NASA

METHOD OF FAN SOUND MODE STRUCTURE DETERMINATION COMPUTER PROGRAM USER'S MANUAL MOD L CALCULATION PROGRAM

by
G. F. Pickett, R. A. Wells and R. A. Love

August 1977

PRATT \& WHITNEY AIRCRAFT GROUP Commercial Products Division

```
(NASA-CP-135255) mETFOD CF FAN SCUND MCDE
prepared for

\section*{NATIONAL AERONAUTICS AND SPACE ADMINISTRATION}

NASA-Lewis Rosearch Center Contract NAS3-20047

- Far sale by the National Technical informition Service. Sprinfield Vigima 27151

\section*{TABLE OF CONTENTS}
Page
1. SUMMARY ..... 1
2. INTRODUCTION ..... 1
3. PROGRAM DESCRIPTION ..... 3
3.1 Algorithm ..... 3
3.2 Program Overview ..... 4
3.3 Program Subroutines and Function Description ..... 5
3.4 Input Description ..... 13
3.5 Output Description ..... 15
3.6 Machine Requirements ..... 24
3.7 Resource Estimates ..... 24
REFERENCES ..... 25
APPENDICIES
A - CALCULATION OF CHARACTERISTIC NUMBERS ..... 27
B - PROGRAM LISTING ..... 31
C - MODAL CALCULATION PROGRAM SAMPLE CASE ..... 63

\section*{LIST OF ILLUSTRATIONS}
Figure Title Page
1 Program Overview ..... 5
2 Principal - Element Diagram - Characteristics Number Calculation Section ..... 7
3 Principal - Element Diagram - Mode Amplitude and Phase Calculation ..... 9
4 Principal - Element Diagram - Sensitivity Coefficient Calculation ..... 10
5 Principal - Element Diagram - Overall Pressure Calculation ..... 12
6
Sample Input Form for Three Microphones ..... 23
LIST OF TABLES
Number Title ..... Page
1 General Input Parameters ..... 16
II Test Geometry and Condition Input Parameters ..... 17
III Error Deviation on Coefficient Input Parameters20

\title{
METHOD OF FAN SOUND MODE STRUCTURE DETERMINATION COMPUTER PROGRAM USER'S MANUAL MODAL CALCULATION PROGRAM
}

\section*{by}

\author{
G. F. Pickett, R. A. Wells and R. A. Love \\ Pratt \& Whitney Aircraft Group
}

\subsection*{1.0 SUMMARY}

\begin{abstract}
This computer user's manual describes the operation and the essential features of the Modal Calculation Program, the second of two programs developed under the Method of Fan Sound Structure Determination Program, NAS3-20047. Jointly the two programs are used to determine the coherent modal structures of inlet sound fields. The purpose of the Modal Calculation Program \(1^{\circ}\) to calculate the amplitude and phase of modal structures by means of acoustic pressure measurements obtained from microphoes placed at selected locations within the fan inlet duct. These locations are determined by the first of the two programs. In addition, the Modal Calculation Program also calculates the first-order errors in the modal coefficients that are due to tolerances in microphone location coordinates and inaccuracies in the acoustic pressure measurements.
\end{abstract}

\subsection*{2.0 INTRODUCTION}

New fan designs for modern high bypass ratio commercial engines utilize blade-vane interaction theory to the extent possible for contolling the propaga ion of interaction noise. Currently, this theory defines the modes that can propagate. but has not been developed to the extent that it can reliably predict the strengths of the propagating modes.

Further noise reduction could be achieved if the propagating modal structure were quantified. Once the modal structure were defined, an analytical system for acoustic-treatment design could be utilized to optimize treatment for a given modal structure, to produce more efficient schemes. In addition, the modal structure could be employed to verify developing theories of fan noise generation. To provide this capability by means of measured data the Method of Fan Sound Mode Structure Determination Program (NAS3-20047) was undertaken. The method would be utilized until a valid fan noise generation model on a model basis becomes available.

The theory upon which fan spinning mode theory is founded was presented in 1961 by Tyler and Sofrin (ref. 1), following extensive analytical and experimental studies. Later, Sofrin and McCann (ref. 2) derived the general form of a coherent acoustic wave in an infinitely long cylindrical duct which extended the theory to include effects of axial flow. This equation expresses the coherent acoustic pressure at locations in the duct as a function of the amplitude and phase of the propagating modes comprising the sound field. These purely coherent signals, which are due to the contributions of the constituent modes, are extracted from the overall signal by enhancement techniques adapted at Pratt \& Whitney Aircraft - the advantages of utilizing signal enhancement is discussed by Posey in reference 3.

Buth the analytical expression derived for a general coherent acoustic wave and a signal enhancement technique form the basis for developing a method to determine fan sound mode structures. The method, in principle, is capable of determining the amplitude and phase of ull modes that can propagate at a given frequency. In practice, the number of modes that can be determined is limited by the storage capacity and the running time of the computer and by measurement and location accuracy.

The method for determining fan sound mode structure (ref. 4) requires two computer programs: a Microphone Location Program (MLP) and a Modal Calculation Program (MCP). This User's Manual describes the MCP; the MLP is presented in a companion Manual.

The MLP identifies microphone locations in the duct for measuring acoustic pressures for input to the MCP that will insure a numerically stable solution. The MCP calculates modal structures from acoustic pressure measurements and calculates coefficients that can be used to determine the sensitivity of the modal calculation procedure to first-order errors in acoustic pressure measurements and microphone placement.

In the following sections, the algorithm for the inodal calculations and the program elements such as subroutines, functional elements, and principal element interrelationships - are dic cussed. A description of the input parameters is included. The output format is also described and illustrated by a sample case. Finally, a listing of the program code is provided in Appendix B.

\subsection*{3.0 PROGRAM DESCRIPTION}

\subsection*{3.1 ALGORITHM}

The Modal Calculation Program is an algorithm for calculating the modal structure from input data compasing acoustic pressure measurements and a finite set of modes. The general form of any echerent acoustic wave in an infinitely long cylinderical duct having uniform axial flow can be written as the real part of

and
\[
K x=\frac{M x(\omega / c) \pm \sqrt{(\omega / c)^{2}-\left(1-M x^{2}\right) k_{m \mu}^{\sigma}}}{1-M_{x}^{2}}
\]
where the notation is consistent with reference 1 .
Equation I can be written in matrix form where the measured pressures are obtained from microphone locations identified by the MLP. The equation system is solved in the usual manner by matrix inversion. The output from this procedure is the amplitude and phase of the coherent acoustic duct modes comprising the inlet sound field.

The input to the program consists of: the sound field in the duct comprising N acoustic duct modes, the geometric parameters (e. g. duct radius, hub-tip ratio), test parameters (e. g. frequency, axial Mach number, speed of sound), and measured acoustic pressure amplitude and phase at locations identified by the MLP. The characteristic numbers that include the eigen value \(k^{\prime}{ }_{m}^{\sigma}, \mu\). the axial wave number \(k x\), and the value of the eigen function \(E\left(k_{m, \mu}^{\sigma}\right)\) are calculated.

In addition, this equation requires the input of acoustic pressure measurements, the number cf which exactly equal the number of specific modes. A set of equations can then be established with the number of equations equaling the number of acoustic measurements. This set was written in matrix form with the matrix coefficients a function of the particular modes comprising the sound field and the microphone locations.

If the determinant of the equation system is non-zero, a set of independent equations exists. This equation system in principle can be inverted in the usual way to solve for the unknown amplitude and phase of the particular modes comprising the sound field. A Gaussian elimination procedure is used to reduce the equation system to a triangularized matrix for solution of the complex modal coefficients. The overall pressure at any location in the duct can be calculated from the information in the modal structure.

Once the modal structure has been determined, a cet of influence coefficients (ref. 4) is calculated. These coefficients can be used to determine the errors in modal amplitudes and phases that are the results of first-order inaccuracies in measured pressures and the tolerances in microphone placement.

As an option, the MCP can also calculate the resultant sound field at any specified duct location based on " jiven modal structure. This modal structure is supplied by the user either arbitrarily or as output from an analytical prediction deck.

\subsection*{3.2 PROGRAM OVERVIEW}

The Modai Calculation Program comprises six major sections which are utilized in part or whole to accomplish the objectives of the two possible modes of operation. These six major sections are:
1) Input - The input of all data is by the NAMELIST specification, and the internal parameters are initiated for program execution.
2) Characteristic Number Calculation - The characteristic numbers \(K_{m, \mu}^{\prime \sigma}\) and \(Q_{m, \mu}^{\sigma}\) are calculated using the procedure described in Appendix A.
3) Mode Amplitude and Phase Calculation - The coherent acoustic wave equation system,. e.g. (1), in an infinitely long cylinderical duct with uniform axial flow is solved using a Gaussian elimination procedure for the modal amplitude and phase.
4) Sensitivity Coefficient Calculation - Standard deviations due to the first-order independent errors in the measurement of both the acoustic pressures and the microphone coordiaates are obtained for the error in the modal amplitudes and phases.
