NASA CONTRACTOR REPORT 165744

CONSIDERATIONS IN THE DESIGN OF LARGE SPACE STRUCTURES

John M. Hedgepeth, Richard H. MacNeal*,
Karl Knapp, and Charles S. MacGillivray

Astro Research Corporation
Carpinteria, California 93013

*MacNeal Schwendler Corporation
Los Angeles, California 90041

CONTRACT NASI1-15347
August 1981

NANASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665



TABLE OF CONTENTS

CHAPTER 1: DISTURBING TORQUES AND POINTING
ERRORS - LARGE EARTH-ORIENTED

MICROWAVE REFLECTORS . . . + ¢ ¢ « o o« o o « o =« 1
CHAPTER 2: EFFECTS OF PHASE ERRORS

ON ANTENNA PERFORMANCE . . . . . « « « s « « « o 103
CHAPTER 3: DEPLOYMENT OF FOLDED FOIL SURFACES . . . . . . . 159

CHAPTER 4: METEOROID DAMAGE TO ROD-TYPE
STRUCTURAL ELEMETNS . . . + ¢ « ¢« ¢ « « o« « « » 219

iii



CHAPTER |

DISTURBING TORQUES AND POINTING ERRORS
FOR LARGE EARTH-ORIENTED MICROWAVE REFLECTORS

by
Richard H. MacNeal



PREFACE

The successful performance of any structure depends largely
on the identification of the critical or primary loads and design
criteria on which the design is based. The future promises large
structures which must be deployed, erected, assembled, or fabri-
cated in space. For such structures, which will not be required
to face the launch environment, the primary design requirements
will be derived from the space-flight environment and will deal
with phenomena as primary criteria which have been considered as
only secondary in the past. The design of such genuine "space"
structures will require a solid foundation of critical criteria.

Astro Research Corporation has a contract from NASA Langley
Research Center to study critical design criteria for large space
structures. The objective is to identify and establish critical
baseline design requirements for a family of structures by a series
of rational parametric analyses. The results, presented clearly
and in detail, should improve the basis for future space structures
system and technology efforts. They will also form the beginning
of the needed solid foundation of design criteria.

This report is one of a series dealing with critical design
requirements for large space structures. In particular, this
chapter investigates the disturbing torques on large Earth-oriented
parabolic reflectors and of methods to control the resulting point-
ing errors. The chapter considers an altitude range and ranges
of reflector size, mass density, focal ratio, and pointing error
which are sufficiently broad to cover most applications. This
chapter was prepared at MacNeal-Schwendler Corporation under a
subcontract from Astro Research Corporation.
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LIST OF SYMBOLS

A. Root Symbols

A = area
B = magnetic field intensity
C = dimensionless coefficient
D = diameter of reflector
f = focal distance
g = damping coefficient
G = acceleration due to gravity at Earth's surface
h = altitude
H = angular momentum
I = moment of inertia; current
Isp = gpecific impulse
k = dimensionless coefficient
£ = distance
m = mass
m' = mass per unit area of reflector aperture
M = moment
p = pressure; d/dt
r = radius
R = distance to center of Earth
R' = resistivity (ohm-meter)
t = time
T = tension
v = velocity; volume
x = distance from c.g. in forward direction along flight path



distance to right from c.g., looking forward
distance from c.g. downward toward Earth
angle of attack; dimensionless coefficient
angle between sunline and normal to surface (or pointing axis)
small number

density

stress

roll angle

pitch angle

yaw angle

frequency, rad/sec

orbital angular velocity, rad/sec

Subscripts

a , anchor

Cc

d

control

drag

expelled mass

steady value; overturning moment
inertia

moment; mission

reflector

solar radiation pressure

inertia wheel




SECTION 1
INTRODUCTION

One of the earliest types of large space structures will be parabolic
microwave reflectors with diameters ranging from 100 meters to 1000 meters.
An important application of such reflectors will be to conduct surveys of
the Earth's surface in order to obtain prompt énd detailed information re-
garding oceanographic and biological phenomena.

This chapter is part of a study of large space structures undertaken
by Astro Research Corporation for NASA under Contract NAS1-15347. It reports
the results of a general investigation of the disturbing torques on large
Earth-oriented parabolic reflectors and of methods to control the resulting
pointing errors. The chapter considers am altitude range and ranges of
reflector size, mass density, focal ratio, and pointing error which are

sufficiently broad to cover most applications.



SECTION 2
MISSION PARAMETERS AND CONTROL SYSTEM FUNCTION

The range of mission parameters to be investigated is shown in Table 1.
The function of the control system is to maintain the pointing accuracy within
the range of tolerance indicated in Table 1 (10-2 to 1072 radian), No tolerance
is given for the angular deviation about the pointing axis (yaw direction), but
it can be assumed that some tolerance must exist, if the incoming radiation is
polarized, or if the microwave beam is to be electronically scanned.

Since the orbit is assumed to be circular, the nominal pointing direction
is toward the center of the Earth (geotropic). Thus, the vehicle must rotate
at constant angular velocity once per orbit in the pitch direction. No excur-
sions of any kind from this pointing direction are desired.

It will be noted from Table 1 that the ranges of the mission parameters
and the pointing error tolerances are very broad. As a result, no single
type of control system is optimum over the entire spectrum of parameters
and tolerances. Unconventional control systems should be considered because

the size and mass density parameters are outside the current state-of-the-art,

10



SECTION 3

OVERTURNING MOMENTS AND POINT ERRORS DUE TO ENVIRONMENTAL EFFECTS

The principal potential sources of pointing error in the vehicle's
operational enviromment are

1. Temperature Gradient and Thermal Shock
2. Atmospheric Drag
3. Solar Radiation Pressure
4, ﬁicrometeoroids

5. Gravity

Each of these items is discussed in separate subsections. Figure 1
summarizes and comparés equivalent loading pressures as a function of orbital
altitude due to atmospheric drag, solar radiation pressure, and the combined
effect of gravity gradient and unsymmetrical mass distribution. The follow-
ing conditions are assumed in Figure 1.

® Drag Coefficient, Cp = 2.5

® Normal incidence and perfect reflection of solar radiation

® Worst case orientation (45°) of the mass unbalance (mass per

unit area times distance) from the geocentric direction, i.e.,

the pointing axis.
Within the range of orbital altitudes considered in this study (200 km to
geosynchronous), one or another of the three effects dominates the others
at different altitudes.

Maneuvers are not a source of pointing error, because it is not re-
quired that the vehicle exercise maneuvers, Moments due to interaction
with the Earth's magnetic field, which are significant for some spinning
spacecraft, are not considered to be significant for the mission under
consideration. They can, however, be used as a means of active control,

see Secticn 4,6,
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3.1 Temperature Gradient and Thermal Shock

Temperature gradients occur for various reasons including the facts
that some parts of the vehicle are shaded from the Sun by others, and that
the entire vehicle may pass into the shadow of the Earth. The main effect
of temperature gradient on pointing accuracy is to cause thermal strains
which distort the shape of the reflectof and thereby change the pointing
axis. Such errors cannot be detected by simple devices, and they are
beyond the scope of the present investigation. Appendix A includes a very
simple analysis of the effect on pointing accuracy of thermally induced
length changes of the feed supports, It is shown that the pointing errors
in radians is of the same order of magnitude as the differences in the
thermal strains, and that the allowable differential strain decreases as
f/D increases.

The effects of thermal shock caused by a rapid change in temperature
are similar in nature, except that inertia forces are brought into play.
Thermal shock occurs when the vehicle passes into the Earth's shadow. At
500 km altitude, for example, the time to cross the penumbra is about 8
seconds, so that structural modes with periods this long or longer will
respond dynamically. Cumulative changes in the pointing direction due to
nonlinear kinematic effects will be much smaller than the linear effects
and may be disregarded, provided that some form of directional stability

is provided.
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3.2 Aerodynamic Drag

Newtonian flow theory may be used to estimate the aerodynamic forces
and moments at orbital altitudes, In Newtonian flow, the pressure is normal

to the surface and has the magnitude

p = -%—sz Cy * sinZq (1)
where
1 v2 = dynami
-pVe = ynamic pressure
Cy = normal force coefficient (2.5)

o = angle of attack

Both density and velocity are functions of altitude. The following table

gives values of p vs. altitude for o = /2.

h Py = % ovZcy

300  300x10~°

400 60

500 20

600 6

700 2

800 .8

900 A

1000 0.15

It is noteworthy that P; is less than Pg» the solar radiation
pressure at normal incidence, for altitudes greater than 800 km, see
Figure 1,

If the vehicle is symmetrical, the only component of moment due to
aerodynamic pressure is in the pitch direction (normal to the plane of the
orbit). Incidental or accidental lack of symmetry causes small moments in

the roll and yaw directiomns.
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If the surface of the reflector is smooth and if it is assumed, for
convenience, to be spherical, then, clearly, the center of pressure passes
through the center of the sphere. The moment arm between this point and

the center of gravity is slightly less than 2f, where f is the focal distance.

An expression for the moment is
4 .

where D is the diameter of the reflector and Cm is a coefficient which

depends on the focal ratio as shown in the following table

f/D C

'm
0.5 .0117
1.0 .00277
2.0 .000672

The values of Cp are derived in Appendix B. If the surface of the reflector
is not smooth, (for example, a surface consisting of a grid work of wires)
the force per unit area will be greater, but the moment arm will be less,
resulting in a moment coefficient of the same order as Cp in the table shown
above., It is also possible, with non-smooth surfaces, to balance the drag
forces by design so as to achieve zero net pitching moment.

In order to appreciate the magnitude range of the pitching moment due
to aerodynamic drag, consider the following table which records My vs. D and

£/D for h = 500 km.

O 100m 300m 1000 m
£/D M (Newton-meters)
0.5 1.9 49.7 1842
1.0 0.5 11.7 434.5
2.0 0.1 2.9  106.1
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For h = 300 km, the moments are an order of magnitude larger and for
h = 700 km, they are an order of magnitude smaller. For non-solid surfaces,
the moments should be reduced by the surface solidity ratio.

Since the orientation of the vehicle remains constant with respect to
the flight path, the dynamic component of aerodynamic moment is very small,
Control surfaces may, however, be used to produce dynamically varying aero-

dynamic moments, see Section 4.4,
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3.3 Solar Radiation Pressure

Solar radiation pressure is a significant source of overturning moment
for large spacecraft. For a perfect reflector, the pressure is normal to

the surface and has the magnitude
= 2
P = pg cosy -(3)

where pg = .9x10™° N/m? near the Earth
Y = angle between Sun line and normal to surface,
For a perfectly absorbing surface which radiates equally from both sides,

the pressure is directed away from the Sun and has the magnitude
p = ..]; p CcOS (4)
2 Ps ©O%Y

Equation (3) will be used for the purpose of estimation, except that Pg
will be reduced to ,75x10’5 N/m2 to account for absorptivity.

A method has been developed in Reference 1 to calculate the moment
due to radiation pressure on a perfectly reflecting cylindrical segment
of small included angle. The moment per unit length about the midchord

of the strip, as predicted by the method, is

my = I% pSC3 sin2y/R, ' (5)

where C is chord of the cylindrical segment, R. is its radius of curvature,
and y is the angle between the normal to the surface and a line pointing
at the Sun. Note that the magnitude of the moment is maximum for y = 45°
plus multiples of 90°., For Sun angles near 90° and 270°, some parts of the
reflector shade other parts and Equation (5) becomes inapplicable, although

it is clear, in any case, that the moment should change sign near y = 90°,
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Equation (5) is adequate to make rough estimates of the moments on a

spherical reflector, with the following identifications:

C =D, the diameter of the spherical reflector

R, = 2f, the radius of the spherical reflector

mQ = Eﬁ
c  mp s the moment per unit area
4

then

My = ks%psD'? (6)
where

kg = 2—1—% sin2y (7

The following table evaluates kS for various values of the focal ratio,

L 4

£f/D, and y = 45°,

£/D kp
0.5 .0833
1.0 .0417
2.0 .0208

Since the axis of the reflector points toward the center of the Earth
at all times, the angle between the Sun line and the axis will vary in a
manner that depends on the orbit, If the Sun line is normal to the plane
of the orbit, then y = 90° at all times, and the overturning moments are
small and steady. If the Sun line is tangent to the plane of the orbit, ¥y
will rotate through 360° in one orbiéal revolution and the pitching moment

will exhibit a strong 2/rev component. Such trajectories may also pass

17



through the Earth's shadow, further complicating the harmonic content of

the overturning moment. The transfer from light to darkness through the
penumbra at an altitude of 500 km requires about eight seconds which is less
than one-thousandth of the orbital period. The gradient of light intemsity
across the reflector disk is not significant during passage of the penumbra,
which has a length of 60 km at 500 km altitude. In addition, the angle be-
tween the Sun line and the plane of the orbit will show an annual variation,
unless the orbit is in the ecliptic plane.

For non-solid smooth surfaces, ﬁhe moments should be reduced by the
surface solidity ratio. For a surface consisting of wires with circular
cross-section, the moments will be zero unless some parts shade others.

For real structures, the calculation of ks, in Equation (6) will require

detailed analysis.
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3.4 Micrometeoroids

A worst case analysis of the pointing error due to meteoroid impact
is worked out in Appendix C. It is shown there that the maximum error
angle due to multiple impacts of small meteoroids (micrometeoroids) is

1y2
Pmax = Eg?m3g)1/2 (8)
where k is a constant, w is the natural frequency in pitch, and g = 2C/Cc
is the damping coefficient of rigid body pitching oscillations.

In Equation (8), it is assumed that the reflector is a shell of uni-
form thickness which is penetrated by large micrometeoroids. Oﬁen con-
struction, or concentrated reinforcement, increases the probability of
severe structural damage and occasional large pointing disturbances due
to heavy impa;ts.

If the following worst case values are assumed:

6. .. = 1077 radian

max
1 = 2

m' =1 kg/m
D=100m
w = 10-3 rad/sec (approximate orbital frequency

for altitudes below 1000 km)

then the required amount of damping is g = 7.3X10_4. This is a very small
value which should be exceeded for other reasons.

Although micrometeoroids do not appear to be a significant source of
pointing error for the range of vehicle parameters considered in the present
study, it is clear from Equation (8) that their effect is magnified for the

smaller, denser vehicles which typify conventional spacecraft design,
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Also, the possibility of severe structural damage due to meteoroids
should not be overlooked, particularly for vehicles with a large running
length of structural reinforcement., Redundant design is the order of the

day for such members (see Reference 2).



3.5 Gravity Gradient

Gravity gradient is a strong source of overturning moment for orbiting
spacecraft which are required to point in arbitrary directions. 1In the
present case, the desired pointing axis is toward the center of the Earth,
and the vehicle is in a circular (or nearly circular) orbit. For this case,
the vehicle can be designed so that gravity gradient is a source of stability
rather than a source of disturbing torque. If the principle axis of inertia
with the least polar moment of inertia is aligned with the pointing axis,
then gravity gradient will tend to resist overturning moments (see Appendix
D). If, in addition, the intermediate principle axis of inertia is aligned
with the flight path, gravity gradients will tend to resist yawing moments
(moments about the pointing axis).

If the principle axes of inertia are not aligned with the pointing axis
and with the flight path, gravity gradient will produce moments whose magni-
tudes may be computed by Equation (6) of Appendix D. They are proportional
to the cross-products of inertia which are under design control (within manu-
facturing tolerance),

A more serious requirement is that the pointing axis be the axis of
least polar moment of inertia in order to achieve stability. This is
illustrated by the following table which indicates the minimum ratio of
feed mass to reflector mass required to obtain stability for reflectors
with various f/D ratios. (The mass of the reflector is assumed to be uni-

formly distributed and the feed supports are assumed to be massless,)

£/D mfeed/mrefl.

0.5 .50
1.0 .07
2.0 .015
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Since the indicated feed mass may be larger than that desired for
other reasons, a potential stability problem arises which can be solved
either by placing additional mass on the pointing axis or by providing an
active control system., This subject is treated later.

Another important effect is that, if the orbit is noncircular, the
pitching angular velocity required to point the reflector toward the center
of the Earth is not constant. This effect, although important, is beyond
the scope of the present investigation. It results in a scanning velocity,
as measured at the surface of the Earth, that is nonuniform, but predictable.

The effects of variations in the magnitude of the gravitational constant
(oblateness) will be discussed later in connection with the stability of a

gravity-gradient control system, Section S5.1.
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SECTION 4
CANDIDATE CONTROL SYSTEMS

As applied to attitude control, a control system consists of a means
to detect angular error, a means to apply a mechaniccal moment to correct
the error, and a means to modify the moment in response to the error. A
control system is passive if all three elements of the system are combined
in the same mechanism, Otherwise, it is active. The advantages usually
attributed to passive control systems are that they are more reliable and
less subject to instability. Their principle disadvantage is larger weight
for the same error.

Emphasis will be placed, in the present discussion, on the means to
apply a moment. The other elements of an active control system are con-
ventional and have no unusual requirements in the present application.

The source of moment to correct angular error may either be internal
(expelled mass or stored angular momentum) or it may be external, deriving
from environmental effects such as gravity gradient and solar radiation
pressure. The external sources of moment are particularly interesting for
the present application because their intensity is weak compared to internal
sources, and consequently they require large physical dimensions in order to
be effective. For the same reason they are not particularly attractive for
small spacecraft,

The properties of seven different sources of control moment are
summarized in Table 2. The first three employ internal sources of control
moment and the last four employ external (environmental) sources. Formulas
for the control moments provided by each of the seven sources are given in

Table 3. Each of the candidate control systems will be discussed in separate
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subsections, but it is useful to examine the summary information presented in
Tables 2 and 3 before going into the details, {ﬂ

It will be noted from Tables 2 and 3 that the internal sources of
control moment are not altitude dependent, in contrast to the external
sources which are, with the exception of solar radiation pressure which
depen&s only on distance from the Sun. The effect of radiation pressure
is, however, so weak that it is masked by aerodypamic pressure at low
altitudes, as indicated in Table 2, The same is true of éravity gradient
and the Earth's magnetic field with the added restriction of a practical
upﬁer altitude limit due to 1/R3 decay of both effects (see Table 3, last
column)., Aerodynamic pressure decays rapidly with altitude and is unusable
as a source of control moment above 1000 km altitude. Thus, it is seen
that no single external source of control moment is practical within the
entire altitude range of the present study (200 - 30,000 km).

The practical size ranges shown in Table 2 are derived from detailed
analysis supporting the present study, but they can be inferred, to some
extent, from the formulas presented in Table 3 and from previous discussion.

The discussion of Section 3 showed that aerodynamic pressure and solar
radiation pressure are the largest sources of overturning moments for the
present application. Therefore, the use of the same sources to provide
control moments should not result in any preferences with regard to size.,
The control moment available from gravity gradient, on the other hand, is
seen to depend on the fourth power of vehicle size rather than on the third
power., Thus, gravity gradient should be a powerful source of control moment

for large vehicles, as indicated in Table 2.




The instantaneous value of the control moment available from expelled
mass can be very high, but the average long term value is limited by weight
considerations. Thus, the major limitation on the use of expelled mass (in
particular, chemical propulsion) is the duration of the mission, which must
be long for large expensive spacecraft in order to return initial invest-
ment. The size of the vehicle does not directly affect the effectiﬁeness
of expelled mass relative to aerodynamic pressure and solar radiation
pressure,

Control systems which utilize stored angular momentum are penalized
in the present application by a limitation on their size and by the constant
vehicle angular velocity required by geotropic pointing. The size limita-
tion derives from the fixed diameter of the launch vehicle and from the
assumption that it will be impractical, for the foreseeable future, to
construct a high performance inertia wheel in space., Fixed size degrades
performance relative to envirommental effects because the stored angular
momentum, H, is proportional to the diameter of the wheel, given a fixed
mass and optimized material selection, whereas the overturning moments
are proportional to the cube of the diameter of the vehicle.

