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This report deals with progress made on the Grant NSG-3048 during th%e

twelve month period beginning October 1, 1981 and ending September 30, 1982.

The NASA Technical Officer for this period was Dr. Kurt Seldner of Lewis

Research. Center. The director of the research at the University of Notre

Dame was Dr. Michael K. Sain, who has been assisted by Mr. Stephen Yurkovich,

a fellow in the Department of Electrical Engineering, by Mr. Joe P. Hill,

and by Mr. Thomas A. Klingler, research assistants, in the Department of

Electrical Engineering. Mr. Hill received the degree of Master of Science

during this period, for his June 1982 thesis entitled "Solution of Non-

linear Optimal Control Problems Using the Algebraic Tensor: An Example".

Mr. Ylingler expects to complete research investigations for the Master

of Science degree very shortly. Mr. Yurkovich may complete requirements

for the degree of Doctor of Philosophy in 1983.

Researches during the preceding calendai year have centered on basic

topics in the modeling and feedback control of nonlinear dynamical systems.

Of special interest nave been the following topics: (1) the development

F of models of tensor type for a digital simulation of the QCSE gas turbine

engine;	 (2)	 the extension,	 to nonlinear multivariable control system de-

sign,	 of the cc_.cepts of total synthesis which trace their roots back to

certain early investigations under this grant;	 (3) the role of series de-

inscriptions as they relate to questions of scheduling	 the control of

gas turbine engines;	 (4)	 the development of computer-aided design soft-

ware for tensor modeling calculations; (5) further enhancement of the

softwares for linear total synthesis, mentioned above; and (6) calcula-



tion cf the first known examples using tensors for nonlinear feedback con-

trol.

A number of major milestones have occurred during this year of study.

Most crucial has been the steady progress of the computer software needed

to perform tensor modeling and simulation. Tl,e advance of this code is

now making it possible to begin a more systematic examination of tensor

model identification and order reduction. Increasing availability of

this capability has made it easier to determine certain of the key trade-

offs involved with use of tensor models, as for example their increased

dynamical quality versus their useful region. In what may be the most

significant theoretical development of the year's activity, work is under-

way to evaluate the effects of redefining the groups upon which, and into

which, nonlinear maps act. For interesting cases, the groups can be re-

defined in such a manner that the nonlinear naps become linear. Among

the results already following from this discovery are the definition of

a variety of new nonlinear sensitivity functions, of the comparison type.

The same idea, in a different application, has permitted the definition

of a nonlinear feedback synthesis probl<em. Finally, a complete calcula-

tion has been carried out for the feedback tensors in a nonlinear control

example. This calculation has been of the utmost importance in setting

goals for the type of software which will be needed for general feedback

control, with tensors. Preliminary steps to plan such software have

been set in motion.

iii



ACKNOWLEDGMENTS

The funded research on this grant has been aided by the voluntary,

unfunded efforts of a number of individuals. We would like to thank Mr.

Joseph A. O'Sullivan and Mr. Leo McWilliams in this regard. Mr. O'Sullivan,

who participated as a senior, has continued on as a graduate research

assistant. Mr. McWilliams is a graduate student in electrical engine-

ering and is doing research with the help of the Minorities Consortium.

Special thanks are due to Dr. R. Michael Schafer, who has been most

helpL-'ul in regard to issues concerning the PDP-11 computer, and to Mr.

Joe P. Hill, whose M.S. Thesis forms the core of this report.

We also acknowledge encouragement and support extended to the pro-

ject by the Department of Electrical Engineering.

Finally, we are pleased to thank Mrs. T. Youngs, who has prepared

the typescripts.

iv	 v



i

TABLE OF CONTENTS

Page

ABSTRACT

ACKNOI&EDGMENTS	 iv

F	 I.	 INTRODUCTION ................................................	 1

1.1.	 Overview of Report .................................... 	 1

1.2.	 Remarks on Multilinear Feedback ....................... 	 4

II. SELECTED ALGEBRAIC	 BACKGROUND ............................... 10

2.1.	 Multilinear	 Mappings .................................. 10

2.2.	 Tensor	 Product	 of	 Linear	 Mappings ..................... 20

2.3.	 Symmetric	 Tensor	 Product.. ............................ 28

2.4.	 Derivatives ........................................... 40

2 .5.	 Discussion ............. ..........................4.... 48

' III. A	 CONTROL PROBLEMNONLINEAR	 ................................. 50

3.1.	 System	 Description .................................... 51

3.2.	 Derivation of	 Controller	 Espresoions .................. 61

3.3.	 The	 LQ	 Problem ........................................ 78

3 .4.	 Discussion ............................................ 82

IV. APPLICATION	 TO	 SPECIFIC	 EXMPLE......	 ...................... 83

4.1.	 Problem Requirements	 and Formulation .................. 83

G ' 4.2.	 Calculation	 of	 Controller	 Terms ....................... 89

4.3.	 Discussion ............................................ 97

V. CONCLUSIONS ................................................. 99

't	 y
R

v

f

E.



vi

a'
y.

Page

VI.	 REFERENCES .................................................. 102

APPENDICES

A. GRANT BIBLIOGRAPHY, INCEPTION TO PRESENT ................ 104

B. "An Application of Tensor Ideas to Nonlinear Modeling
of a Turbofan Jet Engine" ............................... 112

C. "Nonlinear Multivariable Design by Total Synthesis"..... 123

D. "Controller Scheduling: A Possible Algebraic View-
point" .................................................. 133

E. "A ' 1puter-Aided Design Package for Nonlinear Model
Apply.cations............................................. 143

F. Reference List o:-,'.otal Synthesis Problem ............... 153

G. Software Description for ,Section IV ..................... 156

x^

i

i

k



t
I. INTRODUCTION

In this report, we discuss progress which has been made on NASA Grant

NSG-3048, entitled "Alternatives for Jet Engine Control", during the twelve

month period beginning on October 1, 1981 and ending on September 30, 1982.

1.1. Overview of Report

The report is organized broadly into a main body, consisting of six

sections,and seven appendices. The principal portion of the main body

involves Sections II, III, and IV, which deal with the explici" tensor

calculations involved in a substantial example of nonlinear feedback con-

trol, based upon tensor system models developed in an earlier year of work

under this grant. These sections are supported by Section 1.2, which

gives certain literature background, by Section VI, which contains the

references, and by Appendix G, which illustrates, in an introductory way,

typical calculations which become involved.

Insofar as we know, this substantial example is the first of its

type to be completed. More comment on the insights which follow from

the main body of the report are provided in Section V, where additional

discussion is directed to the appendices.

Appendix E, "A Computer-Aided Design_ Package for Nonlinear Model

Applications", is a report on the crucial software developm.-ents which

have been, and conLii,ue to be, the backbone of studies in tensor modeling

and simulation. Steady progress i„ this regard is now making possible

further work in tensor model identification and order reduction. A com-

plete description of this software is planned for the next grant period.

Appendix B, "An Application of Tensor Ideas to Nonlinear Modeling of a

1
i
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Turbofan Jet Engine", illustrates the potential of this developing software

for work with engine simulations, such as the QCSEE.

Appendix D, "Controller Scheduling: A Possible Algebraic Viewpoint",

continues the investigation of algebr , jc frameworks which may capture the

essence of the practical work in control schedules. It is believed that

these ,studies may hold one of the keys to reducing gaps between the theory

of nonlinear control systems and its application. In particular, it is

planned to use ideas which grow out of this work as a guide to resolving

the tr p eoffs between increased dynamical quality in nonlinear models and

their region of validity. More study is needed in this area.

SE tions C and F deal with material on the Total Synthesis Problem

of multivariable control. In the linear case, this problem traces a part

of its early roots back to studies supported by this grant. It is a

problem of feedback synthesis, which has now developed quite a biblio-

graphy. Appendix F gives a list of that bibliography, as of the date of

the First American Control Conference last year. Item 18 in Appendix F

refers to the software associated with this effort, which is ongoing.

Though not yet ready for distribution, the software has resulted in

"	 several requests for copies, and it is hoped that limited distribution

might not be an event too far in the future. Appendix C, "Nonlinear

Multivariable Design by Total Synthesis", is a part of the effort to

extend to the nonlinear case. Of particular interest in Appendix C is

the modification of group structure and scalar multiplication structure

on the vector spaces of inputs and outputs for certain nonlinear systems.

It is an amazing fact that, in interesting, nontrivial case, such modi-

2
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fications can result in the system becoming linear. The idea is akin to

the choice of a special coordinate system which fits the geometry of a

physical problem. We have this idea under intense study, and it seems

to hold promise in problems c.; order reduction and identification. If

the work proceeds as planned, more results in this regard should become

available in next year's report.

Appendix A contains a chronological bibliography of work undertaken

in relation to the grant.

With these introductory remarks, we turn next to the main body of

the report.

f
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1.2 Remarks on Multilinear Feedback

One subject of this report is the application of concepts from tensor

algebra to the generation of optimal feedback controllers for nonlinear

dynamical systems. The primary motivation for a study of this topic came

from the results presented in [1], where the local theoretical problem

was essentially solved. The importance of this work should be emphasized.

Although there were works that were previously existin. .hat used multi-

linear algebra to study series solutions for a response of a nonlinear

system, this was the first application of the ideas in tensor algebra to

an optimal control problem. Thus, we find that the topics of multilinear

algebra and optimizatJon had been extensively studied, but independently

of one another.

The research project has received numerous benefits from this par-

ticular study. First, we have completed a rather tho-')ugh example study

of the methods in [1]. We believe that this example study is the only

one of its kind in the literature to date. The details of the example are

given in Section IV. Second, we have carried out the study without the

explicit use of the methods of dual spaces and symmetric tensor. algebra.

The purpose of doing so is to gain insight concerning the exact role of

these two ideas in the nonlinear feedback problem. This was a revealing

experience; and much insight has been gained. Third, we have an initial

step in constructing software for such feedback calculations. The im-

portance of such softwares can scarcely be overestimated.

The methods of optimal control have, in certain cases, interesting

relationships with the methods of stability theory. Because of this, we

have reason to believe that these results may assist in model region design.

S
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The treatment of optimal control problems in the history of the lit-

erature has been quite extensive, with much emphasis placed on the so

called Linear Quadratic or LQ problem. Broadly speaking, Rn LQ control

C

	

	 formulation consists of a finite-dimensional linear discrete - or con-

tinuous-time dynamic system which is to be controlled in such a way as to

minimize the value of a performance criterion which is the integral, or

sum, of quadratic functions of the system state and control variables

plus a quadratic function of the state at some terminal time, t. l . This

j	 concept provides the following system description:
i-,
C	 '

E	 x(t) = A(t) x(t) + B(t) u(t)	 (1.1)
t

F:	 J = M(x(tl)) +	 1 L(x,u,t) dt ,	 (1.2)
ft

=	 o

L(x,u,t) = xT Q(t)x + uT R(t)u	 (1.3a)

M(x(tl)) = xT (t 1)M x(t1) .	 (1.3b)

Here, we assume that M is symmetric and positive definite, R(t) is

symmetric and positive definite, and Q(t) is symmetric and positive

semidefinite. So, given the linear system in (1.1) and the cost functional

is (1.2) satisfying the symmetry and definiteness requirements, we wish

to find the optimal control, that is, the control which will drive the

system so as to minimize the cost functional. We do not go into detail

concerning conditions for existence and uniqueness. Basically, the solu-

tion of the state regulation problem leads to an optima" feedback system

with the property that the components of the state vector x(t) are

kept near zero without excessive expenditure of control energy, which is,

in essence, the minimization of the cost functional. Thus, given an

i 	

^	
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initial perturbation which is usually in the form of the initial state

vector x(0), we find that an optimal control should drive the state

vectors to zero while simultaneously minimizing the selected perfoi°otvace

index. The notion of desiring the state vector near zero arises from

the fact that the state variable is defined as an error term [1) which

measures deviation from the global trajectory. The fact that this per-

turbation is required to be sufficiently small allows for the traditional

Taylor's series expansion form. It is well known from the literature

that we may construct this optimal control as

u(t) = K1 (t) x(t)	 (1.4)

where

K1(t) _ - R 1 (t) BT (t) V(t)	 (1.5)

ae matrix V(t) is the solution to the well known matrix Riccati Equa-

tion

V(t) _ -V(t) A(t) - A
T	 -1V(t) + V(t) B(t) R 1(t) BT (t) V(t) - Q(t) 	 (1.6)

which can be readily solved on the digital computer by integrating nu-

merically backwards in time from the boundary condition

V(t 1 )  = M .	 (1.7)

The problem that we wish to consider in this report is more complex,

although we will be able to treat the LQ problem as a special case.

Namely, we wish to assume that we are given a nonlinear system rather

than a linear system and examine the methods necessary to generate higher

order controller terms. This control problem is commonly descril--.d in

the literature as being approximately optimal, or sub-optimal. When

6
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'	 considering the synthesis of a control function for a typical nonlinear

system, we will find that an infinite number of terms would be necessary

in order to formulate a true optimal controller, that is, we must trun-

cate to a finite number of terms and obtain a performance index that is

non-minimal. The amount of work that has been done in the generation of

suboptimal control algorithms is quite extensive. Therefore, in order

to present an account of the research that has been done, we must be

succinct and mention only a few of these works. One of the first attempts

to formulate a description of the optimal control problem as applied to

nonlinear systems is found in [2], where extensive usc- is made of the

methods of Lyapunov and Chetaev. Here, a formal recursive procedure is

developed to construct a suboptimal control as a function of a power

series in the states. The work of Lukes [3] extended the concepts intro-

duced by A1'brekht and provided useful results pertaining to the exis-

tence and uniqueness of an optimal feedback controller. In [4], we find

useful applications of the Hamilton-Jacobi-Beilman approach to a number

of illustrative examples, as well as a comparison of various techniques

that can be used to generate higher order controllers. Additional re-

sults and examples of this method were provided in [5] with particular

emphasis on the convergence of the procedure. Also, a method for esti-

mating the degradation in performance caused by the truncation of terms

in the controller series was presented. We also note the results pre-

sented in [6], where linear, second order, and third order controller

expressions were produced using the methods presented in [7]. The im-

proved response obtained whenever higher order controller terms are

7



considered provides sufficient motivation to seek another method by which

these terms may be obtained. This method, of course, is the tensor alge-

bra. A few of the ideas surrounding the general topic of algebraic system

theory have previously been applied to problems in optimality, system mod-

eling, and multivariable feedback loop closures. The latter point was ex-

tensively studied in [8], where emphasis was placed on the exterior or skew-

symmetric algebra. The most pertinent work was of course [1] which, as was

previc-,sly mentioned, provided much of the motivation for this report. An-

other application of the ideas of tensor algebra to systems problems was in

[9], which relied heavily on the series expansion concept expressed via the

tensor product and applied to the basic system description. Particular em-

phasis was placed on the subject of nonlinear system modeling, with examp-

les of both homogeneous and nonhomogeneous modeling. These methods proved

to be quite effective, yielding much improvement over the standard linear

approximations that are typically used in a nonlinear system for modeling

purposes. So basically, there would seem to be strong motivation for the

use of modern algebra in nonlinear systems and control problems. Much of

what we actually do as systems engineers evolves from modern algebraic con-

cepts [10]. Since the typical engineer has had little or no exposure to

the concepts of modern algebra, we will outline these concepts as they are

related to the solution of our problem. As was noted in [8], modern alge-

bra frequently provides sufficient algebraic framework within which to ob-

E
tain solutions to systems problems w i th considerably less effort as com-

pared to other conventional methods. We will find that the tensor alge-

bra viewpoint provides a useful means of expanding a nonlinear system in

K
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terms of vectors and matrices, which are expressed vita the tensor product.

In Section II we provide some useful mathematical background, with

particular emphasis oil the ropic of tensor algebra. We examine tlae pro-

pvrtles of multilinear mappings and also provide a brief introduction to

the s^anmtric tensor algebra structure, which will be useful when dif-

ferentiating the tensor product. In Section IIT we present certain Sys-

tems concepts, which are basically in the farm of series expansions, and

then derive the necessary results for the generation of the optimal con-

trol terms. The problem formulation for the LQ optimization can bey rec-

ognized ns a special case of the equatiatts where higher order terms are

included. Finallv, Section IV provides the application of the results

derived in tha previous chapter to a formulated example problem.

9
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II.  SI LECTED ALGEBRAIC: BACKGROUND

The basic purpose of this section is to provide the reader with the

necessary concepts from the subject of tensor algebra, which is the main

vehicle that is used to analyze the control problem. It is realized that

most readers have not had previous dealings with the somewhat theoretical

concept of tensor algebra; therefore the treatment of this subject will

not assume any previous knowledge of the topic. The main feature of the

algebraic tensor involves the way that it gives ground on dimensionality

in order to gain the powerful advantage of linearity.

We begin this section .oith the basic concepts of multilinear mappings

and the properties that allow us to express these multilinear mappings

in terms of linear mappings and tensor products. Next, we examine the

tensor product of linear mappings and develop the associated Kronecker

product and a few of its properties, which will be useful in later der-

ivations. The nest section deals with the symmetric tensor algebra,

which will be of great importance whenever we consider the possibilities

of differentiating the tensor PL-`d'-:Lt, a topic that is considered in the

final portion of this section. Specifically, we examine the partial

derivative problem as related to the tensor product of various copies

of the state variable x and the control function u. This problem is

inherently related to the minimization operation that will be studied

in Section III.

2.1 Multilinear Map izs [1,10,11)

Since many of the ideas surrounding tonsor algebra are based on the

i
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theory of bilinear and multilinear mappings, we begin with a general def-

inition of these mappings. Generally speaking, a multilinear function is

a function of vectors that is linear with respect to each vector variable

when the others are held constant. This means that

^(xl,...,axi + syi,...,xm) = a^(xl , ... , xi) ... ,xm) +

Wxl,...,yi, ... ,xm) 9	 (2.1)

where Vi and U	 are vector spaces over a field R; x i , yi e Vi ; a,$ a R;

and	 : V1 x V2 x ... x V  -r U. The multilinear mapping ^ has an image

which is not, in general, a subspace of U. A simple counterexample is

offered in order to illustrate this point.

We let	 V1 = V2	 be two dimensional spaces with the basis	 {el,e21

and	 U	 be a four dimensional space with the basis	 { fl , f2' f 3' f4 }.	 Let

x = x 
1 

e 1 + x 
2 
e 
2

and	 y = ylel + y2e 2	 belong to	 V1	 and	 V2 .	 We now

define a bilinear mapping by

^(x, y ) = xlylf1 + xly2 f 2 + y2yl
i3 

+ x2y2f4

Any vector in U
4

u =	 cifi
i=1

is in the image of 1^ if and only if it satisfies

rank c1 2] < 1 .

c3 c4

If we pick u  = 2f, + 2f 2 + f3 + f4 and u2 = f 1 + f 3 , then obviously

both of these vectors are in the image of 1;.. However, subtracting these

two vectors gives

u1-u2= f1+2f2+f4



k
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for which ,

2
rank	 = 1

10
 1 I

so that the image is not closed under addition.	 Since the closure law !	 ^,

has been violated, we can conclude that 	 Im ^	 does not form a linear

subspace of	 U.	 The smallest subspace of 	 U	 which contains the image

of	 ^	 is called the subspace generated by the image of 	 ^	 and is de-
a

noted by	 <Im p	 This subspace is shown by the dotted contour in Figure

2.1, which depicts the situation for the bilinear case.	 This minimal sub-

space becomes a space of tensors when the bilinear map 	 ^	 is a tensor

product.

A particular subset (m=2) of the set of multilinear mappings is the

set of bilinear mappings. 	 A function of two variables is said to be bi-

linear if it is linear with respect to each of the two variables when the

other is fixed.	 An example of a bilinear function is given by
1

f(x.Y) = 3xy

This function is linear in each of	 x	 and	 y	 when the other is fixed

as can be readily shown:

f(x,ayl + $y2) = 3x(ayl + Sy2)

= a3xyl + s3xy2

= af. (x ,Yl) + S f (x>Y2)
i and
4 '	

f(axl + ax2' Y) = 3(axl + sx2)Y

= a3xly + $3x2y

= of (xV Y) + Sf (x2 ,,Y)

122(
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We may note that this satisfies the notion that a bilinear mapping is a

multilinear mapping with m-2 if both

^ 1	 yl(ax + S IY
2 ) = 

Wx1y2 ) + Wy1 oY2 )
	 (2.2)

t	 and
t'

^ (xi ,ax2 + OY2 ) a aV(xl , x2 ) + W xl' Y2 )	 (2.3)

hold for all xi , yi , a, s as noted in the definition of a general multi-

linear mapping. A bilinear map is sometimes called 2-linear.

r=	 For a given set of vector spaces V1 , ... I VmI and U, all multi-

linear mappings from V, x V„ x ... x V_ to U constitute the set

M(V1,...,Vm:U).	 The set	 M(V1,...,Vm:U)	 is a vector space with addition

defined by

+8)(vl,...,vm) 	 $(vl,...,vm)	 + e(vl,...,vm)

.g where the addition on the left side is in	 M(V1 , .... Vm :U) and addition

on the right side is in	 U.	 Scalar multiplication is defined by

f(#)(vl,...,vm) _ a(^(vl,...,vm))	 ,

where again	 (ao)	 represents scalar multiplication in M(V1,...,Vm:U)

and	 a(^(vl , .... vm))	 is scalar multiplication in 	 U. Both of these

principles are shown formally in [11]. 	 Also, it is shown that

m
dim M(V1,...,Vm:U) = n n 	 n i	 ,V

i=1

where

dim U = n and dim V i = n  .

Having defined the notion of exactly what comprises a multilinear

mapping, we are now in a position to consider the idea of a tensor pro-

a
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duct. The basic purpose of a tensor product is to convert multilinear

mappings (in particular, bilinear mappings) into linear mappings. Basic-

ally, this is done because multilinear functions are very complicated ob-

jects and are intrinsically more difficult to handle than linear map-

pings. We now proceed in defining the notion of a tensor product. We

consider an arbitrary multilinear mapping

^ : V1 x V2 x ... X V  -} U

which belongs to M(V1,...,Vm:U). It can be shown that there exists an-

other multilinear mapping v E M(V1,...,Vm:P), essentially unique, such

that there exists a linear mapping p : P -} U, which provides

^ = u o v .

The tensor product is said to be composed of P and this multilinear

mapping v. We now present the formal definition of the tensor product

[10].

A pair (P,v) is a tensor product of the vector spaces V 1 , .... Vm

if the following two conditions are satisfied:

(1) v E M(Vl , ... I Vm :P) and <;.m v> = P;

(2) if U is any vector space over R, and 	 E M(V1,...,Vm:U) is

arbitrary, then there exists a u E L(P:U) (that is, it is a lin-

ear map from vector space P to vector space U) such that

^ = u C V.

The property (1) means that all of the vectors generated by v form a

subspace of P which is equal to P. Property (2) is called the uni-

versal factorization property, and is expressed by the commutative dia-

gram in Figure 2.2. It can be shown that the properties (1) and (2)

i
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Figure 2.1 The Bilinear Mapping 4)
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above are equivalent to the following single condition:

(3) for each multilinear map ^ e M(Vl)...,Vm:U) there is a unique

linear map p e L(P:U) such that

^,	 p	 v

By the way of shorthand notation, we will define the tensor product

as the multilinear mapping v such that

v(vl,v2, ... 
)
vm) = V  m v2 ® ... ® 

v 
	 (2.4)

"Therefore, it follows that the space P may be expressed by V 1 0 V2 0

... ® V
m 

Rewriting Figure 2.2, we obtain the usual form of the commuta-

tive diagram shown in Figure 2.3. It is shown in [11] that for arbi-

trary vector spaces V1 , .... Vm a tensor product (P;v) always exists.

Also, it can be shown that the tensor product is unique up to an isomor-

phism.

We now wish to consider the properties of the space V 1 ® V2 ® ...

® Vm . Namely, the basis and dimension of this space will be examined.

As was mentioned previously, the bilinear case is nothing more t7an a

special case of the multilinear case; so we will first consider construc-

ting a set of basis vectors for the space V 1 ® V2 . We assume that V1	a

and V2 are both spaces of finite dimension, and that dim V 1 = n and

= p. We also assume that fe l ,e 2 ,...,en I is a set of basis vec-dim V2 

tors for V1 and that ffl , f2"' " fp } is a set of basis vectors for V2..

E	 It is shown in [1] that the tensor products

e  ® f,	 where i = 1,2,...,n and j = 1,2,...,p 	 (2.5)

ty
form a system of linearly independent vectors in the space V l Q V2,

P

P
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V1 x V2 X ... x V 	 ---	 V1 V2 .,. V 

^,	 u

U

`k

.1

Figure 2.3 Introduction of the Tensor Product Symbol
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which has dimension n p, and therefore constitute a basis for the

space.	 In this proof, it is noted that

dim (V1 ® V2 ) = dim V1 • dim V2 .	 (2.6)

If these results are extended to an arbitrary multilinear mapping, then

we may construct a set of basis vectors as follows. Given that dim Vk

s
= nk , and that {eki " ik = 1,2,...,nk is a basis for Vk , k = 1,2,...,

k
M, then the space V1 0 V2 ® ... ® V  has a basis which consists of

eli o e 
2 ® ... e eki and

'	 1	 2	 m	 m

dim (V1 ® V2 ® ... ® Vm) = H dim Vi	(2.7)
i=1

An example will no doubt clarify the use of multiple indices in this

case. Consider the case where m=3, n 1 = dim V1 = 2, n2 '= 	 V2 = 2,

and n3 = dim V3 = 3. The dimension of V1 ® V2 ® V3 is 2 • 2	 3 = 12,

so there are accordingly 12 basis vectors, which may be listed as follows:

{ell 
m 

e21 ® e 3 ell ® e21 ® e32' ell ® e21 ® e33' e11 ® e22 ® e31'

ell 
w 

e22 ® e32' ell ® e22 ® e33' e12 ® e21 
0 e

31' e12 
0 

e21 
0 

e32'

e12 ® e21 
0 e33' e12 ® e22 ® e31' e12 ® e22 ® e32' e12 ® e22 @ e33 1 .

