Made civil in semination of fath on ty and wide dis Program information Reteures Survey tor any ustormation andiwithout lisbilly

REP INVESTIGATION NO. 459

 CONTRACT NO. T-4110BANALYTIC AEROTRIANGULATION UTILIZING SKYLAB EARTH TERRAIN CAMERA ($\mathrm{S}-190 \mathrm{~B}$) PHOTOGRAPHY
NOAA/National Ocean Survey M. Keller

SKYLAB A PROPOSAL AEROTRIANGULATION WITH VERY SMALL SCALEPHOTOGRAPHY - EREP INVESTIGATION NO. 459CONTRACT NO. T-4110B
Principal Investigations Management Office Lyndon B. Johnson Space Center Technical Monitor - Mr. Rigdon Joosten
FINAL REPORT
submitted by
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATIONNATIONAL OCEAN SURVEY
Rockville, Maryland 20852
MORTON KELLER - Principal Investigator

ANALYTIC AEROTRIANGULATION UTILIZING SKYLAB EARTH
 TERRAIN CAMERA (S-190B) PHOTOGRAPHY

MORTON KELLER

> Photogrammetric Research Branch Coastal Mapping Division NOAA, National Ocean Survey Rockville, Maryland 20852
> July 1975

PREFACE

This report on the feasibility of utilizing SKYLAB spacecraft photography to provide control for small scale mapping operations was prepared so as to enhance the comprehension of those readers not familiar with the principles of analytic aerotriangulation procedures and the SKYLAB Earth Resources Experiments mission.

All of the work involved in this study was performed in the offices of, and on equipment operated by, the National Oceanic and Atmospheric Administration, National Ocean Survey/Coastal Mapping Division, which is located in the Washington Science Center, Rockville, Maryland. Computer processing was performed on a CDC 6600 computer operated by NOAA and located at Suitland: Maryland.

The author wishes to express his sincere appreciation to Mr. D. Norman and Mr. I. Raborn of the Aerotriangulation Section who performed the photocoordinate measurements, assembled the data, and processed the material through the analytic aerotriangulation system of computer programs. Thanks are due to Commander W. V. Hull, Chief of the Coastal Mapping Division, and to Mr. C. Slama, Chief of the Photogrammetric Research Branch, for allowing the author to provide the time and effort needed to bring this study to a successful conclusion. A final vote of thanks is due Mrs. M. Taglieri, secretary for the Photogrammetric Research Branch, for her patience and diligence in preparing this report for delivery to the National Aeronautics and Space Administration.
ABSTRACT 1
BACKGROUND 2
MATHEMATICAL BASIS OF ANALYTIC AEROTRIANGULATION 3
COLLINEARITY CONDITION FORMULATION 4
NATIONAL OCEAN SURVEY ANALYTIC AEROTRIANGULATION SYSTEM 5
Aerial Photography 5
Photo Control Points 6
Pass Points 6
Marking and Photocoordinate Measurement 7
Computer Processing 8
Image Coordinate Refinement and Three-Photo Orientation 8
Strip Adjustment to Ground Control 8
Secant Plane Coordinate Transformation 9
Block Adjustment 9
Accuracy Analysis 10
Accuracy of NOS Analytic Aerotriangulation System 10
SKYLAB 3
EARTH RESOURCES EXPERIMENTS 13
DESCRIPTION OF EARTH RESOURCES EXPERIMENT PACKAGE SENSORS 15
Multispectral Photographic Facility (S-I90A and S-I90B) 15
S-190A 16
S-190B 16
Infrared Spectrometer (S-191) 17
Multispectral Scanner (S-192) 17
Microwave Radiometer/Scatterometer and Altimeter (S-193) 18
L-Band Radiometer (S-194) 18
IDENTIFICATION OF THE NOAA/NOS INVESTIGATION 20
SKYLAB S-I90B EARTH TERRAIN CAMERA (ETC) PHOTOGRAPHY 20
PHOTO CONTROL 21
PASS POINTS 21
MARKING AND PHOTOCOORD INATE MEASUREMENT 21
FIDUCIAL MARKS 23
COMPUTER PROCESSING 25
Secant Plane Coordinate Transformation 25
Image Coordinate Refinement and Three-Photo Orientation 27
Strip Adjustment to Ground Control 28
Block Adjustment 28
Weighting the Block Adjustment Solution 35
Results of the Block Adjustment Solution 36
Inverse of the Secant Plane Coordinate Transformation 48
Accuracy Analysis 51
FURTHER DISCUSSION OF SKYLAB ANALYTIC AEROTRIANGULATION RESULTS 53
APPENDIX A - THE SKYLAB S-190B EARTH TERRAIN CAMERAAPPENDIX B - L!STING OF 600-PHOTO BLOCK ADJUSTMENT PROGRAM

TABLES AND FIGURES

Table I. EREP PROGRAM STRUCTURE 14
Table 2. EREP SENSOR CHARACTERISTICS 19
Figure 1. SKYLAB PHOTOGRAPHY AND CONTROL LAYOUT
Table 3. ACCURACY OF OFFICE-IDENTIFIED CONTROL IN BLOCK ADJUSTMENT 22
Table 4. CONVERSION OF CONTROL STATION GEOGRAPHIC POSITIONS TO SECANT PLANE COORDINATES 26
Table 5. SECANT PLANE COORDINATES - INPUT TO BLOCK ADJUSTMENT 31
Table 6. REFINED COORDINATES INPUT TO BLOCK ADJUSTMENT 32
Table 7. OUTPUT FROM 600-PHOTO BLOCK ADJUSTMENT PROGRAM 37
Table.8. RESIDUAL ERRORS AT CONTROL STATIONS AFTER BLOCK ADJUSTMENT 47
Table 9. CONVERSION OF BLOCK OUTPUT TO GEOGRAPHIC POSITIONS. 49
Table 10. THE STANDARD ERRORS AT THE 15 WITHHELD CONTROL STATIONS 52

ANALYTIC AEROTRIANGULATION UTILIZING SKYLAB EARTH

TERRAIN CAMERA (S-I90B) PHOTOGRAPHY

MORTON KELLER
NOAA, National Ocean Survey
Rockville, Maryland

ABSTRACT

The objective of this study was to investigate the feasibility of utilizing SKYLAB spacecraft Earth Terrain Camera (S-190B) 1:946,000 scale photography in analytic aerotriangulation procedures to provide low-order, high-density control suitable for small-scale mapping operations.

The long range application is the employment of this technique for coastal zone mapping at medium and small scales, surveys in remote areas, forest and range management, various planning activities, and route location for highways, pipelines, transmission lines, and canals.

The National Oceanic and Atmospheric Administration, National Ocean Survey, (NOAA/NOS), office-identified the locations of 29 photo control points of known position and elevation on a strip of 12 photographs ranging along a $350-$ mile track from Charlotte, North Carolina, to the Rappahannock River in Virginia. The coordinates of pertinent images on each photograph were then processed through an established analytic aerotriangulation system of computer programs.

The inherent errors in using nonmetric SKYLAB photography and office-identified photo control made it necessary to perform numerous block adjustment solutions involving different combinations of control and weights. The final block adjustment was executed holding to 14 of the office-identified photo control points. The accuracy of the solution was evaluated by comparing the analytically computed ground positions of the 15 withheld photo control points with their known ground positions and also by determining the standard errors of these points from the variance values. A horizontal position RMS error of 15 meters was attained. The maximum observed error in position at a control point was 25 meters.

BACKGROUND

A basic framework of horizontal and vertical geodetic control is essential for coordinating surveys and the mapping of large areas. In the United States, the first- and second-order horizontal and vertical control surveys conducted by the National Ocean Survey of the National Oceanic and Atmospheric Administration provide this basic framework of geodetic control. Additional control surveys of third-order accuracy by various federal and state agencies then subdivide or extend the basic network by triangulation, traverse, and leveling methods in order to bring the control into the areas to be mapped. The control stations established by these surveys are usually monumented for future use.

Photogrammetry is a system of measuring and interpreting data recorded on photographs and is applicable to all sciences that depend on reliable geometric measurements of physical quantities occurring in a fixed or transitory state. The widest application of the photogrammetric art has been in the topographic mapping of the earth's surface, where it provides an alternative and/or supplement to conventional ground methods for establishing geodetic control and mapping geographical features.

Photogrammetric mapping procedures offer certain worthwhile advantages over ground methods, such as: 1. Detailed mapping can be performed more accurately, completely, efficiently, and economically than by ground methods. This advantage increases with the complexity of the details, as, for example, in city and harbor areas and along irregular coasts; 2. otherwise inaccessible areas can be more easily mapped; 3. maps can generally be produced from photographs with less ground control than is necessary for ground methods; and 4. the workload is transferred to the office, where operations are independent of weather and daylight.

Photogrammetry can provide the following primary services:
Provide three-dimensional stereoscopic models of the terrain that can be set in stereoscopic plotting instruments, so that planimetric and topographic details can be compiled from these models.
2. Extend the basic control network directly into the area of photography by using aerotriangulation methods to. bridge between the high-order arcs of existing control. This procedure yields primarily fourth-order nonmonumented control and minimizes the need for field work to establish the photo control required to properly orient the stereoscopic models on the plotting instruments.

Aerotriangulation is a photogrammetric technique for deriving the ground coordinates of objects from a set of overlapping aerial photographs that show images of these objects and also of a relatively sparse distribution of other objects whose coordinates are known from classical measurements on the ground. The two principal methods employed to determine the desired threedimensional ground coordinates for the objects are stereotriangulation and analytic aerotriangulation. Stereotriangulation depends on measurements made on a sequential series of overlapping stereoscopic models formed on a high-precision photogrammetric plotting instrument. Analytic aerotriangulation is a digital solution based on observed coordinates of the images created by pertinent objects appearing on each of the photographs covering the area. The analytic solution possesses a remarkably high accuracy potential as compared to stereotriangulation, because of the advantages accruing from automation, digital accuracy, least-squares adjustment, and freedom from the mechanical discrepancies contributed by the stereoscopic plotting instruments In addition, the systematic errors such as camera-lens distortion, film shrinkage, atmospheric refraction distortion, etc., can be more effectively eliminated by analytic methods than in stereotriangulation procedures. A disadvantage of the analytical solution is that the computations are complicated and require a large-size electronic computer to contain and process the large volume of data with economy and speed.

THE MATHEMATICAL BASIS OF ANALYTIC AERÓTRIANGULATION

Several different variations in analytical aerotriangulation techniques have evolved. However, all of the methods basically consist of writing equations which relate the unknown elements: of exterior orientation of each photograph to camera constants and refined x and y image coordinates observed on a comparator. The equations are solved for the unknown camera orientation parameters and the ground coordinates for each object creating observed images on the photographs. Since more observational information is normally available than is required for a unique solution, the method of least squares is used to obtain the most probable values of the unknown parameters in such a fashion that the sum of the squares of the residual observational discrepancies is a minimum.

The observation equations must be linear with respect to the unknown independent parameters; otherwise, a direct solution of the equations becomes difficult. If the mathematical model is nonlinear, as most photogrammetric problems are, a Taylor's expansion series is usually employed to linearize the equations. The computation requires initial approximations of the unknown parameters and is iterative because the second and higher degree terms of the Taylor's series are neglected to simplify.
the mathematics. The least squares solution provides corrections to the approximate values of the parameters. If the initial approximations are coarse, the corrections are added to them, giving fresh and improved approximations for a new solution. Least squares is used again to provide another set of corrections, and the procedure is repeated until some criterion of convergence is satisfied.

The most commonly used analytic methods are designed to enforce one of two conditions: coplanarity or collinearity. Coplanarity is the condition that the two perspective centers of an overlapping pair of photographs, any object point, and its corresponding image points on the two pictures all lie in a common plane; i.e., the rays passing through the two camera stations should intersect at a single object point. The purpose of the computation is to minimize the distance between the two rays at the object location. The observation equation utilized in each object space angle thus contains the four residual errors, v_{x}, v_{y} on first photo and $v_{x}, V y$ on second photo, involved in measuring the x and \underline{y} image coordinates on each picture. This causes the solution to become cumbersome and difficult to solve properly when the object occurs on several or more photographs.

Collinearity is the condition that every object, its photographic image, and the camera exposure station must lie on a common straight line, as defined by the method of least squares in which the sum of the squares of the residual errors of image coordinate measurement is minimized. Two observation equations are written for every image and, except for the few control station images; contain only one residual error, v_{x} or v_{y}, in each equation.
This simplifies the application of least squares so that any number of photographs can be routinely accommodated.

The principle of collinearity provides the basis for the NOS method of analytic aerotriangulation. The condition is utilized in an iterative manner to determine incremental corrections to initial approximations for the unknowns, which are reasonably close to the correct values.

