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Introduction

by

Larry L. Schumaker

On may 17-19, 1982, a workshop entitled "Surface Fitting" was held
at Texas A&M University, College Station. The purpose of the workshop ,
was to bring together leading experts from academia, industry, and
government laboratories for an exchange of views and a discussion of the
“state of the art." For a list of participants see pages 5-6.

The workshop began with an overview by R. P. Heydorn of NASA/Johnson
Space Center, Houston, Texas. The purpose of the overview was to acquaint
the participants with some mathematical/statistical problems within the
AgRISTARS Program which may be amenable to investigations involving the
use of surface-fitting techniques. In order to establish a framework
for the workshop, Larry Schumaker presented a general survey of surface
fitting and contouring in which he touched on a variety of local and
global methods for both interpolation and approximation.

The program for the workshop i1ncluded six invited lecturers (see the
program on pages 3-5). Charles Lawson discussed the construction of a
triangular grid on the sphere, and the computation of corresponding C1
surfaces. R. E. Barnh11l dealt with several schemes based on patches and
blending. Rolland Hardy lectured on the multiquadric surfaces which he
invented. Thomas Foley considered a three stage procedure which proceeds

from scattered data to grid values using local least squares, then to a
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bicubic B-spline interpolant, and finally uses Shepard's method to
obtain an interpolant of the original data. Douglas Bates discussed
smoothing splines and the method of generalized cross validation, with
particular emphasis on computational methods. Rosemary Chang's talk
dealt with several practical problems arising in Engineering.

In addition to the formal lectures, the program included a panel
discussion involving everyone. We believe that the workshop gave all
participants--the theoreticians, the practitioners, and the consumers--

a better understanding of what methods and software are available, and of
what needs to be done in the future.

Written versions of the lectures are included in this document.

The talks elicited a great deal of discussion which we have not attempted
to reproduce here. Finally, this document includes a computerized
bibliography of surface fitting papers which Larry Schumaker has
assembled at Texas A&M Unmiversaty. Additions and corrections to this

bibliography would be greatly appreciated.
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Monday, May 17

8:15 - 8:30
8:30 - 9:00
9:00 - 10:30
10:30 - 11:00
11:00 - 12:00
12:00 - 1:30
1:30 - 2:30
2:30 - 3:00
3:00 - 4:00

Tuesday, May 18

8:15 - 8:30
8:30 - 9:30
9:30 - 10:30
10:30 - 11:00
11:00 - 12:00
12-00 - 1:30

NASA WORKSHOP ON "SURFACE FITTING"
Texas A8M University

May 17-19, 1982
Room 206 Memorial Student Center

Coffee & Doughnuts

Introduction
Larry F. Guseman, Jr., Texas ASM University

“Crop Proportion Estimation Problems 1n AgRISTARS"
Richard P. Heydorn, NASA/Johnson Space Center

Coffee break

Overview
Larry L. Schumaker, Texas A&M University

Lunch

"C1 Surface Interpolation for Scattered Data on a Sphere”
Chuck Lawson, Jet Propulsion Labs, Cal Tech

Coffee break

"Computer-Aided Surface Representation®
Bob Barnhi11, University of Utah

Coffee & Doughnuts

“"Application of Surface Modeliing Techniques to Engineering
Problems"

Rosemary E. Chang, Sandia National Labs

“"Surface Fitting with Biharmonic and Harmonic Models"
Rolland L. Hardy, Iowa State University

Coffee break

“BSPLASH: A Three-Stage Surfare Interpolant to Scattered Data"
Tom Foley, California Polytechnic

Lunch
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Workshop on “Surface Fitting"

1:30 - 2:30
2:30 - 3:00

Douglas Bates, University of Wisconsin--Madison

Coffee break

Dinner at Larry Guseman's cabin

Wednesday, May 19

8:15 - 8:30
8:30 - 10:00

10:00 - 10:30
10:30 - 12:00

Coffee & douchnuts

Panel discussion: Research Issues in Surface Fitting Applicable
to NASA

Coffee Break

Panel discussion, continued.
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Crop Proportion Estimation
Problems in AgRISTARS

Richard P. Heydorn
NASA/Johnson Space Center
Earth Observation Division

Workshop on Surface Fitting
May 17, 1982
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FITTING SURFACES TO SCATTERED DATA
Larry L. Schumaker

This paper is a survey of a variety of numerical methods
for fitting a function to data given at a set of points scat-
tered throughout a domain in the plane. We discuss four
classes of mathods: (1) global interpolation, (2) local inter-
polation, (3) global approximation, and (4) local approximation.
We also dis.uss two-stage methods and contouring. The surfaces
constructed will include polynomials, spline functions, and ra-
tional functions, among others,

1. Introduction

Our aim is to survey methods for solving the following

problen.,

PROBLFM 1.1. Let D be a domain in the (x,y)-plane, and sup-

pose F 1s a real-valued function defined on D. Suppose we

are ziven the values Fi =F(xi,yi

points (xi,yi) located in D, 1 = 1,2,...,N, Find a function

) of F at some set of

f defined on D which reasonably approximates F,

This problem is, of course, precisely the preblem of fit-
ting a surface to given data. In many cases the domain D {is
a rectangle and the data points lie on a rectangular grid.
There are, however, many practical problems (see the following
section for some specific examples), where D {is of unusual
shape and where the data points are irregularly scattered
throughout D. Thus, while we shall pay some attention to spe-
cial methods for regulariy spaced data, we are actually more
interested in the general case.

There are basically two approaches to handling Problem 1,1.
First, we may try to construct a function f which interpolates

waar 7 /‘- TUPFaIPIALIR I I e anr

h
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the data exactly; i.e., such that

(1.1) f(xi,yi) - F 1 =1,2,...,N.

i’
This approach may be desirable when the function values at the
data points are known to high precision and where it is highly
desirable that these values be preserved by the approximating
function,

The second approach involves constructing f which only
approximately fits the data., This may be regarded as data
smoothing and will be desirable when (as is often the caae)
the data are subject to inaccurate measurement or even errors,
The question of whether interpolation or approximation should
be used (il not be discussed further here~-this i{s a1 problem
which must be scttled for the individual problem at hand,

In discussing Problem 1.1, it will be convenient to make
a further distinction between those methods which are local in
character (i.e., where the valve of the constructed surface f
at the point (x,y) depends only on the data at relatively
nearby points) and those methods which are global in nature.
Thus, we discuss four categories of methods in sections 3-6:

(1) global interpolation, (2) local interpolation, (3) global
approximation, and (4) local approximation. In each of these
sections we further subdivide the material according to the
type of functions being used and the type of data (scattered or
not) for which the method is suitable.

In discussing methods which apply only to special arrange-
ments of data points, we have two objectives in mind., Firse,
the methods are of interest in their own right. More important-
ly in terms of Problem 1.1, however, such methods can also be

used in two-stage nrocesses in which we first construct a sur-

face g based on the scattered data, and then use g to gen-
erate regular data for the construction of another (perhaps

smoother or more convenient) surface f. Such two-stage methods

28
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will be discussed (along with several examples) in more detail

in section 7.

ot dete s

For many of the methods bascd on regular data and some of
those for scattered data, error bounds are available to indi-
cate how well smooth functions are approximated by the surface
constructed, We do not have space to go into the extensive .
literature on error bounds. A simple test of how well a method
will approximate smooth functions is, however, provided by its
abilicy to reproduce polynoniul surfaces exactly (that is, if
F 1is a polynomial in x and y up to a certuin degree, tlen
the surface f 1is identically equal to F). For many of the
methods we will be able to indicate the corresponding degree of
exactness,

In many of the applications of surface-fitting techniques
(cf. the examples in section 2), the ultimate aim is to use the
data to construct a contour map of the unknown function. Since
F 1is known only at the data points, we must be content to con-
struct a contour map for one of our fitted surfaces. In sec-
tion 8 we discuss some approaches to accomplishing this numeri-
cally.

We close this introduction with a disclaimer--this survey
does not include all possible methods for fitting surfaces to
scattered data, For example, we have not discussed Fourler
series methods, spatial filtering, and other such related sta-
tistical techniques. In addition, the set of references for
those methods which we have discussed are also not complete.

My original intention was to compile as complete a8 bibliography
as possible, but the sheer bulk of relevant papers and my in-
ability to locate all of them convinced me to settle for less,
I have opted to quote a fairly representative list of papers,
including several other surveys., Further reterences can be

found by consulting these, 1 shall be very happy to receive

information on references and methods 1 have overlooked.
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2. Examples ..

In this section we shall quote several explicit examples -
of Problem 1.1 to emphasize the fact that unusually shaped re- ..

gions and scattered data do arise frequently in practice,

EXAMPIE 2.1. Petroleum exploration. In exploring for petro-

leum, the contours of various underground layers of sandstone, .
shale, limestone, etc. can be important indicators of possible

oil fields, Frequently, data on such layers is svallable from

exploratory wells, which, however, have most likely been drilled

at locations scattered randomly throughout some geographical re-

gion of interest. To quote a specific example, Robinson,

Charlesworth, and Ellis [166] consider precisely this problem

for some data obtained from 7,500 wells drilled in Alberta. For

another example of this type, see Whitten and Koelling [208].

Problems similar to that mentioned in Example 2.1 arise -
frequently in cartography and submarine topography where the
measurements represent actual elievations, In some cases the
measurements must be taken from photographs or from sonar mea-
surements and are usually subject to some measurement error

(eg. see Kubik [125] for a discussion of photogrammetry).

EXAMPLE 2.2, Geological maps., There are a great many problems

in Geology and the earth sciences 1n which the data arises from

some other function of location besides actual clevations, For

example, some geological variables of interest might include

concentrations of various chemicals, specific gravity, electri-

cal resistivity, grain size, texture, optical properties, iso-

tope ratios, etc. To quote a specific example, Bhattacharyya

{21, 22] discusses methods for fitting a surface to measurements -
(taken by airborne sensors) of magnetic potentials over a cer-

tain portion of the Yukon. See also Bhattacharyya and Raychaud-

huri [23] and Crain and Bhattacharyya [61].
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The importance of surface-fitting methods in the earth sci-
enceg can be judged by the large number of papers in the area
relating to various fitting methods. For a further liat of
problems and a discussion of some of the methods which have been
applied, see the books of Bohremberg and Giese [31], Chorley
{51]), David [62], Harbaugh and Merriam [98), and Merriam [140].
Recent survey papers include Whitten [203, 205] and Whitten and
Koelling {207]. To add just a few more of the papers in the
geological literature dealing with surface fitting to our list,
we mention Anderson [7), Grant {91], Hessing, Lee, and Pierce
[114], Holroyd and Bhattacharyya {115], Kubik [123, 125}, Nor-
cliffe [151), Reilly [162]}, Whitten [200, 201, 204}, and Whit-
ten and Koelling [206].

EXAMPLE 2.3. Heart potentials. In order to diagnose certain

abnormal heart conditions, 1t is desired to make a series of
several hundred contour maps of the heart potential field at
time steps of 1/100 of a second throughout a heart beat. Data
on these heart potentials can be obtained by fitting the patient
with a shirt containing probes, Because of body geometry, when
this shirc is flattened out it takes the nonrectangular form
illustrated in Figure 1. Although the probes could be arranged
fairly regularly in this domain, because of the added signifi-

=
L:_

Figure 1. Heart Potential Measurements



cance of frontal measurements, in practice more probes are
fitted there than in the back. This example was brought to my
attention by Ms, Patrizia Ciarlini of Rome.

Potential fields arise in many other applications. We
have already mentioned Geology in Example 2.2. For scme exam-
ples in modelling plasmas see Buneman [40]. The problem arises
in Blersack and Fink [24] in experimentally studying crystal
structure using neutron bombardment. Data from waveform dis-

tortion in electronic circuits can be found in Akima [5, 6].

3. Global interpolation methods

In this section we outline several methods for solving the

interpolation problem (1.1).

3.1 Polynomial interpolation. (Scattered data). The general

theory of finite dimensional interpolation {s, of course, very
well known (e.g., see Davis [63]). Briefly, if (¢1}¥ are N
functions defined on the domafin D, then the function

N
G.1) f(x,y) - L a @ (x,y)

ot
will satisfy (1.1) if and only if [aj]!: is & solutior of the
linear system

n

3.2 Tad (xt,yi) = F

R i-1,2,...,N

3’
This system has a (unique) solution for arbitrary choices of
data precisely when it is nonsingular. This depends on the
choice of functions [Gj]¥ and the location of the data points.
To 1llustrate this method, we may choose the (OJ]¥ to be
polynomials in x and y. Given N, there is some leeway in
the choice of which powers of x and y to use. For exnmple,
with N = 3 one could use the functions 1, x, y or possibly

2
the functions 1, x7, yz, etc., When N 1is of the form N =

32
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(d+1) (d+1), we might use the functions
N vud ,4
(8,001 = Ky 0000

As simple as this sounds, there are some serious difficul-
ties with polynomial interpolation of scattered data. For open-
ers, it i{s not so easy to guarantee that the system (3.2) is
nonsingular. To give a very simple example, consider the case
N = 3 with the functions 1, x, y. If the three data points
happen to lie on a line, then (3.2) will in fact be singuiar.
Even when (3.2) is nonsingular, it will often be the case (st
least {f N {s moderately large) that the system will be ill-
conditioned, Finally, as is well known, polynomials of even
moderate degree exhibit a considerable oscillatory character,
and the resulting surface (even though it is C“) is often too
undulating to be acceptable. The general problem of polynomial
interpolation to scattered data is not usually treated in Nu-
merical Analysis and Approximation Theory books {(see, however,
Kunz [126], Prenter [157), and Steffenson [186]). Sowe papers
dealing with the question include Guenther [93], Thatcher ([189],
Thatcher and Milne [190], and Whaples [197]. Assuming the in-
terpolant exists, error bounds have been studied in Ciarlet and
Raviart [52-55).

Let

m ,n

3 v u
(3.3 !; o = SPan {x"y ]V=0,p=0

b4

be the space of polynomials of degree w in x and of degree
n in y. This linear space is of dimension {(m+l)(n+l) and
is, in fact, the tensor product of the linear spaces 3; and
!h. It is perhaps of interest to note that there always exists
a (usually nonunique) polynomial p e ’%,N which solves the
interpolation problem (1.1), no matter how the data points are

positioned, see Prenter [158].
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3.2 Polynomial interpolation (gridded data). We begin this

subsection by defining what we mean by gridded data. Let
(3.6) M = [a,b]x [c,d]
be a rectangle, and let

= .-< =
a < x, < .eee Xl b

Cc - yo < yl < sesesce < yll-l = d.

3.5)

We suppose now that F is a function defined on H, and that
we have the values of F at the corner points of the rectangu-
lar grid defined by (3.5); {.e.,

i

0,1,...,k+l
(G.6) Fyy=Fx,y)s y o)yl

0,1,...,2+1,

non

This {s a total of N = (k+2)(Z+2) data points,

1t is quite easy to show that there exists a unique poly-
’L+l,l%1 (cf. the definition (3.3))
which interpolates the gridded data given in (3.4)-(3.6). 1Im

nomial p 1in the class

fact, p can be written down explicitly in terms of the one-

dimensional Lagrange polynomials as

k+l i*‘l -
3. p(x,y) = & LF Ll

o,
-0 j-0

3

where the (Li(x)}(‘)w1 and [ij(Y))é+1

are the usual one-

dimensional Lagrange polynomials associated with the interpola-

tion points [xi)‘(;*l and [yilg*l, respectively., Interpolation

of gridded data by polynomials has been discussed in various
books and papers--we do not bother with a long list. See e.g.
Prenter [157) or Steffenson [186]. More recently, there has

been considerable work on Hermite and oszculatory interpolation

in several variables; sce e.g. Ahlin [3], Haussman [99,101,102],

and Salzer [168-170}.
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3.3 Shepard's method, In this subsection we discuss a method
of Shepard [180} and some modifications of ft. The method ap-

plies to arbitrarily spaced data, and the interpolating function
can be written dowr. explicitly.

Let p be some metric in the plane, for example the usual
distance metric. Given a point (x,y), let risp((x,y),(xl,yi))
for { - 1,2,...,N. Let 0 < u<», Then Shepard's interpola-
tion formula is defined by

/( ——,whenr#O all 1
i=
(3.8) f(x,y) = 1 1 1

s when r, = O,

i

The formula (3.8) is defined for all points (x,y) 1in the
plane Rz. 1t is clear from the definition that it interpolates
the values F, at the data points (xi,yi), 1=1,2...,N
The value of f(x,y) at nondata points is obtained as a weight-
ed average of all the data values, where the 1th measurement
is wveighted according to the distance of (x,y) from the point
(‘vyt)o

We shall briefly recount some of the properties of Shep-
ard's formula. First, by converting all of the terms to a

common denominator, it can be shown that

N
3.9 fx,y = L FA (%),
i=1

where

N
TI (r x, 1"

(3.10) Al(x,y) =

MzL:},,‘
)

N

z [r,(x. M
k-1 £-1
24k

These¢ functions satisfy
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(G.11) A (x,y) =B 1, = 1,2,...,4.

7y T ay
The representation (3.9) is numerically more stable than the
original formuia (3.8).

In view of its definition, we see that the function £(x,y)
constructed by Shepard is rot a simple polynomial or rational
function. It is clear, however, that except for the points
(xi,yl), it 18 analytic everywhere in the plane., 1Its behavior

in the vicinfty of the data points (x ) depends on the size

4
of u. It can be shown that for O <1u ; 1, £ has cusps at
these points., For 1< ,, f has flat spots at the data points
(i.e., the partial derivatives vanish there). We also observe
the i{nteresting property that

(3.12) min Fl < f(x,y) < max F
lsisN 1sisN

.
We may also note that if the data came from a constant function,
i.e., F1 =¢c, 4 =1,2,...,N, then £ 18 also the constuat
function f e c.

We now comment on the choice of u. To get smooth surfaces
without cusps, it is desirable to take 1 < u. On che other
hand, {f . {is relatively large, then the surface tends to be-
come very flat near the data points and consequently quite steep
at points in between. Experiments (cf. Gordon and Wixem [90],
Poeppelmeir [155), and Shepard [180])) seem to indicate that a
choice of . = 2 18 perhaps a good tradeoff. ([155] contains
severai examples showing the behavior as a function of u.)

There are several drawbacks to Shepard's method (3.8), as
pointed out by Shepard [180] himself, First, {f N 1is large,
then there is a very considerable amount of calculation in-
volved in evaluating f£(x,y) at a particular point., Secoundly,
the weights are assigned on the basis of the distance of pcints

from (x,y) only, not their direction, Finally, the flat apots



37

URIGLIAL PACE 15
OF POOR QUALITY

in the neighborhood of the data points is sowewhat disturbing.
The first of the<e objections can be met by defining a local
version of the formula, which we shall do in section 4.5, 1t is
possible to construct an anaiogous formula which accounts for
direction, For details, see Shepard [180], Finally, we briefly
discuss handling the flat spots,

Suppose in addition to the function values l-‘1 at each

point (xi,yi) we also have estimetes in 4and FY‘ of

Fx(xi,yi) and Fy(xi,yi). Thon ve may consider the function
g
ki - - -
(2.13) f(x,y) = 1=1Ai(x,y)[!-‘i + (x xi)in + 4y yi)yy‘l.

It is easily checked that this fu-.tion also interpolates, and
that

(3.14) fx(xi’yi) = in fy(xi,yi) = FYi’ i=12,...,N.
This property may be expressed in the assertion that {f the

data Fi’in’FYi
exactly reproduce this surface. To use formula (3.13) in prac-

came from a plane surface F, then f will

tice on the data-fitting Problem 1.1, we have to carry out a
two-stcge approximation process in which the first stage con-
sists of some method for estimating the slope at each of the
data points.

It méight be of practical interest in some cases to con-
struct still a more sophisticatcd version of Shepard's formula
which would exactly reproduce hizher-order polynomial surfaces.

One approach to doing this is to use tha following lemma,

LFMMA 3.1. (Barnhill (15]). Let P and Q be linear projec-

tions of some linear space of functions & into itself., Sup-

pose that Q _exactly reproduces the linear subspace E C %;

i.e.,

(315 Qp =p, all peE.
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In_addition, suppose that {Ri}T is a set of linear func~‘onals

on ¥, and that
(3.16) Ain = Nf, all fe% {=1,2,,..,,m,

i 4 ——

Then_th~ Boolean sum projector . IV

(3.17) P@Q - P +Q - I

en'oys the function precision of Q (i.e., reproduces E) and

the interpolation properties of P (. ,e., (3.16) also holds
for PAHQ).

This result permits tlie construcctiorn of interpolation
schemes using Shepard's Jormmula which reproduce higher-order
surfaces, For an example, see Poeppelmeir {155]) where Shepard's
formula 1s combined with a certain local interpolation scheme
which reproduces quadratic surfaces. In closing this section
we note that Shepard's formula can also be inter reted as aris-

ing from weiphred least squares--see section 5.1,

3.4 Splice iiterpolation (scattered data). Suppose X {is a

linear space o:f "smooth" functions defined on the domain D,

and let

3.18) v {f e X: £fix ) - F 1=1,2,...,N}],

¥y 1’
U 1is the set of smootn functions which interpolate. Now sup-
pose that © is a functional on X which measures the smooth-
ness of an c¢clement in X--the smaller ©(f) is, the smoother

f 1s, Then we may consiger the following minimization problem:
(3.19) Find s ¢ U such that €(s) = inf O(u).

uey
The function s will be the smoothest interpolant, and in view

of the similarity with classical spline approximation, s {is

calleu a spline function interpolating F. The basic questions

concerning sp:ine interpolation center around existence, unique-
ness, characterization, and construction. A quite general
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albstract theory of spline interpolation has been built up (see
eg. Laurent [127) and iteferences therein). In this section we
quote some specific examples which can be used on Problem 1.1l.
Where X 1is a semi-Hilbert space, 8(f) = [/f||, where |||
is a seminorm on X, and N - (f € X: |/fll = 0}, it is possible
to show (under some additional mild conditions on X, see Duchon
{72, 73) that problem (3.19) always has a solution which is
unique up to an element in N. Moreover, it can be shown that
there exists a reproducing kermel K defined on DxD such
that

N d
(3.20) s(x,y) = L aiK((X.y);(xi,yx)) < L bipi(X.y),
1:1 i=1

d
where {pll1 is a basis for N, Moreover, the coefficients
{

[ail and bi] can be determined from the linear system of

equations

n{(x ,yj);(xi,yi))a1 +

3.21
( ) . j

J=1,...,N

[Enet-1

d
Eb xX :F
O ipi( j,yj) 3’

3

Tz

1:Iaipk(x1,y1) -0, k=1,2,...,4.