For future results and numerical analyses, we shall place much em-

phasis on the exact ordering of the basis vectors that can be said to

describe a space. In particular, we shall assume that the basis vectors

are to be ordered lexicographically. In order to present formally this

ordering, we will introduce a few elementary concepts from permutation

group theory [12]. First, let i l , .... im be a set of positive integers

that satisfy conditions

1 5 i1 5 n; 1 5 1 2 5 n; ....	 1 5 1 :9 n	 (2.8)

`	 18
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We shall denote all sequences of these integers by G m . If an integer

i belongs to the set Gm , this integer has m digits, each of which

belongs to a (n+l)-ary number system excluding zero. If we define

iGM I as the number of elements in the set Gn , clearly IGn,  - nm.

The following example is offered to illustrate this concept. Arbitarily,

we choose m = 3 and n = 2. According to our definition, `G 3 1 = 238,

and the elements may be listed as

G2 _ { 111, 112, 121, 122, 211, 212, 221, 222} .

This illustrates the concept that the set G n actually consists of se-

quences of integers, m integers in each sequence. The range of each

digit in the sequence is from 1 to n. It can be said that the set Gm

is ordered lexicographically in the example above, that is, if the ele-

ments are considered to be an m digit integs7.r, the sequence of ele-

ments should start with the smallest number of the base 	 •1) system

and strictly monotonically increase to the largest number 	 s is the

convention that we will adopt to order our basis vectors. As a final

example on the calculation and ordering of basis vectors, we extend

these ideas to multiple tensor products of X and U, which are spaces

of states and controls. We desire the basis for the space

X ® X ® U

where dim X = 3 with basis {xl ,x2 ,x3 1 and dim U = 2 with basis

{ul ,u2 1. The basis is

{x1 ® x  ® u 
1 

xl ® x  ® u2 , x  ® x2 ® ul , x  ® x2 ® u2 , x  ® x3 ® ul,

xl 0 x3 ® u2 , x2 ® X  ® U1 51 x2 ® x  ® u2 , x2 ® x2 ® ul , x2 ® x2 m u2 ,

x2 0 x3 ® ul , x2 ® x3 ® u2 , x3 ® 
X  

® ul , x3 ® 
X  

® u2 , x3 ® r.2 ® ul ,

19
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X
3
 G x2 ® u

2' x
3 0 x3 ® ul , x3 0 x3 ® u2 } .

This is a total of 18 basis vectors. Note that they are listed lexico-

graphically.	 In general, given the repetition	 p	 for	 X	 and	 q	 for

U,	 the dimension of

X ®	 .. ®X ®U ®	 ® U

P q

is

GPI	 • IGm l 	(7-.9)

where	 dim X = n	 and	 dim U m.	 In this example, note that

p = 2

q 1

n = 3

m 2

so,

dim (X 0 X ® li) _ IG2
3 1

IG1 1	 =	 ( 3 2 )(2)	 = 18	 .
2

This is obviously ,just an extension of the case examined in (2.7), but

introduces the concept of two different vector spaces which will appear

in later problem formulations, since we will always be concerned with

spaces of states and controls.

2.2 Tensor Product of Linear Mappings (101

In this section, we wish to examine the tensor product of two lin-

ear mappings. These linear mappings will be defined as follows:

A	 Vl -, i'.

B V2 } U2

'	 20
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Then, a bilinear map 	 V
1	 2

X V -} U 
1 

0 U 
2 

can be defined with the action

Wl' v2 )	 (Avl )	 (Bv2)

for v  E V1 , v2 E V2 . It is relatively easy to verify that ^ is bi-

linear. If we recall the basic definition of bilinearity given in Section

2.1, for a,s E R; w,x E V,; and y,z E V2,
i

}	 Wit ay + sz)	 (Avl) ® (B(aY + Bz))

(Avl) ® (Bay + B6z)

(Avl ) ® (aBy + GBz)

Next, we use the fact that the tensor product itself is a bilinear map-

ping, so as to obtain

W1 , ay + sz) = (Av1) ® (aBy) + (Av 1) © (5Bz)

= a(Av1) ® (By) + S(Av l) ® (Bz)

= aV(vV Y) + WV1 ,z) .

Also, the other half of the proof can be similarly shown, as follows:

^(aw + $x, v2 ) 	 (A(aw + S? ) ® (Bv2)

(aAw + sAx) 0 (Bv2)

= a(Aw) ® (Bv2 ) + S(Ax) B (Bv2)

= a^(w,v2 ) + o*(x,v2)

We may express these relationships in the commutative diagram shown in

Figure 2.4. It is shown in [11, using the contraction property of ten-
..

`	 sors, teat the mapping a is indeed a linear mapping, and is equal to

the tensor product of the two linear mappings A and B. That is,

X = A ® B

cohere A and B are as defined previously. This tensor product A m B

Er

21
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is a unique linear map because of the property (3) of the tensor product,

which notes the existence of a unique linear map fo each bilinear map,

given the commutative diagram structure of Figure 2.4. An example will

clarify these relationships. We shall arbitrarily define the linear maps

A and B by actions on their basis vectors, and represent these linear

maps in the usual matrix form. We assume the following sets of basis

vectors exist for V 1 , U1 , V2 , and U2:

for V1 , {el,e2}

for Ul , {fl ,f 2 } ;

for V2 ) {gl992}

for U2 , {h l2 h2 } .

We next define

Ael= - f1+3f2

A e 2 = 2f 1 +f2 ,

so that

-1

[1
A]=	 2

3 1

Next, we define

B gl = hl

Bg2=h1-h2

so that

1	 1
[B]=

0 -1

We now consider basis vectors for V 1 ® V 2 and U1 ® U 2 . Given

the above set of basis vectors for V 1 , U1 , V2 , and U2 , we may use

22
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V1 x V2	V1 ® V2

a

U1 ® U2

Figure 2.4 The Tensor Product of Two Linear Mappings

i
t
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the previous ideas on bases for the tensor product to construct the fol-

lowing bases: for V 1 0 V2,

(e l m g l , el 	g2 , c2 ,%, g l , e2 m $,} >

and for U 1 0 U2,

(fl 
0 h i s f l m h 2, f2 0 h l , f2 0 h2}

The reader will note that the ordering convention that was previously

adopted for the basis elements (that is, lexicographic ordering) is em-

ployed here. We can next construct 1 - A B B by looking at the action

on the domain basis elements.

a ( e l	 g l )	 (A 0 
B) (el d g l )	 (Ael ) 0 (Bgl)

(- fl + 3f 2 ) s (hl)

a (- f l m h l ) + (3f 2 0 hl)

\(e l o g 2 ) w (A m 
B) (e'-1, 

m g 2 ) - (Ae'1) @ (Bg2)

(- f l + 3f2 ) A (h l - 112)

	

(- f l	 h l ) + ( f l m 11 2 ) + (3f 2 	11	 - (3f 2 B 112)

	

a(e 2 0 g l	 (A a1 B) ( e 2 N g l ) 	 (Ae 2 ) d lBg1)

(2f 1 + f.^) m (hl)

(2f 1 d 11 1 ) + ( f 2 e 111)

\(e,, 6 g,,) - (A 0 B) ( e2 0 g 2 ) - (Ae 2 )	 (Bg4)

(2f 1 + r' 2 ) 0 (11 1 -
 112)

- (2f 1 0 11 1) - (2f 1 	11 ' ) + ( f 2 0 11 1) - (f 2	 112)

This implies that the linear mapping X	 A 0 B may be represented by

the matrix

24
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-1 -1 2	 2

[a]°
0 1 0	 -2
3 3 1	 1
0 -3 0	 -lj

This matrix can also be obtained by the following convention.

[ (Matrix of A) 11 (Matrix of B) (Matrix of A) 12 (Matrix of B)]

(Matrix of A) 21 (Matrix of B) (Matrix of A) 22 (Matrix of B)

This is usually called the Kronecker product of two matrices	 [13].	 With

the above convention, it is possible to verify the result for	 A m B,	 as

follows.

1 1 1	 1
-1 2

0 -1 0	 -1

A ® B

1 1^ rl	 1

L
0 -1J

1
LO	 -1

-1 -1 2	 2

0 1 0	 -2a
3 3 1	 1
O -3 0	 -1

The Kronecker product will be of much use when deriving the expres-

sions for the optimal controller in Section IV. In general, it is not nec-

essary that square matrices be used in computing this product. Given

(pxq) and (rxs) matrices, the Kronecker product of these two matrices

is defined to be a (pr x qs) matrix. This can be easily seen as a

generalization of the above 2x2 case. We also note additional properties

of the Kronecker product [14].

(1) The Kronecker product is associative, that is, (A e B) B C a A 0

25
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(B ® C), where A, B, and C are matrices of not necessarily

equal size.

(2) (AB) ® (CD) _ (A ® C)(B ® D). This is the factorization property

of the Kronecker product.

(3) A ® (B + C) _ (A ® B) + (A ® C). The Kronecker product distributes

over addition of equal size matrices.

All of the above properties can be easily verified by using generalized

matrices and simplifying the result. Note,however, it is not generally

true that A ® B = B ® A.

A special case of the Kronecker product occurs when one of the ma-

trices in the Kronecker product is equal to the identity matrix, denoted

by 1k , where k specifies the size of the identity matrix. If we assume

that A is n x n and B is m x m, then we may define the Kronecker

sum, A .9 B, as [13]:

A®B=A.®1 +1 ®B (2.10)
M.	 n

As an example, we consider

3	 4 1 2	 -6
A = , B= 0 1	 1

-1	 2 3 -4	 0

Then,

A® lm = 1	 0 0 3	 0 0 4 0 0r3	 4]
1	 2 ® 0	 1 0

-
0	 3 0 0 4 0

.

0	 0 1 0	 0 3 0 0 4
1	 0 0 2 0 0
0	 -1 0 0 2 0
0	 0 -1 0 0 2

4
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In ® B	 1	 0	 1	 2	 -6 1 2 -6 0 0 .0
^0	 1] ® 0	 1	 1= 0 1 1 0 0 0

3	 -4	 0 3 -4 0 0 0 0
0 0 0 1 2 -6
0 0 0 0 1 1
0 0 0 3 -4 0

Therefore,

4	 2	 -6 4 0 0
0	 4	 1 0 4 0

A® B=	 3	 -4	 3 0 0 4
1	 0	 0 3 2 -6
0	 -1	 0 0 3 1
0	 0	 -1 3 -4 2

A special case of the Kronecker summation in (2.10) occurs when A = B,

that is,

A® A= A 0 1 + 1 ® A
n	 n

We shall find applications of the Kronecker summation idea when we

consider the derivation of the necessary controller expressions in the

next section. In order to illustrate partially how the Kronecker summa-

tion is relevant to system theory problems, we consider the following

situation [10]. Let us assume a linear dynamical system

X = AX

where A : X -} X is a linear map and x e X, where X is a vector space

of finite dimension. Recalling the universal factorization property of

the tensor product, which allows us to express a bilinear mapping in terms

of the tensor product and a unique linear mapping, we have the situation

as depicted in Figure 2.5. The previous results have shown that we can

consider the linear mapping to analyze the system, since it is known to

be unique. Since we have already observed that the tensor product is it-

self a bilinear function,

:

s	 e	 27
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(x ®X) x®x+x0k

(Ax) ® x + x ® (Ax)

(A 1x) x0x+ ( 1x aA) x®x

[(A ® lx) + (1X ® A)] x ® x

=(A9A)x®x.

Here, the equality x = 1 x x 
was employed, where lx is the identity map-

ping of the same dimension as X. One should note the significance of the

Kronecker sum term, A ® A. We shall extend this concept as was applied

to a linear system to a nonlinear system in terms of the 5Litate variable x

and control function u. Since the basic principles involve series ex-

pansions, ire will expect to require higher order terms in the summation.

The simple example presented above will then be seen as a special case of

the complete Eystem description which allows for nonlinearities.

2.'i Symmetric °:'ensor Product

In this secta,on, we present a brief look at the symmetric tensor al-

gebra. In order to understand fully this concept in terms of vector spaces,

it is :necessary to first present a few of the ideas concerning quotient

spaces [10]. Basically, the quotient idea allows us to separate a set

into two parts: that which is of interest, and that which is not. In

order to pursue this concept further, we recall the principal ideas of an

equivalence relation on some set S. Let E be a binary relation on S,

that is, E is a subset of S x S. We will denote E by the symbol =,

which is an equivalence relation on S if the following properties hold.

(i) reflexive, i.e., s = s 	 or all s e S,

(ii) symmetric, i.e., s l = s 2 implies s 2 - s l , for all sl,

28	 w•	 i
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(iii) transitive, i.e., if s  = s2 and s2 = s3 then this implies

s  = s 3 , for s l , s 2 , s3 a S.

An equivalence relation = divides S into a set of equivalence classes,

S/(=) with each class containing elements that are equivalent to each

other. Information to be discarded is that which would otherwise distin-

guish elements in an equivalence class. If we assume that E is an

equivalence relation on S, then S/E (read "S modulo E") i the set of

equivalence classes. We define the projection operator, Tr as

Tr : S -> S/E

with action

Tr (s) = s'

where s e S and s' is an equivalence class in S/E to which s is

assigned. If we let f : S -> T be a function with the property

s  E s2 implies .': (s  1 ) = f (s 2 ) ,

then there is a unique function g : S/E -* T, where T is a set, such that

g A n = f .

These relationships may be expressed via the following commutative dia-

gram, which is shown in figure 2.6. This is the "key triangle" that is

presented in [15]. The main idea in this presentation is that g is

unique for each f. The existence and uniqueness of this function g

is shown in [15]. In the algebraic .literature, S/E is referred to as

a quotient set.

The next step in this sequence is the extension of these concepts

F	 29
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Figure 2.5 Kronecker Summation Motivation

	

S	
IT	

S/E

f	 9

T

Figure 2.6 The Quotient Set Concept
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on sets to include vector spaces. Suppose V is an F-vector space,

and W is a subspace of V. It is possible to define an equivalence

relation as follows: for vi, v2 e V and w e W,

v  = v2 if vl = v2 + w .

The quotient set of the above discussion is replaced by the quotient

space V/W, which is also an F-vector space. If we define X as an

F-vector space and define the linear map

Q : V-}X

the projection Tr now becomes a mapping P : V * V/W. These relationships

may be expressed in the commutative diagram shown in Figure 2.7. The

unique linear mapping

Q : V/W -} X

exists if and only if W c ker Q. From Figure 2.7, it is also evident

that

Q = Q	 P .

We now can extend these concepts surrounding quotient spaces to the

subject of symmetric tensors. Namely, we consider the following situa-

tion. We recall that the tensor product space U ® U has the following

set of basis vectors, given that a set of basis vectors for U is

{b l , b 2 ,. ... bm}:

b  ® bl

bl®b2

b1 ® b 

31
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b2obm,

b2®bm,

(this is a total of m2

b ® b	 basis vectors)
m m

We next define a linear mapping

r	 U® ... 0U-^U® ... ®U	 (2.l.la)

p	 p

This mapping is commonly referred to as the G ,rnmnetrizer [16] and is de-

fined by

tr = 1 F a	 (2.11b)
s	 p. o

where a denotes a permutation of variables and the sum is made over all

possible permutations, with the result being divided by the number of

permutations. Basically, permutations of indices arise from the inter-

change of position of these indices.

First of all, we let 0 be a finite set of arbitrary elements. We

define a permutation on 2 as a one-to-one mapping of n  onto 2, [12]

where 0M consists of m positive integers {1,2,...,m). We let Q =

	

{kl,k2,...,kmI be a set of elements k 	 and we let the permutation op-

defined as

3.

t
c
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Here, the first row specifies the domain of the permutation operator a

and the second row represents an image of o. As an example,

1 2 3
o =

2 1 3

is one such permutation of R = {1,2,3} onto itself. Quite obviously,

there are ml permutations for Rm . For the above example, we may list

all of the members of the image set as

{123, 132, 213, 231, 312, 3211 .

As expected, there are 31 = 6 members in the set. Returning to the sym-

metrizer operator, we examine the case where dim U = 2 and p = 3. The

symmetrizer mapping is

7s : U a U 0 U -j- U® U® U.

The action on the basis elements of U ® U ® U is

Trs (b 1	 h ® b l ) = 6 (5(b 1 
® b 1 ® b l )) = b  0 b  0 bl

7T  (b 1 ® b  ® b 2 ) = 7rs (b 1 0 b 2 0 b 1) = Trs (b 2 ® b  ® b1)

6 (b10b10b2+bl®b1'0b2+b10b20bl+b1®b2®bl+

b2 b 1 ® b 1 + b 2 ® b  ® b1)

3 (b l ® b l ® b 2 + b l ® b q ® b l + b2 0 b l 0 bl)

Trs (b 1 0 b 2 ® b 2 )	 Trs (b 2	 b 1 ® b 2 ) = Trs (b 2 ® b 2	 b1)

6 (b10b20b2+b10b20b2+b20bl®b2+b2®b1a^b2+

b2 ® b 2 ® b  + b2 b2 b 1 ) =

(bl®b2 ^b 2 +b 2 0bl^b?+b20b2^bl)

Trs (b 2 0 b 2 ® b 2 ) = 6 (6(b 2 ® b 2 ® b 2 )) = b2 ® b 2 0 b2

For the purposes of this discussion, we will want to consider the

case where p = 2. We have

33
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Trs (b l 	 bl) 	 b  a bl .

	

Tr (bl ® b 2 ) z l	 2	 2(b ® b + b ® bs	 l)

Tr s (b2 ® b l ) = 2 (bl ® b 2 + b2 m bl)

Trs (b 2	 b 2 ) = b 2 ® b2 .

Next, we define the projection Tr as follows:

Tr : U ® U -} U ® TT/ker Trs

The projection operator has the following action on the basis vectors in

U®U:

N N
7r (b® b 1)	 b

1 
v bl

N
R 
(bl 

0 b2) = bl y b2

N N
Tr(b 2 0 bl ) = b  v b2

Tr(b 2 ® b 2 ) = b2 v b2

where

bi = Tr (bi)

The wedge operator V used here is the symmetric tensor product, which shall

be defined shortly. If we express the relationships between Tr and Trs

in the form of a commutative diagram, we have the situation depicted in

Figure 2.8. Because of our earlier results we may conclude that there

exists a unique linear map S : U ® U/ket Tr s -} U ® U with the property

Trs = 6 ° Tr .

If we still assume that the basis elements of the spaces being considered

here are listed in lexicographic order, then we may obtain the matrix

representations for Tr s and Tr as

34

,l

r



i'

V
P	

bm- V/w

x

1

OI N	 PT tUr

;JALITY

Figure 2.7 The Quotient Vector SP-1ce ColicePt

IT

U 0 U	 U	 U/ker IT 
s

U m U



ORIGINAL PAGE IS	
E

OF POOR QUAUry1 0 0 0

1 1

0 0[ Trs l = 2 2
( ' 02 2

LO 0 0 1

and

1 0 '0 0

[Tr] = 0 1 1 0

0 0 0 1

Here we note that the use of the brackets around a linear operator implies

its matrix representation. Since we choose the basis elements for the

factor space U ® U/ker Trs as images of basis elements under 7s , then

it is possible to determine the matrix representation for s as

1 0 0

0 
2 

0

0 2 0

0 0 1

It can be easily verified that

[ TrS ] = [0][7r]

as required.

A few comments are in order concerning symmetric powers of a vector

space [16]. If E is an arbitrary vector space, then a vector space

vp E^ E E v ... v E	 (2.12a)

p

together with a symmetric p-linear mapping

36	 .
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V :E x ..._ x E  -} vp F	 (2.12b )

P

is called a p th symmetric power of E if the following conditions are

satisfied:

(1) the vectors v (xl , .... xp ) generate vPE;

(2) if ^ is any symmetric p-linear mapping of E x ... x E into an

arbitrary vector space F, then there exists a linear map f

vpE -* F such that * = f c V.

The property (1) means that all of the vectors generated by v form a

subspace of vpE which is equal to vpE. Property (2) is the universal

factorization property, and is expressed by the commutative diagram shown

in Figure 2.9. One notes the surprising similarities between the defin-

ition of the tensor- algebra that was presented in Section 2.1 and the

symmetric censor algebra presented here. As was done previously, condi-

tions (1) and (2) can be shown to be equivalent to the following single

condition:

(3) if ^ is any symmetric mapping of E x ... x E into F, then

there exists a unique linear mapping f : v PE -* F such that ^ _

f G V.

It can be shown that the factor space U ® U/ker ffs in Figure 2.8 is

iti;omorphic to the second symmetric power of U, that is to the space

U v U. Redrawing Figure 2.8 with this change, we have the commutative

diagram shown in Figure 2.10.

We can next define the symmetric tensor product of two vectors

and t, with s e U and t e U as

A

37
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svt=7(s®t) .
As an example, we will assume that dim U = 2, since we have previously

calculated [n] for this case:
ti

1 0 0 0	 s 1 t l	s 
1 

t 
1

s v t= 0 1 1 0 s 
1 

t 2 - s 
1 

t 2 + s 
2 

t 
1

0 0 0 1—
 s 

2 
t 
1	

s 
2 

t 
2

s2t2

The reader will note that we have expressed the tensor product via the outer

or dyadic product rearranged as a 4-vector. The reasoning behind this step

will be explored in the following section. Returning to Figure 2.10, we

find that we may replace a tensor product

up ^ ` ® u ® ... e u	 (2.13)

p

with the linear operator S acting on the symmetric tensor product, that

is,
up= a- ,

where

u = n(u)

and

U  ̂ uvuV... Vu^.

p

As was previously mentioned, this reduction to the symmetric tensor alge-

bra will be employed whenever we consider the concept of taking deriva-

tives of the tensor product, a topic which is considered in the following

section.

^ij

j
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2.4 Derivatives

In this section, we wish to examine a few of the concepts that will be

needed when we derive the results for the various controller terms in Sect-

ion III.In particular, we will consider the concept of taking a partial

derivative of a tensor product, which will be needed to solve the funda-

mental equation of optimality that we are using - the Hamilton-Jacobi-

Bellman equation.

Our approach in this section is as follows. First, we present the gen-

eral definitions of total and partial derivatives and show how these defi -

nitions can be applies? to a very simple case. These ideas are then extended

to the case in which we are particularly interested, which involves the use

of the chain rule for abstract derivatives while considering several copies

of the vector spaces X and U. By the way of introduction we may formal-

ly define the total derivative as follows [171. If we let V and W be

normed linear spaces with U open in V, a mapping f : U -> W is differ-

entiable at p e U if there exists T e L(V,W) so'that for p + x e U,

x c V, and for I1 • II an appropriate norm on V and W,

lim
+O 

I I f (F+x) - f (p) - T	 = 0	 (2.14)

If such a T exists, then T is unique and called the total derivative

of f at p, denoted by

Df (p)x = Tx .	 (2.15)

Also, suppose we let V = V1 	... X Vn , x = (xl,...,xn) e V and Ui

open in Vi and consider fi Ui -} W with action xi } 
f (pv .. ''pi-1'

xi' p i+1'" ''pn)' 
If f 	 is differentiable at p i e Ui , we call its

^a
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derivative the ith partial derivative of f at p, and denote it by

Dif(p), p E U1 x ... x Un . Since we will be concerned primarily with the

problem of taking derivatives of the tensor product, we first examine a

simple case and note the general concepts involving derivatives. We

define the mapping f as follows

f: X x U -> X® U

with action f(x,u) = x ® u, where

xEX and uE U

Provided that the mapping f is differentiable, the total derivative of

f is a linear mapping belonging to L(X x U, X 0 U) and is defined as

[17]

Df (x,u) (Ax, Lu) = lim t [f (x + tAx, u + tAu) - f (x,u) ] 	 (2.16)
t->0

where Au E U and Ax E X are the incremental variables while u E U

and x E X are the expansion points. For this particular f mapping

as defined above,

Df (x, u) (Ax, Au) = lim — [(x  + tAx) ® (u + tAu) - (x ® u) ]
t}0 t

= lim 1

ta0 t 

[x®u+x0 tAu + tAx ®u+ tAx ® tau - x®u]

= x 0 Au + Ax 0 u .	 (2.17)

Next, we shall be concerned with the idea of partial derivatives. First

of all, we can define two partial derivatives for this particular case -

a partial derivative with respect to x and also with respect to u.

We will denote these by D  and D u , respectively.

Dxf(x,u)(Ax) = lim t[ f(x + tAx, u) - f(x,u)]
t-}0

= lim 1 [(x + tAx) 0 u - x ® u]
t-^-o t

41
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= lim t[x0u +tflx0u -x0u]
t-}0

	= 0x 0 u	 (2.18)

Similarly, the partial derivative with respect to u is computed as

D f (x, u) (Ax,Au) = lim 1 [f (x,t3 + t0u) - f (x,u) ]
u	 t^0 1

= lim t [x 0 (u + tAu) - x 0 u)
t}0 1 -
	 --	 -	 -	 -

= 1im — [x013 +x 0 t0u-x0u]
t-}0 

t

= x 0 Du	 (2.19)

If we examine the total and partial derivative expressions, it is possible

t to observe the following concepts. Inmiediately, it is obvious that the

total derivative is nothing more than the sum of all of the possible par-

tial derivatives. This is shown formally in [18] for the general case.

Secondly, we can make the following observations:

	

Df(x,u)(0,Au) = Duf(x,u)(au)	 (2.20)

and

	

Df(x,u)(Ax,0) = Dxf(x,u)(Ax)	 (2.21)

The results that we have presented so far are adequate to study only

the simple mapping f(x,u) = x 0 u. We must next consider the concepts

necessary in order to take derivatives when there exist multiple copies

of the spaces X and U, that is, mappings of the form

P	 q —^

In order to examine the general case as stated above, we will need to

consider certain concepts involving the chain rule in abstract differen-

tiation [17]. We assume that U is open in V12 U is open in V
k	 1	 1	 2	 2

f : U1 -> U2 , and g	 U2 -* W for V1 , V21 W Banach spaces. Let p e U1

42
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be such that f is differentiable at p and g is differentiable at

f (p) . Then g o f : U1 -* W is differentiable at p and

D(g o f ) (P) = Dg ( f (P) ) a Df (P) •	 (2.22)

We will assume that h = g o f. This chain rule for abstract derivatives

is used in [19] to derive the result that is needed concerning partial

derivatives of the tensor product. We will assume that X and U are

vector spaces such that h X x U -} (X ® X) ® U with action h(x,u)

x ® x ® u. The mapping h has a derivative at some point p = (x,u) E

X x U, where x E X and u E U. Also, we define the mapping f: X x U

-> (X ® X) x U with action f(x ; u) = (x ® x,u) and the mapping g : (X

X) x U -} (X ® X) ® U with action

g (x ® x, u) = x ® x (9 u .

