MEIDDES FR COPARATVE ByULIINN

GF PAOPI SION SXSTEI DESTCNS RIS

SH RSDNIC AITCATT

Sigpared By:

RAY M. TYSON
RONND Y. MAIRS
FLOM D. HALFENY, JR.
BRJCE E. MDORE
DAVID CHALOFF
AREDED W. NTISEN

June 1976

```
(NASA-CR-135110) METHODS FOK COAPARATIVE N77-18156
EVALUATION OF PROPULSION SYSTEM DESIGNS FOF
    SJPEFSONIC AIECEAFT (Kockwell International
    Corp.. LOS Angeles) 181 p HC A09/AF AC1 Unclas
    CSCL 21E G3/07 16335
PREPARED UNDER ODNIRACT NAS 3-19858
by LOS ANGELES AIBCRAFT DIVISION
POCKNELL INIERNATIONAL CORPORATION
LOS ANGELES, CALIPORNIA
FOR
LENIS RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
```


RORENORD

This document presents results of the study 'Methods for Comparative Evaluation of Propulsion System Designs for Supersonic Aircraft." The NASA technical representative was Dr. Edward A. Willis. In addition to the authors noted, significant contributions to this study and report were made by Ellwood Bonner, aerodynamics; Henry K. Chin and Louis C. Young, propulsion.

TABLE OF CONTENTS

Page
INTRODKTIOX 1
SUMHARY OF RESULTS 2
Fstimation of Supersonic Cruise Drag 3
Estimation of Propulsion System Installation height 5
Estimation of Airplane Takeoff Gross lieight 5
Validation of the Approximate Method 9
Conclusions and Recommendations 9
SNBOLS 13
STUD: PROCEDURE 14
Approach 14
Baseline Airplane Definition 15
Basepoint Airplane 15
Design Mission 20
Altemate Mission 22
Balanced Field Takeoff 24
Thrust-to-Drag Ratio 24
Baseline tirplane 24
Propulsion 29
lass Properties 37
terod!namics 39
Estimation of Supersonic Drag 54
Parametric Drag tnalysis 34
Drag Table Leok-Up Corputer Progran 58
lacelle Shape Estimation 60
Estimation of lacelle/Inlet lieight 64
Two Dimensional Inlets 65
LXisymetric Inlets 66
Estimation of di:plane Takeoff Gross lieight 68
Weight Sensitivity Anal!sis 68
Application of Sensitivities 70

Page

Validation of the Approximate Method 78

Propulsion 79
Mass Properties 88
Aerodynamics 88
Performance and Sizing 97
Sensitivity Method Verification 104
DISCUSSION OF RESUITS 134
RECOMPNDATIONS 134
APPENDIX 135
REFERENCES 181

LIST OF ILLUSTRATIONS

Figure Title Page
1 Nacelle Layout 7
2 Error Characteristics of Approximate Method 10
3
Normalized Nacelle Cross-Sectional Area
Variation for VSCE 502B and VCF 112 C 12
Basepoint Airplane 17
5 Vehicle Sizing and Performance Evaluation Program 196
Reference Mission 21
Alternate Mission 23
Balanced Field Length Definition 25
9 Gross Weight lersus Thrust-to-Neight and wing Loading. 26Ralanced Field length Versus Thrust-to-Weightand Wing Loading27
Thrust/Drag Ratio Versus Thrust-to-Weight and Wing Loading 28
Baseline dirplane Climb Path 34
Basepoint Nacelle. 35
Comparison of Reference and Basepoint Nacelles 40
Vacelle Cross-Sectional Area Variation 41
Basepoint Vehicle Cross-Sectional Area Variation 43
Basepoint Incremental Nacelle Drag Versus Mach Number. 45
Basepoint Wave Drag Sizing Data. 47 18C_{K} Versus Mach Number48
CD_{K} Versus Mach Number 49
' ${ }^{\prime}$ ' Factor Versus Mach Number 50
Baseline Vehicle Cross-Sectional Area Variation. 51
Nacelle Parametric Cross-Sectional Area Fxtremes 57
Typical Nacelle Incremental Wave Drag Variationswith Mach Number $A_{c}=2.79 \mathrm{sq} \mathrm{m}(30 \mathrm{sq} \mathrm{ft})$$l / d_{c}=5.5$59
25
Simulation of Nacelle Shape. 61
Nacelle Drag Sensitivity Trade 69
Propulsion Weight and SFC Sensitivity Trades 70
Sizing Point Thrust Sensitivity Trade 72
VCE 112C Nacelle 73
VSCE 502B and VCE 112C Takeoff Thrust 75
Installed Performance Comparison of Baseline and VCl: 112C at Mach 2.32, 19800 m (65000 ft) 76
Baseline and VCE 112C Performance, Mach 0.9, 13700 m (45000 ft). 77
VCE 502B and VCP: 112C Performance, Mach 0.9, 13700 m (45000 ft). 81
VSCE 502B and VCE 112C. Installed Performance atMach 2.32, 19800 m (65000 ft)82
Figure Title Page
35 VSCE 502B Nacelle. 83
36 GE21/J10 B1 and GE21/J11 B3 Takeoff Thrust 8537
GE21/J10 B1 and GE21/J11 B3 Performance, Mach 0.9, $13700 \mathrm{~m}(45000 \mathrm{ft})$ 86
38 GE21/J10 B1 and GE21/J11 B3 Installed Performance at Mach 2.32, 19800 m (65000 ft) 87
39 GE21/J10 B1 Nacelle. 89
40 GE21/J11 B3 Nacelle. 91VSCE 502B and VCE 112C Nacelle Cross-SectionalArea Variation95
42GE 21/J10 B1 and GE 21/J11 B3 NacelleCross-Sectional Area Variation96
43 Economic Mission Profile 100
44 Design Mission Range Versus Engine Size. 102
45 Balanced Field Length Versus Engine Size 103
46Sizing with VSCE 502B Engines.105
47 Sizing with VCE 112C Engines 106
48Sizing with GE21/J10 Bl Engines.107
49Sizing with GE21/J11 B3 Engines.108

LIST OF TABLES

Table Title
Page
1 Baseline Airplane. 2
Sample Output 4
2
Comparison of Approximate and Detailed Gross Weights 9
Drag and Takeoff Gross Weight Increments Due to Changes in Engine Shape 13
Airplane Characteristics 30
5
Baseline Design Mission Sumary - International Units. 31
Baseline Design Mission Summary - English Units. 32
Baseline Alternate Mission Summry - International Units 33
Baseline Alternate Mission Summary - English Units 33
10
Vehicle Weight Summary 37
11 Basepoint Engine Weight. 38
12 Basepoint Nacelle Wieight 38
Basepoint Configuration Fstimated Profile and Wing Drag Characteristics SREF $^{\text {C }} 929$ sq m (10000 sq ft) 46Baseline Cenfiguration Surface Area and LengthSurmary.53
Baseline Configuration Estimated Skin Friction and Wave Drag Characteristics 53
Nacelle Parameter Values 55
Comparison of Eascline and VCE 112C Nacelle Drag Increments 78
Engine Summary 79
Engine Weights, Intermational Units 93
Engine Weights, English Units 93
Nacelle/Inlet Weights, International Units 94
Nacelle, Inlet Weights, English Units 94
Drag Comparison. 98
Airplane Characteristics with Refined VSCE 502B Engines 109
Airplane Characteristics with VCE 112C Engines 110
Airplane Characteristics with GE21/J10 B1 Engines. 111
Airplane Characteristics with GE21/J11 B3 Engines. 112
Refined VSCE 502B Baseline Design Mission Sumary, International Units. 113
Refined VSCE 502B Baseline Design Mission Summary, English Units. 114
VCE 112C Baseline Design Mission Summary, International Units. 115
VCE 1i2C Raseline Design Mission, Surmary English Units 116
Table Title Page
32
GE 21/J10 B1 Baseline Design Mission Summary, International Units. 117
33
GE 21/J10 Bl Baseline Design Mission Summary, English Units. 11834
GE21/J11 B3 Baseline Design Mission Summary, International Units. 119
GE21/J11 B3 Baseline Design Mission Summary, English Units. 120
Economic Mission Characteristics with Refined VSCE 502B Engines. 121
Economic Mission Characteristics with VCE 112C Engines. 121
Economic Mission Characteristics with CE21/J10 Bl Engines 122
Economic Mission Characteristics with CE21/J1l B3 Engines 122
DOC, IOC, and ROI. 123
VSCE 502B Baseline Economic Mission Summary, International Units. 124
YSCE 502B Baseline Economic Mission Summary, English Units. 125
VCE 112C Baseline Economic Mission Summary, International Units. 126
VCE 112C. Baseline Economic Mission Summary, English Units 127
GE21/J10 Bl Baseline Economic Mission Summary, International Units. 128
GE21/J10 Bl Baseline Economic Mission Summary, English Units. 129
GE:21/J11 B3 Raseline Economic Mission Summary, International Units. 130
($\mathrm{E} 21 / \mathrm{J} 11 \mathrm{~B} 3$ Baseline Economic Mission Summary, English Units. 131
Takeoff Gross Weight Sensitivity Calculations 133

METHODS ROR COMPARATIVE EVALUATION
 OF PROPULSION SYSTEM DESIGNS FOR SUPERSONIC AIRCRAFT

By Ray M. Tyson, Ronald Y. Mairs, Floyd D. Halferty, Jr., Bruce E. Moore, David Chaloff, and Arnold W'. Knudsen Los Angeles Aircraft Division, Rockwell International

INTRODUCTION

The National Aeronautics and Space Administration is conducting a continuing program of advanced supersonic technology studies with the objective of developing an adequate technology base to support development of future supersonic cruising aircraft. It is recognized in this program that one of the more sensitive problems in the synthesis of a successful supersonic cruising aircraft is that of airframe/engine integration. This process must investigate and properly manage the interactions between the technical disciplines of external aerodynamics, internal aerodymamics, engine cycle design, acoustics, mass properties, and structural design; and, it must le responsive to the practical considerations of fabrication, maintenance, and operation.

The results of a recently completed study, reference 1, of the effects of nacelle size and nacelle shape on the drag, weight, and wing camber plane warping of a supersonic transport illustrated the sensitivity of these parameters to relatively small changes in nacelle shape. The resultant shape of a nacelle is dependent on the geometry of the engine (inlet area, mounting provisions, accessory location, nozzle area, etc.) since this establishes certain control points in the design of the nacelle. It is important, therefore, that the engine designer be aware of this sensitivity to engine geometry, and be provided with some guidelines for favorable geometry relationships. It is probable that some engine geometry control can be achieved by the designer with no penalty in engine performance, although on a total system basis some engine performance degradation could be accepted in trade for reduced drag.

Although considerable effort has been expended on the problem of airframe/ engine integration, it has been mostly in the nature of point designs. The study of reference 1 produced results for two specific nacelle shapes which resulted from installation of a dry turbojet engine and a duct heating turbofan engine. A comparison of these results shows the superiority of one nacelle shape over the other, but gives no information directly applicable to other installations having differing nacelle shapes. This report therefore treats nacelle shape and size in a parametric fashion so that a range of propulsion systems can be readily compared on a consistent basis. To meet the user's needs, it was clear that methodology faster and more convenient than the traditional aircraft-preliminary-design process would be required--even at some cost in terms of accuracy. Therefore, the approach was taken of organizing a relevant, existing set of nacelle drag data (reference 2), together with supplementary data points as required to cover the parametric range, into a computer table-lookup program. The program then yields supersonic wave and friction drag increments as function of size and shape parameters for ${ }^{2}$
representative supersonic cruise airplane configuration (reference 3). The drag code, combined with linear sensitivity factors (derived from perturbation studies of the reference 2 airplane), provides the desired rapid approximate methodology for comparing alternative propulsion system designs.

The methods of analysis and major results of this study are described herein in the "STUDY PROCEDURE" section. User's information for the code, program listings and mathematical details are presented in the Appendix.

SLMMARY OF RESULTS

The present work is an extension of a previous study performed for NASA Langley Research Center (contract NAS1-13906) and documented in reference 2. In that program, a baseline airplane was defined. Under the current contract, the baseline was revised slightly as described on page 71 for consistency in validating the approximate method; the revised baseline is used when perturbating and comparing airplanes with other engines. The baseline and revised baseline airplanes are described in Table 1. The baseline airplane was based on the NASA modified SCAT 15F vehicle described in reference 3. Parametric data were generated showing the effects of variations of nacelle shape on cruise drag for a range of shapes that reasonably cover engine designs applicable to supersonic cruising aircraft. Generally, it was found that nacelles shaped such that the maximum cross-sectional area occurred at or near the nozzle exit and having little or no boattail resulted in the lowest wave drag. In fact, nacelle shapes were found that produce favorable interference effects (drag reduction) of such magnitude as to nearly offset the friction drag of the nacelle. These results are valid only for vehicles of this general configuration and nacelle location. Different vehicle configurations or nacelle locations could results in different "best" shapes. In considering possible trades of reduced drag through design changes in the engine for some penalty in engine weight and specific fuel consumption (SFC), it is necessary to have visibility of the net impact of all three effects on the total airplane in order to make a comparative evaluation. Therefore, sensitivity data were developed for the effects of changes in drag, propulsion system weight, takeoff thrust, and SFC on the takeoff gross weight as a figure of merit. Results of the weight sensitivity trades showed that the airplane gross weight is highly
table 1.- baseline airpianes

	NASA Langley Study		REVISED BASELINE	
Design Mission Range, km (n mi)	7408	(4 000)	7408	(4, 000)
Design Cruise Mach Number	2.4	2.4	2.4	2.4
Pay load (292 passengers), kg (lb)	27682	(61 028)	27682	$(61$ 028)
Balanced Field Length, m (ft)	3190	(10 500)	3190	(10 500)
Engines (4)	VSCE 502B	VSCE 502B	VSCE 502B	VSCE 502B
Takeoff Gross Weight, kg (1b)	322046	$(712$ 188)	316783	(698375)

sensitive to both drag and engine SFC at supersonic cruise. A one-drag-count change (approximately 1 percent of airplane drag) results in a 1 -percent takeoff gross weight change; a 1 -percent change is SFC also results in a 1 percent change in takeoff gross weight. Changes in drag or SFC at other flight conditions and changes in propulsion system weight had relatively small effects on takeoff gross weight.

The follow-on program, described in this report, was intended to render the above-mentioned parametric data into a convenient, useable form. The objective was to develop a reasonably accurate method for the rapid, preliminary evaluation of the effects of variations in propulsion system design paramcters on the total system performance of an integrated engine/airframe system. The figure of merit used was the airplane takeoff gross weight to perform a design reference mission. The effort was organized around the following five tasks:
(1) Estimation of supersonic cruise drag increments reflecting nacelle shape and size (in the form of a computer table look-up program)
(2) Estimation of propulsion system installation weight
(3) Estimation of airplane takeoff gross weight
(4) Validation of the approximate method
(5) Reporting

Estimation of Supersonic Cruise Drag

A computer table look-up program was developed (see appendix) which yields the incremental wave and friction drags of nacelles as functions of five nacelle geometry variables and airplane mach number. The drag increments are for the total vehicle relative to the vehicle with nacelles removed. The five nacelle shape parameters used as inputs to the program are:
A_{c} Inlet capture area
A max Nacelle maximum cross-sectional area
$A_{\mathrm{n}} \quad$ Nozzle exit area (supersonic cruise position)
$X_{\text {maX }}$ Distance from inlet cowl leading edge to maximum cross-sectional area

L Nacelle total length
$S_{\text {REF }}$ Reference wing area
It has been found that the table look-ip results correlate best with more detailed analyses when the maximum cross-sectional area and its position are based on the area that occurs at the intersection of straight lines originating from the inlet and nozzle and whose slopes nearly match the slopes of the actual nacelle. A sample output from the computer program is shown in table 2.

```
macflle rermethy
    CAPTUPF AREA
    MA>ymim AREA
    MA>yIAIMM AKLA
    NUZZEF AFEEA
    LOC. liF MAX. AFEA
    TgiAL LENG.TH
        M.79
        30.50-SOFTT
        37.50 SO FT)
        33.44 FT,
WING, REFERENCE AREA 970.:3 SGM 1 100.0.DO SO FTTM.........-
INCKImENTAL NACELLE IFAG. CIEFFICIENTS
```



```
    MACH <.3, LIF = \therefore. .O.7 Cl'W= i.5CCO7 CLG= C.CCOSA
    MAR.H 1.2!: CDu= 0.06043
MMAXAL= :.E.5S AN/AC= 1.?4R AMAX/AC= 1.5CC L/DCC= 5.5CO
```



```
    MACH 1.7 LUF= C.S2?% CUH= -j.ES041 CDU= U.00031
    MAC+ \therefore.32 C.OF= {.CECUS COW= -S.CUCIF CDJ= 5.J004Z 
```

This task also included preparation of design guidelines for the installation of the engine in the nacelle so that consistency in definition of design control points for external nacelle shaping is achieved. Guidelines for establishing inlet and inlet cowl shape, engine envelope definition (incluaing provisions for wiring, plucbing, power takeoff, engine accessories, aircraft accessories, fluid rese rvoirs, air bleed ducts, and engine mounts), structural allowances, and engine corll and nozzle fairing shapes were defined. A sample of the nacelle shape buildup is shown in figure 1.

Estimation of Propulsion System Installation Weight

A simplified procedure was developed for the prediction of naielle structure weight. Weight estimation of aircraft structure is a complex process and requires more design detail than will ordinai ily be performed in the type of preliminary studies being considered here; therefore, the procedure was keyed to gross elements of the propulsion system installation and yields only approximate weights. The important aspect of having a well-defined procedure, even though considerable tolerance in the results must be accepted, is that consistency is achieved in making comparative analyses.

Estimation of Airplane Takeoff Gross Weight

i method has been defined for the determination of the impact of the propulsion system installation (cruise drag, SFC, weight) on the total system performance utilizing takeoff gross weight as the figure of merit. This method was based on results of sensitivity studies performed for Langley Research Center. Utilizing these sensitivity values, the drag and weight increments from tasks 1 and 2, and SFC's from engine performance estimates, this procedure yields the airplane takeoff weight required to accomplish tie design mission. The baseline vehicle is the vehicle defined in reference 2 with the VSCE 502B engine. The total change in vehicle takeoff gross weight due to propulsion changes may be determined from the equation:

$$
\text { TOOW }_{\text {new }}=\text { TOGW }_{\text {baseline }} \times R_{S F C} \times R_{C_{D}} \times R_{W T} \times R_{R_{N E}}
$$

where ' R " factors are the relative takeoff gross weight factors for each of the propulsion changes obtained from a linear sensitivity analysis of the baseline system. The drag factor is based on a supersonic cruise increnent.

Legend

(1) Engine accessories. Encapsulated for cooling. Includes all temperature iimited components.
(2) "ingine lube reservoi:
(3) Engine peripheral hardware.

Includes: engine fluid lines (anti-ice air, fuel, luhe oil, hydraulic, drains, etc), variable geometry mechanisms, electrical harnesses, instrumentation.
Local protrusions will occur beyond this envelope.

(4) Compressor bleed manifold.
(5) Engine power takeoff for aizcraft accessories drive. Angle gearbox and power transmission shaft to wing mounted accessories drive gearbox.

Validation of the Approximate Method

Standard preliminary design procedures were applied in the installation of four representative engines selected from the NASA Supersonic Cruise Aircraft Research (SCAR) program engine studies, in the baseline supersonic transport airplane. Drag and weight estimates were made utilizing conventional 1 -ocedures. The airplanes were then sized to the design mission utilizing an automated reiterative process. The results of this task provide a more exact evaluation of the selected engines than is obtainable with the spproximate method and thus serve as a reference for its evaluation.

The four engines considered were the refined (January 1970) Pratt and Whitney Aircraft (PWA) VSCE 502B and VCE 112C, and the General Electric Company (GE) GE21/J10 Bl and GE21/J11 B3. These engines were chosen as representative examples which would exercise the approximate method over a sizeable range, in order to determine its limits of validity. This can be done in a consistent fashion by comparing the approximate and detailed results shown in Table 3 for each engine. (On the other hand, meaningful engine-to-engine comparisons cannot be made on the basis of table 3 because the example engines do not recessarily reflect a consistent set of basic technology assumptions, noise characteristic-, or state of evolution within the SCAR program. Hence, these and similar results discussed later in this report should not be interpreted as being indicative of the final outcome of the ongoing SCAR engine studies.)

TABle 3.- COMPARISON OF APPROXIMATE AND DETAILED VEHICLE TAKBOFF GROSS wEIGHTS

Engine	Weight Based on Detailed Analysis kg (lb)	height Based on Sensitivities kg (1b)
VSCE 502B	316783 (698 375)	Revised Baseline
VSCE 502B (refined)	320146 (705 790)	320046 (705 568)
VCE 112C	402625 (887 622)	401092 (884 258)
GE21/J10 Bl	514450 (1 134 149)	463708 (1022 283)
GE21/J11 B3	629306 (1 387359)	510136 (1 124 638)

By comparing detailed and sensitivity results for each engine in table 3, it is immediately clear that a good level of agreement has been reached. The relative error (normalized by the gross weight based on detailed results) is shown in Figure 2 as a function of the total incremental change in TOGW (normalized by the baseline value). As might be expected from theoretical considerations, the error is negligible for small perturbation; in fact, it does not exceed 2 percent of the takeoff gross weight until the increment itself is in excess of 30 percent. It is important to note also that the error is consistent, i.e. always of the same sign (the approximate method underpredicts). Thus, even among highly-dissimilar engines, the correct ranking is preserved. With these facts in mind, it is concluded that the approximate method is in fact a reliable and reasonably accurate tool for
such purposes as engine evaluation amd comparison, over a range of about ± 30 percent from the baseline TOGW. Considerably larger increments also could be accepted (temporarily) as intermediate steps in an optimization study, provided that the final case of interest is within the ± 30 percent band.

The user should nevertheless observe several cautions in applying these results. As a general practice, it is desirable to check the "final result" of a study by detailed methods. This is strongly recomended for cases approaching or passing beyond the accuracy band. The sensitivity values ("R" factors) are to some extent dependent upon the engines sizing criteria, the assumed mission profile and flight rules. The user should therefore review these items carefully before beginning a study and generate a more appropriate set of ' R ' factors if significant differences are noted. More fundamentally, it should be recognized that the wave drag data is strictly applicable only to the reference 3 airplane configuration and geometrically similar scaled versions thereof. Trend results with nacelle shape for different airplanes of the same general arrangement are believed to be representative, although detailed agreement would not be expected. The use of the present data for airplanes having significantly different shape, proportions or nacelle treatment is not indicated. Doubtful cases should be checked at several points to validate the data and/or establish corrections.

Figure 2.- Error characteristics of approximate method

Conclusions and Recrmmendations

Engine shape, airflow lapse rate with mach number, thrust lapse rate with mach number, SFC and noise characteristics have large impacts on vehicle takeoff gross weight. As an example of engine shape effects, a comparison of cross sectional area variation of nacelles with the VSCE 502B and VCE $112 C$ engines is shown in figure 3. The only significant difference in shape is that the VCE 112 C has a smaller nozzle exit area. This results in drag and takeoff gross weight changes as shown in table 4. Thus, a nozzle that is 0.043 m (1.7 in) smaller results in takeoff gross weight increment of 3200 kg (7100 lb) just due to the nacelle drag change.

Engine airflow lapse rate with mach number directly affects inlet capture area. For example, the GE21/J10 Bl has approximately 16-percent lower supersonic cruise airflow relative to takeoff airflow than does the VSCE 502B. The smaller capture area results in approximately 4 -percent lower inlet recovery at static conditions and therefore reduced takeoff thrust. In addition, the smaller capture area results in a more rapid increase of nacelle cross-sectional area with nacelle length, and therefore higher drag.

Engine takeoff thrust and thrust lapse rate with mach number have significant effects on engine size required to meet takeoff distance requirements. For example, the VCE 112C has 6-percent lower takeoff thrust at static conditions and 20 -percent lower thrust at mach 0.3 (at reduced power to meet noise requirements) than the VSCE 502B for a given static takeoff airflow. This resulted in an increase in engine size of approximately 15 percent to meet b:lanced field length requirements.

A change of 1 percent in SFC at supersonic cruise results in a 1 -percent change in vehicle takeoff gross weight or about 3200 kg (7100 lb).

Engine exhaust noise characteristics have a significant impact on vehicle takeoff gross weight. All four engines were assumed to employ thrust cutback at the takeoff noise measurement point. However, all the engines did not take full advantage of the extra ground attenuation while the aircraft was still on the ground. For example, the GE21/J11 B3 has 26 -percent lower thrust-per-unit airflow than the VSCE 502B. Thus, the GE21/J11 B3 yields approximately 6 db lower sideline noise at takeoff on the ground, but it must be sized larger to meet the takeoff distance requirement.

The sensitivity method has been shown to be a valid method for preliminary assessment of propulsion system modifications, and it is therefore recommended to be used for this purpose. Continued airframe/propulsion integration studies and coordination effort between engine and airframe manufacturers in the aforementioned high-sensitivity areas are also recommended.