The development with semi-Hilbert spaces in Duchon [72,73]
is an extension of earlier work of Atteia [10-12} &snd Thomann
[192-193]) using Hilbert spaces. The essential difficulty i{n
applying the general results is the construction of an appro-
priate reproducing kernel. We turn now to some specific exam-
ples.

Suppose X 1s the space of all functions on the rectangle
D =H (cf. (3.4)) which have (distributional) derivatives up to
order 2 which lie in LZ(H). For f € X, let

2.2 2 2.2
3.22) e(f) - D_f + 2{D D £ D f|".
(3.22)  8(f) f[f)lxl oD £17 + | €]

39
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The reproducing kermel in this case can be written down as an
infinfte series involving sin and cos, and the space N {s
spanned by 1, x, and y. Similarly, if we rcplace H by the
unit disc UD, the kernel can be computed as an infinite series
(see Atteia [10-12}) and Thomann [192-193]). Thomann considers
computation of these splines by approximating the infinite
series--FORTRAN programs are also included.

If we replace the bounded sets H or YD by the entire
plane Rz and introduce an appropriate space X, it is possible
to obtain explicit expressions for t 2 re«yroducing kernel, This
is the content of Duchon [72,73]. 1In particular, let i®
be the set of all tempered distributions f on R2 vhose
Fourier transforms f satisfy flgltzsdt <o Let X"° de-
note the set of all tunctions which have derivatives up to
order m lying in ﬁs. Our first example concerns the space
x20. If we choose © as in (3.22), then the interpolating

spline solution of (3.19) is of th¢ form

2
(3.23) s(x,y) airi(x,y) log (ri(x,y)) + blx + bzy + b3,

W =z

i=1

where 1, (x,y) = [x-x )% -y ?1%,
term.ned from the system (3.21) with d = 3, N = span {l,x,y],

The coefficients are de-

and K(z,w) = |z-wlzlog(z-w|. Duchon refers to this type of

spline as a thin plate spline since the expression 6 relates

to the energy in a thin plate forced to interpolate the data,

This spline belongs to C(Rz).

As a second example, suppose we consider X = kzl. In
this case the solution of (3.19) with © given by (3.22) has
the form

N
3
(3.28) s(x,y) - i,:.lai(ri(x,))) + blx - bzy + b3.

. 3 .
Here K(z,w)> = |z-w|”, Duchon [72,73] refers to these splines

40
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as pseudo-cubic splines because of the analogy with the cubic

splines in one variable., They belong to CI(B). Pseudo quintic

splines etc. are also considered in Duchon [72,73].
A similar program has been carried out by Mansfield [133-

137] for some spaces of smooth functions defined on & rectangle
H. In {136 ) she considers a space of functions Tm’n(G3B),
wvhere m and n are positive {ntegers and a<a <t, c<p<d.
This space is actually defined by completion of a set of tensor
product functions with respect to an appropriate inmner-product,
and we do not want to define it precisely here. A function

f ¢ Tm’“(a,ﬁ) has the following properties, however:

(
PARIR L cw, 1-=0,1,...,m-1 and } =0,l1,...,n-1

f(s-j-l’j)(x,ﬁ) cAcC([a,b] and f(s-j’j)(x;ﬁ) el?[a,bi,
(3.2»\ j=0,1,...,n-1

ff D) (o 0y eacle,d) and €450 (o gy e L2(c, 4],

t-=0,1,...,m1

®-1,m-1) acay and £ ¢ L2,

§
where AC stands for the space ot absolutely continuous func-
tions and where s - m+n, By constructing an appropriate re-

producing kernel, she is able to scolve problem (3.19) with

n-1 b
G.2600 o SIe™™Z ey T h D o 1 %ax
H 3-0 a
m-1 d
N R TS At e S L
i0 ¢

In {133}, Mansticld carries out a similar analysis for a

oo

space of functions defined on the rectangle H., Here

&0

space of tunctions with absolutely continuous derivatives up to

ﬂ?[a,blx L;[c,dl, vhere Lfla,b] is the usual Sobolev

el
order m-1, and with £ (™ ¢ L°[a,b]. By constructing an



ORIGINAL FAZE (3

OF POOR QUALITY

appropriate reproducing kernel, she now solves problem (3.19)

with
n

b
G.2n o® = [IE™M2 L T ™ (x,0) 1%ax
H a

-1
j=0

T e Py

1=0 ¢

The solution turns out to be a piecewise polynomial of degree
2m-1 in x and of degree 2n-1 in y. It ia also in
ch-Z,Zn-Z(H). For the particular case of gridded data, {t re-
duces to the tensor product of one-variable splines (cf. the
following section). Other more general definitions of © are
also considered (with minor modifications on the one~-dimension:!
integrals).

A more algebraic approach to constructing multidimensional
spline functions (which also involves certain kermel functions)
has been taken by Schaback [173-174], His two-dimensional ker-
nel function is obtained as a tensor product of one-dimensional

kernels.

3.5. Spline interpolation (gridded data). The problem of con-

structing interpolating splines in two dimensions with gridded
data as in (3.4)-(3.6) 1is, of course, a special case of the
general problems discussed in subsection 3.4. The development
of the gridded data case predated the more general development
and, moreover, is considerably simpler. There are a great many
papers on two-dimensional polynomial splines and generaliza-
tions. We do not have space here to discuss all of them in de-
tail., We shall be content to quote some of the papers and to
give a somewhat more complete discussion of polynomial splines,
which are the most widely used splines for this problem.

Some early papers dealing with two-dimensional interpola-

ting splines include Birkhoff and d~ Boor [26], Birkhoff and

42
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Garabedian [27), Price and Simonson [159], and Theilhcimer and
Starkweather [191], 1In [26] certain bicubic splines were intro-
duced which were later studied in detail in de Boor [32]. The
problem was to minimize
628 11 169D ) ey

ac
over all appropriately smooth functions on the rectangle H
which interpolate the gridded data (3.4)-(3.6). It was found
that the solution of this problem was a certain bicubic func-
tion with global smoothness CZ(H). This problem was genera-
lized to minimizing

bd (m, n) 2
(3.29) o) = f [ £V (x,y)]"dxdy, m = 2p, n = 2q
ac

in Ahlberg, Nilson and Walsh [1,2], whose solution involves
certain higher-order polynomial splines. Since they are widely

used, we give a short algebraic treatment here.
)£+’.
0

intervals [a,b) and [c,d], respectively {(cf. (3.5)). Suppose

The points (x1]g+1 and [yj define a partition of the

< <
now that x, <...<x ,Sa<b<x ,<...<x . and

<,,.Syl_<_c<d5y

Yion S are chosen aibi-

£+2 £...8 Ygen-1
trarily. Let (NT)t-m be the B-splines associated with the
x-partition, and let the B-splines associated with the y-parti-
tion be denoted by [N?(y)]f_n. For a complete discussion of
B-splines and their properties, see de Boor [36] in this volume
(or {33]). Let

(3.30) (¥ = NGON{(, 1= l-m,...,kand § = len,...,2.

Nij
The linear space

ko,

¢
GO & - span (N GO 7

iIs clearly of dimension (k+m)(/+n). We may now construct an
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element in (3.31) which interpolates to the gridded data.
Since there are only (k+Z)(£+2) data points on the grid (cf.
(3.4)-(3.6), it 1is clear that if we use & to interpolate, we

have
(3.32)  (k+m) (£+n) - (k+2) (£+2) = (k+2) (n-2)+(L+2) (m-2) +(n-2) (m-2)

free parameters. Thus, to uniquely define a spline, one must
add additional conditions. Recall that m=2p and n=2q. Then
we might add the extra conditions

8(\’,0) (xo.vy ) S(V’o) (’ﬁ(+1:)'j) =0, §=0,1,...,£8+1

(3.33) J V=p,...,m-2
8O ey = 80y, 0 20, 10,1, k0
H=Gyeosyn=2
and
$(V>1) (xg¥) = s (Vsr) (g, - g (V21) CRA)
(3.34)

v
= 3( o) (xk+1’y£+1) =0, V=p,...,m-1

H=Qys.0pn~1.

These are called the natural boundary conditions, and it can be

shown that the system of equations

k 2
(3.35) 2 Y a, N (x,y)=F_, a=0,1,...,k+1
f=1-m j=1-n 23 13 @78 T g g0y el

coupled with the conditions (3.33)-(3.34) provides a nonsingular

system of equations for the coefficients { }). This system

a
has convenient bandedness properties if the :iuacions are ar-
ranged properly. The resulting soline is precisely the soludon
of the minimization problem (3.29). The boundary conditions
(3.33)-(3.34) are the natural ones associated with the problem
(3.29). However, it {s also possible to spe:ify lower-order
derivative information along the boundary and also obtain a
nonsingular system of equations. The resulting spline, called

Type I, can also be shown to satisfy an appropriate minimization
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problem, However, for data-fitting purposes, to use the inter-
polant with boundary derivative data one would first have to
perform a first-stage approximation to find estimates for the
required derivatives,

The best-known case of the above spline interpolation is
the case m =n = 4, {,e., bicubic spline interpolation. In
this case the surface constructed is a piecewise bicubic with
global smoothness CZ(H). The natural boundary conditions set
second-derivative values to 0. Programs for computing natural
bicubic interpolating splines can be found in the IMSL Library
{117] in FORTRAN, FCRTRAN programs for Type 1 bicubic splines
can be found in Koelling and Whitten [121], where the required
boundary information is assumed to be input, An AIGOL program
for computing Type 1 bicubic splines in which bounacary data are
automatically computed by fitting one-dimensional splines ap-
pears in Spath [183].

Bicubic spline interpolation has been widely applied. For
some references in the Geology literature, see eg. Anderson [7],
Bhattacharyya [22}, Holroyd and Bhattacharyya [115], Koelling
and Whitten [121], and Whitten and Koelling [206].

Problem (3.29) has been widely generalized in the spline
literature. 1Instead of minimizing ordinary derivatives, one
may introduce general linea: operators, and instead of dealing
with point evaluation functionals, more general linear function-
als may be permitted, To list some (but by no means all) papers
dealing with such generalizations, we mention Arthur [8,9},
Birkhoff, Schultz and Varga [29], de Boor [34), Delvos [65,66},
Delvos and Schempp [68,69]). Delvos and Schlosser [70], Fisher
and Jerome [78,79], Haussmann [100], Haussmann and Munch (104],
Munteanu [143,144], Nielson [148,150], Ritter [164,165]), Sard
[171,172}, Schoenberg [176], Schultz [177,178], Spath [184,185],
and Zavialov [209-212]. On L-shaped regions and other polygons
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see Birkhoff [25] and Carlson and Hall [44-49].

We close this section by mentioning another dicection of
generalization which has led to a considerable development, the
idea of spline blending. These methods are useful for construc-
tion of a surface which {nterpolates not only funciion values

at isolated points but on the grid lines themselves; 1i.e.,

f
]

0,1,...,2+1

(3.36) f(x,yJ) F(x,yj) a<x<b and }

f(xl,y) = F(xi,y) ce<y<d and { =0,1,...,k+l.

To use such blending methods one must have F defined on the
grid lines. Thus, the methods could be of value as second-stage
processes. We do not have space to go into detalil on spline-
blended methods., We refer to the recent book of Barmhill and
Riesenfeld {20) for a collection of papers on the subject and
for further references. See also the papers of Gordon [84-87]
and Gordon and Hall [88], Recently, considerable effort has
gone into showing that blending methods also arise as solutions
of appropriate variational problems; see the papers of Delvos
[65), Delvos and Kosters [66], and Delvos and Malinka [67].

4, Local interpolation methods

The interpolation methods discussed in section 3 were glo-
bal in nature--that 18, the value f(x,y) of the constructed
surface at any given point (x,y) in D depends on the values
of all of the data points., ihis generally meaus that to compule
a representation for f one has to solve a fairly large system
of equations, and to evaluate f(x,y) one generally has to
carry out a considerable amount of arithmetic. In this section
we shall consider local schemes where the surface depends only
on nearby data points. Then the construction will usually lead
to (a possibly large number) of small systems of equationa, and

moreover, the evaluation of the surface at a given point will
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usually involve very little computation.
Many of the schemes mentioned in section 3 can be made lo-
cal in nature by the following simple approach, Suppgse that

the domain D 1is partitioned into subdomains: D= UD . We

i
then seek a surface in the form i=1

.1) f(x,y) = [fi(x,y), (x,y) ¢ D i=12...,4d.

i’
To construct each individual £ , we suppose that D, are do-

i i

mains containing D,, which contain only points which are "near"

i
Dl' Then we use the data (and only the data) in D1 to con-
struct fi’ Usually, we can choose 31 = Di' In moat cases
the most convenient choices for the subdomains D1 are trian-

gles and rectangles. We discuss these two cases first.

4.1. Triangular subregions (scattered data). Suppose that we

are given data at points Pi = (xi,yi), i=12...,N scatter-
ed throughout the plane, and let D be the convex hull of
these points, It is more or less clear that by drawing lines
from point to point we can construct a set of triangles with
vertices at the P1 which partition D, 1t is also cleir that
given any set of points, this triangularization of D 1is not
usually uniquely defined (see Figure 2 below for two different
triangularizations of the same region). Moreover, as the fig-
ure shows, some triangularizations are superiur to others in
the sense that they exhibit fewer of the less desirable long
thin triangles.

Figure 2. Triangularization
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The design of an algorithm to divide a region into accept-
able triangles with vertices at prescribed points is not as
easy as it sounds. Two algorithms in the literature which are
designed to give good triangularizations can be found in Caven-
dish [50] and in Lawson [128].

The simplest approach to defining a local interpolating
surface i{s to construct fi(x,y) to be of the form a +ax+
a3y in each triangle. The data at the three corners of the
triangle determine the coefficients for that piece of f (the
corresponding system will be nonsingular provided the triangle
is nondegenerate). This procedure produces a piecewise linear
surface which, in fact, will be globally continuous, This lasc
property follows from the fact that along the sides of the tri-
angle the functions reduce to straight lines joining the ver-
tices. This method has been used by several authors for data
ficting, e.g., Lawson [128] and Whitten [206]. For some con-
touring routines based on this local interpolation scheme, see
section 8.

If we desire to interpolate several sets of data defined
on the same triangularization, it may be more convenient to
compute Lagrangian functions rather than to compute the surface
in each triangle separately. In particular, it is clear that

we can construct functions [¢j(x,Y))T with the property

4.2) @,(x,y) = By, 4,5 = 1,2,..,N,

These functions car be constructed as pyramids in such a

way that the function ¢ £ has support only on the triangles

3
surrounding the point (xj,yj) (see Figure 3). 1In terms of

these Lagrangian functions, tuc interpolating surface is given

by
N

(46.3) f(x,y) = LF@ (x,¥).
o1 32
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Figure 3. A Lagrange Element

The Lagrangian approach to local interpolation is very
reminiscent of the finite element method in which the solution
of an operator equation is sought in the form ot a linear com-
bination of a set of functicns (called elements) with the pro-
perty (4.2). (See e.g., Prenter [157}, Schultz (179}, or
Strang and Fix [188].) There is no need to restrict the ele-
ments to be piccevwise linear functions--we may use higher-order
polynomials, rational functions, or even more complicated func-
tions., In fact, if we are careful in the construction, we may
be able to construct elements with small support but higher
global smoothness.

There are a great many papers in the finite-element litera-
ture concermned with defining convenient smooth elements (La-
grangian functions with small support). To mention a few, see

sarmhill, Birkhoff, and Gordon {16}, Barmhill and Gregory [l7,

18], Barnhill and Mans€ield [19], Birkhoff and Mansfield [28],
Bramble and Zlamal [39], Goel (83], Hall [94], Mitchell [141],
Mitchell and Phillips [142], Nicolaidis [146,147]}, Zenisek [213]
Zienkowicz {214), and Zlamal {215-217). The books cn finite
elements of Aziz [13], de Boor [35]), Strang and Fix [188], and
Whiteman [198) should also be consulted.

49
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The construction of elements with higher-order smoothness
becomes increasingly difficult., For example, {t is shown in
Mansfield [137) that to get an element with support on the tri-
angles surrounding Pj and with global continuity CI(D), it
18 necessary to use polynomials of degree 5 at least., (Matters
are somewhat simpler on regular triangularizations, sce subsec-
tion 4,2 below.)

We close this subsection by mentioning that it is also pos-
sible to perform interpolation using elements based on triangles
to dats which also involves derivatives, or in cnalogy with the
blending methods, to data which includes function values along
the edges of the triangles. (See e.g., Barmhill, Birkhoff, and
Gordon [16], or Barmhill and Gregory [17,18].) These methods
are not directly applicable to the scattered data Problem 1.1,

but may be useful as second-stage methods,

4.2, Regular triangularizations. When the data is distributed

such that the region can be triangulated into a set of congru-

ent triangles, then it {s extremely advantageous to use the La-

grange approach, In particular, in this case we can find an

element ¢ with value 1 at (0,0) such that all cther elements -
are translates of @. 1In this case, f takes the fomm

y .
%.8) f(x,y) = Fjﬁ((x,y)- (yy ).
=1

We illustrate this with a couple of examples, Suppose that

P—

we are given data at points chosen from the collection

4.5 9 = (1, n) Uld+43+9)

Z = {integers}. !

i, jcz 1,3ez ?

These points lie on the corners of a triangular grid as shown .

in Figure 4. ‘
It is shown in Zwart [218,p.673} that there ex{sts a func-

tion @ € CL(RZ) which is 1 at tbhe origin and 0 at all other

points in @, and nhas support on the shaded region in Figure 4.
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Figure 4, A Regular Triangularizaticn

This function s constructed as a plecewise quadratic polyno-

Y] A similar element has been constructed by Powell (154}
(th uTe on page 267 of [156] should be rotated 45° to see
e .

o give anotlieer example, suppose that we coasider the set
of points Qz which lie at the vertices of the grid defined by

equilateral triangles shown in Figure 5,

Figure 5. Another Regular Triangularization
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It is shown {n Fredrickson [81] that there exists a function @
which has value 1 at the origin and value  at all other points
in nz. The function ¢ 1is in Cz(Rz), consists of plecewise
quartics, and has support in the region shown fin Figure 5.
Fredrickson aiso consiructs a plecewise cubic element with the
same support but which is only Cl(Rz). For right triangles
see Carlson and Hall [44].

4.3. Rectangulsar subregions. In this section we suppose that

we have data given et points lying -n a rectangular grid as in
(3.4)-(3.6), and consider loca! interpolation methods. The
simnlest approach h-re (cf. the triangularization case) is to
construct a separate bilinear function £(x,y) = e, tax 4+
a,y + &,.xy in each subrectangle, Hij = ixl"i*ll x [yj,yj+1),
using the four cormer values to determine the coefficients,
Since the bilinear patches reduce to linear functions on the
grid lines, the global surface is C(R).

Several authors have considered constructing functions on
each of the Hij using higher-orcer polynomisls., This requires
additional information in addition to the four corner values,

For example, if one secks a bicubic

“.6 £y = L La xlyl,
1.0 j-0

there are 16 coefficients to determine, These could be deter-

mined by the four corner values, plus the values of fx’ f,

y
and fvy at each corner. To determine these, one must perform

sone first-stage process. Fcr some approichea to this, see
Akima [5], Hessing, et al [114], and Shua, et al [iS1}. A FOR-
1RAN program for Ak‘ma‘s method can be found in [6]. Nonpoly-
norcial patches have also been considered; e.g., sec Birkhoff
and Garabedian [27].

The Lagrange (firite element) approach can al~o be used in
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the case of rectangular gridded data. Tn particular, if we can
construct a fanction satisfying (4.2) with local support, then
the surface £ given by (4.3) will interpolate and the method
will bc local in character., As before, the Lagrange approach
is especially convenient i{if the grid is regular, f.e,, if all

subrectangles are congruent, To illustrate this, suppose

H
i}
that the Hij are actually the unit squares; i,e., the data

points lie in the set
(4.7 9, = {4,N) 1,5 € 2, 2 = {integers]).

To get a&a quadratic C1 elemert, we may simply rotate the ele-
ment of Zwart [218] considered in the last section by 45 degrees
(cf. Figure 4), or we may take the elemert of Powell [156].

4,4, Parametric representations. The methods discussed in the

last section is concerned with data given on a rectanguiar grid.
By using parametric representations, it is possible to construct
similar local interpolating surfaces for data given at the cor-
ners of any partition of D consisting of quadrilaterals. In
this section we briefly describe how this might proceed.

