NASA CR-134941

VOLUME VI

ENERGY CONVERSION ALTERNATIVES STUDY -ECAS-

WESTINGHOUSE PHASE I FINAL REPORT

Volume \mathbf{W} - Closed-cycle gas turbine systems

by

D.J. Amos, F.K. Fentress, and W.F. Stahl

WESTINGHOUSE ELECTRIC CORPORATION RESEARCH LABORATORIES

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION NATIONAL SCIENCE FOUNDATION

NASA Lewis Research Center Contract NAS 3-19407	REPRODUCED BY: NTES U S. Department of Commerce National Technical Information Service Springfield, Virginia 22161
(NASA-CR-134941-Vol-6) ENERGY CONVERSION	N76-23697
ALTERNATIVES STUDY (ECAS), WESTINGHOUSE	
PHASE 1. VOLUME 6: CLOSED-CYCLE GAS	
TURBINE SYSTEMS Final Report (Westinghouse	Unclas
Research Labs.) CSCL 10B G3/4	44 28171 一人

This report was prepared with partial support of the NSF Award AG 551 and ERDA IAA No. E (49-18) - 1751; however, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of NSF or ERDA.

. .

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

1	Report No NASA CR-134941 Volume VI	2. Government Acce	ssion No.	3 Recipient's Catalog No.
4	Title and Subtitle ENERGY CONVERSION ALTERNATIVES WESTINGHOUSE PHASE I FINAL REPO			5 Report Date February 12, 1976
L	VOLUME VI - CLOSED-CYCLE GAS TU	RBING SYSTEMS		6. Performing Organization Code
7	Author(s) D. J. Amos, W. K. Fentress and	W. F. Stahl		8. Performing Organization Report No. Westinghouse Report No. 76-9E9-ECAS-RIv.6
9	Performing Organization Name and Address	·		10. Work Unit No.
	Westinghouse Electric Corporati	on		
	Research Laboratories Pittsburgh, PA 15235			11. Contract or Grant No
	ficesburgh, FA 15255			NAS 3-19407
12	Sponsoring Agency Name and Address			13. Type of Report and Period Covered
	Energy Research and Development		ļ	Contract Report
	National Aeronautics and Space . National Science Foundation Washington, D.C.	Administration		14 Sponsoring Agency, Code
15	Supplementary Notes			
	Project Managers: W. J. Brown, NASA Lewis Researc D. T. Beecher, Westinghouse Res	h Center, Clevela earch Laboratorie	and, OH 44135 es, Pittsburgh, PA	15235
16	Abstract	•		
	Both recuperated and bottomed c	losed cycle gas (turbine systems were	studied. All systems used
	a pressurizing gas turbine coup	led with a press	urized furnace to he	at the helium for the
	closed cycle gas turbine. Stea			
	Although plant efficiencies of			-
	of electricity was found to be			
	practical for coal or oil fired			
ł				
			· · · · · · · · · · · · · · · · · · ·	
17.	Key Words (Suggested by Author(s)) gas combined		18. Distribution Statement	t
1	steam temperature		Unclassified -	Validated
	helium efficiency		UNCLASSIIIEd -	UNTIMITEC .
	turbine cost		•	
	recuperated	······································		
19	Security Classif (of this report)	20. Security Classif, (c	of this page)	· -•
	Unclassified	Unclassifie	d	

' For sale by the National Technical Information Service-Snrinefield, Virginia 22161

•

ł

¢

.

NASA C-168 (Rev 10-75)

ACKNOWLEDGMENTS

Section 7 entitled "Closed-Cycle Gas Turbine Systems" was centered in the Westinghouse Gas Turbine Engine Division and was coordinated by D. J. Amos.

Others contributing to the concept study were:

- R. G. Glenn, who prepared the turbine island arrangement drawings and the gas turbine engine cross sectional drawings.
- W. K. Fentress, who calculated the thermodynamic efficiency of a large majority of the parametric points and assisted in selected heat exchanger price calculations.
- W. F. Stahl, who decided upon the parametric points to be evaluated, calculated the efficiencies of the organic fluid bottoming turbines and generated much of the heat exchanger pricing.
- T. J. Fagan and J. M. Makiel of the Westinghouse Research Laboratories rough sized the required coupling heat exchangers.
- C. T. McCreedy and S. M. Scherer of Chas. T. Main, Inc. of Boston, who prepared the balance of plant description and costing, site drawings, and consultation on plant island arrangements and plant constructability.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

TABLE OF CONTENTS

NASA Report No. <u>NASA CR-134941</u>

Volume I	Section 1 Section 2	INTRODUCTION AND SUMMARY GENERAL ASSUMPTIONS
Volume II	Section 3	MATERIALS CONSIDERATIONS
Volume III	Section 4	COMBUSTORS, FURNACES, AND LOW- BTU GASIFIERS
Volume IV	Section 5	OPEN RECUPERATED AND BOTTOMED GAS TURBINE CYCLES
Volume V	Section 6	COMBINED GAS-STEAM TURBINE CYCLES
Volume VI	Section 7	CLOSED-CYCLE GAS. TURBINE SYSTEMS
Volume VII	Section 8	METAL VAPOR RANKINE TOPPING-STEAM BOTTOMING CYCLES
Volume VIII	Section 9	OPEN-CYCLE MHD
Volume IX	Section 10	CLOSED-CYCLE MHD
Volume X	Section 11	LIQUID-METAL MHD SYSTEMS
Volume XI	Section 12	ADVANCED STEAM SYSTEMS
Volume XII	Section 13	FUEL CELLS

EXPANDED TABLE OF CONTENTS

Volume VI

			Page
ACKNOW	LEDGMENTS	3	i
TABLE	OF CONTEN	ITS	11
SUMMAR	Y	· · · · · · · · · · · · · · · · · · ·	v
7. CL	OSED-CYÇI	E GAS TURBINE SYSTEMS	7-1
7.	1 State	of the Art	7-1
	7.1.1	Closed-Cycle Plant Installation	7-1
	7.1.2	Areas of Concern: Heat Exchangers and Increased	
		Turbine Inlet Temperature	7-1
	7.1.3	Organic Bottoming Cycle Considerations	7–2
7.	2 Descri	iption of Parametric Points to be Investigated	7-2
	7.2.1	Parametric Point Description for Recuperated	
		Closed-Cycle Systems	7-3
	7.2.2	Parametric Point Description for Combined Closed-	
		Cycle Systems	7–11
	7.2.3	Selection of Bottoming Cycle Organic Fluids	7–17
7.	3 Approa	ach	7–25
	7.3.1	Overall Cycle Calculation Procedure	725
	7.3.2	Organic Bottoming Cycle Calculation Procedure	7–27
	7.3.3	Cycle Fit and Heat Exchange Effectiveness	
		Considerations	7-29
	7.3.4	Heat Exchanger Design Procedures	7-35
	7.3.5	Definitions	7–38
7.	4 Resul	ts of the Parametric Study	7-38
	7.4.1	Recuperative System of Parametric Point	-
		Identification	7-38
	7.4.2	Recuperative System Base Case Results	7-42

.

EXPANDED TABLE OF CONTENTS (Continued)

-

.

,

Page

	7.4.3	Recuperative System: Results of Parametric	
		Variations	7-45
	7.4.4	Combined System Parametric Point Identification .	7-51
	7.4.5	Combined System Base Case Results	7-59
	7.4.6	Combined System Results of Parametric Variations.	7-61
	7.4.7	Combined Systems with Organic Fluid Bottoming	
		Cycles	7-71
7.5	Capita	1 and Installation Costs of Plant Components	7-79
	7.5.1	Description of the Base Case Power Plants	7-79
	7.5.2	Approximate Sizes and Weights of Major Components	7-91
7.6	Analys	is of Overall Cost of Electricity	7–113
7.7	Conclu	sions and Recommendations	7-144
,	7.7.1	Conclusions	7-144
	7.7.2	Recommendations	7-145
7.8	Refere	nces	7-146

iv

SUMMARY

Closed-cycle gas turbine systems include both recuperated and combined cycles. Both systems employ a pressurized furnace to heat the helium and as such required a pressurizing system which includes a conventional gas turbine-generator (pump-up turbine).

The recuperated system uses a pump-up turbine with an inlet temperature of 1478, 1200 or 866°K (2200, 1700 or 1100°F). The two lower temperatures are compatible with direct fluidized bed combustion of coal. Helium turbine inlet temperatures of 922, 1089, and 1255°K (1200, 1500 and 1800°F) with pressure ratios of 2, 2.5, 3 and 4 are considered.

The helium compressor discharge pressure is fixed at 6.895 MPa (1000 psi) with variations of 3.448 and 13.79 MPa (500 and 2000 psi). Values of recuperator effectiveness of 80, 90 and 95% are assumed for both the pump-up and helium turbine exhausts. Clean distillate fuel is used for the major part of the study but several cases with direct coal firing are considered. A thermodynamic efficiency of 38% is found for the 1255°K (1800°F) helium turbine inlet temperature with 90% effective recuperators using distillate as fuel. A 4.5 point increase in efficiency at the 1089°K (1500°F) helium turbine inlet temperature is observed as the recuperator effectiveness is increased from 80 to 95%.

The combined closed-cycle gas turbine system uses pump-up and helium gas turbine engines similar to those used in the recuperated cycle. The recuperators are replaced by heat recovery vapor generators. Heat from both the pump-up and helium turbine exhausts is used to heat the bottoming fluid. The major part of the study uses steam as the bottoming fluid but R-12, methylamine and sulfur dioxide are also included. An efficiency of 40.9% is obtained with steam bottoming and 43.1% with methylamine.

γ

The high cost of the high temperature gas to gas heat exchangers results in high plant capital costs, typically \$700/kW for the coal burning plants and \$500/kW for those burning distillate. Notwithstanding this, the coal fired plants show a cost of electricity as low as 8.75 mills/MJ (31.5 mills/kWh) for the combined system with a steam bottomer compared to 10.06 mills/MJ (36.2 mills/kWh) for the distillate burning system. The cost of electricity for the recuperated systems is about 0.56 mills/MJ (2 mills/kWh higher).

Although the potential cycle efficiencies are high enough to be interesting, the complexity of the cycle, high cost of heat exchange surface and the resultant cost of electricity mitigate against externally fired closed-cycle gas turbine systems.

7. CLOSED-CYCLE GAS TURBINE SYSTEMS

7.1 State of the Art

7.1.1 Closed-Cycle Plant Installations

Closed gas turbine cycles have been studied since the mid-1930s when they were first proposed by Professor Ackeret and Dr. Keller. Since then, a few noteworthy closed-cycle power plants have been built and operated. A combination electricity and heat production plant at Spittelau, Vienna (Reference 7.1) has been in operation since 1971. This plant, rated at 30 MWe, utilizes a closed loop with air as the working medium and is fossil-fuel fired. A larger output combined electricitv/ heat plant (Reference 7.2) has been commissioned recently at Oberhausen, Germany. This unit, which is natural-gas fired, is particularly interesting because it employs helium as its working fluid. The Oberhausen plant is rated at approximately 50 MW of heat output in addition to the nominal 50 MW electrical output. Major cycle parameters of the Spittelau plant include a turbine inlet temperature of 991°K (1325°F) and a compressor pressure ratio of 5.7 to 1. Thermal efficiency with respect to electrical output is approximately 30%. The corresponding data for the Oberhausen closed-cycle helium plant read as follows: turbine inlet temperatures of 1023°K (1382°F), a compressor pressure ratio 2.7 to 1, and a plant thermal efficiency of 31.3%.

7.1.2 <u>Areas of Concern: Heat Exchangers and Increased Turbine</u> Inlet Temperature

There are two principal areas of concern regarding the widespread commercialization of closed-cycle plants. First, heat is added to the cycle by means of a surface heat exchanger which adds considerable expense to the overall capital cost of such a plant and limit helium turbine inlet temperatures. In the above-cited examples, some of this

higher capital cost burden is ameliorated by the recovery and utilization of otherwise wasted cycle reject heat. The second concern pertains to the potential means for achieving higher cycle top temperatures. Conventional open-cycle gas turbines have achieved higher cycle inlet temperatures by means of convection-cooled turbine blading. By comparison, heat transfer rates in high-pressure helium are large and may lead to excessive stress-inducing thermal gradients in cooled turbine blading. Economically acceptable high temperature heat exchanger materials are not currently available.

7.1.3 Organic Bottoming Cycle Considerations

As discussed in Subsection 5.1, organic bottoming fluids have potential advantages over steam in two areas. Certain organic fluids have a much lower turbine exhaust volumetric flow than does steam and may potentially require smaller, less expensive turbomachinery, as discussed more fully in Subsection 7.2. Further, it may be economically preferable to utilize lower heat-rejection temperatures (for higher efficiency) than are now the practice with steam plants, owing to the smaller low-pressure element size requirements. Also, organic fluid bottoming cycles may be more amenable to a better thermodynamic fit to the available heat rejection from a gas turbine topping cycle. Subsection 7.3 discusses this principle of thermodynamic fit with organic bottoming cycles more fully.

7.2 Description of Parametric Points to Be Investigated.

Two kinds of closed-cycle systems were investigated during Task I: the recuperated closed-cycle systems with recovery of closed Brayton-cycle reject heat via recuperation and the combined closed-cycle systems with recovery of closed Brayton-cycle reject heat by means of a steam or organic Rankine bottoming cycle. In nearly all cases of both recuperated and combined-cycle arrangements, a pressurized furnace system (listed as pump-up cycle for convenient reference and consisting essentially of an open-cycle gas turbine system with externally pressurized furnace combustor) is used to provide heat input to the closed Brayton cycle. Parameters varied for the helium turbomachinery include the turbine inlet temperature, compressor pressure ratio, and compressor discharge pressure level. Three values of turbine inlet temperature have been selected: 922, 1089, and 1255°K (1200, 1500, and 1800°F). Pressure ratios have been varied from 1.5 to 1 to 4 to 1 for nonintercooled helium cycles and from 4 to 1 to 7 to 1 for the intercooled cases. The level of compressor discharge pressure has been set at 6.895 MPa (1000 psi) abs for nearly all cases. Consideration is given to two other levels [3.447 and 13.790 MPa (500 and 2000 psi) abs].

Recuperator effectiveness values of 0.80, 0.90, and 0.95 and recuperator total pressure drop ratios of 0.02, 0.04, and 0.06 were assumed for both the pump-up and helium recuperators. Any one calculation used the same value of effectiveness for both the helium and pump-up recuperators unless otherwise noted.

7.2.1 <u>Parametric Point Descriptions of Recuperated Closed-Cycle</u> Systems

Table 7.1 displays the parametric point selection for the recuperated closed-cycle system. The systems evaluated are grouped according to combustion gas temperatures exiting from the furnace which represents different proportions of heat transmitted to the helium. The first group, with 1478°K (2200°F) into the pump-up turbine, is used for perturbation of recuperator effectiveness, helium top temperature, and helium pressure ratio. Figure 7.1 illustrates the cycle arrangement for this group, and Figure 7.2 displays the thermodynamic relationships by means of a temperature entropy diagram. On the temperature entropy diagram, heat added by combustion is depicted as heating the air to high (of the order of stoichiometric) temperature. The air is then cooled as it gives up its heat to the helium in the closed cycle. Both the closedloop and open-loop gas turbine systems utilize recuperation for exhaust heat recovery.

The second group has an intermediate pump-up turbine inlet temperature of 1200°K (1700°F), corresponding to that in a projected fluid bed burning coal. The helium cycle parameters are set at the mean values

				Hetium Cy	cle							Pump-Up	Cycle						
	Turbine Compressor		Compressor	Recupe	rator	Helium		Coolers			пе	Compressor	Recupe	ralor	Comb	•		_	
	Inlet Temp, , °F	Pressure Ratio	Oullet Pressure, Psia	Effective- ness		Intercooler Ap/ p	Inl Tem °F		Pressure Ratio	Effective- ness			Fui		Furnace Type	Heat Rejection			
High Combustor	1200, 1500 1800	2, 2, 5, 3, 4								220	00	10	0.9	0.03	0 06	Distil from	late Coai	Pressurized	
Outlet Temperature		2, 2, 5, 3, 4		0 8, 0, 95						220	x	10	0, 8, 0 95	0 03	Ó 06		•		
Intermediate Combustor Outlet Temp, Corresponding To Fluidized Bed Temp,										170		5, 10	0, 9	0 03		,			
To Fluidized Bed Temp.									-	170	0	5, 15							
Base Case A	1500	2,5	1000	0, 9	0, 02	0, 02	30	0 02	-	170	6	10	0	-	0.09	Bitum ı Coa	10US I	Fluidized Bed	Wet Cooling Tower
	_									110	10		-			3 C o	als	1	
Low Combustor Outlet Temperature															0.06	High Btu Gas Pre		Pressurize	
Without Recuperator In Pump Up Cycle														<u> </u>		Low Bt			
		2, 2, 5, 3, 4														Distil from			
												5, 15							
					•														Dry Cooling Tower
																			Once Through Cooling
															0 09, 0 12				
					0.04, 0.06										0.06				
		4,5,7							0.01										
			500, 2000																
Base Case B Atmospheric Furnace With Ljungstrom Recuperator											,	1	290° F Outlet Temp.				,	Atmospheri	

TABLE 7. 1-CLOSED CYCLES - RECUPERATED

Note. All Blanks Spaces Have The Same Value As Base Case A

7-4

۰.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

۲

Jug. 6251A04

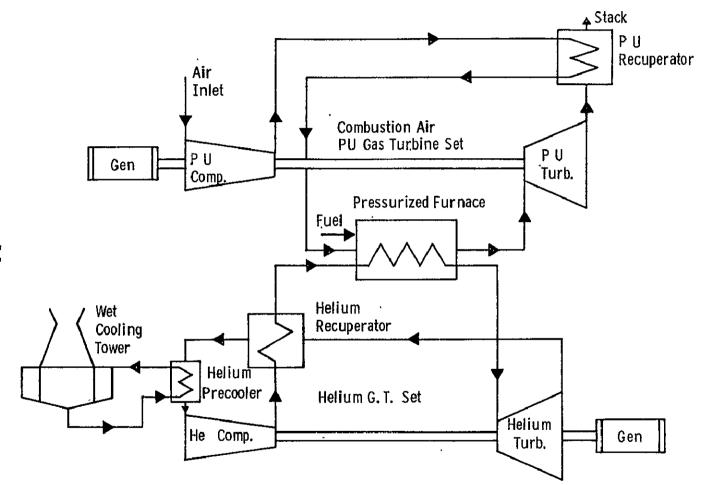
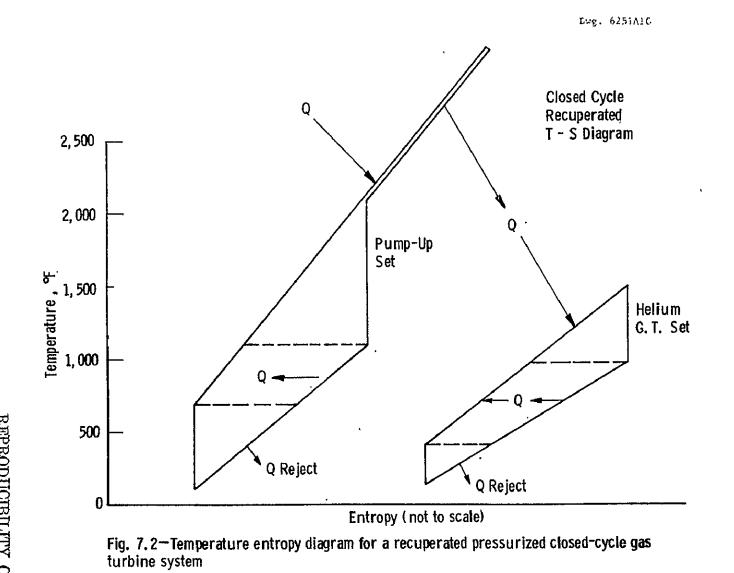



Fig. 7. 1—Recuperated pressurized closed-cycle gas turbine systems schematic both helium and pump up cycles recuperated

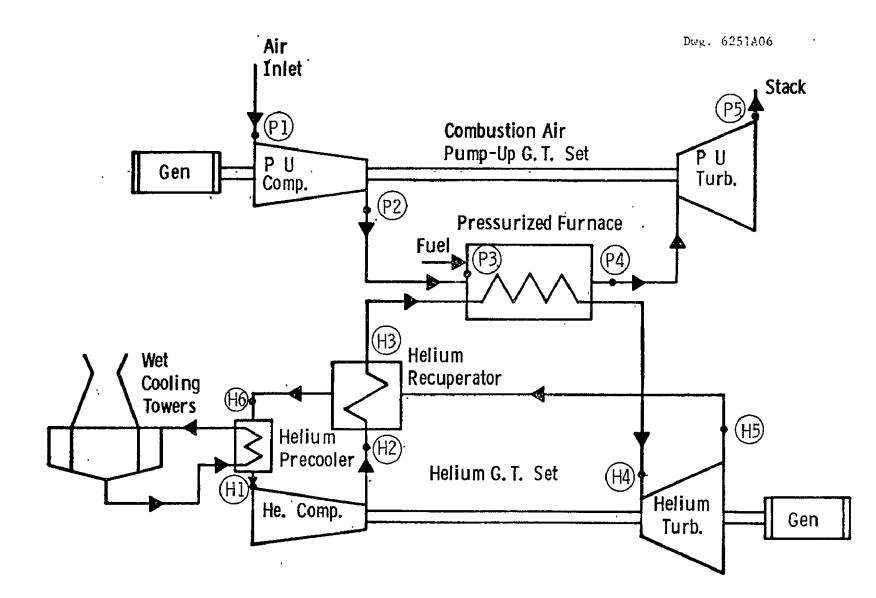


Fig. 7.3-Recuperated-pressurized close-cycle gas turbine system schematic with only the helium cycle recuperated

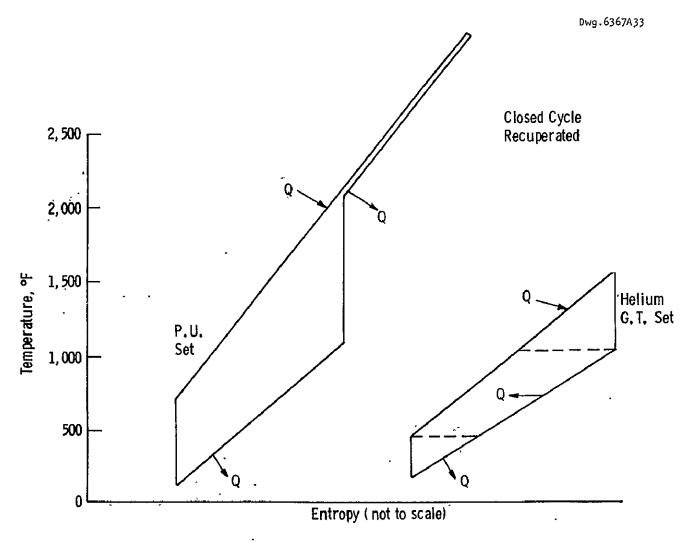


Fig. 7.4-Temperature entropy diagram for a recuperated pressurized closed-cycle gas turbine system

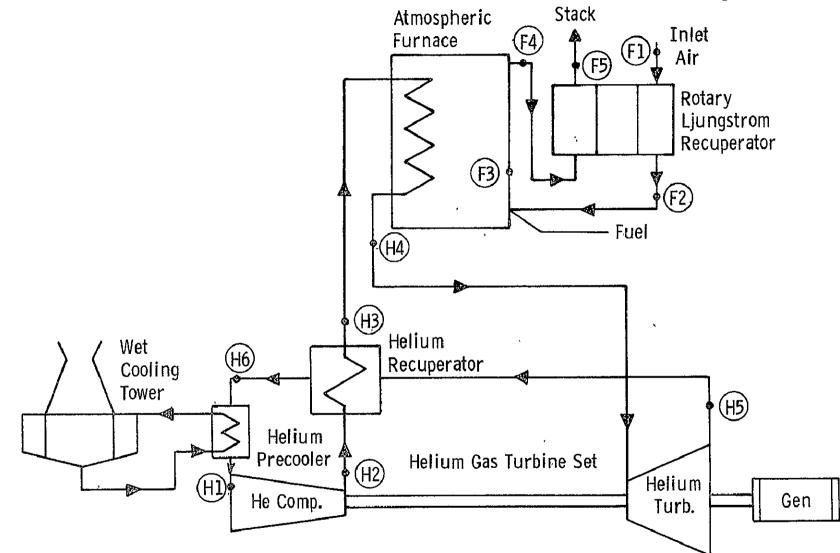


Fig. 7.5-Recuperated atmospheric close-cycle gas turbi ne system schematic with a Ljungstrom preheater

TABLE 7. 2- HELIUM CYCLE-COMBINED

		;ie						Pump Up Cycle		Bottoming Cycle														
		lorbine Inlet Tenp , °F	Pressure Ratio	Compressor Outlet Pressure	ressor Outlet Pressure	pressor Outlet Pressure	Hellun Heater <u>A</u> P	v	ipor Gene	raior	Pres	zoler	Turbine Inlet Temp. , "F	Pressure Ratio	Combustor <u>Ao</u>	Vapor Generator <u>20</u>	Pres P:	SUFICE Lia	Тетр	erature F	Fluid	Fuet	Fumace Type	l Heat Rejection
Variations	ns.	Turbine	ž	3	Ŧ	Outle1 Temp *F	Pinch Point ∆T, °F	AP P	Approach AT, *F	와		Pre	ð	Vapor	Turbine Inlet	Rehozier	Turkine Inlet	Reheater						
		1200	1.5												3500	500	500	950						
Relium I Press. a	furbine Inlet and Temperature	1200	2												2500	350	850	900	1					
	•	1200	2.5											1	2000	250	800	850				,		
		. 1500	2												3500	500	950	1000						
Base Ca	Sa	1500	2,5	1000	0,02	200	42	0, 02	-	-	2300	10	0,09	0.04	3500	500	500	950	Stein	Distillate from Coal	Pressurized _ Furnace	Wet Coolin Torrer		
		1500	3												2500	350	850	900			_ FULLIQUE			
		1800	2.5					-		1					3500	350	950	1050				. ,		
		3800	3,						-						3500	350	950	1000				•		
		1800	4										.=		3500	500	903	950		•				
Pump Up	Set Not Combined						Γ				1100,1700 2500											1		
Bottom H of Precox	leli um Temperature Ner					150 ZO 300 300																,		
						200,200 100,110			30	0.01			•					·						
No Botin	ming Reheat										_				1600	-	1000	-						
															1250	-	950	-		· · ·				
											2200	15			2500	350	850	800						
የሀመף ርኒ	o Set										1700	5		<u> </u>	3500	500	900	950						
					<u></u>						1700	10			2000	250	800	850						
Pinch P	oint AT						60,80					-						1				· ·		
					0.04, 0.05																			
Pressun	t Drm							0.04, 0.06																
													0,06 0,12,											
														á, tiz, a, cis										
Xellum J	Pressure Level			500, 2000														•						
																		i — —		High Stur Gas				
Fæti																				Low Btu Gas				
											1700						,	1	l	3 Coals .	Ftuldized Bed	· · · · ·		
Heat Rej	erilop																				. 099	Dry Cooling 1		
												-										Once Thro Cooling		
	With/Wilhoul Desugerheating Recuperator								_						2700	-	700	- 1	R-12					
Other											1100.				7000	-	550	-	Hethylamine					
Warking Filuids	See Note 2											-		·	2000	_	550	- 1	Hethylamine		· · ·	Dry Cooling		
FILIOS							· <u> </u>								2001	-	550	-	Meth ylam i na			Dry Coolir Direct Conder		
	With Desuperheeting Recuperator					_	· .			•••					1800	-	900	-	50,	<u> </u>		United Conder		

•

Note 1 All blanx spaces name une same values as une pase case Note 2 Helium cycle and 2200°F pump up cycle both have a recuperator attectiveness of 0, 9 1100°F pump up cycle is unrecuperated

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

1 Mg 430(221

of the specified range of variation. The pump-up pressure ratio is varied here, and, in addition, the use of a pump-up recuperator is included. The base cases used no pump-up recuperator. Figure 7.3 illustrates the cycle arrangement for this base case, and Figure 7.4 shows the corresponding temperature entropy diagram.

The third group has a low pump-up turbine inlet temperature of 866°K (1100°F) and contains the other parameter variations. A fluidized bed burning coal might require an over-the-bed or outlet heat transfer surface to cool the air to the 866°K (1100°F) level.

The last is a group of one, representing a conventional atmospheric furnace helium heater with rotating Ljungstrom-type regenerator as a base case for comparison. A cycle arrangement is shown in Figure 7.5.

7.2.2 <u>Parametric Point Description of Combined Closed-Cycle</u> <u>Systems</u>

The parametric point selection for the combined closed-cycle gas turbine systems calculations is shown in Table 7.2. The basic cycle arrangement is shown in Figure 7.6, and a typical corresponding temperature entropy diagram is illustrated by Figure 7.7. In general, reject heat from both the pump-up and helium cycles is transferred to the bottom steam cycle. The steam cycles are, for most cases, reheat cycles with both superheater and reheater receiving heat from both gas turbine sets.

The first group in Table 7.2 uses a pump-up turbine inlet temperature of 1478°K (2200°F) with both the pump-up and helium cycles furnishing heat to the bottoming steam cycles. In this group, the parametric variations are in helium top temperature and helium pressure ratio. The base case has been selected from this group with a 1089°K (1500°F) helium turbine inlet temperature and a 2.5-to-1 pressure ratio. Bottoming steam cycle conditions are set at supercritical pressure and at 755°K (900°F) superheater inlet conditions.

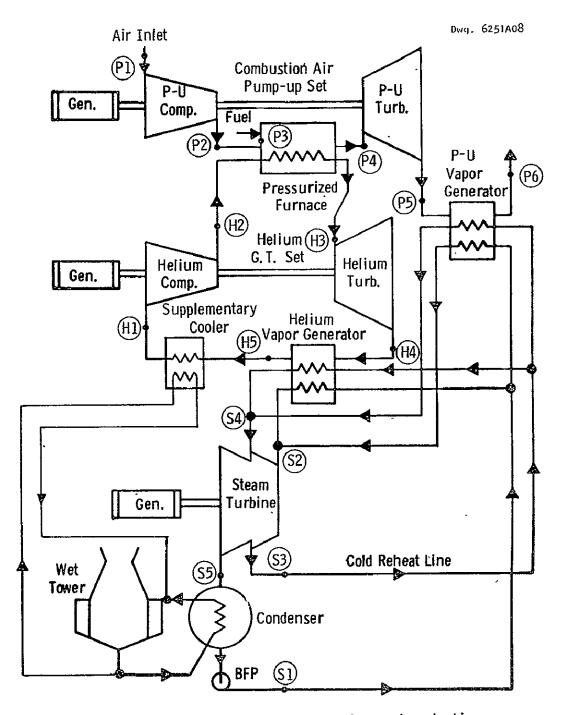
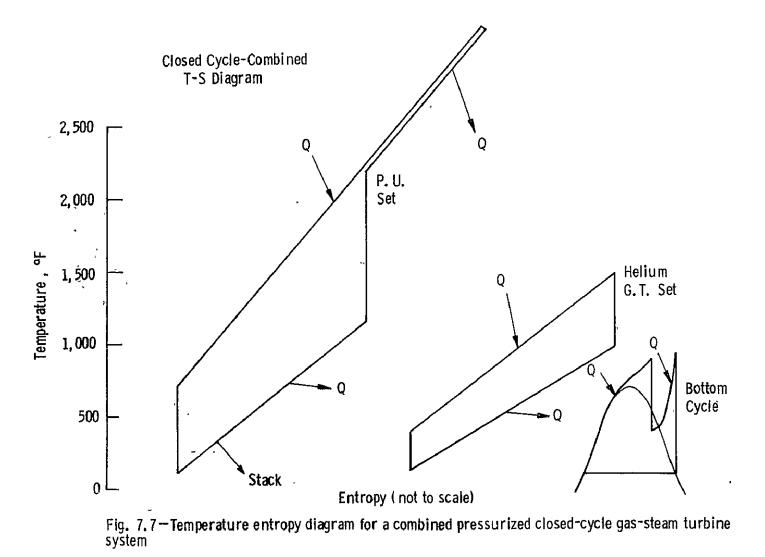



Fig. 7.6—Combi ned pressurized closed-cycle gas-steam turbi ne system schematic

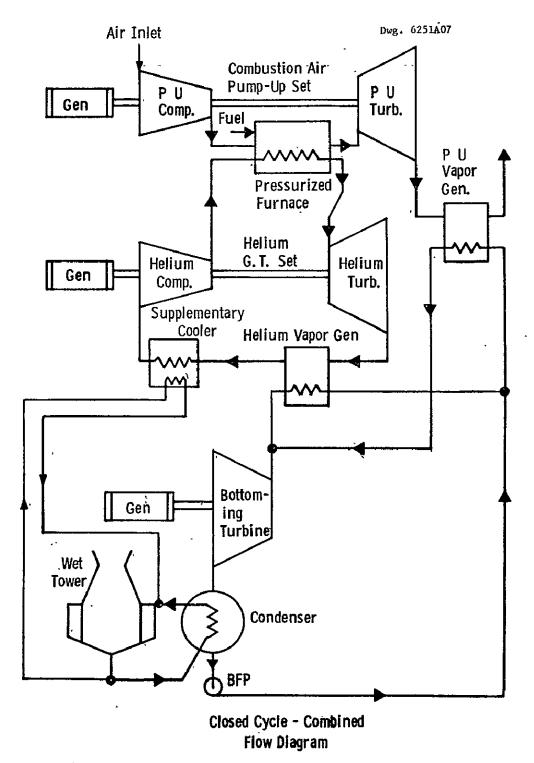


Fig. 7.8—Combined pressurized closed-cycle gas-organic vapor turbine system schematic

The second group has been selected to determine the effect of not transferring heat from the pump-up cycle to the bottom cycle. The helium cycle has a mean top temperature of 1089°K (1500°F), and the pumpup turbine inlet temperatures include 866, 1200, and 1478°K (1100, 1700, and 2200°F).

The third group varies the helium compressor inlet temperature. A helium precooler is used for some cases; also included are two cases without bottom cycle reheat.

The following cases serve to investigate, in turn, the effects of varying pump-up temperature and pressure ratio, pinch point temperature differences, various pressure drops, pressure level, furnace type, and mode of heat rejection.

The last group is for bottom fluids other than steam. All are used in supercritical Rankine cycles without reheat at helium turbine inlet temperatures of 1089°K (1500°F). Fluids used are R-12, methylamine, and sulfur dioxide. (A description of the rationale for selecting these fluids is given at the end of this section.) Figure 7.8 illustrates the general cycle arrangement for these cycles. One R-12 case and one sulfur dioxide case have desuperheating recuperators which are not shown. The methylamine cases represent bottom cycles added to recuperated main cycles; one case has direct condensing in a dry-cooling tower (air condenser).

Vapor generators for combined cycles are utilized under both the pump-up gas turbine and closed-cycle helium turbine in most cases. Approach or pinch point temperature differences were set at values of 22.2, 33.3, and 44.4°K (40, 60, and 80°F). Vapor generator helium outlet temperatures of 339, 366, 394, 422, and 450°K (150, 200, 250, 300, and 350°F) were assumed. Vapor generator gas-side pressure drop ratios of 0.02, 0.04, and 0.06 have been selected.

The basic pump-up turbine parameters of turbine inlet temperature, compressor pressure ratio, and furnace pressure loss were varied.

Name of Fluid	Molecular	Atmos. Boiling		ical tants	Trouton Number	Sat. Pres. at 100°F,	Turb. Exh. Area Para.	
	Weight	Temp., °F	T, °F	P, psia	Number	psia	at 100°F	
Hydrogen sulfide	34.08	- 79.2	212.7	1307.0	21.1	397.0	1.85	
R13B1	148.93	- 72.0	152.6	574.8	19.6	316.0	7.60	
Carbonyl sulfide	60.07	- 58.4	221.0	897.0		250.0	2.31	
Propylene	42.08	- 52.5	197.2	670.3	19.5	227.6	3.66	
Propane	44.09	- 44.0	206.2	617.4	19.4	188.7	4.26	
R-22	86.48	- 41.4	204.8	716.0	20.8	212.6	4.99	
Ethyl fluoride	48.06	- 35.9	216.0	730.0		180.0	4.11	
Ammonia	17.03	- 28.0	271.2	1636.0	23.2	211.7	1.49	
Propadiene	40.06	~ 25.6	248.0		21.0	182.0	3.17	
R-12	120.92	- 18.4	233.6	596.9	19.4	131.6	8.10	
G–152A	66.05	- 12.5	236.3	652.0	20.8	126.0	5.69	
Methyl chloride	50.49	- 10.7	289.6	968.7	20.7	116.7	4.94	
Methyl ether	46.07	- 10.6	260.4	764.4	20.6	123.0	4.70	
Propyne	40.06	- 9.9	262.4	776.2	20.9	123.0	4.23	
Cyanogen	52.04	- 4.9	262.0	868.0	21.2	116.0	4.90	
Sulfur dioxide	64.07	+ 14.0	315.5	1143.0	23.1	84.1	5.75	
R-142B	100.50	15.4			20.3	72.0	10.00	
Methylamine	31.06	20.3	314.4	1082.0	23.1	78.6	3.96	
Isobutane	56.10	21.2	292.5	580.0	19.9	65.6	8.53	
1-Butene	56.10	23.0	295.5	583.2	19.5	62.5	8.72	
Propyl fluoride	62.09	26.2	1			60.0	8.55	
trans 2-Butene	56.10	33.6	311.0	595.0	19.9	50.0	10.00	
R-114	170.93	38.4	294.3	474.8	20.2	46.4	18.30	
Methyl bromide	94.95	38.5	375.8	1227.0	20.6	50.0	12.00	
cis 2-Butene	56.10	38.7	320.0	610.0	20.2	46.0	10:40	
G-133A	128.49	43.0	306.5	589.6	21.2	45.0	20.00	
Dimethylamine	45.08	45.4	328.1	770.0	22.6	45.4	7.78	
Methanethiol	48,10	45.7	386.2	1049.6	21.0	49.7	7.93	
1-Butyne	54.09	47.5				40.0	10.50	
R-21	102.93	48.0	353.3	749 7	21.1	40.0	14.20	
Ethylene fluoride	66.05	50.0				38.0	12.00	
Ethylene oxide	44.05	51.4	383.0	1044.0	21.5	38.6	9.20	
Ethyl chloride	64.52	54.0	369.0	764.0	21.3	34.8	12.90	
Cyclobutane	.56.10	55.4	385.0	740.0		34.0	12.10	
Ethylamine	45.08	61.9	361.8	816.4	22.3	32.7	9.78	
Acetaldehyde	44:05	69.8	370.0	01014	20.4	31.0	11.40	
R-11	137.38	75.3	388.4	635.0	20.1	23.6	26.00	
Dibromodifluoromethane	209.84	76.1	388.8	600.0		23.0	31.20	
Water	18.02	212.0	705.4	3206.2	26.0	0.949	98.30	
2-Butyne	54.09	80.8	'03.4	3200+2	2010	21.0	16.90	

Table 7.3 - Low Boiling Fluids

Turbine inlet temperatures of 866, 1200, and 1478 °K (1100, 1700, and 2200 °F) were selected. The first corresponds to relatively large energy transfer directly to the closed-cycle fluid in the pressurized furnace; the second value was selected on the basis of its compatibility with the operating temperature levels of proposed fluidized bed processes; and the third value corresponds to base case open-cycle gas turbine values. Compressor pressure ratios of 5, 10, and 15 to 1 were selected, all compatible with single-shaft gas turbine technology. Furnace pressure drop ratios[†] of 0.02, 0.04, 0.06, 0.09 and 0.12 were used.

