NASAL'R-159,063

NASA Contractor Report 159063

NASA-CR-159063 1981 O O I 9287

M A I L L O G - PROGRAM THEORY VOLUME I

Danny K. Harris

VOUGHT CORPORATION Hampton Technical Center Hampton, Virginia 23666

NASA Contract NAS1-13500 May 1979

(FOR EARLY DOMESTIC DISSEMINATION

Because of its significant early commercial potential, this information, which has been developed under a U.S. Government program, is being disseminated within the United States in advance of general publication. This information may be duplicated and used by the recipient with the express limitation that it not be published. Release of this information to other domestic parties by the recipient shall be made subject to these limitations.

Foreign release may be made only with prior NASA approval and appropriate export licenses. This legend shall be marked on any reproduction of this information in whole or in part.

Date for general release May 1981.

MAY 28 1279

National Aeronautics and Space Administration HAMP

Langley Research Center Hampton, Virginia 23665 LANGUIN DICEASAN CENTER
1 DE 201, EVACA
HAMMETON, VIRGINIA

and the second • i,

MAIL LOG

PROGRAM THEORY

VOL. I

NASA CONTRACTOR REPORT

DANNY K. HARRIS

May 1979

N79-78232#

A program theory, containing routine descriptions, detailed flowcharts, complete data base design, external software definitions, and special software support routines, for a computerized documentation control and file management system called Mail Log.

		•				
	**					
				•		
						600
			•			5
			· · · · · · · · · · · · · · · · · · ·			
•						
ī.						
					•	
	٠.					
			•			
		•				
	•					
						*
						- .
						•
			•			
•		. *				
						•

TABLE OF CONTENTS

VOL. I		PAGE
	PREFACE	xii
1.0	INTRODUCTION	1
2.0 2.1 2.2	DEFINITIONS TERMS, ACRONYMS, AND ABBREVIATIONS FLOWCHART CONVENTIONS	4 4 4
3.0 3.1 3.1.1 3.1.1.1 3.1.1.2	GENERAL PROGRAM DESCRIPTION BASIC OPERATING PROCEDURES LOGIN LOGIN XXX LOGIN SYSTEM	7 7 7 7 8
3.1.2 3.1.2.1 3.1.2.2 3.1.3	PROGRAM ENTRY OPENING HEADER OPTION MODES PROGRAM EXIT	8 9 9 10
3.2 3.3 3.4	MAIL CORRESPONDENCE MAIN DESIGN INFORMATION RELEASE/REPORT MAIN DRAWING/ENGINEERING ORDER MAIN	11 11 11
4.0 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 4.1.9	SUBROUTINE DESCRIPTION MAIL CORRESPONDENCE INPTC REVSC SEAC ARCC SHOWC INPSC OPEN CLOSE WHERE BRAKET	12 12 13 13 14 14 14 14 14 15

						PAGE
4.1.11 4.1.12 4.1.13 4.1.14 4.1.15 4.1.16 4.1.17 4.1.18 4.1.19 4.1.20 4.1.21 4.1.22 4.1.23 4.1.24 4.1.25 4.1.25 4.1.26 4.1.27 4.1.28 4.1.29	ALC RESEA WHO DDAT CNUM CWAID AUSEA DLSEA DATC SUBJ MSTAT ADAT CKIR RDSUB SCRNHD SCRNHD SCRNPT HARDHD HARDPT UPDATE					15 15 16 16 17 17 17 18 18 19 19 19 19 20 20
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12 4.2.13 4.2.14 4.2.15 4.2.16	DESIGN INPTDR SEADR REVSDR ARCDR SHOWDR INPSDR ALDR TITDR DIRN DATDR WANUM SYSDR CONN VEHN FMAIN CMAIN	INFORMATION	RELEASE/	REPORT		21 21 22 22 23 23 23 23 24 24 24 25 25 25 26
4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	DRAWING/ INPTDW REVSDW SEADW ARCDW SHOWEO	ENGINEERING	ORDER			27 27 27 28 29 30

•		-	• .	PAGE
4.3.6 4.3.7 4.3.8 4.3.9 4.3.10 4.3.12 4.3.13 4.3.14 4.3.15 4.3.16 4.3.17 4.3.18 4.3.19 4.3.20 4.3.21 4.3.22 4.3.23 4.3.24 4.3.25	SHOWDW INPSE INPSDW INPSS FIXSHT SHTADD NEOADD HEADER MAIND DMAIN TITDW ALDW ACTDUE DRAWN DATDW SYSDW VEHND SECTN CODE EONN			30 30 31 31 31 31 32 32 32 32 33 33 34 34 34 35 35 35
4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7	GENERAL SUBROUTINES IDENT TINPUT RDCOM GETWRD GETWD GETCON IDUSER			36 36 36 36 37 37 37
5.0 5.1 5.1.1 5.1.2 5.1.3	FLOWCHARTS MAIN ENTRIES MAIL CORRESPONDENCE DESIGN INFORMATION RELEASE/REPORT DRAWING/ENGINEERING ORDER	·		38 39 39 39 39
5.2.1	SUBROUTINES MAIL CORRESPONDENCE DESIGN INFORMATION RELEASE/REPORT DRAWING/ENGINEERING ORDER GENERAL			40 40 40 40 40
5.3	FLOWCHART FIGURES FOR MAIN ENTRIES			41

		PAGE
5.4	FLOWCHART FIGURES FOR SUBROUTINES	56
6.1.1	FILE STRUCTURE DATA SUBFILES MAIL CORRESPONDENCE DATA DESIGN INFORMATION RELEASE/REPORT DATA	500 500 500 500 500 500
6.1.2 6.1.2.1 6.1.2.2 6.1.2.3	MAIL CORRESPONDENCE	502 502 502 502
6.1.3 6.1.3.1 6.1.3.2 6.1.3.3	TEMPORARY WORKING STORES MAIL CORRESPONDENCE DESIGN INFORMATION RELEASE/REPORT DRAWING/ENGINEERING ORDER	504 504 504 504
6.2 6.2.1 6.2.2 6.2.3	DATA RECORDS MAIL CORRESPONDENCE DESIGN INFORMATION RELEASE/REPORT DRAWING/ENGINEERING ORDER	506 506 506 506
6.3 6.3.1 6.3.2 6.3.3 6.3.4	MISCELLANEOUS VARIABLES AND ARRAYS MAIL CORRESPONDENCE DESIGN INFORMATION RELEASE/REPORT DRAWING/ENGINEERING ORDER GENERAL	518 519 522 524 526
6.4 6.4.1 6.4.2	TABLES SYSCOM KEYS.F CTAB	527 527 529
7.0	MAIL LOG OUTPUTS	531
8.0 8.1 8.2 8.2.1 8.2.2 8.2.3	EXTERNAL CALLS SYSTEM SOFTWARE ROUTINES MISCELLANEOUS ROUTINES CLEAR PAUC JTIME	532 532 534 534 534 534

		PAGE
9.0 SPEC	CIAL SUPPORT ROUTINES	535
VOL. II		
APPENDIX A	GLOSSARY OF TERMS	A-1
APPENDIX B	L_FILE FOR MAIL CORRESPONDENCE	B-1
APPENDIX C	L_FILE FOR DESIGN INFORMATION RELEASE/REPORT	C-1
APPENDIX D	L_FILE FOR DRAWING/ENGINEERING ORDER	D-1
APPENDIX E	SOURCE FOR MISCELLANEOUS EXTERNAL ROUTINES	E-1
APPENDIX F	SOURCE FOR SPECIAL SUPPORT ROUTINES	F-1

TABLE OF FIGURES

FIGURES

								PAGE
1.1	SPADS SPADS	MAIL MAIL	LOG LOG	MODES OF SUBFILED	OPER/ DATA	ATION BASE		2 3
5.3-1 5.3-2 5.3-3	MAIN *DIR *DRAW						•	42 47 50
5.4.1-1 5.4.1-2 5.4.1-3 5.4.1-5 5.4.1-6 5.4.1-7 5.4.1-8 5.4.1-10 5.4.1-11 5.4.1-12 5.4.1-13 5.4.1-14 5.4.1-15 5.4.1-17 5.4.1-18 5.4.1-19 5.4.1-20 5.4.1-21 5.4.1-22 5.4.1-23 5.4.1-23 5.4.1-24 5.4.1-25 5.4.1-28 5.4.1-29	INPTC REVSC SEAC ARCC SHOWC INPSC OPEN CLOSE WHERE BRAKET ALC RESEA WHO DDAT CNUM CWAID AUSEA DATC SUBJ MSTAT ADAT CKIR RDSUB SCRNHD SCRNPT HARDHD HARDPT UPDATE							57 78 90 99 108 111 132 134 136 142 145 148 151 157 160 166 169 172 175 187 199 201 204 209 212 217 219

FIGURES (Continued)

		PAGE
5.4.2-1 5.4.2-2 5.4.2-3 5.4.2-4 5.4.2-5 5.4.2-6 5.4.2-7 5.4.2-8 5.4.2-9 5.4.2-10 5.4.2-11 5.4.2-12 5.4.2-13 5.4.2-14 5.4.2-15 5.4.2-16	INPTDR SEADR REVSDR ARCDR SHOWDR INPSDR ALDR TITDR DIRN DATDR WANUM SYSDR CONN VEHN FMAIN CMAIN	222 228 231 236 241 243 252 255 264 266 271 273 275 278 281 283
5.4.3-1 5.4.3-2 5.4.3-3 5.4.3-4 5.4.3-5 5.4.3-7 5.4.3-7 5.4.3-10 5.4.3-10 5.4.3-11 5.4.3-12 5.4.3-13 5.4.3-14 5.4.3-15 5.4.3-16 5.4.3-17 5.4.3-19 5.4.3-20	INPTDW REVSDW SEADW ARCDW SHOWDW INPSE INPSDW INPSS FIXSHT SHTADD NEOADD HEADER MAIND DMAIN TITDW ALDW ACTDUE DRAWN DATDW	285 288 297 303 315 317 320 328 349 355 358 361 370 372 381 393 407 416 425 431

FIGURES (Continued)

		PAGE
5.4.3-21 5.4.3-22 5.4.3-23 5.4.3-24 5.4.3-25	SYSDW VEHND SECTN CODE EONN	437 443 455 461 467
5.4.4-1 5.4.4-2 5.4.4-3 5.4.4-4 5.4.4-5 5.4.4-6 5.4.4-7	I DENT TINPUT RDCOM GETWRD GETCON I DUSER	479 482 484 487 492 495 498
6.2.1.1 6.2.1.2 6.2.1.3	CORRESPONDENCE RECORD DESCRIPTION CORRESPONDENCE SEARCHABLE DATA ITEMS CORRESPONDENCE SEARCHES	508 509 510
6.2.2.1 6.2.2.2	DIR/REPORT RECORD DESCRIPTION DIR/REPORT SEARCHABLE DATA ITEMS	511 512
6.2.3.1 6.2.3.2 6.2.3.3 6.2.3.4 6.2.3.5	DRAWING RECORD DESCRIPTION SEARCHABLE DRAWING DATA ITEMS ENGINEERING ORDER RECORD DESCRIPTION SEARCHABLE ENGINEERING ORDER DATA ITEMS DRAWING/ENGINEERING ORDER SEARCHES	513 514 515 516 517

PREFACE

During the research development and operational phases of the Scout Project, large quantities of documentation are generated to describe analytical studies, and correspondence from mission definition through postflight analysis. These documents take the form of engineering reports, drawings, analyses, procedures, specifications, test results, and contractual reports.

Retrieval of these documents is based upon a Project Office assigned code number which denotes a file cabinet and approximate location within that cabinet. Therefore, knowledge of the filing system code number is necessary for retrieval.

The Scout Project Automatic Data System, SPADS, was developed as a single entry multiple cross-reference filing system. It was implemented to improve the overall management efficiency by:

- a) reducing the number of man hours required to retrieve data from the files
- b) providing for full data availability with quick retrieval during vehicle anomaly investigations
- c) answering inquiries from NASA Headquarters and outside agencies for information on a Scout vehicle
- d) helping alleviate a rapidly growing storage problem.

The MAIL LOG portion of this automated data system satisfies the above criteria. This program, with its multiple cross-reference capability, operates in conjunction with and amplification of the existing filing system.

1.0 INTRODUCTION

This document provides the program theory used to obtain the software package, MAIL LOG, developed for the Scout Project Automatic Data System, SPADS. The program is written in FORTRAN for the PRIME 300 computer system located in Building 1192-E at NASA, Langley Research Center. This 16 bit mini-computer has a 64K word virtual memory and a 256K word physical memory. To complete the SPO's computer configuration, a 60 mega-byte disk is used for storage of all software and corresponding data files. Magnetic tape is used for a daily back-up and for physical archiving.

The MAIL LOG program has four modes of operation as shown in Figure 1.1:

- 1) INPUT putting new records into the data base
- 2) REVISE changing or modifying existing records in the data base
- 3) SEARCH finding special records existing in the data base
- 4) ARCHIVE store or put away existing records in the data base

The output includes special printouts of records in the data base and results from the INPUT and SEARCH MODES.

Documentation of the MAIL LOG program consists of two other manuals:

- 1) Users Manual 'MAIL LOG PROGRAM OPERATING INSTRUCTIONS';
 CR
- 2) Summary Manual 'MAIL LOG PROGRAM SUMMARY AND SPECIFICATIONS'; CR

The MAIL LOG data base consists of three main subfiles (as shown in Figure 1.2);

- 1) Incoming and Outgoing Mail Correspondence
- 2) Design Information Releases (DIR) and Reports
- 3) Drawings and Engineering orders (E.O.)

SPADS
MAIL LOG
Modes of Operation

FIGURE 1.1

SPADS
MAIL LOG
Subfiled Data Base

FIGURE 1.2

2.0 DEFINITIONS

2.1 TERMS, ACRONYMS, AND ABBREVIATIONS

Terms, acronyms, and abbreviations used within these documents are defined in GLOSSARY OF TERMS, Appendix A.

2.2 FLOWCHART CONVENTIONS

Flowcharting conventions for this manual consist of the following:

(a) Standard IBM flowcharting symbols will be used for all diagrams.

- (b) Logic always flows from top to bottom and from left to right on all pages.
- (c) All subroutines will be designated by a double sided procedure box.

(d) A figure number is utilized as the symbol identification for all subroutines within the set of flowcharts. By removing the 5 from each number, the description section number is given.

For example: Description for Figure 5.4.1 is found in Section 4.1

(e) The abbreviation EXT. is utilized as the symbol identification for all predefined or system software routines external to the set of flowcharts.

(f) Cross referencing connectors are accomplished at the outconnectors only. The page number to the upper right of the outconnector represents the page number of the flowchart where the associated inconnector is located.

- (g) Converging or branching connectors will be designated by a number. Continuation of in-line instructions will be designated with a letter.
- (h) All decisions will branch with the YES path to the right and the NO path down. Decision comments will be stated to the positive question; this is done even though the corresponding code is written to the negative.

(i) Multiple decisions branching in sequence will be symbolized as one decision block commented SWITCH.

- (j) Each flow diagram will be followed by its corresponding code which will use the following conventions:
 - (1) CALL to system or program routines will only designate the routine name.
 - (2) Format statements will not be given.
 - (3) The IF on decision statements will not be given.
 - (4) GO TO's, CALL EXIT's, and RETURN's will not be designated.
 - (5) Blocks representing multiple statements will separate each command with a semicolon.

3.0 GENERAL PROGRAM DESCRIPTION

This section provides a description of the MAIL LOG basic operating procedures and main subfile routines.

3.1 BASIC OPERATING PROCEDURES

The purpose of this section is to provide a description and terminal interaction the user must perform in order to LOGIN to the PRIME computer system, enter the SPADS MAIL LOG program, and exit MAIL LOG program. Note that all user actions are terminated with a carriage return; designated by the key marked RETURN on the terminal.

3.1.1 LOGIN

There are two methods to enter the SPADS computer system: LOGIN XXX and LOGIN SYSTEM. Either method allows the user to access any active program on SPADS. Both require the user to enter the program selection MAIL LOG as shown in section 3.1.2. User action is designated within a rectangle. XXX represents the user initials; N is the terminal location number; HR and MN is the time the user entered the system in hours and minutes; and MMDDYY is the month, day, and year.

LOGIN XXX | XXX (N) LOGGED IN AT HR'MN MMDDYY

3.1.1.1 LOGIN XXX

This login (where XXX is the user's ID) allows the user to perform any search and obtain the resulting outputs within the MAIL LOG subfiles. Clearance for some user ID's allow entrance into the INPUT and REVISE operation modes. No user has clearance to execute the ARCHIVE MODE.

3.1.1.2 LOGIN SYSTEM

This login allows the user to perform any search and obtain the resulting outputs within the MAIL LOG subfiles. It also allows the ARCHIVE MODE to be entered and executed. No clearance is given to execute the INPUT or REVISE MODES.

3.1.2 PROGRAM ENTRY

After system LOGIN is completed, the user must specify the program selection MAIL LOG as follows:

THE FOLLOWING IS A LIST OF CURRENT APPLICATIONS
PLEASE INDICATE YOUR APPLICATION/PROJECT BY SELECTING THE APPROPRIATE KEY

APPLICATION/PROJECT	KEY
CHANGE REQUEST SCHEDULE 15000 SCHEDULE 15100 ANALYSIS I MAIL LOG ELOPE	CHG 150 151 ANAL MAIL ELOP
PROGRAM DEVELOPMENT	DEV
SOFTWARE MAINT	SOMA
MISCELLANEOUS	MISC

PLEASE ENTER THE APPROPRIATE KEY

MAIL

MAIL

3.1.2.1 OPENING HEADER

This attaches to the F_MAIL UFD and resumes the running of the main MAIL LOG enter program, BFILE.

WELCOME TO SPADS

MAIL LOG FILE

DO YOU WISH TO WORK WITH THE DIR/REPORT DATA --- ENTER DIR
OR DRAWING DATA --- ENTER DRAW
OR DAILY CORRESPONDENCE --- COR
OR QUIT --- QU

In order for the user to select one of the four modes of operation, one of three main data base subfiles must first be designated as follows:

DRAW

This attaches the user to the F_DRAW UFD and resumes operation of the *DRAW program. Likewise, if DIR was selected, *DIR program would be resumed on the F_DIR UFD. If COR was selected, the user remains on the F_MAIL UFD and continues as normal.

3.1.2.2 OPTION MODES

PLEASE CHOOSE ONE OF THE FOLLOWING:

MODE KEY
INPUT INP
REVISE REV
SEARCH SEA
ARCHIVE ARC
QUIT QUIT

3.1.3 PROGRAM EXIT

To leave the program the user must enter QUIT as shown below:

```
PLEASE CHOOSE ONE OF THE FOLLOWING:
MODE
INPUT
REVISE
SEARCH
ARCHIVE
QUIT
QUIT
```

This provides program exit and returns the user to the program entry level on the $F_MAIL\ UFD$.

```
DO YOU WISH TO WORK WITH THE DIR/REPORT DATA --- ENTER DIR OR DRAWING DATA --- ENTER DRAW OR DAILY CORRESPONDENCE --- COR OR QUIT --- QU
```

QU

OK,

3.2 MAIL CORRESPONDENCE MAIN

This routine provides the executive operations and main program entry for the MAIL LOG program. It also contains the necessary routines to handle the Correspondence subfile. The program is called BFILE and is located within the F_MAIL UFD. If the user selects the Correspondence subfile, a USER file is built containing the user ID, time, date, and terminal location. Then the user may proceed with one of four (4) modes of operation within the Correspondence subfiles. When a user quits operation within the Correspondence subfiles, return to the executive main entry selection mode is made. The user again has the option of operating with the DIR/REPORT, DRAWING, or CORRESPONDENCE data. If either of the first two (2) areas of the data base are selected, the executive routine attaches the user to the appropriate UFD, F_DIR or F_DRAW respectively. See Sections 3.3 and 3.4 for further information regarding these main routines. Flowchart Figure 5.3-1 depicts the CORRESPONDENCE MAIN.

3.3 DESIGN INFORMATION RELEASE/REPORT MAIN

This routine provides the executive operation and main program entry for the DIR/REPORT data subfile. This program is called *DIR and is located within the F_DIR UFD. Upon entry into this program, a USER file is built containing the user ID, time, date, and terminal location. The user then may proceed with one of four (4) modes of operation within the DIR/REPORT subfile. A 'QUIT' at this level will send executive control back to the F_MAIL UFD. This is accomplished by resuming the BFILE program. Operation then proceeds as described in Section 3.2. Flowchart Figure 5.3-2 depicts the DIR/REPORT MAIN.

3.4 DRAWING/ENGINEERING ORDER MAIN

This routine provides the executive operation and main program entry for the DRAWING/E.O. data subfiles. This program is called *DRAW and is located within the F_DRAW UFD. Upon entry into this program, a USER file is built containing the user ID, time, date, and terminal location. The user then may proceed with one (1) of four (4) modes of operation within the DRAWING/E.O. subfile. A 'QUIT' at this level will send executive control back to the F_MAIL UFD. This is accomplished by resuming the BFILE program. Operation then proceeds as described in Section 3.2. Flowchart Figure 5.3-3 depicts the DRAWING/E.O. MAIN.

4.0 SUBROUTINE DESCRIPTION

This section provides descriptions of all subroutines used by MAIL CORRESPONDENCE, DESIGN INFORMATION RELEASE/REPORT, and DRAWING/ENGINEERING ORDER subfile programs.

4.1 MAIL CORRESPONDENCE

4.1.1 INPTC

This subroutine is the input routine for the SPADS MAIL LOG Correspondence subfile. The Correspondence data record for each document consists of up to sixteen (16) data items as shown in Figure 6.2.1.1. Following each complete document entry, all items are displayed on the terminal to be checked for errors at this time. After a document record has been declared correct, the specific subfile must be designated in which this document is to be stored. If all documents can not be entered in one (1) input session, the user has a WAIT option which allows the daily input to be continued at a later time. This continuation is declared upon re-entering the INPUT MODE. If the WAIT option is taken by mistake and there are no other documents to be entered, recovery is accomplished by declaring this is NOT a continuation upon re-entry into the INPUT MODE. When this has been done the user now has three (3) options from which to choose:

- a) Start a New Entry (NEW)
- b) Spool Last Output Again (LAST)
- c) Spool New Data Entered (DATA)

Option (c) DATA will spool to the high speed printer a sorted output of all documents entered for that daily input session.

When a daily input session is complete, this output is normally spooled to the printer in two (2) formats: a complete record output and a brief or partial record output. If a computer or printer malfunction occurs during this output, another copy may be obtained by re-entering the INPUT MODE as previously described and selecting option (b) LAST. Flowchart Figure 5.4.1-1 depicts the INPUT MODE of the Correspondence subfile.

4.1.2 REVSC

This subroutine is the revise routine for the SPADS MAIL LOG Correspondence subfile. To revise or delete a document, the input date and daily counter code comprise the unique identifier for its location. Additional time can be saved if the user also knows in which of the six (6) correspondence data subfiles the document is stored. When the desired document record is found, it will be displayed on the terminal for verification. If not the correct record, search for the document will continue. After the revision has been made the document record is again displayed on the terminal for user edification.

The REVISE MODE also can give the user manual revise or delete capability for documents in the ACTION DUE file. Flowchart Figure 5.4.1-2 depicts the REVISE MODE of the Correspondence subfile.

4.1.3 SEAC

This subroutine is the search routine for the SPADS MAIL LOG Correspondence subfile.

Of the sixteen (16) possible data items within a document record, eleven (11) are searchable. The resulting outputs from these searches vary from five (5) to eight (8) data items. See Figure 6.2.1.2. All searches except for the ACTION DUE DATE search have a multiple subfile selection capability in which any single or combination of the six subfiles may be used. The ACTION DUE DATE search automatically searches all six (6) subfiles. There is a specialized ALL search which outputs all document records in a specified subfile or combination of subfiles. However, it is not recommended that the general user call for the search ALL option.

The searches may also be assigned for a particular time frame. If no time frame is selected, the first valid date becomes the earliest date in the data base and the last valid date defaults to 12-31-99. Of course, the ACTION DUE DATE, DOCUMENT DATE, and INPUT DATE searches do not use the time framing capability. However, the DOCUMENT and INPUT DATE searches can retrieve entire month's or an entire year's worth of data by entering 00. For example, entering 110078 would result in finding all the documents within the data base in the eleventh month, November, for the year 1978. Likewise, an entry of 000078 would retrieve all documents for the year 1978. See Figure 6.2.1.3.

Flowchart Figure 5.4.1-3 depicts the SEARCH MODE of the Correspondence subfile.

4.1.4 ARCC

This subroutine is the archive routine for the SPADS MAIL LOG Correspondence subfile. To archive a document not only is the input date and daily counter code needed, but also the specific data subfile in which it is located. After these requirements have been satisfied, a pause of 15 to 50 seconds occurs for the system to update all files involved.

All archived document records are placed in a file called INACTS, except for those records stored in the TRANSMITTAL data subfile. These records are archived to a file called INACTL, because of their extra data item, DESCRIPTION. Flowchart Figure 5.4.1-4 depicts the ARCHIVE MODE of the Correspondence subfile.

4.1.5 SHOWC

This subroutine is used to display an entire data record on the terminal for the INPUT or REVISE MODE. Each data item is numbered in order to verify the document record as either correctly input or the correct record to be revised or deleted. Flowchart Figure 5.4.1-5 depicts the flow diagram for this subroutine.

4.1.6 INPSC

This subroutine is used by the INPUT or REVISE MODES to input or change specific data items within a document record. Flowchart Figure 5.4.1-6 depicts the flow diagram for this subroutine.

4.1.7 OPEN

This subroutine is used to open all six (6) data subfiles for read and write functions. Flowchart Figure 5.4.1-7 depicts the flow diagram for this subroutine.

4.1.8 CLOSE

This subroutine is used to close all six (6) data subfiles which are open for read and write functions. Flowchart Figure 5.4.1-8 depicts the flow diagram for this subroutine.

4.1.9 WHERE

This subroutine is used by the REVISE or SEARCH MODES to determine how many and which data subfiles are to be opened for searching purposes. These selected subfiles are then opened for the SEARCH MODE of operation. Flowchart Figure 5.4.1-9 depicts the flow diagram for this subroutine.

4.1.10 BRAKET

This subroutine is used by the SEARCH MODE to determine a first and last valid date for a time framed type of search. Defaults are 0-0-0 and 12-31-99 for the first and last valid dates, respectively. Flowchart Figure 5.4.1-10 depicts the flow diagram for this subroutine.

4.1.11 ALC

This subroutine is called by the SEARCH MODE to perform a PRINT ALL type of search. This routine may search any one or combination of subfiles. The break key is inhibited during this search. When the file(s) have been finished, this routine automatically spools the formatted output file to the high speed printer. Flowchart Figure 5.4.1-11 depicts the flow diagram for this subroutine.

4.1.12 RESEA

This subroutine is called by the SEARCH MODE to perform a RESPONSIBLE ENGINEER type of search. This routine formats document records found and builds an output file with headers. When the file(s) have been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.1-12 depicts the flow diagram for this subroutine.

4.1.13 WHO

This subroutine is called by the SEARCH MODE to perform a WHO TO/ADDRESSEE type of search. This routine formats document records found and

builds an output file with headers. When the file(s) have been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.1-13 depicts the flow diagram for this subroutine.

4.1.14 DDAT

This subroutine is called by the SEARCH MODE to perform an INPUT DATA DATE type of search.

This INPUT DATE search does not use the time framing capability. However, the INPUT DATE search can retrieve entire month's or an entire year's worth of data by entering 00. For example, entering 110078 would result in finding all the documents within the data base in the eleventh month, November, for the year 1978. Likewise, an entry of 000078 would retrieve all documents for the year 1978. See Figure 6.2.1.3.

Flowchart Figure 5.4.1-14 depicts the flow diagram for this subroutine.

4.1.15 CNUM

This subroutine is called by the SEARCH MODE to perform a CONTRACT NUMBER type of search. This routine formats document records found and builds an output file with headers. When the file(s) have been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.1-15 depicts the flow diagram for this subroutine.

4.1.16 CWAID

This subroutine is called by the SEARCH MODE to perform a WORK AUTHORIZATION/ID CODE type of search. This procedure may perform partial searches using the W.A. Number only or W.A. Number in conjunction with the

first two (2) letters of the ID Code. This routine formats document records found and builds an output file with headers. When the file(s) have been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.1-16 depicts the flow diagram for this subroutine.

4.1.17 AUSEA

This subroutine is called by the SEARCH MODE to perform an AUTHOR/ SOURCE type of search. This routine formats document records found and builds an output file with headers. When the file(s) have been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.1-17 depicts the flow diagram for this subroutine.

4.1.18 DLSEA

This subroutine is called by the SEARCH MODE to perform a DOCUMENT/LETTER NUMBER type of search. This procedure may perform partial searches as long as the desired parameter is four (4) characters in length. This routine formats document records found and builds an output file with headers. When the file(s) have been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.1-18 depicts the flow diagram for this subroutine.

4.1.19 DATC

This subroutine is called by the SEARCH MODE to perform the DOCUMENT DATE type of search. This DOCUMENT DATE search does not use the time framing capability. However, the DOCUMENT DATE search can retrieve entire month's or an entire year's worth of data by entering 00. For example, entering 110078 would result in finding all the documents within the data base in the eleventh month, November, for the year 1978. Likewise, an entry of 000078 would retrieve all documents for the year 1978. See Figure 6.2.1.3.

Flowchart Figure 5.4.1-19 depicts the flow diagram for this subroutine.

4.1.20 SUBJ

This subroutine is called by the SEARCH MODE to perform the SUBJECT TITLE search. This procedure allows up to four (4) of the seven (7) possible words in the subject to be searched. As each subject is found containing the desired word, the entire subject is displayed on the terminal. If none are found, the user may restart this subroutine or return to the SEARCH MODE as normally done when the file(s) are finished. When the final word has been searched, document records found will be formatted to an output file with headers. Flowchart Figure 5.4.1-20 depicts the flow diagram for this routine.

4.1.21 MSTAT

This subroutine is called by the SEARCH MODE to perform a MAIL STATUS type of search. If the desired mail status is legal, the search is performed. This routine formats document records found and builds an output file with headers. When the file(s) are finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.1-21 depicts the flow diagram for this subroutine.

4.1.22 ADAT

This subroutine is called by the SEARCH MODE to perform the ACTION DUE DATE search. This procedure has two options: a complete listing of document records with an action due or search for document records within five (5) days or past due using the current date as reference. This routine formats document records found and builds an output file with headers. During this search the break key is inhibited. When the ACTION DUE subfile is finished, this routine automatically spools the output file to the high speed printer. Flowchart Figure 5.4.1-22 depicts the flow diagram for this subroutine.

4.1.23 CKIR

This subroutine is used by the REVISE MODE to check the data item selected. If MAIL STATUS, data item number one, is selected, a validity check is made to verify that the correct item was indicated. A valid or invalid flag is set according to user response and logic flow returns to the calling routine. Flowchart Figure 5.4.1-23 depicts the flow diagram for this subroutine.

4.1.24 RDSUB

This subroutine is used by the SEARCH MODE to read the selected subfile(s) desired for the specific data item search. When all subfiles are finished, a read complete flag is set. Flowchart Figure 5.4.1-24 depicts the flow diagram for this subroutine.

4.1.25 SCRNHD

This subroutine is used by the SEARCH MODE to format and display on the terminal the appropriate header for each data item search. Flowchart Figure 5.4.1-25 depicts the flow diagram for this subroutine.

4.1.26 SCRNPT

This subroutine is used by the SEARCH MODE to format and display on the terminal the appropriate data items for a document record which was found. If many document records are found during a search and it is observed that needed information will soon disappear from the screen, the user may temporarily stop terminal display by depressing the space bar. Terminal display may be restarted by depressing the 'Q' key. This routine also increments the number of documents found counter. Flowchart Figure 5.4.1-26 depicts the flow diagram for this subroutine.

4.1.27 HARDHD

This subroutine is used by the SEARCH MODE to format for the output file the appropriate header for each data item search. This header is

presented on each page of the output file. Flowchart Figure 5.4.1-27 depicts the flow diagram for this subroutine.

4.1.28 HARDPT

This subroutine is used by the SEARCH MODE to format for the output file the appropriate data items for a document record which was found during a specific data item search. Flowchart Figure 5.4.1-28 depicts the flow diagram for this subroutine.

4.1.29 UPDATE

This subroutine is used by the INPUT MODE to delete or change document records in the ACTION DUE DATE subfile. The updating of this file is determined by checks on specified words in the subject of the referencing document. Flowchart Figure 5.4.1-29 depicts the flow diagram for this subroutine.

4.2 DESIGN INFORMATION RELEASE/REPORT

4.2.1 INPTDR

This subroutine is the input routine for the SPADS MAIL LOG DIR/REPORT subfile. The DIR/REPORT data record for each document consists of up to nine (9) data items. See Figure 6.2.2.1. The first item entered is the DIR/REPORT Number. The file is then checked for a previous entry containing this number. If the number is found, the user has the option to enter the REVISE MODE. Normally, changes are required only to two (2) data items: (8) Revision and (9) Revision Date. Following each completed document entry, all items are displayed on the terminal. Flowchart Figure 5.4.2-1 depicts the INPUT MODE of the DIR/REPORT subfile.

4.2.2 SEADR

This subroutine is the search routine for the SPADS MAIL LOG DIR/REPORT subfile.

Of the nine (9) possible data items within a DIR/REPORT record, all but one, REVISION, are searchable. It should also be noted that the Revision Date is searched during a DATE search. This allows the DATE search to check only the most recent date associated with a document. See Figure 6.2.2.2. The DATE search has the capability of retrieving an entire month's or year's worth of data by entering 00 for the day or month. For example, entering 110078 would result in finding all the documents within the data base in the eleventh month, November, for the year 1978. Likewise, an entry of 000078 would retrieve all documents for the year 1978.

There is a specialized ALL search which outputs all documents in the DIR/REPORT subfile. This ALL search has an optional output along with the normal output consisting of the entire nine (9) item record. This optional output only displays the number of documents found on the terminal and automatically spools to the high speed printer the DIR Number and Revision.

The VFHICLE search also has a special quality. A group of vehicles may be found by using the first and last valid vehicle options. For example,

if a user declares the first valid vehicle as 198 and is searching for vehicle number 200, not only would all documents containing vehicle 200 be found, but also those with numbers 198S, 199S, and 200S; where S represents all subsequent vehicles. Default for the first valid vehicle number is zero (0) whereas, the last valid vehicle number becomes 999.

Flowchart Figure 5.4.2-2 depicts the SEARCH MODE of the DIR/REPORT subfile.

4.2.3 REVSDR

This subroutine is the revise routine for the SPADS MAIL LOG DIR/REPORT subfile.

The only information needed in order to revise or delete a DIR or Report is the DIR or REPORT Number. Note that the REVISE MODE may be entered in two (2) ways: a direct REVISE command or thru an INPUT MODE option. If a DIR or REPORT is entered and found already to be in the file, the user may change to the REVISE MODE for modification of old data items.

Otherwise, when the desired document record is found, it will be displayed on the terminal for verification. If it is not the correct record, search for the document will continue. After the revision has been made, the document record is again displayed on the terminal for user edification. Flowchart Figure 5.4.2-3 depicts the REVISE MODE of the DIR/REPORT subfile.

4.2.4 ARCDR

This subroutine is the archive routine for the SPADS MAIL LOG DIR/REPORT subfile.

The necessary information needed in order to archive a DIR or Report is the DIR Number. The user may also designate how many documents to be archived at one session. The file in which all archived records are placed is called INACT. Flowchart Figure 5.4.2-4 depicts the ARCHIVE MODE of the DIR/REPORT subfile.

4.2.5 SHOWDR

This subroutine is used to display an entire data record on the terminal for the INPUT or REVISE MODES. Each data item is numbered in order to verify the data record as either correctly input or the correct record to be revised or deleted. Flowchart Figure 5.4.2-5 depicts the flow diagram for this subroutine.

4.2.6 INPSDR

This subroutine is used by the INPUT or REVISE MODES to input or change specific data items within a data record. Flowchart Figure 5.4.2-6 depicts the flow diagram for this subroutine.

4.2.7 ALDR

This subroutine is called by the SEARCH MODE to perform a PRINT ALL type of search. This routine has two (2) options: a complete listing of DIR/REPORT records containing the entire data record or a partial listing only containing the DIR/REPORT Number and REVISION. When the entire data record option is used, all nine (9) data items are displayed on the terminal and formatted for output. During the partial search only multiples of 50 are displayed on the terminal. During this search the break key is inhibited.

When the DIR/REPORT data file is finished, this routine automatically spools the output file to the high speed printer. Flowchart Figure 5.4.2-7 depicts the flow diagram for this subroutine.

4.2.8 TITDR

This subroutine is called by the SEARCH MODE to perform the TITLE search. This procedure allows up to four (4) of the seven (7) possible words in the title to be searched. As each title is found containing the desired word, the entire title is displayed on the terminal. If none are found, the user may restart this subroutine or return to the SEARCH MODE which is normally done when the data file is finished. When the final word has been searched, the entire data record of document records found will be formatted to an

output file and displayed on the terminal. Flowchart Figure 5.4.2-8 depicts the flow diagram for this subroutine.

4.2.9 DIRN

This subroutine is called by the SEARCH MODE to perform the DIR/REPORT NUMBER type of search. If the desired number is not located, a special Not Found message is displayed on the terminal. When the search is finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.2-9 depicts the flow diagram for this subroutine.

4.2.10 DATDR

This subroutine is called by the SEARCH MODE to perform the DOCUMENT DATE type of search. The DATE search has the capability of retrieving an entire month's or year's worth of data by entering 00 for the day or month. For example, entering 110078 would result in finding all the documents within the data base in the eleventh month, November, for the year 1978. Likewise, an entry of 000078 would retrieve all documents for the year 1978. Flowchart Figure 5.4.2-10 depicts the flow diagram for this subroutine.