Suppose Q 1s a particular quadrilateral subregion of D
of interest., In addition, suppose tnat x(s,t), y(s,t), and
z(s,t) are functions defined on thc unit square U = [0,1]x [0,1]
with the properties that as (s,t) runs over the boundary of
U, (x(s,t),y(s,t)) runs over the boundary of the quadrilateral;
the four cormers of U correspond to the tour corners of Q;
and z(s,t) takes on the desired data valuees at the four cor-
ners of U. In this case, the triple (x(s,t),y(s,t),z(s,t))
provides a parametric representation of a plece of surface de-
fined over Q interpolating the data,.

The problem of constructing parametric representations of
interpolating functions has been considered in a number of pa-

pers. Several papers on these methods and a host of references
can be found in tne book of Barnhill and Riesenfeld [20}; see
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also the survey paper of Shu et al [181]. Such aurfaces are ne
scoetimes called Coon's surfaces, cf. Coons [59], and are of -
considerabie interest in the field of computer-aided geometric -

design. To mention just a few of the actual papers, see Ahuja
and Coons [4], Earnshaw and Youille [74), Ferguson {77], Hayes
[107], Hosaka {116]}, and Mangeron [132].

There also has been some effort directed towards construct-
ing elements (Lagrunge functions) associated with other less
regular subsets of the plane We mention, for example, the
work of Clarlet and Raviart [55]}, Wachspress {194,195], and -
Zlamal [217] {in which elements are conmstructed for domains --

involving curved edges.

4.5, Local Shepard mcthods, It is possible to modify the meth- -

od discussed in suhsection 3.3 to make {t local. For exsmple,

following Shepard [180], suppose we fix 0 < R and define -

/r 0 < rsgf,

27 .t 2 -
4.8) ¥(r) = iR (i- )7, R/3<r <R,

0 ’ R <r

This function is continuously differentiable and vanishes iden-

tically for r < R, Now with r, as in (3.8), we define

-
¥ b
1§1F1 v(r)]
N , when r, #£0, a1l ¢
“.9) £,y = ¢ I Lepl”
i=1
L Fi , when r1=0.

Formula (4.9) is defined at ali (x,y) 4in the plane R",
By definition {t interpolates the values Fi at the data .
points (xi,yi), 1=1,2,...,N. The values at non-data points

are obtalned as weighted averages of the data values Fy, but
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only those which lie «t points within a distance of R of
(x,y). Thus, the foruula is local.

To use this method in practice it 18 necesaary to choose
a reasonable value for R. The aim is to find R so that for
every (x,y) a reasonable number of data points will fall in
the disk centered at (x,y) of radfus R , It would alco be
possible to let R depend on (x,y), {.e., to use different

valuesof R in different subregions of D,

5. Global approximation

As mentioned in the introduction, frequently the data does
not warrant constructing an i{nterpolating function (e.g., be-
cause of errors). In such cases it may be preferable to con-
struct a surface which only approximates the data, In this sec-

tion we discuss some global approxiration mechods.

5.1. Polynomial least squares, The general theory of discrete

least-squares fitting 15 very well known. To brietly review,

suppose that (Gj}T are n given functions on D. Define

n 2

N
- 15 -
(5.1) o(a) = 2 j)z,lajaj(xi,yi) F i,

where a - (al,...,an)‘ is any vector in R". Then the prob-

lem is to find a* such that
(5.2) Q(a*) = pin ¢(a).
a

The corresponding function

=]

(5.3) f(x,y) = X a%¥d (x,v)
j=1 4 3
18 called the discrete least-squarcs approxization of the cata
N
{Fi}l’ Usually one takes n consicderably emaller than N, In
this sectlon we brie(ly discuss least squares using polynomials,

Before doing so., hcwever, we make a few genersal remusrks sbout
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solving the general least-squares problem,

There are several approaches to solving (5.2). Perhaps
the neatest is the case where the (ﬁj)? are orthonormal with
respect to the inner-product

N
(5-1‘) (G} ¥) = :".

. G(xi’ )"1)\)‘ (xi’yi) .

1

Then the solution of (5.2) can be written down explicitly as

. n
5.5) £0x,y) = £ Q& (x,¥). { <)
( x Y) j__lk.’ x’y J /

A second very well-known approach to solving (5.2) is via
the nomal ecquations
(5.6) A*Aa - A*F ,

where F

"

(Fl”"’Fx)T is the vector of data values, and where

¢ n, N

(5.7) A j(xi’yi))j:1,1=1'

In some cases the normal equations are a perfectly acceptable
way to compute least-squares approximation, but in other cases
the system (5.6) may be {ll-conditioned (or even singular--cf,
the following subsection for spline least squares), This ap-
proach {3 also not convenient should gide conditions be desired
(e.g., by imposing actual .nterpolation at some of the values),.
For more cn the normal cquations, see any book on Numerical
Analysis,

A more modern rmethod of solving least-squares problecs is
to use gencral matrix methods, Specifically, consider the ob-

servation equations
(5.8 Aa = F,

It can be shown that by apnlying a series of matrix transfor-

nations to this system, one can oltain a set of equations giving

the vector a*, Ffor a coxnplete description of methods of this

. e emm YT w meea ma ok
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type see Lawson and Hanson [123] or Stewart [187]., Matrix s

methods are quite amenable to the adding of side conditions and :
can also be designed to take account of rank-deficiency of the
matrix A (which corresponds to the case of singular normal
cquations).

Polynomial discrete least-squares fitting has been widely
used for fitting surfaces to data, both scattered and regular,
Several authors have developed algorithus for pr: momisal dis-
crete lecast-squaren fitting of scattered data by conatructing
orthonormal polynomials (e.g. by Grem-Sclmidt orthonormaliza-
tion). Sce, for example, Cadwell and Williems {42}, Crain end
Bhattacharyya [61], and Whitten {[201,202]. The latter contains
3 YORTRAN program,

When the data a.e wore regularly distributed, polynomisl
least-squares fitting can often be siwplified, For exswmple, if
the data lie on a grid as in (3.4)-(3.6), then the desired or-
thogonal polynomials are simply products of the one-dimensional
orthogonal polynowmials associated with the one-dimensional inner
praducts corresponding to (xﬁg+l and [y9§+1 respectively; e.g.,
see Cadwell [41) or Clenshaw and Hayes [56], as well as the aur-
vey papers of Hayes [105,108,109].

There are also special methods for handling data which are
not on a grid but instead lie on parallel straight lines. For
exanple, Clenshaw and Hayes [56] have developed mctheds using
expangions in termd of Tchebycheff polynomials (although the .
method actually only produces an approximation to the least-
squares fit rather than the acrual ninimum).

Polynomial lcast squares can also be interpreted as mulei-
dimensional regression as practiced by statisticians, e. .,
see Uffroymson [75). For example, 1f we are trying to fit a

function in the form
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1-0 =0

then by defining new variables by

z _ xVu v=20,1,...,dx
v(dy+) 4 - Y2 w=0,1,...,dy
we can write
d
£(x,y) = ZLbz , d = dxdy + dx + dy,
R

and the problem becomes one of fitting a linear function in
several variables.

We close this section by observing that in some cases {it
may be desirable to consider weighted least squares., In parti-
cular, i{f we have positive wcights vy >0, £ =1,2,...,N, then
we may replace & in (5.1) by

N n 2

I - 1>=:1"1 j§181¢j (xg2yy) = Fy

It i{s interesting to note that the interpolation formula
of Shepard discussed in section 3.3 can be interpreted {in terms
of wefghted least-squares fitting. In particular, fix (x,y)
in D, and let ri(x,y) be the distance from (x,v) to the
point (x,,v,) as before. Now set w, - r;“, and consider

i
least-squares approximation by a constant ¢, using thesge

weights, Then one easily computes that the least-squares choice

of ¢ 13
N N
N -
%’uiFi 11_, Firi
€= X Y .
R} st
1 b 1 i

This approach was adopted by Pelvto, Elkins and Boyd [152] (as
pointed cut to me by Chuck Duris),
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5.2. Discrete least-squares fitting by splines. As outlined

in the previous subscction, discrete least squares can he cer-
ried out with any finite set of functions. It is not surpris-
ing that a number of authors have tried using tensor product
splines, See, e.g., Halliday, Wall, and Joymer [96]), Hayes and
Halliday [110}, Jordan (119], Hanson, Radbill, and Lawson [971,
and Whiten [199]}. Hayes and Halliday have developed both ALGOL
and FORTRAN programs. It is, on the other hand, perhaps some-
what surprising that least-squarcs fitting with splines can be
somewhat problematical. We bricfly discuss the wmethod,

Suppose that H = [a,b] x [c¢,d] is a rectangle containing
the dozain D of interest. Let (xi)g+1 and {yj)é‘l be parti-

tions of [a,b) and [c,d], respectively, and let [Nij]ﬁr;,i:;
be the tensor product B-splines discussed in section 3.5, We
consider discrete least-squares fitting using these (k+m) (L+n)
B-splines.

To explain how difticulties can arise with spline least-
square fitting, we observe that it is quite easy for the matrix
A {n the observaticnal equations (5.8) to be rank-deficient,

On a trivial level this can happen if for some B-spline Nij'
none of the datra points lies in its support. This deficiency
can, of course, be easily removed by dropping this particular
B-spline from the set being used to aporoximate. But rank de-
ficiency can also occur in more subtle ways because of the

local support propert.es of the functions. This problem can be
overcome with properly designed algorithms, See llayes and Halli-
day [110] for a careful discussion of spline least-squares fit-
ting.Lawson and Hanson [129]) include a general discussion of
how to handie rank deficicnt least-squares problems.

1f£ we operate {n terms of the norwal equarions, them it

may v-'1 occur that the nommal equations are i{n fact singular,

This is again due to the local property of the B-splines com-
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bined with the discrete inner-product. Even when it is not
singular, the set of normal cquations can be f{li-conditioned
(even though it 1s a relatively sparse matrix with a kind of
repeated band-structure).

Discrete least squeres can also be carried cut with vari-
ous finite dimensional linear spaces of blended functions. For
an extensive study of such methods, see the dissertation of
Doty [71].

5.3. Discrete 11 and tw approximstion, Instcad of performing
discrete least squares, we way consider the following discrzte

approximation problem: Given functions (4 1 defined on D,

3’1
we seek a* so that
X
(5.9) ) = 1?1'3?181¢3(x"y*) - F, |

i3 oinimized, Alternatively, we may minimize

n
(5.10) &(a) = max | a @ (xi,yt) - F

l.
1sisn §-1 3 4 {

These are the usual [1 and lm hest approximation preblexzs.
Both of these problems cen easlily be reformulated as linear
programming problems for the determminations of the optimal ax*
(cf. Rabinowicz [160,161} or Rosen [167]). Reasonable choices
for the (GJ) would be low-degree polynomials £{f D is mall,
or possibly spline functioms.

Discrete approximation methods of this type have had rela-
tively little exposure in the literature, For some results
using tensor product spline~ {n the in problem, sen Rosen,
The optimal a* was obtained there by‘using the standarxd aim-
plex method on the associated dual linear programming problea,

The ? protlem cen also be solved by using Remez-type

algorithms. For an algorithms which performs generalized
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rational approximation (and thus can a'so be used for polynomi-
al approximations) see Kaufman and Taylor [120]. Theoretical
considerations for Tchebycheff approximation in several vari-
ables can be found in Collatz [58) or Weinstein [196]), for ex-

ample.

5.4, Spline smoothing (scattered dsta). 1In this section we

consider some minimization problems similar to those discussed
in section 3.4, but where the class of admissible {unctions is
not required to interpolate and where the functional to be mini-
mized includes a term measuring how close the function comes to
fitting the data. To be more specific, suppose X 1s a linear
space of "smooth" functions and that € {s a functional on X
which medsures the smoothness of an clement {n X, Suppose in
addition that E is a functional defined on X which measures
how well a function fits the data. Then the spline-swoothing
problem {s the following:

(5.11) Find s € X such that p(s) = inf p(u),

ueX
wvhere

(5.12) p(f) = 8(f) + E(D).

The abstract theory of spline smoothing has been well
developed; see, e.g., the book of Laurent [127] and references
therein. To illustracte the ideas, we bricfly discuss a couple
of examples, We suppose as in section 3.4 that X 1is a seni-
Hilbert space and that 6 is a seminorm on X with N =
(£ e X: 8(H) = 0). Ve also suppose that X is actually a
function space defined on a domain D, and that the point evsl-
uators at {(xi,yl)}T arc bounded lincar functionals on X.

We define

(~1z2

(5.13) E(H)

7
P ({(x,,y)-F 1%,
i1 1’74 i

where p 1s a fixed positive constant. Then {t can be shown

61



[N '3
ORIGINAL BACE §

(cf. Duchon [72,73]) that the solution of Problem (5.11) 18 a
spline which can be written in the fom (3.20), where now the

coefficients arc determined from the linear system

N

LRy itepyray ¢ Z RULISAAS Jo=Fyp
(5-14) )= 1’2;-“JN)

Z aipk i,yi) = 0, k = 1’2’...’d.

As in section 3.4, the application of this method depends
on constructing a reproducing kermel K. If 6 4ig chosen as
in (3.22), Atteia [10-12] and Thomann [192,193] considered
spline smoothing for spaces of smooth functions on the rectangle
and on the disc (the latter even contains ALGOL programs).
Duchon [72,73) considers similar problems defined cn D = Rz.
A similar spline-smoothing problem has also been consider~

ed by Pivorarova [154], where 6 1is taken to be
242
(5.15) &(f) = ff(n £12 (Dyf).

Sce also Kubik [123],

5.5. Swmoothing splines (gridded data)., In sectio 2.5 we con-

sidered several minimization problems whose solutions led to
interpolating polynomial splines (and generalizations). In con-
junction with the development of interpolating splines for
gridded data, there was a concurrent development of smeothing
splines., For example, instead of minimizing the integral o

in (3.29) over appropriate smooth interpolating functions, we
may minimize instead n(f) - 6(f) + pE(f), where E 1is given

by
(5.16) E(f) = = L [f(x,y) - 1%,
1:0 HJ ¥y " Fiy

For results in this direction, see e.g. Nielson [149,150]. Ffor
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6 given by (3.29), the smoothing splines are again polynomial
spiines. Again, more general linear differential operators aud

more general linear functionals can be considered.

5.6. Continuous least squares. The method of continuous least

squares i3 not directly suited to fitting surfaces to discrete
data, but it can be of use as a second-stage process, so we
briefly review {t. Ve 8upposé now that F 1is a function de-
fined on D which we wicsh to approximete, and that [Gj]? are

given functions on D. We define
2
(5.17)  (f,8) = [ £(x,Nelx,Ndxdy, [El° = (g, £)
D

and

- FlP2.

n
(5.18) ¢®(a) = || L a8
o 33

The problem is to {f{rnd a* to minimize ©(a). The solution is

glven by solving the nomal equations

(5.19) Aa =r,
where

A= (@007 | and r= [@,F)..., 6 0N

1’7371, 3=1 1 n

For reasonably nice approximating functions it is often
possible to compute the normal matrix exactly. In practice,
the difficulty lies in evaluating the right-hand sides, Gener-
ally a quadrature formula is required for this, One advantage
of the method would be that if several data-fitting probleams
are to be solved using the same set of approximating functionms,
one can do the work of inverting the normal matrix just once
and re-use the result as many times as desired.

Reasonable choices for the approximating functions include
polynomials, or better yet, tensor product B-splines as in
(3.30). Here the singularity problems do not crop uvp for the

splines becavse we are integrating instead of summing over
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finitely many points., The aormal matrix in this case has a Lind
of repeated band structure. The entries can be computed exactly,
e.g., by Gaussian quadrature (cf. de Bonr, Lvche and Schumaker

[38]). Uniform best approximation by tensor products of splines

has also been considered, e.g., see Sommer (182],

6. Local approximstion nethods

As pointed out at the beginning of zection 4, there are
rmany advantages which accrue if one uses local methods rather
than global ones. In this section we dfscuss some local approxi-

mation schemes.

6.1. Patch methods, A&s in the case of intarpolation, the simn-
plest approach to obtaining local approximation methods L{s to
partition the domain ard to define a surface (patch) on each
subdomain separately. In p.rticular, supjose that D = U{Dili’
where D1 are disjoint subsets of D. Then we may seek f {n

the form

(6.1) £(x,y) = [fi(x,y), (%,y) ¢ Di" 1 =12...,4

To construct the patch (x,¥), we might use the data availadl.

£
i

iu the subregion D In certain cases, however, it may well oc-

.
cur that no data at all are available in the set D,. 1In this -
case we may choos: a somcwhat larger set 51 cf points '"near" -

Di’ and use the data in 51 to construct fi' For any given -

wethod, it should be possible to make the cholce of Si adaptive

so that the size <f Ei is krpt as small as possible consfatent .

with the amount of data des'red for the construction of fi'

The patch method cutlin:d above can be used with any of the
approximation nmethods discussed in section 5. For ciample, one
might choose to use pol vtials (of low order), and to do dis-
crete least-squares approximation, Or, one might use [ or

1
lm approximation cor scqe other convenient space (e.g. splines)
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instead of polynomials., The main point e to keep the afze ¢7
each individual patch problem (and thus the size of the corre-
sponding systes of equations) small., We may have to solve a

lot of systems of cquations, but each will be small and fairiy
well-conditioned.

To illustrate how the adaptive fcature might be implemeniez,

suppose that the domain D of interest has besen enclosed 1a «
rectangle H and that a partition of H {c defined by d =

kK ¢ i
U[Hij]1=0,j—0 y wich My, = lx,.x; 1% [yj'yj+1] for some

(6.2) a=x0<x1 <...<x = b, c=yo<yl<...<yhlsd.

k+l

Now suppose that we want to do discrete lcast-squares fitting

using a patch of the fom £, ,(x,y) = &2 + bx + cy on H

1) 13
In  his case {t would be reasonable to require that at least
4g 3 pleces ot data should bLe used to constrice fij' If H‘j

“~

does not contain 3 plece3 of deta, we expend “ij to Hij >y
adding all borderirg rectangles, If this doe= not contain
3 pleces, wve again add all bordering rcctangles, ctc., We tles
compute the discrete lcast-squarces polynomial using the data 1z
ng’ hut then we use the resulting function orly in “;j' iz
process may be repected to define each required patch, This
kind of adaptive algoiirhm {8 very easy to progranm,

In using patch methods to get local interpolation methozs,
“de con:tentrated on mathods using data at comers ot t:iiangles
or rectangles, aA=d by choosing appropriate foims ior the parc-as
1t was possitle to get the findividual patclies .o maten taget=er
to give a continucus g lobal surface {or with n re sonhistizazes
patches., cven CI(D) or higter}. Hire, however, vhere the (-
dividual patcnes are detcrminea by appruximatica, it is not
very likely that the patches will watch up., end the global ¢.--
facr will generally not even be contiruous. For rost appliza-

tions, this «c a serious drawba k. Howaver, as ue shall sce ‘¢
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section 7, patch approximation methods can still be very useful
as first-stage methods,

6.2. Direct local methods, In this section we discuss some

local methods in which the approximating surface is constructed
directly frum the data without solving any systems of equatioms.
It will be convenient to pose a morc general problem than pre-
viously considered,

Let & be a linear space of functions defined on D, and
suppose that (A )T are linear functionals defined on &, Let

i
[éil? be 2 prescribed set of functions definmed on D. Then we

are interested in approximation scheres of the following form:

N
(6.3) QF(x,y) = L

LA ).

1

We can think of this as a surface-{itting problem where the

deta ere given by F, = AiF, i- 1,2,...,N. Given the data,

i
we can write the approximation down {imediately.

We also observe that {f the @, £ have support on smsll sub-

1
sets of D, and if each ki also has support on the same set,

then the fomwla (6.3) is local. For example, if we take Ai

to be point evaludticn at the point (x ) and ﬁi(X;Y) to

AR
be a function with support in & neighoornood of (xi,yi), then
the approximation formula sfmply becomes
(6.4) QF(x,y) = L Fiﬁl(x,y).

1

1
i

-1

This is very reminiscent of the lLagrange fom of interpolation

{(¢f. (4.3)), but unless the ﬁi are taken to satisfy (4.2),

QF will not in fact be an interpolant, For this rescon, for-

culae of the form (64) (or more generally (6.3)) are scmctimes

referred to as quasi-interpolants, Local quasi-interpolants

of the form (6.3) can be constructed simply by defining the
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functions [61]? witn local supports. If each of these is
continuous (or smooth), then QF will also be,

Althcugh a host of quasi-interpolants cau be constructed

as outlined above, considerable care must be exercised in order

to get methods which give good accuracy (when the origiral
function F {s smooth). As observed earlier, this {s directly
related to making the method exact for polynomials, f.e., such
that QP = P for all P 1in some class of polynomials,

Tn construct methods of the form (6.3) which apply to
scattered data, it is necessary to construct appropriate [61}1.
While a host of methods can be constructed this way, it is not
so easy to choose the di to make the method exact for poly-
nomials (which, as we :omarked earlier, is directly related to
how well the method will approximate smooth functions F). To
get nethods which do have a reasonable degree of cxactness (and
3 correspondingly good error bound for smooth functions), it is
casier to first choose the (ﬁilT, and then try to find suit-
able [Ai}?. While this generally rules out using point evalu-
ators at scattered data, it is possible to construct methods
based on point evaluators at appropriate points, and such meth-
ods can be useful as second-stage approximations,

To illustrate these ideas, we consider construction of
local spline approximation methods following the general treat-
ment in Lyche and Schumaker [131], Suppose D is enclosed in
a rectangle H, and that H {s partitioned intoc subrectangles
by a grid as in (6.2). Suppose that (N )} k £

’
1j'i=1-m, l-n
tensor product B-splines associated with this partition (cE.

are the

(3.30)). We are now interested in approximstion schemes of the

form
x £
(6.5) QF(x,y} - ) SN FN (x5, Y).
’ f-1-m j=l-n 3 I

In particular, we are going to consider the questlon of

67



O LT s et S eI vy Y e E——Y Y

,
s
g

IGINAL PrvE
g‘; POOR QU{\L\& f

constructing formulac of this type which are exact [or the class

of polynomials 5; u’ with some fixed 1 <v<mand 1 <ugn,
b4

This problem has a very simple algebraic solution if we decide

to construct each %1 in the fom

j
53 x
6.6 A = (1 )\ }\
(6.6) i) vol p=l ijva "ijv L’
X GV y ju
where the (Rijv]v:l and (Aiju}u=1 are linear functionals

vhich apply to functions of x and y alone, respectively. It
X y
can be shown (cf. [131]) that givenr any (Aijv) and [Atju} sa

tisfying mild independence assumptions, there exist coefficients

CIT
In fact, these coefficients can casily be explicitly computed,

} such that the formula (6.5) will be exact for L

To give one example, suppose

gy oot X o)

. (m-1) ’
)

e
"
(oS

[}

= l-m, ...,k

(6.7
Gyt Yy

Lﬁj ) (n-1) ) 3= oo, Lo
Then we obtain
koo
(6.8) QF(X,)’) = z }—‘ F(gi}qj)Nij(x’y)’
i-1-m 3-1l-n

a formula which exactly reproduces thte bilineir polynomials 5&}1.
This is the multidimensional (tensor product) version of the
Variation Diminishing method of Marsdea and Schoenberg; it was
studied in some detail in Munteanu and Schumsker [145]. This
formula {s closely related to the Bezier-type surfaces construc-
ted in Riesenfeld [163] (sce also Gordon and Riesenfeld [89]).

