\\ \section*{THEMATIC MAPPER\\ \section*{THEMATIC MAPPER \\ $5=$ THEN}

SEPT 1982

FLICHT MODEL PRESHIPA,AENT REVIEW

DATA PACKACE
VOLUME IV - APPENDIX PART G - MISCELLANEOUS SYSTEM DATA

Articie IV - 3 A

Munet Ref Na DsSges

-c JLEngel/SG Oxley/ cc Distribution B FD McLaughlin/RA Amador

Data Bank (2)
*
Su\§ Thematic Mapper
File
Program; Revisions to Specification GSFC 400.8-D-201

Contract Modification Number 70 incorporates the Change Notices listed below, copies of which are attached for your review. Please forward your comments to me by 15 June 1981 and advise if these Change Notices are acceptable as written, and whether incorporation thereof affects either cost or scheriule. Note that diASA/CSFC states in the contract modification that a credit proposal is due. I would appreciate some justification offsetting the need for a credit proposal.

CSFC $400.8-D-201$, Revision B
-
Change Notice No.
14

15

Description

Deletes the shock test requirements and changes the sinusoidai vibration test requirements.

Deletes the contractor choice of performing either acoustic noise or random vibration test, deletes acoustic noise tolerances and changes the acoustic noise test levels.

If you have any questions, please call me.

ORIGINAL PAGE 88 OF POOR QUALITY

Appendiz 3.2.1

IAOl Test Reference Documentation

 A Subsiourv al Hugnes Arerots ComponvINTERNAL MEMORANDUM

TI): J. B. Young

CC: Distribution Data Bank (7) Optics File

REI: 2221-525 HS236-7876
FROM.
P. E. Thurlow
blDG. Bll mail sta. 78
EXT. 6267
Coarse focus MTF was run vs 2 axis location of the reticle wheel in standard $1 A-01$ test configuration and procedure. After test methodology and results were stabilized, two coarse focus runs were made to show repeatability of results.
The attached graphs show MTF along/cross track vs 2 axis effset from home position of the reticle wheel, using detector a Band 4 , Channel 9, and spatial frequency 300 meter bar, (107.7 cycles per inch reticle bar frequency).

MTF

Over various trial runs - peak MTF was in the range . $49 \pm .01$ both along track and cross track.
Best Focus Location
From the plotted data, center points of the MrF patterns were found to be:

$$
\begin{aligned}
& \text { Cross Track Center }=\text { Home }-.012 .^{\prime \prime} \pm .001^{\prime \prime} \\
& \text { Along Track Center }=\text { Home }-.024^{\prime \prime} \pm .001^{\prime \prime}
\end{aligned}
$$

Best focus location is selected at center of the Cross Track MTE profile (HOME - . Ol2'). From the along track profile it is estimated that along track MTF will be approximately $0.47 \pm .01$ at the compromise focus.

Shim Thickness Recommendation

From the dial indicator readings tabulated for home position and collimator focal plane, Home is found to be - . 066" on the 2 axis relative to the focal plane (i.e., Home lies between the focal plane and folding mirror).
The "best focus location" described in the previous section lies -.012" with respect to Home, or - . 078" from collimator focus. In order to move ${ }^{9}$ best focus" to collimator focus, a move of .078" in the +2 direction is required for the TM focal plane image. This requires a move of the focal plane array from its present location toward the secondary mirror. A reduction in shim thickness is therefor indicated.
ORIGINAL PAGE IS OF POOR QIJALITY 4 March 1982
2221-525
-2-
HS236-7876
J. B. Young

Flight Model, Test LA-01: Coarse Focu: /ifly/shim Requirement

The shim thickncss reduction, basci on the above best focus of cross track laage is:

$$
\begin{aligned}
\Delta T_{\text {shim }} & =\left(\frac{E F L_{T M}}{E F L_{C \cap L I}}\right)_{\left(-.078^{\prime \prime}\right)}^{:} \\
& =\left(\frac{95.995}{109.22}\right)^{2}\left(-.073^{\prime \prime}\right)=-.0602^{\prime \prime}
\end{aligned}
$$

The recommended shim thickncss reduction is larger, and is based on moving the compromise focus another ? mils in the -2 direction (to - . 014" with respect to Home). This location moves the along-track focus slightly closer to the alorg-track MTF peak (still about - 10 mils away), and slightly further from the stecp part of the along-track MTF slope. At the same time, the cross-track focus is still within 1-2 mils of peak MTF location. The resulting shim thickness reduction is:

$$
\Delta T_{s h 1 m}=\left|\frac{95.995}{109.22}\right|^{2}\left(-.080^{\prime \prime}\right)=-\underline{-0618^{\prime \prime}}
$$

SANTA BARBARA RESEARCH CENTER
A Subsatiery of Hughes Aircfoft Company
INTERNAL MEMORANDUM

```
    TO: J. L. Engel
iUBJECT: Effecta on MTF for
        Plight Model System
        Due to Variacion of
        Telescope Moisture
        Content
```

Plight Model System Telescope Moisture Content

```
jUbjECT: Effecta on MTF for
```

CC: Data Bank (5)
Optics File Distribution L. M. Candell
R. N. Thomsen

ORICINAL PAGE IS
OF PCOR QUALITY

DATE: 17 May 1982
REF: ES236-7992
2221-590
FROM: J. B. Young

BLDG. B11 MAILSTA. 78
EXT. 6180

TM Elight Model bands 1-4 FPA were focused in IAOL without compensating for the effects of the graphite epoxy composite structure moisture content. The magnitude of this effectis calculated below.

The equation used to calculate the defocis (ΔF) caused by a change of the primary-secondary mircor spacing $\left(S_{p-g}\right)$ is
where

$$
\begin{aligned}
\Delta F & =-\left(M^{2}+1\right) \Delta S_{p-s} \\
\Delta S_{p-8} & =S_{p-9} \Delta a \quad \text { and }
\end{aligned}
$$

M is secondary mirror magnification
$\Delta \alpha$ is a change in microstrain due to a change in moisture content

Assuming that the FPA was focused during IAOl with a strain of 35×10^{-6} in./in. the defocus in orbit after the graphite epoxy structure has drled out will be

$$
\begin{aligned}
\Delta F & =-\left(3^{2}+1\right)(22)\left(0 \times 10^{-6}-35 \times 10^{-6}\right) \\
& =0.0077 \text { 1nch }
\end{aligned}
$$

The associsted effect on MTF is obtained by converting this defocus (ΔF) to ite equivalent value at the collimator focal plane and chen using the MTF vo change of focus data generated in IAOL.

$$
\begin{aligned}
\Delta F_{\text {COLL }} & =\left(\frac{\mathrm{EFL}_{\text {COLL }}}{\mathrm{EFL}_{\mathrm{TM}}}\right)^{2} \Delta F \\
& =\left(\frac{109.3}{96}\right)^{2} 0.0077=0.0101 \mathrm{nch}
\end{aligned}
$$

Por convenience the IAOI MTP focus sensitivity curve ia shown as Figura 1. From figura 1 a changa of 0.010 inch of focus changes the KTY froi 0.485 to 0.46 for a ratio of $0.46 / 0.485=0.95$.

Effects on MT f for Flight Model System...

The predicted effect on final flight model SWR is obtained by extrapolating protoflight (PFM) data. SWR for PFM were in the range of 0.41 to 0.46 . Applying the flight model moisture defocus effect of 0.95 to these values would result in 0.39 to 0.44 .

In conclusion, even though it would have bean appropriate to compensate for at least a part of the moisture content effect the above analysis indicates that the effect should not jeopardize meeting the TM SWR specification of 0.35 .
D. G. Brandshaft
N. F. Current
J. Ermlich
D. Goecze

B11/39
Distribution:
W. D. Adams
R. A. Amador
Y. Ban
R. L. Hoelter
K. W. Hubbard
R. L. Julian
J. C. Lansing
D. L. Morrison
S. G. 0xley
P. E. Thurlow
J. A. Walker
R. J. Hengler
E. M. Kelly

$\mathrm{d} z$

B12/28
JDL/SBRC
coo General Electric VFSTC Bldg. 100, Room M7024
King of Prussia, Pa. 19406
B11/40
B12/58
B11/101
B11/101
B11/101
B11/101
SC-S 30/P314
B11/40
B11/40
SC-SCI/D335
B11/78
811/73
B11/40
B11/101

OF POOR QUALITY
SANTA BARBARA RESEARCH CENTER
a Suesioiary o Hugnes Aucrafi Company
INTERNAL MEMORANDUM
cr.
J. Campibell
R. Dick
E. Kelly
F. Nicholas
T. Sciacca
D. Young

Data Bank (6)
C.XT 6373

ORIGINAI. PAGE IS

 OF POOR QUALITY
SANTA BARBARA RESEAPCH CENTER 4 Subsonow of Mismes Ancrat/ Congomy
 INTERNAL MEMORANDUM

(TO: J. B. Young
R. Y. Howitt
CC: Optics File
Data Bank (6):

\author{

Date: Match 1. 1982
 REF: 2221-520
 HS236-7813
 FROM: M. J. Grady
 | BLDG. | B11 MAILSTA. 78 |
| ---: | :--- |
| EXT. | 6269 |

}

In the proposed spectral matching test the Thematic Mapper is first calibrated using the $48^{\prime \prime}$ Integrating sphere, and is then presented with a scene radiance of different spectral shape using a filtered source at the focal point of collimator 3. The desired spectral radiance of this scens was determined as follows. On the basis of the spectrai radiance curve for the $48^{\prime \prime}$ integrating sphere, (figure 1). the derivative of the radiance in each spectral band was compuled assuming closest linear fit. Shaping the scene radiance amounts ro m.deling dL/di (ohere L spectral radiance). Guidelines for doins Shis were taked from Table III of the GSFC Specification "Thematic Mapper Syitem and Associated Test Equipment." The criterion taken from this table is the difference in di/d入 between two seenes for a given band. Eig:re 2 dopicts dL/d入 characteristics for the iarge sphere and the desired characieristics of the collimator, on the basis of the normalizec GSFC spec criterion. Figure 3 shows tie resulting spectral radisice.

Figure 4 gives the spectral radiance cf Collimator 63, prior to insertion of filters, gived the data in figure 5. The table below gives the desired filter, characte:istics as well as the filters chosen.

Band	$\lambda(\mu \mathrm{I})$	Desired Transmission Ratio Eetween End Points	Filter Chosen	Actual Transmission Ratio Eetwaen End Points
1	.45-. 52	1: . 83	Corning 4-70	1: . 81
2	. 52-. 60	1: . 78	Corning 1-57	1:.80
3	.63-.69	1: . 46	Corning 4-69	1: . 44
4	. 76-. 90	1: . 41	Schote RG2	1: . 39
5	1.55-1.75	$1: 1.38$	Corning 4-67.	1:1.32
7	2.08-2.35	1:1.56	Corning :-59	1:1.57

Figure 6 displays the transoiscion curves for the above filters.
\qquad

D.IGINAL PAGE is
 OF. POOR QUALITY

J. B. Young	March 1,2982
R. V. Howitt	$2221-520$
日S236-7873	

TM Spectral Matching

It should be noted that the last column above represents nominal catalog values only. One of these filters is presently in-house (Corning 1-57); the rest will need to be ordered.

Figure 7 shows the test layout. The TM is oriented with its optical axis at 30° to the normal of an $18^{\prime \prime} f 1 a t$ which folds the collimator output. The flat is removed and the $48^{\prime \prime}$ integrating sphere placed in position. After calibration, the $18^{\prime \prime}$ flat is set back in place and measurements are made using the collimator output. After initial alignment, it will not be necessary to move the $T M$ during the test.

$\mathrm{d} z$
Distribution: D. Brandshaft
J. Engel
J. Kekoanui
C. Kea
J. Lansing
G. Plews
P. Thurlow

さ. Walker

dl/da Valuess for 48" integinating SPHERE AND IDEAL "SECOND SCENE" (ARROWS POI.AT FROM SPMCRE dL/dA TO TAAT Or" "SECOND S(TNE*)

IDEAL SPECTRAL RADIANCE
 OF "SECOND SOURCE"

\qquad

FIGURE $\%$

FIGURE 7

ORIGINAL PAGE IS
 OF POOR QUALITY

INTERDEPARTMENTAL CORRESPONDENCE

TO. Jack Engel
cc
ORG SBRC
subject Rationale for Replacing ACO1, Spectral Coverage Test

date: 18 January 1980
REF. HS 236-172;
from. N. R. Loughercy
ORG. 40-91
BLDG. 373 MAILSTA. A340
LOC. SC
ехт. 88865

IR:TRODCCTION

This IDC examines the potential and the rationale for replacing AC01 With a combination of existing data and analysis. The role of ACOl within the test prog:am is considered in oeder to show that existing data can be anaiyzed to meet the program requirements. Representative examples of the proposed analysis are performed and are included.

REQUIREMENTS EOR ACOI

From a system test perspective, ACOl meets two objectives. They are

1) Determine compliance with the specification for spectral coverage
2) Frovide a data base for AC02 which will verify spectral matching, set the channe! gains and calibrate radiometrically for bands l through 5 and 7

A prerequisite for both these objectives is obtaining relative spectral response curves for each band and channel of the Thematic Mapper system. ACOl would experimencally obtain this response.

The next section shows how existing spectral data can be used to analycically derive the relative spectral response.

RELATIVE SPECTRAL RESPONSE

The relative system spectral respense, $R_{b}(\lambda)$, of the b band of the system is given by

$$
\begin{equation*}
R_{b}(\lambda)=\tau_{o b}(\lambda) \tau_{f b}(\lambda) R_{b}^{D}(\lambda) \tag{1}
\end{equation*}
$$

ORIGINAL PAGE IS OF POOR QUALITY

Q. where
$R_{b}^{D}=$ relative response of detectors for band b
$T_{o b}$ is simply the product of the spectral reflectances of all the mirrors between the filter and object space. For bands i to t, the mirror surfaces include the scan mirror, the primary, the secondary, and two SLC mirrors. For bands 5 and 7, the surfaces of the two relay mirrors between the ambient and cold focal planes must be also included. $T_{o b}$ is then

$$
\begin{equation*}
\tau_{o b}(\lambda)=\prod_{i=1}^{n} \rho_{i}(\lambda) \tag{2}
\end{equation*}
$$

where
$\rho_{i}=$ average specular reflectance of ith mirror surface
$\mathfrak{i}=$ mirror surfaces, beginning with the scan mirror
$n=$ number of mirror suriaces: 5 for bands 1 through 4, 7 for bands 5 through i

To illustrate the process, representative reflectance values from HS 236-5843 were substituted into Equation 2. The specific values used were Erom Table 4, S/N 202, Run 2. Assuming all surfaces have the same toral spectral reflectivity function which to a satisfactory approximation is independent of the angle of incidence, the optical trensmission was compured from Equation 2. Relative spectral response functions of $\operatorname{In} S b$ and HgCdTe detectors were obtained from the SBRC wall chart. Relative response for silicon was obtained from Elements of Lnfrared Technology: Generation Transmission and Detection by Kruse, McGlaucilin, and MicQuistan.

Optical transmission (τ, b), relative detector response (R_{b}^{D}), and their product (rob $\times R$), are gbaphically presented in Figure l. Figure la covers the spectral range incorporating bands 1 to 4 . Figure lb covers bands 5 and 7 . Figure lc covers band 6 . For convenience in interpreting the results, the nominal spectral region for each band is indicated at the top of the appropriate figure.

The significant curve in each figure is the bottom, Tob $x R_{b}^{D}$. When multıplied by $T_{i b}$, this function becomes the relative spectral response, R_{b}, of the system.

ORIGINAL PAGE IS OF POOR QUALITY

To illustrate this method, the system spectral response was calculated for band 2 and is presented in Figure 2. The filter response curve is from HS 236-5905, band 2, sample number 2-1 as measured by OCLI. The combined optics/detector response is from Figure 1 normalized at 650 nm .

From Figure 2, two observations are relevant:

1) The impact of the combined optics/detector response is chiefly to alter the average slope of the final system spectral response and to narrow slightly the half power point measure of bandpass.
2) The fine structure of the spectral response (e.g., the two humps) is contributed completely by the filter transmission function. Ihis is because the combined optics/detector response iunction is very smooth and very nearly linear within the band.

ACCURACV OF SYSTEM RELATIVE RESPONSE

The procedure leading to the result presented in Figure 2 used data from three sources. The filter transmission curves are from witness samples coated at the same time the flight hardware was coated. These spectral transmission measurements were made using a Cary 14 R , a precision dual beam instrument designed for this purpose.

The optical transmission was calculated from surface reflectance measurements performed by SBRC. The smoothness of the spectral refleciance in the spectral regtons of interest permits a good estimate of this parameter throughout these regions. Typical detector spectral response curves were used since these detectors are both well understood and smooth in the regions of interest. Because of the smoothness of these functions, their product is well approximated by a straight line within any of the bands 1 through 5 and 7. Figure 1 illustrates this.

From Figure 2 it is clear that the filter response dominates the system spectral response. The combined optics/Aetector response primarily changes the slope of the top of the system bandpass and the bandwidth. If the combined optics/detector were not very nearly straight lines (within each bandpass), a more cumplex impact on the system response would result. Much more detailed data would then be required of the optics transmission and detector spectral response functions in order to analytically determine the system response.

In my judgement, the above procedure will produce a fully satisfactory system spectral response for two of the program objectives wnich would be satisfied by $A C 01$. The result will be quite adequate for verifying compliance with the specification for spectral coverage. It will also provide a satisfactory spectral response function, or data base, for the radiometric calibration procedure of $A C 02$.

ORIGINAL PAGE IS OF POCR QUALITY

8

Figure 1. Cumbined opticaldoetector relative response

ORIGISAL PAGE IS OF FOOR QUALTTY

b) BANDS 5 AND 7

FIGURE 1 (CONTINUED). COMBINED OPTICAL/DETECTOR RELATIVE RTSPONSE

FIGURE 1 (CONCLUDED). COMBINED OFTICALDETECTOM RELATIVE RESPONSE

Since the above procedure considers spectral response only on a band by band basis, it cannot determine compliance with the spectral matching specification. This issue is addressed in the next section.

SPECTRAL MATCHLNG COMPIIANCE

Spectral matching is concerned only with the matching of the spectral response of individual channels within a band. Consequently, the optics spectral transmission which effects all channels equally is not a factor. Only the filter response and the detector response are unique to each channel.

The derector spectral response is a property of the material for solid filter could cause variations oi the spectral response between channels of a band. Ihis is because the filter is placed very near the detector aray so that each charnel looks through a different part of the filter.

Localized variations in the spectral transmission function could occur in two ways. A lateral gradient in the thickness of the multilayer dielectric films will cause a lateral gradient in the spectral transmission function. However, when a iilter is coated, it is mounted in a vacuum chamber position which minimizes any lateral thickness gradients. Purely statistical fluctuations in the coating thicknesses could also cause local variation in the spectral transmission function. The coatings are, after all, very thin, especially bands 1 through 4. mentally investigated using the witness samples for bands 1,2 , and 3 . These three, of course, have the thinest film layers and would be the most susceptible to random layer thickness fluctuations. A description of the testing and the analysis is presented in the Appendix.

The experimental design described in the Appendix is tailored to produce a very conservative estimate of the probability of meeting the spectral matching speeification. The most conservative estimate is that there is a 80 percent probability that all 96 channels will meet the specification. Less conservative, but readily defensible assumptions, lead to a

JRIGINAL PAGE IS OF POOR QUALITY

97 percent probability that all channels will meet specification. For various reasons discussed in the Appendix, both estimates are conservative and the actual probability is most likely higher than 97 percent. However, hard data to support a higher value do not exist.

Finally, it is worth noting that if the allowed mismatch were 1 percent rather than $1 / 2$ percent of the minimum saturation radiance, the probability of meeting the specification becomes virtually 100 percent. This is true even with the most conservative set of assumptions.

USER PERSPECTIVE

Users of the Thematic Mapper imagery will have a variety of unique interests and perspectives. However, they will share some common features of the Thematic Mapper radiometric imaging system. The more significant are discussed below.

Spectral Resolution. The spectral resolution of the Mapper is essentialiy determined oy the band pass iilters. Fine structure of the earth:s spectral radiance will not be observable below the resolution limits set by the filter band passes. Similarly, fine structure of the filter spectral transmission function or, more generally, the actual channel spectral response, will not significantly increase or reduce the information content.

Hypothetical cases can be constructed in which the information content would be effected. Eor example, if a user were trying to discriminate a feature such as a narrow spike in the earth's spectral radiance func ion, and the band within which the spike fell contained a coincıdent narrow jut deep dip in the spectral response function, then the ability of the Thematic Mapper to reliably discriminate and measure the presence of the spike would be impaired. For this hypothetical case, the information content of the Mapper imagery would be clearly reduced.

However, the broad spectral bands specified for the Mapper were not intended to detect and discriminate narrow spikes. The bands were carefully selected based upon previous emperical data, to detect features which are characterized by broader spectral differences and which are also of interest to the user community.

Fortunately, the spectral filters which OCLI was able to supply do not have any deep dips within the nominal bandpass. The filters produce spectral response functions which will serve very well in characterizing the broad spectral radiance features of the earth.

Spectral Coverage. Since the fine structure of the Mapper band spectralresponses will not significantly effect the ability of the instrument to characterize the broad spectral radiance features of the terrain, these questions arise: why is a tightly controlled specification of spectral coverage necessary and how important is it that the specification be met?

ORIGINAL PAGE ss OF POOR QUALITY

To address these questions, it is necessary to recognize that the \ldots Thematic Mapper is part of an historical series of instruments. The immediate predecessor the Thematic Mapper is the MSS series. Other instruments, perhaps a more advanced Thematic Mapper, will surely follow.

If the imagery from an instrument were never compared to that produced by its predecessor and if that imagery would never be used as a reierence for the imagery of future instruments, there would be little need to specify in detail the spectral response of the bands. Given two instruments with matching spectral responses between coresponding bands and appropriate radiometric calibration, an arbitrary terrain spectral radiance will produce the same set of measured values irom each instrument. The ratio of the vutput between two bands in one will equal the corresponding ratio in :he veher.
if the corresponding bands in the two instruments do not have the same spectral response, an arbitrary spectral radiance wall not generally produce the same results. The degree oi difierence in resuli depends in a complex wav on tie degree oi diference in the two spectral zesponses.

The spectral response of the corresponding MSS bands do not match those fi the diapper either by design or specification. Thus, the empirical data bi.. developed by the MSS series to charactezize, say, the growth and mattian ui a wneat crop cannot be used without qualification as a Thematic Mapper data base. This is not to suggest that the MSS data will not be used to estmmate the response of the Thematic Mapper. but only that the band ratios and radiance values will be difierent.

A correlation between the MSS and Thematıc Mapper responses to varlous ground truth and atmospneric conditions will be developed as the Thematic Mapper and MSS are ilown together on the same satellite. However, because oi the bandpass difierences, the useful data dase ior the Thematic Mapper will be developed by the Thematic Mapper.

From this discussion two conclusions are reached

1) If the I'rematic Mapper should fasl by a small margin to meet some rart of the spectral coverage specification, the utility of the first instrument will not be effected in any way.
2) If the Thematic Mapper fails by a small margin to meet some part of the specification, the specification should be warved. However, the specifications for any future instruments should be modified to match that of the flight ingtrument. This modification will ensure that the data base developed by the initial Thematic Mapper will be valid for the future instruments.

Radiometic Calibration. A user perspective of radiometric calibration should reilect an appreciation of how the Thematic Mapper data will be used and how the atmosphere will effect the orbital radiometric performance. Consider first the atmosphersc eifects.

cRIGINAL PAGE is OF POOR QUALITY

All other things (season, latitude, etc.) being equal, the atmosphere will effect the apparent spectral radiance of a point on the earth's surface. For the solar reflection bands (1 through 5 and 7), atmosphere's absorption and scatter will alter the following:

1) The spectral irradiance of the scene on the ground and the geometry of the irradiance. Depending on the atmospheric aerosol content and structure, the dominant irradiance of the scene can range from direct sunlight (on a cloudless, high visibility day) to pure diffuse (when the scene is in a cloud shadow).
2) The atmospheric path spectral radiance. Single and multiple scattered light irom aerosol (Mies) andmolecular (Rayleigh) scatter will be superimposed upon image forming light reflected trom the scene.
3) The image forming light from the scene will be attenuated by atmospheric spectral transmission.
The Thematic Mapper will have very limited ability to destinguish setween the scene and the atmospheric pati spectral radiance. Consequently, atmospheric conditions can significantly alter the spectral data collected by the Thematic Mapper. Moreover, the atmosheric phenomona whicis can cause these effects are often highly localized.
All this is simpiy to point out that the atmosphere can significantly alter the accuracy with which scene spectral radiance can be obtaned from Thematic Mapper data. If sufficient information is available about the atmospheric aerosol structure, the Thematic Mapper data can be much improved by atmospheric modelirg. However, unless the spectral path radiance and transmission are consid sed, accurate scene spectral reflectance estimates will only be available when the atmosphere is clear.
The atmospheric path radiance and transmission will be dealt with in one of two ways. If the local aerosol structure of atmosphere is avaslable from other Landsat D instrumentation, then modeling of the atmosphere can be used to correct the data for scene spectral reflectance. Otherwise, empir:cally developed measures and/or ground observations will be used to establish when the atmosphere is sufficiently clear and to make small corrections for the atmospheric effects.
At this point, it is helpful to again recall that the data base which will permit a quantitative interpretation of the Thematic Mapper's imagery also will be empirically derived. Measurements obtained from previous instruments will pronde a useful first estimate, but the ultimate data base must be derived from the Thematic Mapper itself.

ORIGINAL PAGE IS OF POOR QUALITY

With this background, it is possible to rank in order of importance those radiometric properties which will most concern a user of Thematic Mapper imagery. In my judgement, the following sequence is appropriate.

Radiometric Stability and Predictability. Since the data base for Thematic Mapper imagery will be empirically derived over considerable time, the radrometric performance of the Thematic Mapper must be highly stable and predictable. The requirement here is that the Thematic Mapper radiometric response at a particular point in the orbit be known with respect to its response at all previous times. This can be achieved by built-in stability, by correcting for such variables as focal plane temperatare, by inflight calibration, or by some combination. Provisions for all of these, of course, are incorporated into the Thematic Mapper specifications and design.

Inflight calibration here implies only that the radiometric response can be a corrected to match that of a previous time. No level oi accuracy, eather absolute or relative between baids, is implied. The nistorical value of empirically derived data will be preserved if this correction can be made.

Dvnamic Range. It is essential that the scene radiance plus the atmospileric pati radiance iall within the dynamic range for each band and channel. Ths condition must be met for all scene and atmospheric conditions of serious interest to users. On the other hand, too much dynamic range will not maike optimum use oi the digitizer. A compromise which meets this =equirement is specified as the manamum samation radiance.

Signal-to Voise. The analog signal-to-noise plus the quantization noise associated with the digitizing process determine the accuracy, with which a particular pixel's spectral radiance can be determined. This should be as high as current detector technology permits.

Relative Band-toBand Calibration Accuracy. If the relative calioration accuracy between bands is high and two instruments have well matched spectral response functions, then the data base band ratios developed by one instrument can be applied with minimal correction to the other. However, even without a high relative accuracy, surface features of known spectral reflectance (e.g., fresh snow on a clear day) can be used to quickly relate two instruments.

In the case of the first Thematic Mapper, the previous instruments (MSS series) did not have the same spectral responses in the comparable channels. Thus, the MSS data base will not be directly applicable.

Absolute Calibration Accuracy. Absolute calibration needs to be accurate enough to permit the dynamic ranges of the channels to be correctly set. A high accuracy should be helpful in quickly relating the imagery of a new instrument to the data base produced by a previous instrument. However, as noted above, a scene of known reflectance can also be used to quickly relate the responses of the two instruments.

ORIGINAL PAGE IS
 OF POOR QUALITY

Absolute calibration is necessary if the atmospheric aerosol structure is available and atmospheric modeling is used to correct the flight imagery.

Fine Structure of Spectral Coverage. It is only important that future instruments which will use the Thematic Mapper data base match the spectral coverage of the first instrument.

Of these six radiometric properties, the first three are clearly more essential to the Thematic Mapper user than the last three. If the instrument is stable, the dynamic ranges are correct and the signal-to-noise ratio is adequate, a valid data base can be developed to quantitatively interpret the Thematic Mapper imagery. Precise relative (i.e., between bands) and absolute radiometric calibration, while useful and desirable, are much less critical to the user. This is true because the data base will be empirical and because a resonably good correlation between instruments can be developed from a combination of ground based measurements and orbital data.

The above discussion is not intended to suggest that the specifications for relative and absolute radiometric calibration be relaxed nor that the radiometric calibration test (ACO2) be changed in any significant way. It does intend, however, to point out that small improvements in the accuracy with which radiometric calibration is performed are of very limited value to a user. It follows, then, that significant commitments of program resources would not be justified to achieve small improvements in radiometric calibration i.e., improvements in the order of 1 to 3 percent.

It is quite possible that the relative spectral response generared in ACOl would be more precise than that obtained from existing data using the procedure illustrated in the section Relative Spectral Response. However, this is not necessarily the case. While conceptually sound, ACOI is a complex test which will require a lot of time to perform. In any case, it is unlikely that the few resulting differences in relative spectral response would alter the relative or absolute radiometric calibration by as much as 3 percent. An uncertain improvement in the radiometric calibration accuracy would provide little justification for performing ACOL.

SPECTRAL MATCHING TEST

This section describes a simple modification of AC02 which would permit spectral matching to be verified. The test is similar in concept to the test described in the Appendix, but is designed to test the entıre instrument.

The modification consists of including a minimum of one additional radiometric data collect at an appropriate integrating sphere radiance level for each band. The additional data collects would be performed with spectral filters covering the aperture of the Mapper. The spectral filters would, on a band by band basis, conservatively approximate the slope differences between the flat and sloping spectra of Dr. Vincent Salomonson's 26 March 197: Memo.

For bands 1 through 4, Wratten Filters 6ó, $40,34 A$, and 102 , respectively, are suggested. Each of thesefilters exaggerates the slope difference specified in Dr. Salomonson's memo. Meeting the specification with these illters would theretore mean that the actual speciiication would be exceeded.

The Wratten iilters are avallable in 250 mm br 250 mm :ormat on a special order, ou day delivery basis. Four such tilters, taped together. provide a 500 mm by 500 mm filter which will cover the Thematic Mapper aperture. The tape should be narrow and opaque or the filters should overlap slight!y to avoid leakage.

The spectral data which Kodak normally provides on W ratten ilters is not suificient to select appropriate filters ior bands \bar{j} and 7 . With more spectral data, suitable Wratten tilters can probably be selected. Alternative filters are also available from a variety of sources, e.g., Corning, Jena, Schott, etc.

It should be noted that bands 5 and 7 are significantly less likely to have spectral matching problems. The filter dielectric layers are much thicker and thus less subject to small local statical vartations in thickness. Also, the bands are well removed from the wavelength at which the detector (In-Sb) cuts off. Thus, if bands 1 through 4 were tested and passed, bands 5 and 7 would be unlikely to fanl.

The integrating sphere radiance which should be used with each filter needs to be carefully selected to place the resulting in band radiance (i.e., sphere plus filter) at 80 to 90 percent of the minimum saturation radiance for the band. This will minimize the impact of quantizing and of analog channel noise on the measurement. Choosing the correct integrating ephere radiance is simply a matter of multiplying the average in band filter transmission times the candidate in band integrating sphere radiances and selecting the one immediately below 90 percent of minimum saturation radiance. To ensure that at least one radiance level is suitablv placed at the upper end of the dynamic range, it would be prudent to obtain a filtered radiance on each side of the chosen valve.

ORIGINAL PAGE IS
 OF POOR QUALITY

An analytical procedure similar to that outlined in the Appendix could be followed to analyze the data. However, the following procedure would be simpler:

Assume $V_{b c}^{\prime \prime}$ is the mean value of the Mapper digital output of band b, rhannel c when the appropriate W ratten filter is placed in front of the aperture. Vbc would then be corrected using the calibration constants (gain and offset as functions of focal plane temperature) to produce the corrected value, V bc

Dr. Salomonson's memo expressed a preference that the gains be corrected to exactly match with the slopung spectra and the spectral matching criteria be applied to the flat spectra condition. The V'bc should therefore be further corrected to Vbc which has the same average value as the flat band radiance, $V_{b i}$. This is accomplished by

$$
\begin{equation*}
V_{b c}=\frac{16 V_{b f}}{\sum_{c=1}^{10} V_{b c}^{\prime}} V_{b c} \tag{1}
\end{equation*}
$$

The spectral matching criteria can then be applied as

$$
\begin{equation*}
\left[V_{b c} \text { Maximum }-V_{b c} \text { Minimum }\right]_{c=1}^{16} \leq \frac{256}{200} \tag{2}
\end{equation*}
$$

for bands $b=1$ through 5 and 7 .

CONCLUSIONS

From a program systems test view point, ACOl accomplishes two objectives:

1) It verifies compliance with the spectral coverage specification
2) It provides the data base for radiometric calibration, gain set, and verification of the gpectral matching specification which will be performed in ACOZ.

Except for spectral matching, these program requirements can be adequately met by analytically determining the system spectral response for each band using existing data. The procedure for doing this is illustrated in the section on Relative Spectral Response.
©

ORIGINAL PAGE IS OF POOR QUALITY

Spectral matching is influenced by variations in the spectral response between detectors in a band and by localized variations in the spectral transmission of the band filter. For the Thematic Mapper, the filters were the most likely cause of spectral matching errors.

To establish the contribution of the filters to spectral mismatch, the witness sample filters for bands 1,2 , and 3 were inrestigated using a microdensitometer and appropriate Wratten filters. Details of this investigation are included in the Appendix.

The witness sample investigation concluded that the probability of meeting the spectral matching specification on $6 l l 96$ channels ranged from a very conservative 80 percent to a conservative 97 . + percent. In fact, the actual probability is likely to be higher, but the data to support a higher value can not be obtained from the witness samples because of their physical condition.

If a system level confirmation of compliance with the spectral matching specification ts required, a simple addition to the ACOL procedure and analvsis would suitice. The addition, described in the section Spectral Vatching Test, would approximate the slope difierences of the specification with readily available inters.
in short, the program objectives which $A C 01$ is intenced to meet can be easilv met by an analysis oi existing data and, if it is considered necessary, a minor addition to the $A C O 2$ data collect and analysis.

A qualitative analysts of the needs of Thematic Mapper imagery users concluded that the most important radiometric properties were higin stability, correctability, good signal-to-nolse, and proper setting of the dynamic range (or minimum saturation radiancel. Of much less importance were absolute and relative (between bands) radiometric calibration accuracy and fine structure deviations irom the spectral coverage specification. Relative calibration between channels within a band must, of course, be very precise.

The principal benefit of precise spectral coverage control is that future Thematic Mapper-like instruments cin use the data base developed by the first instrument. To achieve this benefit, corresponding channels of the future instruments should match the spectral coverages of the first.

ORIGINAL PAGE ${ }^{\text {PS }}$
 OF. POOR Q':ALITY

RECOMMENDATIONS

The following recommendations are made

1) The currently planned ACOI test should be dropped. The test is soundly conceived, but costly in terms of schedule and prograrn resources.
2) The system spectral response on a band-by-band basis should be obtained using the analytical procedure presented in section Relative Spectral Response. This will provide the necessary data base for determining compliance with the spectral coverage specification and for AC02 (radiometric calibration and gain set).
3) A careful review should be conducted of the results of the spectral matchıng investigation (filter microdensitometer tests) reported in the appendix. I feel that the remote chance (< 3 percent probability) of failing to meet the spectral matching specification will not justify further testing. If a system level test is required, the simple addtion outlined in the section Spectral Matching Test should be incorporated into AC02.
4) In designing and interpreting the radiornetric/spectroradiometric test frogram, emphasis should be placed on four properties of key importance to users.
a) A highly stable radiometric performance. This property may be achieved through software correction, for example, for the focal plane temperature.
b) A high signal-to-noise, per specification.
c) Accurate gain sets to achieve the proper dynamic range and minimum saturation radiance.
d) Precise relative calibration between channels within a band.
5) If the Thematic Mapper should fail by some small margin to satisfy all of the spectral coverage specifications, we should recommend to NASA that the requirement be waived while the specifications for future instruments (i.e., those which will rely on the data base of the first instrument) should be written to match the first instrument.