5) Overall Pressure Calculation - Resultant pressure amplitude and phase are calculated at the desired prediction locations using the amplitude and phase of the constituent modes comprising the sound field.
6) Output - All results from the program calculations are printed.

The interrelationships between the six major sections and their utility for each option is illustrated in Figure 1. As input, both options require a specific mode group, inlet geometry, and test condition to calculate characteristic numbers. One option, "A", requires additional input in the form of acoustic pressure signals at selected duct locations to calculate the modal structure comprising the sound field. Additionally, influence coefficients, which are functions of the modal structure, are calculated. The other option, " \(B\) ", requires that the modal structure be specified as input. In both options, the amplitude and phase of the constituent modes are utilized to calculate the overall acoustic pressure at any duct location. The results from beth options are printed by the output section.


Figure 1 Program Ovenview

\subsection*{3.3 PROGRAM SUBROUTINES AND FUNCTIONS DESCRIPTION}

The subroutines and functions used in the six program sections presented in Section 3.2 are listed belcw; the purpose of each subroutine or function is described. Also as appropriate, principal-element diagrams of the more complicated sections are presented and discussed.

\section*{Input Section}

The NAMELIST format is used to input data for execution of the computer program. This form of input is described in Section 3.4.1. The input variable names are listed in Section 3.4.2, including a description of their purpose. All input is read into the program by the following subroutine:

INPUT - This subroutine inputs data for each case and sets up the necessary internal parameters.

\section*{Characteristic Number Calculation Section}

Expressions are derived in Appendix A for solving two simultaneous equations that define the characteristic numbess \(\mathrm{k}_{\mathrm{m} \mu}^{\prime}{ }_{\mu}\) and \(\mathrm{Q}_{\mathrm{m} \mu}^{\sigma}\). A principal-element diagram is presented in Figure 2 to illustrate the functional elements that lead to a determination of these numbers. Initially, the order of the Bessel functions is determined from the circumferential order of a particular mode. The \(\mathrm{J}_{\mathrm{m}}\) and \(\mathrm{Y}_{\mathrm{m}}\) Bessel functions are evaluated, as appropriate, depending on the value of the duct hub-tip ratio. Finally, the chanacteristic numbers are calculated by solving the simultaneous equations comprising the Bessel functions. The subroutines and functions utilized in this section are:
KQCAL - This subroutine calculates the characteristic numbers \(K_{m \mu}^{\prime \sigma}\) and \(Q_{m \mu}^{\sigma}\)
KMUCAL - This subroutine is used by KQCAL to calculate the characteristic number \(k^{\prime}{ }_{m \mu} \boldsymbol{g}\).

EMUCAL - This subroutine calculates characteristic E-function values for a particular radial value, \(\mathrm{i}^{\prime}\) - \(\mathrm{r} / \mathrm{b}\).

FALZIP - This function solves for a root of a given function using a combination of false position and bisection techniques

BESLI - This function is used by KMUCAL to calculate values of \(\mathrm{K}_{\mathrm{m} \mu}^{\prime \boldsymbol{\sigma}}\) for the equation which defines the system of differential equations.
\(\frac{d}{d r}\left[J_{m}\left(K_{m \mu}^{\prime \sigma}\right)\right]+Q_{m \mu}^{\sigma} \frac{d}{d r^{\prime}}\left[Y_{m}\left(K_{m \mu}^{\prime \sigma}\right)\right]=0\)
\(\frac{d}{d r^{\prime}}\left[J_{m}\left(\sigma K_{m \mu}^{\prime o}\right)\right]+Q_{m \mu}^{\sigma} \frac{d}{d r^{\prime}}\left[Y_{m}\left(\sigma K_{m \mu}^{\prime \sigma}\right)\right]=0\)
for a hub-tip ratio not equal to zero.
BESL2 - This function is used by KMUCAL to calculate values of \(\mathrm{K}_{\mathrm{m} \mu}^{\prime 0}\) for the equation which defines the above system of differential equations for a hub-tip ratio equal to zero.

BESJ - This subroutine calculates values of the Bessel function of the first kind.
BESY - This subroutine calculates values of the Bessel function of the second kind.


Figure 2 Principal-Element Diagram - Characteristic Number Calculation Section

\section*{Mode Amplitude and Phase Calculation}

The modal anmplitude and phase are solved by matrix inversion techniques from data that includes pressure measurements at selected microphone locations. The equations that define the matrix coefficients and adescription of the procedure for fan sound mode determination was presented in Section 3.1-Algorithm. To illustrate the functional elements that lead to a solution of the modal coefficients, a principalelement diagram is presented in Figure 3. Initially, the matrix coefficients, which are functions of the particular modes comprising the sound ield and the microphone locations, are calculated. This equation system is solved by a Gaussian elimination method for the modal coefficients. The mode amplitude and phase are then extracted from these complex pressure vectors. The subroutines used in the calculation procedure are:

SOLVE - - This subroutine set ups and using SIMECQ solves the acoustic wave eqration matrix for the modal amplitude and phase.

SIMECQ - This subroutine solves a \(\mathrm{N} \times \mathrm{N}\) system of simultancous equations having complex coefficients, using a Gaussian elimination method.

\section*{Sensitivity Coefficient Calculation}

The Sensitivity Coefficient Calculation procedure is illustrated in the principalelement diagram presented in Figure 4.

An important element in this procedure is the calculation of influence coefficients, which reflect the sensitivity of mode amplitude and phase calculations to first-order errors in pressure measurements and microphone placement - the derivation of the influence coefficient is provided in reference 4 , Section 3.4.

Because the inverse-matrix element is a common term in each expression, the procedure is initi.ted by calculating the inverse matrix. The influence coefficients are calculated next as a function of the modal structure and pressure measurements. The specific error in the modal amplitude and phase due to one of the five possible measurement errors is calculated from the product of the error in the measured quality and the root-sum-square of the influence coefficients. Finally, the error in a particular mode amplitude and phase is obtained as the combined effect of each measurement error.

The subroutines utilized in the Sensitivity Coefficient 「alculation procedure are:
SENSTY - This subroutine calculates the standard deviations of the modal amplitude and phase for errors associated with pressure measurement and microphone location.

INVERT - This subroutine inverts a complex \(N \times N\) matrix.


Figure 3 Principal-Element Diagram - Mode Amplitude and Phase Calculation


Figure 4 Principal-Element Diagram - Sensitivity Coefficient Calculation

\section*{Overall Pressure Calculation}

The overall pressure at any location in the duct is obtained from the modal structure. The procedure for overall pressure calculation is illustrated in the principal-element diagram shown in Figure 5. The procedure summarizes the pressure contribution of each mode at a location in a duct defined by the user. The resultant amplitude and phase are then extracted from the complex pressure vector. Since this calculation is performed in the MAlN routine there are no subroutines or functions to list.

\section*{Output Section}

The output format and the variables from the Modal Calculation Program are discussed in Section 3.5.1 and a sample case for three propagating modes is providing in Section 3.5.2. Both Sections 3.5.1 and 3.5.2 address the two possible modes of operation that can be executed with the program. Results from the computations are printed by the subroutines listed below after all angles are converted to within the range of \(0^{\circ}\) to \(360^{\circ}\).

PRINT - This subroutine prints input and resultant values.
ANGPOS - This subroutine converts negative angles to positive angles in the range \(0^{\circ}\) to \(360^{\circ}\) for printing.


Figure 5 Principal-Element Diagram - Overall Pressure Calculation

\subsection*{3.4 INPUT DESCRIPTION}

\subsection*{3.4.1 Input Format}

The NAMELIST format is used to input data into the Modal Calculation Program and consists of a list of parameter names grouped under an identifying name: \&INDATA. The parameter names correspond to variables - single variables and matrix elements - used in the program. These variables are set by specifyirg both the parameter name and its value. A feature of this type of input is that all associated parameters need not be specified. Any parameter not specified in the input retains its value from the preceeding case or the default value if the input is for the first case.

NAMELIST input for each case is identified by the characters \&INDATA in Columns 2-7 of the first input card. Beginning in Column 9, parameters may be set using the format:
Parameter Name = Constant

The constant may be either a real or integer value and must be followed immediately by a comma. Parameter names, assigned values, or necessary commas must not extend beyond Column 72; and names of values cannot be continued on a subsequent card. Embedded blanks are not permitted in either the parameter name or constant value. Parameter names and their associated values may be specified in any order. The characters \&END signify the end of the input for a particular case. If additional cards are required, parameters names must begin in Column 2.

A sample of this form of input for three microphones is presented in Figure 6.

\subsection*{3.4.2 Input Parameters}

A sign convention was adopted for assigning positive or negative values to the input parameters. Any input parameter not addressed in this discussion is a pesitive value. The sign convention is formulated with respect to a cylindrical coordinate system that is consistent with the derivation of the coherent acoustic wave propagation model. Its unit vectors are designated by the directions: axial - x , circumferential \(-\theta\), radial -r .