We should obcerve that the way formula (6.5) now stands, it
may involve information on F which 1s taken ficaa data outside

of the domain D. This situatien can be rectified as follows:
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Let

(6.9) 0= {({,): support A,, N D not cmpzy!.

1)
Then it can be shown [131] that the method

(6.10) QF(x,y) = XL A/ FN (x,¥)
(i, Nen
renains exact as long as all fuacticns are restricted to D,
To ge: higher-order methods, depending only on point eval-

uations, we proceed as follows, Choose

-

%
X, < Tijv < Xy 0 V= 1,2,...,v

(6.11) v

yj < Tiju < yj+n’ w=12,...,u,
for { = l-m,...,k and } - l-n,...,£f. Then if we take A:jv
to be point evaluation at T and AV to be point cvalu-

iwv iiu
atfon at T¥j#, the coefficients in (6.6) arc easily cowputed.
Hints on where the T's should be placed within the support
of the B-splines arc given by the error analysis in {131},

We close this section with some historical remarks on the
development of local approximation schemes {n two dimensions,
Early papers include Babuska [14], de Boor and Fix [37), and
Fix and Streng [80]. For some methods involving triangular
partitions, see Fredrickson [82]. Quasi-iunterpolants were
constructed in de Boor and Fix [37] using point evaluation
data, but including derivatives. We have followed Lyche and
Schumaker [131] where general linear functionals are consider-
ed, and where in particular, methods can be constructed using
only point evaluation of the function. (Local integrals ete.
wouid also be possible.) The papers [37) and {131] both con-
tain extensive error bound analyses. 1t is striking that these
local spline approximation methods give optiral order error

bounds for sgsmooth functions,
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7. Two-stage processes

Many of the methods we have discussed in this paper are
only applicable when the data are regularly spaced (and in fact,
many surface-fitting methods require specification of derivative
data as well as function values). Such methods cannot be ap-
plied directly to the scattered data-fitting Problem 1.1. On
the other hand, some of the most convenient local interpolating
and local approximating methods which do work for scattered
data produce surfaces which are not globally smooth (or even
continuous). Thus, 1t scems natural to consider the poasibility
of constructing two-stage processes in which the first stage
uses the scattered data to construct an approximation g, while
the second stage uses g to generate data for constructing a
surface f (with desirable properties, such as smoothn-ss).

Since it is quite clear how various wmethods discussed in
the earlier secticns might be put together to yleld two-stage
processes, it will suffifce to mention just a couple of exauples

here,

7.1. Interpolation/intcrpolaticn, Suppose that we want to con-

struct a plecewisce bicubic surface based on data given on a
rectangular grid as in (3.4)-(3.6). In each subrectangle Hij
the 16 coefficients of the bicubic { (cf. (4.6)) would be de-
termined by the values of f, fx’ fj, and fxy at each of the
four corners., Now since our criginal data-fitting problem only
specifies the values of the function at the graid points, local
interpolation cannot be carried out directly. However, we can
use the data to provide estimates for the values of f‘, fy’
and fxy at the grid points (1r.e., we construct g interpolating
the data); then we can use local bicubic interpolation as a
sceond stage.  The reader will have no difticalty in imagining
ways to produce estimate, for these cuantities., For scme meth-

ods which appear in the literat.re, sece the papers of Akima

it
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4 {5,6], koelling and Whitten [121], and Spath [183].
T 7.2. Approximation/interpolation, Instead of making the first- g
o
» stage process interpolation as in section 7.1, it would also be '
- possible to use an approximating process. For example, one ‘
; wight use least-squares polynomial approximation to construct :
- a patch surface and then use some convenicent interpolation pro-
} cess as a second stage, For an example of this type, see Hess-
ing et al [114].
7.3. Approximation/approximation. This combination is parti-
cularly convenient if we are not concerned about getting an in-
[ terpolating function, Both stages can be made local, To give
an example, recently I have constructed an algorithm for fitting
1 surfaces to scattered data in which the first stage consists
of polynomial least-squares patch approximation (with adaptive
3 choice of data--sce scction 6), and where the second stage con-
z sists of direct local tensor product spline approximation. Both

stages are local, and the final surface is a tensor product
spline. Since the second stage is a direct method, it i3 very
cheap to apply. Experimecats uith real-life data (e.g. from
heart potentials, potential fields, and geological mcops--see
section 2) have produced very promising results. Details, in-
cluding an analysis of error bounds, will appear elsewhere. 7
have also “ried alternate versions where the patches are con-
structed as low-order polynomials which are best approximations

in the £

—— somem——y L ] Nowrel

p °F Zm sense (via linear programming) again with adap-
tive choice of dara, The results were very similar, Finally,

. I have also experimented with corputing patch approximaticns,
followed by continuous leas:z-squares tensor-product spline ap-

proximation. Again, the experiments were promising,

. 8. Contouring

As indicated in the 1introduction, rrequently the goal in
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fitting a surface f to data i3 to construct a contour map
which approximates the contour map of the unknown surfsce F
which produced the data. In this section we discuss some methods

for constructing contour maps of a surface f.

8.1. Piecewise lincar functions on triangles. When the func-

tion f to be contoured is a pilecewise linear function defined
on triangles (and globally conrinuous), locating contours re-

duces essentially to a matter of good bookkeeping. Indeed, 1f
H 1is the height of the contour of interest, then it is easily

seen that for a given triangle T with vertices, A, B, and C,

(8.1) the contour does not pass through T if H < min(f(A),
f(B), £(C)) or if 1 > rmax(£{A),£(B),£(C))

and
(8.2) the contour intersects exactly two zides of T otherwise.

If case (B.2) holds, it is easy to deteraine which two sides
are intersected and, moreover, by using inverse linear interpo-
lation between vertex values, the points on these sides where
the contour crosses can be determined, Specifically, if, for

exanple,
f(A) < H < f(B),

then the contour crosses the line trom A to B at the point
on the line which is a distance of

H-f(A

In .
Em -ty BAl

from A. Given the points on two sides of a triangle where the
contour line crosses, we can ~ow drsv the contour line since it
is simply a straight line between the points., An algorithm to
carry out this procedure requires enumerating the triangles and
vertices and some kind of effective search procedure. There

are sevcral available in the literature., For ALGOL progrems,
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sec Heap {111,112], (An earlier paper of Heap and Pink [113)

contains a similar FORTPAN prcgram but only for regular triangu-

larizations.) Lawson {128} discusses a similar algorichm, The .
algorithms mentioned include two possible approaches: (1) one

may start with a triangle where it is known the contour inter=-

sects, and trace this contour as far as it goes, or (2) one may

simply draw the contour lines in all triangles which have them,

8.2, Piecewise bilinear functions on _rectangles. Suppose now

that the function f to be contoured 1s a pieccwise (continuous)
function on a rectangle partitioned into subrcctangles by a grid,
Since { 1is linear :n x or y on the edges, it follows that
we can again determine whether a contour line of height H
crosses an cdge by inverse linear interpolaticon. There is in
this case, however, a serious difficulty which does not arise

in the case of triangles. It may happen that the height H

lies on three or even four sides cf the rectangle. 1In this

case, it is possible that two different contour lines pass
through the rectangle, 2nd it is not clear how to interconnect

the points (see Figure 6).

vl
<

N

b
-

b 3

R

Figure 6. Two Contours in a Rectangle

Put another way, 1{ we are following a contour &and enter & rec-
tangle as shown above in I'igure 6 on the bottom line, then it
is not clear whether we should now turn right or turn left. One

approach to designing an algorithm in this case is to simply
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always go right, say, even though this wmay in the end be wroag.
(1f it is, we have to start over with a coarser wesh,) This
technique was incorporated in an algorithm by Heap [111,112)-- C o
the paper contains a FORTRAN program. (An earlier ALGOL pro-
gram can be found in Heap and Pink ([113].

A second approach to handling the ambiguity problem {5 com-
pute an approxicaction to the value of f at the center of the
rectangle (e.g., by taking the average of the four-comer val-
ues; and then to triangulate the rectangle, This amounts to a
second-stage approximatrion process, and the surface contourcd
is no lcager £ {tself but an approximation g, This idea was
programmed in ALGOL in Heap and Pink [113] and in TORTRAN in -
Heap [111,112]. -

Once the set of points for a particular contour have been
found, there are a varfety cf ways of drawing a contour line
through these points., One possibility is to simply draw
straight lines between each of the points, The sctual contour
lines are expressions of the form y = (a+bx)/{c+dx) {n each
rectangle. These are generally not straight lines., Hence, if
smoother contours are desired, one may use any one of a number
of methods feor drawing a smooth curve through an ordered set of
points in the plane., For example, the curve could be computed T
in paranetric form uging one-dimensional splines., Another pos-
sibility would be to use the Bezier methods with either Berm-
stein polynonials or with B-splines (cf. Gordon -~nd Riesenfeld

[89) and Riesenfeld [163]Y, although in this case the curves

will not exactly go through the points. For other algorithnms

see Marlow and Powell [138] or McConalogue [139].

8.3. Plecewise quadratics on triangles. Suppose now that f

is a piccewise quadratic defined on a triangular partition. In
this case a contour line at height H passing through a trian-

[

gle must be described bv a conic section. Such a section can
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be represented in parametric torm as

x(t)

i

(® +5) 4

2 2
t%bzt )/(b3+b c«bst)

2 2
y(t) = (b6+b7c+b8t )/(b3+b4t+b5t ),

see Powell [156]., Powell has promised an algoritnm based on
this observation,
We turn now to some methods for handling general functions

f on arbitrary domains D.

8.4, A simple line-printer method, The following simple-minded

method can produce reasonable-looking contours without excessive
computation, and without recourse to a plotter, Suppose H is
a rectangle enclosing the domain D, and that we partition H

as = U“Lj with a rectangular grid as in (6.2). Let HL < KU

be given real numbers., Finally, suppose that is some

t
i3

point in where f can be evaluated (perhaps one of the

“13
corners or the center), Define

0 , if f(t, ) <HL

cij

(8.3) C“r 9 , if f(LLJ) > HU

v, if HL + (v-1)h < f(t, ) < HL - vh, 1<v<8,

i}

for all { =0,1,...,k and j =0,1,...,1 (where h - (HU-HL}/8).
The (k+2) by (i{+2) matrix C contains only integers, and if it
is printed out without either horizontal or vertical spacing,

we obtain a reasonable-looking contour map of the function, A
typical example 13 included in Figure 7. The method can be
reffned by using an alpha-numeric array C and wore than 10
symbols. It can also be refined by using & printer with appro-
priate horizontal spacing so that each symbol cccupies a square

rather than a rectangle (e.g., cf. Luneran [40]).

8.5. Threading eon a rectangular grid, As in section 8.4,
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be represented in paramecttic form as

2 2
x(t) = (by + D€ +b,t7)/(by ~b t 4 b ")

2 2
y(t) - (b6+b7t4b8t )/(b3+bl.t+b5t ),

sec Powell {156], Powell has promised an algorithm based on
this observation.
We turn now to some methods for handling general functions

f on arbitrary domains D,

8.4, A simple line-printer method. The following simple-minded

method can produce reasonable-looking contours without excesgsive .-
computation, and without recourse to a plotter. Suppose H is
a rectangle enclosing the domain D, and that wve partition H

as H - UH with a rectangular grid as in (6.2). Let HL < HU

i)
be given real numbers. Finally, suppose that tij is some
point in Hij where £ can be evaluated (perhaps one of the
corners or the center). Define
- <
0 , 1if l(tij) L .
(8.3) Cij =<9 , 1f f(ti)) > Hu .-

v, if HL + (v-1)h < £(t, ) < HL + vh, 1<v<8,

i3

for all 1 =0,1,...,k and § = 0,1,,..,1 (where h= (HU-HL)/3).
The (k+2) by (£+2) matrix C <contains only integers, and 1£ it
is printed out without either horizontal or vertical spacing,

we obtain a reasonable-looking contour map of the function., A
typical example is included in Figure 7, The method can be
refined by using an alpha-numeric array C and more than 10
symbols. It can also be refined by using A printer with appro-
priate horizontal spacing so that each symbol occupies a square

rather than a rectangle (e.g., cf, Buneman [40])).

8.5. TIhreading on & rectangular grid. As in section 8.4,
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17222222333 3306400555556/R6777778208088888T117 '
22222222222233334A4555506661T17786883838888717 i
2N T1112222333405555646T1777E8R838RABBE 888
221111111111222338A45556 6677718838688 999999999
2111100000111122334455506A77788788999939999593
211100000000112233444556R777855599939599999999
211100000c000112233445566777888993299999999339
2110c00000000112233445566778889999999995999999
2110500000000112233445566778889393959939999999
2110000000001112234455566776889993399939939999
1110000000011122334455666776888999999939939993
11100000011112233045556677768886999935399959599
1111111111112233445556667772889629399939399999
T111111111222334 0455666 77778889888889998888488
111111122223330555666777 788888883 888888888388
2222222223333045556067778888358889339399999398
22222233333444555667777838388833993399939999333
2223333334444555657777333888393939339999999999
233333344A455556607778869389399399939999993993
3333330444A55556577778853839999993999999999999
333333AM045555R6677772858388993939399999939999
233333448455556A571777898388339993939999599339
2333334AMAS555566667777788283838399955955793999
2233330AAR5555666F6777778888528288899929999399
223333A4405555666A677777788328883858999993995
223333344805555566566ATT177778%8882£8995999999
22233330 44005555555665667777778333888899999992
2223333304 M44555555566656717777788884899999953
2223333340MAAA55555566R066TT77TT70R38889999299
222233333048AA5555556668R167777778558385859999
222233333048444955556666R667777177858453888899

Figure 7, A Simple Contour Map (Heart Potential)

suppose that D 1is i1wbeddea i1n a rectangle H which has been
partitioned by a rectangular grid as in (6.2). Assuming that

f 1s continuous, 1t 1s still possible to decide which of the
grid lines a parti 'lar contour of height H c¢rosses by examin-
ing the end-points of each such line, Since f 1s not generally
linear along such a line, we cannot determine exactly where the
crossing point 1s by linear inverse interpolation, However, if
we are willing to cvaluate f a few times along this line, we

can estimate the crossing point quite accurately by bisection,
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for example. Once a sequence of points on a contour has been ..
determined, we may thread a curve through the points just as in -
section 8.2, .

This methou does have one serious drawback, however,--
just as with the method discussed in section 8,2--, if we are
tracing a contour it may happen that after entering a triangle
there 13 an ambiguity as to which of two points to use to exit
the rectangle. One could opt for an ad hoc rule or try the
second-stage approximation described in section 8.2. For au
example of how this method works, see Falconer [76] (baved on
Lodwick and Whittle [130)), where it is apolied to a surface --
constructed by local weighted quadratic polynomial least-squares
approximation. Since bisection is involved, one should realize
that in drawing contours with this routing the gurface £ 1

going to be evaluated a great meny times.

8,6. Threading on a triangular grid. An obvious cure for the

ambiguity discussed in section 8.5 for threading on a rectangu~
lar grid i{s to use a triangular partition in the first place.

Then the bisection method coupled with a threading routine leads

t

immediately to a contouring routine for genecral surfaces f.
Strangely enough, I have rot been aole to find anywhere where
this method has been suggested.
I have made no effort to track down all avaliable papers
on contouring. A few which I did find and have not yet men- 1
tioned are Cottafawa and le Mcli [60]), Dayhoff [64], and Felto
et al [152]. There are many others.
In some cases It may be desirable to have a wore graphic

picture of a surface than a ¢amtour map can provide. Recently

there has been considerable cffort devoted to couputer metheds
for displaying surfaces on a scope or with a plotter. For some
examples of output and a discussion of methods, see e.g. the

book by Barnhill and Riesenfeld [20] on corputer-aided design,
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If an actual 3-D picture is desired instead of just a perspec-

tive, it {8 even possible to produce holograpns.
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cl Surface Interpolation for Scattered Data on a Sphere

Abstract

This paper describes an algorithm for constructing a smooth computable
function, f, defined over the surface of a sphere and interpolating a set of n
data values, u;, associated with n locations, P;s on the surface of the
sphere. The interpolation function, f, will be continuous and have continuous
first partial derivatives. The locations, Py, are not required to lie on

any type of regular grid.

.
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C1 Surface Interpolation for Scattered Data on a Sphere

1. Introduction

The problem of constructively defining a smooth surface that interpolates data
defined at scattered points in the plane has been treated in different ways by
a number of authors. For surveys of this work up to 1977 see Refs. (2) and (7).

We consider here the analagous problem for data defined at scattered points
over the surface of a sphere. When data is defined over only a portion of the
surface of a sphere it may be most reasonable to map that portion of the
spherical surface to a planar region, using a C1 mapping function, and treat
the problem by an algorithm designed for the planar domain problem, However
when the data is scattered over the whole surface, and 1t is desired to
produce a C1 interpolation function defined over the entire surface, it

seems necessary, or at least very desirable, to deal with the problem directly
in the spherical setting. 1In particular, there 1s no C1 function that will
map the entire surface of a sphere to a bounded planar region.

2. The problem

Let S denote the surface of the unit sphere in 3-space. Given points
Pys i=l, ..., n, the problem is to construct a computable function f,

defined and having C1 continuity over S, and satisfying the 1nterpolation
conditions

f(p,) =u, for i=l, ..., n

1

2.1 Relevant properties of C1 functions on S

A function of f defined on S 1s differentiable at a point Po in S 1f and
only if there exists a 3-vector 9% satisfying

(1) f(pg*dp) - (fF(pg) + aldp)
Tim =0

idpg > O sdpt
Do+dpcS
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Let TO denote the tangent plane to the sphere at the point Po- Since the
perturbed points Potdp n Eq. (1) are required to lie in S, the normalized
perturbation vectors dp/ ¥dpp approach the plane T0 as §dpy approaches
zero. It follows that if a vector 99 satisfies Eq. (1) then so also does
any vector of the form go+h where h is orthogonal to the tangent plane TO’
i.e. where h is a multiple of the vector from the crigin to po.

To resolve this nonuniqueness of vectors 9% satisfying Eq. (1) we will
standardize on the shortest such vector. This vector is distinguished among
vectors 9 satisfying Eg. (1) by the property of being orthogonal to the
position vector from the origin to Pg» OF equivalantly by the property that
the point Po*a 1ies 1in the tangent plane Ty We will call this vector

g0 the gradient vector of f at Po

Note that the fact that f has a restricted domain, namely S, is an essential
part of this definition. For example if f is the restriction to S of some
function f defined in an open neighborhood of 3-space containing Po it 1
entirely possible that f may be differentiable at Po and have a unique
gradient vector g that 31s different from the (minimal length) gradient vector
% of f. In such a case however % will be the orthogonal projection of g
onto the 2-D subspace parallel to the tangent plane To.

Let U be a region of S containing Po and not extending more than #/2 radians
away from P 0 any direction, Let k be the one to one mapping of points of
U to their orthogonal projections 1n TO. Let UO be the region in T0 to
which U 1s mapped by k. Define the function fO on U0 by

fo(s) = F(k7H(s))

Note that the point Pp 1S N both the domains of f and fo. If f s
differentiable at Pg With gradient vector gy then also fO 1S

differentiable at Pg with gradient vector 9y We will make use of thais
local equivalence of f and fo later 1n deriving an algorithm for estimating
the gradient of f from discrete data.
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We will say a function defined on S is in the class C1 1f there is a
continuous 3-D vector-valued function g, defined on S, such that for each

point PO ) g(po) is orthogonal to the vector from the origin to Po and
satisfies the condition ascribed to 9y in Ea. (1).

3. Major steps of the solution method

The approach to be described has the same major steps as the method for the
analagous planar problem given in Ref. (6). These steps are

1. Build a triangular grid on S having the given points p; as vertices.
2. Estwmate the gradient vector 9; at each point Py-
3. To evaluate the interpolation function f at an arbitrary point p in S:
(a) Look up p in the grid to find the triangle containing p.
(b) Compute f(p) by an interpolation method using the given function

values u; and the estimated gradient vectors g, at the three
vertices of the enclosing triangle.