Geotropic pointing limits the axis of the wheel to be the pitch axis
(normal to the orbital plane) with the result that control from stored
angular momentum can only be achieved by a combination of momentum bleeding
(pitch axis) and gyrostabilization (roll and yaw axes). Gyrostabilization
is particularly weak for large vehicles as shown by the f&rmula in Table 3.

The conclusions in Table 2 regarding use of the Earth's magnetic field

are based on a study, Reference 3, in which the vehicle was very large
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(1500 m) and very light (.00l kg/mz). For this case magnetic field inter-
action appeared to be a very effective means of control.

The answers to the questions regarding passive and active control
posed in Table 2 are in most cases self-evident, particularly if the re-
quirements of the present application are considered. For example, a
passive control system based on aerodynamic pressure (i.e., simple aero—
dynamic control surfaces) is possible because the velocity vector has a
fixed orientation with respect to the vehicle. Solar radiation pressure
cannot be so used because its direcfion and magnitude change continuously

relative to vehicle axes,
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4,1 Expelled Mass

If gas jets are placed at four equally spaced points on the perimeter
of the reflector, then the average available long~term restoring moment

about a transverse (pitch or roll) axis is

M, = G mﬂt%in D 9)
where G = acceleration of gravity
m, = stored mass of expellant
Isp = specific impulse
D = diameter of reflector
t, = mission duration

In order to estimate the required value of m,, assume that M, opposes
an overtﬁrning moment due to solar radiation pressure. Solar radiation
pressure provides a good example because it is independent of orbital
altitude. Equations (6) and (7) of Section 3.3 provide an expression for
the maximum overturning moment due to radiation pressure, If it is
assumed that f/D = 1,0, and that the average overturning moment is equal

to one-half of the maximum value, then the overturning moment is
- . 3
M, = .0208 7TPS D (10)
In Equation (9), substitute

m = c-—----D2 (11)

27




Then, by equating Me to Mo

; .0832 p_ t_
m, = (12)
G ISP

which shows that, m', the propellant mass per unit of reflector area, is
e

independent of vehicle size. As an example, select

.75x10™° N/m?2

Pg =
ty, = 10 years = 3.15x108 sec
G = 9.81 m/sec?

ISp = 200 sec

where the value of I,, is typical for chemical propulsion,

P

For this example, M; = ,1002 kg/mz. Referring to Table 1, the range
of the mass per unit area of the reflector is from .0l to 1.0 kg/mz. It
is seen that the required propellant mass is excessively large, at least
for the low range of reflector mass density.

The required propellant mass to overcome solar radiation pressure can
be reduced dramatically by using open wire construction for the reflector
rather than solid construction, as mentioned in Section 3,3,

Much lower values of mé can be achieved by using solar electric pro-
pulsion (ion propulsion) which electrically accelerates charged particles.
Energy is provided by solar cells, Values of Isp of the order of 10,000

are technically possible for ten years of continuous thrust, Reference 4,

but the level of technical complexity is high.

28




At low altitudes an exactly similar method may be used to estimate
the expelled mass required to resist overturning moment due to aerodynamic
drag. A related problem, which may set a minimum feasible altitude, is
orbital decay due to aerodynamic drag. Mass can be expelled continuously
at a low rate to resist the drag force. The force exerted by expelled mass

is

F, = T (13)
The drag force for a smooth reflector is

The drag coefficient Cq is evaluated in Appendix B as a function of f/D.
For £/D = 1.0, Cq = -00138. Using this value, the required expelled mass

per unit area is, from Equations (11), (13) and (14)

.00138 py t )
T T “m_ (15)

m' =
e
P

As an example, select
m = .0l Kg/m?
th = 10 years = 3.15x108 sec
G = 9.81 m/sec?
ISp = 200 sec
and calculate Pq and the corresponding altitude. For this example Pq =
4.51:&:10-5 and the altitude is, from the short table given in Section 3.2,
about 650 km.‘ Increasing the expellant mass by a factor of ten decreases
the altitude to about 450 km. The use of solar electric propulsion would
appear to be the only practical method to achieve even lower altitudes for

the application considered in this report.
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4,2 Stored Angular Momentum

As indicated in previous discussion, stored angular momentum is not
an attractive source of restoring moment for the application treated in
this report.

As an exercise, consider the use of inertia bleeding from a wheel
mounted parallel to the pitch axis, which is the only possible axis, given
a geotropic pointing axis. The available angular momentum of an inertia

wheel is, assuming maximum efficient use of materials,

H = rmw\/-g- (16)

where r = radius of the wheel

m, = mass of the wheel
g = allowable material stress
p = material density

The average restoring moment is
M, = H/ty (17)

where ty, is the mission duration. The ratio of the restoring moments
available from an inertia wheel and from expelled mass is, from Equations

(9), (16) and (17)

E@E(E) e

e e
G Isp
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For graphite composite, which is probably the best available material,

5%x108 n/m2

(o]

1522 Kg/m3

p

and Vo/p = 573.2 m/sec

Thus, using G = 9.31 n/sec? and ISp = 200 sec

&= 116 (%w_) (%) (19)

e e

In order for the inertia wheel to be competitive with expelled mass,
it is seen that the radius of the wheel, r, should be of the same order as
the diameter of the reflector, which is considered to be impractical if the
required value of r is greater than the radius of the launch vehicle, as
previously discussed. This result applies only to the average moment and
not to dynamic variations. In the case of the latter, the momentum wheel
is greatly superior to expelled mass because it does not run down.

For moments whose axes are normal to the axis of the wheel (roll and
yaw axes) the inertia wheel acts as a gyrostabilizer. The equations for

motion about the roll and yaw axes are, in matrix form,

[_’322_'} _HR_] 1_"_} - {_”3_ (20)
-Hp | Lp2 [l M,
where X = roll axis

z = yaw axis

¢ = roll angle

Y = yaw angle
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moment of inertia about roll axis

o

I, = moment of inertia about yaw axis
p = d/dt
H = angular momentum of inertia wheel,

For the case of a steady rolling moment, M,» Equétion (20) may be

solved to give

I
T
(21)
v o= XKt
H

Both I, and M, increase rapidly with vehicle size, while H is fixed
by dimensional constraints. Thus, gyrostabilization becomes increasingly
less attractive as the size of the vehicle is increased. Consider, for
example, that M, is equal to the maximum moment produced by solar radia-
tion pressure on a reflector with £/D = 1, The moment, obtained from

Equation (10) with p, = .75x10™> N/m?, is

M, = 1.23x 107/ p3 (22)

The angular momentum for the wheel, obtained from Equation (16) with

r = 2m, and \/;7;—= 573.2 m/sec, is
H = 1146 m, (23)

An approximate value of the polar moment of inertia of the vehicle is
2

1, = %mrD (24)
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where m,. is the mass of the reflector. Using Equatioms (22), (23), and

(24), the roll angle ¢ computed from Equation (21) is:

¢ = 1.17 x 10714 o _p/m? (25)
w
Since
= 1 p2 gt
M, L% m! (26)

where m' is the mass per unit area, Equation (23) can be written
w

6 = 1.49 x 10714 m'D3

(27)

If the mass of the inertia wheel is permitted to be ten percent of

the mass of the reflector, then

- 3
¢ = 1.49 x 10712 —27 (28)

Both D and m' may vary over wide ranges as indicated in Table 1., The
most favorable values of D and m' are D = 100 m and m' = 1 kg/mz. In this

case,
6 = 1.49 x 107® radian (29)

The least favorable values of D and m' are D = 1000 m and m' = .Ql kg/mz.

In this case

¢ = .149 radian (30)
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The value given by Equation (29) is less than the smallest pointing error
tolerance listed in Table 1, while the value given by Equation (30) is
greater than the largest tolerance. Note that these values are instanta-
neous values,
The yaw angle due to steady rolling moment, obtained from Equation
(8), using Equations (22), (23) and (24) is
vy = 1.37 x 10710 D ¢t (31)

o'
w

Assuming t = 10 years = 3,15 x 108 sec, and using the favorable values

D = 100 m and m; = 0.1 kg/mz, produces
Y = 43,16 radians (32)

which indicates the inability of the gyrostabilizer to resist steady
moments for long time periods,
In summary, the prescribed spectrum of mission parameters does not

appear to favor a control system based on stored angular momentum.,
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4,3 Gravity Gradient

Gravity gradient is a strong candidate for control of the vehicle
considered in this report, because the pointing axis is geotropic and
because the diameter of the reflector is large. Large diameter favors
a gravity gradient control system because the control moment is pro-
portional to the fourth power of diameter, which is a higher power than
that for any other candidate system.

A detailed study of gravity gradient control for the present applica-

tion is contained in Section 5.

4.4 Aerodynamic Pressure

Aerodynamic pressure is a candidate for control of the vehicle at
altitudes below 1000 km. Due to geotropic pointing, the flow velocity is
steady relative to the vehicle, and aerodynamic control surfaces similar
to those of a conventional airplane can be used. Pitch and yaw can 6e
controlled with passive (fixed) control surfaces but roll cannot, In any
event, the addition of active control greatly increases the effectiveness.,
For example, active trim control can reduce the steady pitch error to zero.

If the altitude is low enough, pitching moment due to aerodynamic
drag will be the only important component of overturning moment and for
this case it is relatively easy to size the aerodynamic surfaces required
to control pitch., The overturning moment for a smooth reflector is evalu-
ated from Equation (2) of Section 3.2 and the accompanying table of pitch-
ing coefficients vs. £/D. Selecting £/D = 1.0, the pitching moment about

the center of gravity is
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My = .00277 py A, (33)

(o]

O
o

where Pg is the stagnation pressure and A. is the area of the reflector.
Consider a control surface of area Ac’ placed at a distance D/2 behind
the center of gravity with an angle of attack a. From Equation (1) of

Section 3.2 the control moment is

= i 2 .
M. = sin®a cosa pg A, * D/2 (34)

Equating Mc to Mo gives
sin?a cosa = . 00554 Ar/Ac (35)

The maximum value of sinZa cosa is .385 at a = 54,7°, Thus,

the minimum value of Ac/Ar is
A /A, = .00554/.385 = .0144 (36)

A somewhat larger control surface should be used to provide a margin
of safety and also to reduce the drag of the control surface, which is
proportional to tana. Note also, from data presented in Section 3.2,
that the size of the overturning moment is a strong function of £/D.

The control surfaces required for roll and yaw are much smaller (at

low altitudes) because the roll and yaw moments are much smaller,
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4.5 Solar Radiation Pressure

At altitudes above 700 Km, the maximum overturning moment due to
solar radiation pressure exceeds the steady pitching moment due to aero-
dynamic drag, which suggests that solar radiation pressure may be used
for control at such altitudes, Furthermore, in deep space, and also in
geosynchronous orbit, solar radiation pressure is the largest of the
environmental effects that are available for vehicle control, exceeding
even gravity gradient,

Solar radiation pressure is the basis of solar sail propulsion
which has been extensively studied, References 1, 5, 6, and 7, and which
is competitive with solar electric propulsion for high energy inter-
planetary missions of long duration, Reference 4.

For the present application, control moments can be provided by
orientable reflecting panels attached to the pgriphery of the reflector,
Formulas for control moments as functions of panel orientation and the
Sun direction are published in Reference 8. Since the orientation of
the vehicle relative to the direction of the Sun changes continuously
during each orbit, the control surface orientations must change continu-
ously and they must, furthermore, be actively controlled.

At altitudes greater than 1000 Km, solar radiation pressure is the
dominant source of overturning moment for the present application, and
it is relatively easy to size the reflecting panels in this case. The
overturning moment is maximum for a Sun angle of 45°, as discussed in
Section 3.3. For f/D = 1.0, the maximum overturning moment on a smooth

control panel is
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M, = .0417 p,AD (37)

where Py is the solar radiation pressure for normal incidence, and AL
is the area of the panel. Assume that two control surfaces are located
at a distance D/2 from the center of gravity and oriented as shown in

the following sketch.

control surface D/2 control surface
at zero pitch at 90° pitch

\
A

solar
radiation

The force on the left-hand control surface is
F = p.A o cosz(45°) = l-p A (38)
s%c 2 FsTe

and the force on the right-hand surface is zero. The resulting control

moment is

1
M. = "y PgAD (39)

Equating M. to M, gives the required size of the control surface

A, = .167 A, (40)
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A variable control moment is produced by pitching the axes of the
control surfaces. Since at least three control surfaces are required, the
total control surface area equals at least one-half of the reflector area
for £/D = 1.0. Smaller control surfaces can be achieved by placing them
at a greater distance from the reflector, at an added cost in weight
and complexity. Typically, the mass of a control panel, using available
materials, is about .0l kg/mz.

Very much smaller control surfaces are required if the reflector
is constructed from a network of wires which produce very little net

overturning moment due to radiation pressure,
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4,6 Interaction with the Earth's Magnetic Field

If a current, I, flows through a circular loop of wire whose plane
is parallel to a magnetic field of intensity, B, the wire experiences a
torque

M =%DZIB (41)

about an axis perpendicular to the magnetic field and tangent to the
current loop. The use of this principle for the control of orbiting
spacecraft by interaction with the Earth's magnetic field has been
explored in Reference 3 and is the basis of con;rol for a proposed low
frequency orbiting radio telescope (LOFT), Reference 9. In that ap-
plication the purpose of control was to produce useful scanning rates
for a very large (1500 m) reflector. Several current loops were pro-
vided, of which one was the rim of the reflector, and the others
included meridional segments. Control laws were fairly complex. They
required sensors to detect the magnetic field and computers to select
the current loops. The weight of the control system was less than that
of competing systems.

Magnetic interaction has limited utility for the present applica-
tion because it is not possible to produce a torque about an axis which
coincides in direction with the magnetic field. In the case of an orbit
in the magnetic equatorial plane, this axis would be the pitch axis, and
in the case of a polar orbit it would be an axis in the longitudinal
(roll-yaw) plane which varies with orbital latitude. Thus, to be useful,

magnetic interaction must be supplemented by some other source of moment.
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In order to compare the mass of a magnetic-interaction control
system with that of other systems, the current, I, in Equation (41) should
be expressed in terms of the mass of the control system. The mass of the
system is concentrated in two components, a power source, probably utiliz-
ing solar cells, and the conductors which carry the current. Assuming
that the mass of the power source is proportional to its rated power, it

can easily be shown that, for an optimized design, the rated current is

I = —S&— | (42)

where D = diameter of the loop
mé = control system mass divided by reflector area
C = power éource mass divided by power
R' = resistivity of conductor material
p = density of conductor material

Upon inserting this value of I into Equation (39), it is seen that
the maximum available control moment is proporfional to mé D3. In this
respect a magnetic interaction control system is similar to most of the
previously examined control systems including expelled mass, aerodynamic
control, and control by solar radiation panels,

In order to evaluate the mass of a magnetic interaction control

system relative to other types, assume the following conditions

B =107 webers/m2 (typical for an altitude of 6000 Km)

C = .05 kg/watt

R' = 2.83 x 1078 ohm-meter ,
values for commercial

o = 2700 Kg/m3 aluminum wire
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and compute the maximum available torque., For these conditions

= D>m'B ° Dum B 5

e e -
M = ———& = = 1072 » 43
32CR p  8VCR p - X ne (43)

For comparison, the control moment for a solar radiation control

panel, given by Equation (39) of Section 4.5, is
M o= _11’_ pg A, D (44)
Assuming pg = .75 x 1072 N/u? and A./m, = 100 mz/kg, gives
M = 18.75 x 107 D m, (45)

which is seen to be less than that for the magnetic interaction control
system., Note, however, that the Earth's magnetic field decays as 1/R3,
so that magnetic field interaction is not competitive with solar radia-

tion control panels at a geosynchronous altitude,
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SECTION 5
ANALYSTS OF GRAVITY GRADIENT CONTROL SYSTEMS

A gravity gradient control system is particularly suitable for the
mission considered in this report because the pointing axis is geotropic
and because the diameter of the reflector is large. Accordingly, more
space 1s assigned to gravity grédient control than to the other types
discussed in the previous section,

The discussion begins with passive gravity gradient control of a
rigid body and proceeds to consideratién of a control system which in-
cludes flexible structural eiements and, possibly, active control ele-

ments,

5.1 Stability and Pointing Error for an Uncontrolled Rigid Vehicle

The complete small motion equations for the rotations of a rigid
body in circular orbit are derived in Appendix D. The assumed equilib-
rium state is a circular orbit with the pointing axis directed toward
the center of the Earth, and with zero angular velocity about the point-
ing axis., This state corresponds exactly to the desired orientation of
a geotropic reflector.

The conditions for stability of the desired orientation, as derived
in Appendix D, are

1,,>I, > 1 . (46)

zz XX vy

where
[ 022 dv , etc. (47)

—~
L]

-4
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and x = distance from cg in forward direction along flight path
y = distance from cg to right, looking forward
z = distance from cg downward toward Earth.

For a vehicle which is symmetrical about the pointing axis,

I = I

X yy* I,, depends on the focal ratio, f/D, and on the mass placed

at the feed., The following table shows the approximate minimum value

of the feed mass required to satisfy the stability conditioms,

£/D feed
Brefl

0.5 «50
1.0 .07
2.0 .015

If the stability conditions are not satisfied, then some means of
stability augmentation must be supplied. The simplest, but not neces-
sarily the lightest method, is to add mass to a point on the pointing
axis that is far from the center of gravity., Alternatively, some other
form of stability augmentation may be used, employing any of the physical
principles described in Section 4.

If the stability conditions are satisfied, the angular errors may
be found from Equation (2) of Appendix D. Since the cross-products of
inertia are zero in the assumed load-free equilibrium state, the rota-
tions due to small steady loads are determined by the following simple

uncoupled formulas

M
¢ = X, (48)
0% (1, - Iyy)
o = ¥ (49)
3Q (Izz - Ixx)

44




v = M, (50)

where Q is the orbital angular velocity (2x divided by the orbital
period). Values of 92 vs, altitude are given in the following table
for the range of altitudes considered in this study,

geosyn-—
chronous

Altitude (Km) 0 I 500 1000'2000 5000 10,000[20,000

Q2[(rad/sec)?x10°]{1.541]1.228.995(.679].271

.091 | .022 |.0053

Note from Equations (48) to (50) that it is not merely sufficient to
satisfy the stability conditions, but also necessary to satisfy them by
some finite amount in order to achieve small angular errors under steady
load. Consider, for example; the steady pitching moment due to aero-
dynamic drag, given by Equation (2) of Section 3.2, and also express

Izz - IXx as

= m 4
IZZ - Ix}{ = Ci hd Tm' D (51)

where C; is a dimensionless coefficient and m' is the mass per unit area

of the reflector. For this case the steady state pitching error is
Ch P
) = _m_zd_. 52
° 3¢;2° m' D (52)

As an example, assume the following conditions
500 Km altitude
f/D = 1.0, and a smooth reflector
Feed mass = 1/2 reflector mass

Massless feed supports,
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For these conditions
C_ = .00277
pg = 20x107°> (N/m?)
C; = .2502
Q2 = 1.288x107% (rad/sec)?

IZZ/IXX = 4098

so that

8, = ’izg (radians) . (53)

From the range of parameters given in Table 1, m'D ranges from
1.0 to 1000, and the permitted tolerance on @ ranges from .0l to 10-5.
Thus, only for m'D > 57.3 is the steady state pointing error iﬁ pitch
less than the maximum permitted tolerance, .0l radian. It may be con-
cluded that, in the example considered, passive gravity gradient sta-
bilization is adequate under some, but not all, design conditions.