Nacelle characteristics	
PWA VSCE 502B	PWA VCE: 112C
$A_{C} 2.93 \mathrm{sq} \mathrm{m}(31.5 \mathrm{sq} \mathrm{ft})$	$2.93 \mathrm{sq} \mathrm{m}(31.5 \mathrm{sq} \mathrm{ft})$
$110.3 \mathrm{~m}(33.25 \mathrm{ft})$	$11.2 \mathrm{~m}(36.86 \mathrm{ft})$
$\mathrm{A}_{\mathrm{B}} 0.17 \mathrm{sq} \mathrm{m}(0.57 \mathrm{sq} \mathrm{ft})$	$0.15 \mathrm{sq} \mathrm{m}(0.50 \mathrm{sq} \mathrm{ft})$

Figure 3. - Normalized nacelle cross-sectional area variation for VSCE 502B and VCE 112C.

TABIE 4. - DRAG AND TAKEOFF GROSS WEIGHT INCREMENTS DUE 10 CHANGES IN ENGINE SHAPE

Engine	$\Delta C_{D},$Supersonic Cruise Nacelle Drag Increment Relative to Nacelles OffTakeoff Gross Weight Increment Relative to VSCE 502B kg (1b)	
VSCE 502B	0.00046	Base
VCE 112C	0.00055	3200 (7100)

SYMBOLS

A	Area, sq m (sqq ft or sq in)
BLB	Boundary layer bleed
BLC	Boundary layer control
BP	Basepoint
C	Coefficient or Chord, m (ft or in)
d	Diameter, m (ft or in)
D	Drag, daN (1b)
db	Decibel
F	Thrust, kg (lb)
K	Drag-due-to-1ift factor
1	Length, m (ft or in)
I.	Lift, N (1b)
M	Mach number
R	Relative TOW factor
S	Area, sq m (sq ft or sq in)
SFC	Specific fuel consumption, $\mathrm{kg} / \mathrm{hr} / \mathrm{N}$ ($\mathbf{l b} / \mathrm{hr} / \mathrm{lb}$)
T	Thrust, N (1b)
TOG	Takeoff gross weight, kg (1b)
V	Velocity, $\mathrm{m} / \mathrm{sec}$ ($\mathrm{ft} / \mathrm{sec}$)
W	Weight, kg (lb)
X	Nacelle station, m (ft or in)
Δ	Increment

Subscripts
AMAX Maximum cross-sectional area
B Base

C	Capture
CD	Drag coefficient
D	Drag
F	Friction
f	Fuel
i	Inlet throat
K	Indicates lift coefficient at minimum drag
L	Lift
LO	Loftoff
MAX	Maximem
n	Nozzle exit
ne	Net effert
P	Profile
REF	Reference
R	Root
SFC	Specific fuel consumption
SUB	Subsonic
SUPER	Supersonic
T0	Takeoff
W	Wave
WT	Weight
0	Freestream
\mathbf{l}	Critical engine failure

STUDY PROCEDURE

Approach

The general approach of this study included using the baseline airplane, parametric nacelle drag results, and takeoff gross weight sensitivities developed in the NASA Langley Research Center contract of reference 2. A nacelle drag table look-up computer program and guidelines for determining nacelle shape were developed to allow estimation of supersonic cruise drag. A method to assess the propulsion system installation weight was defined. A method of determining vehicle takeoff gross weight using vehicle sensitivities to propulsion changes was developed. The method was verified by analyzing in detail four selected propulsion systems.

Because of the dependence of this study on the baseline airplane and ground rules of the study of reference 2 , the definition of the baseline airplane is included. In this report, descriptions of the airplane configurations used are as follows:
(1) The reference airplane is the NASA-modified SCAT 15F arrow wing supersonic transport (defined in reference 3),
(2) The basepoint vehicle is the reference modified only as required to install the Pratt and Whitney Aircraft (PWA) VSCE 502B engine,
(3) The baseline airplane is the basepoint resized to the design requirements on a standard-plus $-8^{\circ} \mathrm{C}$ day.

The structure design and operational empty weight of the reference airplane were assumed to meet all design criteria. Weight and aerodynamic characteristics of the study airplanes were derived by increments from the reference configuration.

Baseline Airplane Definition

Basepoint airplane. - The "basepoint" airplane for this study is based on the NASA modified SCAT 15F arrow wing reference configuration as described in reference 3. The propulsion system of this airplane has been replaced with PWA variable stream control engines (VSCE 502 B) having $408 \mathrm{~kg} / \mathrm{sec}$ ($900 \mathrm{lb} / \mathrm{sec}$) airflow each and witn axisymmetric variable geometry inlets designed for mach 2.4 cruise conditions. The resulting basepoint vehicle is shown in figure 4. This airplane has a gross weight of 336973 kg (742890 lb), a range of 7471 km , ($4034 \mathrm{n} . \mathrm{mi}$.$) , and a balanced field length of 3017 \mathrm{~m}$ (9898 ft).

All performance and sizing calculations were made using the Rockwell Vehicle Sizing and Performance Evaluation Program (VSPEP). This computer program is a design tool capable of scaling a known basepoint vehicle according to specified values of several different design parameters. These include vehicle gross weight (or fuel weight), thrust-to-weight ratio (or engine size), wing-loading (or wing area), and payload or fixed equipment weight and volume. Performance may be determined at specified gross weight, or alternatively, a search routine permits automatic sizing of the vehicle gross weight such that a specified radius or range of the design mission is satisfied. Vehicle performance is calculated internally from a set of subroutines programmed according to a detailed performance analysis model. The subroutines are general in nature and permit calculation of a wide variety of mission profiles. Several mission profiles may be calculated simultaneously. Takeoff and landing distances and maneuvering capability may also be determined. Figure 5 illustrates the evaluation process.

Typical mission legs which may be calculated inclurle warmup, taxi, takeoff, climb, descent, cruise, and loiter operations. Climb and descent performance are determined by numerical integration of the equations of motion along a specified flight schedule. Internally generated schedules are also available, including minimum time and minimum fuel flight paths as defined by the energy method. Constraints on the allowable flight regime are included. Cruises and loiters may be determined at fixed or optimum speeds and altitudes. Numerical

ORIGINAL PAGE IS

 OF POOR QUALITY

Figure 4.- Basepoint airplane

Figure 5.-Vehicle sizing and performance evaluation program.
searches are used to dctermine optimm speeds and altitudes at the beginning and end of each of these legs.

Data input to the VSPEP for the AST basepoint vehicle include:

- Weights broken down by major component, along with scaling information on the wing, tails, fuselage, and engines.
- Drags broken down by major component and by type (e.g., friction drag, wave drag, drag due to lift, base drag).
- Installed propulsion dat, including thrust and fuel flow as functions of speed, altitude, and power setting.
- Dimersional data such as lengths, areas, and vol mes for major components and the total vehicle.

Performance items calculated by the VSPEP on the basepoint and baseline vehicles for this study consist of the following:
(1) Design mission range
(2) Altemate mission range
(3) Takeoff distance with FAR 36 (Federal Aviation Regulation, part 36) noise requi rements
(4) Balanced field takeoff distance
(5) Thrust-to-drag ratio at mach $2.32,18300 \mathrm{~m}$ (60000 ft)
(6) Thrust-to-drag ratio at mach 1.2 during the climb leg

A description of each of these performance items is given in the following paragraphs. Because engine data were provided for a standard-plus $-8^{\circ} \mathrm{C}$ ($14.4^{\circ} \mathrm{F}$) day, all airplane perfomance characteristics were computed for that atmospheric condition.

Design mission.- A profile of the design mission is shown in figure 6. This mission consists mainly of a mach 2.32 cruise. Fuel reserves as recommended in reference 4 are calculated for an a^{1} ternate airpert located 460 km ($250 \mathrm{n} . \mathrm{mi}$.) from the destination airport.

The design mission consists of:
(1) Warmup and takeoff - 10 minutes at ale pc $\sim \mathrm{r}$ plus 1 minute at maximum pover.

(2) Climb - Maximm power clisb and accelerate to cruise altitude and mach number.
(3) Cruise - Cruise at mach 2.32 at altitude for best cruise range.
(4) Descent - Descend and decelerate to mach 0.5 and 457 (1500 ft) using idle power.
(5) Approach and land - Descend to mach 0.3 at sea level using idle power.
(6) Taxi - 5 minutes at idle power.
(7) Reserve allowance - 5 -percent of total fuel used in all previous legs.
(8) Ressrve climb - Climb to subsonic cruise conditions.
(9) Reserve cruise - Subsonic cruise at mach number and altitude for best range.
(10) Reserve descent - Descend and decelerate to holding altitude and mach number using idle power.
(11) Reserve hold - Loiter for 30 minutes at $3048 \mathrm{~m}(10000 \mathrm{ft}$) at the mach number for best endurance.
(12) Reserve approach and land - Descend to sea level using idle power.

Alternate mission.- A profile of the alternate mission is shown in figure 7. The first half of the altemate is identical to the first half of the design mission. At the point corresponding to the m ispoint of the design mission, a failure is assumed to occur in the most critical engine. At this point, the airplane descends and continues to cruise subsonically with one engine windmilling. The fuel reserve remaining at the end of this mission is equal to the reserve fuel as calculated for the design mission.

The alternate mission consists of:
(1) Warmup and takeoff - Same as design mission.
(2) Climb - Same as design mission.
(3) Cruise - Same as design mission.

(4) Descent - Descend and decelerate to subsonic cruise conditions using idle power, following failure of wost critical engine.
(5) Cruise - Subsonic cruise at mach nuber and altitude for best range with one engine inoperative.
(6) Descend and land - Descend to sea level using idle power.
(?) Reserve - Allow total reser.e fuel equal to that calculated for design mission legs ? through 12.
Balanced field takeoff. - Takeoff distance is calculated over a 10.7 (35 ft) obstacle. It is assumed that a maximum usable lift coefficient of 0.555 is available for climbout. Balanced field length involves three requirements:
(1) Distance for a normal takeoff is calculated with all engines (throttled if ne-essary so that FAR 36 noise requirements are not exceeded) and this distance is multiplied by 1.15.
(2) Distance is calculated for a takeoff when an engine fails at the critical speed and the airplane continues the takeoff. In this instance, the throttles may be advanced after the engine failure if they are not already at maximum power (without regard to noise requirements).
(3) Distance is calculated when an engine fails at the critical speed and the takeoff is aborted. The airplane is stopped by applying brakes and cutting the remaining engines to idle. The critical speed for engine failure is determined by varying the speed at which engine failure occurs (i.e., V_{1}) until the acceleraie-continue distance is equal to the accelerate-stop distance (i.e., segments $B+C=D+E$ as shom in figure 7). The balanced field length is then defined as the greatest of items (1), (2), and (3).

Thrust-to-drag ratio. - The thrust-to-drag (T/D) ratio is calculated using maximm available thrust at 2.32 mach, $18300 \mathrm{~m}(60000 \mathrm{ft})$. Drag is that for level flight at the same conditions. Airplane weight is that at the start of the supersonic cruise as calculated for the design mission. The thrust-to-drag ratio is also calculated for the point in the clim-accelerate leg at which mach 1.2 is reached. In this case the altitude and vehicle weight are the actual values during the climb at which the vehicle reaches mach 1.2.

Baseline airplane. - The "baseline" airplane for this study is a resized version of the aforementioned "basepoint." Resizing was accomplished by exercising the VSPEP for a matrix of thrust-to-weight and wing loading values, and allowing the program to search for the gross weight, in each case, that satisfies the design mission range requirement of 7408 km ($4000 \mathrm{n} . \mathrm{mi}$.). plots of the results are shown in figures 9 through 11. The parameters shown include vehicle gross weight as well as those performance items for which requirements must be met.

The balanced field length requirement is plotted on the airplane gross weight plot in figure 9. This allows a "baseline" airplane to be chosen which is defined as the minima gross weight vehicle that meets or exceeds the following performance requirements:

Design mission range	$7408 \mathrm{~km}(4000 \mathrm{n} . \mathrm{mi}$.$) with 292$ passengers
Balanced field length	$3200 \mathrm{~m}(10 \mathrm{500} \mathrm{ft})$
Miniman T/D during climb or cruise	1.2

A - Distance up to critical engine failure \mathbf{V}_{1}
B - 3-engine acceleration distance from \mathbf{V}_{1} to $\mathbf{V}_{\mathbf{L}}$
C - 3-engine lift-off to barrier distance
D - Distance gained after engine failure before full brake application

E - Stopping distance
\mathbf{v}_{1} - Critical engine failure speed
$V_{\text {LO }}$ - Lift-off velocity
Figure 8. - Balanced field length definition

Figure 9. - Gross weight versus thrust-to-weight and wing loading.

Figure 10. - Balanced field length versus thrust-to-weight and wing loading

Figure 11.-Thrust/drag ratio versus thrust-to-weight and wing loading.

Since the thrust-to-drag requirements are exceeded for all cases, figure 10, only the balanced field length requirements are included in figure 9.

Abstract

The resulting "baseline" airplane has a gross weight of 323046 kg (712188 lb); a thrust-to-weight ratio of $3.16 \mathrm{n} / \mathrm{kg}(0.323 \mathrm{lb} / \mathrm{lb}$) based on installed, static takeoff thrust; and a wing loading of $354 \mathrm{~kg} / \mathrm{sq} \mathrm{m}(72.5 \mathrm{lb} /$ sq ft) based on gross wing area. (As discussed on page 71, the baseline was revised slightly for consistency in validating the approximate methods, but the discussion presented here is for the $\mathrm{N}: \mathrm{SA}$ Langley stud) baseline.)

Further airplane design and performance characteristics for both the "basepoint" and "baseline" airplanes are shown in table 5. Design and alternate mission summaries are shown in tables 6 through 9 for the baseline airplane. In these tables, the first leg of the alternate mission includes the first four legs of the design mission while leg five of the altemate includes reserves for legs nine tnr ..gh 15 of the design mission. The path followed during the climb-accelerate leg is a minimum fuel path calculated internally by the VSPEP program. This path as calculated for the baseline airplane is shown in figure 12.

Propulsion.- Because many of the current and recently completed supersonic cruising aircraft studies have used axisjmmetric inlets, a mixed-compression, axisymmetric inlet was defined for use in the basepoint aircraft for this study. The inlet diameter is 1.93 meters (76 inches), and capture area is 2.926 square meters (4536 square inches). For takeoff, the basic centerbody is held in the transonic position, but the fore and aft conical segments are translated aft to create a centerbody auxiliary inlet. The auxiliary inlet opening in the centerbody is 10 percent of capture area. Inlet pressure recoveries and spillage, bypass, and BLC drags were estimated, and their effects were included in installed propulsion performance. Engine accessories were assumed to be located in the wing. The nacelle drawing is shown in figure 13.

The engine performance data available for the VSCE 502B engine included the effects of an inlet recovery schedule, nozzle external drags (base plus boattail), 0.45 kilogram-per-second (1.0 pound-per-second) high-pressure compressor air bleed, and 149 kilowatts (200 horscpower) power extraction. Installed performance data were computed by modifying the engine data to include the effects of changes in inlet pressure recovery and inlet drags (spillage, bypass, and boundary layer control). Because the amount of engine data available was not sufficient to compute aircraft mission performance, additional installed performance data were generated by calculating corrected thrust and fuel flow parameters and by extrapolating based on trends of engines with similar characteristics. Fortunately, these techniques were required only at flight conditions where the airplane flies for a short duration. Thus, any possible errors due to data extrapolation should have minimal effect on airplane performance. All data were for standard-plus $-8^{\circ} \mathrm{C}$ day.

TABLE 5. - AIRPI ANE CHARACTERISTICS

	Basepoint		Baseline	
Engine Airflow, kg./sec. (lb./sec.)	408	(900)	395	(869)
Thrust-to-weight, n./kg. (lb./lb.)	3.14	(0.3208)	3.16	(0.323)
Reference Wing Area, sq.m. (sq. ft.)	926	(9 969)	827	(8902)
Gross Wing Area, sq.m. (sq. ft.)	1022	(10 996)	912	(9819)
Wing Loading (gross area), kg./sq.m. (lb./sq. ft.)	330	(67.56)	354	(72.53)
TOGW, kg. (lb.)	336973	(742 890)	323042	(712 188)
Fuel Weigl t, kg. (lb.)	158475	(349 834)	151643	(334 754)
Max. Wing Fuel, kg. (lb.)	207950	(459 050)	175484	(387 382)
Design Range, km. (n.mi.)	7475	$\left(\begin{array}{ll}4 & 034\end{array}\right)$	7412	(4000)
Eng. Out Range, km. (n.mi.)	6285	$\left(\begin{array}{l}392\end{array}\right)$	6259	(3 378)
FAR 36 T.o. Dist., m. (ft.)	2498	(8194)	2648	(8661)
Bal. Field T.O. Dist., m. (ft.)	3017	(9 898)	3190	(10 466)
Thrust-to-Drag e $2.32 \mathrm{M} / 18300 \mathrm{~m}$. (60000 ft .)		1.747		1.716
Thrust-to-Drag 1.2M/Climb		2.005		2.019
Initial Cruise L/D		9.649		9.541
Initial Cruise SFC (installed) kg./hr./daN. (1b./hr./lb.)	1.393	(1.366)	1.385.	(1.358)

TABLE 6. - bASFLINE DESIGN MISSION SLMMARY - INTERNATIONAL UNITS

LEG. NO. OPERATION	WEIGHT, kg.	ALTITUDE, m.	MACH	$\begin{aligned} & \text { FUEL USED, } \\ & \text { kg. } \end{aligned}$	TIME, $\min .$	$\begin{gathered} \text { TOTAL TIME } \\ \text { min. } \end{gathered}$	RANGE, $\mathrm{km} .$	$\begin{gathered} \hline \text { TOTAL RANGE, } \\ \text { kn. } \end{gathered}$
INITIAL WEIGHT	323046							
1 Wo \& To	319171	0	0.305	3871	10.0	10.0	0	0
2 CL TO 1500	317071	457	0.500	2100	1.3	11.3	10	10
3 CLB-ACC	292535	16746	2.320	24535	12.8	24.1	288	299
4 CRUISE	239921	17910	2.320	52614	82.9	107.0	3405	3704
5 CRUISE	196262	19168	2.320	43659	82.6	189.7	3395	7100
6 DESCEND	194735	457	0.500	1526	17.3	207.0	296	7396
7 DES-LAND	194500	0	0.300	235	1.5	208.6	12	7409
8 TAXI-ALL	193853	0	0.0	646	5.0	213.6	0	7409
9 5PCT ALL	187394	0	0.0	6459	0.0	213.6	0	7409
10 CL 1500	186826	457	0.500	567	0.7	214.3	5	7414
11 CLB-ACC	181460	12337	0.950	5366	10.2	224.5	158	7573
12 CRUISE	179067	12427	0.950	2393	10.8	235.3	181	7754
13 DESCEND	178195	3048	0.470	871	9.5	244.9	123	7877
14 LITTER	171744	3048	0.454	6450	30.0	274.9	0	7877
15 DES-LAND	171207	0	0.300	537	3.7	278.6	33	7911
		TOTAL FU	EL USED	$=151834$				

TABLE 7. - BASELINE DESIGN MISSION SUMMARY - ENGLISH UNITS

LEG. NO. OPERATION	$\begin{aligned} & \text { WEIGHT, } \\ & \text { lbs. } \end{aligned}$	ALTITUDE, ft.	MACH NO.	FUEL USED, lbs.	TIME min.	TOTAL TIME min.	$\begin{aligned} & \text { RANGE } \\ & \text { n.m. } \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { RANGE n.m. } \end{aligned}$
INITIAL WEIGHT	712188							
1 WO \& TO	703653	0	0.305	8534	10.0	10.0	0	0
2 CL TO 1500	699022	1500	0.500	4631	1.3	11.3	5	5
3 CLB-ACC	644931	54943	2.320	54090	12.8	? 1.1	155	161
4 CRUISE	528936	58761	2.320	115994	82.9	107.0	1838	2000
5 CRUISE	432684	02889	2.320	96252	82.6	189.7	1833	3833
6 DESCEND	429318	1500	0.500	3365	17.3	207.0	159	3993
7 DES-LAND	428800	0	0.300	518	1.5	208.6	7	4000
8 TAXI-AlL	427374	0	0.0	1425	5.0	213.6	0	4000
9 SPCT ALL	413134	0	0.0	14240	0.0	213.6	0	4000
1 Cl CL TO 1500	411882	1500	0.500	1251	0.7	214.3	2	4003
11 CLB-ACC	400052	40476	0.950	11830	10.2	224.5	85	4089
12 CRUISE	394775	40773	0.950	5276	10.8	235.3	98	4187
13 DESCEND	392853	10000	0.470	1921	9.5	244.9	66	4253
14 LOITER	378632	10000	0.454	14221	30.0	274.9	0	4253
15 DES-LAND	377448	0	0.300	1184	3.7	278.6	18	4271
TOTAL FUEL USED $=334739$								

TABLE 8. - BASELINE ALTERNATE MISSION SUMMARY - INTERNATIONAL UNITS

:.G. NO. OPERAIION	WEIGHT, kg.	$\underset{\mathrm{m}}{\text { ALTITUDE, }}$	MACH NO.	FUEL USED, kg.	TIME min.	TOTAL TIME min.	RANGE km.	TOTAL RANGE km.
INITIAL WEIGHT	373046							
1 DES LEGS 1-4	239921	0	0.0	83121	107.0	107.0	3704	3704
2 DES-DEC	239539	8212	0.900	381	7.9	115.0	189	3894
3 CRUISE	194718	9461	0.900	44821	136.7	251.7	2248	6142
4 DESCEND	193850	0	0.300	868	10.2	262.0	113	6256
5 RESERVE	171204	0	0.0	22646	65.0	327.0	502	6758
Total Fuel Used $=151838$								

TABLE 9. - BASELINE ALTERNATE MISSION SUMMARY - ENGLISH UNITS

LEG NO. OPERATION	WEIGHT, lbs.	ALTITUDE, ft.	MACH NO.	$\begin{gathered} \text { rUEL USED } \\ \text { lbs. } \end{gathered}$	TIME min.	TOTAI TIME min.	RANGE n.m.	TOTAL RANGE n.m.
INITIAL WEIGHT	712188							
1 DES LEGS 1-4	528936	0	0.0	183251	107.0	107.0	2000	2000
2 DES-DEC	528095	26944	0.900	841	7.9	115.0	102	2102
3 CRUISE	429281	31040	0.900	98813	136.7	251.7	1213	3316
4 DESCEND	427368	0	0.300	1913	i0.2	262.0	61	3378
5 RESERVE	377441	0	0.0	49926	65.0	327.0	271	3649

Figure 12.-Baseline airplane climb path

At takeoff, we engine power setting was scheduled so that the aircraft meets FAR 36 -traded noise levels. The SAE exhaust jet noise prediction method was used with the modification to overall sound pressure level recommended by Bushell (reference 5). This modification has no effect on perceived noise level at static conditions, but it results in approximately 4 decibels (db) higher noise than the standard SAE method at mach 0.3 . A 1.5 db reduction in sideline noise was assumed due to sideline shielding while the airplane is on the ground. An 8 -decibel reduction in noise level due to the wannular nozzle effect was assumed for all flight conditions and power settings. Information from PWA indicates that coannular configurations reduce noise by 7 to 9 decibels when the difference between core velocity and bypass velocity is 152 meters per second (500 feet per second) or more, with the core stream having the lower velocity.

Mass properties.- The basepoint vehicle weight summary is given in table 10. The NASA reference vehicle weight summary (reference 3) from which the basepoint was derived is also shown. The differences between the weights of the two vehicles are in the engines and nacelles. The basepoint venicle has VSCE $502 B 408 \mathrm{~kg} / \mathrm{sec}$ ($900 \mathrm{lb} / \mathrm{sec}$) airflow engines in lieu of the $363 \mathrm{~kg} / \mathrm{sec}$ ($800 \mathrm{lb} / \mathrm{sec}$) engines in the NASA reference vehicle.

The VSCE 502B bare engine weight including nozzle and thrust reverser was supplied by PWA. Weight increments of 22.7 kg (50 lb) for residual fluids and 22.7 kg (50 lb) for miscellaneous engine/airframe interfacing provisions were added to the bare weight to obtain an installed weight. Table 11 shows the installed engine weight sumnary.

The basepoint nacelle weight estimate is basta on the nacelle drawing, figure 13. For the weight evaluation, the nacelle was divided into three sections: forward of the engine front face (inlet cowil), aft of the front face (engine cowl), and inlet spike. The engine cowl weight was estimated at $34.2 \mathrm{~kg} / \mathrm{sq} \mathrm{m}(7 \mathrm{lb} / \mathrm{sq} \mathrm{ft})$ of wetted area. This weight includes all the nacelle structure that supports and surrounds the engine and was derived from prior Rockwell International studies of a similar type. The inlet cowl and spike weights were calculated using statistical weight estimaring equations obtained from the technical report SEG-TR-67-1, Preliminary Design Methodology for AirInduction Systems (reference 6). Fngine mount weights were calculated statistically at 1.5 -percent of the engine weight. The mount weights are iacluded with the nacelle weight.

