E7.5-F0.4.1 3 CR-114387

- Alter and

Made available ander MASH Monsorship in the interest of early and wide dis semination of Earth Resources Survey Program information and without liability for any use made the mot "

EREP INVESTIGATION NO. 459 CONTRACT NO. T-4110B

ANALYTIC AEROTRIANGULATION UTILIZING SKYLAB EARTH TERRAIN CAMERA (S-190B) PHOTOGRAPHY NOAA/National Ocean Survey M. Keller

N75-33468 (-75-10413) MALYTIC ADDOTPIANGULATICE HTILIZING SKYLAB FACTH PERPAIN CAMERA (5-19)B) PHOTOGRAPHY Final Peport (National Unclas Ccean Survey, Rockville, Ud.) 105 p HC 00413 CSCL ORF G3/13 . 75. 75

SKYLAB A PROPOSAL AEROTRIANGULATION WITH VERY SMALL SCALE

PHOTOGRAPHY - EREP INVESTIGATION NO. 459

CONTRACT NO. T-4110B

Principal Investigations Management Office Lyndon B. Johnson Space Center Technical Monitor - Mr. Rigdon Joosten

FINAL REPORT

submitted by

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SURVEY Rockville, Maryland 20852

MORTON KELLER - Principal Investigator

ANALYTIC AEROTRIANGULATION UTILIZING SKYLAB EARTH

TERRAIN CAMERA (S-190B) PHOTOGRAPHY

•

.

MORTON KELLER

Photogrammetric Research Branch Coastal Mapping Division NOAA, National Ocean Survey Rockville, Maryland 20852

July 1975

PREFACE

This report on the feasibility of utilizing SKYLAB spacecraft photography to provide control for small scale mapping operations was prepared so as to enhance the comprehension of those readers not familiar with the principles of analytic aerotriangulation procedures and the SKYLAB Earth Resources Experiments mission.

All of the work involved in this study was performed in the offices of, and on equipment operated by, the National Oceanic and Atmospheric Administration, National Ocean Survey/Coastal Mapping Division, which is located in the Washington Science Center, Rockville, Maryland. Computer processing was performed on a CDC 6600 computer operated by NOAA and located at Suitland. Maryland.

The author wishes to express his sincere appreciation to Mr. D. Norman and Mr. I. Raborn of the Aerotriangulation Section who performed the photocoordinate measurements, assembled the data, and processed the material through the analytic aerotriangulation system of computer programs. Thanks are due to Commander W. V. Hull, Chief of the Coastal Mapping Division, and to Mr. C. Slama, Chief of the Photogrammetric Research Branch, for allowing the author to provide the time and effort needed to bring this study to a successful conclusion. A final vote of thanks is due Mrs. M. Taglieri, secretary for the Photogrammetric Research Branch, for her patience and diligence in preparing this report for delivery to the National Aeronautics and Space Administration.

INDEX

ABSTRACT	ł
BACKGROUND MATHEMATICAL BASIS OF ANALYTIC AEROTRIANGULATION COLLINEARITY CONDITION FORMULATION	2 3 4
NATIONAL OCEAN SURVEY ANALYTIC AEROTRIANGULATION SYSTEM Aerial Photography Photo Control Points Pass Points Marking and Photocoordinate Measurement Computer Processing Image Coordinate Refinement and Three-Photo Orientation Strip Adjustment to Ground Control Secant Plane Coordinate Transformation Block Adjustment Accuracy Analysis Accuracy of NOS Analytic Aerotriangulation System	5 5 6 7 8 8 9 9 10 10 10
SKYLAB EARTH RESOURCES EXPERIMENTS DESCRIPTION OF EARTH RESOURCES EXPERIMENT PACKAGE SENSORS Multispectral Photographic Facility (S-190A and S-190B) S-190A S-190B Infrared Spectrometer (S-191) Multispectral Scanner (S-192) Microwave Radiometer/Scatterometer and Altimeter (S-193) L-Band Radiometer (S-194)	12 13 15 16 16 17 18 18
IDENTIFICATION OF THE NOAA/NOS INVESTIGATION SKYLAB S-190B EARTH TERRAIN CAMERA (ETC) PHOTOGRAPHY PHOTO CONTROL PASS POINTS MARKING AND PHOTOCOORDINATE MEASUREMENT FIDUCIAL MARKS COMPUTER PROCESSING Secant Plane Coordinate Transformation Image Coordinate Refinement and Three-Photo Orientation Strip Adjustment to Ground Control Block Adjustment Weighting the Block Adjustment Solution Results of the Block Adjustment Solution Inverse of the Secant Plane Coordinate Transformation Accuracy Analysis FURTHER DISCUSSION OF SKYLAB ANALYTIC AEROTRIANGULATION RESULTS	20 20 21 21 23 25 25 27 28 28 35 36 48 51 53
APPENDIX A - THE SKYLAB S-190B EARTH TERRAIN CAMERA	
APPENDIX B - LISTING OF 600-PHOTO BLOCK ADJUSTMENT PROGRAM	

TABLES AND FIGURES

Table I.	EREP PROGRAM STRUCTURE	14
Table 2.	EREP SENSOR CHARACTERISTICS	19
Figure I.	SKYLAB PHOTOGRAPHY AND CONTROL LAYOUT	
Table 3.	ACCURACY OF OFFICE-IDENTIFIED CONTROL IN BLOCK ADJUSTMENT	22
Table 4.	CONVERSION OF CONTROL STATION GEOGRAPHIC POSITIONS TO SECANT PLANE COORDINATES	26
Table 5.	SECANT PLANE COORDINATES - INPUT TO BLOCK ADJUSTMENT	31
Table 6.	REFINED COORDINATES INPUT TO BLOCK ADJUSTMENT	32
Table 7.	OUTPUT FROM 600-PHOTO BLOCK ADJUSTMENT PROGRAM	37
Table _. 8.	RESIDUAL ERRORS AT CONTROL STATIONS AFTER BLOCK ADJUSTMENT	47
Table 9.	CONVERSION OF BLOCK OUTPUT TO GEOGRAPHIC POSITIONS	49
Table IO.	THE STANDARD ERRORS AT THE 15 WITHHELD CONTROL STATIONS	52

ANALYTIC AEROTRIANGULATION UTILIZING SKYLAB EARTH

TERRAIN CAMERA (S-190B) PHOTOGRAPHY

MORTON KELLER

NOAA, National Ocean Survey

Rockville, Maryland

ABSTRACT

The objective of this study was to investigate the feasibility of utilizing SKYLAB spacecraft Earth Terrain Camera (S-190B) 1:946,000 scale photography in analytic aerotriangulation procedures to provide low-order, high-density control suitable for small-scale mapping operations.

The long range application is the employment of this technique for coastal zone mapping at medium and small scales, surveys in remote areas, forest and range management, various planning activities, and route location for highways, pipelines, transmission lines, and canals.

The National Oceanic and Atmospheric Administration, National Ocean Survey, (NOAA/NOS), office-identified the locations of 29 photo control points of known position and elevation on a strip of 12 photographs ranging along a 350-mile track from Charlotte, North Carolina, to the Rappahannock River in Virginia. The coordinates of pertinent images on each photograph were then processed through an established analytic aerotriangulation system of computer programs.

The inherent errors in using nonmetric SKYLAB photography and office-identified photo control made it necessary to perform numerous block adjustment solutions involving different combinations of control and weights. The final block adjustment was executed holding to 14 of the office-identified photo control points. The accuracy of the solution was evaluated by comparing the analytically computed ground positions of the 15 withheld photo control points with their known ground positions and also by determining the standard errors of these points from the variance values. A horizontal position RMS error of 15 meters was attained. The maximum observed error in position at a control point was 25 meters.

BACKGROUND

A basic framework of horizontal and vertical geodetic control is essential for coordinating surveys and the mapping of large areas. In the United States, the first- and second-order horizontal and vertical control surveys conducted by the National Ocean Survey of the National Oceanic and Atmospheric Administration provide this basic framework of geodetic control. Additional control surveys of third-order accuracy by various federal and state agencies then subdivide or extend the basic network by triangulation, traverse, and leveling methods in order to bring the control into the areas to be mapped. The control stations established by these surveys are usually monumented for future use.

Photogrammetry is a system of measuring and interpreting data recorded on photographs and is applicable to all sciences that depend on reliable geometric measurements of physical quantities occurring in a fixed or transitory state. The widest application of the photogrammetric art has been in the topographic mapping of the earth's surface, where it provides an alternative and/or supplement to conventional ground methods for establishing geodetic control and mapping geographical features.

Photogrammetric mapping procedures offer certain worthwhile advantages over ground methods, such as: 1. Detailed mapping can be performed more accurately, completely, efficiently, and economically than by ground methods. This advantage increases with the complexity of the details, as, for example, in city and harbor areas and along irregular coasts; 2. otherwise inaccessible areas can be more easily mapped; 3. maps can generally be produced from photographs with less ground control than is necessary for ground methods; and 4. the workload is transferred to the office, where operations are independent of weather and daylight.

Photogrammetry can provide the following primary services:

Provide three-dimensional stereoscopic models of the terrain that can be set in stereoscopic plotting instruments, so that planimetric and topographic details can be compiled from these models.

2. Extend the basic control network directly into the area of photography by using aerotriangulation methods to bridge between the high-order arcs of existing control. This procedure yields primarily fourth-order nonmonumented control and minimizes the need for field work to establish the photo control required to properly orient the stereoscopic models on the plotting instruments.

Aerotriangulation is a photogrammetric technique for deriving the ground coordinates of objects from a set of overlapping aerial photographs that show images of these objects and also of a relatively sparse distribution of other objects whose coordinates are known from classical measurements on the ground. The two principal methods employed to determine the desired threedimensional ground coordinates for the objects are stereotriangulation and analytic aerotriangulation. Stereotriangulation depends on measurements made on a sequential series of overlapping stereoscopic models formed on a high-precision photogrammetric plotting instrument. Analytic aerotriangulation is a digital solution based on observed coordinates of the images created by pertinent objects appearing on each of the photographs covering the area. The analytic solution possesses a remarkably high accuracy potential as compared to stereotriangulation, because of the advantages accruing from automation, digital accuracy, least-squares adjustment, and freedom from the mechanical discrepancies contributed by the stereoscopic plotting instruments In addition, the systematic errors such as camera-lens distortion, film shrinkage, atmospheric refraction distortion, etc., can be more effectively eliminated by analytic methods than in stereotriangulation procedures. A disadvantage of the analytical solution is that the computations are complicated and require a large-size electronic computer to contain and process the large volume of data with economy and speed.

THE MATHEMATICAL BASIS OF ANALYTIC AEROTRIANGULATION

Several different variations in analytical aerotriangulation techniques have evolved. However, all of the methods basically consist of writing equations which relate the unknown elements of exterior orientation of each photograph to camera constants and refined \underline{x} and \underline{y} image coordinates observed on a comparator. The equations are solved for the unknown camera orientation parameters and the ground coordinates for each object creating observed images on the photographs. Since more observational information is normally available than is required for a unique solution, the method of least squares is used to obtain the most probable values of the unknown parameters in such a fashion that the sum of the squares of the residual observational discrepancies is a minimum.

The observation equations must be linear with respect to the unknown independent parameters; otherwise, a direct solution of the equations becomes difficult. If the mathematical model is nonlinear, as most photogrammetric problems are, a Taylor's expansion series is usually employed to linearize the equations. The computation requires initial approximations of the unknown parameters and is iterative because the second and higher degree terms of the Taylor's series are neglected to simplify. the mathematics. The least squares solution provides corrections to the approximate values of the parameters. If the initial approximations are coarse, the corrections are added to them, giving fresh and improved approximations for a new solution. Least squares is used again to provide another set of corrections, and the procedure is repeated until some criterion of convergence is satisfied.

The most commonly used analytic methods are designed to enforce one of two conditions: coplanarity or collinearity. <u>Coplanarity</u> is the condition that the two perspective centers of an overlapping pair of photographs, any object point, and its corresponding image points on the two pictures all lie in a common plane; i.e., the rays passing through the two camera stations should intersect at a single object point. The purpose of the computation is to minimize the distance between the two rays at the object location. The observation equation utilized in each object space angle thus contains the four residual errors, v_x , v_y on first photo and v_y , v_y on second photo, involved in measuring

on first photo and v_x , v_y on second photo, involved in measuring the <u>x</u> and <u>y</u> image coordinates on each picture. This causes the solution to become cumbersome and difficult to solve properly when the object occurs on several or more photographs.

<u>Collinearity</u> is the condition that every object, its photographic image, and the camera exposure station must lie on a common straight line, as defined by the method of least squares in which the sum of the squares of the residual errors of image coordinate measurement is minimized. Two observation equations are written for every image and, except for the few control station images, contain only one residual error, v or v, in each equation.

This simplifies the application of least squares so that <u>any</u> number of photographs can be routinely accommodated.

The principle of collinearity provides the basis for the NOS method of analytic aerotriangulation. The condition is utilized in an iterative manner to determine incremental corrections to initial approximations for the unknowns, which are reasonably close to the correct values.

COLLINEARITY CONDITION FORMULATION

The well known equations of collineation comprising the projective transformation are:

$$\frac{x}{z} = \frac{(X-X_0) a_{11} + (Y-Y_0) a_{12} + (Z-Z_0) a_{13}}{(X-X_0) a_{31} + (Y-Y_0) a_{32} + (Z-Z_0) a_{33}}$$

$$\frac{y}{z} = \frac{(X-X_0) a_{21} + (Y-Y_0) a_{32} + (Z-Z_0) a_{33}}{(X-X_0) a_{31} + (Y-Y_0) a_{32} + (Z-Z_0) a_{33}}$$

where the <u>a</u>- terms are the nine elements of the rotation matrix relating the <u>x</u>, <u>y</u>, <u>z</u> image coordinate system to the X, Y, Z ground coordinate system of the objects, and Xo, Yo, Zo are the coordinates of the camera station expressed in the ground coordinate system.

~		-		-				
	÷	[a11	a13	<i>a</i> 13]		cos φ cos κ	$\cos w \sin x + \sin w \sin \phi \cos x$	$ \frac{\sin \psi \sin x}{-\cos \psi \sin \phi \cos x} $
-	A =	a ₂₁ a ₃₁	a22 a32	a23 a33	=	$-\cos \varphi \sin x$	cos w cos x -sin w sin ¢ sin X	sin ω cos × +cos ω sin ω sin ×
·.	•					sin φ	-sin ω cos φ	cosw cos op
	-		• -		1		• • • •	· · ·

A Taylor's expansion series is applied to the transcendental collinearity equations to obtain linearized observation equations, which can then be solved for the linear independent unknowns by the application of least squares. The complete form of the linearized observation equations is:

$$\mathbf{v_{x}} = (P_{11}^{+P} 12^{dw+P} 13^{d\phi+P} 14^{dk-P} 15^{dX_{0}-P} 16^{dY_{0}-P} 17^{dZ_{0}+P} 15^{dX+P} 16^{dY+P} 17^{dZ})/A_{3}^{B}$$
$$\mathbf{v_{y}} = (P_{21}^{+P} 22^{dw+P} 23^{d\phi+P} 24^{dk-P} 25^{dX_{0}-P} 26^{dY_{0}-P} 27^{dZ_{0}+P} 25^{dX+P} 26^{dY+P} 27^{dZ})/A_{3}^{B}$$

where the nine terms dw through dZ are incremental corrections to be applied to initial approximations of the unknowns. These two equations occur for each image on each photograph. Block adjustment requires the presence of all nine terms, whereas the space resection computations use only the first six terms dwthrough dZo. Sufficient photographs and images are needed to provide at least as many equations as there are unknowns to be computed. The solution is iterative and terminates when the incremental corrections to the angular parameters are smaller than the observed precision.

THE NATIONAL OCEAN SURVEY ANALYTIC AEROTRIANGULATION SYSTEM

Aerial Photography

The Coastal Mapping Division of NOS utilizes well calibrated precision aerial cameras to secure the near vertical aerial photography required for its photogrammetric operations. These cameras include the Wild RC-8, 6-inch focal length camera and the Wild RC-10 camera equipped with interchangeable 6-inch and 3.5-inch focal length cones.

The cameras are mounted in two aircraft operated by the Division; one being a DeHavilland Buffalo, while the other is an Aero Commander 690A. The <u>Buffalo</u> is a twin-engined turboprop craft, having a cruising speed between 120 and 180 knots at altitudes up to 32,000 feet. Its cruising range is 10 hours. The cabin is unpressurized, thereby requiring the crew to use oxygen above 10,000 feet. The Buffalo has been modified to simultaneously accommodate three aerial cameras mounted in three hatches. The plane is used on nearly all photographic missions conducted by the Division.

The <u>Aero Commander 690A</u> is a leased aircraft, employed to obtain photography for airport surveys. It is a twin-engined turboprop craft, having a cruising speed between 100 and 270 knots at altitudes up to 32,000 feet. Its cruising range is five hours. The pressurized cabin permits the crew to operate without relying on oxygen. However, this requires the photography to be taken through an optically flat glass window which covers the single hatch. A backup oxygen supply is available that permits aerial photography to be taken without the window in place over the hatch.

Photo Control Points

In order to implement analytic aerotriangulation methods, it is necessary to establish sufficient <u>photo control</u> to properly orient the aerial photography. Photo control refers to the establishment of horizontal positions and/or elevations with respect to the basic framework of geodetic control monuments of carefully chosen ground objects, which create sharp, distinct, and easily identifiable point images on the photographs. The positions and/or elevations are determined from the monumented control network by third- and fourth-order triangulation, traverse, and leveling methods. The photo control points selected in the field are usually prominent natural or cultural features providing sharp imagery on the overlapping photographs. Such examples are road intersections, fence-line intersections, lone trees, corners of buildings and wharves, and smaller stacks or towers.

For the more precise photogrammetric surveys, the placement of specially prepared targets on the control points, prior to photography, is desirable for facilitating accurate office identification of the photo control points. The targets are symmetrical in design, centered on the photo control points, and are of sufficient size to show on the photography. The targets are are usually in the shape of a \underline{Y} or a cross.

Pass Points

In analytical control extension, pass points are established in the nine standard relative orientation locations on each photograph. The pass points may be easily identifiable point images similar to those selected as photo control points. Usually, however, the pass points are simply holes drilled into the photographic emulsion, with the Wild PUG-2 stereoscopic point transfer device in areas providing an optimum stereoscopic perception. On 60 percent overlap photography, one ground object can appear as a pass point image on three successive photographs of a strip.

NOS programs permit two pass points to be used in each relative orientation location, even though only one pass point is sufficient to provide all of the data needed for the analytic computations. Then, if one of the pass points in a relative orientation location should exhibit an excessively large residual discrepancy during the solution, it can be discarded and its companion pass point substituted in its place.

Marking and Photocoordinate Measurement

A stereoscopic point transfer device, such as the Wild PUG-2, is first used to select, mark, and transfer suitable photo control and pass point images to adjacent photographs. The coordinates of each image on the photograph transparency are then measured to micron accuracy by either a digitized Mann monocomparator or by a stereocomparator, such as the Wild STK or the Zeiss PSK.

The use of a monocomparator means that the images on only one plate can be measured at a time. It, thus, is necessary to use a stereoscopic point transfer device to mark and transfer all images to every photograph. Stereocomparators, however, can simultaneously measure the photocoordinates of corresponding images on a stereoscopic pair of photographs. As a consequence, it is necessary to mark (drill) all of the images on only one photograph in each strip in order to specifically identify the image for measurement purposes. The drilled image can then be stereoscopically transferred to the second photograph and measured with the stereocomparator without actually ever drilling the image on the second photo. Since the images are drilled on only one plate, it is not necessary to use a stereoscopic point transfer device to mark the images. In practice, the PUG device is needed only as a means for transferring the images to any adjoining strips.

In essence, a stereocomparator consists of two mechanically united monocomparators. A monocomparator is, therefore, more accurate than a stereocomparator. In practice, however, the need for additional PUG operations with a monocomparator results in the accuracy of the monocomparator-PUG combination, being about equal to that of the stereocomparator.

After the photocoordinates have been measured, the data is submitted for processing through the series of computer programs comprising the analytic aerotriangulation system.

Computer Processing

The analytic aerotriangulation system developed at NOS consists of five programs: (1) Image coordinate refinement and threephoto orientation, (2) strip adjustment to ground control, (3) secant plane coordinate transformation, (4) block adjustment, and (5) accuracy analysis.

(1)Image Coordinate Refinement and Three-Photo Orientation: To obtain the highest possible degree of accuracy in analytical solutions, measured photocoordinates must be corrected for systematic errors which cause distortions in the image positions. The first program, therefore, begins with a refinement of the raw x and y image coordinates measured on each photograph on the comparator. The popularity of making positive prints of the photographs on glass plates (diapositives) has declined in recent years. Today polyester plastic bases are used because they provide a dimensionally stable base film that is much less sensitive to humidity, temperature, and laboratory processing. The photocoordinates observed on the photograph transparency are corrected for the systematic distortions introduced by the comparator, film shrinkage, camera lens, and atmospheric refrac-The problem of earth curvature is recognized in the third tion. program, in which the ground coordinates of all objects are expressed in a geocentric, three-dimensional secant plane system that takes earth curvature into account.

The refined image coordinates are punched out to serve as input to the block adjustment program (4). The refined image coordinates theoretically should be nearly all free of systematic error and contain only residual observational discrepancies in them.

The program then proceeds to the three-photo camera orientation phase, which comprises an interrelated geometric fitting of the photographs based only on the refined image coordinates and is entirely independent from any ground control data. The computation is iterative and derives the orientation of each photograph relative to the previous two in the strip. It also determines the positions of all pertinent objects in a three-dimensional coordinate system at the scale of the photography. The collineation principle is imposed in a least squares solution that minimizes the discrepancies in the observed image coordinates. The residual errors are analyzed by the computer, which discards those images exhibiting excessively large discrepancies. The removal of these blunders provides "clean" image coordinate data for all subsequent computations.

(2) <u>Strip Adjustment to Ground Control</u>: The analysis of three photographs at a time automates the joining of the separate triplets into a continuous strip and develops a set of model

coordinates, which are analogous to the product obtained from conventional stereotriangulation on stereoscopic plotting instruments. The horizontal and vertical strip adjustment program transforms the model coordinate data into the prevailing ground control coordinate system by fitting to control stations through the application of polynomial equations and least squares. Any large residual discrepancies appearing in the resulting adjustment are corrected in order to obtain provisional ground position data that are free of blunders prior to entering the block adjustment computation.

The analytic computations may be <u>terminated</u> after strip adjustment or may continue through block adjustment, depending on the desired accuracy. While block adjustment can be performed without actually using the three-photo orientation and strip adjustment programs, these preliminary programs are employed in practice to furnish improved and complete data for the block adjustment in an effort to reduce the time and cost of "debugging" and computer operations.

(3) <u>Secant Plane Coordinate Transformation</u>: If maximum accuracy is desired, the provisional ground coordinates are first transformed into a geocentric and then into a special secant plane system that takes earth curvature into account. The block adjustment solution is performed using these secant plane coordinates for the objects, together with the previously obtained refined image coordinates. The secant plane transformation program is designed to operate in its inverse mode so that given secant plane coordinates can be transformed back into the prevailing ground coordinate system.

Block Adjustment: This program permits the simultaneous (4) solution of the absolute orientation (three linear elements of position and three angular elements of orientation) of all photographs in a block of overlapping strips of photography. Only the pass points and control station objects contribute equations and thus influence the least square orientation solution. Their finalized ground coordinates are computed simultaneously, along with the absolute orientation of all the photographs in the Those objects that are not pass points or control stations block. do not contribute equations and thus do not influence the orien-The finalized camera parameters from the tation solution. orientation solution and the refined image coordinates are used to compute the final ground X, Y, Z coordinates for these other objects by intersection. After the block adjustment is completed, the adjusted secant plane coordinates are transformed back into the original ground coordinate system by applying the secant plane transformation in its inverse mode.

The major task of the block adjustment program is the solution of the large number of simultaneous equations in a least square manner that efficiently utilizes the memory capacity of the computer. The largest program written at NOS can accommodate as many as 600 photographs in a single simultaneous least square adjustment. Some 36,000 observation equations containing about 10,000 unknowns may be generated in developing the normal equations. The number of objects whose final ground positions can be computed in the block adjustment solution is unlimited.

All of the analytic programs have been written to operate on the CDC 6600 computer. To date, the largest block adjustment problem processed through the computer contained 180 photograhs. The solution involved over 15,000 observation equations and about 4,500 unknowns. The CDC computer running time for the least square block adjustment was less than five minutes.

(5) Accuracy Analysis: In order to appreciate fully the accuracy potential of the system, and the error values at test points, a final computer program is used to develop the inverse of the matrix of normal equations, the variances, and the standard errors in centimeters in X, Y, and Z at all the points used throughout the area. The error E = Qe at any point is composed of two components where Q is the variance at the point as derived from the inverse, and e is the standard error of unit weight for the problem based on program (4). The quantity Q is affected by the geometry of the system, including the amount and distribution of control points, and e is related to the precision of the steps of the system including image resolution.

Accuracy of the NOS Analytic Aerotriangulation System

A significant increase in accuracy results when analytic aerotriangulation computations are continued through block adjustment. Studies conducted at NOS have yielded the following accuracy results:

The horizontal position root-mean-square error in meters when using film cameras is $S10^{-5}$ where <u>S</u> is the denominator of the photography scale fraction. If a glass plate camera is used, and the pass points are premarked, then the expected RMS error in meters is about 1/5 of $S10^{-5}$.

The vertical and horizontal errors are equal for a 3.5-inch focal length camera (base-height ratio = 1), whereas the vertical errors may be about 1.5 times larger than the horizontal errors for a 6-inch focal length camera (baseheight ratio = 0.6). This accuracy is achieved when: (a) 60 percent forward and side overlap exists between the photographs in the block; (b) a strong network of horizontal and vertical photo control exists around the perimeter of the area, along with a few interior vertical photo control stations; (c) all of these stations are premarked prior to photography; (d) the block consists of at least three strips of photography.

Note: The rms errors are considered to be essentially equal to the standard error of unit weight. The rms value therefore has a 68 percent reliability. The 90 percent reliability is about 1.6 times larger, and the 99 percent value is about 2.6 times larger.

SKYLAB

The SKYLAB mission was planned and implemented to determine the capability of man and spacecraft to conduct medical, solar physics stellar and solar astronomy, and Earth observational programs. On May 14, 1973, the National Aeronautics and Space Administration successfully launched the SKYLAB manned orbital facility into a nearly circular 234-nautical mile (435 km) orbit above the earth (SL-1). The first three-man team of astronauts manned the laboratory for 28 days, beginning on May 25, 1973, (SL-2); the second team occupied the facility for 60 days, starting on July 28, 1973 (SL-3); and the third team followed on November 16, 1973, for an 85-day mission (SL-4). The 50-degree inclination of the orbit permitted the astronauts to view 75 percent of the earth's surface--the area between 50 degrees North and 50 degrees South--and to pass over a given point once every five days.

The 100-ton SKYLAB spacecraft is actually a hollowed-out third stage of a Saturn rocket, originally assigned to the U.S. moon program, which has been converted to provide living and working space for the astronauts. Within the SKYLAB space station are complex scientific and technical instruments that will enable them to conduct investigations directed toward the accomplishment of medical experiments, solar astronomy experiments, technical experiments, and earth resources experiments as follows:

- a. To study man: Medical experiments will determine physiology conditioning and performance capability in real time, in zero-gravity environment, for longduration space flight.
- b. To study the sun: Solar astronomy experiments will provide a synoptic survey and study of special phenomena on the solar disk in X-ray, ultraviolet (uv), and visible spectral wavelengths.
- c. To study space technology: Technical experiments will evaluate coating degradation, spacecraft contamination, manufacturing and repair techniques, and mannedmaneuvering units.
- d. To study the Earth: Earth resources experiments will provide a synoptic survey of selected areas on the earth in visible, infrared (IR), and microwave spectral wave-lengths.

EARTH RESOURCES EXPERIMENTS

Among the various SKYLAB investigations, the Earth Resources Experiments are unique in that they are concerned directly and exclusively with earth rather than space applications. The energy reflected and radiated from various plants, ground scenes, and bodies of water has specific spectral distributions, not only in the visible but in the infrared and microwave portions of the electromagnetic spectrum. These spectral "signatures" can be detected by utilizing instruments ranging from a multiband camera to infrared spectrometers and microwave radiometers. Six such electronic and photographic remote sensing systems for observing the earth have been combined into the <u>Earth Resources Experiment</u> <u>Package (EREP)</u> and mounted on board the manned SKYLAB orbital facility. Since SKYLAB is a solar-pointing, inertially stabilized spacecraft, it must be maneuvered into an earth-oriented mode in order to use the EREP sensors.

The EREP is designed as a facility with the vantage point of space for use by a variety of users, in a wide range of applications to earth resources management. The EREP sensors can be operated singly or in various combinations, depending on the scientific requirements or other factors, such as weather and/or vehicle capability limits. Data are recorded on tape and film so that each team of astronauts can bring back to earth the data recorded during its stay on the spacecraft. After initial processing at the Johnson Space Center in Houston, Texas, the data are distributed to more than 200 SKYLAB principal investigators.

The data acquired with the EREP sensors is expected to be useful for studies and analysis related to most Earth Resources disciplines. For example, these observations can be applied to research in agriculture, forestry, ecology, geology, geography, meteorology, geomorphology, hydrology, hydrography, oceanography, cartography, and similar fields for the purpose of identifying agricultural species; measuring growth rates; assessing crop vigor and stress; classifying land use; determining land surface composition and structure; mapping snow cover and assessing water runoff characteristics; mapping pollution, shorelines, and estuaries; evaluating sea roughness conditions; and similar projects.

The SKYLAB earth resources program has been structured into ten major disciplines as outlined in Table 1 below.

TABLE 1.

EREP PROGRAM STRUCTURE

. .