3.1 Data structures

In the algorithms to be described the points P, w11l be represented by their

cartesian coordinates. It will be convenient in the follz.ing to let the same

symbol denote either a point or the 3-D vector from the origin Lo the point.

In particular, points 1n S are represented by vectors of unit euclidean length.

Each -riangle will havz an index nurber and will be represented by a set of
six rointers identifying the three adjacent triangles and the three vertex
points. This 1s exactly the same data structure as was used n Ref. (6).

1f triangie t has vertices whose irndices are A, B, and C in counterclockwise
nrder, and whose adjacent triangle indices are 2, b, and ¢ with triangle a
opposite vertex A, b opposite 8, and ¢ opposite C, the six pointers
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representing triangle * would be stored in one of the following three

permutations:
a, b, ¢, B, C, A
b, ¢, a, C, A, B
c, a, b, A, B, C

A1l access to these pointers 1s done via three very short subroutines. Thus
the actual storage mode for these pointers 1s "hidden" from the rest of the
program. By appropriate programming of these three subroutines the pointers
can be packed to save storage.

The array storage requiremenis of this algorithm are thus

3n  locations for the vectors Pi» i=1, «oey N.

n locations for the data values Usy i=l, ..., N,

12n  Tocations for the triangle pointers. This is based on 6 pointers
per triangle and at most 2n-4 triangles. This storage reguirement
can easily be reduced by packing.

3n  locations for the gradient vectors 9,5 i=ly, ooey N
n locations for a2 permutation vector used only while building the
grid. This storage could be overlaid by the gradient vector array
or could be eliminated entirely by minor changes in the program

design.

3.2 Determnantal tests and grid look-up

Let P1s Py, 2nd P3 be 3-vectors haviny unit euclidean length. Let
Det(pl, Py p3) denote the determinant of the 3x3 matrix whose column
vectors are Pl Pys P30 that order.

If a4 = Uet(Pl, Pps P3) # 0 then no two of the vectors form an angle of
zero or r, and the three vectors do not all lie in a single plane through the

origin, In this case a proper spherical triangle can be formed by connecting
each of tne three pairs of points bv *he snorter arc of the great circle in S

determined by that payr of points. .nus each arc w11l have length less than n.
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This triangle divides S into two regions. The smaller region is to be
regarded as the interior of the triangle. If 4 > 0 an observer traversing the
edges of the triangle with the interior of the triangle to the left will vasat
the vertices in the order Pys Py, 05 If 8 < 0 the ordering would be

reversed. We will always order the vertices of triangles so that a > O,
Let p;, Py» P3» be vertices of a proper triangle t in S with 4 > 0.
Regarding q as a variable 3-vector in S, note that the quantity
Sl = Det (qipzap3)
is proportional to the distance of q from the plane determined by the vectors
Pz and P3 with the sign of 1 being positive if g 1s on the same side of

the P,p; plane as p; and negative 1f q 1s on the opposite side. Thus a
point q ¢ S 1s inside the triangle t if and only if the three quantities

Sl = Det (q, pzq P3)
52 = Det (pI’ q, P3)
3 = Det (py, p,, )

are all nonnegative.

Qur algorithm for finding a triangle containing a given point q consists 1n
computing the quantities S1» Sp» S3 for some triangle t and then either
accepting t as the containing triangle 1f all S; 200r else moving to the
neighboring triangle across the edge opposite vertex P, 1f s. 1s the first

i
of the test quantities found to be negative.

If there is no neighboring triangle across this edge the search stops,
returning this information. Otherwise the search continues by computing the
test quantities 1in the neighboring triangle.

Rounding errors 1n :omputing a 3x3 determinant causing inconsistent sign
determination could conceivably lead to cycling in the look-up process or to
the construction of topologically wmpossible edges wn the grid constructien.
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Consider for example four points p,, ..., p, that Tie in order along an

arc of a great circle, the arc having length less than =. The true
mathematical value of the determinant of the 3x3 matrix formed using any three
of these vectors is zero.

Using finite precision coordinates and finite precision floating point
arithmetic these determinants will generally not be computed as zero. A
nonzero result does not in itself cause a serious problem but the possibility
of inconsistency in the evaluation of related determinants can.

To illustrate the hazard suppose that with Pys +ess Py 35 above the

computed value of Det(pl, Pys P3) is positive and (py, Py, pg) is

accepted as a triangle in the grid. Then suppose Py is tested for 1inclusion
in this triangle. 1t 1s possible that all of the determinants Det (p4,

Py, p3), Det (pl' Pgs p3), and Det(pl, Py p4) might evaluate

nonnegative. This would lead to the erroneous conclusion that Py is
contained in the triangle (pl, Pos p3) and various topologically

incorrect edges would be constructed to incorporate Py 1nto the grid.

Using a tolerance ¢ such that all results between -e¢ and ¢ are treated as zero
does not solve the problem. We have had good luck using double precision
evaluation of the determinants and strict zero tests. We have also had
success with single precision determinant evaluation 1f we randomized the
order n which the points p; were considered for inclusion in the grid.

One way to assure consistency while sacrificing some accuracy would be to
truncate all coordinate values to a small enough number of bits to permit the
determinant evaluation to done exactiy. For example, on a machwne carrying
fourteen hexadecimal digits of significance in a double precision number, one
might round all coordinates to the 2717 b, The smallest nonzero bit that
could occur 1n the product of three such numbers would be the 2‘51 bit. The
coordinates do not exceed cne in magnitude so the same 1s true of their
products, These products and the sum of up to six such products can be held
exactly in a normalized floating point number carring fourteen hexadecimal
digits. Thus determinants of 3x3 matrices could be computed exaclly.



104

3.3 Constructing the triangular grid

The convex hull of a finite set of points in the plane is the smallest convex
polygon containing the entire point set. We need an analagous notion, which
we will call the spherical convex hull, for points on the surface S of the
unit sphere.

Let P be a finmite set of points in S. If there 1s no plane that strictly
separates the origin from P, we will say the whole surface S 15 the sgher1cal
convex hull of P,

Alternatively 1f there is a plane strictly separating the origin from P let C
be the smallest convex cone with 1ts vertex at the origin and containing the
set P. The intersection of C with S will be called the spherical convex hull

of P. This region will lie strictly within some hemisphere of S.

A triangular graid with n vertices and covering all of S will have 2n-4
triangles. A grid that convers a spherically convex proper subset of $ and
has n vertices and b boundary edges will have 2n-b-2 triangles. Note that 2n
can always be used as an upper bound on the number of triangles.

Our method of constructing a triangular grid using a given finite point set P

in § as vertices will be a sequential process that alters a grid covering the
spherical convex hull of some set of k points of P to obtain a grid covering

the spherical convex hull of these k points plus one more.
Algorithms of this type can be divided nto (at least ) three subtypes

(a) First find the boundary points of the (spherical) convex hull of P and
construct a triangular grii for these points. Then in the remaining
sequential part of the algorithm each new point 1s known to 1ie in some
triangle of the current grid,

(b} Preprocess the points of P into an ordering that assures that each new
point will be strictly outside the (spherical) convex hull of the
preceeding points.
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(c) Do no prepreprocessing and be prepared for each new point to be either
inside or outside the (spherical) convex hull of the preceeding points.

With subtypes (a) and (b) one is adding extra code and execution time for a
preprocessing stage in the hope of permitting the subsequent sequential phase
to be swmpler and execute faster. We have at difrerent times developed
algorithms for the planar probiem representing each of these subtypes. The
algori1thm of Ref.(6) 1s of subtype (b). My present inclination is to prefer
subtype (c) as I think it permits the total program to be simpler and probably
is not significantly slower if in fact 1t is any slower. Mcre specifically it
does not require storage for a sepe-ate data structure to keep track of
boundary points as was the case in Ref., (6).

Our approach then 1s to form one initial triangle and then loop through the
remaining n-3 points adding one at a time and modifying the triangular grid at
each stage to cover the spherical convex hull of all the points so far
considerea. Each new point may be either inside or outside the grid so far
constructed,

In the class of problems for which this method 1s primarily intended, 1.e.
problems 1n which the data 1s scattered quite generally over all of S, a stage
will be reached at which the spherical convex hull 1s all of S. Thereafter
all additional points will necessarily lie inside the grid so far constructed
since the grid w111 cover all of S. The user can cause this full coverage of $
to happen early by arranging that the first four points to be processed are
located such that the tetrahedron with these four points as vertices contains
the origin as a strictly interior point. The triangular grid based on these
four points will cover all of S.

Inithally the algorithm seeks three points with which to construct the first
triangle. The first vector Py 1s accepted unconditionally. The remaining
vectors are scanned for the first one whose inner precduct with Py Ties
between cos 179° and cos 1°, 1.e. between -0.99985 and 0.99985. Pointers
are swapped to relabel this vector as Py
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The remaining vectors are scanned io find one whose determinant along with
Py and p, exceeds 0.001 in magnitude. Such 4 vector is reiabeled as Ps-
The vectors P, and py are then swapped if necessary to assure that

Det(Pl, Pos p3) is positive. This completes the construction of tne
first triangle.

We may now assure a grid based on k-1 points has been constructed and the naxi
point, Py» is to be introduced. A look-up i5 done using the method

described in Sec. 3.2. This look-up either finds a triangle t contaiming

Py, or else finds 2 triangle t such that P is outside this triangle

relative to a side of the triangle beyond which there is nu 2djacent triangle.

In the first case, the single triangle t having vertex points Pas Pge ¢
wili be replaced by th-ce triangles hs .ng vertex points (pk, Pgs pc),
(PA. Py pc), and (pA, P3s pk) respecii.aly. the algorithm then

does 2 grid improvement phase to be described subsequently,

In the second possible outcome of the izok-up process, the point Py is
strictly outside the spherical convex hull of the precesding k-1 points, and
in particular 1t 1s cutsice an edge of triangle t that const-tutes a portion
of the boundary of the spher+cal conver hull, In this case one new triangle
will be tormed by connecting p, to the two ends of the edge of t that gave a
negative s, value n the Took-up testing (See Sec. 3.2).

The algorithm next scans the current grid boundary points 1n both directions
from the new triangle and connects P te all other boundary points that
result 1n tne creation of proper spherical triecngles (See Sec. 3.2). The
algorithm then does grid improvement.

3.3.1. Gr.d 1mprovement

When two adjacent spheracal triaroles form a strictly convex spherical
quadrilateral there arises the possibility of replacing these two triangles by
the two that occur when the quadrilateral 1s partitioned by 1ts other
diagonal. One must establish a critericn for (hoosing between che two
possible diseccions of ¢ gquadrilateral.

Dtiaked |
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This issve was discussed for the planar case in Ref. (6) where it was shown

I that chree differently stated criteria were mathematically equivalent. In the
spherical setting a fourth criterion with considerable intuitive appeal can be

I formulated and it is casily seen to be equivalent to the “"circle test" of Ref.
(S).

Let Pl, Pos P3s and Pa be the vertices, n counterclockwise order, of

a spherical guadritateral in S. Assume all four ov the potential triangles
(py py p3)s (P, Py Py)s (P By Py)y and (py p) )

would be proper spherical triangles. One choice would be to connect points
Py and P3 forming triangles (p1 P, p3) and (p3 Py pl) while

the otrer choice would be Lo connect points pz and Pa forming triangles

1 (P, o3 py) and (py py ).

. Consaider the 3-D polyhedron underlying the spherical tragnqular grid. If the
four points under consideraton are not coplanar then one choice will give
underlying planar triangular faces that could be faces of a coavex polyhedron
and the other choice 111 rot., This therefore 15 our new criterion: a

preference Lo make the underly:ng 3-D polyhedron convex.

Another way to describe this criterion 1s to censider th2 unmigue line L from
the or1gin that intersects both of the lines plp3 and PoPy e 1f Pys

Pys P3s and py are not coplanar the two lines will intersect L at two

. distinct points. We construct the one of these iwo lines that intersects L
furtherest from the origwn,

we wnplement this test by computing d = Det (p2_pl, P3-Py>s pd—pl)
and constructing che line p2p4 i1f d > 0 ana constructing plp3 1f
d < 0. Either line can be used 1 f d = 0.

o sy

After a new point, say Py 1S connected into the graid, each edge that s
opposite p_ n some triangle 1s a candidate for swapping. Thus f there
s a trangle pkpqpa and an adjacent triangle p703p4 the edge

St em—

Py will be replaced by the eage pcp3 1f Det (pz-pk. P3-Py »
Py-pp} Vs neqative. when an edge 1s swapped the edqes opposite P 0
the two newly formed triangles become candidates for swapping.

T er=g
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3.4, Estimation of gradient vectors

We assume a triangular grid has been constructed 1n S covering the spherical
convex hull of the points Pys ++es P, and having the points Prs eoes

P, as vertices. We also assume the data values Upy eeey U (See Sec. 2)

are available. It is required to estimate a 3-D gradient vector g; at each

point Pj. See Sec. 2.1 for the characterization of gradient vectors for
this problem.

general idea is to do a least squares quadratic fit to data near the point

Let p. be a point at which a gradient vector g; is to be estimated. Our

Ps and then use the gradient vector of this fitted quadratic polynomiai as
the gradient vector at Py - We use a six term quadratic polynomal in two
variables forcing interpolation to the value u; at py. Thus we need at

least five neighvoring points, and prefer more than five to obtain a local

smoothing effect on the gradient vector.

Let Q denote the set of points to be used for tne fit. We first place all the
immediate nevghbors of P, 1nto 0. If the number of mmedrate neighbors 15

from 6 through 16 and if the maxtrix for the least squares problem passes a
conditioning test then this set § 1s used for the fit, If the number of
points exceeds 16, excess points are discarded. If the nuwher 1s less than 6,
more nearby points beyond the immediate neighbors of p, are introduced, If
the matrix condition test 1s not passed, more points, up to 16, are added. If
the condition test still fails with 16 points, the least squares system is
damped to bias the solution toward small values of the coefficients of the
three second order polynomial terms.

The fitting 1s se’ up 1n a "ocal coordinate system de‘ermined by P, A 3x3
rotation matrix R 1s determined that transforms the position vector of p1 to
the vector (0, 0, 1). Thus the "no-~th pole" of the rotated coordinate system
15 at pi.

-’
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The same coordinate transformation is applied to all vectors in the fitting
sel Q. Generally these transformed vectors, having some proximity to Pi»
will all Tie in the "northern hemisphere"” of the rotated coordinate system
i.e. their z coordinates will be positive. If any transformed vector (x,y,z)
has z < 0 we arbitrarily replace it by (x/s, y/s, 0) where s = Sqrt (x2 +
yz). This last step is just an expedient to do something definite in a poor
situation. Data must be very sparse or poorly distributed to result in any
points of Q being in the "southern hemisphere" of the rotated coordinate
system,

We ignore the z coordinates of these transformed vectors, using only their x
and y coordinates in the fitting. This can be interpreted as projecting the
points P, of Q orthogonally onto the plane T that is tangent to the sphere
at the "north pole", i.e. at P;. The polynomial model for the fit is

clx + c?y + c3x2 + Cqaxy + csy2 = u-u;

The coefficients Cps eoes Cg of this polyncmal are detarmined by a least
squares computation. The 2-vector (cl, c2) 1s the gradient vector at P,

of the fitted polynomial relative to the xy coordinate system in the tangent
plane T. Using the observations at the end of Sec. 2.1 we take the 3-vector
(Cl’ Cyo 0) to be the gradient vector at p, of the {as yvet unknosn)
interpclating function defined over the surface of the sphere. The inverse of
the rotation matrix R 1s then applied to (Cl' Cos 0) to obtain the
representation of the gradient vector 9, in the original coordinate system,

3.5. Interpolation in 2 single triangle

In the planar case described in Ref. (6) we preferred the 9-parameter
Clough-Tocher cubic macroelement (Ref. 3) as our interpo‘ation method

primarily for the following two reasons:

(a) It 1s more economi .al to evaluate than any other C1 interpolation
method of which w2 are aware. Beginning with the rectangular
coordinates of g and of the vertices, and the function values and 2-D
gradient vectors at the vertices, our evaluation of this interpolant
uses 55 multi:lies, 65 adds, and 4 divides.
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(b) The interpolant at any point is simply a cubic polynomial in the
cartesian coordinates (or in the barycentric coordinates), and thus it
is easy to derive and implement an evaluation of the gradient of the
interpolated surface if this should be desired.

Unfortunately, the Clough-Tocher method depends strongly on properties of
polynomials in cartesian coordinates over a planar region and does not seem to
generalize fur use over a spherical triangle.

We will describe two methods for ¢l interpolation over planar triangles that

do generalize to spherical triangles. These both represent the interpolant in
the form

where the w.'s are nonnegative weight functions depending only on q and the
locations of the vertices, and the f's are interpolants depending in general
on q and all of the data associated with the triangle t, and satisfying some,
but generaliy not all, of the conditions for C1 continuity across triangle

edges. A very helpful analysis of convex combination formulas of this type 1is
given in Ref. (4).

As with the Clough-Tocher 1nterpolant the requirement for C1 continuity
across edges is approached by establishing values of the function and 1ts
gradient along an edge that depend only on data at the two ends of the edge.

Values aleng an edge are computed by Hermite cubic interpolation and the
tangential derivative at any point on an edge 1s computed as the derivative of
this hermite cubic interpolation polynomial. The normal derivative at any
point on an edge s computed by linear interpolation using the derivatives
normal to the same edge at the two ends of the edge. For g on an edge of a
triangle to let F(q) denote the value and G{g) denote the gradient vector
defined by these interpolation methods along the edge.

-
t



3.5.1. Planar Method 1 111

For any point q in the triangle t let f] in Eq. (2) be defined by Hermite
cubic interpolation along the line througn q paraliel to the edge opposite
vertex P- This function f1 has been called the BBG interpolant or BBG
projector due to its use in Ref. {1). See also Ref. (2), pp. 92-101.

Function and derivative values for this interpolation are derived from the
edge functions F and G defined above. The function fi(Q) defined 1n this
way is C1 over triangle t, and f1 and 1ts gradient match F and G
respectively on all edges except that the normal derivative of fi on the
relative interior of the edge opposite P, will generally not be censistent
with G.

Corollary 2.5 of Ref. (4), adapted tc our present notation, states that if a

fi's in Eq. (2) match F on the entire boundary of t, and wl(q) = 0 for any

1 and edge point q for which the gradient of f1 evaluated at q does not

W ome e e e gy

o - —

1

match G(g), then f of Eq. (2) matches F and the gradient of f matches G on the

entire boundary of t.

Thus letting f1 be the BBG interpolant, 1t will suffice to require that W
have the value zero on the edge opposite P, and be nonzero elsewhere on the
boundary of t. This 1s conveniently assured by letting W, be the
barycentric coordinate of g that has the value zero on the edge opposite P,
and one at p,. Thus Eq. (2) specializes to

(3) fla) = byf(a) + byf,(q) + bsfa(a)
where the b are the barycentric coordinates of g relative to the triangle t

and the f]'s are BBG interpolants, each requiring two linear interpolations
and three Hermite cubic nterpolations for 1ts evaluation.

3.5.2. Planar Methud 2

For any point q in the triangle t let f] in Lq. (2) be defined by Hermite
cubic interpolation along a line from vertex P, throuch g to the opposite
edge. This 1interpolant has been called a side-vertex or radial interpolant,
{See Ref. 2, n. 101).



The function fi matches F cn the entire boundary of t and its gradient
matches G on the edge opposite p; but its normal derivative is not
consistent with G, on the relative interior of the two edges adjacent to
Pj. Again using Corollary 2.5 of Ref. (4), 1t suffices to define w, of
Eq. (2) to be zero on the relative interior of the two edges adjacent to P;
and positive on the relative interior of the opposite edge. This is
accomplished by setting

i = Diap Biapl (Byag biag * Dyap By * By byyy)

where the bi's are barycentric coordinates of g and the subscripts are to be
evaluated modulo 3 to one of the values 1, 2, or 3.

The function w, defined 1n this way has non-removable singularities at
vertices Py+1 2nd p ., since it is one on the relative interior cof edge
Pi+1P+2 and zero on the relative interior of the other two edges (and at
vertex p ). For mathematical definiteness we may define w, to have the
value zero at p ., and one at P4+ The sum wy + w, + wy 1s then

one throughout triangle t, as 15 required for Corollary 2.5. In a computer
implementation cne would treat interpolation at a vertex as a special
(trivial) case anyway, so the particular choice of definition of W at the

Py+1 and p.,, has no bearing on mplementatiors.

Thus Eq. (2) specializes to

(4)
- (b3b2f1 * bybafy + byt f3)/(bgb, + bybs + byby), for q 4 py, Py OF Py
q =

U, for g = p,

where the bl's are the barycentric roordinates of q and the f]'s are
side~-vertex interpolators. Each f‘ requires one linear interpolaticn and
two Hermite cubic nterpolations for 1ts evaluation.
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3.5.3. Generalization of Planar Methods 1 and 2 for spheri.al triangles

The key in generalizing these two planar methods for use with a grid of
spherical triangles on the surface S of the unit sphere is to replace all of
the linear and Hermite cubic interpolations along line segments by the same
type of interpolations along arcs of great circles in S.

Let t denote a proper spherical triangle with vertex position vectors p;,

P2, and P3» and let q be a point of S contained 1n ¢t. Llet t' denote the
underlying planar triangle having the same vertices as t, and let q' be the
central projecticn of q into the plane of triangle t', i.e. q' is the point n
the plane of t' intersected by the line from the center of the sphere to q.

