

METHODS FOR COMPARATIVE EVALUATION OF PROPULSION SYSTEM DESIGNS FOR SUR RSONIC AIRCRAFT "Depared By: RAY H. TYSON RONALD Y. MAIRS FLOYD D. HALFERTY, JR. BRUCE E. MOORE DAVID CHALOFF ARNOLD W. KNUDSEN

June 1976

N77-19156

(NASA-CR-135110) METHODS FOR COMPARATIVE EVALUATION OF PROPULSION SYSTEM DESIGNS FOR SUPERSONIC AIRCRAFT (Rockwell International Corp., Los Angeles) 181 p HC A09/MF AC1 Unclas CSCL 21E G3/07 16335

> PREPARED UNDER CONTRACT NAS 3-19858 BY LOS ANGELES AIRCRAFT DIVISION ROCKNELL INTERNATIONAL CORPORATION LOS ANGELES, CALIFORNIA FOR LENIS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

1. Report No.	2. Government Access	ìon No.	3. Recipient's Catalog	No.
NASA CR-135110				
4. Title and Subtitle Methods for Comparitive Evaluation	n of Propulsion S	vsten Designs for	5. Report Date June 1976	
Supersonic Aircraft			6. Performing Organi	zation Code
7. Author(s) Tyson, R. M., Mairs, R.	Y., Halferty, F.	D. Jr., Moore, B.E.	8. Performing Organiz	ation Report No.
Chaloff, D., Knudsen, A. W.			NA-76-470	
			10. Work Unit No.	
9. Performing Organization Name and Address		•		
Pockwell International Los Angeles Aircraft Division		F	11, Contract or Grant	No.
International Airport			•	
Los Angeles, California 90009		L	NAS3-19858	
			13. Type of Report an	nd Period Covered
12. Sponsoring Agency Name and Address		•	Contractor Re	oort
NASA Lewis Research Center		ŀ	14. Sponsoring Agency	
Cleveland, Ohio			14. Showner and referen	
15. Supplementary Notes				
Final Report				
Project Manager: Dr. Edward A.	Willis			
16. Abstract				
The propulsion system compar	ative evaluation	study had two object	times: (1) to de	fine a ranid
approximate method for evaluating	the effects of n	repulsion system che	annes for an adv	unced supersonic
cruise airplane, and (2) verifica	tion of the amoro	vinate method by con	maring its missi	ion performance
results with those from a more de	tailed analysis.	Aimate method by com	dwarming res wrss:	ton pertormatice
A table look-up computer pro	gram was develope	d to determine nacel	lle drag increment	nts for a range
of parametric nacelle shapes and	sizes. Aircraft	sensitivities to pro	pulsion parameter	ers were defined
Nacelle shapes, installed weights	, and installed p	erformance were dete	enained for four	study engines
selected from the NASA Supersonic	Cruise Aircraft	Research (SCAR) engi	ine studies progr	am. Both rapid
evaluation method (using sensitiv	ities) and tradit	ional preliminary de	sign methods we	re then used to
assess the four engines. The met	nod was found to	compare well with the	e more detailed	analyses.
1				
17. Key Words (Suggested by Author(s)) Propulsion integration		18. Distribution Statement		
Performance sensitivities		Unclassified, un	limited	
Nacelle drag				
Advanced supersonic transport tec	hnology			
Engine evaluation	~			
-				
10 Security Classif (of this securit	20 Security Classif to	f this most	21 No of Para	22 Price"
19. Security Classif. (of this report) Unclassified	20. Security Classif. (o Unclassified	f this page)	21. No. of Pages 181	22. Price"

.

FOREMORD

This document presents results of the study "Methods for Comparative Evaluation of Propulsion System Designs for Supersonic Aircraft." The NASA technical representative was Dr. Edward A. Willis. In addition to the authors noted, significant contributions to this study and report were made by Ellwood Bonner, aerodynamics; Henry K. Chin and Louis C. Young, propulsion.

TABLE OF CONTENTS

INTRODUCTION	1
SUMMARY OF RESULTS	2
Estimation of Supersonic Cruise Drag Estimation of Propulsion System Installation Weight Estimation of Airplane Takeoff Gross Weight Validation of the Approximate Method Conclusions and Recommendations	3 5 9 9
SYMBOLS	13
STUDY PROCEDURE	14
Approach Baseline Airplane Definition	14 15
Basepoint Airplane Design Mission Alternate Mission Balanced Field Takeoff Thrust-to-Drag Ratio Baseline Airplane Propulsion Mass Properties Aerodynamics	15 20 22 24 24 24 29 37 39
Estimation of Supersonic Drag	54
Parametric Drag Analysis Drag Table Leok-Up Computer Program Nacelle Shape Estimation	54 58 60
Estimation of Nacelle/Inlet Weight	64
Two Dimensional Inlets Axisymmetric Inlets	65 66
Estimation of Airplane Takeoff Gross Weight	68
Weight Sensitivity Analysis Application of Sensitivities	6 8 70

Wath a call of the American Mathed	- 78
Validation of the Approximate Method	/8
Propulsion	79
Mass Properties	88
Aerodynamics	88
Performance and Sizing	97
Sensitivity Method Verification	104
DISCUSSION OF RESULTS	134
RECOMMENDATIONS	134
APPENDI X	135
REFERENCES	181

LIST OF ILLUSTRATIONS

Figure

Title

1	Nacelle Layout
2	Error Characteristics of Approximate Method 10
3	Normalized Nacelle Cross-Sectional Area
-	Variation for VSCE 502B and VCE 112C
4	Basepoint Airplane
5	Vehicle Sizing and Performance Evaluation Program 19
6	Reference Mission
7	Alternate Mission
8	Balanced Field Length Definition
9	Gross Weight Versus Thrust-to-Weight and Wing Loading 26
10	Balanced Field Length Versus Thrust-to-Weight
	and Wing Loading
11	Thrust/Drag Ratio Versus Thrust-to-Weight and
	Wing Loading
12	Baseline Airplane Climb Path
13	Basepoint Nacelle
14	Comparison of Reference and Basepoint Nacelles 40
15	Nacelle Cross-Sectional Area Variation
16	Basepoint Vehicle Cross-Sectional Area Variation 43
.1	Basepoint Incremental Nacelle Drag Versus Mach Number 45
18	Basepoint Wave Drag Sizing Data
19	CL _K Versus Mach Number
20	C_{D_K} Versus Mach Number
21	'K' Factor Versus Mach Number
22	Baseline Vehicle Cross-Sectional Area Variation 51
23	Nacelle Parametric Cross-Sectional Area Extremes 57
24	Typical Nacelle Incremental Wave Drag Variations
	with Mach Number $A_c = 2.79$ sq m (30 sq ft)
	$1/d_c = 5.5$
25	Simulation of Nacelle Shape
26	Nacelle Drag Sensitivity Trade
27	Propulsion Weight and SFC Sensitivity Trades 70
28	Sizing Point Thrust Sensitivity Trade
29	VCE 112C Nacelle
30	VSCE 502B and VCE 112C Takeoff Thrust
31	Installed Performance Comparison of Baseline and
30	VCE 112C at Mach 2.32, 19 800m (65 000 ft)
32	Baseline and VCE 112C Performance, Mach 0.9,
77	13 700m (45 000 ft)
33	VCE 502B and VCE 112C Performance, Mach 0.9,
	13 700m (45 000 ft)
34	VSCE 502B and VCE 112C Installed Performance at
	Mach 2.32, 19 800m (65 000 ft)

Figure

Title

35 36	VSCE 502B Nacelle	83 85
37	GE21/J10 B1 and GE21/J11 B3 Performance, Mach 0.9, 13 700 m (45000 ft)	86
38	GE21/J10 B1 and GE21/J11 B3 Installed Performance at Mach 2.32, 19 800 m (65 000 ft)	87
39	GE21/J10 B1 Nacelle	89
40	GE21/J11 B3 Nacelle	91
41 42	VSCE 502B and VCE 112C Nacelle Cross-Sectional Area Variation	95
42	GE 21/J10 B1 and GE 21/J11 B3 Nacelle Cross-Sectional Area Variation	96
43	Economic Mission Profile	100
44	Design Mission Range Versus Engine Size	102
45	Balanced Field Length Versus Engine Size	103
46	Sizing with VSCE 502B Engines	105
47	Sizing with VCE 112C Engines	106
48	Sizing with GE21/J10 B1 Engines	107
49	Sizing with GE21/J11 B3 Engines	108

LIST OF TABLES

Table

Title

Page

÷

1	Baseline Airplane	2
2	Sample Output	4
3	Comparison of Approximate and Detailed Gross Weights	9
4	Drag and Takeoff Gross Weight Increments Due to	
	Changes in Engine Shape	13
5	Airplane Characteristics	30
6	Baseline Design Mission Summary - International Units	31
7	Baseline Design Mission Summary - English Units	32
8	Baseline Alternate Mission Summary - International	
	Units	33
Q	Baseline Alternate Mission Summary - English Units	33
10	Vehicle Weight Summary	37
11	Basepoint Engine Weight	38
12	Basepoint Nacelle Weight	38
13	Basepoint Configuration Estimated Profile and	
	Wing Drag Characteristics S_{REF} = 929 sq m	
	(10 000 sq ft)	46
14	Baseline Configuration Surface Area and Length	
	Summary.	53
15	Baseline Configuration Estimated Skin Friction and	
	Wave Drag Characteristics.	53
16	Nacelle Parameter Values	55
17	Comparison of Baseline and VCE 112C Nacelle Drag	
	Increments	78
18	Engine Summary	79
19	Engine Weights, International Units.	93
20	Engine Weights, English Units	93
21	Nacelle/Inlet Weights, International Units	94
22	Nacelle/Inlet Weights, English Units	94
23	Drag Comparison	98
24	Airplane Characteristics with Refined VSCE 502B Engines.	109
25	Airplane Characteristics with VCE 112C Engines	110
26	Airplane Characteristics with GE21/J10 B1 Engines	111
27	Airplane Characteristics with GE21/J11 B3 Engines	112
28	Refined VSCE 502B Baseline Design Mission Summary,	
	International Units	113
29	Refined VSCE 502B Baseline Design Mission Summary,	
	English Units.	114
30	VCE 112C Baseline Design Mission Summary,	
	International Units	115
31	VCE 112C Baseline Design Mission, Surmary	
	English Units	116

32	GE 21/J10 Bl Baseline Design Mission Summary,	
	International Units	117
33	GE 21/J10 B1 Baseline Design Mission Summary,	
	English Units	118
34	GE21/J11 B3 Baseline Design Mission Summary,	
	International Units	119
35	GE21/J11 B3 Baseline Design Mission Summary,	
	English Units	120
36	Economic Mission Characteristics with Refined VSCE 502B	
	Engines	121
37	Economic Mission Characteristics with VCE 112C	
	Engines	121
38	Economic Mission Characteristics with GE21/J10	
	B1 Engines	122
39	Economic Mission Characteristics with GE21/J11	
	B3 Engines	122
40	DOC, IOC, and ROI	123
41	VSCE 502B Baseline Economic Mission Summary,	
	International Units	124
42	VSCE 502B Baseline Economic Mission Summary,	
	English Units	125
43	VCE 112C Baseline Economic Mission Summary,	
	International Units	126
44	VCE 112C Baseline Economic Mission Summary,	
	English Units	127
45	GE21/J10 B1 Baseline Economic Mission Summary,	
	International Units	128
46	GE21/J10 B1 Baseline Economic Mission Summary,	
	English Units	129
47	GE21/J11 B3 Baseline Economic Mission Summary,	
	International Units	130
48	GE21/J11 B3 Baseline Economic Mission Summary,	
	English Units	131
49	Takeoff Gross Weight Sensitivity Calculations	133

Title

METHODS FOR COMPARATIVE EVALUATION OF PROPULSION SYSTEM DESIGNS FOR SUPERSONIC AIRCRAFT

By Ray M. Tyson, Ronald Y. Mairs, Floyd D. Halferty, Jr., Bruce E. Moore, David Chaloff, and Arnold W. Knudsen Los Angeles Aircraft Division, Rockwell International

INTRODUCTION

The National Aeronautics and Space Administration is conducting a continuing program of advanced supersonic technology studies with the objective of developing an adequate technology base to support development of future supersonic cruising aircraft. It is recognized in this program that one of the more sensitive problems in the synthesis of a successful supersonic cruising aircraft is that of airframe/engine integration. This process must investigate and properly manage the interactions between the technical disciplines of external aerodynamics, internal aerodynamics, engine cycle design, acoustics, mass properties, and structural design; and, it must be responsive to the practical considerations of fabrication, maintenance, and operation.

The results of a recently completed study, reference 1, of the effects of nacelle size and nacelle shape on the drag, weight, and wing camber plane warping of a supersonic transport illustrated the sensitivity of these parameters to relatively small changes in nacelle shape. The resultant shape of a nacelle is dependent on the geometry of the engine (inlet area, mounting provisions, accessory location, nozzle area, etc.) since this establishes certain control points in the design of the nacelle. It is important, therefore, that the engine designer be aware of this sensitivity to engine geometry, and be provided with some guidelines for favorable geometry relationships. It is probable that some engine geometry control can be achieved by the designer with no penalty in engine performance, although on a total system basis some engine performance degradation could be accepted in trade for reduced drag.

Although considerable effort has been expended on the problem of airframe/ engine integration, it has been mostly in the nature of point designs. The study of reference 1 produced results for two specific nacelle shapes which resulted from installat on of a dry turbojet engine and a duct heating turbofan engine. A comparison of these results shows the superiority of one nacelle shape over the other, but gives no information directly applicable to other installations having differing nacelle shapes. This report therefore treats nacelle shape and size in a parametric fashion so that a range of propulsion systems can be readily compared on a consistent basis. To meet the user's needs, it was clear that methodology faster and more convenient than the traditional aircraft-preliminary-design process would be required--even at some cost in terms of accuracy. Therefore, the approach was taken of organizing a relevant, existing set of nacelle drag data (reference 2), together with supplementary data points as required to cover the parametric range, into a computer table-lookup program. The program then yields supersonic wave and friction drag increments as function of size and shape parameters for 2 representative supersonic cruise airplane configuration (reference 3). The drag code, combined with linear sensitivity factors (derived from perturbation studies of the reference 2 airplane), provides the desired rapid approximate methodology for comparing alternative propulsion system designs.

The methods of analysis and major results of this study are described herein in the "STUDY PROCEDURE" section. User's information for the code, program listings and mathematical details are presented in the Appendix.

SUMMARY OF RESULTS

The present work is an extension of a previous study performed for NASA Langley Research Center (contract NAS1-13906) and documented in reference 2. In that program, a baseline airplane was defined. Under the current contract, the baseline was revised slightly as described on page 71 for consistency in validating the approximate method; the revised baseline is used when perturbating and comparing airplanes with other engines. The baseline and revised baseline airplanes are described in Table 1. The baseline airplane was based on the NASA modified SCAT 15F vehicle described in reference 3. Parametric data were generated showing the effects of variations of nacelle shape on cruise drag for a range of shapes that reasonably cover engine designs applicable to supersonic cruising aircraft. Generally, it was found that nacelles shaped such that the maximum cross-sectional area occurred at or near the nozzle exit and having little or no boattail resulted in the lowest wave drag. In fact, nacelle shapes were found that produce favorable interference effects (drag reduction) of such magnitude as to nearly offset the friction drag of the nacelle. These results are valid only for vehicles of this general configuration and nacelle location. Different vehicle configurations or nacelle locations could results in different "best" shapes. In considering possible trades of reduced drag through design changes in the engine for some penalty in engine weight and specific fuel consumption (SFC), it is necessary to have visibility of the net impact of all three effects on the total airplane in order to make a comparative evaluation. Therefore, sensitivity data were developed for the effects of changes in drag, propulsion system weight, takeoff thrust, and SFC on the takeoff gross weight as a figure of merit. Results of the weight sensitivity trades showed that the airplane gross weight is highly

	NASA Lang	ley Study	REVISED BASELINE		
Design Mission Range, km (n mi)	7 408	(4 000)	7 408	(4 000)	
Design Cruise Mach Number	2.4	2.4	2.4	2.4	
Payload (292 passengers), kg (1b)	27 682	(61 028)	27 682	(61 028)	
Balanced Field Length, m (ft)	3 190	(10 500)	3 190	(10 500)	
Engines (4)	VSCE 502B	VSCE 502B	VSCE 502B	VSCE 502B	
Takeoff Gross Weight, kg (1b)	322 046	(712 188)	316 783	(698 375)	

TABLE 1. - BASELINE AIRPLANES

sensitive to both drag and engine SFC at supersonic cruise. A one-drag-count change (approximately 1 percent of airplane drag) results in a 1-percent takeoff gross weight change; a 1-percent change is SFC also results in a 1percent change in takeoff gross weight. Changes in drag or SFC at other flight conditions and changes in propulsion system weight had relatively small effects on takeoff gross weight.

The follow-on program, described in this report, was intended to render the above-mentioned parametric data into a convenient, useable form. The objective was to develop a reasonably accurate method for the rapid, preliminary evaluation of the effects of variations in propulsion system design parameters on the total system performance of an integrated engine/airframe system. The figure of merit used was the airplane takeoff gross weight to perform a design reference mission. The effort was organized around the following five tasks:

- (1) Estimation of supersonic cruise drag increments reflecting nacelle shape and size (in the form of a computer table look-up program)
- (2) Estimation of propulsion system installation weight
- (3) Estimation of airplane takeoff gross weight
- (4) Validation of the approximate method
- (5) Reporting

Estimation of Supersonic Cruise Drag

A computer table look-up program was developed (see appendix) which yields the incremental wave and friction drags of nacelles as functions of five nacelle geometry variables and airplane mach number. The drag increments are for the total vehicle relative to the vehicle with nacelles removed. The five nacelle shape parameters used as inputs to the program are:

A Inlet capture area

 A_{MAX} Nacelle maximum cross-sectional area

- A_n Nozzle exit area (supersonic cruise position)
- X_{MAX} Distance from inlet cowl leading edge to maximum cross-sectional area
- L Nacelle total length

S_{REF} Reference wing area

It has been found that the table look-up results correlate best with more detailed analyses when the maximum cross-sectional area and its position are based on the area that occurs at the intersection of straight lines originating from the inlet and nozzle and whose slopes nearly match the slopes of the actual nacelle. A sample output from the computer program is shown in table 2. OFFICIALAL PAGE IS

NACELLE (ECMETRY

MACH 1.25

· (CAPTUPE AREA 2.79 SO M 30.00 - SO FTI--45.00 SQ FT) MAXIMUM AREA 4.18 SE M 1 3.48 SO M NUZZEF AREA 37.50 SQ FT) 1 LOC. UF MAX. AFEA 20.40 6.22 м FT) t 33.99 TOTAL LENGTH 10.30 М FT) 1 WING REFERENCE AREA 979.33 SC H 1 10000.00 SO FTT -----INCREMENTAL NACELLE (FAG CHEFFICIENTS MACH 1.2 CDF= (.00053 CDW= 3.00040 CD 0= 0.00043 LIF= 0.110+7 CL C= C. CC054 MACH 2.32 COW= 0.00007 CDU= 0.00043 MACH 1-20 XMAX/L= C.GUU AN/40= 1.250 AMAX/AC= 1.500 L/DC= 5.500 INCREMENTAL NACELLE LRAG CUEFFICIENTS - LTV REFERENCE VEHICLE CDU= 0.00031 CD0= 0.00042 MACH 1.7 LUF= 0.10072 LUW= -3.02041 MAC 1 2.32 COF= C.CCC00 CDW= -0.00016

C.CCCGG CDW≈ -5.00016 CD5= 5.30042 CD0= 0.00032 This task also included preparation of design guidelines for the installation of the engine in the nacelle so that consistency in definition of design control points for external nacelle shaping is achieved. Guidelines for establishing inlet and inlet cowl shape, engine envelope definition (including provisions for wiring, plurbing, power takeoff, engine accessories, aircraft accessories, fluid reservoirs, air bleed ducts, and engine mounts), structural allowances, and engine cowl and nozzle fairing shapes were defined. A sample of the nacelle shape buildup is shown in figure 1.

Estimation of Propulsion System Installation Weight

A simplified procedure was developed for the prediction of nacelle structure weight. Weight estimation of aircraft structure is a complex process and requires more design detail than will ordinally be performed in the type of preliminary studies being considered here; therefore, the procedure was keyed to gross elements of the propulsion system installation and yields only approximate weights. The important aspect of having a well-defined procedure, even though considerable tolerance in the results must be accepted, is that consistency is achieved in making comparative analyses.

Estimation of Airplane Takeoff Gross Weight

A method has been defined for the determination of the impact of the propulsion system installation (cruise drag, SFC, weight) on the total system performance utilizing takeoff gross weight as the figure of merit. This method was based on results of sensitivity studies performed for Langley Research Center. Utilizing these sensitivity values, the drag and weight increments from tasks 1 and 2, and SFC's from engine performance estimates, this procedure yields the airplane takeoff weight required to accomplish the design mission. The baseline vehicle is the vehicle defined in reference 2 with the VSCE 502B engine. The total change in vehicle takeoff gross weight due to propulsion changes may be determined from the equation:

$$\frac{1000}{100} = \frac{1000}{100} = \frac{1000}{100} = \frac{1000}{100} \times \frac{10$$

where "R" factors are the relative takeoff gross weight factors for each of the propulsion changes obtained from a linear sensitivity analysis of the baseline system. The drag factor is based on a supersonic cruise increment.

PRECEDING PAGE BLANK NOT FILMED

FOLDOUT FRAME 7 之

Validation of the Approximate Method

Standard preliminary design procedures were applied in the installation of four representative engines selected from the NASA Supersonic Cruise Aircraft Research (SCAR) program engine studies, in the baseline supersonic transport airplane. Drag and weight estimates were made utilizing conventional procedures. The airplanes were then sized to the design mission utilizing an automated reiterative process. The results of this task provide a more exact evaluation of the selected engines than is obtainable with the approximate method and thus serve as a reference for its evaluation.

The four engines considered were the refined (January 1970) Pratt and Whitney Aircraft (PWA) VSCE 502B and VCE 112C, and the General Electric Company (GE) GE21/J10 B1 and GE21/J11 B3. These engines were chosen as representative examples which would exercise the approximate method over a sizeable range, in order to determine its limits of validity. This can be done in a consistent fashion by comparing the approximate and detailed results shown in Table 3 for each engine. (On the other hand, meaningful engine-to-engine comparisons cannot be made on the basis of table 3 because the example engines do not necessarily reflect a consistent set of basic technology assumptions, noise characteristic⁻, or state of evolution within the SCAR program. Hence, these and similar results discussed later in this report should not be interpreted as being indicative of the final outcome of the ongoing SCAR engine studies.)

Engine	Weight Based on Detailed Analysis kg (lb)	Weight Based on Sensitivities kg (1b)
VSCE 502B	316 783 (698 375)	Revised Baseline
VSCE 502B (refined)	320 146 (705 790)	320 046 (705 568)
VCE 112C	402 625 (887 622)	401 092 (884 258)
GE21/J10 B1	514 450 (1 134 149)	463 708 (1 022 283)
GE21/J11 B3	629 306 (1 387 359)	510 136 (1 124 638)

TABLE 3 COM	PARISON OF APPRO	IXIMATE AND I	DETAILED	VEHICLE	TAKEOFF	GROSS WEIGHTS
-------------	------------------	---------------	----------	---------	---------	---------------

By comparing detailed and sensitivity results for each engine in table 3, it is immediately clear that a good level of agreement has been reached. The relative error (normalized by the gross weight based on detailed results) is shown in Figure 2 as a function of the total incremental change in TOGW (normalized by the baseline value). As might be expected from theoretical considerations, the error is negligible for small perturbation; in fact, it does not exceed 2 percent of the takeoff gross weight until the increment itself is in excess of 30 percent. It is important to note also that the error is consistent, i.e. always of the same sign (the approximate method underpredicts). Thus, even among highly-dissimilar engines, the correct ranking is preserved. With these facts in mind, it is concluded that the approximate method is in fact a reliable and reasonably accurate tool for such purposes as engine evaluation and comparison, over a range of about + 30 percent from the baseline TOGW. Considerably larger increments also could be accepted (temporarily) as intermediate steps in an optimization study, provided that the final case of interest is within the + 30 percent band.

The user should nevertheless observe several cautions in applying these results. As a general practice, it is desirable to check the "final result" of a study by detailed methods. This is strongly recommended for cases approaching or passing beyond the accuracy band. The sensitivity values ("R" factors) are to some extent dependent upon the engines sizing criteria, the assumed mission profile and flight rules. The user should therefore review these items carefully before beginning a study and generate a more appropriate set of "R" factors if significant differences are noted. More fundamentally, it should be recognized that the wave drag data is strictly applicable only to the reference 3 airplane configuration and geometrically similar scaled versions thereof. Trend results with nacelle shape for different airplanes of the same general arrangement are believed to be representative, although detailed agreement would not be expected. The use of the present data for airplanes having significantly different shape, proportions or nacelle treatment is not indicated. Doubtful cases should be checked at several points to validate the data and/or establish corrections.

Figure 2.- Error characteristics of approximate method

Conclusions and Recommendations

Engine shape, airflow lapse rate with mach number, thrust lapse rate with mach number, SFC and noise characteristics have large impacts on vehicle takeoff gross weight. As an example of engine shape effects, a comparison of cross sectional area variation of nacelles with the VSCE 502B and VCE 112C engines is shown in figure 3. The only significant difference in shape is that the VCE 112C has a smaller nozzle exit area. This results in drag and takeoff gross weight changes as shown in table 4. Thus, a nozzle that is 0.043 m (1.7 in) smaller results in takeoff gross weight increment of 3 200 kg (7 100 lb) just due to the nacelle drag change.

Engine airflow lapse rate with mach number directly affects inlet capture area. For example, the GE21/J10 B1 has approximately 16-percent lower supersonic cruise airflow relative to takeoff airflow than does the VSCE 502B. The smaller capture area results in approximately 4-percent lower inlet recovery at static conditions and therefore reduced takeoff thrust. In addition, the smaller capture area results in a more rapid increase of nacelle cross-sectional area with nacelle length, and therefore higher drag.

Engine takeoff thrust and thrust lapse rate with mach number have significant effects on engine size required to meet takeoff distance requirements. For example, the VCE 112C has 6-percent lower takeoff thrust at static conditions and 20-percent lower thrust at mach 0.3 (at reduced power to meet noise requirements) than the VSCE 502B for a given static takeoff airflow. This resulted in an increase in engine size of approximately 15 percent to meet balanced field length requirements.

A change of 1 percent in SFC at supersonic cruise results in a 1-percent change in vehicle takeoff gross weight or about 3 200 kg (7 100 lb).

Engine exhaust noise characteristics have a significant impact on vehicle takeoff gross weight. All four engines were assumed to employ thrust cutback at the takeoff noise measurement point. However, all the engines did not take full advantage of the extra ground attenuation while the aircraft was still on the ground. For example, the GE21/J11 B3 has 26-percent lower thrust-per-unit airflow than the VSCE 502B. Thus, the GE21/J11 B3 yields approximately 6 db lower sideline noise at takeoff on the ground, but it must be sized larger to meet the takeoff distance requirement.

The sensitivity method has been shown to be a valid method for preliminary assessment of propulsion system modifications, and it is therefore recommended to be used for this purpose. Continued airframe/propulsion integration studies and coordination effort between engine and airframe manufacturers in the aforementioned high-sensitivity areas are also recommended.

Figure 3. - Normalized nacelle cross-sectional area variation for VSCE 502B and VCE 112C.

Engine	ΔC _D , Supersonic Cruise Nacelle Drag Increment Relative to Nacelles Off	Takeoff Gross Weight Increment Relative to VSCE 502B kg (1b)		
VSCE 502B	0.00046	Base		
VCE 112C	0.00055	3200 (7100)		

TABLE 4. - DRAG AND TAKEOFF GROSS WEIGHT INCREMENTS DUE 10 CHANGES IN ENGINE SHAPE

SYMBOLS

Α	Area, sq m (sq ft or sq in)
BLB	Boundary layer bleed
BLC	Boundary layer control
BP	Basepoint
С	Coefficient or Chord, m (ft or in)
d	Diameter, m (ft or in)
D	Drag, daN (1b)
db	Decibel
F	Thrust, kg (1b)
K	Drag-due-to-lift factor
l	Length, m (ft or in)
L	Lift, N (1b)
М	Mach number
R	Relative TOGW factor
S	Area, sq m (sq ft or sq in)
SFC	Specific fuel consumption, kg/hr/N (lb/hr/lb)
Т	Thrust, N (1b)
TOGW	Takeoff gross weight, kg (lb)
V	Velocity, m/sec (ft/sec)
W	Weight, kg (lb)
X	Nacelle station, m (ft or in)
Δ	Increment

Subscripts

AMAX	Maximum	cross-sectional	area
В	Base		

с	Capture
CD	Drag coefficient
D	Drag
F	Friction
f	Fuel
i	Inlet throat
K	Indicates lift coefficient at minimum drag
L	Lift
LO	Loftoff
MAX	Maximum
n	Nozzle exit
ne	Net effort
Р	Profile
REF	Reference
R	Root
SFC	Specific fuel consumption
SUB	Subsonic
SUPE	R Supersonic
TO	Takeoff
W	Wave
WΤ	Weight
0	Freestream
1	Critical engine failure

STUDY PROCEDURE

Approach

The general approach of this study included using the baseline airplane, parametric nacelle drag results, and takeoff gross weight sensitivities developed in the NASA Langley Research Center contract of reference 2. A nacelle drag table look-up computer program and guidelines for determining nacelle shape were developed to allow estimation of supersonic cruise drag. A method to assess the propulsion system installation weight was defined. A method of determining vehicle takeoff gross weight using vehicle sensitivities to propulsion changes was developed. The method was verified by analyzing in detail four selected propulsion systems.

Because of the dependence of this study on the baseline airplane and ground rules of the study of reference 2, the definition of the baseline airplane is included. In this report, descriptions of the airplane configurations used are as follows:

(1) The <u>reference</u> airplane is the NASA-modified SCAT 15F arrow wing supersonic transport (defined in reference 3),

(2) The <u>basepoint</u> vehicle is the reference modified only as required to install the Pratt and Whitney Aircraft (PWA) VSCE 502B engine,

(3) The <u>baseline</u> airplane is the basepoint resized to the design requirements on a standard-plus-8° C day.

The structure design and operational empty weight of the reference airplane were assumed to meet all design criteria. Weight and aerodynamic characteristics of the study airplanes were derived by increments from the reference configuration.

Baseline Airplane Definition

Basepoint airplane.- The "basepoint" airplane for this study is based on the NASA modified SCAT 15F arrow wing reference configuration as described in reference 3. The propulsion system of this airplane has been replaced with PWA variable stream control engines (VSCE 502B) having 408 kg/sec (900 lb/sec) airflow each and with axisymmetric variable geometry inlets designed for mach 2.4 cruise conditions. The resulting basepoint vehicle is shown in figure 4. This airplane has a gross weight of 336 973 kg (742 890 lb), a range of 7471 km, (4034 n.mi.), and a balanced field length of 3017 m (9898 ft).

All performance and sizing calculations were made using the Rockwell Vehicle Sizing and Performance Evaluation Program (VSPEP). This computer program is a design tool capable of scaling a known basepoint vehicle according to specified values of several different design parameters. These include vehicle gross weight (or fuel weight), thrust-to-weight ratio (or engine size), wing-loading (or wing area), and payload or fixed equipment weight and volume. Performance may be determined at specified gross weight, or alternatively, a search routine permits automatic sizing of the vehicle gross weight such that a specified radius or range of the design mission is satisfied. Vehicle performance is calculated internally from a set of subroutines programmed according to a detailed performance analysis model. The subroutines are general in nature and permit calculation of a wide variety of mission profiles. Several mission profiles may be calculated simultaneously. Takeoff and landing distances and maneuvering capability may also be determined. Figure 5 illustrates the evaluation process.

Typical mission legs which may be calculated include warmup, taxi, takeoff, climb, descent, cruise, and loiter operations. Climb and descent performance are determined by numerical integration of the equations of motion along a specified flight schedule. Internally generated schedules are also available, including minimum time and minimum fuel flight paths as defined by the energy method. Constraints on the allowable flight regime are included. Cruises and loiters may be determined at fixed or optimum speeds and altitudes. Numerical

ORIGINAL PAGE IS OF POOR QUALITY

NOIE: A

FOLDOUT FRAME

Fi

Figure 4. - Basepoint airplane

FOLDOUT FRAME

Figure 5.-Vehicle sizing and performance evaluation program.

searches are used to determine optimum speeds and altitudes at the beginning and end of each of these legs.

Data input to the VSPEP for the AST basepoint vehicle include:

- Weights broken down by major component, along with scaling information on the wing, tails, fuselage, and engines.
- Drags broken down by major component and by type (e.g., friction drag, wave drag, drag due to lift, base drag).
- Installed propulsion dat , including thrust and fuel flow as functions of speed, altitude, and power setting.
- Dimensional data such as lengths, areas, and volumes for major components and the total vehicle.

Performance items calculated by the VSPEP on the basepoint and baseline vehicles for this study consist of the following:

(1) Design mission range

(2) Alternate mission range

(3) Takeoff distance with FAR 36 (Federal Aviation Regulation, part 36) noise requirements

- (4) Balanced field takeoff distance
- (5) Thrust-to-drag ratio at mach 2.32, 18 300 m (60 000 ft)
- (6) Thrust-to-drag ratio at mach 1.2 during the climb leg

A description of each of these performance items is given in the following paragraphs. Because engine data were provided for a standard-plus-8°C (14.4°F) day, all airplane performance characteristics were computed for that atmospheric condition.

<u>Design mission</u>.- A profile of the design mission is shown in figure 6. This mission consists mainly of a mach 2.32 cruise. Fuel reserves as recommended in reference 4 are calculated for an a¹ ternate airport located 460 km (250 n.mi.) from the destination airport.

The design mission consists of:

(1) Warmup and takeoff - 10 minutes at le pc or plus 1 minute at maximum power.

Figure 6.-Reference mission

(2) Climb - Maximum power climb and accelerate to cruise altitude and mach number.

(3) Cruise - Cruise at mach 2.32 at altitude for best cruise range.

(4) Descent - Descend and decelerate to mach 0.5 and 457 m (1500 ft) using idle power.

(5) Approach and land - Descend to mach 0.3 at sea level using idle power.

(6) Taxi - 5 minutes at idle power.

(7) Reserve allowance - 5-percent of total fuel used in all previous legs.

(8) Reserve climb - Climb to subsonic cruise conditions.

(9) Reserve cruise - Subsonic cruise at mach number and altitude for best range.

(10) Reserve descent - Descend and decelerate to holding altitude and mach number using idle power.

(11) Reserve hold - Loiter for 30 minutes at 3048 m (10 000 ft) at the mach number for best endurance.

(12) Reserve approach and land - Descend to sea level using idle power.

<u>Alternate mission</u>.- A profile of the alternate mission is shown in figure 7. The first half of the alternate is identical to the first half of the design mission. At the point corresponding to the mispoint of the design mission, a failure is assumed to occur in the most critical engine. At this point, the airplane descends and continues to cruise subsonically with one engine windmilling. The fuel reserve remaining at the end of this mission is equal to the reserve fuel as calculated for the design mission.

The alternate mission consists of:

(1) Warmup and takeoff - Same as design mission.

- (2) Climb Same as design mission.
- (3) Cruise Same as design mission.

Figure 7.-Alternate mission

(4) Descent - Descend and decelerate to subsonic cruise conditions using idle power, following failure of most critical engine.

(5) Cruise - Subsonic cruise at mach number and altitude for best range with one engine inoperative.

(6) Descend and land - Descend to sea level using idle power.

(?) Reserve - Allow total reserve fuel equal to that calculated for design mission legs ? through 12.

