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CHAPTER 1

DISTURBING TORQUES AND POINTING ERRORS

FOR LARGE EARTH-ORIENTED MICROWAVE REFLECTORS

by

Richard H. MacNeal
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PREFACE

The successful performance of any structure depends largely

on the identification of the critical or primary loads and design

criteria on which the design is based. The future promises large

structures which must be deployed, erected, assembled, or fabri-

cated in space. For such structures, which will not be required

to face the launch environment, the primary design requirements

will be derived from the space-flight environment and will deal

with phenomena as primary criteria which have been considered as

only secondary in the past. The design of such genuine "space"

structures will require a solid foundation of critical criteria.

Astro Research Corporation has a contract from NASA Langley

Research Center to study critical design criteria for large space

structures. The objective is to identify and establish critical

baseline design requirements for a family of structures by a series

of rational parametric analyses. The results, presented clearly

and in detail, should improve the basis for future space structures

system and technology efforts. They will also form the beginning

of the needed solid foundation of design criteria.

This report is one of a series dealing with critical design

requirements for large space structures. In particular, this

chapter investigates the disturbing torques on large Earth-oriented

parabolic reflectors and of methods to control the resulting point-

ing errors. The chapter considers an altitude range and ranges

of reflector size, mass density, focal ratio, and pointing error

which are sufficiently broad to cover most applications. This

chapter was prepared at MacNeal-Schwendler Corporation under a

subcontract from Astro Research Corporation.
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LIST OF SYMBOLS

Root Symbols

A -- area

B -magnetic field intensity

C = dimensionless coefficient

D = diameter of reflector

f = focal distance

g = damping coefficient

G = acceleration due to gravity at Earth's surface

h = altitude

H = angular momentum

I m moment of inertia; current

Isp ,, specific impulse

k = dimensionless "coefficient

A = distance

m = mass

m' = mass per unit area of reflector aperture

M = moment

p = pressure; d/dr

r = radius

R = distance to center of Earth

R' = resistivity (ohm-meter)

t = time

T = tension

v = velocity; volume

x = distance from c.g. in forward direction along flight path

7



Be

y -- distance to right from c.g., looking forward

z = distance from c.g. downward toward Earth

a = angle of attack; dimensionless coefficient

y = angle between sunllne and normal to surface (or pointing axis)

= small number

p = density

-- stress

= roll angle

8 = pitch angle

@ = yaw angle

= frequency, rad/sec

= orbital angular velocity, tad/see

Subscripts

a , anchor

c , control

d , drag

e , expelled mass

o , steady value; overturning moment

i , inertia

m , moment; mission

r , reflector

s , solar radiation pressure

w , inertia wheel



SECTIONi

INTRODUCTION

One of the earliest types of large space structures will be parabolic

microwave reflectors with diameters ranging from 100 meters to i000 meters.

An important application of such reflectors will be to conduct surveys of

the Earth's surface in order to obtain prompt and detailed information re-

garding oceanographic and biological phenomena.

This chapter is part of a study of large space structures undertaken

by Astro Research Corporation for NASAunder Contract NASI-15347. It reports

the results of a general investigation of the disturbing torques on large

Earth-oriented parabolic reflectors and of methods to control the resulting

pointing errors. The chapter considers an altitude range and ranges of

reflector size, massdensity, focal ratio, and pointing error which are

sufficiently broad to cover most applications.



SECTION2

MISSIONPARAMETERSANDCONTROLSYSTEMFUNCTION

The range of mission parameters to be investigated is shown in Table I.

The function of the control system is to maintain the pointing accuracy within

the range of tolerance indicated in Table 1 (10-2 to 10-5 radian). No tolerance

is given for the angular deviation about the pointing axis (yaw direction), but

it can be assumed that some tolerance must exist_ if the incoming radiation is

polarized, or if the microwave beam is to be electronically scanned.

Since the orbit is assumed to be circular, the nominal pointing direction

is toward the center of the Earth (geotropic). Thus_ the vehicle must rotate

at constant angular velocity once per orbit in the pitch direction. No excur-

sions of any kind from this pointing direction are desired.

It will be noted from Table 1 that the ranges of the mission parameters

and the pointing error tolerances are very broad. As a result, no single

type of control system is optimum over the entire spectrum of parameters

and tolerances. Unconventional control systems should be considered because

the size and mass density parameters are outside the current state-of-the-art.
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SECTION3

OVERTURNINGMOMENTSANDPOINTERRORSDUETOENVIRONMENTALEFFECTS

The principal potential sources of pointing error in the vehicle's

operational environment are

1. Temperature Gradient and Thermal Shock

2. Atmospheric Drag

3. Solar Radiation Pressure

4. Micrometeoroids

5. Gravi ty

Each of these items is discussed in separate subsections. Figure 1

summarizes and compares equivalent loading pressures as a function of orbital

altitude due to atmospheric drag, solar radiation pressure_ and the combined

effect of gravity gradient and unsymmetrical mass distribution. The follow-

ing conditions are assumedin Figure I.

• Drag Coefficient_ CD = 2.5

• Normal incidence and perfect reflection of solar radiation

• Worst case orientation (45 =) of the mass unbalance (mass per

unit area times distance) from the geocentric direction, i.e.,
the pointing axis.

Within the range of orbital altitudes considered in this study (200 km to

geosynchronous), one or another of the three effects dominates the others

at different altitudes.

Maneuvers are not a source of pointing error, because it is not re-

quired that the vehicle exercise maneuvers. Moments due to interaction

with the Earth's magnetic field, which are significant for some spinning

spacecraft, are not considered to be significant for the mission under

consideration. They can, however, be used as a means of active control,

see Section 4.6.

ii



3.1 Temperature Gradient and Thermal Shock

Temperature gradients occur for various reasons including the facts

that some parts of the vehicle are shaded from the Sun by others, and that

the entire vehicle may pass into the shadow of the Earth. The main effect

of temperature gradient on pointing accuracy is to cause thermal strains

which distort the shape of the reflector and thereby change the pointing

axis. Such errors cannot be detected by simple devices, and they are

beyond the scope of the present investigation. Appendix A includes a very

simple analysis of the effect on pointing accuracy of thermally induced

length changes of the feed supports. It is shown that the pointing errors

in radians is of the same order of magnitude as the differences in the

thermal strains, and that the allowable differential strain decreases as

f/D increases.

The effects of thermal shock caused by a rapid change in temperature

are similar in nature, except that inertia forces are brought into play.

Thermal shock occurs when the vehicle passes into the Earth's shadow. At

500 km altitude, for example, the time to cross the penumbra is about 8

seconds, so that structural modes with periods this long or longer will

respond dynamically. Cumulative changes in the pointing direction due to

nonlinear kinematic effects will be much smaller than the linear effects

and may be disregarded, provided that some form of directional stability

is provided.

i

I
i
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3.2 Aerodynamic Drag

Newtonian flow theory may be used to estimate the aerodynamic forces

and moments at orbital altitudes. In Newtonian flow_ the pressure is normal

to the surface and has the magnitude

where

i V 2
p = _p CN • sin2_

1 2
_pV = dynamic pressure

CN = normal force coefficient (2.5)

= angle of attack

(I)

Both density and velocity are functions of altitude.

gives values of p vs. altitude for = _ #/2.

1
h Pd =_pV2CN

(km) N/m 2

300 300x10 -5

400 60

500 20

600 6

700 2

800 .8

900 .4

I000 0.15

The following table

It is noteworthy that Pd is less than ps _ the solar radiation

pressure at normal incldence_ for altitudes greater than 800 km_ see

Figure i.

If the vehicle is symmetrical, the only component of moment due to

aerodynamic pressure is in the pitch direction (normal to the plane of the

orbit). Incidental or accidental lack of symmetry causes small moments in

the roll and yaw directions.

13



If the surface of the reflector is smooth and if it is assumed, for

convenience, to be spherical, then, clearly, the center of pressure passes

through the center of the sphere. The momentarm between this point and

the center of gravity is slightly less than 2f, where f is the focal distance.

An expression for the momentis

D3
Hd = _-_ Pd (2)

where D is the diameter of the reflector and Cm is a coefficient which

depends on the focal ratio as shown in the following table

f/D Cm

0.5 .0117

1.0 .00277

2.0 .000672

The values of Cm are derived in Appendix B. If the surface of the reflector

is not smooth, (for example, a surface consisting of a grid work of wires)

the force per unit area will be greater, but the moment arm will be less,

resulting in a moment coefficient of the same order as Cm in the table shown

above. It is also possible, with non-smooth surfaces, to balance the drag

forces by design so as to achieve zero net pitching moment.

In order to appreciate the magnitude range of the pitching moment due

to aerodynamic drag, consider the following table which records Md vs. D and

f/D for h = 500 km.

f/_DD I00 m 300 m I000 m
M (Newton-meters)

0.5 1.9 49.7 1842

1.0 0.5 11.7 434.5

2.0 0. i 2.9 106.1
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For h -- 300 kin, the momentsare an order of magnitude larger and for

h -- 700 km, they are an order of magnitude smaller. For non-solid surfaces,

the momentsshould be reduced by the surface solidity ratio.

Since the orientation of the vehicle remains constant with respect to

the flight path, the dynamic componentof aerodynamic momentis very small.

Control surfaces may, however, be used to produce dynamically varying aero-

dynamic moments, see Section 4.4.

15



3.3 Solar Radiation Pressure

Solar radiation pressure is a significant source of overturning moment

for large spacecraft. For a perfect reflector, the pressure is normal to

the surface and has the magnitude

P = Ps c°s2y (3)

where Ps = "9xi0-5 N/m2 near the Earth

y = angle between Sun line and normal to surface.

For a perfectly absorbing surface which radiates equally from both sides,

the pressure is directed away from the Sun and has the magnitude

1
P = _ Ps cosy (4)

Equation (3) will be used for the purpose of estimation, except that Ps

will be reduced to .75xi0 -5 N/m 2 to account for absorptivity.

A method has been developed in Reference 1 to calculate the moment

due to radiation pressure on a perfectly reflecting cylindrical segment

of small included angle. The moment per unit length about the midchord

of the strip, as predicted by the method, is

1 PsC3 sln2y/Rc (5)m8 = I-2

where C is chord of the cylindrical segment, Rc is its radius of curvature,

and y is the angle between the normal to the surface and a line pointing

at the Sun. Note that the magnitude of the moment is maximum for y = 45 °

plus multiples of 90 ° . For Sun angles near 90 ° and 270 °, some parts of the

reflector shade other parts and Equation (5) becomes inapplicable, although

it is clear, in any case, that the moment should change sign near y = 90 ° .

16



Equation (5) is adequate to make rough estimates of the momentson a

spherical reflector, with the following identifications:

then

where

C = D, the diameter of the spherical reflector

Rc = 2f, the radius of the spherical reflector

c _ , the momentper unit area
4

psD3 (6)-ks 

= 1 D sin2y (7)
ks 24 f

The following table evaluates ks for various values of the focal ratio,

f/D, and y = 45 ° .

f/D kp

0.5 .0833

1.0 .0417

2.0 .0208

Since the axis of the reflector points toward the center of the Earth

at all times, the angle between the Sun line and the axis will vary in a

manner that depends on the orbit. If the Sun line is normal to the plane

of the orbit, then y = 90 ° at all times, and the overturning moments are

small and steady. If the Sun line is tangent to the plane of the orbit, y

will rotate through 360 ° in one orbital revolution and the pitching moment

will exhibit a strong 2/rev component. Such trajectories may also pass

17



through the Earth's shadow, further complicating the harmonic content of

the overturning moment. The transfer from light to darkness through the

penumbra at an altitude of 500 km requires about eight seconds which is less

than one-thousandth of the orbital period. The gradient of light intensity

across the reflector disk is not significant during passage of the penumbra,

which has a length of 60 km at 500 km altitude. In addition, the angle be-

tween the Sun llne and the plane of the orbit will show an annual variation,

unless the orbit is in the ecliptic plane.

For non-solid smooth surfaces, the momentsshould be reduced by the

surface solidity ratio. For a surface consisting of wires with circular

cross-section, the momentswill be zero unless someparts shade others.

For real structures, the calculation of ks in Equation (6) will require

detailed analysis.

18



3.4 Micrometeoroids

A worst case analysis of the pointing error due to meteoroid impact

is worked out in Appendix C. It is shown there that the maximum error

angle due to multiple impacts of small meteoroids (micrometeoroids) is

emax = k(m,)2

. D2(m3g)i/2 (8)

where k is a constant, m is the natural frequency in pitch, and g = 2C/C c

is the damping coefficient of rigid body pitching oscillations.

In Equation (8), it is assumed that the reflector is a shell of uni-

form thickness which is penetrated by large micrometeoroids. Open con-

struction,.or concentrated reinforcement, increases the probability of

severe structural damage and occasional large pointing disturbances due

to heavy impacts.

If the following worst case values are assumed:

ema x = 10-5 radian

m' = 1 kg/m 2

D = i00 m

= 10 -3 rad/sec (approximate orbital frequency

for altitudes below I000 km)

then the required amount of damping is g = 7.3xi0 -4. This is a very small

value which should be exceeded for other reasons.

Although micrometeoroids do not appear to be a significant source of

pointing error for the range of vehicle parameters considered in the present

study, it is clear from Equation (8) that their effect is magnified for the

smaller, denser vehicles which typify conventional spacecraft design.

19



Also, the possibility of severe structural damagedue to meteoroids

should not be overlooked, particularly for vehicles with a large running

length of structural reinforcement. Redundantdesign is the order of the

day for such members(see Reference 2).

20



3.5 Gravity Gradient

Gravity gradient is a strong source of overturning moment for orbiting

spacecraft which are required to point in arbitrary directions. In the

present case, the desired pointing axis is toward the center of the Earth,

and the vehicle is in a circular (or nearly circular) orbit. For this case,

the vehicle can be designed so that gravity gradient is a source of stability

rather than a source of disturbing torque. If the principle axis of inertia

with the least polar moment of inertia is aligned with the pointing axis,

then gravity gradient will tend to resist overturning moments (see Appendix

D). If, in addition, the intermediate principle axis of inertia is aligned

with the flight path, gravity gradients will tend to resist yawing moments

(moments about the pointing axis).

If the principle axes of inertia are not aligned with the pointing axis

and with the flight path, gravity gradient will produce moments whose magni-

tudes may be computed by Equation (6) of Appendix D. They are proportional

to the cross-products of inertia which are under design control (within manu-

facturing tolerance).

A more serious requirement is that the pointing axis be the axis of

least polar moment of inertia in order to achieve stability. This is

illustrated by the following tablewhich indicates the minimum ratio of

feed mass to reflector mass required to obtain stability for reflectors

with various f/D ratios. (The mass of the reflector is assumed to be uni-

formly distributed and the feed supports are assumed to be massless.)

f/D mfeed/mre fl.

0.5 .50

1.0 .07

2.0 .015
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Since the indicated feed massmay be larger than that desired for

other reasons, a potential stability problem arises which can be solved

either by placing additional mass on the pointing axis or by providing an

active control system. This subject is treated later.

Another important effect is that, if the orbit is noncircular, the

pitching angular velocity required to point the reflector toward the center

of the Earth is not constant. This effect, although important, is beyond

the scope of the present investigation. It results in a scanning velocity,

as measured at the surface of the Earth, that is nonuniform, but predictable.

The effects of variations in the magnitude of the gravitational constant

(oblateness) will be discussed later in connection with the stability of a

gravity-gradlent control system, Section 5.1.
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SECTION4

CANDIDATECONTROLSYSTEMS

As applied to attitude control, a control system consists of a means

to detect angular error, a means to apply a mechaniccal momentto correct

the error, and a means to modify the momentin response to the error. A

control system is passive if all three elements of the system are combined

in the same mechanism. Otherwise, it is active. The advantages usually

attributed to passive control systems are that they are more reliable and

less subject to instability. Their principle disadvantage is larger weight

for the same error.

Emphasis will be placed_ in the present discussion, on the means to

apply a moment. The other elements of an active control system are con-

ventional and have no unusual requirements in the present application.

The source of moment to correct angular error may either be internal

(expelled mass or stored angular momentum_ or it may be external, deriving

from environmental effects such as gravity gradient and solar radiation

pressure. The external sources of moment are particularly interesting for

the present application because their intensity is weak compared to internal

sources, and consequently they require large physical dimensions in order to

be effective. For the same reason they are not particularly attractive for

small spacecraft.

The properties of seven different sources of control moment are

J

summarized in Table 2. The first three employ internal sources of control

moment and the last four employ external (environmental) sources. Formulas

for the control moments provided by each of the seven sources are given in

Table 3. Each of the candidate control systems will be discussed in separate

23



subsections, but it is useful to examine the summaryinformation presented in

Tables 2 and 3 before going into the details.

It will be noted from Tables 2 and 3 that the internal sources of

control momentare not altitude dependent, in contrast to the external

sources which are, with the exception of solar radiation pressure which

depends only on distance from the Sun. The effect of radiation pressure

is, however, so weak that it is maskedby aerodynamic pressure at low

altitudes, as indicated in Table 2. The sameis true of gravity gradient

and the Earth's magnetic field with the added restriction of a practical

upper altitude limit due to I/R 3 decay of both effects (see Table 3, last

column). Aerodynamic pressure decays rapidly with altitude and is unusable

as a source of control momentabove i000 km altitude. Thus, it is seen

that no single external source of control momentis practical within the

entire altitude range of the present study (200 - 30,000 km).

The practical size ranges shownin Table 2 are derived from detailed

analysis supporting the present study, but they can be inferred, to some

extent, from the formulas presented in Table 3 and from previous discussion.

The discussion of Section 3 showedthat aerodynamic pressure and solar

radiation pressure are the largest sources of overturning momentsfor the

present application. Therefore, the use of the samesources to provide

control momentsshould not result in any preferences with regard to size.

The control momentavailable from gravity gradient, on the other hand, is

seen to depend on the fourth power of vehicle size rather than on the third

power. Thus, gravity gradient should be a powerful source of control moment

for large vehicles, as indicated in Table 2.

24



The instantaneous value of the control momentavailable from expelled

mass can be very high, but the average long term value is limited by weight

considerations. Thus, the major limitation on the use of expelled mass (in

particular, chemical propulsion) is the duration of the mission, which must

be long for large expensive spacecraft in order to return initial invest-

ment. The size of the vehicle does not directly affect the effectiveness

of expelled mass relative to aerodynamic pressure and solar radiation

press ure.

Control systems which utilize stored angular momentum are penalized

in the present application by a limitation on their size and by the constant

vehicle angular velocity required by geotropic pointing. The size limita-

tion derives from the fixed diameter of the launch vehicle and from the

assumption that it will be impractical, for the foreseeable future, to

construct a high performance inertia wheel in space. Fixed size degrades

performance relative to envlro_mental effects because the stored angular

momentum, H, is proportional to the diameter of the wheel, given a fixed

mass and optimized material selection, whereas the overturning moments

are proportional to the cube of the diameter of the vehicle.