Heat rejection methods include once-through, wet tower, and dry tower systems. One system, a methylamine bottomed cycle, used direct dry tower condensing.

Both pressurized furnaces burning liquid fuel and pressurized fluidized bed furnaces firing coal were included in the study. An atmospheric pressure conventional power generation furnace was used for one case.

7.2.3 <u>Selection of Bottoming Cycle Organic Fluids</u>*

When the bottom fluid itself may be varied the number of possible parameter combinations increases greatly. Since the number of cases is limited, they were chosen to illustrate particular aspects.

The fluids themselves were selected from a list of low-boiling fluids shown on Table 7.3. In this table the turbine exhaust area parameter (TEAP) illustrates the relative turbine exhaust area for each of the fluids when used for bottoming cycles under comparable conditions.

To derive the TEAP, it is assumed that for each fluid:

- Heat is rejected at the same specificed temperature.
- The latent heat represents all of the rejected cycle heat.

[&]quot;References 7.3 through 7.12 were used in determining organic bottoming fluid properties.

[†]helium pressure drop ratios of 0.02, 0.04, 0.06 and combustion gas pressure drop ratios of 0.06, 0.09 and 0.12.

- The cycle input heat is the same.
- The leaving velocity energy is the same.
- The specific volume is given by the perfect gas equations.

Exhaust Area, A =
$$\frac{(\text{Flow Rate}) (\text{Specific Volume})}{(\text{Axial Velocity})} = \frac{W V}{V} \quad (7.1)$$

$$A = \frac{\left(\frac{V}{W L} \right) \left(\sqrt{\frac{V}{W L}} \right) \left(R \right)}{\left(\sqrt{\frac{V}{W V}^2} \right) \left(R T/M P v \right)} - \frac{T}{M P L^{1.5}}$$

where \dot{W} is the mass flow rate, L is the latent heat, R the universal gas constant, and M the molecular weight. Since each quantity within parentheses is a constant in the preceding expression,

$$A \sim T/M P L^{1.5}$$

TEAP is defined as this ratio times 10^5 .

$$\text{TEAP} = T \times 10^5 / \text{M P L}^{1.5}$$
(7.2)

This equation is convenient to use if tabulations of latent heats and saturation pressures are available, but frequently they are not. The latent heat may be approximated using Trouton's law and then adjusting it from the boiling point to the specified temperature.

Trouton's law simply states that the molai atmospheric latent heat of any substance is approximately 21 times the boiling temperature. This rule holds well for a large number of substances, but there are also marked deviations. When the latent heats are known, we can find Trouton's number as the number to substitute for 21 in order to give the correct latent heat. In general, associated fluids such as water and the alco hols tend to have high Trouton numbers; the number for water being 26.

For our present use it will be convenient to normalize the Trouton numbers about 21 by using a correction factor, q, defined as:

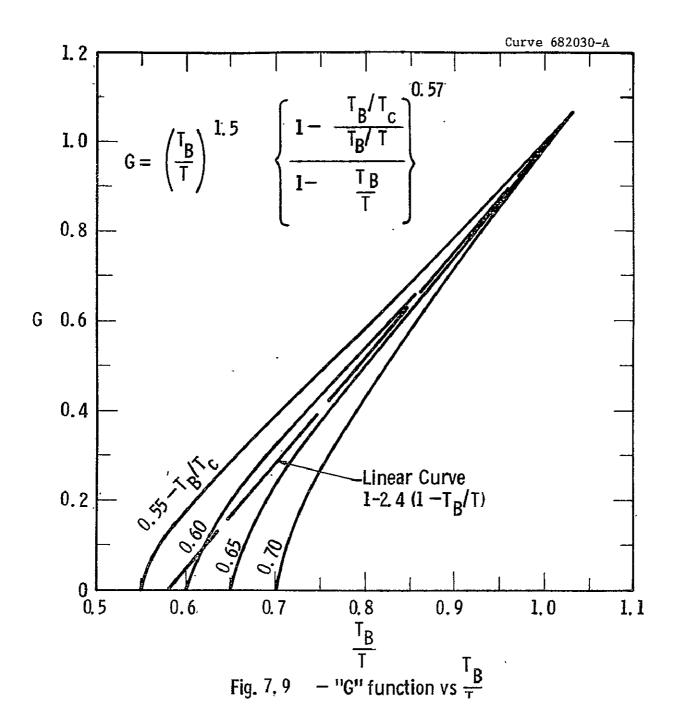
q = Trouton No/21

so that

$$L_{B} = \frac{21 q T_{B}}{M}$$
(7.3)

at the boiling point.

Since all of the fluids are to be compared at the same sink temperature, it is necessary to correct the latent heat from the various boiling points to the common sink temperature. Watson (Reference 7.11, p. 233) relates latent heat at two different temperatures as:


$$\frac{L}{L_{1}} = \left(\frac{1 - T_{R}}{1 - T_{R1}}\right)^{0.38}$$
(7.4)

in which $\boldsymbol{T}_{_{\!\!\boldsymbol{\mathcal{R}}}}$ is the reduced temperature.

$$\frac{L}{L_{B}} = \left(\frac{1 - \frac{T}{T_{c}}}{1 - \frac{T_{B}}{T_{c}}}\right)^{0.38} = F\left(\frac{T_{B}}{T}, \frac{T_{B}}{T_{c}}\right) = \left[\frac{1 - \frac{T_{B}/T_{c}}{T_{B}/T}}{1 - \frac{T_{B}/T_{c}}{T_{c}}}\right]$$
(7.5)

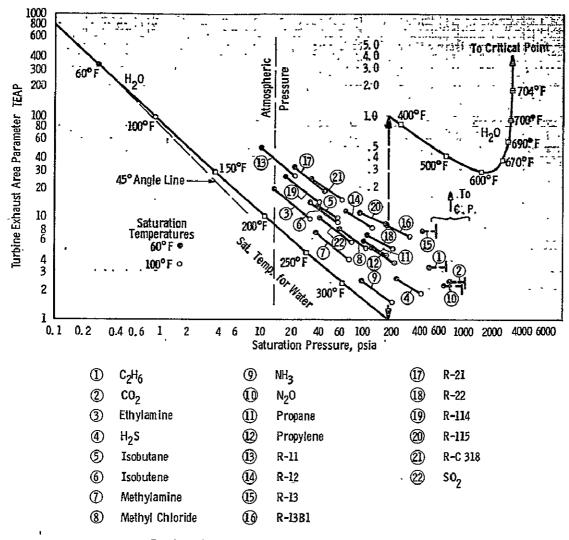
in which the bracketed quantity is F. Then,

$$L = L_{B} F = \frac{21 q T_{B} F}{M} = \left(\frac{21 q T}{M}\right) \left(\frac{T_{B}}{T}\right) \left(F\right)$$
(7.6)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR Substituting in the definition for TEAP:

$$TEAP = \frac{T \times 10^{5}}{M P} \left[\left(\frac{21 q T}{M} \right) \left(\frac{T_{B}}{T} \right) \left(F \right) \right]^{1.5}$$
$$= \left(\frac{10^{5}}{21^{1.5}} \right) \left(\frac{1}{\sqrt{T}} \right) \left(\frac{\sqrt{M}}{P} \right) \left(\frac{1}{G q^{1.5}} \right),$$
$$= \left(\frac{1040}{\sqrt{T}} \right) \left(\frac{\sqrt{M}}{P} \right) \left(\frac{1}{G q^{1.5}} \right)$$
(7.7)

in which


$$G = G \left(\frac{T_B}{T}, \frac{T_B}{T_c}\right) = \left[\left(\frac{T_B}{T}\right) F\right]^{1.5}$$
$$= \left(\frac{T_B}{T}\right)^{1.5} \left\{\frac{1 - \frac{T_B/T_c}{T_B/T}}{1 - \frac{T_B}{T}}\right\}^{0.57}$$
(7.8)

r

G is plotted in Figure 7.9.

This latter form of TEAP displays the theoretical effects with greater clarity. It is dominated by the inverse saturation pressure function; the molecular weight increases area directly in a square root relation; fluids with high Trouton number reduce area in a strong 1.5 power relation, but the range of values is small; the compressibility

Curve 682032-B

* Fig. 7. 10-Turbine exhaust area parameter vs saturation pressure for low-boiling fluids

factor, Z, which was ignored in the derivation, would also act as a systematic variable causing a slight reduction at high pressures.

TEAP values for steam and some other fluids are plotted vs saturation pressure in Figure 7.10. The values for steam are plotted up to high pressure to show the form of the function even though this is outside of the intended range of application. The values for the other fluids are plotted for two different temperatures and demonstrate that the relation between fluids is generally the same and largely independent of the temperature at which compared.

Figure 7.11 shows the TEAP values for fluids in Table 7.3, all at 311°K (100°F). The bottoming fluids for the study were chosen in the intermediate TEAP/pressure range so the turbine exhaust area would be greatly reduced over that of steam yet not have so high a saturation pressure as to make them difficult to contain. Fluids R-12, methylamine, and sulfur dioxide were selected.

R-12 (Dichlorodifluoromethane) was selected as a well-known, nontoxic, nonflammable fluid. It is used in cycles which illustrate the effects of poor thermodynamic fit due to stability limitation and also to low-temperature superheated turbine exhaust.

Methylamine was selected as having the best area-pressure characteristics in the intermediate range (see Figure 7.11). It is highly flammable. It was used in recuperated cycles for which stability temperature limits are not critical. These cycles were also used to illustrate the direct deployment of the condensing vapor to air condenser made possible with the low volumetric exhaust flow.

Sulfur dioxide was selected, also from the intermediate areapressure characteristic range, for its high-temperature stability. It is rather toxic. It was used in a cycle illustrating good thermodynamic fit made possible when not precluded by stability temperature limitations.

These fluid selections and their assignment to illustrate particular cycle effects are rather arbitrary. Note that the cycle effects

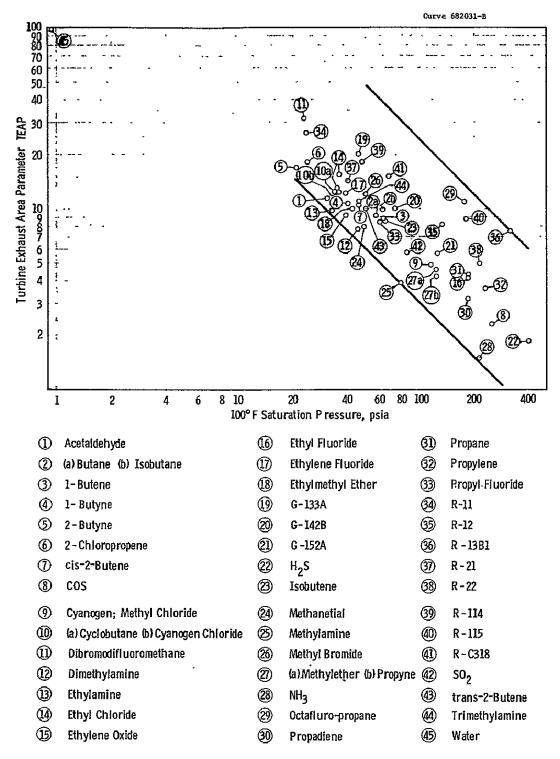


Fig. 7. 11 - Turbine exhaust area parameter vs saturation pressure at 100°F for low-boiling fluids

illustrated are not an intrinsic characteristic of the particular fluid but would apply for any candidate fluid that would fit a particular application.

7.3 Approach

7.3.1 Overall Cycle Calculation Procedure

The number of distinctly different combinations of pump-up, helium, and bottoming cycle configurations for this conversion system is large compared with other systems. Many of the parametric values for the helium cycle, however, are common for several of these combinations.. Individual cycle calculations, therefore, were made for the pump-up loop cycles, helium cycles, and bottoming cycles. Subsequently, each parametric point cycle combination was assembled from the individual component calculations to give the resultant efficiency and power.

An example for a typical closed regenerative cycle is described as follows. Figure 7.12 illustrates the two subsystems: pressurized combustor or pump-up cycle and helium loop subsystem. For all cases the pump-up airflow is kept constant at 408 kg/s (900 lb/s). Power output and heat output, \dot{Q}_1 , are computed as a function of turbine inlet temperature, compressor pressure ratio, air equivalence ratio, fuel type, and recuperator effectiveness. Likewise, helium cycle power output and heat input, Q_{he} , is computed as a function of turbine inlet temperature, compressor pressure ratio, recuperator effectiveness, pressure losses, intercooler and precooler approach values, and heat rejection system for a unit mass flow. The assembly consists then of first determining helium flow for each parametric point from:

$$\dot{W}_{he} \Delta h_{H}e = \dot{W}_{pu} \Delta h_{pu}$$

where \dot{W}_{He} = helium flow rate

 \dot{W}_{pu} = pump-up turbine compressor inlet airflow [408 kg/s (900 1b/s)]

Dwg. 1675843

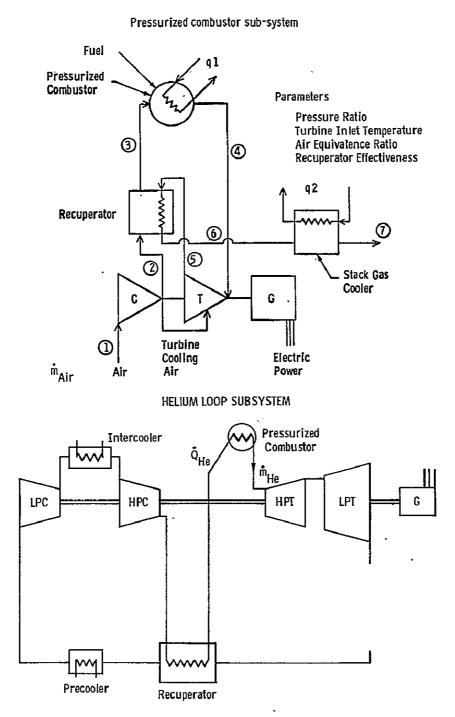


Fig. 7. 12-Recuperated-pressurized closed-cycle gas turbine system

.

- Ah pu = enthalpy drop based on the difference between
 furnace combustion section outlet temperature
 (typically near stoichiometric) and pump-up
 turbine inlet temperature
- Ah_{He} = enthalpy rise based on the difference in temperature between helium compressor discharge and turbine inlet.

Subsequently, helium power output is determined and added to the pump-up cycle power to yield the gross power output. After subtracting station auxiliary power requirements, net power output is divided into the higher heating value heat input to the pump-up cycle to determine net heat rate.

A similar procedure is used in computing combined closed-cycle performance.

7.3.2 Organic Bottoming Cycle Calculation Procedure

The organic cycles were assembled in a manner similar to that of the other combined cycles. Since there were only a few cycles, each cycle was fitted closely to the available heat line from the pump-up and helium cycles, changing the parametric values from those initially chosen in order to better demonstrate the intended effect.

For R-12 (Points C46 and C47), thermodynamic properties were obtained from the tables in Reference 7.6 except that in that pamphlet the higher temperature properties existed only on a small-scale figure. For both cycles the bottom pressure was taken as 0.931 MPa (135 psi) abs, corresponding to 312°K (101.7°F). The turbine inlet temperature and pressure were set at 644°K (700°F) and 1.724 MPa (2500 psi) abs,

[&]quot;As results from both recuperated closed-cycle systems and combined closed-cycle systems are frequently referred to, the cycle point numbers as described in detail in Subsection 7.4, are preceded by an "R" or a "C", respectively, for clarity and convenience.

respectively. The turbine expansion was calculated in two parts, from 1.7.24 to 3.447 MPa (2500 to 500 psi) abs and from 3.447 MPa (500 psi) abs to the turbine exhaust pressure. For Point C46, which contained an R-12 desuperheating recuperator, a 17.2 kPa (2.5 psi) drop was assumed. The turbine efficiency was assumed to be 0.86 for the high-pressure portion and 0.89 for the low-pressure portion. The pump work was calculated from the inlet liquid volume and pressure rise at an efficiency of 0.75. A 15% pressure drop ratio was assumed for heating to turbine inlet temperature. (A temperature-entropy diagram for these cycles is given in Subsection 7.4 as Figures 7.44 and 7.45.) The pinch point temperature difference was taken as 22.2°K (40°F), and the R-12 flow for Point C46 was calculated as that required to receive all of the available heat from both the pump-up and helium cycles to heat the R-12 to the turbine inlet temperature.

The Rankine feedheat was obtained by cooling the helium to a specified temperature $[366^{\circ}K (200^{\circ}F)]$ and by cooling the superheated R-12 exhaust down to $353^{\circ}K (176^{\circ}F)$. No additional heat could be absorbed, and the pump-up exhaust was discharged to stack at the pinch point temperature. For Point C47, the R-12 flow was calculated from the total heat available from both the pump-up and helium cycles. The R-12 net power was calculated using an electrical and mechanical efficiency of 0.965 and by subtracting the pump power. The methylamine cycles are slightly different in that the helium and some of the pump-up cycles which they bottom were recuperated. The assembly calculation process was similar.

Since there were no conveniently available thermodynamic tables for methylamine, some of the properties were calculated for specific points. (A skeleton temperature-entropy diagram for these cycles is depicted on Figure 7.47 of Subsection 7.4). For temperatures below 323°K (122°F) there were tabulated values in Reference 7.4. The zero pressure specific heat enthalpy and entropy were taken from Reference 7.11, p. 759. The enthalpy and entropy adjustments for pressure were calculated using Pitzer's acentric method which is described in Reference 7.13, Appendix I.

^{*} Fig. 7.44

From Figure 7.47 (given in Subsection 7.4) it can be seen that the methylamine turbine expansion ends close to the saturation line, and the relatively straight heating line is conducive to an excellent fit to the heat available line. The condenser temperatures were adjusted slightly in order to correspond to tabulated values. For wet tower application (Points C48 and C49), the temperature was set at 313°K (104°F): for dry tower application, C50, the temperature was set at 323°K (122°F). The difference of 10°K (18°F) is the same as for other cycles, and the comparison should correspond. Since there is no advantage in raising the compressor inlet temperature for a recuperated cycle, the helium cycle bottom temperature was made 20°K (36°F) above the condenser temperature; i.e., 333°K (140°F) for the 313°K (104°F) condensing temperature and 343°K (158°F) for the 323°K (122°F) condensing temperature.

The heater pressure drop ratio for these fluids was assumed to be 10%, and the turbine inlet pressure was taken as 17.24 MPa (2500 psi) abs for Points C48, C50, and C51. Since the bottoming cycle in C49 was placed below a recuperated helium cycle but with an 866°K (1100°F) unrecuperated pump-up cycle, there was insufficient heat temperature to raise the methylamine to 533°K (500°F) as was done in the other cycles. A vapor turbine inlet temperature of 505°K (450°F) was selected. At that temperature, a pressure of 1.379 MPa (2000 psi) abs gave a better fit. The turbine efficiencies were assumed to be 0.88.

7.3.3 Cycle Fit and Heat Exchange Effectiveness Considerations

When assembling the results for the combined cycle from the various subcycles (pump-up, helium, and steam), the low-temperature heat demand (feed heating) of the steam cycle was not sufficient to fully cool the helium to the 366° K (200° F) chosen as the compressor inlet temperature. For the base case, the helium could be cooled only to 398° K (250° F) in the vapor generator. The additional heat will be rejected to sink in order to cool the helium 31° K (56° F) further. This will not have a large effect on the plant. The energy involved does not have much availability. The temperature approach to the cooling water is large, and the required

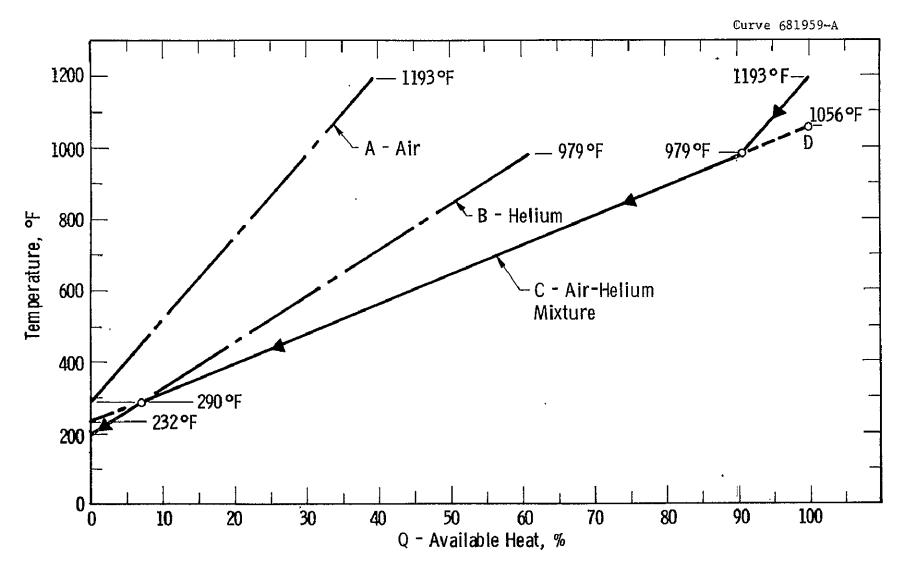


Fig. 7. 13-Available heat (air and helium) for feed water heating (base case, Point C5)

heat exchange surface will be relatively small. Functionally, there will be a precooler, although none was originally intended.

It became apparent that most of the steam-bottomed combined cycles would require a similar adjustment; the other fluid cycles would not.

Figure 7.13 depicts the heat load requirements of the steam cycle for Point C5 (base). Lines A and B represent the heat available from the air and helium cycles, respectively. At the time of fitting these lines to the steam cycle, the flow rates of both the air and helium have been determined and the absolute values for Lines A and B were known. The steam flow, however, had not then been determined. Lines A and B were both assumed to be linear, and their enthalpy rates were added to form Line C. For this case, the right-hand steep end represents the 'air turbine exhaust cooling from the 918°K (1193°F) to the helium exhaust temperature 799°K (979°F). The left-hand steep segment represents the helium cooling from the 416°K (290°F) air lower limit to 366°K (200°F).

Since the air and helium flows are known, it is convenient to extend the combined part of line C to a fictitious end point, D. This represents the inlet temperature if both the air and helium started at the same temperature and both transmitted the same sensible heat as the air alone does in this region. Obviously, this fictitious temperature cannot be used for heat transfer calculations.

Point D can be considered as the end point on the steam heat requirement curve and the Line C rotated to fulfill the pinch point requirement. This is depicted on Figure 7.14 with the pinch point, E, corresponding to 628 °K (670°F) on the steam cycle. The flow rate for steam is now calculated so that the heat required to the right of this point exactly matches that available from the air and helium cycles down to Point E. The additional heat required by the steam below the pinch point then can be calculated. It was intended that this heat be supplied by cooling the helium to 366°K (200°F) and by cooling the air as much as required but not below 416°K (290°F). Thus, the air would be discharged at

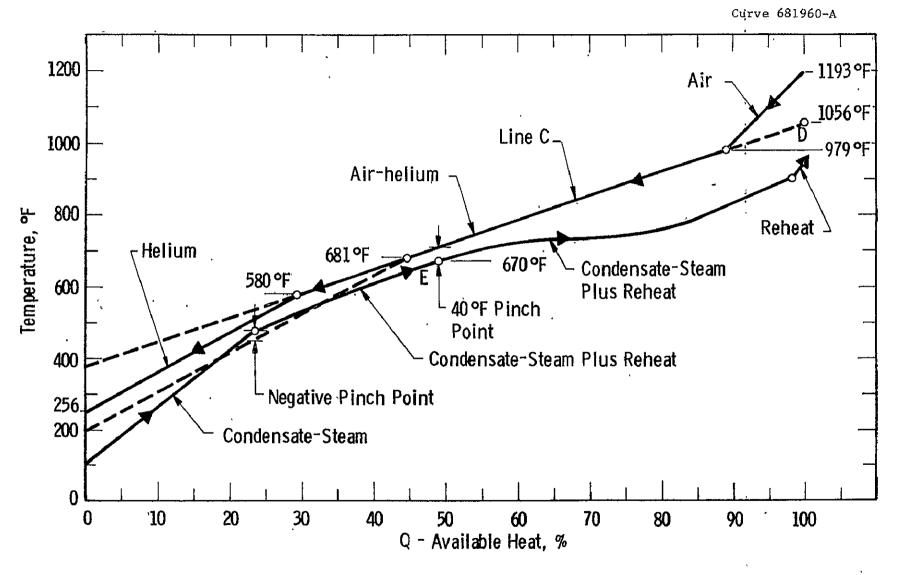


Fig. 7. 14 – Feed heater match showing effect of pinch point on air and helium leaving temperature (base case, Point C5)

7-32

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR 634°K (681°F), producing the situation shown dotted in Figure 7.14. The left helium-cooling line shows a negative pinch point at the reheat knee, which is obviously impossible.

There is still sufficient heat in the discharge air to avoid this condition; but when this is used, the helium can no longer be completely cooled by the steam cycle. This cooling scheme is depicted by the solid lines in Figure 7.14, with the air being discharged at 578°K (580°F) and the helium at 398°K (256°F). The helium was assumed to have been cooled to 366°K (200°F) in a precooler. Physically, the precooler need only constitute some banks of finned tubes carrying cooling water and placed after the steam cycle economizer tubes in the vapor generator. The heat rejected to sink is increased accordingly.

Since the amount of extra cooling would be different for the various cases, results would be hard to interpret. In order to relate the various cases to one another, the effectiveness values with which the available energy of the turbine exhaust streams was transmitted to the bottoming fluid were calculated as:

$$\varepsilon = \frac{B_{\text{Bottom}}}{B_{\text{PU}} + B_{\text{He}}}$$
(7.9)

For the bottom fluid, B could be calculated from tabulated thermodynamic properties.

$$B = \Sigma \tilde{W}_{i} \Delta b_{i}$$
(7.10)

where

. W_i = mass flow rate

For the turbine exhaust streams, the values of B were calculated separately for each from the equation derived below.

Assume linear availability of heat (constant $\ensuremath{\mathtt{C}}_p$) over a small temperature difference:

$$dq = \dot{W} dh = \dot{W} C_{p} dT$$

 $Q = \dot{W} C_{p} \int_{T_{1}}^{T_{2}} dT = \dot{W} C_{p} (T_{2} - T_{1})$ (7.11)dT____ dB = (η carnot)(dQ) = $\left(1 - \frac{T_o}{T}\right) \stackrel{\circ}{W} \stackrel{\circ}{C}_p dT$ $B = \dot{W} C_{p} \begin{bmatrix} T_{2} & T_{2} \\ \int dT - T_{0} & \int T_{1} & \frac{dT}{T} \end{bmatrix}$ (7.12) $B = W C_{p} \left[\left(T_{2} - T_{1} \right) - T_{o} \ln \left(\frac{T_{2}}{T_{1}} \right) \right]$ $B = Q \left[1 - \frac{T_o}{(T_2 - T_1)} \ln \left(\frac{T_2}{T_1} \right) \right]$ (7.13)

7.3.4 Heat Exchanger Design Procedures

Since the use of surface heat exchangers is central in these closed-cycle concepts, the resultant pricing of such equipment has a major impact upon assessing the overall viability of the concept. Unfortunately, the majority of the heat exchangers involved (helium pressurized furnaces, heat recovery vapor generators, intercoolers, and recuperators) are not in widespread commercial use and, of necessity, the approach to pricing and concept design must be somewhat arbitrary. Given below is a description of the design procedures used for sizing this type of heat exchanger.

Due to the single-phase flow nature and relatively high pressures encountered in these exchangers a shell-and-tube design was adopted. For a given heat transfer rate, Q, a specific pressure drop, and cycle-determined fluid temperatures, the first step was to select suitable tube configurations for the conditions involved. Then, using published correlations for internal heat transfer and pressure drop, as well as external correlations (Reference 7.13), the following iterative calculation would be made:

- 1. Choose a tube velocity, V_+ .
- 2. Compute

$$\Delta p_{\text{tube}} = 4f \frac{L_t}{D_t} \frac{\rho V_t^2}{2g}$$
(7.14)

- where $f = 0.046 (\rho V_t D_t/\mu)^{-0.2}$ $L_t = tube length (arbitrarily chosen)$ $D_t = tube internal diameter$ $\rho = fluid density$ $\mu = fluid viscosity.$
- 3. Adjust V_t to conform to allowable pressure drop.

4. Compute

$$h_t = 0.023 \frac{k}{D_t} (Re)^{0.8} Pr^{0.333}$$
 (7.15)

.

т

where k = fluid conductivity

Re =
$$\rho V_t D_t / \mu$$
 (Reynolds number)
Pr = C_p μ/k (Prandtl number).

- 5. Select a triangular, staggered-tube arrangement where the center-to-center distance, S_{+} , = 2D_o.
- 6. Choose a maximum shell-side velocity.
- 7. Compute

$$\Delta P_{\rm s} = \frac{f' (\rho V_{\rm s})^{2'} N}{\rho (2.09 \times 10^8)}$$
(7.16)

where $V_s = maximum shell-side fluid velocity$

N = number of tube rows transverse to the
 flow

$$\mathbf{f'} = \left[0.25 + \frac{0.118}{\left[\left(\frac{S_{t}}{D_{0}} \right) - 1 \right]^{1.08}} \right] \left(\frac{\rho \ V_{s} \ D_{0}}{\mu_{s}} \right)^{-0.16}$$

where $D_0 =$ outside tube diameter.

8. Adjust V_s based on the assumed value of N and on the allowable shell-side pressure drop.

9. Compute

$$h_{s} = 0.33 \left(\frac{k}{D_{o}}\right) \left(\frac{\rho V_{s} D_{o}}{\mu}\right)^{0.6} \left(\Pr\right)^{0.3}$$
(7.17)

10. Solve the following equation for A_{t}

$$\frac{\text{LMTD}}{Q} = \frac{1}{A_t} \left(\frac{1}{h_t} + \frac{a_{t-o}}{h_s} + \frac{Ta_{t-k}}{k_t} \right)$$
(7.18)

where LMTD = given log mean temperature difference

- Q = given heat transfer rate
- Λ_{t} = total area internal to tubes
- a_{t-o} = ratio of tube internal area to external area per unit length
- a_{t-k} = ratio of tube internal area to radial thermal conduction area per unit length of tubing

T = tube wall thickness.

- 11. From the tubing geometry, and knowing the total tube inside area required, compute the total length, L_t, of tubing needed.
- 12. Compute the total tube flow cross-sectional area, A_c, required from

 $\rho_t V_t (A_c) = \text{Total tube-side mass flow rate}$ (7.19)

 Knowing (A_c) and the tube inside diameter, compute the total number of tubes requires, N_t.

- 14. Compute the length of each tube from $(L_t/N_t) = \text{length}$ of each tube.
- 15. Go back to step 2 with new values of L and N and repeat steps 2 to 14 until the desired accuracy if obtained.
- 16. Knowing the number of tubes and length of each tube, as well as the staggered arrangement, find internal shell diameter, D_s.
- 17. Finally, using the formula

$$t_{s} = \frac{P_{s} D_{s}}{2\sigma}$$
(7.20)

where t_s = shell wall thickness D_s = shell vessel inside diameter σ = allowable shell wall metal stress P_s = shell design pressure.

the shell wall thickness was computed.

7.3.5 Definitions

Basic turbomachinery terms such as turbine inlet temperature, compressor pressure ratio, etc., and heat exchanger definitions such as throttle pressure, approach temperature difference, etc. are consistent with those given in Subsections 5.3 and 6.3 of this report.

7.4 Results of the Parametric Study

7.4.1 Recuperative System of Parametric Point Identification

Table 7.4 presents a detailed listing of the recuperated system parametric point numbers and lists the results of the thermodynamic efficiency calculations.

FOLDOUT FRÁME

5 Resuperator Heat Exchange Referred to Holium Flow

6 Precooler Heat Rejection Referred to Helium Flow

 $c_{\rm m} = \frac{1}{100} = \frac{1}{1$

Reference 2

Pt No	Pt No Description D Pump up @					Chullet													-		Pt No		
		7 ₄ Turbine Inlei Temperature, *r	9 Compressor Pressure Ratro	Power Oulpat, MW	73 Turbing Enlet Tenperature #6	P Compressor Pressure Ratio	T Compressor Intel Temperature, *r	4HX	9,54P		9366 (S) BIU/Ib	Mass Flow (m) Ib/s	H _a Q Blu/Ib	Power Output Min	Fuel	HRIV, Blu/ito	fuel Air Ralio m _i fm _a	n _B Burne Etticler		Gross Power, MW	Thermodynamic Efficiency,	Equivalent Hest Rate (KR), êtu/kwh	
R 1 R 2 R 2 R 2 R 4 R 6 R 7 R 4 R 6 R 7 R 7 R 6 R 7 R 7 R 6 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7	Vary He T & p, $r_{PU} = 0.90$ $r_{PU} = r_{He} = 0.80$ $r_{PU} = 0.81$ $r_{PU} =$	2200		111 96 111 96 15 96 75 97 75 96 75 96 75 97 75 97		20 25 30 40 25 25 20 25 20 25 20 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25	96,5 96,5 120 0 70 0 96,5 96,5	474 634.0 431.8 264.2 204.2 264.2 371.6 378.6 421.4 211.7 972.5 379.6 972.6 211.7 972.7 321.0 972.6 201.7 972.7 321.0 972.6 2223.5 6778.8 443.2 471.6 579.8 476.6 525.25 527.23 190.0 679.8 691.5 572.23 190.0 679.8 679.8	126.4 4 402 6 4 402 6 4 402 1 4 400 1	604.9 591.8 601.9 591.8 611.5 611.5 61	478.3 3 551.9 5 769.0 6 7331.8 8 705.0 7 731.5 5 705.0 1 705.1 5 705.0 1 705.0 1 705.0 1 705.0 1 705.0 1 705.0 1 705.0 1 705.0 1 705.0 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 1 705.2 <td>13.3 2 975 6 975 771 277 97 973 6 973 6 974 2 975 6 971 2 973 6 974 2 975 1 974 2 975 2 977 2 978 3 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 3 975</td> <td>151.44 177 34 176 34 176 34 176 34 177 35 177 34 177 35 177 35 17</td> <td>76.02 170.79 176.02 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.7 171.6 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2<</td> <td>Distultate</td> <td>11700 12028 11028 14522 11028 11028 11028</td> <td>0 0529 0 0529 0 0639 0 0639 0 0105 0 1105 0 0105 0 0 105 0 0 0 105 0 0 0 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>1.00</td> <td>969 671 1037,057 1045 618 1041,240 1201,227 1119 291</td> <td>287 98 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 12 12 12 12 12 12 12 12 12 12 12 12</td> <td>0 3266 0 3205 0 2265 0 2265 0 3400 0 347 0 345 0 345 0 345 0 345 0 345 0 345 0 345 0 347 0 345 0 355 0 35</td> <td>11130 11335 11910 5505 5757 9904 5825 9705 9705 9705 9705 9705 9705 9705 970</td> <td>R I R Z R Z R Z R Z R Z R Z R Z R Z</td>	13.3 2 975 6 975 771 277 97 973 6 973 6 974 2 975 6 971 2 973 6 974 2 975 1 974 2 975 2 977 2 978 3 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 2 975 3 975	151.44 177 34 176 34 176 34 176 34 177 35 177 34 177 35 177 35 17	76.02 170.79 176.02 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.6 171.7 171.6 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.7 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2 171.2<	Distultate	11700 12028 11028 14522 11028 11028 11028	0 0529 0 0529 0 0639 0 0639 0 0105 0 1105 0 0105 0 0 105 0 0 0 105 0 0 0 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00	969 671 1037,057 1045 618 1041,240 1201,227 1119 291	287 98 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 26 75 12 12 12 12 12 12 12 12 12 12 12 12 12	0 3266 0 3205 0 2265 0 2265 0 3400 0 347 0 345 0 345 0 345 0 345 0 345 0 345 0 345 0 347 0 345 0 355 0 35	11130 11335 11910 5505 5757 9904 5825 9705 9705 9705 9705 9705 9705 9705 970	R I R Z R Z R Z R Z R Z R Z R Z R Z

Table 7: 4-Recuperated Closed Cycle Gas Turbine Parametric Point Description

7. Primary Heat Addition Referred to Pump-up Air flow

Primary Heat Addition Referred to Helium Flow

9 Hellum Turbine Oulput Referred to Hellum Flow

10 Total Primary Heat Input Expressed in MW = (mg/mg1(900)(HHv)(3600)/(3412750)

11 Intercooles: q = 254 6, 302.6, 379 7 tor Pls 43 44, 45

12 Air Circuit Consists of Jungstrom Recuperator and Fan, Temp. In and out of Recuperator Hol Side) 1100, 200*F, Fan Pover 5 5 MW

For Points R1 through R12, the basic closed-cycle parameters of helium turbine inlet temperature and compressor pressure ratio were varied. Pressure ratio values of 2 to 1 through 4 to 1 were used in conjunction with turbine inlet temperature values of 922 through 1255°K (1200 to 1800°F). For all of these calculations, the pump-up gas turbine inlet temperature was 1478°K (2200°F), and its compressor pressure ratio was 10 to 1. A recuperator effectiveness value of 0.90 was chosen for both the pump-up turbine and the helium gas turbine subsystems. In Points R13 through R20, variations in the recuperator effectiveness were made simultaneously over the range 0.80 to 0.95 for both the pump-up cycle and the helium cycle gas turbine. Variations of the assumed fuel were made in Points R21 through R30. Included were the use of pressurized fluid bed combustion of bituminous, subbituminous, and lignite coals as well as the uses of high- and low-Btu gas. These points all have helium turbine inlet temperatures of 1089°K (1500°F), a helium compressor pressure ratio of 2.5, and recuperator effectiveness values equal to 0.9. Points R21 and R22 investigated the variation of the pump-up cycle compressor ratio at values of 5 to 1 and 10 to 1 with recuperator effectiveness values of 0.90. For Points R23 and R24, the same pressure ratios were used but without a pump-up recuperator. Point R25, Base Case A, was fired with Illinois No. 6 bituminous coal in connection with a pump-up gas turbine inlet temperature of 1200°K (1700°F), a compressor pressure ratio of 10 to 1, and no pump-up recuperator. For Points R26 through R30, a pump-up turbine inlet temperature of 866°K (1100°F) was used, thereby transferring more heat directly to the helium cycle; and the three coals as well as high- and low-Btu gas fuels were considered. In Points R31 through R36, variations were made in compressor pressure ratio for each cycle: 2, 2.5, 3, and 4 to 1 for the helium cycle, and 5 and 15 to 1 for the pump-up cycle, respectively. These calculations were made with a pump-up turbine inlet temperature of 866°K (1100°F) and no recuperation and a helium turbine inlet temperature of 1088°K (1500°F) with 0.9 recuperator effectiveness. Points R37 and R38 investigate dry cooling tower and once-through heat rejection of the heat picked up from

Preceding page blank

the helium in the precooler. In Points R39 and R40, the effect of increasing the pump-up cycle furnace pressure drop ratio from the base case value of 0.06 to 0.09 and 0.12 was investigated. Similarly, the effect of increasing the helium heat exchanger pressure drop ratio from the base case value of 0.02 to 0.04 and 0.06 was investigated in Points R41 and R42, respectively. Helium compressor intercooling was considered in Points R43 through R45 and helium compressor pressure ratios of 4, 5, and 7 to 1 were used, respectively. The effects of varying helium cycle top pressure have been investigated with the nominal 6.895 MPa (1000 psi) abs replaced by 3.447 and 13.790 MPa (500 to 2000 psi) abs in Points R46 and R47, respectively. Point R48 corresponds to Base Case B and differs principally from Base Case A in the use of an atmospheric pressure furnace with a Ljungstrom-type regenerator. Distillate fuel derived from coal was used, and the helium cycle principal parameters were 1089°K (1500°F) turbine inlet temperature, a 2.5 to 1 compressor pressure ratio, and a 0.9 recuperator effectiveness.