COLLINEARITY CONDITION FORMULATION

The well known equations of collineation comprising the projective transformation are:

$$
\begin{aligned}
& \frac{x}{z}=\frac{\left(X-X_{0}\right) a_{11}+\left(Y-Y_{0}\right) a_{12}+\left(Z-Z_{0}\right) a_{13}}{\left(X-X_{0}\right) a_{32}+\left(Y-Y_{0}\right) a_{32}+\left(Z-Z_{0}\right) a_{33}} \\
& \frac{4}{z}=\frac{\left(X-X_{0}\right) a_{21}+\left(Y-Y_{0}\right) a_{32}+\left(Z-Z_{0}\right) a_{33}}{\left(X-X_{0}\right) a_{32}+\left(Y-Y_{0}\right) a_{32}+\left(Z-Z_{0}\right) a_{33}}
\end{aligned}
$$

where the a terms are the nine elements of the rotation matrix relating the x, y, \underline{z} image coordinate system to the X, Y, Z ground coordinate system of the objects, and Xo, Yo, Zo are the coordinates of the camera station expressed in the ground coordinate system.

A Taylor's expansion series.is applied to the transcendental collinearity equations to obtain linearized observation equations: which can then be solved for the linear independent unknowns by the application of least squares. The complete form of the linearized observation equations is:
where the nine terms dw through dZ are incremental corrections to be applied to initial approximations of the unknowns. These two equations occur for each image on each photograph. Block adjustment requires the presence of all nine terms, whereas the space resection computations use only the first six terms dw through dZo. Sufficient photographs, and images are needed to provide at least as many equations as there are unknowns io be computed. The solution is iterative and terminates when the incremental corrections to the angular parameters are smaller than the observed precision.

THE NATIONAL OCEAN SURVEY ANALYTIC AEROTRIANGULATION SYSTEM

Aerial Photography

The Coastal Mapping Division of NOS utilizes well calibrated precision aerial cameras to secure the near vertical aerial photography required for its photogrammetric operations. These cameras include the Wild RC-8, 6-inch focal length camera and the Wild RC-IO camera equipped with interchangeable 6-inch and 3.5-inch focal length cones.

The cameras are mounted in two aircraft operated by the Division; one being a DeHavilland Buffalo, while the other is an Aero Commander 690A. The Buffalo is a twin-engined turboprop craft,
having a cruising speed between 120 and 180 knots at altitudes up to 32,000 feet. Its cruising range is 10 hours. The cabin is unpressurized, thereby requiring the crew to use oxygen above 10,000 feet. The Buffalo has been modified to simultaneously accommodate three aerial cameras mounted in three hatches. The plane is used on nearly all photographic missions conducted by the Division.
The Aero Commander 690A is a leased aircraft, employed to obtain photography for airport surveys. It is a twin-engined turboprop craft, having a cruising speed between 100 and 270 knots at altitudes up to 32,000 feet. Its cruising range is five hours. The pressurized cabin permits the crew to operate without relying on oxygen. However, this requires the photography to be taken through an optically flat glass window which covers the single hatch. A backup oxygen supply is available that permits aerial. photography to be taken without the window in place over the hatch.

Photo Control Points

In order to implement analytic aerotriangulation methods, it is necessary to establish sufficient photo control to properly orient the aerial photography. Photo control refers to the establishment of horizontal positions and/or elevations with respect to the basic framework of geodetic control monuments of carefully chosen ground objects, which create sharp, distinct, and easily identifiable point images on the photographs. The positions and/or elevations are determined from the monumented control network by third- and fourth-order triangulation, traverse, and leveling methods. The photo control points selected in the field are usually prominent natural or cultural features providing sharp imagery on the overlapping photographs. Such examples are road intersections, fence-line intersections, lone trees, corners of buildings and wharves, and smaller stacks or towers.

For the more precise photogrametric surveys, the placement of specially prepared targets on the control points, prior. to photography, is desirable for facilitating accurate office identification of the photo control points. The targets are symmetrical in design, centered on the photo control points, and are of sufficient size to show on the photography. The targets are usually in the shape of a \underline{Y} or a cross.

Pass Points

In analytical control extension, pass points are established in the nine standard relative orientation locations on each photograph. The pass points may be easily identifiable point images similar to those selected as photo control points. Usually,
however; the pass points are simply holes drilled into the photographic emulsion, with the Wild PUG-2 stereoscopic point transfer device in areas providing an optimum stereoscopic. perception. On 60 percent overlap photography, one ground object can appear as a pass point image on three successive photographs of ar strip.

NOS programs permit two pass points to be used in each relative orientation location, even though only one pass point is.sufficient to provide all of the data needed for the analytic computations Then, if one of the pass points in a relative orientation location should exhibit an excessively large residual discnepancy during the solution, it can be discarded and its companion pass point substituted in its place.

Marking and Photocoordinate Measurement

A stereoscopic point transfer device, such as the Wild PUG-2, is first used to select, mark, and transfer suitable photo control and pass point images to adjacent photographs. The coordinates of each image on the photograph transparency are then measured to micron accuracy by either a digitized Mann monocomparator or by a stereocomparator, such as the Wild STK or the Zeiss PSK.

The use of a monocomparator means that the images on only one plate can be measured at a time: It, thus, is necessary to use a stereoscopic point transfer device to mark and transfer all images to every photograph. Stereocomparators, however, can simultaneously measure the photocoordinates of corresponding. images on a stereoscopic pair of photographs. As a consequence, it is necessary to mark (drill) all of the images on only one photograph in each strip in order to specifically identify the image for measurement purposes. The drilled image can then be stereoscopically transferred to the second photograph and measured with the stereocomparator without actually ever drilling the image on the second photo. Since the images are drilled on only one plate, it is not necessary to use a stereoscopic point transfer device to mark the images. In practice, the PUG device is needed only as a means for transferring the images to any adjoining strips.

In essence, a stereocomparator consists of two mechanically united monocomparators. A monocomparator is, therefore, more accurate than a stereocomparator. In practice, however, the need for additional PUG operations with a monocomparator results in the accuracy of the monocomparator-PUG combination, being about equal to that of the stereocomparator.

After the photocoordinates have been measured, the data is submitted for processing through the series of computer programs comprising the analytic aerotriangulation system.

Computer Processing

The analytic aerotriangulation system developed at.NOS consists of five programs: (1) Image coordinate refinement and threephoto orientation, (2) strip adjustment to ground control, (3) secant plane coordinate transformation, (4) block adjustment, and (5) accuracy analysis.
(1) Image Coordinate Refinement and Three-Photo Orientation:

To obtain the highest possible degree of accuracy in analytical solutions, measured photocoordinates must be corrected for systematic errors which cause distortions in the image positions. The first program, therefore, begins with a refinement of the raw x and y image coordinates measured on each photograph on the comparator. The popularity of making positive prints of the photographs on glass plates (diapositives) has declined in recent years. Today polyester plastic bases are used because they provide a dimensionally stable base film that is much less senṣitive to humidity, temperature, and laboratory processing. The photocoordinates observed on the photograph transparency are corrected for the systematic distortions introduced by the comparator, film shrinkage, camera lens, and atmospheric refraction. The problem of earth curvature is recognized in the third program, in which the ground coordinates of all objects are expressed in a geocentric, three-dimensional secant plane system that takes earth curvature into account.

The refined image coordinates are punched out to serve as input to the block adjustment program (4). The refined image coordinates theoretically should be nearly all free of systematic error and contain only residual observational discrepancies in them.

The program then proceeds to the three-photo camera orientation phase, which comprises an interrelated geometric fitting of the photographs based only on the refined image coordinates and is entirely independent from any ground control data. The computation is iterative and derives the orientation of each photograph relative to the previous two in the strip. It also determines the positions of all pertinent objects in a three-dimensional coordinate system at the scale of the photography. The collineation principle is imposed in a least squares solution that minimizes the discrepancies in the observed image coordinates. The residual errors are analyzed.by the computer, which discards. those images exhibiting excessively large discrepancies. The removal of these blunders provides "clean" image coordinate data for all subsequent computations.
(2) Strip Adjustment to Ground Control: The analysis of three photographs at a time automates the joining of the separate triplets into a continuousstrip and develops a set of model
coondinates, which are analogous to the product obtained from conventional stereotriangulation on stereoscopic plotting instruments. The horizontal and vertical strip adjustment program transforms the model coordinate data into the prevailing ground control coordinate system by fitting to control stations through the application of polynomial equations and least squares. Any large residual discrepancies appearing in the resulting adjustment are corrected in order to obtain provisional ground position data that are free of blunders prior to entering the block adjustment computation.

The analytic computations may be terminated after strip adjustment or may continue through block adjustment, depending on the desired accuracy. While block adjustment can be performed without actually using the three-photo orientation and strip adjustment programs, these preliminary programs are employed in practice to furnish improved and complete data for the block adjustment in an effort to reduce the time and cost of "debugging" and computer operations.
(3) Secant Plane Coordinate Transformation: If maximum accuracy is desired, the provisional ground coordinates are first transformed into a geocentric and then into a special secant plane system that takes earth curvature into account. The block adjustment solution is performed using these secant plane coordinates for the objects, together with the previously obtained refined image coordinates. The secant plane transformation program is designed to operate in its inverse mode so that given secant plane coordinates can be transformed back into the prevailing ground coordinate system.
(4) Block Adjustment: This program permits the simultaneous solution of the absolute orientation (three linear elements of position and three angular elements of orientation) of all photographs in a block of overlapping strips of photography. Only the pass points and control station objects contribute equations and thus influence the least square orientation solution. Their finalized ground coordinates are computed simultaneously, along with the absolute orientation of all the photographs in the block. Those objects that are not pass points or control stations do not contribute equations and thus do not influence the orientation solution. The finalized.camera parameters from the orientation solution and the refined image coordinates are used to compute the final ground $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates for these other objects by intersection. After the block adjustment is completed, the adjusted secant plane coordinates are transformed back into the original ground coordinate system by applying the secant plane transformation in its inverse mode.

The major task of the block adjustment program is the solution of the large number of simultaneous equations in a least square manner that efficiently utilizes the memory capacity of the computer. The largest program written at NOS can accommodate as many as 600 photographs in a single simultaneous least square adjustment. Some 36,000 observation equations containing about 10,000 unknowns may be generated in developing the normal equations. The number of objects whose final ground positions can be computed in the block adjustment solution is unlimited.

All of the analytic programs have been written to operate on the CDC 6600 computer. To date, the largest block adjustment problem processed through the computer contained 180 photograhs. The solution involved over 15,000 observation equations and about 4,500 unknowns. The CDC computer running time for the least square block adjustment was less than five minutes.
(5) Accuracy Analysis: In order to appreciate fully the accuracy potential of the system, and the error values at test points, a final computer program is used to develop the inverse of the matrix of normal equations, the variances, and the standard errors in centimeters in X, Y, and Z at all the points used throughout the area. The error $E=$ Qe at any point is composed of two components where Q is the variance at the point as derived from the inverse, and \bar{e} is the standard error of unit weight for the problem based on program (4). The quantity Q is affected by the geometry of the system, including the amount and distribution of control points, and e is related to the precision of the steps of the system including image resolution.

Accuracy of the NOS Analytic Aerotriangulation System
A significant increase in accuracy results when analytic aerotriangulation computations are continued through block adjustment. Studies conducted at NOS have yielded the following accuracy results:

The horizontal position root-mean-square error in. meters when using film cameras is S10-5 where S is the denominator of the photography scale fraction. If a glass plate camera is used, and the pass points are premarked, then the expected RMS error in meters is about $1 / 5$ of Sl0-5.

The vertical and horizontal errors are equal for a 3.5-inch focal length camera (base-height ratio $=1$), whereas the vertical errors may be about 1.5 times larger than the horizontal errors for a 6 -inch focal length camera (baseheight ratio $=0.6$).

This accuracy is achieved when: (a) 60 percent forward and side overlap exists between the photographs in the block; (b) a strong network of horizontal and vertical photo control exists around the perimeter of the area, along with a few interior vertical photo control stations; (c) all of these stations are premarked prior to photography; (d) the block consists of at least three strips of photography.

Note: The rms errors are considered to be essentially equal to the standard error of unit weight. The rms value therefore has a 68 percent reliability. The 90 percent reliability is about 1.6 times larger, and the 99 percent value is about 2.6 times larger.

SKYLAB

The SKYLAB mission was planned and implemented to determine the capability of man and spacecraft to conduct medical, solar physics stellar and solar astronomy, and Earth observational programs. On May 14, 1973, the National Aeronautics and Space Administration successfully launched the SKYLAB manned orbital facility into a nearly circular 234 -nautical mile (435 km) orbit above the earth (SL-I). The first three-man team of astronauts manned the laboratory for 28 days, beginning on May 25, 1973, (SL-2); the second team occupied the facility for 60 days, starting on July 28, $1973(S L-3)$; and the third team followed on November 16, 1973, for an 85-day mission (SL-4). The 50-degree inclination of the orbit permitted the astronauts to view 75 percent of the earth's surface--the area between 50 degrees North and 50 degrees South-and to pass over a given point once every five days.