The weight summary of the basepoint nacelle is presented in table 12.
table 10. - vieicle meight sumary

ITEM	NGSA REFERENCE VEHICIE		BASEPOINT	
	K_{g}	LB	Kg	LB
Wing	37805	83347	37805	83347
Horizontal Tail	2391	5271	2391	5271
Vertical Tail	2148	4735	2148	4735
Fuselage	24636	54314	24636	54314
Lending Gear	13138	28955	13138	28965
Nacelle	8625	19035	7410	16336
Structure Total	$(88743$	(195 647	$(87528$	(192 968
Engines	27139	59832	$\} 24494$	$\} 54000$
Thrust Reversers	4809	10601	\} 24494	$\} 54000$
Miscellaneous Systems	807 822	1780	807 2622	1780 5781
Fuel System-Tanks and Plumbing	2622	$578 i$	2622	5781
Propulsion Total	(35 377	(77994	$(27923$	(61 561
Surface Controls	4527	9981	4527	9981
Instruments	1542	3400	1542	3400
Hydraulics	2540	5600	2540	5600
Electrical	2291	5050	2291	5050
Avionics	1220	2690	1220	2690
Furnishings and Equipment	11390	25 ill	11390	25111
Air Conditioning	3720	8200	3720	8200
Anti-icing	95	210	95	210
Systems and Equipment Total	$(27325$	(60242	$\left(\begin{array}{ll}27 & 325\end{array}\right.$	(60 242
Weight Enpty	151445	333883	142776	314771
Crew and Baggage-Flight,	306	675	306	675
-Cabin,	744	1640	744	1640
Unusable Fuel	1059	2335	1059	2335
Engine Oil	361	795	361	795
Passenger Service	4015	8852	4015	8852
Cargo Containers	1343	2960	1343	2960
Operating Weight	159273	351140	150604	332. 028
Passengers, (292)	21854	48180	21854	48180
Passenger Baggage	5828	12848	5828	12848
Zero Fuel weight	186955	412168	178286	393056
Mission Fuel	158680	349832	158681	349834
Design Gross Weight	345635	762000	336973	742890

table 11. - basepoint engine weight

Item	Weight/Vehicle	
	$\mathbf{k g}$	$\mathbf{l b}$
Engines (including nozzle \& thrust reverser) (4)	24312	53600
Residual Fluids	91	200
Miscellaneous Provisions	91	200
Engines as Installed	24494	54000

Aerodynamics.- Friction drag estimates were made for a fully turbulent, hydraulically smooth condition using the incompressible Von-Karman-Schoenherr method (reference 7) in conjunction with the adiabatic compressibility correction of Sommer and Short (reference 8). Component characteristic lengths (e.g., the distance from the inlet lip to the exhaust nozzle exit, the exposed mean aerodynamic chord of planar surfaces, etc.) and the altitude along the mission climb profile were used to evaluate length Reynolds numbers. Flat plate values were increased by 3 -percent to account for form losses.
table 12. - basepoint nacelle weight

Item	Weight/Vehicle	
	kg	lb
Nacelles		
Engine Cowl	2782	6132
Inlet Cowl	1299	2864
Spike	2961	6528
Fngine Mounts	368	812
Total Nacelle	7410	16336

The wave drag due to thickness was estimated as a function of mach number using supersonic area rule theory (references 9 and 10) in conjunction with a transparent wing simulation, an inlet mass flow ratio of one, and the nozzle exit area held fixed at its supersonic cruise position. The effect of inlet spillage and nozzle position is included in the installed thrust. All results reported here are based on the use of a 51 -mach-plane ($\Delta x=0.02 \mathrm{~L}(\theta)$), 13 -roll-angle ($\Delta\left(=15^{\circ}\right.$) analysis. Basepoint configuration resultc for increased solution mesh density did not indicate any appreciable change.

Supersonic cruise trimmed drag-due-to-lift characteristics are assumed to be equal to the reference configuration of reference 3 and consequently independent of wing and engine size and nacelle shape. A different design wing iwist and camber is required for each case to realize this performance. The lifting efficiency may be conservative for some of the more favorably shaped nacelles of the parametric drag study in that any increased benefit that may be realized from favorable nacelle thickness/wing lift interference over and above that of the reference configuration is neglected. Conversely, for the less favorably-shaped nacelles, the analysis may be somewhat optimistic. At off design conditions, the above assumption is necessary because the required analysis is beyond the scope of the contract effort.

A comparison of the VSCE 502 B ($408 \mathrm{~kg} / \mathrm{sec}, 900 \mathrm{lb} / \mathrm{sec}$ airflow) nacelle of figure 13 to that of the reference configuration nonafterburning single spool turbojet with variable geometry turbine ($363 \mathrm{~kg} / \mathrm{sec}, 800 \mathrm{lb} / \mathrm{sec}$ airflow) of reference 3 is presented on figure 14. The basepoint nacelle is 1.95 meters (6.4 feet) shorter and has a 0.14 meter (0.46 feet) smaller maximum diameter. The relative cross-sectional shape of the two nacelles is presented in figure 15. The basepoint total configuration normal cross-sectional area distribution is shown in figure 16.

Estimated total and nacelle incremental skin friction and wave drag characteristics (relative to nacelles off) for the basepoint configuration are presented in table 13. The wave drag results are for the case in which the nozzle erit planes are the same as the reference configuration. A slightly higher drag results ($\Delta C_{D W}=0.00006$ at mach 2.7) if the inlet planes are matched.

The friction, wave, and total drag increments of the basepoint nacelle are compared to those of the reference nacelle in figure 17. The basepoint configuration has a slightly smaller installation drag in spite of 12.5 -percent greater airflow because of the more favorable nacelle shape (no boattail) as shown in figure 14. It was subsequently determined that a further reduction of 0.5 count could be realized by meridial contour optimization.

Figure 14. - Comparison of reference and basepoint nacelles.

Figure 15. - Nacelle cross-sectional area variation.

Figure 16. - Basepoint vehicle cros

Fuselage station ~m. (ft.)
asepoint vehicle cross-sectional area variation.

table 13. - basepoint configuration estimated profile and wave DRAG CHARACTERISTICS $\mathrm{S}_{\text {REF }}=929 \mathrm{sq} \mathrm{m}(10000 \mathrm{sq} \mathrm{ft})$

M_{o}	Altitude		Aircraft		Nace1le	
	m	ft	$\mathrm{C}_{\mathrm{D}_{\mathrm{P}}}$	$\mathrm{C}_{\mathrm{D}_{\mathrm{W}}}$	$\Delta \mathrm{C}_{\mathrm{D}_{\mathrm{P}}}$	$\Delta \mathrm{C}_{\mathrm{D}_{\mathrm{W}}}$
0.4	457	1500	0.0061	$\cdots--$	0.00065	\cdots
0.8	6400	21000	0.00572	\cdots	0.00062	\cdots
1.2	10455	34300	0.00545	0.00365	0.00060	-0.00017
1.4	11521	37800	0.00522	0.00316	0.00058	-0.00018
1.8	13594	44600	0.00490	0.00254	0.00055	-0.00019
2.32	16764	55000	0.00450	0.00222	0.00050	-0.00018
2.7	18288	60000	0.00418	0.00217	0.00046	-0.00014

The aerodynamic charact istics uscd in resizing the basepoint wing and engine size to produce the baseline configuration used for all parametric nacelle drag studies were established as fol. ows.

Fully turbulent friction levels were adjusted for difference in surface area and length Reynolds number of the wing and nacelle. The wave drag variation of the basepoint configuration as a function of wing and engine size were parametrically evaluated for input to the sizing program. The results are presented in figure 18. The effect of engine size was essentially nil at this scale for the nacelle shape under consideration.

The trimmed drag due to lift characteristics were assumed to be independent of wing size and equal to the reference configuration. The specific levels used are presented in figures 19 through 21 and were taken directly from reference 3.

Sizing of the basepoint configuration produced the study baseline (table 5) which had a 12 -percert smaller wing size and a 3 .5-percent smaller engine size. The associated normal cross-secticial area distribution is presented in figure 22. A summary of the component surface areas and reference lengths is presented in table 14, and table 15 r esents baseline drags.

Figure 18. - Basepoint wave drag sizing data

Figure 19. - $\mathrm{C}_{\mathrm{L}_{\mathrm{K}}}$ versus Mach number.

Figure 20. - $\mathrm{C}_{\mathrm{D}_{\mathrm{K}}}$ versus Mach number.

Figure 21. - ' K ' factor versus Mach number.

Figure 22. - Baseline vehicle cross-sectional area variation.

TABLE 14. - BASELINE CONFICRRATION SURFACE AREA AND LENGTH SUMMARY

COMPOENT	$\begin{gathered} \text { Swet } \\ \text { sq. } \\ \text { (sq.ft.) } \end{gathered}$	Length m. (ft.)
Puselage	786 (8450)	96 (315)
Wing	1505 (16 987)	7.65-39.4 (25.1-129.)
Nacelles (4)	276. (5 088)	12.7 (35.1)
Center Line Vertical	20.1 (219)	4.9 (16.2)
Wing Verticals	91. (992)	7.9 (25.9)
Horizontal	89.5 (921)	5.8 (18.9)

table 15. - baseline configuration estimated skin FRICTION AND WAVE DRAG CHARCTERISTICS

$$
S_{R E F}=929 \text { sq.m. }(10000 \text { sq. ft. })
$$

M	ALTITUDE		AIRCRAFT		nactelle	
	m.	(ft.)	C_{D}	$\mathrm{c}_{\mathrm{D}_{W}}$	$\Delta C_{\text {D }}{ }_{F}$	$\Delta C_{b_{W}}$
0.4	457	(1 500)	0.00568	----	0.00065	---
0.8	6400	(21000)	0.00537	----	0.00061	-..-
1.2	10455	(34 300)	0.00508	0.00339	0.00058	-0.00009
1.4	11521	(37 800)	0.00489	0.00305	0.00056	0.00003
1.8	13594	(44 600)	0.00455	0.00237	0.00052	-0.00011
2.32	16764	(55000)	0.00420	0.00209	0.00049	-0.00012
2.7	18288	(60000)	0.00392	0.00200	0.00045	-0.00011

Estimation of Supersonic Drag

Parametric drag analysis.- The parametric nacelle wave drag analysis utilized the baseline configuration described in the previous section. The installation of the propulsion system followed several general ground rules in order to preserve the basic arrangement concepts and provide consistent comparisons concerning the effect of nacelle size variations. They are:
(1) Nacelle overhang of the wing trailing edge and vertical nacelle-wing separation was limited to the reference configuration values for structural reasons.
(2) The longitudinal and lateral separation distance between the inboard and outboard nacelles was preserved in order to maintain inlet flow quality.
(3) The reference configuration philosophy of locating the nacelle volume in a region of decreasing wing thickness was maintained.
(4) The maximum boattail angle considered was 10 degrees.

The outboard nacelle is moved inboard and forward as required along the midchord (approximate maxinum thickness) line of the wing until its trailing edge overhang does not exceed 3 meters (10 feet). The inboard nacelle is shifted laterally by the same mount holding the longitudinal distance between the inboard and outboard nacelle inlet pl: is the same as the reference configuration.

The nacelle parametric variables considered in the present analysis were the ratio of nozzle area to capture area A_{n} / A_{c}, the ratio of maximum crosssectional area to capture area $A_{y A x} / A_{c}$, the relative axial position of maximm area $X_{A M A Y} / 1$, the ratio of nacelle length to capture diameter, $1 / d_{c}$, and the nacelle absolute capture area A_{C}. A summary of the number of variations and variable range analyzed is presented in table 16 . For purposes of computation, the nacelles were assumed to be axisymmetric and the inlet, maximm area, and nozzle planes to be connected by straight lines.
table 16. - nacelle parameter values

PARAETER	VAWES
Mach number A_{n} / A_{c} $\operatorname{Amax}^{/ A_{c}}$ $x_{\text {AMAX }} / \ell$ A_{c} ℓ / d_{c}	$\begin{aligned} & 1.2,2.32 \\ & 1.0,1.25,1.5,2.0 \\ & 1.0,1.25,1.5,2.0 \\ & 0.4,0.6,0.8, \leq 1.0 * \\ & 1.86,2.79,3.72 \text { sq.m. } \\ & (20,30,40 \mathrm{sq.ft.}) \\ & 5.5 \text { and } 7.0 \end{aligned}$
* Maximim value considered corresponds to a boattail angle of ten degrees.	

The parametric nacelle friction drag analysis is based on the use of fully turbulent flat plate levels in conjunction with the expression for surface areas (for four nacelles):

$$
\begin{aligned}
\frac{S_{\text {WET }}}{S_{\text {ref }}} & =2 \frac{A_{c}}{S_{\text {ref }}} \frac{l}{d_{c}}\left[\frac{x_{A M A X}}{l}+\sqrt{\frac{A_{M A X}}{A_{c}}}+\left(1-\frac{x_{A M A X}}{l}\right) \sqrt{\frac{A_{n}}{A_{c}}}\right] \\
& \simeq 2 \frac{A_{c}}{S_{\text {ref }}} \frac{l}{d_{c}}\left[1+\sqrt{\frac{A_{M A X}}{A_{c}}}\right]
\end{aligned}
$$

The largest deviation between the exact and approximate express:on occurs for $X_{A M A X} / f$ approaching 0.4 and A_{n} / A_{C} approaching, 2.0 with the former resulting in 10 -percent greater area. It will be subsequently found that these differences are negligible in terms of the total installation drag for such cases. The parametric nacelle friction results are presented in reference 2.

Nacelle nomalized cross-sectional area parametric extremes of the present study are presented in figure 23. Maximm-to-capture area ratio of 1 to 2 at 40,60 , and 80 percent of the nacelle length are shown for nozzle-to-capture area rations of 1 and 2 . Wave drag results are discussed in detail in reference 2.

Briefly, the incremental nacelle wave drag is a strong function of the ratio of maximum-to-capture cross-sectional area, $\mathrm{A}_{\mathrm{MAX}} / \mathrm{A}_{\mathrm{C}}$, boattail area, and to a somewhat lesser extent relative axial position of maximum cross-sectional area, $X_{A M A X} / 1$. Nacelle shapes with negative wave drag exist because of favorable total system thickness interferences associated with the location of growing nacelle cross-sectional area in a region of decreasing wing thickness. The nacelle geometric variable behavior and sensitivity are unchanged by mach number, nacelle capture area, or nacelle fineness ratio. The incremental wave drag results are, in general, weak functions of the latter two variables for efficient installations.

Detailed nacelle wave drag variations with freestream mach number were defined for a range of levels covering high-positive, zero, and negative installation increments. These characteristics correspond to nacelles with large maximum cross-sectional area relative to the capture and nozzle area cylindrical, and near-truncated conical shapes, respectively. Figure 24 illus-

Figure 23. - N celle parametric cross-sectional area extremes.
trates the mach number difference for these extremes for the fineness ratio 5.5, medium-size nacelle. Examination of the results indicate that weak to moderate mach number variations are associated with small nacelle installation drags. Conversely, strong compressibility variations are exhibited for inefficient installations. The large benefit at transonic speeds is somewhat illusory as the thrust must be progressively penalized for nozzle contraction with decreasing mach numbers.

Drag table look-up computer program.- A table look-up computer program was developed (appendix) which yields the incremental wave and friction drags of nacelles as functions of nacelle geometry variables and airplane mach number. The drag increments are for the total vehicle relative to the vehicle with nacelles removed. The nacelle shape parameters used as inputs to the program are:
(1) $A_{C} \quad$ Inlet capture area
(2) A MAX Nacelle maximum cross-sectional area
(3) $A_{n} \quad$ Nozzle exit area (supersonic cruise position)
(4) $X_{\text {MAX }}$ Distance from inlet cowl leading edge to maximum cross-sectional area
(5) $\ell \quad$ Nacelle total length
(6) $S_{\text {REF }}$ Reference wing area

The output of this program includes for the nacelle of interest:
(1) The aforementioned input data
(2) Drag creefficients at mach 1.2 , mach 2.32 , and the input mach number for friction (CTF), wave (CDW), and total (CDO) drags
(3) The nondimensional parameters of position of maximum cross-sectional area ($\mathrm{X}_{\text {AMAX }} / \ell$), nozzle-to-capture area ration ($\mathrm{An} / \mathrm{Ac}$), maximm-to-capture area ration ($\mathrm{A}_{\mathrm{MAX}} / \mathrm{A}_{\mathrm{c}}$), and fineness ration ($\ell / \mathrm{d}_{\mathrm{c}}$)

In addition, incremental drag coefficients of the reference airplane nacelle (reference 3) are printed. A sample output is shown in table 2. It has been found that the table look-up results correlate best with more detailed analyses when the maximum cross-sectional area and its position are based on the area that occurs at the intersection of straight lines originating from the inlet

Figure 24. - Typical nacelle incremental wave drag variations with Mach number

$$
A_{c}=2.79 \mathrm{sq} \mathrm{~m} \quad(30 \mathrm{sq} \mathrm{ft}) \quad \ell / d_{c}=5.5
$$

which is tangent to the maximum slope of the forebody and from the nozzle which goes through the actual maximum area and whose slopes nearly match the slopes of the actual nacelle, as illustrated in figure 25. This method most closely approximates the parametric nacelle shape drag analysis because, in that study, nacelle shapes were defined by two straight-line segments. Using this method will result in nacelle drag increments at supersonic cruise within 0.5 drag count of the drag resulting from a detailed analysis.

Nacelle shape estimation.- Nacelle external shapes are determined by such installation items as engine accessories, compartment cooling, shrouds and insulation, airc:aft accessories, engine clearance, engine mount geometry, nacelle structure, boundary layer gutters, etc. The engine configurations supplied by the engine manufacturers usually include only the engine case outline and nozzle dimensions. A method has been established to determine the engine exterral envelope and aircraft structure and equipment space allowances. Guidelines are presented for determining the engine buildup envelope, engine cowl, nozzle fairing, and inlet and inlet cowl shapes. Those installation iters which have the largest effect on nacelle shape are then discussed. An exam \geqslant of the nacelle shape buildup is presented in figure 1 .

Engine buildap envelope: The procedure to establish the engine buildup envelope is:
(1) Establish fan and gas generator case outline.
(2) Add 5 cm (2 in.) constant to all surfaces of the preceding out1ine to provide for wiring, plumiting, etc.
(3) Add 2.5 cm (1 in .) constant additional to outline for variable compressor geometry mechanisms where applicable.
(4) Establish mechanical power extraction drive station and radial location for engine accessories drive and for aircraft accessories power takeoff. Depending on engine configuration and accessory design, accessories may be on the engine or in the pylon or wing. For engine accessories where encapsulation is required for cooling, provide $0.595 \mathrm{cum}(21 \mathrm{cu} \mathrm{ft})$ of volume proximate to engine accessories drive of item (4). Dimeinsions of the capsule may be varied for best packaging, but the capsule thickness at the gearbox should be 0.305 m (12 in.) minimum. For nonencapsulated engine accessories, provide 0.51 cu m (18 cu ft) of volume proximate to engine accessories drive of item (4). Arrangement of the accessories package may vary, but the minimum thickness at the gearbox must be 25 cm (10 in .). The dimensions of items (2) and (3) and (4) are additive and will usually establish the maximum radial dimensions of the gas generator section of the engine. All other engine and aircraft equipment in this portion of the nacelle should be contained within the volume of

Figure 25. - Simulation of nacelle shape.
revolution established by this line of radii. For minimum aircraft drag, locate aircraft accessories within pylon or adjacent wing. The engine nower takeoff pad and angle drive gearbox will be within the pylon and this will not impact the nacelle mold line.
(5) For engine fluid reservoirs, add 0.0566 cu m (2 cu ft on left or right side of engine. The radial dimension is 15.2 cm (6 in .) additive to dimension of iten (2) or (3).
(6) Equally space four compressor high-pressure bleed ports around compressor rear frame. The 12.7 cm (5 in.) diameter collector manifold (with flexible sections) will interconnect the ports and connect to the airframe duct in the pylon. The collector manifold diameter is additive to the allowar item (2). Low-pressure bleed ports may be provided in place of or in ad.s to the preceding. The same space allowance must be made for these. Or or more engine and inlet anti-icing air ducts will be routed from the blee w: fold forward to the engine front frame. These ducts will be 10.2 cm (4 ll .; diameter and will be additive to the allowance of items (2) or (3).
(7) Determine location of engine mounting stations by engine internal structure. The nacelle/wing relationship should be considered in the placement of the engine load-carrying frames and the mounting provisions on the frames for best weight effectiveness of the total system.
(8) Main mounts - transfer thrust, side, and vertical loads: Provide $15.2 \times 15.2 \times 12.7 \mathrm{~cm}(6 \times 6 \times 5 \mathrm{in}$.) radial space additive to items (2) or (3) at two positions on engine main mount frame, circumferentially spaced greater than or equal to 90 degrees.
(9) Stabilizer mount - transfess vertical loads: ! movide 10.2×10.2 $\times 20.3 \mathrm{~cm}$ ($4 \times 4 \times 8 \mathrm{in}$.) radial space, additive to items (2) and (3).
(10) Locate local protrusions of mi.scellancous engine equipment beyond envelope of items (2) and (3) to occur at random locations. These will be relatively small and will not exceed the maximum envelope noted in item (4).

Engine Cowl: The engine cowl shape may be determined by the following:
(1) The cowl inner skin mold line must maintain a minimum 2.5 cm (1 in .) clearance from all points on the engine buildup envelope developed in the preceding discussion.
(2) Cowl structural requirements will vary depending on the arrangement and location of engine mount points. Where mount points are in the proximity of the pylon structure, the cowl can be made nonstructural; i.e., sufficient to rithstand internal and external airloads and flight dynamic forces. This will require 5 cm (2 in .) of structure (constant) from the engine front face station to the cowl-to-nozzle fairing interface. Where mount points are widely separated fron the pylon structure a structural cowl must be provided to transfer the engine loads. Cowl thickness in the load paths will be 7 to 10 cm (3 to \therefore in.). In these areas the structure can intrude into unoccupied space in the volume of revolution developed in the preceding items (4) and (5), but 2.5 cm (1 in.) clearance must be maintained from adjacent engine buildup equipment. Areas of the cowl outside the load paths can be 5 cm (2 in .) thickness.

Nozzle fairing: The nozzle fa'ring wist fair smoothly into the engine cowl mold line developed in the preceding and fair smootnly to the base diameter dictated by the nozzle. The nozzle fairing leading edge step height from the engine case will vary depending upon the engine services (hydraulics, pneumatics, fuel, secondary airflow, etc) required to pass through it. This step height may require adjustments to the cowl outer mole line as it approaches the nozzle fairing interface.

Inlet and inlet cowl: Inlet and cowl shape can be determined by the following methol:
(1) Establish inlet length and captire area based on appropriate nacelle design methodology and external constraints.
(2) Fstablish inlet flow path area geometry.
(3) Define inlet cowl external lines. Fair from inlet lip to engine cowl. The faired mold line should provide minimm rat: of cross-sectional area increase.
(4) Establish requirement for the following airflo: 1 aths appropriate to inlet geometry and engine cycle used:
(a) Auxiliary air inlet
(b) Bypass air
(c) Engine secordary air
(d) Boundary layer bleed
(i) Centerbody or ramps
(ii) Cowl inner wall
(5) Determine cowl wall thickness by requirements of structural integrity plus space required fur flow paths and door mechanisms associated with requirements established in item (4). A minimum thickness of 15.2 cm (6 in .) is suggested for the cowl wall from the inlet throat aft to the engine front face. This nay be varied locally, but internal lines should be maintained. Thickness of the conl structure will vary from approximately $0.16 \mathrm{~cm}(1 / 16 \mathrm{in}$.) at the inlet lip to the throat thickness estahlished in the preceding.

Major nacelle shape elements: Three major elements establish the engine external envelope:
(1) The allowance over the total surface of the gas generator of space for engine variable geometry mechanism, plumbing, wiring, etc.
(2) The space required for the engine accessory gearbox and associated accessories. This package establishes the location and magnitude of the nacelle maximum cross-sectional area.
(5) The location of the main engine mounts on the engine as defined by the engine mamufacturer. Where the main mounts are placed at the compressor front or midf:ame, sufficient structure is available in the adjacent nacelle, $p \cdot 10 n$, and wing to carry the multidirectional loads, and a simple, nonstructural cowl may be used. Where the main mounts are placed at the turbine frame, it is necessary to consider the cowl as a structural cylinder with penalties to the nacelle :ize and weight.

All other elements of the engine installation fall within the envelope defined by the preceding.

Iistimation of Nacelle/Inlet Weight

Weight estimation of nacelle and inlet systems is a complex process and requires design detai: not nomally performed in the type of preliminary studies being cursidered here. The estimating procedure described in this section uses a simplified approach producing a first-order-type weight estimate keyed to gross definitions of the nacelle/inlet package. The procedure defined will provide the capability of maintaining consistency between nacelle weight estimates while making comparative analyses.

Two dimensional inlets.- To estimate the weights of engine nacelles with two-dimensional (2-D) inlets, the nacelle package is divided into the following components:
(1) Engine cowl
(2) Inlet cowl
(3) Ramps
(4) Air induction special features
(a) Bypass system
(b) Auxiliary inlet
(c) Secondary air provisions
(d) Inlet controls
(5) Engine mounts

The methods used to estimate the weights of the nacelle components are primarily based on a prior Rockwell inlet study for the Boeing SST. This study was conducted for Boeing and consisted of designing a 2-D inlet as a contender to be compared to Boeing's axisymmetric inlet design in the inlet selection for the SST. Unit weights used to estinate weights of the nacelle components were derived from data developed for this study.

