General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-134941 VOLUME XI

SAM

ENERGY CONVERSION ALTERNATIVES STUDY -ECAS-WESTINGHOUSE PHASE I FINAL REPORT Volume $\mathbf{X}\mathbf{I}$ – ADVANCED STEAM SYSTEMS

by R.W. Wolfe

WESTINGHOUSE ELECTRIC CORPORATION RESEARCH LABORATORIES

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION NATIONAL SCIENCE FOUNDATION

NASA Lewis Research Center Contract NAS 3-19407

(NASA-CE-134941-Vol-11) ENERGY CONVERSION ALTERNATIVES STUDY (ECAS), WESTINGHOUSE PHASE 1. VOLUME 11: ADVANCED STEAM SYSTEMS Final Report (Westinghouse Research Labs.) Unclas CSCL 10B G3/44 28176 315 p HC \$9.75

N76-23702

 4. Title and Subsidie MERCY CONVERSION ALTERNATIVES STUDY (ECAS), WESTINGHOUSE PHASE 1 FINAL REPORT VOLUME XI - ADVANCED STEAM SISTEMS 7. Author(s) A. W. Wolfe, et al Performing Organization Report No. TA-000, 200, 200, 200, 200, 200, 200, 200,	1.	Report No. NASA CR-134941 Volume 11	2. Government Access	ian No.	3. Recipient's Catalog	No.
VOLUME XI - ADVANCED STEAM SYSTEMS 5. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. R. W. Wulfe, et al 10. Work Unit No. 9. Performing Organization Name and Address 10. Work Unit No. Westinghouse Electric Corporation 11. Contract or Grant No. Research Laboratories 11. Contract or Grant No. Pittsburgh, PA 15235 11. Contract or Grant No. 12. Spontoring Agency Name and Address 11. Contract or Grant No. Energy Research and Development Administration 13. Type of Report and Period Covared National Acronautics and Space Administration 14. Sponsoring Agency Code National Science Poundation 2. Weakington, D.C. 14. Sponsoring Agency Code Supplementary Notes 14. Sponsoring Agency Code Project Managers: 14. Sponsoring Agency Code N. J. Brown, NASA Lewis Research Laboratorius, Pittsburgh, FA 15235 15. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them ovar a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy cost because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energ	4.	ENERGY CONVERSION ALTERNATIVES			•	<u>1976 </u>
 R. W. Wolfe, et al Per'orming Organization Name and Address Westinghouse Electric Corporation Research Laboratories Pittsburgh, PA 15235 11. Contract or Grant No. NAS 3-19407 12. Sponsoring Agency Name and Address Energy Research and Davelopment Administration National Science Foundation Washington, D.C. 13. Type of Report and Period Covared Contractor Report 14. Sponsoring Agency Code 15. Supplementary Notes Project Managers: W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, PA 15235 16. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/NJ (2.5 mills/kWn). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric 					6. Performing Organia	ration Code
 9. Performing Organization Name and Address Westinghouse Electric Corporation Research Laboratories Pittsburgh, PA 15235 11. Contract or Grant No. NAS 3-19407 12. Sponsoring Agency Name and Address Energy Research and Development Administration National Asronautics and Space Administration National Asronautics and Space Administration National Science Foundation Washington, D.C. 15. Supplementary Notes Project Managers: W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, FA 15235 16. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric 	7.		* <u></u>		Westinghouse	Report No.
Research Laboratories Pittsburgh, PA 15235 11. Contract or Grant No. NAS 3-19407 12. Sponsoring Agency Name and Address Energy Research and Development Administration National Acronautics and Space Administration National Science Foundation Washington, D.C. 15. Supplementary Notes Project Managers: W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, PA 15235 16. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced the lowest energy cost by the small margin of 0.69 mills/NJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric	9.	Per 'orming Organization Name and Address	· · · · · · · · · · · · · · · · · · ·		10. Work Unit No.	
 12. Sponsoring Agency Name and Address Energy Research and Development Administration National Aeronautics and Space Administration National Science Foundation Washington, D.C. 13. Supplementary Notes Project Managers: W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, PA 15235 16. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric 		Research Laboratories	on	-		
Energy Research and Development Administration 10.00000000000000000000000000000000000	<u> </u>		······		13. Type of Report an	nd Period Covared
 National Science Foundation Washington, D.C. 15 Supplementary Notes Project Managers: W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, PA 15235 16. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric 	12.	Energy Research and Development			Contractor	Report
 15 Supplementary Notes Project Managers: W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, PA 15235 16. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric		National Science Foundation	Administration		14. Sponsoring Agency	Code
 W. J. Brown, NASA Lewis Research Center, Cleveland, OH 44135 D. T. Beecher, Westinghouse Research Laboratories, Pittsburgh, PA 15235 16. Abstract A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/NJ (2.5 mills/kWn). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric 	15,	Supplementary Notes				
A parametric analysis was made of three types of advanced steam power plants to make a comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWn). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric		W. J. Brown, NASA Lewis Researc	h Center, Clevela earch Laboratorie	nd, OH 44135 s, Pittsburgh, PA	15235	
comparison of the cost of electricity produced by them over a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric	16.	Abstract	·····			······································
variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWn). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric		• •	•			
resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWn). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric		•				
cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric						
pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/KWR). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric	[
0.69 mills/MJ (2.5 mills/kWn). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric						
determine its cost and performance more accurately than was possible in a broad parametric	1					
	ļ			-	-	
study and to ascertain problem areas which will require development effort.	1	-		-		ametric
		study and to ascertain problem	areas which will	require developmen	t effort.	
	Ì					
	Į					
					•	
ORIGINAL' PAGE IS				ORIGINA	L PAGE IS	
OF POOR QUALITY	[•
		•				
17. Key Words (Suggested by Author(s)) 18. Distribution Statement	17.	Key Words (Suggested by Author(s))		18. Distribution Statement		
Unclassified - Unlimited	1	· · · ·		Unclassified -	Unlimited	!
	1					
	l					
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*						
Unclassified Unclassified	19,	Security Classif, (of this report)	20. Security Classif. (c	f this page)	21. No. of Pages	22. Price*

si≉ ≎i

* For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev. 10-75)

ACKNOWLEDGMENTS

Section 12 entitled "Advanced Steam Systems" was centered in the Westinghouse Research Laboratories under the direction of R. W. Wolfe.

Those making significant contributions were:

- R. Draper, who developed steam generator descriptions.
- D. J. Amos, et al of the Westinghouse Gas Turbine Engine Division, who provided cost data on gas turbine generators.
- N. A. Salemi o, the Westinghouse Product Transition Laboratory, who costed some of the heat exchangers and piping systems.
- J. L. Steinberg and G. J. Silvestri of the Westinghouse Steam Turbine Division who calculated the performance and price of certain steam turbines.
- W. Kaponis of the Westinghouse Steam Division, who developed pricing for several steam turbine generators
- C. T. McCreedy and S. M. Scherer of Chas. T. Main, Inc. of Boston, who prepared the balance of plant description and costing, site drawings, and provided consultation on plant island arrangements and plant constructability.

i -

TABLE OF CONTENTS

NASA Report No. NASA CR-134941

Volume	I	Section 1 Section 2	INTRODUCTION AND SUMMARY GENERAL ASSUMPTIONS
Volume	II	Section 3	MATERIALS CONSIDERATIONS
Volume	III	Section 4	COMBUSTORS, FURNACES, AND LOW- BTU GASIFIERS
Volume	IV	Section 5	OPEN RECUPERATED AND BOTTOMED GAS TURBINE CYCLES
Volume	v	Section 6	COMBINED GAS-STEAM TURBINE CYCLES
Volume	VI	Section 7	CLOSED-CYCLE GAS TURBINE SYSTEMS
Volume	VII	Section 8	METAL VAPOR RANKINE TOPPING-STEAM BOTTOMING CYCLES
Volume	VIII	Section 9	OPEN-CYCLE MHD
Volume	IX	Section 10	CLOSED-CYCLE MHD
Volume	X	Section 11	LIQUID-METAL MHD SYSTEMS
Volume	XI	Section 12	ADVANCED STEAM SYSTEMS
Volume	XII	Section 13	FUEL CELLS

11

EXTENDED TABLE OF CONTENTS

Volume XI

	Page
ACKNOWLEDGMENTS	i
TABLE OF CONTENTS	11
SUMMARY	vi
12. ADVANCED STEAM SYSTEMS	12-1
12.1 State of the Art	12-1
12.2 Description of Parametric Points Investigated	12-7
12.2.1 Atmospheric Furnace Systems	12-7
12.2.2 Pressurized Boiler-Gasifier System	12-10
12.2.3 Pressurized Fluidized Bed Boiler System	12-11
12.2.4 Atmospheric Furnace System Parameters	12-15
12.2.5 Pressurized Boiler-Gasifier System Parameters.	12-21
12.2.6 Pressurized Fluidized Bed Boiler System	
Parameters	12-21
12.3 Approach	12-25
12.3.1 Atmospheric Furnace Systems	12-25
12.3.2 Pressurized Boiler-Gasifier System	12-31
12.3.3 Pressurized Fluidized Bed Boiler System	12-31
12.4 Performance Results of the Parametric Study	12-33
12,4.1 Atmospheric Furnace System	12-33
12.4.2 Pressurized Boiler-Gasifier System	12-37
12.4.3 Pressurized Boiler Fluidized Bed Boiler System	12-43
12.5 Capital and Installation Costs of Plant Components	12-61
12.5.1 Atmospheric Furnace System	12-61
12.5.1.1 Boilers	12-61
12.5.1.2 Steam-Turbine Generator	12-67
12.5.1.3 Steam Piping	12-76
12.5.1.4 Feedwater Heaters	12-77

1

102

- T-

10

EXPANDED TABLE OF CONTENTS (Continued)

Pa	ag	е

	12.5.2	Pressuri	Lzed B	oiler-O	Gasifier	r Syst	em .			•	•	12-77
	3	2.5.2.1	Boile	r								12-77
	Ī	12.5.2.2	Steam	1 Turbir	ne-Gener	rator		٠			•	12-81
	-	L2.5.2.3	Steam	n Piping	ş					•	•	12-81
	1	12,5.2.4	Feedw	ater He	aters			•			•	12-81
	2	12.5.2.5	Gas 1	urbine-	General	tor .						1282
		12,5.2.6	Hot 0	as Pipi	ing						•	12-82
	:	12.5.2.7	Stack	-Gas Co	oler .					•	•	12-83
	12.5.3	Pressur:	ized H	luidize	ed Bed i	Boiler	Sys	țem		•	•	12-85
		12.5.3.1	Boile	er								12-85
	:	12.5.3.2	Steam	n Turbin	ie-Gene:	rator		•		•	•	12-87
	:	12.5.3.3	Stear	n Piping	g		• •	•		•	•	12-87
		12.5.3.4	Feed	vater He	eaters		• •	•		•		12-87
	:	12.5.3.5	Gas 1	Curbine	-Genera	tor .		•		•		1287
		12.5.3.6	Hot (Gas Pip:	ing	• • •	•••	•		٠	•	12-87
		12.5.3.7	Stacl	k⊶Gas Co	ooler .		•••	•			•	12-87
	12.5.4	Summary	of Sy	stems a	and Com	ponent	s.	•		•	•	12-89
12.6	Analys	is of Ove	rall (Cost of	Electr	icity		•		•	•	12-89
	12.6.1	Atmosph	eric]	Furnace	System	s.,	•••	•		٠	•	12-89
	12.6.2	Pressur	ized H	Boiler-	Gasifie	r Syst	em .	•			•	12-121
	12.6.3	Pressur	ized]	Fluidiz	ed Bed	Boiler	: Sys	stem		•	•	12-127
	12.6.4	Effects	of Of	ther Ch	anges o	n Cost	: of	Ele	ctr	ici	lty	12-135
12.7	Conclu	sions and	Recor	nmendat	ions .	• • •	• • •	•		•	•	12-161
Appendix A	12.1	Steam Tur	bine l	Pricing	and Eq	uipmen	nt Co	nfi	gur	ati	lons	12-170
A 12.	1.1 Ba	sis of Tu	rbine	Pricin	g					•	•	12-170
A 12.	1.2 Ad	ded Table	s for	Westin	ghouse	Price	List	: 12	52.			12-170
A 12.	1.3 Di	scussion	of Pr:	icing								12-177
	A 12.1	.3.1 Int	roduci	tion ,		· • • •					•	12-177
	A 12.1	.3.2 Low	-Pres	sure El	ements	• • •				٠	•	12-177
	A 12.1	.3.3 Hig	h-Pre	ssure E	lements			• •				12-178

<u>Listen status</u>

دخت

EXPANDED TABLE OF CONTENTS (Continued)

•

•

	Page
A 12,1.3,4 High Temperatures	12-179
A 12.1.3.5 Configurations	12-179
A 12.1.3.6 Costing	12-181
A 12.1.3.7 Price List Tables	12-182
A 12.1.3.8 Prices	12-183
A 12.1.4 Summary of Pricing for 500 MW and 900 MW Turbine-	
Generators	12-133
Subappendix AA 12.1.1 Price List 1252 - Steam Turbine	
Generator Units	12-188
Subappendix AA 12.1.2 Proposal Descriptive Leaflets	12-223
AA 12.1.2.1 500 MW Turbine Generator Configurations .	12-224
AA 12.1.2.2 900 MW Turbine Generator Configurations .	12-229
AA 12.1.2.3 Element Pictures and Features	12-231
Subappendix AA 12.1.3 Weights and Dimensions	12-243
Appendix A 12.2 Description of Pressurized Boilers	12-260
A 12.2.1 The Duty of the Pressurized Boilers for the Base	
Case, Point 16	12-260
A 12.2.2 General Configuration of the Boiler	12- 261
A 12.2.3 Distribution of Main Evaporator, Superheat, and	
Reheat Tube Banks within the Pressurized Boiler $$.	12-261
A 12.2.4 Special Features of the First Evaporator Water-	
Wall Sections	12-265
A 12.2.5 Design of Crossflow Superheat and Reheater Banks	12-275
Appendix A 12.3 Pressurized Boiler Price Analysis	12-278
Appendix A 12.4 Hot Gas Pipe Reference Configuration Costs	12-282
Appendix A 12.5 Stack Gas Cooler Cost Breakdown	12-287
Appendix A 12.6 Thermodynamic Gamesmanship/Combined Cycles	12-288
Subappendix AA 12.6.1 Combined-Cycle Efficiency	12-301
Subappendix AA 12.6.2 Typical Reversibility Index Values	12-305

ويستحقق والمشارع والمسرب والمعتجان والمتعاقب المشارين فالمتعا

SUMMARY

The objective of this study is to determine, by means of parametric analyses, the performance, economics, natural resource requirements, and environmental intrusion of coal burning advanced steam power generation systems. This analysis is conducted for three types of advanced steam systems: atmospheric furnace systems; pressurized boiler-gasifier systems; pressurized fluidized bed boiler systems.

The primary parameters which are investigated were steam temperature 811 to 1033°K (1000°F to 1400°F), steam pressure 16.547 to 34.474 MPa (2400 psi to 5000 psi), gas turbine temperature 1144 to 1644°K (1600°F to 2500°F) and gas turbine pressure ratio (8:1 to 25:1). Other parameters which were investigated are condenser pressure (as a function of heat rejection method), power level, excess combustion air, coal type, and number of steam reheats.

The cost and performance was calculated for plants which included all the equipment necessary to meet the proscribed emissions restraints. For the atmospheric furnace system, this included a precipitator and a sulfur dioxide scrubber for the stack gas. For the pressurized boiler-gasifier system, the sulfur dioxide removal is accomplished by a reaction with dolomite in the pressurized fluidized bed coal gasifier. Particulate removal is accomplished by high temperature cyclone type separators. The cleanup method for the pressurized fluidized bed boiler system is essentially the same as the gasifier system except that the products of combustion rather than the fuel gas are cleaned.

The cost and performance analysis showed that increasing either the throttle or reheat steam temperature to 811 or 1033°K (1200 or 1400°F) results in an increase in cost of electricity because

vi

-PRECEDING-PAGE-BLANK-NOT-FLIMED-

the increase due to higher capital cost substantially exceeds the decrease due to lower fuel costs.

The minimum calculated cost of electricity for each of the systems is as follows: atmospheric furnace systems 6.94 mills/MJ (25 mills/kwh); pressurized boiler-gasifier systems 7.5 mills/MJ (27 mills/kwh); pressurized fluidized bed boiler system 6.11 mills/MJ (22 mills/kwh).

While these energy cost differences are not large, they are certainly significant and it is on the basis of these differences that the pressurized fluidized bed boiler system was recommended for further study in Task II.

12. ADVANCED STEAM SYSTEMS

12.1 State of the Art.

As an overview of the state of the art with regard to performance, Figure 12.1 shows the national average heat rates* for fossil fuel steam-electric plants. As can be seen, the heat rate has clearly leveled off at 10,500 Btu/kWh. For 1971, the average heat rate of the best plants was 8915 Btu/kWh, with a negligible difference between the 24.132 MPa/811°K/811°K (3500 psi/1000°F/1000°F) plants and the 16.547 MPa/811°K/811°K (2400 psi/1000°F/1000°F) plants.

Further, if we look to the immediate future we cannot expect a change in these figures. Of the coal-fired units currently being built or on order, 35 are 12.411 MPa/811°K/811°K (1800 psi/1000°F/1000°F) units, 153 are 16.547 MPa/811°K/811°K (2400 psi/1000°F/1000°F), and 53 are 24.132 MPa/811°K/811°K (3500 psi/1000°F/1000°F). There are no coal-fired plants on order with steam conditions more advanced than these.

This does not mean, however, that these are the most advanced steam conditions existing in a currently operating steam power plant. One of the most famous steam power plants in the world, Eddystone I, went into service in 1960. This plant was designed for steam conditions of 34.474 MPa/922°K/839°K/839°K (5000 psi/1200°F/1050°F/1050°F) and was first run at these temperatures in 1961. Further, this plant is being run today as a base-load plant with a turbine inlet temperature of 886°K (1135°F) and a pressure close to 34.474 MPa (5000 psi). The plant had an original design value heat rate of 8230 Btu/kWh and an actual annual average heat rate of 8534 Btu/kWh for the year 1963 (Reference 12.1).

ar the Construction of the Construction of the construction of the Construction of the State of the second of the

^{*} Heat rate is the common dimensional term used in the industry to specify thermodynamic performance. Its units are Btu/kWh. Its inverse, multiplied by an appropriate constant, gives the efficiency.

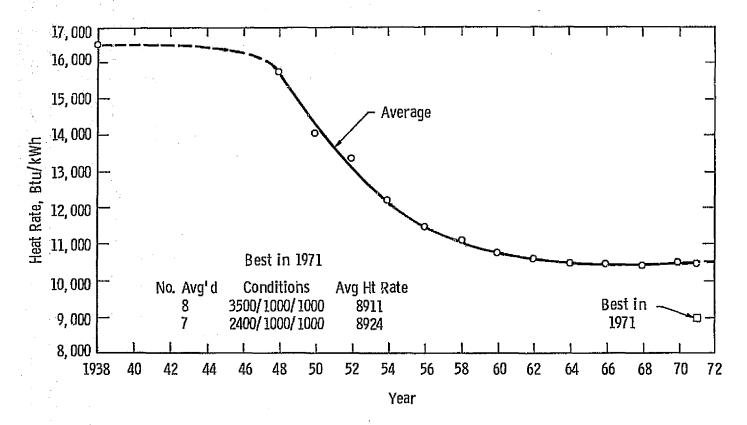


Fig. 12.1-National average heat rates for fossil fueled steam-electric plants

الأستأر تنتيكم المسبق والمسارية المعارية والمتوار المساور فالمان

1.2.1.2.2.2.

Which the water

A great deal of information obtained from the experience of designing, constructing, and operating this plant is germane to the development of future steam plants with the same or greater steam temperatures and pressures. For instance, the turbine suffers in performance slightly in the high-pressure end because the steam flow rate corresponding to the design power level of 325 MWe is too low, resulting in parasitic losses being too high a percentage of the output.

The turbine control and stop values have had cracking problems due to low cycle fatigue. Redesigned values have been offered by Westinghouse to circumvent this problem, but currently the utility is avoiding the problem (and therefore the replacement cost) by operating below 922°K (1200°F). Whatever the design, however, the life is dependent upon minimizing the frequency of thermal stress cycles. This means that the plant should be run strictly as a base-load plant with minimal load following operation.

Design improvements have been made in junction headers to reduce cracking, but the basic tube life of the superheaters and reheaters is affected most directly by fire-side corrosion caused primarily by the combination of high temperature and the chemical action of the coal ash. A reduction in the maximum steam temperature to 886°K (1135°F) has led to a substantial reduction in the amount of boiler tube replacement.

While the design value of superheat temperature was increased significantly for the Eddystone plant, the reheat temperatures were at normal levels so that the turbines below the superpressure unit did not require significant departure from state-of-the-art design. This will not be the case, however, for reheat temperature levels of 922 and 1033°K (1200 and 1400°F). In this case there will be major design problems in the HP, IP, and LP turbines, in addition to those encountered in the heat exchangers and piping. For instance, facilities do not exist which are capable of forging rotors of the size required in higher-alloy materials, and the development of such facilities would require major financial commitments. Alternatively, the design and development of a disk-curvic

** Advector (1) the index of the set of t

	Pressurized Fluid Bed Boiler Combined Cycle Once-through Dolomite Sulfur Removal System	Conventional Coal-Fired Plant Wellman-Lord Sulfur Removal System	Conventional Coal-Fired Plant w/o Sulfur Removal System
Plant Capital Cost, \$/kw	269	350	306
Energy Costs, mills/kWh Fixed charges O&M Fuel	6. 55 0. 71 4. 09 0. 75 (dolomite)	8. 60 1. 21 4. 55	7. 48 0. 67 4. 11
TOTAL	12, 10	14, 36	12, 26

TABLE 12.1-ECONOMIC COMPARISON 600 MWe PLANTS^a (3% Sulfur Coal)

^a15%/ year

70% capacity factor No sulfur credit Coal @ 45¢/10⁶ Btu Methane @ 80¢/10⁶ Btu (Wellman-Lord) Dolomite at \$ 10/ ton (purchase plus disposal) 1975 operation of fluid bed boiler plant; 1976 operation of conventional plant.

a detailed as social we replay the

clutch-through bolt approach would constitute a major program whose technical and economic viability would have to be carefully evaluated.

The second s

ĥ

There is no existing unit comparable to the Eddystone unit for pressurized boiler power plants. Various studies and proposals have been made (for example, see Reference 12.2), but the basic impediment to their development is the difficulty of using coal as the energy source. The compactness and high heat transfer rates which result in their economic attractiveness make them very vulnerable to the deleterious effects of deposition and corrosion caused by the use of coal.

Currently, there are two primary approaches to accomplish the successful application of coal to pressurized boilers. The simplest, from the viewpoint of the boiler, is the use of a clean gaseous fuel which has been derived from a close-coupled coal gasifier unit. The other is a fluidized bed type of boiler into which raw coal is fed, the treatment of which is an integral function of the system. The thermodynamic cycle characteristics of these two types are very similar. The kinds of problems they present to the development engineer are quite different, however.

The pressurized fluidized bed boiler concept has been studied in considerable detail by Westinghouse for the Environmental Protection Agency (EPA) and has been reported (Reference 12.3). These studies have shown that a lower energy cost is achieved by the pressurized system than by the atmospheric system. (The cost figures which have been published are shown in Table 12.1.)

The key uncertainty is whether the projected equipment and sorbent materials, with their associated costs, will provide the required degree of mechanical and chemical cleanliness to result in satisfactory life of components such as the gas turbine, steam superheater, and reheater. A number of problem areas have been identified in the EPA report. Table 12.2, taken from the report, is a concise description of these problems and potential solutions.

Table 12.2 - Problem Areas

	Proposed Design	Primary Backup	Alternatives
Particulate Removal ¹	Cyclones and Aerodyne-type dust collectors	 Provision for third stage Reduce gas velocity Reduce fines content of solids feed Alternative system: granular bed filter 	 Cool gas and reheat prior to gas turbine Modify turbine Drop back on gas-turbine operating conditions
Sulfur Dioxide Control	Dolomite, in bed; 1.2 to 2 . Ca/S	 May have to increase use rate for some sorbents 	• Select new stone
Nitrogen Oxide	Minimized during combustion (demonstrated)	 Promote reducing conditions in lower region of the bed 	
Materials	Conventional boiler tube materials	 Use higher-grade materials (which are available) 	
Coal Feed	Petrocarb feed system (lockhoppers)	 Increase suber of feed points per bed Reduce unit capacity: bed depth 	 Alternative technology e.g., slurry feed, screw feeders
Alkali Metals ¹	Temperature maintained sufficiently low to avoid problem	• Lower temperature further to avoid problem	 Add sorbent to remove alkali metals Modify turbine operation
Turndown and Load Follow	Vary bed temperature modular boilers	• Vary excess air	 Additional modules Recirculating bed
Spent Stone Disposal	Landfill	e Sulfur recovery	
		• Commercial utilization	

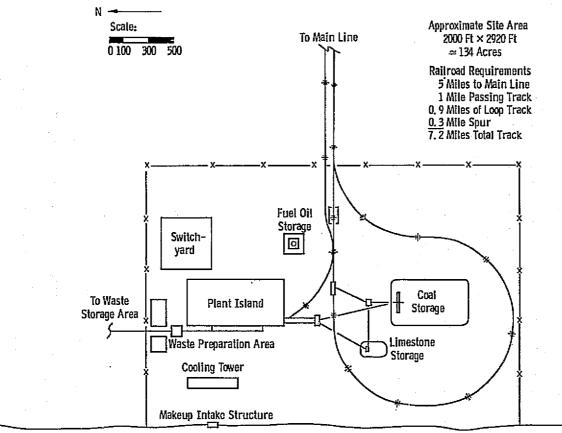
¹Control to achieve gas-turbine reliability and long life

The use of a low-Btu fuel gas gasifier greatly reduces the problem of corrosion and deposition in the pressurized boiler and gas turbine. Although this in turn reduces the cost and improves the reliability of these units, other penalties are incurred, as for instance, the steam supply, auxiliary power input, and auxiliary compressor required by a gasifier.

Both the fluidized bed and suspension-type Ensifiers give promise of reduced cost relative to fixed bed-type gasifiers, but they are still experimental. This means that their cost and performance have not yet been verified on a commercial scale. Greater detail on the state of the art with regard to gasifiers is contained in Section 4.

It should be emphasized once more that the thermodynamic performance advantage of higher cycle operating temperatures implies the concomitant penalty of increased material cost and/or corrosion rates and potentially decreased plant reliability. Reliability is a problem of considerable concern to the utility industry. It was reported in the January 1, 1975 issue of Electrical World that one large utility experienced an average availability of 69% for five new 500-to-800 MWe coal-fired units. This was a decrease from earlier availability experience.

12.2 Description of Parametric Points Investigated


For purposes of this study, three types of advanced steam power plants were chosen for parametric analysis:

- e Atmospheric furnace system
- Pressurized boiler-gasifier system
- Pressurized fluidized bed boiler system.

The following paragraphs give a general description of those plants. Sections 12.2.4 to 12.2.6 explain the parametric points investigated.

12.2.1 Atmospheric Furnace System

The atmospheric furnace steam plant is the familiar power plant used extensively by the electrical utilities. It varies widely in size

เป็นและให้สูง และที่มีสารปฏิสินส์สาร เป็นการ์ว่า การหนึ่งมี และเสมไข่ และสมให้ เหาะสารแห่งสาวที่สินที่มีการสารไ

Sec. Oak

River

Fig. 12. 2 - Atmospheric boiler advanced steam, site layout, Base Case (Point 20)

Dwg 1675826

and in details of construction. All plants, however, have the following major components in common:

- Steam boiler
- Steam turbine-generator
- Condenser
- Feedwater heaters
- Boiler feedwater pumps
- Stack-gas cleanup and treatment equipment
- Draft fans
- Stack.

The largest single component is the steam boiler. For the base case 500 MWe plant the gross dimensions and weights of particular major components are given in Table 12.16 (See Section 12.5.4).

Based on these major component dimensions, nominal coal and dolomite consumption rates, and standard power plant practice the plant site layout was designed by Chas. T. Main, Inc. and is shown in Figure 12.2.

As the temperature (and/or pressure) of the steam is increased, the general size and appearance of the plant does not change significantly. Rather, the materials at the hot end of the cycle are improved (at a cost increase, of course) and/or increased in thickness.

Because this type of plant burns the coal directly without treatment other than drying and grinding, the combustion products are both mechanically treated for particulate removal and chemically treated for sulfur removal to satisfy environmental requirements. As a result, combustion product treatment equipment is both large and expensive.

An alternative atmospheric system that was investigated incorporates a boiler which is designed with a fluidized bed furnace with in-bed desulfurization. One potential cost advantage of this type of boiler is the elimination of the scrubber to remove sulfur from the stack gases. Another potential cost reduction stems from the high convection heat transfer coefficient on the exterior of the boiler tubes

due to the fluidized bed action. These capital cost reductions are discounted to some degree by an increased dolomite usage rate which increases the operating cost of the plant. The higher dolomite usage rate results from the desulfurization reaction occurring at a much higher temperature in the furnace than in the stack-gas scrubber.

12.2.2 Pressurized Boiler-Gasifier System

The pressurized boiler-gasifier system differs from the standard atmospheric furnace system in three ways. First, the boiler is pressurized on the combustion side to reduce its size by improving the fire-side heat transfer coefficient. Secondly, it has a gas turbine set to produce the pressurized combustion air for the boiler and to produce electrical power from the excess power of the gas turbine. Thirdly, it has an integrated coal gasification subsystem that receives pressurized process air from the gas turbine compressor and delivers clean low-Btu fuel gas to the boiler and gas turbine combustor. Thus this power plant has the following major components:

- Steam boiler
- Steam turbine-generator
- Condenser
- Feedwater heaters
- Boiler feedwater pumps
- Gas turbine-generator
- Stack-gas coolers
- Stack
- Coal gasifier.

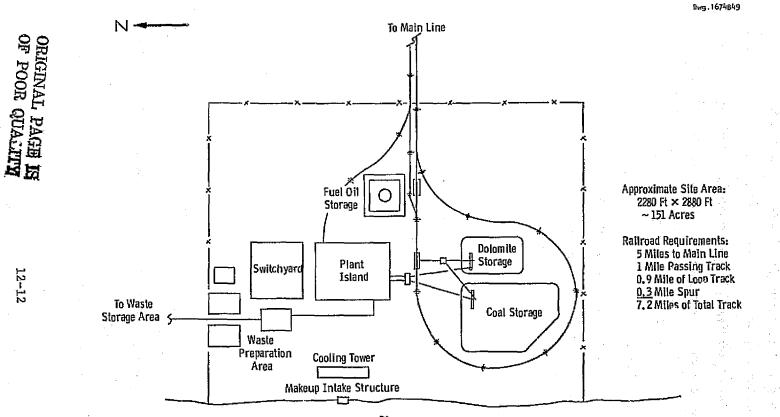
Note that the stack-gas cleanup equipment has been eliminated since the coal-cleaning equipment is incorporated in the gasifier subsystem. Note further the addition of stack-gas coolers. These are necessary heat recovery units designed to extract heat from the gas turbine outlet gas before discharging it up the stack.

For the base case 700 MWe plant (approximately 500 MWe from steam turbine and 200 MWe from the pressurizing gas turbine) the gross

dimensions and weights of particular major components are given in Table 12.16 (see Section 12.5.4).

The site layout for this plant is shown in Figure 12.3.

As in the case of the atmospheric furnace system, the general size and appearance of the plant does not change significantly as the peak temperatures and/or pressures of the working fluids (air and steam, in this case) are increased.


12.2.3 Pressurized Fluidized Bed Boiler System

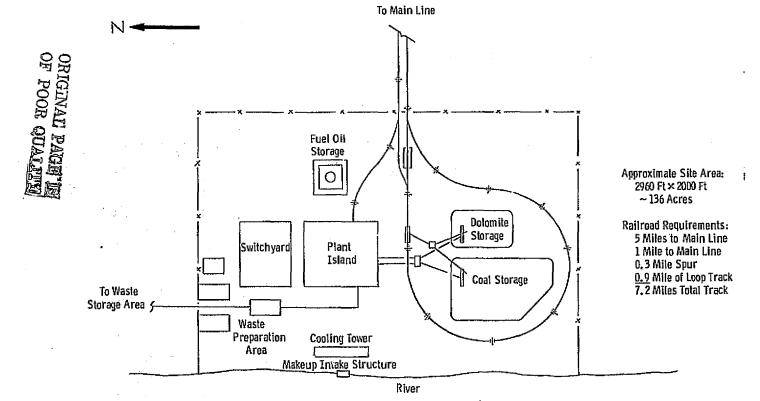
The pressurized fluidized bed boiler system is similar to the pressurized boiler-gasifier system in that it incorporates a gas turbine to pressurize the boiler and to produce net electrical power. The coal, however, is simply dried, crushed, and added directly to the boiler. The boiler has a compact construction because the combustion occurs in a fluidized bed which achieves a high convection heat transfer coefficient. Dolomite is added directly to the fluidized bed to chemically remove the sulfur in the coal. Elutriated particulates are removed in pressurized separators downstream of the boiler before the combustion products enter the gas turbine. The major plant components are:

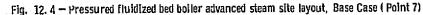
- Steam boiler
- Steam turbine-generator
- Condenser
- Feedwater heaters
- Boiler feedwater pumps
- Gas turbine-generator
- Stack-gas coolers
- Stack

For the base case 700 MWe plant (approximately 500 MWe from the steam turbine generator and 200 MWe from the gas turbines) the gross dimensions and weights of particular major components are given in Table 12.16 (see Section 12.5.4).

The site layout for this plant is shown in Figure 12.4.

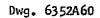
River


and and the proved a set of the set of t


Fig. 12. 3 Pressurized boller advanced steam site layout, Base Case (Point 16)

Scale: 0 100 300 500

.



Scale: 0 100 300 500

eliter heter herendels vielende die die die gegeneren wegen eigen het den enterenten en en en eine genoem genoe

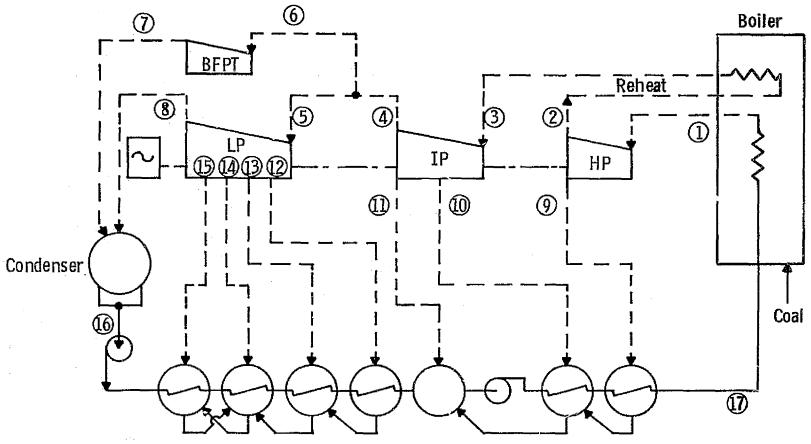


Fig. 12.5-Schematic of atmospheric furnace steam plant

n her sterne versterne standen en standen en standen en standen som her sterne standen at her standen at stande

As in the case of the other two power plant systems, the general size and appearance of the plant does not change significantly as the peak temperatures and/or pressures of the working fluids are increased.

12.2.4 Atmospheric Furnace System Parameters

The choice of performance variables to investigate parametrically depends, of course, upon the thermodynamic cycle of the power plant. A typical schematic cycle diagram for an atmospheric furnace steam plant is shown in Figure 12.5. The parameters investigated for this cycle are essentially those designated by NASA. Table 12.3 gives the parametric points for which performance and energy costs were calculated, as well as the performance calculation results. (The calculated results are analyzed and shown graphically in Sections 12.4 and 12.6).

The two primary variables are the steam temperature and pressure. Temperature was varied from the standard value of 811°K (1000°F) that is currently in extensive use commercially up to the 1033°K (1400°F) level specified by NASA. The pressure levels investigated were 16.547, 24.132, and 34.474 MPa (2400, 3500, and 5000 psi). In addition, some thermodynamic performance calculations were made for a 68.948 MPa (10,000 psi) level, but the turbine and boiler were so far from practicable that no price was estimated for them.

The number of reheats was varied from none to two. The effect of condenser pressure variation from 6.754 to 30.393 kPa (1 to 9 in Hg) abs was investigated, along with a corresponding change in the method and cost of heat rejection.

The bulk of the parametric points was calculated at a nominal power rating of 500 MWe. A representative number were repeated at a nominal power rating of 900 MWe to determine the effect of scale on energy cost.

Finally, the capital cost and performance effects of the three coals designated by NASA were investigated for both a standard furnace and a fluidized bed furnace.

12-15

Dwg. 2570224

TABLE 12.3 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (ATMOSPHERIC FURNACE STEAM PLANT)

Sheet 1 of 4

																01 · 41	·	
Parametric Point	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Power Output, MWe	464	464	457	464	464	465	465	465	466	466	466	467	465	465	464	464	465	464
Fuel																		
Bituminous Coal	X	X	X	X	X	X	X	X	X	X	X	X	X	X	<u>X</u>	<u> </u>	X	X
Subbituminous Coal																	· · · · · ·	
Lignite Coal																		
Furnace Type																		
Atmospheric (Conventional)	X	X	<u>X</u>	<u>X</u>	<u>X</u>		X	X		X	X		<u> X </u>	X	<u> </u>	<u> </u>	<u> </u>	X
Fluid Bed						X	L!		X		L	X						
Sieam Turbine																		
Throttle Press, osia	10000	10000	10000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	5000	3500	3500	3500	3500
Throttle Temp , °F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1400	1400	1400	1000	1000	1000	1000	1000	1000
First Reheat Temp , °F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1400	1400	1400	1200	1000	1000	1000	1200	1000
Second Reheat Temp , ^o F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1400	1400	1400	1200	1200	1000	1000	1200	1000
Third Reheat Temp , °F	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1090	1000	1000	1000
Condenser Press, in, HgAbs	2	3.5	9	2	3.5	3.5	2	3.5	3.5	2	3.5	3.5	2	2	2	3.5	2	.3.5
Thermodynamic Eff , % (1)	46,1	44.9	42.0	45.7	44.5	44.5	48.8	47.5	47.5	<u>51.3</u>	50, I	50.1	47.7	<u>48. I</u>	45.3	44.2	<u>47.1</u>	45.9
Powerplant Eff , %	36.9	35.9	33.2	<u> 36.6</u>	35.6	35.4	<u>39.0</u>	<u>38. 1</u>	37.9	41.1	40, 1	39.9	38, 2	38.5	36.3	35.4	37.7	36.7
Overall Eff , %	36.9	35, 9	33. 2	36.6	35.6	35.4	<u>39.0</u>	38.1	37.9	<u>41. 1</u>	40.1	39.9	38.2	38.5	36.3	35, 4	37.7	36.7
Total Capital Cost × 10 ⁻⁶ \$	730,1	729.5	740.7	252.4	251.5	212.2	396.3	395.9	325.8	<u>593, 9</u>		472.3	<u>355, 5</u>	381.4	239.1	236.5	353.1	318.5
Capital Costs, \$/kWe	1572.9	1571.9	619.1	544.2	542.3	456.1	852.4	851, 8	598.4	1275.1	1251.2	1010, 8	765.2	820.6	5 <u>15, 7</u>	509.9	759.9	685.9
Cost of Elect, Mills/kWh	J					······												
Capital	49. 722	49,690	51, 184	17, 204	17.143				27.079	40, 307	39, 869	<u>31.955</u>	24, 191	25, 942	16, 302	16.118	24, 021	21.684
Fuel (2)	7.861	8.073	8, 739	7, 930	8.146	9,202	7.429	7.618	7.661	7.063	7.231	7.264	7.600		8.001		7.692	7.896
Oper. & MainL	1,132	1,145	1, 111	1,138	1.152	2.068	1.106	1.118	1,974	1,083	1.093	1.905	1, 117	1,113	1.143	1, 152	<u>L 118</u>	1,135
Total	58.72		61,04	26, 27	26, 44	24.69	36.48	35,66	31, 71	48, 45	48, 19	41.12	32,91	34, 60	25.45	25, 48	32.83	30, 32
Est. Time of Construction, yr	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	50	5.0	5.0	5.0	5.0
	L					L						L			L			L

Notes:

Where Applicable
 Use Base Delivered Fuel Cost

Standard and

Dwg. 2570225

TABLE 12.3 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (ATMOSPHERIC FURNACE STEAM PLANT)(cont'd)

Sheet 2 of 4	ł
--------------	---

Power Output, MWe 463 463 456 464 464 466 44 Fuel Bituminous Coal X	25 26 465 465 X X X X 3500 3500 1400 1400 1400 1400	27 467 X X X 3500 1400 1400	28 464 X X 3900 1000 1200	29 464 X 3500 1000 1400	30 465 X X 3500 1200 1400	31 466 X X 3500 1200 1400	32 465 X X 3300 1400	33 465 X X 3500 1400	34 465 X X 3500 1000 1000	35 464 X 3500 1000 1000	36 • 465 X - - - - - - - - - - - - -
Power Output, MWe 463 463 456 464 464 466 446 Fual Bituminous Coal X	X X X X 3500 3500 1400 1400	X X 3500 1400	X X 3900 1000	X X 3500 1000	X X 3500 1200	X X X 3500 1200	X X 3500	X X 3500	X X 3500 1000	X X 3500 1000	X X 3500 1000
Bituminous Coal X	X X 3500 3500 1400 1400 1400 1400	X 3500 1400	X 3200 1000	X 3500 1000	X 3500 1200	X 3500 1200	X 3500	X 3500	X 3500 1000	X 3500 1000	X 3500 1000
Subbituminous Coal Image: Coal of the	X X 3500 3500 1400 1400 1400 1400	X 3500 1400	X 3200 1000	X 3500 1000	X 3500 1200	X 3500 1200	X 3500	X 3500	X 3500 1000	X 3500 1000	X 3500 1000
Lignite Coal X <t< td=""><td>3500 3500 1400 1400 1400 1400</td><td>3500 1400</td><td>1000</td><td>1000</td><td>3500 1200</td><td>3500 1200</td><td>3500</td><td>3500</td><td>X 3500 1000</td><td>X 3500 1000</td><td>3500 1000</td></t<>	3500 3500 1400 1400 1400 1400	3500 1400	1000	1000	3500 1200	3500 1200	3500	3500	X 3500 1000	X 3500 1000	3500 1000
Furnace Type X <t< td=""><td>3500 3500 1400 1400 1400 1400</td><td>3500 1400</td><td>1000</td><td>1000</td><td>3500 1200</td><td>3500 1200</td><td>3500</td><td>3500</td><td>3500 1000</td><td>X 3500 1000</td><td>3500 1000</td></t<>	3500 3500 1400 1400 1400 1400	3500 1400	1000	1000	3500 1200	3500 1200	3500	3500	3500 1000	X 3500 1000	3500 1000
Atmospheric (Conventional) X </td <td>3500 3500 1400 1400 1400 1400</td> <td>3500 1400</td> <td>1000</td> <td>1000</td> <td>3500 1200</td> <td>3500 1200</td> <td>3500</td> <td>3500</td> <td>3500 1000</td> <td>3500 1000</td> <td>3500 1000</td>	3500 3500 1400 1400 1400 1400	3500 1400	1000	1000	3500 1200	3500 1200	3500	3500	3500 1000	3500 1000	3500 1000
Fluid Bed X Steam Turbine 3500 3600 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400	3500 3500 1400 1400 1400 1400	3500 1400	1000	1000	3500 1200	3500 1200	3500	3500	3500 1000	3500 1000	3500 1000
Through out on the second seco	1400 1400 1400 1400	3500 1400	1000	1000	1200	3500 1200		3500	1000	1000	3500 1000
Throttle Press psia 3500 3600	1400 1400 1400 1400	1400	1000	1000	1200	1200			1000	1000	1000
Throttle Temp °F 1009 1000 1900 1200	1400 1400 1400 1400	1400	1000	1000	1200	1200			1000	1000	1000
First Reheat Temp , °F 1000 1000 1000 120	1400 1400						1400	1400			
First Reheat Temp , °F 1000 1000 1200 <			1200	1400	1400	1400			1000	1000	1000
Third Reheat Temp, °F F Image: Condenser Press, in, Hq Abs 2 3.5 9 2 3.5 3.5 2 Thermodynamic Elf, % ID 44.5 43.4 40.5 47.4 46.1 46.				ļ						1 1	1
Condenser Press., in. Hq Abs 2 3.5 9 2 3.5 3.5 2 Thermodynamic Eff., % (I) 44.5 43.4 40.5 47.4 46.1 <td< td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>+ · · · · · · · · · · · · · · · · · · ·</td><td></td><td><u> </u></td><td><u> </u></td></td<>	<u> </u>						· · · · · · · · · · · · · · · · · · ·	+ · · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>
Thermodynamic Elf % (I) 44.5 43.4 40.5 47.4 46.1	a a r		; <u> </u>	<u> </u>	<u> </u>		<u> </u>				
Thermodynamic Eff % 1 44.5 43.4 40.5 47.4 46.1 46.1 4 Powerplant Eff % 35.6 34.7 32.0 37.9 36.9 36.7 3 Overall Eff % 35.6 34.7 32.0 37.9 36.9 36.7 3	2 3.5	3.5	⊢}—	2	2	2	2	<u></u>	3.5	3.5	3.5
Overall Eff , % 35. 6 34. 7 32. 0 37. 9 36. 9 36. 7 3	49.6 48.3	48.3	45.8	47.1	48.5	48.5	47.5	47.5	43.4	43.4	43.4
	<u>39. 7 38. 7</u>	38.5	35.6	37.7	38.8	38.6	38.0	37.8	<u>35.0</u>	33.5	34.4
Total Canital Cost × 10 ⁻⁶ , \$ 232,8 231,1 252,4 290,0 288,2 282,6 37	39.7 38.7	38.5	34.6	37.7	38.8	38.6	38.0	37.8	35.0	33.5	34.4
	378.9 378.2		263.4	296.3	324.9	289,0	345.3	311.5	232.8	245.1	203.0
	814.4 812	743.4	567.9	638, 0	698.9	619. <u>7</u>	743.2	668, 5	450.0	527.9	436.6
Cost of Elect, Mills/ kWh									t		
Capital 15, 883 15, 767 17, 483 19, 735 19, 610 17, 134 25	5.744 25.69	2 <u>23, 501</u>	17.954	20, 168	22.093	<u>19, 680</u>	23, 496	21, 131	15,806	16, 689	13, 803
Fuel (2) 8, 149 8, 363 9, 075 7, 655 7, 851 7, 899 7.	7.306 7.49	<u>7.529</u>	7.922	7.697	7,469	7.507	7.627	7,670	8,296	8.648	8,424
	1.098 1.11		1.136	1.123	1, 109		1, 119	1,976	. 894		2,107
	34. 15 34. 29				30.67		32.24	30.78		26.25	
Est. Time of Construction, yr 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	<u>5.0 5.0</u>	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
				1	1	1	1	1	ł		1

٠

dan manahan wasan manahan manahan wasan manahan wasan manahan wasan ana manahan manahan manahan manahan manahan manahan wasan ana manahan manah

f

Notes: (1) Where Applicable (2) Use Base Delivered Fuel Cost

айда каларарда бар байлаан каларда арараан каларар каларар каларар каларар калар калар калар калар калар калар

Eggen in Colorador a consta

Dwg. 257C226

TABLE 12.3 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (ATMOSPHERIC FURNACE STEAM PLANT) (cont'd)

Sheel	1.3 of 4
-------	----------

Parametric Point	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Power Output, MWe	465	466	464	463	465	456	464	464	466	457	464	466	464	465	464	458	835	835
Fuel														·				
Bituminous Coal			X	<u>X</u>	<u> </u>	X	X	<u>X</u>	<u>X</u>	<u> </u>	X	<u> X </u>	<u> </u>	X	<u>X</u>	X	X	X
Subbituminous Coal	X																	
Lignite Coal		Х																
Furnace Type			_															
Atmospheric (Conventional)			<u>X</u>	_X		<u>X</u>	X	<u> </u>		<u>X</u>	<u> </u>		<u>_X</u>	X	_X	<u> </u>	X	<u>x</u>
Fluid Bed	X	X			X				<u>X</u>			X						
Steam Turbine																•		
Throttle Press, psia	3500	3500	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	2400	5000	5000
Throttle Temp , °F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1200	1400	1400	1000	1200	1200	1200	1000	1000
First Reheat Temp , °F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1200			1200	1400	1400	1400	1000	1000
Second Reheat Temp , °F																	1000	1000
Third Reheat Temp , °F						- 15												
Condenser Press, in. Hg Abs	3.5	3.5	2	3.5	3.5	9	2	3.5	3.5	9	2	2	2	2	3.5	9	2	3.5
Thermodynamic Eff , % 🕕	43.4	43.4	43.7	42.5	42.6	39,8	46.2	45.1	45.1	42.2	46.5	46.5	45.1	47.5	46.2	43.4	<u>46, 1</u>	44.7
Powerplant Eff , %	35, 0	33.5	34,9	<u>34, 0</u>	33, 8	31, 4	37.0	36, 1	<u>35, 8</u>	33.3	37.2	37.0	36.0	38, 0	37.0	_34.4_	36.9	35.8
Overall Eff, %	35.0	33.5	34.9	34, 0	33.8	31.4	37.0	36, 1	<u>35.</u> 8	33.3	37.2	37, 0	<u>36, 0</u>	<u>38, D</u>	37, 0	34,4	36, 9	35.8
Total Capital Cost ×10 ⁻⁶ , \$	223.3	231.9	223.0	220.2	199.1	241.8	281.2	278.9	246.3	300.7	334, 8	296.3	252.8	313.8	312.2	334.7	412.8	413.0
Capital Costs , \$/kWe	479.5	499.4	48' 7	475.6	428.4	530.5	605.0	600.9	528.9	657.3	721.2	636. 2	545.4	575.6	672.1	730.6	494_3_	494.6
Cost of Elect, Mills/kWh																		
Capital	5, 159	5.787	15, 228	15,034	13.543	16,770	19, 157	<u>18, 997</u>	16.719	20, 778	22, 799	26.112	17, 241	21, 356	21.25	23.097	15.625	15.636
Fuel (2)	8, 296	8.648	9.308	8.522	8.587	9, 245	7.843	8.040	8.093	8,701	7.794	7.840	8.049	7.637	7.834	8.444	7.870	8 113
Oper. & Maint.	. 894	.912	1, 157	1, 170	2,130	1, 130	1,127	1, 139	2.044	1, 103	1.124	2.090	1.140	1.114	1, 126	1.091	. 864	. 879
Total	24, 35	25, 35	24, 69	24.73	24.26	27, 15	28.13	28.18	26.86	30, 58	31, 72	29.95	26, 43	30, 11	30, 21	32.63	24.36	24.63
Est. Time of Construction, yr	5.0	5.0	5.0	5,0	5.0	5, 0	5.0	5.0	<u>5</u> .0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.5	5.5
				_														

Notes: (1) Where Applicable (2) Use Base Delivered Fuel Cost

والموافقة ومروادة وتخرج فالأرد ومعوران كالاط

يتمريح المتريج والمتحاجة

TABLE 12.3 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (ATMOSPHERIC FURNACE STEAM PLANT) (cont'd)

Sh	ieet	4	of	4

															200	21 4 01 4		
Parametric Point	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
Power Output, MWe	837	837	839	839	835	835	836	836	834	836	836	836	838	837	834	834	836	835
Fuel											_							
Bituminous Coal	Х	Х	X	X	X	Х	X	X	X	X	X	X	Х	X	X	X	<u> X </u>	X
Subbituminous Coal																		!
Lignite Coal	— ——																	<u> </u>
Furnace Type																		
Atmospheric (Conventional)	X	X	Х	X	X	X	X	Х	X	X	X	X	Х	X	<u> X </u>	X	Χ	<u> X</u>
Fluid Bed		1																
Steam Turbine																		
Throttle Press , psia	5000	5000	5000	5000	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	2400	2400	2400	2400
Throttle Temp , °F	1200	1200	1400	1400	1090	1000	1000	1000	1000	1000	1200	1200	1400	1400	1000	1000	1200	1200
First Reheat Temp , °F	1200	1200	1400	1400	1000	1000	1200	1200	1000	1000	1200	1200	1400	1400	1000	1000	1200	1200
Second Reheat Temp , ^o F	1200	1200	1400	1400	1000	1000	1200	1200										
Third Reheat Temp , °F																		
Condenser Press , In. Hg Abs	2	35	2	3.5	2	3.5	2	3.5	2	3.5	2	3.5	2	3,5	2	3.5	2	3.5
Thermodynamic Eff , % (1)	49.2	47.7	51.6	50.2	45.7	44.3	47.4	46.0	44,8	43.5	47.6	46.2	49.8	48.4	44.0	42.T	46.5	45.2
Powerplant Eff , %	<u>39.4</u>	38.2	41.3	40, 2	36.5	35.5	38.0	36.9	35.8	34.9	<u>38. I</u>	37.0	<u> </u>		<u>35. I</u>	34.2	37.2	36.2
Overall Eff , %	39.4	38, 2	41.3	40, 2	36.5	<u>35, 5</u>	38.0	36.9	35, 8	<u>34, 9</u>	38.1	37.0	39.9	38.7	35.1	34.2	37.2	36.2
Total Capital Cost × 10 ⁻⁶ , \$	609.7	611.7	891.5	881.4	394.6	393.9	495.2	494.2	385_6	381.1	464.7	464.0	583, 1	588, 7	<u>369. 7</u>	367.8	430, 2	429.3
Capital Costs, \$/ KWe	728.2	730, 8	1062.8	1051,1	472.6	471, 9	592.2	591, 2	462.2	455.9	555.7	555.0	702.0	702.9	443.5	441.2	<u>514, 9</u>	<u>513, 3</u>
Cost of Elect, Mills/kWh																		
Capital	23.021		33, 599				and the second second	18, 688								13, 948		
Fuel (2)	7.368	7. 593	7.019	7.217	7.942	8.178	7.640		8, 101	8, 322_	7.615	7,839	7.275	7.485	8.258	8, 490	7.800	8,024
Oper. & Maint.	. 832	. 846	. 811	. 823	. 869	. 883	. 850	. 864	. 879	. 878	. 848	. 862_	<u>, 827</u>	. 840	. 883	. 897	. 854	. 853
Total	31.22	31, 54	41, 43	41.27	23.75	23.98	27.21	27.42	23, 59	<u>23, 61</u>	26.03	26.25	30, 29	30.55		23. 34	24.93	25.14
Est. Time of Construction, yr	5,5	5.5	5.5	<u>5.5</u>	55	5.5	5, 5	5.5	5,5	5,5	5,5	5,5	<u>5.5</u>	5.5	5, 5	5.5	5.5	5.5
L	<u> </u>		l						L	<u> </u>			<u> </u>	L				

landeren werden in her in der eine eine eine eine der state der der eine sollten einen der eine der eine der er

Notes:

and a series of

Where Applicable
 Use Base Delivered Fuel Cost

ORIGINAL PAGE IS

12-19

 $(\hat{i}_{1}^{1}\hat{j}_{2}^{1}) \in \mathbb{R}^{2} \times [\hat{j}_{1}^{1}\hat{j}_{2}^{j$

Dwg. 2570227

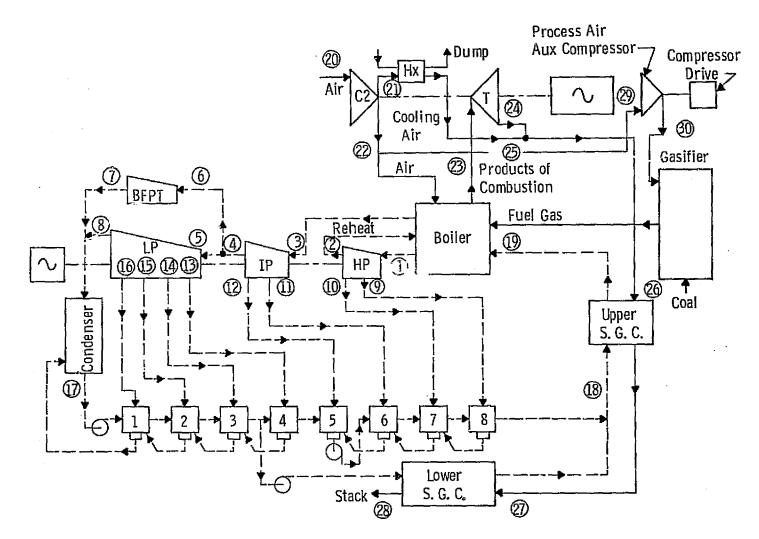


Fig. 12.6-Schematic of pressurized boiler power plant

desidents -

ى يەن - ئۇلىرى - ئىيۇنىرىنىڭ ئېزىر ئەيرىكى بىرى بىرى ئېزىكى بىرى ئېزىكى بىرى بىرى ئېزىكى بىرى بىرى بىرى بىرى

12.2.5 Pressurized Boiler-Gasifier System Parameters

Figure 12.6 is a schematic cycle diagram of this system which incorporates a gas turbine that serves both to raise the pressure on the combustion side of the boiler and to produce net electric power. In addition, the gas turbine supplies process air to the gasifier, although an auxiliary compressor is required to overcome the substantial pressure drop incurred by the gasifier.

Table 12.4 gives the parametric points for which performance and energy costs were calculated, as well as the performance calculation results. (The calculated results are analyzed and shown graphically in Sections 12.4 and 12.6).

The primary variables of the gas turbine are the turbine inlet temperature and the compressor (cycle) pressure ratio. The temperature was varied from 1144 to 1644°K (1600 to 2500°F), and the pressure ratio ranged from 8:1 to 25:1.

The airflow entering the gas turbines is fixed (for constant ambient conditions), but the amount of fuel burned in the boiler varies the amount of steam raised in the boiler. The theoretical limit of fuel addition is that corresponding to a stochiometric fuel/air.ratio entering the gas turbine. The fuel addition was varied such that the amount of steam generated in the boiler varied from approximately 315 to 504 kg/s $(2.5 \times 10^6 \text{ to } 4 \times 10^6 \text{ lb/hr})$.

Similarly to the atmospheric furnace system, back pressure was varied from 6.754 to 30.392 kPa (2 to 9 in Ng)abs. Also, the effect of operation with the three coals was examined.

Finally, a limited number of points were run with steam conditions up to 34.474 MPa (5000 psi) and 1033°K (1400°F).

12.2.6 Pressurized Fluidized Bed Boiler System Parameters

The parametric variation for this system is essentially the same as in the previous system. In this case, however, the gas turbine inlet temperature was limited to 1255°K (1800°F) because the desulfurization

TABLE 12.4-ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (PRESSURIZED BOILER GASIFIER SYSTEM)

Sheet 1 of 3	
--------------	--

Parametric Point																		
	1	2	3	4	5	6	7	8	9	10	_11	12	13	14	15	16	17	18
Power Output, MWe	667	_580	484	668	582	486	662	573	477	642	555	458	714	628	535	724	635	541
Fuel									·					r <u></u>				
Bituminous Coal	<u> </u>	X	X	<u>'Х</u>	X	<u> </u>	<u> </u>	X	<u>X</u>	<u>X</u>	<u>x</u>	<u>x</u>	<u>X</u>	<u>X</u>	X	<u>X</u>	<u>X</u>	X
Subbituminous Coal												L						
Lignite Coal					L					L			L	L	L			
Gas_Turbine															***			
Inlet Temp. , °F 1	1600	_1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	2000	2000	2000	_2000	2000	2000
Pressure Ratio	8	8	8	10	10	10	15	15	15	20	20	20	8	: 8	8	10	10	10
Air Equivalence Ratio (Nominal)	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1,8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8
Steam Turbine																		
Throttle Press, psia	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500
Throttle Temp , °F	1000	1000	1000	1000	1000	1000	1630	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Condenser Press , in Hg Abs	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	35	3.5	3.5	3.5	3.5	3.5	3.5
Thermodynamic Eff , ①																		
Powerplant Eff , %	35.6	35.7	36.0	35, 5	35, 6	35.8	35.0	35.0	35.1	34.0	33.9	33.8	37.5	37.7	38.2	37.4	37.7	38.1
Overall Eff , %	35.6	35.7	36.0	35, 5	35.6	35.8	35.0	35.0	35. I	34,0	33.9	33.8	37.5	37.7	38.2	37.4	37.7	38.1
Total Capital Cost × 10 6, \$ 0	400.7	352.7	301.7	400.8	353.7	302.4	404.1	356.0	304,0	400.7	352.4	299.9	420.6	372.9	321.2	425.4	376.2	323.1
	601.1	607.8	623.0	600.0	608,0	622.0	610, 4		537, 0	624.6	635.1	654.7		593.1	599.9	587.9	592.2	597.2
Cost of Elect, Mil Is/kWh																و حدوق ف تشدينا م		
Capital	9.001	19, 213	19, 695	18,967	19, 219	19,663	19, 297	19.641	20. 137	19, 745	20.078	20, 696	18.611	18, 751	18.964	18.584	18.722	18,880
Fuel (2)	8, 152	8, 127	8.057	8, 165	8, 147	8.098	8.293	8, 280	8,274	8, 538	8.570	8.585	7.744	7.689	7.603	7,760	7.688	7.604
Oper. & Maint.	1.562	1.620	1.699	1, 563	1.621	1.702	1, 582	1.645	1.734	1.628	1.698	1.797	1.478	1.524	1.587	1.477	1.519	1 581
Total 2	28.72	28.96	29.45	28.69	28.99	29.46	29.17	29.57	30, 15	29, 91	30.35	31.09	27.83	27.96	28.15	27.82	27.93	28,07
Est. Time of Construction, yr	5.9	5.8	5.6	5.9	5.8	5.6	5.9	5.8	5.6	5.9	5.7	5.5	6.0	5.9	5.7	6.0	5.9	5.7

n and the stand of the particular and the second to the second second

Notes:

Where Applicable
 Use Base Delivered Fuel Cost

ъG
SZ
DR A
10 m
a P
AGE
HE
t and a second

 \odot

TABLE 12.4 -ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (PRESSURIZED BOILER GASIFIER SYSTEM) (CONT 'D)

of	3
	of

Oper. & Maint. 1. 479 1. 525 1. 590 1. 511 1. 561 1. 627 1. 381 1. 418 1. 465 1. 376 1. 412 1. 459 1. 394 1. 432 1. 481 1. 465 1. 506 1. 559																			
Fuel Bituminous Coal X	Parametric Point	19	20	21	22	23													
Bituminous Coal X	Power Oulput, MWe	733	639	542	720	629	530	792	703	607	806	715	618	803	711	612	771	680	583
Subilitarinous Coal Image: Coal Lignite Coal Image: Coal<	Fuel																		
Lignite Coal Gas Turbine June Temp. °F 2000 2000 2000 2000 2000 2000 2000 2500	Bituminous Coal	X	X	<u> </u>	X	X	Х	X	X	X	X	X	X	<u>X</u>	<u>x</u>	X	<u>X</u>	X	X
Gas Turbine . Inlet Temp. °F 2000 2000 2000 2000 2000 2000 2500	Subbituminous Coal														_				
Intel Temp. °F 2000 2000 2000 2000 2000 2000 2500	Lignite Coal														<u> </u>				L
Pressure Ratio 15 15 16 20 20 20 10 10 15 15 15 20 20 25 25 25 Air Equivalence Ratio 1.1 1.5 1.8 <td></td>																			
Air Equivalence Ratio 1.1 1.5 1.8 1.1 1.5 1.	Inlet Temp. °F	2000	2000	2000	2000			2500	2500							-			
Steam Turbine Throttle Press, psia 3500	Pressure Ratio	15	15	15	20	20	20	10			15	15		20			25		
Th rottle Press, psia 3500 <t< td=""><td>Air Equivalence Ratio</td><td>1, 1</td><td>1.5</td><td>1.8</td><td>1, 1</td><td>1.5</td><td>1.8</td><td>1,1</td><td>1.5</td><td>1.8</td><td>1.1</td><td>1.5</td><td>1.8</td><td>1.1</td><td>1.5</td><td>1.8</td><td>1.1</td><td>1.5</td><td>1.8</td></t<>	Air Equivalence Ratio	1, 1	1.5	1.8	1, 1	1.5	1.8	1,1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8
Throttle Temp °F 10:00																			
Throttle Temp °F 10:00	Th rottle Press , psia	3500	3500	3500	3500	3500			3500	3500									
Kernal condenser Press in Hq Abs 3.5 <th< td=""><td>Throttle Temp _ °F</td><td></td><td></td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Throttle Temp _ °F			1000															
Condenser Press in Hq Abs 3.5 3.	Reheat Temp _ °F	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Thermodynamic Eff , ① ③ 37.0 37.4 37.7 36.1 36.8 39.5 39.9 40.6 39.4 39.8 40.4 38.7 39.1 39.6 36.6 36.9 37.4 Overall Eff , % 37.0 37.4 37.7 36.1 36.8 39.5 39.9 40.6 39.4 39.8 40.4 38.7 39.1 39.6 36.6 36.9 37.4 Overall Eff , % 37.0 37.4 37.7 36.1 36.8 39.5 39.9 40.6 39.4 39.8 40.4 38.7 39.1 39.6 36.6 36.9 37.4 Total Capital Costs x 10 ⁻⁶ , \$ 432.6 327.4 329.9 432.3 382.0 327.8 458.5 406.9 352.9 470.3 420.0 364.8 474.8 423.4 367.6 476.7 423.0 364.9 364.9 37.4 367.0 590.2 606.1 608.2 606.9 618.6 578.8 579.0 581.6 590.8 591.5 595.4 600.2 618.6 621.9 625.7	Condenser Press , in Hg Abs	3,5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3,5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Overall Eff % 37.0 37.4 37.7 36.1 36.8 39.5 39.9 40.6 39.4 39.8 40.4 38.7 39.1 39.6 36.6 36.9 37.4 Total Capital Cost × 10 ⁻⁶ , \$ 432.6 387.4 39.9 432.3 382.0 327.8 458.5 406.9 352.9 470.3 420.0 364.8 474.8 423.4 367.6 476.7 423.0 364.9 37.4 Capital Costs \$1/0 ⁻⁶ , \$ 590.2 606.1 608.2 600.4 606.9 618.6 578.8 579.0 581.6 583.3 587.0 590.8 591.5 595.4 600.2 618.6 621.9 625.7 Cost of Elect, Mills/kWh 18.658 19.100 19.228 18.981 19.184 19.563 18.298 18.303 18.386 18.439 18.557 18.697 18.822 18.972 19.555 19.660 19.776 Copital 18.97 7.63 7.689 8.038 7.995 7.892 7.338 7.265 7.148 7.358 7.287 7.177 7.493									_										
Total Capital Cost x 10 ⁻⁶ , \$ 432.6 387.4 392.9 432.3 382.0 327.8 458.5 406.9 352.9 470.3 420.0 364.8 474.8 422.4 367.6 476.7 423.0 364.9 367.4 329.9 432.3 382.0 327.8 458.5 406.9 352.9 470.3 420.0 364.8 474.8 423.4 367.6 476.7 423.0 364.9 367.0 590.8 591.5 595.4 600.2 618.6 621.9 625.7 Cost of Elect, Mills/kWh 18.658 19.160 19.228 18.981 19.184 19.563 18.298 18.303 18.386 18.439 18.557 18.697 18.822 18.972 19.555 19.660 19.776 Capital 18.658 19.160 19.228 18.981 19.184 19.563 18.298 18.303 18.386 18.439 18.557 18.697 18.822 18.972 19.555 19.660 19.776 Capital 18.658 19.162 19.228 18.995 7.892 7.338 7.265 7.148 7.3	Powerplant Eff , %	37.0	37.4	37, 7	36, 1	36.3	36.8	39.5	39.9	40.6	39.4	39.8	40.4	38.7	39.1	39.6	36.6	36.9	37.4
Capital Costs, \$/kWe 590, 2 606, 1 608, 2 600, 4 606, 9 618, 6 578, 8 579, 0 581, 6 583, 3 587, 0 590, 8 591, 5 595, 4 600, 2 618, 6 621, 9 625, 7 Cost of Elect, Mills/kWh 18,658 19, 160 19, 228 18, 981 19, 184 19, 563 18, 298 18, 303 18, 386 18, 439 18, 557 18, 697 18, 822 18, 972 19, 555 19, 660 19, 776 Capital 18, 658 19, 160 19, 228 18, 981 19, 184 19, 563 18, 298 18, 303 18, 386 18, 439 18, 557 18, 697 18, 822 18, 972 19, 555 19, 660 19, 776 Fuel (2) 7, 847 7, 763 7, 689 8, 038 7, 995 7, 892 7, 338 7, 265 7, 148 7, 358 7, 177 7, 493 7, 426 7, 323 7, 930 7, 865 1, 506 1, 559 Oper, & Maint. 1, 479 1, 525 1, 590 1, 511 1, 561 1, 627 1, 381 1, 418 1, 465	Overall Eff , %	37.0	37.4	37.7	36.1	36, 3	36, 8	39.5	39.9	40, 6	39.4	39.8	40, 4	38, 7	39, 1	39.6	_36, 6	36, 9	37.4
Cost of Elect, Mills/kWh IIII S/kWh Capital 18,658 19,160 19,228 18,981 19,184 19,563 18,298 18,303 18,386 18,439 18,557 18,675 18,697 18,822 18,972 19,555 19,660 19,776 Fuel (2) 7,847 7.763 7.689 8.038 7.995 7.892 7.338 7.265 7.148 7.358 7.287 7.177 7.493 7.426 7.323 7.930 7.865 7.763 Oper, & Maint. 1.479 1.525 1.590 1.511 1.561 1.627 1.381 1.418 1.465 1.376 1.412 1.459 1.394 1.432 1.481 1.465 1.559 Total 27,98 28.45 28.51 28.53 28.74 29.08 27.02 26.99 27.00 27.17 27.26 27.31 27.68 27.68 27.68 28.95 29.03 29.10	Total Capital Cost × 10 ⁻⁶ , \$	432.6	387.4	329, 9	432.3	382.0	327.8	458, 5	406.9	352,9	470.3	420.0	364.8	474, 8	423.4	367, 6	476.7	423,0	364.9
Capital 18, 658 19, 160 19, 228 18, 981 19, 184 19, 563 18, 298 18, 303 18, 306 18, 439 18, 557 18, 677 18, 822 18, 972 19, 555 19, 660 19, 773 Fuel (2) 7, 847 7, 763 7, 689 8, 038 7, 995 7, 892 7, 338 7, 265 7, 148 7, 358 7, 287 7, 177 7, 493 7, 426 7, 323 7, 930 7, 865 7, 763 Oper, & Maint. 1, 479 1, 525 1, 590 1, 511 1, 561 1, 627 1, 381 1, 418 1, 465 1, 376 1, 412 1, 459 1, 394 1, 432 1, 481 1, 465 1, 559 Total 27, 98 28, 45 28, 51 28, 52 28, 74 29, 08 27, 02 27, 00 27, 17 27, 26 27, 31 27, 68 27, 68 27, 68 27, 68 28, 95 29, 03 29, 10		590.2	606, 1	608, 2	600.4	606.9	618.6	578.8	579.0	581.6	583.3	587.0	590, 8	<u>591, 5</u>	595.4	600, 2	618.6	621, 9	625.7
Fuel (2) 7, 847 7, 763 7, 689 8, 038 7, 995 7, 892 7, 338 7, 265 7, 148 7, 358 7, 287 7, 177 7, 493 7, 426 7, 323 7, 930 7, 865 7, 763 Oper, & Maint. 1, 479 1, 525 1, 590 1, 511 1, 561 1, 627 1, 381 1, 418 1, 465 1, 376 1, 412 1, 459 1, 394 1, 432 1, 481 1, 465 1, 559 Total 27, 98 28, 45 28, 51 28, 52 28, 74 29, 08 27, 02 26, 99 27, 00 27, 17 7, 48 27, 68 27, 68 27, 78 28, 95 29, 03 29, 10	Cost of Elect, Mills/kWh																		
Oper. & Maint. 1. 479 1. 525 1. 590 1. 511 1. 561 1. 627 1. 381 1. 418 1. 465 1. 376 1. 412 1. 459 1. 394 1. 432 1. 481 1. 465 1. 559 Total 27, 98 28. 45 28. 51 28. 53 28. 74 29. 08 27. 02 26. 99 27. 00 27. 17 27. 26 27. 31 27. 68 27. 78 28. 95 29. 03 29. 10	Capital	18, 658	19, 160	19, 228	18,981	19, 184	19, 563	18, 298	18, 303	18, 386	18, 439	18, 557	18,675	18, 697	18, 822	18, 972	19.555	19, 660	19, 778
Total 27, 98 28, 45 28, 51 28, 53 28, 74 29, 08 27, 02 26, 99 27, 00 27, 17 27, 26 27, 31 27, 68 27, 68 27, 78 28, 95 29, 03 29, 10	Fuel (2)	7,847	7.763	7.689	8.038	7.995	7, 892	7, 338	7.265	7,148	7, 358	7, 287	7.177	7.493	7.426	7.323	7.930	7,865	7.763
	Oper, & Maint,	1.479	1. 525	1.590	1,511	1, 561	1.627	1, 381	1,418	1.465	1.376	1,412	1, 459	1.394	1.432	1, 481	1, 465	1,506	1, 559
	Total	27, 98	28, 45	28, 51	28, 53	28, 74	29,08	27.02	26, 99	27,00	27, 17	27, 26	27, 31	27, 68	27,68	27, 78	28.95	29.03	29.10
	Est. Time of Construction, yr	6.0	5.9	5, 7	6, 0	5,9	5,7	6.1	6.0	5.8	6.1	6.0		6.1	6.0	5.8	6.1	5.9	5.8
									_										

Manange and have been and the second of the second s

Notes: ① Where Applicable ② Use Base Delivered Fuel Cost

Dwg. 2570217

TABLE 12.4 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (PRESSURIZED BOILER GASIFIER SYSTEM) (CON'TD.)

Shee	t3o	f3.

															_			
Parametric Point	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Power Output, MWe	732	648	554	682	599	511	783	688	583	824	723	611	724	635	541	723	634	540
Fuel																		
Bituminous Coal	Х	X	X	X	X	X	Χ	X	X	X	X	X						
Subbituminous Coal													X	X	X			
Lignite Coal		_]				L								X	<u>X</u>	X
Gas Turbine							-	·							····			
Inlet Temp , °F	2000	2000	2000	2000	_2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Pressure Ratio	IO	10	10	10	10	10	10	10	10	10	10	10	10	10	<u>10</u>	10	10	10
Air Equivalence Ratio (Nominal)	1.1	1,5	1.8	1.1	1.5	1.8	1.1	1.5	1,8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8
Steam Turbine				_											. <u> </u>			f
Throttle Press, psia	3500	3500	3500	3500	3500	3500	4500	4500	4500	5000	5000	5000	3500	3500	_3500_	3500	3500	3500
Throttle Temp, ^o F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1400	1400	1400	1000	1000	1000	1000	1000	1000_
Reheat femp, °F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1400	1400	1400	1000	1000	1000_	1000	1000	1000
Condenser Press, in Hg Abs	2.0	2.0	2.0	9.0	9.0	9.0	3.5	3.5	35	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3,5	3.5
Thermodynamic Eff., (1)								l	<u> </u>									
Powerplant Eff. %	37.8	38.5	39.0	<u>35. 2</u>	35.6	36, 0	40.5	40.7	41.0	42.3	42,4	42,6	37.6	<u>37. 9</u>	38.4	<u>36. 7</u>	37.1	37.5
Overall Eff, %	37.8	38.5	<u>39. 0</u>	35.2	35.6	36.0	40.5	40.7	41.0	42.3	42.4	42.6	37.6	37.9	38,4	36.7	37.1	37.5
Total Capital Cost × 10 ⁻⁶ \$	432.0	383.3	<u>330, 7</u>	436.2	385.9	<u>331.8</u>	536.8	470, 0	399, 7	700.4	<u>607.6</u>	<u>507. 1</u>	390.6	346.1	297.3	412.3	356.3	<u>305. 9</u>
Capital Costs, \$/kWe	589.9	<u>591, 9</u>	597, 4	<u>639, 5</u> 1	643, 7	649.4	685, 7	<u>683. 4</u>	685, 1	849, 8	840, 9	830.5	639.3	544.7	549.3	<u>570. 2</u>	561.7	566.1
Cost of Elect, Mills/kWh																		·
Capital	18, 648	<u>18, 710</u>	18, 885	20, 215	20.348	20, 530	<u>21. 676</u>	21,604	21, 689	26, 865	26, 583	26, 254	17.047	17.220	17.365			
Fuel (2)	7,668	7, 541	7,433	8,231	8.144	<u>8.051</u>	7, 169	7.126	7.083	6, 865	6.836	6.805	7. 714	7.646	7. <u>563</u>	7.899	7,829	7. 744
Oper. & Maint.	1,458	1,492	1,549	1,495	<u>1, 542</u>	1.607	1,388	1.412	1,478	1,306	1,352	1.419	. 848	. 900	<u>, 968</u>	. 873	_ 924	. 993
Total	27.77	27, 74	27, 87	29,94		30, 188				36,04		34,48	25.61	25, 77	25, 90	26.80	26.51	26.63
Est. Time of Construction, yr	6.0	5.9	5.7	5.9_	5.8	.5.7_	_6.1	5.9	5.8	6.1	6.0	5.8	6.0	5.9	5.7	6,0	5,9	5.7
								L	L	L				I	L			l

Notes: ① Where Applicable ② Use Base Delivered Fuel Cost

process in the boiler fluidized bed is temperature-limited. Further, within the restraints of the system as hypothesized, there is no clean fuel gas available to reheat the combustion products just before they enter the gas turbine.

The schematic cycle diagram of this system shown in Figure 12.7 is slightly simpler than that of the previous system because the gasifier loop is deleted.

Table 12.5 gives the parametric points for which performance and energy costs were calculated, as well as the performance calculation results. (The calculated results are analyzed and shown graphically in Sections 12.4 and 12.6).

12.3 Approach

the mainers

ala ann an fi

12.3.1 Atmospheric Furnace Systems

The thermodynamic cycle performance of the atmospheric pressure furnace steam plant was calculated by means of an existing computer code. Known as the Westinghouse Generalized Performance and Heat Balance Program, this complex code was developed over a number of years. It has the flexibility to do either very precise and detailed analyses based on existing Westinghouse turbine components or to use more approximate performance criteria in order to make broad parametric evaluations of the type done in this study. Typical assumptions normally utilized by the program for heater and feed pump performance are shown in Table 12.6. A typical example of the cycle configuration for which results were calculated is shown in Figure 12.5.

The Generalized Performance and Heat Balance Program calculates what is known as the "net turbine heat rate," which is the heat input to the steam divided by the power output of the generator. Boiler efficiency and plant auxiliaries are applied to the turbine heat rate to calculate the overall plant heat rate.

