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COMPARISON OF INTERFERENCE-FREE NUMERICAL RESULTS WITH SAMPLE

EXPERIMENTAL DATA FOR THE AEDC WALL-INTERFERENCE MODEL AT

TRANSONIC AND SUBSONIC FLOW CONDITIONS

By Perry A. Newman and Dennis 0. Allison

Langley Research Center

SUMMARY

Numerical results obtained from two computer programs recently developed
rith NASA support and now available for use by others are compared with some
;ample experimental data taken on a rectangular-wing configuration in the
\EDC 16-Foot Transonic Tunnel at transonic and subsoni, flow conditions.
his data was used in an AEDC investigation as reference data to deduce the

'unnel-wall interference effects for corresponding data taken in a smaller
unnel. The comparisons were originally intended to se how well a current

tate-of-the-art transonic flow calculation for a simple 3-D wing agreed with
data which was felt by experimentalists to be relatively interference-free.
\s a result of the discrepancies between the experimental data and computation-
al results at the quoted angle of attack, it was deduced from an approximate

itress analysis that the sting had deflected appreciably. Thus, the compari-
;ons themselves are not so meaningful, since the calculations must be repeated
it the proper angle of attack. Of more importance, however, is a demonstration
of the utility of currently available computational tools in the analysis and
correlation of transonic experimental data.

INTRODUCTION

The possibility of calculating inviscid three-dimensional transonic flow
about simple lifting wings by using large present-generation computers has
been demonstrated (Refs. 1-7). However, very'few comparisons have been made
with experiments and those which have are of limited value. Older data, gener-
ally taken on semisi -n models, may have large inaccuracies due to tunnel-
wall interference and recent data is generally for more complicated configu-
rations than can presently be modeled in 3-D calculations. Such comparisons
were made in references 3, 4, and 5 for a swept wing panel and a wing simu-
lating the C-141-wing; discrepancies were observed and were attributed to
viscous and wall-interference effects. A current review (Ref. 8) of the com-

putation of steady 2-D and 3-D transonic flow based on relaxation methods

indicates the present status and concludes that even though significant

advances have been made in the last several years further improvements regar-
ding shock jumps and viscous effects are clearly needed in order to adequately
simulate transonic flow problems. Jameson's solutions (Refs. 6 and 7) for the
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exact isentropic transonic flow about finite yawed wings incorporate a number

of ideas which are now recognized as being important for a successful iter-

ative calculation of transonic flow. A version of his program is operational

and available (Ref. 9); it represents one of the most advanced state-of-the-

art computational tools.

Recently Binion (Ref. 10) of AEDC (ARO, Inc.) completed a series of tran-

sonic experiments on a simple configuration which could be approximated by

existing transonic 3-D wing programs. It was the AEDC Wall Interference

Model, a full span rectangular-planform wing centrally mounted on a circular

cross-section sting-body. The purpose of these experiments was to investigate
the three-dimensional tunnel-wall interference in the AEDC 4-Foot Transonic

Tunnel (4T) by comparison with data obtained from the AEDC 16-Foot Transonic

Tunnel (16T) under identical flow conditions. A differential pressure measure-

ment near the tip of the sting-body was used to ascertain that the flow con-

ditions were the same. Thus pressure distributions obtained in the two

tunnels could be compared directly rather than as a function of angle of

attack.

Sample experimental data from the AEDC Tunnel 16T was made available in

order that comparisons could be made with numerical results from Jameson's

transonic-flow program for 3-D wings (Refs. 6,7,9). The first calculation for

a lifting transonic flow indicated that the comparisons were not quantitatively

as good as had been anticipated. Since the experimental sting-body could not be

modeled in the nonlinear Jameson program, it was decided to make calculations for

wings and wing-body configurations using the linear-theory subsonic-supersonic

program recently developed by Woodward (Ref. 11). These latter calculations

were made into the transonic range to show where the linear theory departs

from the experimental results for the particular configuration.

The comparisons between the present calculated and experimental results

show a systematic discrepancy with respect to the lift which is opposite to

what would be expected due to viscous effects alone. As a result, an approxi-

mate stress analysis was made and it indicated an appreciable sting deflection.

Several calculations were made to take this deflection into account and the

comparisons with experiment are greatly improved.

SOURCE OF RESULTS

Experimental Data

A detailed description of the AEDC wall interference tests recently com-

pleted by Binion is contained in Reference 10. The sample experimental data

used in the present comparisons was taken in the AEDC Tunnel 16T. This

data was used as reference data to deduce the tunnel-wall interference

corrections for corresponding data taken in the AEDC Tunnel 4T. Tunnel 16T is

a closed-circuit continuous-flow variable-density wind tunnel capable of

operating at Mach numbers from 0.2 to 1.6. The test section is 16 ft. square

and 40 ft. long; its walls are perforated with 600 slanted holes at a fixed 6%

porosity.
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Figure 1 is an AEDC photograph of the experimental model mounted in

tunnel 16T with the tail in the forward position. The experimental data

quoted in the present report was taken on the wing with the tail mounted in

the aft position, whereas that quoted for the tail was taken with the wing

removed from the tunnel. The geometric configuration most closely approxi-

mating the experimental model (with tail mounted in the aft position) is

shown in Figure 2. This plot was generated by the program of Reference 12 and

is the geometry which was used for several wing-body-tail calculations in the

linear-theory Woodward program (Ref. 11). Both the wing and tail have a rec-

tangular planform with a NACA 63A006 airfoil section; the aspect ratio of the

wing is 32/9 (- 3.556) whereas that of the tail is 13/4.5 (-~ 2.889).