<u>Balanced field takeoff</u>.- Takeoff distance is calculated over a 10.7 m (35 ft) obstacle. It is assumed that a maximum usable lift coefficient of 0.555 is available for climbout. Balanced field length involves three requirements:

(1) Distance for a normal takeoff is calculated with all engines (throttled if necessary so that FAR 36 noise requirements are not exceeded) and this distance is multiplied by 1.15.

(2) Distance is calculated for a takeoff when an engine fails at the critical speed and the airplane continues the takeoff. In this instance, the throttles may be advanced after the engine failure if they are not already at maximum power (without regard to noise requirements).

(3) Distance is calculated when an engine fails at the critical speed and the takeoff is aborted. The airplane is stopped by applying brakes and cutting the remaining engines to idle. The critical speed for engine failure is determined by varying the speed at which engine failure occurs (i.e., V_1) until the accelerate-continue distance is equal to the accelerate-stop distance (i.e., segments B + C = D + E as shown in figure 7). The balanced field length is then defined as the greatest of items (1), (2), and (3).

+- +- -

Thrust-to-drag ratio. - The thrust-to-drag (T/D) ratio is calculated using maximum available thrust at 2.32 mach, 18 300 m (60 000 ft). Drag is that for level flight at the same conditions. Airplane weight is that at the start of the supersonic cruise as calculated for the design mission. The thrust-to-drag ratio is also calculated for the point in the climb-accelerate leg at which mach 1.2 is reached. In this case the altitude and vehicle weight are the actual values during the climb at which the vehicle reaches mach 1.2.

Baseline airplane.- The "baseline" airplane for this study is a resized version of the aforementioned "basepoint." Resizing was accomplished by exercising the VSPEP for a matrix of thrust-to-weight and wing loading values, and allowing the program to search for the gross weight, in each case, that satisfies the design mission range requirement of 7408 km (4000 n.mi.). Plots of the results are shown in figures 9 through 11. The parameters shown include vehicle gross weight as well as those performance items for which requirements must be met. The balanced field length requirement is plotted on the airplane gross weight plot in figure 9. This allows a "baseline" airplane to be chosen which is defined as the minimum gross weight vehicle that meets or exceeds the following performance requirements:

Design mission range	7408 km (4000 n. mi.) with 292 passengers
Balanced field length	3200 m (10 500 ft)
Minimum T/D during climb or cruise	1.2

- A Distance up to critical engine failure V₁
- B 3-engine acceleration distance from V_1 to V_{LO}
- C 3-engine lift-off to barrier distance
- D Distance gained after engine failure before full brake application
- E Stopping distance
- V₁ Critical engine failure speed

V_{LO} - Lift-off velocity

Figure 8. - Balanced field length definition

Figure 9. - Gross weight versus thrust-to-weight and wing loading.

Figure 10. - Balanced field length versus thrust-to-weight and wing loading

Figure 11. - Thrust/drag ratio versus thrust-to-weight and wing loading.

Since the thrust-to-drag requirements are exceeded for all cases, figure 10, only the balanced field length requirements are included in figure 9.

The resulting "baseline" airplane has a gross weight of 323 046 kg (712 188 lb); a thrust-to-weight ratio of 3.16 n/kg (0.323 lb/lb) based on installed, static takeoff thrust; and a wing loading of 354 kg/sq m (72.5 lb/ sq ft) based on gross wing area. (As discussed on page 71, the baseline was revised slightly for consistency in validating the approximate methods, but the discussion presented here is for the NASA Langley study baseline.)

Further airplane design and performance characteristics for both the "basepoint" and "baseline" airplanes are shown in table 5. Design and alternate mission summaries are shown in tables 6 through 9 for the baseline airplane. In these tables, the first leg of the alternate mission includes the first four legs of the design mission while leg five of the alternate includes reserves for legs nine through 15 of the design mission. The path followed during the climb-accelerate leg is a minimum fuel path calculated internally by the VSPEP program. This path as calculated for the baseline airplane is shown in figure 12.

<u>Propulsion</u>.- Because many of the current and recently completed supersonic cruising aircraft studies have used axisymmetric inlets, a mixed-compression, axisymmetric inlet was defined for use in the basepoint aircraft for this study. The inlet diameter is 1.93 meters (76 inches), and capture area is 2.926 square meters (4 536 square inches). For takeoff, the basic centerbody is held in the transonic position, but the fore and aft conical segments are translated aft to create a centerbody auxiliary inlet. The auxiliary inlet opening in the centerbody is 10 percent of capture area. Inlet pressure recoveries and spillage, bypass, and BLC drags were estimated, and their effects were included in installed propulsion performance. Engine accessories were assumed to be located in the wing. The nacelle drawing is shown in figure 13.

The engine performance data available for the VSCE 502B engine included the effects of an inlet recovery schedule, nozzle external drags (base plus boattail), 0.45 kilogram-per-second (1.0 pound-per-second) high-pressure compressor air bleed, and 149 kilowatts (200 horsepower) power extraction. Installed performance data were computed by modifying the engine data to include the effects of changes in inlet pressure recovery and inlet drags (spillage, bypass, and boundary layer control). Because the amount of engine data available was not sufficient to compute aircraft mission performance, additional installed performance data were generated by calculating corrected thrust and fuel flow parameters and by extrapolating based on trends of engines with similar characteristics. Fortunately, these techniques were required only at flight conditions where the airplane flies for a short duration. Thus, any possible errors due to data extrapolation should have minimal effect on airplane performance. All data were for standard-plus-8°C day.

	E	asepoint	Base	line
Engine Airflow, kg./sec. (1b./sec.)	408	(900)	395	(869)
Thrust-to-weight, n./kg. (lb./lb.)	3.14	(0.3208)	3.16	(0.323)
Reference Wing Area, sq.m. (sq. ft.)	926	(9 969)	827	(8 902)
Gross Wing Area, sq.m. (sq. ft.)	1 022	(10 996)	912	(9 819)
Wing Loading (gross area), kg./sq.m. (lb./sq. ft.)	330	(67.56)	354	(72.53)
TOGW, kg. (1b.)	336 973	(742 890)	323 042	(712 188)
Fuel Weight, kg. (1b.)	158 475	(349 834)	151 643	(334 754)
Max. Wing Fuel, kg. (1b.)	207 950	(459 050)	175 484	(387 382)
Design Range, km. (n.mi.)	7 475	(4 034)	7 412	(4 000)
Eng. Out Range, km. (n.mi.)	6 285	(3 392)	6 259	(3 378)
FAR 36 T.O. Dist., m. (ft.)	2 498	(8 194)	2 648	(8 661)
Bal. Field T.O. Dist., m. (ft.)	3 017	(9 89 6)	3 190	(10 466)
Thrust-to-Drag @ 2.32 M/18 300 m. (60 000 ft.)		1.747		1.716
Thrust-to-Drag @ 1.2M/Climb		2.005		2.019
Initial Cruise L/D		9.649		9.541
Initial Cruise SFC (installed) kg./hr./daN. (1b./hr./1b.)	1.393	(1.366)	1.385.	(1.358)

·

TABLE 5. - AIRPLANE CHARACTERISTICS

LE	G. NO.	OPERATION	WEIGHT, kg.	ALTITUDE, m.	MACH	FUEL USED, kg.	TIME, min.	TOTAL TIME min.	RANGE, km.	TOTAL RANGE, km.
	INIT	IAL WEIGHT	323 046							
1	WO & TO		319 171	0	0.305	3 871	10.0	10.0	0	0
2	CL TO 150	00	317 071	457	0.500	2 100	1.3	11.3	10	10
3	CLB-ACC		292 535	16 746	2.320	24 535	12.8	24.1	288	299
4	CRUISE		239 921	17 910	2.320	52 614	82.9	107.0	3 405	3 704
5	CRUISE		196 262	19 168	2.320	43 659	82.6	189.7	3 395	7 100
6	DESCEND		194 735	457	0.500	1 526	17.3	207.0	296	7 396
7	DES-LAND		194 500	0	0.300	235	1.5	208.6	12	7 409
8	TAXI-ALL		193 853	0	0.0	646	5.0	213.6	0	7 409
9	5PCT ALL		187 394	0	0.0	6 459	0.0	213.6	0	7 409
10	CL 1500		186 826	457	0.500	567	0.7	214.3	5	7 414
11	CLB-ACC		181 460	12 337	0.950	5 366	10.2	224.5	158	7 573
12	CRUISE		179 067	12 427	0.950	2 393	10.8	235.3	181	7 754
13	DESCEND		178 195	3 048	0.470	871	9.5	244.9	123	7 877
14	LOITER		171 744	3 048	0.454	6 450	30.0	274.9	0	7 877
15	DES-LAND		171 207	0	0.300	537	3.7	278.6	33	7 911
				TOTAL FL	JEL USEI) = 151 834			l	

TABLE 6. - BASELINE DESIGN MISSION SUMMARY - INTERNATIONAL UNITS

TABLE 7. - BASELINE DESIGN MISSION SUMMARY - ENGLISH UNITS

LE	G. NO.	OPERATION		GHT, bs.		TUDE, ft.	MACH NO.		L USED, lbs.	TIME min.	TOTAL TIME min.	RANGE	TOTAL RANGE n.m
	INIT	IAL WEIGHT	712	188						2			
1	WO & TO		703	653	1	0	0,305	8	534	10.0	10.0	Ņ	0
2	CL TO 15	00	699	022	1	500	0.500	4	631	1.3	11.3	5	5
3	CLB-ACC		644	931	54	943	2,320	54	090	12.8	24.1	155	161
4	CRUISE	-	528	936	58	761	2.320	115	994	82.9	107.0	1 838	2 000
5	CRUISE		432 (684	ú2	889	2,320	96	252	82.6	189.7	1 833	3 833
6	DESCEND		429 :	318	1	500	0.500	3	365	17.3	207.0	159	3 993
7	DES-LAND)	428	800		0	0.300		518	1.5	208.6	7	4 000
8	TAXI-ALL		427 3	374		0	0.0	1	425	5.0	213.6	0	4 000
9	SPCT ALL		413 1	134		0	0.0	14	240	0.0	213.6	0	4 000
10	CL TO 15	00	411 8	382	1 9	500	0.500	1	251	0.7	214.3	2	4 003
11	CLB-ACC		400 0	052	40 4	76	0.950	11	830	10.2	224.5	85	4 089
12	CRUISE		394 7	75	40 2	73	0,950	5	276	10.8	235.3	98	4 187
13	DESCEND		392 8	353	10 (000	0.470	1	921	9.5	244.9	66	4 253
14	LOITER		378 6	32	10 0	00	0.454	14	221	30.0	274.9	0	4 253
15	DES-LAND		377 4	48		0	0,300	1	184	3.7	278.6	18	4 271
			1	TOTAL	FUEL	USED =	• 334 739						

•

I.	G. NO. OPERATION	WEIGHT, kg.	ALTITUDE, m	MACH NO.	FUEL USED, kg.	TIME min.	TOTAL TIME min.	RANGE km.	TOTAL RANGE	
	INITIAL WEIGHT	323 046								
1	DES LEGS 1-4	239 921	0	0.0	83 121	107.0	107.0	3 704	3 704	
2	DES-DEC	239 539	8 212	0.900	381	7.9	115.0	189	3 894	
3	CRUISE	194 718	9 461	0.900	44 821	136.7	251.7	2 248	· 6 142	
4	DESCEND	193 850	0	0.300	868	10.2	262.0	113	6 256	
5	RESERVE	171 204	0	0.0	22 646	65.0	327.0	502	6 758	
								L		
	Total Fuel Used = 151 838									

.

TABLE 8. - BASELINE ALTERNATE MISSION SUMMARY - INTERNATIONAL UNITS

· •

TABLE 9. - BASELINE ALTERNATE MISSION SUMMARY - ENGLISH UNITS

LEG NO.	OPERATION	WEIGHT, 1bs.	ALTITUDE, ft.		rUEL USED 1bs.	TIME min.	TOTAL TIME min.	RANGE n.m.	TOTAL RANGE
INI 1 DES LE 2 DES-DE 3 CRUISE 4 DESCEN 5 RESERV	C D	712 188 528 936 528 095 429 281 427 368 377 441	0 26 944 31 040 0 0 Total Fuel	0.0 0.900 0.900 0.300 0.0 Used = 33	183 251 841 98 813 1 913 49 926	107.0 7.9 136.7 i0.2 65.0		2 000 102 1 213 61 271	2 000 2 102 3 316 3 378 3 649

Figure 12.-Baseline airplane climb path

Figure 13. - Basepoint nacelle.

At takeoff, the engine power setting was scheduled so that the aircraft meets FAR 36-traded noise levels. The SAE exhaust jet noise prediction method was used with the modification to overall sound pressure level recommended by Bushell (reference 5). This modification has no effect on perceived noise level at static conditions, but it results in approximately 4 decibels (db) higher noise than the standard SAE method at mach 0.3. A 1.5 db reduction in sideline noise was assumed due to sideline shielding while the airplane is on the ground. An 8-decibel reduction in noise level due to the coannular nozzle effect was assumed for all flight conditions and power settings. Information from PWA indicates that coannular configurations reduce noise by 7 to 9 decibels when the difference between core velocity and bypass velocity is 152 meters per second (500 feet per second) or more, with the core stream having the lower velocity.

<u>Mass properties</u>.- The basepoint vehicle weight summary is given in table 10. The NASA reference vehicle weight summary (reference 3) from which the basepoint was derived is also shown. The differences between the weights of the two vehicles are in the engines and nacelles. The basepoint vehicle has VSCE 502B 408 kg/sec (900 lb/sec) airflow engines in lieu of the 363 kg/sec (800 lb/sec) engines in the NASA reference vehicle.

The VSCE 502B bare engine weight including nozzle and thrust reverser was supplied by PWA. Weight increments of 22.7 kg (50 lb) for residual fluids and 22.7 kg (50 lb) for miscellaneous engine/airframe interfacing provisions were added to the bare weight to obtain an installed weight. Table 11 shows the installed engine weight summary.

The basepoint nacelle weight estimate is based on the nacelle drawing, figure 13. For the weight evaluation, the nacelle was divided into three sections: forward of the engine front face (inlet cowl), aft of the front face (engine cowl), and inlet spike. The engine cowl weight was estimated at 34.2 kg/sq m (7 lb/sq ft) of wetted area. This weight includes all the nacelle structure that supports and surrounds the engine and was derived from prior Rockwell International studies of a similar type. The inlet cowl and spike weights were calculated using statistical weight estimating equations obtained from the technical report SEG-TR-67-1, Preliminary Design Methodology for Air-Induction Systems (reference 6). Engine mount weights were calculated statistically at 1.5-percent of the engine weight. The mount weights are included with the nacelle weight.

The weight summary of the basepoint nacelle is presented in table 12.

TABLE 10. - VEHICLE WEIGHT SUMMARY

	NASA REFER	ENCE VEHICLE	BAS	EPOINT
ITEM	Kg	LB	Kg	LB
•			005	747
Wing	37 805	83 347	37 805	83 347
Horizontal Tail	2 391	5 271	2 391	5 271 • 775
Vertical Tail	2 148	4 735	2 148	4 735
Fuselage	24 636	54 314	24 636	54 314
Landing Gear	13 138	28 95 5	13 138	28 965
Nacelle	8 625	19 015	7 410	16 336
Structure Total	(88 743	(195 647	(87 528	(192 968
Engines	27 139	59 832	24 494	\$ 54 000
Thrust Reversers	4 809	10 601	2)
Miscellaneous Systems	807	1 780	807	1 780
Fuel System-Tanks and Plumbing	2 622	5 781	2 622	5 781
Propulsion Total	(35 377	(77 994	(27 923	(61 561
Surface Controls	4 527	9 981	4 527	9 981
Instruments	1 542	3 400	1 542	3 400
Hydraul ics	2 540	5 600	2 540	5 600
Electrical	2 291	5 050	2 291	5 050
Avionics	1 229	2 690	1 220	2 690
Furnishings and Equipment	11 390	25 ill	11 390	25 111
Air Conditioning	3 720	8 200	3 720	8 206
Anti-icing	95	210	95	210
Systems and Equipment Total	(27 3 25	(60 242	(27 325	(60 242
Weight Empty	151 445	333 883	142 776	314 771
Crew and Baggage-Flight,	306	675	306	675
-Cabin,	744	1 640	744	1640
Unusable Fuel	1 059	2 335	1 059	2 335
Engine Oil	361	795	361	795
Passenger Service	4 015	8 852	4 015	8 852
Cargo Containers	1 343	2 960	1 343	2 960
Operating Weight	159 273	351 140	150 604	332 028
Passengers, (292)	21 854	48 180	21 854	48 180
Passenger Baggage	5 828	12 848	5 828	12 848
Zero Fuel Weight	186 955	412 168	178 286	393 056
Mission Fuel	158 680	349 832	158 681	349 834
Design Gross Weight	345 635	762 000	336 973	742 890

	Weight/Vehicle			
Iten	kg	1b		
Engines (including nozzle & thrust reverser) (4)	24 312	53 600		
Residual Fluids	91	200		
Miscellaneous Provisions	91	200		
Engines as Installed	24 494	54 000		

TABLE 11. - BASEPOINT ENGINE WEIGHT

<u>Aerodynamics</u>.- Friction drag estimates were made for a fully turbulent, hydraulically smooth condition using the incompressible Von-Karman-Schoenherr method (reference 7) in conjunction with the adiabatic compressibility correction of Sommer and Short (reference 8). Component characteristic lengths (e.g., the distance from the inlet lip to the exhaust nozzle exit, the exposed mean aerodynamic chord of planar surfaces, etc.) and the altitude along the mission climb profile were used to evaluate length Reynolds numbers. Flat plate values were increased by 3-percent to account for form losses.

Item	Weight	t/Vehicle
	kg	1b
Nacelles		
Engine Cowl	2782	6132
Inlet Cowl	1299	2864
Spike	2961	6528
Engine Mounts	368	812
Total Nacelle	7410	16 336

TABLE 12	BASEPOINT	NACELLE	WEIGHT
----------	-----------	---------	--------

The wave drag due to thickness was estimated as a function of mach number using supersonic area rule theory (references 9 and 10) in conjunction with a transparent wing simulation, an inlet mass flow ratio of one, and the nozzle exit area held fixed at its supersonic cruise position. The effect of inlet spillage and nozzle position is included in the installed thrust. All results reported here are based on the use of a 51-mach-plane ($\Delta X = 0.02 L$ (0)), 13-roll-angle ($\Delta 0 = 15^{\circ}$) analysis. Basepoint configuration results for increased solution mesh density did not indicate any appreciable change.

Supersonic cruise trimmed drag-due-to-lift characteristics are assumed to be equal to the reference configuration of reference 3 and consequently independent of wing and engine size and nacelle shape. A different design wing twist and camber is required for each case to realize this performance. The lifting efficiency may be conservative for some of the more favorably shaped nacelles of the parametric drag study in that any increased benefit that may be realized from favorable nacelle thickness/wing lift interference over and above that of the reference configuration is neglected. Conversely, for the less favorably-shaped nacelles, the analysis may be somewhat optimistic. At off design conditions, the above assumption is necessary because the required analysis is beyond the scope of the contract effort.

A comparison of the VSCE 502B (408 kg/sec, 900 lb/sec airflow) nacelle of figure 13 to that of the reference configuration nonafterburning single spool turbojet with variable geometry turbine (363 kg/sec, 800 lb/sec airflow) of reference 3 is presented on figure 14. The basepoint nacelle is 1.95 meters (6.4 feet) shorter and has a 0.14 meter (0.46 feet) smaller maximum diameter. The relative cross-sectional shape of the two nacelles is presented in figure 15. The basepoint total configuration normal cross-sectional area distribution is shown in figure 16.

Estimated total and nacelle incremental skin friction and wave drag characteristics (relative to nacelles off) for the basepoint configuration are presented in table 13. The wave drag results are for the case in which the nozzle exit planes are the same as the reference configuration. A slightly higher drag results ($\Delta C_{DW} = 0.00006$ at mach 2.7) if the inlet planes are matched.

The friction, wave, and total drag increments of the basepoint nacelle are compared to those of the reference nacelle in figure 17. The basepoint configuration has a slightly smaller installation drag in spite of 12.5-percent greater airflow because of the more favorable nacelle shape (no boattail) as shown in figure 14. It was subsequently determined that a further reduction of 0.5 count could be realized by meridial contour optimization.

Figure 14. - Comparison of reference and basepoint nacelles.

Figure 15. - Nacelle cross-sectional area variation.

Fuselage station

PRECEDING PAGE BLANK NOT FILMED

6

Figure 16. - Basepoint vehicle cros

TOLDOUT FRAME

Figure 17. - Basepoint incremental nacelle drag versus Mach number

	Altitude		Airo	craft	Nacelle	
Mo	m	ft	с _D р	с _л	ΔC _D P	ΔC _D
0.4	457	1 500	0.0061		0.00065	
0.8	6 400	21 000	0.00572		0.00062	
1.2	10 455	34 300	0.00545	0.00365	0.00060	-0.00017
i.4	11 521	37 80 0	0.00522	0.00316	0.00058	-0.00018
1.8	13 594	44 600	0.00490	0.00254	0.00055	-0.00019
2.32	16 764	55 000	0.00450	0.00222	0.00050	-0.00018
2.7	18 288	60 000	0,00418	0.00217	0.00046	-0.00014

TABLE 13. - BASEPOINT CONFIGURATION ESTIMATED PROFILE AND WAVE DRAG CHARACTERISTICS S_{RFF} = 929 sq m (10 000 sq ft)

The aerodynamic charact istics used in resizing the basepoint wing and engine size to produce the baseline configuration used for all parametric nacelle drag studies were established as follows.

Fully turbulent friction levels were adjusted for difference in surface area and length Reynolds number of the wing and nacelle. The wave drag variation of the basepoint configuration as a function of wing and engine size were parametrically evaluated for input to the sizing program. The results are presented in figure 18. The effect of engine size was essentially nil at this scale for the nacelle shape under consideration.

The trimmed drag due to lift characteristics were assumed to be independent of wing size and equal to the reference configuration. The specific levels used are presented in figures 19 through 21 and were taken directly from reference 3.

Sizing of the basepoint configuration produced the study baseline (table 5) which had a 12-percent smaller wing size and a 3.5-percent smaller engine size. The associated normal cross-sectional area distribution is presented in figure 22. A summary of the component surface areas and reference lengths is presented in table 14, and table 15 presents baseline drags.

S_{REF} = 929 sq.m. (10 000 sq.ft.)

Figure 18. - Basepoint wave drag sizing data

47

Figure 19. - $C_{L_{K}}$ versus Mach number.

ORICINAL PAGE IS OF POOR QUALITY

Figure 21. - 'K' factor versus Mach number.

Fuselage station m.

FOLDOUT FRAME

Figure 22. - Baseline vehicle cross-sectional area variation.

COMPONENT	Swet sq.m. (sq.ft.)	Length m. (ft.)
Puselage	786 (8 450)	96 (315)
Wing	1 505 (16 987)	7.65-39.4 (25.1-129.)
Nacelles (4)	276. (3 ∂88)	12.7 (35.1)
Center Line Vertical	20.1 (219)	4.9 (16.2)
Wing Verticals	91. (992)	7.9 (25.9)
Horizontal	89.5 (921)	5.8 (18.9)

TABLE 14. - BASELINE CONFIGURATION SURFACE AREA AND LENGTH SUMMARY

TABLE 15. - BASELINE CONFIGURATION ESTIMATED SKIN FRICTION AND WAVE DRAG CHARCTERISTICS

	A	LTITUDE	AIR	AIRCRAFT			
Mo	M,	(ft.)	с _D	° _₽ ₩	۵C _D F	∆C _{Dw}	
0.4	457	(1 500)	0.00568		0.00065		
0.8	6 400	(21 000)	0.00537		0.00061		
1.2	10 455	(34 300)	0.00508	0.00339	0.00058	-0.00009	
1.4	11 521	(37 800)	0.00489	0.00305	0.00056	0.00003	
1.8	13 594	(44 600)	0.00455	0.00237	0.00052	-0.00011	
2.32	16 764	(55 000)	0.00420	0.00209	0.00049	-0.00012	
2.7	18 288	(60 000)	0.00392	0.00200	0.00045	-0.00011	

S_{REF} = 929 sq.m. (10 000 sq. ft.)

PRECEDING PAGE BLANK NOT FILMED

;

Estimation of Supersonic Drag

<u>Parametric drag analysis</u>.- The parametric nacelle wave drag analysis utilized the baseline configuration described in the previous section. The installation of the propulsion system followed several general ground rules in order to preserve the basic arrangement concepts and provide consistent comparisons concerning the effect of nacelle size variations. They are:

(1) Nacelle overhang of the wing trailing edge and vertical nacelle-wing separation was limited to the reference configuration values for structural reasons.

(2) The longitudinal and lateral separation distance between the inboard and outboard nacelles was preserved in order to maintain inlet flow quality.

(3) The reference configuration philosophy of locating the nacelle volume in a region of decreasing wing thickness was maintained.

(4) The maximum boattail angle considered was 10 degrees.

The outboard nacelle is moved inboard and forward as required along the midchord (approximate maximum thickness) line of the wing until its trailing edge overhang does not exceed 3 meters (10 feet). The inboard nacelle is shifted laterally by the same amount holding the longitudinal distance between the inboard and outboard nacelle inlet pl_{π} as the same as the reference configuration.

The nacelle parametric variables considered in the present analysis were the ratio of nozzle area to capture area A_{MAX}/A_{C} , the ratio of maximum crosssectional area to capture area A_{MAX}/A_{C} , the relative axial position of maximum area X_{AMAX}/I , the ratio of nacelle length to capture diameter, I/d_{C} , and the nacelle absolute capture area A_{C} . A summary of the number of variations and variable range analyzed is presented in table 16. For purposes of computation, the nacelles were assumed to be axisymmetric and the inlet, maximum area, and nozzle planes to be connected by straight lines.

PARAMETER	VALUES .
Mach number	1.2, 2.32
. A_n/A_c	1.0, 1.25, 1.5, 2.0
ANAX/Ac	1.0, 1.25, 1.5, 2.0
XAMAX/2	0.4, 0.6, 0.8, < <u>1</u> .0 *
A _c	1.86, 2.79, 3.72 sq.m. (20, 30, 40 sq.ft.)
٤/d _c	5.5 and 7.0
* Maximum value considered corresponds to a boattail angle	
of ten degrees.	

TABLE 16. - NACELLE PARAMETER VALUES

The parametric nacelle friction drag analysis is based on the use of fully turbulent flat plate levels in conjunction with the expression for surface areas (for four nacelles):

$$\frac{S_{\text{WET}}}{S_{\text{ref}}} = 2 \frac{A_{c}}{S_{\text{ref}}} \frac{I}{d_{c}} \left[\frac{X_{\text{AMAX}}}{I} + \sqrt{\frac{A_{\text{MAX}}}{A_{c}}} + \left(1 - \frac{X_{\text{AMAX}}}{I}\right) \sqrt{\frac{A_{n}}{A_{c}}} \right]$$
$$\approx 2 \frac{A_{c}}{S_{\text{ref}}} \frac{I}{d_{c}} \left[1 + \sqrt{\frac{A_{\text{MAX}}}{A_{c}}} \right]$$

The largest deviation between the exact and approximate expression occurs for X_{AMAX}/I approaching 0.4 and A_n/A_c approaching 2.0 with the former resulting in 10-percent greater area. It will be subsequently found that these differences are negligible in terms of the total installation drag for such cases. The parametric nacelle friction results are presented in reference 2.

Nacelle normalized cross-sectional area parametric extremes of the present study are presented in figure 23. Maximum-to-capture area ratio of 1 to 2 at 40, 60, and 80 percent of the nacelle length are shown for nozzle-to-capture area rations of 1 and 2. Wave drag results are discussed in detail in reference 2.

Briefly, the incremental nacelle wave drag is a strong function of the ratio of maximum-to-capture cross-sectional area, A_{MAX}/A_C , boattail area, and to a somewhat lesser extent relative axial position of maximum cross-sectional area, X_{AMAX}/I . Nacelle shapes with negative wave drag exist because of favorable total system thickness interferences associated with the location of growing nacelle cross-sectional area in a region of decreasing wing thickness. The nacelle geometric variable behavior and sensitivity are unchanged by mach number, nacelle capture area, or nacelle fineness ratio. The incremental wave drag results are, in general, weak functions of the latter two variables for efficient installations.

Detailed nacelle wave drag variations with freestream mach number were defined for a range of levels covering high-positive, zero, and negative installation increments. These characteristics correspond to nacelles with large maximum cross-sectional area relative to the capture and nozzle area cylindrical, and near-truncated conical shapes, respectively. Figure 24 illus-

Figure 23. - Nocelle parametric cross-sectional area extremes.

trates the mach number difference for these extremes for the fineness ratio 5.5, medium-size nacelle. Examination of the results indicate that weak to moderate mach number variations are associated with small nacelle installation drags. Conversely, strong compressibility variations are exhibited for inefficient installations. The large benefit at transonic speeds is somewhat illusory as the thrust must be progressively penalized for nozzle contraction with decreasing mach numbers.

<u>Drag table look-up computer program</u>. A table look-up computer program was developed (appendix) which yields the incremental wave and friction drags of nacelles as functions of nacelle geometry variables and airplane mach number. The drag increments are for the total vehicle relative to the vehicle with nacelles removed. The nacelle shape parameters used as inputs to the program are:

- (1) A_c Inlet capture area
- (2) $A_{M\Delta X}$ Nacelle maximum cross-sectional area
- (3) A Nozzle exit area (supersonic cruise position)

(4) X_{MAX} Distance from inlet cowl leading edge to maximum cross-sectional area

- (5) *l* Nacelle total length
- (6) S_{RFF} Reference wing area

The output of this program includes for the nacelle of interest:

(1) The aforementioned input data

(2) Drag coefficients at mach 1.2, mach 2.32, and the input mach number for friction (CTF), wave (CDW), and total (CDO) drags

(3) The nondimensional parameters of position of maximum cross-sectional area (X_{AMAX}/ℓ) , nozzle-to-capture area ration (An/Ac), maximum-to-capture area ration (A_{MAX}/A_C) , and fineness ration (ℓ/d_C)

In addition, incremental drag coefficients of the reference airplane nacelle (reference 3) are printed. A sample output is shown in table 2. It has been found that the table look-up results correlate best with more detailed analyses when the maximum cross-sectional area and its position are based on the area that occurs at the intersection of straight lines originating from the inlet

Figure 24. - Typical nacelle incremental wave drag variations with Mach number

 $A_c = 2.79 \text{ sq m}$ (30 sq ft) $\ell/d_c = 5.5$.

which is tangent to the maximum slope of the forebody and from the nozzle which goes through the actual maximum area and whose slopes nearly match the slopes of the actual nacelle, as illustrated in figure 25. This method most closely approximates the parametric nacelle shape drag analysis because, in that study, nacelle shapes were defined by two straight-line segments. Using this method will result in nacelle drag increments at supersonic cruise within 0.5 drag count of the drag resulting from a detailed analysis.

<u>Nacelle shape estimation</u>.- Nacelle external shapes are determined by such installation items as engine accessories, compartment cooling, shrouds and insulation, aircraft accessories, engine clearance, engine mount geometry, nacelle structure, boundary layer gutters, etc. The engine configurations supplied by the engine manufacturers usually include only the engine case outline and nozzle dimensions. A method has been established to determine the engine external envelope and aircraft structure and equipment space allowances. Guidelines are presented for determining the engine buildup envelope, engine cowl, nozzle fairing, and inlet and inlet cowl shapes. Those installation items which have the largest effect on nacelle shape are then discussed. An exam 2 of the nacelle shape buildup is presented in figure 1.

Engine buildup envelope: The procedure to establish the engine buildup envelope is:

(1) Establish fan and gas generator case outline.

(2) Add 5 cm (2 in.) constant to all surfaces of the preceding outline to provide for wiring, plumbing, etc.

(3) Add 2.5 cm (1 in.) constant additional to outline for variable compressor geometry mechanisms where applicable.

(4) Establish mechanical power extraction drive station and radial location for engine accessories drive and for aircraft accessories power takeoff. Depending on engine configuration and accessory design, accessories may be on the engine or in the pylon or wing. For engine accessories where encapsulation is required for cooling, provide 0.595 cu m (21 cu ft) of volume proximate to engine accessories drive of item (4). Dimensions of the capsule may be varied for best packaging, but the capsule thickness at the gearbox should be 0.305 m (12 in.) minimum. For nonencapsulated engine accessories, provide 0.51 cu m (18 cu ft) of volume proximate to engine accessories drive of item (4). Arrangement of the accessories package may vary, but the minimum thickness at the gearbox must be 25 cm (10 in.). The dimensions of items (2) and (3) and (4) are additive and will usually establish the maximum radial dimensions of the gas generator section of the engine. All other engine and aircraft equipment in this portion of the nacelle should be contained within the volume of

Figure 25. - Simulation of nacelle shape.

revolution established by this line of radii. For minimum aircraft drag, locate aircraft accessories within pylon or adjacent wing. The engine power takeoff pad and angle drive gearbox will be within the pylon and this will not impact the nacelle mold line.

(5) For engine fluid reservoirs, add 0.0566 cum (2 cu ft) on left or right side of engine. The radial dimension is 15.2 cm (6 in.) additive to dimension of item (2) or (3).

(6) Equally space four compressor high-pressure bleed ports around compressor rear frame. The 12.7 cm (5 in.) diameter collector manifold (with flexible sections) will interconnect the ports and connect to the airframe duct in the pylon. The collector manifold diameter is additive to the allowar item (2). Low-pressure bleed ports may be provided in place of or in additive to the preceding. The same space allowance must be made for these. On or more engine and inlet anti-icing air ducts will be routed from the bleed and fold forward to the engine front frame. These ducts will be 10.2 cm (4 m.) diameter and will be additive to the allowance of items (2) or (3).

(7) Determine location of engine mounting stations by engine internal structure. The nacelle/wing relationship should be considered in the placement of the engine load-carrying frames and the mounting provisions on the frames for best weight effectiveness of the total system.

(8) Main mounts - transfer thrust, side, and vertical loads: Provide $15.2 \times 15.2 \times 12.7 \text{ cm} (6 \times 6 \times 5 \text{ in.})$ radial space additive to items (2) or (3) at two positions on engine main mount frame, circumferentially spaced greater than or equal to 90 degrees.

(9) Stabilizer mount - transfers vertical loads: \pm rovide 10.2 x 10.2 x 20.3 cm (4 x 4 x 8 in.) radial space, additive to items (2) and (3).

(10) Locate local protrusions of miscellaneous engine equipment beyond envelope of items (2) and (3) to occur at random locations. These will be relatively small and will not exceed the maximum envelope noted in item (4).

Engine Cowl: The engine cowl shape may be determined by the following:

(1) The cowl inner skin mold line must maintain a minimum 2.5 cm (1 in.) clearance from all points on the engine buildup envelope developed in the preceding discussion.

(2) Cowl structural requirements will vary depending on the arrangement and location of engine mount points. Where mount points are in the proximity of the pylon structure, the cowl can be made nonstructural; i.e., sufficient to withstand internal and external airloads and flight dynamic forces. This will require 5 cm (2 in.) of structure (constant) from the engine front face station to the cowl-to-nozzle fairing interface. Where mount points are widely separated from the pylon structure a structural cowl must be provided to transfer the engine loads. Cowl thickness in the load paths will be 7 to 10 cm (3 to i in.). In these areas the structure can intrude into unoccupied space in the volume of revolution developed in the preceding items (4) and (5), but 2.5 cm (1 in.) clearance must be maintained from adjacent engine buildup equipment. Areas of the cowl outside the load paths can be 5 cm (2 in.) thickness.

Nozzle fairing: The nozzle fairing wist fair smoothly into the engine cowl mold line developed in the preceding and fair smoothly to the base diameter dictated by the nozzle. The nozzle fairing leading edge step height from the engine case will vary depending upon the engine services (hydraulics, pneumatics, fuel, secondary airflow, etc) required to pass through it. This step height may require adjustments to the cowl outer mole line as it approaches the nozzle fairing interface.

Inlet and inlet cowl: Inlet and cowl shape can be determined by the following method:

(1) Establish inlet length and capture area based on appropriate nacelle design methodology and external constraints.