For time dependent loading conditions, the mass and Coriolis damping
terms derived in Appendix D must also be taken into account, Dynamic
analysis of the pitch degree of freedom is easier than roll and yaw be-

cause its full dynamic equation is simply

- )
(I, + 1,08 +30° (I,, ~I,)6 = M (54)

zz y

If My is harmonically varying at frequency w, the harmonic response

8 is given by
) _.__e.Q_T.
= w
1 _(__> (55)

Wy
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where 8, is the static response to a load of magnitude My, and

w. = Q 3T, = L) (56)
7 Loz ¥ Ixx
For the example cited above, Izz/Ixx = 4,98, and wy = 1.413Q.

The amplification factor for excitation with frequency equal to the

second harmonic of the orbital frequency is
= _0997
L - (ﬂ )2 (57)

The second harmonic of the orbital frequency is important because it
is the dominant harmonic of solar radiation pressure. For exam?le, if the
orbit of the vehicle is in the ecliptic plane, then Equations (6) and (7)
of Section 3.3 give the following equation for the second harmonic co-

efficient of pitching moment.

M, = Kp o T pg D? (58)

The second harmonic response to a pitching moment of this magnitude

is

KD Pg 1

2~ 3¢ 9faw'dD 1 -(.‘*.’_)2 (59)

The assumed value of p. is .75x10"3 N/mz, and, for a smooth reflector
surface with £/D=1, Kp = ,0417. VUsing the parameters for the previous

example

(60)
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which has the same order of magnitude as the steady state error due to
aerodynamic drag at 500 Km. The response to higher harmonics is guch
smaller because both the harmonic content of the pitching moment and the
dynamic amplification factor decay rapidly with frequency.

Nothing has been said yet about damping, and indeed no damping is
available if the vehicle is rigid and no other means of control is pro-
vided. Damping is necessary because otherwise transient disturbances
persist indefinitely. Sources of tramnsient disturbance which have been
discussed earlier are meteoroid impact, Section 3.4, and thermal shock
due to entry and exit from the Earth's shadow, Section 3.l. The discus-
sion of meteoroid impact quoted a very small value of damping (g =
7.3x10'&) required to contain the pointing error in a worst case
analysis.

Another matter which has not yet been discussed is the effect of
variations in gravity gradient due to orbit ellipticity and anomalies in
the gravitational field. The principal effect of these variations is
to cause the stiffness coefficient represented by 392 in Equation (54)
to have a small variable part consisting of harmonics of the orbital
frequency. The strongest harmonic of the Earth's gravitational field
is a second harmonic component in the meridional direction which is at
least three orders of magnitude smaller than the steady part, Orbital
ellipticity will produce gravitational variations which include odd
harmonic components of the orbital frequency.

As mentioned, an important result of such anomalies is to replace

the stiffness coefficient in Equation (54) by
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K = 392(1 + elcos(Qt + ¢1) + ezcos(ZQt + ¢2) + o) (61)

If only the first perturbation term is considered, Equation (54) becomes

a form of the Mathieu-Hill equation which has been studied extensively

and whose stability characteristics are well known., These studies show
that, 1if €y is small, the system will be unstable if the resonant fre-
quency given by Equation (56) lies within a small band located at all of
the integer and half-integer harmonics of Q. For example, if €; = 0.2,
then the unstable ranges of my/ﬂ are from .48 to .53, from .99 to 1.02,
etc,, with increasingly narrow ranges at higher harmonics, The width of
each unstable range is approximately propottional to €1» and since the
expected values of the €'s are very small, all that is required to avoid
this type of instability is to avoid nearly exact resonances with the har-
monics and half-harmonics of the orbital frequency. This conclusion also
holds if several non-zero values of the €'s are present simultaneocusly.

A correlary of this conclusion is that it must be possible to compute the
rigid body frequencies and some of the lower structural frequencies fairly
accurately. At the higher harmonics of orbital frequency, very small
amounts of internal damping are sufficient to prevent instability, even

with exact resonances.
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5.2 Conceptual Design of a Gravity Gradient Control System

It has been shown in the previous subsection that pointing errors
can be corrected by gravity gradient stabilization, in some cases, with-
out any explicit design modifications, This is effective for some
vehicles, including the type considered in this report provided that it
has a heavy feed mass, Although stability is achieved at no additional
weight or cost, the pointing accuracy is not spectacular and damping of
rigid body modes is not provided,

Gravity gradient stabilization and control can be improved by the de-
liberate addition of mechanical components to the vehicle system. Consider,
for example, the design shown in Figure 2. The additional components are
a small mass, called the anchor, plus a long cable and a harness consisting
of three or more shorter cables which attach the long cable to the rim of
the reflector.

Each of the harness cables is in series with an elastomeric damper
and a winch. The winches are needed only if it is desired to exercise
active control of the pointing axis.

Gravity gradient produces a tension in the long cable equal to

- 2
T = 3Q°m, z, (62)

where m, is the mass of the anchor (assuming that the mass of the cable

is negligible), and z, is the distance from the anchor to the center of

gravity of the complete system, including reflector, feed and anchor.
Thus, m
za = m——";-.;-a(z'*‘za) (63)

where m is the mass of reflector and feed.



If the reflector is pitched through a small angle, 6, the tension
T will produce a moment on the reflector which resists the pitch angle.
The use of this principle to reduce pointing errors is discussed in fol-
lowing subsections,

A lateral force at the apex of the harness cables will tend to in-
crease the tension in some cables and to reduce the tension in others.
This will cause extensional motions of the elastomeric dampers (which are
assumed to be much less stiff than the cables) and, if the motions are
time-dependent, damping will result, It will be shown later that both
the rigid body modes and the elastic vibrations of the system are damped.

Operating the.winches in a differential manner will alter the junc-
tion point of the long cable and the harness cables, thereby creating
moments about the center of gravity af the reflector and feed. 1In this
manner, the pointing axis can be deliberately altered in response to
commands or to feedback from pointing error detectors.

The control system shown in Figure 2 does not resist yawing moments,
Such moments are presumably small because the reflector surface is axi-
symmetric; also, the error tolerance for yaw is probably much larger than
the tolerance for pointing error. The correction of yaw erroré can be
achieved by adding small masses that are connected to the rim by booms
and dampers in the fore-aft directions., Note that booms rather than
cables are needed because the component of gravity gradient in the fore-
aft direction is very small (assumed zero in Appendix D) compared to
the component in the vertical direction.

The length of the anchor cable is likely to be of the order of 100

times the diameter of the reflector. Based on previous work with long
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filamentary structures, the cable should be constructed from several

separated strands with frequent load interchanges in order to reduce

‘the probability that the cable will be severed by micrometeoroids.

The added weight penalty to meet this threat is estimated to be low.




5.3 Steady State Pointing Errors

Steady state pointing errors can easily be estimated for passive
operation of the gravity gradient control system described in the pre-
vious section.

If the reflector is pitched through a small steady angle 6, the
long cable will be translated without rotating, because the component
of gravity gradient force in the fore-aft direction is negligibly small
(see Equation (1) of Appendix D). As a result, the tension in the cable
exerts a restoring pitching momentb

My = kT (64)
on the reflectors, where k is a reduction factor to account for the
flexibility of the harness, For the present, the flexibility of the
harness will be ignored and the reduction factor will be set equal to

unity., The moment given by Equation (64) has an upper limit

(M)pay = KTD/2 (65)

which occurs when 6 = D/él. For larger angles one cable goes slack.

An additional (positive or negative) restoring moment will be pro-
vided by gravity gradient acting on the reflector itself, but this effect
will be ignored because it is intended to provide a much larger restoring
moment by adding the anchor and cable., As a result we may express the
steady state pointing error due to aerodynamic drag by means of Equation

(52) of the preceding section with the inertia coefficient C; set equal to

¢ = <%—>.(Zaz) (66)
T p?

where m. is the mass of the reflector.
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The resulting pitch angles are plotted in Figure 3 vs. the product
C;m'D with altitude and focal ratio as parameters. The product m'D
ranges from 1.0 to 1000 for the applications considered here. A prac-
tical upper limit for Cy is probably around 100, based on weight and
other considerations. This is a very large increase over the value used
in the preceding section (.2502) for an uncontrolled vehicle with heavy
feed mass, and it extends considerably the range of mission parameters
for which passive gravity gradient stabilization is practical,

The results for steady roll moment are similar to those for steady
pitching moment, except that the restoring moment given by Equation (64)
is multiplied by a factor which is approximately equal to (1+£74£a).

There is, however, no change in the maximum moment given by Equation
(65).

The ste;dy pitch (or roll) error can be reduced to zero by introduc-
ing active trim control through the winches shown in Figure 2. In effect,
the junction point of the long cable and the harness is deflected through
the angle, 6 relative to the reflector, rather than deflecting the point-
ing axis of the reflector itself, As mentioned, the angle at which one of

the harness cables goes slack is 6 = D/2%. Thus, using Equation (52),

D CaPd
emax = 22 = mz 1 (67)
3CiQ“m D
from which, using Equation (66),
(m'z Za _ 2Gpgq (68)
a My 2
min 3Q




This result provides the minimum value of m'za ma/mr required to pro-
duce a control moment equal to the aerodynamic pitching moment., The
expression on the right-hand side is a function of the altitude and the
focal ratio only. Equation (68) is plotted in Figure 4., As an example,
if the altitude is 400 Km and £/D = 1,0, then the minimum required value
of m'z,m,/m,. = l.1. If we double this value to provide a margin of
safety and select m' = 0.0l and m,/m,. = 0.02, then the required cable

length is approximately equal to
z, = 2x1,1/0.01 x .02 = 11,000 meters (69)

a

independent of reflector diameter.
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5.4 Dynamic Response

Appendix E includes an analysis of the dynamic response in pitch of
the gravity gradient control system described in Section 5.2. The topics
treated in Appendix E are vibration modes, modal damping, and response to
dynamic pitching moments. The major conclusions will be summarized here,

The system has two pitching modes: a low frequency mode which is
nearly a rigid body mode, and a high.frequency mode which mainly involves
pitch of the reflector, with a small opposing motion of the anchor mass.
Frequencies and mode shapes are plotted in Figures E-2 and E-3 vs., two
characteristic parameters. The parameter a in these figures is directly

related to the parameter Cy defined in Equation (66) by

2
o e A (70)
s, 1

a =

L 4

where I is the pitching moment of inertia of the reflector-feed system
and m. i1s the mass of the reflector. The practical range of the para-
meter a is from about two to about two hundred.

As mentioned in Section 5.2, damping is provided by elastomeric
dampers in series with the harness cables. Appendix E includes an
approximate analysis of the damping provided by the dampers to each of
the modes. The damping for the higher mode is mﬁch larger than the damp-
ing for the lower mode, as shown by the results tabulated in Section E.4.
It is also shown that the damping of the low frequency mode is adequate,
for reasonable parameter values, because the excitation of the low fre-

quency mode is small,




For sinusoidal excitation, the response can be expressed as an
equivalent static response multiplied by a dynamic amplification factor,
The dynamic amplification factor is plotted &ersus frequency in Figure
E-4 for a typical value of a and extreme values of 2/2,.

As discussed in Section 5.1, the most important component of sinu-
soidal excitation is the second harmonic component of solar radiation
pressure, Equation (59) of thaf section gives the second harmonic pitch-
ing response for an uncontrolled vehicle. The same equation can be
applied to the passive control systém under discussion by using the value
of C; given by Equation (66) of Section 5.3 and by replacing the dynamic
amplification factor (1/(1-(m/wy)2) in Equation (59) by the value derived
in Section E.3. From Figure E-4, a typical value of the amplification
factor for second harmonic excitation (w/Q=2) is 1.0. Using this
value, and previously derived parameters for solar radiation pressure,
produces the plots of pointing error shown in Figure 5. By comparing
Figure 5 with Figure 3, it is seen that the second harmonic response to
solar radiation pressure is greater than the steady state response to
aerodynamic drag for altitudes greater than 600 Km.

The dynamic response of the system in roll and yaw has not been
treated., The analysis is more difficult than the analysis of pitch be-
cause the roll and yaw degrees of freedom are coupled. It is expected
that results similar to those for pitch will be obtained, except that
the response to second harmonic excitation may be larger due to the
close proximity of the rigid body roll mode to the second harmonic of

orbital frequency, indicated in Figure 1 of Appendix D,
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SECTION 6
ACTIVE CONTROL

The emphasis in this report has been on the physical means used to
apply control moments, rather than on control laws., Active control of a
gravity gradient control system was discussed briefly in Section 5.2 and,
in general, it has been mentioned repeatedly that steady state pointing
error could be eliminated by trim control. This subject is discussed in
some detail in Appendix F, where it is shown that integral feedback (feed-
back which is asymtotic to a constant times 1/w as the frequency, w,
approaches zero) can entirely eliminate steady state error due to external
(envirommental) moments, and can generally reduce errors due to low fre-
quency excitation,

The discussion of Appendix F is largely concerned with stability. A
practical design approach is described which yields good stability and

good error suppression characteristics.,



SECTION 7
CONCLUDING REMARKS

0f the sources of control moment that have been reviewed, ounly stored
angular momentum and interaction with the Earth's magnetic field appear to
be inappropriate for the mission spectrum comsidered in this report. All
of the others have some potential application, depending on altitude and
vehicle parameters.,

Due to the long mission duration, expeiled mass using chemical pro-
pulsion results in a relatively heavy control system. Electric propulsion,
on the other hand, is a strong candidate at all altitudes.

Aerodynamic pressure is a strong candidate at low altitudes and solar
radiation pressure is a strong candidate at high altitudes. Cravity
gradient is probably the strongest candidate, except at very low and at
very high altitudes, and it is, furthermore, the only source of control
moment that increases more rapidly with vehicle size than the environment-
al sources of overturning moment. The requirement for geotropic pointing
makes gravity gradient stabilization particularly appropriate for the
mission spectrum that has been studied.

An important aspect of control that has not been discussed to any
extent is orbital maintenance, i.,e., the application of a force at the
center of gravity of the vehicle to maintain orbital altitude and elliptic-
ity within acceptable limits. The only available sources of such a force

are expelled mass and solar radiation pressure.

59




9.

10.

60

REFERENCES

MacNeal, R.H.: Structural Dynamics of the Heliogyro. NASA CR-1745,
May 1971.

MacNeal, R.H.: Meteoroid Damage to Filamentary Structures. NASA CR-869,
September 1967.

Robbins, W.M., Jr.: The Feasibility of an Orbiting Radio Telescope.
NASA CR-792, June 1967.

MacNeal, R.H.: Comparison of the Solar Sail with Electric Propulsion
Systems. NASA CR-1986, February 1972.

Wiley, C. (pseudonym: Sauders, R.). "Clipper Ships of Space,"
Astounding Science Fiction, May 1951, p. 135.

Garwin. "Solar Sailing, A Practical Method of Propulsion Within the
Solar System,' Jet Propulsion Laboratory, March 1958.

Friedman, L., et al. "Solar Sailing -- The Concept Made Realistic,"
ATIAA 16th Aerospace Sciences Meeting, Huntsville, Alabama, January
16-18, 1978.

MacNeal, R.H.; Hedgepeth, J.M.; and Schuerch, H.U.: Heliogyro Solar
Sailer Summary Report. NASA CR-1329, June 1969.

Schuerch, H.U.; and Hedgepeth, J.M.: Large Low-Frequency Orbiting
Radio Telescope. NASA CR-1201, October 1968.

MacNeal, R.H.: The Dynamics of Rotating Elastic Bodies. MacNeal-
Schwendler Corporation Report MSR-36, August 1973.




Mission Parameters

Reflector Diameters:

Circular Orbits:

£/D:

Physical Pointing Accuracy
Maximum Error:

Mass per unit area:
Surface Solidity:
Massfeed/Massreflector

Mission Duration:

100 to 1000 meters

200 to 20,000 kilometers
altitude and geosynchronous

0.5 to 2.0

1072 to 1075 radians

1072 to 1 kg/m2
.0l to 1,0
.0l to 1.0

10 years
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Table 2

Summary of Control Moment Sources

Practical Practical Passive Active

Altitude size range Control Control
Physical Effect range (km) (m) Possible Practical

Expelled Mass Any Any No Yes
Inertia Wheel Any <5 No Yes
Gyrostabilizer Any <5 Yes No
Gravity Gradient 400-20, 000 > 10 Yes Yes
Aerodynamic Pressure < 1000 Any Yes Yes
Solar Radiation Pressure > 600 Any No Yes
Earth's Magnetic Field 400-20,000 Any No Yes
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Table 3

Steady Restoring Moments for Various Control Systems

PHSYCIAL EFFECT FORMULA DEPENDENCE ON ALTITUDE
Expelled Mass M = kG me Isp D None
ta
Inertia Wheel M = B None
ta
Gyrostabilizer | M = k-—i££7re None
TE m' D
Gravity Gradient M = 3k 22n' D%6 et - Ly
: R
Aerodynamic Pressure M = Cm-%-pd p3 : Py " e kh
Solar Radiation Pressure M = ks-%-pS D3 None
Magnetic Field M= p?2 1B B '—11(3
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Appendix A
Effect on Pointing Error Due to Thermally Induced

Length Changes in the Feed Supports

In the sketch shown below, the length of the left support is 2(1 + (Ae/2))
and the length of the right support is 2(1 - (Ae/2)) where ¢ 1s the undistorted

length and

Ae = AT (A-1)

In Equation (A-1), a is the coefficient of thermal expansion and AT is

the difference in the temperatures of the two support columnms.

A simple geometrical analysis shows that, for ¢ < 1, the error in

pointing accuracy due to differential thermal strain is

- X . 2\ . D -
G - € ( ) F (A-2)

2/D is an easily computed function of the focal ratio f£/D. The following

‘table lists e/ for three values of £/D
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£/D Ae/8

0.5 1.302
1.0 .887
2.0 <485

Thus, if the allowable error (due to this source) is 10”5 rad, the
allowable differential strain for £/D = 1,0 is .887x10™. Note that an

increase of f/D decreases the allowable differential strain.




Appendix B

Overturning Moment Due to Aerodynamic Drag

The velocity vector is normal to the pointing axis as shown below

— D ——
\Y,
——
e R
= ~ ° ~
z" -5
/1% Z

The reflector is assumed to be a segment of a sphere and to be smooth.
According to Newtonian theory, the aerodynamic pressure is normal to the -
surface ard proportional to coszy where vy is the angle between the

normal to the surface and the velocity vector. The component of pressure
in the direction of the velocity vector is equal to cosy times the normal

pressure. Thus, the total drag force
F; = cos3 yd s (B-1)
d Pd

where the pressure for normal incidence, Pq =(1/é)p v2 . Cy
The value of CN’ the pressure coefficient for normal incidence, is ap-
proximately equal to 2.5. The surface integral is taken over the forward

half of the reflector.
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The drag per unit area of the reflector is

F 4 3
F' = __4d = - pg [ cos’yds (B-2)
d D aD2
4

Since pressure acts normal to the surface, the resultant aerodynamic
force acts at the center of the sphere and may be resolved into 1lift and
drag components. Only the drag component contributes to thé overturning
moment. The moment arm for the overturning moment is the distance from
the center of the sphere to the center of gravity which will conservatively
be assumed equal to the radius of the sphere, 2f., Thus, the overturning
moment due to drag is

Md = 2f . Fd (B“3)

and the moment coefficient is

. M - B8fF = 8 3 -
Ca —d 3 [ cos” yd s (B-4)

ﬂpdD npdD nD

The surface integral is evaluated as follows. In terms of angles § and ¢
measured along the meridian and around the azimuth respectively,

cosy = sinfcosg (B-5)

and the surface area increment

d 8 = (2£)% sinpdede (B-6)
Thus
8 /2
D
[ cos3 ydsS = 4£2 / f sin4ecos3¢ded¢
o -n/2
(B-7)

-%E (lZBD - 8sin2gp + sin&GD)
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and

3
Cm = —%; (%) . (126D - 8sin26D + sin&eD) (B-8)
where
D
i = 2 B_
sinb 7 (B-9)

Cp 1s evaluated below for three values of f/D. The drag coefficient

1D
_—— B~
Cq = 5 = 2f GCp (B-10)
mD"pq
is also tabulated.
£/D Cm Cd
0.5 .0117 0117
1.0 .00277 .00138
2.0 000672 .000168

The strong dependence on £/D is noted.
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Appendix C

Estimation of Pointing Error Due to Micrometeoroids

A micrometeoroid which strikes the surface of the reflector will
either penetrate it, or it will not. For particles which penetrate the
surface, only a part of their momentum is transferred to the surface.