TABLE 12.5 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (PRESSURIZED FLUIDIZED BED BOILER)

CL.	eet			2	
<u></u> ¬ п	1997	- 1	nr.	- 1	

							_											
Parametric Point	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Power Output, MWe	6%	557	421	708	568	430	710	570	431	703	562	422	705	566	430	722	<u>582</u>	443
Fuel																		·
Bituminous Coal	X	X	X	<u>X</u>	X	X	X	<u>X</u>	X	X	X	X	<u>x</u>	X	X	X	X	<u> X </u>
Subbituminous Coal																		- -
Lignite Coal							<u></u> ,	l										L
Gas Turbine									· · · · ·					· · · · · · · · · · · · · · · · · · ·	·			
Inlet Temp , °F	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1700	1700	1700	1700	1700	1700
Pressure Ratio	5	5	5	8	8	8	10	10	10	15	15	15	5	5	5	8	8	8
Air Equivalence Ratio (Nominal)	1.1	1,5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8
Steam Turbine																		
Throttle Press, psia	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500
Throttle Temp , °F	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Reheat Temp , °F	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Condenser Press , in Hq Abs	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	_3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Thermodynamic Eff , ①															L			L
Powerplant Eff , %	37, 2	37.3	37.5	37.5	37.6	37.9	37.5	37.6	37.9	37.3	37.2	37.3	37.5	37.6	37,9	37,9	<u>38, 1</u>	38.5
Overall Eff , %	37.2	37.3	37.5	37.5	37.6	37.9	37.5	37.6	37.9	37.3	<u>37, 2</u>	37. 3	37.5	37.6	37.9	37.9	38.1	38, 5
Total Capital Cost × 10 ⁻⁶ , \$	316.6	262.8	216.1	304.1	254,9	210.3	300.3	252.4	208.4	293.4	247.9	205, 1	319.7	266. I	217, 8	309.5	259.1	214.3
Capital Costs, \$/ KWe	454, 8	471.4	513, 7	429.7	449, 1	489.6	422.9	443.0	483, 5	417.2	441.2	465.4	453, 1	469.8	506.9	428.8	445.6	<u>483. 7</u>
Cost of Elect, Mills/kWh																		
Capital	14.376	14.903	16, 240	13, 583	14, 197	15.478	13.370	14.008	15. 284	13.188	13,946	15.38	14, 325	14.850	16,025	13, 554	14,086	15.292
Fuel (2)	7.798	7. 785	7.744	7, 733	7. 715	7 664	7.725	7, 709	7.663	7. 783	7. 798	7, 781	7. 741	7, 716	7.653	7, 649	7.614	7. 537
Oper. & Maint.	1, 801	1, 896	2.032	1, 782	1, 875	2.006	1.780	1.872	2,004	1, 793	1.892	2,036	1. 785_	1, 877	2.005	1,760	1,846	1, 968
Total	23.98	24, 59	26, 02	23, 10	23, 79	25, 15	22, 88	23, 59	24, 95	22, 76	23.63	25, 19	23, 85	24, 44	25.68	22,96	23, 55	24.80
Est. Time of Construction, yr	5.0	4.8	.4.6	5.0	4.8	4.6	5.0	4.8	4,6	5.0	4.8	4.6	5.0	4.8	4.6	5.0	4.8	4.6

Notes: ① Where Applicable ② Use Base Delivered Fuel Cost

TRIGINAL PAGE IS

Durg. 257C231

TABLE 12.5 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (PRESSURIZED FLUIDIZED BED BOILER)

Sheet 2 of 3

Parametric Point	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Power Oulput, MWe	723	582	443	721	579	438	715	575	438	734	594	455	738	597	457	736	594	454
Fuel																		
Bituminous Coal	X	X	Х	X	X	Х	X	X	X	Х	Х	X	Х	Х	X	X	Х	X
Subbituminous Coal																		
Lignite Coal			_			l				L								
Gas Turbine																		
Intet Temp , °F	1700	1700	1700	1700	1700	1700	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Pressure Ratio	10	10	10	15	15	15	5	_ 5	5	8	8	8	10	10	10	15	15	15
Air Equivalence Ratio	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1,1	1.5	1.8_
Steam Turbine				_							-							
Throttle Press, psia	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500
Th rollie Temp , °F	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	.000	1000	1000	1000	1000	1000	1000
Reheal Temp , °F	1000	1000	1000	1000	1000	1000	1000	1000_	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Condenser Press, in Hg Abs	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
<u>Thermodynamic Eff</u>	1								l									
Powerplant Eff , %	37.9	38.1	38.4	37.8	37.8	38.1	37.7	37.9	38, 3	38.3	38.5	39.1	38.3	38.6	39, 1	38.2	38,4	38.7
Overall Eff , %	37.9	38.1	38.4	37, 8	37.8	38, 1	<u>37. 7</u>	37.9	38.3	38.3	38.5	39.1	38.3	38.6	39.1	38.2	38.4	38.7
Total Capital Cost, ×10-6, \$	302.9	254.9	208.1	297.7	251.6	208.9	323.1	268, 1	220.7	311.6		217.3	309.0	261.1	217.0	304, 3	<u>258.5</u>	213.0
Capital Costs, \$/ kWe	418.9	437.9	470, 2	413, 1	434, 8	476.5	452,1	465.9	503.6	424.2	440.8	477, 4	418.6	437.4	474.5	413.3	435.3	469.4
Cost of Elect, Mills/ KWh								-										
Capital	13.241	13.843	14.863	13.057	13, 745	15.062	14, 293	14, 729	15,920	<u>13. 411</u>	13.936	16,091	13.232	13.828	15.001	13,066	13. 760	14.840
Fuel (2)	7. 651	7.620	7.648	7.682	7.666	7.623	7.686	7,650	7.569	7.578	7, 528	7.428	7.566	7.519	7, 424	7.596	7, 561	7. 487
Oper. & Maint.	1.759	1.847	1,969	1.766	1, 857	1, 987	1,770	1.858	1, 979	1,740		1,934	1.735	1, 817	1, 931	1.742	1, 825	1.845
Total	22.65	23, 31	24. 38	22, 51	23.27	24.67	23.75	24, 24	25.47	22.73		24, 45	22,53	23, 164	24.36	22, 40	23.15	24.27
Est. Time of Construction, yr	5.0	4.8	4.6	5.0	4.8	4.6	5.0	4.8	4.6	5.0	4.8	4.6	5.0	4.8	4.6	5.0	4,8	4.6
						L												

Notes:

Where Applicable
 Use Base Delivered Fuel Cost

Dwg. 2576232

and a state of the state of the

Dwg. 257C233

TABLE 12, 5 - ADVANCED STEAM PARAMETRIC POINT INVESTIGATION (PRESSURIZED FLUIDIZED BED BOILER)

Sheet 3 of 3	2
--------------	---

																	· · · · · · · · · · · · · · · · · · ·	
Parametric Point	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Power Output, MWe	726	585	442	665	534	403	777	<u>621</u>	466	823	656	490	<u>710</u>	570	431	709	569	430
Fuel																		
Bituminous Coal	X	X	X	X	X	X	Х	X	Х	_ X	X	X						
Subbituminous Coai										_			<u>X</u>	X	X			
Lignite Coal																X	X	<u> </u>
Gas Turbine															·			
Inlet Temp. , °F	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1660	1600	1690
Pressure Ratio	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	ĪŬ
Air Equivalence Ratio	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8	1.1	1.5	1.8
Steam Turbine																		
Throttle Press , psia	3500	3500	3500	3500	3500	3500	4500	4500	4500	5000	5000	5000	3560	3500	3500	3500	3500	3500
Throttle Temp , °F	1000	1000	1000	1000	1000	1000	1200	1200	1200	1400	1400	1400	1000	1000	1000	1000	1000	1000
Reheat Temp , °F	100D	1000	1000	1000	1000	1000	1200	1200	1200	1400	1400	1400	1000	1000	1000	1000	1000	1000
Condenser Press , in Hq Abs	2.0	2.0	2.0	9.0	9.0	9.0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Thermodynamic Eff 🚬 🛈												İ						
Powerplant Eff , %	38.4	38, 6	38.8	35.2	35. 3	35, 4	40.9	40.8	40.8	42.8	42.7	42.6	39.0	39.1	39.3	38.1	38, 2	38, 4
Overali Eff , %	38.4	38.6	38.8	35.2	35.3	35.4	40, 9	40.8	40.8	42.8	42.7	42.0	39.0	<u>39.1</u>	39.3	38.1	<u>38. 2</u>	38.4
Total Capital Cost ×10 ⁻⁶ , \$	308.2	258.5	213.3	311.9	260.7	214.1	409.0	335.3	266, 9	484.3	457.9	434.8	287.7	238.0	201.7	297.4	251.6	209.5
Capital Costs, \$/kWe	424.2	441.8	482.3	<i>4</i> 68.7	488, 1	530. 7	526.4	540, 2	572.7	588, 8	698.3	887.4	404.9	417.5	467.7	419.3	442.1	486.7
Cost of Elect, Mills/kWh										_								
Capital	13, 410	13, 966	15. 245	14.818	15, 431	16, 777		17.077	18,104	18.613	22,074	28.064	12,800	13, 199	14.784	13.250	13, 975	15. 387
Fuel (2)	7. 552	7.506	7,467	8.244	8, 223	8, 186	7.099	7.105	7.106	6.782	6. 794	6, 807	7.440	7.423	7.378	7.608	7, 590	7.545
Oper, & Maint,	1.742	1.826	1, 958	1,824	1. 923	2.066	1.638	1.701	1868	1.561	1.653	L 790	. 879	. 973	1.111	. 914	1,009	1.146
Total	22.70	23, 30	24, 67	24, 89	25.58	27.03	25.38	25.92	27.08	26, 96	30.52	36, 65	21.12	21.60	23.27	21.78	22.57	24.08
Est. Time of Construction, yr	5.0	4.8	4,6	5.0	4,8	4,5	5,1	4.9	4.6	5, I	4,9	4.7	5.0	4.8	4,6	5.0	4.8	4.6

han an hai na hana manakan karan karan karan mara na na manakar da karan karan karan karan karan karan karan k

sur dia an

Notes: ① Where Applicable ② Use Base Delivered Fuel Cost

Dwg. 1672827

			Sample		Туріс	al ECAS Assumpt	ions
Steam Conditions	Load	Pressure Drop	Heaters	Boiter Feed Pump	Pressure Drop	Heaters	Boiler Feed Pump
2400 psia 1000°F 1000°F Reheat	511100 kW @ I. 0 in Hg Abs 0 % M. U.	Reheater 10% Throttle 4% Valve	Number 7 1 Open 4 with Drain Coolers DTD = 10% TD = -3% HTR #1 0% HTR #2 5% All Others $\Delta P/P = 5\%$	η _P = 82% η _T =80% Excess Pressure = 16%	Reheater 10% Throttie 4% Valve	Number 7 1 Open 6 with Drain Coolers DTD = 10°F TD = 5°F AP/P = 5%	$\eta_{\rm P} = 82\%$ $\eta_{\rm T} = 80\%$ Excess Pressure = 25% At Valves Wide Open
3500 psia 1000 °F 1000 °F	584536 kW @ 1. 0 in Hg Abs 0% M. U.	Reheater 10% Throttle 4% Valve	Number 8 1 Open 7 with Drain Coolers DTD = 10°F TD =-2°F HTR #1 2°F HTR #2 -3°F HTR #3 5°F All Others $\Delta P/P=5\%$	η _P = 84.8% η _P = 80.8% Excess Pressure = 18%	Reheater 10% Throttle 4% Valve	Number 8 1 Open 7 Closed DTD = 10°F TD = 5°F AP/P = 5%	$\eta_p = 82\%$ $\eta_p = 80\%$ Excess Pressure = 25% At Valves Wide Open

TABLE 12, 6-TURBINE OPERATING PARAMETERS SAMPLE AND TYPICAL ECAS ASSUMPTIONS

(1993) 1993) Dwg. 6352A61

Sector April 2014 Constant

化氯化物化物 化化物化物 法法法的 化丁基苯基苯基 化二乙基乙基

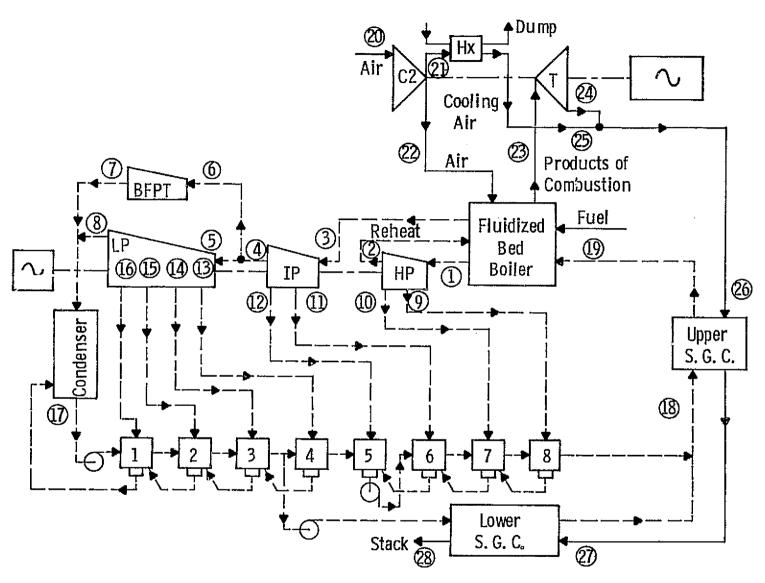


Fig. 12.7-Schematic of pressurized fluidized bed boiler power plant

n en se el féreix en en el company de la company de la company de la company en el company en el company en el

12-30

e average in the second state of a

12.3.2 Pressurized Boiler-Gasifier System

In a steam power plant with a pressurized boiler, the performance of the plant depends in part upon the performance of the pressurizing gas turbine. As can be seen in Figure 12.6, the cycle consists essentially of a gas turbine power plant and a steam turbine power plant operating nominally in parallel and utilizing interacting heat exchangers. These heat exchangers are a pressurized steam boiler, an upper stack-gas cooler, and a lower stack-gas cooler. The boiler, of course, boils and superheats the feedwater. The upper and lower stack-gas coolers recuperate heat from the hot exhaust gases of the gas turbine and transfer it to the feedwater stream.

This cycle incorporates an integrated coal gasifier which uses pressurized air and steam (process fluids) from the gas and steam turbines. Because of the substantial pressure drop in the gasifier it is necessary to provide an auxiliary compressor to raise the pressure of the process air.

A previously developed Westinghouse computer code was modified to incorporate the performance variations of the coal gasifier which are a function of the process air temperature and, therefore, the cycle pressure ratio. With appropriate component performance characteristics incorporated into the code, the cycle calculation proceeds to determine the state point of the working fluids throughout the cycle and solves ten mass and heat balance equations simultaneously to determine the steam extraction flow rates. This system is solved iteratively to determine the combination of fuel input and steam flow rate which results from the assumed values of steam and gas turbine inlet temperature.

12.3.3 Pressurized Fluidized Bed Boiler System

As shown in Figure 12.7, this cycle is similar to but slightly simpler than the previous system because the gasifier is eliminated. The same basic computer code applies and was used without the gasifier modification but with an appropriate pressure drop associated with the fluidized bed combustion process.

12-31

Location	$M_{\rm STM} \times 10^{-6},$	T, °F (1-x)*	P, psia
1	3.515412	1000	3515
2	3.096373	570	667
3	3.096373	1000	600
4	2.989328	648	143
5	2.654888	648	143
6	0.215946	647	136
7	0.215946	125	1.96
8	2.184833	8.3%	1.72
9	0.348643	565	633
10	0.155059	825	284
11	0.130405	647	136
12	0.167026	529	75
13	0.098205	346	28
14	0.126278	235	14
15	0.083817	162	5
16	2,184833	91.7	1.72
17	3.515373	492	4390

Table 12.7 - Advanced Steam Conventional Atmospheric Furnace (Parametric Point 20)

* 1-x = % moisture

x = quality

12.4 Performance Results of the Parametric Study

12.4.1 Atmospheric Furnace Systems

Table 12.7 lists the flow rates and state points of the steam working fluid for the base case throughout the cycle as defined in Figure 12.5. The base case is a nominal 500 MWe steam plant with a 24.134 MPa (3500 psi) throttle pressure, an 811°K (1000°F) throttle temperature, a single reheat to 811°K (1000°F), and a condenser pressure of 11.819 kPa (3.5 in Hg)abs.

Figure 12.8 shows the increase in overall energy efficiency that results when the steam temperature and pressure are increased. As can be seen, increasing the steam temperature from 81.1 to 1033°K (1000°F to 1400°F) increases the efficiency from \sim 35% to 39%, and the benefit of high pressure increases with increasing temperature.

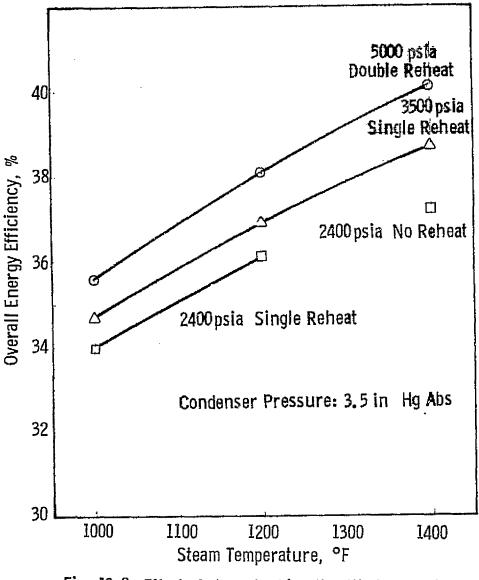
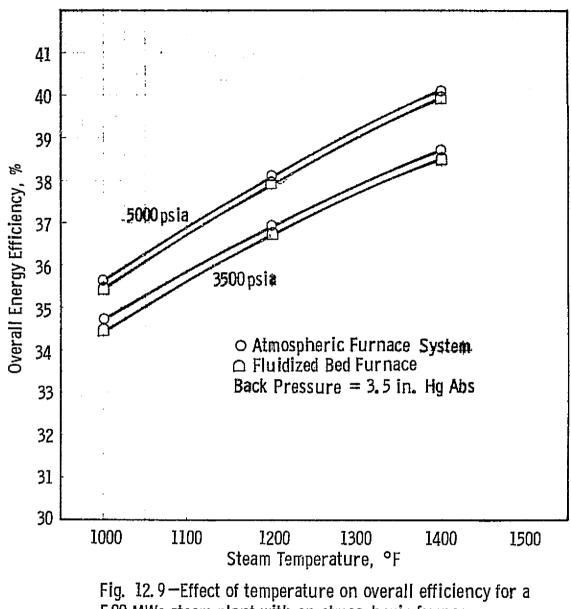
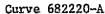
The efficiency for the 16.547 MPa (2400 psi) pressure level at 1033°K (1400°F) is shown for a care without reheat. This is because at this elevated throttle temperature the use of reheat would result in superheated steam in the turbine low-pressure end at the design operating point. The superheated steam in the low pressure end presents a serious materials problem since the blading and rotor is subjected to excessive temperature when the turbine operates at off-design conditions.

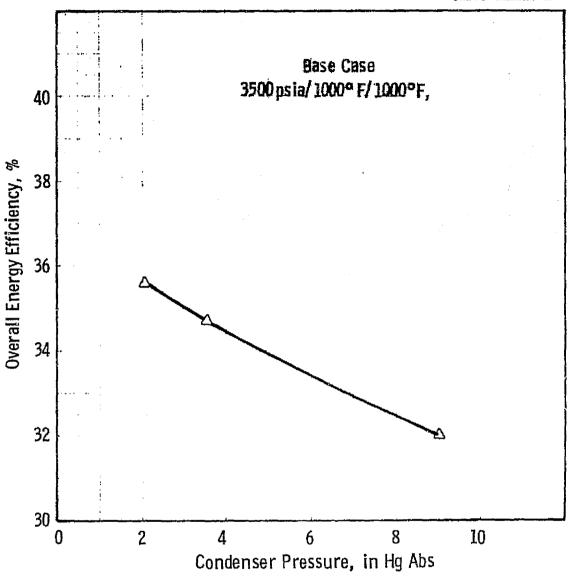
Figure 12.9 shows a comparison between the overall energy efficiency of a power plant with a conventional boiler and one with a fluidized bed boiler. The efficiencies of the power plants, both at a 24.132 and 34.472 MPa (3500 and a 5000 psi) throttle pressure, are plotted against throttle steam temperature. As would be expected, the furnace type has negligible effect on the slope of efficiency versus temperature, but the fluidized bed system results in a slightly lower efficiency at a given temperature level. This is primarily due to the lower boiler efficiency of the fluidized furnace which results from the in-bed desulfurization reaction loss.

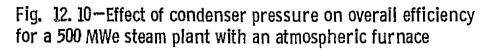
12-33

ودريمهم فالبري فتريدهن حياد

Curve 682216-A


Fig. 12.8—Effect of steam turbine throttle temperature on overall effeciency for a 500 MWe steam plant with an atmospheric furnace

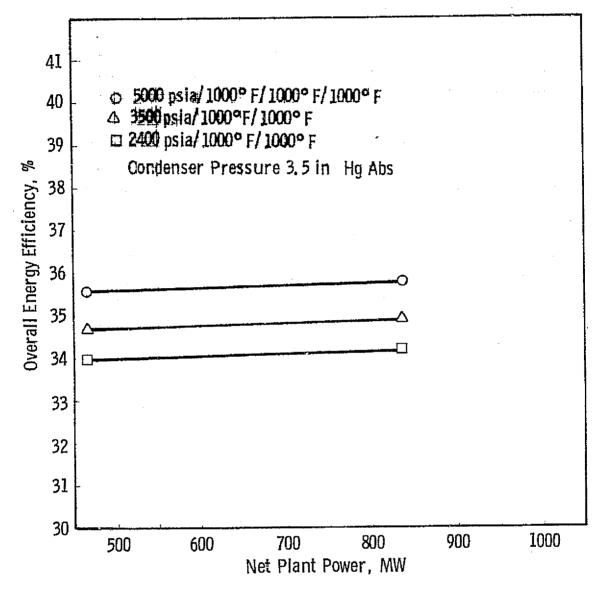

Curve 682218-A

500 MWe steam plant with an atmospheric furnace

The variation of overall energy efficiency as a function of condenser pressure is shown in Figure 12.10. As would be expected in a steam plant, reducing the condenser pressure results in a significant improvement in plant efficiency.

The effect of increasing the size of the plant from a nominal level of 500 to 900 MWe is small (see Figure 12.11). The slight improvement in energy efficiency is the result of a small improvement in turbine efficiency.

Figure 12.12 illustrates the effect of type of coal burned on the overall energy efficiency. The slight improvement caused by changing from Illinois No. 6 bituminous to Montana subbituminous coal is due to the sulfur content of the Montana coal, which allows a lower air preheater exit temperature [400°K (260°F) instead of 428°K (310°F)], thus reducing sensible heat loss. This improvement is slightly greater than the higher latent heat loss due to the greater moisture content in the Montana coal. The North Dakota lignite, however, has an even greater moisture content, which overcomes the sensible heat gain and results in a decrease in overall efficiency.


Finally, Figure 12.13 illustrates the effect of various combinations of throttle and reheat temperature. The points are located on the abscissa at the temperature level defined by a simple average of the throttle and reheat temperatures. The significant variations from the trend of similar throttle and reheat temperatures result more from the number of reheats than from the average temperature for a given number of reheats.

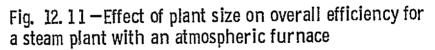
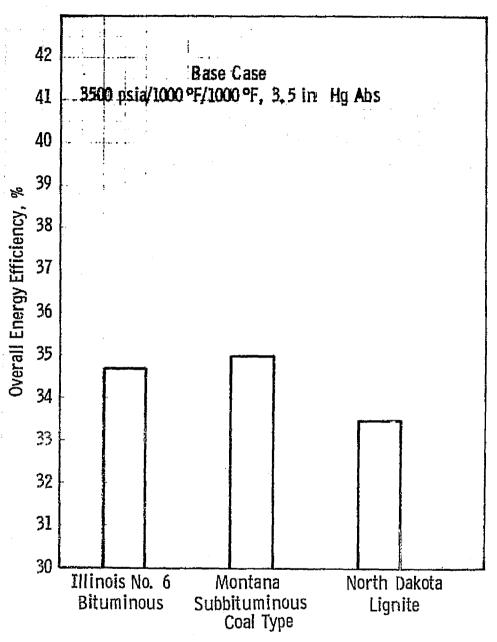
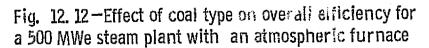
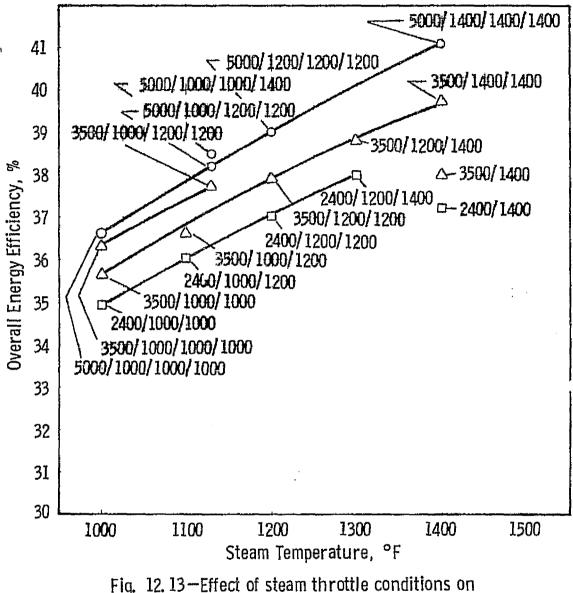

12.4.2 Pressurized Boiler-Gasifier System

Table 12.8 lists the flow rates and state points of the steam and gas working fluids for the base case throughout the cycle illustrated in Figure 12.6. For the base case, the steam bottomer has a 24.134 MPa (3500 psi) throttle pressure, an 811°K (1000°F) throttle temperature, a single reheat to 811°K (1000°F), and a condenser pressure of 11.819 kPa (3.5 in Hg)abs. The gas turbine engine has a pressure ratio of 10:1 and


12-37


Curve 682217-A



Curve 682223-A

Curve 682219-A

overall efficiency for a 500 MWe steam plant with an atmospheric furnace

Location	Flow Rate of Steam X 10 ⁻³ , 1b/hr	T, °F or (1-x)*	P, psia	Flow Rate Gas, 1b/s
1	3954.6	1000	3550	
2	3671.3	557	608	-
3	3671.3	1000	534	هنی
4	3471.7	617	121	
5	3265.4	617	121	
6	206.3	617	121	
7	206.3	4.9%	1.7	
8	2877.2	7.5%	1.7	
9	139.9	650	925	
10	143.5	557	608	
11	106.9	843	304	
12	92.7	617	121	
13	64.2	434	47.9	
14	61.0	341	28.1	
15	145.8	240	15.0	
16	117.1	3.4%	5.2	
17	3083.5	117	1.7	
18	3954.6	530	∿ 4000	
19	3954.6	608	~ 4000	
20		59	14.7	1520
21		663.8	145.9	147.4
22		663.8	145.9	970.8
23		2000	137.1	1613.4
24		1155.3	15.3	1613.4
25		470	145.9	147.4
26		1112.4	15.3	1721.9
27		600.6	15.0	1721.9
28		275	14.7	1721.9

Table 12.8 - Advanced Steam Pressurized Boiler-Gasifier System (Parametric Point 16)

* 1-x = % moisture x = quality

12-41

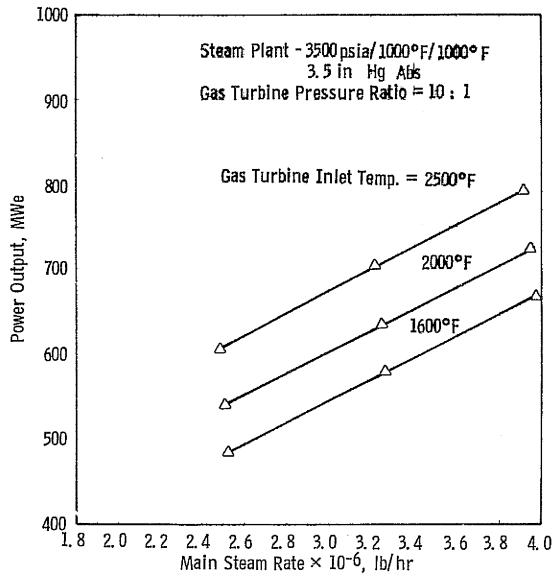


Fig. 12.14—Effect of steam flow rate on plant power and output for a nominal 600 MWe steam plant with a pressurized boiler gasifier system

a turbine inlet temperature of 1367°K (2000°F). The steam bottomer has a nominal power of 550 MWe, and the gas turbine engines have a nominal power of 200 MWe.

landa babalan kabalan da kaba da sabab kababa sabab ka

For a fixed airflow rate of 689.5 kg/s (1520 lb/s) (specified by the use of two W501 gas turbines for all parametric points), the steam flow rate is determined by the rate of fuel burned in the boiler. This is limited, however, by the fact that the sum of the fuel burned in the boiler and gas turbine combustor must not exceed the stochiometric value. The plant power level increases, of course, as the steam flow increases, as shown in Figure 12.14. Figures 12.15, 12.16, and 12.17 give the overall energy efficiency versus the main steam flow rate with parameters of gas turbine temperature and pressure ratio. It can be seen from these figures that the efficiency is not very sensitive to steam flow rate, that it increases substantially with gas turbine temperature, and that it nears a maximum at a pressure ratio of 10:1. Figure 12.18, which is a crossplot of the previous three figures, shows clearly the beneficial effect of increasing the gas turbine inlet temperature.

Because the bulk of the power comes from the steam bottomer, the condenser pressure has a significant effect on efficiency, as shown in Figure 12.19.

The variation in the combination of sulfur and moisture content among the fuels results in the variation in efficiency shown in Figure 12.20.

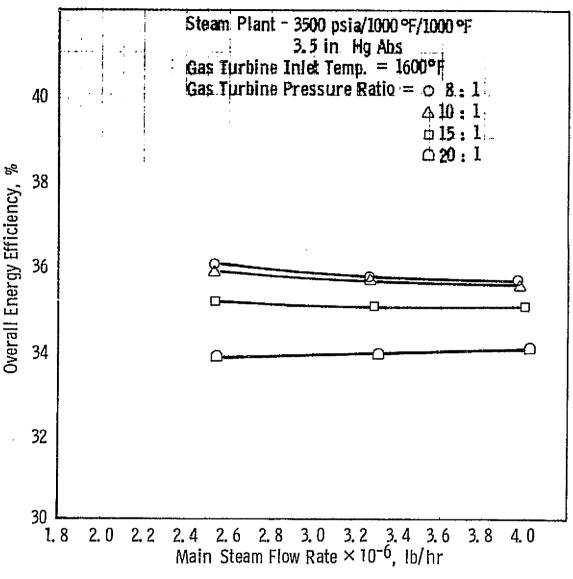
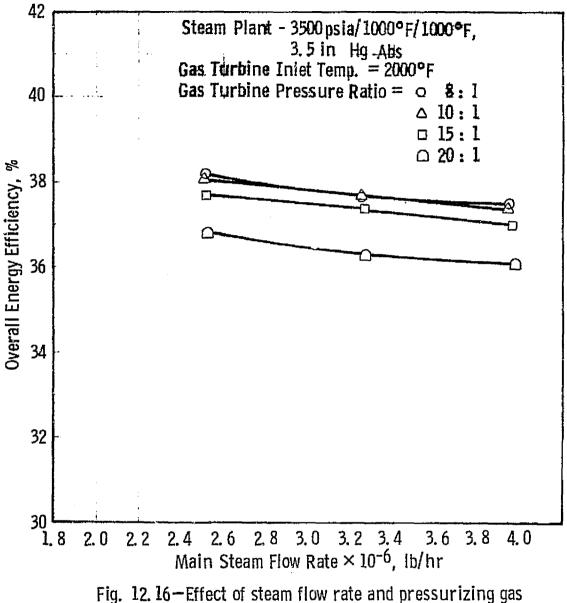
Finally, Figure 12.21 shows that a substantial increase in efficiency will result from an increase in steam temperature and pressure.

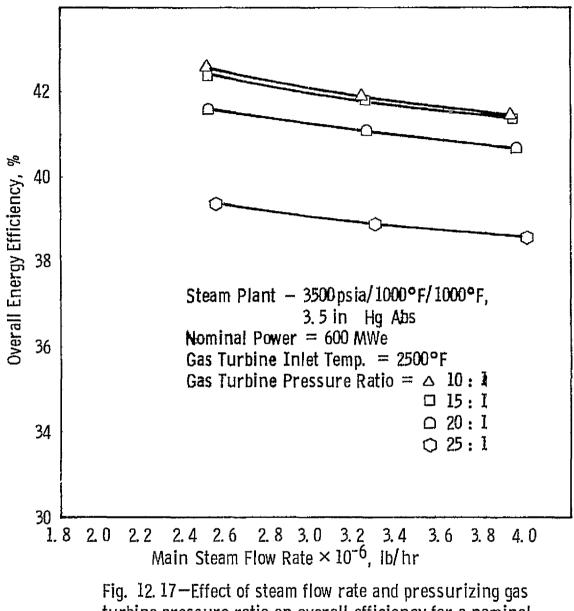
12.4.3 Pressurized Boiler Fluidized Bed Boiler System

Table 12.9 lists the flow rates and state points of the steam and gas working fluids for the base case throughout the cycle illustrated in Figure 12.7. For the base case, the steam bottomer has a 24.134 MPa (3500 psi) throttle pressure, an 811°K (1000°F) throttle temperature, a single reheat to 811°K (1000°F), and a condenser pressure of 11.819 kPa

12-43

Curve 682197-A


Fig. 12.15—Effect of steam flow and pressurizing gas turbine pressure ratio on overall efficiency for a nominal 600 MWe steam plant with a pressurized boiler gasifier system

Curve 682210-A


turbine pressure ratio on overall efficiency for a nominal 600 MWe steam plant with a pressurized boiler-gasifier system

Curve 682194-A

turbine pressure ratio on overall efficiency for a nominal 600 MWe steam plant with a pressurized boiler-gasifier system

Curve 682198-A

、日本に対応には思想などのないでしたとないないないないできたがないです。

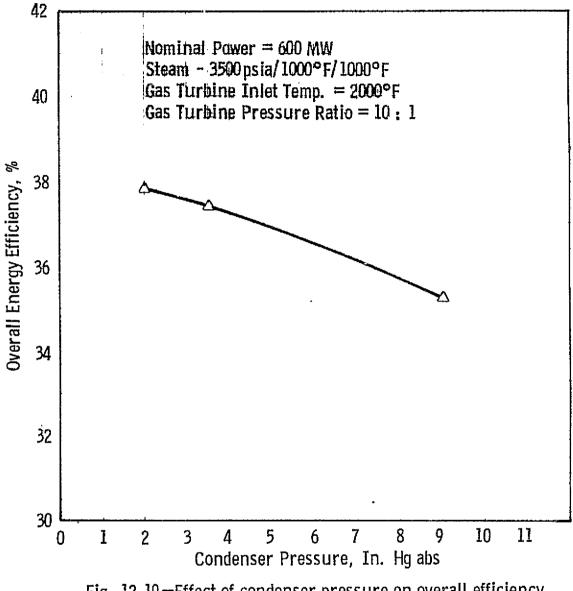


Fig. 12. 19—Effect of condenser pressure on overall efficiency for a steam plant with a nominal 600 MWe pressurized boiler gasified system

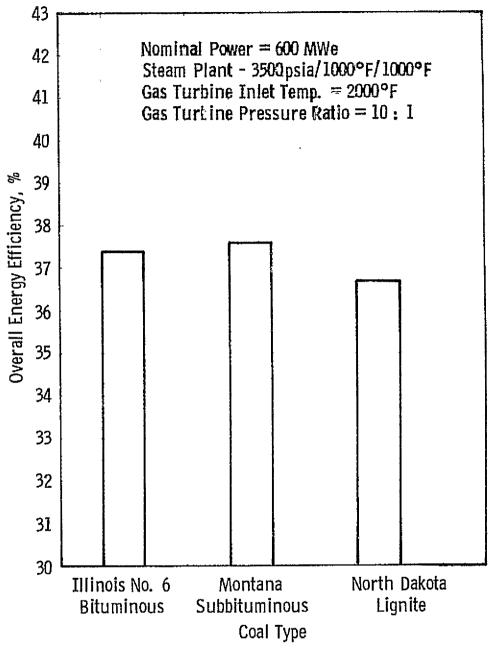


Fig. 12.20-Effect of coal type on overall efficiency for a nominal 600 MWe steam plant with a pressurized boiler gasifier system

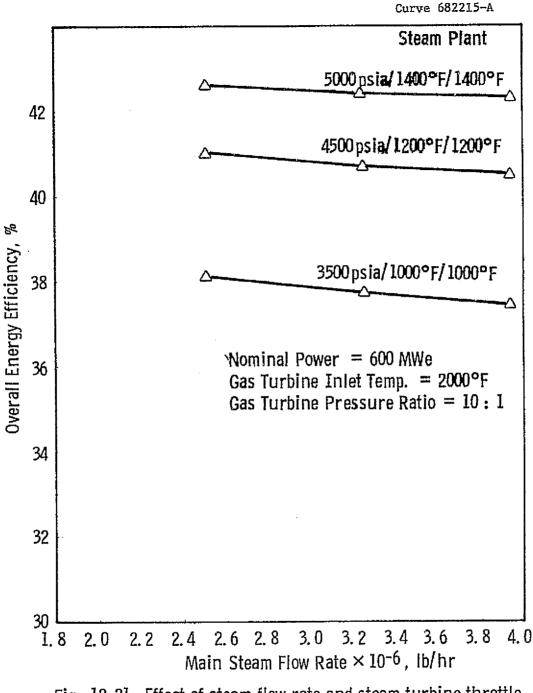


Fig. 12. 21—Effect of steam flow rate and steam turbine throttle conditions on overall efficiency for a nominal 600 MWe steam plant with a pressurized boiler-gasifier system

Location	Flow Rate of Steam X 10 ⁻³ , 1b/hr	T, °F or (1-x)*	F, psia	Flow Rate Gas, 1b/s
1	4000.0	1000	3500	
2	3639.8	557	608	
3	3639.8	1000	534	
4	3386.0	617	121	
5	3166.1	617	121	
6	219.9	617	121	
7	2.919	4.9%	1.7	
8	2742.7	7.5%	1.7	
9	177.8	650	925	
· 10	182.4	557	608	·
11	135.9	843	304	
12	117.9	617	121	
13	81.6	434	47.9	
14	64.4	341	28.1	
15	153.8	240	15.0	
16	123.6	3.4%	5.2	
17	2962.6	117	1.7	
18	4000.0	530	≃ 4000	
19	4000.0	608	≃ 4000	
20		59	14.7	1520
21		595.8	145.9	92.7
22		595.8	145.9	1427.3
23	~~	1600	134.2	1563.2
24		866.6	15.3	1563.2
25		470	145.9	92.7
26		844.4	15.3	1655.9
27		584	15.0	1655.9
28		275	14.7	1635.9

Table 12.9 - Advanced Steam Pressurized Fluidized Bed Boiler Base Case (Parametric Foint 7)

* l-x = % moisture
x = quality

يروا بروية ومسترد كالارتباط فالمراجعة

de la completa de la completa de la completa de la completa de la completa de la completa de la completa de la

daa ahaa daa

Location	Flow Rate of Steam X 10 ⁻³ ,1b/hr	T, °F or (1-x)*	P, psia	Flow Rate Gas, lb/s
1	4000.0	1000	3500	
2	3640.4	557	608	
3	3640.4	1.000	534	
4	3387.0	617	121	_
5	3167.1	617	121	
6	219.9	617	121	
7	219.9	4.9%	1.7	
8	2743.5	7.5%	1.7	
9	177.5	650	925	
10	182.1	557	608	
11	135.7	843	304	
12	117.7	617	121	
13	81.5	434	49.9	
14	64.5	341	28.1	
15	153.9	240	15.0	
16	123.7	3.4%	5.2	
17	2963.4	117	1.7	
18	4000.0	530	<i>≈</i> 4000	
19	4000.0	642	≃ 4000	
20		59	14.7	1520
21		595.8	145.9	120.1
22		595.8	145.9	1399.9
23		1800	134.2	1538.3
24		1008.9	15.3	1538.3
25		470	145.9	120.1
26		970.4	15.3	1658.4
27		584	15.0	1658.4
28		275	14.7	1658.4

Table 12.10 - Advanced Steam Pressurized Fluidized Bed Boiler - Preferred Case (Parametric Point 31)

* 1-x = % moisture

en e di Arguna di J

12-52

and a second a second a second second shares as a second second free seconds from some fight strategy of the second s

(3.5 in Hg) abs. The gas turbine engine has a pressure ratio of 10:1 and a turbine inlet temperature of 1144°K (1600°F). The steam bottomer has a nominal power of 600 MWe, and the gas turbine engines have a nominal power of 120 MWe.

Table 12.10 is a similar listing of conditions for the preferred case, which is very similar to the base case except that the gas turbine inlet ι perature is increased to 1253°K (1800°F).

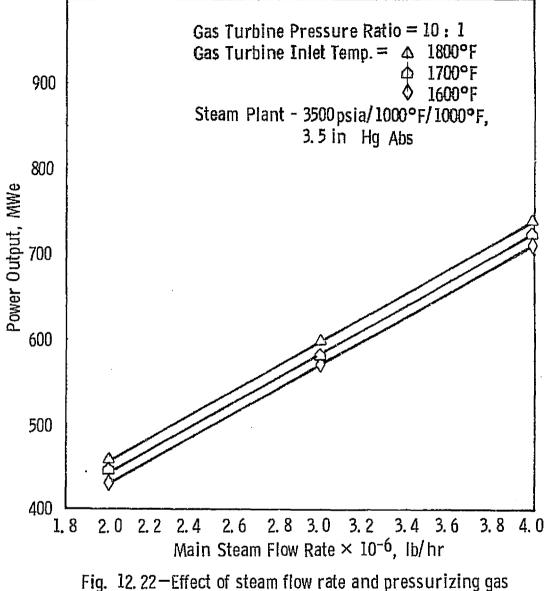

For a fixed airflow rate of 689.5 kg/s (1520 lb/s) (specified by the use of two W501 gas turbines for all parametric points) the steam flow rate is determined by the boiler coal consumption rate. This is limited, however, by the fact that the amount of coal burned must not exceed the stochiometric value. The plant power level increases, of course, as the steam flow rate increases (see Figure 12.22). Figures 12.23, 12.24, and 12.25 show the overall energy efficiency versus the main steam flow rate with parameters of gas turbine temperature and pressure ratio. It can be seen from these figures that the efficiency is not very sensitive to steam flow rate, that it increases substantially with gas turbine temperature, and that it nears a peak at a pressure ratio of 10:1. Figure 12.26, which is a cross-plot of the previous three figures, shows clearly the beneficial effect of increasing the gas turbine temperature. It should be noted, however, that the maximum temperature shown is 1253°K (1800°F). This is because the maximum temperature in the bed is limited by the in-bed desulfurization reaction. Further, without substantial additional equipment to produce a gaseous fuel it is not possible to increase the gas turbine inlet temperature by means of a reheat combustor.

Figure 12.27 shows that a significant improvement in efficiency results from a reduction in condenser pressure. This is because the major portion of the system power is produced by the steam bottomer.

The variation in the combination of sulfur and moisture content among the fuels results in the variation in efficiency shown in Figure 12.28.

Curve 682200-A

7

turbine inlet temperature on plant power output for a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

Curve 682196-A

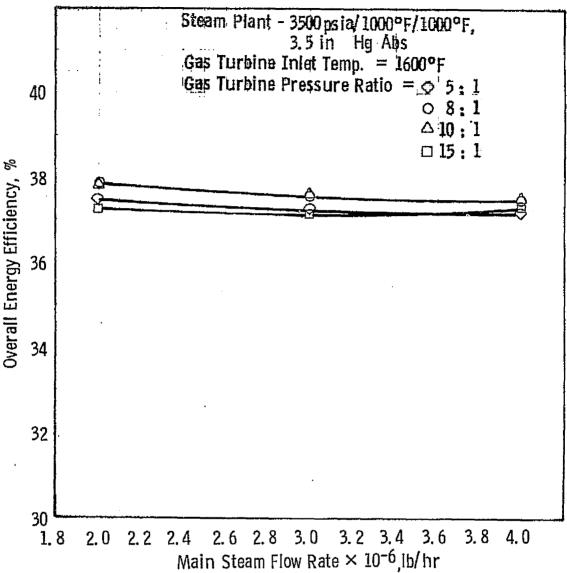


Fig. 12.23—Effect of steam flow rate and pressurizing gas turbine pressure ratio on overall efficiency for a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

Curve 682201-A

7

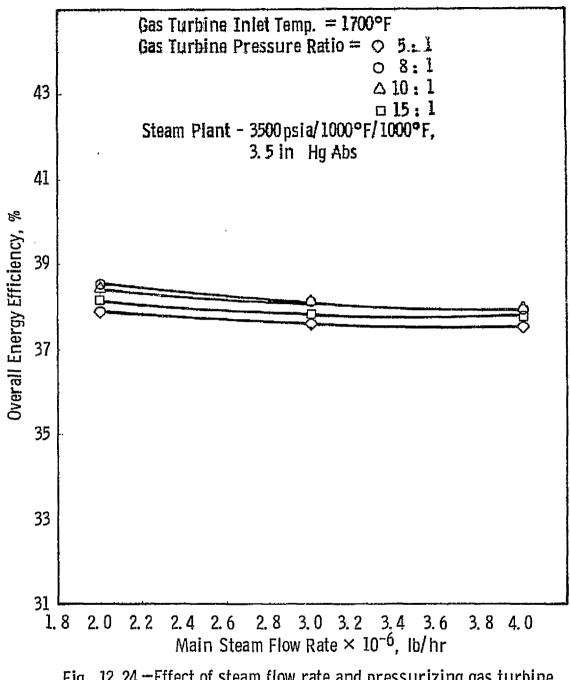


Fig. 12. 24 —Effect of steam flow rate and pressurizing gas turbine pressure ratio on overall efficiency for a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

Curve 682195-A

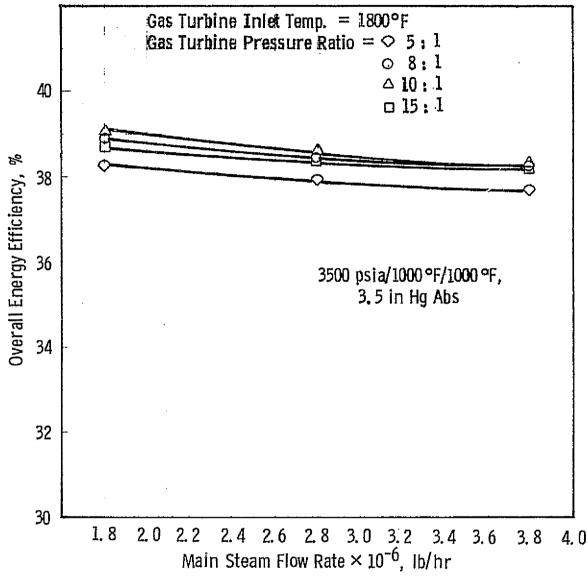


Fig. 12 25—Effect of steam flow rate and pressurizing gas turbine pressure ratio on overall efficiency for a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

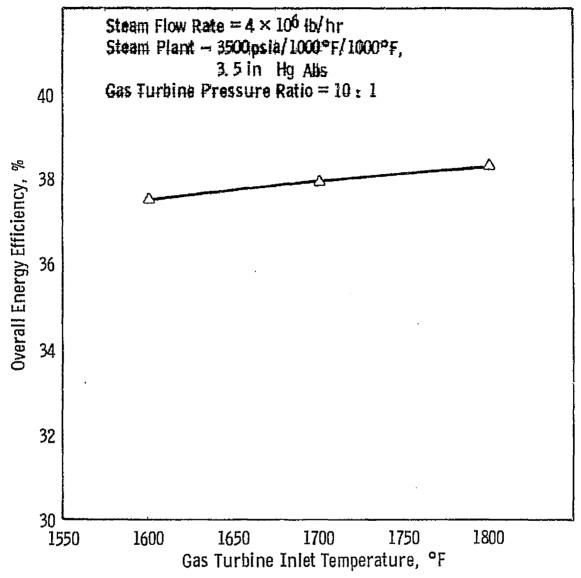
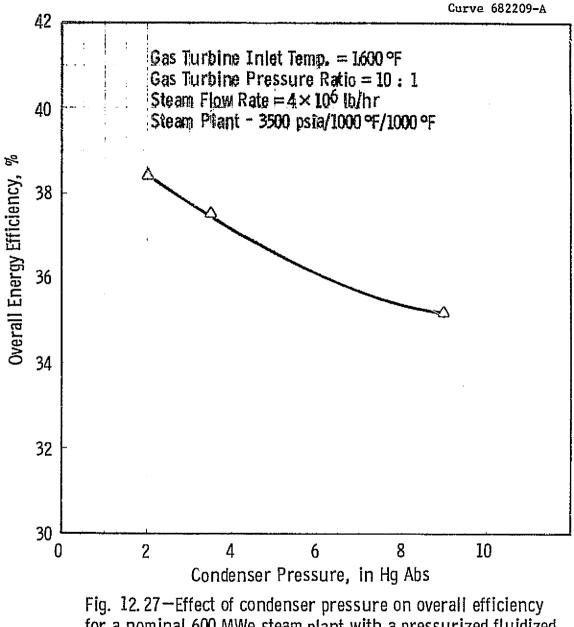



Fig. 12.26—Effect of pressurizing gas turbine inlet temperature on overall efficiency for a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

for a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

Curve 682208-A

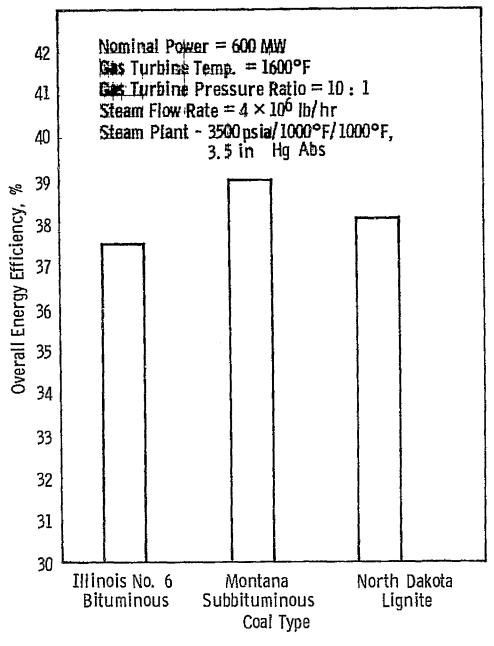
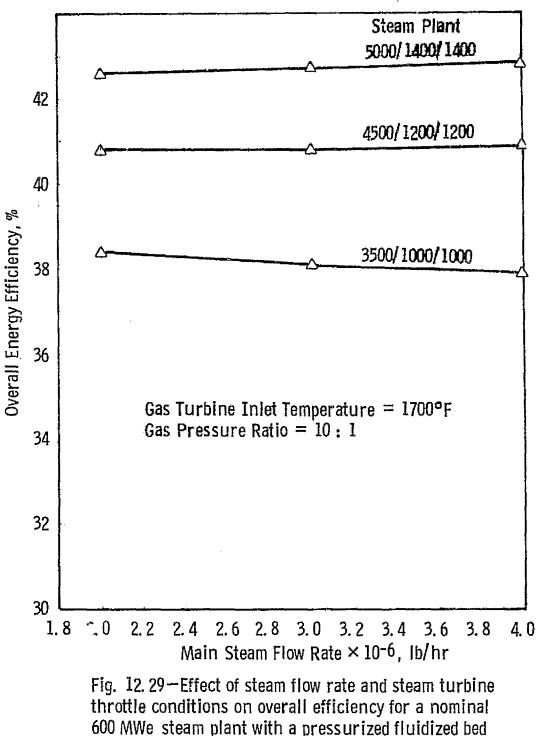


Fig. 12. 28—Effect of coal type on overall efficiency for a nominal 600 MWe steam plant with a pressurized fluidized bed boiler Finally, Figure 12.29 shows that a substantial increase in efficiency will result from an increase in steam temperature and pressure.

12.5 Capital and Installation Costs of Plant Components

12.5.1 Atmospheric Furnace Systems

12.5.1.1 Boilers


The prices of conventional atmospheric furnace steam boilers at standard and advanced steam conditions were calculated for a range of specified operating conditions by the Foster Wheeler Corporation under subcontract to Westinghouse. The steam conditions supplied to Foster Wheeler are shown in Table 12.11. The prices calculated by Foster Wheeler are shown in Table 12.12.

As can be seen, the price of the boilers increases rapidly with increase in temperature, particularly at the higher pressure of 34.472 MPa (5000 psi). In fact, Foster Wheeler declined to estimate the price of a 34.472 MPa (5000 psi) boiler producing 1033° K (1400° F) steam. For the purposes of the study, therefore, the 34.472 MPa/ 1033° K/ 1033° K ($5000 \text{ psi}/1400^{\circ}$ F/ 1400° F) steam boiler price was determined by plotting price versus temperature and extrapolating to the 1033° K (1400° F) level. The reason that Foster Wheeler declined to make the estimate is that they believe the technology required to satisfy these conditions is not sufficiently well defined for price estimation purposes.

Because the relatively large number of parametric steam conditions to be investigated, a representative number was chosen to be priced in detail by Foster Wheeler, and prices for all other conditions were interpolated. Figure 12.30 is a plot of the Foster Wheeler boiler prices versus steam temperature, with the steam conditions for each point noted on the curves. All the price calculations were made for nominal 500 MWe plants. The prices for nominal 900 MWe plants were calculated with the simple scaling formula:

$$(Price_{900MW}) = (Price_{500MW}) (\frac{900}{500}) (12.1)$$

12 - 61

600 MWe steam pla boiler

	Throttle			First Rebeat			Se	cond Rehe	at	F.W.		First Secon Cold Cold			
	Press, psia	Temp, F	Flow, 16/hr	Temp, °F	Press, psia	Flow, <u>lb/hr</u>	Temp, F	Press, <u>psia</u>	Flow, 1b/hr	Temp, F	Load* 	Rht.T,	Rht.T,	•	
1)	5000	1000	3,520,000	1000	1100	2,818,212	1000	,350	2,801,924	563	520.6	621	717		
2)	5000	1200	3,228,610	1200	1800	2,564,958	1200	600	2,405,788	629	519.8	921	902		
3)	5000	1400	2,414,416	1400	1100	2,007,571	1400	350	2,012,940	563	521.2	962	1072		
4)	5000	1000	3.236,028	1200	2000	2,286,806	1400	450	2,220,503	643	519.8	769	788		
5)	3500	1000	3,515,412	1000	1300	3,096,373	-	-	-	584	521.4	570	-		
6)	3500	1200	2,928,516	1200	600	2,603,877	-	-	-	492	521.5	731	-		
7)	3500	1400	2,393,811	1400	450	2,213,746	-	-	-	462	521.8	825	-		
8)	3500	1200	2,662,053	1400	600	2,352,980	-	-	-	492	521.5	731	-		
9)	3500	1400 .	3,057,206	-	-	- .	-	-	-	480	522.j	-	-		
10)	2400	1000	3,620,509	1000	600	3,228,487	-	-	-	492	520.5	644	-		
11)	2400	1200	3,056,834	1200	600	2,749,9	-	-	-	492	520.9	837	-		
12)	2400	1400	3,157,693	-	-	-	-	-	-	480	522.4	-	-		

an an taona an taona an an an ann an taona an taon an taona an taona an taona an taona an taona an taona an tao

anan sila basaran danamati mari sinari dinari dinari kanan ni mala an mini pengangan taha anandan permulaka

Table 12,11 - Atmospheric Pressure Boiler Performance Specification

* Corresponds to a back pressure of 3.5 in Hg abs.

en en en en de la composition de la compositio

an de marente esté de la companya de la constructión de la construction de la construction de la construction d

12-63

ORIGINAL PAGE IS OF POOR QUALITY

e al la ser en la fair a ser la ser la ser la fair a ser la fair de la ser la fair de la ser la fair de la ser

e Riddelland

	Budget Price,\$	Estimated Wt. (tons)	Furnac	e Dimensi D	ons,ft H		o coal, cost & weight fuel units	
						Mont, (Rosebud)	N. Dak. Lignite	
1) 2)	34,606,000 57,147,000	17,341 17,556	53.4 49.4	45.0 45.0	143.0 ⁺ 132.0	+	+15.7%	For all units firing Montana (Rosebud) coal add 6% to furnace width. For all units firing North
See	note 2 for Case	<u>1</u> 3				} /		Dakota Lignite add 18% to
4)	58,659,000	17,874	49.7	45.0	133.0			furnace width.
5)	29,375,000 +	→14.627 ↔	49.6	45.0	133.0))		
6)	34,026,000	[.] 11,841	52.1	45.0	139.0			This budget price is for materials erection super-
7)	38,882,000	9,827	49.4	45.0	132.0	+6.5%	+20.9%	vision, field erection costs (total installation price)
8)	39,908,000	11,044	50.7	45.0	135.0			on a today's price basis. Av U.S. field erection is
9)	37,018,000	12,117	50.4	45.0	135.0))		estimated at 50% of the materials cost.
10)	25,110,000	12,668	56.8	45.0	152.0	١		
11)	30,707,000	11,035	53.2	45.0	142.0	+6.2%	+22.6%	
12)	34,863,000	10,655	52.8	45.0	141.0	•		

Table 12.12 - Prices Calculated for Boilers

NOTE 1: The budget pricing above makes no allowance for the developmental engineering which would be necessary for the advanced steam applications.

NOTE 2: Case No. 3 - As we determine that this case would require the use of cast superalloys at the high-temperature locations, this is not considered feasible with present materials.

NOTE 3: Case No. 5 - RH inlet conditions 580°F,650 psig assumed. Furnace size, heat input and cost will have to be scaled up to meet 520 MWe output.

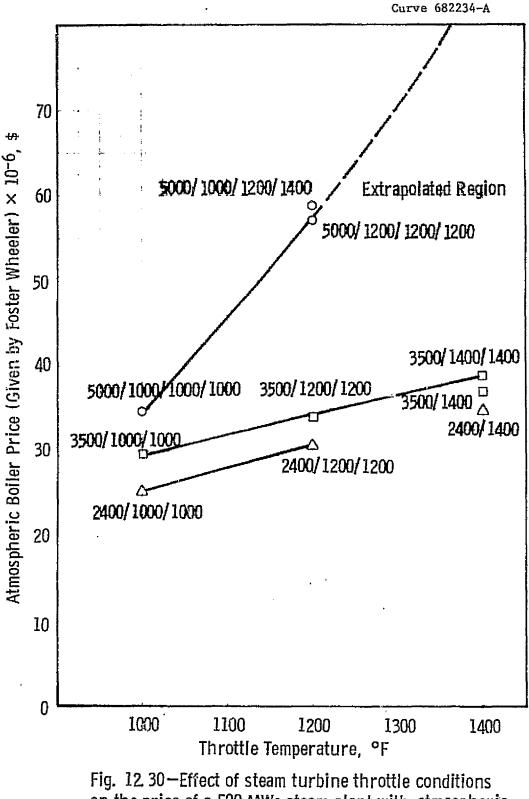
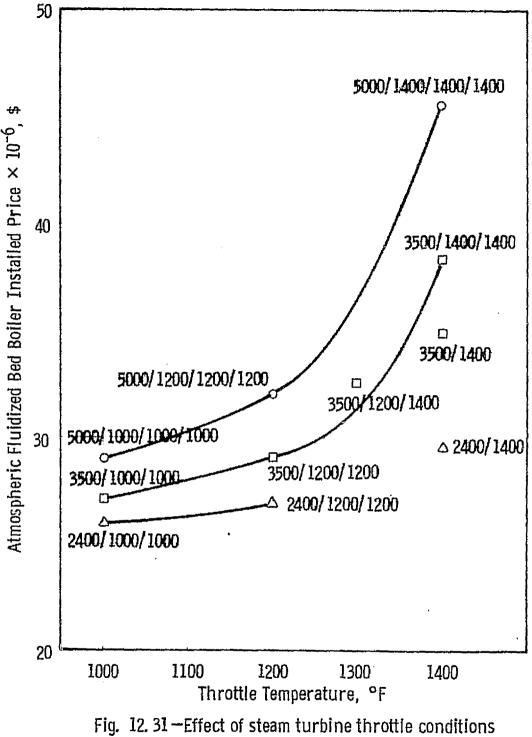



Fig. 12.30—Effect of steam turbine throttle conditions on the price of a 500 MWe steam plant with atmospheric furnace

on the installed price of a nominal 500 MWe steam plant atmospheric fluidized bed boiler

ويصدرون أوليما استقرابا

The prices shown are installed prices. Foster Wheeler stated that the price of installation is 50% of the delivered material price. Thus installation price is one-third of the total price shown.

The prices of the atmospheric fluidized bed boiler were calculated in-house, and the methods used to calculate these prices are described in detail in Section 4 of this report. Figure 12.31 is a plot of the calculated prices as a function of steam temperature. It is interesting to note the comparison between the shape of the curves for the Foster Wheeler and Westinghouse boilers. The Foster Wheeler boiler prices increase substantially linearly with steam temperature, whereas the Westinghouse prices increase at a greater rate between 922 and 1033°K (1200 and 1400°F) than between 811 and 922°K (1000 and 1200°F). This resulted from the need to use tube materials at the hot end of the 1033°K (1400°F) boilers which were markedly higher in price.

12.5.1.2 Steam Turbine-Generator

The prices of steam turbine-generator units were calculated by the Westinghouse Steam Turbine Division Marketing Department for a range of specified steam operating conditions.

Details of the methods used to calculate the turbine-generator prices are presented in Appendix A 12.1. A summary of prices for 500 MWe and 900 MWe units is given in Tables 12.13 and 12.14. In order to facilitate the interpolation of prices for units corresponding to the balance of the parametric points, the calculated prices were plotted versus steam temperature in Figures 12.32 to 12.37. Turbine prices increase substantially with increasing steam temperature (similar to the price increase with temperature seen in boiler prices).

Due to a communication error, prices shown in both the figures and tables are for units delivered in mid-1974. The tabulated prices were multiplied by a factor of 1.2456 to obtain the price for units ordered in mid-1974 as required in this study.

Table 12.13 -	500 MWe	Steam	Turbine-Generator	Pricing	Summary
---------------	---------	-------	-------------------	---------	---------

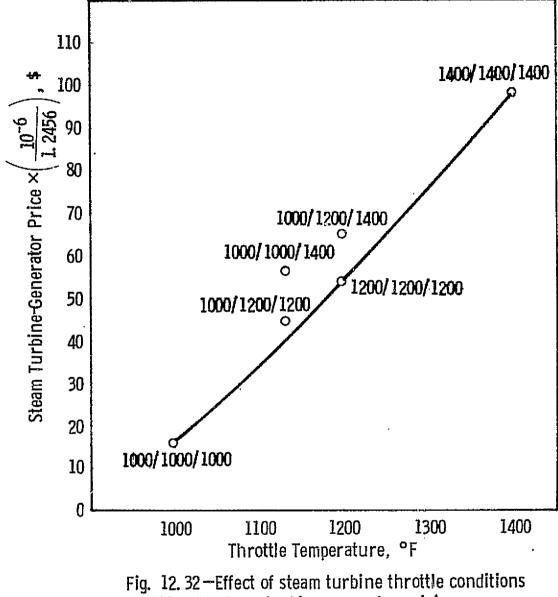
									•
	Initial		_		· .	1974 Net	Selling Pric	<u>e x 10⁻³,\$*</u>	
Item	Press, psig	Initial T,°F	lst Rht,°F	2nd Rht,°F	3 r d Rht,°F	2.0 in	3.5 in	9.0 in	Remarks
1	10000					Hg abs	<u>Hg</u> abs	<u>Hg_abs</u>	Remarks
		1000	1000	1000	1000				
2	5000	1000	1000	1000		15,635			•
3	5000	1200	1200	1200		53,168			Cross-compound
4	5000	1400	1400	1400		98,768			Cross-compound
5	5000	1000	1200	1200		44,618			Cross-compound
51	5000	1000	1200	1400		64,568			Cross-compound
6	5000	1000	1000	1400		56,018			Cross-compound
7	3500	1000	1000	1000		13,811			
7 I	3500	1000	1000	1000		-			
8	3500	1000	1200	1200		42,774		•	Cross-compound
9	3500	1000	1000		•	12,849	11,545	14,385	
10	3500	1200	1200			29,949			
11	3500	1400	1400			55,599			
12	3500	1000	1200			21,399			
13	3500	1000	1400			29,949			
14	3500	1200	1400			38,499			
15	3500	1400				41,349			<i>x</i>
16	2400	1000	1000			12,901	11,608	14,453	
17	2400	1200	1200			30,001	28,708	31,553	
18	2400	1400				41,401			
19	2400	1000	1200			21,451			
20	2400	1200	1400			38,551	37,258	40,103	

* For units shipped in 1974, multiply by 1.246 for pricing of turbines ordered in mid-1974.

and the second states of the second states and the second states and the second states and the second states a

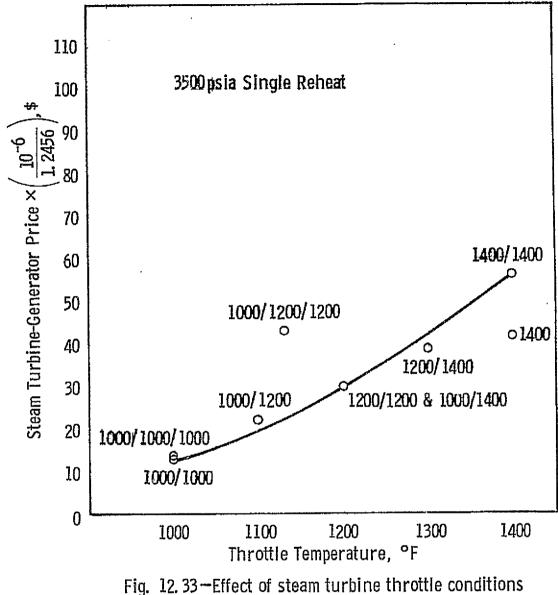
en Sent die Amerika in Spaler Anders Anders ausse die Spaler is sekliker verste die eine andere in ausse ein ein

Table 12.14 - 900 MWe Steam Turbine-Generator Pricing Summary

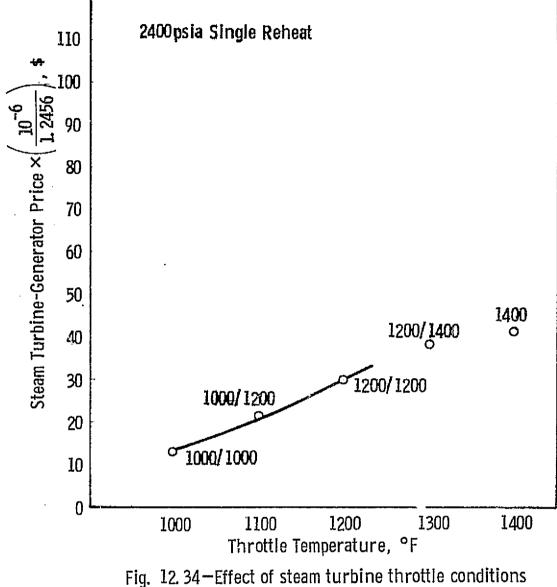

	Initial		1974 Net Selling Price x 10 ⁻³ , \$*									
	Press,	Initial	lst	2nd	2.0 in	3,5 in						
Item	Psig	T,°F	Rht,°F	<u>Rht</u> ,°F	<u>Hg abs</u>	<u>Hg</u> abs	<u>Remarks</u>					
2	5000	1000	1000	1000	24,593	23,247	· ·					
3	5000	1200	1200	1200	64,562	63,152	Cross-compound					
4	5000	1400	1400	1400	113,012	111,602	Cross-compound					
7	3500	1000	1000	1000	22,313	20,967						
8	3500	1000	1200	1200	53,732	52,322	Cross-compound					
9	3500	1000	1000		21,128	19,775						
10	3500	1200	1200		41,078	39,725						
11	3500	1400	1400		69,578	68,225						
16	2/00	1000	1000		07 767	<u> </u>						
16	2400	1000	1000		21,767	20,442						
17	2400	1200	1200		41,717	40,392						

* For units shipped in 1974, multiply by 1.246 for pricing of turbines ordered in mid-1974.

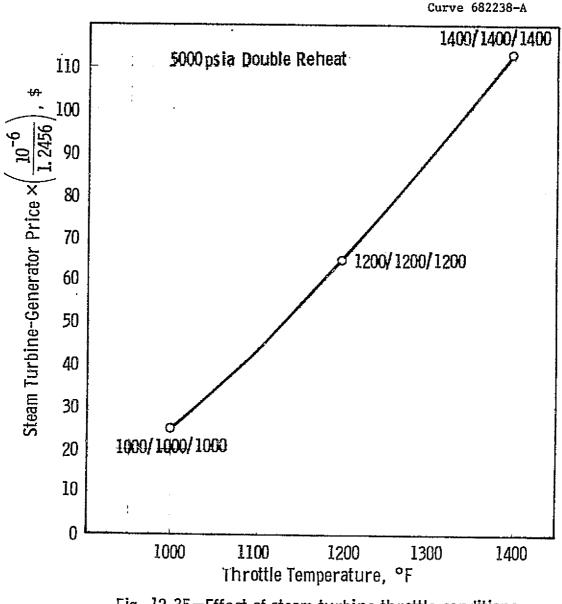
lin water and the second of th


an na Star Star an ann an Annaichte ann an Star a 🚛 an Stàr ann an an Annaichte an Stàr an Stàr an Stàr an Stàr

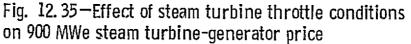
Curve 682236-A

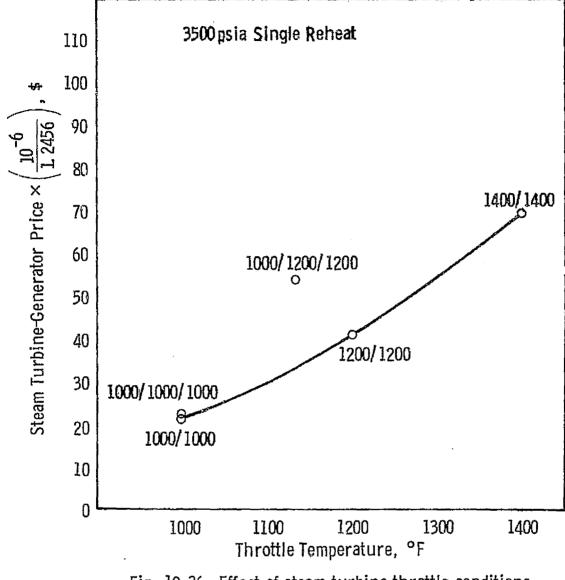

on 500 MWe steam turbine generator pricing

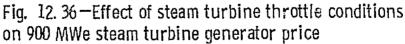
Curve 682232-A



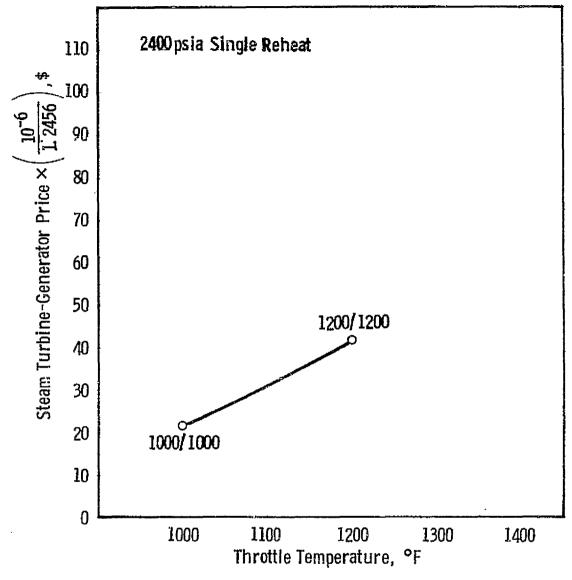
on 500 MWe steam turbine generator price

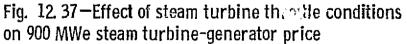

Curve 682239-A


on 500 MWe steam turbine-generator price



. . .




Curve 682233-A

Curve 682237-A

12.5.1.3 Steam Piping

Included under the category of steam piping is the piping for the main steam, the hot reheat steam, and the cold reheat steam. All other piping is included in the general category of piping in the balance of plant costs calculated by the A/E.

The price of the steam piping is based on the known price for a given 16.547 MPa/811°K/811°K (2400 psi/1000°F/1000°F) 750 MWe plant. This price is \$2,100,000 for material and \$840,000 for installation. To arrive at prices at other conditions for each of the parametric points investigated, the following equation is used:

```
Material price = (base price material)(flow factor)
(pressure factor) (temperature factor)
(reheat factor) (12.2)
```

where the flow factor is (steam flow rate, in 1b/hr) 4,811,700

pressure factor	= 1.15 for 3500 psi
	1.3 for 5000 psi
temperature factor*	= 6.7 for 1200°F
	21.3 for 1400°F
and the reheat factor	= 0.75 for no reheat
	1 for one reheat
	1.2 for two reheats
Erection price =	(base price installation)(flow factor)
	(pressure factor)(temperature factor)
	(reheat factor) (12.3)

^{*} Combination of increased material cost and increase in required material due to lower allowable stress

where the flow factor is the same as in Equation 12.2

pressure factor	=	the same as in Equation 12.2
temperature factor*	=	1.3 for 1200°F
-		3.2 for 1400°F
reheat factor		the same as in Equation 12.2

12.5.1.4 Feedwater Heaters

The primary variables affecting the cost of feedwater heaters are the pressure level of the throttle steam and their capacity (i.e., the heat transferred in them). Their capacity, in turn, is approximately proportional to the throttle steam flow rate. Thus for a known price of \$1,150,000 for a 500 MWe, 24.132 MPa/811°K/811°K (3500 psi/1000°F/1000°F) steam plant with a throttle steam flow rate of 443 kg/s (3,515,000 lb/hr), the price is given by:

Feedwater heater price, $\$ = (1.15 \times 10^6)(\frac{M}{3.515 \times 10^6})$ (pressure factor) (12.4)

12.5.2 Pressurized Boiler-Gasifier Systems

12.5.2.1 Boiler

The basic cost advantage of the pressurized boiler is the reduction in heat transfer surface due to the higher convection and radiation heat transfer coefficients on the hot gas side resulting from the elevated gas pressure. In addition, the use of a clean low-Btu fuel gas permits the use of a water-walled multicell combustor configuration which improves the ratio of heat transfer area to combustor volume. These two factors, in conjunction with the use of two boiler units for each gas turbine, results in a relatively simple and compact unit.

^{*} Due to an increase in required material resulting from lower allowable stress; increase in raw material cost has no effect.

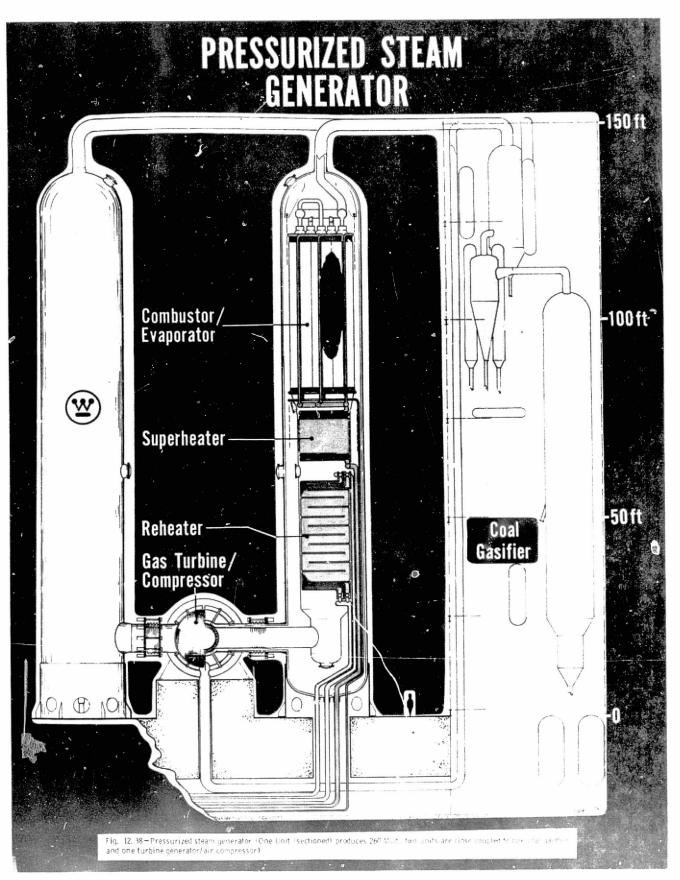


Figure 12.38 shows the design configuration upon which the cost evaluation has been made.

Appendix A 12.2 describes the heat transfer analysis tha was made to calculate the required area and size needed for the base case to deliver the steam determined from the cycle performance calculations. The cost was then developed from tubing price quotations with appropriate adders for fabrication and auxiliary hardware required for a complete functional unit.

The pressure vessel was designed in conformance with the ASME boiler code for fired vessels. Because of its size [nominally 6.1 m (20 ft) in diameter by 30.5 m (100 ft) long] it had to be field fabricated. The assumption, therefore, was that the heat treatment and x-ray inspection of the welds would also be performed in the field.

The assumed boiler construction was such that the relatively cool compressor discharge air flowed in an annular space between the pressure wall and an inner wall which supports the steam generator tubing. For most of the pressure levels of interest, however, the air temperature was high enough to require insulation on the inside of the pressure vessel wall to maintain a low metal-working temperature and to minimize heat losses.

Table 12.15 gives the weights and costs of a boiler unit for the base case. Appendix A 12.3 is a description of the method used to calculate the costs for the different operating conditions corresponding to the various parametric points investigated. Basically the method was to ratio the costs of appropriate components as a function of pressure level and gas flow rate, which in turn affects the gas-side heat transfer coefficient. Also, the cost is ratioed by the flow rate of the steam generated, since this determines the amount of heat which must be transferred. Finally, a factor of 1.88 and 3.84 for 922 and 1033°K (1200 and 1400°F) steam, respectively, was applied to the superheater and reheater elements to account for the increased material cost corresponding to the higher required operating temperature. These factors were derived from

	. .	Material	Installation		Total Cost x 10 ⁻³ ,\$		
	Component weight,1b	unit cost, \$/15	unit cost, \$/1b	Total \$/1b	Macerial	Instal- lation	Total
	<u>~</u>			47 10		Tarton	10241
L. Surner Section (Evaporator)							
1.1 Tubing (1-1/4 Cr, SA 213, 2 in od x 0.375 in wall)	98,000	0.57	1.00	1.57	56	98	154
1.2 Structural plate	60,000	0.50	0,16	0,66	30	10	40
1.3 Refractory	-						
1.4 Tube anchors (@ 5 lbs/tube)	2,500	0.80	2.00	2,80	2	5	7
1.5 Tube headers (6 in id)	32,000	0.63	0.63	1.26	20	20	40
1.6 Steam risers (6 in id)	57,000	0.35	0.35	0.70	20	20	40
1.7 Fittings	-				10		
. Superheater							
2.1 Tubing (2-1/4 Croloy, 2 in od x 0.375 in wall)	103,000	1.16	0.24	1.40	120	25	145
<pre>2.2 Header piping & fittings</pre>	11,000	0.64	0.91	1,55	7	10	17
<pre>1.3 Turbine piping & fittings</pre>	11,000	0.64	Q.91	1.55	7	10	17
2.4 Structural steel	30,000	0.40	0.26	0,66	12	8	20
. Reheater							
3.1 Tubing (2-1/4 Croloy, 2 in od x 0.375 in wall)	206,000	1.16	0.20	1.00	240	42	282
3.2 Structural steel	50,000	0,40	0.26	0.60	12	8	20
3.3 Header piping (8 in id)	11,000	0.64	0.91	1.55	7	10	17
 Pressure Vessel (SA 515, Grade SS, σ = 13,700 psi c = 1.5 in, D = 20 fc) 							
4.1 Vessel fabricated	434,000	J.80	1.40	2.20	350	310	660
4.2 Refractory	176,000	0.39	0.37	0.76	69	65	134
4.3 Anchors	38,000	0.29	0.29	0.58	11	11	22
. Burner Apparatus	-			•=-			
5.1 Burners and header pipe					25	-	25
5.2 Vessel, burner instruments					25	-	25
	1,250,000					—	
					1023	652	1,675
. Contingency @ 15%							251
							1,936 p

Table 12.15 - Pressurized Boiler Price Analysis 3500 psi/1000°F/1000°F)

unit 6 pe

4 units read.

OF POOR QUALITY

----- **11**

detailed analysis done for these various temperature levels in the pressurized fluidized bed steam boilers (see Section 4).

12,5.2.2 Steam Turbine-Generator

The prices of the steam turbine-generator units for the pressurized boiler-gasifier system are based on the prices determined for the atmospheric boiler systems. The following equation was derived from the prices established at the 500 and 900 MWe level:

$$Price = (Price_{500}) (MW/500)^{0.92}$$
(12.5)

The value of MW used in the formula, of course, is the power generated by the steam portion of the power plant. The price depends upon steam temperature and pressure, and the reference value at 500 MWe was taken at steam conditions similar to the parametric point being calculated.

12.5.2.3 Steam Piping

The steam piping was priced on the same basis as for the atmospheric boiler case except that it was estimated that the multiple boiler arrangement for the pressurized boiler case would increase the price by a factor of 1.5.

12.5.2.4 Feedwater Heaters

For given steam conditions, the price of feedwater heaters is proportional to the quantity of the heat transferred in them. In the case of this pressurized cycle the heat transferred in the feedwater heaters is not directly proportional to the main throttle steam flow rate because a portion of the feedwater by-passes the extraction heaters and is heated in a stack-gas cooler. Accordingly, using information calculated in the cycle performance computer program, the actual heat transferred in the heaters was calculated and the price proportioned accordingly. For the parametric points with 31.027 and 34.472 MP₂ (4500 and 5000 psi) steam conditions, the price is multiplied by an additional factor of 1.15.

12.5.2.5 Gas Turbine-Generator

Prices of the gas turbine generator units were calculated on the basis of detailed proprietary information developed by the Westinghouse Gas Turbine Engine Division. This information made it possible to calculate the various components of the gas turbine as a function of such performance parameters as airflow rate, pressure ratio, enthalpy drop, and power rating. As requested, the price was broken down in the major components of compressor, combustor, turbine, and balance of plant and is presented in that form for each parametric point in the detailed account listing.

12.5.2.6 Hot Gas Piping

The low-Btu fuel gas was assumed to be generated in the gasifier at the nominal cycle pressure level and 1144°K (1600°F) and transmitted to the boilers and gas turbines in appropriate piping. The piping design chosen was a multiple layer construction with an inner liner of Incoloy, a middle layer of insulating refractory, and an outer layer of carbon steel. The outer carbon steel pipe contains the pressure forces. The insulation minimizes heat losses and allows the use of a low-temperature, low-cost outer pipe material. The inner layer of Incoloy 0.64 cm (1/4-in) thick is a lightweight liner that is inert to the corrosive effects of the high-temperature fuel gases and prevents possible shedding of the insulating material, which would damage the gas turbine downstream.

Prices were obtained from suppliers, which allowed the calculation of the prices of two pipe sizes, each operating at two pressure levels. These sizes and pressure levels covered the range expected to be encountered in the parametric study. Details of the cost breakdown of these reference pipe configurations are given in Appendix A 12.4.

For control and turndown purposes, the plant design calls for one gasifier module and corresponding fuel gas pipe for each boiler and gas turbine. The inside diameter of the pipe was calculated from

continuity on the basis of fuel gas mass flow rate (determined from cycle performance calculations), the gas density (determined from the parametric operating conditions and fuel gas properties), and an assumed flow velocity. A value of 30.5 m/s (100 ft/s) was chosen; this is a nominal industry standard above which noise levels, and/or erosion rates become excessive.

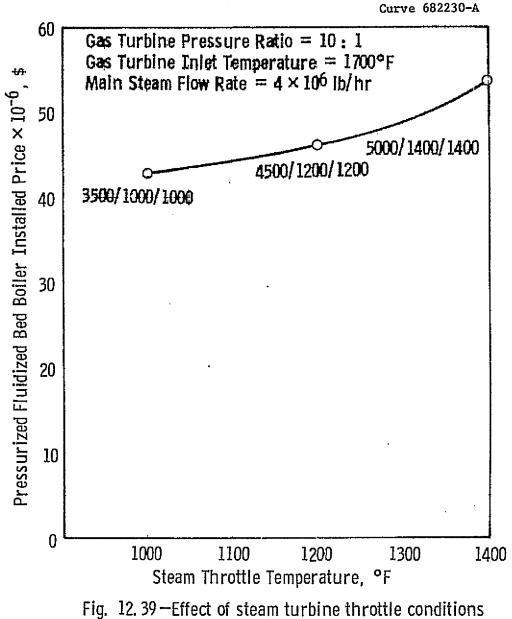
The pipe price values which were calculated for a 0.91 m (3 ft) id and a 2.44 m (8 ft) id, each at 1.034 and 2.069 MPa (150 and 300 psi), were assumed to be an exponential function of pressure and diameter, which gave the following equation:

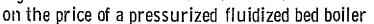
Price
$$\alpha$$
 (pressure)^{0.3} (dia) (12.6)

Using the continuity equation, the form of the equation becomes:

Price
$$\propto$$
 (pressure)^{-0.2} (fuel gas flow rate)^{0.5} (12.7)

This equation and a reference case cost permitted the calculation of hot gas piping prices for each parametric point.

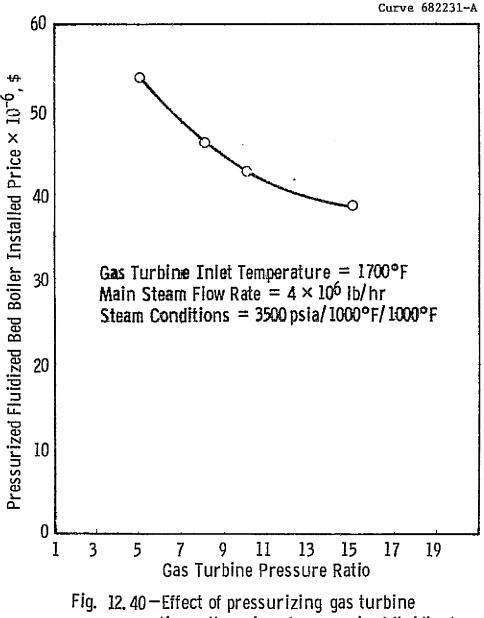

For loss of load purposes, stop values must be provided in each of the hot fuel gas lines. Because of the high operating temperatures, these values have a significant cost. On the basis of bids as a function of size, an equation was developed for the price of the values (total of 6) as follows:


Price, \$ = (9227) (gas flow rate/pressure) (12.8)

where gas flow rate is in pounds per second and pressure is in atmospheres.

12.5.2.7 Stack-Gas Cooler

The performance characteristics of the upper and lower stackgas coolers were calculated by the computer code for overall cycle performance. These results, in conjunction with an assumed convection heat transfer coefficient value of 56.77 $W/m^2-{}^{\circ}K$ (10 Btu/hr-ft²- ${}^{\circ}F$) for finned


tubing, allows the calculation of the total area required in the stackgas coolers. Because of the cleanliness of the combustion gases and the relatively poor heat transfer coefficient on the gas side, an externally finned tube was used.

The major cost of the heat exchanger was that of the tubing, which was 5.1 cm (2 in) od, 3.9 mm (0.155 in) wall thickness, 9.1 m (30 ft) long and made of A-209 TI material with a 1.3 mm (0.050 in) thick by 9.5 mm (0.375 in) high 304 SS fin welded to the tubing with a spacing of 236 fins/m (6 fins/in). Appendix A 12.5 gives a tabulation of the component costs for a heat exchanger with 46,450 m² (500,000 ft²) of transfer surface. Not included is the cost of the gas turbine exhaust ducting that encases the stack-gas coolers; it is included in the cost of the gas turbine. The price of the stack-gas coolers for each parametric point was then calculated as a direct ratio of the area required for that point compared to the price for the 46,450 m² (500,000 ft²) unit. Normalized, the price of the stack-gas coolers is \$46.50/m² (\$4.32/ft²).

12.5.3 Pressurized Fluidized Bed Boiler System

12.5.3.1 Boiler

The basis for the design and pricing of pressurized fluidized bed boilers is described in detail in Section 4 of this report. Boilers were priced to satisfy the performance requirements defined by the cycle performance computer calculations. Figure 12.39 shows that the effect of steam temperature is similar to that of atmospheric fluidized bed boilers. Figure 12.40 shows the effect of gas-side pressure level on the boiler price. As can be seen, the price decreases as pressure increases. This is primarily the result of a reduction in particulate removal equipment cost due to the reduced volumetric flow of the hot gas to the gas turbine as the cycle pressure level increases.

Т

1

i.

pressure ratio on the price of pressurized fluidized bed boiler

12.5.3.2 Steam Turbine-Generator

The price for the steam turbine-generator units for the pressurized fluidized bed boiler system were calculated in the same manner as was done for the pressurized boiler-gasifier system.

12.5.3.3 Steam Piping

Because of the similarity between the multiple boiler arrangement of the pressurized boiler-gasified coal system and the pressurized fluidized bed boiler system, the steam piping was priced on the same basis for both.

12.5.3.4 Feedwater Heaters

Again, the pricing method used was the same as for the pressurized boiler-gasified coal system.

12.5.3.5 Gas Turbine-Generator

Using the appropriate values of airflow rate, pressure ratio, and enthalpy rise corresponding to each parametric point, the gas turbine prices were calculated as described for the pressurized boiler-gasified coal system.

12.5.3.6 Hot Gas Piping

The design of the pipe required to transport the hot combustion gases from the fluidized bed boiler to the gas turbines is essentially the same as that used to transport the hot fuel gas from the gasifier in the pressurized boiler-gasifier system. The cost is calculated for the appropriate size for each parametric point, of course, and there are a total of four pipes, two for each gas turbine. Further, no hightemperature stop valves are required since the loss of load emergency will be handled by pressure relief valves on the air inlet side of the boiler.

12.5.3.7 Stack-Gas Cooler

The design, and, therefore, the pricing method, of the stackgas coolers is the same for the pressurized fluidized bed-boiler system and the pressurized boiler-gasifier system.

Table 12	.16 - 4	Advanced Ste	am Maj	or Component Sia	zes & Prices Unit Price		2S)	
	Unit	Size, ft	······	Unit Weight x 10^{-3} ,	FOB Mfg. Plant		Units	Total Cost
Unit	W	L(or D)	H	<u>lb</u>	<u>x 10⁻⁶,\$</u>	<u>\$/kWe*</u>	Rgd.	<u>× 10⁻⁶,\$</u>
Atmospheric Boiler Syst	em							
10.1 Boiler	50	45	133	29,254	19.9	42.39	1	19.9
11.1 Stm. Turb-Gen.	19.5	125	21	995	14.3	30,46	1	14.3
Pressurized Boiler-Gasi	fier Sys	tem						
10.1 Boiler	-	20	120	1,392	2.05	2.82	4	8.2
11.1-4 Gas TurbGen	11	125	40	1,550	9.25	12.73	2	18.5
11.5 Stm. TurbGen	19.5	127	21	1,050	16.4	22.56	1	16.4
13.2 Stk-Gas Cooler	້ວປ	40	67	1,690	2.0	2.75	2	4.0
Pressurized-Fluidized B	ed Boile	r System						
10.1 Boiler	-	18.3	116	930	10.8	15.14	4	43.3
11.1-4 Gas TurbGen	11	125	40	1,550	6.55	9.18	2	13.1
J1.5 Stm. TurbGen	20	130	21	1,150	17.4	24.39	1	17.4
13.2 StkGas Copler	30	40	64	1,600	1.9	2.66	2	3.8

والمحاجب والمسادقين والمستخب والمعاج والمعادي والمعادي والمعادي والمعادي والمعادي والمحاجز المحاجز المحاجز

. come

بالاستعار

يحاج حديقية العباد تبري والارتيان

40.41234

*Note: Plant Net Power

10.000

والمحفول والمتحد والمراجع والم

12.5.4 Summary of Systems and Components

Table 12.16 shows the sizes, weights, and prices of the major components for the base cases of each of the advanced steam systems that were investigated.

In addition to the major components described in the foregoing material, a number of components are common to most power plants. The costs of all of the major components and the balance of plant equipment were segregated according to a standard accounts classification system and printed in tabular form by the computer. Tables 12.17 through 12.28 show these results for each of the base cases and for a recommended case for the pressurized fluidized bed system. Included in these tables are the summary sheets and the input/output sheets for each of these points.