(2) Establish inlet flow path area geometry.

(3) Define inlet cowl external lines. Fair from inlet lip to engine cowl. The faired mold line should provide minimum rate of cross-sectional area increase.

(4) Establish requirement for the following airflow $_1$ at hs appropriate to inlet geometry and engine cycle used:

- (a) Auxiliary air inlet
- (b) Bypass air
- (c) Engine secondary air

(d) Boundary layer bleed

(i) Centerbody or ramps

(ii) Cowl inner wall

(5) Determine cowl wall thickness by requirements of structural integrity plus space required for flow paths and door mechanisms associated with requirements established in item (4). A minimum thickness of 15.2 cm (6 in.) is suggested for the cowl wall from the inlet throat aft to the engine front face. This may be varied locally, but internal lines should be maintained. Thickness of the cowl structure will vary from approximately 0.16 cm (1/16 in.) at the inlet lip to the throat thickness established in the preceding.

Major nacelle shape elements: Three major elements establish the engine external envelope:

(1) The allowance over the total surface of the gas generator of space for engine variable geometry mechanism, plumbing, wiring, etc.

(2) The space required for the engine accessory gearbox and associated accessories. This package establishes the location and magnitude of the nacelle maximum cross-sectional area.

(5) The location of the main engine mounts on the engine as defined by the engine manufacturer. Where the main mounts are placed at the compressor front or midframe, sufficient structure is available in the adjacent nacelle, pylon, and wing to carry the multidirectional loads, and a simple, nonstructural cowl may be used. Where the main mounts are placed at the turbine frame, it is necessary to consider the cowl as a structural cylinder with penalties to the nacelle size and weight.

All other elements of the engine installation fall within the envelope defined by the preceding.

Estimation of Nacelle/Inlet Weight

Weight estimation of nacelle and inlet systems is a complex process and requires design detail not normally performed in the type of preliminary studies being considered here. The estimating procedure described in this section uses a simplified approach producing a first-order-type weight estimate keyed to gross definitions of the nacelle/inlet package. The procedure defined will provide the capability of maintaining consistency between nacelle weight estimates while making comparative analyses. <u>Two dimensional inlets.</u>- To estimate the weights of engine nacelles with two-dimensional (2-D) inlets, the nacelle package is divided into the following components:

- (1) Engine cowl
- (2) Inlet cowl
- (3) Ramps
- (4) Air induction special features
 - (a) Bypass system
 - (b) Auxiliary inlet
 - (c) Secondary air provisions
 - (d) Inlet controls
- (5) Engine mounts

The methods used to estimate the weights of the nacelle components are primarily based on a prior Rockwell inlet study for the Boeing SST. This study was conducted for Boeing and consisted of designing a 2-D inlet as a contender to be compared to Boeing's axisymmetric inlet design in the inlet selection for the SST. Unit weights used to estimate weights of the nacelle components were derived from data developed for this study.

Engine cowl: The engine cowl is defined as the total nacelle structure aft of the engine front face, including all structure that supports and surrounds the engine. The engine cowl weight is estimated at 34.2 kg/sq m (7.0 lb/sq ft) of nacelle external wetted area.

Inlet cowl: The inlet cowl is defined as the total nacelle/inlet structure forward of the engine front face, exclusive of the variable-geometry ramps and special air induction features. The inlet cowl weight is estimated at 24.4 kg/ sq m (5.0 lb/sq ft) of wetted area.

Ramps: The ramps are defined to be the movable panels, including an actuation system, used to vary the inlet geometry in a 2-D variable-geometry inlet. Weight of the variable-geometry ramps is estimated at 48.8 kg/sq m (10.0 lb/ sq ft) of movable ramp planform area. Air induction special features: The bypass system consists of inlet air bypass doors, including actuation provisions. The system weight is estimated at 39.1 kg/sq m (8.0 lb/sq ft) of door area.

The auxiliary inlet is defined as the auxiliary air inlet doors and inlet actuation system. The weight of this system is estimated at 29.3 kg/sq m (6.0 lb/sq ft) of door area.

The secondary air provisions provide inlet air to the engine compartment for engine compartment cooling. The weights of these provisions are estimated with the following equation:

$$wT = 22.7 \left(\frac{W_a}{287}\right)^{1/2} kg \text{ or } wT = 50 \left(\frac{W_a}{633}\right)^{1/2} lb$$

where W_a is engine design airflow, kg/sec (lb/sec).

The inlet controls are defined as the system provided to monitor the inlet conditions and transmit position signals to the movable inlet systems. The weight of this system is estimated at 22.7 kg (50.0 lb) per inlet.

Engine mounts: The engine mounts are the fittings used to support the engine in the nacelle. The weights of these fittings are estimated at 1.5 percent of the engine weight.

<u>Axisymmetric inlets</u>.- To estimate the weights of engine nacelles with axisymmetric inlets, the nacelle package is divided into the following components; this breakdown is similar to the one described for a 2-D inlet:

- (1) Engine cowl
- (2) Inlet cowl
- (3) Spike
- (4) Engine mounts

The procedures for weight estimation of the engine cowl and mounts are the same as those described for the 2-D inlet/nacelle. The methodologies to estimate the weights of the inlet cowl and spike were obtained from the Air Force Technical Report SEG-TR-67-1, Preliminary Design Methodology for Air Induction Systems.

Inlet Cowl: The inlet cowl is defined as the total nacelle/inlet structure forward of the engine front face, exclusive of the inlet spike and its systems. The inlet cowl weight is determined by the following statistical equation.

WT = 0.159 (N)
$$[(A_c)^{0.5} L (P_2)]^{0.731}$$
 kg or
7.435 (N) $[(A_c)^{0.5} L (P_2)]^{0.731}$ lb

where:

N = number of inlets
A_c = capture a ea per inlet - sq m (sq ft)
L = subsonic duct length per inlet - m (ft)
P₂ = maximum steady-state static pressure at engine face at
supersonic cruise mach - kg/sq m (psia)

Spike: The spike is defined to be the center body structure, including its systems and actuation. Weight of the spike is estimated with the following statistical equation;

$$WT = K (N) A_{C}$$

where:

K = 252.9 kg/sq m (51.8 lb/sq ft)

N = number of inlets

 A_c = capture area per inlet = sq m (sq ft)

Estimation of Airplane Takeoff Gross Weight

Weight sensitivity analysis. - In considering possible trades of reduced drag through design changes in the engine envelope for some penalty in engine weight and performance, it is necessary to have visibility of the net impact of all these effects on the total airplane system. To cvaluate these effects, the sensitivities of the airplane takeoff gross weight to variations of propulsion system parameters were determined. These sensitivity data were obtained by conducting design trades on the baseline airplane for variations of the following items:

- (1) Incremental nacelle drag
- (2) Propulsion system weight
- (3) Engine specific fuel consumption
- (4) Engine sizing condition thrust

In each case, the parameter of interest was varied independently and the airplane resized to the design mission range of 7408 km (4000 n mi) while maintaining thrust-to-weight and wingloading values equal to those for the base-line vehicle.

Incremental nacelle drag: Several variations of nacelle drag were investigated. These were chosen as representative of the combined wave and friction drag variations as found in the macelle shape analysis to allow use of the trade data for any nacelle geometry analyzed in this program.

The results of this trade are shown in figure 26, which shows relative takeoff gross weight (TOGW) versus nacelle drag at mach 2.32 for several variations of the drag increment at mach 1.2.

Propulsion system weight trades: Airplane TOGW was calculated for several propulsion system weight increments. Incremental propulsion weight, in this case, is defined as a percent of the sum of the engine, nacelle, and miscellaneous propulsion systems (198 kg, (445 lb) per nacelle) weights. The results of this trade are shown in figure 27, which plots relative TOGW versus propulsion weight increment.

Engine specific fuel consumption trades: Four separate trades were performed with SFC increments applied independently to the following mission segments:

- (1) Maximum power climb legs only
- (2) Supersonic cruise legs only
- (3) Subsonic cruise and loiter legs only
- (4) The entire mission

The results of this trade are presented in figure 27 as relative TOGW versus percent change in SFC.

Figure 26. - Nacelle drag sensitivity trade.

Figure 27. - Propulsion weight and SFC sensitivity trades.

Engine sizing thrust: Figure 28 presents relative TOGW versus percent change in thrust at the engine sizing condition. In this trade, it is assumed that the thrust available at the engine sizing condition varies without change in propulsion characteristics at other flight conditions. In the current study, all engines were sized at takeoff.

<u>Application of sensitivities</u>. - To demonstrate the method of applying the vehicle sensitivities, an example using the VCE 112C engine is in the following paragraphs. The VCE 112C is discussed in detail later under "Validation of the Approximate Method." Additional examples are also given therein. The baseline airplane characteristics and sensitivities were originally computed using a friction drag that was approximately one count too high and an ambient temperature increment that was incorrect. Thus the baseline airplane was recomputed and resulted in a takeoff gross weight of 316 783 kg (698 375 1b), a propulsion system weight (four nacelles) of 30 882 kg (68 081 1b), and drag coefficients of 0.0040 and 0.0030 at mach 1.2 and 2.32, respectively. Figure 26 has been revised relative to that shown in reference 2 for this reason.

A nacelle drawing (figure 29) was made with engine accessories located on the engine without encapsulation for cooling. Weight for the nacelle was estimated to be 8750 kg (19 298 lb), which includes 198 kg (445 lb) for miscellaneous propulsion systems. The revised baseline nacelle weighed 7880 kg (17 020 lb). Thus, the VCE 112C nacelle is 12 percent heavier than the baseline. From figure 27, the relative TOGW ratio, $R_{\rm WT}$, for this change i; 1.059.

In order to maintain the takeoff distance, a new engine must have the same effective thrust-to-weight ratio between 0.0 and 0.3 mach (approximate liftoff speed) as the baseline. The effective thrust occurs at approximately mach 0.25. Because the VCE 112C has a significantly different thrust lapse rate with mach number than the baseline (as shown in figure 30) the effective thrust is 17 percent lower than the baseline. Extrapolating figure 28 to a thrust increment of 17 percent yields a relative TOGW ratio due to takeoff thrust, $R_{\rm ENF}$, of 1.10.

Figures 31 and 32 show installed performance of the 100-percent size VCE 112C and VSCE 502B propulsion systems. Because the Breguet range factor, $M \ge L/D/SFC$, maximizes near minimum SFC, the airplane will tend to fly at or near minimum SFC; cruise altitude will be adjusted to achieve this. Therefore, the SFC increment may be taken at the minimum of each engine. This assumption is slightly optimistic because the lift-drag ratio will also change and will affect the operating point. Thus, the VCE has about 6.3percent higher SFC at supersonic cruise and 4.6 percent lower SFC at subsonic cruise than the baseline. From figure 27, this results in a relative TOGW due to a change in supersonic cruise SFC, R_{SFC} , of 1.071 and due to a change

Sizing point thrust increment ~ percent

Figure 28. - Sizing point thrust sensitivity trade.

Figure 30. - VSCE 502B and VCE 112C takeoff thrust,

PRECEDING PAGE BLANK NOT FILMED

Figure 31 - Installed performance comparison of baseline and VCE 112C at Mach 2.32, 19 800m (65 000 ft).

in subsonic cruise SFC of 0.994.

The nacelle shape of the VCE 112C is similar to that of the baseline but has a smaller nozzle area. The drags used in the mission analysis computer program are indicated in table 17. From figure 26, the relative TOGW ratio due to change in drag, R_{C_D} , is 1.021.

TABLE 17. - COMPARISON OF BASELINE AND VCE 112C NACELLE DRAG INCREMENTS

Mission analysis computer program values					
	^۵ C _D , mach 1.2	2C _D , mach 2.32			
VSCE 502B (baseline)	0.00040	0.00030			
VSCE 112C	0.00085	0.00048			

The ratios R_{WT} , R_{FNE} , R_{SFC} , and R_{C_D} are then multiplied together to obtain the total relative TOGM ratio, R_{TOTAL} .

$$R_{TOTAL} = R_{WT} \times R_{FNE} \times R_{SFC} \times R_{SFC} \times R_{SFC} \times R_{CD} = 1.266$$

The new TOGW is obtained by multiplying R_{TOTAL} by the baseline TOGW of 316 783 kg (698 375 lb). Thus, it is estimated that a vehicle meeting the performance requirements using the VCE 112C engine would weigh 401 092 kg (884 258 lb).

Validation of the Approximate Method

Standard preliminary design procedures were applied in the installation of four candidate engines in the baseline supersonic transport airplane. Drag and weight estimates were made utilizing conventional procedures. The airplanes were then sized to the design mission utilizing an automated reiterative process. The results of this task provide a more exact evaluation of the candidate engines that is obtainable with the more approximate methods resulting from the earlier task, and thus serve as a reference for evaluation of the applicability of the approximate methods. Propulsion. - Four engines were selected so that the sensitivity method could be validated for a wide range of engine types:

- (1) PWA VSCE 502B duct-burning turbofan
- (2) PWA VCE 112C variable-cycle engine
- (3) GE GE21/J10 B1 low bypass turbojet
- (4) GE GE21/J11 B3 double-bypass variable-cycle engine

Characteristics of these engines are summarized in table 18. The engine and installations are discussed in the following paragraphs. While there may be different weight and performance margins and noise and technology assumptions for the four engines, the data were used as supplied by the engine manufacturers without modification for these differences. Hence, results discussed later should not be interpreted as representative of the final SCAR engine studies. (Engine studies are currently still under way.)

ENGINE				
VSCE 502B	VCE 112C	GE21/J10 B1	GE21/J11 B3	
408	408	318/341	318/382	
(900)	(900)	(700/750)	(700/840)	
1.3	2.5	0.1	0.5	
26 500	25 000	25 300	18 300	
(59 500)	(56 200)	(52 300)	(41 100)	
74	71	75	55	
(76)	(72)	(77)	(56)	
6077	6191	7280	5964	
(13-400)	(13-650)	(16-050)	(13-150)	
6.8	7.9	7.0	6.9	
(266)	(310)	(275)	(273)	
2.24	2.19	1.96	2.01	
(88)	(86)	(77)	(79)	
	408 (900) 1.5 26 500 (59 500) 74 (76) 6077 (13 400) 6.8 (266) 2.24	VSCE 502BVCE 112C 408 (900) 408 (900) 1.3 2.5 26500 (59500) 25000 (56200) 74 (76) 71 (72) 6077 (13400) 6191 (13650) 6.8 (266) 7.9 (310) 2.24 2.19	VSCE 502BVCE 112CGE21/J10 B1 408 (900) 408 (900) $318/341$ (700/750) 1.3 2.5 2.5 	

TABLE 18, - ENGINE SUMMARY

VSCE 502B: Refined performance data (dated January 1976) for the VSCE 502B engine were used to calculate revised installed propulsion performance data. All performance installation effects used were the same as for the baseline data. The noise calculation procedure was identical to that for the baseline. Installed performance changes were very small relative to the baseline. Performance data at important flight conditions are shown in figures **30**, **33**, and **34**.

The nacelle was revised slightly compared to the baseline, to include engine accessories (unencapsulated) and more realistic structure allowances and boundary layer diverter, as shown in figure 35. This engine configuration lent itself well to establishing an efficient nacelle shape. A well-defined waist at the compressor miliframe provided space for the required accessory gearbox volume without forcing the nacelle maximum diameter much beyond the nozzle diameter. Location of the engine main mount at the engine provided transfer of the mount loads directly into the pylon/wing structure.

VCE 112C: Installed performance data for the VCE 112C (408 kg/sec (900 lb/ sec)) were calculated in the same manner as the baseline. Because the supersonic cruise airflow is the same as that of the VSCE 502B, the same capture area was used. The only significant difference in procedures was that only a 4 dB reduction in noise due to the coannular effect was used (instead of 8 dB) because the exhaust characteristics and nozzle configuration of the VCE 1'2C are such that an 8 dB reduction could not be achieved. This results in some thrust reduction at mach 0.3 takeoff power (figure 30) while the airplane is on the ground in order to stay within EAR 56 noise requirements. Thrust is reduced even further at the takeoff noise measurement point. Figures 33 and 34 compare installed performance of the VSCE 502B and VCE 1'2C.

The installation of this engine into a nacelle (figure 29) is quite similar to that of the VSCE 502B. The only significant changes are a longer engine and a slightly reduced notice diameter.

GE21/J10 B1: Installed performance of the GE21/J10 B1 was calculated in a manner similar to the baseline except that a 2-D mixed compression inlet with a capture area of 2.07 sq m (5 208 sq in.) was used. The GE21/J10 B1 has approximately 16-percent lower supersonic cruise airflow relative to takeoff airflow than does the VSCE 502B. If an axisymmetric inlet had been used and sized for s personic cruise, the static takeoff inlet recovery would have been 4 percent ower than the VSCE 502B. The 2-D inlet has more throat area variation capability and larger auxiliary doors than the axisymmetric inlet. Thus, the takeoff recovery is actually slightly higher than that for the VSCE 502B/axisymmetric inlet. Performance data at important flight conditions are presented in figures **36** through **38**. The noise calculation procedure was identical to that for the baseline. An exhaust noise reduction of 8 dB at all flight conditions was used due to the coannular noise reduction effect.

Figure 33.- VCE 502B and VCE 112B performance, Mach 0.9, 13 700m (45 000 ft).

Figure 34. - VSCE 502B and VCE 112C installed performance at Mach 2.32, 19 800 m (65 000 ft).

Dimensions in meters (inches)

Figure 35. - VSCE 502B nacelle.

STANDARD + 8° C DAY

Figure 36.- GE21/J10 B1 and GE21/J11 B3 takeoff thrust.

PRECEDING PAGE BLANK NOT FILME

Figure 37.- GE21/J10 B1 and GE21/J11 B3 performance, Mach 0.9, 13,700 in (45 000 ft).

Figure 38. - GE21/J10 B1 and GE21/J11 B3 installed performance at Mach 2.32, 19 800 m (65 000 ft).

The near-cylindrical configuration of this engine penalized the nacelle shape when the required volume for the encapsulated engine accessories package was added (figure 39). The package was shaped to minimize the added cross section. Location of the main mount at the turbine frame forced the engine cowl to be designed as a structural element and added more to the required cross section.

GE21/J11 B3: Relative to the GE21/J10 B1, the GE21/J11 B3 has even higher takeoff airflow and the same supersonic cruise airflow, thus creating a greater takeoff airflow/inlet matching problem. Therefore, the 2-D inlet was used. Because the engine operates without augmentation at takeoff and the exhaust velocities are low, the sideline noise is quite low while the airplane is on the ground (approximately 6 dB below FAR 36 requirements). However, this significantly reduces takeoff thrust (figure 36) and increases engine size to meet takeoff distance requirements. Some thrust cutback is still required at the takeoff noise measurement point. Installed performance is compared to the GE21/J10 B1 in figures 37 and 38.

This engine is similar in configuration to the GE21/J10 B1 except that the main engine mount was located at the compressor midirame. This enabled the cowl to be made nonstructural and reduced somewhat the nacelle maximum cross section. All other details of the engine and inlet lines development for the two engines are identical, as shown in figure 40.

Mass properties. - Weight estimates were made for the four candidate engine installations. The engine weights, including nozzles and thrust reversers, were furnished by the engine manufacturers. Weight increments for residual fluids and miscellaneous engine/airframe interfacing provisions were added to the manufacturer's quoted weights to obtain the installed engine weight. The weight summaries of the engines are presented in tables 19 and 20. The nacelle/inlet weights for these engine installations were calculated from their respective nacelle lines development layout drawings figures 29, 35, 39, and 40. Summaries of the nacelle/inlet weights are shown in tables 21 and 22. The difference in nacelle weights between the PWA VSCE 502B, and VCE 112C engine installations is primarily due to the longer engine cowl length of the VCE 112C installation. For a given inlet capture area, an axisymmetric inlet would weigh less than a 2-D inlet. However, the 2-D inlet/nacelles for the GE GE21/J10 B1 and CE21/J11 B3 are of similar weight as the axisymmetric PWA engine nacelles. This results from the smaller inlet capture areas and engine dimensions of the GE engines.

<u>Aerodynamics</u>.- Normalized cross-sectional area shapes of the four candidate nacelles of this study are presented in figures **41** and **42**. The estimated nacelle incremental skin friction, wave drag, and total drag characteristics

PRECEDING PAGE BLANK NOT FILME

· · · · · · · · · · · · · · · · · · ·	kilograms/Engine					
	Pratt &	Whitney	General Electric			
Engines	VSCE 502B	VCE 112C	GE21/J10 B1	GE21/J11 B3		
Bare engine (including nozzle & thrust reverser)	6077	6191	7280	5964		
Residual fluids	23	23	23	23		
Miscellaneous provisions	23	23	23	23		
Engine as installed	6123	6237	7326	6010		

TABLE 19.- ENGINE WEIGHTS, INTERNATIONAL UNITS

TABLE 20. - ENGINE WEIGHTS, ENGLISH UNITS

	Pounds/e				
	Pratt &	Whitney	General Electric		
Engines	VSCE 502B	VCE 112C	GE21/J10 B1	GE21/J11 B3	
Bare engine (including nozzle ξ thrust reverser)	13 400	13 650	16 050	13 150	
Residual fluids	50	50	50	50	
Miscellaneous provisions	50	50	50	50	
Engine as installed	13 500	13 750	16 150	13 250	

	Kilograms/nacelle				
	Axisym	netric	Two-dimensional		
Nacelle/inlet	VSCE 502B	VCE 112C	GE21/J10 B1	GE21/J11 B3	
Engine cowl	816	1124	706	760	
Inlet cowl	370	365	566	598	
Spike	740	733			
Ramps			517	517	
*Air induction features					
Bypass			49	49	
Auxiliary inlet			50	30	
Secondary air provisions					
Inlet controls			45	45	
Engine mounts	92	93	110	90	
Total nacelle/inlet	2018	2315	2047	2113	
*Included with spike weight in axisymmetric inlets.					

TABLE 21.- NACELLE/INLET WEIGHTS, INTERNATIONAL UNITS

TABLE 22. - NACELLE/INLET WEIGHTS, ENGLISH UNITS

	Pounds/nacelle				
	Axisym	netric	Two-dimensional		
Nacelle/inlet	VSCE 502B	VCE 112C	GE21/J10 B1	GE21/J11 B3	
Engine cowl Inlet cowl Spike Ramps	1798 816 1632	2477 804 1616	1557 1247 1140	1673 1319 1140	
*Air induction features Bypass Auxiliary inlet Secondary air provisions Inlet controls			107 67 53 100	107 67 53 100	
Engine mounts	203	206	242	199	
Total nacelle/inlet	4449	5103	4513	4658	

Figure 41. - VSCE 502B and VCE 112C nacelle cross-sectional area variation.

.

Figure 42.- GE 21/J10 B1 and GE 21/J11 B3 nacelle cross-sectional area variation.

for all of the nacelles are presented in table 23. Included in the table are the incremental drags obtained from the computer table look-up program of the parametric drag analysis results. The differences between the estimated drags and the parametric results are attributed to the following considerations:

(1) The parametric study, which is the basis of data for the table look-up program, was made with a resized wing with the nacelles relocated further inboard and forward in accordance with the ground rules of the study.

(2) The current nacelles deviate from a linear radius connection of the inlet face, maximum area, and nozzle stations.

(3) In some cases, the ratio of the distance to the maximum area to the total length (X_{AMAX}/l) falls outside of the parametric study envelope, thereby requiring extrapolation.

(4) Drag coefficients for intermediate mach numbers are obtained by using a cubic curve fit based on the total drag (CDO) increments at mach 1.2 and 2.32. However, since wave drag does not follow such a simplified solution, interpolated or extrapolated drags will deviate from an estimated value by varying amounts. In the case of the reference nacelle, the deviation was -0.00017 at mach 1.4.

<u>Performance and sizing</u>.- Performance calculated for the aircraft having the four selected propulsion systems installed includes all items as described earlier under "Baseline Airplane Definition." In addition, performance has been calculated for an "economic" mission as described in the following paragraphs. As on the design mission, the economic mission is calculated for a standard-plus-8° C (14.4° F) day.

A profile of the economic mission is shown in figure 43. This mission consists mainly of a mach 2.32 cruise as in the design mission; however, it is preceded by a subsonic climb and cruise totaling 741 km (400 n mi). Fuel reserves are calculated just as in the design mission for an alternate airport located 463 km (250 n mi) beyond the destination airport. The economic mission is an off-design mission in that the airplane, as sized to 7408 km (4000 n mi) range on the design mission, carries a reduced payload equal to 55 percent of the design payload and fuel is then off-loaded to yield a total economic mission range of 4630 km (2500 n mi) plus fuel reserves.

The economic mission consists of the following legs:

(1) Warmup and takeoff - 10 minutes at idle power plus 1 minute at maximum power

1.2 0.00072 -0.00041 0.00031 0.00066 -0.00034 0. 1.4 0.00070 -0.00017 0.00052 0. <td< th=""><th>CD0031 .00035 .00040 .00043 .00044</th></td<>	CD0031 .00035 .00040 .00043 .00044					
1.2 0.00072 -0.00041 0.00031 0.00066 -0.00034 0. 1.4 0.00070 -0.00017 0.00052 0. <td< td=""><td>. 00031 : 00035 . 00040 . 00043</td></td<>	. 00031 : 00035 . 00040 . 00043					
1.4 0.00070 -0.00017 0.00052 0: 1.8 0.00065 -0.00022 0.00043 0. 0. 2.32 0.00060 -0.00018 0.00042 0.00057 -0.00014 0. 2.7 0.00056 -0.00015 0.00041 0. 0.	: 00035 . 00040 . 00043					
1.8 0.00065 -0.00022 0.00043 0.00057 -0.00014 0. 2.32 0.00060 -0.00018 0.00042 0.00057 -0.00014 0. 2.7 0.00056 -0.00015 0.00041 0. 0.	.00040					
2.32 0.00060 -0.00018 0.00042 0.00057 -0.00014 0. 2.7 0.00056 -0.00015 0.00041 0. 0. 0.	.00043					
2.7 0.00056 -0.00015 0.00041 0.						
	.00044					
Basepoint VSCE 502B						
Estimated Parametric						
$\begin{array}{c c} & \Delta^{c}_{\mathbf{D}_{p}} & \Delta^{c}_{\mathbf{D}_{\mathbf{k}}} & \Delta^{c}_{\mathbf{D}_{0}} & \Delta^{c}_{\mathbf{D}_{p}} & \Delta^{c}_{\mathbf{D}_{\mathbf{k}}} & \Delta^{c}_{\mathbf{D}_{\mathbf{L}}} & \Delta^{c}_{\mathbf{D}_{\mathbf{L}}} & \Delta^{c}_{\mathbf{D}_{\mathbf{L}}} & \Delta^{c}_{\mathbf{D}_{\mathbf{L}}} $	۰C ₀₀					
1.2 0.00060 -0.00007 0.00053 0.00055 0.00002 0.	.00057					
1.4 0.00058 0.00011 0.00069						
1.8 0.00054 -0.00004 0.00050 0.	. 00046					
2.32 0.00050 -0.00008 0.00042 0.00049 -0.00007 0.	.00042					
2.7 0.00047 -0.00009 0.00038						
Baseline VSCE 502B						
Estimated Parametric						
$\begin{array}{c c} & \Delta c_{\mathbf{D}_{p}} & \Delta c_{\mathbf{D}_{W}} & \Delta c_{\mathbf{D}_{0}} & \Delta c_{\mathbf{D}_{p}} & \Delta c_{\mathbf{D}_{W}} & \Delta \end{array}$	C _D O					
1,2 0.00058 -0.00009 0.00049 0.00055 0.00002 0.	.00655					
1.4 0.00056 0.00003 0.00059						
1.8 0.00052 -0.00011 0.00041 0.	.00045					
2.32 0.00049 -0.00012 0.00037 0.00047 -0.00005 0.	.00042					
2.7 0.00045 -0.00011 0.00034						
P&W VSCI: 502B (Revised)						
Estimated Parametric						
$\begin{array}{c c} & \Delta c_{\mathbf{b}_{p}} & \Delta c_{\mathbf{b}_{k}} & \Delta c_{\mathbf{b}_{0}} & \Delta c_{\mathbf{b}_{p}} & \Delta c_{\mathbf{b}_{k}} & \Delta \end{array}$	с _{ро}					
1.2 0.00055 0.00014 0.00069 0.00052 0.00021 0.	.00073					
1.4 0.00053 0.00032 0.00085						
1.8 0.00050 0.00011 0.00061 0.	.00053					
	,00046					
2.7 0.00043 -0.00004 0.00039						

TABLE 23. - DRAG COMPARISON

ſ	Estimated Parametric							
M	∆د ₀ ه	∆c _D	∆c _{D0}	۵C _{Dp}	۵C _D	∆c _{D0}		
1.2	0.00045	0.00161	0.00206	0.00049	0.00153	0.00202		
1.4	0.00044	0.00164	0.00208					
1.8	0.00041	0.00097	0.00138			0.00123		
2.32	0.00038	0.00060	0.00098	0.00044	0.00051	0.00095		
2.7	0.00035	0.00043	0.00078					
	GE 21/J11 B3							
	Estimated Parametric							
м	۵C	∆c _D	∆ ¢ ₀	∆c _{Dp}	∆c _{n,}	∆د ₀		
1.2	0,00048	0.00235	0.00283	0.00049	0.00227	0.00276		
1.4	0.00047	0.00223	0.00270					
1.8	0.00044	0.00140	0.00184		1	0.00157		
2.32	0.00040	0.00083	0.00123	0.00044	0.00071	0.00115		
2.7	0,00038	0.00061	0.00099					
			PEW VCE 11	2C				
	Estimated Parametric							
M	∆Հ _{Dp}	∆c _ր ⊮	∆ c ₀	۵¢	∆c _D	∆Հ _{Ս0}		
1.2	0.00056	0.00028	U.00088	0.00057	0.00032	0.00089		
1.4	0.00058	J.00043	0.00101					
1.8	0.00054	0.00017	0.00071			0.00063		
2.32	0.00050	0.00004	0.00054	0.00050	0.00005	0.00055		
2.7	0.00046	0.0000	0.00046					
				L	L			

TABLE 23. - Concluded

GE 21/J10 B1

.

ORIGINAL PAGE IS **DE POOR QUALITY**

Figure 43. · Economic mission profile.

(2) Climb - Maximum power climb to cruise altitude and mach number

(3) Cruise - Subsonic cruise at mach number and altitude for best range

(4) Climb - Maximum power climb and accelerate to cruise altitude and mach number

(5) Cruise - Supersonic cruise at mach 2.32 at altitude for best cruise range

(b) Descend - Descend and decelerate to 457 m (1500 feet) altitude using idle power

(7) Approach and land - Descend to sea level using idle power

(8) Taxi - 5 minutes at idle power

(9) Reserve - Fuel reserves for an alternate airport located 463 km (250 n mi) from destination airport

For each of the four selected propulsion systems, a "basepoint" airplane was developed. This basepoint is similar to the basepoint described earlier, in that it is the NASA reference airplane but with the selected propulsion system installed. This airplane is then scaled using the Vehicle Sizing and Performance Evaluation Program (VSPEP) to yield a baseline airplane. Again, this baseline is similar to the baseline described earlier, in that it is the minimum gross weight airplane that meets all specified performance requirements.

To gain some insight as to what could be expected for each of the four resized airplanes, an engine scale trade was performed on each. The results of these trades are presented in figures 44 and 45 which show design mission range and balanced field length versus engine airflow at sea level static conditions. The gross wing area was maintained constant at 1022 sq m (10 996 sq ft) and airplane gross weight was maintained at that for the basepoint with the first selected propulsion system installed or 377 632 kg (744 350 lb). Results of these trades indicate that the airplanes having the GE21 engines could be expected to result in a higher gross weight to meet the design requirements. In addition the VCE 112C and the GE21/J11 engined airplanes can be expected to pay an engine size penalty to meet the balanced field length requirement thereby increasing the gross weight of those vehicles.

In the case of the first selected propulsion system, which uses a revised VSCE 502B engine installation, sizing was performed maintaining takeoff thrust-to-weight (based on sea-level static installed thrust) at 3.13 n/kg (0.32 lb/lb). Wingloading was then varied and the VSPEP program allowed to search for the

Figure 44. - Design mission range versus engine size.

TOGW = 337 640 kg (744 350 1b)

TOGW = 337 640 kg (744 350 lb) S_{REF} = 969 sq m (9969 sq ft)

Figure 45. - Balanced field length versus engine size.

gross weight yielding 7408 km (4000 n mi) on the design mission. These results were then cross-plotted to obtain the wingloading for a minimum gross weight baseline airplane. Plots of gross weight and balanced field length versus wingloading (based on gross wing area) for a family of airplanes having a design range of 7408 km (4000 n mi) are shown in figure 46. All other performance requirements were easily met.

For the last three selected propulsion systems, it was originally intended to maintain thrust-to-weight at 3.13 n/kg (0.32 lb/lb) and wingloading at that value obtained for the VSCE 502B baseline, which is 345 kg/sq m (70.7 lb/sq ft), and simply scale gross weight to yield the required design range. However, due to considerable differences in thrust lapse rate at takeoff for each engine, this method would not suffice to maintain balanced field length near the required distance. For this reason, the thrust-to-weight was varied in each of the last three cases while maintaining wingloading constant at 345 kg/sq m. Plots of gross weight and balanced field length versus thrust-to-weight ratio are presented in figures 47 through 49 for families of airplanes having a design mission range of 7408 km (4000 n mi.).

Airplane characteristics for both the basepoint and the resized baseline vehicles are presented in tables 24 through 27 for each of the four selected propulsion systems. Design mission summaries are shown for each baseline airplane in tables 28 through 35.

Performance for each baseline airplane was also calculated for the economic mission. Payload for this mission was 55 percent of that carried on the design mission or 15 256 kg (33 565 lb). Fuel was then off-loaded from the baseline to yield 4630 km (2500 n mi.) on the economic mission. Characteristics of each of the four baseline airplanes on the economic mission are shown in tables 36 through 39.

The results of the economic mission were used to compute direct operating cost (DOC) and return on investment (ROI) for the VSCE S02B and the VCE 112C. The DOC and ROI calculations were supplied by Pratt and Whitney Aircraft and are presented in table 40. Input to the DOC and ROI calculations included the following airplane and mission data supplied by Rockwell: airframe weight, engine weight, mission fuel, TOGW, block time, and engine design thrust. These data are included for each of the four airplanes in tables 36 through 39. Economic ...ission summaries for each baseline airplane are presented in tables 41 through 48.