Crop inventory Insect infestation Soil type Soil moisture Range inventory Forest inventory Forest insect damage

200 GEOLOGICAL APPLICATIONS

Mapping Metals exploration Hydrocarbon exploration Rock types Volcanoes Earth movements

300 CONTINENTAL WATER RESOURCES

Ground water Snow mapping -Drainage basins Water quality

400. OCEAN INVESTIGATIONS

Sea state Sea/Lake ice Currents Temperature Geodesy Living marine resources 000 USER AGENCY TASKS

500 ATMOSPHERIC INVESTIGATIONS

Storms, fronts, and clouds Radiant energy balance Air quality Atmospheric effects

100 AGRICULTURE/RANGE/FORESTRY 600 COASTAL ZONES, SHOALS, AND BAYS

Circulation and pollution in bays Underwater topography and sédimentation Bathymetry Coastal circulation Wetlands ecology

700 REMOTE SENSING TECHNIQUES DEVELOPMENT

Pattern recognition Microwave signatures Data processing Sensor performance evaluation

800 REGIONAL PLANNING AND DEVELOPMENT

Land use classification techniques Environmental impacts - special topics State and foreign resources Urban applications Coastal/plains applications Mountain/desert applications

900 CARTOGRAPHY

Photomapping Map revision Map accuracy Thematic mapping

Department of the Army Department of the Interior

Each SKYLAB investigation has been given a three-digit task number, according to the subdisciplines in which work is done. In addition, every EREP study site has been given a three-digit designation that defines its geographic location.

DESCRIPTION OF EARTH RESOURCES EXPERIMENT PACKAGE (EREP) SENSORS

An extensive description of the photographic remote sensing system is given below, along with a brief description of the other EREP sensors.

Multispectral Photographic Facility (S-190A and S-190B)

The experiment objective is to photograph the earth's surface in a spectral range that includes visible light and extends into the near-infrared, with sufficient resolution and spectral definition to allow detailed analysis and interpretation by specialists in a variety of earth resources disciplines.

The facility is arranged in two parts. S-190A consists of an array of six 70-mm film cameras, precisely matched and boresighted, so that photographs from all six cameras will be accurately in register. Thus, all of the features seen in one photograph can be simultaneously aligned with the same features in the photographs from the other cameras. A combination of black-and-white and color films is used in conjunction with selective filters for spectral analysis, allowing comparison with imagery obtained with the IR spectrometer (S-191) and multispectral scanner (S-192) and with the Earth Resources Technology Satellite (ERTS). The camera array is mounted behind an optical glass window, just forward of the radial docking hatch in the Multiple Docking Adapter (MDA).

The second part, S-190B Earth Terrain Camera, consists of a single camera that is located behind an optical glass window in the Scientific Airlock (SAL) on the antisolar side of the Orbital Workshop (OWS). This camera is an adaptation of the Lunar Topographic Camera carried on the Apollo 14 mission.

Controls for the six-camera array are integrated with the controls for the other EREP sensors located in the MDA. However, the Earth Terrain Camera controls are mounted on the side of the camera housing and are independent of other EREP sensors.

For earth resources operations, SKYLAB departs from its normal solar orientation to an orbital mode that provides for continuous pointing of the cameras and other sensors at the ground directly below. The crewmen load film, install filters, set up the camera controls, remove the covers from the camera ports, uncover the window, install the Earth Terrain Camera in the Scientific Airlock, and make other preparations for camera operations.

The exposed film is the primary data returned at the end of each SKYLAB mission, for processing and analysis on the ground.

S-190A

The EREP multispectral photographic camera consists of six highprecision 70-mm film cameras with matched distortion and focal length. The f/2.8 lenses have a focal length of six inches. The camera has a field-of-view of 21.2 degrees across the flats based on the photographic format size of 2.25 inches square and provides ground coverage of 163 km square per frame at a scale of 1:2,850,000. The system is designed for the following wavelength/film combinations:

			L	0.5	to	0.6	um	PAN X BEW
• ;	•	•		0.6	to	0.7	um	PAN X B&W
				0.7	to	0.8	um	IR B&W
				0.8	to	0.9	um	IR B&W
			-	0.5	τo	0.88	um	IR COLOR
				0.4	to	0.7	um	HI-RES COLOR

S-190B

The body of the Earth Terrain Camera (ETC) is an extensively modified Hycon KA-74 reconnaissance camera body with a bidirectional focal-plane shutter and vacuum film flattening. The ETC is equipped with an f/4 lens having a focal length of 460 mm (18 inches), color correction, and a maximum radial distortion of 10 um. Forward image-motion compensation is provided by rocking the entire camera in its mount during the exposure. The ETC has a limited field-of-view of 14 degrees across the flats, based on the photographic format size of 4.5 inches square and provides ground coverage of 109 km square per frame at a scale of 1:946,000. The system is designed to utilize the following film types:

			ESTIMATED GROUND RESOLUTION
. TYPE	DESCRIPTION	WAVELENGTH, um	(at low contrast)
SO-242	Aerial color, high resolution	0.4 to 0.7	70 ft. on ground
EK 3414	High-definition aerial B&W	0.5 to 0.7	55 ft. on ground
EK 3443	Aerochrome IR, color	0.5 to 0.88	100 ft. on ground

The ETC is <u>not</u> a metric camera in the photogrammetric sense. Because the image frame is a part of the removable film magazine and because of the use of a focal-plane shutter, the geometric quality of the photographs is limited. The shutter motion is in the flight direction for one exposure, and opposite the flight direction for the next exposure. This causes a slight scale compression or stretching in the flight direction, depending upon errors in the FMC. The principal point cannot be precisely located, and therefore <u>analytical applications are limited</u>. When the camera is operated for 60 percent overlap, the baseheight ratio is only 0.10; thus, any stereoscopic height measurements from the photographs have especially limited accuracy.

In spite of these limitations, the ETC represents a significant advance in camera systems for earth resources observations from space. The ETC provides photography having a ground resolution from 3 to 20 times better than that of any other space photographic system previously used. As a consequence, the primary objective of the ETC is to obtain high-resolution stereoscopic photography to support the other EREP sensors by aiding in the interpretation of data gathered by them.

Note: A more complete discussion of the ETC is given in a paper by J. D. McLaurin, U.S. Geological Survey, entitled THE SKYLAB S-190B EARTH TERRAIN CAMERA--see Appendix A.

Infrared Spectrometer (S-191)

The primary objective of this experiment is to make a fundamental evaluation of the applicability and usefulness of sensing earth resources from orbital altitudes in the visible through nearinfrared and in the far-infrared spectral regions. Correlation of SKYLAB spectrometer data, with data gathered by ground-based and aircraft sensors, will ensure that the radiance from the target and its characteristics will be accurately established. The extent to which the effects of the atmosphere can be removed from the data is a study of particular importance to all remote sensors, and this accuracy will be quantitatively tested. In addition, the parameters describing the atmosphere at the time of acquisition will be collected.

The filter wheel spectrometer has a 1-milliradian field-of-view, and its spectral range coverage is from 0.4 to 2.4 and 6.2 to 15.5 micrometers. The spectrometer has a pointing and tracking capability of 45 degrees forward, 10 degrees aft, and 20 degrees to the side of the ground track. The astronaut uses the view-finder/ tracker to acquire and track target sites during data acquisition, which are in his field of view for less than a minute. The primary data are recorded on magnetic tape and are returned with each crew rotation.

Multispectral Scanner (S-192)

The primary objective of this experiment is to assess the feasibility of multispectral techniques for remote sensing of earth resources from space. Specifically, attempts will be made at spectral signature identification and mapping of ground test sites in agriculture, forestry, geology, hydrology, and oceanography. The basic instrument design is that of an optical mechanical scanner using an image plane scanning mirror, with a folded reflecting telescope used as a radiation collector. The scanner operates in 13 spectral intervals of the visible, near-infrared, and thermal-infrared regions of the spectrum ranging from 0.41 to 12.5 um. The primary data are recorded on magnetic tape and are returned with each crew rotation.

The spectral range covered by the scanner overlaps the range of the multispectral cameras (S-190) and the IR spectrometer (S-191), permitting a cross-check of results deduced from these three systems. In addition, the IR spectrometer may provide atmospheric density profiles useful for correcting the primary causes of atmospheric attenuation of the scanner data.

Microwave Radiometer/Scatterometer and Altimeter (S-193)

The objectives of this experiment are simultaneous measurement of the radar differential backscattering cross section and passive microwave thermal emission of the land and ocean on a global scale, and engineering data for use in designing radar altimeters.

The microwave radiometer/scatterometer experiment is a combination of an active radar scatterometer and passive radiometer. The radar backscattering cross section measurement gives a measure of the combined effect of the dielectric properties, roughness, and brightness temperature of the terrestrial surface. Information over test sites is obtained by the NASA earth resources aircraft for validation and extrapolation of spaceborne measurements. All data are recorded on magnetic tape.

L-Band Radiometer (S-194)

The experiment objective is to obtain measurements of the brightness temperature of the earth's surface along the spacecraft track. The L-band radiometer has basically the same operating principle as the radiometer part of the microwave radiometer/ scatterometer experiment, except that the operating frequency is changed from 13.9 GHz to 1.42 GHz. A function of the experiment is to supplement the measurement results of Experiment S-193 by taking into consideration the effect of clouds on radiometric measurements. By using two frequencies (S-193 at 13.9 GHz and S-194 at 1.42 GHz) simultaneously in measurements, corrections can be made on radiometric data to include the cloud effects. All data are recorded on magnetic tape.

A summary of the SKYLAB EREP sensor characteristics is given in Table 2:

Table 2.

SKYLAB EREP SENSOR CHARACTERISTICS

SENSOR	DESCRIPTION	SPECTRAL COVERAGE	SPECTRAL RESOLUTION	GROUND COVERAGE	SPATIAL RESOLUTION
S-190(A) MULTISPECTRAL PHOTOGRAPHIC CAMERA	SIX 70mm CAMERA MATCHED DISTORTION AND FOCAL LENGTH (15,2cm) 12 METERS REGISTRATION 18 FILTERS 21 ° FOV	MICROMETERS .56 PANX B&W .67 PANX B&W .78 IR B&W .89 IR B&W .588 IR COLOR .47 HR COLOR	0.1 MICROMETERS	163 x 163 Km	APROX. 24m TO 68m •
S-190(B) EARTH TERRAIN CAMERA	460 mm FOCAL LENGTH 114mm FILM FORMAT 3 FILTERS	0.4 TO 0.7 H. R. AERIAL COLOR 0.5 TO 0.88 IR COLOR 0.5 TO 0.7 HIGH DEFINITION AERIAL B & W	0.1 MICROMETERS	109 X 109 Km '	A2PROX, 10m 70 38m +
S-191 INFRARED SPECTROMETER	POINTED BY CREW FILTER WHEEL ONE SEC, SCAN RATE ONE MRAD FOV CRYOGENIC COOLER I6mm CAMERA	0.4 TO 2.4 AND 6.2 TO 15.5 MICRO- METER	1% TO 4%	0-45° FWD 0-20° SIDE 0-10° REAR	0.44 Km SPOT
S-192 MULTISPECTRAL SCANNER	IMAGE PLANE SCANNER 6000 RPM SCAN MIRROR CRYOGENIC COOLER HgCdTe DETECTORS (13 USED) 0.186 mRAD FOV	0.4 TO 2.35 AND 10.2 TO 12.5 MICROMETERS	13 BANDS: 0.04 TO 0.1 MICROMETERS	68 Km SWATH	80 x 80 m SPCT
S-193 MICROWAVE RADIOMETER/SCATTEROMETER AND ALTIMETER	1.1 m PARABOLIC ANTENNA TWO AXIS GIMBAL (0-48° IN FIVE STEPS) 1.5° FOV DUAL POLARIZATION ALTIMETER NADIR SEEKER	13.8 TO 14.0 GHz (13.9 GHz CENTER FREQUENCY)	SCAT RECEIVER: FIRST IF. 500 MHz SECOND IF: 50 MHz RAD RECEIVER: SINGLE FREQUENCY	0-48 FWD 0-48 SIDE	11 x 11 Km SPOT
S-194 L-BAND RADIOMETER	I m PHASED ARRAY (8 × 8 ELEMENTS) COLD AND HOT REF.	1,400 TO 1,427 GHz	18 MHz FROM CENTER FREQUENCY	111 Km CIRCLE	111 Km SPOT

* - DOES NOT INCLUDE LOSS DUE TO ATMOSPHERE EFFECTS OR FILM PROCESSING.

,

NASA HQ ML71-5751 REV. 2-10-73

ORIGINAL PAGE IS OF POOR QUALITY

IDENTIFICATION OF THE NOAA/NOS INVESTIGATION

The NOAA/NOS proposal to perform analytic aerotriangulation utilizing SKYLAB photography has been designated as SKYLAB EREP INVESTIGATION NO. 459 and was performed under NASA PURCHASE ORDER T-4110B. The task-site identification number for the study is 931651 in which <u>931</u> classifies the task as being in the CARTOGRAPHY MAP ACCURACY discipline, and <u>651</u> identifies the test site as the CARETS AREA, which runs from Charlotte, North Carolina, northeast to Delaware Bay.

The official NASA description of this investigation is as follows:

- 931 Investigate the feasibility of utilizing spacecraft (S-190B) imagery for analytic aerotriangulation methods to provide low-order, high-density control network suitable for small-scale mapping applications.
 - Employ this technique for coastal zone mapping at medium and small scales, surveys in remote areas, forest and range management, various planning activities and route location for highways, pipelines, transmission lines, and canals.

SKYLAB S-190B EARTH TERRAIN CAMERA (ETC) PHOTOGRAPHY

SKYLAB S-190B photography was secured over the test site, during orbit 36, on September 12, 1973 (SL-3). The film used in the ETC was Aerial-Color, High-Resolution SO-242. Second generation transparencies, positive in tone and direction when viewed on the emulsion side, were made from the original film by printing emulsionto-emulsion in contact. These 1:946,000 scale, 4.5 x 4.5-inch transparencies and 9 x 9-inch contact paper prints were provided to the Coastal Mapping Division of the National Ocean Survey for processing through the analytic aerotriangulation system.

The photography consisted of a strip of 19 photographs ranging along a 500-mile track from Charlotte, North Canolina, (frame 86-288) to Atlantic City, New Jersey, (frame 86-306). A break in the required 60 percent overlap reduced the usable strip of photography to 12 photographs along a 350-mile track from Charlotte, North Carolina, (frame 86-288) to the Rappahannock River in Virginia (frame 86-299).

Although the photography provided sharp high-resolution imagery, the selection of pertinent images for measurement on the Wild STK stereocomparator was hampered by the extensive cloud cover occurring on most of the ll stereoscopic models comprising the analytic strip.

PHOTO CONTROL

Despite the cloud cover, 29 photo control points of known position and elevation were office-identified on the SKYLAB photography. Road intersections were located by stereoscopically examining the photographs and comparing them with 1:24,000 scale USGS quadrangles covering the area. The Geographic Positions were scaled from the quadrangles by linear interpolation between the 2' 30" intervals shown on each quadrangle. The scaling was performed five times and a mean Geographic Position computed. In addition, aeronautical aids to navigation and airport runway ends were identified on the pictures, and their positions and elevations determined from data secured by the Coastal Mapping Division under its Airport Obstruction Chart Survey program. The office-identified road intersections and aeronautical aids provided images slightly superior in quality to that of the office-identified airport runway ends. The locations of these photo control points or stations on the ETC photographs is shown in Figure 1. Table 3 describes the stations and their approximate accuracy.

All of the photo control stations were at least 1/4-inch in from the sides of the 1:946,000, 4.5 x 4.5-inch transparencies. Twenty-five of the stations appeared on only two consecutive overlapping photographs in the strip, while four stations appeared on three consecutive photographs. The location of the camera clock within the photographic format prevented two control stations from creating imagery on three consecutive overlapping pictures.

PASS POINTS

Two pass points were established in the nine conventional relative orientation locations on each photograph. The pass points were drilled into the transparency emulsion with the Wild PUG-2 stereoscopic point transfer device in areas providing an optimum stereoscopic perception. As a consequence of the intrusion of the camera clock into the photographic format, it was necessary to set the pass points along the bottom easterly edge of the strip at least 1/2-inch in from the sides of the transparencies.

The two pass points were used in the preliminary analytic aerotriangulation programs consisting of the Image Coordinate Refinement and Three-Photo Orientation program, the Secant Plane Coordinate Transformation program, and the Strip Adjustment to Ground Control. However, only one of the two pass points in each relative orientation location was used in the block adjustment of the strip.

MARKING AND PHOTOCOORDINATE MEASUREMENT

The Wild PUG-2 stereoscopic point transfer device was used to select and mark only the pass points by drilling holes into the photographic emulsion at these images using a 60-micron diameter diamond-tipped

TABLE 3.

ACCURACY OF OFFICE IDENTIFIED CONTROL

USED IN

BLOCK ADJUSTMENT

CONTROL STATION NUMBER	APPROXIMATE HORIZONTAL ACCURACY (METERS)	APPROXIMATE VERTICAL ACCURACY (METERS)	DESCRIPTION
288100 288101 293100 294102 295100 299100	15 /	5.0 ·	AERONAUTICAL AIDS Horizontal and vertical positions from Airport Surveys, NOS.
288110 288111 290110 296111	5	3.0	ROAD INTERSECTIONS Horizontal and vertical positions from 1:24,000 scale USGS quadrangles.
288201 288202 290201 290111 292110 292110 293110 296201 296110 296110 298110 299110	5	0.5	ROAD INTERSECTION SPOT ELEVATIONS Horizontal and vertical positions from 1:24,000 scale USGS quadrangles.
288120 291120 291121 293120 293121 297120 297121	l.	0.3	CENTERLINE RUNWAY ENDS Horizontal and vertical positions from Airport Surveys, NOS.

drill. The photo control point images were not drilled in order to preserve the sharpness of the imagery.

The measurement of the x and y photocoordinates for the pass points and control stations was performed on a Wild STK stereocomparator. Use of the stereocomparator allowed the operator to drill the pass point images down the center of each photograph only and to then stereoscopically transfer the drilled image to the overlapping photograph for measurement, without actually ever drilling the image on the second photograph. The stereocomparator measuring mark consisted of a 165-micron diameter black circle having a 20-micron black dot at its center. The dot was centered in the 60-micron diameter drilled pass point image when observing the photocoordinates for the point.

FIDUCIAL MARKS

In the time interval occurring between the film exposure, its development, and the subsequent printing of the glass plate diapositive or transparency, the aerial film undergoes a random enlargement and shrinkage change. Since the accuracy of analytic photogrammetric computations depend on the use of a true central perspective, it is necessary to compensate for the film distortion and thereby mathematically return the film to the physical format present at the instant of exposure. This can be achieved by comparing the positions of the images created by the fiducial marks on each photograph with the true positions of these marks in the camera focal plane. The photograph is then mathematically stretched so as to place the fiducial marks back into their true positions.

In metric mapping cameras, the fiducial marks are located in the corners of the camera focal plane. Some cameras have additional fiducial marks at the midpoints of the sides of the focal plane. The marks are normally a part of the lens cone and thus remain in a fixed position relative to the camera lens. The intersection of the diagonals joining the corner fiducial marks should represent the principal point of the photograph, i.e., the foot of the perpendicular from the focal plane to the nodal point of the camera lens. The corner fiducial marks on the Wild aerial cameras owned by NOS consist of an interrupted cross having a 100-micron diameter dot at the center.

The ETC is not a metric camera in the photogrammetric sense because the fiducial marks and the image frame are a part of the removable film magazine and hence are not in a fixed position relative to the camera lens. Fortunately, the resulting lack of precision in locating the principal point on the photography is of minor consequence in narrow angle cameras, such as the ETC. The ETC has a series of holes drilled around the perimeter of the image frame. These holes created photographic images having an approximate diameter of 330 microns. The images were of poor quality and rather ragged around the edges. For this reason, the stereocomparator operator centered the 165-micron circle of the measuring mark in the center of four holes selected to serve as fiducial marks.

NOS normally employs flash plates to provide a photographic record of the true relative positions of the camera fiducial marks. The flash plates are made in the laboratory by exposing a diapositive mounted in the camera so that its emulsion lies in the camera focal plane. Because the emulsion is secured on a stable glass base, the coordinates of the fiducial marks can be measured on a comparator later, with no concern for film shrinkage distortion.

Since no flash plate was available for the ETC, a nominal set of true fiducial coordinates was obtained by mounting each of the transparencies in turn on the comparator and then reading the photocoordinates for the four selected fiducial holes on each of the photos. The data were entered into a flash-plate-reduction program to accomplish the following tasks: 1. Correct the observed photocoordinates of the fiducial holes for comparator systematic errors, 2. determine by least square methods a meaned set of nominal true photocoordinates for the fiducial holes in a coordinate system, having its origin at the principal point (intersection of diagonals joining fiducials 1-3 and 2-4) and oriented so that $x_3 = y_3 = y_2$. See Figure 2 below. As a

consequence of this computation, the direction of flight becomes the x-axis of the photocoordinate system.

The meaned set of nominal true photocoordinates for the fiducial holes provided by the flash-plate-reduction program are:

FIDUCIAL HOLE	1) x	nicrons) y
1	59227.74 59112.61	50154.18 -50132.70
2 3	-59202.38	-50132.70
4	-59112.77	50132.84

The data were then prepared for processing through the NOAA/NOS analytic aerotriangulation system of computer programs. All of the computations were performed on the CDC 6600 computer.

COMPUTER PROCESSING

The 12-photo strip extended over the three states of South Carolina, North Carolina, and Virginia. The computational processing requires all of the ground positional data to be expressed in a common three-dimensional coordinate system. In order to attain this condition, and also to compensate for the presence of earth curvature in the data, the initial computation was to develop secant plane coordinates for each of the 29 officeidentified control stations. Accordingly, the Geographic Positions and elevations of these points were processed through the Secant Plane Coordinate Transformation program.

Secant Plane Coordinate Transformation: The elevations of the control points obtained from the 1:24,000 scale USGS quadrangles and airport surveys are based on sea level and thus do not recognize the existence of earth curvature. The program computations begin with a conversion of the Geographic Positions and elevations to an orthogonal geocentric coordinate system having its origin at the center of the earth as defined by the Clarke 1866 Spheroid. The geocentric coordinates are then transformed into a secant plane coordinate system in which the secant plane intercepts the earth's surface near the edges of the area to be mapped so that most of the terrain objects will possess a positive Z (elevation) coordinate. The origin of the secant plane system is placed near the center of the project area. The secant plane origin selected for the SKYLAB study was Latitude 36° 20' 00", Longitude -78° 45' 00 The Z-axis is the extension of the normal to the ellipsoid which, because of the earth's ellipsoidal nature, does not pass through the center of the earth. The X-axis points towards the East and the Y-axis points towards the North. . . .

Table 4 shows the Geographic Position and elevation input to the program and the resulting secant plane coordinate output from this program.

GEOGRAPHIC POSITION INPUT Elevation (feet) 288100 34 59 20.200 -080 57 18.000 650.0 288110 35 15 25.015 -081 01 37.254 710.0 288201 35 15 05.424 -081 01 43.630 633.0 288111 34 44 15.094 -080 40 58.811 565.000 288202 34 43 34.559 -080 42 15.428 598.0 288101 35 12 31.865 -080 57 00.375 707.0 288101 35 44 30.052 -080 21 43.729 760.00 290201 35 44 30.052 -080 21 48.169 753.0 291120 36 05 57.511 -079 57 09.510 926.0 291121 36 05 13.059 -079 57 09.510 926.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 35 52 20.520 -078 47 51.245 398.0 293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46 49.346 401.0 293120 35 51 52.243 -078 97 93.200 530.00 <th>SECANT F</th> <th>LANE ORIGIN 36 20 00</th> <th>Longitude -078 45 00</th> <th></th>	SECANT F	LANE ORIGIN 36 20 00	Longitude -078 45 00	
288100 34 59 20.200 -080 57 18.000 650.0 288110 35 15 25.015 -081 01 37.254 710.0 288201 35 15 05.424 -080 01 43.630 633.0 288111 34 44 15.094 -080 40 58.811 565.000 288202 34 43 34.559 -080 42 15.428 598.0 288103 35 12 31.865 -080 57 00.375 707.0 288101 35 13 13.390 -080 56 18.073 740.00 290110 35 44 30.052 -080 21 48.169 753.0 290201 35 44 34.185 -0080 21 48.169 753.0 290111 35 03 03.258 -079 50 57.400 456.0 291120 36 05 13.059 -079 57 99510 926.0 291111 35 36 54.282 -079 92 53.990 185.0 292111 35 51 57.031 -078 47 90.00 293120 35 51 57.031 -078 47 $91.40.00$ 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -077 59 24.112	GEOGRAPH	IC POSITION	INPUT	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	288100	34 59 20.200	-080 57 18.000	Elevation (feet) 650.0
288111 34 44 15.094 -080 40 58.811 565.000 288202 34 43 34.559 -080 42 15.428 598.0 288120 35 12 31.865 -080 57 00.375 707.0 288101 35 13 13.390 -080 56 18.073 740.00 290110 35 44 30.052 -080 21 43.729 760.00 290201 35 44 34.185 -080 21 43.729 760.00 290201 35 44 34.185 -080 21 43.729 760.00 290201 35 44 34.185 -080 21 43.729 760.00 290111 35 03 3.258 -079 50 57.400 456.0 291121 36 05 57.511 -079 57.400 456.0 291121 36 05 13.059 -079 56 15.037 900.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 56 54.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 11.000 430.00 293120 35 51 57.031 -078 46.083 516.00 293121 35 51 57.031 -078 46.083 $516.$	288 110	35 15 25.01	-081 01 37.254	710.0
288202 34 43 34.559 -080 42 15.428 598.0 288120 35 12 31.865 -080 57 00.375 707.0 288101 35 13 13.390 -080 56 18.073 740.00 290110 35 44 30.052 -080 21 43.729 760.00 290201 35 44 30.052 -080 21 48.169 753.0 290201 35 44 34.185 -080 21 48.169 753.0 290211 35 03.258 -079 50 57.400 456.0 291120 36 05 57.511 -079 57 99.510 926.0 291121 36 05 13.059 -079 56 15.037 900.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 654.282 -079 02 53.990 185.0 293120 35 51 $52.20.520$ -078 47 01.000 430.000 293120 35 51 57.031 -078 46 9346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -077 93 7.971 339.0 296201 37 13 10.548 -077 59 37.971 <td>288201</td> <td>35 15 05,424</td> <td>-081 01 43.630</td> <td>633.0</td>	288201	35 15 05,424	-081 01 43.630	633.0
288120 35 12 31.865 -080 57 00.375 707.0 288101 35 13 13.390 -080 56 18.073 740.00 290110 35 44 30.052 -080 21 43.729 760.00 290201 35 44 34.185 -080 21 48.169 753.0 290201 35 44 34.185 -080 21 48.169 753.0 290111 35 03.258 -079 50 57.400 456.0 291120 36 05 57.511 -079 57 09.510 926.0 291121 36 05 57.511 -079 57 09.510 926.0 291121 36 05 57.511 -079 57 09.510 926.0 291121 36 05 13.059 -079 57 09.510 926.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 55 20.520 -078 47 01.000 430.00 293120 35 51 52.243 -078 47 01.000 430.00 293121 35 51 57.031 -078 46.083 516.00 293100 36 49 04.400 -077 59 37.971 339.0 296111 37 13 10.548 -077 59 37.971 <td>288111</td> <td>34 44 15,094</td> <td>-080 40 58.811</td> <td>565.000</td>	288111	34 44 15,094	-080 40 58.811	565.000
288101 35 13 13.390 -080 56 18.073 740.00 290110 35 44 30.052 -080 21 43.729 760.00 290201 35 44 34.185 -080 21 48.169 753.0 290111 35 03 03.258 -079 50 57.400 456.0 291120 36 05 57.511 -079 57 09.510 926.0 291121 36 05 57.511 -079 57 09.510 926.0 291121 36 05 13.059 -079 56 15.037 900.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 56 4.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 01.000 430.000 293120 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 05 32.00 530.00 295100 36 49 04.400 -077 59 37.971 339.0 296111 37 13 10.548 -077 59 37.971 339.0 296110 36 39 1.186 -077	288202	34 43 34.559		598.0
290110354430.052 -080 2143.729760.00290201354434.185 -080 2148.169753.0290111350303.258 -079 5057.400456.0291120360557.511 -079 5709.510926.0291121360513.059 -079 5615.037900.0292110360832.741 -079 4726.181843.0292111353654.282 -079 0253.990185.0293100355220.520 -078 4701.000430.00293120355152.243 -078 4649.346401.0293110360518.889 -079 0346.083516.00293110360518.889 -077 90530.00295100364904.400 -077 5927.971339.0296201371310.548 -077 5937.971339.0296110363951.186 -077 1825.908161.0297120372944.350 -077 1838.599160.0297121373014.556 -077 1838.599160.0297121372654.700 -076 5144.738031.0	288120	35 12 31.865	-080 57 00.375	707.0
290110 35 44 30.052 -080 21 43.729 760.00 290201 35 44 34.185 -080 21 48.169 753.0 290111 35 03 03.258 -079 50 57.400 456.0 291120 36 05 57.511 -079 57 09.510 926.0 291121 36 05 13.059 -079 56 15.037 900.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 56 54.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 01.000 430.00 293120 35 51 57.031 -078 46 9.346 401.0 293121 35 51 57.031 -078 46 9.346 401.0 293121 35 51 57.031 -078 46.083 516.00 294102 36 40 29.600 -077 53.200 530.00 296110 36 49 04.400 -077 59 37.971 339.0 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 18 38.599 160.0 297120 37 29 44.350 -076 59 13.914 <t< td=""><td>288101</td><td>35 13 13.390</td><td>-080 56 18.073</td><td>740.00</td></t<>	288101	35 13 13.390	-080 56 18.073	740.00
290111 35 03 03.258 -079 50 57.400 456.0 291120 36 05 57.511 -079 57 09.510 926.0 291121 36 05 13.059 -079 56 15.037 900.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 56 54.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 01.000 430.00 293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46.9346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 03 46.083 516.00 295100 36 49 04.400 -077 59 24.112 322.00 296111 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 18 25.908 161.0 297120 37 29 44.350 -077 18 38.599 160.0 297121 37 30 14.556 -077 18 38.599 160.0 299100 37 26 54.700 -076 51 <td< td=""><td>290110</td><td>35 44 30.052</td><td>-080 21 43.729</td><td></td></td<>	290110	35 44 30.052	-080 21 43.729	
291120 36 05 57.511 -079 57 09.510 926.0 291121 36 05 13.059 -079 56 15.037 900.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 36 54.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 01.000 430.00 293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 03 46.083 516.00 295100 36 49 04.400 -077 59 24.112 322.00 296111 37 13 12.840 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 38.599 160.0 297121 37 30 14.556 -077 18 38.599 160.0 299100 37 26 54.700 -076 <td< td=""><td>290201</td><td>35 44 34,185</td><td>5 -080 21 48.169</td><td>753.0</td></td<>	290201	35 44 34,185	5 -080 21 48.169	753.0
291121 36 05 13.059 -079 56 15.037 900.0 292110 36 08 32.741 -079 47 26.181 843.0 292111 35 36 54.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 01.000 430.00 293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 05 3200 530.00 295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 12.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 18 25.908 161.0 297120 37 29 44.350 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0	290111	35 03 03.258	3 -079 50 57.400	456.0
292110 36 08 32.741 -079 47 26.181 843.0 292111 35 36 54.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 01.000 430.00 293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 00 53.200 530.00 295100 36 49 04.400 -077 59 24.112 322.00 296111 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 28.998 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0	291120	36 05 57.511	-079 57 09,510	926.0
292111 35 36 54.282 -079 02 53.990 185.0 293100 35 52 20.520 -078 47 01.000 430.00 293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 00 53.200 530.00 295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 28.998 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0	291121	36 05 13.059	-079 56 15.037	900.0
293100 35 52 20.520 -078 47 01.000 430.00 293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 00 53.200 530.00 295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0				843.0
293120 35 51 52.243 -078 47 51.245 398.0 293121 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 00 53.200 530.00 295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0				185.0
293121 35 51 57.031 -078 46 49.346 401.0 293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 00 53.200 530.00 295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0				430.00
293110 36 05 18.889 -079 03 46.083 516.00 294102 36 40 29.600 -079 00 53.200 530.00 295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0				398.0
294102 36 40 29.600 -079 00 53.200 530.00 295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0		35 51 57.031	-078 46 49.346	401.0
295100 36 49 04.400 -077 54 11.700 350.00 296111 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0	293110	36 05 18.889	-079 03 46.083	516.00
2961'11 37 13 22.840 -077 59 24.112 322.00 296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0	294102	36 40 29.600	-079 00 53.200	530.00 [,]
296201 37 13 10.548 -077 59 37.971 339.0 296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 51 44.738 031.0	295100	36 49 04.400	-077 54 11.700	350.00
296110 36 39 51.186 -077 34 17.309 156.0 297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 42 42.100 10.00 299110 37 54 13.346 -076 51 44.738 031.0		37 13 22.840	-077 59 24.112	322.00
297120 37 29 44.350 -077 18 25.908 161.0 297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 42 42.100 10.00 299110 37 54 13.346 -076 51 44.738 031.0	296201	37 13 10.548	B -077 59 37.971	339.0
297121 37 30 14.556 -077 18 38.599 160.0 298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 42 42.100 10.00 299110 37 54 13.346 -076 51 44.738 031.0	296110	36 39 51.186	-077 34 17.309	156.0
298110 37 12 17.161 -076 59 13.914 112.0 299100 37 26 54.700 -076 42 42.100 10.00 299110 37 54 13.346 -076 51 44.738 031.0	297120	37 29 44.350	-077 18 25.908	` 161.0
299100 37 26 54.700 ~076 42 42.100 10.00 299110 37 54 13.346 ~076 51 44.738 031.0	297121	37 30 14.556	-077 18 38,599	160.0
299100 37 26 54.700 -076 42 42.100 10.00 299110 37 54 13.346 -076 51 44.738 031.0		37 12 17.161	-076 59 13.914	112.0
299110 37 54 13.346 -076 51 44.738 031.0	299100	37 26 54.700		
		37 54 13.346		
	299111	37 26 06.654	-076 20 11.559	