When the look-up procedure of Sec. 3.2 finds that a given point @ in S is in
triangle t, it also retu~ns the three nonnegative numbers S1s Sos and

S3. HWe call these numbers unnormalized barycentric coordinates since the
(normalized) barycentric coordinates of q' relative to the planar triangle t'
can be computed as

b1 = sll(s1 +s, t 53), i=1, 2, 3.

The ntersection points between certain lines through q' and edges of t!'
needed for either of the two planar interpolation methods are easily
represented in terms of the b,'s and p,'s. Thus the intersection between
edge PiPj+y with the line through g' parallel to edge Py+1Pq42 has
position vector b.p.  + (1-b,)p,,) while the intersection between edge

P +1P,+p With the line from vertex n  through q has the position vector

1
(b1+1 Pi+p * b1+2 p]+2)/(b1+1 + b1+2)-

These intersection points can then be centrally projected to S by normalizing
their position vectors to have unit euclidean length, All of the linear and
cubic interpolations called for n the planar methods are then done with
respect to arc length along great circle arcs 1n S obtained by central
projection of the corresponding line segments 1n the planar triangle t'.
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Recall that gradient data at each vertex P Pos and ) is represented -
as a 3-vector that is orthogonal to the position vector of the vertex.
Gradient information generated at auxiliary points in either interpolation
method is also represented a 3-vector orthogonal to the associated position
vector,

The verification that each of these two spherical triangle interpolation
methods defines a C1 function over 3 can be carried out in the same way the -
cl property of the planar methods is proved, for example in Ref. (4). Thus .
one observes that the function value and gradient vector at any edge point of -
a spherical triangle is determined only by data at the ends of the edge and
thus w11l be consistent in neighboring triangles. The partial interpolation
functions f. have the correct values at all edge points and gradient values
that are correct on certain edges and wrong on others. The convex combination
formula (2) or (4) properly zeros out the functions where their aradient
values are wrong and thus gives a function having the required boundary values
and boundary gradients.

4. Software implementina these algorithms

Subroutines were written for these algorithms in 1979 using the JPL SFTRANZ
structured Fortran language which 15 preprcocessed Federal (ANSI) Standard
Fortran 77.

The twme for grid construction for n points was oroportional to nl+25 for
test cases n the range from 25 to 500 points. The RMS error in test cases
using simple mathematical functions to qenerate data over relatively uniform
triangular grids of various densities was proportional to h3+% 1n test cases --
having maximum edge length 1n the grid ranging from 63° down to 9°,

A count of the number of arithmetic operations required to do a single
interpolation in a triangle gives the figures listed in Table 1. The planar
Clough-Tocher method 15 included for comparison. For ail methods the
computation starts with cartesian coorawnates for g, Pis Pp and P3 and
function values and gradient vectors at Py Poy and P3. The weights used

to combine the counts are arbitrary but plausible., They are normalized to
cause an add plus a multiply to sum to one for consistency with operation
counts measured in “Flops*.
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For Method 1, tests of the continuity of the interpolated function and its
first partial derivatives across edges of the grid were made in two ways.
Interpolated values and their first and second differences were computed at a
sequence of equispaced points along a smooth arc. Paths were chosen crossing
edges at various angles and crossing a vertex. These tests indicated
continuity of the values and first differences with discontinuity of the
second difference at edges.

The other test of cl continuity involved reprogramming all of the code for
Method 1 using a “U-arithmetic" package developed at JPL in 1971 based on the
ideas of Ref. (8). (This is like the method of Ref. (5) without the benefit
of a preprocessor.) In this approach the program computes a 3-D gradient
vector and a 3x3 Hessian matrix for every intermediate quantity and thus also
for the final interpolated value. All derivative computations use
matnematically correct formulas, 1.e. not differencing.

We found it necessary to reorder some computations to avoid severe artificial
numerical instabilities n the derivative computations. After this reordering
the results were consistent with ¢} continuity.

We did not try a U-arithmetic version of Method 2. I would expect severe
difficulties with this since the singularities of the Wi's at certawn
vertices (See Sec., 3.5.2) imply that some first partial derivations of the

W 's can be arbitrarily large in a small neighborhcod of a vertex.
Mathematically these cancel out but numerically there would be large rounding
errors.

5. An application

In Fetruary, 1982, this software was used at JPL in the study of gravity
variation over the surface of the planet Venus. Data was available at many,
but not all points, of a rectangular longitude-latitude grid. The missing
data cccurred in irrequlaerly shaped regions determined by geometrical
constraints of the observation and communication nstruments.
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Table 1. Operation counts for a single i
interpolation in a triangle '-_é
. ¢
i
Factors :
for !
Clough-Tocher Spherical Spherical weighted
Planar Method Fethod 1 Method 2 total ..
Add/Subtract 65 371 352 0.4 ”
Multiply 55 699 450 0.6
Divide 4 81 57 1.2
Sqrt 24 15 3.0
Atan 18 12 5.0 }
Weighted 63.8 827.0 5842 §
Total
(Flops) {
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Using 2450 points at which data was present our program built a spherical
triangular grid consisting of 4896 triangles. Missing data in the rectangular
grid was then filled in by interpolation in the trianguiar grid.

In the course of this work the scientists gained new insights rega~ding their
data and we found and repaired a weak spot in our program. See the discussion

of determinant evaluation in Sec. 3.2.

6. Ccnclusions and remarks

The efficiency of the grid building procedure, execution time in test cases

1'25, 15 quite satisfactory.

being observed to be proportional to n
C1 interpolation in a spherical trianale requires 9 to 13 more Flops than

cl interpoiation n a planar triangle. Modifications giving small

reductions in the operaticn counts are known but it would be interesting 1f an
entirely different approach could be found that might be more intrinsically
related to the topology of the spherical surface and require sigmficantly
fewer Flops.

Method 1 15 more time-consuming than Method 2 by a factor of abcut 3 to 2
cince Method 1 uses nine cubic interpolaticns aleng ercs compared with six for
Metnud 2. Analytic computation of gradients for interpolated values would
probabiy be more stable using Method 1 than Metnod 2 because of the
singularities n the w,'s of Method 2. It would be interesting to make

visual comparisons of surfaces generated by these two methods but we have not
had the resources to make such comparisons,

The programs appear to be robust and reliable. The use of the SFTRAN3
structured Fortran language has been extremely helpful in keeping the code
understandable,

It should be noted that the use of the surface of a sphere as the domain is
Just a mathematical construct for dealing with the set of all directions 1n
3-space from an origin point. Thus the methods of this paper are applicable
to the representation of any bounded two-dimensional C1 surface 1n 3-space
that 1s "starlike" 1in the sense that there 3is some origir point from which a
ray 1n any airection intersects the surtace in at most one point and the ray
1s not tangent to the surface at that point.
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Other two dimensional menifolds besides the plane and the spherical surface
that may deserve investigation for scattered data interpolation include the
surface of a cylinder or a torus. On a cylinder one may wish to admit
triangles having two vertices at the same data point while on the torus one
may admit triangles having all three vertices at the same data point!



r

[ e o e ——

1

119

References

1.

R. E. Barnhill, G. Birkhoff, and W. J. Gordon, Smooth Interpolation in
Triangles, J. Approx. Theory, 8, (1973), 114-128.

R. E. Barnhill, Representation and Approximation of Surfaces,
Mathematical Software IlI, ed. J. R. Rice, Academic Press, 1977,
pp. 69-120.

R. W. Clough and J. L. Tocher, Finite element stiffness matrices for
analysis of plates in bending, Proc. Conf. Matrix Methods in Struct.
Mech., Air Force Inst. of Tech., Wright-Patterson A.F.B., Chic, 1955.

G. J. Herron, Triangular and Multisided Patch Schemes, Ph.D. Thesis,
University of Utah, 1979, 80 pp.

G. Kedem, Automatic Differentiation of Computer Programs, TOMS, 6,
(1980), 150-165.

C. L. tawson, Software for cl Surface Interpolation, Mathemacical
Software [II, ed. J. R. Rice, Academic Press, 1977, pp. 161- 194,

L. L. Schumaker, Fitting Surfaces to Scattered Data, Approximation
Theory 11, ed. G.G. Lorentz, C. K. Chui, and L. L. Schumaker, Academic
Press (1976), pp. 203-268.

R. E. Wengert, A Simple Automatic Derivative Evaluation Program,
CACM, 1, (August 1964), pp. 463-464.



4

oot e e

i I
PR
SR

]
*

o d & g
i Giinind il e s sy il e ETG
LT T T !
A - v Y
ate -
» LIRS ~
- - N
1 - N N
w ! § PO -
“ '
TaaT - [ 3
Gy ) R .
7. \ . 7
« . .
- 1 . A
pur) L ey R X . .
- S 1 4 T
- i N A AT
. ‘ . ¥
e -
- R B .
’ a ’ N
v« . .
- —
) N PN W e
ot e R4
o ! ' ¥ -




This Page Intentionally Left Blank



o, dw Ry - g

I i e R T s T T o, ey - ; S o S
b ilan T TS
!

sy - e - -

, Dy
LN83 15763 ™

SR I S o et

R. E. Barnhill

Math Department
University of Utah

Salt Lake City, UT 84112

»
a7

SURFACES: Representaticn and Approximation

The general: Surface Application
“ree-form Sculptured
Design of Surfaces Exarples:
Representation of Surfaces Lockheed

Energy

Criteria/characteristics:
Fits given information/applicatien
Smoothness
Shape {idelaty
Parametric representation
Local <. global schemes
Interactive design

Interactive viewing
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OF PQOR QUALITY

Outline cf 3D Surfaces

Surfaces:
Interpolaticn v. Approximation
Patches v. Points Least Squares

-~ (J. G. Hayes, NPL)
l \

—

Coons v. Bezier Shepard's Formula

(1) O patches (2) A patches

Transfinite Preprocessors:
Boolean sums/correction surfaces 1. Triangulation
Lofting interpolants lst pass
Campatibility conditions Optimization

2. OGradient specification
Discretization + Point methods

Triangular Interpolants
Barycentric coordinates
BBG
Radial Nielson
Symmetric Gregory

Convex cothinations
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(1) 0O Coons' Patches
First Problem: Interpolate

to the 4 curves.

Conventions:
F "primitive"
F general coordinate

x(u,v)

z(u,v)

y(u,v)| « parametric surface /
u

N - W e A pae s v vere Am gy rewe e ey

ORIGIAL PilE 13

OF POCR QUALITY

F(u,0) 2"’

F(,v)

123

S. A. Coons 1964

F(O,v)

Solution to the 1st problem: Lofting interpclant
PiF = (1-u)F(0,v) + uF(l,v)
Univariate linear interpolant:

£f = f(u) = Plf = (l-u)fo +

Bivariate F = F(u,v) = PlF = the above.

P.F

\\;
\-u.l .

Error F-PIF
Idea- Match F-PlF
and add this to PlF .

does the job.

\J\J\

v

v
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Geametry vs. Algebra

g = (V) =Pyg = (1-v)g, +vg; -
% Py(F-P,F) = (1-v) (F- PyF)(u,0) + v(F-P;F)(u,1) bt

-

= (1-V)F(u,0) - (1-v)[(1-u)F(0,0) + uF(1,0)]
+ vF(u,1) - v[(1-w)F(0,1) + uF(1,1)] .

Overall approximation PF = P;F + P,F-P P)F -
= (L-u)F(0,v) + uF(l,v) + (1-v)F(u,0) + vF(u,1)
- [(@-u)(1-V)F(0,0) + u(l-v)F(1,0) + (1-u)vF(0,1) + wF(1,1)]

Check interpolation: (PF)(u,0) = F(u,0) etc.

PF = (P1 o PZ)F Boole. 1 sum , transfinite interpolant, blending fumcticns
W. J. Gordon 1969
Py P,F tensor product .

Bilinearly blended Coons' patch

Piecewise method - CO

2
Practical applications: C1 or C° . -

K,\ ... bicubically blended Coomns' patch.

-~

[ ]

N |
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rh

£ = £ = Pf = hy@EO) + by EQ) + FyWE (0) + K (W' (1)

F = FQuv) =

(P]_GPZ)F = hG 50
[hy () ()R (W) By () 1]F(0,v)
FQ,Vv)
Fl,o(o"') + dual term
_Fl,O(l'V)__
- [hy(Why WEWE, () 18[h) V)]
hl(V)
-.Hl(V).«
B = [ F(0,0) F(0,1) Fp 10,00 7y 1(0.1) 7
F(1,0) F(1,1) . F | F,-.
i F0'1(1,0) Fo 1D Foov Fot
F) ((0.0) F; 4(0,1) [ [ -
' ' F, 10,00 F 4(0,1) o
r; o(LO) Fy 51,1 & ' 1,00 1,1
’ ' Fi 1(1,0) Fl’l(l,l)

3 2p Positions | Tangents
Twist trouble ("1-‘l 1" z W PSR R § R
! Tangents ! Twists J
!
o 2E (0,00 + v il (0,0)
' Jvau Juadv
Gregory's Square T .

Discretization - Poaint lethods

F(u,0) = F(1,0) = h@@)T{u,0) + by F(L0) + FyF ((0,0) + K @F (1,0

- vy

3
. AEn 4B ) s amg riend

[ S
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ORIGINAL PASE 1S

OF POOR QUALITY

Triangular Patches

Rectanguiar domains vs. non-rectangular domains

Preprocessors: a. Triangulaticn
Algorithm: (1) Enforce given boundary
Default: convex hull.
(2) A triangulation ... fast.

(3) Optimize: min max angle
T TeT

where T 1is the set of triangulationms.

b. Gradient Specification

Surface Design: use tangent handles

Surface Representation: wuse triangular Shepard's Method (Little) or

inverse-distance-weighted least squares (Franke).
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127
Triangular Interpo.ants

] Baryccnitric coordinacces

Linear interpolant 17 = blF(Vl) + sz(Vz) + b3F(V3)

(Finite elements)

gz fxemed seend

- Problem: Find C triangular interpolants
- ct triangular Coons' patches
N Barnhill, Birkhoff, Gordon, 1969-73
i
ORICINAL o m - 1
] OF POGR QuaLiTy
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Standard triangle

The B3G idea: Loft & Boolean sum

128

PyF = Ro(1PIF(0,Q) + by ()F(1-q,q) (0,0)

+ ﬁb(°)(l-q)F1,o(0.q)-+ Ei(-)(l-q)Fl'o(l-q.q)

P,F is analogous.

Form (P1 ®P))F . Compatibility conditions
More triangular interpolants:

Radial Nielson 1971

Symetric Gregory oPyF + 8P,F + YP3F
scheme
L 7

BBG projectors

a,8,Y polynomials from the Birkhoff Pit,

Convex Combination &T,F + fs’rz‘r‘ + ?I‘3F

3
!

i C1 interpolat on edge 1

Q>

Brown
Little

1,0 Heuristic only:
use modern versicn in
practice.

0,9) ¢~-@- g (1-9,9)

.9

,é,? rational finctions from Shepard's Formuila.
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T ORICINAL Przr 1y

OF POOR QuaLITY
T Finite dimensional triangular schemes:
T C1: User supplied data

(1) Little Triangle

] 4 + C *
1

Raticnal, almost polynomnial.

Sy

-~

Condensation of

<

parameters
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Clough-Tocher

s e ey

plecewise cubic

130

User-supplied data

Problem:

Teol:

Find €% Clough Tocher.

Farin's Bézier Triangle methods 1979.

Solution: Barmhill, Farin, and Little 1980.

Clough-Tocher subdivisicn
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Contouring: This is sometimes the problems, e.g., hidden surfaces, silhouette

edges.

Adaptive subdivision schemes

Little

Petersen
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Point Methods: Arbitrarily Spaced Data

Shepard’s Formila (1566) Solar maps
F
i
I =
i di
SHE&,y) = y Goy) # Gy ¥y
P
Yy
Fj (x'Y) = (xj.yJ)

where di = di(x,y) = distance fran (x,y) to (xi,yi) .

2
(n )F,
Rewrite SF = E kﬁdk - = w.F
2 I S e §
P (nm 4) i
|5 2 S
if i=3
where w.(x,,y.) =
1733 if 143 , cardinal form.

SF interpolates and is continuous.

Global method / flat spots

Improvements: Bammhill & Pocppelmeier 1975
Franke 1975
Vittitew 1978

Little 1978

<

e N i e i LT S .

—
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Remarks: Patch methods are local methods.

Shape fidelity requires at least local quadratic precision.

Interactive design - real time computations.

Interactive viewing - use the hardware.

Reference: R. E. Barmhill, Representation and Approximaticn of Surfaces,

Math. Software III, J. R, Rice, ed., Academic Press, 1977.

e



4D Surfaces

Tessellation of 3D domains into tetrahedra.

I

4D Surface Interpolants

|

3D Coatours

134

ORIGHNAL ¥..02 '
OF POOR GQUALITY

Examle: Temperature as a finction of 3 spatial
variables.
Litcie
Gregory
Mansfield

Jensen
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SURFACE FITTING WITH BIHARMONIC
AND
RARMONIC MODELS

Dr. Rolland L. Hardy
Professor-in-Charge; Geodesy, Photogrammetry, and Surveying
Department of Civil Engineer:ng, Iocwa State University
Ames, Iowa 50011
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obtainad at the University of Missouri School of lMines at Rolla in 1950
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registered professional enganeer and surveyor in lowa and Misscui.
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ORIGINAL PALD S
OF POOR QUALITY

BACKGROU:D

This paper is devoted mainly to a physical and geometric interpretation of
the surface fitting technique discovered by the author in 1963, which was
called multiquadric equations in 1971 (Hardy 1971). It was not until 1980,
after a report by Franke (1979) that 1t was recognized that multiquadric
equations or MQ may be interpreted very simply as a linear combination of
three dimensioral distance functions. The similarity of the 1'Q method to
a swmple summation associated with point mass models in qeodesy was rec-
ognized very early (Hardy 1972). As it turns out now this was simply the
other side of the biharmonic-harmonic “coin", ard [ have recently coined

a multiquadric labe] for the point mass anomaly also, 1.e. reciprocal
multiquadric or MQ *. In this case we construct a set of point mass
anomalies having positive and neqative values as contrasted with always
positive masses. By reguiring or assuming the sum of mass anomalies to
total zero we do not change the total mass and are therefore dealing with
irreqularities 1n a distribution of mass with respect to what we perceive
to be some standard distribution of mass. For disturbing potential outside
the anonalous masses we obtain a solution with a linear combination of
three dinensional reciprocal distance functions, in which the originally
unknown point mass anomalies are treated as undetermined coefficients. A
reciprocal distance function is harmonic, satisfying Laplace's differen-
tal equation. Hence, a (inear combination of such functions s also har-
monic., An alternative way of looking at the problem and 1ts solution 1s
to consider the 1intearal

T(r ,0 WA ) = Grrre™ (r ,0 ,A ir,6,)) dm
PR Sphere prpp

in vhicn p 1s a point on or outside the spherical body where disturbing
potential T 1s measured. This intearal cannot be formally ntegrated
because the equality dm = §(r,0,1) dv contains an unknown densaity func-
tion g(r,v,\) under the inteqral sian. Therefore the integral, considered
in this lioht, has the characteristics of an integral equation. Jaswon
and Syrmy (1977) have studied problems of this type 1n both potential and
elasticity. It s this form of a numerical approximation to a linear
integral equatlon_Yh1ch provides a solution for the anormalous density
function using 'Q °. leasurements of disturbing potential at n points

and the formation of a system of up to n linear equations provides the

7. ndarmental basis af this approach. However, the approximation of the
density function 15 not the orimary qoal usually, After obtarnina a good
approximation of the density function 1t 1S used 1n the sumation form

to evaluate T at any point, usually where T has not been weasured. The
ultimate outcore then, 1s a procedure that one can classify as prediction,
approximation, or surface fitting, 1f not some other form of numerical
analysis.

A frequent problem with MQ'], or point nass models wn general, 1s to iind
the bdest depth or vadius for placina the ancealies. Hardy (1978, 1973)
and dardy and Gopfert (1975) have provided a very sati<factery solutinn for

. mAn m .
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this with respect to both spheres and planes. This is the "best-r formula"“,

but it does not seem to be well known. The original MQ form (now known to
be biharmonic) is relatively insensitive to this problem, and as noted by

Franke (1979) 1t seems to give results equal to or better than HQ"1 for
most surface fitting purposes. Hence MQ essentially as used in 1971, will
probably become the favorite of the two surface fitting techniques.

The emphasis below will be on MQ rather than ID'I but contrasts and similar-
ities of the two wvill be shown. As will be seen, iglis the geometric and
physical interpretation that has been applied to 1Q ° which has contributed
to a better understanding of 1. To summarize briefly in advance:

(1) MQC] is harmonic; MQ is biharmomic.

(2) MQ ° deals basically with exterior disturbing notential and
satisfies Laplace's equation; MQ deals basically with interior
and surface displacements, elastically, and satisfies Poisson's
equation.

(3) In both cases the solutions may be vieued as being numerical
approximations of an integral equation in which an unknown den-
sity,function is the physical source for disturbing potential
(HQ °) or elastic displacement (1Q).

lMost of what follows has been taken quite literally from my reccent papers
(Hardy 1950,1981). There has not been a ramid expansion of my knowledge
on the subject since 1980; however, ! am taking advantage of this opportun-
1ty to remedy a few misleading statements, to correct outright mistakes,
and to chanae other matters, particularly Fiqure 2 which represents the
elastic displacement of a sphere. Herce what 15 presented 15 considerea

to be a modest wmprovement over my previous papers.