Pictorially, we have the commutative diagram displayed in Figure 2.1.1.

We also assume that f is differentiable at p and g is differentiable

at f (p) . Then,

Dxh(x,u) (Ax) _ Ax ® x 0 u + x ® Ax ® u

Duh(x,u)(Au) = x 0 x ® Au .

We will especially be interested in the partial derivative with re-

spect to the control input, u. If we next allow the mapping h to

assume the following generalized form, we can extend these ideas pre-

sented above to include this case. First, we assume that

h X xU -} lX® ... ®X®U®_... ®U1

P	 q

with action

,:a
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X x U	 h
X ® X ® U

(X®X) x 

Figure 2.11 Chain Rule Concept
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P	 q
t

We can compute the required partial derivative as

Duh (x, u) (4u) = max ® ... ® x^0 (Au ® u® u/ + u Au ® ù 0 ... ® u

P	 q-1	 q-2

+... +u®u®	 ®u0Au)

q-1

	

xp ® D(uq ) ;Du)	 (2.23)

This is the result that we will need in Section III to solve the necessary

minimization problem. Here, as was previously noted, we have assumed

that x and u are expansion points and Ox and Au are the necessary

incremental variables. In order to simplify the notational aspects, we

will drop the "bar" notation when we derive the controller results and

simply assume that our point of expansion is (x,u).

Since we have presented some introductory results concerning the

ideas surrounding the symmetric tenser product, we now consider the par-

tial derivative operation operating on the symmetric product. We con-

sider the following situation:

Du [L(xp ® uq)](Au)

where L is a linear map operating on the tensor product x p 0 uq . If

we apply the chain rule for abstract differentiation plus the fact that

the derivative of a linear map is the linear map itself, the partial

derivative operator may interchange with the linear map, L, which

provides

45to
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= L xp ® D(uq ) (Du)
	

(2.24)

We next substitute

uq auq

where it is recalled that S is a linear mapping and

N q N N	 N
u = ^UVU V ... vu .

q

Equation (2.24) then becomes

L[ (xp 
® D(6uq ) (4u) ]

= L[xp ® SD(uq)(Au)]
N

-L[xp 0O(Auv ùv	 vu+uvAuVuV	 V u,+...

q-1	 q-2

N N
+uv	 . Vuv Au) ]	 .

q-1

(2.25)

Next, we will illustrate the specific uses of the symmetric tensor

algebra structure. It can be shown that all of the terms inside the par-

entheses in equation (2.25) above are equal. Consider the case where

q = 2 as an example, Equation (2.25) becomes

L[xp 0 S(L v u+ u v Du)]	 (2.26)

We have previously shown how to compute the symmetric or wedge product

of two vectors. Using this technique with dim U = 2, we obtain

N N
Au1ul

N	 N N	 N
A^ V u = Au2u1 + Au1u2

^u2u2

and

46
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Clearly,

N N N N
Auvu = uv pu .

Therefore, equation (2.25) now becomes

gL[xp
 ® a(-q-1

 v Du)) ,	 (2.27)

as there are q identical terms that are added in (2.25). If we recall

that
N

U = Tr (u)

and

N
Au = Tr (Au) 9

then (2.27) becomes

gL[xp ® $(Tr(u) v Tr (u) v ... v 7(u) v r(Qu))

q-1

= gL[xp ® $ir (u ® u	 .. ® u ® 4u)]	 (2.28)

q-1

= gL[xp ® 7
s 

(^u	 u	 ® u, ® Au) )	 (2.29)
—y-'

q-1

= gL[xp ® 
Trs

 
(u q-1 ® Au) ]	 (2.30)

In obtaining equation (2.29), we note the composition

Trs = s G Tr

was used, as was shown in Figure 2.10. Also, we used a property of the

projection in order to obtain (2.28), namely

Tr (al ) v 7(a 	 v ... v Tr (an) = 7(a ® a2	 ... ® an)

47
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Basically, we projected into the symmetric tensor algebra in order

to symmetrize the derivative result, which allowed us to equate all of

the terms In the summation in equation (2.25). After this operation has

been accomplished, we effectively return to the (nonsymmetric) tensor al-

gebra with the Du term in one fixed position. In the following section

when we begin the derivation for the optimal controller terms, we will

show that the terms that we wish to differentiate partially are of the

form presented in (2.24). We will be interested in showing that certain

coefficient terms will go to zero for all values of Au, which is why

these terms must be "factored" out of the expression that is of interest.

2.5 Discussion

In this section, we have presented the matho.w:; tical, preliminaries

a

	

	 that are necessary to comprehend the remainder of this work. Each of the

concepts presented so far will be of considerable importance whenever we

consider the optimal regulation problem in the following sections. Since

we will be presented with a minimization problem, we will be particularly

concerned with the procedures of partial differentiation with respect *Co

a vector variable. Not surprisingly, the terms that we will be required

to differentiate will be expressed via the tensor product, hence, the

reason for presenting the material contained in Section 2.4, which is

where many of the ideas in the chapter were brought together.

Thus far, our treatment of the subject matter has been highly theo-

retical and consistently algebraic in nature, with no reference at all to

48
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systems cuncepts. These concepts are presented in the following section,

and will appear very similar to some of the classical system theory with

which the reader is undoubtedly familiar. The difference, of course, is

the use of the multilinear algebra in order to describe n system, a topic

that is presented in the first portion of the following section.

b.
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III. A NONLINEAR CONTROL PROBLDI

The principal idea of this section is to demonstrate how the concepts

presented in the previous section,on the subject of tensor algebra, can be 	 L

applied to actual control problems involving nonlinear systems. The under-

lying theme to most of the results presented here is the series expansion

of a function about a given point. We begin the section with our basic as-

sumptions concerning the fundamental system description. Having defined

these preliminaries, we present series expansion ideas as pertaining to

the eventual solution concepts - that is, in terms of matrices operating

on basis vectors. A method of calculating the Apq system matrices via

Taylor's series ideas is also presented. The next section focuses on the

exact procedures that are necessary to derive the needed results, which are

the controller gain matrices. By construction, this controller is optimal

in nature, satisfying the Hamilton - Jacobi - Bellman (HJB) equation of op-

timality. In order to perform the necessary minimization, we shall use the

concepts presented in Section IIconcerning the partial differentiation of

the tensor product with respect to the control variable u. The recursive

nature of the problem is explored, giving rise to solutions for the con-

troller terms as well as to terms in the optimal value function. The last

portion of the section provides a partial verification of the derived re-

sults as the Linear-Quadratic or LQ problem is verified for the low order

terms solution.

50
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 System Description [1]

In order to proceed with the system representation in terms of tensor

expansions, it is necessary to begin with the basic definition of the mth

tensor power of a variable. We define

	

up=`u®u®... ®u	 (3•1)

p copies

The class of nonlinear systems that we will consider are those which can

be desc-ibed by an ordinary differential equation of the usual form

x(t) = f.(x,u,t)	 , t - [to ,t1 1 .	 (3.2)

Here, we assume that x( • ) E Rn is the vector of states and u( • ) E Rm

is the vector of controls. The systems to be considered here may be

represented in the following generalized form:

	

(t) = F Apq (t) xp (t) ® uq (t)	 p+q > 1	 (3.3)

Psq

The Apq terms are linear maps, defined as

A	 : (Rn ) p ® (Rm ) q -^ Rn 	 (3.4)
Pq

where

(Rm)p A R  ® ... ® R  .

p copies

We next define the performance index, J, as

f t
tJ = 2 M(x(tl)) + 2 	 L(x(t), u(t), t)dt 	 (3.5)

U

where M(x(t 1)) and L(x(t), u(t), t) are positive convex functionals,

and L(x,u,t) is assumed to be continuous with respect to t. Also,

if tl -► co, it is required that the system is asymptotically stable in

r
4,.
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a sufficiently small neighborhood of the origin. This is the infinite

time regulation problem, which can be considered as a special case of

the finite time regulation problem that we will consider. Continuing,

we assume that the penalty term

M(x(t 1)) = M (xf )	 x(tl) = X  31

is given by

M(xf) 	 Mk xfk , k z 2	 (3.6)
k

The Mk terms are defined as the linear mappings

Mk : (Rn ) k -} R .	 (3.7)

We let L(x(t), u(t), t) be given by

L(x,u,t) _ 1 0. (t) xJ ® u 	 j + k z2	 (3.8)

j,k Jk

where

Qik(t) : (e) J ® ( Rm) k -^ R	 (3.9)

It is now necessary to define the set of admissible control functions

as those control functions which can be represented in the usual form

of a power series in x, that is

u(x,t) _	 Ki(t) xi	 j = 1,2,3,...	 (3.10)

j

where

K  (t) : (Rn) J -} Rm .	 (3.11)

The Ki (t) terms follow the previous convention of being linear maps.

Given the preliminaries presented in this section so far, we are

prepared to state the basic optimal control problem, for which a solution

52
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will be constructed in the next section. We desire to find a suitable con-

trol function u(t) such that for all initial conditions x0 belonging

to some open neighborhood of the origin of R n , the functional J (per-

formance index) is minimized. If such a control function is denoted by

	

u*(t)	 and u(t) is any other	 control function, we require that

J(x ,u*) 5 J(x ,u)

	

o	 n

This is to be satisfied for all x 0 in an open neighborhood of the origin.

It is shown in [1] that there exists an open neighborhood of the origin

such that for all initial conditions in this open neighborhood there exists

a u(t) that can be represented in the form of a power series as ex-

pressed in (3.10). Moreover, this solution is unique if the solution to

the LQ problem is unique. The starting point in the development of this

control function will be the Hamilton - Jacobi - Bellman equation, or HJB

equation. It is shown in [20] that the HJB equation is a necessary con-

dition for optimality. Before presenting these results, however, it is

first necessary to note a few additional principles surrounding the op-

timal control problem. We define the so called optimal value function

V(x(t),t) as follows:

	

V(x,t) = min J(x(t),u(s),t) 	 t0 <- t 5 t l	 s e [t,t l ]	 (3.12)
ueSZ

such that

k = f(x,u,t)

is satisfied, with initial condition vector
lj

x(t0) = x0

This function is called the optimal value function because it is equal to
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the minimum value of the performance index J on the interval [t0,tl].

Also, the set 0 contains control functions that are expressed as in

(3.10), that is,
m,	

u(t) _	
K  (t) x3 (t)	 , 3 = 1,2,3, ,

J

It can be shown that the optimal value function V(x,t) solves the

following functional equation [20]:

min [
d

	+ L(x,u,t)] = 0	 (3.13)
uE0

This is the functional form of the HJb equation. It also can be shown [1]

that the optimal `value function has the following properties:

1) If x(t0) = x0 = 0, then V(x,t) is identically zero and u(t) E 0;

2) them is some open neighborhood of the origin in which V(x,t) can

be represented as a power series in the state variable, x. The first

term in this series is the quadratic term, so we have

V(x,t) = Y. Vk(t) 
X 	 k = 2,3,... ;	 (3.14)

k

3) the boundary condition V(x f ,t1 = M(xf) must be satisfied.

Property 1) listed above is really not surprising if we consider the ini-

tial conditions as some perturbation from the origin and the state x(t)

as being an error term. If this perturbation were not present, there would

be no need for any correction mechanism and the control function would

be identically zero. Property 2) is very important because it assumes

that the optimal value function V(x,t) is available as a power series

;i
i	 in Lhe state variable, x, which is similar to those assumptions made for
w

%-	 the control function and also for the performance integrand L(x,u,t).

n

cn
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The underlying principle surrounding the series expansion of the

various functions involves the summation of linear mapping terms oper-

ating on their respective argument vectors. For example, we assumed

x	 Y Apq xp ® uq
ppq

as the given sysLem description. We need to examine the construction

of the argument vectors x  ® uq which will in turn provide information

concerning the sizes of the matrices that represent the linear maps Apq.

For the purposes of this example, we assume that dim U = dim X = 2. As

an example argument vector, we consider the tensor product

X ® u ,

where

U = [ u1 u2]T

and

x = [xl X21T.

In order to form the set of basis vectors for X 0 U, we consider the

outer or dyadic product xuT.

xuT = 
x 
	 [u1 u2] =[

Xlul 
xlu2

x2
	

x 
2 
u 
1 

x2u2

If this 2 X 2 array is considered to be a 4-dimensional object (that

is, a 4-vector) with its elements ordered lexicographically, then it

may be listed as the column vector

[xlu1 x
1u2  x 

2 
u 
1 

x2u2]
T

Alternatively, we can appeal to the bases discussions of the previous

section.

j
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If similar calculations are made for the remaining sets of basis vec-

tors, we can formulate our system description in terms of matrices and
i

vectors. Again, we are assuming, for the purpose of this illustration,	 I

that dim U = dim X = 2, as well as a lexicographic ordering of the basis

vectors.

	

x	 xu	 x u1 = 	1+	 1+	 1 1 +

	

x	 x	 u	 x2	 2	 2	 1 u2

A10	 A01	 A11	
x2u1

x2u2

2	 2
e	 s	 e	 •	 x	 .	 •	 .	 •	 u

	

1	 1	
+ ...	 (3.15)

•9	 x x	 u u
1 2	 1 2

x 2 x 1	 u2u1

	

2	 2

	X2
	 u2

A20	 A02

Similarly, we can express the series expansions for V(x,t), L(x,u,t),

u(t), and M(xf) as

	

v(x,t) _ [.	 .] x l 
2	

1 3
	

++ [.	 .	 .	 .	 .	 .	 .	 .]	 x	 ...
'

2
V2	 `1x2	 V3	 x  x2

x 
2 
x 
1	

x 
1 
x 

2 
x 
1

2
x2
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^.	 .^ xlul + ...

Ql1	 x1u2

x 2 u 1

x2u2

2u _	 xx+	 ...1	 1 	 1	 +
u	 x	 x x
2	 2	 1 2

Kl	 K2
	

x 2 x 1
2

x2

(3.17)

(3.18)

and

M(xf) 	 xlf2	
+ (.

M2	 xlfx2f

x2fxlf

2
x 2 J

3
.^+ ... .[X if

2
xlf x 2

3
x 2	 (3.19)

We should emphasize once again that the representations of these linear

maps as just illustrated are inherently dependent upon the particular

ordering convention that is employed for the basis elements. We will

consistently employ the lexicographic ordering convention in all discus-

sions. It also would be useful to relate the matrices that we ha-,e

defined here to the "usual" matrices found in the classical optimal

control problem. In the traditional approach, a quadratic L(x,u,t)

would be described as

L(x,u,t) = xTQx + uTRu + xTCu	 (3.20)

In order to show the relationship, say, beteaeen the Q matrix above and
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the Q20 vector that appeared in (3.17), we assume that dim U = dim X

= 2, and that Q is represented by

_
qll q12

q21 q22

Then,

xTQX = [ x1 
x23q 11 q12 [xl-

21 q 22	 '{2

2	 2_ [q 11 x  + q12 X1 X2 + q 21 X2 x  + q 22 x2 ]

_ 
[qll q12 q21 8223 xl 2

x 
1 
x 
2

x2xl

x2
2

__	 2
Q20 

X .

We can similarly determine the components of the other Qij terms as

needed from their corresponding matrices in the classical optimal control

problem.

Thus far, we have defined the Apq system matrices, but have not

specified how these matrices may be obtained from a given nonlinear

system. Basically, there are two methods by which these matrices may

be obtained. The first is simply obtaining them by inspection. Unfor-

tunately, this method can only be applied where the variables x and u

do not appear as arguments for other functions. The following example

illustrates this method. We assume that we are given the system

k  = 3x1 + 4u2 + 2x2u1 - 5x12 + X 
1 

u 
2
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x2	

1
-u + x1 - 2u12 + 7u2 2 + u1u2 .

We can calculate the system matrices by inspection.

x1	 3 0 x1	0 4 u1	0 1 2 0 xlul

x2	
1 0 x2	-1 0 u2	0 0 0 0 x1u2

A10	 A01	 A11	
x 

2 
u 

1

f'
x2u2

1u1u2

] -
5 0 0 0 x12	 0 0 0 0 u12

0 0 0 0 x1x2	-2 1 0 7

A20	 x2x1	 A02	
u 

2 
u 
1

2	 2
x2	u2

For systems where the variables x and u appear as arguments
i

for other functions, we must use the other approach, which involves a

Taylor's series expansion of a function in two vector variables. The

theory behind this concept is discussed quite extensively in [1] and

[16] and involves the traditional Taylor's series approach but developed

in terms of vector-valued tensors and the contraction operator. Another

approach that defines the series expansion form in terms of tensor pro-

ducts may be found in [9]. The details of these methods are not really

relevant to our results here, but the ideas surrounding the definition

of the various system matrices are quite important. For the purposes of

this example, we note that we are atill assuming that dim U = dim X = 2.

The Apq system matrices can be computed via the partial derivative op-

eration, as follows:
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afl af t 	aft aft

A	 axl ax 
	 A01 	 au 

10	 aft aft	 Ol	 af2 aft

ax 	 ax2	au 	 au2

(x0' u0 )	 (x0lu0)

a2f l a 
2 

f 
1	

a 
2 

f 1	
a 2 f 1

a au ax au ax au ax auAll	 1 1	 1 2	 2 1.	 2 2

	

a 
2 

f 
2	

a 
2 

f 
2	

a 
2 

f 
2	

a 
2 

f 2

axlaul axlau2 ax2aul ax2au2

(x0,u01

	

a 2f l 	a2fl 	a2 f 1	 a 2 fl

A = 1 
9XJ2 axlax2 ax2axl ax 2

20	 2	 1	 2

	

a 
2 

f 2	
a 

2 
f 2	

a 
2 

f 2	
a 

2 
f 2

ax 
2 axlax2 ax2axl 

ax 2

	

L 1	
2 J (x0 pu0)

	

a 2 fl 	a2fl 	a2fl	 a2f1

A = 1 
au 2 aul au2 au2 aul au 2

02 2	 1	 2

	

a 2 f 2	 a 2f 2 	a2f2	 a2f2

au 2 au
1
9u2 au2 au

1
 au 2

	

1	
2 J (x01u0)

	

The other values of the A	 system matrices that are needed (depending
pq

on the problem degree) can be calculated similarly. The point (x01pu0)

is assumed to be the expansion point. An interesting feature regarding

the above way of calculating the system matrices is how the sequence of

p	 indices increases lexicographically from left to right in each row. This

E	
.

feature is, of course, basis dependent.^u.

One of the concepts surrounding the HJB equation is the idea of

R

t
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minimization. This minimization will take place after appropriate sub-

stitutions for V(x,t) and L(x,u,t) are made. Since we are presented

with a function of two variables, the control u and state variable x,

we will perform the minimization operation by taking the necessary partial

derivatives and setting the result to zero. As we shall see, this will

involve the concapts of Section 2.4 where we examined the possibility of

taking partial derivatives of tensor products of two variables. We also

note that the particular type of control functions that we desire are the

so called analytic feedback controllers [1]. This requirement is quite

important in obtaining the final solution. Toward this end, we begin the

derivation of the controller expressions in the next portion of this

section.

3.2 Derivation of Controller Expressions

In this section, we show how to derive expressions for the controller

as a function of the system description and the performance index terms.

The solution will be constructed in a recursive manner by solving the HJB

equation for the unknown coefficient matrices

Vk (t)	 , k = 2,3,...

and

K^(t)	 J = 1,2,3,...

such that the boundary condition

V(x(t1),tl) = M(x(tl))

is met. Beginning with the HJB equation

	

min d[ dt V(x ' t) + L(x,u,t)]	 0
r_	 uESZ

rs

i61..
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we firs*_ examine how to compute the time derivative of the optimal value

function, V(x,t), where we recall from (3.16) that J(x,t) can be e-.1-

pressed in sz>,ies expansion form as

V(x,t) = V2x2 + V3x3 + ,..

Therefore,

dt V (x, t) V2x2 + V2 (x ® x + x ® x) + V3x3 + V3 (k ® x ® x

+x®x ®x +x®x®x)+...	 (3.21)

because of the biiinearity of the tensor product and using the ordinary

product rule. In general, we note the movement of the A then from left

to right in the summation and express the general result as

Co	 k
d _

	

dt V(x,t)	 Vk(t) ^,	 Q ...x	
X

	

, ®x ® x	 ... ®

k=2 j =1 
x ® x
^""'^'

	

J-1	 k-j

copies	 copies

00

	

+ Y. Vk (t) x 	 (3.22)
k=2

We now examine the substitution for the k terms, namely

x= X Apq xp G 
U 
	 p+ q 1

p)q

Making this substitution, and including the expansion tez.-° for L(x,u,t),

we arrive at the expression in the HJB equation that is to be minimized

with respect to the vector variable u, namely

dt V(x,t) + L(x,u,t)

	

I Vk(t) I x	 x ® (	
Apq x

p a uq ) e x̀ 0 ... ® x + I Vk(t) xk

k=2	 j=1	 p,q	 k=2
j-1	 k-j
copies	 copies

62
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+ I Qmn X  0 u 	 (3.23)
m,n

where m+a Z 2 and p+q z 1. Recalling the various properties of the

Kronecker product outlined in Section II we may proceed with the simpli-

fication. Equation (3.23) then becomes

Co	 k	 j-1	 k-j
I

r	 ^^
G Vk (t ) L	 Y (lx	

Apq ® 1x
):x^ -1 0 (xp 0 uq ) ^ xk-3)

k=2	 j=•• p,q

rr
+ X Vk (t) xl` + 1. Qmn x

m ® un ,	 (3.24)
	k =2	 m,n

where we define the multiple Kronecker product of the identity matrix

lxk-j as

lk-d =1 01 ®... 01
	X 	 \_X_ X 	 x^

k-j copies

It would be very advantageous to be able to alter the ordering of

the terms in the fi.)ovc, expression and group the xj—1 , xk j , and xp

terms to obtain a term x 
p+k-1

[16]. However, in order to accomplish

this, it will be necessary to introduce a new operator. We define the

permutation matrix in a slightly modified manner from the definition in

[21], but with similar results. Let

Sp (xp ® uq) ^ xp-r ® uq ® xr 	(3.25)q 

where

r 5 p

	

If we make this substitution in equation (3.24), we have

00d V(x,t) + L(x,u,t) - ^' V (t) Ck	 C	 j'1	 k-j k-j

dt	 - G k	 G	 L. ( 1x	 0 Apq ® 1x )sRq
k=2	 j=1 p,qCo

(x.Q 
0 uq ) + X Vk (t) xk + I Q

mn 
xm ® un	(3.26)

k=2	 m,n

n
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where we define the index 2 as

k = p + k - 1 .

Also, we note that S 0 (r=0) is trivially tl.e identity matrix, of dimen-

sion equal to the dimension of

,.	 U
1	 '

Q	 q

which is equal to
q	 ^

nQ . mq

for dim X = n and dim U = m.

An example will be useful in observing the action of this permutation

matrix. For the purposes of this example, we shall assume that

k = 2

p = 1 ,

and

q = 1 .

Then, we have, from (3.26)

V2 [(All ® 1x) 521 x
2 e u + (1 o All ) (x2 0 u)1

= V2 (All ® lx) 5 21 + (l
x 0 All)] x2 @ u .

In general, the Sp q operators are linear mappings, and are represented

in matrix form by a np • M  square matrix, where dim X = n and dim U

= M. These matrices have a single "1" in each column and basically re-

order the listing of the elements in a pai:ticula.r ba,sio vector. For ex-

ample, S1 can be represented as
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0 0 1 0

(Sil^ r
0 1 0 0

0 0 0 1

For higher order 'p and q, there is an ambiguity that must be resolved

before we can continue. As an example, we consider the operator S l'

with action

S21 (x2 ®u) =x ®u®x .

In matrix form, we have:

1 0 0 0 0 0 0 0 x1x1u1	x 
1 
u 

1 
x 
1

0 0 1 0 0 0 0 0 x1x1u2	xlulxl
0 1 0 0 0 0 0 0 x 

1 2	 l lu2	x
x u - x u x 

l0 0 0 1 0 0 0 0 xx 
1	

ux 
20 0 0 0 1 0 0 0 x2xu1	 x2u1x

0 0 0 0 0 0 1 0 x2x1u2 	 x2u1x2
00000100 xxu	 xu2x
0 0 0 0 0 0 0 1 x2x2u2x2u2x̂

The ambiguity arises in the above example in the construction of rows 2

and 5, as well as rows 4 and 7. We shall adopt the convention that the

x vector component: will remain in the same order whenever the tensor

product is reor6ered. 'Thus, in row 2 of the above matrix, we choose the

product x 
1 
x 

2 
u 
1 

to equate to x1u1x2 , rather than the product xlxlul.

This convention will be consistently employed throughout the remainder

of the work.

Now that we have clarified the necessary issues, we are ready

to proceed with the solution. We recall thr` the first step in solving

the optimal regulation problem will be to cr` 	 ate

5
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Du [ dt V(x,t) + L(x,u,t)] (Au) = 0	 (3.27)

It is necessary to consider what happens whenever equation (3.26) is par-

tially differentiated with respect to the control variable u. So that

we may differentiate term-by-term, we shall first list a few of the ini-

tial terms in (3.26):

dtV(x,t) + L(x,u,t) = V2x2
 + V2{(A10 

(D A, 10
+ [(A01 ® 1x)S11 + (lx ® A01)]

x ® u + [(All ® 1x)S21 + (l
x ® A1l)]x2 0 u + [(A02 0 lx)S 12 + (l

x 0 A02)]

x ® u2 + [(A20 lx) + (lx 0 A20)]x3 + ...} + V3x3 + V3{A10 ® A10 ® A10 )x3 +

[(A01 ® 
1
x2)S 21 + (lx ® A01 

0 1
x)S 21 + (lx2 ® A01 )I x 2 ® u +

[(All ® 1x2)S 31 + (1x ® All ® 
1
x)S 31 + (lx2 

0 A11 )Ix 3 ® u + ...} + ...

+ Q02 u
2 + Q20 x2 + Q11 x ® u + ...	 (3.28)

In listing these terms, we have used the Kronecker summation that was pre-

viously defined in Section II that is,

A ® B A ® lm + 1R ® B

where A is R x Q and B is m x m. This sum is well-defined because

A ® lm is an km x km matrix as well as 1 Q B. By using this defini-

tion, we can write, for C n x n,

A01m ® ln +1Q ®B®1n +1z ® 1m®C

(A®lm
+1Q ®B) ®1n+1Q®1m®C

(A ® B) 0 1n + (1z ® ln } ® C

= A ® B ® C .