-

SECANT PLANE OUTPUT IN METERS

		x	Y	Z
	288100	-201278.692	-146855.736	-3874.837
	288110	-207169.956	-116985.134	-3424.735
	288201	-207344.107	-117584.396	-3464.941
	288111	-176997.192	-175263,639	-3901.313
	288202	-178969.743	-176473.122	-3979,759
	288120	-200294.019	-122480.950	-3309.711
	288101	-199196.924	-121226.254	-3241.238
	290110	-145819.163	-64433.577	-962-699
	290201	-145928.545	-64304.337	-966.024
	290111	-100287,221	-141707.209	-1430.977
	291120	-108297.906	-25295.089	110.910
	291121	-106952.115	-26681.925	119.998
	2921-10	-93656.711	-20679.874	333.841
	292111	-27029.441	-79651.423	297.541
	. 293100	-3035.511	-51147.971	721.944
-	293120	-4296.418	-52018.862	704.400
	293121	-2743.370	-51871.929	707.371
	293110	-28172.927	-27112.861	834.668
	294102	-23669.361	37934.083	801.864
	295100	75550.34 4	54100.713	226.922
	296111	67448.740	98990.886	-231.39.4
	296201	67110.169	98609.407	-216.716
	296110	105357.883	37358.925	-134.052
	297120	127578.566	129930.492	-1756.009
	297121	127252.667	130856.770	-1768.812
	298110	156468.136	98126.586	-1843.117
	299100	180328.210	125649.347	-2988.252
	2991 [,] 10	165981.068	175874.338	-3784.177
	299111	213537.475	124932.816	-3997.981

.

ORIGINAL PAGE IS OF POOR QUALITY

.

•

Image Coordinate Refinement and Three-Photo Orientation: The x and y photocoordinates observed on the stereocomparator for The fiducial and nonfiducial images on each transparency were then processed through the image coordinate refinement and three-photo orientation program. All of the photocoordinates were first corrected for comparator calibration errors. The program then performed a least squares fit of the fiducial hole photocoordinates to the nominal true photocoordinates for these fiducial holes, as previously obtained from the flashplate-reduction program. This operation of placing the fiducial holes back into their true positions serves to correct all of the data for film shrinkage distortion and to express the photocoordinates in a two-dimensional photocoordinate system having its origin at the principal point and oriented so that the x-axis is the direction of flight.

The systematic errors still remaining in the photocoordinate data are those due to the distortions introduced by the aerial camera lens and atmospheric refraction. The Addendum to LEC/ ASD Technical Memo No. TM 73-002 - April 1973 issued on July 11, 1974, indicated the camera lens symmetrical distortion and the asymmetrical distortion caused by lens decentration to be probably insignificant from zero. In addition, distortion due to atmospheric refraction at camera altitudes above 40 miles is relatively negligible. For this reason, no attempt was made during the image coordinate refinement phase to compensate for camera lens and atmospheric refraction distortion.

The refined image coordinates provided by the program theoretically should be nearly all free of systematic error and contain only residual observational discrepancies in them. These refined coordinates were then punched out to serve as input to the block adjustment program.

The program then proceeded to the three-photo camera orientation phase, which comprises an interrelated geometric fitting of the photographs, based only on the refined photocoordinates and is entirely independent from any ground control data. The computation is iterative and derives the orientation of each photograph relative to the previous two in the strip. It also determines the positions of all pertinent objects in a threedimensional coordinate system at the scale of the photography. The collineation principle is imposed in a least squares solution that minimizes the residual observational discrepancies in the image coordinates. The residual discrepancies are analyzed by the computer, which discards those images exhibiting excessively large discrepancies. The removal of these blunders provides "clean" photocoordinate data for all subsequent computations.

Strip Adjustment to Ground Control: The analysis of three photographs at a time automates the joining of the separate triplets into a continuous strip and develops a set of model coordinates that are analogous to the product obtained from conventional stereotriangulation on stereoscopic plotting instruments. The horizontal and vertical strip adjustment transforms the model coordinate data into the prevailing ground control coordinate system, which is a secant plane coordinate system for this study, by fitting to the control stations through the application of polynomial equations and least squares. Any large residual discrepancies appearing in the resulting adjustment are corrected in order to obtain blunder-free provisional ground position data prior to entering the block adjustment computation.

The strip adjustment of the SKYLAB photography was performed holding to the 14 photo control stations identified on Figure 1 by a A. Note: These same 14 stations were employed later to control the block adjustment solution. The strip adjustment was performed twice--going from frame 86-288 to frame 86-299 and then going from frame 86-299 to frame 86-288. In both adjustments, the resulting discrepancies at the 14 held photo control stations and 15 withheld stations increased in magnitude from about 25 meters at the beginning of the strip to approximately 100 meters at the tail end of the bridge. Results of this nature do not occur on normal photogrammetric mapping operations conducted by NOS. The appearance of these apparently systematic strip adjustment discrepancies on the SKYLAB bridge is assumed to be attributable to the failure to completely compensate for . the systematic errors introduced into the data by the nonmetric characteristics of the Earth Terrain Camera.

<u>Block Adjustment</u>: In order to maximize the accuracy of the analytic aerotriangulation, the block adjustment program was applied, using the previously obtained refined photocoordinates and the provisional object coordinates. The program permits a simultaneous solution of the absolute orientation of all the photographs, together with a determination of the finalized coordinates for each object. This office has developed three simultaneous analytical aerotriangulation block adjustment programs for operation on the CDC 6600 computer.

 25-Photo Block Adjustment: This program was designed to service smaller organizations not having access to large-size computers and will accommodate blocks up to 25 photos in size. All input/output is on cards, and the program requires less than 50,000 words of computer core storage. The logic of the solution is similar to that of the 185-photo block adjustment program. 2. 185-Photo Block Adjustment: The block can contain as many as 185 photographs in a single simultaneous least squares solution. All input/output is on tape. Approximately one million words of storage are required, and therefore auxiliary disk storage and extended core storage is used to augment the CDC 6600 core memory.

The area to be block adjusted may be of any shape. The strips of photography can be of variable length and may have any overlap with other strips in the block. Thus, diagonal crossflights may be included, if desired. The photographs can be entered into the solution in any order. Photographs taken by aerial cameras having different focal lengths may be used simultaneously in the solution.

All of the pass points and control stations contribute equations to the normal equation matrix and thus influence the least squares orientation solution. Corrections to the provisional coordinates for these objects are computed simultaneously with the determination of the absolute orientation of all the photographs in the block. The unweighted control. stations perform as if they are pass points. The weighted control stations can be computed as if they are pass points by using their refined photocoordinates and the finalized camera parameters from the orientation solution to determine their ground coordinates by intersection.

3. 600-Photo Block Adjustment: Blocks up to 600 photographs in size can be accommodated in this version. All input/output is on tape. Auxiliary disk storage is necessary because the program requires nearly one million words of memory.

This version is not as flexible as the 185-photo program in terms of data input organization, but the arithmetic approach employed results in a more efficient computation and a much shorter computer running time. The area should be square or rectangular in order to simplify the arrangement of input data. Photographs must be entered into the solution in the exact order in which they were taken and may not overlap each other by more than 60 percent. No strip can have more than 20 pictures in it. The program permits the mixing of photographs taken by aerial cameras of different focal lengths.

All of the pass points and control stations contribute equations to the normal equation matrix and thus influence the least squares orientation solution. The finalized camera parameters from the orientation solution and the refined photocoordinates of the pass points and control stations are used to compute the final ground coordinates for these objects by intersection. The 600-photo block adjustment program was used for the SKYLAB analytic aerotriangulation study. A Fortran listing of this program is given in Appendix B.

Thirty-six pass points (one in each relative orientation location) and all of the 29 office-identified photo control stations were permitted to contribute observation equations to the normal equation matrix and thereby influence the least squares orientation solution of the 12 photographs comprising the block. The provisional coordinates for these objects should be reasonably close to their true values in order to minimize the number of iterations required of the block adjustment solution. For this reason, the initial ground (secant plane) coordinates of the pass points consisted of the data furnished by the first half of the strip adjustment going from frame 86-288 to frame 86-299--and by the first half of the strip adjustment going from frame 86-299 to frame 86-288. The known true ground (secant plane) coordinates were used as the initial coordinates for the 29 photo control points.

Table 5 is a listing of the initial provisional ground (secant plane) coordinates for the pass points and the photo control stations. A listing of the refined photocoordinates for these pass points and photo control stations, as previously punched out by the Image Coordinate Refinement and Three-Photo Orientation program, is given in Table 6.

202		
292 292291310	-4.8126509E-02	
292291320	-5.2868542E-02	-3.0527771E-02 4.7874533E-02
292291330	-5,1129797E-02	3.5506342E-03
292292310	1.84994206-03	-3.0333683E-02
292292320	4.0858396E-03	4.8972518E-02
292292330	-9.3830666E-04	7.85324026-03
292293310	5.1925419E-02	-2.8029944E-02
292293320	5.0031725E-02	5.0058976E-02
292293330	4.7535343E-02	4.5751374E-03
292292110	-1.9237138E-02	4.3086281E-02
292291120	-3.4734189E-02	4.8658235E-02
292291121	-3.4488084E-02	4.6586076E-02
292293100	3.8201346E~02	-4.1701161E-02
292293110 292293120	3.2417993E-02	-4.9433929E-03
292293121	3.6554509E-02 3.7984083E-02	-4.1634943E-02 -4.2517091E-02
292292111	-7.2191183E-04	-5.0470942E-02
293	-1021711000-04	-9.04109426-02
293292310	-4.6876203E-02	-3,'1929435E-02
293292320	-4.4675254E-02	4.7409829E-02
293292330	-4.9701058E-02	6.2704290E-03
293293310	3.2954850E-03	-2.9647102E-02
293293320	1.3644901E-03	4.8547056E-02
293293330	-1.1609361E-03	3.0063077E-03
293294310	4.92914206-02	-2.6523827E-02
293294320	5.0331744E-02	3.7760516E-02
293294330	5.0443036E-02	4.6554986E-03
293293100	-1.0472546E-02	-4.3320930E-02
293293110 293293120	-1.6304848E-02	-6.5265715E-03
293293120	-1.2119203E-02 -1.0684280E-02	-4.3255058E-02
293294102	2.9769123E-02	-4.4135354E-02 4.6062768E-02
292		4.0002100L-02
294293310	-4.5408740E-02	-3.1276435E-02
294293320	-4.7413524E-02	4.6910495E-02
294293330	-4.9922832E-02	1.3757361E-03
294294310	6.4136652E-04	-2.8164236E~02
294294320	1.6050855E-03	3.6179394E-02
294294330	1.7489357E-03	3.0448055E-03
294295310	4.8336748E-02	-2.7948864E-02
294295320	4.5921897E-02	3.1223507E-02
294294102 294295330	-1.9005334E-02	4.4462580E-02
294290330	5.0752810E-02	7.0171463E-03
295294310	-4.8065487E-02	-2.9755754E-02
295294320	-4.7116111E-02	3.4612072E-02
295294330	-4.6971411E-02	1.4643224E-03
295295310	-2.8582516E-04	-2.9563473E-02
295295320	-2.7288240E-03	2.9684546E-02
295295330	2 .1121530E-03	5.4490202E-03
295296310	4.8350200E-02	-3.0367873E-02
295296320	4.8859741E-02	4.8204153E-02
295296330	4.3942351E-02	9.7309548E-03
295296110 295296111	4.1888299E-02 4.9557802E-02	-4.1150655E-02
295295100	2.7383244E-02	3.5889388E~02 -7.6541133E-03
295296201	4.9025404E-02	3.5791637E-02
296	1.0000000000	5.57710576_02
296295310	-4.8912550E-02	-3.1175464E-02
296295320	-5.1417141E-02	2.8070525E-02
296295330	-4.6558160E-02	3.8367575E-03
296296310	-2.1747625E-04	-3.2005718E-02
296296320	2.4754045E-04	4.6660238E-02
296296330	-4.6724768E-03	8.1401176E-03
296297310	5.1814312E-02	-2.1334985E-02
296297320	5.1438535E-02	4.2232885E-02
296297330	4.9087131E-02	5.1457554E-03
296296110 296296111	-6.6781630E-03 9.5107825E-04	-4.2801992E-02 3.4330292E-02
296295100	-2.1251919E-02	-9.2674902E-02
296296201	4.1528880E~04	3+4232754E-02
	,	·

ORIGINAL PAGE IS OF POOR QUALITY

297		
297296310	-4.8884683E-02	-3.3540838E-02
297296320	-4.8471439E-02	4.5150300E-02
297296330	-5.3387673E-02	6.6214000E-03
297297310	3.2292043E-03	-2.2914424E-02
297297320	2.8155666E-03	4.0743480E-02
297297330	.4.7887551E-04	3.6049954E-03
297298310 297298320	4.9384170E~02	-3.1794614E-02
297298330	4.8950281E-02	4.5322814E-02
297296111	5.3156090E-02 -4.7770507E-02	1.1645544E-02
297297120	2.3627514E-02	3.2823481E-02
297297121	2.3945413E-02	2.0265087E-02
297298110	2.7641953E-02	2.1263032E-02 -2.5576312E-02
297296201	-4.8307759E-02	
297290201	-4.83011396-02	3.2723607E-02
298297310	-4.5428380E-02	-2.4470411E-02
298297320	-4.5919888E-02	3.9161207E-02
298297330	-4.8222649E-02	2.0387070E-03
298298310	8.0468845E-04	-3.3377516E-02
298298320	2.9431491E-04	4.3796670E-02
298298330	4.5390987E-03	1.0100176E-02
298299310	4.7350772E-02	-5.1665726E-02
298299320	4.4515357E-02	4.8243494E-02
298299330	5.1835518E-02	1.2330690E-02
298299110	3.7430048E-02	3,3063014E-02
298297120	-2.5071781E-02	1.8706945E-02
298297121	-2.4755306E-02	1.9706280E-02
298298110	-2.0994424E-02	-2.7139170E-02
298299100	1.7160147E-02	-1.9058386E-02
298299111	4.4993911E-02	-4.1062900E-02
299	1 1	-
299298310	-4.7827856E-02	-3.4851692E~02
299298320	-4.8340167E-02	4.2357455E-02
299298330	-4.4103047E-02	8.6372888E-03
299299310	-1.1510283E-03	-5.3232239E-02
299299320	-4.0500174E-03	4.6813308E-02
299299330	3.2847107E-03	1.0854518E-02
299000301	-1.9679956E-10	-3.8623708E-09
299000302	-1.9679956E-10	-3.8623708E-09
299000303	-1.9679956E-10	-3.8623708E-09
299299110	-1.1156657E-02	3.1610337E-02
299299100	-3.1453155E-02	-2.0549835E-02
299299111	-3.5411964E-03	-4.2610240E-02

· End of Table 6.

ORIGINAL PAGE IS OF POOR QUALITY

Weighting the Block Adjustment Solution: The weighting of the block adjustment solution is performed by applying <u>image quality</u> and <u>control station</u> weights to the data during the computations. These weights can be defined as follows:

Image Quality Weights: It is logical to weight a block adjustment in favor of those observation equations provided by the better quality images because their equations are more reliable. Image quality is primarily influenced by lens resolution and the type of ground object creating the image. The weighting is accomplished by multiplying each observation equation by a number expressing its relative reliability.

Control Station Weights: The observation equations are written for each image on every photograph in the block created by the pass points, control stations, and other objects which are used to influence the least square orientation solution. When written for image created by the control stations, it is necessary to recognize that their initial provisional X, Y, Z ground coordinates were obtained by classical ground surveying methods and should be favored during the block adjustment. This is accomplished by increasing the size of the main diagonal elements of the normal equation matrix, which are the coefficients of the unknown dX, dY, and/or dZ correction terms. This serves to reduce the size of the unknown dX, dY, and/or dZ correction terms when the normal equations are solved. By reducing the magnitude of the corrections to the initial approximations, the least square adjustment is constrained in favor of these initial values. Control stations that are not subjected to this type of weighting perform as pass points. These unweighted or withheld control stations provide a means for evaluating the accuracy of the block adjustment solution.

Presently, empirical values are used for these weights at NOS instead of being based on the standard error of the observations as required by rigorous statistical methods. Also, the present NOS block adjustment program multiplies the pertinent normal equation main diagonal terms by the control station weights instead of adding on a number to increase their size.

The resulting accuracy of the block adjustment can be expressed as a photogrammetric RMS error and a geodetic RMS error. The photogrammetric RMS error is computed using the residual v_x and v_y plate observational discrepancies of all images contributing observation equations to the orientation solution. The geodetic RMS error reflects a comparison of the X, Y, Z results of the block adjustment computation with the known X, Y, Z coordinates for the control stations that were obtained by classical ground surveying methods. In most NOS operations, weights are selected that cause the photogrammetric RMS error and the geodetic RMS error to be about equal. This has the effect of providing for an equal distribution of the block adjustment errors between the photogrammetric observations and the geodetic field observations. The inherent errors in using nonmetric S-190B photography and office-identified photo control made it necessary to perform numerous block adjustment solutions involving different combinations of control and weights. The best results were achieved by using 14 weighted control stations distributed uniformly along the perimeter of the strip as shown in Figure 1. In NOS mapping operations using metric photography and field-identified photo control, eight weighted photo control stations would normally have been sufficient for a block adjustment of the 12 photos.

As previously noted, the pass points were drill holes in the emulsion and not images of specific terrain objects. The stereocomparator operator cannot remove parallax exactly on the drilled pass point holes when observing their photocoordinates. This reduces the reliability of the pass point images during the photocoordinate measurement process. The office-identified photo control stations, on the other hand, were prominent ground features providing sharp images on the overlapping photographs. Since drilling was not necessary for these stations, the comparator operator was able to remove parallax directly at the images before observing their photocoordinates. As a consequence of their higher reliability, a larger image quality weight was assigned to the control station images.

Many combinations of image quality and control station weights were applied to the 14 held photo control stations in an effort to optimize the accuracy of the block adjustment solution. In general all of these weight combinations yielded a horizontal position geodetic RMS error of approximately 15 meters for the 15 withheld (unweighted) photo control points. The maximum horizontal position error on any withheld control station was less than 26 meters.

Results of the Block Adjustment Solution: The weights used for each of the 14 held photo control stations in the final block adjustment of the SKYLAB data were: image quality weight = 6; control station weight for X and Y = 6; control station weight for Z = 3. A smaller weight was used for Z because of the limited accuracy in the stereo height determination resulting from the low base-height of 0.10, even though the known elevations of the control stations were of a higher accuracy than the known horizontal positions for these stations (see Table 3). In fact, a higher Z weight was found to degrade the block adjustment accuracy.

The pertinent output from the 600-photo block adjustment program for the SKYLAB study is shown in Table 7. A summary of the residual errors remaining at each of the 29 control stations is given in Table 8. All of the ground coordinate data and the residual errors are in meters and expressed in the secant plane coordinate system. The results presented here are from a block adjustment solution in which the standard error of the ground control was assumed to be 4.1 meters. The residual errors given in Table 8 are also shown on Figure 1 in red.

End (1) (1) (1) (1) 200 10000 1000 10000			⁰ 00+34006462* ¹ 00+3005/902*	**************************************	00+72969446* 10=74929952*	
230 181520178 130982149 45042100 251 18031984 1201101111 15021100 252 120119111 12011100 12011100 253 120119111 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 250 1201100 12011100 1201100 1201100 250 1201100 1201100 1201100 1201100 1201100 250 1201100 1201100 1201100 1201100 1201100 1201100 250 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100		- management of y Ty & V and all	деяду	1Hd	AJEND	31470
230 181520178 130982149 45042100 251 18031984 1201101111 15021100 252 120119111 12011100 12011100 253 120119111 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 253 12011100 12011100 12011100 250 1201100 12011100 1201100 1201100 250 1201100 1201100 1201100 1201100 1201100 250 1201100 1201100 1201100 1201100 1201100 1201100 250 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100 1201100		•		0522± _ 260°ĭ∽98	91383'868861	
22 12 <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>*</td><td></td><td></td><td></td><td></td></t<>	· · · · · · · · · · · · · · · · · · ·	*				
25 10000 1000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 1000000 1000000 10000000 1000000000 1000000000000000000000000000000000000		, من من م				
301 12021'254 11201'165 5257 12021'165 5258 12021'165 5258 12021'165 5258 12021'165 5258 12021'165 5258 12021'165 5258 12021'165 5258 12021'165 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
351 -23623/16.1 -71110 + 051.2 -7110 + 051.2 -7100 253 -2387 - 12387 - 123.2 -71237 + 050 25287 + 123.2 -71237 + 123.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
355 -62589*1258 -4215*159 -5217*288 -4215*159 -4215*159 1280 -151821*1588 -151821*158 -151821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -515821*159 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -51582*150 -52582*150			887-0	19227 297 190) 69729		
251 -3621*254 -2755***10 -2625*25*2 250 250 -250***20 -250***20 251 -550***20 -250***20 -250***20 250 250 -250***20 -250***20 250 250 -250***50***20 -250***20 250 250***50****20 250 -250****20 -250***20 250 250************************************		· · · · · · · · · · · · · · · · · · ·				
26811/08/036136/260*030 -25175*05.200 -250 12500 -11/05/05*115 -51712*05*0 -20 12500 -11/05/05*115 -2172*05*110 -2172*05*110 -2172*05*110 12500 -11/05/05*115 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*120 -2172*05*12		· · · · · · · · · · · · · · · · · · ·		55924 - D++ 8242	2ZZZ*81066-	
509 -512 502*112 421*19*12 421*19*12 beroever xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx						
LTVIE X0 40 Σ0 LEGORNI LESS X0 40 S0						
Modewa PASS - RAST PARTON MARKENTON OF CATON (FMT) (MORESON) Modewa PASS - RAST PARTON MARKENTON OF						
- 64064V1 6V32-3-1781 6FV1E DO 12 5136778-60 DIAIDED DA29803/25-01 - 64064V1 6V32-4-68060672-4-87414-104-D04EG1704.06 17928152-07 608 6FV1E 236 - 64064V1 6V32-7 FV1E DO 12 - 513678-60 DIAIDED DA29003705-07 608 6FV1E 236 - 64064V1 6V32-7 FV1E DO 12 - 51378152-60 DIAIDED DA29003705-07 - 64064V1 6V32-7 FV1E DO 12 - 51378152-60 DIAIDED DA29003705-07 - 64064V1 6V32-7 FV1E DO 12 - 51378152-60 DIAIDED DA29003705-07 - 64064V1 6V32-7 FV1E DO 12 - 51378152-6-0 DIAIDED DA21328152-6-0 - 64064V1 6V32-7 FV1E DO 12 - 51378152-6-0 DIAIDED DA210782515-0-0 - 64064V1 6V32-7 FV1E DO 12 - 51378535-6-0 DIAIDED DA21078258-0-0 - 64064V1 6V32-7 FV1E DO 12 - 51378535-6-0 DIAIDED DA200876-01 - 64064V1 6V32-7 FV1E DO 12 - 51378535-6-0 DIAIDED DA200876-01 - 64064V1 6V32-7 FV1E DO 12 - 51378535-6-0 DIAIDED DA200876-01 - 64064V1 6V32-7 FV1E DO 12 - 51378535-6-0 DIAIDED DA200875-6-0 - 64064V1 6V32-7 FV1E DO 12 - 51378536-0 DIAIDED DA200875-6-0 - 533710 - 6 0 - 533710 - 7 0 - 53710 - 7 0 - 7 0	·				THE REAL PROPERTY AND ADDRESS OF ADDRES	
b6004YH bK22 + [FV2] bFULE 05 12 **538915E-80 [ITA1062 BA *2542692E-01 b6004YH bK22 + [FV2] bFULE 050 12 **528915E-01 b600E b6004YH bK22 + CF2] bFULE 050 12 **154315E-01 b600E b6004YH bK22 + CF2] bFULE 050 12 **154315E-01 b600E b6004YH bK22 + CF2] bFULE 050 12 **154315E-01 b600E b6004YH bK22 + CF2] bFULE 050 12 **154315E-01 b600E b6004YH bK22 + CF2] bFULE 050 12 **100705E-01 b600E b6004YH bK23 + CF2] bFULE 050 12 **100705E-01 b600E b6004YH bK23 + CF2] bFULE 050 12 **100705E-01 b600E b6004YH bK23 + CF2] bFULE 050 12 **100705E 0E *100705E-01 b6004YH bK23 + CF2] bFULE 050 12 **100705E 0E *100705E-01 b6004YH bK23 + CF2] bFULE 050 12 **200100E **20010E b73110 0 0 *200000E *200000E b73111 0 0 200000E *200000E *200000E b73111 0 0 0 *200000E *200000E *200000E b73111 0 0		-22313348E-02 HOG BLATE 296	04 C083EC1104 0E 5-00 DIAIDED 84	ZČI8CTE.—— ZI OX ITATN∃I9O MUMIXA	0 31AJ9 12AJ'Ə" M A 23007099 2	- PROGRAM PASS 2245 MA90039
- HOOGEWA WY282-2-FW21-EVTIF-0V DIAIDER DI2208950E-01. - HOOGEWA-WY282-S-HODDEEZ - HAXIMAL-ON-CONSECTION OL2208950E-02. LOL-LETE_22: HOOGEWA WY282 T FW320 DI 2: ADDE202-0-0 DIAIDED 0 . * 201703E-01 - HOOGEWA WY282 T FW321-0-10 DIAIDED 0 . * 201703E-01 - HOOGEWA WY28 T FW321-0-10 DIAIDED 0 . * 201703E-01 - 530111 0 0 0 0 - 530110 0 0 0 - 530100 0 - 53000000000000000000000000000000000000						
64064XH 5725 C F02 IZ •392825-6-0 TALLOR OF •302825-6-0 TALOROR OF •302825-6-0 TALOROROF		-*T3352756-03 606 66V16 586	ON CONSECTION OF E-01 DIVIDED BY	ITATNITAO MUALXA TARNITAO MUALXA	-3-LAJ4-T2AJ-5- 3 PRODUCES A M	-2244 8490089- 2249 8490089-
280111 0 </td <td></td> <td></td> <td></td> <td>ITATNAI90-HUMIXA</td> <td>M-A -23000089- S-</td> <td>-2249-44830699</td>				ITATNAI90-HUMIXA	M-A -23000089- S-	-2249-44830699
280111 0 </td <td><u> </u></td> <td>• • 2 4 7 2 7 0 3 5 - 0 7</td> <td></td> <td></td> <td></td> <td></td>	<u> </u>	• • 2 4 7 2 7 0 3 5 - 0 7				
280111 0 </td <td>ALIT</td> <td>•T00T835E-07 LO& DFVIE 583 .*2838T52E-07</td> <td>ON COESECTION OF E-04 DIVIDED BY</td> <td>1911/10 NUMIXA 1141/100 NUMIXA 1141/100 NUMIXA</td> <td>0-3TAJ9-12AJ 1 M A 23000099 1</td> <td>2249 MA93099 2249 MA93079</td>	ALIT	•T00T835E-07 LO& DFVIE 583 .*2838T52E-07	ON COESECTION OF E-04 DIVIDED BY	1911/10 NUMIXA 1141/100 NUMIXA 1141/100 NUMIXA	0-3TAJ9-12AJ 1 M A 23000099 1	2249 MA93099 2249 MA93079
SKYLAB COL, MIS6 POS. WIS. XY-6 Z-3 ORIENTICK PREMARIES CORRECTION LIMIT IS 0.03001 CONFO		,	ECIS	1.80 20 0NA 2H9	45 12 PHOTOGRA	BLOCK CONTAI
SKYLAB COL, MIS6 POS. WIS. XY-6 Z-3 ORIENTICK PREMARIES CORRECTION LIMIT IS 0.03001 CONFO				3	9 9	
SKYLAB COL, MIS6 POS. WIS. XY-6 Z-3 ORIENTICK PREMARIES CORRECTION LIMIT IS 0.03001 CONFO	22			2	9	
SKYLAB COL, MIS6 POS. WIS. XY-6 Z-3 ORIENTICK PREMARIES CORRECTION LIMIT IS 0.03001 CONFO			,	2	9 9	
SKYLAB COL, MIS6 POS. WIS. XY-6 Z-3 ORIENTICK PREMARIES CORRECTION LIMIT IS 0.03001 CONFO					99	
SKYLAB COL, MIS6 POS. WIS. XY-6 Z-3 ORIENTICK PREMARIES CORRECTION LIMIT IS 0.03001 CONFO	68			5	9 9 9 9	
				· 3	9 9 9	
SKYLAR COL.HTS6 POS.HTS. XY-6 Z-3 ORIENTATICN PRAAMETER CORRECTION LIMIT IS 0.00001 -FL -CONSTRUT	1 				9	
290111 b 6 3	-		•	3	9 9.	
	······································			<u>8</u>	99	
SKYLAB COL.NTS6 POS.NTS. XY-6 Z-3 ORIENTATICN PRRAMETER CORRECTION LIMIT IS 0.03001 9.030001 -PEL-CONSTRNT-= -574110E+00 MAXIMUM ITERATIONS -PEL-CONSTRNT-= -574110E+01 MAXIMUM ITERATIONS POSITION MEIGHT VARIES -100000001 -91000000E+01 POSITION MEIGHT VARIES -10000000E+01 -1000000E+01 PRESOLUTION MEIGHT VARIES -1000000E+01 -1000000E+02 PRESOLUTION MEIGHT VARIES -1000000E+01 -1000000E+02 -PEL-CONSTRNT-= -57500000E+02 -1000000E+02 -PEL-CONTRON -1000000E+01 -1000000E+01 -PEL-CONTRON -1000000E+01 -1000000E+01 -PEL-CONTRON -1000000E+02 -1000000E+01 -PEL-CONTRON -1000000E+01 -1000000E+01 -PEL-CONTROL -1000000E+02 -1000000E+02 -PE				2 C	у Ч О ""., ". О.,	
S88119 6 6 5 CONTROL EOUNTION EOUNTION MAXIMUM TERATIONS		арады адарар да түрүнүндөнөн дар чайтардага дайа атдатта байлат бе 1, ж. ж. «17	y, waa e N	· · · · · · · · · · · · · · · · · · ·	9 9	
SKYLAB COL. HIS6 POS. HIS. XY-6 Z-3 -FL CONSTRUT				·		- 588710 -
-FL -CONSIENTER COL, HIS6 POS. HIS. XY -6 Z-3 ORIENTATICN PARAMETER CORRECTION LIMIT IS 0.03001 -FL -CONSIENTER PARAMETER CORRECTION LIMIT IS 0.03001 -FL -CONSIENTER PARAMETER CORRECTION ITERATIONS =9 RESIDUAL LIMIT (MICRONS) =			(TNIAXIZNO	ON=0) Z	YX NOITAUOB	CONTROL 8
-POSITION MLIGHT-YARLER CORRECTION LIMIT IS 0.03001	0€+05-	ם	MILIZP =9 RES	A TI MUMIXAM 0 10+20000001.	EICHIZ MILTS =	-FL-LONSTRNT-
SKALAR COL. HIS 6 POS. XY - 5 - 2 - 3	·					
SKALAR COL. HIS 6 POS. XY - 5 - 2 - 3	· · · · · · · · · · · · · · · · · · ·		¥0000•	C SI 11WJT NOILD	ARAMETER CORRE	ORIENTATICN !
margorg fingthe for 600 poil from the first first from the first first for the first first for the first first first first for the first f	• •			£-Z 9-XX •S1	H126 POS-M	
	*	margord fnemtentbs Meo	id otong-000 mori tug			