The lo0-ton SKYLAB spacecraft is actually a hollowed-out third stage of a Saturn rocket, originally assigned to the U.S. moon program, which has been converted to provide living and working space for the astronauts. Within the SKYLAB space station are complex scientific and technical instruments that will enable them to conduct investigations directed toward the accomplishment of medical experiments, solar astronomy experiments, technical experiments, and earth resources experiments as follows:
a. To study man: Medical experiments will determine physiology conditioning and performance capability in real time, in zero-gravity environment, for longduration space flight.
b. To study the sun: Solar astronomy experiments will provide a synoptic survey and study of special phenomena on the solar disk in X-ray, ultraviolet (uv), and visible spectral wavelengths.
c. To study space technology: Technical experiments will evaluate coating degradation, spacecraft contamination, manufacturing and repair techniques, and mannedmaneuvering units.
d. To study the Earth: Earth resources experiments will provide a synoptic survey of selected areas on the earth in visible, infrared (IR), and microwave spectral wavelengths.

EARTH RESOURCES EXPERIMENTS

Among the various SKYLAB investigations, the Earth Resources Experiments are unique in that they are concerned directly and exclusively with earth rather than space applications. The energy reflected and radiated from various plants, ground scenes, and bodies of water has specific spectral distributions, not only in the visible but in the infrared and microwave portions of the electromagnetic spectrum. These spectral "signatures" can be detected by utilizing instruments ranging from a multiband camera to infrared spectrometers and microwave radiometers. Six such electronic and photographic remote sensing systems for observing the earth have been combined into the Earth Resources Experiment Package (EREP) and mounted on board the manned SKYLAB orbital facility. Since SKYLAB is a solar-pointing, inertially stabilized spacecraft, it must be maneuvered into an earth-oriented mode in order to use the EREP sensors.
The EREP is designed as a facility with the vantage point of space for use by a variety of users, in a wide range of applications to earth resources management. The EREP sensors can be operated singly or in various combinations, depending on the scientific requirements or other factors, such as weather and/or vehicle capability limits. Data are recorded on tape and film so that each team of astronauts can bring back to earth the data recorded during its stay on the spacecraft. After initial processing at the Johnson Space Center in Houston, Texas, the data are distributed to more than 200 SKYLAB principal investigators.
The data acquired with the EREP sensors is expected to be useful for studies and analysis related to most Earth Resources disciplines. For example, these observations can be applied to research in agriculture, forestry, ecology, geology, geography, meteorology, geomorphology, hydrology, hydrography, oceanography, cartography, and similar fields for the purpose of identifying agricultural species; measuring growth rates; assessing crop vigor and stress; classifying land use; determining land surface composition and structure; mapping snow cover and assessing water runoff characteristics; mapping pollution, shorelines, and estuaries; evaluating sea roughness conditions; and similar projects.

The SKYLAB earth resources program has been structured into ten major disciplines as outlined in Table 1 below.

TABLE 1.
EREP PROGRAM STRUCTURE

AGRICULTURE/RANGE/FORESTRY
Crop inventory
Insect infestation
Soil type
Soil moisture
Range inventory
Forest inventory
Forest insect damage

GEOLOGICAL APPLICATIONS
Mapping
Metals exploration
Hydrocarbon exploration
Rock types
Volcanoes
Earth movements
300 CONTINENTAL WATER RESOURCES
Ground water
Snow mapping
Drainage basins
Water quality
400. OCEAN INVESTIGATIONS

Sea state
Sea/Lake ice
Currents
Temperature
Geodesy
Living marine resources
ATMOSPHERIC INYESTIGATIONS

```
Storms, fronts, and clouds
Radiant energy balance
Air quality
Atmospheric effeets
```

Each SKYLAB investigation has been given a three-digit task number, according to the subdisciplines in which work is done. In addition, every EREP study site has been given a three-digit designation. that defines its geographic location.

DESCRIPTION OF EARTH RESOURCES EXPERIMENT PACKAGE (EREP) SENSORS

An extensive description of the photographic remote sensing system is given below, along with a brief description of the other EREP sensors.

Multispectral Photographic Facility (S-190A and S-190B)

The experiment objective is to photograph the earth's surface in a spectral range that includes visible light and extends into the near-infrared, with sufficient resolution and spectral definition to allow detailed analysis and interpretation by specialists in a variety of earth resources disciplines.

The facility is arranged in two parts. S-190A consists of an array of six $70-\mathrm{mm}$ film cameras, precisely matched and boresighted, so that photographs from all six cameras will be accurately in register. Thus, all of the features seen in one photograph can be simultaneously aligned with the same features in the photographs from the other cameras. A combination of black-and-white and color films is used in conjunction with selective filters for spectral analysis, allowing comparison with imagery obtained with the IR spectrometer (S-191) and multispectral scanner (S-192) and with the Earth Resources Technology Satellite (ERTS). The camera array is mounted behind an optical glass window, just forward of the radial docking hatch in the Multiple Docking Adapter (MDA).

The second part, S-190B Earth Terrain Camera, consists of a single camera that is located behind an optical glass window in the Scientific Airlock (SAL) on the antisolar side of the Orbital Workshop (OWS). This camera is an adaptation of the Lunar Topographic Camera carried on the Apollo 14 mission.

Controls for the six-camera array are integrated with the controls for the other EREP sensors located in the MDA. However, the Earth Terrain Camera controls are mounted on the side of the camera housing and are independent of other EREP sensors.

For earth resources operations, SKYLAB departs from its normal solar orientation to an orbital mode that provides for continuous pointing of the cameras and other sensors at the ground directly below. The crewmen load film, install filters, set up the camera controls, remove the covers.from the camera ports, uncover the window, install the Earth Terrain Camera in the Scientific Airlock, and make other preparations for camera operations.

The exposed film is the primary data returned at the end of each SKYLAB mission, for processing. and analysis on the ground.

S-190A
The EREP multispectral photographic camera consists of six highprecision $70-\mathrm{mm}$ film cameras with matched distortion and focal length. The f/2.8 lenses have a focal length of six inches. The camera has a field-of-view of 21.2 degrees across the flats based on the photographic format size of 2.25 inches square and provides ground coverage of 163 km square per frame at a scale of $1: 2,850,000$. The system is designed for the following wavelength/film combinations:

| 0.5 | to 0.6 | um |
| :--- | :--- | :--- |\quad PAN X BEW

S-790B
The body of the Earth Terrain Camera (ETC) is an extensively modified Hycon KA-74 reconnaissance camera body with a bidirectional focal-plane shutter and vacuum film flattening. The ETC is equipped with an $f / 4$ lens having a focal length of 460 mm . (18 inches), color correction, and a maximum radial distortion of 10 um. Forward image-motion compensation is provided by rocking the entire camera in its mount during the exposure. The ETC has a limited field-of-view of 14 degrees across the flats, based on the photographic format size of 4.5 inches square and provides ground coverage of 109 km square per frame at a scale of $1: 946,000$. The system is designed to utilize the following film types:

ESTIMATED GROUND RESOLUTION

TYPE
SO-242 Aerial color, high resolution
EK 3414 High-definition - 0.5 to 0.7 ft. on ground
EK 3443 Aerochrome IR, 0.5 to 0.88100 ft . on ground color

WAVELENGTH, um (at' low contrast)

0.4 to 0.7	70 ft . on ground
0.5 to 0.7	55 ft . on ground
0.5 to 0.88	100 ft . on ground

The ETC is not a metric camera in the photogrammetric sense. Because the image frame is a part of the removable film magazine and because of the use of a focal-plane shutter, the geometric quality of the photographs is limited. The shutter motion is in the flight direction for one exposure, and opposite the flight direction for the next exposure. This causes a slight scale compression or stretching in the flight direction, depending
upon errors in the FMC. The principal point cannot be precisely located, and therefore analytical applications are limited. When the camera is operated for 60 percent overlap, the baseheight ratio is only 0.10 ; thus, any stereoscopic height measurements from the photographs have especially limited accuracy.
In spite of these limitations, the ETC represents a significant advance in camera systems for earth resources observations from space. The ETC provides photography having a ground resolution from 3 to 20 times better than that of any other space photographic system previously used. As a consequence, the primary objective of the ETC is to obtain high~resolution stereoscopic photography to support the other EREP sensors by aiding in the interpretation of data gathered by them.

Note: A more complete discussion of the ETC is given in a paper by J. D. McLaurin, U.S. Geological Survey, entitled THE SKYLAB S-190B EARTH TERRAIN CAMERA--see Appendix A.

Infrared Spectrometer (S-191)

The primary objective of this experiment is to make a fundamental evaluation of the applicability and usefulness of sensing earth resources from orbital altitudes in the visible through nearinfrared and in the far-infrared spectral regions. Correlation of SKYLAB spectrometer data, with data gathered by ground-based and aircraft sensors, will ensure that the radiance from the target and its characteristics will be accurately established. The extent to which the effects of the atmosphere can be removed from the data is a study of particular importance to all remote sensors, and this accuracy will be quantitatively tested. In addition, the parameters describing the atmosphere at the time of acquisition will be collected.

The filter wheel spectrometer has a l-milliradian field-of-view, and its spectral range coverage is from 0.4 to 2.4 and 6.2 to 15.5 micrometers. The spectrometer has a pointing and tracking capability of 45 degrees forward, 10 degrees aft, and 20 degrees to the side of the ground track. The astronaut uses the view-finder/ tracker to acquire and track target sites during data acquisition, which are in his field of view for less than a minute. The primary data are recorded on magnetic tape and are returned with each crew rotation.

Multispectral Scanner (S-192)

The primary objective of this experiment is to assess the feasibility of multispectral techniques for remote sensing of earth resources from space. Specifically, attempts will be made at spectral signature identification and mapping of ground test sites in agriculture, forestry, geology, hydrology, and oceanography.

The basic instrument design is that of an optical mechanical scanner using an image plane scanning mirror, with a folded reflecting telescope used as a radiation collector. The scanner operates in 13 spectral intervals of the visible, near-infrared, and thermal-infrared regions of the spectrum ranging from 0.41 to 12.5 um . The primary data are recorded on magnetic tape and are returned with each crew rotation.

The spectral range covered by the scanner overlaps the range of the multispectral cameras (S-190) and the IR spectrometer (S-191), permitting a cross-check of results deduced from these three. . systems. In addition, the IR spectrometer may provide atmospheric. density profiles useful for correcting the primary causes of atmospheric attenuation of the scanner data.

Microwave Radiometer/Scatterometer and Altimeter (S-193)
The objectives of this experiment are simultaneous measurement of the radar differential backscattering cross section and passive microwave thermal emission of the land and ocean on a global scale, and engineering data for use in designing radar altimeters.

The microwave radiometer/scatterometer experiment is a combination of an active radar scatterometer and passive radiometer. The radar backscattering cross section measurement gives a measure of the combined effect of the dielectric properties, roughness, and brightness temperature of the terrestrial surface. Information over test sites is obtained by the NASA earth resources aircraft for validation and extrapolation of spaceborne measurements. All data are recorded on magnetic tape.

L-Band Radiometer (S-194)
The experiment objective is to obtain measurements of the brightness temperature of the earth's surface along the spacecraft track. The L-band radiometer has basically the same operating principle as the radiometer part of the microwave radiometer/ scatterometer experiment, except that the operating frequency is changed from 13.9 GHz to 1.42 GHz . A function of the experiment is to supplement the measurement results of Experiment S-193 by taking into consideration the effect of clouds on radiometric. measurements. By using two frequencies ($\mathrm{S}-193$ at 13.9 GHz and S-194 at 1.42 GHz) simultaneously in measurements, corrections can be made on radiometric data to include the cloud effects: All data are recorded on magnetic tape.