4.2.11 WANUM

This subroutine is called by the SEARCH MODE to perform a WORK AUTHORIZATION/ID CODE type of search. This procedure may perform partial searches using the W.A. Number only or W.A. Number in conjunction with the first two (2) letters of the ID Code. This routine formats document records found and builds an output file. When the file has been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.2-11 depicts the flow diagram for this subroutine.

4.2.12 SYSDR

This subroutine is called by the SEARCH MODE to perform a SYSTEM search. This routine formats document records found and builds an output file. When the file has been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.2-12 depicts the flow diagram for this subroutine.

4.2.13 CONN

This subroutine is called by the SEARCH MODE to perform a CONTRACT NUMBER type of search. This procedure uses the CONTRACT TABLE, CTAB, to find the W.A. Number/ID Code associated with the desired Contract Number. See Section 6.3.2 for further information concerning the CTAB Table. The routine now performs a modified W.A. NUMBER/ID CODE type of search. See Section 4.2.11 for a description of this search. Flowchart Figure 5.4.2-13 depicts the flow diagram for this subroutine.

4.2.14 VEHN

This subroutine is called by the SEARCH MODE to perform a VEHICLE NUMBER type of search. The VEHICLE search also has a special quality. A group of vehicles may be found by using the first and last valid vehicle options. For example, if a user declares the first valid vehicle as 198 and is searching for vehicle number 200, not only would all documents containing vehicle 200 be found, but also those with numbers 198S, 199S, and 200S; where S represents all subsequent vehicles. Default for the first valid vehicle number is zero (0) whereas, the last valid vehicle number becomes 999.

When the file has been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.2-14 depicts the flow diagram for this subroutine.

4.2.15 FMAIN

This subroutine is used by the SEARCH MODE to format and display on the terminal the entire data record found during a specific data item search. This procedure also formats the data record for the output file to be spooled on the high speed printer. The Contract Number is found in the CONTRACT TABLE, CTAB, by search for the W.A. Number/ID Code. See Section 6.3.2 for further information concerning the CTAB Table.

If many document records are found during a search and it is observed that needed information will soon disappear from the screen, the user may

temporarily stop terminal display by depressing the space bar. Terminal display may be restarted by depressing the 'Q' key. Flowchart Figure 5.4.2-15 depicts the flow diagram for this subroutine.

4.2.16 CMAIN

This subroutine is used by the SEARCH MODE to format and display on the terminal the entire data record found during a CONTRACT NUMBER search, 4.2.13. This procedure also formats the data record for the output file to be spooled on the high speed printer.

If many document records are found during a search and it is observed that needed information will soon disappear from the screen, the user may temporarily stop terminal display by depressing the space bar. Terminal display may be restarted by depressing the 'Q' key. Flowchart Figure 5.4.2-16 depicts the flow diagram for this subroutine.

4.3 DRAWING/ENGINEERING ORDER

4.3.1 INPTDW

This subroutine is the input routine for the SPADS MAIL LOG DRAWING/E.O. subfile. The DRAWING subfile data record consists of eleven (11) data items. If the drawing contains more than one (1) sheet, an additional sheet record consisting of five (5) data items is kept for each sheet in the SHEET subfile. See Figure 6.2.3.1. The ENGINEERING ORDER subfile data record consists of six (6) data items. See Figure 6.2.3.3. The main body of data for these three (3) subfiles are sent from Dallas rather than manually input. Unfortunately, vehicle system and section and engineering order titles are not available in the original Dallas Data Base. However, these fields may be entered in manually input Drawings and E.O.'s.

The INPUT MODE has two (2) optional operations:

- (1) E.O. input of new engineering orders.
- (2) Drawings and E.O.'s input of new drawings along with their referenced E.O.'s.

 During option number 2, entry of referenced E.O.'s, option number 1 is automatically performed if the E.O.'s are new to the data base.

Entry of new engineering orders may result in one (1) of three (3) terminal messages if the drawing sheet already has three (3), four (4), or more E.O.'s referenced. Flowchart Figure 5.4.3-1 depicts the INPUT MODE of the DRAWING/E.O. subfile.

4.3.2 REVSDW

This subroutine is the revise routine for the SPADS MAIL LOG DRAWING/E.O. subfile. The only information necessary in order to revise or delete a drawing or engineering order is the Drawing Number or E.O. Number. When the desired record is found, it will be displayed on the terminal for

verification. If it is not the correct record, search for the desired record will continue. After the revision has been made the entire record is again displayed on the terminal for user edification.

The REVISE MODE may change the revision of a sheet. During this modification, all engineering orders referenced by that drawing sheet are automatically deleted. The REVISE MODE may also be used an an Input operation by adding a new sheet(s) to any existing drawing.

Flowchart Figure 5.4.3-2 depicts the REVISE MODE of the DRAWING/E.O. subfile.

4.3.3 SEADW

This subroutine is the search routine for the SPADS MAIL DRAWING/E.O. subfile.

Of the eleven (11) data items within the DRAWING subfile, nine (9) are searchable. The resulting output from these searches always consists of six (6) data items. See Figure 6.2.3.2. The ENGINEERING ORDER subfile consists of six (6) item records, of which only two (2) are searchable. The resulting output from these two (2) searches consists of up to all six (6) data items. It should be noted that Revision Date is output in place of the E.O. Date when an E.O. has a revision. This allows only the most recent date to be displayed. See Figure 6.2.3.4.

Due to the data base source for drawings coming from Dallas and manual input, three (3) searches have limited capability: SYSTEM, SECTION, and DATE. The SYSTEM and SECTION searches are only usable for those drawings which are manually input. However, some Dallas drawing data will contain this information within the title. Therefore, a TITLE search can be used if either the SYSTEM or SECTION searches are found unsuccessful. The DATE search is also limited in that all Dallas drawing data will have the same date. This date represents the latest information update received from Dallas. Nevertheless, the DATE search has the capability of retrieving an entire month's or year's worth of data by entering 00 for the day or month. For example, entering 110078 would result in finding all drawings within the data base in the

eleventh month, November, for the year 1978. Likewise an entry of 000078 would retrieve all documents for the year 1978.

There are two (2) specialized searches: REVISION ACTION DUE and PRINT ALL. REVISION ACTION DUE search finds all drawings containing sheets which reference five (5) or more engineering orders. The PRINT ALL search has two (2) options: (1) Output all drawings and their referenced E.O.'s or (2) Output all engineering orders in the data base.

The VEHICLE search also has some special qualities. First, the user may search for all drawings related to a certain vehicle, or search for all engineering orders related to a certain vehicle. Second, a group of vehicles may be found by using the first and last valid vehicle options. For example, if a user declares the first valid vehicle as 198 and is searching for vehicle number 200, not only would all records containing vehicle 200 be found, but also those with numbers 1985, 1995, and 2005; where S represents all subsequent vehicles. Default for the first valid vehicle number is zero (0); whereas, the last valid vehicle number becomes 999.

Another search also has the drawing and engineering order options. This is the E.O. NUMBER search. The user may search the ENGINEERING ORDER subfile for a specific E.O. Number or search the DRAWING subfile for all drawings referencing a specific E.O. Number. For an outline of all search capabilities see Figure 6.2.3.5.

Flowchart Figure 5.4.3-3 depicts the SEARCH MODE of the DRAWING/E.O. subfile.

4.3.4 ARCDW.

This subroutine is the archive routine for the SPADS MAIL LOG DRAWING/E.O. subfile. The only information needed in order to archive a drawing is the Drawing Number. The user may designate how many drawings are to be archived at one (1) session. Actual drawing data archived is placed in a file called INACTD. If the drawing contains more than one (1) sheet, the SHEET subfile is automatically updated. Sheet drawing data is stored in a file called INACTS.

Engineering order data records are automatically archived. E.O.'s unreferenced by any drawings are placed in a file called INACTE. Flowchart Figure 5.4.3-4 depicts the ARCHIVE MODE of the DRAWING/E.O. subfile.

4.3.5 SHOWEO

This subroutine is used to display the entire ENGINEERING ORDER data record on the terminal for the INPUT or REVISE MODES. Each data item is numbered in order to verify the data record as either correctly input or the correct record to be revised or deleted. Flowchart Figure 5.4.3-5 depicts the flow diagram for this subroutine.

4.3.6 SHOWDW

This subroutine is used to display an entire DRAWING data record from both the DRAW and SHEET subfiles. This entire data record is displayed on the terminal during the INPUT or REVISE MODES. Each data item is numbered in order to verify the data record as either correctly input or the correct record to be revised or deleted. Flowchart Figure 5.4.3-6 depicts the flow diagram for this subroutine.

4.3.7 INPSE

This subroutine is used by the INPUT or REVISE MODES to input or change specific data items within the ENGINEERING ORDER data subfile. Flowchart Figure 5.4.3-7 depicts the flow diagram for this subroutine.

4.3.8 INPSDW

This subroutine is used by the INPUT or REVISE MODES to input or change specific data items within the DRAWING and SHEET data subfiles. Revision of SHEET data records is performed by this routine, whereas, SHEET data Input is performed by another subroutine described in 4.3.9. Flow-chart Figure 5.4.3-8 depicts the flow diagram for this procedure.

4.3.9 INPSS

This subroutine is used by the INPUT MODE to enter SHEET subfile data items. If referenced E.O.'s are new to the data base, the user may enter the Engineering Order Input routine described in 4.3.7. Flowchart Figure 5.4.3-9 depicts the flow diagram for this procedure,

4.3.10 FIXSHT

This subroutine is used by the REVISE MODE to prepare the SHEET data subfile for the input of a new sheet for a specified drawing. Flow-chart Figure 5.4.3-10 depicts the flow diagram for this subroutine.

4.3.11 SHTADD

This subroutine is used by the REVISE MODE to input new data items in the SHEET subfile corresponding to a new sheet for a specified drawing. This procedure is performed in conjunction with FIXSHT described in 4.3.10. Flowchart Figure 5.4.3-11 depicts the flow diagram for this subroutine.

4.3.12 NEOADD

This subroutine is used by the INPUT or REVISE MODES to add a new ENGINEERING ORDER to a sheet of a specified drawing. Entry of new engineering orders may result in one (1) of three (3) terminal messages if the drawing sheet already has three (3), four (4), or more E.O.'s referenced. Flowchart Figure 5.4.3-12 depicts the flow diagram for this subroutine.

4.3.13 HEADER

This subroutine is used by the SEARCH MODE to format for the output file the appropriate header for each data item search. This header is presented on each page of the output file. Flowchart Figure 5.4.3-13 depicts the flow diagram for this subroutine.

4.3.14 MAIND

This subroutine is used by the SEARCH MODE to format and display on the terminal the appropriate DRAWING data items for each data record which was found during a REVISION ACTION DUE type of search. This procedure also formats the data items for the output file to be spooled on the high speed printer.

If many document records are found during a search and it is observed that needed information will soon disappear from the screen, the user may temporarily stop terminal display by depressing the space bar. Terminal display may be restarted by depressing the 'Q' key. Flowchart Figure 5.4.3-14 depicts the flow diagram for this subroutine.

4.3.15 DMAIN

This subroutine is used by the SEARCH MODE to format and display on the terminal the appropriate DRAWING data items for each data record which was found. This procedure also formats the data items for the output file to be spooled on the high speed printer.

If many document records are found during a search and it is observed that needed information will soon disappear from the screen, the user may temporarily stop terminal display by depressing the space bar. Terminal display may be restarted by depressing the 'Q' key. Flowchart Figure 5.4.3-15 depicts the flow diagram for this subroutine.

4.3.16 TITDW

This subroutine is called by the SEARCH MODE to perform the TITLE search. This procedure allows up to four (4) of the seven (7) possible words in the title to be searched. As each title is found containing the desired word, the entire title is displayed on the terminal. If none are found, the user may restart this subroutine or return to the SEARCH MODE which is normally done when the data file is finished. When the final word has been searched,

the appropriate data items of each DRAWING data record found will be formatted to an output file and displayed on the terminal. Flowchart Figure 5.4.3-16 depicts the flow diagram for this subroutine.

4.3.17 ALDW

This subroutine is called by the SEARCH MODE to perform a PRINT ALL type of search. This routine has two (2) options: a complete listing of all Drawing data including Engineering Orders or a listing of Engineering Orders only. During this search the break key is inhibited. Each DRAWING or ENGINEERING ORDER data record is formatted for the output file and displayed on the terminal. When the designated subfiles are finished, this routine automatically spools the output file to the high speed printer. Flowchart Figure 5.4.3-17 depicts the flow diagram for this subroutine.

4.3.18 ACTDUE

This subroutine is called by the SEARCH MODE to perform the REVISION ACTION DUE type of search. This procedure searches the DRAWING and SHEET subfiles for all Drawing data sheets referencing five (5) or more Engineering Orders. Those drawing sheets found which contain the correct number of E.O's are formatted for the output file and displayed on the terminal. During this search the break key is inhibited. When all DRAWING data records have been checked, this routine automatically spools the output file to the high speed printer. Flowchart Figure 5.4.3-18 depicts the flow diagram for this subroutine.

4.3.19 DRAWN

This subroutine is called by the SEARCH MODE to perform the DRAWING NUMBER type of search. If the desired number is not located, a special Not Found message is displayed on the terminal. When the search is finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.3-19 depicts the flow diagram for this subroutine.

4.3.20 DATDW

This subroutine is called by the SEARCH MODE to perform the DRAWING DATE type of search. The DATE search has the capability of retrieving an entire month's or year's worth of data by entering 00 for the day or month. For example, entering 110078 would result in finding all the documents within the data base in the eleventh month, November, for the year 1978. Likewise, an entry of 000078 would retrieve all documents for the year 1978. Flowchart Figure 5.4.3-20 depicts the flow diagram for this subroutine.

4.3.21 SYSDW

This subroutine is called by the SEARCH MODE to perform a SYSTEM search. This routine formats drawings found and builds an output file. When the file has been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.3-21 depicts the flow diagram for this subroutine.

4.3.22 VEHND

This subroutine is called by the SEARCH MODE to perform a VEHICLE NUMBER type of search. This procedure has two (2) options: all the Drawings or all the Engineering Orders related to a vehicle, or set of vehicles. The Vehicle search also has a special quality. A group of vehicles may be found by using the first and last valid vehicle options. For example, if a user delcares the first valid vehicle as 198 and is searching for vehicle number 200, not only would all documents containing vehicle 200 be found, but also those with numbers 198S, 199S, and 200S; where S represents all subsequent vehicles. Default for the first valid vehicle number is zero (0) whereas, the last valid vehicle number becomes 999.

Flowchart Figure 5.4.3-22 depicts the flow diagram for this subroutine.

4.3.23 SECTN

This subroutine is called by the SEARCH MODE to perform a SECTION search. This routine formats drawings found and builds an output file. When the file has been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.3-23 depicts the flow diagram for this subroutine.

4.3.24 CODE

This subroutine is called by the SEARCH MODE to perform a VENDOR CODE type of search. This procedure checks the first three (3) numbers of each drawing number for a designated code. All drawings found with this vendor code are formatted for the output file and displayed on the terminal. When the file has been finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.3-24 depicts the flow diagram for this subroutine.

4.3.25 EONN

This subroutine is called by the SEARCH MODE to perform the ENGINEERING ORDER NUMBER type of search. This procedure has two options: locating a specific Engineering Order within the E.O. data subfile or search the DRAWING data subfiles for all sheets referencing a specific Engineering Order. If the first option is taken and the desired E.O. is not located on the E.O. subfile, a special Not Found message is displayed on the terminal. Regardless of the option, the routine formats for the output file and displays on the terminal the appropriate data items for data records found. When the search is finished, this routine returns to the SEARCH MODE. Flowchart Figure 5.4.3-25 depicts the flow diagram for this subroutine.

4.4 GENERAL SUBROUTINES

4.4.1 IDENT

This subroutine is used by the three (3) main subfile entrance routines to record the user identification, time and date of entry, and the terminal used. The file used to store this information is called USER in each of the three (3) program UFD's. Flowchart Figure 5.4.4-1 depicts the flow diagram for this subroutine.

4.4.2 TINPUT

This subroutine is used to perform the basic Title Input for all three (3) subfiles. This procedure is used in the INPUT MODE to build a seven (7) word, ten (10) characters per word searchable title. It is also called during the REVISE MODE to change an existing title. The routine is also used to build a compatible word for which to perform the TITLE search. Flowchart Figure 5.4.4-2 depicts the flow diagram for this subroutine.

4.4.3 RDCOM

This subroutine is used by the Title Input routine, 4.4.2, to construct the title one (1) character at a time. Editor checks are made for eraser, kill, and new line characters. Flowchart Figure 5.4.4-3 depicts the flow diagram for this subroutine.

4.4.4 GETWRD

This subroutine is used by the Title Input routine, 4.4.2, to build the searchable title in seven (7) words, ten (10) characters per word. Flowchart Figure 5.4.4-4 depicts the flow diagram for this subroutine.

4.4.5 GETWD

This subroutine is used by the Title Input routine, 4.4.2, to preserve and store the title as input. This title is used for output formatting. Flowchart Figure 5.4.4-5 depicts the flow diagram for this subroutine.

4.4.6 GETCON

This subroutine is used by the MAIL CORRESPONDENCE and DIR/REPORT subfile programs to fetch a Contract Number from the CONTRACT TABLE, CTAB. This process is performed by searching the table for a given Work Authorization Number/ID Code. See Section 6.2.3 for further information concerning the CTAB Table. If the search if unsuccessful, a special Not Found message is stored in place of the Contract Number and displayed on the terminal. Flowchart Figure 5.4.4-6 depicts the flow diagram for this subroutine.

4.4.7 IDUSER

This subroutine is used by the ARCHIVE MODE routine to check the user identification for a valid entry. If the user identification is not SYSTEM, a special invalid user message is displayed on the terminal. A special message is also sent to the system terminal to record the improper entry attempt into the ARCHIVE MODE. Flowchart Figure 5.4.4-7 depicts the flow diagram for this subroutine.

5.1 MAIN ENTRIES

5.1.1 MAIL CORRESPONDENCE

Figure 5.3-1 is the flowchart for the MAIL LOG Program and MAIL CORRESPONDENCE subfile main entry routine.

5.1.2 DESIGN INFORMATION RELEASE/REPORT

Figure 5.3-2 is the flowchart for the DIR/REPORT subfile main entry routine.

5.1.3 DRAWING/ENGINEERING ORDER

Figure 5.3-3 is the flowchart for the DRAWING/E.0. subfile main entry routine.

5.2 SUBROUTINES

5.2.1 MAIL CORRESPONDENCE

Figures 5.4.1-1 thru 5.4.1-29 are the flowcharts for the MAIL CORRESPONDENCE subfile subroutines.

5.2.2 DESIGN INFORMATION RELEASE/REPORT

Figures 5.4.2-1 thru 5.4.1-16 are the flowcharts for the DIR/REPORT subfile subroutines.

5.2.3 DRAWING/ENGINEERING ORDER

Figures 5.4.3-1 thru 5.4.3-25 are the flowcharts for the DRAWING E.O. subfile subroutines.

5.2.4 GENERAL

Figures 5.4.4-1 thru 5.4.4-7 are the flowcharts for the MAIL LOG program general subroutines.

5.3 FLOWCHART FIGURES FOR MAIN ENTRIES


```
A1
    $INSERT SYSCOM > KEYS. F; COMMON/CDAT/CO; INTEGER*2; DOUBLE PRECISION
В٦
    BREAKS(.FALSE.)
C1
    CLEAR
D1
    COMI$$('TTY',3,12,IC)
E1
                     See section 3.1.2.1 page 8
    WRITE (1,100)
F]
                     See section 3.1.2.1 page 8
    WRITE (1,125)
G1
     READ (1,11) IOPT
H1
     (IOPT.EQ.'QU')
Jl
K1
A2
     (IOPT .NE.'DI!)
 B2
     (IOPT.EQ.'DR')
 C2
     (IOPT.Eq.'CO')
 D2
 E2
 F2
 G2
 H2
· J2
 K2
 А3
     ATCH$$('F DIR',5, K$ALLD, IPAS, K$IMFD+K$SETH, IC)
 B3
     ATCH$$('F_DRAW',6,K$ALLD,IPAS,K$IMFD+K$SETH,IC)
 C3
     SRCH$$(K$RDWR+K$NDAM, 'REVS', 6, 4, 1, IC)
 D3
     (IC.NE.0)
 E3
```

Page (2 of 5)

```
F3.
     SRCH$$(K$RDWR+K$NDAM, 'DATE', 6, 6, 1, IC)
     (IC.NE.O)
G3
     CLEAR
Н3
J3
K3
A4
B4
     RESUS$('*DIR',4)
     RESU$$('*DRAW',5)
C4
D4
     WRITE (1,1001) ('SORRY - THE MAIL LOG IS CURRENTLY IN USE PLEASE TRY AGAIN LATER')
E4
F4
G4
H4
     IDENT
J4
K4
A5
     SEE B4
B5
     SEE B5
. C5
D5
E5
F5
G5
H5
     WRITE (1,2) See section 3.1.2.2 page 9
J5
     READ (1,11) IOPT
K5
```



```
A1
B1
    (IOPT.EQ.'IN')
    (IOPT.EQ.'RE')
C1
    (IOPT.EQ.'SE')
DI
    (IOPT.EQ.'AR')
E1
    (IOPT.EQ.'QU')
F]
G1
H1
JŢ
K1
A2
    INPTC
B2
C2
    REVSC
    SEAC
D2
E2
    ARCC
F2
    SRCH$$(K$CLOS,'REVS',6,0,0,0); SRCH$$(K$CLOS,'DATE',6,0,0,0)
G2
H2
J2
K2
А3
B3
C3
D3
E3
```

Page (5 of 5)


```
A1
       $INSERT COMMON: $INSERT SYSCOM KEYS.F; INTEGER*2
B1
       CLEAR
C1
       COMI$$ ('TTY',6,12,IC)
D1
E٦
       IDENT
F1
       BREAK$(.TRUE.)
       SRCH$$(K$RDWR+K$NDAM,'DIR',6,2,IT,IC)
G1
н٦
       SRCH$$(K$RDWR+K$NDAM,'REVS',6,4,IT,IC)
       SRCH$$(K$RDWR+K$NDAM, 'TEMP', 6, 6, IT, IC)
J1
K1
A2
       WRITE(1,3) See section 3.1.2.2 page 9
B2
       BREAK$(.FALSE.)
C2
D2
       READ(1,4)IDES
       REWIND8; REWIND 10
E2
F2
G2
H2
       (IC.NE.0)
J2
K2
А3
В3
С3
D3
E3
```

Page (2 of 3)

```
F3
G3
Н3
       WRITE(1,1002) ('DIR FILE IS IN USE - PLEASE TRY LATER')
J3
К3
Α4
       (IDES.EQ.'IN') INPTDR
B4
       (IDES.EQ.'SE')
                       SEADR
C4
       (IDES.EQ.'RE')
                        REVSDR
D4
       (IDES.EQ.'AR') ARCDR
E4
       (IDES.EQ.'QU'); IPAS(1)=' '; IPAS(2)=' '; IPAS(3)=' '
F4
       SRCH$$(K$CLOS,'DIR',6,0,0,0)
G4
       SRCH$$(K$CLOS,'REVS',6,0,0,0); SRCH$$(K$CLOS,'TEMP',6,0,0,0)
H4
       ATCH$$('F_MAIL',6,K$ALLD,IPAS,K$IMFD+K$SETH,IC)
J4
Κ4
A5
 B5
 C5
 D5
        CLEAR
 E5
 F5
 G5
 H5
        RESU$$('BFILE',5)
 J5
 K5
```

Page (3 of 3)


```
A1
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*2
B1
C1
     CLEAR
     COMI$$ ('TTY', 6,12,IC)
D1
     IDENT
E1
     BREAK$ (.TRUE.)
F1
     SRCH$$(K$RDWR+K$NDAM,'DRAW',6,2,1,IC)
G1
     (IC.NE.0)
H1
Jl
K1
A2
     (IC.NE.O)
B2
C2
D2
 E2 -
 F2
 G2
      SRCH$$(K$RDWR+K$NDAM,'E0',6,14,1,IC)
 H2
      (IC.NE.O)
 J2
 K2
 A3
     WRITE(1,3) See section 3.1.2.2 page 9
 В3
      BREAK$(.FALSE.)
 C3
      READ(1,4)IDES
 D3
      REWIND 6
 E3
```

Page (2 of 6)

```
F3
      REWIND 12
       REWIND 18
 G3
 НЗ
      SRCH$$(K$RDWR+K$NDAM, 'SHEET', 6,7,1,IC)
 J3
 КЗ
 A4
      WRITE(1,1002) ('DRAW FILE IS IN USE - PLEASE TRY LATER')
 B4
C4
      SRCH$$(K$CLOS, 'DRAW', 6,0,0,0)
D4
      SRCH$$(K$CLOS,'EO',6,0,0,0)
      SRCH$$(K$CLOS, 'SHEET', 6, 0, 0, 0)
E4
      IPAS(1)=' '; IPAS(2)=' '; IPAS(3)=' '
F4
G4
      ATCH$$('F_MAIL',6,K$ALLD,IPAS,K$IMFD+K$SETH,IC)
      RESU$$('BFILE',5)
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
```

J5

K5

A1 81 see Cl thru Gl C1 (IDES.EQ.'IN') D1 (IDES.EQ.'SE') E1 (IDES.EQ.'RE!) F1 (IDES.EQ.'AR') (IDES.EQ.'QU') G1 H1 Jl K1 A2 В2 C2 INPTDW REVSDW D2 E2 SEADW F2 ARCDW G2 H2 J2 K2 А3 83 C3 D3

Figure 5.3-3

E3

Page (5 of 6)

CLEAR F3 G3 Н3 J3 К3 A4 84 C4 D4 E4 F4 G4 H4 J4 K4 A5 B5 C5 D5 E5 F5

Figure 5.3-3

G5

H5

J5

K5

Page (6 of 6)

5.4 FLOWCHART FIGURES FOR SUBROUTINES


```
A1
B1
      $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*4; *2
Cl
      TIMDAT(A, 15)
      (A(13).EQ.'JW'.OR.A(13).EQ.'NH'.OR.A(13).EQ.'RJ'.OR.A(13).EQ.
Dl
       'DK'.ÓR.A(13).EQ.'GM')
      WRITE (1,4) ('SORRY, YOU ARE NOT VALIDATED TO USE THIS MODE.')
Εl
FI
G1
НТ
Jl
K1
A2 .
B2
C2
      WRITE (1,11) ('IS THIS A CONTINUATION OF INPUT (YES OR NO)')
D2
E2
      JOUT = 0
F2
      READ (1,10) IOPT
G2
      (IOPT.EQ.'YE'); (IOPT.NE.'NO')
      WRITE (1,14) SEE SECTION 4.1.1 page 12
H2
J2
      READ (1,10) IOPT
K2
A3
B3
      (IOPT.EQ.'NE')
C3
      (IOPT.EQ.'LA')
D3
      (IOPT.EQ.'DA')
E3
```

Page (2 of 21)

Figure 5.4.1-1

```
F3
G3
Н3
J3
K3
A4
B4
     SRCH$$(K$CLOS,'REVS',6,0,0,0); SRCH$$(K$CLOS,'DATE',6,0,0,0)
C4
      JOUT = 1
D4
      SRCH$$(K$DELE,'SAVE',6,0,0,0)
E4
      REWIND 10
F4
      COUNTR = 0
G4
      WRITE (10,16) COUNTR
H4
      REWIND 10
 J4
 Κ4
A5
 B5
 C5
      COMIS$('SOUT',4,12,IC)
 D5
 E5
 F5
 G5
 H5
 J5
 K5
```

Page (3 of 21)


```
A1
      SRCH$$(K$RDWR+K$NDAM,'VC',3,14,1,IC)
B1
      SRCH$$(K$RDWR+K$NDAM,'OM',3,13,1,IC)
C1
      SRCH$$(K$RDWR+K$NDAM,'IM',3,12,1,IC)
D٦
E٦
      (JOUT.EQ.1)
      OPEN
F1
      SRCH$$(K$RDWR+K$NDAM,'ACTD',6,5,1,IC)
G1
       ITRSP = 1
Н٦
JI
      REWIND 10
K1
A2
       READ (10,16) COUNTR
B2
C2
       REWIND 10
       READ (6, END = 2000)MS,ATHR,DD,TO,DLN,SUB,PTIT,ROUT,IDD,COUNT,CWA,
D2
       CONT, ADD, TWX, FSC, NRE, DDT
       DO 2010 IN = 11,15; READ (IN, END = 2010)MS, ATHR, DD, TO, DLN, SUB, PTIT,
E2
       ROUT, IDD, COUNT, CWA, CONT, ADD, TWX, FSC, NRE
       DO 2005 IN = 16,18; READ (IN, END = 2005)MS, ATHR, DD, TO, DLN, SUB, PTIT,
F2
       ROUT, IDD, COUNT, CWA, CONT, ADD, TWX, FSC, NRE
       READ (9,END = 2060)ATHR,DLN,PTIT,IDD,COUNT,ADD,FSC,NRE
 G2
       WRITE (1,20); WRITE (1,30) ('FIRST - PLEASE ENTER THE CURRENT INPUT DATE')
 H2
       READ (1,40,ERR = 1001) IM, ID, IY
 J2
 K2
 A3
 B3
       REWIND 10
       WRITE (10,17) IM, ID, IY, COUNTR
 C3
       REWIND 10
 D3
        (JOUT.EQ.1)
 E3
```

Page (5 of 21)

```
R = 0
F3
G3
      INPSC
НЗ
J3
     (IM.GT.12.OR.ID.GT.31); (IY.EQ.O.OR.IM.EQ.O.OR.ID.EQ.O)
· K3
A4
B4
     WRITE (1,1003)
C4
     READ (1,1004,ERR = 1002) IFILE
D4
     (IFILE.LE.O.OR.IFILE.GT.6)
E4
F4
G4
     COUNTR = COUNTR + 1
     COUNT = COUNTR
H4
J4
Κ4
A5
B5)
C5
D5
E5
F5
G5
H5
J5
K5
```



```
A1
 B1
         (IFILE.EQ.1)
 Cl
         (IFILE.EQ.2)
 Dl
        (IFILE.EQ.3)
 E1
         (IFILE.EQ.4)
 Fl
         (IFILE.EQ.5)
 G1
        (IFILE.EQ.6)
 ΗЪ
 J1
 K1
 A2.
 B2
        WRITE (6) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX
 C2
        FSC, NRE, DDT
        WRITE (11) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
 D2
        FSC, NRE
        WRITE (12) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
 E2
        FSC, NRE
 F2
        WRITE (13) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
        FSC, NRE
        WRITE (14) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
 G2
        FSC, NRE
 H2
        WRITE (15) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
        FSC, NRE
 J2
 K2
 A3
 B3
        (MS.EQ.'VC')
 C3
 D3
        (MS.EQ.'OM')
E3
        (MS.EQ.'IM')
```

Page (8 of 21)

```
F3
  G3
         (ADD(1).NE.0)
  H3
  J3
  K3
  A4
  B4
        WRITE (18) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
 C4
        FSC, NRE, DDT
        WRITE (17) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
 D4
        FSC, NRE, DDT
        WRITE (16) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
 E4
        FSC, NRE, DDT
 F4
        WRITE (9) ATHR, DLN, PTIT, IDD, COUNT, ADD, FSC, NRE
 G4
 H4
        (MS.EQ.'IM')
       DO 3000I = 1,6; DO 300IJ = 1,5; (TWX(I,J).NE.
 J4
 K4
A5
B5
       WRITE (1,3020)
C5
       UPDATE
D5
       WRITE (1,70)
E5
F5
       READ (1,10)IOPT
G5
H5
J5
K5
```



```
A1
      (IOPT.EQ.'YE'); (IOPT.NE.'NO')
B1
     CLOSE
C1
      SRCH$$(K$CLOS,'ACTD',6,0,0,0)
D1
      REWIND 10
E1
      WRITE (10,17) IM, ID, IY, COUNTR
FI
      REWIND 10
G1
      WRITE (1,112)
H1
      READ (1,10)IOPT
Jl
 K1
 A2
      (IOPT.EQ.'NO')
 B2
      (IOPT.NE.'WA')
 C2
 D2
 E2
 F2
 G2
 H2
· J2
  K2
  А3
  B3
       SRCH$$(K$CLOS,'VC',3,0,0,0)
  C3
       SRCH$$(K$CLOS,'OM',3,0,0,0)
  D3
       SRCH$$(K$CLOS,'IM',3,0,0,0)
  E3
```

Page (11 of 21)

```
F3
G3
НЗ
J3
КЗ
A4
      IHARD = 0
В4
      SRCH$$(K$RDWR+K$NSAM,'OUT',6,3,0,0)
C4
      WRITE (1,50)
D4
      READ (1,10)IOPT
E4
F4
      (IOPT.EQ.'NO'); (IOPT.NE.'YE')
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
     IHARD = 1
     REWIND 18; REWIND 17; REWIND 16
G5
H5
     IN = 15
J5
K5
```

Page (12 of 21)


```
A٦
B1
       IN = IN + 7
C1
       IPAGE = 0
D1
       ICOUNT = 1
E٦
      READ (IN, END = 1090)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA,
       CONT, ADD, TWX, FSC, NRE, DDT
F٦
       SEE El
G1
       (IPAGE.NE.O)
Ηl
       WRITE (7,140)
J1
       IPAGE = IPAGE + 2
K1
A2
B2
      WRITE (7,150)ICOUNT, PTIT, DD, FSC, ATHR, TO, ROUT, DLN
C2
       IPAGE = IPAGE + 2
D2
       (IHARD.EQ.O)
E2
       ICOUNT = ICOUNT + 1
F2
       (IHARD.NE.O)
       (IPAGE.GE.47)
G2
H2
J2
K2
А3
B3
      (IN.NE.18)
C3
D3
E3
Figure 5.4.1-1
```

Page (14 of 21)

```
(IPAGE.GE.40)
F3
       IPAGE = 0
G3
Н3
J3
К3
A4
       (IHARD.EQ.0)
B4
       SRCH$$(K$CLOS,'OUT',6,0,0,0)
C4
       SRCH$$(K$CLOS,'DATE',6,0,0,0); SRCH$$(K$CLOS,'REVS',6,0,0,0)
D4
E4
       IPAGE = 0
F4
G4
H4
J4
Κ4
Α5
B5
        IHARD = 0
C5
       SRCH$$(K$CLOS,'VC',3,0,0,0); SRCH$$(K$CLOS,'OM',3,0,0,0);
SRCH$$(K$CLOS,'IM',3,0,0,0)
D5
       SRCH$$(K$DELE,'VC',3,0,0,0); SRCH$$(K$DELE,'OM',3,0,0,0); SRCH$$(K$DELE,'IM',3,0,0,0)
 E5
       COMI$$('OUTS',4,12,IC)
 F5
 G5
 H5
 J5
 K5
                                                                      Page (15 of 21)
 Figure 5.4.1-1
```



```
A1.
     WRITE (7,80)
81
C1
DI
     (IN.EQ.18)
     (IN.EQ.17)
ΕΊ
     (IN.EQ.16)
F٦
G1
н٦
Jl
K1
A2
B2
C2
     WRITE (7,90) IM, ID, IY
D2
     WRITE (7,100) IM, ID, IY
E2
     WRITE (7,110) IM, ID, IY
F2
G2
H2
J2
K2
А3
B3
03
53
E3
```

Page (17 of 21)

```
F3
    WRITE (7,120)
    (IHARD.EQ.O)
G3
НЗ
J3
К3
A4
B4
C4
D4
E4
F4.
    WRITE (7,130)
G4
Н4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
    IPAGE = IPAGE + 4
H5 -
    WRITE (7,85)
    IPAGE = IPAGE + 5
J5
```

K5


```
A1 1
     WRITE (7,160) ADD, CWA, CONT
В1
     IPAGE = IPAGE + 1
C1
     ILINE = 0
D1
     KRE = 0
El
     DO 1301L = 1,3; (NRE(1,L).NE.' ') KRE = KRE + 1; (KRE.EQ.O)
F]
G1
Н1
JI
K1
A2
 B2
     ILINE = 0
 C2
     KTW = 0
     DO 1200M = 1,6; DO 1202N = 1,5; (TWX(M,N).NE' ') KTW = KTW + 1; (KTW.EQ.O)
 D2
 E2
     WRITE (7,170) (NRE(1,L), L = 1,3)
 F2
     ILINE = ILINE + 1; IPAGE = IPAGE + 1
 G2
     (ILINE.NE.O)
 H2
· J2
 K2
 А3
 В3
 C3
     WRITE (7,1205) (TWX(M,N),N = 1,5)
 D3
     ILINE = ILINE +1; IPAGE = IPAGE + 1
 E3
```