It will be assumed that the maximum momentum transfer is equal to that

of a particle which just penetrates the surface, This assumption will
not cause important error because the momentum transfer for larger parti-
cles increases at a rate no greater than the diameter of the particle
while the flux density decreases with about the‘third power of the par-
ticle diameter, for particles with masses near 10"9 kg.

The diameter of a particle which will just penetrate a sheet is
approximafely equal to one-third the thickness of the sheet (Reference 2,
page 7). Thus,

= 1
dp 3 tg (

The thickness of the sheet may be expressed as

'
tS = I (
pS

where m' is the mass per unit area and pg is the density of the material.

The mass of the particle is, using Equations (C-1) and (C-2)

= 3 . m' \3
Tp 5 Pp (dp) 6 °p (395)
Assuming
3 .
Pp = 500 kg/m” (a standard assumption)
pg = 2000 kg/m3
m' = 1 kg/m2 (the maximum range of this parameter)
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then

_ -4
tg = 5x10 m

4, = 1.67x107% m
m, = 1.212x107° kg

The standard velocity assumed for micrometeoroids is 30 km/sec
(Reference 2, page 6) so that momentum of a particle that will just

penetrate the sheet is

m, V, = 1.212x 1072 x 30x10° = 3.64 x 10~ Newton-sec

The magnitude of the angular momentum imparted to the vehicle by

a single micrometeoroid is

(1 . . -
H X m, Vo kp (c 4?.

where

Xy = wmoment arm of impact point

m, = mass of particle
Vp = velocity of particle
kp = 1is a factor to account for glancing impact

It is not possible to make a simple comparison between the angular
impulse imparted by micrometeoroids and the moments due to other environ-
mental effects. We can, however, estimate the maximum pointing error
caused by.a single impact if we make some very simple assumptions about
the control system, namely that it acts like a simple spring to produce,
in conjunction with the pitching inertia, I, a control frequency, W *
It can then be shown that the maximum angular displacement due to a single

impact is
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(D . B (c-5)
max Tw

Now I can be expressed as

I = Ci.l‘:-m' p* (C-6)

where Ci is a factor that depends on shape. A typical value for Cy is
0.15. Substituting from Equations (C-4) and (C-6) into Equation (C-5),

and assuming x; = D/2/7

my Vpy k
ax J_ ]
Ci /2_ m D wc

Note immediately that, for constant Wes Bpo decreases as 1/D3, so
that the effect is largest for small vehicles.* It has already been

shown (Equation (C-3)), that y, increases as the cube of m' so that

eéi> increases as the square of m'.- Using the largest value of m'
>'4

(1 kg/mz) and the smallest value of D (100 m), to be considered in the

present investigation

o(1) . 3.6 x 1075
X a5 x Ex 1x (10003 w

(C-8)

= 1.08 x 10710/,

*It is shown, later on, that the effect of multiple impacts increases as
the square root of the number of impacts, which value is proportional to
D. Thus, for multiple impacts, 8hax decreases as 1/Dp%.
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The number of impacts in a given time period can be estimated from the
mean flux density, fp, of particles greater than a given size and the size
of the vehicle. According to current estimates, the mean flux density of
particles with mass greater than 10"9 kg is about 10.'7 particles per square
meter per second. Thus, the rate of particles of this size intersecting a
reflector with 100 m diameter is approximately

r = T plg
g 4

. a-%-x (100)2 x 1077 = .785 x 1073 particles/sec (Cc-9)

P

This amounts to one impact every 21.2 minutes which is of the same
order as the period of pitching oscillation.

The effects of particle impacts on pointing error are added statis-
tically, because their directions and impact points are randomly distrib-
uted, According to statistical theory, the combined effect of Np random
impacts is equivalent to /ﬁ;'simultaneous impacts at a point of mean radius,

D/2/2, Thus, selecting %; in Equation (C-1) to be D/2/2, and kp to be

YN_, the equivalent angular momentum is

H =D m, Vp /ﬁ; / /2 (C-10)

and the maximum pointing error is

H
) =
max Iwc

(C-11)

The effect of smaller particles has not been considered in this cal-
culation. Their effect may be estimated by assuming that the effective

particle mass is

m 1/2
P2
mg =./1lmi =/ mfdn (c-12)
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and that particle flux is inversely proportional to particle mass. Thus,

My
where
k = Np m, (C-14)
so that
=N
an; = B dm; (C-15)
my
and
o = (N m? 1/2 = m_ YN (C-16)
e P p P P

Thus, the net effect of smaller particles is just equal to the net effect
of larger particles., Their effect is included by doubling the value of H
in Equation (C-10).

It remains to select an appropriate time period to use in computing Np‘

If the control system has no damping, then the appropriate time is the use-

ful life of the vehicle (assumed to be 10 years). In this case

N, = N; et =,785 x 10™3 x 3.15 x 108 = 2.47 x 10° (C-17)

zfﬁ; = 994,0
and

- (1) - -10,, -7 -
Smax = 994 x 8 2= 99 x 1.08 x 1077/u = 1.07 x 107 /u, (C-18)

The smallest control frequency, We s that can be considered to be practical
is the orbital frequency which is about 1073 rad/sec for altitudes up to

1000 km. Thus
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6 1.07 x 107771073 = 1.07 x 10™* radian

max

which is larger than the smallest allowable pointing error (10-5 radian)
given in Table 1.

This result shows that the vehicle pitch mode should be damped if
all the worst case assumptions are correct. If it is damped, the appropri-
ate time period to use in comﬁuting Np is the time constant of the damped
oscillations which is

t = 2 (C-19)

where g = 2c/cc = 1/Q is the damping coefficient. For this case, assum~

ing w, = 1073 rad/sec,

Ny = N'eto=.785x 1073 x 2/1073 g = 1.57/g (C-20)
and
(1) -/1.57 7 2.72x1077
Omax = /W, + 0{l) = /_é_ x 1.08 x 1077 = ey (c-21)

The amount of damping required to reduce emax to the minimum allow-

able value is

-7\2
2.7 x 10
g = (——i%g——) = 7.29 x 107 (c-22)

which is a very small amount.
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Appendix D
Complete Small Motion Equations for the Rotations of a

Rigid Body in Circular Orbit

The equations of motion will be written with reference to a vehicle
coordinate system whose origin is at the center of gravity of the vehicle
and whose axes are right-handed and oriented as follows:

x axis: pointing forward (in the orbital direction)

y axis: pointing to the right (as sensed by an observer
standing on the Earth, directly under the vehicle
and looking forward)

z axis: pointing down (toward the center of the Eartﬁ)

The rotations about these axes are (using the right~hand rule)
About x-axis: ¢ (roll)
About y—-axis: 6 (pitch)

About z-axis: ¢ (yaw)

The equations of motion are derived by adding the effect of gravity
gradient to the complete dynamic equations of a rigid body rotating about
the negative*y-axis with constant angular velocity, @ (the orbital fre—
quency in rad/sec).

The steady inertia force density vector, including both gravity

gradient and centrifugal force terms, is

£ __x
X 1 + R/z

= 2 - -
fZ 3z
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where R = distance from the center of gravity to the center of the Earth.
The force component, f , is extremely small and will be neglected.,
The complete equations of motion for pitch, roll and yaw may be

written in the fomm

b y M
[Ip2+Bp+K{e b= My (D-2)
g
where p = d/dt and
Iyy + 1, l _Ixy | “Iyz
(r] = ~Iyy ' Lix ¥+ 1z, ' ~Iy, : (D-3)
“Ixe I “Iy, I Lex ¥+ Iyy
o | Iya | Ly
[B] = 20 Iy, | 0 | Iy (D=4)
yy | &y | O
4(1,, = Iy0) | 3L,y | 1,
) —_— =
[K] = @ gy | 3(1,, - L) | 31, (D-5)
—4Ixz l 3Iyz l Ixx - Iyy
My "4Iyz
My = g2 31, + (Terms due to other (D~6)
environmental effects)
M, Ixy

8l




and where the inertia integrals

I = f pabdv , a, b =x,y, z (D-7)

v

ab

This definition does not conform to standard definitions of moments
and products of inertia which are, unfortunately, not well suited for
representing the Coriolis damping matrix.

The inertia matrix [I] and the Coriolis damping matrix [B] are tak;n
directly from Reference 4 with an appropriate transformation of axes. The
stiffness matrix [k] has been derived from Equation (D-1) using the method
of Reference 4,

If the principal axes of the body are aligned with the coordinate
axes, it is seen from Equations (D-3), (D-4) and (D-5) that the pitch degree
of freedom is uncoupled, and that the roll and yaw degrees of freedom are

coupled by the Coriolis damping terms, iZQIyyp.

The equation for uncoupled pitching oscillations is

+XX

- 3(1,, - I,.)\l/2 _
w =8 (._Tji___rxx_> {(D-8)

from which it is seen that I,, > I,, is a condition of stability.
The coupled rolling and yawing frequencies are obtained by the
solution of

4
w (Ixx+Iyy)(Izz+Iyy)

2 2
- wla? 41 “Iyy) + (15541 ) + 41yy] (D-9)

xx+1yy)(1zz yy)(Ixx—Iyy

+ 40%(1,,~1, ) (1 = 0

xx"Tyy)
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The pitching, rolling, and yawing frequencies are plotted in Figure D-1
as functions of I,,/I, . and Ixx/Iyy‘ It is seen from Figure D-1 that the

conditions for stability (m2 » 0) are:

Lz 2 L ? Iyy (D-10)
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Appendix E
Dynamic Analysis of the Pitching Moments of a

Passive Gravity Gradient Control System

Figure E~l1 shows the dynamic degrees of freedom of the vehicle in the
pitch plane. All of the cables are assumed to be massless and inextension-
al. The reflector-feed system is assumed to be rigid. The analysis con~
sists of the following parts:

l. Derive the equations of motion, for small motions
2. Calculate vibration modes
3. Calculate response to sinusoidal pitching moment

4, Estimate modal damping due to elastomeric dampers

E.l Equations of Motion

Referring to Figure E-1, the kinetic era2rgy of the system is

B = 1 @2+ m(5)2 + 1(8)2] (E-1)

where m mass of reflector-feed system

m, = mass of anchor

L)
[]

inertia in pitch of reflector-feed system,
The potential energy of the system is, for small motionms,

S | 2 2 -
E, 2'1‘(26 + 2, ea) (E-2)

where T is the tension in the long cable, given by Equations (62) and

(63) in the main text. Note that the static restoring moment due to
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gravity gradient acting directly on the reflector-feed system is neglected,
as explained in Section 5.3 of the main text.

The translational degrees of freedom, w and w_, can be eliminated

a?

by using the conservation of momentum
mw +mw, = 0 (E~-3)
and the kinematic relationship
w o= wak+ 28 + 2.6, (E-4)

After eliminating w and w, from Equation (E-1), a straightforward
application of Lagrange's equations yields the following equations of

motions,

(1 +mp? + 1 | me, p? 8 o
y

byl it sl 3 nlitl I v Sul ey (E-5)
mil,p l mi, p° + T2, 8, 0

where p = d/dt and @ = mm,/(wtm,).



E.2 Calculation of Vibration Modes

It will be noted that the determinant of Equation (E-5) is quadratic
in pz. Thus, the calculation of the frequencies of free vibration requires
the solution of a quadratic equation in the variable p2 = ﬂuz. The fre-

quencies are expressed by the result

(_3)2 -3 [1 +aB * V(14a8)2 - 4a ] (E-6)

where
8 = orbital frequency

=meL, /I

R
i

w
]

l+£/la

The frequency ratio, w/®, is plotted vs, a and 2/2a = B-1, 1in Figure
E-2., For a > 1, which is the range of interest, the lower of the two fre-
qg;ncies corresponds closely to rigid body motion with an asymtotic frequency
limit, w/Q = ¥V3, for 8 = 1.0. For a > 1, the higher of the two frequencies
represents a pitching mode of the reflector, with little rotation of the
long cable,

The relative mode shapes, obtained by solving the bottom half of Equa-

tion (E-5) for 0,/8 are given by

8 B -1
-~ T 3s(Q/w)’ -1 (E~7)

where w is either of the frequencies given by Equation (E-6), The relative

mode shapes are plotted vs. a in Figure E-3 for l/la = 0.1 and 2./2a = (0.5,
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E.3 Response to Sinusoidal Pitching Moment

The response to sinusoidal pitching moment may be obtained by solving
Equation (E~5) with p = iw, where w is the frequency. The resulting
pitch of the reflector may be expressed as follows in terms of the para-

meters a, B, and Q.

, -1
1-a+as ) (w2 B-1\ _ (w/Q)%
o6 = o_|1- (looteB)lw) _ (E-8)
°' ( 3a8 )(9) (932) (1- %E (w/2)?)

where eo = My/TZ, is the static response., The bracketed expression is a
dynamic amplification factor. It is plotted vs. w/Q in Figure E-4 for a
typical value of a and extreme values of B, It is seen in Figure E-4 that
the low frequency mode has a narrow peak while the high frequency mode
has a broader peak.

Another way to calculate sinusoidal response of the reflector is to
first compute the response of each of the modes and then to combine the
modal responses. The following equation describes the general procedure

$31 ¢ki Fx (E-9)
2)

uy = 1)
] ik mj (wi -w

where

1}

exciting force on Kkth degree of freedom

my = generalized mass of ith mode

wy = frequency of ith mode

u. = displacement of jth degree of freedom

. = displacement of uy in ith mode

¢y = displacement of u, in ith mode

88



For our particular case, the exciting force is a pitching moment on
the reflector, and there are only two modes. For this case, Equation (E-l)

can be expressed in the following particular form

6 = ¥y 3 Py (E-10)
Iw? i=1,2 (wi/w)? -1

where the "modal participation factor”, Py is

1
1+a [8/%, + (2,/2)(8,/8)°] (E-11)

Py

The following table records P; for a = 10 and two values of z/za

/2, 0.1 0.5
Py .0012 . 043
P, .2907 .085

Note that an important effect of increasing 2./2a is to greatly increase

the contribution of the first mode (the rigid body mode) to the response

of the reflector.
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E.4 Estimate of Modal Damping and Response to Random Excitation

The elastomeric dampers are in series with the harness cables., An
elastomeric damper has the property that the force in the damper is out
of phase with the motion but is nearly independent of frequency (for fre-

.quencies below 10 Hz.). Therefore, the force-displacement relationship

for sinusoidal motions can be represented by

F = k(l+ig) e u (E~12)
The persunit critical damping of a system consisting of the damper and a
mass is C/Ccr =g/2.
If the damper is very stiff compared to other elements in the system
and if g is small, then the modal damping due to the damper can be esti-

mated from

(C ) - 8 .A0E (E-13)
C 2
modal

E
cr P

where Ep is the potential energy in the mode due to all stiffness elements,

and AE_ is the potential energy in the damper

P
AE = .EE = l.kuz (E—14)
P 2k 2

If the damper is very stiff, then the force in the damper is not
affected by the presence of the damper. Thus, in order to estimate the
modal damping, it is only necessary to compute the force in the damper
and the total potential energy from the undisturbed mode shape.

For our case, the moment resisted by the dampers is the moment act-
ing on the reflector

M o= w¥Is (E-15)
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so that the potential energy in the dampers is

M2 w4 192
AE = =
P Zky 2k

(E-16)

where k; is the rotational stiffness of the dampers acting together to

resist applied moment. Equation (E-2) gives the potential energy of the

undisturbed system. Thus, using Equation (E-2),

Cc = g w41
Cer/ o ga1 ZkgTe (1 + (2,/2)(8,/0)2)

(E-17)

where the parameters w and ea/e are the frequency and amplitude ratio for

a particular mode.

This result can be expressed as follows in terms of the parameters q,

B, @, and the ratio, 6,/6, given by Equation (E-7)

L - i(g). [ . (w/2)4
“erfuoqar 2\ 92282 (1 + (1/g-1)(0,/8)?)

(E-18)

The following table records values of the bracketed expressed, Ag»

referred to as the "damping amplification factor", for several values of

a and 2/2,.
a 3 3 10 10
2./2.a .01 .10 .01 .10
Mode Damping Amplification Factor, Ad
lsg .00234 .01422 .00012 .00088
20 1.0072 1.085 1.020 1.10
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It will be noted that the damping amplification factor for the ond
mode is high in all cases and that the damping amplification factor for
the first (rigid body) mode is low in all cases. Since the respomse to
random excitation is inversely proportion to the square root of the damp-
ing, the above table would indicate that the response of the rigid body
mode to random excitation would greatly exceed that of the ond mode
However, as indicated in Section E,3, the modal participation factor for
the rigid body mode in the response of the reflector is much smaller, in
most cases, than the modal participation factor for the 2nd mode. The
ratio of the modal participation factor to the square root of the damping
amplification factor is a good measure of the contribution of each mode

to random oscillations of the reflectors. This ratio is recorded below

for @ = 10, and two values of 2/%,.

L/
a 0.1 0.5
Ci/ Adi
15t node | .0405 1.092
4 pode | L277 .069

From the data in this table, it appears that a value of l/la somewhere
between 0.1 and 0.5 would minimize reflector response to random excit-
ation,

It should also be pointed out that the elastomeric dampers will also
damp the vibration modes of the cables. This matter is discussed in

Reference 1.
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Figure E-1. Motions of System in Pitch Plane.
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Figure E-2. Pitch Vibration Frequencies of

Gravity Gradient Stabilized Svstem.
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Appendix F

Elimination of Steady-State Error by Integral Feedback

In aircraft, steady-state pointing error is eliminated by trim con-
trol, which can be regarded as a very low frequency control system, often
with the pilot in the control loop, The subject of low frequency control
is investigated in this Appendix from the viewpoint of control system
theory,

Figure F-1 shows a conventional block diagram for a control system
interacting with a rigid body, whose rotational inertia is I. 1In Figure
F-1, 61 is an input command, and M is an external (environmental) moment
applied to the rigid body. For no input command, it is easily shown that
the pointing error is

€ = M (F-l)
I p? + F(p)

wherein p may either be regarde«d as frequency (p = iw) or as a deri-~
vative operator. In order to achieve zero error as p + 0, it is clear
that the feedback F(p) must be asymtotic to A/p" where A and n are con-
stants and n > O, In discrete systems, n is an integer and F(p) is the
ratio of two polynomials, F(p) = G(p)/H(p). The control system design
problem is to select F(p) so that ¢ is smaller than a desired upper
limit which may be a function of frequency, and such that the system 1s
stable.

Stability is determined by examining the roots of

I p2 « H(p) + G(p) =0 (F-2)
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Elementary analysis shows that the simple forms

F(p) = A/p
and (F=3)
F(p) = A(p+p,)/p
produce unstable roots.* The simplest form that will produce stable roots
is

F(p) = A(p2 + wogp + wd) (F-4)
P

where A, w,, and g are constants. The asymtotic form of the error for

o]

p+ 0is

Mp (F-5)

2
which indicates the desirability of a large steady state gain, Awge

The maximum error occurs near p = iwo and has a magnitude ¢ = M/Amog.