Engine cowl: The engine cowl is defined as the total nacelle structure aft of the engine front face, including all structure that supports and surrounds the ergine. The engine cowl weight is estımated at $34.2 \mathrm{~kg} / \mathrm{sq} \mathrm{m}$ ($7.0 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$) of nacelle external wetted area.

Inlet cowl: The inlet cowl is defined as the total nacelle/inlet structure forward of the engine front face, exclusive of the variable-geometry ramps and special air induction features. The inlet cowl weight is estimated at $24.4 \mathrm{~kg} /$ $\mathrm{sq} \mathrm{m}(5.0 \mathrm{lb} / \mathrm{sq} \mathrm{ft})$ of wetted area.

Ramps: The ramps are defined to be the movable parels, including an actuation system, used to vary the inlet geonetry in a 2-D variable-geometry inlet. Weight of the variable-geometry ramps is estimated at $48.8 \mathrm{~kg} / \mathrm{sq} \mathrm{m} \mathrm{(} 10.0 \mathrm{lb}$) sq ft) of movable ranp planform area.

Air induction special features: The bypass system consists of inlet air bypass doors, including actuation provisions. The system weight is estimated at $39.1 \mathrm{~kg} / \mathrm{sq} \mathrm{m} \mathrm{(} 8.0 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$) of door area.

The auxiliary inlet is defined as the auxiliary air inlet doors and inlet actuation system. The weight of this system is estimated at $29.3 \mathrm{~kg} / \mathrm{sq} \mathrm{m}$ (6.0 lbjsq ft) of door area.

The secondary air provisions provide inlet air to the engine compartment for engine compartment cooling. The weights of these provisions are estimated with the following equation:

$$
n T=22.7\left(\frac{n_{a}}{287}\right)^{1 / 2} \mathrm{~kg} \text { or } n T=50\left(\frac{n_{\mathrm{a}}}{633}\right)^{1 / 2} \mathrm{lb}
$$

where W_{a} is engine design airflon, $\mathrm{kg} / \mathrm{sec}$ ($\mathrm{lb} / \mathrm{sec}$).
The inlet controls are defined as the system provided to monitor the inlet conditions and transmit position signals to the movable inle: systems. The weight of this system is estimated at $22.7 \mathrm{~kg}(50.0 \mathrm{lb})$ pei inlet.

Fingine mounts: The engine mounts are the fittings used to support the engine in the nacelle. The weights of these fittings are estimated at 1.5 percent of the engine weight.
.xisymmetric inlets.- To estimate the weights of engine nacelles with axisymmetio inlets, the nacelle package is divided into the following components; this breakdown is similar to the one described for a 2-D inlet:

1) lingine cowl
(2) Inlet cowl
(3) Spike
(4) Engine mounts

The procedures for weight estimation of the engine cowl and mounts are the same as those described for the 2-D inlet/nacelle. The methodelogies to estimate the weights of the inlet cowl and spike were obtained from the Air Force Technical Report SEG-TR-67-1, Preliminary Design Methodology for Air Induction Systems.

Inlet Cowl: The inlet cowl is defined as the total nacelle/inlet structure forward of the engine front face, exclusive of the inlet spike and its systems. The inlet cowl weight is determined by the following statistical equation.

$$
\begin{aligned}
W T= & 0.159(N)\left[\left(A_{c}\right)^{0.5} \mathrm{~L}\left(\mathrm{P}_{2}\right)\right]^{0.731} \mathrm{~kg} \text { or } \\
& 7.435(\mathrm{~N})\left[\left(\mathrm{A}_{\mathrm{c}}\right)^{0.5} \mathrm{~L}\left(\mathrm{P}_{2}\right)\right]^{0.731} \mathrm{lb}
\end{aligned}
$$

where:

$$
\begin{aligned}
N= & \text { number of inlets } \\
A_{c}= & \text { capture acea per inlet }-s q m(s q) f t) \\
L= & \text { subsonic duct length per inlet }-m(f t) \\
P_{2}= & \text { maximum steady-state static pressure at engine face at } \\
& \text { supersonic cruise mach }-\mathrm{kg} / \mathrm{sq} \mathrm{~m}(p s i a)
\end{aligned}
$$

Spike: The spike is defined to be the center body structure, including its systems and actuation. Weight of the spike is estimated with the following statistical equation;

$$
W T=K(N) A_{c}
$$

where:

$$
\begin{aligned}
& \mathrm{K}=252.9 \mathrm{~kg} / \mathrm{sq} \mathrm{~m}(51.8 \mathrm{lb} / \mathrm{sq} \mathrm{ft}) \\
& \mathrm{N}=\text { number of inlets } \\
& \mathrm{A}_{\mathrm{C}}=\text { capture area per inlet }=\mathrm{sq} \mathrm{~m}(\mathrm{sq} \mathrm{ft})
\end{aligned}
$$

Estimation of Airplane Takeoff Gross Weight

Weight sensitivity analysis. - In considering possible trades of reduced drag through design changes in the engine envelope for some penalty in engine weight and performance, it is necessary to have visibility of the net impact of all these effects on the total airplane system. To cvaluate these effects, the sensitivities of the airplane takeoff gross weight to variations of propulsion system parameters were determined. These sensitivity data were obtained by conducting design trades on the baseline airplane for variations of the following items:
(1) Incremental nacelle drag
(2) Propulsion system weight
(3) Engine specific fuel consumption
(4) Engine sizing condition thrust

In each case, the parameter of interest was varied independently and the airplane resized to the ciesign mission range of 7408 km (4000 nmi) while maintaining thrust-to-weight and wingloading values equal to those for the baseline vehicle.

Incremental nacelle drag: Several variations of nacelle drag were investigated. These were chosen as representative of the combined wave and friction drag variations as found in the nacelle shape analyis to allow use of the trade data for any nacelle geometry analyzed in this program.

The results of this trade are shown in figure 26 , which shows relative takeoff gross weight (TUGW) versus nacelle drag at mach 2.32 for several variations of the drag increment at mach 1.2.

Propulsion system weight trades: Airplane TOGW was calculated for several propulsion system weight increments. Incremental propulsion weight, in this case, is defined as a percent of the sum of the engine, nacelle, and miscellaneous propilsion systems (198 kg , (445 lb) per nacelle) weights. The results of this trade are shown in figure 27 , which plots relative TOGW versus propulsion weight increment.

Engine specific fuel consumption trades: Four separate trades were performed with SFC increments applied independently to the following mission segments:
(1) Maximum power climb legs only
(2) Supersonic cruise legs only
(3) Subsonic cruise and loiter legs only
(4) The entire mission

The results of this trade are presented in figure 27 as relative TOGW versus percent change in SFC.

Figure 26. - Nacelle drag sensitivity trade.

Figure 27. - Propulsion weight and SFC. sensitivity trades.

Engine sizing thrust: Figure 28 presents relative TOGW versus percent change in thrust at the engine sizing condition. In this trade, it is assumed that the thrust available at the engine sizing condition varies without change in propulsion characteristics at other flight conditions. In ine current study, all engines were sized at takeoff.

Application of sensitivities. - To demonstrate the method of applying the vehicle sensitivities, an exanple using the VCE 112C engine is in the following paragraphs. The VCE 112 C is discussed in detail later under 'Validation of the Approximate Method." Additional examples are also given therein. The baseline airplane characteristics and sensitivities were originally computed using a friction drag that was approximately one count too high and an ambient temperature increment that was incorrect. Thus the baseline airplane should have been somewhat lighter. The baseline airplane was recomputed and resulted in a takeoff gross weight of 316783 kg (698375 lb), a propulsion system weight (four nacelles) of 30882 kg (68081 lb), and drag coefficients of 0.0040 and 0.0030 at mach 1.2 and 2.32, respectively. Figure 26 has been revised relative to that shown in reference ? for this reason.

A nacelle drawing (figure 29) was made with engine accessories located on the engine without encapsulation for cooling. Weight for the nacelle was estimated to be 8750 kg (19298 lb), which includes 198 kg (445 lb) for miscellaneous propulsion systems. The revised baseline nacelle weighed $7880 \mathrm{~kg}(17020 \mathrm{lb})$. Thus, the VCE 112C nacelle is 12 percent heavier than the baseline. From figure 27 , the relative TOGW ratio, R_{WT}, for this change i: 1.059 .

In order to maintain the takeoff distance, a new engine must have the same effective thrust-to-weight ratio between 0.0 and 0.3 mach (approximate liftoff speed) as the baseline. The effective thrust occurs at approximately mach 0.25 . Because the VCE 112C has a significantly different thrust lapse rate with mach number than the baseline (as shown in figure 30) the effective thrust is 17 percent lower than the baseline. Extrapolating figure 28 to a thrust increment of 17 percent yields a relative ToGW ratio due to takeoff thrust, $\mathrm{R}_{\mathrm{FNE}}$, of 1.10 .

Figures 31 and 32 show installed performance of the 100 -percent size VCE 112C and VSCE 502B propulsion systems. Because the Breguet range factor, $M \times \mathrm{L} / \mathrm{D} / \mathrm{SFC}$, maximizes near minimum SFC, the airplane will tend to fly at or near minimum SFC; cruise altitude will be adjusted to achieve this. Therefore, the SFC increment may be taken at the minimum of each engine. This assumption is slightly optimistic because the lift-drag ratio will also change and will affect the operating point. Thus, the VCE has about 6.3percent higher SFC at supersonic cruise and 4.6 percent lower SFC at subsonic cruise than the baseline. From figure 27, this results in a relative TOGW due to a change in supersonic cruise $\mathrm{SFC}, \mathrm{R}_{\mathrm{SFC}}$, of 1.071 and due to a change

$$
\begin{array}{lll}
\mathrm{T} / \mathrm{W} & 3.16 \mathrm{n} . / \mathrm{kg} . & (0.323 \mathrm{lb} . / \mathrm{lb} .) \\
\mathrm{W} / \mathrm{S} & 354 . \mathrm{kg} . / \mathrm{sq} . \mathrm{m} . & (72.5 \mathrm{lb} . / \mathrm{sq} . \mathrm{ft} .) \\
\text { Range } & 7408 \mathrm{~km} . & (4000 \mathrm{n} . \mathrm{mi} .)
\end{array}
$$

Sizing point thrust increment ~ percent

Figure 28. - Sizing point thrust sensitivity trade.

 drive

Figure 29.- VCE 112C nacelle.

Figure 30.- VSCE 502B and VCE 112C takeoff thrust.

Figure 31 - Installed performance comparison of baseline and VCE 112C at Mach $2,32,19800 \mathrm{~m}$ (65000 ft).

$F_{\text {ne }}$ - net propulsive effort - 1000 daN (1000 lb)
Figure 32.- Bascline and VCl: 112C performance, Mach $0.9,13,700 \mathrm{~m}$ (45 000 ft).
in subsonic cruise SFC of $\mathbf{0 . 9 9 4}$.
The nacelle shape of the VCE 112C is similar to that of the baseline but has a smaller nozzle area. The drags used in the mission analysis computer progran are indicated in table 17. From figure 26, the relative TOGW ratio due to change in drag, $\mathrm{R}_{\mathrm{C}_{\mathrm{D}}}$, is 1.021 .

TABLE 17. - COMPARISON OF BASELINE AND VCE 112C NACELLE DRAG INCREMENTS

Mission analysis computer program values		
	ΔC_{D}, mach 1.2	$\angle C_{\mathrm{D}}$, mach 2.32
VSCE 502B (baseline)	0.00040	0.30030
VSCE 112C	0.00085	0.00048

The ratios $R_{K T}, R_{F N E}, R_{S F C}$, and $R_{C_{D}}$ are then multiplied together to obtain the total relative TOG: ratio, $\mathrm{R}_{\text {TOTAL: }}$

The new TOG: is obtained by multiplying $\mathrm{R}_{\text {TOTAL }}$ ty the baseline TOGN of 516783 kg (698375 lb). Thus, it is estimated that a vehicle meeting the perfurmance requirements using the VCE 112C engine would weigh 401092 kg (884 258 lt).

Validation of the Appıoximate Method

Standard preliminary wesign procedures were applied in the installation of four candidate engines in the baseline supersonic transport aiplane. Drag and weight estimates were made utilizing conventional proced:ures. The airplanss were then sized to the design mission utilizing an autcmated reiterative process. The results of this task provide a more exact evaluation of the candidate engines thar. is obtainable with the more approximate methods resulting from the earlier task, and thus serve as a reference for evaluation of the applicability of the approximate methods.

Propulsion.- Four engines were selected so that the sensitivity method couid be validated for a ioide range of engine types:
(1) PNA VSCE 502B duct-burning turbofan
(2) PWA VCE 112 C variable-cycle engine
(3) GE GE21/J10 B1 low bypass turbojet
(4) GE GE21/J11 B3 double-bypass variable-cycle engine

Characteristics of these engines are sumarized in table 18. The engine and installations are discussed in the following paragraphs. While there may be different weight and performance margins and noise and technology assuptions for the four engines, the data were used as supplied by the engine manufacturers without modification for these differences. Hence, results discussed later should not be interpreted as representative of the final SCAR engine studies. (Engine studies are currently still under way.)

TABLE i8. - EVGINE SIAPMRY

VSCE 502B: Refined performance data (dated January 1976) for the VSCE 502B engine here used to calculate revised installed propulsion perfonnance data. All performance installation effects used were the same as for the baseline data. The noise calculation procedure was identical to that for the baseline. Installed perfonmance changes were very small relative to the baseline. Performance data at important flight conditions are shown in figures 30, 33, and 34.

The nacelle was revised slightly compared to the baseline, to include engine accessories (unencapsulated) and more realistic structure allowances and boundary laver diverter, as shown in figure 35. This engine configuration lent itself well to establishing an efficient nacelle shape. A well-defined waist at the compressor m_{i} ifframe provided space for the required accessory geartox volume without forling the nacelle maximum diamet:- much beyond the nozzle diameter. Location of the engine main monnt at the enginc ront frame enabled transfer of the mount loads directly into the pylon/wing stewcture.

ICE: 112C: Installed performance data for the ICE 112 C ($408 \mathrm{~kg} / \mathrm{sec}$ ($900 \mathrm{lb} /$ sec) bere calculated in the same manner as the baseline. Recause the supersonic cruise airflow is the same as that of the VSCI 502B, the same capture area was used. The only significant difference in procedures has that only a 4 dB reduction in noise duc to the coannular effect was used (instead of 8 dB) because the exhaust characteristics and nozale configuration of the VCE 1 ' 2 C are such that an 8 db reduction could not be achieved. This results in some thrust reduction at mach 0.5 takeoff power (figure 30) while the airplane is on the ground in order to stay within FAR 50 noise requirements. Thrust is reduced even further at the takeoff noise measurement point. Figures 33 and 34 compare installed performance of the VSCI 502 F and LCF: 1'2C.

The installation of this ens: nc into a nacelle (figure 29) is quite similar to that of the lSCl: 502B. The only significant changes are a longer engine and a slishtly reduced noz=Ic diameter.

GF21/310 R1: Installed performance of the (a:21/J10 Bl was calculated in a manner similar to the baseline except that a $2-\mathrm{D}$ mixed compression inlet with a capture area of 2.0^{-}sq m (5208 sq in. 1 was used. The (F : $21 / \mathrm{Jlo}$ B: has appioximately 16 -percent lower supersonic cruise airflow relative to takeoff airflow than does the ISCEF 502R. If an axisumetric inlet had been used and sized for : personic cruise, the static takcoff inlet recovery would have been 4 nercent wwer than the $\backslash S C E 502$ R. The $2-0$ inlet has more throat area variation capability and larger auxiliary doors than the axismmetric inlet. Thus, the takeoff recovery is actually slightly higher than that for the LSCI: SOR/axisumetric inlet. Performance data at important flight conlitions are presented in figures 36 through 38 . The noise calculat ion procelure was identical to that for the baseline. In exhaust noist reduction of 8 dR at all flight conditions was used lue to the coamnular noise reduction effect.

Figure 33.- VCE 502B and VCl: 112B prormance, Mach $0.9,13700 \mathrm{~m}(45000 \mathrm{ft})$.

Figure 34. - VSCl: 502 k and $V(1: 1120$ installad perfomance at Mach 2.32, 19 800 m (65 000 ft) .

Dimensions in meters (inches)

Figure 35. - VSCE 502B nacelle.

Figure 36.- GEL: J10 Bi and GE21'J11 B3 takenff thrist.

Figure 37.- G:21/J10 B1 and Gi:21/.111 B3 performance, Mach $0.9,13,700 \mathrm{in}(45000 \mathrm{ft}$).

Figure 38. - GE21/J10 B1 and GE21/J11 B3 installed performance at Mach 2.32,

The near-cylindrical configuration of this engine penalized the nacelle shape when the required volume for the encapsulated engine accessories package was added (figure 39). The package was shaped to minimize the added cross section. Location of the main mount at the turbine frame forced the engine cowl to be designed as a structural element and added more to the required cross section.

GE21/J11 BJ: Relative to the GE2l/J10 Bl, the GE21/Jll B3 has even higher takcoff airflow and the same supersonic cruiss airflow, thus creating a greater takeoff airflow/inlet matching problem. Therefore, the $2-\mathrm{D}$ inlet was used. Because the engine operates without augmentation at takeoff and the exhaust velocities are low, the sideline noise is quite low while the airplane is on the ground (approximately 6 dB below FAR 36 requirements). However, this significantly reduces takeoff thrust figure 36) and increases engine size to meet takeoff distance requirements. Some thrust cutback is still required at the takeoff noise measurement point. Installed performance is compared to the $\mathrm{GI}: 2 \mathrm{l} / \mathrm{J} 10 \mathrm{Bl}$ in figures 37 and 38.

This engine is similar in configuration to the (il21/.J10 Bl except that the main engine mount was located at the compressor midirame. This enabled the cowl to be made nonstructural and reduced somethat the nacelle maximum cross section. Al! other details of the engine and inlet lines development for the two engines are identical, as shown in figure 40.

Mass properties. - Wieight estimates were made for the four candidate engine installations. The engine weights, including nozzles and thrust reversers, were furnished by the engine manufacturers. Weight increments for residual fluids and miscellancous engine/airframe interfacing provisions were added to the manufacturer's yuoted weights to obtain the installed engine weight. The weight summaries of the engines are presented in tables 19 and 20. The nacelle/inlet weights for these engine installations were calculated from their respective nacelle lines development layout drawings figures 29, 35, 39, and 40. Summaries of the nacelle/inlet weights are shown in tables 21 and 22. The difference in nacelle weights between the PWA VSCl: 502 B , and VCE 112 C engine installations is primarily due to the longer engine cowl length of the VCE 112C installation. For a given inlet capture area, an axisymmetric inlet would weigh less than a $2-\mathrm{D}$ inlet. However, the 2-D inlet/nacelles for the Gif G1:21/.J10 Bl and ($1: 21 / \mathrm{J} 11 \mathrm{~B} 5$ are of similar weight as the axisymietric PWA engine nacelles. This results from the smaller inlet capture areas and engine dimensions of the il engires.
lerodynamics.- Normalized cross-sectional area shapes o! the four candidate nacelles of this study are presented in figures 41 and 42 . The estimated nacelle incremental skin friction, wave drag, and total drag characteristics

Dimensions in meters (inches)

Figure 39.- GE21/J10 Bl iacelle.

Dimensions in meters (in aes)

TABLE 19.- ENGINE WEIGHTS, INTERNATIONAL UNITS

Engines	nilograms/Engine			
	Pratt \& Whitney		General Electric	
	VSCE 502B	VCE 112C	GE21/J10 Bl	GE21/J11 B3
Bare engine (including nozzle \& thrust reverser)	6077	6191	7280	5964
Residual fluids	23	23	23	23
Miscellaneous provisions	23	23	23	23
Engine as installed	6123	6237	7326	6010

TABLE 20.- ENGINE WEIGHTS, ENGLISH UNITS

Engines	Pounds/engine			
	Pratt \& Whitney		General Electric	
	vSCE 502B	VCE 112C	GE21/J10 B1	GE21/J11 B3
Bare engine (including nozzle \& thrust reverser)	13400	13650	16050	13150
Residual fluids	50	50	50	50
Miscellaneous provisions	50	50	50	50
Engine as installed	13500	13750	16150	13250

table 21. - nacelle/ inlet weights, intervational units

Nacelle/inlet	Kilograms/nacelle			
	Axisymmetric		Two-dime:sional	
	USCE 502B	VCE 1120	G1:21/J10 B1	GE21/J11 B3
Engine cowl	816	1124	796	760
Inlet cowl	370	365	566	598
Spike	740	733		
Ramps			517	517
*ir induction featires				
Bypass			49	49
Auxiliary inlet			30	30
Secondary air provisions Inlet controls			45	45
Engine mounts	92	95	110	90
Total nacelle/inlet	2018	2515	$204{ }^{\text {\% }}$	2113
*Included with spike weight in axisymmetric inlets.				

table: 22. - hacellez/inlet weights, evglish units

Nacelle/inlet	Pounds/nacelle			
	Axisymmetric		Two-dimensional	
	VSCi 502 B	LCE 112C	GE21/J10 B1	GE21/J11 B3
Ingine cowl	1798	2477	1557	1673
Inlet cowl	816	804	1247	1319
Spike	16.3	1616		
Ramp:			1140	1140
*hir induction features Bypass			107	107
Auxiliary inlet			67	67
Secondary air provisions			53	53
Inlet controls:			100	100
Ingine mounts	205	200	242	199
Total nacelle/inlet	4449	5105	4513	4658
*Included with spike weigh	in axisym	tric inle		

Revised VSCE 502B

Capture area, sq mis (sq ft)	2.93 (31.5)
Length, (ft)	10.13 (33.25)
Surface area, sq $=$ ($\mathbf{s q} \mathbf{f t}$)	67.26 (724.0)

VCE 112C

Figure 41. - VSCE 502B and VCE 112C nacelle cross-sectional area variation.

Figure 42.- GE 21/J10 B1 and GE 21/J11 B3 nacelle cross-sectional area variation.
for all of the nacelles are presented in table 23 . Included in the table are the incremental drags obtained from the conputer table look-up program of the parametric drag analysis results. The differences between the estimated drags and the parametric results are attributed to the following considerations:
(1) The parametric study, which is the basis of data for the table look-up program, was made with a resized wing with the nacelles relocated further inboard and forward in accordance with the ground rules of the study.
(2) The current nacelles deviate from a linear radius connection of the inlet face, maximum area, and nozzle stations.
(3) In some cases, the ratio of the distance to the maximum area to the total length ($X_{A M A X} / \ell$) falls outside of the parametric study envelope, thereby requiring extrapolation.
(4) Drag coefficients for intermediate mach numbers are obtained by using a cubic curve fit based on the total drag (CDO) increments at mach 1.2 and 2.32. However, since wave drag does not follow such a simplified solution, interpolated or extrapolated drags will deviate from an estimated value by varying amounts. In the case of the reference nacelle, the deviation was -0.00017 at mach 1.4.

Performance and sizing.- Performance calculated for the aircraft having the four selected propulsion systems installed includes all items as described earlier under "Baseline Airplane Definition." In addition, performance has been calculated for an "economic" mission as described in the following paragraphs. As on the design mission, the economic mission is calculated for a standard-plus- $8^{\circ} \mathrm{C}\left(14.4^{6} \mathrm{~F}\right)$ day.

A profile of the economic mission is shown in figure 43. This mission consists mainly of a mach 2.32 cruise as in the design mission; however, it is preceded by a subsonic climb and cruise totaling 741 km (400 nmi). Fuel reserves are calculated just as in the design mission for an alternate airport located 463 kn (250 nmi) beyond the destination airport. The economic mission is an off-design mission in that the airplane, as sized to 7408 km (4000 nmi) range on the design mission, carries a reduced payload equal to 55 percent of the design payload and fuel is then off-loaded to yield a total economic mission range of 4630 km (2500 nmi) plus fuel reserves.