Page (20 of 21)

```
(ILINE.NE.O)
F3
G3
     WRITE (7,175)
Н3
     IPAGE = IPAGE + 1
J3
К3
A4
     Performed by H4
В4
     DO1401J=1,21; (DDT(I,J).NE.' ') KDD=KDD+1; (KDD.EQ.0)
C4
D4
E4
F4
     WRITE (7,1210)
     IPAGE = IPAGE + 1
G4
     DO 1400 I = 1,30
H4
J4
Κ4
A5
B5
     WRITE (7,180) (DDT(I,J),J = 1,21)
C5
     IPAGE = IPAGE + 1
D5
E5
F5
G5
H5
 J5
 K5
```



```
A1
B1
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*4; *2
Cl
     FINISH=0
D1
E٦
     IA=0
F1
     CLEAR
G1
     TIMDAT(A, 15)
     (A(13).EQ.'JW'.OR.A(13).EQ.'NH'.OR.A(13).EQ.'RJ'.OR.A(13).EQ.'DK')
HЪ
     WRITE(1,4) ('SORRY, YOU ARE NOT VALIDATED TO USE THIS MODE')
Jl
K1
A2
B2
     (ITRSP.EQ.O)
C2
D2
E2
F2
G2
H2
     WRITE(1,1)
J2
     READ(1,2,ERR=3) D,ICOUN
K2
     WHERE
A3
B3
     READ(6, END=200)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT,
C3
     CWA, CONT, ADD, TWX, FSC, NRE, DDT
D3
     SEE B3
     (FINISH.EQ.1)
E3
     (ICOUN.NE.COUNT); DO110I=1,3; (IDD(I).NE.D(I))
```

```
WRITE(8)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
F3
     FSC, NRE, DDT
G3
Н3
J3
К3
A4
B4
C4
     END FILE 8
D4
E4
     SHOWC
     WRITE(1,1700)
F4
G4
     READ(1,50)IOPT
     (IOPT.EO.'NO'); (IOPT.NE.'YE')
H4
J4
K4
A5
B5
C5
     SRCH$$(K$CLOS, 'TRAN', 6, 0, 0, 0)
     SRCH$$(K$DELE, 'TRAN', 6,0,0,0)
D5
     CNAM$$('REVS',6,'TRAN',6,IC)
E5
F5
     SRCH$$(K$RDWR+K$NDAM, 'REVS', 6, 4, 1, IC)
G5
     WRITE(1,2100)
H5
     READ(1,50)IOPT
J5
K5
```



```
A1
 B-I
      (IOPT.EQ.'RE')
      (IOPT.NE.'DE')
 C1
 D7
 E1
 F1
      (FINISH.EQ.1)
      (IMELE.EQ.O)
 G1
      IN=11
 н٦
 JT
 K1
- A2
  B2 R=1
  C2 FINISH=1
  D2
  E2
  F2
  G2
      (ITWFX.EQ.O)
     IN=12
  Н2
· J2
  K2
  A3
  B3 INPSC
  C3 FINISH=1
  D3
  E3
```

• •

Figure 5.4.1-2

Page (5 of 12)

```
F3
    (IANN.EQ.O)
G3
    IN=13
НЗ
J3
КЗ
A4
B4 .
C4 .
D4
E4
F4
     (IPR.EQ.0)
G4
     IN=14
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
```

K5

Page (6 of 12)


```
A1
      (IMIS.EQ.O)
Bl
Cl
     IN=15
     READ(IN, END=201)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX, FSC, NRE
D1
     SEE DI
E٦
F٦
      (FINISH.EQ.1)
      (COUNT.NE.ICOUNT); DOllli=1,3; (IDD(I).NE.D(I))
G1
      WRITE(8)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD,
HI
      TWX, FSC, NRE
Jl
K1
A2
B2
      (IA.EQ.0)
C2
D2
E2
F2
      (ITRSP.EQ.O)
G2
      ITRSP=0
H2
J2
      IA=0
K2
A3
B3
      ITRSP=1
C3
      IA=0
      WRITE(1,1700)
D3
      READ(1,50)IOPT
E3
```

```
F3
     (IOPT.EQ.'NO'); (IOPT.NE.'YE')
G3
Н3
    SHOWC
J3
КЗ
A4
В4
C4
D4
E4
F4
    WRITE(1,2100)
G4
     READ(1,50)IOPT
     (IOPT.EQ.'RE')
H4
     (IOPT.NE.'DE')
J4
K4
A5
B5
     R=1
     INPSC
C5
     FINISH=1
D5
E5
F5
G5
Н5
     FINISH=1
J5
K5
```



```
A1
B1
    ENDFILE 8
C1
    (IN.EQ.11)
D1
    (IN.EQ.12)
E1
    (IN.EQ.13)
F1
    (IN.EQ.14)
G1
    (IN.EQ.15)
H1
J٦
K1
A2
B2
C2
    SRCH$$(K$CLOS, 'MEMO', 6,0,0,0); SRCH$$(K$DELE, 'MEMO', 6,0,0,0)
D2
    SRCH$$(KSCLOS, 'TWFX',6,0,0,0); SRCH$$(K$DELE, 'TWFX',6,0,0,0)
E2
    SRCH$$(K$CLOS,'ANN',6,0,0,0); SRCH$$(KSDELE,'ANN',6,0,0,0)
F2
    SRCH$$(K$CLOS,'PR',6,0,0,0); SRCH$$(K$DELE,'PR',6,0,0,0)
G2
    SRCH$$(K$CLOS,'MIS',6,0,0,0); SRCH$$(K$DELE,'MIS',6,0,0,0)
H2
J2
K2
А3
B3.
С3
    CNAM$$('REVS',6,'MEMO',6,IC)
D3
E3
    CNAM$$('REVS',6,'TWFX',6,IC)
                                                                    (11 of 12)
Figure 5.4.1-2
                                                               Page
```

```
F3
    CNAM$$('REVS',6,'ANN',6,IC)
     CNAM$$('REVS',6,'PR',6,IC)
G3
     CNAM$$('REVS',6,'MIS',6,IC)
Н3
J3
К3
A4
B4
C4
     SRCH$$(K$RDWR+K$NDAM, 'REVS',6,4,1,IC)
D4
     SRCH$$(K$RDWR+K$NDAM, 'REVS',6,4,1,IC)
Εį
     SRCH$$(K$RDWR+K$NDAM, 'REVS', 6, 4, 1, IC)
F4
     SRCH$$(K$RDWR+K$NDAM, 'REVS', 6, 4, 1, IC)
G4
     SRCH$$(K$RDWR+K$NDAM, 'REVS', 6, 4, 1, IC)
H4
JΔ
<u>K</u>4
A5
B5
C5
D5
E5
F5
G5
#5
J5
Κ5
```


- 90 -

```
$INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*4; *2
 A٦
     CLEAR
 B1
     SRCHS$(K$RDWR+K$NSAM,'OUT',6,3,0,0)
 C1
 Di WRITE (1,1)
     READ(1,3)IDES
 ET
    (IDES(1).EQ.'QU')
     (IRR.EQ.1)
 G1
 Hl
· J1
 Κ٦
 A2
 B2 REWIND 10
 C2 READ(10,2005) COUNTR
 D2 REWIND 10
 E2 WRITE (10,2003) IM, ID, IY, COUNTR
 F2 REWIND 10
 G2
 H2 WRITE (1,2001)
J2 READ (1,2002, ERR=50) IM, ID, IY
  K2
 А3
 В3
  C3
  D3
  E3
```

Page (2 of 9)

```
F3
        JTIME(IY,IM,ID,0,0,0,CD)
G3
        IRR=1
НЗ
J3
К3
A4
        (IDES(1), NE.'AL'.AND.IDES(1).NE.'DO', AND.IDES(1).NE.'ID'.AND.
В4
        IDES(1).NE.'AD')
C4
        SEE B4-C4
D4
E4
        SEE B4-C4
F4
        BRAKET
G4
H4
J4
Κ4
A5
B5
C5
D5
E5
F5
        IREAD=0
G5
H5
J5
K5
```

Page (3 of 9)


```
A1:
    (IDES(1).EQ.'AD')
B1
C1
    WHERE
    (IDES(1).EQ.'AL')
D1
E1
    (IDES(1).EQ.'NR')
    (IDES(1).EQ.'TO')
F]
    (IDES(1).EQ.'DO')
G1
    (IDES(1).EQ.'CO')
Н1
    (IDES(1).EQ.'CW')
Jl
K1
A2
B2
C2
D2
    ALC
E2
    RESEA
    WHO
F2
G2
    DDAT
    CNUM
Н2
    CWAID
J2
K2
А3
    (IDES(1).EQ.'AU')
В3
C3
    (IDES(1).EQ.'DL')
    (IDES(1).EQ.'ID')
D3
```

E3

(IDES(1).EQ.'SU')

Page (5 of 9)

```
F3 (IDES(1).EQ.'MS')
```

G3 (IDES(1).EQ.'AD')

НЗ

J3

К3

A4

B4 AUSEA

C4 DLSEA

D4 DATC

E4 SUBJ

F4 MSTAT

G4 ADAT

H4

J4

K4

A5-

35

C5

D5

E5

55

G5

H5

J5

K5

Figure 5.4.1-3

Page (6 of 9)


```
A1
    WRITE (1,101)
в٦
    READ (1,3) IDES
C1
    (IDES(1).NE.' ')
D1
E1
F1
G1
н٦
Jl
K1
A2
B2
C2
    CLOSE
D2
 E2
 F2
 G2
 H2
· J2
 K2
 АЗ
 B3 WRITE (1,11)
 C3 SRCH$$(K$CLOS,'OUT',6,0,0,0)
 D3 READ(1,5) IOPT
 E3 (IOPT.EQ.'YE'); (IOPT.NE.'NO')
                                                              Page (8 of 9)
```

```
SRCH$$(K$DELE,'OUT',6,0,0,0)
F3
G3
НЗ
J3
К3
A4
B4
C4
D4
    SRCH$$(K$CLOS, 'REVS',6,0,0,0)
E4
    SRCH$$(K$CLOS,'DATE',6,0,0,0)
F4
    COMI$$('SOUT',4,12,IC)
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```



```
A1
Bl
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*4; *2
C1
     TIMDAT(A, 15)
     (A(13).NE.'SY')
DI
     WRITE (1,701) ('SORRY YOU ARE NOT VALIDATED TO USE THIS ROUTINE.')
E1
Fl
G1
HI
Jl
K1
A2
B2
C2
D2
     WRITE (1,1)
E2
     READ(1,2,ERR=3)D,ICOUN
F2
     WRITE (1,11)
G2
     READ (1,12) IANS
H2
     (IANS.GT.6.OR.IANS.LT.1)
J2
K2
A3
B3
     READ(9,END=20)MS,ATHR,DD,TO,DLN,SUB,PTIT,ROUT,IDD,COUNT,CWA,CONT,
     ADD, TWX, FSC, NRE, DDT
C3
     REWIND 6
D3
     READ(6, END=200)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT,
     ADD, TWX, FSC, NRE, DDT
E3
     SEE D3
```

```
F3
     (COUNT.NE.ICOUN); DO 110I=1,3; (IDD(I).NE.D(I))
     WRITE(8)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX, FSC,
G3
     NRE, DDT
Н3
     (IANS.GE.2)
J3
К3
A4
B4
C4
D4
E4
     END FILE 8; END FILE 9
     WRITE(9)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD, TWX,
F4
     FSC, NRE, DDT
G4
H4
     SRCH$$(K$RDWR+K$NDAM,'TRAN',6,2,1,IC)
     SRCH$$(K$RDWR+K$NDAM, 'INACTL',6,5,1,IC)
J4
Κ4
A5
B5
C5
D5
E5
     SRCH$$(K$CLOS,'REVS',6,0,0,0)
F5
     SRCH$$(K$CLOS,'INACTL',6,0,0,0)
G5
     SRCH$$(K$CLOS, 'TRAN', 6,0,0,0)
     SRCH$$(K$DELE, 'TRAN', 6,0,0,0)
H5
J5
     CNAM$$('REVS',6,'TRAN',6,IC)
K5
```



```
Al
Вl
     (IANS.EQ.2)
C1
D٦
     (IANS.EQ.3)
     (IANS.EQ.4)
E٦
Fl
     (IANS.EQ.5)
G1
     (IANS.EQ.6)
ΗΊ
Jl
K1
A2
B2
C2
     SRCH$$(K$RDWR+K$NDAM, 'MEMO', 6, 7, 1, IC)
D2
     SRCH$$(K$RDWR+K$NDAM, 'TWFX',6,8,1,IC)
E2
     SRCH$$(K$RDWR+K$NDAM, 'ANN',6,9,1,IC)
     SRCH$$(K$RDWR+K$NDAM,'PR',6,10,1,IC)
F2
Ġ2
     SRCH$$(K$RDWR+K$NDAM, 'MIS', 6, 11, 1, IC)
H2
J2
K2
А3
B3
     REWIND IN
C3
     READ(IN, END=450)MS, ATHR, DD, TO, DLN, SUB. PTIT, ROUT, IDD, COUNT, CWA, CONT,
     ADD, TWX, FSC, NRE
     SEE C3
D3
      (COUNT.NE.ICOUN); DO390I=1,3; (IDD(I).NE.D(I))
E3
```

```
WRITE(8)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD,
F3
      TWX,FSC,NRÉ
G3
      SRCH$$(K$RDWR+K$NDAM,'INACTS',6,5,1,IC)
      READ(9, END= 320)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA,
Н3
      CONT, ADD, TWX, ESC, NRE
J3
      IN=IANS+9
К3
A4
B4
C4
      END FILE 8; END FILE 9
D4
     WRITE(9)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT, ADD,
E4
     TWX,FSC,NRÉ
F4
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
```

K5


```
A1
    SRCH$$(K$CLOS, 'REVS',6,0,0,0)
B1
    SRCH$$(K$CLOS,'INACTS',6,0,0,0)
C1
Dl
    (IN.NE.11)
E1
    (IN.NE.12)
F1
    (IN.NE.13)
G1
    (IN.NE.14)
HI
    (IN.NE.15)
J1
    WRITE(1,480) ('AN ERROR IN FILE MANAGEMENT SYSTEM HAS OCCURRED!')
K1
A2
B2
C2
D2
    SRCH$$(K$CLOS, 'MEMO', 6, 0, 0, 0)
E2
    SRCH$$(K$CLOS,'TWFX',6,0,0,0)
F2
    SRCH$$(K$CLOS, 'ANN', 6,0,0,0)
G2
    SRCH$$(K$CLOS,'PR',6,0,0,0)
H2
    SRCH$$(K$CLOS,'MIS',6,0,0,0)
K2
А3
B3
 C3
 D3
     SRCH$$(K$DELE,'MEMO',6,0,0,0)
```

Page (8 of 9)

```
SRCH$$(K$DELE,'TWFX',6,0,0,0)
F3
    SRCH$$(K$DELE,'ANN',6,0,0,0)
G3
    SRCH$$(K$DELE,'PR',6,0,0,0)
Н3
    SRCH$$(K$DELE, 'MIS', 6, 0, 0, 0)
J3
К3
Α4
B4
C4
D4
    CNAM$$('REVS',6,'MEMO',6,IC)
E4
     CNAM$$('REVS',6,'TWFX',6,IC)
F4
     CNAM$$('REVS',6,'ANN',6,IC)
G4
     CNAM$$('REVS',6,'PR',6,IC)
H4
     CNAM$$('REVS',6'MIS',6,IC)
J4
K4
A5
B5
C5
 D5
 E5
 F5
 G5
 H5
     SRCHSS(KSRDWR+K$NDAM,'REVS',6,4,1,IC)
 J5
 K5
```

Page (9 of 9)


```
A1
     $INSERT COMMON
В1
C1
     CLEAR
     WRITE(1,10)MS,ATHR,DD,TO,DLN,SUB,ROUT,IDD,CWA,CONT,ADD
D1
     DO810M=1,6; KTW=0; D0820N=1,5; (TWX(M,N).NE.'); KTW=KTW+1; (KTW.EQ.0)
E1
F1
G1
HI
Jl
K1
A2
B2
C2
D2
     WRITE(1,800); WRITE(1,850) (TWX(M,N),N=1,5)
E2
      WRITE(1,1000)FSC
F2
      KRE=0; D01400L=1,3; (NRE(1,L).NE.' '); KRE=KRE+1; (KRE.EQ.0)
G2
H2
J2
K2
A3
B3
C3
D3
E3
```

Page (2 of 3)

```
F3
        WRITE(1,1200); WRITE(1,270) (NRE(1,L),L=1,3)
  G3
        (ITRSP.EQ.O)
  Н3
  J3
  К3
  A4
  B4
  C4
  D4
  E4
. F4
 G4
      DO 1500I=1,30; KDD=0; D01600J=1,21; (DDT(I,J).NE.' '); KDD= KDD+1; (KDD.EQ.0)
 H4
 J4
 K4
 A5
 B5
C5
D5
E5
F5
G5
Н5
     WRITE(1,1100); WRITE(1,180) (DDT(I,J),J=1,21)
J5
K5
```



```
A1
$1 $INSERT COMMON; INTEGER*4; *2
C1 (R.EQ.0)
 D] WRITE(1,1)
    READ(1,10,ERR=2)IKNT
 E٦
    (IKNT.LT.0); (IKNT.GT.14)
 G1
 H1 -
 J1
 K1
 A2
 В2
 ·C2
 D2
 E2
 F2 D0 9999 LP = 1, IKNT, 1
 G2 performed by F2
 H2 WRITE (1,3)
· J2 READ(1,10,ERR=5)IR
 K2
 А3
 B3 CKIR(IR,I).
 C3 (I.GT.0)
 D3
 E3
```

Page (2 of 21)

```
F3
   SHOWC
G3
H3 WRITE(1,2303)
J3 READ(1,2300)IOPT
К3
A4
B4
C4
D4
E4
F4
G4
H4
    (IOPT.EQ.'RE'); (IOPT.NE.'CO')
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```



```
A1
    (R.EQ.1.AND.IR.NE.1)
81
    WRITE(1,101)
C1
    READ(1,104,ERR=103)MS
D1
    (MS.EQ.'VC'); (MS.EQ.'IM'); (MS.EQ.'OM')
E٦
    WRITE(1,106)MS
G1
H1
J1
K1
A2
B2 SEE B1
C2 (R.EQ.1.AND.IR.NE.2)
D2
    WRITE(1,104)MS
E2
F2
G2
H2
J2
 K2
А3
 B3
C3 SEE C2
 D3 (R.EQ.1.AND.IR.NE.3)
 E3 WRITE(1,302)
```

Page (5 of 21)

```
F3 READ (1,303,ERR=301)DD
      (DD(1).GT.12); (DD(2).GT.31)
НЗ
J3
КЗ
A4
В4
C4
D4
      SEE D3
E4
F4
      WRITE(1,303)DD
. G4
H4
J4
K4
A5
B5
C5
 D5
 E5
 F5
      WRITE(1,202)
 G5
      READ(1,203,ERR=201)ATHR
 H5
      WRITE(1,203)ATHR
 J5
 K5
```

Page (6 of 21)


```
(R.EQ.1.AND.IR.NE.4)
A1
     WRITE(1,402)
B1
     READ(1,403,ERR=401)TO
C1
DI
     WRITE(1,403)TO
E1
F1
G1
н٦
Jl
K1
A2
     SEE B1
 В2
      (R.EQ.1.AND.IR.NE.5)
C2
      WRITE(1,502)
 D2
 E2
      READ(1,503,ERR=501)DLN
 F2
      WRITE(1,503)DLN
 G2
 H2
· J2
 K2
 A3
 В3
      SEE C2
 C3
      (R.EQ.1.AND.IR.NE.6)
 D3
      WRITE(1,602)
 E3
                                                              Page (8 of 21)
 Figure 5.4.1-6
```

```
F3 LEN=10
    TIMPUT(TIT, LEN)
G3
    D0610IJ=1,21; SUB(IJ)=TIT(IJ)
НЗ
    WRITE(1,603)SUB
J3
К3
A4
B4
C4
D4
     SEE D3
E4
F4
G4
Η4
J4
K4
A5
35
C5 .
D5
E5
F5
 G5
 25
 J5
```

K5

Page (9 of 21)


```
A1
    (R.EQ.1.AND.IR.NE.7)
B1
    WRITE(1,702)
C1
    READ(1,703,ERR=701)ROUT
D1
    WRITE(1,703)ROUT
ET
F1
G1
Н1
J1
K1
A2
     SEE B1
Б2
     (R.EQ.J.AND.IR.NE.8)
C2
    WRITE(1,802)
 D2
     (R.EQ.0)
 E2<sup>-</sup>
     READ(1,803,ERR=801)IDD
 F2
 G2
 H2
· J2
 K2
 A3
 B3
 C3 SEE C2
 D3 (R.EQ.1.AND.IR.NE.9)
 E3 REWIND 10
```

Page (11 of 21)

```
F3
      READ(10,803)IM, ID, IY
      IDD(1)=IM; IDD(2)=ID; IDD(3)=IY
G3 -
      REWIND 10
Н3
     WRITE (1,803)IDD
J3
К3
A4
B4
C4
      SEE D3
D4
E4
F4
G4
H4
J4
K4
A5
35
C5
      WRITE (1,902)
D5
      READ(1,903,ERR=902)CWA
E5
      WRITE(1,903)CWA
F5
      GETCON
 G5
H5
 J5
 K5
```



```
A1
     (CON(1).NE.' : ')
B1
     WRITE(1,910)
C1
     READ(1,2300,ERR=909)IOPT
D1
     (IOPT.EQ.'YE'); (IOPT.NE.'NO')
E٦
F]
     D01060I=1,5; CONT(I)=CON(I)
G1
H]
J1
K٦
A2
B2
     (R.EQ.1.AND.IR.NE.10)
     WRITE(1,952)
C2
     READ(1,953,ERR=951)CONT
D2
     WRITE(1,953) CONT
E2
F2
G2
 H2
· J2
 K2
 A3
     SEE B2
 B3
     (R.EQ.1.AND.IR.NE.11)
 03
     WRITE(1,1102) ·
 D3
     READ(1,1103,ERR=1101)ADD
 E3
```

Page (14 of 21)

```
(ADD(1).GT.12); (ADD(2).GT.31)
F3
G3
НЗ
J3
КЗ
A4
B4
C4
     SEE C3
D4
 E4
      WRITE(1,1103)ADD
 F4
 G4
 H4
 J4
 K4
 Α5
 B5
 C5
  D5
  E5
  F5
  G5
  Н5
  J5
  K5
```

Page (15 of 21)


```
A٦
     (R.EQ.1.AND.IR.NE.12)
81
     WRITE(1,1204)
C1
     LOOP1=0; D01210IA=1,6; D01211IC=1,5; TWX(IA,IC)='
D1
Εl
     READ(1,1220,ERR=1202)L00P1
F٦
     (LOOP1.EQ.0)
     (LOOP1.GT.6)
G1
Η٦
J1
K1
A2.
     SEE B1
B2
     (R.EQ.1.AND.IR.NE.13)
C2
     WRITE(1,1302)
D2
     READ(1,1303,ERR=1301)FSC
E2
     WRITE(1,1303)FSC
 F2
     D01260II=1,L00P1
 G2
     Performed by G2
 H2
     WRITE (1,1262)
J2
 K2
 A3
 B3
 C3
     SEE C2
     (R.EQ.1.AND.IR.NE.14)
 Ð3
     WRITE(1,1401)
 E3
```

Page (17 of 21)

```
LOOP1=0; D01408ID=1,3; NRE(1,IB)= '
F3
     READ(1,1402,ERR=1403) LOOP1
G3
Н3
J3
К3
A4
B4
C4
     SEE D3
D4
E4
F4
      (LOOP1.EQ.0)
G4
      (LOOP1.GT.3)
H4
J4
K4
A5
      READ(1,1265) (TWX(II,J),J=1,5)
B5
      WRITE(1,1265) (TWX(II,J),J=1,5)
C5
D5
 E5
 F5
      WRITE(1,1404)
 G5
      READ(1,1405) (NRE(1,J),J=1,3)
 H5
      WRITE(1,1405) (NRE(1,J),J=1,3)
 J5
 K5
```

Page (18 of 21)


```
A1
     (R.EQ.1.AND.IR.NE.15)
B1
C1
     WRITE(1,1502)
     D01510IK=1,30; D01511IL=1,21; DDT(IK,IL)=' '
Dl
     READ(1,1503,ERR=1501)ILP
E٦
F1
     (ILP.EQ.0)
G1
     (ILP.EQ.30)
н1
J٦
K1
A2
     SEE B1
B2
 C2
     R=1
      IR=0
 D2
 E2
 F2
 G2
      D01504IJ=1,ILP
      Performed by G2
 H2
· J2
      LEN=10
 K2
 A3
 53
 C3
 D3
  E3
```

Page (20 of 21)

```
F3 .
· G3
Н3
J3
К3
A4
      WRITE(1,1505)
B4
      RDCOM(BUF)
C4
      BLNK= ' '
D4
      DO1521I=1,21; TIT(I)=BLNK; ARRAY(1)=BLNK; ARRAY(2)=BLNK; ARRAY(3)=BLNK
 E4
      GETWRD(BUF, ARRAY, LEN)
 F4
      TIT(I)=ARRAY(1); TIT(I+1)=ARRAY(2); TIT(I+2)=ARRAY(3); TIT(I+3)=ARRAY(4)
 G4
      WRITE(1,1506) (TIT(I), I=1,21)
 H4
      I18=21; D02507J=1,I18; DDT(IJ,J)=' '; DDT(IJ,J)=TIT(J); TIT(J)='
 J4
 K4
 A5
 B5
 C5
 D5
 E5
 F5
 G5
 H5
 J5
 K5
```

Page (21 of 21)

Figure 5.4.1-7

```
A1
     $INSERT SYSCOM > KEYS.F
B1
     SRCH$$(K$RDWR+K$NDAM, 'TRAN', 6,2,1,IC)
C1
     SRCH$$(K$RDHR+K$NDAM,'MEMO',6,7,1,IC)
D1
     SRCHS$(K$RDWR+K$NDAM,'TWFX',6,8,1,IC)
E٦
     SRCH$$(K$RDWR+KSNDAM,'ANN',6,9,1,IC)
F1
     SRCH$$(K$RDWR+K$NDAM, 'PR',6,10,1,IC)
G1
     SRCH$$(K$RDWR+K$NDAM,'MIS',6,11,1,IC)
н٦
Jl
K1
A2
B2
C2
D2
E2
F2
G2
H2
J2
 K2
 A3
 В3
 Ċ3
 D3
```

E3

Page (2 of 2)

11

- 134 -

A1 -

B1 \$INSERT SYSCOM> KEYS.F

C1 SRCH\$\$(K\$CLOS, 'TRAN', 6,0,0,0)

D1 SRCH\$\$(K\$CLOS,'MEMO',6,0,0,0)

E7 SRCH\$\$(K\$CLOS,'TWFX',6,0,0,0)

F1 SRCH\$\$(K\$CLOS,'ANN',6,0,0,0)

G1 SRCHS\$(K\$CLOS,'PR',6,0,0,0)

H1 SRCHS\$(K\$CLOS,'MIS',6,0,0,0)

J٦

Κ1

A2

B2

C2

D2

E2

F2

G2

H2

J2

K2

A3

B3

03

D3

E3

Figure 5.4.1-8

- 136 -

```
A1
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*2
В٦
     ITRSP=0
Cl
     IMELE=0
D1
     ITWFX=0
E1
     IANN=0
F]
     IPR=0
G1
     IMIS=0
H1
     WRITE(1,100)
J٦
K٦
A2
      READ(1,110,ERR=10)IFILE
 B2
      (IFILE.LE.O.OR.IFILE.GT.6)
 C2
 D2
 E2
 F2
 G2
 H2
 J2
 K2
 АЗ
 ВЗ
       (IFILE.EQ.6)
 C3
       DO 200 I =1,6
  D3
       Performed by D3
  E3
```

```
WRITE(1,120)I
F3
     READ(1,130,ERR=115)IOPT
G3
      (IOPT.EQ.'NO'); (IOPT.NE.'YE')
НЗ
J3
К3
A4
В4
      ITRSP=1
C4
D4
E4
F4
G4
H4
J4
K4
A5
B5
C5
      IMELE=1
D5
      ITWFX=1
      IANN=1
E5
F5
      IPR=1
      IMIS=1
G5
H5
J5
K5
```



```
A1
```

B1

C1 (I.EQ.1)

D1 (I.EQ.2)

El (1.EQ.3)

F1 (I.EQ.4)

G1 (I.EQ.5)

H1 (I.EQ.6)

J٦

K1

A2

B2

C2 ITRSP=1

D2 IMELE=1

E2 ITWFX=1

F2 IANN=1

G2 IPR=1

H2 IMIS=1

. J2

K2

А3

B3 (ITRSP.EQ.1)

C3 (IMELE.EQ.1)

D3 (ITWFX.EQ.1)

E3 (IANN.EQ.1)

Figure 5.4.1-9

Page (5 of 6)

```
(IPR.EQ.1)
F3
      (IMIS.EQ.1)
G3
      (IFILE.EQ.ITRSP+IMELE+ITWFX+IANN+IPR+IMIS)
Н3
J3
К3
A4
      SRCH$$(K$RDWR+K$NDAM,'TRAN',6,2,1,IC)
В4
      SRCH$$(K$RDHR+K$NDAM,'MEMO',6,7,1,IC)
C4
      SRCH$$(K$RDWR+K$NDAM,'TWFX',6,8,1,IC)
D4
      SRCH$$(K$RDWR+K$NDAM,'ANN',6,9,1,IC)
E4
      SRCH$$(K$RDWR+K$NDAM,'PR',6,10,1,IC)
F4
      SRCH$$(K$RDWR+K$NDAM,'MIS',6,11,1,IC)
G4
H4
 J4
- K4
 A5
 B5
 C5
 D5
 E5
 F5
 G5
 H5
 J5
 K5
```



```
Α٦
B1
     $INSERT COMMON
     WRITE(1,881)
C1
     READ(1,882,ERR=880)FVD
D1
     (FVD(1).GT.12.OR.FVD(2).GT.31)
E٦
F]
G1
H1
J1
K٦
A2
B2
      (LVD(2).EQ.0)
C2
D2
E2
      IM=FVD(1); ID=FVD(2); IY=FVD(3)
F2
      JTIME(IY,IM,ID,0,0,0,TJ); TFVD=TJ
      WRITE(1,884)
G2 .
 Н2
      READ(1,882,ERR=885)LVD
      (LVD(1).GT.12.OR.LVD(2).GT.31)
 J2
 K2
 A3.
      LVD(2)=31
 В3
      (LVD(3).EQ.0)
 С3
 D3
 E3
```

```
F3
G3
НЗ
      (LVD(1).EQ.0)
J3
К3
A4
B4
      LVD(3)=99; IM=LVD(1); ID=LVD(2); IY=LVD(3)
C4
      JTIME(IY,IM,ID,0,0,0,TJ); TLVD=TJ
D4
      (TLVD.GE.TFVD)
E4
      WRITE(1,887)
F4
G4
Н4
      LVD(1)=12
J4
K4
A5
B5
C5
D5
 E5
 F5
 G5
 H5
 J5
 K5
```



```
A1
     $INSERT COMMON; $INSERT SYSCOM> KEYS.F; INTEGER*2
В1
C1
     KNT=0
     IPAGE=0
DI
     IPRINT=0
Εl
     WRITE(1,1)
F1
     BREAK$(.TRUE.)
G1
      RDSUB
H1
      (IREAD.EQ.1)
J1
K٦
Α2
 B2
      (IPAGE.NE.O) ·
 C2
 D2
 E2
 F2
 G2
 H2
· J2
 K2
 А3
      ITEM=50
 В3
      IPAGE=1
 C3
      SCRNHD(ITEM)
 D3
      SCRNPT (ITEM)
 E3
```

```
(IPRINT.NE.O)
F3
G3
H3
J3
К3
A4
B4
C4
D4
E4
      HARDHD(ITEM)
F4
      IPRINT=1
G4
      HARDPT (ITEM)
H4
      (KNT/22.EQ.KNT/22.)
J4
K
A5
      CLOSE
35
      SRCH$$(K$CLOS,'OUT',6,0,0,0)
C5
      SRCH$$(K$CLOS, 'REVS',6,0,0,0)
 D5
      SRCH$$(K$CLOS, 'DATE',6,0,0,0)
 E5
      COMIS$('SOUT',4,12,IC)
 F5
 G5
 H5
 J5
      IPRINT=0
 K5
```



```
A1
B1
     $INSERT COMMON; INTEGER*2
     KNT=0
C1
D1
     IPAGE=0
     IPRINT=0
E1-
     WRITE(1,1)
F٦
     READ(1,2,ERR=3)DRE
G1
     RDSUB
Ηl
     (IREAD.EQ.1)
Jl
 K٦
,A2
     IM=IDD(1); I:D=IDD(2); JY=IDD(3)
 B2
     JTIME(IY, IM, ID, 0, 0, 0, TIM)
 C2
 D2
     (TFVD.LT.TIM.AND.TIM.LE.TLVD)
 E2
     SCRNPT(ITEM)
 F2
     (IPRINT.NE.O)
 G2
 H2
     WRITE(1,300); WRITE(1,250)KNT,DRE
· J2
 K2
 A3-
 53
 C3
 D3 D011J=1,3; (DRE.EQ.NRE(1,J))
 E3
```

```
F3
G3 HARDHD(ITEM)
НЗ
J3
КЗ
A4
В4
C4
     (IPAGE.NE.O)
D4
ΕĄ
F4
G4
     IPRINT=1
     HARDPT
H4
     (KNT/14.EQ.KNT/14.)
J4
K4
A5
B5
C5
D5
     ITEM=14
     IPAGE=1
E5
     SCRNHD(ITEM)
F5
G5
     IPRINT=0
Н5
J5
K5
```



```
A1
Bl
      $INSERT COMMON; INTEGER*2
C1
      KNT=0
DI
      IPAGE=0
      IPRINT=0
E1
F1
      WRITE(1,1)
G1
      READ(1,2,ERR=3)DTO
Н1
      RDSUB
      (IREAD.EQ.1)
Jl
K1
A2
      IM=IDD(1); ·ID=IDD(2); JY=IDD(3)
В2
      JTIME(IY,IM,ID,0,0,0,TIM)
C2
      (TFVD.LT.TIM.AND.TIM.LE.TLVD)
D2
E2
F2
      SCRNPT(ITEM)
G2
      (IPRINT.NE.O)
H2
J2
      WRITE(1,300); WRITE(1,250) KNT,DTO
K2
А3
B3
C3
D3
      D0101I=1,8; (T0(I).NE.DT0(I))
E3
```

```
F3
G3
     HARDHD(ITEM)
НЗ
J3
К3
A4
B4
C4.
      (IPAGE.NE.O)
D4
E4
F4
      IPRINT=1
G4
      HARDPT (ITEM)
H4
      (KNT/14.EQ.KNT/14.)
J4
K4
A5
B5
C5
D5
      ITEM=4
      IPAGE=1
E5
F5
     SCRNHD(ITEM)
G5
     IPRINT=0
H5
J5
K5
```



```
A1
      $INSERT COMMON; INTEGER*2
 B1
 C1
      KNT=0
      IPAGE=0
 Dl
      IPRINT=0
 E1
      WRITE(1,11)
 F1
      READ(1,22,ERR=11)DDD
 G1
 H1
      RDSUB
 Jl
      (IREAD.EQ.1)
 K1
 A2
       (DDD(1).EQ.O.OR.DDD(1).EQ.DD(1))
 B2
 C2
       (IPAGE.NE.O)
 D2
 E2
 F2
      SCRNPT(ITEM)
 G2
       (IPRINT.NE.O)
 H2
· J2
      WRITE(1,300); WRITE(1,250)KNT,DDD
 K2
 A3
 В3
       (DDD(2).EQ.O.OR.DDO(2).EQ.DD(2))
 C3
      ITEM=3
 D3
 E3
```

```
F3
G3
     HARDHD(ITEM)
НЗ
J3
К3
A4
     (DDD(3).EQ.O.OR.DDD(3).EQ.DD(3))
В4
C4
     IPAGE=1
D4
E4
F4
     IPRINT=1
G4
H4
     HARDPT(ITEM)
     (KNT/14.EQ.KNT/14.)
J4
K4
A5
B5
C5
     SCRNHD(ITEM)
D5
E5
F5
G5
H5
     IPRINT=0
J5
K5
```



```
A1
     $INSERT COMMON; INTEGER*2
B1
      KNT=0
C1
      IPAGE=0
D1
      IPRINT=0
El
     WRITE(1,1)
F1
      READ(1,2,ERR=3)DW
G1
      RDSUB
н٦
      (IREAD.EQ.1)
Jl
 K1
 A2
      IM=IDD(1); ID=IDD(2); IY=IDD(3)
 B2
      JTIME(IY,IM,ID,0,0,0,TIM)
 C2
      (TFVD.LT.TIM.AND.TIM.LE.TLVD)
 D2
 E2
 F2
      SCRNPT(ITEM)
      (IPRINT.NE.O)
 G2
 Н2
     WRITE(1,300); WRITE(1,250)KNT,DW
· J2
 K2
 А3
 83
 C3
     DO 660 I=1,5;
                      (DW(I).NE.CONT(I))
 D3
 E3
```

```
F3
     HARDHD(ITEM)
G3
НЗ
J3
К3
A4
B4
C4
     (IPAGE.NE.O)
D4
E4
F4
G4
     IPRINT=1
     HARDPT(ITEM)
H4
     (KNT/14.EQ.KNT/14.)
J4
<u>K4</u>
A5
B5
C5
D5
     ITEM=10
     IPAGE=1
E5
     SCRNHD(ITEM)
F5
G5
     IPRINT=0
H5
J5
K5
```



```
A1
     $INSERT COMMON; INTEGER*2
Bī
     KNT=0
C1
     IPAGE=0
D1
     IPRINT=0
E1
     WRITE(1,1)
F1
     READ(1,2,ERR=3)WA
G1
Ηl
     RDSUB
     (IREAD.EQ.1)
J1
K1
A2
     IM=IDD(1); ID=IDD(2); IY=IDD(3)
B2
C2
     JTIME(IY,IM,ID,0,0,0,TIM)
     (TFVD.LT.TIM.AND.TIM.LE.TLVD)
D2
E2
F2
G2
H2
     WRITE(1,300); WRITE(1,250) KNT,WA
J2
K2
A3
63
83
      (WA(4).NE. ' ')
93
      (WA(3).NE. '
 E3
```

```
F3
     D030I=1,2; (WA(I).NE.CWA(I))
G3
Н3
J3
К3
A4
В4
C4
D4
     D010I=1,4; (WA(I).NE.(WA(I))
E4
     DO50I=1,3; (WA(I).NE.CWA(I))
F4
      (IPAGE.NE.O)
G4
Н4
· J4
Κ4
A5
 B5
C5
 D5
 E5
 F5
      ITEM=9
      IPAGE=1
 G5
     SCRNHD(ITEM)
 H5
 J5
 K5
```



```
A1
B1
      SCRNPT (ITEM)
      (IPRINT.NE.O)
C1
DI
E1
F1
G1
Н1
J٦
 K1
A2
 B2
 C2
      HARDHD(ITEM)
 D2
 E2
 F2
 G2
 Н2
· J2
 K2
 АЗ
 В3
      IPRINT=1
 С3
      HARDPT (ITEM)
 D3
       (KNT/14.EQ.KNT/14.)
 E3
 Figure 5.4.1-16
```