This is usually called the multiple Kronecker summation [1] and can be

viewed as an extension of the normal Kronecker sum.

If we recall the process of partially differentiating linear map-

s
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pings operating on tensor products that was outlined in Section 2,4, we

can differentiate (3.28) term by term:

Du {V
2 [(A01

® 
1x) S11 + (l

x e A01)] x ® u} (Au)

[(A01 
® 1x) S 11 + (1x 

0 A01>] x ® Au

Du [Qll x 0 u] (Au) = QI1 x ® Au

and

Du [Q02 u2 ] (Au)

= Q02 D(u
2 ) (Au)

2 
Q02 

Trs (u ® Au) .

If similar calculations are carried out for the remaining terms in (3.28),

we may list the result as follows:

Du 
[dt 

V(x,t) + L( x ,u, t)] (Au) _ {2 Q02 Trs (K1 ® lu) + Q11 +

V2	x 11[(AOI ® 1) S + (lx ® A
01)]} x 0 Au + {2 Q02 rs (K2 ® Iu)

+ 3 Q03 rs (K1 
® K1 ® lu) + 2 Q12 [lx ® 

rs (
K1 

® lu)] + Q21 -+'

V2	x	 21[(AI1 ® 1) S + (lx 
® A11)] + 2 !2	 x	 x

[(A02 
® 1) SI2 + (I 

® A02)]

[Ix ® ^s (K1 ® 1 M + V3 [(A01 ® 1x2) S21 + (1x ® A01 
0 1x) S21 +

	

(1x2 0 A01)]} x2 ® Au + ... = 0	 (3.29)

In order to clarify the origins of the terms listed in equation (3.29),

refer to Figures 3.1 and 3.2, which show the original terms of equation

(3.28) and their values after differentiation.

The HJB equation thus far has been solved for the optimal control,

which can be expressed as a function of x and t. We may write

u*(x,t) _ I K^(t) x3	j = 1,2,3,...	 (3.30)
J

where u*(x,t) is the optimal control. If this substitution is made,
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the resulting equation is (3.29). We will suppress the asterisk notation

and simply note the optimal gain matrices as K j (t). A few comments are

in order concerning the multiple tensor product of the control vector

when the substitution (3.30) is made. We will first consider the product

u®u.	 _

u ® u	 (^ Kj (t) xi ) ® (^ Kk (t) xk)
j	 k

	

_	 (Kj (t) ® Kk (t) ) x3+k
j,k

Likewise, the general form is therefore

up =	 (K. (t) 0 K. (t) ® ... ® K. (t)) xj1+J2+...+j P. 	 (3.31)
iV12,...,jp	 j 1	 32	 JP

By using these techniques and substitutions, it is possible to obtain

equation (3.29).

The factored form of equation (3.29) presents a possible method of

solution. We desire that this entire expression be identically zero

for all values of Au. We can express the tensor products x 0 Au and

x2 ® Au in matrix form es

	

X1 Au	 X2 Au .

For the case where dim U = dim X = 2,

x1 0

0 x 
X1 =

x2 0

0 x
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71

X2 =I

xi	 0

0	 xi

x 
1 
x 
2 0

0	 x 
1 
x 
2

x 
2 
x 
1 

0

0	 x 2 
x 
1

x2	0

0	 x 
2
2

and
Dul

Au	 .
Dug

Therefore, for an identically -,ero result, one of the requirements is

that

{2 Q02 Ts (Kl ® lu) + Q11 + VZ [(A01 ® 
1
x)S11 + (lx ® A

01 M X1 = 0.(3.32)

Since the above quantity that multiplies 
X1 

is a row vector with four

components, the general form is

	

[A1 A2 A3 A4 ] xl G	 = [0 01

0 x

x2 0

0 x

or

Al A3 xl 0
_

A2 A4 x2 0

which implies that
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A1=A2=A3=A4-0

since Ai is independent of x. This means that our requirement reduces

to

2 Q02 7s (K1 
® lu) + Q11 + V2 [(A01 a 1x)$11 + 

( 1x ® A01)] = 0	 (3.33)

It is possible to extend this reasoning to include terms of higher

order. We can express the tensor product x2 ® Du in matrix form as

X2 Au .

This means that we must require

{2 Q02 rs (K2 ® 1u) + 3 Q03 rs (K1 ® K1 
0 1

u) + 2 Q7.9 [lx 
® 7s (Kl ® lu)] +

Q21 + V2 [(A11 
® 

1x)$21 + (1x ® All)] +

2 V2 [(A02 
® 

1x)$ 12 + (1x 
0 A02)] [ lx ® rs (K1 

® 1u)] +

V3 [(A01 ® 1x2)$ 21 + (1x 
0 A

01 ® 1x)$ 21 + ( 1x2 ® A01)J X2 = 0	 (3.34)

The above quantity that multiplies X 2 is a row vector with eight com-

ponents, which can be represented as

[ B1 B2 B3 B4 B5 B6 B7 B8
] x12	 0	 = [0 OJ

0	 x12

x 
1 
x 2 0

0	 x 
1 
x 
2

x 
2 
x 
1 

0

0	 x x
2 1

x2 2 0

0	 x22 -

Equivalently, we may write

j	 ^.

i
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a

B2 B4 B6 B
8 

x 
1 
x 
2
	 0

x 
2 
x 
1

L.
x2

2

which implies a sufficient condition of

Bi = 0 , for i - 1,2,...,8 .

In order to show that the above condition is also necessary, we would

need to answer questions regarding symmetry and the image of a bilinear

function. Although the B  components above are independent of x, we

cannot argue that it is necessary that they be zero because x ® x can-

not be made arbitrary. Therefore, we will proceed on the basis of a suf-

ficiency condition, as proving that the condition is necessary is beyond the

scope of this work. Since one solution is for B  = 0, we have

2 Q02 rs (K2 ® 1
u ) + 3 Q03 rs (K1 ® K

1 ® 1u) + 2 Q12 [ 1X ® Its (Kl 0 lu) ] +

Q21 + V2	 x 21	
x[(All ® l)S 

+ (l ® All)] + 2 
V2 [(A02 ® lx)S12 + (lx ® A02)]

[lx ® ns 
(K1 

e lu)] + V3 [(A01 ® 1x2)S21 + (lx ® A01 ® lx)S 21 +

(lx2 ® A01)] = 0 .
	 (3.35)

It is possible to make similar arguments for the remainder of the coef-

ficient terms that multiply x  ® Au, m = 3,4,..., if the tensor product

is expressed in matrix form as was done for m =1,2 here. For higher order

cases, it is only possible at the present time to show the sufficiency

condition.

Thus far, we have only considered the partial derivative equation of

the optimal control u*(x,t). We also must require that [20]
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s^f

(3.36)

along the optima. trajectory. If we collect terms that multiply like

tensor powers of x in equation (3.36), we obtain the following ex-

pression:

{V2 + V2 {(A10 $ A10) +[(A01 ® 1x)S 11	
(lx ® A01)l(lx ® K1)} + Q 02 (K1 ® K1) +

Qll (lx e K1) + Q20 }x2 + {V3
 + V3{[(A01 

e 1
x2)S21 + (lx 

e 
A01 

a 1
x)S21 +

(1x2 e A01M lx2 e K1) + (A10 ® A10 ® A10 )} + V2( 
[(A01e l

x)S11 + (lx 
e A01)l

(1x a K2 ) + [(All e l x )S21 + (1x e A11)lkl2 
e K1) + ((A02 

e l
x)S12 + (1x e A02)^

(1x 
e 
K1 

e K
1) + [(A20 a 1x) + (1x 

e A
20)I} + Q02((K1 

e K2) + (K2 e K1)] +

Qll (l
x ® K2 ) + Q03 (K1 e K1 e K1) + Q12 (lx e K1 e K1) + Q21 (1x2 e K1)

+ Q30} x
3 1- ... - 0	 (3.37)

Figures 3.3 and 3.4 provide a summary of the origins of the terms that

comprise equation (3.37). We observe that there are no coefficient terms

that multiply the first power of x, hence we begin with the second ten-

sor power. The reader will note that we have collected all of the coef-

fient terms that multiply like tensor powers of x. In order for the ex-

pression (3.37) to be identically zero, it is a sufficient condition that

all of the coefficient terms that multiply like tensor powers of x must

vanish. The condition has not been shown to be a necessary one because

of the fact that the product

x e x

does not span the space

X e X .

Again, the proof of this being a necessary condition will not be cousid-
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ered here due to the scope of the work. This is basically the same quest-

ion that was found to exist when we collected terms that multiplied 
X 

0 Au, m z 2. At the mchi?nt, it is believed that the use of the Symmetric

tensor algebra will address adequately this issue. Proceeding , then,

on the sufficiency criterion, this requirement provides the following

conditions:

V2 +V2 {(A10 Q,	 ) +[(A 01)Sl + (1 0 A.)1(1 ®K)}+01	 x 11	 x	 01	 x	 1

Q02 (K1 0 K1) + Q11 (lx ® K1) + Q20 = 0	 (3.38)

and

V3 + V
3 Q (A01 ® 

1
x)S 21 + (lx 

0 
A01 ® 1x)S 21 + (1x ® A01M ix 

® K1) +

(A10 
9 
A10 ® 

A
10 )

I
+ V ((A01 

0 1
x)S11 + (1

x ® A01)J(1x 0 K2 ) +

[(All ® 1x)S21 + (lx 
0 A11M i2 ® Kl	 x	 x) + [(A02 ® 1)S12 + (1 ® A02)l

(lx ® K1 K1) + [(A20	lx) + (1x ® A20)J}+ Q02[(K1 ® K2 ) + (K2 ® K1)l +

Q11 (1x ® K2 ) + Q03 (K1 ® K1 ® Kl) + Q12 (1x ® Kl ® 
K1) + Q21 (lx ® Kl)

+ Q30 = 0 .	 (3.39)

By considering the previous conditions shown in (3.33) and (3.35)

together with the above requirements, it is possible to observe the re-

cursive nature of the problem. The objective is, of course, to solve

for the optimal controller gains K j (t), j = 1,2,3,.... We can solve

(3.33) for KI (t) in terms of V2 (t), and substitute this expression

iato equation (3.38), yielding a differential equation that can be solved

for V2 (t) with boundary condition V 2 (t1) _ M2 , since V2 (t) will

be the only unknown. After V2 (t) has been obtained, we can easily ob-

tain the expression for Kl (t). A similar procedure can be employed for

the paired terms of V3(t) and K
2 (t), namely, soive equation (3.35) for

K2 (t) in terms of V3(t) and substitute this expression into (3.39),

,'G	 77e.



yielding a differential equation that can be solved for V 3 (t) with boun-

dary conditions V
3
 (t= M3 . The controller term K,(t) can then eas-

ily be obtained. This procedure can continue until a ;sufficient number of

controller terms are obtained. For the purposes of the example problem

that will be considered in the following section, we shall assume that we

are only interested in calculating K1 (t) and K2 (t) although the proce-

dure could be extended to yield higher order terms if necessary. The re-

cursive nature of this problem is evident whenever we consider the various

term dependencies. It can be concluded from the algorithm that the term

Vk+l(t) can be determined by knowing only the terms

K1 ( t), K2(t),...,Kk-1(t) and V 2 (t), V3(t),...,Vk(t)

and the system description, which means that the controller term Kk(t)

i

can be obtained by knowing only

K1 ( t ), K2(t),..., k-1(t)
and V2 (t), V3(t),...,Vk+l(t) .

This result was presented in [1]. In the next section of this chapter we

shot: that the LQ problem which has been extensively studied in optimal

regulation theory is equivalent to the first set of solutions obtained

with the methods presented here, that is, the set of equations that- pro-

vide V
2 (t)and K1 (t).

3.3 The LQ ^ -oblem

In this section, we wish to show that the LQ problem is obtained

from our results as a special case, namely the case that results from

the truncation of the system description to linear terms and the perfor-

mance index to quadratic terms. This result will verify the equation that

F 78

..
'..._e...

4
_......, `. •s....:..	 -,	 : 	 ._ ^_	 dr	 a -.: --i:.::.:.._^f...̀w._ ?+5: -... ..-	 yA. a	 r..	 ,	 t.	 ,-	 ....	 „	 <,.	 , _. ,_. ...r _	 ...



was derived in the previous section, which is the equation that expresse3

the relationship between K 1 (t) and V2 (t) (3.33).

The normal formulation of the LQ problem has a linear system descrip-

J
c

tion

x(t) = A(t)'x(t) + B(t) u(t)

and a quadratic L(x,u,t) in the performance index

t1

J = 2 M(x (t l )) -^° 2 f t
 L(x,u, t)dt
0

where

L(x;u,t) = xTQx + uTRu + JW, M(xf) = xT (t 1)Mx(t1) .

The reader will note the inclusion of the cross term x TCu. Although not

usually considered in the classical literature, our methods will treat

this term as being quadratic as well. It can be shown by using the clas-

sical approach to optimization problems that the unique optimal control

u(t) can be expressed as

u(t) = K1 (t) x(t)

where

K1 (t)_ - R71 (BT V(t) +	 CT )	 (3.40)

The matrix V(t) is known to satisfy the differential equation

V' + V (A - 2 B R7 1 CT ) + (AT - C R 1 BT ) V -

VBR I BT V+O - I CR 1 CT= 0, V(t^) =M	 (3.41)

If we were to assume that C = 0, which is typical for most practical

problems, we obtain the usual matrix form of the Riccati equation, which

is

V + VA +, ATV - VBR 1BTV + Q = 0
	

(3.42)
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Our objective in this section will be to demonstrate that the equa-

tions produced by the expressions previously derived yield the identical

equations produced by the LQ problem as considered here, namely equations

(3.33) and (3.38). We begin with our expression relating K 1 and V2,

which is

V2 
((A

01
® 1

x)S11 + (lx 
® 

A01  + 411 + 2 Q02 rs 
(K1 ® lu) = 0	 (3.43)

We shall assume that, for dim U = dim X = 2,

b11 b12
A01

b21 b22^

and

K =rE11 E12

1
21 E22

if

R=rrl r2
2 r3

l

this implies that

Likewise, if

this implies that

Q02 	 [r1 r2 r2 r 3 ] .

C =
c11 c121

c21 c22

Q11 = [c11 c12 c21 c22 1 -

Also, if

V = V21 V22

V22 V24
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V2	 [V21 V22 V
22 V241

It is ,easily verified that the expression (3.43) produces the following

set of equations, assuming that the V matrix is symmetric, which fol-

lows from the quadratic nature of the solution xTVx. We have

2r1 E].1 + 2r
2 E21 + 2 b

11 V21 + 2 
b
21 V22 + c

l = 0 ,

2r1 E12 + 2r2 E22 + 2 b11 V22 + 2 
b
21 V24 + c

3 = 0 ,

2r2 E11 + 2r3 E21 + 2 b
12 V21 + 2 b22 V22 + c

2 = 0 ,

2r2 E12 + 2r3 E22 + 2 b
12 V22 + 2 

b
22 V24 + c

4 = 0 .

If the equations produced by the classical solution (3.40) are compared

with these, one would find that the equations are identical.

The other part of the LQ problem involves the verification of the

Riccati equation (3.41) beginning with equation (3.38), which is

V2
 + V2{(A10 

0 A
10 ) + [(A01 

® 
1x)S11 + (1x 

® A01)l(lx ® K1)} +

Q02 (K1 ® K1) + Q11 ( lx ® K1 ) + Q20 = 0 ,

where

A10=A

and

A01=B .

As was previously discussed, the relationship between the Q02' Qll' and

Q10 vectors and the classical weighting matrices R, C, and Q in-

volves the assumption of an ordering convention on the various basis

elements. Since we are assuming that the basis elements are to be or-

dered lexicographically, the Qij vectors can easily be obtained from

R	
81	 ^.



these classical weighting matrices.

It can be observed that the expressions (3.41) and (3.38) are very

similar. The proof that identical equations are produced is not dif-

ficult but is very tedious when done with the generalized matrices.

Therefore, for the time being, we will assume that these two expressions

provide identical equations. When the example problem is considered in

the following section, we will verify that the derived expression (3.38)

produces results identical to the classical Riccati equation.

I •, 3.4 Discussion

In this section, we have derived the necessary equations in order to

calculate the first and sacond order controller gains and have presented

the method by which controller gains of any desired order could be calcu-

lated. Because of the various term dependencies, we showed the recursive

nature of the solution, namely the alternating solution of the terms in

the expansion for the optimal value function and the terms in the con-

troller gain expansion. The LQ problem was partially demonstrated to be

a special case of the derived algorithm, namely the solution for V2(t)

and K1 (t) for generalized matrices from the dimension 2 case, At this

point, an example is needed to solidify the concepts presented so far

and demonstrate the method of solution of the recursive expressions.

i

c

A

	 4
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IV. APPLICATION TO SPECIFIC EXAMPLE

In this section, we present one of the major contributions of this

work - application of the concepts presented thus far to an example prob-

lem with a complete set of calculations. The particular example that

will be considered was analyzed extensively in [9] with particular em-

phasis on system modeling and model following with a variety of excita-

tion functions. Because the models generated were proven to closely ap-

proximate the true solution, these models will be well-suited for our

purposes. We will present the ideas and techniques for constructing a

nonlinear control for this particular example based on the expressions

derived in the previous sections. Basically, we will calculate both a

first order and a second order control and present an analysis of the

resulting equations for each case.

4.1 Problem Reouirements and Formulation

Before we begin the process of specifying an example and choosing

appropriate weighting matrices that appear in the cost functional, it

will be advisable to consider the requirements that we wish to meet in

formulating a meaningful example problem. We will list some of the

criteria which we have considered in this choice.

(1) The eigenvalues of Al should be in the left half plane
(that is, they should Rave real parts less than zero); the
idea here is that gas turbine engine models are typically
stable.

(2) The choice (x(t),u(t)) - 0 is a solution to the differ-
ential equation.

(3) The Q20 and, M2 terms are not zero simultaneously.

i

'I;'	 4
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(4) the composite matrix

Q	 2 Ct
i
i

2 CT 	R

is positive definite.

In order to clarify the controllability issues, we must first assume

that the time interval is some finite time t l . 'The optimal feedback sys-

tem will turn out to be time varying as long as the control interval is

finite. This will turn out to be the case even when the system and cost

functionals are time=invariant, which shall be assumed for the example

system. The engineering construction of these time-varying functions can

easily be done on the digital computer using standard integration techni-

ques. It can be shown [1,22] that if we let t  -> ^, then we obtain a

time-invariant controller for a time-invariant system. Basically, control-

lability is required here in order to ensure that the cost is finite.

Using a finite interval, there are several examples noted in [22] where

an optimal control is obtained for an uncontrollable system. The require-

ment that the Q20 and M2 terms are not zero simultanec,isly excludes

the trivial case that would produce the optimal control u(t) = 0, al-

though these terms could be zero individually.

Now that the example requirements have been formulated, we are ready

to choose an example system and demonstrate how the gain matrices may be

calculated for the first and second order cases. The particular example

that we will choose was effectively studied and analyzed in [9] with par-

84
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ticular emphasis on nonhomogeneous model following. We consider the sys-

tem,
2u

1fl (
X, U) = xl = u2 cosh (x1x2 ) - e	 sinh (2x1) - 3 sinh (x2)

f2 (x,u) = x2	
eulu2 

sinh (x1) - eulul cosh (x 12 ) + sinh (x2)

and a performance index
rrt

J= 2 M (x(tl )) + 2 J 1 L(x,u,t) dt
t0

where we choose the following values for the weighting terms Qij and M i :

Q20 = [ 2 0 0 21 ,

Q02= [5005] ,

Q11= [6006] ,

M2 = [1 0 0 2]

M3 = [00000000] .

We note that the Qij terms were chosen such that the requirement (4)

is satisfied, which is necessary for a meaningful example problem. Also,

we are assuming that the penalty term

M (x (tl)) = M(xf)

is required to be a convex nonnegative function which means that M(xf)

is specified in terms of even powers of x 	 [1).

Since the Apq operators are not directly available, we must use

the concepts presented in Section 3.1 where these operators were ob-

served to be related to various partial derivative matrices, namely

afl	aft

ax 	 ax 

A10	 af2	 aft

ax 	
ax  x

U = (0,0)
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—2	 —3

1	 1

and

	

af1	 af1

au1 Du 
A01	

a 
f2	 a f2

	

au1	
au2 x = (0,0)

U = (0,0)

=r 0 	1
L1 0

We can easily observe that the requirements (1) and (2) have been satis-

fied; the origin in X x U defines a solution, since

f  (0 1 0) = 0 ,

for i = 1,2, and A10 has eigenvalues with negative real parts, which

assures local stability when u is zero. The remainder of the system

matrices can be similarly calculated as was done for A 10 and A01 , as

follows;

	

af12	 a f12 	 a f12 	 a f12

	

axlaul	axlau2	 ax2aul	 ax2au2

All	 af. 
2 
2	 of 

2 
2	 of 

2 
i	 of 2 2

	

axlaul	ax1au2	 ax2aul	 9x2au2 x = (0,0)
tx = (0,0)

	

—4	 0	 0	 0
_

	

0	 0	 0	 0

^n

}

'	 86



af12

1 ax 2A20 = 2	 1

of 22

axl2

af12

axlax2

af22

axlax2

ORIGINAL PAGE IS
OP POOR QUALITY

	

afl2	
afl2

ax2ax1	 ax 2
z

	

f2 2	 a f22

ax2ax1
	 9X2z	 x = (0,0)

U = (0,0)

_

ro

0	 0 0

0	 0 0

af12

1 au 2
A02 = ?	 1

a fz2

Lau12

af12

au1au2

af22

au1au2

0

-1

	

af 1 2	af12

au2aul	
au 2

2

	

af22
	 a f22

au2aul
	 au22 lix = (0,0)

u = (0,0)

0	 0	 0

0	 0	 0

and

These methods provide only the nominal or analytical values of the

Apq systlsm matrices and may be unsatisfactory due to the truncation of

som( , the higher order terms. A more accurate method employs the

least-squares minimization technique using the Singular Value Decompo-

sition, which is extensively discussed in (9]. Basically, the results

obtained for the system matrices via least squares minimization provided

much more accurate responses than those obtained with the standard linear

approximation and provided a very close match to the "true" solution.

In order to test and verify this model, various input signals were em-

ployed with different frequencies and amplitudes. In all of these cases,

it was found that the model performed remarkably well, and should be well-

-,
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suited for the generation of the various controller gains which we will

accomplish in the next section. For the particular example that we have

chosen, it is discussed in [9] that a degree-2 model (that is, a model

that is generated by the methods of identification and contains only the

system matrices 
A10 , A01 , A20' A11' and A

02 ) is adequate to effec-

tively describe the system as noted above. The identification and ver-

ification of a degree-3 model involved more effort and programming time

and was found to only slightly outperform the degree-2 models, and then

only for a fraction of the test points. Using the least squares identi-

fication methods, the following matrices were obtained as the degree-2

model for the example system:

	

-2.001	 -3.009

A10 -	 1.006	 1.011

 0.997

A01 

[0.002

	

1.000	 0.000

-4.150

All	 -0.007

0.239

A20	
-0.323

-0.105

A02	
-0.982

-0.074 -0.048

0.083 0.008

-0.0725 -0.0725

-0.064 -0.064

-0.176

0.102

-0.720

0.359

	

0.0135	 0.0135	 0.012

	

0.0075	 0.0075	 -0.013

We observe that the A10 and A01 operators closely approximate the

nominal values obtained by partial differentiation. By using these
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values, we can begin to calculate the required terms in the expansion

for the nonlinear controller.

4.2 Calculation of Controller Terms

In this section, we show how to calculate the terms of the nonlinear

controller expansion. For the sake of simplicity, we will only demon-

strate the methods to obtain the gain matrices K 1 (t) and K2 (t), along

with the optimal value expansion terms V2 (t) and V3 (t). As previously

mentioned, equations for the calculation of higher order terms could be

developed using the same methods that provided the equations for K1(t)

and K2 (t) if these terms were desired. The first step in the procedure

is the solution of equation (3.33) for K 1 in terms of V2 . We have

2 Q02 Ts 
(K1 0 lu) + Q11 + V2 [(A01 ® 

1
x)S 11 + (l

x ® A01)] = 0 .

If we make the necessary substitutions, that is, assume that

Q02= [5005] ,

1 0	 0 0

0 1/2 1/2 0
7 _
s	 0 1/2 1/2 0

0 0	 0 1

j

K = E11 E12 y
1

E21 E22

Q11- [6006] ,

89
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i

1 0 0 0

S 11
0

0

0

1

1

0

0

0

0 0 0 1

and use the previously noted values for Lhe A 01 system matrix, we find

that we can express the components of K 1 by the following expression:

E11	 -.0004	 .2	 0	 V21	 -.6

E12 	 -.0004	 0	 .2	 V22 +	 0	
(4.1)

E21	 -.1994	 0	 0 V24	 0

E22	 0	 -.1994	 0	 -.6

In obtaining this equation, we have assumed that V22 - V23, which cor-

responds to assuming that the V matrix from classical optimal control

theory is symmetric. A quick comparison to the equation (3.40) reveals

that our results are indeed correct.

The next step in the algorithm is the substitution of equation (4.3.)

into the equation that was obtained by collecting terms that multiply x2

when the HJB equation is evaluated along the optimal trajectory. This

result is equation (3.38), which is

V2
 + V2 {(A10 ® A10 ) + [(A01 

0 1
x)S11 + (1x ® A01); (1x ® K

1)} +

Q02 (K1 ® K1) + Qll (1x 
0 K1) + Q20 = 0 .

If we make this substitution for K 1 and use our assumed values for

the system and performance index matrices, we can obtain the following

set of coupled differential equations which can be solved for V2 using

numerical methods.