Geotropic pointing limits the axis of the wheel to be the pitch axis

(normal to the orbital plane) with the result that control from stored

angular momentum can only be achieved by a combination of momentum bleeding

(pitch axis) and gyrostabilization (roll and yaw axes). Gyrostabilization

is particularly weak for large vehicles as shown by the formula in Table 3.

The conclusions in Table 2 regarding use of the Earth's magnetic field

are based on a study, Reference 3, in which the vehicle was very large

25



(1500 m) and very light (.001 kg/m2). For this case magnetic field inter-

action appeared to be a very effective meansof control.

The answers to the questions regarding passive and active control

posed in Table 2 are in most cases self-evident, particularly if the re-

quirements of the present application are considered. For example, a

passive control system based on aerodynamic pressure (i.e., simple aero-

dynamic control surfaces) is possible because the velocity vector has a

fixed orientation with respect to the vehicle. Solar radiation pressure

cannot be so used because its direction and magnitude change continuously

relative to vehicle axes.

26



4.1 Expelled Mass

If gas jets are placed at four equally spaced points on the perimeter

of the reflector, then the average available long-term restoring moment

about a transverse (pitch or roll) axis is

G me lsp D

_t: m-
IIe _' (9)

where G - acceleration of gravity

me = stored mass of expellant

Isp = specific impulse

D = diameter of reflector

tm = mission duration

In order to estimate the required value of me, assume that Me opposes

an overturning moment due to solar radiation pressure. Solar radiation

pressure provides a good example because it is independent of orbital

altitude. Equations (6) and (7) of Section 3.3 provide an expression for

the maximum overturning moment due to radiation pressure. If it is

assumed that f/D = 1.0, and that the average overturning moment is equal

to one-half of the maximum value, then the overturning moment is

• _ D 3
M o = .0208 _-Ps (10)

In Equation (9), substitute

me = m' _ 2e .-_-D (ii)

27



Then, by equating Me to Mo

, .0832 Ps tm
m e

G Isp
(12)

m' the propellant mass per unit of reflector area, iswhich shows that, ,
e

independent of vehicle size. As an example, select

Ps _ "75xi0-5 N/m2

tm = i0 years = 3.15xi08 sec

G = 9.81 m/sec 2

Isp -- 200 sec

where the value of Isp is typical for chemical propulsion.

For this example, M' _ . 1002 kg/m 2. Referring to Table I, the range
e

of the mass per unit area of the reflector is from .01 to 1.0 kg/m 2. It

is seen that the required propellant mass is excessively large, at least

for the low range of reflector mass density.

The required propellant mass to overcome solar radiation pressure can

be reduced dramatically by using open wire construction for the reflector

rather than solid construction, as mentioned in Section 3.3.

Much lower values of m' can be achieved by using solar electric pro-
e

pulsion (ion propulsion) which electrically accelerates charged particles.

Energy is provided by solar cells. Values of Isp of the order of I0,000

are technically possible for ten years of continuous thrust, Reference 4,

but the level of technical complexity is high.

28



At low altitudes an exactly similar method may be used to estimate

the expelled mass required to resist overturning moment due to aerodynamic

drag. A related proSlem, which may set a minimum feasible altitude, is

orbital decay due to aerodynamic drag.

at a low rate to resist the drag force.

is

Fe =

Mass can be expelled continuously

The force exerted by expelled mass

@melsp

tm (13)

The drag force for a smooth reflector is

CdFd = -_Pd D2 (14)

The drag coefficient Cd is evaluated in Appendix B as a function of f/D.

For f/D = 1.0, Cd - .00138. Using this value, the required expelled mass

per unit area is, from Equations (Ii), (13) and (14)

m' = .00138 Pd tm (15)

e G Isp

As an example, select

m' = .01Kg/m 2
g

tm = I0 years = 3.15xi08 sec

G = 9.81 m/sec 2

Isp = 200 sec

and calculate Pd and the corresponding altitude. For this example Pd =

4.51x10 -5 and the altitude is, from the short table given in Section 3.2,

about 650 km. Increasing the expellant mass by a factor of ten decreases

the altitude to about 450 km. The use of solar electric propulsion would

appear to be the only practical method to achieve even lower altitudes for

the application considered in this report.
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4.2 Stored Angular Momentum

As indicated in previous discussion, stored angular momentum is not

an attractive source of restoring moment for the application treated in

this report.

As an exercise, consider the use of inertia bleeding from a wheel

mounted parallel to the pitch axis, which is the only possible axis, given

a geotropic pointing axis. The available angular momentum of an inertia

wheel is, assuming maximum efficient use of materials,

H = r mw_/-_-_ (16)
P

where r : radius of the wheel

mw : mass of the wheel

o : allowable material stress

p = material density

The average restoring moment is

Mw = H/t m (17)

where tm is the mission duration. The ratio of the restoring moments

available from an inertia wheel and from expelled mass is, from Equations

(9), (16) and (17)
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For graphite composite, which is probably the best available material,

-- 5x108 n/m2

p = 1522 Kg/m3

and _ = 573.2 m/sec

Thus, using G = 9.31 m/sec 2 and Isp = 200 sec

(19)

In order for the inertia wheel to be competitive with expelled mass,

it is seen that the radius of the wheel, r, should be of the same order as

the diameter of the reflector, which is considered to be impractical if the

required value of r is greater than the radius of the launch vehicle, as

previously discussed. This result applies only to the average moment and

not to dynamic variations. In the case of the latter, the momentum wheel

is greatly superior to expelled mass because it does not run down.

For moments whose axes are normal to the axis of the wheel (roll and

yaw axes) the inertia wheel acts as a gyrostabilizer. The equations for

motion about the roll and yaw axes are, in matrix form,

-Hp I L

(20)

where x = roll axis

z = yaw axis

= roll angle

= yaw angle
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Ix = moment of inertia about roll axis

Iz = moment of inertia about yaw axis

p = d/dt

H = angular momentum of inertia wheel.

For the case of a steady rolling moment, Mx, Equation (20) may be

solved to give

= IZMx

H 2

=
H

(21)

Both Iz and M_ increase rapidly with vehicle size, while H is fixed

by dimensional constraints. Thus, gyrostabilization becomes increasingly

less attractive as the size of the vehicle is increased. Consider, for

example, that Mx is equal to the maximum moment produced by solar radia-

tion pressure on a reflector with f/D = I. The moment, obtained from

Equation (I0) with Ps = "75xi0-5 N/m2' is

Mo = 1.23 x 10-7 D3 (22)

The angular momentum for the wheel, obtained from Equation (16) with

r = 2m, and aN_V_p = 573.2 m/sec, is

H = 1146 mw (23)

An approximate value of the polar moment of inertia of the vehicle is

= 1
Iz -_ mr D2 (24)

32



where mr is the mass of the reflector. Using Equations (22), (23), and

(24), the roll angle _ computed from Equation (21) is:

= 1.17 x 10-14 mrD5/m2 (25)
w

Since

M w ffi-_-_D 2 m' (26)
4 w

where m' is the mass per unit area, Equation (23) can be written
w

= 1.49 x 10-14 m'D3 (27)

If the mass of the inertia wheel is permitted to be ten percent of

the mass of the reflector, then

# = 1.49 x 10 -12 D3
m---V (28)

Both D and m' may vary over wide ranges as indicated in Table I. The

most favorable values of D and m' are D = I00 m and m' = 1 kg/m 2. In this

case,

= 1.49 x 10 -6 radian (29)

favorable values of D and m' are D = I000 m and m' = .01 kg/m 2.The least

In this case

= .149 radian (30)
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The value given by Equation (29) is less than the smallest pointing error

tolerance listed in Table I, while the value given by Equation (30) is

greater than the largest tolerance. Note that these values are instanta-

neous values.

The yaw angle due to steady rolling moment, obtained from Equation

(8), using Equations (22), (23) and (24) is

: 1.37 x I0 -I0 D t (31)

m t

w

Assuming t = I0 years : 3.15 x 108 see, and using the favorable values

D : i00 m and m' : 0. i kg/m 2, produces
w

= 43.,16 radians (32)

which indicates the inability of the gyrostabilizer to resist steady

moments for long time periods.

In summary, the prescribed spectrum of mission parameters does not

appear to favor a control system based on stored angular momentum.
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4.3 Gravity Gradient

Gravity gradient is a strong candidate for control of the veb_icle

considered in this report, because the pointing axis is geotropic and

because the diameter of the reflector is large. Large diameter favors

a gravity gradient control system because the control moment is pro-

portional to the fourth power of diameter, which is a higher power than

that for any other candidate system.

A detailed study of gravity gradient control for the present applica-

tion is contained in Section 5.

4.4 Aerodynamic Pressure

Aerodynamic pressure is a candidate for control of the vehicle at

altitudes below I000 kin. Due to geotropic pointing, the flow velocity is

steady relative to the vehlcle, and aerodynamic control surfaces similar

to those of a conventional airplane can be used. Pitch and yaw can be

controlled with passive (fixed) control surfaces but roll cannot. In any

event, the addition of active control greatly increases the effectiveness.

For example, active trim control can reduce the steady pitch error to zero.

If the altitude is low enough, pitching moment due to aerodynamic

drag will be the only important component of overturning moment and for

this case it is relatively easy to size the aerodynamic surfaces required

to control pitch. The overturning moment for a smooth reflector is evalu-

ated from Equation (2) of Section 3.2 and the accompanying table of pitch-

ing coefficients vs. f/D. Selecting f/D = 1.0, the pitching moment about

the center of gravity is
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Mo = .00277 Pd Ar " D (33)

where Pd is the stagnation pressure and _ is the area of the reflector.

Consider a control surface of area Ac, placed at a distance D/2 behind

the center of gravity with an angle of attack _. From Equation (I) of

Section 3.2 the control moment is

Mc = sin2a cos_ Pd Ac " D/2 (34)

Equating Mc to M o gives

sin2_ cos_ = .00554 Ar/A c

The maximum value of sln2= cosa is .385 at a ffi54.7 °.

the minimum value of Ac/A r is

Thus,

(35)

Ac/_ = .00554/.385 ffi.0144 (36)

A somewhat larger control surface should be used to provide a margin

of safety and also to reduce the drag of the control surface, which is

proportional to tan_. Note also, from data presented in Section 3.2,

that the size of the overturning moment is a strong function of f/D.

The control surfaces required for roll and yaw are much smaller (at

low altitudes) because the roll and yaw moments are much smaller.
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4.5 Solar Radiation Pressure

At altitudes above 700 Kin, the maximum overturning moment due to

solar radiation pressure exceeds the steady pitching moment due to aero-

dynamic drag, which suggests that solar radiation pressure may be used

for control at such altitudes. Furthermore, in deep space, and also in

geosynchronous orbit, solar radiation pressure is the largest of the

environmental effects that are available for vehicle control, exceeding

even gravity gradient.

Solar radiation pressure is the basis of solar sail propulsion

which has been extensively studied, References I, 5, 6, and 7, and which

is competitive with solar electric propulsion for high energy inter-

planetary missions of long duration, Reference 4.

For the present application, control moments can be provided by

orientable reflecting panels attached to the periphery of the reflector.

Formulas for control moments as functions of panel orientation and the

Sun direction are published in Reference 8. Since the orientation of

the vehicle relative to the direction of the Sun changes continuously

during each orbit, the control surface orientations must change continu-

ously and they must, furthermore, be actively controlled.

At altitudes greater than i000 Kin, solar radiation pressure is the

dominant source of overturning moment for the present application, and

it is relatively easy to size the reflecting panels in this case. The

overturning moment is maximum for a Sun angle of 45 °, as discussed in

Section 3.3. For f/D = 1.0, the maximum overturning moment on a smooth

control panel is
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Mo = .0417 PsAc D (37)

where Ps is the solar radiation pressure for normal incidence, and Ac

is the area of the panel. Assume that two control surfaces are located

at a distance D/2 from the center of gravity and oriented as shown in

the following sketch.

control surface

at zero pitch

control surface

at 90 ° pitch

radiation

\

The force on the left-hand control surface is

1
F _ PsAc • cos2(45 ") =_PsAc

and the force on the rlght-hand surface is zero.

moment is

(38)

The resulting control

. 1
Mc T PsAcD

Equating Mc to M o gives the required size of the control surface

(39)

Ac = .167 Ar (4O)
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A variable control moment is produced by pitching the axes of the

control surfaces. Since at least three control surfaces are required, the

total control surface area equals at least one-half of the reflector area

for f/D = 1.0. Smaller control surfaces can be achieved by placing them

at a greater distance from the reflector, at an added cost in weight

and complexity. Typically, the mass of a control panel, using available

materials, is about .01 kg/m 2.

Very much smaller control surfaces are required if the reflector

is constructed from a network of wires which produce very little net

overturning moment due to radiation pressure.
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4.6 Interaction with the Earth's Magnetic Field

If a current, I, flows through a circular loop of wire whose plane

is parallel to a magnetic field of intensity, B, the wire experiences a

torque

M - ---_D2 1 B (41)
4

about an axis perpendicular to the magnetic field and tangent to the

current loop. The use of this principle for the control of orbiting

spacecraft by interaction with the Earth's magnetic field has been

explored in Reference 3 and is the basis of control for a proposed low

frequency orbiting radio telescope (LOFT), Reference 9. In that ap-

plication the purpose of control was to produce useful scanning rates

for avery large (1500 m) reflector. Several current loops were pro-

vided, of which one was the rim of the reflector, and the others

included meridional segments. Control laws were fairly complex. They

required sensors to detect the magnetic field and computers to select

the current loops. The weight of the control system was less than that

of competing systems.

Magnetic interaction has limited utility for the present applica-

tion because it is not possible to produce a torque about an axis which

coincides in direction with the magnetic field. In the case of an orbit

in the magnetic equatorial plane, this axis would be the pitch axis, and

in the case of a polar orbit it would be an axis in the longitudinal

(roll-yaw) plane which varies with orbital latitude. Thus, to be useful,

magnetic interaction must be supplemented by some other source of moment.
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In order to compare the mass of a magnetic-interaction control

system with that of other systems, the current, I, in Equation (41) should

be expressed in terms of the mass of the control system. The mass of the

system is concentrated in two components, a power source, probably utiliz-

ing solar cells, and the conductors which carry the current. Assuming

that the mass of the power source is proportional to its rated power, it

can easily be shown that, for an optimized design, the rated current is

where

D mv

8_/C R'

D = diameter of the loop

m' = control system mass divided by reflector area
c

C = power source mass divided by power

R' = resistivity of conductor material

p = density of conductor material

(42)

Upon inserting this value of 1 into Equation (39), it is seen that

the maximum available control moment is proportional to m' D 3. In this
c

respect a magnetic interaction control system is similar to most of the

previously examined control systems including expelled mass, aerodynamic

control, and control by solar radiation panels.

In order to evaluate the mass of a magnetic interaction control

system relative to other types, assume the following conditions

B

C = .05 kg/watt

R' = 2.83 x 10 -8 ohm-meter 10 = 2700 Kg/m 3

= 10-5 webers/m 2 (typical for an altitude of 6000 Kin)

values for commercial

aluminum wire
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and compute the maximum available torque. For these conditions

D 3 m' B D m c B

M = 32 C R '_ -- .... _ 64 x 10 -5 D mcP 8 _/C R' p
(43)

For comparison, the control moment for a solar radiation control

panel, given by Equation (39) of Section 4.5, is

= 1
M _ps Ac D

Assuming Ps -- .75 x 10 -5 N/m 2 and Ac/m c = I00 m2/kg, gives

(44)

M 18.75 x I0-5 D m c (45)

which is seen to be less than that for the magnetic interaction control

system. Note, however, that the Earth's magnetic field decays as I/R 3,

so that magnetic field interaction is not competitive with solar radia-

tion control panels at a geosynchronous altitude.
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SECTION5

ANALYSISOFGRAVITYGRADIENTCONTROLSYSTEMS

A gravity gradient control system is particularly suitable for the

mission considered in this report because the pointing axis is geotropic

and because the diameter of the reflector is large. Accordingly, more

space is assigned to gravity gradient control than to the other types

discussed in the previous section.

The discussion begins with passive gravity gradient control of a

rigid body and proceeds to consideration of a control system which in-

cludes flexible structural elements and, possibly, active control ele-

ments.

5.1 Stability and Pointing Error for an Uncontrolled Rigid Vehicle

The complete small motion equations for the rotations of a rigid

body in circular orbit are derived in Appendix D. The assumedequilib-

rium state is a circular orbit with the pointing axis directed toward

the center of the Earth_ and with zero angular velocity about the point-

ing axis. This state corresponds exactly to the desired orientation of

a geotropic reflector.

The conditions for stability of the desired orientation, as derived

in Appendix D, are

where

Izz ) Ixx ) lyy

iz z = f p_2 dv etc.

(46)

(47)
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and x = distance from cg in forward direction along flight path

y-- distance from cg to right, looking forward

z = distance from cg downwardtoward Earth.

For a vehicle which is symmetrical about the pointing axis,

Ixx = lyy. Izz depends on the focal ratio, f/D, and on the mass placed

at the feed. The following table shows the approximate minimumvalue

of the feed mass required to satisfy the stability conditions.

f/D mfeed

mrefl

0.5 .50

1.0 .07

2.0 .015

If the stability conditions are not satisfied, then some means of

stability augmentation must be supplied. The simplest, but not neces-

sarily the llghtest method, is to add mass to a point on the pointing

axis tha_ is far from the center of gravity. Alternatively, some other

form of stability augmentation may be used, employing any of the physical

principles described in Section 4.

If the stability conditions are satisfied, the angular errors may

be found from Equation (2) of Appendix D. Since the cross-products of

inertia are zero in the assumed load-free equilibrium state, the rota-

tions due to small steady loads are determined by the following simple

uncoupled formulas

= Mx (48)

4R2 (Izz - lyy)

8 = My

3_2( Izz - Ixx) (49)
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SZ

where _ is the orbital angular velocity (2= divided by the orbital

period). Values of _2 vs. altitude are given in the following table

for the range of altitudes considered in this study•

titueKm[01500i00012000
_2[(rad/sec)2xl06] 1.541 1•228 1.995 .679

5000 II0,000

.2711 •091

20,000

.022

geosyn-
chronous

•0053

(50)

Note from Equations (48) to (50) that it is not merely sufficient to

satisfy the stability conditions, but also necessary to satisfy them by

some finite amount in order to achieve small angular errors under steady

load. Consider, for example, the steady pitching moment due to aero-

dynamic drag, given by Equation (2) of Section 3.2, and also express

Izz - Ixx as

m' D 4
Izz - Ixx = Ci .-_ (51)

where Ci is a dimensionless coefficient and m' is the mass per unit area

of the reflector. For this case the steady state pitching error is

cm Pd (52)8o
3CIR2 m' D

As an example, assume the fbllowing conditions

500 Km altitude

f/D = 1.0, and a smooth reflector

Feed mass = 1/2 reflector mass

Massless feed supports.
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For these conditions

Cm = .00277

Pd = 20xi0-5 (N/m2)

Ci = .2502

_2 _- 1.288xi0-6 (rad/sec)2

Izz/Ixx = 4.98

so that

eo = .57_____3(radians) (53)
m'D

From the range of parameters given in Table i, m'D ranges from

1.0 to i000, and the permitted tolerance on 8 ranges from .01 to 10-5 .