12.6 Analysis of Overall Cost of Electricity

12.6.1 Atmospheric Furnace Systems

C.2

Figure 12.41 shows the cost of electricity for the three throttle pressure level plants as a function of steam temperature (for the cases where reheat temperature equals throttle temperature). Shown in addition to the total cost are the three major components of the cost capital, fuel, and operating and maintenance. The results are clear. As the temperature increases in 111°K (200°F) steps, the slight decrease in the fuel cost contribution to the total cost of electricity is overwhelmed by the very large increase in the capital cost. The rate of increase is nearly the same for the 16.547 and 24.132 MPa (2400 and 3500 psi) plants but is significantly greater for the 34.472 MPa (5000 psi) plants.

At the 811°K (1000°F) temperature, the total cost of electricity produced by the 16.547 and 24.132 MPa (2400 and 3500 psi) plants is nearly the same at 6.9 mills/MJ (25 mills/kWh), while the 34.472 MPa (5000 psi) plant cost of electricity is slightly higher.

Figures 12.42 and 12.43 compare the conventional furnace plant and the fluidized bed furnace plant as a function of temperature at the

			PARAMET	LUC DOIN	NT NO.23				
	ACCOUNT NO.	8 NAME.	UNIT AN	10UNT M	AT \$∕UNIT	INS \$/UNIT	MAT COST+S	INS COST+\$	
. <u> </u>									
	SITE DEVELOPME 1. 1 LAND COS 1. 2 CLEARLING 1. 3 GRADING 1. 4 ACCESS F 1. 5 LOOP RAI 1. 6 SIDING F 1. 7 OTHER SI PERCENT TOTAL	ENT ST LAND LAND RATLROAD RATLROAD TRACK SR TRACK TE COSTS DIRECT CO	ACRE ACRE ACRE MILE MILE MILE MILE ST IN ACCOUNT	134.1 44.7 134.0 2.5 0 47 I = 2	1009.00 .00 .00 115000.00 125000.00 125000.00 .00 .25000.00	.03 500.00 3000.00 110005.00 70000.00 80000.00 .00 .00 NT TOTAL:5	134000.63 .00 575000.08 300000.09 .00 294612.43 1303612.42	26797.32 402000.00 55CC000.00 175000.00 294612.43 1448409.73	
	EXCAVATION 8 F 2. 1 COMMON E 2. 2 FILING PERCENT TOTAL							142200.00 1074400.00 1216600.00	
	PLANT ISLAND 3 3. 1 PLANT IS 3. 2 SPECIAL PERCENT TOTAL	ONCRETS CONCRETE STRUCTURES DIRECT CO	YD3 19 YD3 St in accoun	5800.0 IT 3 = 1	70.00 00 1.949 ACCOU	80.00 .00 NT Total,\$	1106000.00 00 1106000.00	126400C.00 .09 126400C.00	
	HEAT REJECTION 4. 1 COOLINS 4. 2 CIRCULAT 4. 3 SURFACE PERCENT TOTAL	I SYSTEM Towers Ing H2D Sy Conjenser Direct Co	S EACH ST EACH ST IN ACCOUNT	9-3 1-0 553-7 17 4 = 4	.33 .00 .30 4.317 ACCOU	-09 -00 -00 INT TOTAL:\$	1381500.00 765198.41 1201413.42 3348111.81	688590.00 1026034.36 185894.59 1900428.94	
12-90	STRUCTURAL FEA 5. 1 STAT. ST 5. 2 SILOS & 5. 3 CHIMNEY 5. 4 STRUCTUA PERCENT TOTAL	ATURES RUCTURAL S BUNKERS RAL FEATURE DIRECT CO	T. TON 1 TPH Stach St IN Account	1503.0 205.2 503.0 1.0 IT 5 = 3	650.00 1800.00 274000.00 3.074 Accou	175,00 750-00 114000.00 NT Total +\$	975000.00 372275.41 593557.88 374000.00 2314833.29	262500.00 155114.75 890336.82 114000.00 1421951.56	
	9UILDINGS 6 1 STATION 6 2 ADMINSTE 6 3 WAREHOUS PERCENT TOTAL	BUILDINGS ATION SE & Shop . DIRECT CO	FT3 375 572 3 FT2 3 ST 1N ACCL	0000.0 0000.0 0000.0 11 6 = 1	.16 15.00 12.00 L.275 ACCOU	•16 14-00 8-00 NT TOTAL+\$	600000.00 80000.00 12000.00 90000.90	600000.00 70000.00 8000.00 750000.00	
	FUEL HANDLING 7. 1 COAL HAN 7. 2 DOLOMITS 7. 3 FUEL OIL PERCENT TOTAL	8 STORAGE VDLING SYS HAND. SYS HAND. SYS OIRECT CO	TPH TPH GAL 10 St in Accoun	211.3 37.8 0000.5 11 7 = 0	.00 .00 .00 4.556 ACCOU	.00 00 00 100 101 Total •\$	3149984 •28 555529•24 20705•41 3725319•91	1465142.09 330798.36 16770.11 1812710.55	
	FUEL PROCESSIN 8. 1 COAL DR 8. 2 CARBONIZ 8. 3 GASIFIE PERCENT TOTAL	13 YER 8: CRUSH YERS 75 . DIRECT CO	IER TPH TPH TPH ST IN ACCOUNT	•0 •0 •1 •0	00. 00. 00. 0023A DCG.	-BD -DO -DC NT TOTAL+S	•00 •00 •00 •00	-00 -00 -00	

rendered generalistic historic de la section de la companya de la companya de la companya de la companya de la

1.11

.

nadad saladili dashiriyida birti dashiri da alifa tiradi ili da shirida shirida shirida shirida shirida

OR POOR QUALITY

Table 12.17 ADVANCED STEAN CYCLE WITH ATH BOILER ACCOUNT LISTING PARAMETRIC POINT NO.20

	Table 12. Continued	.17 I.	ADVAN	ED S	TEAM P	CYCLE ARAMETR	WITH IC POI	ATM B Ent n	OTLER 0.20	ACC	COUNT LIS	FING Hat Cost+\$	
	ACCOUNT	NO 8	NAME	U	11	AMO	דאט	HAT S	JUNIT	INS	S S/UNIT	HAT COST+\$	INS COST.S
	FIRING SYS					. : .	a		22	r			.00
	9. 1 PERCENT T	OTAL	DIRECT	COST	IN	ACCOUNT	9 =	•90	D ACCO	דאטל	TOTAL 5	.00 .00	•00 •00
	VAPOR GENE 18.1 ATH PERCENT T	RATOR Stean Otal	(FIRE) B OI LEF Direct	COST	ACH IN	ACCOUNT	10 ⁰ =	19367 24 . 51	038,33 1 ACCO	99 7 N U C	33500.00 Total.\$	19867000.00 19867000.00	9933500.08 9933508.00
	ENERGY CON 11. 1 STEA 11. 2 STEA PERCENT T	VERTE 16 TURI 16 PIP 10 TAL 1	R BINE-SE Ing Direct	N E Cost	ACH EACH IN	ACCOUNT	1.] 1 1.0 11 =1	14324 1700 14.58	561.59 000.00 4 Acco	1 10 1 1 1 1 1 1 1 1 1	07050.23 700000.00 Total.\$	14324561.50 1700800.00 16024561.50	1007058-28 700000-00 1707056-28
	COUPLING H	EAT EX Otal I	KCHAN93 DIRECT	R Cost	IN	ACCOUNT	12 ^{°°} =	• 93		י זאַנו	.00 Total#\$	•00 •00	•00 •00
	HEAT RECOV 13. 1 FEED Percent ti	ERY HE WAYL DTAL	EAT EXC R HEATE Direct	R STR COST	NING IN	ACCOUNT	1.0 13 =	1200 1.91	000.00 7 ACCO) IUNT	36000.00 TOTAL:\$	1200000.00 1200006.00	36800 . 00 36000 . 00
1 12-91	WATER TREAT 14. 1 DEMI 14. 2 COND PERCENT T	THENT NERALI ENSATE OTAL	IZER E POLIS DIRECT	HING Cost	GPM XWE In	5000 Account	86.0 03.9 14 =	2 •84	500.60 1.25 8 ACCO	, тичт	700.00 .39 Total.5	200000.00 625000.00 825000.00	56000-00 150000-00 206000-00
	POWER COND 15. 1 STO PERCENT T	ITION TRANSP DTAL	ING Former Direct	COST	KWE In	ACCOUNT	11.1 15 ¹ =	1.05	4 ACCO	DUNT	DO TOTAL \$	1258104.41 1268104.41	25362.09 25362.09
: 	AUXILIARY 16.1 BOIL 18.2 OTHE 16.3 MISC 16.4 AUXI PERCENT T	ER FEN R PUHI SERVI I TARY	ED PUHP ECE SYS BOILEF	808.	KWE KWE PPH IN	5491 5491 2000 Account	89.2 08.1 89.2 00.0 16 =	2.94	1.57 .88 1.17 4.00 0 ACCO	3 IUNT	•10 •12 •73 •80 Total*\$	915475.99 530647.16 641381.38 800000.00 2887504.50	54818.92 72350.98 400178.12 16000.00 587358.01
	PIPE & FIT 17. 1 CONV PERCENT T	TINGS Entio Otal	NAL PI DIRECT	CDST	TON In	ACCOUNT	50.0 17 =	2•96	800.00 1 ACCO) IUNT	1800.00 Total:\$	2258000 . 00 2250000 . 00	1350000.00 1350000.00
•••••	AUXILIARY 18. 1 HISC 18. 2 SWIT 18. 3 COND 18. 4 ISOL 18. 5 LIGH PERCENT T	ELES (MD/EL CHGSA(UIT+C ATED (TING OTAL	QUIPHE RS+ETC R & HCI ABLES+I PHASE & COHMI DIRECT	NT PAN IRAYS US JN Cost	KHE FT KNE IN	5481 5481 19500 5981 Account	89.2 83.2 60.0 53.0 89.2 18 =	6.79	1.40 1.95 1.32 510.00 5 ACCO	I J J J J J J J J J J J J J J J J J J J	17 455 450-00 43 Totalos	767464 -91 1058968 97 2573999 -97 229500 -00 191866 -23 4831800 -00	93192-17 246685-15 2651993-97 202500-00 235721-36 3430098-62

talah ber<mark>uk</mark>an dalah dalah sebelah sebelah ngahin ngahin ngan ngapatan sarah na ana sarah sebelah sebelah sebah

. NEW MARKER WATER CONTRACTOR OF THE CONT

的复数使用 化合金 化合金

ORIGINAL PAGE IS OR POOR QUALLY

·

	Table 12.17 Continued	ADVANCED	STEAM CYCL Parame	E WITH AT	M BOILER T NO.20	ACCOUNT LIS	TING	
	ACCOUNT NO. R	NAME.	UNIT #	HOUNT HA	T \$∕UNIT	INS S/UNIT	HAT COST+\$	INS COST.\$
	CONTROL, INSTRU 13- 1 Computer 19- 2 Other Con Percent Total 1	TROLS	EACH EACH St in Accou	1.0	437630.39 400000.00 .864 ACCOL	10009.00 240000.00 NT TOTAL:\$	400000.00 40000.00 800003.00	10000-00 240006-00 250000-00
•	PROCESS WASTE S 20- 1 BOTTOM ASI 20- 2 DRY AS4 20- 3 WEI SLURR 20- 4 ONSITE DIS PERCENT TOTAL		TPH TPH TPH ACRE ST IN ACCOL	15 2 1 30 8	505836.81 103780.54 545264.97 6909.30 .960 ACCOL	126459.20 275945.15 236316.24 10146.69 INT TOTAL:\$	505836.81 1103790.64 945264.97 1149335.77 3704218.16	125459-20 275945-16 236316-24 1687862-39 2326582-97
-	STACK GAS CLEAN 21. 1 PRECIPITAT 21. 2 SCRUBBER 21. 3 MISC STEEL PERCENT TOTAL	FOR S	EACH KNE 50 St in Accou	00000	2453J5.15 28.84 .JO .345 ACCOL	1460098.34 13.22 00 INT TOTAL?\$	2246305.16 14418303.62 16664606.75	-00
	TOTAL DIRE	CT COSTS	5			83	743273.00	27836708.00

Walanah dalam Jalapinahan makasanahan na ana in na sarahan na karana karana sarahan karana sarahan karana yan m

•

ويتحقق والمروح فالمروي والمساور والتراجي

- 1**2 - 1**- 1 -

12-92

ţ.

TABLE 12.18-ADVANCED STEAM CYCLE WITH ATM BOILER COST OF ELECTRICITY+MILLS/KW+HR Parametric point N0.20

ACCOUNT TOTAL DIRECT COSTS+S INDIRECT COSTS+S PROF & ONNER COSTS+S CDNTINGENCY COSTS+S SUB TOTAL+S ESCALATION COST+S INTREST DURING CONST+S TOTAL CAPITALIZATION+S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
ACCOUNT TOTAL OIRECT COSTS+S INDIRECT COSTS+S PROF & OHNER COSTS+S SUB TOTAL S ESCALATION COST+S INTREST DURING CONST+S TOTAL CAPITALIZATION+S COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN L - TOTAL COST OF ELEC	RATE: CONTINGENCY: PERCENT 20.00 9ERCENT -5.00 900 8.00 5.00 20.00 01 121579980. 121579990. 121579980. 121579980. 121579980. 51.0 19295720. 19295720. 19295720. 19295720. 19295720. 9.7 9725398. 9726398. 9726398. 9726398. 9726398. 20.0 -6078999. 0.130509.5. 150603098. 1603294. 6078999. 24315996. 0.1 144524100. 150603098. 150632096. 15669206. 174919092. 6.5 29530644. 30876973. 32871100. 32123302. 35862291. 10.0 34130916. 35566537. 37863530. 37002158. 41309020. .0 20828658. 217046606. 231064126. 252090462. 17.20125 .0 14.21225 14.81315 15.45654 15.40785 17.20125 .0 14.32287 8.36287 8.36287 8.36287 8.36287 .0 14.5570 1.416570 1.416570 1.46570 1	
ACCOUNT TOTAL DIRECT COSTS ** INDIRECT COSTS ** PROF & OHNER COSTS ** CONTINUE NOY COSTS * SUB TOTAL ** ESCALATION COST * TOTAL CAPITALIZATION * COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL	RATE, ESCALATION RATE, PERCENT PERCENI 5.07 6.50 8.00 10.00 .00 .0 121579980. 121579980. 121579980. 121579980. 121579980. 51.0 19296720. 19296720. 19296720. 19296720. 19296720. 8.0 9726398. 9726398. 9726398. 9726398. 9726398. 8.0 9726398. 9726398. 9726398. 9726398. 9726398. 9.1 160329496. 160329496. 160329496. 0.0329496. 0.0329496. .0 24861872. 32871100. 41144893. 525386.8. 0. 0. 10.0 36540103. 3786530. 39221019. 41088125. 3237317. 0. .0 221731470. 231064125. 240696212. 254016302. 192702612. .0 355407 8.36287 8.36287 8.36287 8.36287 .0 8.36287 8.36287 8.36287 8.36287 8.36287 .0 1.16570 1.16570 1.16570 1.16570 1.46570 .0<	
ACCOUNT TOTKL DIRECT COSTS, \$ INDIRECT COST. PROF & ONNER COSTS, \$ CONTINGENCY COST. SUB TOTAL, \$ ESCALATION COST. INTREST DURING CONST. TOTAL CAPITALIZATION. COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

OF POOR QUALITY

Table 12.18-ADVANCED STEAM CYCLE WITH ATH BOILS? COST OF ELECTRICITY, MILLS/KW. 33 Continued PARAMETRIC POINT NO.20 Continued

ACCOUNT	RATE, FIXED CHARGE RATE, PCT SERCENT 13.33 14.49 18.09 21.69 25.30	
TOTAL DIRECT COSTS +5 INDIPECT COSTS +5 PROF & ONNER COSTS +5 CONTINGENCY COSTS +5 SUB TOTAL +5 ESCALATION COST, 4 INTREST DURING CONST +5 TOTAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL	•SRCINT 12.57 14.49 18.09 21.60 25.10 •0 121579980.171575950.121579980.121575980. 121575980.121575980.121575980.121575980. 121575980.121575980.121575980.121575980. 51.0 12256720.19296770.13295720.19296720.19296720.19296720. 19296720.19296720.19296730.9765398.97278.972652978.97278.972652978.97278.972652978.97278.97282976.22.14139.25.229511.29.44842.31.426549.9.31.426549 97.65398.9776.22.14139.25.229511.29.44842.31.426549	
ACCOUNT	RATE, FUEL COST, \$/10++6 BTU 2.50 1.02 PERCENT .50 85 1.50 1.102	
1)TAL DIRECT COSTS,5 INDIRECT COST,5 PROF & OWNER COSTS,5 CONTINGENCY COST,5 SUB IOTAL,5 E SCALATION COST,5 INTREST DURING CONST,5 INTREST DURING CONST,5 COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	121573383. 121573930. 121573930. 121573930. 121573930. 121573930. 51.0 122672C. 1929672C. 1929672C. 1929672C. 1929672C. 8.0 9726398. 9726398. 9726398. 9726398. 9726398. 9.0 9726398. 9726398. 9726398. 9726398. 9726398. 0.1 160329496. 150329496. 150329496. 150329496. 150329496. 0.1 160329496. 150329496. 150329496. 150329496. 150329496. 0.1 163329496. 150329496. 150329496. 150329496. 150329496. 6.5 32871100. 32871100. 32871100. 32871100. 32871100. 10.0 37863530. 37863530. 37863530. 37863530. 37863530. 10.0 37863531. 37863530. 37863530. 37863530. 37863530. 12.0 37863531. 37863530. 37863530. 37863530. 37863530. 12.0 15.76654 15.75654 15.75654 15.76654 15.76654 15.76654 18.0 <td< td=""><td></td></td<>	
ACCOUNT	RATE, CAPACITY FACTOR, PERCENT PERCENT 12.03 45.00 50.00 55.00 55.00 50.00	
TOTAL DIRECT COSTS * INDIGECT COSTS * PROF & OWNER COSTS * CONVINGENCY COST * SUB TOTAL * ESCALATION COST * INTRES! DURING CONST * TOTAL CAPITALIZATION * COST OF ELEC-CAPITAL COST OF ELEC-POP & MAIN TOTAL COST OF ELEC	 121573588. 171573980. 121573980. 121579980. 121579980. 13296720. 13296720. 13296720. 19296720. 19296720. 19296720. 13296720. 13296720. 19296720. 9726398. 9726398. 9726398. 9726398. 9726398. 9726398. 9726398. 9726398. 9726398. 9726398. 160329496. 110329496. 160329496. 150329496. 120329496. 160329496. 110329496. 160329496. 150329496. 32871100. 32871100. 32871100. 32871100. 32871100. 10.0 37863530. 37863530. 37863530. 37863530. 10.0 37863530. 37863530. 37863550. 37863550. 37863530. 11.0 337863530. 37863530. 37863550. 37863550. 378635530. 11.0 37863530. 37863530. 37863550. 37863550. 378635530. 11.0 37863530. 37863530. 37863550. 37863550. 378635530. 12.31064125. 231064125. 231064125. 231064126. 18.0 85.49205 22.77389 20.49650 15.76654 12.81231. 0 8.3227 8.35227 8.35287 8.35287 8.35287 8.35287 . 0 1.16570 1.16570 1.16570 1.16570 1.16570 . 0 34.93057 32.30245 30.02507 25.29511 22.33688 	

Alle of the left of the set of th

.

د الاز مصحح مسل ما ما مراهدا فروه همی در دارد و بر وجلا «است. من موجو و مراه مرود و مراجع و « «««وعمر» » و معه

.

 \sim

......

Table 12,19	ADVANCED STEAH CYCLE WITH ATH	BOILER	· · ·
	AUX POWER, HWE PERC PLANT PO 6-P8688 16-580 2-54180 6-923 8-50000 23-15 -0000 23-15	114 37.23961 (54 164.85530 529 .00000	E COST 3-98723 -00000 -00000 -00000
10 14 18 	.69000 .000 5.59000 14.981 9.97925 13.567 9.10391 24.790 35.71185 7.924	89 .80000 30 .00000	- DPEDD - 00900 - 00000 - 98723
1 500	+000 2	.000 4 7860 31000000 9 2 1.000 14	000 5 5.000 000 10 1.000 000 15 -000
21 37 50000	000 22 15800.060 23 030 27 5000.000 28 000 32 750.000 33	.000 24 1500 18000.000 29 190080 1.000 34 1.	.000 25 500.000
45 114000+ 51 +	000 47 5000 48 000 52 5+350	10000.000 44 400000 3.000 49 2.	.000 45 240000.000 000 50 1.000 .000 5 1.000
	000 7 11500000.000 8	.000 9 3800000 1.000 14 120000 1.000 19 1 .000 24	000 10
ADVANCED Nominal Powery Nom Heat Rate, Off Design Hea	STEAM CYCLE WITH ATH BOILER	BASE CASE INPUT	463.2882
CUNDENSER DESIGN PRESSUR NUHBER OF TUBES U • BTU/HR-FT2- HEAT REJECTION	E, IN HG A 3-5000 S/SHELL 7088-5017 F 591-4577	NUMBER OF SHELLS Tube length• FT Terminal temp diff• F	2.0000 71.5510 5.0000
DESIGN TEMP+ F RANGE+ F DFF DESIGN PRE	77.0080 23.0090	APPROACH• F OFF Design Temp• F LP Turbine blade Len• IN	15.6713 51.4000 25.000

DEIGINAL PAGE IS DE POOR QUALITY

a start of a start and a start of a start of a

shri ng

÷.

and have been been and a second of the second of the second of the second second second second second second s

Table 12.20 PRESSURTIED BOILER ADVANCED STEAK SYSTEM ACCOUNT LISTING PARAMETRIC POINT NO.16

1.12

	ACCOUNT	N0.	8 71A H	Er U	NIT	AHOUNI	г на	f \$∕UNIT	INS	\$/UNIT	MAT COST#\$	INS COST.\$	
•	SITE DEVEN 1. 1 LAN 1. 2 CLE 1. 3 GRA 1. 4 ACC: 1. 5 LOO 1. 6 SID 1. 6 SID 1. 7 OTHI PERCENT	LOPME D COS ARING DING ESS RAJ ING S ING I	NT ST LAND AILRO LIROAD ILROAD ILROAD ILROAD ILROAD ILROAD ILROAD ILROAD ILROAD	10 TRACK 4CK STS STS STS	ACRE ACRE ACRE MILE MILE ACRE IN	151 50 151 52 4000000	C 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1000.0 9 15000.0 12000.0 12000.0 125000.3 394 ACC	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1	.CC 500.00 3000.00 10000.00 70000.00 80000.00 .00 70TAL:\$	151900-00 -00 575000-00 300000-00 -00 327886-55 1353885-94	30196.98 453C00.00 550000.00 175C02.60	
**** ···	EXCAVATION 2. 1 COM 2. 2 PIL PERCENT	N 8 9 Hon 1 Ing Total	PILING Excava Dire	TIGN CT COST	YD3 FT IN	5175C 139903 Account	•0 2 = 1	-0 5.5 074 ACC	D 9 OUNT	3.00 8.50 Total#\$	€57000.00 897000.00	155250.00 1173080.00 13287.50.00	-
	PLANT ISL 3. 1 PLAN 3. 2 SPE PERCENT	NT IS CIAL	STRUC	CRETE	Y03 YD3 IN	1725). Account	,7 5 = 1	78.0 78.0 249 ACC	0 0 0 0 0 0 1 7 0 0 1 7	90.00 00 Total7\$	-00	1380000-80 -00 1380009-00	
	TEAT REJE 4. 1 COO 4. 2 CIR 4. 3 SUR PERCENT	CTION Ling Culat Face Total	I SYST TOWER INS H Conde Dire	TH S 20 SYS NSER CT COST	EACH TACH FT2 IN	11 323603 ACCOUNT	-C -D -5 	.951 ACC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00 .09 .00 Total.*\$	1698500.00 932435.02 1404182.06 4025117.06	1250277-52	
12-96						1325 Account						•00 •00 77000•00	
	BUILDINGS 5. 1 STA 6. 2 ADM E. 3 WAR PERCENT	TION INST EHOUS Tota	SUILD RATION SE 8 S L DIRE	1N35 40P CT C631	#13 F12 F12 F12 IN	2700003 17500 17500 Account	0 0 6 =	16.0 16.0 12.0 .839 ACC	5 0 0 0 0 0 0 0 0 0 0 0 0	14.00 8.00 TQTAL:\$	432000-00 280000-00 210006-00 922000-00	140008-00	
	FUEL HAND 7. 1 COA 7. 2 DOL 7. 3 FUE PERCENT	OMIL	E HAND	- 515	TPH TPH SAL IN	293 162 1653000 Account	•2 •0 •7 = 4	.013 ACC	0		201133-44	158292.55	
	FUEL PROC 8- 1 COA 9- 2 CAR 8- 3 GAS PERCENT	ESSI L DRI BONI IFIE Totai	NG VER 8 ZERS _ RS L DIRE	CRUSHER	ТРН Трн Трн Трн Трн	ACCOUNT	0 0 8 =38	.9 .0 .555 ACC	С 0 С Тиио: Тиио:	•00 •00 •00 •00 Total•s	•00 •00 51138325•50 51138325•50	•00 •00 •28765308•00 28,765308•00	-

.

in fan en fan it fan en fan

Continued ACCOUNT	ND. I	SSURIZE: E NAME	บท		AHD					\$/UNIT	BAT	COST:5	INS	COST.S
FIRING SY	STEM Total	DIRECT	COST	IN A	CCOUNT	9 ⁰ =	•000	ACCO	 UNT. T	DTAL 25	· · - ·	•00 •00		-0(-00
VILPOR GEN 10-1 PRE PERCENT	SSURT TOTAL	ZED 801 DIRECT	COST							9999_98 0TAL+5	811 819	39999 .9 4 19999 . 94	181 181	9999 •98 9999 • 98
ENERGY CO II. 1 BAS 1: 2 GAS 1: 3 GAS 1. 4 BAL 11. 5 STE 11. 5 STE 11. 6 SEN FERCENT	NVERTS TURB TURS TURB ANCE AM TUR ERATOR TOTAL	COMPRE COMPRE COMS TURBIN TURBIN DF SAS RBINE RBINE TIRECT	SSOR-S Sect Sect URSIN CURSIN	IN /	ראטסססא	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	17000 15000 37000 116000 164421 18.403	00.00 00.00 00.00 05.00 .05.37 .05.37 .00	8 7 18 174 111 UNT T	2449.28	150 371 1160 1644	10000.00 10000.00 10000.00 10000.00 12105.37 12105.00	7 18 174 111	5000 -00 5000 -00 5000 -00 0000 -00 2449 -26 -00 7449 -29
COUPLING 12, 1 PERCENT	HEA: Total	XCHANG DIRECT	ER COST	IN A	CCOUNT	12 ⁹ =	•000	OC.	υΝΤ Τ	00 0TAL \$		•00 •00		• 06 • 00
HEAT RECO -13. 1 FEE 13. 2 STA PERCENT	VERY I O NATO CK Gas Total	HEAT EX ER HEAT S COOLEI DIRECT	CH. STR COST	ING IN A	.CCOUNT	1.0 1.0 13 =	3000 40000 3.437	90.33 00.90 ACCOL	230 052 1 Truu	4000.00 0000.00 0 tal #\$	80 401 480	10009-00 10000-00 10000-00	230 232	4000-00 10000-00 4000-00
WATER TRE 14. 1 DEM 14. 2 CON PERCENT	ATMÉNT Înerat Densat Total	T LIZER TE POLIS DIRECT	SHINS COST	GPH XNE IN P	5754 S754 CCOUNT	8C.1 00.0 14 =	20 1 -271	C0.C0 1.25 ACCO	 ד דאט	560.0C .30 0TAL+\$	131 72 201	0197.50 0500.00 0697.50	17	2920-00 3775-30
POWER CON 15. 1 STD PERCENT	DITION TRANS Total	NING Sformer Direct	COST	KVA IN A	90971 CCOUNT	30_0 15 =	1.062	ACCOL	ЙИТ Т	01AL75	219 219	8056.94 8056.94	4 4	3161-14 3161-14
AUXILIARY 16-1 BOI 16-2 OTH 16-3 MIS 16-4 AUX PSRCINT	HECH LER FO ER PUI C SERI ILIAR Total	EQUIPHI EED PUHF MPS VICE STS VICE STS VICE STS DIRECT	ENT Bor: S Cost	KWE KWE KWE PPH IN 4	5786 8218 9339 .CCOUNT	6C.5 32.4	1.747	1.57 .88 1.17 4.00 .000	ד דאיט	-10 -12 -73 -80 OTAL:5	109	5268.57 3237.25 12700.51 2206.72	9 68	7860-39 18623-29 1770-65 *01 9254-30
PIPE 8 FI 17. 1 CON 17. 2 HOT 17. 3 STE RERCENT	TTINGS Ventii Jas f Am Pii Total	S ONAL PI Pipins Ping Direct	PING Cost	TON FT TON IN A	8 CCOUNT	95.0 1.0 1.0 17 =	30 12000 20000 9-196	CO.CO 00.00 00.00 ACCO	60 80 80 17 17	1800.00 0000.00 0000.00 0101.00	250 120 201 581	35000.00 10000.00 10000.00 10000.00	40 80	1000-00 0000-00 0000-00 1000-00

and the second states of the

.

POOR QUALITY

a Dora,

Table 12.20 PRESSURIZED BOILER ADVANCED STEAH SYSTEM ACCOUNT | ISTING

ACCOUNT NO. 8 NAME. UNIT AHOUNT HAT S/UNIT INS S/UNIT HAT COST+S INS COST+S AUXILTARY FLEC COULTMENT 18. 1 HISC MOTIRS.TIC 18. 1 HISC MOTINS.TIC 18. 1 HISC		Table 12.20 (Continued)	PRESSURIZED	BOILEPPA	DVANCED ST Rametric P	EAM SYSTEM DENT NO.15	ACCOUNT LIS	T ING	
19. 1 HISC HOTERSFIC 321961.5 1.40 .17 1150604.72 139716.29 18. 3 CONDUIT.CABLES.TRAYS FT 3140009.0 1.32 1.36 4144799.97 4270399.94 10. 4 ISOL AFED PHASE BUS FT 675.0 510.00 450.00 304250.00 303750.00 18. 5 LIBHTINS & COMMUN XWE 747145.9 5229 ACCOUNT TOTAL.S 7503783.75 5404976.12 CONTROL. INSTRUMENTATION 13. 1 COMPUTER 13. 2 OTHER CONTROLS FACH 1.0 F25000.00 375000.00 375000.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 19 = .743 ACCOUNT TOTAL.S 153000.00 387000.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 19 = .743 ACCOUNT TOTAL.S 153000.00 387000.00 20. 1 BOTTOM ASH TPH 23.6 1139500.26 453625.07 1836500.28 459625.07 20. 2 DRY ASH TPH 17.4 139500.26 453625.07 1836500.28 459625.07 20. 4 ONSITE DISPOSAL ACCE 535.8 5679.83 8622.84 20. 4 ONSITE DISPOSAL ACCE 535.8 5679.83 8622.84 3043318.97 4620161.31 PERCENT TOTAL DIRECT COST IN ACCOUNT 20 = 7.287 ACCOUNT TOTAL.5 8993827.87 6107808.55 STACK GAS CLEANING 21. 2 SCRUBPER HE OD CONTROL CONTROL SEC 5700 00 00 00 00 00 00 00 00 00 00 00 00		ACCOUNT	NO. 8 NAME.	UNIL	AHOUNT	MAT SZUNIT	INS S/UNIT	MAT COSTV\$	INS COST+S
13.1 COMPUTER IACH 1.3 522006.30 12000.30 528000.00 375000.00 19.2 OTHER CONTROLS EACH 1.0 F25000.00 375000.00 525000.00 375000.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 19 = .743 ACCOUNT TOTAL.S 1153000.00 387000.00 *ROCESS WASTE SYSTEMS 20.1 BOTTOM ASH IPH .C .60 .00 .00 20.2 1 BOTTOM ASH IPH .C .60 .00 .00 .00 .00 20.2 2 RY ASH IPH .C .60 .00 .00 .00 .00 20.3 WET SLURRY IPH .F .60 .00 .00 .00 .00 20.4 CONSITE DISPOSAL ACRE .55.8 .5679.83 .622.84 .013318.97 4620181.31 20.4 CONSITE DISPOSAL ACRE .05.98 .627.84 .013318.97 4620181.31 21.4 PRECENT TOTAL DIRECT COST IN ACCOUNT 20 = 7.287 ACCOUNT TOTAL*S .00 .00 .00 21.4 PRECIPITATOR EACH .9 .579796.12 .07866.97.47 .00 .00 .00 21.4 PRECIPITATO		19. 1 HIS 18. 2 SWI 18. 3 CON 10. 4 ISO 18. 5 LISE	C HOTERS.ETC TCHGEAR & MCC DUIT.CABLES.TR LATED PHASE BU ITINS & COMMUN	PAN KWE AYS FT IS FT XHE	3140000.0 675.0 747145.9		1.36 450.00 43	1602628.00 4144799.97 344250.00 261501.08	369837.23 4270399.94 303756.00 321272.75
20. 2 DRY ASH IPH 123.4 1139500.28 453625.07 1836500.28 455625.07 20. 3 WET SLURRY IPH 172.6 4112006.75 1023002.19 9112008.75 1023002.19 20. 4 ONSITE DISPOSAL ACRE 535.8 5679.83 8622.84 3043318.97 4620181.31 PERCENT TOTAL DIRECT COST IN ACCOUNT 20 = 7.287 ACCOUNT TOTAL+\$ 8993827.87 6107808.56 STACK GAS CLEANING .00 .00 .00 .00 21. 1 PRECIPITATOR FACH .9 5797996.12 3768597.47 .00 .00 21. 2 SCRUBBER KWE .0 .24.30 11.14 .00 .00 21. 3 MISC STEEL & DUCTS IN ACCOUNT 21 = .000 ACCOUNT TOTAL*\$.00 .00 .00 .00	<u> </u>	13. 1 CONF 19. 2 DINE	ER CONTROLS	EACH EACH	1.3 1.0 CCOUNT 19 :	320000.30 F25000.00 - 743 ACCO	375000.00	625000.00	375000-00
21. 1 PRECIPITATOR EACH .9 57 97 996.12 37 58 697.47 .00 .00 21. 2 SCRUBPER KWE .0 .24.30 11.14 .00 .00 21. 3 MISC STELL R DUTS .0 .00 .00 .00 .00 .00 .00 21. 3 MISC STELL R DUTS .0 .00 .00 .00 .00 .00 PERCENT TOTAL DIRECT COST IN ACCOUNT 21 .000 ACCOUNT TOTAL \$.00 .00 .00		20. 2 DRY 20. 3 VET	A SH SLUBRY	TPH TPH	23.4 162.6	1339500.28	453625-87	1838508+28 4112008-75 3043318+97	453625.07 1023002.19 4620181.31
TOTAL DIRECT COSTS - \$ 144229765.00 E2357495.50		21. 1 PREC	CIPITATOR	EACH Kne S St in A	-9 -6 CCOUNT 21	5797996.12 24.30 - 000 ACCO	3758597.47 11.14 DD UNT TOTAL:5	•00 •00	.00 .00
	12-98	ALOT	L DIRECT COSTS	95	· .		144	889766 . 00	£2357495 . 50 .
							· .		
							:		

ander alle and a star all the content of the

٩.

.

TADIG 12.21 -PRESSURIZED BOILER ADVANCED STEAM SYSTEM COST OF ELECTRICITY.HILLS/KH.HR PARAMETRIC POINT NO.10

	ACCOUNT IDIAL DIRICT COSTS,* INDIRECT COST,* PROF & DHNER CDSTS,* CONTINGENCY COST,* SUB JOIAL,* ESCALATION COST,* INTREST DURING CONST,* TOTAL CAPITALIZATION,* COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF FLEC-OP & MAIN TOTAL COST OF ELEC	5 13°196463.1°433415.20 51.0 1201314.5501862.3 5.1 14414317.15591473.10 9.0 16216781.17540407.1 9.2 28319470.253527156.27 6.5 57522000.63733165.6 10.0 58529272.75927883.8 0 354869740.393188200.42 13.0 15.50395.17.17794 0 5.75049 7.76049 0 1.47711	*/HR 10.60 15.00 21.50 7247250. 233131504. 271369588. 1802322. 450032266. 64504709. 5573781. 1850520. 21709567. 3652253. 20981835. 24423263. 428161.2. 317757140. 382007120. 3950544. 79882195. 96031224. 2143557. 95166872. 114405359. 5375712. 492816204. 592444200. 16.58417. 21.53057. 25.88320. 7.76049. 7.76049. 7.6649. 1.47711. 1.47711. 1.47711. 27.82177. 30.76817. 35.12000.
	ACCOUNT TOTAL DIRECT COSTS *5 INDIRECT COST*5 PROF & OWNER COSTS*5 CONTINGENCY COST*5 SUB TOTAL *5 ESCALATION COST*5 INTREST DURING CONST*5 TOTAL CAPITALIZATION*5 COST OF ELEC-CAPITAL COST OF ELEC-DP & MAIN TOTAL COST OF ELEC	51.0 31932322. 21802322. 31 8.C 16579781. 16579781. 1 20.0 -14362363. 0 15 . C 245267000. 255629362. 27 5.5 61655678. 34261630. 6 10.0 73454681. 76557465. 8 . J 330377755. 336449455. 42 18.C 16.61226 17.32C38 . J 7.75049 7.75249 . J 47711 1.47713	9-00 5-00 20-00 7247260 217247260 217247260 1802322, 31802322 31802322 5579781, 16579781, 16579781 3552253, 10362363, 41449451
1.2-9.9	ACCOUNT TOTAL DIRECT COSTS, S INDIRECT COST, S PROF R OWNER COSTS, S CONTINGENCY COST, S SUB TOTAL, S ESCALATION COST, S INTREST DURING CONST, S TOTAL CAPITALIZATION, S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	274281512 274281512 274 0 51888795 58950544 8 13.0 79709455 32143557 8 .C 424879268 425375712 44 19.0 17.63873 18.58417 5 0 7.76049 7.76249	E. PERCENT 8.00 7247250. 207247250. 207247250. 1802322. 31802322. 31802322. 5573781. 15579781. 16579781. 8652253. 18652253. 18652253. 4281612. 274281612. 274281512. 6743598. 111646617. 0. 5696598. 90624202. 68083721. 6721804. 476552428. 342355332. 19.51676 20.82003 14.95755 7.76049 7.76049 7.766249 1.47711 1.47711 1.47711 28.75436 30.05762 24.19514
	ACCOUNT TOTAL DIRECT COSTS #5 INDIRECT COTT *5 PROF & OWNEY COSTS *5 CONTINGENCY COST *5 SUB TOTAL *5 ESCALATION TOST *5 INTREST DURING CONST *5 TOTAL CAPIT*LIZATION *5 TOTAL CAPIT*LIZATION *5 COST OF ELET-OPE HAIN TOTAL COST OF ELET-OPE HAIN TOTAL COST OF ELEC	0 2C724726C 2C72472CC 2C 51.0 31932322 31802322 32 8 C 1577781 15579781 1 9 9 19652253 18652253 1 C 274281612 274281612 27 6 5 60350544 5825612 27 6 5 60350544 645544C1 8 15 0 47561783 645544C1 8 15 0 47561783 645544C1 8 15 0 47561783 645544C1 8 16 0 778655 42	10.00 12.50 15.00 7247260.2(7247266.2(7247260. 6579721.16579781.16579781. 855253.13652253.18652253. 4281612.274281612.274281612. 8950544.58950544.69950544. 2143557.1(7494868.128836686.

OF POOR QUALITY

Table 12.21 Continued -PRESSURIZED BOILER ADVANCED STOAM DYSTEM COST OF ELECTRICITY+HILLS/KH.FR PARAMETRIC POINT NO.15

ACCOUNT IDTAL DIRECT COSTS, * INDIRECT COST, * PROF R OWAGR COST, * CONTINGENCY COST, * SUB TOTAL, * ESCALATION COST, * INTREST DURING CONST, * TOTAL COST OF ELEC-APITAL COST OF ELEC-APITAL COST OF ELEC-FUE COST OF ELEC-FUE COST OF ELEC-FUE COST OF ELEC-FUE COST OF ELEC-FUE	24T5: FIXED CH435E RATE: PCT 21.50 25.67 PERCENT 10.01 14.40 16.05 27247250.257247360. 25.67 .0 207247750.277247250.207247260.207247260.207247360. 21.600 25.67 .0 31802322.31802322.31802322.31802322. 31802322.31802322.31802322.31802322.31802322.3180532253. 31.6579781.16579781.16579781.16579781.16579781.16579781. .0 1.9652253.18652253.18652253.18652253.18652253. 18652253.274281612.274281612.274281612.274281612.2 274281612.274281612.374281612.374281612.374281612.3186530544.68950544.69550544.68950544.69550544.68950544.69550544.68950544.68950544.69550544.69550544.68950544.69550544.69550544.69550544.69550544.69550544.69550544.69550544.69550544.69550544.69550544.6955054.6955054.6955054.6955054.6955054.6955054.6955054.6955054.6955054.6955054.6955054.6955	
ACCOUNT IGTAL DIREC: COSTS ** INDIRECT 20.1,8 PROF & OWNE COSTS ** CONTINGENCY 20ST ** SUB YOTAL ** ESCALATION 20ST ** INTREST DURING CONST ** TOTAL CAPETALIZATION** COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST JF ELEC	PATE, FUEL COSI; \$/10**6 BTU *RCENY 50 85 1.50 2.50 1.02 . C 207247260 207247260 207247260 207247260 207247260 . C 10579781 16579781 16579781 16579781 16579781 9.0 19552253 13652253 13652253 18652253 16652253 . C 274281612 274281410 2747812 2747881612 2747881767812 274788178787881	
ACCOUNT TOTAL DIRECT COSTS+ INDIRECT COSTS+ PROF. S OWNER COSTS+ CONTINGENCY COST, SU3 TOTAL, ESC ALATION COST, INTREST DURING CONST+ TOTAL CAPITALIZATION+ COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL	RATE: CACACITY FACTOR: PERCENT PERCENT 12.00 45.00 50.00 55.00 80.00 .3 207247263. 237247253. 217247260. 207247260. 207247260. 51.6 31602322. 31802322. 31802322. 31802322. 31802322. 31802322. 9.0 15573781. 16579781. 16579781. 16572738. 18652253. 18652253. 9.0 12573781. 18652253. 18652253. 18652253. 18552253. 9.0 12574281612. 274281612. 274281612. 274281612. 9.0 125735744. 68950544. 68950544. 68950544. 6.5 56950544. 68950544. 68950544. 68950544. 6.5 56950544. 68950544. 68950544. 68950544. 6.5 56950544. 68950547. 92143557. 82143557. 10.9 92143557. 32193557. 82143557. 92143557. 10.5 155437. 256439.1 24.515943 18.58417. 15.09564. 10.5 155437. 256459.4 18.5164.	

en sen distriction for the construction of the second second for the second second second second second second

ORIGINAL PAGE IS OF POOR QUALTY

and the second state

12-100

.....

•

TTT Table 12.22-PRESSURIZED BOILER ADVANCED STEAM SYSTEM	
ADJE 12,222+RLSSOR1213 JOLLIG GJVAN.23 STEAM ACCOUNT NO AUX POWER.HWE PERC PLANT POW OPERATIC, COST HAINTENANCE CCST 4 742254 35.317GE 45.37844 10.67413 7 2.79907 13.50674 607.50886 .00000 14 .00000 54.26708 .00000 18 7.17990 34.64623 .00000 .00000 20 3.32197 16.02998 5.36552 .00000 21 20,72347 2.26443 1068.80029 10.47433 PRESSURIZED BOILIR ADVANCED STEAM SYSTEM TASE CASE INPUT 723.5765 .00000 NOMINAL POWER, MHE 749.3700 NET FOKER, HWE 723.5765	
14 .0000 .0000 .0000 18 7.17990 34.64623 .0000 .00000 20 3.32197 16.02998 5.36552 .00000 TOTALS 20.72347 2.00413 1068.80029 10.47413	
PRESSURIZED BOILER ADVANCED STEAM SYSTEM BASE CASE INPUT Nominal Poner, Whe 744,3000 NET Fower, HWE 723.5765 Nom Meat Rate, Biu/SN-1R B875.7793 Net Yeat Rate, Biu/SN-HR 9129.9844 St Ther Heat Rate Change 9756	
CONDENSER DESIGN PRESSURE, IN HG A 3.50CO NUMBER OF SHELLS 2.0COC NUMBER OF TUJES/SHELL B537.7158 TUBE LENGTH, FT 71.5510	
HEAT REJECTION DESIGN TEMP, F 77.CCCG APPRCACH, F 15.6713 RANGE, F 23.0000 OFF DESIGN TEMP, F 52.4000	
OFF DESTEN PRESA IN HE A 2.3128 D. INKRINE READE FEWA IN 52-0000	
11 1.030 12 293403.000 13 1.000 14 .000 15 .000 16 2.000 17 151.000 18 3.000 19 5.000 20 2.500 21 .001 22 17250.000 23 .000 24 1325.000 25 .000 26 2700000 27 17500.000 28 17500.23 165000.000 30 1.100 31 3.250 32 995.000 33 .000 34 1.100 35 1.100 36 31400000.000 37 .955.000 38 1.000 39 .000 40 322000 .000	
31 1.250 32 395.000 33 .000 34 1.100 35 1.100 36 3140000.000 37 675.000 38 1.000 39 1.000 40 322000.000 43 12000.000 44 525000.000 45 375000.000 43 3.000 49 2.000 50 .000 51 .500 .000 51 .500 .000 1.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
41 •000 42 •000 43 1.000 44 1.000 45 •000 45 •000 97 •000 48 •000 49 1.000 50 1.000	

Realling and the state of the second second second second as a second second second second second second second

Alter and provide a strend technical foreigner schedule an erstelligen eine strender eine sternet attender anter

ORIGINALI PACE IS OF POOR QUALITY

.

na secola

يستري بالجريبي والرابية تنهيمهم والعامم وأفقا الكافش فالت

-

Table 12.23-FLUIDIZED BED BOILER ADVANCED STEAM SYS ACCOUNT LISTING PARAMETRIC POINT NO. 7

1. j. j.

. . .

12-102

77

a.

• •					1 4.0.2		0 101							
	ACCOUNT	ND-	8 NAME,	UN	IT	AHOU	NT M	MAT 5/	UNIT	INS	\$/U¥IĬ	MAT COST#5	INS COST:\$	
-	SITE DEVEN 1. 1 LAN 1. 2 CLE 1. 3 GRA 1. 4 ACC 1. 5 LOO 1. 6 SID 1. 7 OTH PERCENT	LOPME D COS Aging Ess R P Rai Ing R ER SI Total	NT LAND LAND AILROAD LROAD TR TRAJ TE COST JIRECT	A A N RACK M K K K COST	CRE CRE CRE ILE ILE CRE IN ACC	13 4 13 :0UNT	53005 *********	10 1159 1200 1250 1.755	00.00 00.00 00.00 00.00 00.00 00.00 ACCOL	1. Unt	.00 500.00 3000.00 10000.00 70000.00 6000.00 6000.00 107AL,\$	136000.00 .00 575000.00 300000.00 298561.39 1309561.39	175COG+CU - 01]
•	EVCAULTTO		TITNO									-00 946400-00 946400-00	163800-01 1237600-01 1401400-01	כ
	PLANT ISL 3. 1 PLA 3. 2 SPE PERCENT	AND C NT IS CIAL Total	ONCRETE CONCE STRUCTU DIRECT	ITI IRES COST	YD3 YD3 IN ACC	1323 1323 1323	3.3 3 =	1.731	70.39 .00 ACCOL	υητ	89.00 09 Total:\$	1274000.00 .00 1274000.00	1456000±00 ±00 1456000±00	
	HEAT REJE 4. 1 COO 4. 2 CIR 4. 3 SUR PERCENT	LING Culat Face	TOWERS INS H20 CONDENS	SYS E	ACH Ach FT2 In Acc	1 32639 300NT	1.0 1.0 7.7 4 =	3. 895	+CD -30 •D0 ACCD	ЧИТ '	.00 90 00 Total's	1688500 •00 940486.20 1413943.84 4042930.03	841500-0 1261073-1 2102573-1	¥ n
	STRUCTURAL 5- 1 STA 5- 2 SIL 5- 3 CHI 5- 4 STR PERCENT	L FEA T. ST OS & HNEY UCTUR TOTAL	TURES RUCTUR/ SUNKERS AL FEAT DIRECT	URES E COST	TON FT ACH IN ACC	155 40 20081	0.0 0.0 1.0 5 =	18 3220 1.753	50.00 00.00 00.00 ACCO	TNU	175.00 750.00 .00 77000.00 TOTAL:\$	100750C-00 -00 435070-92 322000-00 1764570-92	271250.00 -00 652605.33 77000.00 1000856.33) B 1 .
•	BUILDINGS 6. 1 STA 5. 2 ADM 6. 3 WAR PERCENT	TION INSTR EHOUS Total	BUILDIN ATION E.S.SHO DIRECT	IJS P COST	T3 3 FT2 T2 IN ACC	37580 1000 1750 1750 2000	0.0 0.0 0.0	1.097	15.00 12.30 ACCOL	UNT	14.00 8.00 Total;\$	5%0000,00 160%00.00 210000.00 910001.00	140000.01	נ
	FUEL HANDI 7. 1 COAL 7. 2 DOL 7. 3 FUEL PERCENT	LING L HAN Omite L Dil Total	8 STORA DLINS S Hand- Hand- Direct	GE SYS SYS COST	TPH TPH SAL 1 IN ACC	29 15 20900 20001	2-5 8-3 9-0 7 =	5.166	50. 00. 00. 1000A	тиг	•83 •00 •00 Total•\$	4224218.06 1214155.87 134000.00 5572373.87	106000.00	2
	FUEL PROC 8. 1 COAL 8. 2 CAR 8. 3 GAS PERCENT	ESSIN L DRY Boniz Ifier Total	G ER & CR ERS S DIRECT	USVER	ÎPH ÎPH ÎPy In Acc	OUNT:	•0 •0 87=	.006	00 00 00 ACCOL	TNL	00 00 00 Total,s	.00 .00 .00 .00	- 01 - 01 - 01 - 01	3

. . .

.

بتصفيف المدابيا بالمتصافين سيتصور

	Table 12.23 - FLUIDIZED BED BOILER ADVANCED STEAM SYS ACCOUNT LIST Continued PARAMETRIC POINT NO. 7	
	ACCOUNT NO. & NAME, UNIT AHOUNT MAT \$/UNIT INS \$/UNIT	MAT COST.S INS COST.S
•	FIRING SYSTEM St 1 PERCENT TOTAL DIRECT COST IN ACCOUNT S ^D = .000 ACCOUNT TOTAL.	.00 .00 .00 .00
	VAPOR SENERATOR (FIRED) 10. 1 FLUIDIZED BED BOTLER EA PERCENT TOTAL DIRECT COST IN ACCOUNT 10 =27.420 ACCOUNT TOTAL.	25952000.00 17301000.00 25952000.00 17301000.00
	ENERGY CONVERTER 1.0 1700000.00 85000.00 11.1 1 GAS TURB COMPRESSOR-SECT 1.0 900000.00 45000.00 11.2 2 GAS TURB COMB SECT 1.0 900000.00 45000.00 11.3 3 GAS TURB TURBINE SECTION 1.0 320000.00 150000.00 11.4 9 BALANCE OF 3AS TURBINE 1.0 7300000.00 1095000.00 11.5 STEAM TURBINE 1.0 17438596.50 1158367.97 PERCINT TOTAL DIRECT COST IN ACCOUNT 11 20.972 ACCOUNT TOTAL+5	900000.00 45000.00 3200000.00 160000.00 730000.00 1095000.00 17438595.50 1158367.97
	COUPLING HEAT EXCHANGER 12.1 PERCENT TOTAL DIRECT COST IN ACCOUNT 12000 ACCOUNT TOTAL.**	00 00. 00 00
12-103	YEAT RECOVERY YEAT EXCH. 13. 1 FEED WATER HEATER STRING 13. 2 STACK SAS COOLER PERCENT TOTAL DIRECT COST IN ACCOUNT 13 = 4.391 ACCOUNT TOTAL.S	900000.00 27000.00 390000.00 2200000.00 4700000.00 2227000.00
•	HATER TREATMENT 14. 1 DEMINERALIZER 3PM 93.7 2500.19 703.00 14. 2 CONDENSATE POLISHING KWE 517101.0 1.25 .30 PERCENT TOTAL DIRECT COST IN ACCOUNT 14 = .897 ACCOUNT TOTAL.\$	246839.99 69115.20 771374.98 185130.00 1018214.98 254245.20
	POWER CONDITIONINS 15. 1 STD TRANSFORMER KVA 893933.3 .60 .00 PERCENT TOTAL DIRECT COST IN ACCOUNT 15 = 1.725 ACCOUNT TOTAL.*\$	2667639.28 53352.79 2667639.28 53352.79
· · ·	AUXILIARY MECH EQUIPMENT 16.1 BOILER FEED PUMP &DR.XWE 621559.1 1.67 .10 16.2 OTHER PUMPS KNE 810355.6 .98 .12 16.3 MISC SERVICE SYS KNE 920871.1 1.17 .73 16.4 AUXILIARY BOILER PPH .0 4.00 .80 PERCENT TOTAL DIRECT COST IN ACCOUNT 16 2.320 ACCOUNT TOTAL*5	1038020.44 62156.91 713122.60 97243.99 1077419.23 672235.92 .00 .00 2028562.25 831636.02
<u></u>	PIPE & FITTINGS 17. 1 CONVENTIONAL PIPING FON 1040.0 3000.00 1900.00 17. 2 HOT GAS PIPING FT 1.0 900000.00 600000.00 17. 3 Steam Piping fon 1.0 200000.00 800000.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 17 = 5.891 ACCOUNT TOTAL.*S	3120000,00 1872000.00 908000.00 60000.00 200000.00 80800.00 6028000.00 3272000.00

and the state of the

 $= \sum_{i=1}^{n} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1}

ORIGINAD PAGE IS OF POOR QUALITY

able 12.23 -FLUIDIZED ontinued	BED BOILER ADVA Paraheti	NCED STEAM SYS RIC FOINT NO. 7	ACCOUNT LIS	TENG	
ACCOUNT NO. 8 NAME:	UNIT AMO	DUNT MAT SZUNIT	INS B/UNIT	MAT COST.S	INS COST:S
		· · ·			
UXILIARY CLEC EQUIPM 8. 1 MISC MOTERS+ETC 9. 2 SWITCHSEAR & MC 8. 3 CONDUIT+CABLES, 9. 4 ISOLATE? PHASE 9. 5 LIGHTING & COMM PERCENT TOTAL DIRECT	8941 2 PAN KWE 9841 7 PANS ET 3660	575.0 510.0 596.9	5 ,45 2 1-36 0 450-00 5 43	1237650 -81 1723870 -81 4804799 -94 344250 -00 257843 -92 8368415 -37	15C286+17 397816-33 495C399-94 383750-00 316779-67 5119032-06
DYTROL, INSTRUMENTAT 9- 1 Computer 9- 2 Other Controls Percent Total Direct	EACH	1.6 528000.0 1.3 265000.3 7 19 = 1.017 ACC	0 12000.00 9 400000.00 COUNT TOTAL \$	529060.00 565000.00 1193000.00	400900-00
ROCESS HASTE SYSTEHS D= 1 90TTOM ASH D= 2 DRY ASH D= 3 HET SLURRY D= 4 ONSITE DISPOSAL PERCENT TOTAL DIRECT	TP4 TPH TPY 1 ACRE	28.7 1903525.8 153.3 4917638.9 523.9 5708.1 7 20 = 3.386 ACC	9 45C881.40 9 1004409.67 8 8560.44	00 1803525.59 4017638.69 2991293.12 8812457.37	.00 450881.40 1004409.67 4537585.87 5992876.94
FACK GAS CLEANINS 1. 1 PRECIPITATOR 1. 2 SCRU33ER 1. 3 MISC STEEL 8 DU PERCENT TOTAL DIRECT	EACH KHT CTS COST IN ACCOUNT	.0 5787524.2 .0 24.5 0 24.5 1 21 ≠ .000 ACC	5 11.26	.09	00 00 00 00
TOTAL STREET COS	f.e		4 07	91 271 9 00 5	9977501.50

Sec. Sugar

Charles 1

TOTAL DIRECT COSTS, \$

- ie ista -

12-104

107318719.00 19822591.50

10.1 6

TABLE 12.24 -FLUIDIZED BED BOILER ADVANCED STEAM SYS COST OF ELECTRICITY.MILLS/KW.HR PARAMETRIC POINT NO. 7

ACCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF & OWNER COSTS, SUB TOTAL, ESCALATION COST, INTREST DURING CONST, TOTAL CAPITALIZATION, COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE: LABOR RATE: S/HR PERCENT 5.03 8.50 10.60 15.00 21.53 .0 13612C184. 147670796. 157741310. 178422386. 226973974. 51.0 14367748. 20375559. 25409521. 35956870. 51538179. 8.0 10889515. 11829664. 12619305. 14273791. 16717918. 9.0 19392615. 11823664. 12619305. 14273791. 16717918. 9.0 172282158. 191905678. 208389438. 242926036. 293947984. 5.5 35321661. 39344917. 42724453. 49905385. 60265852. 10.0 40686280. 45320584. 49213401. 57359778. 59418570. 9 243290998. 276571176. 393327289. 350101995. 423632804. 18.0 116566 12.31270 13.37031 15.566233 18.45976 17.72648 7.72648 7.72648 7.72648 7.72648 7.72648 .0 <
ACCOUNT TOTAL DIRECT COST:, INDIRECT COST., PROF & OWNER COST,, CONTINGENCY COST,, SUB TOTAL,, ESCALATION, COST,, INTREST DURING CONST,, TOTAL CAPITALIZATION,, COST OF EDEC-CAPITAL	RATE: CONTINGENCY, PERCENT PERCENT -5.00 .00 8.00 5.00 20.00 .0 157741310.157741310.157741310.157741310. 51.0 25409521.25409521.25409521.25409521.25409521. B.0 12619305.12619305.12619305.12619305. 20.0 -7687065.0 12519305.12619305.7887065.31548262. 0 197885070.195770134.208389438.203657198.227318394. 6.5 38520193.40137216.42724453.41754239.46605309. 10.0 44370602.46233217.49213401.48095832.53683677. 10.0 44370602.4523217.49213401.48095832.53683677. 10.0 44370602.125625.13.37031.13.06668.14.58479 12.025651.12.56255.13.37031.13.06668.14.58479 12.025651.12.56255.13.37031.13.06668.45.8479
<u>S</u> ACCDUNT TOTAL DIRECT COSTS, PROF & DWNER COSTS, SL3 TOTAL, ESCALATION COST, TOTAL CAPITALIZATION, COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE, ESCAL ATION RATE, PERCENT PERCENT 6.0 8.00 0 157741310. 157741310. 157741310. 157741310. 157741310. 157741310. 157741310. 51.0 25409521. 25409521. 25409521. 25409521. 8.0 12619305. 12619305. 12619305. 12619305. 9.0 12519305. 12619305. 12619305. 12619305. 9.0 12519305. 12619305. 12619305. 12619305. 9.0 12519305. 12619305. 12619305. 12619305. 9.0 32314401. 42724453. 53473305. 60355524. 0. 10.0 47493266. 49213401. 50970847. 53404592. 42077196. .0 289197104. 300327268. 312946668. 330159552. 250466634. 18.0 12.83028 13.37031 13.92765 14.69841 11.5055 .0 7.72648 7.72649 7.72648 7.72648 7.72648 .0 1.77972 1.77972 1.77972 1.77972 1.77972 <
ACCOUNT TOTAL DIRECT COSTS, \$ INDIRECT COST, \$ PROF. & OWNER COSTS, \$ CONTINUENCY COST, \$ SUB TOTAL, \$ CSCALATION COST, \$ TOTAL CAPITALIZATION, \$ COST OF ELEC-CAPITAL COST OF ELEC-FOPE COST OF ELEC-FOPE	RATS, INT DURING CONST.PERCENT 15.00 PERCENT 6.00 8.00 10.00 172.50 15.00 •0 157741310. 157741310. 157741310. 157741310. 157741310. 157741310. 51.0 25409521. 25409521. 25409521. 25409521. 25409521. 50 12619305. 12619305. 12619305. 12619305. 12619305. 8.0 12619305. 12619305. 12619305. 12619305. 20839438. 6.5 42724453. 42724453. 42724453. 42724453. 42724453. 16.0 298509438. 20839438. 20839438. 20839438. 20839438. 6.5 42724453. 42724453. 42724453. 42724453. 42724453. 15.0 29763927. 38856132. 49213401. 52535898. 75284970. .0 279874816. 29997002C. 300327288. 313649788. 327398860. 18.0 12.45978 12.90521 13.37031 13.96341 4.57551 <

and a second constrained and the

 $\sim 10^{-1}$

10.11

ORIGINALI PAGE IS OF POOR QUALITY

And the Contract Mage

 $C = \{0\}_{i \in I}$

Table 12.24 continued -FLUIDIZED BED BOILER ADVANCED STEAM SYS COST OF ELECTRICITY-HILLS/KW.HR PARAMETRIC POINT NO. 7

ACCOUNT	RATE: FIXED CHARGE RATE: PCT PERCENT 13.03 14.40 18.00 21.60 25.03	
TOTAL DIRECT COSTS. INDIRECT COSTS. PROFE OWNER COSTS. SUB TOTAL. ESCALATION COST. INTREST DURING CONST. COST OF ELEC-CAPITAL COST OF ELEC-CAPITAL COST OF ELEC-COP & MAIN TOTAL COST DF ELEC	0 157741310. 157741310. 157741310. 157741310. 157741310. 51.0 25499521. 25409521. 25409521. 25409521. 8.0 12619305. 12619305. 12619305. 12619305. 12619305. 9.0 12619305. 12619305. 12619305. 12619305. 12619305. 0 208389438. 208389438. 208389438. 208389438. 208389438. 5.5 42724453. 42724453. 42724453. 42724453. 10.0 49213401. 49213401. 49213401. 49213401. 0 300327289. 30327289. 300327288. 300327288. 25.6 7.42755 10.69724 13.37051 16.04437 18.56987 0 7.72648 7.72648 7.72648 7.72648	
ACCOUNT	RATET FUEL COST, S/10**6 BTU	
TOTAL DIRECT COSTS,5 INDIRECT COST,5 PROF & OWNER COST,5 CONTINGENCY COST,5 SUB TOTAL,5 ESCALATION COST,5 INTREST DURING CONST,5 TOTAL CAPITALIZATION;5 COST OF ELEC-CAPITAL L COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	PERCENT 50 85 1.50 2.50 1.02 .0 157741310. 157741310. 157741310. 157741310. 157741310. 51.0 25409521. 25409521. 25409521. 25409521. 25409521. 25409521. 3.0 12519305. 12619305. 12619305. 12619305. 12619305. 12619305. 8.0 12519305. 12619305. 12619305. 12619305. 12619305. 10 203399433. 270389439. 208389438. 208399438. 208389438. 6.5 42724453. 42724453. 42724453. 42724453. 42724453. 10.0 49213401. 49213401. 49213401. 49213401. 49213401. .0 300327288. 300327288. 300327288. 300327288. 300327288. 18.0 13.37031 13.37031 13.37031 13.37031 13.37031 13.37031 .0 4.54999 7.72648 13.65497 22.72495 9.27178 .0 1.77972 1.77972 1.77972 1.77972 1.77972 .0 19	
ACCOUNT	RATE: CAPACITY FACTOR: PERCENT PERCENT 12.00 45.00 50.00 65.00 80.00	
TOTAL DIRECT COSTS +5 INDIRECT COSTS +5 PROF & OWNER COSTS +5 CONT NGENCY COST +5 SUB TOTAL +5 ESCALATION COST +5 TOTAL CAPITALIZATION +5 COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FOR & MAIN TOTAL COST OF ELEC	 157741310. 157741310. 157741310. 157741310. 157741310. 25403521. 25403521. 25409521. 25403521. 25409521. 0 12619305. 12619305. 12619305. 12619305. 12619305. 0 12619305. 12619305. 12619305. 12619305. 12619305. 0 206309438. 208389438. 208389438. 208389438. 208389438. 208389438. 0 5 42724453. 42724453. 42724453. 42724453. 42724453. 10 6 49213401.	

THE IN THE PLUTDINE BED BUILER ADVANCED STEAM STS	Table 12.25 - FLUIDIZED BED BOIL	ER ADVANCED STEAN SYS
---	----------------------------------	-----------------------

562

	ACCOUN	4 7 8 14		7 2	47122 79259 38032 99000		35.0 13.0 1.7	4653 9965 8405 0000	846.	77027 82170	-	10.523 -000 -000	12 00 00	•
	TOTAL FLUI	18 20 S DIZED 31 AL POWER EAT RATE RB HEAT NSER N PRESSU	0 30T	7 3 21 21	00000 35960 31428 31801 2VANCED	STEA	34.5 15.5 3.0 4 SYS	0000 2292 4594 0219 3ASE					00 00 12	• • • • • •
• • • •	NOMIN Nom H St Tu Condi	AL POWER EAT RATE RB HEAT NSER	MWE 9 STU Rate	CHANG	R S	731 9825 8628	4000 0344 9789	NET S	POWER, HL IEAT RATE	E BTU				
	NUMBE U BT HEAT	R OF TUS U/HR-FT2 REJECTIO	ี่£รั∕ร∛ −F พ	IN HG		8712. 591.	2999 4577	TUSE TERM:	ER OF SHE Length: Inal Temp	FT DIFF	r F		2.0000	
····· .	RANGE	ESION PR	•	IN HG			0010 3935	OFF (LP T	DACH: F DESIGN TE JRBINE BI .000	LADE L	-WA 19	53D . 39D	15.6713 51.4000 25.0000 5	5+300
	5 11 15 21	517 14 2	100 000 000	7 12 17	1	3.50 32.90 36.00	0 9 0 13 0 18	87610	0000.000 1.009 3.000 .000	9 14 19		2 000 000 5 000	10 15 20 25	1.000 .000 .2.580 400.000
	26 31 36	3375000 1, 3640000	-000 -250 -000	22 27 32 37	10	00.00 00.00 10.00 75.00	028 033 038		7500.000 000 1.000	249 339 39	10000	50,000 00,000 1,200 1,200	30 35 40	1-100 1-200 322000-000
	41 46 51 1		•000 •503 1•800		25952		048 0 003		200 <u>0</u> .000 3.000			1.000 2.000 1.000	45 50 10	400000.000 .000 1.000 .050.
12-107	11 15 21 25	900000 900000 1	•150 •000	7 12 17 22 21	140000 9000	03 00.00	0 13 9 18 0 23 0 29	380	1.000 000.000 .000 000.000		_	.050 1.000 00.000 08.000	15 20 25 30	7300000.000 1.000 1.000 800008.000
<u> </u>	31 36 41 46		000 000 000	32 37 42 47		00 00 00 00	D 33 D 43		000 000 1.000 000	34 39 44 49	*	1.000 .000 1.000 2.000	35 40 45 50	_000 _000 _000 _000

 $(1,1) \in \{1,2,\dots,n\}$

-40

أحليك والمرجعة

e e contra de la sector

Table 12.26 - FLUIDIZED BED BOILER ADVANCED STEAM SYS PARAMETRIC POINT NO.31 ACCOUNT LISTING

.

a Alfred Contraction and a statistical statistical statistics and the state of the state of the state of the se

ACCOUNT NO. 8 NAME,	UNIT AMOU	UNT MAT \$/UNIT I	NS S/UNIT H	AT COST.	INS COST, S
SITE DEVELOPMENT 1. 1 LAND COST 1. 2 CLEARING LAND 1. 3 GRADING LAND 1. 4 ACCESS RAILROAD 1. 5 LOOP RAILROAD TRAC 1. 5 SIDING R P TRACK 1. 7 OTHER SITE COSTS PERCENT TOTAL DIRECT CO	ACRE 1: ACRE 1: ACRE 1: MILE MILE MILE ACRE ST IN ACCOUNT	38.1 1000.00 45.0 .00 39.1 .00 5.0 115000.00 2.5 120008.00 .0 125000.00 1 = 1.724 ACCOUN	500-00 3000-00 110000-00 76000-00 8000-00 9000-00 1 TOTAL+5	138095.49 .00 575000.00 303692.26 302688.79 1319476.52	-00 27616-34 \$14286-\$6 55000-00 177153-82 302688-79 1471745-39
EXCAVATION 8 PILINS 2. 1 Common Excavation 2. 2 Piling Percent Total Direct Co	YD3 5614 T 14972 St in Account	45.1 20.2 2 = 1.491 ACCOUN	3.00 8,50 T Total,5	00 973181.42 973181.42	168435-25 1272621-86 1441057-09
PLANT ISLAND CONCRETE 3. 1 PLANI IS. CONCRETE 3. 2 Special Structures Percent total direct co	YD3 1971 YD3 St in account	15.3 73.33 0 80 3 = 1.734 ACCOUN	50.00 00 T Total.+\$	1310051.91 .00 1310051.51	1497202.19 -00 1497202.19
YEAT REJECTION SYSTEM 4+ 1 COOLING TONERS 4- 2 CIRCULATING Y20 SY 4- 3 SURFACE CONDENSER PERCENT TOTAL DIRECT CO	EACH. 5 EAC4 FT2 32651 St in account	11.0 .00 1.0 .00 09.4 .00 4 = 3.796 ACCOUN	-00 -00 -00 T Total#5	1688500.00 940808.25 1414334.31 4043642.56	841500.00 1251504.95 .00 2103004.94
STRUCTURAL FEATURES 5. 1 STAT. STRUCTURAL S 5. 2 SILOS & BUNKERS 5. 3 CHIMNEY 5. 4 STRUCTURAL FEATURE PERCENT TOTAL DIRECT CO	T. TON 154 TPH FT 44 FT 44 Stacy Stin Account	82.9 650.00 03.1 1809.00 1.0 325961.38 5 = 1.735 Accoun	175.00 750.00 .00 79195.42 T TOTAL>\$	1028906.41 439491.03 326961.38 1795358.81	277013-26 00 659236-55 78186-42 1014436-22
BUILDINGS 6. 1 STATION BUILDINGS 6. 2 Administration 6. 3 Harehouse & Stop Pircent Total Direct Co	FT3 34559 FT2 102 FT2 178 ST IN ACCOUNT	14.0 39.8 16.00 37.7 12.20 6 = 1.093 ACCOUN	.16 14.00 8.00 T Total,≠\$	552951.03 163837.34 214052.37 930840.74	552951.03 143357.58 142701.58 839010.28
FUEL HANDLING & STORAGE 7. 1 COAL HANDLINS SYS 7. 2 DOLOWITE HAND. SYS 7. 3 FUEL OIL HAND. SYS PERCENT TOTAL DIRECT CO	IPH 21 TPH 1 SAL 19310 ST IN ACCOUNT	97-9 -20 51-2 -00 53-5 -20 7 = 5,113 ACCOUN	00 00 00 T Totalis	4293356.62 1234028.20 137364.92 5664749.69	1910882-91 594252-29 108627-81 2613763-00
FUEL PROCESSING 8. 1 COAL DRYER & CRUSH 8. 2 Carbonizers 8. 3 Gastfiers Percent total direct CD	ER TPH TPH TPH St in Account	06- 6- 00- 9- 00- 6- NU032A 000- = 8	00 00 00 T Total,\$	•00 •00 •00 •00	-00 -00 -00 -00

12-108

- -:	Table 12.2 Continued	6 - LU	ÍDIZED I	950 30	ILER PA	ADVAN IRAMETR	CED S IC PO	TEAM	SY1 NO.	5 31	ACC	OUNT I	LIST	TNG		•	COST:\$	
	A CC D UNI	T NO.	E NAME.	UN	IT	AHO	UNT	HAT	\$/U	NIT	INS	SZUN:	IT	HAT	COST+S	INS	COST:\$	
· · · · ·	FIRING SY 9 1 PERCENT	YSTEM Total	DIRECT	COST	IN A	CCOUNT	5 ⁰ =	• 0	138.1		TRI	TOTAI.	.00 • \$		•00 •00		•80 •00) 1
	VAPOR BEN 10+ 1 FLI PERCENT	NERATO UIDIZE Total	R (FIRE) D BED BO DIREST	DILER COST	ËA IN A	CCOUNT	1.0 18 =	2561 27.3	500 197	0.00 ACCOU	177 JNT	44000 Total	-00 •\$	2661 2561	15000 - CO 15000 - CO	177 177	44C80.00 \$4000.00	
• ····	ENERGY CI 11. 1 GA 11. 2 GA 11. 3 GA 11. 3 GA 11. 4 BAI 11. 5 STI PERCENT	S TURB S Turb S Turb Lance	COMPRE: COMS TURBIN OF SAS	SSOR-S SECT E SECT IURBIN COST	SECT Ion In A	CCOUNT	1.0 1.0 1.0 1.1 1.0 1.1	170 93 340 930 1743 21.2	1003 1000 1003	0.00 0.00 0.00 0.00 6.50 Accol	1 12	85000 45000 70000 45000 58317 Total	.00 .00	90 340 930	10000 .00 10000 .00 10000 .00 10000 .00 18596 .50 18596 .50	1 121 11	85000.00 45000.00 70000.00 45000.00 58317.39 13317.37	
	COUPLING 12.1 PERCENT	HEAT Total	EXCHANG Direct	COST	IN A	CCOUNT	12 =	.0	100	.00 ACCO	INT	TOTAL	.80 ≠\$		-00 -00		-01 -00	
12-109	HEAT RECO 13 1 FEI 13 2 SI PERCENT	DVERY Ed Vat Ack Sa Total	HEAT EX: ER HEAT S CODLET DIRECT	COST	INC IN /	CCOUNT	1.0 1.7 13 :	90 430 44	1000 1000 163	0.00 0.00 ACCO	23 Лит	27000 00000 Total	-00 00 •\$	90 400 490	0000-00	23	27000.00 00000.00 27000.00	3
	NATER TR 14. 1 DE 14. 2 CO SERCENT	EATHEN HINERA NDENSA Total	T LIZER TE POLI DIRECT	SHING COST	3PH Kwe In A	6172 CCOUNT	99.8 20.0 14 =	7	253 86	1.25 ACCO	JNT	708 Total	-00 -30 -\$	24 7 181	6879-99 1499-98 8379-98	1	69125.40 85160.00 54286.40	3
	POWER CON 15 1 ST PERCENT	NDITIO D TRAN Total	NING Sformer Direct	COST	KVA In A	9287 ICCOUNT	66.5 15 =	: 1.7	107	-90 ACC01	TNT	TOTAL	•00 •\$	270 270	9787.59 9787.59	:	54195 . 79 54195 . 79	5 .
	AUXILIAR 16. 1 80 16. 2 01 16. 3 HI 16. 5 AU PERCENT	ILER F HER PU SC SER	EED PUH HPS VICE SY	P 80R S	N N F	9120	43.4 59.0 67.1 16	: 2.3	344	1 - 67 • 38 1 - 17 4 - 90 Accol	JNT		10 12 73 80		50629.54 3155.95 57303.50 00 21688.97	1	61714 -34 02703 -05 09973 -97 -00 74391 -35	37
	PIPE & F 17. 1 CO 17. 2 HO 17. 3 STI PERCENT	NVENTI T BAS EAM PT	ŪNAL PI Piping Ping		TON		54.9 1.0 1.0 17	230	1000 1000	9.13 0.00 0.30 ACCO	6	1903 00000 00000 Total	-00	200	4928,19 0008.00 10008.00 4828.19	8	16896.91 0000.01 0000.00 16896.91]

ling a stadage of some of all determinant give gravitation for the angle determinant of second gravitation of a

ORIGINALI PAGE I OF POOR QUALITY

E

والمراجعة والأنصاحية وا

tana makai di shi jisa kula ku ya makula ta shapa she kar jara takkina a ka pa sha kula ya

	Table 12.26 FLUIDIZE Continued	D 3ED 30ILER ADVAN Parametr	NCED STEAM SYS ACCOUNT LISTING RIC POINT NO.31				
	ACCOUNT NO. & NAM	E. UNIT AHO	UNT HAT \$/UNIT	INS \$/UNIT MAY COST.\$	INS COST.S		
	AUXILIARY ELEC EGUI 18. 1 MISC MOTERS. 18. 2 SWITCHGEAR & 18. 3 CONDUIT.CABLE 16. 4 ISOLATED PHAS 18. 5 LIGHTING & C PERCENT TOTAL DIRE	ETC 9336 MCC PAN KWE 9336 Sytrays FT 37272 Se Sus FT 6 Immun Kwe 7598	69.4 1.95 99.6 1.32 83.3 510.00 30.4 .35	450.00 348486.87	420148.98 5069127.37 307488.41 326727.05		
	CONTROL, INSTRUMENT 19. 1 COMPUTER 19. 2 OTHER CONTROL PERCENT TOTAL DIRE	ATION EACH S IACH ECT COST IN ACCOUNT	1.0 533070.05 1.0 573184.52 19 = 1.014 ACCOL	12115.23 538108.81 404923.02 681469.77 JNT TOTAL:\$ 1219658.58	409906.63		
	PROCESS WASTE SYSTE 20- 1 BOTTON ASH 20- 2 DRY ASH 20- 3 Wet Slurry 20- 4 ONSITE DISPOS PERCENT TOTAL DIRE	TPH	29-2 1330510-13 61-2 4390652.36 33-5 5685-61 20 = 9-288 ACCOU	457652-00 1022665-51 1830610-00 8630-20 3033083-12 NNT TOTAL+\$ 8954355-62	457652.61 1022665.52 4603927.81		
• • •	STACK GAS CLEANINS 21. 1 PRECIPITATOR 21. 2 SCRUBBER 21. 3 MISC STEEL & PERCENT TOTAL DIRE	EACH XWS DUCTS	•0 5:69411.44 •1 24.35 •0 00	3815117.41 .00 11-17 .00 .00 .00 JNT TOTAL;\$.00			
12-11	TOTAL DIRECT C	:05T5+\$		110971830.00	51042993.00		

dela de la construir de la cons

TABLE 12.27 -Fluigized ged goiler advanced steam sys cost of electricity-Hills/kw-HR Parametric Point No.31

ACCOUNT TOTAL DIRECT COSTS ** INDIRECT COSTS ** PRDF & OHNER COSTS ** CONTINGENCY COSTS ** SUB TOTAL ** ESCALATION COST ** INTREST DURING CONST ** TOTAL CAPITALIZATION ** COST OF ELEC-CAPITAL COST OF ELEC-CUSL COST OF ELEC-CUSL COST OF ELEC-CUSL COST OF ELEC-CUSL	.0 176908214.197016414.21367306.24527742.501373064 5.5 3553944.40593130.44181692.51491577.62290222. 10.0 42137106.46926664.50949782.59379298.71031991. 0 255595164.214535143.303038980.360158712.435701272. 18.0 10.94326 12.18712 13.23196 15.42116 18.55520	
ACCOUNT TOTAL DIRECT COSTS, \$ INDIRECT COST, \$ PROF & OHNER COSTS, \$ CONTINGENCY COST, \$ SUB TOTAL, \$ ESCALATION COST, \$ INTREST DURING CONST, \$ TOTAL CAPITALIZATION, \$ COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL	8.0 12953179. 12953178. 12953178. 12953178. 12953178. 1295377. 20.0 -8095737. 0. 13007517. 8095737. 32382946. 0 192904054. 220999793. 213907306. 238935526. 233282736. 6.5 39823080. 41495230. 44181892. 43167379. 48183827. 10.0 45923277. 47851579. 50949782. 49779255. 55554773.	
ACCOUNT	RATE, ESCALATION RATE, PERCENT	
ACCOUNT TOTAL DIRECT COSTS ** INDIRECT COSTS ** PROF & OWNER COSTS ** CONTINBENCY COST ** SUB IGTAL ** ESCALATION COST ** INTREST DURING CONST ** TOTAL CAPITALIZATION ** COST OF ELEC-CAPITAL COST OF ELEC-CPE CDST OF ELEC-DP & MAIN TOTAL COST OF ELEC	b:f0;:01 6.50 8.00 10.00 .0 161514732. 161514732. 161514732. 161514732. 51.3 26031880. 26031880. 26031880. 26031880. 26031880. 8.0 12953178. 12953178. 12953178. 12953178. 12953178. 8.0 13007517. 13007517. 13007517. 13007517. 13007517. 0 213907306. 213907306. 213907306. 213907306. 213907306. 0 33441148. 94181692. 55312026. 70725598. 0. 10.0 49157203. 50949782. 52730090. 55339474. 43516326. 0 235475655. 319038980. 322009420. 339952324. 25742*634. 18.0 12.69404 13.2195 13.78731 14.55556 11.02197 7.55605 7.55605 7.55605 7.55605 7.55605 7.55605	

ารสมการสมบัญชิวายสารและ เมษาสารสมบานสมบานสมบานสารารสมบานสารารสมบานสารารสมบานสารารสมบานสารารสมบานสารารว่าง และก

12-111

ORIGINAL PAGE IS OF POOR QUALLTY

أحصيهما فليطيقهم والهجرا الجراعين المراجع والمحافظة والمحافظة الجرو للتماخير مادا والمي

Table 12,27 Continued FLUIDIZED BED BOILER ADVANCED STEAM SYS COST OF ELECTRICITY.MILLS/KW.47 PARAMETRIC POINT NO.331

ACCOUNT

 RATE,
 FIXED CHARGE RATE, PCT

 PERCENT 12.37
 14.40

 18.00
 21.63

 25.13

 161914732
 161914732

 18.00
 26031980.

 26131981.
 26031981.

 25031981.
 2503178.

 12953178.
 12953178.

 12953178.
 12953178.

 12953178.
 12953178.

 12953178.
 12953178.

 12953178.
 12953178.

 12953178.
 12953178.

 12953178.
 12953178.

 12953178.
 12953178.

 13007517.
 13007517.

 13007517.
 13007517.

 13007517.
 13007517.

 13007517.
 13007517.

 13007517.
 13007517.

 13007517.
 13007517.

 13007517.
 13007517.

 13007517.
 13007517.

 13007517.
 13007517.

 13007306.
 213907306.

 213907306.
 213907306.

 213907306.
 203903890.

 309138930.
 309038930.