90
,,	
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l	 V^1 -4.044 V21 + 3.212 V22 + .1988 V21 -.0008 VZ1 V22 + .2 V22 + .2	 0

V22 -3.6072 V21 - 1.011 V22 + 1.606 V24 + .1988 V21 V22 -

.0004 V2 2 -.0004 V21 V24 + .2 V21 V24 = 0
V24 -7.2144 V22 + 2.022 V24 + .1988 V2 2 -.0008 V

22 V24 +

.2V
24

+.2 = 0	 (4.2)

As a check on the validity of these equations, we will compare the equa-

tions listed in (4.2) to those obtained by the Riccati equation, which

was described in (3.41) as

V + V (A - ZBRICT)+(A - ZBR
-
ICT)TV-

`	 -1 T	 1	 -1 T
V B R B V+ Q- 4 C R C = 0

After sut,stituting the appropriate values for the known quantities, we

obtain the fc;llowing set of differential equations for V(t).

V21 -4.044 V21 + 3.212 V22 + .1988 V21 -.0008 V
21 V22 + .2 V2

2 + .2 = 0

V22 -3.6072 V21 -1.011 V22 + 1.606 V24 + .1988 V21 V22 -.0004 V22 -

.0004 V
21 V24 + .2 V

21 V24	 0	 (4.3)

V24 -7.2144 V22 + 2.022 V,,
4
 + .1988 V2 2 -.0008 V

22 V24 + .2 V2
4 +

.2=0 .

These differential equations are to be solved with the boundary conditions

V21 (t1) = 1 ,

22 (t l)	 0 '

and

V24 (tl ) = 2

Since the differential equations presented in (4.2) agree with the classi-

cal Riccati solutions in (4.3), we may conclude that our results are in-

deed correct.

a
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The solution of the first order control problem involves two basic

steps. In the first step, t,.e set of equations (4.3) are solved for V2(t)

and subsequently K1 (t) by using numerical integration from the final

value o: V2 (t). The second part of the procedure involves calculations

for the control matrix K1 (t), which then follows from the known matrix

values of V2 (t), on the interval of solution. For this first step of

the calculations, two approaches may be taken, either a solution in terms

of tensor quantities, or a solution taking advantage of the well known

procedures for Riccati equations. Since we have previously shown that

our first order results are identical to those produced by the classical

Riccati equation, it is used in the first order analysis program, which

is called FIRORDA [23,24]. This program is lirted in Appendix G of this

report. Numerical values for K 1 and V2 appear also in this appendix,

denoted by KA and VA.

In order to test briefly the behavior of the software for the first

order feedback, the values of the weighting matrices that comprise the

performance index were changed to five items their assumed values, and

these results compared to those produced with the example values assumed

for these matrices. As the values for these matrices were increased, we

found that the solution V 2 (t) of the Riccati equation became more of a

time varying gain, with greater initial valLas than those provided by the

example problem case. This comparison can be made by referring to Figures

4.1 and 4,2. In obtaining these arrays, we have somewhat arbitrarily

assumed an interval of t = 0 to t = S seconds, with a% integration

stepsize of 0.1 seconds. These results generally agree with the results

presented in [22]. Note in these two figures that V 2 is denoted by VA.

I

f'
;t
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A similar procedure is used for the second order analysis of the ex-

ample problem as was used for the first order analysis. Namely, since the

values for K1 (t) and V2 (t) are known from the first order analysis

problem, equation (3.34) can be solved for K 2 (t) in terms of V3(t).

This equation is

2 Q02 r
s (K2 ® lu) + V2 [(All ® 

1
x)S 21 + (lx ® A11

2 V2 [(A02 ® 1
x)S 12 + ( lx ® A02 )][1x ® 7S (K1 ® lu)] +

V3 
[(A01 e 12)S 21 + (lx ® A01 ® lx)S 21 + (

1X ® A01) ] = 0 .	 (4.4)

We note that we have assumed Q03 = Q
12 Q21 0 for the purpose of

the example problem, that is, higher order than quadratic terms in the

expansion for L(x,u,t) are zero. Since equation (4.4) cannot be solved

directly for K 2 (t) in terms of V 3 (t), we must multiply the first

term in the expansion.

It should be pointed out that the manner in which K2 is inter-

twined into (4.4) is one of the most interesting features of the deriva-

tion in this report, which avoids as much as feasible the use of sym-

metric algebra and dual spaces. In future work, we hope to return to

this point.

Another interesting feature of (4.4) can be seen in more than one

place, but perhaps especially in the coefficient of V 3 on the third

line. Notice that this coefficient consists of three terms, each in

essence a rearrangement of A01 and two copies of lx . Symmetric al-

E:	 gebra would simplify such sums.

Returning to the first term in (4.4), we have
E-
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2 402 rs (K
1 ® lu) =

2 
[r1 

r2 r 2 r 3] 1 0 0 0	 F11	
0	 F 12	 0	 F13	 0	 F14	 0

0 2 21 1 0	 0 
F11 0 F12 0 F13 0 F14

0 2 2 0 F21 4 F22 0 F23 0 F	 024 

0 0 0 1	 0	 F21 0	 F22	 0	 F23 0	 F24

for

K	 F11 F12 F13 F1'$
2 =

F21 F22 F23 F24

Multiplying these expressions, we have

2 402 ns (K
2 ® lu) = [2r1F11 + 2r 2F21 , 2r 2F11 + 2r3F21, 2r1F12 + 2r2F22

2r 2F12 + 2r 3F22 , 2r 1F 13 + 2r 2F 23 , 2r 2F13 + 2r 3F23' 2r 1F 14 + 2r2F24

2r2F14 + 2r3F241

[F 11 F 12 F13 F14 F21 F22 F23 F24]

	

Ir1 2r 2 0	 0	 0	 0	 0	 0

	

0	 0	 2r1 2r2	0	 0	 0	 0

	

0	 0	 0	 0	 2r1 2r2 0	 0

	

0	 0	 0	 0	 0	 0	 2r1 2.2

2r 2 2r3	0	 0	 0	 0	 0	 0

	

0	 0	 2r 2 2r3	0	 0	 0	 0

	

0	 0	 0	 0	 2r 2 2r3	0	 0

	

_0	 0	 0	 0	 0	 0	 2r 2 2r 3_

=K2G
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where K2 denotes the values of K2 rearranged into an 8-vector and G

is the 8x8 matrix above. Using this notation, we can solve for K 2 in

terms of V3 in equation (4.3) as

K2 = - (V2[(A11 ® 
1x)S 21 + (1x 

0 A11)] + 2 V2[(A02 ® 1x)S12 +

(lx ® A02 M lx ® Vs (K1® lu)] + V3 [(A01 ® 1x2)S 21 +

(1X ® 
A01 

® 
1x)S21 + (1

x2 ® A01)]} G 1	 (4.5)

The second order solution can be obtained by substituting from equation

(4.5) into the equation

V3 + V
3 MA 01

0 
1x2)S21 + (1x 

® 
A01 

® 
1x)S21 + 

( 1x2 ® A01)]( lx2 0 K1)

+ (A10 0 A10 ® A10)} + V2 
Q (A01 

® 
1x)S 11 + (1x 

® A01)](1x ® K2 ) -^

[(A11 ® 1x)S21 + (1x e A11	 xMl  ® K1) + [(A02 
® 

1 x	
x)S12 + (l 0, A02)]

(1x ® K1 ® K1
) + [(A20 0 1x) + (1x ® A20 ]} + 402 [(K1 ® K2 ) +

(K2 ® K1)] + 411 (1x 
® K2 ) = 0 ,

which is equation (3.39) with the third and higher order terms in the ex-

pansion for L(x,u,t) equated tr zero. The method of solution of the

second order control problem is slightly more complicated than the first

order solution, but employs the same basic steps.

4.3 Discussion

In this section, we have examined in terms of an explicit example

the computational requirements associated with the computation of higher

order nonlinear feedback control terms based upon the use of tensor de-

scriptions. Preliminary experience with such computations has been en-

couraging. Appendix G contains a listing of SECORDA, the program for K2

and V3 , whose values appear there also, as K2A and V3A.
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A major purpose of this example study has been to asseset the merits

of using the symmetric tensor algebra and the concepts of dual spaces in

the calculation of Nonlinear feedback tensor gains. To this end, we

have employed such ideas as infrequently as possible. The results have

been revealing. For the most part, one can bypass the ideas in question

and substitute matrix algebra notions such as tra,.,spose•. Interestingly

enough, however, there are perhaps two or three instances, one in (4.4),

where one is strongly inclined to consider the insertion of more techni-

cality.

With this observation in mind, we are mr%king a study of the compu-

tational requirements involved in [1], where symmetry and duals a: both

used, in order to determine trac.eoffs with the current study.
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V. CONCLUSIONS

In the three sections preceding, we have carefully examined the compu-

tational implications of [1], for the case of an example system which had

received a rather thorough study in a prior grant year. Here we have to

 point out 'that [1) makes use of technical tensor machinery involving mixed

tensors on spaces and their duals, the theory of contractions, and the

formal use of symmetric tensor algebra. The formal purpose of this studY	 g	 P P	 Y

{	 has been to assess the computational implications of such nonlinear feed-

back control theory, and in particular to examine the possibility of sup-

pressing the explicit use of dual spaces and contractions. One benefit,

for example, of such a suppression would be an avoidance of the distinc-

tion between tensors and vector-valued tensors. It has been numerically

clear for a long time, as explained in earlier reports, that the implicit

use of symmetry was going to be a certainty. A question, however, was

whether the explicit use of symmetry in the algebraic derivations would

really be necessary.

Having been as careful as we could to carry out the derivation of

this report while using such concepts as little as possible, we have made

some important conclusions. First, we had to dip into formal symmetric

notation for a brief segment of our derivation, in connection with cer-

tain differentiations. Whether this was an absolute necessity or not

tends to be outweighed by the fact that a great deal ur effort would

be required in order to circumvent it. We conclude that the formal use

of symmetry should be pursued. While this does result in another level

of equivalence relations, the terminology and symbolism can be induced
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without a new order of magnitude of diffic"Ity. It tends to be more a

question of replacing one tensor language with another tensor language.

Second, we have encountered steps in the equations where duality may be a

great help in unraveling a complicated twist of symbols. At this point,

we assess this ability as important, so that we are initiating a careful

look at the way in which these computations would change if we made use

of contractions. Should this work out with the expected benefits, it may

serve as a very motivating engineering example of the practical importance

of duality. While the role of duality in general optimization theory has

been known for many years, there are many common instances in which it can

be finessed by standard matrix terminology. Such an example could be,

therefore, very compelling.

In addition to the work presented in the body of this report, the ap-

pendices contain a number of items which we also believe to be milestones.

Appendices B and E deal with ongoing progress in the computer software

required for tensor modelin g and simulation. This developing package is

the outgrowth of years of work and for the first time makes it possible to

do examples on a reasonable time scale. In particular, plans are under-

way to use this new capability to enhance Ci_ e'forts on tensor model

identification arLd order reduction. We expect to make a more complete

report on this package within the next six months. Appendix C introduces

a new mathematical viewpoint on the nonlinear feedback control synthesis

problem. Basically, the idea is to redefine the vector space structures

for the inputs and outputs of nonlinear systems. For important cases,

this can be done in such a way that the nonlinear system becomes a linear
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system with respect to the new spaces. We have this idea under study, ane

have already shown that it greatly expands the possibilities for defining

comparison sensitivity functions on nonlinear cases. We envision the use

of such sensitivity functions to aid in characterizing the quality of

order reductions and model identifications. In Appendix D we continue

our investigation into the role of tensors in controller scheduling. We

expe,.;t that the procedures of scheduling may contain one of the keys in

resolving the tradeoff questions involving nonlinear model dynamical

quality versus useful region. Finally, in Appendix F, we present a recent

compilation of refer( ,-ces on design by total synthesis, a sequence of

studies which trace some of their roots back to the first years of this

grant.

U
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AN APPLICATION OF TENSOR IDEAS TO

NONLINEAR MODELING OF A TURBOFAN JET ENGINE*

Thomas A. Klingler, Stephen Yuzkovich, and Michael K. Sain
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN	 46556

ABSTRACT

The design of nonlinear tfiatrol systems for gas turbine engines frequently inv..lves a cambi-
natlon of feedforward scheduling and local, dynamic feedback regulation on the desired final
responses. Scheduling the feedback dynamics, or adding dynamical tuning to the feedforward
schedules, creates a class of nonlinear dynamical controllers which is often classical in na-
ture, as for example the first few terms in a series expansion. Tensor algiibra provides a
universal setting within which to parameterize such rt, resentations. Moreover, if such mod-
els are available for the engine itself, then there exist feedback control theories based up-
on them. In this paper, a model of tensor type is computed and tested locally on a digital
simulation of the QCSE gas turbine engine.

INTRODUCTION

The use of local, linear dynamical models in control of gas turbine engi..as has received a
great deal of attention in the last ten years. While the lion's share of control action for
such engines tends to be the result of feedforward schedules, the local feedback applied to
reach desired response points along these schedules is of great importance. In particular,
careful choice of the local controller dynamics can achieve quick, smooth settling, without
undesirable overshoots in crucial variables, as for example temperatures in the vicinity of
turbines.

Such local dynamics are frequently scheduled also, as a function of a smoothly changing phys-
ical variable, such as a speed. When this is accomplished, the local control dynamics be-
come nonlinear in nature; and key examples can be viewed in terms of vector fields created
by polynomic functions of state and control, or, more generally, in terms of power series.
Tensor algebra provides a universal parameterization within which to represent such schemes.
Moreover, there exist feedback theories designed to accommodate plant models based upon such
representations.

Accordingly, there is interest in application studies of tensor models. In this paper, we
provide one such study, on a QCSE engine simulator.

For background, we consider briefly some tensor ideas and issues associated with nonlinear
modeling. A short description of the QCSE engine itself is given, and then the application
is discussed in detail.

TENSOR IDEAS

We begin our discussion with a brief description of the tools to be employed in the nonlinear
model formulation. Let V and W be real vector spaces and let (grV,®r) be a tensor pro-
duct forr copies o^ V. where each integer r is two or greater. For convenience we de-
fine s1V V and s - R. Then by the unique factorization property of the tensor product
(1], for every r-linear mapping

W : V  _ W
	

(1)

there exists a unique linear mapping

*This cork was supported by the National Aeronautics and Space Administration under Grant
NSG 3048.

a6'

U^

t



i
1

^° pR 
PAGE IS

QUAL/Ty

A : arV » W	 (2)

such that t - a 0 a  for the r-linear mapping a  : Vr » arV. If L(Vr ;W) denotes the

real vector space of r-linear mappings from Vr to W, and L(a rV,W) denotes the real

vector space of linear mappings from a rV to W, the implication is that

	

L(arV,W) » L(Vr ;W)	 (3)

is a vector space iaomorphism.

These notions may be tied to the discussion of abstract derivatives and the calculus on norm-

ad vector spaces. As an introduction, equip V and W with norms and let Z be open in
V. Suppose that the mapping f : Z » W is differentiable at a point p in Z, in the
usual sense (see, for example, (2,31). We denote the derivati a of f : Z » W at p by

	

(Dr)(p) t V » W,	 (4)

and note that

	

Df : Z » L(V,W);	 (5)

that is, the derivative mapping (4) is a linear mapping, an element of L(V,W). The notion
extends for higher derivatives, defined in a recursive fashion as

(Drf)(p ) ` (D(Dr-lf))(p)	 (6)

provided the (r-1)st derivative is differentiable, since

Drf(p) a L(V,L(V.W)),

D rf(p) a L(V,L(V,L(V,W))),	 (7)

and so on. It can be shown that there exist isomorphisms

L(V2 ;W) » L(V,L(V,W)),

L(V3 ;W) » L(V,L(V,L(V,W))),	 (8)

so that Dr f (p) can be regarded as an r-linear mapping Vr	 W, up to isomorphism. We

suppress this isomorphism and think of D r f (p) as just such a mapping.

It is now straightforward to establish a connection with the tensor ideas expressed above.
The r-linear mappina (1), for our purposes given by Dr f ( p)	 Vr » W, can be comports from
a linear mapping y V » W and the universal r-linear censor product mapping or : V r » arV.

This connection, facilitated by the isomorphisms (3) and (8), is explored in the section fol-
lowing for the case of dynamical system representation.

MODEL STRUCTURE

Suppose that the dynamical system which we wish to model is described by the nonlinear ordi-
nary differential equation

x . f (x, u)	 (9)

for f : X * U - X, where X and U are normed real vector spaces of states and controls,
respectively. Using the notation of the preceding section, let (x,u) be a fixed point in

	

open in X - U, and suppose that f	 X K U » X is of sufficient smoothness on Z. Then,
formally,

	

f(x - X. u + u)	 r k! (DkE) (x,u)(x,u) (k),	 (10)
kZO

where ( x,u) (k) ((x,u),(x,u),...,(x,u)) k times. We note that the series in (10) could
be represented by a finite number of terms together with a remainder term in a standard ap-

plication of Taylor's formula. Indeed, for practical applications, such as the present pa-
per, a truncation approximation of (10) is considered. Unfortunately, limitations of space

forbid discussions concerning such issues as existence of solutions to (9) or questions re-
lated to the convergence of (10).

a

a
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We now make use of the fact that (D kf)(x,u) in Q0) is a k-linear mapping, which suggests
a means of applying tensor product ideas, Let (a K (X . U),sk) be a tensor product foi k
copies of X n U. Then we may make the unique factorization

Dkf(x,u) - Lk(;';) . ak ,	 (11)

where Lk (x,u) s ak (X n U) + X is a linear mapping. Now let the notation (x,u) k denote

the k-fold tensor product of (x,u) with itself. Then upon substitution of (11) into (10)
we have

f(x+.X,u+u) - k i 
0 

k1 Lk(x,u)(x,u)k.	 (12)

It is shown in (4) chat the individual terms of (12) may be rewritten as, for example.

2!	 2L2(x,u)(x,u) ' L 20 (x.u)xox + L11(x,u)xau + L 02 (; ' a)uau-	 (131

lr this way the formal expansion (10) becomes

f(x+x,u+u) -	 . L i (x,u)xi	 a u
j

,	 (14)

1-0 J .0	 i

which forms the structure for the nonlinear model.

As alluded to earlier, in practice the series (14) may be truncated 1n an approximation of
(9). The task in the model building scheme, then, is to identify the parameters contained
in matrix represeatations of the L i , (x,U) l once ordered bases for the spaces in question
are chosen. For more discussion of Ehe details involved in such an exercise, the reader may
wish to consult 15,61.

QCSE ENGINE

The intent of this section is to supply a brief introduction to NASA's QCSEE ("Quixie")---

-uiet, Clean, Shorthaul Experimental Engine---prior to discussing an application of the MLS-

eling methodology described above. The QCSE engine is an advanced turbofan designed specif-
ically for powered-lift, short-haul aircraft, and combines several innovative concepts to
achieve optimal affielancy with quiet, clean operation 17,81. The eight physical quantities
chosen as state variables for the system include two fan speeds, four pressures, and two
temperatures. A digital controller is incorporated into the overall design (91, and the
control inputs are the main burner fuel flow, the fan pitch angle. and the fan nozzle area.

For the modeling axe eises of this study, a detailed digital simulation developed for the
QCSE engine (101 is employed. The primary input variable to be manipulated in the digital
program is the percentage power demand, PWRX, for testing performance over the entire enve-
lope of operation. Values of individual internal variables are extracted and inserted at
various locations within the program.

APPLICATION

Attention in the following discussion will canter around the formulation of a reduced order
four-state, three-control ana:ytical model. The engine states chosen are the combustor dis-
charge pressura (P4aS), the core nozzle total pressure (PEGS), and the rotor dynamics in the
form of fan speed (NL), and compressor speed (NN). All three engine control inputs are em-
ployed, namely, the main burner fuel flow (WFM), the exhaust nozzle area (A18) and the fan
pitch angle (BETAF).

.Appropriate engine operation for the model identification involves opening the loop by de-
activiting the controller and independently inserting the individual control inputs. In this

strategy, nonlinearicies of the plant exist---which might otherwise be less noticeable had
the controller been present in the loop. A furrh r explanation of this strategy as well as

an alternatb one are presented 	 (11). An important point to note is that, in the open
loop situation, the choice of input control signals is critical. This is due to the fact:

that the engine itself has certain physical limits, which in turn have been incorporated into
the simulator. In reality, exceeding these limits could cause severe damage to the engine,
an example of which is turbine malt down.

To aid in the selection of input signals, a family of parametric plots have been constructed
using QCSEE steady state data from idle (62.51 PWRX) to maximum power (100% PWRX). Figure 1
contains an example of one such steady state plot. From these plots a set of acceptable in-
put signals can be selected. ,Acceptable state perturbations can be selected in a similar
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fashion. Another important feature of these steady state plots is that they suggest region$
of nonlinearity. From Figure 1 it appears that in the locality of 92% powsr demand the eng-
ine is nonlinear due to the abrupt changes in exhaust nozzle area and fan pitch angle. With
this in mind, we shall establish 92% as the operating point of the present study. Modal fora-
ulatioas at other operating points at - currently under investigation.

The following is an overview of the identification procedure. The QCSEE simulator is run,
closed loop, with a 92% power demand for ten seconds to settle all transients. This pro-
duces the equilibrium value (x,u), where x is a four-ti%ple and u is a three-tuple.
The initial conditions thus generated form the point of expansion for the series truncation
approximation in the model formulation. Within the digital simulation program the controller

' is disconnected by setting the control derivatives to zero. From the steady acr.te plots a
point (R,0) is chosen on the engine operating line at 93% power demand. The state vari-
ables are perturbed x from their equilibrium values where

x	 R s.

Furthermore, the control variables are manipulated so c(iac a cosinusoidal input of amplitude
a is inserted, where a is a three-tuple given by the expression

a-0-u.

The observed states and inputs are sampled over a six second interval; 100 samples are even-
ly spaced at .06 seconds, and the difference between these values and the corresponding
equilibrium values, together with the ordered monomials from the tensor product terms (see
(5)) comprise one of two blocks of data necessary for the identification. The second bloc
of data consists of the state derivative values which are extracted directly from the simu-
lator at the given sample rate. Through useof these data blocks, the parameters contained
in matrix repr_-entatio+es of the L i ,(x,u) can be identified via - least squares minimizes
tion-technique.

Using the above procedure, two models have been identified; a second-degree nonl i near model,
and a first-degree linear model. The linear model has been identified for uoe la comparison
atldies. The second-degree approximation keeps second degree tensor products which are as-
sociaced with quadratic terms. Accordingly, such a nonlinear model is expected co outper-
form the linear model in a region about the point of expansion.

A simple error comparisor, criterion is used in testing the performance of the nonlinear mod-
e. versus that of the linear model. Let ei denote the absolute maximum error in the non-
linear model solution, as compared to the true simulation solution, over the time range of
simulation for the ith state vIriable. Similarly, we defina ej for the linear model error.
Then e i is the comparison el - ej. Thus, if e i is negative, the nonlinear model has
exhibited a smaller maximum absolute error in the ith state, and in that sense has outper-
formed the linear model. Table 1 contains a list of the state variables, their correspond-
ing QCSEE variable name, their unit of measure, as well as their corresponding state nota-
tion xi. Samples of the error comparison for various initial conditic -1, input amplitudes
and frequencies are presented in Table 2. All input frequencies are in Hertz.

The error criterion in Table 2 clearly indicates that the nonlinear model outperforms the
linear model in a region about the equilibrium point; however, there exists a better method
for revealing model performance, namely, trajectory comparison. Consequently, a representa-
tive number of comparative solution plots have been included in Figures 2-10. Figure 2 of-
fers a simulation of pressure PSCS for a step response, whereas Figures 3-4 illustrate PEGS
and NL respectively for the frequency set t - (.25, 0., .5). A simulation of P4GS is
shown in Figure 5 for an excursion away from the typical engine line of operation, and like-
wise Figure 6 depicts NH. Figures 7-8 illustrate the speeds NL and NH for a 1% amplitude
control signal, and finally P4GS and UL are seen in Figures 9-10 with initial conditions of
approximately 19..

COMPUTING ENVIRONMENT

The soft-dare package, developed using the extensive capabilities of the IBM and DEC Command
Procedure Languages and the strengths of FORTRAN and SPEAKEZY, is divided into two segments
and tailored r.o utilize effectively existent computer hardware. The interactive nonlinear
mudel generation segment is implemented on a Time Sharing Option (ISO) of the IBM 370-168
computer system, where the memory dependent, and highly computational routines of the pack-
age can benefit from w,e of the virtual memory and floating point hardware.

Once a nonlinear model is identified on the IBM 370-168, it is transferred to a DEC PDP 11/
60, where, in an interative environment, it can be analyzed and compared to a linear model
and the true solution. This is accomplished through use of the nonlinear simulation segment
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TABLE 2 Comparison Studies

:itial State Conditions Input Amplitudes Input Freq. Error
x2 x3 x4 al a2 13 SL t 2 7 3 E1 e2 e3 e

)00 0.000 0.000 0.000 18.97 0.000 -0.111 0.0 0.0 0.0 -1.040 -0.018 -10.40 -14.00
)00 0.000 0.000 0.000 18.92 0.000 -0.111 0.3 0.0 0.5 -0.668 -0,012 - 7.04 - 8.49
)00 0.000 0.000 0.000 74.29 -21.20 -0.239 1.9 0.9 1.2 -0.259 -0.004 - 4.62 - 8.11
UO 0.001 0.010 0.100 17.00 -2.000 -0.050 0.0 0.0 0.0 -0.947 -0.017 - 7.48 -11.50
)10 0.001 0.010 .'.100 18.92 0.000 -0.111 0.0 0.0 0.0 -1.070 -0.019 -10.60 -14.20
110 0.001 0.010 0.100 19.00 -2.000 -0.159 11.0 0.8 0.5 -0.198 -0.003 - 2.49 -	 3.16
)10 0.001 0.010 0.500 18.92 0.000 -0.111 0.3 0.0 0.5 -0.642 -0.012 - 6.888 - 8,22
110 0.001 -0.010 0.500 40.00 -5.000 -0.150 1.5 1.6 1,3 -0.354 -0.006 - 1.96 - 6.69
110 -0.001 0.010 -0.750 -18.80 0.000 0.115 2.0 O.0 1 5 -0.307 -0.005 - 1.71 - 4.89
110 -0.001 -0.010 -0.750 -;7.46 0.000 0.128 i,9 5.0 ;.3 -0.202 -0.004 - 1.59 - 3.42
110 0.001 -0,,.0 0.750 74.29 -21.20 -0.239 1.9 1.1 L.3 -0.293 -0.003 - 5,89 - 6.55
175 0.001 20.00 10.00 -18.80 0.000 0.000 1.Q 0,0 0.0 -0.343 -0,007 •-	 3.36 -	 3.43
.10 0.601 -20.00 12.00 55.78 -14.03 -0.198 1.0 1,1 1.4 -0.447 -0.008 4.98 - 5.51
.20 0.002 50.00 10.00 17.35 -6.830 -0.139 1.1 4.0 1.3 -0.435 -0.008 - 5.06 - 4.91
.00 0.002 75.00 5.00 54 00 -12 .00 -0-00 1, ').0 1.3 -0.401 -0.007 - 9.80 - 8.80
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s	 of the package. In this manner, the routines can use both the graphics capabilities of a
Tektronix 4025 video terminal, and a Versatec electrostatic printer /plotter for the display
of data and comparative trajectories.