A cons ..It radius, annular duct is aligned with respect to this coordinate system in such a way that the positive axial unit vector is in a direction opposite to the flow. Thus, the Mach number of a uniform axial flow is always designated by a negative value to denote the axial iiuw rate in the negative axial direction. A positive circumferential unit vector projects in the direction that the rotor spins, and a negative vector projects in the counterrotating direction. Finally, the radial axis projects perpendicular to the centerline of the duct; thus, radial values are positive.

Each mode is characterized by three parameters which represent the circumferential and radial pressure distribution and its propagation direction. A specific mode is uniquely defined by the parenthetical notation ( \(\mathrm{M}, \mu\) ). The M defines a periodic circumferential pressure distribution with \(M\) number of lobes. Positive integers represent a corotating M-circumferential
lobe pattern with respect to the rotor direction, and negative \(M\) integers refer to counterrotating modes. The radial mode index \(\mu\) corresponds to the radial pressure distribution. These values are always non-negative integer numbers with high integer values indicating large pressure variations with respect to the radius.

The modal propagation direction in an inlet or discharge duct can be either an incident wave prc ; agating from the fan or a reflected wave propagating towards the fan. Wave propagation in. moving medium is similarly effected by the flow rate for modes that are propagating with ." against the flow direction. Hence, the input variable IDIR designates wave propagation u th respect to the flow direction. Positive values denote waves propagating in the opposite direction with respect to the flow such as incident waves in the inlet duct and reflected waves in the discharge duct. Modes that propagate in the same direction as the flow are designated by a negative value for the input parameter IDIR.

A: signing of values to the input parameters will now be considered.
Su ice a determinative equation system is required, the number of mode indices, wave direction indicators, microphone coordinates, and measured pressures must be equal. When option \(B\) is utilized, the number of mode indices, wave direction indicators, and modal amplitude and phase values must correlate. These input parameters are listed in several tables at the end of this section. Each parameter has a corresponding description that is sufficient for assigning a value to these input parameters. However, assigning a value to the coefficient parameters for the standard deviation in measurement errors is not as straight forward as the previous parameters. The following discussion is provided to assist the user when assigning values to these variables.

The deviation coefficients for microphone location errors \(\mathrm{s}: \mathrm{e}\) the tolerances in the three coordinates: axial - \(\mathbf{x}\), radial -r , and circumferential \(-\boldsymbol{\theta}\). These errors are related to the tolerance of a measurement - such as a micromenter - for determining the location of a microphone. Specifically, a user can estimate the microphone location standard deviation by assuming a hiph confiden level - such as ninety-five percent - to be associated with the number of significant digits used to define the pressure measuring coordinates. The standard deviation coefficients can then be computed from this information. For example, if a 95 percent confidence level is assigned to an axial measurement accuracy of 0.005 centimeter, the standard deviation ( 68.3 percent confidence level) is about \(2.5 \times 10^{-3}\) centimeter.

The error deviation coefficients for acoustic pressures include the two components amplitude and phase which corespond to the measured resultant pressure at any duct location. Two mechanisms can \(k\) mel tee errors that affect the measurement of resultant pressure. One type of error is d . to both response characteristics of the measuring device and repeatability of the coheicit signal. The second type of error is caused by measuring contributions from modi, not included in the calculation for determining the modal structure. A user can estimai. the former pressure measurement error in a similar manner as previously presented for microphone location measurement errors.

A standard deviation can be computed by assuming a high confiderice level to be associated with the combined inaccuracy of both pressure amplitude calibration errors and an errer attributed to the repeatability of enhanced pressure signals during a period of time. In practice, however, this category of errors is small and can be minimized by requiring reasonable experimental procedures.

The second mechar, \(m\) that can generate pressure measurement errors was not encountered in the previous category of location measurement errors. Ideally, the contribution from modes that are unlikely to contrul the duct sound field will not hinder the determination of fan sound mode structures. In practice, however, these modes have to be anticipated and their impact quantified if a meaningful standard deviation for the modal coefficients is to be calculated. This mechanism, which can be perceived as a measured pressure error, is difficult to assess prior to an experimentai program. A general expression for this standard deviation is presented in Appendix E of reference 4. The actual value for the standard deviation used as input to the modal calculation program should be obtained from that general expression.

A description of the input variables for operating the Modal Calculation Program is provided in Tables I, II, and III: Table I - General Parameters; Table II - Test Geometry and Condition Parameters; Table III-Error Deviation Coefficient Parameters. Under the column heading "Variable Type": th letter " \(R\) " indicates that the number is real and contains a decimal point; the letter " \(I\) " indicates the number is an integer and does not have a decimal point. "Default Values" are also delineated and indicate the value of the parameter that is internally initialized prior to the program execution. Parameters not specified in the input for the first case retain this value. Although the default values are expressed in units of the English System, the computer program can be executed with data in any consistent system of units.

\subsection*{3.5 OUTPUT DESCRIPTION}

\subsection*{3.5.1 Output Format}

The output from the Modal Calculation Program is organized into four sections: Input Variables, Modal Amplitude and Phase Calculation, Sensitivity Coefficient Calculation, and Characteristic E-Function Values. All four sections are included as output when either option is requested by the input. The printout for a sample case is provided in Appendix C to illustrate the output format.

The Input Variable Section includes the value of the various parameters supplied by the user. The parameters that define the modal structure - the circumferential and radial order, and the wave-direction indicator - are listed. The reference pressure for converting the modal amplitude and resultant amplitude to decibels is also output in this section. The test geometry and conditions subsection lists various parameters that define the fan duct geometry and operating conditions observed during the experimental program. These parameters include the duct radius, duct hub-tip ratio, axial Mach number, and frequency.

The Modal Amplitude and Phase Calculation section includes both parameters that were provided by the user and the results from the calculation procedure. In this section, the user obtains the modal amplitude in units of pressure and decibels and the modal phase in units

\section*{TABLEI}

\section*{GENERAL INPUT PARAMETERS}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Input \\
Name
\end{tabular} & \begin{tabular}{l}
Variable \\
Type
\end{tabular} & Default Value & Description \\
\hline LOCM & 1 & 2 & Number of microphones or mudes. (Less than or equal to fifty). \\
\hline LOCP & 1 & 2 & Number of prediction locations. (Less than or equal to fifty). \\
\hline \multirow[t]{2}{*}{IEMU} & \multirow[t]{2}{*}{I} & \multirow[t]{2}{*}{0} & Print indicator for characteristic E.function value. \\
\hline & & & \[
\begin{aligned}
& 0=\text { No print } \\
& 1=\text { Print }
\end{aligned}
\] \\
\hline PREF & R & \(2.9 \times 10^{-.9}\) & Reference pressure to convert pressure to decibels. \\
\hline \(X 0^{\text {a }}\) & R & 0.0 & Axial coordinate of the reference location. \\
\hline \(\mathrm{TH} 0^{\text {a }}\) & R & 0.0 & Circumferential coordinate of the reference location. (degrees) \\
\hline \begin{tabular}{l}
\[
M(I)
\]
\[
M(2)
\] \\
M(3)
\end{tabular} & \multirow[t]{3}{*}{1} & \[
\begin{aligned}
& -2 \\
& -2 \\
& 0
\end{aligned}
\] & \multirow[t]{4}{*}{Circumferential mode index. (Input NLOC values)} \\
\hline - & & . & \\
\hline - & & & \\
\hline M(50) & & 0 & \\
\hline MUS(1) & \multirow[t]{7}{*}{1} & 0 & \multirow[t]{7}{*}{Radial mode index. (Inpui NLOC values)} \\
\hline MUS(2) & & 1 & \\
\hline MUS(3) & & 0 & \\
\hline . & & . & \\
\hline . & & - & \\
\hline MUS(S0) & & 0 & \\
\hline MUS(50) & & 0 & \\
\hline IDIR(1) & \multirow[t]{6}{*}{1} & 1 & \multirow[t]{3}{*}{Mode propagation direction indicator. (Input NLOC values)} \\
\hline IDIR(2) & & 1 & \\
\hline IDIR(3) & & 0 & \\
\hline . & & . & \[
1 \text { = opposite llow direction }
\]
\[
1=\text { with flow direction }
\] \\
\hline & & & \\
\hline IDIR(50) & & 0 & \\
\hline
\end{tabular}

TABLE II

\section*{TEST GEOMETRY AND CONDITION INPUT PARAMETERS}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Input \\
Name
\end{tabular} & Variable Type & Dofoult \({ }^{(0)}\) Value & Description \\
\hline HTR & \(\mathbf{R}\) & 0.44 & Hub-tip ratio. \\