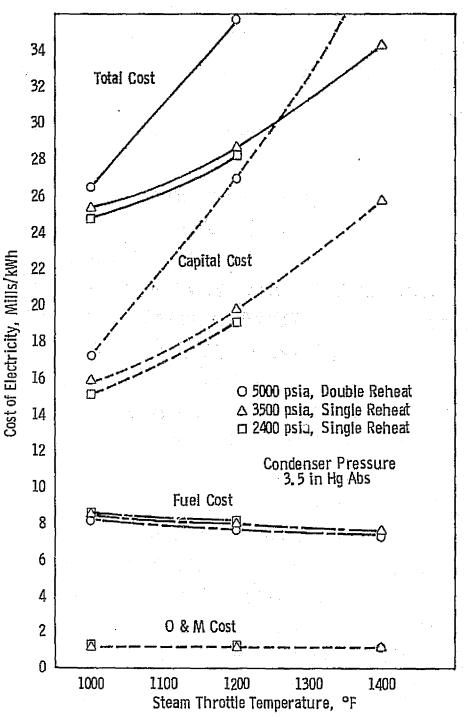
 2003938930.
 309038930.</t FIXED CHARGE RATE, PCT RATE, IOTAL DIRECT COSTS * INDIRECT COSTS * PROF & OWNER COSTS * CONTINGENCY COST * SUB TOTAL * ESCALATION COST * INTREST DURING CONST * TOTAL COST OF ELEC-CAPITAL ACCOUNT
 RATE,
 FULL COST, \$/10**6 BTU

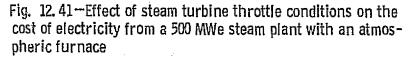
 PERCENT
 50
 .85
 1.50
 2.50
 1.02

 .0
 161914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 151914732.
 1503178.
 12053178.
 12053178.
 12053178.
 12053178.
 12053178.
 12053178.
 12053178.
 13007517.
 13007517.
 13007517.
 13007517.
 FUIL COST: \$/10**6 BTU RATER TOTAL DIRECT COSTS.S INDIRECT COST.S PROF & DHNER COSTS.S CONTINGENCY COST.S SUB TOTAL.S ESCALATION COST.S INTREST DURING CONST.S TOTAL CAPITALIZATION.S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC 9 19.41832 22.53375 28,31955 37-22078 24.04696
 RATE,
 CAPACITY FACTOR, PERCENT
 55.00
 60.00

 •0
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 161914732.
 160317717.
 13007517.
 <t ACCOUNT TOTAL DIRECT COSTS +5 INDIRECT COSTS +5 PROF & CHNER COSTS +5 CONTINGENCY COST +5 SUB TOTAL +5 FCC +1 + TCN - COST + 5 SUB FOLATION COST.S ENTREST DURING CONST.S TOTAL CAPITALIZATIONSS COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC 26.50334 20.05276 • 0 30.97492 28.41452 22-53375

12-112


1


Table 12.28-FLUIDIZED	BËD	BOILER	ADVANCED	STEAM	SYS
-----------------------	-----	--------	----------	-------	-----

• •	ACCOUNT	ND AU ZED SED S POWERS T RATE, S B HEAT RATE PRESSURE AF SURES		9 69799		3h 64	0W 0PER 2853 523 9434 9000 5556 654 2259 3ASE CA	6 E 1	70204	10	.52506 .00000 .00000 .00000 .00000 .00000 .52508	1	
	NOMINAL NOM HEA ST TURE	T RATEN B Heat Rater Fr	INE ITU/KH- Fe chan	YR GE	759.9 9649.4 8456.3	000 374 540	NET POW	ER, MWI T RATEI	E • BTU/KI				
44 / 77	DESIGN NUMBER U. BTU.	PRESSURE OF TUBES/ HR-FT2-F	IN HG Shell	A	3.5 8715.2 591.4	000 932 577	NUHBER Tube le Termina	OF SHE NSTH I L TEHP	LLS FT DIFF.	F	71	0000 5510 0000	
***	DESIGN RANGE, OFF DES	ER PRESSURE OF TUBES/ HR-FT2-F JECTION TEMP; F F SIGN PRES	IN HG	A	77.0 23.0 2.3	808 038 941	APPRCAC OFF DES	Hø F Ign tei	HP, F	• IN	1: 51	6713 4000	
	1	759.5			• 30	0 3		.000	_4	9457		_5	្ទះរដ្ឋថ្ម
	6	617-20	7 0C	1	3,500	3 13	97640000	0.000 1.000	9 14	2.	000 1 000 1	10 .5	1.000
	11 16	2+01	17 00	Ĩ	135.000	18		3.000	19	5	202 2	20	2.500
	21	• 00 • 375000 • 01		192	00.0.	23 28	1750	000	24 29	1550. 100000	000 2 000 3	5	430.000
	31	1+25	50 <u>32</u> 00 37	10	40.000	33		.800	34	1.	200 3	5	1.200
	36 3	3640000-00	00 37	6	75.000	38		1.000	39			D	322000-000
	41 46	77000-00		5230	00.000 000	43	1203	3.000 3.000	44 49	555000.	000 .4	5	400000-000
	51	- 55	9 5Z		5.353	• -							
-	1	1_1	300 Z	26615	5000.00		177440				.000	<u>م</u> 5	1.000 .050
					* ^ ^ ^				- -				
12	·	1.00	19°7'		1.000	9 13	340000	1.000		1700000	008 1 .050 1	.0 15 1	8300000 000
12-11	11 15	1 • 00 900900 • 00 • 1!	1977 10012 1017		-050 00-000	13 18	340000	0.000	14 19	1.	050 1	15 1	8300000.000 1.000
12-113	15	1 • 00 900900 • 00 • 1! 900900 • 00	19 7 00 12 50 17 00 22	140308	-050 00-000 -030	13 18 23	340000 400000	000	14 19 24	1.	050 1 000 2 000 2	15 1 20 25	8300000.000 1.000 1.000
12-113	15	1-00 900900-00 11- 900000-00 1-00	1977 2012 3017 2022 1022	140308	-050 00-000 -030 030	13 18 23 29	340000	0 000 000 0 000 0 000 0 000	14 19 24 29	1 2300000 2000009	050 2 000 2 000 2 000 3	15 1 25 10	8300000.000 1.000 1.000 80000.000
2-113	15	1 • 00 900900 • 00 • 11 900900 • 00 1 • 00 • 00	1977 19012 1017 1022 1027 1032 1032 1037	140308	-950 -030 -030 -030 -000 -000	13 18 29 33 39	340000 400000 60003	0000 000 0000 0000 0000 0000	14 19 24 29 34 39	1 2300000 2000009 1	050 2 000 2 000 2 000 3 000 3 000 3	15 1 25 10 35	8300000.000 1.000 1.000 80000.000 .000 .00
12-113	11 15 25 35 41 45	1-00 900900-00 11- 900000-00 1-00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140308	.050 00.000 .030 03.000	13 18 29 39 39 43	340000 400000 60003	000 000 000 000 000	14 19 24 29 34	1 2300090 2000009 1	050 2 000 2 000 2 000 3 000 3 000 3	15 1 25 10	8300000.000 1.000 1.000 800000.000 .000 .0

.

Curve 682213-A

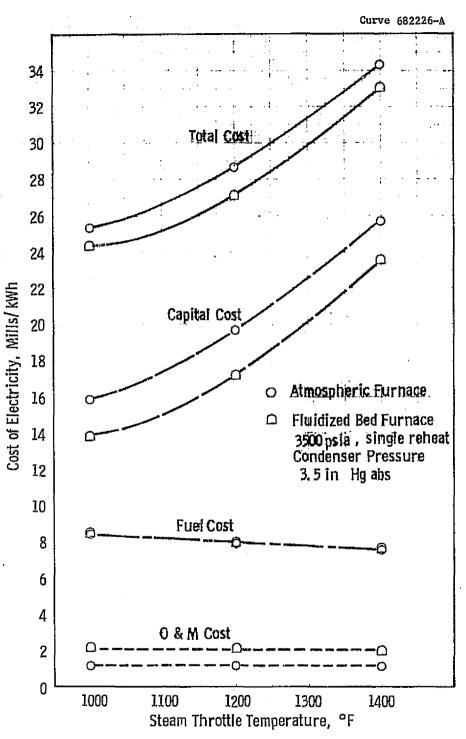
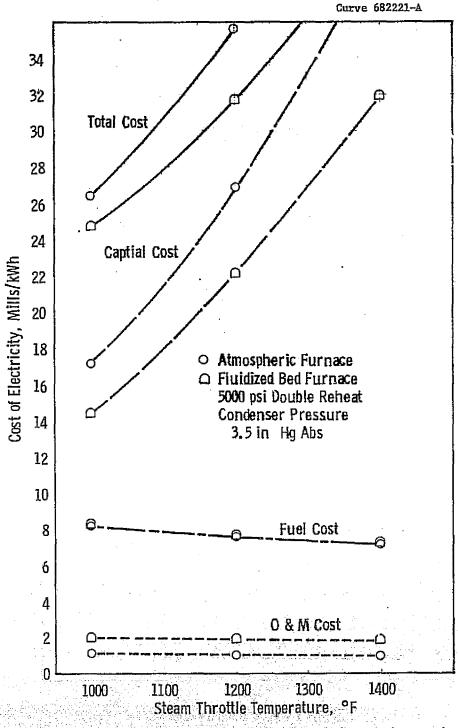
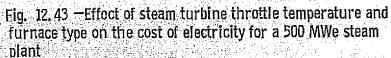




Fig. 12.42 —Effect of steam turbine throttle temperature and furnace type on the cost of electricity from a 500 MWe steam plant

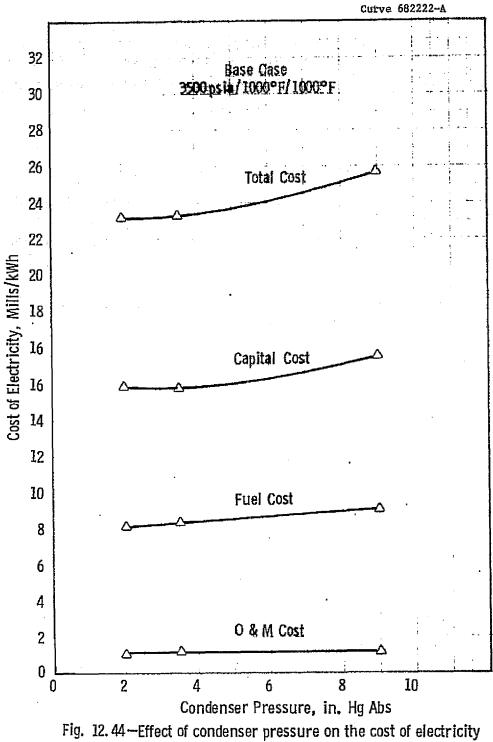

34.472 and 24.132 MPa (5000 and 3500 psi) pressure levels. The fluidized bed plant has a lower capital cost, as would be expected, but the total cost of electricity is essentially the same as the 811°K (1000°F) level. This is because of a higher operating and maintenance cost for the fluidized bed plant, which is due to the greater dolomite usage required when the sulfur cleanup is done at bigh temperature in the fluidized bed, as compared to the lower temperature of a stack-gas scrubber.

Figure 12.44 shows the effect of condenser pressure on energy cost. The contribution of fuel cost increases nearly linearly with increasing pressure, as might be expected. The capital cost, on the other hand, depends upon the condenser temperature (defined by the condenser pressure), the ambient temperature, and the assumed cooling method. As described in Section 2 of this report, two ambient conditions were used in the study: ISO and 5% day. For the results shown on Figure 12.44, wet cooling towers were used with the ISO and 5% day ambients producing 6.754 kPa (2 in Hg) abs and 11.819 kPa (3.5 in Hg) abs condenser back pressure, respectively. The 30.392 kPa (9 in Hg) abs condenser back pressure was produced by the use of dry cooling towers working in a 5% day ambient.

As can be seen from Figure 12.44, the capital cost decreases as the back pressure decreases from 30.392 kPa (9 in Hg) abs to 11.819 kPa (3.5 in Hg) abs. This is due primarily to the lower cost of wet cooling towers compared to that of dry cooling towers.

If wet cooling towers were used to produce a 6.754 kPa (2 in Hg) abs back pressure for a 5% day their cost would be excessive. Accordingly, the ISO conditions were assumed for this back pressure, and the result was a very small decrease in capital cost. Thus, for the assumed conditions, the cost of electricity decreases with decreasing condenser pressure, but below 11.819 kPa (3.5 in Hg) abs the improvement is small and the cost of electricity may actually increase.

Figure 12.45 shows the effect of plant size on electrical energy cost. From a nominal level of 500 to 900 MWe the total cost decreases

from a 500 MWe steam plant with an atmospheric furnace

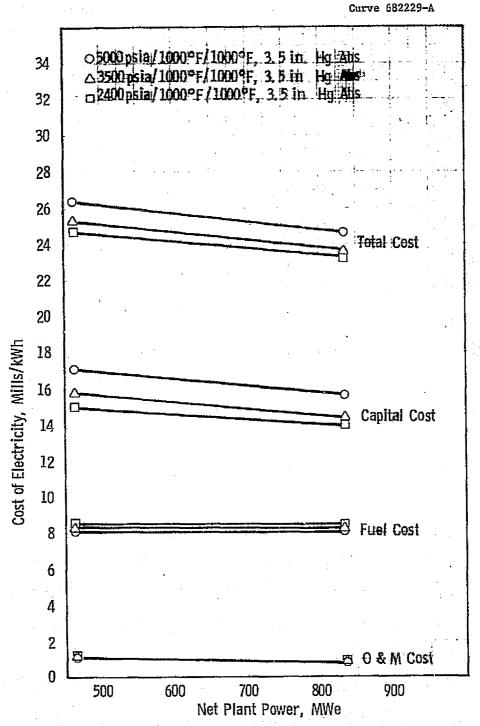


Fig. 12.45 —Effect of plant size and steam turbine throttle condition on the cost of electricity from a steam plant with an atmospheric furnace

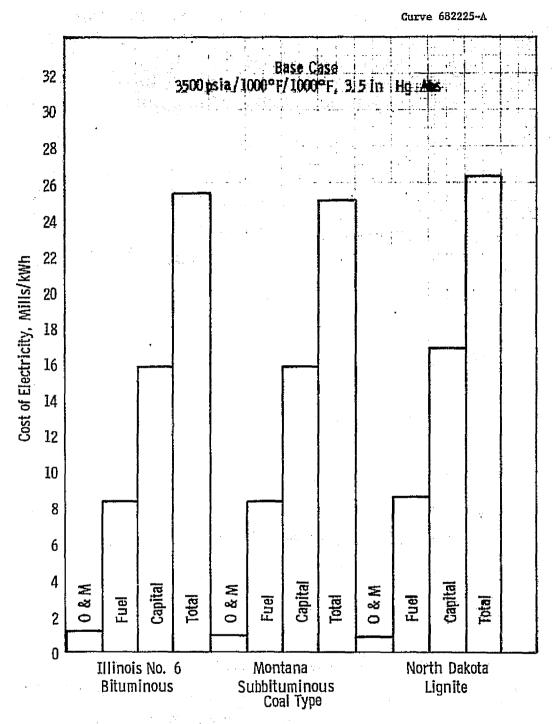


Fig. 12.46—Effect of coal type on the cost of electricity for a 500 MWe steam plant with an atmospheric furnace

approximately 0.278 mill/MJ (1 mill/kWh). Most of this reduction is due to a reduction in capital cost; the contribution due to fuel cost reduction is negligible.

Figure 12.46 shows the effect of changing coal on energy cost. Montana coal produces slightly lower electrical energy cost than does Illinois No. 6 coal, due primarily to the reduction in dolomite required because of the lower sulfur content. In the case of North Dakota lignite the effect of the smaller amount of sulfur is overwhelmed by the still higher moisture content which lowers the boiler efficiency. In addition, the capital cost for North Dakota lignite is higher, due to the increased costs of handling the very moist coal. Thus, compared to Illinois No. 6 coal, the use of Montana coal reduces the cost of electricity by approximately 0.11 mill/MJ (0.4 mill/kWh), while the use of North Dakota lignite increases the cost by approximately 0.19 mill/MJ (0.7 mill/kWh).

Figure 12.47 shows the effect of various combinations of throttle and reheat steam temperatures as a function of the average temperature. In general it can be said that no significant advantages are to be gained from using throttle and reheat temperatures that are different. At the 1033°K (1400°F) level, however, a reduction in the number of reheats reduces the total cost of electricity (because of a substantial reduction in capital cost), even though the fuel cost is increased due to a lower efficiency (see Figure 12.10).

12.6.2 Pressurized Boiler-Gasifier System

Figures 12.48 to 12.50 show the cost of electricity of the pressurized boiler-gasifier system plant as a function of main steam flow for gas turbine inlet temperatures of 1144°K (1600°F), 1367°K (2000°F), and 1644°K (2500°F), respectively. Also shown are the components of the total cost broken into capital, fuel, and 0&M cost, as was done for the atmospheric furnace systems.

For the largest steam flow rate corresponding to near stochiometric fuel/air ratio, these three curves are cross-plotted in Figure 12.51 to show energy cost as a function of gas turbine inlet

12-12],

Curve 682212-A

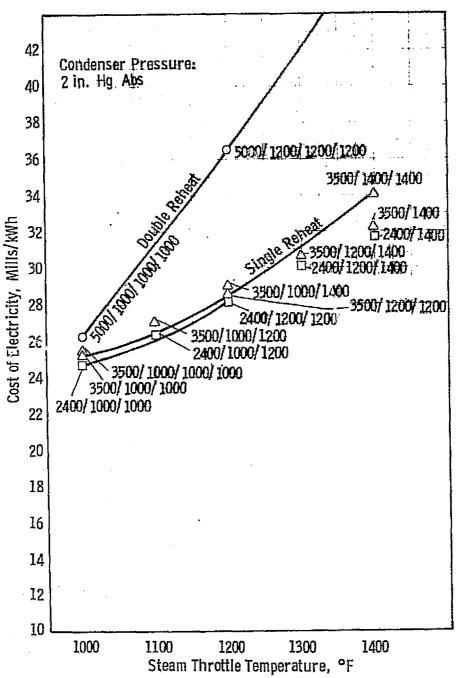


Fig. 12.47 —Effect of steam turbine throttle conditions on the cost of electricity for a 500 MWe steam plant with an atmospheric furnace

Curve 682205-A

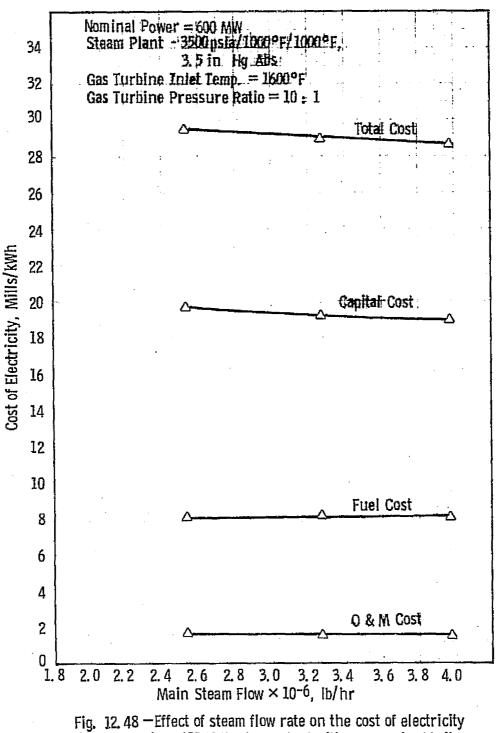


Fig. 12.48 —Effect of steam flow rate on the cost of electricity from a nominal 600 MWe steam plant with pressurized boilergasifier system

Curve 682406-A

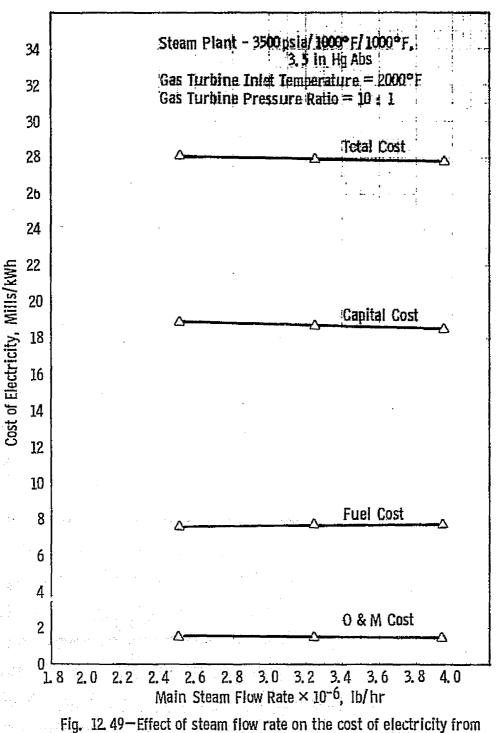


Fig. 12. 49—Effect of steam flow rate on the cost of electricity from a nominal 600 MWe steam plant with a pressurized boiler-gasifier system

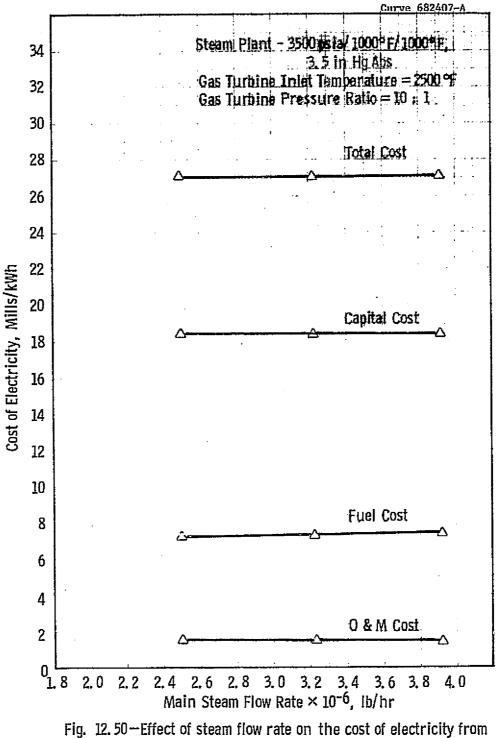


Fig. 12.50—Effect of steam flow rate on the cost of electricity from a nominal 600 MWe steam plant with a pressurized boiler-gasifier system

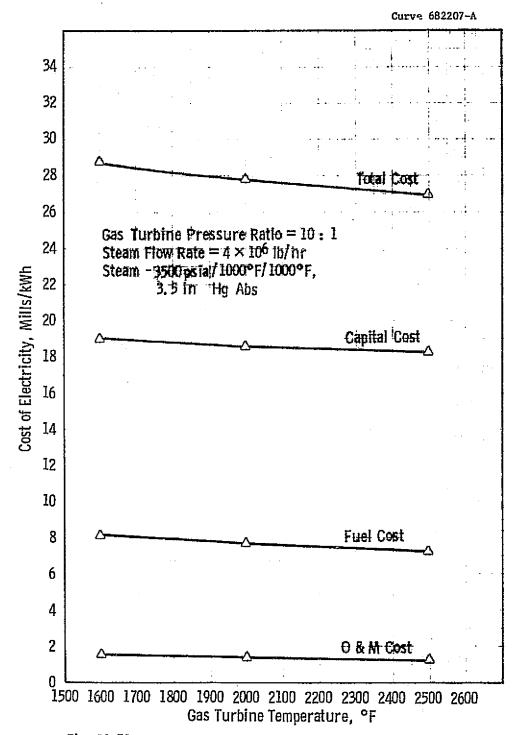


Fig. 12.51 —Effect of gas turbine inlet temperature on the cost of electricity from a nominal 600 MWe steam plant with a pressurized boiler-gasifier system

temperature. Both the capital and fuel costs decrease with increasing gas turbine temperature so that the lowest cost of electricity [approximately 7.5 mills/MJ (27 mills/kWh)] occurs at 1644°K (2500°F). This compares to the lowest energy cost of approximately 6.9 mills/MJ (25 mills/kWh) for the atmospheric furnace systems. The higher cost is due to the higher capital cost, of which a major factor is the cost of the coal gasifier subsystem.

Figure 12.52 shows the effect of condenser pressure on electrical energy cost. As would be expected, because the bulk of the power is produced by the steam plant, the increase in cost with increasing condenser pressure is similar to the result found for the atmospheric furnace system.

Figure 12.53 shows the effect of coal type. For this system the use of Illinois No. 6 bituminous coal, which has the highest sulfur content, results in the highest cost. This is primarily due to the considerably larger quantity of dolomite required for sulfur removal in the high-temperature gasifier than in the atmospheric stack-gas cleanup subsystem used with the atmospheric furnace system.

Figure 12.54 shows the effect of improved steam conditions. Because the steam plant costs dominate the gas turbine plant costs, as the steam conditions improve, the cost of electrical energy rises in a manner similar to that of the atmospheric furnace system.

12.6.3 Pressurized Fluidized Bed Boiler System

Figure 12.55 to 12.57 show the cost of electrical energy and a function of main steam flow rate for gas turbine inlet temperatures of 1144°K (1600°F), 1200°K (1700°F), and 1255°K (1800°F). These three curves are comparable to Figures 12.48 to 12.50 for the pressurized boiler-gasifier system. Figure 12.58 is a companion curve to Figure 12.51 but is plotted only up to a gas turbine temperature of 1255°K (1800°F) since the desulfurization reaction requirements limits this. Even so, at 1255°K (1800°F), the cost of electricity is approximately

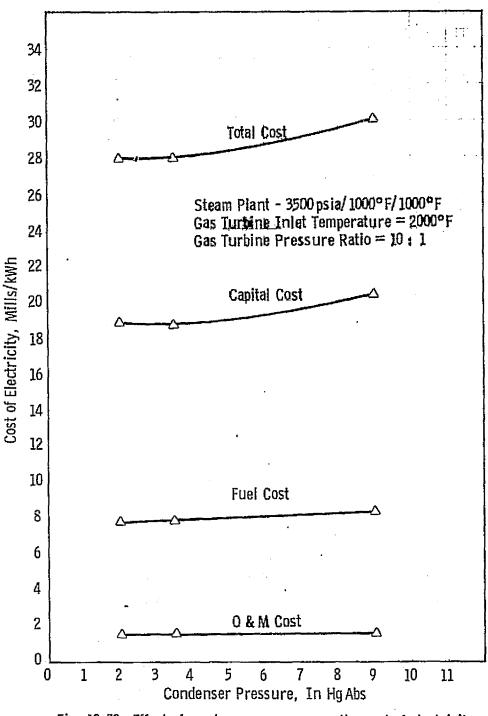


Fig. 12.52—Effect of condenser pressure on the cost of electricity from a nominal 600 MWe steam plant with a pressurized boilergasifier system

Curve 682228-A

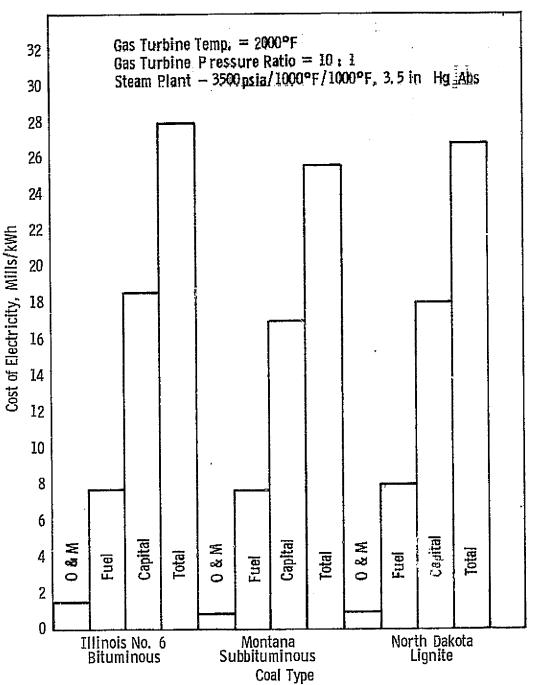
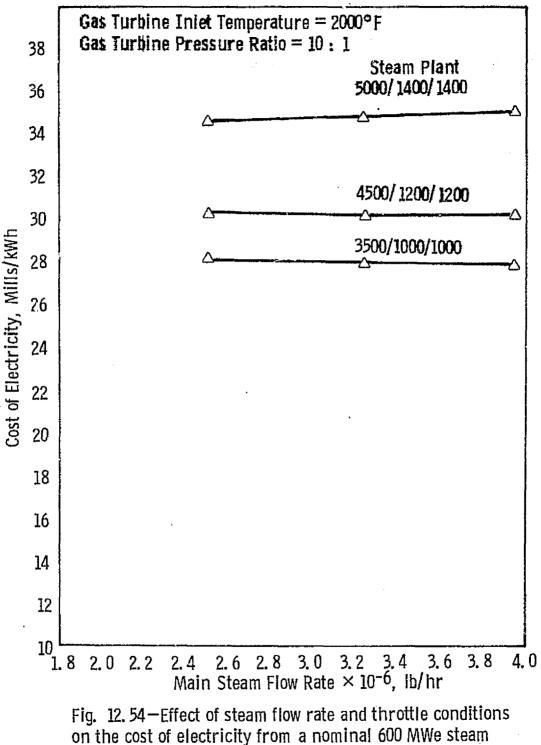



Fig. 12.53—Effect of coal type on the cost of electricity from a nominal 600 MWe steam plant with a pressurized boiler gasifier system

Curve 682411-A

plant with a pressurized boiler-gasifier system

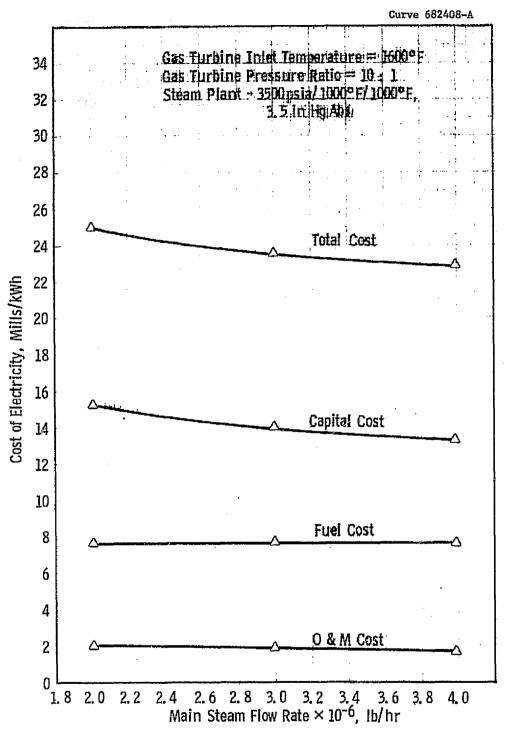


Fig. 12.55-Effect of steam flow rate on the cost of electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

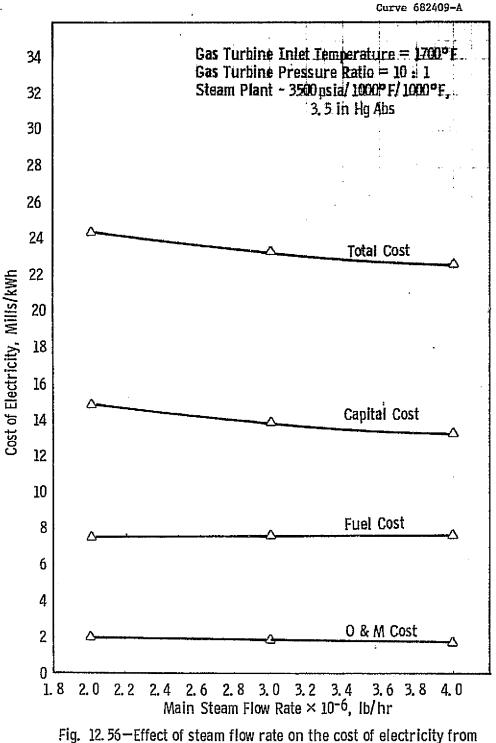


Fig. 12.55—Effect of steam flow rate on the cost of electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boi/er

222

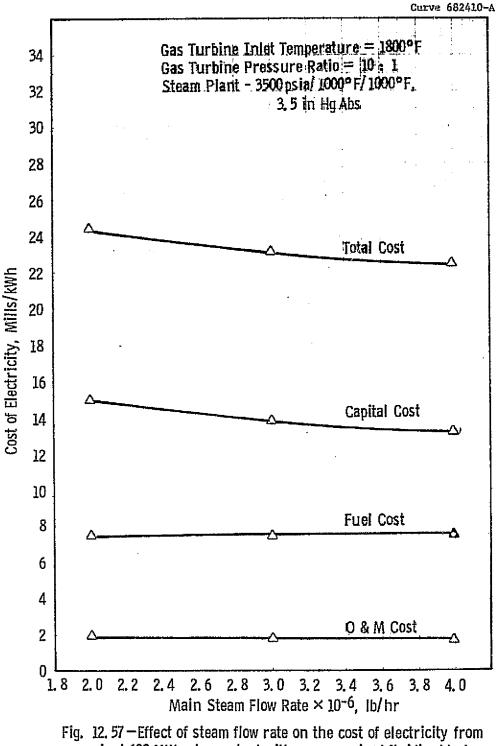


Fig. 12, 57 – Effect of steam flow rate on the cost of electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

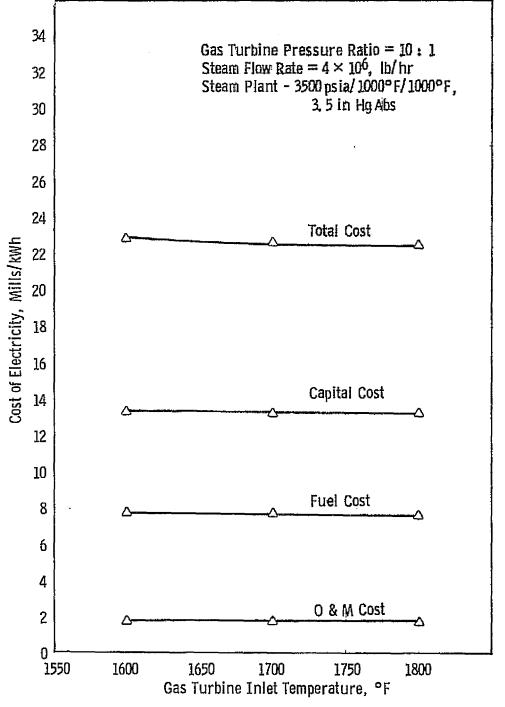


Fig. 12.58—Effect of gas turbine inlet temperature on the cost of electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

6.3 mills/MJ (22.5 mills/kWh). The cost of electricity for the atmospheric plant is 6.9 mills/MJ (25 mills/kWh); for the atmospheric fluidized bed plant it is 6.6 mills/MJ (24 mills/kWh); and for the pressurized boiler-gasifier plant it is 7.5 mills/MJ (27 mills/kWh). The pressurized fluidized bed boiler system has the lowest energy cost of the three steam systems investigated.

Figure 12.59 shows the same cost trend with condenser backpressure as was found for the other two systems.

Figure 12.60 again shows the higher cost of electricity associated with Illinois No. 6 coal due to the higher dolomite use required by the high-temperature desulfurization process.

Finally, Figure 12.61 shows the cost of electrical energy increasing with an increasing steam temperature and pressure.

12.6.4 Effect of Other Changes on the Cost of Electricity

Standard values of cost factors such as labor rate, contingency, escalation rate, interest during construction, fixed charges, fuel cost, and capacity factor have been used to calculate the above electrical energy costs. Variations in these cost factors were also investigated for each of the parametric points. For each of the base cases, the relationship between each of these factors and electrical energy cost given in Tables 12.18, 12.22, and 12.26, is displayed graphically in Figures 12.62 through 12.70.

A summary of the economic results for each parametric point was calculated and printed by the computer. These results are shown in Tables 12.29 through 12.31. The major components summations in Table 12.29 include material prices from the following subaccounts:

Subaccount

•	Steam turbine-generator and	
	feed string	11.1, 13.1
٠	Steam boiler	10.1
٠	Steam piping	11.3

12-135

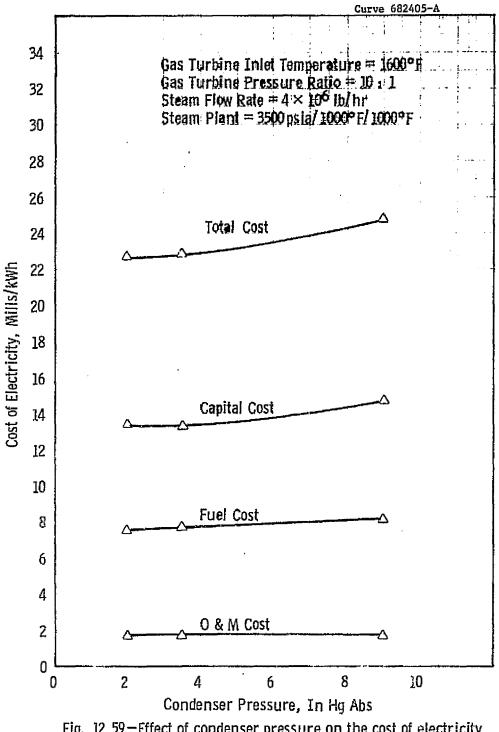


Fig. 12.59-Effect of condenser pressure on the cost of electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

12-136

Curve 682227-A

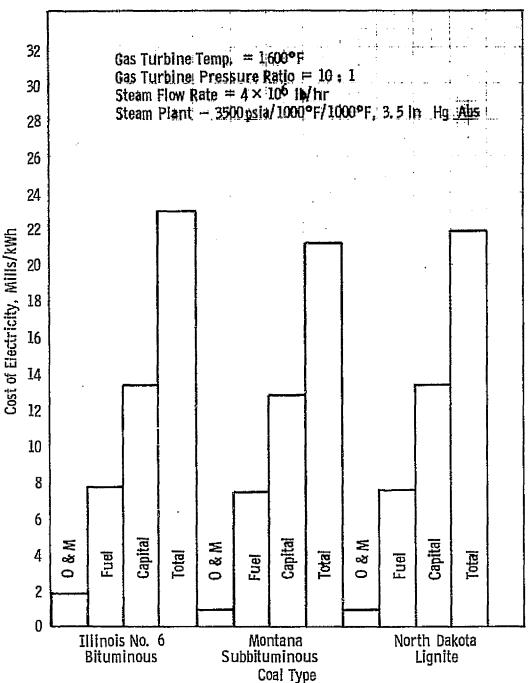
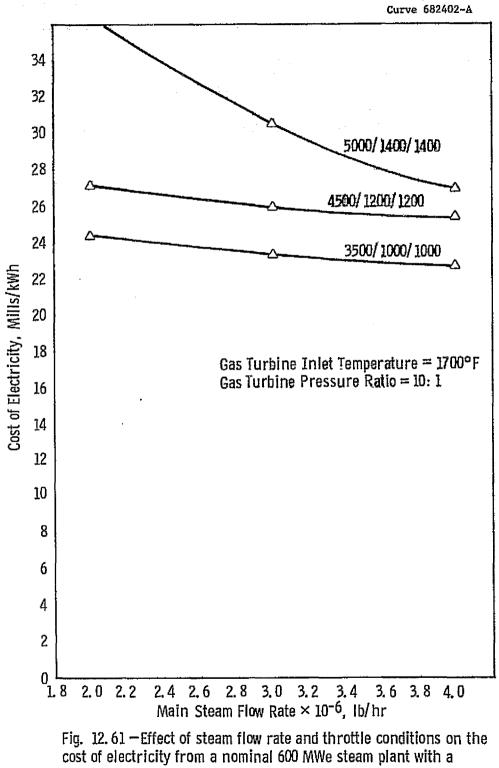



Fig. 12.60 —Effect of coal type on the cost of electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

pressurized fluidized bed boiler

12-138

Curve 682224-A

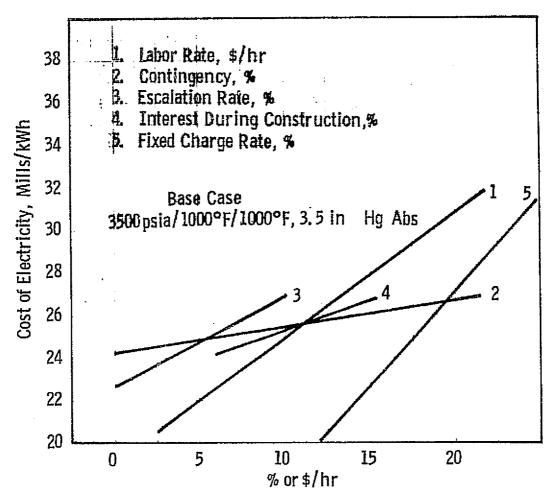
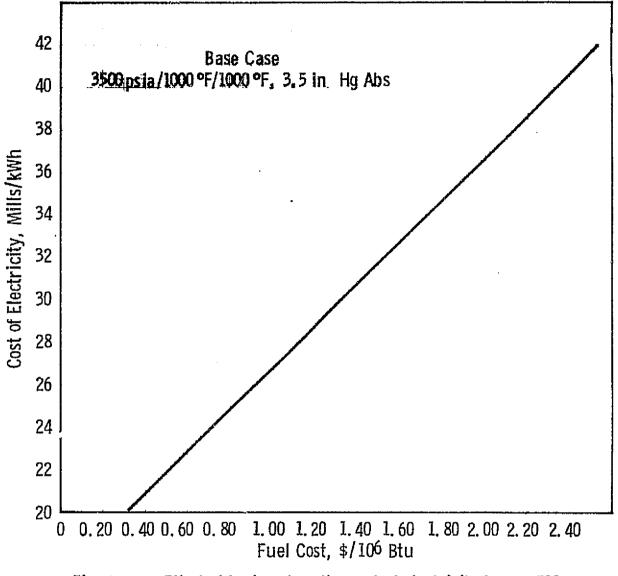
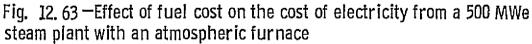
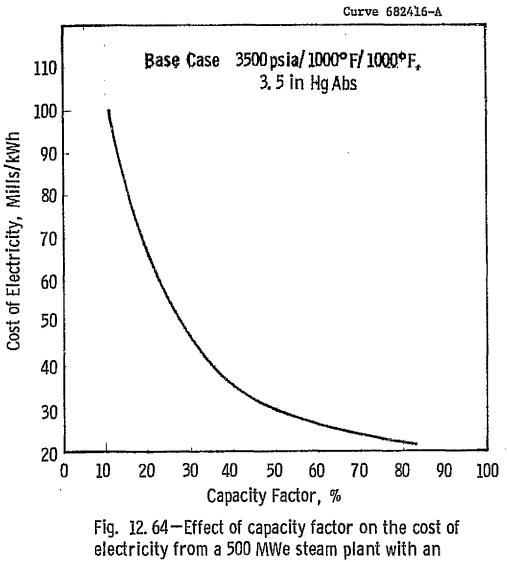
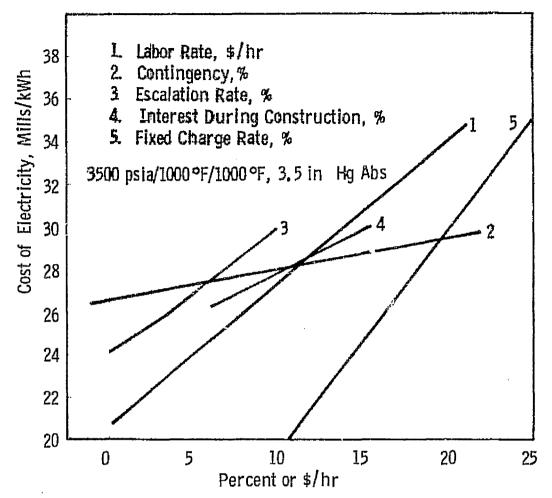
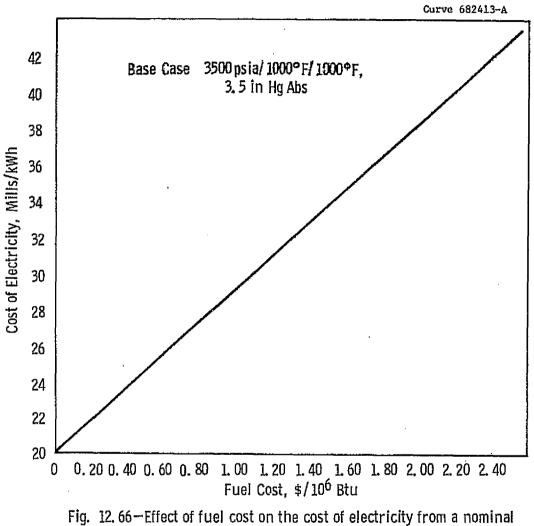





Fig. 12. 62—Effect of labor, indirect and fixed costs on the cost of electricity from a 500 MWe steam plant with an atmospheric furnace



12-140


0

atmospheric furnace

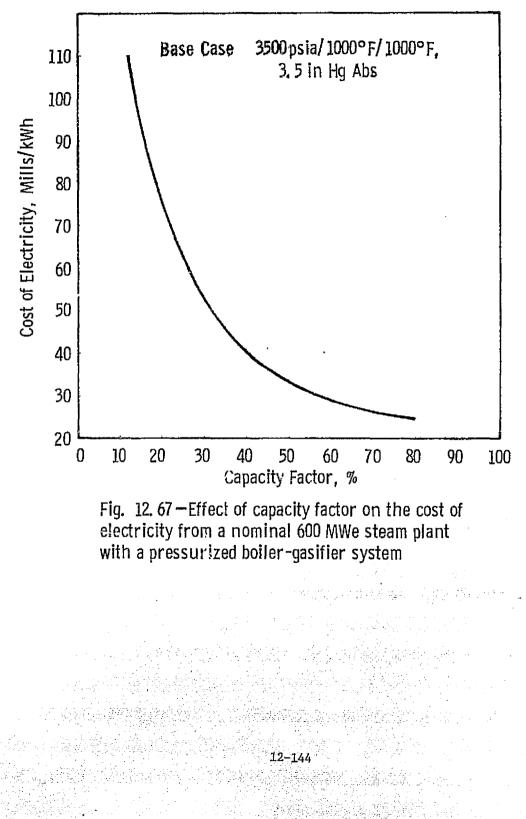

С

Fig. 12.65—Effect of labor, indirect and fixed costs on the cost of electricity from a nominal 600 MWe steam plant with a pressurized boiler-gasifier system

600 MWe steam plant with a pressurized boiler-gasifier system

Curve 682415-A

Curve 682412-A

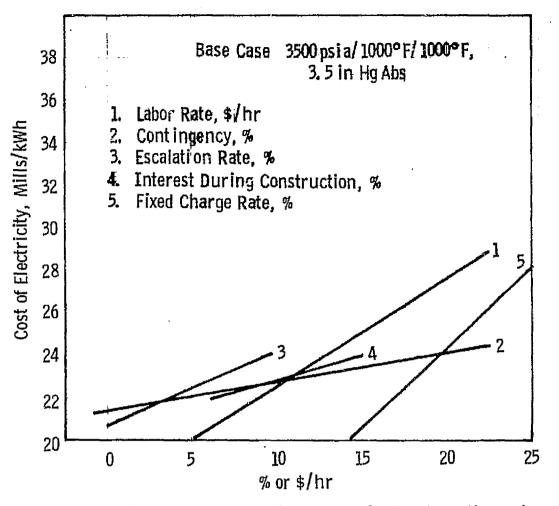
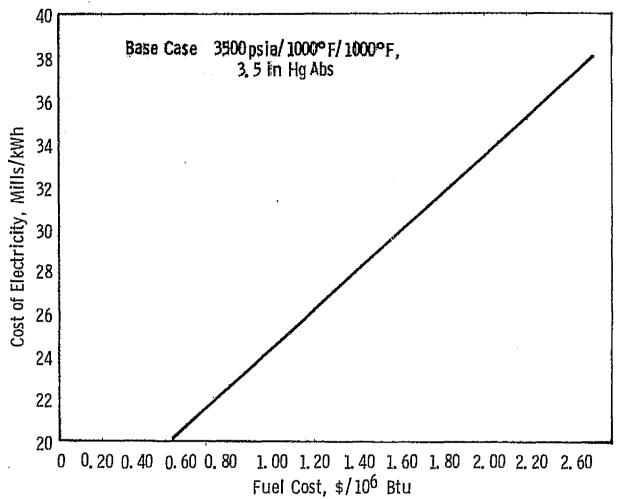
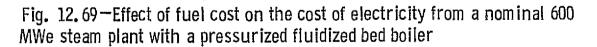
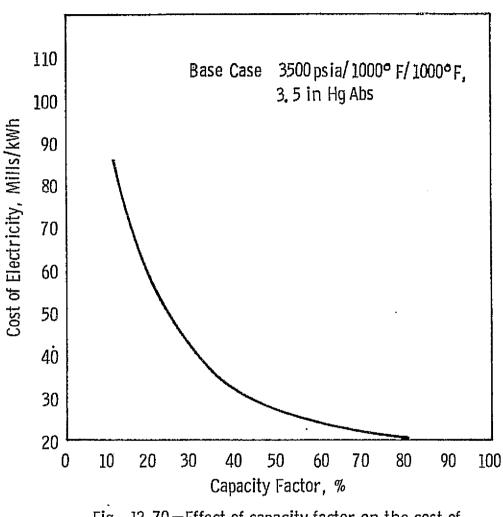





Fig. 12.68 —Effect of labor, indirect or fixed costs on the cost electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

Curve 682414-A

Curve 682401-A

Fig. 12.70—Effect of capacity factor on the cost of electricity from a nominal 600 MWe steam plant with a pressurized fluidized bed boiler

Table 12.29 - ADVANCED STEAM CYCLE NITH ATM BEILER SUMHARY FLANT RESULTS

	PARAMETRIC POINT	1	Z	3	4	5	ទ	7	8
	TOTAL CAPITAL COST , MS P STM TURB-GEN & FEED STPING , MS L STEAM 30TLER , MS A STEAM PIPING , MS	733.11 126.561 139.237 .000	729.50 126.561 170.267 .000	740.57 126.561 130.257 .000	252.42 26.732 22.667 .000	251.47 19.112 23.367 .000	212.22 19.112 24.000 .000	396•32 67•467 37•467 •000	395.39 65.847 38.367 .000
12-148	E TOT HAJOR COMPONENT COST **/KWE S BALANCE OF PLANT COST **/KWE U STTE LABOR L TOTAL DIRECT COST **/KWE PROF & DWNER COSTS **/KWE S CONTINGENCY COST **/KWE R ESCALATION COST **/KWE A TOTAL CAPITALIZATION **/KWE C COST OF ELEC-FUEL */ILLS/KWE D COST OF ELEC-FUEL */ILLS/KWE D COST OF ELEC-FUEL */ILLS/KWE W TOTAL COST OF ELEC-WILLS/KWE W TOTAL COST OF ELEC-WILLS/KWE COE D+B CAP. FACTOR *HILLS/KWE COE 1.2XCAP. COST *MILLS/KWE COE 1.2XCAP. COST *MILLS/KWE	$\begin{array}{c} 226\\ +853\\ +953\\ +109\\ +226\\ +855\\ +398\\ +585\\ +585\\ +585\\ +585\\ +585\\ +585\\ +585\\ +585\\ +585\\ +585\\ +586\\ +585\\ +586\\ +585\\ +586\\ +586\\ +285\\ +586\\ $	498.751 108.716 197.203 784.671 35.474	495.355 125.428 198.756 810.039 96.266		$\begin{array}{r} 42 \cdot 479\\ 91 \cdot 506\\ 107 \cdot 159\\ 87 \cdot 258\\ 286 \cdot 501\\ 22 \cdot 882\\ 22 \cdot 882\\ 22 \cdot 882\\ 22 \cdot 882\\ 17 \cdot 143\\ 542 \cdot 8864\\ 1 \cdot 152\\ 542 \cdot 8864\\ 1 \cdot 152\\ 31 \cdot 584\\ 23 \cdot 870\\ 25 \cdot 3399\\ 25 \cdot 3399\\ 23 \cdot 595\end{array}$	92-648 88-159 63-903 244-710 32-590 19-577 19-577 64-880	$\begin{array}{c} 104 & + 9340\\ 2255 & + 6590\\ 1207 & + 0155\\ $	224-167 127-336 109-751 461-254 55-973 36-900 35-900 121-174
<u>.</u>	PARAMETRIC POINT	9	10	11	12	13	14	15	16
	TOTAL CAPITAL COST *** P STM TURB-GEN & FEED STRING *** STEAM JOILER *** A STEAM PIPING ****	325.76 65.847	593-93	587.46 122.347 59.857 .000	472.31 122.347 35.500 .000	355.55 56.854 33.267 .000	381.38 70.954 33.267 .000	239.12 18.289 20.567 .000	236.54 16.778 21.067 .008
	U SITE LABOR STANDE L TOTAL DIRECT COST SKNE T INDIRECT COSTS SKNE SNAE	235,499 106,727 73,321 385,546 37,394	395.513 160.740 143.398 699.651 73.133	389.04 89.04 89.07 89.07 89.07 89.07 80.00		193.969 115.072 103.292 412.333 52.679	53.726 35.565 35.565 116.744 134.476	38352289316003 882289316003 108214237660096213 108214277660096213 2712437660096213 2712437650996213 271245516680144339077555 515680144339077745540 81544339077745540 81544339077745540 8154433907745540	37 81 4559 1855 1855 1855 252 2488 252 24886 251 252 24886 251 252 24886 252 24886 2555 252 252 252 252 252 252 2

والمتحمية ومرتجات المراجع والمراجع والمتراجع والمراجع

e on the second s

TABLE 12.29 ADVANCED STEAM CYCLE WITH ATM BDILER SUMMARY PLANT RESULTS

TOD	7¢	***	
Con	tin	ued	

		_							
	PARAMETRIC POINT	17	18	19	20	21	22	23	24
	TOTAL CAPITAL COST +HS T SIH TURS-JEN & FEED SIRING +MS L STEAM BOILER +MS 4 STEAM PIPING +MS N	56.354 33.267 .030	318,52 52,793 24,367 000	232.82 17.044 19.367 .000	231.06 15.525 19.867 .000	252.36 19.137 21.167 .000	289.98 38.449 22.367 .000	288.11 36.525 22.967 .000	252.57 36.525 23.800 .000
	Y ESCALAION COSI , **KWE E INT DURING CONSTRUCTION ,*/KWE A TOTAL CAPITALIZATION ,*/KWE COST OF ELEC-CAPITAL.HILLS/KWE O COST OF ELEC-FUEL .HILLS/KWE W TOTAL COST OF ELEC.HILLS/KWE N COE D.5 CAP.FACTOR .HILLS/KWE COE D.8 CAP.FACTOR .HILLS/KWE COE 1.2XCAP.COST .HILLS/KWE COE 1.2XCAP.COST .HILLS/KWE	4 J 3: 547 52 . 174 32 . 764 32 . 764 108. 515 759. 850 759. 850 7. 632 1.118 32. 8037 7. 632 34. 353 34. 353 34. 353	3.9.5.579 46.5899 29.58799 112.5879 112.599 675.924 21.6996 30.7120 25.6595 30.7120 25.6595 30.7120 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.6595 37.255 25.5575 37.2557575 37.25575757575757575757575757575757575757	211.178 71.478 82.4434 505.88493 51.155 29.950 22.207 28.865 25.855	32267282442887736655988 3336728244288773665598 26410-0199572867536655988 26410-0199572864535 26410-0199572864535 26410-0199572864535 35028645398 35028545398 35028545398 35028545398 35028545398 35028545398 35028545398 35028545398 35028545398 35028545398 35028545398 35028545398 35028545398 3502854545398 35028545454 35028545454 35028545454 35028545454 35028545454 35028545454 35028545454 35028545454 35028545454 35028545454 35028545454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 3502855454 35028554554554555555555555555555555555555	23.525 23.525 79.675	335.144 44.405 26.811 26.811	117.269	5459992 2549992 295459992 29585 442995 29585 442955 29585 415550 13965 444 78550 13965 41772 8004495 139693 2978 2978 29782 139555 37995 2972 2000 100555 34956995 2000 100555 34956995 2000 100555 34956995 2000 100555 34956995 2000 100555 34956995 2000 100555 34956995 2000 100555 34956995 2000 100555 34956995 2000 100555 3495695 2000 100555 3495695 2000 100555 3495695 2000 100555 3495695 2000 100555 3495695 2000 100555 3495695 2000 100555 3495695 2000 100555 3495695 2000 100555 3495695 2000 100555 34955 2000 2000 2000 2000 2000 2000 2000 2
- L									
-149	PARAMETRIC POINT	25	25	27		29	30	31	32
-149	COE (CONTINGENCY=D) +HILLS/KWE COE (ESCALATION=D) +HILLS/KWE **RAMETRIC POINT TOTAL CAPITAL COST +M\$ SIM TURB-SEN & CED STRING +M\$ L STEAM BOILER +M\$ SIEAM PIPING +M\$	25 378.95 70.056 25.567 .030	25 378.16 59.437 26.167 .000	-000	263.43 27.556 21.567 .000	295 28 33 144 22 967 300			32 345.27 52.444 24.967 .000
-149	A SIEAR PIPERG ,MS N R TOT MAJOR COMPONENT COST, MS E TOT MAJOR COMPONENT COST, S/KWE S 3ALANCE OF PLANT COST ,S/KWE U SITE LABOR ,S/KWE U TOTAL DIRECT COSTS ,S/KWE T INDIRECT COSTS ,S/KWE B CONTINGENCY COST ,S/KWE B CONTINGENCY COST ,S/KWE C INT DURING CONSTRUCTION ,S/KWE A TOTAL CAPITALIZATION ,S/KWE A TOTAL CAPITALIZATION ,S/KWE C COST OF ELEC-FWEL ,MILLS/KWE D COST OF ELEC-FWEL ,MILLS/KWE D COST OF ELEC-FWEL ,MILLS/KWE N TOTAL COST OF ELEC ,MILLS/KWE N COE D.S CAP. FACTOR ,MILLS/KWE COE D.S CAP. FACTOR ,MILLS/KWE	.010	•000	98.837 211.741 123.525 75.934 71.300 38.726 32.904 32.904	263.43 27.555 21.567 .000 43.223 106.124 110.636 85.372 302.193 302.193 24.175 24.775	295 -28 33-144 22,967 -500 51.111 131.586 87.755 343.031 44.755 27.442 27.442	324.88 45.756 23.967 000 72.723 156.440 129.063 377.573 377.573 30.236 30.236	288.99 49.756 26.300 .000 75.056 160.946 339.879 35.723 27.190 27.190 88.156	345.27 52.444 24.967 .000 77.411

ADVANCED STEAM CYCLE WITH ATH BOILER CUMMARY FLANT RESULTS Table 12.29 Continued

and a spine - a point of the point of the constant and the constant of the second of the point of the second beau of the constant of the const

	PARAMETRIC POINT	33	34	35	36	37	38	39	40
-	TOTAL CAPITAL COST .MS P STM TURB-GEN 8 FEED STRING .MS L STEAM BOILER .MS A STEAM PIPINC .MS	311.54 52.444 27.300 .060	?32.92 15.525 21.157 .000	245.14 15.525 23.957 .000	203.02 15.525 22.490 .000	223.29 15.525 24.567 .000	231.99 15.525 27.157 .000	223.00 17.068 16.567 .000	220-18 15-449 16-957 -000
12-150	N TOT MAJOR COMPONENT COST .MS TOT MAJOR COMPONENT COST .S/KWE S BALANCE OF PLANI COST .S/KWE U SITE LABOR	8D.344 172.3393 123.64 366.137 366.137 229.451 295.6937 955.6937 1993.635 1098.451 1993.635 21.131 1.976 3.5.131 1.9777 3.5.131 2.97777 2.6.8315 3.5.311 2.9.435 3.5.311 2.9.455 3.5.435 3.5.311 2.9.455 3.5.435 3.5.5.455 3.5.5.455 3.5.5.555 3.5.5555 3.5.55555 3.5.55555555	36.627 78.797 112.2.1510 2.71.0377 71.10377 71.10377 71.10377 71.10377 71.10377 71.10377 71.10377 71.10377 71.10377 71.10377 72.2.10377 11.10377 72.2.10777 72.2.10777 72.2.10777 72.2.107777 72.2.107777 72.2.107777 72.2.1077777 72.2.1077777 72.2.10777777777777777777777777777777777	$\begin{array}{c} 39.492\\ 95.350\\ 105.642\\ 86.895\\ 277.597\\ 44.316\\ 22.207\\ 775.103\\ 527.929\\ 16.5633\\ 6.5633\\ 6.527\\ 27.929\\ 16.5633\\ 912\\ 26.256\\ 23.1207\\ 27.973\\ 25.213\\ 23.479\\ 25.23\\ 23.479\end{array}$	37.5533 81.5553 56.54.3383 55.54.3383 55.54.3383 55.54.3383 55.54.3383 55.54.3383 55.54.3385 55.54.3345 55.54.54.54.54.54.545 57.54.54.54.54.54.545 57.54.54.54.54.54.54.54.54.54.54.54.54.54.	10.092 95.093 101.64 252.573 252.573 252.576 20.5779 20.576 20.576 20.576 20.576 20.576 20.576 20.5779 20.576 20.5779 20.576 20.577 20.576 20.576 20.577 20.576 20.5777 20.5777 20.5777 20.5777 20.5777 20.57777 20.57777 20.577777 20.5777777777777777777777777777777777777	73.512 267.726 35.961 21.418 21.418 71.045 81.835	33.635 72.659 103.079 203.079 203.082 39.824 20.306 68.530 15.2268 1.157 24.538 1.157 24.538 1.5726 2.2488 1.157 24.538 2.5326 2.5226 2.5226 2.5226 2.5226 2.5226 2.5226 2.5226 2.5226 2.5226 2.5226 2.5226 2.526 2.5266 2.5666 2.5666 2.5666 2.56666 2.56666 2.5666666666666666666666666666666666666	$\begin{array}{c} 32 \ .416 \\ 7 \ .161 \\ 1 \ .9595 \\ 250 \ .195 \\ 250 \ .195 \\ 250 \ .195 \\ 270 \ .016 \\ 577 \ .551 \\ 475 \ .5034 \\ 1 \ .5034 \\ 1 \ .777 \\ 21 \ .207 \\ 29 \ .237 \\ 29 \ .237 \\ 29 \ .237 \\ 29 \ .237 \\ 20 \ .237 \ .23$
ö	PARAHETRIC POINT	41.	42	43	44	45	46	47	48
<u></u>	TOTAL CAPITAL COST ,MS P SIM TURB-BEN B FEED STRING ,MS L STEAM JOILER ,MS A STEAM PIPING ,MS	193.37 15.449 21.630 .000	241.79 19.161 18.157 .000	201.17 38.268 20.157 .000	279.38 36.649 20.757 .000	245.29 36.649 22.300 .000	300.67 40.261 22.157 .000	334-90 52-468 23-567 -000	296.33 52.468 24.100 .000
	Y TOT MAJOR COMPONENT COST .MS E TOT MAJOR COMPONENT COST. \$/KWE S BALANCE OF PLANT COST .\$/KWE U SITE LA90R . */KWE T INDIRECT COSTS .*/KWE PROF B OWNER COSTS .*/KWE 3 CONTINGENCY COST .*/KWE E INT DURING CONSTRUCTION .*/KWE A TOTAL CAPITALIZATION .*/KWE COST OF ELEC-FUEL .MILS/KWE D COST OF ELEC-FUEL .MILS/KWE D COST OF ELEC-FUEL .MILS/KWE COE D.5 CAP. FACTOR .HILS/KWE COE 1.2XFUEL COST .MILS/KWE COE (CONTINGENCY=I) .MILS/KWE	493366421 795.2486421 1725.2486421 195.24883471 195.27473883720 705.27473883720 708.227473883720 708.45583623249 82.4454583624 22.227473883720 708.45583623249 82.44584582 22.22498822 22.558462 22.2249882 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.248888 22.2488888 22.2488888 22.2488888 22.24888888 22.2488888 22.2488888 22.2488888 22.24888888 22.24888888 22.248888888 22.2488888888 22.248888888888888888888888888888888888	32980 32980 32980 32980 32980 32980 32980 32990 32990 3555581 3290 3555581 3290 3555581 3290 3555581 3290 3555581 3290 3555581 3290 3555581 3290 3555581 3290 3555581 3290 3555581 3290 3555581 3555581 35669 35755581 35669 35755581 35755581 35755581 35755581 35755581 35755581 35755581 35755581 35755581 35755581 35755581 35755581 35755581 3575555581 35755555581 3575555555555581 35755555581 35755555555555555555555555555555555555	114.780	11334 1233 1233 1233 1233 1234 1234 1234 1234 1234 1235 1237 1255 12555 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255	95,481 65,488 287,560 33,399 23,005 23,005 75,237	131.756 86.788 355.011 44.262 28.401 28.401 93.505	91.212 391.306 46.518 31.304 31.304 102.600	$\begin{array}{c} 76.568\\ 164.391\\ 117.668\\ 68.839\\ 350.299\\ 350.108\\ 28.024\\ 90.508\\ 104.254\\ 90.508\\ 104.254\\ 90.508\\ 104.254\\ 290.508\\ 104.254\\ 20.800\\ 390.508\\ 104.254\\ 390.508\\ 104.254\\ 390.508\\ 104.254\\ 20.616\\ 20.616\\ 20.61$

. The first second second is the second sec

.....

ADVANCED STEAH CYCLE WITH ATH BOILER SUNHARY PLANT RESULTS Table 12.29 Continued

	PARAMETRIC POINT	49	50	51	52	53	54	55	56
	PARAMETRIC POINT TOTAL CAPITAL COST +HS STM TUR9-3EN & FED STRINS +45 L STEAM BOILER +HS STEAM PIPIND +HS	252.84 27.691 18.967 .800	313.82 48.731 22.067 .000	312.18 47.151 22.567 .000	334.71 50.749 24.160 .000	412.81 32.942 38.060 .000	413.01 31.293 39.160 .000	609.72 82.567 62.960 .000	611.73 80.923 64.450 .000
-	R TOT HAJOR COMPONENT COST .MS E TOT HAJOR COMPONENT COST.S.K.WE S 3ALANCE OF PLANT COST .S.K.WE U SITE LABOR .FLANT COST .S.K.WE I TOTAL JIRCT COST .S.K.WE PROF 8 JANER COSTS .S.K.WE E INTIMEENCY COST .S.K.WE E INT DURING CONSTRUCTION .S.K.WE A TOTAL CAPITALIZATION .S.K.WE K COST OF ELEC-CAPITAL .HILLS.K.WE O COST OF ELEC-CAPITAL .HILLS.K.WE W TOTAL COST OF ELEC .MILLS.K.WE COE 1.2XEVEL .MILLS.K.WE COE 1.2XEVEL COST .MILLS.K.WE COE 1.2XEVEL .S.K.WE COE 1.2XEVEL .S.K.WE COE 1.2XEVEL .S.K.WE COE 1.2XEVEL .MILLS.K.WE COE 1.2XEVEL COST .MILLS.K.WE	$\begin{array}{c} 45.643\\ 1000.6225\\ 290.2300\\ 23.217\\ 77.5590\\ 23.217\\ 77.5590\\ 37.543\\ 10.23\\ 23.217\\ 77.5590\\ 37.33\\ 17.2449\\ 1.1431\\ 23.14603\\ 23.1603\\ 23.1603\\ 23.555\\ 23.552\\ 23.552\\ 23.552\\ 23.552\\ 23.552\\ 23.552\\ 23.552\\ 23.5$	$\begin{array}{c} 123, 0763\\ 229, 0763\\ 354, 0524\\ 239, 1988\\ 299, 1988\\ 299, 1988\\ 299, 1988\\ 299, 1988\\ 299, 1988\\ 299, 1988\\ 1105, 7062\\ 521, 3567\\ 1, 5175\\ 521, 3567\\ 1, 5174\\ 30, 107\\ 354, 557\\ 344, 534\\ 28, 777\\ 25, 552\\ \end{array}$	89.418 352.736 45.603 29.319 29.019 95.618	74.909 163.513 91.958 91.958 396.616 899 31.729 31.729 1103.941 730.641 730.641 730.641 730.641 23.942 1.0692 24.3052 35.5622 35.5723 35.57333 35.57533 35.57533 35.57533 35.57533 35.57533 35.57533 3	$\begin{array}{c} \textbf{71} \bullet \textbf{002} \\ \textbf{85} \bullet \textbf{0112} \\ \textbf{91} \bullet \textbf{513} \\ \textbf{91} \bullet \textbf{513} \\ \textbf{73} \bullet \textbf{937} \\ \textbf{750} \bullet \textbf{703} \\ \textbf{750} \bullet \textbf{703} \\ \textbf{750} \bullet \textbf{7751} \\ \textbf{200} \bullet \textbf{1374} \\ \textbf{756} \bullet \textbf{270} \\ \textbf{788} \bullet \textbf{270} \\ \textbf{290} $	91.548 74.496 250.427 37.993 28.034 21.391 75.839	46 895 30 116 32 155 111 641 130 965	111.368 92.587 377.627 47.219 30.210
	PARAMETRIC POINT	5 7	59	59	60	51	62	53	64
	TOTAL CAPITAL COST	891.49 142.354 101.260	281.38 139.863 28.960	394.60 29.777 34.460 .030	393.90 28.258 35.360 000	495.21 53.789 39.860 .000	494.21 67.046 40.860 .000	385-58 28-292 32-56D -000	381.11 26.763 33.360 .000
	<pre>NILLING COMPONENT CDST .MS TOT HAJOR COMPONENT CDST .S/KHE S ALLANCE OF PLANT COST .S/KHE U SITE LABOR .S/KHE L TOTAL JIRECT COST .S/KHE L TOTAL JIRECT COST .S/KHE NOF 8 OWNER COST .S/KHE COST S .S/KHE COST OF COST .S/KHE COST .S/KHE COST OF CLECCAPITAL .MILLS/KHE COST OF CLECCAPITAL .MILLS/KHE COST OF CLECCAPITAL .MILLS/KHE COE D.S CAP. FACTOR .MILLS/KHE COE I.2XCAP. COST .MILLS/KHE COE (CONTINGENCY=D) .MILLS/KHE COE (CONTINGENCY=D) .MILLS/KHE COE (CONTINGENCY=D) .MILLS/KHE COE I.2XCAP. COST .MILLS/KHE COE (CONTINGENCY=D) .MILL</pre>	+811 41,423 51,508 35,127	230.823 234.799 146.01 186.07 186.07 186.07 93.958 479 60.558 43.958 10.134 10.9 55.025 33.226 77.217 .8223 11.255 33.226 11.255 33.226 11.255 33.226 11.255 33.226 11.255 33.226 11.255 33.226 11.255 33.226 11.255 35.035 35.055 35.055 35.055 35.055 35.050	54.237 76.9355 90.8405 233.177 1.9.134 235.416 19.134 20.4354 54.5455555555	518125 518125 5250456456 525045645685 51815645685 51815645685 5191545685 5191545685 5191545685 5191545685 519154568 51915456 5191555 5191555 5191555 5191555 5191555 5191555 5191555 51915555 51915555 51915555 51915555 51915555 51915555 51915555 519155555 51915555 519155555 519155555555	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	129-074	$\begin{array}{c} 50 & * & 9732 \\ 72 & * & 9732 \\ 975 & * & 7233 \\ 18 & * & 95254 \\ 335 & * & 86584 \\ 16 & * & 8 & 169582 \\ 16 & * & 8 & 819582 \\ 16 & * & 8 & 819582 \\ 832 & * & 169582 \\ 832 & * & 169582 \\ 832 & * & 169582 \\ 832 & * & 169582 \\ 832 & * & 169582 \\ 832 & * & 169582 \\ 832 & * & 169582 \\ 832 & * & 169582 \\ 833 & * $	35.515 18.4579 69.891 81.989 14.412 8.322 .870 23.611 27.939

. The second device second s

12-151

ntaniaa mperima anggo na mbahanggo na mga manggo panggo pang pang manana ana ang mga na ang mga pang pangana na

TABLE 12.29 ADVANCED STEAM CYCLE WITH ATH BOILER SUMHARY FLANT RESULTS Continued

	PARAHETRIC POINT	65	66	67	E8	69	70	71	72
	TOTAL CAPITAL COST .MS P STH TURB-GEN & FEED STRING .MS L STEAM GOLLER .HS A STEAM PIPING .MS	469.55 52.895 37.550 .000	453,99 51,151 39,560 .000	583.12 88.095 42.350 .000	588.55 86.351 43.960 .000	359.71 28.954 27.950 .000	367.75 27.211 28.550 .000	430.25 53.442 33.960 .000	429•28 51•823 34•860 •000
12-152	P TOT HAJOR COMPONENT COST .MS TOT HAJOR COMPONENT COST .K/KWE S BALANCE OF PLANT COST .\$/KWE U SITE LABOR .\$/KWE U SITE LABOR .\$/KWE PROF & OWNER COST .\$/KWE PROF & OWNER COSTS .\$/KWE PROF & OWNER COSTS .\$/KWE I INDIRECT COST .\$/KWE E INT OURING CONSTRUCTION .\$/KWE A TOTAL CAPITALIZATION .\$/KWE COST OF ELEC-FUEL .MILLS/KWE D COST OF ELEC-FUEL .MILLS/KWE D COST OF ELEC-FUEL .MILLS/KWE D COST OF ELEC-FUEL .MILLS/KWE COE 0.5 CAP. FACTOR .MILLS/KWE COE 1.2XCAP. COST .#ILLS/KWE COE 1.2XCAP. COST .#ILLS/KWE COE 1.2XCAP. COST .#ILLS/KWE COE I.2XCAP. OST .#ILLS/KWE	90.455 178.477 174.253 37.4355 37.435 37.4555 37.455 37.455 37.455 37.455 37.455 37.4557 37.4577 37.4577 37.4577 37.4577 37.45777 37.4577777777777777777777777777777777777	\$9.711 197.3006 177.45904 284.9045 284.9045 224.3006 554.5904 554.8005 554.8005 554.8005 554.8005 554.8005 177.8248 229.753 227.80952 23.052	$\begin{array}{c} 131 & 055 \\ 155 & 441 \\ 128 & 964 \\ 866 & 903 \\ 3866 & 251 \\ 293 & 302 \\ 41 & 251 \\ 293 & 304 \\ 31 & 223 \\ 107 & 627 \\ 226 & 133 \\ 314 & 236 \\ 266 & 133 \\ 314 & 733 \\ 314 & 734 \\ 256 & 256 \\ 266 & 133 \\ 314 & 734 \\ 256 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 256 \\ 266 & 266 \\ $	$\begin{array}{c} 1 \ 3 \ 0 \ . 3 \ 1 \ 1 \ 1 \ 5 \ 5 \ 6 \ 0 \ 3 \ 6 \ 6 \ 5 \ 0 \ 3 \ 6 \ 6 \ 5 \ 0 \ 1 \ 1 \ 5 \ 0 \ 3 \ 6 \ 6 \ 5 \ 0 \ 1 \ 1 \ 3 \ 1 \ 6 \ 1 \ 1 \ 1 \ 1 \ 0 \ 2 \ 1 \ 1 \ 3 \ 1 \ 1 \ 1 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 0 \ 2 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1$	56.814 58.9151 57.3210 57.3210 57.3210 57.3210 57.43.9461 57.43.40193 22.4.39461 57.43.40193 23.4.5030 23.55314 22.2.5030 23.55314 22.2.5030 23.55520 23.55520 23.55520 23.55520 23.55520 23.55520 23.55520 23.55520 23.55520 24.55200 24.55200 25.552000 25.552000 25.552000 25.552000000000000000000000000000000000	55.771 662.5476 672.4949 672.4949 672.4949 672.4949 679.4049 679.4049 679.4049 79.06449 79.06449 79.06449 413.9499 23.5199 205.10332 205.10332 205.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.4357 205.104 252.43577 252.43577 252.43577 252.435777 252.435777777777777777777777777777777777777	$\begin{array}{c} 87.402\\ 104.609\\ 76.942\\ 8.942$	86.304 72.336 262.416 36.892 20.993 22.415 78.789
-	PARAMETRIC POINT	73	74	75	76	77	78	79	80
·	TOTAL CAPITAL COST .MS P STM TURB-GEN & FEED STRING .MS L SIEAM JOILSR .MS A STEAM PIPING .MS	.000 .010 .020	00 000 030 030	.000 .000 .000 .000	000 000 000 000	00 000 000 000	00 000 000 000	00 000 000 000	-00 -000 -000 -000
	TOT MAJOR COMPONENT COST ,MS E TOT MAJOR COMPONENT COST, S/KHE S BALANCE OF PLANT COST ,S/KHE U SITE LABOR , S/KHE	000 000 000	.000 .000 .000 .000	.000 .000 .000 .000	000 000 000 000	000 000 000 000 000	000 000 000 000 000	•000 •000 •000 •000 •000	.000 .000 .000 .000
	S BALANCE OF PLANT LOST \$7KWE U SITE LAGOR \$7KWE TINDTRECT COST \$5/KWE PROF 8 DWNER COSTS \$5/KWE 3 CONTINGENCY COSTS \$5/KWE BESCALATION COST \$5/KWE \$7KWE	000 010 000 000	000 000 000 000	000 000 000 000	000 000 000 000	000 000 000 000	000 000 000 000	•000 •000 •000 •000	000 000 000 000 000
	A TOTAL CAPITALIZATION +5/KWE A TOTAL CAPITALIZATION +5/KWE COST OF ELEC-CAPITAL.HILS/KWE D COST OF ELEC-FUEL +HILS/KWE W TOTAL COST OF ELEC -WILLS/KWE W TOTAL COST OF ELEC	.010 .000 .011 .000 .000 .000 .000 .000	000 000 000 000 000 000	000 000 000 000 000 000	000 000 000 000 000 000 000	200 000 000 000 000 000	000 000 000 000 000 000 000	000 000 000 000 000 000 000	+000 +000 +000 +000 +000 +000 +000
	COE D.B CAP. FACTOR HILLS/KWE COE 1.2XCAP. COST HILLS/KWE COE 1.2XFUEL COST HILLS/KWE COE 1CONTINGENCY=J) HILLS/KWE COE (ESCALATION=D) HILLS/KWE	•000 •000 •000 •000	000 000 000 000 000 000	000 000 000 000	.000 .000 .000 .000	000 000 000 000 000	020 000 000 000	-000 -000 -000 -000 -000	-000 -000 -000 -000 -000

1997 and the state of the second s

a construction and the second s

بالمستحد تعلاج بالاستعاد الم

TABLE 12.30 - PRESSURIZED BOILER ADVANCES STOAM DESTEN SURHARY PLANT RESULTS

;	PARAMETRIC POINT	1	2	3	đ	5	6	7	8
1	TOTAL CAPITAL COST *M3 P STEAM TURE-GEN-FFED STPING *M5 GAS TUP3INE JENERATOR *M3 A PRESSURIZED BOLLER *M3 N STACK JAS COOLER *M5	403.72 17.367 14.000 8.710 3.300	352.57 24.925 13.500 8.060 3.400	301-56 12.004 13.300 7.410 4.100	430.75 17.367 14.300 8.190 3.400	353.67 14.925 14.000 7.670 3.400	332.44 11.984 13.800 7.020 3.900	434.07 17.591 16.000 7.540 3.300	356.10 15.025 15.800 7.150 3.500
	TOT HAJOR COMPONENT COST ,MS TOT HAJOR COMPONENT COST ,KNE TOT HAJOR COMPONENT COST ,KNE SALANCE DF PLANT COST ,KNE USITE LABOR , SKNE TOTAL DIRECT COSTS ,KNE TROF & OWNTR COSTS ,KNE TROF & OWNTR COSTS ,KNE TROF & OWNTR COSTS ,KNE SCALATION COST ,KNE TOTAL CAPITALIZATION ,KNE TOTAL CAPITALIZATION ,KNE COST OF ELEC-CAPITAL MILLS/KNE COST OF ELEC-CORMAIN MILLS/KNE COE D.S CAP. FACTOR MILLS/KNE COE 1.2XCAP. COST ,MILLS/KNE COE (CONTINGENCY=C) ,MILLS/KNE	4.30641 4.007034 2.40234 2.40236 3.1641 4.00704 2.40236 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.5154 1.51541.5154 1.51541.5154 1.51541.5154 1.51541.51541.5154 1.51541.51541.51541.5154 1.51541.51541.51541.51541.51541.51541.51541.51541.51541.51541.51541.515541.515555555555555555555555555555555555	38.7383 97789712 88.7383 89.7385 89.7385 89.7385 89.75785 89.75785 80.757785 80.757785 80.7577777777777777777777777777777777777	35.8347 762.57167 943.57167 943.57167 943.5255 945.5255 945.5555 945.5555 945.5555 945.55555 945.55555 945.55555 945.55555 945.555555 945.555555 945.555555 945.5555555 945.5555555 945.5555555 945.55555555 945.5555555555	43.2572 640.2522 640.1320 894.1320 894.4522 245.522 954.23382 954.23382 954.23382 150385 150382 150382 150382 150382 150385 1505	91.346 301.359 46.587 24.109 26.448 95.975	94.783 312.847 48.340 25.028 26.896 96.035 112.870	$\begin{array}{c} 49 & +431\\ 67 & +1236\\ 910 & -592\\ 299 & +012\\ 299 & +012\\ 299 & +012\\ 236 & +957\\ 976 & +968\\ 105 & +2973\\ 236 & +968\\ 115 & +2973\\ 236 & +368\\ 115 & +2973\\ 236 & +368\\ 115 & +2973\\ 234 & +368\\ 234 & +368\\ 234 & +368\\ 253 & +3$	$\begin{array}{c} 41 \\ -3752 \\ 1 \\ -372 \\ -372 \\ -372 \\ -372 \\ -372 \\ -372 \\ -372 \\ -372 \\ -372 \\ -375 \\$
;	PARAMETRIC POINT	3	10	11	12	13	14	15	16
ļ	TOTAL CAPITAL COST ,MS STEAM TUR3-GENATICS STRING ,MS GAS TURBINE GENERATOR ,MS A PRESSURIZES JOLLER ,MS N STACK GAS COOLER ,MS	304.00 12.203 15.400 5.630 3.600	400.71 17.591 16.000 7.153 3.600	352.37 15.143 15.700 6.763 3.300	295.93 12.293 15.400 6.379 3.590	420.63 17.219 17.500 9.719 4.500	372.88 14.775 16.800 8.069 4.500	321.18 11.960 16.500 7.410 4.400	425.38 17.242 18.50C 8.190 4.000
	TOT MAJOR COMPONENT COST ,MS TOT MAJOR COMPONENT COST, \$/KWE S GALANCE OF FLANT COST ,\$/KWE U SITE LABOR T INDIRECT COST ,\$/KWE PROF 8 OWNER COSTS ,\$/KWE D TOTAL DIRECT COST ,\$/KWE PROF 8 OWNER COSTS ,\$/KWE S CONTINGENCY COST ,\$/KWE S CONTINGENCY COST ,\$/KWE T INDURING CONSTRUCTION ,\$/KWE T INTOURING CONSTRUCTION ,\$/KWE T INTOURING CONSTRUCTION ,\$/KWE C SCALATION COST ,\$/KWE C COST OF ELEC-FVEL ,MILLS/KWE D COST OF ELEC-FVEL ,MILLS/KWE D COST OF ELEC-FVEL ,MILLS/KWE C COE 1.2XCAP. COST ,HILLS/KWE C COE 1.2XCAP. COST ,HILLS/KWE C COE 1.5CALATION COST ,HILLS/KWE	36.354 321.996 49.401 25.600 27.533 98.125		1954 9737127893350 973812730789350 973812730789350 973812730789350 1951235759585117759586811 9739932755759586811 97385511759588 10568230 105642350 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10564550 10565500 10565500 10565500 10565500 1056550000000000	79065791552852905579877778 482779984765290557987777 1935252902579925797778 3357084729977778 2357092220977778 3357092220977778 3357092220977778 335709777278 335709777278 335709777278 35709777278 35709777278 35709777278 35709777278 35709777278 35709777278 35709777278 35709777278 35709777278 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 35707778 3570977778 3570977778 3570977778 3570977778 3570977778 3570977778 35709777778 3570977778 3570977778 3570977778 35709777778 35709777778 35709777778 35709777778 35709777778 35709777778 3570977778 35709777778 35709777778 35709777778 35709777778 35709777778 357077778 357077778 357077778 357077778 357077778 357077778 357077778 357077778 3570777778 357077777778 357077777777777777777777777777777777777	9273999271373633511 9273573247374731473747348 13857324713774734827859562 2953637747344859567 11851774734827859567 115117744827859567 295363774734827859567 295363774734827859567 295363774734827859567 295363774754487859567 295363774754487859567 295363774754487859567 295363774754487859567 295363774754487859567 295363747547754775487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 2953774754487859567 295377475448785957 2953774754877574757475487859567 295377475448785957 295377475448785957 295377475448785957 295377475448775747548785957 295377475448785957 295377475448785957 29537747548775747574757475747575757 29537747754877574757477574757575757 295377777477548775777777777777777777777777	$\begin{array}{c} 3571\\ +2234558472\\ +734598472\\ +8398572\\ +83985572\\ +83985572\\ +83985572\\ +83985572\\ +83985572\\ +8398572\\ +8398572\\ +84752\\ +84752\\ +84752\\ +84752\\ +84752\\ +84752\\ +84752\\ +85$	89.919 239.808 45.859 23.985 26.054 93.710 110.481	$\begin{array}{c} 932\\ 52438\\ 138649980\\ 289382225\\ 43864999148\\ 299148\\ 43299148\\ 299148\\ 299148\\ 29555524\\ 1151\\ 51888\\ 719249\\ 1737924\\ 23349297\\ 311988\\ 2333334\\ 2555\\ 2334\\ 2555\\ 2748\\ 2748\\ 2555\\ 2748\\ 2748\\ 2755\\ 2748\\ 2755\\ 2748\\ 2755\\ 2748\\ 2755\\ 2748\\ 2755\\ 2$

a service and the president of the service of the s

وردا المعرو تمرد فتعمر الماد

an and a standard was and and a solar considers the weather the state of the state

and the second secon

12-153

ORIGINAL PAGE IS

Table 12.30 Continued -PRESSURIZED BBILER ADVANCED STEAM SYSTEM - EMMARY PLANT RESULTS

12-154

+ =- +-

PARANETRIC POINT	17	19	13	20	21	22	23	24
PARANETRIC POINT TOTAL CAPITAL COST STEAM TUR3-GEN-TEED STRING .45 L GAS TURBINE CINERATOR .45 A PESSURIZED JOLLER .45 N STACK GAS COOLER .45	376.16 14.775 17.700 7.570 4.400	223.0E 11.950 17.200 7.020 4.300	432.63 17.357 70.820 7.549 3.400	387-36 14-902 20-200 7-150 5-400	329.86 12.034 13.208 5.630 4.300	432.26 17.491 21.200 7.150 3.400	382.00 14.925 20.400 6.750 3.500	327.83 12.084 19.500 6.370 4.100
U SITE LABOR * * KHE L TOTAL DIRECT COST * * KKE T INDIRECT COSTS * * KKE PROF & OWNER COSTS * * / KHE 3 CONTINGENCY COST * * / KKE R ESCALATION COST * * / KKE INT SURING CONSTRUCTION * / KKE A TOTAL CAPTIAL IZATION * / KKEF	$\begin{array}{c} 44.545\\ 545.77\\ 703.6774\\ 9714.915\\ $	4350711155427654 4350711155427654 4850711155427654 485071555555 4844 4757585555555 4544 4757585555 4557558555 4557558555 4557558555 4557558555 4557558555 4557558555 4557558555 4557558555 4557558555 4557558555 4557558555 4557555555 4557555555 45575555555 45575555555 455755555555	33.195 207.343 43.960 22.907 25.933 95.814	47.65579 74.55579 396.4913 295.8270 556.7470 256.7491 227.7491 227.7720 227.7720 227.7720 227.7720 227.7720 227.7720 227.7720 227.7720 227.7720 227.77200 227.77200 227.77200 227.7720000000000	31.107 303.648 45.465 24.292 26.427 95.103 112.243	$\begin{array}{c} 49.241\\ 68.400\\ 135.559\\ 87.812\\ 292.771\\ 25.22\\ 244.794\\ 23.423\\ 97.271\\ 160\\ 10.495\\ 18.531\\ 18.531\\ 18.531\\ 24.532\\ 24.972\\ 24.972\\ 24.972\\ 34.225\\ 24.972\\ 34.225\\ 24.972\\ 24.825\\ $	$\begin{array}{c} 45 & 587 \\ 72 & 417 \\ 136 & 367 \\ 85 & 377 \\ 299 & 217 \\ 299 & 217 \\ 25 & 3936 \\ 745 & 8337 \\ 25 & 3936 \\ 745 & 8337 \\ 144 & 562 \\ 199 & 147 \\ 366 & 199 \\ 1 & 5749 \\ 1 & 5749 \\ 25 & 147 \\ 356 & 495 \\ 25 & 147 \\ 356 & 3395 \\ 25 & 4576 \\ 25 $	$\begin{array}{c} 42 & 0.54 \\ 7 & 9 & 384 \\ 92 & 807 \\ 317 & 340 \\ 92 & 807 \\ 319 & 5631 \\ 24 & 762 \\ 25 & 868 \\ 95 & 547 \\ 13 & 708 \\ 518 & 8283 \\ 19 & 5632 \\ 13 & 5628 \\ 19 & 5628 \\ 19 & 5628 \\ 25 & 494 \\ 310 & 5655 \\ 25 & 494 \\ 310 & 5655 \\ 25 & 494 \\ \end{array}$
PARAMETRIC POINT	25	26	27	28	29	30	31	32
TOTAL CAPITAL COST ,MS P STEAN TURE-GEN-FELD STRING ,MS L GAS TURBING BENERATOR ,MS A PRESSURIZED BOILER ,MS Y STACK BAS COOLER ,MB	16 953 26 200 5 190 4 700	405.89 14.551 74.400 7.670 4.530	352.33 11.8FC 23.300 7.620 4.300	470.33 16.993 29.633 7.540 4.730	419.99 14.551 23.500 7.020 4.500	364.92 11.860 25.900 0.630 4.400	474-84 17.118 31.400 6.630 4.500	423.44 14.775 29.500 6.760 4.500
U SITE LABOR •\$/KWE L TOTAL DIRECT COST •\$/KWE T INDIRECT COSTS •\$/KWE PRCF B ONNER COSTS •\$/KWE B CONTINGENCY COST •\$/KWE R ESCALATION COST •\$/KWE F TNT DUBTING CONSTRUCTION •\$/KWE		51.121 72.744 126.6554 42.6554 23.3254 25.4489 1578.3555 1578.3555	\$\$ \$\$ 765.13911 \$ 765.13913 \$ 755.15454 \$ 255.15454 \$ 255.2542 \$ 255.2542 \$ 255.2545 \$ 255.2545 \$ 255.2545 \$ 255.2545 \$ 1091.0.15 \$ 581 \$ 581 \$ 585.1545\$ \$ 585.1545\$ \$ 585.155\$ \$ 5	346553 346553 346553 346553 42832 4408433 440844454545 4408454545656565665666	5714 5774 1255 - 55726 455 - 55726 5755 - 55726 5755 - 5577865 254 - 51265 254	\$ 994 \$ 90,4075 \$ 80,4075 \$ 80,4075 \$ 80,4075 \$ 80,4075 \$ 92,4075 \$ 93,4075 \$ 92,4077 \$ 93,4075 \$ 92,4077 \$ 92,4077 \$ 92,4077 \$ 92,4077 \$ 93,4077 \$ 92,4077 \$ 911,4077 \$ 177	59.748 7420 127.634 286.373 43.003 26.004 26.004 916.404 916.404 916.404 916.404 917.404 917.404 918.4040000000000000000000000000000000000	55,535 78,091 127,522 85,679 291,351 23,308 26,16C 96,279 114,6220 595,214 18,822 7,425

مانند. والافتار عن الحد الذي المانية (معرفة الله عن المالية) . ومعالم المركز من الم المحاد المركز

and all a

1.5

Table 12.30 Continued -PRESSURIZED BOILER ADVANCED STEAM SYSTEM FUMMARY PLANT RESULTS

PARAMITRIC POINT	33	34	35	35	37	38	39	40
TOTAL CAPITAL COST	367.59 11,953 27.900 6.379 4.900	476.71 17.531 31.900 6.990 4.600	423.04 15.025 29.800 5.530 4.500	364.89 12.034 27.600 5.240 4.400	931.96 19.360 19.500 3.190 4.000	383.26 16.768 17.700 7.670 4.400	330.66 13.704 17.200 7.020 4.300	436.19 19.982 18.500 8.190 4.000
TINDERECTIONSTS SKHE PROF8 OWNER COSTS SKKHE 3 CONTINGENCY COST SKKHE R ESCALATION COST SKKHE E INT OURING CONSTRUCTION SKKHE A TOTAL CAPTAN LAATTON SKKHE	97.405 297.409 44.577	$\begin{array}{c} \mathbf{f} \ 0 \\ 0 \\ 1 \\ 1 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 1 \\ 3 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ $	55.953 92.253 133.453 99.753 15.455 27.239 100.038 521.910 125.565 1.5055 1.5055 1.5055 1.5026 23.49120 25.231 25.231	$\begin{array}{c} 50 & \cdot .329\\ 813 & \cdot .299\\ 813 & \cdot .299\\ 133 & \cdot .597\\ 311 & \cdot .597\\ 311 & \cdot .597\\ 24 & \cdot .810\\ 27 & \cdot .758\\ 115 & \cdot .757\\ 125 & \cdot .675\\ 129 & \cdot .773\\ 125 & \cdot .675\\ 129 & \cdot .753\\ 25 & \cdot .392\\ 333 & \cdot .6553\\ 302 & \cdot .6553\\ 327 & \cdot .368\\ 25 & \cdot .3$	50 5490 50 50 50 50 50 50 50 50 50 50 50 50 50	44 3/3 23 306 25 882 94 647 112 317	$\begin{array}{c} 42, 224\\ 766, 284\\ 786, 9108\\ 9108\\ 945, 3548\\ 237, 9513\\ 2597, 9513\\ 255, 3548\\ 235, 3548\\ 235, 3548\\ 235, 3568\\ 235, 3568\\ 24, 3553\\ 24, 3553\\ 24, 3553\\ 24, 331\\ 255, 3553\\ 24, 331\\ 25, 3553\\ 2$	$\begin{array}{c} 5727\\ 512824\\ 628233\\ 628233\\ 628233\\ 628233\\ 628233\\ 628233\\ 628233\\ 628233\\ 628233\\ 628233\\ 628233\\ 6283332\\ 6283332\\ 6283332\\ 628333332\\ 62833332\\ 62833332\\ 62833332\\ 62833332\\ 6283333332\\ 6283333332\\ 628333332\\ 6283333332\\ 628333332\\ 628333332\\ 6283333332\\ 6283333332\\ 6283333332\\ 6283333332\\ 6283333332\\ 6283333332\\ 6283333332\\ 6283333332\\ 62833333$
PARAHETRIC POINT	41	42	43	44	45	46	47	48
TOTAL CAPITAL CDST *M\$ P STEAM TURB-GEN-FEED STRING *M\$ L GAS TURBING STNERATOR *M\$ A PRESSURIZED BODLER *P\$ N STACK GAS COOLER *M\$	395.85 17.142 17.735 7.670 4.430	331.80 13.953 17.203 7.020 4.300	536.77 55.658 15.500 10.920 4.500	469.93 47.360 17.700 2.830 4.430	399.73 39.189 17.200 8.840 4.300	700.39 100.651 18.500 17.630 4.500	607.58 86.649 17.800 14.950 4.400	507.08 70.679 17.000 12.610 4.300
B CONTINGENCY COSTS +5/KWE B CONTINGENCY COST +5/KWE R ESCALATION COST +5/KWE E INT DURING CONSTRUCTION +5/KWE	91.363 320.291 46.595 25.523 28.231	53.655 327.303 47.764 28.320 100.973 118.894	133-514 94-422 339-521 43-055 27-230 30-750	79.940 118.239	88.487 345.550 45.128 27.724 30.405	86.520 425.544 44.125 34.043 38.872	44 928 34 019 38 248 136 222 162 257	$\begin{array}{c} 101 \\ \bullet .589 \\ \bullet .2987 \\ \bullet .2987 \\ \bullet .2473 \\ \bullet .2553 \\ \bullet .2555 \\ \bullet .255 \\ $

10121

er de cas

12-155

. . .