CONCLUSIONS

This paper has presented an application illustration of tensor modeling to a digital simula-
tion of the QCSE engine. For plant modeling prior to feedback control, or for representing
scheduled controllers over an operating line, the tensor algebra offers a universal parame-
terization which is helpful in conceptualization and identification. The case studied in

u
this paper offers support to these conclusions. Further work is in progress.
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TABLE 1 Variable Ledger for Figures 2-10	 -'

o True Engine Iesponse J : Linear Model Response * : Nonlinear Model Response

xl : P4GS (psi)	 x3: UL (rpm)	 ul. WFM (lb ihr)	 u3: BETAF (degrees)
x2 : P8GS (psi)	 x4: NH ( rpm)	 u2: A18	 (`^n2)
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Abstract

In a recei , publ,.cation [1], Bristol has pre-
sented an application theorist's view of process
control design as it really exists and has chal-
lenged others to do likewise for areas within their
own purview. This paper continues just such an ef-
fort [2,3,4] by the authors within the domain of
nonlinear multivariable control of gas turbine eng-
ines. Under examination is the fundamental notion
that linear controller descriptions, obtained from
local actions of nonlinear objects, may be recom-
bined to produce global nonlinear control action,
with sufficient integrity to effect closed loop de-
sign. Total Synthesis refers to a top-down strac-
egy of Nominal Design and Feedback Synthesis. This
paper extends the study of the Nominal Design Prob-
lem (NDP) to nonlinear cases, and presents a new
case study of robust feedback synthesis for gas
turbine control design.

Introduction

The idea of describing families of curves by
their tangents has a rich history in mathematics,
in science, and in engineering. Consider, by way
of example, the ubiquitous differential equation.
More generally, the notions of manifold, tangent
spaces, and geometry are very much a part of modern
multivariable systems research.

Not surprisingly, the same notions permeate a
great deal of control design in various applications.
Intuitively, one linearizes a nonlinear dynamical
system at a sequence of points along lines of oper-
ation considered desirable by the plant manufacturer.
A suitably rich sequence of points can lead to a
correspondingly valuable sequence of linear multi-
variable systems describing local gains and trans-
ient behavior of the plant along these operating
lines. From such a sequence of systems one may
construct a sequence of controllers which effect
des{sable local motions along the lines. Smooth
global control is then a function of appropriately
scheduled feedforward and feedback requests, as well
as scheduling of local controller gains and dynam-
ics which determine the approach to such requests.

Bristol [1] believes that experience and in-
tuition are the crucial requisites for efficacious
design, and that the best of design-flavored con-
trol theories can serve only as an introduction to
the path followed by engineers with experience. Ac-
cordingly, Bristol also suggests that one should
seek theories which extend one's intuition and
which do not presuppose its replacement.

The local control theory employed by the au-
thors in this paper was proposed (5] in 1979 by
Peczkowaki, Sain, and Leake, with just such a view
in mind. Conceptually, the method is founded upon
the idea of a Nominal Design Problem (NDP), which
is independent of controller structure and which
is -ntended as the first step in a top-down design
procedure. A thorough discussion is given in [6].
This paper treats an extension of NDP to the non-
linear case. Completion of step one in NDP is fol-
lowed by a second step, called the Feedback Synthe-
sis  Problem (FSP) [6]. A case study of this step
may be found in [7], which also contains a full
list of references. An alliance of NIP vith FSP
is called a Total Synthesis Problem (TSP). The
case study following in this paper is part of a
continuing assault of FSP for the nonlinear case,
from the view of design practice in gas tur.,ine
engine control.

The section following pro%'.des mathematical
preliminaries which precede , ,Liscussion of N;>` for
the nonlinear plant. Beyond that, nonlinear nc°i-
nal design is defined and characterized, after
which the paper progresses to design of local coL
trollers for a turbojet case, and the scheduling o:'
these local controls into a global control.

Mathematical Prel tmikiaries

In this section, we considek a bijection b :
S	 T from a set S onto a set T, with T ad-
mitting the structure of an F-vector space. As a
result of the fact that b is bijective, each
vector t in T can be represented uniquely in
the manner b(s) for an s in S; and each ele-
ment s in S can be represented uniquely by

b-1 (t) for a t in T. Here, we have denoted the
inverse of b in the usual way, b-1 : T	 S.

The commutative group structure (T,	 0) on
our F-vector space T can be used, together with
b, to induce a commutative group structure (S,
e) on the set S. The first step in this construc-
tion is to define the binary operation :1 : S x S

- S. We do this as follows. Let (s l ,s 2 ) E S X S;
then

s1 0 s 2 - b-1( b(s l ) + b(s2))

where the binary operation + in the right member
is that on T x T to T. Associativity of the new
operation can be demonstrated. Indeed,

(s 1 Z s 2 ) _ s 3 - b-1(b o b -1 (bs l + bs 2 ) + bs3)
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- b-1((bs1 + bs 2 ) + bs3)

- b-1 (bs l + (bs 2 + bs3))

- b-1 (bs l + b e b-1 (bs 2 + bs3))

. 
a  

q ( s 2 q s 3 ) .

The unit a can be chosen to be b-1 (0), as is
apparent from the calculation

s o b-1 (0) - b-1 (bs + b a b-1(0))

- b-1 (bs + 0)

S .

For commutativity of the operation, we exhibit ti:,a
steps

s  0 s 2 - b-1 (b(s l) + b(s2))

- b-1 (b(s 2 ) + b(sl))

-s 2 q s l .

Finally, for an element s in S, wg define an
additive inverse S in S to be b (-b(s)), and
verify it by

s:: 9- b-1 (bs + b o b-1(-b(s)))

b-1(0)

e ,

as desired. Accordingly, (S, q , b-1 (0)) is a
commutative group.

Next, we can use the scalar multiplication op-
eration F x T - T on the F-vector space T to
induce a scalar multipli. _ation F x S -► S. To do
this, we define the scalar multiple fs of s by
f to be

fs = b 1 (fb(s))

for a pair (f,$) in F x Y. Notice that

f (s l 0 s 2 )	 b-1 (fb (s 1
 q s2))

= b-1(fb o b-1 (bs l + bs2))

= b-1 (fbs l + fbs,)

= b-1 (b I b-lfbs
l
 + b a b -

1
fbs2)

= b-1 (b(fs 1) + b(fs2))

(fs l ) q Us 2 ) .

Moreover, we can also see that

( fl + f0 s = b- M 1
+ f2)b(s))

b-1 (f 1b(s) + f2b(s))

- b-1 (b - b -l f lbs + b a b-1fl)bs)

Next, observe the prop^srty

(f lf2 ) s - b-1 
Ml 

f 
2 
)bs)

- 
b-1(f1(fZbs))

- b-1(f1(b 
a b-1f2bs))

- b-1(f1b(f2s))

fl (f 2s) .

Finally,

la - b-1(lb(s))

b-1(b (s) )

- s .

Thus, (S, 0, b-1 (0)) has been developed in-
to an F-vector space S. We summarize this fact
as a theorem.

Theorem 1.

Let b : S + T be a bijection onto the F-vec-
tor space (T, +, 0). Then (S, 0, b -1 (0)) is al-
so an F-vector space, with addition

s  0 s 2 . b-1 (b(s l ) + b(s2))

with additive inverse

b-1(-b(s))

for a vector s, and with scalar multiplication

fs - b-1 ( fb(s)) .

Remark

Frequently, S may be given as an F-vector
space on a commutative group (S, +, 0). Though
the set S is common to these structures, the bi-
nary operations + and 0 are distinct, as well
as the units 0 and b -1 (0) and the scalar mul-
tiplications.

Relative to the induced space, the bijection
and its inverse assume desirable properties.

Corollary 2.

Regarded as a function

b : (S, 0, b-1 (0)) - (T, +, 0)

the bijection b is a morphism of F-vector spaces,
as is its inverse

b-1 : (T, +, 0) - (S,	 b-1(0)) .

Proof: We have only to examine the defining con-
structions

OplGINAL
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- b-1 (b(f ls) + b(f2s))

(f a) q (f 2s) .
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b(s 1 0 8 2 )	 b - b 1 Ws 1) + b(s2))

b(s 1) + b(s 2) ;

b(fs)	 b Y b-1(fb(s))

- fb(s) ;

moreover, for each ti in T, we have a unique

9  in S such that t i - b(s i ); and so we have

also

b-1 (t 1 + t 2 ^	 b- 1 (b(s I ) + b(s2))

b-1 , b(s 1 0 s2)

S  0 s2

(b-1 (t 1 )) 0 (b_1(t2))

b-1 (ft) - b-1(fb(s))

- fs

- fb-1 (t) .

Remark

If R is a ring with identity, then all the
discussions above generalize to R-modules.

Next, denote by SR the sec of all functions
from a set R to the F-vector space (S, 0, e).
Under pointwise conventions,

( g l 0 g2 )(r) - (g1(r)) C]

( fg ) (r) - fg(r) ,

SR becomes an F-vector space also (8], as does TR
under the corresponding operations induced from T.

The following section defines the NDP for non-
linear plants, and uses the properties above to
characterize its structure.

Nonlinear NDP

The concept of a nonlinear NDP was outlined in
(3] by the authors for functions on commutative
groups. Here we extend the idea. Let R, U, and
Y denote F-vector spaces of requests to the sys-
tem, controls to the plant, and responses from the
plant. It is useful to visualize these, for exam-
ple, as function spaces, predicated perhaps on time
sets. Let p : U -+ Y denote the plant. If the
feedback action of the controller is well defined,
then there will be a function m : R U gener-
ating control actions from requests and d function
c : R	 Y describing plant responses to requests.
These three functions must then be related by the
equation

t = p o m ,

which is presented as a commutative diagram in Fig-

ure 1. The nonlinear Nominal Design Problem is to
find pairs (m,t) in (UR , YR ) such that the dia-

gram of Figure 1 commutes. As usual, we point out

ORIGINALtJ^'AGE IS
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m/ /	 \t

^	 y
U	 Y

p

Figure 1. Nonlinear NDP.

that NDP is not a model matching problem, in which
t would also be given and in which only m in
Figure 1 would appear on a dashed line.

Now consider a pair (mi ,t i ) of solutions to

NDP. Characterization of the set ((m a ,to)) of

all solutions to NDP is severely hindered by the
fact that

p e 
(ml + m' ) ¢ (p - ml ) + (p - m2)

With the ideas of the section preceding, however,
this difficulty can be addressed.

Let (Y, +, 0) denote the F-vector space of
plant responses, and let (R, +, 0) denote the
given F-vector space of requests. If p is a bi-
jection, we can develop on U the F-vector space
structure (U, 0, p-1 (0)) of Theorem 1. Relative
to this structure, p and p- 1 : Y -+ U become
isomorphisms of F-vector spaces. Moreover, (UR,
0, a R) and (TR , +, 0) become F-vector spaces,

U

with

e R(r) - p-1(0)
U

for all r in R; and 0(r) - 0 in T for all
r in R. We can then define the F-linear map F
UR x TR + TR by setting the action

F(m,t) - p e m - t .

This leads to the following result.

Theorem 3.

Let p : U * Y be a bijection onto the F-vec-
tor space (Y, +, 0). Then a pair (m,t) is a
solution to the nonlinear Nominal Design Problem if
and only if

(m,t) a Ker F .

Proof: The assertion is immediate. It may be
worthwh^ale, however, to point out the F-vector pro-
duct group structure on UR x TR defined by the
operation

(Ml I t 1 ) * (m2 ,t,) ° (m l : m2 , t  + t2)

I
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Ay - y - g (x, u) , Au - u - u .

Then p may be assumed to have a local representa-
tion given by an impulse response operator

C eAt  + D

or by its transform, say P(s), in the usual way.
The idea is to use these P(s) to determine

corresponding local descriptions of the parts of

the controller, and then to schedule these parts
together into a global whole.

Remark

In addition to the case study which follows,
an accompanying paper (91 discusses some additional
conceptual issues associated with such schedules.

For the following case study, three outputs
have been selected for control: engine speed, N,
turbine temperature, T4, and engine thrust, FN.
The nonlinear engine model was identified locally
at five conditions corresponding to 70%, 80%, 90%,
100%., and 110% speed levels. The engine input is
given by

U ° (Wf, A  . B) .

and the selected engine response vector is

y - (N, T4, FN) .

By way of illustration, at 100% speed co..-tditions,
the plant transfer function P(s) and its inverse
were found to be:

5.4(.01s+1) 56.1(.015+1) -2704(.01s+1)

.13(1.5s+1)

[2.4(.29s+l)

-2.7(.50s+1)(.01s+1) 736(.31s+1)

68.3(.42s+1)(.01s+1) 951(.015+1)
P(s)

(.505+1;(.015+1)

 1.7(.0Js+1)(.007s+1) •.083(.01s+1`[...18(.23s-1M̂(.01s+1)

005(-.2s+1 .08(.Ois+l) 015(.Ots+l

vfs)•1

.0001(.7ds•.01s+I)	 .0017(.015+1)(.013s+1) .00015(.015+I.

.0095+1)

ORIGINAL
0r POOR QUALITY

Remark

If one wished, he or she could assume vector

space structure on U, and define a s ecial bi-
nary operation 0 on T x T by p(p-^(tl) + p-1
(t2)).

Remark

be replaced by + : U x U b U.
Suppose next that the plant has an internal

representation

x - f(x,u) , y - g(x,u) ,

with appropriate smoothness conditions associated
with the functions f: X x U- X and g: X x U
-} Y. Let x be such that

An Inverse nonlinear NDP, denoted INDF, can
be defined from the equation
	

f(x,u) - 0 ,

M - p-1 C t .	 and define

Remark

Suppose that p were only surjective. It
follows that p induces natural ,equivalence clas-

ses on U; and a projection n : U - ► U/_ can be
defined. Then one has the universal factorization

p - p , n

for a unique p :U/= w Y, which is a bijectiou.
The structure (U/=, [J, p-1 (0)) can be developed,
and NDP pursued again. Only equivalence classes
of controls are determined.

The existence of plant inverses is of the
first importance both in theory and in applicLtion
design. In the next section, we examine briefly
the turbojet engine model which will be used for
our case study.

Nonlinear Turbojet Model

A nonlinear model of a simple turbojet engine
is shown in Figure 2. It is representative, on a
small scale, of the kind of nonlinear plant with
which designers of turbine engines and turbine
controls deal currently in practice. In essence,
it is a computer simulation, typically constructed
by engine manufacturers and provided to control
manufacturers. The nonlinear turbojet model con-
sists of three integrators, nine nc,ilinear func-
tions, including five bi-variant functions, nine
multipliers and dividers, and nine summing junc-

tions. The model describes nonlinear dynamical and
steady state relationships between three inputs:
fuel flow, Wf , exhaust nozzle area, Ail and

turbine vane position, B, and six outputs: eng-
ine speed, N, turbine temperature, T4, engine
thrust, FN, tailpipe pressure, P5, and two
other outputs. We propose to think of the nonlin-
ear simulation model as a nonlinear function p
from a real vector space of control functions of
time to a real vector space of plant response func-
tions of time.

Locally, with appropriate technical assump-
tions, the nonlinear plant function can be approxi-
mated by a linear map P : U -* Y, in the neighbor-
hood of a pair (u,y) in the relation defined by
p. When the plant function p is a linear map P,
the transformation

P 1 (P(ul) + P(u,)) - ul + u2

for the usual vector space structure (U, +, 0).
,•	 Locally, then, the operation :: : U x U	 U can

ne-
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Linear Design

A general linear system structvre which com-
bines TSP ideas with the idea of Comparison Sensi-
tivity was presented and discussed in (41 and is
shown in Figure 3. This system structure provides
coordinated feedforward inputs u  and loop com-

mand req•::sts y
rc

t

u

Figure 3. Robust Controller Structure.

2	 r`

A  T
FN

Figure 2. Nonlinear Turbojet Model.

Multivariable Design

A nonlinear multivariable design method, based
on Total Synthesis ideas, is described and illus-
trated. Features of the design method include:

1. an input-output viewpoint;
2. design for desired response performance; con-

trol performance, and sensitivity;
3. a relatively general system structure;
4, a systematic way to synthesize the nonlinear

controller.

Starting point for the design procedure is a
nonlinear plant model or simulation such as the
turbojet engine model shown in Figure 2. First,
it is necessary to establish the desired steady
state operating conditions of the plant and deter-
mine available plant inputs and plant outputs.
Identification of the nonlinear plant along select-
ed operating lines then can provide local plant
dynamics and a set of plant transfer function ma-

trices P(s) relating inputs and outputs.
Possibilities for control of plant outputs

using available inputs can be checked by choosing
subsets of square matrices of the plant transfer
function matrix and determining the existence and
condition of the corresponding plant Inverse me-
tri,es. Existence of the plant inverse -ith good
condition is necessary and vital to obtain reliable,

independent control of selected outputs with avail-

able inputs (10-151.

to a closed loop control system. The feed-

forward elements coordinate request commands y ;
r

the closed loop assures steady state tracking and

robustness of the outputs, y. The desired over-
all system response is designated by T. The
chosen response of the loop is denoted by TL.

Important controller elements of the struc-
ture are G, H, and M, which must be designed
in an acceptaLle way so as to produce T and TL

within specifications. It turns out that three
key equations govern local design:

M - P-1T	 (I)

G ' P-1S-1TL
	

(II)

H	 TL1 (1-SL )	 (III)

Equation (T) 1.s called the synthesis equation. It
is used to display all admissible responses (T,M)
and (TL ,ML). Equations (II) and (III) are design

equations for the forward dynamics G and the

feedback dynamics H, respectively. Note that all
control dynamics are defined by selection of M, T,
TL and the comparison sensitivity S L . The sen-

sitivity SL is defined (16,41 by (1 + PGH)-1.

These equations provide a basis to design linear
control systems directly by specifying local re-
sponse and sensitivity performance.

:Nonlinear Design

As observed in the Introduction, the idea of
describing families of curves by their tangents has
a rich history in mathematics, in science, and in
engineering. The method of phase plane portraits
was already well developed more than two decades
ago 1171. In more modern terms, we say today that
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state space descriptions, by ordinary differential
equations, coincide with vector fields on manifolds
(18]. Solutions on the manifold are curves tan-
gent to the vectors of the field.

What about nonlinear design? The fundamental
notion used in this paper is that linear descrip-
tions, obtained from local actions of nonlinear ob-
jects, may be combined to produce nonlinear action,
with sufficient integrity to effect closed loop

control. For example, if a set of local desigL.s
has given rise to a family (G(s)) of forward dy-
namics in the loop, then the goal is to link mem-
bers of the family together so as to produce a
nonlinear function g, that is (G) + g. Now
each G may be regarded as giving a local approx-
imation to a part of the vector field. Under re-
asonable conditions of smoothness, and with enough
members in the family, a careful linking could in-
deed lead to useful g, over regions of interest.

To extend this notion, one can consider
choosing, along an operating line, sets of de-
sired system responses (M,T), loop responses N

T ), and sensitivities (S ). From these perfv:-
mhnce choices, sets of con t roller matrices (M),

(G), (H), and (HT) can be generated via equa-
tions (I), (II), and (III). All of the linear

sets may be linked and scheduled as a function of
plant condition to form nonlinear control elements.
Thus (T) -* t, (M) -P m, (G) - g, (H) - h, (HT)
h a t.

Desired steady state operating schedules,
transient control means and protection limits are
also needed to provide other practical and func-
tional features for a nonlinear turbojet engine
control system. These features transform the
linear system structure in Figure 3 to the non-
linear system structure shown below, in Figure 4.

•UM.	 OUMI	 ,gpTLC•

Figure 4. Nonlinear Control System.

The structure embodies key ralationshi.ps of the
Total Synthesis viewpoint and provides other basic
features needed for full range, nonlinear control.
It is used in the design examples which follow.

Design Examples

In this section we illustrate the foregoing
synthesis ideas by designing a control system for
the nonlinear turbojet engine described in Figure
2. Recall that the turbojet has three inputs:
fuel flow, W f , nozzle area, AV and turbine vane

angle B; therefore, three outputs: engine speed,

N, turbine temperature, T4, and engine thrust, FN
were selected for control. We want to execute de-
signs to achiLve specific, beneficial output re-
sponse strategies and show the effect that sensi-

tivity specifications have in resisting plant
parameter variations. Results are illustrated by
time response traces Zor small step commands and
by full range acceleration and deceleration trans-
ients.

Performance Specifications

Design a multivariable control system for full
range acceleration and deceleration capability a-
long the steady state schedules so that complete
transients are completed in less than three sec-
onds. Small signal responses of the system are
desired to produce: 1) fast thrust response; 2)
smooth, gentle temperature response; and 3) con-
venient speed response. All should take place
without overshoot and without steady state error.

These requirements translate into the follow-
ing kinds of response and sensitivity specifica-
tions:

1. Tramsk output schedules with zero steady state
error.

2. Accelerate or decelerate from 70% to 100% speed
levels in less than 3 seconds.

3. Local System Responses (T) - Decoupled
Speed	 - .5 second lag @ 702 speed

- .2 second lag @ 100% speed
Temp.	 - .5 second lag - constant
Thrust	 - .2 second lag - constant.

4. Local Closed Loop Response (T L) - Decouple,!

.2 second lag constant for all outputs.
5. Local Sensitivity (S L)

a) Unity feedback: S L - (1-T L);

b) Ten times better than unity feedback

The following response and sensitivity matrices at

100% speed condition were obtained:

1	 1	 1
T	 diag ( .2s+1° .5s+1' .2s+1)

TL diag ( 1
	 1	 1

.2s+1' .2s+1' .2s+1)

IS
S LR diag 

( .2s+1' .2s+1' .2s+1) (H@I)

S	 din ( •02s
	 .02s	 .02s )

L	 g .02s+1' .02s+1' .02s+1

The forward control dynamics G(s) at•100%
speed condition with unity feedback are:

	

.90(.236+1)	 8.5(.015+1)	 -.42(.01s+1j

-.025(-.2s+1)	 -.40(.O1s+1)	 075(.01s+1)

	

G(s) _ L .0005(.74s+1)	 .0085(.013s+1)	 .0008(.01s+1J

s(.Ols+l)

Contr...1Pr elements M, G, H and HT were
calculated at five engine speed conditions. These
sets were scheduled as a function of engine speed

fi

^i

^f

1	 4.
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to form nonlinear control system elements m, g, h
and h • t. For example, the form of the nonlinear
controller g so constructed is shown in Figure 5
below.

Nf

LA 

^.4

Figure 5. Nonlinear g.

Simulation Results

Small step transients of the nominal engine
with sensitivity feedback system are shown in Fig-
ure 6. The output responses verify desired small
signal performance: thrust response is fast (.2
second lag); temperature response is smogth (.5
second lag), and speed response varies from .5 sec-
ond lag at 70% to .2 second lag at 100% speed con-

dition. Corresponding input responses are shown
in Figure 7.

Full range acceleration and deceleration tran-
sients of the nominal engine with sensitivity feed-
back system are shown in Figure S. The outputs
track the requests without overshoot and the trans-
ient time is less than three seconds. Correspond-
ing input responses are shown in Figure 9. All
inputs are within desired limits.

To show the effect of sensitivity specifica-
tion on plant parameter variations, the time cons-
tants of the engine affecting speed, temperature

OUTPUTS
NOM. ENGINE SENSITIVITY F/S

	

TIME	 --	 SCCONOS -'

Figure 6. Outputs.

Nominal Engine; Sensitivity F/B.
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NOM. ENGINE SENSITIVITY F/e
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t	 'I

30 40 13

20	
I	 • ^^ J	 `J Î

-20	 ^ 700	 1—VANE

l

-60

	

TIME	 SECOND!

Figure 7. Inputs.
Nominal Engine; Sensitivity F/B.

and tail pipe pressure response were all doubled.
This produced a nonnominal engine.

Small step responses of a nominal and non-
nominal engine with unity feedback control are pic-
tured in Figure 10. Deviations from desired output
responses are caused by the engine parameter vari-
ations.

Imposing a sensitivity specification which is
effectively ten times better than the unity feed-
back design producee feedback dynamics H - diag

((.2s+1)/(.02s+1)). Step responses for the sensi-
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Figure 10. Outputs; Unity F/B.
Nominal and Nonnominal Engines.
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Figure 9. Inputs.
Nominal Engine; Sensitivity F/B.

tivity feedback design with both the nominal and
nonnominal engines are shown in Figure 11. Devia-
tions due to engine parameter variations are vir-
tually eliminated.

Full range acceleration and deceleration tran-
sients of the sensitivity feedback controller with
both nominal and nonnominal engines are shown in
Figure 12. The sensitivity design feedback con-
troller maintains full range output transients es-
sentially at nominal conditions, successfully hand-
ling plant parameter variations.

0	
IG TIMC	 20 S000H0S 

30	 —` 4b

Figure 11. Outputs; Sensitivity F/B.
Nominal and Nonnominal Engines.

Summary Remarks

A nonlinear control synthesis method based on
TSP viewpoint was discussed and illustrated. A
three input/three output turbojet engine example
demonstrated a feasibility to achieve desired sys-
tem response and sensitivity specifications.

A concept of the nonlinear Nominal Design Prob-
lem (NDP) was presented and discussed, extending

and building on earlier Total Synthesis Problem
(T.SP) theory and ideas. additive structure was ob-
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OUTPUTS
SENSITIVITY F/21
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T
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Figure 12. Outputs; Sensitivity F/B.
Nominal and Nonnominal Engines.

twined by a process of irn,Icing a special binary
operation on the control input space. Though not
a now mathematical idea [181, this concept seems to
fit constructively into carrent design developments
in nonlinear control.