\hline OR & R & 5.0 & Outer radius of duct. \\
\hline EMX & \(\mathbf{R}\) & 0.07 & Axial Mach number (always positive). \\
\hline FRQ & \(\mathbf{R}\) & 3100. & Test frequency (Hertc) \\
\hline SPEED & R & 13566. & Speed of sound \\
\hline \[
\begin{aligned}
& X(1) \\
& X(2) \\
& X(3)
\end{aligned}
\] & R & \[
\begin{aligned}
& 9.568 \\
& 6.582 \\
& 0.0
\end{aligned}
\] & Axial coordinates of the measurement microphone Incations. (Input LOC value) \\
\hline . & &  & \\
\hline \(\dot{X}(50)\) & & 0.0 & \\
\hline \[
\begin{aligned}
& R(1) \\
& R(2) \\
& R(3)
\end{aligned}
\] & R & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 0.0
\end{aligned}
\] & Radial coordinates of the measurement microphone locations. (Input NLOC value) \\
\hline . & &  & \\
\hline \(\mathbf{R}(50)\) & & 0.0 & \\
\hline \begin{tabular}{l}
THM (1) \\
THM (2) \\
THM(3)
\end{tabular} & R & \[
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.0
\end{aligned}
\] & \begin{tabular}{l}
Circumferential coordinates of the measurement microphone locations (degrees). \\
(Input NLOC value)
\end{tabular} \\
\hline . & & . & \\
\hline THM (50) & & 00 & \\
\hline \begin{tabular}{l}
Bt \({ }^{\text {AM }}\) (1) \\
BE CAM(2) \\
BETAM(3)
\end{tabular} & R & \[
\begin{aligned}
& 0.03136 \\
& 0.02097 \\
& 0.0
\end{aligned}
\] & Pressure amplitude at the measurement microphone locations. (Input NLOC value) \\
\hline \(\cdots\) & & . & \\
\hline BETAM(50) & & 0.0 & \\
\hline
\end{tabular}


TABLE II (Cont'd.)
\begin{tabular}{|c|c|c|c|}
\hline Input Name & Variable Type & \[
\text { Default }{ }^{(0)}
\]
Value & Description \\
\hline PHI(1) & R & 0.0 & Mode phase (degrees). (If ICHK \(=1\), input \\
\hline PHI(2) & & 0.0 & NLOC values) \\
\hline PHI(3) & & 0.0 & \\
\hline , & & . & \\
\hline . & & & \\
\hline PHI(50) & & 0.0 & \\
\hline
\end{tabular}

Note: (a) Default values shown in table are in units of the English Systern. The program, however, is designed to be executed with data in any consistent system of units.

ORIGNAL PAGE IS
OF POOR QUALIIXI

TABLE III
ERROR DEVIATION COEFFICIENT INPUT PARAMETERS
\begin{tabular}{|c|c|c|c|}
\hline Input Name & Variable Type & Default Value & Description \\
\hline SIGX & R & 0.0 & Standard deviation of the axial coordinate error. \\
\hline SIGR & R & 0.0 & Standard deviation of the radial coordinate error. \\
\hline SIGT & R & 0.0 & Standard deviation of the circumferential coordinate error (degrees). \\
\hline SIGB & R & 0.0 & Standard deviation of the pressure amplitude error. \\
\hline SIGP & R & 0.0 & Standard deviation of the pressure phase error (degrees). \\
\hline
\end{tabular}
of degrees. The corresponding mode indices, axial wave number in units of degrees-perlength, and eigen value \(\mathrm{k}_{\mathrm{m} \mu}{ }^{0}\) are delineated.

Additional input parameters listed in this section include the reference location usually corresponding to the fan face where the modal phases are calculated. Coordinates of the input measurement locations and resultant prediction locations are listed adjacent to the respective acoustic pressure values. The input pressure values are supplied by the user in pressure units for the amplitude and degrees for the phase. The resultant pressure is calculated by the program and output is provided in units of decibels for the amplitude and degrees for the phase.

The Sensitivity Coefficient Calculation portion of the ourput comprises a number of sections, the primary output of which is the total normalized amplitude and the total phase deviation for each mode. These expressions represent the modal amplitude and phase error caused by a specified set of independant errors associated with the measurement of acoustic pressure and the tolerance of pressure measuring coordinates. The amplitude standard deviation of a specific mode is expressed as both the normalized quantity with respect to the mode amplitude and the mode amplitude error in decibels. The total phase deviation is expressed in degrees for each mode.

The contribution to the total amplitude and phase deviation assuming zero errors for the other error sources is provided under the heading "Normalized Standard Deviation Components". The amplitude deviation was normalized with respect to the mode amplitude. The total phase deviation in degrees for each error source is also provided under the heading. When these values are root-sum-squared, the previous expression for the total modal deviation is obtained. A user will benefit from the error deviation components by identifying which of the errors is controlling the total modal error.

The standard deviation components are also normalized with respect to their respective error. These parameters - referred to as the root-sum-square of the influence coefficients - enhance the combined variance of the influence coefficients at each microphone location. Thus, these parameters are the previous standard deviation components with respect to a unit measurement error in pressures or microphone coordinates. The root-sum-square of the influence coefficients is a convenient expression for assessing the probability of successfully tracking modes. A future user could examine these parameters to determine if the accuracy of experimental measurements made during an carlier test is sufficient to provide a desired confidence level in the mode amplitude and phase.

The influence coefficients are the partial derivatives of the mode amplitude and phase with respect to an error at each pressure measurement location that provides input for calculating the modal coefficients. These expressions allow a future user to evaluate the effect of nonuniform errors at the microphone locations. For example, an amplitude measurement error may be known to be significantly larger at one microphone location (e.g. . inaccurate calibration) The user could then evaluate the impact of this error on the overall modal structure calculation.

The final section, Characteristic E-Functions, includes the value of E-functions, \(\mathrm{E}\left(\mathrm{k}_{\mathrm{m} \mu}^{\mathrm{o}} \mathrm{r}\right)\), at the measurement and prediction locations corresponding to each mode. This final section is provided as output only if it has been requested by the user.

\subsection*{3.5.2 Sample Cases}

Two cases are presented in the sample printout, to illustrate the two options: 1) calculating mode amplitude and phase values from acoustic pressure signals and 2) specifying these values either arbitrarily or as output from an analy ticai \(p\) rediction deck. These sample cases demonstrate the execution of each option with data listed in Figure 6. The length units in the printout are in centimeters; the time units, in seconds; the force units, in dynes.

The first sample case illustrates the option of calculating the mode amplitude and phase for a situation where three modes are propagating in a half-meter diameter annular duct. Three coherent acoustic pressure amplitude and phase values are specified at three microphone locations on the duct wall. These acoustic signals are at a frequency of 6200 -Hertz, and are used to determine the modal structure of the \((-4,0),(-4,1)\) and \((-4,2)\) modes.

The output for this samp. case reveals that the amplitudes of the above modes are 137.4, 142.8, and 138.5 decibels, , 'spectively; the modal phases are, respectively, \(126.9,160.0\), and 229.2 degrees. Once the modal structure has been determined, the resultant sound field can be calculated at other duct locations. The resultant amplitude and phase - expressed in the same units as the modal coefficients - are requested at three microphone coordinates. The resultant amplitude at these locations are, respectively, 121.1, 115.7, and 115.1 decibels. The resultant phases are, respectively, \(90.1,357.8\), and 67.2 degrees.

The sensitivity coefficient calculation portion of the program calculates the accuracy of the mode amplitude and phase values based on inaccuracies in the measured acoustic pressures and the microphone coordinates. Errors in the five measured quantities are expressed as standard deviations with zero mean. For this sample rase they are axial \(-2 \times 10^{-3} \mathrm{~cm}\), radial \(2 \times 10^{-3} \mathrm{~cm}\), circumferential \(-2 \times 10^{-2}\) degree, amplitude -25 dynes, and phase -1.5 degrees. The combined effects of the error source deviations multiplied by the influence coefficients yields the modal amplitude and phase deviation. These calculated values for the ( \(-4,0\) ), \((-4,1)\), and \((-4,2)\) modes are, respectively, \(0.89,0.84\), and 0.87 decibel for the modal amplitude and \(3.6,2.5\), and 1.7 degrees for the modal phase.

The second sample case illustrates the option to input the amplitudes and phases for the propagating modes to calculate the resultant acoustic pressure at specified locations. This case is similar to the first sample case because the \((-4,0),(-4,1)\), and \(-4,2)\) modes are propagating at 6200 -Hertz in a half-meter diameter annular duct. The amplitude of all the modes is 121.9 decibels and the phases of these modes are, respectively, 325,250 , and 100 degrees. Output from the Modal Calculation Program comprises the resultant sound field at three microphone iocations. The value of the resultant sound field is \(115.8,120.0\), and 120.0 decibels for the resultant amplitude and \(36.4,345.0\), and 298.2 degrees for the resultant phase.
\begin{tabular}{|c|}
\hline SHEET \\
OF \\
ORO OROGRAM NO \\
\hline
\end{tabular}


ORIGINAL Page IE
OF POOR QUALTTY

\subsection*{3.6 MACHINE REQUIREMENTS}

Ti.e Modal Calculation Program can be compiled, linkage edited, and executed in 512 bytes of core storage.

The following mathematical functions and procedure are required:
CMPLX - Expresses two real arguments in complex form.
CABS - Modulus of a complex argument.
CEXP - Exponentiation of a complex argument.
AIMAG - Obtain imaginary part of a complex argument.
REAL - Obtain real part of a complex argument.
FLØAT - Conversion from integer to real.
IFIX . Conversion from real to integer.
