17.000	7.03	6.83	.2934	64	5.00	9.45	5.66	1.10	723.
18.000	2.87	5.63	.2692	09	3.83	6.17	4.05	1.55	724.
19.000	.67	4.8 1	.2938	. 17	2.05	4.76	3.02	2.12	722.
20.000	98	4.51	.2998	10	2.53	4.53	2.68	1.60	715.
21.000	-2.14	4.43	.2153	06	2.41	4.73	2.75	1.04	703.
22.000	-2.98	4.18	.0580	29	5.45	5.02	5 .69	. 77	702.
23.000	-3.34	4.09	.0907	42	5.20	5.03	2.75	.51	684.
24.000	-3.57	4.72	.0739	48	2.81	5.75	3.17	.62	675.
25.000	-3.40	4.90	.0652	22	2.67	5.78	3.05	.64	666.
26.000	-2.56	5.23	.0757	.00	5.60	5.61	3.0ċ	.64	630.
27.000	-1.50	5.92	.0905	. 15	2.97	5.98	3.23	.76	577.
28.000	39	6.34	.1191	11	5.80	5.97	3.52	.95	553.
29.000	.78	7.01	.1437	30	3.39	6.71	4.03	1.26	450.
30.000	1.84	7.35	.1765	. 10	3.30	6.92	4.50	1.38	443.
32.000	. 19	7.61	0329	2.04	4.11	7.14	5.24	1.64	99 .
34.000	4 98	9.28	. 1659	1.47	۹.65	9.59	6.51	1.45	102.
36.000	8.55	15.50	.0580	78	5.12	13.54	8.03	.76	103.
38.000	11.98	12. 89	1614	30	E.97	15.82	9.71	.70	106.
40.000	15.27	13.77	.0391	- 14	6. ' 7	18.30	11.19	.51	107.
42.000	10.92	14.77	.2843	1.43	5.86	21.07	12.95	. 36	109.
44.000	55.81	15.44	. 3097	2.75	6.20	24.75	14.95	.27	113.
46.000	27.44	18.01	.3056	3.97	7.01	29.16	17.05	. 24	113.
48.000	30.79	19.89	. 3536	4.97	0.29	32.62	18.95	55.	113.
50.000	34.24	20.25	. 3930	5.58	8.29	36.09	48	. 18	113.
52.000	36.71	55.18	. 3769	6 29	8.57	38.56	2:. 5	.06	113.
54 020	39.54	21.65	2929	-	8.24	40.43	21.05	04	112.
56.000	40.18	21.67	. \634		8.56	41.56	21.51	. 12	106.
58.000	38.98	20.59	.3405	3.34	9.73	40.49	20.19	.25	92.
60.000	36.95	19.89	.2468	4.39	10.75	39.15	19.00	.21	72.
65.000	33.38	19.89	.0487	2.95	9.81	35.43	18.89	.46	51.
64.COO	33.75	20.7%	0603	5.51	10.19	36.00	19.46	.40	42.
66.000	27.90	19 77	.0071	6.87	11.66	32.45	17.10	.24	34.
68.000	23.25	19.73	.2124	12.30	16.42	33.47	15.10	.53	32.
70.000	20.03	23.23	5494	17.96	21.73	36.30	20.76	2.00	30.

.

TABLE I-11. WIND STATISTICAL PARAMETERS

C

i.

.

T

NOVEMBER

STATION	• 747940	CAPE C	ANAVERAL.						
Z	HEAN U	S.D. U	R(U,V)	MEAN V	5.D. V	MEAN HS	S.U. 195	SICH HS	NCBS
101	H/S	H/S		H/S	1.12	H/S	N/S		
.003	. 39	2.85	1401	-1.10	5.85	3.57	2.26	.63	851.
1.000	.03	6.45	.0759	.07	5.24	7.37	3.65	.93	8 63.
5.000	2.48	6.76	.100%	.63	N.92	7.44	4.60	1.29	862.
3.000	5.01	7.19	.1443	. 46	5.33	0.57	5.65	1.29	862.
4.000	7.36	7.55	.1742	.47	5.91	10.19	6.52	1.04	8 51.
5.000	9.96	8.22	.2048	.42	6.59	12.46	7.43	.90	861.
6.900	12.41	9.98	.2562	. 48	7.44	14.90	8.26	.04	862.
7.000	15.15	9.65	.2966	. 56	8.39	17.69	8.96	. 70	858.
8.000	18.01	10.51	.2132	.43	9.42	2 3.68	7.79	.52	851.
9.000	23.79	11.49	.3+08	. 2	10. 48	23.6+	:0.74	. 46	. 849.
10.000	23.67	12.44	. 3750	. 15	11.69	26.92	11.49	. 33	0 +3.
11.000	26.51	13.05	. 3867	07	13.04	30.03	11.90	-25	834.
15.000	28.96	13.17	.4019	21	13.87	35.25	15.11	-22	833.
13.000	29.77	12.77	.4076	17	13.15	32.93	11.73	S 5.	825.
14.000	27.92	11.74	. 3972	28	10.83	30.35	10.56	. 09	816.
15.0CD	24.16	10.21	.3440	24	8.90	26.07	9.37	.05	811.
16.000	19.67	8.60	.3294	32	7.37	21.30	7.05	01	805.
17.000	14.86	7.33	.2731	40	6.08	15.50	6.54	. 08	789.
18.000	9.95	6.34	. 1930	26	4.95	11.54	5.54	.52	7~1.
19.000	6.33	5.28	. 1829	07	3.72	7.94	4.32	1.01	79J.
20.000	4.64	4.71	.2081	. 11	3.02	5.28	3.66	1.15	771.
21.000	3.90	4.84	.2635	.07	2.73	5.75	3.60	1.11	757.
22.00C	3.92	5.40	.2165	01	2.87	6.16	3.86	1.41	753.
23.000	4.54	5.52	.1819	. 12	ĉ . 68	6.60	3.83	1.05	735.
24.000	5.29	6.79	.1225	.20	3.19	7.76	4.31	.90	724.
25.000	6.65	7.09	.:677	. 38	3 40	9.02	4.97	.75	713.
26.000	8.10	7.60	. 1805	.60	3.58	10.35	5.42	. 36	689.
27.000	9.61	8.48	.1229	1.11	۹.00	12.06	6.01	. 10	633.
29.000	11.55	9.11	.0767	1.75	9.25	14.05	6.33	01	615.
29.000	13.89	9.63	.0183	2.43	4.5B	16.55	6.97	03	496 .
30.000	16.36	10.07	.0421	2.82	4.6+	18.45	7.59	17	462.
32.000	19.21	12.95	0580	3.77	5.12	21.71	10.25	.25	115.
34.000	26.13	14.61	2686	3.24	5.21	27.03	12.58	40	113.
36.000	32.07	15.15	1157	1.55	6.11	33.32	13.68	51	113.
38.000	37.18	14.38	1409	2.05	7.90	39.42	13.39	61	115.
40.000	41.46	14.08	.0083	3.07	8.51	42.43	14.08	17	i18.
42.000	45.00	14.52	. 1750	5.29	8.62	46.08	14.61	.07	150.
44.030	50.13	15.11	.3575	9.45	9.03	51 68	15.52	. 12	155.
46.000	56.52	14.57	.2031	11.38	9.51	58.39	14.75	32	122.
48.000	61.24	14.79	.2400	14.14	11.04	63.71	15.17	18	155.
50.000	65.10	14.96	. 3622	13.48	11.00	67.23	15.63	07	151.
52.000	68.03	15	.2+56	15.46	11 68	69.9 8	15.84		119.
54.000	69.19	16.32	.1698	11.69	15.53	51.52	16.51	10	115.
56.000	6° 75	16.31	.2285	10.55	11.25	70.43	16.40	. 12	105.
58.000	6 . .85	17.51	.2195	10.16	13.70	68 .99	17.47	. 19	97.
60.000	64.11	18.09	. 1617	8.42	13.15	66.48	17.22	.29	81.
62.000	€2.74	20.6 6	.2002	6.72	15.65	65.27	19.70	58	55.
54.000	58.00	24.43	.0204	ð.72	15.39	61.31	22.50	30	39.
66.000	59.64	18.15	.C2ŭ1	9.05	14.86	52.45	16.76	.46	33.
68.000	52.45	21.46	.0325	5.96	18.26	56.43	19.53	30	28.
70.000	41.02	20.36	2964	5.62	19.70	47.04	16.86	. 56	26.

.

TABLE I-12. WIND STATISTICAL PARAMETERS

T

.

•••••

. ,

DECEMBER

STATION	- 747940	CAPE C	ANAVERAL						
Z	MEAN U	S.O. U	R(U,Y)	HEAN V	S.D. V	HEAN IS	S.D. KS	SICH HS	NOBS
KH.	H/S	H/S		H/S	H/S	M/S	M/S	•	
. CO 3	.71	2.79	2572	87	3.21	3.77	2.21	.55	862.
1.000	1.71	6.81	0375	.91	6.05	8.51	N.38	.79	864.
2.000	5.17	7.04	.0205	1.18	5.71	9.01	5.39	1.09	863.
3.000	8.54	7.49	.1308	1.07	6.12	11.12	E. 63	.9•	862.
N.000	11.79	7.98	.1966	1.46	6.82	13.91	7.60	.62	862.
5.000	14.76	8.72	1515.	1.85	7.48	16.89	8.43	.68	861.
6.000	17.60	9.55	.2259	1.94	8.32	19.70	9.28	.57	862.
7.000	20.57	10.49	15+51	2.21	9.13	22.76	10.16	_ 1 414	962.
8.000	23.63	11.69	.2780	2.58	10.01	25.97	11.27	. 37	850.
9.000	26.56	15.85	.2901	2.70	11.0+	29.15	12.55	.29	856.
10.000	29.50	13.70	S03S.	5.65	15.16	32.16	13.35	.21	95 0.
11.000	32.0	14.16	.2+92	S- 10	13.12	34.83	13.79	. 13	839.
15.000	34.43	14.29	.2591	2.12	13.68	37.24	14.13	.11	835.
13.000	34.93	13.53	.2980	5.45	12.92	37.26	13.46	. 12	827.
14.000	32.94	11.79	200-	2.52	19.71	34.75	11.74	.06	\$19.
15.000	29.64	10.44	.2765	5.5	9.27	31.17	10.32	.06	014.
16.000	25.55	8.84	.2575	2.19	8.10	26.94	8.69	.09	806.
17.000	20.80	7.74	.2+33	1.96	6.93	80.55	7.53	. 16	789.
18.000	15.77	7.25	.2333	1.62	5.89	17.03	6.96	.91	785.
19.000	11.01	6.69	.2929	1.23	4.71	12.21	6.36	. 78	790.
S9.000	7.95	6.09	.3516	.81	3.74	9.16	5.56	1.00	765.
21.000	6.51	5.96	.3+21	. 33	3.29	7.92	4.96	1.00	747.
55 . 300	6.17	6.47	.3308	02	3.14	8.02	5.05	1.01	791.
23.000	6.97	6.38	.3247	03	3.01	8.59	4.95	.75	734.
24.000	8.14	7.49	.2855	. 13	3.67	10.12	5.79	.81	726.
25.000	9.82	8.61	. 1832	.8	3.87	11.00	6.67	1.05	703.
26.000	11.09	9.33	.0921	.42	3.94	13.34	6.90	.62	684.
27.000	15.63	10.28	.0575	74	4.35	15.24	7.35	.45	628.
28.000	14.17	11.00	0102	1.33	83. ۲	16.94	7.73	. 36	61 8 .
29.000	16.26	12.01	0108	5.55	5.51	19.44	8.il	.09	489.
30.000	18.59	13.21	0330	3.36	5.95	55.16	8.68	11	474.
32.000	25.74	10.93	.2932	7.61	6.97	27.85	10.61	52	111.
3~ . 000	31.50	15.61	50+5.	7.15	7.81	33.52	11.52	70	
76.000	33.35	14.13	0156	5.55	7.30	32.15	12.73	53	113.
39.000	34.25	15.59	1957	6.59	8.98	36.07	13.45	55	113.
40.000	34.46	15.33	0633	0.15	10.35	37.62	13.46	27	115.
42.000	34.42	17.15	.0406	8.48	11.65	38.69	13.07	10	119.
	34.59	20.67	. 64 37	8.95	12.3+	40.04	15.80	. 36	120.
46.000	34.51	22.43	1486	10.8+	13.71	41.11	17.52	.27	120.
48.000	32.97	24.94	1021	10.62	13.04	40.47	18.72	.12	116.
50.000	34.54	24,74	.0237	12.21	15.93	41.56	19.24	. 19	113.
52.000	33.92	26.27	0586	13.12	14.22	42.98	19.06	. 16	110.
54.000	35.18	28.14	1119	11.55	13.33	44.21	19.51	• .31	109.
56.000	37 -9	27.31	0:33	11.90	15.70	46.06	20.30	.79	106.
50.000	41.40	26.77	.0808	15.22	15.27	48.79	20.75	. 35	<u>9</u> 4.
60.000	42.43	26.98	. 1606	13.27	16.57	51.11	20.97	.59	75.
6c.000	44.71	28.35	.1777	12.50	15 62	20.60	13.99	. 54	- 20.
64.000	49.49	29.32	.2769	8.17	15 80	55.96	21.94	. 04	53.
60.000	N8.90	54.48	.2/71	1.69	18 198	58.31	cc	. 04	42.
69.000	48.83	55.00	. 5+68	. 59	21.11	58 31	20.03	. ü e	×.
70.COO	55.54	24.62	. 3220	-3.93	21.83	62.23	19.99	- 25	30.

TABLE I-13. WIND STATISTICAL PARAMETERS

- .

Ţ

4]

æ

ŧ

1

ł

· •

. .

ANNUAL

STATION	- 747940	CAPE C	ANAVERAL						
z	HEAN U	5.D. V	R(U.V)	HEAN V	5.D. V	MEAN HS	5.D. HS	SKEH HS	NOBS
175	H/5	H/S		M/5	H/S	M/S	M/S		
.003	16	2.88	1591	20	3.04	3.51	5.59	.67	9839.
1.000	. 69	6.18	.073%	1.15	5.30	7.06	4.32	55.1	98 38 .
2.000	3.07	6.97	S021.	1.09	5.09	7.62	5.20	1.45	9832.
3.000	5.24	7.89	.1410	. 98	5.38	8.05	6.41	1.38	9802.
₩.0 00	7.27	9.00	.1603	.91	5.01	13.43	7.72	1.25	9759.
5.000	9.27	10.36	. 1926	.85	6.36	15.58	9.14	1.19	9744.
6.000	11.17	11.82	.2291	.84	7.00	14.24	10.55	1.05	9741.
7.000	13.12	13.39	.2619	.67	7.81	16.38	15.05	. 95	9712.
8.000	15.09	15.10	.2749	.86	8.77	18.71	13.53	.87	9659.
9.600	17.06	16.8!	.2782	. 76	9.85	51.12	14.94	. 78	9621.
10.000	19.10	18.53	.2764	. 54	11.04	23.81	16.24	.70	9554.
11.000	20.98	19.92	.2710	. 10	15-13	85.28	17.01	.60	9462.
15.000	55.66	20.90	.2871	31	12.71	28.39	17.52	.50	9441.
13.000	23.14	20.79	.3258	63	15.54	58.84	16.91	.42	9355.
14.000	SI 129	19. 39	. 3585	90	10.56	26.72	15.49	. 39	9280.
15.000	18.77	17.40	. 3762	77	8.70	53.55	13.87	.41	9 229.
16.000	15.00	15.32	. 3696	60	7.15	19.19	15.02	.50	9155.
17.000	10.87	13.37	.3+53	47	5.05	15.27	9.92	.73	89 93.
18.000	6.47	11.68	.3229	37	4.01	11.98	7.62	1.04	8963.
19.000	2.40	10.25	.3202	31	3.75	9.62	5.63	1.13	6861.
20.030	56	9.56	.2305	19	3.01	8.69	5.05	.74	8782.
51.000	-2.49	9.42	-0369	.03	2.79	8.60	5.36	.69	8603.
55.000	-3.42	9.47	0680	.03	2.79	8.89	5.49	.70	8546.
23.000	-3.73	9.59	0607	. 05	5.28	9.06	5.52	.57	8396.
24.030	-3.95	10.32	- 3483	. 62	2.97	S-87	5.80	.56	8301.
52.000	-3.77	11.16	.1161	02	2.97	10.47	רי י	.60	8137.
26 000	-3.32	11.99	. 1836	. 04	3.01	11.02	•	. 54	7805.
27.000	-2.81	13.04	.2269	. 15	3.49	11.89		.51	7110.
26.000	-2.22	14.09	.2607	.41	3.65	12.75	<u>.</u>	.44	6849.
23.060	-1.39	15.48	.2958	.63	4.18	14.04	7.9	.40	5268.
37.00	41	16.71	.3210	1.09	4.62	15.03	8.46	. 36	5166.
Se 000	1.50	19.70	.2364	2.49	5.21	17.92	10.13	- 31	1.566.
39.000	3 95	21.04	.6242	1.52	5.62	19.01	11.59	.44	13/3.
45 000	3.82	23.33	.1263	. 16	5.83	23.39	12.57	.49	1382.
30.330	3.03	25.62	. 1450	.5/	5.81	22.51	13.14	.50	1353.
40.000		<0.89 20.89	.2439	1.42	7.29	24.27	14.00	. 53	1913.
42.033	1.64	29.37	. 3335	2.06	9.10	20.34	15.20	.44	1931.
	.90	36.47	- 578	3.60	8.80	23.58	10.00	.43	1434.
+0.000	1.37	34.90	.2347	5.71	9.43	31.9/	10.01	.96	1433.
48.000	~	30.90	-2732	7.13	9.70	33.82	19.08	.40	1470.
50.000	5.65	20.32	1607	7.40	10.04	33.33	13.14 20 he	.47	1434.
54 000	5.87	59.75	1055	7.57	10.70	77 64	20.70		1309
56 000	J.0/ Car	41 10	277	7.33	11.05	37.54	21.24	.77 LA	1306.
58 000	9.0C	41.10	2706	7.7C	12 42	30.03	21.04	U Tu	1171
60.000	11 70	42 52	20.2	7 54	12.20	33.33	21.04		0.7%
62 000	13 39	-2.33	7667	6 31	1.4.64		27.27		61Q
64.000	14 88	45.52	1965	- 69	14.75	لان ر. 14 میل	24.25	26	513
66.000	15. 21	44.76	1920	1 56	15 60	42.00	25 30	45	435
68.000	13.51	44.70	- 0277	- 51	17.62	47 JJ	24 73	50	35A
70.000	13.64	42.67	0751	-3,25	51 51	42.90	24.50	. 50	176
						-6.00			
TABLE II-I. THERMODYNAMIC STATISTICAL PARAMETERS

- ---

• • • •

• • •

-

JANUARY

		l		8		6		52	62		8				E	672	698	598	5	92.0	62)	810	5	ž	736	ž	718	EL.	693	3	203	<u>Ş</u>	ţ	55		56	109	601	107	101	106	101	3	8	8	8	22	2X	Ŕ		83
	N085 7	1		836.							696 .	663.	. 198	679.	9 77.	872.	.698	965.	857.	979	8 7.	810.	191.	21.	.RL	٠ ٦	718.	703.	687.	623.	602.	99 (.21	119.	117.	114.	110.	8	107.	110.	110.	2	88	R	8	9	19 i	
	NOBS P	ł	. 	886.			891.	.255		666	886.	883.	. 68	978 .	877.	872.	869.	865.	9 57.	836.	627.	8 10.	797.	747.	736.		718.	701.	687.	623.	602.	480.			106.	107.	109.	109.	107.	107.	106.	101.	102.	8	8	8.	72.	8	R :	ŝ	ż ż
	SKEH D	ł	5 8 .	E I	61	ē X	2		22	31	5	-1.12	-1.33	-1.46	-1.14	50	07	71	72	9	\$." -	21	08	80.	<u>.</u>	£0	01.	6 0	- , 19	<u>+</u>	п.,	07		Ē		95	.67	2	30	52.	Ŕ	5	06	<u>.</u>	10	2	52.	2	08		67.
	s.o. o	52/0	20196.92	28.8900	000. 21	10.1800	7.0440	5.9920	5.3060	5.1200	5.0570	5.0070	5.1760	5.9840	6.8400	6.8920	0110 0	4.6290	4.3430	3.9790	0111.8	2.6250	1.0070	1.3780	1.0430	.8002	.6683	.5550	.4701	1124.		.3587	5376		2310	.1780	.1369	1011	9640.	.0666	.05.36	1140.	.0330	.0262	.0211	0170	.0135	.0117	.0103	-0074	2500.
				2629.0000		0007.508	804 . 500U	725.1000	652.9000	58C 6000	526.5000	471.8000	421.4000	374.2000	329.6000	286.7030	247.6000	214.0000	184.2000	157.3000	133.1000	111.4000	93.0700	77.9900	65.6000	55.4900	46.9800	39.9200	33.9700	20.9300	24.6700	21.0700	0010-81	000000	7.0823	5.2250	1.0920	0E16.5	2.2190	1.7180	1.3450	1.0620	.832')	949	5045	8262.	. 30°.	.2371	. 1848	56£1.	0280 ·
	SKEH 1						E.	73	78	- , 95	71	eç.	51	1	6 2 .	10	22	6 £ .	2.	.73	5.	Ŗ	£,	.17	60'	20	0		<u>+</u> :	=	ē.	- -	0 I				13	35	07	53	- 55	,		12	- 't 5	£ 4	- 33	81	25	3 S	<u>ų</u> 9
4 1 1	5.0. 2.0			0 H H			ň	3.18	3.11	3.19	3.19	3.00	2,96 2	8 	3.35	3.56	2. 8 3	5. 3 6	2.69	1 .1	5 7	3.55	3, 30	3.14	3,09	đ	= : 	3.19	±1 mi	i Mi	8 (n	2	0.1 . v	5 ii i ii	7.10	6.98	6.41	6.47	6.67	6.22	5.90	5.89	6.9	86.1	7.57	8. 1	đ. r	12.03	13.83	6 2 2	12. Y
		207 00		00./00 100		276 85	271.56	265.5	229.10	52.5	25. B	237.88	233.41	223.46	217.52	213.64	210.82	207.31	204.15	¥. 55	202.24	204.46	207.54	210.60	213. 36	215.45	51.7.15	219.27	220.91	222.71	72. 422		21, 60 00	8.52	242.31	248.72	226.21	263.49	268. Br	270.71	6 93	265.96	263.12	10.152	5.000	528.23		3. 5. 1.		55.165 00 900	220.60
ANAVERAL					3 F	18	05	. 95	\$.'	- , 95	4 6	68	- , 82	73	69	62	58	- 53	57	2	Υ.	23	- 23	27	12	21	60	0.0	.0.	6 0	-		<u>.</u> ;	67	85.	94.	<u>۲</u>	ų.	.18	.07	20.	80.	<u>s</u> :	22.	22.	.30	6.3		1 I 1 I 1 I	50.	ŝŧ
U U U U U U U U U U U U U U U U U U U	,	1 0269			1000	4.5342	4.6652	4,7125	4.7029	4.6387	4.5493	4. 19942	4.1672	3 8582	3.3957	6.9.5	2.4915	2.0450	1.6593	1.3154	1.0274	.8025	.6547	.5627	.5006	4.578	B/ 1 5 .	. 3916	0761		1015.			1626	.1374	6211.	C917	.0744	1650.	.07.10	.0384	.0312	8520.	.0216	1810.	2610.	5210.	2210.	210.	5/00.	8700.
	1 2 2	0107 010		905 1100	803.5100	711.3000	628.2200	553.4900	480.1800	425.5330	1.1.400	322.4230	278.8000	P47.0400	205.7500	175.7000	149.7900	127.3200	107.9400	91.5380	77.2280	65. 3540	25.4330	0121 1370	40 1590	34.3140		20.1630 21.25				12.000	8, 6982	6.5252	11.36.1	5.7389	2.8602	2.2072	1.7:37	1.335.0	1.027	0118.	CB/31	2084.	20/5.	E362.	10,02.	51.			9150.
STATION	N X	000			2.000	3.000	4.000	5.000	6.030	7.000	B.000	000 6	10.000	11.000	12.000	13.000	14.000	15 000	16.200	000.71	19.000	19.000	<0.000	000.15	22.000	1000			200.00					1.000	3C.000	38 000	40.000	42.000	44.000	46.200	48.000			000.40		000 03		54.000	000.40	60.100	70.000

TABLE II-2. THERMODYNAMIC STATISTICAL PARAMETERS

1

.

•

. . .

. •

FEBRUARY

		717.	8	.008	800.	800.		ð,	ž	Ř	1 88.	-98.	Ę	782.	790.	716.	19.	1 8	. 9°C	Ē		739.	. רשר	982.	5	670.	50	69.	ŝ			5	; (¥ a		8	8	97.	8	8	8	8	S.	8	8	F ;		8	;;	38	12
	L SBON	717	8	800.	800.	800.	78	<u>3</u> 6.	765. 26	<u>8</u>	786.	786.	19	782.	780.	1 8.	770.	766.	759.	. ī£	Ę.	- 80.	727.	6 8.	678.	670.	6.9	667.	651.		261.			2		88	8	107.	102.	9.	8	103.	8.	8	8	6	È :	63.	; ;	នំរ	2 N
	260X	717.	282	800.	800.	800.	799.	26	792.	792.	786.	796.	785.	782.	780.	776.	1. 1	766.	759.	751.	, 70. 7	739.	727.	692.	678.	670.	679.	667.	651.	192				. 2	¥ 8	Š 8	8	97.	8	8	8	8	<u>а</u>	6 9.	80 1	-38 .		. 86	;;	5	
	SKCH O	53	3	1	63	15.	E0 -	80.	6 0	07	38	6	8.	69	53	16		54	λ, ·	12	8.	0.	50.	02	. 17	<u>.</u>	9 7.	07	- 22		ED	<u>,</u>				0	8	61	75	55	5.3	P .	68	65		8.1	. 36	27		5.1	69
	5.D. D 6/M3	29.8700	30.0900	19.7900	12.8400	9.3580	7.4880	6.4930	5.7210	5.3330	5.2830	5.3560	5.8830	6.7090	7.1820	6.5970	5.4770	4.9530	4,4880	3,9930	3.4690	2.6690	1.9220	1.3770	0060 1	6399	.7076	5693.	8867	4 369	. 3087		2003.		1202	02.21	2	+860·	5480.	.0658	.0528	8750.	9750.	1620.	4250.	1810.	0158	.0133	C 010.	0500.	.0072
	G/M3	227.0000	228.0000	105.0000	993.7000	804 . 00CO	805.3000	725.3000	652,6000	586.1000	56'5.8000	470.5000	419.4000	371.6000	326.4000	294.2000	246.7000	213.8000	184.1000	157.1000	132.8000	111.0000	92.7800	77.7800	65.5000	55.4000	47.0300	39.9300	34.0200	00772.B5	7000	21.0600	18.0000	0080.51	2002.7	0.00.0	3.9720	2. 9 980	2.2883	1.7800	1.3920	1.0860	. 8-87	.6615	.5147	4005	.3111	2.2	. 1960	. 1430	. 0837
	SKEH	- 16 1	- 52'-	- 29	85	53	* -	12	e2'-	58	61	- 51	23	.16	Ξ.	<u>, ,</u>	6 1.	.36	38.	33	۶3.	<u>.</u>	61.	.16	07		17	.06	2.	t.	22.	20.1		50.			.53	83	. 38	S.	.07	Į.	1.02	;	E1.	33	0	<u>m</u> .	<u>S</u>	8 <u>7</u>	1.06
•	2.0.1 DEG K	5	6.01	38.3	3.73	17.M	л. Ж	3.36	5.5	N 1. N	3.53	87.E	3.30	3.39	ы. 1	3.59	2.79	2.61	5.72	16.5	R m	7.13	2.91	2.69	10. N	2.51	2. 6 8	2.EG	5	3		2.93	5 i n i	6		6.55	6.13	6.03	9.63 6	6 73	6.38	6.20	6.1	7.59	4.4	9.30	6 6	87.6	10.07	10.16	5.0
		207,66	70.47	15.485	280.47	276.06	27C. EG	Ser. 32	P.O. 16	31.78	25.1	237.56	74.055	224.17	218.98	215.07	211.29	207.22	203.97	202.31	202.45	204.94	208.08	211.11	213.72	215.56	217.38	218.97	220.67	222.47		276.D	21.9.20	8 . 			BT 7.5	263.51	267.75	267.75	206.79	265.70	Pu3.87	202,49	200,78	258.67	20.00	252.37	B	237.35	221.57
NAVERAL	1	- 37	37	1 €	35	77.1	7 7		37	- , 38	- , 42	l) L	11		- , 39	-,28	20	10	10'-	.03	3.	ð.	10'-	02	01	50.	.06	30.	2	8.	.16	2	10	5	Ģē		1	£5	¥.	5	57	50		33	17	E0.1	.06	۲. N	1.	50	6
CAPE CA	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,9551	01-00 ℃	4.4123	4.3102	E+01.1	4.5634	4.6330	4.7325	4.60.93	4.6460	1564.4		3.9+07	3.4497	3.0192	2.5958	2.1579	:.7635	1.4172	1.1090	.8546	.6808	5658	.4873	1954.	5745	. 3366	.3040		55 F.	2605.	5061.	11/00		1155	0960	£670.	0049	555	65 40	.0255	.0296	. 0235	<u>к</u> са,	.0169	. 0150	. 01 30	9633.	.0076	.0051
07647	1 2 2 2	010.0000	017.9000	904.6000	802.0000	709.7.00	626.5500	551.9.00	404.6100	424.0000	363.7400	321.0500	277.6200	23J.0600	2010.0100	175.3900	149.5900	127.1600	107.7600	91.2140	77.12:0	65.2820	• 1.4030	47.1270	40.1760	34 . 3260	29. 3+60	25.1363	21.7460	18.4360	08(3-51	13 6780	0.20.0			3.8.86	2.9374	2.7575	1.7603	1.3701	1.0673	. 8286	. Et 13	80uh	9572	22.22	66.72.	.1750	.1303	5720.	.0531
STATION	N N	. coo.	.033 1	1.000	2.000	3.000	500 7	5.000	6.000	7.000	8.00J	000.6	10.000	000 - 11	12.000	13.000	14.000	15.000	16.000	17 000	18.000	000.61	20.000 × 000	21.000	22.000	23 000	000 . T	2000	25.030	27.000	6.8.000			50, 100 100 100	14. COO		40.000	42.000	000.44	46 000	40.000	50.000	000.53	54.000	•6.000	54, 000	CO.000	62.000	64 300	66 .030	000.07

•

.

67

.

TABLE II-3. THERMODYNAMIC STATISTICAL PAKAMETERS

ł

•

•

-÷

-

. .