In these experiments, the boundary layer was tripped at about 5% chord.

An experimentally determined correction for flow angularity is the only cor-

rection which was made to the data. The sample AEDC experimental cases

which are compared with numerical calculations in this report are identified

in Table I. In each case, chordwise pressure data was taken on the upper and

lower wing (tail) surfaces at the 50% semispan station and streamwise pres-

sure data was taken on the upper and lower surface of the sting-body.

TABLE I

SAMPLE AEDC-EXPERIMENTAL CASES TO BE COMPARED WITH NUMERICAL

CALCULATIONS

AEDC

Identification M. a Experimental Configuration

116/4 0.599 0.06 Wing*with tail*aft

116/5 0.599 2.03** " it " " "i

113/3 0.699 0.02 " " " "

113/4 0.699 2.03 " " " "

112/4 0.802 -0.01 " " " "

112/6 0.800 2.00 " " " "

136/6 0.900 -0.03 " " " "

136/8 , 0.896 1.97" " " " "

175/4 0.599 -0.02 Tail*alone

175/5 0.600 1.99** " "

174/5 0.700 -0.03 " "

174/7 0.699 1.96** " "

171/4 0.800 -0.06 " "

171/5 0.800 1.94* " "

167/6 0.898 -0.09 ,

167/7 0.895 1.91"*

*Both the wing and tail are full-span models and are mounted on sting-bodies

as shown in Figure 1.

**Need to be corrected for sting deflection.
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Again the reader is referred to Reference 10 for details concerning the experi-
ment.

Computational Programs

As already mentioned, two recently developed computer programs were used
to generate the numerical results which are presented in the next section. A

few brief comments on each program are given below; however, one must see the
appropriate references for details concerning either program. Both were
developed with NASA support and are available for use by others.

The Jameson Three-Dimensional Transonic Airfoil Analysis Program
(Refs. 6,7,9) computes inviscid isentropic transonic flow over yawed or un-
yawed wings with straight leading and arbitrary trailing edges. The solution
is based on the full nonlinear potential equation and the free-stream Mach
number is restricted only by the isentropic assumption. Thus, computations
can be made for low supersonic free-stre~m veloriti even thniioh no such

examples are included here. Weak shock waves are automatically located wher-
ever they occur in the flow. An analytical transformation of wing-section
planes (i.e., normal to the leading edge) maps the region of physical space
outside the airfoil to an upper half-plane as indicated in Figure Al of the
Appendix. This procedure allows for exact specification of both the surface
boundary conditions and the far-field boundary data appropriate to supersonic
free stream velocities. In supersonic flow regions the finite difference
operator is locally rotated so as to properly account for the domain of
dependence. The line relaxation algorithm has been stabilized using criteria
from a time-like analogy.

The Woodward Unified Subsonic-Supersonic Aerodynamics Program (Ref. 11)
computes the inviscid pressure distribution and aerodynamic characteristics
for wing-body-tail configurations in subsonic and supersonic potential flow.
The solution is based on a linear superposition of aerodynamic singularities
(source and vortex) distributed on a large number of panels which approximate
the geometrical configuration. For a lifting surface two options are available.
In one, singularities are located on the mean plane of the surface and approxi-
mate planar boundary conditions are used to determine the singularity strengths.
In the other, singularities are located on the upper and lower surfaces of the
lifting element and exact boundary conditions are used. There are apparently
still some bugs in the latter nonplanar option; therefore, all of the Woodward
program results quoted here were generated using the planar option. For either
option, the resulting system of equations which determines the singularity
strengths is solved using an iterative procedure.

The numerical calculations were made at the nominal Mach numbers
(Mc = 0.6,0.7,0.8,0.9) and angles of attack (o = 00, 20) of the sample experi-
mental cases listed in Table I. Since various geometric configurations were
used to approximate the experimental model, the particular cases which were
calculated are given in the next section. The NACA 63AO006 airfoil ordinates
used in the calculations are listed in Table II. These were furnished by
Ching Lo of AEDC (ARO, Inc.) and they are consistent with those given in
Reference 13.
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TABLE II

NACA 63A006 AIRFOIL ORDINATES USED IN CALCULATIONS
(BASED ON CHORD OF 100.)

NACA 63A006
X(1) Y(I)
0. 0.

•055555 I16235

1111 1 22444
*22222 *32222
*33333 .401111

o44444 .46777
.55555' .52
.83333 .62277
1.11111 .71111
1.66666 .86478
2.2222 o98961
2.7777 1.0978

3.3333 1.1962
3.8888 1.2877

4.4444 1.3696
.5 1.447

7.5 1*7466
10o 1.9889
15* 2.3622
20* 2.6311
25. 2.82

30* 2.9422
35* 2.9955
40* 2*9844
459 2.9144
50, 2.7877

55. 2.6133
60* 2.3955
65. 2*1433
70o 1.8589
75o 1o5555
80. 1.2478
85. ,93889

90. *63

95. .32222
100. 013
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COMPARISON OF RESULTS

General

It should be pointed out here that the numerical calculations are for
interference-free inviscid flow conditions. These calculations were made with
programs which are now readily available for use by others. No attempt has
been made to model the tunnel walls or to correlate the present experimental
data by matching additional experimental parameters (such as the lift) or
adjusting the flow conditions. These ideas, however, have been demonstrated
to be fruitful in 2-D transonic-flow relaxation calculations (Refs. 14 and 15).