7.4.2 Recuperative System Base Case Results

The Base Case A cycle schematic diagram has been shown previously in Subsection 7.2 (Figure 7.3). Selected thermodynamic data results for this cycle are given in Figure 7.15. The overall cycle efficiency for this arrangement has been calculated to be approximately 32%, with a net output of just over 300 MW in the single pump-up turbine, single helium turbine configuration.

Base Case B, utilizing the atmospheric pressure furnace, is illustrated schematically by Figure 7.5 of Subsection 7.2. Both a schematic temperature-entropy diagram and tabulation of selected cycle data for Base Case B are given in Figure 7.16. This cycle arrangement with a single helium turbine having an inlet temperature of 1089°K (1500°F) delivers approximately 350 MW at 32.5% overall thermal efficiency.

7-42

PRECEDING PAUL

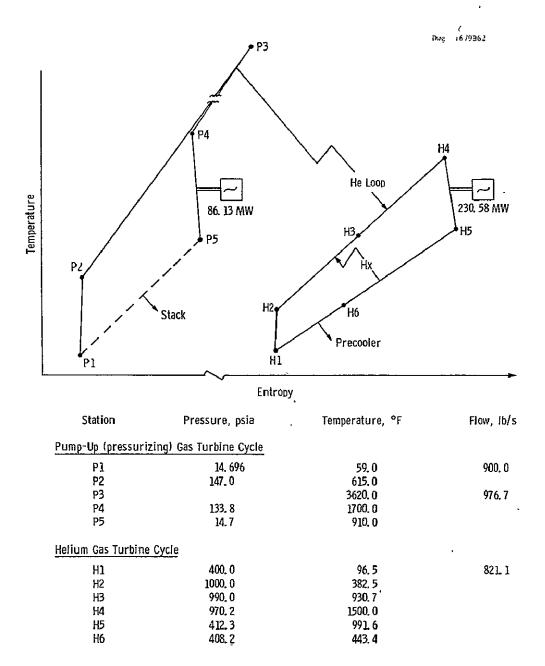


Fig. 7. 15-Summary of thermodynamic cycle data (recuperative cycle Base Case A, Point R25)

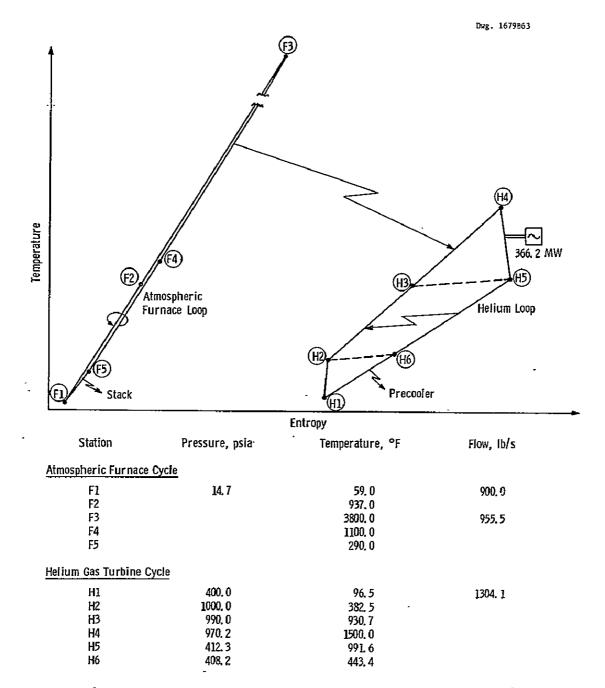


Fig. 7. 16-Summary of thermodynamic cycle data (recuperative cycle Base Case B, Point 48)

7.4.3 Recuperative System: Results of Parametric Variations

Figures 7.17 through 7.23 and Figures 7.24 through 7.30 show the effects of the various parameters on the thermodynamic cycle efficiency and gross cycle power. Note that the trends described by the efficiency curves and by the power curves are the same for each value of pump-up temperature and fuel as, for each value, the cycle heat added is constant; e.g., Figures 7.17 and 7.24 show a similar trend as the pump-up temperature and fuel is the same for all curves, but Figures 7.19 and 7.26 do not show the same trend, as the pump-up temperature and fuel vary from curve to curve.

At constant heat added, the efficiency is directly proportional to the power; also, the efficiency is directly proportional to the specific power, as the airflow is always 408 kg/s (900 lb/s). For this reason the curves are not plotted in terms of specific power and efficiency, which would give a single straight line for each value of pump-up temperature and fuel.

The efficiency is taken with respect to the higher heating value of the fuel. The plant electrical output is corrected for the mechanical and generator loss.

Figure 7.17 shows the effect of helium temperature and pressure ratio on the cycle efficiency. The contribution of the helium loop to the cycle performance is roughly as follows. The helium loop produces roughly 60, 66, and 69% of the power; and the loop efficiency is roughly 31, 39, and 45%, at helium turbine inlet temperatures of 922, 1089, and 1255°K (1200, 1500, and 1800°F), respectively, at 2.5 to 1 pressure ratio. Also shown is the combined effect of the pump-up and helium recuperator effectiveness which were varied from 0.8 to 0.95 for a helium turbine inlet temperature of 1089°K (1500°F).

^{*}The results listed in Table 7.4 and figures shown below apply to thermodynamic efficiency and corresponding gross power output before related station auxiliary powers were deducted.

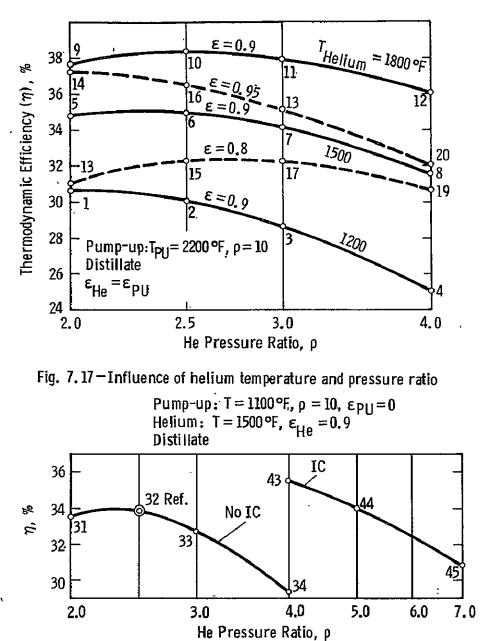


Fig. 7. 18-Recuperated closed-cycle efficiency, ISO ambient

Influence of intercooling

Curve 680325-8

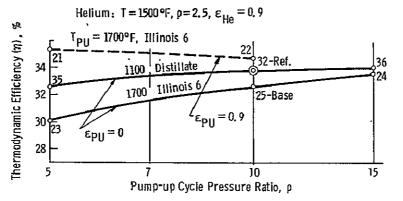
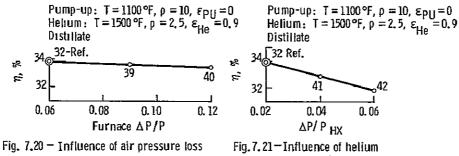
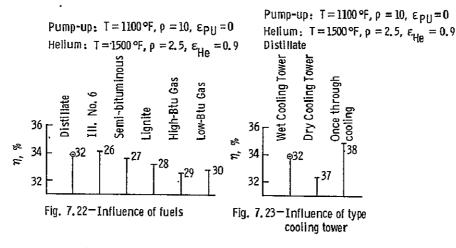




Fig. 7.19 - Influence of pump-up temperature and pressure ratio

Recuperated closed-cycle efficiency, ISO ambient

In Figure 7.17, the pump-up temperature is 1478°K (2200°F) and the pump-up recuperator is included. But in the following curves, Figures 7.18 through 7.23, pump-up temperatures of 1200 and 866°K (1700 and 1100°F) were used, and the pump-up recuperator was not included (with the exception of the dashed line curve, Figure 7.19).

Figure 7.18 shows the effect of intercooling, approximately a 1-1/2 point gain in efficiency. This comparison was made at different pressure ratios.

The parametric variations displayed in Figures 7.18 through 7.23 use Point R32 as a base or reference condition. Here **, the pump-up temperature and pressure ratio are 866°K (1100°F) and 10 to 1; the helium temperature and pressure ratio are 1089°K (1500°F) and 2.5 to 1. No pump-up recuperator was used, and a 0.90 helium recuperator effectiveness was assumed. Most cases were assumed to fire a coal-derived distillate fuel. Point R25 (Base Case A) is the same as the Point R32 reference except that the pump-up temperature was 1200°K (1700°F) and the fuel was Illinois No. 6 coal.

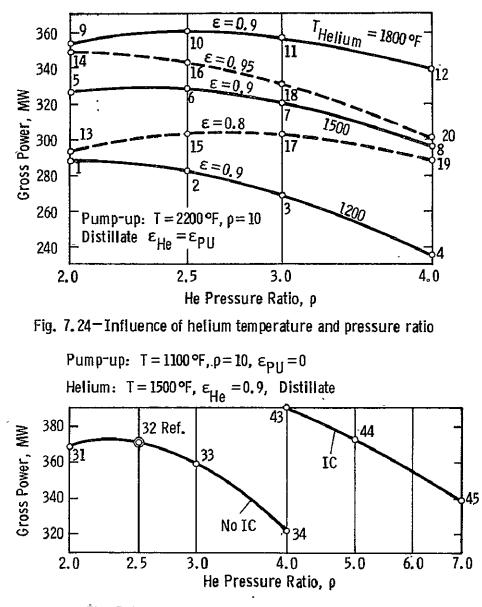
Figure 7.19 shows the effect of pump-up temperature and pressure ratio. The two solid line curves for 1200 and 866°K (1700 and $1100^{\circ}F$) show approximately a one-point improvement in efficiency at 866°K ($1100^{\circ}F$) at a 10-to-1 pressure ratio. The improvement is due to the larger percentage of work in the more efficient helium loop at 866°K ($1100^{\circ}F$), although the improvement is somewhat offset by the drop-off in pump-up efficiency at the lower temperatures.^{*} This ignores the difference in fuel at the two temperatures, but this probably has little effect (see Figure 7.22). The effect of pump-up recuperation is shown by the solid and dashed line curves for $1200^{\circ}K$ ($1700^{\circ}F$) to be in the order of two points at a 10-to-1 pressure ratio. Finally, by comparing Point R22 with Point R6 of Figure 7.17, it is shown that the efficiency is

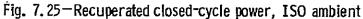
At low pump-up temperature, more heat is absorbed by the helium in reducing the furnace air to the lower temperature and, hence, more heat is added to the helium cycle.

^{**} Point R32

approximately the same at 1200 and 1478°K (1700 and 2200°F) pump-up temperature. Here the stand-off is due to the counteracting effects of the work shift to the more efficient helium cycle and the drop-off in the pump-up efficiency at 1200°K (1700°F).

As a rough guide to the work shift referred to above, 2/3, 3/4, and 9/10 of the total power is produced by the helium loop at 1478, 1200, and 866°K (2200, 1700, and 1100°F) pump-up temperature for the reference helium conditions of 1089°K (1500°F) and a 2.5-to-1 pressure ratio.


Figures 7.20 and 7.21 show the effect of pressure loss in the pump-up and helium circuit. Because of the low-pressure ratio, the pressure loss in the helium loop has a greater effect. Note that the pressure drop in the recuperator is the combined pressure loss for the hot and cold side.


The effect of fuel type on efficiency is shown by Figure 7.22. In Points R32, R26, R27, and R28 for distillate and coals, the spread is in the order of one-half percentage point. For Points R29 and R30 which used high- and low-Btu gas, respectively, the main factor behind the differing efficiency results is the approximate 10% difference in the fuel higher and lower heating values (compared with about 5% for distillate). This larger difference for the fuel gases is associated with their high hydrogen content. This means that a larger amount of the heat added is unavailable for work in the pump-up turbine. Note, also, that the efficiency of the low-Btu gas case allows for the energy requirements of the coal gasification plant.

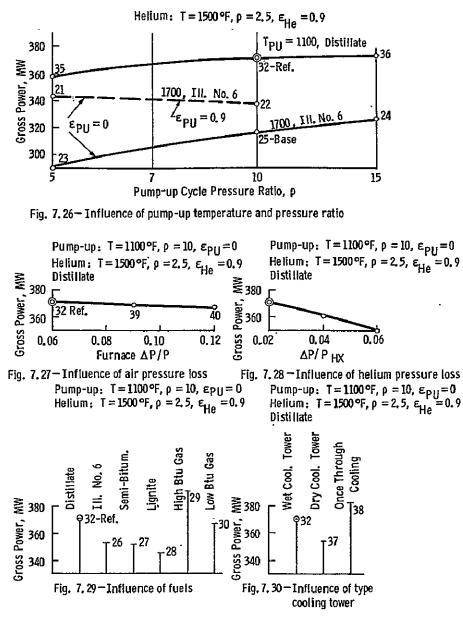
The efficiency differences associated with the precooler temperature are shown in Figure 7.23. With wet, dry, and once-through cooling, water temperatures of 292.3, 305.4, and 282.6°K (66.5, 90, and 49°F) were assumed. With a 16.7°K (30°F) approach temperature, the helium was assumed to have been cooled to 309, 322, and 299°K (96.5, 120, and 79°F).

The power curves in Figures 7.24, 7.25, 7.27, 7.28, and 7.30 have trends identical to those displayed by the corresponding efficiency

Curve 680327-A

curves. The heat added is constant with respect to all points on each of these curves; hence, the efficiency changes are proportional to the power changes. In Figures 7.26 and 7.29 there is a variation in heat added from point to point associated with the difference in pump-up temperature and fuel. At low pump-up temperature, more heat is absorbed by the helium in reducing the furnace air to the lower temperature.

The heat of combustion per pound of air is highest for high-Btu gas, intermediate for distillate and low-Btu gas, and lowest for the three coals. Furthermore, the coals are assumed to burn with a 4% combustion loss reducing their effective heating still further, whereas the gases and distillate are assumed to burn completely. Thus, as the airflow was assumed constant, the heat added drops off in the order named (at fixed pump-up temperature). This accounts for the difference in Figures 7.26 and 7.29 with respect to the corresponding efficiency curves. Note in Figures 7.19 and 7.26 the shift in the dashed line curve with respect to the solid line curves and the change in spread of the solid line curves. This is associated with the lower heat addition at 1200°K (1700°F) and the higher heat addition with distillate fuel. Note also, in Figures 7.22 and 7.29, that the power is affected more by the change in heat addition (highest with high-Btu gas, intermediate with distillate and low-Btu gas, and lowest with coals) than by the change in efficiency.


Point R48, Base Case B, is for an atmospheric combustion subsystem. Atmospheric pressure air is supplied to the furnace by a fan. A Ljungstrom regenerator preheats the furnace air. By comparison with Point R25, Base Case A, the efficiency is roughly the same, but the power is approximately 16% higher.

7.4.4 Combined System Parametric Point Identification

A tabulation of the combined system parametric variations including parametric point numbers and thermodynamic efficiency results is given in Table 7.5.

The first group, including Points C1 through C9, has been selected for variation of the helium cycle turbine inlet temperature and

Curve 680322-B

Recuperated closed-cycle power, ISO ambient

FOLDUNG FRAME

FOLDOUT FRAME Z

Table 7 5-Cers) his Closed	Cycle Gas Turbine	Parametric Peic	1 pest 15 mu

								ù				Table 7	3~C643 h	el Closed Cycle	Gas Turbite	e parametric	PRICE DESC	19 1 1														*-	1 17426
n m	Oristalistics		Put		Pute up Crede						HHINE	-							Steen	_		furnace					Qde			P. 14.			
		Ta Tuckina Iniel Tenperature	Pressure Ricio	15	T6 Stact Teoperature	0 ₄₄₇ YG #10,014 175 749	Paner Dukan,		ə Donpresion Pressure Ratio	Fa Tuctone Calhaust Temperature	Supplementary 97 Precodel Inlet Ter presivre ETgi,	678 VS 4642)INI 174-14	0 0 1 (, 1 1 (, 1)	Conscressor Jolet Temperature Trj ³ e	Ф Чжі	ê B	806 137 131	r.®	80197 0597	P/Y Thrattie	P/T Peheal	Marci Flow(12)	5 0 2	Pourr Output	fatí	****,	icik Fort Alt kz.v	Eucher Efficiency Ing)	9 ₉₄₀ @	Gress Power	thermodynamic Efficiency	Seufvalent Hual Rate Lite?,	
<u> </u>		*6	13	• •r 1183	570.0	Bru/see	NIV 112.17	+f 1200	15	*/ X02.0	251.2		\$1u/s	*/	1000 a	1124 J	N3 10 33	µw/ha He ant 20	MW 11.41	951/*f 3500/400	500/150		3tu/n) 549 0	### 212.42	Deblike	\$tu/9	10.029	·	MT	NTW .	7	\$20/17m	1
-1898888888888259989999999999999999999999	Vary He T i p Vary He T i p WE2not AV Sicen YG Is 5 a 10 ⁴⁷ 1 200 200 200 WE2not Sicen Bank Yary France & 0 WE2not Sicen Bank Yary France & 0 We APP Unance & 0 C 0 Prevent Sicen Bank)200 100 2200 100 2200	66		2000日の1000日の1000日の1000日の1000日の1000日の1000日の1000日の1000日の1000日の1000日の1000日の100日の	19400 19270 19270 19270 19300 19300 195000 19500 19500 19500 19500 195000 19500 19500 19500 19500 1950	14 57 57 57 57 57 57 57 57 57 57 57 57 57		205 205 205 205 205 205 205 205 205 205	1997 7 1997 7 19	311.3 174.6 17	174400 174700 174700 174700 1740000000000		200.0 192.0 192.0 192.0 192.0 192.0 192.0 192.0	1700 1710 1710 1710 1710 1710 1710 1710	174, + + + + + + + + + + + + + + + + + + +	40,233 44,29 553,14 553,14 40,147 552,123 552,123 502,123		33,51 34,43 44,67 77,74 46,67 77,74 77,74 76,67 77,74 76,67 77,74 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 77,74 76,77 77,77 76,77 77,77 76,77 77,777 77,777 77,777 77,777 77,7777 77,77777 77,777777	2509/150 3509/150 3509/150 3509/150 3509/150 3509/150 3509/150 3509/150 3509/150 3509/150 3509/150 3509/150 1509/150 3509/1500/150 3509/150 3509/150 3509/150 3509/150 3509/150 3509/10	30/90 20/97	222311322245076303423960 407995130352303423423960 4079951303523523960	576.7 551.7 677 L 579 0 576.7 674 4 635.3 576 7 576.7 576 7 576 7				0 677 0 816 0 816 0 817 0 817 0 817 0 817	700	139 335 1024 544 1077 335 1079 335 1079 335	Syn	0 2.557 0 2.5577 0 2.5577 0		28030303050585858585858585858585858585858
5855553333	He Pg = 500 2000 High-BLI Gas Lum BLI Gas Linick Ka, & Coal Suo Bitumineus Cool Logolile Dry Cooling Tower Drice Through Cooling B12		10,5134 10,5434 10		575 0 578.0 679.0 652.0 550.0 550.0 550.0 550.0 270.0	194400 157507 57600 45500 722730 154500	1254 1277 1411 140 140 140 140 140 140 140 140 14	1500	25	*15.2	247 5 344,5 394,6 20,6 2	345200 314600 424700 421500 360500 325500 333500		tore	505 6 654 1 611 6 565 0	164.0	140,42 335,32 474,76 440,47 440,47 342,73	229 19	87 01 10,79 114 92 199 C# 393,10 16 27	2000/400 3580/100	11	304.25 277.44 310.52	500 0 553 7 553 7 553 7 553 7 553 7 553 7 553 7 553 7	155 90 115 34	Hoph Bhu Ca Low Bhu Cas Islineis No. I Sudi, Bruni, Lignate Distallate	22542. 12028 5452.0 7446.0	0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005 0 0005	ι υ υ υ υ υ υ υ υ υ υ υ υ υ	1027 722 193,641 1949 671 197 106 197 106 199 333	11.16 11.14 11.15	0 3444 0 4025 0,3723 0,3729 0 3759 0 4048 0 4048		5555553333
3835858-	Methyl Amilon SO2 1 172 (n. 113 Cond. Press	3100 2200 Sime #	R. 65		347.0	127100 53,00 17700 21580	14 H 33 46 140 H 112 77			502,1 527 2 502,1 971 2	140,0 151,0 140,0 700,0	52500 539500 365500 352500 352500 352500		0,000 0,000 0,000 0,000 0,000 0,000	607 6 930 3 970 6 270 6	607 8 697 8 694, 2 607 8 807 8 807 8		241.03	147 400 203 230 189 707 197 440 44. 247	2500/700 2500/500 2500/450 2500/500		501.00 5112.70 1513.00 1251.1 1122.1 1122.1 1122.1		15 15 17 79 18 134 111 001 100 10 100 10 100 10 100 10			0 651 0 651		1017 JU 1017 JU 1017 JUS	255555 255555 2555555 2555555 2555555 2555555	9 3477 9 3479 9 4-01 9 4093 0 4093 0 4093 0 4093 0 4093 0 401 0 401 0 403	1007 1753 1753 1026 1011 1753 1853	33535353
-	1 1/2 in. 3 \$ in.	2200 3494 JS	PL 5 1457 12 PL 44	011	530.0	156000	112.77	1500	23	117 z	269,7	324400	3,400	200, 0	690.0	2296.0	34 71	979 II	\$4, 27	35337976	\$20/950	311.12	570. 96	122.23	() chillate	18700 (0 624	1.00	9 39 335	341.79	3.4059	1405	13
-	+ 0 in,	2200	10	190	552.0	156300	112 71	1500	2.5	SF 1	29L1	312900	43300	200 0	470 0	11 K O	หมา	229 29	8× 87	35334900	\$41.95	4H. 12	511.95	H2 65	0-stellaste	14200.0	0 029	1.00	131 335	364.4	0 3332	810	:

۰.

Distant West Transform Constant Helium Processer and Supplementary Constant D Transmy Titut Schwart References in Foragonya Vir Flow D Transmy Titut Schwart Artifictor Schwartfam D Haloman Transmo Organit Strett Chartfaller D Haloman Transmo Organit Strett Chartfaller D Haloman Transmo Organit Strett Chartfaller D Haloman Transmo Schwartfaller D Haloman

O Take Privacy like law, Leberschin A.V. $\binom{n_1}{n_2}$ (ROTHROPO $\binom{3.00}{3.023}$

compressor pressure ratio. The first three points utilized a helium turbine inlet temperature of 922°K (1200°F) with compressor pressure ratios of 1.5, 2, and 2.5 to 1. A pump-up gas turbine inlet temperature of 1477°K (2200°F) and a compressor pressure ratio of 10 to 1 were used for all nine points. Each was fired with coal-derived distillate fuel, and high-pressure reheat steam turbines were used to bottom both the pump-up and helium cycles. Points C4, C5 (Base Case), and C6 of this group incorporate a helium turbine inlet temperature of 1089°K (1500°F) and compressor pressure ratios of 2, 2.5, and 3 to 1, respectively. For the last three points of the group, the helium turbine inlet temperature was set at 1255°K (1800°F); and pressure ratios of 2.5, 3, and 4 to 1 were used. For Points C10 through C12 the pump-up set vapor generator was omitted and the pump-up turbine inlet temperatures of 1478, 1200, and 866°K (2200, 1700, and 1100°F) were used. All three cases assumed pumpup set compressor pressure ratios of 10 to 1. Helium compressor inlet temperatures of 339, 394, 422, and 450°K (150, 250, 300, and 350°F) were assumed for Points C13 through C16. Point C5 with a compressor inlet temperature of 366°K (200°F) is also a member of this sequence. Points C17 through C20 contrast with these in that a precooler is added to bring the compressor inlet temperature to 309°K (96.5°F). The precooler rejects heat to a wet cooling tower and receives helium from the vapor generator discharge at temperatures of 366, 394, 422, and 450°K (200, 250, 300, and 350°F), respectively. It was intended that the Points C17 through C20 would be the only ones requiring a precooler. The compressor inlet temperatures of the other points were intended to be high enough that the compressor would accept helium directly from the vapor generator. Due to pinch-point problems discussed in Subsection 2.3.3, however, a cooler was required for all points except C7, C15, and C16 and the organic fluid points C46 through C52. For Points C21 and C22, nonreheat bottoming steam turbines of nominal steam conditions 11.032 MPa (1600 psi) gauge, 811°K (1000°F) and 8.618 MPa (1250 psi) gauge, 783°K (950°F) were used. Variations of pump-up cycle turbine inlet temperature and pressure ratio have been selected for Points C23, C24, and C25. The

7–55

Preceding page blank

combinations were 1478°K (2200°F) and 15 to 1 for Point C23; 1300°K (1700°F) and 5 to 1 for Point C24; and 1200°K (1700°F) and 10 to 1 for ~ Point C25. The helium vapor generator pinch-point temperature difference has been modified from the base value of 22°K (40°F) to 33 and 44°K (60 and 80°F) in Points C26 and C27. The effects of pressure drops have been identified for investigation in Points C28 through C36. Furnace pressure drop ratios of 0.04 and 0.06 were investigated in Points C28 and C29, as compared with the base case value of 0.02. Helium vapor generator pressure drop ratios of 0.04 and 0.06, respectively, were substituted for the base case value of 0.02 in Points C30 and C31. Furnace pressure drops of 0.03, 0.09, and 0.12 were used for Points C32, C33, and C34. These compare with the base case value of 0.06. The pump-up gas turbine vapor generator pressure drop variations of 0.02 and 0.06 (base case value was 0.04) were used for Points C35 and C36. The influence of helium cycletop pressure has been identified for study in Points C37 and C38. Alternative values of 3.447 to 13.790 MPa (500 and 2000 psi) abs were compared with the base case value of 6.895 MPa (1000 psi) abs in Points C37 and C38, respectively. The use of alternative fuels was investigated in Points C39 through C43. Points C39 and C40 utilized high- and low-Btu (integrated gasification plant) coal-derived gases, respectively. Both use a helium cycle turbine inlet temperature of 1089°K (1500°F), a compressor pressure ratio of 2.5 to 1, and a pump-up cycle turbine inlet temperature of 1478°K (2200°F) with a 10-to-1 compressor pressure ratio. Fluidized bed combustion of Illinois No. 6 bituminous, subbituminous, and lignite were selected for Points C41, C42, and C43. With each the pumpup cycle turbine inlet temperature was set at 1200°K (1700°F), which is compatible with fluid bed operation. For Points C44 and C45, alternative cycle heat rejection modes were selected. Dry cooling towers were designated for Point C44 and the once-through cooling method for Point C45.

Alternative bottoming cycle fluids were identified for study in Points C46 through C52. The three fluids used in connection with the recuperated open-cycle studies (Section 5) were used here. These included R-12, methylamine, and sulfur dioxide. The outstanding properties of

R-12 are that it is nontoxic, nonflammable, and noncorrosive. It is used below the base case configuration of pump-up and helium cycles to constitute calculation Cycles C46 and C47. Since the turbine expansion end point lies far into the superheated region for R-12 for this cycle, Point C47 contains a desuperheating recuperator to help heat the feed liquids. This is to show the contrast with Cycle C46, which does not have such a desuperheater. The top temperature for both cycles is 644° K (700°F), which is higher than that usually used for R-12. However, the usual limits for the fluid are based on its use as a refrigerant, in which it is mixed with oil and may even contain some water. In the absence of these contaminants and in contact only with materials of construction, the fluorine stays fixed and the fluid remains stable to a higher temperature. This is the basis for the 644° K (700°F) application.

Cycles C48 through C51 have been formed by adding bottoming cycles to recuperated-type cycles. Since the required temperatures are low, the fluid could be chosen without much regard for chemical stability.

ï

Methylamine was chosen as having good volume relations in the intermediate pressure range (TEAP of 3.96). It has a moderate critical pressure and could be fitted easily to the available heat lines.

Cycles C48 and C49 are subposed below the two types of recuperated cycle with pump-up turbine temperatures at 1478°K (2200°.F) and 866°K (1100°F), respectively (similar to recuperated Cycles R6 and R32, respectively), for a basic comparison.

Cycle C50 rejects heat through a water circuit to a dry cooling tower and has a condenser temperature of 323° K (122° F). It compares with Cycle C48 which uses a wet cooling tower.

The low volume of the methylamine turbine exhaust allows one to consider deploying the bottom fluid directly to an air-cooled condenser (dry cooling tower). This avoids the thermodynamic losses associated with the use of an intermediate heat exchanger and the temperature range

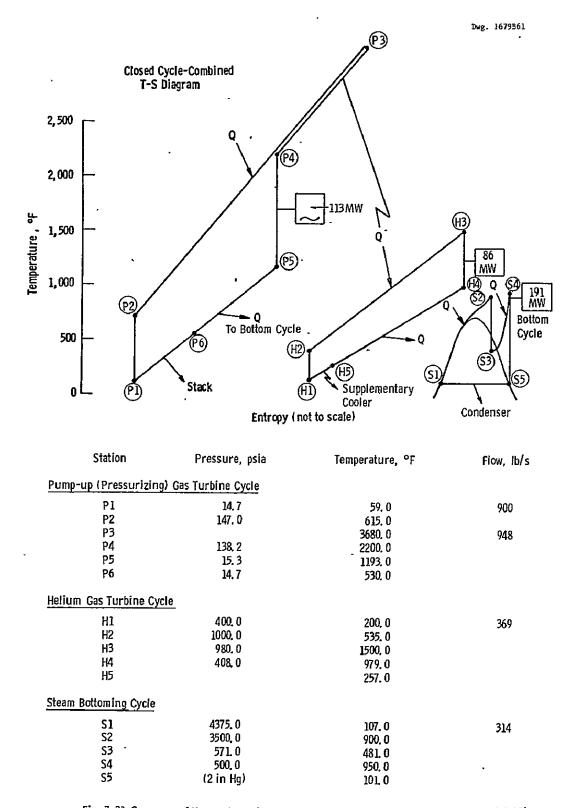


Fig. 7.31 -Summary of thermodynamic cycle data (combined closed cycle base case, Point C5)

associated with the intermediate cooling-water loop. Cycle C51 has such an arrangement with a condenser temperature of 313°K (104°F). Since this is the same as Cycle C48, the thermodynamic performance will be identical. The comparison will center on the relative cost and ease of providing the different apparatus associated with the condensing vapor.

Cycle C52 is similar to Cycle C46, except that sulfur dioxide is used for the bottom cycle instead of R-12. The importance of sulfur dioxide is that is has high-temperature stability and thus permits the cycle to be adjusted to utilize the available energy from the pump-up and helium cycles to a much fuller extent.

Of the fluids considered, the only others which also have hightemperature stability (nominally) are ammonia and cyanogen. The choice of sulfur dioxide over these is somewhat arbitrary, but it appears to be advantageous.

Sulfur dioxide is completely nonflammable. Although it will not make as low a volume plant as ammonia (TEAP of 5.75 for sulfur dioxide vs 1.49 for ammonia), the volume seems low enough for the application. Furthermore, the higher critical pressure of ammonia [11.280.MPa (1636 psi) abs compared to sulfur dioxide 7.881 MPa (1143 psi)] abs might require a pressure too high to contain easily in order to obtain a good thermodynamic fit. The higher critical temperature of sulfur dioxide was also thought to be advantageous for ease in obtaining a good fit.

In any case, sulfur dioxide serves to illustrate the potential value of a well-fitted, low-volume, high-temperature supercritical bot-toming cycle.

7.4.5 Combined System Base Case Results

Figure 7.7 of Subsection 7.2 has illustrated the cycle schematic arrangement for Point C5, the combined closed-cycle base case. Selected thermodynamic cycle data for this arrangement are tabulated in connection with the appropriate temperature-entropy diagram on Figure 7.31. For this cycle, it has been calculated that a power plant of this

Curve 680328-A

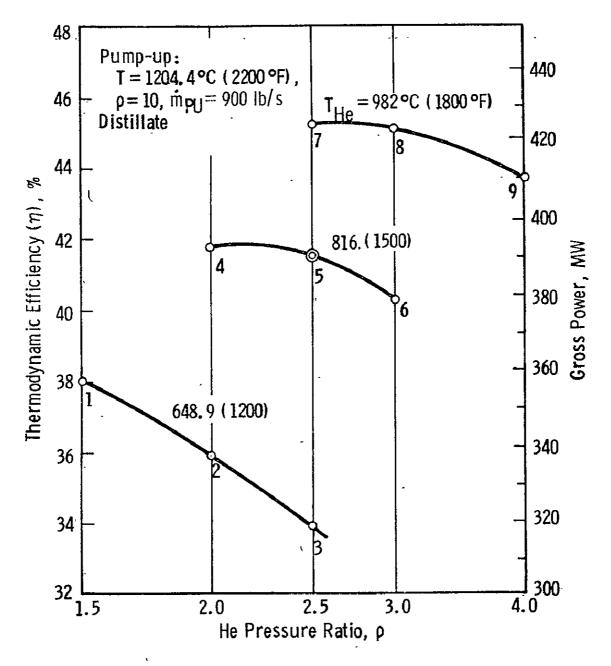


Fig. 7.32-Combined closed-cycle efficiency and power, ISO ambient

configuration would deliver approximately 380 MW at a net thermodynamic efficiency of nearly 41%.

7.4.6 Combined System Results of Parametric Variations

The influence of helium temperature and pressure ratio on the engine performance is shown by Figure 7.32. It is evident that the helium temperature has a controlling effect. The performance progressively improves as temperature increases from 922 to 1089 to 1255°K (1200 to 1500 to 1800°F). This increase is associated with the higher efficiency of the helium cycle at the higher temperatures.

Note the double scale for efficiency and power in Figure 7.32. The efficiency and power are directly related as the cycle heat added is constant for all points on the curve. The heat added is fixed by the choice of pump-up cycle temperature and fuel, as the pump-up (combustion) airflow was always assumed to be 408 kg/s (900 lb/s). Thus, in Figure 7.32, the efficiency varies in lockstep with the power. (This is also true of Figures 7.33 and 7.36 through 7.42 which follow.)

Note also that the efficiency reported is, with respect to the engine electrical power, corrected for mechanical and generator loss, and the heat equivalent of the fuel based on the higher heating value. There is no account of the auxiliary power for providing the circulating water to the condenser and cooler in the results plotted in these figures.

The data are shown by the curves with regard to the pump-up and helium conditions, but without regard to the temperature and pressure of the steam in the bottoming cycle. This simplifies the curves and is justified, in that the steam conditions are generally set by the pump-up and helium conditions. Thus, the pump-up and helium parameters are regarded as independent variables, and the steam parameters as dependent variables.