Thus, only for m'D > 57.3 is the steady state pointing error in pitch

less than the maximum permitted tolerance, .01 radian. It may be con-

cluded that, in the example considered, passive gravity gradient sta-

bilization is adequate under some, but not all, design conditions.

For time dependent loading conditions, the mass and Coriolis damping

terms derived in Appendix D must also be taken into account. Dynamic

analysis of the pitch degree of freedom is easier than roll and yaw be-

= My (54)

cause its full dynamic equation is simply

(Izz + Ixx)8 + 3_2 (Izz - Ixx) 8

If My is harmonically varying at frequency _, the harmonic response

8 is given by

e
0o

(55)
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where 8o is the static response to a load of magnitude _, and

_y = _ /3(177 - Ixx )
%/ Izz + Ixx

(56)

For the example cited above, Izz/Ixx = 4.98, and _y = 1.413_.

The amplification factor for excitation with frequency equal to the

second harmonic of the orbital frequency is

i - (57)

The second harmonic of the orbital frequency is important because it

is the dominant harmonic of solar radiation pressure. For example, if the

orbit of the vehicle is in the ecliptic plane, then Equations (6) and (7)

of Section 3.3 give the following equation for the second harmonic co-

efficient of pitching moment.

= _ _ (ss)Me2 % " Ps

is

The second harmonic response to a pitching moment of this magnitude

02 Kp p_. . 1
= 3C i GZ m'D

The assumed value of Ps is .75xi0 -3 N/m 2, and, for a smooth reflector

surface with f/D=l, _ = .0417. Using the parameters for the previous

example

82 = 0.322 (60)
m'D
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which has the same order of magnitude as the steady state error due to

aerodynamic drag at 500 Km. The response to higher harmonics is much

smaller because both the harmonic content of the pitching moment and the

dynamic amplification factor decay rapidly with frequency.

Nothing has been said yet about damping, and indeed no damping is

available if the vehicle is rigid and no other means of control is pro-

vided. Damping is necessary because otherwise transient disturbances

persist indefinitely. Sources of transient disturbance which have been

discussed earlier are meteoroid impact, Section 3.4, and thermal shock

due to entry and exit from the Earth's shadow, Section 3.1. The discus-

sion of meteoroid impact quoted a very small value of damping (g ffi

7.3xi0 -4) required to contain the pointing error in a worst case

analysis.

Another matter which has not yet been discussed is the effect of

variations in gravity gradient due to orbit ellipticity and anomalies in

the gravitational field. The principal effect of these variations is

to cause the stiffness coefficient represented by 3_ 2 in Equation (54)

to have a small variable part consisting of harmonics of the orbital

frequency. The strongest harmonic of the Earth's gravitational field

is a second harmonic component in the meridional direction which is at

least three orders of magnitude smaller than the steady part. Orbital

ellipticity will produce gravitational variations which include odd

harmonic components of the orbital frequency.

As mentioned, an important result of such anomalies is to replace

the stiffness coefficient in Equation (54) by
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K -- 3_2(i + ElCOS(_t + @i) + _2cos(2_t + @2) + ...) (61)

If only the first perturbation term is considered, Equation (54) becomes

a form of the Mathieu-Hill equation which has been studied extensively

and whose stability characteristics are well known. These studies show

that, if ¢i is small, the system will be unstable if the resonant fre-

quency given by Equation (56) lies within a small band located at all of

the integer and half-integer harmonics of _. For example, if E1 = 0.2,

then the unstable ranges of _y/_ are from .48 to .53, from .99 to 1.02,

etc., with increasingly narrow ranges at higher harmonics. The width of

each unstable range is approximately propo_tlonal to El, and since the

expected values of the E's are very small, all that is required to avoid

this type of instability is to avoid nearly exact resonances with the har-

monics and half-harmonics of the orbital frequency. This conclusion also

holds if several non-zero values of the E's are present simultaneously.

A correlary of this conclusion is that it must be possible to compute the

rigid body frequencies and someof the lower structural frequencies fairly

accurately. At the higher harmonics of orbital frequency, very small

amounts of internal damping are sufficient to prevent instability, even

with exact resonances.
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5.2 Conceptual Design of a Gravity Gradient Control System

It has been shown in the previous subsection that pointing errors

can be corrected by gravity gradient stabilization, in some cases, with-

out any explicit design modifications. This is effective for some

vehicles, including the type considered in this report provided that it

has a heavy feed mass. Although stability is achieved at no additional

weight or cost, the pointing accuracy is not spectacular and damping of

rigid body modes is not provided.

Gravity gradient stabilization and control can be improved by the de-

liberate addition of mechanical components to the vehicle system. Consider,

for example, the design shown in Figure 2. The additional components are

a small mass, called the anchor, plus a long cable and a harness consisting

of three or more shorter cables which attach the long cable to the rim of

the reflector.

Each of the harness cables is in series with an elastomeric damper

and a winch. The winches are needed only if it is desired to exercise

active control of the pointing axis.

Gravity gradient produces a tension in the long cable equal to

T = 3R 2 ma za (62)

where ma is the mass of the anchor (assuming that the mass of the cable

is negligible), and za is the distance from the anchor to the center of

gravity of the complete system, including reflector, feed and anchor.

rhus_

Za _ m (£+£a)
m+m a

(63)

where m is the mass of reflector and feed.
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If the reflector is pitched through a small angle, e, the tension

T will produce a momenton the reflector which resists the pitch angle.

The use of this principle to reduce pointing errors is discussed in fol-

lowing subsections.

A lateral force at the apex of the harness cables will tend to in-

crease the tension in somecables and to reduce the tension in others.

This will cause extensional motions of the elastomeric dampers (which are

assumedto be much less stiff than the cables) and, if the motions are

time-dependent, damping will result. It will be shownlater that both

the rigid body modesand the elastic vibrations of the system are damped.

Operating the winches in a differential manner will alter the junc-

tion point of the long cable and the harness cables, thereby creating

momentsabout the center of gravity of the reflector and feed. In this

manner, the pointing axis can be deliberately altered in response to

commandsor to feedback from pointing error detectors.

The control system shown in Figure 2 does not resist yawing moments.

Suchmomentsare presumably small because the reflector surface is axi-

symmetric; also, the error tolerance for yaw is probably much larger than

the tolerance for pointing error. The correction of yaw errors can be

achieved by adding small masses that are connected to the rim by booms

and dampers in the fore-aft directions. Note that boomsrather than

cables are needed because the componentof gravity gradient in the fore-

aft direction is very small (assumed zero in Appendix D) compared to

the component in the vertical direction.

The length of the anchor cable is likely to be of the order of i00

times the diameter of the reflector. Based on previous work with long
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filamentary structures, the cable should be constructed from several

separated strands with frequent load interchanges in order to reduce

the probability that the cable will be severed by micrometeoroids.

The added weight penalty to meet this threat is estimated to be low.
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5.3 Steady State Pointing Errors

Steady state pointing errors can easily be estimated for passive

operation of the gravity gradient control system described in the pre-

vious section.

If the reflector is pitched through a small steady angle e, the

long cable will be translated without rotating, because the component

of gravity gradient force in the fore-aft direction is negligibly small

(see Equation (i) of Appendix D). As a result, the tension in the cable

exerts a restoring pitching moment

_ kT£e

on the reflectors, where k is a reduction factor to account for the

flexibility of the harness. For the present, the flexibility of the

harness will be ignored and the reduction factor will be set equal to

unity. The moment given by Equation (64) has an upper limit

(64)

(_)max _ kTD/2 (65)

which occurs when e = D/2£. For larger angles one cable goes slack.

An additional (positive or negative) restoring moment will be pro-

vided by gravity gradient acting on the reflector itself, but this effect

will be ignored because it is intended to provide a much larger restoring

moment by adding the anchor and cable. As a result we may express the

steady state pointing error due to aerodynamic drag by means of Equation

(52) of the preceding section with the inertia coefficient Ci set equal to

D2J

where m r is the mass of the reflector.
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The resulting pitch angles are plotted in Figure 3 vs. the product

Cim'D with altitude and focal ratio as parameters. The product m'D

ranges from 1.0 to I000 for the applications considered here. A prac-

tical upper limit for Ci is probably around I00, based on weight and

other considerations. This is a very large increase over the value used

in the preceding section (.2502) for an uncontrolled vehicle with heavy

feed mass, and_it extends considerably the range of mission parameters

for which passive gravity gradient stabilization is practical.

The results for steady roll moment are similar to those for steady

pitching moment, except that the restoring moment given by Equation (64)

is multiplied by a factor which is approximately equal to (i+£/4%a).

There is,.however, no change in the maximum moment given by Equation

(65).

The steady pitch (or roll) error can be reduced to zero by introduc-

ing active trim control through the winches shown in Figure 2. In effect,

the junction point of the long cable and the harness is deflected through

the angle, 8 relative to the reflector, rather than deflecting the point-

ing axis of the reflector itself. As mentioned, the angle at which one of

the harness cables goes slack is 8 = D/2£. Thus, using Equation (52),

D CmP d
emax = 2-_ =

3Ci_2m' D

(67)

from which, using Equation (66),

m' za ma-_r)min

_ 2CmPd

3n 2

(68)
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This result provides the minimum value of m'z a ma/m r required to pro-

duce a control moment equal to the aerodynamic pitching moment. The

expression on the right-hand side is a function of the altitude and the

focal ratio only. Equation (68) is plotted in Figure 4. As an example,

if the altitude is 400 Km and f/D = 1.0, then the minimum required value

of m'Zama/m r = I.I. If we double this value to provide a margin of

safety and select m' -- 0.01 and ma/m r = 0.02, then the required cable

length is approximately equal to

za = 2 x i.|/0.01 x .02 = II,000 meters

independent of reflector diameter.

(69)
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5.4 Dynamic Response

Appendix E includes an analysis of the dynamic response in pitch of

the gravity gradient control system described in Section 5.2. The topics

treated in Appendix E are vibration modes, modal damping, and response to

dynamic pitching moments. The major conclusions will be summarized here.

The system has two pitching modes: a low frequency mode which is

nearly a rigid body mode, and a high.frequency mode which mainly involves

pitch of the reflector, with a small opposing motion of the anchor mass.

Frequencies and mode shapes are plotted in Figures E-2 and E-3 vs. two

characteristic parameters. The parameter a in these figures is directly

related to the parameter Ci defined in Equation (66) by

£a" mrD2 (70)
a ffi -- ._. Ci

£+£a I

where I is the pitching moment of inertia of the reflector-feed system

and m r is the mass of the reflector. The practical range of the para-

meter a is from about two to about two hundred.

As mentioned in Section 5.2, damping is provided by elastomeric

dampers in series with the harness cables. Appendix E includes an

approximate analysis of the damping provided by the dampers to each of

the modes. The damping for the higher mode is much larger than the damp-

ing for the lower mode, as shown by the results tabulated in Section E.4.

It is also shown that the damping of the low frequency mode is adequate,

for reasonable parameter values, because the excitation of the low fre-

quency mode is small.
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For sinusoidal excitation, the response can be expressed as an

equivalent static response multiplied by a dynamic amplification factor.

The dynamic amplification factor is plotted versus frequency in Figure

E-4 for a typical value of _ and extreme values of £/%a"

As discussed in Section 5.1, the most important component of sinu-

soidal excitation is the second harmonic componentof solar radiation

pressure. Equation (59) of that section gives the second harmonic pitch-

ing response for an uncontrolled vehicle. The same equation can be

applied to the passive control system under discussion by using the value

of Ci given by Equation (66) of Section 5.3 and by replacing the dynamic

amplification factor (i/(l-(_/_y) 2) in Equation (59) by the value derived

in Section E.3. From Figure E-4, a typical value of the amplification

factor for second harmonic excitation (_/_--2) is 1.0. Using this

value, and previously derived parameters for solar radiation pressure,

produces the plots of pointing error shown in Figure 5. By comparing

Figure 5 with Figure 3, it is seen that the second harmonic response to

solar radiation pressure is greater than the steady state response to

aerodynamic drag for altitudes greater than 600 Km.

The dynamic response of the system in roll and yaw has not been

treated. The analysis is more difficult than the analysis of pitch be-

cause the roll and yaw degrees of freedom are coupled. It is expected

that results similar to those for pitch will be obtained, except that

the response to second harmonic excitation may be larger due to the

close proximity of the rigid body roll mode to the second harmonic of

orbital frequency, indicated in Figure 1 of Appendix D.
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SECTION6

ACTIVECONTROL

The emphasis in this report has been on the physical means used to

apply control moments, rather than on control laws. Active control of a

gravity gradient control system was discussed briefly in Section 5.2 and,

in general, it has been mentioned repeatedly that steady state pointing

error could be eliminated by trim control. This subject is discussed in

somedetail in Appendix F, where it is shownthat integra]_ feedback (feed-

back which is asymtotic to a constant times I/m as the frequency, m,

approaches zero) can entirely eliminate steady state error due to external

(environmental) moments, and can generally reduce errors due to low fre-

quency excitation.

The discussion of Appendix F is largely concerned with stability. A

practical design approach is described which yields good stability and
o

good error suppression characteristics.
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SECTION7

CONCLUDINGREMARKS

Of the sources of control momentthat have been reviewed, only stored

angular momentumand interaction with the Earth's magnetic field appear to

be inappropriate for the mission spectrum considered in this report. All

of the others have somepotential application, depending on altitude and

vehicle parameters.

Due to the long mission duration, expelled mass using chemical pro-

pulsion results in a relatively heavy control system. Electric propulsion,

on the other hand, is a strong candidate at all altitudes.

Aerodynamic pressure is a strong candidate at low altitudes and solar

radiation pressure is a strong candidate at high altitudes. Gravity

gradient is probably the strongest candidate, except at very low and at

very high altitudes, and it is, furthermore, the only source of control

momentthat increases more rapidly with vehicle size than the environment-

al sources of overturning moment. The requirement for geotroplc pointing

makesgravity gradient stabilization particularly appropriate for the

mission spectrum that has been studied.

An important aspect of control that has not been discussed to any

extent is orbital maintenance, i.e., the application of a force at the

center of gravity of the vehicle to maintain orbital altitude and elliptic-

ity within acceptable limits. The only available sources of such a force

are expelled mass and solar radiation pressure.

5_
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Table 1

Mission Parameters

Reflector Diameters :

Circular Orbits :

f/D:

Physical Pointing Accuracy
Maximum Error:

Mass per unit area:

Surface Solidity:

MaSSfeed/Ma SSre flec tor

Mission Duration:

I00 to I000 meters

200 to 20,000 kilometers

altitude and geosynchronous

0.5 to 2.0

10-2 to 10 -5 radlans

10-2 to I kg/m2-

.01 to 1.0

.01 to 1.0

I0 years

61



Table 2

Summaryof Control MomentSources

Physical Effect

Expelled Mass

Inertia Wheel

Gyrostabilizer

Gravity Gradient

Aerodynamic Pressure

Solar Radiation Pressure

Earth' s Magnetic Field

Practical Practical Passive Active
Altitude size range Control Control
range (km) (m) Possible Practical

Any Any No Yes

Any < 5 No Yes

AnY < 5 Yes No

400-20,000 > I0 Yes Yes

< I000 Any Yes Yes

> 600 Any No Yes

400-20,000 Any No Yes
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Table 3

Steady Restoring Momentsfor Various Control Systems

PHSYCIALEFFECT FORMULA DEPENDENCEONALTITUDE

Expelled Mass

Inertia Wheel

M k G me ISD D
t
m

H
M =

t
m

None

None

Gyrostabilizer M = k H2 8
m' D4

None

Gravity Gradient

Aerodynamic Pressure

Solar Radiation Pressure

Magnetic Field

M -- 3k R2 m' D 4 8

D 3
M = Cm_Pd

D 3
M - ks _ Ps

M - _D2 IB
4

Pd " e-kh

None

B-_i_
R3
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Appendix A

Effect on Pointing Error Due to Thermally Induced

Length Changes in the Feed Supports

In the sketch shown below, the length of the left support is £(I + (A¢/2))

and the length of the right support is £(i - (Az/2)) where £ is the undistorted

length and

A¢ - ou_T (A-I)

In Equation (A-I), _ is the coefficient of thermal expansion and AT is

the difference in the temperatures of the two support columns.

A simple geometrical analysis shows that, for ¢ << I, the error in

pointing accuracy due to differential thermal strain is

e =T= c • (A-2)

£/D is an easily computed function of the focal ratio f/D. The following

table lists E/e for three values of f/D
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f/D A¢/8

0.5 1.302

1.0 •887

2.0 .485

Thus, if the allowable error (due to this source) is 10-5 rad, the

allowable differential strain for f/D = 1.0 is .887xi0 -5. Note that an

increase of f/D decreases the allowable differential strain.
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Appendix B

Overturning Moment Due to Aerodynamic Drag

The velocity vector is normal to the pointing axis as shown below

V

D

J

The reflector is assumed to be a segment of a sphere and to be smooth.

According to Newtonian theory, the aerodynamic pressure is normal to the

surface ar.d proportional to cos_ where 7 is the angle between the

normal to the surface and the velocity vector. The component of pressure

in the direction of the velocity vector is equal to cosy times the normal

pressure. Thus, the total drag force

Fd D=J Pd cos 3 7 d S (B-I)

pressure for normal incidence, Pd =(i/2)p V2 • CNwhere the

The value of CN, =he pressure coefficient for normal incidence, is ap-

proximately equal to 2.5. The surface integral is taken over the forward

half of the reflector.
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The drag per unit area of the reflector is

F' --__ __ 4 Pd f c°s3y d S (B-2)
d _,u wD 2

Since pressure acts normal to the surface, the resultant aerodynamic

force acts at the center of the sphere and may be resolved into llft and

drag components. Only the drag component contributes to the overturning

moment. The moment arm for the over_urning moment is the distance from

the center of the sphere to the center of gravity which will conservatively

be assumed equal to the radius of the sphere, 2f. Thus, the overturning

moment due to drag is

Md = 2f • Fd (B-3)

and the moment coefficient is

Cm _ _ = 8f Fd = 8f f cos 3 y d S (B-4)

_pd D_ _pd D3 _D 3

The surface integral is evaluated as follows. In terms of angles 0 and

measured along the meridian and around the azimuth respectively,

cosy = sin0cos_ (B-5)

and the surface area increment

Thus

d S = (2f) 2 sin0dOd_

0 w/2

f cos 3 y d S 4f2 fD= f sin4Ocos3_d 0d_

o -_/2

f2

_- (120 D - 8sin20 D + sin4e D)

(B-6)

(B-7)
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and

C m 3_ " (12eD - 8sin28 D + sin48D) (B-S)

where

sinsD = D (B-9)
4f

Cm is evaluated below for three values of f/D. The drag coefficient

is also tabulated.