Page (5 of 6)

F3

G3

НЗ

J3

КЗ

A4

B4

C4

D4

E4 IPRINT=0

F4

G4

H4

J4

Κ4

A5

B5

C5

D5

E5

F5

G5

H5

J5

K5

Figure 5.4.1-16

Page (6 of 6)


```
Α1
      $INSERT COMMON; INTEGER*2
B1
      KNT=0
C1
      IPAGE=0
Dl
Εī
      IPRINT=0
      WRITE (1,1)
F1
      READ (1,2,ERR=3) DA
G1 '
      RDSUB
H1
      (IREAD.EQ.1)
Jl.
K1
A2
      IM=IDD(1); ID=IDD(2); IY=IDD(3)
 В2
      JTIME(IY, IM, ID, 0, 0, 0, TIM)
C2
      (TFVD.LT.TIM.AND.TIM.LE.TLVD)
 D2
 E2
      SCRNPT(ITEM)
 F2
      (IPRINT.NE.O)
 G2
 H2
      WRITE(1,300); WRITE(9,1250)KNT,DA
· J2
 Κ2
 А3
 B3
 03
      DO101I=1,7; (ATHR(I).NE.DA(I))
 D3
```

E3

Page (2 of 3)

```
F3
     HARDHD(ITEM)
G3
НЗ
J3
КЗ
A4
B4
C4
     (IPAGE.NE.O)
D4
E4
F4
     IPRINT=1
G4
     HARDPT(ITEM)
H4
     (KNT/14.EQ.KNT/14.)
J4
Κ4
Α5
B5
C5
D5
     ITEM=2
E5
     IPAGE=1
F5
     SCRNHD(ITEM)
G5
     IPRINT=0
H5
J5
K5
```



```
A1
B1
     $INSERT COMMON; INTEGER*2
C1
     KNT=0
     IPAGE=0
Dl
     IPRINT=0
E1
     WRITE (1,1)
F]
     READ (1,2,ERR=3)DL
G1
Н1
     RDSUB
Jl
     (IREAD.EQ.1)
K1
A2
     IM=IDD(1); ID=IDD(2); IY=IDD(3)
B2
C2
     JTIME(IY,IM,ID,0,0,0,TIM)
     (TFVD.LT.TIM.AND.TIM.LE.TLVD)
D2
E2
F2
     SCRNPT(ITEM)
     (IPRINT.NE.O)
G2
H2
     WRITE (1,300); WRITE (1,250) KNT,DL
J2
K2
A3
53
CS
D3
     DO 101I=1,5; (DL(I).NE.DLN(I))
E3
```

Page (2 of 3)

```
F3
G3
     HARDHD(ITEM)
Н3
J3
К3
Α4
B4
C4
      (IPAGE.NE.O)
D4
E4
F4
     IPRINT=1
G4
     HARDPT(ITEM)
H4
     (KNT/14.EQ.KNT/14.)
J4
Κ4
A5
35
C5
D5-
     ITEM=5
     IPAGE=1
E5
     SCRNHD(ITEM)
F5
G5
H5
     IPRINT=0
J5
K5
```



```
A1
B1
      $INSERT COMMON; INTEGER*2
      KNT=0
Cl
      IPAGE=0
Dl
      IPRINT=0
 Εl
      WRITE (1,11)
F٦
      READ (1,22,ERR=11) D
 G1
      RDSUB
 н٦
      (IREAD.EQ.1)
 JI
 K1
 A2
 B2
      (D(1).EQ.O.OR.D(1).EQ.IDD(1))
 C2
 D2 .
      (IPAGE.NE.O)
 E2
 F2
      SCRNPT (ITEM)
      (IPRINT.NE.O)
 G2
 H2
· J2
      WRITE (1,300); WRITE (1,250) KNT,D
 K2
 A3
 Б3
      (D(2).EQ.O.OR.D(2).EQ.IDD(2)
 03
      ITEM = 8
 D3
 E3
```

Page (2 of 3)

```
F3
G3
      HARDHD(ITEM)
НЗ
J3
К3
A4
В4
C4
      IPAGE = 1
D4
E4
F4
G4
      IPRINT = 1
H4
      HARDPT(ITEM)
      (KNT/14.EQ.KNT/14.)
J4
K4
Α5
B5
C5
D5
      SCRNHD(ITEM)
E5
F5
G5
      IPRINT = 0
H5
J5
 K5
```

Page (3 of 3)


```
A1
B1
     $INSERT COMMON; $INSERT SYSCOM> KEYS.F; INTEGER*4; *2
     T1 = 0
C1
     IPAGE = 0
D1
     IPRINT = 0
Εl
     KNT = 0
F]
     CLEAR
G1
     WRITE (1,2)
Н1
     READ (1,8,ERR=1001)ICON
J1
K1
A2
B2
     (ICON.LT.1); (ICON.GT.4)
C2
D2
E2
F2
G2
H2
J2
K2
A3
ВЗ
     DO 1000 LOOP = 1, ICON
C3
     Performed by B3
     WRITE (1,1)
D3
     LEN = 10
E3
```

Page (2 of 12)

```
TINPUT (IT, LEN)
F3
      (IT(1).EQ.'QUIT')
G3
      SRCH$$(K$RDWR+K$NDAM, 'T1', 2, 15, 1, IC)
Н3
      SRCH$$(K$RDWR+K$NDAM, 'T2',2,16,1,IC)
J3
К3
A4
B4
      SRCH$$(K$RDWR+K$NDAM,'T1',2,15,1,IC); SRCH$$(K$RDWR+K$NDAM,'T2',
C4
      2,16,1,IC)
       (DOC.LT.1)
D4
      READ (IO, END=1020)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT,
E4
       ADD, TWX, FSC, NRE
       See E4
F4
       (IPAGE.NE.O)
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
       ITEM = 6
H5
       IPAGE = 1
       SCRNHD (ITEM)
J5
 K5
```

il


```
A1
    (ITRSP.EQ.1)
ΒŢ
C1
D1
 E٦
F٦
     (T1.EQ.0)
     (T1.EQ.1)
G]
 Ηl
     (T1.EQ.2)
     (T1.EQ.3)
 Jl
     (T1.EQ.4)
 ΚĪ
 A2
 B2
     REWIND 6
     (IMELE.EQ.1)
 C2
 D2
 E2
 F2
 G2
 H2
· J2
     IN = 19
 K2
     IN = 20
 A3
 B3
     (IPR.EQ.1)
 03
     REWIND 11
 D3 (ITWFX.EQ.1)
```

E3

Page (5 of 12)

F3

G3

НЗ

J3 ID = 20

K3 IO = 19

A4

B4 REWIND 14

C4 (IMIS.EQ.1)

D4 REWIND 12

E4 (IANN.EQ.1)

F4

G4

H4

J4

Κ4

A5 -

B5

C5 REWIND 15

D5

E5 REWIND 13

F5

G5

H5

J5

K5

Figure 5.4.1-20

Page (6 of 12)


```
A1
B1
      DOC = 0
      REWIND IN
C1
D٦
      REWIND IO
      (T1.NE.0)
EL
      READ (IN, END = 100) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA,
F٦
      CONT, ADD, TWX, FSC, NRE
G1
      SEE F1
      IM = IDD(1); ID = IDD(2); IY=IDD(3)
Hl
Jl
      JTIME(IY, IM, ID, 0, 0, 0, TIM)
K1
A2
B2
       (TFVP.LT.TIM.AND.TIM.LE.TLVD)
C2
D2
E2
       RDSUB
F2
       (IREAD.EQ.1)
G2
H2
J2
K2
А3
       BLNK = ' '; DO3I=1,21; (SUB(I).EQ.BLNK); (SUB(I).NE.IT(1))
В3
C3
       SEE B3
       (SUB(I+1).EQ.BLNK); (IT(2).EQ.BLNK); (SUB(I+1).EQ.IT(2))
D3
E3
```

```
WRITE (1,1030) DOC, (IT(I),I = 1,3)
F3
G3
      (DOC.EQ.0)
      END FILE IO
Н3
      SRCH$$(K$CLOS,'T1',2,0,0,0)
J3
К3
A4
B4
C4
      DOC = DOC+1
D4
      WRITE (I)) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CNA, CONT, ADD, TWX,
E4
       FSC, NRE
      (LOOP.EQ.ICON)
F4
      WRITE (1,10) SUB
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5 ·
J5
K5
```

Page (9 of 12)


```
Αl
Bl
      SRCH$$(K$CLOS,'T2',2,0,0,0)
C1
     (IO.EQ.19)
Dl
ΕΊ
F٦
     SCRNPT(ITEM)
     (IPRINT.NE.0)
G1
ΗΊ
Jl
Κl
A2
B2
     SRCH$$(K$CLOS,'T1',2,0,0,0); SRCH$$(K$CLOS,'T2',2,0,0,0)
C2
     SRCH$$(K$DELE,'T2',2,0,0,0)
D2
     (IO.EQ.20)
E2
.F2
G2
     HARDHD(ITEM)
H2
J2
K2
А3
В3
     SRCH$$(K$DELE,'T1',2,0,0,0); SRCH$$(K$DELE,'T2',2,0,0,0)
C3
     SRCH$$(K$DELE,'T1',2,0,0,0)
D3
E3
     TI = TI+I
```

Page (11 of 12)

```
F3
G3
      IPRINT = 1
     HARDPT (ITEM)
Н3
      (KNT/14.EQ.KNT/14.)
J3
К3
A4
B4
     T1 = 0
C4
      IREAD = 0
      (DOC.NE.O)
D4
     WRITE (1,2000)
E4
      READ (1,2001,ERR=1999)IOPT
F4
      (IOPT.EQ.'YE')
G4
      (IOPT.NE.'NO')
H4
      IPRINT = 0
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
```

K5


```
A1
     $INSERT COMMON; INTEGER*2
B1
     KNT = 0
C1
     IPRINT = 0
D1
     IPAGE = 0
E٦
     WRITE (1,1)
F1
     READ (1,3,ERR = 10) DM
G1
     (DM.EQ.'IM'); (DM.EW.'OM'); (DM.EQ.'VC'); WRITE (1,4) DM
Н٦
J1
K1
A2
B2
C2
 D2
 E2
 .F2
 G2
 H2
     RDSUB
      (IREAD.EQ.1)
· J2
 K2
 А3
      IM = IDD(1); ID = IDD(2); IY = IDD(3)
 B3
 C3 JTIME (IY, IM, ID, 0, 0, 0, TJUL)
      (TJUL.LT.TFVD); (TJUL.GT.TLVD)
 D3
 E3
```

Page (2 of 6)

```
F3
G3
НЗ
     WRITE (1,300); WRITE (1,201) KNT,DM
J3
КЗ
A4
В4
C4 .
D4
     (MS.NE.DM)
E4
F4
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```



```
A1.
 в٦
      (IPAGE.NE.0)
 C1
 D1
 E٦
 F1
 G1
 н٦
 Jl
 K1
 A2
      IPAGE = 1
 В2
      ITEM = 1
 C2
 D2
      SCRNHD (ITEM)
 E2
      SCRNPT (ITEM)
      (IPRINT.NE.O)
 F2
 G2
 Н2
. j2
 K2
 А3
 В3
 С3
 D3
```

E3

Page (5 of 6)

```
HARDHD (ITEM)
F3
     IPRINT = 1
G3
     HARDPT (ITEM)
Н3
     (KNT/14.EQ.KNT/14.)
J3
КЗ
A4
B4
C4
D4
E4
F4
G4
H4
J4
     IPRINT = 0
K4
A5
B5
C5
D5
E5
F5
G5
Н5
J5
```

K5

Page (6 of 6)


```
A1
B1
     $INSERT COMMON; $INSERT SYSCOM> KEYS.F; INTEGER*2
     KNT = 0
C1
     IPAGE = 0
D1
     IPRINT = 0
E1
     WRITE (1,1); WRITE (1,10)
F٦
     READ (1,15,ERR = 5) IOPT
G1
     (IOPT.LE.O.OR.IOPT.GE.3)
Н٦
Jl
K1
A2
     READ (10,1111) IM, ID, IY
B2
C2
     REWIND 10
     ICURR(1) = IY; ICURR(2) = IM; ICURR(3) = ID
D2
     SRCH$$ (K$RDWR + K$NDAM, 'ACTD', 6,5, 1, IC)
E2
     REWIND 9
F2
G2
     BREAK$ (.TRUE.)
H2
J2
     REWIND 10
K2
A3
     READ (9,END = 200)ATHR, DLN, PTIT, IDD, COUNT, ADD, FSC, NRE
B3
03
     Performed by B3
53
     (IOPT.EQ.1)
     IM = ADD(1); ID = ADD(2); IY = ADD(3)
E3
```

Page (2 of 6)

```
IACT(1)=IY; IACT(2)=IM; IACT(3)=ID
F3
    IDIFF(1)=IACT(1)-ICURR(1); IDIFF(2)=IACT(2)-ICURR(2); IDIFF(3)=IACT(3)-ICURR(3)
G3
    (IDIFF(1).GT.O.OR.IDIFF(2).GT.1)
H3
    (IDIFF(1).EQ.O.AND.IDIFF(2).EQ.1.AND.IDIFF(3).GE.6)
J3
K3
A4
    SRCH$$(K$CLOS,'ACTD',6,0,0,0)
B4
    (KNT.EQ.0)
C4
    WRITE (1,301)
D4
E4
·F4
G4
H4
J4
K4
A5
55
    WRITE (1,201)KNT
    SRCHSS(KSCLOS, 'OUT', 6, 0, 0, 0)
D5
    SRCHSS(KSCLOS, 'DATE',6,0,0,0)
ΞŚ
    SRCHS$(K$CLOS, 'REVS',6,0,0,0)
    COMISS('SOUT',4,12,IC)
G5
ΗΞ
35
Κ5
```



```
A1
    (IDIFF(1).EQ.o.AND.IDIFF(2).EQ.1.AND.IDIFF(3).GE.0)
61
   (IDIFF(1).EQ.O.AND.IDIFF(2).EQ.1)
C1
   (IPAGE.NE.O)
Dl
    SCRNPT (ITEM)
E1
   WRITE (1,2000)ATHR, NRE, ADD
F1
    (IPRINT.NE.O)
G1
Н
J1
    (ICURR(1)/4.NE.ICURR(1)/4.)
K1
A2
B2
C2 IDIFF(3) = IDIFF(3) + 31
D2 ITEM = 11
E2
F2
G2 HARDHD(ITEM)
H2
J2 IDIFF(3) = IDIFF(3)-1
K2 IDIFF(3) = IDIFF(3)-Z
A3
B3
C3 (ICURR(2).EQ.4.OR.ICURR(2).EQ.6.OR.ICURR(2).EQ.9.OR.ICURR(2).EQ.11)
D3 IPAGE = 1
E3 SCRNHD(ITEM)
```

Page (5 of 6)

Figure 5.4.1-22

```
F3
G3
    IPRINT = 1
    HARDPT
Н3
   WRITE (7,2001)ATHR, NRE, ADD
J3
K3
A4
В4
C4
    IDIFF(3) = IDIFF(3)-1
    (ICURR(2), NE.2)
D4
    (IDIFF(3).GE.6)
E4
F4
G4
H4
J4
    (KNT/14.EQ.KNT/14.)
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5 IPRINT = 0
K5
```

Page (6 of 6)


```
A1
     INTEGER*2
В1
    (IR.EQ.1)
C1
     I = 1
Dl
E٦
F1
G٦
н٦
Jl
K1
A2
B2
     WRITE (1,101)
C2
      READ (1,10) IAN
D2
      (IAN.EO.'YE'); (IAN.NE.'NO')
 E2
      I = 0
 F2
 G2
 H2
J2
 K2
 А3
 В3
 03
 D3
 E3
```

Page (2 of 2)


```
Al
       $INSERT COMMON
B]
       (ITRSP.EQ.0)
C1
       (IMELE.EQ.O)
D1
       (ITWFX.EQ.0)
El
       (IANN.EQ.O)
F1
       (IPR.EQ.O)
G1
H1
       (IMIS.EQ.0)
       IREAD = 1
Jl
K1
A2
B2
       READ (6, END = 100) MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA,
C2
       CONT, ADD, TWX, FSC, NRE, DDT
       READ (11, END = 200)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT,
D2
       ADD, TWX, FSC, NRE
       READ (12, END = 300)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT,
E2
       ADD, TWX, FSC, NRE
       READ (13, END = 400)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT,
F2
       ADD, TWX, FSC, NRE
       READ (14, END = 500)MS, ATHR, DD, TO, DLN, SUB, PTIT, ROUT, IDD, COUNT, CWA, CONT,
G2
       ADD, TWX, FSC, NRE
· J2
 K2
A3
 В3
        SEE C2
 C3
        SEE D2
 D3
        SEE E2
 E3
```

F3 SEE F2

G3 SEE G2

H3 SEE H2

J3

КЗ

A4

B4

C4

D4

E4

F4

G4

H4

J4

K4

A5

35

05

D5

E5

F 5

35

H5

J5

Κ5

Figure 5.4.1-24

Page (3 of 3)

Figure 5.4.1-25

```
A1
    $INSERT COMMON; INTEGER*2
B1 .
C7
    CLEAR
   WRITE (1,10)
Dl
E٦
    (ITEM.EQ.1)
F1
    (ITEM.EQ.2)
G1
    (ITEM.EQ.3)
H1
    (ITEM.EQ.4)
Jl
K1
A2
B2
C2
D2
E2
F2 WRITE (1,20)DM
G2 WRITE (1,30)DA
H2 WRITE (1,40)DDD
J2 WRITE (1,45)DTO
K2
А3
B3 (ITEM.EQ.5)
    (ITEM.EQ.6)
    (ITEM.EQ.8)
D3
    (ITEM.EQ.9)
```

E3

Page (2 of 5)

```
(ITEM.EQ.10)
F3
    (ITEM.EQ.11)
G3
    (ITEM.EQ.14)
НЗ
    (ITEM.EQ.50)
J3
К3
A4
    WRITE (1,50)DL
В4
    WRITE (1,60) ((IEX(I,J),J=1,3),I=1,4)
C4
    WRITE (1,70)D
D4
    WRITE (1,80)WA
E4
    WRITE (1,90)DW
F4
    WRITE (1,100)
G4
    WRITE (1,120)DRE
H4
    WRITE (1,15)
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
```

K5


```
A1
B1 WRITE (1,125)
    WRITE (1,130)
C1
    (ITEM.EQ.11)
Dl
ΕĪ
F٦
G1
ΗΊ
J1
K1
A2
 B2
 C2
 D2 WRITE (1,600)
    (ITEM.EQ.11.OR.ITEM.EQ.50)
 F2 WRITE (1,625)
 G2 WRITE (1,10)
 Н2
· J2
 K2
 A3
 83
 C3
 D3
  E3
```

Page (5 of 5)


```
A1
B1
    $INSERT COMMON
C1
    WRITE (1,5)
D1
    WRITE (1,10)PTIT, DLO, FSC, IDD, COUNT
    (ITEM.EQ.11.OR.ITEM.EQ.50)
E1
    (TWX(1,1).NE.' ')
F1
    WRITE (1,172)
G1
H1
Jl
K1
A2
B2
C2
D2
E2
   WRITE (1,180)((TWX(I,J),J=1,5),I=1,3)
    (TWX(4,1).EQ.' ')
G2
H2
J2
K2
А3
B3 RECYCL
C3
D3
E3
```

Page (2 of 3)

Figure 5.4.1-26

F3

G3 WRITE 9 (1,180) ((TWX(I,J),J=1,5),I=4,6)

H3 KNT = KNT + 1

J3 PAUS

К3

A4

B4

C4

D4

ΕĄ

F4

G4

H4

J4

K4

A5

В5

C5,

D5

E5

F5.

G5

H5

J5

K5

Figure 5.4.1-26

Page (3 of 3)

Page (1 of 5)

```
A1
```

- B1 \$INSERT COMMON; INTEGER*2
- C1 WRITE (7, 10)

Ð٦

- E1 (ITEM.EQ.50)
- F1 (ITEM.EQ.1)
- G1 (ITEM.EQ.2)
- Hl (ITEM.EQ.3)
 - J1 (ITEM.EQ.4)

K1

A2

B2

C2

D2

- E2 WRITE (7,15)
- F2 WRITE (7,20)DM
- G2 WRITE (7,30)DA
- H2 WRITE (7,40)DDD
- J2 WRITE (7,45)DTO

K2

A3

- 83 (ITEM.EQ.5)
- cs (ITEM.EQ.6)
- D3 (ITEM.EQ.8)
- E3 (ITEM.EQ.9)

Figure 5.4.1-27

Page (2 of 5)

```
F3
    (ITEM.EQ.10)
G3
    (ITEM.EQ.11)
НЗ
    (ITEM. EQ. 14)
J3
К3
A4
B4
    WRITE (7,50)DL
    WRITE (7,60) (IT(I), I=1,3)
C4
    WRITE (7,70)D
D4
    WRITE (7,80)WA
E4
    WRITE (7,90)DW
F4
    WRITE (7,100)
G4
    WRITE (7,120)DRE
Н4
J4
K4
A5
B5
C5
D5
E5
F5
G5
    WRITE (7,130)
H5
J5
K5
```



```
A1
B?
      (ITEM.EQ.11)
C1
D1
 E1
 F1
 G1
 н٦
 Jl
 Κ1
 A2
 B2
     WRITE (7,500)
 C2
      (ITEM.EQ.11.OR.ITEM.EQ.50)
     JRITE (7,600)
 D2
     WRITE (7,700)
 E2"
 F2
 G2
 Н2
· J2
 K2
 А3
 ВЗ
 C3
 D3
 E3
```

Page (5 of 5)


```
A1
B1
      $INSERT COMMON; INTEGER*2
      WRITE (7,10)KNT,PTIT,DLN,FSC,IDD,COUNT
C7
      (ITEM.EQ.11.OR.ITEM.EQ.50)
DI
      (TWX(1,1).NE.' ')
E1
      WRITE (7,172)
F٦
G1
H1
Jl
Κ1
A2
32
C2
D2
E2
     WRITE (7,180) ((TWX(I,J),J=1,5),I=1,6)
F2
G2
H2
J2
К2
43
33
23
23
Ξ3
```

Figure

5.4.1-28

Page (2 of 2)

Figure 5.4.1-29

Page (1 of 3)

```
A1
  81
       $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*4; *2
       REWIND 9; REWIND 8
  C1
       FINISH = 0
  D1
  E1
       D0 600 J = 1,6
  Fl
       Performed by El
  G1
       (TWX (J,1).EQ.' ')
  H1
  Jl
  K1
  A2
       DO 105K = 1,5; (TWX(J,K).NE.DL(K))
  B2
 C2
  D2
E2
      READ (9,END=700)DA,DL,DPT,D,KT,DDD,DF,DE
 F2
      READ (9,END=300)DA,DL,DPT,D,KT,DDD,DF,DE
 G2
 H2
      Performed by G2
      (FINISH.EQ.1)
 J2
 K2
 А3
 B3
      FINISH = 1
      DO 150L = 1,21; (SUB(L).EQ.'DELA')
 C3
      DO 155L = 1,21; (SUB(L).EQ.'APPR'.OR.SUB(L).EQ.'DISA')
 D3
 E3
```

Page (2 of 3)

```
F3
G3
Н3
     WRITE (8)DA,DL,DPT,D, KT,DDD,DF,DE
J3.
K3
A4
B4
C4
     WRITE (1,165)DDD
     READ (1,170,ERR = 160)DDD
D4
     (DDD(1).LE.O.OR.DDD(1).GE.13); (DDD(2).LE.O.OR.DDD(2).GE.32)
E4
F4
G4
H4
J4
K4.
A5
     SRCH$$(K$CLOS, 'ACTD',6,0,0,0)
B5
     SRCH$$(K$CLOS, 'REVS',6,0,0,0)
C5
     SRCH$$(K$DELE,'ACTD',6,0,0,0)
D5
    CNAM$$('REVS',6,'ACTD',6,IC)
E5
    SRCH$$(K$RDWR+K$NDAM,'ACTD',6,5,1,IC)
F5
    SRCH$$(K$RDWR+K$NDAM, 'REVS', 6, 4, 1, IC)
G5
    REWIND 9; REWIND 8
H5
    FINISH = 0
J5
K5
```



```
A1.
         $INSERT COMMON; $INSERT SYSCOM>KEYS.F; INTEGER*2;*4
B1
         CLEAR
C1
         BREAK$(.TRUE.)
D1
         TIMDAT(A,15)
E٦
         (A(13).EQ.'JW'.OR.A(13).EQ.'HN'.OR.A(13).EQ.'RJ'.OR.A(13).EQ.'DK')
F1
         WRITE(1,4)
G1
H1
J1
K1
A2
В2
C2
D2
E2
F2
         BREAK$(.FALSE.)
         WRITE(1,1); WRITE(1,505)
G2
         READ(1,510,ERR=500)DIRR
H2
         READ(6, END=1010) TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
J2
K2
А3
         see J2
 33
         DO 530I=1,4; (DIR(I).NE.DIRR(I))
 C3
         WRITE(10)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
 D3
 E3
```

```
F3
G3
Н3
J3
К3
A4
84
         WRITE(1,540)
C4
         SHOWDR
D4
         WRITE(1,550)
E4
         READ(1,560,ERR=545)IOPT
F4
         (IOPT.EQ.'NO'); (IOPT.NE.'YE')
G4
H4
J4<sup>-</sup>
K4
A5
B5
C5
D5
E5
F5
          R=1
G5
          INPSDR
Н5
          WRITE(10)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
J5
К5
```

Page (3 of 6)


```
A1
B1
        READ(6, END=600)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
C1
        see B1
        WRITE(10)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
D1
E1
F1
G1
H1
J1
K1
A2
B2
        SRCH$$(K$CLOS,'TEMP',6,0,0,0);SRCH$$(K$CLOS,'DIR',6,0,0,0)
C2
        SRCH$$(K$DELE,'DIR',6,0,0,0)
D2
        CNAM$$('TEMP',6,'DIR',6,IC)
E2
        SRCH$$(K$RDWR+K$NDAM, 'DIR',6,2,IT,IC);SRCH$$(K$RDWR+K$NDAM,
F2
        'TEMP',6,6,IT,IC)
G2
H2
J2
K2
А3
В3
        R=0
        INPSDR
C3
        WRITE(6)TIT, PTIT, DIRR, DT, SYS, WAN, VEH, REV, RDAT
D3
        SRCH$$(K$CLOS,'TEMP',6,0,0,0);SRCH$$(K$DELE,'TEMP',6,0,0,0);SRCH$$
 E3
        (K$RDWR+K$NDAM, 'TEMP', 6, 6, IT, IC)
                                                                 Page (5 of 6)
 Figure 5.4.2-1
```

```
WRITE(1,1001); READ(1,1002)IANS
F3
        REWIND 6
G3
         (IANS.EQ.'N'); (IANS.NE.'Y')
Н3
J3
К3
Α4
В4
C4
D4
E4
F4
G4
H4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
Н5
J5
```

K5


```
A1
        $INSERT SYSCOM>KEYS.F; SRCH$$(K$RDWR+K$NSAM,'OUT',6,3,0,0)
B1
C1
         WRITE(1,1); REWIND 6.
         READ(1,3)IDES:
D1
         (IDES(1).EQ.'AL')
El
         (IDES(1).EQ.'TI')
F٦
         (IDES(1).EQ.'DI')
G1
         (IDES(1).EQ.'DA')
H1
         (IDES(1).EQ.'WA')
J1
K1
A2
B2
C2
D2
         ALDR
E2
         TITDR
F2
         DIRN
G2
         DATDR
H2
         WANUM
J2
K2
А3
         (IDES(1).EQ.'SY')
В3
         (IDES(1).EQ.'CO')
С3
         (IDES(1).EQ.'VE')
D3
         (IDES(1).EQ.'QU')
E3
```

Page (2 of 3)

```
F3
G3
H3
           CLEAR
J3
К3
A4
           SYSDR
B4
           CONN
C4
           VEHN
D4
           WRITE(1,11)
E4
           SRCH$$(K$CLOS,'OUT',6,0,0,0)
F4
           READ(1,3)IDES
G4
            (IDES(1).EQ.'YE'); (IDES(1).EQ.'NO')
H4
           SRCH$$(K$DELE,'OUT',6,0,0,0)
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
           SRCH$$(K$CLOS,'DIR',6,0,0,0); SRCH$$(K$CLOS,'REV',6,0,0,0);
SRCH$$(K$CLOS,'TEMP',6,0,0,0)
COMI$$('SOUT',6,2,IC)
H5
J5
K5
```

Page (3 of 3)


```
A1
B1
        $INSERT COMMON:- INTEGER*2,*4
C1
        TIMDAT(A,15)
        (A(13).EQ.'JW'.OR.A(13).EQ.'NH'.OR.A(13).EQ.'RJ'.OR.A(13).EQ.'DK')
D1
        WRITE(1,4) ('SORRY, YOU ARE NOT VALIDATED TO USE THIS MODE.')
E1
F1
G1
H1
Jl
K٦
A2
B2
C2
        FINISH=0
D2
        WRITE(1,1)
E2 -
        READ(1,2,ERR=5)IDIR
F2.
        REWIND 6
G2
        READ(6,END=200)TIT,PTIT,DIR,DT,SYS,WAN,VEH,REV,RDAT
H2
        see H2
J2
K2
A3
        (FINISH.EQ.1)
B3
        DO 110 I=1,4; (IDIR(I).NE.DIR(I))
C3 ·
D3
E3
```

Page (2 of 5)

```
F3
G3
 Н3
           SRCH$$(K$CLOS,'DIR',6,0,0,0); SRCH$$(K$DELE,'DIR',6,0,0,0)
 J3
К3
A4
B4
           SHOWDR
C4
           WRITE(1,1700)
D4
           READ(1,50)IOPT
E4
           (IOPT.EQ.'NO'); (IOPT.NE.'YE')
F4
G4
H4
           CNAM$$('REVS',6,'DIR',6,IC)
J4
K4
A5
B5
C5
D5
E5
F5
          WRITE(1,2000)
G5
          READ(1,50)IOPT
H5
J5
          SRCH$$(K$RDWR+K$NDAM, 'DIR' ,6,2,IT,IC); SRCH$$(K$RDWR+K$NDAM, 'REV', 6,4,IT,IC)
K5
```

Page (3 of 5)

- 234 -

```
A1
         (IOPT.EQ.'RE')
B1
         (IOPT.NE.'DE')
C1
Dl
E1
F1
G1
H1
Jl
K1
A2
         R=1
В2
         FINISH=1
C2
D2
E2
F2
G2
H2
J2
K2
A3
         INPSDR
В3
         FINISH=1
С3
         WRITE(8)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
D3
E3.
```



```
A1 .
B1
         $INSERT COMMON; $INSERT SYSCOM>KEYS.F; INTEGER*4
         IDUSER(IAI)
C1
         (IAI.EQ.'SY')
D1
El
F1
G1
H1
Jl
K1
A2
B2
C2
         WRITE(1,1) ('YOU ARE NOT VALIDATED TO USE THIS ROUTINE')
D2
E2
         READ(1,2,ERR=10)IKNT
FŻ
         (IKNT.EQ.0)
         SRCH$$(K$RDWR+K$NDAM,'INACT',6,5,1,IC)
G2
H2
         READ(9, END=75)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
         DO 9999 ILOOP=1,IKNT
J2
K2
A3
В3
С3
         WRITE(1,80)
         READ(1,81,ERR=82)IDR
D3
         READ(6, END=200) TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
E3
```

```
F3
G3
Н3
J3
К3
A4
          ENDFILE 9
B4
          SRCH$$(K$CLOS,'INACT',6,0,0,0)
C4
D4
E4
          DO 150 I=1,4; (IDR(I).NE.DIR(I))
F4
          WRITE(10)TIT,PTIT,DIR,DT,SYS,WAN,VEH,REV,RDAT
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
          WRITE(9)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
G5
H5
J5
K5
```

-- 238 -

Page (3 of 5)


```
A1
         SRCH$$(K$CLOS,'DIR',6,0,0,0); SRCH$$(K$DELE,'DIR',6,0,0,0)
B1
C1
         SRCH$$(K$CLOS,'TEMP',6,0,0,0)
         CNAM$$('TEMP',6,'DIR',6,IC)
D1
         SRCH$$(K$RDWR+K$NDAM,'DIR',6,2,IT,IC); SRCH$$(K$RDWR+K$NDAM,'TEMP',
E1
         6,6,IT,IC)
F1
G1
H1
Jl
K1
A2
B2
C2
D2
E2
F2
G2
H2
J2
K2
A3
B3
С3
D3
E3
```

Page (5 of 5)


```
A1
 В1
          $INSERT COMMON
          CLEAR
 C1
          WRITE(1,10)TIT
 D1
          WRITE(1,20)DIR,DT,SYS
 E1
          see E1
 F1
          WRITE(1,30)WAN,((VEH(I,J),J=1,2),I=1,2)
 G1
          WRITE(1,40)REV,RDAT
 H1
. JJ
 K1
 A2
 В2
 C2
 D2
 E2
 F2
 G2
 H2
 J2
 K2
 АЗ
 83
 С3
```

D3

E3


```
A1
           $INSERT COMMON; $INSERT SYSCOM>KEYS.F; INTEGER*2
 В1
           (R.EQ.0)
 C1
           WRITE(1,1)
 D1
           READ(1,10,ERR=2)IKNT
 E1
           (IKNT.LT.0); (IKNT.GT.8)
 F1
 G1
 H1
 J1
 K1
 Α2
 В2
           (R.EQ.1.AND.IR.NE.1)
 C2
 D2
 E2
 F2
          WRITE(1,3)
           READ(1,10,ERR=5)IR
 G2
 H2
 J2
 K2
 А3
 33
· C3
           see C2
 D3
 E3
```

```
F3
G3
Н3
J3
К3
A4
В4
          LEN=10
C4.
D4
          TINPUT(TIT, LEN)
          WRITE(1,102)TIT
E4
          (R.EQ.1.AND.IR.NE.2)
F4
          see F4
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
          WRITE(1,202)
G5
          READ(1,203,ERR=201)DIR
H5
          WRITE(1,203)DIR
J5
K5
```



```
A1
           (R.EQ.1.AND.IR.NE.3)
В1
C1
D1
E1
 F1
G1
H1
 J٦
 K1
 A2
           see B1
 B2
           (R.EQ.1.AND.IR.NE.4)
 C2
..D2
 E2
 F2
 G2
 H2
 J2
 K2
 A3
           READ(1,403,ERR=401)DT
 33
           see C2
 C3 .
 D3
           (R.EQ.1.AND.IR.NE.5)
 E3
```

Page (5 of 9)

```
F3
G3
Н3
J3
К3
A4
         WRITE(1,403)DT
В4
C4
          READ(1,503,ERR=501)SYS
D4
E4
          see E3 (page 5 of 9)
F4
G4
H4
J4
Κ4
A5
В5
         WRITE(1,503) SYS
C5
D5 ·
          READ(1,603,ERR=601)WAN
E5
         WRITE(1,603)WAN
F5
         GETCON
G5
Н5
          WRITE(1,650)CON
J5
K5
```



```
A1
          (R.EQ.1.AND.IR.NE.6)
В1
C1
D1
E٦
F٦
G1
H1
Jl
Κ1
A2
          see B1
В2
C2
          (R.EQ.1.AND.IR.NE.7)
D2
E2
F2
G2
H2
J2
K2
АЗ
         READ(1,903,ERR=901) ((VEH(I,J),J=1,2),I=1,2)
В3
C3
         see C2
D3
          (R.EQ.1.AND.IR.NE.8)
E3
```

```
F3
G3
НЗ
J3
К3
Α4
         WRITE(1,903)((VEH(I,J),J=1,2),I=1,2)
B4
         READ(1,2202)REV
C4
D4
         see E3 (page 8 of 9)
E4
F4
G4
H4
J4
K4
Α5
B5
         WRITE(1,2202)REV
C5
D5
         READ(1,2303)RDAT
E5
         WRITE(1,2303)RDAT
F5
         SHOWDR
G5
Н5
J5
K5
```



```
A1
         $INSERT COMMON; $INSERT SYSCOM>KEYS.F; INTEGER*2; *4
B1
C1
          KNT=0
         BREAK$(.TRUE.)
D1
         WRITE(1,1)
El
         WRITE(1,3)
F1
         READ(1,4,ERR=3)IOPT
G1
          (IOPT.LT.1.OR.IOPT.GT.2)
H1
JI
K1
A2
B2
         KNT=KNT+1
         (IOPT.EQ.2)
C2
         (REV.EQ.'.'). .
D2
         WRITE(7,55)KNT,DIR
E2
F2
G2
         READ(6,END=100)TIT,PTIT,DIR,DT,SYS,WAN,VEH,REV,RDAT
H2
J2
          see H2
K2
A3
83
          FMAIN.
C3
         WRITE(7,35)KNT,DIR,REV
D3
          (KNT/50.EQ.KNT/50.)
E3
```

```
F3
G3
Н3
J3
К3
A4
B4
C4
D4
E4
        WRITE(1,70)KNT
F4
G4
H4
J4
K4
A5
B5
        WRITE(1,200)KNT
C5
        SRCH$$(K$CLOS,'OUT',6,0,0,0)
D5
        SRCH$$(K$CLOS,'DIR',6,0,0,0)
E5
        SRCH$$(K$CLOS,'REVS',6,0,0,0)
        SRCH$S(K$CLOS,'TEMP',6,0,0,0)
F5
        COMI$$('SOUT',6,12,IC)
G5
H5
J5
K5
```

Page (3 of 3)