<u>Sensitivity method verification</u>.- To verify that the sensitivity method of determining aircraft takeoff gross weights is valid for preliminary studies, takeoff gross weights were estimated using the sensitivities for the four engines. These results were then compared with the results of the detailed

Figure 49.- Sizing with GE21/J11 B3 engines.

nt	Baseline	
(900) (0.3199)	387 (3.13 (854) 0.320)
(9969) (10996) (67.69)	841 (927 (345 (9049) 9981) 70.71)
(349 835) 1	148 772 (32	95 790) 27 986) 96 966)
(4109) (3538)	7410 (6384 (4001) 3447)
(8645) (10 092)	2741 (3197 (1	8991) .0 489)
1.921 1.937		1.899 1.930
9,626	1 700 (9.566
(9.626

TABLE 24. - AIRPLANE CHARACTERISTICS WITH REFINED VSCE 502B ENGINES

TABLE 25. - AIRPLANE CHARACTERISTICS WITH VCE 112C ENGINES

	Base	point	Base	eline
Engine airflow, kg/sec (lb/sec)	408	(900)	600	(1323)
Thrust-to-weight, N/kg (lb/lb)	2.94	(.3004)	3.64	(.372)
Reference wing area, sq m (sq ft)	926	(9969)	1057	(11 380)
Gross wing area, sq m (sq ft)	1 022	(10 996)	1166	(12 552)
Wing loading (gross area), kg/sq m (lb/sq ft)	332	(68.02)	345	(70.7)
TOGW, kg (1b)	339 272	(747 966)	402 618	(887 622)
Fuel weight, kg (1b)	158 683	(349 835)	190 934	(420 938)
Max wing fuel, kg (1b)	208 222	(459 050)	253 954	(559 863)
Design range, km (n mi)	7419	(4006)	7410	(4001)
Eng out range, km (n mi)	6504	(3512)	6434	(3472)
Normal T.O. dist m (ft)	3341	(10 960)	2715	(8907)
Bal field length, m (ft)	3957	(12 982)	3206	(10519)
Thrust-to-drag at 2.32 M/18 300 m (60 000 ft) Thrust-to-drag at 1.2 M/climb		1.220 1.730		1.483 2.050
Initial cruise L/D Initial cruise SFC (installed) kg/hr/daN (1b/hr/1b)	1.470	9.605 1.442	1.491	9.601 (1.462)

	Base	point	Baseline .		
Engine airflow, kg/sec (lb/sec)	340	(750)	624	(1375)	
Thrust-to-weight, n/kg (lb/lb)	2.71	(.2769)	3.31	(.338)	
Reference wing area, sq m (sq ft)	926	(996 9)	1351	(14 540)	
Gross wing area, sq m (sq ft)	1022	(10 996)	1490	(16 038)	
Wing loading (gross area), kg/sq m (lb/sq ft)	335	(68.68	345	(70.71)	
TOGW, kg (1b)	342 556	(755 206)	514 441	(1 134 149)	
Fuel weight, kg (1b)	158 683	(349 835)	255 446	(563 161)	
Max wing fuel, kg (1b_	208 222	(459 050)	366 785	(808 622)	
Design range, km (n mi)	5045	(2724)	7410	(4001)	
Eng out range, km (n mi)	4939	(2667)	6295	(3399)	
Normal, T.O. dist m (ft)	3348	(10 983)	2736	(89 77)	
Bal field length, m (ft)	3909	(12 823)	3197	(10 490)	
Thrust-to-drag at 2.32 M/18 300 m (60 000 ft)		1.084		1.286	
Thrust-to-drag at 1.2 M/climb		1.235		1.694	
Initial cruise L/D		8.923		9.514	
Initial cruise SFC (installed) kg/hr/daN (lb/hr/lb)	1.568	(1.538)	1.457	(1.429)	

TABLE 26. - AIRPLANE CHARACTERISTICS WITH GE21/J10 B1 ENGINES

TABLE 27	AIRPLANE	CHARACTERISTICS	WITH	GE21/J11	B3	ENGINES
----------	----------	-----------------	------	----------	----	---------

	Base	point	Baseline		
Engine airflow, kg/sec (lb/sec) Thrust-to-weight, n/kg (lb/lb)	381 2.16	(840) (.2210)	1093 3.33	(2409) (.340)	
Reference wing area, sq m (sq ft)	926	(9969)	1653	(17 787)	
Gross wing area, sq m (sq ft)	1022	(10 996)	1823	(19 619)	
Wing loading (gross area), kg/sq m (lb/sq ft)	330	(67.68)	345	(70.71)	
TOGW, kg (1b)	337 557	(744 186)	6i ·	(1 387 359)	
Fuel weight, kg (1b)	158 683	(349 835)	312 330	(688 569)	
Max wing fuel, kg (1b)	204 139	(450 050)	496 237	(1 094 016)	
Design range, km (n mi)			7412	4002)	
Eng out range, km (n mi)			6245	(3372)	
Normal T.O. dist m (ft)*			2706	(8878)	
Bal field length, m (ft)			3205	(10 515)	
Chrust-to-drag at 2.32 M/18 300 m (60 000 ft)				1.511	
Thrust-to-drag at 1.2 M/climb				2.078	
Initial cruise L/D				9.412	
Initial cruise SFC (installed) kg/hr/daN (1b/hr/1b)			1.447	(1.419)	

.

TABLE 28. - REFINED VSCE 502B BASELINE DESIGN MISSION SUMMARY, INTERNATIONAL UNITS

.

LEG ND.		WEIGHT KG.	ALTITUDE METERS	MACH NO.	FUEL USED Kg.	TIME MIN.	TOTAL TIME MIN.	R ANGE MI.	TOTAL RANGE KM.
<u> </u>	INITIAL WEIGHT	320140.9							
1 2 3	WU & TO	316337.4	0.0	0.299	3803.4	10.000	10.000	9.0	0.0
2	CL T015C	314196.4	457.2	2 0.500	2141.1	1.337	11.337	10.72	10.72
3	CLB-ACC	290050.4	17221.9	3 2.320	24146.0	12.525	23.862	287.30	298.02
4	CRUISE	238657.2	18402.3	2.320	51393.2	81.462	105.324	3407.20	3705.22
5	CRUISE .	195887.7	19756.2	2 .3 20	42769.4	60.963	186,288	3386.35	7091.57
6	DESCEND	194324.4	457.2	2 0.500	1563.4	17.680	203. 967	305.49	7397.02
_7	DE S-LAND	1940 84 .7	0.0	0.300	239.6	1.607	205.574	13.43	7410-45
8	TAX I-ALL	193449.6	0.0	0.0	635.2	5.000	210.574	0.0	7410.45
9	SPCT ALL	187114.9	0.0	0.0	6334.6	0.0	210.574	0.0	7410.45
10	CLT0 15C	186529.2	457.2	2 0.500	585.8	0.739	211.313	5.66	7416.11
11	CLB-ACC	181900.4	11990.1	0.900	4628.8	8.236	219.549	124.09	7540.20
12	CRUISE	179047.9	12092.4	0.900	2852.4	13.521	233.071	219.39	7759.59
13	DESCEND	178189.5	3048.0	0.466	858.5	9.375	242.446	119.41	7879+10
× 14	LOITER	171402.2	3048.0	0.454	6287.3	30 .000	272.446	0.0	7879.00
15	DE S-LAND	171359.3	0.0	0.300	542.8	3.877	276. 323	35.09	7914.05
			TOTAL FU	JEL USED=	148781.2				

--

TABLE 29.- REFINED VSCE 502B BASELINE DESIGN MISSION SUMMARY, ENGLISH UNITS

	NASA CR-1 Lents bas			FIG. WITH V =.32 W/3	SCE 5028- S=78.	OZ ENGINES RDES-+000	NO	
OPERATION	WE IG HT POUNDS	ALTITUDE	MACH NO.	FUEL USED Pounds	TIME MIN.	TOTAL TIME MIN.	RÀNGE N. M.	TOTAL RANGE No Mo
INITIAL WEIGHT	705789.9					·• • •	r - gan i - alli siggirrigin gris ishinga	
WU & TO	697404.8	0.0	0 •2 99	8385.1	10.000	10.000	0.0	0.0
CL T015C	692684.6	1500.0	0.500	4720.2	1.337	11.337	5.79	5.79
CLB-ACC	639451.8	56500.9	2.320	53232.7	12.525	23.862	155.13	140.92
CRUISE	526149.2	60374.9	2.320	113302.6	81.462	105.324	1039.71	2000.62
CRUISE	431858.7	64816.8	2.320	94290.5	80.963	186.288	1028.45	3829.08
DESCEND	428411.9	1500.0	0.500	3446.7	17.680	203.967	1.64.93	3994.00
DES-LAND	427883.7	0.0	0.300	528.2	1 -607	20 5. 574	7.25	4001.25
TAXI-ALL	426483.3	0.0	0.0	1400.4	5.000	210.574	0.0	4001.25
SPCT ALL	412517.4	0.0	0.0	13965.4	0.0	210.574	0.0	4001.25
CLT0 15C	411226.6	1500.0	0.500	1291.4	0.739	211.313	3,04	4004.31
CLD-ACC	401021.7	39337.6	0.900	10204.8	8.236	219.549	67.00	4071-31
CRUISE	394733.2	39673.3	0 .900	6288.6	13.521	233.071	118.46	4189.77
DESCEND	392840.6	10000.0	0 •4 66	1892.6	9.379	242.446	64.4 <u>8</u>	4254.24
LOITER	378979.5	10000.0	0.454	13861.1	30.000	272.446	0.0	4254.24
DE S-LAND	377782.7	0.0	0.300	1196.7	3.877	276.323	18.93	4278.17

TOTAL FUEL USE D= 328007.1

LEG NÚ.

TABLE 30. - VCE 112C BASELINE DESIGN MISSION SUMMARY, INTERNATIONAL UNITS

	LEG NO.	OPERATION	WEIGHT Kg.	ALTITUDE METERS	MACH NO.	FUEL USED KG.	TIME MIN.	TOTAL TIME MIN.	RANGE KM.	TOTAL RANGE
3		INITIAL WEIGHT	402618.3							
OPTOINAL	1	WU & TO	398212.2	0.0	0.299	4406.2	10.000	10.000	0.0	0.0
JAL	2	CL T015C	396092.0	+57.2	0.500	2120.1	1.334	11.334	10.60	10.60
	3	CL B-ACC	370960.4	18063.5	2.320	25131.6	12.991	24.324	320.56	331.16
PAGE	4	CRUISE	301 835.9	19578.5	2.320	69124.4	80.672	104.996	3374.17	3705.33
5	5	CRUISE	244642.1	21247.6	2.320	57193.9	81.124	146.120	33 97.49	7102.82
	6	DE SC END	242332.6	457.2	0.500	2309.5	16.797	202.917	295.10	7397.91
	7	DE S-LAND	241980.9	0.0	0.300	351.7	1.523	204.440	12.82	7410.73
	8	TAXI-ALL	240996.6	0.0	0.0	984.3	5.000	209.440	0.0	7410.73
	9	SPCT ALL	232915.6	0.0	0.0	8081.1	0.0	209.440	0.0	7410.73
	10	CL TO 15C	232263.8	457.2	0.500	651.7	0.619	210.059	4.78	7415.51
	11	CL B-ACC	226368.2	12684.3	0.900	5895.6	9.457	219.516	1 30.89	7546.40
	12	CRUISE	222708.3	12798.6	0.900	3660.0	13.063	232.579	211.96	7758.35
	13	DESCEND	221396.2	3048.0	0.442	1312.0	9.346	241.925	120.16	7878.52
	14	LOITER	212458.7	3048.0	0.432	8937.6	30.000	271.925	0.9	7878.52
	15	DE S-LAND	211690.4	Ó, O	0.300	768.3	3.533	275.458	31.74	7910.25
						100027 6				

TOTAL FUEL USED= 190927.5

TABLE 31. - VCE 112C BASELINE DESIGN MISSION SUMMARY, ENGLISH UNITS

LEG MD.	OPERATION	WE I GHT POUNDS	ALTITUDE FETT	MACH NO.	FUEL USED POUNDS	TIME Min.	TOTAL TIME Min.	RANGE N. M.	, TDTAL RANGE N. M.
	INITIAL WEIGHT	887621.6							
L	0T 3 UW	877907.6	0.0	0.299	9713.9	10.000	10.000	0.0	0.0
2	CL T015C	873233.5	1500.0	0.500	4674.1	1.334	11.334	5.73	5.73
3	CL B-ACC	817827.9	59263.7	2.320	55 405 . 6	12.991	24.324	173.09	178.81
4	CRUISE	£65434.4	64562.1	2.320	152393.4	80.672	104.996	1821.87	2000.68
5	CRUISE	539343.6	69710.1	2.320	126090.9	81.124	186.120	1834.47	3635.15
6	DESCEND	534252.1	1500.0	0.500	5091.5	16.797	202.917	159.34	3994.49
7	DE S-LAND	533476.7	0.9	0.300	775.3	1.523	204.440	6.92	4001-41
8	TAXI-ALL	531306.7	0.0	0.0	2170.1	5.000	209.440	0.0	4001-41
9	SPCT ALL	513490.9	0.0	0.0	17815.7	0.0	200.440	0.0	4001.41
10	CL TO 15C	512054.2	1500.0	0.500	1436.7	0.619	_10.059	2.58	4003.99
11	CL B-ACC	499056.6	41515.1	0.900	12997.6	9.457	219.516	70.67	4074.66
12	CRUESE	490987.8	41990.3	0.900	8068.5	13.063	232.579	114.45	4189.11
13	DESCEND	488095.2	10000.0	0.442	2892.6	9.346	241.925	64.88	4253.98
14	LOITER	468391.3	10000.0	0.432	19703.9	30.000	271.925	0.0	4253.98
15	DE S-LAND	466697.6	0.0	0.300	1693.7	3.533	275.458	17.14	4271.12

TOTAL FUEL USED= 420924.0

TABLE 32. - GE21/J10 CONSELINE DESIGN MISSION SUMMARY, INTERNATIONAL UNITS

676 60.	OPERATION	WEIGHT KG.	ALTITUDE METERS	MACH NU.	FUFL USED KG.	TIME MIN.	TOTAL TIME Min.	RANGE KM .	TOTAL RANGE
	INITIAL WEIGHT	5]444].3				··· aranifra k.a			
1	NU E TO	5-9639.1	Ú.,	0.299	4802,2	10.000	10.000	0.0	0.0
÷	6L T035L	526022.2	457.2	0.50°	3016.5	1.280	11.280	10.16	10.16
ò	CLE-ACC	401065.2	17538.4	2.320	44954	15.868	30.148	477.15	487.31
4	CRU15E	380125.0	18715.0	2.320	81542.7	76.936	107.084	3217.88	3705.19
•	CRUISE	308672+2	14901.2	2.320	71453.3	80 • 82 7	187.911	3380.66	7085.85
6	TESCENL	326396.3	457.2	0.50)	2575.4	18.055	205.465	310.60	7396.45
7	DES-LAND	355760.4	0.0	0.301	395.8	1.649	207.614	13.94	7410-38
3	TAXI-ALL	364077+4	د.0	0.0	1923.2	5.000	212.014	0.0	7410.38
4	SPCT ALL	294189.0	ñ	0.0	10488 . 2	0.0	212.614	0.0	7410.38
1 -	CLT0 15C	293079.0	457.2	0.500	1109+5	0.492	213.106	3.84	7414.22
1	CLL-ACE	279368.5	17288.5	0.950	13711.0	10.597	223.612	190.12	7604.34
12	CRUISE	2 77377. 4	17280.0	0.950	1991.1	6.302	229.974	108.96	7713.30
14	DESCEND	275000+0	3048.0	0.348	1710.в	12.119	242.089	163.93	7877.23
14	LUITER	259781.c	3048.0	0.350	15885.0	30 . 000	272.084	0.0	7871.23
15	125-LAND	258988.7	a.t	0.300	792.9	3.480	275.569	36.86	7908.09
			TUTAI, FL	ILL USE (=	255452 • 1				

· ···

TABLE 33. - GE21/J10 B1 BASELINE DESIGN MISSION SUMMARY, ENGLISH UNITS

LFG ND.	UPERATION	WE IGHT POUNDS	ALTITUI+ FEET	MACH NU.	FUEL USEL POUNDS	TIME Min.	TOTAL TIME MIN.	KANGE N. M.	TUTAL RANGE N. M.
	INITIAL WEIGHT	1134149.0							
1	WU & TO	1123562.0	¢.	5 0 .244	1 6587. Ú	10.000	10.000	6.0	Ú. O
2	CL 1615C	1116911.3	1507.4	a.sot	6651.0	1.280	11.285	5.48	5.45
3	CLB-ACC	1017604.3	57540.	2.320	99106.7	10.000	30.148	257.04	203.12
4	CRUISE	838733.4	01384.	7 2.320	174776.4	76 .430	107.084	1737.44	2600.61
5	CRUISE	680505.7	65292.0	2.320	157527.7	80 -827	187,411	1825.38	3825.99
6	DESCEND	674826.9	1507.	0.50)	5678.4	18.055	205.465	167.71	3493.69
7	DES-LAND	u73454.2	0.0	0.305	872.7	1.049	2. 1.614	7.52	4001.22
8	TAX I-ALL	671648.4	و ت	0.0	2255.7	5.000	212.614	0.0	4001.22
9	SPCT ALL	648575.9	0.0	0.0	23122.6	6 . í	212.014	0.0	4001.22
10	CLT0 15C	6461 <i>2</i> 4 •4	1500.	0.5 63	2446.0	0 .492	213.106	2.07	4603.29
1.	CLB-ACC	615902.2	56721.1	9 -9 50	30227.7	10.507	223.012	102.60	+105.45
12	CHUISE	611512.6	56714.	7 3.955	4389.0	6.362	224.974	50.63	4104.77
15	LISCEND	60 7741. 6	10000-0	0 .3 mls	3771.c	12.115	242.089	88.51	425 3.2 4
14	LOITER	572720.5	10000.0	0.350	35520.5	30000	272.084	6.0	4253.24
15	UES-LAND	570972.0		3.3U	1747.4	3.480	275.569	10.00	4264.95
. jao. 1.			TOTAL F	UFL USEI=	503176.4				

118

TABLE 34. - GE21/J11 B3 BASELINE DESIGN MISSION/SUMMARY, INTERNATIONAL UNITS

1 į

LEG NO+	OPERATION	WE IGHT KG.	ALTITUDE METERS	MACH NO.	FUEL USED	TIME Min.	TOTAL TIME " MIN.	RANGE MA .	TOTAL RANGE KH.
	INITIAL WEIGHT	629295.4			1996 - 19 9 4 - 1				
2	WU & TO	622324.6	0.0	0.299	6970.8	10.000	10.000	0.0	0.0
2	CL T015C	619027.4	457.2	0.500	3297.2	0.914	10.914	7.04	7.04
3	CLB-ACC	573152.9	18712.9	2.320	45874 . 5	12.897	83-811	721-91	221.75
4	CRUISE	467000.2	20118.3	2 •3 20	105887.3	80 - 733	104.544	3876.88	3795.43
5	CRUISE	378848.1	21470.4	2.320	87886.7	81 -401	185.945	3410.19	7119.56
6	DESCEND	374795.3	457.2	0.500	4052.5	16.131	202.046	202-01	7376.37
7	DES-LAND	374172.1	0.0	0.300	623.3	1 -483	203.579	12.47	7416.85
8	TAX I-AL L	372379.6	0.0	0.0	1742.4	5.000	208.579	•	7410.85
9	SPCT ALL	359560.4	0.0	0.0	12819,3	0.0	208.574	0.0	7420.00
10	CLTO 15C	358252.1	457.2	0.500	1308.3	0.340	208. 919	2.96	7423.45
11	CLB-ACC	347471.4	14352.7	0.950	10780.2	5.438	214.397	87.67	7901.00
12	CRUISE	340263.0	14535.0	0.450	7208.8	14.055	228.418	240.74	7792.005
13	DESCEND	337646.0	3048.0	0.320	2616.5	10.351	238.744	134.59	7876.41
14	LOITER	318150.9	3048.0	0.304	19495.0	30.000	268.764	0.0	7876.41
15	DES-LAND	316980.6	0.0	0.300	1170.5		271.686	29,90	
			TOTAL FU	EL USED.	312314.8			. J. The sus bar branch	

••

:

TABLE 35. - GE21/J11 B3 BASELINE DESIGN MISSION SUMMARY, ENGLISH UNITS

LEG NO.	OPERATION	WE IGHT POUNDS	ALTITUCE FEET	MACH NO.	FUEL USED Pounds	TIME Min.	TOTAL TIME Min.	RANGE N. M.	TOTAL RANGE N. M.
	INITIAL WEIGHT	1387359.0	•.						
_1	WU & TO	1371441.0		0.299	15368.0	10.000	10.000	0.0	0.0
2	CL T015C	1364722.0	15/0.0	0.500	7269.0	0.914	10.914	3.80	3.80
3	20A-813	1263586.0	61394.0	2.320	101136.0	12.897	23.811	173.60	177.40
	CRUISE	1029559.3	66005.1	2.320	233441.7	80.733	104.544	1823.34	2000.74
5	CRUISE	835217.1	70441.0	2.320	193757.2	81.401	185.945	1841.30	3842.04
	DESCEND	826282.2	1500.0	0.500	8934.9	10.151	202.096	192.70	3994.74
7	DE S-LAND	824908.2	0.0	0.300	1374.1	1.483	203.579	6.73	4001.47
8	TAXI-ALL	820956.6	0.0	0.0	3952.6	5.000	208.579	0.0	4001.47
•	PCT ALL	792694.9	0.0	0.0	28261.7	0.0	208.579	0.0	4091.47
10	CL TO 15C	789810.6	1500.0	0.509	2884.4	0.340	208.414	1.38	4002.86
11	CLB-ACC	766043.2	47089.1	0.4 50	23766.3	5.430	214.357	47.34	4050.20
12	CAUISE	750151.6	47686.9	0.950	15892.7	14.056	228.413	129.99	4180.18
13	DESCEND	744332.1	10000.0	0.320	5768.4	10.351	238.744	72.67	4292.89
14	LOITER	701402.7	19000.0	0.304	42980.4	30.000	268.764	0.0	4252.05
15	DES-LAND	698822.7	0.0	0.300	2580.1	2.921	271.484	13.01	4266.66
			TOTAL FU	EL USED=	688536.3				

120

.

TABLE 36. - ECONOMIC MISSION CHARACTERISTICS WITH REFINED VSCE 502B ENGINES

~

	Baseline				
TOGN, kg (1b)	254 141	(560 284)			
fuel weight, kg (lb)	95 229	(209 943)			
Design range, km (nmi)	4630	(2500)			
Far 36 T.O. dist m (ft)	1753	(5750)			
Bal field length, m (ft)	2081	(6826)			
Airframe weight, kg (1b)	112 768	(248 611)			
Engine weight, kg (Ib)	23 128	(50 988)			
Mission fuel weight, kg (lb)	76 501	(168 655)			
Block time, min (min)		(167)			
Engine thrust, n (1b)	251 160	(56 463)			

TABLE 37. - ECONOMIC MISSION CHARACTERISTICS WITH VCE 112C ENGINES

	Base	ine		
TOGN, kg (1b)	320 966	(707 608)		
Fuel weight, kg (1b)	121 739	(268 390)		
Range, km (nmi)	4630	(2500)		
Far, 36 T.O. dist m (ft)	1724	(5656)		
Bal field length, m (fi)	2070	(6794)		
Airframe weight, kg (1b)	138 186	(304 645)		
Engine weight, kg (1b)	37 932	(83 626)		
Mission fuel weight, kg (1b)	96 639	(213 048)		
Block time, min (min)		(167)		
Engine thrust, n (1b)	367 178	(82 549)		

TABLE 3	8	ECONOMIC	MISSION	CHARACTERISTICS
	WITH	GE21/J10) bi enc	INES

	Baseline				
TOGW, kg (1b)	417 609	(920 670)			
Fuel weight, kg (1b)	171 070	(377 144)			
Design range, km (nmi)	4630	(2500)			
Far 36 T.O. dist m (ft)	1816	(5959)			
Bal field length, m (ft)	2159	(7083)			
Airframe weight, kg (1b)	166 931	(368 020)			
Engine weight, kg (1b)	56 360	(124 253)			
Mission fuel weight, kg (1b)	130 675	(288 088)			
Block time, min (min)		(169)			
Engine thrust, n (1b)	426 300	(95 836)			

TABLE 39. - ECONOMIC MISSION CHARACTERISTICS WITH GE21/J11 B3 ENGINES

	Baseline					
TOGN, kg (1b)	519 218	(1 144 680)				
Fuel weight, kg (1b)	214 709	(473 353)				
Design range, km (nmi)	4630	(2500)				
Far 36 T.O. dist, m (ft)	1855	(6087)				
Bal ficld length, m (ft)	2232	(7323)				
Airframe weight, kg (1b)	207 300	(457 018)				
Engine weight, kg (1b)	73 812	(162 728)				
Mission fuel weight, kg (1b)	162 334	(357 880)				
Block time, min (min)		(166)				
Ergine thrust, n (1b)	524 557	(117 925)				

	VSCE 502B	VCE 112C				
Direct operating cost,						
cents/seat statute mile	2.17	2.73				
Indirect operating cost,						
cents/seat statute mile	0.91	0.98				
Return on investment, {	20.2	11.0				
A						
Assumptions:						
1. 1974 dollars						
2. 1967 ATA DOC model updated	to 1974					
3. Lockheed California Co. 10	C model					
 Lockheed California Co. IOC model 4000 hours annual utilization 15-year life Fuel cost of 35 cents per gallon 						
5. 15-year life						
6. Fuel cost of 35 cents per	gallon					
1 0						
7. Revenue of 8.5 cents per p	assenger statute mile					
 Revenue of 8.5 cents per p S5 percent load factor 	assenger statute mile					
	assenger statute mile					

.

TABLE 40. - DOC, IOC, AND ROI

TABLE 41. - VSCE 502B BASELINE ECONOMIC MISSION SUMMARY, INTERNATIONAL UNITS

LEG ND.	OPERATION	WE IGHT KG.	ALTITUDE METERS	MACH NC.	FUEL USED KG.	TIME Min.	TOTAL TIME Min.	RANGE KM.	TOTAL RANGE
	INITIAL WEIGHT	254146.6						· • · · · · · · · · · · · · · · · · · ·	
1	WU 6 TO	250337.2	0.0	0.299	3803.4	10.000	10.000	0,0	0.0
2	CL/1500	245074.7	457.2	0.500	1262.5	0.849	10.849	6.71	6.73
3	CL 1MP	242143.7	10040.1	0.900	6931.0	3.524	14.373	48.12	54.85
4	CRUISF	230545.3	10411.0	0.900	11598.4	41.802	2 56.174	685.97	740.81
5	CL/ACCEL	220048.7	18950.7	2.320	10496.6	5.661	61.841	162.34	903.16
6	CRUISE	180043. \$	20397.5	2.320	43004.8	81.574	143.417	3413.21	4316.36
7	DESCEND	178512.9	457.2	0.500	1531.0	17.303	160.720	300.22	4616.58
8	DES/LAND	178275.1	0.0	0.300	237.7	1.596	162.316	13.45	4630.03
9	TAXT	177639.9	0.0	0.0	635.2	5.000	167.316	0.0	4630.03
10	ST PFS.	173814.5	0.0	0.0	3825.0	0.0	167.316	0.0	4630.03
11	CL/1500	173289.6	457.2	0.500	525.3	0 • 66 2	167.978	5.07	4635.10
12	CL/ACCEL	168790.1	12497.3	0.900	4499.5	8.594	176.573	129.76	4764.86
13	CRUISE	166235.4	12594.8	0.900	2550.7	12.975	189.548	210.53	4975.38
14	CESCEND	165367.9	3048.0	0+450	871.5	9.597	199.145	122.73	5098.11
15	LOITER	15943 6. 6	3048.0	0 . 4 40	5929+2	30 . 000	229.145	0.0	5048.11
16	CES/LAND	158516.4	0.0	0.300	522.3	3.724	232.869	33.51	5131.42
			TOTAL FU	IFL USED=	95223.7				

TABLE 42. - VSCE 502B BASELINE ECONOMIC MISSION SUMMARY, ENGLISH UNITS

	LEG ND.	OPERATION	WE IGHT POUNDS	ALTITUDE FEET	MACH NC.	FUEL USED POUNDS	TIME PIN.	TOTAL TIME MIN+	RANGE Nø Mø	TOTAL PANGE
		INITIAL WEIGHT	56 C2 84. 1							
	1	WU & TO	551899.1	0.0	0.299	8385.1	10.000	10.000	0.0	0.0
	2	CL/1500	549115.8	1500.0	0.500	2783.2	0.849	10.849	3.63	3.63
	3	CLIMB	533825.6	32939.8	0.900	15280.2	3.524	14.373	25.98	29.61
	4	CRUISE	508265.4	34156.7	0.900	25570.2	41.802	56.174	370.39	400.00
2	5	CL/ACCEL	485124.5	62174.3	2.320	23140.9	5.667	61.841	87.66	487.64
	6	CRUISE	396928.5	66920.9	2.320	89195.6	81.576	143.417	1842.95	2330.61
	7	DESCEND	393553.6	1500.0	0.500	3375.4	17.303	160.720	162.10	2492.71
	8	DES/LAND	393029.4	0.0	0.300	524.1	1.596	162.316	7.26	2499.97
	9	TAXI	391629.1	0.0	0.0	1400.4	5.000	167.316	0.0	2499.97
	10	5% RES.	383194.3	0.0	0.0	8432.7	0.0	167.316	0.0	2499.97
	11	CL / 1 500	382038.2	1500.0	0.500	1158+1	0.662	167.978	2.74	2502.71
	12	CL/ACCEL	372118. e	41001.6	0.900	9919.7	8.594	176.573	70.06	2572.77
	13	CRUISE	366495.1	41321.5	0.900	5623.4	12.975	189.548	113,67	2686.45
	14	DESCEND	364573.9	10000-0	0.450	1921+2	9.597	199.145	66.21	2752.72
	15	LOITER	351502.1	10000.0	0.443	13071.7	30.000	229.145	0.0	27 52 . 72
	16	DES/LAND	350356.7	0.0	0.300	1151.4	3.724	232.869	18+09	2770.81

TOTAL FUEL USEC= 209933.4

TABLE 43. - VCE 112C BASELINE ECONOMIC MISSION SUMMARY, INTERNATIONAL UNITS

LEG NO+	UPERATION	WF1GHT Kg.	ALTITUDE METERS	MACH NO.	FUFL USFU KG.	TIME MIN.	TOTAL TIME MIN.	R AN G E KM .	TOTAL RANGE
	INITIAL WEIGHT	320965.7							
1	WU & TO	316559+6	. 5.0	0.299	4406 . 2	10.000	10.900	0.0	0.0
2	CL/1501	315299.3	457.2	2.5 00	1267.2	2.805	10.805	6 .+(6.40
3	CLIMB	308744.2	19627.0	0.900	6505.1	3.411	14.217	45.49	52.35
4	CRUISE	242480-3	11294.8	0.960	15814.9	42.313	56.530	688.46	740.81
5	CL/ACCEL	281337.4	20226.*	2.320	11649.4	6 •256	62.786	195.19	935.96
6	CRUISF	227975.5	21726.3	2.325	53415.5	80 .944	143.729	3392-30	4328.32
7	DESCEND	225662.4	457.2	0.500	2263.1	16.44*	169.175	289.7	4618.07
P	DE SZLANU	225313.1	0.0	0.300	344.4	1.514	161.089	12.72	4630.74
4	TAXI	724328 • 7	£i•0	0.0	984.3	5.000	160.684	0.0	4630.74
16	58 RES.	214440.8	0 .C	0.0	4831.9	U • 7	166.689	Ú•Q	4630.79
11	CL/1521	216896.4	457.2	3.5:0	601.04	3.570	167.259	4046	4635.19
12	CL/ACCEL	213294.7	13076.8	0.935	5001.0	9.226	176.485	127.26	4762.45
13	CRUISE	204811.7	13192.4	0.900	3483.0	13.164	189.649	213.59	4976.04
14	DESCEND	208485.1	3048.0	0.478	1323.6	9.481	199.132	122.01	5048.11
15	LOTTER	199407.3	3048.0	0.418	8520.8	30.000	229.132	Ŭ•Ū	5,98.11
10	DES/LAND	199226.1	0.0	0.37	741.2	3.4:4	232.536	30.45	5128.55

TOTAL FUEL USED= 121734.4

•

126

TABLE 44. - VCE 112C BASELINE ECONOMIC MISSION SUMMARY, ENGLISH UNITS

LFN NØ+	UPERATION	WE IGHT POUNTIS	ALTITUDE FEET	MACH NU.	FUEL USED PCUNDS	TIME MIN.	TOTAL TIME MIN.	R AN GE N. M.	TOTAL RANGE N. M.
	INITIAL WEIGHT	777628.4							, synderssander føret. Som er en en en en en er en
1	NU & 10	c,47844.4	n	0.249	9713.9	19.000	10.000	6.9	9.0
2	CL/1500	645316.1	1500.1	0.5 11	2778.4	n •909	10.805	3.40	3.40
з	CL TMF	682774.3	34865.5	0.90*	14341.2	3 •411	14.217	24.61	28.27
4	CRUISE	645411.1	37056.3	ار وي	34863.7	42.313	56. 532	371.73	+9 ù -00
4	CL/ACCEL	620229.6	66360.0	2.320	25682.4	6.256	62.786	105.37	505.37
6	CRUISE	502489.7	71274.5	2.320	117738.9	80.944	143.729	1831.70	2337.06
7	DESCEND	497560.4	1500.0	0.502	4989.3	16.445	160.175	156.45	2493.51
5	UE S /L ANII	496730.2	0.0	0.305	770.2	1.514	161.689	6.87	2560.38
9	TAXI	444560.1	0.0	0.0	2170.1	5.000	166.689	¥.0	2500.38
10	58 RFS.	483917.7	0.1	0.0	10652.4	0.0	166.689	0.0	2500.38
11	CL/1560	482583.9	1500-0	0.500	1323.7	0.570	167.259	2.30	2 502.76
12	CL/ACCEL	470234.4	42909.3	0.900	12349.5	4 .226	176.485	68.72	2571.48
13	CRUISE	462555.7	43282.3	0.933	7678.7	13.164	189.649	115.33	2686,80
14	UESCEND	459637.7	10000.0	0.428	2918.Ŭ	4.483	199.132	65.41	2752.71
15	LOITER	440852.5	10000.1	0.418	18785.2	30.000	229.132	0.0	2752.71
16	DESILAND	439218.4	0.(0.300	1634.1	3 .404	232.536	16.44	2769-15
			TOTAL FU	JEL USED=	268390.0				

TABLE 45. - GE21/J10 B1 BASELINE ECONOMIC MISSION SUMMARY, INTERNATIONAL UNITS

LEG Nû.	OPERATION	WEIGHT KG.	ALTITUDE METERS	PACH NC.	FLEL USED KG.	TIME PIN.	TOTAL TIME Min.	RANGE KM.	TOTAL RANGE
	INITIAL WEIGHT	4176C5.C				• • •	u long na li long an li long an		
1	WU & TO	412867.1	C.0	G. 299	4801.8	10.000	10.000	0.0	0.0
2	CL/1500	410924.7	457.2	0.500	1862.4	0.805	10.805	6.38	6.38
3	CLIMB	399927.5	10355.3	0.900	10997.3	4.033	14.838	56.32	62.71
4	CRUISE	377396.7	10765.7	0.900	22536.7	41.519	56.357	678.11	740.8L
5	CL/ACCEL	356615.6	15079.6	2.320	20775.2	9.402	65.759	282.69	1023.46
6	CRUISE	256890.4	20244.4	2.320	65725.2	78.574	144.333	3287.02	4310.48
7	DESCEND	200352.2	457.2	0.500	2538.1	17.781	162.114	306.12	4416.59
8	DES/LANC	287557.5	0.0	0.300	394.7	1.64	5 163.758	13.84	4630.47
9	TAX1	266934.3	C. C	0+0	1023.2	5.000	168.758	0.0	4630.47
10	5% PES.	280400.6	C. C	0.0	6533.7	0.0	168.758	0.0.	4630,47
11	CL/1500	279357.5	457.2	0.500	1043.1	0.46	169.221	3.61	4634.07
12	CL/ACCEL	266916.7	17285.0	0.950	12440.8	10.914	180.135	187.66	4821.73
13	CRUISE	264557.7	17291.9	0-950	1919.0	6.67	5 186.810	114.32	4936.04
14	DESCENC	263318.3	3648.0	0.354	1679.4	11.899	196.709	161.04	5097.09
15	LOITER	247298.6	3648.0	0.333	16019.7	30.000	228.709	0.0	5097.09
16	DES/LANC	246531+1	C. 0	0.300	767.5	3.36	232.073	29.69	5124.77
					131033 4				

TCTAL FUEL USEC= 171077.6

-

TABLE 46. - GE21/J10 B1 BASELINE ECONOMIC MISSION SUMMARY, ENGLISH UNITS

LEG NO.	OPERATION	WE IGHT POUND S	ALTITUDE FEET	PACH NC.	FLEL USEC PCUNDS	TIME MIN.	TOTAL TIME MIN.	RANGE N. M.	TOTAL RANGE
	INITIAL WEIGHT	52C67C.3							
.1.	NU & TO	910084.1	0.0	0.299	10586.2	10.000	10.000	0.0	0.0
2	CL/1500	565934.1	1500.0	0.500	4149.9	0.805	10.805	3.45	3.45
3	CL IMB	881689.2	33574.1	0.900	24244.9	4.033	14.838	30.41	33.86
	CRUISE	832004.2	35320.6	0.900	49685.0	41.519	56.357	366.14	400.00
5	CL/ACCEL	786202.9	62557.0	2.320	45801.4	9.402	65.759	152.62	552.61
6	CRUISE	£41303. ¢	66418.6	2.320	144899.2	78.574	144.333	1774.82	2327.43
7	CESCEND	£357C8.C	1500.0	0.500	5595.6	17.781	162.114	165.29	2492.72
8	DES/LAND	634837.7	C. 0	0.300	870+2	1.645	163.758	7 • 49	2500.21
9	TAXI	€32582.0	C= 0	0.0	2255.7	5.000	168.758	0.0	2500-21
10	58 <u>R</u> ES.	618177.6	C. 0	0.0	14404.4	0.0	168.758	0.0	2500.21
11	CL/1500	615878.0	1500.0	0.500	2299•6	0 • 46 3	169.221	1.95	2502.10
12	CL/ACCEL	588450.7	56709.4	0.950	27427.3	10.914	180.135	10 1.33	2603.49
13	CRUISE	584219.9	56732.0	0.950	4230.7	6.675	186.810	61.72	2665.21
14	DESCEND	580517.6	10000-0	0.354	3702+4	11.899	198.709	86.95	2752.10
15	LOITER	545200.2	10000.0	0.333	35317+4	30.000	228.709	0.0	27 52 . 1 (
16	DES/LANC	\$435Ce.1	0+0	0.300	1692.1	3.364	232.073	16.03	2768-1
					177140 7				

TCTAL FUEL USED= 377162.2

...