ACKNOWIEDGEMENT

The author wishes to thank Dr. L.J. Richter for her assistance in reducing the microdensiteineter digital data. The data are stored on magnetic tape for further processing should the need arise.

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX

FILTER - MICRODENSITOMETER TESTS

INTRODUCTION

These tests were performed to quantify the impact of the interference filters on the ability of the Thematic Mapper system to meet the spectral matching* requirement. Witness samples for bands 1, 2, and 3 were used as representative of the ilight hardware in these tests. Bands \pm to 7 fell outside the spectral range of the microdensitometer photomultiplier and, thereiore, witness samples for these bands were not included.

The basic approach was to simulate the way the filters will function within tize Mapper system. This sumulation was performed twice for each filter: once representing the flat spectra of the spectral matcining specificantor: and once representing the sloping spectra requirement.

The resulting data were analyzed to determine whether statistically significant varlations in the spectral transmission function occurred.

SLMELLATION

The basic instrument used to simulate the function of the filter in the Mapper was a Perkin Elmer PDS microdensitometer. For those unfamiliar with the instrument, it is briefly described in an extraction from Perkin Elmer's advertising literature included at the end of this Appendix.

The simulation was accomplished by setting up the microdensitometer to sample and digitize' the optical transmission through a 0.004 inch by 0.004 inch square aperture projected on the surface of the witness sample. The 4 mil dimension is the same as the detector dimensions for bands 1 to 4 , thus simulating a detector inmediately behind the filter surface irradiated by an $\mathrm{f} / 6$ cone of light.

To simulate the difference between the two spectra specified in Dr. Salomonson's memorandum. Kodak Wratten filters were selected for each band. Table A-1 summarizes the relevant data from his memorandum.

[^0]
ORIGINAL OF. POOR QUALITY

TABLE A-1. SPECTRAI. MATCHING SPECIFICATION

Band	Soectral Radiance at Lowrer Band edge, $\mathrm{mw} / \mathrm{cm}^{2}-\mathrm{sr}-\mu \mathrm{m}$	Spectral Radiance at Uppar Band lodge, $\mathrm{mw} / \mathrm{cm}^{2}-\mathrm{sr}-\mu \mathrm{m}$	In Band Flat Radance. $\mathrm{mw} / \mathrm{cm}^{2}-\mathrm{sr}$	Minimum Saturation L $\mathbf{c v e l s}$, $\mathrm{mw} / \mathrm{cm}^{2}-\mathrm{sr}$
1	5.7	10.0	0.45	1.00
2	9.9	9.1	0.77	2.33
3	3.2	7.8	0.25	1.35
4	13.2	14.1	1.93	3.00
5	2.3	1.7	0.4	0.6
7	0.47	0.41	0.12	0.43

For bands 1 and 3 , filters were chosen which exaggerate, the relative slopes specified in columas 2 and 3 of Table i-1. The spectral transmission and the specified relative spectral radiance of columns 2 and 3 are presented in Figure $A-1$. Note that the relative spectral radiance was normalized to match the peak filter transmission value within each band.

The filter icr band 2 was chosen to greatly exaggerate the Salomonson slope. To do otherwse would not have provided a sensitive measure of localized variations of the spectral transmission funcrion.

The ransmission of each sample point on a witness sample was medsured twice, once without any filter in the optical path ard once with the Wratten filter appropriate to the particular witness sample inserted into the path. The clear path transmissio: represents the flat spectrim (column 4 of Table A-l: while tre W ratten filter transmission represents the sloping spectrum (columns 2 and 3 of Table A-1).

It should be recognized that this is a less than perfect simulation of the conditions reflected in Table A-1. An ideal simulation would take into account the source, sensor, and optical transmission spectral character of the microdensitometer, as well as the detector and optics transmission spectral character of the Thematic Mapper. The complexity of a more priscise simulation was avoided by choosing filters winich in each case axagzerated the in band rlcpe specifiec in Table A-1. The test is therefore morc sensitive to localized variations in spectral transmission than a more precise simulation would be.

ORIGINAL PAGE IS OF POOR QUALIT

figure a-i. Filter transmission versus spectral matching specification

Five separate raster scans were performod on each witness sample to produce tive 20 by 20 sample arrays. The arrangement of these arrays on the witness sample is illustrated in Figure A-2.

The sample points of the arrays are on $4 \mathrm{mil}(100 \mu \mathrm{~m})$ centers with a positional accuracy of 40 microinches ($1 \mu \mathrm{~m}$) (The projected aperture is also 4 mils square as noted above. 1 The ariays then simulate the approximate dimensions of borh the detector apertures and the individual ivapper band arrays which are lo elements long.

For each xitness sample, this procedure produced 2000 discrete, orthogonal transmission values whthout a filter in the optical path of the micro densitometer. A second set of 2000 transmission values were produced with the approprtate Wratten filter in the optical path. The second set of values coryespond on a one-to-one basis with the first; each pair represents the transmissions at the same location on the watness sample.

Inally, the gain of the photometric channel was adjusted for each setup (comoination of witness sample and filter or no filter' to produce the same average digital value of transmission. The advantage of this adjustment will be discussed later.

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE A.2. ARRAY PATTERN

ANALYSIS

The probability of meeting the spectral matching specification can be ootained by examining the statistics of the function p, where p is defined as

$$
\begin{equation*}
p_{i}^{b}=A_{i}^{b}-k B_{i}^{b} \tag{A-1}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{i}^{b}= & i^{\text {th }} \text { transmission value of } b^{\text {th }} \text { band witness sample taken witiout } \\
& \text { Nyatten filter in optical path } \\
B_{i}^{b}= & \text { corresponding transmission value to } A_{i}^{b} \text { taken with appropriate } \\
& \text { Vratten filter in path } \\
\dot{B}= & \text { constant }
\end{aligned}
$$

If there were no localized variation in the spectral transmission function and no noise in the microdensitometer photometric function, then there would exist a constant k such that

$$
\begin{equation*}
p_{i}^{b}=A_{i}^{b}-k B_{i}^{b} \equiv 0 \tag{A-2}
\end{equation*}
$$

The gain of the photometric channel of the m:crodensitometer was adjusted so that Equation $A-2$ is statistically satisfied with k equal to one. However, since both noıse in the photometric channel and localized variation in the spectral transmission function are present, the actual value of p_{i}^{b} is seldom zero.

The measured values of A_{i}^{b} and B_{i}^{b} and the calculated value of p_{i}^{b} alwavs contain the effects of microdensitometer channel noise. What is needed for this analysis is an accurate estimate of the variance of with the effect of piotometric channel noise removed. To obtain this estimate, a distinction is made between the measured variances of p, A, and B and the actual variances which would be obtained without channel noise. Then the following definitions apply

$$
\begin{aligned}
\sigma_{p M}^{2} \quad= & \text { variance of } p \text { calculated from measured } A \text { and } B . \\
& \text { including channel noise } \\
\sigma_{p}^{2} \quad= & \text { variances of } p \text { which would be votaned if no channel noise } \\
& \text { were present }
\end{aligned}
$$

ORIGINAL PAGE is OF POOR QUALITY

$\sigma_{A M}^{2}=$ variance of A including channel noise
$J_{\mathrm{A}}^{2} \quad=$ variance of A without channel noise
$\sigma_{B M}^{2}=$ variance of B including channel noise
$v_{B}^{2}=$ varance of B without channel noise
$\sigma_{i}^{2} \quad=$ variance of the charnel noise.

Since k is equal to 1 . Equation $A-2$ leads to the following relationships between the var:ance

$$
\begin{aligned}
& \frac{2}{P M!}=\sigma_{A M}^{2}-5 \frac{2}{B M} \\
& 5_{P}^{2} \\
& \frac{5}{A}-\sigma \frac{2}{B}
\end{aligned}
$$

and since the noise is additive and noncoryelated

$$
\begin{align*}
& \sigma_{A M}^{2}=\sigma_{A}^{2}-\sigma_{N}^{2} \tag{A-5}\\
& \sigma_{B M}^{2}=\sigma_{B}^{2}-\sigma_{N}^{2} \tag{A-6}
\end{align*}
$$

Substituting Equations $A-5$ and A-6 into Equation $A-3$ obtains

$$
\begin{equation*}
\sigma_{\mathrm{pM}}^{2} \quad=\sigma_{\mathrm{A}}^{2}+\sigma_{\mathrm{B}}^{2}+2 \sigma_{\mathrm{N}}^{2} \tag{A-7}
\end{equation*}
$$

and substituting $A-4$ into $A-7$

$$
\begin{equation*}
\sigma_{\mathrm{DMI}}^{2}=\sigma_{P}^{2}+2 \sigma_{N}^{2} \tag{A-8}
\end{equation*}
$$

which solved for σ_{p} yields

$$
\begin{equation*}
\sigma_{\rho}=\sqrt{\sigma_{\rho}^{2}-2 \sigma_{N}^{2}} \tag{A-9}
\end{equation*}
$$

8

ORIGIPAL PAGE 渴 OF POOR QUALITY

The actual error which results from localized variations in spectral transmisston ts propcrional to the signal level. For this reason, a more useiul form is a iractional standard deviation, σ_{p}^{\prime}, whe=e σ_{p}^{\prime} is defined as

$$
\begin{equation*}
\sigma_{p} \quad=\frac{\sigma_{p}}{\langle A\rangle} \tag{A-10}
\end{equation*}
$$

where

$$
\text { <. }>\quad=\text { arerage of } A_{i}^{b}
$$

it is now necessary to calculate the number of standard deviations, y, which would produce an error equal to the limit spectifed in paragraph 3.2.3. 1 o: GSFC + CO. $3-\mathrm{D}-210$. This limit was 0 三percent of the minimum satuaation level. I: D: Salomonson's suggestion is :ollowed that the calioration be periormed on the sloping spectra coiumns 2 and 3 of Table A-1i, aric the criteria be applied to the ilat spectra, then \because is obtaned from

$$
\begin{equation*}
y=\frac{0.005 x_{1 S}}{v_{p}} \tag{A-11}
\end{equation*}
$$

where

$$
N_{M S}=\text { minimum saturation radiance (column } 5 \text { of Table } A-1 \text {) }
$$

$N_{\text {IBF }}=$ in band ilat radiance (column 4)
Substituting Equations A-9 and A-10 into A-11 produces

$$
\begin{equation*}
y \quad=\frac{0.005\langle A\rangle N}{N_{I B F} \sqrt{\sigma_{\mathrm{pM}}^{2}}-2 \sigma_{\mathrm{N}}^{2}} \tag{A-12}
\end{equation*}
$$

All of the parameters Equation in $A-12$ are either specified by NASA or obtainable from the microdensitometer array data.

For a single channel of a particular band, the probability $P_{b}(<y)$ of exceeding the NASA specification can be readily obtaned from normal

ORIGINAL PAGE is OF POOR QUALITY

4. disbribution tables. Since the channels are independent, the probability, $P_{b}^{\prime} \mid<y$, of all sixteen channels simultaneously meeting the specification is

$$
\begin{equation*}
P_{b}(<y)=\left[P_{b}(<y)\right]^{16} \tag{A-13}
\end{equation*}
$$

i.
for bards 1 through 5 and 7 and

$$
\begin{equation*}
P_{b}(<y)=\left[P_{b}(<y)\right]+ \tag{A-1+}
\end{equation*}
$$

ior band ó.

ORIGINAL PAGE IS OF POOR QUALITY

COMPCTATIONS

From the digital data generated by the microdensitometer raster scans, values were calculated for $\langle A\rangle$ and $\sigma_{p M}$. For bands 1, 2, and 3, the values were calculated directly from the data. For bands 4, 5, and 7, the average values from the band 1 to 3 calculationswere used as representative.

A noise value, σ_{N}, was calculated from a histogram of microdensitometer values taken when the instrument was not scanning. A normal distribution curve was fitted to the histogram in order to obtain an accurate value oi ${ }^{2} \because$. The minimum saturation radiance, $N_{m s}$, and the in band flat raciance, XIBF, were obtained from Table A-l.

The above values were substituted into Equation A-12 to obrain the appropriate y values. Erom these y values, corresponding single channel projabilities, $P_{\text {b }}$, were obtained from normal distribution tables. These falues were, in tura, substituted into $-1-13$ to obtain the probability, P_{b}, that all channels oi the band will meet ine specification.

The results of this process for bands 1 through 5 and 7 are, iumma. rized in Table A-2. The prodability that all channels in a ban... Pb, will meet the specification is indicated in the right hand column.

An additional parameter of interest is the probability, P_{T}, that all channels of bands 1 througa, and 7 will meet the specification. This probability is 0.80 . It is obtained by multiplying together the $\mathrm{P}_{\mathrm{b}}^{\prime}$ values ior these bands, i.e.,

$$
P_{T}=\prod_{0=1-5,7} P_{b}^{\prime}
$$

The microdensitometer signal-to-noise ratio is readily obatined by

$$
S / N=\langle A\rangle ; \sigma N
$$

TABLE A-2. SUMMARY OF COMPLIANCE PROBABILITY COMPUTATION

Band	$\langle A\rangle$	$N_{\text {ms }}$	$N_{\text {ibf }}$	$\sigma_{\text {PIM }}$	σ_{n}	V	P_{b}	$P_{b}{ }^{\prime}$
1	1604	1.00	0.45	6.858	3.011	3.317	0.9991	0.985
2	1600	2.33	0.77	5.595	3.011	6.670	1000	1.000
3	1607	1.35	0.25	6.128	3.011	9.846	1.000	1.000
4	1604	3.00	1.93	6.193	3.011	2.77	0.9944	0.914
5	1604	0.6	0.4	6.193	3.011	2.675	0.9925	0.887
7	1604	0.43	0.12	6.193	3.011	6.391	1.000	1000

Substituting from Table A-2, one obtaing an average S/N of 259. This average compares with a specified Thematic Mapper S/N ranging from 45 for channel 7 to $2 \div 0$ for channel 4 (GSFC 400.8-D-210), Rev B, April 1978). For an equal sample size, the microdensicometer accuracy are comparable to the best which would be obtained from the Mapper digitized data.

ASSL゙MPIIONS

There are two key assumptions in this analysis:

1) The witness sample filters for channels 1 through 3 are conservatively representative of the flight hardware for all bands.
2) The relative spectral response of detectors within a band are essentially the same.

The first assumption is supported by several factors. First, the witness samples showed some evidence of abrasion (especially channels 1 and 31 which could very well cause localized variations in the spectral transmission function. If these abrasions had not been present, the values oi ${ }^{\text {PMM }}$ would have been lower and the P_{b}^{i} values would have all been nearer 1.

Channels 1 through 3 , of course, have the thinnest layers in their dielectric stack. As a result, small localized variations in the thickness of a particular layer would result in large: iractional changes in the spectral transmission function than would a similar variation in a layer of channels 4 through 7. Thus the choice of channels 1 through 3, a choice dictated by the spectral response oi the microdensitometer PMI, is congervative.

Finally, the simulated sloping spectra of channel 2 is much more severe than is specified for any of the chdnnels. This adds another conservative element to the data acquisition and analysis.

As an example of how these factors cause a more conservative estimate of the probability of meeting the specification, assume that the channel 2 witness sample which showed the least abrasion was more representative. Then the σ PM for all channels would be 5.595 and the probabilities that bands 1. 4, and 5 will meet specification are 1.000, 0.990 and 0.984. The probability that all channels will meet the specification is 0.974 . Noting that the in band spectral radiance slope for channel 2 was greatly exaggerated (see Figure A-1), it is certain that a more representative slope would further improve these probabilities.

The relative spectral response of the detectors is determined primarily by the material (Si , In -Sb , and HgCdTe) and only secondarily by the structure. Since the channel detector of a band is formed on a single chip, structural differences between channels of a band are minor and will have a negligible effect on their spectral responses.

ORIGINAL PACR 图 OF POOR QUALTYY

Abstract

SCMMARY Based on very conservative assumptions, there is an 80 percent chance that all chann. ls will satisfy the system spectral matching specification. If conservative assumptions are made, the probability that all channels will meet the specification is 97 percent.

Actually, because of the condition of the witness samples, the exaggerated spectral slopes of the filters, and the short wavelength bands being the most critical, both of the above estimates are probably low. Data do not exist, however, to support a higher value.

You can :nink of any onotographic image as a unique dattern of censitv variations. Some images contain a targe rance of aensities. from wnite to black with many alferent grays Others such as "ne work mav contan soly white transparant are g'ack soacue) Win rocern jnctodgilling equioment ine intormation contained in any imaçe can ce scanned and converted to oigtal 'orm ezaver raniculation or comoule's
in zrder o oce thes tre mace area 's civided in-- o a arge rumber if discrete picture elementis :a ec are's A aumerical :3ue s assignec :0 -ne sensity soserved in each sixel a pixel size is -"osen wricen s simal archgo ooresolve ine "nest

 oren aterv s.eeo aceriure as he zoetture scars Sack and orth :o cover re entre area of interes:三ain zensiv samice s given a digtal value anc all of :ne vaiues are stored on magnetic tave for suesecuent eomeuter arocessing the result is a rumetical rage :wich can de lised insteza at :re er giral :usual 'mage 'ct a wice vanety of com. eutational ouroeses t ew of the applications are uscussea n ris orcenure
Fo.s Microctenstometer
the Applied Cotics Division of Perkin-Eimer manulactures the PDS Moder 1010A Micro-D a tlatbed udtical scanrirg eicitizer This instrument will scan a $0 \times: 0$-nc. area at sceeds up to 50 mm cer secena oixels can be as small as E」 Output consists of pixei aensity or transmittance measurements that cover a range from 0 io 10 and pixet position information with a resolution of in All the scanning parameters can be selected ty the cperator uncer computer control.

Sysioms

The Perkin-EImer PDS Micro-D is avalable in various contigurations to sut inaividual needs

PDS Micro-D alone. as a computer penioneral Microprocessor-controlled POS Micro-D ior stand-alone overation

Microdrocessor-controlled PDS Micro-O for reathme data nandirg by minicomouter the microdrocessor control of the Micro-D trees the comouter for combitational laske
Comclete Dnotometric Data System Sucn a svstem mignt include 16 -bit minicomputer, 9 track magtape arive anc keyooard ierminal

Photadiaizing

[^1]

original page is OF POOR QUALITY

The applications of photodigitizing are of three general kinds. (1) Encoding. (2) Transforming, ana (3) Intormation Extracing

Anatog. that 's. continuous tone pnoto mages may simply de cigitized. or encoded for storaçe Gisjlay. transmission. Jala-oase establishment. or airec: transter to Jigital equicment

Transtormation converts an imaçe into a better locking or nore useful form It mav use sucn tecnmoces as contras: ennancement. cesturring, mage restoration norse ;ecuction ecge snareenirg. zotor ennancement Jensiv slicirg and seatal iftering

Extraction of the intormational content ot a photograch can take one or more of 'mee torms. detocion. mensuration and dentitication Detection reters io the determination of ine existence size. snape and location of a leature Mensuration is concorned with the spatial relationshios botween such teatures as in the examination of star plates and spectrograms.
identification involves the recognition of the photometric signaturo'. the panticular pattern of density variations associated with a feature such as in pattern recognition in fact. :he uses to which the capaobities of onotedigtizing can be turned are as far-ranging as the imagination allows Let us show you how they can be sulted to your neeas in such fietas as

Aerial Reconnaissance

Aerospace
Astronomy
Earth Resources
Electronics
Graphics Reproduction
Mapping and Photogrammetry
Matenals Resoarch
Medicine
Photographic Science
Textile Production

ORIGIMAL PAGE IS OF POOR QUALITY

Appendix 3.2 .8

AC07 Test Reference Documentation

original prge is
CF POOR QUAEITY
 hs 235－5c：

FROM：G．R．Hycie

Covezage Tust Descrap：ica
1.

BLDC：
Mril sti．
EXT．
Tint tesi is performed on the Theratac Mopner witi the san： míror statiorary＝0 daserinine tne size and location of the \＆ 4 detecturs in 6 scpaiate banis．（io more detectors ray ba adced if ónd 7 option is exercised．j
The Thematic Mapaer is mounted or a precision table．Hovever， the position of the T：！fs deterained b；attaccllinatiog a a theoduiite on the iocked scan mi＝：or＝0 meacire to th2 こasused

 nositior the entrance slit．Eowever，the colifiator nas＝7ミrモnw

The software procedure for controlling the test is soecjeied in rine follöing steps．These steps in ruz：cail procedures wi．i．i． are derailed in subsequent sections．The procecures pefform the following functions．

Procedure A

The data for one band of 16 detectors are taken in X and \because and stored for reduction．Bands $1,2,3,4,5$ and 7 use ihts proced̈ure．
Procedure B
The data 1, one band are reduced co give normalized data，and the detector width is determined in X and Y ．

Procedure C

The detector size and location for the band are checked against specifications，and the size，location，and condition reiative to specifications are printed on a piority basis to kecp the test operator abreast of progress．

Procedure D

The field of view data are converted to radian measure raiative to the optical a：is of $T H$ ，and the data are sent to plot file to be plotted as time is available，but with low priority．

Fhcratic ：apper Epatial oreage Tesc Description

かこころuーまし！ 0
30 јニッローニ：： 0 ？ 6 －2－

ORIGINAL PAGE 13 OF POOR QUALIN

Prucedi：z $=$

Tine movement of ta is controiled and monftorec，inciudinf，ill interaction with the optical technician operating the theodolite．

Procedures F ， $6, H$ ，and I

These procedutes are analogous to A, B, C ，and D ，but they apply to band 6 only．which has 4 detecters．

VPEAK Gubroutine

The data on any siven detector are sampled and processed to determine the peak－to－peak output．

Secuence No． 1

This sequence is called by procedures i and f to lake data on a sequence of detectore over a specizied slit step ringe．Data are talen，then the entance slit is stepped in X ．

Sccuence No． 2
Analogous te so． 1. but it uses Y coordinates．
Sequence No． 3
Similar to No． 1 ，but the slit step occurs before data are talien．
Seguence No． 4
Similar to No．2，but the sift step occurs before data are taken．

The Test Procedure Follows

1．Instruct rhe operator to set the scan miryor to the center of acan and lock it in place．

2．Verify that the scan line corrector is off；if not．command it off，and verify．

3．Instruct the operator to align the collimator with $I M$ ．
4．Perform Procedure E with IBAND＝1 to initialize all counters and position on the LED．

5．Instruct the operatcr to connect the auxiliary detector plane cooling equipment，but do not turn it on at this point in time．

6．Command all bands to＂off．＂

> Themetic :apper spaziai
> Coverage Iast Duscripticn

HS23s-56:~
 30 :a:uに:y $20: 3$

ORIGINAL PAGE IS-3OF POOR QUALITY

7. Seiect the ADsU ait in the SIU.
8. Select the 35 KH! sampling rete in the ADAU (the diride by. .5 function).
9. Skitch in the 100 Hzfile fr with a 10 Hz bancipass in the ADAU.
10. Drive the apcteute tabie in the -x ditecion towari banc 4 fur the following IfOY distances

Currentiy there are? possible cellinators which may be used. They have fLC of 108 inches and 111 inches correspoidine to 45.9 and 47.175 steps/IFOV, respectively.
11. Command Bands 1 to 4 to "ON," and instruct the operator to turn on the auxiliary cooling for bands 5 and 6.
12. Instruct the operator to turn on the chopper motor and adfust the source current until the peak-to-peak signal is 18.8 volts ($\pm 1920 \mathrm{DN}$). Nhile che operator is adjusting the current, continually monitor and display the peak-to-peak signal of detector 2 of Band 4 using the VPEAK procedure until the operator signals that the voltage is correct. Switch to detector 16 of Band 4 and verify thet the voleage is uithir 1 volt of the detector 2 vaiue. If not, urite a message to the operator to give him a chance to abort the test. If he chooses to continue, go the next step.
13. Step to the center of the band in preparation for execution of the procedure A which eakes a full set of field of vieu data by steppine as follows. (The narrow sift is at the center of the even detcetors.) Step in the +X direction by 1.25 IFOV units (53.125 microradians).
14. Perfora Procedure A on Jand 4.

Finmatic Mappe= SpatiaZ Coverage Test Lescifiption

URIGINAL PAGE 1° HS256-5610 OF POOR QUALITY

30 January 1978 -4-
15. Reduce the Eand 4 data by performins Procedure .
16. Print the Banc 4 data using Procedure C wich also checks the paraneters against specification.
17. Plot the Band 4 data by performing Procedurc D.
18. Save the Band 4 data on a 9 track mag tape for future reference including the associated paraneters REFX, REFY, TMíiGÖ, TMING:, XOFFST, YOFFST, and RSTEP.
19. The narrow vertical slit is now at the center of Band 4. step it to the center of Band 5 by moving in the $+X$ direction by
Band 4 to axis
Axis to Band 5

total \quad| 10.394 IFOV units |
| :--- |

20.•Commanc Band 5 to "ON."
21. Perform Procedures A, B, C, and D on Band 5.
22. Save the Band 5 data and associated parametezs on 9 rack mag tape.
23. Nove the narrow vertical sift to the center of tine collimator field by step.ing in the -X direction by

$$
\begin{array}{cc}
\text { Band } 5 \text { center io } 3 x i s & -60.606 \text { IFOV units } \\
\text { Axis to collimator center } & +7.9 S 8 \text { Irov units } \\
\text { Anti-backlach overtravel } & -0.2 \\
& \text { total }
\end{array}
$$

Move in the $+X$ direction 0.2 IFOV unets.
24. Move the Thematic Mapper to the center of Band 3 by eyercising Procedure E with IVAND=2. This will generate a new TMANGX and TMANGY which give the location of TM as measured by the theodolite. This Procedure E also moves the collimator slit as a fine adjustment to the center of Band 3 .
25. Perform Procedures A, B, C, and D on Band 3.
26. Save the Band 3 data on magnetic tape as above.
27. Step the narrow vertical slit to the center of Band 4 by stepping in the $+X$ direction by

Band 3 to axis
35.392 IFOV units

Axis to Band 4
-10.394
total
24.998 IFOV units

Thematic Mapper Spatial ت̈verage Test Description

ORIGINAL PAGE IS OF POOR QUALITY

HS2う6-551C
30 January 9978 -5-

No anti-backiash movenent is needed since the movement is in the $+X$ direction, cnly.
28. Perform Procedures A, B, and C to check registration. No plot will be performed since the data were previously measured.
29. Save the Band 4 data on magnetic tape as above. Step the narrow siit in the - X direction to the center of Band 2 by stepping by

Axis to Band $2 \quad-60.392$
taxis to Band $4 \quad+10.394$
Anti-backlash

$$
\begin{array}{r}
-0.2 \\
\hline
\end{array}
$$

$$
\text { total }-50.198 \text { IFOV units }
$$

Step in $+X$ direction by 0.2 IFOV units.
30. Perform Procedures A, B, C, and D on Band 2 .
31. Save Band 2 data on magnetic tape, as above.
32. Step the na:row vertical slit to the center of Band 3 again to center the coliimator travel by stcpping in the ix direction by

Band 2 to axis	+60.392	
Axis to Band 3	-35.392	
	total	$+25.0 \quad$ IFOV units

33. Move the Thematic Mapper to the center of Band 2 by performing Procedure E Eith IBAND=3.
34. Perform Procedures A, B, and Con Band 2 (no plot is needed again).
35. Save Band 2 data on magnetic tape as above.
36. Setp to the center of Band 3 by stepping in the $+\mathbb{X}$ drection by +25.0 IFOV units.
37. Perform Procedures A, B, and C on Band 3 (no plot is needed aga1a).
38. Save Band 3 data on magnetic tape as above.
39. Step in the -X direction to kand 1 by stepping

Axis to Band 1	-85.390
Band 3 to axis	+35.392
Anti-backlash	-0.2

Total -50.198 IFOV units
Step in the $+X$ drection by 0.2 IFOV units.

43. Move the $T M$ to Band 5 by performing Procedure E with IBAND=4.
44. Derform Procedures A, B, and C on Rand 5 (no plot is needed again). Then store data on magnetic tape.
45. Instruct the operator to install the blackbody source fo: Band 6, then command Band 6 "os."
46. Step to the certer of the even detectors by steppirg in the +X direction by

| Axis to band 6 center | +95.603 |
| :--- | :--- | :--- |
| Band 5 to axis units | |
| Band 6 to center to | -60.606 |

Band 6 to center -5.0 even detector

$$
\text { total } \quad+29.997 \text { IFOV units. }
$$

47. Step the sift wheel CCW 180 degrees to position the fand 6 vertical slit into place.
48. Instruct the operator to increase the source current until the peak-to-peak signal is 18.8 volts (11920 DN) as measured by VPEAK subroutine, and the blackbody controller is stable.
49. Step in the $+X$ dire 5 ion to the center of Band 6 by stepping. +S.0 IFOV units.
50. Perform Procedure F to acquire the data, Procedure G to reduce it, Procedure H te print and check against specifications, and Procedure I to plot it.
51. Save the Band 6 data on magnetic tape as above.
52. Step the sift wheel CW 180 derrees to move the small vertical sift into place.
53. Drive the sift back to the LED to close the traverse by performin Procedure E wich IBANDas.
```
%
Therazac Mapper Spatial
Coveragc Test Dcscription
OR:GINAL PAGE IS
HS236-5610
30 January 1972
-7-
54. Instruct the ope=ator to switch the X, Y controller to local
mode, then position the vertical slit onto the LED by stepping
in from the - to + direction in the final approach to remove
backlash. Instruct the operator to select the narrow
horizontal siit, then center the middle LED oy stepping from
-Y to +Y directior or the final approach. .
55. Instruct the operator to switch the X, Y controller to remote.
56. Read the X and Y encoders, then calculate
XERK = (X-XOFFST) RSTEP radians
YERR = (Y-YOTFST) RSTEP radians
57. Commard Bands 2, 2, 3, 4, 5, and 6 to "Off."
58. Instruct the oper-tor to turn off the auxiliary detector
        plane coolirig.
59. Instruct the operator to turn off the blackbody and visible
    detector suurces.
60. Command the SIU back to internal MUX usage.
61. Print the message
    "END OF SPATIAL COVERAGE test,
        X closure error = (XERR value) rad&ans,
        Y closure error = (YERR value) rad#ans."
```



```
/mr
Attechments
Distribution:
TH project office (14)
J. Young
```

HS2こ5-5i:0
Actachment

procedure a

This procedu:e is used to acquire the data from the field of view measurements for onc detector band in a form suitable for reduction by Procedure E, and for print and plot by procedures C and D.

This procedure assumes that the narrow vertical.sift is in the center of the band in the X dizection, and the narrow horizontal slit may be centered in the Y direcition by a go-degree rotation of the slit wheel.

Data Storase Descrintion

Data are described as though 0.05 IFOV (2. 125 microradians) steps were possible. The data step size and count must be adjusted here and in Procedure B to accommodate practical step size as determined by the collimator focal lengths. This adjustment must respect Irov boundary locations, but may allow more incremental steps within boundaries. For example, it takes 20 positions of
 However, if the lll-inch iocal length collimator wera to be used eack step is 0.9009 microradians, so eash data point rould =eciaze either two steps (1.8018 microradians) or threc steps (2.727 ricicoradians). In tho case where a movement of ifovis required, 42.5 m£croradians/. 9009 microradians indicates 47 of the .9007 microradians steps are required. Thus, 13 positions of 2 steps each pits 7 positions of 3 steps each will be equivaient to the desired 20 positions of 0.05 IFOV.

Figure i fllustrates the testing procedure to be followed in taking data in the X direction, and Figures 2 and 3 illustrate the procedure used in the Y direction. Figure 4 illustrates the distribution between narrow sift data and wiae slit data in the Y direc:ion.

In the X direction, the wide sift is posttioned - 12.25 IFOV units from the center line (see Figure 1), ther the slit is stepped in units of 1 IFOV to take the far field data. The wide sift is not used on the detectors stince the signal level is 10 times saturation, so stepping stops at -2.25 IFOV. Narrow sift data is then taken after backing the narrow sift to $X=-3.75$ IfOV units. The narrow sift data is taken until $X=+3.75$ IFOV units. The silt location is moved to $X=+2.25$, the wide slit inserted, ard the remaining data are taken. See Table. I for the data storage sequence.

The Y direction data acquisition proceeds in a similar fashion. The slit is moved to $Y=-17.5$ IFOV units, then the wide slit is moved into place. At that position oniy detector is within 10 IFOV of the slit, so only detector lis used. After the slit has been stepped to - 16.5 IFOV units, detectors 1 and 2 are within 10 IFOV units. Finally, when the slit is at -8.j IEOV,

ORIGINAL PAGE IS OF POOR QUALITY

HS235-5610
Actachment -2-
detectors 1 through 10 are within 10 IFOV units of the sift. Siace the powe through the slit is 10 times saturation, the wide silt is not steppeg actoss the detectors.

The slit is changed to the narrow size, then backed up to the position illustrated in figure 2. For the first ifov, only detector No. 1 is vithin 2 IFOV units of the slit. When the sift is 1 Ifov unit from detector 1 , data can also be taken on detector 2 since it is then 2 LFOV unita away. As the siit is stepped further, more detectors come within the $+/-2$ IFOV data range. The data storage is ifsted in Table II, and the range ai data are illustrated in figure 4. In the figure, the na:row slit range is illustrated by a T-shaped line on each side of the detector, and the wide slit data points are illustrated by an X.

The data acquisition steps will now be described.

c
リラこ？びーラ6う Attachiment －6－

WIDE SLIT DATA POINT NARROW SLIT RANGE


```
P=oceiure i (ccotd)
```

original page bs OF POOR QUALTTY

d=eacnacrit
-3-

```
‥ Field of View Stepping in X Direction (along sean)
a. Stef in the - \(X\) gitrecrion to a position wisi=n is iz. 25 IfOV units from the band center ifne. Step 0.2 ifov unfes further in -X direction, then step 0.2 Ifor units in the \(+X\) direction to minimize bacilash.
b. Fotate tine slit winecl 45 degrees CCl to position the wide vertical sif: over the source. This sigaal level is 10 times saturation, so should not be stepper actoss the detectozs.
c. Take data for 10 Ifov positions on the \(-X\) side of the even detectors as iojlows (using a pre-data riep to avoid the detector at the end).
(1) Sec NDSTRT: \(=\) NDSTOP \(: 16\) DSIEP - 2 FSIEP - 1.0 NSTEP \(=2\).
(2) rerform Scquence No. 3.
(3) Set NDSTE: = 1 DSTEP=1 NSTEP=E
(4) Perform Sequence io. 3 .
d. Rotate the sift whel 45 degrees CW to posicion the naryow vertical slit over the sourve. This sifncl level is set for saturation level. The nas=ow slit dara will be raken from 2 IFOV unics on the \(-X\) side of tine even detecters to 2 IFOV units on the \(+X\) side of the odd detectors.
e. Move the slit 1.7 IFOV units in the \(-X\) direction, then nove it 0.2 IfOV units in che \(+X\) direction to minamize backlash.
f. Take data for 7.5 IFOV units in steps of 0.05 IFOV units as follows.
```

(1) Set NSDTRT = 2 NDSTOP -16 DSTEP $=2$ FSTEP = O.OS NSTEP: 40
(2) Ferform Sequence No. 1.
(3) Set NDSTRT = 1 DSTEP - 1 NSTEP - 71
(4) Perform Sequence No. 1.
(5) Set NDSTRT = 1 NDSTOP = 15 DSTEP 2
(6) Perform Sequence No. 1.