) The formation of the state of the

antan perintera de terre de terre de la compañía d

Table 12.30 Continued -PREISURIZED BOILER ADVANCED STEAM SYSTEM JUMMARY PLANT REJULTS

en and a second and a second and a second and a second second second second and a second second second second s

and a second second

235

TOTAL CAPITAL COST ,HS 39C.58 346.12 297.26 412.22 356.33 305.85 .00 .00 STEAM TURBACTOR CONFRATOR ,HS 17.242 14.775 11.950 17.242 14.775 11.950 .000 .000 A PRESSURIZED SOLLER ,HS 17.242 14.775 11.950 10.600 10.600 10.600 10.600 .000 .000 .000 A PRESSURIZED SOLLER ,HS 11.000 4.000 4.000 4.000 4.000 4.000 4.000 .000 .000 .000 .000 .000 N STACK CAS COOLER ,HS 4.000 4.400 4.300 4.000 <t< th=""><th>PARAMETRIC PDINT</th><th>43</th><th>50</th><th>51</th><th>52</th><th>53</th><th>54</th><th>55</th><th>56</th></t<>	PARAMETRIC PDINT	43	50	51	52	53	54	55	56
1 1 1 0	 STEAM FURB-GENETEED STRING .Ms GAS TURBINE CENERATOR .Ms A PRESSURIZED BOLLER .Ms 	17.242 10.600 3.130	14.775 10.600 7.670	11.953 10.606 7.320	17.242 10.600 3.190	14.775 15.600 7.370	11.960 10.600 7.020	000 000 000	-000 -000 -000
	T DI MAJOR COMPONINT COST, S/KHE S BALANCE OF PLANT COST +S/KHE U SITE LAGOR + S/KHE L TOTAL DIRECT COST +S/KHE PROF R OHNER COSTS +S/KHE 3 CONTINGENCY COST +S/KHE A TOTAL COST +S/KHE INT DURINS CONSTRUCTION +S/KHE A TOTAL CAPITALIZATION +S/KHE A TOTAL CAPITALIZATION +S/KHE D COST OF LEC-FUEL +MILLS/KHE D COST OF ELEC-FUEL +MILLS/KHE D COST OF ELEC-FUEL +MILLS/KHE N TOTAL COST OF ELEC +MILLS/KHE N TOTAL COST OF FACTOR +MILLS/KHE	55.272 127.3632 79.752 262.416 420.9633 23.617 87.411 104.136 539.2047 17.714 87.413 539.2047 7.714 87.413 25.6024 30.724 82.413 22.413	51217332460 51217332 512173 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 512175 51217	62.609 127.827 93.337 273.82337 273.82337 21.9064 85.919 101.32064 85.919 101.32055 31545.3265 31545.3265 31545.3265 311.640	55.352 137.53293 137.53293 277.5335 277.5335 277.5335 27.53158 27.53158 27.53158 27.53158 292.4392 1102.10725 292.437 292.437 292.437 202.437	532 532 532 532 532 532 532 532	52,711 133,217 86,170 222,098 43,947 22,568 24,546 104,429 566,132 17,897 7,744 993 26,6333 32,002 23,277	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00

12-156

Sec. 10

ÓRIG OF P	Table 12.31 - FLUTDIZED BID BOILER ADVANCE	ED STEAM	1 3 42 5	чянки ¬	LANT RES	ULTS			
82	PARAMETRIC POINT	1	2	3	4	5	6	7	8
ORIGINAL PAGE IS OF POOR QUALITY	TOTAL CAPITAL COST .Ks D STEAH TURB-GEN-TED STRING .MS L GAS TURBINE GENERATOR .MS A FLUIDIZED 300 JOILER .MS N STACK GAS COOLER .MS	316.57 19.339 11.400 32.159 4.100	262.82 14.332 11.300 75.178 4.100	216.07 10.140 11.100 22.522 4.000	304.14 18.339 12.600 27.448 3.900	254 94 14.302 12.400 22.915 3.900	210.34 19.140 12.200 19.970 3.900	3C0.33 18.339 13.100 25.952 3.800	252.43 14.302 13.000 21.897 3.800
GED IS 1 1 12-157	B CUNITNGENCY COST SAME R ESCALATION COST SKWE E INT DURENS CONSTRUCTION SAME	66.008 94.679 239.5079 239.5079 119.5299 119.5299 119.5299 119.5299 119.5299 119.5299 119.5299 119.5299 228.2299 228.5299 228.5359 225.5105	69 676	$\begin{array}{c} 47.862\\ 113.801\\ 73.467\\ 91.071\\ 278.427\\ 45.445\\ 22.24269\\ 74.245\\ 22.24269\\ 75.91\\ 22.2457\\ 77.91\\ 53.737\\ 16.249\\ 22.032\\ 22.975\\ 30.839\\ 22.975\\ 30.839\\ 22.975\\ 30.839\\ 22.975\\ 55.535\\ 25.555\\ 25$	$\begin{array}{c} 62 \cdot 287\\ 87 \cdot 9990\\ 71 \cdot 6742\\ 225 \cdot 5754\\ 128 \cdot 040\\ 611 \cdot 3782\\ 128 \cdot 573\\ 128 \cdot 5754\\ 128 \cdot 5754 \\ 128 \cdot 5754\\ 128 \cdot 5754\\ 128 \cdot 5754\\ 128 \cdot 5754\\ 128 \cdot 5754 \\ 128 \cdot 5754 $	68-678 76-333 239-283 33-930 19-143 19-582 61-035 71-037	65.185 74.026	$\begin{array}{c} 61 \cdot 191 \\ 865 \cdot 865 \\ 707 \\ 225 \cdot 7772 \\ 659 \\ 177 \cdot 7772 \\ 659 \\ 307 \\ 177 \cdot 7772 \\ 659 \\ 307 \\ 177 \\ 7772 \\ 137 \\ 7776 \\ 177 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 226 \\ 8770 \\ 206 \\ 8770 \\ 8770 \\ 206 \\ 8770 \\ 206 \\ 8770 \\ 206 \\ 8770 \\ 206 \\ 8770 \\ 206 \\ 8770 \\ 206 \\ 8770 \\ 206 \\ 8770 \\ 877$	59205 99205 99205 9938 905687092 2938 16587092 16587092 16587092 16587092 16587092 16587092 16587092 1658808 16577978 10597 10597 10599 105980 10577978 105980 10577978 105777978 105777978 105777978 105777978 105777978 105777778 1057777778 10577777778 105777778 105777778 1057777777777778 105777777777777777777777777777777777777
	PARAMETRIC POINT	ġ	10	11	12	13	14	15	15
	TOTAL CAPITAL COSI	203.36 10.140 12.700 15.194 3.800	293.42 18.339 14.703 23.597 3.630	247.30 14.302 14.500 20.264 3.500	205.13 10.140 14.200 18.016 3.500	319,65 18,339 11,900 32,323 4,200	266.12 14.302 11.700 26.602 4.100	217.77 16.140 11.700 22.416 4.000	309.52 18.339 13.300 27.715 4.300
	E TOT HAJOR COMPONENT COST +5/KHE 5 3144CE 0" PLANT COST +5/KHE - Y STTE I ABOR - Y STTE I ABOR - Y STKE DIRECT COST +5/KHE	45.634 106.351 72.321 83.707	85.643 85.643 68.095 219.770 34.728 17.582 17.582 17.564 59.276 58.260	52.5548 55481 755481 73.9512 2355491 73.9512 2357.45741 60.6711 60.5711 60.67110 60.6711000000000000000000000000000000000	21.199	65.762 94.639 66.144 76.679 237.462 39.106 18.997	56.911 80.877 249.883 41.247 19.931 19.506 54.884 74.251	21.954	$\begin{array}{c} 5136938179\\ 513693817944\\ 72453938175490302743398794410\\ 72455784578456664417\\ 72657802467902469417\\ 71557902469417\\ 72755420\\ 72837754903274327\\ 72837754903274327\\ 72837754903274327\\ 72837754903274327\\ 72837754903274327\\ 72837754903274327\\ 72837754903274327\\ 72837754903274327\\ 7283775490327\\ 7283775490327\\ 7283775490327\\ 7283776549427\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377654927\\ 728377656665227\\ 728377656665227\\ 728377656665665\\ 728377656665665\\ 7283776566656665\\ 728377656666666\\ 728377666666666\\ 72837766666666666666666\\ 7283776666666666666666666666666666666666$

The second
وموراني والمتجام الأرد والمؤمون والمرارية والمعرفة والمرار المترار ومنافعه والمحار والمعارية

Table 12.31 Continued -FLUIDIZED BED BOILER ADVANCED STEAM SYS - SUMMARY PLANT RESULTS

PARAHETRIC POINT	÷7	18	19	20	ZI	22	23	24
TOTAL CAPITAL COST *** P STEAM TURE-GEN-FEED STRING *** L GAS TURBIN: JENTRATOR *** A FLUIDIZED BED POILEP *** N STACK GAS COULER ****	253.13 14.302 13.130 23.137 4.030	214.28 10.140 12.900 20.181 4.000	302.91 18.339 13.700 25.768 4.000	254.92 14.302 13.509 21.694 3.990	208+40 10-140 13-300 10-135 3-900	297.67 18.339 15.700 23.447 3.830	251.64 14.302 15.300 2C.099 3.700	208.87 10.140 15.100 17.785 3.700
<pre>i TOT MAJOR COMPONENT COST .MS i TOT MAJOR COMPONENT COST.S/KWE i TOT MAJOR COMPONENT COST .S/KWE U SITE LABOR</pre>	54857954972549 579585485775757549 238858912377575757 2388595757575757 57575757575757549 500544572549 500544572549 7554572549 7554572549 75547547549 75547547549 75547547549 75547547549 75547547549 75547547547549 75547547547549 75547547547547549 7554757547549 7554757547547547547547547547547554757549 755575757547554755475547575549 75557575757575549 7555757575757575757575549 75557575757575757575757575757575757575	$\begin{array}{c} 47.5212\\ 71.213\\ 71.213\\ 251.865\\ 70.947\\ 19.96$	$\begin{array}{c} 51.807\\ 85.467\\ 55.187\\ 55.187\\ 45.187\\ 17.596\\ 17.596\\ 58.277\\ 17.596\\ 58.277\\ 17.596\\ 58.834\\ 17.620\\ 59.726\\ 58.834\\ 13.867\\ 13.2611\\ 1.7559\\ 22.651\\ 1.7559\\ 22.6524\\ 20.447\\ 20.447\\ 20.447\\ \end{array}$	$53 \cdot 336$ $91 \cdot 724$ $67 \cdot 784$ $67 \cdot 784$ $173 \cdot 691$ $337 \cdot 584$ $18 \cdot 656$ $69 \cdot 512$ $937 \cdot 904$ $13 \cdot 820$ $13 \cdot 820$ $13 \cdot 820$ $13 \cdot 820$ $13 \cdot 820$ $13 \cdot 820$ $13 \cdot 820$ $27 \cdot 8310$ $27 \cdot 8310$ $27 \cdot 843$ $20 \cdot 715$ $24 \cdot 8349$ $21 \cdot 083$	$\begin{array}{c} 45.475\\ 107.591\\ 107.591\\ 107.591\\ 254.511\\ 254.511\\ 254.511\\ 19.372\\ 62.850\\ 19.372\\ 62.850\\ 14.8633\\ 14.8633\\ 14.8633\\ 24.8533\\ 24.8339\\ 24.8339\\ 24.8339\\ 27.8832\\ 27.8322\\ 27.090\\ $	$\begin{array}{c} 61.296\\ 85.205\\ 65.205\\ 67.081\\ 217.326\\ 34.211\\ 17.386\\ 17.414\\ 58.871\\ 17.414\\ 58.871\\ 13.057\\ 13.057\\ 13.057\\ 22.505\\ 26.423\\ 20.057\\ 25.117\\ 25.042\\ 20.333\end{array}$	72.014 232.157 36.727 18.573 18.163 60.220 68.956	$\begin{array}{c} \textbf{96}, \textbf{725}\\ \textbf{96}, \textbf{725}\\ \textbf{95}, \textbf{808}, \textbf{95}\\ \textbf{808}, \textbf{9249}\\ \textbf{808}, \textbf{9249}\\ \textbf{209}, \textbf{808}, \textbf{9249}\\ \textbf{209}, \textbf{806}, \textbf{9249}\\ \textbf{209}, \textbf{806}, \textbf{966}\\ \textbf{606}, \textbf{806}\\ \textbf{806}, \textbf{806}\\
PARAMETRIC POINT	25	25	27	28	29	30	31	32
TOTAL CAPITAL COST +H\$ STEAM TUR3-GEN-REID STRING •Y5 L GAS TURBINE GENERATOR •Y5 A FLUIDIZED 3ED AOILER +H\$ N SIACK EAS CODLER +M\$	323.07 13.339 12.500 32.602 4.300	268.10 14.302 12.300 26.377 4.200	220.73 19.140 12.200 22.670 4.300	311.64 18.339 13.800 27.744 4.100	251.83 14.302 13.600 23.055 4.100	217.28 10.140 13.500 20.135 4.600	309.09 18.339 19.300 26.615 9.000	261.09 14.302 14.200 22.455 4.000
R TOT MAJOR COMPONENT COST .HS E TOT MAJOR COMPONENT COST .KKWE S BALANCE OF PLANT COST .S/KWE U SITE LABOR	41182 74562922936 74562922936 74562922936 745629229356 745629229356 74562929356 745777339 8959376 745777339 8959376 745777339 89688 874 7457773 7457773 7457773 7457773 7457773 7457773 7457773 7457773 7457773 7457773 7457773 7457773 745777773 745777773 745777773 745777773 74577773 745777773 74577773 74577773 74577773 74577773 74577773 745777773 745777773 745777773 745777773 745777773 745777773 745777773 745777773 745777773 745777773 7457777777777	579.53559 99.5377343559 740.5777343434 240.783682290 99.440.783682290 169.45577 71.45535654265 14.45654 14.456542657 725.53657 725.53657 725.53757 725.53757 725.53757 725.53757 725.53757 725.53757 725.53757 725.53757 725.53757 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.537577 725.5375777 725.5375777 725.537577777777777777777777777777777777	49.010 111.815 38.668 272.308 272.308 275.308 275.308 67.220 15.377 503.588 15.920 1.578 30.2482 22.652 22.652 22.652 22.652 22.53.3	$\begin{array}{c} 3 \bullet 103 \\ 97 \bullet 103 \\ 97 \bullet 103 \\ 97 \bullet 103 \\ 702 \bullet 1354 \\ 1354 \\ 1354 \\ 17 \bullet 1354 \\ 17 \bullet 15 \\ 17 \bullet 15 \\ 17 \bullet 15 \\ 17 \bullet 15 \\ 17 \bullet 11 \\ 17 \\ 17 \bullet 11 \\ 17 \bullet 11 \\ 1$	573 5630 927, 4200856270 , $4200874452744527445274452745274452755745275574527557452755745275574527557452755745275574527557452755$	$\begin{array}{c} 47 & .775\\ 104 & .965\\ 700 & .393\\ 82 & .6733\\ 82 & .6733\\ 82 & .6733\\ 942 & .164\\ 20 & .6431\\ 154 & .0333\\ 153 & .0382\\ 153 & .0382\\ 153 & .0382\\ 143 & .4453\\ 28 & .981\\ 21 & .4453\\ 28 & .984\\ 21 & .4453\\ 28 & .984\\ 21 & .4453\\ 28 & .984\\ 21 & .4453\\ 28 & .984\\ 21 & .453\\ 25 & .9362\\ 23 & .5562\\ 2$	$\begin{array}{c} 63.254\\ 85.672\\ 69.134\\ 219.302\\ 35.258\\ 17.548\\ 159.804\\ 17.548\\ 159.8041\\ 59.8041\\ 59.8041\\ 59.8041\\ 13.5258\\ 17.535\\ 20.571\\ 1.5735\\ 22.503\\ 22.503\\ 25.003\\ 22.503\\$	570347 9263247 4265512 188-87 723788 16097*7 138-87 7135965 713788 16097*7 135965 713788 16097*7 135965 72272 135965 72272 22222 22222 22222 22222 22222 22222 2222

12-158

.

-

tatus dana sa sa sa si

. .

Table 12.31 Continued -FLUIDIZED 3ED BOILER ADVANCED STEAM SYS SUMMARY PLANT RESULTS

	PARAMETRIC POINT	33	34	35	36	37	38	39	ъQ	
-	TOTAL CAPITAL COST	217.01 10.140 14.000 19.792 4.000	304.35 19.339 16.400 24.283 3.900	258.64 14.392 16.100 20.998 3.800	213.01 13.140 15.900 17.919 3.800	308.16 20.830 13.100 25.952 3.800	258.53 16.295 12.900 21.897 3.800	213.28 11.635 12.708 19.194 3.800	311.93 21.328 13.100 25.952 3.800	
	R TOT MAJOR COMPONENT COST */KH E TOT MAJOR COMPONENT COST */KH E TOT MAJOR COMPONENT COST */KH S BALAACE OF PLANT COST */KH U SITE LAGOR */KH L TOTAL DIRECT COST */*/WE T INDERCT COST */*/WE B CONTINGENCY COST *//KH R ESCALATION COST *//KH R ESCALATION COST *//KH A TOTAL CAPITALIZATION *//KH COST OF ELEC-FUEL */ILLS/KHE D COST OF ELEC-FUEL */ILLS/KHE D COST OF ELEC-FUEL */ILLS/KHE D COST OF ELEC-FUEL */ILLS/KHE D COST OF ELEC-FUEL */ILLS/KHE COE D-8 CAP. FACTOR */ILLS/KHE COE D-8 CAP. FACTOR */ILLS/KHE COE 1.22/FUEL COST */ILLS/KHE COE 1.22/FUEL COST */ILLS/KHE COE 1.22/FUEL COST */ILLS/KHE COE (CONTINSENCYC) */ILLS/KHE	19.570 63.693 72.452	$\begin{array}{c} 52 \bullet 95299\\ 54 \bullet 5539\\ 54 \bullet 65539\\ 17 \bullet 4197\\ 17 \bullet 343719\\ 17 \bullet 343719\\ 17 \bullet 598 \bullet 138666\\ 13 \bullet 36666\\ 13 \bullet 36666\\ 12 \bullet 57404\\ 13 \bullet 59854\\ 13 \bullet 59854\\ 13 \bullet 59854\\ 12 \bullet 59920\\ 12 \bullet 599200\\ 12 \bullet 59920\\ 12 $	$\begin{array}{c} 55 & 200\\ 92 & 936\\ 67 & 1360\\ 711 & 397\\ 235 & 5591\\ 18 & 5591\\ 18 & 5591\\ 18 & 593\\ 18 & 5931\\ 7551 & 13, 7561\\ 1 & 8255\\ 237 & 5560\\ 24 & 3275\\ 24 & 5600\\ 24 & 5600\\ 24 & 327\\ 25 & 9600\\ 24 & 327\\ 25 & 927\\$	$\begin{array}{c} 47,759\\105,256\\770,1284\\779,259\\254,700\\254,700\\254,700\\254,700\\254,700\\19,411\\62,949\\71,584\\469,443\\14,840\\74,87\\24,272\\23,724\\21,490\\27,240\\27,240\\27,240\\25,770\\23,412\\21,377\end{array}$	63.657323544997 65.7430544997 235.7430544997 235.7430544997 235.74070 65.74305497 235.74070 65.74070 65.74070 7.7574070 25.740700 25.740700 25.740700 25.74070000000000000000000000000000000000	54.892 93.804 568.132 73.573.509 37.5509 37.5509 37.5509 37.5509 37.5509 37.5509 73.573 8410 70.192 441.793 13.9666 1.8256 23.298 27.4880 27.4880 27.4880 27.4880 27.4880 27.4689 21.C49	$\begin{array}{c} 47 \cdot 329\\ 107 \cdot 0222\\ 72 \cdot 0228\\ 82 \cdot 563\\ 82 \cdot 563\\ 842 \cdot 6117\\ 20 \cdot 931\\ 13 \cdot 887\\ 15 \cdot 887\\ 15 \cdot 246\\ 73 \cdot 2587\\ 482 \cdot 2283\\ 15 \cdot 246\\ 7 \cdot 467\\ 1 \cdot 958\\ 24 \cdot 571\\ 29 \cdot 245\\ 21 \cdot 813\\ 27 \cdot 720\\ 26 \cdot 165\\ 23 \cdot 791\\ 22 \cdot 322\\ \end{array}$	6447 4427 4447 44777 44777 44777 44777 44777 44777 447777 44777777 4477777777	
99	PARAHETRIC POINT	41	42	43	44	45	46	47	48	
	TOTAL CAPITAL COST .MS P STEAM TURB-GEN-FEED STRING ,MS L GAS TURBINE SENERATOR ,MS A FLUTDIZED BED BOILER .MS Y STACK JAS COOLER ,MS	253.71 16.544 12.930 23.897 3.833	214.10 11.635 12.775 13.194 3.800	408.36 53.295 13.130 27.727 4.300	335.32 46.314 12.900 23.242 3.900	255.94 33.160 12.700 20.120 3.900	984.29 60.665 13.100 32.208 4.100	457.87 83.807 12.900 25.643 4.000	434.83 106.651 12.700 22.427 4.000	
	Y IOT MAJOR COMPONENT COST .MS TOT MAJOR COMPONENT COST .MS S 3ALANCE OF PLANT COST .S/KWE U SITE LABUR	55.141 103.245 92.653 77.579 25.447 25.447 25.447 21.579 20.440 20.402 20.4559	36.422 87.432 271.178 23.294 23.294 21.542 70.150	174 • 122 134 • 021 77 • 177 70 • 645 2 91 • 843 22 • 547 22 • 547 22 • 765 75 • 741 87 • 473	23.454 23.107 75.492	81-401 84-270 315-591 42-978 25-207	109.107 73.379 316.312 37.423 25.305 25.768 85.330	127.350 194.218 108.717 81.417 384.352 41.523 30.748 30.470 98.259	107.748	
	A TOTAL CAPITALIZATION , 5/KWE K COST OF ELEC-CAPITAL + MILLS/KWE D COST OF ELEC-CAPITAL + MILLS/KWE O COST OF ELEC-OPEMAIN + MILLS/KWE	15.431 15.431 9.223 1.923 25.577 30.207 22.636	530.728 16.777 3.186 2.066	525.399 16.641 7.099 1.638 25.377	1.731	1.868	588.791 18.613 6.782 1.561 26.956	598-281 22-074 5-794	887.431 28.054 6.807 1.790	
	N TOTAL COST OF ELEC .MTLLS/KHE N COE D-5 CAP. FACTOR .HILLS/KHE	25.577 30.207	7 030	25.377 30.369 22.257 28.705 25.797	25.915 31.038 22.713 29.330	27.078 32.510 23.684	26.956 32.540	30,521 37,143 26,382	36.651 45.067	

ORIGINAL PAGE IS

n here was seen also seen and the second of the second
Table 12.31 Continued -FLUIDIZED BED BOILER ADVANCED STEAM SYS SUMMARY PLANT RESULTS

az Alexande States and and a state of the states of the states and the states and the states of t

المحاوية بالههوم مؤرث معارا شاطعان وموتعا المحادث بالمقاطأ أشاك أشاط أكلاك

Sec. A.

an an that a start of the second s

······									
	PARAMETRIC POINT	49	50	51	52	53	54	55	56
··	TOTAL CAPITAL COST	287.57 19.339 13.130 27.092 3.830	238.02 14.302 13.000 23.037 3.800	201.65 10.140 12.700 20.334 3.800	297.39 18.339 13.108 28.652 3.800	251.57 14.302 13.000 24.597 3.800	209.51 10.140 12.700 21.894 3.800	00. 000. 000. 000. 000.	•00 •000 •000 •000
	TOT HAJOR COMPONENT COST ,MS E TOT MAJOR COMPONENT COST +5/KHE S BALANCE OF PLANT COST +5/KHE U SITE LABOR +5/KHE L TOTAL DIRECT COST +5/KHE	52.331 87.730 53.935 66.357 213.023	54.139 94.968 61.571 67.426 273.965	46.974 108.935 65.098 80.134 254.167	63.891 90.090 61.426 68.987 220.502	55.699 97.882 64.132 73.984 235.998	48.534 112.756 67.738 83.847 264.341	-000 -000 -000 -000 -000	-090 -090 -090 -090
	TINDIRECT COSTS PROF & OWNER COSTS # 5/KWE TO CONTINGENCY COST # 5/KWE R ESCALATION COST # 5/KWE INT DURING CONSTRUCTION # 5/KWE	33.842 17.042 17.042 57.601 66.349	34.382 17.917 17.493 57.712 66.055	40 868 20 333 19 267 62 287 70 740	35,183 17,640 17,640 59,654 68,715	37 732 19 380 18 433 51 107 59 940	42 762 21 147 20 038 64 828 73 626	-000 -000 -000 -000 -000	-008 -009 -000 -000 -000
	A TOTAL CAPITALIZATION +S/KW R COST OF ELEC-CAPITAL +MILLS/KWE D COST OF ELEC-FUEL +MILLS/KWE C COST OF ELEC-OPEMAIN+HILLS/KWE W TOTAL COST OF ELEC +MILLS/KWE	404.938 12.800 7.440 .879	417.530 13.199 7.423 973	467.662 14.784 7.378 1.111	7.608	7.590	486-742 15-387 7+545 1-146	-000 -000 -080 -000	000 000 000 000
	N CDE D-5 CAP. FACTOR .HILLS/KHE CDE D-8 CAP. FACTOR .HILLS/KHE CDE 1-2XCAP. COST .HILLS/KHE CDE 1-2XFUEL COST .HILLS/KHE CDE 1 CONTINGENCY=D .HILLS/KHE	21.118 24.958 18.713 23.678 22.605 20.342	21 595 25 555 19 120 24 235 23 080 20 809	23.273 27.708 20.501 26.229 24.748 22.421	21.778 25.755 19.292 24.429 23.299 20.974	22.574 26.767 19.954 25.370 24.093 21.746	24.078 28.694 21.193 27.155 25.587 23.192	000 000 000 000 000 000	000 000 000 000 000 000
щ	COE (ESCALATION=3) +HILLS/KWE	18.933	19.478	21.004	19.577	20.333	21.717	•000	+000

12-160

The major component summations in Table 12.30 include the material prices from the following subaccounts:

 Steam turbine-generator and 	
feed string	11.5, 11.6, 13.1
 Gas turbine-generator 	11.1, 11.2, 11.3, 11.4
 Pressurized boiler 	10,1
Stack-gas cooler	13.2

Subaccount

The major component summations in Table 12.31 are similar to those in Table 12.30 except that the title "Fluidized Bed Boiler" replaces the title "Pressurized Boiler."

In addition, the natural resources requirements for each parametric point were calculated and printed by the computer. These results are shown in Tables 12.32 through 12.34.

12.7 Conclusions and Recommendations

Increasing either throttle or reheat steam temperature in 111°K (200°F) increments from 811 to 1033°K (1000 to 1400°F) results in an increase in electrical energy cost because the increase due to higher capital cost substantially exceeds the decrease due to lower fuel costs (higher cycle efficiency).

The system resulting in the lowest energy cost is the pressurized fluidized bed boiler system with 811°K (1000°F) steam and 1255°K (1800°F) gas turbine inlet temperature.

It is recommended that the pressurized fluidized bed boiler system be investigated in greater detail in Task II.

Any future study of this type may well benefit by first defining the most promising areas for investigation by looking at the energy availability and internal reversibilities of various cycles. This would allow the major portion of the effort to be concentrated where it belongs rather than diluting the effort by covering too large a number of points. An example of such an approach is given in Appendix A 12.7.6.

Table 12.32 - ADVANCED STEAM CYCLE WITH ATH BDILER NATURAL RESOURCE REQUIREMENTS

	PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED.LJ/KW-HR TOTAL HATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H20 CONDENSATE MAKE JP, WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IJJHWE MAIN PLANT DISPOSAL LANJ LAND FOR ACCESS RR							7 •81 C 15 • 117 87 • 800 • CC CC C • C 276 • C 27746 • C C C C C 99 • 78 28 • 82 31 • 95 39 • 11	8 .23 C 82 .12 D 95 .841 .00 C 05 .01 C 32 .02 83 .34 870 .C0 000 92 .78 28.82 32.67 31.29
	PARAMETRIC POINT COAL, L3/KH-HR SORBANI OR SEED,LB/KH-HR TOTAL WATER, SAL/KH-HR GASIFIER PROCESS H*3 CONDENSAIE MAKE UP . WASTE HANJLING SLURRY SCRUBBER MASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IOCHWE MAIN PLANI DISPOSAL LAND LAND FOR ACCESS R							1.015 .923 .0000 .01035 .05120 .06000 106.37 28.90 34.33 43.13	1.026 .932 .0000 .C1035 .05254 .05254 .05000 28.48 35.25 31.35
	PARAMETRIC POINT COAL, LB/K H-HR SORBANT OR SEED.L3/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H20 COUDENSATE MANE UP. WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRESSION TOTAL LAND ACRESS RR	17 .83860 .12213 .893 .00000 .11333 .02368 .04918 .04918 .00000 100.96 28.84 32.93 39.13	13 .86110 .12545 .990 .00000 .10344 .00394 .00394 .00394 .00000 948.86 33.88 31.32	19 .83867 .12956 .959 .01036 .07000 .07000 .07000 .07.005	20 •91200 •13303 1.1000 1.000 •01035 •0312 •05357 •05080 109.5 29.92 35.91 35.32	21 .98963 .14955 .0000 .01052 .00000 .05821 .09084 29.36 33.99 131.49	22 •63492 •12159 •951 •01033 •02894 •000082 28•85 32•93 32•14	23 .85621 .12473 .984 .894 .00000 .01034 .02923 .02923 .02923 .02923 .03085 .28.85 .33.69 .31.32	24 .86145 .915251 .02000 .01030 .0978 .05169 .05169 .05169 .05169 .05169 .05169 .05169 .05169 .05169 .05169 .05159 .01030 .0575 .01030 .0575 .01030 .0575 .01030 .05755 .05755 .05755 .05755 .05755 .05755 .05755 .05755 .0575
.	PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED,LB/KW-HR TOTAL WATER, JAL/KW-HR COOLING WATER GASIFLE? PROCISS 420 CONDENSATE MAKE UP * WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100MWE MAIN PLANI DISPOSAL LAND LAND FOR ACCESS RR	25 •79571 •11507 •776 •J0JJ00 •01032 •9272 •94666 •J1003 •04666 •J1003 •95 28 23•93 31•31 35•17	26 31578 11825 11825 110278 04736 20010 201278 04736 20010 201278 2	27 .82194 .43364 .01028 .0490 .04000 .04000 .04000 .040000 .04000 .04000 .04000 .04000 .04000 .04000 .04000 .040	28 95391 •12587 •12587 •01005 •010295 •050699 •100000 29.999 33.999 33.999	29 • 33937 • 12222 • 349 • 8600 • 01036 • 04922 • 00000 101 • 02 28 • 851 33 • 01	01033 0278 04772 00000 99.96 28.83 32.02	-43316 -961 -2090 -01029 -0929 -04912 -00000 133-48 -28-73	32 .83179 .12109 .847 .00000 .01033 .0289 .04000 100.70 28.85 32.71 32.14

Table 12.32 ADVANCED STE Continued						
PARAMITRIC POINT COAL, LB/NW-HR SORBANT OR SECD,LB/KW-HR TOTAL WATER GAL/KK-HR GASIFIER PROCESS H2D CONDENSATE MAKE UP , HASTE HANDLING SLURRY SCRUBBER WASTE MATER NOX SUPPRESSION TOTAL LAND ACRES/IDDWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35 1.47671 1.020 1.020 0.0200 0.51934 0.5483 0.05000 85.64 23.664 23.664 23.524	35 91863 1.171 1.171 1.101 .00000 .1032 .1043 .15512 .00000 .15512 .00000 .144.53 28.82 .35.20	37 38 09118 1.47671 03311 .03300 1.073 1.080 1.073 1.080 0.000 .0000 01031 .01034 .0102 .01034 .0102 .01034 .05285 .55485 005000 .00000 05285 .55485 05285 .55485 05285 .5485 05285 .5485 05285 .55485 05285 .55485 05285 .5485 05285 .55485 05285 .5485 05285 .5485 05285 .5485 05285 .5485 05285 .5485 05285 .5485 0586 .5485 10.886 .22.59 35.14 .35.24	39 •90602 •13214 •926 •932 •0000 •01037 •00000 •11-74 28•95 35•67 47-13	40 •92941 •13562 1•136 1•039 •01037 •0318 •0318 •054000 10089 28.94 36.60 35.34
PARAM' TRIC POINT COAL, LBJKW-MR SORBANT OR SEED.LBJKW-HR TOTAL WATER, SALJKW-TR COOLING WATER GASIFIER PROCESS 420 CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100HWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 • \$5535 • 12461 • 1892 • 01005 • 01005 • 01005 • 01000 105•68 833•65 33•65 43•11	44 97592 12779 1025 934 01034 0299 0514 0299 0514 0299 03000 134 03000 134 34 50 31 34 50	45 46 89259 .94883 46697 .13848 1.095 .099 .931 .000 00000 .0000 01031 .01049 .1002 .0324 05295 .05576 00000 .00000 37.37 189.88 28.78 29.29 77.36 37.37 31.24 123.21	47 .84992 .12379 .972 .9433 .01034 .0290 .04985 .0497 .0497 .0497 .04985 .04977 .04977 .04977 .04977 .04977 .04977 .049	48 .85499 .45238 1.039 .00000 .01031 .0970 .059700 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000 .000000 .000000 .0000000 .00000000
PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEEDLB/KW-HR COOLING WATER GASIFIER PROCESS H20 COVDENSATE MAXE UP, WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/133HWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51 .85435 .12445 .581 .00000 .01033 .05012 .05010 93.785 .31.32	52 •92043 •035 •000 •0000 •0000 •01048 •0315 •15409 •1948 •00000 •184•57 29.25 36•25 119.07	53 54 85826 88477 12503 12898 987 1.042 897 .950 00000 .00000 1034 .91235 .0293 .0302 05035 .35194 00000 .00000 95.42 87.79 20.30 87.79 33.77 34.92 41.36 32.66	55 .80347 .11687 .788 .C0000 .00274 .04706 .00000 88.755 31.55 31.55 36.92	56 .82803 .82803 .82803 .836 .00000 .0282 .04854 .00854 .00854 .00854 .00855 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .005555 .00555555 .0055555 .0055555555 .00555555 .005555555 .00555555 .005555555 .00555555 .00555555 .0055555555 .0055555555 .005555555555
 PARAMETRIC POINT COAL, L97KW-HR SORBANT OR SEED+LB7KW-HR TOTAL VATER, SAL7KW-HR GOOLING WATER GASIFIER PROCESS 423 CONDENSATE MAKE UP, WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ICCHWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS 38	57 58 •75546 78599 •11121 11442 •795 •841 •714 758 •01030 •01030 •02031 •01030 •0251 •7268 •04478 •04508 •0500 •30000 62.79 77.15 20.21 20.23 30.93 32.51 25.12	59 • \$5611 • 17620 • 01035 • 0296 • 0296 • 05000 05002 • 05002 • 308 • 41•37	50 • 99192 • 13003 • 058 • 964 • 0305 • 0305 • 0305 • 0305 • 0305 • 0305 • 0305 • 3536 • 3536 • 32.67	£1 62 \$3317 \$5500 \$12129 \$12409 \$934 \$355 \$847 \$896 \$0000 \$0000 \$01033 \$01033 \$0284 \$05233 \$04684 \$05233 \$0000 \$00000 \$20.18 \$24.48 \$20.27 \$20.28 \$277 \$33.76 \$39.14 \$0.95	63 .88341 .12877 1.040 .01036 .0302 .05186 .00000 58.68 20.32 34.77 43.59	64 90751 13237 918 924 00000 •0310 •05330 •00000 84 •28 20 •28 35 • 73 28 • 27

underen helden der en helden en helden er helden der helden er helden

;

ORIGINAL PAGE IS

λ2-163

 σ_{21}

	Table 12,32 ADVANCED STE	AM CYCLE	WITH AT	M BOILER	VATURA	L RESOUR	CE REQUI	REMENTS	
	Continued								
	PARANETRIC POÍNI Coal, loykk-hp	55 .83049	56 .85487	57 .79331	59 81639	69 •90056	70 •92584	71 .85061	72 •87504
	SORBANT OR SEED+L3/KW-HR	12390	.12453	.11535	.11300	.13133	.13509	.12389	.12753
	TOTAL WATER, GAL/KN-HR	,930 ,943	-982	.854	903 817	1.076	1.128	972	1 022
	COOLING WATER GASIFIER PROCESS H2D	•00000	566 00000	•0C000	.COCOO	.00000	.00000	*660CO	+00000
	CONDENSATE MAKE UP + WASTE HANDLING SLURBY	-31033 0283	.01033	.01031 .0270	.01032 .0278	.01036 .0306	01037	01039	01034
-	SCRUBBEN WASTE WATER	. 19358	C292 35314	.34545	.34794	.05288	.95440	.34989	.05135
	NOX SUPPRESSION Total Land Actis/LoomyF	•00000 32•07	00600	.00000 85.14	.00000 90.55	.00000 99.40	00000 91.70	0000C 92,91	.00000 87.38
	TOTAL LAND ADRES/133MNE HAIN PLANT	32 07 20 27	94 35 20 28	20,24	20.24	20.33	20.34	20,29	20.29
	DISPOSAL LAND Land for access Rr	32.65 39.14	33.63 30.45	$\frac{31}{34}, \frac{19}{73}$	32.1] 28.22	35.45 43.62	36.45 34.90	33.46 39.17	34.43 32.65
	DADAHETOTE DATNT	72	74	75	76	77	70	70	e n
	PARAHÉTRIC POINT Coal, Lb/ku-br	73 • 30390	74 .30030	75 -03000	76 • 303 90	77 .00000	78 .00000	79 .00000	80 •00000
	COAL; LB/KH-HR Sorbant or seed;LB/KW-HR	.00000	.00000	.03000 .00000	.30330	.00000	.00000	.00000	-00000
	COAL, LB/KH-HR Sorbant or seed +Lb/kw-hr Total vateg, 3al/xH-Hr Cooling Water	.00000 .00000 .000 .000	.30030 00000 020 020	-03000 30000 -900 -900	.30330 .90000 .003 .000	00000 00000 0000 000	00000 00000 000 000	00000 00000 000 000	00000 00000 000 000
	COAL, LB/KH-HR SORBANI OR SEED+LB/KN-HR TOTAL WATER, JAL/KH-HR COOLING WATER GASIFIER PROCESS H23	00000 00000 000 000 000 000	.30030 .0000 .020 .020 .32030	03000 00000 000 000 000	.30000 .90000 .000 .000	00000 00000 000 000 000 000	00000 00000 000 000 000	00000 00000 000 000 000	00000 0000 000 000 000
	COAL, LB/KH-HR Sorbant or seed+lb/kw-hr Total Hateq Sal/XH-HR Cooling Water Gasifier Prociss H23 Conden.Afe Make UP	. 00000 .00000 .000 .000 .000 .00000 .00000	.30030 .00000 .020 .32030 .00000 .33030	.03000 .9000 .900 .9000 .93000 .00000 .0900	.0000 .000 .000 .000 .00000 .00000 .00000	00000 00000 000 000 0000 00000 00000	00000 0000 000 000 0000 0000 0000	00000 00000 000 000 0000 00000 00000	00000 00500 000 000 0000 00000 00000
	COAL, LUXH-HR Sorbant or seed Luxh-Hr Total Wateq, Sal/XH-Hr Gasifier Process H2J Condenjate Make UP Haste Ha'Jling Sluygy Scrubber Maste Water	. 10000 .00000 .000 .000 .00000 .00000 .00000	.20070 .00000 .000 .2000 .2000 .2000 .2000	-93009 -90000 -900 -93000 -93000 -93000 -9300 -9300	.30399 .90000 .003 .0000 .00000 .00000 .00000	00000 00000 0000 0000 00000 00000 00000 0000	00000 000 000 000 0000 0000 0000 00000	00000 00000 000 000 0000 00000 00000	00000 0000 000 0000 0000 00000 0000 0000
	COAL, LB/KH-HR Sorbant or seed, Lb/KH-HR Total Wateq, Sal/KH-HR Gastfieq, Process H23 Conden, Ate Make UP, Waste Ha', Jing Sluggy Scrubber Waste Water Nox Suppression Total Land Acres/100HWE	- 10270 - 00000 - 000 - 0000 - 2027 - 00006 - 00006 - 00006 - 00006 - 00006	.30030 .00000 .020 .32030 .00000 .33330 .00000 .33330 .00000	-03000 -30000 -970 -9700 -97000 -97000 -90000 -90000 -90000 -90000 -90000	.20209 .00000 .000 .0000 .00000 .00000 .00000 .00000	00000 00000 0000 0000 00000 00000 00000 0000	00000 000 000 000 0000 00000 00000 00000	00000 0000 000 0000 0000 00000 00000 0000	00000 00000 000 0000 00000 00000 00000 0000
•••	COAL, LB/KW-HR SORBANT OR SEED +LB/KW-HR TDTAL WATER, JAL/KW-HR GASIFIER PROCESS H2D CONDENJATE MAKE UP + WASTE HA'JLINS SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDDNWE HANT PLANT	- 10270 - 00000 - 000 - 0000 - 20277 - 00006 - 0079 - 00006 - 0079 - 00006 - 0099 - 00006 - 0099 - 00006 - 0099 - 00006 - 0099 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 00000 - 0000 - 00000 - 0000 - 0000 - 000	.30030 .00000 .000 .32030 .00000 .33030 .00000 .33330 .00000 .33330 .00000	-03000 -30000 -900 -9000 -90000 -90000 -90000 -90000 -90000 -90000	.20209 .80000 .000 .0000 .00000 .00000 .00000 .00000	00000 00000 0000 00007 00000 00000 00000 00000	00000 00000 000 0000 00000 00000 00000 0000	00000 0000 000 0000 0000 00000 00000 0000	00000 00300 000 000 0000 0000 0000 000
•••	COAL, LB/KH-HR Sorbant or seed, Lb/KH-HR Total Wateq, Sal/KH-HR Gastfieq, Process H23 Conden, Ate Make UP, Waste Ha', Jing Sluggy Scrubber Waste Water Nox Suppression Total Land Acres/100HWE	- 10270 - 00000 - 000 - 0000 - 2027 - 00006 - 00006 - 00006 - 00006 - 00006	.30030 .00000 .020 .32030 .00000 .33330 .00000 .33330 .00000	-03000 -30000 -970 -9700 -97000 -97000 -90000 -90000 -90000 -90000 -90000	.20209 .00000 .000 .0000 .00000 .00000 .00000 .00000	00000 00000 0000 0000 00000 00000 00000 0000	00000 000 000 000 0000 00000 00000 00000	00000 0000 000 0000 0000 00000 00000 0000	00000 00000 000 0000 00000 00000 00000 0000
1 . 112-164	COAL, LB/KH-HR SORBANI OR SEED+LB/KW-HR TOTAL WATER, SAL/KW-HR GASIFIER PROCESS H2D Condem_Ate Make UP + HASTE HA'DLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100HWE HAIN PLANT DISPOSAL LAND	- 10270 - 00000 - 000 - 0000 - 00000 - 00000 - 000000 - 000000 - 000000 - 000000 - 000000 - 000000 - 000000 - 000000 - 000000	.30039 .00000 .020 .33030 .00000 .33030 .00000 .33330 .00000 .33330 .00000 .33330 .00000 .33330 .00000 .33330 .00000	03000 30000 970 03000 00000 00000 00000 00000 00000 00000 0000	00000 00000 0000 0000 00000 00000 00000 0000	00000 000000 00000 00000 000000 000000 0000	00000 0000 000 000 0000 0000 0000 0000 000 000 000 000 00 00 00 00	00000 0000 000 000 0000 0000 0000 0000 0000	00000 00300 000 000 0000 0000 0000 000

.

.

17 an

enter anno en la la contraction de la contractio

PRINTS азакрт

Table 12.33 -PRESSURIZED BOILER ADVANCED STEAM SYSTEM NATURAL RESOURCE REQUIREMENTS

	PARAMETRIC POINT COAL, LJ/KW-HR SGRBANI OR SEED+LB/KW-HR TOTAL WATER, 34L/KW-HR GASIFIER PROCESS H2D CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER KASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100HWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS R	932 925 93933 00841 0974 05111 00009 129-72	2 346 366 366 366 366 366 366 366	976497705502 9764977056220 9764977056220 9764977056220 97650075689 122772	4 39380 47979 97039 1703756 555003756 12759 7759 12759 7759 2779 2779 2779 2779 2779 2779	5 889008 44709633 980018 980018 980018 980018 9000 9000000	€ 307 • 46 7235 • 780 • 7980 • 100784 • 100784	7 30433 47848 981 20000 00851 00990 131.37 79.12 30.21	8 90295 47775 8817 976 90000 05183 00889 05183 00000 131.58 24.02 79.00 28.56
12165	PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED,L3/4W-HR TOTAL WATER, GAL/KW-HR CODLING WATTR GASIFIER PROCESS H2° CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER HASTE WATER NOX SUPPRESSION TOTAL LAND ACRESSION TOTAL LAND ACRESSION HAIN PLANT DISPOSAL LAND LAND FOR ACCESS HR		10 -9312 492565 10235 -0259 -0259 -0253 10250 -15337 -15050 -15337 -15050 -15337 -15050 -15337 -15050 -15337 -154577 -15457 -15457 -154	12 • 33454 • 42947 1.0015 • 019851 • 019829 • 05356 • 05366 • 053666 • 053666 • 053666 • 053666 • 053666 • 053666 • 053666 • 0536666 • 0536666 • 0536666 • 0536666 • 0536666666 • 053666666666666666666666666666666666666	12 •93727 •9999 •999 •934 •1027	13 84 4533 900 900 90750 90750 909556 009256 009256 121.029 21.029 25.45	14 -93851 -944365 -731 -000744 -000709 -04921 -000000 122-10 -22-76 73-07 -36-03	15 *52517 *43871 *43871 *0450 *0500 *05000 *09008 *09008 *09008 *09008 *09008 *09008 *09008 *00006 *000	16 .84631 .44778 .9333 .784 .0000 .00765 .0927 .04863 .0000 122.56 20.87 74.64
	PARAHETRIC POINT COAL, L3/KW-HR SORBANT OR SEED, LB/KW-HR TOTAL HATER, 3AL/KW-HR GASIFIER, PADC:SS 4:3 CONDENSATE MARE UP , HASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ICOMWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS 37	• 161161	18 92975 94975 96930 100590 100597 97955 100597	10 852711 8559711 9559711 9559711 9750037 975000 97700000000000000000000000000000000	20 .34569 .44973 .724 .03100 .04859 .04959 .04859 .04959 .04959 .04959 .04959 .04959 .04959 .04959 .04959 .04959 .04959 .04959 .0495 .04959 .0495 .0555 .0555 .0555 .0555 .0555 .0555 .0555 .05	21 *33552 *4 *698 *09900 *09900 *09900 *09913 *09913 *09900 *04913	22 37561 46322 .50000 .00783 .00783 .00524 .00524 .005040 120.93 76.65 27.79	23 97185 46130 7486 00000 00758 00955 04957 009000 124.960 22.63 76.22 26.00	24 • 360 63 • 45536 • 1865 • 714 • 00019 • 0943 • 09433 • 094332 • 094332 • 09443 • 049322 • 010000 124 • 47 25 • 15 75 • 30 24 • 02
-	PARAMETRIC POINT COAL + LO/K +-HR SDABANT OR SEED.LJ/KH-HR TOTAL WATER + CAL/KH-HR COLING WATER GASIFIER PROCESS H20 CONDENSATE MAKE UP + HASTE HANDLING SLURRY SCRUBSCR WASTE WATER NOX SUPPRESSION TOTAL LAND ACTES/ICONHE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR		25 79222 •41317 •60009 •00808	27742730154005490 77412505050 001250500 00125050 1025050 001250 1025050 1025050 1025050 10250 100000000	28021 80248021 83248021 00545021 0054502 1054502 1054502 1054502 1055500 1055500 1055500 1055500 1055500 1055500 1055500 1055500 1055500 1055500 1055500 1055500000000	29 792478 • 12778 • 06008 • 06008 • 060840 • 068561 • 0400 • 383 20 • 383 20 • 383 20 • 383 20 • 383	30 -78270 -414739 -55555 -055555 -044500 1122-91 -505 -122-91 -505 -505 -505 -505 -505 -505 -505 -50	31 -81709 -432322 -66096 -06895 -068955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -06955 -0695 -0655	32 •80983 •42848 •787 •646 •CCC00 •00657 •0887 •04641 •CDC00 114.92 21.06 70.85 23.01

Table 12.33 Continued ADVANCED STEAP SYSTEM NATURAL RESOURCE REQUIREMENTS

*	PARAMETRIC POINT COAL, LBJKW-HR SCRBANT OR SEED.LE/KW-HR TOTAL WATER, JAL/KW-HR GASIFIER PROCESS 123 CONDENSATE MAKE UP, WASTE HANJLING LJRY SCRUBBEP HASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDDHWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	33 .79955 .42252 .523 .2000 .00875 .04577 .008614 .04577 .0000 113.67 23.67 25.85 22.79	34 • 354 492 • 357 553 • 57 553 • 120 20 • 00 347 • 00 347 • 00 340 • 129 • 33 275 • 65 23 • 59	357355 41373737 00609930 00739500 00739500 1200-724 275-503 24055	36 3447998 34477998 3260034 3260034 3260038 300038300 109-603 34060 34060 234-92 234-92 234-92	37 337 244 3524 3755 000008 000305 000305 000305 000305 000305 00030 1280.652 273.17 34.76	38 92235 43551 00200 00505 00505 127.95 22.95 33.63	39 91064 •42891 •674 •0000 •00888 •00000 128•27 24•50 70•93 32•85	40 .89765 .47494 .0000 .00000 .0983 .05158 .00000 193.53 218.54 93.29	
	ARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEID,LB/KW-4R TOTAL WATER, GAL/KW-HR COOLING WATER GASIFIER PHOCESS H2D CONDENSATE MAKE JP, WASTE HANDLINC SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION FOTAL LAND ACRES/100HHE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	\$1 .88818 .45933 .000 .00500 .00500 .00731 .0973 .05104 .00000 192.15 23.44 77.71 90.99	42 .87795 .46452 .020 .00060 .20090 .00050 .00050 199.12 25.41	43 .7:1357 .556 	44 .77711 .41117 .538 .C0000 .0757 .6851 .14465 .00000 L10.64 21.49 57.39 21.15	45 •7246 •90871 •514 •00000 •00718 •0718 •0718 •0346 •0439 •000000 113•17 23•74 67•59 21•85	46 •74867 •39612 •583 •C0792 •C0792 •C0200 •00000 104•64 19•27 55•51 19•26	47 • 74545 • 39442 • 705 • 00768 • 00768 • 004284 • 00000 106 • 21 20 • 86 65 • 22 20 • 13	48 •74215 •39257 •683 •552 •00000 •00731 •0813 •04264 •00000 108•85 23•07 54•94 20•84	
	PARAMETRIC POINT COAL, L3/KW-4R SORBANT OR SED+LB/KW-HR TOTAL WATER, SAL/KW-4R GASIFIER PROCESS "23 CONDENSATE MAKE UP , WASTE HANDLINS SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDDHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	49 1.01454 •11526 •977 •0070 •0759 •04835 •00000 75.05 20.65 29.10 25.10	50 1.30573 .114255 .724 .00737 .0736 .04792 .04792 .04792 .04792 .04792 .04792 .04792 .04792 .04792 .04792 .04792 .04792 .0555 .04792 .05555 .05555 .05555 .05555 .05555 .05555 .05555 .0	51 9175000 917500 917500 9175000 9175000 9175000 9175000 9175000000000000000000000000000000000000	52 1.342864 122831 73276664 7327666 008266 008266 12208266 12208266 222.28 22.28 22.29 22.29 22.28 22.28 22.29 22.29	53 1.33682 .12751 .907 .00738 .0264 .04783 .047855 .00785 .00785 .00785 .00785 .007855 .007855 .0078555 .0078555 .007855555555555555555555555555555555555	54 1.32221 .12211 .6500 .06261 .04731 .00000 .04731 .00000 24.86 31.F2 23.55	55 .00000 .0000 .0000 .0000 .000000	56 -00000 -0000 -000 -0000 -000000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -00000 -000000 -000000 -000000 -0000000 -0000000 -0000000 -00000000	

PRINTS assker

12-166

FLUIDIZED BED BOILER ADVANCED STEAM SYS - VATURAL RESOURCE REQUIREMENTS

	· · · · ·	PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED.L3/KW-4R TOTAL WATER GAL/KW-HR GASIFIER PROCESS H2D CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/123HWE MAIN PLANT DISPOSAL LANJ LAND FOR ACCESS RR	1 • 85042 • 449353 • 973 • 972 • 0000 • 00051 • 00000 1 22.59 74.47 28.73	2 952 949922 • 449922 • 5059900 • 10099900 • 1255• 155 749 • 2749 • 2749 • 2749	3 94451 44513 754 9033 7540 90553 907540 90555 907540 90555 907540 90555 907540 90555 907540 90555 9054 9054 9055 9054 9054 9055 9054 9055 9054 9055 9054 9055 9054 9055 9054 9055 9054 9055 9054 9055	4 84328 94519 959 00020 00020 00020 121,29 73.85 28.26	5 .84138 .44518 .783 .00000 .0922 .04937 .04937 .04937 .04937 .04937 .04937 .04937 .04937 .04937 .04937 .04937 .04937 .04937 .050000 .04937 .04937 .050000 .04938 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04988 .04888 .04988 .04988 .04988 .049888 .049888 .049888 .049888 .049888 .049888 .049888 .0498888 .0498888 .0498888 .04988888 .0498888888 .049888888888888888888888888888888888888	6 •83575 •44220 •8866 •738 •C0000 •0915 •04904 •0904 •24.46 73.19 25.39	7 *44260 *44582 *856 *00034 *0923 *04944 *000000 121.10 121.10 73.79 28.17	8 .24 569 -44 581 .780 .000921 .00921 .009233 .009233 .009233 .009000 124.19 73.62 73.62 28.72
	12-167	PARAMETRIC POINT COAL, L9/XW-HR SORBANT OR SEED+LB/KW-HR TOTAL WATER, JAL/XW-HR GOOLING WATER GASIFIER PROCISS H2J CONDENSATE MAKE UP , WASTE HANGLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESION TOTAL LAND ACRES/IODHWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS R	9 • 33563. • 44213 • 334 • 736 • 00735 • 00735 • 00935 • 00900 124•31 25•83 73•18 25•31	10 94 978 44 9259 •213 13720 008420 00930 •00930 •00930 122 003 19.23 79.23 73.44	11 844339 44339 010009 010009 019844 000554 125.54 22.04 74.38 74.38	12 •84896 •44896 •752 •1000 •00751 •04979 •0000 126•34 74•37 74•37	13 • 84417 • 44665 • 951 • 00000 • 00825 • 04953 • 00000 121 • 50 129 • 23 73 • 92 28 • 35	14 •84143 •934 •785 •09000 •00807 •0922 •0922 •0922 •0922 •124+50 21 •93 73-68 29 •89	15 • 944160 • 944160 • 944160 • 886 • 738 • 00738 • 00738 • 09314 • 04897 • 0487 • 0487	16 .834137 .44137 .793 .00000 .00821 .0915 .00000 18.95 73.01
DEIGINAL		PARAMEIRIC POINT COAL, LB/K W-HR SORBAYT OR SEID.L3/KW-47 TOTAL WATER, GAL/KW-HR COOLING WATER GASIFIE PROCESS H20 CONDENSATE MAKE UP, WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100MWI HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 •83033 • 43933 •755 •00000 •0905 •005 •	18 •82195 •43499 •00000 •00715 •09000 12823 •000000 125.40 71.33 24.63	19 •83436 •41145 •791 •07019 •07019 •0914 •04835 •00000 119-56 12-94 73-06 27-66	20 *83102 *3952 764 00000 30791 *0910 34476 00000 $122 \cdot 45$ $21 \cdot 57$ $7? \cdot 77$ $28 \cdot 11$	21 •82316 •43554 •00000 •00000 •00000 •00000 •04830 •000000 122.000 25.399 72.061	22 •83779 •4328 •7943 •00000 •09922 •0916 •0995 •09000 •04915 •00000 •04915 •00000 •04915 •00000 •04915 •00000 •04915 •00000 •04915 •00000 •04915 •043 •05 •07 •07 •07 •07 •07 •07 •07 •07	23 .93604 .9425 .758 .00000 .00785 .09165 .09165 .09465 .045060 .045600 .0456000 .0456000 .045600000000000000000000000000000000000	24 .83130 .43984 .724 .00723 .0910 .04910 .04910 .04978 .04988 .04988 .04888 .04888 .04888 .04888 .04888 .04888 .04888 .04888 .04888 .048888 .048888 .048888 .048888 .048888 .048888 .048888 .0488888 .0488888 .04888888 .048888888 .0488888888 .04888888888888888888888888888888888888
NAL PAGE IS		PARAHETRIC POINT COAL, L3/KN-HR SORBANT OR SEED.L0/KH-HR TOTAL WATER, SAL/KH-HR COOLING WATER GASIFIER PROCISS H29 CONDENSATE MARE UP + WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRISSION TOTAL LAND ACRES/10CMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	25 83817 • 44 357 • 9501 • 000318 • 00918 • 00918 • 000510 120047 13000 120047 13000 27.99	26 83422 44138 -773 00790 00914 04895 123.21 21.72 73.05 28.44	27 92556730 443 972568730 97244 97240 97249 97249 97249 97249 97249 97249 97249 97249 97249 97249 9725 9724 9735 9725 9735 9725 9735 9725 9735 9725 9725 9725 9725 9725 9725 9725 972	28 • \$2637 • 43723 • 926 • 779 • 00000 • 00905 • 004849 • 00905 • 004849 • 00905 • 10300 • 118 • 355 • 13 • 76 • 72 • 36 27 • 23	29 82095 •43835 •00000 •00899 •00899 •00899 •00899 •00000 120 •751 71 •89 27 •55	30 81007 42861 6597 300000 008897 008897 008897 119.893 70.893 70.944 23.97	31 • 43656 • 43656 • 775 • 00000 • 00904 • 00904 • 00904 • 00900 118 • 65 18 • 670 72 • 25 27 • 09	32 •82000 •43386 •595 •00000 •00588 •04811 •0000 120.47 21.24 27.41

÷-

Table 12.34 Continued FLUIDIZED BED BOILER ADVANCED STEAM SYS - NATURAL RESOURCE REQUIREMENTS

• • • • • •

	ARAMETRIC PDINT COAL, LB/NW-HR SDRBANT OR SEEJ,L3/KW-HR COOLING WATER GASTFIER PROCESS H20 CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100HWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	33 •80967 •42340 •837 •694 •0000 •0593 •0887 •04751 •04751 •04751 •04750 19967 24-91 70-90 23-85	34 •22837 •43829 •777 -00005 •09075 •09000 118•74 72•54 27•16	35 .82458 .43695 .749 .00765 .049388 .049388 .0493888 .04938888 .0493888888888888888888888888888888888888	35 .81650 .43201 .843 .599 .00000 .00599 .0894 .04791 .04791 .00000 120.58 25.03 71.50 24.04	37 •82360 • 43575 • 930 • 783 • 60000 • 00839 • 0902 • 04833 • 00000 126•08 18•89 72•12 35•04	38 •81856 • 3310 • 755 • 00000 • 00907 • 00907 • 04903 • 00000 127•37 71•68 34•18	39 -81431 -430853 -00500 -00500 -00743 -00892 -04728 -000500 129-63 25-43 71-31 32-89	40 .89902 .47567 .000 .00833 .0985 .05900 .05900 .05900 .05000 199.82 20.00 78.73 101.09
	PARAHETRIC POINT	41	42	43	44	45	46	47	48
	COAL, LB/KW-HR SORBANT OR SEED=LB/KW-HR TOTAL WATER, 3AL/KW-HR GASIFIER, PROCESS 429 CONDENSATE MAKE UP ; MASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100HWE	• 39580 •47450 •159 •600 •00000 •00794 •0392 •05262 •00000 200•07	.99273 .77234 .157 .0000 .00726 .3978 .05238 .05238 .30900 199.81	.77413 .40959 .843 .704 .00000 .00848 .0948 .04542 .00000 109.32	77498 41004 823 584 30000 00814 9349 04547 30000 112,04	.77491 .41001 .787 .00000 .00755 .0849 .04547 .00000 115.89	•73960 •39132 •763 •630 •00856 •0910 •04348 •09000 104 •39	.74092 .39202 .745 .612 .00000 .00823 .0811 .04347 .00000 107.13	-74235 -39278 -714 -582 -00000 -00767 -0813 -00000 -015 -0813 -00000 -00000 -0813 -00000 -00000 -0813 -00000 -00000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -000
	MAIN PLANT Disposal Land	22.81 78.53	26.98 78.18	13.13 67.79	20.74 67.86	24.62 67.86	17.51 64.77	20.06	23.89
12-168	LAND FOR ACCESS RR	98.73	94.65	23.40	23.43	23.40	22.11	22.18	22,26
68	PARAMETRIC POINT COAL, LB/KH-HR	49	50	51	52	53	54	55	36
•••	SORBANT OR SEED+L3/KN-HR TOTAL WATER+ GAL/KN-HR	.97862 .11117 .884	.97637 .11092 .858	.97050 .11025 .813	1.29902	1.29605 12362 86_	1.28825 12287 817	00000 00000 000	00000. 000000 000
	GOULING HATER GASIFIER PROCESS H2D Condensate Make UP + Haste Handling Slurry Scrubber Maste Mater	805 00000 0034 0230 04752	730 00000 00797 0230 04751	.00000 .00735 .0228 .04723	807 00000 00935 0256 04754	781 00000 00799 0256 04744	737 00000 00736 0254 04715	0000 00000 00000 00000 00000	000 00003 00000 00000 00000
	NÖX SÜPPRESSIÖN Total Land Acres/100MWE Main Plant Disposal Land Land För Access Rr	19.14 28.08 28.15	00000 78,56 21.84 29.12 28.70	00000 78.96 25.81 27.85 25.30	00000 78.45 19.18 31.08 28.20	00000 81.65 21.88 31.01 28.76	08000 82.03 25.86 30.83 25.34	00000 00 00 00 00	-00000 -00 -00 -00 -00

BBRKPT PRINTS

.

12.8 References

- 12.1 R. G. Rincliff et al., "The Eddystone Story; Unit 1 Extends Power Plant Technology," Electrical World, March 11, 1963.
- 12.2 W. P. Gorgzegno and R. J. Zaschak, "Supercharging the Once-Through steam Generator," ASME Paper 64-PWR-15, September 1964.
- 12.3 D. L. Keairns et al, "Evaluation of the Fluidized-Bed Combustion Process - Volume I, Pressurized Fluidized-Bed Combustion Process Development and Evaluation," EPA-650/2-73-048a, December 1973.
- 12.4 N. Weeks, Westinghouse report 66-1D8-FLINJ-R2, 1966.

Appendix A 12.1 STEAM TURBINE PRICING AND EQUIPMENT CONFIGURATION

A 12.1.1 Basis for Turbine Pricing

It is common practice throughout the electric utility industry to price equipment from published list prices. Westinghouse has such a price list for steam turbine-generator units, a copy of which (for fossil units) is included in this appendix, (Subappendix AA 12.1.1).

Such a price list reflects primarily those units and specifications currently, or expected to be, accepted within the industry. This study, however, involved specifications relative to pressures and temperatures not entirely covered by this price list. Since the list is, in general, designed to reflect our costs, however, it has been possible by means of estimating costs for the higher-temperature applications to extend this price list to produce estimated turbine-generator prices for most of the future applications requested.

One convenient operation is to identify the price structure in terms of high-pressure components, low-pressure components, and generators. By identifying pricing modifications in these categories and adding them together in accordance with required modifications, a new selling price can be obtained.

The turbine selling price is obtained by adding the selling price of the low-pressure turbine to that of the front end of the turbine. The front end consists of an HP turbine, a combined HP-IP turbine or a separate HP and IP turbine. The front-end incremental list price is \$9/kW. This includes, as mentioned above, the HP, IP or combined HP-IP turbine, the digital EH controller, technical direction of installation (at \$0.36 kW + \$56,000), and the miscellaneous heat exchangers.

12-170

The generator list price is based on the incremental kVA list price of \$7.50/kVA. To relate this to kilowatts, multiply the kVA by 1.2, which translates into an incremental list price of \$9/kW. The generator price includes the generator frame itself; a brushless exciter; a voltage regulator; and the hydrogen, seal oil, and exciter air coolers. It also includes a stator water cooler if the generator is water cooled.

Since there are a large number of frames for front ends, heat exchangers, and generators when costs are plotted, they appear as a series of step functions. The steps over the wide range of kW are rather small and can be approximated by a straight line. The costs are then translated into a list price with the algorithm \$ = 18 kW + \$4,250,000. This means that for any kW rating, the front-end turbines and the generator are sold in accordance with the above algorithm for list price. The list price is subject to the current multiplier to obtain the net price, which includes the necessary charges for overhead and a reasonable profit for Westinghouse.

The low-pressure turbine list prices are shown on Table A 12.1.1. First, there is a base list price for each double-flow end. For the two-flow 0.724 m (28.5 in) end, it is \$4,600,000. Because miscellaneous items are added or subtracted, depending on the configuration, the base list price for a given end is modified for such a configuration. Table A 12.1.1 also shows the modified list price for a two-flow machine, and addition for the second element to comprise a four-flow machine, together with the total four-flow list price. Then it shows the addition for a six-flow machine together with the total six-flow list price.

The list price then consists of <u>large step</u> changes such as the low-pressure turbines and <u>small step</u> changes which are translated into a straight line algorithm. For a given megawatt rating, the purchaser has the option of selecting a small end at lower cost and higher heat rate, or a larger end at higher costs, but with lower heat rate, ind can then make his own evaluation as to which end to select. The front end and generator would not change, however, since they are strictly functions of kilowatt rating.

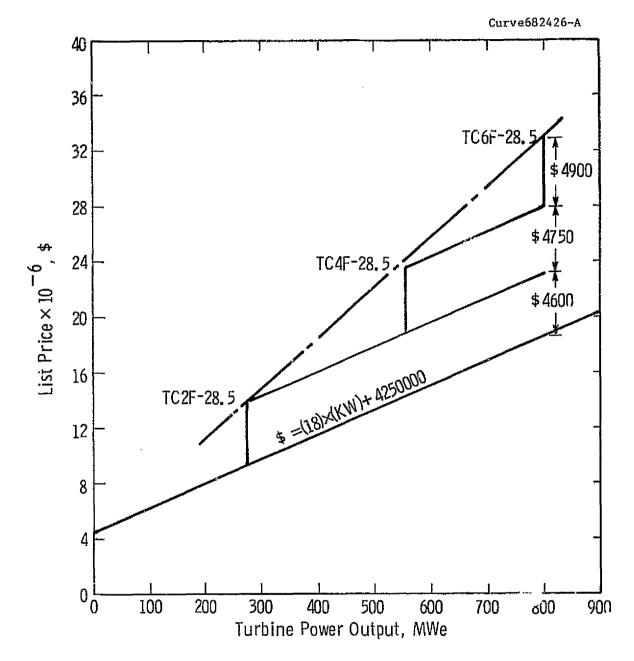


Fig. A 12.1.1-List price vs MW rating tandem-compound 3600 RPM 28.5 in end turbines

Table A 12.1.2 below shows how the list prices in Price List No. 1252 were constructed. The base megawatt ratings selected were nominal ratings at fairly light end loadings of the turbine. For an actual negotiation, the given low-pressure back end may be loaded up to its maximum limit and no additional charges made for the low-pressure end. Since the steam flow to the front end increases, however, the front end components are increased in size, and the increased cost must be reflected in the price. Increases in kilowatt rating start only from the listed base rating. For example, if a double-flow 0.635 m (25 in) end machine were rated at 250 MWe, there would be a charge of \$18/kW only for the additional 50 MW.

Figure A 12.1.1 shows schematically the base line and additions for a six-flow 0.724 m (28.5 in) end machine.

In making any modifications to the printed price lists, the same framework is kept, with any new or extrapolated items following the same pattern for increased costs.

The price additions for pressure and temperature were constructed in the same way - that is, taking into account the increased cost for materials or volumetric flow. Subsequently, the net selling prices and list prices were calculated on the basis of costs.

Table A 12.1.1 - List Price Built-up Low-Pressure Ends x 10⁻³, \$

LP End	<u>25 in</u>	<u>28.5 in</u>	<u>31 in</u>
Base (standard)	3,500	4,600	5,300
As Modified:			
2F	3,050	4,600	5,700
Add for 4F	3,950	4,750	5,550
TOTAL 4F	7,000	9,350	11,250
Add for 6F		4,900	5,500
TOTAL 6F	<u> </u>	14,250	16,750

Table A 12.1.2 - List Price No. 1252×10^{-3} , \$

LP End	Base MW	Base Cost (MW)18+4250	Add for LP End	<u>Total Lis</u> t
2-25	200	7,850	3,050	10,900
2-28.5	275	9,200	4,600	13,800
2-31	325	10,100	5,700	15,800
425	425	11,900	7,000	18,900
4.28.5	550	14,150	9,350	23,500
4-31	650	15,950	11,250	27,200
6-28.5	800	18,650	14,250	32,900
6-31	950	21,350	16,750	38,100

ş

A 12.1.2 Added Tables for Westinghouse Price List 1252

Table A 12.1.3 -	Basic List Prices fo Including Technical Freight;3600-RFM, Si	Direction of Insta	
Basic Unit Turbine Rating, kW	Generator Rating,	Turbinc Exhaust Ends	Basic List Price x 10 ⁻³ ,\$
325,000	390,000	2 - 23 in Hg abs*	16,200

4 - 23 in Hg abs* 27,900

* H denotes LRB designed for high exhaust pressures.

780,000

650,000

The turbine ratings as listed are the maximum guaranteed kilowatts at 27.090 kPa (8 in Hg) abs exhaust pressure and 3% makeup.

The turbines are suitable for operation at exhaust pressures up to 50.795 kPa (15 in Hg) abs.

Exhaust pressure and makeup correction factors to be used in a manner similar to those shown on page 6 of PL-1252 are as follows:

The second states and second

A State of the second se

Table A 12.1.4 - Exhaust Pressure and Makeup Correction Factors

Corrections for Exhaust Pressure		Corrections for Makeup		
Exhaust Pressure, in Hg abs	<u> </u>	Makeup, %	<u> </u>	
5.0	0.030	3.0	0	
6.0	0.020	2.0	0.003	
7.0	0.010	1.0	0.006	
8.0	0	0	0.009	
9.0	-0.010			
10.0	-0.020			
11.0	-0.030			
12.0	-0.040			
13.0	-0.050			
14.0	-0.060			
15.0	-0.070			

The maximum allowable exhaust flow is 123.48 kg/s (980.000 lb/hr/row) LRB at 27.09 kPa (8 in Hg) abs exhaust pressure with zero makeup flow and as otherwise defined in Exhaust Loading Limits of PL-1252.

Table A 12.1.5 Price Additions for Pressure, psig

Turbine Rating,kw	Initial Pressure Range, psig 4600-5000		
500,000	\$3,250,000		
900,000	\$4,000,000		

and the second second second second

Turbine <u>Rating</u> ,kW	Price Additic Initial Ten 1101-1200	ons x 10 ⁻³ ,\$ mp Range 1201-1400		ions x 10 ⁻³ ,\$ t Temp Range 1201-1400		ons x 10 ⁻³ ,\$ t Temp Range 1201-1400
500	15,000	45,000	15,000	30,000	35,000	70,000
900	15,000	45,000	20,000	40,000	35,000	70,000

all for a grand to search when the second second and the second and the second to the second to the second
an agus a

A 12,1.3 Discussion of Pricing

A 12.1.3.1 Introduction

The limiting factors in designing and building turbines with steam temperatures higher than 811°K (1000°F) in large ratings are the materials required to contain the high temperatures and the availability of these materials in the large quantities required.

Another problem which arises when the initial temperatures are greater than 811°K (1000°F) is that the inlet temperature to the low-pressure turbines exceeds 661°K (730°F), also a limiting factor.

The problem then is narrowed down to two specific areas. First, materials must be available to contain the high temperatures in the quantities required for the high-pressure portion of the turbine; and second, some method must be used to overcome the 661°K (730°F) inlet temperature limit to the low-pressure turlines.

Materials are available for the high-pressure portion of the turbine designed for 922 and 1033°K (1200 and 1400°F), but in relatively small quantities. The high-pressure elements would have to be designed with disk construction for the rotors, since it is anticipated that even in 1990 large ingots of the sizes required would not be available.

The prices in the attached summary assume that the technology will exist by 1990 to provide the materials required in the sizes and quantities required for at least the disks.

The prices in the summary do not include any money required for the development of various items listed where new technology is required, or for any capital investment required to produce the materials required.

It was assumed that turbines with a normal 294.3 Ms (30 yr) life were required.

A 12.1.3.2 Low-Pressure Elements

In those cases where the inlet temperature to the low-pressure turbines would have exceeded 661° K (730°F) using normal designs -- that

is, in every case where the last reheat temperature was either 922°K (1200°F) or greater -- the design philosophy was to take the temperature drop in an interposed intermediate pressure element so that the steam entering the low-pressure element would not see temperatures higher than 661°K (730°F). This requires that the low-pressure elements be designed with larger steam inlets because of the greater volumetric flow, and that the first few stages of blades be removed, down to the first extraction point. In pricing the low-pressure elements, it was assumed that the costs, and consequently price, do not change, because the omission of the blades would offset the additional cost of the larger steam inlets.

The temperature of a low-pressure element could be extended to 700°K (800°F) with a rotor heat soak, but this will not help much because the rotor would operate at lower temperatures than its transition temperature after start-up. This is another area where, if technology of metallurgy were improved to the point where materials are available for low-pressure rotors to take the higher temperatures, the design of the overall turbine would be simplified by eliminating some of the IP elements.

A 12.1.3.3 High-Pressure Elements

į

In addition to the problem of designing for temperatures greater than 811°K (1000°F), a less serious problem is that of pressures. This study will concern itself only with the 34.47 MPa (5000 psig) initial pressure, which is not in the current price list. For the 34.47 MPa (5000 psig) initial pressure, the only additional requirement over 24.13 MPa (3500 psig) design is an increase in wall thickness, which is directly proportional to the pressure ratio. For a thin wall cylinder, as an example, the following algorithm demonstrates the point:

Thickness, in = (Internal Pressure, psi)(Radius, in) (Allowable Stress Level, psi)

For this study, the pressure addition table has been extended and included in this report as Table A 12.1.5.

We can now address ourselves to the main problem --- that is, the high temperatures.

A 12.1.3.4 High Temperatures

The present technology for initial and reheat temperatures is based on 811 and 839°K (1000 and 1050°F). See Table A 12.1.7 for a list of these materials for the major components of a turbine.

For 922°K (1200°F) temperatures, the material problem is a little more acute, although the technology exists. The rotor forging availability is limiting. The materials are available only in small quantities. DISCALOY, the material used in the Eddystone turbine, is also subject to segregation on solidification of the rotor. Also, there is danger of stress corrosion of austenitic materials. The original DISCALOY forging for Eddystone No. 1 was melted in air. If done today, it would probably be melted in a vacuum furnace, which would help alleviate some of the metallurgical problems. This study is based on using refractaloy for 922°K (1200°F) materials.

The design of turbines for 1033° K (1400°F) temperatures is a little more difficult. Materials are available, but here again, size if the limiting factor. While castings do not represent as severe a problem, the rotor forgings are at present on the critical path. The heat limits production of good forgings. The materials used in this study for 1033° K (1400°F) is Waspaloy. The present limitation for Waspaloy ingots is 6350 kg (14,000 lb), or a billet of about 0.762 m (30 in) diameter by 3 m (118 in) long. It is assumed that by 1990, ingots of 907 kg (20,000 lb) will be available.

A 12.1.3.5 Configurations

Even with the limitations imposed by the materials, turbines can probably be designed and built. By isolating the high temperatures in separate elements, the high temperatures can be contained at the front end of the turbine and conventional elements can be used downstream. The number of elements required would be consistent with the largest element available based on the material quantities available.

The basis for pricing given in this report is the cost of the equipment supplied. For purposes of determining costs, configurations for

Temperature/Part	Туре	Material	Composition
1000/1050°F			
a. Rotor	F	Ferritic Alloy Steel	1-Cr 1-Mo 1/4-V
b. Blades	В	SS Type 422	12-Cr
c. Inner (yl. C	Cr-Mo Steel	2-1/4-Cr 1-Mo
d. Outer (yl. C	Cr-Mo Steel	1-1/4-Cr 1/2-Mo
1200°F			
a. Rotor	F	Refractaloy	18-Cr 40-Ni 20-Cr Fe
b. Blades	В	Refractaloy	
c. Inner (yl. C	Austenitic Alloy Steel Type 316	17-Cr 12-Ni 2-1/2-Mo
d. Outer (yl. C	Ferritic Alloy Steel	2-1/4-Cr 1-Mo
1400°F			
a. Rotor	F	Waspaloy	19-Cr 13-Co 4-Mo 3-Ti 1.3-Al 59.7-Ni
b. Blades	В	Udimet 500	19-Cr 18-Co 4-Mo 3-Ti3-A1 53-Ni
c. Inner (yl. C	Austenitic Alloy Steel Type 316	
d. Outer (y1. C	Austenitic Alloy Steel Type 316	

and and a state of the state o

Table A 12.1.7 - Materials

• ···

6. Sec.

C = Casting F = Forging B = Bar Stock

12-180

Sec. Sec.

the high-pressure portion of the turbines have been assumed and have been factored into the costs. All of the 500 MWe units were based on four-flow low-pressure ends, and the 900 MWe were based on six-flow low-pressure ends.

For purposes of this study, the high-pressure configurations will not be delineated into the number and size of cylinders or the type of cylinders and their pressure and temperature ranges. This is the practice followed in pricing the normal fossil product line. The front end for high-pressure elements could consist of a superpressure element, a VHP-HP element, an HP element, an IP element, or a combined HP-IP element. Where multiple cylinders were used in tandem, and the number of HP elements approached five or six elements, complications arose. For example, only one thrust bearing is permitted per shaft, and a long string of turbine elements complicated the situation. To overcome this problem, some of the turbines were designed and priced as cross-compound turbines. This step was taken where the preliminary configuration indicated that there were five or more elements in the high-pressure portion of the turbine. The main difference is that cross-compound units have two halfsize generators instead of one full-size generator. As far as the turbine is concerned, there is no physical change in weights and dimensions, other than having two separate shafts. All of the turbines would operate at 60 rps (3600 rpm).