	289	.2056309E-01	3374787E-01		· · · · ·	
	209	9997886E+CO	3374707E-U1	.6004451±+00		
		• 9997 CO5L+ LU	.999+304E+00	•/9512p+6+00	· · · · · · · · · · · · · · · · · · ·	
1	290	1830683L-01		.6062359E+00		
, 	290	99983246+00	•9196850±+00	+7952049E+00		
•	291		2193608E-01	+6 0599558+00		
۰ <u> </u>	291	.9999765E+00	•9997594E+00	.792+561L+00	、 · ·	
ñ.	292	12814702-01	18418265-01	.6059390E+00		
•	292	.99991/sc+u0	•9998304E+00	.7954730E+00		
1	293	.1431533E-03	6218802E-02	•• 056331E+00		
4	293	• 10,00000000000000000000000000000000000	.99939807E+u0	.7957→+0L+00		
•	- 294 -		5802441E-02 "	°°',60,6630∟+00	• • > < <	· · · · · · · · · · · · · · · · · · ·
	294	.99999232+00	.9439o32E+00	.7 9648146+00		
		1163633E-01		.5047595E+00		·
	295	.9939323£+00	* 23338485+00	.796+u05E+00		
	- 296 °	1287806E-01	.17982 #RE-02	.0051827±+00		
	295	.9999J171_+00	•999998+€+00	.7960807E+00		
	297	2250270E-01	·12+3014E-01			······
	297	.9997468L+u0	.99992216+00	.7963126E+00		
	298		1181+35E-01			
•				6041539E+00		
·	298	.9997996±+00	•999302E+u0	.7 368577 - +00		
	299		.1-97957E-01	•6946433E+00	,	
_	299	.99972718+00	• 4998878c+00	+756490+E+00		
						•
<u> </u>	··· ·· ··					
					,	
;					·	
; ; ,					· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
·					Že	
· · · · · · · · · · · · · · · · · · ·						
		· · · ·				
		· ·				
, 	······································	· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·	,	• • • • • • • • • • • • • • • • • • •				
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · ·
`						•
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				•
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				•
		· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·	······	· · · · · · · · · · · · · · · · · · ·				· ·
		· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	•				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				•
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				•
		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·

~	• ••••••• •• •••••••	SHORORS	•576326985+0		vêrshare a kera		anna sa waxaa ayaayaa	
àb		097*2-	660 •	102882682	914.961-	4.24.6	166:01	
			. 260*-	102885885	914 ·961 - 250 · Togs- 1+6 ·49+E-	699•9252TT- 965*4856/11-	-201344, 107	7-28820T
		<u>مەر چېنې دې د دېر د دېر دې دې دې د د د د د د د </u>	•			700 #0= <u>0</u> 11-		
······			0+39765982*	SMS OBJECT=				
		<u> *9 + *5 -</u>	921° 	TTT992692	125.282	817.5-	LIS'6-	
			871	L11882885	-2129.1028 -29.1.213	152*692521-	- 602**0022T-	11882 A
					K72 F*02-	029 292921-		TILLAAS 4
	· · · · · · · · · · · · · · · · · · ·	SN080178 T	*200A886E+0	×12 06261				
			•		- 401.552 -	L75+07-	570.01	-
	,	552 * 4	££ T * -	586288110	628+2592-	508 796977-	126.641702-	071982 388
		9					956:691202	₩. 5887731
	•	Shouotu 3	D. 70 CO. L. T.		۰		······	
		2 380 8014 2	0+3650221 105.	2902883200 290282320				
				. 052582582				
	······	ፈፑታ • ፀደ	528	588589330	-5+43*619	100.005424-	578*176291-	589330
					2866 K. L. W. J. M. L.			
	to .	S WICKONS	0+2+094597*	RMS 08JECT=				
	<u> </u>	922**	978*9 662*21	530587350 587583250 587583250			•	
			Z88:9	288289320		112+00406-	0.45 100000	
	ALITY GE IS						05	
					ويور ومشيون متحفظ والمحمول المحمول الم			
	P	SNCRONS	0+31842421*:					
	9.5	09. •1-	691.8	072682062				
	<u> </u>	202*#1=	92 <u>\$*</u> \$1					· · · · · · · · · · · · · · · · · · ·
	ORIGINAL	205 * 72	902+2	012582882	55 5 • 49 52 -	298°42909T-	272*996047-	012685
	2 A		****	· · · · · · · · · · · · · · · · · · ·	······			
	<u>A</u> F		• · · · · · · · · · · · · · · · · · · ·					
	<u>~~</u>	200801W T	- *S%60%62E+0					
		2*503		586588320 588588320	- 3873 .6 22	T60*/60+6T-	522.826961-	000007
•							307.870301-	588330
		I HICKOWS	= *80+2039E+0	SWS OBJECT				
				5895983260				
		221•1	-* 032	208288328	295*0529-	-179360°303	-22+533*782	568320
		CNOVOTA T		· · · · · · · · · · · · · · · · · · ·				
			= .* 3535136F+(
·····	······································	, 695**	641*-	288298710	-3743.068	200 - 759827-	146*651521-	586310
	· · · · · · · · · · · · · · · · · · ·						•	
		VY PLATE RESID	X PLATE RESIO	I WY CE A	алиояз г	и скоило	0 Х 6800И0	103080
1 			10					
			ם NS) רח±100 +++	PF 04JECTS USED IN 50 PF 04JECTS USED IN 50 PF 000R0INATES	. ИОТТОЗИЗТИТ ИОТТОЗИЗИТ ИОТОЗИТ	• • • • •		
				· · · · · · · · · · · ·				

			-			• • • • • • • • •	
	3.089	098		-3874.837	-146855.736	-201278.692 -= 201265.954-	
	-3.988	.0>9	209288100	-30.343	-12.483	-201288.994	200100
· · · · · · · · · · · · · · · · · · ·	MICRONS	.2185071E+01	RHS OBJECT=				
· · · · · · · · · · · · · · · · · · ·			• • • • • • • •				
	6.068	210	288288101	-3241.238 -3451.964	-121226.254	-199196.924 	-288101
	-6.664	.214	289208101	-210.726	19.031	14.961	200101
	HICRONS	.4716035E+01	RHS OBJECT=		;_ (;;;=(
······································	· •••••• •• ••• ••• •••						•
	6.145	193		- <i>3309.711</i> - 3515 • 693	-7 4N780 730	-200294:019	
	-6.142	197		<u></u>		14.378	200120
	MICRONS	.+34012+E+01 !	RMS OBJECT=				
······································			nganga dan kang perinduk dan dan perinduk dan	2940 759		10010 dup	
	3. + 22		- 288238202	-3979.759	-//6473./22 	-178969.743	
	73.421	.110	· 289288202		-2,895	-10.718	T FOOFAF
		·2420584E+01 1	RMS OBJECT	<i>1.97.336</i>	<u> </u>	-10.110	
	29.712	-8.468	289290310				
	19.283	12.090	290290310				
	#49.040		291290310				
<u></u>	NIGRONS	.29409312402	KNS UDJEUI-			• • • • • • • • • • • • • • • • • • • •	
	12.399	.067	209290320	-1164.540	-63563.072	-152383.610	290320
•	-7.230	787 .741	290290320				
	PICRONS		RMS OBJECT				
						·	
	· 17.608	-2.367	289290330	-899.591	-96569.490	-131585.875	290330
	-7.500	3.381	290590330				
C C C C C C C C C C C C C C C C C C C	-14.C40	"-i.015"	291290330				·····
	MICPONS	.9468433E+01	RNS OBJECT=				
POOR							
<u>¥ E</u>	11.743			-962.699	-64433.577	-145819.163	
Total Annual States	-5.985	716	289290110			-145821.193	A 290110
	-5.740		291290110	11:736	6.814		
	MICRONS	.58890542+01 1	RMS OBJECT=				
	,						
				-1+30.977	-141707-209	-100287.221	2011117
	2.551	- 006	289290111	-1517.218	-141713.583	-100286.078	A 290111
	-2,545	.005	250290111	-86.241	-6.379	1.143	
	MICRONS	+1801733E+01	RHS OBJECT				
<u> </u>				-966.024	-64304.337	-145928.545	
	14.294	185	289290201	-925.436	-64306.415	-145925.244	7-590501
	-6.522	377	290290261	40.588	-2.078	3,30/	
	-7.757 MICRONS	.543 .71504058+01 '	291290201		×		
	1107,0N3	****************	KU2 ARAFCI=				

201710	-77505	-0+-7+ 170		0000001740			
291310	-/3500.490	-91026.078	-029.069	290291310 	-9.747	49•531 	·····
	i.			292291310	-6.050	-15.182	
				RMS OBJE	CT= .2860057E+	+D2-MICRONS	
<u></u>	<u> </u>						4
		-7-004667		-000004700			· · · · · · · · · · · · · · · · · · ·
-531950-		-30081667		290291320 291291320	-2:9/6 4.270		*
				292291320	·1.259		
	······		nan ha a an ann anna 21 Januar	RMS OBJE	CT= .2451515E+	+02 MICRONS	
							•
291330	-94988.940	-670-8-199	-315.295	240291330	-5.094	33.280	
	······································		-9134597		-2.054		
			•	292291330	-3.871	-34.861	· .
	<u></u>			RMS OBJE	CT=2026214E+	-02-FICRONS	
							OF POOR POOR
							<u></u>
			449.438	292292310 292292310		•606	<u>হ</u> র
						-20.573	
					CT= .1172226E+		
						······································	0
292320	-70403.386		205 041		·		U PAG
292320	~79693.386	-3100.307	295.041	291292320 292292320	-1.101	-15.172 22.173	
-				293292320	163	-6.983	日日
<u> </u>			·		CT= 11 35391E+		
	,						~~~~
	······································				···· · · · · · · · · · · · · · · · · ·		•
-292330	~~~601//*+949		522.021	- · 291292330 - 292292330 -	** 1.456 * ** * -2.995	14.859	
			<u> </u>	293292330	1,552	-14.244	
	•	* 1		RMS OBJE	CT= .8539582E+	+01 MICRONS	•
		• * .		angelinger kaj se se se		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
292110T 292110	-93655.711 -93657-861		333.841 .				
* 595770	-/./50	6.593	-38.472	291292110	•016 -•016		
<u> </u>		<i>e.v.v</i>			CT=		
		<u></u>					· · · · · · · · · · · · · · · · · · ·
	-108297.906		110.910			. •	
-291120			32.891	291291120		11.762	
	-0.207	6.891	-78.019	291291120 292291120 RMS 08JEC		-11.768	
						OI MICKOWS	
•	-10/051 110	-				den un barr i y Abr	. – anare jakas albert element anna a patrimente ar acces campanan. An patrimente,
	-106952.115 		119.998 94.186	291291121 -	376		
674462		-6.815	-25-212	292291121	375	-11:895	•
			and day in the state	RMS OBJE	JT= .8388516E+	+D1 HICRONS	

A 2921117 292111	-27029.441 -27020.950 	-74051.423 -79654.702 -3.279	297.541 292.103 5-378	291292111 292292111 RMS OBJECT=	.029 029 .5772417c+00	. 958 -, 958 MICRONS		
·				٠				
293310	-557.116	-33201.99+	580.547	292293310 293293310	-2.875	2, 125		
			· · · · · · · · · · ·	294293310 RMS OBJECT="	-3.271 .3250029E+01	437 ." MICRONS		
293320	-46135.211	237481689	755.439 7		172	-25.514	······	
	•			293293320 294293320 RMS OBJECT=	-2.677 2.998 .272+478E+02	-28,753	······································	
		موجو وه و بروجو با با محمد الله الله الله و الله الله الله الله ال						
293330	-22306.105	-11480.969	1059.436	292293330 293293330 294295330		15.156 -5.187 -9.936	*	
			•	RHSTOBJECT			······································	
Δ293100	-3035.51/	-51147.97/	721.944	- 292293100	.021	421	······································	
	- 4.9.88	12.935	25.196	293293100	021 2980114E+00	HICRONS		. <u></u>
	-28172.927	-27112.861	834.668					<i>,</i>
<u> 293113</u>	-28159:053 13.214	-27103.185 9.672	621.656 -13,0/2	292293110 293293110 RHS 05JECT=	352 .352 .5016334E+01	7.091 -7.080 Microns		
					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
2931201	-4296:418	-52018-862	7ŭ4.400 7u1.227	292293120	045	.965	POOR	
	- 2.89/	-0.096		293293120 KIIS_OBJECT=	•048 •6824631E+00	963 MICRONS		
			707.37/					
△ 293121	-2734.791 8.579	-51064.213	701.808	292293121 293293121 RKS OBJECT=	• 170 -• 068 • 9797026±+00	-1.385 1.383	U PAGE IS QUALITY	
								······································
294310	31898.162	+4934.554	690.063	293294310 294294310	2.128	53.277 -20.876		
		• 		295294310	0.451 .2721705E+02	-32.427	``````````````````````````````````````	
	-3694.629	· 43458.533	304.189	293294320	3.376	0.796 2.727		
			•. •.	294294320 295294320 ' RMS OBJECT=	-17.4.9 9.112 .1066998E+02	2.727 =11.708 MICRONS		42

A 296 111T 296 111	67448.740 67450.678 /.938	98940.886 98941.786 0.900	-231.394 -238.015 -7.411	295296111 266296111 297296111 RNS OBJEC	-1.157 2.237 -1.084 F= .1260∩02⊾+0	1.018 -1.125 .108 1 MICRONS	2 3
A 296110T 295110	105357.883 	37358.925 	-134.052 -104.927 -104.927		.001 000 T=3708215E+0	525 524 0-MICRONS	
296 3 30 	78054 - 828-	76355.232	94 • 902	296296330 297296330		11:749 1.040 12.787 1 MICRONS	······
296320	59972.357	107751.460	-348.662	295296320 296296320 297296320 RMS OBJEC	1.360 2.538 1.177 T=2258041E+0	-3.543 1.108 2.534 1-MICRONS	
		4 90 38+235 	87.815	295296310 296296310 297296310 RMS OBJEC	-8.569 15.334 -0.735 T= .1921706E+0	16.530 18.665 -35.192 2 MICRONS	
295330	49365.290	49544.761	285.874	294295330 295295330 296295330 RMS OBJEC	-3.558 7:263 -3.726 T= .1387773E+0	723 23.555 -22.823 22 MICRONS	
295 320 -		6+818.444		294295320 295295320 296295320 RMS OEJLC		10.715 20.451 -37.119 22 MICRONS	
295310	67366.805	22135.331	82.479	294295310 - 295295310 296295310 - RMS-08JEC	-4.769 - 8.057 -3.318 T=──-,9006387E+(11.168 	
294102T- 294102	-23669.361 -23668.327 	37935.490	801.854 564.347 2.332	293294102 294294102 RMS Objec	•002 ••003 T= •70122?8E+	991 .992	
294330	15111.681	188973+	550.U16 -	243294330 294294330 295294330 RPS OBJEC	0.616 -13.415 6.834 CT= .1581093E+	27.264 	

	75550.344	54100.713	226.922	•			1
295100	75565.486	54087.760	156,211	2 95 2 95 1 0 0	014	11.393	······································
		-12.953	-70.711	296295100	•006, JT=	-11.380	
				RMS UBJEL	,I= ,0051476£+0	1 MICRONS	
			m d with		հա. ա) հանորդությունը է հայ որեր		
296201		98609.407			·····		
53050T	67109.161	98615.567	-213.343	295296201 296296201	-1.162 2.214	1.325	•
				- 297296201	-1.055	540 	
				RHS OBJEC	T= .1292936E+0	1 MICRONS	
				•	-		I
207744	476934 051				· · ·		· · · · · · · · · · · · · · · · · · ·
297310	136781.254	66353.340		296297310		45.128	
				290297310	1.657	-9.311	
				RMS OBJEC		2-MICRONS	
							- , · · · · · · · · · · · · · · · · · ·
297320	4.00 536, 722			226207720 *	-3.33?	52,275	
271320	1009390722	1004544100	- 1903+341	2 57 297 320	-3.337 4.430	-17.994	
		بوشيب بالإسلى يوربو الوالايتينيني		296297320		-34, 204	······································
*				RMS OBJEC	T= +2664000E+0		
<u> </u>		· · · · · · · · · · · · · · · · · · ·					۹
297330	119761.767	104510.673	-1230.994	296297330	-3.241	44.673	· •
	•				4,742	-26.403	 07 R
				296297330	-1.460	-18.152	
			•	RHS DEDED	T= .2250530E+0	2 MICRONS	PO
		·····	····		· ····································		<u> </u>
							OR
296310	176204.799	105752.504	=2617.263	297298310 298298310	-3. 035	21.888	່ 'ອີ
· · · · · · · · · · · · · · · · · · ·	· · ·····			299298310	1+050	.901	ë. v
					T= +1299309E+0		QUAL
	······································				74 448-8 4 1 W L A 40	· · · · · · · · · · · · · · · · · · ·	
				······································	<u></u>		
298320	132263.976	162905.948	-3090.611	297298320	~5.011	• →12	N N
				298298320	11.380	7.328	
		·····		299298320 PMS 05 /FC	-5.366 T= .7163833E+0.	-7.722	4
						1 1/10/00/3	•
					•		
298330	194437.310	140272-139	-2944+173	297298330 298298330	-5.729 10.038	12.590 -5.391	· · · · · · · · · · · · · · · · · · ·
				- 299298330	-4.878	-7.582	
		• •			T= .3418980E+0.		
			1999-1994-1994 - 1994-1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994	• • • • • • • • • • • • • • • • •			" , , , , <u>, , , , , , , , , , , , , , ,</u>
297120T	127578.566	129930.492	-1/56.009				
297120	127578.566 	129937 - 5+4	-1893.776	297297120	~. 055	3.226	
		7.052	-/37.767	290297120	.058 T= .2∠01002∟+0.	-3.226	

297298110 298298110 -.033 .035 - - - 1.923 RMS OBJECT= .1360382E+01 MICPUNS 298299310 -.124 299299310 .120 299310 221333.928 118339.172 -4290.205 3.263 -3.259 KMS OBJECT= .2307715E+01 MICRONS 299320 162683.502 191183.725 -4075.060 258299320 -.113 3.209 RMS OBJECT= .2208708E+01 MICRONS -4134.662 298299330 .059 299330 188418.605 168589.801 -1.637 ORIGINAT -.058 1.634 RMS OBJECT= .1157261E+01 MICRONS -.135 -3.812 U PACE 299299110 .134 -3.807 -3.290 3.970 6.269 ~••• RMS OBJECT= ---. 2695222E+01-FICRONS----· 120 ' -3.276*** 36 299299100 -.118 3.272 2991111 ----- 213537.475 ---- 124932.816----- -3997.981-----213537.179 124931.293 -4024.813 . 298299111 A 299111 -.031 .639 -0.296 -1.523 -26.832 ---838 RNS RESIDUAL FOR ENTIRE BLOCK = .12995586+02 MICRONS On all contral: RMSx = 2000.481761 = 8.306 RMSy = 2328.910553 = 8.961 RMSxy = 12.218 meters On withheld control: RMSX = 1747.814214 = 10.794m RMSY = 1658,125318 = 10.514 m RMSXY = 15.068 in ground · Note: 12.218 metery on ground = 12.915 microns @ plate scale ...

10	
	PLATE RMS (MICRONS)
]]	288 .1072343E+02 289 .8281693E+01
: n	
ر	292 • 1512409E+02
، سر ا	294 • 119d 391E+ D2
ا ^م د ا	296 • 1 > 43 ĉ 99E + 02
	298 .91>9346E+01 299 .3319604E+01
	End of Table 7.
2	
	·
اليو، إ ا	
) () 	OPICINAI POOR OR
; 0.	
0	
0	
131	
10	
, ,	
, w	
6	
0	
0	

PHOTO CONTROL			
STATION	Х	Y	Z
Δ 288100	11.738	-12.483	-30.343
🕰 288110	10.025	20.329	-233.104
🛕 288201	10.991	7.727	-196.716
🛕 288111	-7.517	-5.612	172.285
∆ 288202	-10.718	-2.895	134.556
Δ 288120	14.378	9.686	-205.982
▲ 288101	14.961	19.031	-210.726
A 290110	-2.030	6.814	11.736
\triangle 290201	3.301	-2.078	40.588
A 290111	1.143	-6.379	-86.241
	-0.207	6.891	-78.019
$ \begin{array}{c cccc} \Delta & 291121 \\ \Delta & 292110 \\ \Delta & 292111 \\ \Delta & 293100 \\ \Delta & 293120 \\ \Delta & 293121 \\ \Delta & 293121 \\ \Delta & 293110 \\ \Delta & 294102 \end{array} $. 12.644	-6.815	-25.212
A 292110	-1.150	6.593	-38.472
A 292111	0.491	-3.279	-5.378
△ 293100 ▲ 293120	-4.988	12.935	25.196
Δ 293120	-2.891	-0.096	-3.173
Δ 293121 Δ 293110	8.579	7.711	-5.563
A 294102	13.274	9.672	-13.012
Δ 295100	1.034	1.407	2.332
▲ 296111	15.142	-12.953	-70.711
Δ 296201	1.938	0.900	-7.411
A 296110		6.180	3.373
▲ 297120	-4.219 3.231	-0.994	29.125
$\overrightarrow{\Delta}$ 297121	3.231 1.667	7.052	-137.767
A 298110	-6.028	2.042	-135.449
Δ 299100	-16.286	-3.617	85.999
A 299110	-3.290	-18.695	-138.440
▲ 299111	0.296	3,970	6.269
	0.250	-1.523	-26.832

Note: \triangle = weighted photo control station \triangle = unweighted photo control station

Table 8. Residual errors in meters remaining at each of the computed positions for the 29 office-identified photo control stations after block adjustment solution, as expressed in the secant plane coordinate system.

The block adjustment program is designed to terminate the iterative computation when the computed corrections to all of the angular camera parameters are each less than 0.00001 radians (two arc-seconds). Table 7 shows that five iterations of the block adjustment orientation solution were required to achieve this condition for the SKYLAB study. Usually, only one such pass through the solution is necessary in conventional NOS mapping projects employing metric photography and field-identified photo control.

The residual errors at the control stations appear to be uniformly distributed throughout the test area, and there is no evidence that the least square solution was not able to absorb uncompensated systematic error, i.e., no large isolated discrepancies exist in the solution. The horizontal position geodetic RMS error for the 29 photo control stations was 12.218 meters and is equivalent to 12.915 microns at the SKYLAB photography scale of 1:946,000. The geodetic RMS error computed for only the 15 withheld photo control stations was 15.068 meters. The maximum horizontal position error was 24.794 meters and occurred at withheld station No. 299100. No serious attempt was made to hold closely to the elevations of the control stations because of the inherent limited accuracy in the stereo height determination. Consequently, several of the residual errors in \underline{Z} exceeded -200 meters.

The photogrammetric RMS error was 12.996 microns at plate scale and was computed using the residual v_x and v_y plate discrepancies of all the images created on the photography by the 36 pass points and the 29 photo control stations. It should be noted that the photogrammetric RMS error is usually about eight microns on conventional NOS photogrammetric mapping projects.