Numerical results were generated in one or both computer programs at
several flow conditions for five geometric configurations which approximate the
experimental model. Comparisons with experimental data have been grouped
;iccordlingly a re lr n, reanlr tail wino with qtino-hnOd and
tail with sting-body. In addition, four cases were run in the Woodward program
for a wing-body-tail configuration as depicted in Figure 2. The computed pres-
sure distributions on the wing and sting-body with the tail in the aft position
were essentially the same as those obtained for the wing with sting-body with-
out the tail. This indicates that the tail in the aft position had little
effect on the wing data; thus, wing-body-tail configuration results are not
presented here.

Since all of these comparisons show a systematic discrepancy in lift, oppo-
site to that expected due to viscosity alone, approximate stress analyses of
the model and sting were made to see if significant aeroelastic deformations
were present. It was found that the sting deflections were appreciable; in
the last section, results from several rectangular-wing calculations for the
approximate corrected angle of attack are compared with experimental data.

Rectangular Wing

The rectangular wing approximating the experimental model is depicted in
Figure 3. Four cases were run in both programs in order to compare sample sub-
sonic (M, = 0.6) nonlifting (a = 00) and lifting (a = 20) flows and transonic
(M, = 0.9) nonlifting (a = 00) and lifting (a = 20) flows. The comparisons
are presented in this order in Figures 5 to 18. For each case the first figure
compares chordwise distributions of surface pressure coefficient at the 50
percent semispan location while the second figure shows the calculated results
at the wing root. Section aerodynamic coefficients (computed from the Jameson
program) are printed near the bottom of these figures. The sonic value of C
is indicated by a long tick mark on the ordinate. The third figure shows

total aerodynamic coefficients and the Mach number (times 100) distribution in
the root-section plane of the computational grid as obtained from the Jameson
program. One can refer to the Appendix to see how information on this chart
can be transferred to the root-section plane of physical space. For lifting
cases, a fourth figure shows the spanwise distribution of section lift coeffi-
cient as calculated from both programs.
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It can be seen from Figures 5 and 8 that for the sample subsonic cases at
,, = 0.6 the experimental and theoretical (both linear and nonlinear) pressure

results compare favorably. Figure 11 shows the spanwise distribution of com-
puted section lift coefficients; the nonlinear Jameson program values are
observed to be about 6 percent higher than those from the linear theory
Woodward program. One can see how such a difference in section lift shows up
in the pressure plot at the 50 percent semispan station by referring to
Figure 8 and suspect that the experimental section lift coefficient is larger
than the Jameson value by at least the same amount, and probably even more.

Comparisons of pressure results for the sample transonic (M, = 0.9) non-
lifting (a = 00) and lifting (c = 20) flows are shown in Figures 12 and 15
respectively. The nonlinear-theory Jameson results and experimental data
qualitatively agree; however, shock locations and section lifts do not compare
well. In both cases the experimental shock wave is downstream of the Jameson
inviscid theoretical location for a wing alone in free air. Referring to
Figure 15 one can see that the lower surface pressure distributions (Jameson
andexperiment) tend to agree, but the upper surface pressures do not. In fact
the ACp, and thus the section lift, appears to be much.larger in the experiment.
The discrepancy in both shock location and section lift is in the opposite
direction from what viscous.effects alone would produce. This is discussed
further in the last section. Note again that the nonlinear-theory Jameson
program is for a wing alone. The sting-body has not been accounted for and
its effect at transonic speeds may be important at angles of attack. The
supersonic bubbles both above and below the wing are clearly visible in
Figures 14 and 17, the Mach charts at the root-section plane of the compu-
tational space.

It is certainly obvious that at M, = 0.9 the wing pressure results from
the linear-theory Woodward program do not exhibit the correct qualitative
behavior. The chordwise distribution of lifting pressure (ACp) is not right
and thus the section moments will be wrong even though the section lift values,
as shown on Figure 18, are not nearly so much in error.

Rectangular Tail

Figure.4 shows the rectangular-tail configuration to the same scale as that
used in Figure 3 for the wing. The results in this section are presented on
the same type figures as.described in the last section. The comparisons and
results are shown on Figures 19 to 32; they exhibit the same trends as the
wing results just discussed. The agreement with experiment is somewhat better
though. One can note, by comparing the pressure plots for the transonic cases,
that the shock location.changes with the aspect ratio.
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Wing with Sting-Body

Experimental data was taken on the upper and lower surfaces of the sting-
body and in several cases the flow on the body did not become supersonic.
These cases have been computed in the linear-theory Woodward program to see
if there was any indication that the sting-body was affecting transonic lifting
flows to the extent indicated by the wing and tail alone comparisons just
described.

Figure 33 depicts the wing with sting-body configuration which was used
in the Woodward program. Computations were made for this configuration at
Mach numbers of 0.6, 0.7, 0.8, and 0.9 and angles of attack of 00 and 20. For
each case the first figure compares the chordwise distribution of wing pres-
sures at the 50 percent semispan station while the second figure compares the
axial distribution of pressures on the upper and lower surfaces of the sting-
body, starting from the tip. For the lifting cases, a plot of the spanwise
distribution of section lift coefficients computed by the Woodward program is
also given. The comparisons for this configuration are given on Figures 34
to 53.

At Mach numbers of 0.6 and 0.7 as well as the zero incidence case at 0.8
the experimental data and linear-theory Woodward results compare well. It
can be seen in Figure 46 though that at 20 incidence and Mo = 0.8 there is a
shock wave on the wing which of course is not predicted by the linear-theory
Woodward program. Figure 47 shows that the flow on the sting-body is still
subsonic but that the linear-theory Cp distribution does not agree too well
with experiment over the first 1/3 of the wing chord. At M, = 0.9 the linear-
theory pressure results are not even qualitatively right over the wing.