ABS - Absolute value of a real number.
IABS - Absolute value of an integer.
SORT - Square root of a real value.
MAXO - Ottain maximum value of input integers.
ALOG - Natural logarithim of a real positive argument.
SIN - Sine of a real argument.
CQS - Cosine of a real argument.
ATAN2 - Are tangent of two real arguments.

\subsection*{3.7 RESOURCE ESTIMATES}

The central-prucessor-unit (CPU) time required to process a particular case depends on the number of modes input wnich determines the size of the matrix to be inverted. The average esti ..ate oi CPU time per mode is 0.15 second.

\section*{REFERENCES}
1. Tyler, J. M. and Sofrin, T. G.: "Axial Flow Compressor Noise Studies," SAE, Trans. 70, p. 309, (1962)
2. Sofrin, T. G. and McCann, J. C.: "Pratt \& Whitney Aircraft Experience in Compressor Noise Reduction," For Presentation at the 72nd Meeting of the Acoustical Soc. Amer., Los Angeles, CA, Nov. 1966.
3. Posey, J. W.: "Comparison of Cross-Spectral and Signal Enhancement Methods for Mapping Steady-State Acoustic Fields in Turbomachinery Ducts," NASA TM X-73916, (1976)
4. Pickett, G. F.: "Fan Sound Mode Structure Determination - Final Report," NASA CR-135293, (1977)
5. Subroutines BESJ, BESY, and INVERT were adapted from the IBM © cientific Subroutine Package.

\section*{APPENDIX A}

\section*{Calculation of the Characteristic Numbers}

The characteristic numbers \(K_{m \mu}^{\prime \sigma}\) and \(Q_{m \mu}^{\sigma}\) are defined to be the paired roots of the simultaneous equations
\[
\begin{align*}
& {\left[\frac{d}{d r^{\prime}} J_{m}\left(K_{m}^{\prime} m^{\sigma}\right)+Q_{m \mu}^{\sigma} \frac{d}{d r^{\prime}} Y_{m}\left(K_{m \mu}^{\prime \sigma} r^{\prime}\right) l_{r^{\prime}=1}=0\right.}  \tag{1}\\
& {\left[\frac{d}{d r^{\prime}} J_{m}\left(\sigma K_{m \mu}^{\prime \sigma} r^{\prime}\right)+Q_{m \mu}^{\sigma} \frac{d}{d r^{\prime}} Y_{m}\left(\sigma K_{m \mu}^{\prime \sigma} r^{\prime}\right)\right]_{r^{\prime}=1}=0} \tag{2}
\end{align*}
\]

For a given circumferential mode number, \(m\), radial order, \(\mu\), and hub/tip ratio, \(\sigma\). (where \(\sigma\) is not equal to zero); \(\mathrm{J}_{\mathrm{m}}\) and \(\mathrm{Y}_{\mathrm{m}}\) are the Bessel functions of the first and second kinds of order \(m\).

The following relations are used in the formulation of a solution
\[
\begin{align*}
& \frac{d}{d r^{\prime}} J_{m}(x)=J_{m}^{\prime}(x) \frac{d x}{d r^{\prime}}  \tag{3}\\
& \frac{d}{d r^{\prime}} Y_{m}(x)=Y_{m}^{\prime}(x) \frac{d x}{d r^{\prime}}  \tag{4}\\
& J_{m+1}(x)
\end{aligned} \begin{aligned}
J_{m}^{\prime}(x) & =\frac{1}{2}\left[J_{m-1}(x)-J_{m}(x)-J_{m-1}(x)\right.  \tag{5}\\
& =\frac{1}{2}\left[J_{m-1}(x)-\frac{2 m}{x} J_{m}(x)+J_{m-1}(x)\right]  \tag{6}\\
& =J_{m-1}(x)-\frac{m}{x} J_{m}(x)
\end{align*}
\]
\[
\begin{align*}
Y_{m}^{\prime}(x) & =\frac{2}{\pi x J_{m}(x)}+J_{m}^{\prime}(x) \frac{Y_{m}(x)}{J_{m}(x)} \\
& =\frac{2}{\pi x J_{m}(x)}+\left[J_{m-1}(x)-\frac{m}{x} J_{m(x)}\right] \frac{Y_{m}(x)}{J_{m}(x)} \tag{7}
\end{align*}
\]

Letting \(K=K_{m \mu}^{\prime \sigma}\) and \(Q=Q_{m \mu}^{\sigma}\), and evaluating at \(z^{\prime}=1 ;(1)\) and (2) become
\[
\begin{equation*}
J_{m}^{\prime}(K) K+Q Y_{m}^{\prime}(K) K=0 \tag{8}
\end{equation*}
\]
\[
J_{m}^{\prime}(\sigma K) \sigma K+Q Y_{m}^{\prime}(\sigma K) \sigma K=0
\]

From (8), \(Q=-\frac{J_{m}^{\prime}(K) K}{Y_{m}^{\prime}(K) K}\) substituting into (9) yields
\[
\begin{equation*}
\mathrm{J}_{\mathrm{m}}^{\prime}(\sigma \mathrm{K}) \sigma \mathrm{K}-\frac{\mathrm{J}_{\mathrm{m}}^{\prime}(\mathrm{K}) \mathrm{K}}{\mathrm{Y}_{\mathrm{m}}^{\prime}(\mathrm{K}) \mathrm{K}} \quad \mathrm{Y}_{\mathrm{m}}^{\prime}(\sigma \mathrm{K}) \sigma \mathrm{K}=0 \tag{10}
\end{equation*}
\]

Let \(\mathrm{f}(\mathrm{K})=\mathrm{J}_{\mathrm{m}}^{\prime}(\sigma \mathrm{K}) \mathrm{Y}_{\mathrm{m}}^{\prime}(\mathrm{K}) \sigma \mathrm{K}^{2}-\mathrm{J}_{\mathrm{m}}^{\prime}(\mathrm{K}) \mathrm{Y}_{\mathrm{m}}^{\prime}(\sigma \mathrm{K}) \sigma \mathrm{K}^{2}=0\)
Using the expressions in (5), (6), (7), and (11) then:
\[
\begin{align*}
& f(K)=\sigma K^{2}\left[J_{m-1}(\sigma K)-\frac{m}{\sigma K} J_{m}(\sigma K)\right]\left\{\frac{2}{\pi K j_{m}(K)}+\left[J_{m-1}(K)-\frac{m}{K} J_{m}(K)\right] \frac{Y_{m}(K)}{J_{m}(K)}\right\} \\
& \sigma K^{2}\left\{J_{m-1}(K)-\frac{m}{K} J_{m}(K)\right]\left\{\frac{2}{\pi \sigma K J_{m}(\sigma K)}+\left[J_{m-1}(\sigma K)-\frac{m}{\sigma K} J_{m}(\sigma K)\right] \frac{Y_{m}(\sigma K)}{J_{m}(\sigma K)}\right\}=0 \\
& f(K)=\sigma K^{2}\left\{\frac{2\left[J_{m-1}(\sigma K)-\frac{m}{\sigma K} J_{m}(\sigma K)\right]}{\pi K J_{m}(K)}-\frac{2\left[J_{m-1}(K)-\frac{m}{K} J_{m}(K)\right]}{\pi \sigma K J_{m}(\sigma K)}+\right. \\
& {\left[J_{m-1}(K) \cdot \frac{m}{K} J_{m}(K)\right]\left[J_{m-1}(\sigma K)-\frac{m}{\sigma K} J_{m}(\sigma K)\right]\left\{\frac{Y_{m}(K)}{J_{m}(K)}-\frac{Y_{m}(\sigma K)}{J_{m}(\sigma K)}\right\}=0} \tag{13}
\end{align*}
\]

Equation (13) is evaluated for values of \(\tilde{K}_{i}=M+3(i-1): i=1,2,3, \ldots\) until \(f\left(\tilde{K}_{j}\right) f\left(\tilde{K}_{j}-1\right)<0\) for some j . A procedure employing a combination of false position and bisection tecnniques is then used to obtain a value of \(\mathbf{K}_{m \mu}^{\prime \sigma}\) in the interval \(\left[\tilde{K}_{j-1}, \tilde{\mathbf{K}}_{\mathbf{j}}\right]\).
Having calculated a value of \(K=K_{m \mu}^{\prime o}\), the corresponding value of \(Q=Q_{m \mu}^{\sigma}\) can be calculated. Combining (8) and (9) yields.
\[
\begin{equation*}
\left[J_{m}^{\prime}(K)+J_{m}^{\prime}(\sigma K) \sigma\right] K+Q\left[Y_{m}^{\prime}(K)+Y_{m}^{\prime}(\sigma K) \sigma\right] K=0 \tag{14}
\end{equation*}
\]
from which
\[
\begin{equation*}
Q=-\frac{J_{m}^{\prime}(K)+J_{m}^{\prime}(\sigma K) \sigma}{Y_{m}^{\prime}(K)+Y_{m}^{\prime}(\sigma K) \sigma} \tag{15}
\end{equation*}
\]

For \(\sigma=0, Q_{m \mu}^{\sigma}=0\) and \(K_{m \mu}^{\prime \sigma}=0\) is defined to be the root of
\[
\begin{equation*}
\left[\frac{d}{d r^{\prime}} \mathbf{J}_{m}\left(K_{m \mu}^{\prime \sigma} r^{\prime}\right)\right]_{r^{\prime}=1}=0 \tag{16}
\end{equation*}
\]

Letting \(K=K_{m \mu}^{\prime} \sigma^{\prime}\), and evaluating at \(r^{\prime}=1,(16)\) becomes
If \(f(K)=J_{m}{ }^{\prime}(K) K=0\), then (6) yields
\(f(K)=\left[J_{m-1}(K)-\frac{m}{K} J_{m}(K)\right] K=0\)
Equation (18) is evaluated for values of \(\tilde{K}_{i}=m+3(i-1) ; i=1,2,3, \ldots\) until \(f\left(\tilde{K}_{j}\right) f\left(\tilde{K}_{j-1}\right)<0\) for some value of \(j\). A procedure employing a combination of false position and bisection techniques is then used to obtain a value of \(\mathbf{K}_{\mathrm{m} \mathrm{\mu}}^{\prime \mathrm{O}}\) in the interval \(\left(\tilde{K}_{\mathbf{j}-1}, \mathbf{K}_{\mathbf{j}}\right)\).

\section*{APPENDIX B} MODAL CALCULATION PROGRAM PROGRAM LISTING







PRATT S WHITMEY AIRCRAFT DIVISION VER 07/25/77
SC.PAMLIB.L4 -00



\begin{tabular}{|c|c|c|}
\hline & ATt C MHITNEY AIRCRAFT DIVISION .PANLIE.L4 & \[
\begin{aligned}
& 07 / 25 / 77 \\
& 12.50 .00
\end{aligned}
\] \\
\hline \multirow[t]{11}{*}{\[
\begin{aligned}
& \mathbf{C} \\
& \mathbf{C}
\end{aligned}
\]} & \multirow[t]{3}{*}{ihe starch continues until two subsequent cuesses are mithin "tol. UF EACH OTHER, OR UNTIL 'IIER \(\operatorname{ITERATIUNS~MAVE~TAKEN~PLACE.~}\)} & 00524 \\
\hline & & 00530 \\
\hline & & 00531 \\
\hline & \multirow[t]{2}{*}{-yy' is returneo as functifalzipl, and should be close to aroote.} & 00332 \\
\hline & & 00533 \\
\hline & the ilchwigut mas adapted from an algol subroutine appearing in the & 00534 \\
\hline & \multirow[t]{2}{*}{COMrUlen JIUUKNAL 12 (1969) - 'EIGENVALUES OF A:x = Lambdaebex WIIH taNL SYMmLTRIL A AND B" GY G. PEIERS - J.H. MILKINSON} & 00535 \\
\hline & & c0536 \\
\hline & & 00537 \\
\hline & EXIERNAL FUnct & 00¢34 \\
\hline & REAL INIEMP & 00539 \\
\hline \multirow[t]{5}{*}{} & \multirow[b]{2}{*}{J IS Count ut lierations.} & 00546 \\
\hline & & 00541 \\
\hline & \(1 \pm=0\) & 00542 \\
\hline & \(A=A L\) & 00543 \\
\hline & \(b=t \mathrm{~L}\) & 00544 \\
\hline \multirow[t]{4}{*}{C} & & cos45 \\
\hline & & 00546 \\
\hline & \(A F=\) HUNCT (A) & 00547 \\
\hline & BF \(=\) HUNCI ( 8 ) & 00548 \\
\hline \(c\) & \multirow[t]{2}{*}{the fllelowing ithrough statement 3i deternimes if the function is of} & 00549 \\
\hline c & & 00550 \\
\hline \multirow[t]{5}{*}{\(c\)} & UPPUSIIL SIGN AT THE ENDPDINTS GIVEN. & 00551 \\
\hline & \(15 \mathrm{H}=1\) & coss? \\
\hline & 1t (lut - RUOT) \(2,75,3\) & 00553 \\
\hline & \(213 W=-1\) & 00554 \\
\hline & 3 If (lat - houti e 15wl 50, 50, 55 & 00555 \\
\hline c & & 00558
00557 \\
\hline & STAIEAENI \(S\) INCREMENIS THE COUNIER JB FIRST TIME TMROUEH GO TO SO.
\[
5 J=J+1
\] & \[
\begin{aligned}
& 00557 \\
& 00558
\end{aligned}
\] \\
\hline c & \multirow[t]{2}{*}{If left bkacket has isame function value as righto use disection.} & 00559 \\
\hline 6 & & 00560 \\
\hline \multirow[t]{5}{*}{C} & OTH=RWISE, SEI UP INTERPULATED POINT FOR POSSIALE USE. & cos6i \\
\hline & If (AGS(IAF - BFi/8F) - 1.E-5) 10. 10. 15 & 00562 \\
\hline & 10 INIthP \(=\) OISECT & 00563 \\
\hline & CO 1020 & 00564 \\
\hline & 15 INIERP = (A*GF - BeAF - (B-A)PROOT) / (BF-AF) & 0056s \\
\hline \(c\) & \multirow[t]{2}{*}{if withina tolerance of the gracket b, move the interpolated point} & 00566 \\
\hline \(c\) & & 00567 \\
\hline \multirow[t]{3}{*}{C} & ONE TUIERANCE Amar. & C0568 \\
\hline &  & 00569 \\
\hline &  & 00570 \\
\hline c & & 00571 \\
\hline \(c\) & Set aise it is almays the point with smallest (abs) value of function. & . 00572 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
23 \text { AF }=0 \mathrm{BF}
\]}} & 00573 \\
\hline & & 00574 \\
\hline c & & 00575 \\
\hline \multirow[t]{6}{*}{\(c\)} & USE POINT CLOSEST 10 O IINTERP OR BISECTI AS NEW B AND EVALUATE EF. & 00576 \\
\hline & IF (IINTEHP - GISECTI - IB - INTERP)I 30, 25. 25 & 00577 \\
\hline & 25 O INTERP & 00578 \\
\hline & G0 TU 35 & 00379 \\
\hline & 30 - BISECT & cos 80 \\
\hline & \(35 \mathrm{GF}=\) +UNCT(B) & cos 41 \\
\hline
\end{tabular}


ORIGINAI. PAGE IS
OF POOR QUALITY,