The economic mission consists of the following legs:
(1) Warmup and takeoff - 10 minutes at idle power plus 1 minute at maximum power

TABLE 23. - DRAG COMPARISON

NASA LARC CR132374 Reference Configuration						
	Estimated			Parametric		
H	$\Delta C_{1 p}$	ΔC_{1}	ΔC_{0}	$\Delta C_{T_{p}}$	ΔC_{W}	ΔC_{0}
1.2	0.00072	-0.00041	0.00031		-0.00034	0.00031
1.4	0.06070	-0.0001:	0.00052			0:00035
1.8	0.0006.5	-10.00022	0.00045			0.00040
2.32	0.010060	-0.00018	0.00042	0.00057	-0.00014	0.00043
2.7	0.00050	-0.00015	0.00041			0.00044
Busepoint Vsas 502B						
	Estimated			Parametric		
M	$\Delta C_{b_{p}}$	ΔC_{n}	Δc_{0}	$\Delta C_{u_{p}}$	Δc_{n}	$\Delta c_{0_{0}}$
1.2	0.04000	-11.06000	0.00055	0.00055	0.00002	0.00057
1.4	0.00058	0.00011	0.000609			
1.8	0.00054	-10.00004	0.0 moso			0.01046
2.52	0.00050	-0.00008	0.00042	0.00049	-0.00007	0.00042
2.7	0.00047	-0.090099	0.00038			
Raseline VSCE: 502B						
	Estimated			Parametric		
M	$\Delta c_{u_{1}}$	$\Delta c_{D_{w}}$	$\Delta C_{D_{0}}$	$\Delta C_{D_{p}}$	$\Delta C_{D_{W}}$	$\Delta C_{D_{0}}$
1.2	0.00058	-0.000009	0.00049	0.00053	0.00002	0.00605
1.4	0.00050	0.0690 .5	0.00059			
:. 8	0.00052	-0.00011	0.00041			0.00045
$\therefore 32$	0.00049	-0.09012	0.00037	0.00047	-0.09005	0.00042
2.7	0.00045	-0.00011	0.000 .34			
Phe lsal 502 B (Reviscd)						
	listimoted			Parametric		
M	$\Delta C^{\mathrm{V}_{1}}$	$\Delta C_{I_{H}}$	ΔC_{0}	$\Delta C_{n_{1}}$	ΔC_{w}	$\Delta c_{D_{0}}$
1.2	0.00055	0.00014	0.00069	0.00052	0.00021	0.00073
1.4	0.00055	0.00032	0.00085			
1.8	0.00050	0.00011	0.00061			0.00053
2.32	0.000046	0.00000	0.00046	0.00047	-0.00001	0.00046
2.7	0.00045	-0.00004	0.00039			

TABLE 23. - Concluied

CE $21 / \mathrm{J} 10 \mathrm{BL}$

Estimated				Parametric		
M	$\Delta c_{n_{p}}$	ΔC_{w}	$\Delta C_{D_{0}}$	$\Delta C_{\mathbf{D}_{\mathbf{P}}}$	Ac_{D}	$\Delta C_{D_{0}}$
1.2	0.00045	0.00161	0.00206	0.00049	0.00153	0.00202
1.4	0.00044	0.00164	0.00208			
1.8	0.00041	0.00097	0.00138			0.00123
2.32	0.00038	0.00060	0.00098	0.00044	0.00051	0.00095
2.7	0.00035	0.00043	0.00078			
C: 21/111 B3						
Estimated				Parametric		
M	$\Delta C_{D_{p}}$	$\Delta C_{D_{W}}$	$\Delta C_{D_{0}}$	$\Delta c_{0_{p}}$	$\Delta C_{D_{w}}$	$\Delta C_{D_{0}}$
1.2	0.00048	0.00235	0.00283	0.00049	0.00227	0.00276
1.4	0.00047	0.00223	0.00270			
1.8	0.00044	0.00140	0.00184			0.00157
2.32	0.00040	0.00083	0.00123	0.00044	0.00071	0.00115
2.7	0.00038	0.00061	0.00099			
PGW Va: 112C						
	Estimated			Parametric		
M	$\Delta C_{D_{p}}$	Δc_{n}	$\Delta C_{D_{0}}$	$\Delta c_{p_{p}}$	$\Delta C_{D_{W}}$	$\Delta C_{D_{0}}$
1.2	0.00056	0.00028	0.00088	0.00057	0.00032	0.00089
1.4	0.00058	0.00045	0.00101			
1.8	0.00054	0.00017	0.00071			0.00063
2.32	0.00050	0.00004	0.00054	0.00050	0.00005	0.00055
2.7	0.00046	0.00000	0.00046			

Figure 43. . Economic mission profile.
(2) Climb - Maximum power climb to cruise altitude and mach number
(3) Cruise - Subsonic cruise at mach number and altitude for best range
(4) Climb - Maximum power climb and accelerate to cruise altitude and mach number
(5) Cruise - Supersonic cruise at mach 2.32 at altitude for best cruise range
(0) Descend - Descend and decelerate to 457 m (1500 feet) altitude using idle power
(7) Approach and land - Descend to sea level using idle power
(8) Taxi - 5 minutes at idle power
(9) Reserve - Fuel reserves for an alternate airport located 463 km (250 nmi) from destination airport

For each of the four selected propulsion systems, a "basepoint" airplane was developed. This basepoint is similar to the basepoint described earlier, in that it is the NASA reference airplane but with the selected propulsion system installed. This airplane is then scaled using the Vehicle Sizing and Performance Evaluation Program (VSPEP) to yield a baseline airplane. Again, this baseline is similar to the baseline described earlier, in that it is the minimum gross weight airplane that meets all specified performance requirements.

To gain some insight as to what could be expected for each of the four resized airplanes, an engine scale trade was performed on each. The results of these trades are presented in figures 44 and 45 which show design mission range and balanced field length versus engine airflow at sea level static conditions. The gross wing area was maintained constant at $1022 \mathrm{sq} \mathrm{m}(10096 \mathrm{sq} \mathrm{ft})$ and airplane gross weight was maintained at that for the basepoint with the first selected propulsion system installed or 377632 kg (744350 lb). Results of these trades indicate that the airplanes having the GE21 engines could be expected to result in a higher gross weight to meet the design requirements. In addition the VCE 112C and the GE21/J11 engined airplanes can be expected to pay an engine size penalty to meet the balanced field length requirement thereby increasing the gross weight of those vehicles.

In the case of the first selected propulsion system, which uses a revised VSCE 502B engine installation, sizing was performed maintaining takeoff thrust-to-weight (based on sea-level static installed thrust) at $3.13 \mathrm{n} / \mathrm{kg}(0.32 \mathrm{lb} / \mathrm{lb})$. Wingloading was then varied and the VSPEP program allowed to search for the

Figure 44. - Design mission range versus engine size.

Sea level static airflow - $\mathrm{kg} / \mathrm{sec}(\mathrm{lb} / \mathrm{sec}$)

Figure 45. - Balanced field length versus engine size.
 were then cross-plotted to obtain the wingloading for a minimm gross weight baseline airplane. Plots of gross weight and balanced field length versus wingloading (based on gross wing area) for a family of airplanes having a design range of $7408 \mathrm{~km}(4000 \mathrm{n}$ ni) are shown in figure 46. All other performance requirements were easily met.

For the last three selected propulsion systemis, it was originally intended to maintain thrust-to-weight at $3.13 \mathrm{n} / \mathrm{kg}(0.32 \mathrm{lb} / \mathrm{lb})$ and wingloading at that value obtained for the VSCE: 502 B baseline, which is $345 \mathrm{~kg} / \mathrm{sq} \mathrm{m}(70.7 \mathrm{lb} / \mathrm{sq} \mathrm{ft})$, and simply scale gross weight to yield the required design range. However, due to considerable differcnces in thrust lapse rate at takeoff for each engine, this method would not suffice to maintain balarced field length near the required distance. For this reason, the thrust-tu-weight was varied in each of the last three cases while maintaining wingloading constant at $345 \mathrm{~kg} / \mathrm{sq} \mathrm{m}$. Plots of gross weight and balanced field length versus thrust-to-weight ratio are presented in figures 47 through 49 for families of airplanes having a design mission range of 7408 km (4000 nmi).

Airplane characteristics for both the basepoint and the resized baseline vehicles are presented in tables 24 through 27 for each of the four selected propulsion systems. Design mission summaries are shown for each baseline airplane in tables 28 through 35.

Performance for each baseline airplane was also calculated for the economic mission. Payload for this mission was 55 percent of that carried on the design mission or 15256 kg (33565 lb). Fuel was then off-loaded from the baseline to yield 4030 km (2500 nmi .) on the economic mission. Characteristics of each of the four baseline airplanes on the economic mission are shown in tables 36 through 39.

The results of the econonic mission were used to compute direct operating cost (DOC) and return on invesiment (ROI) for the VSCE 502E and the VCL 112C. The DOC and ROI calculations were supplied by Pratt and Whitney Aircraft and are presented in table 40. Input to the DOC and ROI calculations included the following airplane and mission data supplied by Rockwell: airframe weight, engine weight, mission fuel, TOGW, block time, and engine design thrust. These data are included for each of the four airplanes in tables 36 through 39. Economic ...ission summaries for each baseline airclane are presented in tables 41 through 48.

Sensitivity method verification.- To verify that the sensitivity method of detemining aircraft takeoff gross weights is valid for preliminary studies, takcoff gross weights were estimated using the sensitivities for the four engines. These results were then compared with the results of the detailed

Figure 46.- Sizing with VSCE 502B engines.

Figure 47.- Sizing with VCE 112 C engines.

Figure 48 .- Sizing with GE21/JI0 B1 engines.

Figure 49.- Sizing with GE21/J11 B3 engines.
table 24. - airplane characteristics with refined vsce 502B engines

	Basepoint		Baseline	
Engine airflow, $\mathrm{kg} / \mathrm{sec}(\mathrm{lb} / \mathrm{sec}$)	408	(900)	387	(854)
Thrust-to-weight, n / kg (lb/lb)	3.13	(0.3199)	3.13	(0.320)
Reference wing area, sq m (sq ft)	926	(9969)	841	(9049)
Gross wing area sq m (sq ft)	1022	(10996)	927	(9981)
Wing loading (gross area), $\mathrm{kg} / \mathrm{sq} \mathrm{m} \mathrm{(} \mathrm{~m} / \mathrm{i} \mathbf{i q} \mathrm{ft}$)	331	(67.69)	345	(70.71)
TOGW, kg (lb)	337632	(744 350)	320141	(705 790)
Fuel weight, kg (lb)	158683	(349 835)	148772	(327 986)
Max wing fuel, kg (lb)	208222	(459 050)	180061	(396 966)
Design range, km (nmi)	7610	(4109)	7410	(4001)
Eng out range, kn (nmi)	6553	(3538)	6384	(3447)
Normal T.O. dist m (ft)	2635	(8645)	2741	(8991)
Bal field length, m (ft)	3075	(10 092)	3197	(10 489)
Thrust-to-drag $2.32 \mathrm{~m} / 18300 \mathrm{~m}(60000 \mathrm{ft})$		1.921		1.899
Thrust-to-drag $1.2 \mathrm{~m} / \mathrm{climb}$		1.937		1.930
Initial cruise L/D		9.626		9.566
```Initial cruise SFC (installed) kg/hr/daN (lb/hr/lb)```	1.391	( 1.364)	1.389	( 1.362)

TABLE 25. - AIRPLANI GLARACITRISTICS NITH VCE 112C ENGINES

	Basepoint		Baseline	
Engine airflow, $\mathrm{kg} / \mathrm{sec}(1 \mathrm{~b} / \mathrm{sec}$ )	408	( 900)	600	( 1323)
Thrust-to-weight, $\mathrm{N} / \mathrm{kg}$ ( $1 \mathrm{~b} / \mathrm{lb}$ )	2.94	( . 3004)	3.64	( .372)
Reference wing area, sq m (sq ft)	926	( 9969)	1057	$\left(\begin{array}{ll}11 & 380\end{array}\right)$
Gross wing area, sq m (sq ft)	1022	( 10996 )	1166	( 12 552)
Wing loading (gross area), $\mathrm{kg} / \mathrm{sq} \mathrm{m} \mathrm{( } \mathrm{lb} / \mathrm{sq} \mathrm{ft}$ )	332	( 68.02)	345	( 70.7)
TOGW, kg (b)	339272	( 747 966)	402618	$(887$ 622)
Fuel weight, kg (1b)	158683	(349835)	190934	(420 938)
Max wing fuel, kg (1b)	208222	(459 050)	253954	(559 863)
Design range, km ( nmi )	7419	( 4006)	7410	( 4001)
Eing out range, km ( n mi )	$6: 04$	( 35.12)	6434	( 3472)
Normal T.O. dist m (ft)	3341	( 10960 )	2715	( 8907)
Bal field length, m (ft)	3957	( 12982 )	3206	( 10519 )
Thrust-to-drag at $2.32 \mathrm{M} / 18300 \mathrm{~m}(60000 \mathrm{ft})$		1.220		1.483
Thrust-to-drag at $1.2 \mathrm{M} / \mathrm{climb}$		1.730		2.050
Initial cruise L/D		9.605		9.601
```Initial cruise SFC (installed) kg/hr/daN (1b/hr/1b)```	1.470	1.442	1.491	( 1.462)

TABLE 26. - AIRPLANE CHARACTERISTICS WITH GE21/J10 B1 ENGINES

Engine airflow, $\mathrm{kg} / \mathrm{sec}(\mathrm{lb} / \mathrm{sec}$)	Basepoint		Baseline	
	340	(750)	624	(1375)
Thrust-to-weight, n / kg ($\mathrm{lb} / 1 \mathrm{lb}$)	2.71	(.2769)	3.31	(.338)
Reference wing area, sq m (sq ft)	926	(9969)	1351	(14 540)
Gross wing area, sq m (sq ft)	1022	(10 996)	1490	(16 038)
Wing loading (gross area), $\mathrm{kg} / \mathrm{sq} \mathrm{m}$ ($\mathrm{lb} / \mathrm{sq} \mathrm{ft}$)	335	(68.68	345	(70.71)
TOGW, kg (lb)	342556	$(755$ 206)	514441	$\left(\begin{array}{l}1 \\ 1\end{array} 134149\right)$
Fuel weight, kg (lb)	158683	(349 835)	255446	(563 161)
Max wing fuel, kg (1b_	208222	(459 050)	366785	(808 622)
Design range, km (nmi)	5045	(2724)	7410	(4001)
Eng out range, lom (nmi)	4939	(2667)	6295	(3399)
Normal, T.0. dist m (ft)	3348	($10^{\prime} 983$)	2736	(8977)
Bal field length, m (ft)	3909	(12823)	3197	(10490)
Thrust-to-drag at $2.32 \mathrm{M} / 18300 \mathrm{~m}(60000 \mathrm{ft})$		1.084		1.286
Thrust-to-drag at $1.2 \mathrm{M} / \mathrm{climb}$		1.235		1.694
Initial cruise L/D		8.923		9.514
Initial cruise SFC (installed) $\mathrm{kg} / \mathrm{hr} / \mathrm{daN}$ ($\mathrm{lb} / \mathrm{hr} / \mathrm{lb}$)	1.568	(1.538)	1.457	(1.429)

TABLE 27.- AIRPLAN: CHARACTERISTICS WITH GE21/J11 B3 ENGINES

				line
Engine airflow, kg/sec ($\mathrm{lb} / \mathrm{sec}$)	381	(840)	1093	(2409)
Thrust-to-weight, n / kg ($\mathrm{lb} / 1 \mathrm{~b}$)	2.16	(.2210)	3.33	(.340)
Reference wing area, sq m (sq ft)	926	(9969)	1653	(17 787)
Gross wing area, sq m (sq ft)	1022	(10 996)	1823	$(19$ 619)
Wing loading (gross area), kg/sq m ($\mathrm{lb} / \mathrm{sq} \mathrm{ft}$)	330	(67.68)	34.5	(70.71)
TOGW, kg (lb)	337557	(744 186)	6\% - - 0	(1 3887359)
Fuel weight, kg (1b)	158683	(349 835)	312330	$(688$ 569)
Max wing fuel, kg (1b)	204139	(450 050)	496237	(1 094 016)
Design range, km (nmi)			7412	4002)
Eng out range, lm (n mi)			6245	(3372)
Normal T.O. dist m (ft)*			2706	(8878)
Bal field length, m (ft)			3205	(10 515)
Thrust-to-drag at $2.32 \mathrm{M} / 18300 \mathrm{~m}$ (60000 ft)				1.511
Thrust-to-drag at $1.2 \mathrm{M} / \mathrm{climb}$				2.078
Initial cruise L/D				9.412
Initial cruise SFC (installed) $\mathrm{kg} / \mathrm{hr} / \mathrm{daN}$ ($\mathrm{lb} / \mathrm{hr} / \mathrm{lb}$)			1.447	(1.419)
*T.O. distance using maximum power. This results in noise levels below Far 36.				

TABLE 28. - REFINED VSCE 502B BASELINE DESIGN MISSION SUMMARY, INIERNATIONAL UNTTS

LEG NO	operation	WEIGMT POUNOS	ALTITUDE M FEET	mach no.	FUEL USED pounds	TIME	TOTAL TIME MIN.		
	initial meight	705789.4							
1	w $\mathrm{L}^{\text {co}}$	697404.8	0.0	0.299	8385.1	10.000	-10.000	0.0	0.0
2	CL roisc	0,92084.6	1500.0	0.500	4720.2	1.337	12.337	5.79	3.79
3	CLB-ACC	639451.4	56500.9	2.320	53232.7	12.525	23.662	155.85	TW0.12
4	CRUISE	526149.2	60374.9	2.320	113302.6	82.402	105.324	1039.71	2000.t?
3	CRUISE	431858.7	04816.8	2.320	94290.5	80.963	186.280	1028.45	3829.00
6	DESCENO	428411.9	1500.0	0.500	3446.7	17.680	203.967	164.83	3994.00
7	OES-LAND	427883.7	0.0	0.300	528.2	1.607	205.574	7.38	centas
6	taxi-all	420483.3	0.0	0.0	1400.4	5.000	210.574	-. 0	4001.25
4	SPCT ALL	412517.4	0.0	0.0	13965.4	0.0	210.574	0.0	4002.23
1 C	Clto 15C	411226.6	1500.0	0.500	1291.4	0.739	212.313	3,06.	c90tell
11	cla-acc	401021.7	39337.6	0.900	10204.8	8.236	- 219.549	67.00	4071.31
12	CRUISE	394733.2	39073.3	0.900	6288.6	23.521	233.07i	120.46	620.77
13	descenu	392840.6	10000.0	0.406	2892.6	9.375	242.446	44.4.	cretatat
14	LOI ter	378979.5	10000.0	0.454	13861.1	30.000	272.446	0.0	4254.24
15	DES-LAND	377782.7	0.0	0.300	1196.7	3.877	275.323	18.93	427218
			total fue	EL USEDE	328007.1				

TABLE 30. - VCE 112C BASELINE DESIGN MISSION SLMMARY, INTERNATIONAL UNITS

	$\begin{aligned} & \text { LEE } \\ & \text { NO. } \end{aligned}$	dperation	WEIGHT KG.	altitude METEAS	MACH ND.	fuel usfo KG.	$\begin{aligned} & \text { TIME } \\ & \text { MIN. } \end{aligned}$	total time MIN.	range KM.	total rance KM.
		INITIAL weight	402610.3							
	1	wu c	398212.2	0.0	0.299	4406.2	10.000	10.000	0.0	0.0
	2	CL TO13C	396092.0	457.2	0.500	2120.1	1.334	11.334	10.60	10.60
	3	CLB-ACC	370960.4	18063.5	2.320	25131.6	12.991	24.324	320.56	331.16
	4	cruise	301835.9	19578.5	2.320	69124.4	80.672	104.996	3374.17	3105.33
	5	crutse	244642.1	21247.6	2.320	57193.9	81.124	186.120	3397.49	7102.82
	6	DE SCEND	242332.6	457.2	0.500	2309.5	16.797	202.917	295.10	7397.91
	7	DES-LANO	241980.9	0.3	0.300	351.7	1.523	204.440	12.82	7410.73
	-	taxi-all	240996.6	0.0	0.0	984.3	5.000	2C9.440	0.0	7410.73
	9	Spet All	232915.6	0.0	0.0	8081.1	0.0	209.440	0.0	7410. 73
	10	CLTO 15C	232263.8	457.2	0.500	651.7	0.619	210.059	4.78	7415.51
	11	CL B-acc	226368.2	12584.3	0.990	5895.6	9.457	1219.516	130.89	7546.40
	12	cruise	222708.3	12798.6	0.900	3660.0	13.063	232.579	211.96	7750. 35
	13	DESCEND	221396.2	3048.0	0.442	1312.0	9.346	241.925	120.16	7878.52
	14	LJIFR	212458.7	3048.0	0.432	8937.6	30.000	271.925	0.5	7878.52
	15	des-lano	211690.4	0.0	0.300	768.3	3.533	375.458	31.76	1910.25
				rotal fue	EL USED*	190927.5				

TABLE 32. - GE21/J10 - - reLINE DESIGN MISSİON SLMMARY, INTERNATIONAL UNITS
LH6. SPERATIUN
INITIAL HEIGHT

1 Wu 1 TiI

- al TClsl
? cle-ar.:
- cifulst
- cruiss
a lescem
7 bes-Land
Tax1-ail
- EPCT ALL

NiL JGHT ALTITUOL MACH NL. FLUFL USEL
KG. METERS

514441.3

5.4039 .1	Cor	0.240	4802.2	10.000	10.00%	0.0	0.0
5.0027 .2	457.2	0.5.5	3516.6	1.280	11.280	10.16	10.16
401605.2	17538.4	2.325	44954%	16.860	30.146	477.15	407.31
390329.0	1871\%.e.	2.320	82542.7	70.930	107.004	3217.08	3705-19.

3.8072 .2	14901.2	$2.52 i$	71453.3	80.827	187.911	3380.66	7085.85

3:6096.3	457.2	0.50)	2575.4	18.055	205.405	310.60	7396.45
3:570: 4	ט.:	シ.307	395.6	1.049	207.614	13.94	7410.30
3 c 407 T	c.e	0.4	1923.2	5.000	212.014	0.0	7416.30
294189.	\therefore :	0.0	10488.7	0.0	212.614	0.0	7410.38
243:74.00	457.2	0.500	1104.5	0.492	213.106	3.84	7414.22
279368.9	17288.5	v.93i)	137110	10.597	223.612	190.12	7604.34
277377.4	17260.0	0.90 .3	1991.2	6.362^{-}	229.974	108.96	7713.30
275000.0	3048.0	0.3 at	1710.8	12.115	242.089	163.93	7877.23
259781.0	3042.0	0.350	15885.0	30.000	272.089	0.0	7871.23
2584 PR. 7	.us	0.3000	792.9	3.480°	275.569°	36.86	7908.09

TCTAC. FUEL USELE 255452.1

TABLE 33. - GE21/J10 B1 BASELINE DESIGN MISSION SUMMARY, ENGLISH UNITS

$\begin{gathered} \text { CFO } \\ \mathrm{NO}_{6} \end{gathered}$	UPERATIUN	WE IGHT POUNDS	ALTITUIt FEET	MACH NS.	rutl USEI PCUNDS	7 IME MIN.	TOTAL T1ME MIM。	maNGE: N. M.	TUTAL Ramge N. M.
	INTTTAL WETGMy	113414900							
1	M 4 TO	$1123562 . ?$	c. j	0.264	10887.4	16.000	10.000	0.0	0.0
2	CL T615C	1116411.3	1569.\%	$3.50:$	6651.0	1.28 c	11.285	be48	5 etbr
3	CLE-ACC	1817804.3	57540.0	2.326	94100.7	16.606	30.248	257.04	203.12
4	chuise	838033.4	01384.7	2.320	17477C.4	70.430	107.084	1737.44	2000.61
5	GRUISE	cecoscs. 7	65292.0	2.320	157527.7	80.827	187.412	1825.30	3525.94
6	DESCEN゙,	87482009	1501.0	0.50	5678.4	18.05s	255.405	167.71	3493.69
7	DES-LANO	473454.2	0.0	$0.30:$	072.7	1.049	2. 6.614	7.58	4001.22
8	TAX 1-ALL	071648.4	0.0	0.0	2255.7	3.080	212.614	0.0	4001. 22
9	SPCTMat - .	648575.9	$\cdots 0.0$	0.0	23122.6	$0 \cdot 0$	2120014	0.0	$40: 1.22$
10.	CLTO 15C	046124.4	15060.s	4,503	244000	0.442	$213 \cdot 106$	2.07	4003.24
1.:	CLs-ACC	615902.2	56721.6	0.450	30227.7	16.507	223.612	102.06	$\cdots 105.46$
12	CHUXSE	61151300	96714.7	20.453	4389.8	6.342	229.974	50.63	4204.77
13	L-دCEN	0077410	1300n.n	0.3 44	3771.0	12.115	2420UA9	40.51	4253.24
14	LOITER	572720.3	10000.0	0.350	35520.5	3r.oroc	272.084	0.0	- C53.24
15	DES-LW0-	570972.0	3.0	0.3u.	1747.4	3.464	275.569	10.06	- 4204.95
			total fut	UfL UStI =	503170.4				