The results listed in Table 7.5 and the figures shown below apply to thermodynamic efficiency and corresponding gross power output before related station auxiliary powers were deducted.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Curve 682850-A

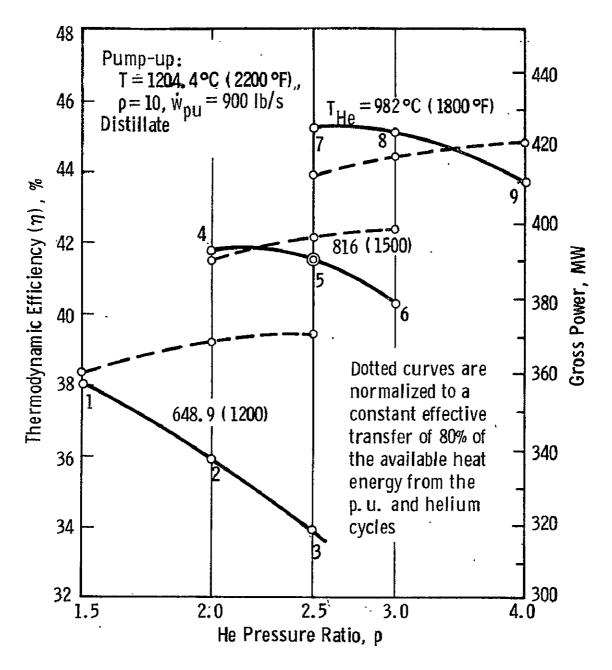


Fig. 7.33-Combined closed-cycle efficiency and power, ISO ambient

In the identification of the parametric points for calculation, it was intended that the steam cycle heat demands would be well fitted to the heat available from the pump-up and helium turbine exhaust streams. The degree of fit, however, has varied and is a noteworthy factor in the interpretation of the results. Table 7.6 lists the calculation points along with the effectiveness with which the thermodynamically available energy of the two exhaust streams is transmitted to the bottoming cycle. The values vary from 0.5787 to 0.8534. Also included in Table 7.6 are cycle efficiencies normalized for a constant available energy transmission effectiveness of 80%. These normalized values are plotted on Figure 7.33 and denoted by dashed lines. These curves are flatter than the directly calculated ones and show that much of the variation at a particular helium turbine temperature can be explained by the changing thermodynamic fit of the bottoming cycle.

Note that the base case, Point C5, is shown as a reference on all of the curves. This point is for a pump-up temperature and pressure ratio of 1478°K (2200°F) and 10 to 1, and a helium temperature and pressure ratio of 1089°K (1500°F) and 2.5 to 1. The use of distillate fuel is assumed.

The effect of pump-up temperature and pressure ratio is shown by Figure 7.34. The efficiency is notably lower at 1200° K (1700° F) than at 1478° K (2200° F). At 1200° K (1700° F) a greater portion of heat is absorbed by the helium, which gives an increase in power in the helium loop but cannot be transferred in full measure to the steam cycle due to the pinch-point limitation in the helium section of the vapor generator. Thus, a greater portion of the heat is rejected to the helium cooler to the detriment of the efficiency. On the other hand, the cycle heat added is roughly 9% larger at 1200° K (1700° F). [More heat is absorbed by the helium in reducing the furnace air to the lower temperature of 1200° K (1700° F); hence, more heat is added.] This tends to increase the power, but the increase is roughly offset by the drop-off in efficiency.

Calc. Point	EA.E.	^η ε≖0.8	Calc. Point	^e a.e.	$\eta_{\varepsilon} = 0.8$
Cl	0.7906	0.3828	C27	0.6859	0.4202
C2	0.6760	0.3915	C28	0.7886	0.4172
C3	0.5787	0.3936	C29	0.7954	0.4171
C4	0.8120	0.4147	C30	0.7886	0.4172
C5	0.7819	0.4201	C31	0.7954	0.4142
C6	0.7191	0.4232	C32	0.7828	0.4217
C7	0.8534	0.4380	C33	0.7862	0.4184
C8	0.8302	0.4433	C34	0.7903	0.4170
C9	0.7602	0.4473	C35	0.7799	0.4211
C10	0.6959	0.3328	C36	0.7847	0.4192
C1 1	0.6958	0.3578	C37	0.7819	0.4201
C12	0.7200	0.3709	C38	0.7819	0.4201
C13	0.7799	0.4183	C39	0.7732 .	0.4050
C14	0.7896	0.4210	C40	0.7440	0.4172
C15	0.8018	0.4208	C41	0.7056	0.4170
C16	0.8195	0.4194	C42	0.7069	0.4038
C17	0.7954	0.4119	C43	0.7075	0.3984
C18	0.8068 '	0.4092	C44	0.7777	0.4103
C19	0.8221	0.4057	C45	0.7837	0.4244
C20	0.8413	0.4014	C46	0.7058	0.4112
C21	0.7268	0.4150	C47	0.7047	0.3663
C22	0.7333	0.4149	C48	0.7448	0.4484
C23	0.7498	0.4201,	C49	0.8198	0.4074
c 24	0.7318	0.3998	C50	0.7180	0.4381
C25	0.7029	0.4043	C51	0.7448	0.4484
C26	0.7356	0.4202	C52	0.8539	0,4204

Table 7.6 - Effectiveness of Available Energy Transmission to Bottom Cycle

 $\epsilon_{A.E.}$ - Proportion of Available Energy of Pump-up and Helium Cycle Transmitted to Bottom Cycle.

 η_{ϵ} = 0.8 - Power Plant Efficiency Normalized for $\epsilon_{A.E.}$ = 0.8.

Curve 680324-8

.

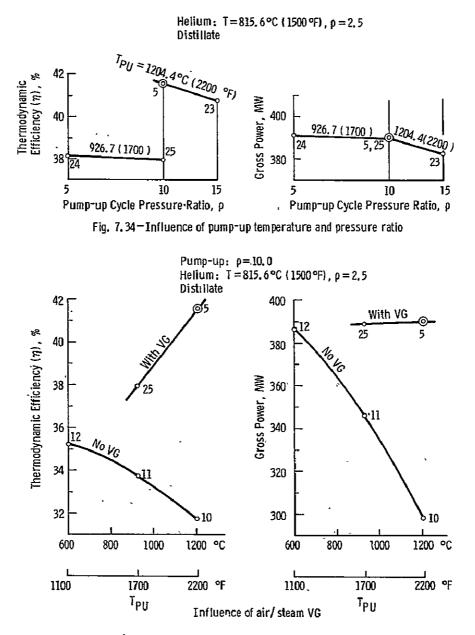
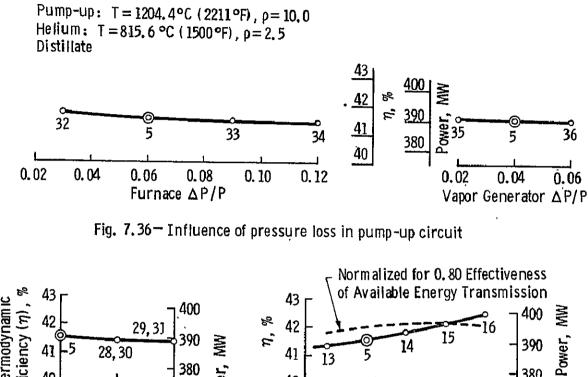
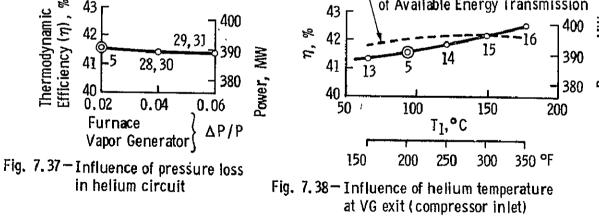




Fig. 7.35 Combined closed-cycle efficiency and power, ISO ambient

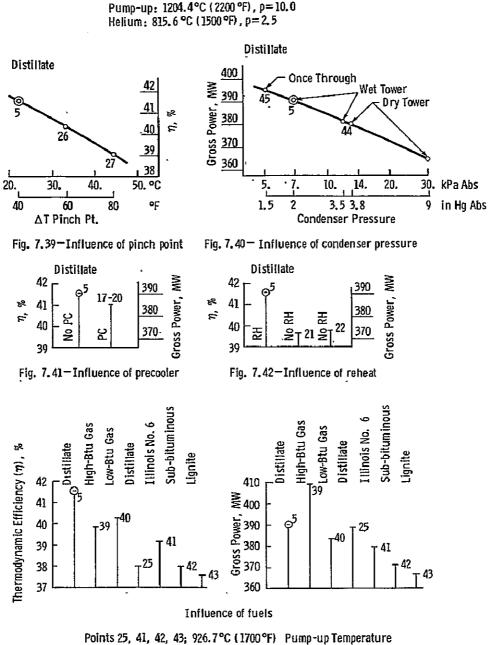
Curve 680326-A

Combined closed cycle efficiency and power, ISO ambient

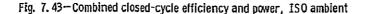
The effect of including an air-to-steam vapor generator is shown in Figure 7.35. Without the vapor generator, a greater portion of the heat from the pump-up turbine is rejected in the exhaust, particularly for the case with the pump-up turbine inlet temperature of 1478°K (2200°F).

Figures 7.36 and 7.37 show the effect of pressure loss in the pump-up and the helium circuits, respectively. The individual effect of furnace loss and vapor generator loss is the same with respect to each circuit.

Figure 7.38 shows the effect of the helium temperature at the vapor generator exit; i.e., at the compressor inlet. The performance improves with increased compressor inlet temperature. This effect is opposite to that commonly associated with compressor inlet temperature. However, it must be noted that the thermodynamic heat rejection temperature from the overall closed-combined cycle is linked most directly to the temperatures at the pump-up compressor inlet, the pump-up stack and the supposed condenser; not to that of the helium compressor inlet.


As the helium compressor inlet temperature increases, its outlet temperature also increases; and it accepts heat from the pump-up set in a more efficient temperature range. This is partially counterbalanced by the greater power required to drive the helium compressor. The effectiveness of transmission of available energy to the bottom cycle is also improved. This last effect has been removed for the dotted line of Figure 7.38 showing the efficiency values normalized for an 80% effectiveness of available energy transmission. These show an optimum compressor inlet temperature of about 394°K (250°F).

The pinch point is shown by Figure 7.39 to have a notable effect on the performance. As the vapor generator pinch point temperature difference increases from 22.2 to 44.4°K (40 to 80°K), less of the heat absorbed by the helium is transferred to the steam. This is shown by the increase in helium temperature at the vapor generator exit (T5 in Table 7.5) and by the increase in heat rejected from the helium cooler.


Figure 7.40 shows the effect of condenser pressure associated with the temperature of the circulating water. The relation between the condenser pressure, saturation temperature, and water temperature is shown in Table 7.7. The 11.85 and 30.48 kPa (3.5 and 9 in Hg) abs

°7-67

Curve 680323-B

Points 5, 39, 40; 1204. 4°C (2200°F) Pump-up Temperature

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Prešsure, in Hg abs	Saturation Temperature, °F	Cooling Water, °F	Cooling Mode	Ambient
1.5 *	91.7	49.0	Once through	ISO
2.0	101.1	66.5	Wet tower	ISO
3.5	120.6		Wet tower	5% day
3.8	123.4	90.0	. Dry tower	ISO
9.0	157.1		Dry tower	5% day

Table 7.7 - Heat Rejection Conditions

conditions are not study points, but are included in the performance summary (Table 7.5).

The effect of the precooler is shown by Figure 7.41. Note that the precooler reduces the helium temperature to 309° K (96.5°F) at the inlet of the compressor. [This is in line with the 16.7°K (30° F) approach temperature in the precooler.] As such, Points C17 through C20 are best regarded in association with Figure 7.38. It is a matter of semantics whether the temperature is reduced to 309° K (96.5°F) in the cooler and precooler or in the cooler alone. (Had it been determined that the cooler was necessary when the study was planned, the precooler points; would not have been included.) We felt that the helium temperature could be reduced to its final value in the vapor generator, but for most points this is impossible without violating the 22.2°K (40° F) pinch point temperature difference.

Figure 7.42 shows that the use of a nonreheat bottoming cycle results in about a two-point drop in efficiency and a corresponding decrease in power. Without reheat, the available heat from the pump-up set in particular is not fully utilized in the steam loop. Note that the amount of the decrement is for this particular cycle.

The influence of fuels is shown by Figure 7.43. Due to the difference in pump-up temperature, fuels for each temperature must be compared as a group. In each group, the comparison is with respect to distillate. Of the coal points at 1200°K (1700°F) temperature, Illinois No. 6 gives higher efficiency and less power than does distillate. With distillate, the heat added is 6% higher. (This is associated with the constant airflow and the combustion properties of the fuel.) This increases the power, but the increase is somewhat offset by the drop-off in efficiency. In particular, the additional heat is absorbed by the helium cycle, giving some increase in power; but it cannot be passed on in full measure to the steam cycle because of the limitation imposed by the pinch point. Were it not for this limitation, the efficiency would remain near constant and the power would increase in proportion to the heat added (as

in the recuperated cycle). Comparing the coal points, there is an approximate two-point drop-off in efficiency in going from Illinois No. 6 to subbituminous to lignite. This decrement, in the case of the low-Btu coals, is due to the greater percentage of work in the low-efficiency pump-up set. There is a corresponding decrease in power as the heat added is roughly constant. Turning now to the gas points at 1478° K (2200° F) pump-up cycle inlet temperature, the efficiency is approximately 1-1/2 points less with both high- and low-Btu gas than with distillate. This drop-off is related to the greater difference in the higher and lower heating value of the gaseous fuels as compared with the liquid fuel. Note that the performance of the low-Btu gas point allows for the energy requirements of the coal gasification plant.

7.4.7 Combined Systems with Organic Fluid Bottoming Cycles

Special attention was given to the use of organic fluids in the bottoming cycles. A detailed description of the results of those calculations, Points C46 through C52, is given below.

Points C46, C47, and C52 illustrate the importance of bottoming fluid top temperature capability and of the value of good thermodynamic fit between the subposed cycle heat absorption line and topping cycle heat rejection line. These parametric points and Point C5 are similar in that each is used under high-temperature primary cycles [pump-up cycle turbine inlet temperature of 1478°K (2200°F) and helium cycle turbine inlet temperature of 1089°K (1500°F)]. A tabulation of the efficiency results of these cycles is given in Table 7.8.

As with other cycles, much of the efficiency difference here can be explained by the difference in the available energy transmission effectiveness. Although the normalized cycle efficiencies at the 0.8 available energy transmission effectiveness are tabulated, the physical implications of achieving such values must be considered. For the steam case (Point C5), the higher transmission effectiveness was obtained for a physically plausible cycle. To maintain such a level with other steam bottomed cycles, however, would require similar high values of helium

Point No.	Power, MW	Thermodynamic, %	Available Energy Transmission Effectiveness, B	Cycle Efficiency with Available Energy Transmission Effectiveness Corrected to 0.8
C5	390.2	0.415	0.782	0.420
C46	364.2	0.388	0.706	0.411
C47	326.8	0.348	0.705	0.366
C52	408.2	0.435	0.854	0.420

Table 7.8 - Organic Bottomed Closed Combined-Cycle Efficiency Comparison

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR turbine exhaust temperature and high helium compressor inlet temperature. Increasing the cycle complexity would not materially improve the level of available energy transmission effectiveness. The lower cycle efficiency values of the R-12 points (Points C46 and C47) illustrate a fundamental point: that fluids cannot accept the available energy effectively where fluid top temperatures are limited by the chemical instability of the fluid. The 644°K (700°F) limit is for practical purposes about as high as R-12 could be used. Point C47 does not utilize recuperative feed heating and further illustrates the losses encountered when the superheated exhaust energy of these fluids is directly rejected to the heat sink. Cycle temperature-entropy diagrams for Points C46 and C47 are given as Figures 7.44 and 7.45.

The temperature-entropy diagram for Point C52 is given in Figure 7.46. Since sulfur dioxide is stable to high temperatures, the bottom cycle has been intentionally closely fitted to the available heat supply, the sulfur dioxide turbine inlet temperature being 811° K (1000° F). The close thermodynamic fit is reflected in the available energy transmission effectiveness of 0.854 and the cycle efficiency of 0.435 - two percentage points above that of Point C5. The sulfur dioxide turbine exhaust superheat has been used recuperatively to aid in feed heating the sulfur dioxide liquid rather than rejecting it to the heat sink. The good thermodynamic fit is made possible by using this exhaust superheat and by having the top pressure so far above the critical pressure. At 17.327 MPa (2500 psi) abs, sulfur dioxide has a reduced pressure of 2.19, a value which would correspond to a pressure of 48.263 MPa (7000 psi) abs in steam.

Since sulfur dioxide is a low-boiling fluid, this cycle also avoids the excessively large exhaust annulus-area turbines required when steam is used.

Cycle Points C48 through C51 use methylamine as the working fluid of the bottoming cycle below the recuperated closed-cycle helium turbines. The methylamine cycles are supercritical cycles designed to

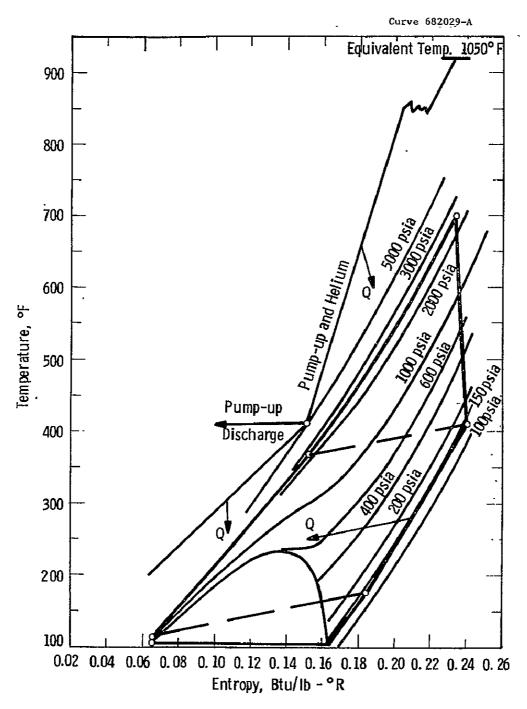


Fig. 7.44 — Dichlorodifluoro methane (R-12) T-S diagram. (Closed combined cycle Point 46)

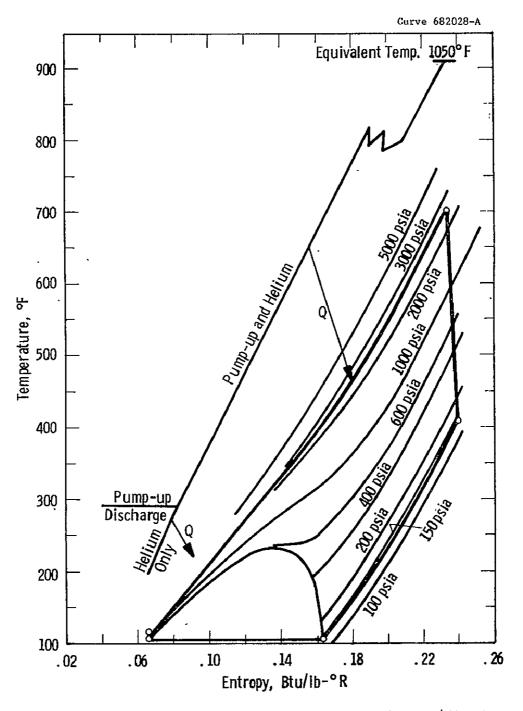


Fig. 7.45 — Dichlorodifluoromethane (R-12) T-S diagram. (Closed combined cycle Point 47)

.

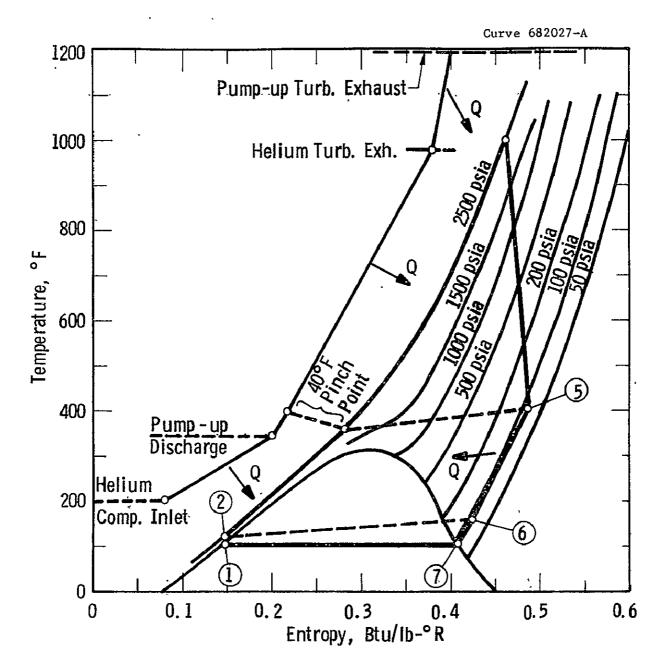


Fig. 7.46 - Sulfur dioxide T-S diagram. (Closed combined cycle Point 52)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR have the turbine expansion line end close to the saturation line, thus avoiding the superheated exhaust energy usage problem. The relatively low temperatures of the pump-up and helium heating streams permit the close thermodynamic fits for these cycles. Figure 7.47 depicts the temperature-entropy diagrams for these methylamine cycles. The results of thermodynamic efficiency calculations of these and other related cycles are tabulated below.

Point No.	Power, MW	Power Plant Efficiency, %
R6	328.5	0.350
R32	371.1	0.338
C48	413.4	0.440
C49	449.7	0.410
C50	400.0	0.426
C51	413.4	` 0.440
	` _	

Table 7.9 - Methylamine Working Fluid Bottoming Cycle Comparison

Points C48, C50, and C51 utilize organic fluid bottoming cycles subposed below recuperated closed-cycle R6, and C49 incorporates a subposed cycle below R32. Cycle C48 has as high an efficiency (0.44) as any of the closed combined cycles for the same pump-up and helium cycle turbine inlet temperatures [1478 and 1089°K (2200 and 1500°F), respectively]. The efficiency difference between Cycles C48 and C49 (0.03) denotes the difference resulting from a 1478°K (2200°F) pump-up turbine inlet temperature and one of 1089°K (1500°F).

Cycle C50 is similar to C48 except that heat is rejected to water from a dry cooling tower. Its performance is poorer, as would be

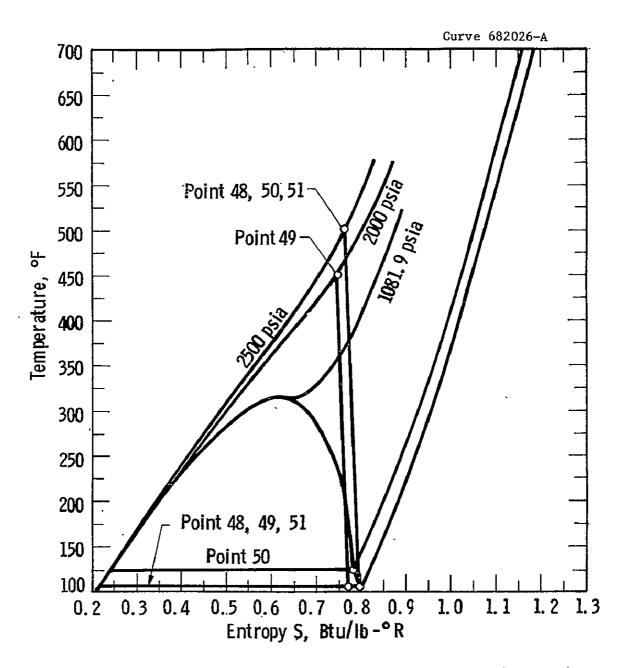


Fig. 7.47 — Methylamine T-S diagram. (Closed combined cycles Points 48, 49, 50, and 51)

expected. Cycle C50 is intended for comparison with C51, since it also has a dry cooling tower, but with direct condensing. Since the intermediate water loop is avoided, Cycle C51 is thermodynamically the same as C48. Thus, C51 shows a thermodynamic performance with a dry tower equal to that of C48 with a wet tower. This efficiency gain is one advantage of using a low-boiling fluid having a volumetric flow sufficiently low that the fluid can be deployed directly to an air-cooled condenser.

7.5 Capital and Installation Costs of Plant Components

7.5.1 Description of the Base Case Power Plants

Three base cases have been selected for study in the closedcycle gas turbine concept category. Two base cases have been identified among the recuperated closed cycles, and one base case has been selected for study within the combined closed-cycle group. Capital and installation costs were generated first for the base cases, and later for the remaining parametric points.

Base Case A of the recuperated closed-cycle systems corresponds to Point R25. It utilizes a single pump-up gas turbine to pressurize a fluid bed furnace firing Illinois No. 6 coal. The combustion gas turbine compressor airflow has been set at 408 kg/s (900 lb/s) with a compressor pressure ratio of 10 to 1 and turbine inlet temperature of 1200°K (1700°F). The closed-cycle helium gas turbine utilizes a compressor pressure ratio of 2.5 to 1 and has a turbine inlet temperature set at 1089°K (1500°F). The helium cycle recovers waste heat by means of a recuperator having an effectiveness of 0.9. Heat rejection below the helium cycle recuperator is accomplished by means of a wet cooling tower. No exhaust heat recuperation is used with the pump-up turbine cycle.

The Base Case A power plant island arrangement is illustrated by Figure 7.48, and the overall site plot plan is shown in Figure 7.49. A cross-sectional view of the pressuring or pump-up gas turbine is given in Figure 7.50. This unit incorporates a single-shaft rotor arrangement

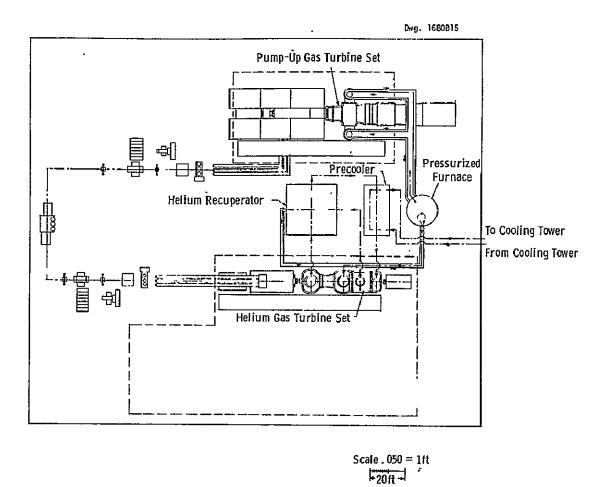
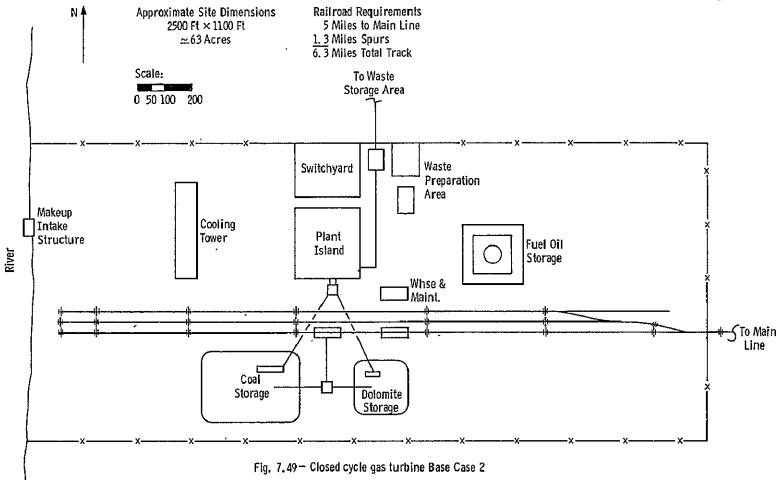



Fig. 7.48-Plant island arrangement recuperated closed-cycle gas turbine (Base Case A)

7-81

Dv/g 1675825

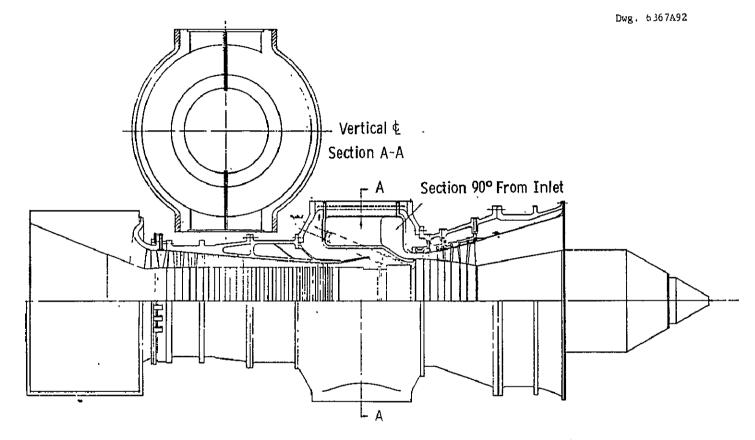
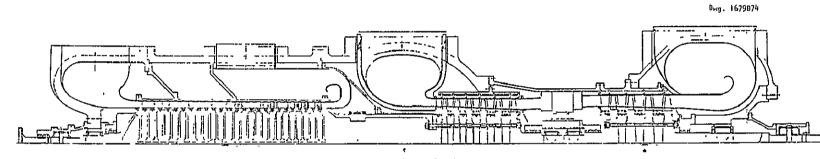
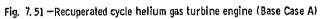


Fig. 7.50—Furnace pressurizing (pump-up) gas turbine engine

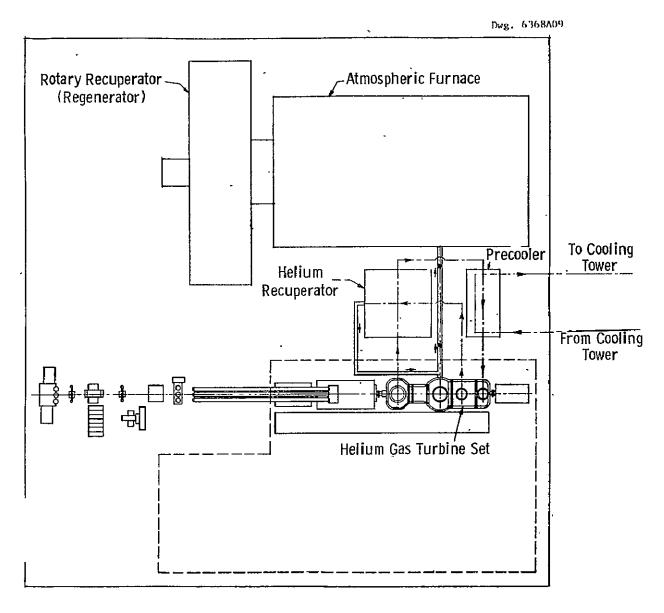

similar to the designs described in the recuperated open-cycle gas turbine and combined gas-steam turbine portions of the study. The combustion section of this unit is highly modified, however, compared to the other units. All compressor discharge air is withdrawn from the gas turbine cylinder through two large ports. The air is directed to the pressurized furnace; and combustion products are returned by means of a concentric piping arrangement, with hot combustion gases returning via the interior pipe and cooler compressor discharge air passing through the outer annulus. A convection impingement air-cooling approach has been selected for the turbine blade cooling system as appropriate for operation at turbine inlet temperatures of 1478°K (2200°F).


Figure 7.51 illustrates the closed-cycle helium gas turbine utilized in Base Case A. This unit features a 60 rps (3600 rpm) power turbine and a separate 71.3 rps (4280 rpm) high-pressure shaft. The turbine sections of each shaft utilize conventional construction through bolted individual disk designs. A welded assembly of individually forged disks has been selected for the compressor rotor design. Each shaft is supported by a two-bearing arrangement with tilting-pad fluid film journal and tilting-pad thrust bearings. Special sealing circuits are required to prevent oil contamination of the main working fluid.

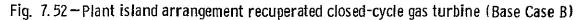
Several niobium- and molybdenum-based blading alloys have been considered for use in the initial high-pressure turbine stages for uncooled operation at the 1255°K (1800°F) turbine inlet temperature. Metallurgical studies have indicated that although the niobium alloys have superior rupture strength, they appear to suffer serious deterioration in impure helium. The most promising candidate alloy identified is the commercial molybdenum-based alloy TZM.

The overall power plant arrangement of Base Case A, exclusive of waste storage area, encompasses $254,952 \text{ m}^2$ (63 acres). Fuel and dolomite delivery is by unit train with four 29-car unit trains of coal and two 31-car unit trains of dolomite per week. There is an auxiliary distillate fuel storage tank which is used during start-up and stand-by

1


operation. The waste dolomite storage area totals $728,453 \text{ m}^2$ (180 acres). Heat injection from the plant is accomplished by one eight-cell wet cooling tower.

The recuperated closed-cycle system Base Case B corresponds to Point R48. The turbine island arrangement for this plant is shown in Figure 7.52, and the overall plot plan arrangement is illustrated in Figure 7.53. This plant utilizes a single closed-cycle helium turbine which receives its heat input from an atmospheric pressure furnace (in contrast with the pressurized furnace of Base Case A). Consequently, no pressurizing or pump-up combustion gas turbine is required. The power plant is fired on coal-derived distillate fuel. The closed-cycle helium gas turbine is essentially similar in design to the unit of the Base Case A power plant. The power plant site arrangement is similar also to the Base Case A arrangement, with the principal differences being the substitution of liquid fuel storage tanks for the coal and dolomite piles and the elimination of the waste dolomite storage area.


One base case has been identified from the grouping of combined closed-cycle systems under study. This base case corresponds to Point C5. The base cycle consists of a power-producing pressurized furnace subsystem, which is bottomed by a closed-cycle gas turbine system. Both these Brayton cycles are, in turn, bottomed by a conventional steam Rankine cycle. The plant island arrangement for the base case is illustrated in Figure 7.54; the overall power plant plot plan in Figure 7.55.

A single pump-up gas turbine is incorporated in the combined closed-cycle base case. The electrical output from this 408 kg/s (900 lb/s) inlet airflow machine is 113 MW. The unit has a turbine inlet temperature of 1478°K (2200°F) and a compressor pressure ratio of 10 to

The single helium closed-cycle gas turbine selected for this plant is illustrated in Figure 7.56. It is similar in design to the unit of Base Case A, with the essential difference being the construction of the compressor rotor. This design incorporates a through-bolted assembly

Scale . 050 = 1ft

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

.

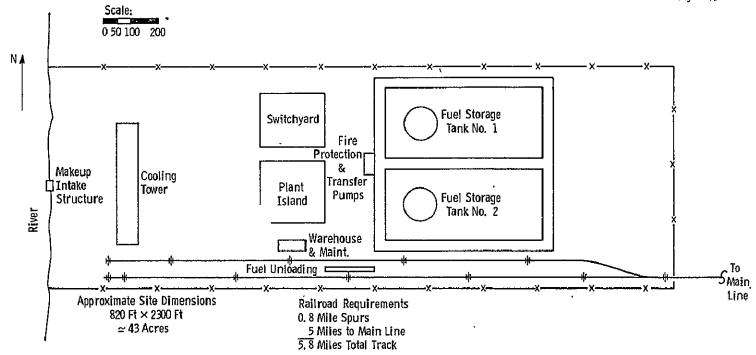
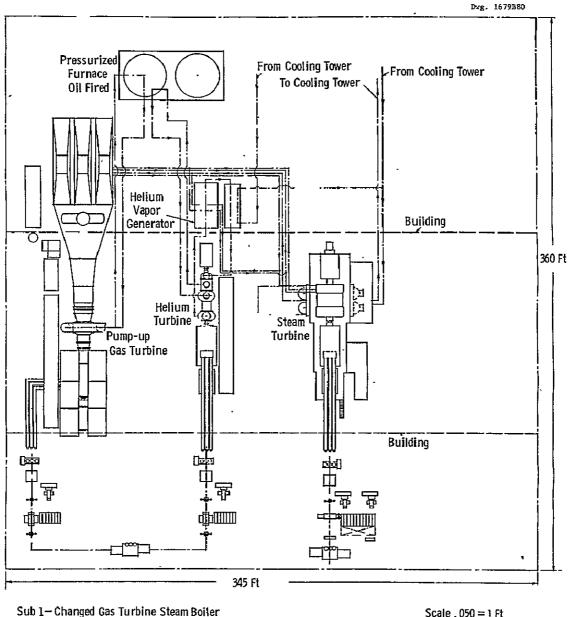
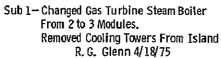
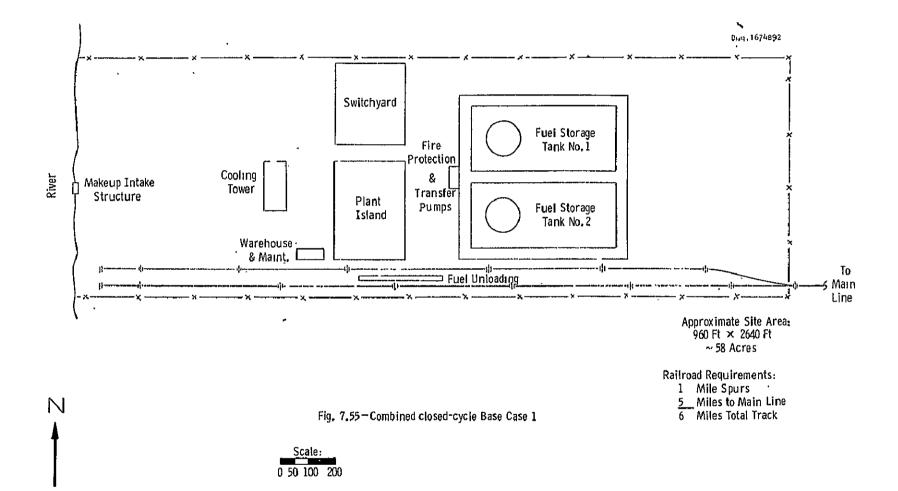
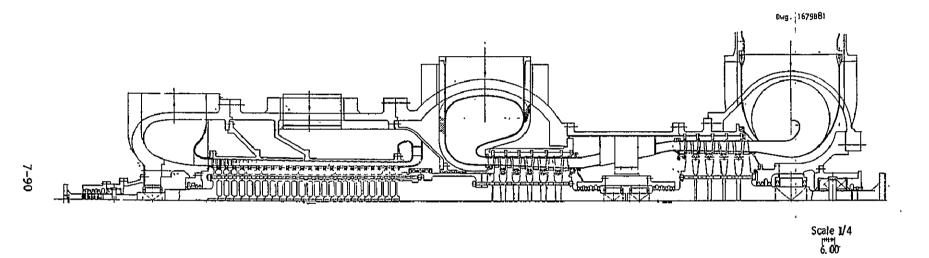




Fig. 7.53- Recuperated closed-cycle Base Case 3


Dug 1675822



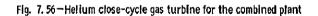

Scale , 050 = 1 Ft 20 ft

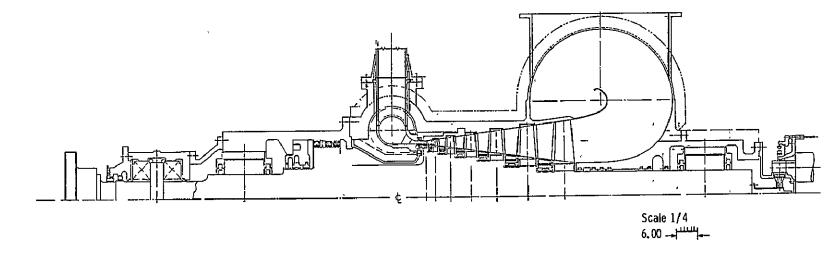
Fig. 7.54-Plant island arrangement combined close-cycle gas turbine (point 5)

of compressor disks as opposed to the integral, welded design. The unit is designed for a net 86 MW electrical output, with a turbine inlet temperature of 1089°K (1500°F). The compressor pressure ratio is 2.5 to 1.