TABLE 47. - GE21/ 11 B3 BASELINE ECONOMIC MISSION SUMMARY, INTERNATIONAL UNITS

LEG NC•	(PERATION	WE IGHT KG•	ALTITUDE METERS	MACH ND.	FUEL USED KG.	TIME MIN.	TOTAL TIME MIN.	R ANGE KM +	TOȚAL RANGE KM.
	INITIAL WEIGHT	519218-1							•
1	WU & TO	512247.2	Q., ()	0.244	6470.8	10.000	10+000	0.0	0.0
2	CL/1500	510007.9	457.2	C.5C1	2234 .4	∂+u22	10.622	4.74	4.79
3	CLIMB	440818.7	10771.1	0.400	13189.1	3.312	13.934	45.08	50.47
44	CRUISE	468672.7	11072.3	5.900	28146.1	42.473	56.407	640.34	740.81
5	CL/ACCEL	447330.5	20390.2	2.320	21342.2	o.511	62.918	198.93	939.74
6	CRUISE	303247.4	217+3.0	2.320	b4032.6	51.068	144.000	3399.00	4338.80
7	GESCEND	3592 47 • 4	457.2	0.5Ch	4000.5	15.434	154.940	274.36	4618.15
8	DESZLAND	358076.6	Č.	0.307	620.8	1.478	101.418	12.40	4639.55
9	TAXI	356863.7	0.0	0.0	1792.9	5.000	166+418	C.O	4630.55
10	SH RES.	34k7u7.0	5.0	5 Q.J	2110.7	¢.0	100,418	0.0	4630+55
21	CL/15"1	347578.7	457.2	n.501	1258.4	0.327	106.744	2.40	4633.00
12	CL/ACCEL	33700h.2	14021.4	0.950	10502.4	5.184	171.929	83.87	4716.87
13	CRUTSE	324444+1	14798.4	0.450	7057.2	14.347	186.276	245.72	4962.59
14	UF SUF ND	327394.1	3046.0	0.340	2555.1	10.132	190.408	133.45	5096.04
. 15	LUITER	315006.5	3048-1	0.371	21727.2	30.000	220.406	G.O	5096.04
10	LES/LANL	3*4442.4	c.:	0.361	1173.4	2.430	224.343	25.74	5121.78
			TOTAL FL	IEL USED=	214724.7				

130

TABLE 48. - GE21/J11 B3 BASELINE ECONOMIC MISSION SUMMARY, ENGLISH UNITS

LFG NO.	UPFRATION	WE IGHT POUNLIS	ALTITUDE N FEET	ACH NG.	FUEL USEL PLUNDS	TIME MIN.	TUTAL TIME MIN.	RANGE N. M.	TUTAL RANGE N. M.
	INITIAL WEIGHT	1144086.0							
1	NU & TO	1124317.0	0.0	0.249	15368.7	10.000	10.000	0.0	6.0
2	CL/150)	1124375.0	15000 -	0 . 5 (0	4937.0	0.027	16.022	2.54	2.54
3	CLIMB	1095248.0	35333+1	5.467	24777.0	3.312	13.434	24.60	27.25
4	CRUISE	1033240.5	36320+5	U •9 🖓	62051-5	42.473	50.407	372.75	400.00
5	CL/ACCEL	986195+3	66597.0	2 -3 20	47:51.5	6.511	62+418	107.41	507.41
6	CRUISE	૪ ુઉન્ચ ટ્રે ન ્મ	71335.2	2.322	185260.1	L1.022	144.000	1835.31	2342.72
7	DESCEND	792115.2	1500.1	0.501	8014.7	15.434	154.440	150.84	2443.56
8	DE S/LAND	79:740.0	0.Ú	6.500	1368+6	1.478	161.413	0.09	2500.25
ý	TAXI	786744+1	ي ۾ زه	U +U	3452.0	5 - 200	155.418	C. Û	2500.25
10	5% RES.	762245.7	0.0	C	17894.3	5. J	106.415	ú•ù	2500 - 25
11	CL/150^	706125.0	1500.0	6.50	2394.2	6.327	166.744	1.33	2501.58
12	LL/ACCFL	742471.7	47970.5	1.95.	23153.6	5.154	171+929	45 • 24	2546.87
13	CRUISE	727+13.4	48551+1	6 .9 %	15556.4	14 . 347	180.270	132.07	2679.54
14	DESCEND	721756.4	10003-0	0.340	5032.4	11.132	140.+08	72.00	2751.00
15	LOITER	6738800.1	10000.0	c.321	474LU.4	000.00	220.408	ú.0	2751.00
16	DESZLAND	671292+1	7 . t.	r.301	2583.0	2.430	224.343	13.40	2765.50
			TCTAL FUI	EL USFL=	473387.4				

analyses discussed previously. The calculations and results are summarized in table 49. The nacelle drag increments are those used in the detailed analysis and are shown in table 49. Specific fuel consumption increments were obtained from plots of installed performance (figures 31 through 34, 37, and 38). Takeoff thrust increments were obtained from figures 30 and 36. Propulsion weight increments were obtained by adding 198 kg (445 1b) per engine for miscellaneous propulsion systems to the nacelle and engine weights of tables 19 through 22. Included in the table 49 is a column for the "revised" baseline.

Table 49 indicates good agreement of the sensitivity method relative to the detailed analysis for engines with small changes relative to the baseline (VSCE 502B and VCE 112C). The error increases as the total takeoff gross weight ratio, $R_{\rm TOTAL}$, increases. Reasons for error include the following:

(1) Reading and extrapolating the sensitivity curves may produce some errors.

(2) Sensitivities for changes in transonic acceleration thrust were not included. Tables 24 through 27 indicate a wide range in thrust-drag ratio at mach 1.2. Thus, acceleration times and fuel used may vary widely from the baseline.

(3) The assumption that the aircraft will cruise at minimum SFC is optimistic; the lift-drag ratio characteristics may tend to drive the operating point to a high SFC.

(4) Scaling factors of the detailed analysis are determined for small changes and are therefore of questionable accuracy for large changes in air-craft characteristics.

While the differences in takeoff gross weight using the two methods are large for the large aircraft, the accuracy of the sensitivity method is sufficient to indicate when changes may be of interest and when they are definitely not advantageous. Thus, the sensitivity method allows the user to easily identify problem areas. For example, from table 49, the largest contributor to vehicle weight increase of the VCE 112C is effective takeoff thrust ($R_{\rm FNE}$ TO is 1.10) while the largest contributor of the GE21/J10 Bl is propulsion system weight ($R_{\rm wt}$ is 1.16).

Vehicle/e gine						
Variable	Baseline VSCE 502B	Revised Baseline VSCE 502B	Refined VSCE 502B	VCE 112C	GE 21/J10 B1	GE 21/J11 BS
Propulsion weight, kg (1b)	31 498 (69 493)	30 882 (68 081)	33 374 (73 576)	35 014 (77 192)	38 298 (84 432)	33 300 (73 412)
SFC, kg/hr,daN (1b/hr/1b)						
Supercruise Subcruise	1.387 (1.36) 1.005 (0.985)	1.387 (1.36) 1.005 (0.985)	(0.387 (1.36) 0.981 (0.962)	1.474 (1.445) 0.964 (0.945)	1.469 (1.44) 1.137 (1.115)	1.448 (1.42) 1.086 (1.065)
Effective takeoff	27 899	26 957	28 480	23 187	23 677	18 713
thrust, daN (1b)	(62 723)	(60-604)	(64 028)	(52 130)	(53 231)	(42 070)
Nacelle drag coefficient						
mach 1.2	0.00057	0.00040	0.00061	0.00085	0.00202	0.00276
mach 2.32	0.00047	0.00030	0.00033	0.00048	0.000 95	0.00115
R _{WE}	1.000	1.000	1.032	1.059	1.16	1.031
RSFC						
Supercruise	1.000	1.000	1.000	1.071	1.068	1.050
Subcruise	1.000	1.000	0.998	0.994	1.013	1.008
R Fne TO	1.000	1.000	0.978	1.100	1.077	. 1. 320 .
R _{CD}	1.000	1.000	1.003	1.021	1.083	1.118 .
R _{total} ,	1.000	1.000	1.010	1.266	1,464	1.610
TOGW, kg (1b)	323 048	316 783	320 146	401 092	463 708	51 0 136
Sensitivities	(712 188) .	(698 375)	(705 568)	(884 258)	(1 022 283)	(1 124 638)
Detailed	323 048	316 783	320 228	402 625	514 450	629 306
	(712 188)	(698 375)	(705 790)	(887 622)	(1 134 149)	(1 387 359)
Error, 1	-	•	-0.03	-0.4	-9,9	-18.9

TABLE 49. - TAKEOFF GROSS WEIGHT SENSITIVITY CALCULATIONS

DISCUSSION OF RESULTS

Engine shape, airflow-lapse rate with mach number, thrust-lapse rate with mach number, SFC, and noise characteristics have large effects on aircraft takeoff gross weight. As an example of engine shape effects, a comparison of crosssectional area variation of nacelles with VSCE 502B and VCE 112C engines is shown in figure 3. The only significant difference in shape is that the VCE 112C has a smaller nozzle exit area. This results in drag and takeoff gross weight changes as shown in table 4. Thus, a nozzle that is 0.043 m (1.7 in.) smaller in diameter results in takeoff gross weight increment of 3 200 kg (7 000 lb) just due to the nacelle drag change. As shown in figure 25, a one-drag-count change results in about a 1-percent change in takeoff gross weight.

Engine airflow lapse rate with mach number directly affects inlet capture area. For example, the GE21/J10 Bl has approximately 16-percent lower supersonic cruise airflow relative to takeoff airflow than does the VSCE 502B. The smaller capture area results in approximately 4-percent lower inlet recovery at static conditions and therefore reduced takeoff thrust. In addition, the smaller capture area results in a more rapid increase of nacelle cross-sectional area with nacelle length, and therefore higher drag.

Engine takeoff thrust and thrust lapse rate with mach number has a significant effect on engine size required to meet takeoff distance requirements. For example, the VCE 112C has 6-percent lower takeoff thrust at static conditions and 20-percent lower thrust at mach 0.3 (at reduced power to meet noise requirements) than the VSCE 502B for a given static takeoff airflow. This resulted in a considerable increase in engine size to meet balanced field length requirements

As indicated in figure 27, a change of 1 percent in SFC at supersonic cruise results in a 1-percent change in aircraft takeoff gross weight or about 3 200 kg (7 000 lb).

Engine exhaust noise characteristics have a significant impact on aircraft takeoff gross weight. All four engines were assumed to employ thrust cutback at the takeoff noise measurement point. However, all the engines did not take full advantage of the extra ground attenuation while the aircraft was still on the ground. For example, the GE21/J11 B3 has 20-percent lower thrust-per-unit airflow than the VSCE 502B. Thus, the GE21/J11 B3 yields approximately 6 db lower sideline noise at takeoff on the ground, but it must be sized larger to meet the takeoff distance requirement.

RECOMMENDATIONS

The sensitivity method has been shown to be a valid method for preliminary assessment of propusion system modifications, and it is therefore recommended to be used for this purpose. Continued airframe/propulsion integration studies and coordination effort between engine and airframe manufacturers in the aforementioned high-sensitivity areas are also recommended.

APPENDIX

ADVANCED SUPERSONIC TRANSPORT

NACELLE INSTALLATION DRAG INCREMENT

CONFUTER PROGRAM

SUMMARY

This appendix describes a computer program developed to determine nacelle incremental drags for the NASA arrow-wing supersonic transport configuration. Program inputs include freestream Mach number and parameters defining nacelle geometry. Data points are stored internal to the program to represent wave and friction drag values with up to six independent variables. Given a set of input parameters, the program sets up arrays so as to perform an internal search. Then, a cubic is fit to these data points, and the drag increments are determined.

The computer program requires 40K bytes of memory, and each case, consisting of four evaluations of nacelle drag, requires about .1 seconds of execution time on a IBM 370/168.

This appendix relies heavily on references 1 and 2; thus, the reader should have a copy of those references as he reads the following.

-ilen-

SYMBOL LIST. - The following symbols appear in the coding for Subroutine NDRAG:

Į	IC	-	Capture area, sq. ft.
ļ	KCN	-	Capture area, sq. m.
ł		-	Input value of AC saved, sq. m. (sq. ft.)
- 1	MAX	-	Maximum area sq. ft.
ļ	MAXM	-	Maximm area sq. n.
ł	W	-	Nozzle area sq. ft.
Į	NM	-	Nozzle area sq. m.
(DO12	-	Nacelle drag increment at Mach 1.2
0	D0232	-	Nacelle drag increment at Mach 2.32
(DOM	-	Nacelle drag increment at input Mach number
(DF12	-	Friction drag increment at Mach 1.2
	DF232		Friction drag increment at Mach 2.32
(DW12	-	Wave drag increment at Mach 1.2
	IN 232	-	Wave drag increment at Mach 2.32
1	DC	-	Diameter of capture area, m (ft.)
I	DER	-	Straight line slope for curve defining Mach number
			effect on total drag
-	F2TM2		Conversion factor from sq. ft. to sq. m.
	FTM	-	Conversion factor from feet to meters
	IP	-	Set to 1 for use in equation defining CDOM
	4	-	Mach number
	42TF2	-	Conversion factor from sq. m. to sq. ft.
	ITF	-	Conversion factor from meter to feet
	L	-	Total nacelle length, M. (ft.)
	LIPN	-	Set to 2 for use in equation definig CDOM
	EM		Total nacelle length, m.
	19	•	T
	SI	-	Set to 929 sq. m. (10000 sq. ft.) for basepoint wing area
:	S(2)	-	Slope at point where Mach is 1.2
	S(3)	-	Slope at point where Mach is 2.32
	SREF	-	Reference wing area, sq. ft.
:	SREFM	-	Reference wing area, sq. m.
	XMAX	-	Length to maximum area, ft.
	MAAM	-	Length to maximum area, m.

Refer to the discussion of subroutine NDRAG for definitions of the symbols associated with data statements in that subroutine.

COMPUTER PROGRAM

Problem Description

Wave and friction drag increments were determined for a range of parametric nacelle shapes in reference 2. In order to determine drag increments for any nacelle shape of interest, values must be interpolated and/or extrapolated. A major part of the program is involved with the determination of the data points to use when calculating the drag associated with a given set of values of the independent variables. Once these data points are found, a cubic equation (reduces to a linear fit for two points) is fit, and the desired dependent variable is calculated. This sorting process and the resulting cubic fit occurs in a definite order and is repeated many times before the final answer is determined.

The numeric method for fitting a cubic is similar to Hermite interpolation in that the coefficients of the cubic are determined by two points and the derivatives of this cubic also satisfy the slopes evaluated at these two points. The derivatives are defined by passing parabolas through those points using a total of four points for the derivative evaluation. (A cubic is also defined using a total of three points with a modified definition for the two slopes). These points are chosen so that the desired independent variable is in the middle interval.

Method of Solution

There are four possible situations that must be handled by the program:

- 1. Given four points with the value of the independent variable in the middle interval,
- 2. When the desired value is in the last or first interval,
- 3. When there are only two values, and
- 4. When the value is outside the range of data.

Given four points with the desired value of the given independent variable in the middle interval, as shown in figure A-1, assume the equation

will go through the points P_2 and P_3 . Also, the derivative

$$Z' = 3AX^{2} + 2BX + C = A^{1} X^{2} + B^{1}X + C^{1}$$
(2)

is evaluated at P₂ using the points P₁, P₂ and P₃ for the calculation of the coefficients A^1 , B^1 and C^1 . It is also evaluated at P₃ using the points P₂, P₃ and P₄ so that equation (1) passes through points P₂ and P₃ and the derivation equation (2), also satisfies the slope at these two points. Therefore, four equations result to determine A, B, C, and D, in equation (1). This is the basic numeric method used by the program to determine the dependent variable Z given X_G. The detailed equations are contained in a following section.

When the desired value X_{C} is in the last interval, the cubic is defined by points P_3 and P_4 , and the derivative at P_3 is determined by passing a quadratic through P_2 , P_3 , and P_4 while the derivative at P_4 is defined by passing a straight line through points P_3 and P_4 . Similarly, when X_{C} is in the first interval, the cubic is defined at points P_1 and P_2 . The slope at P_2 is derived by fitting a quadratic through P_1 , P_2 and P_3 . The slope at P_1 is the slope of the straight line passing through points P_1 and P_2 . In both cases, only three points are used. In the event that only two points are defined, then linear interpolation is used. When constraints are violated, the process determines points as if the value of X_C is in the first or last interval. Then, a linear or cubic curve fit results in the calculation of an extrapolated value for Z.

Program Description

OPERATING ENVIRONMENT.- This program was written using standard Fortran statements using a IBM SYS370 model 168 computer with the operating system OS/VS2.

PROGRAM SPECIFICATIONS. - Source listings of the main program, NDRAG, and subroutine NDTLAE are at the end of the appendix; memory requirements are: NDRAG - 9874 decimal bytes

NDTLAE - 3806 decimal bytes

The program uses 40K bytes including system subroutines, and no common is used.

PROGRAM MODULE DEFINITIONS. - The main program calls subroutine NDTLAE to initiate the interpolation for the total drag given values for the independent variables. Four calls are made in order to calculate the necessary quantities at each of two mach numbers. Main Program Module (NDRAG): The main program performs the following functions:

- (1) Setup of data for subroutine NDTLAE,
- (2) Conversion of units,
- (3) Calculation of the effect of Mach number on drag increments,
- (4) Input and output and checks on independent parameter values,
- (5) Setup of data in data statements.

A large portion of this module is involved in setting up the input data in the correct format for subroutine NDTLAE. The input variables required for this subroutine are

$$\frac{X_{MAX}}{L}, \frac{A_N}{A_C}, \frac{A_{MAX}}{A_C}, \frac{L}{d_C}, A_C \text{ and } M. \text{ Here,}$$

 $d_{C} = \sqrt{\frac{4 + A_{C}}{\pi}}$ and these are set up and used in the English system of units. (Refer to figure A-2).

The main program also includes the conversion of data from English to International units (and vice-versa) for input-output convenience.

The calculations for the Mach number influence on total drag increment start at statement number 83. DER, the slope, is determined from the equation

$$DER = \frac{CD0232 - CD012}{2.32 - 1.2}$$

The slope at Mach 1.2 then has a value of $2.0 \times DER$, and the slope at Mach 2.32 is $0.35 \times DER$. (These values for the end derivatives are estimated from a study of the basic shapes or trends inherent in curves such as Figure 61 on page 87 of reference 2). Using these two points and the two derivatives, a cubic is fit, and the total drag increment at any Mach number is determined.

Additional functions include the input and output of data and the necessary calculations to determine if a constraint has been violated. If this is the case, the value of the variable is printed out and the program extrapolates.

The ranges are: Indep. var. #1 $.4 \leq \frac{X_{MAX}}{L} \leq 1.$

Indep. var. #2	$1.0 \stackrel{<}{=} \frac{A_{\rm N}}{A_{\rm C}} \stackrel{<}{=} 2.0$
Indep. var. #3	$1.25 \stackrel{\text{\tiny 4}}{=} \frac{A_{\text{MAX}}}{A_{\text{C}}} \stackrel{\text{\tiny 4}}{=} 2.0$
Indep. var. #4	$5.5 \stackrel{\leq}{=} \frac{L}{d_{C}} \stackrel{\leq}{=} 7.0$
Indep. var. #5	20. ≤ A _C ≤ 40.
Indep. var. #6	1.2 [≤] M [≤] 2.32

Independent variables 3, 4, 5, and 6 are required for the calculation of friction drag.

Included in the first part of the module are several data statements. These contain values of the independent and dependent variables as determined from Figure 24 through 59 for wave drag and from Table XIII for friction drag of reference 2. Each array has a special definition and the order of the variables is specified by the interpolation method from subroutine NDTLAE.

Values of the independent variables are:

Indep. var. #1, $\frac{X}{L}$ = .4, .5, .6, .7, .75, .8, .85, .90, 95, 1.0 Indep. var. #2, $\frac{A_N}{A_C}$ = 1.0, 1.25, 1.50, 2.0 Indep. var. #3, $\frac{A_{MAX}}{A_C}$ = 1.25, 1.50, 2.0 Indep. var. #4, $\frac{L}{d_C}$ = 5.5, 7.0 Indep. var. #5, A_C = 20., 30., 40. Indep. var. #6, M = 1.2 and 2.32

Each data statement array is defined below.

NX is the array of the number of values for each independent variable in the order as specified above.

X is the array of individual values of the independent variables in the order as specified above.

Z1 is the array of values of the dependent variables for friction drag from reference 2, Table XIII.

The order of these variables in the 21 array will be described by using notation defining the independent variables used for the calculation of friction drag. Thus, variable X_3 has three values $X_3(1)$, $X_3(2)$ and $X_3(3)$; variable X_4 has two values $X_4(1)$ and $X_4(2)$; variable $X_5(1)$, $X_5(2)$ and $X_5(3)$; and the last variable X_6 has two values $X_6(1)$ and $X_6(2)$. The first variable in the 21 array corresponds to the following order for the independent variables:

for Z1(1) use $X_{3}(1)$, $X_{4}(1)$, $X_{5}(1)$, $X_{6}(1)$,

Then, for the second element,

21(2) use $X_3(2)$, $X_4(1)$, $X_5(1)$, $X_6(1)$,

 $X_{1}(3)$ use $X_{3}(3)$, $X_{4}(1)$, $X_{5}(1)$, $X_{6}(1)$.

Then, for 21(4), 21(5), and 21(6) repeat the first three lines with $X_4(1)$ replaced by $X_4(2)$. Now a total of six 21 values are defined for 21(1) through 21(6). Values for 21(7) through 21(12) are obtained when these first six lines are repeated with $X_5(1)$ replaced by $X_5(2)$. In the first 6 lines replace $X_5(1)$ by $X_5(3)$ then 21(13) through 21(18) are determined. So far, 18 lines or values for 21 have been defined using $X_6(1)$. If these 18 lines are repeated with $X_6(1)$ replaced by $X_6(2)$ then 21(19) through 21(36) are specified. These 36 lines represent the 21 matrix for the friction drag. This is the definition of the data sequence required for the 2 matrix as used in subroutine NDTLAE.

ARW1 through FRW1 are arrays of values of the dependent variable for wave drag, for Mach 1.2. The basic method for ordering the dependent variables is the same as for the friction d = cray 21, with two additional independent variables.

Arrays ARW2 through FRW2 are values of the dependent variables for wave drag for Mach 2.32. Again, the method for ordering is the same as for friction drag only with two additional independent variables.

Subroutine NDTLAE: The main function of this subroutine is to determine the value of the dependent variable Z for given values of the independent variables X(I). These points are contained in the DATA statements appearing in the main program. The calling sequence for this subroutine is

CALL SUBROUTINE (NIV, X_G, X, Z, NX, RES, A, B, C, D)

where

NIV	Number of independent variables (4 or 6)
x _G	Array of given values of independent variables
X	Array of independent variables
Z	Array of dependent variables
NX	Array of number of values given for each independent variable
RES	Final required Z for given XG using X and Z arrays

A,B,C,D Coefficients of the cubic fit to the data points thus defining Z values (In some cases this reduces to a linear fit with two coefficients C and D).

Initially, various arrays are defined for the purpose of determining the location of the first Z to be used from the Z array. The object is to determine which interval of input points in the X array will be used to calculate the Z array given X_G . After these subscripts and indicators have been set, the evaluation the necessary equations for the Z array can be made. The composition of this array, and the sequence of steps leading to the final Z value will be outlined here. (Refer to the section 'Method of Solution'' for a description of the number of intervals used given the X array and to the section 'Equations For Curve Fitting'' for the equations used for the curve fit.)

The procedure, for calculating the location of the first 2 (LIST2) to be used, starts with defining the ICF array where

> ICF(I) = Number of values of each independent variable (I) to be used for curve fit (i.e. 2, 3, or 4)

Next, the IGAT(I) array is set to the following values, if

IGAT(I) = 1, $X_{C}(I)$ is in one of the middle intervals

= 2, $X_G(I)$ is in the first interval

= 3, $X_G(I)$ is in the last interval.

At the same time, the L \emptyset C (I) array is defined as the location in the X array of the first value to be used for independent variable I. Thus, the subscripts for the X array for the polynomial curve fit are obtained.

The location of Z(I) given values of X(I) array are then determined. The equations to do this are contained between statement numbers 32 to 35 in the listings at the end of the appendix. The formula,

Z(I) index =
$$L ØC(1) + \sum_{k=1}^{NIV-1} NX(1) * NX(2) ... * NX(k) * [LØC (k+1)-1]$$
 (3)

specifies the location (or index) of the element number in the Z(I) array associated with each sequence of values for the independent variables X(I). (That is, an analytical gearing between the X and Z array is defined.)

Statement number 50, which sets LL, through statement number 2000, where the polynominal for the curve fit is evaluated, is described by a step by step analyses of the coding in the section "Step By Step Analysis of Subroutine NDTLE." That section also describes, by specific example, the evaluation of the LLCTR sequence at statement number 410. Thus, the location of the next Z to use is developed. Figure A-3 describes the flow within this subroutine with emphasis on control during the evaluation of the Z matrix. (Refer to listing of subrouting NDTLAF for complete symbol definition.)

An example of the use of equation 3 will be demonstrated with the friction drag data. For convenience, number the variables 1 through 4 (instead of 3 through 6) as described in the previous discussion of independent variables; therefore,

Variable #1 is	$\frac{MAX}{AC}$ with NX ₁	= 3,
Variable #2 is	$\frac{L}{d_{C}}$ with NX ₂	= 2,
Variable #3 is	$A_{C}^{}$ with NX_{3}	= 3,
Variable #4 is	M with NX_4	= 2.

Let subscript refer to variable number:

Z(1) is dependent variable for $X_1(1)$ $X_2(1)$ $X_3(1)$ $X_4(1)$

- $X_{1}(2) \qquad X_{1}(2) \qquad X_{2}(1) \qquad X_{3}(1) \qquad X_{4}(1)$
- Z(7) $X_1(1)$ $X_2(1)$ $X_3(2)$ $X_4(1)$
- $X_1(3) \quad X_2(1) \quad X_3(1) \quad X_4(2)$

Figure A-3 - NDTLAE FLOW CHART

ORIGINALI PAGE IS OF POOR QUALITY

145

÷

From equation (3) for Z(7) and for element 1121,

$$LOC(1) + 3 * [LOC(2)-1] + 3*2 [LOC(3)-1] + 3*2*3[LOC(4) - 1]$$

Then the element is:

$$1 + 0 + 6 + 0 = 7$$

For Z(21), values in equation (1) for element 3112 give the element

3 + 0 + 0 + 18 = 21

Because of the number of variables in each array, the value of equation (3) would always be 1, and new Z values are specified by LL arrays when modified by LLCTR values. That is, the LØC appearing in this example is modified by LL array.

PROGRAM LOGIC.- Figure A-4 shows a program flow during the calculation of the Z array. The last Z calculated is the final result. Note that in this figure the required number of Z values is determined by the number of values contained in the next array of independent variables. Figure A-5 shows in more detail the series of Z as calculated for the friction drag. ZGGGI follows as a result of ten previous curve fits where three are linear and seven are cubic.

INPUT-OUTPUT SPECIFICATION. - Standard input-output functions are utilized to input case data and to output the calculated total drag for each mach number. The input data is printed out for identification purposes.

Input: A read tape 5 is used to read 1 case of 1 card containing seven numbers with a E10.6 format. In order,

Card Column Identification

Word #1 - A _C	Capture area	(002-10)
Word #2 - AMAX	Maximum area	(CC12-20)
Word #3 - A _N	Nozzle area	(CC22-30)
Word #4 - XNAX	Length to maximum area	(CC32-40)
Word - L	Total length	(CC42-50)
Word #6 - SREF	Reference wing area	(CC52-60)
Word #7 - M	Mach number	(CC62-70)

Figure A-4 - PROGRAM FLOW FOR Z ARRAY

Normal input is assumed to be in the English units with the basic length measured in feet. A minus sign in column 1 indicates the units are in the International units with the basic length measured in meters.

Output: A write tape 6 with an F format is used for printing data. The above input data and the friction drag, wave drag and total drag for Mach 1.2 and 2.32 are printed. Also printed is the total drag for an input Mach number.

RESTRICTIONS. - Each figure for wave drag in reference 2 contains values of A_N/A_C for a given value of A_{MAX}/A_C . Physically, A_N/A_C cannot exceed A_{MAX}/A_C , but in a mathematical sense a numerical value for the drag must be determined in order to sustain the interpolation process. In this case, when a limit is exceeded, the extrapolation assumes that the limiting values of drag are used for values of A_N/A_C greater than A_{MAX}/A_C . That is, on figure 24 (reference 2) with two curves for A_N/A_C of 1.0 and 1.25, drag values for the 1.50 and 2.0 curves are assumed to be identical to those for the 1.25 curve. The number of points used in the curve fit depends on where the desired value of A_N/A_C falls relative to the index values of 1.0, 1.25, 1.50 and 2.0. If $1.5 < A_N/A_C \le 2.0$ then last three points would be used. When $1.25 < A_N/A_C \le 1.50$, a total of four points would be used for the curve fit since this is the middle interval. When extrapolation for the other independent variables is required, no limiting values of the variables are substituted.

The terminal point for each wave drag value is specified by the condition that the boattail angle does not exceed 10°. In order to satisfy this requirement, the final drag value for each curve (i.e. each A_N/A_C value) is repeated in .05 increments for X_{MX}/L until X_{MX}/L is 1.0. Thus, the proper drag level as set by the maximum boattail angle will be meet.

DIAGNOSTICS.- When a desired value for an independent variable does not fall within the given data range, the variable and its value will be printed. The calculations will use this value for the extrapolation as described above.

Subroutine NDTLAE contains several tests to determine if calculated index values are set properly. The statement number of the test generating the diagnostic is printed out.

TEST CASES.- Cases 1 and 2 (tables A-I and A-II are presented herein and the values of CDO have been verified by comparing with values read directly from table XIII for friction drag (CDF) and figures 24 through 59 for wave drag (CDW) in reference 2. Cases 3 and 4 are presented for the NASA LTV nacelle, described in reference 3. These cases were checked by cross plotting the curve data. The parametric study is based on a nacelle that had straight line radius connections of the inlet face, maximum cross section and the nozzle exit. The NASA LTV nacelle deviates from these straight line connections and, therefore, it is necessary to simulate the nacelle with straight lines. Case 3 (table A-III) simulates the LTV nacelle using the inlet capture area, actual maximum area, and the nozzle exit area. A considerable difference in CDO may be noted. It has been determined that the best simu-

lation is obtained by using the maximum cross-sectional area that occurs at the intersection of straight lines originating from the inlet and the nozzle and whose slopes nearly match the slopes of the actual nacelle as illustrated in figure 5. The maximum area deviation will be approximately 10%. Case 4 (table A-IV) represents the later simulation and the CDO's agree with the calculated CDO's. The difference in CDW is attributed to the following considerations:

1. The wing was resized from 10,996 sq.ft. for the reference configuration to 9819 sq.ft. for the parametric study.

2. The nacelles were relocated further inboard and forward in accordance with the ground rules of reference 1. (See figure 21 of reference 1).

The above discussion concerns only the 1.2 and 2.32 Mach number data points. The additional CDO at any specified Mach number is derived from a cubic curve fit described on page 5. The deviation of CDO may be as much as -.0002 between 1.3 Mach and 1.5 Mach due to the fact that the true drag coefficient as a function of Mach number does not necessarily follow a cubic.

Figure A-5 NACELLE NORMALIZED CROSS-SECTIONAL AREA VARIATION

ORIGINAL PAGE IS OF POOR QUALITY

	2.75			0.00-SI	- FT)
	4.10		-		
	3.40				
	AREA 6.24	2 N			
TOTAL LENGTH	10-36	5 H	(33	3.99	FT)
ING REFERENCE ARE	X 929.03	53G-M	1 1000	5.00-51	<u>. FT </u>
NCREMENTAL NACELL	E URAG COEFFI	IC JE NTS			
	COF= 0.00053				
	CIVF=: C+00047	/ CPW=	0.0007		
MACH 1.20				CDU=	0.00093
MAXA = 0.600	AN/AC= 1.2!	50 AMA)	(/AC= 1)	500 1	L/DC= 5.
NCREMENTAL NACELL	E IRAG COEFFI	CIENTS -	- LTV REFI	ERENCE 1	VEH1CLE
	CDF= 0.00072				
	CDF= 0.00000		-0.00015		
MACH 1.20					0.00032
T	ABLE A-IICase	2 Outr t			
	ABLE A-IICase	2 Outr t			
T ACHLE GELMETKY CAPTUPE AFEA		-	(40	.51 SC	FT)

INCREMENTAL NACELLE URAG COEFFICIENTS - LTV REFERENCE VEHICLE MACH 1.2 COF= 0.00072 LDW= -0.00041 LD0= 0.00031 MACH 2.32 COF= 0.0000 CHW= -0.00012 CD0= 0.00042 MACH 2.32 CF= 0.0000 CHW= -0.00012 CD0= 0.00042 ORIGINAL PAGE IS ORIGINAL PAGE IS OF POOR QUALITY

15+23 M

CDF= 1.1002 CDN= 0.000C7

XMAX/L= 0.850 AN/AC= 1.000 AMAX/AC= 2.000 L/DC= 7.000

LUC. OF MAX. AREA 17.44 M

CDF= C.CSC.J

INCREMENTAL NACELLE TRAG COEF-ICIENTS

TETAL LENGTH

WING REFERENCE APEA

MACH 1.2

MACH 2.32

MACH 2.32

42.40 FT)

44.96 FT)

C.d= 0.00049

CDC= 0.(6:60

(L/= 0.000E6

(

L

CLW= 0.01005

424.03 SC H (15000.60 SC FT)

•

TABLE A-III.-Case 3 Output

NACELLE GEOMETRY

CAPTURE APEA	2.57	SC M	ť	27.69	SO FT)
MAXIMUM AREA	4.83	SCM	ſ	51.49	SO FT)
NOZZLE AREA					
LUC. OF MAX. AREA					FT)
TOTAL LENGTH				-	FT)
WING PEFTRENCE AREA	929.13	50 M	(10	00.00	SQ FT)
INCREMENTAL NACELLE OR AC	G COEFFIC	IE NT S			
MACH 1.2 CDF=	9.00064	CDW=	-0.000	54 C.f	<= 0.00010
MACH 2.32 CEF=	5.10056	(f/w=	-1.000	21 CG	C= 0.0035
HACH 1.09				CD	C= 0.10028
9889/L= ^,744 EN/8(:	= 1.too	ама	= 04\X	1.577	L/0C= 7.074
INCEENTAL NACELLE TRAC	CUEFF 1C	IENTS -	- LTV R	EFERENC	F VENTCLF
MACH 1.2 COF=	0.00072	CDド=	-1.000	41 CD	1= 0.00091
MACH 2.32 COF=	0.00000	CD₩≠	-0.000	15 Cf:	t= 0.00042
MACH 1.97				CC.	6= 0.0043

.