Inclusion of the sting-body had very little effect on the linear-theory
pressure distribution at the 50 percent semispan location on the wing. There
was no indication from these linear-theory results that the discrepancies in
the transonic lifting flows was due to the sting-body. Some preliminary non-
linear (transonic) calculations (Ref. 16) for this wing mounted on a circular-
cylindrical body did not seem to indicate the effect either. However, this
latter calculation did not allow for a change in the cross-sectional area to
match that of the experimental sting-body.

Tail With Sting-Body

Figure 54 shows the tail with sting-body to the same scale as that in
Figure 3 for the wing. The results in this section are presented on the same
type figures as discussed in the last section. The tail with sting-body com-
parisons are shown on Figures 55 to 74. The trends and agreement with
experiment are similar to those for the wing with sting-body configuration.
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Rectangular Wing at Corrected Angle of Attack

As already pointed out the previous comparisons show a systematic dis-
crepancy in section lift between the calculations and experiment at the 50%
semispan station. The difference is opposite to that expected due to viscous
effects alone since the inviscid calculations, which impose the Kutta con-
dition at the trailing edge of the wing, should overpredict the lift. This
is not the case, however, as can be seen from Figure 15. For that case, one
would say that the experimental lift was about half again as much as that
obtained from the Jameson program at a = 20. In fact, it can be seen from
Figure 75 that when the calculation is made at a = 30, the resulting agreement
with the experimental data is indeed very good. The detailed pressure.distri-
butions on both the upper and lower wing surface including the shock wave
locations on both agree well except near the trailing edge where viscous
effects are present.

An approximate aeroelastic analysis of the model indicated that the tor-
sional deflections of the wing itself (assumed to be a homogeneous solid) were
very small and could not be responsible for the large differences. An
approximate analysis of the sting (obtained from an AEDC stress analysis
program) indicated that it deflected appreciably. For the M, = 0.9, a = 20
wing case (136/8 of Table I) At due to sting deflection obtained from the
approximate stress analysis was 0.810 whereas that for the M, = 0.6, a = 20
wing case (116/5 of Table I) was 0.370. These two cases were computed in the
Jameson program and the chordwise distribution of pressure coefficient at
the 50% semispan station is shown in Figures 76 and 77 respectively. It can
be seen that the agreement is much better than that shown in Figures 15 and 8.

It is apparent that the sting deflection must be taken into account before
meaningful comparisons can be made. The sting can be statically loaded to
determine fairly accurately just what the angular deflections were at the model
position. The results shown in Figure 75 would lead us to believe that Ac is
probably more like 10 or larger rather than the approximate 0.810. Inclusion
of viscous effects would tend to require an even larger angle of attack in
order to obtain the same lift.

CONCLUDING REMARKS

Comparisons of interference-free theoretical results and some sample
experimental data taken on the AEDC Wall Interference Model in tunnel 16T
indicated how presently available computational programs can and should be
used in the analysis and correlation of experimental transonic data.
Meaningful comparisons can be made only after the actual angular corrections
at the model position (due to sting deflection) have been experimentally
measured for each case.

The present comparisons do show where and how linear-theory results
(Woodward program) become inadequate in the transonic-flow region. However,
it was concluded from the Woodward program that the presence of the body and
tail was not the cause of the observed lift discrepancy between the Jameson
wing-alone results and the experimental data. Note that the sting-body has
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not been accounted for in a nonlinear calculation; its effect at transonic

speeds may be important at angle of attack.

The numerical results given here are only a sample of what can be gener-

ated using presently available computer programs. Comparisons with much more

of the experimental data can and should be made when the angle of attack is

corrected, since both the Jameson and Woodward programs will treat supersonic

free-stream velocities.

10



APPENDIX

TRANSFORMATION OF MACH CHART TO PHYSICAL SPACE

In the Jameson program, a parabolic transformation is used in planes
normal to the leading edge of the wing. Figure Al depicts how the airfoil
contour in such planes appears in both physical and computational space while
Figure A2 shows a portion of the wing-section plane computational grid plotted
on physical space. This plot was obtained from a program supplied by J. D.
Keller of NASA-Langley. The Mach.number charts which Jameson's program pro-
duces as part of the printed output are for computational space, not physical
space. Figure A3 is a sample root-section Mach chart with annotations on it
which locate the wing and. free stream. The solid line near the border of the
Mach chart encloses that portion of computational grid which is plotted in
Figure A2. One can transpose the Mach number (times 100) at each computational
grid point of a Mach chart, such as Figure A3, to Figure A2 in order to see
the Mach number distribution (or some other feature such as sonic line or
shock wave) of the flow in the physical wing-section plane.
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Free 5
stream 6 3 x

2 1

Physical space - Cartesian coordinates

Free
stream

6

3

Computational space - sheared parabolic coordinates

Figure Al.- Physical and computational coordinate systems in wing section plane.
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Free
stream

Figure A2.- Portion of wing section computational grid plotted in physical space.
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RECTANGULAR WING WITH EXPERIMENTAL STING-BODY AND

RECTANGULAR TAIL IN AFT POSITION

1, 8

:, !!