ES236-5610 Attacnment -10-
- G. Step back to the center of the first ifov on the tix site
g. Step back to the center of the Eirst TFOV on the tix site
of the odd detetors by stepping in the -X direction by 1.8 IFOV units, then stepping by 0.2 IFOV uriEs to =emove backlash.
h. Rotate the slit wheel 45 degrees $C C H$ to position the wide vertical slit over the source. This signai level is 10 times saturation, so should not be stepped across the detectors.

1. Take data for 10 IFOV positions on the $+X$ side of the odd detectors as follows (use post-data step to avoid the detectors).
(1) Set NDSTRT $=1 \quad$ NDSTOP $=16 \quad$ DSTEP $=1$ FSTEP $=1.0$ NSTEP $=8$
(2) Perform Sequence io. 1 .
(3) Set NDSTOP $=15$ DSMEP $=2$ NSTEP $=2$
j. This completes the acquisition of data in the X directicn for this band. The slit will be set on the small size horizontal slit and the slit will be moved back to the center of the band. The center of the slit is curzently 10.5 IFOV on the $+X$ side from the odd numbered detectors. Rotate the slit wheel CCW by 45 degrees. Step the sift in the -X direction 12.45 IFOV units, then step 0.2 IFOV units in the $+X$ direction to remove backlash.
2. Field of View for Band 4, Stepping in the Y Direction (across scan)
The narrow horizontal sift is now positioned between detectors 8 and 9 of the array.
a. Step the slit 18.7 IFOV units in the - Y direction, then step 0.2 IFOV in $+Y$ to remove backiash. This leaves the center of the slit 10.5 IFOV units below detector No. 1.
b. Rotate the sift wheel CCW by 45 degrees to position the wide horizontal sift into place. Since the radiance level is 10 times the saturation level, this sift should not be stepped across the detectors.
c. Take signal data on detector 1 which is 10 IFOV avay at this position, then step 1 IFOV and take data on detectors 1 and 2 which are 9 and 10 IFOV from the source, and continue a similar procedure until the slit is I rfov from detector 1 at which tife data will be taken cin detectors 1 through 10. The data acquisition is accomplished as fuilows.

Proccduce A (contc) ORIGNAL PAGE DF POOR QUALTTY
 HS236-55:0 Actacliment -11-

(1) Eet NDSTRT = 1 NDSTOP $=0$ DSTEP $=1$ FSTEP $=1.0$ NSTEP $=1$
(2) $N D S T O P=N D S T O P+1$
(3) Perform Sequence No. 4 (pre-data stepping to avoid the derector).
(4) Repeat steps (2) and (3) until 10 cycies have been completed.
d. Step to a posision 2.5 IFOV below detector No. 1 , in preparation for fine silt measurewents. The wide sift is currently centered 0.5 IFOV below derector 1 . proceed as follows. Step in the -Y position 2.7 IFOV units, ther step in the + direction 0.2 units.
e. Rotate the small horizontal sititinto piace by steppiag Cil by 45 degzees.
-f. rale data on all detectors which a=e within two rfov of the slit. Thus, for the first IFOV located 2 IEOV units below detector 1 , only detector 1 will be used. For the next IFOV, detectozs 1 and 2 are used. After scepping throûh 5 Irov units, detectors 1 ihrough 5 vill be used. however, stepping throush the 6th IFOV urit, detector 2 is no lorger within 2 IfOV units, so it is nut used. A. similar procedure is followed until the small slit is 2 IFOV units above detector 16. The procedure is as follows.
(1) Set NDSTRT=1 NDSTOP=0 DSTEP=1

FSTEPa0.05 NSTEP=20
(?) NDSTOP=NDSTOP +1
(3) Perform Sequence No. 2 (post-data itepping).
(4) Repeat (2) and (3) until 4 eycles have been completed.
(5) NDSTRT=1
(6) NDSTOP=NDSTRT+4
(7) Perform Sequence No. 2
(8) NDSTRT=NDSTRT+1
(9) Repeat (6) through (6) until 12 cycles have been completed.
e
\%
:

HS236-5610
Aitacherci: -12-
(10) Set NDSTRT $=12$ NDSTOP $=16$
(11) NDSTRT=NDSTRT+1
(12) Perform Sequence No. 2
(13) Repeat (11) and (12) until 4 cycles have been completed.
(14) NDSTRT=16
(15) Perform Sequence No. 2
s. Step back to center the sift 0.5 IFOV above jetector 16 by stepping in the $-Y$ direction by 1.8 IFOV, then stepping in $+Y$ by 0.2 IFOV to remove backlash.
h. Rotate the large ho:izontal slit into place by moving CCif 45 degrees.
j. Set NJSTRT=6 NDSTOP=16 DSTEP=1 FSTEP=1.0 NSTEP=1
(1) NDSTRT=NDSTRT+1
(2) Perform Sequerce No. 2
(3) Repeat (1) and (2) until the cycle has been done 10 times.
k. The center of the slit is now located 10.5 IFOV above detector 16. Return the slit center to the band center reference between detectors 8 ard 9 as follows.
(1) Rotate the silt wheel CW by 135 degrees to move the small vertical sift into place.
(2) Step in the $-Y$ direction 18.7 IFOV units, then step 0.2 IFOV units in the $+Y$ direction to remove backlash.

ORIGINAL PAGE IS OF POOR QUALTTY

HS236-56io
Attach=ent
PROCEDURE R

This procedure reduces tine ficid of view dara for one band, only. The 50 percent signal point is determinei in X and Y for each durector, then the detector center coordinate is calculated. The narrow sift data taken 1. to 2. IFOV from a detector is used to compare with the wide slit data.

I Data Storage Descifption
NOTE: Data are described as though 0.05 IFOV (2.125 microradian) steps were possible. The data step size and count must be adjusted inere and in procedure A to accommodatn practical step eize as determined by the collimator focal length.
A. Input Data

See Procedure A.
D. Output Data

1. The X data output consists of 16 data records each with the following data items.
a. Detector No.

Records 1-8 will be for detecter numbers 1,3,... 15. Records 9-16 will use detector numbers $2,4, \ldots 16$.
b. PEAKV

PEAKV is largest voltage for this detector which is used for normalization of the data samples.
c. Normalized Narrow SIft Data

This data set consists of nominally 151 sets of X, Y, and the normalized voltage VPN. The set will probably not be exactly 151 values since the . step size will vary from position to position to accommodate the collimator focal length. However, since X, Y are both stored, the coordinate vaziation will not cause a problem as long as the field of view boundary is respected (see discussion in Procedure A).
d. $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XC}$

XI is the X coordinate (obtained by interpolation) of the signal which is 0.5 of the peak of the normalized data. Xl is the value on the $-X$ side of the detector, $X 2$ is the value on the $+X$ side. $X C$ is the average of $X 1$ and $X 2$.

HS23 $3-56 \geq 0$ Attachment -2-
e. Normalized Wide Slit Data

This data set consists of 18 sets of X, Y, and the normalized voltage VPN. Items 8 and 9 of this set ($X=-2.25$ and +2.25 LFOV units) will not be plotted since they are adjacent to the detector and may show cross talk since the wide sift has a power density which is 10 times saturation. These two points will be printed for diagnostic interest, only.
f. VNAVE, VVAVE

VNAVE is the integrated and averaged value of the signals which together combine to make up the second IFOV away from the detector. This value is compared with vivave which is the normalized vide slit respoase at $X=-3.25$ for the even detectors or $\lambda=+3.25$ for the odd detectors. VWave is also divided by 10 to allow for its higher signal level.
g. NBAND

The band no. of the data taken.
2. The Y data output consists of 16 data records, each with the following data items.
-
a. Detector No.

Records 1-16 will increase sequentially in detector number.
b. PEAKV

This is the same as X, except the Y data are used.
c. Normalized Narrow Slit Data

This data is similar to the X data, except there are nominally 100 points covering 5 IFOV worth of data with the detector centered in the array.
d. Y1, Y2, YC

These are analogous with $X 1, X 2$, and $X C$, above.

```
Procedure y (contd) us236-5610
                                    ORIGINAL PAGE IS A:tachment
                                    OF POOR QUALITY
                                    -3-
e. I!W and Normalized Wide Sift Data
There will be a variable number of wide slit data points for each detector. The data record should save space for a point counter NW and . up to 10 sets of \(X, Y\), and VPN as follows.
Detector No. NW
\begin{tabular}{llr}
1 and 16 & 10 \\
2 and 15 & 9 \\
3 and 14 & 8 \\
4 and 13 & 7 \\
5 and 12 & 6 \\
6 to 11 & 5
\end{tabular}
f. VNAVE and VWAVE
These are analogous to the \(X\) data, except only detectors 1 and 16 have data entries.
8. NEAND
The band no. of the data taken.
II XData Reduction
A. Repcat the following for the odd no. detectors \(1,3, \ldots 15\).
1. Field of View in \(X\) (Scan) Direction
Extend the small step data VPP from the file for \(X=-1.75,-1.70, \ldots,+3.70,+3.75\) for 151 points. The peak value will be nominally at \(X=+1.25\) but search the array for the peak; call this PEAKV, save it. Normalize the data by dividing by PEAKV to get \(\nabla P N\). Save this data. Search the normalized data on both sides of the peak for the two values which are less than 0.5. These will be nominally at \(X=0.70\) and \(X=1.80\). Take the two adjacent normalized data values which are just iarger than 0.5 (nominally at \(X=0.75\) and \(X=1.75\) ) and by linear interpolation determine the two \(X\) values for VPN=0.5 as follows.
For the lower \(X\) value edge,
Let \(X_{1}\) be the coordinate for \(\operatorname{VPN}_{1}\) (VPN<O.S)
\(X_{i+1}\) be the coordinate for \(V P N_{1+1}\) (VPN>0.5)
where \(X_{i+1}>X_{i}\). Then the half width coordinate is given by
```


HS236-5620
Attachnent
-4-

Let Xloxhl for this coordinate on the -X side of center. Similarly, the coordinate for the higher X value edge (nominally at $\mathrm{X}=1.75$) is given by (1) where
X_{1} is the coordinate for VPN $N_{1}(V P N>0.5)$
X_{i+1} is the coordinate for $V N_{1+1} \quad(V P N<0.5)$
Let $X 2=X H W$ for this coordinate on the $+X$ side of center. Calculate the coordinate of the center of the detector. XC from the two half widtr coordinates X1. and X2 is calculated as follows.

$$
\begin{equation*}
x c=\frac{x 1+x 2}{2} \tag{2}
\end{equation*}
$$

Save the $X I, X 2, X C$ for future use.
Extract the ride sift daia for this dctector by retrieving the data for the δ settings of $X=-9.25$ to $X=-2.25$ in steps of 1 iFOr, and the 10 settings for
$X=+2.25$ to $X=11.25$ in steps of I IFOV.
The $X=+2.25$ value is adjacent to the detector and may have cross taik obscuring tts value since the wide slit has 10 times the detector saturation powe=. This value is not plotted with the field of view data, but is printed out for diagnostic value. The Xra -2.25 value may be used for these odd no. detectors.

Normalize the 18 wide slit data values as follows.

$$
V P N=\frac{V P P}{P_{E A K V}{ }^{*} 10}
$$

and save these values.
2. Small Sift and Wide Slit Data Match

Using the normalized values above, get the 21 VPN values for $X=2.75$ to 3.75 in steps of 0.05 and integrate these values using the trapezoidal rule. However, the end points must bs divided by 2 to allow for overlap at the ends by 0.05 IFOV, and the whole result divided by 2 due to 0.1 IFOV slit size. Thus, the integral end point division is given by

$$
\begin{equation*}
V N=\left[\frac{V P M(1)+V P H(21)}{4}+\sum_{I=2}^{I=20} V P N(I)\right] \times \frac{0.05}{2} \tag{4}
\end{equation*}
$$

	HS236-5610
ORIGINAL PAGE IS	Attachment
OF POOR QUALITY	$-5-$

Average $V N$ over the $I F O V$, then use this as a comparison with the wide slit lV aftcr it has been reduced by a factor of 10 to account for the power difference between wide and narrow slits.

VNAVE $=$ VIN/10.
Obtain the normalized wide sift VPN at $X=3.25$; call it VWAVE. Save VNAVE, VNAVE. These numbers are the match between small slit data and the wide slit data at 2 IFOV from the detector.
B. Repeat the following for the even no. detectors $2,4, \ldots 16$.

1. Field of View in the X (Scan) Dircction

Extract the small step data VPP from the file for $X=-3.75,-3.70, \ldots,+1.70,+1.75$ for 151 points.

The peak value vill be norminally at $X=-1.25$, but scarch the array for tie peak; call this PEATY, save it. Normalize the data by dividing by PEAKV to get VPN. Save this array. Saarch the nozmalized data on both sides of the peak for the two values winch are less than VPN=0.5, notinally at $X=-0.70$ and $X=-1.80$. Using the two adjacent data values which are just larger tian 0.5 (nominally at $X=-0.75$ and $X=-1.75$), use inear interpolation to determine the X values for VPN=0.5 as follows.

For the most negative X value edge (nominally $X=-1.75$)
Let X_{i} be the coordinate for $V P N_{1}(V P N<0.5)$
X_{1+1} be the coordinate for VPN ${ }_{1+1}$ (VPN>0.5)
where $X_{1+1}>X_{1}$.
Then the half width coordinate is given by equation (1).
Let $X 1=X H W$ for this coordinate on the most negative X side.

Similariy, the coordinate for the less negative X side (nominally $X=-0.75$) is given by (1) where
X_{i} is the coordinate for $V \mathrm{VN}_{i} \quad(V P N>0.5)$
X_{i+1} is the coordinate for $V P N_{i+1}$ (VPN<0.5)
Let $X 2=X H W$ for this coordinate on the less negative X side of the detector center.

Calculate the coordinate of the ietector center XC using equation (2). Save X1, $\lambda 2, X C$.

```
* . . Procedu=a B (contd)ORIGINAL PAGE IS
OF POOR QUALITY
                                    HS236-5510
                                    Attachment
                                    -6-
```

Extract the wide sift data for this detector by retrieving the 10 settiags of $X=-11.25$ to $X=-2.25$ in steps of 1.0 IFOV, ani the 8 settirg of $X=+2.25$ to $X=+9.25$ in steps of 1.0 IFOU. The $X=-2.25$ value is adjacent to the detector and may have cross talk obscuring its value since the wide slit has lo times the detector saturation power. This value is not ploted with the field of view deta, but it is printed for diagnostic value. The $X=+2.25$ value may be used for thesc even no. detectors.

Normalize the 18 wide sift data values using equation (3), and save them for subsequent use.
2. Small Slit and Wide Slit Data Match

Using the normalized values above, get the 21 VFN values for $X=-2.75$ to -3.75 IFOV in steps of 0.05 and integrate these using equation (4). Get the wide sif: VPS at $X=-3.25$, call it Vifive, canculere equation (5) and save VNAVE, VNAVE.

```
III \(Y\) Data Reduction
Repeat the following for all detectors \(1,2, \ldots 16\).
A. Field of View in Direction Normal to Scan (Y)
Extract the 100 narrow slit VPP data values for the detector from the ifle. The starting \(Y\) value is given by \(Y S a N D E T-11\), and the ending \(Y\) value is YEaNDET-6.05 where the data steps assumed are 0.05 IFOV.
The nominal center of the detector is given by
\(Y C=\frac{Y S+Y E+.05}{2}\), nominal
Search the data array for the peak value; call this PEAKV; save it. Normalize the data by dividing by PEARV to get VPN; save this array. Search tine normalized data on both sides of the peak for the two values which are less than VPNaO.S. These will be nominally at
YC nominal \(\pm 0.5\) IFOV.
Using these 2 values and the 2 adjacent values just larger than VPNa0.5, linearly interpolate for the \(Y\) values corresponding to VPS=0.5.
```


Procedure B (contd) ORIGINAL PAGE IS OF PUOR QUALITY

LS236-5610 Athachment -7-

Let Y_{i} be the coordinate for $\because P l_{1}$ (VPN>0.5)
Y_{i+1} be the coordinate for $V P N_{i+1}(Y P N<0.5)$
where $X_{i+1}>Y_{i}$. Then the half width coordinate
is given by
$Y H W=\frac{\left(\ddot{i}_{i+1}-Y_{i}\right)\left(1.0-V P N_{i}\right)}{V P N_{i+1}-V P N_{i}}+Y_{i}$
Let Y IIFHW for this coordinate on the $-Y$ side of certer.
Similarly, the coordinate for the higher Y half width is found by letting
Y_{i} be the coordinate of VPN $(V P N>0.5)$
Y_{1+1} be the coordinate of $V P N_{i+1}(V P N<0.5)$
Let $Y 2=Y H E$ for inis coordinate on the $+Y$ side of the detector certer.

Calculate the detecter center coordinate YC by
$Y C=\frac{Y 1+Y 2}{2}$
Save YI, Y2 and YC for future use.
The wide slit data is variable by detector number. The starting Y value on the minus side of the detector YSM is given by
$Y S M=N D E T-18.5$ IFOV
The ending value on the minus side YEM is
$Y E M=-8.5$
Thus, detector 10 is the last detector which has a wide sift data point on the misus side.

The starting Y value on the positive Y side of the detector $Y S P$ is given by
$Y S P=+8.5$
The ending value on the positive side YEP is
$Y E P=N D E T+1.5$
(12)

Thus, detector 7 is the first detector which has a wide slit data point on the positive side.

```
8 . Procedure B (contd)
```

HS:36-5010
Attaclitent
-8-

```
Retrieve the wide slit data between YSM anc YEM and also between \(Y S P\) and.YEP as defined in equations (9) through (11) Eor all entries where YEX is greater chan or equal to \(Y S M\) and where \(\mathrm{Z} E P\) is greater than or equal to \(Y S P\). Normalize each value by using equation (3). Store the VPN value, the \(Y\) coordinate, and the nurber of data points NIS. .
B. Small Slit and lide Slit Data Match
Calculate the following for the odd detector No. 1, only.
Using the normalized values above, get the 21 VPN value for \(Y=-10.0\) to -9.0 IFOV units in steps of 0.05 IFOV units. Also retrieve the normalized wide slit data covering this same off detector region which is stored by \(Y=-9.5\) IFOV units. Integrate the \(2 l\) values using equation (4). Note that the end points are divided by 2 in the equatinn to allow for the excess of \(1 / 2\) of the small siit uidth on each end, when compared with the wide si̇t result. The integration result is \(V i\), and the average is VNVE and giver by (5). The wide slit value is VWAVE. Save VNAVE and VWave.
Calculate the following for detector 16 only.
Using the normalized values above, get the 21 VP! values for \(Y=9.0\) to 10.0 IFOV in steps of 0.05 IFOV units. Also retrieve the normalized wide siit data covering the same off detector region which is stored for \(Y=9 . j\) Irov units. Integrate the 21 values using equation (4). The integration result is VN, and the average is VNAVE, given iy (5). The wide silt value is VVAVE.
Save VNAVE and VNAVE.
Save VIAVE and VNAVE.
```


Attこchanat
PROCEDLIRE C

This procedu=e ret=ieves data stozed by procedures B and L which ailow conversion of X and i from steps co radians. iho field of view data for the bond is then checked against the specified parameters, anc the results printed.

Input Data

The data from Procedurf E includes REFX, REFY, TMANGX, TMANGY; XOFFST, YOFEST, and RSTEP. See Procedure E for definitions.

The data from Procedure B includes NBAND, Detector No., PEARV, narrow slit array data in sets of X, Y, VPN where X, Y are in step count units, XI, X2, XC, Yl, Y2, YC all in step count units, wide slit data in sets of X, Y, and VPN, VIAVE, and VWave.

Conversion from Step to Radians

The conversion equations are described in Procedure E and are reproduced here.

ARGLEX=X*RSTEP+TAASCX-REFA+0.019457/180.
ANGLY=Y*RSTEP+T:SA:SG-REFY
Specified UaIues for Each Band
A. Band Centers (in milliradians), $B C$ relative to the opifc axis
BAND $\quad X B C \quad$ YBC

1	-3.6291	0.
2	-2.5667	0.
3	-1.5041	0.
4	-0.44174	0.
5	+2.5758	0.
6	+1.4798	0.
7	+4.0631	0.
LED	+0.33947	0.

B. Detector Center (in milifradians) for Bands 1-5, 7

1. X Coordinate Relative to Band Center

XDC $=1.25 * .0425(-1+2 * M O D U L O(N D E T, 2))$
there NDET is the detector No.
2. Y Coordinate Relative to Band Center

$$
\begin{equation*}
Y D C=(-8.5+N D E T) * .0425 \tag{4}
\end{equation*}
$$

```
rroceduze C (conth)
ORIGINAL F A\Sigma IS
OF POOR DUALITY
```

ぞS236-5610 Attachment -2-

```
C. Optimum Detector EDGES X1F, Y1P, X2P, Y2P
The ideal loca:ion for the detector edges is given by X1P= XDC+XPC-. 02125 milliradia:
\(X 2 P=X D C+X B C+.02125\)
\(Y 1 P=Y D C+Y B C-.02125\)
\(Y 2 P=Y D C+Y B C+.02125\)
D. Detector Width, (X2-XI) OR (Y2-Y1) Specified
BAMD MINIIUM DIEFERENCE MAXIMLX DIFEERENCE
1.0419 milliradians . 0431 millizadiars
\(2.0419 \quad .0431\)
\begin{tabular}{ll}
3 & .0419 \\
\hline
\end{tabular}
4.0419 . 0431
5.04115 .04635
7 -- --
\(5 \quad .1656 \quad .1744\)
E. Detecto: Location and Size Printout
Perform the following 16 times.
1. Input \(X\) end \(Y\) data records for this detector.
2. Convert all coordinates to radians.
3. Store the converted data in the plot file.
4. Calculate \(D X=X 2-X 1\) \(D Y=Y 2-Y 1\)
5. Print the following
a. Detector No.
b. XDC+XEC
c. \(X C\)
d. XIP
e. XI
f. \(\quad \mathrm{X} 2 \mathrm{P}\)
g. X2
```


ORIGINAL PAGE IS

r. DX
i. "in speci" o: "out spec", see D above
j. error amount if out spec, 0 . if in spec
k. YDC+YBC

1. YC

ゅ. Y1P
n. Y1

- 12?
p. Y2
q. $D:$
r. "in spec" or "out spec", see D above
s. err amount if out spec, O. if in spec
F. Tabùate Curve Data for Small and Large Sifts Print the following data in compact form.

1. Narrow Slit Data
a. X direction

This data consists nominally of 151 sets of X, Y, \quad PPN with λ, Y expressed in radian measure from the axis and VPN is the normalized voltage.
b. I direction

This data consists nominally of 100 sets of X, Y, and VPN data as above.
2. Wide Slit Data
a. X direction

This data consists of 18 sets of X, Y and $V P N, p i u s$ VNAVE and Vhave.
b. Y direction

This data consists of iW sets of X, Y, and VPN where NW is a function of detector No. Detectors 6 to 11 have 5 points, 5 anc 12 have 6 points, 4 and 13 have 7 points, etc. until 1 and 16 have 10 points. Only detectors 2 and 16 have VNAVE and VWAVE values.

ORIGINAL PAGE IS OF POOR QUALITY

PROCEDE゙KED Attaehment

This procedure takes data storec in the plot file by procedure C for each band and forms two tyoes of plot. The first plot is the detector location plot. This consists of the outline of the 16 detectors in the band fo: ideal conditions with the XI, X2, XC and $Y 1, Y 2$, and $Y C$ measured points plotted on the outiine.

The second plot consists of a presentation of the narrow and wide :. slit data for each axis on a cycle semi-log paper. This.wili require 32 plots for each band.

I Detector Locatfon Plot
The ideal location cf each detector edge is given by equation (5) through (8) of Procedurf C. The ideal detector size for bands 1 through 5 is 42.5 ricroradians square. The plot scale should te rhosen to give the best resolution possible. Since the 16 cetector array is 3.5 IfOV wide (148.75 microradians). a scale of 5.0 IFOV in 10 inches would seen =easonable. This would produce a plot 3 faet in lengtin with legend, but onij one such plot will be wade per band.
$0^{\circ} \mathrm{r}$ this scale of 2 inches/IFOV unit, the edge tolerance will be ± 0.03 inches for bands $1-4$ and ± 0.12 inch in band 5 . Since the function of tite plot is the iliustration of any gross errors aydsystematic errors, this resolution should be adequate.

II Detector Field of Vier Ploc
Each axis of a given detector is the subject for this piot. Thus, 32 plots will be required. The plot will be maje on 3 cycle, semi-log paper. Both the narrow slit and wide siit data are to be included on the same plot. This requires an abscissa dimension of 23.5 rfov units. An appropriate scale to use is 2 inches/IFOV for the central ± 3.75 IFOV, then, on the same plot, use a scale of 0.5 inches/IFOV for points outside these limits (wide slit data) Eor X plots.

The Y plots may use a scale of 2 inches/Irov units for the central ± 2.5 IFOV units, then a scale of 0.5 inch/IFOV unit outside this range.

III Plot Priority

The ploteing should not be allowed to slow up the test. The information is stored in a plot file, and plotted during theodolite setting after the Procedure C print is complete as time is available.

ES236-5620
Attachwent

PROCEDURE E

This procedure is called when it is desired to move the Thematic Mapper instrument relative tc the collimator in the field of view tests. The fovement is monitorea by manually autocollimating a theodolite on the $T M$ scan mirror.

The TM will be located at the following points.

1. At the LED reference point.
2. At the center of Bard 3 .
3. At the center of Band 2 .
4. At the center of Band 5 .
5. Returned to LED at close of tests.

The procedure shoulc be called with a switch parameter IBAND which wili specify which of the 5 settings above is desired.

The following paraneters must be kept in a programming comion, or on disi in a fashion which allows access by this proceaure.

REFX, the theodolite reading (converted to radians) when the - narro: vertical slit is aligned with the LED.

REFY, the theodolite reading converted to radians when the narrow horizontal slit is aligned with the center of the 3 LED.

TMANGX, the theodolite reading converted to radians when che TM is positioned with the center of the collimator projected near to Bands 3, 2 , or 5 specified by switch iBAND.
 axis on the center of the band specified.

TMANGY, analogous to TMANX, but in Y.
YOFFST, analogous to XOFFST, but in Y.
RSTEP, the number of radians/step in either X or Y axis. This must be calculated and stored when the collimator focal length is input.

I Set at LED Reference Point (IBAND=1)
A. Sift Setting

1. Instruct the operator to manually drive the X sift cable to center of scan.
2. Repeat for Y.
```
P_ocedure E (contd)
```


ORIGINAL PAGE is OF POOR QUALITY

HS236-5510
Attachwent
-2-
3. Instruct the operator to move the narrow vertical slit into position.
4. Instruct the operato: to step in Z until the slit is at the previously determined focal position.
5. Instruct the operator to set the X, Y, Z, and sift Wheel controller in che remote positions.
6. Zero X, Y, Z, ard sift wheel controller.
7. Ask the operator to input the readings for X, Y, Z, slit wheel.
8. If readings in 7, are not all 0 , repeat 5. to 7.
B. LED Alignment

1. Instruct the operator to align the slit on the IED by moving $T M$.
2. Step the slit wheel CCW 90° to position tie narrow horizontal slit into place.
3. Instruct the operator to center the middie iEd in the sift.
4. Set the slit wheel $C W 90^{\circ}$ to position the narrow vertical slit into place.

NOTE: It is assumed that the equipment registration has been previously perfected so recheck is unnecessary between X, Y in steps l. to 4 ., otherwise, repetitive operator interaction is required.
5. Verify X, Y are still zero by reading their output. If not, re-zero them.
C. Set Reference Position

1. Instruct the operator to autocollmate the theodolite on the scan mirror-avoiding angles greater than 350 degrees or less than 10 degrees.
2. Request the operator to input the theodoiite azimuth readings. Store it as

RXDEG, RXMIN, RXSEC

```
Procedure E (contd) RS236-56:0
                    ORIGINAL PAGE IS
                                    OF POOR QUALITY
                                    Attachment
                                    -3-
                                    Convert to radian measu=e by
                                    ANGX= (FXDEG+RXMIN/60.+2XSEC/3600.)\pi/180.
REFX=ANGX
If REFX is greater than 350 degrees or less than
IO degrees, repeat 1.
3. Request the operator to input the theodolite
        elevation angle. Store it as
        RYDEG, RYMIN, RYSEC
        Convert to radian measure by
        ANGY=(RYDEG+RYMIN/60.+RYSEC/3600.)\pi/180.
        REFY={\iGY
    NOTE: If RYDEG is negative, assume that Ry:IN:
        and RYSEC are also negative. That is, set
        RYMIN= -ABS(RYMIN)
        RYSEC= -ABS(RYSEC)
            IF RYDEG IS -
        NOTE: Standard theodolite procedure consists of
        taking a reading, then flipping the tele-
        scope for a second reading. However, since
        theodolites differ in their use, it is
        assumed that the operator does the averaging
        before input. This may be revised, if
        desired, when the exact theodolite is chosen.
            4. Set the Current Angle Indicators
        TMANGX=REFX
        TMANGY=REFY
5. Set the Offset
Since this is the reference position no steps will be required to move into the center position, so set
\(\mathrm{XOFFST}=0\).
YOFFST=0.
\begin{tabular}{ll} 
Procedure E (contd) & HS2jós6io \\
& ORIGINAL PAGE FS Attachment \\
& OFPPOOR QUALITY
\end{tabular}

II Set. at Bani 3 Center (Ind:Da2)
Band 3 center is specified to be the following angular distance from the LED:
\begin{tabular}{|c|c|}
\hline LED to Axis & -0.01945 degrees \\
\hline Aris to Band 3 center & -0.08618 \\
\hline Total & -0.10563 degrees \\
\hline
\end{tabular}

Set DELTAX= -0.10563
DELTAY= 0 .
then follow the common procedure at \(V\).
III Set at Band 2 Center (IBAND=3)
Band 2 center is specified to be the following angulat distance from the LED:

LED to axis \(\quad-0.01945\) degrees
Axis to Band \(\begin{gathered}\text { Total }\end{gathered} \frac{-0.14706}{-0.16651}\) degrees
- Set deltax \(=-0.16651\)

DELTAY = 0 .
then follow the common \(p=o c e d u r e a t V\).
IV Set at Bard 5 Center (IBAND=4)
Band 5 center is specified to be the following angular distance from the LED:

LED to axis \(\quad-0.01945\) degrees

Set DELTAX \(=+0.12813\)
DELTAY = 0.
then follow the common procedure at \(V\).
V Common Procedure for Bands 3, 2, 5
A. Remove previous offset by
1. Step in the \(X\) direction by -XOFrST steps. Remove backlash by overtravel and return if "XOFFST"'is -.
2. Step in the \(Y\) direction by -YOFFST steps. Remove backlash by overtravel ard return if "-YOFFST" is -.
```

Froceduje E (contd) ORIGINAL PAGE IS
OF POOR QUALITY

```

HS236-5610
Attachment
-5-
```

E. Calculate Nev Theodolite Setting
1. Convert reierence to degrees
RXD=REFX*180./\pi
RYD=REFY*180./\pi
2. Add Step to New Band
XD=RXD+DELTAX
$Y D=R Y D+D E L T A Y$

```
3. Convert to theodolite coordinates

This procedure is most easily described in FORTRAN as follows:

IDEG=XD
RXMIN=(XD-IDEG)*60.
\(I M I N=R X M I N\)
RXSEC \(=(E X M I N-I M I T) * 60\).
RXMINEIRI:
RXDEG=IDEG
where IDEG and IMIN are integers.
RYDEG, RYMIN, anc RYSEC are determined in a similar fashion. However, if YD is negative, it is easier to convert the absolute value, then apply the sign.
C. Move the Thematic Mapper
1. Instruct the operator to move the \(T M\) so the theodolite autocolilmated on the scan mirror will be "approximately RXDEG, RXMIN, RXSEC in azimuth and RYDEG, RYMIN, RYSEC in elevation.". Emphasize in the message that the exact value is not essential because it will be "trimmed" by the X-Y table.
2. Ask the operator to input the azimuth and elevation angles. Store them as RXDEG, RXMIN, RXSEC, RYDEG, RYMIN, RYSEC.
3. Calculate the current angle in radians using equations (1) and (2). Then

TMANGX=ANGX
TMANGY=ANGY
```

新:
* -
Procediare E (co:td)
ORIGINAL PAGE is
OF POOR QUALITY
HS236-5610
Attachment
-6-
C
4. Calculate @ffset needed
XOFFST=(XD:\pi/180.-TMANGX)/RSTEP'
YOFFCT=(YD*\pi/180.-TMANGY)/RSTEP
NOTE: Round these to nearest step.
5. Step off the Offset
a. Step in the X direction XOFFST Steps. If
XOFFST is -, add in -10 steps, then recurn
+lO steps to remove backlash. If XOFFST is +,
no backlash compensation is needed.
b. Step in the Y direction YoFFST steps, and remove
bacl:lash as in a.
NOTE: The slit center should now be at band center.
The caiculation of angles from the axis TM
axis using the present settings are given by
ANGLX=\゙*RSTEP+TMANCX-REFX+0.01945*\pi/180.
ANGLY = Y*RSTEP+TMANGY-REFY
since X Y counters contain the offset
between TMANGX AND XD as well as between
TMANGY AND YD
VI Return to LED at End of Test (IBAND=5)
LED center is specified by
DELTAX=0.
DELTAY=0.
then follow the common procedure of V.

```

\(X\) AND Y DIRECTION MEASUREMENT PARAMETERS FCR BAND 6 FIGURE 1
```

Procedure F (contd) ORIGINAL PAGE OFOB-5610
OF POOR PAGE IS

```

Attachment -3-
c. Rotate the slit wheel 45 degrees CCN to position the horizontal Bynd 6 sift inco place.
d. Return \(X\) to band center by stepping in the -X direction by 17.2 IFOV units +0.2 units for overtravel for a total of 17.4 IFOV units, then ste? in the +X direction by 0.2 units to remove the backlash.
e. Step in the -Y direction 18.2 IFOY units, then step in the \(+Y\) direction by 0.2 units to ramove the backlash.
f. Take data on all four detectors from \(Y=-18.0\) to +18.0 IFOV units as follows.
```

 1) Set NDSTRT=1 NSTOP=4 DSTEP=1
 FSTEP=0.2 NSTEP=181
    ```
2) Perform Sequence No. 2 .
8. Rotate the slit wheel 45 degrees CV to position the vertical si土t into piace for Band 6.
h. Return \(Y\) to band center bo stepping in the -Y direction by 18.2 IFOV units +0.2 units for evertravel for a torad of 18.4 IFOV units, then step in the \(+Y\) direction by 0.2 units to remove the backlash.

HS 236-5620
Attaniment

This procedure reduces the ficld of view data for Band 6, only. Tine 50 percent signal poinc is determined in \(X\) and \(Y\) for each detector, then the center coordinate is calculated.

I Data Storage Description
NOTE: Data are described as though 0.20 IFOV ( 8.5 mfcroradians) cteps were possible. The data step size and count must be adjusted here and in frocedure \(F\) to accommodate practical step size as determined by the collimator focal length.
A. Input Data

See Procedure F.
B. Output Data

The \(X\) data output consjsts of 4 data records, each with the following data items.
1. Detector. No.

Records \(1-4\) correspond to \({ }^{-3}\) detector \(1-4\), respectively.
2. PEAKV

PEAKV is the largest voltage for this detector which is used for normalization of the data samples.
3. Normalized Data


This set consists of nominally 171 sets of \(X, Y\), and the normalized voltage VPN. This set will probably not be exactly 171 values since the step size will vary from position to position to accommodate the collimator focal length. However, since X, Y are both stored, the coordinate variation will not cause a probiem as long as the field of view boundary is respected (see discussion in Procedure F).
4. X1, X2, XC

Xl is the \(X\) coordinate (obtained by interpolation) of the signal which is 0.5 of the peak of the normalized data. Xl is the value on the \(\boldsymbol{x}\) side of the derector, \(X 2\) is the value on the \(+X\) side. \(X C\) is the average of \(X 1\) and \(X 2\).