```

pRATt E mHITNEY AIRCRAFT DIVISION
SC.PANL1B.L4
VER
9.0
KXIII = RADDEG - KXIII
30 CONTINUE
C
OO 35 I=1,NHODES
PHIMU(II = RADOEG PHIMU(II
AMUDBIII = 20. - ALOGIOI AMUIII | REFPRS I
35 CONTINUE
c
IFI IOEV .LE. O GO TO 50
UO 4O l=1.NHODES
DEvLEII! = 20. ALOGIOI 1* * SIGAM(I) / Amu(II)
4O LONTINUE
OO 4S I=1,NMODES
DIVSUR - 1./ AMUIII
XACUMFII)= DIVSOR - SGRTI XACOMPII): 0091S
KACUMPIII = OIVSOR SORTI RACOMPII))}0091
TACUMPII) = DIVSOR SURTI TACOMPIII; OOYI7
BACCMHIII = DIVSOR - SORTI BACOMPIII; OC918
PACLMP(1) = UIVSOR - SQRT(PACGMPIEI) 00019
XPCUMP(1) = SUKTI XPCOMPIIII, 00920
RPCUMPIII = SUKTI RPCLMMP(I))
IPCLMH(I) = SURTI TPCGMPII); 00922
EPLUMF(II = SGKTI BPCCMPIII) . 00423
PPCUML(I) = SHKTI PPCOMP(II) 00424
45 CCNINUE ' 00925
c
5n UU 55 I=1, NMODES
CIVSUR = 1.0 / AMU(1)
AKISLMIII = DIVSOR O SURTI ARNSUMIII,
AXIISUMIII : LIVSOK - SORTI AXHSUN(II)
ATISUMIII = UIVSOR - SQRTI AINSUM(II ;
AINSUMIII = UIVSOR SORTI ABNSUMLI;; OC931
APNSUM(11 = DIVSOR - SURTI APNSUMII) 1 00433
PRNSUMIIO = SURII PRNSUMIII: 00934
PXIISUMIII SORTI PXNSUMIII) 00935
HINSUMIS! = SURTI PTNSUM(II: 00936
PENSUMCII = SQRTI PBNSUMIII) 00937
PPNSUM(I) = SORTE PPNSUM(II) 00938
55 CONTINUE
C
C CONVERT aNy HEGATIVE angles to puSItIVE angles fon printime
CALL ANGROSI PHIMU, NMODES !
CALL APJGPOSI PHASER, NPKED)
c
C PRINT INPUT VARIABLES
WRITEIG,9000)
9000 FOKMAI! 1HI, T45, *** MOOAL CALCULATION COMPUTER PROGRAM *** 100949
WR1TE16,9001) NMEAS, NPRED, NMODES }0095
9001 FCKMATI //, T56, INPUT VARIABLES ... ', //, T5, 'mUMBER DF mEAC0951
ISUREMENT LUCATILNS = ', 12. T5I, "NUMBER OF PREDICTION LOCATIONS =00952

```
```