,+ -.--- ________

_ _ _ ___ -.... F _ _., _ _--_

F ",: I- ,,R: _

FIGURE 2.- RECTANGULAR WING PLUS EXPERIMENTAL STING-BODY AND TAIL 
CONFIGURATION USED IN CALCuLATIONS,

18



RECTANGULAR WING NACA 63A06 SECTION AR = 32/9

FIGURE 3.- RECTANGULAR WING CONFIGURATION USED IN CALCULATIONS.

RECTANGULAR TAIL NACA 63A006 SECTION AR = 13/4.5

FIGURE' 4.- RECTANGULAR TAIL CONFIGURATION USED IN CALCULATIONS.
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RECTANGULAR WING - NACA 63A00o6 SECTION PR = 32/9
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Figure .- Spanwse distribution of section lift coefficient.
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Figure 18.- Spanwise distribution of section lift coefficient.
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RECTANGULAR TAIL - NACA 63A006 SECTION mR 13/4. 5

.3

8 Non .inear Theory: Jameson Program
:Lin:ar Theory: Woodward Program
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0 6 8 o

Percent semispan

Figure W.- Spanwise istribution of section lift coefficient.
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RECTANGULAR TAIL - NACA 63AU06 SECTION i = 153/4.5

.3

S ..' a = 2.0
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Figure 52.- Spanwise distribution of section lift coefficient.



RECTANGULAR WING NACA 63A006 SECTION AR = 32/9

WITH EXPERIMENTAL STING-BODY

FIGURE 33.- RECTANGULAR WING PLUS EXPERIMENTAL STING-BODY CONFIGURATION USED IN CALCULATIONS.
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RECTANGULAR WING - NACA 6006 sEi V = 3Z/9
WITH EXPERIMENTAL STING-BODY
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-1.2
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-. 1

0
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1.2

1.6

SUpper surface 1
p Lover surface Linear Theory: Woodward Program,, M = 0.6, a = 0.00SUpper surface

0 Lower surface Experiment: AEDC (116/4), M = 0.599, = 0.060

Figure 34.- Chordwise distribution of surface pressure coefficients at the 50
percent semispan location on the wing.
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RE('TA IuAR WIlj - nACA 6)AUo6 SE'(l.ON = -
WITH EXTERIMENTAL ST1CNG-BOD

-. 8

-. 6

-. 4

-. 2

Cp a

.2

.4

. ..6 . .... . i

WING WITH STING-BODY

* uer surfa j Linear Theory: Woodvard Program, M = 0.6, a = 0.00

o pper surface } Experiment: AEDC (116/4), M = 0.599, a 0.060

Figure 55.- Axial distribution of surface pressure coefficients on the sting-body of the wing.



RECTANGULAR WING - NACA 63A006 SECTION Ai = 32/9

WITH EXPERIMENTAL STING-BODY
-1.6

-1.2

-.8

-. 4

op

.4

.8

1.2

SITH STING-BODYUpe srace \.,. L i '1-- ------' 0-

Upper surface Linear Theory: Woodward Program M = 0.6, a 2.00
[ Lower surface

SUpper surface Experiment: AEDC (116/5), M = 0.599, a = 2.030
0 Lower surface

Figure 36,.- Chordwise distribution of surface pressure coefficients at the 50

percent semispan location on the wing.
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HF TANGULAR WIN, - 4ACA .at '6 N -

WITH tXPERMF"'TP '.Ai 'G- "~UDY

.6

-.

E I 1
-.2

-. 4

-~ ,. . . ," "., . - , .. ,, . , , ., .

S UpLower surface Linear Theory: Woodvard Program, M = 0.6, a. = 2.00

SUpper surface } Experiment: AEDC (116/5), M = 0.599, a = 2.030

Figure 57.- Axial distribution of surface pressure coefficients on the sting-body of the wing.



RECTANGULAR WING - NACA 63AO0O6 SECTION AM = 32/9
WITH EXPERIMENTAL STING-BODY

M = 0.6 a = 2.0o
SLinear Theory: Woodward Program

.2

CL

.1

w 0 40 60 80 I00

Percent semispan

Figure 38.- Spanwise distribution of section lift coefficient.



iCTANGULAR unt - MACA 63A0o6 SECTIO mA = 32/9
WITM EXPERIMTAL STING-BOD

-1.6

-1.2

-. 8

-. 4

0

C?

.k

.8

1.2

ING TH STG-BOY

Upper surface Linear Theory: Woodward Program , M = 0.7, a = 0.00
*B Lower surface

o Upper surface Exerimant: AC (113/3), M = 0.699, a = 0.020
O Lower surface A , .

Figure 39L - Chordvise distribution of surface pressure coefficients at the 50

percent semispan location on tt vC~'S
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RECTANGULAR WING - NACA 63A006 SECTION R = 52/9 "
WITH EXPERIMENTAL STING-BODY

-. 8

-. 6

p O

.2

SLoer surface ) Linear Theory: Woodvard Program , M 0.7, a = 0.00

S pper surface Experiment: AEDC L L , M = .60'. - 0.02c

'lgure -. Axlai dnstribution of s.rfac " pressure coefficient.s on the sti ig-.body of the wing.



ECTANGULA WING - NACA 63A006 SECTION IR = 2/9
WITH EXPERIMENTAL STING-BODY

-1.6

-1.2

-. 8

CP

.8

1.2

ING WITH STING-BODY

Upper surface Linear Theory: Woodward Program , M 0.7, a = 2.0
(> Lower surface

Upper surface Experiment: AEDC (115/4), = .699> c 
= 2.030

C3 Lower surface I

Figure 41.- Chordwise distribution of surface pressure coefficients at the 50

percent semispan location on the wing.
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RECTANGULAR WING - NACA 63A00
6 

SECTION A = 32/9

WITH EXPERIMENTAL STING-BODY

-. 8

Upper surface Linear Theory: Woodward Program , M 0.7, a = 2.00
S Lower surface

0 Upper surface
.6 Lwersurae } Eperiment: EOC (1/ii, M h 0.6i, a 2.050

CP 0

Figure 42.- Axial distribution of surface pressure coefficients on the sting-body of the 'Wing.