The \(Y\). data output is similar to the \(X\) data except in 3. the nominal number is 181 sets.
\begin{tabular}{ll} 
& RS236-56io \\
OEtachment
\end{tabular}

II X Data Reduction .
Repeat the Eollowing for detectors 1 through 4 Field of View in \(X\) direction

Extract the \(X\) data from the file, consisting of nominally 171 sets of \(X, Y\), and VPP data. Search the array for the peak value which will be found nominally at XC listed below.

Detector No. Nominal Yi Nominal XC Nominzl X2

Call this peak value PEAKV, and save it, Normalize the data by dividing by PEaKV to get VPN. Save this data.
- Search the normalized data on both sides of the peak for the two values which are less than 0.5. These will be nominally at \(X 1\) and \(X 2\) above. In addition to these two values, use
, the two adjacent values which are just larger than 0.5 and by linear interpolation, determine the two \(X\) values for VPS \(=0.5\) as Éollows.

For the lower \(X\) value edge,
Let \(X_{i}\) be the coordinate for \(V N_{1}(V P N<0.5)\)
\(X_{i+1}\) be the coordinate for \(V P N_{i+1}\) (VPN>0.5)
where \(X_{i+1}>X_{1}\).
The haif width coordinate XHW is given by
\[
\begin{equation*}
X \mathrm{HW}=\frac{\left(X_{i+1}-X_{i}\right)\left(1.0-V P N_{i}\right)}{V P N_{i+1}-V Y N_{i}}+X_{i} \tag{1}
\end{equation*}
\]

Let Xl=XHW for this coordinate on the \(-X\) side of center. Similarly, the coordinate for the higher \(X\) value edge is given by (1) where
\[
\begin{aligned}
& X_{i} \text { is the coordinate for } V P N_{1}(V P N<0.5) \\
& X_{i+1} \text { is the coordinate for } V P N_{i+1}(V P N>0.5)
\end{aligned}
\]

Let \(X 2=X H W\) for this coordinate on the \(+X\) side of center. The coordinate of the center of the detector XC is then given by
\[
\begin{equation*}
X H W=\frac{X 1+X 2}{2} \tag{2}
\end{equation*}
\]

Save \(X 1, X 2\), and \(X C\) for future use.
```

Procedure G (conta)
HS230-56:0
AEEachac:ic
-3~

```

\section*{GRICINAL PAGE IS OF POOR QUALITY}

\section*{III Y Data Recuction}
```

Repeat the following for detectors 1 through 4 Field of View in the Y direction
Extract the Y data from the file, consisting of nominally 181 sets of X, Y, anc VPP data. Search the array for the peak value winch will be found nominally at YC listed below.
Detector No. Nominal Yl Nominal YC Nominal Y?

| 1 | -8. | -6. | -4. |
| ---: | ---: | ---: | :---: |
| 2 | -4. | -2. | 0 |
| 3 | 0. | +2. | +4. |
| 4 | +4. | +6. | +8 |

```

Call this peak value PEAKV, and save it. Normalize the datz by dividing by PEikV to get VPN. Save this data.
- Search the array and determine \(\quad 11, \quad \mathrm{Z}\), and \(Y C\) in an analogous fashion to the procedure used for \(X\) in II, abova.

Save Yl, \(\because 2\), and \(Y C\) for future use.
```

8
ORIGINAL PAGE IS
CF POOR QUALITY
HS236-5610 Attachmert
PROCEDURE H
This procedure zetrieves data stored by Procedures G and E vhich allow conversion of X and Y from steps to radians. The field of view data for Band 6 ise then checked against specified parameters, and the =esults. printed.

```

\section*{Input Data}
```

The data from Procedure E includes REFX, REFY, TMANGX, TMANGY, XOFFST, YOEFST, and RSTEP. See Procedure E for definitions.
The data from procedure G includes NBAND, Defector No., PEAKV, slit array data in sets of X, Y, and VPN where X, Y are in step count units, $X 1, X 2, X 6, Y 1, Y 2, X C$ all in step count units.
Conversion from Step to Radians
The conversion equations are descibed in Procedure E and are reproduced here.
ANGLX $=X$ *RSTEPTTMANGX-REEX $+0.01945 \pi / 180$.

- $A N G L Y=Y * R S T E P+T M A N G Y-R E F Y$

Specificd Values for Band 6

```
A. Band Center (in milliradians), \(B C\) relative to the optic axis. \(\mathrm{XBC}=+4.0631\) \(Y B C=0\).
B. Detestor Center (in milliradians) for Band 6
1. X Coordinate Relative to Band Center, \(B C\) \(\mathrm{XDC}=5.0 * .0425(-1+2 *\) MODULO (NDET, 2) )
where NDET is the detector No.
2. Y Coordinate Relative to Band Center
\(Y D C=-10+4 * N D E T\)
C. Optimum Detector Edges XiP, Y1P, X2P, Y2P
The ideal location for the detector edges is given by \(X 1 P=X D C+X B C-0.085\) milliradians
\(X 2 P=X D C+X B C+0.085\)
\(Y 1 P=Y D C+Y B C-0.085\)
\(Y 2 P=Y D C+Y B C+0.085\)
```

Procedure H (contd)

```

ORIGINAL PAGE is OF POOR QUALITY

HS 236-5610 f.ttacimen: -2-
```

D. Detector width, $(\mathbb{X} 2-X I)$ on (Y2-Yi) specified
Minimum Difference $=0.1656$
Maximum Difference $=0.1744$
E. Detector Location and Size Printout
Perform the following 4 times

1. Input the X and Y data records for tins detector.
2. Convert all coordinates to radians.
3. Store the converted data in the plot file.
4. Calculate

$$
D X=X 2-\times 1
$$

$$
D Y=Y 2-Y 1
$$

5. Print the following
a. Detector No.
E. XDC+XBC
c. XC
d. 31 P
e. X1
f. $X 2 P$
6. X2
h. DX
7. "IN SPEC" or "OUT OF SPEC," see D above
8. error amount, if out of spec, or 0 . if in spec.
k. YDC+YBC
9. YC
m. YIP
n. YI

- Y 2 P
P. $Y 2$
q. DY
r. "IN SPEC" or "OUT OF SPEC," see D above.
s. error amount, if out of ape=. or 0 . if in spec.

```

AS236－5610 A：－schgent －3－

ORIGINAL PAGE is

F．Tabulate Curve iata
This daca consists of aminally 171 sets of \(X, Y\) and \(V F N\) in \(X\) direction and nominally 181 sets of \(X, Y\) ，and VPi in the Y direction．

This data is to be printed in compact form．
: :S236-5610

\section*{pãocedurd I}

This procedure tales data stored in the plot file by Procedure \(H\) for band \(b\) and soms two types of plots.

The first plot is the detector location plot. This consists of the outline of the 4 detectors in the band for ideal conditions with the \(X 1, X 2, X C\) and \(Y i, Y 2\), and \(Y C\) measured points plotced on the outline.

The second plot consists of a presentation of the field of view data array for cach axis on a 3 cycle scmi-log paper. This ixill require 8 separate plots.

I Datector Location Plot
The ideal location of each detector edse is ofven by equations (5) through (8) of Procedure H. The ideal detector sizefor Band 6 is i>0 microradians square. The plot scale should be choscn to give the best =esolution possible. Since the 4detector a=ray is 14 IrCV units wide, a scale of 0.5 IPOV units per inch seems reasonable. The edge tolerance idll be \(\pm 0.05\) inches on this scale. Since the sunction uf the plot is the illustration of any gross errors and systematic errors, the resolution should de adequate.

II' Detector Field of View Plot
Each axis of a given detector is the subject for this plot. Thus, 8 plots will be required. The plot will be aade on 3 cycle semi-log paper. This requires an abscissa of 48 IFOV units in \(X\) and 36 IFOV units for the \(Y\) plots. The scale of 0.5 IFOV units per inch will give an edge resolution of \(\pm 0.05\) inches.

\section*{III Plot Priority}

The plotting should not be allowed to slow up the test. The information is stored in a plot file, and plotred during cincodolite setting after the Procedure \(k\) print is complete as time is available.

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

HS236-56:0 A=tachagnt
measurenent sreuences

\section*{Paranete=s}
```

NDSIRI is starting detector No.
NDSTOP is stopping derector :io.
DSTEP is lio. of deteftors to step
NDETR is current detector in use
NSTEP is the No. of steps to take in IEOV
FSTEP is the step size in lFON units
Sequence No. : (stepping in l dixection, post-data stefping)

1. NDETR=NDSTRT
2. Switch MUX to DetccEor IDETR, current band No.
3. Delay 160 milliseconds to allow lo0 H: filter to settle
4. Call VEEAK procedure to measure peak-to-peak voltage, VEP
5. .S:ore X, X step count, Yry, Detector So., Band No.
```
6. NDETR=: DETK DSTE!
7. Repeat ? through i. until NDETR is graater than NDSTOP
8. Step ESTE IfOV units in tiv direction
9. Repeat 1 . through \(S\). until sequence has been performed NSTEP
    times, then exit.
Sequence No. 2 (stepping in \(X\) direction, Post-deta stepping)
    This sequence is the same as No. 1 , excapt for 8. Step
    FSTEP IFOV units in ti direction.
Sequence No. 3 (stepping in X direction, Pre-data stefping)
1. Step fSTEP IFOV units in +X direction
    NDETR=NDSTRT
2. through 7., same as Sequence 1 .
8. Repeat 2. \(^{*}\) chrough i. until sequence has been performed NSTEP times, then exit.

Sequence No. 4 (stepping in \(y\) direction, Pre-data stepping)
Same as Sequence 3, except 1 . uses \(+\dot{i}\) direction racher than \(X\).
lis236-5610
fttachment

\section*{VPEAK SITBROUTENE}

This subroutine is calied ty the main spatial coverage procedure and by Procedures \(A\) and. \(E\) indizectly through Sequences No. 1 through 4.

It is assumed that the ADAU has been set to a sample rate of 39 KHz , and that the SIU has selected the ADAU prior to calling this subroutine. It is further assumed that the 100 Hz center Erequency Eilter with a 10 Hz bandpass is in place. It is also assumed that the 100 Hz filter, or associated amplifier in the ADAU, has a gain of 7.5 to boost the saturazed output to the range of the \(A / D\) in the \(A D A U\). This is necessary since a square wave of 2 volts peak-to-peak (saturation) gives rise to a fundamental sine wave of 2.5 volts peak-to-peak which corresponds to 1.25 volts peak-out of the 100 Hz filter (neglecting insertion loss). Since the \(A / D\) operates in the range of \(+/-10\) volts ( \(+/-2047 \mathrm{Di}\) ), the 1.25 volts must be amplicied to use the full range of the \(A / D\). A gain uf 7.5 plus filter insertion loss compensation will boost the 1.25 volts to 9.375 volts (1920 DN). The additional range of the \(A / D\) is reserved for potential excursions.

This subroutine takes 4 independent cycles of the 100 kz waveform which requires that every tenth cycle be sampled with the 10 Hz bandpass. Since Band 5 is expected to have the lowest signal-tonoise ratio, 1 t is used to evaluate the crpected data zange. The 1 percent of saturation signal will give t/.ig. 2 DN from the A/D while the noise is shown in a separate memorandum to have a 95 percent probability of being wichin \(+/-2.0\) DN for this Band 5 , utilizing 4 iadependent 100 Hz cycles for peak-to-peak determination. This indicates that the error in determining the 1 percent level due to noise will be less than 5 percent of that level. The quantizing error can be as much as 3 percent of the 1 percent signal level. Eoth of these errors are quite acceptable in the far field measure, and the errors will be negligible for larger signals.

The subroutine also assumes that the detector has been conrected by the MUX in the \(A D A U\), and that the required setting time for the insertion of the 100 Hz filter (about 160 milliseconds) has elapsed before the subroutine call.

Subroutine Description

\section*{1. Sample the Data}

Command the ADAU to take data for 40 cycles of the 100 kz output. This consists of taking data for \(40 * 0.01\) seconds which is 0.4 seconds. At the sample rate of 39.018 KHz this consists of 15607 samples. However, since the phase of the cycle is indeterminent, the first half cycle is discarded to be certain that the first peak or minimum are not missed. Also, the 31.5 cycle is iast one used, so only 32 cycles are taken. Thus, 0.32 seconds of data are needed for 12486 samples. Each sample requizes 2 bytes, since the \(A / D\) output is 11 bits plus sign.
```

 *. : .. Vrefli Subroutine (contc)
 ORIGIN!AL PAGE IS
OF POOR QUALITY

```

HS236-5610
Attachment -2-
```

T. 2. Determinaiion of the Peal:-モu-peak valuc
a. Siurious Peat. Rejection
When the signal level gets to be very low, on the order of a few DN, sfurious peaks may be detezmined. These spurious values may be deleted by requiring that all 4 peaks and minima must be separated by nominally 0.10 seconds from peak-to-peak or minimum to minimum (using every loth cycle).
Set the number of good sets optimistically to 4 by. $\mathrm{NS}=4$.
b. First Sample Peak-to-Peak
Skip the first 195 samples, then search samples 106-585 for the waximum and minimum, call them V ? and Ym and call the sample number N? and NM, Eespectively. Reduce $N P$ and $N M$ by 195 and store them.
c. Sccond Sample Peak-to-Peak
Search samples 4097-4487 for peak and minimum, as in h, except reduce $\mathcal{N P}$ and iiM by $40 G 6$ before storing. Tinese sample numbers have been obtained by skipping gigyes (586-4096).
d. Third Sample Peak-to-Peak
Search through samples 8000-8389, recording VP, VM, NP, and $N M$, reducing $N P$ and $N M$ by 7999 before scoring.
e. Fourth Sample Peak-to-Peak
Search through samples 11901-12290, recording VP, VM, $N P$, and $N M$, reducing $N P$ and $N M$ by 11900 before storing.
f. Discard on the basis of peak to minimum separation. Check the 4 samples to see if they are in the range

```
\[
175 \leq|N P-N M| \leq 215
\]

If any set fails this test, diacard it and reduce NS by 1 . If \(N S=0\) or 1 , set \(V P P=0\). and leave the subroutine.
g. Discard on the basis of NP variation for NS sets where \(N S=2,3\) or 4 .

Search the combinations and mark for use the firct 2 values which satisfy
\[
|N P(i)-N P(j)| \leq 40 \quad 1=1,4 \quad j=1,4 \quad j \neq 1
\]
```

vesik Subroutine (contc)
originAL page is
OF POOR QUALITY
h5230-56iU Attachment -3~

Average these 2 values, and keep any zubsequeat value which is witing. 40 of the average.

If $N S=0$, set $V p P=0$, and exit
h. VPP Determination

For each of the NS cycles rewaining, calculate
$V S=V P-V M$
Then average the if sets of VS to get VPp.

ORIGINAL PAGE IS
 OF POOR QUALITY

T. B. VanHorne
cc.

```
DATE: 13 June 1979
pRom: L.J. Richer
CRE. 40-91-30
bldG. 373 mail STA. b322
LOG. SC
ExT. 82358
```

ORC
SUBJECT

Thematic Mapper Spacial Coverage
Test Description, AC7R.

History : G.R. Hyde, "Thematic Mapper Spacial Coverage Tee Description", hS 23605610, 30 Jan 1978.
J.C. Celia, "Thematic Mapper Spacial Coverage Test Description revisited," HS236-5610-1, 8 august 1978.

This memo provides a second revision of the Spacial coverage test description. This revision incorporates

1. Correct coordinates to agree with spacecraft coordinates
2. Collection of near detector data from all 16 channels in each band, but to save time, collection of a data far from the detector for only 4 :hanels in each band.
3. Incorporation of HP Interferometer data
4. Addition of flow harts for procedure A, B, E, F, and G which specify the steps to be accomplished by the software.

This test is performed on the Thematic Mapper with the scan mirror stationary to detemine the size and location of all 100 detectors.

The Thematic Mapper is mounted on a precision table. However, the poaition of the TM is determined by autocollimating a theodolite on the locked acan mirror co measure to the required precision. The source is projected towards the TM through a collimator which has a compucer driven X-Y orepping stage to position the entrance slit. However, the collimator has a narrow field of view range, so it is aecessary to move the $T M$ four times during the test.

The software procedure for concroliling the test is specified in the following gteps. These steps in turn call procedures which are decailed in subsequent sections. The procedures perform the following functions.

Procedure A (Data Collection)
The dats for the 16 detectors of one band are taken in X and Y and stored for reduction. Bands $1,2,3,4,5$, and 7 use this procedure.

Procedure B (Data Reduction)
The data for one band are reduced to give normalized data, and the detector width is determined in X and Y.

Procedure_C (Printing)

The detector size and location for the band are checked against specifications, and the size, location, and condition relative to specifications are printed on a priority basis to keep the test operator abreast of progress.

Procedure D (Plotting)

The field of view data are converted to radian messure relative to the optical axis of TM, and the data are sent to a plot file to be plotted as time is available, but with low priority.

Procedure E

The movement of $T M$ is controlled and monttored, including ali interaction with the optical technician operating the theodolite.

Procedure F,G, H_{1} and I
These procedures are analogous to A,B,C and D, but they apply to band 6 only, which has 4 detectors.

VPEAX Subrourini

The data on any given decector are sampled and processed to determine the peak-to-peak output.

ORIGINAL PAGE IS
 OF. POOR QUALITY

Sequence No, 1 (Post-Data Scepping)

G. This sequence is called by Hocedures A and F to take data on a sequence of detectors over a specified slit step range. Datz are taken, then the entrance slit is stepped in X.

Sequence No, 2 (Post-Data Stepping)

ORIGINAL PAGE IS OF POOR QUALITY

NOTE: The number of steps to use must be calculated from the collimator focal length FLC as follows

| STEF ANGLE | $=\frac{0.0001 \text { inch/Btep }}{\text { FLC } 1 \text { nches }}$ |
| :--- | :--- |
| NO. STEPS/IFOV | $=\frac{42,5 \times 10^{\circ 6} \text { radians }}{\text { STEP ANGLE }}$ |

Currently there are 2 possible collimators which may be uged. They have FLC of 108.3 inches and 110 inchea corresponding to 46.0275 and 46.75 sceps/IFOV, respectively.
11. Command bands 1 to 4 to "ON," and instruct the operator to turn on the auxiliary cooling for Bands 5, 7 and 6.
12. Have operator turn on 100 Hz chopper and edfust the gource current uhtil the peak-to jeak signal is 18.8 volts (± 1920 ALAU radiance levels). At the operator's request, collect Inder A data from channels 2 and 16 of band 4 . Reduce the data using the VPEAK algorithm and display the peak-to-peak signal of the two detectors and their difference (which should be less the 1 volt).
13. Perforn Procedure E sith IBAND $=2$ to position between bands 3 and is.
14. Silp to the center of band 4, 12.7 IFOV units in the -Y direction, then 0.2 TFOV in the tif direction in preparation for the execution of procedure A, the collection of a full set of field of viez dera from one bend.
15. Perform Procedure A on Band 4 .
16. Reduce the band \& data by performing Procedure B.
17. Print the band 4 data using Procedure C which also checks che parameters against specification.
18. Plot the band 4 data by performing Procedure D.
19. Save the band 4 data on a 9 track mag tape for future reference Including the associated parameters from Procedura E REFX, REFY,

20. The aarrow vertical silit is now at the center of band 4. Step it to the center of band 3 by moving in the ty direceion by 25 IFOV units.
21. Perform procedures A, B, C, and D on Band 3 .
22. Save the band 3 data on magnetic tape as above.
23. Perform Procedure E with IBANDw 3 to positionbetween bands 1 and 2.
24. Step the narrow vertical slit to the center of band 2 by moving it in the -y direction by 12.7 IFOV's. Then wove in the ty direction 0.2 IFOV units.
25. Perform Procedures A, B, C and D on band 2.
26. Save the Band 2 data on magnetic tape as above.
27. Step the narrow slit to the center of band 1 by atepping by 25 IFOV units in the ty direction.
28. Perform Procedures A, B, C, and D on band 1.
29. Save Band 1 data on magnetic tape, as above.
30. Perform Procedure E with IBAND $=4$ to position between bands 5 and 7.
31. Step the narion vertical slit to the center of Band 5 by moving it in the $-y$ direction by 13.2 IFOV units, then move 0.2 IFCV units in the ty direction.
32. Perform Procedure A, B, C, and D on band 5.
33. Save band 5 dara on magnetic tape as above.
34. Step the narrow vertical slit from the center of band 5 to the center of band 7 by moving in the ty direction by 26 IFOV unita.
35. Perform Procedures $A, 3, C$, and D on band 7.
30. Save the band 7 data on magnetic tape as above.
37. Instruct the operator to install the blackbody source for band 6 , then command band 6 "ON."
38. Step to the center of the even detecters by stepping in the $-y$ direction by 29.95 IFCV units. 'Mhen move 0.2 IFOV in the ty direction.
41. Step in the -5 direction to the center of band 6 by stepping -5.2 IFOV units and then steping $C .2$ units in the ty direction.
42. Perform Procedure E to acquire the data, Procedure G to reduce it, Procedure H to print and check against specifications, and Procedure I to plot it.
43. Save the band 6 data on magnetic tape as above.
44. Step the silt wheel to move the small vertical slit inte place.
45. Drive the slit back to the LED to close the traverse by performing Procedure E with IBAND=5.
39. Step the slit wheel to position the band 6 vertical slit into place.
40. Adjust the source current until the peak-to-peak signal is 18.8 volts $(\pm 1920$ ADAU sadiance levels). At the operator's request, collect Index A daca from the even detectors of band 6. Reduce the data using VFEAK and report the resulting peak-to-peak siganl.

JRIGINAL PAGE IS OF. POOR QUALITY

46. Instruct the operator to switch the X, Y controller to local mode then position the vertical slit onco the LED by stepping in froc the - .0 + directiun in the final approach 20 remove bocklash. Instruct the uperator to select the narrow hozizontal slit, then center the middle $L E D$ by stepping from $-x$ to $t x$ directicn on the final approach.
47. Instruct the operctor to switch the X, Y controller to remele.
48. Read tine X and Y encoders, then using (.0001)/FLC as the number of radians per step calculate XERR and YERR where FLC is the effective focal lengeh of the collimator.

XERK $=(X-X O F F S T)(.0001) / E L C$ radians
YERR = (Y-YOFFST) (.0001)/FLC radians
49. Comand bands $1,2,3,4,5,6$ and 7 to "OFF."
50. Instruct the operator to curn off the auxiliary detector plene cooling.
51. Inscruct the operator to turn off the blackbody and visible detector sources.

S2. Command the SIU back to interral MUX usage.
53. Print the message
"END OF SPATIAL COVERAGE TEST,
X closure error (XFRR value) radtans, Y closure error = (YERR value) radıans."

Procedure A
 ORIGINAL PAGE IS OF POOR QUALTTY

This pracedure is used to acquire the data from the field of vies messurements for one detector band in a form suitable for reduction by Procedure 8 , and for print and plot by Procedures C and D.

This procedure assumes that the narrou vertical alit 1 s fin the center oi the band in the y direction, and the narrow horizontal slit may be centered in the x direction by a 90 -degree rotation of the slit wheel.

Data Storage Description

Data are described for the 2 collimators. The data sted size and count must be adjusted here in Procedure B to accomodate practical step size as determined by the collimator focal lengths. This adjustment must respect IFOV boundary locations, but may allow more incremental steps within boundaries. For example, it takes 20 positions of 0.05 IFOV units (2.125 microradians each) to cover one IFOV. However, if the lli-inch focal lengrh collimator ware co be used each step is 0.5009 microradians, so each data point would require cither two steps (i. 3019 microradians) or three eteps (2.727 microradians). In the case where a movement of 1 IFOV is required, 42.5 micraradians $/ .9009$ Eicroradians indicptes 47 of the .9009 microradians steps are required. Thus, 13 positions of 2 eteps each plus 7 positions of 3 sceps each will be equivalent to the desired 20 iositions of 0.05 LFOV.

For the 108.3 in. focal length cullimator, uge 23 dats steps of . 0002 inches (2 steps) each to cover each IFOV unit. For the 110 in. focal length collimator, use 22 data steps of .0002 inshes and one data step of .0003 inches.

Figure 1 illustrates the testing procedure to be followed in taking data in the y direction, and Figures 2 and 3 illustrate the procedure used in the x direction. Figure 4 illustrates the distribution betweea narrow slit data and wide alit data in the x direction.

In the y direction, the wide silt is positioned -12.25 IFOV units from the center line (see Figure 1), then the slit is stepped in units of 1 IFOV to take the far field data. The wide slit is not used on the detectors since the signal level is 10 times saturation, sc stepping stops at-2.25 IFOV. Narrow slit dita is then taken after backing the carrou slit to $9:-3.75$ IFOV units. The narrow silit data is taken uncil $y=+3.75$ Ifov units. The $=$ silt lncation is moved to $y=-2.25$, the tide slif inserted, and the remaining data are takeu. See Table I for the data storage sequence.

The x dírection data acquisition proceeds in a aimilar fashion. The slit is moved to $x=-17.5 \mathrm{FFOV}$ units, then the wide slit is moved inzo place. At that position only detector 16 is within 10 IFOV of the slit, so ouly detector 16 is used. Einally, when the slit is at -8.5 IFOV, detectors 16, 9 and 8 are within 10 IFOV units of the slit. Since the power through the slit is 10 Eimes saturation, the wide slit is not stepped acress the detectors.

The slit is changes to narrow size, then backed up to the position illuatrated in Figure 2. For the first IFOV, only detector No. 16 is within 2 IFOV units 0 E the sli=. When the slit is 1 IFOV unit from detector 16 , data can also be taken oo detector 15 since it is then 2 IFOV units away. As the slit is stepped further, more detectors come within the $+/-2$ IfOV data range. The data storage is listed in Table II, and the sange of data are illuatrated in Figure 4.

> In the figure, the narrou slit range is illustrated by a T-shaped iine on each side of the detector, and the whde slit data points are illastrated by an X.

The data acquisition steps will now be described.

ORIGINAL PAGE is OF POOR QUASITY

SCALE: $5 \mathrm{CH}-1 \mathrm{IFOV}$
0.1 IFOV NARROW SLIT AT CENTER OF BAND

1. Field of View Stepping in y Direction (along scan)

Note: Units are given here in IFOV units. See
flowhart for distance give in 3 -axis atage ateps.
a. Step in the -y direction to a position which ia 12.25 IFOV units Erom the band center line. Step 0.2 IFOV units further in -y direction, then atep 0.2 IFOV units in the ty direction to minimize backlash.
b. Rotate the slit wheel to position the wide vertical slit over the scurce. This signal level is 10 times saturation, so it should not be stepped across the detectors.
c. Take data for 10 IFOV positions on the -y side of the odd detectors as called out on the flowchart (using a pre-data step to uvoid thi detector at the end).
d. Rotace the slit wheel to position the narrow vertical silt over the source. This signal level is set for saturation level. The narrow slit data will be taken from 2 IFOV units on the $-y$ side of the odd detectors to 2 IFOV units on the ty side of the even detectors.
e. Move the slit 1.7 IFOV units in the $-y$ direcsion, then muve it 0.2 IEOV units in the ty direction to min'mize backlash.
f. Take data for 7.5 IFOV units, 23 steps pe: IFOV unit, as called out on the ilowchart.
8. Step back to the conter of the first IFOV on the ty aide of the even detectors by stepping in the -y direction by 1.8 IFOV units, then atepping by 0.2 IFOV units to remove backlash.
h. Rotate the silt wheel to position the wide vertical silt over the source. This signal level is 10 times saturation, so should not be stepped across the detectors.

1. Take data for 10 IFOV positions on the ty side of the even detectors as called out on tho flowchart. (uge post-data step to avoid the detectors).
2. This completes the acquiaition of data in the y direction for this band. The slit will be set on the mall oize horizontal slit and the slit will be moved back to the center of the band. The conter of the slit is currently 10.5 IFOV on the ty oide from the even numbered detectors. Rotato the slit wheel. Step the silt in the -y direction 12.45 IFOV units, then step 0.2 LFOV units in the ty direction to remove backlash.

ORIGINAL PAGE IS OF POOR QUALITY

2. Field of View for bands. Stepping in the X direction (across gean)

The narrow horizontal slit is now positioned between detectors 8 and 9 of the array.
e. Step the slit 18.7 IFOV units in the $-x$ direction, then otep 0.2 IFOV in $+y$ to remove backlash. This leaves the center of the sift 10.5 IFOV units below detector No. 16.
b. Rotate the siit wheel to position the wide horizonal slit into place. Since the radiance level is 10 times ths saturation level, this silt should not be stepped across the detectors.
c. Take signal data on detector 16 which is 10 IFOV away at this position, then step 1 IFOV and take data on detector 16 again, and continue until the silt is 3 IFOV from decector 16 at which t..רe data will be taken on detectors 16, and 9. Twice movel LFOY and take data from 16,9 , and 8 . This is accomplisined as called out on the flowchart.
d. Stap to a position 2.0 IFOV below detector No. 16 in preparation for fine slit measurements. The wide slit is currently centered

- 0.5 IFOV below detector 1. Proceed as follows. Step in the -x position 1.7 IFOV units, then step in the ty direction 0.2 units.
e. Rotate the small horizontal slit into place
f. Take data on all detectors which are within two IFOV of the slif. see Table II, until the small slit is 2 IFOV units above detector 1. The procedure is called out on the flowchart.
g. Step back to center the slit 0.5 IFOV above detector 1 by gtepping in the -x direction by 1.7 IFOV, then stepping in tre by 0.2 IFOV to remove backlash.
h. Rotate the large horizontal slit into place.
J. Collect data with the wide slit as called out in the flowchart, moving 10 IFOV units.
'k. The center of tha slit is now located 10.5 IFOV above detector 1. Return the slit center to the band cencer reference between detectors 8 and 9 as follows:
(1) Rotate the slit wheel to move the small wertical sift into place.
(2) Step in the $-x$ direction 18.7 IFOV units, then step 0.2 IFOV units in the $+x$ direction to remove backlash.

PROCEDURE A FLOWCHART ORIGINAL PAGE IS
OF POOR QURLTTY

Collecting naryow and wide slit data for one band. When two choices of atep numbers are given, the smaller is for the 108. sincolen $^{\text {coilimetor, }}$ the larger for the $110^{\text {in }}$ collimator.

Start y direction (acrosa track)

```Start \\ X difection \\ (along track)```

Procedure A
ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Procedure A
c

ORIGINAL PAGE IS OF POOR QUALITY
Procedure A

Chart of detectors ND1, ND2

| 1 | 16, 15, 14, 13, 12 dummy |
| :---: | :---: |
| 2 | 15, 14, 13, 12, 11 dummy |
| 3 | 14, 13, 12, 11, 10 dusmy |
| 4 | 13, 12, 11, 10, 9 duпmy |
| 5 | 12, 11, 10, 9, 8 dummy |
| 6 | 11, 10, 9, 8, 7 duñy |
| 7 | 10, 9, 8, 7, 6 duminy |
| 8 | 9, 8, 7, 6, 5 dumay |
| 9 | 8, 7, 6, 5, 4 duman |
| 10 | 7, 6, 5, 4, 3 duatry |
| 11 | 6, 5, 4, 3, 2 dubury |
| 12 | 5, 4, 3, 2, 1 dumay |

This procedure reduces the field of view data for one band, only. The 50 percent signal point is determined in X and Y for each detector, then the derector center coordinate i: calculated. The narrow slit data taken 1. to 2. IFOV from a detector 13 used to compare with the wide slit data.

I Data Storage Description

A. Input Dats
 See Procedure A.

B. Output Data

1. The Y data output consises of 16 data records each with the following data items.
a. Detector No. C

Records 1 - 8 aili be for detector numbers $1,3, \ldots . . .15$
Records 9 - 16 will use detector numbers 2, 4, 16
b. PEARVY (C)

PEARVY(C) is largest voltage for this detector which is used for normalization of the data samples.
c. Nomalized Narrow Slit Data

This data set consists of nominally 115 sets of X, Y, and the normalized voltage VPNNY.
d. Y1, Y2, YC

Y1 is the Y coordinate (obtained by interpolation) of the signal which is 0.5 of the peak of the nomalized data. Y1 19 the value on the $-\overline{\text { side }}$ of the detector, $Y 2$ is the value on the $+Y$ side. IC is the average of $Y 1$ and Y2.
e. Nomalized Wide Silt Nata

For chamels $1,8,9$, and 16 there is wide alit data. This data set consista of 18 sets of X, Y, and the normalized voltage VFWWY. Items 8 and 9 of this set (Y - -2.25 and +2.25 IFOV unita) will not be plotted since they are adjacent to the detector and may shor cross talk since the wide slit has a power density which is 10 times saturation. These two points will be printed for diagnostic interest, only.
E. VNAVEY (C) VWAVEY (C)

VNAVEY (C) is the averaged value of the narrow slit oigasis uhich together conbine to make up the second IFOV awny from the detector. This value is compared with WWAVET(C)

ORIGINAL PAGE IS
 OF POOR QUALITY

f. Cont'd.
which is the normelized wide sift response at $Y=-3.25$ for the even detectors or $Y=+3.25$ for the odd detectors.
g. NBAND

The band no. of the data taken.
2. The X data output consists of ill data records, each with the following data items.
a. Detector No. C

Records 1 - 16 will increase sequentially in detector number.
b. PEAKVX (C)

This is the same ad Y, except the X data are uacd.
c. Normalized Narrow Silt Data
these date are similiar to the Y data.
d. $\mathrm{X} 1, \mathrm{X} 2, \mathrm{XC}$

These are analogous with $Y 1, Y 2$, and $Y C$, above.
e. NW(C) and Noraalized Wide Slit Data

Fior data detectors $1,8,9$, or 16 thert is wide sllt daza. There will be a varieble numer of wide slit deta points for each detector. The data record should save space for a point counter NW and up to 10 sets of X, Y, and VPN as followe. Detector No. C NW (C)
1 and $16 \quad 10$
8 and 9
5
f. VNAVEX (C) and VWAVEX (C)

These are analogous to the Y data, except only detectors 1 and 16 have data entries.
g. NBAND

The band no. of the data taken:
II Y Dats Reduction
A. Repest the following for the odd no. detectors $1,3, \ldots, \ldots, 15$.

1. Field of View in Y (Scan) Diraction

For the detector with channel no. C, extract the 115 small slit data points VPPNY from the file. The peak value will nomiaally be the 58th, but search the array for the peak; call this PEAKVY (C) to get VPNNY. Save this data. Search the normalized data on both sides of the peak for the two values which are less than 0.S. These will be nominally at the 47 th and 70 th points. Take the two adjacent nomalized data values which are just larger than 0.5 and by l inear

1. Cont'd.
interpolation detemine the two Y values for vemis $=0.5$ as follows.
For the lower Y value edge.
Let 1 be the element such that $\operatorname{VPNNY}(1)<0.5$ and $\operatorname{VPMNY}(1+1)$ >0.5. Then the helf gidth coordinate is given by the innear interpolation formula.

$$
\begin{equation*}
\text { YYT }=\frac{(Y(1+1)-Y(1))(0.5-V P N N Y(1)}{\text { VYNTY }(1+1)-V Y \text { VITY }(1)}+Y(1) \tag{i}
\end{equation*}
$$

Abstract

Let $Y 1=y+\pi w$ for this coordinate on sine $-Y$ side of center. Similarly, the coordimate for the higher Y value edge is given by (1) where

$Y(1)$ is the coordinate for VPNNY(i) ≥ 0.5
$Y_{(}(1+1)$ is che coordinate for $\operatorname{VPNMY}(1+1)<0 .: 5$
Let $Y 2$ - YHW for this coordinate on the +Y side of center.
Calculate the coordinate of the center-of the detector, YC, from the two half width coordinates Y1 and Y2 as follows:

$$
\begin{equation*}
Y C=\frac{Y 1+Y 2}{2} \tag{2}
\end{equation*}
$$

Save the Y1, Y2, YC for future use.
If the detector is numbered 1 or 9 , extract the wide slit data VPPWY(i). There will be 18 values; the first 10 are from the - Y side of the detector, and the remining 8 ref from the +Y side. The tenth value, coming from a position of $Y=2.25$, is adjacent to the detector and may have cross talk obsuring its value since the wide alit has 10 times the detector saturation power, this value is not plocted with the fiold of view data, but is is priated for diagnostic value.