MAPCH

ο

	NOBS D	1	<u>,</u>				873.	873.	872.	671.	869.	. 198	627.	955.	Į.	852.	6 48.	0 -6.	ار ا	В	814.	803.	Ş.	.	Ê	Ī	736.	733.	718.	649.	630.	510.	200	107.	. 901		106.	.90	107.	<u>5</u>	104.	106.	103.	8	8	N. I	P	8	<u>5 i</u>		<u>,</u> 8
	N085 1		Ċ 8				R73.	873.	872.	671.	698	198	56	828. 1	Ś.	956.	848.	B+6.	<u>6</u>	674 .	814.	803.	ŝ	1	£	7	- R .	733.	718.	649.	630.	510.	500.	į,	ėx		125	8	<u>8</u> .	г <u></u> 8.	113.	120.	117.	107.		103.	8.I	¢ I	89	; ¥	
	4 580N	į	<u></u>				873.	873.	872.	871.	969.	961.	857.	855.	. 	958. 1	8 4 8.	846.	2	824.	814.	805.	38.	750.	ġ	Z	736.	733.	718.	649.	630.	510.	500.	108.	.601	. 90	106.	106.	107.	<u></u> 3	3	106.	103.	8 8.	8.3	<u>s</u> i	79.	8	21		i R
	SKEH D	i	ē. 5			5 -	60	80	02	22	50	5	-1.59	10.1-	-1.00	M.5	8.,	30	23	1	20·	Ę	9.	.12	60.	5	.	18	21	87.1	5.	- 12	2				80.4	Ŗ	E0.	8.	17	10 [,] -	2 -	<i>3 3</i> [•] 1	2	1.1	12	22.	ດ ເ	1.10	55.
	5.0. D		63.66UU			9.3120	7.6390	6.5990	5.5440	5.1720	5.0210	0416.4	5.1120	5.7380	6.7000	6.9770	6.0410	2,1380	4.5700	4.1260	3.7290	2.8680	2.0460	1.4930	1.1280	.8333	.6667	. 5587	0651	3989	3400	5975	2666	9	1402.		11187	1660	.0746	.0634	6250 .	523	.0343	0262	0520.	5/10.	0145	2010.	1500		8400.
					0002 000	810.0000	803.9000	725.2000	653.3000	587.0000	526.7000	471.8000	421 2000	373.6000	328.3000	285.7000	247.4000	213,9000	184.0000	157.1000	132.9000	111.3000	C3.0100	77.9600	65.6200	55.5700	47,1200	40.0700	34.1000	29.0500	24.7700	21.1600	18.0800	13.2000	9. /CSU		. 05-70	3.0630	2.3430	0808.1	1.3390	0060.1	60.23.	.6647	.5193	1052	1912.	997.	5251.		. 1
	SKEH 1	- - 		8			1.1	82	27	197. I	- 5:	35	22	69.	52.	9.	07	Ŕ	55.	£.	90.	-05 -05	ō	03	06	-, 15	06	60	8 0' -	03	06	M	97.1	27	02'-		12	ж	0 .	63	=	60	6 .	93	83	<u>,</u>	ir.	λ.	1) / 7 (50.	16.1
	S.D. 1		- K	1 1	5	M N	8	53 ES	3.33	3.35	3.55	3.51	36.5	3.10	З. Ж Г	3.20	2.90	ч. Ч	č. 79	3.03	5. 2	3.45	3. E	5 N	8 ~	r. N	2 2 2	J. 02	3.10	3.19	3.5	2	ž	81 0 1				5.11	4.71	7.7	5.6	5.20	ĥ	6.10	7.23	ία Ω	5 0 0	87.6	10.10	6C - 11	16.19
	HEAN T	222		20.53	8 R	277.50	21.2	265.48	259.95	ю. 20	25.2	237.81	230.48	223.90	218.37	214.55	211.27	207.75	10.702	203.18	203.09	205.49	209.68	211.86	14. H	216 31	218.7	220.2	222.41	ም. ሃና	14.925	228 · 34	230.77	235 67			R. 92	261.23	54. 1 6	266.23	3 86. 3 8	30.58 No.58	26 5.6 0	263.63	262.45		519 . 55	8, 2 ()		12.125	221.93
ANAVERAL	SKEH P	10 -			- 83	50. T-	-1.02	-1.04	16	81	72		51	7	EE -	* ℃	17		07	02	.01	20.	<u>.</u>	5 0	20.	20.	20	.02	5	- , 06	01	NO	5 1		0 	5 %	9	80.	03	* 0.''	35	- 15	7	02	<u>۳</u>	51.	£.	5,0	У, н	C/ .	
CAPF. L	2.0 1			4.3300	182,	4.3502	4964.4	4.5786	1.7040	4.6674	4.6334	4.5350	4.3751	4.1172	3.6369	3.1598	2.6692	2.1913	1.7849	6121.1	1.1037	.8372	5 5	.5083	1285	3742	0755	. 3088	5843	5003	8,10	1422.	1222.	0/ Al .	1251		1160	. 6751	.0608	86 2	6020.	.0334	. 0268	12221	CB10.	10.0 10.0	.0123	.0107	00000 1000		8.00
016474 .	a ₹£	0017 210	017.5000	905.1100	803.0500	711.1600	629.2000	553 4300	485 1E00	425.4800	371.1:00	322 3100	278.6933	239.9800	205.7900	175.9100	149.9800	127.5100	109.1400	91.5750	0144.77	65.617C	55.7020	47.4110	40.4420	34.5780	29.5820	25.30.0	21.7680	18.73*0	16.09	13.8700	11.9760	8.519	5 0023	1.6941	2.5.65	2.2967	1.758	1.3813	1.0753	.8333	6487	.5027	1052.	C105.	9155.		0,01. 4001		.0550
STATION	ZH KH	1 000	200 ·	1.020	2.000	3.000	C00.4	5.000	6.000	7.000	8.000	9.000	10.000	11.000	12.000	13.000	14.000	15.000	16.000	17.000	18.000	19.000	20.000	21.000	22.000	23.000	24.000	22.000	25.000	27.000	28.000	29.000	30.000			000 BE	40.000	42.000	44.000	46.000	48.000	50.000	52.000	54.000	000.94	000 BC	EU.000		000.42		70.000

68

-

TABLE II-4. THERMODYNAMIC STATISTICAL PARAMETERS

T

• .

. . .3

. **•**•

1

•

ł

. -- . APRIL

- -

۰.

-

.

•

.

.

	NOBS D		736.	6 1.	871.	601.	869.	868.	867.	867.	B66 .		8 61.	8 28	863.	953.	P -7.	95.		638.	6 23.				10.	766.		Ř.	F.	.627	629.	53		Ç 3	20		101	103.	5	<u>.</u>	2	2	ŝ	53	<u>i</u> 8	Ř 8	ŝ	57	54	39.	ЗÖ.	22.
	N085 1		1第1	871.	871.	871.	B 63.	868 .	967.	967.	888.		. 198	86	853.	9 53.	9 47.	., 10		878	63.		914.	63	6.1	766.	2	Å.		. 621	629	63 3 .		Ś		. g	110.	112.	113.		107.	108.		<u>.</u>			<u>i</u> a	R	53.	; ,	S	22 ·
	a saon		736.	871.	B 71.	67 1.	669.	B 68.	9 67.	9 67.	66 6.	. - 198	861.	929. 9	853.	8 33.	٣٦.		2	630.	823.	B 17.		.coa	710.	766.	755.	72.	750.	729.	658.	63 5 .		ç a			101	103.	- 401	33.	104	5	2	ŝ		ġ	i đ		6	39.	30.	P2.
	o HJXS		Ŀ	Ŀ	R	Ŗ	Ξ.		03		80, -	12	- , 69	-1.07	-1.14	-1.05	47	ē.	8.	17	đ.	5 0.	5	22	R.	Ŗ	8.	ř.	E .	=	E O.	6 0'-	2.1	ទុទ			2	5.	Ŀ	οř.	<u>+</u>	61.	6 0''	<u>.</u>	5	3 :] []	91	5	05
	s.o. D	2410	21.8700	21.4800	13.8300	11.0200	8.2050	6.4920	5.4430	LOTT. 2	4.3740	4.2470	3.9380	3.6740	3,8020	4.8130	6.0780	5.5750	4.5280	3.7890	3.3390	2.9070	2.1990	1.6000	01111	.8304	6315	.5176	4308	.3873	. 3513	1718.	EOOE.	G (2)		1204	1,468	1611.	.1059	.0777	.0570	.0430	.0337	.020.	1610.	1/10.			0085	.0063	.0037	.0038
	O NY U	0/H3	201.0000	202.0000	090.0000	985.1000	8 68.5000	802.30 00	724.6000	653.3000	587.4000	527.5000	472.9000	422.9000	376.2000	331.8000	289.0000	2002.62	215.30C0	18+.9003	157.9000	133.6000	0004 . 111	93.2700	78.2100	65.9+00	55.8300	47.3400	40.2600	34.4600	29.2100	29.4	21.3300	18.2000			5.5300	4.1550	3.1510	2.3990	1.02-00	1.4290	1.1150	9139	6409				0001	0251	.1187	.0895
	SKEH 1		61	61	- 24	91.	- , 29		ζ.	30	- 56	65	51	20	Ō	55.	60.		03	T.	22.	R.	đ,	Ņ	-12	E0	=:	08	01	13	06	3	80	81	R.	5.	01	.27	L	76	10	12	-1.20	B 5 1	С: -	- *		5.5	20	18	1.20	1.26
	5.0.1	A D C C C C C C	3. 2	8.7	3.00	25. 2 2	2.72	2°28	Ъ N	2 20 20	2.69	ę. v	2.97	<u>ک.98</u>	2.67	ي. ک	3.02	3.03	8. 2.	1. N	2.70	5. M	2.93	2.67	2.4B	2.42	۶. ک	2.40	2.43	2.53	2.70	ส์ N	2.57	6			1.50	5.0	1.97	4.70	33. E	5.70	6. 6	אַר 10 נ	5.5				5	. .	65.01	8.63
	F N H	CC X	233.22	293.13	208.25	203.76	279.02	273.28	206.05	250.19	S3.6	R.92	239.89	231.27	223.98	217.73	213 35	210.63	207.67	205.05	203.49	203.22	206.23	209.82	213.18	215.92	218.20	220.44	222.55	224.74	226.90	223.02	231.05	233.05	55.752			29.92 29.92	260.66	265.12	258.39	269.47	£.82	50.135	8.52 8.52		8 5 1 1 1	2 H	38	237,06	227.19	218.11
ANAVERAL	SKEN P		10	- 36 -	64	72	79	68	61	·.5	47	D7	64	1 7	36	£.	13	02	. 05	۳ .	۲ <u>۵</u>	æ.	R.	Ĩ,	.18	1.	-12	.15	.06	20' -		ໃ	\$. •		5.7	- 2	- 02	=	.00	.06	.08	.08	F.	=!	5	ູ້	<u>n</u> .	ų X	ě	60.1	1.36	2.37
CAPE C	s.D. P	ç	1811.1	1 . 4471	3.8471	1.3794	3.2738	3.2792	3.2764	3.3414	3.3651	3.3519	3.3469	3.3004	3.1819	2.8032	2.53-0	2,0962	1.7012	1.3701	1.0873	а а а	£673°	.5351	9217.	1961.	. 3641	.3313	.3071	.2878	3671	8 7	, 2268	.2005.	0.5	5701.	1084	0680.	.0701	. 0544	ଅ. ଅ.	5420.	0620.	.0230	6810.	FK 15	< !!</th <th></th> <th>7200</th> <th></th> <th>.0053</th> <th>- DO 32</th>		7200		.0053	- DO 32
- 74771-0	MEAL P	P	018.0000	017.8000	906.4000	804.8500	713.2700	630.5500	55.9200	483.6100	427.9400	373.4500	324.5700	280.8200	21.0800	207.3600	177.1500	150.9+00	128.3000	108.8200	95.1090	78.0110	66.1140	56.1680	47.6570	40.8630	34.9630	29.9540	25.7150	22.1030	19.0220	16.3980	14.1490	12.2380	4.15.4 P.00.0		1987 N	3.0556	2.3562	1.8244	1914.1	1.1047	6038.	6703					1387	1038	.0775	.0550
STATION	2	£	000.	1 200.	1.000	2.000	3.000	4.000	5.000	6.000	7.000	B. COO	9.000	10.000	11.000	12.000	13.000	14.000	15.000	16 000	17.000	18,000	19.000	20.000	21.000	22.000	23.000	2000. 2	25.000	26.000	27.000	28.000	000.65	30.000			38.000	40.000	42.000	44.000	46.000	48.000	50.000	52.000					54.002	66 000	E8.000	70.000

69

.

МАҮ

TABLE II-5. THERMODYNAMIC STATISTICAL PARAMETERS

C

E

 \ge

NOBS D SBON NOBS P SKEH D .6340 .9483 .7722 .7778 .77778 .7778 .7778 .7778 .7778 .77788 .7778 .7778 .7778 .7778 .777
 +E.A. D
 -6.43

 6.43
 11186.0000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 979.9000
 979.9000

 971.000
 525.7000

 975.7000
 93.5500

 979.9000
 93.5500

 979.9000
 93.4000

 133.4000
 113.7000

 133.4000
 111.7000

 975.9000
 295.500

 97.9700
 93.5500

 97.9700
 93.5500

 97.7700
 93.5500

 97.7700
 93.5500

 97.7700
 93.5500

 97.7700
 93.5500

 97.7700
 93.5500

 97.7700
 93.5500

 97.7700
 93.5500

 SKEH T CANAVERAL SKEH P
 A
 0.0
 0.0

 0.1
 0.0
 0.0

 0.2
 0.0
 0.0

 0.2
 0.0
 0.0

 0.2
 0.0
 0.0

 0.2
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0

 0.0
 0.0
 0.0
 </ A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
A N M
< STATION Z KM

TABLE II-6. THERMODYNAMIC STATISTICAL PARAMETERS

.

• . - (

ł

•

JUNE

	o seon	Í	ī.	Ē	7		į,	ē	8	É,			Z	65.	. 196.		, N		Ċ,				608		5	666.	. 89 9	6 57.	642.	262	571.	476.	• •	Ś	r a		8	86	97.	6	8.	8 2	<u>,</u> 8				5 Q	9	31.	22.	÷.
	N085 1	ł	F	11.	7	11.	F	.10	8	81	ġ			739.	736.	. 65/	N	÷.	Ċį				699.	681.	67.	666.	. 899	657.	642.	. 2 3	571.	£78.	<u>ş</u> (R 8	Ŕ	1	103.	3.	101.	100.	8					58		ġ	ļ,	Ċ	
	NOBS P	1		.171.	.171	11.	769.	701.	8	735.			7	739.	736.		, i		Ċį				80	E81.	67.	566.	669.	657.	642.	595.	571.	476.	46 9 .	5.8	ġ 8		8	8	97.	ک .	8	88	<u>ś</u> 8	Ś ż				ÿ	2	25. 22.	<u>.</u>
	SKEN D		21	61	5.	8 0	; ; ;	5.1	- '63	5	8	65	8	- 23	65	P	6 1	<u>,</u>	ι, ε	5;				2	E0.	12	12.	-15	£ .	8.	9	07	1 0.1	21	5	91.	ie.	5.	.17	. 16	9	5.5		9		91		5.5		M	1.65
	s.D. D	5H/0	12.1800	12.3000	6.2730	5.2790	0626.4	1.3520		3.6300	3-3400	3.1670	2.9870	2.7330	2.3410	2.44.2	3.0210					1 15.30		82.98	7203	4165.	5310	9534.	.3826	3,465	6723.	32. 2	2146	6102.	90C1 -	9601	8000.	.0736	0590	.0430	6160.	.0267	.0230.				1010	2000.	1970.	6500.	0103
	MEAN 0	C/H3	175.4000	175.0000	0000.170	974.1000	802.8000	798.3000	719.8000	648.3000	583.200	523.7000	470.2003	421.3000	377.000	3 52 - 1000	206.2000		res.couc	183.8000				0053.95	67.3000	57.1100	48.5500	41.3900	35.3300	30.2000	25.8600	22.1500	19.0100	13.9700	7 5500		0.202 h	3 2740	2.4720	0202.1	1.4730	1.1550	0606.		DCC.		8 F. 5 X		1555	1121.	1,650
	SKEH 1		3	- 03.		- 20	<u>.</u>	5 -	- 13	£2'-	16	N.	· • •	á.	01.	5.	នុ	, ,	ÿ	5.				Ē		03	01.	51.	80.	ŗ	.	=:-	ភ្	18 [.]	Ę,			22	1.	16.	-02	6 6	ņ,			ņ	5. X	5	25	80	12
	5.D.	х С С	2.87	د. 88.	64.1	() J . 	5	97 .	65. I	31		6	2.18	2.21	2.19	51.2	6.98 1	5 2	ດ ທີ	ĥ	h i	5.0	; a		1		8	1.57	5.1	- 88	1.67	26	1.79	ສໍໄ ເ	8			55.4	3.99	4.20	4.67	5	6 !	5.67		5.0				17.31	10.73
	HEAN T	LCO X	208.22	238.15	292.69	286.98		215.70	270.11	264.20	51.5	ic R	おうえ	236.31	228.42	220.67	213.64	508. IA	8.5	205.8/		200 61		215.60	19.01	250.18	222.16	223.93	225.61	227.32	229.03	230.62	232.26	715.44	5.02		10.10	260.80	265.54	268 08	269.22	8-1-8-	205.93	200. E			00.07 1		10,114	222.09	205.52
NAVERIL	эхсн р		57		63		- 35 -	30	27	ج	32	54		50	61.1		- 30	B 1		5 5	n e - r	2.	2	20	20.1	06	- 10	- 15	15	22	31	30	х. -	07	90'- 1	5	10	<u>+</u>	51.	<u>+</u> .	.10	5	10.	03	5.0	80.	2 Z		2	P	8
CAPE CU	5.D. P	Ŷ	3.1005	3.0329	o.9503	6.6563	2.4761	2.5597	2.2342	2.1673	2.1267	2.0648	2.0312	2.0977	2.1098	+0.25.1	1.0016	1.0001	1. 306.1	0//0.1	1/28.	160.0			1442	T F M	13054	.2690	.2316	.2071	. 1845	1631	.1501	.1372	.11/26	1920 ·	04.40	.0508	. 0~C6	-0332	.0279	.0236	.0200		5210.	1510.	2010.			6400	.0061
242740	ME AL P	P	015.2000	015.7000	305.3600	306.3500	715.5930	533.4000	553.2000	192.4000	• 3.7 . 2000	5 73.0300	329.5300	595 0100	247.1700	212.2300	181.6400		131.1500	00/0.111			61.1230		1200	36.0950	30.9620	26.6020	22.8820	19.7080	16.9970	14.6610	12.6720	9,4738	7.1402		3. 14.06	2.4334	1.8840	1.4645	1.1408	. 8695	.6338	5353	1 3 1 3 .	0615	1 4 4 7 1		0201	0.01	2050
STATION -	2	Ĩ	.000 10	.003 11	1.003	3.000 5	3.000	4.000		6.000	7.000	8.000	6.000	10.000 \$	11.000 2	12.000	000.51	600.71	000.01	16.000				21.000	22.000	23.000	24,000	25.000	26.000	27.000	FB.003	29.003	30.000	32.000	C03.42		000.04	42.000	44.000	46.003	48.000	50.000	52.000	54.300	000 94	55.84 5	60.000 64 000		55 000	68 000	70.000

١

•

.

JULY

TABLE II-7. THERMODYNAMIC STATISTICAL PARAMETERS

•

•

.

.

•

- -

•

•

-

.

• •

		Į		Ē	Ē	Į.	793.	. д .	783.	782.	782.	.191.	.187	100	Ë.	772.	765.	765.	5	į		ų.			23.	689	676.	673.	676.	25	613.	ŝ		ġ	¥ 8	. 8		.68	6 8.	8	83	8.8	ġ		ġ	ġ f					ġ	Ż
	I SBON			- 1	<u>1</u> 9.	- <u>1</u> 6-	793.	- 1 0-	783.	785.	782.	. 18/	781.	- 64.4	Ë.	772.	765.	35.	757.	ţ	Į	75.	72.	J. J.	2	669	676.	673.	678.	652.	613.				<u>i</u> 8	<u> </u>	5	8	8	100.	8	8 8	<u></u>	BÅ 1	<u>8</u> 8	<u>,</u> 8	Ġ F	. 1	8 F	. 8		2
	4 580N		. 581			7 4 .	793.	7 9 7.	783.	782.	782.	781.	701.	.677	77.	.217	765.	765.	757.	Т	44.	75.	742.	796.	33.	663.	676.	673.	678.	652.	613.	2 6 2.	476.		95.	y a		8	8 9.	.05	8.	8.	8. I	81. 1	8 X	ġ	żŗ	0	۶.	; -	'n	ž
-	a Hass	:		10	01	<u>.</u>	1.	00.	- , 30	20	17		23	30	21	17. I	۲.,	.5	۳	ş	8	\$.	.31	31	5 2.	<u>9</u> .	5 .	<u> 5</u>	0.	12	02	60 . -	<u>.</u>		ξ)			17	-, 36	- ,20	11	Ķ.	F.	r, :		20	;;		i.	2.3	2	8
	5.0. D	51/0	13.0400	13.0900	0706.4	4.1010	3.6000	3.7300	3.5310	3.4190	2.9830	2.9530	2.8320	2.4210	1.9160	1.6420	2.0060	2.7280	3.1520	2.7810	2.1810	1.6760	1.2110	176.	8 88	.675	5767	-2040	.4103	3488	.3071	ጽ ፡	1012	1261 ·	1969			1260	1510.	.0671	.0524	.0373	.0326	.0261	B120.	610 6	6/10	9+ 1D.	A110.	0010.	2000.	8400.
		5570	173.0000	172.0000	069.0000	973.2000	882.7C00	798.6000	720.3000	648 BC00	583.6000	524.1000	470.5009	422.1000	378 0000	336.5000	238.27.00	261.1000	225.0000	191.0000	161.0000	135.1000	113.3000	95.2200	00. X 200	69.0400	57.7900	49.1500	41.8600	35.7400	30.5703	26.1600	22.4400	19.2600	14.1100	10.4500	NED N	4.3380	01. 1.	2.4680	1.9090	1.4790	1.1540	.9050	. 70.73	81.5	5	12:51		2031		.06730
	SKEH 1		1 45	- m.	= Ł	±	- 58	07	-05 -	- 65	50	י. יא. י	16	17	- 20		51.	53	.1.	10	×.	6 t	33	- 39	23	23	ч. Ж.	03		06	07	ដុ	05	17	ទ	B	<u>;</u>		15	36	89.	22	92. .	5.	- 35	- 15	90.	2	- 1	i i		19
1	5.D. T	× ! 57	3.15	3.17	1.16	1.14	1.14	1.22	8.	1.33	ф	1.51	۲. ۲	- 8	<u> </u>	1.72	1.7.1	.	2.15 2	ନ ଜ	2.11	2.03	r. 1	1.63	1.63	¥	1.51	1.66	6.	1.69	1.87	99 .	۶.08	- 88	3.50 1	8.6			4.66	5 71	8 5	£, ;	đ , ,	e G	6.23	6.83 9	8	9.10	10.6	8 F		16.47
	HEAN T		02.665	233.18	2 3 3.86	287.88	282.22	276.50	270.90	265.10	258.83	252.57	70. 2	237 46	14.622	221.44	213.97	208.04	204.76	R . 22	205.41	207.63	210.44	213.33	216.03	218. 19	220.14	222.03	223.83	225 52	227.15	529.622	230.19	231.71	235.70	239.80			259.19	263.20	265.96	267.19	265.78	263.19	80.58 8	22.23 1		500.33	1.50	22.52 22.52	C3U.05	216.76
WAVERAL	SKEH P		- . -	- 5 -	04.4	33	21	16	<u>+</u>	- 10	05	18	£2	ۂ י	х.	15	ጽ. '	٢. '	2.	30	- 1 <u>9</u>	1	10.	03	08	13	15	19	មិន។	30	27	27	27	22	07	8	Ç, F	i a	51.	.27	۳,	.27	23	-17	81.	61.	21.	5	. 57	22.1	ý, t	: 88
CAPE C	5.0. P		2.4360	2.4427	2 .2285	2.0687	1.9058	1.8447	1.6360	1.6180	1.5594	1.4639	1.4492	1.4678	1.4923	1.4295	1.4170	1.2965	1.1008	.9069	. 7557	6450	.5627	.4640	2404.	96 A.	. 3057	2700	. 2355	6602.	. 1847	.1670	. 1541	.1377	2041.	- 1285 2000	9960.	.0736	6650.	2640	. 0 ⁴ I 3	.0341	.0286	5 1 50 .	. 0206	.0175	.0153	.0123	1010.	2800.		8700.
1-19-0	A NAM	2	017.6000	017.3000	908.2100	BCB. 3800	717.6500	635.4700	561.200	0021.161	434.2000	360.0400	331.4500	297.9000	248.9300	213.9200	183.1200	155.8900	132.2200	111.9800	94.8950	80.4330	69.44.03	58.3130	49.8020	42.6100	36.5150	31.3240	26.9040	23.1370	19.9300	17.1840	14.8250	12.8090	9.5361	7.1695	1024.0	3,1607	2.4320	1.6794	1.4583	1.1333	6088.	.6839	ť.	6104.	3145	- 2325	6641.	.13-6	55.	550
STATION -	r		.000	11 200.	000.1	2.000	3.000	4.000	5.000	6.000	7.000	8.000	000.6	10.000	11.000	12.000	13.020	14.000	15.000	16.000	17.000	18.000	19 000	20.000	21.000	22.000	23.000	000.12	25.000	26.000	27.000	28.000	20.000	30.000	32.000	74 . 000	000.02	000.04	42.000	44.000	46.000	48.000	50.030	52.030	000 4	56.000	58 000	60.000	62.000 2	54.000		70.030

72

.' .

TABLE II-8. THERMODYNAMIC STATISTICAL PARAMETERS

Ţ

2

--•,

•

ſ

•

•

(

,

.

AUGUST

	0 SBON		769.	45.	F	Ê	713.	762.	750.	2°.	ĥ	<u>1</u> 33.	īr R	750.	2.	76.	20.	736.	729.	726.	720.	-19.	711.	5	Ę,	699	646.	9-5. 9	8 2.	83 8	576.	រព្វ ភា		لې	. Ge	, r	76.	1	76.	76.	Ŕ	76.	¢.		Ż	Ż	S 1		2 R			<u>N</u>
	N085 T		769.	É	Ē	Ē	773.	762.	758.	736.	3.	753.	751.	26 7	2.	76.	7	736.	729.	726.	720.	719.	711.	69.	6.9	639.	646.	643.	6 2.	6 3	576.	1 1 1		Ŗ	B 8	B 8	8	87.	88	88	8.	6	8	6	Ś	j.	ė	89		ก็ส์		N.
	NOBS P		769.	Ę.	-75.	715.	13 .	762.	758.	756.	755.	753.	31.	750.	747.	76.	740.	136.	729.	726.	720.	719.	711.	1 69	675.	659.	646.	645.	652.	623.	576.	in in its second s	443.	428.	8	į	76.	77.	76.	76.	76.	76.	¢,	ř.	ż,		2		, , ,	ġ'n		<u>.</u>
	o Hijks	!	16	- 15	5 0	10	ς.	87	36	х. -	8	26	**	76	52	-1.33	-1.64	90	12	.16	. 18	.18	Ş	51.	R .	я.	ŗ	ŗ	Ņ	7	60 .	20.	20.	17	2	ça		52.	60	ř,	M 4.	69.	ę i	E .	.17	5	Ŗ	ę,				1
	5.0. C	0/H3	13.1400	13.1403	4.4690	3.9600	3.8070	3.6420	3.5890	3.3510	2.9500	2 8680	2.9000	2.6200	2.1350	1.9860	2.2380	2.9140	3.1870	2.6430	2.0050	1.5060	1.1180	9968.	2177.	1513.	.5150	.+636	3910	414E.	.3094	<u>ዩ</u>	-2382	1961.	1952.	0581.	1063	£860.	.0758	.0685	.0360	.0427	C>20.	.0267	-0734	60.70.	5210.	.0123	2010.		5100	.0066
	MAN D	G/M3	173.0000	173.0000	069.0000	971.6000	881.0000	797.1000	719.2000	648.0000	582.9000	523.5000	470.0000	421.6000	377.6000	335.2000	297.9000	261.2003	225.40C0	191.6003	151,5000	135.3000	113.5000	95.3800	0084.08	68.1600	57,6800	49.2300	41.5300	35.7803	30.5830	26.1803	22.4403	CO-7-0	14.1100		5.7620	4.3263	3.2533	2.4653	1.0310	1.4583	1.1343	. 6833	1003	1010.	1914.		i v			. 0963
	SKEH 1	;	- <u>-</u>	. .	- 32 -	31	17	.05	2	- 12	12	χ, ,	60		.16	55.	.23	5.	55.	4	5		03	17	- . 60	13	62'-	15	17	ж	Ş	-12	6 .	٥. ١	6	9. E			57.	06	07	£ 9	<u>.</u>	80 ⁻ -	2	<u>- 1</u> 2	8.	3	5			60.1
	5.0. 1		N. 17	3.17	8	1.01	1.10	1 21	2.	82	£	1.5	1.73	1.1	1.80	1.72	1.70	8	Ω N	2.15	8	8.	1.65	- 60	1.61	1.41	- -	1.57	1.57	3	1.93	3	2.03	8	2.07	50.7 7		4.65	4.73	3.57	3.93	Fi i	2	5.19	6 61	6 36	8 9 9	8	10.22		55	59°41
	MEAN T	x Solo	239.95 200	•8.862	33.88	10.695	282.48	276.79	271.19	265.35	529.15	£.25	まいえ	237.79	229.82	221.89	214.40	208.28	204 65	203.83	S3.+55	207.37	210.'B	21, 36	215.55	217.70	213.62	221.40	223.16	224. D	226.46	227.96	2 59.36	231.01	80.052	20 000	2-7-6-2	252.14	257.35	261.92	204.14	265.99	16 C 22	88 ÷22	24.7 E3		5	10.5	መ ር	5 - 1		221.49
ANAVEPAL	g H3X2	i	N i	<u>10</u>	61.	1.1.1	31	т. -	Ŕ.	- 23	* .	%; ,	<u>۾</u>	27	30	06	.08	5	.03		.07	£1.	Ŕ	£3.	<u>.</u>	55.	<u>.</u>	.10	50		.18	07	5	20 · ·	5	5 PC	55	j.	83.	. 78	-82	5.	/c.	. 53		3	8	0			0,1	10
CYPE C	5 .0.Р		6.0002 0.000	2 5 48	2.4131	2 2353	2.0CED	10-0-1	1.7337	1.7020	5165.1	1.5143	1684.1	1.4847	1.4755	1.4027	1.3737	<u>n</u>	1.0158	.8326	. 6400	6495.	5103	1524.	1001.	.3510	3111	6312.	2446	.2186	.1960	10.1.	c/c1.		1101.	1021	.0679	.0780	.06+30	. 05.37	92.42.	0349	1,00	1100.	.0.0.	.010.	DS 10.	.010.	632D.	22.0		1100.
016111 -	A NA		615.6000	016.3000	907,4200	807.6800	717.1200	635.0500	560.9700	-9	434.1100	380.0400	331.4900	587.9900	249.1300	214.1100	183.3000	156.1400	132.4100	112.200	92.9510	80.5350	68.4563	58.3290	49.7950	42.5930	36.4830	0EP2.1E	26.9630	23.0920	19.8810	17.1330	14.7720	12.7610			5850 · A	3.1242	2. 3384	1.8+99	1.4319	1.1108	. 6020	5568	-BIC.	6007.	11.05.	C353.	5.1.		2222	0 MC:0.
STATION	22			1 200.	1.000	2.000	3.030	4.000	5.000	6.000	7.000	B.000	9.000	10.000	11-000	12.000	000.21	14.000	15.000	16.000	17.000	18.000	19.000	20.000	21.000	22.000	3.000	000. N	22.000	26.000	27.030	28.000		30.000		36.000	36.000	40.000	42.000	44.000	46.000	43.000		2000	000 44		000 - BC	000.00		000 - 50		000.07

· .