```
A]
        $INSERT COMMON; INTEGER *2; *4
B1
C1.
        T1=0
D1
        CLEAR
        WRITE(1,2)
E1
        READ (1,8,ERR=L001)ICON
F1
        (ICON.LT.1); (ICON.GT.4)
G1
Ηl
J1
K1
A2
        LEN=10
B2
        TINPUT(IT, LEN)
C2
        (IT(1).EQ.'QUIT')
D2
        SRCH$$(K$RDWR+K$NDAM,T1' 6,7,ITY,IC);SRCH$$(K$RDWR+K$NDAM,'T2',6,
E2
        8, ITY, IC)
F2
        DO 1000 LOOP=1,ICON
G2
H2
        performed by G2
        WRITE (1,1)
J2
K2
А3
В3
С3
D3
E3
```

Page (2 of 9)

```
E3
G3
Н3
J3
КЗ
A4
B4
         IN=6
C4
D4
         IN=12
E4
F4
         IN=11
         I0=12
G4
         D0C=0
Н4
J4
         REWIND IN; REWIND IO
K4
Α5
B5
         10=11
C5
D5
E5
         10=11
F5
G5
H5
J5
```

K5


```
A1
          READ(IN, END=100)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
B1
           see B1
C1
           BLNK= 1
D1
           DO 3 I=1,21
E1
           performed by El
F1
           (TIT(I).EQ.BLNK); (TIT(I).NE.IT(1)); (TIT(I+1).EQ.BLNK); (IT(2).EQ.BLNK); (TIT(I+1).EQ.IT(2))
G1
H1
Jl
K1
A2
B2
           WRITE(1,1030)DOC,IT
C2
           (DOC.EQ.0)
D2
E2
F2
           DOC = DOC + 1
G2
H2
           WRITE(IO)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
           WRITE(1,10)TIT
J2
K2
А3
B3
C3
           ENDFILE 10
D3
           SRCH$$(K$CLOS,'T1',6,0,0,0); SRCH$$(K$CLOS,'T2',6,0,0,0)
E3
           5.4.2-8
                                                                        Page
                                                                                (5 \text{ of } 9)
Figure
```

```
(IO.EQ.11)
F3
G3
Н3
J3
К3
Α4
В4
C4
D4
E4
F4
          SRCH$$(K$DELE,'T2',6,0,0,0)
          (IO.EQ.12)
G4
H4
J4
Κ4
A5
В5
C5
D5
E5
F5
          SRCH$$(K$DELE,'T2',6,0,0,0)
G5
Н5
          T]=T]+]
J5
K5
```

Page (6 of 9)


```
A٦
-B1
          SRCH$$(K$RDWR+K$NDAM,'T1',6,7,ITY
C1
          SRCH$$(K$RDWR+K$NDAM,'T2',6,8,ITY,IC)
D1
          (DOC.LT.1)
E1
F1
G1
H1
J1
K1
A2
B2
C2
          READ(IO, END=1020)TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
D2
          see D2
E2
F2
          FMAIN
G2
H2
J2
 K2
АЗ
          (DOC.NE.O)
 B3
          WRITE(1,2000)
 C3
 03
          SRCH$$(K$CLOS,'T1',6,0,0,0)
 E3
                                                               Page (8 of 9)
          5.4.2-8
 Figure
```

```
SRCH$$(K$CLOS,'T2',6,0,0,0)
F3
G3
         SRCH$$(K$DELE,'T1',6,0,0,0)
         SRCH$$(K$DELE,'T2',6,0,0,0)
НЗ
J3
К3
A4
В4
         READ(1,2001)IOPT
C4
         (IOPT.EQ.'YE')
D4
         (IOPT.NE.'NO')
E4
F4
G4
H4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

Page (9 of 9)

- 264 -

```
A1
        $INSERT COMMON; INTEGER *4
B1
·C1
        KNT=0
        WRITE (1,1)
D1
        READ (1,2,ERR=3)IDIR
E٦
        WRITE (1,2)IDIR
F1
        READ(6,END=200)TIT,PTIT,DIR,DT,SYS,WAN,VEH,REV,RDAT
G1
        see G1
H1
        DO 1000 I=1,4; (IDIR(I).NE.DIR(I))
J1
K1
A2
B2
C2
D2
E2
F2
G2
H2
J2
        FMAIN
K2
А3
B3
C3
D3
E3
```



```
A1
 В1
        $INSERT COMMON; INTEGER *2
 C1
        KNT=0
        WRITE(1,21)
 D1
        READ(1,22,ERR=20)D
 E1
        READ(6,END=200)TIT,PTIT,DIR,DT,SYS,WAN,VEH,REV,RDAT
 F1
        see F1
 G1
        (REV.EQ.' ')
 H1
 Jl
 K1
 A2
        (D(2).EQ.0)
 B2
        (D(2).NE.DT(2))
 C2
. . D2
  E2
  F2
        WRITE(1,250)KNT,D
  G2
        (D(1).EQ.0)
 Н2
        (D(1).NE.DT(1))
  J2
  K2
  А3
  В3
        (D(3).EQ.0)
  С3
  D3
        (D(3).NE.DT(3))
  E3
```

F3

G3

НЗ

J3

К3

Α4

В4

C4

D4 FMAIN

E4 KNT=KNT+1

F4

G4

H4

J4

Κ4

A5

B5

C5

D5

E5

F5

G5

H5

J5

K5

Page (3 of 5)


```
A1
       (D(1).EQ.0)
В1
       (D(1).NE.RDAT(1))
C1
D1
E1
F٦
G1
Н1
J1
Κ1
A2
В2
        (D(2).EQ.0)
 C2
        (D(2).NE.RDAT(2))
 D2 -
 E2
 F2
 G2
 H2
 J2
 K2
 АЗ
 вз
 C3
        (D(3).EQ.0)
 D3
        (D(3).NE.RDAT(3))
· E3
```



```
A1
в٦
      *$INSERT COMMON; INTEGER*2
C1
       KNT=0
D1
      WRITE(1,1)
E1
      READ(1,2,ERR=3)DWA
      READ(6, END=200) TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
FI
G1
       see F1
H1
       (DWA(4).NE.' ')
       (DWA(3).NE.' ')
J1
Κ1
A2
B2
      DO 30 I=1,2; (DWA(I).NE.WAN(I))
C2
-D2
E2
F2
G2
      WRITE(1,250)KNT,DWA
      DO 10 I=1,4; (DWA(I).NE.WAN(I))
H2
J2
      DO 50 I=1,3; (DWA(I).NE.WAN(I))
K2
А3
      FMAIN
В3
С3
      KNT=KNT+1
D3
E3
```



```
Α1
В1
       $INSERT COMMON; INTEGER*4
C1
      KNT=0
      WRITE(1,1)
D1
Εl
      READ(1,2,ERR=3)DS
F1
      READ(6, END=200) TIT, PTIT, DIR, DT, SYS, WAN, VEH, REV, RDAT
      see F1
G1
ΗΊ
      DO 150 I=1,3; (DS.EQ.SYS(I))
J1
K1
A2
В2
C2
D2
E2
F2
G2
      WRITE(1,250)KNT,DS
      FMAIN
H2
J2
      KNT=KNT+1
K2
АЗ
В3
C3
```

D3

E3

- 275 -

```
A1
      $INSERT COMMON; $INSERT SYSCOM >KEYS.F; INTEGER*4
В1
C1
      KNT=0
      WRITE(1,3)
D1
      READ(1,2,ERR=1)DC
E٦
      SRCH$$(K$RDWR+K$NDAM, 'CTAB',6,14,IT,IC)
F1
G1
      READ(18,40,END=200)WA,CON
H1
      see G1
      DO 45 I=1,5
J1
      (CON(I).NE.DC(I))
K1
A2 -
      READ(6,END=90)TIT,PTIT,DIR,DT,SYS,WAN,VEH,REV,RDAT
В2
      see B2
C2
      (WA(1).EQ.'38'.AND.WA(2).EQ.'04'.OR.WA(2).EQ.'09')
D2
      (WAN(1).NE.WA(2)); (WAN(2).NE.WA(2))
E2
F2
G2
H2
      WRITE(1,250)KNT,DC
J2
K2
А3
33
      REWIND 6
С3
      DO 665 I=1,4; (WAN(I).NE.WA(I))
D3
E3
```

```
'F3
G3
      SRCH$$(K$CLOS,'CTAB',6,0,0,0)
Н3
J3
К3
A4
В4
C4
      CMAIN
D4
Ε4
      KNT=KNT+1
F4
G4
H4
J4
Κ4
A5
B5
C5
D5
E5
FS
G5
H5
J5
K5
```



```
A1
ВЪ
      $INSERT COMMON; INTEGER*2
C1
      VKNT=0
      CLEAR
D٦
      WRITE(1,2)
E1
F1
      READ(1,3,ERR=1)VEH1
G1
      WRITE(1,100)
н٦
      READ(1,101,ERR=100)(VS(I),I=1,2)
      WRITE(1,102)
J1
K1
A2
82
      READ(1,101,ERR=998)(VS(I),I=3,4)
      (VEH1(1).LT.VS(1))
C2
D2
E2
      READ(6,END=202)TIT,PTIT,DIR,DT,SYS,WAN,VEH,REV,RDAT
F2
G2
      see F2
      (VEH(1,1).LT.VS(1)); (VEH(2,1).GT.VS(3))
H2
J2
K2
A3
33
      (VS(3).EQ.0)
С3
      VS(3)=999
D3
E3
```

```
F3
G3
      WRITE(1,201)VKNT,VEH
      (VEH(1,2).NE.'S'.AND.VEH(1,1).EQ.VEH1(1))
Н3
      see H3, H4
J3
К3
A4
B4
C4
      (VS(3).LT.VEH1(1))
D4
E4
F4
G4
      (VEH(1,2).EQ.'S'.AND.VEH(1,1).LE.VEH1(1))
H-
J4
K4
A5
B5
C5
D5
E5
F5
G5
      VKNT=VKNT+1
H5
      FMAIN
J5
Κ5
```



```
A1
B1
      $INSERT COMMON
C1
      WRITE(1,998); WRITE(7,999)
      WRITE(1,101); WRITE(7,101); WRITE(1,102)TIT;
D1
      WRITE(7,102)TIT
      (REV.NE.' ')
E1
F٦
      WRITE(1,150)DIR, REV; WRITE(7,150)DIR, REV
G1
H1
Jl
K1
A2
B2
C2
D2
E2
      WRITE(1,202)DIR, REV; WRITE(7,202)DIR, REV
      WRITE(7,402)DT,RDAT; WRITE(7,402)DT,RDAT
F2
      WRITE(1,502)SYS; WRITE(7,502)SYS
G2
      WRITE(1,602)WAN; WRITE(7,602)WAN
H2
      GETCON
J2
K2
A3
      WRITE(1,702)CON; WRITE(7,702)CON
B3
      WRITE(1,902)((VEH(I,J),J=1,2),I=1,2); WRITE(7,902)
C3
      ((VEH(I,J),J=1,2),I=1,2)
D3
      RECYCL
E3
      PAUS
```


Figure 5.4.2-16

```
A1
B1
       $INSERT COMMON
C1
      WRITE(1,998); WRITE(7,999)
      WRITE(1,101); WRITE(7,101); WRITE(1,102)TIT;
D1
       WRITE(7,102)TIT
E1
       (REV.NE.'')
F1
       WRITE(1,150)DIR, REV; WRITE(7,150)DIR, REV
G1
H1
JI
K]
A2
B2
C2
D2
E2
      WRITE(1,202)DIR, REV; WRITE(7,202)DIR, REV
F2
      WRITE(7,402)DT,RDAT; WRITE(1,402)DT,RDAT
      WRITE(1,502)SYS; WRITE(7,602)WAN
G2
H2
      WRITE(1,602)WAN; WRITE(7,602)WAN
      WRITE(1,702)CON; WRITE(7,702)CON
J2
K2
A3
      WRITE(1,902)((VEH(I,J),J=1,2),I=1,2);
WRITE(7,902)((VEH(I,J),J=1,2),I=1,2)
33
C3
      RECYCL
D3
      PAUS
E3
```


Figure 5.4.3-1

Page (1 of 3)

```
A1
B1
      $INSERT COMMON; INTEGER*2
C1
      CLEAR
D1
      FIRST=0
E1
     BREAK$(.TRUE.)
F1
     TIMDAT(A, 15)
      (A(13).EQ.'JW'.OR.A(13).EQ.'NH'.OR.A(13).EQ.'RJ'.OR.A(13).EQ.'DK')
G1
     WRITE(1,4) ('SORRY, YOU ARE NOT VALIDATED TO USE THIS MODE.')
HΊ
J1
K1
A2
B2
     READ(12, END=2003) DRW, SHTN, REV, NEO, EOREF
C2
     WRITE(1,1)
D2
     R=0
     WRITE (1,101)
E2
F2
     READ(1,1002) IANS
     BREAK$(.FALSE.)
G2
     READ(6, END=2001) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
H2
     READ(18, END= 2002)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
J2
K2
А3
     INPSDW
В3
C3
     WRITE(6)DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
D3
     WRITE(1,1001)
E3
```

```
(IANS.EQ.'D')
F3
     (IANS.NE.'E')
G3
Н3
J3
К3
A4
В4
C4
     READ(1,1002) IANS
D4
E4
      (IANS.EQ.'Y'); (IANS.NE.'N')
F4
     INPSE
G4
     WRITE(18)EDN, ETIT, EPTIT, EDREV, EDT, ERDT, EOVEH
H4
     READ(12, END=1000) DRW, SHTN, REV, NEO, EOREF
J4
K4
A5
B5
C5
D5
E5
     REWIND 6
F5
     REWIND 12
G5
     REWIND 18
H5
J5
K5
```

Page (3 of 3)


```
A1
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*4;*2
B1
C1
     TIMDAT(A,15)
     (A(13).EQ.'JW'.OR.A(13).EQ.'NH'.OR.A(13).EQ.'RJ'.OR.A(13).EQ.'DK')
D1
     WRITE(1,4) ('SORRY, YOU ARE NOT VALIDATED TO USE THIS MODE.')
E1
F1
G1
H1
Jl
K1
A2
B2
C2
     SRCH$$(K$RDWR+K$NDAM,'REVS',6,4,1,IC)
D2
E2
     (IC.NE.O)
     WRITE(1,3001)
F2
G2
H2
J2
 K2
А3
     WRITE(1,11)
83
C3
     READ(1,21,ERR=31)IEO
     REWIND 18
 D3
     FINISH=0
 E3
```

Page (2 of 9)

```
F3
     WRITE(1,301)
G3
     READ(1,302) IANS
     (IANS.EQ.'E')
НЗ
     (IANS.NE.'D')
J3
К3
A4
B4
C4
D4
     READ(18, END=201) EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
     PERFORMED BY D4
E4
F4
     (FINISH.EQ.1)
     DO 111 I=1,2; (IEO(I).NE.EON(I))
G4
     WRITE(8)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
H4
J4
K4
A5
B5
     SRCH$$(K$CLOS,'EO',6,0,0,0)
     SRCHS$(K$DELE, 'EO', 6, 0, 0, 0)
C5
     CNAM$S('REVS',6,'EO',6,IC)
D5
E5
     SRCH$$(K$RDWR+K$NDAM,'E0',6,14,1,IC)
F5
     SHOWEO
G5
     WRITE(1,1700)
H5
     READ(1,50)IOPT
J5
K5
```



```
A1
в٦
     (IOPT.EQ.'NO'); (IOPT.NE.'YE')
C1
D1
E1
F1
G1
H1
J1
K1
A2
В2
     WRITE(1,2000)
C2
     READ(1,50)IOPT
D2
     (IOPT.EQ.'RE')
     (IOPT.NE.'DE')
E2
F2
G2
Н2
J2
K2
A3.
33
C3
03
     R=1
E3
     FINISH=1
Figure 5.4.3-2
                                                              Page (5 of 9)
```

F3 ·

G3

НЗ

J3

К3

A4

В4

C4

D4 INPSE

E4 FINISH=1

F4

G4

H4

J4

K4

A5 ---

B5

C5

D5

E5

F5

G5

H5

J5

K5

Figure 5.4.3-2

Page (6 of 9)


```
A1
B1
     WRITE(1,1)
C1
     READ(1,2,ERR=5)IDRAW
D1
     REWIND 6
     READ(6, END=200) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
ΕŢ
     PERFORMED BY E1
FI
     (FINISH.EQ.1)
Gł
     DO 110I=1,4; (IDRAW(I).NE.DRAW(I))
Hl
J1
     WRITE(8)DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
K1
A2 -
B2
     SHOWDW
C2
     WRITE(1,1700)
     READ(1,50)IOPT
D2
E2
     SRCH$$(K$CLOS, 'DRAW', 6,0,0,0)
F2
     SRCH$$(K$DELE, 'DRAW', 6, 0, 0, 0)
G2
     CNAM$$('REVS',6,'DRAW',6,IC)
H2
     SRCH$$(K$RDWR+K$NDAM,'DRAW',6,2,1,IC)
J2
K2
A3
33
C3
     (IOPT.EQ.'NO'); (IOPT.NE.'YE')
D3
E3
```

Page (8 of 9)

```
F3
G3
НЗ
J3
К3
A4
В4
C4
     WRITE(1,2000)
D4
     READ(1,50)IOPT
E4
     (IOPT.EQ.'RE')
F4
     (IOPT.EQ.'DE')
G4
H4
J4
A5 _
35
     R=1
C5
     INPSDW
95
     FINISH=1
E5
=5
G5
     FINISH=1
35
J5
Κ5
```

Page (9 of 9)


```
A1
 В1
      $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*2
 C1.
      J=:401; R=0
· D1
      SRCH$$(K$RDWR+K$NSAM,'OUT',6,3,0,0)
 E1
      WRITE(1,1)
 F1
      REWIND 6
 G1
      READ(1,3)IDES
 H1
       (IDES.EQ.'QU')
 Jl
      WRITE(1,110)
 K1
 A2
      READ(1,3)IOPT
 B2
       (IOPT.EQ.'NO'); (IOPT.NE.'YE')
 C2
 D2
 E2
 F2
 G2
 Н2
 J2
 K2
 A3
 33
 03
       R=1
       PERFORMED BY E3 THRU J3 (PAGES 2 & 3) and B1 THRU F1 (PAGE 5 of 6)
 D3
 E3
       (IDES.EQ.'TI')
```

Page (2 of 6)

```
F3 (IDES.EQ.'AL')
```

G3 (IDES.EQ.'AC')

H3 (IDES.EQ.'DR')

J3 (IDES.EQ.'DA')

КЗ

A4

B4

C4

D4

E4 TITOW

F4 ALDW

G4 ACTDUE

H4 DRAWN

J4 DATDW

K4

A5

B5

C5

D5

E5

F5

G5

Н5

J5

K5

Figure 5.4.3-3

Page (3 of 6)


```
Αī
В1
      (IDES.EQ.'SY')
      (IDES.EQ.'VE')
C1
DI
      (IDES.EQ.'SE')
      (IDES.EQ.'CO')
E٦
      (IDES.EQ.'EO')
F٦
G1
Н1
J٦
K1
A2
B2
      SYSDW
C2
      VEHND
      SECTN
D2
Ε2
      CODE
     .EONN
F2
G2
H2
J2
 K2
A3
 33
 СЗ
 D3
```

E3

Page (5 of 6)

```
WRITE(1,98)
F3
      READ(1,9999) IDES
G3
НЗ
      (IDES.NE.' ')
J3
К3
A4
      WRITE(1,11)
84
      READ(1,3)IDES
C4
      (IDES.EQ.'YE'); (IDES.EQ.'NO')
D4
      SRCH$$(K$CLOS,'OUT',6,0,0,0)
Ę4
      SRCH$$(K$DELE,'OUT',6,0,0,0)
F4
.G4
      CLEAR
H4
      REWIND 6; REWIND 12; REWIND 18
J4
K4
A5
B5
C5
      SRCH$$(K$CLOS, 'OUT', 6,0,0,0)
D5
      SRCH$$(K$CLOS, 'DRAW', 6,0,0,0)
E5
      SRCH$$(K$CLOS, 'EO', 6,0,0,0)
F5
      SRCH$$(K$CLOS, 'SHEET', 6,0,0,0)
G5
H5
      COMI$$('SOUT',4,12,IC)
J5
K5
```



```
A1
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*2
В1
      IDUSED (IAI)
C1
      (IAI.EQ.'SY')
D1
      WRITE(1,500) ('SORRY YOU ARE NOT VALIDATED TO USE THIS ROUTINE.')
E1
F1
G1
Hl
J1
 K1
 A2
 B2
 C2
 D2
      WRITE(1,6)
      READ(1,7)IOPT
 E2
      (IOPT.EQ.'DR')
 F2
      (IOPT.NE.'EO')
 G2
 H2
. J2
 K2
 А3
      WRITE(1,1)
 B3
      READ(1,2,ERR=10)IKNT
 C3
      (IKNT.EQ.O)
 D3
      SRCH$$(K$RDWR+K$NDAM,'INACTD',6,5,1,IC)
 E3
```

Page (2 of 12)

```
SRCH$$(K$RDWR+K$NDAM,'INACTS',6,7,1,IC)
F3
      SRCH$$(K$RDWR+K$NDAM,'TEMP',6,6,1,IC)
G3
      SRCH$$(K$RDWR+K$NDAM,'STEMP',6,10,1,IC)
НЗ
      READ(9, END=60) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
J3
К3
A4
84
C4
D4
E4
F4
G4
H4
J4
      READ(11, END=75)DRW, SHTN, REV, NEO, EOREF
Κ4
      D09999 ILOOP=1, IKNT
.A5
B5
C5
05
E5
·F5
G5
H5
J5
Κ5
```

Page (3 of 12)


```
A1
BI
      PERFORMED BY J5 (PAGE 3 of 12)
      WRITE(1,80)
C1
      READ(1,81,ERR=82)IDR
D1
      READ(6, END=200) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNED, FEOREF
E1
F٦
      PERFORMED BY E1
G1
      D0150 I =1,4; (IDR(I).NE.DRAW(I))
H1
      WRITE(10)DRAW, TIT, PTIT, OT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
J1
K1
A2
B2
      ENDFILE 9; ENDFILE 11
C2
      SRCH$$(K$CLOS, 'INACTD', 6,0,0,0); SRCH$$(K$CLOS, 'INACTS', 6,0,0,0)
      SRCH$$(K$CLOS, 'TEMP',6,0,0,0); SRCH$$(K$CLOS, 'STEMP',6,0,0,0)
D2
      SRCHSS(K$DELE, 'TEMP',6,0,0,0); SRCH$$(K$DELE, 'STEMP',6,0,0,0)
E2
F2
      SRCH$$(K$CLOS, 'DRAW', 6,0,0,0)
      WRITE(9)DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
G2
H2
J2
K2
A3
B3.
03
03
Ξ3
```

Page (5 of 12)

```
F3
      SRCH$$(K$DELE, 'DRAW', 6, 0, 0, 0)
G3
      SRCH$$(K$CLOS,'TEMP',6,0,0,0)
      CNAM$$('TEMP',6,'DRAW',6,IC)
НЗ
      SRCH$$(K$RDWR+K$NDAM, 'DRAW', 6, 2, 1, IC); SRCH$$(K$RDWR+K$NDAM, 'TEMP',
J3
      6,6,1,IC)
К3
A4
В4
      READ(12, END=165) DRW, SHTN, REV, NEO, EOREF
      PERFORMED BY B4
C4
      DO 155 K=1,4; (IDR(K).NE.DRW(K))
D4
      WRITE(14) DRW, SHTN, REV, NEO, EOREF
E4
F4
G4
H4
J4
K4
A5
B5
C5
D5
      WRITE(11) DRW, SHTN, REV, NEO, EOREF
E5
F5
G5
Н5
J5
K5
```



```
A1
B1
     SRCH$$(K$CLOS,'EO',6,0,0,0); SRCH$$(K$CLOS,'ETEMP',6,0,0,0)
CT
     REWIND 12
D1
E1
F1
     DO 323 I=1,10
G1
     PERFORMED BY B4
H1
J1
     DO 327 J=1,2; (EOREF(I,J).NE.EON(J))
K1
A2 .
B2
     SRCH$$(K$CLOS,'INACTE',6,0,0,0)
C2
D2
E2
F2
G2
H2
J2
     WRITE(13)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
K2
     REWIND 12
А3
В3
     SRCH$$(K$DELE,'E0',6,0,0,0)
     CNAM$$('ETEMP',6,'EO',6,IC)
С3
     SRCH$$(K$RDWR+K$NDAM, 'EO', 6, 14, 1, IC)
D3
E3
```

Page (8 of 12)

```
F3
     SRCH$$(K$CLOS, 'SHEET', 6, 0, 0, 0)
G3
     SRCH$$(K$CLOS,'TEMP',6,0,0,0)
Н3
     SRCH$$(K$DELE, 'SHEET', 6,0,0,0)
J3
     CNAM$$('STEMP',6,'SHEET',6,IC)
К3
     SRCH$$(K$RDWR+K$NDAM, 'SHEET', 6,8,1,IC)
Α4
     SRCH$$(K$RDWR+K$NDAM, 'STEMP', 6, 11, 1, IC)
B4
C4
D4
E4
F4
     SRCH$$(K$RDWR+K$NDAM, 'INACTE', 6, 13, 1, IC)
G4
     SRCH$$(K$RDWR+K$NDAM,'ETEMP',6,9,1,IC)
H4
     READ(17, END=305)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
J.
;:
     WRITE(1,310)
     READ(18, END=400)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
A5
     PERFORMED BY F2
55
05
     READ(12, END=335) DRW, SHTN, REV, NEO, EOREF
     PERFORMED BY H2
D5
ΞΞ
F5
     (NEO.EQ.0)
35
:5
J5
```

К5

_ 312 _

```
Α1
     READ(6,END=350)DRAW,TIT,PTIT,DT,SYS,VEH,SECT,NSHT,FREV,FNEO,FEOREF
B1
C1
     PERFORMED BY B1.
D1
     (FNEO.EQ.O)
ΕŢ
F٦
G1
НΊ
Jl
K1
A2
B2
C2
     WRITE(17)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
     DO 343 I=1,10
D2
     PERFORMED BY D2
E2
     DO 337 J=1,2; (FEOREF(I,J).NE.EON(J))
F2
G2
H2
J2
K2
A3
33
03
     REWIND 6
03
E3
Figure 5.4.3-4
                                                              Page (11 of 12)
```

```
F3
        WRITE(13)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
        REWIND 6
  G3
  НЗ
  J3
  К3
  A4
  В4
  C4
        REWIND 12
        WRITE(1,360)
  D4
  Ė4
  F4
  G4
  Н4
  J4
  K4
  A5
  B5
  C5
  D5
  E5
  F5
  G5
  Н5
  J5
  K5
```

Page (12 of 12)


```
A1
в٦
      $INSERT COMMON
C1
      CLEAR
     WRITE(1,10)EPTIT
D1
E1
     WRITE(1,20)EON,EOREV,EDT
F٦
     WRITE(1,30)ERDT,((EOVEH(I,J),J=1,2),I=1,2)
G1
H1
J1
K1
A2
B2
C2
D2
E2
F2
G2
H2
J2
K2
АЗ
33
С3
D3
```

E3

Page (2 of 2)


```
A1
B1
     $INSERT COMMON
C1
     CLEAR
     WRITE(1,10)PTIT
D1
E1
     WRITE(1,20)DRAW,DT,SYS
     WRITE(1,30) ((VEH(I,J),J=1,2),I=1,2),SECT,NSHT
F1
     WRITE(1,35)FREV; WRITE(1,70)
G1
     (FNEO.NE.O)
H1
Jl
     WRITE(1,72)
K1 .
A2
B2
      REWIND 12
C2
      DO 100 L=2,NSHT
D2
      PERFORMED BY C2
E2
     READ(12, END=150) DRW, SHTN, REV, NEO, EOREF
F2
      PERFORMED BY E2
G2
H2
     DO 81 J=1, FNEO; WRITE(1,85)(FEOREF(J,K),K=1,2)
J2
      (NSHT.EQ.1)
K2
А3
83
      DO 50 I=1,4; (DRAW(I).NE.DRW(I))
C3
D3
      READ(12,END=300)DRW,SHTN,REV,NEO,EOREF
E3
```

Page (2 of 3)

```
WRITE(1,160)DRW
F3
G3
H3
J3
КЗ
A4
84
      (SHTN(2).EQ.0)
      WRITE(1,60)SHTN(1),REV
C4
D4
E4
     (NEO.NE.O)
F4
      WRITE(1,72)
G4
H4
J4
K4
A5
      WRITE(1,52)(SHTN(K),K=1,2),REV
B5
C5
D5
E5
F5
       DO 80 J=1,NEO; WRITE(1,85)(EOREF(J,K),K=1,2)
G5
H5
J5
K5
```

Page (3 of 3)


```
Α1
в٦
       $INSERT COMMON; INTEGER*2
C1
       IEOADD=0
       (R.EQ.0)
01
       WRITE(1,1)
E1
       READ(1,10,ERR=2)IKNT
F1
       (IKNT.LT.0); (IKNT.GT.6)
G1
ΗΊ
Jì
K1
A2
       READ(1,10,ERR=5)IR
В2
C2
D2
       (R.EQ.1.AND, IR.NE, 1)
       WRITE(1,101)
Ξ2
F2
       LEN=10
       DO 3800 LOOP=1,IKNT,1
G2
H2
       PERFORMED BY G2
       WRITE(1,3)
J2
K2
A3
       (R.EQ.1.AND.IR.NE.2)
33
       (R.EQ.O.AND.FIRST.EQ.1)
03
       PERFORMED BY D2
03
E3
```

Page (2 of 8)

```
TINPUT(ETIT, LEN)
F3
G3 - *
        WRITE(1,102)ETIT
         DO 105L=1,19; EPTIT(L)=PTIT(L)
H3
J3
        WRITE(1,110)EPTIT
К3
A4
84
         PERFORMED BY B3 (PAGE 2 of 8)
         PERFORMED BY C3 (PAGE 2 of 8)
C4
         WRITE(1,202)
04
         READ(1,203,ERR=201)EON
E4
F4
         WRITE(1,203)EON
G4
H4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

Page (3 of 8)


```
A1
        (R.EQ.1.AND.IR.NE.3)
В1
        WRITE(1,501)
C1
D1
        READ(1,502,ERR=401)EOREV
        WRITE(1,502)EOREV
E1
·F]
        (R.EQ.1.AND.IR.NE.4)
        WRITE(1,902)
G1
        READ(1,903,ERR=901)EDT
H1
        WRITE(1,903)EDT
J1
K1
A2
        PERFORMED BY B1
B2
C2
D2
E2
 F2
        PERFORMED BY F1
G2
H2
 J2
 K2
 А3
         (R.EQ.1.AND.IR.NE.5)
 В3
        WRITE(1,1002)
 С3
        READ(1,903,ERR=1002)ERDT
 D3
        WRITE(1,903)ERDT
 E3
```

Page (5 of 8)

```
(R.EQ.1.AND.IR.NE.6)
F3
        WRITE(1,1202)
G3
        READ(1,1203,ERR=1201)((EOVEH(I,J),J=1,2),I=1,2)
Н3
        WRITE(1,1203)((EOVEH(I,J),J=1,2),I=1,2)
J3
К3
A4
        PERFORMED BY B3 (PAGE 5 of 8)
84
C4
D4
E4
        PERFORMED BY F3 (PAGE 5 of 8)
F4
G4
H4
J4
Κ4
A5.
B5
C5
.D5
E5
-F5
G5 .
H5.
J5
K5
```



```
A1
       PERFORMED BY G2 (PAGE 2 of 8)
В1
       (R.EQ.O.AND.FIRST.EQ.1)
C1
D1
E1
F٦
G1
н٦
J٦
Κ1
A2
82
C2
        (R.EQ.0)
D2
E2
F2
G2
H2
J2
K2
А3
33
СЗ
       NEOADD
D3
       SHOWEO
E3
```

Page (8 of 8)


```
A1
    $INSERT COMMON; $INSERT SYSCOM> KEYS.F; INTEGER * 2
В1
     IEOUP = 0
C1
    NEWSHT = 0
DI
     (R.EQ.0)
E٦
     WRITE (1.1)
F1
     READ (1,10,ERR = 2) IKNT
Gl
     (IKNT.LT.0); (IKNT.GT.9)
н٦
Jl
K1
A2
B2
     WRITE (1,3)
C2
     READ (1,10,ERR = 5) IR
     (IR.NE.8.AND.IR.NE.7)
D2
     Performed by D2
E2
F2
G2
H2
     DO 3800 LOOP = 1, IKNT, 1
J2
     Performed by H2
K2
A3
     (R.EQ.1.AND.IR.NE.1)
В3
C3
     WRITE (1,101)
     LEN = 10
D3
E3
     (IR.EQ.8)
```

Page (2 of 21)

```
WRITE (1,11)
F3
     READ (1,25,ERR = 9)IOPT
G3
     (IOPT.EQ.'YE'); (IOPT.NE.'NO')
Н3
J3
К3
A4
     Performed by B3 (Page 2 of 21)
B4
C4
D4
     TINPUT (TIT, LEN)
     WRITE (1,20)
E4
     READ (1,25,ERR = 19)IOPT
F4
     (IOPT.EQ.'NO'); (IOPT.NE.'YE')
G4
     NEWSHT = 1
H4
J4
ΚŢ
A5
B5
C5
     WRITE (1,102)TIT; WRITE (1,105)PTIT
D5
     DO 104 I = 1,19; TTIT(I) = PTIT(I)
E5
F5
     IEOUP = 1
G5
H5
J5
K5
```


Figure 5.4.3-8

```
A1
     (R.EQ.1.AND.IR.NE.2)
81
     WRITE (1,202)
C1
     READ (1,203,ERR = 201) DRAW
D1
     WRITE (1,203) DRAW
ΕΊ
      (R.EQ.1.AND.IR.NE.3)
F٦
      WRITE (1,402)
G1
      READ (1,403,ERR = 401)DT
. H1
      WRITE (1,403)DT
Jl
K1
A2
      Performed by B1
B2
C2
 D2
 E2
      Performed by F1
 F2 .
 G2
 H2
 J2
 K2
 A3
      (R.EQ.1.AND.IR.NE.4)
 33
      WRITE (1,502)
 C3
      READ (1,503,ERR = 501) SYS
 03
      WRITE (1,503) SYS
 E3
```

Page (5 of 21)

```
F3
     (R.EQ.1.AND.IR.NE.5)
G3
    WRITE (1,902)
Н3
    READ (1,903,ERR = 901) ((VEH(I,J),J = 1,2), I = 1,2)
J3
    WRITE (1,903)((VEH(I,J),J = 1,2),I = 1,2)
К3
A4
B4
     Performed by B3 (Page 5 of 21)
C4
D4
E4
F4
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```


- 334 -

```
A1
 в٦
        (R.EQ.1.AND.IR.NE.6)
       WRITE (1,2202)
. C1
       READ (1,2203,ERR = 2201)SECT
 D1
       WRITE (1,2203)SECT
  E1
        (R.EQ.1.AND.IR.NE.7)
  Fī
        (R.EQ.0)
  G1
        (NEWSHT.EQ.1)
  ΗÌ
  Jl
  K1
  A2
  32
        Performed By B1
  C2
  D2
  E2
        Performed By Fl
  F2
  G2
        FIXSHT
  H2
        WRITE (1,2302)
 · J2
  K2 .
  A3
  33
        READ (1,2303,ERR = 2301)NSHT
  C3
        WRITE (1,2303)NSHT
  D3
        (R.EQ.1.AND.NEWSHT.EQ.1)
  E3
```

Page (8 of

```
(R.EQ.0)
F3
G3
НЗ
J3
К3
A4
B4
C4
     Performed By D3 (Page 8 of 21)
D4
E4
     INPSS
F4
     Performed By H2 (Page 2 of 21)
G4
     SHOWDW
H4
J4
Κ4
A5
85
C5
D5
     SHTADD
 E5
 F১
 G5
 H5
 J5
 K5
```

Figure

5.4.3-8

Page (9 of 21)


```
A1 .
      (R.EQ.1.AND.IR.NE.8)
B1
     WRITE (1,2408)
C1
      FINISH = 0
D1
      READ (1,2409,ERR = 2407) (ISHTN(K), K = 1,2)
E٦
F٦
      (ISHTN(1).NE.1.OR.ISHTN(2).NE.0)
      SRCH$$(K$RDWR + K$NDAM, 'STEMP', 6, 10, 1, IC)
Gl
      REWIND 12
H1
      READ (12, END = 2470) DRW, SHTN, REV, NEO, EOREF
Jl
K1
A2
      Performed By B1
B2
C2
 D2
 EŽ
      WRITE (1,2402)
 F2
 G2
 H2
 J2
 K2
 A3
      Performed By J1
 B3
      (FINISH.EQ.1)
 C3
      DO 2415I = 1,4; (DRAW(I).NE.DRW(I))
 D3
 E3
```

Page (11 of 21)

```
READ (1,2403,ERR = 2448)FREV
F3
G3
      (IEOUP.EQ.0)
      (FNEO.NE.O)
H3
J3
K3
Α4
B4
     SRCH$$(K$CLOS, 'STEMP',6,0,0,0)
C4
     DO 2420I = 1,2; (ISHTN(I).NE.SHTN(I))
D4
E4
F4
G4
      FNEO = 0
H4
      DO 2449 K = 1,10; FEOREF(K,1) = ' '; FEOREF(K,1) = '
j4
K4
A5
B5
      SRCH$$(K$CLOS,'SHEET',6,0,0,0)
C5
      SRCH$$(K$DELE, 'SHEET', 6, 0, 0, 0)
35
      CNAMS$('STEMP',6,'SHEET',6,IC)
      SRCH$$(K$RDWR + K$NDAM, 'SHEET', 6,8, 1, IC)
E5
F5
G5
H5
J5
K5
```