A summary of the SKYLAB EREP sensor characteristics is given in Table 2:

Table 2.
SKYLAB
EREP SENSOR CHARAGTERISTICS

SENSOR	DESCRIPTION	SPECTRAL COVERAGE	SPECTRAL RESOLUTION	GROUND COVERAGE	SPATIAL RESOLUTION
$5-190(A)$ multispectral PHCTCGRAPHIC CAMERA	SIX 70 mm CAMERA MATCHED DISTCRTION AND FOCAL LENGTH (15.2 cm) 12 meters registration 18 FILTERS $21^{\circ} \mathrm{FOV}$	MICROMETERS .5-. 6 PANX BSW .6-. 7 PANX B\&W .7-. 8 IR B\&W . 8 - . 9 IR B\&W .5-. 88 IR COLOR .4-. 7 HR CCLOR	0.1 MICROMETERS	$163 \times 163 \mathrm{Km}$	APPROX. 24m TO 68 m *
5-180(8) EARTH TERRAIN CAMERA	460 mm FOCAL LENGTH 114 mm FILM FORMAT 3 FILTERS	$0.4 \text { TO } 0.7 \mathrm{H} . \mathrm{R} .$ AERIAL COLOR 0.5 TO 0.88 IR COLOR 0.5 TO 0.7 HIGH DEFINITION AERIAL \& \& W	0.1 MICROMETERS	$100 \times 108 \mathrm{Km}{ }^{\prime}$	APPROX. 10 mrO 3 m *
$5-191$ INFRARED SPECTROMEIER	POINTLD GY CREW FILTER WHEEL ONE SEC. SCAN RATE ONE mRAD FOV CRYOGENIC COOLER 16 mm CAMERA	0.4 TO 2.4 AND 6.2 TO 15.5 MICROMETER	1\% TO 4\%	$\begin{aligned} & 0-45^{\circ} \text { FWD } \\ & 0-20^{\circ} \text { SIDE } \\ & 0-10^{\circ} \text { REAR } \end{aligned}$	$\begin{aligned} & 0.44 \mathrm{Km} \\ & \text { SPCI } \end{aligned}$
$\begin{aligned} & \text { S-192 } \\ & \text { IAULTISPECTRAL } \\ & \text { SCANNER } \end{aligned}$	image plane scanner 6000RPM SCAN MIRROR CRYOGENIC COOLER HgCdTe DETECTORS (13 USED) ` 0.186 mRAD FOV	$\begin{aligned} & 0.4 \text { TO } 2.35 \text { AND } \\ & 10.2 \text { TO } 12.5 \\ & \text { MICROMETERS } \end{aligned}$	13 BANDS: 0.04 TO 0.1 MICROMETERS	68 Km SWATH	$\begin{aligned} & 80 \times 80 \mathrm{~m} \\ & \text { SPO: } \end{aligned}$
S-193 MICROWAVE RADICMETER/SCATTEROMETER ANO ALYIMETER	1.1 m PARABOLIC ANTENNA TWO AXIS GIMBAL ($0-40^{\circ}$ IN FIVE STEPS) i. $5^{\circ} \mathrm{FOV}$ DUAL POLARIZATION ALTIMETER NADIR SEEKER	13.8 TO 14.0 GHz (13.9 GHz CENTER FREQUENCY)	SCAT RECEIVER: FIRST IF. 500 MHz SECOND IF: 50 MHz RAD RECEIVER: SINGLE FREQUENCY	$\begin{array}{ll} 0-48 & \text { FWD } \\ 0-48 & \text { SIDE } \end{array}$	$\begin{aligned} & 11 \times 11 \mathrm{Km} \\ & \text { SPCI } \end{aligned}$
$\begin{aligned} & \text { S-194 } \\ & \text { L-BAND } \end{aligned}$ RADIOMETER	1 m PHASED ARRAY (8×8 ELEMENTS) COLD ANO hOT REF.	1.400 TO 1.427 GHz	18 MHz FROM CENTER fREQUENCY	111 Km CIRCLE	111 Km SPCT
NOTES: FOV = FIELD OF VIEW * - DOES NOT INCLUDE LOSS DUE TO ATMOSPHERE		NASA HQ MLT1-5751 REV. 2-10-73			

IDENTIFICATION OF THE NOAA/NOS INVESTIGATION

The NOAA/NOS proposal to perform analytic aerotriangulation utilizing SKYLAB photography has been designated as SKYLAB EREP INVESTIGATION NO. 459 and was performed under NASA PURCHASE ORDER T-4ll0B. The task-site identification number for the study is 931651 in which 931 classifies the task as being in the CARTOGRAPHY MAP ACCURACY discipline, and 651 identifies the test site as the CARETS AREA, which runs from Charlotte, North Carolina, northeast to Delaware Bay.

The official NASA description of this investigation is as follows:
931 Investigate the feasibility of utilizing spacecraft (S-190B) imagery for analytic aerotriangulation methods to provide low-order, high-density control network suitable for small-scale mapping applications.

Employ this technique for coastal zone mapping at medium and small scales, surveys in remote areas, forest and range management, various planning activities and route location for highways, pipelines, transmission lines, and canals.

SKYLAB S-I90B EARTH TERRAIN CAMERA (ETC) PHOTOGRAPHY

SKYLAB S-190B photography was secured over the test site, during orbit 36 , on September 12, 1973 (SL-3). The film used in the ETC was Aerial-Color, High-Resolution S0-242. Second generation transparencies, positive in tone and direction when viewed on thë emulsion side, were made from the original film by printing emulsion-to-emulsion in contact. These l:946,000 scale, 4.5 4 4.5-inch transparencies and 9×9-inch contact paper prints were provided to the Coastal Mapping Division of the National Ocean Survey for processing through the analytic aerotriangulation system.

The photography consisted of a strip of 19 photographs ranging along a 500-mile track from Charlotte, North Canolina, (frame 86-288) to Atlantic City, New Jersey, (frame 86-306). A break in the required 60 percent overlap reduced the usable strip of photography to 12 photographs along a 350 -mile track from Charlotte, North Carolina, (frame 86-288) to the Rappahannock River in Virginia (frame 86-299).

Although the photography provided sharp high-resolution imagery, the selection of pertinent images for measurement on the Wild STK stereocomparator was hampered by the extensive cloud cover occurring on most of the 11 stereoscopic models comprising the analytic strip.

Despite the cloud cover, 29 photo control points of known position and elevation were office-identified on the SKY̌LAB photography. Road intersections were located by stereoscopically examining the photographs and comparing them with 1:24,000 scale USGS quadrangles covering the area. The Geographic Positions were scaled from the quadrangles by linear interpolation between the $2^{\prime} 30^{\prime \prime}$ intervals shown on each quadrangle. The scaling was performed five times and a mean Geographic Position computed. In addition, aeronautical aíds to navigation and airport runway ends were identified on the pictures, and their positions and elevations determined from data secured by the Coastal Mapping Division under its Airport Obstruction Chart Survey program. The office-identified road intersections and aeronautical aids provided images slightly superior in quality to that of the office-identified airport runway ends. The locations of these photo control points or stations on the ETC photographs is shown in Figure 1. Table 3 describes the stations and their approximate accuracy.

All of the photo control stations were at least l/4-inch in from the sides of the $1: 946,000,4.5 \times 4.5$-inch transparencies. Twenty-five of the stations appeared on only two consecutive overlapping photographs in the strip, while four stations appeared on three consecutive photographs. The location of the camera clock within the photographic format prevented two control stations from creating imagery on three consecutive overlapping pictures.

PASS POINTS

Two pass points were established in the nine conventional relative orientation locations on each photograph. The pass points were drilled into the transparency emulsion with the Wild PUG-2 stereoscopic point transfer device in areas providing an optimum stereoscopic perception. As a consequence of the intrusion of the camera clock into the photographic format, it was necessary to set the pass points along the bottom easterly edge of the strip at least 1/2-inch in from the sides of the transparencies.

The two pass points were used in the preliminary analytic aerotriangulation programs consisting of the Image Coordinate Refinement and Three-Photo Orientation program, the Secant Plane Coordinate Transformation program, and the Strip Adjustment to Ground Control. However, only one of the two pass points in each relative orientation location was used in the block adjustment of the strip.

MARKING AND PHOTOCOORDINATE MEASUREMENT

The Wild PUG-2 stereoscopic point transfer device was used to select and mark only the pass points by drilling holes into the photographic emulsion at these images using a 60 -micron diameter diamond-tipped

TABLE 3.
ACCURACY OF OFFICE IDENTIFIED CONTROL USED IN

BLOCK ADJUSTMENT

CONTROL	APPROXIMATE	APPROXIMATE	
STATION	HORIZONTAL	VERTICAL	
NUMBER	ACCURACY	ACCURACY	DESCRIPTION

288100
288101
293100 15 : 5.0

294102
295100
299100

288110
288111
290110
296111

288201
288202
290201
290111
292110
5
0.5

ROAD INTERSECTION SPOT
ELEVATIONS
Horizontal and vertical positions from l:24,000
293110
296201
296110
298110
299110
299111

288120
291120°
291121
1.0 .3

293120
293121
297120
297121
drill. The photo control point images were not drilled in order to preserve the sharpness of the imagery.

The measurement of the x and y photocoordinates for the pass points and control stations was performed on a Wild STK stereocomparator. Use of the stereocomparator allowed the operator to drill the pass point images down the center of each photograph only and to then stereoscopically transfer the drilled image to the overlapping photograph for measurement, without actually ever drilling the image on the second photograph. The stereocomparator measuring mark consisted of a 165-micron diameter black circle having a 20 -micron black dot at its center. The dot was centered in the 60-micron diameter drilled pass point image when observing the photocoordinates for the point.

FIDUCIAL MARKS

In the time interval occurring between the film exposure, its development, and the subsequent printing of the glass plate diapositive or transparency, the aerial film undergoes a random enlargement and shrinkage change. Since the accuracy of analytic photogrammetric computations depend on the use of a true central perspective, it is necessary to compensate for the film distortion and thereby mathematically return the film to the physical format present at the instant of exposure. This can be achieved by comparing the positions of the images created by the fiducial marks on each photograph with the true positions of these marks in the camera focal plane. The photograph is then mathematically stretched so as to place the fiducial marks back into their true positions.

In metric mapping cameras, the fiducial marks are located in the."* corners of the camera focal plane. Some cameras have additional fiducial marks at the midpoints of the sides of the focal plane. The marks are normally a part of the lens cone and thus remain in a fixed position relative to the camera lens. The intersection of the diagonals joining the corner fiducial marks should represent the principal point of the photograph, i.e., the foot of the perpendicular from the focal plane to the nodal point of the camera lens. The corner fiducial marks on the Wild aerial cameras owned by NOS consist of an interrupted cross having a l00-micron diameter dot at the center.

The ETC. is not a metric camera in the photogrammetric sense because the fiducial marks and the image frame are a part of the removable film magazine and hence are not in a fixed position relative to the camera lens. Fortunately, the resulting lack of precision in locating the principal point on the photography is of minor consequence in narrow angle cameras, such as the ETC.

The ETC has a series of holes drilled around the perimeter of the image frame. These holes created photographic images having an approximate diameter of 330 microns. The images were of poor quality and rather ragged around the edges. For this reason, the stereocomparator operator centered the 165 -micron circle of the measuring mark in the center of four holes selected to serve as fiducial marks.

NOS normally employs flash plates to provide a photographic record of the true relative positions of the camera fiducial marks. The flash plates are made in the laboratory by exposing a diapositive mounted in the camera so that its emulsion lies in the camera focal plane. Because the emulsion is secured on a stable glass base, the coordinates of the fiducial marks can be measured on a comparator later, with no concern for film shrinkage distortion.

Since no flash plate was available for the ETC, a nominal set of true fiducial coordinates was obtained by mounting each of the transparencies in turn on the comparator and then reading the photocoordinates for the four selected fiducial holes on each of the photos. The data were entered into a flash-plate-reduction program to accomplish the following tasks: l. Correct the observed photocoordinates of the fiducial holes for comparator systematic errors, 2. determine by least square methods a meaned set of nominal true photocoordinates for the fiducial holes in a coordinate system, having its origin at the principal point (intersection of diagonals joining fiducials $1-3$ and 2-4) and oriented so that $\mathrm{x}_{3} \stackrel{\cong}{=} \mathrm{y}_{3}=\mathrm{y}_{2}$. See Figure 2 below. As a consequence of this computation, the direction of flight becomes the x-axis of the photocoordinate system.

The meaned set of nominal true photocoordinates for the fiducial holes provided by the flash-plate-reduction program are:

FIDUCIAL HOLE
7
2
3
4
x (microns) y

59227.74	50154.18
59112.61	-50132.70
-59202.38	-50132.70
-59112.77	50132.84

The data were then prepared for processing through the NOAA/NOS analytic aerotriangulation system of computer programs. All of the computations were performed on the CDC 6600 computer.

COMPUTER PROCESSING

The 12-photo strip extended over the three states of South Carolina, North Carolina, and Virginia. The computational processing requires all of the ground positional data to be expressed in a common three-dimensional coordinate system. In order to attain this condition, and also to compensate for the presence of earth curvature in the data, the initial computation Was to develop secant plane coordinates for each of the 29 officeidentified control stations.' Accordingly, the Geographic Positions and elevations of these points were processed through the Secant Plane Coordinate Transformation program.

Secant Plane Coordinate Transformation: The elevations of the control points obtained from the $1: 24,000$ scale USGS quadrangles and airport surveys are based on sea level and thus do not recognize the existence of earth curvature. The program computations begin with a conversion of the Geographic Positions and elevations to an orthogonal geocentric coordinate system.having its origin at the center of the earth as defined by the Clarke 1866 Spheroid. The geocentric coordinates are then transformed into a secant plane coordinate system in which the secant plane intercepts the earth's surface near the edges of the area to be mapped so that most of the terrain objects will possess a positive Z (elevation) coordinate. The origin of the secant plane system is placed near the center of the project area. The secant plane origin selected for the SKYLAB study was Latitude $36^{\circ} 20^{\prime} 00^{\prime \prime}$, Longitude $-78^{\circ} 4^{\prime \prime} 00$ The Z-axis is the extension of the nommal to the ellipsoid which, because of the earth's ellipsoidal nature, does not pass through the center of the earth. The X-axis points towards the East and the Y-axis points towards the North.

Table 4 shows the Geographic Position and elevation input to the program and the resulting secant plane coordinate output from this program.