The base case Rankine bottoming cycle consists of a 24.132 MPa (3500 psi) gauge, 755°K/783°K (900°F/950°F) steam turbine generator of 191 MW electrical output.

Principal heat input to the cycle is from a distillate fuelfired furnace pressurized to 1013 kPa (10 atm). The exhaust heat from each gas turbine is recovered by means of heat recovery vapor generators for the steam bottoming cycle. A four-cell wet cooling tower has been selected to reject waste heat from the helium turbine compressor precooler and the steam cycle condenser.

The overall site requires an area of 190,202 m^2 (47 acres) and is serviced by three 34-car unit train fuel deliveries per week.


During the combined closed-cycle portion of the study, considerable attention was given to the use of organic fluid bottoming cycles. The potential for relatively smaller turbomachinery in conjunction with the use of these fluids has been discussed. A conceptual design for a Rankine cycle turbine using sulfur dioxide working fluid is shown in Figure 7.57. It is interesting to note that the last-row blade size for this 60 rps (3600 rpm) unit of approximately 70 MW net output is just 0.28 m (11 in) in length.

7.5.2 Approximate Sizes and Weights of Major Components

The relatively complex closed-cycle gas turbine systems have enjoyed limited commercial application to date (see Subsection 7.1). Consequently, estimates of major component configurations, particularly with respect to furnaces and heat exchangers, only can be approximate.

A tabulation of the estimated sizes and masses of the major components for these systems is listed in Table 7.10.

Dwg 1680810

.

Fig. 7.57-Conceptual design of a sulfur dioxide turbine

Component	Basic Dimensions	Mass (Weight), 1b
Recuperated Closed-Cycle Base C	Case A (Parametric Point 25)	c.
Pump-up Gas Turbine		
Turbine section	10,4 ft x 13,8 ft dia	150,000
Compressor section*	19.3 ft x 13.8 ft dia	130,000
Pressurized Furnace	15 ft dia x 100 ft	8,000,000
Helium Gas Turbine		
Turbine section	28 ft x 14.5 ft dia	370,000
Compressor section	21 ft x 12.5 ft dia	190,000
Helium Recuperator	20 ft dia x 150 ft	2,000,000
Recuperated Closed-Cycle Base (Case B (Parametric Point 48)	
Atmospheric Furnace (including preheater)	150 ft x 100 ft x 150 ft	28,000,000
Helium Gas Turbine		
Turbine section	30 ft x 14 ft dia	675,000
Compressor section	20 ft x 14 ft dia	250,000-
Helium Recuperator	20 ft dia x 150 ft	3,000,000
Combined-Closed Cycle - Base Ca	ase (Parametric Point 5)	
Pump-up Gas Turbine		
Turbine section	10.4 ft x 13.8 ft dia	150,000
Compressor section*	19.3 ft x 13.8 ft dia	130,000
Pressurized Furnace	30 ft x 70 ft x 150 ft	8,000,000
Pump-up Vapor Generator	30 ft x 60 ft x 50 ft	1,500,000
Helium Gas Turbine		
Turbine section	20 ft x 11.3 ft dia	160,000
Compressor section	15.4 ft x 9.20 ft dia	. 120,000
Helium Vapor Generator	15 ft x 50 ft	1,000,000
Steam Turbine Generator	80 ft x 16 ft dia	750,000

Table 7.10 - Approximate Size and Mass of Base Case Closed-Cycle System Major Components

* Includes Combustor section.

7.5.3 Price Determination Procedure

The method of determining pump-up gas turbine prices is identical to that used for the open-cycle recuperated and combined gas-steam systems (see Subsection 5.5). Suitable price modifications were made for the turbine combustor shell and the combustor subsystem to account for the full air extraction and the absence of conventional internal combustors.

Closed-cycle helium turbine prices were determined in a manner very similar to that used for the open-cycle gas turbines. Concept designs were prepared and arbitrarily divided into major sections or components. The price for each section was estimated and then functionally related to a principal thermodynamic parameter. Then, as with the opencycle gas turbines, the price of each parametric point engine was determined as the sum of the prices of its components as found from the functional relationships.

The method of pricing the steam turbine generator was identical to that used in conjunction with the combined gas-steam system and described in Subsection 6.5 of this report.

Because the heat exchange equipment represents a relatively large percentage of the total cost, the prices of these items (including the pressurized furnace, heat recovery vapor generator, intercoolers, and recuperators) play a pivotal role in assessing the closed-cycle energy conversion systems. Very little commercial experience exists, however, in manufacturing such equipment for closed-cycle gas turbine systems. The price estimates for this equipment were, therefore, approximate in nature and should be regarded as such. The procedure used to determine the price of this equipment was first to prepare conceptual designs in several heat exchangers (approach described in Subsection 7.3) and then to prepare price estimates for each. Correlations were then developed to relate parametric variations to the examples. For instance, the resulting correlation developed for the helium recuperator parametric pricing is described below.

> REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Recuperator Price,
$$\$ = C_1 \left(1 + \alpha_1\right) \left[1 + C_2 \left(1 + \alpha_2\right) P\right] W^{0.65} \left(\frac{\varepsilon}{1 - \varepsilon}\right)$$

The constants C_1 and C_2 are 10,250 and 0.00094, respectively. P is the nominal shell pressure obtained by dividing the cycle top pressure by the compressor pressure ratio. W is the helium flow rate in lb/s. ε is the recuperator effectiveness, and α_1 and α_2 are adders to account for an increase in price with temperature. The following values were used:

Price Adjustment Factors

Turbine Outlet Temperature	α ₁	α2
T < 833°K (1050°F)	0	0
833°K (1050°F) < T < 894°K (1150°F)	0.15	0.35
894°K (1150°F) < T	0.30	1.00

The two cases with increased pressure drop were individually adjusted according to a general curve for plate-fin recuperators (Figure 5.45), even though these recuperators are assumed to be of the shell-and-tube type. The reduction from the equation price was 6.35% for 4% $\Delta P/P$ and 11% for 6% $\Delta P/P$.

Furnace prices were generated for each of the categories: pressurized and atmospheric pressure, distillate-fired heaters, pressurized fluidized bed fired heater systems, and low-Btu gas-fired heater systems with integrated gasification plants. The total price for each parametric point furnace system was summed from individual components such as (for the pressurized fluidized bed fired heater systems):

TABLE 7.11 RECUPERATED HELIUM CLOSED CYCLE & L.SYSTEM

ς.

	•					- -				
ACCOUNT N 7 18 20	10 AUX	POWER 1. 1. 1.	MWE PERC 78391 46407 19939 58350 73758	PL ANT 26.3 21.6 23.5 25.6	POW 0P 5622 3030 34531 9530 57171	ERATION 434	COST MA 00000 16714 00000 00000 68778	INTENANCE CC 11.265 -000 -000 11.269 N-HR 106 F	ST 270 100 100 100 100	
RECUPER	ATED MELT	114 CI 64	76345 ED CVCIE C	. т. с ² еї	8335	436.	<u>85492</u>	11-269	170	
NOMINAL NOM HEAT ST TURB	POWER - MW RATE - ET HEAL RATE	U/KW-HR Change	316 1Ç449	7000 3255 •0000	NET PO	WER, MW EAT RATE	E ■ BTU/K	106 106	09-9315 77-523	
DESIGN P NUMBER O U. BTU/H HEAT REJ	RESSURE, 1 F TUBES/S R-FT2-F ECTION	IN 4G A Hell	2	0000 00000 00000	NUMBÉR Ture i Termin	OF SHE Ength: NAL TEMP	LLS FT DIFF+ .	F	•0000 •0000 5•0000	
DESIGN T RANGE, F OFF DESI	EMP• F GN PRES• :	IN HG A	51 15	4000 0000 0000	APPRD/ OFF DI LP TUS	ACH+ F Esign Te Reine bl	MP, F Ade Len	, IN	15-0000 77-000 -7000	
1 6 116 215 10 316 9 41 51	26.10 .000 .000 .000 .000 .000 .000 .000	C 7 777272727 477 477	10.5 6300 5005 5002 500 500 500 500 500 500 500	000 11223743 000 11223743 000 11223744 000 10000000 000 11223744	100 121	.327 .000 1.000 3.000 .000 .000 .000 1.000 	4 04949494949 140199944	.000 .000 .000 .000 .000 .000 .000 .00	5 105050505050 11205050505050 11205050505050 112050505050 11205050 112050 110050 1120050 1100000000	4.500 -000 -000 -000 -000 -000 -000 -770 -700 -770 -700 -770 -770 -700 -770 -700 -770 -7000 -7000 -700 -700 -700 -700 -700 -700 -700 -700 -700 -700 -70
-1 6. 11628 21 25 316 41 46	1.000 1.000 100 \$6666.000 000 000 000 000 000 000 000 000	2 7 12 12 227 32 37 47	44850000. 2730000. 10 2730000. 10 10 10 10 10 10 10 10 10 10 10 10 10	3 3 3 3 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	423CC 994DC 12710D0C	300 1.500 050 050 000 000 000 140 150 000 000 000 000 000 000 000	949494949 112233949	1.080 .080 4030000.000 .000 1.000 350000.000 1.000 1.000 1.000 1.000	5 050505050 1122505050	1.000 7460060.000 .050 .000 .000 .000 .140 .000 .000 .140 .000 .00

.

- Heater modules
- Coal and dolomite preparation equipment
- Coal and dolomite feeding equipment
- Solid waste handling equipment
- Particulate removal equipment '
- Special piping.

Section 2 of this report describes the balance of plant pricing methods utilized by the architect/engineering firm, Chas. T. Main, Inc.

7.5.4 Tabulation of Overall Plant Material and Installation Costs

As described in Subsection 6.5.4, the prices for steam turbine condensers, cooling towers, and related installation costs have been calculated by price correlations preprogrammed into the cost of electricity calculation. The prices of remaining items were determined by means of the methods described above.

The price and heat rejection input for the recuperated cycle Base Case A (Point R25) as used in the computer program is given in Table 7.11. Similar input for the recuperated cycle Base Case B (Point R48) and the combined closed-cycle base case (Point C5) are given in Tables 7.12 and 7.13, respectively.

Prices and installation costs have also been prepared according to account code category (including such headings as Site Development, Excavation and Piling, Plant Island Concrete, etc.). This tabulation for the recuperated closed-cycle Base Case A is shown in Table 7.14, and similar listings for the recuperated closed-cycle Base Case B and the combined closed-cycle base case are shown in Tables 7.15 and 7.16, respectively. Both unit and total quantity costs are listed in addition to the percent of the total equipment and installation cost contained within each particular account code.

Table 7.17 gives similar cost tabulations for the remaining parametric points of the recuperated closed-cycle system, and the

Table 7.12 RECUPERATED HELIUM CLOSEC CYCLE 3 T SYSTEM

ACCOUN TOTAL RECU Nomin Nom H St tu Conde	IT NO AUX 4 19 S PERATED HELIU AL POWER + MWE IEAT RATE + STU IRB HEAT RATE INSER	POWER + MWE 2.755 1.831 4.537 1.00520 /KL-HR CHANGE	E PERC PLANT 596 50. 100 39. 796 1. CYCLE C T SYS 366.2000 1636C.7979 •0000	PGW OPERATION DO115 90883 26975 Tempase case inp Net power. MW Net heat rate	CCST MAINTENANCE C 00000 17.700 00000 17.700 00000 17.700 17.700 00000 17.700 17.700 00000 17.700 00000 17.700 000000 1	20 20 20 320 361.6120 363.3265
DESIG NUMBE U, BI HEAT	N PRESSURE, I R OF TUBES/SH U/HR-FI2-F REJECTION	N HG A Ell	2-0000 -0000 -0000	NUMBER OF SHE TUBE LENGTH, TERMINAL TEMP	LLS . FT DIFF, F	.0000 .000 5.0000
DESIG Range Off D	N TEMP, F F Esign Pres, I	N HG A	51.4000 15.0000 .0000	APPROACH, F Off Besicn Te L° Turbine SL	MP+ F ADE LEN+ IN	15.0000 77.0000 .0000
1 516161616 73616 746	- C CO - 200 1 · 0 CO 1 · 0 CO - 0 CO	2 7 12 12 22 27 37 37 37 47	2.000 3 FPO 13 43.000 18 11CCC.CFO 23 5000:000 -24 110.CFO 33 35CCCC.C00 43 .000 49	3 .329 .000 1.000 .000 .000 .000 .000 10000.000 .000 1.000 1.000 .000 .000	4 .501 3 .000 14 1.000 19 5.000 24 750.000 24 750.000 34 .700 34 .700 34 .700 44 \$500.000 44 \$500.000 44 \$000 44 \$000 500	2 4.500 10 .000 15 .000 20 .000 25 *CC.000 30 .200 35 .700 40 254000.000 45 .600 50 .6000
5 616161616 11223344	1-020 3940000-000 -000 7-650000-000 1-000 -000 -000 -000 -000 -000	7 36	43CBCC.000 29	3 300 000 000 000 000 000 000 1000 13430000000 140 000 140 000 000 000 000 000	600 14 7370000,000 19 6090 24 600 25 1.600 34 150 35 546600.660	15 050 20 000 25 000 30 000 35 1000 47 140

	Table 7.	13	CON31	ENED AI	R-4ELI	UM-STE	AĤ TI	URB CY	CLE						
	ACCOUNT	F NO 4	AUX	PONER 3	MWE 15585	PERC P	LANT 5 D. J	POW 15688	OPERAT	ION C	051 MA	INTENA	NCE CC	7 2 (2 9	
	1	<u>14</u> _8		3.	00000		¥9•1	00000 54312		3.3	0889		-000 -000	00 00	
	LOJALS C Nomited	OMBINE	ED AIR-	4ELTบั#	25455 I-Steam	TU93	CX CLI	62860 E <u>985</u>	E CASE	20.8 INPU	7567 T		4.863	529 	
	NOM YE	AT RAT	TE, BTU T Rate	J/KW-48 Change	1	8215.5 •0	752	VET	HEAT	RATE	BTU/K	2-42	83	49.3737	
	CONDEN Design	SER	SURE .	EN HG A	- A	2.0	000	NUM	BER_OF	SHEL	LS			1.0000	
	NUMBER U BTU	OF TU	U8ES/SH T2-F	IELL		6587.3 591.4	370 577	TUB	E LENG Minal	TH• F Temp	T DIFF 1	F		77.4467 5.0000	
	DESIGN RANGE	TEMP	+ F			51.4 23.1	000 030	AP PI	ROACH.	F N TFN:	P. F			25 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20	
	OFF DE	SIGN I	PRES . 3	EN HG /	٩	.0	000	LP	TURBIN	E BLA	DE LEN	• IN	T	25.0800	.
	1 6 11	3	112.833 91.200 1.003	7		.30 2.000 2.000 58.000 58.000 50.000 50.000 00.900 50.900 5.350 1.00.000 1.900	8	10760	00000	.415 080	19 19		.000 1.000	5 10 15	1.000
	16 21		2.000	22	132	58.000	18 23		3.	000 000	19 24	123	5.000	15 20 25 30 35	• 000 • 000 • 000
	31		1 000 1 000 1 000	27 32 37	1	000 50.000 00.000	28 33		5000	000	29 34	810000	0.000	30 35	
	36 41 46	12008 77 Gi	000-00 000-00 000-00	37 4 <u>2</u> 47	5500	00.000 00.000 000	38 43 43	:	12033.1	000 000 000	39 44 40	25000		40 45 50	322000.000 150000.000 5.000
	51 1		•039 1•00	52	19160	5.350 100.00	0	3	5.	.300	4		1.000	: 5	1.000
	11	133393	1.003	7 12 17	17500	1.000	13 13	1.01	1. * acian	000 050	9 14 19	175000	1.000	10	7410000.000
1	21 25	850004	+088	22 27		1.00.00 1.000 140 1.000 .300 .800 00.000 86.309 .000	23 28	15	1	000 000 :	20	322000	090 000 000	25 30	6350000.000 .300 .000
;	31 36			32 37	3350	000.000	33 38			000 140	34 39		230	35 40	.000 .140
	61616161 122336161 33451	• 1	12+800 000- 000-	42 • 47 52		000 000	49	SZZ	325.	000 000 4 000	29 34 39 94 94 54	250	1.000	20 20 30 30 40 50 55	000 1.000 1000
				-								200		20	20000000

7-99

.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

٠

Table 7.14 RECUPERATED	HELIUM CLOSLD (PARAMETR)	CYCLE & T SYSTEN IC POINT ND.25	ACCCUNT LIST	INC	
ACCOUNT NO. & MAMER			INC SVUNIT	R#T200 TAM	INS COST+4
SITE DEVELOPMENT 1. 1 LAND COST 1. 2 CLEARING LAND 1. 3 GRADING LAND 1. 4 ACCESS RAILROAD 1. 5 LOOP RAILROAD TRA 1. 5 SIDINC & R TRACK 1. 7 OTHEP SITE COSTS PERCENT TOTAL DIRECT (ACRE ACRE ACRE MILE MILE MILF ACRE ACRE COST IN ACCOUNT	63.0 1000.00 53.0 .0 53.0<	00 5 5 5 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5	63000.00 .CC 575C00.CO 127500.0C 147122.78 572622.78	-550 -17558-74 139000-00 55000-00 -00 120000-00 -00 147122-79 1619721-52
EXCAVATION & PILINC 2. 1 COMMON EXCAVATION 2. 2 PILING PERCENT TOTAL DIRECT (N YD3 204 Ft 704 Cost in account	4€.5 00.0 €.5 2 = .369 ACC0	3.00 2.50 Sunt total.≠\$	•00 45760C•C0 457600•00	73200.00 592400.00 677600.00
PLANT ISLAND CONCRETE 3. 1 PLANT IS. CONCRET 3. 2 SPECIAL STRUCTURE PERCENT TOTAL DIPECT O	TE YD3 E8 Es YD3 Cost in account	8C.0 7C.C 0 0 3 = 1.010 ACC	0 00.00 0 000 00NT TCTAL+\$	616000.00 00 61600.00 61600.00	704C60.00 704C60.00 764C66.00
HEAT REJECTION SYSTEM 4. 1 COOLING TOWERS 4. 2 CIRCULATINE P2C 4. 3 HELIUM PRECOOLER PERCENT TOTAL DIRECT	SYS FACH FACH COST IN &CCOUNT	11-2 .0 1-0 .C .0 .4 = 5.C36 ACC	.60 .00 .00 CUNT TOTAL+\$	1523500.00 601687.30 2393939.97 4684187.25	841500.00 755615.50 266000.00 1857315.45
STRUCTURAL FEATUPES 5. 1 STAT. STRUCTURAL 5. 2 SILOS & BUNKERS 5. 3 CHIMNEY 5. 4 STRUCTURAL FEATU PERCENT TOTAL DIRECT	ST. TON B TPH FT PES EACH COST IN ACCOUNT	50.0 650.0 •C 1900.0 •D 70000 1.0 700000 5 = •304 200	175.00 750.00 50 50 50 50 50 50 50 50 50	552500.00 .00 300000.00 352500.00	148750-00 -CO -00 50C00-CO 198750-00
BUILDINGS 5. 1 STATION BUILDING 5. 2 ADMINSTRATION 6. 3 WAREHOUSE & SHOF PERCENT TOTAL DIRECT	S FT3 1CLED FT2 50 FT2 1CC COST IN ACCOUNT	CC.(15.0 15.0 12.C 6 = .513 ACC	6 .16 0 14.00 5 55 5 50 5 50 TOTAL • \$	160C00 .C0 80000 -D0 120000 .C0 360000 .00	160000.00 70000.00 9000.00 310000.00
FUEL HANDLING & STORAD 7. 1 COAL HANDLING SY 7. 2 DOLOMITE HAND. SY 7. 3 FUEL OIL HAND. S PERCENT TOTAL DIRECT	-			1360375.72 1329857.69 76378.21 3766511.59	66848.53
■UEL PROCESSING 8. 1 COAL DRYER & CPU 9. 2 CARBONIZERS 8. 3 CASIFIERS PERCENT TOTAL DIRECT	SHER TPH TPH TFH COST IN ACCOUNT	0. 0. 0. 0.000. = 8	C	03. 00. 03. 80.	.00 .00

Table 7.14RFCUPTRATED HELIUM CLOSEC CYCLE & I SYSTEM ACCOUNT LIS Continued PARAMITRIC POINT NO.25	TINC	,
ACCOUNT NO. 2 NAME, UNIT, AMOUNT MAT S/UNIT INS S/UNIT	MAT COST+4	INS COST+4
FIRING SYSTEM PERCENT TOTAL DIRECT COST IN ACCOUNT S = .000 ACCOUNT TOTAL.	• 00 • 00	-20
VAFOR CENEPATOP (FIPEL) 10. 1 PRESSURIZED HE FURNACE PERCENT TOTAL DIPECT COST IN ACCOUNT 10 =44.011 ACCOUNT TOTAL.	44850000.00 44850060.00	13455000-00 13455000-00
ENERGY CONVERTER 1.0 7450000.00 745999.99 11. 1 PUMP UP GT-GEN & AUX 1.0 7460000.00 745999.99 11. 2 HE TURB COMPRESSOR SECT 1.0 2730000.00 136500.00 11. 3 HE TURB TURBINE SECT 1.0 -4030000.00 201500.00 11. 4 HE TURB AUXILIARIES 1.0 2°6000.00 300700.00 11. 5 HE TURB-3EN & EXCITEP 1.0 4°30000.00 300700.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 11 =17.749 ACCOUNT TOTAL, \$	7460000.00 2730000.00 4030000.00 2880000.00 4230000.00 21330000.00	745999.99 135500.00 201500.00 403200.00 380700.00 1607895.55
COUPLING HEAT EXCHANCLO 12. 1 PERCENT TOTAL DIRECT COIT IN ACCOUNT 19 = SEED ACCOUNT TOTAL.	.cô .cc	-07 -00
HEAT RECOVERY HEAT EXCH. 13. 1 PUMP UP RECUPERATOR 13. 2 HELIUM RECUPERATOR PERCENT TOTAL DIRECT COST IN ACCOUNT 13 = 5.745 ACCOUNT TOTAL.S	-00 5540000-00 5940000-00	.00 1421000.00 1491000.00
WATER TREATMENT 14. I DEMINERALIZER (PM -C 2500.60 700.00 14. 2 CONDENSATE POLISHING KVS	● [6 • D 0 • 0 5	- CC - CC - LC
POWER CONCITIONINC 15. 1 TD TRANSFORMER PERCENT TOTAL DIRECT COST IN ACCOUNT 15 = 1.105 ACCOUNT TOTAL .	1571775.48 1531776.48	36635.53 36635.53
AUXILIARY MECH EGUIPMENT 15. 1 BOILER FEED PINE FOR KWE 16. 2 OTHER PUMPS KWE 11442:50 16. 3 MISC SERVICE SYS KWE 275077.2 16. 4 AUXILIARY BOILER PPH PEPCENT TOTAL DIRECT COST IN ACCOUNT 15 = .503 ACCOUNT TOTAL.	-00 160 6 57 42 334704 -50 435401 -91	.00 13731.47 203832.72 202564.19
PIPE & FITTINGS 17. 1 CONVENTIONAL PIPING TON 100.00 17. 2 HOT GAS PIPING FT 290.0 5600.00 2250.00 PERCENT TOTAL DIRECT COST IN ACCOUNT 17 = 2.109 ACCOUNT TOTAL, \$	300000.00 1624000.00 192400.00	180000.00 552500.00 332500.00

Table 7.14 RECUPERATED Continued	HELIUM CLOSED CYCL Parametric F	E G T SYSTEM ACCOUNT LI Point No.25	STING	
ACCOUNT NO. & NAME,	UNIT, AMOUNT	MAT SJUNIT INS SJUNIT	MAT COST.5	INS COST,\$
AUXILIARY ELEC EQUIPME 18. 1 MISC MOTERS.ETC 19. 2 SWITCHGEAR & MCC 18. 3 CONCUII.CABLES.TI 14. 4 ISOLATED PHASE B 18. 5 LIGHTING & COMMU PERCENT TOTAL DIRECT	228857.1 PAN KWE 267000.1 RAYS FI 954000.1 US FT	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1430651.44 6 1259279.98 0 .00 3 133500.37	38905.92 120150.33 1297439.58 .00 164014.74 1620510.86
CONTROL. INSTRUMENTATI 19.1 COMPUTER 19.2 OTHER CONTROLS PEPCENT TOTAL DIRECT	EACH 1.0	250000-00 150000-0	250000.00	12000.00 150000.00 16200.00
PROCESS WASTE SYSTEMS 20- 1 ROTTOM ASH 20- 2 DRY ASH 20- 3 WET SLURRY 20- 4 ONSITE GISPOSAL PERCENT TOTAL DIRECT	TPH 14- TPH 14- TPH 31- Acre 268 Cost in Account 20	/ 1012042_95 253010_7	0 4 1012042.95 5 *2144922.22 2 1742335.97 4905301.12	.00 253010.74 536230.55 2594784.69 3384025.97
STACK GAS CLEANING 21. 1 PRECIPITATOR 21. 2 Scrubber 21. 3 MISC Steel & Duc Percent Total Direct	EACH KWE +1 Cosi in agcouni 21	20.23 8.7	3 - 99 0 - 00	• 68

TOTAL DIRECT COSTS, 5

100919831.00 29776550.75

7-102

TABLE 7.15 RECUPERATED HELIUM CLOSED CYCLE G T SYSTEM ACCOUNT LISTING PARAMETRIC POINT NO.49												
ACCOUNT NO. 5 NAME, UNIT AMOUNT MAT SZUNIT ING SZUNIT	MAT COST:S	INS COST,\$										
SITE DEVELOPMENT. ACRE 43.0 10CD.GO .00 1. 1 LANC COST ACRE 14.3 .00 600.80 1. 2 CLEARING LAND ACRE 14.3 .00 500.80 1. 3 GRADING LAND ACRE 43.0 15000.00 1000.00 1. 4 ACCESS RAILROAD MILE 5.0 115000.00 110000.00 1. 5 LOOP RAILROAD MILE .0 12000.00 90000.00 1. 5 SIDING R TRACK MILE 1.0 125000.00 90000.00 1. 7 OTHER SITE COSIS ACRE .0 .0 .00 PERCENT TOTAL DIRECT COST IN ACCOUNT 1 = 1.146 ACCOUNT TOTAL. .0	43000.00 00 575008.00 125000.00 162410.61 845410.61	\$599.14 129000.00 350000.00 .00										
IXCAVATION & PILING 2. 1 COMMON EXCAVATION YD3 33060.0 .00 3.00 2. 2 PILING FT 33000.0 5.50 8.50 PERCENT TOTAL DIRECT COST IN ACCOUNT 2	572000.00	99050.00 74300.00 847555.00										
PLANT ISLAND CONCRETE 3. 1 PLANT IS. CONCRETE YD3 11000.0 70.00 80.00 3. 2 Special Structures YD3 .0 .00 .00 Percent total direct cost in account 3 = 1.103 account total.s	770000.00 #00 770000.00	.[0										
HEAT OF JECTION SYSTEMFACH17.0.00.004. 1 COOLING TOWERSFACH1.0.00.004. 2 CIRCULATING H2D SYS EACH1.0.00.004. 3 HELIUM PRECOLEREACH.0.00.004. 3 HELIUM PRECOLEREACH.0.00.009ERCENT TOTAL DIRECT COST IN ACCOUNT 4 = 6.910ACCOUNT TOTAL.5	26C25CG.CC 955788.10 3797009.97 7353288.06	130(50((C 1254632.17 422000.00 2377132.12										
STRUCTURAL FEATURES 5. 1 STAT. STRUCTURAL ST. TCN 7EC.C 6FC.CO 175.CC 5. 2 SILOS & RUNKERS TP-1 .0 1800.GD 750.00 5. 3 CHIMNEY FT 40C.0 .0C .0C .0C 5. 4 STRUCTURAL FEATURES EACH 1.0 54000.50 92000.00 PERCENT TOTAL DIPECT COST IN ACCOUNT 5 = 1.376 ACCOUNT TOTAL.5	427500.00 -00 435070.92 254000-00 1176570.92	•00 FF2602•35 S300•00										
EUTLDINGS1300000.016156.1 STATION BUILDINGSFT3 1300000.016.0014.006.2 ADMINSTRATIONFT2 5000.016.0014.00F.3 WAREHOUSE & SHOPFT2 10000.012.009.00FERCENT TOTAL CIRECT COST IN ACCOUNTE .E12 ACCOUNT TOTAL.S	203000.00 90000.00 120000.00 408000.00	76C6C.(C \$000 D.00										
FUEL HANDLING & STORACE 7. 1 COAL HANDLING SYS TPH .0 .00 .00 7. 2 DOLOWITE HAND. SYS TPH .0 .00 .00 7. 3 FUEL OIL MAND. SYS SAL 9460000.0 .00 FFPCENT TOTAL DIRECT COST IN ACCOUNT 7 = .54 ACCOUNT TOTAL.5	-00 -00 349760-00 849760-00	537613.41										
FUEL PROCESSING 50 60 </td <td>- 00 - 00 - 00 - 00 - 00</td> <td>•00 •00</td>	- 00 - 00 - 00 - 00 - 00	•00 •00										

Table 7.15 RECUPERATED HELTUM CLOSED CYCLE H T SYSTEM ACCOUNT Continued PARAMETRIC POINT NG.4% ACCOUNT NO. & NAME, UNIT AMOUNT MAT SJUNIT INS SJUN	
FIRING SYSTEM 9.1 Percent total direct cost in account 9 = .000 account total	
VAPOR GENERATOP (FIRE)) 10. 1 PRESSURIZED HE FURNACE PERCENT TOTAL DIRECT COST IN ACCOUNT 10 =48.208 ACCOUNT TOTAL	0.00 55490000.00 16647000.00 - .+\$ 55490000.00 15647000.00
ENERGY CONVERTER 11. 1 PUMP UP GT-CEN & AUX 11. 2 HE TURB COMPRESSOR SECT 1.0 3660000.00 183000 11. 3 HE TURB TURBINE SECT 1.0 7370000.00 563500 11. 4 HE TURB 4UXILIARIES 1.0 3240000.00 551600 11. 5 HE TURB-GEN & EXCITER 1.0 5810000.00 E12899 PERCENT TOTAL DIRECT COST IN ACCOUNT 11 =15.702 ACCOUNT TOTAL	.00 .00 .00 .00 .00 .00 .00 3660000.00 183000.00 .00 7370000.00 551600.00 .00 3940000.00 551600.00 .00 3940000.00 617299.59 .59 6810000.00 1715999.97
COUPLING HEAT EXCHANGER ^{12.1} Percent fotal direct cost in account 12 [°] = .000 account total	33. 03. 00. 36. 00. ≉.
YEAT RECOVERY HEAT EXCH. 13. I PUNP UP RECUPERATOR 13. Z HELIUM RECUPERATOR PERCENT TOTAL DIRECT COST IN ACCOUNT 13 =16.200 ACCOUNT TOTAL	0.00 765000.00 1147500.00 0.00 13430000.00 2014500.00 1*\$ 2109006.00 316766.00
WATER TREATMENT 14. 1 DEMINERALIZER SPM .0 2500.00 700 14. 2 Condensate Polishing KWE .0 1.25 Percent Total Direct Cost in account 14 = .000 account total	0-00 -00 •30 •10 -00 •30 •00 •00
POWER CONDITIONING 15. 1 STD TRANSFORMER KVA PERCENT TOTAL DIRECT COST IN ACCOUNT 15 = .738 ACCOUNT TOTAL	.0C 1022413.29 21548.18
AUXILIARY MECH EQUIPMENT 16. 1 BOILER FEED PUMP & DR.KKE 16. 2 OTHER FEED PUMP & KWE 16. 3 MISC SERVICE SYS 16. 3 MISC SERVICE SYS 16. 3 MISC SERVICE SYS 16. 4 AUXILIARY BOILER PPH PERCENT TOTAL DIRECT COST IN ACCCUNT 16 = .330 ACCOUNT TOTAL	.04 .00 .00 12 75534.31 10300.13 73 251065.74 1555647.15 .80 .5 326600.04 166547.19
PIPE & FITTINGS 17. 1 CONVENTIONAL PIPING TON 110.0 3000.00 1800 17. 2 Hot GAS PIFING FT 2°C.C SFCG.C0 2250 PERCENT TOTAL DIRECT COTT IN ACCOUNT 17 = 1. 74 ACCOUNT TOTAL	3.00 330000.00 199000-00 3.00 1824000.00 652500.00 ↓\$ 1954000.00 350500.00

	Table 7.15 RECUPERATED HELIUM CLOSED CYCLE C T SY Continued PARAMETRIC POINT NO.4	STEM ACCOUNT LIST 48	T IN C
	ACCOUNT NO. 8 NAME. UNIT AFOUNT WAT \$/U		MAT COST+S INS COST+S
	18. 4 ISOLATED PHASE EUS FT .G 51	1.40 .17 1.35 .456 1.32 .1.35 0.00 .450.00 .35 .43 ACCOUNT TOTAL \$	420583-76 51071-49 2015820.05 135189.24 970199.99 99599.99 .00 .00 150210-27 184544.05 3556819.00 1370404.77
	CONTROL, INSTRUMENTATION 19.1 COMPUTER EACH 1.0 55000 19.2 OTHER CONTROLS EACH 1.0 6000 PERCENT TOTAL DIRECT COST IN ACCOUNT 19 = .565	0.00 10000.00 0.00 2600.00 Account Total.s	29000C-00 10006.00 60600.00 3060.00 950000.00 45000.00
	PROCESS WASTE SYSTEMS 20. 1 BOTTOM ASH TPH .D 20. 2 DRY ASH TPH .D 20. 3 WET SLURRY TPH .C 20. 4 INSITE DISPOSAL ACRE .D 767 PERCENT TOTAL DIRECT COST IN ACCOUNT 70 = .CCC	-00 -00 -00 -00 -00 -00 5.49 11070-99 Account Total.s	0).)0. 03. 00. 03. 09. 00. 00. 00. 00.
7-105	21 3 HTSC STEEL & DUCTS	.00 .00 9.25 8.31 .00 .00 ACCOUNT TCTAL.\$	00-00- 00-00-00- 00-00-00-00-00-00-00-00
05	TOTAL DIRECT COSTS +S	118	2C4861.CC 31433112.CC

Table 7,16	COMBINED	AIR-HELIUM-S PARAMET	TEAM TURD O	YCLE ACC	OUNT LIST:	ENG	
ACCOUNT NO.	8 NAMES	UNIT . AM	IOUNT MAT 1	VUNIT INS	S/UNIT	AT COLL'S	INS COST,\$
SIYE DEVELOPM 1. 1 LAND CO 1. 2 CLEARIN 1. 3 GRADING 1. 4 ACCESS 1. 5 LOOP RA 1. 5 SLOUP RA 1. 6 SIDINS 1. 7 OTHER S PERCENT TOTA	ENT ST LAND Kailroid Ilroid Tra R R Trick Ite Costs L Direct C	ACRE ACRE ACRE Mile Mile Mile ACRE Ost in Accourt	$58.0 19.3 58.0 5.0 111 .0 121 1.1 122 .0 1 1 \simeq 2.03$	1000.00 - 00 5000.00 1000.00 5000.00 5000.00 00 19 ACCOUNT	-00 500-00 3000-00 10000-00 70000-00 50080-00 00 10TAL+\$	58000.00 .00 575000.00 .00 125000.00 136097.85 894037.85	.00 11593.84 17400.00 55000.00 00 80000.00 136097.86 951696.69
EXCAVATION & 2.1 COMMON 2.2 PILING PERCENT TOTA	PILING Excavation NL DIRECT C	YD3 3 Ft 196 Cost in Accou	9825.0 203.3 NT 2 = 1.8	-00 5-50 73 Account	3.00 8.50 Total#\$.00 690300.00 690300.00	119475.00 902700.00 1022175.00
PLANT ISLAND 3- 1 PLANT I 3: 2 Speciae Percent tota	CONCRETE S. CONCRET STRUCTURE L DIRECT C	I YD3 1: S YD3 Ost in Accou	3275.] NT 3 = 2.1	70-90 -00 78 Account	88.00 .00 Total+\$	929250.00 00 929250.00	1062000.00 00 1962000.00
4.4 REJECTIO 4.1 COOLING 4.2 CIRCULA 4.3 STM SU 4.4 ORGANIC PERCENT YOU	IN SYSTEM Towers Iting 420 S Rface cond Vapor con Al Direct (EACH Sys Each Ft2 13 Dost in accou	$ \begin{array}{r} 6.0 \\ 1.0 \\ 5589.0 \\ \text{NT} 4^{0} = 3.1 \end{array} $.00 .00 .00 .00 06 Account	.00 .00 .00 total*\$	921000-00 350961-63 515194-33 -00 1897155-95	455000.00 484003.93 -00 943003.93
		ST. TON TPH FT Res Each Cost in Accou					
BUILDINGS 6. 1 STATIO 6. 2 Adminsi 6. 3 Warehou Pergent Tot	N BUILDINGS Fration USE & Shop N, Direct :	S FT3 363 ST2 FT2 COST IN ACCOU	150C+0 5000*0 NT 5 = 1.3	.16 15.10 12.00 80 Account	-16 14-00 8-00 Total#5	581040.00 00 60000.00 541040.00	581040.00 00 40000.00 521040.00
FUEL MANDLING 7. 1 COAL H 7. 2 DOLOMI 7. 3 FUEL O PERCENT TOT	S & STORAGE Andling Sy Te Hand. Sy Il Hand. Sy Al Direct (S TPH S TPH Ys GAL 810 Cost in Accou	.0 .0 0000.0 NT 7 = 1.4	.00 .00 .00 .00 .00 .00 .00	•00 •80 •60 Total+\$	•00 •00 732240•00 732290•00	•00 •00 56596\$•39 565969•99
FUEL PROCESS: 8. 1 COAL D 8. 2 CARBON 8. 3 GASIFI PERCENT TOT	ING Ryer & Cru: Izers Ers Al direct (SHER TPH TPH TPH Cost in Accou	•0 •0 •0 •0 •0 •0	.00 .00 .00 .00 .00 .00	.00 -00 -00 Total+\$	•00 •00 •00 •00	•00 •00 •00 •00