Page (12 of 21)

Figure 5.4.3-8

```
A1
     WRITE (1,2402)
В٦
      READ (1,2403,ERR = 2448) REV
C1
      WRITE (1,2403) REV
DI
      (IEOUP.EQ.O)
E٦
      (NEO.NE.O)
F1
G1
H1
Jl
K1
A2
      (R.EQ.1.AND.IR.NE.9)
B2
      REWIND 12
C2 .
      WRITE (1,2511)
D2
 E2
 F2
      NEO = O
      DO 2450 K = 1,10; EOREF(K,1) = ' '; EOREF(K,2)=' '
 G2
      FINISH = 1
 H2
      WRITE (14) DRW, SHTN, REV, NEO, EOREF
 J2
 K2
A3
      Performed by B2
 33
 C3
 D3
      READ (1,2512,ERR = 2510) (ISHTN(K),K = 1,2)
      (ISHTN(1).NE.1.OR.ISHTN(2).NE.0)
 E3
```

Page (14 of 21)

```
SRCH$$(K$RDWR + K$NDAM, 'STEMP',6,10,1,IC)
F3
      READ (12, END=2800) DRW, SHTN, REV, NEO, EOREF
G3
      Performed by G3
НЗ
      DO 2520 I = 1,4; (DRAW(I).NE.DRW(I))
J3
K3
A4
B4
C4
D4
E4
F4
G4
H4
       DO 2530I = 1,2; (ISHTN(I).NE.SHTN(I))
J4
K4
A5
       SRCH$$(K$CLOS, 'STEMP',6,0,0,0)
B5
       SRCH$$(K$CLOS, 'SHEET', 6, 0, 0, 0)
C5
       SRCH$$(K$DELE, 'SHEET', 6, 0, 0, 0)
 D5
       CNAM$$('STEMP',6,'SHEET',6,IC)
 E5
       SRCH$$(K$RDWR + K$NDAM, 'SHEET', 6,8,1,IC)
 F5
 G5
 H5
 J5
 K5
```

Page (15 of 21)

Figure

5.4.3-8


```
A1
B1
      DO 2600 I = 1, 10
Cl
      Performed by B1
      (EOREF(I,1).NE.' ')
DI
      WRITE (1,2505) I, (EOREF (I,J), J = 1,2)
E1
F1
G1
H1
J1
K1
A2
B2
C2
D2
      WRITE (1,2605)
E2
      READ (1,2620,ERR = 2603)IOPT
F2
      (IOPT.LT.O.OR.IOPT.GT.I)
G2
H2
J2
K2
А3
B3
      WRITE (1,2660)
C3
      READ (1,2670,ERR = 2660) (EOREF(K,N),N = 1,2)
D3
E3
```

Page (17 of 21)

```
(IOPT.EQ.0)
F3
G3
Н3
J3
K3
A4
     DO 2550 I = 1,10
B4
     Performed by B4
C4
     (FEOREF (I, 1).NE.' ')
D4
     WRITE (1,2505)I,(FEOREF(I,J),J=1,2)
E4
     DO 2700 J = 1,IOPT
F4
G4
     Performed by F4
     WRITE (1,2650) I
H4
     READ (1,2620,ERR = 2640)K
J4
K4.
A5
B5
C5
D5
E5
F5
     WRITE (14)DRW,SHTN,REV,NEO,EOREF
G5
H5
J5
K5
```

Page (18 of 21)

- 346 -

```
A1
     WRITE (1,2605)
B1
     READ (1,2620,ERR = 2563)IOPT
C1
     (IOPT.LT.O.OR.IOPT.GT.I)
DI
E٦
F٦
G1
НΊ
Jl
K1
A2
B2
C2
     (IOPT.EQ.O)
D2
E2
F2
G2
H2
J2
K2
АЗ
33
СЗ
D3
     DO 2570 J = 1, IOPT
     Performed by D3
E3
```

Page (20 of 21)

```
WRITE (1,2650)I
F3
     READ (1,2620,ERR = 2564)K
G3
     WRITE (1,2660)
НЗ
     READ (1,2670,ERR = 2565) (FEOREF(K,N),N = 1,2)
J3
КЗ
A4
B4
C4
D4
E4
F4
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

Page (21 of 21)


```
A1
     $INSERT COMMON
B1
     WRITE(1,1001)
C1
D1
     READ(1,1003,ERR=1000)FREV
     WRITE(1,1006)
E1
     READ(1,1008,ERR=1005)FNEO; D01009 I=1,10; D01010 J=1,2; FEOREF(I,J)=' '
F1
G1
      (FNEO.EQ.O)
H1
Jl
K1
A2
      READ(1,2520,ERR=1201) (FEOREF(K,L),L=1,2)
B2
C2
      REWIND 18
      READ(18, END=1210)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
D2
E2
      PERFORMED BY D2
      D01206 L=1,2; (EON(L).NE.FEOREF(K,L))
F2
G2
      D01200 K=1, FNE0
      PERFORMED BY G2
H2
     WRITE(1,2510)
J2
K2
A3
      D01216 M=1,2; EON(M)=FEOREF(K,M)
33
C3
      WRITE(18)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
23
      R=0
E3
```

Page (2 of 6)

```
FIRST=1
F3
G3
      WRITE(1,1205)
      READ(18, END=1215)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
НЗ
      INPSE
J3
К3
Ά4
B4
      (NSHT.LT.2)
C4
      D02800 J=2,NSHT; WRITE(1,2402)
      READ(1,2403; ERR=2401) (SHTN(K),K=1,2); READ(1,1003,ERR=2404)REV
D4
      WRITE(1,1006)
E4
      READ(1,1008, ERR=2406) NEO; D02451 K=1,10; D02450 L=1,2 EOREF(K,L)='
F4
      (NEO.LT.0)
G4
      (NEO.EQ.O)
H4
J4
Χ4
A5
B5
C5
D5
E5
F5
G5
H5
      D02550 K=1,NE0
J5
K5
```

Page (3 of 6)


```
A1
      PERFORMED BY H5 (Page 1 of 6)
/B1
C1
      WRITE(1,2510)
01
      READ(1,2520,ERR=2508) (EOREF(K,L),L=1,2)
E1
      WRITE(1,1205)
F1
      REWIND 18
      READ(18, END=1240)EON, ETIT, EPTIT, EOREV, EPT, ERDT, EOVEH
G1
      PERFORMED BY G1
H1
      D02532 L=1,2; (E0N(L).NE.EOREF(K,L))
 J1
 Κ1
 A2
 B2
 C2
 D2
 Ξ2
 F2
 G2
 H2
       R=0
 J2
       FIRST=1
 K2
 А3
       READ(18, END=2545)EON, ETIT, EPTIT, EOREV, EPT, ERDT, EOVEH
 33
       INPSE
 C3
       D02546 M=1,2; EON(M)=EOREF(K,M)
 D3
       WRITE(18)EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
 E3
```

Page (5 of 6)

```
F3
      WRITE(12)DRAW, SHTN, REV, NEO, EOREF
G3
НЗ
J3
КЗ
A4
84
Ċ4
D4
E4
F4
G4
H4
J4
Κ4
A5
35
C5
ĐŚ
E5
F5
G5
35
JŜ
```

K5

Page (6 of 6)


```
A1
B1
      $INSERT COMMON; $INSERT SYSCOM> KEYS.F
C1
      REWIND 12
D1
      SRCH$$(K$RDWR+K$NDAM,'STEMP',6,10,1,IC)
E]
      READ(12, END=1000) DRW, SNTN, REV, NEO, EOREF
F]
      PERFORMED BY E1
G1
      DO 100 I=1,4; (DRAW(I).NE.DRW(I))
H1
      WRITE(14)DRW, SHTN, REV, NEO; EOREF
JI
K1
A2
B2
C2
D2
Ē2
F2
     WRITE(1,300)
G2
H2
J2
K2
A3
     SRCHSS(KSCLOS, 'REVS', 6, 0, 0, 0)
33
C3
03
E3
```

Page (2 of 3)

```
F3
     SRCH$$(K$CLOS,'STEMP',6,0,0,0)
G3
      SRCH$$(K$CLOS, 'DRAW',6,0,0,0)
      SRCH$$(K$CLOS,'EO',6,0,0,0)
НЗ
      SRCH$$(K$CLOS, 'SHEET', 6, 0, 0, 0)
J3
КЗ
A4
84
C4
D4
E4
F4
G4 /
H4
J4
K4
A5
85
C5
D5
E5
F5
G5
H5
J5
K5
```

1-

Paga (3 of 3)


```
A1 -
81
     $INSERT COMMON; $INSERT SYSCOM>KEYS.F; INTEGER*2; *4
CI
     FINISH=0
D1
     WRITE(1,10)
E1
     READ(1,15,ERR=5) (IISHTN(N),N=1,2)
F1
     (IISHTN(1).EQ.1)
     (IISHTN(1).EQ.SHTN(1))
G1
Ηl
     DO 20 I=1,4; (DRW(I).NE.DRAW(I))
J1
K1
A2
B2
     IIREV='NC'
C2
     IINEO=0
D2
     WRITE(14)DRW, IISHTN, IIREV, IINEO, IIEORE
Ε2
     WRITE(14)DRW,SHTN,REV,NEO,EOREF
     FINISH=1
F2
G2
H2
     READ(12, END=200) DRW, SHTN, REV, NEO, EOREF
J2
     PERFORMED BY H2
K2
А3
B3
C3
     (FINISH.EQ.0)
03
E3
```

Page (2 of 3)

```
F3
• G3
 H3
 J3
 К3
 A4
 В4
       WRITE(14) DRW, SHTN, REV, NEO, EOREF
 C4
 D4
 E4
 F4
 G4
 H4
 J4
  Κ4
  A5
  85
        SRCHSS(KSCLOS, 'SHEET', 6,0,0,0)
        SRCH$$(K$CLOS,'STEMP',6,0,0,0)
  C5
        SRCHSS(K$DELE, 'SHEET', 6, 0, 0, 0)
  D5
  E5
        CNAMS$('STEMP',6,'SHEET',6,IC)
  F5
        SRCH$S(K$DWR+K$NDAM, 'SHEET', 6,8,1,IC)
  G5
  #5
  J5
  K5
```

Page (3 of 3)


```
Aİ
81
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*2
C1
     WRITE(1,2)
     READ(1,3,ERR=1)IOPT
DI
E1
     (IOPT.LE.O)
F1
Ģ1
H1
JI
K1
A2
82
C2
D2
E2
     D0300 I=1, IOPT
     PERFORMED BY E2
F2
G2
     REWIND 12
H2
     WRITE(1,5)
J2
     READ(1,6,ERR=4)IDR
K2
АЗ
     WRITE(1,8)
B3
     READ(1,3,ERR=7)IANS
C3
      (IANS.LE.O)
03
E3
```

Page (2 of 9)

```
F3
G3
Н3
J3
К3
A4
В4
C4
      D0250 J=1, IANS
D4
      PERFORMED BY E4
E4
      WRITE(1,13)
F4
      READ(1,15,ERR=12) (ISHT(N),N=1,2)
G4
      (ISHT(1).LE.0)
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

Page (3 of 9)


```
A1
81
       (ISHT(1).EQ.1.AND.ISHT(2).EQ.0)
CI
      SRCH$$(K$RDWR+K$NDAM, 'STEMP', 6, 10, 1, IC)
ונ
       FINISH=0
ΕŢ
      REWIND 12
      READ(12, END=200) DRW, SHTN, REV, NEO, EOREF
F1
G1
      (FINISH.EQ.1)
      D020 L=1,4; (IDR(L).NE.DRW(L))
HI
Jī
K1
A2
32
       (NEO.EQ.4)
02
02
Ξ2
F2
G2
      SRCH$$(KSCLOS, 'STEMP', 6,0,0,0)
-2
J2
      D025 N=1,2; (ISHT(N).NE.SHTN(N))
Κ2
43
      WRITE(1,30) (ISHT(N),N=1,2),DRN
33
ĴĴ
      (NEO.EQ.5)
-23
Ξ3
Figure 5.4.3-12
                                                               Page (5 of 9)
```

```
F3.
      SRCH$$(K$CLOS, "SHEET', 6,0,0,0); SRCH$$(K$DELE, 'SHEET', 6,0,0,0)
G3
      CNAM$$('STEMP',6,'SHEET',6,IC)
Н3
      NEO=NEO+1
J3
К3
A4
В4
C4
      WRITE(1,40) (ISHT(N),N=1,2),DRW
      (NEO.GE.6)
D4
E4
F4
G4
      (J.EQ.IANS)
H4
      SRCH$$(K$RDWR+K$NDAM, 'SHEET', 6, 8, 1, IC)
J4
      FINISH=0
Κ4
A5
B5
C5
D5
      WRITE(1,50) (ISHT(N), N=1,2), DRW, NEO
      D0150 K=1,2; EOREF(NEO,K)=EON(K)
E5
F5
G5
      FINISH=1
#5
      WRITE(14) DRW, SHTN, REV, NEO, EOREF
Jā
Χ5
```



```
A1
81
     SRCH$$(K$RDWR+K$NDAM, 'TEMP', 6, 6, 1, IC)
C1
     FINISH=0
D1
     REWIND 6
      ISHT(1)=1; ISHT(2)=0
E1
     READ(6,END=285)DRAW,TIT,PTIT,DT,SYS,VEH,SECT,NSHT,FREV,FNEO,FEOREF
F1
     PERFORMED BY FI
G1
H1
      (FINISH.EQ.1)
     D0265 L=1,4; (IDR(L).NE.DRAW(L))
Jl
K1
A2
В2
      (FNEO.EQ.4)
C2
D2
E2
F2
G2
     SRCH$$(K$CLOS,'TEMP',6,0,0,0)
H2
     FNEO=FNEO+1
J2
K2
A3
     WRITE(1,30) (ISHT(N),N=1,2),DRAW
33
C3
      (FNEO.EQ.5)
03
E3
```

Page (8 of 9)

```
F3
     SRCH$$(K$CLOS,'DRAW',6,0,0,0); SRCH$$(K$DELE,'DRAW',6,0,0,0)
G3
НЗ
J3
K3
A4
B4
C4
     WRITE(1,40) (ISHT(N),N=1,2),DRAW
     (FNEO.GE.6)
D4
E4
F4
G4
     CNAM$$('TEMP',6,'DRAW',6,IC)
H4
     SRCH$$(K$RDWR+K$NDAM, 'DRAW', 6, 2, 1, IC)
     FINISH=0
J4
Χ.
A5
B5
C5
     WRITE(1,50) (ISHT(N), N=1,2), DRAW, FNEO
D5
     DO270 K=1,2; FEOREF(FNEO,K)=EON(K)
E5
     FINISH=1
F5
     WRITE(10)DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
G5
-5
J5
K5
```


Α1 в1 WRITE(7,200) (R.EQ.1) Cl WRITE(7,500) DT E1 F1. G1 н٦ Jl к1 -A2 82 C2 WRITE(7,300) 02 ΕZ F2 G2 H2 J2 К2 43 53 03 93 E3

Figure 5.4.3-13

Page (2 of 2)


```
A1
     $INSERT COMMON; INTEGER*2
В٦
     EOKNT = 1
Cl
     (INEO.EQ.1.AND.SECOND.EQ.1)
DI
     WRITE (1,998); WRITE (7,999)
El
     WRITE (1,100)KNT,PTIT; WRITE (1,120)DRAW,DT
F1
     WRITE (7,220)KNT,PTIT,DRAW,DT
G1
     INEO = 1
Ηl
     (FIRST.EQ.0)
J٦
K1
A2
     WRITE (1,160)FREV; WRITE (7,160)FREV
B2
     (R.EQ.0)
C2
     II = FNEO
D2
     (FNEO.GT.10)
E2
F2
G2
H2
J2
K2
А3
83
     II = FNEO
С3
     (FNEO.GT.10)
D3
```

Figure 5.4.3-14.

II = 10

E3

Page (2 of 9)

```
F3
     D0 35 I = 1,II
G3
     Performed by F3
     (FEOREF(I,1).EQ.' ')
Н3
     WRITE (1,38)I, (FEOREF(I,K),K = 1,2)
J3
     WRITE (7,38)I, (FEOREF(I,K),K = 1,2)
К3
A4
B4
C4
D4
E4
     DO 301I = 1,II
     Performed by E4
F4
     READ (18, END = 90) EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
G4
     Performed by G4
H4 -
     DO 400I = 1,2; (EON(N).NE.EOREF(I,N))
J4
K4
A5
B5.
C5
35
Ξ5
F5
G5
H5
J5
K5
```

Page (3 of 9)

Figure 5.4.3-14

```
A1
     (EOREV.EQ.'NC')
В1
     WRITE (1,140)EOKNT, EON, EOREV, EDT
C1
     WRITE (7,230) EOKNT, EON, EOREV, EDT, EPTIT
DI
E1
F1
G1
Ηl
JI ·
K1
A2
     WRITE (1,140)EOKNT, EON, EOREV, FRDT
B2
     WRITE (7,230) EOKNT, EON, EOREV, ERDT, EPTIT
C2
     EOKNT = EOKNT + 1
D2
     (EPTIT(1),NE.' ')
E2
F2
G2
H2
J2
K2
АЗ
     (SHTN(2).EQ.0)
B3
C3
     WRITE (1,270)SHTN(1),REV
     WRITE (7,270)SHTN(1),REV
D3
     WRITE (1,130)EPTIT
E3
```

Page (5 of 9)

```
REWIND 18
F3
G3
Н3
J3
КЗ
A4
B4
     WRITE (1,260) (SHTN(K), K = 1,2), REV
     WRITE (7,260) SHTN, REV
C4
     (R.EQ.O)
D4
     II = NEO
E4
     (NEO.GT.10)
F4
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
    II = 10
J5
    D0 37 = 1,II
K5
```

Page (6 of 9)


```
. A1
     Performed by G5 (Page 6 of 9)
B1
     (EOREF(I,1).EQ.' ')
C1
     WRITE (1,38) I, (EOREF(I,K),K = 1,2)
D1
     WRITE (7,38) I, (EOREF(I,K),K = 1,2)
E٦
F1
G1
H1
     II = NEO
     (NEO.GT.10)
J1
KΊ
A2
     DO 300 I = 1,II
B2
     Performed by B2
C2
     READ (18, END = 90) EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
D2
E2
     Performed by C2
     DO 400 N = 1,2; (EON(N).NE.EOREF(I,N))
F2
G2
H2
J2
     II = 10
K2
А3
В3
     RECYCL
 C3
 D3
 E3
     REWIND 18
```

Page (8 of 9)

```
(EOREV.EQ.'NC')
F3
G3
     WRITE (1,140)EOKNT,EON,EOREV,EDT
     WRITE (7,230) EOKNT, EDN, EOREV, EDT, EPTIT
Н3
J3
К3
A4
B4
C4
     PAUS
 D4
 E4
     WRITE (1,140)EOKNT, EON, EOREV, ERDT
 F4
     WRITE (7,230) EOKNT, EON, EOREV, ERDT, EPTIT
 G4
     EOKNT = EOKNT + 1
 H4
     (EPTIT(1).NE.' ')
 J4
 K4
 A5
 B5
 C5
 D5
. E5
 F5
 G5
 H5
 J5
     WRITE (1,230)EPTIT
 K5
```

Page (9 of 9)


```
A1
B1
     $INSERT COMMON; INTEGER * 2
C1
     INEO = 0
D٦
     EOKNT = 1
El
     WRITE (1,998); WRITE (7,999)
F1
     WRITE (1,100)KNT,PTIT; WRITE 1,120)DRAW,DT
     WRITE (7,220)KNT,PTIT,DRAW,DT
G1
     WRITE (1,231) FREV; WRITE (7,231) FREV
н٦
     (FNEO.EQ.O)
J1
K1
A2
B2
     II = FNEO
     (FNEO.GT.10)
C2
D2
E2
F2
G2
H2
     (R.EQ.0)
J2
K2
А3
В3
C3
     II = 10
     DO 35I = 1,II
D3
     Performed by D3
E3
```

Page (2 of 12)

```
(FEOREF(I,1).EQ.' ')
F3
     WRITE (1,38)I, (FEOREF(I,K),K = 1,2)
G3
     WRITE (1,38)I, (FEOREF(K,K),K = 1,2)
НЗ
J3
КЗ
A4
     II = FNEO
В4
     (FNEO.GT.10)
C4
D4
E4
F4
G4
H4
J4
K4
A5
B5
C5
     II = 10
D5
     DO 301 I = 1,II
E5
F5
G5
H5
J5
K5
```

Page (3 of 12)


```
A1
B1
     Performed by D5 (Page 3 of 12)
C1
     READ (18, END = 91) EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
Dl
     Performed by Cl
E1
     DO 401 N = 1,2; (EON(N).NE.FEOREF(I,N))
F1
G1
H1
Jl
K1
A2
B2
     (NSHT.EQ.1)
C2
D2
E2
     (EOREV.EQ.'NC')
F2
     WRITE (1,140)EOKNT, EON; EOREV, EDT
     WRITE (7,240)EOKNT, EON, EOREV, EDT, EPTIT
G2
H2
J2
K2
А3
     DO 190 K = 2, NSHT
B3<sup>°</sup>
     Performed by B3
С3
     EOKNT = 1
D3
     WRITE (1,140)EOKNT,EON,EOREV,ERDT
E3
```

Page (5 of 12)

```
F3
     WRITE (7,230) EOKNT, EON, EOREV, ERDT, EPTIT
G3
     EOKNT = EOKNT + T
Н3
     (EPTIT(1).NE.' ')
J3
К3
A4
B4
     REWIND 12
C4
     READ (12, END = 190) DRW, SHTN, REV, NEO, EOREF
D4
     Performed by D4
E4
     DO 170 J = 1,4; (DRW(J).NE.DRAW(J))
F4
G4
     WRITE (1,130)EPTIT
H4
     REWIND 18
J4
K4
A5
B5
C5
     RECYCL
     PAUS
D5
E5
F5
G5
H5
J5
K5
```

Page (6 of 12)


```
·A1
       (SHTN(2).EQ.0)
. B1
      WRITE (1,270) SHTN(1), REV
 C1
      WRITE (7,270) SHTN(1), REV
 D1
 El
 F1
 G1
 ΗΊ
 J٦
 K1
 A2
 B2
      WRITE (1,260) (SHTN(J),J = 1,2), REV
      WRITE (7,260) (SHTN(J),J = 1,2), REV
 C2
 D2
      INEO = INEO + NEO
 E2
      (NEO.EQ.0)
      (R.EQ.O)
 F2
      II = NEO
 G2
      (NEO.GT.10)
 H2
 J2
 K2
 А3
 B3
 С3
 D3
 E3
```

Page (8 of 12)

```
F3
      II = NEO
.G3
      (NEO.GT.10)
      II = 10
Н3
      DO 37 I = 1, II
J3
К3
A4
B4
      Performed by J3
C4
      (EOREF(I,1).EQ.' ')
D4
     WRITE (1,38) I, (EOREF(I,K), K = 1,2)
E4
     WRITE (7,38) I, (EOREF(I,K), K = 1,2)
F4
      II = 10
G4
     DO 300 I = 1, II
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```



```
. A1
В1
      Performed by H4 (Page 9 of 12)
     READ (18, 90)EON, ETIT, EPTIT, EOREY, EDT, ERDT, EOVEH
C1
     Performed by Cl
D1
E٦
     DO 400 N = 1,2; (EON(N).NE.EOREF(I,N))
F1
G1
H1
J1
K1
A2
B2
C2
D2
      (EOREV.EQ.'NC')
E2
F2
     WRITE (1,140)EOKNT,EON,EOREV,EDT
G2
     WRITE (7,240)EOKNT, EON, EOREV, EDT, EPTIT
H2
J2
K2
A3
B3
С3
D3
E3
     WRITE (1,140)EOKNT, EON, EOREV, ERDT
```

Page (11 of 12)

Figure 5.4.3-15

```
WRITE (7,230)EOKNT, EON, EOREV, ERDT, EPTIT
F3
G3
     EOKNT = EOKNT + 1
     (EPTIT(1).NE.' ')
НЗ
J3
КЗ
A4
B4
C4
D4
E4
F4
G4
     WRITE (1,130)EPTIT
H4
     REWIND 18
J4
K4
A5
35
C5
D5
E5
F5
G5
H5
 J5
```

K5

Page (12 of 12

- 393 -

```
A1
В1
      $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER*4; *2
     T1 = 0
C1
      IPAGE = 0
Dl
      ILINE = 0
E1
      DO 8003I = 1,4; DO 8004 J = 1,3; IEX(I,J) = ''
F1
      CLEAR
G1
     WRITE (1,2)
H1
      READ (1,8,ERR = 1001)ICON
Jl
K1
Á2
B2
      (ICON.LT.1); (ICON.GT.4)
C2.
D2
E2
F2
G2
H2
J2
K2
АЗ
      DO 1000 LOOP = 1,ICON
ВЗ
С3
      Performed by B3
     WRITE (1,1)
D3
      LEN = 10
E3
```

Page (2 of 14)

```
F3
      TINPUT (IT, LEN)
G3
      (IT(1).EQ.'QUIT')
      SRCH$$(K$RDWR+K$NDAM,'T1',6,9,1,IC); SRCH$$(K$RDWR+K$NDAM,'T2')
H3
      6,10,1,IC)
      DO 8006 K = 1,3; IEX (LOOP, K) = IT(K)
J3
К3 .
A4
B4
C4
      SRCH$$(K$RDWR+K$NDAM,'T1',6,9,1,IC)
      SRCH$$(K$RDWR+K$NDAM, 'T2',6,10,1,IC)
D4
      (DOC.LT.1)
E4
      DO 9999 I = I,DOC
F4
G4
      Performed by F4
H4
      READ (IO, END=1020) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO,
      FEOREF
      Performed by H4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```


A1.

B1 Performed by C1 Thru G1

C1 (T1.EQ.0)

D1 (T1.EQ.1)

E1 (T1.EQ.2)

F1 (T1,EQ.3)

G1 (T1.EQ.4)

ΗΊ

Jl

K1

A2

B2

 $C2 \cdot IN = 6$

D2 IN = 13

E2 IN = 14

F2

G2

H2

J2

K2

А3

B3

C3 = I0 = 13

D3 IO =14

E3 IO = 13

Figure 5.4.3-16

Page (5 of 14)

```
F3
G3
НЗ
J3
К3
A4
B4
C4
D4
E4
     DOC = 0
F4
     REWIND IN; REWIND IO
     READ(IN, END=100)DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
G4
     Performed by G4
H4
     BLNK = ' '
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

(6 of 14)

Page

Figure

5.4.3-16


```
A1
B1
      DO 3 I = 1,21
C1
      Performed By Bl
       (TIT(I).EQ.BLNK); (TIT(I).NE.IT(1)); (TIT(I+1).EQ.BLNK); (IT(2).EQ.BLNK)
D1
       (TIT(I+1).E0.IT(2))
E1
F٦
G1
HI
J٦
K1
A2
B2
C2
       DOC = DOC + 1
D2
      WRITE (IO)DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF; WRITE (1,10)TIT
E2
F2
G2
H2
J2
.K2
А3
В3
      WRITE (1,1030)DOC, IT
C3
       (DOC.EQ.0)
D3 -
       END FILE IO
      SRCHS$(K$CLOS,'T1',6,0,0,0)
E3
```

```
F3
     SRCH$$(K$CLOS,'T2',6,0,0,0)
      (IO.EQ.13)
, G3
- нз
J3
КЗ
A4
В4
C4
04
E4
F4
     SRCH$$(K$DELE,'T2',6,0,0,0)
G4
     (IO.Eq.14)
H4
J4
K4
A5
B5
Ç5
D5
E5
F5
G5
H5
     SRCH$S(K$DELE,'T1',6,0,0,0)
J5 T1 = T1 ± 1
K5 .
```

Page (9 of 14)

- 402 -

```
Al
В
      KNT = 1
      ILINE = ILINE + FNEO + NSHT + 3
C1
      (ILINE.LE.45)
D1
E1
FI
G1
 Hl
J1
 K1
 A2
 B2 -
 C2
      IPAGE = 0
D2
      ILINE = 0
 E2
 F2
      ILINE = FNEO + NSHT + 3
      (IPAGE.NE.O)
 G2
 H2
 J2
 K2
 АЗ
 В3
      AH = AMIN/60.0; IH = AH
 C3
      IMN = IH * 60
      IMIN = AMIN; IDM = IMIN-IMM
 D3 .
 E3
      WRITE (7,8008) IH, IDM, (ARRAY(J), J = 1,3)
```

Page (11 of 14)

```
WRITE (7,8000)
F3
     ILINE = ILINE + 12
G3
     TIMDAT (ARRAY, 15)
НЗ
     AMIN = ARRAY (4)
.J3
К3
A4
B4
     DMAIN
C4
     ILINE = ILINE + INEO
D4
     (ILINE.LE.45)
E4
     WRITE (7,8001) ((IEX(K,L),L = 1,3),K=1,4)
F4
     HEADER
G4
H4
     IPAGE = 1
J4
K4
Α5
B5
C5
D5
     IPAGE = 0
E5
     ILINE = 0
F5
G5
H5
J5
```

K5

Page (12 of 14)


```
A1
B1
     SRCH$$(K$CLOS,'T1',6,0,0,0)
C1
     SRCH$$(K$CLOS,'T2',6,0,0,0)
D1
     SRCH$$(K$DELE,'T1',6,0,0,0)
E٦
     SRCH$$(K$DELE,'T2',6,0,0,0)
F1
     T1 = 0
     (DOC.NE.O)
G1
н1
J1
K1
A2
B2
C2
D2
E2
F2
    WRITE (1,2000)
G2
    READ (1,2001,ERR = 1999)IOPT
H2
     (IOPT.EQ.'YE'); (IOPT.NE.'NO')
J2
K2
АЗ
ВЗ
С3
D3
E3
```

Page (14 of 14)

- 407 -

```
A1
      $INSERT COMMON; $INSERT SYSCOM> KEYS.F; INTEGER * 2
В٦
C1
      IPAGE = 0
   ILINE = 0
D1
      KNT = 0
Εl
      BREAK$(.TRUE.)
F1
     WRITE (1,2)
G1
      READ (1,3)IOPT
Н1
      (IOPT.EQ.'EO')
Jl
K1
A2
B2
      (IOPT.NE.'DE')
C2
D2
E2
F2
G2
H2
J2
K2
А3
      READ (6, END = 100) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
В3
С3
      Performed by B3
      KNT = KNT + 1
D3
      ILINE = ILINE + FNEO + NSHT + 3
E3
```

Page (2 of 9)

```
F3
      (ILINE.LE.45)
G3
НЗ
J3
K3
A4
      (IPAGE.NE.O)
B4
C4
D4
E4
F4
      IPAGE = 0
G4
      ILINE = 0
H4
      ILINE = FNEO + NSHT + 3
J4.
K4
· A5
      ILINE = ILINE + 12
B5
      TIMDAT (ARRAY, 15)
C5
      AMIN = ARRAY (4)
D5
      AH = AMIN/60.0; IH = AH
. E5
      IMM = IH * 60
F5
      IMIN = AMIN; IDM = IMIN - I!1M
G5
      WRITE (7,8008)IH, IDM, (ARRAY(I),I = 1,3)
H5
      WRITE (7,8000)
J5
K5
```

Page (3 of 9)


```
A1
B1
     WRITE (7,8001)
     HEADER
C1
     IPAGE = 1
DI
El
     DMAIN
     ILINE = ILINE + INEO
F٦
     (ILINE.LE.45)
G1
н٦
J1
K1
A2
     READ (18, END = 350) EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
B2
     Performed by B2
Ç2
     KNT = KNT + 1
D2
     (IPAGE.NE.O)
E2
F2
     IPAGE = 0
G2
H2
J2 ·
K2
А3
В3
     MRITE (1.360) KNT
С3
D3
E3 TIMDAT (ARRAY, 15)
```

Page (5 of 9)

```
F3
      ILINE = 0
G3
НЗ
 J3
 K3
A4
B4
C4
D4
- E4
     AMIN = ARRAY (4)
 F4
      AH = AMIN/60.0; IH = AH
      IMM = IH * 60
G4
H4
      IMIN = AMIN; IDM = IMIN-IMM
      WRITE (7,8008)IH, IDM, (ARRAY(I), I = 1,3)
 J4
 K4
A5
 B5
     WRITE (7,300)
      IPAGE = 1
C5
 D5
 E5
 F5
G5
H5
 J5
 K5
```

Page (6 of 9)


```
A1
     (EOREV.EQ.'NC')
В1
     WRITE (1,140)KNT, EON, EOREV, EDT, ((EOVEH(I,J), J = 1,2), I = 1,2)
C1
     WRITE (7,230) KIT, EON, EOREV, EDT, EPTIT
D1
E٦
F1
G1
Н٦
J1
K1
A2
     WRITE (1,140)KNT, EON, EOREV, ERDT, ((EOVEH(I,J),J=1,2),I=1,2)
B2
C2
     MRITE (7,230) KNT, EON, EOREV, ERDT, EPTIT
D2
     (KNT/21.EQ.KNT/21.)
E2.
F2
G2
H2
J2
K2
А3
B3
C3
D3
 E3
      PAUS
```

Page (8 of 9)

```
F3
G3
НЗ
J3
К3
A4
    WRITE (1,200) KNT
B4
C4
    SRCH$$(K$CLOS,'DRAW',6,0,0,0)
    SRCH$$(K$CLOS, 'EO',6,0,0,0)
D4
    SRCH$$(K$CLOS, 'SHEET',6,0,0,0)
E4
    SRCH$$(K$CLOS,'OUT',6,0,0,0)
F4
    COMI$$('SOUT',4,12,IC)
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
JŠ
```

K5

Page (9 of 9)


```
A1
     *$INSERT COMMON; $INSERT SYSCOM> KEYS.F; INTEGER * 4; * 2
B1
Cl
     FIRST = 0
     SECOND = 0
D1
     INEO = 0
Εl
     IPAGE = 0
F1
     ILINE = 0
G1
     KNT = 0
ΗΊ
     KNTT = 0
J1
K1
A2
     BREAK$(.TRUE.)
B2
     WRITE (1,1)
C2
     READ (6,END=100)DRAW,TIT,PTIT,DT,SYS,VEH,SECT,NSHT,FREY,FMEO,FEOREF
D2
     Performed by D2
E2
F2
     (FNEO.LT.5)
     KNT = KNT + 1
G2
     KNTT = KNTT + 1
H2
     ILINE = ILINE + FNEO + 4
J2
K2
A3
     (ILINE.LE.45)
B3
C3
D3
E3
     WRITE (1,200) KNT, KNTT
```

Page (2 of 9)

```
(KNT.EQ.0)
F3
G3
Н3
J3 .
К3
A4
     IPAGE = 0
B4
     ILINE = 0
C4
     (IPAGE.NE.O)
D4
E4
F4
G4
H4
J4
K4 <sup>-</sup>
A5
B5
C5
      ILINE = ILINE + 12
D5
      TIMDAT (ARRAY, 15)
 E5
      AMIN = ARRAY (4)
 F5
      AH = AMIN/60.0; IH = AH
G5
      IMM = IH * 60
 H5
      IMIN = AMIN; IDM = IMIN-IMM
 J5
 K5
```

Page (3 of 9)

Figure 5.4.3-18

Page (4 of 9)

```
A1
Bł
     WRITE (7,8008)IH, IOM, (ARRAY(I), I = 1,3)
C1
     WRITE (7,8000)
     WRITE (7,8001)
Dl
      HEADER
E٦
      IPAGE = 1
F1
      FIRST = 1
G1
H1
      MAIND
      (NSHT.GT.1)
Jl
      FIRST = 0
K٦
A2
      DO 150 J = 2, NSHT
B2
      Performed by B2
C2
      READ (12, END = 1000) DRW, SHTN, REV, NEO, EOREF
D2
      Performed by D2
E2
      DO 25 K = 1,4; (DRW(K).NE.DRAW(K))
F2
G2
 H2
 J2
 K2
 A3
 В3
      FIRST = 0; SECOND = 0; INEO = 0
 C3
 D3
      WRITE (1,1001)
 E3
```

Page (5 of 9)

```
F3
      (NEO.LT.5)
     SECOND = 1
G3
      (FIRST.EQ.0)
НЗ
J3
К3
A4
     ILINE = ILINE + NEO + 4
B4
     (ILINE.LE.45)
C4
D4
E4
F4
G4
H4
     KIT = KIT + 1
J4
     K'ITT = KNTT + 1
K4
A5
B5
C5
     IPAGE = 0
     ILINE = 0
D5
E5
F5
G5
H5
J5
```

K5

Page (6 of 9)

- 422 -

```
A1
     (IPAGE.NE.O)
В1
C1
DI
EI
F٦
G1
н٦
J1
K1
A2
     ILINE = ILINE + 12
B2
     TIMDAT(ARRAY, 15)
C2
     AMIN = ARRAY(4)
D2
     AH = AMIN/60.0; IH = AH
E2
     IMM = IH * 60
F2
     IMIN = AMIN; IDM = IMIN-IMM
G2
     WRITE (7,8008) IH, IDM, (ARRAY(I), I = 1,3)
H2
     WRITE (7,8000)
J2
K2
АЗ
     WRITE (7,8001)
B3
     HEADER
C3
     PAGE = 1
D3
    MAIND
E3
```

Page (8 of 9)

```
F3
G3
Н3
J3
КЗ
A4
     SRCH$$(K$CLOS,'DRAW',6,0,0,0)
84
C4
     SRCH$$(K$CLOS, 'EO',6,0,0,0)
     SRCH$$(K$CLOS,'SHEET',6,0,0,0)
D4
     SRCH$$(K$CLOS,'OUT',6,0,0,0)
E4
     COMI$$('SOUT',4,12,IC)
F4
G4
H4
J4
K4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