Inverse of the Secant Plane Coordinate Transformation: After completion of the block adjustment solution, the adjusted computed secant plane coordinates were transformed back into the original ground coordinate system (Geographic Positions and elevations based on sea level) by applying the secant plane transformation in its inverse mode. The results of this inverse computation are displayed in Table 9. PASS POINTS

٠

PASS P			
	X	Y	Z
288310	-175159.941	-178654.007	-3783.068
288320	-224533.782	-118960.309	-4350,547
288330	-196938.725	-154397.051	· 3873.622
289310	-140968.327	-150574:857	-2564.325
289320	-186866.970	-95485.277	-2601.182
289330	-163941.845	-124266.567	-2443.416
290310	-106548.364	-122833.069	+
290320	-152383.610		-1039.850
290330		-63563.072	-1164.540
	-131685.875	-96569.496	-899.891
291310	-73506.450	-91626.878	. +629,069
291320	-121335.359	-36081.667	-444.274
291330	-94988,940	-67988.199	-315,295
292310	-36515.376	-63241.457	449.438
292320	-79693.386	-3100.307	295.041
292330	-60177.549	-36467.791	
293310	-557.116		522.021
293320		-33201.994	880.547
_	-46155.211	23748.689	755.439
293330	-22306.105	-11480.969	1059.436
294310	31898.162	-4934.554	690.663
294320	-3694.629	43458,533	304.189
294330	15111.681	18897.434	Š50.016
295310	67366,805	22135.331	82.479
295320	32090.883	64818,444	330,914
295330	49365.290	49544.761	
296310	104040.087		285.874
296320		49038.235	87.815
-	59972+357	107751.460	-348.662
296330	78054,828	76365.232	94.902
297310	136781.254	86353.340	-1159.746
297320	100539.722	133424.766	-1563.397
297330	119761767	104510.673	-1230.994
298310	176204.799	105752,504	-2617.263
298320	132263.976	162905,948	-3090.611
298330	154437.310	140222.139	
299310	221333.928		-2944.173
		118339.172	-4290.205
299320	162683,562	191183.725	-4075.060
299330	188418.605	168589.801	-4134.662
•			
14 HELD	CONTROL STAT	IONS	
288110	-207159,931	-116964.805	-3657.839
288111	-177004.709	-175269.251	-3729.028
290110	-145821.193	-64426.763	
290111	-100286.078		-950.963
292110		-141713.588	-1517.218 -
	-93.657.861	-20673.281	295.369
292111	-27028.950	√−79654.702	292.163
293120	-4299.309	~52018.958	701.227
294102	-23668.327	37935.490	804.347
296110	105353.664	37357.931	-104.927
296111	67450.678	98991.786	-238.805
297120	127581.797	129937.544	
298110	156462.108		-1893.776
299110		98122.969	-1757.118
	165977.778	175878.308	-3777.908
299111	213537.179	124931.293	-4024.813
15 WITH	HELD CONTROL :	STATIONS	
•			
288100.	-201266.954	-146868.219	-3905.180
288101	-199181.963	-121207.223	-3451.964
288120	-200279.641	-122471.264	
288201	-207333.116		-3515.693
288202		-117576.669	-3661.657
	-178980.461	-176476.017	-3845.203
290201	-145925.244	-64306.415	-925.436
291120	-108298.113	-25288.198	32.891
291121	-106939.471	-26688.740	94.785
293100	-3040.499	-51135.036	747.140
293110	-28159.653	-27103-189	821 656

1

~ ~ ~ ~ ~ ~			
288100.	-201266.954	-146868.219	-3905.180
288101	-199181.963	-121207.223	-3451.964
288120	-200279.641	-122471.264	-3515.693
288201	-207333.116	-117576.669	-3661.657
288202	-178980.461	-176476.017	-3845.203
290201	-145925.244	-64306.415	-925.436
291120	-108298.113	-25288.198	32.891
291121	-106939.471	-26688.740	94.786
293100	-3040.499	-51135.036	747.140
293110	-28159.653	-27103.189	821.656
293121	-2734.791	-51864.218	701.808
295100	75565.486	54087.760	156.211
296201	67109,161	98615.587	-213.343
297121	127254.334	130858.812	-1904.261
299100	180311.924	125630.652	
277100	100311+744	120000.002	-3126_692

٠

. ٦

.

,

٤ z ı

5 ŧ ł \$

•

• .

> F -----

1 1 4 ł ì

•	PASS	POINT			
	288310		LATITUDE +2 26.38609	LONGITUDE 80 39 43.87202	Elevation (feet) 1096.07686
1	288320		4 6.91221	- 81 13 2.76273	-279,18950
	288330	34 5		- 80 54 20.37638	796.27163
(289310		57 57.28077	-801737.42388	-70.44538
(289320 289330		27 17.25727 11 58.24487	- 80 48 31.79789 - 80 33 1.74416	176.23997 259.672 79
	290310	-	13.48098	-79513.16051	783.04996
(290320		4 54.64260	- 80 26 5.64609	572.11904
	290330		7 14 74808	- 80 12 2.23300	1293.58307
(291310 291320	35 3 36	0 16.84703 0 1.95660	- 79 33 36.97538 - 80 5 44.95660	-1124.96987
	291330		2 57.32927	- 79 47 59.30026	44•75680 -139•43936
	292310		5 45 64825	- 79 9 13.58220	233.10629
(292320		8 7,55350	- 79 38 14 . 22851	-13,95916
	292330 293310	36	0 10.10432	- 79 25 2.77197	370.14007
(293320	36 363	2 2.81021 32 46.46501	- 78 45 22.25265 - 79 15 55.66983	557.46828 555.24755
`	293330		3 46 60473	- 78 59 53.15875	1021.67941
1	294310		7 18.00507	- 78 23 41.73789	-82.35886
(294320 294330		3 29.95754	- 78 47 28,89599	-1127,14234
	294330	- 36 3 - 36 3	0 12.68101 1 49.66979	- 78 34 52.74101 - 77 59 51.81921	-660.65358 -1053.04192
(295320	36 5		- 78 23 23.53281	-181.68449
	295330		6 42.80926	- 78 11 49.19933	-418.66557
(296310	36 4	=	- 77 35 4.84073	1073.23836
(296320 296330	37 1 .37	.8 8.87137 1 5.88875	- 78 4 24.81194 - 77 52 22.45203	159.90532
	297310	37	6 6.14785	- 77 12 40.16500	765.15397 309.91260
(297320		1 49.55763	- 77 36 44.86165	-554.28613
	297330		6 3.46029	- 77 23 58.88423	-151.24184
(298310		6 12.17141	- 76 45 46.80372	-338.95441
1	298320 298330		7 32.17061 5 4.08519	- 77 14 53.24438 - 77 0 4.26612	-1411.50456
	299310		2 26.46691	- 77 0 4.26612 - 76 15 1.24412	-1072.32185 -487.89597
(299320	38	2 32.00796	- 76 53 47,32371	248.66309
	299330	37 5	0 1.81199	- 76 36 33.11741	277.17958
(-			
•	14 HE		NTROL STATI	ONS	
1	•				
$\boldsymbol{\epsilon}$	288110		5 25.53695.	- 81 1 37.17181	-56.53923
	288111 290110		4 15.06445 4 30.27598	- 80 40 58.91790 - 80 21 43.80370	1130.99762 798.41836
(290111	35	3 2.98861	- 79 50 57.40463	173.57077
	292110	36	8 32.95024	- 79 47 26.25236	716.77843
ť	292111		6 54.17346	- 79 2 53.97097	167.48599
(293120 294102		1 52.23900 0 29.64527	- 78 47 51.36030 - 79 0 53.15813	387.59883
	296110		9 51.15007	-773417.49878	538.16070 251.2932 7
(296111	37 1	3 22.87241	- 77 59 24.02989	297.80444
	297120		9 44.66704	- 77 18 25.65847	-290.11984
(298110 299110		2 17.00557	- 76 59 14.24742	393.36137
	299110	372	4 13.47135 6 6.62123	- 76 51 44.87622 - 76 20 11.53555	51.63104 -75.09492
-	2//111	5, 6	0 0.02125	- 78 20 11.53555	-75+09492
ϵ					
	15 WI	THHEL	D CONTROL S	TATIONS	
Ç	288100	34 5	9 19.78010	- 80 57 17,56339	550.25723
76			3 13.88282	- 80 56 17.75518	46+38242
~	288120	35 1	2 32.05602	- 80 57 .06754	29.57440
C	288201	351	5 5.55994	- 81 1 43.45203	-13.58050
	288202		3 34.58196	- 80 42 15.70143	1040.36233
(290201 291120		4 34.13316 5 57.72387	- 80 21 47.99968 - 79 57 9.57444	885,94229
	291121		5 12.83931	- 79 56 14.54521	669.99247 816.69433
	293100	355	2 20.94618	- 78 47 1.19852	512.32645
(293110	36	5 19.20237	- 79 3 45,55598	472.98178
	293121 295100	35 5 36 4	1 57.27979 9 3.99475	- 78 46 49.00424 - 77 54 11.05976	382.53015
1	296201		3 10.74701	- 77 59 38.01136	118.26105 350.34280
	297121		0 14.71046	- 77 18 38.41834	-283.95531
<i>,'</i>	299100		6 54.19126	- 76 42 42.61679	-446.64844
,					

<u>Accuracy Analysis</u>: In order to evaluate fully the accuracy potential of the analytic system, a final computer program is used to develop the inverse of the matrix of normal equations, the variances, and the standard errors in X, Y, and Z at all of the points throughout the project area.

It can be assumed that the camera parameters and the ground positions of the pass points provided by the final pass through the block adjustment solution would not change significantly should an additional pass be made. Thus the same refined image coordinates, together with the final camera parameters and ground positions for the pass points, will yield essentially the same normal equations that occurred in the final block adjustment pass. This is the basis for the accuracy-analysis program.

The standard error \underline{E} of the coordinates determined at a point in the block can be expressed as $\underline{E} = Qe$ where \underline{Q} is the variance of the point as derived from the inverse, and \underline{e} is the standard error of unit weight for the problem and is considered to be essentially equal to the photogrammetric RMS error determined in the block adjustment solution. Both \underline{Q} and \underline{e} are relatively independent and provide a means for the comparison of tests conducted under varying conditions.

The variance Q is affected by the geometry of the block, such as the number of photographs and the number and distribution of horizontal and vertical control. Its value can be computed from simulated photographs before the pictures are actually taken and is unaffected by poor techniques. The standard error of unit weight e is a measure of the precision of the system and is affected by the camera, comparator, effectiveness of the corrections for systematic errors, overlap, premarking, operational techniques, etc. Its value is relatively constant for a given set of techniques and allows one to upgrade the system by improving the techniques. Thus, for example, the nonmetric characteristics of the Earth Terrain Camera and the use of officeidentified photo control resulted in a standard error of unit weight of nearly 13 microns for the SKYLAB study. This is significantly larger than the eight microns or less that is found in NOS operations employing metric aerial cameras and fieldidentified photo control.

Table 10 shows the horizontal standard errors in meters in the secant plane coordinate system for each of the 15 withheld (unweighted) photo control stations. The horizontal position RMS error computed from these values is 16.414 meters and substantiates the validity of the geodetic RMS errors found in the previous block adjustment solution.

PHOTO CONTROL STATION	X meters	Y meters.
288100	9.201	9.529
288201	9.961	15.053
288202	10.164	12.360
288120	9.003	13.679
.288101	8.916	14.029
290201	7.271	10.185
291120	13.554	16.164
291121	1.3.158	15.701
293100	15.650	11.110
293121	15.736	11.260
293110	9.967	9.494
295100	9.377	10.147
296201	7.949	7.844
297121	10.949	8.993
299100	9.084	13.678

RMS_X = 10.963 RMS_Y = 12.216

RMS = 16.414 meters

Table]	10.	The standard errors in meters in the secant plane
•• •	•	coordinate system for each of the 15 withheld
-		(unweighted) photo control stations.

FURTHER DISCUSSION OF SKYLAB ANALYTIC AEROTRIANGULATION RESULTS

In evaluating the results of the SKYLAB aerotriangulation study, it must be remembered that these results were achieved using a <u>strip</u> of photography instead of a <u>block</u> of overlapping strips of pictures. For the case of a strip, analytic computations are usually terminated after strip adjustment because there is no evidence of a significant improvement in accuracy by continuing on through block adjustment. However, the strip adjustment of the SKYLAB photography appeared to show apparently systematic adjustment discrepancies that were assumed to be attributable to a failure to compensate completely for the systematic errors introduced by the nonmetric characteristics of the camera and/or the office-identification of photo control. For this reason, the block adjustment program was applied in an effort to optimize the accuracy of the aerotriangulation solution.

The results obtained from the block adjustment were reasonably close to the values to be expected from the SKYLAB photography. Our experience indicates that the block adjustment of a strip of metric 1:946,000 scale photography using field-identified photo control would yield a geodetic RMS error of approximately This figure must be modified to allow for the 14 meters. additional errors introduced by the nonmetric characteristics of the Earth Terrain Camera (focal plane shutter, camera lens distortion assumed to be negligible, imprecise location of the photograph principal point, etc.) and the office-identification of photo control. Assuming a maximum error of 20 meters introduced by the ETC and a maximum error of 15 meters for the office-identified photo control, the overall expected geodetic RMS error for the block adjustment of the SKYLAB strip of pictures increases to nearly 16 meters. As noted in this report, the actual geodetic RMS error was 12.218 meters for all 29 office-identified photo control stations and 15.068 meters for the 15 withheld or unweighted photo control stations.

The National Standards of Map Accuracy require 90 percent of all map points to be correct to within 1/50 inch or 0.51 mm. for maps published at scales of 1:20,000 or smaller. Statistically, the SKYLAB results indicate that 90 percent of all 29 office-identified photo control stations were held to within 20 meters, and 90 percent of the 15 withheld or unweighted stations were held to within 24.7 meters. It is evident, therefore, that if the positions of all the planimetric detail required to construct a map of the project area were developed digitally by analytic block adjustment methods, 90 percent of these planimetric points would also be correct to within less than 25 meters. Thus, the analytic aerotriangulation method can be used in this manner with the 1:946,000 scale SKYLAB strip photography to construct a 1:50,000 scale map that will meet the National Standards of Map Accuracy.

The usual practice in mapping operations is to compile the planimetric details from stereoscopic models oriented to horizontal photo control established principally by analytic aerotriangulation procedures. Experience has shown that 90 percent of the horizontal photo control should be known to within 0.15 mm., as measured on the manuscript. This is equivalent to 24.75 meters at a map scale of 1:165,000. Thus, stereocompilation techniques can be combined with the analytic aerotriangulation methods to construct a map at 1:150,000 to 1:200,000 scale from the 1:964,000 SKYLAB strip photography.

PRECEDING PAGE BLANK NOT FILMED

Appendix A

THE SKYLAB S-190B EARTH TERRAIN CAMERA

John D. McLaurin U.S. Geological Survey McLean, Va. 22101

.

Prepared as a presented paper for Commission I, International Society for Photogrammetry, for the XIIth Congress

Ottawa, Canada July 23-August 5, 1972

56 -A

John D. McLaurin U.S. Geological Survey McLean, Va. 22101

One of the major objectives of the Skylab manned space station to be launched in 1973 is to collect earth resources data. The Earth Resources Experiment Package (EREP) of Skylab includes instruments for collecting data in several regions of the electromagnetic spectrum, ranging from the visible to the microwave. The sensors include the S-190A multispectral camera, the S-191 infrared spectrometer, S-192 multispectral scanner, the S-193 microwave system, and the S-194 Lband radiometer. These systems have all been described elsewhere (NASA-MSC, 1971). However, a new sensor, the S-190B Earth Terrain Camera (ETC), has recently been added to EREP. Because the ETC is not as well known as the other sensors, I will describe its characteristics and indicate some potential applications of ETC photographs.

The ETC was included in the EREP of the Skylab mission as an addendum to the S-190 experiment. It is designed to supply highresolution photographs of areas within the field of view of the other EREP sensors to aid in the interpretation of data gathered by them. In some cases information from the ETC photographs will substitute for ground truth and for photographs obtained from aircraft underflights Furthermore, the resolution of the camera will permit certain investigations that would be impossible for any of the other EREP sensors alone.

The EROS (Earth Resources Observation Systems) Program of the Department of the Interior is interested in the ETC primarily because it has approximately the same photograph scale and ground resolution as the film-return satellite camera system which was recommend in 1967 by the National Academy of Sciences for cartographic and photogrammetric applications. That proposed satellite would be in a near-polar orbit at an altitude of 200 km and would include a metric camera of 300 mm focal length. In 1970 the Department of Interior proposed to NASA that a satellite of that type be flown, and we have a continued interest in it.

The ETC is a modified version of the Lunar Topographic Camera carried on the Apollo 13 and 14 missions. It is being built by Actron Industries, Inc. (formerly Hycon) under contract to NASA. The body is an extensively modified KA-74 reconnaissance camera body with a focalplane shutter and vacuum film flattening. The lens has a focal length of 460 mm, a fixed aperture of f/4, color correction, and maximum radial distortion of 10 µm. Forward image-motion compensation is provided by rocking the entire camera in its mount during the exposure.

Figure 1.--The Skylab S-190B Earth Terrain Camera.

 A^{2}

The frame format is 115 mm by 115 mm so that at the Skylab altitude the format covers an area of 109 km by 109 km. Characteristics of the camera can be summarized as follows:

Lens--460 mm focal length, f/4 fixed aperture, color corrected Lens distortion--Radial, ± 10 µm; tangential, ± 5 µm Shutter--Focal plane, bidirectional; 1/100, 1/140, 1/200 sec. Forward-motion compensation---By rocking camera, 0 to 25 mrad/sec. Film--125 mm (5 in.), 2-mil base; 450 frames/roll Format--115 x 115 mm Framing rate--0 to 25 frames/min.

Overlap--15% Standard; 0 to 80% available

Ground coverage at nadir--109 x 109 km.

---- ---------

The camera has a control box with a switch for selection of manual or automatic operation. The forward-motion compensation system can be set to operate within the range of 0 to 25 mrad/sec, and the framing rate from 0 to 25 frames/min. Three shutter speeds are available, 1/100, 1/140, and 1/200 sec. Figure 1 is a photograph of the camera. . . .

.

• ·

The ground resolution of the camera depends on the film used. The three films being considered are SO-242 high-resolution color, 3443 color infrared, and 3414 high-resolution black-and-white. To obtain estimated ground resolution for the different films, Actron has run computer . simulations that model the forward-motion compensation system, the attitude-error rates of the spacecraft, the shutter speed, the lens characteristics, and the film and filter characteristics. Table 1 summarizes the simulations (the shutter speeds were subsequently changed). As can be seen, the expected ground resolution varies from 10 to 39 meters per optical line pair. In addition to the films listed, it is possible that a color infrared film of higher resolution will be available for at least one of the Skylab missions.

The ETC will be mounted in the Scientific Airlock of the orbital workshop of Skylab. The other EREP sensors will be located in the Multiple Docking Adapter. Figure 2 presents a view of the Skylab space station with the major components indicated. The ETC will be boresighted to record the same ground areas that the other EREP' sensors are viewing.

Skylab will be operated as four missions (fig. 3). The first mission, Skylab 1, will launch the unmanned space station. The next day the first three-man crew will be launched in an Apollo spacecraft as mission Skylab 2, which will require the crew to occupy the space .

Case	Film	Shutter speed (sec)	High- contrast resolution _(1000:1)_	Low contrast resolution (2:1)
1	3443	1/100	21	39
2	3443	1/200	21	38
[.] 3	3443	1/500	21	38
4	3414	1/100	8	15
5	3414	1/200	6	11.
6	3414	1/500	5	10
7 · ·	so-242	1/100	12	- 22
8	so-242	1/200	11	20
9 .	S0- 242	1/500	11	20
			-	•

TABLE 1. Predicted ETC resolution, in meters on the ground per optical line pair.

Based on computer simulations by Actron Industries, Inc., July 1971.

station for about 28 days. The crew will conduct several experiments, including the EREP series. About 2 months after the return of the Skylab 2 crew, the Skylab 3 crew will be launched to occupy the space station for as long as 56 days, again conducting a variety of experiments. The final mission, Skylab 4, will start about 1 month after the return of the Skylab 3 crew and will also have a duration of up to 56 days.

Skylab will follow a 435 km circular orbit with an inclination of 50° which will carry the station over any portion of the earth between 50°N and 50°S latitude. The normal attitude of the space station is referred to as the solar-inertial mode, required by the solar panels and the heating constraints. For the EREP experiments the space station must be maneuvered into the z-local-vertical mode. Because of thermal and other constraints, the mode can only be used for a limited number of orbits. Current plans call for approximately 60 z-local-vertical passes.

The orbital and mission constraints will thus limit the number and location of EREP data-collection passes; it will not be possible to collect data for large contiguous areas, and repetitive coverage of an area will be limited. Nevertheless, considerable data of value to various earth resources investigations should be collected during the

Figure 2.-- The Skylab spacecraft.

Skylab program. For the Skylab 2 mission, 4 rolls of film containing 450 frames each will be available, and 6 rolls will be available for each of the other 2 missions. As many as 7200 ETC photographs may be obtained.

The exact areas of the United States where ETC photographs will be acquired have not yet been selected. Generally, the final areas for photographic coverage will be determined during the mission. Investigators whose EREP proposals were accepted by NASA have been notified of the addition of the ETC to Skylab, and many of them have requested ETC photographs of their test areas. In addition, many Federal and State agencies have requested ETC photographs of specific areas. The requests are being coordinated with the Skylab mission planners in an effort to take photographs of as many areas of interest as orbits, weather, and other constraints will permit. ETC photographs will be available to the public at nominal cost through the EROS Data Center of the U.S. Geological Survey, at Sioux Falls, S. Dak.

The design of the ETC will limit its applications. First, the ETC is not a metric camera in the photogrammetric sense. Because the image frame is a part of the removable film magazine and because of the use of a focal-plane shutter, the geometric quality of the photographs is limited. The principal point cannot be precisely located, and

Figure 3.--Sequence of Skylab missions.

therefore analytical applications will be limited. The ETC has a limited field of view, 14°. When the camera is operated for 60% overlap, the base-height ratio is only 0.15; thus, the use of the ETC for stereoscopic height determination will be especially limited.

In spite of the limitations, the ETC represents a significant advance in camera systems for earth resources observations from space. The ground resolution is considerably better than that of any camera previously used. A recent paper by Colvocoresses (1972) compares the image resolution of ERTS, Skylab, and Gemini/Apollo space photographs. Table 2, compiled from data in that paper, summarizes the ground resolution of the various systems. From the tabulated data, it is obvious that the ETC has ground resolution from 3 to 20 times better than the other space photographic systems. Moreover, the ETC fills the gap between the other space systems and high-altitude aircraft. cameras, which normally have ground resolution of 1 m or better.

The ETC will also permit a comparison of multispectral and multispatial data collection. The S-190A multispectral camera will provide narrow-spectral-band photographs useful for multispectral interpretation. The ETC, on the other hand, will provide photographs of a different

A 6

TABLE 2.	Comparison of Ground Resolution for Space Imaging Systems.
	Ground resolution given in terms of the photographic
	criterion of optical line pairs, in meters on the ground per line pair.

System	High-contrast (100:1 or 1000:1)	Low-contrast (2:1 or 1.6:1)
ERTS-A RBV, green band	126	180
RBV, red band	126	180
RBV, infrared band	156	275
MSS	244	316
Skylab S-190A		
High-resolution film	22	. 38
Low-resolution film	49	99.
S-190B (ETC)	•	• •
High-resolution film	10	15
Low-resolution film	20	38
Gemini/Apollo	•	
High-resolution film	50	70
Low-resolution film	80:	125
-	1	•

scale and resolution, which can be compared with the S-190A photographs and thus provide an evaluation of multispatial data.

The S-190A and ETC photographs may also be used with aircraft photographs for multistage sampling, a technique that starts with the interpretation and classification of small-scale photographs of a large region. Interpretations are made on progressively larger scale photographs of smaller and smaller areas within the large region. The application of the technique in forestry has been described by Langley (1969).

Therefore, the principal applications of ETC photographs will be in experiments where high resolution is required. Each individual photograph will be a nearly orthographic view of the ground, with

7

rather low distortion within the frame. The high resolution will greatly benefit experiments in which photointerpretation is important.

An example of the kind of experiment planned for the ETC photographs is photomapping at 1:250,000 and 1:100,000 scale. The image scale of the ETC photographs will be about 1:945,000. Doyle (1971) has proposed criteria for the resolution required for photomapping and the useful enlargement of the photographs:

where

R_o = required ground resolution (m/lp)

 $S_m = map$ scale number.

The suggested criterion for photographic enlargement is expressed as

$$M_a = \frac{rp}{10}$$

 $R_{g} = 10^{-4} S_{m}^{1}$

where

rp = original photo resolution (lp/mm)

M = allowable enlargement from photograph scale.

÷

According to criteria, the required ground resolution for 1:250,000 and 1:100,000 scale photomaps is 25 m and 10 m. Assuming the use of 3414 film, the approximate photograph resolution is 80 lp/mm and the allowable enlargement is 8X. Enlargement to 1:250,000 scale would require 3.8X and to 1:100,000 would require 9.5X. At 1:100,000 scale the image would still have a theoretical resolution of 8 lp/mm, which may be satisfactory in the practical sense.

The U.S. National Map Accuracy Standards (NMAS) require that 90% of the well defined points tested be no more than 0.5 mm from their correct position at map scale. For a 1:250,000-scale map the tolerance converts to 125 m while for a 1:100,000-scale map it is 50 m. A computer program prepared by DBA Systems, Inc., for the Geological Survey has been used to determine how much relief can be tolerated before planimetric image displacement exceeds NMAS. The program includes the effects of earth curvature, atmospheric refraction, terrain relief, location of the image in the photograph format, and map-projection scale factor. The computer analysis indicates that about 500 m of relief can be tolerated at the extremes of the usable photo format for the photograph to meet the standards for 1:250,000scale mapping. For mapping at 1:100,000 scale, only about 300 m of relief can be tolerated. The UTM was used as the map projection in the analysis.

Conditions which could significantly affect the positional accuracy of the images, however, are the effects of the focal-plane shutter and of errors in the forward motion compensation (FMC) system.

A NASA study (McDermit, 1971) considered the effects of spacecraft residual rates, FMC errors, earth rotation, shutter type, and spacecraft rigidity. The study concluded that, in the worst case, errors due to the sources considered would amount to about 35 μ m displacement between the leading and trailing edge of an image. That is, the dimension of a discrete image will be changed 35 μ m in the direction of motion. Much of the error could be reduced by proper operation of the camera, but a random component of about 22 μ m would probably remain, equivalent to 21 m on the ground. Thus, there is some question whether the 1:100,000 positional accuracy requirement can be met. Maps at the scale of 1:250,000, however, appear to be well within the capability of the camera. The USGS plans to conduct photomapping experiments at both scales in order to determine the usefulness of space photographs of ETC resolution.

- Other mapping experiments planned for the ETC photographs include map revision and thematic mapping. Experiments will be conducted to determine the types of map revision information that can be derived from the photographs and applied to maps at scales of 1:24,000 and smaller.

Thematic mapping consists of the preparation of maps depicting such data as vegetation distribution, surface-water distribution, snow cover, and the massed works of man. Thematic mapping experiments at scales of 1:250,000 and 1:100,000 are planned, using color infrared photographs as the most suitable input for this kind of mapping.

ETC photographs will also be used for land-use mapping; urban development studies; sediment loads and dynamics of San Francisco Bay; geological synthesis of the Colorado Plateau; study of hazards and tectonics in the Cascades volcanoes; marine geology of the Pacific Northwest; and geologic studies of areas in California, Oregon, Oklahoma, and a portion of the Great Plains. The experiments will depend largely on photointerpretation of the ETC photographs. Some will require normal color photographs while others will require color infrared photographs. One of the primary objectives of the experiments will be comparison of ETC photographs with aircraft photos, S-190A photos, and ERTS-A images. Thus, a better assessment can be made of the scale and the resolution that are optimum for each particular investigation. The results of the experiments will be of great value in defining future data-collection systems for earth resources.

In conclusion, the Earth Terrain Camera provides an opportunity to acquire high-resolution space photographs for the study of mapping and for investigations of earth resources. The camera fills the gap between high-altitude aircraft photographs and other hitherto random space photographs. Although the camera has several limitations from the photogrammetric standpoint, it will supply high-resolution photographs of value to several disciplines.

A

9

- Colvocoresses, A. P., 1972, Image Resolution for ERTS, Skylab, and Gemini/Apollo, Photogrammetric Engineering, vol. XXXVIII, no. 1, pp. 33-35.
- Doyle, F. J., 1971, Can Satellite Photogrammetry Contribute to Topographic Mapping? Paper presented to United Nations Seminar on Photogrammetric Techniques, Zürich, Switzerland.
- Langley, P. G., 1969, New Multistage Sampling Techniques Using Space and Aircraft Imagery for Forest Inventory; Proceedings Sixth International Symposium on Remote Sensing of Environment, University of Michigan.
- McDermit, J. H., 1971, ETC Metric Errors due to Earth and Camera Kinetics; unpublished report, NASA-MSC, Flight Crew Intergration Division.

NASA-MSC, March 1971, EREP users handbook.