RECTANGULAR WING - NACA 63A006 SECTION M = j2/9
WITH EXPERIMENTAL STING-BODY

.5

M = 0.7 a = 2.0

O Linear Theory: Woodward Program

.2

CL

.1

S20 4 6 80

Percent semispan

Figure 43.- Spaniise distribution of section lift coefficient.



RECTANGULAR WING - NACA 63A00
6 SECTION R = 32/9

WITH EXPERIMENTAL STING-BODY
-1.6

-1.2

-.8

-. 4

o

CD

.8

1.2

1.6

WING WITH STING-BODY

Upper surface Linear Theory: Woodward Program , M 0.8, a O.0C
O Lower surface

SUpper surface } Experiment: AEDC (112/4), M = 0.802, a = -0.010

SLower surface

iq ure 44.- Chordwise distribution of surface pressure 
coefficients at the 50

orcent semlspan location on the ving.
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RECTANGULAR WING - NACA 63A006 SECTION Ai 3 2/

WITH EXPER MENTAL STING-BODY

-. 8

-. 6

CP O

-. 4

WING WITH STING-BODY

* Upper surface Linear Theory: Woodward Program , M = 0.8, a = 0.00
* Lower surface

> Upper surface Experiment: AEDC (112/4), M =0.802, =-0.010
0 Lower surface j

Figure 45.- Axial distribution of surface pressure coefficients on the sting-body of 
the wing.



RECTANGULAR WING - NACA 63A00
6 SECTION R = 32/9

WITH EXPERIMENTAL STING-BODY

-1.6

-1.2

-. 8

0

Cp

.4

.8

1.2

1.6 6

WING WITH STING-BODY

Upper surface Linear Theory: Woodward Program, M = 0.8, a = 2.00
O Lower surface

O Upper surface Experiment: AEDC (112/6), M = 0.800, = 2.00

O Lover surface

Figure 46.- Chordvise distribution of surface pressure coefficients at the 50

percent semispan location on the wing.
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RECTANGULAR WINO - NACA 63A00
6 

SECTION F = 32/9
WITH EXPEIME~TAL STING-BODY

-. 8

-. 6

-.4

-. 2

Cp O

.2

WING WITH STING-BODY

Upper surface V Linear Theory: Woodward Program , M = 0.8, a = 2.00

g Lover surface J
SUpper surface } Experiment: AEDC (112/6), M = 0.800, a- = 2.000

O Lower surface

Figure 47.- Axial distribution of surface pressure coefficients on the sting-body of the wing.



RECTANGULAR WING - NfACA 63A006 SECTION AR 32/9
WITH EXPERIENTAL STING-BODY.3

M = 0.8 2.0

L Linear Theory: Wocdward Program

.2

oC L

.1

20 40O 6O 8O o

Percent semispan

Figure 48.- Spnwise distribution of section lift coefficient.



ECTANGUAr WING - NACA 63Aoo6 sECTION = 32/9
WITH XDPERIMENTAL STING-BODY

-1.6

-1.2

-. 8

0

Cp

.4

.8

1.2

1.6

ING ITH STING-BODY

<> Upper surface Linear Theory: Woodward Program , M = 0.9, a = 0.00
o3 Lower surface

o Upper surface Experiment: AEDC (136/6), M = 0.900, a. -0.035
3 Lower surface

Figure 49.- Chordwise distribution of surface pressure coefficients at the 50

percent semispan location on the wing.
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RECTANGULAR WING - NACA 63A00
6 SECTION A = 52/9

WITH EXPERIMENTAL STING-BODY

-. 8

-. 6

INSIB
-. 4

Cp o

• 2= =---

.6 -- - - --

Lpper surface

o Upper surface } Experiment: AEDC (136/6), M = 0.900, a = -O.o03
0 Lower surface j

Figure 50.- Axial distribution of surface pressure coefficients on the sting-body of the wing.



RECTANGULAR WING - NACA 63A0
6 SECTION iR = 32/9

WITH EXPERIMENTAL STING-BODY

-1.6

-1.2

-. 8

-. 4

0

Cp

.4

.8

1.2

WING WITH STING-BODY

O Upper surface Linear Theory: Woodward Program , M = 0.9, a = 2.O
o Lower surface

<> Upper surface Experiment: AEDC (136/8), M = 0.896, a = 1.97
o Lower surface

Figure 51.- Chordwise distribution of surface 
pressure coefficients at the 50

percent semispan location on the wing.
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RECTANGULAR WING - NACA 6A00
6 

SECTION R = 32/9

WITH EXPERINENTAL STING-BODY

-. 6

Cp O

.2 -

ING WITH STING-BODY

Upper surface Linear Theory: Woodward Program , M 0.9, a= 2.0
* Lower surface

Upper surface Experiment: AEDC (136/8), M = 0.896, a = 1.970
[] Lower surface

Figure 52.- Axial distribution of surface ressure coefficients on the sting-body of the wing.