Table 7.16 COMM Continued	BINED AIR-HELIUN-STE Parametri	AM TURE CYCLE C Point No. 5	ACCOUNT LIST	ING	
-ACCOUNT NO. 8 NAM	4E+ UNIT AMOU	NT MAT \$/UNIT	INS SJUNIT	HAT COST#\$	INS COST+\$
FIRING SYSTEM 9• 1 Percent total diri	ECT COST IN ACCOUNT	00. 1000 A 000. = 0	.00 JNT TOTAL+S	•00 •00	•00 •00
VAPOR GENERATOR IF: 10- 1 PRESSURIZED PERCENT TOTAL DIRE	IRED) 45 FURNAC5 Ect cost in account	1.0 19160000.33 10 =27.241 ACCO	5748000.03 1 INT TOTAL \$	3160000.00 19160000.00	574800 <u>.00</u> 5748000.00
ENERGY CONVERTER 11. 1 PUMP UP ST-39 11. 2 HE TURB COMP 11. 3 HE TURB TUR9 11. 4 HE TURB AUXI 11. 5 HE TURB-SEN (11. 5 STEAM TURBIN PERCENT TOTAL DIR	EN & AUX RESSOR SECT INE SECT Liaries 8 Exciter E-gen & Aux Ect Cost in Account	1.0 7410000.33 1.0 175000.00 1.0 175000.00 1.0 133000.00 1.0 187000.00 1.0 7909649.12 11 =26.163 ACCO	741999.99 87500.00 186200.00 168300.00 632771.93 JNT TOTAL:\$	7410000.00 1750000.00 1750000.00 1330000.00 1330000.00 7909649.12 2019649.00	740999.99 87500.00 87500.00 186200.00 632771.93 1933271.87
COUPLING HEAT EXCHI 12. 1 PUMP UP HEAT 12. 2 HE TYR3 VAPOI Percent Total Diri	ANBER Rec vap gén R Sen Ect cost in account	1.0 3220000.00 1.0 8500000.00 12 =16.663 ACCO	966000.00 2550000.00 UNT TOTAL,\$	3220000.00 850000.00 11720000.00	366000.00 2550300.00 3516000.00
HEAT RECOVERY HEAT 13. 1 PUMP UP RECU 13. 2 Helium Recup 13. 3 Desuperyeat ! Percent total dir	EXCH. PERATOR ERATOR Recuperator Ect cost in account	•3 •39 •8 •00 •3 •30 13 = •000 ACCO	•00 •00 •00 •00 unt -total=\$		-00 -00 -00 -00
WATER TREATMENT 14. 1 Demineralize 14. 2 Condensate P Percent, fotal dir:	R OLISHING KWE 19120 Ect cost in account].5 2508.10 0.0 1.25 14 = .431 ACCO	700-03 .30 UNT TOTAL+\$	75480.00 239000.00 315480.00	21414.40 57360.00 78774.40
POWER CONDITIONING 15. 1 STD TRANSFOR Percent total dir	MER KVA 47703 Est cost in account	3.3 .CO 15 = 1.823 ACCO	.DC UNT TOTAL+\$	1634530.30 1634530.30	32690.51 32690.61
16. 3 HISC SERVICE	XNE 22579	ີ້ດີ 6.00	- 80	121675-00 198701-90 528356-41 00 848743-31	8849.09 27095.71 329664.52 365609.32
PIPE & FITTINGS' 17- 1 CONVENTIONAL 17- 2 HOT GAS PIPI PERCENT TOTAL DIR	PIPING TON 75 NG FT 33 Ect cost in account	3.0 3000.00 25.0 2500.00 17 = 5.181 ACCO	1800.00 1000.00 UNT TOTAL+\$	2250000.00 812500.00 3052500.00	1350000.00 325000.00 1675000.00

Table 7.16 Continued	COMBINED		IUN-STEAM Rahstric Pi		ACCOUNT LIS	řín c	
	8 NAME+	UNIT	AMOUNT	MAT \$JUNIT	INS \$/UNIT	NAT COST+\$	INS COST+S
AUXILIARY ELEC 18. 1 MISC NOT 18. 2 SWITCHGE 18. 3 Conduit 18. 4 Isolatei 18. 5 Lighting Percent Total	FOCATP	•	451595.2 451595.2 120003.0 300.0 451595.2 CCOUNJ 18	1.40 1.95 1.32 510.00 .35 = 6.546 ACCO	1,36 450,00	532233.32 1215610.59 158399.98 153000.00 158058.33 3743902.28	135000.00
CONTROL J INST 19. 1 COMPUTER 19. 2 OTHER CO PERCENT TOTAL	NTROLS	EACH	1.3 1.0 CCOUNT 19	250000.00	12000-00 150000-00 UNT TOTAL+\$	550300:00 250000.00 800000.00	12000-00 15000-00 152000-00
PROCESS WASTE 20. 1 BOTTOM 20. 2 DRY ASH 20. 3 WEY SLUI 20. 4 ONSITE C PERCENT TOTAL	ASH	TPH TPY TPH ACRE SST IN A	-0 -0 -0 -0 -0 -0	.00 .00 .00 7676.\$3 .000 Acco	-00 -00 11070-89	00 00 08 00 00	00. 00. 00. 00.
STACK BAS CLE 21. 1 PRECIPI 21. 2 SCRUBBE 21. 3 MISC STE PERCENT TOTAL	R R Eel 8 duct	EAC4 KWE Sost in A	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	.30 20.45 100 ≂ .000 ACCO	8.82	-00 +00 -00 -00	+00
TOTAL DI	RECT COSTS	* \$			70	246137.00	21190221.25

Table 7.17 - RECUPERATED FELIUM CLOSED DYCLE G I TYSTEMCUPPARY FLANT RESULTS Continued

PARAMETRIC POINT	1	2	3	4	F	E	7	8
PARAMETRIC POINT TOTAL CAPITAL COST P PRESS HE FURNACE L PUMP UP 3T-GEN A HELIUM CAS TURB-GEN N PUMP UP RECUPERATOR & PIPING T HELIUM RECUPERATOR & PIPING	153.52 12.630 7.419 13.890 9.261 13.130	149.45 12.440 7.410 17.885 5.261 10.820	142.30 12.300 7.410 11.770 3.261 9.530	7.410 10.430 9.261 8.110	191.17 24.320 7.410 13.760 9.261 14.830	7.410 13.670 9.261 9.550	170.62 23.190 7.410 12.490 9.261 8.410	7.410 11.49(9.261 7.00(
R TOT MAJOR COMPONENT COST .NS E TOT MAJOR COMPONENT COST .*/KWE S BALANCE OF PLANT COST .*/KWE U SITE LABOR .*/KWE L TOTAL DIRECT COST .*/KWE PROF & DWNER COST .*/KWE PROF & DWNER COST .*/KWE E CONTINGENCY COST .*/KWE E INT DURING CONSTRUCTION .*/KWE E INT DURING CONSTRUCTION .*/KWE A TOTAL CAPITALIZATION .*/KWE COST OF ELEC-CAPITAL.MILLS/KWE D COST OF ELEC-CAPITAL.MILLS/KWE COE D.S CAP. FACTOR .MILLS/KWE COE D.S CAP. FACTOR .MILLS/KWE COE 1.2XFUEL COST .MILLS/KWE COE (CONTINGENCY COST .MILLS/KWE COE (CONTINGENCY COST .*/KILS/KWE COE (CONTINGENCY COST .*/KILS/KWE COE (CONTINGENCY COST .MILLS/KWE COE (CONTINGENCY COST .MILLS/KWE	112269 7628 7628 764 864 7628 864 7628 864 7628 864 76288 7628 7628 7628 7628 7628 7628 76288 7628 7628 7	42.63045711 259557301455675 25971558645571 259575050455675 25975050455675 25975050455675 25975050455675 25975050455675 25975050455675 259750505675 259750505675 259750505675 259750505675 259750505675 259750505675 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 25975050505 2597505050505 25975050505 25975050505 2597505050505 2597505050505 2597505050505 259750505050505 2597505050505050505 25975050505050505050505050505050505050505	1435340559484807331153 201136787688686761580487 09985582007358153 099855142098561 585605252098561 845560576 585605222098561 84556576 58560576 5585605556055505 558560576 558560576 558560576 558560576 558560576 558560576 558560576 558560576 558560576 558560576 5585605576 558560576 558560557576 5585605576 558560557576 5585605575757575757575757575757575757575757	18.08848 35.8848 54.480 54.480 51.0221 52.555 51.340 51.340	186 8219 8319 85519 855555555 85555555555555555555555555	17.6492 16492 3.6492 420.765 420.765 420.70 463.4316 423.70 423.70 423.70 423.70 423.70 423.70 423.70 423.70	17.036 278 49.578 49.5578 49.5567 49.5567 49.509 40.5564 47.000 40.5564 41.2222 41.2216	178 •••• 454453 454453 454453 454453 454453 4544 454 45
PARAMETRIC POINT	Э	10	11	12	13	14	13	, 16
TOTAL CAPITAL COST ,M\$ P PRESS HE FURNACE ,M\$ L PUMP UP GT-CEN ,M\$ A HELIUM SAS TURC-SEN ,M\$ N PUMP UP RECUPERATOR & PIPING T HELIUM RECUPERATOR & PIPING	263.93 57.340 7.416 13.810 2.261 17.820	CEC.31 30.000 7.410 13.500 9.261 14.210	234.13 45.390 7.410 13.141 5.201 8.810	220.27 46.330 7.410 12.400 9.261 6.450	157.03 23.540 7.410 11.610 4.122 5.860	284.21 37.570 7.410 15.220 19.565 33.420	148.29 22.980 7.410 11.690 4.122 3.320	221.8 23.360 7.410 13.900 19.565 21.030
E TOT MAJOR COMPONENT COST ,MS E TOT MAJOR COMPONENT COST ,\$/KWE		138560778784 8410668988899 448144151481714 4484452811714 4484452811714 14454458811714 144544588 144544588 17	245.2157 245.2257 772.597 272.597	243.346 45.259 79.459	132 337	5306691334174258wD7489w 91630354694464w51514666 198229037409464w51514666 96566037537409464w467394 1985660375300164 1985660375300164 198564375100164 198564375100164 198544645544	1073-0057 2000-4005 2000-4004 2000-4000 2000-4000 2000-4000 2000-4000-4	Labero 47 13615285430957 285 1427 13615285430957 295 1427 1365 569 52939 295 1427 1365 569 52939 295 1427 1365 569 52939 295 1427 1365 569 52939 295 145 145 15285 1529 153 154 152 152 152 152 153 153 153 153 153 153 153 153 153 153

Table 7.17 - RECUPERATED HELIUM CLOSED CYCLE & T TYSTEMSUMMARY FLANT RESULTS Continued

FAPAMETRIC POINT	17	15	10	20	21	22	23	24
FAPAMETRIC POINT TOTAL CAPITAL COST ,MS P PRESS HE FURNACE ,MS L PUMP UP GI-GEN ,HS A HELIUM GAS TURB-GEN ,MS N PUMP UP RECUPERATOR & PIPING T HELIUM, RECUPERATOR & PIPING T HELIUM, RECUPERATOR & PIPING	145.31 22.620 7.410 11.540 4.122 3.530	C13.21 P3.460 7.410 13.030 19.565 18.220	140.92 22.140 7.410 11.050 9.122 3.090	135.02 20.700 7.410 11.720 19.565 15.340	257.80 50.190 6.530 16.040 7.722 10.940	253.05 44.850 7.460 15.200 7.722 10.570	235.32 50.190 6.680 12.860 9.000 9.430	223.34 32.00(8.620 14.590 .008 10.280
<pre>F TOT MAJOR COMPONENT COST .*/KWE E TOT MAJOR COMPONENT COST .*/KWE U SITE LABOR .*/KWE U SITE LABOR .*/KWE L TOTAL DIRECT COST .*/KWE PROF & OWNER COST .*/KWE B CONTINGENCY COST .*/KWE E INT DURING CONSTRUCTION .*/KWE A TOTAL CAPITALIZATION .*/KWE COST OF ELEC-CAPITAL .*/ILS/KWE COST OF ELEC-CAPITAL .*/ILS/KWE COST OF ELEC-CAPITAL .*/ILS/KWE COST OF ELEC-OP&M AIN.*/ILS/KWE COST OF ELEC-OP&M AIN.*/ILS/KWE COE C.3 CAP. FACTOR .*/ILS/KWE COE C.3 CAP. FACTOR .*/ILS/KWE COE 1.2XCAP. COST .*/ILS/KWE COE 1.2XCAP.COST .*/ILS/KWE COE (CONTINGENCY=G) .*/ILS/KWE COE (ESCALATION=0) .*/ILS/KWE</pre>	494,2921 1952,9913,576,2951 293,986,529,576,2951 293,986,529,576,2951 293,986,512,101,012,102,102,102,102,102,102,102,1	57309644980 1957309644980 1958309644980 19511676384980 19511677334 1951167734 19511677334 19511677334 195222 195322 195322 19533 195322 195322 19533	477.24355595320 77.24356595320 77.24356595320 77.24356595320 79.536312.21435595411236692 20.214355954112366974 20.21435595412366974 20.21435459595412366974 20.21435459595412366974	2 3 3 3 3 3 3 3 3 3 3 3 3 3	91:572:52905 72:52905 99:4594 50:722:5494 50:722:5494 105:5197 795	85-86528198209 85-86528198209 27-6528198209 443301552449 1116648596 1116648596 1116648596 1116648596 1116648596 111762881482711 1116648596 111762881482796 111762881482796 11176288148279 1117628819 1117628819 11176285 11176855 1117685 1117685	799-1626 2991206 799-339814 29847-7296 29847-7296 29847-729 29847-729 2992 2000 2001 2001 2001 2001 2001 20	9940 9940
PARAMETRIC POINT	25	28	27	23	29	30	31	32
PARAMETRIC POINT TOTAL CAPITAL COST ,MS P PRESS HE FURNACE ,MS L PUMP UP CT-CEN ,MS A HELIUM SAS TURE-GEN ,MS N PUMP UP RECUPERATOR & PIPINC T HELIUM RECUPERATOR & PIPINC T HELIUM RECUPERATOR & PIPINC	220.82 44.250 7.400 10.370 .000 9.940	750.15 43.120 5.790 19.231 000 12.200	234.63 41.530 6.790 13.770 .900 12.030	236.57 42.790 5.790 18.060 .000 11.760	273.22 58.120 6.790 21.290 .000 12.930	372.59 46.970 6.790 20.320 	276,91 53,880 6,790 22.010 .000 13,600	255.86 52.930 6.75C 20.421 .00C 12.630
T HELIUM RECUPERATOR & PIPING F TOT MAJOR COMPONENT COST , M'S E TOT MAJOR COMPONENT COST , J/K WE S BALANCE OF PLANT COST , S/K WE U SITE LABOR , S/K WE U SITE LABOR , S/K WE T TNDIRECT COST , S/K WE PROF & OWNER COSTC , S/K WE B CONTINGENCY COST , S/K WE E SCALATION COST , S/K WE E SCALATION COST , S/K WE E SCALATION COST , S/K WE A TOTAL CAPITALIZATION , S/K WE D COST OF ELEC-FUEL , MILLS/K WE D COST OF ELEC-FUEL , MILLS/K WE C C D S CAP. FACTOR , MILLS/K WE C C D S CAP. FACTOR , MILLS/K WE C C C T. ZXF UEL COST , MILLS/K WE C C C C C C C C C C C C C C C C C C C	200759436079206340547571ms5280 9011203705435475771ms5280 9011203705435475771ms5280 9011203705435475771ms5280 9011203705435475771 91243391441006471 91243391441006471	192653630507120930990357 341699002414009309001450410 3567732095688878441004150 151075200593041430038504 15107520078504 130078504 13007850 137078100930 137078500 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 13707850 1370780000000000000000000000000000000000	200730113117409752007 9.8492131174097597 9.8492131174097597 9.8492229 9.849229 9.849229 9.849229 9.849297 9.84927 9.84977 9.84977 9.84977 9.84977 9.84977 9.849777 9.849777 9.849777 9.849777 9.849777 9.8497777 9.8497777 9.84977777777777777777777777777777777777	00009307994069005243599 455005473543591944743599 95556054735447684976 737556054053199447441699 737556054054054476 737556054054476 73755605405476 73755605405405 767599 73755605405405 767599 73755605405405 767599 76759 767590 767590 7675900000000000000000000000000000000000	04639601765717660594 18609131819499344461960598 90552242110609493555422199247 90552242110609499 90552242110609499 9055224710609499 9055224710609499 9055224710609499 9055224710609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 905542210609499 90554210000000000000000000000000000000000	6666660292929090723339457 66999401291291725399457 617664954595145672939959 617664954595145577975549959 6105797554499497777038551 859559797554499497777038551 859559797554499497777038551	12:00 443302 12:00 1	111526323355805832%5476 675952633746205546957771 9227.1111104874695546955771 94433959226 55469577719 95453546929726 5543475 95543475

7-110

TABLE 7.17 - RECUPERATED HELIUM CLOSED CYCLE C T SYSTEMSUMMARY FLANT RESULTS Continued

PARAMÈTRIC POINT	32	34	35	36	37	38	25	40
TOTAL CAPITAL COST .MS P PRESS HE FURNACE .MS L PUMP UP GT-GEN .MS A HELIUM GAS TURE-GEN .MS N PUMP UP RECUPERATOR & PIPING T HELIUM RECUPERATOR & PIPING	239.50 40.160 5.730 19.210 19.210 11.130	225.79 46.840 6.790 14.080 .000 9.470	242.57 45.740 6.790 19.680 .000 12.150	263.24 54.430 6.730 21.371 .000 12.950	251.26 11.120 6.790 19.820 19.820 19.820 19.820 19.820 19.820	244.54 56.240 20.850 12.590	251.40 51.(10 6.790 20.421 .000 12.630	251.18 51.01 6.790 20.421 .000 12.63 C
R TOT MAJOR COMPONENT COST +MS F TOT MAJOR COMPONENT COST+\$/KWE	86.29D 243.338 56.469	215641 215641 215641 21564 41321 56413 215754 2157554 2157554 2157554 215755555555555555555555555555555555555	41.113 30.954 29.600 92.747	58.066 93.266 400.199 42.466 32.0165 97.027 110.677	41.867 34.940 33.393 103.697 112.106	08999669426515585272611 73779625768895485272611 12482198596855488004844 1498207876463555488004844 14982078764105 62255544 3328564422 45544 3	\$11753381C81 \$27753381C81 \$27753381 \$27753381 \$27753381 \$27753381 \$27753381 \$27753381 \$27753381 \$27753381 \$280071 \$290071 \$2900854685 \$27765286548832 \$2908828 \$2908828 \$2908828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916828 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 \$2916838 <	2 3 5 5 5 5 5 5 5 5 5 5 5 5 5
PARAMETRIC POINT	41	42	43 /	44	45	45	47	43
TOTAL CAPITAL COST MS P PRESS HE FURNACE MS L PUMP UP GT-CEN MS A HELIUM GAS TURP-GEN MS A PUMP UP RECUPERATOR & PIPING T HELIUM RECUPERATOR & PIPING	249.20 51.200 5.730 20.150 000 11.930	747.68 51.486 6.790 13.830 .000 11.580	260.26 57.280 6.790 19.620 19.620 11.050	245 62 53 530 6 7 6 10 670 9 670	222 37 49.630 6.750 17.140 3.940	242.48 51.010 6.750 17.355 .000 10.910	268.23 51.010 6.790 24.330 16.070	262.39 55.490 21.780 7.650 13.430
R TOT MAJOR CCMPONENT COST ,MS. E TOT MAJOR COMPONENT COST ,\$/KWE S BALANCE OF PLANT COST ,\$/KWE U SITE LABOR ,\$/KWE L TOTAL DIRECT COST ,\$/KWE BROF & OWNER COST ,\$/KWE BROF & OWNER COST ,\$/KWE BROF & OWNER COST ,\$/KWE B CONTINGENCY COST ,\$/KWE CONTINGENCY COST ,\$/KWE A TOTAL CAPITALIZATION ,\$/KWE COST OF ELEC-CAPITAL,MILLS/KWE U COST OF ELEC-FUEL ,MILLS/KWE W TOTAL COST OF ELEC-FUEL ,MILLS/KWE N COE D.5 CAP. FACTOR ,MILLS/KWE				372 • 5265 40 • 7626 28 • 740 28 • 740 105 • 740	42.331 30.774 23.349 91.741	40-257	C166850045506C7559C 284469245554692559C 26444521955156254 264914221955154554 2649142219551562 2649142219551562 11772565 11772565 117725655 117725655 117725655 117725655 117725655 117725655 117725655 117725655 117725655 117725655 1177255 1177255 1177255 1177255 1177255 1177255 11775555 11775555 11775555 11775555 117755555 11775555 11775555 11775555 11775555 117755555 117755555555	2 5777558 3995203565277 2 5777558 3995203565277 2 591459835492 2 591459835492 2 591459835492 2 5914595555 2 5914535555 2 5914535555 2 5914535555 2 59145555 2 59145555 2 59145555 2 59145555 2 59145555 2 59145555 2 5914555 2 5914555 2 59145555 2 59145555 2 59145555 2 59145555 2 5914555 2 5914555 2 5914555 2 5914555 2 5914555 2 5914555 2 5914555 2 5914555 2 591455 2 59155 2 591555 2 59155 2 59155 2 59155 2 59155 2 591555 2 5915555 2 5915555 2 5915555 2 59155555 2 59155555555 2 59155555555555555555555555555555555555

PARAMETRIC POINT	1	2	3	4 -	5	e	7	8
PARAMETRIC POINT TOTAL CAPITAL COST MS P PRESS HE FURNACE MS L PUMP UP ST-SEN MS A HELIUM GAS TURB-GEN MS N STEAM TURBINE-SENERATOR MS T PUMP UP REC VAP GEN MS	146.24 10.520 7.410 4.920 3.445 3.260 10.100	134.31 10.720 7.410 6.080 7.137 1.820 7.920	123.24 10.880 7.410 7.250 5.029 1.450 4.360	158.00 18.760 7.410 5.880 3.483 3.540 9.260	168.44 19.160 7.410 6.700 7.910 3.220 8.500	170.33 22.180 7.410 7.370 7.200 2.070 8.290	217.15 37.220 7.410 5.480 8.645 4.640 6.950	217.22 38.050 7.410 7.110 8.209 3.990 6.770
R TOT MAJOR COMPONENT COST .H\$ E TOT MAJOR COMPONENT COST .\$/KWE S BALANCE OF PLANT COST .\$/KWE U SITE LABOR .\$/KWE L TOTAL DIRECT COST .\$/KWE I NDIRECT COSTS .\$/KWE PROF & OWNER COSTS .\$/KWE C CONTINGENCY COST .\$/KWE C CONTINGENCY COST .\$/KWE I ND DURING CONSTRUCTION .\$/KWE A TOTAL CAPITALIZATION .\$/KWE C COST OF ELEC-CAPITAL.*NILLS/KWE D COST OF ELEC-CPENAIN.*MILLS/KWE W TOTAL COST OF ELEC .#MILLS/KWE C COE D.\$ CAP. FACTOR .MILLS/KWE C COE 1.2XCAP. COST .#MILLS/KWE C COE (CONTINGENCY=3) .#MILLS/KWE C COE (CONTINGENCY=3) .#MILLS/KWE C COE (ESCALATION=D) .#MILLS/KWE	44.655 127.343	$\begin{array}{r} 41.087\\ 123.799\\ 47.145\\ 51.125\\ 222.060\\ 26.073\\ 17.495\\ 56.073\\ 17.495\\ 56.485\\ 56.485\\ 12.792\\ 25.118\\ 38.512\\ 38.512\\ 38.5512\\ 404.657\\ 12.792\\ 38.5512\\ 38.552\\ 38.5512\\ 38.552$	49-351 216-723 25-159 17-338 16-959 54-441	52.333 135.558 45.7522 236.106 27.944 18.9014 71.3702 13.7578 435.7102 13.7578 35.9581 35.9581 35.9581 35.9581 35.9581 35.9581 35.9581 35.9581 35.9581 35.9581 35.9583	52.900 137.743 45.165 238.087 29.140 19.047 62.393 13.869 438.585 21.602 36.445 33.501 38.949 438.501 38.949 35.501 38.949 35.501 38.949 35.501 38.949 35.501		64.987 279.999 33.143 22.480 22.611 74.659	65-048 280-911 33-175 22-473 22-677 74-840
PARAMETRIC POINT	9	10	11	12	13	14	15	16
PARAMETRIC POINT TOTAL CAPITAL COST ,MS P PRESS HE FURNACE ,MS L PUMP UP 3T-GEN ,MS A HELIUM GAS TURB-GEN ,MS Y STEAM TURBINE-BENERATOR ,MS T PUMP UP REC VAP GEN ,MS HE TURB REC VAP GEN ,MS	217.52 39.710 7.410 8.090 7.337 2.900 7.170	131.24 19.160 7.410 6.700 4.646 .000 4.610	171.93 28.940 7.460 8.580 6.141 .000 6.500	240-13 49-680 5-790 11-130 7-710 -000 8-750	166.29 18.860 7.410 6.670 7.710 3.270 7.990	171.71 19.480 7.410 6.760 8.134 3.130 9.100	170.86 19.800 7.410 6.990 7.411 3.500 8.270	172.66 20.280 7.410 7.486 4.060 7.280
R TOT MAJOR COMPONENT COST , MS E TOT MAJOR COMPONENT COST, \$/KWE S BALANCE OF PLANT COST , \$/KWE U SITE LABOR , \$/KWE L TOTAL DIRECT COST , \$/KWE T INDIRECT COSTS , \$/KWE B CONTINGENCY COST , \$/KWE R ESCALATION COST , \$/KWE E INT DURING CONSTRUCTION , \$/KWE A TOTAL CAPITALIZATION , \$/KWE	72.617 179.1572 44.84 290.412 234.233 234.233 234.366 200.412 204.412 234.335 235.8672 536.6955 20.5594 38.125 536.34 536.34 537 41.518	$\begin{array}{r} 42 \bullet 526\\ 1 \pm 4 \bullet 6 \bullet 487\\ 56 \bullet 047\\ 56 \bullet 047\\ 28 \bullet 1229\\ 611 \bullet 1229\\ 611 \bullet 2283\\ 415 \bullet 1229\\ 8283\\ 415 \bullet 827\\ 129 \bullet 827\\ 145 \bullet 8584\\ 42 \bullet 3355\\ 455 \bullet 6359\\ 455 \bullet 6359$	57.621 158.9300 45.5089 52.2599 31.7520 276.532 70.5322 504.0611 15.9353 504.061 15.9353 43.171 40.1177 45.3650 48.51071 40.1177 45.3650 40.1175 40.1177 45.3650 40.1175	$\begin{array}{r} 84 & .060\\ 221 & 053\\ 45 & 504\\ 77 & 951\\ 39 & 471\\ 27 & 48\\ 1031 & 4716\\ 1031 & 454\\ 1031 & 45$	51.910 135.830 455.798 54.323 278.8956 18.89595 61.88593 435.7806 18.8593 435.7808 435.7808 36.4601 36.4601 36.4601 38.5510 38.5510 38.5510 38.5510 38.5523 35.5503 35.5803 35.5803 35.5803 35.5803 35.5803 35.5905 35.59	$54 \cdot C14$ $139 \cdot 755$ $45 \cdot 728$ $55 \cdot 658$ $241 \cdot 151$ $28 \cdot 391$ $15 \cdot 306$ $63 \cdot 257$ $14 \cdot 045$ $21 \cdot 5694$ $36 \cdot 518$ $33 \cdot 510$ $39 \cdot 027$ $41 \cdot 5388$ $33 \cdot 884$	53.381 45.6725 238.153 255.2051 28.1654 19.0735 62.5697 438.9955 13.8718 21.4056 35.977 35.977 35.9077 33.6776 33.6776 33.593	53.826 137.195 46.021 55.207 238.503 28.197 19.128 62.790 72.375 440.072 13.9129 35.770 40.086 38.552 34.897 33.452

corresponding summaries for the combined closed-cycle system parametric points are given in Table 7.18. For these tabulations, the "Total Major Component Cost" entries include pressurized furnace, pump-up gas turbine generator, helium gas turbine generator, pump-up recuperator and piping, and helium recuperator and piping for the recuperated cycles or pressurized furnace, pump-up gas turbine generator, helium gas turbine generator, bottoming turbine generator, pump-up set vapor generator, and helium set vapor generator for the closed-cycle systems.

The top line of each summary table, Total Capital Cost, represents the total capitalized cost for each plant and is made up of the following items: total direct major component material costs, balance of plant direct material costs, site labor costs, indirect costs, professional services and ownership costs, contingency costs, escalation costs, and interest during construction costs.

Also included for each parametric point are cost of electricity data including the capital, fuel, and operating and maintenance costs components.

7.6 Analysis of Overall Cost of Electricity

Cost of electricity (COE) values have been computed for each parametric point for both the recuperated closed-cycle and combined closed-cycle systems. Summaries for each of these systems, including both COE and capital cost, are given in Tables 7.19 and 7.20.

Also, for each parametric point, the effect on COE of variations in labor rate, contingency, escalation rate, interest during construction, fixed charge rate, fuel cost, and capacity factor were calculated. The results for the recuperated cycle Base Case A are shown in Table 7.21. Similar tabulations for Base Case B and the closed combined-cycle base case are given in Tables 7.22 and 7.23, respectively.

The COE vs installed capital costs are shown graphically in Figure 7.58 for the recuperated closed cycles and in Figure 7.59 for the Table 7.18 COMBINED AIR-HELIUM-STEAM TURE CYCLE SUMMARY PLANT RESULTS Continued

PARAHETRIC POINT	17	18	19	20	21	22	23	24
TOTAL CAPITAL COST MS P PRESS HE FURNACE MS L PUMP UP ST-GEN MS A HELIUM GAS TURB-GEN MS N STEAM TURBINE-SENERATOR MS T PUMP UP REC VAP GEN MS NE TURB REC VAP GEN MS	165.89 18.500 7.410 6.880 3.159 3.500 7.980	165.15 18.500 7.410 7.020 7.648 3.660 7.380	161-13 18-500 7-410 6-470 7-561 4-240 5-620	161.00 18:500 7.410 6.470 7.187 4.540 5.560	158.47 19.160 7.410 6.630 8.009 2.170 6.480	158.57 19.160 7.410 6.520 8.358 1.930 6.399	171-90 19.940 8.600 6.590 8.694 2.600 8.740	192.57 27.100 5.580 7.780 7.551 2.960 10.610
HE TURB REC VAP BEN .MS R TOT MAJOR COMPONENT COST .MS E TOT MAJOR COMPONENT COST .S/KWE S BALANCE OF PLANT COST .S/KWE U SITE LABOR .S/KWE L TOTAL DIRECT COST .S/KWE PROF & OWNER COST .S/KWE B CONTINGENCY COST .S/KWE CONTINGENCY COST .S/KWE E INT DURING CONSTRUCTION .S/KWE COST OF ELEC-CAPITAL.MILLS/KWE D COST OF ELEC-FUEL .MILLS/KWE D COST OF ELEC-FUEL .MILLS/KWE COE D.S CAP. CACTOR .MILLS/KWE COE D.S CAP. CACTOR .MILLS/KWE COE 1.2XCAP. COST .MILLS/KWE COE (CONTINGENCY=) .MILLS/KWE COE (ESCALATION=C) .MILLS/KWE	52.429 138.020 45.877 54.951 238.848 238.025 19.1084 62.408 71.836 13.898 21.99.336 13.898 21.9408 752 439.388 21.9408 752 6431 403752	51.618 45.877 54.529 236.292 27.819 18.903 18.880 61.757 71.113	49.801 131.102 45.877 53.449 230.428 '27.259 18.434 18.434 19.411 60.253 59.381 59.381	49.667	+9.855 136.110 45.600 54.122 235.832 27.602 18.867 18.770 51.167 70.361	135-523	145.433	$\begin{array}{c} \underline{62} & \underline{691} \\ 152 & \underline{970} \\ 46 & \underline{214} \\ 62 & \underline{770} \\ 271 & \underline{954} \\ 32 & \underline{013} \\ 21 & \underline{756} \\ 21 & \underline{756} \\ 21 & \underline{7756} \\ 10 & \underline{853} \\ 500 & \underline{853} \\ 15 & \underline{833} \\ 23 & \underline{695} \\ 41 & \underline{940} \\ 37 & \underline{035} \\ 43 & \underline{245} \\ 44 & \underline{807} \\ 39 & \underline{087} \\ 37 & \underline{449} \end{array}$
PARAMETRIC POINT	25	26	27	28	29	30	31	32
PARAMETRIC POINT TOTAL CAPITAL COST +M\$ P PRESS HE FURNACE +M\$ L PUMP UP 3T-GEN +M\$ A HELIUM GAS TURB-GEN +M\$ N STEAM TURBINE-BENERATOR +M\$ T PUMP UP REC VAP GEN +M\$ HE_JURB REC VAP GEN +M\$ NS HE JURB REC VAP GEN +M\$	193.30 28.980 7.450 8.140 7.551 1.170 19.200	159.37 19.160 7.410 6.810 7.551 2.710 5.830	154.80 19.160 7.410 6.810 7.551 2.300 5.190	168.74 19.160 7.410 6.640 7.362 3.420 8.780	159.74 15.160 7.410 6.230 8.109 3.390 9.010	169.83 19.160 7.410 6.570 8.009 3.420 8.780	169-41 19-160 7-410 6-230 8-109 3-390 9-010	168.94 19.160 7.410 6.700 7.872 3.218 8.520
R TOT MAJOR COMPONENT COST .MS TOT MAJOR COMPONENT COST .S/KWE S BALANCE OF PLANT COST .S/KWE U SITE LABOR	165.915 45.716 62.862 274.493 32.050 21.959 21.959 21.959 21.810 82.709	132.657 136.183 53.676 232.517 27.375 18.542 60.553 69.690	48.381 133.932 46.214 233.652 233.652 233.652 233.652 233.652 233.652 428.592 60.474 69.532 428.537 13.547 23.0599 37.218	137.862	53.309 139.726	240.985 28.415 19.279 19.272 63.096 72.672 43.718 14.027 21.776	53.309 140.821 46.093 56.290 243.204 28.708 19.456 19.457 63.548 73.170 447.512 14.147 21.850 36.602	52.872 137.062 45.656 54.989 237.707 28.044 19.017 19.017 19.026 62.337 71.814 437.945 13.844 21.608 .602 36.054

7**-**114

TABLE 7.18 COMBINED AIR-HELIUM-STEAM TURB CYCLE SUMMARY PLANT RESULTS Continued

.