The stability equation for this case is
2
I p3 + A p2 + Awgp + Awy, = 0 (F-6)

and the conditions for stability (roots with negative real parts) are that

A and w,g be positive and that

A > 2o (F-7)

*For the reason that the coefficients of p and p2 must be positive
(not merely zero) for a cubic equation to have all stable roots,
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Equation (F-7) indicates a lower limit for the gain, A. An upper
limit is provided by the requirement that the system be stable in the
presence of structural vibration modes. In order to include such modes,

the impedance of the structure Z = 1/Ip2 is replaced by

. 1
Z o=t (F-8)

p?  § Lj(p% + gyugp + )

where I;, wy, and g; are respectively the generalized mass, frequency,

and damping of the ith mode. The loop gain of the system is
L = F(p)/Z . (F-9)

Assuming small structural damping, the loop gain will have peaks at
the modal frequencies, wy. If wy > Wg then, from Equation (F-4),
F(iwg) ~ iAw; near a structural peak and the ith peak in the loop

gain has the approximate magnitude

Llwg) = =2 (F-10)

Iigjwy

In order to provide gain stability relative to every structural mode,

it is required that L(wi) <1, or
A< 185wy (F-11)

Combining this stability condition with the low frequency stability

condition, Equation (F-7), gives

(F-12)

Iw
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which can only be satisfied if

Liwy

Imo

(F-13)

g 8i>1

It is difficult in practice to ensure that this condition will be
satisfied. The control system can be improved by adding high frequency
roll-off which will ensure that none of the structural modes are de-
stabilized. The roll-off must be at least second order in order to
satisfy the physical requirement that the feedback F(p) be zero at
infinite frequency. If such roll-off is not provided deliberately, it
will be provided by structural flexibility and other parasitic effects,
with potentially unpleasant consequences. With the addition of second

order roll-off, the feedback function is

ACp? + wo8p + wi)
F(P) = 3T/ (1+p/up) (F-14)

which is the simplest possible form for practical integral feedback.
If wi <K wjwy, then it can be shown that the conditions for

stability are

(F-15)

Iwo
. <A< T (witwp)

As a matter of practical design, A, wys Wys Wy, and g should all
be chosen as large as possible in order to reduce the low frequency errors.
The values of these parameters are, however, inevitably limited by the

presence of structural modes.
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CHAPTER 2

EFFECTS OF PHASE ERRORS ON ANTENNA PERFORMANCE

by

John M. Hedgepeth and Karl Knapp
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SECTION 1
INTRODUCTION

The successful performance of any structure depends largely
on the identification of the critical or primary loads and design
criteria on which the design is based. The future promises large
structures which must be deployed, erected, assembled, or fabri-
cated in space. For such structures, which will not be required
to face the launch environment, the primary design requirements
will be derived from the space-flight environment and will deal
with phenomena as primary criteria which have been considered as
only secondary in the past. The design of such genuine "space"

structures will require a solid foundation of critical criteria.

This chapter examines the influences of deviations of the
surface of a large radio-frequency antenna on the antenna pattern.
Clearly, such information is needed in order to establish require-
ments on the accuracy of the structure of the antenna so that it

can properly perform its mission function.

From a mission-usefulness point of view, three characteristics
of an antenna pattern are important. The first is the intensity
of the radiated pattern at its center. This "on-axis gain" or
"main-lobe gain" is important because it establishes how much power
must be supplied to the antenna in order to achieve an acceptable
power density at the receiving station. Alternately, if the
antenna is used as a receiver, the main-lobe gain determines the
strength of the received signal relative to the strength of the
various noise sources in the antenna and other parts of the re-

ceiver system.

For some missions the amount of energy of the main antenna
lobe is important as the main-lobe gain. This so-called "side-

lobe gain" is of concern in those type of missions in which the
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radiation of energy outside the main lobe is undesirable. Geosyn-
chronous communication systems, for example, must have low side
lobes in order to avoid crosstalk among the various satellite-
Earth station links that are using the same frequency channels.

In sensor applications, low side lobes are required in order to
eliminate the ambiguity that arises because of off-axis "hot

spots."”

The third characteristic is that of "main-beam efficiency."
Antennas used to transmit power, for example, must concentrate
the power in the main beam so that the receiver can capture it.

A sensing antenna would need to minimize the power gathered out-
side of the main beam if the contrast were low. Microwave radio-

metry is an example of such an application.

The effect of antenna errors on the gain pattern arises pri-
marily from nonuniformity of the phase of the radiated signal as
it crosses the aperture plane of the antenna. This phase error
in a reflector type of antenna is composed of errors arising from
the antenna feed, those due to blockage, those caused at the re-
flector surface, and those due to improper geometry of the re-
flector and feed position. (If the reflector were a perfect
paraboloid and the feed were located exactly at its focal point,
there would be no errors from antenna geometry.) For directly
radiating antennas, a similar separation of phase-error sources
is possible: those due to inaccuracies in the signal fed to various
antenna elements and those due to imperfect antenna geometry. 1In
this paper, attention is focused on the phase error itself without
consideration of the source; of course, the overall intent is to
investigate these types of phase errors which might arise from

geometrical imperfections.

The loss of main-lobe gain in the far field due to phase im-
perfections is generally agreed to be a straightforward function

of an average phase nonuniformity. To be precise, the main-lobe
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gain is proportional to exp (—62) where 62 is the weighted mean
square deviation of phase (in radians), the mean being taken
across the aperture with a weighting function of the illumination
intensity. This formula is given by Ruze in his classic survey
paper (ref. 1l). It agrees for small values of 62 with previous
work by others, as well as the earlier work of Ruze himself. In-
cidentally, Ruze's earlier work contains a different form for
larger values of 62 and purports to show that the main-lobe gain
depends on the distribution of the error across the aperture in
addition to the weighted mean square (ref. 2). The more recent
result, in which the areal distribution has no independent effect

on the main-lobe gain, is used in the results herein.

The side-lobe gain is generally agreed to be influenced by
the distribution of the errors as well as their weighted mean.
Ruze shows, for example, that in the case of random errors, the
side-lobe gain is a strong function of the correlation interval
(ref. 1). Different types of structural phenomena will create
different types of phase-error distribution. For example, the
distortions due to thermal effects or maneuver loads are likely
to have characteristic lengths that are a large fraction of the
aperture size. Such large-scale errors are termed herein as
"overall" errors. On the other hand, errors due to random manu-
facturing inaccuracies, which are treated in ref. 3, generally
have much smaller characteristic lengths. Such small-scale

errors are termed herein as "local" errors.

The loss in main-beam efficiency due to phase errors is
dependent on the effects on main-lobe shape as well as main-lobe

gain.

This paper contains newly derived results as well as results
taken from and developed from the literature for the effect on
main-lobe gain and shape and side-lobe gain of various types of

imperfection patterns.
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SECTION 2

BASIC ANTENNA FIELD EQUATIONS
AND PHASE ERROR-FREE SOLUTIONS

An estimate of the scalar diffraction pattern for a plane

circular aperture can be obtained by using the Fraunhofer approxi-
mation:

2T a ] gﬂ —h?
E(0,6) = fff(r’¢,)ei[6(r,¢ )+ X sin 6 cos (¢-¢ )]rdrdd)' (1)
070 .

where f(r,¢') is the magnitude of the illumination at the aperture
and 6(r,¢’') is its phase. The coordinates in respect to a parabolic
reflector antenna are shown in Figure 1. The above expression is
referred to as the far-field equation, as it is a good approxima-
tion of the antenna field only when the distance from the antenna

is large compared with the aperture radius a and beyond the inter-
ference pattern of the Fresnal zone. Reference 4 contains a com-

plete discussion of the derivation of the Fraunhofer approximation.

For a circular aperture, it is convenient to change the vari-
ables so that

u = %%sinﬁ
and

= L
= 3

so that the above equation becomes
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2T 1 . ' '
E(u,0) = azf/‘ £(p,¢")e L8007 +up cos (9-01] 4 oy4 (2)
0°0

If we restrict ourselves to the circularly symmetric feed il-
luminations characteristic of this type of antenna, then f will not
depend on ¢' so that the field equation becomes

24" 1[500,0") +up cos (9-0")] ,
E(u,9) = afff(o)e ’ pdpdd (3)
0 -0
In the special case where there are no phase errors, § = 0, the

above expression can be integrated with respect to ¢’ which results

in

1
E(u) = 2ma’ EREIE 4)

0

For a uniform illumination, the function f = 1 and the far-

field pattern become

J. (u)
E(u) = ZTTa2 1

(5)

The equation for the more general case containing phase errors and

tapered illuminations is more difficult to integrate.

The gain of unblocked antenna is given by

2
lche,¢'>dAl
G(o,9) = 4T A — (6)
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where F(6,4') = £(p,')ell8(P.8") +up cos (6-¢")] and A is the
14 14
area of the aperture.

In the special case, mentioned above, of a uniform illumina-

tion with no phase errors, that gain is given by

2
2 2 J,(u)
_ lém"a” "1
G6=0(e’¢) = }\2 u2 (7)

and the maximum gain occurs on the z axis where u = 0.
Gé=0(0) = 5 A (8)

This represents a theoretical maximum for a paraboloid antenna.
The effects of nonuniform illumination, phase errors, spillage, and
blocking by the feed and its supports all reduce the gain achieved

in practice.

Feed systems produce nonuniform illumination of the reflector
resulting in nonuniform aperture fields. Generally, these distri-
butions peak at the center of the reflector and taper to a low
value at the edge. For present purposes, it is assumed that none
of the feed illumination spills over the reflector edge. Spencer
(ref. 5) has treated the case of distributions of the form
fa(l-rz)p, the treatment resulting in the general solution for no

phase errors

P
2% pe J (u)
_ 2 2 p+l _ A
E(u) = 1%a up+1 = __p'i'l Ap+1(u) (9)

113



where A is the Lambda function. The characteristics of these
diffraction patterns are shown in Table I. The solution for p = 0
is the uniform illumination case. These tabulated results indicate
a reduction in the gain and a widening of the beam as the distri-
bution becomes less uniform over the radius of the circular aper-
ture. However, they also indicate that intensity of the first side
lobe in relation to the on-axis gain is significantly reduced as p
is increased. The gain factor, G, is the on-axis gain divided by

the maximum on-axis gain of Eq. (8) for p = 0.
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SECTION 3
THE EFFECTS OF OVERALL PHASE ERRORS

One important class of phase errors results from overall dis-
tortions in the mechanical shape of the antenna reflector. In

order to examine the effects of these errors, circularly symmetric

illuminations of the form

£(P) = (1+p)(1-p%)P (10)

will be considered where p is an integer. Note that f(p) has been

normalized so that

/A-f(o)dA
fdA
A

Phase errors of the form

= 1 (11)

S(p,$') = g(p) cos n¢' (12)

will be considered.

The mean square error is defined to be

il j;f<p>62<p,¢ ")dA

ff(o)dA
A

One method of solution is to expand the exponential term of

(13)

Eq. (2) for very small errors so that
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1 27
~ 2 iup cos (¢-¢')
E(u,$) = a f(p)pe
‘/O' ‘4

2
x [1’+i g(p) cos no’ __g%_ cos2 n¢'] dpdo’ (14)

where g(p) <<1 and terms higher than gz(p) have been dropped.

Let
w = 9" -9
then
d¢' = dw
and
2 1 2m-¢
E(u,9) = a fpf(p) / iup cos w
0 -¢

2 2
X [1 +1i g(p) cos n(P+w) - & Zp) -& [Ep) cos 2n(¢+w)] dpdw

(15)

By expanding the trigonometric terms in (¢+w) and noting that the

in cosw

sine terms integrate to zero, since e is an even function,

then
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o .
E(u,0) = azfpfm) f elup cos

2 2
x [l+g(p) cos n$ cos nw - 5—1(70—) - 3—4‘(—& cos 2n¢ cos an] dpdw
(16)

This expression can be integrated with respect to the angle w so
that

1 2
Zﬂazfpf(p)[(l—-g%)l) Jo(up)+i(n+1)g(p)Jn(up) cos né
0

[

E(u,¢)

2
- (—l)n E—égl Jzn(up) cos 2n¢] dp (17)

3.1 UNIFORM ILLUMINATION AND LINEAR PHASE ERRORS

As a first case, consider uniform illumination and linear phase
errors:

Uniform illumination, f(p) = 1
Linear phase errors, 8(p,¢') = 2V 62 p cos no'

Substituting these expressions into Eq. (18) results in
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— 1

1
E(u,$) = ZA[f pJO(uo)dp-62f03JO(uo)do
0 0

[~ 1
+ (i)n-‘-l 2y 62 cos n¢fp2Jn(up)dp
0

— 1
+ 1™ 6% cos 2n¢fp3Jn(up)dp (18)
0

This expression can be evaluated by series expansions where

[0}

1 _1+\P 2p+n
F fonn(uO)dp E (=1) (%)
0 =0 (2p++3)p! (ptn)!

(19)

[}

1 P 2p+n
3 2 : (-1) u
" fp T (02do (E)
0

om0 (2pHmHA)p! (pHa) !

A program suitable for use in a TI-58 or -59 calculator is
shown in Appendix A. This program was used to evaluate these terms.

Note that

1 J, (u)
F| = fszl(uo)dp = 2u
0
(20)
1 J., (u)
6 = [0 - =
0
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Also note that

lim _ 1
wo o = 3
(21)
lim _ 1
u>0 GO(u) T4

and that, in general, for n > 0 the limit of each function is zero

as u goes to zero.

To examine one case in particular, let n = 2 so that

2

§(p,¢') = 2V &8 pcos 2¢'
Then

E(u,$) S zA{JliU) _ 2 [Gy(w) +6, (u) cos 46]-1 2/?1:2(11) cos 2¢} (22)
and

182 (u,0) | = 4A2{[1—1-6_2 (G4+6, cos 4¢)]2+4 ?Fg cos? 2¢} (23)

which, after dropping terms higher than 62, reduces to

5 . 2 4Ji —E-8J1 2uF§ cos2 2¢
IE | = A ‘u—z -6 T GO+G4 cos 4(1)- J (24)

1
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Since

f|F|2 dA = A (25)

A

the gain is given by

2 2
J — 8J 2uF
G(u,9) = 4mA 4% _ §2 —L G.+G, cos 4¢ - Z cos? 2¢ (26)
>\2 2 u 0 4 J
u 1 }
which has been plotted in Figure 2 for 62 = 0, 0.125, and 0.250
when ¢ = 0. This expression is identical to Egq. (7) for § = 0.

3.2 QUADRATIC ILLUMINATION AND LINEAR PHASE ERRORS

As a second case, consider quadratic illumination and linear

errors:

2(1-0%)

VeV EE.Q cos u¢’

Substituting these relations into Eq. (18) results in

Quadratic illumination, f(p)

Linear phase errors, 6(p,¢')

1
E(u,$) = 2-na2f (20—2p3)[( 352" )J (woy + 17 e/ 82 pJ (up) cos no
0

22
T+ (-1)n+1 3-‘3-59 J,,(up) cos n¢] dp 27
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If we define

o £t T oy \
Hn—£o L(up)dp ’
} (28)
1
I = .{'os J_(up)dp )

Eg. (28) can be evaluated using the program in Appendix A. Then

J —
E(u,9) = AA{—-I— -6 +1™ 6/ 62(F -H ) cos nd

u 0 n n

- 6—23 G-I +(-1)"(6, -I, ) cos n¢ (29)
2 [0 0 2n" 2n
Since
1 27

lezldA = asz 4(1-20%40") pdpag’ = 1A (30)
A 0 0

the gain for n = 2, after neglecting terms higher than 62, is

J 2 — J
> 3TA A - 82 1 - -
G(u,9) 2 {lé[u GO] §° 48 [(u GO)(GO Iy*G, cos 46 -1, cos 4¢)

- 2(F2—H2)2 cos> 2¢]} (31)

These results are shown in Fiqure 3 for V 62 = 0, 0.125, and 0.250
when ¢ = 0.

lie
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3.3 QUADRATIC ILLUMINATION AND QUADRATIC ERRORS

A third case of interest is to examine the effect of quadratic

errors combined with a quadratic illumination.

Quadratic illumination, £(p) = 2(1—p2)

Quadratic phase errors, §(p,¢') = 2 V3V 62 p2 cos ¢'

Substituting these expressions into Eg. (18) results in

l — —_—
~ 2 .
E(u,$) = 2ma fz(p-p3) [(1—3 62p4>JO(up)-3 6204J4(up) cos 4d
0
- i 2 V3V 62 szz(up) cos 2¢] dp | (32)
If we define
s
K, = fp J_ (up)dp (33)

0

Eg. (33) can be evaluated with the program in Appendix A. Then
for ¢ = 0

e

J ——— —
1 /2 2
E(u,0) 4A[ -Gy-1i 2 V3V § (6,-1,) - & 3(10-K0+14-K4)] (34)

u

and

J 2 — J
G(u,0) = 24 {16 (—Jl- - c0> - 82 96 (—uL - GO)(IO—KO+I4-K4) - (GZ—IZ)Z:,}

A
(35)

—
These results are shown in Figqure 4 for V 62 = 0, 0.125, and
0.250.
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3.4 QUADRATIC ILLUMINATION OF A SPHERICAL REFLECTOR

The method of solution f7gg,in the above three cases is lim-
§

ited to very small values of in order to ensure that g(p) << 1.

A second technique can be used which avoids this limitation by per-

forming a numerical integration of the far-field equation.

Consider phase errors of the form

S(p) = 6 /Ew/ 6_2(94—%)

7 (36)
which result from the use of a spherical reflector instead of a
paraboloidal reflector, and where
2 _ 1 /7 m A |
& = §Vs3H )3 (37)
F
D

where F and D are the focal length and diameter of the reflector,

respectively. This relationship applies only to the case where

the feed is located at the focal point. The errors can be reduced

for a given wavelength and geometry by displacing the feed along
the z-axis.

Substituting Eg. (36) and a quadratic illumination into Eq.