TABLE 34. - GE21/J11 B3 BASELINE DESIGN MISSION/SUMMARY, INTERNATIONAL UNITS

	$\begin{aligned} & \text { LEG } \\ & \text { NO. } \end{aligned}$	OPERATION	WE IGHT KG。	ALTITLOE MA METERS	ACH NO.	FUEL Yeo KG.	THE MIN.	TOTALTIME MiN.	Wenct	$R_{N_{0}}$
		IMITIAL WEIGAT	629295.4							
	1	wu 6 To	-22324.0	0.0	0.290	6970.8	10.000	10.000	0.0	0.0
$\begin{gathered} 8 \\ 58 \\ 5 \end{gathered}$	2	CL T015c	619027.4	457.2	0.500	3297.2	0.914	10.914	7.04	7.06
	3	Cls-acc	573152.9	18712.9	2.320	45874.5	22.57	28.18	22105	-
	4	cruise	467000.2	20118.3	2.320	105807.3	00.733	104.544	2974.0e	3708.4s
	5	cruise	378848.1	21470.4	2.320	87086.7	01.401	185.945	3480.15	718858
	6	descemo	374795.3	457.2	0.500	4052 cr	16.351	202006	215c5	\%uedr
	7	DES-LAND	374172.1	0.0	0.300	423.3	1.403	203.579	18.49	7416.03
	8	taxi-all	372379.6	0.0	0.0	1792 - ${ }^{\circ}$	3.000	200. 579	-0	8480.03
	9	spct all	359560.4	0.0	0.0	12219.3	0.8	201.3\%	5	Tuiver
	10	Clto 15C	358252.1	457.2	0.500	1308.3	0.340	200.929	2.80	7418.48
	11	CLB-ACC	347471.4	14332.7	0.950	10780.2	3.438	214.397	07.07	Tessoes
	12	CRUISE	340263.0	14535.0	0.450	7208 \%	15.056	Ct504y		mater
	13	DE SCENO	337646.0	3048.0	0.320	2616.s	10.351	236.744	186090	rextear
	14	LOITER	318150.9	3048.0	0.304	19495.*	30.000	263.704	-0.	T076.48
	15	CES-LAND	316980.6	0.0	0.300	1170.5	-2 2028	-27tes	2405	M
			TOTAL FUEL USED			312314.8				

TEC OPERATION	ME IGNT pounds	altituce mach no. feEt	FUEL USED POUNDS	TIME MIN.	total time MiN.	RANGE N. $\mathrm{m}_{\text {. }}$	total mame N. M.
WITYIAL WESGM	1357359.0°						
- 1.0	1371991.0	C.0 0.209	15360.0	10.000	10.000	0.0	0.0
2 CL rossc	1364722.0	15150.00 .500	2269.0	0.914	10.914	3.00	3.30
3 CLETM	T263586.0	61394.02 .320	101136.0	12.897	23.818	173.00	177.40
- cruise	1029559.3	60605.12 .320	233462.7	10. 733	104.546	1023.34	2000.74
5 caurse	835217.1	70-41.0 2.320	193757.2	82.401	185.945	1841.30	3442.04
6 Descemo	826282.2	$1500.0 \quad 0.500$	493409	20.151	202.046	192.70	3044.74
7 8es-LMO	824908.2	0.00 .300	1374.1	1.463	203.579	6.73	4001.47
- taxi-abl	820956.6	0.00 .0	3952.6	5.000	208.979	0.0	4001.47
6 \#ctal - - - - - - -	792694.9	0.00 .0	20261.7	0.0	208.570	0.0	4001.47
-30_C4TO 15C	-789810.6	$1500.0 \quad 0.500$	2884.4	0.340	200.919	1.30	4602.06
11 CLB-acc	766043.2	. 7089.10 .950	23760.3	5.438	214.357	47.84	4030. 20
dz CuISE	750151.6	47616.90 .950	15092.7	14.036	220.418	129.99	480.18
13 UESCENO	744332.1	10000.00 .320	5908.4	10.382	238.704	72.07	4282.38
14 L.OETER	701402.7	15000.0 0.304	42930.4	30.000	268.764	0.0	4252.05
T3 6ishano --.............	698822.7	0.00 .300	2500.1	2.422	271.46	13.81	4206.64
		TOTAL FUEL USED	688536.3				

table 36. - boonoric mission canractiristics

 WILH RAFDED VSCE 502B EGGES| TOGN, kg (1b)
 fuel weight, kg (1 b) | Baseline | |
| :---: | :---: | :---: |
| | 254141 | (560 284) |
| | 95229 | (209 943) |
| Design range, km (nmi) | 4630 | (2500) |
| Far 36 T.0. dist m (ft) | 1753 | (5750) |
| Bal field length, m(ft) | 2081 | (6826) |
| Airframe weight, kg (lb) | 112768 | (248611) |
| Engine weight, kg (lb) | 23128 | (50 988) |
| Mission fuel weight, kg (1b) | 76501 | (168 655) |
| Block time, min (min) | | $\left(\begin{array}{l}167)\end{array}\right.$ |
| Engine thrust, n (1b) | 251160 | (56463) |

TABLE 37. - ECONOMIC MISSION CHARACTERISTICS WITH VCE II2C ENGINES

TOCW, kg (lb)	Baseline	
	320966	(707 608)
Fuel weight, kg (lb)	121739	$(268$ 390)
Range, kim (nmi)	4630	(2500)
Far, 36 T.O. dist m (ft)	1724	(5656)
Bal field length, m (if)	2070	(6704)
Airframe weight, kg (1b)	138186	(304 645)
Engine weight, kg (1b)	37932	(83 626)
Mission fuel weight, kg (1b)	96639	(213048)
Block time, min (min)		(167)
Engine thrust, n (1b)	367178	(82549)

TABLE 38. - BCONOMIC MISSION CHARACTERISTICS MITH GE21/J10 BI ENGINES

	Baseline	
T0Cw, kg (1b)	417609	$(920$ 670)
Fuel weight, kg (1b)	171070	(377 144)
Design range, k (nai)	4630	(2500)
Far 36 T.0. dist m (ft)	1816	(5959)
Bal field length, (ft)	2159	(7083)
Airframe weight, kg (lb)	166931	(368 020)
Engine weight, kg (1b)	56360	(124 253)
Mission fuel weight, $\mathbf{k g}$ (1b)	130675	(288 088)
Block time, min (min)		(169)
Engine thrust, n (1b)	426300	(95836)

TABLE 39. - BCONOMIC MISSION CHARACTERISTICS WITH GE21/J11 B3 ENGINES

TOGW, kg (1b) Fuel weight, kg (1b)	Baseline	
	519218	$\left(\begin{array}{lll}1 & 144 & 680\end{array}\right)$
	214709	$(473$ 353)
Design range, km (nmi)	4630	(2500)
Far 36 T.0. dist, (ft)	1855	(6087)
Ral ficld length, m (ft)	2232	(7323)
Airframe weight, $\mathbf{k g}$ (1b)	207300	(457 018)
Engine weight, kg (1b)	73812	(162 728)
Mission fuel weight, kg (1b)	162334	(3578880)
Blak time, min (min)		(166)
Ergine thrust, n (1t)	524557	$(117$ 925)

TABLE 40. - DOC, IOC, AND ROI

.	VSCE 502B	VCE 112C
Direct operating cost, cents/seat statute mile Indirect operating cost, cents/seat statute mile Return on investment, $\}$	2.17	2.73

Assumptions:

1. 1974 dollars
2. 1967 ATA DOC model updated to 1974
3. Lockheed California Co. IOC model
4. 4000 hours annual utilization
5. 15-year life
6. Fuel cost of 35 cents per gallon
7. Revenue of 8.5 cents per passenger statute mile
8. 55 percent load factor
9. $2500 \mathrm{n} . \mathrm{mi}$. trip distance

	$\begin{aligned} & \text { Lfri } \\ & \text { ND. } \end{aligned}$	OPERATION	WE IGHT $\times \mathrm{Co}$	ALTITUDE ME TERS	MACH NC.	FUEL USEO KG。	TIME MIN.	TOTAL PIME MIN.	RAMEE W. \boldsymbol{M}_{6}	TOTAL Wamer Km。
		INITIAL WEIGRT	2:414C.6							
	1	WII 690	25033 7.2	0.0	0.299	3803.4	10.000	10.000	$0 \cdot 0$	0.0
	2	CL/ 1500	245074.7	457.2	0.500	1262.5	0.849	10.849	6.73	0.78
	3	CLIMA	242143.7	10040.1	0.900	6931.0	3.524	140373	41012	50U5
	4	CRUIS	230545.3	16411.0	0.900	11590.4	41.802	3 36.174	685.97	740.81
	5	CL/ACCEL	220048.7	18950.7	2.320	10496.6	5.667	762.44	162.34	903.16
	6	CRUISE	180043.9	20397.5	2.320	4.300408	-1.576	143045	361582	756036
	7	CESCFNT	176512.9	457.2	0.500	1531.0	17.303	160.720	300.22	4616.54
	8	DES/LANC	178275.1	0.0	0.300	237.7	1.596	162.316	13.45	463003
	\bigcirc	TAXI	177E39.9	0.0	0.0	635.2	5.000	167.316	600	C6Jebs
	10	52 RFS.	173814.5	0.0	0.0	3825.0	0.0	167.316	0.0	4630.03
	11	CL/ 1500	17328966	457.2	0.500	525.3	0.662	167.970	5.07	4685.10
	12	CL/ACCEL	16e79C. 1	12497.3	0.900	4499.5	c. 994	176.373	127076	- 6\%60]
	13	CAUISE	166234.4	12594.	0.900	2550.7	12.975	189.540	210.53	4978.30
	14	CFSCFND	16:367.9	3048.0	0.450	871.5	9.597	199.143	122.73	s093. 18
	15	LOITPA	19943f.t	3C48.C	0.440	5929.2	30.000	229.143	0.6	S6WKIT
	16	CES/L AND	1stste.4	0.0	0.300	522.3	3.724	232.869	33.51	9131.42
				TOTAL FUP	L USEN:	95223.7				

TABLE 42．－VSCE 502B BASELINE ECONOMIC MISSION SLMMARY，ENGLISH UNITS

	$\begin{aligned} & \text { LEG } \\ & \text { ND. } \end{aligned}$	Operation	WE JGHT POUNDS	ALTITUDE fEET	MACH NC．	FUEL USEO POUNOS	timp MIN．	total time MIN．	RANGF： N．m ．	total pamge ．N ．$M_{\text {。 }}$
20		initial weight	5 CO 28.1							
号	1	UU 6 TO	551899．1	0.0	0.299	8385.1	10.000	10.000	0.6	0.0
	2	CL／ 1500	549115.8	1500.0	0.500	2783．2	0.849	10.849	3.63	3.63
员莒	3	Climo	533825.6	32939.8	n． 908	15280． 2	3.524	414.373	25.98	29.61
	4	Cruise	5022e9．4	34156.7	0.900	25570.2	41.802	56.174	370.39	400．00
	5	Cl／accel	485124.5	62174.3	2.320	23140.9	5.667	61．841	87.66	487.66
	6	Cruise	39692e．s	66920.9	2.320	A9195．6	81．576	143．417	1842.95	2330.61
	7	ofscend	393593.6	1500．0	0.500	3375.4	17.303	160．720	162.10	2492．71
	－	DESJLANC	393029．4	0.0	0.300	524．1	1.596	－ 162.316	7.26	2499．97
	9	taxi	391629．1	0.0	0.0	1400．4	5.000	－167．316	0.0	2499．97
	10	5x qES．	38319t． 3	0.0	0.0	8432.7	0.0	167．316	0.0	2499．97
	11	CL／ 1800	382038．2	1500．0	0.500	1158.1	0.662	167．978	2.74	2502．71
	12	Cl／ACCEL	372118． 6	41001.6	0.900	9919.7	0.594	176．573	70.66	2572.77
	13	cruise	364495.1	41321.5	0.900	5623.4	12.975	189．548	113.67	2686．45
	14	desceno	364573．9	10000．0	0.450	1921.2	9.597	199.145	66.27	2752．72
	15	Cortea	351502．1	10500．0	0.449	13071.7	30．800	229．145	0.0	2752．72
	16	OES／LANO	3¢035C．7	0.0	0.300	1151.4	3.724	432．869	10.09	2770．81
				total fue	EL USEC：	209933．4				

LEG NO．	UPtRATION	WI 1GHT KG。	altitule METERS	MACH NC．	$\begin{aligned} & \text { FUFL USFO } \\ & \text { KG. } \end{aligned}$	$\begin{aligned} & \operatorname{Time} \\ & M I N . \end{aligned}$	TOTAL TIME MiN．	RNGE KM 。	toial range KH 。
	injtial weitht	32＾9n5．7							
1	WU 210	316559．6	2.0	0.799	4406.2	10．000	10.000	0.0	0.0
2	CL／15\％	315299.3	457.2	$\therefore .535$	1267．2	$: .825$	150835	60.40	6.40
3	CLIME	304744．？	121．27．0	0.989	6505.1	3.411	14.217	45.45	52.33
4	CRUISE	242480.3	11244.8	0.96	15814.9	42.919	56．530	688.46	740.11
3	Cl／accel	2月133）．4	20226．5	2．32：	11649.4	6.256	62．786	195.15	935.96
6	CRUISf	227981．95	217260：	2.32%	53495.5	88.944	143.729	3392.30	4326.32
7	DESCFN（）	225002．4	457.2	n．an	2203.1	16.448	$16 \% 175$	269．74	4616.07
P	DES／LANU	28E313．9	0.0	0.72	30.404	1.514	101．089	12.72	4630.74
4	Tax 1	224342．7	r．e）	0.0	1984．3	5 anne	100．684	O．C	4630.74
14.	57 RES．	214446	0.6	0.0	4831.9	－．${ }^{\text {a }}$	160．689	－G	4630.79
11	CL／1a．	216896．4	457.2	J． 5 ： 0	6．${ }^{\text {a }}$	3.570	167．259	4000	4635.19
12	CL／ACCEL	213294.7	13076.8	0．4\％	9051.0	9.226	176．485	127．26	4762.45
13	CRUISE	9：4813．7	13102.4	0.900	340．3．0	13.164	189．649	213.59	4976．04
1\％	If SCENO	208489.1	3048．0	0.428	1323．0	9.483	199．132	122.07	5098.12
15	LOITEK	194407．5	3／48．1）	0.41%	252．3．8	32.308	229．132	0.0	$5998.1 i$
10	des／lant	149226.1	90	0.39°	741.2	3．4：4	232．536	32045	5128.53
			total fue	UEL USEUE	121730．4				

TABLE 44．－VCE 112C BASELINE ECONOMIC MISSION SUMMARY，ENGLISH UNITS

	$\begin{aligned} & \text { ir } \\ & \text { MO. } \end{aligned}$	IPERATICN	WE 3 （，HT Potenris	ALTTTUIDE $F E E T$	mach NL．	FUtL USEII pounns	TIME MIN．	TOTAL TIME MIN．	Range N．M．	total range N_{0} M．
昆		INITIAL WEIGHT	777098.4							
	1	W0 21	＊，07AY4．4	\bigcirc	0.244	4713.0	10．\％アハ	120.300	人00	0.0
	7	r．L／1500	645316．1	15nn．：	0.399	2778．4	n．9．95	10．nns	3040	3.40
	3	CLI Mr．	68：7744．3	34：665．5	3.9 ：＊	14341．2	3.411	10.217	24.81	28.27
	4	CRUISE	045411.1	37.56 .3	S．0 \％	34863.7	42.313	50．533	971．73	＋00．00
$\begin{aligned} & 0 \\ & 6 \\ & -\pi \\ & -\pi \end{aligned}$	a	Cl／actel	020229．6	06360.0	2.320	25642．4	6.256	62.716	105．37	505.37
	6	CRUISt：	5994 99．7	71774.5	2.320	117738.9	80.944	143．729	1831.74	2337.06
	7	DESCPND	407503.4	1500.6	2.509	6999．3	16.445	160.175	150．45	2493.51
	3	UES／LANH	49073 ． 2	non	0.305	$77 n .2$	1.514	162．089	6.87	2500．30
	9	Tax 8	444500.1	3.7	0.0	2170．1	5.000	160.089	0.0	2500．30
	10	S\％RFS．	4839 ¢7．7	n． 0	0.9	10652．4	0.0	160．689	0.0	2500． 30
	11	Cl／ 1500	482583.9	1500.0	0.500	1323.7	0.570	167．259	2.38	2502．76
	12	Cl／ac．cel	47023404	42409.3	0.900	12349.5	4.226	170．485	68.72	2571.68
	13	CRUISE	462559.7	43282.3	0.935	7678.7	13.164	189．649	125．33	2680．30．
	14	UFSCEND	459637.7	10000．0	0.428	2910．0	4.483	199． 132	65.91	2752．78
	15	LOITER	440852.5	10000.7	0.418	1878． 2	30.000	229．132	0.0	2752．71
	16	DES／LANO	439218．4	0.5	0.300	1634.1	3.404	232．336	16.46	－ 274.15.
				TOTAL FU	EL USED＝	268390．0				

$\begin{aligned} & \text { LEG } \\ & \text { NO. } \end{aligned}$	operation	WEIGHT KG.	ALTITUDE me ters	MACH AC.	$\begin{aligned} & \text { FLEL UGE } \\ & \text { KG。 } \end{aligned}$	TIME MIN.	total time MIN.	hance KH.	total ramee NH.
	initial weight	$4176 C 50 C$							
1	WU 6 to	4128 C 7.1	C.O	0.299	4801.0	10.000	-10.000	0.0	0.0
2	CL/ 1500	416924.7	457.2	0.500	1862.4	0.805	10.305	6.38	6.38
3	CLIMB	399927.5	10355.3	0.900	10997.3	4.033	3 ㅅ. 440838	56.32	62.71
4	CAUISE	$37739 C .7$	107t5.7	0.900	22536.7	41.519	56.357	676.11	740.81
5	CL/ACCEL	356e15.6	15079.6	2.320	20775.2	9.402	265.759	282.65	1023.46
6	CRUSSE	25c890.4	20244.4	2.320	65725.2	78.574	-144.333	3297.02	4310.48
7	descend	208358.2	457.2	0.500	2536.1	17.781	152.114	306.12	4616.59
8	DES/LANC	267557.5	0.0	0.300	394.7	1.645	5163.758	13.88	4630.47
9	TAXI	266934.3	c. 0	0.0	1023.2	5.000	- 168.750	0.0	4630.47
10	58 DES.	280400.6	C. 0	0.0	6533.7	0.0	168.758	0.0 .	$4{ }^{3} 30.47$
11	CL/1500	279357.5	457.2	0.500	1043. 1	0.463	169.221	3.61	4634.07
12	Cl/accel	2tegle. 7	17285.0	0.950	12440. 8	10.914	- 100.135	187.66	4821.73
13	CRUISE	2t4547.7	17291.9	0.950	1919.0	6.675	5 186. 810	114.32	4984.04
14	DESCENC	263318.3	$3 \mathrm{C4B.0}$	0.354	1679.4	11.899	- 194.709	162004	5097.09
15	LOITEP	247298.6	$3 \mathrm{c48.0}$	0.333	16019.7	30.000	228.709	0.0	5097.09
16	des/lanc	24E:31.1	0.0	0.300	767.5	3.366	. 232.073	29.69	. 5126.71
			tctal fue	EL USEC:	171077.6				

TABLE 46. - GE21/J10 B1 BASELINE ECONOMIC MISSION SUMMARY, ENGLISH UNITS

$\begin{aligned} & \text { LEG } \\ & \text { NO. } \end{aligned}$	OPERATION	WEIGHT POUNDS	altitude FEET	MACH NC.	FLEL USEC PCUNOS	TIME NIN.	TOTAL TIME MIN.	RANGE N. M.	TOTAL RANGE $M_{0} M_{0}$
	INITIAL WEight	S2C67c. 3							
1	WU 6 TO	910084.1	0.C	0.294	10586.2	10.000	10.000	0.0	0.0
2	CL/1500	5¢5934.1	1500.0	0. 500	4149.9	0.803	10.805	3.45	3.45
3	CLIMB	881689.2	33574.1	0.900	24244.9	4.033	14.838	30.41	33.86
4	CRUISE	-32004.2	3532C.6	0.900	49685.0	41.519	56.357	366.14	400.00
5	CLAMCCEL	786202.9	62597.0	2.320	45801.4	9.402	65.759	152.62	552.61
6	CRUISE	\&41303.t	6e418.6	2.320	144899.2	78.574	144.333	1774.82	2327.43
7	CESCEND	635768.0	1500.0	0.500	5595.6	17.781	162.114	165.29	2492.72
e	DES/LAND	634837.7	C. 0	0.300	870.2	1.645	163.758	7.49	2500. 21
9	Taxİ	C32582.0	0.0	0.0	2255.7	5.000	168.758	0.0	2500.21
10	54 NES.	618177.6	C. 0	0.0	14404.4	0.0	168.758	0.0	2500. 21
11	CL/1500	615878.0	1500.0	0.500	2299.6	0.463	169. 221	1.95	2502.16
12	Cl/actel	501490.7	56709.4	0.950	27427.3	10.914	180.135	1C 1.33	2603.45
13	CRUISE	544219.9	56732.0	0.950	4230.7	6.675	186.810	61.72	2665.21
16	DESCENO	580517.6	1 cocco 0	0.354	3702.4	11.899	198.709	86.95	2752.16
15	COITEA	545200.2	100000	0.333	35317.4	30.000	228.709	0.0	c752.16
16	DES/LANC	s435ce. 1	0.0	0.300	1692.1	3.364	232.073	16.03	274.4.15
			TCTAL FUL	LEL USEO:	317162.2				

TABLE 47．－GE21， 11 B3 BASELINE ECONOMIC MISSION SUMMARY，INTERNATIONAL UNITS

Let． NC．	CPERATJON	WH IGHT KK．	altitude meters	MACH NO．	fuel usel KG．	$\begin{aligned} & \text { TJME } \\ & \text { MIN. } \end{aligned}$	total time MIN．	RANGE KM 。	total range KM．
	inliial weight	914218.1							
1	wu f． 10	51224\％．2	e．．	0.244	6470．t	10.060	10.200	0.0	0.0
2	CL／154	310007.4	457.2	r．50\％	2234.4	9．6．22	10.022	4.74	4.49
3	LLIMb	44001187	1：5771．1	6.45	13184．1	3.312	13.934	45.08	50．47
4	CRUISt	－ACOTく．7	11072.3	－ 9 cri	28140.1	42.473	50.407	640.34	4740.81
5	cl／accel	$4.733 \mathrm{ce.5}$	2334．5．2	2.320	21342.2	0.511	62.918	198.93	－939．74
0	chulst	303247．4	21743．6．	2.320	\＄4032．6	H．${ }^{\text {d }} 8$	144．000	3399.00	－ 4338.80
7	cescend	359247.4	45\％．2	0.509	4000.5	15．434	150.940	274.36	6 4618.15
8	destlant	35807e．C	C．：	0．30）	620.8	1.478	101．418	12.40	－463n．55
9	Taxl	3508 t3．7	$\%$－	Sov	1792.9	50.00	106．418	c．0	4630.55
10	¢\％RES．	34ト7u7．	$0 \cdot 5$	\％．${ }^{\text {a }}$	c110．7	cos	100.428	0.0	4630.55
11	CL／1507	34．75．8．7	457.2	$\cdots \mathrm{efr}$	1258．4	0.327	106．744	2.46	－4633．00
12	Cl／accil	337 －ir． 2	146.21 .4	0.450	10502.4	3.164	4 171.929	83.87	4716.87
13	crulse	329444．1	14794.4	0.450	7057.2	14．347	180.276	245.72	4 4962．59
14	Of SCEN（）	$3: 7344.1$	3untos	0.30.	2555.1	10． 132	190．408	133.45	5 5096．04
15	qultek	3150060．	30420．	2．3：1	21727.2	3．1．000	220．400	0.0	5090．04
10	les／lant	3＾444\％${ }^{4}$	こ．3	0．3\％${ }^{\circ}$	1173.4	2.430	－ 224.343	25.74	． 5121.78
			dotal fut	UEL USE0＝	214724．7				

TABLE 48. - GE21/J11 B3 BASELINE ECONOMIC MISSION SIMMARY, ENGLISH UNITS

analyses discussed previously. The calculations and results are summarized in table 49. The nacelle drag increments are those used in the detailed analysis and are shown in table 49. Sperific fuel consumption increments were obtained from plots of installed performance (figures 31 through 34, 37, and 38). Takeoff thrust increments were obtained from figures 30 and 36 . Propulsion weight increments wer obtained by adding 198 kg (445 lb) per engine for miscellaneous propulsion systems to the nacelle and engine weights of tables 19 through 22. Included in the table 49 is a column for the "revised" baseline.

Table 49 indicates good agreement of the sensitivity method relative to the detailed analysis for engines with small changes relative to the baseline (VSCE 502B and VCE 112C). The error increases as the total takeoff gross weight ratio, $\mathrm{R}_{\text {TOTAL }}$, increases. Reasons for error include the following:
(1) Reading and extrapolating the sensitivity curves may produce some errors.
(2) Sensitivities for changes in transonic acceleration thrust were not included. Tables 24 through 27 indicate a wide range in thrust-drag ratio at mach 1.2. Thus, acceleration times and fuel used may vary widely from the baseline.
(3) The assumption that the aircraft will cruise at minimum SFC is optimistic; the lift-drag ratio characteristics may tend to drive the operating point to a high SFC.
(4) Scaling factors of the detailed analysis are determined for small changes and are therefore of questionable accuracy for large changes in aircraft characteristics.

While the differences in takeoff gross weight using the two methods are large for the large aircraft, the accuracy of the sensitivity method is sufficient to indicate when changes may be of interest and when they are definitely not advantageous. Thus, the seasitivity method allows the user to easiiy identify problem areas. For example, .om table 49, the largest contributor to vehicle weight increase of the VCE $112 C$ is effective takeoff thrust ($R_{\text {FNE }}$ TO is 1.10) while the largest contributor of the GE21/J10 Bl is propulsion system weight ($R_{w t}$ is 1.16).