SECANT PLANE ORIGIN
LATITUDE 3620 LONGITUDE -078 4500
GEOGRAPHIC POSITION INPUT

					Elevation (feet)		
288100	34	59	20.200	-080	57	18.000	650.0
288110	35	15	25.015	-081	01	37.254	710.0
288201	35	15	05.424	-081	01	43.630	633.0
288111	34	44	15.094	-080	40	58.811	565.000
288202	34	43	34.559	-080	42	15.428	598.0
288120	35	12	31.865	-080	57	00.375	707.0
288101	35	13	13.390	-080	56	18.073	740.00
290110	35	44	30.052	-080	21	43.729	760.00
290201	35	44	34.185	-080	21	48.169	753.0
290111	35	03	03.258	-079	50	57.400	456.0
291120	36	05	57.511	-079	57	09.510	926.0
291121	36	05	13.059	-079	56	15.037	900.0
292110	36	08	32.741	-079	47	26.181	843.0
292111	35	36	54.282	-07902	53.990	185.0	
293100	35	52	20.520	-078	47	01.000	430.00
293120	35	51	52.243	-078	47	51.245	398.0.
293121	35	51	57.031	-078	46	49.346	401.0
293110	36	05	18.889	-079	03	46.083	516.00
294102	36	40	29.600	-079	00	53.200	530.00
295100	36	49	04.400	-077	54	11.700	350.00
298111	37	13	22.840	-077	59	24.112	322.00
296201	37	1.3	10.548	-077	59	37.971	339.0
296110	36	39	51.186	-077	34	17.309	156.0
297120	37	29	44.350	-077	18	25.908	161.0
297121	37	30	14.556	-077	18	38.599	160.0
298110	37	12	17.161	-076	59	13.914	112.0
299100	37	26	54.700	-076	42	42.100	10.00
299110	37	54	13.346	-076	51	44.738	031.0
299111	37	26	06.654	-076	20	11.559	013.0

SECANT PLANE OUTPUT IN METERS

	X	Z	
288100	-201278.692	-146855.736	-3874.837
288110	-207169.956	-116985.134	-3424.735
288201	-207344.107	-117584.396	-3464.941
288111	-176997.192	-175263.639.	-3901.313
288202	-178969.743	-176473.122	-3979.759
288120	-200294.019	-122480.950	-3309.711
288101	-199196.924	-121226.254	-3241.238
290110	-145819.163	-64433.577	-962.699
290201	-145928.545	-64304.337	-966.024
290111	-100287.221	-141707.209	-1430.977
291120	-108297.906	-25295.089	110.910
291121	-106952.115	-26681.925	119.998
292110	-93656.711	-20679.874	333.841
292111	-27029.441	-79651.423	297.541
293100	-3035.511	-51147.971	721.944
293120	-4296.418	-52018.862	704.400
293121	-2743.370	-51871.929	707.371
293110	-28172.927	-27112.861	834.668
294102	-23669.361	37934.083	801.864
295100	75550.344	54100.713	.226 .922
296111	67448.740	98990.886	-231.394
296201	67110.169	98609.407	-216.716
296110	105357.883	37358.925	-134.052.
297120	127578.566	129930.492	-1756.009
297121	127252.667	130856.770	-1768.812
298110	156468.136	98126.586	-1843.117
299100	180328.210	125649.347	-2988.252
299110	165981.068	175874.338	-3784.177
299111	213537.475	124932.816	-3997.981

Image Coordinate Refinement and Three-Photo Orientation: The x and y photocoordinates observed on the stereocomparator for the fiducial and nonfiducial images on each transparency were then processed through the image coordinate refinement and three-photo orientation program. All of the photocoordinates were first corrected for comparator calibration errors. The program then performed a least squares fit of the fiducial hole photocoordinates to the nominal true photocoordinates for these fiducial holes, as previously obtained from the flash-plate-reduction program. This operation of placing the fiducial holes back into their true positions serves to correct all of the data for film shrinkage distortion and to express the photocoordinates in a two-dimensional photocoordinate system having its origin at the principal point and oriented so that the x-axis is the direction of flight.

The systematic errors still remaining in the photocoordinate data are those due to the distortions introduced by the aerial camera lens and atmospheric refraction. The Addendum to LEC/ ASD Technical Memo No. TM 73-002 - April 1973 issued on July ll, 1974, indicated the camera lens symmetrical distortion and the asymmetrical distortion* caused by lens decentration to be probably insignificant from zero. In addition, distortion due to atmospheric refraction at camera altitudes above 40 miles is relatively negligible. For this reason, no attempt was made during the image coordinate refinement phase to compensate for camera lens and atmospheric refraction distortion.

The refined image coordinates provided by the program theoretically should be nearly all free of systematic error and contain only residual observational discrepancies in them. These refined coordinates were then punched out to serve as input to the block adjustment program.

The program then proceeded to the three-photo camera orientation phase, which comprises an interrelated geometric fitting of the photographs, based only on the refined photocoordinates and is entirely independent from any ground control data. The computation is iterative and derives the orientation of each photograph relative to the previous two in the strip. It also determines the positions of all pertinent objects in a threedimensional coordinate system at the scale of the photography. The collineation principle is imposed in a least squares solution that minimizes the residual observational discrepancies in the image coordinates. The residual discrepancies are analyzed by the computer, which discards those images exhibiting excessively large discrepancies. The removal of these blunders provides "clean" photocoordinate data for all subsequent computations.

Strip Adjustment to Ground Control: The analysis of three photographs at a time automates the joining of the separate triplets into a continuous strip and develops a set of mode'l coordinates that are analogous to the product obtained from conventional stereotriangulation on steneoscopic plotting instruments. The horizontal and vertical strip adjustment transforms the model coordinate data into the prevailing ground control coordinate system, which is a secant plane coordinate. system for this study, by fitting to the control stations through the application of polynomial equations and least squares. Any large residual dịcrepancies appearing in the resulting adjustment are corrected in order to obtain blunder-free provisional ground position data prior to entering the block adjustment computation.
The strip adjustment of the SKYLAB photography was performed holding to the 14 photo control stations identified on Figure 1 by a . Note: These same 14 stations were employed later to control the block adjustment solution. The strip adjustment was performed twice--going from frame 86-28.8 to frame 86-299 and then going from frame $86-299$ to frame $86-288$.. In both adjustments, the resulting discrepancies at the 14 held photo control stations and 15 withheld stations increased in magnitude from about 25 meters at the beginning of the strip to approximately 100 meters at the tail end of the bridge. Results of this nature do not occur on normal photogrammetric mapping operations conducted by NOS. The appearance of these apparently systematic strip adjustment discrepancies on the SKYLAB bridge is assumed to be attributable to the failure to completely compensate for the systematic errors introduced. into the data by the nonmetric characteristics of the Earth Terrain Camera.

Block Adjustment: - In order to maximize the accuracy of the analytic aerotriangulation, the block adjustment program was applied, using the previously obtained refined photocoordinates and the provisional object coordinates. The program permits a simultaneous solution of the absolute orientation of all the photographs, together with a determination of the finalized coordinates for each object. This office has developed three simultaneous analytical aerotriangulation block adjustment programs for operation on the CDC 6600 computer.

1. 25-Photo Block Adjustment: This program was designed to service smaller organizations not having access to large-size computers and will accommodate blocks up to 25 photos in size. All input/output is on cards, and the program requires less than 50,000 words of computer core storage. The logic of the solution is similar to that of the 185 -photo block adjustment program.
2. 185-Photo Block Adjustment: The block can contain as many as 185 photographs in a single simultaneous least squares solution. All input/output is on tape. Approximately one million words of storage are required, and therefore auxiliary disk storage and extended core storage is used to augment the CDC 6600 core memory.

The area to be block adjusted may be of any shape. The strips of photography can be of variable length and may have any overlap with other strips in the block. Thus, diagonal crossflights may be included, if desired. The photographs can be entered into the solution in any order. Photographs taken by aerial cameras having different focal lengths may be used simultaneously in the solution.

All of the pass points and control stations contribute equations to the normal equation matrix and thus influence the least squares orientation solution. Corrections to the provisional coordinates for these objects are computed simultaneously with the determination of the absolute orientation of all the photographs in the block. The unweighted control. stations perform as if they are pass points. The weighted control stations can be computed as if they are pass points by using their refined/photocoordinates and the finalized camera parameters from'the orientation solution to determine their ground coordinates by intersection.
3. 600-Photo Block Adjustment: Blocks up to 600 photographs in size can be accommodated in this version. All input/output is on tape. Auxiliary disk storage is necessary because the program requires nearly one million words of memory.

This version is not as flexible as the 185 -photo program in terms of data input organization, but the arithmetic approach employed results in a more efficient computation and a much shorter computer running time. The area should be square or rectangular in order to simplify the arrangement of input data. Photographs must be entered into the solution in the exact order in which they were taken and may not overlap each other by more than 60 percent. No strip can have more than 20 pictures in it. The program permits the mixing of photographs taken by aerial cameras of different focal lengths.

All of the pass points and control stations contribute equations to the normal equation matrix and thus influence the least squares orientation solution. The finalized camera parameters from the orientation solution and the refined photocoordinates of the pass points and control stations are used to compute the final ground coordinates for these objects by intersection.

The 600-photo block adjustment program was used for the SKYLAB analytic aerotriangulation study. A Fortran listing of this program is given in Appendix B.

Thirty-six pass points (one in each relative orientation location) and all of the 29 office-identified photo control stations were permitted to contribute observation equations to the normal equation matrix and thereby influence the least squares orientation solution of the 12 photographs comprising the block. The provisional coordinates for these objects should be reasonably close to their true values in ordex to minimize the number of iterations required of the block adjustment solution. For this reason, the initial ground (secant plane) coordinates of the pass points consisted of the data furnished by the first half of the strip adjustment going from frame 86-288 to frame 86-299--and by the first half of the strip adjustment going from frame 86-299 to frame 86-288. The known true ground (secant plane) coordinates were used as the initial coordinates for the 29 photo control points.

Table 5 is a listing of the initial provisional ground (secant plane) coordinates for the pass points and the photo control stations. A listing of the refined photocoordinates for these pass points and photo control stations, as previously punched out by the Image Coordinate Refinement and Three-Photo Orientation program, is given in Table 6.

292
292291310 292291320 292291330 292292310 292292320 292292330 292293310 292293320 292293330 292292110 292291120 292291121 292293100 292293110 292293120 292293121 292292111

293
293292310 293292320 293292330 293293310 293293320 293293330 293294310 293294320 293294330 293293100 293293110 293293120 293293121 293294102

294
294293310 294293320 294293330 294294310 294294320 294294330 294295310 294295320 294294102 294295330 295 295294310 295294320 295294330 295295310 295295320 295295330 295296310 295296320 295296330 295296110 295296111 295295100 295296201

296
296295310 296295320 296295330 296296310 296296320 296296330 296297310 296297320 296297330 296296110 296296111 296295100 296296201
$-4.8126509 \mathrm{E}-02$
$-5.2868542 \mathrm{E}-02$
-5.1129797E-02 1.8499420E-03 4.0858396E-03 -9.3830666E-04 5.1925419E-02 5.0031725E-02 $4.7535343 \mathrm{E}-02$
-1.9237138E-02 -3.4734189E-02
$-3.4488084 E-02$ $3.8201346 \mathrm{E}-02$ 3.2417993E-02 3.6554509E-02 3.7984083E-02
-7.2191183E~04
-4.6876203E-02
$-4.4675254 E-02$
$-4.9701058 \mathrm{E}-02$ 3.2954850E-03
1.3644901E-03
-1.1609361E-03 4.9291420E-02 $5.0331744 \mathrm{E}-02$ 5.0443036E-02 $-1.0472546 \mathrm{E}-02$ $-1.6304848 \mathrm{E}-02$ $-1.2119203 E-02$ $-1.0684280 \mathrm{E}-02$ $2.9769123 E-02$
$-4.5408740 \mathrm{E}-02$
$-4.7413524 \mathrm{E}-02$
-4.9922832E-02 6.4136652E-04 1.6050855E-03 1.7489357E-03 4.8336748E-02 4.5921897E-02
-1.9005334E-02 $5.0752810 \mathrm{E}-02$
-4.8065487E-02
-4.7116111E-02
-4.6971411E-02
-2.8582516E-04 -2.7288240E-03 2.1121530E-03 $4.8350200 \mathrm{E}-02$ $4.8859741 \mathrm{E}-02$ $4.3942351 E-02$ 4.1888299E-02 $4.9557802 \mathrm{E}-02$ $2.7383244 \mathrm{E}-02$ 4.9025404E-02
$-4.8912550 \mathrm{E}-02$
-5.1417141E-02
-4.6558160E-02
-2.1747625E-04 2.4754045E-04 -4.6724768E-03 5.1814312E-02 $5.1438535 \mathrm{E}-02$ 4.9087131E-02 -6.6781630E-03 $9.5107825 E-04$ -2. $1251919 \mathrm{E}-02$ $4.1528880 \mathrm{E}-04$
$-3.0527771 E-02$
$4.7874533 \mathrm{E}-02$
3.5506342E-03
$-3.0333683 E-02$
$4.8972518 \mathrm{E}-02$
7.8532402E-03
-2.8029944E-02
5.0058976E-02
$4.5751374 E-03$
$4.3086281 E-02$
4.8658235E-02
$4.6586076 \mathrm{E}-02$
-4.1701161E-02
-4.9433929E-03
-4.1634943E-02
-4.2517091E-02
-5.0470942E-02
-3.'1929435E-02
$4.7409829 \mathrm{E}-02$
$6.2704290 E-03$
-2.9647102E-02
$4.8547056 \mathrm{E}-02$
3.0063077E-03
-2.6523827E-02 3.7760516E-02
4. $6554986 \mathrm{E}-03$
$-4.3320 .930 \mathrm{E}-02$
$-6.5265715 \mathrm{E}-03$
$-4.3255058 \mathrm{E}-02$
$-4.4135354 E-02$
4.6062768E-02
$-3.1276435 E-02$ $4.6910495 \mathrm{E}-02$
1.3757361E-03
-2.8164236E-02 3.6179394E-02 3.0448055E-03
$-2.7948864 E-02$ 3.1223507E-02 $4.4462580 \mathrm{E}-02$ 7.0171463E-03
-2.9755754E-02 3.4612072E-02 $1.4643224 \mathrm{E}-03$ $-2.9563473 \mathrm{E}-02$ 2.9684546E-02 5.4490202E-03
$-3.0367873 \mathrm{E}-02$ $4.8204153 \mathrm{E}-02$ 9.7309548E-03
-4. $1150655 \mathrm{E}-02$ $3.5889388 \mathrm{E}-02$
-7.6541133E-03 $3.5791637 \mathrm{E}-02$
-3.1175464E-02 2.8070525E-02 $3.8367575 \mathrm{E}-03$
-3.2005718E-02 4.6660238E-02 8.1401176E-03 -2.1334985E-02 $4.2232885 \mathrm{E}-02$ 5.1457554E-03 -4.2801992E-02 3.4330292E-02
-9.2674902E-03 3.4232754E-02