4Fd __ID
Cd = - 2f Cm

wD2pd

(B-10)

f/D Cm Cd

0.5 .0117 .0117

1.0 .00277 .00138

2.0 .000672 .000168

The strong dependence on f/D is noted.
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Appendix C

Estimation of Pointing Error Due to Micrometeoroids

A micrometeoroid which strikes the surface of the reflector will

either penetrate it, or it will not. For particles which penetrate the

surface, only a part of their momentumis transferred to the surface.

It will be assumedthat the maximummomentumtransfer is equal to that

of a particle which just penetrates the surface. This assumption will

not cause important error because the momentumtransfer for larger parti-

cles increases at a rate no greater than the diameter of the particle

while the flux density decreases with about the third power of the par-

ticle diameter, for particles with masses near 10-9 kg.

The diameter of a particle which will just penetrate a sheet is

approximately equal to one-third the thickness of the sheet (Reference 2,

page 7). Thus,

dp -- ! ts3

The thickness of the sheet may be expressed as

m'
ts --

Ps

where m' is the mass per unit area and Ps is the density of the material.

The mass of the particle is, using Equations (C-I) and (C-2)

mp - _ _ Im' 13
- _ Pp (de) 3 = _ PP kBPs /

Assuming

pp = 500 kg/m 3 (a standard assumption)

Ps = 2000 kg/m 3

m' = . 1 kg/m 2 (the maximum range of this parameter)

(c-1)

(C-2)

(c-3)
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then

t s = 5x10-4 m

dp -- 1.67xi0 -4 m

mp = 1.212xi0 -9 kg

The standard velocity assumedfor micrometeoroids is 30 km/sec

(Reference 2, page 6) so that momentumof a particle that will just

penetrate the sheet is

mp Vp = 1.212 x 10-9 x 30x103 = 3.64 x 10-5 Newton-sec

The magnitude of the angular momentumimparted to the vehicle by

a single micrometeoroid is

where
H(1)

= xi mp Vp • kp (c-4)

xi = moment arm of impact point

mp = mass of particle

Vp = velocity of particle

kp = is a factor to account for glancing impact

It is not possible to make a simple comparison between the angular

impulse imparted by micrometeoroids and the moments due to other environ-

mental effects. We can, however, estimate the maximum pointing error

caused by a single impact if we make some very simple assumptions about

the control system, namely that it acts like a simple spring to produce,

in conjunction with the pitching inertia, I, a control frequency, _c"

It can then be shown that the maximum angular displacement due to a single

impact is
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e(1) = H(1) (C-5)
max I_ c

Now I can be expressed as

C _ D4
I = i-_m' (C-6)

where C i is a factor that depends on shape. A typical value for Ci is

0.15. Substituting from Equations (C-4) and (C-6) into Equation (C-5),

and assuming x i = D/2_T

8(i) = mp Vp kp

max Ci _-X-m' D3 _c

(c-7)

Note immediately that, for constant mc' 8max decreases as I/D 3, so

that the effect is largest for small vehicles.* It has already been

shown (Equation (C-3)), that mp increases as the cube of m' so that

8 (I) increases as the square of m'. Using the largest value of m'
max

(i kg/m 2) and the smallest value of D (i00 m), to be considered in the

present investigation

3.6 x 10-5e(1) =
max .15 x--X-x 1 x (100) 3

/Y _C

(c-8)

- 1.08 x 10-10/m c

*It is shown, later on, that the effect of multiple impacts increases as

the square root of the number of impacts, which value is proportional to

D. Thus, for multiple impacts, 8ma x decreases as I/D 2.
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The number of impacts in a given time period can be estimated from the

mean flux density, fp, of particles greater than a given size and the size

of the vehicle. According to current estimates, the mean flux density of

particles with mass greater than 10-9 kg is about 10-7 particles per square

meter per second. Thus, the rate of particles of this size intersecting a

reflector with i00 m diameter is approximately

N' - _ D2 fp = _---x (100) 2 x 10-7 = .785 x 10 -3 particles/see (C-9)
p 4 4

This amounts to one impact every 21.2 minutes which is of the same

order as the period of pitching oscillation.

The effects of particle impacts on pointing error are added statis-

tically, because their directions and impact points are randomly distrib-

uted. According to statistical theory, the combined effect of Np random

impacts is equivalent to N/_p simultaneous impacts at a point of mean radius,

D/2/_-. Thus, selecting xi in Equation (C-I) to be D/2/_, and kp to be

N/_p, the equivalent angular momentum is

H = D mp Vp N_p / 2/_

and the maximum pointing error is

H

8max = I_----_

(c-Io)

(c-11)

The effect of smaller particles has not been considered in this cal-

culation. Their effect may be estimated by assuming that the effective

particle mass is

1I12me = = f mi d Ni (C-12)
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and that particle flux is inversely proportional to particle mass. Thus,

where

so that

k _ Np mp

(C-13)

(C-14)

and

dNi . -Npmp
m2 dmi

i

(c-15)

me p p =
(C-16)

Thus, the net effect of smaller particles is just equal to the net effect

of larger particles. Their effect is included by doubling the value of H

in Equation (C-10).

It remains to select an appropriate time period to use in computing Np.

If the control system has no damping, then the appropriate time is the use-

ful life of the vehicle (assumed to be 10 years). In this case

and

= N' • t = .785 x 10 -3 x 3.15 x 108 = 2.47 x 105
P

= 994.0

(C-17)

ema x = 994 x e(I)= 994 x 1.08 x i0-10/_ c = 1.07 x i0-7/_c (C-18)
m_

The smallest control frequency, _c' that can be considered to be practical

is the orbital frequency which is about 10-3 rad/sec for altitudes up to

I000 km. Thus
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@max = 1.07 x 10-7/10-3 = 1.07 x 10-4 radian

which is larger than the smallest allo_able pointing error (10 -5 radian)

given in Table i.

This result shows that the vehicle pitch mode should be damped if

all the worst case assumptions are correct. If it is damped, the appropri-

ate time period to use in computing Np is the time constant of the damped

oscillations which is

2
t = __ (c-19)

_c g

where g = 2c/c c = I/Q is the damping coefficient.

ing _c = 10-3 rad/sec,

and

For this case, assure-

Np = N' • t = .785 x i0-J_ x 2/10 -3 1.57/gg
P

8ma x = 2N_p • 8(1)max = 2 x 1.08 x i0 -7 = _g

(c-2o)

(C-21)

The amount of damping required to reduce 8max to the minimum allow-

able value is

2.7 x I0-7_ 2g " i_'_s / = 7.29 x 10 -4 (C-22)

which is a very small amount.
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Appendix D

Complete Small Motion Equations for the Rotations of a

Rigid Body in Circular Orbit

The equations of motion will be written with reference to a vehicle

coordinate system whose origin is at the center of gravity of the vehicle

and whose axes are rlght-handed and oriented as follows:

x axis: pointing forward (in the orbital direction)

y axis : pointing to the right (as sensed by an observer

standing on the Earth, directly under the vehicle

and looking forward)

z axis: pointing down (toward the center of the Earth)

The rotations about these axes are (using the right-hand rule)

About x-axis :

About y-axls :

About z-axls :

# (roll)

e (pitch)

(yaw)

The equations of motion are derived by adding the effect of gravity

gradient to the complete dynamic equations of a rigid body rotating about

the negative _-axis with constant angular velocity, _ (the orbital fre-

quency in rad/sec).

The steady inertia force density vector, including both gravity

gradient and centrifugal force terms, is

fx

fy

fz

pn 2

x

i +R/z

-y

3z

(D-I)
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where R = distance from the center of gravity to the center of the Earth.

The force component, fx' is extremely small and will be neglected.

The complete equations of motion for pitch, roll and yaw may be

written in the form

where p = d/dr and

illl[I p2 + Bp + K] 0 =

• _ M z

(D-2)

[-r] (D-3)

[B] = 2_

I _z I -_I
-_yz I 0 I _y

I -_y I o

(D-4)

[K] = _2

-41xz i 31yz Ixx- lyyJ

(D-$)

<%

M z

= _2

-41yz I

3Ixz I

Ixyj

+ (Terms due to other

environmental effects)

(D-6)
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and where the inertia integrals

lab = f pabdv , a, b - x, y, z (D-7)
v

This definition does not conform to standard definitions of moments

and products of inertia which are, unfortunately, not well suited for

representing the Coriolls damping matrix.

The inertia matrix [I] and the Coriolis damping matrix [B] are taken

directly from Reference 4 with an appropriate transformation of axes. The

stiffness matrix [k] has been derived from Equation (D-I) using the method

of Reference 4.

If the principal axes of the body are aligned with the coordinate

axes, it is seen from Equations (D-3), (D-4) and (D-5) that the p_tch degree

of freedom is uncoupled, and that the roll and yaw degrees of freedom are

coupled by the Coriolis damping terms, ±2_lyyp.

The equation for uncoupled pitching oscillations is

_ = R (3(Iz_ - Ixx))1/21zz + Ixx
(D-S)

from which it is seen that Izz ) Ixx is a condition of stability.

The coupled rolling and yawing frequencies are obtained by the

solution of

_4(Ixx+lyy)(Izz+lyy)

- m2_ 2 [4(Ixx+lyy)(Izz-lyy ) + (Izz+lyy)(Ixx-lyy) + 412 ]
- yy

+ 4n4(Izz-lyy)(Ixx-lyy) = 0

(D-9)
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The pitching, rolling, and yawing frequencies are plotted in Figure D-I

as functions of Izz/Ixx and Ixx/lyy. It is seen from Figure D-I that the

conditions for stability (_2 _ O) are:

Izz _ Ixx _ _y (D-10)
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Appendix E

Dynamic Analysis o% the Pitching Moments of a

Passive Gravity Gradient Control System

Figure E-I shows the dynamic degrees of freedom of the vehicle in the

pitch plane. All of the cables are assumed to be massless and inextension-

al. The reflector-feed sy@tem is assumed to be rigid. The analysis con-

sists of the following parts:

I. Derive the equations of motion, for small motions

2. Calculate vibration modes

3. Calculate response to slnusoidal pitching moment

4. Estimate modal damping due to elastomerlc dampers

E.I

where

Equations of Motion

Referring to Figure E-I, the kinetic energy of the system is

ffi 1 [m(_)2 + ma(_a)2 + i(_)2] (E-l)Ek 2

m = mass of reflector-feed system

m a = mass of anchor

I = inertia in pitch of reflector-feed system.

The potential energy of the system is, for small motions,

Ep = 21T (£ 82 + £a 82)a

where T is the tension in the long cable, given by Equations (62) and

(63) in the main text. Note that the static restoring moment due to

(E-2)
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gravity gradient acting directly on the reflector-feed system is neglected,

as explained in Section 5.3 of the main text.

The translational degrees of freedom, w and Wa, can be eliminated

by using the conservation of momentum

mw+ maw a = 0 (E-3)

and the kinematic relationship

w = wa + £8 + £aSa (E-4)

After eliminating w and w a from Equation (E-I), a straightforward

application of Lagrange's equations yields the following equations of

mot ion s.

_(I + _£2)p2 + T£m££ap2 '--z_ ' -i
I _£ap + T£

(E-5)

where p = d/dr and _ = mma/(m+ma).
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E.2 Calculation of Vibration Modes

It will be noted that the determinant of Equation (E-5) is quadratic

in p2. Thus, the calculation of the frequencies of free vibration requires

the solution of a quadratic equation in the variable p2 = __02. The fre-

quencies are expressed by the result

where

fl = orbital frequency

=
a

B = I+_/£ a

The frequency ratio, u/R, is plotted vs. = and £/£a = B-l, in Figure

For a > i, which is the range of interest, the lower of the two fre-E-2o

o

quencies corresponds closely to rigid body motion with an asymtotic frequency

limit, m/R = _, for 8 = 1.0. For _ > I, the higher of the two frequencies

represents a pitching mode of the reflector, with little rotation of the

long cable.

The relative mode shapes, obtained by solving the bottom half of Equa-

B-I

313(_I_)z - I (E-7)

tion (E-5) for 8a/8 are given by

The relativewhere m is either of the frequencies given by Equation (E-6).

mode shapes are plotted vs. _ in Figure E-3 for £/%a = 0. I and £/£a = 0.5.
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E.3 Response to Sinusoidal Pitching Moment

The response to sinusoidal pitching moment may be obtained by solving

Equation (E-5) with p = ira, where _ is the frequency. The resulting

pitch of the reflector may be expressed as follows in terms of the para-

meters a, 8, and _.

-I

[ ('I-_+=8"_/-'m_2 - 8-I (m--/fl)---4 1 (E-8)

where eo = My/T_, is the static response. The bracketed expression is a

dynamic amplification factor. It is plotted vs. _/_ in Figure E-4 for a

typical value of _ and extreme values of B. It is seen in Figure E-4 that

the low frequency mode has a narrow peak while the high frequency mode

has a broader peak.

Another way to calculate sinusoidal response of the reflector is to

first compute the response of each of the modes and then to combine the

modal responses. The following equation describes the general procedure

uj = _ _ _ji _ki Fk (m-9)

i k mi (m2i _ m2)

where

Fk = exciting force on kth degree of freedom

m i = generalized mass of ith mode

mi = frequency of ith mode

uj = displacement of jth degree of freedom

Sji = displacement of uj in ith mode

_I_ = displacement of uk in ith mode
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For our particular case, the exciting force is a pitching momenton

the reflector, and there are only two modes. For this case, Equation (E-I)

can be expressed in the following particular form

e . My I Pi (E-10)
Im 2 i=1,2 (ml/m) 2 - 1

where the "modal participation factor", Pi is

l

Pi i + a [_l£a + (£al_)(eale)2] (E-If)

The following table records PI for _ = I0 and two values of £/£a

£/£a 0.1 0.5

P1 .0012 .043

P2 .2907 .085

Note that an important effect of increasing £/£a is to greatly increase

the contribution of the first mode (the rigid body mode) to the response

of the reflector.
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E.4 Estimate of Modal Damping and Response to Random Excitation

The elastomeric dampers are in series with the harness cables. An

elastomeric damper has the property that the force in the damper is out

of phase with the motion but is nearly independent of frequency (for fre-

quencies below I0 Hz.). Therefore, the force-displacement relationship

for sinusoidal motions can be represented by

F = k(l+ig) • u

The per-kunit critical damping of a system consisting of the damper and a

mass is C/Ccr -- g/2.

If the damper is very stiff compared to other elements in the system

and if g is small, then the modal damping due to the damper can be esti-

mated from

odal P

(E-12)

(E-13)

where Ep is the potential energy in the mode due to all stiffness elements,

and AEp is the potential energy in the damper

F2 i__ku 2
AEp = 2-_ = 2

If the damper is very stiff, then the force in the damper is not

affected by the presence of the damper. Thus, in order to estimate the

modal damping, it is only necessary to compute the force in the damper

and the total potential energy from the undisturbed mode shape.

For our case, the moment resisted by the dampers is the moment act-

ing on the reflector

(Z-14)

M - _2 1 8 (E-15)
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so that the potential energy in the dampers is

M2 _4 1 e 2
AEp = -- =

2kd 2k d

where kd is the rotational stiffness of the dampers acting together to

resist applied moment. Equation (E-2) gives the potential energy of the

undisturbed system. Thus, using Equation (E-2),

(E-16)

(-_cr) = g _41
modal 2kdT£ (I + (£a/£) (ea/s)2) (E-17)

where the parameters w and ea/8 are the frequency and amplitude ratio for

a particular mode.

This result can be expressed as follows in terms of the parameters _,

8, _, and the ratio, ea/8, given by Equation (E-7)

(E-18)

The following table records values of the bracketed expressed, Ad,

referred to as the "damping amplification factor", for several values of

a and £/£a"

3 3 i0 I0 i0

£1%a .01 .I0 .01 .I0 .50

Mode Damping Amplification Factor, Ad

Ist .00234 .01422 .00012 .00088 .00155

2nd 1.0072 1.085 1.020 i.i0 1.513
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It will be noted that the damping amplification factor for the 2nd

mode is high in all cases and that the damping amplification factor for

the first (rigid body) mode is low in all cases. Since the response to

random excitation is inversely proportion to the square root of the damp-

ing, the above table would indicate that the response of the rigid body

mode to random excitation would greatly exceed that of the 2nd mode.

However, as indicated in Section E. 3, the modal participation factor for

the rigid body mode in the response of the reflector is much smaller, in

most cases, than the modal participation factor for the 2nd mode. The

ratio of the modal participation factor to the square root of the damping

amplification factor is a good measure of the contribution of each mode

to random oscillations of the reflectors. This ratio is recorded below

for _ = I0, and two values of %/%a"

0. I Ci/A_dl 0.5

.0405 1.092

2nd mode I .277 .069

From the data in this table, it appears that a value of %/%a somewhere

between 0.1 and 0.5 would minimize reflector response to random excit-

ation.

It should also be pointed out that the elastomeric dampers will also

damp the vibration modes of the cables. This matter is discussed in

Reference i.
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Appendix F

Elimination of Steady-State Error by Integral Feedback

In aircraft, steady-state pointing error is eliminated by trim con-

trol, which can be regarded as a very low frequency control system, often

with the pilot in the control loop. The subject of low frequency control

is investigated in this Appendix from the viewpoint of control system

theory.

Figure F-I shows a conventional block diagram for a control system

interacting with a rigid body, whose rotational inertia is I. In Figure

F-I, 6i is an input command, and M is an external (environmental) moment

applied to the rigid body. For no input command, it is easily shown that

the pointing error is

M
E m

I p2 + F(p)

wherein p may either be regarded as frequency (p z i_) or as a deri-

vative operator. In order to achieve zero error as p ÷ O, it is clear

that the feedback F(p) must be asymtotlc to A/p n where A and n are con-

stants and n > 0. In discrete systems, n is an integer and F(p) is the

ratio of two polynomials, F(p) = G(p)/H(p). The control system design

problem is to select F(p) so that c is smaller than a desired upper

limit which may be a function of frequency, and such that the system is

stable.

Stability is determined by examining the roots of

(F-I)

I p2 . H(p) + G(p) = 0 (F-2)

97



Elementary analysis shows that the simple forms

F(p) = A/p

and (F-3 )

F(p) -- A(p+po)/p

produce unstable roots.* The simplest form that will produce stable roots

is

F(p) = A(p2 +mo gp +mo 2)

P

(F-4)

where A, _o' and g are constants. The asymtotic form of the error for

p÷ 0is

Mp
E ÷

A_20

2

which indicates the desirability of a large steady state gain, A_ o.

The maximum error occurs near p = i_o and has a magnitude _ = M/A_og.

The stability equation for this case is

(F-5)

I p3 + A p2 + Amog p + A_ 2 z 0 (F-6)

and the conditions for stability (roots with negative real parts) are that

A and _og be positive and that

A > _ (F-7)

*For the reason that the coefficients of p and p2 must be positive

(not merely zero) for a cubic equation to have all stable roots.