TABLE II-9. THERMODYNAMIC STATISTICAL PARAMETERS

•. •

,

ļ

•

۹

(

• •

SEPTEMBER

							737.	12.	733.	732.	- 121	6 57	ч. М	723.	720.	720.	718.	717.		710.	669	700.	69 1.	606.	199	629.	ъ. Д	J	633.	615.	909			ģ		, <u>-</u>		ŗ	7		73.	73.	73.		13.		ġ ;	3			<u>و</u> :	<u>г</u> .
	1 5900		128.		71.	71.	737.		733.	720.	731.	729.	72.	723.	720.	720.	718.	717.	712.	710.	69 0.	700.	693	686.	50	659.	יי קרי	641.	633.	615.	268 .	550.		ម្វ័	9.8 8.8		ŝ		8	8	8 .	8 0.	8.	83.	r. R	re I	¢1	5	ន់ខ		ġ	
			128.			- 7	737.	· 제·	733.	732.	731.	729.	72.	723.	720.	120. 120.	716.	717.	712.	710.	699.	700.	693.	686 .	86	659.	642.	641.	633.	615.	268 .	550.	۲. ۲.	99	ē p	į,	: :	į	7	73.	73.	73.	73.	73.	73.		8	. 20	÷.	. ¥	<u>i</u> 4	<u>1</u> 2.
	SCH D			£1.	к.	1.5	£.,	F.	65	£.	8 2.'	Э́С -	39	ų.	63	76	-1.03	67	30	8.	8	51.	2.2	00.	. 1ú	9	<u>.</u>	50.	5 0	50°-	05	= :	10	82.'	8			22	16	.10	50.	.07	ų	07	Ř.	- 20	н. -		F. i	ħ:		18
0 1 1	5.0. 0		12.3100	12.3600	5.2930	4.7050	4.2900	4.1530	3.8240	3.6160	3.2720	3.2080	3.1270	2.7550	2.3840	2.2190	2.5370	2.9310	3.0770	3.0450	2.6350	1.8850	1.2530	1895.	6618.	.6674	.5340	.4629	.3833	.3433	.3159	1595.	.2461	2113	9695. 2003	26.91		1006	0829	.0592	8670.	12-10-	.0317	6630.	.0239	6610.	9510.	0210.	.0097		2100.	.0050
			0000.571	173.0000	0000.0000	971.6300	879.53 03	795.1000	717 2000	646 50 00	581.8300	522.8303	469.4000	0000.154	376.9300	335.4000	297.1000	260.6000	225.6000	192.200	161.8300	135.1300	112.9300	0008.46	79.9503	67.7100	57.4700	48.0500	41.6200	35.5100	30.3500	25.9900	22. 3500	19.0300	13.3500	10.5500		1. 2. C	3, 1903	2.4380	1.8470	1.4253	1.1089	H100.	.6793	.5310	156	5.2	27.7	1911		2687
	SKEN 1		1 20	1 20.	17	- 20	80.	3	- , 16	80	27	'n	8 1	02	61.	Å.	64.	Ŗ	١۶	.05	22	EL	.	13	۰. ۲	13	10	50.	90	02	١£.	EO	01.	£0.	<u>8</u> 1	ę s	9 :	2.7	-1.25	73	. G	61.1	18	1	-1.11	τ.	۶. ۲	03	= -	Ę	5.5	97.1 16.1
	5.0. I	2 C C	2.90	2.91	15.1	1.19		ሐ 	а. _	1.43	, L', L	1.67	1.93	1.38	8.	88.1	6.1	82	F	8	č.63	ጺ ፝	1.78	8 .1	87.4	1 1 1 1 1	1,48	1.67	<u>.</u>	1.61	8.	z	e.c0	đ	5 m	នុ (ភ	Ŗ	5 Ø	11.0	ж У	4.31	5.13	1. 193	, 3	5.72	5.65	6.57	7.55	9. 0 8	11.53	20 G 21 G	5 B.
			01.91.2	598.42	8 202	287.4.	585.	276.96	21.K	265.40	20 G2	252.41	ላ የሚ	237.50	5 58 5 8	221.73	214.33	208.08	203.78	202.30	203.28	205.23	203.57	212.65	215.21	217.27	219.22	10.155	222.7	224.39	225 99	227.44	228 922	230.44	235.00	238.25			21.12	263.52	266.23	267.81	£00.30	36°-22	8 Ř	5	259.67	32. F	n Sh		232.63	211.43
UNA ERAL	2 2 2 2	ļ	őő'-	66'-	81	66	6 1	35	27	- 22	15	30	1.40	7	۰¥ ;	54°.		12	10	10	18	17	02	.06	.07	.03	03	06	- .09	10	=	12	6 0	09	. 83	.87	51.	6	5		51.	01.	10	- 11	₩1 -	03	61.	62.	5.	.18	5 5	67. 67.
CAPE CA	5.0. 1	ž	3.0277	3.0197	2.7697	2.5500	2.3551	2.1928	2.0000	1.8537	1.6390	1.7255	1.6946	1.6311	1.6806	1.5658	1.5235	1.3742	1.1718	.3531	.7831	.6672	.5709	.5028	082 4.	. 3962	.3392	.3067	5702.	P. 36	2195	.1989	. 1815	. 1505	514	118.	2/60.	1587.	0599	5120.	.0427	.0352	. 6235	4700.	.0201	.C1E7	.0:39	C118	0010.	.0074	. 0058	1200.
0-64-74-	a sy	₽	0:5.1000	014.8000	905.7800	805.9900	0054.012	633.6203	553.7100	433.1600	433.1400	379.1400	330.6700	287.2100	2-6 -100	213.48C0	182.8000	155.6500	131.9600	111.6200	94.4230	79.9730	67.9400	57.8640	49.3870	42.2300	36.1640	30 9990	26.6100	22.8.50	19 6860	16.9610	14.6180	12.6262	9.3333	7.0472	9415.C	4.UC55	2.3531	1.8174	1.4095	1.0358	67. B	6539.	.5155	1000	.3088	.2331	. 1819	.1357	.1003	0120.
STATICN .	ч ,	Ę	000.	11 200.	1.000	2.000	3.000	1,000	5.000	6.000	7,000	8.003	000.6	10.000	C 20 . 11	12.000	13.000	14.000	15.000	16.003	17.000	18.000	19.000	20.000	21 000	22.000	23.000	24.000	25.000	26 000	27.000	28.000	29.000	30.000	32.020	34.000	36.000		12.000	44.000	46.000	48.000	50.000	52.01	54.000	56.500	58.000	60.000	62.000	64 000	56.000	59.CUU 70.000

7.ĵ

.

TABLE II-10. THERMODYNAMIC STATISTICAL PARAMETERS

•

•

1 - 1 - 1

•

OCTOBER

-

	0 580N	1	i i	Ē	É	Ë	ÉI	Ė¢		i f						6	ė	ġ	Ż			126	121	89	109	8	683.	673.	652.	601.	ġ	ni. B	503.	92	÷,			3	ė	8	ß	6	ġ	83.	3	73.	67.	ξų.	Ħ <i>i</i>	Ċ,	it
	N085 7	{		Ë.	Ë	Ŗ.	Ē			į	Ĭ		Ē	Ś	Ėş	Ë,	.,	6	È			i X	121	69		8	683.	673.	652.	601.	5	512.	503.	8. S	83.	58	88	i Si	8	88	8 8.	88	8	<u>8</u>	5	Ŕ	71.	ġ.	R 1	ė.	į
	NOBS P	ł	14.	E	Å.	Ë	<u>;</u>	Ż	į									8	i a		act.	128	723.	69		5	683.	673.	652.	601.	2ф.	512.	503.	9 1 2	: ;		. 9	i a	ż	к.	3.	ż	2	83.	8.	13.	67.	40.	ដ់រ	ć i	İĸ
	O H3X6	1	EB.	Ŗ	<u>9</u> 9.	.76	<u>9</u>		5					; ; {	5.					9 1	į		21.	8	- 06	.03	5	10.	11.	03	00.	.16	0.1	6.	÷.	e s		2	50	S .	10	×.	37	53.	3	8 :	6£. i	r.	5	<u>.</u>	
	s.o. o	G/H3	17.9600	18.5430	11.2900	8.6610	7.1670	0.00.0		0.0400		0505.4									2,2550	1.6000	1.1720	1519.	1557.	5980	.5507	2224	4077	3702	81 <i>2</i> £.	CT 85.	1520	1.384	1112.	51/1.		5680	.0635	5720.	.0478	.0359	.0289	9520.	.0210	.0173	0110.	.0108	27.10.	- 100 - 100	BE DO.
	Q N W	5 43 .00 0000	185.0000	10000.001	0500.080	978.4000	892.8000			543 5010 543 5010		204 - FOUD		700. /CUU						160 2000	0000 111	0002-111	93.6200	78.9500	66.7700	56.6300	48.3800	40.9400	34.9000	29.6000	25.5100	21.9400	18.7300	13.7400	10.1639		0.00.0	3, 13, 0	2.3680	1.8170	1.4030	1.0350	8008.	.6723	523	1005.	1027.	t Rj	5761.	09+1.	4;80.
	SKEH 1	:	72	- 72 1	63	7	P. S	D 4	2 9		, , , ,	2			N N			2	- 5 8	5.5		20	90	05	1	R.	31	•	33	r,	17	-28	۲. I	1.33	ŝ.	5		- 13	£	6 .	7.1	-1.16	33	63	- ⁵ 6	- 39		50.	r, i	- - -	
	5.0.4 2.7	2 C		5	₽ ~	đ.	87. N	57. n	2	5 9 u n	5		3 2	Ka						8		م	2.5	96.1	6.7	\$	- -	86.1	1.97	2.19	ۍ. ح	0.43 2.43	5,40	98 19 19	5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			5.63	5.69	6 .0	6.29	λ. φ	6.8	7 28	8 50	18 A	9 2	9.23		
	MEAN T			8. 5	230.23	285.29						8 P in C						5		35.02	5	208.63	211.81	211.20	216.40	218.41	P20. 9	222.11	223 81	225.33	226.84	50.822	229. 0	233 85 2	237.42			8.752	263 08	266 03	367.73	267.43	266 43	263.31	361.31	19.755	F. N	B. L.L.	9.14	233.16 310	5. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
NIA F RAL	a 11.35		83. .	2.	•. •	50	5.) X	22.1					<u> </u>			200	8	8.9	90	20.	60.	80.	01.	60.	90.	00.	 -	13	- 15	ស៊ី	1E -	51	5		2	1	50	01	.	65.	.63	.63	.63	. 10	1,	68	F. 6	s, s	CE - 1
CAFLC	ې د د ۹			5. 1 BB	3.07.5	5.9709						61 1 n	1001 0		0023 0					06.70	15	38.3	6295	6164	6277	7592	3745	.3181	1295.	15.2	2622.	-2072	1895	. 1465		1011.	2020	2.95	.0557	55-0.	.0397	.0310	. 52.1	:		2 Z	ن <u>ع</u> ن	1000 C	CC 30.	5400.	0+00
J. 1.1	2 2 2 2 2		002.510		9012.606	804.5200					0010.001	27.5100								911120	78.7830	65 8720	56.9180	100-1-09	41.4760	35.5320	30.4120	26.1000	22.4230	12.2020	16.6080	14.3080	12. 349 0	9.2103	C016.0			2.3170	B6927.1	1.3377	1.0783	. 8+C5	C+2+3	1903.	5565	•5 DR •	6115.	.1755	1329		1551
STATION	~ 3				1.000	≥.000				2000 C		000.0				12 000	000 11	15.000	000 01	17 000	18.000	CC3.6.	20.000	21.000	22.000	23.000	24.000	23.200	26.000	27.000	28.000	29.530	30.000	000 - 27	10 . UCU	000.02		000.	000.44	4G. 3CG	48 000	50.000	52 000	5 • . 000	56.000	58.000	EJ 200	62.000			70.000

,

. . . i I I

۲

•

•

-

TABLF H-10. THERMODYNAMJC STATISTICAL PARAMETERS

NOVEMBER

	O SBON		ā.	998	966.	9 66.	B66.	866.	865.	. , <u>, , , , , , , , , , , , , , , , , ,</u>	863.	860.	52.	6	ŝ	ŝ	9.5	136.	6.3	63	3		F	1997	2	., , , , , , , , , , , , , , , , , , ,	732.	733.	726.	716.	. 198	9. 9.	2.	j.	8	ġ ł	ġ	58	58	Ē	8	r K	ż	83.	9.	ġ	2	3	47.	ц.	27.	Ľ	21.
	NOBS 1	İ	7	996.	966.	B6 6.	966.	666 .	965.	8	963.	960.	1 20	957.	ŝ	5	649.	80		623.	6		8	788.	ž	ž	72.	733.	726.	716.	193	648.	11.		. 1	Š 8	į	33		8	. 10	93.	8	ß	9i	8	81.	Ŕ	j	R	2	23.	21.
	NOBS P	İ	- 7	966.	866 .	999	8 u c.	996.	865 .	1964 -	863,	860.	57.	957.			ιų.	836.	629.	821.	9 0 4	.108	~ ~	786.	Š.		72.	733.	726.	716.	. 199	679.	5.	250.	8	ġ	ġ	. 2	ŝ	8	8	Š	Š	83 .	8 1.	79.	71.	8.	47.	33.	27.	23.	د ا.
	SCH O	ł	.79	.80	8	M .J.	ŗ	.06	22.	50.	*		7	69.	- 6	98.	H(65 -	54.1	2		91.	8	51.	E .	2.	.17	.07	.20	ŗ		60.	<u>*</u> .	n 7.	-	63			19	7	1.03	8	Ŗ	54.	₹3.	ų	. 19	¥	80.	8	Å.	5	- 22
	s.o. o	0/H3	22.9600	22.7500	14.3200	10.0700	7.7110	6.3140	5.4760	4.9600	4.3870	4.1570	: 3160	3.8010	3.7460	0265.4	5.0320	5.1870	4.6400	4.0380	3.6240	3.0910	2.1930	1.5050	1.1030	7760.	.7398	.6765	.5663	. 4635	.3823	.3397	3081	2962				1772	1011	100	5120.	.0567	える。	0378	1220.	.0264	.0209	14-O.	1610.	0133	2600	0067	5+00.
	o N W	6/H3	206.0000	206.0000	092.000	985.2000	886.7000	799.6000	721.4000	650.3000	505.2000	525.8000	471.3000	421.8000	375.9000	312.7030	292.4000	254.5000	219.3000	187.5000	159.0000	133.5000	111.2000	93.0500	78.2000	65.9700	55.8500	47.3600	10.2700	N. 200	29.2900	82.C	21.4200	18.3500	13.4900			0000	1.000	2.3080	1.7660	1.3680	1.0600	90196	.6%3	5115.	CT 65.	1.01.	.2367	.1822	Car 1 .	. 1066	09180.
	SKEH 1	ļ	- 33	67	-1.31	- 59	ÿ	R	52.1	9 7	79.1	ų.	- , 38	BX	9 2	- 13	<u>.</u>	.22	.07	8	6	ī.	8 0'-	.23	12	.17	01.	6 0.	91	r.		02		9.0			- -	Ē	3	90.	8	95	<u>, ,</u>	- ,61	8.	£2, -	47	8	0 .	.10	S	9.	97.1
	5.D. 1	2 C C	.	g. ,	3.27	2.70	2.60	\$. N	3	2.63	2.65	2.80	8. N	2.B.	2.GI	2.40	2.41	2.59	2.61	1. N	ų. V	3.19	<u>°</u> .8	ي. م	2. JO	ي. م	2,42	&.S	8. 2	3.10	3.28	5	F .	5 	5. C			5.0	7.20	6.03	2.2	7.53	6.5 8	7.95	6 4. ~	9 -	9 .69	r. 0	10.31	19.11	R : = :	13.90	27
,		۲ <mark>۶</mark>	£	255 19	237.65	2 83.56	64 .675	19.475	269.19	21.71	8.18	88.73	20. W	232.86	225.49	518.52	212.45	207.73	204.37	232.75	201.66	203.09	206.48	52.602	212.40	214.43	217. 08	2.9.11	220.95	222.55	61.22	225.63	227.10	228.61	535.45	0			28.51	83.4	267.15	268.40	-57 72	25.52	262.11	760.16	5.00	£.52	250.91	24 7 00	519 75 51 75	232 33	5.2
NAVE RAL		- 141	J	Ģ	37.1	57	1 0	65	67	ē	60	59	8 5	82.1	58	83.	53		01	<u></u> м.,	×.	22	23	18	<u> اع</u>	12	05	03	-0 -	ā .	.07	ð	60.	8.	2	- 8	92	į	5	5	8	8	ŗ.	51.	Ŗ	16	61.1	- 20	1	8	ē,	5.	2
CAPC C	20. 1		4.6301	4.1978	3.7599	7.4871	3.3738	3 4030	3 2058	3.4584	3 4938	3.44.99	3 4128	3. 3529	3.2387	2 9:67	2 6091	2.2305	1.8297	1.4686	1.1775	.9150	.7156	5993	.5161	オチハゴ	2101.	. 3670	. 3372	.3162	CT85.	52. 1	122	-2316	5.		111	1164	-C934	32.70.	.0613	2150.	6 270.	6510.	.0295	~*~0.	610	0:68	1110	1900	e 53	0100 100	C 24 2
0+64+4	1 2 2			617.8030	905.2300	50 - 5- 50 G	713.1200	630. (200	556.2900	489.2300	429.8000	374.5500	325.7900	282.1400	P.3. 2400	200 T000	178.3200	151.7100	128.6200	108.9300	92.0080	77.7750	65.9370	56.00'33	47.6333	40 7000	34.8040	29.7020	25.8	21 3250	18 6-90	16.2170	13.9520	12.900		22.0 W	1. PC.05	2,9347	2.200	1.7387	1. 3-92	1.0502	5718.	٤,٢).	C'.64.	1.61	እ. እ.	82.32	56.31	.1207	C210.	.070.	1250.
STATION	7			1 2001	1.000	2.000	2 000	1.300	5.000	6.000	7.000	8.000	9 900	10.000	11.000	:2.000	000.51	14.000	15.000	.6.000	17.000	18.000	19.000	0.000	C00.15	22.000	23.000	24.000	29 29 29	26.000	27.000	28.000	29.50	000.02		15. 000	36.000	40.000	1.2 000	14.000	46.00C	48 000	50.CJ0	52.000	300.45	500	18.000		1.2.000	54 000	022 93	55 55 55 55	200 01

• • •

· · ·

•••

•

٠

. • . • .

· · ·

•

•

.

TABLE II-12. THERMODYNAMIC STATISTICAL PARAMETERS

••

T

1

::

-Fig

> : S

.

:

(

(

.

_

DECEMBER

		Í	, P	Ē	Ē	ć	Š	673.	B73.	53.	672.	699.	756.	865.	860.	ور ا.	ŝ	, Š	6 -0.		. 150				757.	Ē		F	737.	720.	653.	630.	į.		8	B S	B a	58	Śā	ā	9	8	5.	Ś	5	B 3.	60.	67.	5.	Ŕ	R.	Ĩ.	
	1 SBON	-	je.	Ľ.	5	ک	. <u>7</u> 6	873 .	073.	673.	6 72.	. 698	999	.59	960.	650.	3 3	ŝ	9-9.	i	831.	63	011.	S.	763.	Ē.	, Z	5	75.	29.	633.	630.			ā l	1 2	Ŝċ	i s	9	ÌJ	3		8	5	6.	8	ŗ	71.	. 16	Ŕ	Å:	23.	21.
	4 560N	2		875.	ż	۲۵	. 2.0	873.	B73.	873.	872.	869.	806.	863.	860.	660.	855.	5.	6- 3.	ل ر.	831.	678.	011.	803 .	763.	Ē	, 7	5 5	737.	720.	653.	630.	. 20		5.	B 3	B a			ā		.00	9 7.	ŝ	2	83.	8 0.	67.	47.	Ŕ	3.	22.	2
	SCH D	1	8	8	. 65	Ŗ	60.	80.	10	22	60	10	X.	82	97	ġ	\$.	8	17	Ċ	12	02	.03	80.	-25	8	2			ľ,	- 30				1.07	Ş	B	Ņ	Èŕ	2	2	2	R.	3	M 3.	5	5	8	.69	27.	8	8	2.79
1	5.0. 0		28.2000	20.3000	17.2600	11.6100	8.0410	6.3+00	5.4460	4 . B050	4.4870	0111 1	4.1020	4.1420	4.6~30	5.5820	6.3250	5.9580	4.8370	4.1910	3.0020	3.4690	2.70-0	1.8820	2.2.0	1.0650	62.29	.7654	.6908	5.35	CTT2.	0.46	.3326	.3050	2121	2062	Č.				1220	190	9160.	5110.	03~8	.0273	.0221	.0175	6113.	210.	6010	.006	.0171
			5000 · 527	225.0000	102.0000	991.2000	833. 8300	862.8030	723.9000	652.300	506-4000	526.6000	472.C300	421.8000	375.1000	331.2000	289.5000	250 5000	215.6000	105.0000	157.6000	133.1330	111.2000	9016.59	77.8300	65.5300	55.4500	46.9300	39.9000	33.9+00	0016.85	2.6300	21.1300	10.0500	13 2200							00.0.1	1.0530	6119	50.32	16:6.	277.5.	.3:46	12.27	. 1:359	M 2 2	1.33	36
			Ŗ	- 22	, S	54.1	ъ	10 J J	54	r,	Я	12.5.1	35	23	50,	52.	.27	15.	15.	3.	ŗ	60.	5 0	ŝ	10	<u>.</u>		25.	ę	.70	Ŀ.	E 3	6.	5		6.	Ę		R	0	.0	0	27	06	20.1	£		26	3	-1 02	70	5	66.
•	F .0.5	į.	5 0	9.8	4.07	5 2	2.91	5.73	2.82	ي. م	2.93	ю. 19 М	3.15	5 2 8	e. 71	2.2	3.08	3.16	<u>م</u>	2.S	2.83	3.8	3.40	3 .01	2.72	2.81	6	1	8.n	8. ;	1.10	2 2	6	50	8	5.9.5		<u> </u>		2		\$	6.0	6.62	3 5	۱. ف	و. ع	9. úS	9.77	10.78	3	10.2	15.33
•			CAB. 72	52'8'. 4 8	R 2	92. 192	27.7 83	32.22	2C6.4	16 C.N	£	20.12	238 63	231.11	223.90	217.36	2:2.38	2CU.95	206.08	203.46	272.03	202 · 202	204.87	208.11	21:12	213.72	512	218 06	270.10	222.22	223.93	25. E6	227.33	25.9.3	233.40	238.17	5	5			: S : S	21012	27.8.81	11、12	R.7 K	30 	5 52	р. 5£	202	r ī	235 45	£c'3.05	216.06
JANTRAL	XCH P		00	, . ,	51.1	C⊊	15	2 6	53	X	87	۰. ا	54	ct	<u>ج</u>	82. -	20	<u>e</u> :	1.1	<u></u>	õ.	Ş	.13	2.	<u>•</u>	5 0.	07	<u>.</u>	08	10	さ 、	2]	1 2	Ē.	Ŗ	Ļ	à			5	06	0	10	03	Π.	.07	£1.	10	<u>*</u>	=	6	Į.	2
VD 34V2			505 + . +	4.4397	4 1:35	1000.1	4.027S	4.1246	4.1327	4.2130	4.1791	4.321	4.0.03	3.9385	3.7301	3.3111	2.9295	2.4631	2.048	1.0683	BXX5 -	1.059	.8196	1033.		.4030	662.	3.96.9	5369	. 3344	. 3220	3104	02 62 ·	B+12.		0.91.			00000	10.2	0050	5	-0392	-032	¿750.	.0219	-01R2	C>10.	.0117	. 0381	1000	1000.	. 0110
いたい	r S S		012.0100	019.2030	905. X001	803.9600	712.0000	623.1100	554.5200	487.3030	426.7300	572 3700	323.5+00	0016.675	21.0700	206.6400	176.4600	150.1900	127.5000	0010.801	91.3030	1.250	65.3900	55.4000	47.1930	40 2293	5.5. A	CB0+ 62	19. NC(0	21.670	18.5610		13.7680		8.8344	Б.					. 3.6	1.0.67	97.38	91- 3 .	0		NHON .	.24:96	9.771.	.1230	. 0069	0110.	3.2
STATION	~ <u>5</u>		000.	1 200.	000.1	2.000	3.000	r.003	5.000	6.000	7.000	8.000	9.000	10 000	11.000	12.000	13.000	14.000	15.000	16.000	17.000	18.000	19,000	20.000	21.000	22.000	23.000	000	S. 030	26.000	27.000	5-8-000	000 . 65	30 000		000.44			000 01	14, 000	46.000	48.000	50.000	52.000	0:0	26 000	56 000	60.003	62.000	67. DCO	65.000	68.000	70.000

.

77

•

TABLE II-13. HIERMODYNAMIC STATISTICAL PARAMETERS

.

-

.

.

)

ANNUAL

	2	9023.	9063.	9663.	9065.		9813.	- 034.6	.08:6		9729.		629.			. 69		9.73.	С.		951 9 .	9129.	5027.	. 1530	827 .	8422.	6-19 .	B333.	8106.	7, 40.	152.		501 0 .	1072.				1007	10,00	10	1 047 .	1076.	. 190	- 6 -3.	10.2.	9.0	9-0.	No	124	ž	. 103	
1 ABCN		9023.	9063.	9863.	3055.		9913.	9618	9780.		4729.	9093.	83.			.6966	5	9-73.	С	920	9210.	9.29.	9027.	8651.	8551.	8422.	8-19.	8333.	B105.	73	71.2.	30.4	5618.	1193.		ŝ		1214	1:97.	. 3 1	. 1211	1.50.	1147.	- 27.	1120.	1049.	9.9 9	637.	Ş	. nga	ž i	5
		9023,	9063.	9963.	9865.		9813.	9790.	9783.	. 80/ 8	9729.	9693.	283		9623.	9.269.		9-73.	К	9 J. 6	5210.	9129.	9n27.	9631.	8551.	8422.	6 73.	8533.	8106.	7399.	7152.		5 816.	. 1101	1080.			1007	1098.	1094.	1 207.	1076.	1001	1043.	1022.	950.	8 - 0.	633.	8.7	in di		・ナコレ
		18 .	8	1.00	ÿ	• 0 *	.37	£.	<u>-</u>	8.	6 0	2		-1.87		- 63	11	ŝ	×.	37.1	7	5. F	• · ·	E	- , 09	20 .	8	-02	Ş	ŝ	<u>.</u>	.03	5		<u>e</u> ;				12	82	27	20	ŝ	61	17	17	17		9 0	r, a	87	2.1
	0,113	30.0600	30.5330	19.4800	12.4400	0517.8	6.7110	5.96.20	5.1790		4.3750	4.1120		4.5360	2.6150	6.9-03	7.2350	6.3260	4 .0070	3.7350	2.9360	e.2530	1.7540	1.4610	1.3020	1.1260	1.0190	1106.	8508.		.6572	.5916	5323	4659	1182.			0011	****	.0053	6490.	1050.	.0407	.0330	6120	.0257	1010.	0110	0126	NO10.	8: co.	900.
	0 N 3	197.5000	198.0000	0000.090	962.7000	6119 8110	0009 108	722.1000	F5.2 6030			0001.124	421.5C00	375 7000	3:22.41.23	0::::162	253 6000	218.9000	187.3000	159.0000	133 9000	111.9000	93.7200	79.7900	C6. 5200	56. 730	47.8-00	40.7200	34.5930	29 6100	25.3100	21.61,00	18.5500	13.5700	10.0300		0+20.0		002 2	1.6230	1.4150	1.1060	. 6657	.67.19	10.4.	6217.	37.26	500 A	F F F F F F F F F F	. 1483	1411.	5780.
		1 08	75 1	-1 20.:-	- 65 -									81	E .	60.	с Г.	Ŕ	20	01	23	47	53	52	59	65.1	<u>8</u> .	61.1	1 1 1	х. -	57.1	¥	C 3 . 1	60	01	20.				07	15	07	8.	- , 39		£	10	50.	-26	9 ,	76.	06.
• • •	- X 000	6.18	6.2	01.7	3.73	R.	61.5	3, 53	· · ·	5. 59	8 m.	5 5 7	61 10	3.53	80 S	2 ~	đ, ru	с. Э	2°.78	л С	63 M	64.E	戊	2.93	2.9	2.79	2.93	9.9 1	3.12	たい	с. Г	2. F	£7:€	5	ጽ{ ው 1	5.5			19.4	5.67	5.79	5.9	6.31	5.80	7.62	67.7	ы. ч	6.6	10.90	1.10	1.1	<u>.</u>
1 77 35	200	16 162	291 60	263.03	8. Ř	ごっん		5.2	いてい	C	2 6. 36 2	5	213.46	225.09	219.31	213.70	209.33	5 (C)	203.87	203. 9	64.402	207.35	210.2	213.44	215.92	217 95	2:0.97	201 81	95 572	22.0 36	727.07	7. 9.2	233.4B	235.14	230. F	12.54	5		91	2653	21.0.3	3.1.52	99 141	8.3	30.02	2 r.2		20.2	まっえ	211, 55 211, 55 211, 55	ሐ ም የ	2.9.33
NAVERAL OFU D		- 13	11	- 64	6 8	8	8	8	8	6 8	6	2	65	55	17	<u>ب</u>		- 23	28	22	60	2	07.	Ξ.	Ξ.	60.	60.	2 <u>.</u>	02	07	12	15	19	- 16	52 - -	2.1			91.	- 16			60°-	06	- OZ	C6	÷0.	80.	ΰ£'	58. 1	ទុទ្	Z 0.2
CAFF CA	ģ	4.1772	4.2322	3 7052	3.8369	4.C318	97. 7	4.4545	د م الح ا		1.6071	4.8,65	151217	4.6650	5.72	3.7345	3,1786	215779	2,0364	1.710	1.5:88	1.3551	1153.1	1.1045	1966	576 8 .	.8050	. 7202	63 HJ .	7163 .	1523.	ですごす。	50.4.	.3384	8.92.	3212.			CIND	5 FE	. 0512	1 2.	.0337	. 5276	1 ,13	- CI 8-2	1512.	.0122	0010.	.0075	.0051	9600.
		117 4000	17 2000	ICS.1500	04.9703	13.5930	531.L3CD	7 55.6220	0000 600	1600 vr2	74.5200	26.2100	82.6300	-3. E100	0023 600	18 5000	52 31.00	29.3-00	0063.60	92.7730	78 5320	66.6110	56.6350	48.2750	41.2270	35.2760	30.2110	25.9250	22.2660	19.1560	16.4350	14.2193	12.6740	9.1378	6.6714 025				6101.1	1.3099	1.0097	.e.e.	.6535	9115.	S 2.2 .	87, E	ףינק.	0541.	.1342	0 0	5. IO.	1+50.
STATION =	1 X X	01 000	.003 10	1.003 5	2.CCO E	CC3.K	90 10 11	1 000 Y	6 703 4		B.000	6.000	10 000 61	11.020	12.000 2	1 000 21	14.003	15 000 1	16 COU 1	17.000	18.000	19.003	210 . COD	000.15	22.000	23.COD	24.000	25.000	E6.C00	27.030	<u>г</u> ч. с 30	000 6.2	000.CE	34.030					100.22	40.COD	-8 COO	50 COO	52 (20	000 -4	(C) 95	100 CC	CO. 200	BC. COO	CO 73	r. 700		000 01

Copy available to DTC does not permit fully legible reproduction

.

TABLE III-I. MOISTURE RELATED STATISTICAL PARAMETERS

E

STATION	• 747940	CAPE	CANA'SERAL								
2	VAPOR P	5.0. VP	sken vp	rv -	TV	SKEH TV	OCHPT T	5.0. DPT	SKEH OPT	NOBS T-P	NOBS TV
	HEAN			HEAN	S.D.		MEAN				
KPH .	MB	MB		EE- K	DEG K		DEG K	DEG K			
. JOG	14.414	5.176	29	289.45	6.32	68	284.45	6.61	-1.11	779.	779,
.003	14.141	5.140	19	289.19	6.30	59	284.17	6.55	-1.01	894.	895.
1.030	9.835	4.379	41	285.78	4.88	84	277.8+	9.22	-1.41	842.	895.
5.000	5.641	3.245	.21	281.74	3.76	84	269.44	9.62	61	779.	895.
3.COO	3.231	2.095	. 70	277.45	3.39	73	265.11	8.93	19	712.	895.
4.COO	1.991	1.348	.94	272.05	3.36	79	255.11	8.56	08	669.	893.
5.000	1.19•	.8+6	1.68	265.94	3.29	67	250.05	8.37	07	654.	893.
6.000	.735	.518	1.11	259.44	55.8	70	244.70	8.12	21	643.	69 2.
7.000	.427	.296	1.05	252.77	3.30	85	239.01	7.92	41	675.	88 9.
8.000	.239	. 158	.93	245.65	3.31	63	233.45	7.42	56	644.	885.
9.000	.113	. 974	.94	238.10	3.22	49	226.65	6.79	67	607.	8 83.
16.000	.047	.026	. 79	230.48	3.07	32	219.72	4.97	r.35	441.	80 1.
11.000	.020	.010	.74	223.47	2.97	.20	213.30	4.18	43	369.	878.
15.000	.009	.004	1.18	217.52	3.35	. 39	207.43	3.50	50	369.	877.
13.000	.005	.003	1.63	213.64	3.56	01	203.51	3.59	- 36	207.	872.
14.COO	.003	.001	.63	SI0.85	ć.89	22	200.28	3.13	58	103.	869.
15.000	500.	.001	.13	207.31	2.56	. 39	196.99	2.27	13	13.	865.
16.COO	99 .993	99 .999	999 .93	204.15	2.69	.74	939.99	99.99	999.99	0.	857.
17.000	9 9.999	99 .939	99 9.99	505.3H	3.11	.73	13 3.99	99.99	999.99	0.	636.
18.000	99 .999	99 .939	99 9.99	505.54	3.55	.57	3 33.99	99.99	999.99	٥.	827.
19.000	99.939	99 .999	999.9 9	204.46	3.52	. 38	999.99	99.99	999.99	0.	810.
50.000	99.999	99.97 3	999.93	207.54	3.30	.29	999.99	99.99	999.99	0.	797.
51.000	sa.999	93 .939	99 9.99	210.60	3.14	. 17	999.99	99.99	999.99	0.	7 47.
22.00 0	99.9 99	99 99 9	999.93	213.35	3.09	.03	939. 99	99.09	999.99	O.	736.
53.000	99.3 93	99 .993	939 .93	215.45	2.9+	.ຂົມ	999. 9 9	9 9.99	979.99	0.	724.
24.000	93.993	99 .939	939.99	517.43	3.11	.10	939. 99	93.99	999.99	0.	718.
25 630	90.999	99.579	97 5.93	5:3 57	3.19	. 17	993. 99	99.93	999.93	0.	703.
50° °00	9 9.939	99.939	939.93	220.91	3.14	. 14	993. 99	99.99	999.99	0.	687.
27.000	99.393	9 9.393	999.93	222.71	3.25	.11	939. 99	99 .99	99 3.99	0.	623.
28.000	99.999	99.923	959.93	224.57	3.55	.01	939.99	9 9.99	9 99 39	0.	602.
59.000	59.9 99	99.399	393.93	226.25	3.57	03	999.99	99.99	999.99	0.	490.
30 600	63 633	00 000	000 00	220 01	1 76	- 10	000 00	a	000.00	•	to The

JANUARY

TABLE 111-2. MOISTURE RELATED STATISTICAL PARAMETERS

FEBRUARY

ľ

۳**۳** ۱

: 7

•

٠.