Page (9 of 9)


```
A1
     $INSERT COMMON; INTEGER * 4; * 2
B٦
     IPAGE = 0
C1
     ILINE = 0
D1
     KIT = 0
El
     WRITE (1,1)
F]
     READ (1,2,ERR = 3)IDRAW
G1
     WRITE (1,2) IDRAW
HT
J1
K٦
A2
 B2
     READ(6,END=200)DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF.
 C2
     Performed by B2
     DO 1000 I \pm 1,4; (IDRAM(I).ME.DRAM(I))
 D2
 E2
 F2
 G2
 H2
 J2
 Κ2
 А3
 B3
     WRITE (1,250)IDRAW
 C3
 D3
    KNT = KNT + 1
 E3 ILINE = ILINE + FNEO + NSHT + 3
```

Page (2 of 6)

Figure 5.4.3-19

```
(ILINE.LE.45)
F3
G3
Н3
J3
К3
A4
B4
C4
D4
E4
     IPAGE = 0
F4
     ILINE = 0
G4
     ILINE = FNEO + NSHT + 3
H4
J4
K4
Α5
B5
C5
D5
E5
F5
G5
Н5
J5
K5
                                                            Page (3 of 6)
Figure 5.4.3-19
```



```
A1
B1
     (IPAGE.NE.O)
C1
Dl
E٦
F].
G1
H1
Jl
K1
A2
B2
    ILINE = ILINE + 12
C2
    TIMDAT (ARRAY, 15)
    AMIN + ARRAY (4)
D2
    AH = AMIN/60.0; IH = AH
E2
    IMM = IH * 60
F2
    IMIN = AMIN; IDM = IMIN - IMM
G2
    WRITE (7,8008)IH,IDM,(ARRAY(I)=1,3)
H2
    WRITE (7,8000)
J2
K2
A3
   WRITE (7,8001) IDRAW
В3
C3 HEADER
   IPAGE = 1
D3
E3 DMAIN
```

Page (5 of 6)"

```
F3 -
     ILINE = ILINE + INEO
     (ILINE.LE.45)
G3
Н3
J3
К3
A4
B4
C4
D4
E4
F4
     IPAGE = 0
G4
H4
     ILINE = 0
J4
Κ4
`A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

Page (6 of 6)


```
A1
B1
      $INSERT COMMON; INTEGER*2
Cl
     IPAGE=0.
Dl
     ILINE=0
E1
      KNT=0
F٦
     WRITE(1,21)
G1
     READ(1,22,ERR=2) D
н٦
      READ(6, END=200) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
J1
     PERFORMED BY H1
K1
A2
      (D(1).EQ.0)
B2
      (D(1).NE.DT(1))
C2
D2
E2
F2
 G2
H2
 J2
      WRITE(1,250)KNT,D
 Κ2
 А3
 В3
      (D(2).EQ.0)
 C3
      (D(2).NE.DT(2))
 D3
 E3
```

Page (2 of 6)

F3 G3 НЗ J3 кз **A4** В4 C4 (D(3).EQ.0) D4 (D(3).NE.DT(3)) Ę4 F4 G4 H4 J4 K4 **A5** ₿5 Ç5 **D**5 E5 F5 G5 Н5 J5 Κ5

Figure 5.4.3-20

Page (3 of 6)


```
A1
 B1
       KNT=KNT+1
 C1
       ILINE=ILINE+FNEO+NSHT+3
 Dl
 El
 Fl
 Gl
 Ηl
 J٦
 K1
 A2
 B2
· C2
 D2 
       IPAGE=0
 E2
       ILINE=0
       ILINE=FNEO+NSHT+3
 F2
       (IPAGE.NE.O)
 G2
 H2
 J2
 K2
 А3
      AH=AMIN/60.0; IH=AH
 В3
 C3<sup>-</sup>
      IMM=IH*60
      IMIN=AMIN; IDM=IMIN-IMM
 D3
```

E3

Page (5 of 6)

WRITE(7,8008)IH,IDM,(ARRAY(I),I=1,3)

```
WRITE(7,8000)
F3
     ILINE=ILINE+12
G3
     TIMDAT(ARRAY, 15)
Н3
     AMIN=ARRAY(4)
J3
K3
A4
     ILINE=ILINE+INEO
В4
    (ILINE.NE.45)
C4
D4
E4
     WRITE(7,8001)D
F4
     HEADER
G4
     IPAGE=1
H4
     DMAIN
J4
K4
Α5
В5
     IPAGE=0
C5
     ILINE=0
D5
E5
F5
G5
H5
J5
```

K5

Page (6 of 6)


```
A1
      $INSERT COMMON; INTEGER*4; *2
B1
      IPAGE=0
C1
      ILINE=0
D1
      KNT=0
E1
      WRITE(1,1)
F٦
      READ(1,2,ERR=3)DS
      READ(6, END=200) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
G1
H1
      PERFORMED BY HI
J٦
K1
A2
     . DO 150 I=1,3; (DS.EQ.SYS(I))
B2
C2
D2
E2
F2
G2
H2
J2
      WRITE(1,250)KNT,DS
K2
А3
      KNT=KNT+1
ВЗ
      ILINE=ILINE+FNEO+NSHT+3
C3
D3
      (ILINE.LE.45)
 E3
```

F3

G3

нз

J3

К3

A4

В4

C4

D4 IPAGE=0

£4 ILINE=0

F4 ILINE=FNEO+NSHT+3

G4

H4

J4

Κ4

A5

B5

C5

D5

E5

F5

G5

H5

J5

К5

Figure 5.4.3-21

Page (3 of 6)


```
Α1
      (IPAGE.NE.O)
B1
C1
Dl
E٦
F1
G1
H1
Jl
K1 .
A2
     ILINE=ILINE+12
B2
     TIMDAT(ARRAY, 15)
C2
     AMIN=ARRAY(4)
D2
     AH=AMIN/60.0; IH=AH
E2
     IMM=IH*60
F2
     IMIN=AMIN; IDM=IMIN-IMM
G2
     WRITE(7,8008)IH,IDM,(ARRAY(I),I=1,3)
H2
     WRITE(7,8000)
J2
K2
А3
B3
     WRITE(7,8001)DS
     HEADER
C3
     IPAGE=7
D3
E3
     DMAIN
```

Page (5 of 6)

```
۶à
     ILINE=ILINE+INEO
     (ILINE.LE.45)
G3
НЗ
J3
КЗ
A4
В4
C4
D4
E4
F4
G4
     IPAGE=0
     ILINE=0
H4
34
Κ4
A5
B5
C5
D5
Ë5
F5
G5
H5
J5
K5
```



```
A1
B1
      $INSERT COMMON; INTEGER*2
C1
      IPAGE=0
      ILINE=0
Dl
      KNT=0
E1
      CLEAR
F]
      WRITE(1,2)
G]
      READ(1,3,ERR=1)VEH1
H1
J1
ĶΊ
A2
      WRITE(1,100)
B2
C2
      READ(1,101,ERR=999)(VS(I),I=1,2)
      WRITE(1,102)
D2
E2 .
      READ(1,101,ERR=998)(VS(I),I=3,4)
      (VEH1(1).LT.VS(1))
F2
G2
H2
J2
K2
A3
B3
C3
D3
E3
```

Page (2 of 12)

```
(VS(3).EQ.0)
F3
    VS(3)=999
G3
Н3
J3
К3
A4
     WRITE(1,11)
B4
     READ(1,12)IOPT
C4
     (IOPT.EQ.'EO')
D4
     (IOPT.NE.'DR')
E4
F4
     (VS(3).LT.VEH1(1))
G4
H4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
H5
J5
K5
```

Page (3 of 12)


```
A1
      READ(18, END=400) EON, ETIT, EPTIT, EOREV, EDT, ERDT, EVOEH
В1
      PERFORMED BY B1
C1
D1
      (EOVEH(1,1).LT.VS(1)); (EOVEH(2,1).GT.VS(3))
E٦
F٦
GI
н٦
Jl
K٦
A2
B2
C2
      WRITE(1,402)KNT,VEH1
      (EOVEH(1,2).NE.'S'.AND.EOVEH(1,1).EQ.VEH1(1))
D2
E2
F2
G2
H2
J2
K2
A3
33
C3
      (EOVEH(1,2).EQ.'S'.AND.EOVEH(1,1).LE.VEH1(1))
 03
 E3
```

```
F3
G3
Н3
J3
К3
A4
B4
C4
     KNT=KNT+1
D4
    (IPAGE.NE.O)
E4
F4
G4
H4
J4
K4
Α5
B5
C5
D5
     TIMDAT(ARRAY, 15)
E5
     AMIN=ARRAY(5)
F5
     AH=AMIN/60.0; IH=AH
G5 '
     IMM=IH*60
Н5
     IMIN=AMIN; IDM=IMIN-IMM
J5
K5
```

Page (6 of 12)


```
A1 .
B1
      WRITE(7,8008)IH,IDM,(ARRAY(I),I=1,3)
C1
      WRITE(7,8000)
      WRITE(7,349) VEH1; WRITE(7,351)
D1
      IPAGE=1
E٦
F1
      (EOREV.EQ.'NC')
      WRITE(1,310)KNT,EON,EOREV,EDT
G1
      WRITE(7,320)KNT, EON, EOREV, EDT, EPTIT
H1
Jl
K1
A2
      READ(6, END=202) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
B2
      PERFORMED BY B2
C2
      (VEH(1,1).LT.VS(1)); (VEH(2,1).GT.VS(3))
D2
E2
F2
      WRITE(1,310)KNT,EON,EOREV,ERDT
G2
      WRITE(7,320)KNT,EON,EOREV,ERDT,EPTIT
      (EPTIT(1).NE.' ')
H2
J2
K2
А3
B3
      WRITE(1,201)KNT,VEH1
C3
      (VEH(1,2).NE.'S'.AND.VEH(1,1).EQ.VEH1(1))
 D3
 E3
      PERFORMED BY D3
```

Page (8 of 12)

```
F3
G3
     WRITE(1,311)EPTIT
Н3
     (KNT/21.EQ.KNT/21.)
J3
К3
A4
B4
C4
     (VEH(1,2).EQ.'S'.AND.VEH(1,1).LE.VEH1(1))
D4
E4
F4
G4
H4
     IPAGE=0
J4
Κ4
     PAUS
A5
B5
C5
D5
E5
F5
G5
Н5
J5
K5
```

Page (9 of 12)


```
A1
В1
       KNT=KNT+1
- C1
       ILINE=ILINE+FNEO+NSHT+3
Dl
       (ILINE.LE.45)
El
F1
G٦
НΊ
Jl
 K٦
A2
B2
C2
D2
      IPAGE=0
      ILINE=0
E2
      ILINE=FENO+NSHT+3
F2
      (IPAGE.NE.O)
G2
H2
J2
K2
А3
В3
     AH=AMIN/60.0; IH=AH
      IMM=IH*60
C3
      IMIN=AMIN; IDM=IMIN-IMM
D3
     WRITE(7,8008)IH,IDM,(ARRAY(I),I=1,3)
E3
```

Page (11 of 12)

```
WRITE(7,8000)
F3
G3
    ILINE=ILINE+12
    TIMDAT(ARRAY, 15)
Н3
    AMIN=ARRAY(4)
J3
КЗ
A4
     ILINE=ILINE+INEO
84
     (ILINE.LE.45)
C4
D4
E4
F4
     WRITE(7,8001)VEH1
G4
     HEADER
H4
     IPAGE=1
J4
     DMAIN
K4
A5
B5
     IPAGE=0
C5
     ILINE=0
D5
E5
F5
G5
H5
J5
```

K5

Page (12 of 12)


```
A1
в1
      $INSERT COMMON; INTEGER*4; *2
C1
      IPAGE=0
Dl
      ILINE=0
E1
      KNT=0
F1
     WRITE(1,1)
     READ(1,2,ERR=3) ISECT
G1
H1
     WRITE(1,2)ISECT
Jl
K٦
A2
      READ(6, END=200) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
B2
C2
      PERFORMED BY B2
      DO 1000 I=1,3; (ISECT(I).NE.SECT(I))
D2
E2
F2
G2
H2 .
J2
K2
A3
B3
     WRITE(1,250)KNT, ISECT
C3
      KNT=KNT+1
D3
      ILINE=ILINE+FNEO+NSHT+3
 E3
```

Page (2 of 6)

```
F3
     (ILINE.LE.45)
G3
НЗ
J3
К3
A4
B4
C4
D4
E4
      IPAGE=0
F4
      ILINE=0
G4
      ILINE=FNEO+NSHT+3
H4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
Н5
J5
K5
```

Page (3 of 6)

- 458 -

```
A٦
B1
     (IPAGE.NE.O)
C1 -
D1
E1
F1
G1
Hl
Jl
K1
A2
B2
     ILINE = ILINE + 12
     TIMDAT (ARRAY, 15)
C2
     AMIN = ARRAY (4)
D2
E2
     AH = AMIN/60.0; IH = AH
F2
     IMM = IH * 60
G2
     IMIN = AMIN; IDM = IMIN - IMM
     WRITE (7,8008) IH, IDM, (ARRAY(I), I = 1,3)
H2
    WRITE (7,8000)
J2
K2
A3
    WRITE (7,8001) ISECT
В3
    HEADER
C3
D3
    IPAGE = 1
E3
    DMAIN
```

Page (5 of 6)

```
ILINE = ILINE + INEO
F3
G3
     (ILINE.LE.45)
Н3
J3
К3
A4
B4
C4
D4
E4
F4
     IPAGE = 0
G4
Н4
J4
K4
Α5
B5
C5
D5
E5
F5
G5
     ILINE = 0
H5
J5
K5
```

Page (6 of 6)


```
A1
     $INSERT COMMON; $INSERT SYSCOM > KEYS.F; INTEGER * 2
B1
C1
      IPAGE = 0
DI
     ILINE = 0
El
     KNT = 0
F1
     SRCH$$(K$RDWR + K$NDAM, 'T3', 6, 6, 1, IC)
G1
     WRITE (1,1)
     READ (1,2,ERR = 3)ICODE
H1
     WRITE (1,2)ICODE
Jl
KT.
A2.
     READ (6, END=200) DRAW, TIT, PTIT, DT, SYS, VEH, SECT, NSHT, FREV, FNEO, FEOREF
B2
      Performed by B2
C2
      REWIND 10
D2
      WRITE (10,5) DRAW (1)
E2
      REWIND 10
F2
     READ (10,2) COD
G2
      (ICODE(1).EQ.'23')
 H2
     DO 20 I = 1,2; (ICODE(I).NE.COD(I))
 J2
 K2
 А3
 B3
     WRITE (1,250) KNT
 C3
     SRCH$$(K$CLOS, 'T3',6,0,0,0)
 D3
      SRCH$$(K$DELE,'T3',6,0,0,0)
 E3
```

```
F3
G3
Н3
    (ICODE(1).NE.COD(1))
J3 <sup>-</sup>
К3
A4
B4
     KNT = KNT + 1
C4
     ILINE = ILINE + FNEO + NSHT + 3
D4
     (ILINE.LE.45)
E4
F4
G4
H4
J4
K4
Α5
B5
C5
     IPAGE = 0
D5
     ILINE = 0
E5
F5
     ILINE = ILINE + NSHT + 3
G5
H5
J5
K5
```

Page (3 of 6)


```
A1
B1
     (IPAGE.NE.O)
Cl
Dī
Εl
F٦
G1
ΗŢ
IJ
K1
A2
B2
     ILINE = ILINE + 12
     TIMDAT (ARRAY, 15)
C2
     AMIN = ARRAY (4)
D2
     AH = AMIN/60.0; IH = AH
E2
     IMM = IH * 60
F2
     IMIN = AMIN; IDM = IMIN - IMM
G2
    WRITE (7,8008) IH, IDM, (ARRAY(I), I = 1,3)
H2
    WRITE (7,8000)
J2
K2
А3
    WRITE (7,8001) ICODE
В3
    HEADER
C3
D3 IPAGE = 1
    DMAIN
E3
```

Page (5 of 6)

```
ILINE = ILINE + INEO
F3
    (ILINE.LE.45)
G3
Н3
J3
КЗ
A4
₿4
C4
04
E4
F4
     IPAGE = 0
G4
H4
J4
Ķ4
А5
В5
C5
D5
E5
F5
G5
    ILINE = 0
H5
J5
K5
```

Page (6 of 6)


```
A1
     $INSERT COMMON; INTEGER * 4; * 2
В1
C1
     IPAGE = 0
     ILINE = 0
Dl
     KNT = 0
E٦
F1
     KNTT = 0
G٦
     CLEAR
н٦
     WRITE (1,2)
J٦
K1
A2
B2.
     (IOPT.EQ.'EO')
     (IOPT.NE.'DR')
C2
D2
E2
F2
G2
H2
     READ (1,3,ERR = 1) IEON
J2
K2
А3
     READ (18, END = 350) EON, ETIT, EPTIT, EOREV, EDT, ERDT, EOVEH
 В3
 C3
     Performed by B3
     DO 266 I = 1,2; (IEON(I).NE.EON(I))
 D3
 E3
```

Page (2 of 12)

```
F3
G3
    WRITE (1,105)
Н3
    READ (1,110,ERR = 99) IOPT
J3
К3
A4
B4
    WRITE (1,360)IEON
C4
     KNT = KNT + 1
D4
     (IPAGE.NE.O)
E4
F4
G4
H4
J4
Κ4
A5
85
€5
D5
     TIMDAT (ARRAY, 15)
E5
     AMIN + ARRAY (4)
F5
     AH = AMIN/60.0
G5
     IH = AH
Н5
     IMM = IH * 60
J5
К5
```

Page (3 of 12) *


```
A٦
B1
     IMIN = AMIN; IDM = IMIN - IMM
C1 -
     WRITE (7,1000)IH, IDM, (ARRAY(I), I = 1,3)
Dl
     WRITE (7,300)
E٦
     IPAGE = 1
     (EOREV.EQ.'NC')
F٦
     WRITE (1,140)KNT, EON, EOREV, EDT((EOVEH(I,J)J=1,2), I=1,2)
G1
     WRITE (7,230)KNT, EON, EOREV, EDT, EPTIT
H1
Jl
K1
A2
B2
     FIRST = 0
     SECOND = 0
C2
     INEO = 0
D2
E2
     WRITE (1,140)KNT, EON, EOREV, ERDT, ((EOVEH(I,J),J=1,2),I=1,2)
F2
     WRITE (7,230)KNT, EON, EOREV, ERDT, EPTIT
G2
     (EPTIT(1).NE.' ')
H2
J2
K2
A3
     READ (6,END=100)DRAW,TIT,PTIT,DT,SYS,VEH,SECT,NSHT,FREV,FNEO,FEOREF
B3
C3
     Performed By B3
     DO 2000 I=1,6; (IEON(1).NE.FEOREF(I,1)); (IEON(2).EQ.FEOREF(I,2))
D3
 E3
```

Page (5 of 12)

```
F3
G3
Н3
     WRITE (1,130)EPTIT
J3
     (KNT/21.EQ.KNT/21.)
К3
A4
B4 .
     WRITE (1,200)KNT,KNTT,IEON
C4
     KNT = KNT + 1
D4
     KNTT = KNTT + 1
E4
     ILINE = ILINE + FNEO + 4
F4
     (ILINE.LE.45)
G4
H4 -
     IPAGE = 0
J4
     PAUS
K4
Α5
85
C5
D5
E5
F5
     IPAGE = 0
G5
     ILINE = 0
Н5
J5
K5
```

Page (6 of 12)


```
A1
В1
     (IPAGE.NE.O)
Cl
D٦
E٦
F٦
G٦
H1
J1
K1
A2
B2
     ILINE = ILINE + 12
     TIMDAT (ARRAY, 15)
C2
    AMIN = ARRAY (4)
·D2
    AH = AMIN/60.0; IH = AH
E2
    IMM = IH * 60
F2
G2
    IMIN = AMIN; IDM = IMIN - IMM
    WRITE (7,8008)IH, IDM, (ARRAY(I),I = 1,3)
H2
    WRITE (7,8000)
J2
K2
АЗ
B3
    WRITE (7,8001) IEON
    HEADER
C3
    IPAGE = 1
D3
E3 FIRST = 1
```

Page (8 of 12)

```
F3
    MAIND
G3
    (NSHT.GT.1)
    FIRST = 0
Ή3
J3
К3
A4
    READ (12, END = 1001) DRW, SHTN, REV, NEO, EOREF
B4
C4
    Performed by B4
    DO 25 K = 1,4; (DRW(K).NE.DRAW(K))
Ð4
E4
F4
G4
    DO 150 J = 2, NSHT
    Performed by G4
H4
J4
K4
Α5
B5
    WRITE (1,1002)
C5
D5
E5
F5
G5
H5
    FIRST = 0; SECOND = 0; INEO = 0
J5
K5
```

Page (9 of 12)


```
A1
81
    DO 2500I = 1,6; (IEON(1).NE.EOREF(I,1)); (IEON(2).EQ.EOREF(I,2))
C1
D1
E٦
F٦
G1
·HT
J1
ΚŢ
A2
    SECOND = 1
82
C2
    (FIRST.EQ.0)
D2
E2
F2
G2
H2
J2
K2
АЗ
ВЗ
C3 	ext{ KNT} = 	ext{KNT} + 1
D3 KNTT = KNTT + 1
E3 ILINE = ILINE + NEO + 4
```

Figure

5.4.3-25

Page (11 of 12)

```
F3 (ILINE.LE.45)
G3
Н3
J3
К3
A4
B4 AMIN = ARRAY (4)
C4 AH = AMIN/60.0; IH = AH
   IMM = IH * 60
    IMIN = AMIN; IDM = IMIN - IMM
    IPAGE = 0
F4
    ILINE = 0
    (IPAGE.NE.O)
Н4
J4
Κ4
A5
В5
    IPAGE = I
C5
    MAIND
D5
    WRITE (7,8008)IH, IDM, (ARRAY(I), I = 1,3)
    WRITE (7,8000)
F5
    WRITE (7,8001)IEON
G5
    ILINE = ILINE + 12
H5
    TIMDAT (ARRAY, 15)
J5
K5
```

Page (12 of 12)


```
A1
Bl
      $INSERT SYSCOM>KEYS.F; INTEGER*2
Cl
      BREAK$ (.TRUE.)
      TIMDAT(ARRAY, 15)
D1
      SRCH$$(K$NDAM+K$RDWR,'TUSER',5,16,1,IC)
E1
      SRCH$$(K$NDAM+K$RDWR,'USER',4,15,1,IC)
Fl
      AMIN=ARRAY(4); AH=AMIN/60.0; IH=AH
G1
H1
      IMM=IH*60; IMIM=AMIN; IDM=IMIN-IMM
      WRITE(20,1)(ARRAY(I), I=13,15), IH, IDM, ARRAY(5),
Jl
      (ARRAY(I), I=1,3), ARRAY(12)
K1
A2
      READ(19,2,END=50)(ARRAY(I),I=13,15),IH,IDM,ARRAY(5),
B2
      (ARRAY(1), I=1,3), ARRAY(12)
      see B2
C2
D2
E2
F2
G2
H2
J2
K2
А3
В3
C3
     SRCH$$(K$CLOS,'USER',4,0,0,0); SRCH$$(K$CLOS,'TUSER',5,0,0,0);
      SRCH$$(K$DELE, 'USER', 4,0,0,0)
D3
E3
       CNAMS$('TUSER',5,'USER',4,IC)
```

```
F3 BREAK$(.FALSE.)
```

G3

Н3

J3

К3

A4

В4

C4

D4

E4

F4

G4

Н4

J4

Κ4

A5

B5

C5

D5

E5

F5

G5

Н5

J5

K5


```
A1
      $INSERT COMMON; COMMON/X/PEDL; INTEGER*2; *4
31
      RDCOM(BUF)
C1
D1
      DO 5I=1,76; BUFF(I)=BUF(I)
      BLNK=' '; D01I=1,21; TIL(I)=BLNK
E1
F1
      GETWRD(BUF,ARRAY,LEN)
      TIL(I)=ARRAY(1);TIL(I+1)=ARRAY(2);TIL(I+2)=ARRAY(3);
G1
      TIL(I+3)=TIL=ARRAY(4)
      I=I+2; PEDL=1
Ηl
      DO 200 I=1,19; PTIT(I)=BLNK
J٦
K1
A2
      GETWD(BUFF,PTIT)
B2
C2
D2
E2
F2
G2
H2
J2
K2
A3
В3
С3
D3
```

E3


```
A1
B1
      COMMON/X/PEDL; INTEGER
C1
      PEDL=1; N=1
D1
      Clin(CHAR)
E1
      BUF(N)=CHAR
      (CHAR.EQ.ANL)
F٦
G1
      (CHAR.EQ.AKILL)
      (CHAR.EQ.AERASE)
н
      N=N+1
Jl
K٦
A2
B2
C2
D2
E2
F2
G2
      (N.LE.2)
H2
      N=N-1
J2
K2
А3
      (N.GT.77)
В3
C3
D3
E3
```

```
F3
G3
H3
J3
K3
A4
B4
ILF=:212
C4
T10U(ILF)
D4
```

E4

F4

G4

H4

J4 K4

A5

B5

C5

D5

E5

F5

G5

Н5

J5

K5

Figure 5.4.4-3

Page (3 of 3)


```
A٦
      COMMON/X/PEDL; INTEGER
В1
      DO 140 I=1,3; NAME(I)=ASPSP; N=1
C1
      (BUF(1).NE.ASP)
Dl
Εì
F٦
G1
Ηl
J1
K1
A2
В2
C2
      DO 999 I=2,77; II=I-1; BUF(II)=BUF(I)
D2
      CHAR=BUF(PEDL)
E2
F2
      PEDL=PEDL+1
G2
     • (PEDL.GT.77)
      (CHAR.EQ.ASP.OR.CHAR.EQ.ACOMMA.OR.CHAR.EQ.ASCOL)
H2
J2
Κ2
АЗ
Б3
      (N.GT.LEN)
С3
      I = (N+1)/2
D3
      J=N-2*(N/2)
      N=N+1
E3
```

```
F3
G3
      PEDL=77
НЗ
J3
К3
A4
В4
C4
D4
E4
      (J.EQ.1)
F4
      NAME(I)=LT(NAME(I),8)+CHAR
G4
H4
J4
Κ4
A5
B5
C5
Ð5
E5
     NAME(I)=RT(NAME(I),8)+LS(CHAR,8)
F5
G5
H5
J5
Κ5
```


- 490 -

```
Αī
      CHAR=BUF(PEDL)
В1
      (CHAR.EQ.ANL)
c1
      CHAR.NE.ASP.AND.CHAR.NE.ACOMMA.AND.CHAR.NE.ASCOL)
D1
E٦
F1
G1
Н1
Jl
K1
A2
B2
C2
D2
      PEDL=PEDL+1
Ε2
F2
G2
Н2
32
К2
43
33
23
03
Ε3
```

Page (5 of 5)


```
A1
B1 :
      COMMON/X/PEDL; INTEGER
      DO 100 I=1,19; NAME(I)=ASPSP; N=1
Cl
      (BUFF(1).NE.ASP)
D٦
E٦
F٦
G1
H1
J٦
K1
A2
B2
C2
      DO 999 I=2,77; II=I-1; BUFF(II)=BUFF(I)
D2
      CHAR=BUFF(PEDL)
E2
      PEDL=PEDL+1
F2
      IPEDL.GT.77)
G2
      (CHAR.EQ.ANL)
H2
      I = (N+1)/2
J2
К2
А3
      J=N-2*(N/2)
В3
      N=N+1
C3
      (J.EQ.1)
D3
      NAME(I)=LT(NAME(I),8)+CHAR
E3
```

```
F3
G3
      PEDL=77
НЗ
J3
К3
A4
B4
C4
      NAME(I)=RT(NAME(I),8)+LS(CHAR,8)
D4
E4
F4
G4
H4
J4
K4
Α5
В5
C5
D5
E5
F5
G5
Н5
J5
K5
```



```
A1
B1
       SINSERT COMMON; SINSERT SYSCOM>KEYS.F
C1
      SRCHSS (KSRDWR+KSNDAM, 'CTAB', 6, 14, IT, IC)
       REWIND 18
Dl
      READ(18,655,END=690)WA,CON
El
       see El
F1
       (WAN(1).EQ.'33'.AND.WAN(2).EQ.'02')
G1
       (WAN(1).EQ.'38'.AND.WAN(2).EQ.'04'.OR.WAN(2).EQ.'09')
H1
       (WAN(1).NE.WAN(1)); (WAN(2).NE.WA(2))
Ji
Κ1
A2
       DO 665 I=1,4; (WAN(I).NE.WA(I))
B2
C2
D2
E2
       CON(1) = 'WA N'; CON(2) = 'OT F'; CON(3) = 'OUND'; CON(4) = 'SEE';
F2
       CON(5) = 'RJK'
G2
H2
J2
       SRCHS$(K$CLOS,'CTAB',6,0,0,0)
К2
A3
       (WAN(1).NE.WA(1)); (WAN(2).NE.WA(2))
33
03
D3
E3
```

```
F3
G3
Н3
J3
К3
A4
       (WAN(3).NE.'AB').AND.WAN(3).NE.'BA'); (WAN(3).EQ.'AB'.AND.WA(3).EQ.'A'); (WAN(3).EQ.'BA'.AND WA(3).EQ.'B')
B4
C4
D4
E4
F4
G4
H4
J4
Κ4
A5
B5
C5
D5
E5
F5
G5
H5
J5
К5
```


- 498 -