98



Equation (F-7) indicates a lower limit for the gain, A. An upper

limit is provided by the requirement that the system be stable in the

presence of structural vibration modes. In order to include such modes,

the impedance of the structure Z = I/Ip 2 is replaced by

1

where _, mi' and gi are respectively the generalized mass, frequency,

and damping of the i th mode. The loop gain of the system is

(F-8)

L _ F(p)/Z (F-9)

Assuming small structural damping, the loop gain will have peaks at

the modal frequencies, _i" If _i >> _o then, from Equation (F-4),

F(i_ i) _ i_ i near a structural peak and the ith peak in the loop

gain has the approximate magnitude

L(_ i)
A

ligi_ i
(F-IO)

In order to provide gain stability relative to every structural mode,

it is required that L(_i) < 1, or

A < ligim i (F-If)

Combining this stability condition with the low frequency stability

condition, Equation (F-7), gives

I_o < A < ligim i
g

(F-12)
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which can only be satisfied if

li_ i
ggi>l

I_ o

It is difficult in practice to ensure that this condition will be

satisfied. The control system can be improved by adding high frequency

roll-off which will ensure that none of the structural modesare de-

stabilized. The roll-off must be at least second order in order to

satisfy the physical requirement that the feedback F(p) be zero at

infinite frequency. If such roll-off is not provided deliberately, it

will be provided by structural flexibility and other parasitic effects,

with potentially unpleasant consequences. With the addition of second

order roll-off, the feedback function is

A(p 2 + _o gp + 2)

F(p) = p(l+P/_l) (l+P/_2)

(F-13)

(F-14)

which is the simplest possible form for practical integral feedback.

If ,,2 << mlm2 ' then it can be shown that the conditions for
o

stability are

Im° < A < I (ml+m2) (F-15)
g

As a matter of practical design, A, _o' ml' _2' and g should all

be chosen as large as possible in order to reduce the low frequency errors.

The values of these parameters are, however, inevitably limited by the

presence of structural modes.
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CHAPTER 2

EFFECTS OF PHASE ERRORS ON ANTENNA PERFORMANCE

by
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SECTION 1

INTRODUCTION

The successful performance of any structure depends largely

on the identification of the critical or primary loads and design

criteria on which the design is based. The future promises large

structures which must be deployed, erected, assembled, or fabri-

cated in space. For such structures, which will not be required

to face the launch environment, the primary design requirements

will be derived from the space-flight environment and will deal

with phenomena as primary criteria which have been considered as

only secondary in the past. The design of such genuine "space"

structures will require a solid foundation of critical criteria.

This chapter examines the influences of deviations of the

surface of a large radio-frequency antenna on the antenna pattern.

Clearly, such information is needed in order to establish require-

ments on the accuracy of the structure of the antenna so that it

can properly perform its mission function.

From a mission-usefulness point of view, three characteristics

of an antenna pattern are important. The first is the intensity

of the radiated pattern at its center. This "on-axis gain" or

"main-lobe gain" is important because it establishes how much power

must be supplied to the antenna in order to achieve an acceptable

power density at the receiving station. Alternately, if the
antenna is used as a receiver, the main-lobe gain determines the

strength of the received signal relative to the strength of the
various noise sources in the antenna and other parts of the re-

ceiver system.

For some missions the amount of energy of the main antenna

lobe is important as the main-lobe gain. This so-called "side-

lobe gain" is of concern in those type of missions in which the
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radiation of energy outside the main lobe is undesirable. Geosyn-

chronous communication systems, for example, must have low side

lobes in order to avoid crosstalk among the various satellite-

Earth station links that are using the same frequency channels.

In sensor applications, low side lobes are required in order to
eliminate the ambiguity that arises because of off-axis "hot

spots."

The third characteristic is that of "main-beam efficiency."

Antennas used to transmit power, for example, must concentrate

the power in the main beam so that the receiver can capture it.

A sensing antenna would need to minimize the power gathered out-
side of the main beam if the contrast were low. Microwave radio-

metry is an example of such an application.

The effect of antenna errors on the gain pattern arises pri-

marily from nonuniformity of the phase of the radiated signal as

it crosses the aperture plane of the antenna. This phase error

in a reflector type of antenna is composed of errors arising from

the antenna feed, those due to blockage, those caused at the re-

flector surface, and those due to improper geometry of the re-

flector and feed position. (If the reflector were a perfect
paraboloid and the feed were located exactly at its focal point,
there would be no errors from antenna geometry.) For directly

radiating antennas, a similar separation of phase-error sources

is possible: those due to inaccuracies in the signal fed to various

antenna elements and those due to imperfect antenna geometry. In
this paper, attention is focused on the phase error itself without

consideration of the source; of course, the overall intent is to

investigate these types of phase errors which might arise from

geometrical imperfections.

The loss of main-lobe gain in the far field due to phase im-
perfections is generally agreed to be a straightforward function

of an average phase nonuniformity. To be precise, the main-lobe
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gain is proportional to exp (-6 2 ) where 62 is the weighted mean

square deviation of phase (in radians), the mean being taken

across the aperture with a weighting function of the illumination

intensity. This formula is given by Ruze in his classic survey

paper (ref. i). It agrees for small values of 6 2 with previous

work by others, as well as the earlier work of Ruze himself. In-

cidentally, Ruze's earlier work contains a different form for

larger values of 6 2 and purports to show that the main-lobe gain

depends on the distribution of the error across the aperture in

addition to the weighted mean square (ref. 2). The more recent

result, in which the areal distribution has no independent effect

on the main-lobe gain, is used in the results herein.

The side-lobe gain is generally agreed to be influenced by

the distribution of the errors as well as their weighted mean.

Ruze shows, for example, that in the case of random errors, the

side-lobe gain is a strong function of the correlation interval

(ref. i). Different types of structural phenomena will create

different types of phase-error distribution. For example, the

distortions due to thermal effects or maneuver loads are likely

to have characteristic lengths that are a large fraction of the

aperture size. Such large-scale errors are termed herein as

"overall" errors. On the other hand, errors due to random manu-

facturing inaccuracies, which are treated in ref. 3, generally

have much smaller characteristic lengths. Such small-scale

errors are termed herein as "local" errors.

The loss in main-beam efficiency due to phase errors is

dependent on the effects on main-lobe shape as well as main-lobe

gain.

This paper contains newly derived results as well as results

taken from and developed from the literature for the effect on

main-lobe gain and shape and side-lobe gain of various types of

imperfection patterns.
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SECTION 2

BASIC ANTENNAFIELD EQUATIONS
AND PHASE ERROR-FREESOLUTIONS

An estimate of the scalar diffraction pattern for a plane
circular aperture can be obtained by using the Fraunhofer approxi-
mation:

2_a [6 2_r ,)]

E(@,_) = /0/0 f(r,_')e i (r,_')+-_- sin @ cos (_-_ rdrd_' (i)

where f(r,_') is the magnitude of the illumination at the aperture

and 6(r,_') is its phase. The coordinates in respect to a parabolic

reflector antenna are shown in Figure i. The above expression is

referred to as the far-field equation, as it is a good approxima-

tion of the antenna field only when the distance from the antenna

is large compared with the aperture radius a and beyond the inter-

ference pattern of the Fresnal zone. Reference 4 contains a com-

plete discussion of the derivation of the Fraunhofer approximation.

For a circular aperture, it is convenient to change the vari-

ables so that

2ha
u = -_- sin @

and

r

a

so that the above equation becomes
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E(u,_) = a2 2_ Izfrf(p,¢,)ei[_(p,_')+up cos (#-_')] pdpd@'
44

(2)

If we restrict ourselves to the circularly symmetric feed il-

luminations characteristic of this type of antenna, then f will not

depend on @' so that the field equation becomes

°_r I

2 "fOE(u,0) = aT f(p)ei[_(P,0')+up cos (_-0')] pdpd0'
(3)

In the special case where there are no phase errors, 6 = 0, the

above expression can be integrated with respect to #' which results

in

1

E(u) = 2za2_ff(P) Jo(uP) pdp

-0

(4)

For a uniform illumination, the function f = 1 and the far-

field pattern become

2 Jl (u)
E(u) = 2za (5)

U

The equation for the more general case containing phase errors and

tapered illuminations is more difficult to integrate.

The gain of unblocked antenna is given by

4_ J/A F(@'_')dAj2

G(O,_) : -- (6)

%2 /A iF(@,*')J2dA
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i[6(p,$') +up COS (¢-¢')] and A is thewhere F(8,$') = f(p,_')e

area of the aperture.

In the special case, mentioned above, of a uniform illumina-

tion with no phase errors, that gain is given by

16_2a2 J_(u)

G_=0(8'_) = 12 2 (7)
u

and the maximum gain occurs on the z axis where u = 0.

4_

G_= 0 (0) 12 A (8)

This represents a theoretical maximum for a paraboloid antenna.

The effects of nonuniform illumination, phase errors, spillage, and

blocking by the feed and its supports all reduce the gain achieved

in practice.

Feed systems produce nonuniform illumination of the reflector

resulting in nonuniform aperture fields. Generally, these distri-

butions peak at the center of the reflector and taper to a low

value at the edge. For present purposes, it is assumed that none

of the feed illumination spills over the reflector edge. Spencer

(ref. 5) has treated the case of distributions of the form

fe(l-r2) p, the treatment resulting in the general solution for no

phase errors

E(u) = _2a2 2p p_ Jp+l (u) = A A

uP+l p+l p+l (u) (9)
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where A is the Lambda function. ' The characteristics of these

diffraction patterns are shown in Table I. The solution for p = 0
is the uniform illumination case. These tabulated results indicate

a reduction in the gain and a widening of the beam as the distri-

bution becomes less uniform over the radius of the circular aper-

ture. However, they also indicate that intensity of the first side

lobe in relation to the on-axis gain is significantly reduced as p
is increased. The gain factor, G , is the on-axis gain divided by

the maximum on-axis gain of Eq. (8) for p = 0.
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SECTION 3

THE EFFECTS OF OVERALLPHASE ERRORS

One important class of phase errors results from overall dis-

tortions in the mechanical shape of the antenna reflector. In

order to examine the effects of these errors, circularly symmetric
illuminations of the form

f(p) = (l+p) (i-02) p (i0)

will be considered where p is an integer.

normalized so that

Note that f(P) has been

Af (O)dA

AdA

: i (ii)

Phase errors of the form

_(O,qS') : g(o) cos n4p' (12)

will be considered.

The mean square error is defined to be

--_ = _A f(P)62(o,qb')dA

_A f (p) dA

(13)

One method of solution is to expand the exponential term of

Eq. (2) for very small errors so that
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~ 2 I 27T

E(u,_) a /0 /0 f(o)o elup c°s (_-_')

x[l'+i g(O) cos n_'-g2(P) cos22

2
where g(p) <<i and terms higher than g (p) have been dropped.

Let

(14)

= _'-_

then

de' = d_

and

E(u,_)
2 I _2_-#

/0 Jd_ iup cos _0
a pf(P) e

x [i + i g(p) cos n(_+_0) 4 4 cos 3 dpd0o

(15)

By expanding the trigonometric terms in (_+_) and noting that the

sine terms integrate to zero, since e in cos m is an even function,

then

116



E(u,_) eiUp cos

2
l+g(P) cos n_ cos n_ - g (0) g2(O)

4 4 cos 2n_ cos 2n_J d0dc0

(16)

This expression can be integrated with respect to the angle m so

that

J0

- (-l)n g2(0)-4J2n (u0) cos 2n_] dO
(17)

3.1 UNIFORM ILLUMINATION AND LINEAR PHASE ERRORS

As a first case, consider uniform illumination and linear phase

errors:

Uniform illumination, f(o) = i

Linear phase errors, _(0,_') = 2_/_0 cos n_'

Substituting these expressions into Eq. (18) results in
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E(u,qb) z
_fo -Tf 1

2A i PJ0 (up)dp- 6 f p3J0(up)dp

-0

1 2

+ (i) n+l 2,_cos n fp Jn(Up)dP

"0

1 3

+ (-i) n+l _ cos Jn(Up)dP

-0

(18)

This expression can be evaluated by series expansions where

oo

"0 p=0
(2p+n+3) p :(p+n) !

oo 2p+n

G -- fP3Jn(up)dp =
zl -0 p--0 (2p+n+4)p _(p+n) :

(19)

A program suitable for use in a TI-58 or -59 calculator is

shown in Appendix A. This program was used to evaluate these terms.

Note that

1 2

F I = fP Jl(Up)dP = J2(u)U

-0

G2 =

1 3 J3 (u)

/P J2(up)dP =

(20)
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Also note that

lim 1
u_ F0(u) =

lim 1
u+ 0 GO (u) --

(21)

and that, in general, for n > 0 the limit of each function is zero

as u goes to zero.

To examine one case in particular, let n = 2 so that

6(p,_') = 2/--_pcos 2_'

Then

and

IJ1(u) }E(u,_) z 2A [G0(u)+G4(u ) cos 4_]-i 2 (u) cos 2_ (22)u 2

IE2(u,_)I _ 4A 2 -_ (G0+G 4 cos 4_ +4 _2F_ cos 2_ (23)

m

which, after dropping terms higher than _2, reduces to

7 -_-- G0+G 4 cos 4_- Jl (24)

119



Since

/IFI2
A

dA = A (25)

the gain is given by

r2 (G(u,_) g 4_A Jl 6-2 8Jl
- -- G0+G 4 cos 4__ 4--f u

U Jl

which has been plotted in Figure 2 for_6_ = 0, 0.125, and 0.250

when # = 0. This expression is identical to Eq. (7) for 6 = 0.

(26)

3.2 QUADRATIC ILLUMINATION AND LINEAR PHASE ERRORS

As a second case, consider quadratic illumination and linear

errors:

Quadratic illumination, f(0) = 2(1-02 )

Linear phase errors, 6(p,_') = _0 cos u_'

Substituting these relations into Eq. (18) results in

E(u,_) 21 I-_ 2_a [ (20-203 ) 1

"0

362022 ) Jo (u0) + in+l _P Jn (u0) cos n_

- ]+ (-i) n+136202
---_--- J2n(U0) cos n_ do (27)
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If we define

Hn = / 04 Jn (up)dp

-0

In = /p5 Jn(Up)dp

-0

(28)

Eq. (28) can be evaluated using the program in Appendix A. Then

E(u,#) _ 4AI_-G0+in+l _(Fn-Hn)cos n_

- 6-_3 [G0-10+(-l)n n_](G2n-12n) cos (29)

Since

i 2_

/ 2_0._ 0 _ 4
JF2JdA = a 4(l-202+04)0d0dqb' 3

A

- -- A (30)

m

the gain for n = 2, after neglecting terms higher than 62, is

G(u,_) z 7 16 - G - 48 - GO 0-10+G4

- 2(F2-H2 )2 cos 2 (31)

These results are shown in Figure 3 for_ = 0, 0.125, and 0.250

when _ = 0.
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3.3 QUADRATIC ILLUMINATION AND QUADRATICERRORS

A third case of interest is to examine the effect of quadratic

errors combined with a quadratic illumination.

Quadratic illumination, f(o) = 2(1-02)

Quadratic phase errors, 6(P,4') = 2 _/_p2 cos 4'

Substituting these expressions into Eq. (18) results in

E(u,4)

If we define

2 1 [ --
2_a _f 2(p-03) L(1-3 6204)J0(up)-3 62#J4(uP) cos 44

"0

- i 2 _p2J2(u0) cos 24] d0 (32)

Kn = Atp7Jn(Up)dp
-0

Eq. (33) can be evaluated with the program in Appendix A. Then

for 4 = 0

(33)

(34)

and

G(u,0) = _2 - - 96 -_- - GO (I0-K0+I4-K4)- (G2-I2)

(35)

These results are shown in Figure 4 for /_= 0, 0.125, and

0.250.
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3.4 QUADRATIC ILLUMINATION OF A SPHERICAL REFLECTOR

The method of solution usls_ in the above three cases is lim-
ited to very small values of/6z in order to ensure that g(p) << i.

A second technique can be used which avoids this limitation by per-
forming a numerical integration of the far-field equation.

Consider phase errors of the form

1 (36)

which result from the use of a spherical reflector instead of a

paraboloidal reflector, and where

D

6 256 (37)

where F and D are the focal length and diameter of the reflector,

respectively. This relationship applies only to the case where

the feed is located at the focal point. The errors can be reduced

for a given wavelength and geometry by displacing the feed along

the z-axis.

Substituting Eq. (36) and a quadratic illumination into Eq.

(3) results in

2n 1 " 6 _7_/_(p4-1/6)eiUp cos (_-_'_

E(u,_) = 2a2 0/ /0 (p-p3)eZ "dpd_' (38)

This expression can be integrated with respect to _' so that
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E(u,_) I /_(p4_i/6) j0 (up) d p
4_a2[ (p_p3)ei 6 _77

-0

(39)

which, after expressing the exponential in terms of trigonometric

functions, results in

E(u)

i

xa 2 4/0 (p-p3)J0(uP)[cos (6V_7_04) cos (V_7_)

(4O)

Define two functions

N(u) = 4 0/(p-p3)J0(uP)sin (6 __p4)dp

(41)

so that the field expression becomes

E(u) = A(M cos 5__-N sin V_7_ /_

(42)
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The gain, according to Eq. (6), is then

G(u) = 37rA(M2+N2) (43)
_2

The terms M and N can be evaluated for various values of u

by numerical integration. Appendix B includes a program suitable

for use in a TI-58 or -59 calculator which was use___to obtain the
values plotted in Figure 5 for several values of V 6-.
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SECTION 4

THE EFFECTS OF SMALL WAVELENGTHERRORS
ON THE SECONDARYPATTERNSOF ANTENNASWITH CIRCULAR APERTURES

To establish the relative influence of small-scale phase
errors, consider the case of uniform illumination and linear phase

errors previously considered in Section 2.1. Now, a solution will

be bg_ained for large n. Substituting f(p) = 1 and 6(p,_') =

2 i--_6Z_p cos u_' into Eq. (2) results in

E(u,_) a2 27 1 i 2 cos n_'eiU O cos (_-_')pdpd_'

= /0/0 e (44)

which, after substituting _ = _'n, becomes

2 27 1 V6-/_2P

E(u,_) a /0/0 i 2 cos _ iup cos

= m e e (_-_/n)0d0d_ (45)
n

The intergral over _ to a limit at 2n_ can be replaced by the

summation of n integrals to a limit at 2z.