PRATT G MHITMEY AIRCRAFT DIVISIOM VER 07/25/TT
SC.PANLIB.L4 ¢.0
12.50.00
2., 12; T96, 'NUMBER OF (MODE,NUS SETS = 0. 12, 00953
WRITE(6,9002)
00954
9002 FUKMATI //, 2X, *... INPUT MODES ...", N% T5, OMODE*, T14, M, 00955
I'CIRCUMFERENTIAL', T34, 'RADIAL'. T47, 'HAVE', /P II6.'MNODE MMMBE00956
2R. T34, 'ORDER', T45, 'INDICATOR' \ 00957
UO 60 1=1,NMODES 00958
WRITE(6,9003) 1, MDDE(1), MU(1), IMAVE(1)
9003 FOKMAII Sx, 12, 11X, 14, 13x, 12, 11x, 12,
GO CONIINUE
C
C PRINT REFERENCE VALUES
WHITEI6,9004) REFPRS
9004 FCRMAII ///, 1X. :... REFERENCE VALUES ...". /1. TS. -REFERENCE PR00966
LESSURE = '. E9.4 J
C CPRINT IEST GEOMETRY AND CONDITIONS
C
NRIIE(6,9005) SIGMA, B% MX, FREQ, A, OMEEA
00959
0 0 9 6 1
00962
C
00963
00964
00967
C
C PRINT TEST GEONETRY ANO CONOITIONS 00969
00970
00971

```

```

 1.HUS/ JIF RATIO = %.F8.3, T42. ©OUTER RAOIUS OF DVICT = %,F8.2,00973
 2TB4, 'AXIAL MACH NUMBER = 0, F%.2, /, T5, 'FREQUENCY = 0, FE.2. 00974
 3142: ©SPEED OF SOUND = , FA.2, TA4, PR DIAN FREQUENCY = 0,00, 00975
 4F10.2 1
 00976
 C
C pRINT calculated mOdal amplitudes and phases
WRITE(6,9000)
00977
00479
WRITE16,9006) 00941
00980
9006 FORMATI //. 145, '... MODAL AMPLITUDE AND PHASE CALCULATION ...". 00902
1//, IX, "... CALCULATED MODAL AMPLITLIOES AND PHASES ...0. //. T5. 00943
20MULE', T12, "CIRCUMFERENTIAL". T30, 'RADIAL", T41, "MAVE". T47, 00984
32(6X,"AMPLITUDE'), T84, 'PHASE*, T98, "AXIAL WAVE NUMBER", , 00985
4T125, 'KMU'./. T14, 'MODE NUMHER', T30, 'ORDER', I39, 'INDICATOR 000986

```

```

 6T109. 'JMAGINARY', / 1 00988
 DC8O 1=1,NMDCES 0 00989
 WRITE(G,9007) 1, MODE(1), MU(II, IMAVEIII, AMU(II, AMUDBIII, 00990
 1 PHIMUIII, KXIII, KMU(I) 00991
 9007 FORMATI 5x, 12, 4X, 14, 12X, 12, 8X, 12, bx, E12.0, 3X, E12.6. 00992
 1413x,F10.4i) 00943
 8O CONTINUE
 C
C PRINT REFERENCE LOCATION VALULS
00994
00995
C
WRITE(0,y008) XREF, RREF, THREF 00996
00947
900B FORMATI ///, 1X, "... REFERENCE LOCATION': /1: T10; *X': 127. 00499

```

```

C
C PRINT mEASLRENENT LOCATION valuES
01001
01002
C
IFI ICHECK GT. O GO TO 120 01004
01003
WRITE(6,9009) 01005

```
```

PRATT \& MHIINEV AIRCRAFT DIVISION
SCOPANL18.L4
vER
9.0
07/25/77

```
    9009 FORMATI /1/% 1X, *.. MEASUREMENT LOCATIONS .0.* /1% T5. -LOCAT1001006
```

```
    9009 FORMATI /1/% 1X, *.. MEASUREMENT LOCATIONS .0.* /1% T5. -LOCAT1001006
```



```
            DO 100 1=1,NMEAS
```

 DO 100 1=1,NMEAS
 WRIIEI6,90101 I XMIEI, RMIII, TMETAMCIIE BETACIIP PSICII
    ```
        WRIIEI6,90101 I XMIEI, RMIII, TMETAMCIIE BETACIIP PSICII
```



```
    100 CONIINUE
```

 100 CONIINUE
 C
C
C PRINT PKEDICTION LOCATION VALUES
C PRINT PKEDICTION LOCATION VALUES
C
C
110 WKIIECO, 9011:
110 WKIIECO, 9011:
01009
01009
01010
01010
MOM
MOM
01014
01014
01015

```
    01015
```



```
        01018
```

```
        01018
```



```
        3/1
```

 3/1
 OO 120 I = 1 NHRED
 OO 120 I = 1 NHRED
 120 C.NT IPUE
 120 C.NT IPUE
 C
C
C PH:NT SEPSITIVITY CALCOLATION VALUES IF NOT A CHECR CASE
C PH:NT SEPSITIVITY CALCOLATION VALUES IF NOT A CHECR CASE
C
C
IFI ICHECK GGT. O O TO 250
IFI ICHECK GGT. O O TO 250
WRITEIt,9000)
WRITEIt,9000)
WKLTE(6,9012
WKLTE(6,9012
90L< FUKMATI//: 145, *.. SENSITIVITY COLFFICIENT CALCULATION ...O UIO30
90L< FUKMATI//: 145, *.. SENSITIVITY COLFFICIENT CALCULATION ...O UIO30
IFI IOEV CLE O GO TO 190 01031
IFI IOEV CLE O GO TO 190 01031
C PRINT GNHOR SNUMCE STAMDAAD DEVIATION YALuES
C PRINT GNHOR SNUMCE STAMDAAD DEVIATION YALuES
01032
01032
C PRINI EKROR SOURCE STAMDARD DEVIATIDN VALUES
C PRINI EKROR SOURCE STAMDARD DEVIATIDN VALUES
01033
01033
HRITE16,4017I SIGMAX, SIGMAR. SIGMAT, SIGMAP, SICMAP 01034
HRITE16,4017I SIGMAX, SIGMAR. SIGMAT, SIGMAP, SICMAP 01034
9013 FOKMATI ///, IX. ERNOR SOURCE SIANDAND DEVIATIONS ...0. /f. 01036
9013 FOKMATI ///, IX. ERNOR SOURCE SIANDAND DEVIATIONS ...0. /f. 01036
1T7. 'SJGMA X'. T24. SIGMA R'. T39. 'SIGMA THETA'. TS%. SSIGMA B*.01037,
1T7. 'SJGMA X'. T24. SIGMA R'. T39. 'SIGMA THETA'. TS%. SSIGMA B*.01037,
2174. 'SIGMA PSIO, /, 4X,E12.6. 415X,E12.6), 01038
2174. 'SIGMA PSIO, /, 4X,E12.6. 415X,E12.6), 01038
๕% 01034
๕% 01034
C PRINT MUDAL SIANDARD DLYIATIUNS 01040
C PRINT MUDAL SIANDARD DLYIATIUNS 01040
C
C
01041
01041
WRITE(6,9014)
WRITE(6,9014)
01042
01042
YO14 FORMATI ///. 1X. ... NORMALI2ED STAMDARD DEVIATIBNS DNE TO ALL EROIO43
YO14 FORMATI ///. 1X. ... NORMALI2ED STAMDARD DEVIATIBNS DNE TO ALL EROIO43
1ROH SUUKCES ...'.//. TS. }0104

```
        1ROH SUUKCES ...'.//. TS. }0104
```



```
        2'MOKMALI2ED AMPLITUUEO, 1RO, AMPLIIEMEE, T105%,01046
```

```
        2'MOKMALI2ED AMPLITUUEO, 1RO, AMPLIIEMEE, T105%,01046
```



```
        4'INIIICAIGR', 757, UEVIAIIUN*, TGO, DDEVIATION', TIO3, DOEVIATION'OIO4&
```

 4'INIIICAIGR', 757, UEVIAIIUN*, TGO, DDEVIATION', TIO3, DOEVIATION'OIO4&
 5./.183. *(0S)".1103. ©(UEGREESI"./| 01049
 5./.183. *(0S)".1103. ©(UEGREESI"./| 01049
 DO 140 IEI,NMODES 01050
    ```
        DO 140 IEI,NMODES 01050
```



```
        I SIGIMIII 01052
```

```
        I SIGIMIII 01052
```



```
    1\thereforeO CUNTINUE
```

 1\thereforeO CUNTINUE
 01055
 01055
 C PRINT MODAL STANDARD DEVIATION COMPONENTS
C PRINT MODAL STANDARD DEVIATION COMPONENTS
01056
01056
NRITE{6,9016)
NRITE{6,9016)
01058

```
    01058
```

ORIGINAL PAGE IS OF FOOR QUALITY


```
+MATT G WHITMEY AIRCRAFT DIVISION
VER
O.0
    07/25/77
SCOPANL1B.IG




```

 DO 260 J=1 NMEAS
    ```
        DO 260 J=1 NMEAS
        MRITE16,9024) J, & ENUIN,JIPIEIONMODES I 01115
        MRITE16,9024) J, & ENUIN,JIPIEIONMODES I 01115
9024 FOKMAII 4X, 12, 5X, 1511A,F7.31 0, 01116
9024 FOKMAII 4X, 12, 5X, 1511A,F7.31 0, 01116
    260 LONIINIIE
    260 LONIINIIE
    01117
    01117
            WKIIL(6.9025) ( I,I=1,NMOOLS (
            WKIIL(6.9025) ( I,I=1,NMOOLS (
9025 FLNMATI ///, 1X, *.. PRLUICTION LOCATIONS ...**//. IX. LLOCAKIONOIIII
```

9025 FLNMATI ///, 1X, *.. PRLUICTION LOCATIONS ...**//. IX. LLOCAKIONOIIII