STATION	- 747940	CAPE	CANAVERAL								
Z	VAPOR P	S.D. VP	SKEH VP	TV	τv	SKER IV	CEHPT T	S.D. 0P1	SKEN OPT	NOBS T-P	NOBS TV
	MEAN			PEAN	5.0.		MEAN			•	
KH	MB	MB		DEGK	DECK		DEC K	DEGK			
. COO	14.000	5.311	53.	58 3 . 50	6.49	33	233.99	6.52	72	717.	717.
. 003	13.770	5.316	. 10	269.36	6.53	26	283.73	52.8	63	798.	799.
1.000	9.072	4.414	10	205.30	5.05	57	276.59	9.09	10.1-	760.	8 00.
2.COD	5.213	3.193	. 33	201.20	3.93	82	269.17	9.84	47	719.	800.
3 COO	3.112	2.076	.81	276.61	3.60	48	261.52	9.07	16	663 .	800.
4.000	1.919	1.341	1.04	271.10	3.52	07	255.55	8.72	07	634.	793.
5.000	1.196	839.	1.11	265.12	3.52	04	249.91	0.63	10	617.	792.
6 000	.731	.517	1.15	258.70	3.54	17	244.62	8.21	30	614.	792.
7.000	. 430	. 295	.93	252.05	3.57	45	238.96	8.23	62	621.	792.
8.000	.229	. 148	1.CO	2++.98	3.67	- 47	233.10	7.29	66	609.	786.
9.000	.110	.067	1.05	237.75	3.60	36	55.65	6.28	71	560.	786.
10.000	. (145	.024	.81	230.04	3.42	09	219.49	4.79	-,41	441.	785.
11.000	.220	.009	.51	224.17	3.39	.16	213.17	3.99	48	386.	782.
15.000	.010	.005	.71	218.99	3.77	.11	207.89	3.78	51	382.	780.
13.000	.0.)6	.003	. 86	215.07	3.59	14	503.25	3.91	-,47	235.	775.
14 000	.003	.001	.53	511.58	2.79	.19	SC0.53	3.37	67	76.	770.
15.000	.002	.001	55.	207.22	5.61	.33	197.39	2.43	20	12.	766.
16.000	93 .529	99.999	399.99	203.97	5.25	. 39	933. 9 9	99.9 9	99 9.99	0.	759.
17.000	<u>68</u> .638	99.9 99	9 93.93	202.31	2.91	. 33	973.99	99.93	999.99	0.	751.
18.000	99 .979	99 ,99)	993.93	202.45	3.25	.23	973.99	93.99	999.99	0.	7+6.
19.000	93,993	9 9.953	999.99	204.94	3.13	10	939.9 9	99.99	999 <i>.</i> 99	0.	739.
20.000	99 .999	99.939	939.99	208.08	2.91	. 19	999.99	99.9 9	999.99	0.	727.
21.000	99.99 9	93.939	939.93	511.11	2.68	. 16	539 .99	9 9.99	999 .99	٥.	692.
22.000	3 3 . 3 33	99.999	939.99	213 72	2.64	07	999. 9 9	99.99	9 39.99	0.	678.
23 000	99.933	99.932	9 79.9 9	215.56	2.51	11	999.99	99.99	969.99	0.	670.
24.000	53.999	99.999	979.99	217.38	5.66	17	939.99	99.99	9 99.99	0.	679.
25.000	9° .939	99 .993	979.9 5	218.97	5.66	.06	939. 9 9	99.99	999.99	0.	6 67.
26.000	93.999	39 .914	933-93	250.62	2.58	-12	9 99. 9 9	99.99	599-99	0.	65 1 -
27.LOO	93.939	99 .999	939.99	222.47	5.62	.24	933.9 9	99.99	999.99	0.	585.
29.000	99,959	99.979	333.99	224.27	5.85	.20	999.99	9 9.99	999.39	0.	567.
010 25	99.939	9 <u>9</u> - 99	939-99	226.25	2.93	02	559 39	<u>99.99</u>	99 9.99	0.	447.
30.000	59 939	99.933	999 .99	S58°50	3.09	12	999. 99	99.99	399.99	٥.	فوتوتو

TABLE III-3. MOISTURE RELATED STATISTICAL PARAMETERS

]

•

Ň

-. -.

•

•

.

.

r

MARCH

STATION	- 747940	CAPE	CANAVERAL								
Z	VAPOR P	S.D. VP	sken vp	TV	TV	SKEH TV	DEHPT T	S.D. DPT	SKEH OPT	NOBS T+P	NOBS TV
	HEAN			MEAN	S.D.		MEAN				
KM	ME	HB		DEG K	DEGK		DEG K	DEG K			
. 000	16.256	5.189	23	292.03	5.62	40	296.58	5.64	91	725.	725.
.003	15.788	5.258	17	291.78	5.73	38	236.07	5.85	86	872.	872.
1.COO	10.523	4.368	25	287.20	4.82	69	279. 34	7.74	-1.16	835.	872.
2.000	5 937	3.359	. 16	282.82	3.83	85	270.20	9.50	57	726.	874.
3.000	3.319	5.115	.68	278.14	3.57	44	262.55	6.74	13	668.	874.
4.000	1.955	1.287	.91	272.28	3.51	39	256.03	8.32	10	654.	87 3.
5.000	1.161	.796	1.06	265.91	3.50	20	250.14	8.03	12	644.	873.
5.000	.713	.459	1.08	259.26	3.43	17	244.38	8.10	22	636.	872.
7.000	.426	.282	1.02	252.55	3.47	26	238.46	7.98	42	642.	871.
8.000	.224	. 148	. 96	ZN .48	3.65	37	232.75	7.44	53	654.	869.
9.000	.1:0	.970	1.04	238.00	3 64	24	236.55	6.46	54	615.	8 51.
10.000	.046	.028	1.12	230.54	3.47	09	219.38	5.29	30	464.	857.
11.000	.020	.010	.80	223.80	3.11	. 09	513.51	4.18	36	420.	855.
12.000	.003	.004	.47	518 . 3 7 ·	3.26		207.76	3.48	55	410.	854.
13.000	.005	.002	.50	214.55	3.20	.04	203.72	3.51	72	278.	852.
14.000	.003	.002	.85	211.27	5.90	07	200.04	3.54	60	106.	8 48.
15.000	99 9 99	99 .339	999 .99	207.75	2.75	.29	399. 99	99.99	999 .99	3.	845.
16.000	9 9.999	99 .979	999 .99	204.84	5.79	55.	939.99	9 9.99	99 9.99	0.	841.
17.030	99.993	99.999	999. 99	203. IB	3.03	.15	999. 99	99.99	999.99	0.	824.
18.000	99.539	99.999	999. 99	203.09	3.52	.08	999. 9 9	99.99	999.99	0.	BI 4.
19.000	99.939	99 .999	999.99	205.49	3.45	-02	999.99	99.99	9 39.99	Ο.	805.
50.000	99.999	99.939	99 3.99	508.68	3.11	.01	9 39.99	9 9.99	939.99	0.	795.
21.00U	93 939	39.939	939. 99	211.86	5.94	03	999. 9 9	99.99	999. 99	0.	759.
55.000	59.979	99.999	9 59.99	214.75	5.83	06	999. 99	99.99	999. 99	0.	755.
23.000	99.939	99 .999	99 3.93	516.81	2.74	15	939.99	99.99	9 99.99	0.	741.
24.000	99.999	9 9.939	993.99	219.75	5.86	06	999.99	99,99	999.99	0.	736.
25.000	99 .939	99.999	\$ 9 9.99	550.24	3.02	09	999.99	99.99	999 .99	0.	733.
56 . 000	3 9.9 39	99.939	999.99	222.41	3.10	08	993.99	99.99	9 99. 99	0.	718.
27.000	9 9.9 99	9 9.999	999.99	224.34	3.19	03	999.99	99.99	999.9 9	0.	649.
C00.85	99.939	99 .999	999.39	226.41	3.32	06	939.99	99.99	939.39	С.	630.
29.000	99.999	99.999	999.99	228.34	3.32	13	999.99	99.9 9	9 99.99	0.	510.
30.000	99.939	99 <u>~</u> 99	999.99	230.77	3.32	40	999.99	99.99	999.93	0.	500.

TABLE III-4. MOISTURE RELATED STATISTICAL PARAMETERS

·····

·. ·.

·

والمراجب والمعطي والمراجب والمراجب والمراجب والمراجب

.

: ()

STATION	- 747940	CAPE	CANAVERAL								
Z	VAPOR P	5.0. VP	SKEH VP	TV	TV	SKEH TV	DEHP? T	5.0. OPT	SKEH OPT	NOBS TOP	NOBS TV
	HEAN			HEAN	5.0.		MEAN			•	
KM	119	MB		DEGK	DEG K		DEG K	DEGK			
. 000	10.557	4.534	41	235.27	4.99	65	289.00	4.27	97	736.	736.
.003	18.205	4.564	32	295.14	4.92	65	298.68	4.33	68	871.	871.
1.000	11.505	3.060	31	283.66	3.27	52	281.23	6.05	-1131	843.	871.
2.000	5.997	3.213	.22	284.67	3.10	45	270.70	8.75	58	736.	871.
3.000	3.265	2.007	.78	279.70	5.85	29	262.54	8.39	19	670.	869 .
4.000	1.968	1.264	1.02	273.80	2.68	09	256.21	8.19	+.20	655.	868.
5.000	1.276	.839	.90	267.29	5.64	21	250.93	0.41	33	641.	867.
6.000	756	.524	1.08	263.56	2.65	23	244.91	8.44	39	623.	867.
7.000	+35	.303	1.08	253.80	2.75	54	239.CO	8.19	50	629.	866.
0.000	.227	.152	1.07	2+6.66	3.00	63	232.92	7.44	63	633.	864.
9.000	.110	.069	1 07	239.11	3.05	46	226.54	6.42	64	609.	8G1.
10.000	. 046	.026	1.15	231.33	2.96	05	219.55	N.86	24	432.	858.
11.000	. 020	.011	1.13	223.98	2.67	.01	212.93	4.32	28	375.	853.
15.000	.008	.004	.93	217.73	5.65	55.	206.95	3.53	34	375.	653.
13 000	.005	500.	.70	213.55	3.02	. 09	202.75	3.56	- , 44	240.	847.
14.000	.003	S00.	. 54	210.63	3.03	31	199.54	3.01	33	109.	844.
15.000	.002	500.	1.24	207.67	5.68	.03	195.72	5.18	.92	6.	841.
16.000	99.973	99 .999	999.99	205.05	2.54	.29	999.93	99.99	999.99	0.	838.
17.000	99.999	99.999	99 3.99	203.49	2.70	55.	9 39.99	9 9.99	999.99	0.	823.
18.000	99.939	99.999	999.99	203.52	3.04	.29	993 93	99.99	999.99	0.	817.
19.000	99.999	99.999	999.99	205.23	2.93	. 34	939 99	99.99	999 .99	0.	814.
50.000	99.939	99.999	999.99	209.62	2.67	.21	999. 99	99 .99	9 93.99	0.	805.
21.000	93.999	99.999	999.99	213.18	2.48	. 12	99´ 99	9 9.99	99 9.99	Q.	770.
55.000	99.999	93.999	9 99.9 9	215.92	2.42	03	999.99	99.99	999.99	0.	766.
23.000	99.939	99.999	999.99	218.20	2.38	11	999. 99	99.99	999 .99	0.	755.
24.000	93.9 3 9	99.999	999.99	220.44	2.40	08	9 99. 99	99.99	939.99	0.	752.
25.000	99.993	99.999	999.99	222.55	2.43	10	99 9. 99	9 9.99	<u>9</u> 93.99	0.	750.
25.000	99.999	93.939	933.99	T.M. 74	2.53	13	993.99	9 9.99	999.99	0.	729.
27.000	99.933	99.939	939.99	226.90	S.20	06	999.99	9 9.99	9 7 9.99	0.	658.
28.000	941,999	99.999	933.33	553.65	2.64	04	939.99	99.99	939. 39	0 .	635.
29.000	99 539	99.999	99 9.99	231.05	2.57	08	949.93	9 9.99	999.99	0.	534.
10 000	00 000	00 000	000.00	277 05	2 60	- 10	000 000	00 00	000 000	0	5,25

APRIL

TABLE III-5. MOISTURE RELATED STATISTICAL PARAMETERS

T

STATION	- 747940	CAPE	CANAVERAL								
Z	VAPOR P	S.D. VP	SKEH VP	TY	TV	SKEH TV	DEHPT T	S.D. OPT	sken opt	NOBS T+P	NOBS TV
	MEAN			MEAN	S.D.		MEAN				
ĸМ	MG	MB		DEGK	CEG K		DEG K	DEG K			
.000	22.56S	3.582	47	298.72	3.87	28	292.39	2.71	~.90	767.	767.
.003	22.246	3.760	50	298.53	3.95	35	292.13	2.92	~.99	828.	828.
1.000	13.742	3.374	51	292.39	2.37	39	284.36	4.30	-1.39	821.	828.
2.000	8 025	3.019	30	286.34	5.03	12	275.77	6.69	-1.23	767.	828.
3.000	4.418	2.144	. 30	200.62	1.96	31	267.15	7.32	56	715.	826.
4.000	2.593	1.433	. 64	274.66	5.05	26	260.05	7.57	39	648.	826.
5.000	1.503	.940	.92	268.55	2.14	31	253.17	7.77		602.	823.
6.000	.681	.592	1.08	262.00	2.25	32	246.87	7.89	23	578.	822.
7.000	.486	. 320	. 96	255.35	2.33	55	240.59	7.51	35	589.	820.
8.000	.271	.171	.85	248. Se	2.51	60	534:85	7.13	~.59	582.	618.
9.000	.129	.090	.93	240.70	2.59	45	227.97	6.50	62	591.	817.
10.000	.051	.027	. 82	232.82	2.57	32	250.23	4.79	36	426.	816.
11.000	.020	.010	.75	225.16	2.30	08	513.56	4.13	~.59	398.	814.
15.000	.009	.003	.53	218.14	5.24	.24	206.79	3.37	81	398.	813.
13.000	.004	.002	. 58	212.60	5.65	.45	202.09	3.22	73	230.	810.
14.000	.003	.001	. 30	209.61	3.11	50.	199.61	3.25	~.98	133.	808.
15.000	.002	.001	40	207.67	2.83	50.	196.62	28.5	-1.24	10.	806.
16.000	99.939	99.9 39	9 97.99	205.98	5.48	15	933.97	99.99	9 99.99	Ó.	605.
17.030	99.339	99 .939	99 3.99	205.15	5.59	. 02	999. 9 9	99,99	933.99	0.	792.
18.000	99.939	99.9 99	999.99	205.69	2.50	.11	999.99	99.99	9 99.99	0.	786.
19.000	99.999	99 .999	939.99	208.60	5.42	11	999.99	99 .99	999.99	0.	779.
20.000	99.939	99.399	999.99	211.91	2.20	29	999.93	99.99	939.9 9	0.	776.
21.000	99.939	99.939	999.99	215.02	1.95	21	999.99	99.99	999.99	0.	748.
22.000	99.933	99 .939	999.99	217.59	1.84	19	939. 9 3	99.99	939.99	٥.	746.
23.000	99.999	93 .993	999 99	219.81	1.72	23	999.99	99 .99	939.99	0.	739.
24.000	93.993	93 .999	3 33 83	221.90	1.83	26	999.99	99.99	999.99	Э.	739.
25.000	99.333	99 .999	939.39	553.66	1.01	12	999.93	93.99	9 99. 99	0.	726.
56.000	99.933	9 9.999	999.99	225,81	1.77	.03	999. 9 9	99.99	933.99	Q.	695.
27.000	9 9.939	99.939	929.99	227.62	1.96	.17	999 91	99.99	999.99	0.	617.
28.000	99.991	99 .999	95/0.99	229,49	1.80	.08	999.9 3	33.99	999. 3 9	0.	505.
29.000	3 ð 533	99.999	999.99	531.56	1.93	.20	999 9 9	99.99	9 99.99	Ο.	500.
30 000	00 000	00 000	000 00	212 02	1 04	16	000 00	00 00	000 000	۵	LOG.

MAY

٠.

· • _ ·

~

۰.

TABLE III-6. MOISTURE RELATED STATISTICAL PARAMETERS

S. 2. 3. 4. 5

. •

• •

• . Ì

T ·...

. .

ł

1

-

JUNE

STATION	. 7479+0	CAPE	CANAVERAL								
Z	VAPOR P	S.D. VP	SKEH VP	TV	TV	SKEH TV	DEHPT T	S.D. DPT	skeh opt	NOBS T+P	NOBS TV
	HEAN			MTAN	S.D.		HEAN			•	
KM	MB	HB		DEGK	DEG K		DEG K	DEGK			
.000	26.502	2.657	50	301.20	3.07	.31	595.15	1.71	91	754.	754.
.003	26.416	2.717	54	331.11	3.09	.30	295.06	1.76	94	770.	771.
1.000	16.660	2.679	62	294.75	1.59	56	287.60	2.7I	-1.24	767.	771.
5.000	10.291	2.644	• . 98	288.39	1.46	37	279 96	4.79	-2.03	755.	771.
3.000	6.305	2.050	56	282.39	1.45	09	272.67	5.96	-1.67	7∖0.	769.
4.000	3.982	1.577	27	276.41	1.54	05	266.16	6.61	-1.23	676.	761.
5.000	5 321	1.192	. 20	270.63	1.62	. 06	258.90	7.60	76	642.	756.
6.000	1.405	.765	. 38	264.59	1.71	07	252.63	7.55	66	592.	755.
7.000	.765	.447	. 58	258.19	1.62	06	2+5.69	7.33	50	584.	7+6.
8.000	411	.235	.62	251.50	5.02	25	239. 32	6.73	57	565.	742.
9.000	. 195	.115	.72	244.25	2.28	15	231.91	5.62	76	564.	741.
10.000	.079	.043	. 98	236.49	2.35	.03	S54°15	5.16	47	412.	739.
11.000	.031	.016	1.35	228.42	5.50	. 14	216.48	4.21	29	372.	736.
15.000	-015	.005	. 57	220.67	2.15	. 31	209.31	3.47	40	369.	735.
13.000	.005	.002	. 58	213.64	5.08	. 36	505.65	3.37	76	231.	732.
19.000	.002	.001	.87	208.14	2.39	.20	196.96	3.32	57	116.	732.
15.000	.001	.001	1.52	204.96	2.60	.22	194.46	3.13	1.33	7.	725.
16.000	99.933	93.999	999.99	203.87	2.54	. C4	993.99	99.99	9 99.99	Ο.	724.
17.000	99.939	99.999	999.99	204.35	2.54	13	993 . 99	99 .99	999.99	0.	7:0.
18.000	99 .99 9	99 .999	999.93	206.37	2.54	20	973 99	99 .99	999.99	٥.	107.
19.000	99.999	99.979	979.99	209.61	2.13	17	939.99	99 .99	999.99	0.	704.
20.000	99.999	99 .999	999.99	212.79	1.62	14	979.99	9 9.99	999.99	0.	699.
21.000	99 .939	99.933	999-99	215.59	1.67	04	953.39	99.99	999. 9 9	0.	681.
22.000	99.999	99.939	997.97	218.05	1.54	11	999.99	99 .99	979 99	0.	674.
23.000	93.939	99.999	973.53	220.18	1.49	03	939.99	99 .99	909.99	0.	666.
24.000	69.99 9	99.979	97 9.94	222.16	1.66	.10	993.99	99.99	939.93	0.	668.
25.000	99.999	99.999	993.99	223.93	1.57	51.	999.99	9 9.39	9 99 99	0.	657.
26.000	99 993	99.929	929-99	225 61	1.59	.08	999.99	99.9 5	939 99	0.	642.
27.000	99.999	99.999	924.93	227.32	1.96	.24	933-99	99 .99	999 99	0.	595.
28.000	99.999	99.999	999 59	229.03	1.67	13	999.99	99.99	939.99	0.	571.
29.000	99.999	99.999	939.99	230.62	1.86	11	999.99	99.99	999.99	Ó.	476.
30.000	99.939	99.399	999.99	232.26	1.79	51	999.99	99 .99	999.99	0.	468.

TABLE III-7. MOISTURE RELATED STATISTIC. 'L FARAMETERS

.

.

.

1

۰.

.

4

•

S

3

.

1

1

-

JULY

STATION	- 747940	CAPE	CANAVERAL								
Z	VAPOR P	S.D. VP	SKEH VP	TV	TV	SKEH TV	OCHPT T	S.D. DPT	SKEN DPT	NOBS T+P	NOBS TV
	MEAN			MEAN	S.D.		MEAN				
KM	HB	MB		DEGK	DEG K		DEG K	DEG K			
.000	27.789	2.486	25	305.33	3.33	-22	295.92	1.51	68	789.	789.
.003	21.768	2.483	25	302. 30	3.35	·51	295.90	1.51	68	792.	794.
1.000	17.705	2.372	46	296.05	1.21	. 19	288.61	5.55	-1.14	793.	794.
S.000	10.911	5.543	66	283. 36	1.14	.03	281.07	3.55	-1.88	791.	794.
3.000	6.630	1.031	51	283.23	1.19	26	273.69	4.63	-1.55	767.	793.
4.000	4.133	1.419	~ .20	271.22	1.26	50.	267.02	5.47	-1.28	710.	784.
5.000	5.551	1.127	. 17	271.42	1.32	.09	260.19	6.69	93	68 1.	783.
6.000	1.519	.730	. 35	265.50	1.42	.08	253.96	6.72	85	619.	782.
7.000	.849	.435	. 38	259.21	1.42	30.	247.16	6.68	87	574.	782.
8.000	.436	.229	. 44	252.63	1.62	17	210.02	6.70	-1.00	557.	781.
9.000	.216	.118	.52	245.44	1.98	08	233.02	6.53	95	545.	781.
10.000	.089	.0-3	.83	237.64	1.93	10	225.13	5.51	83	424.	779.
11.000	.035	.018	.87	229.44	1.85	18	217.49	4.42	30	364.	777
12.000	.013	.006	. 75	221.44	1.72	11	210.07	3.66	37	384.	<i>1</i> 72.
13.000	.005	-005	.75	213.97	1.71	. 12	203.33	3.38	37	218.	765.
14.000	S00.	.001	1.56	208.04	1.94	. 13	:97.62	3.19	34	113.	765.
15.000	99.999	99 .999	999 .99	204.76	2.15	.17	999.99	99.9 3	999.99	ę	757.
16.000	99 .999	93.999	99 9.99	204.29	2. <i>2</i> 5	01	993.99	99.99	999.99	0.	754.
17.000	9 9.999	99.939	999.39	205.41	5.11	32	999.99	9 5 99	999.99	0.	744.
18.000	9 9.99 3	99.933	993 , 93	207.63	2.03	-,49	993.99	99 .99	993.99	0.	745.
19.000	99.999	99.999	993 99	210.59	1.75	33	999.99	99.99	979 .99	0.	742.
20.000	99 .999	99.93 9	999.99	213.35	1.63	-,39	939.99	99.99	999 .99	0.	734.
21.000	99.999	99 .993	995.93	216.03	1.63	23	999.99	99 .99	999.99	0.	705.
22.000	99.933	99.9 99	99 ⁿ .93	218.18	1.46	23	939.39	99.99	939.99	0.	689.
23.000	93 939	93.939	973.99	223.14	1.51	- , 32	999.39	99.99	999.99	0.	676.
24.000	93.999	93.979	997.99	222.03	1.68	03	999.99	99.99	999.39	0.	673.
25.000	99.333	99.999	399-39	ć23.63	1.65	11	999.99	99.99	999.99	C.	676.
26.000	99.939	99.999	992.99	225.52	1.69	06	999.99	99.99	999.99	Ó.	652.
27.000	93.999	93.999	993.99	227.15	1.87	07	999.99	99.99	999. 99	0.	613.
28.000	99.939	93.939	993 99	228.66	1.66	32	999.99	99.99	999.39	0 .	585.
29.000	99.933	99.999	990.99	230.19	2.08	06	999.99	99.99	939.99	1.	476.
30.000	93.373	99.999	599 99	231.71	1.86	17	999.99	99.99	999.99	1.	446.

TABLE III-8. MOISTURE RELATED STATISTICAL PARAMETERS

.

• • •

.

•

C

· ·

.

`.·'

. .

T

.

.

.

SINITON	= 14:340	LAPE	CANASE PAL								
Z	VAPUR P	S.D. VP	SKEH VP	TV	ŢΥ	SKEH TV	DENPTT	5.D. Dº1	sken opt	NOBS T+P	1085 TV
	HE AN			MEAN	S.D.		HEAR			•	
KM	HE:	MƏ		DEGK	DEG K		DEG K	DEGK			
.000	27.716	2.485	32	301.97	3.38	.26	295.87	1.51	59	769.	7(*).
.003	27.704	2.476	33	301.95	3.38	.25	295.87	1.51	58	774.	775.
1.000	18.293	5.552	32	296.13	1.07	29	289.15	1.98	77	767.	775.
2.000	11.545	520.5	61	289.59	1.04	31	282.01	2.89	-1.51	769.	775.
3 000	7.130	1.713	51	283.56	1.12	13	274.87	3.83	-1.40	760.	773.
4 CÚO	4.473	1.426	42	277.56	1.22	.10	269.16	5.24	-1.51	713.	762.
5.000	857.5	1.036	. 06	271.74	1.12	. 15	261.45	5.99	99	671.	758.
6.000	1.568	.746	. 20	265.75	1.36	. 34	254.23	6.87	92	616.	756.
7.000	.866	.439	. 36	259.45	1.37	.11	247.43	6.77	83	600.	755.
8.000	.455	.243	. 34	252.88	1.56	50.	240.34	7.03	96	565.	753.
9.000	.215	.115	. 58	245.74	1.85	.22	233.06	6.36	-1.04	548.	751.
10.000	.097	.049	1.38	237.97	1.91	.47	224.94	5.42	77	419.	750.
11.000	. C 34	.017	1.40	229. 83	1.04	.29	217.52	4.08	21	376.	747.
12.000	.013	.005	1.55	221.89	1.72	.22	510.18	3.32	07	382.	746.
13.000	.003	.003	1.57	214.40	1.70	.23	203.35	3.35	03	215.	740.
14.000	.002	.001	1.10	208.28	1.90	.57	197.10	3.16	28	106.	736.
15.000	99.939	99.9 59	993.99	204.65	2.25	53.	993.99	99.99	999.99	1.	729.
16.000	99 .9 79	93 .999	999.99	203.83	2.15	.04	999.99	99.99	999.99	0.	726.
17.000	99 .399	99 .999	999.93	204.90	1.99	.04	999. 99	99.99	999.99	0.	720.
18.000	99.999	99.339	999.99	207.37	1.99	11	999. 9 9	99.99	999.99	0.	719.
19.000	9 9.999	99.9 93	903.99	210.18	1.65	03	999.93	99.99	939.99	0.	711.
20.000	93.993	99.997	999 99	213.06	1.60	17	993.93	99.59	999.99	0.	694.
21.000	93.933	99.339	3 99, 99	215.55	1.61	09	999.99	99.99	999.99	0.	675.
25.000	39.009	99.933	9 33-98	217.70	1.41	13	999.99	99.99	999 9 9	0.	659.
23.00u	99 999	99 993	9 93-39	219.62	1.91	29	999.99	93.99	999.99	0.	546.
24.000	99.939	99 999	999.99	221.40	1.57	15	999.99	99.99	999.99	0.	645.
25.000	90 099	33.993	933-99	223.16	1.57	17	999.99	99.99	993.39	0.	6*2.
26.000	99.039	99.939	999.39	224.84	1.62	36	999. 9 4)	99.99	999.99	σ.	629.
27.000	99 .999	93.999	909.99	2 26 46	1.93	.04	999.99	99.99	539. 99	Ο.	576.
29.000	9 9 99 9	9 3-934	333 33	227.96	1.69	.12	999.94	99.99	9 93. 33	Ο.	545.
29 000	9 9.933	39 .933	993-99	229.36	5.03	.23	999.99	33.39	993 9 3	, D .	443.
30.000	99.939	39.999	937 99	231.01	1.78	.20	999.99	99.99	999.9 0	0.	428.

AUGUST

TABLE III-9. MOISTURE RELATED STATISTICAL PARAMETERS

-

T

Ķ

ŧ

...

2141104	- 1-15-0	CAPE 1	CANAJINI								
Z	VAPOR P	S.D. VP	SKEW VP	TV	Ť۷	SKEW TV	DEMPT T	S.D. DPT	SKEH OPT	NOBS T+P	NOBS TV
	MEAN			HEAN	S.D.		MEAN				
KM	MG	M9		DEGK	DEG K		CEG K	DEGK			
.000	27.083	2.733	51	301.51	3.12	08	295.47	1.73	99	728.	728.
.003	27.025	2.744	58	301.46	3.13	07	295.44	1.74	96	741.	741.
1.000	18.014	2 .580	75	295.20	1.31	24	289.85	2.44	-1.42	737.	741.
5.000	11.374	5.511	62	289.00	1.24	13	201.62	3.96	-1.65	728.	741.
3.000	6.907	2.188	42	283.42	1.26	.08	274.05	5.40	-1.37	706.	737.
4.000	4.270	1.694	07	277.62	1.55	.12	267.18	6.21	90	655.	734.
5.000	2.584	1.241	.22	271.88	1.39	13	260.30	7.13	~.78	625.	733.
6.000	1.496	2د8.	.55	265.81	:.50	65	253.38	7.43	~.51	572.	732.
7.000	.837	. % _1	.68	259.37	1.54	16	246.56	7.43	53	566.	731.
8.000	.446	.272	. 89	252.66	1.73	24	239.95	7.11	51	550.	729.
9.000	.216	.138	1.06	245.44	1.99	22	232.66	7.04	64	525.	724.
10.000	.03+	.059	1.34	237.68	5.03	08	225.30	6.05	65	420.	723.
11.000	.039	.023	1.71	229 5 9	193	15.	218.32	4.63	10	319.	720.
12.000	.015	.009	1.89	2 21.73	1 88	. 34	211.02	3.82	13	382.	720.
13.000	.006	.003	1.57	214.33	1.85	.59	204.40	3.68	42	260.	718.
14.000	500.	.001	1.59	208.08	1.68	.29	197.96	3.23	?7	127.	717.
15.000	99 .333	99.999	999.99	203.78	1.99	.21	999.99	99.99	999.99	3.	712.
:6.000	9 9.999	99.339	9 93.39	202.30	2.38	.05	939. 99	99.99	999.99	0.	710.
17.000	99.999	99.939	999.93	203.29	2.63	22	939.99	99.99	999.99	0.	699.
18.000	3 3 633	99.999	999.99	236.28	2.29	13	999.99	93.99	999.59	0.	700.
19.000	99 939	93.999	979.99	209.57	1.79	.01	999.99	99.99	999.99	0.	693.
20.000	99.939	93.999	979.99	212.35	1.56	13	999 99	99.99	999.99	0.	686.
21.000	99.939	99.999	363-33	215.21	1.48	04	939.99	99.99	999.99	0.	664.
22.000	99.939	99.939	J 149, 99	217.27	1.45	13	999-99	99.99	999.99	٥.	659.
23.000	99.90 9	99 .933	9 31 93	519 55	1.48	10	999 79	9 9.99	999.99	0.	642.
24.000	33.999	99.993	979.99	221.01	1.67	SD.	999 99	99.99	999 99	Ο.	641.
25.000	99.999	9 9.9 99	959 89	222.74	1.64	08	939-99	<u>99,99</u>	999.99	ອ.	633.
26.000	93.939	99.999	3 63 33	224.39	1.61	02	939 99	99 .99	993.99	Ο.	615.
27.000	90.333	<u>99,999</u>	91/3.99	225.99	1.62	. 31	<u>999-99</u>	9 9.99	999.9 3	Ο.	568.
28.000	99,399	∖ 3.999	979.79	227.44	1.74	03	999 99	99 .99	999 9 9	0.	550.
29.000	99.933	<u>9</u> 9.979	999.93	558.35	2.00	.10	999 99	99 .99	999.99	D.	475.
30.000	99,909	99.999	900,00	230.44	1.94	.01	933.99	99,99	90° ~9	ū .	456.