E(u+)
2 i .--, 2z .

a----/0 pdpp=_l 0/ el2n cos _

x e (iu0 cos _/n + 2(p-l)_/n-_)d_ (46)

for large n and _ < 2_, e/n << i.
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Therefore, the asymptotic approximation is

E(u,_) -_ 0do elU0 cos _ _ 2_e
p=l °O

i 2/_0 cos _da
(47)

Since

in_ eiuO cos n-

p=l

1 9fneiUp cos (%-_)d%
z 2-_ Jo

: J0 (up) (48)

then

1 2

E(u,_) ~ 2_a2f J0 (2_ 0) J0(uO) 0d 0

-0

(49)

which, when evaluated, becomes

2 1
E(u,_) _ 2ha [u (50)

The resulting gain pattern is

G(u) (51)

The on-axis gain is

G(0)
~ Jl

62

(52)

12.7



and the ratio of gain to on-axis gain is

G(u) ~ 4J 2 J0 (2F_2) 2_/_ a 0 (u

(u2-4 _2 )

(53)

The _n pattern has been numercially evaluated for several values

of V 6- and the results are shown in Figure 6.
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SECTION 5

THE EFFECTS OF PHASE ERRORS
ON THE SECONDARYPATTERNOF A SQUAREANTENNAARRAY

The far-field equation for a square antenna array with side
of length L can be written as

E(@,¢)
L/2 L/2

f f f(_,n)ei[_(_,_)+(2_/%)sln @(_ cos _+R sin _)]d_dn

-L/2 -n/2 (54)

Consider the aperture to be divided into an N x N array as ele-

mental squares, each one of which is denoted by integers m and n

(I,2,3...N). In the elemental square (m,n), let

L
= _m + (2m-l)C-_

L
n = Rn+ (2n-l)C-_-

where

L
C -- --

2N

and let f and _ be constant. Then
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E(e,_)

N N i6

= L--_Z...W__"fmn e me-(m_i/l)(L/2+C) sin @(cos _+sin _)

m=l n=l

(4_iC/%)sin @(m cos _+n sin _)
xe

C C

x//e
-C -C

(2_i/%) sin 6(_ cos _+q sin _)d_dn (55)

Integrating and squaring the absolute value yields the power to be

IE(e,¢) 12 = / s'ln/T sin @ cos _ sln_-_-sin @ sin
1T2 2

%2 sin 8 cos { sin

N N N N

x _ __ _--_ fmnfpqe i (6mn-6pq)

m=l n=l p=l q=l

x e4_iC/l sinS[(m-p) cos _+ (n-q) sin _] (56)

5.1 UNIFORM ILLUMINATION AND NO PHASE ERRORS

If f = f and 6 = 0, then
mn mn

I[ " /2_C i_ • 12_C _I 2

= islnl-_ - sin @ cos _/slnl- _- sin @ sin

2
2

%2 sin @ cos _ sin

|slnuq---sin@ cos _ sin sin @ sin 2

x| . /2zC ) (2_C )][ s_n[- i- sin e _o_ _ s_n -7-- _ 0 ,in
(57)
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IE0(0,0 ) 12 = (4C2N2)2 = L4 (58)

Let the relative power be

P(e ,¢)
IE(O,_)I 2

IEo(O,O)l2

(59)

Then

I . /2zC

1 sln_-y-

P(e,¢) = _-_

sin O cos _)sin sin sin

2
2

1%--/sin O cos _ sin

N N N N i (6mn_6pq)

x _'_'_ Z fmnfpqe e
(4_iclX) sin e

m=l n=l p=l q=l

x (m-p) cos _+ (n-q) sin qb (6O)

For uniform illumination and 6mn 0,

Po(e,_) 12=[sin(_sio0cos_)si__2L2.2 sio0sio
%2 sln O cos # sin

(61)

For q_ = 0, z/4
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PO(O,0)

PO(e,_/4)

sin (_ sin @I2
_sin @

= sin
z2L2 2

2% 2 sin @

(62)

These gain patterns are shown in Figure 7.

5.2 UNIFORM ILLUMINATION AND PANDOM ERRORS

Let 6 be a random variable and let the illumination be uni-
mn

form. Then, the expectation of the complex exponential is (see

ref. i)

= 1

= e

when m = p and n = q

when m # p or n # q

(63)

where o 6 is the standard deviation of 6, assumed to be uniform.

Note that statistical independence is also assumed.

The corresponding expectation of the gain is

2

-08

<P<o,o)>-=

+

(64)
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The main-lobe gain is

2
2 -o6

-(_6 l-e (65)

G0(6) = p(O,0) = e +-- N2 --

Define the additional side-lobe gain due to errors as

AS .L.

p(O,_) - P0(8,_)G0 (6)

= -- G0(6 )

(66)

For the present case, this gives

AS .L.

____--- sln[--f-sin _ sin

= 2 02- 2_C 2 2
-06 - 6 _ sin 8 cos $ sin
e + l-e

N2

(67)

Of course this is zero for 8 = 0. If we look at the region

of the first side lobe and consider C<<L, then we have

AS .L.

2

~ e-°6_l

- N2

There is a grating side lobe (for example, at _C/% sin 8 = 3_/2

for _ = 0) but its magnitude is smaller than that above.

(68)

133



5.3 UNIFORM ILLUMINATION: A CHECKERBOARD
PATTERN OF PHASE ERRORS

Let

6 = 6, m+ n even
mn

= -6, m+n odd

We want to evaluate the summations in Eq. (59) for uniform illumin-

ation. First, consider a single summation

N N

mn (4ziC/%)sin @m cos _ i6(-i) ne e = e

m=l m=2,4,6

e(4_iC/l) sin 8m cos

N-I

+ ei6(-l) n+l _ e(4ZiC/%) sin 8m cos

m=1,3,5

(69)

Note that we have assumed that N is even.

The single summation can be closed to yield

i6(-l)n [ e-2i6 (4_iC/l) sin @ cos_]e 1 + (-l)ne -

x sin(_ sin @ cos _)

• /4_c )sln_--_--sin @ cos @

(N+2) (2ziC/%) sin @ cos
e

(70)
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is

The double summation over m and p, after some rearrangement,

N N i(6mn- p_q) (4_iC/%) sin @(m-p) cos_E_ e
m=l p=l

= 2
[ )]2
sin _-sin @ cos _ [cos a 6+cos(bnq6+4_C/l sin @ cos _)]

Isin (_ sin @ c°s _)l nq

(71)

where

a = 0 b = 2 n even q even
nq _q

2 0 n even q odd

-2 0 n odd q even

0 -2 n odd q odd

Now, the sum over n is

N

i (-l)ne(4_iC/X) sin @n sine

n=l

sinI_sio0sio_)
e sln _--_-sin @ sin

(72)

So the quadruple summation is
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: .,.c +)j,.<o.+>sln_-_-sin 0 cos 4_C
(73)

where

H(e,¢)
ei6 -i6-(4_iC/%) sin O(sin _+cos _)

= +e e

+ ei6e-(4niC/%) sin O(cos _+sin _)]

So, finally, after extensive rearrangement

P(O,_) = P0(O,_) cos 2 6[l+tan 2 6

(74)

The main-lobe gain is

2
G0(6)_ _ : cos 6 (75)

The increment in relative side-lobe gain is

AS.L. = P0(O,_) tan _-_- sin O cos tan 2 2____qCsin O sin _ tan 2 (76)

This is zero for _ = 0 and ¢ = _/2.

and for the first side lobe with L>>C

For other values of
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AF.S.L. = N4
tan 6 (77)

The location of the first side lobe in the octant _ < _/4 is

approximately at

nL 3z
_- sin @ cos _ = _-

SO

sin tan _ 2
tan 6

_F.S.L. - N4

(78)

This is largest at _ = _/4. Thus

= i---tan2 6 (79)

AF.S.L. N4

This is fairly small for reasonable 6 and N > 10.

There are grating side lobes located, for example, at

2_C _ (80)
-_- sin @ cos _ =

At this location

_L L_ N_ (81)
_-- sin @ cos _ = 4--C = 2-

Since N is even, P0(8,_) = 0° Thus we have a indeterminate value

for the grating side-lobe gain.
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The limit is

_c _L_os=(__ 0_o_lim --_- sin 8 cos _ = (82)

= N(_I) N/2 (83)

Therefore

16 sin 2 (N_/2 tan _) tan 2 (_/2 tan _) tan 2 6

N2_ 4 tan 2 6
(84)

Again, this is maximum for tan _ = 1 and is

_ 16

AG. S.L. z4 tan2 6
(85)

which is not small.

G0_,4(_)411sin2_11tan4Z)]
where
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7rLZ = -- sin @ U
(86)

The secondary pattern has been numerically evaluated and the

results are displayed in Figure 8.
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SECTION 6

CONCLUDINGDISCUSSION

The effect of phase errors on main-lobe gain is summarized in

Figure 9. The narrow band labeled "random error" applies to both
the analysis of Ruze (ref. i) and the square aperture results of

this paper (Eq. 65). The "scallop error" and "periodic checker-
board error" curves are obtained from the large-n and square-aperture
analyses herein (Eqs. 52 and 75). The "1-62,, approximation was

obtained early by Spencer (ref. 5). All the other curves differ

little from e

Examination of the preceding beam patterns indicates that the

errors affect primarily the magnitude of the main lobe and only

secondarily its shape. Therefore, the effect of errors on the

main-lobe gain is also interpreted as the effect on main-beam ef-

ficiency.

Also shown in Figure 9 are the values of rms phase error that
are associated with rms surface errors of a reflector antenna of

1/50 and 1/16. Note that 1/16 is usually considered to be adequate

accuracy for point-to-point communication insofar as the aperture
size can be increased to achieve the desired gain. However, if

high main beam efficiency is desired, then much tighter tolerances

are required. Even at 1/50, which is usually considered to be a

highly accurate antenna, the power loss due to errors is 6 percent.

When the influence of errors on the side-lobe gain is considered,

the results, as shown in Figure 10, depend strongly on the type of
the error. If the error is an "overall" one (spherical aberration,

cos 2_, qratinq side lobes), the relative side-lobe increment is

larqe. This quantity is the qrowth in side-lobe intensity expressed

as a fraction of the deqraded main-lobe intensitv. Thus, even at

a reflector-surface rms error of 1/50. the growth in side-lobe peak

power is only about 20 dB down from that of the main lobe.

140



Incidentally, the radiation pattern calculated for the "scallop"

error shows the side-lobe gain to be decreased by the error. Where

the power lost from the main lobe goes is a question - perhaps to

the much higher lobes. At any rate, the geometrical error occurring

in radial-rib types of antennas do not seem to present problems
relative to the near-in side lobes.

The "local" errors produce much lower effects if they are ran-

dom. Thus, for example, if the "error-area"-to-aperture-area ratio
is 10-3 (a diameter ratio of 1/30), then the reflector surface can

have an rms error of 1/16 and still have the side-lobe growth to be
more than 30 dB down.
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TABLEI. SECONDARYPATTERNCHARACTERISTICSPRODUCED
BYA DISTRIBUTION(i - r2)P OVERA CIRCULAR
APERTUREWITHOUTPHASEERRORS

P

0

4

G, GAINFACTOR
2 p+l

(p + 1) 2

1.00

0.75

0.56

0.44

0.36

8, HALF-POWER

WIDTH

I
1.27 --

D

POSITION OF

FIRST ZERO

-i i. 221
sin

D

-i i. 631
sin

D

• -i 2.03%
sln

D

-i 2.42%
sin

D

• -i 2.79%
sln

D

FIRST SIDE LOBE,

dB BELOW PEAK

INTENSITY

17.6

24.6

30.6
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X

Y

Z

Figure i. Coordinates of a circular antenna aperture.
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Figure • The effect of linear phase errors on the

secondary pattern of a uniformly illuminated

antenna•
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Figure 3. The effect of linear phase errors on the

secondary pattern of an antenna with a

quadratic illumination.
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Secondary pattern of an antenna with quadratic
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Figure 5. The effect of phase errors on the

secondary pattern of a spherical reflector.
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Figure 6. The effect of small-scale linear phase errors

on the secondary pattern of a uniformly il-
luminated antenna.
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Figure 7. Secondary patterns of a square antenna

array without phase errors.
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Figure 8. Secondary patterns of a square antenna

array with checkerboard phase errors.
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Figure 9. Effect of errors on main-lobe gain.
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Figure i0. Effect of errors on antenna side lobes.
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APPENDIX A

PROGRAM FOR SERIES EXPANSIONS

The following computer program was used to compute the ex-

pressions in Eq. (19) in the preceding text. In the present form,

it computes F n. By changing Line 60 of the computer printout to

4, it can be used to compute G n. In a similar manner, 5 computes

H n, 6 computes In , and 8 computes K n. The ranges of variables are

n = 0, l, 2, 3, 4

u = l, . . . 20

For this program, use the following series of keystrokes:

Stores value for U

Stores value for n

Use __m_-_the first time.
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APPENDIX B

PROGRAM FOR M AND N

The following computer program expresses the integrands of

the expressions for M(u) and N(u) in Eq. (41) of the preceding

text. By using Label A, this program can be called up as part of

a library program for numerical integration (using Simpson's rule).

Changing the cosine term to a sine term in Step 014 relates the

program to the integral for N(u) instead of M(u). The digit 4

in front of each integral has been included to simplify the en-

suing computations.
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CHAPTER3

DEPLOYMENT OF FOLDED FOIL SURFACES

by

Karl Knapp and Charles S. MacGillivray
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SECTION 1

INTRODUCTION

The successful development of any structure depends largely

on the identification of the critical or primary loads and other

requirements on which the design is based. The future promises

large structures which must be deployed, erected, assembled, or
fabricated in space. For such structures, which will not be

required to face the launch environment, the primary design re-

quirements will be derived from the space-flight environment
and will deal with phenomena as primary criteria which have been

considered as only secondary in the past. The design of such

genuine "space" structures will require a solid foundation of
critical criteria.

This chapter deals with a preliminary investigation of the

tensions required to flatten metallized films or thin metal foils

after they have been packaged in a folded condition.

Metallized films and thin metallic foils are candidate

materials for the surfaces of a variety of large space structures.

The reflecting metal surface is usually required for solar or

radio frequency reflectors where a smooth surface is desired for

best performance. Normally, the material must be folded in the

launch package and then deployed in space. It is of particular

interest to determine the tension required to pull the material

sufficiently flat for the mission.

Astro Research Corporation has investigated previously the

shortening effect of transverse folds in tapes (see ref. i). A

simplified model of a material with alternating folds in one
direction is examined here. Also, experimental results on metal

foil samples with both two- and three-dimensional folds are

presented.
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SECTION 2

ANALYSIS OF ALTERNATING PARALLEL FOLDS

Consider a length of material of thickness t with alternating

parallel folds under a tension N as shown in Figure i. Let s be

the distance along the surface perpendicular to the folds and 2b

the spacing between folds. Then for a unit width _ the moment on

the film is

M = NwZ (1 )

and the curvature is given by

d8 M
as - E-_ (2)

where

dw

cos 8 = d--s (3)

Substituting Eqs. (i) and (3) into Eq. (2) gives

NZ
cos 8 • d8 = -E--I wdw (4)

For tensions where the surface is nearly flat

2 at z = 0, w = 0

Integrating Eq. (4), we get

e

f Ni _0 w0 wdw
cos e • d8 = -_

_/2

(5)
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which results in

1 - sin 8 =
2NZ w

EI 2 (6)

or

w = /_i sin0_

Calculating the root mean square displacement gives

j0b/2 >i/2
/_ = 2 w2dz (7)

Substituting Eq. (6) and the following

sin 8
dz = dw

cos 8

dw --
/_d(sin 8)

m

/i - sin 8

into Eq. (7) results in

_Isi n
/V= 80/2EI13/2 (i-sin 8) 1/2 sin 8 d(sin 8)]

\-_J (i- sin 2 8) 1/2 ]
(8)

Letting y = sin 0 we get

[;i/J= _-
sin

]1/2

12E_W2 ydy |
_Yc ! ld-_y]

(9)
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This integral is listed in most tables of integrals as

/7 2(2EI 13/41(2)3/2-(l+sin 80)3/2

b = [ 3
- /_+/l+sin 8

0] 1/2

(i0)

Numerical results have been calculated and plotted in Figure 2.

The half angle e 0 at each fold is also influenced by the ten-

sion on the material. Normally, this angle is established by the

maximum tension that has been applied. If the fold behaves like

a plastic hinge, then from ref. 1 we find that

M0 = °yt24 £ = Nw0£ (ii)

where _y is the material yield stress.

Evaluating w 0 by Eq. (6) and substituting the result into

Eq. (ii) results in

oyt 2 /2EI4 = -N£ N£ (i-sin 80) (12)

or solving for 80 we obtain

°0= 8 N--E (13)!
Unfortunately, the model is not useful for a work-hardening mater-

ial such as aluminum.
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SECTION 3

EXPERIMENTALTESTS

3.1 TESTS ON AN ALUMINUM FOIL STRIP
WITH ALTERNATING PARALLEL FOLDS

Recognizing that the analysis provided limited understanding
of the tensions required to flatten a creased aluminum foil, three

tests were conducted on creased aluminum foil samples• The specifi-
cations of the test samples were:

Aluminum .
Thickness

Width . .

Length ..........

Length of folded section .

Fold spacing .......

• • • • • • •

• • • • . • • •

• • • • • . • •

Reynolds Wrap broiling foil

2.54 x 10 -5 m

0.10 m

1.20 m

1.00 m

0. 020 m

The samples were tested on a horizontal table dusted with

talc to reduce friction• Tension was applied by dead weights via

a string and pulley system• The length of the folded section, the

height of the folds, and the half angle at the folds were measured

under increasing load. A photograph of a test sample under load

is shown in Figure 3. Results of these tests are shown in Figures

4 and 5. The test data has been included in Appendix A.

The fold angle 80 at the tip of each fold proved to be very

difficult to measure even with the load removed from the foil

strip• And, because of the work hardening characteristic of the

aluminum, this angle cannot be predicted by analysis• However,

Eq. (6) has been plotted along with experimental data in Figure 5

for an assumed constant 80 of 60 ° . The experimental measurements

of fold height shown on Figure 5 are somewhat ambiguous since at

small loads the measurement represents 2w0, and at high loads the

measurement is closer to w 0.
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3.2 TESTS ON A SQUAREFOIL SURFACE
WITH FOLDS IN TWODIRECTIONS

A second series of tests was conducted on a square foil sample
with the following dimensions:

Thickness ........

Sides ..........

Fold spacing ......

-52.54 x I0 m

0.457 m
0. 020 m

Arcs were cut in each edge of the foil, removing about i0
percent of the area, and nylon cord catenaries were attached.

The film was folded and packaged using the scheme shown in the

photographs of Appendix B. Known loads were applied to the cate-

naries in small increasing increments. The expansion of the film

and average fold height were measured, and the radius of the cate-

nary was estimated for each condition. Photographs of the expanding
foil and test data are included in Appendix B. Results of the
tests are shown in Figures 6 and 7.
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SECTION 4

CONCLUSIONS

This preliminary investigation has shown that the effects of

work hardening at creases in folded aluminum foil require very high

tensions in order to flatten the film in the region of the creases.