TABLE 49. - TAKEOFF GROSS WEIGHT SENSITIVITY CALCULATIONS

Vehicle/e gine Variable	$\begin{aligned} & \text { Baseline } \\ & \text { VSCE 502B } \end{aligned}$	Revised Baseline VSCE 5028	$\begin{aligned} & \text { Refined } \\ & \text { VSCE } 502 \mathrm{~B} \end{aligned}$	VCE 112C	CE 21/J10 $\mathrm{Bl}^{\text {c }}$	ce 21/J11 83
Mropulsion weight, kg (lb)	$\begin{aligned} & 31498 \\ & (69493) \end{aligned}$	$\begin{aligned} & 30882 \\ & (68081) \end{aligned}$	$\begin{array}{ll} 33 & 374 \\ (73 & 576) \end{array}$	$\begin{aligned} & 35014 \\ & (77192) \end{aligned}$	$\begin{array}{ll} 38 & 298 \\ (84 & 432) \end{array}$	$\begin{aligned} & 33300 \\ & (73412) \end{aligned}$
SFic: $\mathrm{kg} / \mathrm{hr}$, daN ($\mathrm{lb} / \mathrm{hr} / \mathrm{lb}$) Sumercruise	1.387 (1.36)	1.387 (1.36)	(0.387 (1.36)	1.474 (1.445)	1.469 (1.44)	1.448 (1.42)
Subcrusse	1.005 (0.985)	1.005 (0.985)	0.981 (0.962)	0.964 (0.945)	1.137 (1.115)	1.086 (1.065)
Effective takeofi :hrust, daN (lb)	$\begin{aligned} & 27899 \\ & (62723) \end{aligned}$	$\begin{aligned} & 26957 \\ & (00604) \end{aligned}$	$\left.\begin{array}{\|ll} 28 & 480 \\ (64 & 028 \end{array}\right)$	$\begin{aligned} & 23 \\ & 237 \\ & (52 \\ & \text { 130) } \end{aligned}$	$\left.\begin{array}{ll} 23 & 677 \\ (53 & 231 \end{array}\right)$	$\begin{aligned} & 18713 \\ & (42070) \end{aligned}$
Nacelle drag coefficient mach 1.2 mach 2.32	0.00057 0.00047	0.00040 0.00030	0.00063 0.00033	0.00085 0.00048	0.00202 0.00095	$\begin{aligned} & 0.00276 \\ & 0.00115 \end{aligned}$
R_{Wr}	1.000	1.000	1.032	1.059	1.16	1.031
$\mathrm{R}_{\text {SFC }}$						
Supercruise	1.000	1.000	1.000	1.071	1.068	1.050
Subcruise	1.000	1.000	0.998	0.994	1.013	1.008
$R_{\text {Fre }}$ To	1.000	1.000	0.978	1.100	1.077	1.320
${ }^{\text {R }}$ CD	1.000	1.000	1.003	1.021	1.083	1.218
$\mathrm{R}_{\text {total }}$	1.000	1.000	1.010	1.266	1.464	1.610
TOOW, kg (1b) Sensitivities	$\begin{aligned} & 323048 \\ & (712188) \end{aligned}$	$\begin{aligned} & 316783 \\ & (698 \\ & \hline \end{aligned}$	$\begin{aligned} & 320146 \\ & (705568) \end{aligned}$	$\begin{aligned} & 401092 \\ & (884258) \end{aligned}$	$\begin{aligned} & 463708 \\ & \left(\begin{array}{ll} 1 & 022 \end{array} 283\right) \end{aligned}$	$\begin{aligned} & 510 \quad 136 \\ & (1 \quad 124 \quad 630) \end{aligned}$
Detailed	323048	316783	320 228	402625	514450	629306 .
	$(712$ 188)	(698 375)	(705 790)	(887 622)	(1 134149)	(1 387 359)
Error,	.	.	-0.03	-0.4	-9.9	-18.9

DISCISSION OF RESULTS

Engine shape, airflow-lapse rate with mach muber, thrust-lapse rate with mach nuber, SFC, and noise characteristics have large effects on aircraft takeoff gross weight. ns an example of engine shape effects, a comparison of crosssectional area variation of nacelles with VSTE 502B and VCE 112 C engines is shown in figure 3. The only significant difference in shape is that the VCE 112C has a swaller nozzle exit area. This results in drag and takeoff gross weight changes as shown in table 4. Thus, a nozzle that is 0.043 m (1.7 in .) smaller in diameter results in takeoff gross weight increment of 3200 kg (7000 lb) just due to the nacelle drag change. As shom in figure 25, a me-drag-count change results in about a 1 -percent change in takeoff gross weight.

Engine airflow lapse rate with mach muber directly affects inlet capture area. For example, the GE21/J10 Bl has approximately 16 -percent lower supersonic cruise airflow relative to takeoff airflow than does the VSCE 502B. The saller capture area results in approximately 4 -percent lower inlet recovery at static conditions and therefore reduced takeoff thrust. In addition, the smaller capture area results in a more rapid increase of nacelle cross-sectional area with nacelle length, and therefore higher drag.

Engine takeoff thrust and thrust lapse rate with mach mumer has a significant effect on engine size required to meet takeoff distance requirements. For example, the VCE 112 C has 6 -percent lower takeoff thrust at static conditions and 20 -percent lower thrust at mach 0.3 (at reduced power to meet noise requirements) than the VSCE 502B for a given static takeoff airflow. This resulted in a considerable increase in engine size to meet balanced field length requi rements

As indicated in figure 27, a change of 1 percent in SFC at supersonic cruise results in a 1 -percent change in aircraft takeoff gross weight or about 3200 kg (1000 lb).

Fngine exhaust noise characteristics have a significant impact on aircraft takeoff gross weight. All four engines were assumed to employ thrust cutback at the takeoff noise measurement point. However, all the engines did not take full advantage of the extra ground attenuation while the aircraft was still on the ground. For example, the GE21/J11 B3 has 20 -percent lower thrust-per-unit airflow than the VSCE 502B. Thus, the GE21/J11 B3 yields approximately 6 db lower sideline noise at takeoff on the ground, but it must be sized larger to meet the takeoff distance requirement.

recommendations

The sensitivity method has been shown to be a valid method for preliminary assessment of propusion system modifications, and it is therefore recommended to be used for this purpose. Continued airframe/propulsion integration studies and coordination effort between engine and airframe manufacturers in the aforementioned high-sensitivity areas are also recommended.

APPEDD

ADMNIED SUPERSONIC TRNSPORT
 macelle mistallation drag increaent
 COPPUIER PROGRM

SMANXY

This appendix describes a computer progran developed to detemine nacelle incremental drags for the NASA arrow-wing supersonic transport configuration. Progran inputs include freestream Mach number and parameters defining nacelle geometry. Data points are stored internal to the progran to represent mave and friction drag values with up to six independent variables. Given a set of input parameters, the progran sets up arrays so as to perform an intermal search. Then, a cubic is fit to these data points, and the drag increments are determined.

The computer progran requires 40 K bytes of memory, and each case, consisting of four evaluations of nacelle drag, requires about .1 seconds of execution time on a IBM 370/168.

This appendix relies heavily on references 1 and 2 ; thus, the reader should have a copy of those references as he reads the following.

Rockroall miemetional

ENaOL LIST. - The following symbols appoar in the coding for Subroutine nRRAG:

$\stackrel{\text { A }}{\text { A }}$	Capture area, sq. fr.
ACI	Input value of AC saved, sq. m. (sq. ft.)
NHX	Maximin area sq. ft.
ANAM	Staximms area sq. i .
AN	Nozzle area sq. ft.
AMM	Nozzle area sq. m.
C0012	Nacelle drag increment at Nach 1.2
CDO232	Nacelle drag increment at Mach 2.32
CDOM	Nacelle drag incrernent at input Nach number
CDF12	Friction drag increment at Mach 1.2
COF232	Friction drag increment at \%ach 2.32
CDNOL2	Wave drag increment at Mach 1.2
Con 232	Wave drag increment at lach 2.32
DC	Diameter of capture area, m (ft.)
DER	Straight line slope for curve defining tach number effect on total drag
F2TiL	Conversion factor from sq. ft. to sq. m.
FTM	Conversion factor from feet to meters
IP	Set to 1 for use in equation defining CDON1
M	:tach number
METF2	Conversion factor from sq. m. to sq. ft .
MTF	Conversion factor from meter to feet
L	Total nacelle length, 3. (ft.)
LIPN	- Set to 2 for use in equation definig CDOA
L	Total naceile length, m .
Pr	π
S1	Set to 929 sq. m. (10000 sq. fi.) for basepoint wing area
S(2)	Slope at point where !lach is 1.2
S(3)	Slope at point where Hach is 2.32
SREF	Reference wing area, sq. ft.
SREPM	- Reference wing area, sq. m.
xrax	- Length to maximen area, ft.
xapar	Length to maximum area, m .

COMPUTER PROGRAM

Problem Description
Wave and friction drag increments were determined for a range of parametric nacelle shapes in reference 2. In order to determine drag increments for any nacelle shope of interest, values must be interpolated and/or extrapolated. A major part of the program is involved with the determination of the data points to use when calculating the drag associated with a given set of values of the independent variables. Once these data points are found, a cubic equation (reduces to a linear fit for two points) is fit, and the desired dependent variable is calculated. This sorting process and the resulting cubic fit occurs in a definite order and is repeated many times before the final answer is determined.

The numeric method for fitting a cubic is similar to Hermite interpolation in that the coefficients of the cubic are determined by two points and the derivatives of this cubic also satisfy the slopes evaluated at these two points. The derivatives are defined by passing parabolas through those points using a total of four points for the derivative evaluation. (A cubic is also defined using a total of three points with a modified definition for the two slopes). These points are chosen so that the desired independent variable is in the middle interval.

Nethod of Solution
There are four possible situations that must be handled by the progiam:

1. Given four points with the value of the independent variable in the middle interval,
2. When the desired value is in the last or first interval,
3. When there are only two values, and
4. When the value is outside the range of data.

Given four points with the desired value of the given independent variable in the middle interval, as shown in figure A-1, assume the equation
$Z=A X^{3}+B X^{2}+C X+D$

Figure A-1 - ILLJSTRATION OF PARANETER RANGE
will go through the points P_{2} and P_{3}. Also, the derivative

$$
\begin{equation*}
Z^{\prime}=3 A X^{2}+2 B X+C=A^{1} X^{2}+B^{1} X+C^{1} \tag{2}
\end{equation*}
$$

is evaluated at P_{2} using the points P_{1}, P_{2} and P_{3} for the calculation of the coefficients A^{1}, B^{1} and C^{1}. It is also evaluated at P_{3} using the points P_{2}, P_{3} and P_{4} sn that equation (1) passes through points P_{2} and P_{3} and the derivation equation (2), also satisfies the slope at these two points. Therefore, four equations result to determine A, B, C, and D, in enuation (1). This is the basic numeric method used by the program to determine the dependent variable Z given X_{G}. The detailed equations are contained in a following section.

When the desired value X_{G} is in the last interval, the cubic is defined by points P_{3} and P_{4}, and the derivative at P_{3} is determined by passing a quadratic through P_{2}, P_{3}, and P_{4} while the derivative at P_{4} is defined by passing a straight line through points P_{3} and P_{4}. Similarly, when X_{G} is in the first interval, the cubic is defined at points P_{1} and P_{2}. The slope at P_{2} is derived by fitting a quadratic through P_{1}, P_{2} and P_{3}. The slope at P_{1} is the slope of the straight line passing through points P_{1} and P_{2}. In both cases, only three points are used. In the event that only two points are defined, then linear interpolation is used. When constraints are violated, the process detenmines points as if the value of X_{f} is in the first or last interval. Then, a linear or cubic curve fit results in the calculation of an extrapolated value for Z.

Program Description

OPERATING ENVIRONIENT. - This program was written using standard Fortran statements using a IBM SYS370 model 168 computer with the operating systen OS/VS2.

PROGRAM SPECIFICATIONE.- Source listings of the main program, NDRAG, and subroutine NOTLAE are at the end of the appendix; memory requirements are: NDRAG - 9874 decimal bytes

NDTLAE - 3806 decimal bytes
The program uses 40 K bytes including system subroutines, and no common is used.

PROGRAI MODULE DEFINITIONS. - The main program calls subroutine NDTLAE to initiate the interpolation for the total drag given values for the independent variables. Four calls are made in order to calculate the necessary quantities at each of two mach numbers.

Main Program Ifodule (NDRAG): The main program performs the following functions:
(1) Setup of data for subroutine NOTLAE,
(2) Conversion of units,
(3) Calculation of the effect of Mach number on drag increments,
(4) Input and output and checks on independent parameter values,
(5) Setup of data in data statements.

A large portion of this module is involved in setting up the input data in the correct format for subroutine NDILAE. The input variables required for this subroutine are
$\frac{X_{\text {MAX }}}{L}, \frac{A_{N}}{A_{C}}, \frac{A_{\text {MAX }}}{A_{C}}, \frac{L}{d_{C}}, A_{C}$ and M. Here,
$d_{C}=\sqrt{\frac{4^{*} A_{C}}{\pi}}$ and these are set up and used in the English system of units. (Refer to figure $A-2$).

The main program also includes the conversion of data from English to International units (and vice-versa) for input-output convenience.

The calculations for the lach number influence on total drag increment start at statement number 83. DER, the slope, is determined from the equation

$$
\mathrm{DER}=\frac{\mathrm{CDO232}-\mathrm{CDO12}}{2.32-1.2}
$$

The slope at lach 1.2 then has a value of 2.0 * DER , and the slope at Mach 2.32 is 0.35^{*} DER. (These values for the end derivatives are estimated from a study of the basic shapes or trends inherent in curves such as Figure 61 on page 87 of reference 2). Using these two points and the two derivatives, a cubic is fit, and the total drag increment at any Men number is determined.

Additional functions include the input and output of data and the necessary calculations to determine if a constraint has been violated. If this is the case, the value of the variable is printed out and the program extrapolates.

The ranges are:
Indep. var. $1 \quad .4 \leq \frac{X_{\text {MAX }}}{\mathrm{L}} \leq 1$.

Indep. var. 2
$1.0 \leq \frac{\mathrm{A}_{\mathrm{N}}}{\mathrm{A}_{\mathrm{C}}} \leq 2.0$
Indep. var. 3
$1.25 \leq \frac{A_{\text {MAX }}}{A_{C}} \leq 2.0$
Indep. var. 4
$5.5 \leq \frac{\mathrm{L}}{\mathrm{d}_{\mathrm{C}}} \leq 7.0$
Indep. var. 5
20. $\leq A_{C} \leq 40$.

Indep. var. 6
$1.2 \leq M \leq 2.32$
Independent variables $3,4,5$, and 6 are required for the calculation of friction drag.

Included in the first part of the module are several data statements. These contain values of the independent and dependent variables as determined from Figure 24 through 59 for wave drag and from Table XIII for friction drag of reference 2. Each array has a special definition and the order of the variables is specified by the interpolation method from subroutine NDTLAE.

Values of the indepenient variables are:
Indep. var. ${ }^{\prime} \frac{X_{M A X}}{L}=.4, .5, .6, .7, .75, .8, .85, .90,95,1.0$
Indep. var. \#2, $\frac{A_{N}}{A_{C}}=1.0,1.25,1.50,2.0$
Indep. var. $3, \frac{A_{\text {MAX }}}{A_{C}}=1.25,1.50,2.0$
Indep. var. \#4, $\frac{\mathrm{L}}{\mathrm{d}_{\mathrm{C}}}=5.5,7.0$
Indep. var. $5, A_{C}=20 ., 30 ., 40$.
Indep. var. \#6, $M=1.2$ and 2.32
Each data statement array is defined below.
$N X$ is the array of the number of values for each independent variable in the order as specified above.
X is the array of individual values of the independent variables in the order as specified above.
$\mathrm{Z1}$ is the array of values of the dependent variables for friction. drag from reference 2, Table XIII.

The order of these variables in the Zl array will be described by using notation defining the independent variables used for the calculation of friction drag. Thus, variable X_{3} has three values $X_{3}(1), X_{3}(2)$ and $X_{3}(3)$; variable X_{4} has two values $X_{4}(1)$ and $X_{4}(2)$; variable $X_{5}(1), X_{5}(2)$ and $X_{5}(3)$; and the last variable X_{6} has two values $X_{6}(1)$ and $X_{6}(2)$. The first variable in the $Z 1$ array corresponds to the following order for the independent variables:

$$
\text { for } z 1(1) \text { use } x_{3}(1), x_{4}(1), x_{5}(1), x_{6}(1),
$$

Then, for the second element,

$$
\begin{aligned}
& z 1(2) \text { use } x_{3}(2), x_{4}(1), x_{5}(1), x_{6}(1), \\
& z 1(3) \text { use } x_{3}(3), x_{4}(1), x_{5}(1), x_{6}(1) .
\end{aligned}
$$

Then, for $Z 1(4), Z 1(5)$, and $Z 1(6)$ repeat the first three lines with $X_{4}(1)$ replaced by $\mathrm{X}_{4}(2)$. Now a total of six Zl values are defined for $\mathrm{Zl}(1)$ through $\mathrm{Zl}(6)$. Values for $\mathrm{Zl}(7)$ through $\mathrm{Zl}(12)$ are obtained when these first six lines are repeated with $X_{5}(1)$ replaced by $X_{5}(2)$. In the first 6 lines replace $X_{5}(1)$ by $X_{5}(3)$ then $Z 1(13)$ through $Z 1(18)$ are determined. So far, 18 lines or values for $Z 1$ have been defined using $X_{6}(1)$. If these 18 lines are repeated with $X_{6}(1)$ replaced by $X_{6}(2)$ then $Z 1(19)$ through $Z 1$ (36) are specified. These 36 lines represent the $Z 1$ matrix for the friction drag. This is the definition of the data sequence required for the Z matrix as used in subroutine NDTLAE.

ARWI through FRWI are arrays of values of the dependent variable for wave drag, for Mach 1.2. The basic method for ordering the dependent variables is the same as for the friction ${ }^{2}$. ran Z1, with two additional independent variables.

Arrays ARW2 through FPW2 are values of the dependent variables for wave drag for Mach 2.32. Again, the method for ordering is the same as for friction drag only with two additional independent variables.

Subroutine NDILAE: The main function of this subroutine is to determine the value of the dependent variable Z for given values of the independent variables $\mathrm{X}(\mathrm{I})$. These points are contained in the DATA statements appearing in the main program.

The calling sequence for this subroutine is
CALL SUBROUTINE(NIV, $X_{G}, X, Z, N X$, RES, A, B, C, D)
where
NIV Number of independent variables (4 or 6)
$X_{G} \quad$ Array of given values of independent variables
$X \quad$ Array of independent variables
Z Array of dependent variables
NX Array of number of values given for each independent variable

RES Final required Z for given $X G$ using X and Z arrays
A, B, C, D Coefficients of the cubic fit to the data points thus defining Z values (In some cases this reduces to a linear fit with two coefficients C and D).

Initially, various arrays are defined for the purpose of determining the location of the first Z to be used from the Z array. The object is to determine which interval of input points in the X array will be used to calculate the Z array given X_{G}. After these subscripts and indicators have been set, the evaluation the necessary equations for the z array can be made. The cc mposition of this array, and the sequence of steps leading to the final Z value will be outlined here. (Refer to the section 'Method of Solution" for a description of the number of intervals used given the \mathbf{X} array and to the section "Equations For Curve Fitting" for the equations used for the curve fit.)

The procedure, for calculating the location of the first z (LISTZ) to be used, starts with defining the ICF array where

$$
\begin{aligned}
\operatorname{ICF}(I)= & \text { Number of values of each independent variable (I) to be } \\
& \text { used for curve fit (i.e. } 2,3 \text {, or 4) }
\end{aligned}
$$

Next, the IGAT(I) array is set to the following values, if
$\operatorname{IGAT}(\mathrm{I})=1, \mathrm{X}_{\mathrm{G}}(\mathrm{I})$ is in one of the middle intervals
$=2, X_{G}(I)$ is in the first interval
$=3, X_{G}(\mathrm{I})$ is in the last interval.

At the same time, the L\&C (I) array is defined as the location in the X array of the first value to be used for independent variable I. Thus, the subscripts for the X array for the polynomial curve fit are obtained.

The location of $Z(I)$ given values of $X(I)$ array are then determined. The equations to do this are contained between statement numbers 32 to 35 in the listings at the end of the appendix. The formula,

$$
\begin{equation*}
z(I) \text { index }=\operatorname{LgC}(1)+\sum_{k=1}^{N I V-1} N X(1) * N X(2) \ldots * N X(k) *[L \operatorname{CDC}(k+1)-1] \tag{3}
\end{equation*}
$$

specifies the location (or index) of the element number in the $Z(I)$ array associated with each sequence of values for the independent variables X (I). (That is, an analytical gearing between the X and Z array is defined.)

Statement number 50, which sets LL, through statement number 2000, where the polynominal for the curve fit is evaluated, is described by a step by step analyses of the coding in the section "Step By Step Analysis of Subroutine NDTLE." That section also describes, by specific example, the evaluation of the LLCTR sequence at statement number 410. Thus, the location of the next Z to use is developed. Figure A-3 describes the flow within this subroutine with emphasis on control during the evaluation of the 2 matrix. (Refer to listing of subrouting NDTLAF for complete symbol definition.)

An example of the use of equation 3 will be demonstrated with the friction drag data. For convenience, number the variables 1 through 4 (instead of 3 through 6) as described in the previous discussion of independent variables; therefore,
Variable \#1 is $\frac{\mathrm{A}_{\text {MAX }}}{\mathrm{A}_{\mathrm{C}}}$ with $N X_{1}=3$,
Variable \#2 is $\frac{\mathrm{L}}{\mathrm{d}_{\mathrm{C}}}$ with $\mathrm{NX}_{2}=2$,
Variable \#3 is A_{C} with $N X_{3}=3$,
Variable \#4 is M with $N X_{4}=2$.

Let subscript refer to variable number:

$Z(1)$ is dependent variable for	$x_{1}(1)$	$x_{2}(1)$	$x_{3}(1)$	$x_{4}(1)$
$Z(2)$	$x_{1}(2)$	$x_{2}(1)$	$x_{3}(1)$	$x_{4}(1)$
$Z(7)$	$x_{1}(1)$	$x_{2}(1)$	$x_{3}(2)$	$x_{4}(1)$
$Z(21)$	$x_{1}(3)$	$x_{2}(1)$	$x_{3}(1)$	$x_{4}(2)$

Figure A-3 - NDTLAE FLOW CHART

$$
\begin{aligned}
& \text { ORIGINAD }^{\text {OF }} \begin{array}{l}
\text { POOR } \\
\text { QUGE LY }
\end{array}
\end{aligned}
$$

From equation (3) for $Z(7)$ and for element 1121,

$$
\operatorname{LgC}(1)+3 *[\operatorname{LgC}(2)-1]+3 \star 2[\operatorname{LRC}(3)-1]+3 * 2 * 3[\operatorname{LQC}(4)-1]
$$

Then the element is:

$$
1+0+6+0=7
$$

For $Z(21)$, values in equation (1) for element $31: 2$ give the element
$3+0+0+18=21$
Because of the number of variables in each array, the value of equation (3) would always be 1 , and new Z values are specified by LL arrays when modified by LLCTR values. That is, the LPC appearing in this example is modified by LL array.

PROGRAM LOGIC. - Figure A-4 shows a program flow during the calculation of the Z array. The last Z calculated is the final result. Note that in this figure the required number of Z values is determined by the number of values contained in the next array of independent variables. Figure A-5 shows in more detail the series of Z as calculated for the friction drag. ZGGGl follows as a result of ten previous curve fits where three are linear and seven are cubic.

INPUT-OUIPUT SPECIFICATION. - Standard input-output functions are utilized to input case data and to outpur the calculated total drag for each mach number. Tise input data is printed out for identification purposes.
input: A read tape 5 is used to read 1 case of 1 card containing seven numbers with a El0. 6 format. In order,

Card Colum Identification

Word \#1- A_{C}	Capture area	(CC2-10)
Word 12-A A Ax	Maximum area	(CC12-20)
Word ${ }^{3}-A_{N}$	Nozzle area	(CC22-30)
Word 4 4- $x_{\text {max }}$	Length to maximum area	(CC32-40)
Wcrd	Total lengtin	(CC42-50)
Word 16 - SREF	Reference wing area	(CC52-60)
Word \# 7 - M	Mach number	(CC62-70)

Normal input is assumed to be in the English units with the basic length measured in feet. A minus sign in colum 1 indicates the units are in the International units with the basic lergth measured in meters.

Output: A write tape 6 with an F format is used for printing data. The above input data and the friction drag, wave drag and total drag for Mach 1.2 and 2.32 are printed. Also printed is the total drag for an input Mach muber.