```


```

 OO 2BO J=1,MPKED 01121
    ```
```

 OO 2BO J=1,MPKED 01121
    ```


```

 280 CUNIINUL
    ```
    280 CUNIINUL
4999 KETURN
4999 KETURN
            END
            END
            SUBKWUTINE SIMEOCI A. C. MA, NO. SNGUL I
            SUBKWUTINE SIMEOCI A. C. MA, NO. SNGUL I
C
C
C THIS SUGROUTIME SOLVES A MA X MA SYSTEM OF SIMULTAMEOUS EOUA:IONS
C THIS SUGROUTIME SOLVES A MA X MA SYSTEM OF SIMULTAMEOUS EOUA:IONS
HAVIMG CUMPLEX COEFFICIEMTS USING GAUSSIAN ELIMIMATION NETMOD.
HAVIMG CUMPLEX COEFFICIEMTS USING GAUSSIAN ELIMIMATION NETMOD.
C
C
        COMPLEX A!50.1). CII): SAVE. ZERO
        COMPLEX A!50.1). CII): SAVE. ZERO
            DATA ZERD (10.0.0.01/
            DATA ZERD (10.0.0.01/
C
C
            SNGUL }\quad0.
            SNGUL }\quad0.
            LO 240 1:1,NA 01135
            LO 240 1:1,NA 01135
C FIND MAXIMIM ELEMENT IN JTM COLUMN, WOMS ItI TO MA
C FIND MAXIMIM ELEMENT IN JTM COLUMN, WOMS ItI TO MA
C
C
            J2 1-NA =1*1
            J2 1-NA =1*1
        IF\1-NA \ 20,100,20
        IF\1-NA \ 20,100,20
        20 VALMX = CABSI AIIOII 1
        20 VALMX = CABSI AIIOII 1
            MZ =I
            MZ =I
            DO SO KZ=JZ,NA
            DO SO KZ=JZ,NA
            0 * Ca8S\ A&K2.I!)
            0 * Ca8S\ A&K2.I!)
            IFI VALHX - B 40. 40. 60
            IFI VALHX - B 40. 40. 60
        *O VALMX = 0
        *O VALMX = 0
                K2
                K2
        MZ
        MZ
C
C
C INTERCHANGE RON CONTAIMING NAXIMUM MITM ITH ROW
C INTERCHANGE RON CONTAIMING NAXIMUM MITM ITH ROW
C
C
            LU 60 IKEI,NB
            LU 60 IKEI,NB
            SAVE AlIgIK!
            SAVE AlIgIK!
            A(I,IK) = A(MZ,IK)
            A(I,IK) = A(MZ,IK)
            AIMZ.IKI = SAVE
            AIMZ.IKI = SAVE
        so CONTINUE
        so CONTINUE
C
C
C MORMALIZE ITH RON
```

C MORMALIZE ITH RON

```


```

 l00 IFI KEALI AII,II, ', 160. 120. 160
    ```
    l00 IFI KEALI AII,II, ', 160. 120. 160
C
C
C ERROR - COEFFICIENI MAIRIX IS SIMGULAR
```

C ERROR - COEFFICIENI MAIRIX IS SIMGULAR

```




```

MMAIIG WHITMEY AIRCRAFT DIVISION MERM
O02800 K=1,MNHEAS (IL,K) EFTA{K) C CEXPI CMPLXI O., PSIPK) -
1
UAMUFN(K,LI = - AIMAGI TERM / / RADDEG
GAMPNS(KOL) = DAMCPN(KOL) ** 2
(PHOPN(KPL) = REALI TERM / AMUILI)
OPHPNS(K,L) = DPHDPN(K,L) ** 2
280 COHTINUE
300 CONI INUE
C
C CalCulalt sumS Of OERIVATIVES
C
DO 340 J=R,NMODES
SUMM =0.0
LO 320 1=1,NMEAS
SUMM = DAMRNSII.d) - SUMM
320 CONTINUE
ARNSUMIJI = SUMM
340 CONTINUE
C
LO 360 J=1,NMOUES
SUHM }20.
LO 300 I=1.NMEAS
SUMM = DPHRNSII.dl * SUMM
360 CONTINUE
PRNSUMIJP = SUMM
380 CONTINUE
UO 420 J=1,NHUOES
SUHM =0.0
DO tuO I=1,NHEAS
SUNH = DAMXNSII,d) * SUMM
400 CLNTINUE
AXHSUM(J) = SUMM
4 2 0 ~ C L N T I N U L ~
C
DO 400 J=l,MMODES
Suma =0.0
CO 440 I=1,NMEAS
SUMM = DPHXNSII.JI * SUMM
44O CCNTINUE
PXNSUM(J) = SUMM
46O CONIINUE
c
LO SLO J=1,NMODES
SUMM =0.0
OC 48O 1=1,NNEAS
SUMM = DAMIMSIIOJI - SUMM
4BO CUNTINUE
AINSUM(J) = SUMm
500 CONT dITUE
C
UL 340 J=1,MMODES

```
\(07 / 25 / 77\)
12.50 .00

01377
01378
01379 01380
01381
01362
01393
01384
01385
01386
01387
01368
01399
01390
01391
01392
01393
01394 01395
01396
01397
01348 \(013 y 9\) 01400 01401 01402
01403
01404
01405
01406 01407 01408 01409 01410 01411 01412 01413 01414 01415 01416 01417 01418 01419 01420 01421 01422 01423 01424 01425 01426 01427 01428 01424
```

Pratt E mitmey almcraft division
veR
SC.PAMLIB.L4 9.0
SUNM = 0.0
DO 520 1=1,MMEAS
SUMM = DPHTMS{I,J) - SUMM
520 CONI INUE
PINSUN(J) = SUMM
540 CONT INUE
C
LO S60 J=1,MNODES
Summ = 0.0
DO 560 1=1.NMEAS
SUNM E DAMGNSEIIJ! - SUMM
5GO CONTINUE
ABPSUM(J) = SUMM
500 CUNI INUE
C
OO 620 JE1.OMNUDES
SUNM =0.0
00 600 I=1,MMEAS
SUMM = DPMONS(I.d) - SMMM
GOO CONTINUE
PENSUM(J) = SUMM
620 CONTINUL
C
0O 660 J=1, NHODES
SUMM EO.0
DO 640 1=1, NMEAS
SUMM = DAMPNS(I.J) - SUMM
640 CCNTINUE
APNSUM(J) = Summ
660 CONIINUE
C
CO 700 I=1.NMODES
SUMM =0.0
DO 6HO I=1,NMEAS
SUMM E OPNPNSII.JI SUMM
6B0 cONTINUE
PPNSUM(J) = SUMM
700 CONTINUE
c
C CalCULATE COEFFIGIENTS OF dEvIAIION FOR EACH mudE IF REquEStEd
c

| SILR | = SIGMAR |
| :---: | :---: |
| SIGX | - SIGmax |
| S161 | - SIGMAT |
| SICE | - SIGmab |
| SIGH | - sigmar |

c
C CALCULATE COMPONENTS OF MODAL STANDARD DEVIATIONS
DO 720 fal,NMODES
XACOMP(I) = AXNSUNIII SIGX
RACOMPIII = ARNSUMIII SIGR

APPENDIX C
 MODAL CALCULATION PROGRAM
 SAMPLE CASE

ORIGINAL PAGE IS OF POOR QUALITI
** modal calculation computer program ***
number of predtction locaticns = 3
number of imodepmil SETS =
-0.10
36455.75 $\begin{aligned} & \text { AXIAL MACH NUMGER } \\ & \text { RADIAN FRE OUENCY }\end{aligned}=$

*** modal calculation computep program ***
... SFNSitivitr coefficient calculation ...

$$
154
$$

$\begin{array}{ll}n & 2 \\ 0 & 0 \\ 4 & 1 \\ 0 & n \\ 0 & 1 \\ 0 & 4 \\ 0 & 5 \\ 0 & 0 \\ 0 & 0\end{array}$

... influfnce coefficients (rartial derivatives)...
INR LUE NCE
$15 d$
$H S 1 N 3 I$
I
88.
MEASUREMENT LOCATICN 1
x
ISd

E +0
ORIGRNAL PAGE IS OF POOR QUALI'Y

$-0.3014 E+02-0.3239 E-01 \quad 0.1808 E+01 \quad 0.8881 E-01 \quad 0.4520 E-00$ $0.3700 E+00$
$0.4427 E+\infty$

$$
\begin{aligned}
& \text { ICN } \\
& \text { R PHASE DUE TOU GRROR IN G } \\
& \begin{array}{l}
-0.1226 E+02 \quad 0.98 \varepsilon 0 E-02 \\
-0.12 \varepsilon 3 F+02 \\
-0.8342 E+C 1
\end{array}-0.8707 E-01 \\
& \begin{array}{lll}
-0.12 \varepsilon 3 F+02 & -0.2707 E-01 & 0.6974 E+00 \\
-0.8342 E+C 1 & -0.8 C C 5 E-01 & 0.5706 E+00
\end{array}
\end{aligned}
$$

... Characteristic e-function values for modal amplituoe and phase calculations