A

Appendix B

PRECEDING PAGE BLANK NOT FILMED

	PROGRAM		CDC 6630 FTN V3.0-324 OPT=					
		(PROGRAM B6CO (INPUT,OUTPUT,TAPE1,TAPE2,TAPE3,TAPE11,TAPE12)		6005		1	
		C (BLOCK ADJUSTMENT ESSA-COAST AND GEODETIC SURVEY 1969 (KELLER	R) B	60 J -		3	
ORIGINIA	•		AXIMUM NUMBER OF PHOTOS IN BLOCK = 600		600		- 4	
\geq		°C ° °	1AXIMUH NUMBER OF PHOTOS IN A STRIP = 20		600		5	
20	5	i	DIMENSION A (259,259), G(12)36), CAM(600,12), B(3,180), C(3,860),		600		1	
จ			>(13,10),E(3,58),TITLE(8),)(6,9)		600		8	
5		(DIMENSION INDEX1(600),INDEX2(600)		6005		2	
5			COMMON/CDUUF/LEN,NEXT,IFIZST,IXBUF,BUFF(1924),IQ,JST		600		- 9	•
÷.		(COMMON/ODBUF/LENG,NEX,IFIR, IBUF, BUF (1024), IP, ENDFLQ		600		10	
4	10		CALL LTRI0(5LTAPE1,1168,2,2,KS) -		600		11	
1			CALL LTRI0(5LTAPE2,1168,Q,Q,KS)		606		12	
			CALL LTRI0(5LTAPE3, 1168, 2, 2, KS)		608	· ·	13	
			CALL OPENHS(11, INDEX1,600, J)	E	600S		3	
	······································		CALL OPENMS(12, INDEX2, 600, 3)	6	600S		4	والمتحدين والمستقبل والمستقبل والمستقبل والمستقبل والمستقبل والمستقبل والمستعين والمستقب والمستقب
	15		DATA(IEF=1000060600000008),(ENDFLQ=0.),	E	600		17	
			(IP=240120053600000000003)3)	- e	600		18	
			DATA(XSTOP=1H)		6002		1	
	-		[2YXW = 0		600		19	·····
					600		20	
					600		21	
	20		(F(IZYXW.EQ.0) GO TO 999		600		22	
			PRINT 98		600	· -	23	
	•	98	FORMAT(*1 JOB STEP ABORTED - INPUT AREA */)		600		24	
			PRINT 99, (BUFF(I),I=1,1324)		600		25	
		99 1	FORMAT(1X, 8A10)				26	
	25		(F((JST.AND.IEF) .NE.D) 50 TO 1000		600			
			CALL LTRIC (IQ,48, XX, XX, JST)		666		27	
		999	IZYXW = 1		600		28	
		1000	IF (ENDFLQ.EQ.O.) CALL LIRIO (IP,1158,XX,XX,KST)		600		29	
			ENOFLQ = 1.		600		30	7
	30		LTERAT=1	-	600		31	
			_ENG=0 \$ NEX=IFIR=1		600		32	
			CALL OBUF (1)		600		33	
		1	ENCODE (80,571,BUF(IBUF)) XSTOP		600		34	
		571 (FORMAT(19HB JOB STEP 1,A1)		69ŭ		35	
	35	C			600		36	
		C	INPUT PHASE	· E	600		37	• • • • • • • • • • • • •
		č		E	600		38	
			KE = KC = LINE = ME = IOTHER = LOS = 0	E	600		39	
			IGD = IRE = KOISK = 1	Ε	600		40	
	40		READ 531, TITLE	Ê	608	* *	41	
	+U		IF(TITLE(1).EQ.XSTOP)CALL DBUF(0)		600		42	
			PRINT 569, TITLE		600	-	43	····· ································
			PRINT 532		600		44	•
			IPHO=JOYCE=MORT=0		600 -		45	
	. –				600		46	
	45	~	LLL=259		600		47	
		G	READ BLOCK CONSTANTS AND CONTROL HEIGHTS		600		- 4	
			READ 524, LARRY, FL, HT712, HT12P, HTCON, HAX, RESID, JERRY, INVER		8600		49	
			IF(JERRY)1,1,2		3600 3600		50	
			PRINT 567					المراجع المراجع والمراجع والم
	50		GO TO 3		600		51	
		2	PRINT 568		160 J		52	
		3	K=1		603		53	
			PRINT 576,FL,MAX,RESID		600		54	
			PRINT 577,WT712,WT12P		8600		55	
	55 '		PRINT 573	5	600		56	

· B- 2

	PROGRAM	B600CDC 6630 FIN V3.0-324 OPI=20	04/02/75 20.40.54. PAGE 2
		4 READ 558, A(1, K), A(2, K), A(3, K), ITEST	8600 57
		IS=A(1, K)	B600 58
		IF (JERRY.NE.0) GO TO 321	B600 59
		NEIL=WTCON	B600 60
	60		8600 61
· · · · · · · · · · · · · · · · · · ·		MORT=A(3,K)	B600 62
Ä		GO TO 322	8600 63
<u> </u>		321 NEIL=A(2,K)	B600 64
7		IF(NEIL-EQ.0) NEIL=A(3,K)	8600 65
£			B600 66
B	65	IF (A(2, K) .NE.O.O) JOYCE=WI CON	8600 67
.		IF(A(3,K).NE.0.0) HORT=HTJON	8600 68
PAGE IS		322 PRINT 574, IS, NEIL, JOYCE, MORT	A600 5
10		JOYCE = M OR T = 0	B600 69
AG		IF(ITEST)5,5,6	B60C 70
	70	5 K=K+1	B660 71
1 5-1		IF(K-250)4,4,27	B600 72
1 53		27 PRINT 570	
9 09		STOP	8600 73
-		6 J=1	8600 74
	75		B600 75
	75	IF (A(1, I) .GE.A(1, I-1)) GO TO 7	860J 76
		ja-1	6600 77 77
	•		8600 78
			8600 79
		SAVE=A(L,I)	8600 80
	80	A(L, I) = A(L, I-1)	8600 81
		A (L, I-1)=SAVE	8600 82
		B CONTINUE	B600 83
		7 CONTINUE	B603 84
		IF(J.LT.0)GO TO 6	8600 55 55
	85	C READ IN ALL GROUND COORDINATES FOR BLOCK	
		LEN=0 \$ NEXT=IFIRST=1	
		IQ=24012005340000000000	
		CALL DBUF(0)	8600 88
		CALL DBUF(1)	B663 89
	.90		B600 90
		9 NCON = J+5	B600 91 -
		NCOM = NCON-2	8600 92
		CALL DBUF (1)	B600 93
		DECODE(80,527,BUFF(IXBUF))(G(I),I=J,NCOM),ITEST	860J 94
			8600 95
	95	00 16 L=1,K	8600 96
		IF(G(J)-A(1,L))11,12,10	8600 97
		10 CONTINUE	8600 98
		GO TO 11	B600 99
		12 G(J+4)=A(2,L)	D-------------
	100	G(J+3)=A(3+L)	
		GO TO 13	B600 - 101
		11 G(J+4)=G(J+5)=D.	8600 192
		13 IF(ITEST)14,14,15	8600 103
		14 J=J+6	8603 104
<u></u>	405	60 70 9	8600 105
	105	15 NCON=NCON/6	8600 106
			B600 107
		DO 22 J=1,256,3	B600 108
		00_22_I=1,207	8600 109
		A(I,J)=0.	
	110	22 CONTINUE	9999 TTA

ı.

,

	PROGRAM	_ B600	COC 6610 FTN V3.0-324 OPT=2	04/02/75	20.40.54.	PAGE	3
•		LEN=0 & NEXT=IFIRST=1		B600	111		
<u> </u>		10=24012005350000000008		B600	112		
なる		CALL OBUF(0)		B600	- <u>113</u> - <u>114</u>		····
- 77		CALL DBUF (1)	• •	B600 B600	114 115		
おか	115	IF(NCON-2000)16,16,17	and a set and	B600 -	115		
OPUCENVAL: PAGE 18 OF POOR OUALEY		17 PRINT 529, NCON		B600	117		
牧文	· · · · · · · · · · · · · · · · · · ·	STOP		B600	<u>118</u>		
		16 IPHO=IPHO+1		8600	119		
22		IF(IPHO-44)47,93,93		^ B600	120		
	120	93 NROW=ME=IPHO-43	D THEIR INAGES FOR PLATE AND PUT IN D		121		
- FA		C GROUP ALL NEW DEJECTS AN	J THEIR TRADES FOR TEXTE RUD FOR INF	8600	122 - 1		
E R		48 DO 83 I=ME,NROW JOYCE=215+I-43*((I-1)/43)_		B600	123		•
3.4		NEIL=A(JOYCE, 31)			124		
		L=1		8600	125		
~ ~ ~	125	 		86QÚ	126	, , , , , , , , , , , , , , , , , , ,	
		DO 101 NU=1,LINE		8600	127		
			1.102.101	B600	128		
		101 CONTINUE		B600	129		
	1 2 0	102 MORT=NU-86*((NU-1)/86)		8600	130		
· _	130	M=(1+(NU-1)/86)*9 - 8		8600	131		
·		======================================		B600	- 132		
•		106 IF(A(J,3*MORT-2))108,108,	96	B600S			
		296 C(1.L)=A(J,3*HORT-2)		B600	138		
· · ·	135	C(2.L)=A(J.3*MORT-1)		8600	139		······
Q	135	C(3,L)=A(J,3*MORT)		B600	140		
		J=J+1		B600	141		
·		L=L+1		8600	142		
		IF(J-H-8)106,106,108		B600 B600	143 144		
<u> </u>	140	108 A(M, 3+HORT-2)=-1.		8600 8600	144		
-		100 CONTINUE			- 146		
·····	······································	NA=3*(L-1)		. 8600	147		
		CAM(I,12)=NA	· ·	B600	148		· ·····
		IF (NA.E0.0) GO TO 83		86005			
	145	CALL WRITHS(11,C,NA,KDISK	· · · · · · · · · · · · · · · ·	B600 -	- 150		
	-	KDISK=KDISK+(NA+407)/408		8600	151		
		83 CONTINUE		B603	152		
_		GO TO (47,95),IGO	DORDINATES FOR PLATE BEING RESECTED	8600	153		
			11/43)	B600 -	154		
	150 .	NEIL=0		8600	155		
		0414 0005743		B600	156 - 7		
		DECODE(80.525.BUEE(IXBUE)	3(1,50),8(2,50),8(3,50),8(1,51),8(2,5	51) 8600	157		
	······································	TF(A(2.50).E0.1.0) NCOM=1		0000	158		
	155	IF(B(3,50)-1.)318,317,318		8600	159		
		317 I=IPHO-NCOM+1		B600	150		
		IF (I-20) 352, 352, 351		8660	161		
·		351 PRINT 572		8600	162		
		STOP		B6CÚ	163		7* * E
	160	352 IF(I.GT.LOS) LOS=I		8600	164		
	100	318 IF (LARRY) 91,91,90		8600	165	.	
		96 FL=B(2,51)	<i>,</i>	860ù	166 167		
		CAM(IPHO,2)=FL		8600	168		
		91 INAGE=1		8600	169		•
•	165	36 CALL DBUF(1)		8600	109	-	

	PROGRAM	,B600	COC 6630 FTN V3.0-324 OPT=2_0	4/02/75	20.40.54.	PAGE	4
			DECODE(80,526,BUFF(IX8UF))(8(J,IMAGE),J=1,3),ITEST	B600	170		
			IF (ITEST) 18,18,21	C600	1		
•			IMAGE =IMAGE+1	C600	2		
			IF (IMAGE-30)36,36,20	C600 -	3	,	
	170	20	IS=8(1,50)	C600 _	4	معجمه معرو المراس	
			PRINT 545,IS	C600 -	5		
			STOP	C600	6		
		C	SET UP ORDER LIST - STORE IMAGES BY OBJECT - SET UP OBJECT FILE	8600	178	•	
		<u> </u>	LIST FOR PHOTO - SAVE COORDINATES OF POTENTIAL RESECTION DEJECTS	8600	179		
	175		LAST=0	B600	180		
	-		IF(B(2,50))39,39,38	B600	181		
			NR 0W=4	8600 8600	182 183		•
			GO TO 42		184		
			IF(8(3,50))40,40,41	8600 8600	185		
	180	41	NROW=1	8600 8600	186		
			NMI=6	B600	187		
				B600 [°]	188 -		
			GO TO 43	8600	189		
			NROW=1	8600	. 190		
	185		NHI-IMAGE	8600	191		
		43	UO 23 K=NROW, NMI	8600	192		
			J=B(1,K) ⁴ .000001	8600	193 -		
			FK=J*1000900	B600 "	194		
			FK=B(1,K)-FK	8601	195		
	190	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NU=1 MORT=NU-86*((NU-1)/86)	. 860 °	· * 196 *****	ومعاكيم فكبنابة زائر ببلدينة التباليانية	
90		32	Mar (1+ (NU-1)/86) *9 - 8	8600	197		
		, 1 10	IF (A (K, 3* MORT-2)) 25,24,25	8600	198		
าส		21.	A(M, 3+HORI-2)=B(1,K)	8600	199		
>- <u>+</u>	195	24	A(H, 3*MORT-1) = B(2*K)	B600	200		
3	195		A(H, 3+MORT) = B(3, K)	8600	201		
ORIGINIAL			LINE+1	8600	202		
-			I=6*NU+5	860 0	203	-	
			IF (G(1) - FK) 26,49,26	B600	204		
Ă	200	26	G(12001)=G(T)	B600	205	,	
	<u> </u>	L V	G(12002)=G(1+1)	86 0 0	206		
7			G(12003)=G(I+2)	8603	207		
	·····		G(12004)=G(1+3)	B600 T	208		
!			G(12005)=G(I+4)	860G	209		
	205		G(12006)=G(I+5)	860J	210		
			NU=NU+1	8600	211		
			00 28 L=NU, NCON	B600 °	212		
			IF (G(6+L-5) -FK) 28,29,28	8600	213		•
		28	CONTINUE	8600	214		
	210		IS=FK	8600	215		
			PRINT 528,IS	8600	216		
			STOP	8600	217		
		29	G(I) =G(5*L-5)	8600	218		
			G(I+1)=G(6*L-4)	8600	219		· · ·
	215		G(I+2)=G(6*L-3)	B60G	220		
			G(I+3)=G(6+L-2)	8600	221		
			G(I+4)=G(6+L-1)	8600 8600	222 .		
-			G(I+5)=G(6*L)	8600	223		
			G(6*L-5)=G(12001)	8600	224		
	220 `		G(6+L-4)=G(12002)	8600	225		

.

.

٠ •

	PROGRAM	. B6C0	, c	OC 6690 FTN V3.0-324	OPT=2	04/02/75	20+40+544	PAGE_	
• =			G(6*L-3)=G(12003)	· /		8603	226		
-	·		G(6+L-2)=G(12004)			~ 86ĉĉ ~	227		
			G(6*L-1)=G(12005)			8600	228		
-			G(6*L) =G(12006)			8600	229		
	225	49	NEIL=NEIL+1			8600	230		
-			A(JOYCE,NEIL)=G(I)			ົ 86 ງ 3 ົ	231		
			IF(K-9)50,50,23			8600	232		
-			9(1+K+60)=G(I+1)			- 860J -	233		
\sim			B(2,K+60)=G(I+2)			8600	234		
ORIGINAL	230		B(3,K+60)=G(I+3)			8600	235		
ិដ			GO TO 23			8600	236		
τΩ		25	IF(FK-G(6*NU-5))30,31,30			веца	237		•
2₽.			NU=NU+1			8600	238		
212 -			GO TO 32			8600	239		
	235		L=H+1			8600	240		
, ⊾ :			IF(A(L, 3*HORT-2))33,34,33			8600	241		
PAGE IS			L=L+1			8600	242		
			IF(L-M-8)35,35,37			8600	243		
ίΩ,			IS=G(6*NU-5)			8600	244		
- E	240		PRINT 537, IS			" 860u'''	245		
PAGE IS			STOP			8600	246	-	
\$ 5 <u>7</u>			A(L,3*MORT-2)=B(1,K)			8600	247		
· ·			A(L+3*MORT-1)=B(2+K)			8600	248		
			A(L,3*MORT) =8(3,K)			8600	249		
· .	245		I=6*NU-5			8600	250		
			GO TO 49			8600	251		
			CONTINUE		. .	860ú 850ú	252 253		
			IF(LAST)46+46+44	•		860Ŭ 8600	253	•	
· .			IF(IMAGE-9)46,46,45	3, 12 x		8600 8600	255		
	250		NROW=10			8600	255		
-			LAST=0			8600 °	257		
			GO TO 42			8600	258		
-		46	A(JOYCE, 31)=NEIL			86CG	259		
	- 30	č		•		8690	260		
• -	255	<u> </u>	PHOTO RESECTION PHASE		., .	8600 8600	261		
		C	THETT IN ADDONATHATTONS DE CAMEDA S	AD ANELED C		8603	262		
-			INITIAL APPROXIMATIONS 35 CAMERA P	ARANELEXS		8600	- 267		
			N=U D0 51 J=1+2			8600	268		
			DU = J = 1, 2 C(J,1)=B(J,66)		. .	3600	° 269 '		
	260					8600	270		
			C(J,2)=0. C(J,3)=1.			8600	271		
		54	CONTINUE			B600	272		
-		2+.	ADJUST APPROXIMATE AZIMJTH PARAMET	FRS FOR SHING AND ZO		B600	273 -		
	265	U	D(1,1)=B(2,4)-B(2,5)			8600	274		
-			D(1,2)=B(3,4)-B(3,5)		•	B600	275 -		···
	•		D(2,1)=B(1,64)-B(1,65)			8600	276	1	
-			D(2,2)=B(2,64)-B(2,65)			B600	277	-	-
			D(2,4)=D(2,1)+D(2,1)+D(2,2)+D(2,2)			8600	278		
-	270		D(1,3) = (0(2,1) * D(1,1) + D(2,2) * D(1,2))	/D(2.4)		8600	279	* * * - **** *	
	2, 6		D(2,3) = (D(2,2) * D(1,1) - D(2,1) * D(1,2))	10(2.4)		8680	280		
• •			SCALE=SORT (D(1,3)+D(1,3)+)(2,3)+D(2,			8600	281		
			C(3,2)=D(2,3)/SCALE			B600	282		
			C(3,1)=FL/SCALE			B6 ā ù	283		

B-4

	CORIENTATION FACTORS IN & HARAT
	52 N=N+1 IF(N-5)54,54,53
	53 IS=B(1,50) B600 288
	PRINT 535, IS B600 289
	PRINT 535,15 PRINT 557, (IS, (C(J,I), J=1, 3), I=1,2) B600 290
	IRE=2 B60C 291
·····	GO TO 70 8600 292
	54 K=0 8600 293
· · · · · · · · · · · · · · · · · · ·	92 C(1,K+4)=C(2,K+3)*C(3,K+3) B600 294
285	92 C(1, K+1)=C(2, K+3)*C(3, K+2) B600 295
· · · · · · · · · · · ·	C(1,K+5)=G(2,K+2) B600 296
	C(1, (41,0) == C(2, (42) + C(3, (+3)) BOUD 297
	C(1,K+11)=C(2,K+2)+C(3,K+2)
200	C (1 , K + 1 2) = C (2 , K + 3) BOUG 299
ZAA	G(1,K+12)=C(2,K+3) G(2,K+16)=C(1,K+4)+C(1,K+2) B600 300 301
295	
	C(3,K+12}=−C(1,K+3) *C(2,K+2) + C(2,K+12)*C(3,(+3) C(2,K+4)=C(1,K+3)*C(3,K+2) + C(2,K+12)*C(3,(+3) B6UC 305
	C(2,K+4)=C(1,K+3)+C(3,K+2) + C(2,K+12)+C(3,K+2) C(2,K+5)=C(1,K+3)+C(3,K+3) - C(2,K+12)+C(3,K+2) B600 307
300	
•	DD 55 1=7,9
305	
	G(2; M)= -G(3; M-3)
	G(3,M)=G(2,M=3)
310	
	55 CONTINCE TRA
	U GLEAR RORAL EQUATION D'ARRAY TO ELLO
315	00 57 J=177
	C CURPUTE P TERRS FOR FASS FOINTS USED FOR COUNTER TO THE STATE
	1 (((((((((((((((((((
320	
	NRUN-0 231
	23 TL/R(2)201/07+07/02
325	NKUM=0
	61 M=1 B600 336
	NROW=9 B660 337
	62 DO 63 NU=N, NROW
330	00 64 X=1,3 8600 339

•

ty ____

					0.54.	PAGE	7
	PROGRAM						
		C(K,16)=8(K,NU+60)-C(K,1)	860ŭ	34 34		-	
		64 CONTINUE	B603	34 34			
•		K=4	BCCO	- 34			
		D0 65 L=17,20	868 U	34			
	335	00 65 I=1,3	860ŭ	34			
		C(I,L)=C(1,K)*C(1,16) + C(2,K)*C(2,16) + C(3,K)*C(3,16)	8600	34	-		
) (The second se		K=K+1	8600				
ORIGINAL		65 CONTINUE	B600	34 34			
		00 66 I=1+2	8600 8600	34		- 4. 7444	
GINAL	340	00 67 L=1,4	860J				
		P(I,L)=(B(I+1,NU)*C(3,L+15) +FL *C(I,L+15))/C(3,17)	8600	35			
		67 CONTINUE	B600	35			
		00 68 L=5,7	8600	35			
,53	······································	P(I,L)=(-B(I+1,NU)*C(L-4,5) -FL *C(L-4,I+3))*C(3,1)/C(3,17)	B60i	35			
	345	68 CONTINUE	8600	35			
		P(I, 5) = -P(I, 1)	8600	35			
: 5		66 CONTINUE	8600	35			
PAGE IS		C CONTRIBUTION TO NORMAL EQUATIONS	B603	39			
6.7A		D0 63 I=1,6	B600	35			
6	350	D0 63 J=1,7	8600	- 35			
s 02	350	DO 63 K=1,2	8600	36			
		D(I,J)=D(I,J)+P(K,I+1)*P((,J+1)	B660	- 36			
		63 CONTINUE	8600	36			
e		C FORWARD SOLUTION	BoGO	- 36			
		00 69 I=1,6	8600	36	4		
	355	SQR = 1./SQRT(O(I,I))	ិ B600	38	5 ~ `		
		00 72 J=1,7	8600	36	6		
		D(I,J)=D(I,J)*SQR	8600	36	7	, no ma	
		72 CONTINUE	0068	36	8		
·		72 CONTINUE IF (I=6) 73,74,74	8650	36	9		
	360		8600	37	0		
<u></u>		73 IP1=I+1	8600	37	1		
		00 69 L=IP1,6	B609	37	2		
		D0 69 J=L,7 D(L,J)=D(L,J)=D(I,L)*D(I,J)	B60.	37	3		
			B600	37	4		
	365		8600	- 37	5		
		C BACK SOLUTION	8603	37	6		
		$\frac{74 \text{ D}(6,7) = \text{D}(6,7) / \text{D}(6,6)}{74 \text{ D}(6,7) = \text{D}(6,7) / \text{D}(6,6)}$. 890)	- 37	7 -		
		00 75 I=1,5	B60J	37	8		
· ·			8600	- 37	'9		
	370	NMIP1=NMI+1	B600	36			
		00 76 J=NMIP1,6	8605	- 38			
		D(NMI,7)=D(NMI,7)-D(J,7)*J(NMI,J)	B603	38			
		76 CONTINUE	B6CC	38			
		D(NMI,7)=D(NMI,7)/D(NMI,N4I)	8603	38			
	375	75 CONTINUE	B60 6		5		
		00 77 1=4.6	8600	-	36		
		D(I,7)=D(I,7)*C(3,1)	8600		57	-	
		77 CONTINUE	8604		38		
		C ADD LEAST SQUARES RESULTS TO CAHERA PARAMETERS IN C ARRAY	8600 8600		ig		
	380	DO 78 J=1,3	8600	-	90		
		$C(J_{1})=C(J_{1})+D(J+3_{7})$	8600		10 31		
		$C(J_{+}4)=D(J_{+}7)$	8600	-	92		
		$C(J_{+}5) = SQRT(1_{+}-C(J_{+}4) + C(J_{+}4))$			92 93		
		°	860u 8600		33 34		
	385	C(J+7}=C(J+3)*C(J+5)-C(J+2)*C(J+4)	BDUU		3 44		

-

.

.

		P6 00	395	
	C(J,2)=C(J,6)	B600	- 395 - 396 -	
	C(J,3) = C(J,7)	8600 8600	396 397	
	78 CONTINUE			
	C TEST MAGNITUDE OF CORRESTIONS FOR ORIENTATION PARAMETERS	B60u '	398	
	00 79 I=1,3	B600	399	
	IF(ABS(D(1,7))00001)79,79,52	86, U u	400	
	79 CONTINUE	9600	_ 401.	······································
	C STORE CAMERA PARAMETERS AS COMPUTED FROM PHOTO RESECTION	8600	462	
	70 CAN(IPHO,1)=8(1,50)	BốCO	403	
395	$00 \ 30 \ J=1,3$	86 u J	` 404 '	E 14.218.24.24.4.27.10238 102.25.28.29.24.14.2.2011.2. 0798.2.2.2
	CAH(IPHO,J+8)=C(J,3)	8600	405	
	CAM(IPHO, J+5)=C(J,2)	B600	406	
		8600	427	•
	CAH(IPHO,J+2)=C(J,1) B0 CONFINUE	8600	- 408	
		8600	400	
400	IF(B(1,51))16,16,81		410	·
	81 NROH=IPHO	8500 8500	411	
				•
	IGO = 2	8600	412	
	LOS=2*LOS+3	8650	413	
405	IF (IRE-2) 48,82,82	8600	414	
	82 STOP	8600	415	
	C BLOCK SIZE	B600 -	416	
	95 IF (LINE-1978) 84 84 85	8600	417	
	85 PRINT 544+LINE	B600	418	
4.4.0	5100	B600	419	
410	84 PRINT 543, IPHO, LINE	8600	- 420	****
	84 PRINI 243,IPHU,LINC	8600	421	
		8600	422	
-	C BLOCK ADJUSTMENT PHASE			
		B600	423	
415	271 DO 86 I=1,258	B600'	424	
	DO 86 J=I,259	8600	425	
	A(I,J)=0.	B600	426	
	86 CONTINUE	B600	427	
	C RESET PLATE WITH NEW OBJECTS AND FORM C.ARRAY ROWS 1-15 FOR	ALL 8699	432	-
420	C PLATES ON WHICH THE NEW OBJECTS APPEAR	8600	433	
	301 INSECT=0		434	
		86CQ	435	
	234_KDISK=1	B600	436	
		8600	430	
	105 NA=CAN(ME,12)		437	-
425	IF(NA.EQ.0) GO TO 297	- B600	.439	
	CALL READMS(11,B,NA,KUISK)	86 0 U S		
	KDISK=KDISK+(NA+407)/408	8600	440	
	297 IF(ME-1)87,87,96	8600	441	
	87 IF (IPHO-43) 88,88,89	B600	442	
430	88 LAST=IPHO	8600	443	
and a second the second se	GO TO 94	° 8600 °	444	
	89 LAST=43	860ē	445	
	GO TO 94	8600	446	
		8600	447	
	96 NHI=LAST=HE+42	B600	448 -	
	IF(NHI-IPHO)104,104,123		440	
435		8600		<i></i>
435	94 NHI=1	#L V W		
435	104 00 71 L=NMI,LAST	8600	450	
435	' 104 ÐO 71 L≕NMIşLAST K=20*(L-1) - 860*((L-1)/43)	860)	451	
435	104 00 71 L=NMI,LAST	*	-	

ORIGINAL PAGE IS OF POOR QUALITY,

.

PG

PROGRAM		=2 04/02/75 20.40.54. PAGE 9
	C(J,K+2)=GAH(L,J+5)	8600 454
	C(J,K+3) = CAM(L,J+8)	B6Q0 455
	97 CONTINUE	860ŭ 456
	IF(INSECT.EQ.0) GO TO 92	8603 457
445	C(1,K+4)=C(2,K+3) *C(3,K+3)	8600 458
942	C(1,K+5)=-C(2,K+3)*C(3,K+2)	B600 459
		8600 460
	C(1,K+6)=C(2,K+2) C(2,K+4)=C(1,K+3)*C(3,K+2) + C(1,K+2)*C(2,K+2)*C(3,K+3)	B600 461
	G(2)K+4 = G(1+K+3) + G(3+K+2) + G(1+K+2) + G(2+K+2) + G(3+K+3)	B600 462
	C(2,K+5)=C(1,K+3)*C(3,K+3) - C(1,K+2)*C(2,K+2)*C(3,K+2)	B680 463
450	C(2,K+6)=-C(1,K+2)*C(2,K+3)	B600 464
	C(3,K+4)=C(1,K+2)+C(3,K+2) - C(2,K+2)+C(3,K+3)+C(1,K+3)	
	C(3,K+5)=C(1,K+2)*C(3,K+3) + C(2,K+2)*C(3,K+2)*C(1,K+3)	
	C(3,K+6)=C(1,K+3)*C(2,K+3)	B600 466
	71 CONTINUE	B600 467
455	C NEW OBJECTS BEING PROCESSED ON PLATE	8660 468
	123 CONTINUE	86035 8
	303 N=1	8600 473
	IF(INSECT.EQ.0.AND.NA.EQ.)) GO TO 169	8600 474
	IF (INSECT.EQ.1) GO TO 360	8603 475
460	110 J=B(1,N)*.600001	8600 476
+0U	FK=J	8600 477
	00 111 L=1, IPHO	8600 478
•	IF(FK-CAM(L,1))111,115,111	B600 479 .
		B60J 480
· `	111 CONTINUE	B6G0 481
465	115 K=20*(L-1) - 860*((L-1)/+3)	8600 482
	IF(LARRY)109,109,107	8600 432 8600 483
	107 FL=CAM(L,2)	
•	109 FK=J*1000C00	
	FK=B(1, N) - FK	B600 485
470	IF(N-1)125,125,126	B600 406
	125_SQR=FK	B600 487
	DO 146 T=1,3	B600 488
	E(I,58)=0.	B600 489
	DO_146 J=I,3	B60J 490
475	E(I,J)=0.	8600 491
	146 CONTINUE	8600 492
	MORT=0	B6C0 493
	00 114 NU=1,LINE	B600 49+
	IF(SQR-G(6*NU-5))114,126,114	8600 495
480	114 CONTINUE	8600 496
400	126 IF(FK-SQR)113,112,113	D60C 497
	C COMPUTE C ARRAY COLS 16 THROUGH 20 FOR IMAGE	** B600 498
		B600 499
	112 NORT=MORT+1	8600 - 500
	D(1,NORT)=NCON=L	8600 501
485	00 116 I=1+3	· B600 502 ·····
	M=6*NU-5+I	
	C(I,K+16)=G(H)-C(I,K+1)	B600 503
	116 CONTINUE	B600 504
	J=K+4	B600 505
490	DO 117 L=17,20	B600 536
	M=K+L	B600 507
	DO 117 I=1,3	8600 508 77 1
		B600 509
	していたい しんしょう しんしん しんしん しんしん しんしん しんしん しんしん しんし	
· • • · · · · · · · · · · · · ·	C(I,H)=C(I,J)*C(I,K+16) + C(2,J)*C(2,K+16) + C(3,J)*C(3,K+16) J=J+1	B600 510

OF POOR QUALITY

.,

•

.