SEPTEMBER

TABLE III-10. MOISTURE RELATED STATISTICAL PARAMETERS

Ì

C

. -.

•

:

i i

1

•

, **⊒** ,

.

STATION	- 74/940	CAPL	CANAVERAL								
Z	VAPOR P	5.0. VP	SKEH VP	τv	TY	SKEH TV	DEHPT T	5.D. 091	SKEH OPT	MOBS T+P	NOBS TV
	MEAN			MEAN	5.D.		MEAN			•	
ĸĦ	HÐ	MB		DECIK	DEGK		DEG K	DEGK			
.000	22.307	4.728	47	298.71	4.21	76	292.03	3.77	-1.11	724.	724.
.003	22.063	4.807	43	299. +5	4.39	76	291.84	3.96	-1.04	775.	775.
1.000	14.017	3.956	74	292.05	5.90	66	28(35	5.05	-1.72	768.	775.
2.000	8.615	3.655	30	265.47	57.5	65	276.41	7.70	-1.03	724.	775.
3.000	4.935	83.5	.25	231.60	2.21	15	268.11	8.48	46	658.	775.
4.000	3.011	1.851	.52	276.13	2.16	12	261.38	8.6%	23	592.	774.
5.000	1.817	1.293	. 82	270.20	5.5	26	254,75	8.91	03	563.	774.
6.000	1.075	.805	.95	263 67	2.50	25	248.50	0.87	04	562.	773.
7.000	.613	.451	.95	256.93	2.71	22	242.48	8.44	18	555.	772.
8.000	. 327	. 236	1.01	250.01	3.00	12	236.12	8.09	43	579.	772.
9.000	.157	.115	1.00	242.68	3.15	.03	229.97	7.33	61	560.	765.
10.000	.071	.046	1.47	235.17	3.12	. 14	223.03	5.41	07	428	765.
11.000	. 029	.017	1.45	227.59	2.74	.22	215.65	4.52	01	398.	759.
12.000	.012	.006	1 21	220 58	5.53	21	209.03	3.63	20	399.	759.
13 000	.005	.002	.74	214.15	5.03	50.	203.29	3.41	49	272.	757.
14.000	500.	.001	1.09	208.54	2.19	.10	197.88	3.66	19	129.	755
15.000	.001	.001	1.66	204.25	2.53	. 34	194.40	4.19	29	·2.	749.
16.000	9 9 939	99.999	999 99	2 02 0 6	5 69	.29	4993 SM	99 .99	999.99	0.	744.
17.000	99.393	99,933	949-99	202.37	2. 03	.06	919.93	99.93	999.99	0.	730.
18.000	99.003	33 339	6 30 68	204.97	2.74	. 31	900,99	99.99	999.99	٥.	728
10 000	99.999	99.923	979 99	208.63	5.56	.02	909.99	99.99	939.99	0.	726.
50 000	3 3 933	99 9 19	979-99	211.81	5.05	.06	999.99	99.39	999.99	Ο.	723.
21.000	93.993	93 933	939 49	514 50	1.88	05	939. 5 9	99.99	959.99	0.	695.
000 55	99.993	99 .979	979 99	216 40	1 85	13	999.99	99.99	939.99	٥.	694.
23.000	99.99 9	9 3 949	999 99	218.41	1.64	25	999.59	99.99	993-39	Ο.	685.
24.000	9 9 939	99.999	979 99	550 34	1 94	31	939.99	99.99	933.99	0.	683.
25.000	3 0, 939	9 3 393	97) 99	555.11	1.98	56	999.99	99.99	999 99	٥.	673.
26.000	99.9 39	9 9 999	9.0.99	223 BI	1977	- , 44	993. <u>9</u> 9	- <u>99</u> -95	979-99	0.	€32.
27.000	<u>93 909</u>	90.009	919 99	2° 3. 39	2.19	24	999 99	99.99	939 99	0.	601.
28.000	90.009	99.939	999.0	226.84	5.58	- ,44	999 59	99.79	959. 39	Ο.	584.
29.000	33 333	99.999	999.99	228.22	2.43	85	999.99	99.99	979.99	. 0.	512.
30.000	39.939	99.999	939.99	229.70	2.42	29	999.59	99.00	999 99	0.	503.

OCTOBER

TABLE III-11. MOISTURE RELATED STATISTICAL PARAMETERS

2.

Ĵ,

, P

÷.

STATION	- 747940	CAPE	CANAVEPAL		_						
Z	VAPOR P	S.D. VP	SKEH VP	TV	TV	SKEH TV	DEHPT T	5.D. OPT	SKEH DPT	NOBS THP	NOBS TV
	MEAN			MEAN	S.O.		MEAN				
KM	H3	MB		DECK	DED K		DEG K	DEGK			
.000	18.165	5.027	1	294.29	5.29	70	289.50	5.02	-1.18	771.	771.
.003	18.000	4.949	36	294.17	5.25	70	288.37	4.95	-1.17	865.	866.
1.000	12.352	4.029	58	289.15	3.63	-1.24	595.51	£.57	-1.94	3 41.	855.
2 .000	6.765	3.582	. 14	284.54	2.98	59	272.31	8.99	68	772.	866.
3.000	3.704	2.315	.69	200.20	2.73	~,47	264.01	8.74	16	694.	866.
4.000	2.186	1.482	1.05	274.77	2.71	30	257.36	0.3	.06	657.	866.
5.000	1.307	.933	1.29	209. 66	2.73	35	521151	8.C 0	.09	640.	365.
E.000	.792	.570	1.35	565.15	2.81	33	245.57	7,97	07	636.	864.
7.000	.458	. 323	1.34	255.32	2.85	37	53 3 .00	7.51	17	650.	863.
8.000	.256	. 193	1.21	248.19	5.33	38	533 31	7.56	34	648.	860.
9.000	.125	.098	1.25	240.64	3.07	24	2c1.32	7.18	57	650.	857.
10.000	.053	.032	1.61	233.04	3.06	13	550.65	5.02	15	463.	857.
11.000	.021	.01)	1.22	225.49	2.61	38	213.51	4.10	19	440.	851.
12.000	.009	.004	1.16	218.52	2.40	13	207.25	3.44	25	440.	851.
13.000	.004	. 002	1.32	212.45	2.41	. 14	201.57	3.69	09	288.	845.
14.000	.002	.001	1.14	207.73	2.59	.22	155.48	₩.07	24	154.	836.
15.000	.001	.001	1.12	204.37	2.61	.07	192.66	1.4	. 16	23.	ⁿ ≥8.
16.000	99.999	99,999	999.99	505.56	2 54	. 36	3 99. 99	99.99	999 .99	0.	823.
17.000	99.939	99.999	939.99	201.6E	5.78	.61	999.99	99.99	939.99	0.	804.
19.000	99.939	99.999	999.99	203.09	3.19	. 31	9 99.9 9	59.95	999.99	ο.	801.
19.000	9 9 999	99. 939	999.99	206.48	2.95	09	999 99	1 99 f	933.99	0.	795.
20.000	90.939	99.993	399.99	209.72	2.56	~.23	9 99.99	99.99	999.99	0.	786.
21.000	99-999	99.993	339.9.4	212.48	2.30	. 12	999 99	99.39	999.99	٥.	752.
22.000	93,999	99.999	599.59	214.93	2.36	.17	999.99	99 .99	999.99	σ.	744.
23.000	99.999	99.999	939.99	217.08	2.42	.10	<u> 399 99</u>	99.99	999.99	0.	זצר ז
24.000	93 999	99.999	973-99	213.11	2 80	.09	999 99	99 99	999.99	0.	733.
25.000	6 5 8 38	39.393	999.59	223 95	2.96	16	999.59	93 .99	999.99	0.	726.
26.000	99.999	39,999	533 39	272.55	3.10	24	997.53	99.99	999.99	0.	7,6.
27.000	99 979	99 999	993-99	224.19	3.26	11	99). 99	99.99	999.99	ο.	66).
28.000	99.999	99,993	929.99	225.83	3.37	.c2	59.99	99.99	999.39	0.	648.
29 000	99.999	90 999	994 99	227.10	3. 75	.13	993.51	95.99	999.99	Ο.	547.
30.000	99.999	99.399	393.99	228.61	3.45	.16	999.99	39.99	999.99	0 .	540.

NOVEMBER

TABLE III-12. MOISTURE RELATED STATISTICAL PARAMETERS

- . .

2

T

ł

•• •

-

.

. .

· · . ·

٠.

• .• •

DECEMBER

STATION	= 747940	CAPE	CANAVERAL								
Z	VAPOR P	\$.0. VP	SKEH VP	TV	۲v	SKEH TV	DEHPT T	S.D. DPT	SKEN OPT	NOBS T+P	NOBS TV
	HEAN			MEAN	S.D.		HEAN		-		
KM	M8	HB		DEG K	DEG K		DEG K	DEG K			
.000	15.011	5 3 38	13	290.35	6.33	54	295.15	6.31	91	764.	764.
.003	14.691	5.352	11	230.08	6.33	51	284 76	6.50	94	875.	875.
1.000	10.518	4.4B4	25	285.60	4.48	74	278.61	8.60	-1.27	829.	874.
5.000	5.917	3.410	.31	282.60	3.57	40	269.85	9.58	53	764.	874.
3.000	3.377	5.165	. 74	278.55	3.05	29	262 71	8.89		693.	97 4.
N.000	2.065	1.307	.98	273.02	5.95	57	256.60	8.52	15	654.	873.
5.000	1.857	.919	1.10	266.67	2.96	32	250 53	8.54	04	643.	873.
6.000	.774	.581	1.33	260.27	2.98	16	215 05	8.43	14	650.	973.
7.000	.452	. 329	1.58	23.52	3.07	15	538 26	8.12	34	667.	872.
9.000	.243	. 168	1.16	246.34	3.27	30	233.51	7.54	49	694.	869.
Э.000	.119	.076	1.09	239.91	3.75	- 26	227.17	6.67	68	655.	865.
10.000	. 050	.031	1.66	231.17	3.08	13	220.07	5.03	.01	479.	865.
11.000	.020	.010	1.05	223.90	2.71	.05	213.01	3.96	11	422.	860.
15.000	.008	.004	. 79	217.36	5.24	.25	206.84	3.35	26	422.	95 0.
13.000	.00%	S00.	. 64	512.39	3.09	.27	201.01	3.46	35	273.	855.
14.000	.003	S00.	.56	209.95	3.16	15.	199-02	4.04	39	96 .	854.
15.000	-002	.001	.68	206.08	2.74	.21	197.95	2.27	36	11	849.
16.000	99 .9.9	99.999	\$97.99	203.46	2.55	.91	999-99	9 9 99	999.99	0.	844.
17.000	9 9.973	59.939	909.99	202.03	2.83	.25	999 99	99.99	9 99.99	0.	831.
18.000	9 9-339	99.9 <u>/</u> 9	303 93	232.26	3.36	.08	939 99	39.99	999.99	0.	828.
19.000	99 .979	99.999	993.99	204.87	3.46	- 05	999 99	99.99	999.99	0.	011.
20.000	9 9 939	99.999	999-99	208.11	3.07	05	999 99	9 9.99	9 99.99	0.	805.
21.000	9 9.939	99.979	973-39	211.12	2.72	01	999 99	99.99	999.99	0.	763.
S5.000	93.329	99.579	913 99	213.72	5.8I	. 10	939 99	99.99	999.99	0.	751.
23.000	99.929	97.999	979.99	215.35	15.91	.17	999. 9 9	99.99	999. 59	0.	747.
24.000	99.539	9 3 979	973.99	218.06	3.31	.53	995 99	99.99	999.99	0.	753.
25.000	99.929	93 339	919.99	220.10	3.94	.84	999 99	99.54	999.99	Ū.	737.
26.000	99.999	99.929	310.99	222.02	4.28	. 79	999 79	99.99	999.99	0.	720.
27.000	99.939	ຊ ງ. 939	95/3.99	223.93	4.50	.77	999 -	99.99	999.99	0.	653.
28.000	99.239	99 , 979	950 39	225.66	4.56	.63	999.99	99.99	939.39	0.	630.
29.000	99.999	99.999	99.99	227.33	4.19	.59	999.99	99.99	999 99	. 0.	534.
30.000	99.939	33.000	999.99	228.9 9	4.01	. 37	999.99	99.99	999.99	0.	528.

TABLE III-13. MOISTURE RELATED STATISTICAL PARAMETERS

· •

٠

•

:

•

3

J

.

.

•

z

•

1

1

1

Ċ

. ..

ANNUAL

STATION	- 7-73-0	CAPE	CANAVERAL								
Z	VAPOR P	S.D. VP	SKEH VP	TV	τν	SKEN TV	DLHPT T	S.D. DPT	SKEH OPT	NCBS T+P	NODS TV
	PEAN			HEAN	S.D.		MEAN				
КM	MB	H9		DEG K	DEG K		DEG K	DEG K		•	
.000	20.900	6.745	48	296.28	6.88	79	290.40	6.27	-1.30	9023.	9023.
.003	20.396	6.841	40	295.07	6.98	73	299.95	6.44	-1.20	9855.	9863.
1.000	13.466	4.921	54	293.67	5.20	98	283.19	7.56	-1.75	9603.	9863.
2 .000	B.027	3.844	23	265.42	4.04	94	275.03	9.12	-1.08	9030.	9865.
3.000	4.752	5.631	. 16	290.34	3.45	92	267.35	9.10	65	8445.	9851.
4.000	5:535	1.778	.45	274.61	3.34	85	260.77	9.06	45	7917.	9813.
5.000	1.750	1.184	. 76	269.56	3.46	73	254.35	9.05	31	7623.	9790.
6.000	1.030	.731	. 95	262.18	3.63	60	248.15	4 8.83	31	7340.	9780.
7.300	.577	.412	1.04	255.56	3.78	65	241.91	8.46	41	7355.	¥759.
8.000	. 308	.217	1.11	548.62	4.04	52	235.66	7.89	49	7279.	9729.
9.000	.150	.105	1.26	241.22	4.16	35	86 .855	7.19	52	7029.	9593.
10.000	.063	.042	1.69	233.58	4.04	52	221.75	5.70	16	5249.	9675.
11.000	.026	.016	1.84	226.10	3.54	15	214.78	4.68	09	4699.	9632.
15.000	.011	.005	1.64	219.31	3.08	18	208.37	3.81	22	4720.	9620.
13.000	.005	005	1.25	213.73	59.5	. 09	203.00	3.62	39	3027.	9569.
14.000	.003	.001	.96	209.33	5.94	. 30	198.43	3.75	38	1368.	9534.
15.000	S02.	.001	3.49	205.94	2.95	85.	195.44	3.59	24	103.	9473.
16.000	99 .599	99.393	9 99.93	203.87	2.78	.20	993. 59	99.9 9	99 9.99	0.	9425.
17.000	99 .999	99 .999	999.99	233.34	2.95	01	999.99	99.99	999.99	0.	9264.
18.000	99 .9 3 9	<u>99,999</u>	929.95	204.49	3.49	23	999. 99	99.99	999.99	0.	9218.
19.000	99 .999	99.999	999.99	207.36	3.49	47	999.9 9	99.99	999.99	0.	9129.
50.000	99 939	9 9.999	999.99	510.54	3.24	53	999.99	99.99	999.99	0.	9027.
S11000	99 , 333	93.399	99 <u>9</u> .99	213.44	2.99	+.52	999.9 9	99.99	999.99	0.	8651.
SS 000	99 .999	99.999	999.93	215.92	5.8+	59	939.99	9 9. 99	999.99	0.	8551.
53 000	99 .399	9 9.999	999. 99	217.99	2.79	59	999. 99	99.99	999.99	0.	8422.
54 000	3 3 433	9 3 933	929.99	219. 97	2.93	52	939.99	99.99	999. 9 9	0.	8+19.
25 000	99.379	99.993	992.59	18.155	3.05	49	999.9 9	39.99	999. 99	0.	8333.
26.000	33 333	99.99 9	929.39	223.58	3.12	45	999. 99	99.99	9 99.99	0.	8106.
27.000	99 .939	93.379	999.99	225.36	3.24	32	939. 99	99.99	939.99	9.	7399.
28.000	99.999	92.999	993 99	227.07	3.27	42	939. 99	99.99	939. 39	0.	7152.
29.000	3 9 9 39	59 959	393.99	228.74	3.29	34	303.99	99.99	99 9 .99	1.	5334.
30.000	99.999	99.999	997 99	230.48	3.29	47	999.99	99.9 9	999.93	1.	5818.

TABLE IV-1. HYDROSTATIC MODEL ATMOSPHERE

1

.

4

4

ł

JANUARY

STATION	747940	CAPE	CANAVERAL	
Z	GEO. HT.	P	Ð	Τv
KM	KM	MB	G/M3	DEG K
.000	.000	1019.7000	1558.0000	283.45
.003	.003	1019.3000	1228.0003	289.19
1.000	.998	905.6300	1104.0000	295.78
2.000	1.995	803.1000	993.0000	281.74
3.000	5.634	710.9300	832.6000	277.46
4.000	3.932	628.0000	804.2000	272.05
5.000	4.989	553.3100	724.8000	265.34
6.000	5.995	466.0300	652.6000	259.44
7.000	6.982	425.5400	586.5000	252.77
8.000	7.979	371.2200	526.4000	245.65
9 000	8.974	322.5100	471.9000	238.10
10.000	9.963	278.9300	421.6000	230.48
11.000	10.965	240.1300	374.3000	223.47
12.000	11.960	205.8300	329,6000	217.52
13.000	12.954	175,8:00	286.7000	213.64
14.000	13.9-9	149.8100	247.6000	210.62
15 000	14.942	127.3593	214 0000	207.31
16.000	15 936	107 9900	184 3000	204 1
17 000	16 929	91 3750	157 3000	202 34
19 000	17 922	77 2670	137.0000	202.24
19 000	19.9.5	65 3981	111 4000	202.24
20 000	10.975	55 1740	93 1200	201.10
21 000	20 011	LT 1720	79 0300	210 60
22 000	21 901	HR 2040	65 6500	217.76
28 000	22 001	70.2070	55 5100	215.30
E 3.000	27.003	20 25 60	53.5100 NJ 0303	213.45
25 000	23.074	25.3200	70 0-00	210.73
26 COD	25 655	21 5501	33.3400	230 01
27 000	25.011	18 5290	29.0500	220.31
20.000	27.076	16.0090	20.3330	226.11
20.000	20 035	17 6061	21.0000	227.37
29.000	20.020	13.0900	19 0300	220.23
30 000	23.017	11.8023	18.0300	223.00
JC.00J	31.790	6 60-7	15.0 00	231.00
76.000	33.700	6.3347	3.0040	230.33
30.000	33.743	7.3/36	7.0.40	2.0.31
58.000	37.717	3.7003	3.2300	270.70
H2 000	39.090	C.3973	3.8360	256.21
TC.000		C.C330	2.900	203.45
44.000	43.031	1.75-10	2.2230	200.04
48.000	43.600	1.3319	1.7200	270.71
50.000	47.000	1.0346	1.3430	203.90
50.000	49.034	.0203	1.0030	203.90
	57	CUCO.	.8334	203.12
55,000	33.464	. 4928	4UCG.	201.01
50.000 60.000	57.46/	. 3808	-2022	239.34
50 000	5/.300	140	. 3966	278.23
63.000	33.349	.2204	.3006	234.40
CC.000	01.308	.1738	.23'9	201.62
04.000 ss coo	65 200	. 13-26	.18/9	243.06
60.000	67.000	. 1004	.1-58	23/ 22
00.000	5/ 1/8	.0/53	.1143	550.93
/3.000	03.1 5 2	. 0559	.08/2	<<0.00

TABLE IV-2. HYDROSTATIC MODEL ATMOSPHERE

FEBRUARY

Ĩ

T

.

ľ

•

•

(

÷

. .

t

STATION	= 747940	CAPE	CANAVERAL	
Z	GEO. HT.	₽	D	TV
KM	KM	M9	G/ M3	DEG K
.000	.000	1018.0000	0000.7531	589.50
.003	.003	1017.7000	1552.0000	288.96
1.000	.998	904.0100	1100000	285.30
S.000	1.996	8 01.4800	992.9000	291.20
3.000	2.994	709.2600	6 33.3000	276.61
N.000	3.992	626.3000	804.8000	271.10
5.000	4.983	551.5709	724.8000	265.12
6.000	5.985	484.3200	652.2000	259.70
7.000	6.992	423.9800	585.3000	252.05
8.000	7.978	363.6300	525.6000	244.98
9.000	8.974	321.0300	470.4000	237.75
10.000	9.969	277.6+00	419.4000	230. 64
11.000	10.965	533.0800	371.5000	22+.17
12.000	11.960	205.0800	326.3000	219.98
13.000	12.954	175.3600	284.1000	215.07
14.000	13.948	149.5300	246.6000	211.29
15.000	14.942	127.1300	213.7000	207.22
16.000	15.936	107.7800	184.1000	203.97
17.000	16.929	91.5010	157.0000	202.31
:9.003	17.922	77.1260	132.7000	202.45
19.000	18.915	65.2970	111.0000	204.94
50.0 00	19.907	55.4100	92.7700	208.08
51.000	20.900	47.1370	77.7800	511.11
55.000	21.891	40.1870	65.5100	213.72
23.000	55.687	34.3210	55.4600	215.56
24.000	23 874	29.3510	47.0400	217.38
25.000	24.865	25.1333	39.9600	218.97
25.009	CO 600	21.5470	59.0200	220.67
27.000	20.040	18.4950	28.9600	200 4
28.000	27.033	15.8970	24.0300	2.74.27
23.000	20.023	13.00.0	10.000	220.00
72 000	C3.014	11.7910	18.0000	220.00
Tu 101	31.750	6.6327	9 6300	533.30
36 000	35.760	5.0325	7 1850	240.20
309.000	717	3 9316	5 3050	251 93
50.000	39.690	2.9412	3 9900	257.79
42.000	41.661	2.2715	3.0070	263.51
44.000	+3.631	1.7532	2.2970	267.75
46.000	45.600	1.3715	1.7870	267.75
48.000	47.568	1.0655	1.3940	265.78
50.020	49.534	.8287	1.0990	265.70
52.000	51.500	. 64 30	.8501	263.87
54.000	53.46+	.4983	5566.	262.49
56.000	55.427	. 3857	.5159	263.78
58.000	57.380	.2980	.4018	258.57
50.000	59.349	.2297	.3!29	256.0+
62.000	51.300	. 1765	.2440	252.37
64.000	63.258	.1348	.1926	244.18
66 000	525.60	. 1022	.130	237.36
68.000	67.178	.0765	.1185	225.24
7U.00C	69.122	. 0568	.0893	221.57

TABLE IV-3. HYDROSTATIC MODEL ATMOSPHERE

والجريحة والمراجع والمراجع المراجع فموجو فالمراجع والمراجع فالمراجع

• · •

.

. .

1

1

1

MARCH

STATION	- 747940	CAPE	CANAVERAL	
Z	GEO. HT.	P	σ	τv
KH	KM	MB	G/M3	DEG K
. 000	.000	1017.7000	1512.0000	292.03
.003	.003	1017.4000	1215.0000	291.78
1.000	.998	904.6100	1037.0000	297.20
5.000	1.996	805.6500	968.6000	282.62
3.000	2.994	710.7700	890.2000	279.14
4.000	3.992	629.0000	803.5000	272.28
5.000	4.989	553.3300	724.9000	265.91
6.000	5.985	486.0300	653,1000	259.26
7.000	6.982	425.4900	586.9000	252.55
8.000	7.978	371.1400	526.7000	245.48
9.000	8.974	322.4100	471.9000	238.00
10.000	9,969	278.8500	421.4000	230 54
11.000	10.965	240.0900	373.7000	223 80
12 (32	11 960	205 8700	328 4000	219 37
13 00 1	12 054	175 9700	205 7000	214 55
19.00	17 049	150 0100	247 6000	211 27
15.000	16 062	127 5/00	217 0100	207 75
15.000	16.076	109 2100	10. 0000	201.73
13.000	10.930	01 6710	164.0000	201.01
17.000	10.923	31.0310	137.1000	203.10
10.000	17.900	77.0000	135.0000	203.09
19.009	10.913	65.6770	07 0000	203.49
20.000	19.917	22.10.00	93.0800	208.04
21.000	20.900	47.4580	78.0400	211.86
22.000	61.851	40.4830	65.6500	214.75
23.000	22.883	34.6060	55.6100	216.81
24.000	23.874	29.6230	47.1800	218.75
25.000	24.865	25.3920	40.1100	220.54
26.000	52.872	21.7940	34.1400	222.41
27.000	26.846	18.7310	59.0300	224.34
29.000	27.835	16.1210	24.8100	226.41
S.000	28.675	13.8940	0005. 15	208.34
30.000	55.614	11.99.24	10.1000	230.77
32.000	31.792	8.9759	13.1800	235.67
7 4.030	33.768	6.7627	9.7040	241.19
36.030	35.743	5,1295	7.1980	246.98
38.000	37.717	3.9139	5.3820	251.69
40.000	39.690	3.0054	4.0470	256.78
42.000	41.661	2.3:51	3.0670	261.23
44.000	43.631	1.7921	2.3-50	264.46
6.000	45.600	1.3909	1.8090	266.29
48.000	47.568	1.0809	1.4010	266.96
50.000	49.534	.8+03	1.0910	266.58
52.000	51.500	.6529	.8507	265.60
54.000	53.464	. 5066	.6651	263.63
56.000	55.427	. 3926	5177	262.46
58.000	57.389	. 30 38	.4045	239.89
60.000	53.349	.2343	.3165	256.22
62.000	61.308	. :801	.2473	ວ າ99
64.000	63.266	. 1377	. 1937	245.93
66.000	5 .222	. 1044	. 1522	237.31
68.000	67.179	. 0783	.1193	227.19
70.000	69.132	.0582	50-0	221.93

TABLE IV-4. HYDROSTATIC MODEL ATMOSPHERE

. .

Ĩ

•

.

•

€

.

¢

1

1

APRII.

STATION	- 747940	CAPE	CANAVERAL	
z	OEO. HT.	P	D	τv
KM	KM	MB	G/K3	DEC K
. 600	.000	10.2.0000	150110000	225.27
.003	.003	1017.7000	1501.0003	295.14
1.000	.998	905.9500	1050.0000	283.66
2.000	1.996	804.5200	984.5000	284.57
3.000	2.994	712.9800	886.0000	279.70
4 .00 0	3.932	630. <i>5</i> 800	802.1000	273.80
5.000	4.983	555.0100	724.4000	267.29
6.000	5.995	488.5300	653.2000	Seo : 49
7.000	5,982	427.9000	197.4000	853.50
A COD	7.976	373.5400	527.6000	2+6. 66
9.000	8.974	324.7200	473.1030	239.11
10.000	9.969	281.0000	423.2000	231.33
11.000	10.965	5 45.0500	376.4000	553198
15.000	11.960	207.5000	332.0000	217.73
13.000	12.954	177.2500	293.100 0	213.55
14.000	13.948	151.0200	249.8000	210.63
15.000	14.942	158.3900	215.4000	207.67
16.000	15.936	108.9100	185.0000	205.05
17.000	16.929	92.2+10	157.5000	203.49
18.000	17.922	78.0770	133.6000	203.52
19.000	18.915	66 .1660	111.8000	SCE - 53
20.000	19.90/	56.2150	93.3400	209.82
21.000	20.900	6910 • •	78.2ECO	213.19
25.000	21.891	40.8750	65.9800	215.92
23.000	55 . 863	34.99660	55.8000	518-50
2+.000	23.074	29.9010	47.3800	220.44
52.030	24.865	25.7320	40.2800	552.53
56 000	25.855	22.1190	3415300	224.74
27.000	26.046	19.0420	53.5300	226 . 9C
28.000	27.835	16.4160	24.9700	55.05
29.000	50.4.2	14.1720	51.3460	231.05
30.000	53.614	15.5218	10.3100	233.05
32.000	31.792	9.1931	13.4100	237.49
** .0C0	33.769	6.9365	9 9370	241-83
36.000	35.743	5.2613	7.3.140	246.55
39.000	37.717	4.0132	5.53.0	251.32
40.000	39.690	3.0774	4,1580	556.45
47.000	41.661	2.3719	3.1520	263.66
44.000	43.631	1.8361	5.3990	265.12
46 600	45.600	1.4669	1.8420	668.39
48.000	47.563	1.1113	1.4290	269.47
50 000	49.334	.0059	1.1150	208.94
50.000	51.500	.6/40	.8/+2	267.09
54.000	03.404 EE 1.77	- 56 58	.0041	(tr).(18
50.000	53.727	.4003	.5355	CDC - 69
63.000	50 7-0	. 5144	CC1 P.	00.00
63.000	61 309	1001	- JC(75) 25,68	251 26
64 000	67.300	1001	202	€91+30 21-7 0≝
66 000	65 222	1075	1571	217 12
68 000	67 179	0906		227 10
70.000	69.12	.05.97	.0949	218.11

TABLE IV-5. HYDROSTATIC MODEL ATMOSPHERE

• . •

•

÷

.

l

.

•

* * * * * *

MAY

STATION	= 747940	CAPE	CANAVERAL	
Z	GEO. HT.	P	D	ťV
KM	KH	MB	G/M3	DEG K
.000	.000	10:6.6000	1186.0000	298.72
. 003	.003	1016.3000	1196.0000	298.53
1.000	.998	905.6100	1079.0000	292.38
2.000	1.996	805.1300	979.5000	286.34
3.000	5.934	713.9100	886.3 C00	280.62
4.000	3.992	631.4600	800.9000	274.68
5.000	4.989	557.0300	722.6000	268.55
6.000	5.985	489.9300	651.3000	565.08
7.000	6.985	429.5200	586.0000	255.35
8.000	7.978	375.2300	526.4000	248.32
9.000	8.974	326.4900	472.5000	2+0.70
10.000	9.969	285.8000	423.2000	232.32
11.000	10.965	243.7800	377.2000	225.16
15.000	11.960	209.1200	334.0000	218.14
13.000	12.954	178.6000	292.7000	515.60
14.000	13.948	152.0600	252.7000	209.61
15.000	14.942	159.5500	216.9000	207.67
16.000	15.936	109.6600	185.5000	205.98
17.000	16.929	92.9720	157.9000	205.15
18.006	17.922	78.8180	133.5000	205.69
19.000	18.915	66.9150	111.7000	S08.60
20.000	19.907	56.9500	93.6200	211.91
21.000	20.900	48.5890	78.7200	215.02
S5.000	21.891	41.5440	66.5100	217.59
23.000	22.683	35.5830	56.3900	219.01
24.000	23.874	30.5250	47.9200	221.90
25.000	24.865	26.2240	40.8100	223.89
26.000	25.855	22.5600	34.9000	225.81
27.000	26.846	19.4330	29.7400	227.62
28.000	27.835	16.7600	25.4400	229.49
29.000	28.85	14.4720	21.0000	231.65
30.000	29.814	12.5119	18.7000	233.03
32.000	31.792	9.3929	13.6900	238.31
54.000	33.768	7.0909	10.1700	241.92
35.000	35.743	5.3/93	7.5740	240.32
38.000	37.717	4.1048	3.6480	256.67
40.000	39.090	3.1023	9.2350	258.33
42.000	41.001	2.7373	3.2100	202.03
44.000 NE 000	73.031	1.00/0	1 0020	200.10
LD 000	43.000	1 1451	1.0500	271 30
50 000	47.500	POut	1 1660	271.29
52 000	51 500	6972	8037	268 97
54 000	57.500	5426	2072	265 22
56.000	55.427	.4213	.5544	263.78
58,000	57.389	- V61	4364	259.35
60.000	59.349	.2514	.3413	255.73
62,000	61.309	. 1931	.2665	251.51
64.000	63.266	.1475	2094	244.46
66.000	65.222	.1115	.1653	234.20
68.000	67.178	.0834	.1288	224.51
70.000	69.132	.0516	.0987	216.56

TABLE IV-6. HYDROSTATIC MODEL ATMOSPHERE

. .