297
297296310 297296320 297296330 297297310 297297320 297297330 297298310 297298320 297298330 297296111 297297120 297297121 297298110 297296201

298
298297310
298297320
298297330 298298310 298298320 298298330 298299310 298299320 298299330 298299110 298297120 298297121 298298110 298299100 298299111

299
299298310 299298320 299298330 299299310 299299320 299299330 299000301 299000302 299000303 299299110 299299100 299299111
$-4.8884683 \mathrm{E}-02$
-4.8471439E-02
$-5.3387673 \mathrm{E}-02$
3.2292043E-03 2.8155666E-03 4.7887551E-04 $4.9384170 \mathrm{E}-02$ $4.8950281 E-02$ 5.3156090E-02 -4.7770507E-02 $2.3627514 \mathrm{E}-02$ 2.3945413E-02 2.7641953E-02 $-4.8307759 \mathrm{E}-02$
$-4.5428380 E-02$
-4.5919888E-02
$-4.8222649 \mathrm{E}-02$
8.0468845E-04
2.9431491E-04
4.5390987E-03 4.7350772E-02 $4.4515357 \mathrm{E}-02$ $5.1835518 \mathrm{E}-02$ 3.7430048E-02 -2.5071781E-02 -2.4755306E-02 -2.0994424E-02 $1.7160147 \mathrm{E}-02$ 4.4993911E~02 11
-4.7827856E-02
$-4.8340167 \mathrm{E}-02$
-4.4103047E-02
$-1.1510283 \mathrm{E}-03$
$-4.0500174 E-03$
3.2847107E-03
$-1.9679956 \mathrm{E}-10$
$-1.9679956 \mathrm{E}-10$
-1.9679956E-10
-1.1156657E-02
$-3.1453155 \mathrm{E}-02$
-3.5411964E-03
$-3.3540838 \mathrm{E}-02$
$4.5150300 \mathrm{E}-02$
$6.6214000 \mathrm{E}-03$
$-2.2914424 \mathrm{E}-02$
4.0743480E-02
3.6049954E—03
$-3.1794614 E-02$
4.5322814E-02
$1.1645544 \mathrm{E}-02$
3.2823481E-02
2.0265087E-02
2.1263032E-02
-2.5576312E-02
3.2723607E-02
-2.4470411E-02
3.9161207E-02
2.0387070E-03
$-3.3377516 E-02$
4.3796670E-02
$1.0100176 \mathrm{E}-02$
$-5.1665726 \mathrm{E}-02$
$4.8243494 \mathrm{E}-02$
1.2330690E-02
3.3063014E-02
$1.8706945 \mathrm{E}-02$
1.9706280E-02
-2.7139170E-02
-1. $9058386 \mathrm{E}-02$
-4. 1062900E-02
-3.4851692E-02
4. $2357455 \mathrm{E}-02$
8.6372888E-03
$-5.3232239 E-02$
$4.6813308 E-02$
$1.0854518 \mathrm{E}-02$
$-3.8623708 \mathrm{E}-09$
-3.8623708E-09
$-3.8623708 E-09$
3.1610337E-02
$-2.0549835 \mathrm{E}-02$
$-4.2610240 E-02$

End of Table 6.

Weighting the Block Adjustment Solution: The weighting of the block adjustment solution is performed by applying image quality and control station weights to the data during the computations. These weights can be defined as follows:

Image Quality Weights: It is logical to weight a block adjustment in favor of those observation equations provided by the better quality images because their equations are more reliable. Image quality is primarily influenced by lens resolution and the type of ground object creating the image. The weighting is accomplished by multiplying each observation equation by a number expressing its relative reliability.

Control Station Weights: The observation equations are written for each image on every photograph in the block created by the pass points, control stations, and other objects which are used to influence the least square orientation solution. When written for image created by the control stations, it is necessary to recognize that their initial provisional X, Y, Z ground coordinates were obtained by classical ground surveying methods and should be favored during the block adjustment. This is accomplished by increasing the size of the main diagonal elements of the normal equation matrix, which are the coefficients of the unknown $d X, d Y$, and/or $d Z$ correction terms. This serves to reduce the size of the unknown $d X$, $d Y$, and/or $d Z$ correction terms when the normal equations are solved. . By reducing the magnitude of the corrections to the initial approximations, the least square adjustment is constrained in favor of these initial values. Control stations that are not subjected to this type of weighting perform as pass points. These unweighted or withheld control stations provide a means for evaluating the accuracy of the block adjustment solution.

Presently, empirical values are used, for these weights at NOS instead of being based on the standard error of the observations as required by rigorous statistical methods. Also, the present NOS block adjustment program multiplies the pertinent normal equation main diagonal terms by the control station weights instead of adding on a number to increase their size.

The resulting accuracy of the block adjustment can be expressed as a photogrammetric RMS error and a geodetic RMS error. The photogrammetric RMS error is computed using the residual v_{X} and vy plate observational discrepancies of all images contributing observation equations to the orientation solution. The geodetic RMS error reflects a comparison of the X, Y, Z, results of the block adjustment computation with the known X, Y, Z coordinates for the control stations that were obtained by classical ground surveying methods. In most NOS operations, weights are selected that cause the photogrametric RMS error and the geodetic RMS error to be about equal. This has the effect of providing for an equal distribution of the block adjustment errors between the photogrammetric observations and the geodetic field observations.

The inherent errors in using nonmetric $S-190 \mathrm{~B}$ photography and office-identified photo control made it necessary to perform numerous block adjustment solutions involving different combinations of control and weights. The best results were achieved by using 14 weighted control stations distributed uniformly along the perimeter of the strip as shown in Figure 1. In NOS mapping operations using metric photography and field-identified photo control, eight weighted photo control stations would normally have been sufficient for a block adjustment of the 12 photos.

As previously noted, the pass points were drill holes in the emulsion and not images of specific terrain objects. The stereocomparator operator cannot remove parallax exactly on the drilled pass point holes when observing their photocoordinates. This reduces the reliability of the pass point images during the photocoordinate measurement process. The office-identified photo control stations, on the other hand, were prominent ground features providing sharp images on the overlapping photographs. Since drilling was not necessary for these stations, the comparator operator was able to remove parallax directly at the images before observing their photocoordinates. As a consequence of their higher reliability, a larger image quality weight was assigned to the control station images.
Many combinations of image quality and control station weights were applied to the 14 held photo control stations in an effort to optimize the accuracy of the block adjustment solution. In general all of these weight combinations yielded a horizontal position geodetic RMS error of approximately 15 meters for the 15 withheld (unweighted) photo control points. The maximum horizontal position error on any withheld control station was less than 26 meters.

Results of the Block Adjustment Solution: The weights used for each of the 14 held photo control stations in the final block adjustment of the SKYLAB data were: image quality weight $=6$; control station weight for X and $Y=6$; control station weight for $Z=3$. A smaller weigh \bar{t} was used for Z because of the limited accuracy in the stereo height determination resulting from the low base-height of 0.10 , even though the known elevations of the control stations were of a higher accuracy than the known horizontal positions for these stations (see Table 3). In fact, a higher \underline{Z} weight was found to degrade the block adjustment accuracy.

The pertinent output from the 600-photo block adjustment program for the SKYLAB study is shown in Table 7. A summary of the residual errors remaining at each of the 29 control stations is given in Table 8 . All of the ground coordinate data and the residual errors are in meters and expressed in the secant plane coordinate system. The results presented here are from a block adjustment solution in which the standard error of the ground control was assumed to be 4.1 meters. The residual errors given in Table 8 are also shown on Figure 1 in red.

PHOTO CONTROL STATION		Y	Z
	X		
$\triangle 288100$	11.738	．－12．483	－30．343
A 288110	10.025	$\begin{array}{r}-12.483 \\ \hline 20.329\end{array}$	-230.104 -233
$\triangle 288201$	10.991	7.727	－196．716
今 288111	－7．517	－5．612	172.285 172.285
$\triangle 288202$	－10．718	－2．895	134.556
$\triangle 288120$	14.378	－ 9.686	134.556 -205.982
$\triangle 288101$	14.961	19.031	－210．726
\＆ 290110 $\triangle 290201$	－2．030	6．814	11.736
A 290111	3.301 1.143	－2．078	40．588
$\triangle 291120$	－0．207	-6.891	－86．241
$\triangle 291121$	12.644	－6．815	－25．212
貹 292110	－1．150	6.593	－38．472
A 292111	0.491	－3．279	－5．3．78
$\triangle 293100$	－4．988	12.935	25.196
A 293120	－2．891	－0．096	－3．173
$\triangle 293121$	8.579	7.711	－5．563
\triangle	13.274	9.672	－13．012
® 295100	1.034 15.142	1.407 -7.2953	2．332
会 296111	15.142 1.938	-12.953 0.900	－70．711
$\triangle 296201$	－1．008	6.180	-7.411 3.373
A 296110	－4．219	－0．994	29.125
\＆ 297120	3.231	7.052	－137．767
$\triangle 297121$	1.667	2.042	－135．449
－ 298110	－6．028	－3．617	85.999
－ 299110	－16．286	－18．695	－138．440
A 299111	-3.290 0.296	3.970 -1.523	6.269 -26.832

Note：$\quad \mathbf{A}=$ weighted photo control station
$\Delta=$ unweighted photo control station

Table 8．Residual errors in meters remaining at each of the computed positions for the 29 office－identified photo control stations after block adjustment solution，as expressed in the secant plane coordinate system．

The biock adjustment program is designed to terminate the iter－ ative computation when the computed corrections to all of the angular camera parameters are each less than 0.00001 radians （two arc－seconds）．Table 7 shows that five iterations of the block adjustment orientation solution were required to achieve this
condition for the SKYLAB study. Usually, only one such pass through the solution is necessary in conventional NOS mapping projects employing metric photography and field-identified photo control.

The residual errors at the control stations appear to be unifomly distributed throughout the test area, and there is no evidence that the least square solution was not able to absorb uncompensated systematic error, i.e., no large isolated discrepancies exist in the solution. The horizontal position geodetic RMS error for the 29 photo control stations was 12.218 meters and is equivalent to 12.915 microns at the SKYLAB photography scale of $1: 946,000$. The geodetic RMS error computed for only the 15 withheld photo control stations was 15.068 meters. The maximum horizontal position error was 24.794 meters and occurred at withheld station No. 299100. No serious attempt was made to hold closely to the elevations of the control stations because of the inherent limited accuracy in the stereo height determination. Consequently, several of the residual errors in Z exceeded -200 meters.

The photogrammetric RMS error was 12.996 microns at plate scale and was computed using the residual v_{x} and v_{y} plate discrepancies of all the images created on the photography by the 36 pass points and the 29 photo control stations. It should be noted that the photogrammetric RMS error is usually about eight microns on conventional NOS photogrammetric mapping projects.