RECTANGULAR WINO - NAA 6JAO0
6 

SECTION a = 2/9

WITH EXPERIMENTAL STING-BODY

M = 0.9 a 
= 

2.0c

O Li ,ear Thory: Woodward Program

.2

C
L

0o 6o 80o100

Percent semispan

Figure 53.- Spanvise distribution of section 
lift coefficient.



RECTANGULAR TAIL NACA 63A006 SECTION AR - 13/4.5

WITH EXPERIMENTAL STING-BODY

FIGURE 54.- RECTANGULAR TAIL PLUS EXPERIMENTAL STING-BODY CONFIGURATION USED IN CALCULATIONS.
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RECTANGULAR TAIL - NACA 63AOO
6 SECTION A 13/4.5

WITH EXPERIMENTAL STING-BODY

-1.6

-1.2

-. 8

-. 4

Cp 
.4

.8

1.2

1.6

TAIL WITH STING-BODY

Q Upper surface Linear Theory: Woodward Program, M = 0.6, = 0.0

0 Lower surface

0 Upper surface Experiment: AEDC (175/4), M = 0.599, a -0.02

[ Lower surface

Figure 55.- Chordwise distribution of surface 
pressure coefficients at the 50

percent semispan location on the tail.
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BECTANGTULAR TAIL - NACA 63A006 SECTION Ai = 13/4.5
WITH EXPERIMENTAL STING-BODY

-. 8

-. 6

-. 4

-. 2

Cp 0

.2

.6 . -

TAIL WITH STING-BODY

SUpper surface } Linear Theory: Woodward Program, M = 0.6, a = 0.0

g Lower surface--

C Upper surface Experiment: AEDOC (175/4), M = 0.599, a = -0.020

o Lower surface

Figure 56.- Axial distribution of surface pressure coefficients on the sting-
body of the tail.
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CTANGULAR TAIL - NACA 63AO06 SECTION IR 13/4.5
WITH EPERMENTAL STING-BODY

-1.6

-1.2

-. 8

CP .4

1.2

6

TAIL WITH STING-BODY

r Lover surface

Figure 57.- Chordwise distribution of surface pressure coefficients 
at the 50

percent semispan location on the tail.
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RECTANGULAR TAIL - NACA 63A006 SECTION Am = 1/4.5
WITH EXPERIMENTAL STING-BODY

-.8

-.6

-.4

-.2

Cp 0

.2

.4

TAIL WITH STING-BODY

Upper surface } Linear Theory: Woodvard Program , N = 0.6, = .0
E Lower surface f
O Upper surface Experiment: AEDC (175/5), M 0.600, a = 1.Y9
O Lower surface

Figure 58.- Axial distribution of surface pressure coefficients on the sting-
body of the tail.
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RECTANGULAR TAIL - NACA 63A006 SECTION A = 13/4.5
WITH EXPERIMENTAL STING-BODY

.3

,: = .6 2.

O inear har !r, Wcdwer, Program

.2

CL

4.

0 20 40 8
Percent semispan

Figure ?.- Spanwise distribution of section lift coefficient.



IECTANGULAR TAIL - NACA 63A00
6 SECTION R = 13/4.5

WITH EXPERIMENTAL STING-BODY
-1.6

-1.2

-. 8

-.4

0

CP

.8

1.2 2

1.6

TAIL WITH STING-BODY

S pper surface Linear Theory: Woodward Program M = 0.7, a = 0.00

O Upper surface Experiment: AEDC (174/5), M = 0.700, a = -0.03'

Figure 60.- Chordvise distribution of surface pressure coefficients at the 50

percent semispan location on the tall.
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RECTANGULAR TAIL - NACA 63A006 SECTION JR 13/4.5
WITH EXfERMENTAL STING-BODY

-.8

-. 6

-. 4

-. 2

Cp O

.2

m Upper surface Experiment: AEDC (174/5), M= 0.700, a -0.0
[o Lower surface

Figure 61.- Axial distribution of surface pressure coefficients on the sting-
body of the tail.
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RECTANGULAR TAIL - NACA 6A00
6 SECTION At = 13/4.5

WITH EPERIIENTAL STING-BODY

-1.6

-1.2

-. 8

-.4

Cp .4

.8

1.2

1.6

TAIL WITH STING-BODY

Upper surface Linear Theory: Woodward Program, M = 0.7, a = 2.00
SLower surface

O Lover surface

Figure 62.- Chordwise distribution of surface pressure coefficients at the 50

percent semispan location on the tail.
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RECTANGULAR TAIL - NACA 63A00
6 SECTION A = 13/4.5

WITH EXPERIMENTAL STING-BODY

-. 8

-. 6

-. 4

-. 2

Cp 0

.2

.4

TAIL WITH STING-BODY

<) Upper surface Linear Theory: Woodward Program , M = u.7, am

0 Lower surface J

c Upper surface } xperiment: AEDC (174/7), M 0.699, .96

O Lower surface

Figure 63.- Axial distribution of surface pressure coefficients 
on the sting-

body of the tail.
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RECTANGUTAR TAIL - NACA 6A006 SECTION AR = 13/4.5
WITH EXPERIMENTAL STING-BODY

.3

M = 0.7 a 
= 

2
.
00

O Linearl Theory: Woodward Program

.2
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Figure 64.- Spnwise distribution of section lift coefficient.