•_•

Ą

JUNE

STATION	- 747540	CAPE	CANAVERAL	
2	GEO. HT.	P	Э	TV
KH	KM	MÐ	G/M3	DEG K
.000	.000	1016.0000	1175.0000	301.20
.003	.003	1015.7000	1175.0000	301.11
1.000	.998	906.1200	1071.0000	294.75
2.000	1.996	806.1200	973.8000	289.39
3.000	2.994	715.3700	882.5000	292.39
N.000	3.992	633.2+00	798.1000	276.41
5.000	4.989	559.0900	719.7000	270.63
6.000	5.985	492.2000	648.2000	254.59
7.000	5.982	432.1700	583.1000	258.19
8.000	7.978	378.1500	523.8000	251.52
9.000	8.974	329.6500	470.2000	244.25
10.000	9,969	265.1600	421.5000	236.49
11.000	10.965	247.2200	377.0000	228.42
12.000	11.960	212.4900	335.5000	220.67
13.000	12.954	181.7200	225 3000	213.64
19.000	13 948	154 6800	258 9000	208 14
15.000	14.942	131.2300	223 1000	204 36
16.000	15 935	111 1500	189 9000	201 87
17 000	15.929	94 1290	160 5000	204 85
18 640	17 922	79 7950	134 7000	206 37
19.000	10 015	67 7930	112 7000	200.51
20 000	19 907	57 7350	QM 5200	212 79
21 000	20 900	L9 7990	70 6100	215 60
22 000	21 901	L2 1500	67 3600	219.05
23 000	22 883	36 1200	57 1500	220 19
24 000	21 876	30.1200	NR 6000	222 16
26 000	24.065	26 6201	40.0000	227 07
26.000	25 055	22 0070	75 7700	225 61
27 000	26.046	10 7200	30.3700	22.3.01
29 000	27 676	17 0110	30.2300	2223.03
29 000	20 075	16 6060	23 1600	210 63
70 000	20.0.3	12 60%	10 1700	273.00
32.000	21 702	F 5103	17.0200	276
39.000	31.790	2,5103	10.2700	230.44
36.000	35.700	F. 10.0	7 (000	240.90
30.000	33.743	L 17.313	5.000J	243.50
39.000	37.717	7.1301	3.7303	250.40
N2 000	53.050	3.1713	7 25.30	200.10
42.000 66 000	LI 671	1 0036	3.2330	203.00
44.000 NE COO	45.600	1.0.00	E.4/40	203 04
-0.000	43.000	1.4/08	1.9040	200 08
40.000	47.300	0010	1.4770	267.0
50.000	51 500	5074	1.1930	207.07
54 COO	51.000 83.464	.0134 8170	- 30.50	203.33
55 000	55 427		. 110 EFOS	2007.90
59,000	53.767	100	10000	6.00.00 24 L 27
60 000	BQ 240		.73/6	250 27
62 000	51 709	. 2733	. 540')	200.27
	61.308	. 18/4	.2033	640.49 910 PC
0000	65 273	1000	10,031	230.40
60.000	67 170		1007	C31.01
70 000	60 125	- U-UD 05.07	1004	205 87

TABLE IV-7. HYDROSTATIC MODEL ATMOSPHERE

۰.

٠.

٠.

JULY

STATION	747940	CAPE	CANAVERAL	
Z	GEO. HT.	P	D	TV
KM	KM	HB	G/M3	DEGK
. 000	.008	1017.6000	1173.0000	302.33
007	003	1017 2000	1172 0000	702 70
		007.0500	1172.0000	306.30
1.000	.330	901.9000	1069.0000	C30.03
5.000	1.996	908.1100	972.9000	289.36
3.000	5.834	717.4100	882.4000	583.53
4.000	3.992	635.2700	798.3000	277.22
5.000	4,999	561.0900	720.1000	271.42
6,000	5 995	494 2400	648 5000	265 50
7 000	6 000	HT4 1000	597 4000	250.20
7.000	0.500	700.0000	583.4000	203.61
8.000	1.978	303.0400	324.1000	COC . 03
9.000	8.9/4	331.5200	470.5000	249.44
10.000	9.959	262.2200	422.1000	237.64
11.000	10.965	248.9600	378.0000	229.44
15.000	11.960	214.1200	335.8000	221.44
13.000	12.954	183,1800	299.2000	213.97
14.000	13.948	155.9400	261.1000	208.04
15 000	14 042	132 2900	225 1000	204 76
15.000	14.546	113 0500	101 1000	204.70
10.000	12.930	112.0000	191.1000	204.29
17.000	16.929	94.9400	161.0000	205.41
18.000	17.922	83.5530	135.2000	207.63
19.000	18.915	68.4970	113.4000	210.44
20.000	19.907	58.3700	95.3100	213.35
21.000	20.900	45.8460	80.3800	216.03
22 000	21 891	42 5430	0.000 03	218 18
23.000	22 091	36 5370	67 9200	220 14
23.000	22.003	30.0370	57.0200	220.14
24.000	23.0/4	31.3480	49.1800	222.03
20.000	24.865	20.9350	41.9200	223.83
56.000	25.655	23.1560	35.7900	225.52
27.000	26.846	19.9500	30.6000	227.15
20.000	27.835	17.1990	56.5000	558.66
29.000	28.845	14.0420	22.4600	230.19
30.000	29.814	12 6221	19 2800	231 71
12 000	31 792	9 6026	16 1000	235 70
The 000	37 760	3.0000	10 4 200	270.00
39.000	33.700	7.000	10.4300	239.00
30.000	33.743	5.4702	7.7520	C14.22
38.000	37.717	4.1626	5.7750	249.48
40.000	39.690	3.1850	4.3380	254.14
42.000	41.661	2.4501	3.2720	259.19
44.000	43.631	1.0936	2.4900	263.20
46.000	45.600	1.4695	1.9110	265.96
48.000	47.568	1.1411	1.4780	267.19
50.000	49.534	0059	1 1550	265 78
52 000	51 500	6000	0040	263.10
54 000	51.500	.0030	. 3370	203 13
G4.000	33.404	0250		200.85
36.000	22.427	.4112		co / . 59
58.000	57.308	. 3165	. 4 30 3	254.61
60.000	59.349	.2426	. 3 356	250.39
62.000	61.308	. 1952	.20.26	244.14
64.000	63.266	. 1403	.2046	237.29
66.000	55.222	. 1054	.1580	230.89
69.000	67.179	0786	1219	223.05
70,000	69.132	.0580	.0926	216.76

TABLE IV-8. HYDROSTATIC MODEL ATMOSPHERE

· · ·

÷. *

 а 0

:

AUGUST

STATION	- 747940	CAPE	CANAVEPAL	
Z	CEO. HT.	P	D	TV
KM	KM	MB	G/M3	DEG K
.000	.000	1016.6000	1173.0000	301.97
.003	.003	1016.3000	1173.0000	301.95
1.000	.998	907.0500	1067.0000	296.13
S.000	1.996	807.3703	971.3000	289.59
3.000	5.994	716.8300	890.7000	293.56
N.000	3.992	634.8500	796.8000	277.56
5.000	4.989	560.8000	718.9000	271.74
6.000	5.985	494.0500	647.7030	265.75
7.000	6.962	433.9900	582.7000	259.45
8.000	7.978	380.0000	523.5000	252.09
9.000	8.974	331.5300	470.0000	245.74
10.000	9.969	288.0300	421.7000	237.97
11.000	10.965	249.0700	377.5000	229.93
12.000	11.960	214.2700	336.4000	221.89
13.000	12.954	183.3600	297.9030	214.40
14.000	13.948	156.1400	261.2000	209.28
15.000	14.942	132.4600	225.5000	201.65
16.000	15.936	112.1800	191.7000	203.83
17.000	16.929	95.0140	161.5000	204.90
18.000	17.922	80.5360	135.4000	207.37
19.000	18.915	68.5120	113.6000	810.1 8
20.000	19.907	58.3700	95.4400	213.05
21.000	20.900	49.8310	80.5400	215.55
22.000	21.831	42.6160	68.2000	217.70
23.000	22.883	36.5000	57.9000	219.62
24.000	23.874	31.3050	49.2600	221.40
25.000	24.865	26.8830	41.9600	223.16
26.000	25.855	23.1130	35.8100	224.84
27.000	26.846	19.8950	30.6100	226.45
28.000	27.835	17.1440	SC 5C 9C	227.96
29.000	28.825	14.7880	22.4600	229.36
30.000	29.014	12.7692	19.2500	231.01
32.000	31.792	9.5552	14.0900	235.08
74.000	33.768	7.1856	10.4400	239.63
36.000	35.743	5.4300	7.7460	2+3.06
38.000	37.717	4.1247	5.7790	247 47
40.000	39.690	3.1493	4.3310	252.14
₩2 000 SH	41.661	2.4178	3.2570	257.35
44.000	43.631	1.9657	2.4690	261.92
46.000	45.600	1.4447	1.8950	264.14
48 000	47.568	1.1211	1.4610	265.99
50.000	49.534	.8707	1.1370	265.51
52.000	51.500	.6757	.0001	264,38
54.000	53.464	.5238	.6915	262.63
56.000	55.427	.4051	.5418	259.21
58.000	57.389	.3153	.4231	255.94
60.000	59.349	.2401	.3235	253.42
52.000	61.308	. 1840	.2559	249.34
64.000	63.266	. 1401	.2015	241.35
66.000	522.29	.1059	.1555	235.99
68.000	67.178	.0794	.1207	228.05
70.000	69.132	. 6590	.0923	221.49

TABLE IV-9. HYDROSTATIC MODEL ATMOSPHERE

A second second second second second second second second second second second second second second second seco

• • .

SEPTEMBER

Z GEO. HT. P D TV KM KM HB G/H3 DC0 K .000 1015.1000 1173.0000 301.51 .003 .003 1014.8000 1173.0000 301.45 1.000 .999 905.4600 1069.0000 295.20 2.000 1.996 605.7000 971.2000 293.42 4.000 3.992 633.4303 794.9000 277.62 5.000 4.969 559.5700 717.0000 252.65 9.000 8.974 330.7400 459.400 245.44 10.000 9.969 267.3000 421.1000 237.68 11.000 10.965 248.3900 27.2000 214.33 14.000 13.996 635.6700 260.6200 202.30 15.000 14.942 132.0000 225.700 214.33 14.000 15.956 111.6000 192.3000 202.30 17.000 16.929 94.4710 161.9000 20	STATION	• 747940	CAPE	CANAVERAL	
KM KM HB G/H3 DC6 k .000 1015.1000 1173.0000 301.51 .003 .003 1014.600 1173.0000 295.20 2.000 1.996 605.7000 971.2000 289.00 3.000 2.994 715.2400 679.2000 283.42 4.000 3.922 633.4303 794.9000 277.62 5.000 4.999 559.5700 717.0000 271.68 6.000 5.965 493.0000 645.1000 252.66 9.000 8.974 330.7400 469.4000 245.44 10.000 9.969 287.3000 421.1000 237.68 11.000 10.965 248.3900 297.2000 214.33 14.000 13.946 155.6700 260.6000 208.08 15.000 14.942 132.0000 22.9700 214.33 14.000 15.956 111.6600 192.3000 202.300 16.000 14.942 132.000 20.957<	Z	GEO. HT.	P	D	TV
.000.0001015.10001173.0000301.51.003.0031014.60001173.0000301.451.000.999905.46001069.0000295.202.0001.996805.7000971.2000283.424.0003.992633.4303794.9000277.625.0004.989559.5700717.0000271.886.0005.985453.0600581.6000259.378.0007.978379.1500522.600252.669.0008.974330.7400469.4000245.4410.0009.967300.700271.000237.6811.00010.965248.3900376.9200221.7313.00012.954182.8300297.2000214.3314.00013.946155.6700260.6000208.0815.00014.942132.0000225.7000203.7816.00015.936111.6900192.3000202.3017.00016.92994.4710161.9000203.2819.00018.91566.0010113.0000205.2720.00021.89142.259067.7600217.2723.00022.88336.183057.500021.7324.00023.67431.024048.900022.7425.00024.66526.634041.63022.7426.00023.67431.024048.900021.2727.00023.67431.024048.900022.7428.00027.63516.97002	KM	KM	MB	G/H3	DEG K
.003.0031014.62001173.0200301.451.000.999905.46001069.0200295.202.0001.996605.700971.2000283.424.0003.992633.4300794.9000277.625.0004.989559.5700717.0000271.886.0005.965493.0600645.1000265.817.0006.962433.0600581.6000252.669.0008.974330.7400469.4000245.4410.0009.969287.3000421.1000237.6811.00010.965248.3900376.9000221.7313.00012.954182.8300297.2000214.3314.00013.946155.6700200.6000202.3015.00014.942132.0000225.7000203.7816.00015.936111.6600192.3000202.3017.00016.92994.4710161.9000203.2818.00017.92280.0460135.2000220.7520.00021.89142.259067.7600217.2723.00022.88336.183057.5000219.2224.00023.67431.024048.9000224.3927.00026.84514.63022.700224.3927.00026.84514.63022.700224.3927.00026.84514.63022.700230.4428.00037.7174.06845.7100230.4439.00037.7355.36677.	.000	.000	1015.1000	1173.0000	301.51
1.000 .999 905.400 1069.0000 295.20 2.000 1.996 805.7000 971.2000 289.00 3.000 2.994 715.2400 679.2000 283.42 4.000 3.992 633.4303 794.9000 277.62 5.000 4.989 559.5700 717.0000 271.68 6.000 5.985 493.0600 591.6000 252.66 9.000 8.974 330.7400 469.4000 245.44 10.000 9.969 287.3000 421.1000 237.68 11.000 10.965 248.3900 376.9000 245.44 10.000 13.969 126.600 335.7000 214.33 14.000 13.948 155.6700 260.6000 208.08 15.000 14.942 132.0000 225.700 203.78 16.000 15.936 111.600 192.3000 202.30 17.000 16.929 94.4710 161.900 203.28 18.000 17.922 80.0480 135.2000 205.30 21.000 18.915 <	.003	.003	1014.8000	1173.0000	301.45
2.000 1.996 605.7000 971.2000 289.00 3.000 2.994 715.2400 679.2000 273.42 4.000 3.992 633.4303 794.9000 277.62 5.000 4.989 559.5700 717.0000 271.68 5.000 5.965 493.0000 645.1000 255.61 7.000 6.962 433.0600 581.6000 253.37 8.000 7.978 379.1500 522.6000 252.666 9.000 8.974 330.7400 469.4000 237.68 10.000 9.969 287.3000 421.1000 237.68 11.000 10.965 248.3900 376.9200 221.73 13.000 12.954 182.8000 297.2000 214.433 14.000 13.948 152.6700 260.6020 208.04 15.000 14.942 132.0000 225.7000 203.79 16.000 15.936 111.6600 192.3000 202.30 17.000 16.929 94.4710 151.9000 203.28 18.000 17.922 80.480 135.2000 202.30 19.000 18.915 66.0901 113.0200 203.78 18.000 19.907 57.9120 94.9700 212.65 21.000 21.891 42.2590 67.7600 21.727 23.000 22.893 36.1830 57.5000 212.974 25.000 24.865 26.6340 $41.6^{1.90}$ 222.74 <	1.000	.999	905.4600	1069.0000	295.20
3.000 2.994 715.2400 879.2000 283.42 4.000 3.992 633.4300 794.9000 277.62 5.000 4.989 559.5700 717.0000 271.68 6.000 5.982 433.0600 581.6000 259.37 8.000 7.978 379.1500 522.6000 252.666 9.000 8.974 330.7400 469.4000 245.44 10.000 9.969 287.3000 421.1000 237.68 11.000 10.965 248.3900 376.9200 229.59 12.000 11.960 213.6600 335.7000 221.73 13.000 12.954 182.8300 297.2000 214.33 14.000 13.948 155.6700 260.600 208.08 15.000 14.948 155.6700 260.600 208.08 15.000 14.949 152.0000 225.7000 203.78 16.000 15.936 111.6600 192.3000 202.30 17.000 16.929 94.4710 161.9000 203.28 19.000 18.915 68.0010 113.0000 209.57 20.000 21.891 42.2590 67.7600 217.27 23.000 22.883 36.1830 57.5000 214.33 24.000 23.674 48.9000 22.74 25.000 24.893 35.5400 224.39 27.00 22.873 66.6340 $41.6^{1}00$ 222.74 26.00 27.845 <td< td=""><td>2.000</td><td>1.996</td><td>805.7000</td><td>971.2000</td><td>589.00</td></td<>	2.000	1.996	805.7000	971.2000	589.00
4.000 3.992 633.4300 794.9000 277.62 5.000 4.969 559.5700 717.0000 271.68 6.000 5.965 493.0000 645.1000 255.81 7.000 6.982 433.0600 581.6000 259.37 8.000 7.978 379.1500 522.8000 252.66 9.000 8.974 330.7400 469.4000 245.44 10.000 9.969 287.3000 421.1000 237.68 11.000 10.965 248.3900 376.9200 229.59 12.000 11.960 213.6620 335.7000 221.73 13.000 12.954 182.8300 297.700 201.73 14.000 13.948 155.6700 260.6620 208.08 15.000 14.942 132.0000 225.7000 203.78 16.000 15.936 111.6600 192.3000 203.78 18.000 17.922 80.0480 135.2000 226.30 19.000 18.915 68.0010 113.0000 203.28 19.000 18.915 68.0010 113.0000 209.57 20.000 21.991 42.70 80.0100 21.65 21.000 20.900 49.4270 80.0100 21.255 21.000 23.874 31.0240 48.9000 221.01 22.000 21.865 22.8930 35.5400 224.39 27.000 26.646 19.000 30.700 225.74 26	3.000	2.994	715.2400	079.2000	283.42
5.000 4.989 559.5700 717.0000 271.88 6.000 5.985 493.0000 645.1000 255.81 7.000 6.982 433.0600 581.6000 259.37 8.000 7.978 379.1500 522.6900 252.66 9.000 8.974 330.7400 469.4000 245.444 10.000 9.969 287.3000 421.1000 237.68 11.000 10.965 248.3900 376.9200 229.59 12.000 11.960 213.6600 335.7000 221.73 13.000 12.954 182.8300 297.2000 214.33 14.000 13.940 155.6700 260.6000 208.08 15.000 14.942 132.0000 225.7000 203.78 16.000 15.936 111.6900 192.3000 203.28 19.000 18.915 66.0010 113.0000 203.28 19.000 18.915 66.0010 113.0000 205.72 21.000 20.900 49.4270 80.0100 21.61 22.000 21.691 42.2590 67.7600 21.727 23.000 22.893 36.1830 57.5000 221.91 24.000 23.874 31.0240 48.9000 221.01 25.000 24.865 24.893 35.5400 222.74 26.000 27.845 16.5700 22.799 27.000 28.825 14.6730 22.7700 26.845 19.700	4.000	3.992	633.4300	794.9000	277.62
6.000 5.985 493.0000 645.1000 265.61 7.000 6.982 433.0600 581.6000 252.65 9.000 8.974 330.7400 469.4000 252.65 9.000 8.974 330.7400 421.1000 237.68 11.000 10.965 248.3900 376.9200 229.59 12.000 11.960 213.6620 335.7000 221.73 13.000 12.954 182.8300 297.2000 214.33 14.000 13.948 155.6700 260.6600 203.78 15.000 14.942 132.0000 225.7000 203.78 16.000 15.936 111.6600 192.3000 202.30 17.000 16.929 94.4710 161.9000 203.28 19.000 18.915 68.0010 113.0000 209.57 20.000 21.997 97.9120 94.8700 212.655 21.000 20.900 49.4270 90.0100 215.21 22.000 21.891 42.2590 67.7600 217.27 23.000 22.883 36.1830 57.5900 219.22 24.000 23.874 31.0240 48.9000 22.744 25.000 24.865 26.6340 $41.6^{10}0$ 222.74 25.000 24.865 26.830 35.5400 224.433 27.000 26.845 14.6330 22.7700 228.92 30.000 27.433 5.3627 7.6710 241.82 <	5.000	4.989	559.5700	717.0000	271.88
7.0006.982 433.0600 581.6000259.378.0007.978379.1500522.8000252.669.0008.974330.7400469.4000245.4410.0009.969287.3000421.1000237.6811.00010.965248.3900376.9200229.5912.00011.960213.6600335.7000221.7313.00012.954182.8300297.2000214.3314.00013.948155.6700260.600208.0815.00015.936111.6600192.3000202.3017.00016.92994.4710161.9000203.2818.00017.92280.0460135.2000206.2919.00018.91566.0010113.000029.5720.00021.89142.259067.760021.26521.00020.90049.427080.0100215.2122.00021.89142.259067.760021.72723.00022.88336.183057.500021.9125.00024.86526.634041.6'0022.7426.00025.87431.024048.900022.9927.00026.84514.631319.090023.4927.00026.84619.700030.3700228.9920.00027.83516.970025.9300227.4429.00027.84516.631319.090023.9928.00027.84514.631329.07023.9928.00027.83516.9700 <t< td=""><td>6.000</td><td>5.985</td><td>493.0000</td><td>645.1000</td><td>265.81</td></t<>	6.000	5.985	493.0000	645.1000	265.81
0.000 7.978379.1500522.6000252.669.000 0.974 330.7400 469.4000 245.444 10.000 9.969 287.3000 421.1000 237.68 11.000 11.960 213.6600 376.9200 229.59 12.000 11.960 213.6600 375.7000 221.73 13.000 12.954 182.8300 297.2000 214.33 14.000 13.948 155.6700 260.6000 208.08 15.000 14.942 132.0000 225.7000 202.30 17.000 16.929 94.4710 161.9000 203.28 18.000 17.922 80.0480 135.2000 202.30 17.000 16.929 94.4710 161.9000 203.28 18.000 17.922 80.0480 135.2000 202.30 17.000 18.915 66.0010 113.0000 209.57 20.000 19.907 57.9120 94.8700 21.652 21.000 21.891 42.2590 67.7600 217.27 23.000 22.883 36.1830 57.5000 212.65 21.000 24.865 26.6340 $41.6^{10}0$ 222.74 25.000 24.865 26.6340 $41.6^{10}0$ 222.74 24.000 25.655 22.9300 227.44 29.000 27.855 26.000 27.855 16.9700 25.9300 227.44 29.000 27.855 16.9700 25.9300 227.44 <td>7.000</td> <td>6.982</td> <td>433.0600</td> <td>581.6000</td> <td>259.37</td>	7.000	6.982	433.0600	581.6000	259.37
9.0008.974330.7400 469.4000 245.444 10.0009.969 287.3000 421.1000 237.68 11.00010.965 248.3900 376.9000 229.59 12.00011.960 213.6600 335.7000 221.73 13.00012.954182.8300 297.2000 214.33 14.00013.948155.6700 260.6600 208.08 15.00014.942132.0000 225.7000 203.78 16.00015.936111.6600192.3000 202.30 17.00016.929 94.4710 161.9000 203.28 18.00017.92280.0460135.2000 226.30 19.00018.91569.0101113.0000 209.57 20.00019.90757.9120 94.8700 212.65 21.00020.900 49.4270 80.0100 215.21 22.00021.891 42.2590 67.7600 217.27 23.00022.88336.183057.5000 219.22 24.00023.67431.0240 48.9002 221.01 25.000 24.865 26.6340 41.6^{10} 222.74 26.000 27.835 16.9700 25.9300 227.44 29.000 27.845 14.6303 22.2700 228.92 29.000 27.845 14.630 22.7700 228.92 20.000 27.845 16.3700 25.930 227.44 29.000 27.845 16.3700 25.930 27.44 29.000 27	8.000	7.978	379.1500	522.8000	252.66
10.0009.969287.300 421.1000 237.6811.00010.965 248.3900 376.9200 229.59 12.00011.960 213.6600 335.7000 221.73 13.00012.954182.0000 257.7000 214.33 14.00013.948155.6700 260.6000 208.08 15.00014.942132.0000 225.7000 203.78 16.00015.936111.6600192.3000 202.300 17.00016.929 94.4710 161.9000 203.28 18.00017.922 80.0460 135.2000 206.28 19.00018.91566.0210113.0000 209.57 20.00019.90757.9120 94.9700 212.655 21.00020.900 49.4270 80.0100 215.21 22.00021.891 42.2590 67.7600 217.27 23.00022.88336.183057.5000 219.22 24.00023.87431.024048.9000 221.01 25.00024.86526.6340 41.6^{10} 222.74 26.00027.85516.970025.9930 227.44 29.00027.85516.970025.9700 228.92 30.00037.717 4.0634 5.7100 230.44 32.00031.792 9.4481 13.9100 235.00 34.00037.6903.1053 4.2530 252.50 35.00037.717 4.0684 5.7100 246.47 40.000 39.690 3.1053 <td>9.000</td> <td>8.974</td> <td>330.7400</td> <td>469.4000</td> <td>245.44</td>	9.000	8.974	330.7400	469.4000	245.44
11.00010.965 $2+8.3900$ 376.9200 229.59 12.00011.960 213.6600 335.7000 221.73 13.00012.954 182.8300 297.2000 214.33 14.00013.948 155.6700 260.6600 208.08 15.00014.942 132.0000 225.7000 203.78 16.00015.936 111.6900 192.3000 202.300 17.00016.929 94.4710 161.9000 203.28 19.00018.915 66.0010 113.0000 209.57 20.00019.907 57.9120 94.8700 212.65 21.00020.900 49.4270 80.0100 215.21 22.00021.891 42.2590 67.7600 217.27 23.00022.893 36.1830 57.5000 21.01 24.00023.874 31.0240 48.9000 221.01 25.000 24.865 26.6340 $41.6^{1}00$ 222.74 26.000 27.845 16.9700 25.9930 227.44 29.000 27.845 16.530 22.700 228.92 30.000 37.717 4.0684 5.7100 230.44 32.000 37.743 5.3627 7.6710 241.82 39.000 37.717 4.0684 5.7100 25.90 34.000 47.651 1.9423 2.4180 257.77 44.000 4.651 2.3951 3.2010 27.771 49.000 47.651 1.923 2.4180 257.91	10.000	9.969	287.3000	421.1000	237.68
12.00011.960213.6600335.7000221.7313.00012.954182.8300297.2000214.3314.00013.948155.6700260.6600208.0815.00014.942132.0000225.7000203.7816.00015.936111.6600192.3000202.3017.00016.92994.4710161.9000203.2818.00017.92280.0480135.2000205.7819.00018.91568.0010113.0000205.7420.00020.90049.427080.0100215.2122.00021.89142.259067.7600217.2723.00022.88336.183057.5000219.2224.00023.87431.024048.9000221.0125.00024.86526.634041.6500222.7426.00027.63516.970030.3700228.9230.00027.83516.970025.9900227.4429.00027.83516.970025.9300227.4429.00027.83516.970025.9300227.4429.00033.7697.103210.3100238.2636.00035.7435.36277.6710241.8230.00037.7174.06845.710026.2340.00041.6612.39513.201027.7744.0004.6511.49221.8570265.2346.00045.6001.42921.8570265.2347.0005.3464.5233.6834 <td>11.000</td> <td>10.965</td> <td>248.3900</td> <td>376.9000</td> <td>229.59</td>	11.000	10.965	248.3900	376.9000	229. 59
13.00012.954182.8300297.2000 214.33 14.00013.948155.6700260.600208.0815.00014.942132.0000225.7000203.7816.00015.936111.6600192.3000202.3017.00016.92994.4710161.9000203.2818.00017.92280.0480135.2000205.7819.00019.91566.0010113.0000209.5720.00019.90757.912094.8700212.6521.00020.90049.47080.0100215.2122.00021.89142.259067.7600217.2723.00022.88336.183057.5000219.2224.00023.87431.024048.9000221.0125.00024.86526.634041.6100222.7425.00024.86526.634041.6100222.7926.00025.87514.633022.2700228.9230.00027.83516.970025.9300227.4429.00027.83516.970025.9300227.4429.00031.7929.48113.9100235.0074.00033.7687.103210.3100238.2636.00035.7435.36277.6710241.8230.00037.7174.06845.710026.4440.00035.6001.42921.8570265.2346.00045.6001.42921.8570265.2346.00045.6001.42921.8570<	15.000	11.960	213.0600	335.7000	221.73
14.00013.946155.6700 260.6620 208.08 15.00014.942132.0000 225.7000 203.78 16.00015.936111.6600192.3000 202.30 17.00016.92994.4710161.9000 203.28 18.00017.92280.0480135.2000 206.28 19.00018.91568.0010113.0000 209.57 20.00019.90757.912094.8700 212.655 21.00020.90049.427080.0100 217.27 23.00022.88336.183057.5000 219.22 24.00023.87431.024048.9000 221.01 25.00024.86526.634041.6100 222.74 26.00025.85522.893035.5400 224.39 27.00026.84514.633022.2700 228.92 30.00027.83516.970025.9300 227.44 29.00021.85514.633022.2700 228.92 30.00027.83516.970025.9300 227.44 32.00031.7929.448113.9100 235.00 34.00033.6607.103210.3100 238.26 35.00037.7174.06845.7100 246.47 40.00033.6903.10534.2530 252.56 42.00041.6512.38513.2010 257.91 36.00037.7174.06845.7100 246.47 44.0004.6311.94232.4180 263.52 45.0	13.000	12.954	182.8300	297.2000	214.33
15.000 $14,942$ $132,0000$ $225,7000$ $203,78$ 16.000 15.936 $111,6900$ $192,3000$ $202,30$ 17.000 16.929 $94,4710$ $161,9000$ $203,28$ 18.000 $17,922$ 80.0480 $135,2000$ $206,29$ 19.000 18.915 69.0010 113.0000 $209,57$ 20.000 19.907 $57,9120$ 94.8700 212.655 21.000 20.900 49.4270 80.0100 215.21 22.000 21.891 42.2590 67.7600 217.27 23.000 22.883 36.1830 57.5000 219.22 24.000 23.874 31.0240 48.9000 221.01 25.000 24.865 26.6340 41.6^{100} 222.74 26.000 25.955 22.8930 35.5400 224.39 27.000 26.846 19.7000 30.3700 225.99 28.000 27.845 16.3700 25.9330 227.44 29.000 27.845 14.6330 22.7700 228.92 30.000 37.743 5.3627 7.6710 241.82 30.000 37.743 5.3627 7.6710 241.82 38.000 37.743 5.3627 7.6710 241.82 30.000 37.717 4.0684 5.7100 256.25 42.000 41.651 2.3951 3.2010 257.91 40.000 4.631 1.9423 2.4180 253.52 45.000 45.600	14.000	13.948	155.6700	260.6000	208.08
16.00015.936111.6000192.3000202.30017.00016.929 94.4710 161.9000203.2818.00017.92280.0480135.2000206.2819.00018.91566.0210113.0000209.5720.00019.90757.9120 94.8700 212.6521.00020.900 49.4270 80.0100215.2122.00021.891 42.2590 67.7600217.2723.00022.88336.183057.5000219.2224.00023.87431.024048.9000221.0125.00024.86526.6340 $41.6^{+}00$ 222.7426.00025.65522.893035.5400224.3927.00026.84619.700030.3700225.9928.00027.83516.970025.9300227.4429.00028.82514.63022.2700228.9230.00037.7174.06845.7100230.4432.00031.7929.448113.9100235.0034.00033.7687.103210.3100238.2630.00037.7174.06845.710024.18239.00037.5001.49232.4180263.5246.00045.6001.42921.8570265.2346.00045.6001.42921.8570265.2346.00045.6001.42921.8570265.2346.00045.6001.42921.8570265.2346.00053.464.5233.6834	15.000	14.942	132.0000	225.7000	203.78
17.00016.92994.4710161.9000203.2818.00017.92280.0480135.2000206.2819.00018.91568.0010113.0000209.5720.00019.90757.912094.8700212.6521.00020.90049.427080.0100215.2122.00021.89142.259067.7600217.2723.00022.89336.183057.5000219.2224.00023.87431.024048.9000221.0125.00024.86526.634041.610222.7426.00025.85522.893035.5400224.3927.00026.84619.700030.3700225.9928.00027.83516.970025.9300227.4429.00029.81514.633022.2700228.9230.00029.81412.631319.0900230.4432.00031.7929.448113.9100235.0034.00033.7687.103210.3100238.2636.00035.7435.36277.671024.18230.00037.7174.06845.710025.77744.0004.6512.39513.201027.7744.0004.6512.39513.201027.76745.00045.6001.42921.8570265.2346.00045.6001.42921.8570265.2346.00045.6001.42921.8570265.2346.00045.6001.42921.8570265.23 </td <td>16.000</td> <td>15.936</td> <td>111.6800</td> <td>192.3000</td> <td>202.30</td>	16.000	15.936	111.6800	192.3000	202.30
18.000 17.922 80.0480 135.2000 206.28 19.000 18.915 69.0010 113.0000 209.57 20.000 19.907 57.9120 94.8700 212.65 21.000 20.900 49.4270 80.0100 215.21 22.000 21.891 42.2590 67.7600 217.27 23.000 22.883 36.1830 57.5000 219.22 24.000 23.874 31.0240 48.9000 22.74 25.000 24.865 26.6340 41.6 500 22.74 26.000 25.855 22.8930 35.5900 224.39 27.000 26.846 19.7000 30.3700 225.99 28.000 27.835 16.9700 25.9300 227.44 29.000 27.835 16.9700 25.9300 227.44 29.000 28.825 14.6313 19.0900 230.44 20.000 31.792 9.481 13.9100 235.00 30.000 37.717 4.06313 14.0900 230.44 30.000 37.717 4.0694	17.000	16.929	94.4710	161.9000	203.28
19.00018.91566.0010113.0000209.5720.00019.90757.912094.8700212.6521.00020.90049.427080.0100215.2122.00021.89142.259067.7600217.2723.00022.88336.183057.5000219.2224.00023.87431.024048.9000221.0125.00024.86526.634041.6 100222.7426.00024.86526.634041.6 100222.7427.00026.84619.700030.3700225.9928.00027.83516.970025.9300227.4429.00029.81412.631319.090023.9430.00031.7929.448113.9100235.0034.00031.7687.103210.310028.2635.00037.7174.06845.710024.64740.00039.6903.10534.253022.77444.0004.6311.84232.4180253.5246.00045.6001.42921.8570266.2348.00047.5681.11111.4350267.8150.00053.464.5233.6834264.8656.00055.427.4059.5339262.9458.00057.398.3141.4183259.6760.00059.349.2421.279255.4660.00059.349.2421.279255.4660.00059.349.2421.279255.4660.0	18.000	17.922	80.0483	135.2000	502.53
20.000 19.937 57.9120 94.8700 212.65 21.000 20.900 49.4270 80.0100 215.21 22.000 21.891 42.2590 67.7600 217.27 23.000 22.883 36.1830 57.5000 219.22 24.000 23.874 31.0240 48.9000 221.01 25.000 24.865 26.6340 $41.6^{+}00$ 227.44 25.000 24.865 22.8930 35.5400 224.39 27.000 26.845 19.7000 30.3700 225.99 28.000 27.835 16.9700 25.9300 227.44 29.000 29.825 14.6330 22.2700 228.92 30.000 27.835 16.9700 25.9300 230.44 32.000 31.792 9.4481 13.9100 235.00 74.000 33.768 7.1032 10.3100 238.26 36.000 37.717 4.0694 5.7100 241.82 38.000 37.717 4.0694 5.7100 241.82 38.000 37.717 4.0694 5.7100 265.73 48.000 47.661 2.3951 3.2010 257.91 49.000 47.661 2.3951 3.2010 257.91 49.000 47.661 2.3951 3.2010 257.81 49.000 47.661 2.3951 3.2010 257.91 49.000 47.661 2.3951 3.2010 257.91 40.000 45.600 <td>19.000</td> <td>18.915</td> <td>68.0010</td> <td>113.0000</td> <td>209.57</td>	19.000	18.915	68.0010	113.0000	209.57
21.000 20.900 49.4270 80.0100 215.21 22.000 21.891 42.2590 67.7600 217.27 23.000 22.893 36.1830 57.5000 219.22 24.000 23.874 31.0240 48.9000 221.01 25.000 24.865 26.6340 41.6500 222.74 25.000 24.865 22.8930 35.5400 224.39 27.000 26.845 19.7000 30.3700 225.930 28.000 27.835 16.9700 25.9300 227.44 29.000 27.835 16.9700 25.9300 227.44 29.000 29.814 12.6313 19.0900 230.44 29.000 29.814 12.6313 19.0900 230.44 32.000 31.792 9.4481 13.9100 235.00 34.000 33.760 7.1032 10.3100 238.26 36.000 37.717 4.0684 5.7100 246.47 40.000 33.690 3.1053 4.2530 252.56 42.000 41.651 2.3851 3.2010 257.77 44.000 4.631 1.6423 2.4160 263.52 46.000 45.600 1.4292 1.6570 268.23 49.000 53.464 5233 6834 264.86 56.000 55.427 4059 5339 262.94 56.000 57.87 4059 5339 262.94 56.000 57.87 4059	20.000	19.907	57.9120	94.8700	212.65
22,000 $21,831$ $42,2530$ $57,5000$ $217,27$ $23,000$ $22,893$ $36,1830$ $57,5000$ $219,22$ $24,000$ $23,874$ $31,0240$ $48,9000$ $221,01$ $25,000$ $24,865$ $26,6340$ $41,6500$ $222,74$ $26,000$ $25,855$ $22,8930$ $35,5400$ $224,39$ $27,000$ $26,845$ $19,7000$ $30,3700$ $225,99$ $28,000$ $27,835$ $16,9700$ $25,9300$ $227,44$ $29,000$ $27,835$ $16,3700$ $25,9300$ $227,99$ $20,000$ $27,835$ $16,3700$ $25,9300$ $227,99$ $29,000$ $27,835$ $16,313$ $19,0900$ $230,949$ $30,000$ $31,792$ $9,4481$ $13,9100$ $235,000$ $34,000$ $31,792$ $9,4481$ $13,9100$ $236,260$ $30,000$ $37,717$ $4,0684$ $5,7100$ $246,37$ $40,000$ $41,651$ $2,3951$ $3,2010$ $257,77$ $44,000$ $4,651$ <	21.000	20.900	49.4270	80.0100	215.21
23.000 22.883 36.1830 57.3000 219.22 24.000 23.874 31.0240 48.9000 221.01 25.000 24.865 26.6340 $41.6^{+}30$ 222.74 26.000 25.855 22.8930 35.5400 224.39 27.000 26.846 19.7000 30.3700 225.99 28.000 27.835 16.9700 25.9330 227.44 29.000 27.835 16.9700 25.9330 227.44 29.000 27.835 16.9700 25.9330 227.44 29.000 27.835 16.513 19.090 230.44 30.000 31.792 9.4481 13.9100 235.00 34.000 31.792 9.4481 13.9100 236.47 40.000 33.768 7.1032 10.3100 238.26 36.000 37.717 4.0684 5.7100 $24.1.82$ 38.000 37.717 4.0694 </td <td>22.000</td> <td>C1.891</td> <td>42.2090</td> <td>67.7600</td> <td>217.27</td>	22.000	C1.891	42.2090	67.7600	217.27
21.000 23.674 31.0240 48.3000 221.01 25.000 24.865 26.6340 41.6'00 222.74 26.000 25.655 22.8930 35.5900 224.39 27.000 26.846 19.7000 30.3700 225.99 28.000 27.635 16.9700 25.9300 227.44 29.000 27.835 16.9700 25.9300 227.44 29.000 27.835 16.9700 25.9300 227.44 29.000 27.835 16.5313 19.0900 230.44 30.000 29.814 12.6313 19.0900 230.44 32.000 31.792 9.481 13.9100 235.00 34.000 33.769 7.1032 10.3100 238.26 35.000 37.717 4.0694 5.7100 246.47 40.000 39.690 3.1053 4.2530 25.56 42.000 41.661 2.3951 3.2010 27.77 44.000 4.631 1.4292 1.8570 265.23 46.000 45.600 1.4292 <t< td=""><td>23.000</td><td>22.883</td><td>36.1830</td><td>57.5000</td><td>619.20</td></t<>	23.000	22.883	36.1830	57.5000	619.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.000	23.074	31.0240	48.9000	221.0.
21.633 22.633 35.3400 22.730 27.000 26.846 19.7000 30.3700 22.99 27.000 26.846 19.7000 30.3700 225.99 28.000 27.835 16.9700 25.930 227.44 29.000 28.825 14.6330 22.2700 229.92 30.000 29.814 12.6313 19.0900 230.44 32.000 31.792 9.4481 13.9100 235.00 34.000 33.769 7.1032 10.3100 238.26 36.000 37.713 4.0684 5.7100 246.47 40.000 39.690 3.1053 4.2530 252.56 42.000 $4^+.661$ 2.3851 3.2010 257.77 44.000 4631 1.8423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 48.000 47.568 1.1111 1.4350	25.000	24.003	20.0370	75 5400	200, 79
21.000 27.035 16.0700 25.9300 227.44 29.000 27.035 16.9700 25.9300 227.44 29.000 29.825 14.6330 22.2700 228.92 30.000 29.814 12.6313 19.0900 230.44 32.000 31.792 9.4481 13.9100 235.00 34.000 33.769 7.1032 10.3100 238.26 36.000 35.743 5.3627 7.6710 241.82 30.000 37.717 4.0694 5.7100 246.47 40.000 39.690 3.1053 4.7530 252.56 42.000 41.661 2.3851 3.2010 257.77 44.000 4631 1.0423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 49.000 47.568 1.1111 1.4350 257.91 50.000 53.464 .5233 .6834 264.86 50.000 53.464 .5233 <t< td=""><td>27 000</td><td>26.946</td><td>19 7000</td><td>30 3700</td><td>225 02</td></t<>	27 000	26.946	19 7000	30 3700	225 02
29.000 20.825 14.630 22.2700 228.92 30.000 29.814 12.6313 19.0900 230.44 32.000 31.792 9.4481 13.9100 235.00 34.000 33.768 7.1032 10.3100 238.26 36.000 35.743 5.3627 7.6710 24.82 30.000 37.717 4.0684 5.7100 246.47 40.000 33.690 3.1053 4.2530 252.56 42.000 41.661 2.3851 3.2010 257.77 44.000 4631 1.0423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 46.000 45.600 1.4292 1.8570 266.23 48.000 47.568 1.1111 1.4350 257.81 50.000 53.464 .5233 .6834 264.86 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339<	28 000	27 935	16 9700	25 9220	207 66
30.000 25.814 12.6313 19.090 235.00 32.000 31.792 9.4481 13.9100 235.00 34.000 33.768 7.1032 10.3100 238.26 36.000 35.743 5.3627 7.6710 241.82 30.000 37.717 4.0684 5.7100 246.47 40.000 39.690 3.1053 4.2530 252.56 42.000 41.661 2.3951 3.2010 257.77 44.000 4.631 1.8423 2.4180 263.52 46.000 45.600 1.4292 1.8570 265.23 46.000 45.600 1.4292 1.8570 265.23 46.000 45.600 1.4292 1.8570 265.23 46.000 45.600 1.4292 1.8570 265.23 46.000 45.600 1.4292 1.8570 265.23 46.000 53.464 .5233 .6834 264.86 52.000 51.450 .6732 .6690<	29,000	28 825	14.6730	22.2700	229 92
32.000 31.792 9.4481 13.9100 235.00 34.000 33.768 7.1032 10.3100 238.26 36.000 35.743 5.3627 7.6710 241.82 38.000 37.717 4.0684 5.7100 246.47 40.000 39.690 3.1053 4.2530 252.56 42.000 41.661 2.3951 3.2010 257.77 44.000 41.661 2.3951 3.2010 257.77 44.000 41.661 2.3951 3.2010 257.77 44.000 41.661 2.3951 3.2010 257.77 44.000 41.661 2.3951 3.2010 257.77 44.000 41.661 2.3951 3.2010 257.77 44.000 41.661 2.3951 3.2010 257.77 44.000 41.661 2.3951 3.2010 257.71 50.000 51.500 6732 .06590 257.96 52.000 51.500 6732 .0690 </td <td>30,000</td> <td>29.814</td> <td>12.6313</td> <td>19 0900</td> <td>230 44</td>	30,000	29.814	12.6313	19 0900	230 44
34.000 33.768 7.1032 10.3100 28.26 36.000 35.743 5.3627 7.6710 241.82 30.000 37.717 4.0684 5.7100 246.47 40.000 39.690 3.1053 4.2530 252.56 42.000 41.661 2.3851 3.2010 257.77 44.000 4631 1.0423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 46.000 45.600 1.4292 1.8570 266.23 46.000 45.600 1.4292 1.8570 266.23 46.000 47.568 1.111 1.4350 267.81 50.000 49.534 .6648 1.1150 269.25 52.000 51.500 .6732 .6690 267.95 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.389 .3141 .4183	32.000	31.792	9.4481	13,9100	235 00
36.000 35.743 5.3627 7.6710 241.82 38.000 37.717 4.0684 5.7100 246.47 40.000 39.690 3.1053 4.2530 252.56 42.000 41.661 2.3951 3.2010 257.77 44.000 4.651 1.8423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 48.000 47.568 1.1111 1.4350 267.81 50.000 49.534 .6648 1.1150 268.25 52.000 51.500 .6732 .6690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 62.000 61.308 .1858 .2570 250.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 <	34.000	33.768	7.1032	10.3100	238.26
38.000 37.717 4.0684 5.7100 246.47 40.000 39.690 3.1053 4.2530 252.56 42.000 41.661 2.3951 3.2010 257.77 44.000 4.631 1.8423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 48.000 45.600 1.4292 1.8570 266.23 48.000 45.600 1.4292 1.8570 266.23 50.000 49.534 .6648 1.1150 269.25 52.000 51.500 .6732 .0690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 57.388 .3141 .4183 259.67 62.000 51.308 .1658 .2570 250.08 64.000 53.464 .5233 .6834 264.86 56.000 57.388 .3141 .4183 259.67 62.000 61.308 .1658 .2570 <	36.000	35.743	5.3627	7.6710	241.82
40.000 39.690 3.1053 4.2530 252.56 42.000 41.661 2.3851 3.2010 257.77 44.000 4.631 1.0423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 48.000 47.568 1.1111 1.4350 267.81 50.000 49.534 .6648 1.1150 268.23 52.000 51.500 .6732 .0690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 62.000 61.308 .1858 .2570 250.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 64.000 67.178 .0798 .1239 252.48	38.000	37.717	4.0684	5.7100	246.47
42.000 41.661 2.3851 3.2010 257.77 44.000 4631 1.0423 2.4160 263.52 46.000 45.600 1.4292 1.8570 266.23 48.000 47.568 1.1111 1.4350 257.81 50.000 49.534 .6648 1.1150 268.23 52.000 51.500 .6732 .6690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.389 .3141 .4183 259.67 60.000 59.349 .2421 .3279 255.46 62.000 61.308 .1658 .2570 20.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 22.83	40.000	39.690	3.1053	4.2530	252.56
44.000 4631 1.8423 2.4180 263.52 46.000 45.600 1.4292 1.8570 266.23 46.000 45.600 1.4292 1.8570 266.23 48.000 47.568 1.1111 1.4350 267.81 50.000 49.534 .8648 1.1150 268.23 52.000 51.500 .6732 .8690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 60.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 250.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	42.000	41.661	2.3851	3.2010	257.77
46.000 45.600 1.4292 1.8570 265.23 48.000 47.568 1.1111 1.4350 267.81 50.000 49.534 .8648 1.1150 269.25 52.000 51.500 .6732 .6690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 60.000 59.349 .2421 .279 255.46 62.000 61.308 .1858 .2570 250.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	44.000	4631	1.8423	2.4180	263.52
48.000 47.568 1.1111 1.4350 267.81 50.000 49.534 .6648 1.1150 269.25 52.000 51.500 .6732 .6690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 56.000 55.427 .4059 .5339 265.96 56.000 55.427 .4059 .5339 265.96 56.000 55.427 .4059 .5339 265.96 60.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 250.09 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	46.000	45.600	1.4292	1.8570	265.23
50.000 49.534 .8648 1.1150 269.25 52.000 51.500 .6732 .8690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 60.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 20.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	48.000	47.568	1.1111	1.4350	257.81
52.090 51.500 .6732 .0690 267.96 54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 62.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 20.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	50.000	49.534	. 8648	1.1150	268.25
54.000 53.464 .5233 .6834 264.86 56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 60.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 20.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	52.000	51.500	.6732	.0690	267.96
56.000 55.427 .4059 .5339 262.94 58.000 57.388 .3141 .4183 259.67 60.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 250.69 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	54.000	53.464	.5233	.6834	264.86
58.000 57.389 .3141 .4183 259.67 60.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 20.08 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	56.000	55.427	.4059	.5339	262.94
b0.000 59.349 .2421 .3279 255.46 62.000 61.308 .1858 .2570 20.03 64.000 63.256 .1417 .2012 243.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83	58.000	57.389	3141	.4183	259.67
62:000 61:309 1858 2570 20:03 64:000 63:256 1417 2012 243:55 66:000 65:222 1070 1591 232:60 68:000 67:178 0798 1239 222:83 69:000 67:178 0798 1239 222:83	60.000	59.349	15+5.	. 3279	255.46
64.000 63.256 .1917 .2012 245.55 66.000 65.222 .1070 .1591 232.60 68.000 67.178 .0798 .1239 222.83 70.000 69.133 .000 .000 .000 .000	62.000	61,309	. 1858	.2570	2.0.09
60.000 65.222 1070 1591 252.60 68.000 67.178 0798 1239 222.83	64.000	03.200	. 1417	5105.	245.55
	69,000	67 170	. 10/0	1220	232.60
717-14111 PM-19/ UNKM IIUMM 2114 MA	70.000	60 172	01/30	1622	216 44