(3) results in

2m 1

. 2.4 . '
E(u,$) = .zazv/r v/”(p-p3)e1 6 V5/7v & (p -1/6)elup cos (-9 )dpd¢' (38)
0 0

This expression can be integrated with respect to ¢' so that

123



1 <2, 4
B(u,0) = 4ma’ S (p-pPyel 8 V3T S7@HLI8) 5 ()4 (39)

0

which, after expressing the exponential in terms of trigonometric

functions, results in

1 — —
E(u) = maZ 4f(p-p3)J0(up) [cos (6\/5/7»/ 62p‘*) cos (¢5/7‘\/ 62 )
0

+ sin (6 \/5"/_7"/6:2;;4> si;l (/SW\/:S__Z—')
+ i sin (6 @7/5:2;)4) sin (/57/?)
- i cos (6 W/?)cos(ﬁ/—é_?) ) (40)

Define two functions

1 —i
M(u) = 4f(p—p3)Jo(up) cos (6 v5/7 62p4)dp
0
(41)
N(u) = Au/}(p-p3)J0(up) sin (6 v5/7v 6204)dp
0
so that the field expression becomes
E(u) = A.(M cos V5/7 V 62-N sin V5/7 v 52
+ i N cos V5/7 V 2—J’.Msin v5/7 V (52 ) (42)
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The gain, according to Egqg. (6), is then

G(u) = QWZ—A (M2+N2) (43)
A

The terms M and N can be evaluated for various values of u
by numerical integration. Appendix B includes a program suitable
for use in a TI-58 or -59 calculator which was used to obtain the

2
§7.

values plotted in Figure 5 for several values of
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SECTION 4

THE EFFECTS OF SMALL WAVELENGTH ERRORS
ON THE SECONDARY PATTERNS OF ANTENNAS WITH CIRCULAR APERTURES

To establish the relative influence of small-scale phase
errors, consider the case of uniform illumination and linear phase
errors previously considered in Section 2.1. Now, a solution will
be gobtained for large n. Substituting f(p) = 1 and 6(p,¢') =
¢?EE})COS u¢' into Eg. (2) results in

2
21T 1 . _2 ) P . ?
E(u,$) = aij-el 2 8" p cos n¢ Qlup cos (d-9 )pdpdd)' (44)
0 v0

which, after substituting o = ¢'n, becomes

n

2 2m1 /2 .
E(u,$) = 2= f ei 2V §" pcos o iup cos ((b—a/n)pdpda (45)

00

The intergral over a to a limit at 2n7m can be replaced by the

sunmmation of n integrals to a limit at 2m.
a2 1 - A i 2v 6_2p cos O
E(up) = —fpdoz fe

x o(iup cos a/n + 2(p-1)T/n~¢) 4 (46)

for large n and a<2m, o/n << 1.
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Therefore, the asymptotic approximation is

n —
z2 1 - 2p-1 _ _ o . ./ 2
E(u,$) ~ %—fpdp E o 1up cos( o m ¢)/‘ e & 2y 87 p cos Ay
0 p=]_

4}
Since
hn

izeiup cos <2Pn_—lﬂ-— q;)
n

p=1l

e

27

1 iup cos (A-9) _

——zpf e dA = J,(up)
0

then

e

E(u,9)

1 ———
2ﬂa2J('JO(2V 52 D)Jo(up)pdp
0

which, when evaluated, becomes

E(u,$) = 2ma® —2 [u 3 @/ 623, () - 2/ 6% 3 (w3, @ aZ)J

u2—462

The resulting gain pattern is

— — — 12
G(u) = —"—[u 3o/ 893 @ -2/ 8 5 a2/ 62)]

-

The on-axis gain is

Ji(Z\/ %)
2

$

~

G(0)

(47)

(48)

(49)

(50)

(51)

(52)
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and the ratio of gain to on-axis gain is

2 3,2/ &2 = 2
2

Glu) = 4J _ 2/ &2 3o () (53)

G(0) - =
w2 | g v &)

The gain pattern has been numercially evaluated for several values
of v 62 and the results are shown in Figure 6.
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SECTION 5

THE EFFECTS OF PHASE ERRORS
ON THE SECONDARY PATTERN OF A SQUARE ANTENNA ARRAY

The far-field equation for a square antenna array with side

of length L can be written as

L/2 L/2
f / f(g’n)ei[é(g,n)+(2ﬂ/>\) sin 0(§ cos ¢+n sin ¢)]d£dn

-L/2 -L/2

E(8,¢)
(54)

Consider the aperture to be divided into an N x N array as ele-
mental squares, each one of which is denoted by integers m and n
(1,2,3...N). In the elemental square (m,n), let

- e L
E = §m+(2m 1)C 2
n = n +(2n—1)C—L
- n 2
where
= L
C = 35

and let £ and § be constant. Then
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N N .
id . .
E(6,) = ZZ £ e mn_-(2m1/1) (L/2+C) sin 8(cos ¢+ sin ¢)

m=1 n=1

xe(4TTiC/>\)sin B8(m cos ¢+n sin ¢)

c c
xffe(znim) sin'8(5 cos ¢ +n sin @) ypgy (55)

-C -C

Integrating and squaring the absolute value yields the power to be

2
2 sin(z;\r—c— sin O cos tj))sin(g;E sin 6 sin (b)
[E6,9) |7 = 5

L sin2 B cos ¢ sin ¢

)\2

-6
mn Pq)

N elmiC/)\ sine[(m—p) cos ¢+ (n-q) sin ¢] (56)

5.1 UNIFORM ILLUMINATION AND NO PHASE ERRORS

If fmn = £ and dmn = 0, then

2
sin(zLC sin 9 cos Cb)s:i.n(-z—ﬂr-TE sin 6 sin (b)
IE (6 ¢)|2 - A A

0" ﬂz 2
— sin” © cos ¢ sin ¢

>\2

2
sin(ZHCN sin 0 cos d)) sin(ZTB\CN sin 0 sin (b)

A
x sin(g—;(—: sin © cos d)) sin(g;\-c- sin 0 sin (b) (57)
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E 0,00 % = wc?¥B? = 1 (58)

Let the relative power be

| 2
P(0,4) = _(E_(M)_l_ (59)

2
|E,(0,0) |

Then
2TC 2mC 2
1 sin(T sin O cos q>) sin(T sin O sin d))
4 2
L W—z sin2 8 cos ¢ sin ¢

P(8,¢)

N N N _
x z Z Z Z fmquel(amn'qu)e (4miC/A) sin ©

m=1 n=1 p=1 gq=1
X (m-p) cos ¢+ (n-q) sin ¢ (60)

For uniform illumination and amn = 0,

2
sin(l%- sin 8 cos d)) sin(TrTL sin 0 sin q>)

P (8,4) = (61)
0 WZLZ . 2

5 sin 0 cos ¢ sin ¢

A

For ¢ = 0, ©/4
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. CQ . )2
sin|(=— sin 6

A
PO(G’O) - L,
5 sin 6
(62)
sin (‘/713\ sinﬁ 2
PO(S,N/A) = )
7L . 2
—= sin 6
2X

These gain patterns are shown in Figure 7.

5.2 UNIFORM ILLUMINATION AND RANDOM ERRORS

Let émn be a random variable and let the illumination be uni-

form. Then, the expectation of the complex exponential is (see

ref. 1)

i(émn—é )
<:% Pq :> = 1 when m = p and n = q
9 (63)
—06
= e when m # p or n # g
where Os is the standard deviation of ¢, assumed to be uniform.
Note that statistical independence is also assumed.
The corresponding expectation of the gain is
2
C(P(8,0)> = By(8.0)e
2 2
( —06> sin(gﬂ sin 6 cos d)) sin(EE sin 6 sin d))
4+ \M-e A A
N2 271C 2 . 2 .
=) sin 0 cos ¢ sin ¢
(64)
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The main-lobe gain is

80(6) = P(0,0) = e — (65)

Define the additional side-lobe gain due to errors as

AL, = G, (8) (66)

For the present case, this gives

l-e § '
2 sin z-T—T-C—-sin 0 cos ¢)sin 2nc sin 6 sin ¢
N A A
A = —P (e’¢)
S.L. 2 2 2 0
-0 2mC . 2 .
-0 .8 (———) sin” 6 cos ¢ sin ¢
§, 1l-e A
e + 5
N
(67)
Of course this is zero for 6 = 0. If we look at the region
of the first side lobe and consider C<<IL, then we have
8
~ e -1
AsL. N2 (68)

There is a grating side lobe (for example, at wC/A sin 6 = 37m/2

for ¢ = 0) but its magnitude is smaller than that above.
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5.3 UNIFORM ILLUMINATION: A CHECKERBOARD
PATTERN OF PHASE ERRORS

Let

8 = §, m+n even

= -8, m+n odd

We want to evaluate the summations in Eq. (59) for uniform illumin-

ation. First, consider a single summation

N N
§ :el mne(lrrriC/)\)sin fm cos ¢ _ e:'Ld(—l)n e(4‘rriC/)\) sin Om cos ¢
m=1 m=2,4,6

N-1

n+l

e:i.(S(-l) e(4'rTiC/)\) sin 6m cos ¢

+
m=1,3,5

(69)

Note that we have assumed that N is even.
The single summation can be closed to yield

. n .
e1(3(—1) [1+ e—216 (-1)

n_- (4miC/A)sin 6 cosdil e (N+2) (27iC/)X) sin O cos ¢

sin(ZI\;\nC sin 0 cos ¢)

sin(z‘%c sin 6 cos d))

(70)
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The double summation over m and p, after some rearrangement,

is
N N
i(§ - & -
ZZ el( on pq)e(l;’rriC/k) sin O(m-p) cos ¢
m=1 p=1
' 2
sin (%I—‘- sin 6 cos ¢)
= 2 ) (lmc : [cos anq6+co$(bnq6+4TrC/)\ sin 6 cos ¢)]
| sin {5 sin 0 cos ¢)
(71)
where
a =20 b =2 n even q even
nq nq
2 0 n even q odd
=2 0 n odd q even
0 =2 n odd q odd
Now, the sum over n is
N n
2 : ei (-1 e(lmiC/)\) sin 6n sin ¢
=1
sin (%L sin 6 sin d>)
_ id, -id ~(4miC/X)sin B sin (I)]
- [e te e sin (31;2 sin 6 sin ¢) (72)

So the quadruple summation is
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2
sin(lkl-'- sin 6 cos q;) sin(-w-l—‘ sin 6 sin Cb)

= A 2
EZZZ B A . [4TC . . [1(8,9)
sin{~5— sin 9 cos ¢)sin = sin 6 sin ¢
(73)
where
H(O,$) = [ei6+e-i6e-(4ﬁ1C/>\) sin 6(sin ¢+ cos ¢) :
+ eide—(lﬂriC/)\) sin 6(cos ¢+ sin d>)]
So, finally, after extensive rearrangement
= 2 2
P(0,$) = Po(e,d)) cos 6[1+tan §
X tan2 (AK—C- sin 0 cos cb) tan2 (2—;0- sin 0 sin ¢)] (74)
The main-lobe gain is
Gy(8) = cos” § (75)
The increment in relative side-lobe gain is
AS.L, = P0(6,¢) tanZ(Z_;\T_Q sin 6 cos d)) tanz(z—;rc— sin 6 sin d))tan2 ) (76)

This is zero for ¢ = 0 and ¢ = /2. For other values of ¢
and for the first side lobe with L>>C
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sinz(EE sin O cos ¢)sin2(E£ sin 6 sin ¢)
A = A A tan2 § an
F.S.L. N4

The location of the first side lobe in the octant ¢ < /4 is

approximately at

%% sin 6 cos ¢ = —

So

sinz(%;-tan ¢) 2
beosn. © & tan” & (78)

This 1is largest at ¢ = w/4. Thus

_1 2
Bp.siL. = Gtam S (79)

This is fairly small for reasonable § and N 2 10.

There are grating side lobes located, for example, at

2mC . _ T
3 sin 0 cos ¢ .— 5 (80)

At this location

o N (81)

L . _Lm
5 sin 0 cos ¢ = ic 2

Since N is even, P0(6,¢) = 0. Thus we have a indeterminate wvalue

for the grating side-lobe gain.
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The limit is

1imz;[—csin8 cos ¢ =

= NCDY

Therefore

Again, this is maximum for tan ¢ = 1 and is

/2

s A

sin(lT—L- sin 8 cos ¢)

2

cosz(—ﬂf— sin 6 cos d))

16 sin2 (NT/2 tan ¢) t.an2 (/2 tan ¢) tan2 $

G.S.L.

16

2

NzTr4 tan2 §

A =7tan6

G.S.L. -

which is not small.

where
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G(e,'ﬂ'/4) = (

sin Z

Z

4 2
) [l—sin § (l-tan

4 Z

N

)

(82)

(83)

(84)

(85)



z = ™ gine = L (86)

V2 V2

The secondary pattern has been numerically evaluated and the

results are displayed in Figure 8.
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SECTION 6
CONCLUDING DISCUSSION

The effect of phase errors on main-lobe gain is summarized in
Figure 9. The narrow band labeled "random error" applies to both
the analysis of Ruze (ref. 1) and the square aperture results of
this paper (Eg. 65). The "scallop error" and "periodic checker-
board error" curves are obtained from the large-n and square-aperture

2"

analyses herein (Egs. 52 and 75). The "1-§ approximation was

obtained early by Spencer (ref. 5). All the other curves differ

- 52
little from e *

Examination of the preceding beam patterns indicates that the
errors affect primarily the magnitude of the main lobe and only
secondarily its shape. Therefore, the effect of errors on the
main-lobe gain is also interpreted as the effect on main-beam ef-

ficiency.

Also shown in Figure 9 are the values of rms phase error that
are associated with rms surface errors of a reflector antenna of
A/50 and A/16. Note that A/16 is usually considered to be adequate
accuracy for point-to-point communication insofar as the aperture
size can be increased to achieve the desired gain. However, if
high main beam efficiency is desired, then much tighter tolerances
are required. Even at A/50, which is usually considered to be a

highly accurate antenna, the power loss due to errors is 6 percent.

When the influence of errors on the side-lobe gain is considered,
the results, as shown in Figure 10, depend strongly on the type of
the error. 1If the error is an "overall" one (spherical aberration,
cos 2¢, grating side lobes), the relative side-lobe increment is
large. This quantity is the qrowth in side-lobe intensity expressed
as a fraction of the degraded main-lobe intensity. Thus, even at
a reflector-surface rms error of A/50, the growth in side-lobe peak
power is only about 20 dB down from that of the main lobe.
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Incidentally, the radiation pattern calculated for the "scallop"
error shows the side-lobe gain to be decreased by the error. Where
the power lost from the main lobe goes is a question - perhaps to
the much higher lobes. At any rate, the geometrical error occurring
in radial-rib types of antennas do not seem to present problems

relative to the near-in side lobes.

The "local" errors produce much lower effects if they are ran-
dom. Thus, for example, if the "error-area"-to-aperture-area ratio
. -3
is 10

have an rms error of A/16 and still have the side-lobe growth to be

(a diameter ratio of 1/30), then the reflector surface can

more than 30 dB down.
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TABLE I.

SECONDARY PATTERN CHARACTERISTICS PRODUCED

BY A DISTRIBUTION (1 - r2)P OVER A CIRCULAR
APERTURE WITHOUT PHASE ERRORS

G, GAIN FACTOR

6, HALF-POWER

POSITION OF

FIRST SIDE LOBE,

2p+1 dB BELOW PEAK
ICETs WIDTH FIRST ZERO Radadias
1.00 1.02 X sin~t 1:222 17.6
D D
0.75 1.27 2 sin L 1:632 24.6
D D
0.56 1.47 X sin~1 2:032 30.6
D D
A -1 2.42)
0.44 1.65 D sin D - -
A -1 2.79A
0.36 1.81 ) sin D - -
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Figure 1. Coordinates of a circular antenna aperture.
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1.0
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Figure 2.

The effect of linear phase errors on the
secondary pattern of a uniformly illuminated
antenna.
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Figure 3.

The effect of linear phase errors on the

secondary pattern of an antenna with a

quadratic illumination.



1.0 e I | ]
N\ .
\\ Circular Aperture
« Quadratic illumination,
flo) = 201 - ¢%)
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Figure 4.

The effect of quadratic phase errors on the

secondary pattern of an antenna with quadratic
illumination.
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= SPHERICAL REFLECTOR
\\\ + Quadratic illumination, f(p) = 2(1 - pz)
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Figure 5. The effect of phase errors on the
secondary pattern of a spherical reflector.
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Figure 6. The effect of small-scale linear phase errors
on the secondary pattern of a uniformly il-
luminated antenna.
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» No error
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Figure 7.

Secondary patterns of a square antenna
array without phase errors.
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Figure 8. Secondary patterns of a square antenna

array with checkerboard phase errors.
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Root-mean-square phase error, radians

Figure 9. Effect of errors on main-lobe gain.
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Figure 10. Effect of errors on antenna side lobes.

>| o

-2

—
(=]

10

10

153



APPENDIX A
PROGRAM FOR SERIES EXPANSIONS

The following computer program was used to compute the ex-
pressions in Eg. (19) in the preceding text. In the present form,
it computes Fn' By changing Line 60 of the computer printout to
4, it can be used to compute Gn' In a similar manner, 5 computes
Hn' 6 computes In’ and 8 computes Kn' The ranges of variables are

For this program, use the following series of keystrokes:

{2nd ] |[CMs|
L X | Lsto] [ 06 | Stores value for U
L x | [sTo] [11] Stores value for n
[RST| [CLR]

[R/s]

Use | 2nd |[FIX |[ 4 |the first time.
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APPENDIX B
PROGRAM FOR M AND N

The following computer program expresses the integrands of
the expressions for M(u) and N(u) in Eq. (41) of the preceding
text. By using Label A, this program can be called up as part of
a library program for numerical integration (using Simpson's rule).
Changing the cosine term to a sine term in Step 014 relates the
program to the integral for N(u) instead of M(u). The digit 4
in front of each integral has been included to simplify the en-

suing computations.
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CHAPTER 3

DEPLOYMENT OF FOLDED FOIL SURFACES

by

Kar] Knapp and Charles S. MacGillivray
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SECTION 1
INTRODUCTION

The successful development of any structure depends largely
on the identification of the critical or primary loads and other
requirements on which the design is based. The future promises
large structures which must be deployed, erected, assembled, or
fabricated in space. For such structures, which will not be
required to face the launch environment, the primary design re-
quirements will be derived from the space-flight environment
and will deal with phenomena as primary criteria which have been
considered as only secondary in the past. The design of such
genuine "space" structures will require a solid foundation of

critical criteria.

This chapter deals with a preliminary investigation of the
tensions required to flatten metallized films or thin metal foils
after they have been packaged in a folded condition.

Metallized films and thin metallic foils are candidate
materials for the surfaces of a variety of large space structures.
The reflecting metal surface is usually required for solar or
radio frequency reflectors where a smooth surface is desired for
best performance. Normally, the material must be folded in the
launch package and then deployed in space. It is of particular
interest to determine the tension required to pull the material

sufficiently flat for the mission.

Astro Research Corporation has investigated previously the
shortening effect of transverse folds in tapes (see ref. 1). A
simplified model of a material with alternating folds in one
direction is examined here. Also, experimental results on metal
foil samples with both two- and three-dimensional folds are

presented.
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SECTION 2
ANALYSIS OF ALTERNATING PARALLEL FOLDS

Consider a length of material of thickness t with alternating
parallel folds under a tension N as shown in Figure 1. Let s be
the distance along the surface perpendicular to the folds and 2b
the spacing between folds. Then for a unit width 2 the moment on
the film is

M = Nwl (1)

and the curvature is given by

ae _ M
ds - EI (2)
where
_  dw
cos 6 = a—s (3)

Substituting Egs. (1) and (3) into Eq. (2) gives
cos 6 + df = -== wdw (4)
For tensions where the surface is nearly flat

6 = % at z =0, w=20
Integrating Eq. (4), we get
0 Y

. N
f cos 8 de = EI[ wdw (5)
0

/2
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which results in

. ~ N w_
1 -sinb6 = g7 5 (6)
or
- 2ET . _ ..
w = //%ﬁf (L -sin 9)
Calculating the root mean square displacement gives
__ b/2 1/2
w2 = % f wzdz (7)
0

Substituting Egq. (6) and the following

_ sin 6
dz = cos 6 dw
/-2-El d(sin 6)
N2Q
dw = =
vl - sin ©

into Eg. (7) results in

w —3 — — —
b ) N2 2 e)1/2

sin 6
= 2f 0 2EI)3/2 (1-sin 6)1/2 sin 6 d(sin 9) 8)
(1 - sin

Letting y = sin 6 we get

1 1/2
2 12 251 |3/ 2 ydy
w.o = 1p N (9)
. Yl + vy
sin ©
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This integral is listed in most tables of integrals as

1/2

b 2 3

— 3/2 :

/3 3/4| (2)3/% - (1 +sin 0.)3/2

LA 2(2EI) 0 -YZ+/T+sin 6,
b2Ng

(10)

Numerical results have been calculated and plotted in Figure 2.

The half angle 60 at each fold is also influenced by the ten-
sion on the material. Normally, this angle is established by the
maximum tension that has been applied. If the fold behaves like

a plastic hinge, then from ref. 1 we find that

M. = Yt o - Nw.og (11)

where oy is the material yield stress.