PARAMETRIC POINT	33	34	35	36	37	38	39	40
TOTAL CAPITAL COST, MS P PRESS HE FURNACE MS L PUNP UP ST-GEN MS A HELIUM GAS TURB-GEN MS N STEAM IURBINE-SENERATOR MS T PUMP UP REC VAP GEN MS HE TURB REC VAP GEN MS	163.54 19.160 7.410 6.700 7.972 3.400 8.620	170.08 19.160 7.410 6.700 8.034 3.480 8.680	158.73 19.160 7.410 6.700 7.860 3.270 8.450	169.51 19.160 7.410 6.700 7.947 3.350 8.630	158.32 19.160 7.410 6.700 7.910 3.220 8.220	172.95 19.160 7.410 6.700 7.910 3.220 10.163	172.33 2C.0CU 7.410 6.240 9.034 3.480 8.970	271.25 18.360 7.410 6.430 7.735 3.330 8.170
R TOT MAJOR COMPONENT COST ,MS TOT MAJOR COMPONENT COST , KHE S BALANCE OF PLANT COST , S/KHE U SITE LABOR , S/KWE L TOTAL DIRECT COST , S/KWE PROF & OWNER COSTS , S/KWE S CONTINGENCY COST , S/KWE S CONTINGENCY COST , S/KWE S CONTINGENCY COST , S/KWE S CONTINGENCY COST , S/KWE S TINY DURING CONSTRUCTION , S/KWE S TINY DURING CONSTRUCTION , S/KWE A TOTAL CAPITALIZATION , S/KWE D COST OF ELEC-CAPITAL, MILLS/KWE D COST OF ELEC-GVEL , MILLS/KWE O COST OF ELEC-FVEL , MILLS/KWE N COE D.S CAP. FACTOR , MILLS/KWE COE D.S CAP. FACTOR , MILLS/KWE COE 1.2XFUEL COST , MILLS/KWE COE (CONTINGENCY=3) , MILLS/KWE COE (ESCALATION=C) , MILLS/KWE	53.262 138.031 55.5311 240.2200 219.2185 62.93218 19.215 62.9328 72.4711 442.9384 21.603 36.6300 33.6627 39.6224 40.6520 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6224 40.6527 39.6220 40.6527 39.6220 40.6527 39.6220 40.6527 39.6220 40.6527 39.6220 40.6527 39.6270 40.6571 34.003 34.003	53.464 139.504 55.701 241.207 19.292 72.719 72.719 72.719 72.719 72.719 72.719 19.292 72.716 444.119 21.766 36.4099 70.752 33.702 35.531 34.079	$\begin{array}{r} 52.861\\ 137.454\\ 45.715\\ 55.108\\ 238.277\\ 28.105\\ 19.065\\ 19.065\\ 62.447\\ 71.934\\ 438.889\\ 13.874\\ 21.681\\ 36.157\\ 40.430\\ 36.157\\ 40.430\\ 36.157\\ 40.430\\ 36.322\\ 40.493\\ 35.288\\ 33.853\end{array}$	$\begin{array}{r} 53.197.\\ 138.635\\ 45.613\\ 55.435\\ 239.884\\ 28.272\\ 19.191\\ 19.189\\ 62.837\\ 72.379\\ 441.752\\ 21.721\\ 3.965\\ 21.721\\ 3.6.288\\ 40.589\\ 33.595\\ 33.595\\ 33.597\\ 33.970\end{array}$	526.950 54895 54895 558.9950 236.9550 18.9550 18.9550 18.9550 18.9550 18.9550 19.95500 19.95500 19.95500 19.95500 19.95500 19.95500 19.95500 19.955000	54.56C 141.519 45.695 56.314 243.528 1423.528 143.528 143.528 143.528 144.682 21.708 144.682 21.708 858 144.682 21.708 858 39.329 40.858 39.329 40.858 39.329 40.858 39.429 40.858 39.429 40.858 39.429 40.858 39.429 40.858 39.429 40.858 39.429 40.858 39.429 40.858 39.429 40.858 39.429 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.858 40.857 40.858 40.857 40.858 40.858 40.857 40.857 40.858 40.858 40.8577 40.8577 40.8577 40.85777 40.85777777777777777777777777777777777777	54.734 135.794 42.886 52.924 231.604 18.528 18.528 18.528 18.528 18.528 18.528 18.528 13.516 22.627 13.516 22.627 36.744 40.910 39.4470 35.483 34.483	51.435 141.838 144.361 112.364 357.364 31.8857 106.879 122.2455 748.646 33.1.827 122.2455 748.6465 33.827 122.2455 33.827 122.2455 33.827 122.2455 33.827 122.2455 33.827 122.2455 33.827 122.2455 33.827 122.2455 33.827 122.2455 33.84645 33.84645 32.9.204
PARAMETRIC POINT	41	42	43	44	45	46	47	48 `
TOTAL CAPITAL COSI #M\$ P PRESS HE FURNACE #M\$ L PUMP UP 3T-GEN	259.95 44.850 7.460 8.400 7.972 1.200	247.99 43.270 7.450 7.890 7.773 1.350	251.62 .44.720 7.460 7.560 7.511 1.520	170.99 19.160 7.410 6.700 7.611 3.220	150.87 19.160 7.410 6.700 8.022 3.220	167.25 19.160 7.410 6.700 5.356 6.040 3.879	152-78 19-160 7-410 6-700 4-111 6-800 4-230	220+42 23-740 7+410 12-880 3-363 5-600 5+320
HE TURB REC VAP GEN	$\begin{array}{c} 80 & 962\\ 218 & 289\\ 71 & 237\\ 80 & 147\\ 45 & 217\\ 300 & 417\\ 300 & 327\\ 99 & 376\\ 116 & 3863\\ 700 & 3863\\ 1 & 7883\\ 311 & 5253\\ 331 & 5253\\ 333 & 276\\ 1 & 5863\\ 1 & 57883\\ 311 & 5253\\ 333 & 275\\ 333 & 275\\ 333 & 275\\ 333 & 275\\ 333 & 275\\ 333 & 275\\ 333 & 275\\ 333 & 275\\ 335 & 956\\ 333 & 145\\ 335 & 956\\ 333 & 145\\ 335 & 956\\ 335 & 145\\ 335 & $	78.183 215.359 67.501 88.1155 75.6392 259.5589 111.3102 21.589 111.3102 21.5958 305.51958 305.5589 111.315958 305.5589 21.5958 305.551958 316.639208 326.65511 328 326.8990	78.751 229.372 70.527 91.750 382.648 46.792 30.410 99.380 99.380 7.932 7.932 7.9351 31.137.393 35.553 32.7728 32.7761	52.561 141.502 54.9642 251.6612 25.146 251.612 20.072 65.265 75.120 450.322 14.552 22.442 37.550 42.027 34.747 45.4512 34.5452 36.637	53.042 135.568 34.847 52.7685 222.7685 17.887 58.491 58.491 58.491 58.49375 11.1958 12.9307 34.9307 34.9375 37.461 37.461 37.128	48-536 53-676 53-679 257-889 257-889 20-445 66-310 75-312 14-864 38-452 38-53 3	$\begin{array}{c} 48.411\\ 152.306\\ 45.769\\ 61.838\\ 263.913\\ 31.537\\ 21.113\\ 20.710\\ 66.817\\ 75.526.231\\ 480.662\\ 15.195\\ 26.231\\ 42.057\\ 39.657\\ 39.637\\ 39.733\\ 45.0963\\ 47.324\\ 41.24\\ \end{array}$	58.313 143.956 91.015 61.956 296.937 23.905 77.9932 544.180 17.203 20.502 38.5382 43.654 35.032 41.823 41.823 42.428

Table 7.18 . COMBINED AIR-HELIUM-STEAM TURB CYCLE SUMMARY FLANT RESULTS Continued

.

PARAHETRIC POINT	49	50	51	52	53	54	55	56
TOTAL CAPITAL COST ,MS P PRESS HE FURNACE ,MS L PUMP UP ST-GEN ,MS A HELIUM GAS TURB-GEN ,MS N STEAN TURBINE-SENERATOR ,MS T PUMP UP REC VAP GEN ,MS HE TURB REC VAP GEN ,MS	304.75 51.210 6.790 22.221 3.612 4.040 9.350	225.55 23.740 7.410 12.660 3.239 5.110 4.950	226.89 23.740 7.410 12.880 3.363 5.600 5.320	172.25 19.160 7.410 6.700 5.726 7.000 4.990	000 000 000 000 000 000 000	00. 030. 000. 000. 000. 000.	00+ 000- 000- 000- 000- 000- 000-	000 000 000 000 000 000 000
R TOT MAJOR COMPONENT COST	97.233 221.1352 75.8022 73.791 375.728 315.728	$57 \cdot 109$ $148 \cdot 053$ $111 \cdot 724$ $521 \cdot 653$ $3311 \cdot 5788$ $253 \cdot 84595$ $255 \cdot 84595$ 584595 584595 584594 $405 \cdot 4294$ $405 \cdot 4294$	58.313 195.923 59.5357 311.55357 311.55357 251.5357 251.5357 253.55757 253.5357 253.53577 253.53577 253.53577 253.53577 253.535777 253.5357777 253.53577777 253.535777777777777777777777777777777777	51.986 130.154 51.087 52.719 233.959 26.885 18.809 71.1259 13.633 20.875 35.487 35.487 35.487 35.487 35.4837 35.8831	000 000 000 000 000 000 000 000 000 00	000 000 000 000 000 000 000 000 000 00	000- 000- 000- 000- 000- 000- 000- 000	.000 .000 .000 .000 .000 .000 .000 .00

.

7-116

,

TABLE 7.19 - RECUPERATED HELIUM CLOSED CYCLE C T 'YSTEMSUMMARY FLANT RESULTS

PARAMETRIC POINT THERMODYNAMIC EFF FOWER PLANT EFF OVERALL ENERSY EFF CAF COST MILLION \$ CAPITAL COST *\$/KWE COE CAPITAL COE.FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0083 2:494 4:5356 16.93546 16.93546 31.520 4:8-820 4:8-820 4:8-447	4 024256 224255 571.06653 571.06653 571.006530 54.4345 54.4345	5 000 0327 1772 1998 1988	6 03474883 5593631 5593631 175556548 43.6555 43.6555 43.6555	7 -338 -170 170-8665 17-8665 17-0076 -548 43-827 43-827 4-585	2 0 0 0 0 0 0 0 0 0 0 0 0 0
PARAMETRIC POINT IHERMODYNAMIC EEE POWER PLANT EFF OVERALL ENERGY EFF CAP COST MILLION \$ CAPITAL COST,\$/KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 .000 .376 .190 234.126 .562.507 .20.943 .548 .548 .548 .548 .548 .548 .548 .548	12 -358 -358 -181 226.8745 -20.754 -548 46.073 4.632	13 •307 •155 531•051 531•051 16•789 28•936 28•936 •548 •46•271 4•509	14 •009 •31964 •12144 \$205.090648 \$205.090648 \$205.090648 \$205.090648 \$205.090648 \$205.090648 \$205.0555 \$4.6555	15 -000 -319 -161 494-245 15-6282 27-7888 43-9551 4-541	16 0062 0363 1805 21.00441 221.00421 520.005 24.0041 520.005 24.0041 520.005 24.005
PAPAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP COST MILLION \$ CAPITAL COST \$ CAPITAL COST \$ COE CAPITAL COE FUEL COE OP 8 MAIN COST OF ELECTRIC EST TIME OF CONST							
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVER PLANT EFF CAP COST MILLION S CAPITAL COST.S/KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST							
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP COST MILLION S CAPITAL COST **/KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST							

Table 7.19 - RECUPERATED HELIUM CLOSED CYCLE C T SYSTEMSUMMARY PLANT RESULTS Continued

PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVER PLANT EFF CAP COST MILLION \$ CAPITAL COST \$ COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	41 • 000 • 325 • 154 249• 195 699• 394 22• 394 • 548 45• 985 4• 6 81	42 • 000 • 315 • 1,59 247.681 717.303 22.676 28.205 • 548 51.428 4.656	43 .000 .357 .260 .959 676739 .25250 .25250 .5543 47.191 4.745	44 • 000 • 3170 245•615 \$ 6095 21•405 25•405 - 25•405 • 548 48•010 4•709	45 005 •315 •26 •375	46 • 000 • 334 • 239 • 239 • 54 • 119 • 5548 • 5548 • 5548 • 5548 • 5548 • 508 • 764	47 •000 •334 •169 269 •234 731 •580 •23 •127 26 •555 •548 50 •230 4 •704	48 • 000 • 325 • 164 262 • 392 725 • 617 22 • 296 • 548 50 • 782 4 • 560
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP COST MILLION 5 CAPITAL COST **/KNE COE CAPITAL COE CAPITAL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	49 • 000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000	50 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000	51 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000 • 0000	52 •000 •000 •000 •0000 •0000 •0000 •0000 •0000 •0000 •0000	53 000 0000 0000 0000 0000 0000	54 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000	55 •000 •000 •000 •000 •000 •000 •000 •	56 •1000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000

TABLE 7.20 COMBINED AIR-HELTUM-STEAN TURB CYCLE SUMMARY PLANT RESULTS

PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERSY EFF CAP COST MILLION \$ CAPITAL COST.\$/KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 • 010 • 334 • 158 123-237 392-972 • 12-423 26-593 39-602 • 425	4 411 207 167 998 435 170 13 757 21 588 35 951 5 005	5 .000 .206 168.583 13.865 21.708 36.175 5.000	5 -000 -397 -200 176-335 456-692 14,437 22-350 37-384 4-974	7 .000 .4455 .225 217.153 519.031 16.408 19.924 .603 36.935 5.076	8 .000 .444 217.220 520.494 16.454 19.975 .600 37.029 5.073
PARAMETRIC POINT THERMODINANIC EFF POWER PLANT EFF OWERALL ENERBY EFF CAP COST MILLION S CAPITAL COST S/KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 11 \\ \bullet 030 \\ \bullet 333 \\ \bullet 168 \\ 1.71.931 \\ 504.051 \\ 15.934 \\ 25.653 \\ \bullet 592 \\ \bullet 592 \\ \bullet 3.179 \\ 4.896 \end{array}$	12 • 000 • 347 • 175 240.1254 19.962 25.6061 46.158 4.991	13 •800 407 •205 166•291 *35•122 13•755 21•808 36•164 4•996	14 •000 •411 •208 171.708 444.275 14.045 21.569 •604 35.218 5.006	15 •100 •414 •209 170.862 \$38.995 13.878 21.418 •606 35.902 5.012	16 •000 •418 •211 172.655 *40.072 13.912 21.249 •609 35.770 5.020
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERBY EFF CAP COST MILLION S CAPITAL COST \$/KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 • 000 • 404 • 204 1 • 1 • 003 4 23 • 845 13 • 399 21 • 943 35 • 941 4 • 990	21 • 900 • 197 158•468 • 32•500 13•675 22•756 602 37•034 4•959	22 •000 •391 •197 158•571 •31•283 13•634 22•672 35•910 4•963	23 •000 •401 •202 171•903 455•314 14•425 22•126 37•150 4•983	24
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP COST NILLION \$ CAPITAL COST.\$/KHE COE CAPITAL COE FUEL COE OP & MAIN COST OF SLECTRIC EST TIME OF CONST	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 385 194 4154.802 537 13.547 23.073 23.073 37.218 37.218 4.946	28 •000 •206 168.740 440.822 13.935 21.775 603 36.315 4.997	29 • 205 • 205 169•745 * 4*•915 14•065 21•791 • 791 • 595 35•460 4•995	30 .000 .407 .205 169.805 443.718 14.027 21.775 .604 35.405 4.997	31 •000 •205 169-409 447•512 14•147 21•850 605 35•602 4•988	32 •000 •207 168.9329 437.945 13.844 21.608 •602 35.054 5;004
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF DYERALL ENTRIY EFF CAP COST MILLION 1 CAPITAL COST, \$/KHE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC CONTAINS OF 20051							

Table 7.20 COMBINED AIR-HELIUM-STEAM TURE CYCLE, SUMMARY PLANT RESULTS Continued

PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERSY EFF CAP COST MILLION \$ CAPITAL COST.\$/KWE COE CAPITAL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	41 • 382 • 382 259• 382 259• 363 703• 863 703• 863 7• 585 1• 783 31• 525 4• 978	42 • 000 • 371 • 371 247-992 533-112 21.0595 7-819 30.332 4.959	43 •366 251•617 704•111 22•259 7•951 31•141 4•947	44 .000 .395 .199 170.985 450.322 14.552 22.442 37.550 4.977	45 .900 .916 .210 160.868 411.158 12.998 21.307 34.862 5.010	46 -378 -191 167-261 473-312 14,868 23,444 -613 39.924 4.940	47 • 000 • 338 • 171 152•779 480•562 15•195 25•231 42•057 4-847	48 •000 •431 220 419 544 180 17 203 20 577 5602 38 382 5 051
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF DWERALL ENERGY EFF CAP COST NILLION \$ CAPITAL COST, \$/KWE COE CAPITAL COE FUEL CDE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	49 • 003 • 401 • 202 204• 749 593• 3930 22• 159 • 612 44• 672 5• 126	50 .000 .411 225.545 584.724 18.484 21.510 .548 40.542 5.022	51 .000 .425 .215 .226.890 567.236 17.932 20.833 .543 33.322 5.051	52 •000 •425 •214 172•254 431•259 13•633 20•875 •602 35•111 5•040	53 •000 •000 •000 •000 •000 •000 •000 •000 •000	54 •000 •000 •000 •000 •000 •000 •000 •0	55 •000 •000 •000 •000 •000 •000 •000 •	56 •000 •000 •000 •000 •000 •000 •000 •0

.

7-120

TABLE 7.21 RECUPERATED HELIUM CLOSED CYCLE & T SYSTEM COST OF ELECTRICITY+MILLS/KW.HR PARAMFTRIC POINT NC.25

	ACCOUNT TOTAL DIRECT COSTS,\$ INDIRECT COST,\$ PROF & OWNER COSTS,\$ CONTINGENCY COST,\$ SUB TOTAL,\$ ESCALATION COST,\$ INTREST DURING CONST,\$ TGTAL CAPITALIZATION,\$ COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-CP & MAIN TOTAL COST OF ELEC	PERCENT 00 8.5 0 117774462. 12177 51.0 3595972. 12177 8.0 9421358. 5637 7.5 3833086. 9359 0 144625359. 15635. 6.5 26402047. 29335 10.2 2504244. 32321 0 200931636. 217176 18.0 20.49452 22.11 0 9.07590 9.0	253.130696381. 485.15196040. 780.10455710. 794.9802228. 310.166140358. 644.30329705. 991.34352999. 947.230822960. 5149.23.54335 5149.9.07590. 5742.1.55742	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ACCOUNT TDTAL DIRECT COSIS, INDIRECT COSIS,* PROF & OWER COSIS,* CONTINGENCY COSI,* SUB TOTAL,* ESCALATION COSI,* INTREST DUPING CONST,* TOTAL CAPITALIZATION,* COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	ACCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF 8 OWNER COSTS, SUB TOTAL, ESCALATION COST, INTREST DURING CONST, TOTAL CAFITALIZATION, COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	Process 0 12reessen 1.ce96 51.0 13reessen 1.ce96 8.c 1045571c 12455 7.5 9202228 3902 166146358 166140 0 2296818 30329 10.0 33276500 34352 c 122407676 230822 19.0 22.68501 23.5 9.07590 9.0	3:1. 1306:6381. 040. 15136040. 710. 10455710. 228. 9802223. 355. 16614035?. 705. 37969230. 895. 239458946. 4335 24.42522 7590 9.07590 5742 1.95742	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ACCOUNT TOTAL DIRECT COSTS, S INDIPECT COST, S	RATE, INT DUR FERCENI 6.00 8.0 0 130596391. 130596 51.0 15186040. 15186	ING CONST.PERCEN 0. 10.000 381. 130696381. 046. 15186040.	130696381. 130696331.

	FERCEN	J., . 6.86	\$. 00	. 10.00	12.50	15.066
TOTAL DIRECT COSTS:\$.0	130596391.	13069 6381 .	130696381	130696381.	130696381 .
TOTAL DIRECT COSTS,* INDIPECT COST,*	51 Ū	15106040.	15186040.	15196040.	15186040.	15186040.
PROF & OWNER COSTS.S	8.0	10455710.	10455710.	10455710.	10455710.	10455710.
CONTINGENCY COSI +S	7.5	5.802228		9662228	9802229.	\$802228.
SUB TOTAL +S	- 0	166140358	166140358.	166140359.	166140359.	166140358.
SUB TOTAL .S ESCALATION COST .S	ε.5	30329705.	36329705.	30329705	30329705.	30329765.
		20153060 216639122	27195926.	34352599 230822960	43526259.	52941701.
TOTRES CAPITALIZATION S	5, T	216639122	723655888.	230802960.	235556320 .	249411762 .
COST OF ELEC-CAPITAL	18 D	22.09663	22.81233	23.54335	24.47901	25.43936
COST OF ELEC-FUEL	.0	9.07590	9.07550	9.07590	5.07590	S.07590
COST OF FLEC-OP & MAIN	ិ៍ព័	1 95762	1.95742	1.95742	1.95742	1.95742
COST OF ELEC-OP & MAIN	-0	1.95742	3 94564	34.57666	35 51232	36 47267
	•,•					
		-				

ACCOUNT	RATE.		FIXED CHARGE			
TOTAL DIRECT_COSTS+\$	PERCEN	130696381		13.00 130696381.	21.60 130696381.	25.00 130696381.
INDIRECT COST+\$ PROF_8 OWNER COSTS+\$	51.D 3.0	15186040. 10455710.	15186040 10455710	10455710.	15186040	15186040. 10455710.
CONTINGENCY COST: SUB TOTAL:	7	9802228. 166140358.	9302228 196140358	<u>9902228</u> 166140358	9802228 166140359	9802228- 166140358-
ESCALATION COST+\$ INTREST DURING CONST+\$	6-5 10-C	30329705. 34352895.	30329705.	30329705.	30329705 34352659	30329705-34352859
TOTAL CAPITALIZATION S COST OF ELEC-CAPITAL	250	230922960		230322960	230822960	230822960 32 69510
COST OF ELEC-FUEL Cost of Elec-op & Main	-0	9.07590	9.07590	9.07590	9.07590	9.07590 1.95742
TOTAL COST_OF. ELEC	-0 -0	24,11295	23.86799	34.57666	39 28533	43.73241

ACCOUNT	PATE	;	FUEL COST.	\$/10**6 BTU		
TOTAL DIRECT COSTS, INDIRECT COST, PPOF 2 OWNER COSTS, GONTINGENCY COST, SUB TOTAL, ESCALATION COST, SUB TOTAL,	PERCEN F1.0 5.0 7.5 6.5	T .5C 130696381. 15186040 10455710. 9602222 166140358. 30325705.	130696381. 15136040. 10455710. 5602229 166140358. 30329705.	1.50 130696391. 15186040. 10455710. \$802228. 166140358.	15196040. 10455710. 9802228.	1.02 130696381. 15186040. 10455710. 2802228. 166140358. 30325705.
INTREST DURING CONST,\$ TOTAL CAPITALIZATION,\$ COST OF SLEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC		34352399 230922960 23.54335 5.33876 1.95742 30.83253	34352999 230522960 23.54335 9.07550 1.95742	34352899. 230822960. 23.54335 10.01629 1.25742	34352999.	34352899. 230822960. 23-54335 10-89107 1995742 36.39184

7	ACCOUNT	PATE	C	APACITY FA	CTOR. PERCE	NT	
122	TOTAL DIRECT COSTS.S INDIRECT COST.S	PERCEN	130696381.	45.00 170096301.			
	PROF & QWNER COSTS +S CQNIINGENCY COST +S	51-0 2-0 7-5	15186040 10455710 9802228	15186040. 10455710. .9802228.	15186040.	15186040. 10455710.	15136040. 10455710.
	SUB TOTAL + S ESCALATION COST + S	6.5	166140358	166140358	9802228. 166140358. 30329705.	9802228. 166140358. 30329705	9802228 166140358 30329705
	INTREST DURING CONST. TOTAL CAPITALIZATION.\$	`1C_C _0	34352895	14352899	34352859. 230822960.	24352950	34352859 230322960
	COST OF ELEC-CAPITAL Cost of Elec-fuel Cost of Elec-of & Main	18.C 0	127.52648 9.07590	34 CC7CE 9.07590	30.60636	23 54335	19.12597 9.07590
	TOTAL COST OF ELEC	•0 •0	3.21250 139.81489	2.11957 45.20253	2.06874 41.75099	1.95742 34.57666	1.89281 30.09767

Table 7.22 RECUPEPATED HELIUM CLOSED CYCLE & T SYSTEM COST OF ELECTRICITY,MILLS/KW.FR PARAMETRIC POINT NO.49

ACCOUNT	PATE, Percent 6.00	LABOR RATE, \$/HR 5.50 10.60	15.00 21.50
TOTAL DIRECT COSTS. INDIRECT COSTS. POF & OWNER COSTS. SUB TOTAL. ESCALATION COST. INTRIST DURING CONST. TOTAL CAPITALIZATION. COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	$\begin{array}{c} 1 & 0 & 1 & 3 & 5 & 3 & 9 & 7 & 1 & 8 & 3 \\ 5 & 1 & 0 & 1 & 0 & 7 & 4 & 5 & 7 & 3 & 0 & 1 & 0 & 3 & 7 & 4 & 5 & 7 & 5 & 1 & 0 & 1 & 0 & 5 & 7 & 5 & 1 & 0 & 1 & 0 & 5 & 7 & 5 & 5 & 0 & 1 & 0 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5$	143410653. 149637972. 12854956. 16030297. 11472853. 11971033. 10755752. 11971033. 173494264. 183352740. 32524265. 34477782. 36307320. 39051214. 2475865552. 262331736. 2175865552. 262331736.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ACCOUNT	RATE, PERCENT -5-00	CONTINGENCY, FERCENT	5.00 20.00
TOTAL DIRECT COSTS:5 INDIRECT COST:5	.0 149637972. 51.0 16030987.	149637972. 149637972. 16030887. 16030887. 11971038. 11971038.	145637972. 149637972. 16030897. 16030887. 11971038. 11971038.
PROF & OWNER COSTS + \$ Contingency Cost + \$ Sue Total + \$	20.0 -7481399	177639244, 188862740.	7481899 29927594
ESCALATION COST+5 INTREST DURING CONST+5 TOTAL CARTIALIZATION-S	5.5 31063143. 10.0 35183627. 0 235404764.	32428999. 34477782. 76730662. 3°C51214. 245799554. 262391736.	33794955. 37392422. 36277697. 42518801. 257194342. 289379708.
TOTAL CAPITALIZATION, S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN	18.0 20.66007	21.57528 22.53836	22.48400 25.21014 27.29565 27.23585
COST OF ELEC-OP & MAIN Total Cost of Elec	.C .54790 .0 43.51012	54750 .54750 43.41883 50.78191	•54790 •54790 50•32755 53•05363
ACCOUNT	FATT: FERGENT E.CC	TIALATION RATE, PERCE	:T 16.66 .CO
TOTAL DIRECT COSTS,\$ INDIRECT COST,\$	0 143637372- 51.0 10036887.	149637972. 149637972. 16036667. 16030887.	149637972. 149637972. 16030887. 1603087.
PROF & OWNER COSTS+# Contingency cost+# Sub total+#	3.0 11971033 7.5 11222545 0 193862740 0 25142005	11971035. 11971038. 11222842. 11222848. 178962740. 188862740.	11971038. 11971038. 11222848. 11222848. 138862740. 138362740.
ESCALATION COST+\$ INTREST DURING CONST+\$		<u></u>	54248650.0. 42029189.33912540. 285740576.222775286.
TOTAL CAPITALIZATION + S COSI OF ELEC-CAPITAL COSI OF ELEC-FUEL		22.93335 23.79756 27.23565 27.29565	
COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	0 54790 0 45 94562	54790 54790 50,70191 51.64111	54790 52.82307 47.31862

ACCOUNT	RATE			CONST + PERCEN		
TOTAL DIRECT COSTS .S	51.0 1	6030887	8.00 142637972: 16030887.	10.00 149637972 16030887	142637972. 16030987. 11971639	15-00 149637972- 16030387- 11971038-
PPOF 8 OWNER COSTS + \$ Contingency Cost + \$ Sub total + \$			11571C32. 11222348. 12896274C.	11971038. 11222848. 199862740.	11222843.	11222349 198662740
ESCALATION COST.S INTREST DURING CONST.S TOTAL CAPITALIZATION.S	15.C 2	2927505 6263026	34477762. 30903927. 394244448 22.22612	34477782. 39051214. 262391736.	34477782 45479178 272819700	34477792 6C192335 283522 <u>956</u>
TOTAL CAPITALIZATION, S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	19_0 •0 •0	21.52882 27.29565 54790 49.37237	22.22612 27.29565 54750 50.06967	27.23565	23.84997 27.29565 54790 51.69352	24.78565 27.29565 .54790 52.67919

7-123

•

Table 7.22 continued			
RECUPERATED HELIUM	CLOSED CYCLE G T	SYSTEM COST	OF ELECTRICITY + MILLS/KW + FR
	PARAMETRIC	POINT NO.48	

•

•

ACCOUNT	RATE,	F	IXED CHARGE	E RATE, PCT		
TOTAL DIDEOT DOCTO		0.06	14.40	18.00	21.50	25.00
TOTAL DIRECT COSTS,\$ INDIRECT COST,\$		537972. C36287.	149537972.	149637972.	149637972.	
PROF & OWNER COSTS \$	3.0 11	371038	11771033.	11971033.	11971038.	11971038.
CONTINGENCY COST S SUB TOTAL		222848	1 3362740	11222849. 183852740.	11222848. 13296274D.	11222849. 183362740.
ESCALATION COST +5	E.E 34	477782 .	4477782	34477752.	34477782.	24477782
INTREST DURING CONST.3 TOTAL CAPITALIZATION.5		051214.	30051214. C02391730.	33051214. 262391736.	33031214. 262391736.	30051214.
COST OF ELEC-CAPITAL	25.0 1	2 74353	13.35063	22.93836	27 • 52603	262391776. 31.95883
COST OF ELEC-FUEL Cost of Elec-op & Main	•ព្ ដ	.29565	27.29565	27.29565	27.25555	27.29565
TOTAL COST OF ELEC		C.58708	46.19423	-54790 50-78191	-54790 55.36958	.54790 59.70235

ACCOUNT	BATE		\$/10,**6_BTU		
TOTAL DIRECT COSTS # INDIRECT COST #		972 14 2637972			3,1? 149637972.
PROF & OWNER COSTS +\$ CONTINGENCY COST +\$	51.0 16030 8.C 11571 7.5 11222	C33. 1127107P.		15030887 11571038 - 11227348 -	16030397.
SUB TOTAL		740. 129962746.	189962740		11222348. 19896274C. 34477732.
INTREST DURING CONST.S TOTAL CAPITALIZATION.S		214. 39051214.	39051214	29051214	35051214
COST OF ELEC-CAPITAL COST OF ELEC-FUEL	.0 15.7	3836 22.2383E 4749 27.29565	22.33836	21.83652	22 53E3E 32 75478
COST OF ELEC-OP & MAIN Total cost of elec	-0 -53-2	4790 54790 3375 50.78191	•54790 47956	45.32279	5475C 56.24104

ACCOUNT	PATE.		ACTOR: PERCEN	T	
TOTAL DIRECT COSTS,S Indirect Cost,\$.0 149	2.60 45.00 537972. 14953797: 030987. 1603088		(5.00 149637972. 16030887	2C.CC 149637972. 16C30957.
PROF & OWNER COSTS - S CONTINGENCY COST - S	8.0 11	971038. 1197107 222948. 1122254	11971033.	11971039.	11971039.
SUB TOTAL,5 ESCALATION COST,5 INTREST DUPING CONST,5	E+5 34	367740. 1:2967740 477782. 3447778	34477782		188352740.
TOTAL CAPITALIZATION IS COST OF ELEC-CAPITAL	13-0 17	(51214, 1005121) 391730, (239173) 4,24943, 331,1333	. 262251726.	30051214. 191311736 22,93835	39051214. 262391776. 18.53741
COST OF ELEC-FUEL Cost of Elec-op & Main Total Cost of Elec	•G 2	7.29565 27.295 1.90300 710(3.34808 £1.138	5 27.29565 6 65922	27.29565 •54790 EC.76191	27.29565 47329 46.40635

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Table 7.23 - COMBINED AIR-HELIUM-STEAN TURE CYCLE COST OF ELECTRICITY+MILLS/KW.KR PARAMETRIC POINT NO. 5.

ACCOUNT	RATE. LABOR RATE. \$/HR
IOTAL DIRECT COSTS+\$ INDIRECT COST+\$ PROF & OWNER COSTS+\$ CONTINGENCY COST+\$ SUB TOTAL+\$ ESCALATION COST+\$ INTREST DURING COMST+\$ TOTAL CAPITALIZATION+\$ COST OF ELEC-CAPITAL COST OF ELEC-OP & MAIN. TOTAL COST OF ELEC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ACCOUNT	RATE. CONTINGENCY, PERCENT
TOTAL DIRECT COSTS #	PERCENT -5.00 .00 8.00 5.00 20.00 .0 91436418. 91436418. 91436418. 91436418. 91436418.
INDIRECT COST.5 PROF & OWNER COSTS.5	51.0 10807943, 10807043, 10807043, 10807043, 10807043, 10807043,
CONTINGENCY COST, 5 SUB TOTAL +5	$20_{a}B = 4571321_{a}$ $9_{a} = 7318913_{a} = 4571821_{a} = 18287283_{a}$
ESCALATION COST+\$	0 104986554. 109558374. 116873287. 114130194. 127845657. 5.5 21524570. 22461895. 23961614. 23399219. 26211193. 10.0 24793701. 25873385. 27600880. 26953070. 30192123.
INTREST DURING CONST.S Total capitalization.s Cost of elec-capital	R 151304924, 157893654, 158435780, 154492480, 184249972.
COST OF ELEC-FUEL	18.0 12.45447 12.99682 13.86458 13.53917 15.16623 0 21.70837 21.70837 21.70837 21.70837 21.70837
COST OF ELEC-OP & MAIN Total Cost of Elec	•0 •60225 •60225 •60225 •60225 •60225 •0 34•75509 35•30?44 36•17520 35•84979 37•47685
4,CC DUNT	RATE. ESCALATION RATE, PERCENT PERCENT 5.00 6.50 8.00 10.00 .00 0 91435418, 31435418, 91435418, 91435418, 91435418.
TOTAL DIRECT COSTS.S INDIRECT COST.S	D OTNZENIO DINZENIO, DINZENIO, DINZENIO, DINZENIO, DINZENIO,
PROF & OWNER COSTS, S Contingency cost. Sub Total, S	51.0 10807043. 10807043. 10807043. 10807043. 10807043. 9.0 7314913. 7314913. 7314913. 7314913. 7314913. 9.0 7314913. 7314913. 7314913. 7314913. 7314913. 9.0 116973287. 116873287. 116873287. 116873287.
SUB TOTAL S ESCALATION COST S	0 116973287. 116873287. 116873287. 116873287. 116873287. 116873287. 0 18123232. 23961614. 29992857. 38342171.
INTREST DURING CONST.S TOTAL CAPITALIZATION **	18-9 25535159 27500839 29591014 29951471 23598606
COST OF ELFE-CAPITAL	
COST OF ELEC-FUEL Cost of Elec-op & Main Total Cost of Elec	n 60225 50225 50225 50225 50225
IDIAL COST OF ELEC	0 35.61522 36.17520 36.75316 37.55241 33.87339
ACCOUNT	RATE . INT DURING CONST.PERCENT
TOTAL DIRECT COSTS .S	C 91436418. 91436418. 91436418. 91436418. 91436418.
INDIRECT COST # S PROF & OWNER COSTS #	51.0 10807043 10807043 10807043 10807043 10807043 10807043 8.0 7314913 7314913 7314913 7314913 7314913 7314913
INDIRECT COSTUS PROF & DWNER COSTS ** CONTINSENCY COST ** SUB TOTAL ** FSCALATION COST **	3.0 7314913. 7314913. 7314913. 7314913. 7314913. 0 116873287. 116873287. 116873287. 116873287. 116873287.
ESCALATION COST.S INTREST DURING CONST.S	5.5 23961614 23961614 23951614 23961614 23961614 23961614 15.0 16130300 21792102 27600880 35072679 42783719
TATREST DORING CONSTRA	

 ESCALATION COST.\$
 5.5
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.
 23961614.</td

1 125

•

Table 7.23 - COMBINED AIR-HELIUM-STEAM TURB CYCLE COST OF ELECTRICITY MILLS/KW .HR Continued PARAMETRIC POINT NO. 5

.

ACCOUNT TOTAL DIRECT COSTS, INDIRECT COST, PROF & OWNER COSTS, CONTINGENCY COST, SUB TOTAL, ESCALATION COST, INTREST DURING CONST, TOTAL CAPITALIZATION, COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	PERCENT 10.00 .0 91435413. 51.0 10807043. 8.] 7314913. 8.0 7314913.	7314913. 7314913. 7314913. 7314913. 15873287. 115873287. 23951614. 23961614. 27500830. 27500880. 168435780. 168435780. 11.09157 13.86458 21.70837 21.70837 .50225 .60225	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ACCOUNT TOTAL DIRECT COSTS ** INDIRECT COSTS ** PROF & OWNER COSTS ** CONTINGENCY COST ** SUB TOTAL ** ESCALATION COST ** INTREST DURING CONST ** TOTAL CAPITALIZATION ** COST OF ELEC-CAPITAL COST OF ELEC-CP & MAIN TOTAL COST OF ELEC	RATE, PSRCSNI 1.50 .0 91436418. 51.0 10807043. 8.0 7314913. 9.0 7314913. .0 116873287. 5.5 23961614. 10.0 27600880. 0 163435780. 18.0 13.86458 0 12.52456 .0 25.99089	10907043. 10807043. 7314913. 7314913. 116873287. 116873287. 23961614. 23961614. 27600880. 27600880. 158435790. 158435780. 13.86458 13.86458 21.70837 33.39749 .60225 .60225	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

7-126

.

ACCOUNT.	RATE:			TOR: PERCEN		
TOTAL DIRECT COSTS.S INDIRECT COST.S	PERCEN 51.0	91436418. 10807043.	45.00 31435419. 10807043.	50.00 91436418. 10807043.	65.00 31436419. 10807043.	80.00 31436418. 10807043.
PROF & ONNER COSTS \$ Contingency Cost \$ Sub total \$	5.0 8.0 0	7314913. 7314913. 116873287.	7314913. 7314913. 115873297.		7314913. 7314913. 115073287.	
ESCALATION COST.S Intrest during const.s Total capitalization.s	5.5 19.0 •D	23961614. 27500380. 168435780.	23951614. 27600831. 158435780.	23961614. 27600890. 168435780.	23961614 - 27600880 - 168435780 -	
COST OF ELEC-CAPITAL Cost of Elec-fuel Cost of Elec-op & Main Total Cost of Elec	13.0 .0 .0	75.03982 21.70837 1.85732	20.02552 21.70837 .75441	18.02396 21.70837 .71357	13.86458 21.70837 .60225	11.26497 21.76837 .52764
TOTAL COST OF ELEC	•0	98.66551	42.49939	40.44590	36.17520	33.50098

combined closed cycles. Each plotted point is numbered according to the parametric point number established in Subsection 7.4.