A 12.1.3.6 Costing

Every element utilizing the high temperatures was costed by using empirical methods. Since the high-temperature material costs are much greater than 811°K (1000°F) materials, and since the working of the materials is difficult, the prices calculated include the labor and materials for the high-temperature elements; but the overheads were included only as a fixed dollar value and not as a factor on the entire element.

One reference for costing where existing cylinders were not applicable was the Philadelphia Electric Company's Eddystone No. 1 turbine.

The Eddystone No. 1 machine is a two-flow, 1.12 m (44 in) crosscompound machine rated at 325 MWe. It was shipped in July 1958 and consists of two LP elements, each a single-flow 1.12 m (44 in) end machine operating at 1800 rpm, and a superpressure element, a VHP-HP element and an IP element for the HP portion of the turbine. Initial pressure is 34.474 MPa (5000 psig) and the initial temperature is 922°K (1200°F). The throttle flow is 252 kg/s (2 x 10^6 lb/hr). This unit has a first reheat temperature of 839°K (1050°F) and a second reheat temperature at 839°K (1050°F). The Eddystone No. 1 turbine used a DISCALOY rotor weighing approximately 1587.6 kg (3500 lb). The shell is a ferritic alloy cast steel, Type 316. The nozzle and inlet steam pipings are castings of austenitic steel, Type 316. All parts in contact with the 34.474 MPa (5000 psig), 922°K (1200°F) steam are Type 316 alloy steel. ₹ Î

The outer shell of the VHP-HP element is 1 Cr, 1/2 Mo alloy steel. The inner shell or blade ring for the VHP section is 2-1/4 Cr, 1 Mo, 1-1/4 V alloy steel.

A 12.1.3.7 Price List Tables

The pricing of the turbines and generators for the Advanced Steam Systems was done within the framework of existing Westinghouse price lists. After the configurations were costed, new tables were developed for the higher temperature (Table A 12.1.6) and pressure (Table A 12.1.5) as extensions of existing price lists. A new table is included for the high back-pressure turbines (Tables A 12.1.3 and A 12.1.4.)

Of all the items supplied in the T-G Bill of Material, as detailed in the price list, the generator, TD of I, miscellaneous heat exchangers, turbine control system and generator control system are not affected by the high initial temperature or the pressure. The existing price list can be used for these, in addition to any other extra features and accessories required.

A 12.1.3.8 Prices

The prices given are the net selling prices, or customer costs, which were in effect for shipments made in mid-1974. These were based on the list price times the multiplier of 0.57, which was a typical billing multiplier for that period. The multiplier for turbines ordered in mid-1974 for delivery before mid-1977 is 0.71. Prices on deliveries made after this date are subject to escalation. This study assumed delivery of steam turbines ordered in mid-1974 and delivered during the two-year fixed price period. To correct to prices for units ordered in mid-1974, the prices given must be multiplied by 1.2456.

A 12.1.4 Summary of Pricing for 500 MW and 900 MW Turbine-Generators

The following tabulations are summaries of prices for the items requested. For the 500 MW T-G, there are 28 propositions listed. In addition, to those requested, the Steam Turbine Division added two other propositions: Item 5-I and 7-I. All of the propositions are based on a 6.773 kPa (2 in Hg) abs back pressure. However, Items 1, 9, 16, 17, and 20 were also priced with 11.852 kPa (3.5 in Hg) abs back pressure and 30.477 kPa (9 in Hg) abs back pressure. Item 1, the 68.947 MPa (10,000 psig) initial pressure turbine is listed in the tabulation but was not priced.

In seven of the cases, the prices could be prepared from existing price lists without modifications.

For the 900 MWe turbine, the same item numbers were kept, based on initial conditions of the steam to the turbine. These are Items 2-5, 8-11, 16, and 17. Four of these items could be priced directly from our existing price lists. All of these propositions were prepared with 6.773 and 11.852 kPa (2 and 3.5 in Hg) abs back pressure.

The typical price list calculation is shown below. For the 500 MWe plant, a 600 MVA generator was selected with a 0.90 power factor (pf) and 0.58 short circuit rating (SCR). For the 900 MWe plant, a 1080 MVA generator was selected.

For the 500 MW_e plant, a TC4F 0.635 m (25 in) turbine was used for the ll.852 kPa (3.5 in Hg) abs back pressure; a TC4F 0.724 m (28.5 in) turbine was used for the 6.773 kPa (2 in Hg) abs back pressure and a TC4F 0.584 m (23 in) turbine was used for the 30.477 kPa (9 in Hg) abs back pressure. The high back-pressure price list is one of the additions to the regular printed price lists.

For the 900 MWe plant, a TC6F 0.724 m (28.5 in) turbine was used for the ± 1.852 kPa (3.5 in Hg) abs back pressure and a TC6F 0.787 m (31 in) turbine was used for the 6.773 kPa (2 in Hg) abs back pressure. There were no propositions for the 30.477 kPa (9 in Hg) abs back pressure.

All of the prices include a generator neutral enclosure.

Table A 12.1.8 - Typical Price Calculation, 500 MW - Item 3

Guaranteed Rating - 500,059 kW @ 2 in Hg abs and 0% makeup Correction for Back Pressure and Makeup - 1.000-0.015-0.009 = 0.976 Pricing Rating - 500,059 x 0.976 = 488,050 kW Use 488,000 kW for study Base Price kW - 500,000 MW Generator Rating - 600,000 kVA Base Generator kVA - 660,000 kVA Exhaust End - TC4F - 28.5 $\frac{\text{Pricing x 10}^{-3}, \$}{23,500}$ I. Base Price - TC4F - 28.5 II. kW Adder at \$9,00/kW (488,000-500,000) 9.00 (--) 558 (-) 450 III. kVA Adder at 7.30/kVA (600,000-660,000) 7.50 3,250 IV. Pressure Adder, 5000 psig Temperature Adders Initial Temp. 1200°F 15,000 ٧. lst Reheat Temp. 1200°F 15,000 35,000 2nd Reheat Temp. 1200°F 2,500 VI. Cross-Compounding VII. Accessories Gen. Neutral Enclosure 36 93,278 Total List Price 53,168 Total Net Price (0.57 mult.)

Table A 12.1.9 - Pricing Summary 500 MWe

	Initial		÷.		0.1	107/ N.A. 0-	11	10-3 6 #	
Item	Press, Psig	Initial T,°F	lst Rht,°F	2nd Rht,°F	3rd Rht,°F	<u>1974 Net Se</u> 2 in Hg abs	11ing Prices x 3.5 in Hg abs	10 , Ş ^r 9 in Hg abs	Remarks
1	10000	1000	1000	1000	1000				
2	5000	1.000	1000	1000		15,635		,	
3	5000	1200	1200	1200		53,168	•		Cross-compound
4	5000	1400	1400	1400		98,768			Cross-compound
5	5000	1000	1200	1200		44,618		•	Cross-compound
- 51	5000	1000	1200	1400		64,568			Cross-compound
6	5000	1000	1000	1400		56,018			Cross-compound
7	3500	1000	1000	1000		13,811			• •
71	3500	1000	. 1000	1000	· · ·				·
8	3500	1000	1200	1200		42,774			Cross-compound
9	3500	1000	1000	THOO		12,849	11,545	14,385	
10	3500	1200	1200		•	29,949			
11	3500	1400	1400		•	55,599			
12	3500	1000	1200			21,399		1 1. 1 1	
13	3500	1000	1400			29,949			
	3500	1200	1400			38,499			
14			1400			41,349	· · · · · · · · · · · · · · · · · · ·	1 D	
15	3500	1400	1000	· · · ·	•	12,901	11,608	14,453	,
16	2400	1000	1000	•		· · · ·	· · · · · · · · · · · · · · · · · · ·	31,553	
17	2400	1200	1200			30,001	28,708	01,000	
18	2400	1400				41,401		1	
19	2400	1000	1200		•	21,451		10.100	
20	2400	1200	1400		· · · ·	38,551	37,258	40,103	

* For units shipped in 1974.

Table A 12.1.1(- Pricing Summary 900 MWe

		Initial							
•	Item	Press, Psig	Initial T,°F	lst Rht,°F	2nd Rht,°F	<u>1974 Net Selli</u> 2 in Hg abs	ng Prices x 1 3.5 in Hg a	10 ⁻³ ,\$* abs	Remarks
	2	5000	1000	1000	1000	24,593	23,247		
	3	5000	1200	1200	1200	64,562	63,152		Cross-compound
	4	5000	1400	1400	1400	113,012	111,602	- 14 -	Cross-compound
	7	3500	1000	1000	1000	22,313	20,967	۰.	
	8	3500	1000	1200	1200	53,732	52,322	•.	Cross-compound
	9	3500	1000	1000		21,128	19,775		
	10	3500	1200	1200		41,078	39,725		
	11	3500	1400	1400		69,578	68,225		
1 	16	2400	1000	1000		21,767	20,442		
	17	2400	1200	1200		41,717	40,392		en anterior de la constante de La constante de la constante de La constante de la constante de

* For units shipped in 1974.

Subappendix AA 12.1.1 PRICE LIST 1252

液隙

د **زرچ شیار ک**ر

Price List 1252 Page .01

Steam Turbine Generator Units

Condensing Non-Reheat and Reheat Double Flow 25-inch Last Row Blades and Larger

Index Subject	Pages		d is revi ist 1252,	
Conditions of Sale • • • • • • • • •	1-6		generato	
General Information	7		s Price L	ist 12
Steam Turbines	8-9	July 1,	1974.	•
Standard Features and Accessories. Ac Generators	10-13 14-15	The fel	lowing is	
Standard Features and Accessories	16-18	current	pages an	d thei
Excitation Systems	19		P=3=	
Standard Features and Accessories.	19-20	Price	Pages	Da
Price		List		
Basic List Prices	21			
Special Turbine Equipment	22-24	1252	1,2	Octol
Special Generator Equipment	25	1252	3,4	Octol
Special Excitation Equipment	26	1252	5,6	Octol
Weatherproofing	27	1252	7,8	Octol
Special Accessories, Turbine	29	1252	9,10	Octol
Special Accessories, Generators	31	1252	11,12	Octo
· · · · · · · · · · · · · · · · · · ·		1252	13,14	Octo
		1252	15,16	Octol

lestinghouse ring large Please destroy 252 dated

bulation of ir dates:

Price List	Pages	Date		
1252 1252 1252 1252 1252 1252 1252 1252	1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16 17,18 19,20 21,22 23,24 25,26 27,28 29,30	October October October October October October October October October October October October October October	30, 30, 30, 30, 30, 30, 30, 30, 30, 30,	1974 1974 1974 1974 1974 1974 1974 1974
1252	31,32	October		1974

Westinghouse Electric Corporation Steam Turbine Division Philadelphia, Pennsylvania 19113 Printed in U.S.A.

October 30, 1974 Supersedes Price List 1252, Page .01 dated July 1, 1974 E,C/1683/PL

Conditions of Sale

DSalling Policy (Price Adjustment) The price of the equipment is subject to adjustment upward or downward for changes in labor and materials costs and changes in the GNP Defletor. This adjustment will apply to each payment, which is due in August 1976 and later, and will be determined in accordance with the following method;

A. Definitions

For the purpose of this price adjustment provision only, the following definitions apply:

Labor Index will be the final Average Hourly Earnings in the Steam Engine and Turbine Industry (SIC-3511) published by the Bureau of Labor Statistics, U.S. Department of Labor, for "Employment and Earnings."

Material Index will be the final Iron and Steel Index (Code 101) published by the Burear of Labor Statistics, U.S. Department of Labor, in "Wholesele Prices and Price Indices."

GNP Deflator will be the Gross National Product Implicit Price Deflator published by the U.S. Department of Commerce in the Survey of Current Business for the third quarter of 1976 or the calendar quarter which contains the Reference Month.

Base Labor Index and Base Material Index

Each Base Index will be determined by averaging that index for the months of June, July and August, 1976.

Base GNP Deflator is that for the third quarter, 1976.

Reference Month will be the month in which the payment to be adjusted is due.

B. Lebor Adjustment Component

For the purpose of adjustment, the proportion of each payment representing Labor is established as 50 percent.

The above amount representing Labor will be adjusted for changes in labor costs. The Base Labor Index will be compared with the 'abor Index for the Reference Month and a percentage increase or decrease will be determined. The adjustment for changes in Labor will be calculated by multiplying such percentage of increase or decrease by the amount of the payment representing Labor, as indicated above, and the result will be the increase or decrease in the payment.

() Changed since provious issue.

Prices effective October 30, 1974; subject to change without notice.

C. Materials Adjustment Component For the purpose of adjustment, the proportion of each payment representing Material is established as 40 percent.

The above amount representing Material will be adjusted for changes in material costs. The Base Material Index will be compared with the Material Index for the Reference Month and a percentage increase or decrease will be determined. The adjustment for changes in Material will be calculated by multiplying such percentage of increase or decrease by the amount of the payment representing Material, as indicated above, and the result will be the increase or decrease in the payment.

D. Profit and Overhead Adjustment Component

For the purpose of adjustment, the proportion of each payment representing Profit and Overhead is established as 10 percent. The above amount representing Profit and Overhead will be adjusted for the rate of inflation or deflation. The Base GNP Deflator will be compared with the GNP Deflator for the Calendar quarter which contains the Reference Month and a percentage increase or decrease will be determined. The adjustment for changes in Profit and Overhead will be calculated by multiplying such percentage of increase or decrease by the amount of the Payment representing Profit and Overhead, as indicated above, and the result will be the increase or decrease in the payment.

E. General

A provisional adjustment will be made to the Labor, Material, and Profit and Overhead content of each payment at the time of billing. This adjustment will be calculated as in paragraphs B, C and D using the Westinghouse estimate of the Labor Index and Material Index for the Reference Month and GNP Deflator for the c lendar quarter which contains the Reference Month. Revisions to this provisional adjustment, if necessary, will be made at the time the final indices are published. If a published final index is revised within one month of initial publication, the revised final index will be used for purposes of price adjustment. No other adjustment will be recognized for changes in Labor, Material or GNP Deflator.

The Base Labor index will be determined to the nearest second dacimal place. The Base Material index will be determined to the nearest first decimal place. The Base GNP Deflator will be determined to the nearest second dacimal place. Labor, Material, and Profit and Overhead percentage increase or decrease will be calculated to Prico List 1252 Page 1

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

the nearest one-tenth of one percent. In any case, if the next succeeding place is five or more, the preceding decimal place will be raised to the next higher figure.

Changes in the base year(s) reporting basis, minor changes in the weighting and minor changes in benchmarks will not be construed as substantial modification to the indices. Price adjustments will be calculated such that Base indices are consistent with current indices reported by the U.S. Government.

Should the specified indices be discontinued, or should the basis of their calculation be substantially modified, proper indices will be substituted by mutual agreement of Purchaser and Westinghouse.

Payments due and payable after the month of shipment shall be adjusted through the month of shipment.

In the event of a change in contract price, the revised contract price shall be considered as having been in effect from the date of the original commitment for the purpose of price adjustment. The resulting increase or decrease in contract price will be reflected in payments due and payable beginning one month after agreement on the change in price. The first such payment on the basis of the revised contract price shall include a lump sum payment to account for the difference between payments already made by the Purchaser, and the payments (including price adjustment), which would have been due and payable had the revised contract price been in effect from the date of the original commitment.

Except as provided below, this Selling Policy is applicable to each turbine-generator scheduled for shipment in July, 1981 or earlier. For each turbine-generator scheduled for shipment in August, 1981 or later the price of such turbine-generator shall be determined by the Westinghouse Selling Policy which first becomes effective for such shipment.

This Selling Policy is also applicable to each turbine-generator on a multiple unit order for duplicate units provided the scheduled shipment date(s) is July, 1984 or earlier and provided further that at least one (1) turbine-generator is scheduled for shipment in July, 1981 or earlier. For each turbine-generator on such order scheduled for shipment in August, 1984 or later the price of such turbine-generator shall be determined by the Westinghouse Selling Policy which first becomes effective for such shipment.

October 30, 1974

Supersodes Prico List 1262, dated July 1, 1974 E, C/1683/PL

ant histor al hada maanada hadiinaa dhadan Mantakana ah hada ah ah ah <mark>aan maraana da haraa ah ah ah ah da</mark>

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Conditions of Sale, Continued

For the purpose of Selling Policy the shipment date is defined as the date the last of the following parts is transferred to the carrier: bearing pedestals, outer and inner turbine cylinders and generator stator.

OCuotations

Quotations will expire sixty days after the date of quotation. Should Westinghouse announce a price increase prior to the expiration of the 60 day quotation validity period, then the quotation will expire in accordance with the provisions of such announcement.

OTaxes

The price does not include any Federal, state or local property, license, privilege, sales, use, excise, gross receipts or other like taxes which may now or hereafter be applicable to, measured by or imposed upon or with respect to the transaction, the property, its sale, its value or its use, or any services performed in connection therewith. Purchaser agrees to pay or reimburse any such taxes which Westinghouse or Westinghouse's subcontractors or suppliers are required to pay.

OTerms of Payment

Payment shall be made in U.S. dollars by the Purchaser to Westinghouse in accordance with the following standard terms of payment:

- a. 1% of the contract price, as adjusted by the Selling Policy, in each of the first six calendar months after the date of Written Release
- b. 2% of the contract price, as adjusted by the Selling Policy, in each of the 24th through the 13th calendar months prior to the month of scheduled shipment.
- c. 3.5% of the contract price, as adjusted by the Selling Policy, in each of the 12th through the 7th calendar months prior to the month of scheduled shipment.
- d. 6% of the contract price, as adjusted by the Selling Policy, in each of the 6th through the 1st calendar months prior to the month of scheduled shipment.
- e. 6% of the contract price, as adjusted by the Selling Policy, together with all unpaid adjustments in the month of scheduled shipment.
- f. 5% of the contract price, as adjusted by the Selling Policy, 60 days after the shipment date.

① Changed or added since previous issue.

Westinghouse Electric Corporation Steam Turbine - ivision, Philadelphia, Pa. 19113 Printed in USA

g. 2% of the contract price, as adjusted by the Selling Policy, together with all remaining unpaid adjustments one year after the shipment date.

Each of the payments detailed in "a" through "e" above shall be due and payable on the 15th day of the month in which they are due.

In the event that Purchaser and Westinghouse agree to a date of Written Release less than 30 months prior to scheduled shipment, the Purchaser shall make uniform percentage payments from the month of Written Release through the 13th month prior to scheduled shipment so that a cumulative total of 30% of the contract price, as adjusted by the Selling Policy, is paid by the 13th month before scheduled shipment.

Unless otherwice agreed, no payment shall be deemed to constitute an acceptance of the equipment or a release of any responsibility on the part of Westinghouse.

For the purpose of Terms of Payment the shipment date is defined as the date the last of the following parts is transferred to the carrier: beering pedestals, outer and inner turbine cylinders and generator stator.

If the Purchaser requests minor changes in terms of payment less favorable to Westinghouse than the standard terms of payment above, and where the proposed minor changes are acceptable to Westinghouse, a time-price differential will be charged as outlined below.

1. Westinghouse will require payment of a time-price differential (equal to 15 percent per annum) compounded annually on the difference between the contracted terms of payment and the standard terms of payment outlined in "a" through "g" above.

2. The time-price differential shall be established prior to the date of Written Release and shall be added to the contract price. The price adjustment provisions of the Selling Policy shall not be affected by such change in terms of payment.

There will be no reduction in price for terms of payment which are more favorable to Westinghouse than the standard terms of payment.

OPayments

ien ie werden bewegen versten en in die stere eine werden in het het here het die en ere er er er die die ster

If, in the judgement of Westinghouse, at any time during the manufacturing period, or at the time the equipment is ready for shipment, reasonable grounds for insecurity arise with respect to the ability of Purchaser to make payment as required, Westinghouse may in writing demand adequate assurance of payment and until Westinghouse receives such assurance it may suspend manufacture or shipment.

If Purchaser and Westinghouse agree to change the shipping date to a date earlier than originally scheduled, Purchaser shall make a payment on the 15th day of the month following the date of change, which payment shall include the difference between the payments already made by the Purchaser and the payments, including price adjustment, which would have been due by the 15th day of month following confirmation by Westinghouse of the earlier shipping date had the Purchaser selected the earlier shipping date at the time of the Written Release. All subsequent payments shall be based on the revised (earlier) shipping date.

OSuspension or Extension

At any time prior to twelve months from the previously scheduled shipping date Purchaser may by written notice to Westinghouse request a later shipping date. If Westinghouse agrees to the revised shipping date Purchaser shall pay to Westinghouse, within fifteen days of notice to Purchaser of the revised shipping date, the difference between the value of the work performed (based upon the contract price, as adjusted by the Selling Policy, and percentage completion) and the sum of the payments made prior to the date of revision. Upon establishment of a revised shipping date the contract price shall be increased to reflect the costs resulting from the extension. With the establishment of a revised shipping date and contract price a new payment schedule will be determined assuming that the revised shipping date and contract price had been in effect from the date of Written Release. Purchaser will resume payments when the cumulative payments (including price adjustments) which are due and payable based on the revised shipping date and contract price are equal to or greater than the payments already made. The revised shipping date will be based on appropriate considerations including, but not limited to, Westinghouse's commitments to other customers, engineering work load, and the availability of labor, materials and manufacturing space.

At any time prior to twelve months from the previously scheduled shipping date Purchaser may by written notice to Westinghouse request suspension of manufacture of all or part of the equipment. If Westinghouse agrees to the suspension, Purchaser shall pay to Westinghouse, within fifteen days of notice to Purchaser of acceptance of the suspension, the difference

Conditions of Sale, Continued

between the value of the work performed (based upon the contract price, as adjusted by the Selling Policy, and percentage comoletion) and the sum of the payments made prior to the date of acceptance of the suspension. When suspension is accepted by Westinghouse further payments under the Terms of Payment will be discontinued until the Purchaser requests Westinghouse to resume work. Prior to resumption of work the contract price shall be increased to reflact the costs resulting from the suspension. With the establishment of a revised shipping date and contract price a new payment schedule will be determined assuming that the revised shipping date and contract price had been in effect from the date of Written Release. Purchaser will resume payments when the cumulative payments (including price adjustments) which are due and payable based on the revised shipping date and contract price are equal to or greater than the payments already made. The payment which is due on the 15th day of the month following resumption of work will, if necessary, be increased to make the total amount paid and due by said 15th day equal to the total payments (including adjustments in accordance with the Selling Policy) required by the new payment schedule. When Purchaser directs Westinghouse to resume work the revised shipping date will be established based on appropriate considerations including, but not limited to, Westinghouse's commitments to other customers, engineering work load and the availability of labor, materials and manufacturing space.

If as a result of extension or suspension the revised shipping date is later than the date which qualifies the unit covered by the contract for the Selling Policy contained in the contract, then the price shall be determined by the Selling Policy which first becomes effective for such shipment.

Within 12 months of the scheduled shinping date, extension of the shipping date or suspension of manufacture is not permitted and payments will continue on the basis of the previously established shipping date. Westinghouse will continue manufacture of the equipment and when completed will ship the equipment to the Purchaser or to a suitable storage location selected by Purchaser. Purchaser shall reimburse Westinghouse for any additional expenses incurred by Westinghouse including but not limited to preparation for placement into storage, inspection, shipment to the

Changed since previous issue,

Prices effective October 30, 1974; subject to change without notice.

Service and a support of the service and and and the service of the service and the service of the service of the

Purchaser's storage site and any necessary rehabilitation prior to installation.

Written Release

Unless otherwise agreed upon by Purchaser and Westinghouse, the Purchaser shall by written notice to Westinghouse release each Turbine Generator for engineering and manufacture not later than 30 months prior to its scheduled shipping date.

OTitle

For the purpose of title passage, legal and equitable title to each component or item of equipment shall pass upon transfer of component or item to the carrier at the point of shipment.

ORisk of Loss

Risk of loss or damage for each component or item of the equipment shall pass to Purchaser upon arrival of each component or item of the equipment on board the common carrier (a) at the railsiding nearest the Purchaser's plant site for equipment shipped by rail and (b) at the Purchaser's plant site for equipment shipped by truck.

OTransportation

Shipment will be made f.o.b. point of shipment, freight (not exceeding regular charges of the normally selected common carrier) prepaid and included in the price (including trucking at the option of Westinghouse) to: (1) rail siding nearest to the installation site or; (2) if the installation site is outside the United States or is in Alaska or Hawaii, to the rail siding nearest to the point of commencement of overseas shipment. Any charges resulting from the use of a method or routing required by the Purchaser and not normally selected by Westinghouse and any charges for cial services (such as, but not necessal y limited to special trucking, special trains, barging, lighterage, or construction or repair of transportation facilities) will be paid or reimbursed by the Purchaser.

ODelay

Shipping dates are based on prompt recelpt of all necessary information and approvals from the Purchaser. Westinghouse shall not be liable for failure to perform or for delay in performance due to fire, flood, strike or other labor difficulty, act of any governmental authority or of the Purchaser, riot, embargo, car shortage, wrecks or delay in transportation, inability beyond its control to obtain necessary materials, or manufacturing facilities from usual sources, or due to any other causes beyond the reasonable control of

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Westinghouse, its suppliers and subcontractors, of any tier.

In the event of delay in performance due to any such cause, the date of delivery or time for completion will be postponed by such length of time as may be reasonably necessary to compensate for the delay.

In the event of any delay due to causes beyond the control of Westinghouse, its suppliers and subcontractors, of any tier, such as those contained in the above paragraph, or to any causes within the reason-able control of Westinghouse, its suppliers and subcontractors, of any tier, all payments made thereafter shall be paid and adjusted in accordance with the new shipping date.

OWarranties A. Equipment

Westinghouse warrants that the equipment to be provided will conform to all specifications (including those relating to performance) which are part of the contract, will be free of defects in workmanship or material, and will be designed and fit for the purpose of generating electric power.

If any failure to conform to the foregoing warranties appears before twelve months after the date of initial synch-unization (provided synchronization is not unreasonably delayed by the Purchaser or others) and Purchaser gives Westinghouse prompt written notice of such non-conformity and makes the apparatus available for correction, then Westinghouse shall correct such nonconformity by suitable repair or replacement at the option of Westinghouse and at its expense. The cost of field labor directly associated with such repair or replacement of the equipment provided under the contract shall be borne by Westinghouse. This obligation for field labor is limited to the equipment provided under the contract and does not include the cost of removing or replacing parts, equipment and/or structures not furnished under the contract.

B. Technical Direction of Installation Westinghouse warrants that the Technical Direction of Installation to be provided hereunder for installation of the equipment will be competent and non-negligent.

If any portion of the equipment furnished under the contract is damaged as a direct result of incompetent or negligent Techry cat Direction of Installation before twelve months after the date of initial synchronization (provided synchronization is not unreasonably delayed by the Purchaser or others) and Purchaser gives Westinghouse prompt written notice of su 'i damage before twelve (12) months after the date of initial synchronization and makes the equip-

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

Price List 1252 Page 4

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Conditions of Sale, Continued

ment available for correction, then Westinghouse shall repair or replace at its option and expense any portion of the equipment furnished under the contract that has been so damaged. The cost of field labor directly associated with such repair or replacement of the equipment furnished under the contract shall be borne by Westinghouse. This obligation for field labor is limited to the equipment supplied under the contract and does not include the cost of removing or rr placing parts, equipment and/or strucures not furnished under the contract.

In no event shall Westinghouse be responsible for any damage caused, in whole or in part by (a) Purchaser, its employees, contractors, or their employees, agents, or subcontractors, (b) failure to observe Westinghouse's field representatives' instructions, (c) failure or malfunctioning of any tools, equipment, facilities, or devices not provided by Westinghouse, or (d) the failure of equipment, the installation of which was not observed or approved by the Westinghouse field representative.

C. Conditions

The following conditions apply to both the Equipment and Technical Direction of Installation Warranties:

- Westinghouse will not be responsible for any failures to conform to the warranties detailed herein that are caused by failure of the Purchaser or his agents to store, install, operate, inspect or maintain the equipment in accordance with the recommendations of Westinghouse, (including the applicable quality assurance requirements for installation), and with reco-mized industry practice,
- 2. If prior to the expiration of the above stated warranty period, the equipment is not available for operation due to a failure to meet the warranties, such time of unavailability shall not be counted as part of the warranty period. Provided, however, that Westinghouse shall not be responsible for any failure to conform to these warranties which appears more than eighteen months after the date of initial synchronization.
- The warranty on repaired or replaced parts will be on the same terms and conditions as set forth above and will extend from the date of such repair or replacement.

① Changed since previous issue.

Westinghouse Electric Corporation

Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

4. The foregoing warranties are exclusive and in lieu of all other warranties of quality whether statutory, express, or implied (including any warranty of merchantability or fitness for purpose). Correction of non-conformities in the manner and for the period of time provided above shall constitute Westinghouse's sole liability, and the Purchaser's exclusive remedy for failure of Westinghouse to meet its warranty obligations whether claims of the Purchaser are based in contract, in tort, or otherwise.

OLimitation of Liability

Neither Westinghouse nor its suppliers or subcontractors, of any tier, shall be liable in contract, in tort (including negligence), or otherwise, for damage or loss of other property or aquipment, loss of profits or revenue, loss of use of power system, expenses involving costs of capital, cost of purchased or replacement power (including additional expenses incurred in using existing power facilities), claims of customers of Purchaser for service interruptions, or any special, indirect, incidental, or consequential damages.

The remedies of the Purchaser set forth herein are exclusive, and the total liability of Westinghouse with respect to any contract, or anything done in connection therewith such as the performance or breach thereof, or from the manufacture, sale, delivery, installation or technical direction of installation, repair or use of any equipment covered by or furnished under the contract whether in contract, in tort (including negligence), or otherwise, shall not, except as provided under the Warranty and Patents clauses, exceed the amount of the billing price of the unit out of which the liability arises; provided however that the sole liability of Westinghouse for claims involving defective or damaged equipment furnished under the contract, will be the correction of such defect or damage but in no event, except as provided under the Warranty clause, shall the correction exceed the amount of the billing price of the unit out of which the liability arises. All liability of Westinghouse shall, in any event, terminate four years after initial synchronization of the equipment.

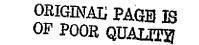
Patents

Subject to the following provisions, Westinghouse shall at its own expense, defend or at its option settle any claim, suit or proceeding brought against the Purchaser, and/or its vendees, mediate and immediate, so far as based on an allegation that any goods, material, equipment, device or article (hereinafter referred to as product) or any part thereof furnished hereunder constitutes a direct or a contributory infringement of any claim of any patent of the United States. This obligation shall be effective only if Purchaser shall have made all payments then due hereunder and if Westinghouse is notified promptly in writing and given authority, information and assistance for the defense of said claim, suit or proceeding. Westinghouse shall pay all damages and costs awarded in such suit or proceedings so defended. In case the product or any part thereof furnished hereunder becomes the subject of any claim, suit or proceeding for infringement of any United States patent, or in the event of an adustication that such product or part infringes any United States patent, or if the use or sale of such product or part is enjoined, Westinghouse shall, at its option and its own expense, either:

- (a) procure for the Purchaser the right to continue using said product or part thereof; or
- (b) replace it with a non-infringing product; or
- (c) modify it so it becomes non-infringing.

The foregoing indemnity does not apply to the following:

- Patented processes performed by the product, or another product produced thereby.
- Products supplied according to a design other than that of Westinghouse and which is required by the Purchaser.
- Combinations of the product with another product not furnished hereunder unless Westinghouse is a contributory infringer.
- Any settlements of a suit or proceeding made without Westinghouse's written consent.


The foregoing states the entire liability of Westinghouse with respect of patent infringement by said product or any part thereof.

If a suit or proceeding is brought against Westinghouse solely on account of activities enumerated in paragraphs 1, 2 and 3 above, Purchaser agrees to indemnify Westinghouse in the manner and to the extent Westinghouse indemnified Purchaser in the preceding paragraph insofar as the terms thereof are appropriate.

OTermination

Any contract may be terminated by the Purchaser only on written notice and upon payment of reasonable and proper termination charges. Payments received by West-

12-193

hand Department of an and the product of the contraction of the contraction of the second with the second with the second
Westinghouse

Conditions of Sale, Continued inghouse prior to the date of termination will be credited to the amount due as ter-

mination charges. Any such termination occuring prior to the date of Written Release will be without

the date of Written Release will be without charge provided the planned generation expansion which would utilize the equipment covered by the contract, be abandoned or cancelled.

OAcceptance Tests

If tests are made after erection to demonstrate the ability of the unit to operate under the contract conditions and fulfill the warranties set forth herein, the conditions of test and methods employed will be mutually agreed upon within the framework of the ASME power test code.

Westinghouse will be notified and will have the right of representation at the acceptance tests. To insure the equipment being in proper adjustment and in condition to undergo tests, Westinghouse may require preliminary tests made under Westinghouse's general direction.

OPrice Itemization

When prices are quoted for a turbine generator unit along with other power plant or system equipment, the price and terms of payment for the turbine generator including accessories will be listed separately.

OChanges

The Purchaser may request changes in the unit type, rating or steam conditions or in the accessory items being purchased hereunder. Westinghouse reserves the right to accept or reject any such change but shall exert every reasonable effort to comply with the requests of the Purchaser. The prices and conditions of sale for such changes and accessories will be established on the same basis as the turbine generator contract. Provided however that should such a request be made after release by Purchaser for engineering, Westinghouse reserves the right to require an additional increase in the contract price to reflect the expenses of re-engineering and manufacturing re-work, and to adjust other appropriate provisions of the contract.

The prices for the equipment supplied under the contract are based upon the Westinghouse design criteria and manufacturing processes in effect as of the date of the bid. Should the Purchaser require changes in the Westinghouse design criteria and/or manufacturing processes to meet requirements established by the Purchaser or by any federal, state or local governmental agency, the ① Changed since previous issue.

Prices effective October 30, 1974; subject to change without notice.

price, shipment and other conditions of sale will be adjusted accordingly.

©Compliance with Laws

The Contract price is based on designing and manufacturing the equipment supplied under the contract in accordance with Westinghouse design criteria, manufacturing processes and quality assurance programs in effect on the date of the bid, and in compliance with all applicable Federal laws, rules and regulations thereof in effect on the date of the bid. Unless otherwise stated in the contract, the contract price is based on compliance with those provisions of State and local laws, rules and regulations thereof which were, prior to the date of the bid, identified in writing by the Purchaser as applicable to the equipment or services to be furnished under the contract.

In the event that; (a) Federal laws, rules and regulations enacted and/or effectuated after the date of the bid, (b) revisions to and revised interpretations of Federal laws in effect as of the date of the bid, (c) State and local laws, rules and regulations (unless otherwise noted in this article); require changes in the equipment or quality assurance programs, then the price will be equitably adjusted to reflect the added expense incurred by Westinghouse as a result of such change(s) and other appropriate provisions of the contract, including but not limited to the shipping date, will be equitably adjusted. Furthermore where the requirements of (a), (b) or (c) above require changes in the equipment or quality assurance program(s) and these in turn necessitate changes in the Westinghouse design criteria and/or manufacturing processes, then, the price will be equitably adjusted to reflect the added expense incurred by Westinghouse as a result of such change(s) and other appropriate provisions of the contract, including but not limited to the shipping date, will be equitably adjusted.

Purchaser will provide Westinghouse with written advice as to those State and local laws, rules and regulations which are applicable to the equipment or services to be furnished under the contract. In the event that State and local laws, rules and regulations thereto necessitate changes in the equipment which Westinghouse can not reasonably incorporate in its design, then the Purchaser has the option to either terminate the contract in accordance with the Termination provisions or to direct Westinghouse to complete the equipment without change with Purchaser assuming responsibility for obtaining all necessary waivers.

As used in this article the term State and local means the State and locality in which the

Last Row Blades and Larger

Units

Steam Turbine Generator

Condensing Reheat Double Flow 25-Inch

equipment is to be installed and the State whose law governs the contract.

Inspection by Purchaser

The Purchaser shall have reasonable access to the areas of the Westinghouse plant where his work is being manufactured and tested for purposes of observing and witnessing such operations. Westinghouse will advise the Purchaser of the scheduled date(s) to perform the test(s) which Purchaser has specifically indicated a desire to witness; however, no rescheduling of tests nor delays in manufacturing or shipment will be made to accommodate such inspection.

Westinghouse will exercise every reasonable effort to secure similar rights with rest ect to the inspection by Purchaser of work at supplier's and subcontractor's premises.

OTechnical Direction of Installation

- 1 Westinghouse shall, as specified below, furnish the services of one or more field engineers as deemed necessary by Westinghouse, to give technical direction to the Purchaser regarding methods and procedures for the installation of the equipment covered by the contract; to direct the Purchaser's representatives in making such operating tests as are specified in the contract; and to instruct the Purchaser's operating personnel in the recommended procedures for starting, operating, and shutting down the equipment. As used herein, "Technical Direction of Installation" is defined as follows:
 - Technical Direction of Installation is the engineering and technical guidance, and counsel based upon current engineering, manufacturing, installation and operating standards for the Westinghouse equipment. Technical Direction excludes any supervision, management, regulation, arbitration and/or measurement of Purchaser's personnel, agents or contractors and work related thereto, and it does not include responsibility for planning, scheduling, monitoring, or manage ment of the work.

Westinghouse will provide full time technical direction for the period defined below to direct the following activities:

- Transverse anchor blocks and soleplate setting;
- b Unloading and tran terming the major components from rail to a, trucks or vessel to the foundation,
- Installation and assembly of the equipment on foundation;
- d Starting the equipment and placing it in good operating condition.

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Conditions of Sale, Continued

The Field Engineer shall also perform the following services:

- a Confer with Purchaser's installation personnel regarding equipment, plans, objectives and procedures;
- Inspect the major parts as to assembly, clearances, alignment and cleanliness;
- Coordinate shipment of parts from the factory to minimize delays in transit;
- d Observe work practices and procedures of Purchaser's installation personnel to assure that factory-recommended quality assurance installation procedures are not violated;
- Provide estimates of time requirements for accomplishment of work;
- f See that the necessary prints and instructions are provided to accomplish planned installation.

Westingth use shall furnish special erecting tools and instruments it deems necessary.

- 2 The Purchasel shall furnish all labor, superintendence, materials, and equipment and shall do everything not specifically set forth above, necessary for the installation of the equipment. The Purchaser shall, without limitation, provide:
 - Adequate unloading and storage facilities;
 - Foundations with foundation bolts, grouting forms, grouting and labor for pouring same, conduits, cables, and cable supports;
 - c Reinforcement of floors, overhead protection from the elements and otherwise, and such modifications in Purchaser's buildings or premises as are necessary for the proper erecting of the equipment;
 - d Electric power and equipment to dry out the equipment;
 - Interconnecting wiring and installation labor;
 - f Painting and all external steam, oil, and water piping not furnished as an integral part of the equipment;
 - g Operating force, steam, oil, instruments, and supplies for starting and preliminary run;
 - h All necessary labor for installation, including inspection and superintendence.

Purchaser shall notify Westinghouse when the first major alignment part of the equipment has arrived at the carrier's delivery point. The Purchaser shall con-

Changed since previous issue.

Westinghouse Electric Corporation

Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

suit the Field Engineer before scheduling any installation work and shall afford the Field Engineer reasonable opportunity to perform the services specified herein during his regular working hours.

- 3 a The period of Technical Direction of Installation at the site shall commence on the date agreed upon by the parties for setting foundation hardware and, except for the times during which no installation work on the equipment is scheduled or performed by the Purchaser, shall continue until the date upon which Westinghouse gives the Purchaser notice that the technical direction, inspection and instruction is complete.
 - b The price quoted includes technical direction services on straight time, during the first 8 hours of each shift, 5 days per week, Monday through Friday.
 - c In the event the Purchaser interrupts, extends, or accelerates the work, so as to require technical direction service at times other than provided in (b) above, Westinghouse reserves the right to render additional billing as follows:
 - If the work schedule goes to overtime for the purpose of accelerating the work, the overtime billing due Westinghouse will be the premium portion of Westinghouse's published rates in effect at the time the work is performed.
 - 2) If the work schedule is interrupted, or extended, or if other services of the field representative are required not specifically provided for herein such as, but not limited to, using special equipment when handling the turbine generator during transit, storage, or installation, or when the service is required during delays caused by the Purchaser or others, or when the service is required during periods when work on the equipment is being performed by a labor force of less than adequate size and composition, services will be billed at Westinghouse's current rates in effect at time the work is performed.
- 4 Westinghouse shall indemnify and save harmless the Purchaser for, but only for, (a) all actione, suits, liability, and claims for non-nuclear damage to property(ies) of third parties located at Purchaser's power plant site which occur during, and result directly and solely from the negligence of the employees of Westinghouse in, the performance of Technical Direction of Installation on the premises of the

Purchaser; and (b) all actions, suits, liebility, and claims for non-nuclear injury to persons, including death, which occur during, and result directly and solely from the negligence of the employees of Westinghouse in, the performance of Technical Direction of Installation on the premises of the Purchaser.

General

These standard conditions of sale are issued for the information of prospective Purchasers and are not intended as an offer. All offers or 'quotations on behalf of Westinghouse for the sale of the equipment described herein will be prepared by its Stear: Turbine Division, Lester, Pennsylvania. No amendments, modifications, or attempted waivers of the provisions set forth herein shall be binding on either party unless set forth in writing and signed by authorized representatives of both parties.

When requested by Purchaser, Westinghouse may supply Digital Electro-Hydraulic control documents and tapes which contain proprietary information. A program protection agreement must be executed before available program listings can be submitted to the Purchaser.

The equipment covered in this price list is not designed primarily for use in nuclear power plants. In the event the equipment is to be used with steam from a nuclear source, it is necessary that such intent be declared at the time of the inquiry. In such event the clauses entitled Warranty, Technical Direction of Installation, and Insurance – Nuclear Indemnity from Price List 1262 will be incorporated in the contract.

If the equipment is used in, with, at, or near to a nuclear installation without notification to Westinghouse and its written consent thereto, Westinghouse disclaims all responsibility of every kind, including negligence, and, in addition, the Purchaser shall indemnify and hold harmless Westinghouse, its suppliers and subcontractors, of any tier, from any liability or damage whatsoever arising out of the equipment.

OWestinghouse certifies that the equipment to be provided and services to be performed under the contract will be provided in accordance with the provisions of the Fair Labor Standard's Act of 1938, as amended.

Any assignment or transferral of the contract or any rights herein shall be made only with the written consent of Westinghouse.

Should any of the foregoing conditions of sale be held invalid, such condition shall be considered severable and such invalidity shall not affect the remainder of the conditions herein.

ORIGINAL PAGE IS OF POOR QUALITY

Westinghouse

General Information Negotiation Data

Delay can be avoided and better service given if complete information is sent in with the original inquiry. Therefore, requests for quotations should give full information for each of the following points:

- 1 Turbine rating, kw (see page 6).
- 2 Steam conditions:
 - a Initial steam pressure, psig.
 - b Initial steam temperature, F.
 - c Reheat steam temperature, F.
 - d Exhaust pressure, inches of Hg abs, normal and maximum.
 - e Number of extraction openings required.
 - f Quantity and type of steam to be extracted for purposes other than feedwater heating.
 - g Final feedwater temperature.
- 3 Type designation: TC2F, TC4F, CC4F, etc.
- 4 Exhaust blade length, inches.
- 5 Speed, rpm.
- 6 Generator rating, kva.
- 7 Power factor.
- 8 Generator phase, frequency.
- 9 Short-circuit ratio.
- 10 Excitation speed of response ratio.
- 11 Type of boiler feed pump drive and pump efficiency data.
- 12 List all optional accessories and special requirements desired by Purchaser, such as heater out of service, overpressure, etc.

Erection Service

Prices for arection services are not listed in this price list. Such services will not be quoted with the unit, but will be quoted when unit size and configuration have been finalized and when major drawings have been issued by Westinghouse and approved by Purchaser.

Refer such inquiries to Power Generation Service Division, Marketing Department.

No changes since previous issue.

Prices effective October 30, 1974; subject to change without notice.

Basis of Prices

The tabulated prices include a complete turbine generator unit consisting of a steam turbine, an electric generator, an excitation system, and standard features and accessories as listed herein, including technical direction of installation.

Seismic Considerations

Neither the standard nor the special accessories include seismic restraints for turbine generator apparatus. Such restraints, where required, are to be supplied by the Purchaser and suitable attachment provisions will be made where feasible and necessary.

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

12-196

محافظهم ويهريها فالبنا فخار أجرار أحجان فيقرقني ويراجع والمراجع

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Steam Turbines **Turbine Rating**

Turbine ratings listed in this publication are the maximum guaranteed turbine kilowatts at 3.6" Hg absolute exhaust pressure with 3% makeup.

Price of unit will be based on the maximum guaranteed output of the unit at 3.5" Hg absolute, 3% makeup with the highest initial steam conditions for which the mechine is guaranteed. Accessories will be priced at this maximum guaranteed output. Throttle Flow

Each unit, in order to provide for manufacturing tolerances, will be designed with 5% flow margin above the flow required to meet the maximum guaranteed output.

Overpressure

Each unit will be safe for continuous operation at 105% of the rated pressure with the governing valves wide open when operated in accordance with the parameters shown on the maximum calculated 5% overpressure heat balance. Should a unit be desired that is safe for continuous operation at a pressure higher than 105% of rated pressure, the unit will have a guaranteed output at a pressure 5% lower than the specified pressure and a 5% flow margin will be designed into the unit above that flow necessary to meet this guaranteed output.

Extractions

Openings are provided in each turbine for steam extraction required for the usual feed heating cycle, for up to 6% of the throttleflow at maximum guaranteed output for uncontrolled extraction such as air heating when specified, and to heat 3%keup. Should a unit be required to provide additional extraction flow, for purposes such as uncontrolled extraction above 6%, boiler feed pump turbine drives, and to heat more than 3% makeup, the extraction must be considered in the design, and a price addition will be required.

OFeedwater Heater Extractions

Should the Purchaser desire to remove one or more feedwater heaters from service to obtain additional capability beyond the guaranteed capability obtained with all heaters in service, this increase in capability at 3.5" Hg absolute and 3% makeup will be guaranteed and priced at the incremental price in dollars/kw set forth elsewhere in this publication.

For emergency operation, heaters may be removed from service. Such emergency operation with heaters out of service will be governed by the following rules provided the Exhaust Loading Limits are not exceeded:

1 If the turbine output is adjusted such that ① Changed since previous issue.
 ② For high back pressure units, see Page 19.

Westinghouse Electric Corporation Steam Turbine Division, Philladophia, Pa. 19113 Printed in USA

it does not exceed the maximum guaranteed output: (a) one or more nonadjacent heaters may be removed from service or (b) adjacent heaters may be removed if all higher pressure heaters also are removed from service.

2 Should the Purchaser desire to remove adjacent lower pressure heaters from service while higher pressure heater(s) remain in service, the load must be reduced by adjusting throttle flow such that there is at least a 10% reduction from maximum guaranteed load for each successive adjacent heater removed from service. For example, if two lower pressure adjacent heaters are removed while a higher pressure heater remains in service, the load must be reduced 10%. If three adjacent heaters are removed, the load must be reduced 20%, etc. The maximum load reduction necessary is 50% for any combination of heaters out of service.

If the Purchaser desires to maintain the maximum guaranteed load with two or more adjacent lowar heaters out of service while a higher pressure heater remains in service, a price addition will be made for the kilowatt load in excess of those outlined above.

Operation with heaters out of service with unusual arrangements or multiple strings of heaters must be analyzed to determine the necessary load reductions to assure that the loading of the unit parts will not exceed that under normal operation with all extractions in full normal operation.

For unusual cycles or heater arrangements, refer to Steam Turbine Division, Marketing Department.

Uncontrolled Extractions

Uncontrolled extraction steam may be required by the Purchaser. This extraction steam flow may be separated into two types as follows:

- 1 Seasonally variable flow such as that required to preheat the air to a temperature warm enough to prevent air preheater corrosion or preheat the air to a summer ambient. This flow shall be assumed to be shut off in the determination of maximum turbine exhaust flow, as defined in exhaust loading limits.
- 2 Continuous flow such as that required to increase the combustion air from the ambient temperature to a higher required inlet temperature. This extraction flow, since it is continuous, will not pass through the last row of blades under normal operating conditions. This flow is not assumed to be shut off in the determination of maximum turbine exhaust flow.

The turbine may be operated for emergency periods with the continuous extraction steam flow shut off providing that the control valves are adjusted so that the turbine does not exceed either the maximum guaranteed output or the maximum exhaust loading limits.

The total of all uncontrolled extraction flows, including seasonal and variable, shall not exceed 12% of the throttle flow at maximum guaranteed output.

The turbine may be operated for emergency periods with the continuous steam flow reduced provided the control valves are adjusted such that the load on the turbine is reduced in kilowatts by an amount equal to the per cent reduction in the continuous steam times the difference between the maximum calculated 6% overpressure capability and the maximum guaranteed output. The turbine must also not exceed the maximum exhaust loading limits,

Makeup and Exhaust Pressure@

Should a machine be specified with a maximum guaranteed output at exhaust and makeup conditions other than 3.5" Hg absolute and 3% makeup, the rating will be corrected to a 3.5" Hg exhaust, 3% makeup basis for pricing by use of the following formula:

Specified maximum guaranteed output times (1 - A - B) = pricing rating at 3.5" Hg absolute - 3% makeup, where A and B are correction factors for exhaust pressure and makeup from the following table:

Corrections for Exhaust Pressure

Exhaust Pressure (In, Hg Abs.)	<u> </u>
4.5	-0.020
4.0	-0.010
3.5	0
3.0	0.005
2.5	0.010
2.0	0.016
1.5	0.020
1.0 and 0.5	0.025
Corrections for Makeup	
Makeup (percent)	1 8
3.0	0
2.0	0,003
1.0	0.006
n'	1 0.009

The turbines are suitable for operation at back pressures up to 5.6" Hg absolute. For units to operate at high back pressures, Purchaser must either purchase auxiliaries suitable for use with higher cooling water temperatures, if available, or find another source of cooling water other than condensate. The standard coolers are designed for 95 F cooling water and the standard gland condensers are designed for 126 F cooling water. See the pricing tables D and E for available oversize coolers and gland condensers.

Westinghouse

Steam Turbines, Continued Automatic Extraction Machines

An automatic extraction turbine as opposed to a non-automatic unit, will include all of the features and accessories included with a non-automatic unit as well as:

Automatic extraction equipment to control the pressure of the extracted steam by varying the flow of steam to the lower pressure turbine stages.

Necessary inter-connections between the turbine governing system and the extraction control equipment.

Automatic non-return valves with trip actuated by the turbine overspeed device, for each automatic extraction opening.

For details and prices, refer to Steam Turbine Division Marketing Department.

Allowable Steam Pressure and Temperature Variations

The turbine rating, capability, steam flow, speed regulation and pressure control are based on operation at rated steam conditions. The turbine generator unit is capable of operation under the following variations in steam pressure and temperature. These allowable variations at the tended to provide for operating exigenation will be kept to a minimum, especially the occurrence of simultaneous variations in pressures and temperatures.

Inlet Pressure

The pressure at the turbine throttle valve inlet connection shall be controlled to maintain an average operating pressure of not more than 105% of rated pressure. In maintaining this average over a 12-month operating period, the pressure shall not exceed 105% of rated pressure by more than 1% for periods of time no longer than reasonably required for control. During abnormal conditions, the peak of pressure swings at the inlet shall not exceed rated pressure by more than 30%. The aggregate duration of all such momentary swings above 105% of rated pressure shall not exceed a total of 12 hours per 12-month operating period.

Such momentary swings are conditional upon the control valves being adjusted such that the turbine flow does not exceed the steam flow obtained by operating at 105% rated pressure with control valves wide open.

Reheat Prassure

The pressure at the exhaust connection of the high pressure turbine shall not be greater than 25% above the highest pressure existing when the high pressure section of the turbine is passing the maximum calculated flow with

Deletion since previous issue.

Prices effective October 30, 1974; subject to change without notice.

the stand of the standard standard standard from the second standard standard standards. Also, we have been be

105% rated pressure and normal operating conditions. Suitable relief valves must be provided by the Purchaser.

Inlet Temperature

The steam temperature at the turbine throttle valve infet connection shall average not more than rated temperature over any 12-month operating period. In maintaining this average the temperature shall not exceed rated temperature by more than 15 F.

During abnormal operating conditions the temperature at the turbine throttle valve inlet connection shall not exceed rated temperature by more than 25 F for operating periods not more than 400 hours per 12-month operating period, nor rated temperature by more than 50 F for swings of 15 minutes duration or less aggregating not more than 80 hours per 12-month operating period.

In maintaining the temperatures specified in the preceding paragraphs the steam delivered through any turbine main inlet valve must be within 25 F of the steam delivered simultaneously through any other main inlet valve. During abnormal conditions this difference may be as high as 75 F for periods of 15 minutes maximum duration providing such occurrences are at least four hours apart.

Reheat Temperature

The steam temperature at the turbine reheat admission shall average nct more than rated reheat temperature over any 12-month operating period. In maintaining this average the reheat temperature shall not exceed rated reheat temperature by more than 15 F.

During abnormal conditions reheat temperature shall not exceed rated reheat temperature by more than 25 F for operating periods totalling not more than 400 hours per 12-month operating period, nor rated reheat temperature by more than 50 F for swings of 15 minutes duration or less, aggregating not more than 80 hours per 12-month operating period.

In maintaining the above reheat temperature averages the steam delivered through any hot reheat inlet zenes in the turbine must be within 25 F of the steam delivered simultaneously through any other hot reheat zone. During abnormal conditions this difference can be as high as 75 F for periods of 15 minutes maximum duration providing the occurrences are at least four hours apart.

OFactory Tests Performed on Turbines The following tests normally will be made by Westinghouse at the factory prior to ship-

ment : Governor component tests Valve and steam chest servomechanism tests

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Turning gear assembly operation Mechanical balance of rotor Tests to insure thermal stability of rotor Rotor overspeed

The individual turbine sections will be assembled as required by Westinghouse to establish and verify the operating clearances.

Exhaust Loading Limits

Loading of last row blades will be permitted up to the exhaust flows tabulated below.

The flows shown are to be obtained at 3%² Hg abs, 0% make-up and at the operating conditions which impose the most severe conditions at the exhaust. These conditions include valves wide open, maximum premissible initial pressure for safe continuous operation, heaters out of service when applicable and seasonal variations in air preheating requirements etc. Continuous normal air preheating steam will not be considered in determining the maximum permissible exhaust flow since when this extraction is shut off, throttle flow must be reduced such that the load does not exceed the maximum quaranteed load.

Last Stage Blade Length Inches	Rpm	Exhaust Flow # /Ht/Last Row
25	3600	616,000
28.5	3600	805,000
31	3600	992,000
40	1800	1,585,000
44	1800	1,857,000
52	1800	2,586,000

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

والمروحية والمراجع والمتراجع والمراجع والمراجع والمتحا والمتحا والمتحا والمحاج و

والمراجع والمراجع

12-198

 $= \{ (e_1, \dots, e_k) : e_k \in \mathcal{O}_{\mathsf{rot}_{\mathsf{rot}_k}} \} : \{ (e_1, \dots, e_k) : (e_k, e_k) \} \in \mathcal{O}_{\mathsf{rot}_k} \}$

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Steam Turbines, Continued

- **Standard Features and Accessories** 1 Control and protective valve systems, including the following:
 - A Separate mounted steam chests with stop-throttle valves and governing control valves, each including:
 - Servo-actuator. 11
 - Nine (9) switch contacts for each 2) stop-throttle valve.
 - 3) Removable temporary fine mesh and permanent heavy mesh strainers for each stop-throttle valve.
 - B Flexible inlet piping between the steam chests and turbine casing.
 - C Reheat stop valves and interceptor valves, each including:
 - Actuator. 11
 - Nine (9) switch contacts. 25
 - Removable temporary fine mesh and permanent heavy mesh strainars for interceptor valves only.
 - D Piping from interceptor valves to the intermediate pressure turbine (when required).
 - E High-speed synchronizing equipment for cross-compound units. Includes stop and control valves, valve hangers (excluding supporting steel), steam piping, oil piping, differential speed indicator and crossover temperature alarm.
 - 2 Electrohydraulic control system, including:0
 - A High pressure (1,800 psig nominal) hydraulic fluid system consisting of:
 - 1) Fluid reservoir with separate fluid charging unit (fluid not included).
 - 2) Fluid supply system mounted on the reservoir and consisting of:
 - a) Two a-c motor-driven positive displacement pumps. (Motors are totally anciosed.)
 - One suction and four disb١ charge filters.
 - C) Two pressure switches for sensing drop across discharge filters.
 - Two unloading valves, d'
 - Relief valve. e)
 - Ð Two check valves.
 - g) Drain system pressure switch.
 - h) Two coolers.
 - Ð Two polishing return line filters.
 - Bypass check valve. j)

Deletion since previous issue. The digital E H control system is described. An analog system can Le furnished for no price addi-tion in fieu on the digital system. For other control systems, refer to the Large Turbine Division, Maroting Department.

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

- Fuller's earth fluid conditionk) ing unit.
- Level gauge. IN
- Dial thermometer. m)
- Two "pump running" presn) sure gauges.
- Header pressure gauge o)
- Header pressure transmitter, D)
- Magnetic plug assembly. a)
- Hydraulic fluid thermocouple. r١
- Hydraulic accumulators, gas 3) charged. (Gas not included.)
- Suitable interlocks and afarms as follows:
 - a) Automatic start of second pump on low fluid pressure.
 - Low high-level switch for ь١ alarm.
 - c) Low low-level switch for alarm and trip.
- 5) Terminal box for:
 - Pressure switches. a) Terminal block for electrical b)
 - connections.
 - c) Phone jack.
- 6) All interconnecting piping between the H.P. fluid supply system and the actuators. Stainless steel tubing and manifolds will be used where applicable.
- Emergency trip valve.
- 8) Emergency trip solenoid valve.
- Two auxiliary governor solenoid 9١ valves.
- 10) Fluid transfer pump.
- B Solid state digital controller, including:
 - 1) Throttle valve controller consisting of:
 - Automatic wide range speed a) control to enable the operator to preset the desired speed and rate of speed increase.
 - Manual control from operaь١ tor's panci.
 - Tracking device for transfer c) from operator automatic to manual control together with the necessary switches.
 - Bumpless transfer from oper-.d) ator automatic to manual, or manual to operator automatic.
 - e) Servo amplifiers for throttle valves.
 - 2) Governor valve controller consisting of:
 - Automatic load and speed a١ control.
 - ьì Manual control from operator's panel.

- Tracking devices to permit c) manual control to wack-up operator automatic control.
- d) Bumpless transfer from operator automatic to manual, manual to operator automatic, impulse pressure "out" mode to "in" mode and impulse pressure "in" mode to "out" mode.
- Servo amplifiers for govern-6) ing valves.
- 3) Valve position limit control from operator's panel.
- Overspeed protection controller to close valves in response to a mismatch between unit output versus turbine internal pressure and turbine overspeed. (Includes provision to test.)
- Throttle pressure regulator con-5١ trol consisting of:
 - Pressure transducer. a١
 - Pressure controller. b)
 - Adjustable pressure set point. сÌ
- 6) Speed control consisting of:
 - a) Speed transducer (two magnetic pickups plus one spare on one pulse wheel).
 - Main speed computing chanb) nel.
 - Auxiliary speed computing C) channel.
 - Reference channel with set d١ point and rate control.

NOTE: Digital speed reference system can be used for speed matching control of turbline-generator unit to line frequency.

- 7) Load control
 - a) Impulse chamber pressure transducer.
 - Pressure control channel. Ь3
 - Reference channel for on-line C) load control with adjustable set point and rate control.
 - Megawatt feedback for slow d'i trim of load control.
- 8) Transfer control to change throttle valve full admission operation to governor valve partial arc admission operation.
- Vaiva management (when applicable) for operator initiated automatic change of governing control valve sequencing while under load.
- 10) Interface provisions for Purchaser's automatic load dispatch, load

12-199

ngen der Sterne für der eine Sterne state in der Sterne Sterne Sterne Sterne Sterne Sterne Sterne Sterne Sterne

ORIGINAL PAGE IS OF POOR QUALTY

Charles and the second of the second

Westinghouse

Steam Turbines, Continued Standard Features and Accessories, Continued

- frequency control, or coordinated boiler control. (Inputs consisting of raise-lower contacts, and analog outputs consisting of frequency bias and load reference.)
- 11) Automatic acceleration program capable of directing the acceleration of the unit from turning gear to synchronous speed, while monitoring HP turbine rotor stress, steam, oil and metal temperatures, steam pressures, unit vibration, thermal expansion and generator temperatures and hydrogen pressures. Included are necessary sensors, computer hardware and software.
- 12) Automatic loading program, capable of directing the increase and decrease in load of the unit between minimum load and the load corresponding to valves wide open, while monitoring HP turbine rotor stress, steam, oil and metal temperatures, steam pressures, unit vibration, thermal expansion and generator temperatures and hydrogen pressures. Also included is the ability to provide a continuous indication of the load increase or decrease capability of the unit. Included are necessary censors, computer hardware and software.
- 13) Logout program to indicate the value of up to 19 variables at a frequency of up to every 60 seconds on the typewriter. Sensors and input/output equipment included only if provided by Westinghouse under items 2B11 and 12 above.
- 14) Indication of the optimum range of control valve positions during sequential valve operation.
- 15) Alarms and selected operator instructions printed out on the typewriter.
- 16) "At load" and" Load changing" contacts for Purchaser's use when required.

C Paper tape reader.

- D Operator's panel (three sections), consisting of:
 - 1) Control panel (upper) a) Indicating meters for shaft

No change since previous issue.

Prices effective October 30, 1974; subject to change without notice.

speed and electricat load. Throttle valver additive posib)

- tion meter. Governo: valves additive poc) sition meter.
 - Indicating lights for:
- Turbîne trip. 2 Runback operation.

đ١

- 3 Controller speed channel
- monitor. 4 Overspeed protection con-
- troller speed channel monitor.
- 5 Megawatt transducer monitor.
- 6 Overspeed protection controlier pressure transducer monitor.
- Overspeed protection con-7 troller monitor,
- Impulse pressure trans-8 ducer monitor.
- 9 Emergency power supply. 10 Transfer relay, 24 volts,
- monitor. 11 Controller off.
- 12
- Throttle pressure transducer monitor.
- 13 Throttle pressure limiting.
- 2) Control panel (lower)
 - a) Numeric in-line display of speed, governor valve position, or load demand settings.
 - Numeric in-line display of b) speed, governor valve position, or load references.
 - c) Back-lighted pushbuttons for: 1 Operator automatic.
 - 2 Turbine manual.
 - 3 Raise, lower and fast manual throttle valve control.
 - 4 Raise, lower and fast man-
 - ual governor valve control. 6 impulse pressure out of
 - service.
 - 6 Impulse pressure in service. 7 Transfer from full to partial
 - arc admission. Single valve operation. (when applicable)
 - 9 Sequential valve operation. (when applicable)
 - 10 Speed or load reference setter buttons with "go"
 - and "hold".
 - Acceleration, rpm/min.
 - 12 Load rate, mw/min.
 - 13 Speed control reset.
 - 14 Controller reset. 15 Throttle pressure regulator
 - out of service.
 - 16 Throttle pressure regulator in service.

Steam Turbine Generator Units

Condensing Reheat Double Flow 26-Inch Last Row Blades and Larger

- 17 Megawatt feedback loop
- out of service. Megawatt feedback loop 18
- in service. 19 Governor valve position
- limit display, limit raise and lower.
- 20 Data entry keyboard, including the following pushbuttons: a Enter
 - Cancel b
 - C Turbine program display
 - Integers 0 through 9 d
 - Decimal point ŧ
 - Minus sign
- 21 Valve testing/status pushbuttons, including:
 - a Valve test
 - **b** Valve status
 - Ċ Throttle valva
 - d Governor valve
 - е Орел
 - Close f
- Indicating light for: d١ "Invalid request"
- Maintenance test key switch e) with two poistions:
 - 1 Off
 - 2 Test
- O.P.C. test key switch with £ three positions:
 - 1 O.P.C. test
 - 2 In service
 - 3 Overspeed test permissive
- a) Phone jack
- 3) Valve test panel
 - a) Back-lighted pushbuttons for:
 - 1 Latch
 - 2 Test left interceptor and reheat stop valves.
 - 3 Test right interceptor and reheat stop valves.
 - b) Indicating lights for:
 - 1 Throttle valves open and closed.
 - 2 Governor valves open and closed.
 - 3 Reheat stop valves open and closed.
 - 4 Interceptor valves open and closed.
- E Automatic synchronizer to be mounted by Purchaser. Wiring to the synchronizer and the DEH cabinet to be provided by the Purchaser. Control system interface with the automatic synchronizer is included.
- F IBM 735 Selectric typewriter.

October 30, 1974 Supersodes Price List 1252, deted July 1, 1974 C/1683/PL

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Steam Turbines, Continued Standard Features and Accessories, Continued

- G Super Bee 15 inch black and white CRT suitable for mounting and wiring by the Purchaser in his panels. Included is the computer software for the display of control system data on operator demand.
- H Interconnecting cables between digital controller and operator's panel, where distance between controller and panel does not exceed 50 feet.
- I Power supplies for digital controller.
- J Autostop and emergency trip system with continuous protection while performing on-line testing.
 - 1) Mechanical hydraulic overspeed trip with 4%" oil trip test gauge, for manual overspeed trip test.
 - 2) Remote test.of mechanical overspeed trip.
 - 3) Electrical overspeed trip device.
 - 4) Turbine protective devices, with remote test including:
 - a) Low bearing oil pressure trip with 4%" trip test gauge.
 - Low vacuum trip with 4%" b) trip test gauge.
 - Thrust bearing wear and ro-C) tor movement trip.
 - d) Low E-H fluid pressure trip.
 - 6) Electrical solenoid trip.
- 3 Complete lubricating oil pumping system (oil not included), consisting of the following:
 - A Main oil pump on the turbine shaft,
 - **B** Oil reservoir, including:
 - 1) Float-type oil fevel indicator.
 - 2) Float-type high and low level alarm device.
 - 3) Top-mounted relief and access doors.
 - 4) Bearing oil pump (a-c motordriven).
 - 5) Emergency bearing oil pump (d-c motor-driven) and motor starter,
 - 6) High pressure hydrogen seal oil back-uppump (a-c motor-driven).
 - 7) Oil ejector.
 - 8) Motor-operated vapor extractor,
 - 9) Oil strainers located at each motor-driven pump and oil ejector suction and at the oil return to the reservoir.
- ① Changed since previous issue.
 ② 150 psig at no change in price.
 ③ Motor-operated at no change in price.
- Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

Note: A-c motors will be 460 or 575 volts, 3 phase D-c motors will be 120 or 240 volts (\pm 10% voltage variation). All motors will be open, drip-proof con-struction with Class B Insulation, for 40 C ambient

- OC Twin full-size oil coolers with % in. O.D., 20 BWG, 90-10 copper-nickel tubes for 95 F cooling water at a maximum working pressure of 125 psig@, and with interconnecting oil piping and a manual three-way valve.
 - D Pressure switches with test valves for automatic starting of the bearing oil pump and emergency bearing oil pump.
 - E Complete interconnecting oil piping to and from all bearings, oil reservoir and oil coolers. (Pipe hangers not included.)
 - Plate-type oil demister, mounted by F Westinghouse.
- 4 Gland sealing system, consisting of the following:
 - A Steam sealed glands.
 - B Pneumatically operated gland steam regulators (and spillover regulator when required).
 - C Motor-operated shutoff and bypass valves, for high pressure regulator.
 - D Manual shutoff and motor-operated by-pass valves for the spillover regulator, when required by design.
 - E Motor-operated shutoff valve only for cold reheat regulator.
 - Surface-type gland steam condenser with stainless steel tubes and level alarm, designed for 400 prig maximum and 125 F cooling we us with a motor-driven exhauster designed for 0.25 psig maximum discharge pressure.
 - G Temperature-sensing element and spray desuperheater ahead of lowpressure glands.
 - H Steam seal piping from the regulators to the turbing and from the turbine to the gland condenser, including high pressure and spillover regulator bypasses. (Pipe hangers not included.)
- 5 Pneumatic-operated drain valves and piping from turbine to the drain valves.
- 6 Exhaust casing spray nozzles, and a power-operated valve for mounting in Purchaser's water supply piping.
- 7 Motor-operated rotor turning gear with manual and automatic engagement, including a jog switch and a zero-speed sensing device, interlocked with the lubrication system through a pressure

switch to prevent operation without bearing lubrication. しょうしゃ たち

- 8 Protective devices, consisting of the following:
 - A Turbine exhaust casing relief diaohraums.
 - B Exhaust casing alarm thermocouple operating via metal temperature recorder. (One perexhaust connection).
 - C Oil-operated pilot dump valve for positive closing of the Purchaser's extraction steam nonreturn valves.
- 9 Appropriate supervisory instruments (for Purchaser's mounting) to suit the unit, including:
 - A Recording type:
 - 1) Turbine rotor eccentricity.
 - 2) Rotor vibration.
 - 3) Turbine rotor position.
 - 4) Turbine casing expansion.
 - 5) Turbine casing and rotor differential expansion.
 - Speed and governor valve posi-6) tion. (Items (1) through (6) have outputs compatible for use with computers.)
 - 7) Steam and metal temperatures for turbine operation.
 - B Vibration phase angle meter and selector switch. Includes shaft mounted reference detector and required circuitry.
 - C Eccentricity phase angle meter. Includes shaft mounted reference detector and required sircultry.
- 10 Thermocouples: (Simplex type unless indicated otherwise)
 - A For measurement of turbine steam and metal temperatures for the purpose of turbine operation.
 - B Embedded in each of two thrust bearing shoes on each side (one duplex and one simplex).
 - C Embedded in metal of the main bearings. (Duplex)
 - D For all main bearing drains.
 - E For the thrust bearing drains.
 - F For the oil inlet and outlet of the oil coolers.
- 11 Thermometers, consisting of the following:
 - A For all main bearing drains.
 - B For the thrust bearing drains,

ORIGINAL PAGE N

OF POOR QUALITY

C For the oil inlet and outlet of the oil coolers.

Westinghouse

Steam Tubines, Continued Standard Features and Accessories, Continued

- 12 Oil pressure gauges (4½ inch diameter) mounted on the equipment, or loose for Purchaser's mounting, for the following:
 - A Bearing header.
 - B Main oll pump suction.
 - C Main oil pump discharge.
 - D Bearing oil pump discharge.
 - E Emergency bearing oil pump discharge.
- 13 Miscellaneous instruments, consisting of the following (mounted on the Westinghouse piping unless otherwise indicated):
 - A Electric transmitter and receiver for steam seal pressure. (Loose for Purchaser's mounting)
 - B Electric transmitter for inlet steam pressure (if required). (Loose receiver for Purchaser's mounting).
 - C Electric transmitter for steam chest pressure. (If required),
 - D Electric transmitter for reheat steam pressure (if required). (Loose Receiver for Purchaser's mounting).
 - E Pressure gauge (4% inch diameter) for the exhaust hood water spray.
 - F Pressure gauge (2.0 inch diameter) for the gland exhauster vacuum.
 - G Up to 5 indicating lights (for Purchaser's mounting).
- 14 Rotor-grounding device.
- 15 Turbine steel appearance lagging (indoor units). (Embedded lagging sills to be furnished by Purchaser.)
- 16 Insulating material, in accordance with factory specifications for installation by the Purchaser, consisting of the following:
 - A Block and plastic (or spray type) heat insulating material for upper and lower turbine casings, steam valve bodies and exhaust casings, where required.
 - B Preformed segmental pipe insulation with aluminum jacketing for all steam piping furnished by Westinghouse.
 - C Removable expanded matal flange anclosures covered with block and plastic insultation, or removable wire mesh encased blankets, as required by design for the combination stopthrottle valves, reheat stop and inter-

No change since previous issue.

Prices effective October 30, 1974; subject to change without notice.

ceptor valves, flanges at the turbine, and flanges in crossover pipes where required.

- D Purchaser has the option of selecting one of the following, in accordance with factory specifications, for the turbine casing(s) horizontal flango joint(s) that must be parted for turbine disassembly:
 - 1) Block and plastic or any combination thereof.
 - 2) Reusable blankets.
 - Block and plastic on removable, reusable steel cages.
- 17 Set of lifting slings and special tools and wrenches (one set only, for similar or duplicate units in the same station of Purchaser).
- Turbine exhaust template (when required).
- 19 Shims, seating and soleplates required to set and align the unit.
- 20 Instruction books (twenty-five (25) copies) and operator Equipment Familiarization Manuals (up to 30 copies).

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/16B3/PL

Steam Turbine Generator

Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Alternating Current Generators

Synchronous turbine generators are rated at the maximum kva load they are guaranteed to be capable of carrying continuously without exceeding their temperature guarantees. The ratings are expressed in kilovoltamperes at 0.30 power factor, 0.58 shortcircuit ratio at the maximum design gas pressure.

3600 rpm and 1800 rpm generators reted 210,000 kva and smaller will be conventional-cooled. 3600 rpm and 1800 rpm generators rated above 210.000 kva will be inner-cooled.

The bill of material and technical data for conventionally-cooled generators are in Price List 1232.

Short-Circuit Ratio

The short-circuit ratio is the ratio of the field ampere-turns required to produce rated voltage at no-load and at rated frequency, to the field ampere-turns required to produce rated amature current at sustained short circuit.

Standard short-circuit ratio at rated kva for the turbine generators included in this pricelist will not be less than 0,58.

Temperature Rises

Inner-cooled generators have maximum guaranteed temperatures based on maximum design gas pressures and on a cooling water temperature of 95 F or lower as follows;

- Cooling Hydrogen: 45 C to 50 C by detector.
- Armature Winding: 65 C to 60 C rise (depending on cooling hydrogen temperature), by detectors in coolant from armature winding.

Cooling water to armature winding – 45 C to 50 C by thermocouple. (where applicable)

Warm water from armature winding – 55 C to 50 C rise (depending on cooling water temperature) by thermocouple in coolant from armature winding. (where applicable)

Field Winding: 65 C to 60 C rise (depending on cooling hydrogen temperature) by resistance.

Allowable Voltage Variation

Generator will operate successfully at rated kva, frequency, power factor and gas pressure at any voltage not more than 5 percent above or below rated voltage, but not necessarily in accordance with the standards of performance established for operation at rated voltage.

No change since previous issue.

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed In USA

Class of Insulation

Class B insulation is standard for armature and field windings,

Abnormal Conditions

Short Time Thermal Capability Balanced Currents

The generator armature will be capable of operating at 130 percent of rated armature current and the field winding at 125 percent of rated load field voltage for one minute and for other times up to 120 seconds based upon the same increment of heat storage, all starting from stabilized temperatures at rated conditions.

This capability is based on the assumption that the number of operations under these conditions will not exceed two times per year.

Short Time Thermal Capability Unbalanced Currents

The generator will be capable of withstanding, without injury, the effects of unbalanced currents resulting from short circuit at the machine terminals for times up to 120 seconds, provided the integrated product (|{T}) of generator negative phase sequence current ($|_2$) and time (T) does not exceed 10 for inner-cooled generators up to 800 mva, and the value obtained from the formula 10-(.00625) (mva-300) for c merators rated 800 mva to 1600 mva.

(Negative phase sequence current (I_2) is expressed in per unit stator current at rated kva and time (T) in seconds.)

Mechanical Capability

Generators will be capable of withstanding, without mechanical injury, any type of short circuit at the machine terminals for times not exceeding the Short Time Thermal Capability, when operating at rated kva and power factor and 5 percent overvoltage; provided the maximum phase current is limited by external means to a value which does not exceed the maximum phase current obtained from a 3 phase fault.

In the case of stator windings, the criterion for no injury is that the windings will satisfactorily withstand a normal maintenance high potential test. There will be no visible abnormal deterioration or damage to the winding colls and connections.

Wave Form

The deviation factor of a wave is the ratio of the maximum difference between corresponding ordinates of the wave and of the equivalent sine wave to the maximum ordinate of the equivalent sine wave when the waves are superimposed in such a way as to make this maximum difference as small

12-203

as possible,

The deviation factor of the open-circuit terminal voltage wave of synchronous generators will not exceed 10 percent.

Telephone Influence Factor

Turbine generators included in this price list have a balanced line to line, no-load opencircuit, normal voltage TIF not exceeding 40. The residual component will not exceed 30.

Capacity as Synchronous Condenser Special starting provisions and equipment are required for this operation, Extra features may be added for a price addition (refer to Steam Turbine Division, Marketing Department) which will permit the operation of listed generators as synchronous condensers.

The generator kva capacity at zero power factor, over-excited as a synchronous condenser, is equivalent to the kva capacity at zero power factor as shown on the generator capability curve.

Tests

The following standard commercial factory tests will be made on the generator :

Mechanical

- 1 Rotor overspeed
- 2 Rotor mechanical balance
- 3 Mechanical Inspection
- 4 Air leakage test

Electrical

- 4 Measurement of cold resistance of armature and field windings.
- 2 Insulation resistance measurements3 Dielectric tests:
 - Armature: The standard test voltage shall be an alternating voltage whose effective value is twice the rated voltage of the machine, plus 1000 volts, applied for 60 seconds.

Field: The standard test voltage for field voltages up to and including 500 volts is a voltage of ten times the rated voltage, but not less than 1500 volts. The standard test voltage for field voltages rated greater than 500 volts is 4000 volts plus twice the rated volts. This test is applied for 60 seconds.

a sa mangalan mendela dalah

Resistance temperature detector test.

Steam Turbine Generator

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Ç,

Units

Westinghouse

Alternating Current Generators, Continued

Altitude

Generator ratings specified herein are based on operation when the generator is installed at an elevation of 3300 feet or less above sea level. Generators operated at altitudes above 3300 feet will have the gauge pressure of the hydrogen in the generator casing increased above the gauge pressure specified in this price list so as to maintain the same absolute casing pressure as that required for operation at sea level.

> October S0, 1974 Supersodes Price List 1252, dated July 1, 1974 E, C/1683/PL

No change since previous issue.

Prices effective October 30, 1974; subject to change without notice.

Price List 1262 Page 16

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Alternating Current Generators, Continued

Standard Features and Accessories Each generator is of the totally enclosed, self-ventilated, non-selient pole-type and includes the following standard features and accessories:

Hydrogen Inner-cooled Generators

- D1 Hydrogen coolers with 90-10 copper nickel tubes mounted within the generator housing and designed to operate with 95 F and lower cooling water at a maximum pressure of 126 psig@.
- Generator field discharge resistor for mounting in excitation cubicle. (Not included when brushless excitation system is furnished.)
- 3 Six (6) high-voltage bushings.
- 4 Twelve (12) bushing current transformers (two (2) per terminal) with provisions for one additional transformer per bushing.
- 5 Hydrogen system:
 - A Seel oil unit assembled on a base and including:
 - One hydrogen side and one air side seal oil pump, both with totally enclosed a-c motors.
 - Air side seal oil back-up pump with totally enclosed d-c motor.
 - Hydrogen side seal oil cooler and filter.
 - 4) Air side seal oil cooler and filter.
 - Main pump relief valves.
 - Differential pressure switch with alarm contacts for annunciator and for activation of back-up pump including manual test valves.
 - Pressure switch with alerm contacts for seal oil back-up from turbine.
 - B) Two differential pressure switches with alarm contacts across air side and hydrogen side seal oil pumps.
 - Float switch with alarm contacts in seal drain system.
 - 10) Gauge panel with:
 - a Air side seal oil pressure gauge.
 - b Two differential pressure gauges for measuring differential between hydrogen side and air side seal oil pressures.
 - c Test gauge for hydrogen side seal oil pressure.

Changed since previous issue.
 150 psig at no change in price.

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

- d Test gauge for air side main and back-up seal oil pumps.
- e Test gauge for turbine seal oil back-up pressure.
- f Test gauge for checking starting of air side seal oil back-up pump. (Note: Test gauges are mount-

ed at point of test.)

- Junction box for electrical connections (except for motors).
- Necessary check valves and shutoff valves.
- Generator gas temperature thermostat with alarm contacts.
- B The following are furnished for field assembly:
 - Seal oil loop seal system, including a seal tank with interconnecting piping, bypass and/or check valves where required, and motor-operated vapor extractor.
 - Steel pipe and weld type fittings for seal oil piping (excluding vent piping).
 - 3) Hydrogen drier and blower.
- C Hydrogen and carbon dioxide systems, including:
 - Hydrogen manifold with one bottle pressure regulator with high and low pressure gauges, shutoff values and four bottle connectors.
 - Manual generator hydrogen pressure regulator and manual bypass valve for fast feeding (in series with bottle pressure regulator).
 - Carbon dioxide manifold with pressure gauge, relief valve, shutoff valves, mounting brackets, and four bottle connectors.
 - 4) Purging control valve assembly.
 - Three generator casing liquid detectors with alarm contact.
 - Steel pipe and weld type fittings for gas control system (excluding vent lines).
- D Hydrogen control cabinet, consisting of:
 - 1) Gas compartment, including:
 - a Dual pressure gauge for indication of machine gas pressure and generator fan pressure. Machine gas pressure electrically transmitted and equipped with high and low alarm contacts.
 - Pressure compensated gas purity meter (and blower) for purity indication, electrically trans-

mitted and equipped with high and low alarm contacts. Compartment wiring and gastight wiring seal into hydrogen

- electrical compartment. d Compartment piping with pipe
- adapters at top of compartment.
- Electrical compartment (separated from gas compartment by a gastight partition), including:
 - Annunciator with d-c pilot light, alarm contacts and manual reset.
 - b Relay for loss of d-c supply with contact for remote alarm.
 - c D-c horn for annunciator alarms.
 - d Switches for ac and dc supply including overload protection.
 - Necessary terminal blocks and wiring.
 - f Alarm switches merred to in gas compartment are mounted in electrical compartment.
 - g Control wiring.
 - h Interior light.
- Electrical receiver for generator gas pressure, for mounting by Purchaser at generator hydrogen supply manifold.

NOTE: For cross-compaund units combined gas and seal oil systems will be provided wherever practicable; otherwise separate individual systems will be furnished.

- 6 Temperature detectors (resistance type 10 ohms at 25 C) as follows:
 - A One (1) for each cooler outlet cold gas.
 - B One (1) in common hot gas inlet to coolers.
 - C One (1) (including immersion well) in common cold gas outlet from hydrogen coolers for control of hydrogen temperature by Purchaser.
 - D Six (6) in armature coll discharge gas of 2-pole generators.
 - E Twelve (12) in armature coil discharge gas of 4-pole generators
- 7 Generator condition monitor.
- 8 Special tools:
 - A Necessary rotor removal and installation tools.
 - B Gap barrier tensioning tool, if required.
 - C Cooler, bushing, bearing and bearing
- bracket assembly tools where applicable.
 - D. Set of rotor lifting cables. (1) is NOTE: (If duplicate or similar generator is focated in same station of the Purchaser, only those special tools, wranches and cables unique to the new generator will be supplied).

Westinghouse

Alternating Current Generators, Continued

Hydrogen Inner-Cooled Generators, Continued

E Stator jacking or lifting trunnions. (Provided on a loan basis and to be returned to Westinghouse.)

9 Miscellaneous:

- A Generator frame grounding pads.
- B Seating plates, shims and soleplates.
- *C Removable appearance lagging from centerline to floor. (Embedded support plates not included.)

Hydrogen Inner-Cooled Generators,

- With Water Cooled Stator Winding ©1 Hydrogen coolers with 90-10 copper nickel tubes mounted within the generator housing and designed to operate with 96 F and lower cooling water at a maximum pressure of 126 psig@.
- Generator field discharge resistor for mounting in excitation cubicle. (Not included when brushless excitation system is furnished.)
- 3 Six (6) high-voltage bushings.
- 4 Twelve (12) bushing current transformers (two (2) per terminal) with provisions for one additional transformer per bushing.
- 5 Hydrogen system:
 - A Seal oil unit assembled on a base and including:
 - One hydrogen side and one air side seat oil pump, both with totally enclosed a-c motors.
 - Air side seal oil back-up pump with totally enclosed d-c motor.
 - Hydrogen side seal oll cooler and filter.
 - 4) Air side seal oil cooler and filter.
 - 5) Main pump relief valves.
 - Differential pressure switch with alarm contects for annunciator and for activation of back-up pump including manual test valvas,
 - Pressure switch with alarm contacts for seal oil back-up from turbine.
 - Two differential pressure switches with alarm contacts across air side and hydrogen side seal oil pumps.
 - Float switch with alarm contacts in seal drain system.

① Changed since previous issue,
 ② 160 psig at no change in price,

Prices effective October 30, 1974; subject to change without notice.