·· 🗕

TABLE A-IV.-Case 4 Output.

NOTILE GARATTEY 2.57 SUR (27.65 SUFT) 5.17 SUM (55.66 SUFT) CAPTERS APEA 55-66 SO FT1 46-15 SO FT1 MAXIMIM APEL NUTTLE AREA 4.29 SUB (9.55 M (12.01 M (LUC. DE BAY. SEEL 37.65 HT) THINE LENGTH 47.03 FT) TROREMENTAL MACELLE DRAG COEFFICIENTS MACH: 1.2 COF= 0.00066 COM= -1.00034 COF= 5.00031 CDC= 0.00043 MACH 2.32 CDF= 0.00007 CDW= -0.00034 MACH 1.6 XMAX A= 1.720 AN/AC= 1.000 AMAX/AC= 2.010 L/DC= 7.079 INCREMENTAL NACELLE DRAG COEFFICIENTS - LTV REFEPENCE VEHICLE MACH 1.2 COPF= 0.30072 CONF= -0.00041 COAF 0.00031 Cf C= C. 30042 MACH 2.32 CDF= 0.00(6) COW= -0.00018 MACH 1.00 CD0= 0.00046

EQUATIONS FOR CURVE FITTING

1. Slope using parabolic fit

General equation of parabola

$$Z = aX2 + bX + c$$
 (1)
Slope of parabola
$$Z' = 2aX + b$$
 (2)

If given three independent variable values with corresponding dependent variable values then:

Solving equation (3) for a and b

$$a = \frac{(Z_1 - Z_2) (X_1 - X_3) - (Z_1 - Z_3) (X_1 - X_2)}{(X_1^2 - X_2^2) (X_1 - X_3) - (X_1^2 - X_3^2) (X_1 - X_2)}$$

$$b = \frac{(X_1^2 - X_2^2) (Z_1 - Z_3) - (X_1^2 - X_3^2) (Z_1 - Z_2)}{(X_1^2 - X_2^2) (X_1 - X_3) - (X_1^2 - X_3^2) (X_1 - X_2)}$$

Then substituting in (2) above the slope at X_G is

$$S = 2aX_{G} + \frac{(Z_{1}-Z_{2} - \{(X_{1})^{2} - (X_{2})^{2}\}a)}{X_{1} - X_{2}}$$

- 2. Derivation of coefficients for the cubic
 - General form of cubic $Z = aX^3 + bX^2 + cX + d$ Slope of cubic $Z'= 3aX^2 + 2bX + c$

To determine the cubic passing through two given points, (X_2, Z_2) and (X_3, Z_3) , and having given slopes, S_2 and S_3 , at these points, the following system of equations is solved for a, b, c, and d.

$$Z_{2} = aX_{2}^{3} + bX_{2}^{2} + cX_{2} + d$$

$$Z_{3} = aX_{3}^{3} + bX_{3}^{2} + cX_{3} + d$$

$$S_{2} = 3aX_{2}^{2} + 2bX_{2} + c$$
(4)

$$S_3 = 3aX_3^2 + 2bX_3 + c$$

Solving for the four unknowns:

$$a = \frac{-\frac{2(Z_3 - Z_2) - (S_2 + S_3) (X_3 - X_2)}{(X_3 - X_2)^3}}{(X_3 - X_2)^3}$$

$$b = \frac{2^3 - Z_2}{X_3 - X_2} - S_2 - (X_3 + 2X_2) (X_3 - X_2)^* a \frac{1}{X_3 - X_2}$$

$$c = S_2 - 2X_2 b - 3X_2^2 a$$

$$d = Z_2 - aX_2^3 - bX_2^2 - cX_2$$

3. Final calculation of dependent variable

The dependent variable Z is then calculated using the coefficients a, b, c, d and the given value of x_G in the equation

$$Z = aX_G^3 + bX_G^2 + cX_G^2 + d \text{ or}$$

$$Z = d + X_G (c + X_G (b + X_G a))$$

STEP BY STEP ANALYSIS OF SUBROUTINE NOTLAE

The sequence of steps to calculate the friction drag will be defined by reference to the program steps contained in subroutine NDTLAE. Primary emphasis of the following discussion is on setting values of counters and subscripts leading to the determination of the final interpolated value for Z.

Thus, refering to the section on subroutine NDTLAE for definition of independent variables.

$$NX(1) = 3$$
, $NX(2) = 2$, $NX(3) = 3$, $NX(4) = 2$.

From statements starting at statement number 3,

ICF(1) = 3, ICF(2) = 2, ICF(3) = 3, ICF(4) = 2.

Program steps ending at statement number 23 define the LØC array as:

 $L \not D C(1) = 1, \ L \not D C(2) = 1, \ L \not D C(3) = 1, \ L \not D C(4) = 1.$

Also, for IGAT assume IGAT(1) = 3, IGAT(2) is linear, IGAT(3) = 2, IGAT(4) = 3. Refer to equation (3) of this appendix for the location of d, first Z to be used, i.e.

 $LISTZ = L \not D C(1) = 1$

The basic logic for performing the calculations, starts at statement number 50.

NIV = 4 L = 0, LL = 0, LLCTR (I) = 0, I = 2, 3, 4, 550 LL = LIST Z = 1 K = 1 L = L+1 = 1 IC = ICF(1) = 3For J = 1, 2, 3, and M = 1, 2, 3:

$$ZPR(1) = Z(1) = Z_{1111}, ZPR(2) = Z_{2111}, ZPR(3) = Z(3) = Z_{3111}$$

The derivative of X (XPR) with vaules from first X array are then determined:

$$XPR(1) = X_1(1), XPR(2) = X_1(2), XPR(3) = X_1(3) \text{ and } IIX = NX_1 = 3.$$

Then, IL = IGAT(1) = 3 for XG_1 in last internal for variable X1; then go to 72.

At statement #72,

IPN = 1, IIN = L = 1, IS = 2, M = 3, IRX = 1 and go to 80

At statement number 80,

IN = IIN+IRX = 2, IP = IPN+IRX = 2

Calculate slopes S(2), S(3) and A, B, C, D and final ZPR(1) = AX^{3} + $BX^{2}+CX+D$ for X = XG₁ (The equations for these quantities are defined in Appendix A)

```
Note that LLCTR(2) = 0 here

K = K+1 = 2

LLCTR(2) = LLCTR(2) + 1 = 1

Test LLCTR(2) - ICF(2) = 1-2<0 and

K-2 = 0, go to 310 for next Z to be used from Z array

Find LL = LL+LLCTR(2) *LP where LP = LP*:X(1) = 3

Note that LLCTR(3) = 0, then

LL = 3

go to 50

Therefore, here Z_{G111} in ZPR(1) has been calculated

and since LL = LL+LISTZ = L\phiC(1) + 3 = 4, the next

cycle will calculate Z_{G211}. (Note LLCTR(2) = 1)

Reset, K = 1, L = L+1 = 2, IC = ICF(1) = 3

For ZPR, J=1, 2, 3, N=2, 3, 4 and
```

ZPR(2) = Z(4), ZPR(3)=Z(5), ZPR(4)=Z(6)

Again, for X array, 1IX=3 and since k=1, IX=LØC (1)=1 so that

 $XPR(1) = X_1(1), XPR(2) = X_1(2), XPR(3) = X_1(3).$

Again, IGAT(1)=3, go to 72 and calculate slopes, A, B, C, and D for fit so ZPR(2) is defined.

k=k+1=2

LLCTR(2) = LLCTR(2) + 1 = 2 LLCTR(2) = ICF(2), ICF(2) = 2 go to 301, K-NIV, go to 500 L=L + 1 - ICF(2) = 1 go to 55

Note that here Z_{G111} and Z_{G211} in ZPR(1) and ZPR(2) have been calculated

and next is a linear interpolation with respect to X_2 values.

Subscripts for Z are defined in Figure 6. At 55, IIX = NX(2) = 2 and since K > 1, go to 49 where I=K-1=1 and IX=NX(1) + LØC (2) = 3 + 1 = 4 IXP = IX + J - 1 = 4, 5 for J = 1, 2 so that XPR(1) = X₄(1), XPR(2) = X₄(2) IIX=2 so go to statement number 64 for linear curve fit for C & D and go to 2000 for ZPR(1) or Z_{GG11} calculation. K=K+1=3, LLCTR(3) = LLCTR(3)+1+1, K>2, to to 315 and Set KK=K-1+2, LLCTR(2)=0

Find next 3 to be used from array, redefine LL where $NX_1=3$, $NX_2=2$

Note: Subscripts refer to values of independent variable and G refers to the desired value of each independent variable. Thus Z_{G211} means the Z for X_G for variable #1, the second value for variable #2, the first value for variable #3 and the first value for variable #4.

Figure A-6. 2 CALCULATION FOR FRICTION DRAG

LL=NX1*NX2=6 go to 50

The next 6 elements of the Z matrix will be processed for Z_{G121} and Z_{G221} with the same logic as for the first six elements, but now LL=LL+ LISTZ = 7 for Z the prime values. The X values are the same as for the first six lines.

The next series of calculations ends with the calculation of Z_{GG21} from Z_{G121} and Z_{G221} . Similarly, Z_{G131} and Z_{G231} are used to determine Z_{GG31} . Since three values of Z for variable number 3 have been determined a cubic can be fit and the resulting answer is Z_{GGG1} . Thus one value of Z has been determined corresponding to the first value for variable number 4.

Next, replace variable 4 by its second value and proceed through the calculations the same as above. This determines Z_{GGG2} and one more line interpolation produces Z_{GGGG} the desired value of the dependent variable given values of the independent variables.

SOURCE DECK LISTINGS FOR NERAG AND NOTLAE

(JAN 75)

a ar an the short-remaining

REQUESTED OPTIONS: LIST, XREF, LECK

2 MOLT 4C	S 1N I	EFFECTI	NAME(MAIN) UPTIMIZE(I) LINECOUNT(42) SIZE(MAX) AUTURBE(NUME) Source Ebodic List Deck Uburut map nuppurmat gustmit Xrep alc Nuansp Nú	TERM INAL	FLAGII)
1 SN	00.02		DIMENSION X5(6) ,X(24) ,Z(1440) ,NX(6) ,AKWI(140) ,EFW1(140) ,		
			1CRW1(14J) • DRW1(14J) • ERW1(140) • FRW1(20) • • ARW2(120)• • BRW2(120)•		
			2CRW2(125) .0KW2(12C) . ERW2(12C) .FRW2(120)		
ISN	0003		DIMENSION XG1(4) ,X1(10) ,Z1(30) , NR2(4) ,XPR(2), ZPR(2) ,5(3)		
			7,LW(7),ML7(7)		
	0004		EUUTVALENCE (XG1(1),XG(3)) , (X1(1),X(15)) , (NX1()),NX(3))		
ISN	0 005		ECUIVALENCE (Z(1), ARW1(1)), (Z(1+1), EFW1(1)), (Z(201), CRW1(1)),		· • • • ·
			1(Z(421), DPW1(1)) , (Z(501), ERW1(1)) , (Z(701), FRW1(1)) ,		
			2(2(721),ARW2(1)) , (2(841),BRW2(1)) , (2(901),LRW2(1)) ,		
			3(Z(108)),DRW2(1)), (Z(1201),ERW2(1)), (Z(1321),+KW2())) REAL L.LM.MTF.M2TF2.M.LW.LP.MLT. LIVW		
	0006		REAL L.LM.MTF.M2TF2.M.LV.LP.MLT, LTVW., LTVO DATA LW /.JJ532JC048JG052JC346C\\43JC643C\\44		
	00008		DATA EW /1335327.300487.300827.303487.00 437.500427.300477		
	0009		DATA NX /10,4,3,2,3,2 /		ene ene com
	0009		$\frac{1}{2} \frac{1}{2} \frac{1}$		
1 214	0010		11.25,1.5),2.0, 5.5,7.0 ,20.,30.,40., 1.2,2.32 /		
I SM	2013			2FR1-2 1	
				ZFR1-2 2	
				2441-2 3	
1986 A.1				ZFR1-2 4	
				2181-2 5	
				ZFR1-2 0	
ISN	0012		DATA ARWI / . 00038	A6W10001	- Maria
			1.00048 ,.00047 ,.40046 ,.00046 ,00008 ,00610 ,00014 ,	ARW1 UGU2	
		URIGINAL OF POOR (207917 ,70019 ,30022 ,03024 ,07026 ,000266,00030 ,	ARW1 0003	
				ARN13064	to all a second to approximate
		31		ARW1 0005	
		O A		ARWI 0006	
		~ ~		ARW10007"	
		d B		ARW1 0008	allinese dana
		L PAGE IS L QUALITY	8.0 2369,.00220,.00021,.00021,.00021,0034,010107,10019,00027,		
		E E		ARW10010	n an
		2 55		AKW10011	
			1000503,000545,.00018,.00018,.000024,.000047,.000308,.000385,		,
.16			2.0038500385003850038500216002140021000223 .	ARWE JOI 3	1

- 162	JAN 75	I HAIN	US / 3 60	FURTEAN H FATENHED	DATE 76.102/19	·• 04• 43
		4.00128	••00123 ••00118 •••00000 •••000 2 •••00091 ••000 5 •••00017 •••00		0010 • ARWI 0015 065 • ARWI 0016 06 • Arwi 0017 (0012 • Arwi 0015	gan bin san shin
		8030140001 903-273002) ⁻ 25 [°] ,+.01627 [°] ,+.02128,,+.	ARW10014	. sakiy v . 44 8 i
ISN 0013	C	DATA LOWI / -	46012 00714	03018000240002	b . HRWLOCZI	
		100027	16	59270152606012 59270562866928	. UQU 14 . BRW10022	
		30002400075		5 CCC48 Julan	32 , BHW10024	د است. سبب الم سبب
00		4.03525	••01017 ••00017	••00024 ••00021 ••001 •* 159 •••01032 •••01132 ••	0001 , GRW10025 .0001 . BRW10025	
ORIGINAL; OF POOR (607022 3003	32 0 045 00	1050 +-+0-153 +-+CP 55 +-	00015 . BRWL0327	
PO		7000530005		22 00032 00045 0	DODDO , BRWLOUZU	
₩ A			550005500	0053 g−e00052 g ge(0185 ge00176 ge(0164 g)	88W1.0029 .00169 - 88W1.0030	
U PAGE IS QUALITY		1.0016900169		.00125	60074 • 6KW10031	in de la lige de la service
PAGE QUALT		1.00158	.0105	37165	C30 , BRWL0052	
		2.0001100008	5 g−a0002 q−a0000 5 g−a0002 q−a0000	27	5 • EXW10033 .0102 • BK#10034	
~ 01		4070997008	38 ++00000 +++000	00 + 0005 + 0004 + 10.32	-40025 , 5RW10035	
		5.0001900112			the LAWEOD36	s ys - seagges na gaers
		-6-+07/3 +-+07035 -70000300003	5	65 gma 00045 gma00043 gma0 203 gma 00135 gmaC064 gma0	04. 58W10037 045 68W10038	
				13 19 CU25		
	-	90103500/24	• •-•000+5 •-•C (045 g-0C0043 g-00004 /	8PW10040	
ISN 0014	C			+ - 11014 + = UV12t + = 212 + =		
				20265		
,				3		
				02 y $ 00030$ y $ 00005$ y $ 00005$		- 1800 H. W
				0077		
		6.0044	.0.430	••C7436 ••C643, ••C43 •	• 10+30 • CRWLU0+7	1940 - M. 1
				• 024 • . 00224 • . 0 . 21 •		
		8.0021	.70234	0 16	65 • CFW10049	
		4.00046		•••0081••00425 •••00425		

e gante de avaitant maria

MAIN

· · · · · · ·	1.0074	++CRW10052
	2670120001000170702500032000350004 -	CKW1 0053
	300047 ,30041 ,5004 ,80034 ,6001 ,00017 ,00025 ,	CRW10054
	400032V00035C154V3042V041V004V0034 .	CRW1 0055
	50101 ,00517 ,00025 ,00032 ,00135 ,0004 ,00042 ,	CRW1 UUSA
	600041000400034001140011000450006800051	+CRW10057
-	7.0003 ,.00025 ,.00036 ,.00036 ,.00036 ,.00051 ,.00039 ,.00016 ,	CRWI 065B
	80001 ,00024 ,0004 ,00055 ,00056 ,00048 ,	CKW1 0059
	900048 /	CRW1 0660
	C	
ISN 0015	DATA DRW1 /00005 ,50024 ,0004 ,0000 ,0006 ,	LRW10361
	107774 ,00074 ,00074 ,00174 ,0006 ,00005 ,00024 ,	DRW10062
	20364 ,0006 ,00065 ,00074 ,00079 ,00074 ,0 074 ,	DRWI CO63
	30006003560033003020027900265025500248 .	DR W1 0064
	4.90248 ,.03248 ,.30248 ,.30265 ,.80228 ,.00185 ,.30135 ,.0011 ,	DRW10065
	5.39385 ,.07081 ,.00091 ,.00091 ,.30091 ,.00163 ,.3014 ,.00091 ,	DRWI 0066
	6.00037 ,.00006 ,C0024 ,00038 ,00035 ,60027 ,60027 ,	DRW10067
URIGINAL OF POUR	7.00055 ,.00003 ,00045 ,0009 ,0011 ,00123 ,00128 ,	UKW10068
	800127 ,0012 ,00103 ,.00015 ,.00032 ,.00036 ,.00023 ,	DRW1 0069
PC	9-3031 , 0. ,03(05 ,00003 , 0. , 0. ,00017 ,0001 ,	DRW10070
AN A	10301 ,0002 ,0003 ,00036 ,00037 ,00036 ,00035,	URW1 0071
~ ~ E	100028,00017 ,0001 ,0001 ,0002 ,0003 ,00030 ,	DRW1 0072
QU	207037 ,00736 ,07035 ,00728 ,07017 ,0071 ,0001 ,	DR W1 0 G 7 3
QUALLI Y	3022,0003,00036,00037,00036,00035,00028,	URW1 0074
L.	4.0019 ,.0016 ,.00135 ,.03107 ,.00095 ,.00085 ,.00083 ,.00095 ,	DRWI 0075
	5.00095 .00095 .0008 .0005 .0001900012000260004	
2-30	600046000450003600036 , 0000300058 ,	DRW1 C077
	707077000850709200045000950007000076 -	DRW10078
	8 0. ,0003 ,00058 ,00077 ,00085 ,00092 ,	DRW1 0079
م. به در مسیمه معر د میش می در د. منابع	903095 ,30095 ,0034 ,0076 /	DRW10080
ISN 0016	DATA ERWI / .00586	ERW10C81
134 0010		ERW10082
		ERW1 0083
	3.00154000900002200.35000220002500025 .	ERW1 0085
		ERW10085
na in million palation francisco de la serie	500145 ,00138 ,0019 ,.00081 ,.0007500060 ,.00036 ,	ERWI DOB6
	6.00019 ,01015 ,00014 ,00011 ,.00003 ,.00003 ,.00004 ,	ERW10067
	700010002300035006400045000500049	EKW1 0068
	800045 ,000340004 ,0001 ,00023 ,00035 ,0004	ERW10089

ومنتقد معتقد العراقية

163

1.1

an crais in the contrast of states and states

•			
Be in the office and	90004500050004400045007340000450001 -	ERW10095	ang ng n
	100323 ,00035 ,0004 ,00045 ,0005 ,00044 ,00045 ,	ERW10041	
	1-00039 -00207 -00 193 -00 106 -000125 -000055 -00005 -	ERW1 0092	
	2.00092	EKW1 0043	
	3030370005001250034000340001500019 -	-ERW10094	
	40332700044	ERW10095	
	500064 ,00015 ,00019 ,.00027 ,00049 ,00164 ,0002 ,	ERW10096	4.141.1.1. K (#41.444
	6.00045 7.103 CCC4 CC64 C6584 C56 C51 0455 .	EKW10097	
	7.07417	erw10048	
	8.00340	ERW1 0099	, 4 84 4 4 8
	9.0021 .0021 .0021 /	ERW10100	
	C		
ISN 0017	DATA FRW1 / .0034 .00278 .00202 .00117 .00064 .00022 .	FRW16101	n a an an a tri a d
	1.0000700020003000300160007000050007 .	FRW10102	
	200398 ,00125 ,00140 ,00140 ,00134 ,0031 /	FRW10103	
ISN 0018	DATA ARN2 / .000115 , .0 01 , .00000 ,.00007 , .000006000051 .	ARW20001	
	1.000045 , .00004 , .000035 ,.000035 ,000044 ,000068 ,	ARW20002	
	200008 ,000091 ,0001 ,000103 ,00011 ,00112 ,	ARW2 0003	
	30.0118 ,00612 ,000.49 ,000068 ,00006 ,000091 ,	"ARW20004"	
	400010001030001100011200011800012 .	ARW20005	
	50000049 ,0000066 ,000006 ,0000041 ,00001 ,000103 ,	ARW20006	
	600011 ,000112 ,000118 ,00012 , .00031 .000288 ,	ARW200,07	ann an
	7.00726 , .07023670215 , .0702 , .00018 , .00017 ,.00017 ,	ARW20008	
	8.00017 , .000105 , .00017 , .000032 , (.(,00002 ,00003 ,		
	903234 ,07035 ,07008 ,08008 ,00008 ,0001 ,	ARW2 UUIU	
	100013 ,90018 ,00017 ,00018 ,00016n,10019 ,	AKW20011	
	1000197 ,0002 ,00000 ,0001 ,000013 ,0.010 ,00017		
	2000]8 ,000]86 ,00019 ,000197 ,0002 ,	ARW20013	ar
	3.000815 , .000825 , .001632 , .00164,.010837 , .000837 , .000837,	ARW20014	
	4.903837 , .000837 , .000837 , .000815 , .00057 , .00951 ,	ARW20015	
and an original an extension	5.00344 , .JO4 , .JO38 , .C0032 , .C0032 , .U0032 , .U0032 ,	ARW20016"	· · · · · · · · · · · · · · · · · · ·
	6.00038 , .000315 , .00025 , .00017 , .0 0125 , .00004 ,	ARW20017	
	70.0 , 0.0 , 0.0 , .000045 ,00005 ,00013 ,0002		
	807023 ,07026 ,00928 ,(703 ,70032 ,	ARW20019	ingen an in a daaka in indaaka
	9000332 /	ARW20020	
	C DATA BRW2 7 .000029 , .000018 , .00001 ,000002,00001 ,		
ISN 0019		BRW2CO21	
	1000012 ,001015 ,C0.02 ,00C025 ,0000025 ,0C0068		
	2000000, 000009 , 000102 , 00011 , 000114 , 000114 ,	9RW20023	
	3600120061200012000080006600609 .	64 W2 0024	ea cades

DATE 70.102/15.04.43

	• • • • • • •	•		
		4000102	58W20025	
		500012000008000080000400010200011 .	KW29020	
		000011400011800012000120001202265 .	16W20077	
			LK W2 0028	
		8.0001607016000160001060000400000100025 .	BRW2 6C29	
		403004 UCO25 00000 00007 000078 JU1078 .	6RW20030	
		103075 ,000125 ,00010 ,000168 ,0302 ,000205 ,	6RW26031	
		1000210002150002140002120007600076 .	BRW20032	
		200016000188000200020800021000215 .	56 W2 O U 3 3	
		30772140012120008400080800075600064 -	8RW20034	
		4.00005000010005800056000560005800058 .	6KW20035	
		5.00050700042500014001245000200002400024.	6KW20036	
		6.00024COC2400035CT0255CT016CCC7500063 .	6R.W20037	ν (εία φαρικα βαλαβια). Γ
		703031 ,00003 ,00004 ,00004 ,00004 , 0.0 ,00013 ,	61 W2 0038	
		800022 ,000287 ,000312,000338 ,00035 ,000362 ,	bkw2 0039	
		90737000369 /	68W20040	
	C		CD10000 1	
ISN 0020	an i ann -	DATA CRW2 / .700155 , .70714 , .000123 , .0001 , .0008 ,	CRW20041	
		1.00007 , .000162 , .000055 , .000051 , .000051 ,0001 ,	CRW20042	
		2-633128 ,300149 ,30010 ,300017 ,3000172 ,3000178 ,	CRW20043	
		303016 ,00018 ,00016 ,0001 ,000128 ,000149 ,	CRW20044	
kan (C)		400016, 00017 , 000172 , 000178 , 00018 , 00018 ,	CHW20045	
Č Ĕ		503018 ,0001 ,003128 ,000149 ,00016 ,00017 ,	CKW20046 CRW26047	
PCOR		6-000172 , -000178 , -000018 , -000018 , -00018 , 000048 , 00048 , 7000048 , 0000428 , 0000375 , 0000345 , 000032 , 000024 , 000028 ,		a all ann a bha ann ann ann ann ann ann ann ann ann a
2 E		8.00028 · .00028 · .00017 · .00012 · .00002 · .00002 · .00002 ·	CR W2 0 044	
1 PAGE 15 OUALTT		9000349 ;00007 ;00008 ;000078 ;000078 ;00008 ;	LRW20050	
出る		100014 +00019 +000232 +000255 +00027 +000288 +	CRW20051	
5-1 - 1		1001295 +000295 +000295 +000295 +000214 +00019 +	CRW20052	
jent 1 tent		200023200025500027000238000295	CRW20053	
s and constrained and and and and and and and and and an		300024 , .001214 , .001183 , .00115 , .00111 , .001092 ,	CRW20054	and a statement of the second statement of the second statement of the second statement of the second statement
		4.00107 , .00107 , .00107 , .00107 , .00107 , .00082 , .00074 ,	CRW2 0055	
		5.0006600058000540005000490004900049	CRW2 0056	
		6.00049000495000385000282000175000125 .	CRW20057	- 44
		7.000075000032	CKW20058	
		800022 ,000325 ,00037 ,00041 ,000438 ,00045 ,	CRW20059	
	• •	901746070469 /	CRW20060	diata approximation to require
	C			
ISN 0021		DATA DRW2 / .000155 , .000136 , .00012 , .000042 , .000085 ,	DR W2 0061	
		1.000070 , .000060 , .000040 , .0000023 ,.000023 ,070075 ,	DR W2 0 0 6 2	
16				

165

1 JAN 75 J

MAIN

and a contract again as

• • ••

166	(JAN 75)	MAIN	05/30U	FURTRAN H EXTER	VDED	DATE 70.102/15	• 64• 43
anditilited and analysis and a subsection of the sector of	te allandict™ationation to ta	20301 .	000123 .	CCCI4	.0003470003	15 ,001154 ,	DRW2 0063	er an eine adami takonika
						.0071 (00123	, URW20004	
		401014	000147 .			0155 , JOU155,	URW2 0065	
		5070154	,000075	0203	.000123 000	014052147 .	URW20066	
		600015	000154 -	000155 .	01015500	06154000425	. UR#20007	
					· · · · · · · · · · · · · · · · ·		DRW20065	
	na te manuel				000 . 000 . 790		DR W2 0 0 69	
						000115	. DRW20070	
						10020 0/0274		
						5008 000150		
						00260 000284		
					.001030004		DRW2C074	
						0008150007		si aspending and an and
						.0000500000		
an a					00006 ,00006		DRW20078	- p•
						0040 00048		
			00044 ,				LIRW2 LOBU	
ی چه مد بند . د بوره ومیچند میداند.	с				•			an far ing after analysis an an
ISN 0022	•	DATA ERW	2 .000102		000114(001)	00105 .	ERW20081	
					000000		ERW20C62	
n n m servedengen, som svatte de	N 1991				00011000		ERW2 DC83	
						06020000085		
					0013 00012		ERW20085	
	e analasian e man ema					070100011		
						156 , 000472 ,	ER W2 0 0 6 7	
						.(1037		
					00005 -000001		ERW20089	y a Madrianan ana againg
					00010001		ERW20090	
						00329 - 00034		
n bi ann anairt ann i braiannach								
					1034000		ERW20043	
					0914680014		ERW20094	
						•CC128 • • 701725		. .
						•00°14 • •00°13		
	ب الفاسا فاهده						-	
					00075 .000075		ERW20098	
						048 •UUU51 •	FRW20099	
		700003	00053 .		7		ERW20100	