Nomalize the 18 wide slit data values as followa:

$$
\operatorname{VPNFY}(1)=\frac{\operatorname{VPPRY}(1)}{\operatorname{PEAKVY}(C) * 10} \quad 1=1, \ldots, 18
$$

and save chese valuea.
2. Small silt and Wide Silt data Match

The 24 values of the VPMNY array that come from positiona $Y=-3.25$ to $Y=-2.75$ are averagad to compare with the wide alit data from posicion $Y=-3.25$. The firgt and 24 th entries are divided by 2 to allow for the overlap of the narrow sllt past the IFOV boundaries at those points.
$\left.V \operatorname{NAVEY}(C)=\frac{[V P N Y Y(C, 1)+V P N N Y(C, 24)}{2}+\sum_{i=2}^{23} \operatorname{VPNNY}(C, 1)\right] \frac{1}{23}$
The narrow slit average should be compared to

$$
\operatorname{VWAVEY}(\mathrm{C})=\operatorname{VPNWY}(\mathrm{C}, 9)
$$

2. Cont'd.

ORIGINAL PAGE IS

 OF POOR QUALITYSave VNAVEY, VWAVEY. These numberg are the match between small sift data and wide sift data at 2 IPOV from the detector.
B. Repeat the following for the even number detactors 2: 4, 16.

1. Field of vies in the Y (gcan) direction.
Extract the narror elit dets, nomalize it, and calculate Y1, Y2, and YC $8 \in$ in Al for the odd detecrora.
If thedeteror is numbered 8 or 16 , extrace the wide alit dats VPFWY(1), there will be 18 values; the first 8 ars Erom the Y side of the detector, and the remeining 10 arr from the $+Y$ side. The ninth value, coming fram position $Y=\$ 2.25$. adjacent to the detector and may have cross talk obscuring its valime since the wide slit has 10 times the decector saturation power. This value is not plotted with the fiald of view data, but is is printed for diagnosete value.
Nomalize the 18 wide sift data values using equation (3) and save them for subsequent use.
2. Smail siit and wide alit daca match
The 24 values of the VPMNY array that come from posifions $Y=2.75 \mathrm{~L}, Y=3.75$ ere everaged es in equation (4) to compare with the wide sile deta from position $4=3.25$. Thus far $C=8,16$.
$V N A V E Y(C)=\frac{V P N N Y(C, 92)+V P N A Y(C, 115)}{2}+\frac{114}{\operatorname{EN} 93} \operatorname{VFNNY}(C, 1) \frac{1}{23}$
Let $\operatorname{VWAVEY}(C)=\operatorname{VPNEY}(C, 10)$
Save VNAVEY and VHAVEY as thasa are the comparison betreen the narrow and ulda slit data.
III Data Reduction
Repeat the following for all detectore 1, 2,, 16.
A. Field of Viou in Direction Nomal to Scan (X)
Extract the 115 uarior olit VPPN daca valuas for the datactor from the file. The starting X position is given by $\times 50-1 D E T+11$, and the ending X position is X (asDET +6.044 chere the data steps essumed are 163 IFOV.
The nominel peak velue of the detector is et the 58 th point.
Search the data array for the peak value; call this peakNX(C); save it. Nomalize the dsta by dividing by PEARVZ(C) to get VFANX save this array. Search the nomalized data on both sides of the peak for the two velues which are less than VPRNX s0.5. These will be nominally at the 47 th and 70 th point.

ORIGINAL PAGE IS OF POOR QUALITY

A. Cont'd.

Uaing these 2 values and the 2 adjacent values fuse larger than VPNNX >0.5 inearly interpolate for the X values corresfonding to VPMNX $=0.5$.

Let 1 be the number of the elemeat such that VPNXX(1) ≤ 0.5 and VPMIX $(1+1)>0.5$. Then che half width coordinete is given by the innear interpolation formula.
X HW $=\frac{(X(1+1)-X(1))(0.5-V \operatorname{Pand}(1)}{V \operatorname{PNNX}(1+1)-V \operatorname{PNAX}(1)}+X(1)$
Lee Xlexhy for this coordinate on the $-X$ s de of center.
Similarly, the coordinate for the higher X helf width ia founi by letting 1 be the element such that VPNNX(1) ≥ 0.5 and VPNNX($1+1$) <0.5.

Let $X 2=$ XiW for this coordinate an the $+X$ aide of the detecror center.
Calculate the detector senter coordinate XC by:

$$
\begin{equation*}
x C=\frac{x 1+X 2}{2} \tag{9}
\end{equation*}
$$

Save $X 1, X 2$ and $X C$ for future use.
The wide slit data exists for detector numer C a 1,8 , 9 , and 16 and is variable by detector number. The stareing X value on the minus side of the detector XSM is given by:

$$
\begin{equation*}
X S M=-C-1.5 \mathrm{IFOV} \tag{10}
\end{equation*}
$$

The ending value on the minus side XEM is:

$$
\begin{equation*}
\text { XEM - - } 8.5 \text { IFOV } \tag{II}
\end{equation*}
$$

Thus, only detectors 8, 9, and 16 have wide sift data points on the minus oide.

The starting X value on the positive X side of the datector, XSP, is given bs:

$$
\begin{equation*}
X S P=+8.5 \mathrm{IFOV} \tag{12}
\end{equation*}
$$

The ending value on the positive aide, XEP, 1s:

$$
\begin{equation*}
X P P=18.5-C \text { IFOV } \tag{13}
\end{equation*}
$$

Thus, only detectors 1,8 , and 9 have wide slit dats paints on the positive gide.

Thus detector 1 has 10 wide slit data poincs, $\operatorname{VPPWX}(1, P)$ for Pel., 10 all from the $+X$ side. Detector 8 has 5 wide slit data points, $\operatorname{VPFWX}(8, P)$ for $P=1, . . .5^{5}$. The first two from the $-X$ aide and the remaining three from the $+X$ side. The five values

ORIGINAL PAGE IS OF POOR QUALITY
A. Cont'd.
for defector 9, VPFWX(9,P) for $P=1, \ldots . .5$, come 3 from the $-X$ side and then 2 from the $+X$ side. Finally, detector 16 has 10 wide olit data points, VPFWX(16,P), Pwi...........10, sil from the -X side.

Normalize the wide slit data forming the array VPNWX by the equation:

$$
\operatorname{VPNWX}(C, 1)=\operatorname{VPPWX}(C, 1) /(10 \star \operatorname{PEAKNX}(C)), 1=1, \ldots \ldots . .5 \text { and } 10 .
$$

B. Small Silt and Wide Slit Data Match

For the odd detactor number 1 , the 24 values of the VPNNX array that come from positions $X=9.0$ to $X=10.0$ are averaged as in equation 4 to compare with the uide glit data from ponition $X=9.5$. Thus:
$\operatorname{VNAVEX}(1)=\left[\frac{\operatorname{VPVNX}(1,92)+\operatorname{VPNNX}(1,115)}{2}+114 \operatorname{VPNA}(1, \ddagger)\right] \frac{1}{2}$
This narrow slit average should be compared to:

$$
\operatorname{VWAVEX}(1)=\operatorname{VPNWX}(1,2)
$$

For the even detector number 16; the 24 values of the VPNNX array that come from positions $X=-10.0$ to $X=-9.0$ are averaged as in equation (4) to compare with the wide slit data from position Xra-9.5. Thus:
$\operatorname{VNAVEX}(16)=\left[\frac{\operatorname{VPNX}(1,1)+\operatorname{VPMNX}(1,24)}{2}+\frac{23}{1=2} \operatorname{VPNNX}(1,1)\right] \frac{1}{23}$
This narrow slit average should be compared to:

$$
\begin{equation*}
\operatorname{VWAVEX}(16)=\operatorname{VPNWX}(16,9) \tag{17}
\end{equation*}
$$

Save the VNAVEX and VWAVEX valueg.

PROCEDURE B
ORIGINAL PAGE IS
OF. POOR QUALITY
fr

```
Data Reduceion for one Band
```

| $\begin{aligned} & \operatorname{XNY}(C, P) \\ & C=1, \ldots \ldots, 16 \\ & P=1, \ldots ., 115 \end{aligned}$ | X-coordinate from which p th narrow sift sample came when sueeping in Y-direction, Channel C. | collectad in Procedure A |
| :---: | :---: | :---: |
| $\begin{aligned} & Y N Y(C, P) \\ & C=1, \ldots \ldots, 16 \\ & P=1, \ldots, 115 \end{aligned}$ | Y-coordinate from which pth narrow alit sample came when aweeping in Y-direction, Channel C. | Collectad in Procedure A |
| $\begin{aligned} & \text { VPPNY (C,P) } \\ & C-1, \ldots ., 16 \\ & \operatorname{Pol}, \ldots ., 115 \end{aligned}$ | Peak-tompoak aignad (from VPEAK) of Channel C, pth asmple sigeeping Y direction. | Collected la Proceduri A |
| $\begin{aligned} & \text { PEAKVY (C) } \\ & \text { C=1, } 16, \end{aligned}$ | Peak value itr VPPNY (C, P) | Calculated here |
| $\begin{aligned} & \text { VPNNY (C,P) } \\ & \text { C=1; } 16 \\ & P=1, \ldots ., 115 \end{aligned}$ | Nomalized VPYNY array | Calculatad hera |
| $\begin{aligned} & \text { XWY (C, P) } \\ & C=1,8,9,16 \\ & P=1, \ldots, 18 \end{aligned}$ | X-coordinate from which pth wide slit sample came when sweeping in Y-direction, channel C | Collected in. Procedure A |
| $\begin{aligned} & Y W Y(C, P) \\ & C=1,8,9,16 \\ & P=1, \ldots, 18 \end{aligned}$ | Y-coordinate from which pth wide slit sample csme when sweeping in Y-direction, Channel C | Collected ia Procedura A |
| $\begin{aligned} & \text { VPFWY (C,P) } \\ & C=1,8,9,16 \\ & P=1, \ldots, ., 18 \end{aligned}$ | Peak-to-peak signal (from VPEAK) of Channel C, p th sample aweeping Y direction. | Collected in Procedura A |
| $\begin{aligned} & \text { VPNHFY (C,P) } \\ & C=1,8,9,16 \\ & P=1, \ldots, ., 18 \end{aligned}$ | Normalized VPPWY arrey | Calculated here |
| $\begin{aligned} & \text { VIAVEY (C) } \\ & C=1,8,9,16 \end{aligned}$ | Average value for Channel C of normalized narrew slit deta | Calculated here |
| VWAVET (C) | Channel C, nomalized wide slit data far comperison uith VNAVEX | Calculated hare |
| $\begin{aligned} & Y 1(C) \\ & C=1, \ldots, 16 \end{aligned}$ | -Y side 50\% point for Channel C | Calculated hera |
| $\begin{aligned} & Y 2(C) \\ & C=1, \ldots, 16 \end{aligned}$ | +Y side 50% point for Channel C | Calculared hero |
| $\begin{aligned} & \mathrm{YC}(C) \\ & \operatorname{Cos}, \ldots \ldots, 16 \end{aligned}$ | Channel C center | Calculated hare |

ORIGINAL PAGE IS OF. POOR QUALITY

Data Reduction for one Band

Functions

$$
\begin{aligned}
& A H W(A 1, A 2, B 1, B 2)=\frac{(A 2-A 1)-(0,5-B 1)}{(B 2-B 1)}+A 1 \\
& A V E\left(V(1), V(24)=\left[\frac{V(1)+V(24)}{2}+\sum_{I=2}^{23} V(I)\right] \frac{1}{23}\right.
\end{aligned}
$$

Procedure B flowehart

ORIGINAL PAGE IS OF POOR QUALTTY

proctitre c

This procedure retrieves dara stored by Procedures B and E which allou conversion of X and Y from scops co radiana. The fleld of vims daca for the band ia then chacked againat the specified parameters, and the resules princed.

Inpuz Lata

The data from Procedure E includer REFX, REFY, TMANGX, TMANGY, XOFFST, YCFFST, and FLC. See Proceciure E for definitiong.

The data from Procedure B includes NBiND, Decector No.. PEAKV, narrow slit array data in sots of X, \because, VPN where X, Y are in step count unics. X1, X2, SC, Y1, Y2, YC all in step count units, wida slit data in geta of X, Y, and VPN, VNAVE, and VHAVE.

Conversion from Step to Radians
The conversion equations are described in Procedure E and are reporduced here.

RSTEP = .0001/FLC
ANGIEY = $Y * R S T E P+T M A N G Y-R E F Y-0.01945-\pi^{\prime} / 180$.
ANGLX $=X^{*} R S T E P+$ MANGX - REEX
Specified Values for Esch Band
A. Bsid Centers (in milliradians), $B C$ relative to the optic axis

| $B A N D$ | $\underline{Y B C}$ | $X B C$ |
| :---: | :---: | :---: |
| 1 | +3.6291 | 0. |
| 2 | +2.5667 | 0. |
| 3 | +1.5041 | 0. |
| 4 | +0.44174 | 0. |
| 5 | -2.5758 | 0. |
| 6 | -1.4708 | 0. |
| 7 | -4.0631 | 0. |
| $L E D$ | -0.23947 | 0. |

B. Detector Eenter (in millirediana) for Sands 1-5, 7

1. Y Coordinate rolative to band canter TIDC = 2.25*.0425 (+1-2*MODURO(NDET,2))
where NDEI is the detector No.
2. \% Coordinate relative to band center

XDC $=(+0.5-2 D E T) \approx .0425$

Prucedure C
C. Optimur Detector EDGES X1P, Y1P, X2P, Y2P

The ideal locati." for the detectar edges is ofvell by SIP $=$ XDC $+X B C-.02125$ milliradians
$X 2 P=X D C+X B C+.0212 S$ (6)

Y1P $=Y D C+Y B C-.02125$
$Y 2 P=Y D C+Y B C+.02125$
D. Detector Width, (XI-XI) OR (Y2-YI) Specified

| BAMD | MINIPIM DIFFERENCE | MAXIMUM DIFFERENCE |
| :---: | :---: | :---: |
| 1 | . 0419 millisadians | . 0431 milliradians |
| 2 | . 0419 | . 0431 |
| 3 | . 0419 | . 0431 |
| 4 | . 0419 | . 0431 |
| 5 | . 04115 | . 06635 |
| 6 | . 1656 | . 1744 |
| 7 | . 04115 | . 04635 |

E. Detector Locaition and Slze Printout

Perform the following 16 timea.
2. Input X and Y data records Eor this datector.
2. Convert all coordinaces to radians.
3. Store the converted data in the plot file.
4. Calculate Dĩo $\times 2$-XI

DY= Y2-Y1
5. Print the follouing
a. Datactor No.
b. $X D C+X B C$
c. XC
d. X1P
e. $X 1$
E. X2P
8. X2
h. DX

1. "In spec" or "our spec", see D above

ORIGINAL PAGE IS OF POOR QUALITY

3. error amcunt if out spec, 0 . if in spec
k. $Y D C+Y B C$
4. YC
m. Y1P
n. Y1
5. Y2P
P. Y2
q. $D Y$
6. "In spec" or "out spec", see D above
s. err anount if out spec, 0 . if in spec
F. Tabulate Curve Data for Small and Large Slits

Print the following data in compact form.

1. Narrow Slif Data
a. Y direction

This data consists nominally of 115 sets of X, Y, VPN uith X, Y expressed in radian measure from the axis and VPN is the normalized voltage.
b. X direction

This data consists nominally of 115 sets of X, Y, and VPN data as above.
2. Wide SIIt Data for detectors $1,8,9$, and 16
a. Y direction

This data consists of 18 sets of X, Y, and VFN, plus VNAVE and VWAVE.
b. X direction

This data congists of NW sets of X, Y, and VPN where NW is a function of detector No. Detectors 8 and 9 have 5 posats. 1 and 16 have 10 points. Oaly detectors 1 and 16 heve VNAVE and VWAVE valueit.

This procedure takes data stored in the plot file by Procedure C for each band and forms two types of plot. The first plot is the detector location plot. This consists of the outline of the 16 detectors in the band for ideal conditions with the $X 1, X 2, X C$ and $Y 1, Y 2$, and YC measured points plotred on the outline.

The second plot consista of a presentation of the narrow and wide alit data for each axis This will require 32 plots for each band.

I Detector Location Plot
The ideal location of each detector edge is given by equation (5) through (8) of Procedure C. The ideal detector size for bands 1 through 5 is 42.5 microradian: square. The plot scale should be chosen to give the best resolution possible. Since the lif detector array is 3.5 IFOV wide (148.75 microradians), a scale of 5.0 IFOV in 10 inches would seem reasonable. This would produce a plot 3 feet in length with legend, but only one such plot will be made per band.

On this scale of 2 inches/IFOV unit, the edge tolerance will be +0.03 inches for bands $1-4$ and +0.12 inch in band 5 . Since the function of the plot is the illustration of any gross errors and systematic errors, this resolution should be adequate.

If Detector Field of View Flot
Each axis of a given detector is the subject for this plot. Thus, 32 plocs will be required.

Both the narrow slit and wide slit data are to be inciudeu on the same plot. This requires an abscisaa dimension of 23.5 IFOV units. One appropriate scale to use is 1 inches/IFOV for the central +3.75 IFOV, then, on the same plot, use a scale of 0.25 inches/IFOV for points outside these limits (wide slit data) for Y plots.

The $\&$ plots may use a gcale of 2 inches/IFOV units for the cencrsi +2.5 IFOV units, then a scale of 0.5 inch/IFOV unit outside this range.

III Plot Priority
The plotting should not be allowed to slow up the test. The information is stored in a plot file, and plotted during theodolite oetting after the Procedure C print is complete as time is availsble.

This procedure is called when it is desired to move the Thematic Mapper instrument relative to the collimator in the field of view teats. The movement is monitored by manually autocollimating a theodolite on the $T M$ acan mirror.

The IM will be located at the following points.

1. At the $L E D$ reference point.
2. Centered between Band 3 and Banả 4 .
3. Centered between Band 1 and Band 2.
4. Centered between Band 5 and Band 7.
5. Returned to LED at close of tegts.

The procedure should be called with e awitch parameter IBAND which will specify which of the 5 settings above is deaired.

Tha following parameters must be kept in intermediate files in a fashion which allows access by chis procedure.

REFY, the theodalite reading (converted to radians) when the narrou vertical slit is aligned with the LED.

REFX, the theodolite reading converted to radians when the narrow horizontal silit is aligoed uith the center of the 3 LED.

MMANGY, the theodolite reading converted to radians when the TM is positioned with the center of the collimstor projected near to the position specified by switch IBAND.

YOFFST, the number of steps in Y requsred to bring the collimator axis on the position specified.

TMANGX, analogous to TMANY, bit in X.
XOFPST, analogous to YOFFST, but ia X.
FLC. data base value for effective focal length of collimstor. It is used to calculate the number of radiano per otep.
I Set at LED Reference Poant (IBAND=!)
A. Slit Setting

1. Instruct the operator to manually drive the Y slit table to center $=f$ scan.
2. Repeat for X .
3. Instruct the operator to move the marrow vertical sift into position.
4. Instruct the operator to stap in 2 until the silt is at the previously deterainad focal position.
5. Instruct the oparstor 20 get the X, Y, Z and silt wheal concroller in the remote positions.
6. Zero X, Y, Z and slit wheel controller.
7. Aak the operator to input the reading for X, Y, Z alit wheal.
8. If reedinge in 7 .ara not all 0 , repeat 5 . to 7.
B. LED Aligrment
9. Instruct $6:=$ operator to align the slit on the LED by moving $T M$.
10. Step the slit wheel to posieion the narrow horizontul sift into place.
11. Instruct the operator to center the middle LED in the slit
12. Set the slit wheel to position the narrow vertical slit into place.

Note: It is assumed that the equipment registration has been previously perfected so recheck is unnecessary between X, Y in ateps 1 . to $4 .$, otherwise, repetitive operator interaction le required.
5. Verify X, Y are atill zero by reading their output. If not, re-zero them.
C. Set Reference Position

1. Instruct the operator to autocollimate the thoodolite on the scan mirroraanaiding angies greatar chan 350 degreas or leas than 10 degrees.
2. Request the oparacor to input the theodolito aginuth reedinge. Store it as

RYDEG, RYMIN, RYSEC
Convert to radian measure by
ANGY = (RYDEG+RYMIN/60.+RYSEC/3600.) $\pi / 180$.
(1) REFY= ANGY

If REFY is greater than 6.11 radians or 1 eas then 0.17 radians repeat 1.

ORIGINAL PAgE IS OF POOR QUALITY

3. Request the operator to input the theodolite elevation angle. Store it as
```
RXDEG, RXMIN, RXSEC
```

Converr ro radian measure by
ANGX $=(R X D E G+R X M I N / 60 .+R X S E C / 3600.) \pi / 180$.
REFX=ANEX
NOTE: If RXDEG is negati. essume that RXMIN ans RXSEC are also negarive. That is, set

```
RXMIN a -ABS (RXMIN)
RXSEC = -ABS (RXSEC)
IF RXDEG IS -
```

NOTE: Standard theodolite procedure consigts of taking a reading, then flipping the telescope for a second reading. However, since theodolites differ in their use, it is asaumed that the operator does the averaging before input. This may be revised if desired, when the exact theodolite is chosen.
-
4. Set the Current Angle Indicators

TMANGX $=$ REFX
TMANGY $=$ REFY
5. Set the Offset

Since this is the reference position no steps will be required to move into the center position, so set

XOFFST $=0$.
YOFFST = 0.

II Set at center of Band 3 and Band 4 (IBAND $=2$)
The center of Band 3 and Band 4 is specified to be 0.07519 degreea from the LEDS.

Set DELTAY $=0.07519$
DELTAZ $=0$.
then follou the comon procedure at V.
III Set at center of band 1 and band 2 (IBAND=3)
The center of band 1 and band 2 is apecified to be 0.19694 degrees from the LEDS.

Set DELTAY $=0.19694$
DELTAK̈ = 0
then follow the common procedure at V.
IV Set at center of band 5 and band 7 (BASDan)
The center of band 5 and band 7 is specified ro be 0.09547 degrees from che LEDs.

Set DELIAY $=0.09647$
DELIAX $=0$
then follow the comol. procedure at V.
V Common procedure for Bands 3,2,5
A. Remove previous offser by

1. Step in the X direction by -XOFFST steps. Remove backlash by overtravel and return if "XOFFST" is ..
2. Step in the Y direction by -YOFFST steps. Ramove backlash by overtravel and return if "-YOFFST" is -.
B. Calculate new theodolite setting
3. Comvert reference to degrees
$R X D=R E F X * 180 . / \pi$
RYD=REFY*180./T
4. Add step to naw band

XD=RXD+DELTAX
YD=RYD+DELTAY
3. Convert to theodolite coordinates

This procedure is most easily described in FORTRAN as followa:
IDEG=YD

RYMIN- (YD-IDEG)*60
IMIN RYMIN
RYSEC- (RYMIN-IMIN) ≈ 60.
RYMIN=IMIN
RYDEG=IDEG
where IDEG and IMIN are integers.
RXDEG, RYMIN, and RXSEC are determined in a similar fashion. Howevar,
if $X D$ is negative, it is easier to convert the absolute value, then
apply the sign.
C. Move the Thematic Mapper

1. Instruct the operator to move tha $T M$ so the theodolite autocolilmared on the scan mirror will be "approximately RXDEG, RXMIN, RXSEC in clavacion and RYDEG, RYMIN, KYSEC in szimuth." Emphasize in the aessage that the exact value is not essential because it will be "rrimed" by the X-Y table.
2. Ask the operator to input the elevation and azimuth anglea. Store them as RXDEG, RXMIN, RXSEC, RYDEG, RYMIN, RYSEC.
3. Calculate the current angle in radians using equations (1) and (2). Then

TMANGX=ANGX

TMANGY:ANGY
4. Calculate offset needed RSTEPr.0001/FLC
XOFFST= $(X D * \pi / 180 .-T M A N G X) / R S T E P$
XOFFST= (YD* $\pi / 180 .-T M A N G Y) / R S T E P$
NOTE: Round these to nearest stap
5. Step off the Offset
a. Step in the X direction XOFFST Steps. If OFFST is -, sdd in -10 stepe, then return +10 steps to remove backlash. If XOFFST is t, no backlash compensation is necded.
b. Step in the Y direction YOFFST staps, and remove backlash as in a.
NOTE: The silt center should now be at band center. The calculation of angles from the axis TM axis using the present settings are given by
RSTEP : . 0001/FLC
ANGLY $=Y * R S T E P+T M A \& E Y-R E F Y+0.01945 * \pi / 180$. ANCLX=X*RSTEP+TMANGY-REFX

```
    since X Y counters contain the offset between
    TMANGX AND XD as well as between TMANGY AND YD
VI Return co LED at End of Test (IbaND=55)
LED center is specified by
    DEITAX=0
    DELTAY=0
then follow the common procedure of v.
```

Variables
$\left.\begin{array}{l}\text { IBAND } \\ \text { REFY } \\ \text { REFX } \\ \left.\begin{array}{l}\text { TMANGY } \\ \text { YOFFSET } \\ \text { IMANGX } \\ \text { XOFFSET }\end{array}\right\} \quad \text { TM location flag }\end{array}\right\} \quad$ intermediate files

FLC Focal length of collimator, data base
$\left.\begin{array}{l}\text { RXDEG } \\ \text { RXMIN } \\ \text { RXSEG } \\ \text { RYDEG } \\ \text { RYMIN } \\ \text { RYSEC }\end{array}\right\} \quad$ InPut or Output

(A) locace TM at LED reference point

Request theodolite azimuth angle, RYDEGO, RYMIN ${ }^{1}$, RYSEC" input from CRT
(echo into event log)

Request theodolite ekeration angle RXDEC ${ }^{\circ}$, RXMIN ${ }^{1}$, RXSEC ${ }^{\prime \prime}$ Input from CRT (echo ints evert log)

C

ORIGINAL PAGE IS OF. POOR QUALITY

Procedure E

$$
\begin{aligned}
\text { TMANIX } & =\text { REFX } \\
\text { TMANGY } & =\text { REFY } \\
\text { XOFFSET } & =0 \\
\text { YOFFSET } & =0
\end{aligned}
$$

END

ORIGINAL PAGE IS JF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

PROCEDURE F

This procedure is used to acquire the data from the field of view measurements for detector Band 5 in a form suitable for reduction by Procedure G, and for print and plot by Procedures H and I.

This procedure assumes that the Band 6 vartical alit ia in the center of the band in the Y direction, and the narrow horizontal slit moy be centered in the X direction ty a rotation of the slit theel.

Data Storage Description

Data are described as though either a $108.3^{\prime \prime}$ or $110^{\prime \prime}$ focal length collimator is used. The data step size and count must be adjusted here and in Procedura G to accomodate practical step size as decermined by the colliantor focal langths. This adjustment must respect IFOV boundary locations, but may allow more incremental steps within boundaries. For example, it takes 20 positions of 0.20 IFOV units (8.5 microradians) to cover one Band 6 deteczor of 4 IFOV units. However, if the lll-inch focal length collimetor were to be used each step is 0.9009 microradians, so each data point wculd require either 9 sreps (8.11 microrsdians) or 10 steps (9.01 microradians) whereas 2 IFOV units are 8.5 microradians. In the case vhere movement of 1 detector size is required, 170.0/.9009 microradians indicates 189 steps. Thus, 11 positions of 9 steps each plus 9 positions of 10 steps each give che required 189 steps of 20 positions, averaging 0.2 IFOV units.

Figure 1 illustrates the testing procedure te be followed in taking data in the X or the Y dsrections. Only one size oilc is used on Band 6 . It is 0.4 IFOV unics bide.

The Y data are acquired oy stepping the slit from $Y=0.18 .0$ IFOV units from the band center to Y o+18.0 IFOV units in 208 steps. The X direction is similar.

The data acquisition steps will now be described.

1. Field of View stepping in the Y diraction (aloce sean)
a. Step in the $-Y$ direction to al position which is 18.0 IFOT units from the band center. Step 2 i stepe further in -Y diraction, then step 20 steps in ty to ranove backlash.
b. Take data on all four detectors from $Y=-18.0$ to til80 IFOV units as called out in flouchart.

-

c. Rotate the slit whee! to position the horizontal Bad 6 elit into place.
d. Return Y to band center oy stepping in the $-Y$ direction by 18.2 IFOV units to. 2 units for overtraval for a totsi of 18.4 IFOV units then step in the +1 direction by 0.2 units to ramove the backlash.

ORIGINAL PAGE is OF POOR QUALITY

e. Step in the $-X$ direction 18.2 IFOV units, then step in the $+X$ direction by 0.2 units to remove the backlash.
E. Take data on all feur decectors from $X=-18.0$ to +18.0 IFOV units as called out in the flowchart.
g. Rotate the slit wheel to position the vertical slit into place for Band 6.
h. Return X to band ceater by otepping in the $-X$ direction by 18.2 IFOV units to. 2 units for cuertravel for a total of 18.4 IFOV units, then step in the +X direct on by 0.2 units to remove the backlash.

ORIGINAL PAGE IS OF. POOR QUALITY

X AND Y DIRECTION MEASUREMENT ZAPANETESS POR BAND 6. FIGURE 1

Procedure F

Page 2

PROCEDURE G

This procedure reduces the field of view data for Band 6, only. The 50 percent signal point is determined in X and Y for each detector, then the center coordinate is calculated.

I Data Storage Description
NOTE: Data are described as though oither a $108.3^{\prime \prime}$ or $110^{\prime \prime}$ focel langth collimator is used. The data atep aize and count must be adjusted here and in Procedura F to accommodate practical step size as determined by the collimator focal length.
A. Ioput Data

Sae Procedure F
B. Output Data

The \mathbb{I} data output consists of 4 data records, each with the following data items.
\therefore 1. Deteetor No., C.
Records 1-4 correspond to detector 1-4, respectively.
2. PEAKVY (C)

PEAKVY (C) is the largest voltage for this detector which ia uaed for normalzzation of the data samplea.
3. Normalized Data

This set consists of nominally 208 sets of $X Y$. $Y Y$, and the normelized voltage VPNY.
4. Y1, Y2, YC

Y1 is the Y coordirete (obtained by iaterpeisetion) of the aignal which is 0.5 of the ok of the nomalized data. Yl is the value on the $-Y$ side of the detector, $X 2$ is the value on the $+Y$ side. YC is the sverage of Y1 and Y2.

The X data output is similar to the Y data.
II Y Data Reduction
Repeat the following for detectors 1 through 4 field of Vieu in i directon.
Bract the Y data from the file, consisting of nominally 208 sece of $X Y, Y Y$, and VPPY data. Search the array for the paak value which uill nominally be VPPY(1) where i is the avarage of NOMY26(C) and DWMY26(C).

ORIGINAL PAGE IS OF POOR QUALITY

Detector No, C

| NOM26(C) | 1 | | NOMY26(C) |
| :---: | :---: | :---: | :---: |
| | | | |
| 64 | | 75 | 86 |
| 122 | | 133 | 145 |
| 64 | 75 | 86 | |
| 122 | | 133 | 145 |

Call this peak value PEAKVY(C) and ave it. Nommilze the date by dividing by PEAKVY (C) to get VFAN, save this date array.

Sarch the normalized data on both sidea of the peak for the two values which are less than 0.5 . These will be nominally at array elemente $i=$ NOMY16(C) and NOMY26(C). In addition to theae two values, use the two adjacent valued which are just larger than 0.5 and by innear intarpolation, datarmine the two X valuea for VPNY: 0.5 as follows.

For the lower Y value edge,
Let i be such that $\operatorname{VPNY}(i) \leqslant 0.5$ and $\operatorname{VPNY}(i+1)>0.5$
The half width coordinate $Y H W$ is given by

$$
\frac{(Y Y(i+1)-Y Y(1))(0.5-V P N Y(i))}{V P N Y(i+1)-V Z N Y(i)}+(i)=Y K W
$$

Let YlayH for this coordinate on the $-Y$ side of center.
Similarly, the coordinate for the higher Y value edge is given by (1) where
1 is such that VPNY $(i) \geqslant 0.5$ and VPNY $(i+1)<0.5$
Let $Y 2=Y H W$ for this coordinate on the $+Y$ side of center. The coordinate of the canter of the detector YC is then given by

$$
Y C=\frac{Y 1+Y 2}{2}
$$

Save Y1, Y2, and YC for later use.

III X Data Raduction

Repeat the following for datectors 1 through 4 field of view in the \dot{X} direction

Extract the X data from the file, consisting of nominally 208 sets of XX, YX, and VPPX data. Search the array for the peak valua ehich will nominally be VPPX(i) where 1 is the average of NOMX16(C) and NOMX26(C).

Detector No, C NOMX16(C) 1 NOMX26(C)

| 1 | 127 | 138 | 150 |
| ---: | ---: | ---: | ---: |
| 2 | 104 | 115 | 127 |
| 3 | 81 | 92 | 104 |
| 4 | 58 | 69 | 81 |

Call this peak value PEAKVX(C) and save it. Normolize the data by dividing by PEAKVX(C) to get VPNX. Save this data arzay.
 Search the array and detemine $X 1, X 2$, and $X C$ in an analogors fashion to the procedure used for Y in II, above.
 Save $X 1, X 2$, and $X C$ for future use.

ORIGINAL PAGE IS OF POOR QUALITY

Procedure G
 Data Reduction for Band 6

ORIGINAL PAGE IS OF POOR QUALITY

Variables

| $\begin{aligned} & \text { XY(C,P) } \\ & C=1, \ldots,{ }^{4} \\ & P=1, \ldots .208 \end{aligned}$ | X-coordinate from which path sample for channel C came when sweeping in the Y-direction | Collected in Procedure F |
| :---: | :---: | :---: |
| $\mathrm{YY}(\mathrm{C}, \mathrm{P})$ | Y-coordinate from which pth | Collected in |
| $\mathrm{C}=1, \ldots, 4$ | sample for channel C came then | Procedure |
| Pa1, ..., 208 | sueeping in the y-direction | |
| $\mathrm{VPPY}(\mathrm{C}, \mathrm{P}), \mathrm{VPNY}(\mathrm{C}, \mathrm{P})$ | Peak-to-Peak signal (from VPEAK) | Collacted in |
| Cm1,, 4 | of channel C, pth sample | Procedure |
| P=1,..., 208 | swepeping y direction, and normalized value | |
| PEAKVY(C) | Peak value in $\operatorname{VPP}(\mathrm{C}, \mathrm{P})$ | Calculated here |
| C=1,..., 4 | | |
| Y1(c) | -Y side 50\% point for | Calculated here |
| Cal, ..., 4 | Channel C | |
| Y2(C) | +Y side 50\% point for | Calculated here |
| Cal, ..., 4 | Channel C | |
| YC(C) | Channel C center | Calculated hare |
| C=1, ..., 4 | | |
| | | |
| XC(C) same as above | weepin3:In X -direction | |

ORIGINAL PAGE IS

Pracedure G Page 2
\because

Data Base Ar:ays
 NOMYI6 (C)

| 1 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 64 | 122 | 64 | 122 |
| 2 | 86 | 245 | 86 | 145 |

NomXi6(C)

| $1 C^{1}$ | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 127 | 104 | 81 | 58 |
| 12 | 150 | 127 | 104 | 81 |

ORIGINAL PAGE IS Page 4 OF POOR QUALITY

ORIGINAL PAGE IS

OF. POOR QUALIT?
PROCEDURE H

Abstract

This procedure retrieves dats stored by Yrocedures G and E which allow couversion of X and Y fron steps to radians. The field of view data for Band 6 is then checked against specified parameters, and the reaults prd ated.