- 10) Gauge panel with:
 - a Air side seal oit pressure gauge.
 b Two differential pressure gauges
 - for measuring differential between hydrogen side and air side seal oil pressures.
 - Test gauge for hydrogen side seal oil pressure.
 - d Test gauge for air side main and back-up seal oil pumps.
 - Test gauge for turbine seal oil back-up pressure.
 - f Test gauge for checking starting of air side seal oil back-up pump. NOTE: Test gauges are mounted at point of test.
- Junction box for electrical connections (except for motors).
- Necessary check valves and shutoff valves.
- Generator gas temperature thermostat with alarm contacts.
- B The following are furnished for field assembly:
 - Seal oil loop seal system, including

 a seal tank with interconnecting piping, bypass and/or check valves where required, and motor-operated vapor extractor.
 - Steel pipe and weld type fittings for seal oil piping (excluding vent piping).
 - 3) Hydrogen drier and blower.
- C Hydrogen and carbon dioxide systems, including:
 - Hydrogen manifold with one bottle pressure regulator with high and low pressure gauges, shutoff valves and four connectors.
 - Manual generator hydrogen pressure regulator and manual bypass valve for fast feeding (in serier, with bottle pressure regulator).
 - Carbon dioxide manifold with pressure gauge, relief valve, shutoff valves, mounting brackets, and four bottle connectors.
 - Purging control valve assembly.
 - Three generator casing liquid detectors with alarm contact.
 - Steel pipe and weld type fittings for gas control system (excluding vent lines).

danne en en statistististe van de statististe de einer statististe in de statististe de einer statististe de stat

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

- D Hydrogen control cabinet, consisting of:
 - 1) Gas compartment, including:
 - a Dual pressure gauge for indication of machine gas pressure and generator fan pressure. Machine gas pressure electrically transmitted and equipped with high and low alarm contacts.
 - b Pressure compensated gas purity meter (and blower) for purity indication, electrically transmitted and equipped with high and low alarm contacts.
 - c Compartment wiring and gastight wiring seal into hydrogen electrical compartment.
 - d Compartment piping with pipe adapters at top of compartment.
 - Electrical compartment (separated from gas compartment by a gastight partition), including:
 - Annunciator with d-c pilot light, alarm contacts and manual reset.
 - b Relay for loss of d-c supply with contact for remote afarm.
 - c D-c horn for annunciator alarms.
 - d Switches for a-c and d-c supply including overload protection.
 - e Necessary terminal blocks and wiring.
 - f Alarm switches referred to in gas compartment are mounted in electrical compartment.
 - g Control wiring.
 - h Interlor light.
 - Electrical receiver for generator gas pressure, for mounting by Purchaser at generator hydrogen supply manifold.
 - NOTE: For cross-compound units combined gas and seal oil systems will be provided wharever practicable; otherwise separate individual systems will be furnished.

6 Stator coil cooling water system:

- A Stator coil cooling water unit assembled on a base, including:
 - One main and one full capacity back-up water circulating pump, both with totally enclosed a-c motors.
 - 2) Pressurized water reservoir.
 - Two (2) water-to-water heat exchangers.

October 30, 1974 Supersedes Price List 1252, deted July 1, 1974 E, C/1683/PL

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Alternating Current Generators, Continued

Hydrogen Inner-Cooled Generators, With Water Cooled Stator Winding Continued

- Two (2) 50 gpm deionizers.
- Filters, gauges, conductivity cells, pressure switches and regulating equipment as necessary.
- .6) Gauge to indicate differential prersure between generator stator coll cooling water inlet and discharge manifolds and alarm.
- 7) Water reservoir pressure gauge.
- B Stator coil cooling water control cabinet combined with the hydrogen control cabinet, including:
 - 1) Conductivity recorders and alarms.
- C Valves and piping as required, except hydrogen vent lines and water supply lines to coolers.
- 7 Temperature detectors as follows:
 - A One (1) resistance type for each cooler outlet cold gas.
 - B One (1) resistance type in common hot gas inlet to coolers.
 - C One (1) (including immersion well) in common cold gas outlet from hydrogen coolers for control of hydrogen temperature by Purchaser.
 - D Six (6) resistance type embedded in armature windings.
 - E One (1) thermocouple in each stator coil discharge header.
 - F One (1) thermocouple in cooler water inlet.
 - G One (1) thermocouple in cooler water outlet.

NOTE: Resistance type - 10 ohms af 25 C.

- 8 Generator condition monitor
- 9 Special tools:
 - A Necessary rotor removal and installation tools.
 - B Gap barrier tensioning tool, if required.
 - C Cooler, bushing, bearing, and bearing bracket assembly tools, where applicable,
 - D Set of rotor lifting cables,

NOTE: (If duplicate or similar generator is located in some station of the Purchaser, only those tools wrenches and cables unque to the new generator will be supplied.)

No change since previous issue,

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

- E Stator jacking or lifting trunnions. (Provided on a loan basis and to be returned to Westinghouse.)
- 10 Miscellaneous:
 - A Generator frame grounding pads.
 - B Seating plates, shims and soleplates.
 - C Removable appearance lagging from centerline to floor. (Embedded support plates not included.)

12-207

ORIGINALI PAGE IS

OF POOR QUALITY

Excitation System

The excitation for generators covered in this price list is supplied by a brushless excitation system.

The brushless excitation system consists of a permanent magnet pilot exciter (PMG), an a-c exciter, a diode and fuse wheel directly connected to the generator shaft with a static voltage regulator and associated excitation switchgear.

For other types of excitation systems, refer to Steam Turbine Division Marketing Department.

Excitation Tests

Standard factory tests, will include the following unless specifically waived:

- 1 Mechanical balance.
- 2 Measurement of cold resistances.
- 3 High-potential tests.
- 4 Overspeed test.
- 5 Resistance temperature detector tests.

Rotating exciters will be completely assembled in the factory and run at speed.

Exciter Temperature Guarantees

Brushless exciters are rated on the basis of continuous operation at rated output and will not exceed a guaranteed maximum temperature rise of 70 C for Class B insulation and 90 C for Class F insulation above an ambient of 40 C based on the standard 95 F cooling water requirement at an altitude of 3300 feet or less.

① Changed since previous issue.

Prices effective October 30, 1974: subject to change without notice.

ter seriet neue autopant a statu agus can shingit, filing, sanna si shekarak ina bina yang berta ta sh

Excitation Systems and Accessories

- I Brushless Excitation System (Air Cooled)
- Permanent magnet pilot exciter for excitation to the a-c exciter through the excitation switchgear.
- A-c exciter with a rotating armature and a stationary field winding.
- Rotating rectifier assembly including silicon diodes, indicating fuses, and other components.
- 4 All necessary electrical interconnections.
- 5 Set of mechanical parts, including: A Fabricated steel bedplate.
 - B Air-to-water heat exchanger.
 - C Insulated pressure-lubricated pedestal bearing.
 - D Temperature detectors (resistance type 10 ohms at 25 C) as follows:
 1) Two (2) for cold air temperature.
 - 2) Two (2) for hot air temperature.
 - E Dripproof enclosure mounted on the exciter base with the following features:
 - Door or access cover with glass window opposite the fuse and diode wheels.
 - Door or access cover at the end of the housing for access to the permanent magnet generator.
 - All doors are provided with locking devices to insure they remain closed during normal operation.
 - Set of internal lights, switches and convenience outlet.
 - 5) Hydrogen vent.
- 6 Terminal board in exciter base, and internal wiring in exciter for application of excitation system automatic ground detection device.
- 7 Indicating fuses for visual inspection during operation.
- 8 Convenience outlet.
- 9 Exciter base ground connection.
- 10 Type WTA solid state voltage regulating equipment and associated excitation switchgear, including:
 - A One set of metal enclosed excitation cubicles with ventilating means as required to maintain permissible heat rise and including the following:

المستحد ومجارعة المترافق ولموجز الميارين والمتركل ويرودون أستعيد والمراكز موج

Static voltage regulator including the required reference and sensing circuits.

- 2) Reactive droop compensator for parallel operation.
- 3) Static minimum excitation limiter,
- 04) Static maximum excitation limiter, and over excitation protector.
- Volts per Hertz protection equipment.
- Static power amplifier and associated firing circuits.
- Excitation system stabilizer.
- 8) Protection devices annunciator.
- 9) A-c exciter field breaker.
- Mounted and wired instruments as required by Westinghouse for monitoring operation.
- 11) Exciter field current shunt.
- Automatic generator field ground detector.
- 13) Motor operated base adjuster.
- Motor operated voltage adjuster with range width setter.
- 15) Set of bare busses
- Set of terminals of suitable size and rating for outgoing leads.
- 17) Set of nameplates.
- 18) Set of small wiring.
- 19) Set of internal lightc, switches and convenience outlets.
- 20) Set of pull fuses for control power.
- 21) Field current-isolating transducer.
- 22) Field voltage-isolating transducer.
- B One set of devices for remote mounting and wiring by the Purchaser.
 - Zero center regulator output balancing meter.
 - Type W-2 control switch and integral position indicator for motor operated base adjuster.
 - Type W-2 control switch and integral position indicator for motor operated voltage adjuster.
 - Type W-2 regulator control switch and indicating lights.
 - Type W-2 a-c exciter field breaker control switch and indicating lights.

a shekara ka ka shekara 🖓

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1583/PL

 $d \sim \pi^{-1}$

Υ.,

Steam Turbine Generator

Condensing Reheat Double Flow 25-Inch

Last Row Blades and Larger

Units

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Excitation Systems and Accessories, Continued

- II Brushless Excitation System (Hydrogen Cooled)
- Permanent magnet pilot exciter for excitation to the a-c exciter through the excitation switchgear, located at the end of the exciter shaft outside the exciter hydrogen enclosure.
- A-c exciter with a rotating armature and a stationary field winding.
- Rotating rectifier assembly including silicon diodes, indicating fuses, and other components.
- 4 All necessary electrical interconnections.
- 5 Set of mechanical parts, including:
 - A Hydrogen-tight enclosure.
 - B Shaft gland seals.
 - C Insulated pressure-lubricated bearing with bearing bracket.
 - D Inspection window(s) adjacent to the fuse and diode wheel(s).
- 6 Necessary parts and functions coordinated with generator hydrogen system, to operate exciter cooling system:
 - A Hydrogen feed to exciter enclosure.
 - B Carbon dioxide feed to exciter enclosure.
 - C Exciter enclosure hydrogen control valves.
 - D Exciter enclosure liquid detector with alarm contact.
 - E Hydrogen intake and discharge lines to appropriate zones of generator casing, to provide cooling of exciter from main generator cooling system.
 - F Pressure compensated gas purity meter with blower and alarm contact for exciter enclosure gas purity indication pnoumatic transmission, mounted in hydrogen control cabinet.
 - G Additional alarm contacts for annuciator to provide functions necessary, for hydrogen control for the exciter.
 - H Exciter gas temperature thermostat with alarm contacts.
- 7 Temperature detectors (resistance type - 10 ohms at 25 C) as follows:
 - A One (1) for cold gas temperature.
 - 8 One (1) for hot gas temperature.
- 8 Connection to seal oil unit.
- O Changed since previous issue.
- Westinghouse Electric Corporation Steam Turbing Division, Philadelphia, Pa. 19113 Printed in USA

- 9 Terminal board in exciter base, and internal wiring in exciter for application of excitation system automatic ground detection device.
- 10 Indicating fuses for visual inspection during operation.
- 11 Convenience outlet.
- 12 Exciter base ground connection.
- 13 Type WTA solid state voltage regulating equipment and associated excitation switchgear, including:
 - A One set of metal enclosed excitation cubicles with ventilating means as required to maintain permissible heat rise and including the following:
 - Static voltage regulator including the required reference and sensing circuits.
 - Reactive droop compensator for parallel operation.
 - 3) Static minimum excitation limiter.
 - D4) Static maximum excitation limiter, and over excitation protector.
 - Volts per Hertz protection equipment.
 - Static power amplifier and associated firing circuits.
 - 7) Excitation system stabilizer.
 - 8) Protection devices annunciator.
 - 9) A-c exciter field breaker.
 - Mounted and wired instruments as required by Westinghouse for monitoring operation.
 - Exciter field current shunt.
 - Automatic generator field ground detector.
 - 13) Motor operated base adjuster.
 - Motor operated voltage adjuster with range width setter.
 - 15) Set of bare busses.
 - 16) Set of terminals of suitable size and rating for outgoing leads.
 - 17) Set of nameplates.
 - 18) Set of small wiring.
 - 19) Set of internal lights, switches and convenience outlets.
 - 20) Set of pull fuses for control power.
 - 21) Field current-isolating transducer.
 - 22) Field voltage-isolating transducer.
 - B One set of devices for remote mounting and wiring by the Purchaser.

- 1) Zero center regulator output balancing meter.
- Type W-2 control switch and integral position indicator for motor operated base adjuster.
- Type W-2 control switch and integral position indicator for motor operated voltage adjuster.
- Type W-2 regulator control switch and indicating lights.
- Type W-2 a-c exciter field breaker control switch and indicating lights.

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Table A: Basic List Prices

Prices—in Thousands of Dollars—Include Freight and Technical Direction of Installation

Basic Unit Turbine Rating, Kw	Generator Rating, Kva	Turbine Exhaust Ends	Basic List Prico
Tandem C	ompound-	-3600 Rp	m
200,000	240,000	2-25″	\$10,900
275,000	330,000	2-28.5″	13,800
325,000	390,000	2-31″	15,800
325,000	390,000	4-23''	16,000
425,000	510,000	4-25''	18,900
550,000	660,000	4-28.5''	23,500
650,000	780,000	4-31''	27,200
800,000	960,000	6-28.5"	32,900
950,000	1,140,000	6-31"	38.100
Cross Cor	npound—3	600/3600) Rpm

390,000

510,000

600,000

660,000

000,07°, 950,000

1.020.000

1,140,000

1 320 000

1,440,000

Cross Compound-3600/1800 Rpm

600.000

780,000

1,200,000

1,440,000

1,680,000 1,800,000 1,800,000

325,000

425,000

500,000

550,000

650,000

850.000

950,000

500,000

650,000 850,000

,200,000

1,400,000

1.500.000

1,000,000

1,100,000

1,200,000

4-23" 4-25"

6-23"

4-28.5" 4-31" 6-28.6"

8-25"

6-31"

8-31"

2.40

2-44"

4-40"

4-44"

6-40" 4-52"

6-44"

8-28.5"

18,400 21,600

23,600

26,000

29,600

35,000

36.700

40,300 45,700 49,200

24,000 29,200 37,600

42,500

49,000

56,600 60,700

64,200

Pricing for Units with Capability other than Listed in Table A

- Add or deduct turbine capability at \$9.00/kw for each kw more or less than listed in table for base machine of the type desired.
- Add or deduct generator capability at \$7.50/kwa for each kwa more or less than listed in table for bese generator rating.

Table A-1: Basic List Prices for High Back Pressure Units

For prices for units with high back pressures, refer to the Steam Turbine Marketing Department.

ORIGINAL PAGE IS OF POOR QUALITY

Table B: Price Additions for Pressure (Psig) Prices—in Thousands of Dollars

Turbine Initial Pressure Range, Psig(2) Rating, Kw 3200-3500 4100-4500 1250-1450 1600-1800 2200-2400 \$1,200 150,000 \$ 120 \$ 000 s 300 SRAO 540 300 120 1,000 300 120 200,000 540 840 300,000 120 D 800 600 300 400,000 540 120 700 500,000 600,000 1,200 000 1,620 840 300 540 800 900 700.000 1,200 800,000 1,620 840 0 1,000 1,200 1,100 1,200 n 2,100 900,000 1,000,000 1,100,000 1,200,000 1.620 O ***** 1,300 2,100 ō 2.640 ø 1,500 1,300,000 3.240 3,900 1,600 Ő 1,500,000

@For pressures between those listed above, use the adjoining pressure range which results in the higher price

Table C: Price Additions for Temperature (F)

Prices-in Thousands of Dollars

Turbine	Initial Ter	mperature F	tango			First Reh	eat Tempera	sture Aan	Gð		Second Re	heat Tempera	iture Range
Rating, Kw	826- 900	901- 950	951- 1000	1001- 1050	1051- 1100	826- 900	901 - 950	951- 1000	1001- 1025	1028- 1050	1000	1001- 1025	1026- 10F0
150,000 200,000 300,000 400,000	-\$ 60 - 90 - 120 - 150	\$ 40 - 60 - 80 - 100	\$0 9 0	\$180 180 240 300	\$ 480 480 480 500	\$ 60 - 90 - 120 - 150	-\$ 40 - 50 - 80 - 100	\$D 0 0 0	\$300 300 300 300	\$500 500 500 500	\$1,600 1,600 1,600 1,600	\$1,800 1,800 1,800 1,800	\$2,000 2,000 2,000 2,000
500,000 600,000 700,000 800,000	- 180 - 210 - 240	- 120 - 140 - 160 - 180	0 . 0 0 0	360 420 480 540	720 840 960 1,080	- 180 - 210 - 240	- 120 - 140 - 160 - 180	0	300 320 340 360	500 520 540 560	1,700 1,800 1,900 2,000	1,900 2,000 2,100 2,200	2,100 2,220 2,340 2,460
900,000 1,000,000 1,100,000 1,200,000			0 0 0 0	600 660 720 780	1,200 1,320 1,440 1,560			0 0 0	380 400 420 440	580 600 620 640	2,100 2,200 2,300 2,400	2,300 2,400 2,500 2,600	2,580 2,700 2,820 2,940
1,300,000 1,400,000 1,500,000			0 6 0	840 900 950	1,680 1,800 1,920			0 0 0	460 480 500	660 680 700	2,500 2,600 2,700	2,700 2,800 2,900	3,060 3,180 3,300

No change since previous issue.

Prices effective October 30, 1974; subject to change without notice.

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

والاجترار فالاعتباد أتربع والأناب والروار المعاد والمروان والمعاقور فالمارك أتقادك

iya tarihi da kara sa k

فيكبعه ويخور ويزي

1835

12-210

ىرى ئەرەپ بەرەپ بەترەپ ئەترە تەرەپ ئەترەپ ئەترۇپ بەترۇپ بەترۇپ ئۇلچۇس بۇ<mark>رى</mark> ت

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Bledes and Larger

Table D: Special Turbine Equipment, Features and Requirements—200,000 to 700,000 Kw Prices in Dollars

		Turbino Ra	ting, Mw							
_		200	250	300	350	400	450	500	600	700
1	Technical Direction of Installation									
	(Deduct for omission)@	\$128 000	\$146 000	\$164 000	\$182 000	\$200 J00	\$218 000	\$218 000	\$238 000	\$308 000
2.	Turbine tests a Turbine acceptance test in field at Pur-									
	chaser's request(\$),	130 000	140 000	150 000	160 000	170 000	180 000	190 000	200 000	215 000
	b Turbine connections for Purchaser's test(4),	17 000	18 500	20 000	21 500	23 000	24 500	26 000	29 000	32 000
	c Turbine connections for Purchaser's enthatpy drop tests()	1 400	1 700	2 000	2 300	2 600	2 900	3 200	3 800	4 400
3	Extractions	1400	. 700	2,000	2.000	2,000	A 000	0 200	0.000	-1-100
_	a For each type auxiliary turbine application with									
	steam from auxiliary turbine entering into the									
	feed-water heating cycle 1. Does not re-admit to main turbing	50 000	50 000	55 000	55 000	60 000	60 000	70 000	80 000	90 000
	2. Re-admits to main turbing	110 000	110 000	120 000	130 000	150 000	160 000	170 000	190 000	210 600
	b For other uncontrolled extraction @	18 000	22 500	27 000	31 600	36 000	40 600	45 000	54 000	63 000
	 Single-automatic extraction for condensing units 	<i></i>				Enotom				
	d Double-automatic extraction for condensing				- 110101 10	raciony -				
	units	~			— Refer to	Factory				
4	. Side exhaust openings									
	a Bolow Floor line 1, 3600-rom, double-flow	140 000	160 000	180 000						
	2. 3600-rpm, lour-flow		220 000	240 000	260 000	280 000	300 000	320 000	360 000	400 000
	3. 3600-rpm, six flow			280 000	310 000	340 000	370 000	400 000	460 000	520 000
	b Above Roor line	-								
	1. 3600-rpm, double-flow	190 000	210 000	230 000	*******			1111111	1111111	******
	2. 3600-rpm, four-flow	250 000	270 000	290 000	310 000 390 000	330 000 420 000	360 000	400 000	460 000 690 000	520 000 670 000
	3. 3600-rpm, six flow,	300 000	330 000	360 000 350 000	390 000	420 000	450 000	510 000 480 000	540 000	600 000
	4. 1800-rpm, double flow					520 000	560 000	600 000	680 000	760 000
	6. 1800-ipm, ibur-itow			*******	• • • • • • • • • • • • • • • • • • •				840 000	920 000
5	. Special o'r coolers (price for two)		******						010 000	020 000
-	a For 100 F water temperature,	21 000	24 000	27 000	30 000	33 660	36 000	39 000	45 000	49 500
	b For 105 F water temperature or 30% oversize									
	cooler	67 000	61 500	66 000	70 500	75 000	79 500	84 000	90 000	96 000
	c For 300 psi coolers		13 000	14 000	15 000	16 000	17 000	18 000	20 000	22 000
	d For %-inch or %-inch diameter tubes,	7 500	7 500	7 500	9 000	9 000	9 000	9 000	12 000	12 000
	 For stainless steel tubes (smooth) 	48 000	51 000	51 000	54 000	54 000	57 000	57 000	60 000	60 000
	f For aluminum-brass or arsonical copper tubes	5 000	5 500	6 000	6 500	7 000	7 500	8 000	9 000	10 000
۰,	g Deduct for one cooler and transfer valve D6. Accessories	31 500	33 750	36 000	38 250	40 500	42 750	45 000	48 000	51 000
<u> </u>	a Oil for filling lubrication system	30 000	35 000	40 000	45 000	50 000	55 000	60 000	70 000	80 000
	b Hangers for oil and gland steam piping	16 000	20 000	24 000	28 000	32 000	36 000	40 000	45 000	46 000
	(piping analysis not included)						•			

Changed since previous issue.

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed In USA

ł

Westinghouse

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Table D: Special Turbine Equipment, Features and Requirements—800,000 to 1,500,000 Kw Prices in Dollars

Turbine Rating, Mw

	Terome ner	Neille annas						
	800	900	1000	1100	1200	1300	1400	1500
1. Technical Direction of Installation (Doduct for omission)@ 2. Turbino test*	\$344 000	\$ 380 000	\$ 416 000	s 452 000	\$ 488 000	\$ 524 000	\$ 560 000	\$ 596 000
B Turbine aeptance test in field at Pur- chaser's request() b Turbine connections for Purchaser's test() c Turbine connections for Purchaser's enthalov	230 000 35 000	245 000 38 000	260 000 41 000	270 000 44 000	280 000 47 000	290 000 50 000	300 000 53 000	310 000 56 000
di 🤈 tosts@ 3. Extractions	5 000	5 600	6 200	6 800	7 400	8 000	8 600	9 200
 a For each type duxiliary turbine application with steam from auxiliary turbine entering into the feed-water heating cycle@ 1. Does not re-admit to main turbine	100 000 230 000 72 000	110 000 250 000 81 009	110 000 270 000 90 000	120 000 290 000 99 000	* 120 000 310 000 108 000	130 000 330 000 117 000	130 000 350 000 125 000	140 000 370 000 135 000
Units				—— Rofer to	Factory —			≻
d Double-automatic extraction for condensing units	t			Refer to	Factory -			
 Side exhaust openings@ Aelow Floor line 3600-rpm, double-flow 3600-rpm, four-flow 3600-rpm, six-flow Aboue Floor line 	440 000 680 000	640 000	700 000				· · · · · · · · · · · · · · · · · · ·	······
1. 3600-rpm, double-flow 2. 3600-rpm, four-flow 3. 3600-rpm, six-flow	590 000 750 000	830 000	910 000	· · · · · · · · · · · · · · · · · · ·		••••••	•••••	· · · · · · · · · · · · · · · · · · ·
4. 1800-rpm, double-llow 5. 1800-rpm, four-llow 6. 1800-rpm, six-flow 5. Special oil coolers (price for two)	840 000	920 000 1080 000	1000 000 1160 000	1240 000	1320 000	1400 000	1480 000	1560 000
e For 100 F water temperature b For 105 F water temperature or 30% oversize	54 000	58 500	63 000	66 000	69 000	72 000	75 000	78 000
b For 105 F water temperature of 30% oversize cooler d For X-inch or X-inch diameter tubes o For stainlass stoet tubos (smooth) f For aluminum-brass or assenical copper tubes g Deduct for one cooler and transfer valve D6. Accessories	102 000 23 000 15 000 66 000 11 000 54 000	108 000 24 000 15 000 66 000 12 000 57 000	114 000 25 000 18 000 72 000 13 000 60 000	120 000 26 000 18 000 72 000 14 000 63 000	126 000 27 000 21 000 78 000 15 000 66 000	132 000 28 000 21 000 78 000 16 000 69 000	136 000 29 003 24 000 84 000 17 000 72 000	144 000 30 000 24 000 84 000 18 000 75 000
a Oil for filling lubrication system b Hangers for oil and gland steam piping (piping analysis not included)	90 000 49 000	100 000 52 000	110 000 55 000	120 000 58 000	130 000 61 000	140 000 64 000	150 000 67 000	160 000 70 060

O Changed since previous issue.

Prices effective October 30, 1974; subject to change without notice.

For foot-notes, refer to page 28.

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1583/PL

12-212

. With we have a supported by the set of the

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Table D: Special Turbine Equipment, Features and Requirements-200,000 to 700,000 Kw, Continued Prices in Dollars

	Turbine Ra	ting Mw		-					
	200	250	300	350	400	450	600	600	700
f Foundation bolts	\$ 6400	\$ 7 000	\$ 7 600	\$ 8 200	\$ 8800	\$ 9 400	\$ 10 000	\$ 11 200	\$ 12,400
1. Tandem-compound units.	32 000	38 000	40 000	44 000	48 600	52 000	56 000	64 000	72 000
2. Cross-compound units		52 000	56 000	60 000	64 000	58 000	72 000	80 000	88 000
h Omission of metal legging Deduct@		32 000	36 000	40 000	44 000	48 000	52 000	55 000	58 000
j Totelly enclosed motors for turning geer, ac turning gear oil pump, ac hydrogen seel oil back-up pump, dc emergs to basing oil pump, vapor extractor and gland con-									
denser blowers@	4 200	4 800	5 400	6 000	6 600	7 200	7 800	8 860	9 800
k Lagging support sills		2 400	2 600	2 600	2 800	2 800	3 000	3 200	3 400
1 Turbing shalt sealing systems									
 Additional gland condenser@	46 000	£43 000	54 000	58 000	62 000	65 000	70 000	75 600	81 200
3. Gland condensor for 135 F water temper-	4 200	4 500	4 800	5 100	5 400	5 700	6 000	6 600	7 200
avore in lieu of standard 125 F 4. Gland condenser for 150 F water temper-	4 000	4 350	4 700	5 050	5 400	5 750	6 100	6 800	7 500
ature in liau of standard 125 F@ 5. Motor-driven blower for gland condenser	23 200	24 000	24 800	25 600	20 400	27 200	28 000	29 600	31 200
designed for 1.0 psig discharge pressure in lieu of standard 0.25 psig.	1 700	1 800	1 900	2 000	2 100	2 200	2 300	2 400	2 600

 Table D: Special Turbine Equipment, Features and Requirements—800,000 to 1,500,000 Kw, Continued

 Prices in Dollars

-	Turbine Rati	ng, Mw						
	500	900	1000	1100	1200	1300	1400	1500
f Foundation bolts	\$ 13 600	\$ 14 800	\$ 16 000	\$ 17 200	\$ 18 400	\$ 19 600 .	\$ 20 800	\$ 22 000
1. Tandem-compound units	80 000	8B 000	96 000					
2, Cross-compound units	96 000	104 000	112 000	120 000	128 000	136 000	144 000	152 000
h Omission of metal lagging Deduct j Totally enclosed motors for turning gear, ac	61 000	64 000	67 000	70 000	73 000	76 000	79 000	82 000
turning gest oll pump, ac hydrogen seal oil back-up pump, do emergency bearing oll pump, vapor extractor and gland condenser								
blowarm	10 800	11 800	12 800	13 800	14 800	15 800	16 800	17 800
k Lagging support sills.		3 800	4 000	4 200	4 400	4 600	4 800	5 000
I Turping shalt sealing systems								
 Additional gland condenser@ Additional motor-driven blower for gland 	86 800	92 400	98 000	103 600	109 200	114 800	120 400	126 000
condenser@ 3. Gland condenser for 135 F water temper-	7 800	8 400	9 000	9 600	10 200	10 800	11 400	12 000
ature in lieu of standard 125 F	8 200	8 900	9 600	10 300	11 000	11 700	12 400	13 100
ature in lieu of standard 125 FQ	32 800	34 400	36 000	37 600	39 200	40 800	42 400	44 000
 Motor-driven blower for gland condenser designed for 1.0 psig discharge pressure in 								
lieu of standard 0.25 psig	2 800	3 000	3 200	3 400	3 600	3 800	4 000	4 200

For foot-notes, refer to page 28. No change since previous issue.

an a sa mining sa babar sa babar

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Prived in USA

4.31

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

 Table E: Special Generator Equipment and Features—240,000 to 840,000 Kva

 Prices in Dollars

	Generator	Rating, Mva							. <u></u> ,
• <u>•••••••••••••••••••••••</u> ••••••••••••	240	300	360	420	480	540	600	720	840
1. Generator modifications									
a 0.80 power factor	\$160 000	\$200 000	\$240 000	\$280 000	\$320 000	\$360 000	\$400 000	3480 600	\$560 000
b 0.85 power factor		100 000	120 000	140 000	160 000	180 000	200 000	240 000	280 000
c 0.95 power factor (Deduct)	28 000	32 000	36 000	40 000	44 000	48 000	62 000	60 000	68 000
d 0.72 short-clrouit ratio		410 000	450 000	490 000	530 000	570 000	610 000	690 000	70 000
e 0.64 short-circuit tatio		170 000	190 000	210 000	230 000	250 000	270 000	310 000	0 000
f 0.60 short-circuit ratio (Deduct)@		34 000	38 000	42 000	46 000	50 000	64 000	62 000	70 000
g Voltage range of plus or minus 5% within	00000	04000	00 000		10 000		•••••		
guaranteed temperature rise	000 03	70 000	80 000	90 000	100 000	110 000	120 000	140 000	160 000
2. Special generator coolers	60000	10 000	44 600	20 000	100 000	110 000			
a Generator coolers									
	12 000	14 100	16 000	18 000	20 000	22 000	24 000	28 000	32 000
1. For 300 psi	6 400	-00	7 200	7 600	8 000	8 400	8 800	9 600	10 400
2. For aluminum-brass tubes - 16 BWG		200			44 000	46 000	48 000	52 000	56 000
3. For stainless-steel tubes – 18 BWG	36 000	38 000	40 000	42 000	44 000	40,000	48 000	32,000	00000
b Cooling water 105 F within guaranteed tem-									
perature rise								4	407 866
1. Tandem-compound units		124 200	131 000	137 800	145 000	152 200	159 200	173 200	197 200
Cross-compound units	207 600	214 400	221 200	228 000	234 800	241 600	248 490	262 000	275 600
3. Accessories	1								
a Bushing current transformer (Add or Deduct	l								-
for each)	1700	1 900	2 100	2 300	2 500	2 700	2 900	3 300	3 700
b Generator neutral enclosure	14 800	18 400	22 000	25 600	29 200	32 800	36 400	43 600	50 800
c Neutral grounding equipment@		10 200	10 800	11 400	12 200	12 800	13 400	14 700	16 000
d Carriage for generator rotor removal		20 000	20 000	20 000	22 000	22 000	22 000	24 000	24 000

.. ..

Table E: Special Generator Equipment and Features-960,000 to 1,800,000 Kva Prices in Dollars

1	Generator 1	lating, Mva						
	960	1080	1200	1320	1440	1560	1680	1800
1. Generator modifications								
a 0.80 power factor	\$640.000	\$720 000	S 800 000	\$ 880,000	9 960 000	\$1 040 000	\$1 120 000	\$1 200 000
b 0.85 power factor	320 000	360 000	460 000	440 000	480 000	520 000	560 000	600 000
c 0.95 power factor (Deduct)	76 000	84 000	92 000	100 000	108 000	116 000	124 000	132 000
d 0.72 short-circuit ratio	850 000	930 000	1 010 000	1 090 000	1 170 000	1 250 000	1 330 000	1 410 000
o 0.64 short-circuit ratio	390 000	430 000	470 000	510 000	550 000	590 000	630 000	670 000
f 0.50 short-circuit ratio (Deduct)@		86 000	94 000	102 000	110 000	118 000	126 000	134 000
g Voltage range of plus or minus 5% within			• • • • • •					
guaranteed temperature rise	180 000	200 000	220 000	240 000	260 000	280 000	300 000	320 000
2. Special generator coolers								
a Generator coolers								
1. For 300 psi	36 000	40 600	44 000	48 000	52 000	56 000	60 000	84 000
2. For aluminum-brass tubes – 16 BWG	11 200	12 000	12 800	13 600	14 400	15 200	16 000	16 800
3. For stainless-steel tupes - 18 BWG	000 00	64 000	68 000	72 000	76 000	80 000	84 000	88 000
b Cooling water 105 F within guaranteed tem-	00000	04 000	00 000	12.000	10 000	00 000		00 000
porature rise								
1. Tandem-compound units	201 200	221 200	241 200	261 200	281 200	301 200	321 200	
2. Cross-compound units	290 000	304 400	318 400	332 400	346 400	360 400	374 400	388 400
3 Accessories	280 000	304 400	315 400	992 400	340 400	300 400	374 400	200 400
a Bushing current transformer (Add or Deduct			4 040	c #60	6 700	C 400	e 500	6 000
for each)	4 100	4 500	4 900	5 300	5 700	6 100	6 500	6 900
b Generator neutral enclosure	58 000	65 200	72 400	79 600	86 800	94 000	101 200	108 400
c Neutral grounding equipment@	17 200	18 600	19 800	21 000	22 400	23 600	25 000	26 200
d Carriage for generator rotor removal	25 000	26 000	26 000	28 000	28 000	30 000	30 000	20 000

For foot-notes, refer to page 28. No change since previous issue,

 $(N,\sqrt{2}^{2}\sqrt{2},\sqrt{2})$

Prices effective October 30, 1974; subject to change without notice.

dila kali dila ka dala maja katera da juli kajar maja mana ana na mangangana.

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Table F: Special Excitation Equipment and Features-240,000 to 840,000 Kva Prices in Dollars

	Concrator 1	Rating, Mva							
	240	300	360	420	480	540	600	720	840
1. Excitation speed of response®								1 A	
a For tandem-compound units	l		•						
1. Response ratio 1.0	\$ 27 500	ş 31 200	\$ 34 800	\$ 38 400	\$ 42,000	\$ 46 000	\$ 49 800	\$ 57 400	\$ 65 000
2. Response ratio 1.5		68 400	76 000	84 000	92 00D	100 000	108 000	123 600	139 200
3. Response ratio 2.0.		112 000	124 000	136 000	148 000	160 000	172 000	196 000	220 000
4. Response ratio 2.5.		152 000	168 000	184 000	200 000	216 000	232 000	264 000	296 000
5. Response ratio 3.0		194 000	219 000	234 000	254 000	274 000	294 000	334 000	374 000
6. Response ratio 3.5.		236 000	260 000	284 000	308 000	332 000	356 000	404 000	452 000
b For cross-compound units. Two shaft- or		200 000							
motor-driven exciters									
1. Response ratio 1.0	40 000	43 200	47 200	51 200	55 200	58 800	62 400	69 600	76 800
2. Response ratio 1.5		98 800	106 000	113 600	121 600	129 200	136 800	152 000	168 000
3. Response ratio 2.0		164 000	176 000	188 000	200 000	212 000	224 000	248 000	272 000
4. Response ratio 2.5							304 000	336 000	368 000
5. Rosponse ratio 3.0							388 000	42B 000	468 000
6. Response ratio 3.5							472 000	520 000	568 000
2. High initial response									
a For tandem-commund units with	[
1. Response ratio 0.5	·		340 000	340 000	340 000	360 000	380 000	420 000	460 000
2. Response ratio 1.0	1		309 000	305 000	301 000	318 000	336 000	371 000	407 000
3. Response ratio 1.5			278 000	270 000	262 000	276 000	292 000	322 000	354 000
4. Response ratio 2.0.			246 000	234 000	222 000	235 000	248 000	274 000	300 000
5. Response ratio 2.5.			216 000	200 000	184 000	193 000	203 000	223 000	243 000
6. Response ratio 3.0.			186 000	166 000	146 000	151 000	158 000	172 000	186 000
7. Response ratio 3.5			155 000	131 000	107 000	110 500	114 000	121 000	128 000
b For cross-compound units with			100 000	101 000					
1. Response ratio 0.5.								680 000	680 000
2. Rosponse ratio 1.0.			• • • • • • •					617 000	609 000
3. Response ratio 1.5,		******	•••••					554 000	538 000
4. Response ratio 2.0		• • • • • • • •						492 000	468 000
			•••••					431 000	399 000
5. Response ratio 2.5			******	******				370 000	330 000
6. Response ratio 3.0,,			•••••	******				310 000	262 000
7. Response ratio 3.5		******		******				0.0000	202 000

Table F: Special Excitation Equipment and Features-960,000 to 1,800,000 Kva Prices in Dollars

	Generator R	ating, Mva						
	960	1080	1200	1320	1440	1560	1680	1800
1. Excitation speed of response®								
a For tandem-compound units		0.00.000	e 20 000	\$ 96 800	5104 800	\$112 800	\$120 800	\$128 800
1. Response ratio 1.0	\$ 72 800	\$ 80 800	\$ 88 800 186 000	201 600	217 200	232 800	248 400	264 000
2. Response ratio 1.5.	154 800	170 400	292 000	316 000	340 000	364 000	388 000	412,000
3. Responso ratio 2.0	244 000	268 000		424 000	456 000	488 000	520 000	552 000
4. Response ratio 2.5	328 000	360 000	392 000 494 000	534 000	574 000	614 000	654 000	694 000
5. Response ratio 3.0.	414 000	454 000			693 000	740 000	787 000	834 000
6. Response ratio 3.5.	500 000	548 000	596 000	644 000	093 000	140 000	101 000	034 000
b For cross-compound units. Two shaft- or								
motor-driven exciters				403 000	11 4 000	122 400	130 000	137 800
1. Response ratio 1.0.	84 000	92 000	99 600	107 200	114 800	262 800	278 400	294 000
2. Response ratio 1.5		200 000	216 OOD	231 600	247 200	416 000	440 000	464 000
3. Response ratio 2.0		320 000	344 000	368 000	392 000		592 000	624 000
4. Response ratio 2.5		432 000	464 000	496 OOD	528 000	560 000		768 000
5. Response ratio 3.0	508 000	548 000	588 000	628 000	668 000	708 000	748 000	
6. Response ratio 3.5	616 000	664 000	712 000	760 000	808 000	856 000	904 000	952 000
2. High initial response								
a Fortandem-compound units with							= + 0 000	780 000
1. Response tatio 0.5	500 000	540 000	580 000	620 000	660 000	700 000	740 00D	
2. Response ratio 1.0	442 000	477 000	513 000	548 000	583 000	619 000	654 000	689 000
3. Response ratio 1.5	364 000	414 000	446 000	476 000	506 000	538 000	568 000	598 000
4. Response ratio 2.0	326 000	352 000	378 000	404 000	430 000	456 000	482 000	508 000
5. Response ratio 2.5	262 000	282 000	302 000	321 000	341 000	361 000	381 000	401 000
6. Response ratio 3.0		212 000	226 000	238 000	252 000	266 000	280 000	294 000
7. Response ratio 3.5	135 000	142 0110	149 000	156 000	162 000	170 000	178 000	186 000
b For cross-compound units with								
1. Response ratio 0.5	680 000	720 000	760 000	800 000	840 000	880 000	920 000	960 000
2. Rosponse ratio 1.0	601 000	637 200	672 000	707 000	743 000	778 000	B13 000	849 000
3. Response ratio 1.5	622 000	554 000	584 000	614 000	646 000	676 000	706 000	738 000
4. Response ratio 2.0	444 000	470 000	496 000	522 000	548 000	574 000	600 003	626 000
5. Response ratio 2,5	367 000	367 000	407 000	426 000	446 000	466 000	485 000	505 000
6. Response ratio 3.0	290 000	304 000	318 000	330 000	344 000	358 000	370 000	384 000
7. Response ratio 3.5.	214 000	221 000	228 000	235 000	242 000	249 000	256 000	263 000
	•							

For foot-notes, refer to page 28. No change since previous issue.

والمرم شدود والمراجع

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

12-215

ORIGINAL PAGE IS OF POOR QUALITY

. . . .

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Lest Row Blades and Larger

Table G: Weatherproofing of Turbine Generators—200,000 to 700,000 Kw Prices in Dollars

· Toulden Detine Mer

	Turbino Rai	ling, Mw							
	200	250	300	360	400	450	500	600	700
1. Weatherproof complete unit for normal tem-							-		
poraturos@ a. Tandem-compound	\$ 96 000	\$105 000	\$105 000	\$105 000	\$112 000	\$112 000	\$112 000	\$125 000	\$125 000
b, Cross-compound.		130 000	130 000	130 000	137 000	137 000	137 000	150 000	150 000
c. Tandam-compound (Rollaway)		225 000	225 000	225 000	232 000	232.000	232 000	245 000	245 000
d. Cross-compound (Rollaway)	241 000	250 000	250 000	250 000	257 000	257 000	257 000	270 000	270 000
2. Weatherproof complete unit for sub-normal	1.	7							
tomperatures@	116 000	125 000	125 000	125 000	135 000	135 000	135 000	145 000	145 000
a. Tandem-compoundb. Cross-compound		150 000	150 000	150 000	160 000	160 000	160 000	170 000	170 000
c, Tandam-compound (Rollaway)		245 000	245 000	245 000	255 000	255 000	255 000	265 000	265 000
d. Cross-compound (Rollaway)	260 000	270 000	270 000	270 000	280 000	280 000	280 000	290 000	290 000
3. Turbino walk-in enclosure@	40 000	40 000	40 000	40 000	44 000	44 000	44 000	48 000	48 000
4. Weatherproofed enclosure over front ped-		· · · · ·			5			an anns.	1.5
astal@ a. With limited walk-around space	32 000	33 000	34 000	35 000	36 000	37 000	38 000	40 000	42 000
b. With walk-around space, plus additional	0.000	00 000							
space for panels.	44 000	45 000	46 000	47 000	48 000	49 000	50 000	52 000	54 000
		· · · · · ·							

Table G: Weatherproofing of Turbine Generators—800,000 to 1,500,000 Kw Prices in Dollars

	[Turbine Rating, Mw					÷				
· · · · · · · · · · · · · · · · · · ·	800	900	1000	1100	1200	1300	1400	1500		
1. Weatherproof complete unit for normal tem-										
poratures@										
a. Tandem-compound	\$125 000	\$135 000	\$135 000	\$150 000	\$150 000	\$150 000	\$150 000	\$150 000		
b Cross-compound		160 000	160 000	160 000	175 000	176 000	175 000	180 000		
c. Tandem-compound (Rollaway)	245 000	255 000	255 000	255 000	270 000	270 000	270 000	275 COD		
d. Cross-compound (Rollaway)	275 000	280 000	280 000	288 000	295 000	295 000	295 OOD	300 000		
2. Weatherproof complete unit for sub-normal	1	•								
temperatures@	1									
a. Tandem-compound	145 000	155 000	155 000	155 000	170 000	170 000	170 000	175 000		
b Cross-compound		180 000	180 000	180 000	195 000	195 000	195 000	200 000		
c. Tandom-compound (Rollaway)		275 000	275 000	275 000	290 000	290 000	290 000	295 000		
d. Cross-compound (Rollaway)		300 000	300 000	300 030	315 000	315 000	315 000	300 000		
3. Turbine waik-in enclosure@		52 000	52 000	56 000	56 000	56 000	56 000 .	56 000		
4. Weatherpropied enclosure over front ped-		Q., 004	02.000	00 000						
estal@	· · ·									
a. With limited walk-around space	44 000	46 000	48 000	50 000	52 000	54 000				
b. With walk-around space, plus additional	44.000	40 000	40 000	20,000	97 000	J4 000		••••••		
space for panels	56 000	68 000	60 000	62 000	64 000	66 000				
obten ini hongiorassessessessessessessesses	1 90 000	33 000	00 000	02 000	04000	45 000	******			
11 A.										

For foot-notes, refer to page 28.

No change since previous issue.

Prices effective October 30, 1974; subject to change without notice.

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Foot-Notes

For Pages 22 through 27 inclusive

- ② A Westinghouse engineer must be employed to direct the installation. This deduction may be made if the Purchaser desires to hire the Westinghouse engineer at the prevailing hourly rate.
- () Purchaser's and Westinghouse's representatives Puchaser's and Westinghouse's representatives will jointy plan test procedure and instrumentation. Calibrated instruments and devices required for the test will be furnished by Westinghouse (to be returned). Westinghouse will provide engineeing diraction of test installation and the running of the test, Westinghouse will calculate the test results from the test data and furnish a complete test report to the Durchaser

report to the Purchaser. Includes turbine connections for the test instrumentation.

The Purchaser will make the unit available at the loads and steam conditions necessary for the test and will provide material and labor for installation of the test instrumentation, and personnol to read and record test data.

- O@Pressure connections in low pressure inter; Pressure connections for LP extractions; basket type in LP exhaust; orifices and thermocouple wells in steam seal piping system,
- () Two thermocouple wells and pressure connection for low-pressure inlet.
- The main unit steam seal regulating valves and gland steam concenser will (if requested by Purchaser) be sized to handto the auxiliary turbine applications.
- () When uncontrolled extraction steam is required o.er and above normal feedwater heating and auxiliary luthing applications (where required), the prices listed are to be multiplied by the nearest per-cent extraction determined by the formula: Fossil Units

Additional extraction flow x 100 - 6% Throttle flow at guaranteed output Nuclear Units

Additional extraction flow x 100

Throttle flow at guaranteed output The uncontrolled extraction steam need not reenter the feedheating cycle.

The price includes protection to prevent overloading the turbine parts when the extraction is shut off.

- ③ Side-exhaust units will have the same heat rates as downward exhaust.
- Complete blanket insulation over high temperature 1 turbine parts instead of standard block and plastic.
- (1) Includes amission of the enclosure over the HP and IP turbine(s), inlet bends and inlet valves. The front pedestal, and low pressure turbine cylinder foot will be enclosed.
- The A-c turning gear oil pump motor is available encapsulated if it is over 40 HP.
- (i) Includes standard tube materials, one motor-streen blower, one manual inlet valve, level alasse and two motor operated isolating valves,
- (i) includes piping, manual valve, and two check volves.
- Includes two exhaust blowers.
- No extrapolation for SCR below 0.50.
- Neutral grounding equipment includes distribution type neutral transformer and secondary resistor contained in a cubicle with sealing bushing and connection.
- Base response ratio is 0.5. The definitions of "excitation system voltage response" and "excita-

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

tion system voltage response ratio" are presented in IEEE Standard 421-1972.

O@Includes weatherproofing of front pedestal; weathgincludes weatnerproofing of front pedestal; weath-erproofing of turbine andiostre, including enclo-sure over costrol valves and cylinder-mounted in-tercept valves; weatherproofing of generator en-closure; and weatherproofing of exciter enclosure, in cases where the turbine In cases where the turbine employs external crossover pipes, their insulation will be covered. The tuning gear and bearing pedestal between turbine exhaust hood and generator will be covered by a weatherproof enclosure.

Rollaway enclosure over turbine casing area can be provided instead of weatherproof turbine enclosure if desired. Enclosure designed in detach-able sections, with necessary vents, doors, rollers, and hardware. Rells and supports in foundation are to be furnished by Purchaser.

The shaft-driven exciter will be covered with a weatherproof sheet-metal enclosure, including lighting, cooling, and a heater, but not insulated. Ighting, cooling, and a hoster, but not insulated, All turbine and generator motors will be furnished with space heaters where available and are the totally enclosed type except the turning gear motor, which is adequately protected by the tur-bine tagging and therefore is of the open drip-proof type, if the oil reservoir, E-H fluid recervoir, stop valves, intercept valves, hydrogen-seal oil unit and control panel, gas manifold and excitation cubicles are exposed to the elements they will be weather-oropied and heaters will be provided in weather-prooled and heaters will be provided in the reservoirs. A price deduction for the omission of weatherproofing these items and for the omission of the reservoir heaters will not be made.

The t-H must lines will be designed, including Trace Heating, for an ambient temperature of 0 F with an assumed wind velocity of 25 MPH maxi-mum. Westinghouse will provide the Trace Heat-ing Equipment. Installation to be done by others. The E-H fluid lines will be designed, including

If standard open motors on the oil reservoir are desired, a price deduction will be made.

Normal temperatures are those where ambient temperature is not below 0 F.

() Sub normal temperatures are those where am-bient temperature is from 0 F to -40 F.

Additional weatherproofing for subnormal temperatures includes fans for circulation of warm air, additional ventilation shutters in turbine generator enclosure and heating elements for exposed gages and instruments.

Rollaway enclosure over the turbine cylinder area as described in note () can be provided.

The E-H fluid lines will be designed, including Trace Heating, for an ambient temperature of 0 F with an assumed wind velocity of 25 MPH. Westinghouse will provide the Trace Heating Equipment. Installation to be done by others.

- ① The turbine walk-in enclosure consists of a lighted and vantilated sheet-metal enclosure over the turbine front end. The enclosure avtends from about four feet in front of the turbine padestal back to the main section of enclosure. There is a door on each side. No insulation or heating is pro-vided in the enclosure. The turbine enclosure will consist of weatherproofed, sheat-metal lagging from the turbine walk-in enclosure over the highpressure and intermediate-pressure cylinders to the governor end of the exhaust hood. The weatherproofed enclosure over the turning gear and exciter will remain unchanged.
- @ a Weatherproofed sheet-motal enclosure with approximately three feet of walking space, in-cludes vents and lighting, but no insulation or heating; has removable sections to facilitate malotenance.

When rolloway house is used over turbine casing

area, a rollaway house of approximately the same size as this weatherproofed enclosure can be provided over turbine front pedestal, instead of the weatherproofed enclosure, for the same price addition,

b Weatherproofed sheat-metal enclosure with at least three feet of walking space around the front pedestal, plus additional width to provide space for location of start-up and/or turbine supervisory instrument panels. Includes vents and lighting, but no insulation or heating; has removable sections to facilitate maintenance.

When rollaway house is used over turbine casing area, a rollaway house of approximately the same size as this weatherproofed enclosure, can be provided over turbine front pedestal, instead of the weatherproofed enclosure.

ORIGINAL PAGE IS OF POOR QUALITY

① Changed or added since previous issue.

Price Addition

\$ 8,000 22,000 38,000

10,000 27,500 46,000

3,600

1,600 3,000

3,700 6,500 ,

1.400

5,600

1.400

5,600

12,000

50,000

12,000

5.000

60,000 21,000/ shaft

200,000 1,390

in-2%

60 3,500 4,500

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

Table H: Special Accessories and Requirements, Turbines

	Prico Addition	Requirements, lummes	Price Addition	
1. Electro-hydraulic control system		7a Differential expansion trip relay and		30. Temperary blowdown covers and
a Remote set of valve position setpoin	t \$ 1,000	detector	13,000	valve seat blanking plates for steam blowdown
 b Operator push button adjustment operator 	f	b Provisions for future mounting of	A 600	a Non-reheat, per set
throttle pressure lituits c Operator set Hi-Lo limit on los		abovo,	\$ 600	b Single reheat, per set
reforence		8. Speed recorder	2,400	c Double reheat, per set
 d Indicator lamps – not put h button. 	. 400	9. Electric speed indicator	500	 Temporary blowdown covers and valve seat blanking plates for acid
 Relay contact output (mercury we ted) 		10. Milliammoter	500	wash and/or steam blowdown.
f Temperature switch to measure but		11. Electric position transmitter	1,050	a Non-reheatb Single roheat
E-H fluid	. 120	12. Electric position receiver	1,600	c Double reheat
g High pressuro heador switch (high and low)	∺s . 240	13. Extra shaft vibrometer pickup 14. Extra vibration recurder	3,600	32a Electric oil reservoir heater (up to
h Test solenoid for testing auto-start	of	15. Extra temperature recorder	3,600	30 Kw) b Provisions for future mounting of
auxiliary fluid pump	. 800	16. Supervisory instrument cabinet	3,000	above
(i) Two thermostatically controlle valves, two isolated valves, & straine		a Tandem-compound unit	13,000	33. Oil mist eliminator (motor-driven)
for E-H fluid host exchanger	. 1,000	b Cross-compound unit	16,000	34. Reproducible copies of final draw-
Rosorvoir heater - E-H		17. Turning gear control panel, pershaft@	1,340	ings, polyester base diazo
k Special loading rates for load rate selector		18. Start up panel, indoor()		a in lieu of standard b in addition to standard
I Spare magnetic pickup on puls	6	a Tandem-compound unit	22,000	35. 35 MM microfilm negatives
wheel		b Cross-compound unit	24,000	a in lieu of prints of final drawings
m Spare E-H fluid supply pump n Fluid for E-H system		19. Type W switch	260	deduct
a Additional length of cable between		20. Limit switch a 1 N.O. and 1 N.C. contacts	230	b in lieu of prints of all issues of draw- ings deduct
E-H panel and controller cabinet	-	b 2 N.O. and 2 N.C. contacts	310	c In addition to prints of final draw-
 per 10 foot length ()p Deletion of E-H fluid line trace 	. 600	c 3 N.O. and 3 N.C. contacts	390 140	ings – add per set d in addition to prints of all issues of
heatingDeduc	t 8,000	d Provision for future mounting 21a Pressure switch	230	drawings
2. Solonoid actuation for motor pun		b Differential pressure switch	920	36. Extra copies of instruction book,
test valves (in lieu of manual valves per valve		a Provision for future mounting	140	each
3. Gland systems		22. Indicator light	40	 Appearance model (¼"=1')
a Deduct for omission of motor ope		23. Gauges		a Tandem-compound b Cross-compound
ated bypass and shut-off valv around main and spillover regulato		a Direct roading	160	38. Combined main turbine systems with
b Motor-operated butterily dischard		b Pneumatic 1. Transmitter	760	Westinghouse furnished auxiliary tur-
valve for isolation of exhauster blov	v-	2. Receiver	160	bine systems: Combined E-H fluid system - each
er, per valve c Additional manual butterily di		c Electric 1. Transmitter	1,100	auxiliary turbine
charge valve for isolation of a		2. Receiver	500	b Combined E-H fluid and lube oil
hauster blower		24. Additional pressure tap with nipple		system – each auxillary turbine c Steam seal piping between main
d Gland condenser water supply d sign pressure for each 100 psig		and shut off valve	2,700	unit and auxiliary turbing(s)
fraction thereof above maximu	m	a Turbine cylinder – each b Other – each	500	d Manual isolation valves in steam seal piping botween main unit and
standard of 400 psig	. 4,000	25. Temperature detection devices		auxiliary turbine(s)
4. Special motor requirements		a Thermocouple or thermostat in bear-	120	39. Preparation or review of specific
a 4160 volt main auxiliary oll pun motor		ing oil drain lines b Thermocouple in bearing metal	340	automation flow charts
b 2300 volt auxiliary oil pump motors		c Exhaust hood thermostats		40. Thrust load recorder
 c Spaceheaters —turbine and generat 	10	1. With one alarm contact 2. With two alarm contact	230 350	
motors, per unit,		d Thermocouple in cylinder, bolt or		41. Mixed exhaust ends
 d Space heater for motor and box i motor-operated valves, per valve. 		flange, or valve body or bonnet o Two or three element thermocouple	480	42. Anti-motoring protection
e Dolote d-c motor starter for emit		in lieu of standard single element	120	
quency oil pump motor – Deduct	1,120	f Extra thermocouple well	120	(1)43. Boxing for overseas shipment in- crease total pilco
I D-c motors to accommodate volume ages below 10% of rated volume		g Platinum in lieu of conventional RTD's, each	150	
ages below 10% of rated voltage. 1. Indoor units (ODP Motors)		i Indicating thermometers (dial)	320	
a Bearing oil pump motor	., 1,500	1. No alarm contact	400	1
 b Scal oil pump motor, 2. Outdoor units (TEFC Motors) 	1,000	26 Additional float type oil level alarm		
a Bearing oil pump motor		(one is standard)	700	
b Seal of pump motor 5 Separate ultrating trip roles and d		27. Larger terminal boxes on turbine-		1
 Separate vibration trip relay and d tector 		generator	600	1
6. Tomperature trip ralay	-	28. Sliding-link type terminal boards,	0.000	
① Addition since previous issue.		turbine	8,000	
For foot-notes, refer to page 30.		29. Steel wrench cabinet	2,500	1

Prices effective October 30, 1974; subject to change without notice.

a the second
and the state of the second sta

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

(یکی رائی

 $\underline{\gamma}_{\underline{C}}$

وهايا فراجية وزيام وحامرتي وا

موليه بيداريوني دانيات رائع مادريات وزرابي والاعاليه فالشيبا ويسا

12 - 218

inter a state of the
Price List 1252 Page 30

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-inch Last Row Blades and Larger

Foot-Notes for Table H, Page 29

- Includes ammeter and switch for turning geat motor, switch for ac bearing oil pump motor, and signal lights.
- Includes teceiver-type steam pressure gages, (main, 1st stage, to reheater, from reheater, exhaust): Type W switch and lamps for turning gear moter, turbine all pump motors and vapor extractor motor; indicators for standard turbine supervisory Instruments, Panels for cross-compound units include additional supervisory indicators and turning gear motor switch and lamp.
- a Includes increased capacity for the E-H fluid system components and the interconnecting piping from main unit to header cannection points at each nexillary turbine. Requires all valve hydraulic relays to be located at an elevation higher than E-H fluid tank to permit gravity drainage. E-H fluid not included.
 - dramage. E-H Muid not included.
 b Includes increased capacity of the ube oil system components for the supply of lube oil to the auxiliary turbine and its driven auxiliary, and interconnecting oil piping from main unit to header connection points at the auxiliary units, includes combined E-H fluid system for main unit and auxiliary turbine, where applicable, with features as described above, frequires auxiliary turbine (%) to be located at an elevation higher than main-unit fube oil tank to permit gravity drainage of oil. Lube oil and E-H fluid net included.
 - Does not include isolating valves between main unit and auxiliary turbine(s).
- S includes thrust load calls mounted in thrust bearing housing and recorder (mounted by Purchaser).
- Includes SG-1 Relay, pressure switch, and differential pressure switch.

No change since previous issue,

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

12-219

ORIGINAL PAGE IS OF POOR QUALITY ŗ÷,

Table J: Special Accessories and Requirements, Generators

Deleo

	Prico Addition
Generator	
1. Two extra bettle connections on CO ₂ or H ₂ gas manifolds;	
 Delation of hydrogen and CO₂ manifolds (Deduct) 	720
 Space heaters in H₂ control pane or excitation cubicles, per cubick 	ł
socilon	
 4. De mater starter for de seal oil pump. 6. Generator temperature indicator (no 	1
including leads or selector switches	
 Hydrogen purity receiver gauge Relay type ennunciator 	500
a 12 or 14 point	2,000
b 30 point	5,000
8. Thermocouple or RTD in stator wind	
ings, and iron or coolant passage	120
9. Tube expander for H ₂ cooler	. 80
10. Test equipent rental:	
 a Forhigh potential test after installation 	
per week	
b Additional oscillograph rentel, pe week	
 Calibration of bushing current trans former, per CT per burden @ 	
 Stator winding cooling water system components 	
a Spore deionizor with required piping valves and gages	15,000
b Isolation valves and associated pipin to coolers	10,400
c Spare full-flow filter with require piping, valves and pages	. 12,600
d Immersion heater, thermostat an pressure switch	. 2,700
13. Sliding-link type terminal boards generator only	
14. Tests	. 300.000
a Short factory test series(), b Long factory test carles(),	. 320,000
Excitation system and miscellage ous switchgear (prices are on a "p generator" basis)	- 37
15. Line drop compensation 16. Power system stabilizing	. 1,100
a F-7 supplemental signal	. 12,000
b F-V8 supplemental signal@	18,300
17. Position Indicator for computer input	
18a Interposing relays for excitation sys	
tem operation on computer puts control@	. 6,400
b Provision for future mounting o above with wiring, per set,	

∋s		Price Addition
	19. Voltage regulator latching relays()	\$1,280
_ 1	20. Voltage matching equipment@	
<u> </u>	21. Dust-proof enclosure per cubicle	
	section	3,740
00	limiter@	2,400
	23. Loss of excitation relay	
20	24. Base adjuster follower@	
	25. Portable stroboscope	1,100
70		
100		
500		
500		
000		
100		
	•	
120	_	
80		
900		
000		
360		
000		
400		

600		
700		
000		
000		
000		
000		
100	1	
000 300	1	
300 500		
500		

United and a second sec		
	Reheat Double lades and Large	

Units

Price

Steam Turbine Generator

Foot-Notes for page 29

- () Standard includes a two-point calibration, per ANSI standard burden B-2; this price applies per additional or special test burden.
- O Short factory test series includes running the gonerator at the factory and performing the following Open circuit saturation curve
 Open circuit core loss curve
 Shert circuit loss curve
 Synchronous impedance curve

 - 4. Synchronous impedance curve
 5. Double frequency vibration
 6. Voltage balance
 7. Current balance
 8. Phase sequence
 9. Shaft voltage
 10. Residual voltage
 11. Hydrogen seat oil flow
 12. Bearing and seat insulation test
 12. Dearing and seat insulation test
- Cong factory test series includes the short factory test series plus;
 Open delta saturation curve
 TIF and harmonic analysis
 Open circuit heat run
 Short circuit heat run

 - 5. Zero excitation heat run
- (3) Bias of voltage regulator so that during changes in frequency the excitation is regulated as a function of both voltage and frequency.
- (b) Latching or interposing relays to allow parallel computer/operator control of field breaker, transfer relay, do voltage adjuster and ac voltage ad-juster, Provides mode selection.
- D Latching to prevent regulator returning to manual control on battery supply interruption.
- (b) Matches generator terminal voltage to line voltage prior to connecting generator to line.
- (Voltage regulator bias by generator frequency to imit volts per Hertz in automatic mode and below 57 Hertz while off-line.
- Continuous adjustment of de regulator while operating on ac regulator so that a regulator transfer will not change excitation,

No change since previous issue.

Prices effective October 30, 1974; subject to change without notice.

October 30, 1974 Supersedes Price List 1252, dated July 1, 1974 E, C/1683/PL

<u>an na hili penang</u> kalèhèn ning pa<u>ngan ning kan</u>in na mangangan kerina ke

Price List 1252 Page 32

Steam Turbine Generator Units

Condensing Reheat Double Flow 25-Inch Last Row Blades and Larger

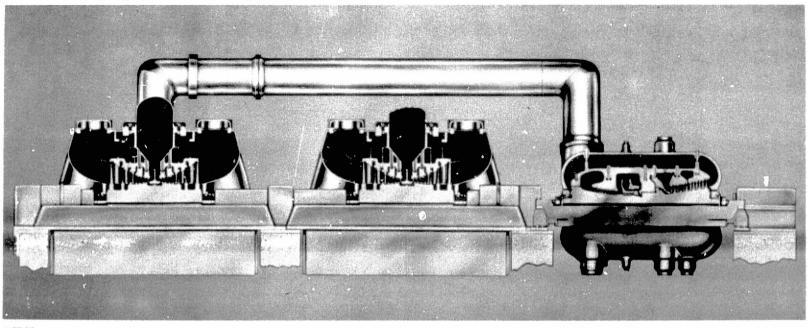
ORIGINAL PAGE IS OF POOR QUALITY

New Information

Westinghouse Electric Corporation Steam Turbine Division, Philadelphia, Pa. 19113 Printed in USA

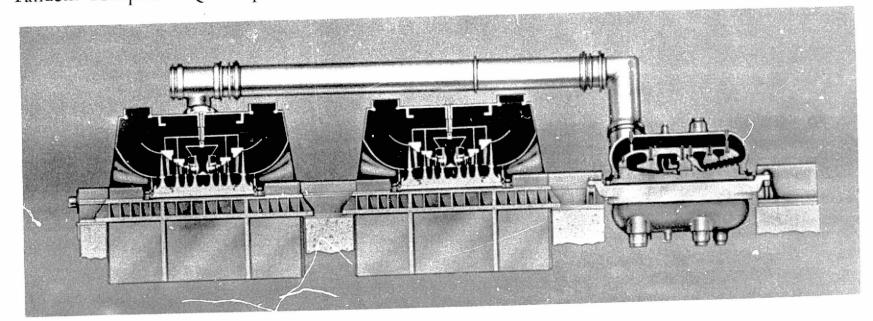
12-221

Sec. Sec. and a second second


Subappendix AA 12.1.2 PROPOSAL DESCRIPTIVE LEAFLETS

PRECEDING PAGE BLANK NOT FILMED

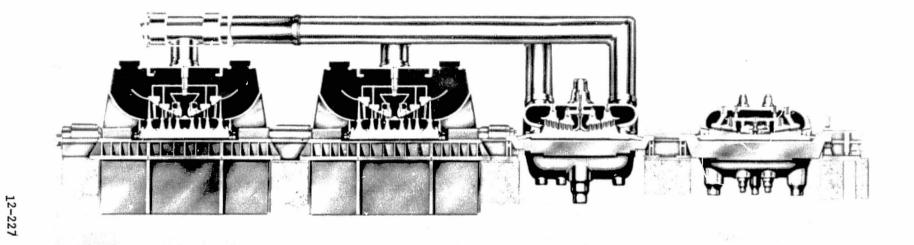
AA 12.1.2.1 500 MW Turbine-Generator Configurations


Combined UD TD element also the Augl Slaw 25 to TD	Page
Combined HP-IF element plus two dual flow 25 in LP ends (4F-25)	12-225
Combined HP-IP element plus two dual flow 31 in LP ends (4F-31)	12-226
HP element plus dual flow IP element plus two dual	
flow 31 in LP ends (4F-31)	12-227
Dual reheat machine - VHP-HP element plus dual flow	
IP element plus two dual flow 31 in LP ends (4F-131)	12-228

Tandem-Compound Quadruple-Flow Reheat Turbine

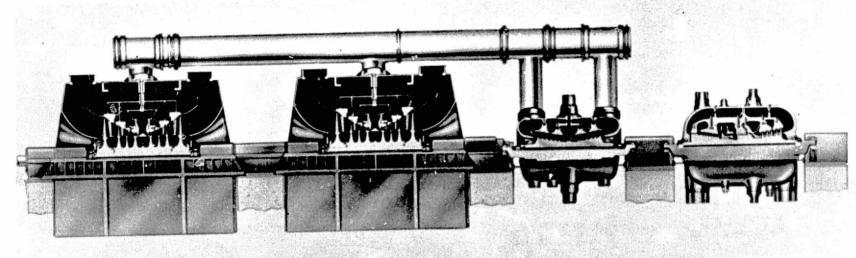
44-271-271

Longitudinal section of TC4F reheat turbine, 3600 rpm.



Tandem-Compound Quadruple-Flow Reheat Turbine

44-73-73

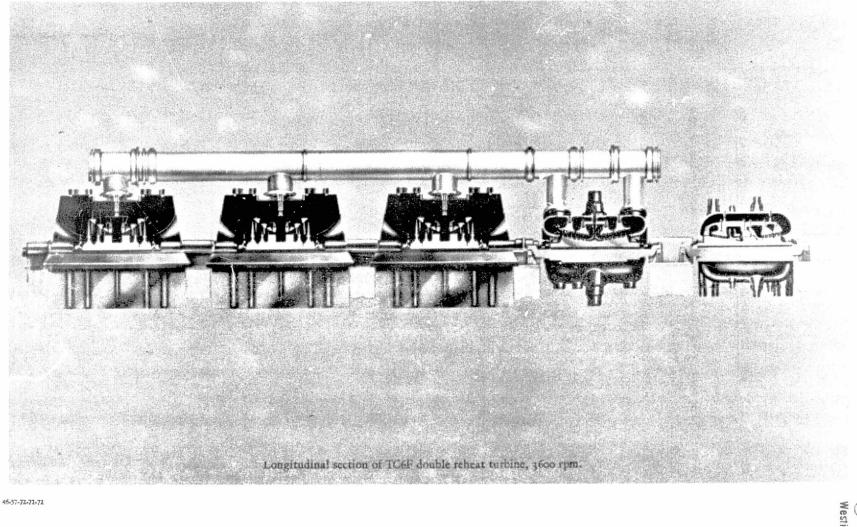

Longitudinal section of TC4F reheat turbine, 3600 rpm.

Tandem-Compound Quadruple-Flow Reheat Turbine

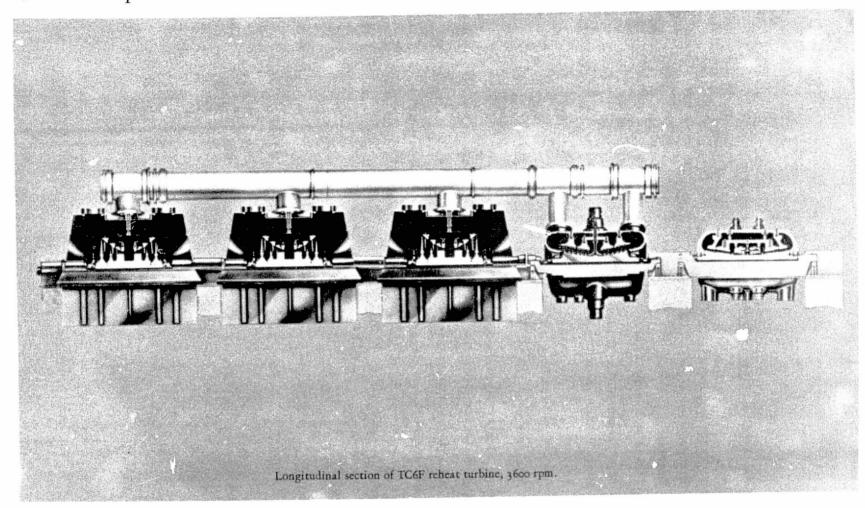
22-57-73-73

Longitudinal section of TC4F reheat turbine, 3600 rpm.

Tandem-Compound Quadruple-Flow Double Reheat Turbine


46-57-73-73

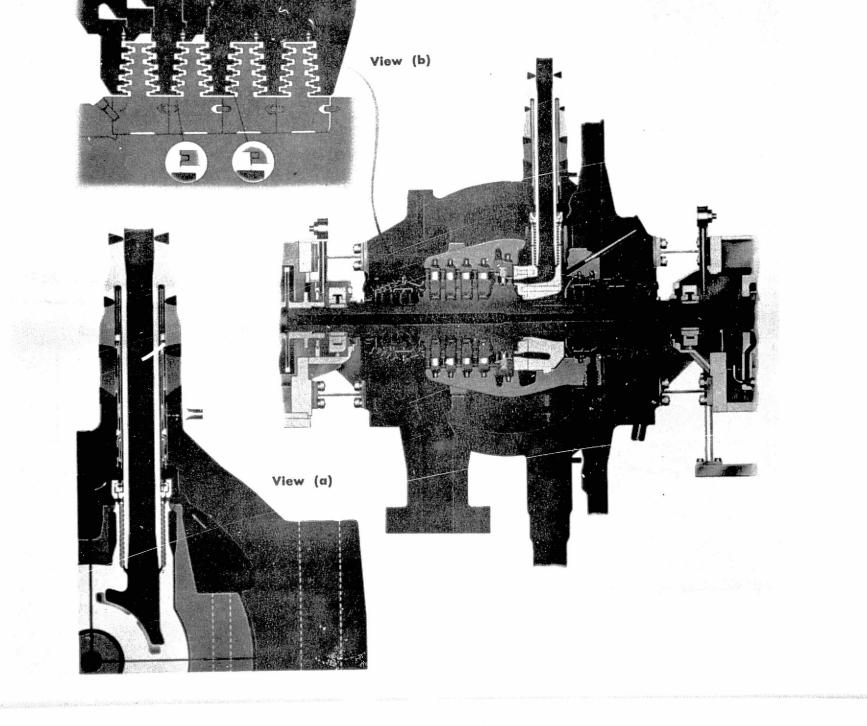
Longitudinal section of TC4F double reheat turbine, 3600 rpm.

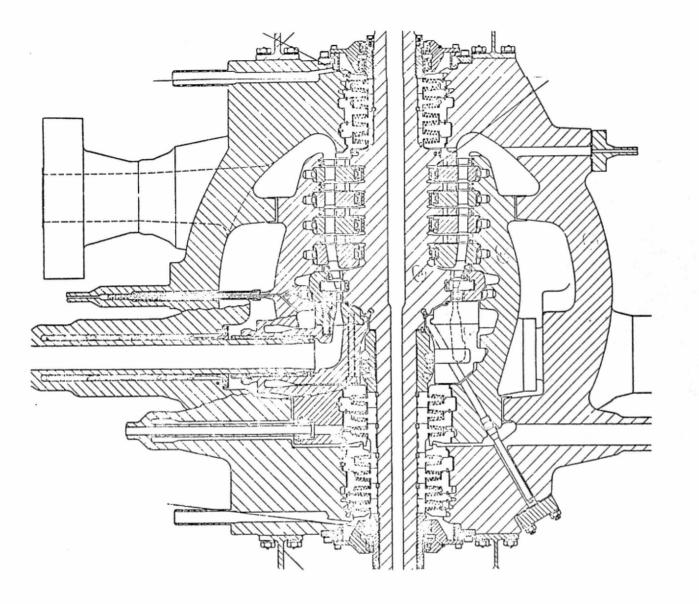

AA 12.1.2.2 900 MW Turbine-Generator Configurations

	Page
Dual flow HP element plus dual flow IP element plus 3 dual	
flow 28.5 in LP ends (6F-28.5)	12-230
Double reheat - VHP-HP element plus dual flow IP element	
plus 3 qual flow 28.5 in LP ends (6F-28.5)	12-231

Tandem-Compound Six-Flow Double Reheat Turbine

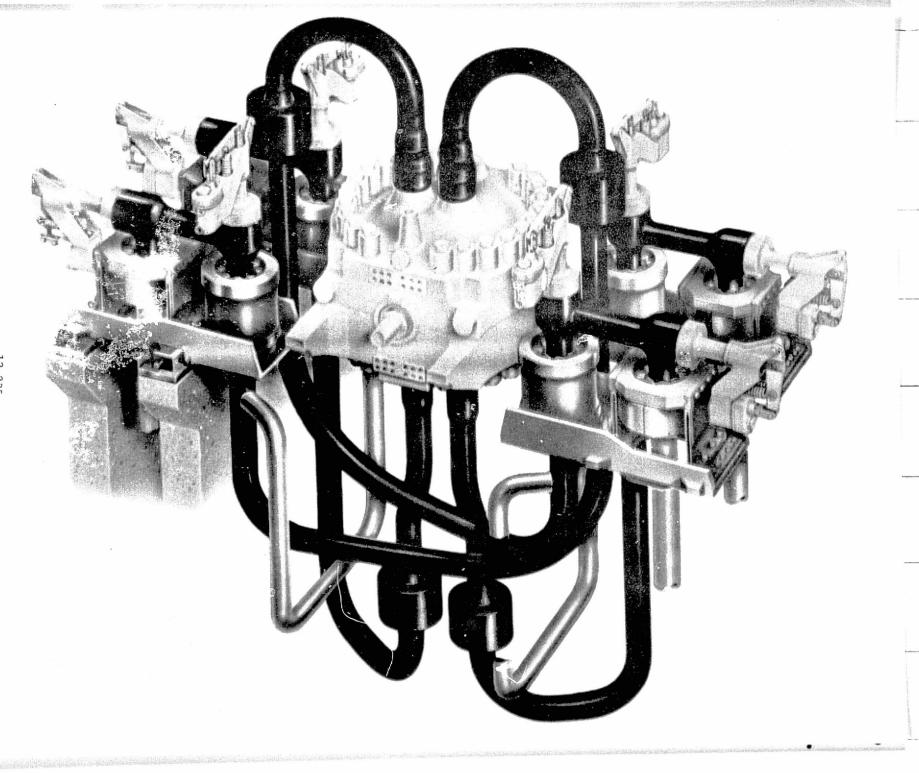
Tandem-Compound Six-Flow Reheat Turbine

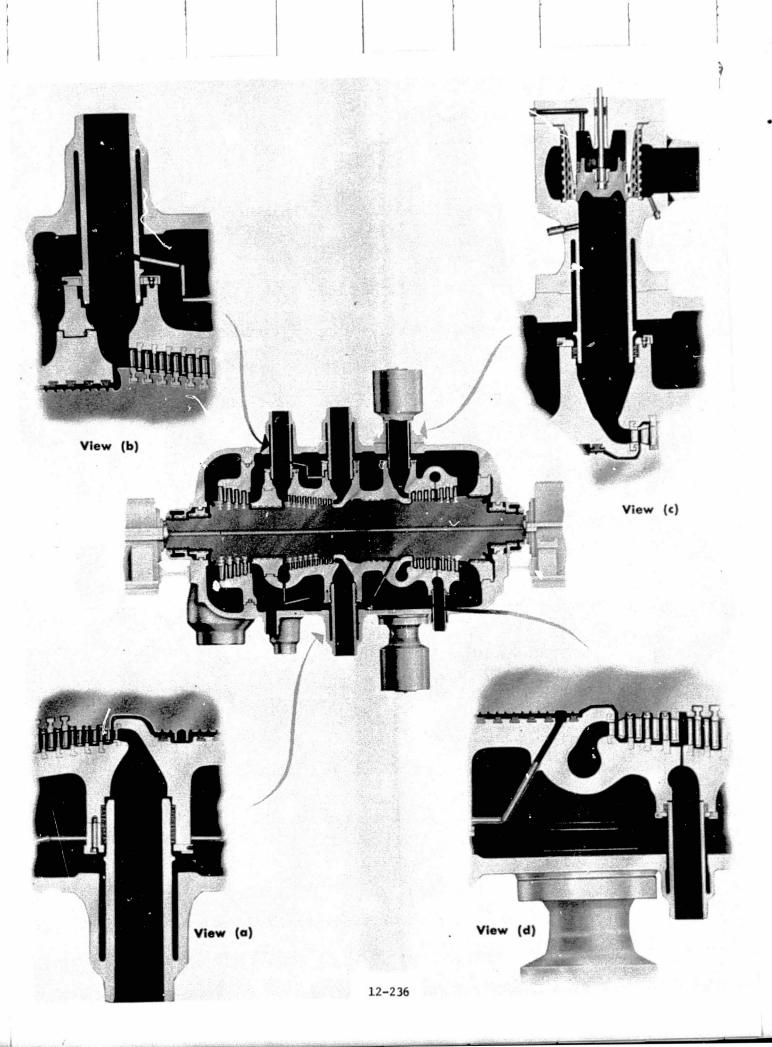


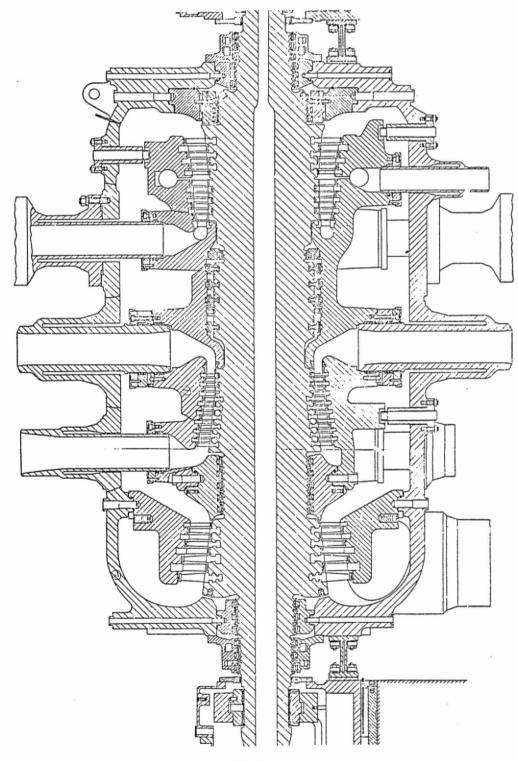

AA 12.1.2.3 Element Pictures and Features

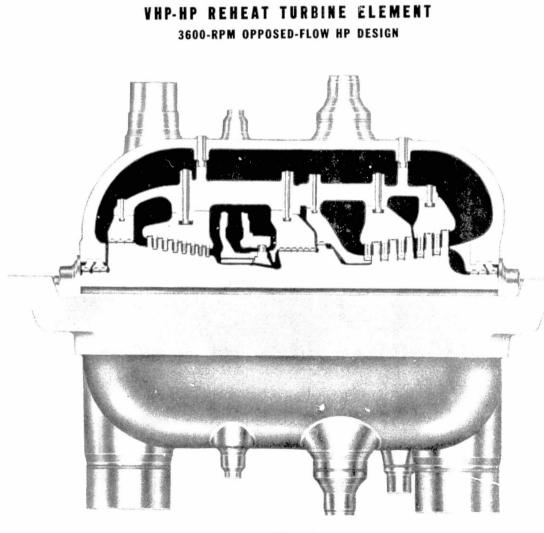
	rage
Superpressure Turbing (SP) Element	
Picture-element, seals and piping transition	12-233
Drawing	12-234
Piping and valve chests	12-235
Very High Pressure-High Pressure (VHP-HP) Element	
Picture with details	12-236
Drawing	12-237
Section and features	12-238
Dual High-Pressure Element (HP) Section and Features	12-239
Combined High Pressure-Intermediate Pressure (HP-IP)	
Element Section and Features	12-240
Dual Flow Intermediate Pressure (IP) Element Section	12-241
and Features	12-242

3

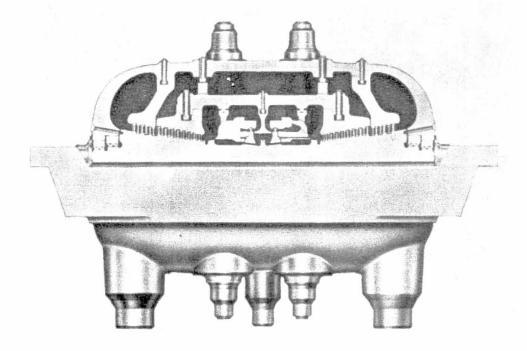

.






(a))

٠

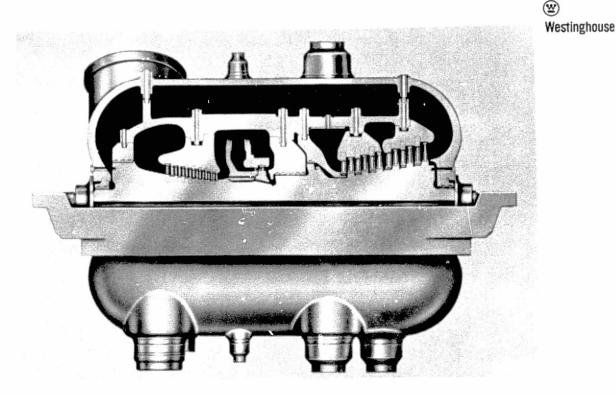


- 1. Inner and outer casing construction reduces temperature gradients, thereby minimizing thermal stresses.
- 2. Very high-pressure and high-pressure elements balanced independently.
- 3. Very high-pressure inlet and exhaust piping brought through inner casing by slip joints.

High-Pressure Element

3600-Rpm Double-Flow Design

Features


r) Inner and outer casing construction reduces thermal gradients, thereby reducing wall thickness and bolting size.

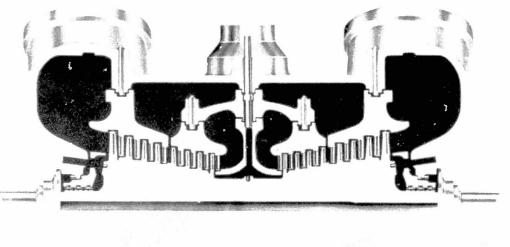
2) Steam inlet piping connected to the inner casing by slip joints in order to reduce distortion due to temperature changes.

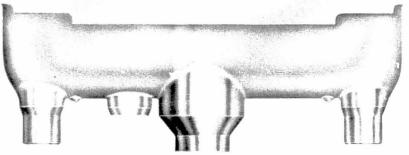
3) Double flow design insures thrust balance.

4) Rotor checked in heater box for thermal stability prior to shipment.

5) Ultra-sonic test of rotor performed at steel mill and at the Westinghouse factory.

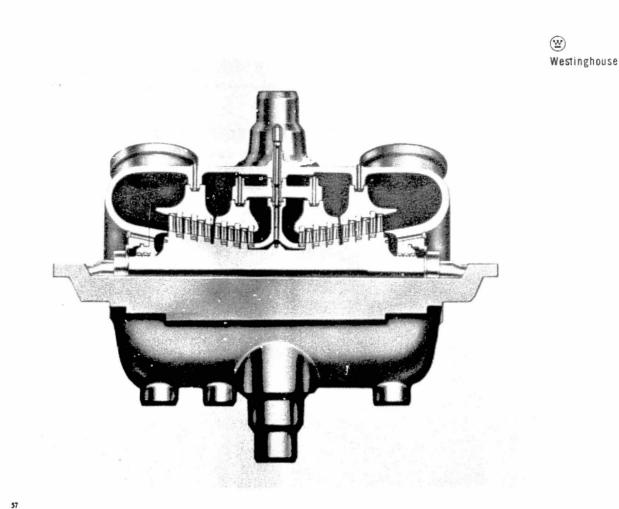
HP-IP Reheat Turbine Element


Features


44

1) Inner and outer casing construction reduces temperature gradients, thereby minimizing thermal stresses.

- 2) High-pressure and intermediate-pressure elements balanced independently.
- 3) High-pressure inlet and exhaust piping brought through inner casing by slip joints.


INTERMEDIATE PRESSURE ELEMENT 3600-RPM DOUBLE-FLOW DESIGN

FEATURES

- Inner and outer casing construction reduces temperature gradients, thereby minimizing thermal stresses.
- 2. Steam inlet piping connected to the inner casing by slip joints in order to reduce distortion due to temperature changes.
- 3. Double flow design insures thrust balance.
- 4 Rotor checked in heater box for thermal stability prior to shipment.
- 5. Ultra-sonic test of rotor performed at steel mill and at the Westinghouse factory.

Intermediate Pressure Cylinder

3600-Rpm Double-Flow Design

Features

1) Inner and outer casing construction reduces thermal gradients, thereby reducing wall thickness and bolting size.