The COE for the closed-cycle recuperated and closed-cycle combined systems did not compare favorably with conventional steam power plant COE. For no parametric point did the COE fall below 8.2 mills/MJ (30 mills/kWh). In general, both the capitalization and COE were higher for the recuperative systems.

One of the prominent aspects of Figures 7.58 and 7.59 is the great difference in COE and capitalization between distillate and coal fuels. Distillate at the price contemplated would not be competitive with the direct burning of coal for the base-load operation (65% capacity factor) illustrated in the figures.

Various relative effects can be discerned using these two figures. Related points have been connected by lines to assist in the interpretation. Thus, for the recuperated cycles, $\overline{\text{R1}}$, $\overline{\text{R2}}$, $\overline{\text{R3}}$, $\overline{\text{R4}}$ represents the points on distillate fuel having a pump-up turbine inlet temperature of 1478°K (2200°F) and a helium turbine inlet temperature of 922°K (1200°F). The individual points have different helium cycle pressure ratios of 2, 2.5, 3, and 4 to 1, respectively. The sequences $\overline{\text{R1}}$, $\overline{\text{R2}}$, $\overline{\text{R3}}$, $\overline{\text{R4}}$; $\overline{\text{R5}}$, $\overline{\text{R6}}$, $\overline{\text{R7}}$, $\overline{\text{R8}}$; and $\overline{\text{R9}}$, $\overline{\text{R10}}$, $\overline{\text{R11}}$, $\overline{\text{R12}}$ pertain to helium turbine inlet temperatures of 922°K (1200°F); 1089°K (1500°F) and 1255°K (1800°F), respectively. They clearly reflect the much greater costs associated with the higher temperature heat exchangers. The sequences $\overline{\text{R13}}$, $\overline{\text{R15}}$, $\overline{\text{R17}}$, $\overline{\text{R19}}$; $\overline{\text{R5}}$, $\overline{\text{R6}}$, $\overline{\text{R7}}$, $\overline{\text{R8}}$; and $\overline{\text{R14}}$, $\overline{\text{R16}}$, $\overline{\text{R18}}$, $\overline{\text{R20}}$ depict recuperator effectiveness values of 0.8, 0.9, and 0.95 applied to both the pump-up and helium cycles.

The above mentioned points can be considered to relate to parametric Point R6 as a mean value in the parameter variations. Point R6 is also the most attractive from the standpoint of lowest COE in the family of points.

The next group of points are those in the coal-burning family and relate to Point R25, Base Case A. Points $\overline{R24}$, R25, R23 have changing

Curve 682583-A

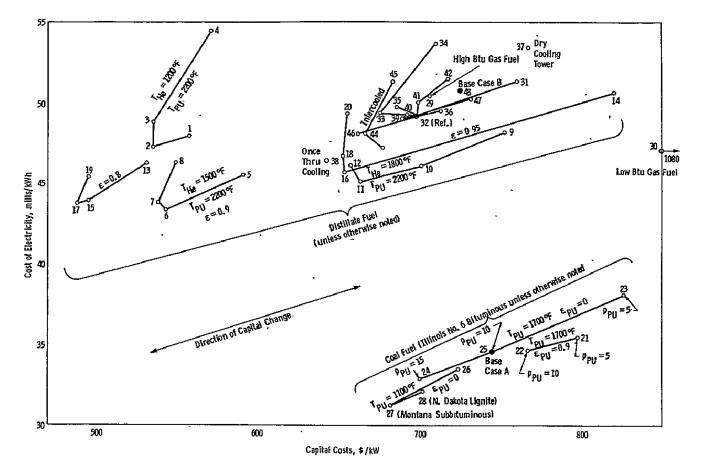


Fig. 7.58 -Cost of electricity vs capital cost for a recuperated closed-cycle gas turbine system

pump-up pressure ratio and mainly reflect increasing capitalization for lower pressure level combustion. The COE for Point R25 is 9.61 mills/MJ (34.6 mills/kWh). Points R21, R22 are similar but with added recuperation (0.9 effectiveness) for the pump-up set. At a pressure ratio of 10 to 1, Point R22 has a performance improvement over Point R25 which is almost exactly countered by the added capitalization for no net change in COE. At a pressure ratio of 5 to 1 much more heat can be recovered, and Point R21 is considerably improved in both capitalization and COE over Point R23. Points R26, R27, R28 have the different specified types of coal but with the pump-up turbine inlet temperature brought down to 866°K (1100°F). Point R26 reflects an improvement over Point R25, Base Case A.

There is some difference in COE associated with various coal fuels [about 0.55 mill/MJ (2 mills/kWh)], Montana subbituminous being the best.

Point R32 using distillate at 866°K (1100°F) for the pump-up turbine inlet temperature is a reference for most of the remaining points. Point R48, Base Case B, in itself has a COE of 14.11 mills/MJ (50.8 mills/kWh) burning distillate fuel. By switching to coal fuel, a considerable reduction in COE would be expected. Such a plant would resemble a typical steam power plant except that the conventional steam turbine generator would be replaced by a closed-cycle recuperated helium gas turbine. Point R30, burning low-Btu gas, has a 13.08 mills/MJ (47.1 mills/kWh) COE and is off-scale for capitalization. It appears to have no redeeming attributes. At a COE of 14 mills/MJ (50.4/kWh) the high-Btu gas fuel point, R29, also, is not an attractive option.

The combined closed cycles shown on Figure 7.59 generally had lower capitalization and better performance than did the recuperated cycles. The coal-fueled points of both types of system appear to be similar. Point C41 burning Illinois No. 6 bituminous coal is closely related with respect to cycle configuration to Point R26. Point C41 has a COE of 8.75 mills/MJ (31.5 mills/kWh) and a capitalization of \$701/kW. compared to corresponding values of 9.03 mills/MJ (32.5 mills/kWh) and

Curve 602033-C

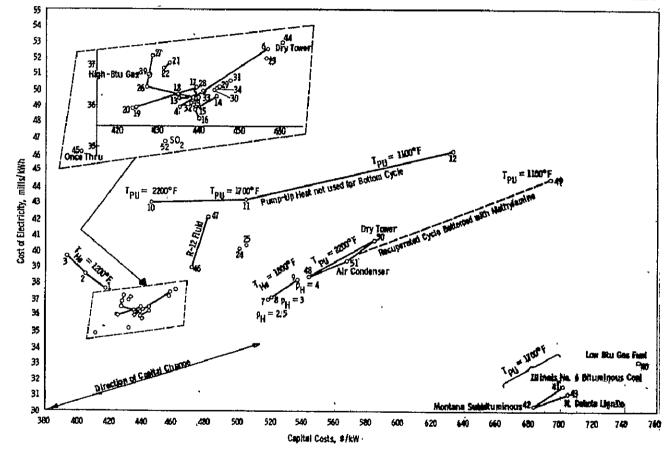


Fig. 7, 59- Closed combined cycles cost of electricity vs capitalization Number points refer to the parametric point number?

\$692/kW for Point R26. The lowest COE, Point C42 burning Montana subbituminous coal has a value of 8.42 mills/MJ (30.3 mills/kWh) for COE 0.278 mill/MJ (1 mill/kWh) lower than the corresponding, and best, recuperated Point R27.

The higher turbine inlet temperature pump-up points using distillate fuel are definitely better with combined rather than recuperated, cycles. The higher cost of distillate fuel, however, eliminates it from competition with the coal-fueled points.

On Figuré 7.59, the congestion of points about the base case, Point C5, requires the use of an inset at larger scale to differentiate them. Points $\overline{C1}$, $\overline{C2}$, $\overline{C3}$; $\overline{C4}$, $\overline{C5}$, $\overline{C6}$; $\overline{C7}$, $\overline{C8}$, $\overline{C9}$ are a sequence with varying helium temperatures of 922, 1089, and 1255°K (1200, 1500, and 1800°F), respectively. For Points $\overline{C10}$, $\overline{C11}$, $\overline{C12}$, the exhaust heat of the pump-up set is not utilized for heating the vapor of the bottom cycle. Of course, this is wasteful, and the COE values of 11.94 mills/MJ (43 mills/kWh) and higher reflect this fact.

Although the COE levels for the closed combined cycles would appear to be too high to be competitive relative to some of the other ECAS energy conversion concepts, certain effects have been identified which can be valid in other applications, such as open combined cycles or nonfossil fuel closed cycles for gas-cooled nuclear reactors. These effects relate to the base case, Point C5. Points C13, C14, C15, C16 show an advantage in cycle performance as the helium compressor inlet temperature is allowed to rise. The maximum advantage is about 0.11 mill/MJ (0.4 mill/kWh) for Point C16 compared to Point C5 for a compressor inlet temperature of 450°K (350°F) compared to 366°K (200°F). Points C17, C18, C19, C20 are similar in that the helium temperature from the vapor generators is allowed to rise, producing the same improvement in bottom cycle fit as did Points Cl3, Cl4, Cl5, Cl6. Here, however, a precooler was intentionally added to bring the compressor inlet temperature down to 309°K (96.5°F). The improvement in COE over Point C5 was only 0.05 mil/MJ (0.2 mil/kWh) compared to the 0.11 mill/MJ (0.4 mill/kWh) improvement when the precooler was not applied.

Points C46, C47 use dichloridifluorimethane (R-12) as a bottoming fluid. The poorer thermodynamic fit due to the stability limit resulted in a fall-off in performance such that the COE for Point C46 is 10.78 mills/MJ (38.8 mills/kWh), 0.75 mill/MJ (2.7 mills/kWh) poorer than for Point C5. Point C47 had an added loss from the rejected heat of the superheated R-12 turbine and has a COE value of 11.69 mills/MJ (42.1 mills/kWh), 1.64 mills/MJ (5.9 mills/kWh) poorer than has Point C5.

Points $\overline{C48}$, $\overline{C50}$, $\overline{C51}$... $\overline{C49}$ utilize methylamine bottoming fluid and are subposed below recuperated cycles; $\overline{C48}$, $\overline{C50}$, $\overline{C51}$ below a 1478°K (2200°F) pump-up cycle, and $\overline{C49}$ below an 866°K (1100°F) pump-up cycle. All have 1089°K (1500°F) turbine inlet temperature helium cycles. The large amount of heat exchange equipment required for these cycles results in a high capitalization so that the lowest COE (Point C48) is 0.61 mill/MJ (2.2 mills/kWh) poorer than Point C5. The 866°K (1100°F) case, Point C49, is especially unfavorable in this respect and has a COE 2.36 mills/NJ (8.5 mills/kWh) poorer than Point C5.

In addition to their relation to Point C5, Points C48, C50, C51 relate to each other as to the method of heat rejection. Point C48 rejects heat to a wet cooling tower by means of a cooling-water loop. Point C51, however, rejects its cycle heat to a dry tower by condensing the methylamine directly in an air condenser. Point C50 has poorer performance and greater capitalization than Point C48 so that the COE is 0.61 mill/MJ (2.2 mills/kWh) higher. This is analogous to the relation between Point C44 (dry tower) and Point C5 (wet tower) with steam which has a COE difference of 0.39 mill/MJ (1.4 mills/kWh). The difference between 0.61 and 0.39 mill/MJ (2.2 and 1.4 mills/kWh) is primarily due to differences in capitalization which, due to the novelty of some of the special bottoming fluid apparatus, is somewhat uncertain. Point C51 has better performance and lower capitalization than Point C50 so that its CCE is 0.36 mill/MJ (1.3 mills/kWh) lower. There is no counterpart for the steam bottomed cycles.

7--132

The direct condensing for Point C51 is made possible because the volumetric flow from the bottom turbine is low enough to deploy it directly to air condensers. Actually, the pipe size required for the methylamine vapor is of the same magnitude as that required for a coolingwater loop. The pipe size for collecting the condensed methylamine is much less than that required for cooling water. Since the heat transfer to air for the condenser and that for cooling water for a loop are both dominated by the air-side heat transfer coefficient, both types of surface would be highly finned and be comparable in cost. This same effect should be applicable for a low-boiling fluid such as R-12, sulfur dioxide, or any other fluid of this type.

Point C52 utilizes sulfur dioxide as a bottom fluid under a 1478°K (2200°F) turbine inlet temperature pump-up cycle and 1089°K (1500°F) turbine inlet temperature helium cycle. The high stability limits for sulfur dioxide permit its operation to levels of 811°K (1000°F). This bottoming cycle using supercritical pressure levels was carefully fitted to the heat available lines, and the superheated sulfur dioxide exhaust energy was utilized by regenerative feed heating. The resulting high efficiency and small turbine size resulted in a COE of 0.306 mill/MJ (1.1 mills/kWh) lower than that of the base case (Point C5). It should be possible to realize this same effect in other related types of cycles, such as open combined cycles, and in nuclear applications.

In addition to the overall descriptions provided by the composite plots of mills per kilowatt hour versus capitalization, the effect of specific parameter variations upon COE has been investigated.

Figure 7.60 illustrates the effect of helium cycle pressure ratio and recuperator effectiveness upon the COE for the recuperated closed cycle. Pump-up turbine inlet temperature is 1478°K (2200°F) and compressor ratio is 10 to 1. The fuel is distillate from coal. Helium turbine inlet temperature is 1089°K (1500°F). The optimum COE occurs at a compressor pressure ratio of 2.5 to 1 and with a recuperator effectiveness of 0.9. Although for higher recuperator effectiveness efficiency

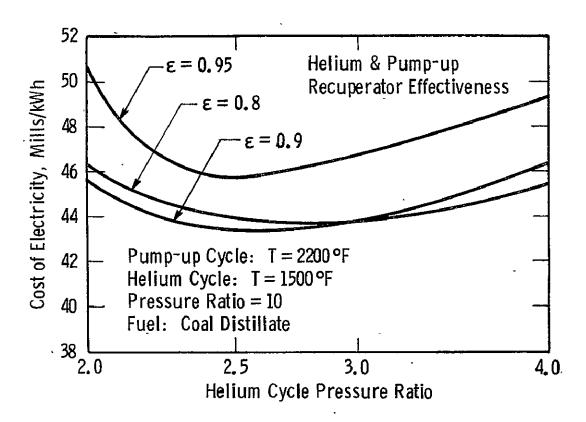


Fig. 7.60-Influence of recuperator effectiveness on cost of electricity (Recuperated closed-cycle)

can be improved, additional capital costs outweigh the gains and the result is a net degrading of the COE advantage.

Table 7.24 principally illustrates the impact of the higher distillate fuel prices on COE for four closed recuperated cycle cases.

Points R25 and R26 are each fixed on coal fuel. Point R25 corresponds to Base Case A, and Point R26 is similar, except that the pumpup turbine inlet temperature is reduced by transferring more primary heat to the helium cycle. This change resulted in a net reduction in COE. Point R6 has the added effect of recuperation in the pump-up cycle, and overall efficiency consequently reflects an improvement. Distillate fuel was used, however, and the higher COE reflects the added fuel costs. Point R48, Base Case B, utilizes an atmospheric pressure furnace as a substitute for the pump-up cycle and reflects a decrease in efficiency relative to Point R6.

Figure 7.61 applies to the combined closed cycles and illustrates the effect of helium cycle turbine inlet temperature and compressor pressure ratio on COE. The optimum combination of these parameters appears at 1089°K (1500°F) and 2 to 1, respectively.

Similar to the above described recuperated cycle tabulation, Table 7.25 illustrates the effects of fuel type and cycle arrangement on COE for selected combined closed cycles.

A comparison of recuperated and combined closed cycles with respect to fuel price sensitivity is presented in Table 7.26. In each case, the cost of fuel has been arbitrarily escalated from 0.806 to $\frac{1.42}{GJ}$ (0.85 to $\frac{1.50}{10}^{6}$ Btu), an increase of 76%. The combined closed cycle is preferred here, with its overall COE escalating 18%, as compared with 20% for the recuperated cycle example.

The natural resource requirements consisting of coal, sorbent (for gasification systems), water for heat rejection, gasification process, etc., and land usage have been estimated and are given for the recuperated and combined closed-cycle systems in Tables 7.27 and 7.28, respectively.

* Indicated by number in parentheses in Table 7.26.

Dwg. 6363A79

TABLE 7.24 - RECUPERATED CLOSED-CYCLE RESULTS

Fuel Type Fuel Cost, \$/10 Cost of Elec., mil Capital Cost, \$/ . Efficiency, % Power Output, A Pump-up Helium Total Helium Cycle Temp °F P. R. Recup. Eff. Pump Up Cycle Temp,°F P. R. Recup. Eff. Capacity Factor Parametric Poir

	Coal	· Coal	Dist	>
)6 Btu	0.85	. 85	2.60	>
ills/kWh	33.7	32.5	42.6	45.9
/kW	719	692	519	573
	32.0	33.3	34.6	32.5
ww				
	86	38	112	
	231	316	217	360
	317	354	429	360
	1500 —			>
	2. 5		····	`
	. 90			`
•				
	1700	1100	2200	No
	10	10	10	Pump
.,%	line deal	`	90	Up
	0.65			-
int	25	26	6	48

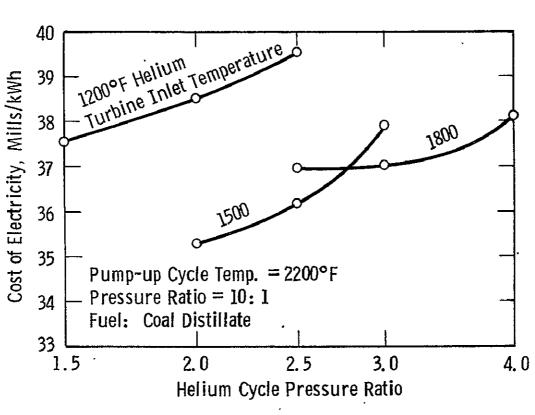


Fig. 7.61—Influence of helium temperature and pressure ratio on cost of electricity for a closed combined cycle

TABLE 7.25 - COMBINED CLOSED-CYCLE RESULTS

.

Fuel Type	Coal	Dist		······································	>
Fuel Cost, \$/10 ⁶ Btu	0.85	2.60			>
Cost of Elec. , mills/kWh	31.5	36. 2	38.9	38.4	35.1
Capital Cost, \$/kW	701	439	470	544	431
Efficiency, %	38. 2	40.9	37. Š	43.1	42.5
Power Output, MW					
Pump-up	84	113	113	110	113
Helium	117	86	86	198	86
Bottom	179	191	165	105	209
Total	380	390	364	413	408
Helium Cycle					
Temp., °F	1500 —				
P. R.	2.5			i	>
Pump Up Cycle					
Temp., °F	1700	2200	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	>
P. R.	10				
Bottom Cycle Fluid	Steam	Steam	R -12	Methyl- amine	so ₂
Capacity Factor	0. 65 ——				
Parametric Point	41	5	46	48	52

.

Dwg. 6367A50

•

4

Table 7.26 Comparison of Closed Cycle Coal Fired Gas Turbine Plants

	Recuperative			Combined			
Cost of Fuel, \$/10 ⁶ Btu	0.85	1.50	(1.76)	0.85	1, 50	(1.76)	
Cost of Elec. , Mills/kWh	33 . 50	40. 10	(1. 20)	31.50	37.30	(1. 18)	
Cost of Fuel, Mills/kWh	8.70	15.40		7.60	13.40		
Capital Cost, \$/kW	692.00			701.00			
Efficiency, %	33 . 30			38.20	•		
Capacity Factor	0 . 65			0.65			
Parametric Point	26.00			41.00			

Table 7.27 -RECUPERATED HELIUM CLOSER CYCLE C T CYCTEX NATURAL RESOURCE RESURCERESTS

PARAMETRIC POINT COAL + LB/KW-HR SCRBANT OR SEED + LE/KW-HR TOTAL WATEP, 3AL/KW-HR COOLINC WATER GASIFISR PROCESS 420 CONDENSATE MAKE UP + WASTE HANDLING SLUPRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LANC ACRES/ICOMWE MAIN PLANT DISPOSAL LANC LAND FOR ACCESS RR		3 1860 2.21610 1000 .6000 1000 .6000 1000 .00000 1000 .00000 1000 .00000 1000 .00000 1000 .00000 1000 .00000 1000 .00000 1000 .00000 1000 .00000 100 .00000 100 .00000 100 .00000 100 .00000	.00000	.00000 .00 00000 .00 72.05 7 16.26 10	6 7 1229 1-85715 0000 -CC0CC 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 0000 -00000 16-21 16-45 100 -51 53-05	•0000 •00000 •00000 •5•36 17-24
PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED, LB/KW-HR TOTAL WATER, GAL/KW-HP COOLING WATER GASIFIER PROCESS H20 CONDENSATE MAKE UP, WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION. TOTAL LAND ACRES/IDOMWE MAIN PLANT DISPOSAL LAND LAND FOF ACCESS RR	9 10 1.68006 1.00 .0000 .00 .000 .00 .0000 .00 .0000 .00 .0000 .00 .00000 .00 .0000 .00 .000 .000	11 22 1.85717 2000 .0000 0000 .0000 0000 .00000 0000 .00000 0000 .00000 0000 .00000 0000 .00000 0000 .00000 0000 .00000 0000 .00000 0000 .00000 0000 .00000 00000 .000000 00000 .00000 .00000 00000 .00000 .000000000 00000 .0000000000	12 1.75100 2 .00000 .000 .0000 .000000 .000000 .00000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .000000 .0000000 .00000000	36-94 E	4 15 6092 1.9536C 9000 .0000 9000 .0000 0000 .00000 0000 .0000 0000 .0000 0000 .00000 0000 .0000 0000 .00000 0000 .0000 0000 .0000 00000 .0000 00000 .00000 0000 .0000 00000 .0000 00000 .0000 0000 .0000 00000 .0000	69.26 15.75
PARAMETPIC POINT COAL, L3/KJ-H9 SORBANT OR SEED, LE/KW-FR TOTAL HATEF, SAL/FW-HR COOLING WATER GASTETEP PROCESS H20 CONDENSATE MAKE UP WASIE HANDLING SLURPY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LANC ACRES/ICCMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS R9	17 11 1.96666 1.90 .0000 .00 .0000 .0000 .000 .	1° 1141 2.07.561 5000 .000 5000 .000 5000 .000 5000 .0000 5000 .0000 5000 .0000 5000 .0000 5000 .00000 <td></td> <td>-155 -0000 -0 -0000 -0 -1000 -0 -1000 -0 -1000 -0 -00000 -0 -00000 -0 -0000 -0 -0 -0000 -0 -0 -0 -0000 -0 -0 -0 -0000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>-163 -0000 -10005 -10065 -10065 -50000 172-55 19-97 -54-25</td>		-155 -0000 -0 -0000 -0 -1000 -0 -1000 -0 -1000 -0 -00000 -0 -00000 -0 -0000 -0 -0 -0000 -0 -0 -0 -0000 -0 -0 -0 -0000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-163 -0000 -10005 -10065 -10065 -50000 172-55 19-97 -54-25
PARAMETRIC POINT COAL, LE/KL-HP SOBANT OR SEED, LB/KN-HR TOTAL WATEP, CAL/KW-HR GASIFIER PPOCESS H20 CONDENSAIE NAKE UP, WASTE HANDLINC SLURPY SCOUBEP WASIE NATER NOX SUPFRESSION TOTAL LANC ACP SVIDCMES MAIN PLANT DISPOSAL LAND LAND FOP ACCESS RR	-1000	?? :1:::::::::::::::::::::::::::::::::::	.CCCCC .CCCCC .CCCCC .CCCCC .CCCCCC .CCCCCC	.000 .00000 .0 .00000 .0 .00000 .0 .00000 .0 .00000 .0 .00000 .0 .10000 .0 .14.61 1 .00 75	31 205 1 27997 344 0000 5675 0000 0000 0000 0000 0000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000	•000 •00000 •00000 •00000 •00000 •0000 •00000 •000 •0000 •000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •0000 •000 •000 •0000 •000

TABLE 7.27 - PECUPEPATER FELIUM GLOSEC CYCLE (T TYSTEM NATUPAL RESCURCE REQUIREMENTS Continued

PAPANETRIC POINT COAL + LB/KW-HR SORBANT OR SEEC +LE/KW-HR COOLING WATER GASIFIER PROCESS 410 CONDENSATE MAKE UP WASTE HANDLING SLURR SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/10CMKE MAIN PLANT DISPOSAL LAND LAND FOP ACCESS RR	000. 000. 00000. 00000.	24 216:42 00000 000000 000000 000000 000000 00000	35 94553 600000 9000000		27 - 62146 - 6000 - 6000 - 60000 - 600000 - 60000 - 6000 - 600 - 600 - 6000 - 6000 - 6000 - 6000 - 600 - 700 -	1.20000 .C0000 .000000	39 1.33353 -CCC00 -0000 -000000 -0000 -000	40 32 32 40 50 40 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 50 50 50 50 50 50 50 50 50 50 50
PA SAMETRIC POINT COAL + LE/KW-HR SORBANT OR SEED.LE/KW-HF COOLING WATER GASIFIER PROCESS H2C CONDENSATE MAKE UP WASTE HANDLING SLURR SCRUBBER WASTI WATER NOX SUPPRESSION TOTAL LANC ACPES/100MWE MAIN PLANT DICPOSAL LAND LAND FOR ACCESS RR	- CCC - CCCOC - CCCOC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCC - CCCCCCCC	423500 •00000 •00000 •00000 •00000 •00000 •000000	473 • 000000 • 000000 • 0000000 • 00000000 • 0000000000	446000000 000000000 00000000 0000000 000000	45 6600 6000 60000 60000 60000 60000 6000000	45 1 45 500000 500000 50000 50000 500000 500000 500000 500000 500000 500000 500000 5000000 500000000	47 5 500000 5000000 500000 500000 500000 500000 500000 500000 500000000	48 • 00000 • 0000 •
FARAMETRIC FOINT COAL, LB/KN-HR SORBANT OR SEED,LE/KW-H TOTAL WATER, JAL/KK-HR GASIFIER PROCESS H2D CONDENSATE MAKE UP WASTE HANDLING SLURR SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/ICCMME MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	000 00000 00000 000000 00000 00000 00000); 0000, 0000, 0000, 0000, 00000, 00000, 00000, 00, 000, 00, 00, 000, 00,00	13 00000 0000 0000 0000 00000 00000 00000 0000	52 .00000 .00000 .00000 .00000 .00000 .000000	53 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4	22 00000 10000 000 000 0000 00000 0000	32 10000 10000 10000 10000 10000 10000 10000 10000 100 1000 1

BARKPT PRINTS

Table 7.28	COMBINED	AIR-HELIUM-STEAM	TURB CYCLE	NATURAL	RESOURCE	REGUIREMENTS

	PARAHETRIC POINT COQL, LB/KW-HR SORBANT OR SEED+LB/KW-HR TOTAL WATER, SAL/KW-HR GASIFIER PROCESS H2D CONDENSATE MAKE UP WASTE HANDLINS SLURRY SCRUBBER WASTE WATER NOK SCRUBBER WASTE WATER NOK SUPPRESSION TOTAL LAND ACRES/100HWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR								
4 ,	PARAMETRIC POINT COAL + LB/KW-HR SORBANT OR SEED+L3/XW-HR COOLING WATER GASIFIER PROCESS H2D CONDENSATE MAXE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100MWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR								
	PARAMETRIC POINT COAL+ L9/KW-YR SORBANT OR SEED+LB/KW-HR TOTAL WATER, SAL/KW-YR GASIFIER PROCESS H23 CONDENSATE MAKE UP + WASTE HANDLINS SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100HWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.555391 .00000 .549 .544 .00455 .0000 .000000 .000000 .000000 .0000000 .00000000	18 • 550 31 • 550 30 • 554 • 554 • 004 55 • 1010 • 00000 • 33.92 15.20 23.72	1° • 55391 • 0000 • 544 • 0000 • 00000 • 000000 • 000000 • 000000 • 000000 • 000000 • 000000 • 000000 • 0000000 • 0000000 • 000000 • 000000 • 000000 • 000000000 • 0000000000	20 1.55991 .0000 .543 .0000 .00455 .0000 .0000 .0000 43.92 15.20 28.72	21 14 508 39 •80000 •511 •607 •90000 •00454 •00000 •00000 •00000 45 •32 15 •54 •00000 23 •78	22 1.50243 .C0000 .6439 .00456 .00000 .00000 45.18 15.51 29.67	23 • 56385 • 0000 • 573 • 5080 • 00452 • 0000 • 0000 • 00000 • 44 • 23 15 • 28 • 00 23 • 96	24 •00000 •0000 •0000 •0000 •0000 •0000 •0000 43.45 15.09 28.36
	DARAMETRIC POINT COAL + LB/KW-HR SORBANT OR SED.J3/KW-HR COOLING WATER GASIFIER PROCESS H20 CONDENSATE MAKE UP * WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/131MWE MAIN PLANT DISPOSAL LAN3 LAND FOR ACCESS RR	25 1.67891 .0000 .608 .503 .0000 .0000 .00000 43.63 15.13 .00 28.50	25 1.57967 .559 .559 .0000 .00463 .0000 10010 .000600 14.52 15.37 .00 29.25	27 1.63076 .03099 .538 .533 .00000 .03446 .0000 .03000 43.83 15.66 .000 25.17	28 1.53909 .590 .595 .00000 .39489 .0000 .30489 .0000 .30100 .00000 43.63 15.13 15.13 28.50	23 1.54016 .30300 .604 .599 .000000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000 .000000 .000000 .000000 .00000000	30 1.5391C .0000 .585 .0000 .00489 .0000 .00000 43.64 15.14 28.51	31 1.54433 .00000 .603 .00497 .0000 .0000 .000000 .000000 .00000 .00000 .00000 .00000 .00000 .00000 .00000000	32 1.52721 .0000 .571 .0000 .00473 .0000 .0000 43.34 15.06 .00 28.28

.

7-142

Continued	HELIUM-STEAM TUS	E CYCLE	NATURAL RESOU		•
PARAMETRIC POINT COAL LJ/KW-YR SORBANT OR SEED.LB/KW-HR TOTAL WATER. 3AL/KW-YR COOLING WATER GASIFIER PROCESS H29 CONDENSATE MAKE UP * WASTE HANDLIN'S SLURRY SCRUBBER NASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDGNWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	33 34 1.53535 1.53840 .00000 .00000 .584 .592 .579 .587 .0000 .00000 .00484 .00491 .0000 .00000 .00000 .00000 .00000 .00000 43.55 43.51 15.12 15.13	.00000 .572 .567 .00000 .00474 .0000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-53430 1-3 00000 - 574 570 00000 - 00480 - 00000 - 00000 - 00000 - 43-35 15-07	39 40 19858 .82726 00000 .43771 .553 .780 .558 .581 00000 .14765 00467 .00491 .0000 .0906 00000 .0906 00000 .0906 00000 .0906 00000 .0906 00000 .00000 39.71 127.02 12.65 27.39
		•00 29•37	28.43 28.30	-00 28.30	.00 69.54 27.07 30.08
PARAMETRIC POINT COAL, LB/KU-HR SORBANT OR SEED,LB/KU-HR TOTAL WATER, GAL/KW-HR GASIFIER PROCESS H20 CONDENSATE MAKE UP , WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/103MHE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	00000 .00000	-00000 62-56 15-84	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00080 61.88 15.87	47 48 85399 1.45439 1.038 .679 1.038 .679 1.038 .0000 00000 .00000 00000 .00000 00000 .00000 00000 .00000 00000 .00000 00000 .00000 00000 .00000 7%-20 .05-05 17.00 14.65 .00 .00 57.20 40.40
PARAMETRIC POINT COAL & LBXXW-HR SORBANT OR SEED & LBXXW-HR TOTAL WAVER & SALXW-HR GOOLING WATER GASIFIER PROCESS 420 CONDENSATE MAKE UP * WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/1DOMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	.806 .0000 .806 .000 .2000 .0000 .0000 .00000 .0000 .00000 .0000 .00000	-0000 -300 -000 -0000 -0000 -0000 -0000 -0000 -0000 -0000 -03000 -03000 -03000 -03000 -03000 -03000 -03000 -00000 -00000 -0000 -0000 -0000 -0000 -0000 -0000 -00	52 53 •47545 00000 •677 •000 •677 •000 •00000 00000 •677 000 •0000 00000 •0000 00000 •0000 00000 •0000 00000 55.75 000 14.73 00 •00 00 •0	00000 00000 000 000 0000 00000 00000 0000	55 56 00000 .00000 00000 .0000 0000 .0000 0000 .0000 0000 .0000 0000 .0000 0000 .0000 0000 .0000 0000 .0000 0000 .0000 .000 .000 .000 .000 .000 .000 .000 .000

aBRKPT PRINTS

7-143

•

7.7 Conclusions and Recommendations

7.7.1 Conclusions

In comparison with other ECAS energy conversion systems, both the closed recuperated and combined-cycle systems are not generally attractive for base-load (or lower) capacity factor operation.

The combined closed-cycle systems, in general, have a lower COE and better performance than the recuperated closed-cycle systems, although for operation on coal fuel the results for both types of cycle are nearly alike. Substitution of a sulfur dioxide bottoming fluid system for the steam system results in reduction of the overall base-load COE because of higher efficiency and reduced capital costs.

Firing of the coal-derived distillate fuel is not competitive with direct burning of coal for base-load operation in this type of plant. Further, of the types of coals investigated for direct burning, the Montana subbituminous results in the lowest COE. Firing high-Btu gas, as well as using integrated low-Btu gasification, are not attractive options because of high capital cost.

As with open-cycle gas turbine systems, increasing the closedcycle turbine inlet temperature results in improved cycle efficiency for both the recuperated and combined closed-cycle systems. Also, the closedcycle compressor pressure ratio for optimum efficiency increases gradually with higher turbine inlet temperatures. For example, the nonintercooled recuperated and combined closed cycle systems, at a turbine inlet temperature of 922°K (1200°F), show optimum therodynamic efficiency at a compressor pressure ratio of approximately 2 to 1; while at 1255°K (1800°F) turbine inlet temperature the optimum occurs at a value of nearly 2.5 to 1.

In contrast with the open-cycle gas turbine systems, however, the COE is not a continually decreasing function of higher turbine inlet temperature. For both the recuperated and combined cycles, the minimum COE was determined to occur at a turbine inlet temperature of 1089°K (1500°F). This result follows from the greatly increasing heat exchanger cost at the higher turbine inlet temperatures.

The influence of recuperator effectiveness for the recuperated closed-cycle systems is similar to the above described effect of turbine inlet temperature. Although increasing the nominal recuperator effectiveness results in a steady improvement in thermodynamic efficiency, the optimum value for a minimum COE is approximately 0.9.

Results of alternative methods of heat rejection, including wet cooling tower, dry cooling tower, and once-through cooling, are similar to the results determined in the gas-steam combined-cycle section of this study. That is, minimum COE obtained with once-through cooling, maximum COE with dry tower heat rejection. Also, the difference in COE between wet and dry tower rejection is larger than that between once-through and wet tower cooling.

The use of compressor intercooling in conjunction with the recuperated-cycle configuration results in a reduced COE with the optimum compressor pressure ratio at a value of approximately 5 to 1 at the 1089°K (1500°F) turbine inlet temperature level.

7.7.2 Recommendations

Certain features of the closed-cycle system merit further investigation.

- Due to the high leverage of the helium heater costs on the plant cost and the overall COE further work on this cycle should begin with more detailed technical and economic evaluation of the helium heater system.
- The use of closed helium cycle with bottoming cycle should be further studied for other heat source applications, such as in a high-temperature gas-cooled nuclear reactor.
- The feature of bottoming with a low-boiling, hightemperature stable fluid, such as sulfur dioxide or ammonia, should be studied further.

• The feature of deploying a low-boiling fluid for direct condensing in an air condenser should receive additional investigation.

7.8 References

- 7.1 F. Taygun and D. Schmidt, "Today's Achievements with Conventional Closed-Cycle Gas Turbines and Their Future Aspects in the Nuclear Field," Paper presented at the 16th Annual International Gas Turbine Conference, 1971, Houston.
- 7.2 K. Bammert and G. Deuster, "Layout and Present Status of the Closed-Cycle Helium Turbine Plant Oberhauser," ASME Paper 74-GT-132.
- 7.3 B. F. Dodge, <u>Chemical Engineering Thermodynamics</u>, New York: McGraw-Hill Book Company, 1944.
- 7.4 Matheson Gas Data Book, Matheson Co., Inc., 1961.
- 7.5 T. L. Kang, L. J. Hirth, K. A. Kobe, and J. J. McKette, "Pressure-Volume-Temperature Properties of Sulfur Dioxide," Journal of Chemical and Engineering Data, Vol. 6, No. 2, April 1961, pp. 220-26.
- 7.6 "Thermodynamic Properties of FREON^R 12 Refrigerant (Dichlorodifluoromethane)," E. I. DuPont de Nemours & Co., Pamphlet T-12, 1956.
- 7.7 B. J. McBride, S. Heimal, J. G. Ehlers, and S. Gordon, "Thermodynamic Properties to 6000 for 210 Substances Involving the First 18 Elements," NASA Report SP-3001, 1963.
- 7.8 J. R. West and G. P. Giusti, "The Thermodynamic Properties of SO₂," Journal of Physical Chemistry, Vol. 54, (without tables) 1950, pp. 601-605, Document 2708, American Documentation Institute (with tables).
- 7.9 T. L. Kang and J. J. McKetta, "Application of Benedict-Webb-Rubin Equation of State to SO₂," Journal of Chemistry & Engineering Data, Vol. 6, No. 2, April 1961, pp. 227-228.

- 7.10 T. L. Kang and J. J. McKetta, "Thermodynamic Properties of SO₂,"
 A.E.Ch.E., Journal, Vol. 7, No. 3, 1961, pp. 418-422, or
 Reprint No. 59, University of Texas, Bureau of Engrg. Research (more complete tables).
- 7.11 O. A. Hougen and K. M. Watson, <u>Chemical Process Principles</u>, New York: John Wiley & Sons, Inc., 1947.
- 7.12 G. N. Lewis and M. Randall, <u>Thermodynamics</u>, 2nd Ed., New York: McGraw-Hill Book Company, 1961.
- 7.13 F. Kreith, <u>Principles of Heat Transfer</u>, International Textbook Co., 1966.