RESTRICTIONS. - Each figure for wave drag in reference 2 contains values of A_{N} / A_{C} for a given value of $A_{\text {max }} / A_{C}$. Physically, A/AC cannot exceed AmA/AC, but in a mathematical sense a numerical value for the drag must be determined in order to sustain the interpolation process. In this case, when a limit is exceeded, the extrapolation assumes that the limiting values of drag are used for values of A_{N} / A_{C} greater than $A_{\text {max }} / A_{C}$. That is, on figure 24 (reference 2) with two curves for A_{N} / C^{C} of 1.0 and 1.25 , drag values for the 1.50 and 2.0 curves are assumed to be identical to those for the 1.25 curve. The number of points used in the curve fit depends on where the desired value of A^{\prime} / A_{C} falls relative to the index values of $1.0,1.25,1.50$ and 2.0 . If $1.5<A_{N} / A_{C} \leq 2.0$ then last three points would be used. When $1.25<A_{N} / A_{C} \leq 1.50$, a total of four points would be used for the curve fit since this is the middle interval. When extrapolation for the other independent variables is required, no limiting values of the variables are substituted.

The terminal point for each wave drag value is specified by the condition that the boattail angle does not exceed 10°. In order to satisfy this requirement, the final drag value for each curve (i.e. each A_{i} / A_{C} value) is repeated in .05 increments for $X_{y} A x / L$ until $X_{p A X} / L$ is 1.0 . Thus, the proper drag level as set by the maximm boattail angle will be meet.

DIAGVOSTICS. - When a desired value for an independent variable does not fall within the given data range, the variable and its value will be printed. The calculations will use this value for the extrapolation as described above.

Subroutine NTILAE contains several tests to cietermine if calculated index vaiues are set properly. The statement number of the test generating the diagnostic is printed out.

TEST CASES. - Cases 1 and 2 (tables A-I and A-II are presented herein and the values of CDO have been verified by comparing with values read directly from table XIII for friction drag (CDF) and figures 24 through 59 for wave drag (CDK) in reference 2. Cases 3 and 4 are presented for the NASA LTV nacelle, described in reference 3. These cases were checked by cross plotting the curve data. The parametric study is based on a nacelle that had straight line radius connections of the inlet face, maximum cross section and the nozzle exit. The NASA LTV nacelle deviates from these straight line connections and, therefore, it is necessary to simulate the nacelle with straight lines. Case 3 (table A-III) simulates the LTV nacelle using the inlet capture area, actual maximun area, and the nozzle exit area. A considerable difference in CDO may be noted. It has been determined that the best simu-
lation is obtained by using the maxime cross-sectional area that occurs at the intersection of straight lines originating fro the inlet and the nozzle and wose slopes nearly match the slopes of the actual nacelle as illustrated in figure 5. The maxima area deviation will be approximately 10t. Case 4 (table A-IV) represents the later simulation and the CDO's agree with the calculated $C 00^{\prime} \mathrm{s}$. The difference in CNW is attributed to the following considerations:

1. The wing was resized from 10,996 sq.ft. for the reference configuration to $9819 \mathrm{sq} . \mathrm{ft}$. for the parametric study.
2. The nacelles were relocated further inboard and forward in accordance with the ground rules of reference 1. (See figure 21 of reigrence 1).
The above discussion concerns only the 1.2 and 2.32 Mach number data points. The additional cNO at any specified Mach muber is derived fro a cubic curve fit described on page 5. The deviation of C10 may be as much as -. 0002 between 1.3 Mach and 1.5 Mach due to the fact that the true drag coefficient as a function of Mach muber does not necessarily follow a cubic.

Figure A-5 nacelle normalized cross-sectional area variation

tapie A-I.-Case 1 Output

macelne ctcmetay

	ture area IMIM AKEA zlf area - UF MAX. AREX AL LEMGTM	$\begin{array}{r} 2.17 \\ 4.18 \\ 3.48 \\ 6.22 \\ 10.36 \end{array}$		$\begin{aligned} & 30.50 \\ & 45.50 \\ & 37.50 \\ & 20.40 \\ & 33.99 \end{aligned}$	$\begin{array}{ll} \text { SO } & \text { FTi } \\ \text { SC } & \text { FT } \\ \text { FT } \end{array}$	
WTMG REF	NCE AREX	- 929.03	3ch	00.1	50 F	
JUCREMEHTAL WACELLE IURAG COEFFICIENTS						
dnax 1 =	0.600 an/AC=	1.250	AmAX/AC=	1.500 L/DC $=$		5.500

tabie A-II.-Case 2 Outy t
riactue picnithy

CAPTEPE AFEA	3.7\%	it m	1	$4 \therefore 2$	SC FTI
MAXIPlim akfa	7-4:	S6 M	1	と-.t	SL FTI
NCPILI AHEA	5.6	Sc: M	1	c*- -	SUHT)
LC.G. (FF MAX. AKta	1? ${ }^{\text {2 }}$	m	1	-2-40	FT
TGTal Lemith	13.43	m	1	-4.96.	FT 1
REftrtact APta	j	S¢M	1	corues:	St FTI

JNGFEMENTAL NACELLE PRAG (Git-ICITNTS

MACH : 032
Mi= 0. 50.4
ORIGINAL PAGE IS
OF POOR QUALITX

TABIE A－III．－Case 3 Output

naCELLE G．fMATPY

TABIE A－N．－Case 4 Outpent．

verril g．．．itgy

Cartic： $27 \begin{gathered}\text { a }\end{gathered}$	＜ 0.7	$\triangle \mathrm{m}$	1	－7．が兄	S（ FT）
＊aximen acit	S－17	\bigcirc	1	55－0．t．	SO FTI
NUT7L：AQF：	－	51 m	1	Le．1：	SS FTI
LSO．F－mive CFFs	0．： 5	\dagger	1	2－00．	－T
Trital Lirute	12． 1	：	1	42.03	FT

MAC！1－0：Cnn＝j．うが．46

bquations for Curve fitting

1. Slope using parabolic fit

General equation of parabola

$$
\begin{align*}
& z=a x^{2}+b x+c \tag{1}\\
& \text { Slope of parabola } \\
& z^{\prime}=2 a x+b \tag{2}
\end{align*}
$$

If given three independent variable values with corresponding dependent variable values then:

$$
\begin{align*}
& x_{1}, z_{1} \quad x_{2}, z_{2} \quad x_{3}, z_{3} \\
& z_{1}=a x_{1}^{2}+b x_{1}+c \tag{3}\\
& z_{2}=a x_{2}^{2}+b x_{2}+c \\
& z_{3}=a x_{3}^{2}+b x_{3}+c
\end{align*}
$$

Solving equation (3) for a and b
$a=\frac{\left(z_{1}-z_{2}\right)\left(x_{1}-x_{3}\right)-\left(z_{1}-z_{3}\right)}{\left(x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}-x_{2}\right)}$
$b=\frac{\left(x_{1}^{2}-x_{2}^{2}\right)\left(z_{1}-z_{3}\right)-\left(x_{1}^{2}-x_{3}^{2}\right)\left(z_{1}-z_{2}\right)}{\left(x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}-x_{3}\right)-\left(x_{1}^{2}-x_{3}^{2}\right)\left(x_{1}-x_{2}\right)}$
Then substituting in (2) above the slope at X_{G} is
$S=2 a X_{G}+\frac{\left(z_{1}-Z_{2}-\left\{\left(x_{1}\right)^{2}-\left(x_{2}\right)^{2}\right\} a\right)}{x_{1}-x_{2}}$
2. Derivation of coefficients for the cubic

General form of cubic

$$
z=a x^{3}+b x^{2}+c x+d
$$

Slope of cubic
$Z^{\prime}=3 a x^{2}+2 b X+c$
To determine the cubic passing through two given points, $\left(x_{2}, z_{2}\right)$ and $\left(X_{3}, Z_{3}\right)$, and having given slopes, S_{2} and S_{3}, at these points, the following system of equations is solved for a, b, c, and d.

$$
\begin{align*}
& z_{2}=a x_{2}^{3}+b x_{2}^{2}+c x_{2}+d \tag{4}\\
& z_{3}=a x_{3}^{3}+b x_{3}^{2}+c x_{3}+d \\
& s_{2}=3 a x_{2}^{2}+2 b x_{2}+c
\end{align*}
$$

$$
s_{3}=3 a x_{3}^{2}+2 b x_{3}+c
$$

Solving for the four unknowns:

$$
\begin{aligned}
a & =\frac{-\left\{2\left(z_{3}-z_{2}\right)-\left(s_{2}+S_{3}\right)\left(x_{3}-x_{2}\right)\right\}}{\left(x_{3}-x_{2}\right)^{3}} \\
b & =\left\{\frac{z_{3}-z_{2}}{x_{3}-x_{2}}-s_{2}-\left(x_{3}+2 x_{2}\right)\left(x_{3}-x_{2}\right) a_{a}\right\} \frac{1}{x_{3}-x_{2}} \\
c & =s_{2}-2 x_{2} b-3 x_{2}^{2} a \\
d & =z_{2}-a x_{2}^{3}-b x_{2}^{2}-c x_{2}
\end{aligned}
$$

3. Final calculation of dependent variable

The dependent variable Z is then calculated using the coefficients a, b, c, d and the given value of x_{G} in the equation
$z=a x_{G}{ }^{3}+b x_{f_{j}}^{2}+c X_{G}+d \quad$ or
$z=d+X_{G}\left(c+x_{G}\left(b+x_{G} a\right)\right\}$

The sequence of steps to calculate the friction drag will be defined by reference to the program steps contained in subroutine NDTLAE. Primary emphasis of the following discussion is on setting values of counters and subscripts leading to the determination of the final interpolated value for 2.

Thus, refering to the section on subroutine NDTLAE for definition of independent variables,

$$
N X(1)=3, N X(2)=2, N X(3)=3, N X(4)=2 .
$$

Fro: statements starting at statement number 3,

$$
\operatorname{ICF}(1)=3, \operatorname{ICF}(2)=2, \operatorname{ICF}(3)=3, \operatorname{ICF}(4)=2 .
$$

Program steps ending at statement number 23 define the LqC array as:
$\operatorname{LgC}(1)=1, \operatorname{LgC}(2)=1, \operatorname{LgC}(3)=1, \operatorname{LgC}(4)=1$.
Also, for IGAT assume $\operatorname{IGAT}(1)=3$, $\operatorname{IGAT}(2)$ is linear, $\operatorname{IGAT}(3)=2$, IGAT(4) $=3$. Refer to equation (3) of this appendix for the location of $\equiv d$, first Z to be used, i.e.

LISTZ $=\operatorname{LDC}(1)=1$
The basic logic for performing the calculations, starts at statement number 50.
$\mathrm{NIV}=4$
$L=0, L L=0, \operatorname{LLCTR}(I)=0, I=2,3,4,5$
$50 \mathrm{LL}=\operatorname{LIST} Z=1$
$K=1$
$\mathrm{L}=\mathrm{L}+\mathrm{l}=1$
$\mathrm{IC}=\operatorname{ICF}(1)=3$
For $\mathrm{J}=1,2,3$, and $\mathrm{M}=1,2,3$:
$\operatorname{ZPR}(1)=Z(1)=Z_{1111}, \operatorname{ZPR}(2)=Z_{2111}, \operatorname{ZPR}(3)=Z(3)=Z_{3111}$
The derivative of X (XPR) with vaules from first X array are then determined:

$$
\operatorname{XPR}(1)=X_{1}(1), \operatorname{XPR}(2)=X_{1}(2), \operatorname{XPR}(3)=X_{1}(3) \text { and } I I X=N X_{1}=3 .
$$

Then, $\mathrm{IL}=\operatorname{IGAT}(1)=3$ for XG_{1} in last internal for variable XI ; then go to 72.

At statement \#72,
$\operatorname{IPN}=1, \operatorname{IIN}=\mathrm{L}=1, \mathrm{IS}=2, \mathrm{M}=3, \mathrm{IRX}=1$ and go to 80
At statement number 80,
$\mathrm{IN}=\mathrm{IN}+\mathrm{IRX}=2, \mathrm{IP}=\mathrm{IPN}+\mathrm{IRX}=2$
Calculate slopes $S(2), S(3)$ and A, B, C, D and final $Z P R(1)=A X^{3}$ $B X^{2}+C X+D$ for $X=X G_{1}$ (The equations for these quantities are defined in Appendix A)

Note that $\operatorname{LLCTR}(2)=0$ here
$K=K+1=2$
$\operatorname{LLCTR}(2)=\operatorname{LLCTR}(2)+1=1$
Test $\operatorname{LLCTR}(2)-\operatorname{ICF}(2)=1-2<0$ and
$\mathrm{K}-2=0$, go to 310 for next Z to be used from Z array
Find $L L=L L+L L C T R(2) * L P$ where $L P=L P *: X X(1)=3$
Note that $\operatorname{LLCTR}(3)=0$, then
$L L=3$
go to 50
Therefore, here $Z_{G 111}$ in $\operatorname{ZPR}(1)$ has been calculated and since $L L=L L+L I S T Z=L D C(1)+3=4$, the next cycle will calculate $Z_{G 211}$. (Note $\left.\operatorname{LLCTR}(2)=1\right)$

Reset, $\mathrm{K}=1, \mathrm{~L}=\mathrm{L}+1=2, \mathrm{IC}=\operatorname{ICF}(1)=3$
For $Z P R, J=1,2,3, M=2,3,4$ and
$Z \operatorname{PRR}(2)=Z(4), Z \operatorname{PR}(3)=Z(5), Z \operatorname{PR}(4)=Z(6)$
Again, for X array, $1 I X=3$ and since $k=1$, $I X=L \varnothing C$ (1)=1 so that
$\operatorname{XPR}(1)=X_{1}(1), \operatorname{XPR}(2)=X_{1}(2), \operatorname{XPR}(3)=X_{1}(3)$.
Again, IGAT(1)=3, go to 72 and calculate slopes, A, B, C, and D for fit so $\operatorname{ZPR}(2)$ is defined.
$k=k+1=2$
$\operatorname{LLCTR}(2)=\operatorname{LLCTR}(2)+1=2$
$\operatorname{LLCTR}(2)=\operatorname{ICF}(2), \operatorname{ICF}(2)=2$
go to $301, K<N I V$, go to 500
$\mathrm{L}=\mathrm{L}+1-\operatorname{ICF}(2)=1$
go to 55
Note that here $z_{\text {rill }}$ and $z_{G 211}$ in $\operatorname{ZPR(1)}$ and $\operatorname{ZPR}(2)$ have been calculated and next is a linear interpolation with respect to X_{2} values.

Subscripts for z are defined in Figure 6.
At 55 , IIX $=\operatorname{NX}(2)=2$ and since $K \geqslant 1$, go to 49 where
$\mathrm{I}=\mathrm{K}-1=1$ and $\mathrm{IX}=\mathrm{NX}(1)+1$ CD $(2)=3+1=4$
$\mathrm{IXP}=\mathrm{IX}+\mathrm{J}-1=4,5$ for $\mathrm{J}=1,2$ so that
$\operatorname{XPR}(1)=X_{4}(1), \operatorname{XPR}(2)=X_{4}(2)$
IIX=2 so go to statement number 64 for linear curve fit

$K=K+1=3, \operatorname{LLCTR}(3)=\operatorname{LLCTR}(3)+1+1, K>2$, to to 315 and
Set $\mathrm{KK}=\mathrm{K}-1+2, \operatorname{LLCTR}(2)=0$
Find next z to be used from array, redefine $L L$ where $N X_{1}=3, N X_{2}=2$

Note: Subscripts refer to values of independent variable and G refers to the desired value of each independent variable. Thus $\mathbf{Z}_{\mathbf{G} 2} 11$ means the Z for X_{G} for variable $H 1$, the second value for variable $\neq 2$, the first value for variable \#3 and the first value for variable \#4.

Figure A-6. 2 CALCULATION FOR FRICTION DRAG
$L=\mathrm{NX}_{1}{ }^{*} \mathrm{NX}_{2}=6$
go to 50
The next 6 elements of the Z matrix will be processed for $Z_{G 121}$ and $Z_{\mathrm{G} 221}$ with the same logic as for the first six elements, but now LL=LL+ LISTZ $=7$ for Z the prime values. The X values are the same as for the first six lines.

The next series of calculations ends with the calculation of $Z_{G G 21}$ from $Z_{G 121}$ and $z_{G 221}$. Similarly, $z_{G 131}$ and $z_{G 231}$ are used to determine $Z_{G G 31}$. Since three values of Z for variable number 3 have been determined a cubic can be fit and the resulting answer is $z_{G G G 1}$. Thus one value of Z has been determined corresponding to the first value for variable number 4.

Next, replace variable 4 by its second value and proceed through tl calculations the same as above. This determines $Z_{G G G 2}$ and one more line interpolation produces $Z_{\text {GGGG }}$ the desired value of the dependent variable given values of the independent variables.

RE GUES TED OPTIUNS: LIST, XHtF, IECK

SGURCE EBCLIC. LIST I.FCK LUEU:LI MAF MMPUHMAT GUS.TMT XRGF ALC NUAN:F NUTEMMINAL FLAGIIS

 9-.00048 (

芯

C
$15 N 0017$

ISN 0018

C

 2－．0n318，－．0n0186，－．00014，－009147，－．0．02，ARW20013

 $9-.000332$ ，

ERWIOCTG \qquad
ERWI OOSI
tRW1 Ö492
EKWI Uし4 3
EKWICOY4
ERWIDOMS
ERWI nesc
tKWIUC47
E．WWI UU4 8
EKWI ごC99
ERWIGIU＇」
FFW1 8101
FRWIOLCZ
FRWIOLC3
arwacoll
arw2000i2
ARH2 0003
AfW20004
ARw？juOS
akwzosion
ARW20CJ7
ARW20COB akW20004

ARW2OC17
ARW20i14
ARW20020

ISN 0019

5KW2C021

C

SN 0024

 $5.00073, .00065, .000575, .000505, .00 \cup 62 \ldots 0 \cdot 002, .00002$, FKW20110

PI $=3.141593$
FTM $=.3448$
F2 TMC $=.092403$
MTF $=3.28044$
M2TF2 $=10.76391$
S1=10050.
1 REAS (5,10) AC,AMAX,AN,XMAX,L,SHEF,M
10 FURMAT(7F-1C.6)
If (AC) 5,7.7
5 SREFESREF*M2TF2
7 CDF12=0.
COW12=0.
C0012=0.
C1F232 = C 。
CDW232=C.
CuO232=î.
cromzo.
SRAT10 =SI/SREF
$X(11)=X M A X / L$
$X(P)=A N / A E S(A C)$
ISN 0044
ISN
ISN
ISN
ISN 0046
$X C(3)=A M A X / A B S(A C)$
$D C=\operatorname{SORT}\left(4 A_{A G S(A C)} / \boldsymbol{\mu}\right)$
$X G(4)=1 . / 1: C$
IF (AC) 15,17,17
15 AC.MFAGS (AC.)
AC =ACM * M2TF2
$A C 1=A C$
AMAXM=AMAX
AMAX=AMAX * M2TF?
ANM =AN
AN =AN * M2TF2
XMAXM $=$ XMAX
XMAX $=X$ MAX \div MTF
LM $=$ L
L=L MTF
SREFM=SREFFF2TM2
GO TO 20
17 ACM=AC*F $2 T M 2$
AMAXM =AMAX F2TM?
ANM = AN * FZTM2
XMAXM $=$ XMAX * FIM
LM = L* FTM
SREFM = SPEF * F2TM2
20) XG (5) $=A E S(A C)$
 GO TO 3 !
25 WRITE (t,101) XG(1)
30 IF (XG12).LT.1. UUR XG(2) N.T.\%.) (O 7035 ro TO 43
35 WRITE 10,1021 XG(2)
40 IF (XG(3).LT.1.25 ©OR. XG(3).GT. 2.1 GO TU 45 HO TO 5 r.
45 WRITE (0,103) XG(3)
5. IF (XG(4).LT.5.5 - OR. XG(4).GT.7.) G(TII 55 60 T0 60
55 WRITE $(0,1041 \times 614)$
60 IF (XG(5).LT.20. OR. XGI5). $6 T .4$ O.) 60 TO 70
65 ro TO 75
7S WRITE(0.105) XC(5)
$75 \mathrm{XG}(6)=1 .{ }^{2}$

SI G9Vは TVNIDIMO

REOUESTED OPTICNS: I.IST,XREF OFCK
OPTIONS IN EFFFCT: NAME(MAIN) OFTIMIZE(I) LINECOUNT(42) SIZE(MAX) AUTODRL(NONE)
SCIRCE ERCDIC LIST DECK OFJECT MAP NOFCIRMAT GOSTMT XREF ALC NOANSF NOTERMINAL FLAGII

DIMFNSIRN NX(1). LOC(NIV), XG(1), X(1), 211), ZPR(4 + 3*(NIV - 2)), NDTOO350

(JAN 75)
NOTLAF
nS/3er fortran hextendeo

1 SN 0087 ISN OOA8 15N On88 ISN 0090 ISN 0091 1 SN 0092 ISN 0093

ISN 0094 ISN 0096 ISN 9097 1 SN ONAB ISN 1099

ISN 0100 _ ISN 0101 15N 0102 1 SN 0103 ISN 0104 ISN 010 1SN 0106

1SN C207 ISN 0108 1SN 0109

ISN 0110
C
c
TE.t NUMRFR TE PRINTS
1F111X-71 63. 64, 65
62C $=0.0$

O4C = (2PR(L+1)-2PR(L))/(XPR(2) -XPR(1))
GA $0=2 P R(L)-C \neq X P R(1)$
50 102000
69 IL m IGAT(K)
C
C
C
DFTERMINF WHAT INTFRVAL X GIVFN IS IN
IFIIL.LT.I .OR. IL.GT.3) G, TR 68 G. TO 170, 71, 721, IL

OR WRITE $(0,4000)$
"COA FORMATI IN VALID INDEX FOR COMPUTED GD TO STOP
c
c
c
X GIVEN IN FIRST INTERVAL
ONLY FIRST THREE POINTS WILL BF USED FOR CURVF FIT
71 1S = 3
$1 P N=1$
TIN = L
$M=2$
$I P X=0$
$8 \cap \operatorname{TN}=11 N+1 R X$
IP =IPN + IRX
C
C
C
Calculate thf slope of straight line
$S(M)=\{2 P R(I N+1)-2 P R(I N) \mid /(X P R(I P+1)-X P R(I P) \mid$ If $=1$ ro TD 1050
C A GIVEN IN LAST INTERVAL ONLY THREE POINTS WILL RE USEO

DATF $76.009 / 08.56 .13$
NOTO1960
NOTO1970
NOTO2980
NOTO1990
NDTO2000
NDT02010
NDT07020
NDT02030
NOT02040
NDT02090
NOT02060
NDT02070
NDT02080
NDT02090
NOTO2 100
NDTO2110
NDT02120
NDT02130
NOT 02140
NDTO2150
NOTO2160
NOT02170
NDTO2 180
NOT02180
NDTO2200
NDT02210
NDT02220
NOTO2230
NOTO2240
NOTu22月.
NDT02260
NOT02270
NOTO22E0
NDT02290
NOTO2300
NOYO2310
NOTO2320
NOT02330
NDTO2340
NOTO2380

\%	1 JAN 75	1 netlaf	OS/300 fertran	h extenoti
	c	final 2 value		
15 N 0150	600	RES $=2 \mathrm{PE}(1)$		
ISN 0160		RETURN		
ISN C151	9000	WRITF	(A. 111) IFRR	
ISN 0162	111	FORMATI3OHI ERROR	occurred at statement	121
ISN 0163		STOP		
ISN 0164		fNo		

NDT 03210 NDTO3220 NDTO3 230

? E EFERENCES

1. Bonner, E., et al, Influence of Propulsion System Size, Shape, and Location on Supersonic Aircraft [hesign, Rockwell International, NASA CR 132544, December 1974.
2. Boaner, E., et al, Effects of Nacelle Shape on Drag and Weight of a Supersonic Cruising Aircraft, Rockwell International, NASA CR-144893, October 1975.
3. NASA CR-132374, Advanced Supersonic Technology Concept Study Reference Characteristics, Hampton Technical Center LIT Aerospace Corporation, 21 necember 197.
4. Lockheed-Califormia Company Report LR 26133, An Airline's View of Reserve Fuel Requirments for the Supersonic Transport, 19 September 1973.
5. Bushell, K. W., Measurement and Prediction of Jet Noise in Flight, AIAA Paper 75-461.
6. Crosthwait, E. L., Kennon, Jr., I. G., and Roland, H. G., et al, Freliminary Design Methodology for Air-Induction Systems, General Dynamics, Fort Worth Division, Technical Report SEG-TR-67-1, January 1967.
7. Schoenherr, K. W., Resistance of Flat Plates Moving Through a Fluid, Transactions of Society of Naval Architects and Marine Engineers, Vol 40, pp 279-313, 1932.
8. Sommer, S., and Short, B., Free Flight Measurements of Turbulent Boundary Skin Friction in the Presence of Severe Aerodynamic Heating at Mach Numbers from 2.8 to 7.0, NACA TN 3391, 1955.
9. Lomax, H., The Wave Drag of Arbitrary Configurations in Linearized Flow as Determined by Areas anc Forces in Oblique Planes, NACA RM A55A18, 1955.
10. Bonner, E., Theoretical Prediction of Supersonic Pressure Drag, Rockwell International Report NA-66-862, 1966.