\section*{Input Data}

The data from Procedure E includes REFX, REFY, TMANGX, TMANGY, XUFFST, YOFFST, and FLC. See Procedure E for definitions.

The data Erom Procedure G includes NBAND, Detectcr No., PEAKV, btef array data in sets of X, Y, and VPN whare X, Y are in step count units, X1, X2, X6, Y1, Y2, YC all in step count units.

Crnversion from Steo to Radians

The cunversion equations are described in Procedura E and are raproducad here. RSTEP $=.0001 /$ FLC

- ANGLY $=\mathrm{Y} *$ RSTEP + TMANGY-REFY +0.01945 /180.

ANGIX = X*RSTEP+1MANSX=REFX
Sbecifier 'Talues for Band 6
A. Band Center (in millisadsans), BC reiative to the optic axis.
$Y B C=-4.0631$
$\operatorname{STC}=0$.
B. Detector Ceater (in milliradians) for Band 6

1. Y Coordinate Relative tc Band Canter, $B C$ $X D C=5.0 * .0425$ ($+1-2$ MODLZO (NDET, 2);
where NDET is the detector No.
2. Y Coordinate Relative to Band Center .
$\mathrm{XDC}=+10-4 *$ NDET
C. Optinum Detector Edges X1P, Y1P, X2F, Y2P

The ideal locstion for the ddzcctor edges is given by
XIP $=X D C+X B C-0.085$ millifadisRs
$X 2 P=X D C+X B C+0.085$
$Y: P=Y D C+Y B C-0.085$
$Y 2 P=Y D C+Y B C+0.085$

Procedure H (Cont'd)

CRIGINAL PAGE IS OF POOR QUALITY

D. Detector Width, (X2-X1) or (Y2-Y1) specified

Mininum Difference 0.1656
Maximum Diffarence $=0.1744$
E. Detector Location and Size Princout

Perform the following 4 times

1. Input the X and Y date records for this detectar.
2. Convert all coordinates to radians.
3. Store the converted date in the plot file.
4. Colculate
$\mathrm{DX}=\times 2-\mathrm{Xl}$
DY=Y2-Y1
5. Print the following
a. Detector No.
b. $X D C+X B C$
c. $X C$
d. XIP
e. XI
f. $\times 2 p$
g. X 2
h. DX
i. "IN SPEC" or "OUT OF SPEC," bce D above
6. arror emount, if out of spec, or 0 . if in spec.
k. YDC+YBC
7. YC
m. YIP
n. Y1
o. $Y 2 P$
P. Y2
q. DY
r. "IN SPEC" or "OUT OF SPEC," see D above.
8. error amount, if out of spec, or 0 . if in spec.

Procedure H (Cont'd)

F. Tabulate Curve Data

This data consists of nominally 208 sets of X, Y and VPN in X direction and nominally $2 n s$ sets of X, Y, and VPN in the Y direction.

This data is to be printed in compset form.

ORIGINAL PAGE IS OF POOR QUALITY

This procedure takes data stored in the plot file by Procedure for Band 6 and forms two types of plots.

The first plot is the detector locstion plot. This consists of the outlinc of the 4 detectors in the band for ideal conditions with the $\mathrm{X} 1, \mathrm{X}, \mathrm{XC}$ and Y1, Y2, and YC measured points plotted on the outline.

The second plot consists of a presentation of the field of view data array for each axis This uill require 8 separate plots.

I Detector Location Plot
The ideal location of each detector edge is given by equations (5) through (8) of Procedure H. The ideal detector size for Band 6 is 170 microradians square. The plot scale should be choaen to give the best resolution possible. Since the 4 -detector array is 14 IFOV units uide, a scale of 0.5 IFOV unite per inch seems reasonable. The edge tolerance will be ± 0.05 inches on this scale. Since the function - of the plot is the illustration of eny gross errors and systematic errors, the resolution should be adequate.

II Detector Field of View plot
Esch axis of a given detector is the subject for this plot. Thus, 8 plots will be required.

This requires an abscissa of 36 IFOV units in X and 36 IFOV units for the Y plots. The acale of 4 IFO7 units per Inch woulds $=$ give sufficient rescintion.

III Plot Priority
The plotting should not be allowed to slow up the test. The information is atored in a plot file, and plotted during theodolite aetting after the Procedure H print is complete as time is available.

ORIGINAL PAGE IS OF POOR QUALITY

Numbers in brackets are for use with the dual channel option of data capture. This subroutine is called by the main spatial coverage procedure and by Procedures A and F indirectly through Sequences No. 1 through 4.

The ADAU has been set to a sample rate of 39 KHz , single chanacl dusl channel option, and that the SIU has selected the ADAU prior to callinge this subroutine. It is further assumed that the 100 Hz center frequency filter wich a 10 Hz bandpass is in place. It is also assumed that the 100 Hz filter, or associated amplifier in the AJAU, has a gain of 7.5 to boost the saturated output to the range of the A/D in the ADAU. This is necessary since a square wave of 2 volts peak-to-peak (saturation) gives rise to a fundamental sine wave of 2.5 volts peak-to-peak which corresponds to 1.25 volts peak-out of the 100 Hz filter (negiecting insertion loss). Since the A/D operates in the range of $+/-10$ volts $(+/-2047 \mathrm{DN})$, the 1.25 voltg mast be amplified to use the full range of the A / D. A gain of 7.5 plus filter inecrion loss compensation will boost the 1.25 volts to 9.375 volts (1920 DN). The additional range of the A / D is reserved for potential excursions.

This subroutine takes I independent cycles of the 100 Hz waveforn which requires that every tenth cycle be sampled with the 10 Hz bandpass. Since Band 5 is expected to have the lowest signal-to-noise ratio, it is used to evaluate the expected data range. The 1 percent of saturation signsl will give $+/-19.2$ DN from the A / D while the noise is shown in a separate memorandum to have a 95 percent probability of being within $+/-2.0$ DN for this band 5 , utilizingItadependent 100 Hz cycles for peak-to-peak determination. This indicates that the error in determining the 1 percent level due to noise will be less than 5 percent of that level. The quantizing error can be as much as 3 percent of the 1 percent signal level. Both of these errors are quite acceptable in the far field measure, and the errors will be negligible for larger signale.

The subroutine also assumes that the detector has been connected by the MuX in the ADAU, and that the required sectilng time for the insertion of the 100 Hz filter (about 160 milliaeconds) and the acrotech atages (TBD aecoads) has elapged before the subroutine call.

Suhroutine Description

1. Sample the Data

Commen the ADAU to take data for $I * 10$ cycies $I * 10$ of the 100 Hz output. This consists of takiag data for $I * 10 * 0.01$ seconds. Each sample requires 2 bytes, since the A/D output is 12 bits plus aign.
2. Detemmination of the Peak-to-Peak value
a. Set the number of good sets, ns, optimistically to the number of tenths of a second of data captured.

MEASUREMENT SEQUENCES

ORIGINVAL PAGE IS OF POOR OF POOR QUALITY

Paremeters

N is number of pairs of detectors from which video data is collected.
NDI(1), ND2(1) are arrgys of length N containing the channel numbers from which data is to be collected.

FSTEP is the number of Aerotech cable steps to move.

Sequence No. 1 (stepping of Y difection, post-data stepping)

1. $I=1$
2. Collect Index A data from the detectors in the bend with channel amberb ND1 (I) and ND2(I).
3. Call vpeak twice to reduce the index A data from the two detectors.
4. Store the following in a form that is useable by data reduction procedures:

Outputs VPP from VPEAR
Position of X~axis stage from HP interferoncter
Position of Y-axis stage fron hi interferometer
5. If $I=N$, then continue with Step G, otherwise increment $I(I=I+1)$ and repeat steps 2 through 5 .
6. Finally, Step FSTEP steps in the $+Y$ direction.

Sequence No. 2 (stepping in the X direction, post data stepping)

1. through 5. Same as Sequence I.
2. Finally, step ESTEP steps in the $+X$ direction.

Sequence No. 3 (stepping in the Y direction, pre-data stepping)

1. Set $I=1$, and step FSTEP steps in the $+\mathbb{I}$ direction
2. through 5. Same as Sequence 1.
3. Exit.

Sequence No. 4 (stepping in the X direction, pre-data stepping)

1. Set $I=1$, and step FSTEP steps in the $+X$ direction
2. through 5. Same as Sequence 1.
3. Exit.

Index A Collect 4 samples of .0 .1 sec . of video data fror: 2 channels as specified in the data collect procedures. Use the ADAU with the 2 -channel

ORIGINAL PAGE IS OF POOR QUALITY

b. Find a peak and minimum in a . 01 second span of data 400 [200] samples. Call

VPI - peak value
VM1 - minimum value
NP1 - location of peak NMi - location of minimum
c. Skip .09 seconds of data, 3500, [1750] s8mples
d. Repeat steps b and c for the number of cenths of a second of data to capture, for example $1=1$ to 4 for, 4 seconda of data.
e. Spurious Peak Rejection

Discard on the basis of peak to minimum separation. Check the i samples to see if they are in the range.

When the signal level gets to be very low, on the order of a few DN, spurious peaks may be determined. These spurious values may be deleted by requiring that all 4 peaks and minimum mast be separated by nominaliy 0.10 seconds from peak-ro-peak or minimum to minimum (using every loth cycle).

Check to see that
I1 $\subseteq|N P-N M| \leq U 1$ wteere L1, L2, U1, U2 are data base values. $[L 2 \leq|N P-N M| \leq U 2] \quad$ nominally $L I=175, \mathrm{UI}=215, L 2=88$, and U2 $=108$.

If any set fails this test, discard it and reduce $N S$ by 1 . If $N=0$ or 1 , set $V P P=0$, and leave the subroutine

VPP Determination
For each of the NS cycles remaining, calculate
VS=VP-VM
Then average the NS sets of VS to get VPP.
Also detemiae the standard deviation of the NS aamples of VS to get VPP.

Index A (cont'd) option, 39 K Hz (low) rate and 100 Hz Eilter.

TO: J. L. Engel
CC: Distributioa Data Bank
SUBJECT: T.M. ACOTR Gest Result Sumary, Protoflight Model.
Data Bank

ORIGINAL PAGE IS OF POOR QUALITY

SANTA BARBARA RESEARCH CENTER A Suoverwery of Huence Amentr Compent
INTERNAL MEMORANDUM

DATE: 20 May 1981
REF: HS236-7454 2221.291

FROM: ACO?R TeBt Team
BLDG. 774 MALLSTA. 78
EXT. 4151

References:

1. TP32015-514 Rev. A, Sparial Coverage Tese Procedure ACo7k, 7 April 1981.
2. ES236-5610 Thematic Mapper Spa=1al Coverage Test Description, ACO7R, 30 Jan. 1978.
3. ES236-5610-2 Thematic Mapper Spatial Coverege Test Description. ACO7R, 13 June 1979.
4. Eiseofy Tspes: D02030, D02032, DO2034, DO2036 anc D02037 (Aprid 14 through April 23, 1981).
5. Special Tape: Number 502 dated May 1,1981 , used ro record ACO7R Videc Files.
6. BTCE 02 Event Log for period April 14 thzough April 23, 1981.

1.0 Ineroduction

This report summarizas the rasults of performing the ACO7R Spatial Coverage Test on the Thematic Mapper Protofilght Mocel. The test is an ambient colifmator level teat performed on the assambled T.M. Tic test is computar controlled usias computer commands uith celemetry verification.

The test objective is co accurately determine the response of databesa balected datectors to a מarrou silt oourca 1lluminating poaitions on the focal plane whose distances from the detectors vary. Specific artention is given to detector half-width resporise gize and far field affoct.

GSFC measurement specifications are given in termo of angular requirements. The along track (X-direction) dimension and across track (\mathcal{A}-direction) dimension is definad for each detector es the sngular difference between the points whare the detectors rasporse is 50 percent of maximum when sweeping is the respective direcion. Maximum heif-wid=h cimensions are given as 42.2 Eicforadians for Bands lithroug 4. 46.35 microradians for Bands 5 and 7 , and 174.4 microradians for Band 6, the chermal band. The far field requirement is that the measured response be less than one percent

ORIGINAL PAGE IS OF POOR QUALITY

REF: ES 236-7454
J.L. Engel from ACO7R Test Team
-2-
of maximum for angular distances equal to or greeter chan twice the detector sidth.

Test Description

The test is performed at SBRC with the Thamatic Mepper mounted on a precision rotary table. The T. M. is alignad to a collimator with the scan miryor and scar line corrector off and loched at midscan. The angulay orientation of the T.M. is determined and monitored by eutocolifmating a
 Hoverer, as the colilmator is subject to off axis image degradarion, it is necessary to move the T. H . four times during the test. These movements and subeequent orientations are defermined and aiso monitored using the theodolite. The source 18 projected rowards the T.M. chrough the collimator which uses a computer dyiven \bar{x} Fitepping stage to position the illuminated silt. Interferometric monitoring

- Is used to measure sagge movemeat.

For Bands $1-5$ and 7 massuremente. a tungstan fibbon filament lamp is used as the source. The lamp and sift are initially mounted together on the stages in a vertical position (for sweeping in the Y-direction). The sourca and slit ara subsequentiy roeared 90 degrees about a horizoneal exia for sweeping in the X-direction. Tha iarger input sigmal needed to resolve far field response is achieved by incraasing the lamp current.

For Band 6 , a blackbody source 18 used. The change from vertical to borizontal scanning is achieved using separare perpendiculaz elits mounted in a reticle wheel.

3.0 Test Results

Tast deta has been obtained gor all Bands in tho form of reduced date tabulations sad field-of-riey plots for selacted channels and each type of ocan (X or I). Maasuramenes fare made on decectors 2 and 16 for Bands $1,3,4,5$ and 7. Derectnrs 1 and 15 vere used for Band 2 while dutecrors 1, 2,3 and 4 vere ured for Band 6 . Raduced data tabulations indicate that all detectors (vith the possible exceptions of Band 2 Decoctor 15 and Band 6 Detectors 1 and 2) exhibit soma calculated half-widths in excess of those desirad by the opecifications. Band 2 Detector 15 had sevare noibe problems making meaningful calculations for it imposeibla. Band 6 deteistors as the thermal channels have much wider nominal fiej.ds-of-Viev than the other detectors and ahould

ORIGINAL PAGE IS OF. POOR QUALITY

REP: ES236-7454
J.L. Eagel f=0e ACOTR TesE Team

-30
thareforc be considered aeparately. Tar field roaponee for all Bands is typically greater than the deaired 1 percont et least for regions imediately adjacont to the twice derector width fiald points. In addifion, gormailzation problans vere encounterad ia matching the far ficid to near ficid deta. Even after softrare corrections, residucl offects are evident in somo of the plote. (Sae Appendix A for plote.)

The following tables sumarize the tast results in genaral and help to point out come of the problcmeraes. Iable 1 is a bumasy of LSF (Field-of-Viow) half-widtha ideatified by band, channel, and typo of scan. Nolay channels and out-of-spac. conditions are identified uhere they occuried. Table 2 is a listing of detector efacings uithin cach erray as obtatned from the raduced data tabulations. Table 3 is a sumary of out-of-field response values obeaired graphicaliy from the field-of- ilow reaponse plocs. Out-of-field response has been calculared first as the percontage of total outmofofield ajgnal co cotel in-fiald aignal and then again as an avarage par IFOV opaciag over the total leagth of the aon-zero bkirts.

ORIGINAL PAGE IS
 DE POOR PUALITY

TABLE 1.
LSF Balf-W1dthe

*Ve=s gac "Noise"

REF: ES236-7454
J.L. Engel from ACOTR Tege Team -5-

TABLE 1. (Continuad)

| $\frac{\text { Collaction }}{\text { Date }}$ | Band | Channe 1 | Scas | $\frac{\Sigma S F}{W I d e h}$ | $\text { Sin } \frac{0}{p e r .}$ | $\frac{\text { Out of }}{\text { SpBC. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4/29 | 6 | 1 | 7 | 172.99 | \checkmark | |
| 4/29 | 6 | 1 | I | 172.10 | \checkmark | |
| 4/29 | 6 | 2 | 8 | 170.24 | \checkmark | |
| 4/29 | 6 | 2 | 8 | 173.79 | \checkmark | |
| $4 / 29$ | 5 | 3 | Y | 178.34 | | \checkmark |
| 4/29 | 6 | 3 | 8 | 177.46 | | \checkmark |
| 4/29 | 6 | 4 | I | 173.97 | \downarrow | |
| 4/29 | 6 | 4 | \% | 275.34 | | \checkmark |

```
REF: HS236-7454
J.L. Eqgel from LCO7R Test Team
J.I. Eqgel from LCOTR Test Team
```

r.

TABIE 2.
Detectos Spactags

| $\frac{\text { Collection }}{\text { Date }}$ | Channels | $\frac{\text { Distance Between }}{\text { Chastels In Divection }}$ | |
| :---: | :---: | :---: | :---: |
| | | $\begin{aligned} & \text { (} \mu \text {-radians) } \\ & \text { (MeasuFed) } \end{aligned}$ | (Nominal) |
| 4/25 | B1/D2, D15 | 595.06 | 595.00 |
| 4/25 | B2/D1, D15 | 594.41 | 595.00 |
| 4/24 | B3/D2, D16 | 591.28 | 595.00 |
| 4/24 | B4/D2, D16 | 593.80 | 595.00 |
| 4/25 | B5/D2, D16 | 590.24 | 595.00 |
| 4/25 | B7/D2, D16 | 590.83 | 595.0 C |
| 4/29 | B6/D1, D3 | 334.95 | 340.00 |
| 4/29 | 36/02, 04 | 337.77 | 340.00 |

ongmal prge is OÖ POCR QUALTM
REF: ES236-7454
J.L. Engel from ACOTR Tesc Teaz -7-

TABLE 3.
Out-of-Field Response
Beads 1-5, and 7

| $5 / 6$ | 1 | 2 | Ψ | 1849 | 1.31 | 2.1 | .49 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $5 / 6$ | 1 | 2 | X | 1960 | 217 | 11.1 | .71 |
| $5 / 6$ | 2 | 1 | Ψ | 2231 | 456 | 20.4 | 1.38 |
| $5 / 8$ | 2 | 1 | Ψ | 2434 | 581 | 23.9 | 1.48 |
| $5 / 7$ | 3 | 2 | Ψ | 2024 | 307 | 15.2 | 1.03 |
| $5 / 8$ | 3 | 2 | X | 2226 | 371 | 16.7 | 1.08 |
| $5 / 6$ | 4 | 2 | Ψ | 1692 | 28 | 1.65 | .89 |
| $5 / 6$ | 4 | 2 | Ψ | 1726 | 50 | 2.90 | .62 |
| $5 / 6$ | 5 | 2 | Ψ | 1669 | 61 | 3.65 | .55 |
| $5 / 6$ | 5 | 2 | X | $18!2$ | 98 | 5.26 | .70 |
| $5 / 6$ | 7 | 2 | Ψ | 1866 | 137 | 7.34 | .87 |
| $5 / 6$ | 7 | 2 | X | 2461 | 361 | 14.67 | .97 |

*ArbiErayy Daies (graph paper units)

REF: ES236-745
J.L. Eagel from ACOTR Test Teax

ORIGIAAL PAGE IS
OF POOR QUALITY
-8-

4.0 Digcussion and Conclusion

A mumber of difficuities vere encouncered during the Fumang of these tests. These mey be soughly divided dato harduare and softgare type froblems. The former consist of problems uith vibration, aligament, temperature and clectronics. The latter include problems wift command files, databases, and plot normalizations. In addition some evidence exists uhich indicates that optical effects may be degrading the data by producing raised skizes
and rounded off IfOVS. Many difficulties vere at least partially resolved during the testing by wodifications of the test setup and/or by corrections to the softrare. Others mwait the performance of "special tests" intended to deferrine their causes.

A. 耳ardwa=e Problews

- Vibsation problems were encouncered from the start ab ve attempted to mount the 100 Eertz chopper wheel. In an attempt to maintaia a constant relationship berween the chopper bledes and the source/sift assembly as the source/site asserbiy was rotated for successive a and Z scans, a modified mountiag plate was Eabricated to hold source, sift and chopper theel. Infortunately, the vhole assembly vibzated in resonance when the chopper was enraed on. This problem was resolved by suspending the chopper from a separate pedestal thich was Ifgidiy attached to the colifmator table. The chopper vas thea reposiefoned each time the sourcelsift absembly was =otated.
 as the result of repositioning the chopper धheel. D.C. restore failed to gork properiy making it impossible to collect meaningful data. The effect was later identified as the result of a phasing erfor assocfated with the chopper wheel positioning. The "fix" was to modify the procedure to =equive appropriate adjustment of phose Whenever the chopper positioning is changed or transiation Is made of the elis aczose the chopper oheel.

Electronics problems vere also present for Band 6, but not due to the cnopper theel. Rather the Band 6 box for plagging the Band 6 signals into or around AOTS failed to work. A revisad BTCE set-up was adopted which provided necessary DC restore and other electromic

Efgh frequercy noise was observed on Band 2 Defector 15

ORIGINAL PACE IS OF PCOR QUALITY

REF: HS236-7454
J.I. Engel from \triangle COFR Test Taam -9-

تhici distoried the $E i g n a i$ and resuited in mesningiess calculations and plots. This was unfortunate as we had been eold ahead of time that there was a noisy detector 2 on Band 2 धhich ahould be avoided. A raidencificarion of the detector from the aryay position to chanael number resulted in our choosing the exact detector ve were t=ying to avoid.

Room enviponmental effectg were pregent in the form of atr turbulence and remperature variations. To minimize these effects additions vere made to the plastic tunnel surrounding the colilmator prior to the test. Whea a prelimianay check shoved that the running of the room air handiers drastically distorted the signais, they were turaed off for the durstion of the tests which ran धell over 24 hours of total operating time. The room seabilizcd at betueer 68° and $72^{\circ} F$ as recorded in the data master and log books. Specific beat oources presene in the initial test secup included the laser used fith the collimator table/T.M. alignment monitor and the motors which drive the acroteci stages and chopper Wheel. The laser used with the aligament monitor ves Identified as a specisic source of therrally induced air =u=bulence. Its use is not essential to the pe=formance of the teat and has been deleted for all further ACO7R Eesting.

Alignment problems (or at least uncertainties) arose as the source/silt and T.E. were posittioned and repositioned at various points during the tast. The source/silt had to be detached from its mount and the lamp removed in order to reposition it each time a change was made between X and Y scang. Ihis resulted in some uncertainty in the alignment position of the filament image on the slit for the varioue sets of data. Since cbe filament duage is orersize with respect to the silt. the main effects were observed on the skirts of the IFOV plots. This combined uith non-zero tranamittance in the opsque porticas of the sift may help to account for the problems of raised skires and rounded-off IFOVS. Poaitioning of the T. A . for the various bands is accomplished by rotafion using a cheodolite for referenca. For bands 5 and 7 rotarion through the nominal angle from the T.M. axis falled to bring T.M. into proper alignment. At this point an alteraate procedure ues usad whereby the T.M. sas boresighesd on bands 5 and 7 seperately to obtain sigasis. The cora sponding theodolite readings weze then averaged co obtain the comon center.

Othe: areas of concc:a were souree non-uniforimity and

OPIGINAL PAGE is
 OF POOR QUALITY

REF: ES236-7454

systen focus. The lamp filament image was centered on the silt esch elme the lamp wos repositioned and should be faixiy uniform in intenaity over the filt area. Hoveror, for Band 5 Y-direction meaauramants initiad voltage readings from chanais 2 snd 16 verc sigafficantly out of balance. Channel 2 read 17.5 volto $P-P$ compared to 11.0 volts $P-P$ for chanael 16 . This imbalance wes corrected by stepping the sift-stage 508 Aerorech stepr along the filament in the -X direction before making the Y-scan measurements. All data was collected at the nominal focal plane of the colifmator. Previous IA4 tost data indicates that this position is .006 to . 008 inch from best focus as deferminec by MTF. A smali degradation (less than 1 microradian image blur) is expected to resule Erom this conditiou.

8. Softwa=e Problems

Softrare problems occurred in selecting an appropriate step size and in matching far-field with near-field data. The initial step sizt was chosen to be 0.2 IPOV units for near-field data and 0.4 IFOV units for fazfield. It was evident from examination of preliminary near-field data plots thar the sampling deasity fas too coarse for good resolution. A change to 0.1 IFOV step size tmpzoved the quality of the figutes, but incteased the test time significantly. In addition the computer programs had to compensate for the fact that the finite Acrotech stage steps 由eren'r axace divisore of an IFOV. In order to maintain average stepping units, the gumber of Aerotech stage steps per unit had to vary by an occasional step. Another type of problem occu=red in "normalizing" far-field to gearmfield data. The matching was doae by comparing several overlapping poines on the far-field and near-fiaid curves and uaing an average normalizatioz factor. The problem arose as the farfield curpe ran into its saturation region (sift crosing the datector) and started to undergo dibtortions. Several software changes uare needed to keep the compurer from selecting data from the baturated region. In general the final plots were fmproved and the problem has esfentially gone away. However, Band 4 detectors still exhibit some normalization problems. Tbese may not be due to softrare, but rather to electronics. The detector signals, while in saturation, aro depresead significantly.

One Eactor which may bave contributed to the normalization problem was the inadivertant omission of a parametar from the database kiows as the "bright field recovery tine". "his was a wafeing period of a fer seconds

Figure 1 Revised BTCE Setup For Band 6

ORIGINAL PAGE IS OF POOR QUALITY

FROM:

Sitemap pret e for
 OF FOR QUALITY

REF: BS 236-7454
J.I. Engei from ACO78 Test Team

> Intended to allow detector to recover from the shock of saturation received during the near-field portion of the fay-ficid scan. This parameter has been put back Into the database and will be available for future data collects. However, this may not help very much as there was no hint of recovery evident in the test data.
> Another software problem area was the seemingly arbitrary omission of some of the collected rats from certain data tabulations and plots. A change to the database and command file was needed to get all of the data printed and plotted out.
C. Conclusion

This report has described the results of running the ACO78 Spatial Coverage Test on the Protoflight Model I. test technique has been proven to be valid though the

- results are less than desired. Tie test procedure and command files have been debugged and will be ready for future testing. Several problems have been successfully resolved while others will be investigated further by a special test scheduled for the near future. It is unfortunate that this test had to be run for the first time on the Protofilight I.M. without the benefit of a preliminary run on the Engineering Model.

Prepared by:
feC. Cangtell
Concurrence:
J.C. Campbell: Optics

Concurrence:

Approval:

Approval:

ण. B. Freudenstein: Manager Systems Test

```
HEAR AND FAR FIELD DATA FOR
    07-MAY-BI
Y - AXIS. BRND 3 CHANNEL 2.
    14:46:09
```

(

ORIGINAL PAGE is OF POOR QUALITY

APPENDIR A

FIELD OF VIEN PLOTS

HIENR TND FAR FIELD DATA FOR D6-MRY-81
x - axis. bind 4 channel 16 15:16:53

demb mid fati field data for
mg - Mar - 81
r-bxis. band 4 channel
15:17:29
2

MESIR FIND FAR FIELU DRIA FOR
68-MAY-81
x - inxis. bfno 3 chfinhel 16
14:26:53

HITII GNO FAR FIELD DATA FOR的7-MAY-81
Y - RXISIR BRND 3 CIINHNEL 16
14:46:15

WEITH ANH FAR fiELD DRTA FOR 68-MAY-81
x - axis. band 3 Chחnnel 2
14:26:47

 06-MAY-81

Y - AXIS. BRND 2 CIIRNNEL 15
15:12:07

HIEIIf nAH FRR FIELO DATA FOR G6-MAT-81
x - axis. bind 1 chinnel 16
15:06: ©8

0 :

| | | |
| :---: | :---: | :---: |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |


```
HIIIII RHU FAR FIELU DATH FON I F - AXIS. BAND I CHANNEL 2
    O6-MRY-81
    15:07:53
```


06-MfY-81 15:68:44

hean nho fin field data for
66-Mfr-81
x - axis. bano 5 channel 2
15:19:35

Sl

HEAR GHD FAR FIELD DATA FOA
06-MAY-8I
Y - AXIS. BIND 7 CHRNNEI. 2
15:21:30


```
        mEAR fND FAR FIELD DATA FOR
    DE-MAY-81
    y - mxisi. baho % clibhnel if
    15:21:44
```


 11CRO - RAOIIITNS

mear rho far field data for 66-MAY-81
x - Axisi. BIIND 7 CHIHMEL IG
15:21:02

near fnd far field dath for x - hxis. bano 6 channel 2 29-RPR-81

20:16:19
-

NERR AND FAR FIELD DATA FOR
Y - AXIS. BAND
CHANNEL

30-APR-81

82:11: | $*$ |
| :---: | :---: | :---: |

0

NEAR AND FAR FIELD DRTA FOR

SANTA BARBARA RESEARCH CENTEE
 INTERNAL MEMORANDUM

To: J. Engel

ic: D18:8ibution

SUBfECT: Special acot Tests

CDAO DATABAAES DO NOT RE:AOVE

GATE: 15 Juif 1981
REF: 2221-348日S 236-7547
FROM:
J. D. Carpencer

BLDG. 774
MaII STA. 78
EXT. 4207

Inis mano describes the test rasults and conculsioa of special tests performed in an attampt to explain the excessiod "far fiold" radiacion and "near ficld" chanaci width measurod in the acol protoflite tose. These feate ara:

1. Etansmission meaturameze of the "opaque" portion of tha dCOy test reticle.
 zear ficld responea.
2. Fhotoelectric responge meacureaeats of a eypical TY silicou ptotodetecto: arsay.

Sests sesules:

1. The "far field" excessive radiation meabured during the ACOT test 10 dua primerily to rha collimaror racicia used during
 dremarically ghora in the "far fisid" grapho included in thfs seport.
2. No explicit camse vas found for the ercaroivo chanmel widthe momsurad in the $A C 07$ eases and subsequant apectal tegt. Average chanal oldthe masured in the spectal opatial tests. corrgapozded to Ehc avoraga midtes measused durlag ehe AC07 east.

Pay Piald Tases

Prior to the actual special ACOT T. M. E日st, tramerission meacuraments
 that the opaque part of the faticia vas not arfeiciantly opaque at soma vaveleagrha. The rosults of this ease are shova in jable I.

If gould appaar, at flyat glanca, that the amourt of erangialadion through the opequa part of the raticis is insignificane. Hovaver, ohen ana considers that the detactor is approzimataly 10 tizas alder than the slit in tha faticia and is fully illuminated by the source lamp, chis amount of eramgaigaion becoms more sigmificant sizes its affect is mulifipliad by tho factor of lo. This effect ocerrs in tha far field radiafion messurement ofer che fidth of she light source og the rasicio, thich is spproxtastaly 2 mindo and produces a source fiald angle of approximatoly 720 urad.

```
Reference: 2こここ一340
#S236-7547
J. Engel from J. D. Carpenter
Special acot Ieses
```

*. DLatribution:

S．Branda
762167
D．Brandsicaft 774／79
J：Campbel：77̇178
D．Clemery 774／79
R．Cline 774／78
3．Erwlich 762－67
W．Treidenstein 774／79
I．Jelmeland S1／D308
P．Kelly $762 / 67$
J．Lansing 774／40
C．Lierle7 774／78
3．O＇Donacll $774 / 78$
B．Oegood 774／79
F．Fhilifps 774／79
C．Plers 774／101
T．Sciacta／NASA 773／90
2．Thuriog 774／78
J．Haiker 774／78
士．日1se 774／78
J．Toung 774／78
Opefcs Pile

ORIGINAL PAGE IS
 OF POOR QUFLTTY

| | | 15 July 1981 |
| :---: | :---: | :---: |
| . Eagel | -2- | $\begin{aligned} & 2221-348 \\ & \text { H5236-7547 } \end{aligned}$ |

Special ACOi Eests.

Actual cesting of the T.M. profoflite lastruent with both the spare reticie, specially masked to be completely opaque, and the ACOT teat reticia proved that most of tha arcessive radiation ues caused by the reticle. A graph of the "far field" response for each band with the "opaqued" and ncrmal reficie is included to show rhe differences. The greafest change occurs in bande 2 and 3 aith the least change in band 4. This resule corzesponds to the transaission measurements siown in Table .

Daspite this lazge roduction in the far ficld radiance uith the "opaqueci reficie, the T.M. system does not pass ehe eriterian that the detectar response shall be 1% or less at 2 IFOVs ayay from thic decector center.

It is quife obvions that some effect still exises on the "-r" side of the even chaniels and the "+r" side of the odd channels. Two probabla sources for this effect are crosstalk between chanmels and reflections fram tha spectral fileor.

1. Crosetalk

In the test arrangement the odd chamels are in the "-r" direction from tha even chanals. As the light is moved Erom the "-1" to " + Y" dizection, the light atrikes the odd channels first, producing a gignal in rho odd chariel sud crosstalks to cho even channel being measured. Ihe asourt of czosstalk vis meagured during the

 of decsctors are casiofzed at the same time in the aC07 eest, the amount of cross coupling is probebly greater chan the rbove values. The not offace could asily be as wuch os 0.3\%. Fhan az odd chaseal 1s being beasured, this coupling shove up in ehe "中Fi dizection frox tha chanal cancar as la the Band 2 Chasaed 1 graph.
2. Kuleipla faflactions betwean tha shiny aluminm deposition on eha detector array and tha band pass filtar may cauaa part of cha excese Fadiation. . Ihis effact probably exises with the light source on eleher asde of the detector, but rould tand co be more pronsames vhas the light is toधards eha oppobite chanmels since the mask in frone of the datactor limita the reflection area on the ousgide odge of the array but docs not lialt the raflection area betwean che chanmalg. Because of this difference, Eaflactions from tho light source ean raseh the deractor at much larger field angles in che "Y" direction of the oppobita chanaci. The amounc of che reflection 1 s not knopr and no tast is planaed at this cina to gegaure it.

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{aligned}
& \text { 15 J415 1981 } \\
& 2221-348 \\
& \text { BS236-7547 }
\end{aligned}
$$

J. Engel
-3-
Specさal ACC7 Zests

Near Eield Tases

DaEz for the acer field rasponse of the f. M. was racordod for at least ene channel in each of the Bands $1-4$ with both the acof =eticie and the specially "opaqued" reticle. The rasults of this data ls very similar to the ACOT esst data. The oniy apparent difference occurred uith the "opaqued" reefcle cowards the i-limits of the "near fleld" response curve, there the signal fas raduced. Some graphs of the "aear sield" fesponse are included uithin this rapore.

In sddition to the complete "near fiald" resporse curves, the 50 : widths of the docactor responsa vera carcfuliy maasurad with as meny as 100 data samples per dats point to establish a high degree of accuracy. The results were neariy che same as acot in that the detector uidth measured approximately 44 microradians.

To determine the focus effects the position of the reticle alit was moved along the optical axis of the collimator on both oldes of ebe bast focus position tith detactor midth data raser at the varfors positions. The detector uidth decreased a saall amount, approximataly 0.5 Hzad, thet the seticle tas 010 to olis fiches cioser to the primary. The שessured channel size increased rapidiy then ehe focrs position vas more than . 015 indicating that the image of ehe sift on the detector was increasiag fapidiy and was larger than eho detecece. The reaules of the chanad uideh teses are shorn in Table II.

The chamal wideh vas a saparata cest from the grapt dacs, uaualiy eatey fuat bofore a full run of acar field-far flold data. Tha vidth data mas detarmined uajag 100 samplea per data poizt wieh a pariod of about one ainute. The procedura uaed wes so establish the tro 50\% levels of the roporse curve uith se faw decs polats as
 data wea takon in the samo ananer as the provious oideh daes cxcept
 rould hava bean advancrgeous to have more focus massurements, but due to the limitad amount of time available, oniy a fey raazuraments could be made.