Plastic effects also defeat the usefulness of analytical predic-

tions. Fortunately, there are alternate surfaces available for

both optical and radio frequency applications that large eliminate

the difficulty associated with deploying foils. Optical surfaces

can use polymer film coated with very thin layers of metal, mini-

mizing the problems associated with foils and reducing the mass

per unit area as well. Knit meshes are available for radio fre-

quency reflector surfaces which, if they are tensioned, perform

well and eliminate creasing in the packaged condition.

Initially this preliminary study was viewed as a means of

developing a model to predict the behavior of metallized films as

well as metal foils. However, the difficulty experienced in pre-

dicting the behavior of the "plastic hinge" at each crease, and

in measuring the fold angles experimentally, eliminated any pos-

sibility of extending the results. It appears that to establish

the loads required to flatten metallized films, tests must be

conducted on the specific coated film material. Plastic effects

also occur when metallized film is creased, and although the prob-

lems may be smaller than those experienced with foil, serious

consideration should be given to packaging techniques which avoid

folding or which minimize the number of folds.
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Figure  3 .  T e s t  sample under load .  
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APPENDIX A

TESTS ON ALUMINUM FOIL STRIPS WITH ALTERNATING PARALLEL FOLDS

Three identical tests were performed on two separate occasions

to study the effects folds have on deploying or unfolding a folded

foil surface. The test consisted of a strip of aluminum foil 0.l-m
wide and 1.2-m long. A series of 50 2-cm-wide folds were made in

the center leaving 0.i m at both ends for handling purposes (see
Figures A-I and A-2). After all 50 folds were accurately made, the

folded strip was placed in a vise and the folds set. The test was

performed on a flat Formica table top dusted with talc powder to

reduce friction. One end of the strip was firmly fixed by masking

tape and the opposite end had a large paper clip anchor folded and

applied so as to distribute the applied tension load evenly over
the width of the strip (see Figures A-I and A-3). The loads were

applied to a weight hanger on a string which ran over a pulley to

the anchor on the aluminum strip. The length measured was from
the first fold to the last fold. At each load case, the load was

gently applied and the table top vibrated so as to allow the strip

to overcome any friction in the system and extend to an equilibrium
point. The length was measured and recorded as the loaded exten-

sion (see Table A-l). The load was then removed and the table

vibrated to allow the strip to contract. The length, fold height,

and fold angle were measured and recorded under load-relieved values
(see Table A-l).

In the first test, starting at about Load Case No. 19 or 20

and continuing on all subsequent load cases, an interesting phenom-

enon occurred when the load was removed. The folds, instead of

retracting in the manner it was originally folded, folded in the

opposite direction (see Figures A-4 and A-5). Unfortunately, it

was not noticed until Load Case No. 21. This phenomenon probably

accounts for the anomaly at the bottom of the percent relative
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contraction versus percent elongation (loaded) graph shown in

Figure A-6. After Load Case No. 24, a roller was used to flatten

the foil to remove any remaining creases. This measured length

was found to be approximately 0.0005 m shorter than the original
value.

The recorded data was used to calculate the load (in Newtons),

the percent extension (loaded), the percent relative contraction,
percent extension (loaded) squared, and the effective load. These

results are shown in Table A-2. Figures A-6 and A-7 provide a
graphic presentation of selected data.

Two additional tests were performed which were identical to

the first I-D loading aluminum foil fold test. The test was re-

peated in order to obtain additional data not recorded during the

first test and to check repeatability of the test.

The test setup (see Figure A-3) and procedure were identical

to the original test. A new strip of aluminum foil was prepared

in order to avoid any possible strain-hardening effects of the
first strip on the data.

At each load case, the weight was gently lowered and the strip

allowed to extend to an equilibrium point. The table was vibrated

to allow the strip to overcome any friction. The loaded extension

(first to last fold), fold height, and angle were measured and re-

corded (see Tables A-3 and A-4 and Figures A-4, and A-8 through
A-II). The load was then removed and the strip allowed to contract.

Again, the table was vibrated. The load-relieved extension, fold

height, and angle were measured and recorded (see Tables A-5 and
A-6) .

At Load Case No. 8, it was found that the data needed on the

fold angle was that of the fold tip and not that of the sides as

was being recorded (see Figure 1 in main text). From Load Case No.

9 and on, the fold tip angle was recorded as noted with the data

(see Tables A-4 and A-6).
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While lowering the weight at Load Case No. 15, the weight was

accidentally dropped and pulled the strip further than the static

load would have. Subsequently, the weight was increased to where

the load extended the strip beyond the dynamic extension. As a

result, the data at several loads previously planned for were not
obtained. The test was continued as normal from then on. The

recorded data was used to calculate the effective load, the percent

extension (loaded), the average fold angle (loaded), and the average
fold height (loaded) (see Table A-7). As a result of these two

abnormalities, it wasdecided to repeat the test. The same foil

strip was refolded and tested again (see Table A-8).

In the second test, five preselected random folds were used to

obtain data on the fold height and angle. It was originally hoped

to obtain better representative data. Though the five folds did
not necessarily represent an average of the 50 folds, some were

very irregular and uneven. As a result, in the third test the

fold height was the average of all the folds and the fold angle

was obtained from that fold which best approaches the average fold

angle (see Table A-8). In addition, the load-relieved fold height
and fold angle were not recorded as was done in the second test

because they were not needed. The recorded data was used to calcu-

late the effective load and percent extension (loaded) (see Table

A-9). Figure A-12 shows the fold height graphed against the per-

cent extension at the last 10 percent of deployment using data
obtained from the third test.
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TABLE A-I. Ai STRIP, I-D LOADING,
LOAD, LOADEDEXTENSION,
ANGLE AND HEIGHT

FIRST TEST, RECORDEDDATA:
AND LOAD RELIEVED EXTENSION

LOAD
CASE

I
2
3
4
5
6
7
8
9

i0
ii
12
13
14
15
16
17
18
19
20
21
22
23
24

LOAD
WEIGHT
(g)

0

1.91

3.83

5.74

7.65

9.56

11.48

13.39

15.30

17.21

19.13

21.04

22.95

29.01

42.72

56.43

70.14

97.56

152.40

256.43

407.24

607.24

1107.24

1542.24

LOADED

EXTENSION

(m)

0.0095

0.1200

0.1980

0.2920

0.3845

0.4890

0.6585

0.7745

0.7925

0.8130

0.8300

0.8635

0.8695

0.8885

0.9170

0.9320

0.9410

0.9530

0.9660

0.9770

0.9845

0.9895

0.9945

0.9965

LOAD

RELIEVED

EXTENSION

(m)

0.0095

0.0350

0.0525

0.0935

0.1385

0.2360

0.4185

0.5570

0.6175

0.6535

0.6780

0.7480

0.7540

0.7865

0.8465

0.8880

0.9095

0.9385

0.9585

0.9685

0.9735

0.9765

0.9815

0.9860

LOAD RELIEVED

#_GLE

(°)

4

6

7

15

29

36

43

48

5O

57

60

63

68

72

75

85

88

88

89

HEIGHT

(m)

0.020

0.020

0.020

0.020

0.020

0.0195

0.0195

0.0150

0.0145

0.0140

0.0135

0.0115

0.0105

0.0095

0.0080

0.0070

0.0065

0.0055

0.0035

0.0025

0.0015

0.0010

*Data not measurable for this case.
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TABLE A-2. A1 STRIP, I-D LOADING, FIRST TEST, CALCULATED FROM

DATA: LOAD, PERCENT EXTENSION (LOADED), PERCENT

RELATIVE CONTRACTION, PERCENT EXTENSION (LOADED)

SQUARED, AND EFFECTIVE LOAD

LOAD

CASE

i

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

LOAD

(N)

O. 0187

O. 0187

0.0376

0.0563

0.0750

0.0938

0.113

0.131

0.150

0.169

0.188

0.206

0.225

0.285

EXTENSION

(LOADED) *

(%)

0.95

12. O0

19.80

29.20

38.45

48.90

65.85

77.45

79.25

81.30

83.00

86.35

86.95

88.85

RELATIVE

CONTRACTION

(_)

0.0

70.83

73.48

67.98

63.98

51.74

36.45

28.08

22.08

19.62

18.31

13.38

13.28

11.48

EFFECTIVE

LOAD

(N/m)

0.0

0. 187

0.376

0.565

0. 750

0.940

i. 130

i. 310

1.50

1.69

1.88

2.06

2.25

2.85

0.419

0.553

O. 688

0.957

1.49

2.51

3.99

5.96

10.9

15.1

91.70

93.20

94. i0

95.30

96.60

97.70

98.45

98.95

99.45

99.65

7.69

4.72

3.35

1.52

0.75

0.85

1.12

1.31

1.31

1.05

4.19

5.55

6.90

9.55

14.9

25.1

39.9

59.6

109

151

EXTENSION

(LOADED)

SQUARED

(%)

0.009

1.44

3.92

8.53

14.78

23.91

43.36

59.99

62.81

66. i0

68.89

74.56

75.60

78.94

84.09

86.86

88.55

90.82

93.32

95.45

96.92

97.91

98.90

99.30

*L F = 0.9995 m (measurement taken after foil was rolled flat)
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TABLE A-3. A1 STRIP, I-D LOADING, SECONDTEST, RECORDEDDATA:
LOAD, LOADEDEXTENSION, AND FOLD HEIGHT (LOADED)

LOAD LOAD

CASE (g)

i 2.1

2 3.8

3 5.5

4 i0.5

5 15.6

6 20.6

7 25.6

8 35.6

9 49.6

i0 63.8

ii 77.9

12 92.0

13 120.3

14 162.9

15 653.2

16 1524.6

17 2386.3

LOADED

EXTENSION

(m)

0.042

0.125

0.208

0.504

0.735

0.846

0.872

0.907

0.932

0.942

0.951

0.955

0.961

0.967

0.991

0.994

0.998

FOLD #3

0. 0205

0.021

0. 020

0.017

0.0125

0. 009

0.0075

0. 0055

0. 005

0.004

0. 0035

0. 0035

0.003

0.0025

0.0005

FOLD HEIGHT (LOADED) (m)

(five random folds)

FOLD #15

0.020

0.0195

0.0195

0.0175

0.0130

0.010

0.0085

0.0060

0.0045

0.0035

0.002

0.002

0.002

0.002

0. 001

FOLD #25

0.020

0.0195

0.0195

0.017

0.012

0.009

0.0075

0.0055

0.0040

0.003

0.0025

0.0020

0.0015

0.001

0.0005

FOLD #29

0.020

0.020

0.0195

0.0175

0.0125

0.009

0.008

0.0055

0.004

0.0035

0.0025

0.002

0.0015

0.001

0.0005

FOLD #43

0.020

0.0195

0.0195

0.017

0.0125

0.0095

0.008

0.0055

0.004

0.003

0.0025

0.0025

0.0025

0.0015

0.001

*Too small to measure.
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TABLE A-4. A1 STRIP, 1-D LOADING, SECONDTEST, RECORDED
DATA: FOLD ANGLE (LOADED)

FOLDANGLE(LOADED)(o)

LOAD (five random folds)
CASE

FOLD #3 FOLD #15 FOLD #25 FOLD #29 FOLD #43

i

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

0.0

15

16

40

60

72

85

23

25

25

25

28

28

60

65

90

0.0

8

8

32

55

70

0.0

i0

I0

34

60

75

0.0

9

9

33

60

76

80 75

82

0

30

35

4O

43

5O

75

8O

90

78 77

85 85

37 30

30 30

30 30

32 30

35 30

45 30

75 45

90 85

90 90

0.0

0.0

8

35

60

73

75

82

i0

15

20

20

20

25

68

80

90

Note: Load Cases i through 8 show average angle; Load Cases

9 through 17 show tip angle. Estimated accuracy ±5 °.
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TABLE a-5. A1 STRIP, I-D LOADING, SECOND TEST,

DATA: LOAD RELIEVED EXTENSION AND

(LOAD RELIEVED)

RECORDED

FOLD HEIGHT

LOAD

CASE

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

LOAD

RELIEVED

EXTENSION

(m)

0.017 0.

0.027 0.

0.047 0.

0.254 0.

0.521 0.

0.711 O.

0.760 0.

0.854 0.

0.897 0.

0.924 0.

0.930 O.

0.938 0.

0.948 0.

0.956 O.

0.983

0.983

0.987

0.9995t

FOLD HEIGHT (LOAD RELIEVED) (m)

(five random folds)

FOLD #3

020

020

020

0195

016

013

012

0115

010

009

0085

0O8

0075

0005

FOLD #15 FOLD #25 FOLD #29

0.020

0.020

0.020

0.019

0.0165

0.0135

0.0125

0.006

0.008

0.0025

0.0025

0.0025

O. 0025

O. 001

O. 0005

O. 0005
*

0.020

0.020

0.0195

0.019

0.016

0.0135

0.0125

0.010

0.0065

0.0O55

0.005

0. 004

0. 003

0.001

0.0005

0.020

0.020

0.0195

0.019

0.017

0.0135

0.013

0.0105

0.009

0.0055

0.0065

0.0055

0.0045

0.0005

*Data not measurable for this case

tMeasurement taken after foil was rolled flat.

FOLD #43

0.020

0.020

0.0195

0.0195

0.017

0.013

0.0125

0.010

0.008

0.006

0.0055

0.004

0.003

0.0005
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TABLE A-6. A1 STRIP, I-D LOADING, SECONDTEST, RECORDED
DATA: FOLD ANGLE (LOAD RELIEVED)

FOLDANGLE(LOADRELIEVED)(o)
LOAD (five random folds)
CASE

FOLD#3 FOLD#15 FOLD#25 FOLD#29 FOLD#43

I
2
3
4
5
6
7
8
9

i0
ii
12
13
14
15
16
17

0.0
0.0
2

2O
42
55
62
68
15
17
20
20
20
40
60
65
90

0.0
4
4

14
40
55
55
73
5

40
40
40
42
60
68
70
9O

0.0
0.0
0.0

15
40
58
60
68
i0
30
30
30
32
55
65
90
90

0.0
5
6

15
38
58
62
65
30
30
30
30
30
5O
5O
5O
90

0.0
2
4

16
35
60
60
65
5

i0
15
15
17
45
60
65
90

Note: Load Cases i through 8 show average angle; Load Cases
9 through 17 show tip angle. Estimated accuracy ±5° .
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TABLE A-7 • A1 STRIP, 1-D LOADING, SECONDTEST, CALCULATED
FROMDATA: EFFECTIVE LOAD, PERCENTEXTENSION
(LOADED), AVERAGEFOLD ANGLE (LOADED), AND
AVERAGEFOLD HEIGHT (LOADED).

LOAD
CASE

i
2
3
4
5
6
7
8
9

i0
ii
12
13
14
15
16
17

EFFECTIVE
LOAD
(N/m)

0.21
0.37
0.54
1.03
1.53
2.02
2.51
3.49
4.86
6.26
7.64
9.02

11.80
15.98

64.06
149.52
234.02

EXTENSION
(LOADED)

(z)

AVERAGE

FOLD ANGLE

(LOADED)

(°)

4.2

12.5

20.8

50.4

73.5

84.6

87.2

90.7

93.2

94.2

95.1

95.5

96.1

96.7

99.1

99.4

99.8

0.0

8

I0

35

60

73

77

84

20

26

28

29

31

53

65

80

_<90

AVERAGE

FOLD HEIGHT

(LOADED)

(m)

0.020

0.020

0.0195

0.017

0.0125

0.0095

0.008

0.0055

0.0045

0.0035

0.0025

0.0025

0.002

0.0015

0.001

<0.0005

<0.0005

Note: Load Cases I through 8 show average angle; Load Cases

9 through 17 show tip angle. Estimated accuracy ±5 ° .
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TABLE A-8.

LOAD LOAD
CASE (g)

1 10.5
2 20.5
3 30.5
4 35.5
5 40.4
6 45.3
7 50.3
8 55.2
9 60.1

i0 70.1
Ii 80.1
12 90.1
13 104.2
14 132.6
15 175.2
16 237.0
17 308.9
18 422.6
19 536.2
20 763.4
21 1199.4
22 1628.1
23 2057.2
24 2489.3
25 4978.6

A1 STRIP, I-D LOADING, THIRD TEST,
LOAD, LOADEDEXTENSION, FOLD ANGLE
HEIGHT (LOADED), AND LOAD RELIEVED

RECORDEDDATA:
(LOADED), FOLD
EXTENSION.

t

LOADED

EXTENSION

(m)

0.482

0.835

0.889

0.903

0.914

0.925

0.930

0.935

0.939

0.944

0.949

0.953

0.957

0.962

0.968

0.975

0.980

0.985

0.989

0.992

0.995

0.997

0.9975

0.998

0.9985

FOLD

ANGLE

(LOADED)

(°)

8

9

9

12

15

15

17

2O

22

22

25

28

30

35

45

5O

60

60

67

67

8O

85

_90

FOLD

HEIGHT

(LOADED)

(m)

0.017

0.009

0.0065

0.0055

LOAD

RELIEVED

EXTENSION

(m)

0.263

0.664

0.772 _

0.803

0.005

0.0045

0.004

0.004

0.0035

0.003

0.0025

0.002

0.002

0.0015

0.001

0.0005

0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

<0.0005

0.827

0.856

0.868

0.884

0.893

0.907

0.922

0.930

0.941

0.950

0.960

0.968

0.973

0.977

0.979

0.981

0.985

0.989

0.992

0.992

0.993
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TABLE A-9. A1 STRIP,

FROM DATA:

(LOADED)

I-D LOADING,

EFFECTIVE

THIRD TEST, CALCULATED

LOAD AND PERCENT EXTENSION

LOAD

CASE

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

EFFECTIVE

LOAD

(N/m)

1.03

2.01

2.99

3.48

3.96

4.44

4.93

5.41

5.89

6.87

7.86

8.84

i0.22

13.00

17.18

23.24

30.29

41.44

52.59

74.87

117.63

159.67

201.75

244.13

488.25

EXTENSION

(LOADED)

(%)

48.2

83.5

88.9

90.3

91.4

92.5

93.0

93.5

93.9

94.4

94.9

95.3

95.7

96.2

96.

97.

98.

98.

98.

99.

99.

99.

99.

99.

99.

8

5

0

5

9

2

5

7

75

8

85
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Fixed
end

L
wt

Figure A-I. Test setup and aluminum strip specifications.
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Figure  A-2. S e t t i n g  f o l d i n g  gu ides  i n  aluminum s t r i p .  

F igu re  A-3 .  Test  s e t u p ,  no load. 
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F i g u r e  A-4. Load Case N o .  14 (load r e l i e v e d )  
(no te  r e v e r s e  r e t r a c t i o n )  
(Test N o .  2 ) .  
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Normal
retraction
(load relieved)

Loaded

Reverse
retraction
(load relieved)

Figure A-5. Illustration of reverse retraction which
occurred at high loads when load relieved
(see also Figure A-4).
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Figure A-6. Percent relative contraction vs. percent extension

(!oaded) (from data of first test).
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Figure A-7. Percent relative contraction vs. percent extension

(loaded) (from data of first test).
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Figure A-8,  Load Case N o .  4 ( loaded)  
(Test N o .  2 ) .  