Research to develop nonlinear control synthe-
sis methods is needed. It is felt that the input-
output TSP viewpoint offers possibilities to devel-
op useful, systematic and straightforward methods
for nonlinear multivariable control synthesis.
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Abstract

In the applications, one common way to design
a control system for a nonlinear plant is to local-
ize its behavior along lines of operation specified
by the plant manufacturer, to develop linear multi-
variaole controls for these localizations, and to
schedule those controls with key plant variables
which vary smoothly along operating lines. An im-

portant part of practical design 'lore, the art of
controller scheduling has received little modern
attention from the conceptual point of view. This
paper describes four basic types of scheduling ques-
tions and outlines some of the theoretical iegues
associated with them. Schedules are cor,siderec2 in
terms of state equations; however, some relations
with the input/output description are discussed,
together with an amlysis of the effects on the
overall configuration of approximations made to
the individual subsystems.

Introduction

Bristol (1,2) has likened the process of con-

trol design to the use of idioms in a language.
At least three types of id-.ems can be identified.
First, there are idioms which have been with man-
kind for such a length of time that they seem uni-
versal to the human psyche. In some sense, feed-
back itself is an example of such an idiom, inas-
much as is may be traced at least back to ancient
Arabian water clocks. Second, there are idioms
which are the characteristic of certain authors.
Several classic examples are the Nichols chart,
the Bode plot, the Evans loci, and the Nyquist
plot. And third, there are idioms which are typi-
cal of certain types of control applications. An
example is that of gas turbine control systems (3).

Because of the idioms of type three, any ap-

plication of control design has idiomatic features.
In a sense, the task of the control designer is to
blend the idioms of the application with universal
idioms, with idioms of classical and modern authors,
and with his or her own idioms, so as to produce a
melodious and effective composition.

It goes without saying that some idioms do not
play well together. In some areas of application,
this may account for the famous theory/application
gap.

One universal -iii-,m is to attack the overall

system design by breaKing it down into manageable
pieces. An important case of this type of thinking
arises in the design of certain classes of nonlinear
systems. Examples in point may be found in the
area of gas turbine control. For discussion of

9-me of the ideas involved, as well as additional
references, see the companion paper (4). In brief,

the nonlinear engine is linearized locally along
lines of operation agreed upon by the manufacturer
and the control contractor. These linear multi-
variable localizations are used to develop a family
of local controllers, which are then sewn together
by scheduling control gains and dynamics with some
engine variable, as for example speed, which varies
smoothly along operating lines.

As pointed out by Bristol (1), the idioms have
to blend together. In the case of scheduling, the
methods used for design of the local, linear mul-
tivariable controllers have to be amenable to a
common thread of smooth scheduling, else a global
whole is not obtained, but only a sum of parts.

The goal of this paper is to examine in an in-
troductory way certain of the conceptual questions
associated with scheduling. In particular, we
would like to determine something about the struc-
tures of common scheduled systems, their approxi-
mations, and how they are affected by interconnec-
tions one with the other.

What follows should be regarded as exploratory
in nature. Though we will do some things in con-
siderable detail, it nonetheless remains true that
we will be answering only a portion of the questions
which we raise.

Simple Example

Consider the elementary dynamical system

x - -ax + bu .	 (1)

The transfer function associated with (1) is of
course

b	 (2)
s+a

Rewritten in terms of gain and time constant, (2)
becomes

k
Ts+l '

where

k - b/a , T - 1/a .	 (4)

Suppose that we wanted to schedule the gain k as
a function of the input u, say

(3)

a
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	k(u) - al + 0 
1 u + Y lu2	(5)

Then the scheduled system would look like

, - -ax + aa lu + aslu2 + ay lu3	(6)

Alternatively, we might schedule the time constant
T as such a function, for example

	

T(u) - a2 + 8 2u + Y?u2
	

(7)

in which case we would have

a - 1/(a 2 + 8 2u + y2u2)

	

- a21 - 8 2a 2 2u + ...	 (8)

so that

x - -a-Ix + 8 2a-tux + bu + ...	 (9)

on out to a denumerably infinite number of terms.
Next suppose that we wanted to schedule the gain
k or the time constant r as a function not of
u but of x, in the manner

k 	 - a 3 + 6 3x + Y 3x2 	(10)

T 	 a4 + 84x + y 4x2	 (11)

Then the scheduled systems would be

z	 -ax + aa 3u + a6 3 xu + ay,:. - u, 	 (12)

x	 -a-Ix + a 4a 4 2 x2 + bu + ...	 (13)

again with a denumerably infinite number of terms.
Generally ,peaking, the polynomic scheduling

concept tends to convert the system (1) into a sys-
tem of the form

x -

	

	 £ r ij xiuj	 (14)
1-0 j-0

Indeed, if the original system (1) were of the more
general form

	

F akmxkum	(15)
k-0 m-0

under formal power series scheduling.
Because of this closure feature, we find in-

terest in systems of this type. The next section
given a brief, multivariable motivation.

Multivariable Motivation

When a nonlinear plant has been linearized in
the neighborhood of a point on the desired operat-
ing line, ttie resulting, local, linear multivari-
able control problem must be resolved by some
chosen procedure. Moreover, associated with this
chosen method will. be various related and compat-
ible theoretical viewpoints. It is not the pur-
pose of this paper to argue the merits of one or
more of these theories. Instead, we wish to select
a way of thinking which is comprehensive enough to
embrace the thoughts of numerous approaches to such
conceptualization. In this way, the scheduling
classes which we introduce will, hopefully, be
broad and representative of those which arise in a
variety of schemes. Of course, not every class
would be natural to every theory; and not every
possible scheduling class can be encompassed by
any one viewpoint. The idea, nonetheless, is to
generate, as it were, some of the characteristic
features encountered in scheduling.

For the above mentioned, illustrative, pur-
poses, then, we select the Total Synthesis Problem
(TSP) structure proposed by Peczkowski, Sain, and
Leake [5] in 1979. In the TSP idea, both the com-
mand/output-response, represented say by a matrix
[T(s)], and the command/control-response, repre-
sented sayby a matrix (M(s)], are to be simul-
taneously synthesized subject to the constraint
imposed by a plant, which could be represented by
a matrix (P(s)]. Fundamental to TSP is the Nomi-
nal Design Equation (NDE)

[T(s)] - [P(s)][M(s)J ,

which must be satisfied no matter what controller
structure might be selected. For a full discus-
sion of NDE, see (6]. Once NDE is solved, one can
make use of any of the multitudinous structural
synthesis methods of modern theory or modern prac-
tice to develop a feedback controller. Feedback
synthesis generates a number of interesting ques-
tions of theory. For examples of these and for
additional references, see [7]. It also generates
very important questions of practice. Examples of
these have been given in (8,9,10]. In [8J, the
structure of Figure 1 was employed on a turbojet

and if the parameters wT-7e scheduled in an analog-
ous way, such as

m

a,,.£	 a	 xPuq	 (16)

	

p-0 q-0	 P9

then (15) becomes

m	 m

x '

	

	 akmpgxk+pum+q , (17)
k-0 m-0 p-0 q-0

which can be formally rearranged in the same form
as (15). In broad terms, then, (15) is closed
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example. Subsequently, (91 and (101 considered
particularizations of (81, especially insofar as
L and K are concerned.

The structure (81 of Figure 1, however, is
adequate for pu rposes of subsequent discussion.
Let families (L,K,G,$} have been determined by a
technique of the reader's choice, in correspondence
to a family {P} developed along desired operating
lines of the plant. From a more global point of
view, the plant may be regarded as a general, not
necessarily linear, function p : U - ► Y for appro-
priate control and response spaces U and Y. We
are interested in considering four cases of sched-
uling:

(I) L arc. K as a function of r;
(11) L and K as a function of their output;
(III) G and H as a function of Lr;
(IV) G and H as a function of y.

Notice that, in I and II, we may as well choose
either L or K, because the issues are the same

Abstract Derivatives

As indicated in the Simple Example Section
above, the idea of polynomic scheduling, of gains
or time constants, suggests a state description in
terms of series. Because we wish to use operator
theoretic methods to some extent, it is convenient
here to make a few introductory remarks about der-
ivatives in such a context.

Let V and W be nonmed real vector spaces,
with Z open in V. A function f	 Z + W is
differentiable at a point p in Z if there ex-
ists a continuous linear map F : V + W such that,
for (p+h) in Z and h in V,

lim	 IIf(p+h) - f(p) - Fhjj a 0 .
11 h 11 -0	 11h1l

If F exists, then it is unique and is called the
derivative of f at p, and is denoted by

(Df ) ( p ) : V + W .

In case f is differentiable on Z, then we have
a construction

Df : Z + L(V,W) ,

where L(V,W) denotes the real vector space of R-
linear maps V W. Higher order derivatives are
defined in s recursive fashion,

(Dr f) ( p ) _ (D(Dr-1M (p ) .

with r a positive integer, provided that the in-
dicated limit exists. For more discussion of
these notions, the reader may wish to consult (11,
12,131.

An important connection exists between the
calculus on normed vector spaces and the tensor
algebra. Indeed,

D2f(p) a L(V,L(V,W)) ,

D3f(p) c L(V,L(V,L(V,W)))

an n-linear function being one which is linear in
its remaining argument whenever (n-1) of its
arguments are fixed. It can be shown that there
exist isomorphisms

L(V11 V29 W)	 L(V1,L(V2,W)) 1

L(V11 V29 V3 ,W) + L(V1 , L (V2 , L (V3 , W))) ,

so that (Drf)(p) can be regarded as an r-linear
map Vr + W, up to isomorphism. We suppress this
isomorphism and think of (Drf)(p) as just such a
map.

It is now straightforward to establish a con-
nection with the tensor algebra, and we do so in
the section following. The importance of the con-
nection lies in its parametric possibilities:
Every r-linear map can be composed from a linear
map and a universal r-linear conbtiu,cion called
tensor product. In a sense, the linear map em-
bodies the parameters which are available for
scheduling; and we pursue this view in a later
section.

Tensor Algebra

In this section, we develop some of the struc-
tures with which we can subsequently discuss sched-
uling questions I-IV. Let V be a real vector
space. For each integer r which is two or great-
er, let

(®rV, or)

be a tensor product for r copies of V. The no-
tion extends to 1 and 0 by the definitions

0 1 V - V , ®V - R .

The sequence arV, r = 0,1,2,..., can be developed
into a biproduct, and the images of ®rV under in-
sertion can be given the same notation. Then the
taasorial powers ®nV can be developed into an as-
sociative algebra by defining the internal direct
sum

aV	 ®nV
n-0

whenever the limits exist. Let us denote by

L(V11V2,...,Vn.W)

the real vector space of n-linear functions

V1 % V2 X ... x V  + W .

i

7
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and by equipping eV with the bilinear mapping
(a,$) + a$ for a, a, a$ e e V whose result is
defined by

a9= £ aneam,
n,m

where a	 a 	 = am for an a QV and am
n	 m

e emV. With this multiplication, eV bec:oraes the
graded tensor algebra over V with elementa ka0,

n l .... ), which are sequences of the tensors a  e

'IV, i = 0,1,..., and with unit element (1,0,...).
We emphasize the fact that multiplication in the
tensor algebra is not a tensor product.

Now let eV and OW be tensor algebras as
defined above, over V and W respectively. For
every pair n,m a 1, let 0m(V,W) be a tensor

product of en/ and OmW, that is,

0n (V , W) _ (enV) a !emW) .

We set 0n (V,W) - enV and 00 (V,W) = 31214. In a

manner similar to that preceding,

em(V,W)	 , n - 0,1,2,..., m - 0,1,2,...

can also be developed into a biproduct; and the
images of each of these spaces under natural inser-
tion into the biproduct can again be given the same
symbolic representation. Again, then, we construct
the internal direct sum

e(V,W)	 0n M W)
n,?-O

with

a(V,W)	 [	 0n(V,W)I
k-0 n 

functioning as the induced gradation on e(V,W).
Now consider two spaces em(V,W) and e9(V,W).

There exists a unique bilinear mapping

µ : em (V,W) x es (V,W) -* ®n+r(V,W)

with action

µ(an a am , a  ® as ) - (an a a r ) a ( am a as ) ,

where a
n	 r

n
e®V, ar e®V, 8m e 012*d, as E® 

s 
W. The

n+pair (e r^s(V,W),µ) is a tensor product, or

em+s(V,W) ° em (V,W) ® es(V,W)

and

(an a a r ) e1 ( am a e s ) ° (an m am) e2 (ar a a s ) .

We have subscripted the product symbol a in this
equation in order to emphasize the fact that the
defining product ® 1 on the left is between an
(n+r)-tensor and an (m+s)-tensor, while the defined

product 
e2 

on the right is between an ( n-+m) -ten-

sor and an (r+s)-tensor.
An algebra structure may be placed on e(V,W)

by defining a multiplication operation. To this
end, let am a em(V,W) and 09 a er (V,W) so that

the tensors

a	 E an
	

a	 E 
a 

	n,m m	 r,s s

are elements of e(V,W). Then the product of two
such tensors is given by

as-	 (an a)as

n,m
r,s

where the symbol a is the same as 
e2 

above.

Notice that the multiplication rule implies

(an ® am)(a
r 
® as ) ° (an ® am) 

e2 
(ar a as)

° (an ® ar ) ®1 (am a as)

(ana r ) a lama s ) .

This relation shows that the algebra e(V,W) is
the canonical tensor product of the subalgebras
eV and eW, or

e (V , W) - (3V) a (OW) .

The results in this section are adjustments
of those which may be found in [14]. Our motiva-
tion is, of course, the expansion of functions
I : X x U + X, for X a real vector space of
states and U a real vector space of controls.

Formal State Descriptions

Consider a nonlinear state description of the
general form

.1 - f(x,u)

for

f: X x U+ X

with X and U real vector spaces, equipped with
norm. Let (x,u) be a point in X x U, and sup-
pose that

D 
r 
f : Z -+ L(X x U,...,X x U,X)

is available for r - 0,1,2,..., with Z open in
X x U and (x,u) in Z. Then, formally,

	

f(x + x , u + u) -	 k! (Dkf)(x,u)(x,u)(k),
k=0

where	 (x,u) (k) _ ((x,u),(:s,u),...,(x,u)),	 the
right member having (x,u) k times. It should
be recognized that this series could be replaced by
a finite number of terms together with a remainder.
However, the above representation is adequate for
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brief il .hustrative purposes. Space does not permit
a discus-sion of whether, or how, the series accept-
ably describes the function. Along the same lines,
we pass over the related question of how it affects
the vector field associated with the differential
equation, and therefore its solutions. Instead, we
remind the reader tht (Dkf)(x,u) is a k-linear
function on (X x U)	 to X; and this suggests
that we can use tensor algebra to parameterize it.
Indeed, denote by (x,u) k the k-fold tensor pro-
duct )f (x,u) with itself. Then the k-linear
function (Dkf)(x,u) can be factored uniquely in
the manner

k(x'u)	 ^k '
where

(®k (X x U) , ® )

is a tensor product for k copies of X x U, or
what is sometimes called a kth tensorial power for
X x U. In this case, the kth parameter map oper-
ates in the manner

Lk (x ,u) . ® (X x U) -► X .

We have, therefore, t"'dt

f(x + x, u + u) - 
kI0 

k! L
k (x,u)	 ® (x,u)(k)

k
k-0 

k! -ic(x,u)(x,u) 	 .

Next consider the rearrangement of a term of
type

Lk(x,u)(x,u)k .

Consider, for example, the case k - 2, namely

(x,u) 2 - (x,u) w (x,u) .

Such a form does not relate directly to the struc-
ture of the section preceding, which would involve
terms of type xj ® um . However, there is a nat-
ural way to convert to that structure. Define pro-
jections

nu : X x U+U ; V  : XxU+X;

and injections

iuu 
U®U+S	 iux UwX 'S ;

ixu X®U ^S	 iXX X®X rS ;

for

S = (U ® U) x (U (@ X) x ( X ® U) x (X ® X) .

Then we can write

(x,u) a (x,u) - ixx (it x (x,u) ® IT (x,u))

+ ixu (nx (x,u) ® nu(x,u))

+ iux Oru (x,u) a 7r (x,u))

+ iuu Oru (x,u) ® it (x,u)) .

If we identify images of the injections with their
domains, as for example

iuu(U®U)

then we can write

(x, U) ® (x, u) - x®x+x® u+u0x+u® u .

According to the conventions of ®(X,U), however,
discussed in the section preceding, we agree to
write

u®x - Tuxxux®u

for an appropriate isomorphism Tux,xu' In that

way, we can proceed to

L2 (x,u)(x,u) 2 - L2 (x,u) x2

+ L2 (x,u) x ® u

+ L2(x,u)Tux 
xu 

x '9 u

+ L2 (x,u) u2',

which we re-notate to (with factorials included)

2 + L11 (x,u) x ® u + L02 (x,u) u2L20 (x,u) x 	 .

In this way, the formal expansion becomes

f(x + x, u + u) - E	 E Lij (x,u) xi ® uj
J.0 j-0

from which point we can examine the scheduling
questions previouslv raised.

Internal Schedulin

In the section on Multivariable Motivation, we
brought attention to four cases of scheduling. With
the aid of the ideas foregoing, we would now like
to comment on each of these. We shall see that the
scheduling idea of our Simple Example Section,
while motivating in nature, is not rich enough to
embody the complete idea in question. In particu-
lar, we have primary interest in the scheduling of
parameters as a function of (x,u') and not (x,u.).
Though such issues would have encumbered the Simple
Example, we have estiO lished now enough background
to make the consideration.

Case I

It is sufficient to consider K as a function 	
4of r. Notice that r is effectively u for this	
i

r
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case. Accordingly, we have 
Lij 

as a mapping

Lij : U - L(®i (X,U),X)

and we may write

f (x x, u + u) - E	 E Lij (u) xi ® uj
1-0 j-0

The constraint imposed by Case I is thus a domain
restriction on L ij , in the form that the action

of Lij depends only upon u and not upon x. If

we make the formal expansion

Lij ( u ) - 
k 

£ 
0 

Lijk uk
-

in a manner analogous to the steps taken above for
f : X x U + X, then

m W

f (q + x, u + u) -	 Lijk uk (xi ® uj )
i-o j-o k=o

Assuming distribution, we find that the structure
of interest is engendered by

Lijk uk (xi 0 uj ) .

This raises the forms

uk ® xi ® uj

which can be referred, by isomorphism, to the pre-
viously described tensor algebra by

xi u0 k 0 uj .

Case II

We shall assume, for simplicity, that y is
equal to x. again, it is sufficient to consider
just one, say K, of the two mappings. In a man-
ner similar to Case I, it can be shown that

W "
	 -k i

f (x + x, u + u) _ I	 E	 I Li k x (x ® uj ) ,
i=0 j-0 k=0 j

with the corresponding underlying construction

xk®xi 0uj .

Remark

Although it has not been stated as one of our
cases, the generalization of Cases I and II clearly
leads to

x 0xk0uk0uk

Case III

This case is quite a bit more complicated than
the previous two cases. For simplicity, take L
to be the identity and K to be zero. In consid-
eration of G, we note that its input, say u, is
a sum of r with a function of the plant output.

Suppose, for purposes of G, that H is an iden-
tity and that plant output is its state. What we
can do is to examine the series combination of P
and G, with state

Z - (XG. r xP) E XG. x Xp .

If we take u as the input to G, then

z - f(z,u)

with f : X  x XP x U + XG x XP and with

u -r - n z
XP

for Tr 
XP

: X  x XP + XP an appropriate projection.

Again, we have the basic expansion
m

f(z + z, u + u) - F 	 E Lij (z,u) zi 0 uj
i-0 j-0

and we wish to schedule with

r - u + tr z
XP

We can reduce this situation to one which is close
to that of Case II. Write

Lij (z,u)	 Lij (z. r - nx z)

- L^j(z^r)

c Lijkmzk a rm
- k-0 m-0

Then the basic issues involve

r ® ik ® Z1 'V uj

The remaining part of this case has to do with H.
A similar approach can be applied, if we assume G
to be an identity. Here

z - (xp,x1j) ,

and

u - r - nxH z ;

the results vary essentially only in the meaning of
Z.

Remark

Assumptions on L, K, G, and H are for con-
venience only. They can be removed easily by ex-
panding z and the definition of input.

Case IV

Notice that the question of H scheduled on
y is the ,same as H scheduled on its input; and
this reduces to Case I. Moreover, the question of
G scheduled on y is essentially that of G

t.
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scheduled on a projection of the sum state (xG,xH,

xp ), which in turn is a question of the composite

loop system scheduled on its state, which in turn
reduces to a version of Case I1.

These are a few of the basic concepts which
arise in nonlinear scheduling of state equations.
We have introduced a viewpoint which seems broad
enough to permit discussion. We have not used this
framework to solve any new problems, however, but
only examined its possibilities for providing
frames of reference.

Once internal scheduling has been carried out
in an acceptable way, one comes next to the re-

lated input/output functions. This is also a large
subject, and we give only a sample survey of the is-
sues in the next section.

The Input/Output Connection

In this section we briefly highlight some gen-
eral results from the literature relating the in-
ternal and external constructions for nonlinear dy-
namical systems. Such results suggest just a few
of the approaches to the mathematical bridge nece-

ssary for the scheduling discussions of the present
paper.

We consider a nonlinear control system

x - f(x,u)

y - h(x) ,

where f : X X U -+ X, h: X + Y, for X, U and Y
the state, input and output spaces, respectively.
With appropriately defined conditions, there is
associated with such a system an input-output map
from U to Y. Moreover, if we assume a suffi-
cient degree of smoothness for f and h, this
input-output map may tats on a functional expansion
representation commonly known as a Volterra series,
first considered by Volterra [151 as early as 1890,
and studied later in d ,.pth by Weiner.

An important subclass of such systems is that

of bilinear systems, which in recent years has it-
self motivated the study of Volterra series. In
[161 the construction of, and realization from,
Volterra series representations for bilinear sys-
tems is outlined, where it is shown that a neces-
sary and sufficient condition for the existence of
bilinear realizations corresponds to that of fac-
torizability of the kernels which characterize the
Volterra series expansion. In light of Krener's
result [171 for the bilinearization of a rather
general class of nonlinear systems, such realiza-
tion studies sake on considerable utility. This
latter result is based on a linearization technique
used by Brockett (18), introduced first by Carleman
(191 in 1932,and used later for similar applications

by Bellman and Richardson [201 in 1963. We note
here that it is a straightforward exercise to de-
velop this technique analogously in terms of the
tensor algebra and corresponding products.

Brockett (21] has expanded these ideas to a
more general class of systems for which

x - g l ( x ) +	 uig,,(x)

i

y - h(x)

where gl , g2 : X -► X and h : X -► Y are analy-

tic, and the u  are components of the vector u

e U. Such systems are termed linear analytic and
are closed under composition and feedback. It is
shown in (21] rnat the solutions can be expanded in
a Volterra series provided that there is no finite
escape time. Furthermore, necessary and sufficient
conditions fur r, Volterra series to be realizable
as a linear analytic system are given. For a fin-
ite Volterra series representation, this will be
the case if and only if the kernels are separable.

In (22], Gilbert develops similar results for

the general system and for the linear analytic sys-
tem. The approach is an alternative to the Carleman

technique, and uses Frechet power series in the
functional expansion. Convergence results of
Brockett (211 are utilized for truncated Volterra
series.

Yet another approach to these results is in-
troduced in (23] where standard tools from calculus
and :ialysis are employed in studying the existence
and uniqueness of Volterra series representations
for nonlinear systems. In their existence proof
for the Volterra expansion of the class of linear
analytic systems, Lesiak and Krener exhibit a pro-

cedure for constructing the kernels of the expan-
sion. This construction may be applied to more
general systems, where the input enters nonlinear-
ly, by first approximating the system by a bilin-
ear system, using the result in (17]. In the work
of Crouch (24], the rich mathematical structures
of Lie groups and differential manif_lds are ex-
plored in relation to the realizations of finite
Volterra series for linear analytic systems. A co-
ordinate free development is presented as an exten-
sion to the results of (21] and (23].

Truncation

The preceding remarks have made use of series
representations for internal models and have dis-
cussed relations between internal and input/output
models. It is, however, unlikeiv that one would
schedule an entire series in practice, unless that
series were simply an alternate form for a function
which could be parameterized in finite terms. Thus,
although the series format permits a rapid intro-
duction to certain of the underlying structures in-
volved in scheduling, we wish to mention some is-
sues which arise when the series are truncated, or

when they had a finite number of terms from the
outset.

A principal feature of truncation in an in-
ternal or state model is the resulting approxima-
tion which occurs in the input/output model. On
appropriate normed real vector spaces U and Y
of controls and responses, respectively, one might
express the input/output function by

p : U -«Y

and, formally at least, its series expansion by

^C
p(u + u) - / kl DkP(u)u(k)

k-0

The algebra of input/output mappings, under compo-

k
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sition and pointwise addition, is of ringlike na-
ture, failing only one distributive law. Minor
complications arise, moreover, because U ¢ Y.
It is important to realize that similar remarks
can be made when the series representation is
truncated, as for example in the manner

m

P(u + u) : k£0 kf Dkp(u)u(k)

Call the right member of this equation

pm (u,u) .

Then we have fundamental questions to be addressed
insofar as connections are concerned.

Example 1 (Parallel)

Let p i : 11 -* Y, i - 1,2. Then under what
conditions does

(P1+P )mom Pm+pm ?

Example 2 (Series)

	

Let p  : U -* Y and p 2	 Y { Z. Then un-
der what conditions does

	

(p2 ° P 1 ) m ' Pm 	 Pm

of course, the feedback case can also be addressed.
Such questions have been addressed in [25,26,27].
Though we have no space remaining here for further
detail, an important point is that the questions
can be addressed within the framework brought for-
ward in this paper. This offers possibility, then,
for determining features of scheduling which in-
volve interconnections in the controller of C, H,
L, and K.

Conclusions

Scheduling of local, linear multivariable con-
trollers into global, nonlinear multivariable con-
trollers is a very present tool in a variety of
modern control applications. A case in point is
gas turbine engine control. See, for example, the
companion paper [4].