B lo

. 	PROGRAM	B600	CDC 6630 FTN V3.0+324 OPT=2	04/02/7	5 20.40.5	4	PAGE	10
		С	COMPUTE P COEFFICIENTS OF OBSERVATION EQUATIONS FOR IMAGE	8600	512			
			118 I=1,2	<u> </u>	513			
•			0 119 L=1,4	8603	514			
			i=K+L	860U	515			
	E 00		(I,L) = (8(I+1,N)*C(3,M+15)+FL*C(I,M+16))/3(3,K+17)	8663	516			
<u> </u>			ONTINUE	8600	517	,		·····
0R			=K+I '	8600	518			
ା <u>ଅ</u>			0 118 L=5,7	- 8600 ~	519 -	*****		
ι Ω		L.	{[,L]=(-0{[+1,N]*C{L-4,<+5}-FL*C(L-4,N+3)}*CAM(1,5)/C(3,K+17)	860ā	520		•	
S 📛	505		ONTINUE	B600	521	• • • •		
54	505	~ X10 U	ARRANGE AUGMENTED COEFFICIENT MATRIX	8600	522			
ORIGINAL			120 I20 I=3,4	8600	523			
				8600	524			•
2 15			0 121 L=1,3	6600	525 -			
				8600	526			
>	510		ONTINUE	8600	527	· ·- ·		
AGE			10 122 L=4,9	860J	528			
			(I,L)=P(I-2,L-2)	8660	529			
36			ONTINUE	8600	530			
Si <u>ka</u>			(I,10)=-P(I-2,1)	8600 8600	·· 531	-		
	515	120 0	ONTINUE		931 7			
		<u>,</u>	WEIGHTING CONTROL STATION OBSERV. EQUATIONS FOR TARGET QUALITY	0600				
			1=6+NU+1 ·	B600	533			
			F(G(M))130,129,130	8660	534			
		129 1	F(G(M+1))135,136,135	860ú	535			
	520 '	135 1	F (JERRY) 131, 131, <u>137</u>	8600	536			
		137	VEIGHT=G(M+1)	ີ B60ນ -	537			
		- 6	50 TO 133	8600	538			
		130 1	F (JERRY) 131,131,132	86ûu	539			
		131 /	IEIGHT=WTCON	8600	540			
	525		GO TO 133	8600	541 '			
			EIGHT=G(M)	860U	542			
			0 134 I=3,4	6600	543		,	
			0 134 J=1,10	8600	544			
		ř	P(I,J)=P(I,J)*WEIGHT	8600	545			,
	530	134 (10 MTT NUE	8600	546			
 		·	WEIGHTING EQUATIONS FOR LOCATION OF IMAGE ON PLATE (RESOLUTION)	8600	° 547 °			
		176 2	ADIUS=SQRT (B (2,N)**2 + 3(3,N)**2)	8600	548			
		I 0 0 1	(F (RADIUS07)143,143,138	B600	- 549 -			
		138	F (RADIUS12) 139,139,140	8600	550			
	675		IEIGHT=wT712	860Ú	551			
	969		GO TO 141	8600	552			
			VEIGHT=WT12P	8600	553	• •		
				8600	554			
			00 142 I=3,4	- B600 -	555			
				8600	556			
·····	540		>(I+J)=P(I+J)*WEIGHT	860J	- 557			
		142 1	CONTINUE	8600	558			
		<u> </u>	COMPUTE NORMAL EQUATIONS FOR IMAGE AND STORE IN E AND A ARRAYS	8600	- 559		• •• ••• •• •• •	····· • •
			00 144 I=5,13	8600	560			
		(00 144 J=1,10	- 8600 - 8600	561 -			·····
	545	1	<[I,J)=0.	8600 8600	562			
			CONTINUE	860U	563	-		
			00 145 I=1,9	8600 8600	564			
			00 145 IP1=3,4		565			
			00 145 M=I,10	860ú				
	550		<pre>>(I+4,M)=P(I+4,M)+P(IP1,I) *P(IP1,K)</pre>	B600	566			

PROGRAM	B600 CDC 6630 FTN V3.0-324 OPT=2	04/02/75	20.40.54.	PAGE	11
	145 CONTINUE	8600	567		
	D0 147 I=1,3	86CD `	568		
	$00 147 J=I_{3}$	8600	569		
	E(I,J)=E(I,J)+P(I+4,J)	‴ 860 ນ <i>ີ</i>	570		
555		8600	571		
and the second s	E(1,58) = E(1,58) + P(5,10)	8600	572		
	E(2,58) = E(2,58) + P(6,10)	8600	573		
	E (3,58) = E (3,58) + P (7,10)	B600 🗂	574		
	DO 148 I=1,3	8600	575		
560	NEIL=6* MORT-3	8600	576		
200	DO 148 J=4,9	8608	57 7		
	NEIL=NEIL+1	B600 -	578 -		
	E(I,NEIL)=P(I+4,J)	B660	579		•
	148 CONTINUE	B680 -	580		,
		8680	581		
	IF(IPHO-43)200,200,201	8600	582		
	201 IF(ME+42-IPHO)202,203,203	8600	583		
	202 I=6*NCON-6-6*(ME-1)	8600	584		
	GO TO 204	8600	585		
	_203 I=6*NCON-6-6*(IPH0-43)	B600 ···	586		
570	GO TO 204	8500	587		
	200 I=6*NCON-6		" 588 "		
	204 DO 149 K=8,13	8603	589		
	M=K-4		- 590		
	J=I	B600			
575	I=I+1	8690	591		
	A(I,LLL)=A(I,LLL)+P(K,10)	8600	592		
	DQ 149 L≈M,9	8600	593		
		8600	594		
	A(I,J)=A(I,J)+P(K+L)	8609	595		
580	149 CONTINUE	~~ B200	596 ***		
200	N=N+1	8600	597		
	IF(N-NA/3) 110,110,151	B600	598		
	151 KC=1	860Ô	599		
	APPLY POSITION WEIGHTS OF CONTROL STATIONS	8603	600 777		
E 9 E	113 IF(G(6*NU-1))152,152,153	8600	601		
5.85	153 IF(JERRY) 194,154,155	8603	51 632 77	· · ·····	
	154 E(1,1)=E(1,1)*G(6*NU-1)	8603	603		
				· · · · · · · · · · · · · · · · · · ·	
			604		
	E(2,2)=E(2,2)+G(6+NU-1)	8600			
	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152	8600 - 8600	605		
590	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON	8600 - 8600 8600 -	605 606		
590	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON	8600 8600 8600 8600	605 606 607		
590	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157		605 606 607 608		······
590	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158	8600 8600 8600 8600 8600 8600 8600	605 606 607 608 609	· · · · · · · · · · · · · · · · · · ·	······
	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU)	8600 - 8600 8600 8600 8600 8600 8600 8600 -	605 606 607 608 609 610		
590 595	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*HTCON E(2,2)=E(2,2)*HTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156	8600 8600 8600 8600 8600 8600 8600 8600	605 606 607 608 609 610 611	· · · · · · · · · · · · · · · · · · ·	
	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*WTCON	B600 B600 B600 B500 B500 B600 B600 B600	605 606 607 608 609 610 611 612		
	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*HTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*HTGON C FORMARD SOLUTION OF NORMAL EQUATIONS FOR VEW OBJECT	B600 B600 B500 B500 B500 B600 B600 B600	605 606 607 608 609 610 611 612 613	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*WTCON	8600 8600 8600 8600 8600 8600 8600 8600	605 606 607 608 619 610 611 612 613 614	· · · · · · · · · · · · · · · · · · ·	······································
	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*HTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*HTGON C FORMARD SOLUTION OF NORMAL EQUATIONS FOR VEW OBJECT	8600 8600 8600 8500 8500 8600 8600 8600	605 606 607 608 609 610 611 612 613 614 615	·	······································
	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*WTCON C FORMARD SOLUTION OF NORMAL EQUATIONS FOR NEW OBJECT C FORWARD SOLUTION OF OBJECT ROWS IN E ARRAY	8600 8600 8600 8500 8500 8600 8600 8600	605 606 607 608 619 610 611 612 613 614 615 616	· · · · · · · · · · · · · · · · · · ·	······································
595	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*WTCON C FORMARD SOLUTION OF NOR1AL EQUATIONS FOR NEW OBJECT C FORMARD SOLUTION OF OBJECT ROWS IN E ARRAY 156 NEIL=6*MORT+3 DO 127 I=1,3	8600 8600 8600 8500 8500 8600 8600 8600	605 606 607 608 609 610 611 612 613 614 615 616 617		
595	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*WTCON C FORMARD SOLUTION OF NORMAL EQUATIONS FOR NEW OBJECT C FORMARD SOLUTION OF OBJECT ROWS IN E ARRAY 156 NEIL=6*MORT+3 DO 127 I=1,3 SQR=1./SQRT(F(I,I))	8600 8600 8600 8500 8500 8600 8600 8600	605 606 607 608 619 610 611 612 613 614 615 616	· · · · · · · · · · · · · · · · · · ·	
595	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*WTCON C FORMARD SOLUTION OF NORMAL EQUATIONS FOR NEW OBJECT C FORMARD SOLUTION OF OBJECT ROWS IN E ARRAY 156 NEIL=6*MORT+3 DO 127 I=1,3 SQR=1./SQRT(F(I,I)) DO 128 J=I,NEIL	8600 8600 8600 8500 8600 8600 8600 8600	605 606 607 608 609 610 611 612 613 614 615 616 617	· · · · · · · · · · · · · · · · · · ·	······································
595	E(2,2)=E(2,2)*G(6*NU-1) GO TO 152 155 E(1,1)=E(1,1)*WTCON E(2,2)=E(2,2)*WTCON 152 IF(G(6*NU))156,156,157 157 IF(JERRY)159,159,158 159 E(3,3)=E(3,3)*G(6*NU) GO TO 156 158 E(3,3)=E(3,3)*WTCON C FORMARD SOLUTION OF NORMAL EQUATIONS FOR NEW OBJECT C FORMARD SOLUTION OF OBJECT ROWS IN E ARRAY 156 NEIL=6*MORT+3 DO 127 I=1,3 SQR=1./SQRT(F(I,I))	B600 B600 B600 B500 B600 B600 B600 B600	605 606 607 608 609 610 611 612 613 614 615 616 617 618	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

		× •	-			•		۰ ۱۰۰ ۳۳۳	
	PROGRAM	860)	COC 6610 FTN V3.0-324	0PT=2	64/02/75	20.40.54.	PAGE	12
• •									
			IF(I-3)160,161,161			B600	622		
ORIGINALI PAGE IS OF POOR QUALITY		160	IP1=I+1			8600 8603	623 ° 624		
すぼ			00 127 M=IP1+3 D0 162 J=M,NEIL	•	•	8600	625		
すな	610		E(M,J)=E(M,J)-E(I,M)*E(I,J)			B600	625		
0 H	· · · · · · · · · · · · · · · · · · ·	162	CONTINUE	· ·		8600	627	به سه د	***
22			E(N,58) = E(M,58) - E(I,4) * E(I,58)			B600	628		
A P		127	CONTINUE			8600	629		<u></u>
2		. C	EFFECT OF OBJECT ROWS ON PERTIN	ENT CAMERA ROWS		8600	630		
<u>a</u> v	615	161	DO 163 J=1, MORT			8600 8600	631 632		
<u>A</u> A	n hat is an air an an air an		IP1 =D(1,J) IF(IPH0-43)205,205,206	•		8600 8600	633		
52		206	IF (ME++ 2- IPHO) 207 , 208 , 208			8600	634		•
		207	LAST=6*IP1 -6*(ME-1)	·····		B600	- 635 -		
N E	620		GO TO 209			8600	636		
v .		208	LAST=6*IP1 -6*(IPH0-43)			B600	637		· · · · · · · · · · · · · · · · · · ·
	م و ورو بر جربر ر وسی بر از		GO TO 209			B600	638		
			LAST=6*IP1			8600	639		
	625	209	H=LAST-5			860J 8600	640		······
-	625		00 163 NROH=1,3 NEIL=5* J-3			8600	642		
•			DO 163 I=M,LAST			8600	- 643 -		
			NMI=J			8600	644		
Υ.			NCON=NEIL	1.9.597 Linite after Brandstar of F	* *** **	8603	645 ~		
د.	630		NEIL=NEIL+1			9600	646		
~ \		•••	$A(I,LLL) = \dot{A}(I,LLL) - E(NROW, NEIL) * E($	NROW, 58)		9600	6+7	,	· ·····
2		,	DO 164 JOYCE=I,LAST			8600	648		a
			NCON=NCON+1 A(I,JOYCE)=A(I,JOYCE)-E(NROH,NEIL			8600 8600	6,9 ^{~~} 650		
	635	164	GONTINUE	· · · · · · · · · · · · · · · · · · ·	•••	B600	651 -		
•	000		IF(J-MORT)165,163,163			9600	652		
		165	NMI=NMI+1			B600 -	653	*******	
			IF(NMI-MORT)167+167+163			8660	654		
		167	IS=D(1, NHI)	-		B600	655		
	640		IF(IPH0-43)210,210,211			8600	656		
		211	IF (ME+42-IPHO)212,213,213 NU=6*IS-6*(ME-1)			8600 8600			
		c <u>, c</u>	GO TO 214			- 8600			
		213	NU=6*IS-6*(IPH0-43)			8600	660		
	645		GO TO 214		-	8699 .	661		
			NU=6*IS			8690	662		
		214				8600 "	663		
-			DO 158 JOYCE=IMAGE, NU NCON=NCON+1			8600 8600	- 665		
	650		A (I, JOYCE) = A(I, JOYCE) - E(NROW, NEIL	+F(NROW, NOON)		B600	666		
-		168	CONTINUE			8600	~ 667 ·····		· · · · · · · · · · · · · · · · · · ·
			GO TO 165			8600	668		
-		- 163	CONTINUE		-	8600	669		· · · · · · · · · · · · · · · · · · ·
-			IF(KC)125,125,169	· · · · · · · · · · · · · · · · · · ·		8600	670		
	655	C	FORWARD SOLUTION OF CAMERA ROWS	FOR THE RESET PLATE		- 8600 ····	671		·
-		. <u>1</u> 69	K=0 IF(IPH0-43)170+170+171	**		8600 8600	672 673		
		170	N=6*ME		1	8600 8600	674		
-			GO TO 174		•	8600	675		
	660	171	IF (ME+4 2- IPHO) 172, 173, 173			8660	676		
-			· · · · · · · · · · · · · · · · · · ·	• • • • • •					****

PROGRAM	B600	CDC 6610 FTN V3.0-324	0PT=2 04	/02/75	20.40.54.	PAGE	13
				8600	677		
		ار با البية ^ا مرينية متموديتين من ير الد م رينه مديد		8600	678 ~		
	GO TO 174			8600	679		
·	173 N=6*ME-6*(IPH0-43)	- · · · · · ·		8600	680		-
665	173 N=8-782-87 (1PH0=43) 174 M=N-5			8600	681		
665	NCON=N-1+6*LOS	· •		8600	682		•••••
	IF (NOON .GT .258) NCON=258			8600	683		
	DO 175 I=M,N			8600	- 684		
	SQR=1./SQRT(A(I,I))			8600	685		
670				8600	686		
010	00 176 J=I,NCON	`		8600	687		
	A(I,J)=A(I,J)*SQR	••• • •••		8600 T	- 688		
	176 CONTINUE			8600	689		•
	A(I,LLL)=A(I,LLL)*SQ3				690		
	A(I,I)= SOR			8600			
. 675	IF(I-N) 177,180,180	,		8600	691		·
	177 IP1=I+1			B601	692		
	00 175 L=IP1,N	τ υ τιταί του τι		8600	693	· · · · · · · · · · · · · · · · · · ·	
	00 193 J=L,NCON			8600	694		
	A(L,J)=A(L,J)-A(I,L)+A(I,J)			8600	895		
680	193 CONTINUE			8600 -	696		
	A (L,LLL)=A(L,LLL)-A(I,L)*A(I,LLL)	/		8600	697		
	175 CONTINUE			B650 **	698		
•	180 IF(K)178,178,181			8600	699		
	181 DO 320 I=H,N		n ii	B600	780		
685	DO 186 J=1, NCON			8600	761		
	A(J,I)=A(I,J)	,		B601 -	702		
	186 CONTINUE			8660	703		
······································	A(LLL+I)=A(I+LLL)	* * ** ** * *		8600 "	704	<u> </u>	
	320 CONTINUE			8600	765		
690	CALL WRITHS (12, A, 1554, ME)	مەرىپ بىيە تەرىپىيەر مەرىپىيەر بىرە يەرىپ		86005			
0.00	C EFFECT OF RESET PLATE ON ROWS OF	FOLLOWING CAMERAS		8600	707		
	178 IF (ME-I PHO) 182, 179, 179			8600 **	708		
	182 NEIL=N+1			BOOC	709		
	DO 183 I=H,N	* * * * *		8600	710		
695				8600	711		
				86035	10		
	305 DO 196 L=NEIL,NCON			8600	717		
	00 197 J=L,NCON			8600	718		
	00 177 J-6, NOON Aft -6, N-6, NOON			8600	719		
700	A(L-6,J-6)=A(L,J)-A(L,I)*A(J,I) 197 CONTINUE			8600 -	- 720		
700				8600	721		
	A(L-6+LLL)=A(L+LLL)-A(L+I)+A(LLL)	, 1 3		8600	722		
	196 CONTINUE				723		
	JOYCE=NCON-5	~~~~~		8600			
245	DO 298 L=1,NCON			860u ""	724		
705	DO 298 J=JOYCE, NCON	به مستجادة مادولة ما ومعتومه		8600	725		
	A(L,J)=0.			B600	726		
	298 CONTINUE	•		8600	727		_
	DO 299 L= JOYCE, NCON			8600	728		
	A(L,LLL)=0.			8630	729		
710	299 CONTINUE			8600	730		, <u> </u>
	GO TO 183'			8600	731 •		
	184 DO 194 L=NEIL,NCON			8603	732 **		
	00 195 J=L, NCON			8608	733		
	A(L,J)=A(L,J)-A(I,L)*A(I,J)			8600	734		
715	195 CONTINUE			8600	735		

OF POOR QUALITY

.

314

_	PROGRAM		· · · ·	CDC 6630 FTN V3.0-324	0PT=2	04/02/75	20.40.54.	PAGE	14
	1					8600	736		•
A 75			A(L,LLL)=A(L,LLL <u>)-</u> A(I,L)+A(I,LLL CONTINUE			- 8600 - 8600	737	• • ••••• <i>•</i> •••••••••••••••••••••••••••	
ORIGINALI OF POOR (CONTINUE	•		860J	738		
. 8			4E=ME+1	•	-	8600	739		
GINAL PAGE IS POOR QUALITY	720	1	<c=0< td=""><td></td><td></td><td>8600</td><td>740</td><td></td><td></td></c=0<>			8600	740		
Sg -		(30 TO 105			B600	741		
ЦЮ	·····	C	BACK SOLUTION OF CAMERA ROWS A	NO ADD RESULTS TO CAM ARR.	AY	8600	742	· ···· ·· ·· ·· ······	
			SCALE=CAM(1,5)			B600 B600	743 744		
2	725		IF(IPH0-43)198,199,199 (=JOYCE=6*IPH0			B600	745	<i>,</i>	
98	125		AST=IPHO			8600	746		
26			50 TO 215		•	8600	747	• •	
	· · · · · · · · · · · · · · · · · · ·					B600	748		•
			_AST=43			°B603 °~	749 ~~		
N. Si	730	215 3	SAVE=1./A(JOYCE,JOYCE)			8600	750		
			PRINT 556, ITERAT, A(JOYCE, LL), SA	VE.		8600	751		
				• ••••• • • • • • • •		8600	752		
			DO 216 NU=HE+LAST			8600 8600	753 754		
	735		NROW=IPHO+1-NU (F(NU.GT.LOS)JOYCE=JOYCE-5			8600 8600	755		······
	739	1	(F(JOYCE-6*LOS)188,189,189			8600	756		
· .		188	JOYCE=6*LOS			8600	757		
			DO 216 I=1,6			8603	758		
•			IF(NU.EQ.1.AND.I.EQ.1)GO TO 217			8600	759		
,	740	t	1=K			8603	760		
\mathcal{D}			<=K-1			660ú [~] `	761		
		¹	DO 221 J=M,JOYCE		*	860J 860J	762 763		
σ,		224 (A(K,LLL)=A(K,LLL)-A(J,LLL)*A(K,J) CONTINUE	•		8600	764		
	745	217	(K,LLL)=A(K,LLL) *A(K,K)		هيد القرابي مهده مده	B603	765 ***		
			IF(I-3)218,218,219			8688	766		•
		218 .	J=6-I			" B600 ""	767		
			CAHENROW, J)=CAH(NROH, J)+A(<,LLL)*	SCALE	-	B600	768		
			50 TO 216	•		8600	769		
	750			× z		B600	770 771		· • ••• •••••• • •••••••
			FK=SQRT(1A(K,LLL)*A(K,L_1)) SAVE=CAM(NROW,J)*FK + CAM(NROW,J)			8600 8600	772		
			CAM(NROH+J+3) = CAM(NROH+J+3) *FK -	GAM (NROW) +A (X .LLL)		" B603 """	- 773		
			CAM(NROW, J)=SAVE			B600	774		
	755		(F(NU.EO.1.AND.I.EQ.4)60 TO 222			B600	775		
			[F(ABS(A(K,LLL))-ABS(G(12)01)))2.	16,216,222		8600	776		
			NMI=NROW			B600	777		
			G(12001)=A(K,LLL)			8600			
,	760		CONTINUE 1E=LAST=LAST+1			8600 8600	780		
			LF (ME-I PHO) 220,220,227	و بيني وهياره منديد و ا		B6C0	781		····
			NROW=IPHO+1-ME			B600	782		
			CALL READMS (12, A, 1554, NR) /)			8600S	11 -		MT8 5187 8. 8.484.14.4
		()0 223 J=7,258			B60C	784		
	765]	[=265-J			B600	785		
		·	(I;LLL)=A(I=6;LLL)			B600	786		
		223 (CONTINUE 20 224 I=1,6			B600 B600	787 792		
			10 224, 1=1,6 10 224 J=1,259		-	860u	792	· ··	
	770					B600	794		
			······				· · · · · ·		

	PROGRAM E	600		CDC 6630 FTN V3.0-	-324 OPT=2	04/02/75	20.40.5	4.	PAGE_/	15
	`	24_CONTINUE				8600	795			
		K=7		a star and a star and and and		B600	796 ~	a naparén yanapénéné kéréké		
		GO TO 225				8600	797			
	·	27 IS=CAM(NMI,1)			8600	798	• •	• •	
~	75		ERAT,G(12001),IS			B600	799			
((?	TE (A95(6/128	01))-,00001)230,230,2	228		8603	800			
	2	28 ITERAT=ITERA	T+1			B66J	811	e .		
·····			x) 229,229,230	an a		T 8500 T	602	•		
	,	29 IRE=1				8669	803			
7	80	GO TO 231		, . . .		860 J	834			
•	20	30 IRE=2				86C0	815			
	· · · ·					8600	8ú6	• -		
	Ğ	BLOCK ORIENT	ATION SOLUTION COMPLE	ETED		BéGJ	807			
	č					~ 866û *	" 868			
7	46	PRINT 541				8603	809			
	ap	00 232 I=1,I	PHO	<i>,</i> ,		នុទ្ធខេត្	810	• •		
		IS=CAN(I,1)		-		8660	811			
			+ (CAH (I +J) + J=3 + 5)	<i>,</i>		A600	6			· · · · · · · · · · · · · · · · · · ·
	,	32 CONTINUE	+ (OAII(1 + 07 + 0 - 5 + 5)			8686	813			
	90	PRINT 539				B600 -	814			
'	A11		PUA			8600	815			
		DO 233 I=1,I	FNV	T & W24 & KA 47	-	8600	616	-		
		IS=CAH(I,1)	100M/T - 13 - 1-5 - 83			8600	817			
			,(CAM(I,J),J=3,8)			B600	818	* * * *		
	_		,(CAM(I,J),J=3,11)			3603	819			
7	95 2	33_CONTINUE				8600	820			
		PRINT 547				B600	821			
		PRINT 534	-	••		8600	822	-		
	•	PRINT 548				8600 8600	823			
					UTTON	- B600	824			
8	60 C	INTERSECTION	OF OBJECTS USED IN 1	BLOCK ORIENTATION SOL	.01104	8600	825			
	<u> </u>					B600				
		31 INSECT=1					827			
		00 329 I=220				8600 8600	828			
		DO 329 J=1,2	00	•		5600 5600	829			
. 8	05	A(I,J)=0.								
		29 CONTINUE				° 8600	830			
		KC=0				8600	- 831 - 832 -			
		ITEST=0				- B603				
		GO TO 234				B600	833		,	
8	10	60 IF(NA.EQ.0)	GO TO 268			- B600	834	•		
	C		S OF OBJECT TO BE CO	MPUTED BY INTERSECTION	JN	8600	835			
		555 IMAGE=1				8600	836			
		61_A(1,IMAGE)=8				B600	837			
		‴A(2,IMAGE)=8				- B600	838	* .		
ê	15	A(3, IMAGE)=8	(3+N)	.		8600	839			
		270 J=A(1.IMAGE)	*.060801 .			B600	840			
		FK=J	_			B600	841			
		00 235 L=1,I	РНО	٠		B600	8-2			
•			1))235,236,235			8601	843			_
£	20	35 CONTINUE	· · · · · · · · · · · · · · · · · · ·			- 86CJ	844			
·		236 A(4,IMAGE)=L				8600	845			
	· ···· ····· ···· ·		0+(L-1) - 863+({L-1})	/43)	• •	8600	846	-		
		IF (LARRY) 358	358.357			B603	847			
·····		357 A(6, IMAGE)=0			~ ~	B60C	848	• •		
	25	GO TO 359	······			8600	849			•

BIG

	PROGRAM	B600	CDC 6630 FTN	V3.0-324	0PT=2 04/02/7	5 20.40.5	4. PAGE	1b
		758	A (6, I MAGE) = FL		B600	850		
			FK=J+10 00000		8600	851	. 6. 60 33946 Laborations and	
			A (7, I MAGE) = A (1, IMAGE) - FK		860 u	852		
	¥ - • •		IF (10THER. EQ. 1) GO TO 313		8600	853	~	
			IF(10)HEK.EQ.17 GO 10 313		B603	854		
	830		IF(A(7,1)-A(7,IMAGE))237,238,237		8600	855	•	
			N=N+1		8600	856		
			IMAGE=IMAGE+1					
			IF(N-NA/3)361,361,246		B600	857		
		246			8600	858		
	835		IMAGE=IMAGE-1		8600	859		
	002		IS=A(7,1)		860)	860		
· · · ·			P(11,1)=P(11,3)=0.		B60 J	861	· •	
					B600	862		•
-			DO 287 NU=1,LINE		36vů	863		
			IF(A(7,1)-G(6+NU-5))287,238,287		860ŭ	864		
Ä	840		CONTINUE	,			-	
11 T	-	288	GO TO (241,242),IRE		8600	865		
		241	TF(G(6+NU-1)_NE.C.0.AND.3(5+NU).NE.0.0) GJ TO 2	67	8600	866		
المس		Ĉ .	P COEFFICIENTS, CONSTANT FERMS, CONTRIBUTIONS T	O NORMAL E	QUATIONS 8600	867		
50			DO 124 I=1,3		8603	868		
· ·	845		00 124 J=1.4		86.0			
	047				8686	870		
			E(I,J)=0.		8600	871		
		124	CONTINUE		8600	872		
		-	DO 362 M=1,IMAGE				· ····	
			K=A(5,M)		BEJU	873		
	850		1F(IOTHER.EQ.1) 60 TO 323		8600	874		
			DO 289 I=1,3		B600	- 875		
			J=6 *NU-5+I		8600	876		
		••• •	C(I,K+16)=G(J)-C(I,K+1)		8600	877		
					8600	878		
		289	CONTINUE	· - ·	' B600	879		
	855		J=K+4		860J	880		
			00 239 I=1,3					
			C(I,K+17)=C(1,J)+C(1,K+15)+C(2,J)+C(2,K+15)+C(3	i,J)*G(3,K*	15) 8600	881		
			1+1=1		ຮຸລມນ	882		
		239	CONTINUE		8660	883		
	860		IF(IOTHER.EO.U)GO TO 363		86003	5 12		
			IF(A(10,M).EQ.0.0)GO TO 352		6600	5 13		
		767			8603			
			D0 240 J=1,3 P(1,J)={A(2,M)*C(J,K+6)*+A(5,H)*C(J,K+4)}/C(3,K+		8500	886 -		· · · · · · · · · · · · · · · · · · ·
			P(1,J)=(A(2,M)*U(J)X+U/+4(0,M)*U(J)X+4/)/U(J)X+	471	8600	887		
			P(2, J)= (A(3, M) *C(J, K+6) +4(5, H) *C(J, K+5)) /3(3, K+	.1/1		888		
	865	240	CONTINUE		960 û			
			L=A(4,M)		8660	889		
			P(1+4)=P(1,1)*CAH(L+3)+P(L,2)*CAH(L,4)+P(1+3)*C	AM(L+5)		890		
			P(2,4)=P(2,1)*CAM(L+3)+P(2,2)*CAM(L,4)+P(2,3)*C	AM(L+5)	8610	891		-
			DO 245 I=1,3	4.2 m - 4 m - 4 m + 4 m	8600	692		
					8600	893		
	870		DO 245 J=I,4	- 17	8600	894 -		
			00 245 L=1,2		8600	895	•	
		2-49	E(I,J)=E(I,J)+P(L,I)*P(L,J)					*
		245	CONTINUE		B60ŭ	896		
		362	CONTINUE		8600	897		
	875	Č.	SOLUTION OF NORMAL EQUATIONS FOR XYZ		B600			
	012	Ŭ <u>7</u> 14	00 248 I=1,3		8600	899		
		7 9 T T			- B600	900		
			SQR = 1./SQRT(E(I+I))		8600	901		
			00 249 J=I,4		- B600	902		
			E(I,J)=E(I,J)*SQR		ныш	902		