Evaluating W by Eq. (6) and substituting the result into
Eq. (11) results in

L 2EI
z - - "N N

(1 - sin 80) (12)

or solving for 60 we obtain

) = sin l1-= (13)

2
-1 3 0yt
8 NE

Unfortunately, the model is not useful for a work-hardening mater-

ial such as aluminum.
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SECTION 3
EXPERIMENTAL TESTS

3.1 TESTS ON AN ALUMINUM FOIL STRIP

WITH ALTERNATING PARALLEL FOLDS

Recognizing that the analysis provided limited understanding
of the tensions required to flatten a creased aluminum foil, three
tests were conducted on creased aluminum foil samples. The specifi-
cations of the test samples were:

Aluminum . . . . . . . . . Reynolds Wrap broiling foil
Thickness . . . . . . . . 2.54 x lO_5 m

Width . . . . .. .. . . 0.10m

Length . . . . . . .. . . 1.20m

Length of folded section . 1.00 m

Fold spacing . . . . . . . 0.020 m

The samples were tested on a horizontal table dusted with
talc to reduce friction. Tension was applied by dead weights via
a string and pulley system. The length of the folded section, the
height of the folds, and the half angle at the folds were measured
under increasing load. A photograph of a test sample under load
is shown in Figure 3. Results of these tests are shown in Figures
4 and 5. The test data has been included in Appendix A.

The fold angle eo at the tip of each fold proved to be very
difficult to measure even with the load removed from the foil
strip. And, because of the work hardening characteristic of the
aluminum, this angle cannot be predicted by analysis. However,
Eg. (6) has been plotted along with experimental data in Figure 5
for an assumed constant 60 of 60°. The experimental measurements
of fold height shown on Fiqure 5 are somewhat ambiguous since at

small loads the measurement represents 2w and at high loads the

OI
measurement is closer to wO.
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3.2 TESTS ON A SQUARE FOIL SURFACE
WITH FOLDS IN TWO DIRECTIONS

A second series of tests was conducted on a square foil sample
with the following dimensions:

Thickness . . . . « . . . 2.54 x 10°° m
Sides «. . ¢ ¢« ¢ ¢ ¢ v &« . 0.457T m
Fold spacing . . . . . . 0.020m

Arcs were cut in each edge of the foil, removing about 10
percent of the area, and nylon cord catenaries were attached.
The film was folded and packaged using the scheme shown in the
photographs of Appendix B. Known loads were applied to the cate-
naries in small increasing increments. The expansion of the film
and average fold height were measured, and the radius of the cate-
nary was estimated for each condition. Photographs of the expanding
foil and test data are included in Appendix B. Results of the
tests are shown in Figures 6 and 7.
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SECTION 4
CONCLUSIONS

This preliminary investigation has shown that the effects of
work hardening at creases in folded aluminum foil require very high
tensions in order to flatten the film in the region of the creases.
Plastic effects also defeat the usefulness of analytical predic-
tions. Fortunately, there are alternate surfaces available for
both optical and radio frequency applications that large eliminate
the difficulty associated with deploying foils. Optical surfaces
can use polymer film coated with very thin layers of metal, mini-
mizing the problems associated with foils and reducing the mass
per unit area as well. Knit meshes are available for radio fre-
quency reflector surfaces which, if they are tensioned, perform

well and eliminate creasing in the packaged condition.

Initially this preliminary study was viewed as a means of
developing a model to predict the behavior of metallized films as
well as metal foils. However, the difficulty experienced in pre-
dicting the behavior of the "plastic hinge" at each crease, and
in measuring the fold angles experimentally, eliminated any pos-
sibility of extending the results. It appears that to establish
the loads required to flatten metallized films, tests must be
conducted on the specific coated film material. Plastic effects
also occur when metallized film is creased, and although the prob-
lems may be smaller than those experienced with foil, serious
consideration should be given to packaging techniques which avoid

folding or which minimize the number of folds.
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APPENDIX A
TESTS ON ALUMINUM FOIL STRIPS WITH ALTERNATING PARALLEL FOLDS

Three identical tests were performed on two separate occasions
to study the effects folds have on deploying or unfolding a folded
foil surface. The test consisted of a strip of aluminum foil 0.l-m
wide and 1.2-m long. A series of 50 2-cm-wide folds were made in
the center leaving 0.1 m at both ends for handling purposes (see
Figures A-1 and A-2). After all 50 folds were accurately made, the
folded strip was placed in a vise and the folds set. The test was
performed on a flat Formica table top dusted with talc powder to
reduce friction. One end of the strip was firmly fixed by masking
tape and the opposite end had a large paper clip anchor folded and
applied so as to distribute the applied tension load evenly over
the width of the strip (see Fiqgures A-1 and A-3). The loads were
applied to a weight hanger on a string which ran over a pulley to
the anchor on the aluminum strip. The length measured was from
the first fold to the last fold. At each load case, the load was
gently applied and the table top vibrated so as to allow the strip
to overcome any friction in the system and extend to an equilibrium
point. The length was measured and recorded as the loaded exten-
sion (see Table A-1). The load was then removed and the table
vibrated to allow the strip to contract. The length, fold height,
and fold angle were measured and recorded under load-relieved values
(see Table A-1).

In the first test, starting at about Load Case No. 19 or 20
and continuing on all subsequent load cases, an interesting phenom-
enon occurred when the load was removed. The folds, instead of
retracting in the manner it was originally folded, folded in the
opposite direction (see Figures A-4 and A-5). Unfortunately, it
was not noticed until Load Case No. 21. This phenomenon probably

accounts for the anomaly at the bottom of the percent relative
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contraction versus percent elongation (loaded) graph shown in
Figure A-6. After Load Case No. 24, a roller was used to flatten
the foil to remove any remaining creases. This measured length
was found to be approximately 0.0005 m shorter than the original

value.

The recorded data was used to calculate the load (in Newtons),
the percent extension (loaded), the percent relative contraction,
percent extension (loaded) squared, and the effective load. These
results are shown in Table A-2. Figures A-6 and A-7 provide a

graphic presentation of selected data.

Two additional tests were pérformed which were identical to
the first 1-D loading aluminum foil fold test. The test was re-
peated in order to obtain additional data not recorded during the
first test and to check repeatability of the test.

The test setup (see Figure A-3) and procedure were identical
to the original test. A new strip of aluminum foil was prepared
in order to avoid any possible strain-hardening effects of the

first strip on the data.

At each load case, the weight was gently lowered and the strip
allowed to extend to an equilibrium point. The table was vibrated
to allow the strip to overcome any friction. The loaded extension
(first to last fold), fold height, and angle were measured and re-
corded (see Tables A-3 and A-4 and Figures A-4, and A-8 through
A-11). The load was then removed and the strip allowed to contract.
Again, the table was vibrated. The load-relieved extension, fold
height, and angle were measured and recorded (see Tables A-5 and
A-6).

At Load Case No. 8, it was found that the data needed on the
fold angle was that of the fold tip and not that of the sides as
was being recorded (see Figure 1 in main text). From Load Case No.
9 and on, the fold tip angle was recorded as noted with the data
(see Tables A-4 and A-6).
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While lowering the weight at Load Case No. 15, the weight was
accidentally dropped and pulled the strip further than the static
load would have. Subsequently, the weight was increased to where
the load extended the strip beyond the dynamic extension. As a
result, the data at several loads previously planned for were not
obtained. The test was continued as normal from then on. The
recorded data was used to calculate the effective load, the percent
extension (loaded), the average fold angle (loaded), and the average
fold height (loaded) (see Table A-7). As a result of these two
abnormalities, it was decided to repeat the test. The same foil
strip was refolded and tested again (see Table A-8).

In the second test, five preselected random folds were used to
obtain data on the fold height and angle. It was originally hoped
to obtain better representative data. Though the five folds did
not necessarily represent an average of the 50 folds, some were
very irregular and uneven. As a result, in the third test the
fold height was the average of all the folds and the fold angle
was obtained from that fold which best approaches the average fold
angle (see Table A-8). 1In addition, the load-relieved fold height
and fold angle were not recorded as was done in the second test
because they were not needed. The recorded data was used to calcu-
late the effective load and percent extension (loaded) (see Table
A-9). Figure A-12 shows the fold height graphed against the per-
cent extension at the last 10 percent of deployment using data
obtained from the third test.
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TABLE A-1. Al STRIP, 1-D LOADING, FIRST TEST, RECORDED DATA:
LOAD, LOADED EXTENSION, AND LOAD RELIEVED EXTENSION
ANGLE AND HEIGHT
oAb LOADED LOAD LOAD RELIEVED
LOAD | ypicer | ExTENsTON | RELIEVED
CASE - ks EXTENSION | ANGLE | HEIGHT
& (m) (®) (m)
1 0 0.0095 0.0095 — 0.020
2 1.91 0.1200 0.0350 — 0.020
3 3.83 0.1980 0.0525 4 0.020
4 5.74 0.2920 0.0935 6 0.020
5 7.65 0.3845 0.1385 7 0.020
6 9.56 0.4890 0.2360 15 0.0195
7 11.48 0.6585 0.4185 29 0.0195
8 13.39 0.7745 0.5570 36 0.0150
9 15.30 0.7925 0.6175 43 0.0145
10 17.21 0.8130 0.6535 48 0.0140
11 19.13 0.8300 0.6780 50 0.0135
12 21.04 0.8635 0.7480 57 0.0115
13 22.95 0.8695 0.7540 60 0.0105
14 29.01 0.8885 0.7865 63 0.0095
15 42.72 0.9170 0.8465 68 0.0080
16 56.43 0.9320 0.8880 72 0.0070
17 70.14 0.9410 0.9095 75 0.0065
18 97.56 0.9530 0.9385 85 0.0055
19 152.40 0.9660 0.9585 88 0.0035
20 256.43 0.9770 0.9685 88 0.0025
21 407.24 0.9845 0.9735 89 0.0015
22 607. 24 0.9895 0.9765 * 0.0010
23 1107.24 0.9945 0.9815 * *
24 1542. 24 0.9965 0.9860 * *

*Data not measurable for this case.
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TABLE A-2. Al STRIP, 1-D LOADING, FIRST TEST, CALCULATED FROM
DATA: LOAD, PERCENT EXTENSION (LOADED), PERCENT
RELATIVE CONTRACTION, PERCENT EXTENSION (LOADED)
SQUARED, AND EFFECTIVE LOAD

LOAD LOAD EXTENSION RELATIVE EFFECTIVE E()il‘ (f AI\IDSEIDO)N
CASE (N) (LOADED) * CONTRACTION LOAD SQUARED
(%) ) (N/m) 9
(%)

1 0.0187 0.95 0.0 0.0 0.009
2 0.0187 12.00 70.83 0.187 1.44
3 0.0376 19.80 73.48 0.376 3.92
4 0.0563 29.20 67.98 0.565 8.53
5 0.0750 38.45 63.98 0.750 14.78
6 0.0938 48.90 - 51.74 0.940 23.91
7 0.113 65.85 36.45 1.130 43.36
8 0.131 77.45 28.08 1.310 59.99
9 0.150 79.25 22.08 1.50 62.81
10 0.169 81.30 19.62 1.69 66.10
11 0.188 83.00 18.31 1.88 '68.89
12 0.206 86.35 13.38 2.06 74.56
13 0.225 86.95 13.28 2.25 75.60
14 0.285 88.85 11.48 2.85 78.94
15 0.419 91.70 7.69 4.19 84.09
16 0.553 93.20 4.72 5.55 86.86
17 0.688 94.10 3.35 6.90 88.55
18 0.957 95.30 1.52 9.55 90.82
19 1.49 96.60 0.75 14.9 93.32
20 2.51 97.70 0.85 25.1 95.45
21 3.99 98.45 1.12 39.9 96.92
22 5.96 98.95 1.31 59.6 97.91
23 10.9 99.45 1.31 109 98.90
24 15.1 99.65 1.05 151 99.30

*LF = 0.9995 m (measurement taken after foil was rolled flat)
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TABLE A-3. Al STRIP, 1-D LOADING, SECOND TEST, RECORDED DATA:
LOAD, LOADED EXTENSION, AND FOLD HEIGHT (LOADED)
FOLD HEIGHT (LOADED) (m)
LOAD LOAD }OADED (five random folds)
CASE () EXTENSION
(m) FOLD #3 FOLD #15 FOLD #25 FOLD #29 FOLD #43
1 2.1 0.042 0.0205 0.020 0.020 0.020 0.020
2 3.8 0.125 0.021 0.0195 0.0195 0.020 0.0195
3 5.5 0.208 0.020 0.0195 0.0195 0.0195 0.0195
4 10.5 0.504 0.017 0.0175 0.017 0.0175 0.017
5 15.6 0.735 0.0125 0.0130 0.012 0.0125 0.0125
6 20.6 0.846 0.009 0.010 0.009 0.009 0.0095
7 25.6 0.872 0.0075 0.0085 0.0075 0.008 0.008
8 35.6 0.907 0.0055 0.0060 0.0055 0.0055 0.0055
9 49.6 0.932 0.005 0.0045 0.0040 0.004 0.004
10 63.8 0.942 0.004 0.0035 0.003 0.0035 0.003
11 77.9 0.951 0.0035 0.002 0.0025 0.0025 0.0025
12 92.0 0.955 0.0035 0.002 0.0020 0.002 0.0025
13 120.3 0.961 0.003 0.002 0.0015 0.0015 0.0025
14 162.9 0.967 0.0025 0.002 0.001 0.001 0.0015
15 653.2 0.991 0.0005 0.001 0.0005 0.0005 0.001
16 1524.6 0.994 * * * * *
17 2386.3 0.998 * * * * *

*Too small to measure.
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TABLE A-4. Al STRIP, 1-D LOADING, SECOND TEST, RECORDED
DATA: FOLD ANGLE (LOADED)
FOLD ANGLE (LOADED) (°)
LOAD (five random folds)
CASE
FOLD #3 FOLD #15 FOLD #25 FOLD #29 FOLD #43

1 0.0 0.0 0.0 0.0 0.0
2 15 8 10 9 0.0
3 16 8 10 9 8
4 40 32 34 33 35
5 60 55 60 60 60
6 72 70 75 76 73
7 80 75 78 77 75
8 85 82 85 85 82
9 23 0 37 30 10
10 25 30 30 30 15
11 25 35 30 30 20
12 25 40 32 30 20
13 28 43 35 30 20
14 28 50 45 30 25
15 60 75 75 45 68
16 65 80 90 85 80
17 90 90 90 90 90

Note: Load Cases 1 through 8 show average angle; Load Cases

9 through 17 show tip angle.

Estimated accuracy *5°.




TABLE A-5. Al STRIP, 1-D LOADING, SECOND TEST, RECORDED
DATA: LOAD RELIEVED EXTENSION AND FOLD HEIGHT
(LOAD RELIEVED)
LOAD FOLD HEIGHT (LOAD RELIEVED) (m)
LOAD RELIEVED (five random folds)
CASE EXTENSION
(m) FOLD #3 FOLD #15 FOLD #25 FOLD #29 FOLD #43
1 0.017 0.020 0.020 0.020 0.020 0.020
2 0.027 0.020 0.020 0.020 0.020 0.020
3 0.047 0.020 0.020 0.0195 0.0195 0.0195
4 0.254 0.0195 0.019 0.019 0.019 0.0195
5 0.521 0.016 0.0165 0.016 0.017 0.017
6 0.711 0.013 0.0135 0.0135 0.0135 0.013
7 0.760 0.012 0.0125 0.0125 0.013 0.0125
8 0.854 0.0115 0.006 0.010 0.0105 0.010
9 0.897 0.010 0.008 0.0065 0.009 0.008
10 0.924 0.009 0.0025 0.0055 0.0055 0.006
11 0.930 0.0085 0.0025 0.005 0.0065 0.0055
12 0.938 0.008 0.0025 0.004 0.0055 0.004
13 0.948 0.0075 0.0025 0.003 0.0045 0.003
14 0.956 0.0005 0.001 0.001 0.0005 0.0005
15 0.983 * 0.0005 0.0005 * *
16 0.983 * 0.0005 * * *
17 0.987 * * * * *
18 0.9995% * * * * *

*Data not measurable for this case
tMeasurement taken after foil was rolled flat.

185



186

TABLE A-~6. Al STRIP, 1-D LOADING, SECOND TEST, RECORDED
DATA: FOLD ANGLE (LOAD RELIEVED)
FOLD ANGLE (LOAD RELIEVED) (°)
LOAD (five random folds)
CASE
FOLD #3 FOLD #15 FOLD #25 FOLD #29 FOLD #43
1 0.0 0.0 0.0 0.0 0.0
2 0.0 4 0.0 5 2
3 2 4 0.0 6 4
4 20 14 15 15 16
5 42 40 40 38 35
6 55 55 58 58 60
7 62 55 60 62 60
8 68 73 68 65 65
9 15 5 10 30 5
10 17 40 30 30 10
11 20 40 30 30 15
12 20 40 30 30 15
13 20 42 32 30 17
14 40 60 55 50 45
15 60 68 65 50 60
16 65 70 90 50 65
17 90 90 90 90 90
Note: Load Cases 1 through 8 show average angle; Load Cases

9 through 17 show tip angle.

Estimated accuracy *5°.



TABLE A-7. Al STRIP, 1-D LOADING, SECOND TEST, CALCULATED
FROM DATA: EFFECTIVE LOAD, PERCENT EXTENSION
(LOADED), AVERAGE FOLD ANGLE (LOADED), AND
AVERAGE FOLD HEIGHT (LOADED).

AVERAGE AVERAGE
LOAD EFﬁiﬁi}VE Egﬁiﬂ;&g? FOLD ANGLE FOLD HEIGHT
CASE g (LOADED) (LOADED)
(N/m) (%) o
*) (m)
1 0.21 4,2 0.0 0.020
2 0.37 12.5 8 0.020
3 0.54 20.8 10 0.0195
4 1.03 50.4 35 0.017
5 1.53 73.5 60 0.0125
6 2.02 84.6 73 0.0095
7 2,51 87.2 77 0.008
8 3.49 90.7 84 0.0055
9 4.86 93.2 20 0.0045
10 6.26 94.2 26 0.0035
11 7.64 95.1 28 0.0025
12 9.02 95.5 29 0.0025
13 11.80 96.1 31 0.002
14 15.98 96.7 53 0.0015
15 64.06 99.1 65 0.001
16 149.52 99.4 80 <0.0005
17 234.02 99.8 <90 <0.0005
Note: Load Cases 1 through 8 show average angle; Load Cases

9 through 17 show tip angle.

Estimated accuracy *5°.
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TABLE A-8. Al STRIP, 1-D LOADING, THIRD TEST, RECORDED DATA:
LOAD, LOADED EXTENSION, FOLD ANGLE (LOADED), FOLD
HEIGHT (LOADED), AND LOAD RELIEVED EXTENSION.
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FOLD FOLD LOAD

LOAD LOAD E;Toﬁ\?SEIDON ANGLE HEIGHT RELIEVED

CASE (g) (LOADED) (LOADED) EXTENSION

(m) o

) (m) (m)
1 10.5 0.482 4 0.017 0.263
2 20.5 0.835 7 0.009 0.664

3 30.5 0.889 8 0.0065 0.772 -
4 35.5 0.903 9 0.0055 0.803
5 40.4 0.914 9 0.005 0.827
6 45.3 0.925 12 0.0045 0.856
7 50.3 0.930 15 0.004 0.868
8 55.2 0.935 15 0.004 0.884
9 60.1 0.939 17 0.0035 0.893
10 70.1 0.944 20 0.003 0.907
11 80.1 0.949 22 0.0025 0.922
12 90.1 0.953 22 0.002 0.930
13 104.2 0.957 25 0.002 0.941
14 132.6 0.962 28 0.0015 0.950
15 175.2 0.968 30 0.001 0.960
16 237.0 0.975 35 0.0005 0.968
17 308.9 0.980 45 0.0005 0.973
18 422.6 0.985 50 <0. 0005 0.977
19 536.2 0.989 60 <0.0005 0.979
20 763.4 0.992 60 <0.0005 0.981
21 1199.4 0.995 67 <0.0005 0.985
22 1628.1 0.997 67 <0.0005 0.989
23 2057.2 0.9975 80 <0.0005 0.992
24 2489.3 0.998 85 <0.0005 0.992
25 4978.6 0.9985 -90 <0.0005 0.993




TABLE A-9.