TABLE IV-10. HYDROSTATIC MOP L ATMOSPHERE

OCTOBER

1

STATION	= 747940	CAPE	CANAVERAL	
Z	GEO. HT.	P	D	TV
KM .	KM	HÐ	G/M3	DEG K
.000	.000	1015.8000	1185.0000	299.71
.003	.003	1015.4000	1185.0000	298.45
1.000	.998	904.9400	1079.0000	292.05
2.000	1.996	804.3200	978.1000	296.47
3.000	2.934	713.3600	892.5000	291.60
4.000	3.992	631.3100	796.5300	276.13
5.000	4,989	557.3000	719.5000	270 20
6 000	5,995	490.5500	648.1000	263.67
7 000	6 982	430.4100	593.6000	256.93
8 000	7 978	375 3000	526 6:000	253.01
0 000	B 074	327 7900	470 + 000	2.2 68
10.000	0.914	294 3000	N21 1000	235 17
11.000	10.005	245 4500	175 7000	227 69
12 000	10.903	210 9000	373.7000	220 59
12.000	12.064	103 7000	333.1000	216 15
13.000	15.324	160.3000	295.9000	200 64
14.000	13.940	133.6000	232.2000	208.34
15.000	14.946	133.3000	E22.2000	207.05
16 000	15.936	110.2000	190.1000	20.2.00
17.000	16.969	93.2100	160.500	202.37
18.000	17.922	78.9130	134.1000	204.97
19.000	18.915	66.9770	111.9500	208.65
20.000	19.907	57.0020	93.7500	211.01
21.000	50.900	48.6160	79 0700	214.20
25.000	51.831	41.5370	66.8700	516.40
23.000	£5.68 3	35.5440	56 6900	218.41
24.000	23.074	30.4600	48.1000	5.0 34
25.000	54.65	26.1390	41.0000	11.555
26.000	25.855	22.4580	34.5000	10.255
27.000	26.846	19.3180	29 .8600	225.39
29.000	27.835	16.0340	25.5500	552.94
29.000	28.85	14.3370	5118 000	558°55
30.000	29.814	12.3701	18.7600	229.70
32.000	31.792	9.2418	13.7200	233.05
34.000	33.768	6.9397	10.1400	217.42
36.000	35.743	5.2361	7.5200	2+1.63
38.000	37.717	3.9713	5.5090	246.17
40.000	39.690	3.0293	4.1950	251.10
42.000	41.661	2.3243	3 1780	257.90
44.000	43.631	1.7951	2.34,80	263.08
46.000	45.600	1.3921	1.8160	266.03
48.000	47.568	1.0821	1.4030	267.73
50.000	49.534	.8+19	1.0920	267.43
52.000	51.500	.65+6	81, 77	26.50
54.000	53.464	. 5081	.6097	263.31
56.000	55.427	. 3935	.5726	261.31
58.000	57.388	. 3040		257.91
60.000	59.3.9	.2340	.3192	254.41
62.000	61.308	.1753	.2510	247.85
64.000	63.266	.1364	.1959	2+1.63
66.000	65.222	. 1031	.1521	235.16
68.000	67.172	.0771	.1186	225.62
70.000	69.132	.057+	.0283	225.41
TABLE IV-11. HYDROSTATIC MODEL ATMOSPHERE

l L

.

C

.

: .

T

NOVEMBER

STATION	= 747940	CAPE	CANAVERAL	
z	GEO. HT.	P	D	τv
KM	KM	HB	G/H3	DEG K
.000	.000	1018.2000	150010000	294.29
.003	.003	1017.8000	1205.0000	294.17
1.000	.938	905.8000	1091.0000	299.15
\$.000	1.996	804.2800	937000	284.54
3.000	2.994	712.8300	886.2000	290.20
4.000	3.992	630.4500	799.3000	274.77
5.000	4.989	556.1700	0205.157	268.66
6.000	5.925	420 19CD	650.2000	262.12
7.000	6.932	429.8800	2005.282	255.32
8.000	7.978	374.6500	525.9000	248.19
9,000	8.974	375.9700	471.9000	240.64
10,000	9,959	282.3600	422.1000	233.04
11.000	10.965	243.4500	376 1000	225 49
12.000	11.960	208.8900	333 0000	218 52
13 000	12 954	178 4200	295 6000	212 45
19.000	17 0.3	151 7900	254 5000	207 73
15 000	14 042	128 7200	219 4000	214 17
15.000	-5 076	100.1000	187 5000	202.36
10.000	16 020	02 0780	159 1000	211.66
19 000	10.50	77 9670	133 6300	203.00
10.000	10 015	65 0070	111 2000	202.03
21 000	10.513	BE 0030	07 1700	200.70
20.000	20.000	50.0030	33.1300	509.7C
22 000	21.900	47.7470 NO 7460	78 2000 EE 01.00	212.40
22.000	22 007	70.7700	55 0000	217.93
23.000	22.003	10,000	53.9000	217.00
24.000	23.0/7	25.0030	47.4200	219.11
25.000	24.653	20.0710	TU 32 JU	220 90
20.000	20.600	21.920	39.3900	222.33
20.000	20.040	10.00/0	29.32.00	224.15
20.000	27.035	10.2330	25.0000	220.65
C9.000	20.823	13.9010	21.9500	227.10
30.000	29.814	12.0043	18.3/00	268.61
32.000	31.792	8.3315	13.4300	235.42
94.000	33.763	6.7503	9,9430	236.44
36.000	35.745	5.0006	7.3550	241.10
38.000	37.717	3.8.87	5.3583	246.55
40.000	39.690	2.9450	4.0640	<. 50
42.000	41.661	6.0008	3.0500	C8.51
40.000	43.631	1.7451	2.3100	cos. /5
45.000	45.600	1.55/3	1.7700	267.15
48.000	47.568	1.0559	1.3710	268.40
53.000	49.534	.6219	1.0700	267.72
⊃2.00C	51.500	.6363	.8385	205.52
54.000	53.464	.4956	.6573	262.71
30.000	55.427	. 58 34	.5136	250.16
38.000	57.388	.2960	.4005	257.54
60.000	59.349	.2279	.3112	255.28
62.000	61.309	.1750	.24 30	250.97
64.0CO	63.266	.1338	.1897	247 00
ob.000	5.222	.1016	.1477	233 79
68.000	67.178	. 0766	.1149	235.52
10.000	69.132	.0572	.0887	224.54

TABLE IV-12. HYDROSTATIC MODEL ATMOSPHERE

ngen werden einen eine gelegen im deren im der der eine eine verste eine eine Bruch deren her der

.

ų

. . .

•

J.

ſ

. --

t

٤

DECEMBER

STATION	- 747340	CAPE	CANAVERAL	
2	9E0.HT.	P	D	τv
KPI .	KM	MB	6 M3	DEG K
.000	.000	1019.6000	155410000	290.35
. CO3	.003	1019.2000	125410000	293.08
1.000	.938	905 6200	1101.0000	296.00
5.000	1.936	803.5500	990.6000	235.60
3.000	5.374	711.6100	690.3000	278.45
₩.DDC	3.992	628.8900	805.4000	273.62
5.000	¥.983	554.3300	723.6200	ZG.87
6.000	5.985	N87.1500	652.0000	æ3.27
7.000	6.987	426 6900	*£6.3000	- 23.52
9.000	7.978	372.3700	525 6000	2.6.3
9.000	8.974	323.6-00	472.1000	230.01
10.000	9.969	580.0300	M25 0000	231.17
11.000	10.965	241.1500	375.2000	223.90
15.000	11.960	206.7300	331.3000	217.36
13.000	12.95*	176.4300	293.5000	515.38
14.030	13.948	150.2100	522.4000	508 62
15.000	14.942	127.5+00	512.9000	206.08
16.000	15.936	109.0500	185.0000	203 45
17.000	16.929	91.4010	157.6000	505 03
16.000	12.355	77.2930	133.1000	202.25
19.000	18.915	65.4200	0005.111	204 87
20.000	19.907	55.5140	95.3300	508.11
21.000	20.900	47 2260	77.9200	511-15
55.000	51.831	40.2533	65.6300	2 13 72
23.000	55.683	34.33-0	55.9800	215.95
24.000	23 674	2 3.4220	47.000	518 06
25 000	5-1965	S2 5100	39.9000	250 10
26.000	25.855	S1.6310	33.9+00	555 05
27.000	26 8.6	18.5600	28.9100	223.93
28.000	27.635	15.9900	24.6900	26. cSS
29.000	58.85	13.7730	21.1100	227 33
30.000	29.014	11.8773	18.0700	5 55 3 5
32.000	31.722	8.67.72	13.1820	233 40
P•.003	33.769	6.65.36	9.7000	238.17
36.000	35 7+3	5 0323	7.1710	2+3 -4
38 000	37.717	3.6.67	5.3310	543 01
40.000	39.690	2.9284	3.7660	25+.8+
42.000	41.661	5.5.55	3.2010	250 69
44.000	43.631	1.7476	5.5530	54 . 51
46.000	45.600	1.3522	1.7500	269.55
48.000	47 563	1.0597	1.3660	205 13
10.000	49 554	.8,195	1.0650	269.81
2.000	51.500	.64.6	.8342	257.18
D*.000	55.464	.4732	0.54	20.20 20.20
360.000	22.427	. 5669	5:21	
20.000	- 37-368	. 2752	.4006	
60.000	23.349	. 2304	. 3149	
600 . UUU	01-348	. 1 / 00	101	2.1.7
	53.CUD	1016	- 1969	210.04
CC U.U.	67 67	.:010	.179/	200 40
70 000	61.1/8	.U.73	- 101 - Rog	2,6,75

TABLE IV-13. HYDROSTATIC MODEL ATMOSPHERE

_ .'-

•

C

:

ANNUAL

STATION	• 7\79\0	CAPE	CAP-AVERAL	
Z	QEO. HT.	•	Ð	τv
101	KP4	HB	C ~3	DEG K
.000	.000	1017.5000	11 - 1.12	23 5.29
.003	.003	1017.10:0	11 + 1.00	582 83
1.000	.930	905.7310	: `^	<u> </u>
5.000	1.97	804.52.1	386	÷ +2
3.000	5.63-	713.2500	886.4000	. e. 3 0
· . 000	3.992	630.8500	823.3033	274.61
5.003	N.989	556 +900	721.9003	268.56
6.000	5.995	489.4700	650.4000	262.18
7.000	6.982	429.1600	282.0000	CO .56
8.000	7.978	374.9500	5.5.4003	248.62
9.000	8.974	326.3300	471.3000	241.22
10.000	9.963	202.400	421.7000	233.38
11.000	10.963	243.0300	375.8500	210.10
12.033	11.960	209.3700	332.0000	219.31
13.000	12.95	1/0.9500	291.7003	213 /0
14.000	13.340	132 4100	2-0.000	209 33
15.000	14.346	109.4200	210 9000	203.34
12.000	10.00	103.0000		203.01
10.000	10.303	70 6360	139.0000	276 69
10.000	10.000	78. 5500 EE EE 20	133.5000	207.73
20 000	10.913	66 6770	07 7000	210 54
21 000	20.000	LP 30 30	79.000	217 54
22 000	21 801		66 6610	215 00
23.000	22 891	15 2990	55 3000	217 00
25.000	21 875	37 2020	W7 8000	219 97
25,000	2. 955	25 9370	40 3400	221 81
26.000	2.605	22.2820	34.7200	223 53
27.000	26.8+6	19 1630	29.6200	225.35
28.000	27.835	16.5020	25.3200	227.07
23.000	29.825	14.2270	21.6700	228.7.
30.000	29.014	15.5803	18.5600	230.48
32.000	31.792	9.1865	13.5500	235.14
3000	33.768	6.9117	10.0100	239.35
35.000	35.7+3	5.2287	2224.7	2 21
39.000	37.717	3.3787	5.5300	249 44
₩C.000	39.690	3.0458	4.1400	255.09
42.000	41.661	5.3+56	3.1550	260.97
44.000	43.631	1.8157	2.3740	265 16
45.000	45.600	1.4105	1.8280	267.53
48.000	47.569	1.0975	1.9180	269.34
50.000	49.534	.6541	1.1073	267.44
52 000	51 500	. 6639	.9662	25.68
54.000	53.46-	.5151	.6783	83.8
55.000	55.427	. 3398	-5293	263 90
000 80	57.388	. 3080	.4141	27 99
6J.000	59.549	.2371		20.455
62.000	61.308	. 1818	·c.)c*	~ ~
EF 000	63.600	- 1366	.1979	244.74
50.000	67 170	. 1040	1246	232.13
70 000	69 112		. 1204	2011

APPENDIX A

EXAMPLES OF WIND STATISTICS FOR CAPE CANAVERAL FLORIDA

Appendix A gives some examples of graphical displays of wind statistics that can be derived from the statistical parameters presented in Table I. These illustrations should aid the user of the RRA in understanding the functional relationships of the probability wind models and, thus, develop an appreciation of the powerful properties of the bivariate normal probability distribution function.

All illustrations for this Appendix are derived from the five wind component statistical parameters from Table 1.1 for January and Table 1.6 for July for eight selected altitudes. These selected altitudes are 4, 12, 20, 30, 40, 50, 60, and 70 km.

1. Wind Speed (Figures A-1 through A-4)

Г

T

The five wind components from Table I are used as inputs to the generalized Rayleigh probability density function, equation (29), and then integrated as indicated by equation (30) to obtain the probability distribution function for wind speed. The derived distribution functions for wind speed are shown in Figures A-1 through A-4 on the normal probability scale.

2. Frequency of Wind Direction (Figures A-5 through A-20)

The derived frequencies for wind direction shown in Figures A-5 through A-20 were obtained using the five wind component parameters from Tables I.1 and I.6 as input values in equation (35). The limits of integration (performed numerically) are over the 22.5-degree interval for each of the 16 compass points. These graphs give the percentage frequency that the wind will blow from the direction intervals.

3. <u>Mean Wind Components and 80th Interpercentile Range of Wind Components (Figures A-21 through A-36)</u>

The wind component means with respect to any orthogonal axes are obtained by using the zonal and meridional mean wind components in equations (44) and (45). These component means form the circle shown in Figures A-2¹ through A-36. Further, the zonal and meridional wind component variances and correlation coefficients are used in equations (46) and (47) to obtain the variances with respect to any orthogonal axes. These rotated component variances and the rotated component means are used in equation (8) to obtain the 80th interpercentile range of wind components and are then illustrated in Figures A-21 through A-36.

4. Probability Ellipses (Figures A-37 through A-52)

Using the five wind component parameters from Tables I.1 and I.6 and p = 0.50, p = 0.95, and p = 0.99 as input values to equation (13), the wind probability ellipses shown in Figures A-37 through A-52 were obtained by computer graphics. The statistical inferences are, for example, that 50 percent of the wind vectors lie within the smaller ellipse and 99 percent of the wind vectors lie within the outer ellipse. These probability ellipses are illustrated using the standard meteorological coordinate system explained in Chapter I.B.1.