```
A1
В٦
        INTEGER*2
        BREAK$ (.TRUE.)
C1
       TIMDAT (IA,15)
D1
       CLEAR
E1
        (IA(13).NE.'SY'); (IA(14).NE.'ST'); (IA(15).NE.'EM')
Fl
       COMISS ('LOUSER',6,12,IC)
G1
Н1
Jl
Κ1
A2
B2
C2
D2
E2
F2
       BREAK$(.FALSE.)
G2
       IAI=IA(13)
H2
J2
K2
A3
ВЗ
C3
D3
E3
```

Page (2 of 2)

- 6.0 DATA BASE DESIGN
- 6.1 FILE STRUCTURE
- 6.1.1 DATA SUBFILES

6.1.1.1 MAIL CORRESPONDENCE DATA

The Mail Correspondence portion of the Mail Log data base is further subdivided into six (6) subfiles representing the six (6) types of documents. There also exists a seventh data file used for storage of special action due date items. This file provides fast and efficient access to data during the ACTION DUE DATE SEARCH, see Section 4.1.22, which is otherwise scattered throughout the six (6) data subfiles listed below:

NAME	DESCRIPTION	FUNIT	PUNIT
TRAN	TRANSMITTALS and SPECIFICATIONS	6	2
ACTD	ACTION DUE DATE	9	5
MEMO	MEMO's and LETTERS	11	7
TWFX	TWX's, MAGNAFAX's and RAPIFAX's	12	8
ANN	ANNOUNCEMENTS	13	9
PR	PURCHASE REQUESTS	14	10
MIS	MISCELLANEOUS DOCUMENTS and REPORTS	15	11 -

6.1.1.2 DESIGN INFORMATION RELEASE/REPORT DATA

The Design Information portion of the Mail Log data base consists of one (1) subfile.

NAME	DESCRIPTION	FUNIT	<u>PUNIT</u>
DIR	DIR's and REPORT's	6	2

6.1.1.3 DRAWING/ENGINEERING ORDER DATA

The Drawing portion of the Mail Log data base is further subdivided into three (3) subfiles:

NAME	DESCRIPTION	<u>FUNIT</u>	<u>PUNI</u> T
DRAW	DRAWING	6	2
SHEET	SHEET	12	8
EO	ENGINEERING ORDERS (E.O.'s)	18	14

The DRAWING subfile contains all sheet one (1) information pertaining to a specific drawing. If the drawing has more than one (1) sheet, additional information pertaining to each following sheet is contained in the SHEET subfile. Therefore, the DRAWING and SHEET subfiles together form all drawing data contained within the data base. The E.O. subfile contains pertinent information related to all Engineering Orders.

6.1.2 STORAGE FILES

6.1.2.1 MAIL CORRESPONDENCE

All archived document records are stored in one (1) of two (2) inactive files called INACTS or INACTL. Transmittal data records which are actively stored in the TRAN subfile (see Section 6.1.1.1), will be archived to INACTL. Any data records which are actively stored in any of the other five (5) subfiles will be archived to INACTS. These data records do not contain the sixteenth data item, DESCRIPTION, which is found only in the TRANSMITTAL subfile.

Another storage file, called USER, is used to record the user ID, time, date, and terminal location number for each entry.

NAME	DESCRIPTION	<u>FUNIT</u>	PUNIT
INACTL	INACTIVE FILE (LONG RECORDS)	9	5
INACTS	INACTIVE FILE (SHORT RECORDS)	9	5
USER	USER LOG	19	15

6.1.2.2 DESIGN INFORMATION RELEASE/REPORT

All DIR/REPORT data records are stored in an inactive file called INACT when archived.

Another storage file, called USER, is used to record the user ID, time, date, and terminal location number for each entry.

NAME	DESCRIPTION	FUNIT	PUNIT
INACT	INACTIVE FILE	9	5 .
USER	USER LOG	19	15

6.1.2.3 DRAWING/ENGINEERING ORDER

Each of the three (3) data subfiles described in Section 6.1.1.3 has a corresponding inactive file for archive purposes. The DRAW subfile data

records are archived to INACTD. The SHEET subfile data records are archived to INACTS. Finally, the EO subfile data is archived to INACTE.

Another storage file, called USER, is used to record the user ID, time, date, and terminal location number for each entry.

NAME	DESCRIPTION	FUNIT	PUNIT
INACTD	INACTIVE FILE (DRAW)	9	5
INACTS	INACTIVE FILE (SHEET)	11	7
INACTE	INACTIVE FILE (EO)	17	13
USER	USER LOG	19	15

6.1.3 TEMPORARY WORKING STORES

6.1.3.1 MAIL CORRESPONDENCE

The CORRESPONDENCE program uses several temporary working storage files for outputting, rebuilding, restructuring, or sorting various subfile data records.

) ,
5
2
3,
4
5.
6
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

6.1.3.2 DESIGN INFORMATION RELEASE/REPORT

The DIR/REPORT program uses several temporary working storage files for outputting and rebuilding data records.

NAME	DESCRIPTION	FUNIT	PUNIT
OUT	OUTPUT FILE	7	3
REVS	REVISION DATA FILE	8	4
TEMP	REBUILDING DATA FILE	10	6
Tl	TITLE SEARCH FOUND FILE	11	7
T2	TITLE SEARCH FOUND FILE	12	8

6.1.3.3 DRAWING/ENGINEERING ORDER

The DRAWING/EO program uses several temporary working storage files for outputting and rebuilding data records.

NAME	DESCRIPTION	<u>FUNIT</u>	<u>PUNIT</u>
OUT	OUTPUT FILE	7	3
REVS	REVISION DATA FILE	8	4
TEMP	DRAW REBUILDING DATA FILE	10	6
ETEMP	EO REBUILDING DATA FILE	13	.9
T1	TITLE SEARCH FOUND FILE	13	9
STEMP	SHEET REBUILDING DATA FILE	14	10
T2	TITLE SEARCH FOUND FILE	14	10

6.2 DATA RECORDS

This Section provides a description of each data record for all three (3) main MAIL LOG subfiles. A table of searchable data items is given along with the items formatted for output during the SEARCH MODE.

6.2.1 MAIL CORRESPONDENCE

The Correspondence data record for each document consists of up to sixteen (16) data items, as shown in Figure 6.2.1.1. All but the DAILY COUNTER are input manually by the operator. The INPUT DATE and DAILY COUNTER are assigned automatically by the computer software. The CONTRACT NUMBER may also be assigned by using the WA/ID CODE - CONTRACT TABLE, CTAB, described in Section 6.4.2. There are two (2) subjects stored in each data record: SUB, as indicated in Figure 6.2.1.1, is the searchable subject; PTIT, not shown in Figure 6.2.1.1, represents a complete subject which is used for output purposes. During the SEARCH MODE eleven (11) of these sixteen (16) data items are searchable with up to eight (8) data items being formatted for output. See Figures 6.2.1.2 and 6.2.1.3.

6.2.2 DESIGN INFORMATION RELEASE/REPORT

The DIR/REPORT data record for each document consists of up to nine (9) data items as shown in Figure 6.2.2.1. The CONTRACT NUMBER is assigned automatically by the WA/ID CODE - CONTRACT TABLE, CTAB, described in Section 6.4.2. The CONTRACT NUMBER is therefore never actually saved within the data record. There are two (2) titles stored in each data record: TIT, as indicated in Figure 6.2.2.1, is the searchable title; PTIT, not shown in Figure 6.2.2.1, represents a complete title which is used for output purposes.

During the SEARCH MODE eight (8) of nine (9) data items are searchable with the entire data record being formatted for output. See Figure 6.2.2.2.

6.2.3 DRAWING/ENGINEERING ORDER

All drawings are divided into two (2) subfiles: DRAW and SHEET.

DRAW contains all first sheet data and items indicating any further sheets and

E.O.'s referenced. Each data record in this subfile contains up to ten (10) data items, as shown in Figure 6.2.3.1. There are two (2) titles stored in each data record: TIT, as indicated in Figure 6.2.3.1, is the searchable title; and PTIT represents the complete title which is used for output purposes.

If a drawing has more than one (1) sheet, each subsequent sheet forms a data record in the SHEET subfile. Each data record in this subfile contains up to five (5) data items as shown in Figure 6.2.3.1.

During the SEARCH MODE, the DRAWING subfiles contain eight (8) searchable data items with up to eight (8) data items being formatted for output. There also exists a ninth searchable data item, VENDOR CODE, which is actually a partial search on the DRAWING NUMBER data item. See Figure 6.2.3.2.

Engineering Order data records consist of up to six (6) data items, as shown in Figure 6.2.3.3. Each EO data record contains two (2) titles: ETIT, as indicated in Figure 6.2.3.3, is the searchable title; and EPTIT represents the complete title which is used for output purposes.

During the SEARCH MODE only two (2) of the data items are searchable with up to all six (6) items being formatted for output. See Figure 6.2.3.4.

Special information pertaining to the SEARCH MODE for all three (3) subfiles is given in Figure 6.2.3.5.

CORRESPONDENCE

RECORD DESCRIPTION

ITEM NO.	DESCRIPTION	VARIABLE	SIZE	TYPE
1	MAIL STATUS	MS	2 characters	ALPHA
2	AUTHOR/SOURCE	ATHR	28 characters	ALPHA
3	DOCUMENT DATE	DD	6 characters - MMDDYY	NUMERIC
4	TO/ADDRESSEE	TO	32 characters	ALPHA
5	DOCUMENT LETTER NUMBER	DLN	18 characters	ALPHA
6	SUBJECT	SUB	10 characters/word - 7 words	ALPHA
7	ROUTING	ROUT	3 characters - 6 entries	ALPHA
8	INPUT DATE	I DD	6 characters - MMDDYY	NUMERIC
9	DAILY COUNTER	COUNT	4 characters	NUMERIC
10	WA NUMBER/ID CODE	WA	8 characters	ALPHA
11	CONTRACT NUMBER	CONT	20 characters	ALPHA
12	ACTION DUE DATE	ADD	6 characters - MMDDYY	NUMERIC
13	REFERENCED DOCUMENTS	TWX	18 characters - 6 entries	ALPHA
14	FILE SYSTEM CODE	FSC	10 characters - 2 entries	ALPHA
15	RESPONSIBLE ENGINEER	NRE	3 characters - 3 entries	ALPHA
16	* DESCRIPTION	DDT	10 characters/word - 7 words - 30 entries	ALPHA

FIGURE 6.2.1.1

^{*} ONLY USED IN TRANSMITTAL SUBFILE

CORRESPONDENCE

SEARCHABLE DATA ITEMS

ITEM		en e	
<u>NO.</u>	DESCRIPTION	SEARCHABLE	<u>OUTPUT</u>
1	MAIL STATUS	*	
2	AUTHOR/SOURCE	*	
3	DOCUMENT DATE	*	•
4	TO/ADDRESSEE	*	
5	DOCUMENT LETTER NUMB	BER *	*
6	SUBJECT	*	*
7	ROUTING		•
8	INPUT DATE	*	*
9	DAILY COUNTER		*
10	W.A. NUMBER/ID CODE	*	•
11	CONTRACT NUMBER	*	
12	ACTION DUE DATE	*	**
13	REFERENCED DOCUMENTS	· · · · · · · · · · · · · · · · · · ·	***
14	FILE SYSTEM CODE		*
15	RESPONSIBLE ENGINEER	*	**
16	**** DESCRIPTION		
			•

* OUTPUT IN ALL SEARCHES

** ONLY OUTPUT DURING AN ACTION DUE SEARCH

*** OUTPUT IN ALL BUT AN ACTION DUE OR ALL SEARCH

**** ONLY USED IN TRANSMITTAL SUBFILE

FIGURE 6.2.1.2

CORRESPONDENCE SEARCHES

DESCRIPTION SUBFILE SELECTION TIME FRAME MAIL STATUS ANY 6 ANY **AUTHOR** ANY 6 ANY ANY 6 DAY/MONTH/YEAR DOCUMENT DATE T0 ANY 6 ANY DOCUMENT LETTER NUMBER ANY 6 ANY **SUBJECT** ANY 6 ANY INPUT DATE ANY 6 DAY/MONTH/YEAR W.A. NUMBER/ID CODE ANY 6 ANY CONTRACT NUMBER ANY 6 ANY ACTION DUE ALL 6 NONE ANY 6 RESPONSIBLE ENGINEER ANY

ANY 6

ANY

ALL

FIGURE 6.2.1.3

DIR/REPORT

RECORD DESCRIPTION

ITEM NO.	DESCRIPTION	VARIABLE	<u>SIZE</u>	TYPE
1	TITLE	TIT	10 characters/word - 7 words	ALPHA
2	DIR/REPORT NUMBER	DIR	14 characters	ALPHA
3	DATE	DT	6 characters - MMDDYY	NUMERIC
4	SYSTEM	SYS	4 characters - 3 entries	ALPHA
5	VEHICLE	VEH	4 characters - 2 entries	ALPHA
6	W.A. NUMBER/ID CODE	WAN	8 characters	ALPHA
7 *	CONTRACT NUMBER	CONT	20 characters	ALPHA
8	REVISION	REV	2 characters	ALPHA
9	REVISION DATE	RDAT	6 characters - MMDDYY	NUMERI C

^{*} NOT STORED IN DATA BASE SUBFILE CONTAINED IN WA/CONTRACT TABLE

DIR/REPORT

SEARCHABLE DATA ITEMS

ITEM NO.	DESCRIPTION	<u>SEARCHABLE</u>	OUTPUT
1	TITLE	*	*
2	DIR/REPORT NUMBER	*	*
3	DATE	*	*
4	SYSTEM	*	*
5	VEHICLE	*	*
6	W.A. NUMBER/ID CODE	*	*
7	*** CONTRACT NUMBER	*	*
8	REVISION		*
9	REVISION DATE	**	* *

^{**} INCLUDED WITHIN THE DATE SEARCH
*** NOT STORED IN DATA BASE SUBFILE
CONTAINED IN W.A./CONTRACT TABLE

DRAWING RECORD DESCRIPTION

ITEM NO.	DRAW SUBFILE DESCRIPTION	VARIABLE		<u>SIZE</u>	TYPE
1	TITLE	TIT	10	<pre>characters/word - 7 words</pre>	ALPHA
2	DRAWING NUMBER	DRAW	14	characters	ALPHA
•	* VENDOR CODE		3	characters	ALPHA
3	DATE	DT	6	characters - MMDDYY	NUMERIC
4	**SYSTEM	SYS	4	characters - 3 entries	ALPHA
5	VEHICLE	VEH	4	characters - 2 entries	ALPHA
6	**SECTION	SECT	12	characters	ALPHA
7	NUMBER OF SHEETS	NSHT	2	characters	NUMERIC
8	SHEET REVISION	FREV	2	characters	ALPHA
9	NUMBER OF E.O.'s	FNEO	2	characters	NUMERIC
10	E.O.'s REFERENCED	FEOREF	8	characters - 10 entries	ALPHA
ITEN NO.		VARIABLE		SIZE	<u>TYPE</u>
1	DRAWING NUMBER	DRW	14	characters	ALPHA
2.	SHEET NUMBER	SHTN	2	characters - 2 entries	NUMERIC
3	REVISION	REV	2	characters	ALPHA
4	NUMBER OF E.O.'s	NEO	2	characters	NUMERIC
5	E.O.'s REFERENCED	EOREF	8	characters - 10 entries	ALPHA

^{*} CONTAINED WITHIN DRAWING NUMBER

^{**}NOT CONTAINED IN DALLAS DATA

SEARCHABLE DRAWING DATA ITEMS

TTEM			
ITEM NO.	DRAWING SUBFILE	SEARCHABLE	OUTPUT
1	TITLE	*	*
2	DRAWING NUMBER	*	*
	VENDOR CODE	* * * * * * * * * * * * * * * * * * * *	
3	DATE	*	*
4	SYSTEM	*	
5	VEHICLE	*	
6	SECTION	*	
7	NUMBER OF SHEETS		
8	SHEET REVISION		*
9	NUMBER OF E.O.'s	**	·
10	E.O.'s REFERENCED	*	*
	SHEET SUBFILE		
i	DRAWING NUMBER		
2	SHEET NUMBER		*
3	REVISION		*
4	NUMBER OF E.O.'s		· ·
5	E.O.'s REFERENCED		*

^{**} NUMBER OF E.O.'s CHECKED WHEN PERFORMING A REVISION ACTION DUE SEARCH

FIGURE 6.2.3.2

ENGINEERING ORDER RECORD DESCRIPTION

ITEM NO.	DESCRIPTION	VARIABLE	SIZE	TYPE
*	E.O. TITLE	ETIT	10 characters/word - 7 words	ALPHA
. 2	E.O. NUMBER	EON	8 characters	ALPHA
3	E.O. REVISION	EOREV	2 characters	ALPHA
4	E.O. DATE	EDT	6 characters - MMDDYY	NUMERIC
5	E.O. REVISON DATE	ERDT	6 characters - MMDDYY	NUMERIC
6	VEHICLE	EOVEH	4 characters - 2 entries	ALPHA

^{*} NOT PRESENT IN DALLAS DATA

SEARCHABLE ENGINEERING ORDER DATA ITEMS

ITEM NO.	DESCRIPTION	SEARCHABLE	OUTPUT
1	E.O. TITLE		*
2	E.O. NUMBER	*	*
3	E.O. REVISION		* *
4	E.O. DATE		*
5	E.O. REVISION DATE		*
6	VEHICLE	*	**

** NOT OUTPUT DURING A VEHICLE SEARCH

DRAWING/ENGINEERING ORDER SEARCHES

DESCRIPTION

DRAWING NUMBER

DATE

SYSTEM

SECTION

VEHICLE

VENDOR CODE

TITLE

REVISION ACTION DUE

ALL

E.O. NUMBER

SPECIAL NOTATION

DALLAS DATA ALL ONE DATE

NOT APPLICABLE WITH DALLAS

NOT APPLICABLE WITH DALLAS

TWO OPTIONS: E.O.'s OR DRAWINGS

**

FIVE (5) OR MORE E.O.'s

TWO OPTIONS: E.O.'s OR DRAWINGS

TWO OPTIONS: E.O.'s OR DRAWINGS

** DALLAS DATA TITLES SOMETIMES
CONTAIN SYSTEM AND/OR SECTION

6.3 MISCELLANEOUS VARIABLES AND ARRAYS

This Section provides a description of all Miscellaneous Variables and Arrays used by each MAIL LOG subfile program. The following items are given for each:

- (A) Variable or Array name
- (B) Description of Variable or Array name
- (C) Size of Variable or Array in characters
- (D) Type of characters

6.3.1 MAIL CORRESPONDENCE

This Section provides a description of all variables and arrays used by the CORRESPONDENCE subroutines 4.1.1 through 4.1.29.

VARIABLE/ARRAY	DESCRIPTION	SIZE	TYPE
Α	ARRAY CONTAINING USER ID	30	ALPHA
BLNK	BLANK	2	ALPHA
CD	CURRENT DATE IN JULIAN	DOUBLE PRECISION	NUMERIC
CON	CONTRACT NUMBER	20	ALPHA
COUNTR	DAILY COUNTER STORAGE	4	NUMERIC
D	DESIRED INPUT DATE	6	NUMERIC
DA	DESIRED AUTHOR	28	ALPHA
DDD	DESIRED DOCUMENT DATE	6	NUMERIC
DE	RESPONSIBLE ENGINEER FOR ACTION DUE	3	ALPHA
DF	FILE SYSTEM CODE FOR ACTION DUE	10	ALPHA
DL	DESIRED DOCUMENT LETTER NUMBER	18	ALPHA
DM	DESIRED MAIL STATUS	2	ALPHA
DOC	DOCUMENT RECORD COUNTER FOR EACH SUBJECT FOUND USING WORD SEARCH	2	NUMERIC
DPT	PRINT SUBJECT FOR ACTION DUE	77	ALPHA
DRE	DESIRED RESPONSIBLE ENGINEER	3	ALPHA
DTO	DESIRED ADDRESSEE/TO	32	ALPHA
DW	DESIRED CONTRACT NUMBER	20	ALPHA
FINISH	FLAG FOR REVISION OF DATA BASE COMPLETED	. 1	NUMERIC
FVD	FIRST VALID DATE	6	NUMERIC
IA	CHANGE IN TRAN SUBFILE FLAG	1	NUMERIC
IACT	ACTION DUE DATE	6	NUMERIC
IAN	USER RESPONSE STORAGE	2	ALPHA
I ANN	ANNOUNCEMENT SUBFILE OPEN FLAG	1.1	NUMERIC
IANS	SUBFILE SELECTOR VALUE	2	NUMERIC
I CON	NUMBER OF WORDS IN SUBJECT TO BE SEARCHED	2	NUMERIC
ICOUN	DESIRED DAILY COUNTER	4	NUMERIC

VA	RIABLE/ARRAY	DESCRIPTION	SIZE	TYPE
	ICOUNT	FILE DAILY RECORD COUNTER	4	NUMERIC
	I CURR	CURRENT DATE	6	NUMERIC
	ID	DAY	2	NUMERIC .
	IDES	USER RESPONSE FOR SEARCH MODE	2 char 2 entries	ALPHA
	IDIFF	DIFFERENCE BETWEEN ICURR AND IACT	6	NUMERIC
	IEX	WORDS USED FOR SUBJECT SEARCH	10 char 4 entries	ALPHA
	IFILE	NUMBER OF FILES TO BE OPENED OR SPECIFIC FILE TO BE INPUT	2	NUMERIC
	IHARD	COMPLETE OUTPUT OPTION FLAG	1	NUMERIC
	IKNT	NUMBER OF DATA ITEMS TO BE REVISED	2	NUMERIC
	ILINÉ	ARRAY LINE COUNTER	2	NUMERIC
	ILP	NUMBER OF DESCRIPTIONS TO BE INPUT	2	NUMERIC
٠	IM	MONTH	2	NUMERIC
	IMELE	MEMO LETTER SUBFILE OPEN FLAG	1	NUMERIC
	IMIS .	MISCELLANEOUS SUBFILE OPEN FLAG	1	NUMERIC
	IN	INPUT FILE FUNIT	2	NUMERIC
	10	OUTPUT FILE FUNIT	2 .	NUMERIC
	IOPT	USER RESPONSE STORAGE	2	ALPHA
	IPAGE	PAGE LINE COUNTER OR FIRST MATCH FOUND FLAG	2	NUMERIC
	IPR	PURCHASE REQUEST SUBFILE OPEN FLAG	1	NUMERIC
	IPRINT	TOP OF PAGE FLAG	1	NUMERIC
•	IR	NUMBER OF A DATA ITEM TO BE REVISED	2	NUMERIC
	IREAD	FINISHED READING ALL SUBFILES FLAG	1	NUMERIC
	IRR	FIRST TIME SEARCH FLAG	1	NUMERIC
	IT	TEMPORARY SUBJECT STORAGE	77	ALPHA
	ITEM	DATA ITEM NUMBER INDICATOR	2	NUMERIC
	ITRSP	TRANSMITTAL SUBFILE OPEN FLAG	1	NUMERIC
	ITWFX	TWX SUBFILE OPEN FLAG	1	NUMERIC
	IY	YEAR	2	NUMERIC
	JOUT	SPOOL NEW DATA OUTPUT AGAIN FLAG	11,	NUMERIC
	KNT	DOCUMENTS FOUND COUNTER	4	NUMERIC

VARIABLE/ARRAY	DESCRIPTION	SIZE	TYPE
KT	DAILY COUNTER FOR ACTION DUE	. 4	NUMERIC
LEN	NUMBER OF CHARACTERS/WORD	2	NUMERIC
LVD	LAST VALID DATE	6	NUMERIC
R	INPUT-REVISE FLAG	1	NUMERIC
T1	SUBJECT SEARCH WORD COUNTER	5 g 2	NUMERIC
TFVD	FIRST VALID DATE IN JULIAN	DOUBLE PRECISION	NUMERIC
TIM	DOCUMENT DATE IN JULIAN	DOUBLE PRECISION	NUMERIC
ТЈ	RETURN VALUE FROM JTIME SUBROUTINE	DOUBLE PRECISION	NUMERIC
TJUL	RETURN VALUE FROM JTIME SUBROUTINE	DOUBLE PRECISION	NUMERIC
TLVD	LAST VALID DATE IN JULIAN	DOUBLE PRECISION	NUMERIC
WA	DESIRED WA/ID CODE	8	ALPHA

6.3.2 DESIGN INFORMATION RELEASE/REPORT

This Section provides a description of all variables and arrays used in the DIR/REPORT subroutines 4.2.1 through 4.2.16.

VARIABLE/ARRAY	DESCRIPTION	SIZE	TYPE
Α	ARRAY CONTAINING USER ID	30	ALPHA
BLNK	BLANK	2	ALPHA
CON	CONTRACT NUMBER	20	ALPHA
D	DATE	6	NUMERIC
DC	DESIRED CONTRACT NUMBER	20	ALPHA
DIRR	DIR/REPORT NUMBER	14	ALPHA
DOC	DOCUMENT RECORD COUNTER FOR EACH DIR/ REPORT FOUND DURING WORD TITLE SEARCH	2	NUMERIC
DS	DESIRED SYSTEM	12	ALPHA
DWA	DESIRED WA NUMBER	8	ALPHA
FINISH	FLAG FOR REVISION OF DATA BASE COMPLETED	1	NUMERIC
IANS	USER RESPONSE STORAGE	1	ALPHA
IC	RETURN ERROR CODE	2	NUMERIC
ICON	NUMBER OF WORDS TO SEARCH IN TITLE	2	NUMERIC
IDIR	DIR/REPORT NUMBER STORAGE	14	ALPHA
IDR	DIR/REPORT NUMBER STORAGE	14	ALPHA
IKNT	NUMBER OF RECORD TO BE ARCHIVED	2	NUMERIC
IN	INPUT FILE FUNIT	2	NUMERIC
10	OUTPUT FILE FUNIT	2	NUMERIC
IOPT	USER RESPONSE STORAGE	2	ALPHA
IPAS	PASSWORD FOR UFD ATTACHMENT	2	ALPHA
IR	NUMBER OF A DATA ITEM TO BE REVISED	2	NUMERIC
IT	FILE TYPE OR TEMPORARY TITLE	2 or 77	ALPHA
ITY	FILE TYPE RETURN CODE	2	NUMERIC
KNT	DIR/REPORT FOUND COUNTER	4	NUMERIC
LEN	NUMBER OF CHARACTERS/WORD	2	NUMERIC
Ŕ	INPUT-REVISE FLAG	. 1	NUMERIC

VARIABLE/ARRAY	DESCRIPTION	SIZE	TYPE
ΤΊ	TITLE SEARCH WORD COUNTER	1	NUMERIC
VEH1	DESIRED VEHICLE	4	ALPHA
VKNT	VEHICLE FOUND COUNTER	2	NUMERIC
VS	FIRST AND LAST VALID VEHICLE	 8	ALPHA
WA	WORK AUTHORIZATION/ID CODE	8	ALPHA

6.3.3 DRAWING/ENGINEERING ORDER

This Section provides a description of all variables and arrays used in the DRAWING/E.O. subroutines 4.3.1 through 4.3.25.

VARIABLE/ARRAY	DESCRIPTION	SIZE	TYPE
A	ARRAY CONTAINING USER ID	30	ALPHA .
BLNK	BLANK	2	ALPHA
COD	VENDOR CODE PORTION OF THE DRAWING NUMBER	3	ALPHA
D	DATE DESIRED	6	NUMERIC
DOC	DOCUMENT RECORD COUNTER FOR EACH DRAWING FOUND DURING WORD TITLE SEARCH	2	NUMERIC
DS	SYSTEM DESIRED	12	ALPHA
EOKNT	E.O. COUNTER FOR EACH SHEET	2	NUMERIC
FINISH	FLAG FOR REVISION OF DATA BASE COMPLETED	1	NUMERIC
FIRST	FLAG FOR FIRST SHEET OPERATION; DRAW SUBFILE	1	NUMERIC
IANS	USER RESPONSE STORAGE	1	ALPHA
IC	RETURN ERROR CODE	2	NUMERIC
ICODE	DESIRED VENDOR CODE	3	ALPHA
ICON	NUMBER OF WORDS TO SEARCH IN TITLE	2	NUMERIC
IDES	USER RESPONSE STORAGE	2	ALPHA
IDR	TEMPORARY DRAWING NUMBER STORAGE	14	ALPHA
IDRAW	DRAWING NUMBER DESIRED	14	ALPHÁ
IEO	E.O. NUMBER DESIRED	8	ALPHA
IEOUP	E.O. UPDATE FLAG FOR NEW REVISION	1	NUMERIC
IEX	WORDS OF TITLE SEARCHED	10 char 4 entries	ALPHA
II	NUMBER OF E.O.'s ON 1ST SHEET	2	NUMERIC
IIEORF	REFERENCED E.O.'s FOR NEW SHEET	8 char 10 entries	ALPHA
IINEO	NUMBER OF E.O.'s FOR NEW SHEET	2	NUMERIC
IIREV	REVISION FOR NEW SHEET	2	ALPHA
IISHTN	SHEET NUMBER FOR NEW SHEET	4	NUMERIC
IKNT	NUMBER OF DATA ITEMS TO BE REVISED	2	NUMERIC
ILINE	OUTPUT PAGE LINE COUNTER	2	NUMERIC

VARIABLE/ARRAY	DESCRIPTION	SIZE	<u>TYPE</u>
IN	INPUT FILE FUNIT	2	NUMERIC
INEO	NUMBER OF E.O.'s FOR SHEET	2	NUMERIC
10	OUTPUT FILE FUNIT	2	NUMERIC
IOPT	USER RESPONSE STORAGE	2	ALPHA
IPAGE .	NEW PAGE FLAG	1	NUMERIC
IPAS	PASSWORD FOR UFD ATTACHMENT	6	ALPHA
IR	NUMBER OF A DATA ITEM TO BE REVISED	2	NUMERIC
ISECT	SECTION DESIRED	12	ALPHA
ISHT	SHEET NUMBER	4	NUMERIC
ISHTN	SHEET NUMBER	4	NUMERIC
IT	FILE TYPE OR TEMPORARY TITLE	2 or 77	ALPHA
ITY	FILE TYPE RETURN CODE	2	ALPHA
KNT	DRAWINGS FOUND COUNTER	4	NUMERIC
KNTT	SHEETS OF DRAWING FOUND COUNTER	2	NUMERIC
LEN	NUMBER OF CHARACTERS/WORD	. 2	NUMERIC
NEWSHT	NEW SHEET FLAG	1	NUMERIC
TI	TITLE SEARCH WORD COUNTER	1	NUMERIC
TTIT	TEMPORARY TITLE	77	ALPHA
VEH1	VEHICLE DESIRED	4	ALPHA
VS	FIRST AND LAST VALID VEHICLES	4 char 2 entries	ALPHA

6.3.4 GENERAL

This Section provides a description of all variables and arrays used in the general subroutines 4.4.1 through 4.4.7.

VARIABLE/ARRAY	DESCRIPTION	SIZE	TYPE
ACOMMA	COMMA CHARACTER	3	NUMERIC
AERASE	ERASE CHARACTER	3	NUMERIC
AH	ACTUAL HOURS	2	NUMERIC
AKILL	KILL CHARACTER	3	NUMERIC
AMIN	ACTUAL MINUTES	2 .	NUMERIC
ANL	NEW LINE CHARACTER	3	NUMERIC
ARRAY	ARRAY CONTAINING A TITLE WORD	30	ALPHA
ASCOL	SEMICOLON CHARACTER	3	NUMERIC
ASP	SPACE CHARACTER	3	NUMERIC
ASPSP	RETURN CHARACTER	3	NUMERIC
BLNK	BLANK	2	ALPHA
BUF	TEMPORARY TITLE BUFFER	76	ALPHA
BUFF	TEMPORARY TITLE BUFFER	76	ALPHA
CON	CONTRACT NUMBER	20	ALPHA
CHAR	CHARACTER FROM TERMINAL	1	ALPHA
IA	RETURN ARRAY CONTAINING USER ID	30	ALPHA
IAI	RETURN ARRAY CONTAINING USER ID	30	ALPHA
IDM	MINUTES OF DAY	2	NUMERIC
IH	HOURS OF DAY	2	NUMERIC
IMIN	TEMPORARY MINUTE STORAGE	2	NUMERIC
IMM	MINUTES PASSED	2	NUMERIC
LEN	NUMBER OF CHARACTERS/WORD	2	NUMERIC
NAME	TITLE WORD BUILT	10	ALPHA
PEDL	NUMBER OF CHARACTER	2	NUMERIC
TIL	TEMPORARY TITLE BUILT	77	ALPHA
WA	WORK AUTHORIZATION/ID CODE	8	ALPHA

6.4 TABLES

shown:

This Section describes the tables used by the MAIL LOG software.

6.4.1 SYSCOM KEYS.F

Table SYSCOM KEYS.F represents the File System Key Definitions as

```
NOLIST
C
C
      TABSET 6 11 28 69
      INTEGER*2 K$READ, K$WRIT, K$POSN, K$TRNC, K$RPOS, K$PRER, K$PREA,
          K$POSR, K$POSA, K$CONV, K$RDWR, K$CLOS, K$DELE, K$EXST,
     X
          K$IUFD,K$ISEG,K$CACC,K$NSAM,K$NDAM,K$NSGS,K$NSGD,
     X
          K$CURR, K$IMFD, K$ICUR, K$SETC, K$SETH, K$ALLD, K$SPOS,
     X
          K$GOND, K$MSIZ, K$MENT, K$ENTR, K$SENT, K$GPOS, K$UPOS,
          K$PROT,K$DTIM,K$DMPB,K$NRIN,K$SRIN,K$IRIN
C
      PARAMETER
     X
     X /*
     X /*
     X /*
               KEY DEFINITIONS
     X /*
     X /*
     X /*:
                 ******** PRWF$$ ************
                       ***** RWKEY
     X /*
          K$READ = :1,
     X
                           /* READ
                           /* WRITE
     X
          K$WRIT = :2,
     X
                           /* POSITION ONLY
          K$POSN = :3,
     X
                           /* TRUNCATE
          KSTRNC = :4,
     X
          K$RPOS = :5,
                           /* READ CURRENT POSITION
     X /*
                          **** POSKEY *****
     X
                           /* PRE-POSITION RELATIVE
          K\$PRER = :\emptyset,
     X
          K\$PREA = :10,
                           /* PRE-POSITION ABSOLUTE
     X
          K$POSR = :20,
                           /* POST-POSITION RELATIVE
     X
          K$POSA = :30,
                           /* POST-POSITION ABSOLUTE
     .X /*
                         **** MODE
     X
          K$CONV = :400.
                           /* CONVENIENT NUMBER OF WORDS
     X /*
     X /****
               ************ SRCH$$ *****
     X /*
                       ***** ACTION *****
     X /* K$READ = :1,
                           /* OPEN FOR READ
                           /* OPEN FOR WRITE
     X /* K$WRIT = :2,
                           /* OPEN FOR READING AND WRITING
     X
          K$RDWR = :3,
     X
                           /* CLOSE FILE UNIT
          K$CLOS = :4,
          KODMLE = :5,
     X
                           /* DELETE YILE
                           /* CHECK FILE'S EXISTENCE
          KSEXST = :6,
```

```
***** REF
     KSIUFD = :0,
                      /* FILE ENTRY IS IN UFD
X
                     /* FILE ENTRY IS IN SEGMENT DIRECTORY
X
     KSISEG = :100,
     K$CACC = :1000, /* CHANGE ACCESS
·X
X /*
                  ***** NEWFIL *****
                      /* NEW SAM FILE
     KSNSAM = :0.
X
     K$NDAM = :2000, /* NEW DAM FILE
X
     K$NSGS = :4000, /* NEW SAM SEGMENT DIRECTORY
X
     K$NSGD = :6000, /* NEW DAM SEGMENT DIRECTORY
K$CURR = :177777,/* CURRENTLY ATTACHED UFD
X
X
X /*
X /*************** ATCH$$ ***********
                * ***** KEY
                                 ****
                      /* UFD IS IN MFD
     KSIMFD = :0,
                      /* UFD IS IN CURRENT UFD
X
     K$ICUR = :2,
                   ***** KEYMOD *****
x /*
                      /* SET CURRENT UFD (DO NOT SET HOME)
     K\$SETC = :0,
X
                      /* SET HOME UFD (AS WELL AS CURRENT)
     K\$SETH = :1,
X
                   ***** NAME
X /*
                                ****
                     /* RETURN TO HOME UFD (KEY=K$IMFD)
X
X /*
                  ***** LDISK *****
     K$ALLD = :100P00,/* SEARCH ALL DISKS
X /* K$CURR = :177777,/* SEARCH MFD OF CURRENT DISK
X /**************** SGDR$$ ***********
X /*
                  ***** KEX
X
     K$SPOS = :1,
                      /* POSITION TO ENTRY NUMBER IN SEGDIR
                     /* POSITION TO END OF SEGDIR
     K$GOND = :2,
X
                   /* POSITION TO END OF SEGDIR
/* RETURN CURRENT ENTRY NUMBER
/* MAKE SEGDIR GIVEN NR OF ENTRIES
X
     K$GPOS = :3,
X
     KSMSIZ = :4,
                      /* MOVE FILE ENTRY TO NEW POSITION
X
     K$MVNT = :5,
x /*
X /****************** RDENS$ ************
                  ***** KEY
X /*
                   /* READ NEXT ENTRY
X /* K$READ = :1,
                     /* READ NEXT SUB-ENTRY
     K$RSUB = :2,
                     /* RETURN CURRENT POSITION IN UFD
X /* K$GPOS = :3,
                      /* POSITION IN UFD
X
     K$UPOS = :4,
X /*
X /**************** SATR$$ ***********
x /*
                  ***** KEY
                   /* SET PROTECTION
     K\$PROT = :1,
                     /* SET DATE/TIME MODIFIED
     K$DTIM = :2,
X
                     /* SET DUMPED BIT
X
     K$DMPB = :3,
X /*
X /*****
          *********** ERRPR$$ **
X /*
                  ***** KEY
                     /* NEVER RETURN TO USER
X
     K$NRIN = :0,
                      /* RETURN AFTER START COMMAND
     K$SRIN = :1,
X
X
     K$IRIN = :2
                      /* IMMEDIATE RETURN TO USER
X /*
```

6.4.2 CTAB

Table CTAB represents the WORK AUTHORIZATION/ID CODE - CONTRACT NUMBER TABLE. This table is referenced in operation of the DIR/REPORT and CORRESPONDENCE subfiles only.

WA/ID CODE	CONTRACT/TASK	WA/ID CODE	CONTRACT/TASK
2902 2903 3050 3079 3081 3082 3089	I.R.&D. BID/PROPOSAL NAS1-1295 NAS1-900 NAS1-1113 NAS1-1255	3219 3221 3223 3228 3232 3234 3242	NAS1-6049 NAS1-5610 NAS1-5883 NAS1-5880 NAS1-6020 NAS1-6748 NAS1-6020
3091	NAS1-1481	3245	NAS1-6935
3116	NAS1-1807	3246	NAS1-6935
3117	NAS1-900	3258	NAS1-6868
3118	NAS1-1928	3263	NAS1-6957
3119	NAS1-1481	3270	NAS1-7199
3123	NAS1-2165	3275	NAS1-6935
3125	NAS1-2189	3282	NAS1-7256
3126 3129 3130	NAS1-2109 NAS1-1113 NAS1-2455 NAS1-1295	3284 3288 3293	NAS1-7256 A.F.4701-68-C-0252 NAS1-7256
3132	NAS1-1946	3300	NAS1-9258
3133	NAS1-1295	3302	NAS1-6935
3154	NAS1-2650	3302A	NAS1-6935-36
3157	NAS1-2165	3302B	NAS1-6935-41
3160	NAS1-2617	3303	ARMY-DAHC60-70-C0041
3164	NAS1-3420	3305	A.F.4701-69-C-0392
3165	NAS1-3420	3313	NAS1-9994
3170	NAS1-3589	3329	NAS1-10534
3171	NAS1-3615	3333	NAS1-10000
3172	NAS1-3683	3334	NAS1-10000/TASK J
3176	NAS1-3657	3335	NAS1-10000/TASK M
3180	NAS1-3899	3336	NAS1-10000/TASK R
3182	NAS1-3899	3337	NAS1-10000/TASK S
3183	NAS1-3915	3340	NAS1-10500
3187	NAS1-4325	3341	NAS1-10500
3192	NAS1-3589	3342	NAS1-10500
3195	NAS1-5539	3343	NAS1-10500
3196	NAS1-4899	3347	NAS1-10848
3202	NAS1-4664	3354	NAS1-11000
3207	NAS1-4664	3359	NAS1-10000/TASK W
3210	NAS1-5592	3362	NAS1-10000/TASK V

WA/ID CODE CONTRACT/TASK 3381 NAS1-12500 3382 NAS1-12500/TASK J 3383 NAS1-12500/TASK M 3384 NAS1-12500/TASK R 3385 NAS1-12500/TASK S 3507 NAS1-12500/TASK W 3525 NAS1-15000 3526 NAS1-15100 3527 NAS1-15100 3532 NAS1-14500 3801 NAS1-6024 **3804AAAJ** NAS1-3405 3804AABM NAS1-6020 **3804EABB** NAS1-5369 **3804EABN** NAS1-7888 **3809AAAB** NAS1-1013 NAS1-2215 3809AAAD **3809AAAE** NAS1-2478 3809AAAF NAS1-553 NAS1-3311 **3809AAAH** 3809AAAM NAS1-4494 3809AAAN NAS1-4664 3809BAAL NAS1-1255 NAS1-1255 3809BAAM **3809EABP** NAS1-5539 3811 NAS1-2165 3812 NAS1-3420 3859 NAS1-3420

7.0 MAIL LOG OUTPUTS

Outputs generated by the SPADS MAIL LOG program are described and exhibited in Section 7.0 of the Program Summary and Specification Manual. If this document is not available, a similar set of outputs and descriptions may be found in Section 5.0 of the Operating Instructions Manual.

8.0 EXTERNAL CALLS

The purpose of this section is to provide a reference list for all subroutines used by, but external to, the SPADS MAIL LOG software package.

8.1 SYSTEM SOFTWARE ROUTINES

A description of each of the following routines may be found in the PRIME REFERENCE GUIDES:

PDR3110 - "File Management System" (FMS)

PDR3106 - "Software Library" (SL)

PDR3057 - "Fortran Programmer's Guide" (FPG)

ROUTINE		<u>FMS</u>	<u>SL</u>	FPG
ATCH\$\$		X	X	Χ
BREAK\$		X	X	
Clin		X	X ·	
CNAM\$\$		X	X	X
COMI \$\$	*	X.	X	X
ENDFILE	•			X
EXIT		X		X
LS			X	Х
LT			X	X
RECYCL		X	X	
RESU\$\$		X .	X	X
REWIND				X
RT			X	X
SRCH\$\$		X	X	X
T10U			X	
TIMDAT	•	X		

8.2 MISCELLANEOUS ROUTINES

The following subroutines are used by the SPADS MAIL LOG software package, but are not found within the PRIMOS operation system. These routines are defined at load time and shown in Appendix E.

8.2.1 CLEAR

This subroutine is used to clear the user terminal. Appendix E, Figure 1 depicts the source code for this subroutine.

8.2.2 PAUS

This subroutine performs the following functions:

If many document records are found during a search and it is observed that needed information will soon disappear from the screen, the user may temporarily stop terminal display by depressing the space bar. Terminal display may be restarted by depressing the 'Q' key.

At this time the source code for this subroutine is not available. However, a routine used by this PAUS routine, CHKLIN, is available. Appendix E, Figure 2 depicts the source code for the Check Line subroutine.

8.2.3 JTIME

This subroutine is only used in the MAIL CORRESPONDENCE portion of program. This procedure converts a given date, month, date, and year, into Julian time. Appendix E, Figure 3 depicts the source code for this subroutine.

9.0 SPECIAL SUPPORT ROUTINES

The main body of the DRAWING/E.O. subfile data must be converted from magnetic tape to disk and reformatted for the SPADS MAIL LOG data base subfile structure. See Section 6.1.1.3.

To accomplish this conversion, the following steps and special support routines are used:

- (a) MAGRST data from tape to disk; designate data as DDATA file.
- (b) Manually examine the DDATA file using the EDITOR. Delete all records referencing to SEI's. Note: SEI's are usually the first 25 to 50 records on the file.
- (c) Begin execution of conversion by using routine PHASE 1. This is accomplished by entering R *PHASE 1. This routine picks out the necessary data from the Dallas data and builds a new data file called NEW.
- (d) PHASE 2 is executed in the same manner as PHASE 1. This routine modifies the vehicle numbers and builds a searchable title. The procedure also formats all data for data base subfile compatibility. The new data file constructed during this phase is called FINAL.
- (e) PHASE 2 has a checking routine called TTEST. This routine displays on the terminal each data record within FINAL.
- (f) PHASE 3 is actually made up of several subroutines which build the DRAW and SHEET subfiles from the FINAL data file. Each subfile has its own checking routine:
 - (1) DRAW is checked by TEST. The TEST routine builds an output file called OUT containing all DRAW data items for each data record.

(2) SHEET is checked by CHECKS. The CHECKS routine builds an output file called SHT containing all SHEET data items for each data record.

The output files must be manually spooled.

- (g) PHASE 4 must be executed overnight due its long running time. This routine builds the Engineering Order data file, EO, from the FINAL data file. Each E.O. number entered is checked for a previous entry. This process becomes progressively more time consuming as the E.O. data file builds and exceeds 1500 records.
- (h) All data subfiles must be transferred from the TRANSPOSEDRAW UFD to the F_DRAW UFD. After the old subfiles have been deleted or their names changed.
- (i) The E.O. data file may now be checked by executing an E.O. PRINT ALL search in the MAIL LOG program.

Note that all these routines are located in the TRANSPOSEDRAW UFD in MFD 1. The source code for each of these routines are given in Appendix F.

Figure 1	PHASE 1
Figure 2	PHASE 2
Figure 3	PHASE 3
Figure 4	PHASE 4
Figure 5	TTEST
Figure 6	TEST
Figure 7	CHECKS

•			
3.5		·	