Inverse of the Secant Plane Coordinate Iransformation: After completion of the block adjustment solution, the adjusted computed secant plane coordinates were transformed back into the original ground coordinate system (Geographic Positions and elevations based on sea level) by applying the secant plane transformation in its inverse mode. The results of this inverse somputation are displayed in Table 9.
'l'able 9.
SECANT PIANE COORDINATES - OUTPUT OF BLOCK ADJUSTMENT IN METERS
PASS POINTS

	X		
288310	-175159.941	-178654.007	-3783.068
288320	-224533.782	-118960.309	-4350.547
288330	-196938.725	-154397.051	-3873.622
289310	-140968.327	-150574.857	-2564.325
289320	-186866.970	-95485.277	-2601.182
289330	-163941.845	-124266.567	-2443.416
290310	-106548.364	-122833.069	-1039.850
290320	-152383.610	-63563.072	-1164.540
290330	-131685.875	-96569.496	-899.891
291310	-73506.450	-91626.878	-629.069
291320	-121335.359	-36081.667	-444.274
291330	-94988.940	-67988.199	-315.295
292310	-36515.376	-63241.457	449.438
292320	-79693.386	-3100.307	295.041
292330	-60177.549	-36467.791	522.021
293310	-557.116	-33201.994	880.547
293320	-46155.211	23748.689	755.439
293330	-22306.105	-11480.969	1059.436
294310	31898.162	-4934.554	690.663
294320	-3694.629	43458.533	304.189
294330	15111.681	18897.434	550.016
295310	67366.805	22135.331	82.479
295320	32090.883	64818.444	330.914
295330	49365.290	49544.761	285.874
296310	104040.087	49038.235	87.815
296320	59972.357	107751.460	-348.662
296330	78054.828	76365.232	94.902
297310	136781.254	86353.340	-1159.746
297320	100539.722	133424.766	-1563.397
297330	119761.767	104510.673	-1230.994
298310	176204.799	105752.504	-2617.263
298320	132263.976	162905.948	-3090.611
298330	154437.310	140222.139	-2944.173
299310	221333.928	118339.172	-4290.205
299320	162683.562	191183.725	-4075.060
299330	188418.605	168589.801	-4134.662

14 HELD CONTROL STATIONS

288110	-207159.931	-116964.805	-3657.839
2881111	-177004.709	-175269.251	-3729.028
290110	-145821.193	-64426.763	-950.963
290111	-100286.078	-141713.588	-1517.218
292110	-93657.861	-20673.281	295.369
292111	-27028.950	-79654.702	292.163
293120	-4299.309	-52018.958	701.227
294102	-23668.327	37935.490	804.347
296110	105353.664	37357.931	-104.927
296111	67450.678	98991.786	-238.805
297120	127581.797	129937.544	-1893.776
298110	156462.108	98122.969	-1757.118
299110	165977.778	175878.308	-3777.908
299111	213537.179	124931.293	-4024.813

15 WITHHELD CONTROL STATIONS

288100.	-201266.954	-146868.219	-3905.180.
288101	-199181.963	-121207.223	-3451.964
288120	-200279.641	-122471.264	-3515.693
288201	-207333.116	-117576.669	-3661.657
288202	-178980.461	-176476.017	-3845.203
290201	-145925.244	-64306.415	-925.436
291120	-108298.113	-25288.198	32.891
291121	-106939.471	-26688.740	94.786
293100	-3040.499	-51135.036	747.140
293110	-28159.653	-27103.189	821.656
293121	-2734.791	-51864.218	701.808
295100	75565.486	54087.760	156.211
296201	67109.161	98615.587	-213.343
297121	127254.334	130858.812	-1904.261
299100	180311.924	125630.652	-3176.697

PASS POINTS

14 HELD CONTROL STATIONS

(288110	35		25.53695.
	288111	34	44	15.06445
(290110	35	44	30.27598
	290111	35	3	2.98861
	292110	36	8	32.95024
€	292111	35	36	54.17346
	293120	35	51	52.23900
	294102	36	40	29.64527
	296110	36	39	51.15007
$¢$	296111	37	13	22.87241
	297120	37	29	44.66704
	298110	. 37	12	17.00557
(299110	37		13.47135
	299111	37	26	6.62123

-81	1	37.17181	-56.53923
-80	40	58.91790	1130.99762
-80	2143.80370	798.41836	
-79	50	57.40463	173.57077
-7947	26.25236	716.77843	
-79	2	53.97097	167.48599
-7847	51.36030	387.59883	
-79	0	53.15813	538.16070
-77	34	17.49878	251.29327
-7759	24.02989	297.80444	
-77	18	25.65847	-290.11984
-76	59	14.24742	393.36137
-76	51	44.87622	51.63104
-76	20	11.53555	-75.09492

15 WITHHELD CONTROL STATIONS

288100	34	59	19.78010
288101	35	13	13.88282
288120	35	12	32.05602
288201	35	15	5.55994
288202	34	43	34.58196
290201	35	44	34.13316
291120	36	5	57.72387
291121	36	5	12.83931
293100	35	52	20.94618
293110	36	5	19.20237
293121	35	51	57.27979
295100	36	49	3.99475
296201	37	13	10.74701
297121	37	30	14.71046
299100	37	26	54.19126

80	57	17.56339
80	56	17.75518
80	57	. 06754
- 81	1	43.45203
80	42	15.70143
80	21	47.99968
79	57	9.57444
-79	56	14.54521
- 78	47	1.19852
-79	3	45.55598
-78	46	49.00424
- 77	54	11.05976
- 77	59	38.01136
- 77	18	38.41834
- 76	42	42.61679

550.25723
46.38242
29.57440
-13.58050
1040.36233
885.94229
669.99247
816.69433
512.32645
472.98178
382.53015
118.26105
350.34280
-283.95531
-446.64844

Accuracy Analysis: In order to evaluate fully the accuracy potential of the analytic system, a final computer program is used to develop the inverse of the matrix of normal equations, the variances, and the standard errors in X, Y, and Z at all of the points throughout the project area.

It can be assumed that the camera parameters and the ground positions of the pass points provided by the final pass through the block adjustment solution would not change significantly should an, additional pass.be made. Thus the same refined i.mage coordinates, together with the final camera parameters and ground positions for the pass points, will yield essentially the same normal equations that occurred in the final block adjustment pass. This is the basis for the accuracy-analysis program.

The standard epror E of the coordinates determined at a point in the block can be expressed as $E=Q e$ where Q is the variance of the point as derived from the inverse, and \underline{e} is the standard error of unit weight for the problem and is considered to be essentially equal to the photogrammetric RMS error determined in the block adjustment solution. Both \underline{Q} and e are relatively independent and provide a means for the comparison of tests conducted under varying conditions.

The variance Q is affected by the geometry of the block, such as the number of photographs and the number and distribution of horizontal and vertical control. Its value can be computed from simulated photographs before the pictures are actually taken and is unaffected by poor techniques. The standard error of unit weight e is a measure of the precision of the system and is affected by the camera, comparator, effectiveness of the corrections for systematic errors, overlap, premarking, operational techniques, etc. Its value is relatively constant for a given set of techniques and allows one to upgrade the system by improving the techniques. Thus, for example, the nonmetric characteristics of the Earth Terrain Camera and the use of officeidentified photo control resulted in a standard error of unit weight of nearly 13 microns for the SKYLAB study. This is significantly larger than the eight microns or less that is found in NOS operations employing metric aerial cameras and fieldidentified photo control.

Table 10 shows the horizontal standard errors in meters in the secant plane coordinate system for each of the 15 withheld (unweighted) photo control stations. The horizontal position RMS error computed from these values is 16.414 meters and substantiates the validity of the geodetic RMS errors found in the previous block adjustment solution.

PHOTO CONTROL
STATION . X meters Y meters

288100
288201
288202
288120
288101
290201
291120
291121
293100
293121
293110
295100
296201
297121
299100

- $9_{i .} 201$
9.961
10.164 9.003 8.916 7.271 13.554 13.158
15.650
15.736
9.967
9.377
7.949
10.949
9.084
9.529
15.053
12.360
13.679
14.029
10.185
16.164
15.701 .
11.210
11.260 9.494
10.147
7.844
8.993
13.678

$$
\begin{gathered}
\mathrm{RMS}_{X}=10.963 \quad \mathrm{RMS}_{Y}=12.2 .16 \\
\mathrm{RMS}_{X Y}=16.414 \text { meters }
\end{gathered}
$$

Table 10. The standard errors in meters in the secant plane coordinate system for each of the 15 withheld (unweighted) photo control stations.

FURTHER DISCUSSION OF SKYLAB ANALYTIC AEROTRIANGULATION RESULTS
In evaluating the results of the SKYLAB aerotriangulation study, it must be remembered that these results were achieved using a strip of photography instead of a block of overlapping strips of pictures. For the case of a strip, analytic computations are usually terminated after strip adjustment because there is no evidence of a significant improvement in accuracy by continuing on through block adjustment. However, the strip adjustment of the SKYLAB photography appeared to show apparently systematic adjustment discrepancies that were assumed to be attributable to a failure to compensate completely for the systematic errors introduced by the nonmetric characteristics of the camera and/or the office-identification of photo control. For this reason, the block adjustment program was applied in an effort to optimize the accuracy of the aerotriangulation solution.

The results obtained from the block adjustment were reasonably close to the values to be expected from the SKYLAB photography. Our experience indicates that the block adjustment of a strip of metric $1: 946,000$ scale photography using field-identified photo control would yield a geodetic RMS error of approximately 14 meters. This figure must be modified to allow for the additional errors introduced by the nonmetric characteristics of the Earth Terrain Camera (focal plane shutter, camera lens distortion assumed to be negligible, imprecise location of the photograph principal point, etc.) and the office-identification of photo control. Assuming a maximum error of 20 meters introduced by the ETC and a maximum error of 15 meters for the office-identified photo control, the overall expected geodetic RMS error for the block adjustment of the SKYLAB strip of pictures increases to nearly 16 meters. As noted in this report, the actual geodetic RMS error was 12.218 meters for all 29 office-identified photo control stations and 15.068 meters for the 15 withheld or unweighted photo control stations.

The National Standards of Map Accuracy require 90 percent of all map points to be correct to within $1 / 50$ inch or 0.51 mm . for maps published at scales of $1: 20,000$ or smaller. Statistically, the SKYLAB results indicate that 90 percent of all 29 office-identified photo control stations were held to within 20 meters, and 90 percent of the 15 withheld or unweighted stations were held to within 24.7 meters. It is evident, therefore, that if the positions of all the planimetric detail required to construct a map of the project area were developed digitally by analytic block adjustment methods, 90 percent of these planimetric points would also be correct to within less than 25 meters. Thus, the analytic aerotriangulation method
can be used in this manner with the $1: 946,000$ scale SKYLAB strip photography to construct a $1: 50,000$ scale map that will meet the National Standards of Map Accuracy.

The usual practice in mapping operations is to compile the planimetric details from stereoscopic models oriented to horizontal photo control established principally by analytic aerotriangulation procedures. Experience has shown that 90 percent of the horizontal photo control should be known to within 0.15 mm ., as measured on the manuscript. This is equivalent to 24.75 meters at a map scale of $1: 165,000$. Thus, stereocompilation techniques can be combined with the analytic aerotriangulation methods to construct a map at $I: 150,000$ to I: 200,000 scale from the $1: 964,000$ SKYIAB strip photography.

Appendix A

PRECEDING PAGE BLANK NOI FILMER

55-A

THE SKYLAB S-190B EARTH TERRAIN CAMERA

John D. McLaurin
U.S. Geological Survey McLean, Va. 22101

Prepared as a presented paper for Commission I, International Society for Photogrammetry, for the WIth Congress

Ottawa, Canada
July 23-August 5, 1972

John D, McLaurin
U.S. Geological Survey

McLean, Va. 22101
One of the major objectives of the Skylab manned space station to be launched in 1973 is to collect earth resources data. The Earth Resources Experiment Package (EREP) of Skylab includes instruments for collecting data in several regions of the electromagnetic spectrum, ranging from the visible to the microwave. The sensors include the S-190A multispectral camera, the S-191 infrared spectrometer, S-192 multispectral scanner, the S-193 microwave system, and. the S-194 Lband radiometer. These systems have all been described elsewhere (NASA-MSC, 1971). However, a new sensor, the S-190B Earth Terrain Camera (ETC), has recently been added to EREP. Because the ETC is not. as well known as the other sensors, I will describe its characteristics and indicate some potential applications of ETC photographs.

The ETC was included in the EREP of the Skylab mission as an addendum to the $\mathrm{S}-190$ experiment. It is designed to supply highresolution photographs of areas within the field of view of the other EREP"sensors to aid in the interpretation of data gathered by them. In some cases information from the ETC photographs will substitute for ground truth and for photographs obtained from aircraft underflights Furthermore, the resolution of the camera will permit certain investigations that would be impossible for any of the other EREP sensors alone.

The EROS (Earth Resources Observation Systems) Program of the Department of the Interior is interested in the ETC primarily because it has approximately the same photograph scale and ground resolution as the film-return satellite camera system which was recommend in 1967 by the National Academy of Sciences for cartographic and photogrammetric applications. That proposed satellite would be in a near-polar orbit at an altitude of 200 km and would include a metric camera of 300 mm focal length. In 1970 the Department of Interior proposed to NASA that a satellite of that type be flown, and we have a continued interest in it.

The ETC is a modified version of the Lunar Topographic Camera carried on the Apollo 13 and 14 missions. It is being "built by Actron Industries, Inc. (formerly Hycon) under contract to NASA. The body is an extensively modified KA-74 reconnaissance camera body with a focalplane shutter and vacuum film flattening. The lens'has a focal length of 460 mm , a fixed aperture of $f / 4$, color correction, and maximum radial distortion of $10 \mu \mathrm{~m}$. Forward image-motion compensation is provided by rocking the entire camera in its mount during the exposure.