Despite the entrenchment of scheduling in
practice, the theoretical view of such approaches
is relatively undeveloped. There are many reasons
for this, including the fact that theory is pre-
disposed to give general conditions across many
classes of possible application and finds it quire
challenging, for the most part, to be general about
particular applications. Nonetheless, it seems
that much could be gained by a theory/design dialog
on the issue of scheduling.

Toward su_h dialog, we propose in this paper
a viewpoint which may be broad enough and deep
enough to support such a dialog. The central fea-
ture in the viewpoint is the parameterization pos-
sibility which is inherent in tensor algebra. For
a reasonably general control configuration, we
have used the tensor framework to examine four
typical scheduling structures. Though much remains

to be done in such a dialog, we have found these
ideas useful in thinking about the joint theory/
application issues which are involved.
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A COMPUTER-AIDED DESIGN PACKAGE
FOR NONLINEAR MODEL APPLICATIONS*

T.A. Klingler, S. Yurkovich, and M.K. Sain

Department of Electrical Engineering, University of Notre Dame,
Notre Dame, Indiana 46556

Abstract. An important aspect of multivariable control system design in-
volves the formulation of reliable mathematical models. Gas turbine engine
control systems, with their inherent nonlinearities, provide common practic-

al examples of the need for nonlinear models. In this paper we discuss a
computer-aided design package for generation of such nonlinear models, using
an approach involving notions of power series and algebraic tensors. Two
independent computing systems are employed interactively in the overall pro-

cess of model formulation, identification, and validation. The package is
sufficiently generalized to accommodate any particular nonlinear modeling
problem when formulated within the framework of the algebraic tensor scheme.

Keywords. Computer-aided system design; multivariable control systems; mod-
elling; tensor algebra; nonlinear systems; algebraic system theory.

INTRODUCTION

Models have always been an important aspect

of applications engineering in the area of
multivariable control system design. See
for example the work of Kreindler and
Rothchild (1976). Practical and industrial
examples of the use of models are provided
by gas turbine engine control systems, which
commonly use models to generate. control and
response trajectories for various power de-
mands. These models, when scheduled over
the operating envelope, can reduce the com-
pensation normally required of Che control-

ler, and thus provide the feedback loop with
an opportunity to achieve better accuracy in
the presence of noise and parametric uncer-
tainties.

The scheduling of feedforward models and
feedback compensation typically produces
nonlinearities, even if the local models are
linear. Accordingly, there is basic inter-
est in fundamental approaches which incor-
porate nonlinearity at the outset. Such ap-
proaches should (1) reduce to the earlier
linear schemes for variables with small ex-
cursions, (2) be amenable to scheduling, and
(3) offer opportunities for determination of
parameters from simulation data.

One such approach, investigated by Yurkovich
and Sain (1980) and Klingler, Yurkovich, and
Sain (1902), uses the notions of power ser-
ies and algebraic tensors (Sain, 1976) to
generate a class of nonlinear models. The
important feature of the algebraic censor is
that it provides an organized way of de-

This work was supported by the National
Aeronautics and Space Administration under

Grant NSG 3048.

scribing the power series expansion formula,

lending itself with relative ease to pro-
granuning on a digital computer. Furthermore,
its use allows for the implementation of
linear parameter identification techniques.

This paper reports on the development of an
interactive computer-aided design package
for the formulation, identification, and
validation of one particular model structure

which uses the above-mentioned tensor appro-
ach. The software package, developed using
the extensive capabilities of the IBM and
DEC Command Procedure Languages with the

strengths of FORTRAN and SPEAKEASY, is di-
vided into two segments and tailored to
utilize existing computer hardware effec-
tively, as well as to provide the fastest
possible user turnaround time. The inter-
active nonlinear model generation segment
is Izi.?lemented on a Time Sharing Option
(TSO) of the IBM 370-168 computer system,
where the memory dependent and highly com-
putational routines of the package can bene-
fit from use of the virtual memory and float-
ing point hardware. Once a structured non-
linear model is identified, it is then

transfered to the DEC PDP 11/60, where iz an
interactive environment it can be analyzed
and compared to a linear model as well as
the true system. In this manner, the user
has at his disposal both the graphics capa-
bilities of the video terminal and an elec-
trostatic printer/plotter for the immediate
display of data and comparative trajectories.

The remainder of the paper is outlined as
follows. First, we briefly discuss notions
from analysis and algebra which form the
foundation for the censor approach used in

the model formulation. A detailed discus-
sion of the interactive design package is
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then given, followed by a brief discussion
of the computational aspects regarding
floating point operations in the model sim-
ulation phase. We close with an example
problem from a turbofan het engine simula-
tion.

NONLINEAR MODEL FORMULATION

Prior to proceeding to the description of
the computer-aided design procedure in the

modeling scheme, we outline here some of
the prerequisite mathematical issues in a

coordinate- free development. Since the
treatment is brief, the reader may wish to
consLlt DSeudonne (1960) and Oreub (1967)
for complete expositions of the topics dis-
cussed herein.

Tensor Ideas

We begin with a discussion of abstract der-
ivatives and the calculus of normed vector
spaces. Let V and W be normed vector
spaces and let Z be open in V. Suppose
that f : Z	 W is differentiable at a

fixed point p in Z. Then the derivative
of f: Z- W at p is a mapping

(Df) (p) : V - W	 (1)

where

Df : Z - L(V,W) ;	 (2)

that is, the derivative mapping in Eq. (1)
is an element of the real vector space of
linear mappings from V to W. Higher or-
der derivatives are defined recursively as

	

(Drf)(P) . (D(Dr-lf))(P) , 	 (3)

for the positive integer r, provided that
the (r-1)st derivative is differentiable.
Moreover, higher order derivatives are them-
selves linear mappings according to

D 2f(p) e L(V,L(V,W)) ,

	

D r f(p) e L(V,L(V,L(V,W)))	 (4)

If L(Vr ;W) denotes the real vector space
of r-linear mappings from Vr to d, it
can be shown that there exist isomorphisms

L(V 2 ;W) + L(V,L(V,W)) ,

L(V 3 ;W)	 L(V,L(V,L(V,W))) ,	 (5)

so that the rth derivative of f at p can
be regarded as a mapping from Vr to W.
We suppress this isomorphism and consider
D rf(p) as an element of L(Vr;W).

We now use this multilinearity of the deriv-
ative map p ing to make a connection with no-
tions from algebraic tensors. Let (OrV,Or)
be a tensor product for . copies of V.

Recall that by the unique factorization pro-
perty of the tensor product, for every map-

ping V+ : Vr « W in L(Vr ;W) there exists
a mapping x ®rV _ W in L(mrV,N) such

that 0 _ a or for o r : Vr - QrV in

L(Vr ;OrV). Furthermore, the implication of
the unique factorization property is that

L($rV,W) - L(Vr ;W)	 (6)

is a vector space isomorphism. Thus, via
the isomorphisms of Eqs. (5) and (6), the
r-linear mapping Drf(p) : Vr + W can be
composed from a linear mapping ® rV + W and
the universal r-linear tensor product map-
ping or : Vr + ®rV.

State Description

The ideas discussed above are now used to
formulate the model structure for a given
nonlinear system. We consider systems whose
states and inputs are elements of the normed
real vector spaces X and U, respectively,
and which may be described by the nonlinear
ordinary differential equation

i . f (x, u)	 (7)

for f : X x U - X. Let (x,u) be a fixed
point in Z open in X x U, and suppose
that f : X x U - X is of sufficient smooth-
ness on Z. Formally,

f (x+x,u+u) - m — (D kf) (x,u) (x. 1) O')
k-0	 g1

where	 (x,u) (k) . ((x,u),(x,u),...,(x,u)i k
times. Due to space limitations we cannot
address existence or convergence questions
relative to Eq. (8). We note, however, that
this series could be replaced by a finite
number of terms together with a remainder
term in a standard application of Taylor's
formula.

According to tho preceding discussions we
now make the uninue factorization

Dkf(x,u) - Lk (x,u) ° Ok 	(9)

where (x,u) Ok (Y x U) - X is linear.
Denote he k-fold tensor product of (x,u)
with itself by (x,u) K so that, with Eq.
(9), we have

f(x+x,u+u)	 L kl Lk(x,u)(x,u)k.(10)

k-0

Sain and Yurkovich (1982) have shown that
the individual terms in the series of Eq.
(10) may be rewritten as, for example in the
case of k - 2,

Z1 L2(x,u)(x,u)2	 L20 x 
O x +

L11 x 0 u+ 
L02 u 0 u,	 (11)

where we have suppressed the notation of
(x,u) on the right side of Eq. ('-'. in
this way Eq. (8) becomes
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f (na•x,u+u) - C	 S L	 x i a uj
1-0 -0 11	 (12)

forming the structure for the nonlinear mod-
al.

Application

In practical applications a truncation ap-
proximation of the series in Eq. (12) is
considered. In terms of computing, than,
the task in the modal building scheme It to
Identify the parameters contained in matrix
representations of the L i Ordered basoy
in X, U. X aX, X a U. aAd, so on, are

chosen a priori to be use,	 obstructing
a Linear Least squares lied	 tion prob-
lem. The Lrdering algort ,, , ,.,rkovich,
1981) which facilitates this procedure,
used in the interactive software package de-
scribed haroin, is easily implemented on it
digital computer.

In practice, a differential equation descri-
ption of the nonlinear system may or ma y not
be available. In either case, the basic
strategy involves initial condition and con-
trol signal design so thee, through data
sampling and derivative estimation, a model
of the original system of Eq. (7) may be
identified. The nonlinear model is required
not only to outperform a standard linear
model locally about an expansion point, but

to establish a largor region of model val-
idity as well.

CATNAP

The intent of this section is to present a
detailed discussion of the Computer-Aided
rensor Nonlinear Modeling Applications Pack-
age (CATNAP) currentl y used as a development
tool in the formulation, identification, and
validation of nonlinear models of the type
mentioned above. The structure of CATNAP
is based upon ideas from distributed prices-

sing and local networking (Tanenbaum, 1981)
in which computations are spread over mul-
tiple machtnes. More specifically CATNAP
is divided into two segments, aneh of which
is implemented on an indapunTlont computing
system. Thoso segments are entitled GENER-
ATE and SIMULATE. GENFR\TE is implemented
on a Time Sharing O ,)tion tIBM, 1975) of the
iBM 370-108 mainframe computer and is used
to formulate and identify models, whereas
SVULATE is implemented on the DEC PDP ll;hO
computer System and is uied to study modal
validity and performance. Furthermore, both

of these segments are highly interactive and
contain straightforward input prompts as
well as informative error mossagas.

GENERATE

The GENERATE segment of CATNAP is primarily
made up of three routines governad b y a
higher level supervisur. Figure 1 contains
a block diagram depicting the structure of
GENERATE.

GENERATE Suparvinoty. This supervisory
level is written using the command procedure
language CLIST (IBM, 1976) and performs the
following main functions in sequence:

(1) prompts the user for the name
of the desired loader routine
to by executed;

(2) passes control to the loader
routine defined in (1);

(3) passes control to IDENTIFY;

and,

(4) upon user request, pauses con-
trol to TRANSFER.

In ad,iiiion to these main functions, cer-
tain maintenance roles such as file crea-
tion, allocation and deletion are hand)ad
by this supervisor.

^IPF ILE	 `fODEL	 To

PDP 11

Fig. 1. Block diagram for the CATNAP
segment GENERATE.

Loader Routine. Associated with each non-

linear system to be modeled, there exists a
loader routine which performs the modal

formulation task. Thesu routines are
scored in a library and are typically writ-
ten in double precision FORTRAN.

The purpose of any loadur routine is to ex-
cite the given nonlinear s ystem via initial
condition and control input perturbations
and to sample the :states, inputs and dariv-
ative estimates over h selected points in
time. The system is than represented by the
matrix equation

X

nxh	

[ L 
10 Lisl L 'U L 1 L Ji L30	

X^.

nxh
nxp

(13)
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The first n+m rows of the matrix XT are
formed from the sampled values of x and
u; the remaining p-(n+m) rows are formed
according to the ordering algorithm prev-
iously mentioned, which minimizes the num-
ber of computations. X 1j formed by load-
ing derivative estimates for kl, X2 ...... kn
at the h time points. The number p de-
pends on n and m, and the degree of the
truncation approximation. All this data is
then stored in TEMPFILE for later use.

Using this approach, CATNAP can accommodate
any particular nonlinear modeling problem
since the problem specifics are transparent
to the remainder of the package. The only
requirement is that TEMPFILE contains the
appropriate data.

IDENTIFY. After the completion of any
chosen loader routine, the program IDENTIFY
is ex?:uted. IDENTIFY reads the interim
data from TEMPFILE and forms a least squares
minimization problem which is solved for the
partitioned matrix containing the desired
Lij parameters. These Lij parameters are
recorded at the terminal as well as entered
into the MODEL data file.

It should be noted here that IDENTIFY is
written in the high level language SPEAKEASY,
which is based on the concepts of arrays and
matrices and processes these as entities.
This results in the elimination of the many
loops necessary in other programming lan-
guages. See the work of Cohen and Pieper
(1979). The main reason for employing
SPEAKEASY here is that the highly efficient
routine SIMEQUAT can be easily used to solve
the least squares problem via singular value
decomposition, thus reducing the apparent
complexity of the problem to a minimum.

TRANSFER. Upon a yes response to a super-
visory prompt, the program TRANSFER is sub-
mitted batch to the IBM 370-168. TRANSFER
is merely a Job Control Language (JCL) deck
which sends a copy of the file MODEL, con-
taining the Lii parameters, to the DEC
PDP 11/60 computing system by the way of a
Remote Job Entry port, and stores it in the
nonlinear model library. An excellent ac-
count of JCL can be found in Brown (1977).

SIMULATE

Shifting our concern away from the discus-
sicn of GENERATE, we now focus our atten-
tion on the SLMULATE segment of CATNAP.
Basically, two routines plus a supervisor
comprise the structure of SIMULATE. Figure
2 offers an illustration of this structure
to supplement the following presentation.

SIMULATE Supervisory. Written in the form
of an Indirect Command File (DEC, 1979),
this supervisor allows the user to:

(1) create new simulator routines;

(2) execute existing simulator
routines; and,

(3) execute VERSATEC which pro-
duces hardcopy plots.

As earlier, this supervisor performs a num-
ber of file maintenance duties in addition
to the above functions.

SIMULATE

From	
Sim u-

370	
lator	

HARDCOPY

non-	 linear
linear	

model	
SPOOL

model

Fig. 2. Block diagram for the CATNAP
segment SIMULATE.

Simulator Rout'_ne. A FORTRAN simulator
routine usually exists for each nonlinear
modeling problem studied; however, only one
subroutine in that program is altered among
versions, and that is the application sub-
routine TRUES. The remainder of the pro-
gram stays unchanged. TRUES contains the
true system representation of the nonlinear
system being modeled, and is used exten-
sively in comparison studies. Because of
the number of TRUES subroutines that exist,
a library has been created to store the
various simulator routines.

The execution of a particular simulator
routine can be divided into three steps:
(1) problem configuration; ( 2) systems in-
tegration; and (3) solution display.

The first of these steps requires the user
to decide which of the available systems,
true solution, linear model and/or nonlinear
model, should be included in the session
configuration. When a model is chosen, the
user is asked to enter the name of the de-
sired model. That model is then read into
the simulator from the appropriate library.
The linear models used in CATNAP are gen-
erally identified by standard techniques
and are available for use in comparison
studies.

Next, the user is prompted for various in-
tegration parameters such as stepsize and
upper time limit as well as initial condi-
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tions, input amplitudes and frequencies.
The configured systems are then integrated
and the solutions are sampled at 100 points,

evenly spaced in time.

Finally, to assist in the data analysis, a
number of options are available to the user.

They include:

(1) printing the solutions on
the Versatec;

(2) displaying the comparative
trajectories on the Tektronix

graphics terminal;

(3) writing the trajectory solu-
tions to SPOOL for hardcopy
plotting at a later time; and,

(4) solving the configuration for
another set of initial condi-

tions and control inputs.

The use of these options provides a powerful
yet flexible capability for the study of
model performance and validity. Further-
more, when all three syste—me are included
in the configuration, an additional error
criterion is generated and used in testing
the performance of the nonlinear model ver-
sus that of the linear model.

Let ei denote the absolute maximum error
in the nonlinear model solution, as compared

to the true simulation solution, over the
time range of simulation for the ith state
variable. Similarly, we define ej for the
linear model error. Then ei is the com-
parison ei - i	 Thus, if e i is negative,
the nonlinear model has exhibited a smaller
maximum absolute error in the ith state, and
in that sense has outperformed the linear
model.

VERSATEC. The routine VERSATEC, written in
FORTRAN, reads the trajectory solutions from
SPOOL and records at the Versatec printer/
plotter, a data sheet corresponding to each
plot set which follows. The comparative

trajectories themselves are then plotted.

MODEL  SIMULATION

In this section we comment on the efficiency
of the model structure discussed above by
studying the number of floating point oper-
ations (FLOPS) necessary in typical simu-
lations. It is common practice in computer
architecture to design processors which re-
quire no extra time for floating point ad-

ditions calculated simultaneously with mul-
tiplications. Thus, we concern ourselves
primarily with the latter, and by FLOPs we
will mean multiplies. Since the largest
burden of the computer in the simulation
process is the actual numerical integration
of model differential equations, we will
analyze only that portion of the simulation.

The system to be considered takes the form
of Eq. (13), or

$- Lz ,

where x is the n-vector of states, L the

parameter matrix, and z the p-vector of
ordered monomial terms derived from the
various symmetric products of x and u,
the m-vector of inputs (Yurkovich and Sain,
1980). The least number of multiplications
required to construct z is merely p-n+m,
or the total number of terms which a.nvolve

products. This number is given by

d	
n+i-1 	 m+i-1

p-(n+m)	 I	 ( i ) + ( i )
1.2

+ (T (n+(i-D -1) (m+j-1 ) )	 ,
jbl	

(i-j)	 j

where d is the model degree.

Assuming the use of a fourth-order integra-
tion routine, the number of FLOPs necessary
to formulate and integrate the system as em-
bodied by the model, across one integration
time step, is 4(n)(p). As an illustration
consider a four-state, three-input model.l
Suppose, for simplicity, that 100 integra-

tion time steps iG the equivalent of one
second in real time. This translates

roughly to 0.25 million FLOPs per second
for a degree-3 model (an approximation which
retains terms up to and including the third
degree). While there are many other obvious
considerations involved in real time simu-
lation, this number is well within the
bounds dictated by state-of-the-art compu-
tation speeds of ten million FLOPS per

seconi.

EXAMPLE

In the example to follow attention will cen-
ter around NASA's QCSEE ("Quixie")---(„quiet,
Clean, Shorthaul E..cperimental Engine. Wise
(1974) provides an excellent overview of the
QCSE engine program. QCSEE is designed
specifically for powered-lift, short-haul
aircraft, and incorporates several new con-
cepts not all currently used on turbofans
to achieve operational efficiency in a
quiet, clean manner.

QCSEE APPLICATION

For this nonlinear modeling problem, a com-

plex eight-state, three-control digital
simulation of the QCSE engine is employed

(Mihaloew, 1981). Using this digital deck
as the system representation, a 'loader rou-
tine, QCSELOAD, is constructed to formulate
a reduced order four-state, three-control

analytical model. The engine states chosen
are the combustor discharge pressure (P4GS),
the core nozzle pressure (P8GS), the fan
speed (NL), and the compressor speed (NH).
The control inputs used are the fuel flow

This represents a typical model as inves-
tigated by Klingler, Yurkovich, and Sain

(1982).
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(WFM), the exhaust nozzle area (A18) and the
fan pitch angle (BETAF). In a similar way,
the simulator routine QIXSIM is built using
QCSEE as the true system in the subroutine

TRUES.

For the results presented herein, two models
have been formulated using QCSELOAD at 922
power demand: a second-degree nonlinear
model, and a first-degree linear model.
Both formulations are made using 12 steady
state perturbations in the state and control
variables. Furthermore, the control inputs
are manipulated so that cosinusoidal signals
are inserted. The observed states and in-
puts are sampled over a six second interval,
and the difference between these values and
the corresponding equilibrium values, to-
gether with the ordered tensor product terms

and state derivative values comprise the
data necessary for the identification. The
model parameters are easily computed from
IDENTIFY and then sent to the PIP 11/60 via
TRANSFER.

Using the capabilities of QIXSIM and VERSA-
TEC, several validation studies have been

completed to date, all yielding satisfactory
results. Figures 3-7 contain a representa-
tive plot set from VERSATEC illustrating the
model performance for a particular input
set, as well as the graphical capabilities
of CATNAP. Table 1 contains a variable led-
ger for Figures 3-7.

CONCLUSION

The importance of nonlinear modeling in mul-
tivariable control systems could hardly be
overemphasized. And the applications side
of the problem has benefited greatly with
the advent of expanded and more versatile

computing environments.

Rarely does it happen, though, that one com-
puting system can accommodate all require-
ments placed on it, particularly when pla-
gued by multiple users demanding unlimited
access. It often happens, however, that the
capabilities of several computing systems
are at ones disposal, each with various fea-
tures to offer. In this case schemes em-
ploying the notions of distributed proces-
sing and local networking become extremely
useful.

We have presented one such scheme in the
form of an interactive computer-aided de-
sign package for a specific nonlinear model-
ing problem. The software package facili-
tates the analysis of complex problems, with
relative ease to the user, from the initial
model formulation and identif4.oation stage
through to the model testing and validation
studies. Series ideas and algebraic tensors
are the main vehicles in the model formula-
tion. The importance of the tensor approach
lies in its parametric possibilities, and

ongoing research is currently underway to
exploit further the richness of such struc-
tures.
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TABLE 1 Variable Ledger for Figures 3-7

o	 : True Engine Response
0 Linear Model Response
* Nonlinear Model Response

xl : P4GS (psi) I u1: WFM (lbm/^r)
X I : P8GS (psi) u	 A18	 (in )
x3: NL (rpm) u3:	 BETAF (deg.)
x4 : NH (rpm)
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ewrrrrerwrrrw ► r PROBLEM SUMMARY ••rrww.errrerwr

CONFIGURATIONt TRUE LINEAR *& NO(Il(NEAR
NUMBER OF STATES:	 /
NUMBER OF CONTROLS:	 3
LENGTH OF TENSOR TERM VECTORS 35
DEGREE OF

rrwr.rr.ww,wwrrrww,r
APPROXIMATION:	 2

wwrwwr r. wwww.rrr,wrwwrrwre•

SOLUTION PARAMETERS:wwrw.r wrrr r. ee,wrw,.

INTEGRATION	 STEPSIZE: TE0.010
UPPER TIME	 LIMIT OF	 INGRATION:	 2.900
NUMBER OF	 PLOT POINTS: a
SPACING BETWEEN PLOT POINTS:	 0.020

,	 r
STATE NUMBER	 "	 INITIAL CONDITION	 ERROR CRITERION

w ............................. I....... r ...... „ erwrwrr w,..................

1	 " -0.075 -0.533E-00

2 O.dOI •	 -0.915E-02

3 -0.250 •	 -0.69BE+01

1	 • 0,500 •	 -0.111E+02

CONTROL NUMBER	 •

......w.wwrr. w,ww.rr.... 	 ......

AMPLITUDE

w..w .... ► ..eewrrw.w

FREQUENCY	 (CYCLES/SEC)

........................
•

1	 • 74.290 2.100,
2	 • -21.290 •	 l.090

3	 " -0.239 •	 1.500

Fig.	 3.	 Sample data sheet for the OCSEE example
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Fig. 4. Comparative solutions: Fig. 3, state 1.
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APPENDIX C

SOFTWARE DESCRIPTION FOR SECTION IV
9

In this appendix, we provide the necessary documentation of the

software that was used for both the first and second order controller

problems. The computer programs are written in the high-level language

SPEAKEZY [23] for use on the IBM 370/168 at the University of Notre Dame.

The first program is FIRORDA, which provides the first order analysis of

t`	 the example problem. This procedure, as was demonstrated, is identical

to the solution of the Riccati equation in matrix form and substitution

of the optimal control into the system equations. The program first in-

tegrates the Riccati equation using the modified Euler method described

in [28). This provides the solution for the optimal value term V2(t)

and subsequently the first term in the controller expansion K 1 (t). A

fourth-order Runge-Kutta integration routine then solves for the state

variable x(t) after appropriate substitutions have been made for the

controller term. The final part of the program provides for the reduc-

tion of the array size (if necessary) and the plotting of both the regu-

lated state variables and also the control variables.
' 3

The second order analysis of the example problem required two pro-

grams. The first program, called COMATRCS, provided for the calculation

of the coefficient matrices that appeared in equations (4.4) and (4.5).

In particular, the program calculated those coefficient matrices that re-

main constant over the integration interval. These matrices may be listed

as follows:
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CMl = (All ® lx)S21 + (lx All) .

CM2 - (A02 m lx)S12 + (lx 
® A02)

CM3 = (A01 ® lx2)S21 + (lx ® A01 
® 

lx)S21 + 
(lx2 ® AOl)

CM4 = A10 (D A10 0 A10 f

CM5 = (A01 ® lx)S11 + (1x 
® AQ1)

-CM6 = (A20 ® l) + (l ® Ax	
x	 20) .

The program that actually does the second order analysis is called SECORDA.

This routine integrates to get V 3 (t), again using the modified Euler

method, and subsequently calculates K 2 (t). Using the results from the

FIRORDA program, the second order controller may be generated. The sys-

tem is then integrated to yield the state variables by using a fourth

order Runge-Kutta integration routine. The results are then plotted in

the final section of the program. In the solution of equation (4.4) for

K2 (t) in terms of V 3 (t), we define

VMl = lx ® Trs (K1 ® lu) ,

which needs to be updated as K 1 (t) varies. Also needed are the Kronecker

product matrices

El = 1x2 G 
K1

E2 = 1x ® K2

E3= 1x0KI®Kl'

E4=K1®K2

E5 = K2 0K1 .

Like the VMl term, these matrices also must be updated at each integra-

tion step.
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The final section of this appendix lists the time-varying control

gains and the optimal valve expression terms. In each case, the

sions are listed as functions of time, which appears in the first column.

The array KA lists K1 (t); the array K2A lists K2 (t); the array

VA lists V2 (t); and the array VIA lists V3 W. In all cases, we

have assumed an integration interval of 0 to 5 seconds and a stepsize of

0.05 seconds.
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