Al STRIP, 1-D LOADING, THIRD TEST, CALCULATED

EFFECTIVE LOAD AND PERCENT EXTENSION

FROM DATA:
(LOADED)
EFFECTIVE EXTENSION
gzgg LOAD (LOADED)

(N/m) %)

1 1.03 48.2

2 2.01 83.5

3 2.99 88.9

4 3.48 90.3

5 3.96 91.4

6 4,44 92.5

7 4.93 93.0

8 5.41 93.5

9 5.89 93.9
10 6.87 94.4
11 7.86 94.9
12 8.84 95.3
13 10.22 95.7
14 13.00 96.2
15 17.18 96.8
16 23.24 97.5
17 30.29 98.0
18 41.44 98.5
19 52.59 98.9
20 74.87 99.2
21 117.63 99.5
22 159.67 99.7
23 201.75 99.75
24 244,13 99.8
25 488.25 99.85
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Figure A-1. Test setup and aluminum strip specifications.



Figure A-2. Setting folding guides in aluminum strip.

Figure A-3. Test setup, no load.
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Figure A-4. Load Case No. 14 (load relieved)
(note reverse retraction)

(Test No. 2).
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Normal
/V\ retraction
(load relieved)

—A —\ Loaded

Reverse

retraction
-—"\\\\~dN.,’/’/’——v—~\\\\\\-J\__’/”"- (load relieved)

Figure A-5. Illustration of reverse retraction which
occurred at high loads when load relieved
(see also Figure A-4).
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Figure A-7. Percent relative contraction vs. percent extension

(loaded) (from data of first test). 195



Figure A-8. Load Case No. 4 (loaded)
(Test No. 2).

Figure A-9. Load Case No. 6 (loaded)
(Test No. 2).
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Figure A-10. Load Case No. 7 (loaded).
(Test No. 2).

Figure A-11. Load Case No. 15 (loaded).
(Test No. 2).
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APPENDIX B
TEST ON A SQUARE FOIL SURFACE WITH FOLDS IN TWO DIRECTIONS

The test sample used in these 2-D loading tests consisted of
a square sheet of aluminum foil with 18.0-inch-long sides. The
material is of the same type used in the 1-D loading tests (see
Appendix A). From this square, catenaries were cut in each side
so the total area removed was 10 percent of the area of the original
square (see Figure B-1). A series of 0.25-inch-wide mylar tabs
were fixed 2.0 cm apart on each of the four catenaries and a nylon
cord was threaded through the tabs (see Figures B-2 and B-3). A
sleeve made of glass tape was wrapped around the two cords at each
corner in order to keep the cords parallel to the catenaries at the

corners.

The manner in which the foil was folded was designed to best
approach a typical folding pattern used in an actual application.
The goal was to obtain a high-density, stowed package and a deploy-
ment with no or little angular momentum being generated. This
folding method will work equally well with a triangular surface.
The folding guides were measured and creased by folding the square
into a quarter section and then folding that over a straight edge.
The folds were spaced 2.0 cm apart creating 10 folds between the
center and the edge. Once the folding guides were made and the
surface unfolded back into a square, the foil was folded as shown
in Figures B-4 through B-7).

The loads were applied to the catenaries by way of the cords.
The final stowed configuration was placed on a table with a pulley
at each corner over which the cords passed connected to weight
hangers (see Figure B-8). For each load case, a small increment
of weight was applied to the cords and the table was vibrated to
remove any friction with the foil sheet or in the pulleys. After

the foil had reached an equilibrium point, the length between
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the center and each of the corners was measured (see Table B-1)

and a tracing of the outer perimeter of the surface was made.

From this tracing, a planimeter was used to find the deployed area.
From the data in Table B-1, the load, average length, and percent
total length deployment were calculated (see Table B-2).

Upon initial loading, the "arms" unrolled to most of their
full length before the main body of the foil surface unfolded (see
Figures B-9 and B-10). Beginning with Load Case No. 7, the foil
surface had taken a shape so that an approximate radius of the
sides could be obtained (see Figures B-11 through B-16). Using
the radius and the segment height, the area of the segment could
be calculated. From this, the deployed surface area is found and

averaged with the area using the planimeter (see Table B-3).

After the final load case, No. 17, a roller was used to flatten

the foil to remove any remaining creases and a tracing was made.

A second test was performed which was similar to the first
2-D loading test to obtain information on fold/wrinkle height not
recorded during the first test. The test setup was similar to that
used in the first test except larger pulleys with ball bearings
were used and the test was performed on the surface table (see
Figure B-17). The original sheet of aluminum foil was refurbished
by replacing about 25 torn tabs and three out of the four corners.
Before folding, the foil sheet was rolled flat, but still contained
some 0.005-inch-high wrinkles from its previous use. The sheet
showed signs of wear and as a result it was not possible to load
it to the higher loads used in the first test.

At each load case, the weights were gently applied and the
distance from each corner to the center measured and recorded (see
Table B-4). To measure the fold/wrinkle height, a platform mea-
suring 5.45 inches by 4.45 inches was set at a height such that
when placed under the sheet it slightly pushed it up. This height
was accurately measured. The platform was placed between two
corners with one edge along the side of the sheet. A clear plexi-

glass disc was placed on the foil sheet above the platform. The
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height was measured at two points 1 inch to either side of center
and 2.75 inches in from the side. The thickness of the disc was
subtracted and the height recorded (see Table B-5). This was

performed at two opposite quadrants (see Figure B-18).

While folding the sheet, it was decided not to coil up the
four "arms" at the last stage of folding (see Figures B-6 and B-7).
This was done in order to reduce wear and tear. As a result of
this, while deploying the surface, an opposing fold pattern developed
perpendicular to each side. The coiling would have allowed the foil
surface to deploy without creating the opposing fold pattern. The

opposing folds were removed by hand and the test was continued.

It was originally intended to use the center-to-corner length
to correlate the percent of deployment. Though the length shows
little correlation to the load when comparing it to the first test,
it was decided to use the load to calculate the percent of deployment
(see Table B~6). A possible explanation of this abnormality with
the length is that the corners are not the natural corners of the

aluminum foil sheet. The corners are made with mystic Kapton tape.
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TABLE B-1.

SQUARE FOIL SURFACE,

2-D LOADING, RECORDED

DATA: TENSION LOAD AND CENTER-TO-CORNER
LENGTH
LOAD Iiiﬂfl%g? CENTER-TO-CORNER LENGTH (in.)
CASE (és L1 L2 L3 L4
1 0.0 2.2 2.5 2.3 2.0
2 5.5 2.4 2.65 2.3 2.0
3 19.8 2.7 2.8 2.6 2.15
4 48.4 3.45 3. 3.95 3.
5 77.0 5.1 5.75 6.5 4.4
6 132.2 7.45 8.4 8.2 7.95
7 245.6 10.0 9. 10.05 10.25
8 359.0 10.85 10.8 11.0 11.05
9 472.4 11.45 11.4 11.3 11.4
10 699.2 11.7 11.75 11.5 11.6
11 926.0 11.8 11.85 11.55 11.65
12 1358.3 11.95 11.95 11.70 11.80
13 2265 12.05 12.15 11.85 11.90
14 4607 12.1 12.3 12.0 12.1
15 6875 12.15 12.5 12.1 12.2
16 9140 12.2 12.5 12.25 12.25
17 18210 12.25 12.75 12.6 12.45




TABLE B-2.

SQUARE FOIL SURFACE,

2-D LOADING, CALCULATED
DATA: LOAD, AVERAGE LENGTH, AND PERCENT TOTAL
LENGTH DEPLOYMENT

LoD LOAD, 2T ﬁgﬁgﬁg? DEPLOYMENT
CASE Lave LENGTH
GRAMS NEWTONS (% total)
(in.)
1 0.0 0.0 2.25 17.67
2 5.5 0.054 2.34 18.38
3 19.8 0.194 2.56 20.11
4 48.4 0.475 3.55 27.89
5 77.0 0.755 5.44 42.73
6 132.2 1.297 8.00 62.84
7 245.6 2.409 | 10.05 78.95
8 359.0 3.521 | 10.93 85. 86
9 472.4 4.633 | 11.39 89.47
10 699.2 6.857 | 11.64 91.44
11 926.0 9.081 | 11.71 91.99
12 1358.3 13.321 | 11.85 93.09
13 2265 22.21 11.99 94.19
14 4600 45.11 12.13 95.29
15 6875 67.4 12.24 96.15
16 9150 89.7 12.30 96. 62
17 18200 178.5 12.51 98.27
12.54%
12.73%%

*Measurement taken after foil was rolled flat.

**0riginal length before test.
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TABLE B-3. SQUARE FOIL SURFACE, 2-D LOADING, CALCULATED
FROM DATA: EFFECTIVE LOAD, AREA, RADIUS, AND
PERCENT TOTAL AREA DEPLOYMENT

EFFECTIVE AREA

st | N | Gad | (o | PEPLOTENT

(N/m) )
1 n/a n/a n/a n/a

2 n/a 2.39 n/a 0.82
3 n/a 2.69 n/a 0.93
4 n/a 2.26 n/a 0.79
5 n/a 3.01 n/a 1.03
6 n/a 14.82 n/a 5.08
7 5.50 54.95 8.61 18.83
8 6.51 93.2 10.65 31.96
9 6.44 142.3 14.17 48.80
10 5.27 209.1 25.6 71.71
11 6.00 222.5 29.8 76.30
12 6.64 240.4 39.5 82.44
13 9.02 255.7 48.5 87.69
14 10.23 264.7 54.7 90.78
15 23.52 270.5 56.5 92.76
16 32.05 274.2 55.1 94.03
17 63.08 281.0 55.7 96.36

287.4% 58.91% 98.56%

291.6%% 60.19%* 100.0%**

*Measurement taken

**0riginal length before test.

after foil was rolled flat.



TABLE B-4.

SQUARE FOIL SURFACE,
HEIGHT TEST,
CENTER-TO-CORNER LENGTH.

RECORDED DATA:

2-D LOADING, FOLD/WRINKLE
TENSION LOAD AND

LOAD Iiigfl%gj CENTER-TO-CORNER LENGTH (in.)

CASE (éB L1 L2 L3 L4
1 680.4 12.15 12.45 12.25 12.00
2 1247.4 12.25 12.55 12.45 12.20
3 2827 12.35 12.70 12.45 12.25
4 4536 12.40 12.60 12.50 12.60
5 6804 12.35 12.75 12.50 12.75
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TABLE B-5. SQUARE FOIL SURFACE, 2-D LOADING, FOLD/WRINKLE
HEIGHT TEST, RECORDED DATA: FOLD/WRINKLE HEIGHT

FOLD/WRINKLE HEIGHT (in.)
gggg QUADRANT BETWEEN 1 AND 2 QUADRANT BETWEEN 3 AND 4
hy h, hg h4
1 0.433 0.561 0.446 0.511
2 0.376 0.366 0.266 0.408
3 0.178 0.131 0.236 0.274
4 0.138 0.111 0.134 . 0.133
5 0.100 0.080 0.081 0.074
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Figure B-1. Foil surface dimensions and loading pattern.
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Figure B-2. Foil surface ready for folding.

Figure B-3. Detail of tabs and corner.
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Figure B-4. Foil surface being folded
(note 2.0-cm-wide folding guides).

Figure B-5. Foil surface being folded.
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Figure B-6. Final folding before folds set and "arms" coiled.

Figure B-7. Final stowed configuration.

211




Figure B-8. Test setup, no load.

Figure B-9. Load Case No. 4.
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Figure B-10. Load Case No. 6.

Figure B-11l. Load Case No. 7.
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Figure B-12. Load Case No. 8.

Figure B-13. Load Case No. 10.
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Figure B-16. Load Case No. 17.

Figure B-17. Fold/wrinkle height test setup.
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Figure B-18. Fold/wrinkle height measurement arrangement.
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CHAPTER &

METEOROID DAMAGE TO ROD-TYPE STRUCTURAL ELEMENTS

by
John M. Hedgepeth
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INTRODUCTION

Large space structures are likely to be built up from many
rod-type structural elements. While the change of meteoroid damage
to any particular element is very small, the chance of damage some-
where in the structure may be appreciable because of the large
total length of the elements. Little is known of the meteoroid
damage characteristics of linear elements besides the early treat-
ment in Reference 1. No experimental data exist at present. This
report contains further theoretical study of the problem.

METEOROID STATISTICS

Let n(m) be the density function per unit volume for meteoroids
of mass m and let the velocity components of each meteoroid be ran-
dom variables with Gaussian statistics. Let the probability dis-

tribution function be denoted as

£(v) = (

(1)

where U is the rms velocity magnitude. Note that we have assumed

stationarity and isotropy.

The expected number of meteoroids in a volume S with a mass
between m and m+dm and velocity components in the intervals

(Vx,vx+dvx), (vy,vy+dvy), (vz,vz+dvz) is
-
dg = Sf(V) dm dvxdvydvz

which can also be written as

dq = Sf(V) dm v? sin © dvdaede¢ (2)
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where we have set

Ve = V sin 6 cos 8

v = V sin 6 sin 8
y

v = V cos 9

Note

I
<

v2 + v2 + v2
X Y Z

Flux

Consider the area A in the x-y plane. We would like to
determine the number of meteoroids of mass between m and m+dm with

flow through the area A from one side per unit time.

7<A

'_\

‘////e Vdé//

AN

Select the lower side as the one through which the meteoroids are
passing. Then all the meteoroids in the cylindrical volume shown
above that have spherical-coordinate velocity components of V, 6,
and ¢ pass through the area A in the unit time. Thus the total
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rate of flow from all directions coming from below is
© w/2 27

%f% = f f f AV cos 6 £(V) sin © v2 dededav (3)
0 0 0

Substituting from Eq. (1) and performing the integrations yields

A (4)

Let N(m) be the number density of meteoroids of mass m or greater
so that

(o]

N (m) =f n(m)dm
m

Let ¢(m) be the number flux per unit area from one side of meteor-
oids with mass greater than or equal to m. Then

UN(m).
/erm

d(m) =

(5)

In many cases, the data for meteoroid frequency are approxi-
mated by the formula

N(m) = Km [ (6)

Hits on a Long Cylinder

Consider a circular cylinder of diameter d and length % >> d
as shown in the following figure:
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~~
~<

In the same way as before, all the meteoroids with velocity-
component coordinates of V, 6, ¢ in the above volume of V&4 sin 6
will hit the cylinder in a unit time. All meteoroids with velocity-
component coordinates of V, 6, ¢ outside of that volume will miss

the cylinder. Thus, the total rate of hits from all directions is
. o T 27
8 - f [ f ved sin 8 £(V) sin 8 v2dededv

0 0 0

Substituting for £(v) and integrating gives

ao n (m)
== = 7di —=— U (7)
dm /ﬁ
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The number of hits per unit time with a mass equal to or greater

than m is

(o]

_ ad
H (m) = f aﬁ' dm
m
or
H(m) = wdL o (m)

where we have made use of the flux equation, Eg. (5).

Average Meteoroid Velocity

The "average" velocity VaV can be obtained as

e
o T T ,
_ 1 > 2 .
Vave = nm f ff VE(V) V© sin 6 d46d¢
0 0 T-m
_ an 3 -3v%/2u2
= V' e
2m 3/2 3
(&) v o

Evaluating the integral gives

- |8
Vave - 31 U

FRACTURES BY THE "SWEPT-AREA" CRITERION

According to Reference 2, the penetration depth is,

infinite targets

p = x n0-352 1/6 42/3

© [ m

v
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for semi-
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where

m = meteoroid mass, g

Pm = meteoroid density, g/cc

v = meteoroid velocity, km/s

P_ = penetration depth, cm

k = a constant (= 0.42 for aluminum)

o]

According to Reference 3, Denardo, et al, find that the crater
diameter is approximately twice the penetration. Let us assume
that the long cylinder will fracture whenever the cylinder of
radius equal to P_ (Eq. (12)) about the meteoroid path encompasses
the entire cylinder. Thus, if any part of the cylinder is not
swept out by the destructive zone, the cylinder is assumed to be
unfractured. This criterion seems to be particularly appropriate
for unidirectional filamentary composites.

If P_(m,V) < d/2, then there is no fracture. If P_(m,V) > d/2,
then the thickness of the volume containing meteoroids that will

produce fracture is 2P_ - d.

— Fracture "thickness"

Therefore, the number of fractures per unit time will be (see
Eq. (6))
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R, = f dmj f f (2P_-d)V2 sin 8 £(3) sin 6 v°d¢dedv
0 V*T0 “-m
2 3
= f dmf (2P_-a) V3 2£ (V) av (11)
0 v*

where V* is the velocity for which P_ = d/2. Reversing the order
of integration and substituting for f(V) yields

©  co

2 2
N, = _337 .312112 j[ (2p°°—d)v3 e 3V /20 n (m) dmdv (12)
20 0 “m*

where, now m* is the mass (as a function of V) for which P = a/2.
Thus

1/0.352
d
m* (V) = (13)
2k p1/6V2/3
o™ m
From Eg. (6) we get
n(m) = YKm-Yml
Then integrating gives
v/0.352
2k p1/6
Y. = 3 3m _0.352 i =m
£ o2 V2 7-0.352 a
® 2,2
f V3t (2v/3 0.352) _-3vP/2u® (14)
0
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Substituting t for 3V2/(2U2) gives

Ne _ @)% [ (y/1.056)41 -t
. (vy/0.352)-1 e

dt (15)
N
1 0

f

where Nfl is the simple-minded estimate obtained by assuming that

all meteoroids with larger mass than m*(U) (Eq. (13)) will fracture
the cylinder if they strike it. Thus from Egs. (5) and (8)

£ - \/F Q20N (m*[U]) (16)

The integral in Eq. (15) can be evaluated in terms of the
gamma function to yield

N

£ (2/3)Y/l.056

& - (v/0.352)-1 I1(1.056 * 2) : (17)
£o

APPLICATION TO EARTH ORBIT

For earth orbit, the meteoroid flux is given in Reference 4 to
be

& = 4.26x10 13 pp1-213

for the mass m in grams greater than 10_6. The factor n accounts

for the effects of earth shadowing and defocusing. It varies from
0.5 at the Earth's surface to a maximum of 0.691 at an altitude of
three Earth radii and decreases to about 0.619 at GEO. We there-
fore set, with only slight conservatism,

n = 0.7
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The average velocity is given as 20 km/s. Thus, from Eq. (9)

U = 21.7 km/s

Referring to Eq. (5), we can solve for N(m) to give

N(m) = 5.97x10 12 p1-213 particles/m>
Thus,

K = 5.97x10 1? particles/m3

y = 1.213

For this value of ¥y

z.

£ (2/3)1.149
2.45

I (3.149)

2
th

= 0.59

The value of m* (U) is obtained from Eg. (13) to be

1/0.352

d
m* (U) =
[2 x0.42 x (0.5)%/8 x (21.7)2/3]

where we have used k°° = 0.42 (aluminum) for want of a better wvalue,

and p = 0.5 g/cc.

This gives

m*(U) = 0.0067 a>-84

where 4 is in centimeters.
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Substituting into Egs. (15) and (16) with £ = 1 m gives the

fracture rate/m/s of

19

x 21,700 x 5.97 x 10"

2
|

™
0.53 x /& * Too

x (0.0067) 1:213 y 472.84x1.213

2.4 xlo—l4 d-2.44

fractures/m/s

7 ,-2.44

7.6 x10 ' @

It

fractures/m/yr

For members 1 cm in diameter and a total length of 1 km, the proba-
bility of a fracture in 10 years is about 0.008. On the other
hand, if the diameter is only 1 mm and the length is 1 km, then

the probability of a fracture in one year is about 0.2, which is

too high.
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