BIHARMONIC-HARMONIC MODELS
FOR SURFACE FITTING

Reccgnition that MQ 1s biharmonic in three dimensioms, Just as MQ'1 15
harmonic in three dimensiors, was expedited by Franke's {1979) descrin-
tion of Duchon's thin plate spline or TPS. Franke noted simlarities
of 1PS and MQ 1n the fact that ordinates for a single kernel function
get larager 1n both cases as the distance increases. TPS involves a
biharmonic function in two dirmernzions of the form:

2 1
rz log r with r = (x“+y2)‘

whereas "G 1nvolves a biharmonic function in three dimensions of the form:

pZeplop sumply r with r = (x2+y2+22y{

O Losin e et

T v*‘x!"
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Most references in the theory of elasticity deal more with two dimensional
theory than that of three dimensions. Nevertheless biharmonic functions
of both types show up 1n mathematical physics, particularly in cases in-
volving relationships of ootential, elasticity and hydromechanmics. How I
will show you several groups of equations and give brief comments on each

group.

MQ MODEL: Ji da, Qs = K (1)
Q=[x - x e (- v)? s 2" (2)
DATA EQUATIONS: “ da, Q5 = H; 1= 1,2,...,n (3)
Q1J } [(X1 B xj)z ¥ (Y1° YJ)2 * 62]]/2 (4)

In this group we see the original !'Q method. Ordinates of
H consists of linear combinations of hyperboloids centered
at data points. & was considered as a constant, whercas
we wi1ll see later that 1t can be treated aus the difference
between a constant Z, and a variavle Z

4 & -1
Ma"! MULEL: 6 :
;éﬁ daJ 0J T (5)
-1 [ 2 2 2]'”2
= {(x - y - « (7 -7
QJ ( XJ) + [y YJ) (Z ‘j) (6)
DATA ECUATIO 5 1
DATA NS ATl - =
0 S: G by day Q7] = 1, 1= 1,2,....n (7)
1 2 2 21712
e L AR A LA B IR

The reciprocal MQ model above 1s actually a point mass
anomaly model for disturbing potential T Q to the minus 1

15 a coniinuous reciprocal distance function in three vari-
ables. For computational convenience we can locate point
mass anomalies at a constant depth § = Z,. We can also
make all reasurements of T on the XY plane at Z = 0. Then
(Z-Z3) becomes the § in the MQ cquations of tte previous

group
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SOLUTIONS: OF POOR QUALITY (9)

[eo;] = o, [1]
CARECHMEY o

PREDICTIONS: [QPJ] [o”]" [H‘] - [Ep] (1)
o[ ()] [r)-[5, ] n2)

The solutions and predictions fer MQ and reciprocal MQ, as
above, follow the same basic pattern in each case. We
don't need to consider these details now since this is not
the main purrose of this paper.

LET §2 = (7 - zj)2 © (13)

1/2
men Qg = [ xf ety vE e (- zj)z] (14)

The equivalence previously mentioned and identified above,
causes the MQ basis function to be a Cartesian distance
function in three variables, analogous to the reciprocal
distance in three variables. The imnlication 15 present
then, that the undetermined coefficients daj in the two
cases should have the same physical meaning. This 1S veri-
fied by the mathematical theory of elasticity.

MQ 1tODEL (BIHARMONIC)

4 8 4 4 4 K
2 1.2 4 20 . 30,20 237 23°Q 250
Pe(PeQ) = 0 Q = — ¢+ d S —- v So=g =0 (15)
od v art axfart oSzt artex
4 n
v (Zj daJQJ> =0 (16)

3=

Any single Q or distance function as above satisfies the
biharmonic differential equation in three variables as
given. Thus a linear combination of all distance functions
used 1in MQ approximation 1s brharmonic.

Yy
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MQ~) MODEL (HARMONIC)
2,.-1 2, -1 2, -1
2 ;n-) 3°(Q7 ) , 37(Q 3 ) g (7)
vE(RT) s et -——7—l+ =
( ax Y 32
I Y
en, -
n "‘cnﬁ"“
o2 (Z da Q']) = 0 RS (18)
Fo IR

Q'1 as above, 1c the generating function for zonal harmon-
ics, and through the decomposition formula, leads to com-
plete spherical harmonics satisfving the Laplace differen-
tial equation. 1ihus a linear combination of reciprocal MQ
functions satis{ies Laplace's equation.

DUCHOR'S TPS:

2

Wip) = géﬁ |7 - al” log |p - q (19)

. 2 272
- = [ - xf ey <) ] (20)

The basic 1dca of Duchon's TPS 1s given in equations (19)
and (20) above J(p) 1s the deflection at tne point loca-
tion {XpYp) where a concentrated loed K is applied. (Xgq,
Yq) is a point located on the bounucry defined as a simple
support for the plate. D is the constant of structural
rigidity. Then (p-qi is the distance between 2 points in
the same plane. I'ote that if we let [p-qi = r then equation
(19) 1s 1n the simplified form kri loy ¢. Log r 1s the
well hnown logirithmic potential in 2 variables.

SuCnSh'S irCDEL:

¢ 2 27 2 2172
! r
ADIET RE SRR A L VJ)‘J log [(x - X)) ]

J:l

(21)

tak o+ asv byt £{x,Y)

Duchor's TPS model given above indicates that £(X,Y) is a
linear combination of terms r2 log r plus three terms that
physically account for rig:d bodgy displacements. These do
not afifect stress or strain in a thin plate

b2 adtaend

- — .- e e m e emmmas & e ms m W e . PR e e emmemmee v pe e e mnee e# R3 mmn m ks mes mar mas
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n 1/2
~ 2 \2 AN 2 - 2}

)=l
+ a]X1 + aZYi +ag = f(XI.Y‘) (i =1,2,...,n)

WITH TONDITIONS:

n n n )
= 0; AX. = 0 A.Y. = 0. 22
32;1 A & M 0 PR 0 (22)

p—

The above equations show that n measurements of stress or
displacement ordinates f£(Xi,Yi) are sufficient to determine
n values of upper case A coefficients (concentrated loads),
“hen 3 condition equations involving rigid body motion are
included in the zystem of equatioms.

ONE FORM OF HARMONIC-BIHARMONIC RELATIONS

X = PZQ + Y (23)
xs BIHARMONIC; o AND ¥, HARMONIC,

r, DISTANCE IR 2 CR 3 VAPIABLES

This relationship given above is one of several classical
statements concerning biharmonic-harmonic relaticns in the
theory of elasticity. It is applicable to both MQ and TPS.

CUCHON'S TPS BASIS

x=rioer+y  r= (X% 4 vY (24)

v = 0 BIHARMGAIC 1N TWO VARIABLES

Duchon's TPS 1s biharmonic in two vdariables because it can
be expressed as a combination of two narmonic functicns,
one of which 1s log r, harmonic in the two variables, multi-
plied by the square of r in two variables. The other
function 1s ¢ = a X + a ¥ + a_, also harmonic in two vari-
ables. 1 2 3

HARDY'S M3 BASIS

vE (e ey s (a2l (25)

4 b S AR 1) * » -
v Y = ¢ SIHARMONIC W% THRELR VAULABLES

T

e

S ]
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MQ is biharmonic in three variables because it can be ex-
pressed as a_combination of two narmonic functions, one of
which 1s MQ‘l in three variables, multirlied by the square
of r in three variables. The other harmonic function will
be discussed later.

Figure 1 iliustrates the cross scction of a sphere after
transformation of MQ and reciprocal I1Q to spherical coordin-
ates. We assume the sphere 1s an idealized solid elastic
body with constant density or density as a function of the
radius only, except for one mass clement. A mass excess

of daj at a single clement induces a disturbing potential
of the otherwise svnherical equipotential with respect to
the sphere. The nagnitude is greatly exaggerated to show
clearly the shape of the disturbed equipotential surface.
MQ‘1 approximation as a whole consists of a linear combina-
tion of ordinates of such disturbed surfaces.

ORIGITIAL DI

OF POOR QUALIY

N. POLE

FIG 1 DISTURBING POTENTIAL
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FIG. 2 BIHARMONIC DISPLACEMENT

Figure 2 is the same diagram except that it shows 1n exag-
gerated form the biharmonic displacement of the solid spher-
1cal body caused by the same point rass anomaly dvj. HQ
approximation as a whole consists of a llnear combinaticn

of ordinates of such disturbed elastic surfaces. Note that
the displaced surface is irside the spherical surface for

a positive anomaly, due to physical contraction of the

body. The negative displacement s least nearest the anomaly and increases
negatively as the spherical distance increases. An important point to be
visualized with this 11lustration s that the point mass anomaly dx_ 15
itself displaced radially invard {for a positive ancmaly) durina the inter-
action of the standard masses and the point mass anomaly. This change n
position induces a small change 1n the exterior disturbina potential.

This induced chanqe 1n the exterior harmonic function 15 probably associated
with the form of the harmomic-birharmonic relations 1llustrated earlier.

In brief there appears to be justification for addina three terms in cne
variable each because of three dimensional displacements in the solia body,
and possibly a constant term as well to completely fulfill the theory of
elasticity. Practically 1t douesr't seem necessary to include these terms
when the 1Q method 15 aoplied to non-elastic problems, as a general approx-
mmation scherme. 1 suspect the statement would be true for buchon's TPS.

MR |
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CONCLUDING RLMARKS

I wish to comnent briefly on a pessible reason why the MQ
methods gave generally better results than Duchon's TPS 1in
Franke's study. Duchon's method involves direct applica-
tion of externally concentrated forces at the surface of a
reference plane; therc are no body forces. The MQ methods
use body forces induced by ancmalous gravitation; there are
no concentrated external forces. Hence the MQ biharmonic
function is generally a smoother function than Duchon's TPS.
This may account for some differences in the approximation
prcperties of the two methods.
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BSPLASH: A Three-Stage Surface
. Interpolant to Scattered Data

By Thomas A. Foley
California Polytechnic State University
Computer Scienc® Department
San Luis Obispo

ABSTRACT
Given N distirct points (xi, yi) and 4 real numbers 25s
RSPLASH constructs a function G (x, y) that satisfies G (x‘, y1) =z,
2 .
for i = 1,..., N. This C° interpolant consists of a bicubic spline

anproximation and Srepard's bivariate interpolant.,
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1. Introduction

This paper presents a three-stage procedure that solées the
following bivariate interpolation problem. Given N distinct points
in the plane(xi, yi) and N real numbers z;, construct a function
G(x,y) that satisfies G (xi,yi) =24 for i = 1,..., . This is re-
ferred to as the scattered data interpolaticn problem because the
data points (xi’yi) are not assumed to fall on a rectangular grid.

The i~terpolation problem can be interpreted as fitting a sur-
face through N points in three dimensional space and thus has many
applications. In mineral exploration, exploratory wells are drilled
and the depths of various layers are recorded. Given this data,
surfaces representing these layers can be constructed using inter-
polation methods. Such an erample was studied by Robinson, Charles-
worth, and Ellis [9] in petroleum exploration. Foley [3] and [4]
used bivariate interpolation in the characterization of radio -
nuclide activity resulting from nuclear tests. Samples of activity
were measured at various locations, the (xi,yi) points, and the
magnitude of the readings were the z, 'S, The survey pager by
Schumaker [10] gives applications in medicine, computer aided de- -
sign, electronics and geclogy.

The new approach presented here 1s similar to the delta
iteration methods of Foley [31 and Foley and Nielson [5], but the
new method is more stable, visvally smoother on smooth data, and

it uses less storage. It is equally efficient on large data sets .-
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and is capable of smoothly filling in areas that are void of data.
This globally defined 1interpolant can be displayed by a three-
dimensional surface, a contour map, or by a table of inteipolated
z values.

The name of the algorithm is called BSKLASH because it uses a

bicubic spline approximation and a modified Shepard's interpolant.

B &0 Exm ool sy

The motivation for this approach is based upon the faci that many
methods that apply directly to scattered data do not yield smooth
or desirable surfaces. On the other hand, many methods that yield

efficicnt smooth interpolants only apply to data that fall on a

sminics SR S

rectangular grid.

[:pewez

2. Modified Shepard's Method

ol

5 It will bc convenient to use operator notation and to assume

that there is some underlying function f(x,y) defined at the data

Mot

points that satisfies f(x],y]) = 2 for i = 1,...,N. An casily

implemented scattered data interpolant is the rodified Shepard's

|yt

method described in Foley [3] that is defined by

o g2 44

ORIGINAL PAC 1S (N f(xyy)
OF POOR QUALITY L. ———  for (x,y) # (x;5.;)
1:] P)(X».Y) .- J J
N I - J=1,..., N
Y p, (xy)
S[f) (x,y) =< i<l
. f r » = » .
flx;u,) or (x.y) = (x,.y,)

.

i
(xi. yi) to its 5th nearest data point divided by four, and

where d] = (x - xi)2 + ({y ~ yi)z. R, is the distance squared from

d.{r, + d_)
pofx.v) = 2L 1|
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This method produces an interpolant based on the inverse of the

distance from a point to the data points. The proof of the following

theorem can be found in Foley Eg? and 11 Gordon and Wixom [I3].

Theorem 1

Given N distinct points (xi,yi), then

a) S is a linear operator;
b) S[f] (xi.yi) = f (xi,yi) for 1 = 1,...,N;
c) s{f] e c” (Rz), that is S[f] has continuous partial derivatives
of all orders for all (x,y);
d) % S[f] (x;.y;) = 0 and -g- SLF] (xgay;) = 0 for § = 1,...,H;
e) S[f] satisfies the max-min principle rzn‘n f(‘i’-"i) < SEfFMx,y) <
max f(x.,y;) for all (x,y); and R
i<N
f) S[f] is invariant under translations, rotations, and magnifi-
cations of the data points (x.,y:). ”
Properties a), b), and ¢) state that S[f] solves the scattered -
data problem with a cocntinuous function, while d) says that S[f] ¢
is flat at the data points. Property e) is important when dealing I
with data that has a large variaticn in z; in small regions. S[f]
will not oscillate violently as sore other rethods might. The I

final property implies that S[f] depends on the relative distances

Sompwav

between cata points, and not on the piacement of the axes, nor on

whether distances are measured 1n inches or mles.

- e

todified Shepard's interpolant is very fast computationally,

reguires very Ihttle storage, and 2asily gensralizes to higher i

dimensions. Unfortunately, cven though 3[f] € C” the plots are

not visually smooth.

Smgnpar e e s
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Figure 1 uisplays the plot of the bivariate function

(1) f(x,y) = .75 exp (- (9x-2)2 + (9y—§12)+ .75 exp(-§9x+1)2- 9y+1)
4 49 10

.5 exp(-(9x-7)2 + (9y-3)%) - .2 exp(-(9x-8)2 - (9y-7)?) ,
r

on the domain 0 < x <} and 0<y < 1.

From this surface, 1do data points were chosen whose (x,y)
coordinates are shown in Fiaure 2. Each point was chosen randomly
from a unifirm distribution on a square with side length 1/9 centered
at (i/9,j/5), 1,d = 0,1,2,...,9. This function and data are used
here because Franke [6] uced them as his primary test case in com-
paring many bivariate interpolants.

Figure 3 shows the mocified Shepard's interpolant applied to
this data. The maximum absolute error 1s .2408 and the average
absolute error is .0284. These eriors were corputed using the
differences at the 33 by 33 grid used to plot the surfaces. The z4

values range from .027 to 1.17.

3. Bicubic Splinas

Another major corporent of BSPLAIH 15 the bicubic spline that

solves the following gridded ddta interpolation p.oblem. Given

(XG , ZG1J).i = 1,...R%G and 3 = 1,...8YG, construct 2 function

- YG

H(x,y) that satisfies h(XGl,YG‘\ = 1G he corresponding operator

i3°
notations assures that there 1% sove uncderlying function s(x,y)

defined at the grid points that satisfies q(XG‘.YGJ) = ZG‘J.
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The points (XGi.YGJ) will be referred to as the rectangular grid
points.

The natural bicubic spline %nterpolant to g(x,y) over the grid
(XGi.YGj) is denoted by B[g] (x,y) and it solves the gridded inter-
polation problem B[g] (XGi,YGj) = g(XGi.YGj) for i = 1,...,NXG and
J = 1,...,RYG.

B[q] is formed by the tensor product of natural cubic splines
in the x and y directions. The function is a piecewise bicubic poly-

nomial of the form

3 3 iy

> X b Xy

1=0 =
on each rectangle determined by the rectangular grid points (XGi,YGJ).
It is pieced together smoothly so that B[g] has all of its second
order partial derivatives continuous. B[g] also minimizes the curva-

ture functicnal:

L(f) =fﬁf2,2(x:Y))2 dx dy

over all functions f(x,y) that solve the same gridded interpolation
problem and satisfies certain continuity conditions. Sece deBoor [1]
for a detairled description.

Other bicubic spline interpoiants exast that use different ernd
conditionsn. The natural end conditicns were used here primarily be-
cause they were easily accessible i1n the software package [.M.S.L.[8]
in the subroutine IBCIEU. This subroutine was (pplied to the test

function (1} using an egually spaced 9 by 9 grid on the unit sguare



G T AR MRS NN TS o EA I G N-o t  G iales S ey e ; T o
g&ﬁq‘n‘&ﬂ S T i b S0 W, #iwtﬁnﬁ;}aﬁm&; ERRY ARSI S e i) B R S e LT £ ;'Fr-‘; S
- .. - - \ )
]

i

s .
. - L -

; 154 .
and this is shown in Figure 3. 7he maximum absolute error is .0406

and the average absoluie error is .0033.

In many cases, this interpolant is a good choice for gridded
data because it is computationally efficient,visually smooth, it
belongs to Cz, it is globally defined, and it is easily accessible.

Unfortunately, it only appiies to gridded data.
4. BSPLASH

BSPLASH uses a bicubic spline and rodified Shepard's method
in the second and third stages of the procedure. The first stage
of the alogrithm 15 to generate a gridocd data problem. This con-
sists of defining the rectangular grid points (XGi.YGj) and the
values ZGiJ = g(XG‘.YGJ) using local least squares approximations.
The second stage is to Torm the bicubic spline through thesa points.
The final stage adds a correction term using Shepard's method to the
bicubic spline so that the scattered date interpolation problem is
solved.

BSPLASH allows the user to enter his cwn rectangular gridpoints
or else it ccrputes the grid for hwm, The graid algoritha is first
applied to the X, *5 and then to the Y3 'S, The objective is to

compute grad points that cover the data points (x).yi) proportion-

[Py—

2Yly to the density of the data points without having grid points

too close together or too far apart, and to have all the data

¢+

points fall inside the gria. There is a restriction that KXG < 25
and NYG < 25 for farge data sets.
Llet ¥ = XROU?-’D(\/:"T), k = TROUKD{N/M), HXG = M+2 and NYG

M2,

Sort t*. x-coordinates intc increasing order. Set XCZ to the average

st py ar = A
(V24 TL5 DY R SO SR

AT NS NSTAL IV
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of the first k x-coordinat. ., XG3 to the average of the next k small-

est x-coordinates,..., and XGM+] to the average of the k largest
x-coordinates.

let U = (XGM+] - XGZ)/(H-I). If the M grid points were equally
spaced, then U would be the difference between two consecutive grid
points. Set XG] =Xy - U and XGNXG = Xyt U so that all of the data
points fall inside the grid.

While the interior grid points are being computed, consecutive
grid points are compared to sce if their difference i1s between U/2
and 3*Uu, If their difference is less than U/2, they are considered
to be too close and they are averagea together thus reducing KXG by
cne. If their difference is greater than 3*U, a new grid point is
inserted at their midpoint and NXG is increased by one.

The y-coordinates of the rectangular grid are defined in the
same nanner.,

Figure § shows the results of applying this grid algorithm to
sets of data consisting of N = 100, 33, and 25 points. The grid
points arc where the orthogonal lines intersect. HNote that the
second highest horizontal line 1n Figure 5b 1is the average of two
grid lines that were too close together. A1l three of trese (x,y)
data sets were used by Franke [6] 1n his comparison of many bhi-

variate interpolants.

The rest of the first stage is to define the values ZG]j
g(XG],YGJ) at the grid points. For each of the grid points (XG],
YGj). find the seven nearest data points (xL.yk). To simplify the

notation, assuwe that the nearest data points to (XG‘.YGJ) are
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(x],y]),....(x7,y7). let d, = (xk-XGi) + (yk-YGj) , and note that
dy £ dy < ...< d;. Aweighted Teast squares fit to (x..y,.2.)
k=1,...,7, by a quadratic is formed and then it is evaluated at

(XGi,YGJ). That is, solve

& 2
(2) mn Z a;’ (g(xk’yk) - zk)

aj k=1

S = 2
for the aj , where g(x,y) ap +ayx ¢ agy + a,x + Xy gy,
Then define ZGij = g(XGi,YGj).
To add stability to this process, BSPLASH sets ZMIN = min

(z,,...,z7), IMAY = max (zl....,z7), and then defines the grid values

by
ZHIN if g (XGi,YGJ) < IVIN
ZGij = IMAX if g (XG,;,YG.J) > ZMAX
g(XGi.YGj) otherwise

The I.H.S.L. subroutine LLSQF is used ‘o compute 31135.-43g
for each of the grid points. This subroutine will properly handle
the case where the minimization problem {2) has many soluticns by
using the fit of lowest degree. -

This first stage can be used to define function values at any
point, but since this depends on the seven nearest data points, the
function may not be continuous. However, this weighted least
squares approach giyes a good iocal approximation to f(x,y) at the

rectangular grid points,
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The second stage is to form the bicubic spline B[g], where
g(XGi. YGj) = ZGij’ i=1,..., NXG, and ) = 1,...,NYG. Although this
generally yields a smooth approximation to f(x,y), it does not inter-
polate the scattered data (xi,yi.zi).

The third and final stage solves the scattered data preblem by
adding the correction term S[f - 5[g]] to B[g] to yield the BSPLASH
interpolant.