Figure 1. --The Skylab S-190B Earth Terrain Camera,
A ${ }^{2}$

The frame format is 115 mm by 115 mm so that at the "Skylab altitude the format covers an area of 109 km by 109 km . Characteristics of the camera can be summarized as follows:

Lens -460 mm focal length, f/4 fixed aperture; color corrected
Lens distortion --Radial, $\pm 10 \mu \mathrm{~m}$; tangential, $\pm 5 \mu \mathrm{~m}$
Shutter--Focal plane, bidirectional; 1/100, $1 / 140,1 / 200 \mathrm{sec}$.
Forward-motion compensation--By rocking camera, 0 to $25 \mathrm{mrad} / \mathrm{sec}$.
Film --125 mm (5 in.), 2-mil.base; 450 frames/roli
Format--115 x 115 min
Framing rate-0 to 25 frames/min.
Overlap--15\% Standard; 0 to 80% available
Ground coverage at nadir--109 x 109 km .
The camera has a control box with a switch for selection of manual or automatic operation. The forward-motion compensation system can be set to operate within the range of 0 to $25 \mathrm{mrad} / \mathrm{sec}$, and the framing rate from 0 to 25 frames/min. Three shutter speeds are available, $1 / 100,1 / 140$, and $1 / 200 \mathrm{sec}$. Figure 1 is a photograph of the camera.

The ground resolution of the camera depends on the film used. The three films being considered are SO-242 high-resolution color, 3443 color infrared, and 3414 high-resolution black-and-white. To obtain estimated ground resolution for the different films, Actron has run computer simulations that model the forward-motion compensation system, the attitude-error rates of the spacecraft, the shutter speed, the lens characteristics, and the film and filter characteristics. Table 1 summarizes the simulations (the .shutter speeds were subsequently changed). As can be seen, the expected ground resolution varies from 10 to 39 meters per optical line pair. In addition to the films listed, it is possible that a color infrared film of higher resolution will be available for at least one of the Skylab missions.

The ETC will be mounted in the Scientific Airlock of the orbital workshop of skylab. The other EREP sensors will be located in the Multiple Docking Adapter. Figure 2 presents a view of the Skylab space station with the major components indicated. The ETC will be boresighted to record the same ground areas that the other EREP' sensors are viewing.

Skylab will be operated as four missions (fig. 3). The first mission, Skylab 1, will launch the unmanned space station. The next day the first three-man crew will be launched in an Apollo spacecraft as mission Skylab 2, which will require the crew to occupy the space.

TABLE 1. Predicted ETC resolution, in meters on the ground per optical line pair.

Case		FiIm	Shutter speed (sec)	```High- contrast resolution (1000:1)```	```Low contrast resolution (2:1)```
1		3443	1/100	21	39
2		3443	1/200	21	38
3		3443	1/500	21	38
4		3414	1/100	8	15
5		3414	1/200	6	11
6		3414	1/500	5	10
7	-	S0-242	1/100	12	22
8		S0-242	1/200	11	20
9	-	S0-242	1/500	11	20

Based on computer simulations bý Actron Industries, Inc., July 1971.
station for about 28 days. The crew will conduct several experiments, including the EREP series. About 2 months after the return of the Skylab 2 crew, the Skylab 3 crew will be launched to occupy the space station for as long as 56 days, again conducting a variety of experiments. The final mission, Skylab 4, will start about 1 month after the return of the Skylab 3 crew and will also have a duration of up to 56 days.

Skylab will follow a 435 km circular orbit with an inclination of 50° which will carry the station over any portion of the earth between $50^{\circ} \mathrm{N}$ and 50° S latitude. The normal attitude of the space station is referred to as the solar-inertial mode, required by the solar panels and the heating constraints. For the EREP experiments the space station must be maneuvered into the z-local-vertical mode. Because of thermal and other constraints, the mode can only be used for a limited number of orbits. Current plans call for approximately 60 z-local-vertical passes.

The orbital and mission constraints will thus limit the number and location of EREP data-collection passes; it will not be possible to collect data for large contiguous areas, and repetitive coverage of an area will be limited. Nevertheless, considerable data of value to various earth resources investigations should be collected during the

Figure 2.--The Skylab spacecraft.
Skylab program. For the Skylab 2 mission, 4 rolls of film containing 450 frames each will be available, and 6 rolls will be available for each of the other 2 missions. As many as 7200° ETC photographs may be obtained.

The exact areas of the United States where ETC photographs will be acquired have not yet been selected. Generally, the final areas for photographic coverage will be determined during the mission. Investigators whose EREP proposals were accepted by NASA have been notified of the addition of the ETC to Skylab, and many of them have requested ETC photographs of their test areas. In addition, many Federal and State agencies have requested ETC photographs of specific areas. The requests are being coordinated with the Skylab mission planners in an effort to take photographs of as many areas of interest as orbits, weather, and other constraints will permit. ETC photographs will be available to the public at nominal cost through the EROS Data Center of the U.S. Geological Survey, at Sioux Falls, S. Dak.

The design of the ETC will limit its applications. First, the ETC is not a metric camera in the photogrammetric sense. Because the image frame is a part of the removable film magazine and because of the use of a focal-plane shutter, the geometric quality of the photographs is limited. The principal point cannot be precisely located, and

Figure 3,m-Sequence of Skylab missions.
therefore analytical applications will be limited. The ETC has 2 limited field of view, 14°. When the camera is operated for 60% overlap, the base-height ratio is only 0.15; thus, the use of the ETC for stereoscopic height determination will be especially limited.

In spite of the limitations, the ETC represents a significant advance in camera systems for earth resources observations from space. The ground resolution is considerably better than that of any camera previously used. A recent paper by Colvocoresses (1972) compares the image resolution of ERTS, Skylab, and Gemini/Apollo space photographs. Table 2, compiled from data in that paper, summarizes the ground resolution of the various systems. From the tabulated data, it is obvious that the ETC has ground resolution from 3 to 20 times better than the other space photographic systems. Moreover, the ETC fills the gap between the other space systems and high-altitude aircraft. cameras, which normally have ground resolution of 1 m or better.

The ETC will also permit a comparison of multispectral and multispatial data collection. The S-190A multispectral camera will provide narrow-spectral-band photographs useful for multispectral interpretation. The ETC, on the other hand, will provide photographs of a different

TABLE 2. Comparison of Ground Resolution for Space Imaging Systems. Ground resolution given in terms of the photographic criterion of optical line pairs, in meters on the ground per line pair.

System

High-contrast	Low-contrast
$(100: 1$ or $1000: 1)$	$(2: 1$ or $1.6: 1)$

ERTS-A

RBV, green band 126
RBV, red band 126
$R B V$, infrared band 156 275

MSS
244
316
Skylab
S-190A
HIgh-resolution film $2 \boldsymbol{2}$. 38
Low-resolution film. 49
99.

S-190B (ETC)
High-resolution film
10
15
Low-resolution film
Gemini/Apollo
High-resolution film 70
Low-resoiution film 80: 125
scale and resolution, which can be compared with the S-190A photographs and thus provide an evaluation of multispatial data.

The S-190A and ETC photographs may also be used with aircraft photographs for multistage sampling, a technique that starts with the interpretation and classification of small-scale photographs of a large region. Interpretations are made on progressively larger scale photographs of smaller and smaller areas within the large region. The application of the technique in forestry has been described by Langley (1969).

Therefore, the principal applications of ETC photographs will be in experiments where high resolution is required. Each individual photograph will be a nearly orthographic view of the ground, with
rather low distortion within the frame. The high resolution will greatly benefit experiments in which photointerpretation is important.

An example of the kind of experiment planned for the ETC photographs is photomapping at 1:250,000 and 1:100,000 scale. The Image scale of the ETC photographs will be about 1:945,000. Doyle (1971) has proposed criteria for the resolution required for photomapping and the useful enlargement of the photographs:

$$
R_{g}=10^{-4} S_{m}
$$

where $\quad R_{g}=$ required ground resolution (m / Ip)

$$
S_{m}=\text { map scale number. }
$$

The suggested criterion for photographic enlargement is expressed as

$$
M_{a}=\frac{r p}{10}
$$

where

$$
r_{p}=\text { original photo resolution }(1 \mathrm{p} / \mathrm{mm})
$$

$$
M_{a}=\text { allowable enlargement from photograph scale. }
$$

According to criteria, the required ground resolution for $1: 250,000$ and $1: 100,000$ scale photomaps is 25 m and 10 m . Assuming the use of 3414 film, the approximate photograph resolution is $80 \mathrm{lp} / \mathrm{mm}$ and the allowable enlargement is 8 X . Enlargement to $1: 250,000$ scale would require 3.8 X and to $1: 100,000$ would require 9.5 X . At $1: 100,000 \mathrm{scale}$ the image would still have a theoretical resolution of $8 \mathrm{lp} / \mathrm{mm}$, which may be satisfactory in the practical sense.

The U.S. National Map Accuracy Standards (NMAS) require that 90% of the well defined points tested be no more than 0.5 mm from their correct position at map scale. For a 1:250,000-scale map the tolerance converts to 125 m while for a $1: 100,000$-scale map it is 50 m . A computer program prepared by DBA Systems, Inc., for the Geological Survey has been used to determine how much relief can be tolerated before planimetric image displacement exceeds NMAS. The program includes the effects of earth curvature, atmospheric refraction, terrain relief, location of the image in the photograph format, and map-projection scale factor. The computer analysis indicates that about 500 m of relief can be tolerated at the extremes of the usable photo format for the photograph to meet the standards for 1:250,000scale mapping. For mapping at $1: 100,000$ scale, only about 300 m of relief can be tolerated. The UTM was used as the map projection in the analysis.

Conditions which could significantly affect the positional accuracy of the images, however, are the effects of the focal-plane shutter. and of errors in the forward motion compensation (FMC) system.

A NASA study (McDermit, 1971) considered the effects of spacecraft residual rates, FMC errors, earth rotation, shutter type, and spacecraft rigidity. The study concluded that, in the worst case, errors due to the sources considered would amount to about $35 \mu \mathrm{~m}$ displacement between the leading and trailing edge of an image. That is, the dimension of a discrete image will be changed $35 \mu \mathrm{~m}$ in the direction of motion. Much of the error could be reduced by proper operation of the camera, but a random component of about $22 \mu \mathrm{~m}$ would probably remain, equivalent to 21 m on the ground. Thus, there is some question whether the $1: 100,000$ positional accuracy requirement can be met. Maps at the scale of $1: 250,000$, however, appear to be well within the capability of the camera. The USGS plans to conduct photomapping experiments at both scales in order to determine the usefulness of space photographs of ETC resolution.

- Other mapping experiments planned for the ETC photographs include map revision and thematic mapping. Experiments will be conducted to determine the types of map revision information that can be derived from the photographs and applied to maps at scales of $1: 24,000$ and smaller.

Thematic mapping consists of the preparation of maps depicting such data as vegetation distribution, surface-water distribution, snow cover, and the massed works of man. Thematic mapping experiments at scales of 1:250,000 and 1:100,000 are planned, using color infrared photographs as the most suitable input for this kind of mapping.

ETC photographs will also be used for land-use mapping; urban development studies; sediment loads and dynamics of San Francisco Bay; geological synthesis of the Colorado Plateau; study of hazards and tectonics in the Cascades volcanoes; marine geology of the Pacific Northwest; and geologic studies of areas in California, Oregon, Oklahoma, and a portion of the Great Plains. The experiments will depend largely on photointerpretation of the ETC photographs. Some will require normal color photographs while others will require color infrared photographs. One of the primary objectives of the experiments will be comparison of ETC photographs with aircraft photos, S-190A photos, and ERTS-A images. Thus, a better assessment can be made of the scale and the resolution that are optimum for each particular investigation. The results of the experiments will be of great value in defining future data-collection systems for earth resources.

In conclusion, the Earth Terrain Camera provides an opportunity to acquire high-resolution space photographs for the study of mapping and for investigations of earth resources. The camera fills the gap between high-altitude aircraft photographs and other hitherto random space photographs. Although the camera has several limitations from the photogrammetric standpoint, it will supply high-resolution photographs of value to several disciplines.

Colvocoresses, A. P., 1972, Image Resolution for ERTS, Skylab, and Gemini/Apollo, Photogrammetric Engineering, vo1. XXXVIII, no. 1, pp. 33-35.

Doyle, F. J., 1971, Can Satellite Photogrammetry Contribute to Topographic Mapping? Paper presented to United Nations Seminar on Photogrammetric Techniques, Zürich, Switzerland.

Langley, P. G., 1969, New Multistage Sampling Techniques Using Space and Aircraft Imagery for Forest Inventory; Proceedings Sixth International Symposium on Remote Sensing of Environment, University of Michigan.

McDermit, J. H., 1971, ETC Metric Errors due to Earth and Camera Kinetics; unpublished report, NASA-MSC, Flight Crew Intergratior Divísion.

NASA-MSC, March 1971, EREP users handbook.

Appendix B