.... and the second MAIN

 b-c000175,c00180,c0012,c0012,c00121,c0025, FRW20106 7.00036,00749, -c00243, -c00255,20735,20025, FRW20106 8.00041, -00041, -00023, -00104,200285,20735, FRW20109 9-c0036,20028,20028,200285,200385,20235, FRW20110 1-c0036,20028,200225,20038,200285,20238, FRW20112 2-c0026,202287,20238,20238,20238, FRW20113 3-c0033, -c0127, -00127, -00125,20028, FRW20113 3-c0033, -c0127, -00127, -00117, -00130, -001242, FRW20116 5-c0033, -c0127, -00127, -00117, -01030, -001242, FRW20116 5-c0073, -00055, -000575, -00055, -00022, -00028, FRW20116 5-c0073, -00055, -00012, -0012, -20028, -50080, FRW20116 5-c0078,00052, -00012, -0012, -20028, -50080, FRW20116 8-c0035,00052, -20028, -00015, -200015, -20002, FRW20116 8-c0035,00052, -20028, -00015, -200015, -200015, FRW20116 8-c0035,00052, -20028, -20028, -200015, -200015, FRW20116 8-c0035,00052, -20028, -20028, -200015, -200015, FRW20116 8-c0035,00052, -20028, -20028, -200015, -200015, -20002, FRW20116 8-c0035,00052, -20028, -200015, -200015, -200015, -200015, -200015, -200015, -200015, -20002, FRW20116 8-c0033, -20028, -20028, -20028, -20028, -20028, -20028, -20028, -20028, -20028, -20028, -200015, -200015, -200015, -20001, -2000, -20001, -2000, -20001, -20001, -20001, -20001, -20001, -20001, -20001, -200	ISN G	023	DATA FRW2 / .J00226 , .CC 202 , .C00175 , .C00145 , .U00128 , 1.00011 , .U0004 , .C0034 , .C00132 , .N01122 ,UC06667 , 2J00105 ,O00132 ,CU0460 ,CC171 ,LCC170 ,C00180 , 3003187 ,U00182 ,UC0181 ,S00067 ,D01106 ,UC0182 , 4000160 ,CC0170 ,CT0175 ,C00180 ,000182 ,J02182 , 5000181 ,006667 ,C00105 ,T00132 ,C00167 ,C00170 ,	FFW20102 FRW20105 FRW20104 FRW20105
<pre>1=.00036,00030;00033;000125,00017,00021, FRM2012 250526,0003287,00125, .001405, .00130, .001242, FRM20113 300033, .00165, .001405, .00137, .00103, .001242, FRM20115 5.00073, .00065, .000555, .000555, .000262, .000202, FRM20115 6.00078, .000695, .00042, .000555, .000262, .000202, FRM20115 8.00073, .000695, .00042, .00012, .000125, .000080, FRM20117 7.000351, .000895, .00042, .00012, .00125, .000080, FRM20117 900054, .000952, .00012, .00012, .00125, .000080, FRM20118 900054, .00052 / FRM20115, .000515, .00026, .00027, FRM20118 900054, .00052 / FRM21220 ISN 0026 F2TM2 =.002403 ISN 0026 F2TM2 =.002403 ISN 0026 M2TF2 =10.76391 ISN 0028 M2TF2 =10.76391 ISN 0031 10 FURMAT17F1C.61 ISN 0032 IF (AC) 5,7,7 ISN 0033 S SREF=SREF=M2TF2 ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0037 CDF122=0. ISN 0038 CD012=0. ISN 0038 CD0232=C. ISN 0038 CD0232=C. ISN 0039 CD0232=C. ISN 0042 K1(1)=XMAX/L</pre>		$\sim \tilde{c}$	6000175 ,000160 ,000162 ,000182 ,000161 , .000575 ,	FRW20107
<pre>1=.00036,00030;00033;000125,00017,00021, FRM2012 250526,0003287,00125, .001405, .00130, .001242, FRM20113 300033, .00165, .001405, .00137, .00103, .001242, FRM20115 5.00073, .00065, .000555, .000555, .000262, .000202, FRM20115 6.00078, .000695, .00042, .000555, .000262, .000202, FRM20115 8.00073, .000695, .00042, .00012, .000125, .000080, FRM20117 7.000351, .000895, .00042, .00012, .00125, .000080, FRM20117 900054, .000952, .00012, .00012, .00125, .000080, FRM20118 900054, .00052 / FRM20115, .000515, .00026, .00027, FRM20118 900054, .00052 / FRM21220 ISN 0026 F2TM2 =.002403 ISN 0026 F2TM2 =.002403 ISN 0026 M2TF2 =10.76391 ISN 0028 M2TF2 =10.76391 ISN 0031 10 FURMAT17F1C.61 ISN 0032 IF (AC) 5,7,7 ISN 0033 S SREF=SREF=M2TF2 ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0037 CDF122=0. ISN 0038 CD012=0. ISN 0038 CD0232=C. ISN 0038 CD0232=C. ISN 0039 CD0232=C. ISN 0042 K1(1)=XMAX/L</pre>	f. F			
<pre>1=.00036,00030;00033;000125,00017,00021, FRM2012 250526,0003287,00125, .001405, .00130, .001242, FRM20113 300033, .00165, .001405, .00137, .00103, .001242, FRM20115 5.00073, .00065, .000555, .000555, .000262, .000202, FRM20115 6.00078, .000695, .00042, .000555, .000262, .000202, FRM20115 8.00073, .000695, .00042, .00012, .000125, .000080, FRM20117 7.000351, .000895, .00042, .00012, .00125, .000080, FRM20117 900054, .000952, .00012, .00012, .00125, .000080, FRM20118 900054, .00052 / FRM20115, .000515, .00026, .00027, FRM20118 900054, .00052 / FRM21220 ISN 0026 F2TM2 =.002403 ISN 0026 F2TM2 =.002403 ISN 0026 M2TF2 =10.76391 ISN 0028 M2TF2 =10.76391 ISN 0031 10 FURMAT17F1C.61 ISN 0032 IF (AC) 5,7,7 ISN 0033 S SREF=SREF=M2TF2 ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0037 CDF122=0. ISN 0038 CD012=0. ISN 0038 CD0232=C. ISN 0038 CD0232=C. ISN 0039 CD0232=C. ISN 0042 K1(1)=XMAX/L</pre>	1	6 C		
<pre>1=.00036,00030;00033;000125,00017,00021, FRM2012 250526,0003287,00125, .001405, .00130, .001242, FRM20113 300033, .00165, .001405, .00137, .00103, .001242, FRM20115 5.00073, .00065, .000555, .000555, .000262, .000202, FRM20115 6.00078, .000695, .00042, .000555, .000262, .000202, FRM20115 8.00073, .000695, .00042, .00012, .000125, .000080, FRM20117 7.000351, .000895, .00042, .00012, .00125, .000080, FRM20117 900054, .000952, .00012, .00012, .00125, .000080, FRM20118 900054, .00052 / FRM20115, .000515, .00026, .00027, FRM20118 900054, .00052 / FRM21220 ISN 0026 F2TM2 =.002403 ISN 0026 F2TM2 =.002403 ISN 0026 M2TF2 =10.76391 ISN 0028 M2TF2 =10.76391 ISN 0031 10 FURMAT17F1C.61 ISN 0032 IF (AC) 5,7,7 ISN 0033 S SREF=SREF=M2TF2 ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0037 CDF122=0. ISN 0038 CD012=0. ISN 0038 CD0232=C. ISN 0038 CD0232=C. ISN 0039 CD0232=C. ISN 0042 K1(1)=XMAX/L</pre>	,	y, El		
230266,00287,202315,30024,70036,30264, FAN20113 360033, -60163, -00155, -00145, -30135, -001242, FAN20114 4-00127, -60127, -00127, -00127, -0017, -60103, -00204, FAN20115 5-00073, -000555, -000555, -00055, -00022, -6062, -3062, FAN20116 6-00078, -00055, -00072, -00012, -000165, -300080, FAN20117 7-00355,00364, -00012, -00015,000165,0002, FAN20116 E00335,00364,00347,000155,000015,0002, FAN20116 E00335,00052 / FAN20115,00015,000015,0002, FAN20116 FAN20116 900355,00052 / FAN2,000155,000054, FAN20116 FAN20116 900355,00052 / FAN20155,00055,000015,000000, FAN20116 FAN20116 FAN20116 FAN20116 FAN20116 FAN20117 T.00355,00052 / FAN20155,00055,000000, FAN20116 FAN2012,00052, FAN20155,000000, FAN2015, FAN20116 FAN20116 FAN20116 FAN20116 FAN20116 FAN20117 FAN20116 FAN20116 FAN20116 FAN20116 FAN20117 T.00355,00052 / FAN20052 ISN 0026 M2T2 = 10-76391 ISN 0026 ISN 0030 I READ (5,10) AC,AMAX,AN,XMAX,L,SHEF,M ISN 0031 ID FORMAT171710-60 ISN 0032 IF (AC) 5,7.7 ISN 0033 SREF=SRE+M2TF2 ISN 0035 CDM12=0- ISN 0035 CDM12=0- ISN 0036 CDM12=0- ISN 0036 CDM23=0- ISN 0037 CDF23=0- ISN 0038 CDM232=0- ISN 0038 CDM232=0- ISN 0038 CDM232=0- ISN 0038 CDM232=0- ISN 0039 CDD223=0- ISN 0034 CD0022=0- ISN 0034 CD012=0- ISN 0035 CDM12=0- ISN 0036 CDM12=0- ISN 0036 CDM12=0- ISN 0037 CDF23=0- ISN 0036 CDM23=0- ISN 0036 CDM12=0- ISN 0037 CDF23=0- ISN 0036 CDM23=0- ISN 0036 CDM23=0- ISN 0037 CDF23=0- ISN 0038 CDM23=0- ISN 0039 CDM232=0- ISN 0039 CDM232=0- ISN 0034 CDM232=0- ISN 0034 CDM232=0- ISN 0035 CDM23=0- ISN 0034 CDM23=0- ISN 0035 CDM23=0- ISN 0036 CDM23=0- ISN 0037 CDF23=0- ISN 0038 CDM23=0- ISN 0039 CDM23=0- ISN 0	:			
3-60033 ; 60163 ; 60155 ; 001465 ; 60130 ; 001242 ; FRW20114 4.00127 ; 60127 ; 60127 ; 60127 ; 60107 ; 60107 ; 60108 ; 600084 5.00078 ; 00055 ; 00055 ; 00024 ; 60024 ; 500080 ; FRW20115 6.00078 ; 00055 ; 00012 ; 60012 ; 6002 ; 600080 ; FRW20117 7.000551 ; 600184 ; -00012 ; 60012 ; 6002 ; 600080 ; FRW20116 8-00055 ; -000541 ; -00014 ; -0001515 ; -000080 ; FRW20116 8-00055 ; -00052 ; FRW20115 ; -0001515 ; -000080 ; FRW20116 8-00055 ; -00052 ; FRW20116 ; -0001515 ; -000055 ; FRW20116 8-00055 ; -00052 ; FRW20116 ; -0001515 ; -000055 ; FRW20116 8-00055 ; -00052 ; FRW20116 ; -0001515 ; -000055 ; FRW20116 ; -00002 ; FRW20116 ; -000052 ; -000000 ; -000052 ; -000000 ; -000000 ; -000000 ; -000000 ; -000000 ; -0000000 ; -000000 ; -000000 ; -000000 ; -000000 ; -0000000 ; -00000000		•••		
4.00127001270012701270117010300068				
5.00073 , 00065 , 000575 , 000565 , 00022 , 05022 , 50022 , 54420116 6.00078 , 000595 , 00042 , 00024 , 0000105 , 500080 , FRM20117 7.00055 , -00084 , -00012 , 00012 , 00020 , FRM20116 8-00735 , -00052 / FRM20115 , -00072 , FRM20115 , FRM20115 9-00054 , -00052 / FRM2120 ISN 0025 FTH = 3048 ISN 0026 F2TM2 = 092903 ISN 0027 MTF = 3.28094 ISN 0028 M2TF2 = 10.76391 ISN 0030 1 READ (5,10) AC,AMAX,AN,XMAX,L,SHEF,M ISN 0031 10 FURMAT17F1C.60 ISN 0032 IF (AC) 5,777 ISN 0032 IF (AC) 5,777 ISN 0035 CDM12=0. ISN 0035 CDM12=0. ISN 0036 CD012=0. ISN 0037 CDF12=0. ISN 0037 CDF12=0. ISN 0038 CDM23=C. ISN 0038 CDM23=C. ISN 0039 CD023=0. ISN 0040 CD0M=0. ISN 0040 CD0M=0. ISN 0040 CD0M=0.				
6.00J78 , 000595 , 00024 , 000080 , FRM20117 7.00J55 , 000595 , 00012 , 0012 , 0012 , 000105 , 000080 , FRM20115 8-0J355 , 00054 , 00052 / FRM20115 , 000515 , 00056 , FRM20119 9-00054 , 00052 / FRM20120 9-00054 , 00052 / FRM20120 ISN 0025 FTH = 3648 ISN 0026 F2TM2 =092903 ISN 0027 MTF = 3.28094 ISN 0028 M2TF2 =10.76391 ISN 0028 M2TF2 =10.76391 ISN 0030 1 REAU (5,10) AC,AMAX,AN,XMAX,L,SHEF,M ISN 0031 10 FURMAT(7F10.6) ISN 0032 IF (AC) 5,77 ISN 0033 5 SREF=SREF+M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDM22=C. ISN 0036 CD012=0. ISN 0037 CLF22=C. ISN 0038 CDW232=C. ISN 0039 CL0232=0. ISN 0039 CL0232=0. ISN 0040 CD0M=0. ISN 0042 KG(1)=XMAX/L				
7.003353 , =032080 , =00312 , =0312 , =0312 , =00015 , ==0002 , FRW20118 B==0735 , ==035415 , ==03547 , ==00054 , ==00054 , FRW20119 9==00054 , ==00052 / FRW2120 ISN 0024 P1=3.141593 ISN 0025 FTM = =092903 ISN 0027 MTF = 3.26094 ISN 0028 M2TF2 =10.76391 ISN 0028 M2TF2 =10.76391 ISN 0030 1 READ (5,10) AC,AMAX,AN,XMAX,L,SHEF,M ISN 0030 1 READ (5,10) AC,AMAX,AN,XMAX,L,SHEF,M ISN 0031 10 FURMAT(7F10.6) ISN 0033 5 SREF=SREF+M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDM12=0. ISN 0036 CD012=0. ISN 0037 CDF23=C. ISN 0038 CDW23=C. ISN 0039 CD0232=0. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0040 CD0M=0. ISN 0042 XG(1)=XMAX/L				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
900054 ;00052 / FH W2 120 ISN 0024 PI=3.141593 FTM = 3048 ISN 0025 FTM = 3.048 FTM = 3.28054 ISN 0026 F2TM2 =.092903 FTM = 3.28054 ISN 0027 MTF = 3.28054 FTM = 3.28054 ISN 0028 M2TF2 =10.76391 FTM = 3.28054 ISN 0029 S1=10030. FTM = 3.28054 ISN 0030 I READ (5,10) AC, AMAX, AN, XM AX, L, SKEF, M FTM = 3.28054 ISN 0031 10 FURMAT17F1C.61 FTM = 3.28054 ISN 0032 IF (ACl 5,77 FTM = 3.28054 ISN 0032 IF (ACl 5,77,7 FTM = 3.28054 ISN 0033 5 REF=SREF+M2TF2 FTM = 3.28054 ISN 0035 CDW12=0. FTM = 3.28054 ISN 0036 CD012=0. FTM = 3.28054 ISN 0037 CUF232=C. FTM = 3.15077 ISN 0038 CDW232=0. FTM = 3.15070. ISN 0040 CD0M=0. FTM = 51/SREF ISN 0042 XG(1)=XMAX/L FTM = 51/SREF	· •• •			
ISN 0024 PI=3.141593 ISN 0025 FTM = .3048 ISN 0026 F2TM2 = .092903 ISN 0027 MFF = 3.28094 ISN 0028 M2TF2 = 10.76391 ISN 0029 SI=10000. ISN 0030 I READ (5,10) AC,AMAX,AN,XMAX,L,SHEF,M ISN 0031 10 FURMAT(7F1C.6) ISN 0032 IF (AC) 5,7,7 ISN 0032 SREF=SREF+M2TF2 ISN 0035 CDW12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0036 CD012=0. ISN 0038 CDW23=C. ISN 0039 CD0232=0. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATIO = S1/SREF ISN 0042 XG(1)=XMAX/L				
ISN 0025 FTM = .3048 ISN 0026 F2TM2 =.092903 ISN 0027 MTF = 3.28054 iSN 0028 M2TF2 =10.76391 ISN 0029 S1=10000. ISN 0030 1 REAU (5,10) AC,AMAX,AN,XMAX,L,SHEF,M ISN 0031 10 FURMAT(7F1C.6) ISN 0032 IF (AC) 5,7,7 ISN 0033 5 REF=SREF+M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	ISN O	024		
ISN 0027 MTF = 3.28094 ISN 0028 M2TF2 = 10.76391 ISN 0029 S1=10000. ISN 0030 1 READ (5,10) AC, AMAX, AN, XMAX, L, SHEF, M ISN 0031 10 FORMAT(7F1C.6) ISN 0032 IF (AC) 5,7,7 ISN 0033 5 SREF=SREF+M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0040 CD0M=0. ISN 0041 SRATID = S1/SREF ISN 0042 XG(1)=XMAX/L				
ISN 0028 M2TF2 = 10.76391 ISN 0029 S1=10000. ISN 0030 1 READ (5,10) AC, AMAX, AN, XMAX, L, SKEF, M ISN 0031 10 FURMAT(7F10.6) ISN 0032 IF (AC) 5,7,7 ISN 0033 5 SREF=SREF+M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CUF232=C. ISN 0038 CDW232=C. ISN 0039 CU0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	ISN O	026	_	
ISN 0029 S1=10000. ISN 0030 1 REAU (5,10) AC,AMAX,AN,XMAX,L,SKEF,M ISN 0031 10 FURMAT(7F10.6) ISN 0032 IF (AC) 5,7,7 ISN 0033 5 SREF=SREF*M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0040 CD0422=0. ISN 0040 CD040 ISN 0041 SRATIO =S1/SREF ISN 0042 XG(1)=XMAX/L	ISN O	027	MTF = 3.28054	
ISN 0030 1 READ (5,10) AC,AMAX,AN,XMAX,L,SKEF,M ISN 0031 10 FURMAT(7F1C.6) ISN 0032 IF (AC) 5,7,7 ISN 0033 5 SREF=SREF+M2TF2 ISN 0034 7 CDF12=A. ISN 0035 CDW12=0. ISN 0036 CD012=D. ISN 0037 CbF232=C. ISN 0038 CDW232=A. ISN 0039 CD0232=A. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	ÍSN O	028	M2TF2 = 10.76391	· • • • . · ·
ISN 0031 10 FURMAT(7F1C.6) ISN 0032 IF (AC) 5,7,7 ISN 0033 5 SREF=SREF=M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	ISN O	029	S1=10000.	
ISN 0032 IF (AC) 5,7,7 ISN 0033 5 SREF=SREF+M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0039 CU0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	ISN Q	030	1 READ (5,10) AC,AMAX,AN,XMAX,L,SKEF,M	
ISN 0033 5 SREF=SREF+M2TF2 ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	1 SN 0	031 1	0 FURMAT(7E10.6)	
ISN 0034 7 CDF12=0. ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L				
ISN 0035 CDW12=0. ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	And 10 M 1			
ISN 0036 CD012=0. ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L				terio general d'a siste general independente de des de la generalis.
ISN 0037 CDF232=C. ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L				
ISN 0038 CDW232=C. ISN 0039 CD0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	_			
ISN 0039 CU0232=0. ISN 0040 CD0M=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L				
ISN 0040 CDOM=0. ISN 0041 SRATID =S1/SREF ISN 0042 XG(1)=XMAX/L	-			
ISN 0041 SRATIO =S1/SREF ISN 0042 XG(1)=XMAX/L				
ISN 0042 XG(1)=XMAX/L				
15N 0043 XC (2)#AN/AKS (AC)				
	15N 0	043	$X({2}=AN/ABS(AC)$	

168	C	JAN	75	MAIN	US /507	FURTRAN H EXTENDED	DATE 70.162/15.04.43
TSN 0044	•			XG(3)=AMAX/ABS(AC)			a sea fina y a sena antica da a
ISN 0045	5			DC=SQRT(4+ABS(AC)/ P			
ISN 004e				XG (4)=1./DC			
ISN 0047	7			IF (AC) 15,17,17			
ISN 0048			15	ACM=ABS(AC)			
ISN 0049				AC=ACM + M2TF2			
ISN 0050)			AC 1=AC			
ISN 0051	L			AMAXM=AMAX			
ISN 0052				AMAX=AMAX + M2TF2			
ISN 0053	•			ANM =AN			
ISN 0054	Þ			AN = AN + M2TF2			
ISN 0055				XMAXM =XMAX			
ISN 0056				XMAX =XMAX + MTF			
ISN 0057	1			LM =L			
ISN 0058	-			L=L + MTF			a transformation and the second and
ISN 0059				SREFM=SREF+F2TM2			
ISN 006				GO TO 20			
ISN 0061			17	ACM=AC+F2TM2			an a
ISN 0062	-			AMAXM =AMAX + F2TM2			
ISN 0063				ANM = AN + F2TM2			
ISN 0064	-			XMAXM= XMAX + FTM			
ISN 0065				LM= L+ FTM			
ISN 0066			.	SREFM = SREF + F2TM2			
ISN 0067			20	XG(5) = ABS(AC)			
ISN GOGE				IF (XGI1).LT4 .OR.	XG(1).GT.1	L. IGU TC 25	
ISN 0070	-			GU TU 30			
ISN 0071				WRITE (6,101) XG(1)			anda i van nora anda andara ta ana a sa sa sa sa ana ana ana ana ana
ISN 0072				IF (XG(2).LT.1UR.	XG(2).6T.2	?•) C() T() 35	
ISN 0074				GO TO 40			
ISN 0075			35	WRITE (6,102) XG(2)		n di na sun mina i s	a a' i - i - i - i - i - i - i - i - i - i
ISN 0076			40	IF (XG(3).LT.1.25 .0)	• XG(3)+G1	- 2- 1 GU TU 45	
ISN 0078				GD TU 50			
ISN 0079				WRITE (6,103) XG(3)			sa sama si a sa s
ISN 0080				IF (XG(4).LT.5.5 .0R	X614 J.6T.	F.J GU IU 55	
ISN 0082				GD TD 60			
ISN 0083	* 1		55	WRITE (0,104) XG(4)		a a la companya sa	a tat v⊳av, ⊱appetartus, belgen belgen belgen belgen be
ISN 0084				IF (XG(5).LT.20OR.	XG(5).GT	•40•1 60 TU 70	
ISN 0086				GO TO 75			r
TSN 0087				WRITE(6,105) XG(5)			·
ISN 9988			75	XG(6)=1.2			

		(JAN	75)	MAIN	05/300	FURTRAN	H LXTENDED		DATE 70.102/15.04.4
			-		COW AT	1.2M					
SN	6089		-			DTLAEL6 .XG.X	.Z.NX.CUW12.	A . b . C . [/)			
-			2		COW AT	2.32M	•••••	• • •			
SN	0990		-		XG(6)=						
	0091					DTLAE(4 ,XG,X	-Z-NX-CDW232	A. 6. C.D)		
			C		. CDF AT					_	
SN"	3092	••••			XG(6)=						
	0093					DTLAE(4 ,XG1,	X1. Z1. NX1 .C!	+ 12 .A. b.	C,()		
			C		. CDF AT		•••••••••••••••••••••••••••••••••••••••	••••		78	
ISN	0094		-	•••	XG (a)=					DRIGINAL DE POOR	
	0095					DTLAE14 ,XG1,	X1.71.NX1.CD	F 232 . A . B	• (• 1)	2 5	
	0096					CDF12 * SRATI				8 P	
	0097	-	****			COWIZ * SRATI				JAG	-•
	0098					=CDF232 + SRA				E POOR QUALITY	
	0099					= CDW232 $+$ SR				T F	
	0100					CDF12 + CDW12					
	0101					=CDF232 + CDW					
	VIVI		C	. .		AT INPUT MACH					
1 156"	0102		V	. •		83,95,83					
	0103			83		D0232-CD012)/	1.12				
	0104			0.	S(2)=2		****				
	0105					35* DER	w10				
	0106				LIPN=2						
	0107				IP=1						
								and a state of the second state	• • •		an international constraints and a second second second
-	0108				ZPRI1)						
	0109					=CD0232					
	0110				XPR(1)			n			
	0111				XPR(2)			- 111	-(S(3) + S(3))		TO NR. TAX. 2 8 1
1 2N	J112					2.+(ZPR(LIPN)				21171284	
• > # -	A111A			·	2+ 1)-						N0 TO 0 282
1 24	0113					(ZPRILIPN)	- ZPRTLIPN		/ [XPR[TP + 1		
						2) - (XPR(IP))		K (] P]] +	(XPR(1P + 1) -	- AFRI IF	
					3)/(XPR	• • •			- B- 1		NDTJ0285
	0114					2) - 2.*XPR(1					NDTOG286
	0115							PIL + XPK	(IP)*(& + XPR	(18 J¥A))	NUT20267
	0110					+M+(C+M+(B+M+			* 88168 * 887 - MARIN		· ····································
I SN	6117			9:					ANM AN , XMA		
						-	I +SREF + CDF	-12 4CDM1	2 ,CD012 , CDF	232 JUW2	137 💡
					2000232						
I SN	0118			10	D FORMAT	(1H1 20X, 16	HNACELLE GEO	METRY//1	H 26X,19HCAPTU	RE AREA	

The second se

MAIN

-

		1 F0+2+2X+J2HSW M (F0+2+2X+GHSW FT)+/ 1H 20X+J9HMAXIMUM AKEA 2 F0+2+2X+J2HSW M (F0+2+2X+6HSW FT)/ JH 20X+J9HNUZZLE 3AREA F6+2+2X+J2HSW M (F0+2+2X+0HSW FT)/ JH 20X+J9HLU 4C+ UF MAX+ AREA F0+2+4X+J2HM (F0+2+4X+4HFT)/ JH 20X+J9HT 5UTAL LENGTH F0+2+4X+J1HHM (F0+2+4X+4HFT)//JH 20X+J9HT 6ING REFERENCE AREA F9+2+2X+9HSK M (F9+2+2X+0HSK FT)//JH 20X+3 77H INGREMENTAL NACELLE URAC CDEFF JGIENTS/ 1H 20X+17HMACH 1+2 CDF 8= F8+5+3X+5HCDW= F8+5+3X+5HCEW= F8+5/ 1H 20X+17HMACH 2+32 CEF= 9F8+5+3X+5HCDW= F8+5+3X+5HCEW= F8+5)	•• •
	0119	IF (N) 109,112,104	
	0120	109 WRITE (6,110) M,CDCM	
	3121	110 FORMAT (1H 26X,4HMACH H5.2,35X,5HCD0= H8.5)	1
	0122	112 WRITE (6,115) XG(1),XG(2),XG(3),XG(4)	
ISN	0123	115 FORMAT 1/1H 20%, HHXMAX/L= F7.3,3%, 7HAN/AC= F7.3,3%, 9HAMAX/AC= F 17.3,3%, 6HL/DC= F7.3)	
İSN	0124	WRITE(6,140)	
ISN	0125	140 FORMAT (//1H 20X,61HINCREMENTAL NACFLLE DRAG CLEFFICIENTS - LTV RE 1FERENCE VEHICLE/1H 20X,25HMACH 1.2 CDF= 0.00072,3X,13HCDW= -0. 200041,3X,13HCD0= 0.00031/1H 20X,25HMACH 2.32 CDF= 0.0000,3X,1 33HCDW= -0.00018,3X,13HCD0= 0.00042)	
I SN	0126	IF (M) 201,310,201	
		C LTV REFERENCE VEHICLE NACELLE WAVE AND FRICTIGN DRAGS	
ISN	0127	201 IF (M-1.4) 204,204,206	
I SN	0128	204 I=1	
	0129	GO TO 220	n a nast at contra an ang angga a shanga ang ang ang ang ang ang ang ang ang
	0130	206 IF (M-1.8) 208,208,210	
	0131	208 J=3	
	0132	GO TO 220	
	0133	210 1=5	
	0134	220 LTVW=(M-MLT(I+1))*(M-MLT(I+2))/((MLT(1)-MLT(I+1))*(MLT(I)-MLT(I+2)	
		1))*LW(1) +(M-MLT(1))*(M-MLT(1+2))/((MLT(1+1)-MLT(1))*(MLT(1+1)-MLT	φαι με το παρία θαρία της του Γιαλογιματική αφοια θαθούμα θαι αναγκατική.
		2(1+2)))*LW(1+1) +(M-MLT(1))*(M- MLT(3+1))/((MLT(1+2)-MLT(3))*(MLT	
		3(1+2)-MLT(1+1)) *LW(1+2)	
TSN	0135	LTV0=LTVW	
	0136	230 WRITE (0,145) M, LTV0	
	0130	145 FORMAT(1H 20X,4HMACH F5.2,33X,7H CUV= F8.5)	
	0137	101 FORMAT (1H1 2CX, 22HXMAX/L UUTS1DE RANGE =F0.2)	. · · · · · ·
	0139	101 FURMAT (1H1 2CA, 22HAMAAZE OUTSIDE RANGE $=$ F6.2) 102 FURMAT (1H1 2CX, 21HAN/AC OUTSIDE RANGE =F6.2)	
	0140	103 FORMAT (1H1 20X, 23HAMAX/AC OUTSIDE RANGE =F6.2)	
124	0141	104 FORMAT (1H1 20X, 20HL/DC OUTSIDE RANGE = $F_{0,0}$)	

					· · · · · · · · · · · · · · · · · · ·
(JAN 75) MAIN	05/365	FURTRAN H EXTENDED	DATE 70.102/15.04.43
ISN 0142 ISN 0143 ISN 0144	105 310	FORMAT (1H1 20X, 18H GG TO 1 END	AL GUTSIDE F	(4N(F) =F6.2)	
ORIG OF P					un agus an ann an an an ann an ann an an an an
ORIGINAL PAGE IS OF POOR QUALITY		-	2 5. 2 2 . 10 11		April Domini Ampilia Angli ppila i an an an an an ang
GE IS					
ngin nggan nang kangang kan kana sa sa sa	- 		annan an ann	nan an suis an suis anna ann an suis ann an suis ann an suis ann ann an suis ann ann ann ann ann ann an ann an	
	an na agan				
		-			
				, and generated and an entertain of a	
171				· · · · · · · · ·	

REQUESTED OPTIONS: LIST, XREF, DECK

OPTIONS IN EFFECT: NAME(MAIN) OPTIMIZE(1) LINECOUNT(42) SIZE(MAX) AUTOOBL(NONE) SOURCE EBODIC LIST DECK OBJECT MAP NOFORMAT GOSTMT XREF ALC NOANSF NOTERMINAL FLAG(I)

	NDT00020
C	
	NDT00030
C NOMENCLATURE	NDT00040
C NIV = NUMBER OF INDEPENDENT VARIABLES	NDT00050
C XG = ARRAY OF GIVEN VALUES OF INDEPENDENT VARIABLES	5 NDT 00 060
C Y = ARRAY OF INDEPENDENT VARIABLES	NDT00070
C 7 = ARRAY OF DEPENDENT VARIABLES	NDT00080
C NX = ARRAY OF NUMBER OF VALUES GIVEN FOR EACH	NDT00090
C INDEPENDENT VARIABLE	NDT00100
C RES # FINAL INTERPOLATED VALUE OF Z AT X1 GIVEN, X2	NDT00110
C GIVEN,XNIV GIVEN	NDT00120
C A,B,C,D = CDEFFICIENTS OF THE CURIC DEFINING THE Z VALUE	SNDT00130
C ICF = ARRAY OF NUMBER OF POINTS TO BE USED FOR CURVE	NDT00140
C FIT FOR EACH INDEPENDENT VARIABLE	NDT00150
C XXG = ARRAY OF GIVEN VALUES OF INDEPENDENT VARIABLES	NDT00160
C UNLESS VALUE WAS OUTSIDE RANGE. IN THIS CASE	NDT00170
C CLOSEST VALUE IN THE TABLE IS ASSIGNED XXG	NDT00180
C IGAT = ARRAY OF INDICATORS OF LOCATIONS OF X GIVEN IN	NDT00190
C X ARRAY	NDT00200
C 1, IF XG IS IN ONE OF THE MIDDLE INTERVALS	NDT00210
C 2, IF XG IS IN THE FIRST INTERVAL	NDT00220
C 3, IF XG IS IN THE LAST INTERVAL	NDT00230
C LOC = ARRAY OF LOCATION IN X ARRAY OF FIRST VALUE TO	NDT00240
C BE USED FOR EACH INDEPENDENT VARIABLE.	NDT.00250
C XPR = TEMPORARY ARRAY FOR X VALUES BEING USED	NDT00260
C ZPR = TEMPORARY ARRAY FOR Z VALUES BEING USED	NDT00270
C LISTZ = LOCATION OF FIRST VALUE USED IN THE Z ARRAY	NDT00280
C LLCTR = COUNTERS FOR THE ZS WITHIN A SUBSET	NDT00290
C L = SUBSCRIPT FOR Z-PRIME	NDT00300
C LL = SUBSCRIPT FOR Z	NDT00310
C K = SUBSCRIPT INDICATING THE SUBSET	NDT00320
C	NDT00330
С С	NDT00340
C DIMENSION NX(1), LOC(NIV), XG(1),X(1), Z(1), ZPR(4 + 3*(NIV - 2))	