. .  

Figure A- 9. Load Case N o .  6 ( l oaded)  
(Test  N o .  2 ) .  
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I -  

Figure  A-10. Load C a s e  N o .  7 ( l o a d e d ) .  
(Test  N o .  2 ) .  

F igure  A-11. Load Case N o .  15  ( l o a d e d ) .  
(Test  N o .  2 ) .  
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Figure A-12. Fold height vs. percent extension

(loaded) (from data of third test).
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APPENDIX B

TEST ON A SQUAREFOIL SURFACEWITH FOLDS IN TWODIRECTIONS

The test sample used in these 2-D loading tests consisted of

a square sheet of aluminum foil with 18.0-inch-long sides. The

material is of the same type used in the I-D loading tests (see
Appendix A). From this square, catenaries were cut in each side

so the total area removed was i0 percent of the area of the original
square (see Figure B-l). A series of 0.25-inch-wide mylar tabs

were fixed 2.0 cm apart on each of the four catenaries and a nylon
cord was threaded through the tabs (see Figures B-2 and B-3). A

sleeve made of glass tape was wrapped around the two cords at each

corner in order to keep the cords parallel to the catenaries at the
corners.

The manner in which the foil was folded was designed to best

approach a typical folding pattern used in an actual application.

The goal was to obtain a high-density, stowed package and a deploy-
ment with no or little angular momentum being generated. This

folding method will work equally well with a triangular surface.

The folding guides were measured and creased by folding the square

into a quarter section and then folding that over a straight edge.
The folds were spaced 2.0 cm apart creating i0 folds between the

center and the edge. Once the folding guides were made and the

surface unfolded back into a square, the foil was folded as shown
in Figures B-4 through B-7).

The loads were applied to the catenaries by way of the cords.

The final stowed configuration was placed on a table with a pulley

at each corner over which the cords passed connected to weight
hangers (see Figure B-8). For each load case, a small increment
of weight was applied to the cords and the table was vibrated to

remove any friction with the foil sheet or in the pulleys. After
the foil had reached an equilibrium point, the length between
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the center and each of the corners was measured (see Table B-I)

and a tracing of the outer perimeter of the surface was made.

From this tracing, a planimeter was used to find the deployed area.

From the data in Table B-I, the load, average length, and percent

total length deployment were calculated (see Table B-2).

Upon initial loading, the "arms" unrolled to most of their

full length before the main body of the foil surface unfolded (see

Figures B-9 and B-10). Beginning with Load Case No. 7, the foil

surface had taken a shape so that an approximate radius of the

sides could be obtained (see Figures B-II through B-16). Using

the radius and the segment height, the area of the segment could

be calculated. From this, the deployed surface area is found and

averaged with the area using the planimeter (see Table B-3).

After the final load case, No. 17, a roller was used to flatten

the foil to remove any remaining creases and a tracing was made.

A second test was performed which was similar to the first

2-D loading test to obtain information on fold/wrinkle height not

recorded during the first test. The test setup was similar to that

used in the first test except larger pulleys with ball bearings

were used and the test was performed on the surface table (see

Figure B-17). The original sheet of aluminum foil was refurbished

by replacing about 25 torn tabs and three out of the four corners.

Before folding, the foil sheet was rolled flat, but still contained

some 0.005-inch-high wrinkles from its previous use. The sheet

showed signs of wear and as a result it was not possible to load

it to the higher loads used in the first test.

At each load case, the weights were gently applied and the

distance from each corner to the center measured and recorded (see

TaDle B-4_. To measure the fold/wrinkle height, a platform mea-

suring 5.45 inches by 4.45 inches was set at a height such that

when placed under the sheet it slightly pushed it up. This height

was accurately measured. The platform was placed between two

corners with one edge along the side of the sheet. A clear plexi-

glass disc was placed on the foil sheet above the platform. The
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height was measured at two points 1 inch to either side of center

and 2.75 inches in from the side. The thickness of the disc was

subtracted and the height recorded (see Table B-5). This was

performed at two opposite quadrants (see Figure B-18).

While folding the sheet, it was decided not to coil up the

four "arms" at the last stage of folding (see Figures B-6 and B-7).
This was done in order to reduce wear and tear. As a result of

this, while deploying the surface, an opposing fold pattern developed

perpendicular to each side. The coiling would have allowed the foil

surface to deploy without creating the opposing fold pattern. The
opposing folds were removed by hand and the test was continued.

It was originally intended to use the center-to-corner length

to correlate the percent of deployment. Though the length shows

little correlation to the load when comparing it to the first test,
it was decided to use the load to calculate the percent of deployment

(see Table B-6). A possible explanation of this abnormality with
the length is that the corners are not the natural corners of the

aluminum foil sheet. The corners are made with mystic Kapton tape.

201



TABLE S-l. SQUARE

DATA:

LENGTH

FOIL SURFACE, 2-D LOADING, RECORDED

TENSION LOAD AND CENTER-TO-CORNER

LOAD

CASE

i

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

TENSION

LOAD, 2T

(g)

0.0

5.5

19.8

48.4

77.0

132.2

245.6

359.0

472.4

699.2

926.0

1358.3

2265

4607

6875

9140

18210

CENTER-TO-CORNER LENGTH (in.)

L I

2.2

2.4

2.7

3.45

5.1

7.45

i0.0

i0.85

11.45

II. 7

11.8

11.95

12.05

12.1

12.15

12.2

12.25

L2

2.5

2.65

2.8

3.2

5.75

8.4

9.9

10.8

11.4

Ii. 75

ii. 85

11.95

12.15

12.3

12.5

12.5

12.75

L 3

2.3

2.3

2.6

3.95

6.5

8.2

10.05

ii.0

11.3

11.5

11.55

ii. 70

ii. 85

12.0

12.1

12.25

12.6

L 4

2.0

2.0

2.15

3.6

4.4

7.95

10.25

11.05

11.4

11.6

11.65

ii. 80

11.90

12.1

12.2

12.25

12.45

202



TABLE B-re. SQUARE

DATA:

LENGTH

FOIL SURFACE,

LOAD, AVERAGE

DEPLOYMENT

2-D LOADING,

LENGTH, AND

CALCULATED

PERCENT TOTAL

LOAD

CASE

I

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

LOAD, 2T

GRAMS

0.0

5.5

19.8

48.4

77.0

132.2

NEWTONS

AVERAGE

LENGTH,

LAVG

(in.)

0.0

O. 054

0.194

0.475

0.755

1.297

2.25

2.34

2.56

3.55

5.44

8.00

DEPLOYMENT

LENGTH

(% total)

17.67

18.38

20.11

27.89

42.73

62.84

245.6

359.0

472.4

699.2

926.0

1358.3

2265

4600

6875

9150

18200

2.409

3.521

4.633

6.857

9.081

13.321

22.21

45. Ii

67.4

89.7

178.5

i0.

i0.

ii.

ii.

ii.

11.85

11.99

12.13

12.24

12.30

12.51

05 78.95

93 85.86

39 89.47

64 91.44

71 91.99

93.09

94.19

95.29

96.15

96.62

98.27

*Measurement taken after foil was rolled flat.

**Original length before test.
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TABLE m-3.

LOAD

CASE

i

2

3

4

5

6

7

8

9

I0

ii

12

13

14

15

16

17

SQUARE FOIL SURFACE, 2-D LOADING,

FROM DATA: EFFECTIVE LOAD, AREA,

PERCENT TOTAL AREA DEPLOYMENT

CALCULATED

RADIUS, AND

EFFECTIVE

LOAD,

N = T/R

(N/m)

n/a

n/a

n/a

n/a

n/a

AREA

(in 2)

n/a

2.39

2.69

2.26

3.01

RADIUS

(in.)

n/a

n/a

n/a

n/a

n/a

AREA

DEPLOYMENT

(% total)

n/a

0.82

0.93

0.79

1.03

n/a

5.50

6.51

6.44

5.27

6.00

6.64

9.02

10.23

23.52

32.05

63.08

14.

54.

93.

142.

209.

222.

240.

255.

264.

270.

274.

281.

287.

291.

82

95

2

3

i

5

4

7

7

5

2

0

4*

6**

*Measurement taken after foil

**Original length before test.

n/a

8.61

10.65

14.17

25.6

29.8

39.5

48.5

54.7

56.5

55.1

55.7

58.91"

60.19"*

5

18

31

48

71

76

82

87

90

92

94

96

98

i00

.O8

.83

.96

.80

.71

•30

.44

.69

.78

.76

.03

.36

.56*

•0"*

was rolled flat.
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TABLE B-4. SQUAREFOIL SURFACE, 2-D LOADING, FOLD/WRINKLE
HEIGHT TEST, RECORDEDDATA: TENSION LOAD AND
CENTER-TO-CORNERLENGTH.

LOAD
CASE

TENSION
LOAD,2T

(g)

680.4

1247.4

2827

4536

6804

CENTER-TO-CORNER LENGTH (in.)

L1 L2

12.45

12.55

12.70

12.60

12.75

L 3

12.25

12.45

12.45

12.50

12.50

12.15

12.25

12.35

12.40

12.35

L4

12.00

12.20

12.25

12.60

12.75
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TABLE B-5. SQUAREFOIL SURFACE, 2-D LOADING, FOLD/WRINKLE
HEIGHT TEST, RECORDEDDATA: FOLD/WRINKLE HEIGHT

FOLD/WRINKLEHEIGHT(in.)
LOAD
CASE QUADRANTBETWEENi AND2 QUADRANTBETWEEN3 AND4

hI h2 h3 h4

i

2

3

4

5

0.433 0.561

0.376 0.366
0.178 0.131

0.138 0.Iii

0.i00 0.080

0.446 0.511

0.266 0.408

0.236 0.274

0.134 0.133

0.081 0.074
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2T

c = 18.0

in.

2T

L = 12.73 in.

h = 0.68 in

2
8.10 in

area =

R = 60.19 in. _

\
2T

Area = 324 - 32.4

2
= 291.6 in

Figure B-I. Foil surface dimensions and loading pattern.
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F i g u r e  B-2.  

... 

Figure  B-3 .  

F o i l  surface ready  fo r  f o l d i n g .  

D e t a i l  of tabs  and c o r n e r .  
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Figure  B - 4 .  F o i l  s u r f a c e  be ing  fo lded  
(note 2.0-cm-wide f o l d i n g  gu ides )  . 

210 

F igure  B-5. F o i l  s u r f a c e  be ing  fo lded .  



Figure B-6. Final fo ld ing  before fo lds  set and "arms" coiled. 

Figure B-7. Final stowed configuration. 
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Figure B-8. Test setup, no load. 

2 12 

Figure B-9. Load Case No. 4. 



F i g u r e  B-10. Load Case No. 6. 

I 

Figure  B-11. Load C a s e  No. 7. 
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Figure  B-12. Load C a s e  N o .  8.  

F igu re  B-13. Load C a s e  N o .  1 0 .  
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Figure B-14. L o a d  C a s e  N o .  12. 

Figure B-15.  L o a d  C a s e  N o .  1 6 .  
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F i g u r e  B-16. Load Case N o .  17. 

Figure  B-17. Fold/wrinkle  h e i g h t  t es t  s e t u p .  

2 16 



Figure B-18. Fold/wrinkle height measurement arrangement. 
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CHAPTER4

METEOROID DAMAGE TO ROD-TYPE STRUCTURAL ELEMENTS

3ohn M. Hedgepeth
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INTRODUCTION

Large space structures are likely to be built up from many

rod-type structural elements. While the change of meteoroid damage

to any particular element is very small, the chance of damage some-

where in the structure may be appreciable because of the large
total length of the elements. Little is known of the meteoroid

damage characteristics of linear elements besides the early treat-

ment in Reference I. No experimental data exist at present. This

report contains further theoretical study of the problem.

METEOROIDSTATISTICS

Let n(m) be the density function per unit volume for meteoroids

of mass m and let the velocity components of each meteoroid be ran-

dom variables with Gaussian statistics. Let the probability dis-
tribution function be denoted as

-3 (v2+v2+v2 /2u2
f(_) = n(m) e ._ x y z! (i)

where U is the rms velocity magnitude. Note that we have assumed

stationarity and isotropy.

The expected number of meteoroids in a volume S with a mass

between m and m+dm and velocity components in the intervals

(Vx,Vx+dVx), (Vy,Vy+dVy), (Vz,Vz+dVz) is

dq = Sf(_) dm dv dv dv
x y z

which can also be written as

dq = Sf(_) dm V 2 sin e dVded_ (2)
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where we have set

v = V sin 8 cos %
x

v = V sin 8 sin 8
Y

v = V cos @
z

Note

2 v 2 2 V 2v + + v =
x y z

Flux

Consider the area A in the x-y plane. We would like to

determine the number of meteoroids of mass between m and m+dm with

flow through the area A from one side per unit time.

A

Select the lower side as the one through which the meteoroids are

passing. Then all the meteoroids in the cylindrical volume shown

above that have spherical-coordinate velocity components of V, %,

and _ pass through the area A in the unit time. Thus the total
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rate of flow from all directions coming from below is

._/2 2_

dQ _0 _0 _0 AV cos 8 f(_) sin 8 V2=
dSd_dV (3)

Substituting from Eq. (I) and performing the integrations yields

d__Q = n(m)U A

dm 6_

(4)

Let N(m) be the number density of meteoroids of mass m or greater

so that

oo

N(m) -- f n(m) dm

m

Let ¢(m) be the number flux per unit area from one side of meteor-

oids with mass greater than or equal to m. Then

UN(m) (5)#(m) =

In many cases, the data for meteoroid frequency are approxi-

mated by the formula

N (m) = Km -Y (6 )

Hits on a Long Cylinder

Consider a circular cylinder of diameter d and length £ >> d

as shown in the following figure:
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In the same way as before, all the meteoroids with velocity-

component coordinates of V, 0, _ in the above volume of V£d sin 0

will hit the cylinder in a unit time. All meteoroids with velocity-

component coordinates of V, 0, _ outside of that volume will miss

the cylinder. Thus, the total rate of hits from all directions is

Cs0s0dm = _ V£d sin 0 f(_) sin 0 v2d_d0dv

Substituting for f(_) and integrating gives

d__Q = ITd£ n(m) U

dm
(7)
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The number of hits per unit time with a mass equal to or greater
than m is

oo

H (m) = S amd_am

m

or

H (m) = _d£ ¢ (m) (8)

where we have made use of the flux equation, Eq. (5).

Average Meteoroid Velocity

The "average" velocity V can be obtained as
ave

sososVave = n (m) Vf (_) V 2 sin 0 d0d_

oo

V 3 e-3V2/2U 2

Evaluating the integral gives

Vav e = _3_U
(9)

FRACTURES BY THE "SWEPT-AREA" CRITERION

According to Reference 2, the penetration depth is, for semi-

infinite targets

P = k m0.352 1/6 V2/3
_ Um (i0)
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where

m =

V

p =
co

k =
CO

meteoroid mass, g

meteoroid density, g/cc

meteoroid velocity, km/s

penetration depth, cm

a constant (= 0.42 for aluminum)

According to Reference 3, Denardo, et al, find that the crater

diameter is approximately twice the penetration. Let us assume

that the long cylinder will fracture whenever the cylinder of

radius equal to P (Eq. (12)) about the meteoroid path encompasses

the entire cylinder. Thus, if any part of the cylinder is not

swept out by the destructive zone, the cylinder is assumed to be

unfractured. This criterion seems to be particularly appropriate

for unidirectional filamentary composites.

If P (m,V) < d/2, then there is no fracture. If P (m,V) > d/2,

then the thickness of the volume containing meteoroids that will

produce fracture is 2P - d.

P -_

Fracture "thickness"

Therefore, the number of fractures per unit time will be (see

Eq. (6))
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_f :So mSvSoS. s nOV  + O v

2{ S _d>v3dm (2P £f (V) dV

v*

(Ii)

where V* is the velocity for which P_ = d/2. Reversing the order

of integration and substituting for f(V) yields

oo oo

2U--_,% /_ So f n (m) dmdV (12)
Nf = g (2P -d)V 3 e -3v2/2U2

m*

where, now m* is the mass (as a function of V) for which P

Thus

= d/2.

11/0.352

d

m*(V) = ^_ i/6.2/3 (13)

tzKp m v

From Eq. (6) we get

n (m) = yKm -Y-I

Then integrating gives

3 _ 0.352Nf = 2U 3 y-0.352

J-
0

V3+(2y/3 0.352) e -3v2/2u2 dV (14)
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Substituting t for 3V2/(2U 2) gives

_f

Nfl

(2/3)Y/1"056 f_
(y/0. 352)-i 2 t (Y/I" 056) +i

0

-t
e dt (15)

where is the simple-minded estimate obtained by assuming that
Nf 1

all meteoroids with larger mass than m*(U) (Eq. (13)) will fracture

the cylinder if they strike it. Thus from Eqs. (5) and (8)

Nf0 = _ d£UN (m*[U]) (16)

The integral in Eq. (15) can be evaluated in terms of the

gamma function to yield

Nf (2/3) Y/I" 056 ( Y: + 2)

= (y/0.352)-i r i.056

(17)

APPLICATION TO EARTH ORBIT

For earth orbit, the meteoroid flux is given in Reference 4 to

be

= 4.26 x 10 -15 nm -1"213

for the mass m in grams greater than 10 -6. The factor n accounts

for the effects of earth shadowing and defocusing. It varies from

0.5 at the Earth's surface to a maximum of 0.691 at an altitude of

three Earth radii and decreases to about 0.619 at GEO. We there-

fore set, with only slight conservatism,

n = 0.7
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The average velocity is given as 20 km/s. Thus, from Eq. (9)

U = 21.7 km/s

Referring to Eq. (5), we can solve for N(m) to give

N(m) = 5.97 x10 -19 m-1"213 particles/m 3

Thus,

K = 5.97 x10 -19 particles/m 3

y = 1.213

For this value of y

_f

Nf0

_ (2/3) 1"149

2.45
F (3.149)

= 0.59

The value of m*(U) is obtained from Eq. (13) to be

m* (U)
= [ d ]1/0.3522 × 0.42 x (0.5)i/6 x (21.7) 2/3

where we have used k

and p = 0.5 g/cc.

This gives

= 0.42 (aluminum) for want of a better value,

m*(U) = 0.0067 d 2"84

where d is in centimeters.
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Substituting into Eqs. (15) and (16) with £ = 1 m gives the
fracture rate/m/s of

dNf = 0.59 × x i-_ x 21,700 x 5.97 × i0

x (0.0067) -1"213 × d-2"84 × 1.213

= 2.4 x 10 -14 d -2"44 fractures/m/s

7.6 × 10 -7 d -2"44 fractures/m/yr

-19

For members 1 cm in diameter and a total length of 1 km, the proba-

bility of a fracture in i0 years is about 0.008. On the other

hand, if the diameter is only 1 mm and the length is 1 km, then

the probability of a fracture in one year is about 0.2, which is

too high.
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