PROGRAM	8600 CDC 6610 FTN V3.0-324 OPT=2	04/02/75	20.40.54.	PAGE	17
•	E(I,I)=SQR	8686	964		
	IF (I-3) 250, 251, 251		905		
	250 IP1=I+1	8600	906		
	00 248 M=IP1,3	8600	907		
8 A C		8600	908		
007	_ DO 248 J=M,4	8600	909		
	E(M, J) = E(M, J) - E(I, M) * E(I, J)	8600	910		
	248 CONTINUE		911		
	251 E(3,4) = E(3,4) + E(3,3)				
······	00 252 I=1,2	8600 8600	912		
890	NMI=3-I		913		
895	NMIP1=NMI+1	8600	914		
•	DO 253 J=NAIP1,3	8600	915		
	E(NMI,4)=E(NMI,4)-E(J,4)*E(NMI, J)	8600	916		
	253 CONTINUE	- 860J	917		•
895	E(NMI,4}=E(NMI,4)*E(NMI,NMI)	B601	918		
	252 CONFINUE	8600	919		
Sec.	IF (IOTHER. EQ. 1. AND. IGO. E2. 1) 60 TO 274	86ូ ហ ជ	92.0		
	IF (IOTHER.EQ.1.AND.IGO.EQ.2) GO TO 276	8600	921		
	TEST TO TERMINATE OBJECT INTERSECTION SOLUTION	B500	922		
900	SAVE=ABS(E(1,4)-G(6*NU-4)) + (-A(6,IMAGE)/G(3,K+17))		923	سيترجلة مساقعها فرجعت والمتكافف الشاهير	
288	IF(SAVE-,000001)257,257,258	BEGG	924		
	257 SAVE=ABS(E(2,4)-G(6*NU-3))*(-A(6,IMAGE)/C(3,K+17))	B600	925		
	IF (SAVE-, 000001) 259,259,258	8600	92.5		
		B600	927		• • • • • • • • • • • • • • • • • • • •
	258 NEIL=2	8600	928		
905	GO TO 273	860u	- 929		
	259 NEIL=1		929 930		
	273 GO TO (243,264),IRE	8600	• - •		
	BLOCK ORIENTATION SOLUTION NOT COMPLETED - UPDATE ONLY NONCONTR	OL 8600 "	931		
	XYZ FOR ITERATION OF THE 3_OCK ORIENTATION SOLUTION	B60J	932		
910	243 IF(G(8*NU-1))260,244,260	8600	933		
A	_244 (G(6*NU-4)=E(1,4)	8600	934		
	G(6+NU-3)=E(2,4)	ີ 86ປະ	935		
	260 IF(G(6*NU))262,261,262	B600	936		
	261 G(6*NU-2) = E(3+4)	8600	937 * **		
915	262 GO TO (267,242),NEIL	Bộũc	938		
	BLOCK ORIENTATION SOLUTION COMPLETED	B600	939		
·	264 IF(A(7,1).E0.G(6*LINE-5)) ITEST=1	8600	940		
	IF (KB) 280, 280, 285	T T B69C T	941		
	286 IF (G(6*NU-1).NE.0.0.AND.3(5*NU).NE.0.0) G3 TO 282	860J	942		
920	IF(G(6+HU-1).NE.0.0) GO TJ 281	- B660 -	943		
20	IF (G(6*NU).EQ.0.0) GO TO 338	8600	944		
	G (12003)=G(6*NU-2)	· 8600	945		
		B600	946		
	PRINT 560, IS, G (12003)	B600	947		
285	GO TO 284	8603	94.8		
925	308 PRINT 562		949		
	GO TO 284	8600	950		
	281 G(12001)=G(5*NU-4)			,	
	G(12002)=G(6*NU+3)	8688	951		
•	PRINT 354,IS,G(12001),G(12002)	8600	952		
930	GO FO 284	B630	953		
	282 PRINT 554,IS,G(6+NU-4),G(3+NU-3),G(6+NU-2)	86 0 0	954		_
	CALL OBUF (1)	B600	955		
	ENCODE(80,561,BUF(IBUF))IS,G(6*NU-4),G(6*NU-3),G(6*NU-2),ITEST	B60û	956		
Bird & And Dilling and Dr Main I distribute and you	284 KB=1	- 8600	957		
935	285 GO TO (346,265),NEIL	8600	958		

91Ê

		in è		,	•••••	
3	PROGRAM	8600	GDC 66]0 FTN V3.0-324	OPT=2 04/02/75	20.40.54.	PAGE 18
•		265 G(6*NU-4)=E(1,4)		8600	959	
		G(6*NU-3)=E(2,4)		B60J	960	
		G(6*NU-2) = E(3,4)		8600	961	
		GO TO 242	•	8600 8603	962 963	
. 6	940	266 DO 286 J=1,IMAGE K=A(5,J)		. 8690	964	the should be a set of the second
38.		P(13,1) = (A(2,J) + A(6,J) + C(L))	, K+17)/C (3, K+17))* 1000000.	8600	965	
OR POOR		P(13,2) = (A(3,J) + A(6,J) + C(2	, K+17)/C(3,K+17))*1000066.	B600	966	
文員		IP1=A(1+J)		96Q y	967 968	
FOOR	945	IF(J-1)291,290,291 290 PRINT 553,IS,E(1,4),E(2,4)	E / 7 1.1 TO1 0/17.11.0/17.21	8600 8600	969	
R G	¥ 7 — X MA ~	IF (G (6*NU-1) .NE.0.G.AND.G	5+NU) .NE.0.0) 60 TO 263	8610	970	
NI PAGE IS		CALL OBUF (1)		8600	971	-
2.5		IF(G(6*NU-1).NE.0.0) GO TO	292	8600	972	
\mathcal{D}	, 950 <u>, </u>	IF (G (6+NU) .NE.0.0) GO TO 3		B600 B600	973 974 -	
5 6			S,E(1,4),E(2,4),E(3,4),ITEST	8600	975	
25		GO TO 263 294 ENCODE(80.561.BUE(IBUE)) 1	5, E(1,4), E(2,4), G(12003) + ITEST	8600	976	
معرية إفتاد		GO TO 263		B600	977	
_	955 '	292 ENCODE(80,561,00F(I8UF)) I	S,G(12001),G(12902),E(3,4),ITES	B600	978	
•		GO TO 263	· • ·	8600 8600	979 980	· · · · ·
		291 PRINT 536, IP1, P(13, 1), P(13 263 P(12, 1) = P(12, 1) + P(13, 1) * P(+ 2] 3_ 1 + P / 1 3_ 2 + P / 13_ 2	8691	981	
		$P(12,3) \neq P(12,3) \neq 2$		B600	982	
	960	P(11,1)=P(11,1)+P(13,1)*P(13,1)+P(13,2)*P(13,2)	B600	983	
		P(11,3)=P(11,3)+2.		86C0 8500	984 985	
~		L=A(4,J)		B600	986 -	
Q	•	IF (L.LE.200) NROW=220 IF (L.GT.200.AND.L.LÉ.400)	NROW= 222	8603	987	
	965	IF(L.GT.400) NROW=224	FUEL AND THE A	B600	988	
		K=L-200*((L-1)/200)		8666	989 990 **** *	
,		A (NROW, K) = A (NROH, K) + P (13, 1 A (NROH+1, K) = A (NROH+1+K) + 2.) *P(13,1) +P(13,2)*P(13,2)	8600 8600	990 991	
		$\frac{1}{286} \text{ CONTINUE}$		860 u	992	· ·- ·· · · ··························
	970	P(11,4)=SQRT(P(11,1)/P(11,	3))	8600	933	
	Here was reading that the start of the second s	PRINT 575, P(11,4)		B600	994	
		KB=0 C RECYCLE FOR NEXT OBJECT 0:		8600 8600		
		_ 267 IF(KC.EQ.0) GO TO 355	NEXT PLATE	B600	997	
	975	268 ME=ME+1	AND N.E. MART AL MART I	"	998	
		KC=0	y y y y y y han branny brands	8600	999	
		IF (ME-IPH0)105,165,269		8600	- 1630 1001	
		269_G0 T0 (271,272),IRE 272 P(12,4)=SQRT(P(12,1)/P(12)	711	8600	1002	
	980	PRINT 538, P(12,4)		8600	1003	•
		PRINE 578		B600	16:4	
		DO 348 L=1,IPHO	e juli kan a manan manaratan manan	8600	1065	
		IS=CAH(L,1) If(L.LE.200) NROW=220		" " B6GJ " 8603	1006	
	985	IF(L.GI.200) NROW=220 IF(L.GI.200.AND.L.LE.400)	NROW=222	8600	1008	
	202	IF(L.6T.400) NROW=224		8630	1009	
		K=L-200*((L-1)/200)	· ····································	B600 "	1010	
		A(NROW, K) = SQRT(A(NROW, K)/)	(NROW+1,K))	8600 8800	1011	
	990	PRINI 557, IS, A (NROW, K) 348 CONTINUE		8600	1013	
			a a a a kaya waxaya waxaya ka ka			

*

61 त

-

1 Ú

•

	PROGRAH	8600	CDC 6600 FTN V3.0-324	OPT=2 04/02/75	20.40.54.	_PAGE	19
				8600	1014		
		INTERSECTION OF OBJECTS NOT USED	IN THE BLOCK ORTENTATION	SOLUTION B600	1015		
				8600	1016		
		PRINT 530		8600	1617		······
	995	PRINT 534		8600	1018		
REAL		PRINT 548	1	8600	1019		
<u>.</u>		IOTHER=IMAGE=IGO=MORT=1		B600	1020		
KALLAND BURN		JOYCE=LINE=D		8600	1021 `	*	
in .		READ IN IMAGES OF THE OBJECT		8680	1622		
	1000	316 CALL DBUF(1)	-	8 <u>6</u> 0u	1323	• • • •	
	-	DECODE(80,526,8UFF(IX8UF))(A(J,IM	AGE),J=1,3)	8600	1024		
to a		IF(A(1, IMAGE).EQ.0.0) GO TO 315	•	8600	1025	-	
D. 16		GO TO 278		B600	1026		•
AND		"313 IF (A(7,1) - A (7, IMAGE)) 315,314,315"		8600	1627	· · · · · ·	
	1005	314 IMAGE=IMAGE+1		ອຣດງ	1028		
La Car		GO FO 316		9600	1029		
the land		315 IMAGE=IMAGE-1		8603	1630		
		IF(IMAGE.EQ.0) GO TO 350		8600	1631		
in the second second		IS=A(7,1)		8600	1632		
	1010	PRINT 562	and the set of a second s	B600	1033		
-		DO 327 N=1, IMAGE		8660	1034		
		A(10,H)=1.		B600 -	1035		
		K=A(5,M)		8600	1036		
		L=A(4,H)	• • • • • • •	8600	1037		
	1015	00 328 J=1,3		8600	1638		
		C(J,K+1)=CAM(L,J+2)			1039		
		C(3,K+2)=CAH(L,J+5)		8600	1040		
		C(J,K+3)=CAM(L,J+8)	1 4 ,	8600	1041		 ,
•		328 CONTINUE		8600	1042		
	1020	C(1,K+4)=C(2,K+3)*C(3,K+3)	••••	- B6CO	1643		
		C(1,K+5)=-C(2,K+3)*C(3,K+2)		8600	1644		
		C(1,K+6)=C(2,K+2)		8603 -	1045	<u></u>	
		C(2,K+4)=C(1,K+3)*C(3,K+2) + C(1,)	(+2) +C(2, K+2) +C(3,K+3)	8611	1046		
		C(2,K+5)=C(1,K+3)*C(3,K+3) - C(1,)	(+2) +C(2+ K+2) +C(3+ K+2)	B600	1947		
	1025	C(2,K+6)=-C(1,K+2)*C(2,K+3)	· ····································	8600	1648		
		C(3,K+4)=C(1,K+2)*C(3,K+2) - C(2,)	(+2)*C(3,K+3)*C(1,K+3)	B600	1049		
		C(3,K+5)=C(1,K+2)+C(3,K+3) + C(2,)	(+2) +C(3, K+2) +C(1, K+3)	8600	1050		
		C(3,K+6)=C(1,K+3)+C(2,K+3)	• • • • • • •	86CJ	1051		
		C(3,K+17)=1.		8600	1052		
-	1030	327 CONTINUE	- 1 -	···· 8600 ···	1053		
		COMPUTE L.S. SOLUTION OF XYZ USING	5 A3B EQJAL 1	8600	1054		
		GO TO 242		B600	1055		·····
		274 6(12001)=E(1,4)		8600	1056		
•		G(120G2)=E(2,4)		8600	1057		· · ·
•	1035	G(12303) = E(3, 4)		8603	1058		
•		COMPUTE L.S. SOLUTION OF (YZ USING	COMPUTED A3B	8606	1059		
		IGO=2		8600	1060		
-	and the west to marked an	346 DO 325 M=1,IMAGE		86CU	1061		
		K=A(5,H)		8600	1062		
-	1040	D0 326 I=1,3		B600	1063		
		C(I+K+16)=E(I+4)=C(I+K+1)		8600	1064		
-	······································	326 CONTINUE	, , , , , , , , , , , , , , , , , , ,	- B600	1065		
	1	J=K+4		8600	1065		
-		00 325 I=1,3	•	B600	1067		
	1045	$ C(I_{+}K+17) = C(1, J) * C(1, K+15) + C(2, J) $	C12. VA1536C17. 138C17. 144	.6) B600	1668		
-				8040	TLOO		

£

*** - * * *	·· ··· P	ROGRAM	_ B60	CDC 6630 FTN V3.0-324 OP	PT=2 04/0	2/75	20.40.54	PAGE	···· ²⁰
				J=J+1	Be	00	1069		
			125	CONTINUE		บ็บ้	1670	***	
			325	JUNITARE EN AL EN TO 265		00	1071		
				IF(IOTHER.EQ.0) GO TO 266		.00	1072		
			_	50 TO (242,347),MORT					
	1050		C	TEST TO TERMINATE OBJECT INTERSECTION SOLUTION		01	1073		
			276	SAVE=ABS(E(1,4)-G(12001)) *(-A(6,IMAGE)/C(3,K+17))		00	1074		
				IF (SAVE 000001) 330,330,274	86	0.0	1075		
			330	SAVE=ABS(E(2,4)-G(12002)) * (-A(6,IMAGE)/C(3,K+17))	B6	00	1676		-
				IF (SAVE000001) 331,331,274	-	00	1077		
	1055	•	^	FERMINATION TEST GOOD. COMPUTE PLATE RESIDJALS		00	1078		
	1000		ب س						
			331	10RT=2		00	1579	7	
				30 TO 346		0.0	1686		
			347	DO 332 M=1,IMAGE		មើម	1681		
				IF (A(10, M) . E0.0.0) GO TO 332	56	00	1032	VP 4866 P 4	
	1060			(=A(5,M)	86	0.0	. 1083		
•••	1000	34 4		1 (8+H) = (A(2,H) + A(6,H) * C(1, < +17) / C(3+K+17)) *1000000.		00	1084		
						600	1685		
	-	-		A(9,H)=(A(3,H)+A(6,H)+C(2,<+17)/C(3,K+17))*1000000.					-
			332	CONTINUE		00	1086		
			C	DETERMINE MAXIMUM_PLATE RESIDUAL AND TEST AGAINST RESIDUAL L	LIMIT BÉ	6 C	1687		
	1065			4=8	86	บบบั	1088		
				1=J=1	86	68	1089		
			·	00 275 I=8,9	-	0.0	1090	L 100 647 9 800 8.	
		·	277	1=M+1		υÛ	1091		
				LF(M-IMAGE)278,278,279		0.0	1092		
	1670		278	IF (ABS (A(N, J)) - ABS (A(I, M)) 319, 277, 277	86	60	1093		
			319		Bê	រៀរ ំំំំំំ	1094		
				j=M	RÉ	0.0	1095		
			•			งบับ	1696		
				GO TO 277					
			279			0.0	1097		
	1075		275	CONTINUE		60	1090		
				LF (A8S(A(N,J))_RESID)166+156+226	86	មើល	1099		
			Ċ	BAD IMAGE	Be	00	1160 -	ميدينية موقفا علمه المرافقات مراق ود	
			226	JOYCE=JOYCE+1	86	00	1101		
				IF(JOYCE-1)333,333,334		0.0	1102	T 77	
	1080			IF(IMAGE-3)334,334,335		00	1103		
	•		335	A(8,J)=A(9,J)=A(10,J)=0.	-	03	1104		
				YORT=1	86	0.0	1105		
				50 TO 274	86	00 1	~~ 1106 ~ '		
			334	A(10, J) = 2.		อจ	1107		
	1085		۳ć-"```	DUTPUT XYZ AND PLATE RESIDIALS		60	1138		······································
	1005					00	1199		
			166	LP1=A(1,1)				·	
				LF(A(10,1)-1.)336,337,338		0.0	1110		
			336	PRINT 549,IS,E(1,4),E(2,4),E(3,4),IP1		Gu	1111		
				50 F0 339	86	0.0	1112		····
	1090		337	PRINT 553, IS, E(1,4), E(2,4), E(3,4), IP1, A(8,1), A(9,1)	Bé	00	1113		
	\$ <u>0.20</u>					00 11	1114		<u>.</u>
				PRINT 550, IS, E(1,4), E(2,4), E(3,4), IP1, A(8,1), A(9,1)		6.0	1115		
			339	CALL OBUF(1)		0.0	1116		
				ENCODE(80,561,BUF(IBUF)) IS,E(1,4),E(2,4),E(3,4)	86	00	1117		
			-/	DO 346 M=2, IMAGE	86	00 ~~~	- 1118		
	1095			IP1=A(1,M)		0.0	1119		
	1095			er with the title					
	1095			ドロイルイシリー いちょう うちしき マルマ		0.0	4400		
	1095			<pre>[F(A(10,M)-1.)341,342,343</pre>		00	1120		
	1095			PRINT 551, IP1	86	0 ü	1121		· · · · · ·
	1095		341		86 86			••	

	PROGRAM .		C CDC 6600 FTN V3.0-324 OPT=2 D	4/02/75	20.40.54	• _ PAGE
			GO TO 340	8600	1124	
		343	PRINT 555, IP1, A(8, M), A(9, 4)	B600	1125	
			CONTINUE	B600	1126	
			LINE=LINE+1 ·	8600 8600	1127 1128	
	105	C	RECYCLE FOR NEXT OTHER OBJECT IF(A(1,IMAGE+1).EQ.0.0) 30 TO 350	B600	1129	· · · · · · · · · · · · · · · · · · ·
			DO 345 I=1,7	8600	1130	
			A(I,1)=A(I,IMAGE+1)	8600	1131 -	
	• • • • • • • • • •	_ 345	CONTINUE	B600	1132	
1	110		JOYCE=0	8600 860u	1133 1134	
		1	IGO=IMAGE=MORT=1 Go To 314	8600	1135	• • • • • • • • • • • • • • • • • • • •
		C	00 10 514	8600	1136	•
and for the second second second	مىرى، ئىللىنىكى»، «كىنىك مەللىنى»	c	BLOCK ADJUSTMENT COMPLETED	B6,0 0	1137	The state of the substantiant
1	115	Ċ		8600	1138	
		350	PRINT 352, LINE	8600	1139	
		•	IF(INVER.EQ.D) GO TO 366	A600 A600	я ^г	
			DO 365 I=1,IPHO IS=CAM(I,1)	A600	ğ	
1	120		CALL OBUF (1)	A600	10	· • • • • • • • • • • • • • • • • • • •
			ENCODE(80,561,80F(IBUF)) IS, (CAH(I,J), J=3,5), INVER	A600	11	
			CALL OBUF(1)	A600	12	
			ENCODE(80,557,BUF(IBUF)) IS,(CAM(I,J),J=6,6)	A600 A603	13 14	
	125		CALL OBUF(1) ENCODE(80,557,BUF(IBUF)) IS.(CAM(I,J),J=9,11)	A600	15	
	<u>, , , , , , , , , , , , , , , , , , , </u>	365	CONTINUE	A600 **	- 16	
			PRINT 542	A60 J	17	
			CALL OBUF(0)	8600	1141	
			GO TO 1900	860) 860)	1142 1143 -	
1	130	C	CODMAT STATEMENTS	3600	1144	
	·····	<u> </u>	FORMAT STATEMENTS	8600	- 1145	
		524	FORMAT(1X,11,1X,E14.7,2(3X,F2.1),2X,F2.0,3X,I1,F6.0,8X,I1,9X,I1)	A600	18	
		525	FORMAT(7X,F3.0,3(2X,F1.0),3X,E14.7)	8660	1147	
1	135		FORMAT(1X, F9.0, 2(2X, E14.7), 37X, I1)	8600	1148	• · • • • • • • • • • • • • • • • • • •
			FORMAT(4X, F6.0, 3(1X, F12.3), 30X, I1)	860û 860û	1149 1150	
			FORMAT(/32H GROUND COORDINATES MISSING FOR 16, 5H-STOP/) FORMAT(44H PROVISIONAL GROIND COORDINATES ENTERED FOR 14, "35H OBJE		- 1151	
			1CTS. EXCEEDS 2000 LIMIT-STOP/)	B600	1152	
1	140		FORMAT(1H1,28X,56H*** INTERSECTION OF D3JECTS NOT USED IN SOLUTI	860 u	1153	· ····································
	· · ·		10N ***)	860 J	1154	
			FORMAT('8A10)	8600	1155	
		532	FORMAT(/SOH ORIENTATION PARAMETER CORRECTION LIMIT IS 0.0001/)	B600	<u>1196</u> 1157	
4	145		FORMAT(14H PROGRAM PASS IL,46H PRODUCES A MAXIMUN ORIENTATION JORR 1ECTION OF E14.7, 11H FOR ".ATE I3)	B600	1158	
±	149		FORMAT(38X,37H (SECANT PLANE COORDINATES - MICRONS)//)	8600	1159	
		535	FORMAT(/7H PLATE I3, 36H VEEDS OVER 5 RESECTION PASSESSTOP)	8633	1160	
		536	FORMAT(48X,I16,F16.3,F19.3)	8600	1151	
		537	FORMAT(/8H OBJECT 16, 31H APPEARS ON OVER 9 PHOTOSSTOP)	Béûc	1152	
1	150		FORMAT(///33H RMS RESIDUAL FOR ENTIRE BLOCK = E14.7, 8H HIGRONS)	8600 - 8600	1163 1164	
			FORMAT(/52H PLATE ONEGA PHI KAPP4/) FORMAT(/44H PLATE XO YO ZO/)	8600	1166	
			FORMAT(754H BLOCK 4 DJUSTHENT COMPLETED)		1167	
		543	FORMAT(/16H BLOCK CONTAINS 13,17H PHOTOGRAPHS AND 14,8H OBJECTS/)	B600	i168	
1	155	544	FORMAT (/27H BLOCK ADJUSTMENT CONTAINS 14, 41H OBJECTS AND EXCEEDS	8600	1169	

	OGRAM _ 86	30	CDC 6630 FTN V3.0-324	0PT=2 0	4/02/75	20.40.54.	PAGE	22
		1LIMIT OF 1978STOP)	6 A		8600	1170		
	54	FORHAT(77H PLATE 13, 29H EXCEEDS	30→IMAGÉ LIMIT→→STOP)	• •••	C600			
•	54	5 FORMAT(24H * DISK (PARITY) ERROR	#)		B600	1173		
			LON OF OBJECTS USED IN S	OLUTION	8600	1174	· ··· · · ·	
ii60,		1 ***)			8600	1175		
	54	B FORMAT (* OBJECT X GROUND	Y GROUND Z GROUND		B600	1176		
•			(PLATE RESID *)		B600	1177		
	54	FORMAT (1X, 17, F14.3, 2F13.3, 116,28		2050) ··· ^	B600	1178 "		
	55	FORMAT(1X, I7, F14.3, 2F13.3, I16, 2H		KUEUI	8600			
1165	55	FORMAT(48X, 116, 28H OVER LIMITIN	4465 DISCADIEN			1179		
	55	FORMAT(///AN TOTAL NUMBER OF INTE	3526720 0012676 Ye YAN		8600	1180		
	- 55	5 FORMAT(1X, 17, F14.3, 2F13.3, 116, F16			B600	1181		
	55	FORMAT(///1X,17,1HT,3F13.3)	2+3+2+21		8600	1182		
		FORMAT(48X,116,2H *,F14.3, =19.3)	The second se	~··	B689	1153		
1170					B60 J	1184		
	. 991	5 FORMAT(/14H PROGRAM PASS 11, 19H 1DED BY E14.7)	LASE PLATE UZO IS E14.7,	12H DIVI		1185		
	C C C				B6C0	1186		
	57	FORMAT(1X, 19, 2X, E14.7, 2X, E14.7, 2)	(9E14+/)		B600	1187		
	250	FORMAT(4X,F6.0,2X,F2.0,2X, =2.0,6)	. X ; [1]		8600	1188		
		FORMAT(///1X,17,1HT,F39.3)			865 u	1189		
1175		FORMAT(1X, 19, 1X, F12.3, 1X, F12.3, 1X	(,F12.3,35X,I1)		A 6 C C	19		·······
		FORMAT(1H //)		-	B600	1191		
	567	FORMAT(723H POSITION HEIGHT VARIE	(\$7)	-	C60ù	9 ``'		
		FORMAT(/25H POSITION WEIGHT CONST	ANT/)		C600	10		
		FORMAT(1H1,8A10)		· ·	8600	1194		
1180		FORMAT(740H OVER 250 WEISHTED OBJ	ECTS ENTEREDSTOP)		8600	1195		
	572	FORMAT(51H NUMBER OF PHOTOS IN OR	DERED STRIP EXCEEDS 20S	STOP) ~	8660	1196		
	573	FORMAT(54H CONTROL E2JATION	XY Z (0=NO CONST		8600	1197		
	574	FORMAT(2X,16,8X,12,8X,12,5X,12)			8600	1198 -	***	
		FORMAT(60X,13H RMS OBJECT= E14.7,	8H MICRONS)		360.0	1199		
11.85	576	FORMAT(15H FL CONSTANT = E14.7,24	H MAXIMUM TIFRATIONS =	T2.31H	8600	1200		
		1 RESIDUAL LIMIT (MICRONS) = E14.7	3		8600	1200		
	577	FORMAT (28H RESOLUTION WEISHTS WT7	12 = 614.7.10H		8610			
	578	FORMATCH11,26H PLATE RMS (MI				1202		
		END	URUNDI II		8600	1203		
		200			B60 ป	1204		

ORIGINAL PAGE IS OF POOR QUALITY

р 23 3 - •

	DBUF	CDC 6610 FTN V3.0-324	OPT=2 1	04/02/75	20.40.54	•PAGE
	SUBROUTINE DBUF (NORECS)			DBUF	2	
				OBUE	3 -	
č	THIS PROGRAM IS SET UP FOR A DOUG	LE BUFFER AREA ALTHOUGH IT	IS USING	DBUF	4	
C	WAIT MODE INSTRUCTIONS. TO BE CHA			OBUF	51	
5C				DSUF	6	
	COMMON /COBUF/ LENGT, NEXT, IFIF	ST,IXBUF,BUFF(1024),IQ,KS		DBUF	7	
······	DATA (ICOUNT=0)			DSUF	8	
	DATA (IT3=24012005360000000000	8),(IEF=10000360660608),		DBUF	9	
	1 (IPR=20000000000000000)			DBUF DBUF	10	
10 C	IF (NORECS) 70,10,70			DBUF	12	
¥	10 CALL LTRIO (IQ,1113,BUFF(IFIRS	T		DBUF	13	R
~.A	IF (KS +LT+ 0) GO TO 76			DBUF	14	
2. 7	IF ((KS.AND.IPR) .NE. 0) PRINT	160, IQ		DBUF	15	
15	IF ((KS.AND.IEF) .NE. 0) 30 TO			DBUF	16	
A.C.	IFIRST = MOD(IFIRST+512,1)24)			DBUF1	1	
	ICOUNT = 0	*	-	OBUF	18	1977 7 7 2 19 11 - 197
	RETURN			DBUF	19 20	
······································	60 ICOUNT = ICOUNT + 1 IF (ICOUNT .LT. 2) GO TO 10			DBUF	20	
20	PRINT 54			DOUF	22	
	CALL LTRIO (IT3,1158,A,8,JS)		• •	DBUF	23	
	STOP			DBUF	24	
	70 IF (MOD (LENGT, 512)) 79,74,79			DBÜF1	2	
25	74 CALL LTRIO (IQ, 1118, BUFF(IFIRS	T), BUFF (IFIRST+511) +KS)		DBUF	26	
	IF (KS +LT+ G) GO TO 76			OBUF	27	
ym Bal a	IF ((KS.AND.IPR) .NE. 0) PRINT	100,IQ		DBUF	28	
•	IFIRST = MOD(IFIRST+512,1)24)	, , , , , , , , , , , , , , , , , , ,		080F1 D80F1	3 4	
30	79 LENGT = MOD(LENGT+8*NORECS, 102 IXBUF = NEXT	(4) -		DEUFL	31	
30	NEXT = LENGT + 1			DBUF	32	
	RETURN			DBUF	33	·····
	76 PRINT 77,KS			DBUF	34	
	STOP			DSUF	35	• • • • • • • •
35	100 FORMAT (/* TROUBLE IN INPUT T/			DBUF	36	
	64 FORMAT(*1 JOB TERMINATED EN			DBUF	37	
······	77_FORMATC*1 JOB ABORTED STATU	S WORD * 0201		DBUF DBUF	38	······································
	ENO			UBUF	24	
					~	
	•					
			Ŧ		• • • •••	********
	•					

ትሮዌ

SUBROUTINE (BUF CDC 6630 FT	N V3.0-324 OPT=2	04/02/75	20.40.54.	• _ •	PAGE	1
	SUBROUTINE OBUF (NORECS)		OBUF	2			
c	······································		``OBUF ~~	3			
C	THIS PROGRAM IS SET UP FOR A DOUBLE BUFFER AREA A			4			
c	WAIT MODE INSTRUCTIONS. TO BE CHANGED IN THE FJTU	RE.	OBUF	5			
_ 5 C			08VF	6			
	COMMON /ODBUF /LENGT, NEXT, IFIRST, IXBUF, 80FF(10	24), IP, ENDFLQ	OBUF	7			
C_			OBUF	8			
	IF (NORECS) 10,43,10		OBUE	9 .			
	10 LENGT = LENGT + NORECS		OBUF	10			
10	IF (LENGT.GT.64) GO TO 20		OBUF	11			
	IXBUF = NEXT		OBUF	12	-		
	GO TO 30		OBUF	13			
	20 CALL LTRID (IP,1128, BUFF(IFIRST), BUFF(IFIRST+5	11) (KŞ)	OBUF	14			
	IF (KS .LT. 0) GO TO 80		08UF	15			
15	IXSUF = IFIRST = MOD(IFIRST+512,1024)		08UF1	1			
	LENGT = NORFCS		08UF	17			
	30 NEXT = IXBUF + NORECS*8		08UF	18			
	RETURN		08UF	19			
	40 INDEX = IFIRST + (LENGT-NOREGS)*8 - 1		OBUF	20			
20	CALL LTRIO (IP,1128,BUFF(IFIRST),BUFF(INDEX),K	S}	OBUF	21			
	IF (KS .LT. 0) GO TO 30		OBUF	22			
	ENDFLQ = 0.		OBUF	23			
	RETURN		OBUF	24			
	80 PRINT 100,KS		OBUF	25			
25	STOP		OBUE	26			
	00 FORMAT (*1 JOB ABORTED STATUS WORD *, 32)		08UF	27	* 2417 1		
	END		OBUF	28			
					-		