1, XXG(1(), TGAT(10), ICF(10), LLCTR(11) NDT00400 1SN 0004 00 1 I = 1, NIV NDT00420 C TEST TO SFE IF EACH VARIABLE HAS MORE THAN ONE PDINT NDT00430 NDT00450 NDT00440 NDT00440 C YE(NX(I)-1) 2, 2, 3 NDT00440 C VARIABLE I DNLY HAS ONE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00440 ISN 0006 2 WRITE(6,100) I,NX(I) NDT00460 ISN 0007 10° FORMAT(13H1 VARIABLE 13,10H ONLY_HAS I2,41H PDINT, THEREFORE PRNDI00500 NDT00490 ISN 0008 STOP NDT00510 NDT00510 C STOP NDT00550 NDT00550 C STOP NDT00560 NDT00550 C STOP NDT00560 NDT00560 C STOP NDT00560 NDT00560 C STOP NDT00560 NDT00560 C STOP NDT00560	(JAN 75 1	057360	FORTRAN H EXTENDED	DATE 76.009/	08.56.13
C NDT00370 ISN 0003 DIMENS ION NX(1), LOC(10), XG(1), X(1), Z(1), ZPR(28), XPR(4), S(3)NDT00390 1, XXG(10), IGAT(10), IGF(10), LLCTR(1)) NDT00400 1SN 0004 D0 1 I = 1, NIV NDT00420 C TFST T0 SFE IF EACH VARIABLE HAS MORE THAN DNE PDINT NDT00440 C TFST T0 SFE IF EACH VARIABLE HAS MORE THAN DNE PDINT NDT00450 C VARIABLE I DNLY HAS ONE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 SN 0005 IF(NX(1)-1) 2, 2, 3 NDT00450 C VARIABLE I DNLY HAS ONE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 SN 0006 2 WRITE(6,170) I,NX(1) NDT00450 ISN 0007 100 FORMAT(13H1 VARIABLE 13,10H ONLY_HAS 12,41H PDINT, THEREFORE PRNDT00500 NDT00520 STOP NDT00520 NDT00520 NDT00520 C STOP NDT00550 NDT00550 C STOP NDT00540 NDT00540 C STOP NDT00540 NDT00540 C STOP NDT00540 NDT00540 C STOP NDT00550 NDT05	- .~	C XPR(4) . S(3	3). XXG(NIV). IGAT(NI	V), ICF(NIV), LLCTR(NIV +	1) NDT00360	ан на холон на на село на
ISN 0003 DIMENSION NX(1), LOC(10), XG(1), X(1), Z(1), ZPR(28), XPR(4), S(3)NOT00390 ISN 0004 D0 1 1 = 1, NIV NOT00400 ISN 0004 D0 1 1 = 1, NIV NOT00420 C TEST TO SFE IF EACH VARIABLE HAS MORE THAN ONE PDINT NDT00430 ISN 0005 JF(NX(1)-1) 2, 2, 3 NDT00450 C VARIABLE I DNLY HAS DNE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00460 NDT00450 C VARIABLE I DNLY HAS DNE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00460 NOT00460 ISN 0006 2 WRITEF(6,100) I,WX(1) NOT00440 NOT00460 ISN 0006 2 WRITEF(6,100) I,WX(1) NOT00460 NOT00460 ISN 0006 2 WRITEF(6,100) I,WX(1) NOT00640 NOT00460 ISN 0007 100 FORMAT(13H1 VARIABLE I3,10H DNLY_HAS I2,41H PDINT, THEREFORE PROTODOSOD NOT00520 ISN 0008 STOP NOT00540 NOT00540 NOT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NOT00540 NOT00550 NOT00550 C FIT NOT006560 NOT00550 NOT006560 NOT006560 NOT006560 NOT006560 NOT006560 NOT006560 NOT006600 ISN 0012		c	••••••••••	• • • • • •		
1, XXG(1(1), TGAT(10), ICF(10), LLCTR(11) NDT00400 1SN 0004 D0 1 I = 1, NIV NDT00420 C TEST TO SFE IF FACH VARIABLE HAS MORE THAN ONE PDINT NDT00420 ISN 0005 TF(NX(I)-1) 2, 2, 3 NDT00440 C VARIABLE I DNLY HAS ONE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00440 ISN 0006 2 WRITE(6,100) I,NX(I) NDT00450 ISN 0006 2 WRITE(6,100) I,NX(I) NDT00450 ISN 0007 10° FORMAT(13H1 VARIABLE I3,10H ONLY_HAS I2,41H PDINT, THEREFORE PROJOCO NDT00450 ISN 0008 STOP NDT00510 NDT00510 NDT00510 ISN 0008 STOP NDT00550 NDT00550 NDT00550 C STOP NDT00550 NDT00550 NDT00550 NDT00550 SN 0000 4 IF(NIX(I) - 3) 4, 4, 5 NDT00550 NDT00550 NDT00550 NDT00550 STOP NDT00550 STOP NDT00550 STOP NDT00550 STOP NDT00560 STOP NDT00560 STOP NDT00550 STOP NDT00560 STOP NDT00560 STOP NDT00570 STOP NDT00560 STOP NDT00560 S		С			NDT00380	
ISN 0004. D0 1 I = 1, NIV INDT00410 C TEST TD SEE IF EACH VARIABLE HAS MORE THAN DNE PDINT NDT00430 ISN 0005 JF(NX(I)-1) 2, 2, 3 NDT00440 C VARIABLE I DNLY HAS DNE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 NDT00440 C VARIABLE I DNLY HAS DNE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 NDT00450 ISN 0006 2 WRITE(6,100) I,NX(I) NDT00450 NDT00490 ISN 0007 100 FORMATCIBIL< VARIABLE 13,10H DNLY_HAS 12,41H PDINT, THEREFORE PROGRAM CANNOT CONTINUE.)	ISN 0003	DIMENSION N	NX(1), LOC(10), XG(1)	, X(1), Z(1), ZPR(28), XPP	R(4), S(3)NDT00390	
C TEST TO SEE IF FACH VARIABLE HAS MORE THAN ONE POINT NDT00420 ISN 0005 JF(NX(I)-1) 2, 2, 3 NDT00450 ISN 0006 C VARIABLE I DNLY HAS ONE POINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 ISN 0006 C WRITE(6,100) I,NX(I) NDT00450 ISN 0007 C WRITE(6,100) I,NX(I) NDT00450 ISN 0006 2 WRITE(6,100) I,NX(I) NDT00450 ISN 0007 100 FORMAT(13H1) VARIABLE I3,10H DNLY_HAS I2,41H POINT, THEREFORE PROGRAM CANNOT CONTINUE) STOP NDT00510 2 WRITE(6,100) I,NX(I) NDT00520 1SN 0007 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C FIT NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C FIT NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 SIN 0010 GO TO L NDT00570 SIN 0012 S IF(F(I) = 4 NDT00500 ISN 0012 S ICF(I) = 4 NDT00640 ISN 0014 ICF(NIV + 1) E 1 NDT0050 ISN 0014 ICF(NIV + 1) E 1 <td></td> <td>1, XXG(1^),</td> <td>IGAT(10), ICF(10), L</td> <td>LCTR(1))</td> <td></td> <td></td>		1, XXG(1^),	IGAT(10), ICF(10), L	LCTR(1))		
C TEST TO SFE IF EACH VARIABLE HAS MORE THAN ONE POINT NDT00430 ISN 0005 JF(NX(I)-1) 2, 2, 3 NDT00450 C VARIABLE I DNLY HAS ONE POINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 ISN 0006 2 WRITE(6,1^0) I,NX(I) NDT00450 ISN 0007 100 FORMAT(I3H1 VARIABLE I 3,10H DNLY.HAS 12,41H POINT, THEREFORE PRNDI00500 ISN 0007 100 FORMAT(I3H1 VARIABLE I3,10H DNLY.HAS 12,41H POINT, THEREFORE PRNDI00500 ISN 0007 STOP NDT00450 C STOP NDT00510 STOP NDT00510 NDT00520 C STTUP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C FIT NDT00510 SSTOP 3 IF(NX(I) - 3) 4, 4, 5 NDT00510 C STTUP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C FIT NDT00510 SSN 0010 1 ECF(I) = NX(I) NDT00510 ISN 0012 1 ECF(I) = NX(I) NDT00500 ISN 0013 1 CONTINUE NDT006400 SSN 0014 1 CONTINUE NDT006400 ISN 0015 IT = 0 NDT006400 C <	ISN 0004	001I = 1	, NIV			
C NDT00440 NDT00450 1SN 0005 1F(NX(1)-1) 2, 2, 3 NDT00450 C VARIABLE I DNLY HAS ONE POINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 ISN 0006 2 WRITEF(6,100) I,NX(1) NDT00450 100 FORMAT(13H1) VARIABLE 13,10H DNLY_HAS 12,41H POINT, THEREFORE PRNDT00500 NDT00490 100 FORMAT(13H1) VARIABLE 13,10H DNLY_HAS 12,41H POINT, THEREFORE PRNDT00500 NDT00510 20GRAM CANNOT CONTINUE) NDT00510 NDT00510 STOP NDT00510 NDT00510 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 NDT00550 C STOP NDT00510 NDT00550 C STOP NDT00500 NDT00550 C STOP NDT00550 NDT00550 C STOP NDT00500 NDT00550 C STOP NDT00550 NDT00550 C STOP NDT00550 NDT00550 C STOP NDT006000 STOP						
ISN 0005 JF(NX(I)-1) 2, 2, 3 NDT00450 C VARIABLE I DNLY HAS ONE POINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00460 ISN 0006 2 WRITE(6,100) I,NX(I) NOT00480 ISN 0007 100 FORMAT(I3HI VARIABLE I3,10H DNLY_HAS I2,41H PDINT, THEREFORE PRNDT00500 NDT00470 ISN 0007 100 FORMAT(I3HI VARIABLE I3,10H DNLY_HAS I2,41H PDINT, THEREFORE PRNDT00500 NDT00510 ISN 0008 STOP NDT00520 NDT00520 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF PDINTS REQUIRED FOR CURVE NDT00540 NDT00550 C FT ARRAY ICF WHICH IS THE NUMBER OF PDINTS REQUIRED FOR CURVE NDT00540 NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF PDINTS REQUIRED FOR CURVE NDT00540 NDT00550 NDT00550 C STOP NDT00550 NDT00550 NDT00550 C STOP NDT00550 NDT00550 NDT00550 C STOP NDT00550 NDT00550 NDT00550 C IF(NX(I) = 3) 4, 4, 5 NDT00560 NDT00550 NDT00560 ISN 0010 G OT 0 1 G OT 0 1 NDT00560 NDT00560 NDT00560 NDT00560 NDT00560 NDT00560 NDT00560 N		C TEST TO SEI	E IF EACH VARIABLE HA	S MORE THAN ONE POINT		
C VARIABLE 1 DNLY HAS DNE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00450 C VARIABLE 1 DNLY HAS DNE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00480 ISN 0006 2 WRITE(6,100) I,NX(1) 100 FORMAT(13H1 VARIABLE 13,10H DNLY_HAS 12,41H PDINT, THEREFORE PRNDT00500 20GRAM CANNOT CONTINUE) NDT00510 STOP NDT00520 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF PDINTS REQUIRED FOR CURVE NDT00540 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF PDINTS REQUIRED FOR CURVE NDT00540 C FIT C SFT UP ARRAY ICF WHICH IS THE NUMBER OF PDINTS REQUIRED FOR CURVE NDT00540 C FIT C STOP STOP OD1 SN 0010 STOP C ICF(1) = NX(1) <td></td> <td>С.</td> <td></td> <td></td> <td></td> <td></td>		С.				
C VARIABLE I DNLY HAS DNE PDINT, THEREFORE PROGRAM CANNOT CONTINUE. NDT00470 C NOT00480 ISN 0006 2 WRITE(6,100) I,NX(I) ISN 0007 100 FORMAT(13H1 VARIABLE I3,10H DNLY_HAS I2,41H PDINT, THEREFORE PRNDT00500 20GRAM CANNOT CONTINUE) NDT00510 STOP NDT00520 C STOP C STOP C STOP C FIT C STOP C FIT C STOP DIT00550 NDT00520 C FIT C STOP NDT00550 NDT00550 C FIT NDT00550 NDT00550 C STOP ISN 0009 3 IF(NX(I) - 3) 4, 4, 5 SN 0010 G TO 1 SN 0012 S ICF(I) = 4 ISN 0013 I CONTINUE C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NOT00630 C ENTRE ROUTINE ISN 0014 ICF(NIV + 1) = 1 ISN 0015 IT = 0 ISN 0016 ICF(NIV + 1) = 1 <td>ISN 0005</td> <td>15(NX(I)-1</td> <td>) 2, 2, 3</td> <td></td> <td></td> <td></td>	ISN 0005	15(NX(I)-1) 2, 2, 3			
C NDT00480 ISN 0006 2 WRITE(6,100) I,NX(I) NDT00490 ISN 0007 100 FORMAT(13H1 VARIABLE 13,10H ONLY_HAS 12,41H POINT, THEREFORE PRN0T00500_ 20GRAM CANNOT CONTINUE) NDT00510 ISN 0008 STOP NDT00520 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 NDT00550 NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00550 NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00550 NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00550 NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00550 NDT00550 C STN 0010 4 ICF(I) = 34, 4, 5 NDT00550 SN 0010 G 00 TO 1 NDT00550 NDT00550 ISN 0012 5 ICF(I) = 4 NDT00600 NDT00620 ISN 0013 1 CONTINUE NDT00620 NDT00640 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NOT00630 NDT00640 C ICF(NIV + 1) = 1 NDT00640 NDT00640 ISN 0014 ICF(NIV + 1) = 1 NDT00640 NDT00640 C		C				
ISN 0006 2 WRITE(6,100) I,NX(I) NDT00490 ISN 0007 100 FORMAT(I3HI VARIABLE 13,10H DNLY_HAS I2,41H PDINT, THEREFORE PRND100500 NDT00510 20GRAM CANNOT CONTINUE) NDT00510 STOP NDT00520 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00550 C FIT C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00550 C NDT00550 C IFIN SN 0009 3 IF(NX(I) - 3) 4, 4, 5 ISN 0010 4 ICF(I) = NX(I) SN 0010 GO TO 1 SN 0012 F ICF(I) = NX(I) SN 0012 5 ICF(I) + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00600 ISN 0012 I CF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00640 C ICF(NIV + 1) = 1 ISN 0014 ICF(NIV + 1) = 1 ISN 0015 IT = 0 C NDT00460 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESND700690 C THUS FORMING THE LOC ARRAY. C NDT00700 C THUS FORMING THE LOC ARRAY. C <td< td=""><td>e ringen liggen als ministration</td><td>C VARIABLE I</td><td>DNLY HAS ONE POINT,</td><td>THEREFORE PROGRAM CANNOT</td><td></td><td></td></td<>	e ringen liggen als ministration	C VARIABLE I	DNLY HAS ONE POINT,	THEREFORE PROGRAM CANNOT		
IN DOO7 IOF FORMAT(I3H1 VARIABLE I3,IOH ONLY_HAS I2,41H POINT, THEREFORE PRNDT00500		C				
20GRAM CANNOT CONTINUE) NDT00510 ISN 0008 STOP NDT00520 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 NDT00550 C FIT NDT00510 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 NDT00550 C FIT NDT00550 NDT00550 C IF(NX(I) - 3) 4, 4, 5 NDT00570 NDT00550 C ICF(I) = NX(I) NDT00570 NDT00580 ISN 0010 GO TO 1 NDT00580 NDT00600 ISN 0012 5 ICF(I) = 4 NDT00600 NDT00600 ISN 0013 1 CONTINUE NDT00600 NDT00600 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 NDT00640 C ICF(NIV + 1) = 1 NDT00640 NDT00-50 ISN 0014 ICF(NIV + 1) = 1 NDT00-50 NDT00-50 ISN 0014 ICF(NIV + 1) = 1 NDT00-50 NDT00-50 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 NDT00-710 ISN 0016						
ISN 0008 STOP NDT00520 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 NDT00550 C FIT NDT00550 C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C NDT00550 C NDT00550 C NDT00570 C NDT00570 ISN 0010 4 ICF(I) = NX(I) GO TO 1 NDT00590 ISN 0012 5 ICF(I) = 4 ISN 0013 I CONTINUE C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NOT00630 C NDT00640 C ICF(NIV + 1) = 1 ISN 0014 ICF(NIV + 1) = 1 ISN 0015 IT = 0 C NDT00640 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C NDT00700 C THUS FORMING THE LOC ARRAY. NDT00710 NDT00730 ISN 0016 D0 6 I = 1, NIV ISN 0017 XXG(I) = XG(I) ISN 0018 IL = IT + 1	ISN 0007			NLY_HAS I2,41H POINT, TH		
C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C FIT C FIT NDT00550 NDT00550 C FIT SN 0000 3 IF(NX(I) - 3) 4, 4, 5 NDT00570 NDT00580 SN 0010 4 ICF(I) = NX(I) SN 0011 GO TD 1 SN 0012 5 ICF(I) = 4 ISN 0013 1 CONTIMUE C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00640 NDT00640 C ICF(NIV + 1) = 1 ISN 0014 ICF(NIV + 1) = 1 ISN 0015 IT = 0 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00710 NDT00710 ISN 0016 D0 6 I = 1, NIV ISN 0017 XXG(I) = XG(I) ISN 0018 IL = IT + 1			DT CONTINUE)			
C SFT UP ARRAY ICF WHICH IS THE NUMBER OF POINTS REQUIRED FOR CURVE NDT00540 C FIT NDT00550 C NDT00550 C NDT00550 C NDT00570 ISN 0010 3 IF(NX(I) - 3) 4, 4, 5 SN 0010 4 ICF(I) = NX(I) GO TO 1 NDT00580 ISN 0012 5 ICF(I) = 4 ISN 0013 1 CONTINUE C NDT00600 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00620 NDT00640 C NDT00640 C NDT00640 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00640 NDT00640 C NDT00640 C ICF(NIV + 1) = 1 ISN 0014 ICF(NIV + 1) = 1 ISN 0015 IT = 0 C NDT00400 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00720 NDT00720 ISN 0016 DO 6 I = 1, NIV ISN 0017 XG(I) = X	ISN 0008	STOP				7
C FIT NDT00550 O ISN 0009 3 IF(NX(I) - 3) 4, 4, 5 NDT00570 O ISN 0010 4 ICF(I) = NX(I) NDT00580 O ISN 0011 G0 TD 1 NDT00590 O ISN 0012 5 ICF(I) = 4 NDT00600 NDT00600 ISN 0013 1 CONTINUE NDT00600 NDT00620 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 C ICF(NIV + 1) = 1 NDT00640 ISN 0014 ICF(NIV + 1) = 1 NDT00640 ISN 0015 IT = 0 NDT00640 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C FIND 00 6 I = 1, NIV NDT00730 ISN 0017 XXG(I) = XG(I) NDT00730			a ganana yana ang ang ang ang ang ang ang ang ang			· · · · · · · · · · · · · · · · · · ·
C 3 IF(NX(I) - 3) 4, 4, 5 NDT00570 NDT00570 NDT00570 ISN 0010 4 ICF(I) = NX(I) NDT00580 NDT00580 NDT00580 ISN 0012 5 ICF(I) = 4 NDT00600 NDT00600 ISN 0013 1 CONTIMUE NDT00600 NDT00600 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NOT00630 NDT00640 C ICF(NIV + 1) = 1 NDT00630 ISN 0014 ICF(NIV + 1) = 1 NDT00640 ISN 0015 IT = 0 NDT00640 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00710 ISN 0016 D0 6 I = 1, NIV NDT00730 ISN 0017 XXG(I) = XG(I) NDT00730 ISN 0018 IL = IT + 1 NDT00740			AY ICF WHICH IS THE N	UMBER OF POINTS REQUIRED I		
C 3 IF(NX(I) - 3) 4, 4, 5 NDT00570 XDT00570 XDT00570 XDT00570 XDT00570 XDT00570 XDT00570 XDT00580 XDT00590 XDT00590 XDT00590 XDT00590 XDT00590 XDT00590 XDT00590 XDT00610 XDT00610 XDT00620 XDT00620 XDT00630 XDT00630 XDT006630 XDT006630 XDT00640 XDT00700 XDT00700 XDT00710 XDT00710 XDT00710 XDT00720 XXG(I) XXG(I) XZG(I) XZG(I) XZG(I) XDT00740 XDT00740		C FIT				— — — — — — — — — — — — — — — — — — —
ISN 0010 4 ICF(I) = NX(I) NDT00580 ISN 0011 GO TD 1 NDT00590 ISN 0012 5 ICF(I) = 4 NDT00600 ISN 0013 1 CONTINUE NDT00610 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 C ICF(NIV + 1) = 1 NDT00640 ISN 0014 ICF(NIV + 1) = 1 NDT00640 ISN 0015 IT = 0 NDT00640 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 NDT00440 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 NDT00700 ISN 0016 D0 6 I = 1, NIV NDT00710 NDT00720 ISN 0017 XXG(I) = XG(I) NDT00730 NDT00730 ISN 0018 IL = IT + 1 NDT00740 NDT00740	~	С				· · · · · · · · · · · · · · · · · · ·
ISN 0011 GO TD 1 NDT00590 ISN 0012 5 ICF(I) = 4 NDT00600 ISN 0013 1 CONTINUE NDT00610 C C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 C ENTIRE ROUTINE NDT00650 C ENTIRE ROUTINE NDT00640 ISN 0014 ICF(NIV + 1) = 1 NDT00650 ISN 0015 IT = 0 NDT00660 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00700 C ISN 0016 D0 6 I = 1, NIV NDT00720 ISN 0017 XXG(I) = XG(I) NDT00730 ISN 0018 IL = IT + 1 NDT00740			• •			re-
ISN 0012 ISN 0013 C C C C C C C C C C C C C						*
ISN 0013 I CONTINUE C C C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 NDT00630 NDT00640 NDT00650 C ISN 0014 ICF(NIV + 1) = 1 ICF(NIV + 1) = 1 NDT0060 C C C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. C ISN 0016 D0 6 I = 1, NIV XXG(I) = XG(I) IL = IT + 1 NDT00740			n nanar sansan na an ini , nan na ana na na mananan ar ini na mana maanin ini an i			
C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 C ENTIRE ROUTINE C ICF(NIV + 1) = 1 ISN 0014 ICF(NIV + 1) = 1 ISN 0015 IT = 0 C NDT00660 C NDT00640 C NDT00660 C NDT00640 C NDT00640 C NDT00660 C NDT0060 C NDT0060 C THUS FORMING OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00700 NDT00710 ISN 0016 D0 6 I = 1, NIV ISN 0017 XXG(I) = XG(I) ISN 0018 IL = IT + 1						
C ICF(NIV + 1) IS ARTIFICIAL VALUE TO CONCLUDE CURVE FITTING FOR NDT00630 C ENTIRE ROUTINE C ICF(NIV + 1) = 1 ISN 0014 ICF(NIV + 1) = 1 ISN 0015 IT = 0 C NDT00660 C NDT00.650 C NDT00.660 C NDT00.650 C NDT00.60 C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. ISN 0016 D0 6 I = 1, NIV ISN 0017 XXG(I) = XG(I) ISN 0018 IL = IT + 1	ISN 0013	1 CONTINUE				
C ENTIRE ROUTINE NDT00640 ISN 0014 ICF(NIV + 1) = 1 NDT00660 ISN 0015 IT = 0 NDT0060 C NDT0060 NDT0060 C NDT0060 NDT0060 C NDT0060 NDT0060 C THUS FORMING OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00700 ISN 0016 D0 6 I = 1, NIV NDT00720 ISN 0017 XXG(I) = XG(I) NDT00730 ISN 0018 IL = IT + 1 NDT00740		C				
C NDT00650 ISN 0014 ICF(NIV + 1) = 1 NDT00660 ISN 0015 IT = 0 NDT0060 C C NDT0LodC C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. C NDT00700 C NDT00710 ISN 0016 DO 6 I = 1, NIV ISN 0017 XXG(I) = XG(I) ISN 0018 IL = IT + 1				E TO CONCLUDE CURVE FIITH		
ISN 0014 ICF(NIV + 1) = 1 IT = 0 C C C C C THUS FORMING THE LOC ARRAY. C ISN 0016 ISN 0017 ISN 0018 IL = IT + 1 NDT00560 NDT00500 NDT0LadC NDT00690 NDT00700 NDT00700 NDT00720 NDT00730 NDT00740		L ENTIRE ROU	IINE			
ISN 0015 IT = 0 C C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00700 NDT00710 NDT00710 NDT00720 NDT00720 NDT00730 ISN 0018 IL = IT + 1				рона — аралон и — на архонанте жило со собщетири по собщата средството собрата адаблате на одното с	1	
C NDTOLadic C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. NDT00700 C ISN 0016 D0 6 I = 1, NIV NDT00720 ISN 0017 XXG(I) = XG(I) ISN 0018			1) = 1			
C FIND LOCATIONS OF INTERVALS CONTAINING GIVEN INDEPENDENT VARIABLESNDT00690 C THUS FORMING THE LOC ARRAY. C NDT00700 ISN 0016 DD 6 I = 1, NIV ISN 0017 XXG(I) = XG(I) ISN 0018 IL = IT + 1	ISN 0015					
C THUS FORMING THE LOC ARRAY. NDT00700 C NDT00710 NDT00710 ISN 0016 DD 6 I = 1, NIV NDT00720 ISN 0017 XXG(I) = XG(I) NDT00730 ISN 0018 IL = IT + 1 NDT00740	1 · W1 ·· ··					
C NDT00710 ISN 0016 D0 6 I = 1, NIV NDT00720 ISN 0017 XXG(I) = XG(I) NDT00730 ISN 0018 IL = IT + 1 NDT00740				TAINING GIVEN INDEPENDENT		
ISN 0016 DD 6 I = 1, NIV NDT00720 ISN 0017 XXG(I) = XG(I) NDT00730 ISN 0018 IL = IT + 1 NDT00740		C THUS FURMIT	NG THE LUC ARRAT.			
ISN 0017 XXG(I) = XG(I) ISN 0018 IL = IT + 1 NDT00740	TEN 0016			ar 1997 - Nametalarin (h. 1999) analahan karingkan karingkan menangkan yang di dapat kenangkan karingkan dapat di dapat kenangkan		
ISN 0018 IL = IT + 1 NDT00740						
			1			
		II = IL			NUTU0750	

174	UJAN 75) NETLAF	CS/360 FORTRAN H EXTENDED	DATE 76.009/08.56.13
13N 0020	•	IT = IT + NX(I)		NDT00760
15N 0021		IGAT(1) = 1		NDT00770
ISN 0022		IF(IIX - IT) 7, 2,	Ç	NDT00780
	c .			NDT00790
	ř	ERROR UCCURRED		NDT00800
	Ċ			NDT00810
ISN 0023	•	1ERR = 14		NDT00820
ISN 0024		60 TP 5000		NDTO0830
	С			NDT00840
	č	COMPARE GIVEN VALUE	WITH X ARRAY FOR A PARTICULAR INDEPENDEN	
	č	VARIABLE	ATTICE HIGHT FOR A FARTUCERN THEFE HE	NDTOO 860
	č	· - · · · - · · · · · · · · · · · · · ·		NDT00870
ISN 0025	•	' IF(XXG(I) - X(IIX))	12. 11. 10	NDTOUBBO
ISN 0026		IF(XXG(I) - X(IIX +		NDT00890
ISN 0027		1F(11X + 1 - 1T) 15		NDT00900
ISN 0027		' IERR = 13	4 104 1	NDT00910
134 0070		1600 - 13		NDT00920
	C			NDT 00930
	C C	ERROR OCCURRED		NDT00940
1.011 0.000		CO TO 6000		NDT 00950
ISN 0029		GO TO 5000		
ISN 0030		11X = 11X + 1		NDT00960
ISN 031		GO TO 10		NDT 00970
	c			NDT00980
	C			NDT00990
ISN (032		GO TO 20	••	NDT01000
ISN 0033		TF(IIX - IL) 18, 11	., 20	NDT01010
ISN 0034		IERR = 14		NDT01020
	C			NDT01030
	C	ERROR OCCURRED		NDT01040
	C			NDT01050
ISN 0035		GO TO 5000		NDT 01 06 0
ISN 0036		60 TO 11		NDT01070
ISN 0037		YGAT(1) = 2		NDTO1080
	C .			NDT01090
	С	X GIVEN IN FIRST IN	iterval	NDT01.100
	С			NDT01110
ISN 0038		ITX = IIX + I		NDT01120
ISN 0039		GA TO 23		NDT01130
ISN 0040		IF(NX(1) - 3) 8, 24		NDT01140
15N 0041	24	- TF(11X + 1 - 1T) 23	1, 25, 26	NDT01150

and commences

	1 JAN 75 1	NOTLAE OS/360 FORTRAN H EXTENDED	DATE 76.009/08.56.13
		- 24	NDT01160
151 0042		IFRR = 24	NDT01170
	Ċ	ERROR UCCURRED	NDT01180
	C C	ERRUR OUTURNED	NDT01190
	•		NDT01200
5N 0043		GO TO 5000	NDT01210
(SN 0044		IGAT(I) = 3	NDT 01 220
	C	A ANTAN THE FACT INTERVAL	NDT01230
	C	X GIVEN IN LAST INTERVAL	NDT01240
	C	OFTERMINE LOCATION OF FIRST VARIABLE TO BE USED FOR CURVE	FIT NOTO1250
	C	OFTERMINE LOCATION OF FIFST VARIABLE TO DE OSED TOR CORT	NDT01260
	C		NDT01270
ISN 0045		LOC(1) = 1IX - IL	NDT01280
ISN 0046		CONTINUE	NDT01240
ISN 0047		$L^{1}STZ = Linc(1)$	NDT01300
ISN 0048	33	1F(NIV - 1) 30, 31, 32	NDT01310
ISN 0049	30	IEHR = 33	NDT01 320
	C		NDTO1330
	C	ERROR OCCURRED	NDT01340
	С		NDT01350
ISN 0050		60 70 5000	NDT01360
••••	С		
	č	FIND LOCATION OF FIRST Z IN ARRAY	NDT01370
	č		NDT01380
ISN 0051	32	00.35.1 = 2, NIV	NDT01390
15N 0052		TPROD = 1	NDT01400
ISN 0053		10 = 1 - 1	NDT01410
15N 0054		DO 36 IXP = 1, 70	NDT01420
ISN 0055		JPROD = JPROD+NX(IXP)	NDT01430
		IPROD = IPROD = (LOC(I) - 1)	NDT 01 440
ISN 0056		LISTZ = LISTZ + IPROD	NDTO1650
15N 0057		NC = NIV + 1	NDT01460
ISN 0058			NDT01470
	C	INITIALIZE COUNTER TO BE USED FOR Z VALUES	NOT 31480
	ç	INITIALIZE COONTER TO BE OBED FOR E THEORY	NDT01490
	C	INITIALIZE COUNTER TO BE USED FUR Z VALUES DO 37 I = 2, NC LLCTR(7) = 0 INITIALIZE SUBSCRIPTS FOR Z AND ZPRIME L = 0	NDT01507
ISN 0054		DT 37 I = 2, NC	NDT01410
ISN 0060		LLCTR(7) = 0	NDT01520
	С		ND'101530
	C	INITIALIZE SUBSCRIPTS FOR Z AND ZPRIME	NUT 01 54U
	C		NDT01550
15N 006		L = 0 KG	NV I V 1 2 2 4

175

176		ł	JAN	75) NOTLAE	05/360	FORTRAN H	EXTENDED	DA	TF 76.009/08.56.13
TSN	0062				LL # 0					NDT01560
	0063			51	LL = LL + L157?					NDT01570
			C							NDT01580
			Č		SET UP SUBSCRIPTS -	K FOR VARIA	ALE. L FOR	ZPRIME . AND L	L FOR Z	NDT01590
			, č							NDT01600
15N	0064				K = 1					NDT01610
	0065				$L = \overline{L} + 1$					NDT01620
ISN	0066				IC = ICF(1)					NDT01630
			C							NDT01640
			C		MOVE Z TO ZPRIME					NDT 01 650
			C							NDT01660
	0067				DD 42 J = 1, IC					NDTO'670
	8300				M = L + J - 1					NDT01680
	0069				ZPR(M) = Z(LL)					NDT 01690
	0070				P LL = LL + 1					NDT01700
	0071			- 5 -	h IX = 0					NDT01710
	0072				TIX = 4					NDT01720
	0073				IF(NX(K) - 3) 44, 4	4, 45				NDT01730
	0074				FIIX = NX(K)	•				NDT01740
	0075				K IF(K - 1) 47, 48, 4	9				NDT01750
124	0076		~		$T = 4^{F}$					NDT01760
			C C							NDT01770
			C C		ERROR OCCURRED					NDT01780 NDT01790
TCM	0077		C		GO TO 5000					NDT01800
	0078			4	3 = K - 1					NDT01810
1 214	0010		C	-	J = K = 1					NDT 01 820
			č		SET UP SUBSCRIPTS P	OR Y VALUES				NDT01830
			č			UN A TESUS				NDT01840
TSN	0079		Ŭ		NO 60 J1 = 1, J					NDT01850.
	0080			61	T I X = I X + N X (J1)					NDT01860
	0081				IX = IX + LOC(K)					NDT01870
			C							NDT01880
			Č		MOVE X TO XPRIME					NDT01890
			,		· · · · · · · · · · · · · · · · · · ·					NDT01900
ISN	0082				DO 61 J = 1, IIX					NDT01910
	0083				TXP = IX + J - I					NDT01920
	0084			6	XPR(J) = X(IXP)					NDT01930
T SN	0085				A = 0.0					NDT01940
	0086				B = 0.0					NDT 01 950

	ť	JAN	75) NDTLAF	05/360	FORTRAN H EXTENDED		DATE 76.009/0	8.56.13
•		C						NDT01960	a addigoglad-sa an ana digonadi Adgo
		C		TEST NUMBER OF POIN	TS			NDT01970	
		C						NDT01980	
ISN 0087				IF(IIX - 2) 63, 64,	65			NDT 01 990	
ISN 0088			63	C = 0.0				NDT02000	
15N 0089				GO TO 66				NDT02010	ومستورد ستبيته والموار مرور والمتورية والم
ISN 0090				C = (ZPR(L+1) - ZPR)		-XPR(1))		NDT02020	
ISN 0091			6.6	D = ZPR(L) - C + XPR(L)	1)			NDT 02 03 0	
ISN 0092				GD TD 2000				NDT02040	
ISN 0093			07	IL = IGAT(K)				NDT02050	
		Ç						NDT02060	
a trev		ç		DETERMINE WHAT INTE	RVAL X GIVEN	IS IN		NDT 02 070	
		Ľ						NDT02080	
ISN 0094				IF(IL.LT.) .OR. IL.		08		NDT 02 09 0	
ISN 0096				GO TO (70, 71, 72),	IL			NDT02100	فاستيناهم همراهم
ISN 0097				WRITE(6,4000)			• •	NDT 02110	
15N 0098		•	•000		D INDEX FOR	COMPUTED GO TO	•)	NDT02120	
ISN 0099		~		STOP				NDT02130	
		C			***			NDT 02 1 40	
		ç		X GIVEN IN FIRST IN				NDT02150	
				ONLY FIRST THREE PO	THIS WILL DE	USED FUR CURVE FIT		NDT02160 .	ford over an enderstated and the second
JSN 0100		U.		15 = 3				NDT02170	
ISN 0101			1	15 = 3 1PN = 1				NDT02180	
ISN 0102				TTN = L				NOT02190	
ISN 0102				M = 2				NDT02200	
ISN 0104				m = 2 IRX = 0				NDT02210	
ISN 0105			• ^	$T_{N} = T_{N} + T_{PX}$				NDT02220	and the second
ISN 0106			01	IP = IPN + IRX				NDT02230	
		. C		1 = 1 = 1 = 1 = 1 = 1				NDT02240	
n a canada araa ca		č		CALCULATE THE SLOPE		I TAIC		NOTU2250	
		Č		CALCULATE THE SEUPE	UP SIKAIGHI	LINE		NDT02260	
15N 6107		L .		S/M) - (700/TN - 1)	- 709 (TN)) /	(XPR(IP + 1) - XPR(IP		NDT02270	
ISN 0108				$\frac{31}{16} = 1$	- 2PR(10)1/	(APRILE + 1) - APRILE		NOT02280	ta, 6
ISN 0109				50 TO 1050			Š H	NDT02290	
13/1 0107		C		······································			ORIGINAL OF POOR C	NDT02300	
n an konstantin si		č		A GIVEN IN LAST INT	C O V A I		6 Г	NDT02310	
		ř		ONLY THREE POINTS W				NDT 02 320	
		č		CHET THREE PUINTS W	ILL PE USED		L PAGE I QUALIT	NDT02330	
ISN 0110		C C	7 2	1 IPN = 1			L L	NDT02340	
134 0110			12	. 1 - 14 - 1			N. SI	NDT 02 350	
•••••-									
inter Harrison and								a national and an intervention	

.

178	JAN 75) NDTLAF CS/340 FORTRAN H FXTENDED	DATE 76.009/08.56.13
ISN 0111	IIN = L	NDT02360
ISN 0112	15 = 2	NDT02370
ISN 0113	M = 3	NDT02380
ISN 0114	IRX = 1	NDT02390
ISN-0115	GO TO 80	NDT02400
	C	NDT02410
	C X GIVEN IN MIDDLE INTERVAL	NDT02420
	C FOUR POINTS WILL BE USED FOR CURVE FIT	NDT02430
	C ,	NDT 02440
ISN 0116	70 IS = 2	NDT02450
ISN 0117	TPN = 1	NDT02460
ISN 0118	IIN = 1	NDT02470
15N 0119	.G = 2	NDT02480
	C	NDT02490
	C CALCULATE SLOPE USING PARABOLIC FIT	NDT02500
	C	NDT 02510
ISN 0120	1050 AP = ((ZPR(JIN) - ZPR(JIN + 1))+(XPR(JPN) - XPR(JPN + 2)) - (ZPR NDT02520
	2(]]N) - ZPR(]]N + 2))*(XPR(]PN) - XPR(]PN+1)))/((() PR(]PN))**2	- (XNDT02530
	3PR(IPN+1))++2)+(XPR(IPN) - XPR(IPN + 2)) - ({XPR(IPN))++2 - (XPR (INDT02540
	4PN + 2))++2)+(XPR(IPN) - XPR(IPN + 1)))	NDT02550
ISN 0121	S(IS) = 2.+AP+XPR(JPN + 1) + (ZPR(JIN) - ZPR(IIN + 1) - (XPR(
	2#2 - XPR(IPN + 1)##2)#AP)/(XPR(IPN) - XPR(IPN + 1))	NDT02570
ISN 0122	IF (IG.LT.1 .OR. IG.GT.3) GO TO 1052	NDT02580
ISN 0124	GO TO (90, 92,92), IG	NDT02590
ISN 0125	1052 WRITE(6,5001)	NDT02600
ISN 0126	5001 FORMAT(* INVALID INDEX FOR IG *)	NDT02610
ISN 0127	STOP	NDT 02620
ISN 0128	92 IS = 3	NDT02630
ISN 0129	IFN = 2	NDT02640
ISN 0130	IIN = L + 1	. NDT02650
ISN 0131	IG = 1	NDT02660
ISN 0132	IP = 2	NDT 02670
ISN 0133	GD TD 1050	NDT 02680
	C	NDT02690
	C CALCULATE COFFFICIENTS	ND102700
···		NDT92710
	90 LIPN = L + IP	NDT02720
ISN 0134	A = -(2.*(ZPR(LIPN) - ZPR(LIPN - 1)) - (S(:) + S(2))*(XPR	
ISN 0134 ISN 0135	2+ 1) - XPR(IP)))/(XPR(IP + 1) - XPR(IP))**3	NDT02740

A second so as an end of the second seco

	ł	:Ai. 7	5)	NOTLAF	057360	FORTRAN H FXTENDI	FD	DATE 76.009/08	.56.13
						R(IP))+(XPR(1P	+ 11 - XPR(JP		e γ ; γ ∩ enganiueen. An gant
				XPR(TP + 1) -				NDT02770	
JSN 0137				S(2) - 2. + XPR(NDT02780	
ISN 0138	3		D =	ZPR(LJPN - 1)	- XPR(JP)*	(C + XPR(IP)*(B -	+ XPR (JP)+A)		
		C	.					NDT02800	
		C	CAL	CULATE Z				NDT02810	· · · · · · · · · · · · · · · · · · ·
		C,						NDT02820	
ISN 0139		20		(L) = D + XXG(K)	#{C +XX(;{K})#{	E +XXG(K}≢A}}		NDT02830	
ISN 0140								NDT02840	u #4 ,
ISN 0141	•	•		TR(K) = LLCTR(K	1 + 1			NDT 02 850	
		C.		T T COUNTED 1177				NDT02860	
•	••	ç	152	T Z COUNTER WIT	H NUMBER CF P	DINTS REQUIRED FOR	CURVE FIT	NDT02870	
ISN 0142		L	101			2.0.1		NDT02880	
ISN 0142		2		LLCTR(K) - ICF(301		NDT 02 890	
ISN 0144				K - 21 310, 310 = K - 1	• 517			ND702900	n aparato destante ante cargada
194 0144	•	C	15 44					NDT02910 NDT02920	
		č	05-	INITIALIZE PPEV	TOUR COUNTERS			NDT02930	
		c		INITIALIZE PPEV	TODA COUNTERS			NDT02940	
ISN 0145		L.	00	320 I = 2, KK				NDT02950	
· ISN 0146		2		$\frac{1}{TR(I)} = C$				NDT02960	
ISN 0147			10 LLC					NDT02980	ana na manana ilan ana a
ISN 0148		,	LP					NDT02980	
	,	C	L.F	- 1				NDT02990	
~~ • • •		Č	E TN	D NEXT Z TO PE		A.V.		NDT03000	
		č	1. 1 . 1 .		USED FALM ANN			NDT03010	
ISN 0149	•	C	DO .	400 I = 2, NIV				NDT03020	
ISN 0150				= I - 1				NDT03030	the second s
ISN 0151				410 J = 1, TJ				NDT03040	
. ISN 0152		4		= LP*NX(J)				NDT 03050	
ISN 0153		•		= LL + LLCTR(I)	≠L P			NDT03060	
ISN 0154		4	00 LP					ND T03070	-
ISN 0155			-	T0 50				NDT03080	
ISN 0156		3		K - NIV) 500, 5	00. 600			NDT 03 090	 count is cardy
		c						NDT03100	
		č	FIN	D SUBSCRIPT OF	NEXT ZPR ELFM	ENT		NDT03110	
		č						NDT03120	
ISN 0157	7	5	0C L =	L = JCF(K) + 1				NDT03130	
ISN 0158				TO 55				NDT03140	
		С	-	-				NDT03150	and water
17									

-

8 (JAN 75) NOTLAF	OS/360 FORTRAN	HEXTENDED	DATE 76.009/08.56.13
	٢	FINAL Z VALUE			NDT03160
	С				NDT 03 170
ISN 0159	600	RES = ZPR(1)			NDT03180
ISN C160		RETURN			NDT03190
ISN 0151	5000	WRITE	(6, 111) IFRR		NDT03200 -
ISN 0162	111	FORMATISCHI ERROR	OCCURRED AT STATEMENT	12)	NDT03210
ISN 0163		STOP			NDT03220
ISN 0164		END			NDT03230

ORIGINAL PAGE IS OF POOR QUALITY

•

- -

•

....

ي. سياية مانية

• -----

The design of the second se

.

-

REFERENCES

- 1. Bonner, E., et al, <u>Influence of Propulsion System Size</u>, <u>Shape</u>, <u>and Location</u> <u>on Supersonic Aircraft Design</u>, Rockwell International, NASA CR 132544, December 1974.
- Bonner, E., et al, <u>Effects of Nacelle Shape on Drag and Weight of a Super-sonic Cruising Aircraft</u>, Rockwell International, NASA CR-144893, October 1975.
- 3. NASA CR-132374, <u>Advanced Supersonic Technology Concept Study Reference</u> <u>Characteristics</u>, Hampton Technical Center LTV Aerospace Corporation, 21 December 1975.
- 4. Lockheed-California Company Report LR 26133, An Airline's View of Reserve Fuel Requirements for the Supersonic Transport, 19 September 1973.
- 5. Bushell, K. W., Measurement and Prediction of Jet Noise in Flight, AIAA Paper 75-461.
- 6. Crosthwait, E. L., Kennon, Jr., I. G., and Roland, H. G., et al, <u>Preliminary</u> Design Methodology for Air-Induction Systems, General Dynamics, Fort Worth Division, Technical Report SEG-TR-67-1, January 1967.
- Schoenherr, K. W., <u>Resistance of Flat Plates Moving Through a Fluid</u>, Transactions of Society of Naval Architects and Marine Engineers, Vol 40, pp 279-313, 1932.
- 8. Sommer, S., and Short, B., Free Flight Measurements of Turbulent Boundary Skin Friction in the Presence of Severe Aerodynamic Heating at Mach Numbers from 2.8 to 7.0, NACA TN 3391, 1955.
- 9. Lomax, H., The Wave Drag of Arbitrary Configurations in Linearized Flow as Determined by Areas and Forces in Oblique Planes, NACA RM A55A18, 1955.
- 10. Bonner, E., <u>Theoretical Prediction of Supersonic Pressure Drag</u>, Rockwell International Report NA-66-862, 1966.