P[f] (x,y) = S[f - 8[q]] (x,y) + B[g] (x,y). The correction
term uses the modified Shepard's method to inté}polate the differ-
ences between z and the bicubic spline B[q] evaluated at (x‘,y‘),

i=1,...,N

Theoren 2
Given N distinct points (xi,yi) and N real nuzbers z; = f(x],y]).
then
a) P[f] solves the scattered data problem P[f] (x‘,yl) = f(xi,yl)
for v = 1,...,N; and
b) P[f] has all of its second order partial der: atives contin-
vous for all (x,y).
Proof: )
By b) of Theorem 1, it follows that PIf] (xi'y1)

= S[f - B[5]) (x,,¥,) * Be) {x.7,)

= f(x,.y,) - 8lg) (x,.y,) + Blg] (x,.y,)
e f(xi.yl).

Since P{f] s the sun of C” Shepard's correction function and the

C2 bicubic spline, 1t follows that P[f] belongs te C2 for all (x,y).

Q.E.D.
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Figure 6 shows the results of BSPLASH applied to the data sets
of N = 100, 33, and 25 points from (1) evaluated at the (x,y) points
shown in Figure 5. The maximum absolute errors are .0443, .2293,
and .1220 respectively, and the average absolute errors are .0060,
.0435, and .0277 respectively.

These discrete errors cempare favorably with the best of the
methods tested by Franke [6]. Th; vicual smoothness of BSPLASH would
also rank high with those methods. BSPLASH was applied to three
other .est function of Franke [6] on the same three data sets of
100, 33, and 25 points, and the results were accurate and visually
smooth.

The storage required for BSPLASH is very low. Besides the
storage of the data points (xi'yi’:i)’ i=1,...,H, less than 3N
locations are needed to store the grid, the grid's z-values, and the
local perameters T, vsec in modified Shepard's method. Most tri-
angular based interpolants reauire storage on the order of 30N and

2 elements.

some others require storage of more than N
The zxecution times can't be accurately compared because dif-
ferent computers were used. The results here were done on a Cyber
€0C 170/730. The overall computation tirme is on the order of Hz,
but the cbserved times appear linedar in N even when the grid algo-
rithm was used. The executxéﬁgtires for BSPLASH when N = 25,50,100,
200, 400, and 830 points were used were 4.5, 8.3, 17.2, 39.6, 104.5,
and 206.2 secconds respectively. Sore other bivariate interpolants

are on the order of N° and are not efficient for large N.
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APPLIDIX )

ESPLASH on I'ranke's Tosl bData

BSPLASU was applied to several sets of data that I'ranke[6]) used in

the coaparison of nany bivariate interpolants. Section 1 describes the

datld scts, OUTIGON—I—aptiitotrmmtt it A OO T TP e M ST S e £

o&s», section 3 contains the plots of the 3-D surfaces, and section «

lists the discrete orrors of the better methols testel by Pranke. The

&

first and fourth sections are ecdited xercies of I'ranke's technical

report. -

—yo—
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1.2.2. The Test Problems

The basic set of test problems consisted of six different test functions
over three different x-y point seis, and two x-y-2 point sets from the
literature, one of those used in a second version with one of the coordinates
scaled. Another interesting test was the computation of a “cardinal"
function obtained by sctting all function vaiues on a point set to zero, save
one.

Thé six test functions were all to be approximated on [0, 1]2. Four of
them were basically obtained from McLain's paper [39], but were translated
to [0, 1]2 from [1, 10]2 and some modified slightly to enhance the visual
hspccts of the surface. The other two were generated by the author to provide
a fundamentally different shape 1n one case {saddle}, and tc provide a surface

with a variety of behavior on one surface to serve as a principal test func-

tion.

The principal test function is given by

2 2 2
9x-2)" + (9y-2 - {9x+1 9y+]
f(xs y) = .75 exp[ - Brot) 4@y Ly v o exp[-ng) - o)

2 2 -
‘4 .5 exp[ - {9x=7) ! (9r=3)77 2 expl - (9x-4)2 - (9y-7)2).

This surface consists of two Gaussian peaks and a sharper Gaussian dip

superinposed on a surface sloping toward the first quadrant. The latter

was i1ncluded mainly to enhance the visual aspects of the surface, which 1s

shown 1n Figure 4.0.1.0,

The second test function, essentially obtained frem Mclain is

fz(x. y) = %{tanh(Qy - 9x) +1].

This surface consists of two necarly flat regions of height 0 and g. Joined
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by a sharp rise, alrost a cliff, running diagonally from (0, 0) to (1, 1).
The test surface is shown in Fiqure 4.0.2.0.

The third test function was generated by the investigator and {s

1.25 + cos(5.4yv)
s(1 + (3x - 1)4)

f3(x| y) =

This surface is saddle shaped and is shown in Figure 4.0.3.0.

The fourth test function, essentially cbtained from lcLain, is
2 2
1 8 1 1
fa0x ¥) = L expl - 3 + (- 1.

This surface is a Gaussian hill which slopes off in rather gentle fashion in
(o, 1]2. It can be seen in Figure 4.0.4.0.

The fifth test fuaction was also essentially obtained frem Mclain and is
2 2
81 1 1
felx, ) = 3 el - B(x-3) + (v-1) ).

This surface is a steep Gaussian hill which beccmes almost zero at the bound-

aries of the unit square. It can be seen in Figure 4.0.5.0.

\ly frmli McLai)/bnd j
N,

A4
\\\

Q/§.9
p)\
Shefvn in

There were three different sets of pownts over [0, l]? used 1n the tests,
The first set consisted of 1C0 points gererated by a pscudorandom nuaber
generator, one point 1n cach square of side % centered at (%. %) for

{1, J=1, ..., 10. This yields a set of scattercd poirts forced to have
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somewhat uniform density, although as can be seen in Figure 0.1.0.0. there
are lecally large variations in density. The trianqulated setof points is
als0 shown in Figure ¢.1.0.0. Part of the unit square is outside of the
convex hull. The points are listed in Table 1.

The second set of data cansists of 33 points and was generated by tne

investigator to purposcly have some areas sparsely populated by points

while other areas are not. This set of points is shoun in Figure 0.2.0.0.

[y

The points are listed in Table 2.

The third set of points was digitized by Gregory M. Nielson and is
similar 1n disposition to a set of points appearing in MclLawn [40]. This set
of points is shown in Figure 0.3.0.0. Part of the unit square is outside the
convex hull. The points are listed in Table 3.

Tuo sets of data were cbtained from the literature, and cne of these was
scaled in one variable to obtain another. A fourth set was used to generate
a "Cardinal Furction". The data given in Table 3, and shown in Figure 0.3.0.0.
was given the follo.ang function values: f(xk. fk) = 0 except
f(.1875, .2625) = .2. Here .2 was us?d for visual purposes rather than 1 as
would ordinarily be done for a true cardinal function. This gives some infor-
mation about the 1nfluence of one point cn the surface for roderate sized
point sets. Of the two sets of points from the-literature, one is from Akima
['] and was obtained during a study of waveform distortion. It is repeated
here 1n Table 5, and shewn in Figure 0.5.0.0. The second was obtained fron
Ferguson [14] and is repcated here 1n Tabie 6, and shown in Figure 0.6.0.0.
The sane set of data, but with the y coordinate multaipiied by three was
also used to show effects of scaling only one varmiable, and is shown in
Figure 0.7.0.0. For visual purposes, the function values given in Table 2

are actually .5 more than given by ferguson. As can be seen from Figure
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BSPLASH ON F3 (x, y)
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BSPLASH on F5 (x, y)
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Method

19.
21:

23

27:

16:
13:
14:
15:

28:

10:
13:
14:
16.

A.
“4.

28:

franke - 3

Akima

Arana Nod, 1
Hielson - Franke J
Kod. Cuad. Shepard
Avima liod. 111
Franie - TPS
Lawson

Kielson Minlorm
Hardy Quadric
Duchon TPS

Hardy Pccip. Quzd.
Foley 111

33
BSPLASH

frante - 3

AFira

Ama Pod 1
Kielson - Frarke Q
pod Quad. Shepard
Reira Mod. 111
Franke - TPS
Lawson

Nielson tiintlorm
Hardy Quadrlc
Quchon - P>
Hardy Recip. Quad.
Foley 11l
BIPLASH

frante - 3

Mara

phara Yod. 1
Nyelson - Frante Q
v54. Quad Shepard
Aama tad T
franke - TPS
Lawson

Mielson Mintorm
Parcy Quadric
Ducton TPS

Hardy hecip. Guad.
Foley 111
BIPLASH

. j100p

£ 22p's

- lfpfs

Maximum
Peviation

.0919
.0647
.0856
.0782
L0573
.0520
.0940
.0351

.0492
0225
.0518
.0247
.0636

OH43

Maximun

Deviation

.347
.158
197
.150
.184
164
.2‘8
.287

.150
137
.153
140
.296

229

Maximum

Deviation

240
134
.129
.153
.158
.155
.128
.202

124
119
J21
19
.165
ol
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Mean RMS
Peviation Deviation
.00812 .0148
.00787 L0125
.007¢4 L0133
.00741 .0122
.00785 .0128
.00729 0117
.00387 .0164
.00783 L0124
.00537 00940
.00181 .00357
.00525 .00647
.N0233 .00518
.00473 .C0541
» 0060
Mean RMS
Deviation Deviation
.0477 .0732
.0384 .0535
L0400 .0570
.0326 L0455
L0350 L0476
.0372 .0521
0346 .0517
L0462 .G557
L0305 .0437
0181 .0259
L0253 L0421
.0153 .0243
.03%0 .0546
0435
Mean FMS
Deviation Deviation
L0359 L0485
0282 L0336
.02&0 L0322
.0350 .0478
.0353 L0585
.0355 0484
.0267 .0374
0327 .0458
L0235 .0322
L0235 0322
L6253 .03:8
0214 0233
0195 L0310
LOXT7



oRIGIAL PREE

OF POOR QUALTY 4 ax

1: Franke - 3 .0518
4: Akima .0520
10: Akwma Mod. 1 .0473
13: Nielson - Franke Q .0721
t4: VMcd. Quad. Shepard .0468
16: Akima Mod. 111 .0558
24: Ffranke - TPS .0295
28: Lawson .0280
19: HNielson HinYorn .0424
¢t Hardy Quadric .0244
23. duchon - TPS .0344
27: «Hardy Recip. Quad. .0379
30: Foley 111 .0281

BSPLASH M oRTAY

- e

MEAN

.00786
.00303
00257
.00265
.00264
.00233
.00243
.00221

G018l
077
.00210
.00182
.00223

Cma'

Deviatiors from Cliff te<t surface, 100 points —

Table D.1.2

1. Ffranke - 3

§- Akira

*a;  Akima Mod. 1

vj- Nielson - Franke Q
14: Fod. Quad. Shepard
‘¢ Akira Mod., 11l

M: Franke - TPS

sr. Liwson

19: Nielson *lin%orm
N Hardy Quadric

33: Duchon - .S

J1: Hardy Recip. Quad.
1. Foley 111

BIPLASH

Deviations froa Cliff test surface, 33 points

Tabie 0.2.2

1: Ffranke - 3

4&: Akira

10: Alima Med.

13: Nielson - Franke Q
14: I%od. Quac. Skepard
16: Akara r'od. 111

24: fFranke - ¢S
28: lawsen

19: Nielson Mrrtorn
21: Hardy Quadric

23: Duchen - TPS

27: ‘bkardy Recip. Quad
30: foley 111

BIPLASH

Ceviations frcm SIaff test surface, 25 points

.0776
.0543
.0513
0878
.0876
.0680
.0561
.0956

.0582
.0577
L0526
L0200
G314

0493

101
.0399
.06987
.148
163
146
06
132

.0942
.099y
A0
<105
.0132

« 0779

~——

o

0124
.00350
L0074
.0137
021
.0106
.00913
.0126

03803
.0129
00777
.00853
L0165

sOF10

"

o

L0225
.0148
0143
L0166
L0165
L0164
0143
,0164

.03238
L0162
L0135
.0139
L0165
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.00.85

.£0602

.03532
.00683
.C0551
LU0ERD
00333

L0044

.C0334
00432
.00436
.02328
.0n419

0190
.0133
L0122
.0219
.0206
0176
.01e7
.0205

0140
.0170
L0134
0139
0262
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MAX, MEAM
Franke - 3 -0198 -00164
Nara .0274 .00224
Atanmag Mod. | L0254 .00198
Nicison - Franke Q L0168 .00110
Mod. Quued. Shepard L0125 .00112
Alwra Mod. 111 0142 .00105
fFranke - TPS 0165 00157
Lawson .0565 .00149
Hielson Minkernm .0195 00091
Hardy Quadric .00461 .00025
Duchon - TPS .00597 .00049
Hardy Recip. Quad. .00928 .00068
Foley 111 L1117 .00117
BSPASH 0188 .coI0
Deviations from Saddle test surface, 100 pownts =
Table D.1.3 3
Franke - 3 O 0121
Atama .0578 0110
Akima Mod. 1 .0578 0103
Nielson -~ Franke ..0679 00939
‘od. Quad. Shepard .0724 .00307
Akima Mud. 111 .0597 0104
Franke - 1PS .0662 0165
Lawson .0585 0133
Nielson MinNorm L0571 .0132
Ha,dy Quaidr.c 0262 .00442
Quchon - 1S 0574 00912
Hardy Pecip. Quad. .05N5 00571
Foley 111 .0885 .00858
BOPLASH 0723 0105
Peviations from Saddle test surface, 33 points
X
Franke - 3 .0588 RORA
Alima 08¢ 0121
Ahira Mod. 1 .08648 0119
Neelson - Franke Q .0794 0115
Fol. Quad. Snepard .0759 0114
&k]na Fod. 111 0787 0116
franke - TPS RAYAT] .00933
Lawson .0875 0126
Niclsan MinYorm .0704 J
kardy Quadric .0397 .8;2;0
Duchon - TPS .0588 -00310
bardy Recip. Quad. L0343 .00528
fFoley 11i .0823 .00853
DEPLASH 2097 06S

Deviations frem Saddle test svrface, 25 points S:*

3

.00294
.00423
.00367
.00206
.00194
.00202
.00273
.00359

.00200
.00052
.00092
.00135
.00196

.0224
.0165
.0i56
.0146
.0133
.0162
075
.0199

.0159
.00683
.0140
.00973
.0148

07N
.0202
.0203
.0189
.0183
.0189
01N
.0205

0172
.00952
.0137
.00935
0165
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10:
13:
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franke - 3 014 .00122
Akima 0101 00124
Atima Mod. 1 00675 .00102
Hielson - Franke Q .00517 .00058
Mod. Quad. Shepard ..00388 .002¢e5
Akima Mod. Il 00230 .00049
Franke - TPS 00560 .00103
Lawson .00899 .00061
Hielson MinHorm .00303 00047
Hardy Quadric .00102 .00005
Duchon - TPS 00294 .00017
Hardy Recip. Quad. .00227 00034
foley 111 .00604 .00283
BSPLASH L0077 0006
Deviations from Gentle test surface, 100 points .j;‘
Table D.1.4
Franke - 3 .0446 .00608
Akima L0167 00487
fkima Mod. 1 .0160 .00442
Nielson - Franke Q .0312 L0042
Mod. Quad. Shepard .0272 00451
Akima Mod. 111 .0204 .00394
Franke - TPS .0339 .00681
Lawson .0c69 .00552
Nielson MinNorm .0214 L0037
Hardy Quadric .03724 L0021
Duchon - TPS .0259 LC0S15
Hardy Recip. Quad. .0188 00206
Foley 111 .0349 .00438
RSPLASH +0319 004
Deviations from Gentle test surface, 33 points ~:C?
franke - 3 .0247 0049
Aki—a .0256 L0054
Akma Mod. 0248 Lo
lhelson - Franke Q 0340 00562
tod. Quad. Sheparc 0227 .Co52¢
Akvra Mod, 111 .0232 .023575
Franke - TPS L0245 L03340
Lawson .0234 02329
Hielson MinNorm 0161 Q0307
Hardy Quadric 00709 oMoz
Puchon - TPS L0128 00285
Hardy Recip. Quad. .00528 00255
Foley 11} .0224 L0435
BISPLnSH Lol L0039

Deviations frem {entle test surface, 25 points

Table D.3.4
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X
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.00189

0077
00142
.00033
.00089
.00070
0014
.00109

.0006%
L0001
.02030
.00052
00117

010

.00623
00573
00637
.0067¢
.00565

0107

.00815

03563

none
.Cuiu ’

007N
L0085

.0357%
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MAX. ﬁ&[ifihj

Franke - 3 .0348 .00228
Avama .0434 .00232
Akima tod. 1 0317 00215
lielson - Franke % .0206 00176
l'od. GQuad. Shepara 0218 00182
Alama lod. 111 0212 00N
Frante - TIPS .0284 00212
Lawson .0216 .00154
Nieison Min%Norm .0195 001
Hardy Quadric .00280 L0012
Duchon - TPS 0175 .00338
Hardy Recrp. Quad. .00736 L0000
Foley 111 .0143 03172
FSPLASH 0263 «ODIG
Deviations from Steep test surface, 10D points 3
}
Table D.1.5 s
frante - 3 .143 0162
Aama J15 L0120
Abyma Mod. 109 0113
tielson - Franke Q .0835 L0103
tad. Quad. Shepard 110 0113
AMamy Mod. 111 J15 .0119
Franke TIPS 150 0138
Lanson 139 L0123
Nielscn MinYorn 15 0103
Hardy Qurdric 0716 03350
Duchon - TIPS 149 L0132
Hard, Recip. Quad L0353 .GR378
foley 111 .16 L0143
&S PLASH o 1267 el |
Deviations freom Steep test surface, 33 points T
H
Table D.2.5 57
Franke - 3 3 0178
A L0534 0103
aa-a vod. 1 L0520 L0103
raelson - branke LQ550 N OGRN]
usd, 0t Sherard 0468 RUCRRR!
Mara o Mod T 0510 03723
frante - TIPS 0317 O o
Lawson L0455 010
hicleon thirtorn L0314 Qo7
Hardy (uadmic .01Ba NS RR
fuckun - IS 0233 (0w
Bardy 1 ocip o Cuad. 014 L0708
f’(\‘tz‘y il G 0N
SEpLAH WCHO2. OO 66
Teviatrons from Stoey test surface. 25 points l;:,
o 4

Tabice D.3.5

177

.00447
.00510
00436
.00337
.00361
.00337
.00418
.00323

.00229
.00031
.00217

.003/8
.00282

.0298
L0240
.0227
.0181
.0220
.02430
.0305
.0289

.0228
.0148
.0296
L0130
.0243

.0257
L0149
.0140
0127
.012

0123
L0300
.0235

RO
00065
03003
L0076
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Y
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Like noisy data generated by real valued fundtion 1n Rk
Function 1s relative 11kelivhood of sample 1 at that point,

Fit surface using Cross Validated liultivariate Thin Plate Spiines
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May 20, 1982

Professor Larry L. Schumaker
Department of Mathematics
Texas A & M University
College Station, TX 77843

Dear Larry:

Thank you for your kind attentions at the NASA Workshop on Surface Fitting.
You and your colleagues did a nice job of making us all feel at home. 1
regretted missing the panel discussion (and the party!). Perhaps you can
let me know some of what was said.

I have been thinking about what might be useful to NASA on Surface Fitting.
The only talk that really was on NASA problems was Heydorn's talk, which
focused on statistical methods. I happen to have had a slight exposure to
LANDSAT data from some University of Utah gecgraphers. The surface methods
customarily used seemed to b2 piecewise linear or piecewise bilinear, which
is a bit naive. Heydorn's talk contained an interesting picture of fields

of wheat, corn, or "idle". This screamed for Little's arbitrary quadrilateral
patches and/or Gregory and Charrot's putting trimngular patches into a system

of rectangular patches.

A rendering issue- I was surprised that NASA thinks it can vnderstand surfaces

from flat pictures. I think that interactive graphics rendering is the

absolutely bare minirmm for having the illusion of understanding 3D surfaces.

A milled model is better. Some of these points were made in the DoE article
by Barnhill and Chang which Chang referenced. This document might have some
utility toward NASA applications - let me know if you have a copy or not.

For arbitrarily spaced data when there is a lot of data, I think that adaptive

methods, such as in Vittitow's PhD. thesis at Utah, are a good idea.

In conclusion, I have the following broadly-based thoughts:

1. The richness of possibilities for surface representation: The most im-
portant thing about surfaces is to get one. Operation counts and all
that pale in comparison to getting some solution to the problem at hand.
Once a solution 1s found, it becomes rather routine to improve it.

2, Multidimensional problems 3D and 4D surfaces are what have research
significance. Curves have been over-studied, even though there remain

manswered questions, e g., pararetrization. Butr just to say '"'3D surfoce"

is insufficient. One must tailor the surface to the problem at hand.
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3. What can NASA do with its money to achieve Surface research?
a) Research grants to individual groups.
b) Consultants for their labs.
These are both standard and will produce results.

Let me suggest something new:

c) Research grant to two groups who would collaborate on MASA-
related Surface problems. (E.g., Barnhill's grouwp and Schumaker's
groum. )

Why could this be good? Answer: the cross-fertilization would produce
more than the sun of the parts. This would be true of both the research
and application aspects.

We can explore these thoughts at greater length after I hear from you.
Commmication: My office phone number is (801), 581-7916 and, if I'm not
there, Ms. Sylvia Morris' number is (801), 581-7710. A choice of times to
call back would be useful.

Best regards,

Robert E. Bamhill

Professor of Mathematics and
Professor of Computer Science
/ s

cc and tharks: Professor Larry F. Gusewan, Jr.
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