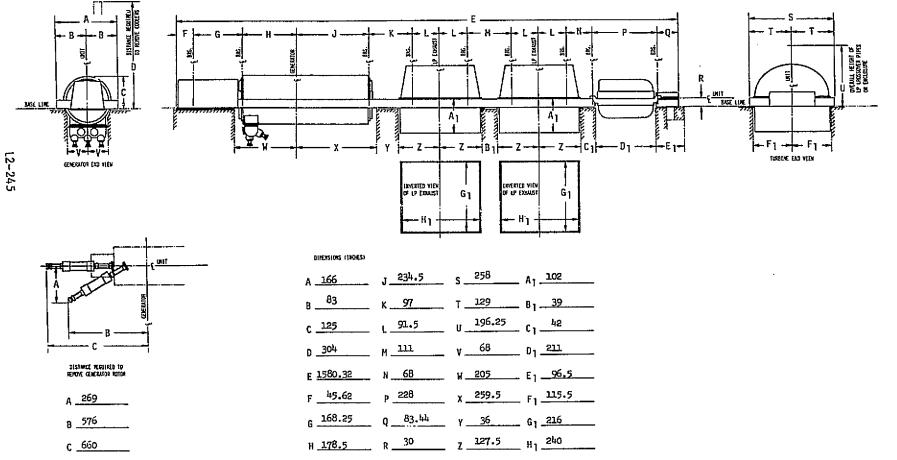
2) Steam inlet piping connected to the inner casing by slip joints in order to reduce distortion due to temperature changes.

3) Double flow design insures thrust balance.

4) Rotor checked in heater box for thermal stability prior to shipment.

5) Ultrasonic test of rotor performed at steel mill and at the Westinghouse factory.

Subappendix AA 12.1.3 WEIGHTS AND DIMENSIONS


500 MW Plant

2.00" HgA

Item 9 - 3500 psig 1000°/1000°

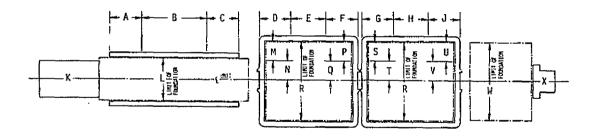
Similar to Item 16

and and an area were a straight of the particular

(Dimensions are without turbine enclosure)

(1994)(1994)(1995)(1995)(1995)

Land Herry I. Latter but with the to be the first here the state of the second state of the second state of the


un (1991) - Anderferiger Heinstergebrecken geberer (1992) und wie der Beiterer auf der Besterer und der Anderer

Sheet 2 of 3

a da na serie a serie de la serie de s

2-104x2l

ORIGINALI PAGE IS OF POOR QUALITY

DUMENSIONS (INCRES)

an the first of the second states and the second states of the second states and the second states and the second states and the second states are set of the second states are second states are set of the second states are second states are set of the second states are set of the second states are set of the second states are second states are set of the second states are set of the second states are second states are set of the second states are second states are set of the second states are set of the second states are second st

À)	J <u>83.5</u>	T <u>72</u>
B 409.5	L <u>136</u>	U <u>50.5</u>
c)	M	V <u>72</u>
D <u>83.5</u>	N <u>72</u>	W <u>270</u>
E <u>102</u>	P	
F_83.5	Q <u>72</u>	
G <u>34.5 </u>	R <u>231</u>	
H 135	s <u> </u>	

Second Sugar

FORMERTICH LOADING DIAGRAM

1966年1月1日期,1月1日日本新聞的社会的

A) J 21700 y <u>9600</u> v 163200 476500 к 53000 BÌ м <u>93</u>00 x 258000 С D 21700 N ___35500_ e <u>90600</u> р <u>9</u>300 F 21500 q <u>31100</u> G <u>21500</u> 9300 S н <u>3960</u>0 NOTE- ALL DIPERSIONED EDAD VALUES ARE SAVE T 31100 FOR EACH SIDE OF CENTERLINE OF UNIT

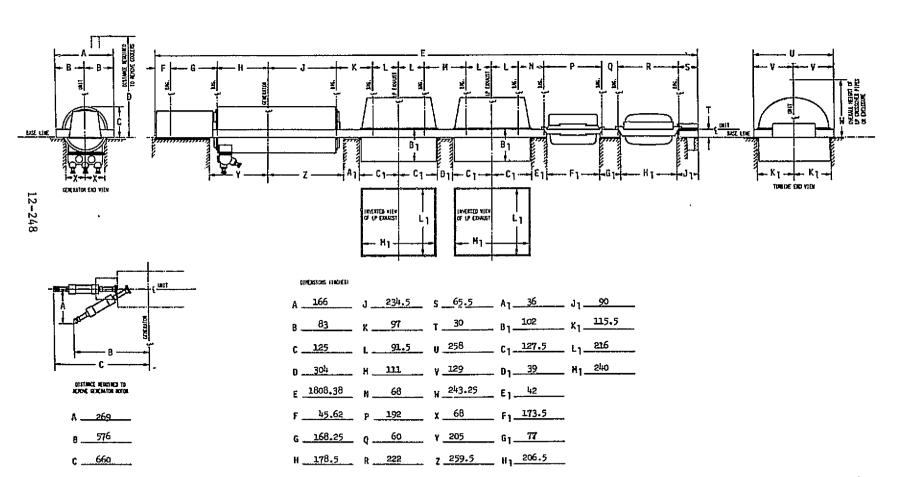
1214.4

essite.

LOAD VALUES (POURDS)

1. 1943 (1949)

الأليون والمعادية


Sheet 3 of 3

44-72-72

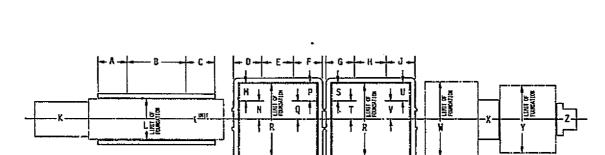
500 Mk Plant 2.00" HgA Item 12 - 3500 psig 1000°/1200° Similar to Item 19

- 222-5

nde sonderne staten na gelander van de state en de state en de state en de state en de state ander de state en de state en de state en de state en state en state en state en state en sta

(Dimensions are without turbine enclosure)

ماريان المرابعة والمسمعة فيرارين والانتراخ فالجلائي المتحطي المرابع ومعاجرة المراب الواجر فأخلاه


SHEET 2 OF 3

 $< 10^{-10}$

222-51A-72-72

States and the second

FORMALIEON	LONGING	114

الماقة مكتان واستهادوا فتتحرك وليسقدانه فالمستحين فإنتها إذكر بالمعيد بشباري فيهمو عزادا الباب جزائي والمرار والترق حقيت

LOND VALVES (POWIDS)

and an an an and the second of the South
STRENGTONS (ETHORES)

A]	J <u>83.5</u>	T <u>72</u>
	ι <u>136</u>	
c)	N50.5	v <u>72</u>
D <u>83,5</u>	н <u>72 </u>	¥245
E <u>102</u>	p <u>50.5</u>	Y <u>245</u>
F <u>83.5</u>	Q <u>72</u>	
G <u>83.5</u>	R2 <u>31.</u>	
H 102	s 50.5	

16.02.84

		<u>ე 21,460</u>	
B	\$76500	к	V115300
		N _9400	
-		N	
E.	94600	p <u>9300</u>	
F.	21500	0	
	21,500	•	
H	92800	T <u>31200</u>	NUTE: ALL BINERSIONED L For cach side of

.

ALL DIVERSIONED LOAD VALUES AND SAVE For cach side of contraling of unit.

Maladian ala militari karana karan

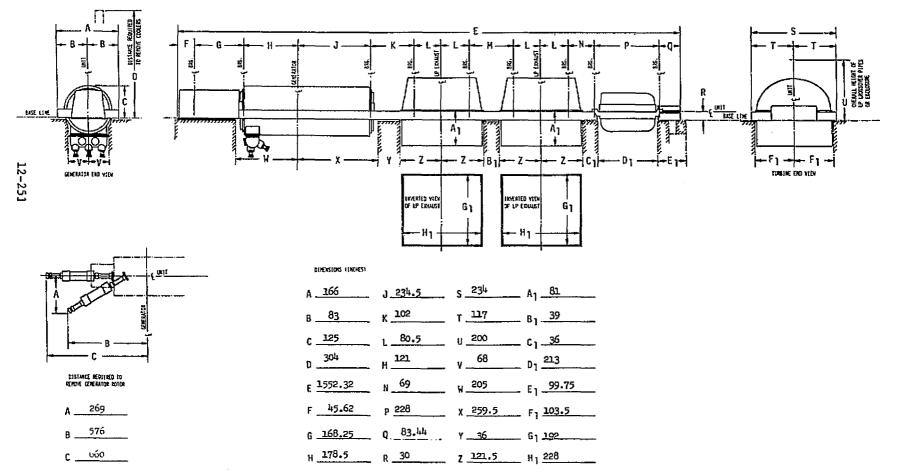
والهجمتين المتناك بتواصح ومصافاته ومنهو

 $= \delta_{i}^{i} \left[\delta_{i}^{i} \delta_{i}^{j} + \sum_{i \neq j} \delta_{i}^{i} + \delta_{i}^{i} \delta_{j}^{i} \delta_{j}^{j} + \sum_{i \neq j \neq j} \delta_{i}^{i} \delta_{j}^{j} + \sum_{i \neq j \neq j} \delta_{i}^{i} \delta_{j}^{i} + \sum_{i \neq j \neq j} \delta_{i}^{i} \delta_{i}^{i} + \sum_{i \neq j}$

Contraction of the second s

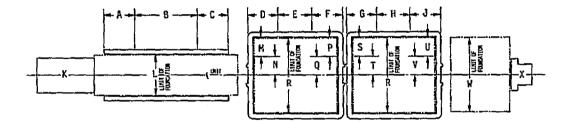
SHEET 3 OF 3

2462196,3287


500 MW Plant 3.50" HgA Item 9 ~ 3500 psig 1000°/1000° Similar to Item 16

12-250

le ^{ter}tet verkte **som na som det stertet som er som er som er**


44-271.

(Dimensions are without turbine enclosure)

Sheet 2 of 🗄

12-252

DIMENSIONS (LINCOLES)

A)	J	т <u>54.5</u>
B 409.5	L <u>136</u>	U <u>56</u>
<u></u>	м_ <u>56</u>	v
D85	N <u>54.5</u>	W <u>270</u>
E <u> </u>	P <u>.56</u>	
F	Q	
G	R 207	
н <u> 87 </u>	S _56	

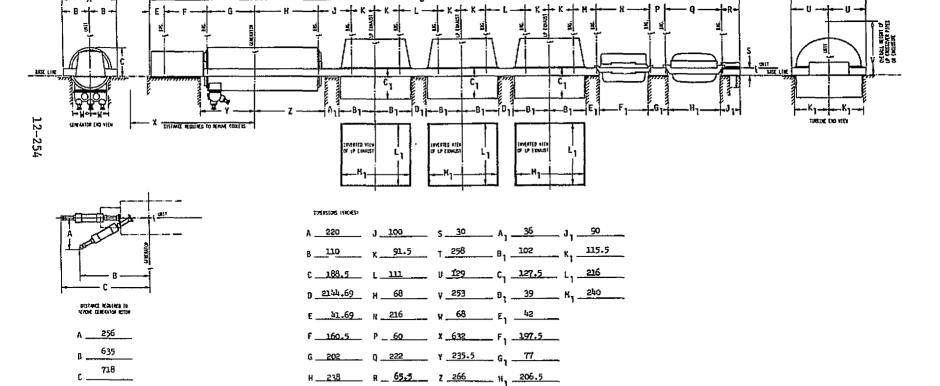
FOUNDATION LEADING DIAGAAM

(CAD VALUES (POLICOS)		
A)	J <u>16300</u>	U <u>10000</u>
B 476500	K <u>53000</u>	V <u>130000</u>
c)	M 10000	χ_255000
p <u>16300</u>	N <u>31.000</u>	
E	P 10000	
F_16300	q <u>27000</u>	
G <u>16300</u>	s <u>10000</u>	
H	T 27000	NOTE: ALL DIMENSIONED LOAD VI FOR EACH SIDE OF CONTEN

ED LOAD VALUES AND SAME OF CORTERLIAN OF UNIT.

ورواب المتحاد المراجع

Shept 3 of 3


. .

нин на мали нарини и фактурафия од со се од раковор од осредна сама на бого у бала содата собрат од раковот. 20

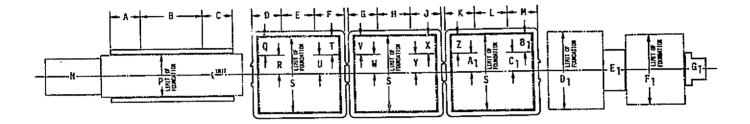
 900 MW Plant

2.00" HgA

Item 9 - 3500 psig 1000°/1000°

222-57-72-72-72

2-115 x 275


(Dimensions are without turbine enclosure)

قررافة فردانا والمزهم وقالا ومنعي الأرويقية كالأخ

SHEET 2 07 3

222-57-72-72-72

e en la persona de esta de esta de esta de esta de esta de la composición de la composición de la composición d

FORMER FILDE LEADING DIREASY

LONG VIELES (PONNES)

ويربعهم والانتقار الرزوم والارام متقيم

0005106	(10065)

12-255

Ser Alera

A	J <u>83.5</u>	T 50.5 B1 50.5
B 430	к <u>83.5</u>	u <u>72</u> c ₁ <u>72</u>
c)	L <u>102</u>	V <u>50.5</u> D1 245
p <u>83.5</u>	M <u>83.5</u>	W F1F1
E <u>102</u>	р <u>136</u>	x <u>50.5</u>
F <u>83.5</u>	Q <u>50.5</u>	Y <u>72</u>
G <u>83.5</u>	R <u>72</u>	z <u>50.5</u>
н <u>102</u>	s <u>231</u>	A1 <u>72</u>

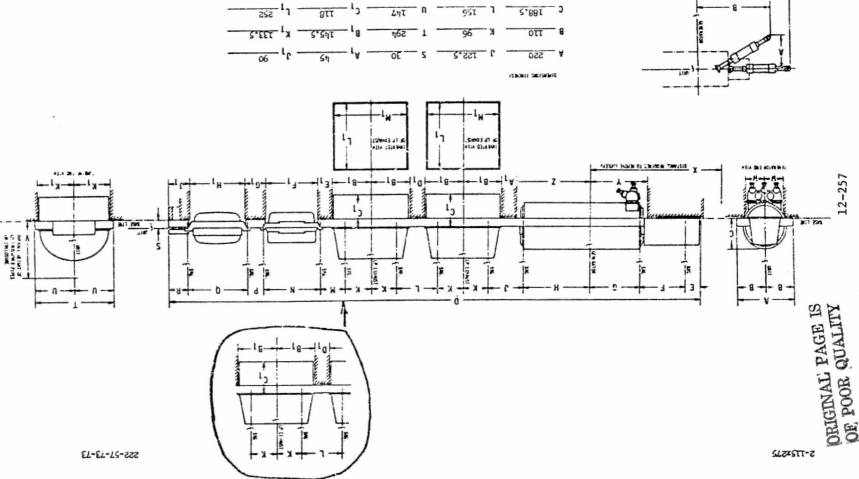
A	j <u>16700</u>	T A1
		U <u>37400</u> B1 8400
c)	L 99800	v <u>8750</u> C ₁ 136000
D <u>16700</u>	M_16700	N 37400 E1 437500
E <u>100400</u>	N62500	x <u>8750</u> G1_242700
f <u>16700</u>	Q 8450	y <u>37400</u>
<u>; 16700</u>	R 42400	z <u>8750</u>
- 107700	c	NOTE: ALL DIACHSIDED LOAD VALUES ARE SAVE

SHEET 3 OF 3

÷

900 MW Plant


¢


.

ł

3.50" HgA

Item 9 - 3500 psig 1000°/1000°

e 505 (555 × 532 2 e - 1

E TEO.5 P 60 X (32 F T96.5

E 17.69 N 216 N 68 E1 37

5311.69 H 95.5 V 264.25 01 57 H 276

CHEEL S UN P

(outpot an andread turbing an solrawid)

BLY

589

952

A CHICK DOIST

— c

H 150 2 20.5

b 20.5 Y 256

00 A 5.02 H

35.2 1 5.26

Styz A

5.05 U

C 92.5 8 567

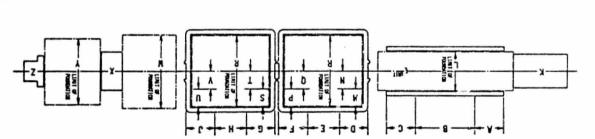
t 35.5 0 30

D 92.5 x 90

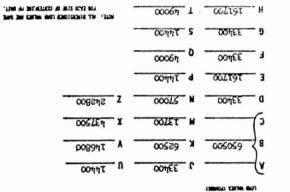
9ET 7

- C

E 150


024

(BCI) SUISCHIE


6

18

ť۶

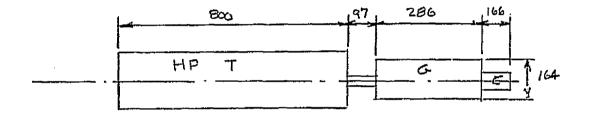
E TO E TAAR

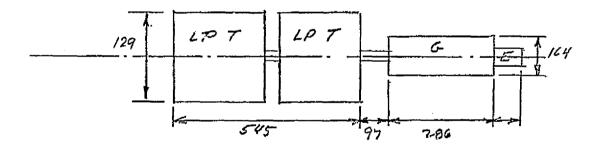
100

500 MW Plant

Street and the second second

;


- . I.


2.00" HgA

Item 4 - 5000 psig 1400°/1400°/1400°

Similar to Items 8, 5, 3 & 5-I

All Cross-Compound Units

All Dimensions in Inches

Plan View

Appendix A 12.2

DESCRIPTION OF PRESSURIZED BOILERS

A 12.2.1 The Duty of the Pressurized Boilers for the Base Case, Point 16

Due to the desired close coupling arrangement of the gas turbine-compressor units, the total heating duty is divided among four boilers. Each boiler transfers 258.1 MWt to the steam cycle. Each of the four boilers burns 45.133 kg/s $(3.582 \times 10^5 \text{ lb/hr})$ of low-Btu gas, which is supplied from a coal gasification unit at 1144°K (1600°F) and 1.0342 MPa (150 psi) abs with 134.95 kg/s $(1.071 \times 10^6 \text{ lb/hr})$ of air supplied from a compressor at 624°K (664°F) and 1.0342 MPa (150 psi) abs. After releasing heat to the steam system the products of combustion are exhausted to the boiler gas turbine at 755°K (900°F) and 1.010 MPa (146.5 psi) abs. In order to avoid too high a boiler combustion chamber temperature, the boiler exhaust temperature is limited to 755°K (900°F) for a specified fuel/air ratio. The gas in the gas turbine, however, must be expanded from a much higher temperature than 755°K (900°F). More low-Btu gas, therefore, is burned in the gas turbine combustor.

Feedwater enters the boiler at 644° K (700° F) and 26.2 MPa (3800 psi) abs. It is raised to steam at 811° K (1000° F) and 24.235 MPa (3513 psi) abs. Following two high-pressure stage feed-heating extractions, 92.8% of the steam flow is returned to the boiler at 572° K (570° F) and 4.482 MPa (650 psi) abs for reheating to 811° K (1000° F) at 4.137 MPa (600 psi) abs. Within these constraints the primary steam flow delivered per boiler is 124.58 kg/s (0.9887×10^{6} lb/hr), and the reheat steam flow for each of the four boilers is 115.64 kg/s (0.9178×10^{6} lb/hr).

A 12.2.2 General Configuration of the Boiler

Since combustion and subsequent heat transfer is at elevated pressure, 1.013 MPa (10 atm) for the base case, the heat transfer surface is contained within a cylindrical pressure vessel.

In order to limit the temperature to which the vessel shell is subjected, it was decided that the wall should be internally insulated. Furthermore, in order to minimize the thickness of insulation required it was decided that the insulation be blanketed by the incoming air from the compressor which, at 624°K (664°F), is the coolest gas inside the boiler.

Since this air is available from the turbocompressor at a low elevation it is advantageous if it is directed upwards in an annular passage adjacent to the shell insulation and surrounding the heat transfer surfaces. The low-Btu fuel gas is available most conveniently at a high elevation. This is due to the configuration of the gasifier and the desire to minimize the length of high-temperature gas piping. It is, therefore, natural to merge the air stream and the gas stream at the top of the vessel and pass the combustion products downward over the heat transfer surface. This arrangement is further beneficial in that the combustion products are brought to their lowest temperature at a low elevation, where it is most convenient to exhaust to the gas turbine. Figure A 12.2.1 illustrates this layout.

A 12.2.3 <u>Distribution of Main Evaporator, Superheat, and Reheat Tube</u> Banks within the Pressurized Boiler

Homogeneous nonluminous flame temperatures close to 1948°K (3046°F) are anticipated in the region just below the burners. In order to maintain tube wall temperatures below 1089°K (1500°F) excellent heat transfer within the tubes is necessary, preferably to a fluid of a temperature somewhat less than the maximum steam cycle fluid temperature of 811°K (1000°F).

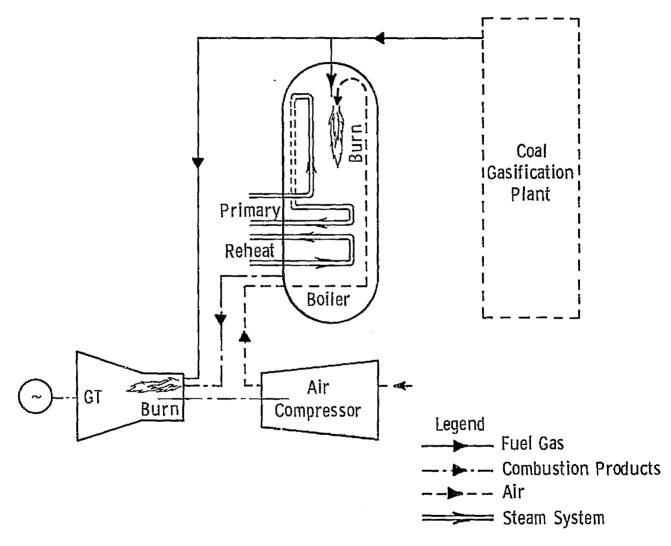


Fig. A 12.2.1-Pressurized boiler subsystem

These requirements preclude the use of the reheater section to cool the flame. The primary steam circuit, therefore, occupies the hottest region of the boiler. In line with the most advanced current practice the combustion products are cooled to 1478°K (2200°F) before being passed in crossflow over the tubes. Reduction of the gas temperature to 1478°K (2200°F) provides a little over half of the heat required to raise primary steam. Clearly, then, the primary steam circuit must be divided into two sections. The first section cools the hottest region of the flame from 1948 to 1478°K (3046 to 2200°F) and is axially parallel but countercurrent to the combustion gas stream. This is sufficient to take the feedwater from its input value of 644°K (700°F) and raise it to 678°K (760°F). This is thus a water-wall section, the details of which will be discussed later. The second section cools the gas from 1478 to 1095°K (2200 to 1512°F) and in so doing takes the water from 678°K (760°F) and raises it to its final condition as steam at 811°K (1000°F) and 24.235 MPa (3515 psi) abs. This section has a conventional tube bank configuration over which the combustion product gas passes in crossflow.

In the first primary evaporator section (the water wall) it might at first seem logical to inject the feedwater at the top where the highest flame temperatures are experienced, but for hydrodynamic reasons it is preferable to have the water flow upwards against gravicy until the temperature is elevated above the pseudocritical value. The rationale for this procedure is outlined in detail in Appendix A 9.3, Section A 9.3.2. This involves collecting the partially heated water by a system of headers at the top of the water-wall section and transporting it down in headers to the crossflow section for finish superheating. The partially heated water is injected at the top of the superheating section so that the tubes, which are exposed to gas at 1366°K (2000°F) on the outside, see the coolest water at this point. The water passes in net downward flow, cocurrent with the gas, by virtue of a series of cross passes, each at a lower elevation than the previous one.

L. Faix

100000

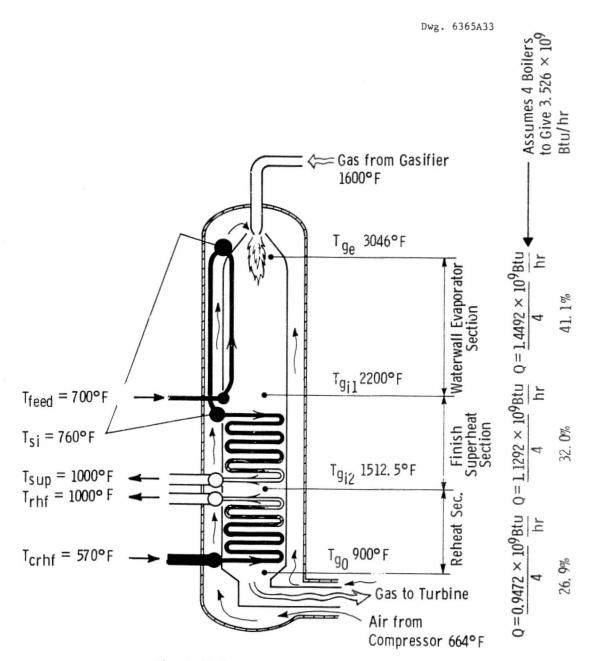


Fig. A 12.2.2-Layout of Heat Transfer Surface

The water leaves this tube bank as superheated steam at 811°K (1000°F). The combustion product gas, at 1095°K (1512°F) proceeds downward to the reheat section.

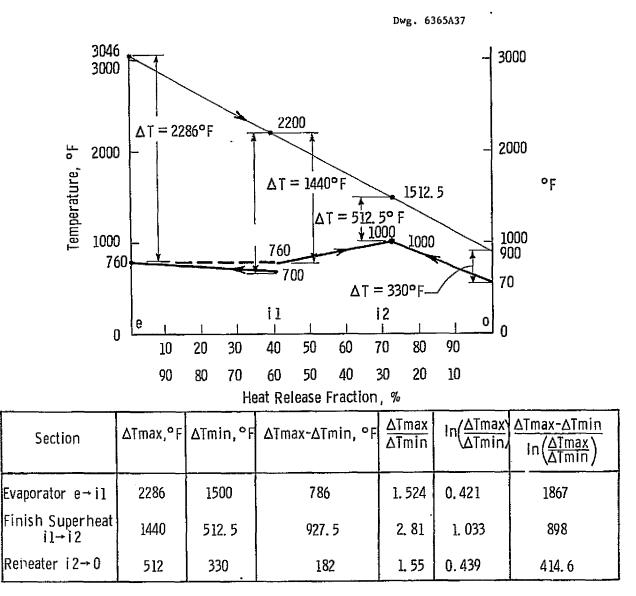
4

4....

1

1

200 a.S


The reheat section is a conventional crossflow tube bank. In order to preserve a positive temperature difference between the gas and the stream, the cold reheat steam, at 572° K (570° F), enters at the bottom of the tube bank where the gas is at its lowest temperature value of 755° K (900° F). The steam passes in net upward flow, countercurrent to the gas, by virtue of a number of cross passes, each higher than the previous one. The steam leaves the reheater bank at the top at 811° K (1000° F)/4.137 MPa (600 psi) abs. The corresponding gas temperature is 1095° K (1512° F).

This distribution of surfaces and temperature is schematically illustrated in Figure A 12.2.2. Figure A 12.2.3 is the corresponding temperature approach diagram.

A 12.2.4 Special Features of the First Evaporator Water-Wall Section

In this section the tubes run vertically, parallel to the gas stream. At their upper extremity they are adjacent to the hottest region of the flame. The homogeneous flame temperature at this point is calculated to be 1948°K (3046°F). The flame is, however, not homogeneous in temperature; rather, there will exist within the flame, temperatures several hundred degrees higher than this value. This is one of the reasons why it is conventional practice in water-wall design to restrict the water tubes to a peripheral area surrounding the flame. The tubes are thus radiation coupled to the highest temperature zone of the flame but are impinged by gases which are actually lower in temperature than the homogeneous temperature.

In normal practice several burners are combined to produce a very large flame ball 6.096 m (20 ft) or so in diameter. This is normally enclosed with a large box or cylinder furnace wall which is made up of the water tubes. This layout has the disadvantage that very

I

Fig. A 12. 2. 3-Temperature approach diagram and table

little tube surface per unit volume can be provided. Thus, with a normal heat transfer coefficient, a considerable length of furnace is required before the combusting flame as such no longer exists and the combustion products are cooled to a temperature where they can be passed over crossflow tube banks. This length is typically of the order of 30.48 m (100 ft).

In this boiler design we sought to increase the surface area of the water wall per unit volume of the furnace by locating each of the seven burners employed on the center axis of a hexagonal water-wall passage 1.58 m (5.2 ft) across flats. The seven hexagonal passages are then clustered to form a honeycomb. See Figure A 12.2.4.

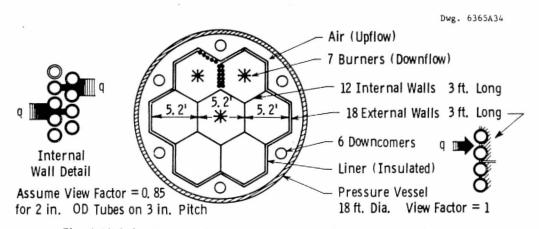


Fig. A 12.2.4 - Proposed layout of vaporator section (water walls)

The 18 external facets of the homecomb contain one row of tubes. The gaps between tubes on the external facets are occupied by T bars welded to the tubes. This provided a closed outer periphery also, and the T bars pick up heat from the gas and conduct it to the tubes. The 12 internal facets of the honeycomb contain two rows of tubes. The gaps betwen tubes are left open. This provides a higher radiation view factor than would be the case if the gaps were filled by a ceramic. Also, the gaps provide hydrodynamic coupling between the seven passages, benefiting the stability of flow in the passages.

It is estimated that this arrangement provides nearly three times as much effective surface as would a conventional water-wall design of the same height and cross sections.

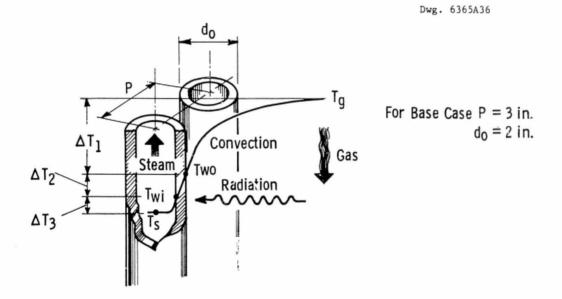


Figure A 12.2.5 - Heat transfer of Flow Situation in the Water-wall Evaporator.

Equations A 9.3.26 through A 9.3.28 of Appendix A 9.3 describes the overall heat transfer situation. Stating Equation A 9.3.28 again we have:

$$h_o = \frac{1}{1/h_g + 1/h_w + 1/h_s}$$
 (A 12.2.1)

The heat transfer coefficient from the gas to the wall, h_g , has two components; namely, that due to radiation from a nonluminescent gas and that due to forced convection. The basic equations for these situations will be rewritten here, but for a detailed description of the procedures involved the reader is referred to Section A 9.3.4.

1

$$h_{g} = h_{rad} + h_{conv} \qquad (A 12.2.2)$$

where

$$h_{rad} = \frac{\sigma \left(\epsilon_{g} \left(\bar{T}_{g} + 460 \right)^{4} - \alpha_{g,w} \left(T_{w_{o}} + 460 \right)^{4} \right)}{\bar{T}_{g} - T_{w_{o}}}$$
(A 12.2.3)

and

$$h_{conv} = \frac{0.023 \ k}{d_o} g \left(\frac{v \ \rho_g \ d_o}{\mu_g} \right)^{0.8} \ Pr^{0.4}$$
 (A 12.2.4)

In Equation A 12.2.3 ε_{g} in the pressurized gas emissivity at \overline{T}_{g} and is the sum of contributions from the radiating components of the gas; namely, water vapor and carbon dioxide. The partial pressures of these components, on a percentage of total pressure basis, for the base case are:

$$P_{CO_2} = 10.61\%$$
 (A 12.2.5)

$$P_{H_20} = 4.42\%$$
 (A 12.2.6)

The radiant path length for a hexagonal enclosure is given by the equation:

$$L = 0.9$$
 (Dimension across Flats) (A 12.2.7)

Using a 1.56 m (5.2 ft) across flats dimension:

$$L = 1.426 m (4.68 ft)$$
 (A 12.2.8)

1.

. [

. 1

With these basic parameters in hand and proceeding by the same method as described in Section A 9.3.4 we obtain:

l

$$h_{rad} = 117.9 \text{ W/m}^2 - K (20.77 \text{ Btu/hr-ft}^2 - F)$$
 (A 12.2.9)

Using an average bulk combustion product gas temperature of . $1712^{\circ}K$ (2623°F) to evaluate properties in Equation A 12.2.4 we obtain:

$$h_{conv} = 37.19 W/m^2 - K(6.55 Btu/hr-ft^2 - F),$$
 (A 12.2.10)

So that by Equation 12.2.2

l

Ł

$$h_g = 155.1 \text{ W/m}^2 - \kappa (27.32 \text{ Btu/hr-ft}^2 - F)$$
 (A 12.2.11)

The heat transfer coefficient for conduction through the cube wall, h_w , when referred to the outside surface is given by the following equation:

$$h_{w} = \frac{2 k_{w}}{d_{o} ln \left(\frac{d_{o}}{d_{i}}\right)}$$
(A 12.2.12)

Using a thermal conductivity of 20.76 W/m-°K (12 Btu/hr-ft) or the 5.08 cm (2 in) od, 3.81 cm (1.5 in) id Croloy tubes, Equation A 12.2.12 yields

$$h_w = 2844 W/m^2 - K(501 Btu/ft^2 - hr - F)$$
 (A 12.2.13)

Turning our attention to the forced convection heat transfer coefficient within the tubes, the situation is that of a supercritical fluid being evaporated through its pseudocritical temperature. Section A 9.3.5 of Appendix A 9.3 contains a discussion which is pertinent to this section. Briefly, the preferred equation is that of Kutateladze and Leontiev. If the very minor approximation of substituting bulk temperatures for film temperature is made when evaluating fluid properties, however, the equation reduces to the more familiar Dittus Boelter expression. Thus:

and a second
$$h_{s} = 0.023 \left[\frac{k_{s}}{d_{1}} \right] \left[\frac{G d_{1}}{\mu_{s}} \right]^{0.8} \left[\Pr_{s} \right]^{0.4}$$
(A 12.2.14)

Referring this heat transfer coefficient, which actually pertains to the tube inside diameter, to the outside diameter we obtain:

$$h_{s}' = h_{s} \frac{d_{1}}{d_{c}}$$
 (A 12.2.15)

In Equation A 12.2.14 the mass velocity is given by the equation:

$$G = \frac{4(m_{s})}{n d_{i}^{2} N_{circ}}$$
 (A 12.2.16)

Vere N_{circ} is the number of parallel tubes in the waterwall section (504) and m_s is the total mass flow of primary steam for each of the four boilers [124.58 kg/s (0.9887 x 10⁶ 1b/hr)]. In Equation A 12.2.15, d_i is the inside diameter of the tubes [3.81 cm (1.5 in = 0.125 ft)].

Evaluating fluid properties at an average bulk value of 661°K (730°F), Equations A 12.2.14 through A 12.2.16 yield the

	Number of walls, N	Length of wall, (L _w), ft.	Tube pitch (P), ft.	Number of tubes, $Nt_{int} = (2) (N_w) (L_w) / P$ $Nt_{ext} = (N_w) (L_w) / P$	Tube Diameter, (d _o), in	View factor, F	Effective tube periphery, ft. $Per_{int} = (F)(\pi)(d_o)/12$ *Per_ext = [(F)(\pi)(d_o)/2 + 1]/12	Effective area per ft. Length of tube A' = (N _L)(Per), ft ² /ft
Internal facets of the honeycomb	12	3	1/4	+ 288	2	0.85	↓ π/6	128.19
External facets of the honeycomb	18	3	1/4	↓ 216	2	1	().345	74.52

Table A 12.2.2 - Computation of Effective Area per Foot of Length for Heat Transfer on the Gas Side of the Water-Wall Evaporator Section

Total 202.71 ft²/ft

* In Table 12.2.2 the equation for Per is justified by the fact that only half the tube periphery is exposed to the gas plus the fact that a 2.54 cm (1 in) long fin of near 100% efficiency connects each tube on external facets.

化磷酸盐酸磷酸盐医盐酸盐酸盐酸盐盐盐酸盐

following value for heat transfer coefficient from the inside wall to the steam, when referred to the outside tube wall.

$$h_{e'} = 4258 \text{ W/m}^2 - K (750 \text{ Btu/hr-ft}^2 - F)$$
 (A 12.2.17)

Combining the results stated by Equations A 12.2.11, A 12.2.13, and A 12.2.17 into Equations A 12.2.1, we obtain the following overall heat transfer coefficient referred to the outside of the tube:

$$h_0 = 142 W/m^2 - K (25.04 Btu/hr-ft^2 - F)$$

It is clear from the foregoing discussion that the overall heat transfer situation is controlled by the gas-side heat transfer; moreover, it is obvious that radiation is by far the most important factor on the gas side. Accordingly, when determining the required height of the water-wall section, the outside tube area per foot of height takes account of computed view factors. Thus, we use the effective area exposed to the radiating gas, which is smaller than the actual area by virtue of the view factors. Table A 12.2.2 shows the computational steps to arrive at the effective area per foot length of the water-wall evaporator section. Since we already have derived values for the overall heat transfer coefficient and the log mean temperature difference, it is then a simple matter to compute the required length of the section. Recall that, consistent with our desire to cool the gas to 1366°K (2000°F) before exposing it to the crossflow tube banks, the water was raised from 644°K (700°F) feed temperature to 678°K (760°F) and that 41% of the 258.1 MWt transferred in the boiler is transferred to the water-wall section. Also, the log mean temperature difference over this section was computed to be 1240°K (1773°F) in Table A 12.2.1, and from Equation A 12.2.18 (and arguments leading thereto) the overall heat transfer coefficient in the water-wall section was seen to be 142.2 W/m^2 -°K (25.04 Btu/hr-ft²-°F). The average heat flux over the section can then be computed by the following equation:

$$q_{e-11} = h_0$$
 (LMTD) = (25.04)(1773) = 4.44 x 10⁴ Btu/hr-ft²
(A 12.2.19)

The subscript, e-il was first introduced in Figure A 12.2.3 and refers to the fact that after the section in question is cooled from some entering temperature (hence the e) to some first intermediate temperature of interest (hence the il). The total area required for heat transfer is thus:

$$A_{e-i1} = \frac{Q_{e-i1}}{q_{e-i1}}$$
 (A 12.2.20)

Finally, the length of this section can be determined using the result of Table A 12.2.2:

$$\ell_{e-i1} = \frac{A_{e-i1}}{Per} = \frac{8.139 \times 10^3}{202.71} = 40.15 \text{ ft}$$
 (A 12.2.21)

This length would be rounded to 12.2 m (40 s/ft).

Three considerations lead to the decision to run all 504 of the water-wall tubes in parallel. These were:

- Headering is simpler.
- Under all load conditions the pseudocritical temperature is traversed in upflow.
- There was no incentive to raise the heat transfer coefficient inside the tubes, h_s, because it is already high and the overall heat transfer coefficient is dominated by the gas side.

An effect of running the water-wall tubes in parallel is to render the water-side pressure drop insignificant when compared to pressure drops sustained in the superheat bank and, later, in the reheat bank.

In a similar view, principally because of the large effective passage diameter, the gas pressure drop through the combustion tubes, which form the water-wall evaporator section, is very small compared with the pressure drops sustained in crossflow over the superheater and reheater banks. These low pressure drops over initial flow sections can, under certain circumstances, lead to flow instabilities. On the water side the situation can be corrected, if necessary, by orificing. On the gas side this would be difficult because of the need to preserve a good flame shape. Experience with conventional boilers, however, indicates that series gas-side flow instabilities do not occur.

A 12.2.5 Design of Crossflow Superheat and Reheater Tube Banks

From the point of view of determining their heat transfer and pressure drop performance, the crossflow tube banks in the pressurized boilers are essentially the same as the main evaporator and reheater banks of the coupling heat exchanger for the open-cycle MHD system.

1	<u> </u>	
Rehealer	Main Evaporator	Section
× 550 02 ⁹ 01 × 6952 0	0.2823×10 ⁹ 8.767×10 ³	문 Heat Transferred This 국 Section, O
20, 033 × 10 ³	L 767 × 10 ³	Required Outside Tube ∹ Surfaca Area. A ₅ = <u>O</u> h LMTD
210, 75	210.75	Area Provided Per Tube $\approx_{N \text{ Row}} \text{Row}$ $A' = N_{\text{tube}} (L) \left(\frac{\pi d_0}{H^2}\right)$
9F. X6	41.58	Number of Tube Rows Required N _{Row} ^{= A} s ^{/A} '
96	*	N _{Row} Upward Rounded to Make Evenly Divisible oy N _{Start}
138	241.5	Length of Tube Per = Circuit, f _{circ} = (N _{Row}) (12)/HStart
0, 312	0, 864	Steam Pressure Drop Per Ft of Tube Length, ≅ ∆p/ft See Eq A 9. 3. 41
43.06	208, 66	™ Total Steam Pressure ™ Drop,ΔPs = (ℓ _{Circ}) (ΔP/IL)
	202.66	$ \underline{\Sigma} \begin{array}{l} \text{Total Gas Pressure Deop} \\ \Delta P_{g} = (\Delta P/row) (N_{row}) \end{array} $
2		면 Combined Evaporator and Reheater Gas,∆P
		Comment
Rows Tubes/Row Starts Tubes/Circuit Row Length, ft	Rows Tubes/Row Starts Tubes/Circult Row Length, It	Summary of Tube Bank Size Parameter
8% [®] 41	1,22 × 3 A	

Rehealer	Main Evaporator	Section
1206	138(Average Gas Temp, Tg
0. 236	0.173	臣 Gas Density at T _g . 군 o _g
29. 32	33.2	$\frac{\text{Max Gas Velocity}}{\text{W}_{\text{max}} = \frac{5.74}{9 \text{ g}}}$
34,91	34. DZ	B Gas lo Wall HTC. ng See Eqn. 9, 3, 29
0, 00588	0,0020	Gas Pressure Drop Per Row, AP/Row See Eqn 9, 3, 35
0, 918 × 106	× 106	문 Total Sleam Mass Flow, 목 Ms
35	35	Tubes Per Row, N Tube
æ	2	Number of Rows in Parallel, N _{Start}
280	70	Number of Parallel Circuits = (N _{Tube}) (N _{Start})
248, 76	1279	문 Vall to Steam HTC 가, See Egn 9, 3, 33
186	856	Wall to Steam HTC hs See Eqn 9, 3, 33 or Blue hs Refered to OD, hs' = $\frac{d_i}{d_0}$ hs Blue hs Refered to OD, hs' = $\frac{d_i}{d_0}$ hs $\frac{d_i}{d_0}$ hs Blue hs Refered to OD, hs' = $\frac{d_i}{d_0}$ hs $\frac{d_i}{d_0}$ hs
8	20	Wall Thermal Conductivity
84	834	$ \begin{array}{l} \underset{k_{i}}{\overset{\text{Bill}}{\underset{k_{i}}{\underset{k_{i}}{\atop\atopk_{i}}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atop\atopk_{i}}{\atopt_{i}}{\atopt}}{\atopt_{i}}{\atopt_{i}}{\atopt_{i}}{\atopt_{i}}}{\atopt_{i}}{\atopt_{$
28, 51	35. 88	$ \begin{array}{c} \underset{l}{\overset{\text{WE}}{\overset{\text{W}}}{\overset{\text{W}}{\overset{\text{W}}}}}}}}}}}}}}}$
£14.6	848	$\begin{array}{c} \text{Log Mean Temp Dif} \\ \text{Log Mean Temp Dif} \\ \text{LMTD} = \frac{\left(\Delta T_{max} - \Delta T_{min}\right)}{\ln \left(\Delta T_{max}\right)} \end{array}$

Dwg. 2175576

TABLE A 12 2 3-DESIGN OF FRAISH SUPERHEAT AND REHEAT TUBE DANKS HSING 2 IN. OD TUBES ON 4 IN. EQUILATERAL PITCH

} }

ORIGINAL PAGE IS OF POOR QUALITY This steam generator was described in detail in A 9.3 The reader is referred to A 9.3.5 where every equation starting at Equation A 9.3.26 and proceeding through Equation A 9.3.48 applies to the superheat and reheat tube banks of the supercharged boiler also. The one exception to this is Equation A 9.3.31 which is replaced in the system of equations by the equation to be derived below.

For the pressurized boiler both crossflow tube banks are such that each row contains 35 tubes of 5.08 cm (2 in) outside diameter and 3.51 m (11.5 ft) length placed in parallel array on a 10.16 cm (4 in) pitch. The total gas mass flow rate which must flow over and betwen these tubes in each of the four pressurized boilers is 172.1 kg/s (1.365 x 10^6 1b/hr). Using Equation A 9.3.30 and the above parameters as a basis, the new equation for V_{max} is:

$$V_{max} = \frac{5.74}{\rho_g}$$
 ft/s (A 12.2.22)

Equation A 12.2.22 replaces Equation A 9.3.31 in the calculation scheme used to determine the required number of tube rows and the number of individual circuits in order to satisfy the heat exchange and pressure drop requirements of both the superheater and reheater tube banks. The route taken by this calculation procedure and the resulting configuration of the tube banks is summarized in Table A 12.2.3 which follows.

Appendix A 12.3 PRESSURIZED BOILER PRICE ANALYSIS

Table 12.15 is a breakdown of the component costs of the base case pressurized boiler based on the heat transfer analysis developed in Appendix A 12.2. The boiler costs will vary, of course, as the power cycle parameters are varied. The following development derives an expression for the boiler cost in terms of the base case cost and the pertinent cycle parameters.

For pressure drop comparable to the base case, the mass velocity on the hot gas side should be kept constant in the boiler. Because the gas turbines ingest a constant airflow rate, the mass flow rate through the boiler is essentially constant. From continuity:

$$M_{g} = \rho A V \propto \rho \frac{\pi}{4} D^{2} V \qquad (A 12.3.1)$$

where \dot{M}_{g} = gas mass flow rate ρ = gas density D = vessel diameter V = gas velocity

Since the temperature on the gas side is approximately constant, ρ is proportional to the gas pressure P. Because M_{σ} and V are constant:

$$D = \sqrt{1/\rho} \qquad (A \ 12.3.2)$$

Since D equals 6.096 m (20 ft) when P is 1.013 MPa (10 atm) the constant of proportionality is 63.25. The shell labor cost, which results primarily from the welding operation, is a function of the thickness, t, of the shell and the length of the weld, which in turn is proportional to the shell diameter. Referring to the base case whose labor cost is \$310,000,

Shell Labor Cost = (base cost)
$$\left(\frac{\text{thickness factor}}{\text{base case thickness factor}}, \frac{D}{D_{\text{base}}}\right)$$
 (A 12.3.3)

1

1

where the thickness factor is approximated by the equation 1 + 2 (t - 1) and the base case thickness factor equals 2.

From stress analysis, the thickness of the shell is given by

$$t = \frac{PD}{2\sigma}$$
 (A 12.3.4)

where σ in the allowable tensile stress. Substituting for t and D, the shell labor cost (SLC) in millions of dollars is:

SLC = (0.310)
$$\left\{ \frac{1 + 2 \left[\frac{63.25 \sqrt{P}}{2\sigma} - 1\right]}{2} \right\} \left(\frac{63.25}{20\sqrt{P}}\right)$$
 (A 12.3.5)

where P is in atmospheres. The shell material cost (SMC) in millions of dollars is given by Equation A 12.3.6 for a base cost of \$350,000.

SMC = (base cost)
$$\left(\frac{t}{1.5}\right) \left(\frac{D}{20}\right)$$

= (0.350) $\left(\frac{63.25 \sqrt{P}/2\sigma}{1.5}\right) \left(\frac{63.25}{20 \sqrt{P}}\right)$ (A 12.3.6)

The heat exchanger components can be considered according to the nature of the heat transfer process within them.

In the combustor/evaporator section the heat transfer by radiation prodominates. The radiation heat transfer is affected somewhat by pressure through the effect it has upon the emissivity of carbon dioxide and water vapor. Due to limited data the effect is difficult to quantify above 506.5 kPa (5 atm) and becomes progressively weaker as pressure increases. Accordingly, it will be assumed that the combustor/ evaporator cost is a constant for the range of conditions encountered.

12-279

Alter a fight starting

The superheater and reheater units are banks of tubes with the hot gas passing over the tubes in cross flow. Neglecting radiation and making the assumption that the heat transfer rate is gas-side limited, the heat transfer area is inversely proportional to the gas-side convection heat transfer coefficient. The convection coefficient is given by:

1

1

h = 0.33
$$\left(\frac{Gd}{u}\right)^{0.6} Pr^{0.33}$$

ļ

ł

ļ

where the tube diameter, d, the viscosity, μ , and the Prandtl Number, Pr, are constant since the temperature level is essentially constant. The mass velocity, G, equals the gas mass flow rate, M_g , which is constant divided by the open flow area. Since the tube diameter and pitch are constant, the open area is proportional to the vessel diameter, D, squared. But since the square of the vessel diameter is inversely proportional to the gas pressure, P, as shown previously, the convection heat transfer coefficient can be written

$$h = (P)^{0.6}$$

Now the heat transfer area, and, therefore, heat exchanger cost, is given by the equation

$$A = \frac{Q}{h\Delta T}$$

Since AT is constant, the steam and gas temperature profiles at design point will be maintained essentially constant; then,

$$A \propto \frac{Q}{(P)^{0.6}}$$

but Q is proportional to the mass flow rate of steam, ${\rm M}_{_{\rm S}},$ so that

$$A \approx \frac{M_s}{(P)^{0.6}}$$

With this information and the cost breakdown of the several elements of the base case boiler the following equation for the price (in millions of dollars) of the boiler is found:

1

l

1

1

 \mathcal{A}

Ĵ

The second second

in Againman and the second

the state of the second

Boiler price =
$$0.978 + 0.566 \left\{ \frac{1 + 2 \left[0.4743 \sqrt{F} - 1 \right]}{\sqrt{P}} \right\}$$
 (A 12.3.7)
+ $\frac{(10^6) (M_s) (TF)}{(P)^{0.6}}$

where P is in atmospheres, M_S is in millions of pounds per hour, and TF is a temperature factor multiplier to account for a materials cost increase of the convection bank tubes for the higher steam temperatures. This factor is based on similar cost increments determined for fluidized bed boilers. As a function of steam temperature, the temperature factor is as follows:

Appendix A 12.4 HOT GAS PIPE REFERENCE CONFIGURATION COSTS

.

i a A

	Size: 3 ft,	Size: 3 ft, id			Pressure: 150 psig			
	Length: 680	ft						
	Weight, 1b	Mtl. Cost, \$/Lb	Lbr. Cost,	Total Cost, \$/Lb	Haterial Cost x 10 ⁻³ \$	Installation Cost x 10^{-3} \$	Total <u>Cost x 10⁻³5</u>	
. Carbon Steel Pipe	160,684	0.51	0.56	1.07	82	90	172	
. Incoloy Liner, 1/4 inch thick	67,800	3.26	1.76	5.02	221	120	341	
3. %efractory, 9 in TK x HN-HI-LI Marbison Wal	258,000 lker	0.16	0.22	Q+38	41	57	98	
 Lining Anchors , @ 5 lb/ea 	38,500	0.31	0.31	0.62	12	12	24	
 Refractory Anchors, 0 5 lb/ea 	57,650	0.31	0.33	0.62	18	18	36	
. Structural Steel (truss)	240,000	0.30	0.08	0.38	72	18	90	
. Concrete (truss)					21	11	32	
3. Expansion _{Joints} (4)	Allow				<u>140</u> 607	326	<u>140</u> 933	
Contingency 15%							<u>140</u> 1,073	

and a second of the second
ويوجده والمتحر والمحجور والم

Table 12.4.1 - Not Gas Pipe Reference Configuration Costs - Size 1

well for the second

· Andrewski ·

an Sector Dates and

		Size: ³ ft, Length: 680			Pressure: Max. <u>Temp</u>	300 psig erature: 18 <u>00°F</u>	· · · · · · · · · · · · · · · · · · ·	
		Weight, 1b	Mtl. Cost, \$/Lb	Lbr, Cost, \$/1b	Total Cost, \$/Lb	Material Cost x 10 3	Installation Cost x 10-3\$	Total Совт ж 10\$
1.	Carbon Steel Pipe	315,000	0.48	0.54	1.02	150	173	323
2.	Incoloy Liner, 1/4 inch thick	67,800	3.26	1.76	5.02	221	120	341
3.	Refractory, 9 in TK x HN-HI-LI Marbison Walke	258,000 er	0.16	0.22	0.38	41	57	9 8
4.	Lining Anchors, @ 5 lb/ea	38,500	0.31	0.31	0.62	12	12	24
5.	Refractory Anchors, @ 5 1b/ea	57,650	0.31	0.31	0.62	18	Na 18	36
6.	Structural Steel (truss)	240,000	0.30	0.08	0.38	72	18	90
7.	Concrete (truss)	:	:	•		21	11	32
8.	Expansion Joints (4) Contingency 15%	Allow			an an Arian An Arian An Arian An Arian	<u>140</u> 675	409	<u>140</u> 1,084 <u>163</u> 1,247

 $n \in$

Table 12.4.2 - Hot Gas Pipe Reference Configuration Costs - Size 2

NOON NO	A H
15	PAGE
	HIN IS

Table 12.4.3 - Hot Gas Pipe Reference Configuration Costs - Size 3

	Size: 8 ft, Length: 680		<u></u>	Pressure: 150 psig Max. Temperature: 1800°F					
	Weight, 1b	Mtl. Cost, \$/Lb	Lbr. Cost, \$/Lb	Total Cost, \$/Lb	Material Cost x 10 \$	Installation Cost x 1073\$	Total Cost x 10 ⁻³		
1. Carbon Steel Pipe						389	637		
	707,200	0.35	0.55	0.90	. 248				
2. Incoloy Liner, 1/4 inch thick	176,500	3.34	0.68	4.02	586	120	706		
3. Refractory , 9 in TK x HN-HI-Li Harbison V	599,000	0.16	0.22	0.38	94	133	227		
4. Lining Anchors, @ 5 lb/ea	102,000	0.30	0.30	0.60	31	31	62		
5. Refractory Anchors , @ 5 lb/ea	122,000	0.30	0.30	0.60	36	36	72		
6. Structural Steel (truss)	720,000	0.28	0.095	0.375	202	69	271		
7. Concrete (truss)					40	20	60		
8. Expansion Joints (4)	Allow				<u>212</u>	798	212		
Contingency 15%					1,449	798	2,247 <u>337</u>		
							. 2,584		

	Size: 8 ft, Length: <u>680</u>	-		Pressure: 300 psig Max. Temperature: 1800°F					
	Weight, 1b	Mtl. Cost, \$/Lb	Lbr. Cost, \$/Lb	Total Cost, S/Lb	Material Cost x 10 ⁻³ \$	Installation Cost x 10 ⁻³ \$	Total <u>Cost x 10⁻³5</u>		
L. Carbon Steel Pipe	1,655,000	0.37	0.47	0.84	619	785	1404		
2. Incoloy Lizer, 1/4 Inch thick	176,500	3.34	0,68	4.02	586	120	706		
3. Refractory, 9 in TK & HN-HI-LI Harbison V	599,000 Walker	0.16	0.22	0.38	94	133	227		
4. Lining Anchors, @ 5 1b/ea	102,000	0.30	0.30	0.60	31	31	62		
5. Refractory Anchors, @ 5 lb/ea	122,000	0.30	0.30	0.60	36	36	72		
6. Structural Steel (truss)	800,000	0.28	0.095	0.375	224	76	300		
7. Concrete (truss)	-				44	23	67		
8. Expansion Joints (4)	Allow				<u>212</u> 1,846	1,204	<u>212</u> 3050		
Contingency 15%							<u>458</u> 3508		

Table 12.4.4 - Hot Gas Pipe Reference Configuration Costs - Size 4

icta é Caldida

CU (d

<u>.</u> - -

Appendix A 12.5

STACK GAS COOLER COST BREAKDOWN

(Costs in dollars are shown for 1/2 million square foot unit)

	<u>Material</u>	_Labor_	<u>Total</u>
Finned Tubing and Module			
Assembly	1,160,000	660,000	1,820,000
Boiler Plate	10,000	15,000	25,000
Header Piping	10,000	5,000	15,000
Module Erection and Support		•	
Steel	5,000	15,000	20,000
Subtotals	1,185,000	695,000	1,880,000
Contingency: 15%			282,000
	TOTA	AL	2,162,000

Appendix A 12.6

THERMODYNAMIC GAMESMANSHIP/COMBINED CYCLES

If the "cost of apparatus" is defined as the sum of O&M and capital charges, then it is easy to show that generating cost is minimum when the derivative of heat rate to "cost of apparatus" is proportional to minus the inverse of fuel cost. Higher fuel cost allows the generation optimizer to spend more dollars on efficiency-raising apparatus and, thus, diminishes the importance of specific work compared to efficiency. The efficiency is the product of the internal reversibility of the cycle and the ratio of input availability to enthalpy. This last ratio is the ratio of:

 $\int_{T_1}^{T_2} C_p \left(1 - \frac{T_0}{T}\right) dT$

(A 12.6.1)

to

 $\int_{T_1}^{T_2} C_p \ dT \qquad (A \ 12.6.2)$ Thus the vital importance to efficiency of beginning the heat addition to cycle at high temperature as well as ending it so is highlighted. Of

course the importance of low temperature of heat rejection (T_0) is equally pointed up. Such "improvements," however, must not be made at the expense of internal reversibility, or reversible success may turn to actual failure.

A simple-minded example may be worthwhile. A cycle is designed in which the fluid is heated from an enthalpy of 2.3255 to 3.2557 MJ/kg (1000 to 1400 Btu/lb) and the entropy increases in the heating from 4.579 to 5.710 kJ/kg-°K (1.094 to 1.364 Btu/lb-°F). The heat rejection from the cycle is assumed to take place at 306° K (90° F). The availability addition is 0.5849 MJ/kg [400 - (550)(0.27) = 251.5 Btu/lb]. If the cycle is reversible this will be the specific work. We find, however, that pipe and heat exchanger pressure drops and turbine and compressor inefficiencies result in summed entropy increase of 3.828 J/kg-°K (0.09145 Btu/lb-°F) in these adiabatic processes internal to the cycle. The lost work due to internal irreversibility is then 0.11697 MJ/kg [(550)(0.09145) = 50.3 Btu/lb]. The work then becomes 0.4690 MJ/kg [251.5 - (50.3) = 201.2 Btu/lb] and the reversibility index is (201.2/251.5) = 0.80. The efficiency is (201.2/400) = 0.503. This is the same as:

$$n_{\rm B} \left(\frac{\Delta h_{\rm i} - T_{\rm o} \Delta s_{\rm i}}{\Delta h_{\rm i}} \right) = 0.8 \left(\frac{400 - (550)(0.27)}{400} \right) = 0.503 \quad (A \ 12.6.3)$$

Now a way is found to increase the fluid temperature into the input heat exchanger. Typically, the initial enthalpy goes to 2.6953 MJ/kg (1159 Btu/lb) and entropy is 5.048 kJ/kg-^{K} (1.206 Btu/lb- $^{\circ}$ F). The hot-end conditions are unchanged. The availability addition becomes 0.3584 MJ/kg [241 - (550)(0.158) = 154.1 Btu/lb]. The net work becomes 0.2414 kJ/kg (103.8 Btu/lb) and the reversibility 0.6736. The efficiency becomes [(154.1 - 50.3)/241] = 0.43. The previous reversible efficiency was (251.5/400) = 0.6288, and the new reversible efficiency is (154.1/241) = 0.6394. Merely to break even on the change:

$$n_1 = \frac{E_2 (\Delta A_1 - \Delta A_2)}{E_2 \Delta A_1 - E_1 \Delta A_2} = 0.9744$$
 (A 12.6.4)

L2-289

Let us define some characterizing variables of Brayton and Rankine cycles preparatory to deriving some efficiency expressions in algebraic form which cast much light on the question of concept guidance to apply to parametric search.

Symbol	Meaning
n _B	Reversibility index Brayton = <u>Realized Work</u> Availability in
"R	Reversibility index Rankine
i	Subscript-Brayton heat input profile
1	Subscript-Brayton output profile
2	Subscript-Rankine input from Brayton (nonpostfired)
T	Characteristic temperature of heat exchange (or firing) process = $\Delta h / \Delta s$
T . a	Characteristic temperature of supplemental firing to Rankine cycle
۵h s	Stack enthalpy less ambient ("exhaust loss")
E	Ideal thermal efficiency - reversible/enthalpy addition.

The efficiency of a nonsupplementary-fired combined cycle is (see Subappendix AA 12.6.1):

$$\frac{(h \text{ to work})}{\Delta h_{i}} = n_{R} \frac{T_{2} - T_{o}}{T_{2}} \left[1 - n_{B} \left(\frac{T_{i} - T_{B}}{T_{i}} \right) \right] + n_{B} \left(\frac{T_{i} - T_{B}}{T_{i}} \right)$$
$$- n_{R} \left(\frac{\Delta h_{s}}{\Delta h_{i}} \right) \left(\frac{T_{2} - T_{o}}{T_{2}} \right) = n_{c} \left(\frac{T_{i} - T_{o}}{T_{i}} \right) \quad (A \ 12.6.5)$$

where n_c is the net reversibility index of the combined cycle. If supplementary firing is added:

Efficiency =
$$\frac{1}{(1 + \rho)} (\varepsilon_0 + \varepsilon_1 \rho) = \frac{\varepsilon_0}{1 + \rho} \left[1 + \rho \left(\frac{\varepsilon_1}{\varepsilon_0} \right) \right]$$
(A 12.6.6)

where ρ is the ratio of postfired heat to original, ε_{0} is the nonpostfired efficiency, and ε_{1} is $\eta_{R} (T_{a} - T_{0}/T_{a})$. Since ρ is positive, the efficiency increases only if $\varepsilon_{1} > \varepsilon_{0}$. This may be obtained even if $T_{a} < T_{1}$ if η_{R} is sufficiently larger than η_{c} . Optimum cycles will show values of η_{R} approaching 0.90 and η_{B} around 0.65. The keystone No. 1 steam power station has an apparent η_{R} of 0.90 and our open gas turbine cycles run around 0.65 (see Subappendix AA 12.6.2). These do not include mechanical and electrical losses. The η_{B} is primarily a function of specific work; and η_{R} varies little but is higher with exhaust cooler than with extractive feed heating.

The nonpostfired cycle reversibility is best (other things being equal) if the Rankine cycle is operated in the critical range and if the mass flows of the two cycles are such that a reasonably linear, counterflow heat exchanger ("waste heat boiler") is obtained. At present levels of metallurgical limits on temperatures and pressures the Rankine stream cannot be "waste-heated" far into the critical region. But the temperature at this point is high enough that fired heating into the superheat field yields an attractive value of characteristic temperature, T_a of the last paragraph, when combined with the high reversibility index, n_R , of the Rankine cycle. As higher Brayton firing temperatures become possible, the optimum Rankine pressure increases; if this is dismissed on practical grounds, the postfired heat ratio, ρ , declines.

In short the issue is that the optimum combined cycle is likely to have the following characteristics:

Supercritical Rankine pressure

- Mass flow ratio of the order of 4 to 1
- No intercooling (indeed, modest prewarming or better, interheating may be beneficial to Brayton reversibility with reduction of pressure ratio)
- High supplementary firing ratio (declining with Brayton temperature)
- Multiple Rankine reheat or steam-steam recuperation with few reheats (the purpose of either is to raise the temperature at the beginning of fired reheat)
- Modest Brayton pressure ratio or reheated high pressure ratio Brayton
- Extractive feed heating below the prescribed stack temperature but not above it (due allowance for heat exchanger approach)
- No Brayton recuperation (as a consequence of the invariably better reversibility of the Rankine cycle than the Brayton).

It is clear that the gas generator/free power turbine Brayton arrangement is superior to the all-synchronous Brayton, both for partload performance and for the provision of bonus reheat capability. Brayton reheat is obviously thermodynamically superior to equal heat addition through postfiring. Brayton reheating may be performed with primary (unvitiated) air supplied from compressor bleed.

The steam-steam recuperator mentioned in the list is, of course, a heat exchanger located between a cold reheat line and the following reheat turbine group exhaust. Since it returns the expansion line to about cold reheat temperature, equivalent to reheating the original expansion line to cold reheat temperature at reheat turbine exhaust pressure, one must be sure that the resulting end point is not too wet. This obtains if the throttle temperature is adequately high and the reheat turbine exhaust pressure is adequately low.

The steam recuperator was originally associated with a concept called Balanced Pressure Superreheat which is described in the Westinghouse ECAS Proposal under "Advanced Steam." It is really a means of combined-cycle improvement since it requires about a 3.0398 MPa (30 atm) pressurized furnace for a reasonable minimum reheat pressure of 3.1026 MPa (450 psi) abs. This concept should be parametrically explored under Section 6, since it obtains its full leverage only without highpressure extraction as is obtained with full flow exhaust feed heating. Atmospheric fired superreheating is a near thermodynamic equivalent and should be considered practical to about the same temperature level as closed-cycle gas heaters.

We can see little plausbility in such NASA-specified concepts as "repowering," "pressurized furnace closed cycles," and "organic bottomed gas turbines."

The remark on organic bottomed gas turbines is based on stability and inventory cost. It is reasonably clear that a low critical pressure fluid of suitable critical temperature would be valuable on thermodynamic grounds since good linear heating is obtained at reduced pressures, Pr, of 3 or thereabouts.

The candidates for combined nonsteam cycle study are ammonia, sulfur-dioxide, and the light hydrocarbons, with carbon-dioxide a rather implausible trailer. Of these, sulfur-dioxide seems to be the clear choice on the grounds of reasonable critical pressure [7.881 MPa (1143 psi) abs], critical temperature well above sink [430.7°K (315.5°F)] so that isothermal heat rejection is obtained, good stability and acceptable cost (in fact it is extractable from the coal fuel either in treatment or postcombustion). It is true that the entropy of the saturated vapor at 310.9°K (100°F) is approximately equal to that of the 24.132 MPa (3500 psi) abs vapor at 700°K (800°F), so that even at this high Pr (3.06) unreheated expansion becomes moist only if the throttle temperature is somewhat less than 700°K (800°F). The implication of this fact is that sulfur-dioxide will probably be found most useful in waste heat rather

than in supplementary fired cycles, since high throttle temperature or reheated cycles will require vapor-liquid recuperation and can raise the stack loss. A sulfur dioxide combined cycle at optimum will probably be of a rather conventional waste heat pattern, although highly supercritical. It should provide highly competitive efficiency to optimized gassteam; in fact, we would expect that for high-pressure ratio cycles with gas turbine exit temperature in the range of 616 to 728°K (650 to 850°F) it will be definitely superior to steam if high sulfur dioxide throttle pressure is used to improve the reversibility of the intercycle heat exchanger.

This discussion may be a little startling to the gas turbineoriented mind which has been acclimated to the concept of an existing open gas turbine frame whose large exhaust heat loss is to be converted to work (or process steam), as well as it can with no major effects on the gas turbines. Base-load optimization must begin with no frozen apparatus or cycle parameter concepts derived from either previous gas turbine practice or previous orthodox steam utility practice. The need for supercritical Rankine pressure is derived from the need for thermally coupling the Rankine plant to the Brayton plant as reversibly as possible. Supplementary firing is then used to, and only to, the extent that it satisfies the physical requirements of the Rankine (provision of reasonable end point), improves the thermodynamics of the combined plant (by reason primarily of the higher Rankine reversibility), and improves generation cost. It is important to understand the trade-offs involved in concept-optimizing a gas-steam plant. Steam is an unusual vapor in that its saturated entropy at around 311°K (100°F) is unusually large compared to its critical entropy. Thus, the analyst is confronted with the need on the one hand to employ supercritical steam to minimize the opening of the hot end AT (with the peaking of specific heat at the rectilinear diameter or with subcritical evaporation), and on the other to attain high $\Delta h/\Delta s$ in the supplementary heating necessary to move the expansion line to a reasonable end point. Multiple reheat or steam-to-steam recuperation with single reheat are the means, and high level reheating is a

coupled need. Likewise, in attempting to attain plausible improvement of the "conventional" steam plant, it is necessary to increase the mean temperature of heating at throttle pressure by increasing feed temperature without offsetting degradation of the reversibility of the feed heating, and to increase the mean temperature of reheating by multiple reheat or by steam-to-steam recuperation with a single reheat, with the hot reheat temperatures driven as high as is plausible in fired heat exchangers.

In the combined cycle it is clear that:

- The transfer of heat from Brayton to Rankine in the form of postexpansion exhaust heat (waste heat) has the function of as reversibly as possible extending the sink temperature of the cycle to the 311°K (100°F) neighborhood. The thermal efficiency of the Rankine cycle per se is of no importance so long as this is done. Very nearly this requires that the Brayton cycle be designed to maximize its reversibility index $[(work/Ah_i)(T_i T_i)]$ rather than its specific work or ordinary efficiency. This follows from the fact that the Rankine reversibility is largest, so the Brayton must degrade its input heat as little as possible.
- Any supplementary heating of the Rankine cycle must be done at such a mean temperature, T_a , that the incremental thermal efficiency of its use is higher than that of the combined cycle without its use. T_a may,still be less than T_i because $\eta_B > \eta_c$.

As a consequence, it is reasonably clear that combined cycle thermodynamic gamesmanship requires in general that:

• The Brayton reversibility index be kept near maximum. This, of course, is a function of component polytropic efficiencies, pressure ratio(s), pressure losses, and extraction heater approach and spread.

- The Brayton heat addition takes place at as large a $[\Delta h/(\Delta s T_j)]$ as possible. For any specified turbine inlet temperature this factor increases with increasing pressure ratio, but the reversibility index declines with increased pressure ratio. The conflict with the previous requirement will produce an optimum which may be improved by such unorthodox measures as recuperative compressor prewarming or interwarming of modest amount.
- Brayton reheat be employed to the extent economic and practical factors permit. Reheat combustion primary air may be fresh compressor bleed air if beneficial in a practical sense. Brayton reheat is, of course, superior to the same fuel used in supplementary firing of the Rankine.
- The Rankine be operated at as high a reduced dimensionless pressure, Pr = P/Pc, as possible to permit linearizing the Brayton-to-Rankine waste heat exchange. Sulfur dioxide should be considered particularly for nonsupplementary-fired combined cycles.
- The Rankine waste heating profile should proceed to as high a temperature as possible (supercritical), if supplementary firing is used, so the incremental supplementary heat efficiency can be made larger than that of the base unfired cycle.
- For cases in which Rankine reheating is used, the cold reheat temperature should substantially equal or better exceed the waste heating temperature. This implies high remaining superheat at reheat pressure or the use of steam-to-steam recuperation. The latter is effective in the sense of obtaining significant reheat enthalpy increase only if the hot

reheat temperature is rather high. The balanced pressure reheater was invented as a plausible mechanism for relief of stress-temperature problems at high reheat temperature. No lack of plausibility is seen, however, in a [say 3.0398 MPa (30 atm) abs] steam heater with atmospheric furnace compared to a closed-cycle gas heater of equal pressure and temperature.

• Extractive feed heating is used in the Rankine only below the acid dew point (stack) determined limit of exhaust cooler feed heating. This implies, as does linear waste heat transfer, a mass flow ratio around 4 to 1. It has the further advantage in a superreheat cycle of providing high mass flow leverage for the high-temperature reheating event.

The following example is a rather simple-minded one to illustrate a method of rapidly surveying the parametric field in order to block out the areas of interest for more detailed (but limited in number) examinations:

Example: Postfired Cycle

Gas Turbine (air cycle-fuel mass not accounted)

Pressure ratio	-	15/1
Compressor efficiency	-	0.89
Turbine efficiency		0.90
Δ₽/₽	-	0.08
Exhaust cooler out	-	275°F
Stack	-	235°F
Prewarm temperature	-	100°F
Firing temperature	-	1800°F

Point	Pr	<u>h</u>	¢	TR	
Comp. in	1.5742	1,33.86	0.6095	560	
Rev. comp.	23.613	290.03			
Comp. out		309.33	0.811	1270	$\Delta h_{\pm} = 268.18$
Turbine in	286.6	577.51	0.96626	2260	Δh/Δs=1727.3=T ₁ _ <u>577.51-309.33</u> 1.0.96626-0.811
Turbine rev.		279.62			
Turbine out		309.41	0.811	1271	
Exhaust cooler out		176.03	0.67501	735	Δh/Δs= <u>309.41-133.86</u> =871.22=T ₁
Stack		166.36	0.66147	695	<i>.</i>
Ambient		124.27	0.59173	520	stack loss=166.36-124,27=Δh _e
	•				

Net Work = (577.51-309.41) - (309.33-133.86) = (268.1-175.47) = 92.63

 $\eta_{\rm B} = \frac{(92.63)(1727.3)}{268.18(1727.3-871.22)} = 0.697$

Steam cycle 3500 psi/1000°F/1000°F/1200°F; Cold reheat about 650°F

<u>Point T P h s</u> Exhaust cooler in 690 4000 207.0 0.3335 out 1180 3600 875.8 1.0325 T₂ = 956.8°F T₀ = 555°R

Unfired Eff.
$$% 0.9 \left(\frac{956.8-555}{956.8} \right) \left[1 - 0.697 \left(\frac{1727.3-871.22}{1727.3} \right) \right]$$

+ 0.697
$$\left(\frac{1727.3-871.22}{1727.3}\right)$$
 - 0.9 $\left(\frac{42.09}{268.18}\right)\left(\frac{956.8-555}{956.8}\right)$

$$= 0.1305 + 0.3454 - 0.0593 = 0.4166$$

 $T_A > \frac{(0.9)(555)}{(0.9-0.4166)} = 1033$ °R which is easily accomplished.

At 24.821 MPa (3600 psi) abs from 656 to 811°K (1180 to 1460°R, 720 to 1000°F),

$$\frac{\Delta h}{\Delta s} = \frac{(1692 - 875.8)}{(1.632 - 1.0325)} = 1361.5^{\circ}R$$

for which the incremental efficiency is 0.533.

At 6.894 MPa (1000 psi) abs reheating from 617 to 922°K (1110 to 1660°R, 650 to 1200°F),

 $\frac{\Delta h}{\Delta s} = \frac{(1618.4 - 1290.1)}{(1.7256 - 1.4833)} = 1355^{\circ}R$

where the incremental efficiency is 0.531.

The overall fired heating,

 $\frac{\Delta h}{\Delta s} = \frac{1144.5}{0.8418} = 1359.6 \epsilon_{i} = 0.5326$

Mass Ratio $\frac{\text{steam}}{\text{air}} = \frac{(309.41 - 176.03)}{(875.8 - 208.61)} = 0.2$

$$\rho = 0.2 \left[\frac{(1692 - 875.8) + (1618.4 - 1290.1)}{(577.51 - 309.33)} \right] = 0.8535$$

Efficiency = $\frac{1}{1.8535}$ [0.4166 + (0.5326)(0.8535)] = 0.4700

Postfiring is seen to have increased the combined-cycle efficiency by some 12.9% (from 0.4166 to 0.47), a benefit due to two circumstances:

- The postexpansion Brayton heat has been rather reversibly delivered to the Rankine and so balanced that a high feed temperature is attained [656°K (1180°R, 720°F)]. Thus, the primary Rankine-fired heating is moved up to a respectable Δh/Δs.
- The Rankine expansion line is adjusted to use a respectable cold reheat temperature [617°K (1110°R, 650°F) here] for the same purpose. This requires a relatively high-pressure first reheat; and if only one reheat is used, the hot reheat temperature must be very high if a satisfactory expansion line end point (ELEP) is to be achieved. If one assumes that superreheat is plausible, then a steam recuperator will extend the thermodynamic gain and assist in optimizing the ELEP. If low hot reheat temperature [811°K (1000°F)] is assumed then, of course, multiple reheat is the orthodox and correct method of improving the cold reheat temperatures. Parenthetically, very high steam temperature is probably plausible only at relatively low pressure, 24.132 MPa/811°K/ 1033°K (3500 psi/1000°F/1400°F) is much more plausible than 24.132 MPa/1033°K (3500 psi/1400°F), whether the balanced pressure reheat concept is used or not. The steam recuperator will be found most useful both in obtaining satisfactory cold reheat temperature for a single low-pressure reheat and in obtaining reasonable ELEP.

Subappendix AA 12.6.1

a contra l'ogra

COMBINED-CYCLE EFFICIENCY

Let us first try to be very clear on the definition of "reversibility index" of a cycle. It is the ratio of actual efficiency to the efficiency of a reversible cycle with the same heat addition and heat dissipation profiles. From the second law of thermodynamics this is the same as the ratio of the specific work to the flux of availability ($\Delta h - T_{O}\Delta s$) into the cycle. T_{O} is the thermodynamic temperature of heat dissipation, which is the ratio $\Delta h/\Delta s$ over the dissipation profile. For the orthodox condensing Rankine, T_{O} is, of course, the effective condensing temperature. The sources of availability loss (internal) are, of course, turbulent entropy growth in expanders, compressors, ducts, and so on and net entropy gains in heat exchange. Lower specific work of expansion and higher recycle work (of compression) in the Brayton cycle impose on it a lower reversibility index via the turbulence leverage in these processes imposed upon low specific net work as compared to the Rankine.

The efficiency of a combined cycle without supplementary firing of the Rankine cycle is derived thus:

The Brayton cycle has reversibility index n_B , is heated to enthalpy increase Δh_i and entropy increase Δs_i at thermodynamic temperature $T_i = \Delta h_i / \Delta s_i$. It is cooled at thermodynamic temperature T_1 by the transfer to the Rankine of Δh_1 carrying Δs_1 and then in precooler (or stack in the internally-fired Brayton with suitable adjustments for the fuel mass addition from the burner on) to the compressor inlet temperature or ambient. Note that a precooler is not necessarily used in a combinedclosed cycle if a sufficient high degree of coupling heat exchanger dimensional described. The "stack" or

precooler heat and entropy are Δh_s and Δs_s . The thermodynamic cooling temperature of the Brayton cycle is:

$$\mathbf{T}_{\mathbf{B}} = \left(\frac{\Delta \mathbf{h}_{1} + \Delta \mathbf{h}_{s}}{\Delta \mathbf{s}_{1} + \Delta \mathbf{s}_{s}}\right)$$

so the Brayton specific work (closed cycle used for model simplicity) is:

$$W_{B} = n_{B} \left(\Delta h_{i} \right) \left(\frac{T_{i} - T_{B}}{T_{i}} \right)$$

The Rankine cycle recives heat from the Brayton at $T_2 = \Delta H_2 / \Delta S_2$, where capitals indicate Rankine fluid property changes and T_2 is necessarily lower than T_1 . The work of the Rankine cycle (specific to Brayton mass flow) is:

$$W_{R} = n_{R} \left(\frac{T_{2} - T_{o}}{T_{2}} \right) \left[\Delta h_{i} - W_{B} - \Delta h_{s} \right]$$
$$= n_{R} \left(\frac{T_{2} - T_{o}}{T_{2}} \right) \left[\Delta h_{i} - \Delta h_{s} - n_{B} \Delta h_{i} \left(\frac{T_{i} - T_{B}}{T_{i}} \right) \right]$$

The total work is:

$$W = \eta_{R} \left(\frac{T_{2} - T_{0}}{T_{2}} \right) \left\{ \Delta h_{i} \left[1 - \eta_{B} \left(\frac{T_{i} - T_{B}}{T_{i}} \right) - \Delta h_{B} \right] + \eta_{B} \left(\Delta h_{i} \right) \left(\frac{T_{i} - T_{3}}{T_{i}} \right) \right\}$$

The efficiency is $W/\Delta h_{1}$:

$$\varepsilon = \eta_{R} \left(\frac{T_{2} - T_{o}}{T_{2}} \right) \left[1 - \eta_{B} \left(\frac{T_{1} - T_{B}}{T_{1}} \right) \right] + \eta_{B} \left(\frac{T_{1} - T_{B}}{T_{1}} \right) - \eta_{R} \left(\frac{T_{2} - T_{o}}{T_{2}} \right) \left(\frac{\Delta h_{s}}{\Delta h_{1}} \right)$$

Now consider a combined cycle with Brayton heat Q_0 at efficiency ε_0 and no supplementary firing. Pay no attention to the prasal implications of such an initial model as, for example, a throttle steam condition of 24.132 MPa/644°K (3500 psi/700°F). Now add additional heat Q_1 to the Rankine cycle in such ways as to make the Rankine cycle plausible. This is done at an incremental efficiency ε_1 , which is the product of η_R and $(T_A - T_0)/T_A$, where T_A is the thermodynamic temperature ($\Delta H/\Delta s$) at which the heat is added and T_0 the Rankine sink temperature. The total work is:

$$W = \varepsilon_{o} \left(Q_{o} \right) + \varepsilon_{1} \left(Q_{1} \right)$$

and the efficiency:

$$\frac{W}{(Q_{o} + Q_{1})} = \epsilon_{o} \left(\frac{Q_{o}}{Q_{o} + Q_{1}} \right) + \epsilon_{1} \left(\frac{Q_{1}}{Q_{o} + Q_{1}} \right)$$

Let:

$$\frac{Q_1}{Q_0} = \rho$$

$$\varepsilon = \text{Efficiency} = \frac{1}{(1 + \rho)} \left(\varepsilon_{0} + \varepsilon_{1} \rho \right)$$

It is obvious that the efficiency $\varepsilon > \varepsilon_o$ only if $\varepsilon_1 > \varepsilon_o$. Thus Rankine supplemental heating is justified only if $n_R (T_A - T_o)/T_A$ is significantly larger than the unfired combined-cycle efficiency given previously. Since $n_{\rm R}$ > $n_{\rm B},~T_{\rm A}$ need not exceed $T_{\rm i}$ to obtain this desired result but only be in reasonable range of it.

Subappendix AA 12.6.2 TYPICAL REVERSIBILITY INDEX VALUES

Let us consider the differences between cycle types in the matter of reversibility index. The history of heat engine development suggests a fundamental and important difference between phase-change (Rankine) and single-phase (Brayton) cycles in the great difference between their ratios of compression work to net work. The steam cycle with its small feed pump work was reduced to successful practice in the 18th century, but the Brayton cycle, with its large compressor work, had to wait until 20th century technology made efficient compressors and expanders available before it could be reduced to successful practice.

Take a gas turbine cycle—to be specific, the maximum efficiency 1144°K (1600°F), simple cycle of Westinghouse Report 66-1D8-FLINJ-R2 (Reference 12.4). It has a pressure ratio of 20/1 and would use about 4 kg fuel per 100 kg air. The compressor adiabatic efficiency is 0.865 end the turbine 0.90. A 19/1 turbine pressure ratio is assumed to account for pressure loss and use air properties but account for the fuel mass addition. This yields the rough accounting:

Point	<u>h</u>	φ		<u>∆h</u>	Δφ	^T thermo (Δh/Δs)
Comp. inlet	124.27	0.59173	520°R			
Comp. outlet	318.56	0.81799	845°R	194.29		
Turbine inlet	521.39	0.94026	2060°R	202.83	0.12227	1658.8
Turbine outlet	258.53	0.76732	1070°R	262.86		
Ambient	124.27	0.59173	520°R	134.26	0.17559	764.6

Efficiency =
$$\frac{262.86 - (194.29/1.04)}{202.83} = 0.3749$$

$$n_{\rm B} = \frac{(0.3749)(1658.8)}{(1658.8 - 764.6)} = 0.6955$$

Of course, losses such as those associated with cooling air, hot part radiation, and so on were not accounted for, and a real cycle $\eta_{\rm B}$ will be somewhat lower. Brayton cycle reversibility indices, however, will be found in the range 0.60 < $\eta_{\rm R}$ < 0.72.

By contrast, Keystone No. 1 steam unit has a much higher reversibility index. From the heat balance:

Point	<u>h</u>	<u> </u>	<u> </u>	<u>Δ</u> в	Flow
Feed pipe	532.1	0.7232			
Superheater out	1424.0	1,4721	891.9	0.7489	5,784,000
Cold reheat	1254.3	1.4980			
Hot reheat (at P _{cold})	1518.2	1.7160	263.9	0.2180	4,890,553

Condenser $T = 563.7^{\circ}R$

Flow Ratio = 0.84553

 $\Delta h/\Delta s = T_T = \frac{[891.9 + (263.9)(0.84553)]}{[0.7489 + (0.2180)(0.84553)]} = 1194.8^{\circ}R$

Net Heat Rate = 7421 Btu/kWh

We assume a combined bearing and alternator loss of 0.012 and auxiliary loads of 0.043 times gross following the Petersen paper at the March 1963 American Power Conference. Then:

12 - 306

يعادين <u>الماسين فاقار فا</u>رد أرواد المراجع أراجع المراجع في المناطق من المراجع المراجع المراجع المراجع المراجع المراجع

بالمحادثة والمعادية تتجاجره وأو

Gross Heat Rate =
$$(7421)\left(\frac{0.957}{0.988}\right) = 7188 \text{ Btu/kWh}$$

Shaft Efficiency =
$$\left(\frac{3413}{7188}\right)$$
 = 0.475

$$\eta_{\rm R} = \frac{(0.475)(1194.8)}{(1194.8 - 563.7)} = 0.899$$

A Rankine cycle in which feed is heated in an exhaust cooler rather than in extraction heaters is not burdened with this heat exchange irreversibility and will, in general, have a higher reversibility index. The expected range of values is narrow, perhaps $0.88 < n_R < 0.92$. Its variability is dependent on economics rather than on technology limits-----primarily with the cost balance between fuel and apparatus.

Note that since the Brayton discussion included no mechanical and electrical loss we have tried to back out these losses in the Rankine discussion. The Keystone heat balance we have does not define the term "Net Work," and we have assumed that it is the alternator terminal work, so that the 0.043 auxiliary fraction is deducted while the 0.012 bearing and alternator fraction is credited. These assumptions are completely ad hoc, so the 0.899 reversibility index calculated is really only a fair approximation, and possibly a little high, for Keystone I. But the conclusionnis clear that Rankine cycles are 25 to 35% more reversible than Brayton cycles, and this is a dominating element in the gamesmanship of combined-cycle optimization.