5. Conditional Wind Speed Given the Wind Direction (Figures A-53 through A-68)

The five wind component parameters from Table I.1 and Table I.6 are used to evaluate the conditional probability distribution function, equation (41). Interpolations of the conditional function are made to obtain the 5th, 15th, 50th (median), 85th, 95th, and 99th conditional percentile values of wind speed given the wind directions are as shown in Figures A-53 through A-68. The conditional mean wind speed given the wind direction is obtained from equation (40). The conditional mode (most probable) wind speed given the wind direction is obtained from equation (38). The conditional mean wind speed and the conditional wind speed modal value given the wind direction are also shown in these figures. For some figures, the conditional wind speed values are invalid for the given wind direction near 270 degrees (from the west). This is caused by the lack of computational precision in evaluating equations (40) and (41) when the arguments for the Gaussian probability distribution have large negative values, i.e., when the coefficients (b/a) become less than -4 in these equations.

This appendix contains only a few of the many options in presenting wind statistics illustrations.

Ĩ

•

Ľ

-

Figure A-1. Rayleigh PDF of wind speed, Cape Canaveral, January.

• • • •

· -

•

· - · · · · · ·

·

ų

.....

Figure A-2. Rayleigh PDF of wind speed, Cape Canaveral, January.

. . .

·`.

-_`

٠.,

.

- 1

•...

· • ·

...

۰.

T

.

•

(

. . .

4

. i

•..•

n han serie and series and series and series and series and series and series and series and series and series

「おおおお」のようなななながら、「おおおおおおお」が、「ひょう」」「はなななない」が「おおおお」、「いたかか」」が、「おいた」」(

•

•

4

•

۱ ۲

·,

. . . .

ىرىيە **مۇ**رىمۇ مەر بەر بەر بەر بەر بەر بىرى شەر مەر مەر مەر بەر ب

Figure A-5

• • • • •

•

-

:

· ·

「日本」のです。 書いための 「「「」」の「「「」」」の「」」の「」」の「」」の「「」」の「「」」

. ...

4

•. •

1

• • •

ł

Figure A-8

.

.

HIND STATION-KSC HONTH-JAN. ALTITUDE-40 KM

۰.

a a series a la construction de la construction de la construction de la construction de la construction de la

Figure A-9

、 、・ ・

. '_

Figure A-10

Ľ

• <u>-</u> • <u>-</u>

J

J

HIND STATION-KSC HONTH-JAN, ALTITUEE+60 IN

•

Figure A-11

C

4

. -

. . . .

•

••••

· · · · · ·

Ī

ľ

.

١.

X

ĩ

•

..

Figure A-13

C

Ţ

Ξ

•.•

Figure A-14

•

Ţ

₹

. .

· . .

• •.

.

.

۰.

• .• .

. .

· ·

•.•.

. . .

;

Ţ

l

1

1

2

•.•

• • • • • • • •

· · · . . .

. .

T

Figure A-17

·. '

:]]

. N

. . .

.

-

÷

. • :

ъ., t

.

Figure A-18

.*

. .. • -

3

•

•.

-

.

.

•• • • •

•

• • .••

• : •

وهويجن الوالي ويراجع والمراجع والمراجع المراجع والمتحا والمتحاط والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج

Figure A-19

and the second second second second second

2.2.2.2.2.2.2.2

•.

J

۰.

·. ː ·.

·_

·

· . · .

٠.

. . .

• •

·

. . `.

.

.....

.

•

Ì

• •

Ň

1

2

•

· • • • • • •

Figure A-21

ş.,

Į

•

•

÷.,

.

۰.

٠.'

Figure A-22

· · · ·

•

•...

٠.

.

.

Figure A-23

·__

¹

٦

Ì

ŧ

(

٠

ι.

•-_•

•

•

Figure A-25

Ľ

)

ŧ

ł

Figure A-26

· . • •

۰.

. .

C

· ·

Ţ

٠.[•]

,

Į

_(

Figure A-28

ŧ

: :··.

:-

Figure A-29

•. •.

C

.

۳

:

T

1

Ì

•

· . · .

Figure A-30

. .

.

Figure A-31

Ĭ

A

•

T

.

;

(

Ì

.

. .-

Figure A-33

.

. - (

÷

1

- 1

÷., ;

•

•... ·..۳

:

·' _ ·'

· •

Figure A-35

•••

T

Figure A-37

.

.

5

i

Figure A-38

Figure A-39

C

•

Ű

Ţ

•

Į

¢,

Figure A-41

Ċ

-

Ì

(

Figure A-42

T

Figure A-43

.

•

Ĩ

•..

ļ

З

1

٦

Figure A-44

. . .

Figure A-45

C

T

-

Figure A-46

•

E

্য

ø

Figure A-47

.

-**4** .-

"

•

J

2 • .

۲

Figure A-48

.

1

. . . .

•

۳**۹** -

Ţ

(

Ì

ł

ŧ

Figure A-49

1.11日本のでは、11日本のような、11日本の

....

· T

`4

2

•

Figure A-50

Ċ

Figure A-51

-=

••••

1

•

C

t

Figure A-52

T

. : .

CONDITIONAL WIND SPEED GIVEN WIND DIRECTION

Figure A-53

• • •

.;

J

•

.

.

.

ì

.

-

:

.

,

.

•

.

æ

Figure A-54

- -

3

-

.

C

.. .

.

CONDITIONAL HIND SPEED OLVEN HIND DIRECTION

Figure A-55

.

-

C

:

T

Figure A-56

U

T

•

 \mathbf{U}

CONDITIONAL HIND SPEED GIVEN HIND DIRECTION

. •

7

.

•

, M

Š

а

1

ŧ

1

Figure A-57

Figure A-58

۰.

E

.

CONDITIONAL WIND SPEED OIVEN WIND DIRECTION

Figure A-59

.

.

T

•

-

•

1

Ĩ

I

,

J-ZD VOLLO

Z

CONCITIONAL HIND SPEED OLVEN HIND DIRECTION

Figure A-60

.

ĩ

•.

Ţ

:

•

1. 1. m. 1

6

CONDITIONAL WIND SPEED GIVEN WIND DIRECTION

'n

T

Z

1

CONDITIONAL HIND SPEED GIVEN HIND DIRECTION

Figure A-62

و. بېرېږ د خ

-

C

.

:

C

۰.

.

.....

HIND STATION-KSC MONTH-JCL. ALTITUDE-20 KM

CONDITIONAL HIND SPEED GIVEN HIND DIRECTION

Figure A-63

Ċ.

4

ŧ

1

.

-

CONDITIONAL WIND SPEED DIVEN WIND DIRECTION

Figure A-64

C

•

F.4

.

•

C

•

HIND STATION-KSC HOTITH-JUL ALTITUDE-40 KM

CONDITIONAL WIND SPEED OTVEN NIND DIRECTION

Figure A-65

:.

Ξų.

- .

-

2

(

. . .

•

÷

•••••••

CONCITIONAL HIND SPEED GIVEN HIND DIRECTION

Figure A-66

Ċ

-

ž

· · ·

.

Ċ

ia.

HIND STATION-KSC _ HONTH-JUL, ALTITUDE-60 KM

CONDITIONAL HIND SPEED OTVEN HIND DIRECTION

Figure A-67

J

ĩ

3

÷

-
HIND STATION-XSC MONTH-AL. ALTITUDE-70 KH

CONDITIONAL WIND SPEED OLVEN WIND DIRECTION

Figure A-69

.

2

•

5

۰. -

; ; : , 2-20 MIND E-D

APPENDIX B

RANGE SPECIFIC INFORMATION AND THERMODYNAMIC QUANTITIES FOR CAPE CANAVERAL FLORIDA

1. Range Specific Information

C

......

To prevent further character size reduction for Tables 1 through IV certain range specific information has been omitted. This important information is given in Table B-1.

TABLE B-1

HEADER PECORD G-3C KM	HEADER RECORD 32 - 70 NR
TABLE NUMBER	TABLE NUMBER C
CATA SOUPCE (1=DATSAV,2=NDC-A)	DATA SCUFCE (1=CATSAV,2=LDC-A)
CALL LETTERS	CALL LETTERS XHR
WHO EUHPER 74794	D. WHO NUMPER
LATITUDE 28"2	LATITU: 28°28
UIRECTION (N OR S)N	DIRECTION IN OR SI
LONGITUDE EO'3	S LONGITUCE 80 33'
DIRECTION (E OF L)	DIRECTION (E OF L)
ELEVATION IN METERS	S ELEVATION IN METERS
START PERIOD OF PECORD (MO-YF) 15	7 STARI PERIOD OF RECORD (MO-YP) 157
END PERIOD OF RECORD (MO-YR-) 127	9 ENG FERIOD OF PECUPD (MO-YR-) 1279
NO. OF TIME WINDOWS (C,1 OR 2)	NO. OF TINE WINDOWS (C,1 OR 2) 1
START TIME WINDOW #1(HR-HNZ) 120	D START TIME WINDOW #1(HR-MNZ) 1200
END TIME NINDOWS #1 180	DEND TIME LINDOLS BI
START TIME WINCOW #2	D START TIME LINCOU #2 G
END TIME WINDOW #2	DEND TIME WINDOW #2
DATE OF RRA 88	DIDATE OF PRA
ALTITUDE RANGE OF PRA LOW LEVEL (KM)	GALTITUCE RANGE OF PRA LOW LEVEL (KM) 30
ALTITUDE RANGE OF RRA HIGH LEVEL(KM) 3	DALTITUDE RANGE OF FRA HIGH LEVEL(KH) 7C
STANDARD DEVIATION OF THERODYNAHIC LIMITS-6.D	STANEARD DEVIATION OF THERCDYNAMIC LIMITS-6.0
WIND LIMITS	VIND LIMITS6.0

2. Thermodynamic Quantities

This section presents examples of further computations and graphical displays of pressure, density, and virtual temperature statistics that can be derived from the data given in Tables II, III, and IV. No attempt is made to present complete nor exhaustive illustrations that can be made to aid in visualizing the relationships that can be made from the data in Tables II and IV. The choices are those which aided the committee to verify the reasonableness of the tobulations.

2.1 Monthly Means from the Annual Mean

The hydrostatic model values in Table IV are used to compute the monthly mean differences relative to the annual mean values of pressure, density, and virtual temperature expressed in percent and the monthly mean difference in virtual temperature for the annual mean virtual temperature expressed in degrees K. Examples of these four statistics are given in Table B-2 for January and Table B-3 fo. July. Graphical displays of the four statistics contained in Tables B-2 and B-3 are shown in Figures B-1 through B-8. Also the relative differences between the monthly mean values from Table IV-1 through IV-12 for all months from the annual mean values (Table IV-13) are illustrated in Figure B-9 for pressure, in Figure B-10 for density, and in Figure B-11 for virtual temperature. The monthly mean virtual temperature differences from the annual mean virtual temperature for all months is given in Figure B-12. The simple

Ι.

sum of the monthly mean differences from the annual mean values of these quantities is not zero. This is because the annual mean statistical parameters are computed (see Section C of text) by weighting the monthly means by the number of observations in each month.

2.2 Coefficients of Variation and Derived Correlation Coefficients

1-1

5

J

۰.

5

•

- (

The coefficient of variation, C_V , is defined by the standard deviation with respect to the mean divided by the mean. The coefficients of variation for pressure, C_VP , and density, C_VD , were computed using the standard deviations from Table II and the hydrostatic mean values from Table IV. The coefficient of variation for temperature uses the standard deviations of virtual temperature from Table III to the altitude where virtual temperature exists. Above this altitude the standard deviations of temperature are from Table II. The mean values for virtual temperature to the altitude where it exists and temperatures above this altitude are taken from Table IV. No distinction is made in the table headings in Table B-4 (Jan) and Table B-5 (July) and all related figures between virtual temperature and temperature.

From the coefficients of variation for pressure, and temperature (virtual temperature to the altitude where it exists), the correlation coefficients between these quantities are derived using Buell's method (see reference in text). The equations for these derived correlation coefficients are:

$$r(P,T) = \frac{(C_V T)^2 + (C_V P)^2 - (C_V D)^2}{2 [C_V T \cdot C_V P]} , \qquad (B-1)$$

$$r(P,D) = \frac{(C_V D)^2 - (C_V T)^2 + (C_V P)^2}{2 (C_V P + C_V P)} , \qquad (B-2)$$

$$r(T,D) = \frac{(C_V P)^2 - (C_V D)^2 - (C_V T)^2}{2[C_V T \cdot C_V D]} , \qquad (B-3)$$

The correlation coefficients in tables B-4 and B-5 are derived from the above equations.

A test for the validity of the derived correlation coefficients is that all three of t' following inequalities be satisfied.

$$C_{V}P - [C_{V}D + C_{V}T] < 0$$

$$C_{V}D - [C_{V}T + C_{V}P] < 0$$

$$C_{V}T - [C_{V}P + C_{V}D] < 0$$

$$176$$
(B-4)

In these examples (Tables B-4 and B-5) the numerical values from equation (B-4) are all negative, hence, the derived correlation test is considered valid. The rare exceptions to this test for several RRAs occur at the extreme highest altitudes where sample sizes for the statistical sample are small.

The statistical parameters from Table B-4 (January) and Table B-5 (July) are illustrated in Figures B-14 through B-16.

For all months the C_VP values are shown in Figure B-17, the C_VD values are shown in Figure B-18, and C_VT values are shown in Figure B-19. If the abscissa on the figures for the coefficient of variation is multiplied by 100, these figures would show the percentage of the random dispersion of these quantities over the month with respect to the monthly mean for these thermodynamic quantities.

The derived correlation coefficients for all months are illustrated in the following figures:

a) Figure B-20 gives r(P,D).

۰.

- b) Figure B-21 gives r(P,T).
- c) Figure B-22 gives r(T,D).

Table B-2

STATION 747940	HONTH 1	
DELTAS IN PERCENT	RELATIVE TO	ANNUAL

E 🔴

Ģ

LEVEL	PRESSURE	DENSITY	IEHP.	THO-TANTIOED.K)
c 00	- 7	2 60	-2 70	-8.03
.000	.23	2.09	-2.30	-0.86
.003	.56	6.50	-6.60	~0.00
1.000	61	1.00	-1.00	-4.03
2.000	13	1.11	-1.29	-3.00
3.000	35	. /0	-1.03	-2.00
4.000	43	.49	93	-6.30
5.000	5/	.40	98	-6.66
6.000	70	. 54	-:.05	-e. M
1.000	84		1.09	-2.79
9.000	-1.00	.19	-1.19	-2.9/
9.000	-1.17	.13	-1.29	-3.12
10.000	-1.36	02	-1.33	*3. IU
11.000	-1.54	40	-1.16	-2.53
12.000	-1.69	90	82	-1.79
13.000	-1.76	-1.71	03	05
14.000	-1.71	-2.57	.71	1.49
15.000	-1.60	-2.24	.67	1.37
:6.000	-1.53	-1.65	- 14	.29
17.033	-1.56	-1.07	49	-1.03
19 000	-1.69	60	-1.10	-5.5
19.000	-1.90	54	-1.40	-2.90
50.000	-5.15	70	-1.42	-3.00
21.000	-2.34	-1.03	-1.33	-5.84
55.000	-2.54	-1.37	-1.19	-2.56
23 COO	-2.72	-1.56	-1.17	-6.54
24.000	-2.89	-1.83	-1.13	-2.49
25.000	-3.07	-1.95	-1.15	-2.54
25.010	-3.64	-2.07	-1.19	-2.67
21.000	-3.41	-2.20	-1.18	-2.00
28.000	-3.58	-2.53	-1.10	-6.50
29.000	-3.73	-2.68	-1.09	-2.49
39.000	-3.89	-2.80	1.08	-2.48
12.000	-4.63	-3.34	-1.39	•3.00
34.000	-4.09	-4 05	-1.17	-2.67
30 000	-9.23	-4.69	/8	-1.91
38.000	-4.99	-3.32		12
43.000	-4.9/	-3.99	.44	1.13
42.000		-0.47	1.10	3.02
44.000	-4.40	-0.00	1.39	3.00
-0.00J	-4,13	-2.91	1.13	3.10
40.J.'J	-3.94	-2.12	.60	1.01
50.000	-3.93	-3.9/	00	-7.43
DE CUU	-1.70	- 3. /9		-2.08
56 000	-1.34		00	-C.C.
50.000	-4.51	-4.00	56	-1.50
00.000	-4.30	-5.69	. 13	94. AC
63 000	-4.75	-0.19	.Ud ~=	.20
61 000	-4.43	-3.74		1.00
66 000	-4.31	-3.03		×.
60.000		-5.45	, /C	1.03
70 000	-4.04	-5.07	,4/ E.D	1.00

Table B-3

STATION 747940 HONTH 7 DELTAS IN PERCENT RELATIVE TO ANNUAL

LEVEL	PRESSURE	DENSITY	TEMP.	THO-TANNIDEG.K)
.000	50.	-2.01	2.04	6.05
.003	.01	-2.17	2.17	6.43
1.000	.25	-1.66	1.05	5.30
2.000	.43	94	1.38	3.94
3.000	.58	45	1.03	2.09
4.000	.70	25	.95	2.61
5.000	- 58.	25	1.06	2.86
6.000	.97	29	1.27	3.2
7.000	1.15	27	1.43	3.65
8.000	1.35	25	1.61	4.01
9.000	1.59	17	1.75	4.22
10.000	1.84	. 09	1.74	4.06
000.11	80.S	.59	1.48	3.3•
12.000	2.27	1.26	.97	2.13
13.000	2.36	2.23	.13	.21
14.000	S. 35	2.96	62	-1.29
15.000	15.5	2.83	57	-1.18
15.000	2.18	1.97	.21	.42
17.000	2.29	1.26	1.02	2.07
18.000	2.50	.97	1.54	. 314
19.000	2.75	1.25	1.49	3.08
20.000	2.99	1.63	1.33	2.81
21.000	3.19	1.95	1.21	2.59
S5 . 000	3.37	S. 30	1.05	2.35
53.000	3.54	2.54	.99	2.15
24.000	3.69	2.72	.94	2.05
52 003	3.84	2.90	.91	5.05
26.000	3.98	3.08	-87	1.94
27.000	4.11	3 31	. 79	i.79
C00.85	4.22	3.40	.70	1.59
29.000	4.32	3.65	.63	1.45
30.000	4.41	3.98	.53	1.23
¥2.000	4.53	4.06	.24	.56
34.000	4.59	4.20	. 19	.45
36.000	4.62	4.45	.00	.01
36.000	4.62	4,43	-05	. 04
40.000	4.57	4.78	37	94
42.000	4.45	4.80	49	-1.28
4.000	4.29	4.89	74	-1.96
46.000	4.11	4.54	59	-1.57
48.000	3.98	4.23	43	-1.15
50.000	3.94	4.54	62	-1.66
52.000	3.64	4.46	94	-29
54.000	3.39	. 19	· .91	-2.40
50.000	3.10	4.26	-1.27	-3.31
58.000	2.76	3.91	-1.27	-3.28
60.000	2.38	3.77	-1.50	-3.81
62.000	1.87	4.04	-2.24	-5.60
C4.000	1.23	3.39	-2.25	-5 45
CO.000	- 03	2.46	-1.9/	- 4.54
20.000	. 15	1.27	-1.23	-2.78
10.000	<1	.191	-1.1/	-6.5/

-

F

,

25

.

مترجه بالمربع بالمربية والمتحر والمترج بالمرجون			and a set of	مرد مید بدر برد	ومصاحدها مراجا مراجلهم	
- • •• •						
			Tabi	le B-3		
	STATION DELTAS	747940 In Percent	HONTH 7 RELATIVE TO	ANNUAL		
	1.65.67		DENSITY	10437	THO TANKING MI	
		THE SOURCE	UEN31 · ·			
	.000	50. 12.	-2.01 -2.17	2.04 2.17	6.C5 6.N3	
···.	1.000	.25	-1.66	1.05	5.38	
2.	2.000	.43 .58	45	1.38	3.94	
	4.000	.70	25	.95	18.5	
	5.000	.97	29	1.00	3.22	
	7.000	1.15	27 25	1.43	3.65	
	9.000	1.59	17	1.75	4.22	
	10.000	2.08	. 09 . 59	1.74	4.06	
10 12	12.000	2.27	1.26	.97	2.13	
	14.000	5.35	2.96	62	-1.29	
	15.003	2.21	2.83 1.97	57 .21	-1.19 .42	
	17.000	2.29	1.26	1.02	2.07	
	19.000	2.75	1.25	1.54	. 314	
	50.000 20.000	2.99	1.63	1.33	2.81	
	22.000	3.37	2.30	1.05	2.55	
	53.000 54.000	3.54 3.69	2.54 2.72	.99 .94	2.15	
·	25 003	3.84	2.90	.91	2.02	
	27.000	4.11	3 31	.79	i.79	
	29.000	4.22	3.40 3.65	.70	1.59	
	30.000	4.41	3.99	.53	1.23	
	34.000	4.53 4.59	4.06	ہ ے۔ 19	.00 .45	
·.	36.000	4.62 4.62	4.45 6 62	.00	.01	
	40.000	4.57	4.78	37	94	
	42.000 44.000	4.45	4.80 4.89	49 74	-1.28	
	46.000	4.11 7.00	4.54 6.71	59	-1.57	
·	50.000	3.94	4.54	62	-1.66	
	52.000 54.000	3.64 3.39	4.46	-,94 -,91	-2.+ 3 -2.+0	
	56.000	3.10	4.26	··1.27	-3.31	
·	60.000	2.38	3.91	-1.50	-3.81	
	62.000 E4.000	1.87	4.C4 3.39	-2.24 -2.25	-5.60	
	66.000	.63	2.46	-1.97	-4,54	
· <u>·</u>	70.000	21	1.25 .61	-1.23	-2.57	
•						
1 • •					,	
					1	
- 1 			1	70		
			1	13		

· • • • •

Figure B-1

J

· . . •.

 $x^* + x + x$

. .

......................

-7

Figure B-3

Q

E

• •

Figure B-4

÷.,

. . . .

T

18 M

18.58 No. 18.58

.

Figure B-5

• ?

C

Figure B-6

.:

-.

ľ

- .

1

Figure B-7

j

Figure B-8

•

.

T

•

9

C

Figure B-9

ũ

• 1

V

.

٠.

Figure B-10

. '

.

•

4

Ľ

Í

I

.:-

.٠.

•

...

•

.

· · · ·

٠.

·...

1

•

.

:

.

.

· · · · · · · · ·

Figure B-11

• ...

Figure B-12

1

.

T

٦

J

Tab	le	B-4
-----	----	-----

.

.

.

사실 수요 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 같은 것

·. · .• *

•

•.. . .

> --

•

STATION	747940 HON	ITH 1							
LEVEL	CVP	CVD	CVT	R(P,T)	R(P,D)	R(T,D)	0CVP	DCVD	DC''T
.000	.0048	. 0235	.0218	2695	.4541	9804	0406	0031	0056
.003	.0049	.0235	.0218	2604	.4480	9799	0404	0031	0066
1.000	.0050	.0170	.0171	. 1613	.1322	9569	0291	0051	0049
5.000	.0056	.0123	.0133	. 3947	. 0241	9090	0200	0066	0045
3.030	.0064	.0097	.0122	.6175	1205	8553	0155	0089	0038
4.000	.0074	.0088	.0124	.7139	1583	8045	0137	0110	0038
5.000	.0095	.0083	.0124	.7452	0864	7277	0121	0126	0044
6.000	.0098	.0091	.0124	.7563	.0508	6150	0107	0141	0055
7.000	.0110	.0087	.0131	.7497	. 1436	5472	0107	0154	0067
B.000	.0123	.0096	.0135	.7254	.2607	4754	0108	0161	008+
9.000	.0136	.0106	.0135	.6938	. 3969	3856	0105	0165	0197
10.000	.0149	2153	.0133	.6279	. 5357	3209	0107	0160	0139
11.000	.0161	.0160	.0133	.4196	. 6562	4095	0132	0134	0188
15.000	.0165	. 0208	.0154	. 1549	.6800	6190	0197	0111	0218
13.CCO	.0167	. 0240	.0167 -	0332	.7202	7173	0239	0094	0241
14.000	.01E3	. 0224	.0137	0808	. 7922	6722	0195	0079	0253
15 600	.0161	9550	.0123	5-95	. 8490	72%6	0189	0058	0263
16.000	.0154	. 0236	.0132	3594	.0531	7935	0214	0050	0258
17.000	.0144	. 0253	.0154	4438	.8368	8602	0263	00+5	0243
18.030	.0133	. 0259	.0176	3955	.7822	0816	0301	0050	05;6
19.000	.0123	.0236	.0172	2563	. 7080	8641	0285	0059	+.0196
20.000	.0118	. C203	.0159	0494	.6211	8134	0244	~.0074	0162
51.030	.0119	.0177	.0149	. 1482	.5503	7442	0206	0092	0147
22.000	. 5125	.0159	.0145	.3115	.4997	6674	0179	0110	0139
23.000	.0133	.0144	.0135	.4293	.5187	54 35	0147	0126	0141
24.000	.0142	.0142	.0143	.5037	,4946	5016	0143	0143	0141
25.000	.0156	.0139	.0145	.5763	.5176	4003	0129	0162	0149
16 000	.0109	.01.59	.0142	.6173	.5882	2731	0111	0173	0165
27.000	.0182	.0149	.0146	.6075	.6278	2369	0113	0179	0185
28 000	.0198	.0168	.0158	.5772	. 6.588	2.35	0127	0189	0208
21.000	.0207	.01/5	.0158	. 5085	.6636	2302	0120	0190	0224
30 000	.0220	.0187	.0155		.684.0	- 2000	01.52	0198	0242
36.000		.0000	. UC 4 3	.3651	. 3.539	- 10000	•.0250	- 0207	- 0200
36,010	.0276	.0200	.02.74	. 3/23	.0199	- 6070	- 071-3	- 0207	- 0710
	r 200	0367	.0293	. 3460	. 3360	- 50 74	- 0719	0243	- 0362
NO 000	6317	0752	.0277	. 3033	.0313		- 0205	- 0215	- 0419
52 000	0317	0159	0246	2650	7634		- 0270	- 0221	- 0445
ww 000	0340	0359	0.249	2015	7494		- 0266	- 0230	- 0451
N6 000	0760. Corn	0797	0230	1601.	A100		- 0265	- 0125	- 0510
49 000	0365	0376	6210	2455	9261	- 3421	- 0210	- 0207	- 05.22
50,000	0381	0396	0221	2658		- 1111	- 0227	- 0216	0546
52.000	.0905	0396	.0252	3468	8017	- 2626	- 0243	÷.0251	0549
54.000	0+39	.0403	.0305	.9615	7393	2552	- 0270	0342	0536
56.000	0.76	.0417	.0232	.4974	.7944	1317	0232	0351	0601
58.000	.0517	.0433	.0339	5539	.7592	1214	Ge ² 56	0422	0611
£0.0C0	.0571	.0442	.0379	6339	.7485	0385	0250	0508	0634
62.000	.0703	. 0492	.0477	7156	.7356	.0533	0266	0689	~.0718
£4.000	.0827	. 05+9	. 0569	.7505	.7283	. 09 39	- 0291	08+7	0806
66.COO	.0726	. 0597	. 0521	.7156	.6974	0016	0302	0740	0713
58.000	.0790	. 0559	. 0660	.7169	.5670	1678	0429	0892	0689
70.000	. 6851	.0598	. 0564	.7137	.7505	. 0727	0311	0017	0395

STATION	747940	Month 7							
LEVEL	CVP	CVD	CVT	R(P,T)	R(P.D)	R(T,D)	DCVP	DCVD	DCL
.000	.0024	.0111	.0110	. 0657	. 1502	9766	0197	0023	0025
. 03	.0024	S110.	.0111	.0719	. 1437	9767	0198	0023	0025
1.000	.00.75	.00+6	.0541	.0837	. 4624	•.8465	0062	0019	0030
2 000	.0026	. 0042	.0039	.2135	. 4079	8050	0056	0023	0028
3.000	.0027	.00+1	.0040	. 3203	. 3557	7715	0054	~.0027	0028
4 COO	.0029	.0047	.00-5	.2750	. 35+0	8019	0063	0029	0030
5.000	.0030	.00+9	.0049	.2974	. 3215	8085	0067	0030	0031
C03 3	.0033	.0053	.0053	.3292	.2870	8101	0073	0033	0032
7.000	. 00 36	.0051	0055	.4276	. 2490	7691	9970	0040	0033
8.000	.0038	3000.	.0064	.4839	.1247	8039	0087	00+6	0031
9.000	.0044	.0000	.0077	.6205	• د 63	8220	0093	0060	0027
10.000	.0051	. 9057	.0381	.7131	1211	7822	0088	0075	0027
11.000	.0060	. 0051	.0081	.7785	0558	6701	0071	0090	0030
12.000	. 0067	. 0049	.0078	.7823	. 1230	5219	0060	0096	0038
13 000	.0077	. 0267	.0080	.63-5	. 3961	4583	0070	0090	0065
14.000	.0093	.0104	.0093	. 3026	.5257	6517	0115	0072	0054
15.000	.0093	.01-0	.0105	09-9	. 6654	5328	0162	0048	0118
16.000	.0091	.0146	.0108	1739	. 68+8	8367	0172	0043	0119
17 000	.0080	.0135	.0103	6895	. 6554	8109	+.0159	0047	0112
19.000	.0090	.0124	.0098	.0384	.6155	7639	0142	0054	0108
19.000	.0082	.0107	0083	.1654	6405	6515	0108	0059	0106
20.000	.0079	.0102	.0076	. 1408	6725	6380	0099	0054	0105
21.000	0081	.0106	.0075	.0913	7026	6444	0100	0051	0111
22 000	.0092	.0009	.0067	1245	.7427	5719	0284	0050	2114
23.000	.0054	.0100	.0059	. 1531	.7336	5593	0035	0053	0115
24.000	.0036	.0102	.0076	2029	.6303	5679	- 0032	- 0059	+. UI13
25.000	.0097	.0038	.0074	.2717	6889	5104	0084	0063	0112
26.003	0391	.0097	.0075	.3187	.6847	4726	0082	0068	0113
27.000	.0093	.0100	.0082	3460	6 3 8 5	5011	0090	0075	0111
29 520	. 0097	.0093	.0073	.4286	.7093	- 3328	0069	0077	01:8
C00. PS	. 2104	.0107	.0030	. 3991	.6331	4571	009+	0087	0120
30.000	.0107	.0100	.0080	.4650	. 7020	30-0	0073	0088	012
30 000	.0145	.0133	.0148	.5352	. 4 354	-,4"43	0135	0162	0:30
34 000	.0178	.0156	.0175	.5165	.7261	2136	0103	0147	0209
36 (90	.0177	.0168	.0152	.4815	.6155	3945	0143	0160	0194
38 000	.0197	.0179	.0157	5076	.6550	*.3186	0139	0175	0219
40.600	. 0231	. 0213	.0170	.4692	.7112	2970	0152	0188	0275
42.000	. 0244	. 0231	.0180	.4379	.7157	3145	0167	0193	0296
44.600	. 0260	.0270	. 0217	. 37 32	.6651	4446	0226	0208	0313
46.000	. 0281	.0274	.0186	. 3688	.77•7	3020	0179	0194	0369
148 000 B+1	.0233	. 0252	.0170	.5372	.8229	0372	0123	0217	0381
50 000	.0322	.0.32	.0186	. 4907	.0105	0999	0146	0226	0+18
😒 (00	.0352	. 0.2813	.0222	.5743	.7774	- 0685	0159	0285	0419
54.000	.0397	.0308	. 02 39	.6059	.7869	0142	0160	0318	0456
56.000	.0425	.0350	.0267	.5691	7785	0732	0193	0342	0508
58 CCO	.0462	.0+15	.0315	.5247	. 76 36	1490	0248	0382	0583
60.000	. 0535	. 04 36	.0363	.5368	.7108	2119	0294	+.0'+32	0577
G2 000	. 0544	.0+50	.0390	.5785	.7077	1668	0296	0%93	0604
64 000	. 0582	.0520	.0424	.5.,9	.7091	2540	0362	0485	0678
65.010	.0467	.0519	.0423	. 3231	.6363	5244	0475	0371	0563
68.000	. 05 39	. 2463	. 0655	.7151	. 1499	5839	0580	0730	0346
70.000	. 07 38	.0516	.0760	.7629	. 3076	3805	0538	0982	0495

Table B-5

٠.

.`

•

4

7

:

. •.

۰· ۰

· · · ·

.

۰. .

•

•

Figure B-13

• • • •

.

Figure B-14

.

· · ·

٠.

figure B-15

÷

Figure B-16

Ţ

۲

7

1

: - i

ł

÷

ľ

Т

Figure E-18

J

-

~

• •

• •

`.`

.

Figure B-20

T

Ţ

.....

Ì

Figure B-22

C

C