The special spatial tasta used the same optical equipmant and coot method as used la the ACO7 teats. The astr difference ues that che procodura bas manually concrollad and che data was handiad and arorad万y an H.P. 9815 desk top calerlator. Each data peize is the average of 10 samplas taken ofer a period of sbout 10 sacoads of tiza. As can be sear from the nest flold graphs, the data was still roisy.

The signal fatensicy fatio between the far field and aear fiold for each band and chanial rea established by secting che "F" pesiefon of the source approximately $2-1 / 2$ IFOV frow the channel canter and maseuring the chanael output sigasi for each of the tro sectings of the source laransify chat use used in the $A C O 7$ cest for that specific band and channel.

```
ORICINAL FAGE IS OF. POOR EUALITY
```

15 July 1981

```
15 July 1981
2221-348
2221-348
-4-
#5236-7547
```

\#5236-7547

```
J. Engė

Spectal ACOT Teses

\section*{Dacector Eidth Tose}

To elimiaste tha poosioility chat tha cetive (phocoelecegic) widek of che decectors wero aot the ame cs the design uldeb, flotoelocific reaporse cests uara conduced on a cyplcal r. M. silisor phorodoceceor array. The uidehs measured corraspordad to cha efprozimate desigr uldthe and easantially elimiascad the dotectors as a causu for the
 1a Iable III.

Tha messuraments wera made usiag the gpare acol raciele projected through e par focal microscope onto cha detector with and uithout spacial maska covariag the opaque area, and uith and vithoue a bend fl specszal filfor. No significane differance occuryed yith any of cho various combiaselom, difsarent detectori, of the \(x\) and \(y\) dizections of the detectars. The apparcue uldch of the light sife fililag on tho detactor was changed by chamgiag eha focsl lamgth of the objective lons or the par focil meroscope. The thdebs projected wore approfi-
 TLAEG is change the massured channel uideh. Howarer, le fes necasaary to verify chis in case something ia bejac overlooked.

Tha rasults of all of the "near figld" tasts and datector mossuramenta
 Lu tha \(\triangle C O T\) gaser 19 sufficianely vide as eo cause che daracear gideh
 the measured opetcal perzommance of the t.

ds
D1aeribuelog:
\begin{tabular}{|c|c|c|}
\hline BAND & \(\lambda\) ( \(\mu\) (1) & I (5) \\
\hline \multirow[t]{2}{*}{1} & . 45 & \(<0.01\) \\
\hline & .52 & 0.04 \\
\hline \multirow[t]{2}{*}{2} & . 92 & 0.08 \\
\hline & . 60 & 0.08 \\
\hline \multirow[t]{2}{*}{3} & .63 & 0.07 \\
\hline & . 70 & 0.04 \\
\hline \multirow[t]{2}{*}{4} & . 76 & . 02 \\
\hline & . 90 & 0.01 \\
\hline \multirow[t]{2}{*}{\(s\)} & 1.95 & \(<0.01\) \\
\hline & 1.75 & \(<0.01\) \\
\hline \multirow[t]{2}{*}{7} & 2.08 & \(<0.01\) \\
\hline & 2.35 & \(<0.01\) \\
\hline
\end{tabular}
ORIGINAL PAOE IS
OF. POOR QUALITY
TABLE II CHAMHER, HIDTHS, PROTOYLITR SPEICAE SPATIAL TEST
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BAND & CHAB48L & HIDTH. Hएad. BOURCE AT COLLIMATOR BOCU8 ( HA ) & \begin{tabular}{l}
Stanianad \\
dByIATION
\end{tabular} & \begin{tabular}{l}
source \\
rocus -
\end{tabular} & \begin{tabular}{l}
IDT: \\
IMSIDE
\[
.010
\]
\end{tabular} & urad. COLLIMATOR to. 015 ( \(\mathrm{N}^{*}\) ) & STANDARI) deviation \\
\hline 1 & 2 & 44.09 (5) & 0.39 & & 43.45 & (4) & 0.38 \\
\hline 1 & 16 & 43.98 (2) & 0.21 & & 44.07 & (2) \(\pm *\) & 0.45 \\
\hline 2 & 1 & 43.28 (1) & & & & & \\
\hline 3 & 2 & 43.8 (1) & & & & & \\
\hline 3 & "16 & 44.23 (3) & 0.12 & & & & \\
\hline 4 & 2 & 43.67 (3) & 0.09 & & 42.98 & (3) & 0.31 \\
\hline ALI. & SUREMENTS & 43.94 (25) & 0.36 & & 43.43 & (9) & 0.54 \\
\hline \multicolumn{8}{|l|}{Band 1 Chanpel \(20+.025\), Hideh \(=50\) urad (-.030. H\&dtso 06.2 urad} \\
\hline \multicolumn{8}{|l|}{(N) - Number of Noasuromenta} \\
\hline \multicolumn{8}{|l|}{at - Ona Measuramant was vary bigh (44.52) and le probably not right.} \\
\hline \multicolumn{8}{|l|}{Hoter All data pointe conalet of 100 easplee taken over a period of approximately one minuta of cime.} \\
\hline
\end{tabular}

ORIGINAL PAGE IS OF POOR QUALITY

TABLE III
E!! Pgomovereceor ApR.AY MEASUREMEXT (?YOTOELECTRIC EALE \(\quad\) 由IJTE)
\begin{tabular}{|c|c|c|c|}
\hline DETECTOR & AXIS & COKDITIOSS** & WIDTE \\
\hline 1 & : & "Opaqued" & . 004097 \\
\hline 1 & Y & "Opaqued, " . S צ.D. Filear & . 004005 \\
\hline 1 & 7 & Band fl Elicer & . 004115 \\
\hline 1 & 7 & Band 11 Pileas & . 004109 \\
\hline 1 & 7 & Band El Fijear & .004117 * \\
\hline 1 & Y & Band I1 Fileer, "Opaqued" & . 004078 * \\
\hline 1 & I & . S N.D. Eilear, Opaqued & . 004130 \\
\hline 1 & \(x\) & . 5 N.D. Filter & . 004137 \\
\hline 1 & \(\pm\) & Band (l Pilcer & . 004054 \\
\hline 1 & \(\Sigma\) & gamd 11 filear & . 004087 \\
\hline 2 & X & Band 12 Pilear & . 004122 \\
\hline 2 & X & Band fl Filtar & . 004128 * \\
\hline 8 & I & Band fl Elltar & . 004171 \% \\
\hline & & kge & . 004104 \\
\hline & & STAFDAED DEVIATIO & .000040 \\
\hline \multicolumn{4}{|r|}{DESIGU EIDTE © . 00408} \\
\hline \multicolumn{4}{|l|}{* Improvad keasuramene Technique -} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{tt "Opsqued" manss that the cose reetcie had a aetal material placed ofer the dark porelod of the reticla co provent any cramaulssion ercept chrough the olit.}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{A fliter cell out undar "Condfelome" mang thet the fillear vas placed in the light path to chasge the ciaraserar of the lishe failing on the daector.} \\
\hline
\end{tabular}
(


\section*{ \\ \section*{蚊:}}

40,
( 1 н (x)
 (x,
(10
 (19


l

莀!

l





\section*{號 \\ \(\mathfrak{m o c}\) \\ . \\ cos.}
 (
 (20nn
 (1) An
\(\frac{12}{2}\)

\(\square 1\)
\(\square\)
 A Subsidiary of Hughes Aircraft Compony I NTERNALMEMORA if DUM
G. S. Plows

CC:Distribution

SUBVECT: ACO7 Optional Test Configuration-Bands 1--5, 7 Testing

DATE: 820527
REF: HS23ß-8004

FROM: J. C. Campbell
BLDG: BII MAIL STA. 78 EXT: 6151

REFERENCE: HS236-7937 IAO4 Configuration Options

INTRCDUCTICN:
This nemo descrites a pessible optional test configuration. TM to BTCE, that can be used for Bands \(i-5,7\) testing during the ACO7 test phase to support the presently defined ACOT data collection and also to provide the TM instrument with computer controlled pouer turn on and thermal shutdown capability. This configuration is based on referonce meno H5236-7989 and is presented here in terns of existing configuration drawings and test procedures to the axtent possible.

\section*{TEST COPFFIGURATION}
1. Configure TM \& BTCE per drawing 3533iC0-3C0-2, but with the follouing possible exceptions:


\section*{ORIGINAL PACE FS} OF POOR QUALTY
2. Then refer to phase-1 DWG 3533100-300-1, and make the following connections or changes:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ! & \multicolumn{3}{|r|}{FUNCTION} & & REGUIREMENT & & NG 20:SE & \multicolumn{4}{|c|}{CABLE or CONNH} \\
\hline 1 & & AOTS & 5 VIDEO & & CONNECT & & E/F-17 & ! & WTC30\& & & \\
\hline 1 & B2 & AOTS & 5 VIDEO & & CONNECT & ! & E/F-17 & ! & WTC31\% & & \\
\hline 1 & B3 & AOTS & S VIDED & ! & CONNECT & : & E/F-17 & & WTC32\% & 37 & \\
\hline ! & B4 & AOTS & S VIDEO & ; & CONNECT & & E/F-17 & & WTC332 & 38 & \\
\hline 1 & B5 & ADTS & V VIDED & : & cordnect & , & E/F-17 & : & WTC-41 & & \\
\hline ! & 37 & AOTS & U VIDEO & ! & CONNECT & , & E/F-17 & - & WTC-42 & & \\
\hline : & & AOTS D & OC RESTR & , & 1 CONNECTION & & E/F-15 & & WSOES t & \(J\) & \\
\hline : & & OTS T & TLIAY & ; & NOT USED & ! & E/G-15 & & W5050 J1 & 2, & \\
\hline ; & & & & ; & & & & : & \& \(J 40\) & & \\
\hline ; & & ars v & VID OUT & ; & CONNECT & ' & \(F-15 / 17\) & & W5035\% & 50 & \\
\hline 1 & & AOTS I & IW COUNT & ! & DON'T CARE & ! & S-16 & & AOTS CON & - & \\
\hline ; & DC & C RES & STORE & ! & CONNECT & ! & E-19 & ! & 1-137 & & \\
\hline
\end{tabular}
3. Providt the following functions according to test procedure number ipp32015-514:
a) Instail the SMACC per Appendix \(U\) : conn..t SMACC or SAMLOCK Drawer to penetration-plate connector P-10 via adapter cable \(\ddagger\) WO7!. Ground the SMACC de nnwer return to the Collimator Ground Bus.
b) Implement "Shutter As ade" via Appendix S. Method 3 at TM connestar P4S.
4. Install the BTC and CFPA Temp Sensor Converter per Appendix \(V\) of TPS2015-⿷04.
5. Bring TMT software up using TLMY stream \(\not \approx 2\).

TM COMMANDS REGUIRED:
Poiser the following \(T M\) functions \(O N\) :
TM COMMANDS (ALL BANDS)
TM: 001: PSI CN
TM: 004: Thermal Shutdown Enabled
TM: 009; SME 1 ON / 2 OFF
TM: \(005_{i}\) MUX ON (PSI)
TM: 007: TLMY Ecaling ON
The choice of this configuration is optional and is to boused at the Test Director's discretion. If its use fails to support the test adequately then the configuration shall be per phase - I DWG 3533100-300-1 as originally specified by TP32015-514.

SANTA BARBARA RESEARCH CENTER A Subsidiary of Hughes Alrerati Comoenv
INTERNAL MEMORANDUM
TO:
J. L. Engel
Cc. Data Bank (7):

Opíics File Distribution

SUBJECT. Spatial Coverage Band 6


A deviation/waiver ( \(D-156\) ) has been initiated to request that Band 6 IGFOV be calculated from component level spot scan detector measurements in lieu of measuring the IFOV of Band 6 channels using a scanned slit source per TP32015-514 Spatial Coverage Test Procedure ACO7R.

For convenience a copy of TM System Specification GSFC 400.8-D-210 Spatial Coverage paragraph 3.2 .3 and TH HgCdTe Band 6 Test Report (applicable pages) for array 4-29-2G-120 are attached. Data from this test report was used to generate Table I.

Table \(I\) summarizes the linear and calculated angular Band 6 EGFOV vaices. The telescope and relay optics geometrical and diffraction contributors to 2 mage quality will not result in any appreciable change of Band 6 IFOV. Thus the values tabulated in Table \(I\) indicate the TM FH Band 6 IFOV meets the NASA specification. In conclusions I believe the methodology proposed in the deviation/ waiver is adequate and justifiable.

\(d z\)


\section*{ORIGINAL PAGE IS OF POCR QUALITY}

Table I. Band 6 Calculated IGFOV
Based upon detector and telescope measurements
\begin{tabular}{|c|c|c|c|c|}
\hline Detector & \(\mathrm{HW}_{\mathrm{y}}\) (inch & \(\mathrm{HW}_{\mathrm{X}}(\mathrm{inch})\) & Cross Scan \(\mathrm{IGFOV}_{y}\) & Along Scan IGFOV \(_{X}\) \\
\hline 1 & . 00780 & & \(162.5 \mu r\) & \\
\hline 1 & & . 00820 & & 170.8 \(\mu \mathrm{r}\) \\
\hline 2 & . 00760 & & 158.3 ur & \\
\hline 2 & & . 00824 & & 171.7 mr \\
\hline 3
3 & . 00786 & . 00830 & \(63.8 \mu \mathrm{r}\) & \(172.9 \mu r\) \\
\hline 4 & . 00800 & & \(166.7 \mu r\) & \\
\hline 4 & & . 00832 & & 173.32 \(\mu \mathrm{r}\) \\
\hline
\end{tabular}

IGFOV \(=\) Detector \(\operatorname{Half-Width\div (EFL} \underset{T M}{ } \times\) Relay Magnification, \(\left.M_{R}\right)\) \(E F L=95.995\)
\(\mathrm{M}_{\mathrm{R}}=0.5\)
Specification is: IFOV \(\leq 174.4\) ur
Accuracy of lieasurement: \(\pm 16 \mu r\)









戶..ォ




¢




 irack dipeztions.

















\title{
SANTA BARBARA RESEARCH (ENTER \\ . Subsidiary of Hughes Aircraft Company \\ is coromar derive. celesta california
}
\(\therefore\) TEST REPORT
ORIGINAL PAGE IS OF POOR QUALITY

\author{
TM HgCdTe \\ BAND 6
}
array \(4-29-26-120\)
PART NURSER 50959
PL NUMBER 1162

PREPARED BY:


APPROVED BY:



C
\(\frac{3 C A R E}{.0080^{\prime \prime} / 1.0^{\prime \prime}}\)
\[
\begin{aligned}
& \begin{array}{l}
\text { ORIGINAL PAGE IS } \\
\text { OF POOR QUALITY }
\end{array} \\
& \text { OF POOR QUALITY } \\
& \text { 516. } 7115 \mathrm{HE}
\end{aligned}
\]
\(r\)

ORIGINAL PAGE IS OF POOR QUALITY

1
original page is OF POOR QUALITY


6

;


ORIGINAL PAGE IS OF POOR QUALTTY
r.


TABLE IV
IH EgCCIE Derector Array
Array Mo.: 4-29-2G-120

MECRANICLI I:BSEECTIO: (See Drawing 50959


> Measurements is \(\frac{\text { Camplil }}{9.27 .79}\)
> Date

VISUAL T:SPECEIC:
(See Product Spec 16027)
ORIGINAL PAGE 踢 OF POOR QUALITY

*Mark here to " 'lag" a problem. Examined by \(\frac{1 . \text { Can nell }}{1}\) Elements clean. Slight PR residue Date 9.27 .78 on sapphire substrate.


\title{
ORIGINAL PAGE IF OF POOR QUALITY
}

8 то.
F. R. Phillips

SLbject.
Spurious Detector Response Observed
i. Durinq AC07R Spatzal Coverage Testing

SANTA BARBARA RESEARCH CENTER
a Subsuiovy of Huphes Aurcrate Company
INTERNAL MEMORANDUM

CC Distribution

REF: 2221-612
HS236-8027
from: J. C. Campbell
bldg. bll mall sta. ?
EXt. 6151
C. A potentially serious problem has been observed during AC07R Spatial Coverage Testing of the F-1 Model Thematic Mapper. While posittoning the scanning slit/source assembly in preparation for later phase of the recuired testing, spurious signals of up to \(10 \%\) of peak were observed on Band 1 Detectors 1 and 2. This chance observation instigated an immediate search which resulted in locating two more unwanted feaks on the Band 1 FOV skirts and a simılar set in three out-of-field locations for Band 2. At that time Failure Report FRS776 "On Spurious Response in Extended Far Field Locations" was initiated and a formal troubleshooting sequence was begun. Since then, additional data has been collected for Band 4 showing the presence of four spurious peaks. Bands 5 and 7 were similarly investigated with negative results thus indicating that we are faced with a problem peculiar to the prime focal plane array.

An additional test was undertaken to roughly locate the source This was accomplished by masking the telescope aperture, one half of its area at a time. The mask when inserted over top or bottom halves, cut the magnitude of the beam in half. Inserted over the \(+Y\) half of the aperture, it reduced the beam to \(80 \%\) of maximum. Inserted over the \(-Y\) half of the aperture, the mask produced no change in signal level. The spurious radiation thus passes thru the \(+Y\) half of the telescope aperture.

The initial supposition was that the observed effects might be due to light reaching the detectors thru the filters after multiple reflections in the TM optical system and/or in the collimator and test equipment. Subsequent investigations show that the light leakage is due to unfiltered light and, therefore, cannot be entering thru any normal optical path. This was demonstrated by inserting various spare TM filters into the optical beam near the collimator source and observing the effect on the spurious signals. The evicience is as follows:
1) Looking st a Band 2 Detector 2 spurious signal, a supplemental Band 2 filter attenuates the spurious peak by about 908.

\section*{ORIGINAL PAGE IS OF POOR QUALTIY} P. R. Phillips

15 June 1982
2221-612
HS236-8027

Spurious Detector Response...
2) Lookirig at a Band 4 Detector 2 spurious signal, a supplemental Band 4 Eilter attenuates the signal by about \(70 \%\). When clear glass was used instead of the filter, the signal dropped by \(10 \%\).
3) Looking at Band 1 Detector 2, a supplemental Band 1 filter causes all spurious signals to disappear. Insertion of a Band 4 filter attenuates the Band 1 signal by about 708; the same as for Band 4.

Current speculation is that the observed effects may be due to radiation reaching sensitive areas of the detector array other than thru the attached filters. Such abnormal paths could be thru the sides of the detector substrates or by reflections from gold plated detector lead wires. The precise geometry of such effects is not presently understood. Dick Cline and Dave Randall will be consulted concerning array geometry with respect to fossible light paths.

Furthex investigation is planned and may inciude:
1) Replacing the current tungsten filament slit/source with an integrating sphere and slit with filtering that more nearly represent the sunlit earth source.
2) Try a different slit size (currently 0.1 IFOV). A larger slit might increase the wanted signal without increasing the spurious radiation.
3) A more detailed survey of the aperture masking may be performed.
4) Use more reasinable values of source current to more nearly simulate actual \(T M\) radiation inputs. In order to observe the spurious effects, lamp currents were increased by up to 50\%.

Since the last paragraph above was written, items 1 and 2 of the further investigation have been completed. The additional test results are as follows:
1) The ribbon filament lamp was replaced with the 6 inch SIS that is normally used on collimator number 3. The primary purpose of this change was to try to level out the spectral raniance from the source to prevent Bands 1 and 2 (and 3 to some extent) from being overexposed to longer wavelength radiation in the Band 4 region.

\title{
ORIGINAL PAGE IS OF POOR QUAITIY \\ 15 June 1982 \\ 2221-612 \\ HS236-8027
}

Spurious Detector Response...
a) Looking at the BlD8 signal ( \(100 \%\) ) first, it was found necessary to use 100 Hz filter on the output. The 100\% response (SIS 3 7.65A) was \(360 \mathrm{mv}(\mathrm{rms})\). The spurious signal amounted to less than 1 mv on a noise floor of \(\sim 1.8 \mathrm{mv}(\mathrm{rms})\).
b) A check of B2D8 gave:

100\% zesponse \(\cong 380 \mathrm{mv}(r \mathrm{~ms})\) a +.0074 n ( \(\mathbf{Y}\)-pos.) noise + spurious \(\cong 1.2 \mathrm{mv}+0.4 \mathrm{mv} @+.0694^{\prime \prime}\) (Y-pos.) noise + spurious \(\cong 1.2 \mathrm{mv}+0.2 \mathrm{mv} @-.0576^{\prime \prime}\) (y-pos.)
c) A check of B4D8 gave:

200\% response \(\cong 360 \mathrm{mv}(\mathrm{mms})\) दे \(-.2216^{\prime \prime}\) ( Y -pos.) The spurious response could not be found so it was decided to use a lock-In Amplifier. Using a PAR J.86-A and processing the unfiltered signal from the Tustin input gave the following data:
1008 response \(=0.64 \mathrm{~V}\) dc (on 500 mv scale) @ -.2194" (Y-pos.)
Spurious response signals appeared to reside at coordinates -.1736" and -.1536". The signals were out-ofphase with the \(100 \%\) signal and were on the orde of 0.3 and 0.4 V (rms) on a 2 mv scale. This gives a suppression ratio on the order of 1000:1.
2) Changing the slit width from \(1 / 10\) IFOV to \(\sim 1\) IFOV ( 5 mils at the collimator focal plane) and still looking at B4D8 gave the following results:
new \(100 \%\) response \(=1.00 \mathrm{~V}\) dc (on 500 mv scale) e-.2810" (Y-pos.)
spurious response \(\simeq 0.2 \mathrm{~V}\) dc (on 2 mv scale) \&-.2340" (Y-pos.) spurious response \(\cong 0.3 \mathrm{~V}\) dc (on 2 mv scale) e \(-.3130^{\circ}\) ( Y -pos.) spurious response \(\simeq 0.8 \mathrm{~V}\) dc (on 2 mv scale) e-.3450 (Y-pos.)

Positioning the slit at B4D3's spurious response rone (-. 3450) and checking each detector's signal level gave even detector spurious response signals in the range 1.5 to 1.7 mv (rms) and odd detector response signals in the range 0.3 to 0.8 mv (rms).

A similar check on BIDl using the expanded slit gave a 100 mv signaloat the band center with a largest spurious peak of 3 mv at a displacement of -.0600 ( Y -pos.). Even channel BID2 gave a spurious peak of about \(\frac{1}{2}\) this magnitude and a further check of BlD5 gave 5 mv .


ORIGINAL PAGE IS
OF POOR QUALITY
OF POOR QUALITY
ro. Distribution
shbire Investigation of ACOTR Test failure
r.
\[
0-0
\]

SANTA bARBARA RESGARCH CENTER A Subsiotary or Hughes Airctart Componr
INTERNAL MEMORANIUM
C:. TM DMO (6)

Bll mall. STA.
79
EXT.
6132

Subject test failure revealed that Bands 1 and 2 show secondary peaks in
\(\therefore \quad\) sensitivity well away fron the nominal channel centers.
^ mecting was held on Monday, 14 June 1982, to determine what actions should be taken to resolve this failure. In attendance were:
D. Adams, D. Brantshaft, J. Camphell, C. Kent, L. O'Comell, A. Perline,
i. \(\quad\) B. Millips, G. Plens, D. Randall, and T. Sciacca.

The following actions and assignees were agreed to by the conferees:
Action
Assignee
1. Document results of tests to date.
J. Camphell
2. Conduct special test - rerun tests using
G. Plews two different aperture masks.
D. Brandshaft
3. Review Protoflight RL-16 and BI,-17 test results to detemine if same condition existed.
4. Reviel PFPA construction sources.
D. Cline (?)/
D. Randall

The conferees will meet at \(8 \mathrm{a} . \mathrm{m}\). on Tuesday, 15 June, in Bldg Bll, Room A-711, to review the results/status of the action items listed above.


10/RRP/lbg

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

SANTA BARBARA RFSI．IRCHCINTI：R
A Subsifiaty ar Mughe＇s Ai，．\％atr Compary
INサRKAI MilMORANIUM
（W Distributjon
（1）IM IMG）（ 6 ）
1911 15．huc 1982
に11 \(11233(1-8031\)

1：＂い f．R．Phillips

79
1 1（1）． 2

Subicet test falume revaled that Rads 1 and - show socomata peahs in sensitivity well abily fren the mominal siname：contors．

A＂meting was held on bomlay，If iune losi，to drternine what actions should be taken to resolve onis tailure．In attundane sexe：




Action
1．ihowanent result＝if tests io dati．
 tho difloreai aporiare mashs．

S．Revien Protuflight Bl．－Io and hl．－1tert results to dete：anme if sane condition existed．

4．Reviow PFlin construction sources．
1）．Cline（？）／
D．Randall

The conferces will meet at \(8 \mathrm{a} . \mathrm{m}\) ．on Tucsday， 15 June，in Bllg Bll，Room A－711，to review the results／starus oi the action items listed above．


10／FRP／ling

ORIGINAL PAGE IS. OF POOR QUALITY

\section*{SANTA BARBARA RESEARCH CENTER \\ A Subsidiarr of Hugnes Aircreft Compsnr}

INTERNAL MEMORANDUM

C

\author{
TO: \\ F. R. Phillips
}

SLBJECT

Spurious Detector
Response Observed During ACO7R Spatial
Coverage Testing


EXT. 6151
r.
f.

A potentially serious problem has been observed during ACO7R Spatial Coverage Testing of the \(E-i\) Model Thematic Mapper. While positioning the scanning slit/source assembly in preparation for later phase of the required testing, spurious signals of up to los of peak were observed on Band 1 Detectors 1 and 2. This chance coservation instigated an innediate search which resulted in locating two more unwanted peaks on the Band 1 FOV skirts ard a similar see in three out-of-field locations for Band 2. At that time Failure Report FR5776 "On Spurious Response in Extended Far Field Locations" was inlたiated and a formal troubleshooting sequence was begun. Since \(\sin\), additional data has been collected for Band 4 showing the presence of four spurious peaks. Bands 5 and 7 were similarly investigated with negative results thus indicating that we z=e faced with a problem peculiar to the prime Eocal plane array.

An additional test was undertaken to roughly locate the source of spurious radiation with respect to the collimator beam. This was accomplished by masking the telescope aperture, one half of its area at a time. The mask when inserted over top or bottom halves, cut the magnitude of the beam in half. Inserted over the \(+Y\) half of the aperture, it reduced the beam to \(80 \%\) of maximum. Inserted over the \(-Y\) half of the aperture, the mask produced no change in signal level. The spurious radiation thus passes thru the \(+Y\) half of the telescope aperture.

The initial supposition was that the observed effects might be due to light reaching the detectors thru the filters after multiple reflections in the \(T M\) optical system and/cr in the collimator and test equipment. Subsequent investigations show that the light lealiage is due to unfiltered light and, therefore, cannot be entering thru any normal optical path. This was demonstrated by inserting various spare TM filters into the optical beam near the coilimator source and observing the effect on the spurious signals. The evidence is as follows:
1) Looking at a Band 2 Detector 2 spurious signal, a supplemental Band 2 Eilter aṫenuates the spurious peak by about \(90 \%\).

\title{
ORIGINAL PAGE IS OF POOR QUALITY
}

15 June 1982
2221-612
HS236-8027

Spurious Detector Response...
a) Looking at the BlD8 signal ( \(100 \%\) ) first, it was found necessary to use a 100 Hz filter on the output. The \(100 \%\) response (SIS @ 7.65A) was 360 mv (rms). The spurious signal amounted to less than 1 mv on a noise floor of \(\sim 1.8 \mathrm{mv}(\mathrm{rms})\).
b) A check of 32 D8 gave:
\(100 \%\) response \(\cong 380 \mathrm{mv}(\mathrm{ms})\) @ +.0074 Cl (Y-pos.) noise + spurious \(\cong 1.2 \mathrm{mv}+0.4 \mathrm{mv}\) @ + .0694" (Y-pos.) no:se + spurious \(\equiv 1.2 \mathrm{mv}+0.2 \mathrm{nv}\) @ - .0576" (y-pos.)
c) A check of \(34 D 8\) gave:

200ヶ zesponse \(\equiv 360 \mathrm{mv}(\mathrm{ms})\) e \(-.2216^{\prime \prime}\) (y-pos.)
The spurious response could not be found so it was decicied to use a Iock-in AncliEier. Using a PAR 186-A and processing the unfiltered signal from the Tustin input gave Ene following ciata:

100ヶ response \(=0.64 \mathrm{~V}\) dc (on 500 mv scale) (o. \(2194^{\prime \prime}\) (Y-pos.
Spurious response signals appeared to reside at coordinares -.1736" and -.1536". The signals were out-of- phase with the \(100 \%\) signal and were on the order of 0.3 and 0.4 V (rms) on a 2 mv scale. This gives a suppression ratio on the order of 1000:1.
2) Changing the slit width from \(1 / 10\) IFOV to ~ 1 IFOV ( 5 mils at the collimator focul plane) and still looking at B4D8 gave the following results:
new 100 z response \(=1.00 \mathrm{~V}\) da (on 500 mv scale) e-.2810" (Y-pos.
spurious response \(\approx 0.2 \mathrm{~V}\) dc (on 2 mv scale) e -.2340". (Y-pos.) spurious response \(\approx 0.3 \mathrm{~V}\) dc (on 2 mv scale) e-.3130" (Y-pos.)
spurious response \(\simeq 0.8 \mathrm{~V}\) dc (on 2 mv scale) @-.3450 (Y-pos.)
 and checking each detector's signal level gave even detector spurious response sigrals in the range 1.5 to 1.7 mv (rms) and odd detector respense signals in the range 0.3 to 0.8 mv (rms).

A similar check on BLDI using the expanded slit gave 100 mv signal at the band ceater with a largest spurious peak of 3 mv at a displacement of -.0600 (Y-pos.): Even channel BlD2 gave a spurious peak of about \(\frac{1}{2}\) this magnitude and a further check of BlDs gave 5 mv .

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

"u instrubution
stbiber Imestagation of ACOTR Test Failure
f:
SANTA BARBARA REESEARCH CENTER A Subsiousty of musses Aiccreit Comoong INTERNAL MEMORANDUM

CC TM [PO (6)
StBract
-



Sujjest tes: failure revealed tiat kands 1 and 2 show seconciary peaks in scas:ilvity hell diay from the nomanal channel centers.

A merimg was held on Monday, 14 Jwhe \(15 S\), to determine what actions should be isica to resolve inis jailure. in attencance were:


The following actions and assignees were agreed to by the conferees:

Aztion
1. Joctment results \(5^{\circ}\) tests to date.
2. Cenduct special iest - rean tes:s using ino dafferent aperture mashs.
3. Revier Protoflaght BL-16 and EL-iT test results : 0 devimine if same condition existed.
4. Review PFPA construction sources.
D. Cline (?)/
D. Fandall

The conferees will meet at \(8 \mathrm{a} . \mathrm{m}\). on Tuesday, 15 June, in Bldg Ell, foom A. IIl, to review the results/status of the action items listed above.


LO/FSP/Ibg

\title{
ORIGINAL PAGE OF POOR QUALITY
}

SANTA BARBARA RESEARCH CENTER A Subsidiser ot Hughes circtall Compony
INTERNAL MEMORANDUM
\(\because 0\) Distribution
CC. TM DMO (6)

Date 15 June 1982
KEF H HS 236-8031
SCBllCl. Instigation of ACOTR Test Failure
FROM: F. R. Phillips

BLDC: BAl MAll STA 79
rit 6152
= Subject rest failure revealed that Bands 1 and 2 show secondary peaks in sensizurity hell away from the nominal channel centers.

A -eating was held on Monday, 24 june 198?, to determine what actions should
be taken to resolve this íailure. In attendance here:
D. Adams, D. Erandsiaft, \(\therefore\) Campbell, C. Rent, L. O'Coneli, A. Ferine, Э. Fillips, G. Flews, D. Zancall, and T. Sciacca.

The following actions and assignees were agreed to by the conferees:

Action
i. Document results of tests to date.
2. Conduct special test - rein tests using two different aperture masks.
3. Review-Protoflight BL-16 and SL-i7 test results to determine if same condition existed.
4. Review PFPA construction sources.
D. Cline (?)/
D. Randall

The conferees will meet at 8 a.m. on Tuesday, 15 June, in Bldg Bill, Room A- ill, to review the results/status of the action items listed above.


LO/ERP/IDg

original page is OF POOR QUALITY

SANTA BARBARA RESEARCH CENTER A Subsudeny of Mugses Amcraif Compeny
INTERNAL MEMORANDUM
r.

T0: ப etribution
c: G. Hyde

BL-10 Clarificarions (Revised)

BLDC. 774 MAILSTA. 79 EXT. 4351

REF: HS 236-6666, Test Requirements for BL-10, Radiometric Calibration of Bd. 6, 29 April 1980.
I. Introduction

The purpose of this IDC is to clarify the method of determining \(L_{E F F}\) (effecrive radiance shown in Appendix Bfin referenced ICD, and to call out more explicir definition of the end points of the detectors transfer characteristics. Since the issuance of the inicial IDC, more quantitative measurements have been made on both che throughpit of the entire tM instrument and the External Calibrator.
II. Spectral Response

Table C-1 of Appendix \(B B\) depicts the normalized response of the \(I M\) (from radiance input to the aperture to output of the Bd. 6 derectors) for the 3 expected temperature sates of the CFPA, \(90^{\circ}, 95^{\circ}\) and \(105^{\circ} \mathrm{K}\).

The \(L_{E F F}\) in Eq. 3 of Appendix \(B B\) is first applied co determine the TM response to an IDEAL BB. Once this is determined for a given IDEAL \(B B\) uithin the specified range of the IM ( \(L_{\text {EFF }} 250^{\circ} \mathrm{K}\) to \(L_{E F F} 320^{\circ} \mathrm{X}\) ), the Exterial Calibrator BB (either the \(E E F_{B B}\) or \(M T F_{B B}\) ) equivalent radiance is determined by epplying equations \(A, 2\), and 3 .

To clarify this process, the expressions relating \(L_{E F F}\) for an IDEAL \(B B, M T F_{B B}\), and \(R E P_{B B}\) are given in Appendix \(B B\), also. It 18 recommended that tables be constructed for \(L_{\text {EFF }}\) (IDEAL.BB) and \(L_{E F F}\left(M T F\right.\) and \(R E F_{B B}\) ) uhich will be useful in determining CAIIBRATOR BB temperature commands for desired \(L_{E F F}\) (IDEAL BB).
* This Appendix is superseded by the attached Appendix BB.
\[
-2-
\]
III. External Calibrator

The expressions in Appendix BB have been modified to show the appropriate transfer characteristic of the \(R E F_{B B}\) and MTFBB.
Note that the REF and MTF LEFF transfer equations are different in thar the optical paths are different.
IV. Graphical TM Detector Model

Tha attached graph, Figure \(I\), of Appendix BB is a model of a typical derector expected transfer curve. The purpose of the figure is to show how points on the curve are to be determined-by calcuiation, measurements, or by derivation (a combination of measurements and calculations). The end. points on this curve which will be determined by temperature commands of the Extermal Calibrator BB's represent specified equivalent SCENE Lomperatures. These temperatures are used as the boundary extremes theoughout all testing in BL-10; thereforc, any place in the BI-10 (ES236-6666) document end point commands are called out, the temperatures of \(\mathrm{MTF}_{\mathrm{BB}}=\) \(251.3^{\circ} \mathrm{K}^{*}\) and \(R E F_{B B}=323.8^{\circ} \mathrm{K}^{*}\) are to be used. .
V. NETD Calculations
A. In reference document, pg. 16a, change. co
B. In Ref., Pg. I6e, change to
1) \(\left.\left.\dot{\rho}_{\mathrm{B}}=0.85,2\right) \rho_{\mathrm{R}}=0.89,3\right) \varepsilon=0.995\)
C. In Ref., pg. 17f, - eliminate (f)
D. In Ref., pg. 19, NETD
\[
\begin{aligned}
& L_{E F F}=e f f e c t i v e ~ r a d i a n c e ~ f o r ~ I D E A L ~ B B ~ \\
& \partial L_{E F P} / \partial T=\text { data base values }
\end{aligned}
\]
* Note the comand temperatures to the External Calibrator BB's have been determined by applying the process described in I-III.
A. Radiance/Temperarure Relations

Several data reduction processes require conversions relating radiance and temperature from various thermal sources within the TM, Ideal \(B B\), and External Calibrator. The following expression is to be used:
\(L=\frac{1}{\lambda^{5}(\operatorname{EXP}} \cdot \frac{1909610^{4}}{\left.\frac{1.4387910^{4}}{\lambda T}-1\right)}\)
\(L\) = spectral radiance in Watts/ cm \({ }^{2}\) - sr - Hm
\(\lambda: \mu\) wavelength
\(T=\) temperature, \({ }^{0} \mathrm{~K}\)
B. Radiance Calibration Determinations from External Calibrator

The spectral radiance, LEFF, which is proportional to the TM multiplexer output is basically a function of two elements. One element is the radiance from the Calibrator or an Ideal BB, and the other is the effective transfer characteristics of the \(T M\) components.

The first element may be expressed by the following equation:
\(L_{C A L I B / B B}-P_{C A L I B} \varepsilon_{B B} L_{T_{B B}}+\left(1-\rho_{C A L I B} \varepsilon_{B B}\right) L_{T_{2} M}(E q 1)\)
- PCALIB \(\quad 0.8 \dot{9}\) for Ref \(\operatorname{RBB}, 0.85\) for \(\operatorname{MTF}_{B B}\)
\(\varepsilon_{B B} \quad 0.995\)
\(L_{T A B B} \quad Q^{\circ} \operatorname{Radiamce}\) of \(B B\) at \(T\) from (Eq)
\(L_{\text {CALI }}\) - radiance out of CAIIB

\section*{ORIGINAL PAGE 13 OF POOR QUALITY}

APPENDIX BB (COnt'd)
\(L_{T_{2} M}=\begin{aligned} & \text { radiance of the calibrator mirrors (composite) as } \\ & \text { function of their temp., }\end{aligned}\)
\(T_{2}=\frac{2 T_{250}+2 T_{251}+T_{253}}{5}\) where subscripts are paraunctir numbers,
The second element has been determined by measuring the thruput of the \(T M\) instrument and is depicted in the following table:


The effective spectral radiance, \(L_{\text {EFF }}\), is calculated from the following:
\[
\begin{aligned}
& \mathrm{L}_{E F F}=\frac{\Sigma(1)(2) \Delta \lambda}{\Sigma(2) \Delta \lambda} \\
& \Delta \lambda=0.2 \mu(f r 0 \mathrm{II} 10.2 \text { to } 12.8 \mu \mathrm{MI})
\end{aligned}
\]
\(\$\) see following page for alternate equation

APPENDIX BB (Conte)
ORIGINAL PAGE IS OF POOR QUALITY
t.

The calculations for (1) in this equation use the actual measured temperatures, \(I_{2}\), of the mirrors in the calibrator.
\[
\begin{aligned}
& \text { mosighted } \\
& \text { ceiavera }
\end{aligned}
\]

Taken average of ficalibrator mirror temperatures using telemetry paraineter numbers 24,26, and 27 This is required in the data reduction.

MTF or REF blackbody.
The above effective radiance takes into account the actual spectral shape of the TM transmission and detector responsivity. This effective radiance can be translated so scene temperature by substituting an IDEAL BB for the (Eq. 1) and finding the temperature of the \(B B\) which gives the same effective radiance as the calibrator. Conversely, particular temperatures of interest can be substituted to find effective radiance.

ALTERNATE EquATION
\[
\begin{equation*}
L_{E F F}=K_{1} /\left(\operatorname{arp}\left(K_{2} / T-1\right)\right. \tag{Eq.4}
\end{equation*}
\]
or conversely,
\[
\begin{equation*}
T=K_{2} / \ln \left(K_{1} / L_{E F F}+1\right) \tag{q}
\end{equation*}
\]
where
i

\[
95 K \quad K_{1}=69.527
\]
\[
K_{2}=1293.1
\]
same as 90K
\[
105 \mathrm{~K} \cdot K_{1}=74.5719 \begin{aligned}
& K_{2}=1311.1
\end{aligned}
\]
same as 90 K

C
* Using average values, \(K_{1}=60.776, K_{2}=1260.56\), gives results within \(0.05 \%\) for \(F 1\).
（2）（See Attached Table）and calculate for
TM＠ \(90^{\circ} \mathrm{R}, \mathrm{L}_{\mathrm{EFF}}\) 山四 \(5^{\circ} \mathrm{K}\)（INC）for 240 to \(340^{\circ} \mathrm{K}\)
\(105^{\circ} \mathrm{K}\)
```