RECTANGULAR TAIL - NACA 63AO0
6 

SECTION R 13/4.5
WITH EXPERIMENTAL STING-BODY

-1.6

-1.2

-. 8

-. 4

Cp 
.4

.8

1.2

1.6

TAIL WITH STING-BODY

) Upper surface Linear Theory: Woodward Program , M = 0.8, a = 0.00
] Lower surface

C) Upper surface Experiment: AEDC (171/4), M = 0.800, a = -0.060
o Lower surface

Figure 65.- Chordwise distribution of surface pressure coefficients at the 50

percent semispan location on the tail.
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RECTANGULAR TAIL - NACA 63A006 SECTION M = 13/4.5
WITH EXPERIMENTAL STING-BODY-. 8

-. 6

-. 4

-. 2

Cp 0
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.4

Lower surfa....

e~ Upper surface )Lna noy odsdPorm1~1 ,,niUjSLowere surface Experiment AEDC (71/4), M = 0.80, a -0.

O..............

Figure 66.- Axial distribution of surface pressure coefficients on the sting-
body of the tail.
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RECTANGULAR TAIL - NACA 65A00
6 SECTION A = 15/4.5

WITH EXPERIMENTAL STING-BODY

-1.6

-1.2

-. 8

1.2

1.6

TAIL WITH STINGBODY

. Upper surface Linear Theory: Woodward Program , M 0.8, = 2.00
0 Lover surface

SUpper surface Experiment: AEDC (171/5), M = 0.800, = 1.94

Figure 67.- Chordwise distribution of surface pressure coefficients at the 50

percent semispan location on the tail.

82



RECTANGULAR TAIL - NACA 63A006 SECTION A = 13/4.5
WITH EXPERIMENTAL STING-BODY

-. 8

-. 6

-. 4

-. 2

Cp 0

.2

.4

... . ......... . ..
.TAIL WITH STING-BODY .

Upper surface } Linear Theory: Woodward Program , M = 0C8, = .r
0 Lower surface

SUpper surface Experiment: AEDC ,(271/5), M = 0.800, a = ].40
o Lower surface

Figure 68.- Axial distribution of surface pressure coefficients on the sting-
body of the tail.
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RECTANGULAR TAIL - NACA 65Aoo6 SECTION A = 13/4.5
WITH EXPERIMENTAL STING-BODY

.3

M: 0.8 a = 2.00

O !.i ear Theory: Wcodward Progrs
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Figure 69.- Spanwise distribution of section lift coefficient.



RECTANGULAR TAIL - NACA 63A006 SECTION IR = 1/4.5
WITH EXPERIMENTAL STING-BODY

-1.6

-1.2

7 .PT;

o Uer surface Experiment: AEDC (167/6), M 0.898, a = -0.09

Figure 70.- Chordwise distribution of surface pressure coefficients at the 50

percent semispan location on the tail.
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RECTANGULAR TAIL - NACA 63A006 SECTION R = 15/4.5
WITH EXPERIMENTAL STING-BODY

-. 8

-. 6

-. 4

-. 2

Cp 0

.2

.4

TAIL WITH STING-BODY

o LoUpper surface Linear Theory: oodard Program a - .

Upper surface Experiment: AEDC (17/6;, = 0.8t8, a .09
O Lower surface

Figure 71.- Axial distribution of surface pressure coefficients on the sting-
body of the tail.
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RECTANGULAR TAIL - NACA 63A006 SECTION A = 1/4.5
WITH EXPERIMENTAL STING-BODY

-1.6

-. 8

-. 4

cP .4mop"E

TAIL WITH STNGBODY

S eUpPer surface Linear Theory: Woodward Program , M = 0.9, c = 2.00

O Lower surface

Figure 72.- Chordwise distribution of surface pressure coefficients at 
the 50

percent semispan location on the tail.
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RECTANGULAR TAIL - NACA 63A006 SECTION M = 13/4.5
WITH EXPERIMENTAL STING-BODY

-. 8

-. 6

-. 4
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Cp o
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TAIL WITH STINGBODY

Upper surface Linear Theory: Woodward Program, M ---NJ.,,,0

SUpper surface Experiment: AEDC 16't/7), M = 0-895 a 1.910o Lower surface

Figure 73.- Axial distribution of surface pressure coefficients on the sting-
body of the tail.
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RECTANGULAR TAIL - NACA 63A006 SECTION A = 13/4.5
WITH EXPERIMENTAL STING-BODY
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S20 40 o o 00oo
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Figure 74.- Spanwise distribution of section lift coefficient.
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Figure 75.- Chordwise distributioll of surface pressure coefficients at the 50

percent semispan location. The angle of attack used in the 
Jameson program was

guessed so as to approximate the apparent experimental section lift.

90



I -6i i .1i - -: I . . . 4 , I ;i

-:I -Ii I TI ; i

i , ,i II -

?- I 717
I I- - - i ,

. :i i_ : : 1 1

SI I

At
4-- L /--- ij _ _~i: I

I I

+Upper surface coh;niIear Theor*: Jalsescn Prcgrom

X Lower surface

SUpper surface Experiment: AFC ( )

0 Lower surface + 0.8C6Lc ,ting defl.-

Figure 76.- Chordwise distribution of surface pressure coefficieiit3 at thie ',0

percent semispan location. The angle of attack used in the Jamnesir. program was

adjusted to account for sting deflection as determined by an approximate -tress

anialysis.
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Figure 77.- Chordwise distribution of surface pressure coefficients at the 50
percent semispan location. The angle of attack used in the Jameson program was

adjusted to account for sting deflection as determined by an approximate stress

analysis.
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Figure 77.- Chordwise distribution of surface pressure coefficients at the 50
percent semispan location. The angle of attack used in the Jameson program was
adjusted to account for sting deflection as determined by an approximate stresa
analyais.