O-\cdots
C. ORIGINAL PAGE IS

```

\section*{ORIGINAL PAGE IS OF POOR QUALITY}
```

8.

l:
$L_{\text {eff, }}$ (TM $_{\text {CALIB }}=$

$$
\sum \begin{array}{llll}
\sum_{\lambda_{1}}^{\lambda_{2}} & \text { (1) (2) } \Delta \lambda \\
\lambda_{\lambda_{2}} & \text { (2) } \Delta \lambda
\end{array}
$$

Leff, Calis
(2) See Attached Table TH ($90^{\circ} \mathrm{X}$)
(1) $L_{C A I I B / R E E_{B B}}=(0.995)(.89) L_{B B_{T_{C}}}\left(\frac{10.2_{1}}{}=\left(12 . B^{\mu}\right)+[1-.995(.89)] L_{T_{2} M}\right.$
$L_{M_{2}}^{\binom{10.2}{12.8}} \quad\left(O R T_{2}\right.$ in APPENDIX BB)

$$
\begin{aligned}
\text { Calculate (1) for } T_{\mathrm{c}}= & 325,320,315 ; \\
& 300^{\circ} \mathrm{K}, 322.7
\end{aligned}
$$

TM RESPONSE TO MTF ${ }^{\text {BB } / \text { CALIB. }}$.
In Above Process, Replace (I) by Following:
r. $\{$

> (1) $L_{C A L I B / M T F}^{B B}=(0.995)(.85) L_{I_{M T F}}\binom{10.2}{12.8}+[1-.995(.85)] L_{T_{2} M}$
> $L^{\binom{10.2}{12.8}}$

$$
\begin{aligned}
& \text { (1) } L_{C A L I B / M T F_{B B}}=(0.995)(.85) L_{T_{M T F}}\binom{10.2}{12.8}+[1-.995(.85)] L_{T_{2} M} \\
& \text { Calculate (1) for } T_{\text {MTF }}=240,247,260,300, \\
& \text { 315, 251, 325, 320, } \\
& \text { 255, 297, } 305
\end{aligned}
$$

$L_{E F F} \begin{aligned} & T M \\ & C A L I B\end{aligned}=\frac{\sum_{\lambda_{1}}^{\lambda_{2}} \text { (1) (2) } \Delta \lambda}{\sum_{\lambda_{2}}(2) \Delta \lambda}$

ORIGINAL PAGE IS OF POOR QUALITY

TO:
Distribution J

SANTA BARBARA RESEARCH CENTER A Subsiduery of Hughee Airectit Company
INTERNAL MEMORANDUM.

SUBJECT: A Band 6 Calibration Problem

CC: L. Linstrom (GSFC)
O. Weinstein (GSFC)

| DATE: June 3, 1982 | |
| ---: | :--- |
| REF: | HS236-8013 |
| | SED 111 |
| FROM: | J. Lansing |
| | |
| BLDG. | Bl1 MAIL STA. 40 |
| EXT. | 6261 |

A recasting of the equations governing band 6 performance has led to a novel means of assessing the quality of the band 6 calibration data, which data row appear less promising.

The TM gain is defined as

$$
\begin{equation*}
G=\frac{Q_{s c 2}-Q_{s c l}}{L_{s c 2}-L_{s c l}} \tag{1}
\end{equation*}
$$

where $Q=$ output signal, counts
$L=$ radiance, $\mathrm{mW} / \mathrm{cm}^{2}-\mathrm{sI}$
scl, sc2 designate two scene elements
If TM band 6 views a scene giving exactly the same signal as obtained from the shutter, the scene radiance (L esh) will conform to the following equation;

$$
\begin{equation*}
L_{e s h} \rho_{t}+I_{t} V_{t}\left(1-p_{t}\right)=I_{s h} V_{s h} \tag{2}
\end{equation*}
$$

where $\rho=$ reflectance
$V=$ view factor relative to scene view factor
e designates scene equivalent
sh designates shutter
t designates telescope
Equation (2) is based on the fact that the detector's view of the shutter is replaced by a combination of the scene and a number of internal telescope parts when the shutter is aside. Lumping all these as "telescope" is a simplification which does not affect the present argument. Detailed consideration of the parts is shown in HS236-7434.

A similar equation can be written for the internal blackbody:
$L_{e b b} \rho_{t}+L_{t} V_{t}\left(1-\rho_{t}\right)=L_{b b} V_{b b} \rho_{s h m}+L_{s h}\left(V_{s h}-V_{b b}\right)+L_{s h} V_{b b}\left(1-\rho_{s h m}\right)$
where
bb designates internal blackbody
(3)
shm designates shutter mirror

ORIGINAL PAGE IS OF POOR QUALITY

The Eirst term on the right of equation (3) is the blackbody radiance reilected toward the detector, the second term is the amount of shutter radiance from areas beyond the mirror, and the third term is the radiance emitted by the mirror.

Making substitutions in equation
(1)

$$
G=\frac{Q_{b b}-Q_{s h}}{L_{e b b}-I_{e s h}}
$$

Solving equation $\left(2 ;\right.$ for $L_{e s h}$ and (3) for $L_{e b b}$ and substituting in (4) gives

$$
G=\frac{Q_{b b}-Q_{s h}}{\left(L_{b b}-L_{s h}\right) v_{b b^{\prime}} \rho_{s h m^{\prime}} \nu_{t}}
$$

Setting this equal to equation (1) gives

$$
V_{b \dot{b}} \rho_{s h m} / \rho_{t}=\frac{Q_{b b}-Q_{s h}}{L_{b b}-L_{s h}} \cdot \frac{L_{s c 2}-L_{s c 1}}{Q_{s c 2}-Q_{s c 1}}
$$

The left hand side of this equation should be constant, although $V_{\text {bb }}$ might be slightly different from one channel to anotiner. Alp of the quantities on the right hand side are available as a set at a number of times in the $E l$ Segundo thermal vacuum test, where the two scenes are presented by the external calibrator, using the reference and MTF blackbodias. An attempt was made to determine the constant by using all sets wherein the internal blackbody was at its maximum temperature and the external blackbodies had at least $30^{\circ} \mathrm{C}$ temperature difference. Both of these conditions aid accuracy.

The results are shown in Table l. Some variation would be expected because of noise and the size of quantization steps in the several quantities used in the calculation. The effect of these on the constant is estimated at 1.5% to 2\%. Substantially larger effects are apoarent, for example the difference between channels 1 and 4 which goes from 1% on day 259 to about 10% on day 266. The cooler was heated up for outgassing between days 262 and 266, but this should not affect the constant term.

The shifts in values mean that the calibration of this band is not amenable to the treatment recently attempted, which was a search for correlation of signals with various telescope temperatures.

The influence of telescope temperatures is obscured, as can be shown by solving the equations for scene radiance in terms of internal blackbody and shutter quantities, starting with the gain written as

original pag OF POOR QUALITY

| r | Day | Time | $V_{b b{ }^{\text {shm }} / P_{t}}$ | | $\text { Ct } 4 / \mathrm{Ch} 1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Ch. 1 | Ch. 4 | |
| I. | 259 | 10:08 | 1.372 | 1.385 | 1 |
| | 259 | 10:54 | 1.343 | 1.353 | 1 |
| | 259 | 11:27 | 1.366 | 1.381 | 1 |
| \%: | 262 | 10:39 | 1.434 | 1.441 | 0.5 |
| | 266 | 02:46 | 1.296 | 1.404 | 8 |
| | 266 | 07:50 | 1.323 | 1.434 | 8 |
| | 266 | 12:45 | 1.308 | 1.447 | 11 |
| | 266 | 18:13 | 1.280 | 1.421 | 11 |
| | 260 | 22:55 | 1.329 | 2.451 | 9 |

> Table $1 \mathrm{~V}_{\mathrm{bb}} \rho_{\text {shm }} / \rho_{\mathrm{t}}$ alculsted from protoflight thermal vacuum test

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{equation*}
G=\frac{Q_{S c}-Q_{s h}}{L_{S c}-L_{e s h}} \tag{7}
\end{equation*}
$$

Substituting from (2) and (5) gives
$L_{s c}=\left(Q_{s c}-Q_{s h}\right)\left(\frac{\left.\Sigma_{b b}-L_{s h}\right)}{Q_{b b}-Q_{s h}} \nu_{b b}{ }_{s h m} / o_{t}+L_{s h} V_{s h} / o_{t}-L_{t} V_{t}\left(1 / o_{t}-1\right)\right.$
from which it is observed that variation in $V{ }^{\circ}{ }^{\rho} /$ / , interfere with observation of effects from the last the, which contains telescope temperature effects.

The source of the variation in $V 0^{\circ} / 0^{+}$is not known, but suspicion falls on $V_{\text {b }}$ because reflectance (o) variations of this sort are unlike by. Vb 15 a function of the geometry of blackbody viewing by the detectors via the shutter $m i==0$. This conceivably can be asserted by the optical masks in the part, which are the edges of two openings in a small enclosure mounted at the mirror. This pant is designed to prevent stray reflections which might interfere when the detector should be viewing the shutter. The part is shall and mounted on the end of the moving shutter, suggesting the possibility of error eve to small location shifts which could vignette the channels differently. Such shifts might, for example, be caused by changing sets in the flex pivots.

It should be emphasized that the preceding paragraph is very conjuctural.

To use the band 6 data to best advantage in view of this problem, it appears that absolute calibration could te based on average response to the internal calibrator over all four channels. Then the channel-to-channel balance might best be based on relative gains between channels as determined in thermal vacuum testing combined with a study of channel differences when viewing uniform scenes.

oricnal page OF POOR QUALITY

Append1x 3.2 .12
BLI6/17 Test Reference Documentation

SANTA EARbARA RESEARCH CENTER

INTERNAL MEMORANDUM
TO. J. Engel
CC: A. Gardner
DATE: 12-3-79
F. Humme:

REF: :̈S236-6514
FROM: J. B. Young (3)
Slbject: Ar initernative : Phased Knife Ećse

BLDG. MAIL STA.
EXT.

I:TRORUCTIO:

Nany corcerns have been expressed on the adequate ceasureIert of $\because: T E$ for the TM program. In part tiese concerns are bissec upon past program problems, especially XSS. In aटdicion a aumber of possible problems were raised in HS236-5G17 "TM Square have Response Evaluation" dated 24 August $1 \equiv 78$. One area that was not notec in the refere.:cec re=0 is the Eact that the \because : calibratot optical syster has appreciable field curvature. This field

PHASED KNIFE EDGE PATTERN

Figure 1 illustrates the basic concept being employed. Adjacent leading knife ecges (XE) have 0.1 IFOV phase shift. This is equivalent to saying the distance between two adjacent leading $K E$ is $(2 n+0.1) 0.007225$ inch, where n is an integer and $0.007225 n$ is the width of a space. The phase relationship assume the TM MUX samples once per dwell time.

Table I shows the relationship between n, reticle extent, and calibrator- field curvature. Drawing it 76770 has been d=awn for $n=5$ and 8. A part with $n=5$ should be capable of measuring optical and nominal electrical MTF. If here are major electrical effects, e.g., excessive overshoot, it may be necessary to have n=8.

Page 2

ORIGINAL PAGE IS OF POOR QUALITY

HS 235-6514
An Alternative MTF Approach - Knife Edge (Phased)
J. Young
$\longrightarrow 1 f 0.029623^{\prime \prime}(9 p 1)$

- 1 for $0.028900^{\circ}(10 \mathrm{pl})$

Fig. 1 Phased Knife ede Reticle

TABLE I

RELATIONSHIP BETWEEN n, RETICLE EXTENT($\Delta y)$, FIELD ANGLE $\left(\theta_{1 / 2}\right)$, FOCAL SURFACE CURVATURE SAG($\triangle 2$)

| n | Δy^{*}
 $(1 n c h)$ | $\theta_{1 / 2}$
 $(m r)$ | Δz
 $(1 n c h)$ |
| :---: | :---: | :---: | :---: |
| 4 | 0.5556 | 1.6 | 0.003 |
| 5 | 0.6929 | 2.0 | 0.006 |
| 6 | 0.8302 | 2.4 | 0.010 |
| 7 | 0.9674 | 2.8 | 0.013 |
| 8 | 1.1047 | 3.2 | 0.018 |
| 9 | 1.2420 | 3.65 | 0.023 |
| 10 | 1.3793 | 4.1 | 0.029 |
| $\Delta \Delta y^{*}=[10 n+9(n+0.1)](170)\left(42.5 \times 10^{-6)}\right.$ | | | |

Page 3
1:S2う5-651~

ORIGINAL Page is
 of. POOR QUALITY

in ilternarive $\because\left\{\begin{array}{l}\text { fr Approach-Phased Knife Edge }\end{array}\right.$
J. Young
4. Note leading edge (J) at which half intensity occurs. For cases $I \& I I$

$$
\begin{aligned}
& J_{I}=3 \\
& J_{I I}=9
\end{aligned}
$$

The desired KER can be constructed using the following method.

1. Search through data stream, locate maximum and minimum signals.
2. Calculate half intensity point by $1 / 2$ (Max-Min) + Min.
3. Search through data stream and locate major frame that has signal closest to half intensity point (use only leading edge). This gives $M F_{I}=3118$ and $M F_{I I}=3167$

TADIE II

Omighal Page is OF POCR QUALITY

KER COZSTEUCTIOS FOR CASE I and II

| | $\stackrel{\oint}{(I S O V})$ | $\begin{gathered} M F \\ \text { Case } I \end{gathered}$ | $\begin{gathered} \text { MF } \\ \text { Case II } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| | -1. 5 | 3157 | 3125 |
| * | -1.4 | 3149 | 3117 |
| | -1. 3 | 3141 | 3109 |
| | -1. 2 | 3133 | 3101 |
| | -1.1 | 3125 | 3174 |
| | -1.0 | 3117 | 3166 |
| | -0.9 | 3109 | 3158 |
| - | -0.6 | 3101 | 3150 |
| \% | -0.7 | 3174 | 3142 |
| | -0.6 | 3166 | 3134 |
| | -0.5 | 3158 | 3126 |
| | -0.4 | 3150 | 3118 |
| | -0.3 | 3142 | 3110 |
| \because | -0.2 | 3134 | 3102 |
| | -0.1 | 3126 | 3175 |
| | 0 | 3118 | 3167 |
| | 0.1 | 3110 | 3159 |
| | 0.2 | 3102 | 3151 |
| | 0.3 | 3175 | . 3143 |
| \because | 0.4 | 3167 | 3135 |
| | 0.5 | 3159 | 3127 |
| | 0.6 | 3151 | 3119 |
| | 0.7 | 3143 | 3111 |
| | -0:8 | 3135 | 3103 |
| | 0.9 | 3127 | 3176 |
| i: | 1.0 | 3119 | 3168 |
| | 1.1 | 3111 | 3160 |
| | 1.2 | 3103 | 3152 |
| | 1.3 | 3176 | 3144 |
| | 1.4 | 3168 | 3136 |
| | 1.5 | 3160 | 3128 |

ORIGINAL PAGE IS OF POOR QUALITY

Page 6
HS236-E514
in Alternative NTF Approach-Phased Knife Edqe
J. Yourg
5. The following algorithm is for our cases where $\mathrm{n}=4 \mathrm{IFOV}$

$$
\begin{aligned}
& \text { use } M F=: 1 F(1 / 2)-10(2 n) \phi \\
& \text { 1f } \operatorname{MF}(1 / 2)-(J-1) 2 n-2<M F \leq 15(1 / 2)+(10-J) 2 n+2 \\
& \text { Lse } M F=: Y(1 / 2)-10(2 n) \phi+10(2 n+0.1) \\
& \text { if } M F<i z(1 / 2)-(J-1) 2 n-2 \quad \text { when } \\
& M F=N E(1 / 2)-10(2 n) \phi \\
& \text { Use } \because \because F=\because F(1 / 2)-10(2 n) \phi-10(2 n \div 0.1) \\
& \text { if } \operatorname{MF}>\therefore F(1 / 2)+(10-J) 2 n+2 \text { when } \\
& M F=\operatorname{MF}(1 / 2)-10(2 n) \phi
\end{aligned}
$$

The sbove algorithes satisfy cases I and II. It is not known if the algorithms are completely general.

After the $K E R$ has been generated it can be converted to MTF by differentiating the KER and taking the Fourier Transform of the resultant line spread function (LSF)

$$
\begin{aligned}
& \operatorname{LSF}(y)=\frac{\partial K E R}{\partial y} \\
& \operatorname{MTF}\left(f_{s}\right)=\frac{\left[\left(\sum L S F(y) \sin 2 \pi f_{s} y \Delta y\right)^{2}+\left(\sum L S F(y) \cos 2 \pi f_{s} y \Delta y\right)^{2}\right]}{\sum L S F(y) \Delta y}
\end{aligned}
$$

CONCIUSION

A phascd knife edge reticle pattern has been described that will permit KER data to be obtained at the TM-TM calibrator configuration with scan mirror operating. Algorithms have been developed to permit KER construction via compurer data reduction. The linear extent of the phased knife edge (DhG. if 76770) is significantly smaller than the current MTF petterns (DhG.if 7209) and thus the deleterious effect of the $\begin{aligned} & \text { Il } \\ & \text { calibrator field curvature is reduced. }\end{aligned}$

ORIGINAL PAGE IS
OF POOR QUALITY
ro: J. Engel

SANTA BARBARA RESEARCH CEATER
A Suosidien of Hugnes Autcraft Compeny
INTERNAL MEMORANDUM
CC: A. Gardner
R. Humger

DATE: 12-10-79
REF: HS 236-6514-1
FROM: J. B. Young
BLDG.
MAIL STA.

Ref: HS236-6514 enticled "An Alternative MTE Approach Phased Knife Edge
5. The methodology described in the referenced memo for KER Construction Algorithm was not general enough. In fact it did not cover all aspects of Cases I and II. A more complete method is given below.

AER COSSTRUCTIOA ALGORITEM
The desired KER can be constructed using the following sequeace.

1. Search through the data stream, locate maximum and minimum signals.
2. Calculate the half intensity point $S(1 / 2)$ which is equal to $S(1 / 2)=0.5($ Max-Min $)+M i n$.
3. Search through the data stream and locate major frame (MF) that has its signal closest to half intensity point, $S(1 / 2)$. (Use only leading edge) From Figure 2, referenced memo, we have $M F_{I}=3118$ and $M F_{I I}=3167$.
4. Note ieading edge (J) at which talf intensity signals occur. For cases I and II

$$
J_{I}(I / 2)=3, \quad J_{I I}(1 / 2)=9
$$

5. A KER function is desired. This function consists of an ordered set of signals. $\mathrm{S}_{\mathrm{g}}(1)$ with the corfesponding associated angles $\phi(1)$. By "ordered"set" is meant as $\phi(1)$ becomes more positive $S(1)$ becomes greater.
6. The data stream (MF) must be rearranged to achieve this KER Eunction. Thus, we need to have the following data set

$$
M F(1), \phi(1), S(1)
$$

Hhere $M F$ is a major frame number.

original page is OF POOR QUALTTY

7. Determine the maximum and minimum major frame vithin this data set. These values will depend upon the location of the half intensity signal major frame, $M F(1 / 2)$.

$$
M F(\because \leq n)=M F(1 / 2)-(J(1 / 2)-1)(2 n+0.1)-0.5 n
$$

$M F(\max)=M F(1 / 2)-(10-J(1 / 2)(2 n+0.1)+0.5 n$
Now all signals, $S(i)$, used in the KER function must have associated major frames, MF(i), such that

$$
M F(n i n) \leq M F(i) \leq M F(\text { max })
$$

3. The phased knife edge pattern cycle extent is given by $2 n+0.1$.
4. The relationship between $M F(i)$ and $\phi(i)$ is

$$
\begin{aligned}
& M F(i)=M F(1 / 2)+\frac{\lambda n}{\partial \phi} \frac{\partial(M F)}{\partial n} \phi(1) \\
& M F(i)=M F(1 / 2)-10(2 n) \phi(i) .
\end{aligned}
$$

10. Additional selection rules are:

If $M F(i)<M F(m i n), ~ c a l c u l a t e$
$M F^{\prime}(i)=M F(1)+10(2 n+0.1)$. If
$M F^{\prime}(1) \geq M F(m i n)$, use it. If
$M F^{\prime}(1)<M F(m 1 n)$ calculate
$M E^{\prime \prime}(1)=M F^{\prime}(1)+10(2 n+0.1) . \quad I f$
$M F^{\prime \prime}(1) \geq M F(\min)$, use it. If
MF" (1) < MF(min) continue the same type sequence.
11. If $M F(1)>M F(m a x)$ calculate
$M F^{\prime}(1)=M F(1)-10(2 n+0.1)$. If
$M F^{\prime}(1) \leq M F($ max $)$, use it. If
$M F^{\prime}(1)>M F($ max $)$ calculate
$M F^{\prime \prime}(1)=M F^{\prime}(1)-10(2 n+0.1) . \quad$ If
$M F^{\prime \prime}(1) \leq M F(\max)$, use it. If
$M F^{\prime \prime}(1)>M F(m a x)$ continue the same type sequence:
12. It is emphasized that the relationship

$$
M F(\operatorname{Min}) \leq\left\{\begin{array}{l}
M F(1) \\
0 \leq M F^{\prime}(1) \\
\text { or } M F^{\prime \prime}(1) \\
\text { or } \\
e t c
\end{array}\right\} \leq M F(\text { max })
$$

I believe the above Algorithm to be general. However exhaustive checks have not been made.

Distribution:
J. Campbell
A. Chapman

ب. Chen
R. Cline
N. Daugherty
J. Ermifch
D. Erred
K. Hubbard
D. Lunge
R. Osgood
J. Reed
L. J. Richter
M. Sheinblatt
P. Thurlow
T. Tourville
J. Walker
T. Wise

TM Distribution (11)
\therefore
\therefore ORIGIRAL PAGE IS
OF POOR QUALITY
0): R. Cline

SAMTA EAKi:iNA RLSE:RCH CENT:R

INTERNAL KIEMORANDUA
CC:
DATE: 5-21-79
REF: HS $236 .{ }^{6242}$
from: P. Thurlow

BLDG.
MAIL STA.
EXT.

It is desired to obtain scuare vave response (SVR) of various r?: - associated optical systers. SiNR can de cofputed directiy from :eeasired knife edge (KI) data, fithout goirg through intermediate steps of line - spread - function, \inf, etc., by using the foliowing numerical integration acthod--
(1) Assume a data file containirg li knife edze response values, I ($: ~$) , at krife locaticas, $X(X)$. (The X(X) neec not be equally spaced, and $I(M)$ (Ma:imuz) need not be normalized to 1.0)
(2) For a single spatial frequency, ν, superpose a sufficient number of SUR bars across the $K E$ function to cover the $K E$ range from minimum to maximum KE.
(3) Find the unobscured area of the associated line spread function by taking differences of $K E$ intercept values at the bar edges for each of the unobscured areas of the $K E$ function. Sum those differences, calling the sum $S_{1}(v)$. In the illustration-$S_{1}(v)=(I(2)-I(1))+(I(4)-I(3))+\left(I(6) \div I\left(5+\frac{1}{4}\right)\right.$. In general, KE data points will not corresporid withintercept locations, and a linear interpolation would be appropriate to obtain $K E$ function values at intercepts.
(4) Analytically, shift the bar pattern 0.01 cycle of spatial frequency (right or left). Kepeat step (3), finding $S_{2}(v)$. Continue, shifting bars in the same direction by . 01 cycle incre:ents, covering oue corplete cycle nf ber pattern, and senerating $S_{1}(v) \ldots . . S_{100}(v)$.

T:
Since computations are executed at memory speed, the overall run tine, for jer patterns ≈ 1 to 100 bars per KE range, should not be excessive.
foul Jouster
paul Tiurlow

Distribution:
E. Hubbard

III Distr. (18)
T. Wise
J. Campbell
J. Young
G. Pleas
J. Vali:er
W. Hawke
E. Burke

ORIGINAL PAGE IS OF POOR QUALITY.

SANTA BARBARA RESEARCH CENTER
A Subidialy of Hughes Airciofl Company
INTERNAL MEMORANDUM

An attacheent shows preifeinary $S W R$ values for Band $1-5$, 7 of T.M. Engineering ?odell detectors. The Shr per band are averaged over those detectors which appeared to be operable and produced a reasonable clustering of SWR values. The degree of clustering obtained is indicated by the associated sigma values.

Tc obtain true Shr for the $E M$, spot broadening introduced by the calibrator =ust be accounted for in some way. If we here dealing with MTF instead of ShR, the procedure would be to divide combined EM-calibrator MTF by the 30 Et ter bar, calibrator measured MTF of 0.S8. This would. elevate the EM MTF by a factor of $1 / .88$ or 1.136.

In the case of deconvolving ShR numbers, we do not have such a simple rule available and will resort to blur size analysis to produce a ShR enhancement factor comparable to the MTE enhancement factor. One might expect the Shr factor to be larger than the MTF factor by reason of the stepper slope of ShR versus blur size as compared to a lower MTF slope value.

Blur Size and SWR Analysis

(1) Compute Calibrator Blue Diameter, B:

Use a 30 meter bar calibrator MTF=0.38. From Smith, figure $13.51, p .405, \mathrm{MTF}=0.88$ at a (V) (B) product of about 0.30, there $V=$ spatial freq. In cy:les/rad and $B=b l u r$ diameter in radians. A more accurate value of $V \beta$ is obtained using Smith, eq. 11.43, p.320:

$$
\begin{aligned}
& \pi T F(\nu)=\frac{2 J_{1}(\pi \beta \nu)}{\pi \beta \nu} \quad ; \quad J_{1}=\text { istorder Base/ function } \\
& \text { Er trial: } \\
& \mu T F(.10)=\frac{2 J_{1}(.10)}{.90}=\frac{2 \times .4059}{.80}=.9020 \\
& \mu-1=(1.00)=\frac{=I_{1}(1.00)}{.60}=\frac{2 x .401}{1.6}=.8802
\end{aligned}
$$

original page is
OF POOR QUALITY
The . E602 :itF shzuld be close enough to avoit further cxtrafolation zeesures. Ihezefore:

$$
\pi \beta \nu=1.00 \quad \beta \nu=1 / \pi=.3183
$$

O 20 mitur :ar; $\nu=11,765$ eycles/redian
:

$$
\beta=\frac{.3483}{\gamma}=\frac{.3183}{11755}=27 .=5 \text { miond ralibratoi then }
$$

(2) Ccyruee blur Sex/cal For tre EX-calib=ator comination, نsí: set of 5:-16 meastre:tents:

$$
S_{\max } x / \operatorname{Sinin}_{\min }=1.7+0
$$

If spor fractional area f_{1} is exposed at saax, and f_{2} is exposed ar Smin:

$$
\begin{aligned}
& \frac{\text { Sasiex }}{\text { Snin }}=\frac{F_{1}}{f_{2}}=\frac{A-f_{2}}{F_{2}}=\frac{A}{f_{2}}-1=\therefore 7 \div 0 \\
& \frac{A}{S_{2}}==7+0
\end{aligned}
$$

ORIGINAL PAGE IS OF POOR QUALITY.

The ses=ent area, $f_{2 / 2}$ is:

$$
\begin{aligned}
& \therefore=K=\therefore=(0-1 \approx \therefore) \\
& \therefore \dot{A} / 5=\frac{\pi \pi^{2}}{\pi^{2}(\theta-\sin \theta)}=\frac{\pi}{\theta-\sin \theta}=2.7 \% 0 \\
& \therefore \theta-\sin \sigma=\frac{\pi}{\pi .74 ?}=1.145
\end{aligned}
$$

Fife B value will be about 115°.
To fisc f exactly, bracket 115°, and Eriterpoiaze:

$$
\begin{aligned}
& \text { (2) } 0=110^{\circ}:=-\sin \beta=1.717-.9397=0.779
\end{aligned}
$$

$$
\text { inierpoiatisg: } \mathcal{G}(1.140)=110^{\circ}+10^{\circ}\left(\frac{9.157}{0.247}\right)=115.71^{\circ}
$$

\therefore : k, solving for the blur diameter: $B=2 R$

$$
\begin{aligned}
& \frac{\mu}{R}=\omega \frac{\theta}{2}=\omega=-5 \cdot 5 \leq 5^{\circ}=.5-246 \\
& R=\frac{\alpha}{=-\left(\frac{\epsilon}{2}\right)}=\frac{B A R / 2}{\operatorname{Hos}(B / 2)}=\frac{21.25 \mu r \times 1}{.5=46}=40.5 / \mu \mathrm{rad} \\
& \therefore \quad B=2 R=B 1.02 \text { رRTaC blur for EM/CAL }
\end{aligned}
$$

(3) De-convolve calibrator blur from combined blur to get EM blur. This involves an assumption that the blurs combine as RSS, which is reasonable, but perhaps should be verified in detail. Using that assumption:

$$
\begin{aligned}
& :^{3} c-\equiv u=\sqrt{i_{E}^{2} \mu+\beta_{c}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore k_{2 u}=\frac{\beta \equiv \mu}{=}=5 \sum .15=2=1
\end{aligned}
$$

origmal prge is
 OF POCR QUALITY

$$
\begin{aligned}
& \text { (4) Find ciscyzation esea and SiR for } E M \text { blur: } \\
& =c=^{-1} \frac{\theta}{2}=\cos ^{-1} \frac{\alpha}{x_{i=\mu}}=\cos ^{-1} \frac{21.25}{E 5.18}=.5 \leqslant 66 ; \frac{\theta}{2}=56.17^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& A / f_{2}=\pi(10-5(3)=\pi / 1.0 \equiv 6=3.03= \\
& \frac{s_{\text {max }}}{s_{w i n}}=\frac{f_{1}}{f_{2}}=\frac{f}{f=}-1=2.03=
\end{aligned}
$$

CcreI $\because=\sin$

=atio by cai̇izator juur ceccnvolution siould be tíe order
of $34 / .27$ or ≈ 1.26.
́ppiying tiois factcr to =eastred Sink

SinR besore
SWR After
Calibrator Deconvolution Calibrator Deconvolutic .280 .1 .2718 .2388 .3014
.2439
.2927
.3529
.3425
.3008
.3797
.3073
.3688
p::sd

| E！ | $\begin{gathered} \overline{S W R} \\ @ \quad 30 \overline{M E T E R ~ E A R} \\ \hline \end{gathered}$ | OSWR |
| :---: | :---: | :---: |
| | 0.2801 | 0.0168 |
| | | |
| | 0.2718 | 0.0214 |
| 三〇ここ | | |
| ！$: \therefore$ ¢tageable Detectors | 0.2388 | 0.0243 |
| E： | | |
| $\therefore-\therefore \because=$ aseable دezecto＝s | 0.3014 － | 0.0212 |
| Ex：2 5 | | |
| 2 ¢ \quad OEageable Detectors | 0.2439 | 0.0029 |
| Es： 26 | | |
| （こミこ）Averageable Detectors | （TBD） | （TBD） |
| Ea！ 0^{2} | | |
| S Sverageable Detectors | 0.2927 | 0.0439 |

[^0]: ${ }^{*}$ GSFC 400.8-D-210, Paragraph 3.2.8.1, modified by Salomonson's memo.

[^1]: