AUBURN UNIVERSITY

MULTIVAR!ANT FIUNCTION

MODEL GENERATION

> Final Report

Contract NGK -01 -003.008
Final Repart
Contract NGK $-01-003.008$

W. A. Shaw, G. R. Harmor, J. 'M'. Reece,
P. M. Fitzpatrick, C. H. Chen, W. F. Keiter, J. C. M. Yis, K. D. Donnenberg, L. R. Young, j. E. Cochran, J. J. F. LiU
School of Engineering
Department of Mechanical Engit,eering
Under Contract With
Electronics Research Center
National Aeroncutics \& Space Administration
Cambridge, Massachusents
Administered Through
ENGINEERING EXPERIMENT STATION
AUBURN UNIVERSITY
AUBIIN, ALABAMA 36830

Janvary, 1978

FOREWORD

This compilation of papers and reports is the final report for Contract ME-(NGR-01-003-008), "Compuier Techniques for Multivariant Function Model Generation Emphasizing Programs Applicable to Space Vehicle Guidance". The work was performed by those listed as authors of the papers and reports, for the National Aeronautics and Space Administration, Electronics Research Center, Cambridge, Massachusetts.
. "A Method for Determining Optimum Re-entry Trajectories". Auburn University Engineering Experiment Station Technical Report -ME-(NGR-01-003-008)-1. June, 1966. (W.F. Reiter, G.R. Harmon and J.W. Reece).
2. "Research on Development of Equations for Performance Trajectory Computation". Auburn University Engineering Experiment Station Technical Report, ME-(NGR-01-C03-008)-2. March, 1967. (G.R. Harmon).
3. "Vehicle Control for Fuel Optimization". Auburn University Engineering Experiment Station Technical Report. ME-(NHR-01-003-008)-3. November 1967. (K.D. Dannenberg and G.R. Harmon).
4. "Research on Development of Equations for Performance Trajectory Computations". Auburn University Engineering Experiment Station Technical Report. ME-(NGR-01-003-008)-4, July, 1968. (G.R. Harmon).
5. "Some Suggested Approaches to Solving the Hamilton-Jacobi Equation Associated with Constrained Rigid Body Motion". Auburn University Engineering Experiment Station Technical Report. ME-(NGR-0!-003-008)-5, January 1969. (P.M. Fitzpatrick, G.R. Harmon, J.E. Cochran and W.A. Shaw).
6. "Hamilton/Jacobi Perturbation Methods Applied to the Rotational Motion of a Rigid Body in a Gravitational Field". Auburn University Engineering Experiment Station Technical Report. ME-(NGR-Cl-003-008)-6, Octoder 1969. (P.M. Fitzpatrick, G.R. Harmon, J.J.F. Liu and J.E. Cochran).
$\sqrt{7 .}$ "Stresses in Dome-shaped Shells of Revolution with Discontinuities at the Apex", Auburn University Engineering Experiment Station Technical Report ME-(NGR-01-003-008)-7: (C.H. Chen, J.C.M. Yu, W.A. Shaw).

AUBURN UNIVERSITY

A METHOD FOR DETERMINING OPTIMUM RE-ENTRY TRAJECTORIES - By
William F. Reiter, Grady R. Harmon and Joe W. Reece Department of Mechanical Engineering
NASA Grant NGR-01-003-008
Prepared For
GUIDANCE LABORATORY ELECTRONICS RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CAMBRIDGE, MASSACHUSETTS

June 1966

AUBURN, ALABAMA

AUBURN UNIVERSITY

A METHOD FOR DETERMINING OPTIMUM REENTRY TRAJECTORIES

By

William F．Reiter
Grady R．Harmon
．roe W．Reece

SUMMARY

The Pontryagin Maximum Principle is used to formulate the prob－ lem of finding optimum atmospheric vehicular reentry trajectories． The optimization problem is that of minimizing an integral which is a function of the state and control variables．The vehicle＇s motion is assumed to be influenced only by a gravitational force and an aerodynamic force．The problem is formulated and the necessary equa－ tions are developed simultaneously for three sets of Euler angles． Computational procedures are suggested so that numerical trajectories may be generated．

TABLE OF CONTENTS

SUAMARY ii
LIST OF SYMBOLS iv
LIST OF FIGURES vii
I. INTRODUCTION 1
II. STATEMENT OF PROBLEM 2
III. COORDINATE SYSTEVS 4
A. Plumbline System 4
B. Missile System 4
C. Aerodynamic System 13
IV. MECHANICS 17.
A. Forces 17
B. Couples and Moments 23
C. Equations of Motion 25
V. RELATIVE VELOCITY CONSTRAINTS 38
VI. FORMULATION OF THE OPTIMIZATION PROBLEM 45
VII. COMPUTATIONAL PROCEDURE 55
VIII. DISCUSSION 73
BIBLIOGRAPHY 75
APPENDIX A 76
APPENDIX 3 77

LIST OF SYMBOLS

A Projected cross-sectional area of vehicle
C.G. Center of gravity
C.P. Center of pressure

C $\alpha \quad$ Cosine α
${ }^{C} \alpha_{y} \quad$ Cosine α_{y}

CP \quad Cosine \emptyset_{p}
$C R \quad$ Cosine \emptyset_{r}

CY Cosine \emptyset_{y}
$C_{x}, C_{z} \quad$ Vehicle configuration factors
$\vec{F}_{a} \quad$ Aerodynamic force in the aerodynamic coordinate system
$\bar{F}_{\text {am }} \quad$ Aerodynamic force in the missile system
$\overline{\mathrm{F}}_{\mathrm{g}} \quad$ Gravitational force in the plumbline system
$\bar{F}_{r 1}=-\bar{F}_{r 2}$ Roll forces in the missile system
G Gravitational constant
m Mass of the vehicle

$\bar{\chi}$	Plumbline position vector
\bar{X}_{a}	Aerodynamic systen position vertor
$\bar{x}_{c p}$	Position of the center of pressure in the missile system
\bar{X}_{m}	Missile system position vector
\bar{z}_{r}	Roll jet positions in the missile system
α^{*}	Angle of attack
α_{y}	Yaw angle of attack
\emptyset_{p}	Pitch angle
\emptyset_{r}	Roll angle
\emptyset_{y}	Yaw angle
p	Density of the Atmosphere
$\bar{\omega}$	Angular velocity vector of the vehicle in the missile system
$\bar{\omega}_{e}$	Angular velocity vector of the attracting body in the plumbline system

vi

LIST OF FIGURES

Figure Page
Text
1 Flumbline and Missile Coordinate Systems 5
2 Eulerian Angles for Gimbal Set 8
3 Eulerian Angles for Gimbal Set 2 10
4 Eulerian Angles for Gimbal Set 3 12
5 Aercdynamic and Missile Coordinate Systems 14
6 Aerodynamic Force Components F_{X} and F_{2} 18
Appendices

1. Coordinate System Showing a Positive Pitch Angle φ_{2}. 79
2 Coordinate Sysiem Showing a Positive Yaw Angle \emptyset_{y}. 8 C

- 3 Coordinate System Showing a Positive Pitch Angle φ_{p} 83
4 Coordinate System Showing a Positive Roll Angle \emptyset_{r}. 84
5 Coordinate System Showing a Positive Yaw Angle \emptyset_{y} 87

I. INTRODUCTION

This paper is an extension of previous work done by Grady Harmon and W. A. Shav, presented in NASA TM X-53024, March 14, 1964. The objectives of this paper are (1) to present a method for treating optimum re-entry probsems in a simplified manner and (2) to generalize the computational scheme outlined in the aforementioned paper. The computational scheme given allows for the optimization of any functional subje:t to the specified constraints. Atmospheric data, vehicle configuration and aerodynamic coefficients are incorporated in the computational scheme in tabular form. Thus, different vehicles and/or atmospheres may be considered by changing the appropriate'tables. The governing equations are developed for three different gimbal sets. A computational scheme is outlined for each case.

No numerical results are available at present, but development of the computer deck is underway at the Electronics Research Center.

This work is sponsored, in part, by a grant, NGR-01-003-008, from the Electronics Research Center.

II. STATEMENT OF THE PROBLEM

The problem is that of finding the optimam control process, $\alpha_{y}(t)$, that will transfer a vehicle from an initial state, at time t_{0}, in an atmosphere to a terminal state, at time t_{1}, in the same atmosphere so that the value of the functional

$$
J=\int_{t_{0}}^{t_{1}} f\left(\bar{x}, \dot{\bar{x}}, \dot{\bar{\phi}}, \theta_{r}, \varphi_{y}, \varphi_{p}, a, a_{y}, F_{r}\right) d t
$$

is a minimum. The trajectory associated with this optimum control process is the optimum trajectory.

The rotational motion of the vehicle is treated in a simplified manner. The equations governing the vehicle's rotational motion are considered as a steady-state problem with only one cumponent of the angular velocity vector present for any given gimbal set. A gimbal set is used to measure the Euler angles, $\emptyset_{r}, \emptyset_{y}$, and \emptyset_{p}. The equations of motion are developed simultaneously for three different gimbal sets.

Tine problem is formu'ated as a Pontryagin initial value problem. The relative velocity equations appear as algebraic constraints. The yaw angle of attack, $\alpha_{y}(t)$, is the control variable.

Additional assumptions are made as follows:

1. The motion of the vehicle is influenced by an aerodynamic force that acts through the vehicie's center of pressure.
2. The attracting body is a rotating sphere with homogeneous mass.
3. The vehicie's sentroid of mass and centroid of volume are not. coincident.
4. The vehicle's center of r.ass is invariant with respect to the vehicle.
5. The center of pressure of the vehicle is invariant with respect to the vehicle.
6. A sjeitm of roll control jets is available on the venicle that produce a pure roll couple as required by the optimum control process.
iII. COORDINATE SISTEYS

Three rectangular coordinate systems will be used in this paper. They are:

1. The plumbline space fixed coordinate system,
2. The vehicle fixed missile coordinate system,
3. The aerodynamic coordinate system.
A. Plumbline System

The plumbline system, Figure 1 , has its origin it the earth's center with the Y-axis parallel to the gravity gradient at the launch point. The X-axis is parallel to the earth fixed launch azimith and the Z -axis is chosen to form ₹ right-handed system.

B. Missile System

The missile system, Figure 1, is located with its origin at the center of mass of the vehicle and its y_{m} axis parallel to the longitudinal axis of the vehicle. The x_{m} and z_{m} axes are chosen to form a righthanded system which is parallel to the plumbline system at the launch point.

As the vehicle moves al ong its trajectory, the missile system undergoes a displacement with respict to the plumbline system. This displacement is given by three Euler angles as measured by a gimbal set. The Euler angles uniquely specify the orientation of the vehicle at any time. Any particular orientation of the vehicle may be described by

1g. 1. Plumbine and.missile coordinate systems
different sets of Euler angles depending solely on the sequence in which the angles are measured. Therefore, it is mandatory that a specific sequence be followed in measuring the Eular angles. The three Euler angles are referred to as the yaw angle, \emptyset_{y}, the roll angle, \emptyset_{r}, and the pitch angle, φ_{p}. The yaw angle is measured with respect to an X axis. The coll angle is measured with respect to a Y axis, and the pitch angle is measured with respect to a 2 axis. An angle is consicered positive counterclockwise when viewed from the positive end of the axis about which the rotation is taken. The angles are measured by a set of gimbals on the vehicle. A gimbal set measures the Euler angles in a specific sequence such as pitch, yaw, and roll. . In this paper, equations that involve the angles yaw, roll, or pitch are developed simultaneously for three different sets of Euler angles. The angles are obtained from three gimbal sets. They will be referred to as follows:

1. A gimbal set which measures in the order of pitch, yaw, roll.
2. A gimbal set. which measures in the order of pitch, roll, yaw.
3. A gimbal set which measures in the order of roll, yaw, pitch.

The Euler angles are shown in Figures 2, 3, and 4.
A position vector in the missile coordinate system may be written in terms of a position vector in the plumbiine coordinate system.

The equations of transformation are given of the orthogonal rotation matrices

$$
\begin{aligned}
& {\left[\phi_{Y}\right] \cdots\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & C Y & S Y \\
0 & -S Y & \\
C Y
\end{array}\right]} \\
& {\left[-\phi_{r}\right]=\left[\begin{array}{rrr}
C R & 0 & S R \\
0 & 1 & 0 \\
-S R & 0 & C R
\end{array}\right]} \\
& {\left[\varphi_{\mathrm{p}}\right] \quad=\left[\begin{array}{rrr}
\mathrm{CP} & \mathrm{SP} & 0 \\
-\mathrm{SP} & \mathrm{CP} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

The particular combination of the above rotation matrices that relate a vector in the two coordinate systems is dependent on the gimbal set used. The relationship for gimbal set 1 is

$$
\bar{x}_{\mathrm{m}} \quad=\left[\begin{array}{llll}
-\varphi_{\mathrm{r}}
\end{array}\right]\left[\begin{array}{lll}
{\left[\varphi_{\mathrm{y}}\right.} \tag{la}
\end{array}\right]\left[\emptyset_{\mathrm{p}}\right] \quad \overline{\mathrm{x}}
$$

or

$$
\begin{equation*}
\bar{x}_{m} \quad \because \quad\left[A_{d}\right]{ }_{2} \bar{x} \tag{ib}
\end{equation*}
$$

Fig. 2. Eulerian angles for gimbal set 1
where

$$
\left[A_{d}\right\}_{1}=\left[\begin{array}{ccc}
C R C P+S P S R S Y & \text { CRSP-SRSYCP } & \text { SRCY } \tag{1c}\\
-C Y S P & C Y C P & S Y \\
- \text { SRCP }+C R S Y S P & -S P S R-C R C P S Y & C R C Y
\end{array}\right]
$$

is the combined product of the rotation matrices in equation (la). When $\emptyset_{y}=90^{\circ}$ gimbal set l is oriented so that \emptyset_{r} and \emptyset_{p} are measured in the same direction, refer to Figure 2. This condition is referred to as gimbel lock.

The relationship for gimbal set (2) is

$$
\begin{equation*}
\bar{x}_{m}=\left[\phi_{y}\right]\left[-\phi_{r}\right]\left[\phi_{p}\right] \bar{x} \tag{2a}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{x}_{\mathrm{m}}=\left[\mathrm{A}_{\mathrm{d}}\right]_{2} \overline{\mathrm{x}} \tag{2b}
\end{equation*}
$$

where

$$
\left[A_{d}\right]_{2}=\left[\begin{array}{ccc}
\text { CRCP } & \text { CRSP } & \text { SR } \tag{2c}\\
\text {-CYSP-SYSRCP } & \text { CYCP-SYSRSP } & \text { SYCR } \\
\text { SYSP-CYSRCP } & \text {-SYCP-CYSRSP } & \text { CYCR }
\end{array}\right]
$$

is the combined product of the rotation matrices in equation (2a). Gimbal set 2 is locked when $\emptyset_{r}=90^{\circ}$. At this orientation, refer to Figure 3, \emptyset_{y} and \emptyset_{p} are measured in the same direction.

Fig. 3. Eulerian angles for gimbal set 2

The relationship for gimbal set (3) is

$$
\begin{equation*}
\bar{x}_{\mathrm{m}}=\left[\emptyset_{\mathrm{p}}\right]\left[\phi_{\mathrm{y}}\right]\left[-\phi_{\mathrm{r}}\right] \bar{x} \tag{3a}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{x}_{m}=\left[A_{d}\right]_{3} \bar{x} \tag{3b}
\end{equation*}
$$

where

$$
\left[A_{d}\right]_{3}=\left[\begin{array}{ccc}
\mathrm{CPCR}-\mathrm{SPSRSY} & \mathrm{SPCY} & \mathrm{CPSR}+\mathrm{SPSYCR} \tag{3c}\\
-\mathrm{SPCR}-\mathrm{CPSRSY} & \mathrm{CPCY} & -\mathrm{SPSR}+\mathrm{CPSYCR} \\
-\mathrm{SRCY} & -\mathrm{SY} & \mathrm{CYCR}
\end{array}\right]
$$

is the combined product of the rotation matrices in equation (3a). Gimbal set 3 is locked when $\emptyset_{y}=90^{\circ}$. At this orientation, refer to Figure $4, \emptyset_{\mathrm{p}}$ and \emptyset_{r} are measured in the same direction.

The transformation matrices (1c), (2c), and (3c) will be referred to as

$$
\left[A_{d}\right]_{3} \text { where } i=1,2,3 .
$$

Equations (3b), (2b), and (3b) are restated as

$$
\begin{equation*}
\bar{x}_{m}=\left[A_{d}\right]_{i} \bar{x} \tag{4}
\end{equation*}
$$

Fig. 4. Eulerian angles for gimbal set 3

C. Acrodynamic Coordinate System

The aerodynamic coordinate system is located as shown in Figure 5 with its origin at the center of pressure of the vehicle. The Y_{a} axis lies in the plane containing the vehicle longitudinal axis of symetry and the relative velocity vector. ine relative velocity vector, \vec{V}_{R}, is defined as the velocity of the air with respect to the venicle as measured from the irertial reference. The X_{a} and Z_{a} axes are chosen to form a right-handed system. As the vehicle moves along its trajectory, there will be a relative displacement between the missile fixed coordinate system and the aerodymamic coordinate system. The direction of the Y_{3} axis is defined by the following rotations as shown in Figure 5:

1. Rotate the vehicle fixed reference frame about the γ_{m} axis so that the X_{m} axis lies in a plane parallel to the plane formed by the vehicle's longitudinal axis of symuetry and the relative velocity vector. The angle traversed is referred to as the yaw angle of attack, α_{y}.
2. Rotate about the new Z axis by the true angle of attack, α^{*}. This specifies the orientation of the aerodynamic coordinate system.

The true angle of attack, α^{*}, will be expressed in terms of the aerodymanic force in the next section.

Fig. 5. Aerodynamic and missile coordinate systems .

A position vector in the aerodynamic coordinate system may be written in terms of a position vector in the missile fixed coordinate system. The orthogonal transformation matrices are

$$
\left[-\alpha^{*}\right]=\left[\begin{array}{ccc}
C \alpha^{*} & -S \alpha^{*} & 0 \\
S \alpha^{*} & C \alpha^{*} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\left[\alpha_{y}\right]=\cdot\left[\begin{array}{ccc}
C \alpha_{y} & 0 & -S \alpha_{y} \\
0 & 1 & 0 \\
S \alpha_{y} & 0 & c \alpha_{y}
\end{array}\right] .
$$

A positive vector in the aerodynamic coordinate system is expressed in terms of a position vector in the missile fixed reference as

$$
\begin{equation*}
\bar{x}_{a}=\left[-\alpha^{*}\right]\left[\alpha_{y}\right] \bar{x}_{\mathrm{m}} \tag{Fa}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{x}_{a}=\left[A_{a}\right] \bar{x}_{\mathfrak{a}} \tag{Sb}
\end{equation*}
$$

where

$$
\left[A_{\mathrm{a}}\right]=\left[\begin{array}{ccc}
C \alpha^{*} C \alpha_{y} & -S \alpha^{*} & -C \alpha^{*} S \alpha_{y} \tag{Sc}\\
S \alpha^{*} S \alpha_{y} & C \alpha^{*} & -S \alpha^{*} S \alpha_{y} \\
S \alpha_{y} & 0 & C \alpha_{y}
\end{array}\right]
$$

is the combined procuct of the rotation matrices in equation (5a). The aerodynamic coorainate system transformation matrix (5c) is independeat of the sequence used in measuring the angles yaw, roll, and pitcin.
A. Forces

Tho forces are asstimed to act on the vehicle as it moves along its trajectory. It was assumed that the artracting bod; is a homogencous sphere. Tnus, an inverse square gravitational force is written in terms of the plumbline coordinates as

$$
\begin{equation*}
\bar{F}_{g}=-\frac{-r m \bar{X}}{|\bar{R}|^{3}} \tag{6}
\end{equation*}
$$

Tine venicli's motion is also influenced by an aerodynamic force. The force lies in the plane fonmed by the venicle longitudinal axis of symuetry and the relative veiocity vector and passes through the center of pressure of the vehicle, as shown in Figure 6.

The components of the aerociynamic force are defined by the equations

$$
\begin{equation*}
F_{x}=A q C_{x}\left(\alpha^{*}\right) \tag{7a}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{z}=A q C_{z}\left(a^{*}\right) \tag{7b}
\end{equation*}
$$

Fig. 6. Aerodynamic force components F_{X} and F_{z}
A is the projected cross-section are of the vehicle and q is the dynamic pressure C_{λ} and C_{7} an z experimentally determined factors that are copencont on the vehicle's shape and tie angle of attack. It is assumed that C_{z} and C_{λ} are known. The aerodynamic force is expressed in the aerodynamic system as

$$
\bar{F}_{a}=\left[\begin{array}{ll}
-F_{z} C \alpha^{*}+F_{X} S \alpha^{*} \tag{8}\\
-F_{X} C \alpha^{*} & -F_{z} S \alpha^{*} \\
0 &
\end{array}\right]
$$

The aerodynamic force is expressed in terms of tine missile fixed reference as

$$
\bar{F}_{a m}=\left[A_{a}\right]^{T} \bar{F}_{a}
$$

(Note: The symbol $[A]^{T}$ is used to denote the transpose of matrix A.)
Equation (Pa) can be written in component form as

$$
\left[\begin{array}{l}
F_{a m \lambda} \tag{9b}\\
F_{a: i y y} \\
F_{a m z}
\end{array}\right]=\left[\begin{array}{ccc}
C a^{*} C \alpha_{y} & S \alpha^{*} C \alpha_{y} & S \alpha_{y} \\
-S \alpha^{*} & C \alpha^{*} & 0 \\
-C \alpha^{*} S \alpha_{y} & -S \alpha^{*} S \alpha_{y} & C \alpha_{y}
\end{array}\right]\left[\begin{array}{c}
\Gamma_{-} S \alpha C \alpha^{*}+F_{a} C \alpha S \alpha^{*} \\
-F_{a} C \gamma C \alpha^{*}-F_{a} S \alpha S \alpha^{*} \\
0
\end{array}\right] .
$$

When simplified, equation (93) becomes

$$
\left[\begin{array}{c}
F_{a m y} \tag{9c}\\
F_{a m y} \\
F_{a m z}
\end{array}\right] \therefore F_{a}\left[\begin{array}{c}
-S \alpha C \alpha_{y} \\
-C \alpha \\
S \alpha \alpha_{y}
\end{array}\right]
$$

where the magrituce of the esrodynamic force is

$$
\begin{equation*}
F_{a}=\sqrt{F_{\lambda}^{2}+F_{z}^{2}} \tag{10}
\end{equation*}
$$

ard e is expressed in terms of the components of the aerodynamic force tirrough the equazions

$$
\begin{align*}
S \alpha & =\frac{\bar{E}_{2}}{\left|\bar{F}_{a}\right|} \\
C \alpha & =\frac{F_{X}}{\left|\bar{F}_{a}\right|} \tag{11b}\\
\tan \alpha & =\frac{S \alpha}{C \alpha}=\frac{F_{z}}{F_{\lambda}}=\frac{C_{2}\left(a^{*}\right)}{C_{X}\left(a^{*}\right)} \quad, \quad \text { (11a) } \tag{iIc}
\end{align*}
$$

Tre magnituce on the aerounamic force is related to the relative velocity through the dynamic pressure by the equation

$$
\begin{equation*}
q=1 / 2 \rho V_{R}{ }^{2} \tag{12}
\end{equation*}
$$

It is assumed that the atmosphere normally moves with the attracting jody (o). Hence, at all ionics there is an air mass movement with respect $=0$ the plumbin:e coordinate system. Wis a vector that represents any abnonain air movement. An equation expressing the velocity of the wind may be written as

$$
\begin{equation*}
\bar{v}_{\text {wind }}=\bar{w}_{e} x \bar{x}+\bar{W} \tag{13}
\end{equation*}
$$

The relative velocity equation is

$$
\begin{equation*}
\dot{\bar{x}}=\bar{v}_{\text {wind }}+\bar{v}_{R} \tag{14}
\end{equation*}
$$

Hiram equation (is) is substituted into equation (14), the result is

$$
\begin{equation*}
\overline{\mathrm{V}}_{R}=\dot{\bar{x}}+\overline{\mathrm{x}} \times \bar{\omega}_{\mathrm{e}}-\overline{\mathrm{v}} \tag{15a}
\end{equation*}
$$

or, in component form,

$$
\left[\begin{array}{c}
r_{R X} \tag{15b}\\
v_{R Y} \\
v_{R Z}
\end{array}\right]=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]+\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \times\left[\begin{array}{c}
\omega_{e x} \\
{ }^{\omega} \\
{ }^{e} \mathrm{ey} \\
\omega_{e Z}
\end{array}\right]-\left[\begin{array}{c}
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right]
$$

The relative velocity may be expressed in terms of the aerodynamic, missile, or plumbline coordinate system variables. The relative velocity
vector is waittea in the missice coordinate sysien as

$$
\begin{equation*}
\bar{V}_{\mathrm{rm}}=\left[A_{d}\right]_{i} \bar{V}_{R}=\left[A_{a}\right]^{T} \bar{V}_{r} \tag{16}
\end{equation*}
$$

wiscre

$$
\bar{v}_{\mathrm{rm}} \cdot\left[\begin{array}{c}
v_{\mathrm{rmax}} \\
v_{\mathrm{rxay}} \\
v_{\mathrm{ranz}}
\end{array}\right]
$$

is the relative velocity vector in the missile system and

$$
\bar{V}_{\mathbf{r}}=\left[\begin{array}{c}
0 \\
v_{\mathbf{r}} \\
0
\end{array}\right]
$$

is the reintive velocity vector in the aerodynamic system. (Note that eǫLation (lō) represents three possible ecuacions cepending on i.)

The resultant force acting on the vehicle written in the plumbline coordinates is

$$
\begin{equation*}
\bar{F}_{R}=\bar{F}_{g}+\left[A_{d}\right]_{i}^{T} \cdot \bar{F}_{a m} \tag{17}
\end{equation*}
$$

B. Counlos ind Mononts

Tha mozion of tio veaicic is intiuenced by a moment and a couple. It is assumad tiat the centor of pressure and the center of mass are invasiai:i with raspect to the venicle. Thus, the center of pressure is iocated by a constant posizion vector, $\bar{x}_{c p}$, in the missile fixed reference. The aerodymanic moment is given by the vector product of tie position vector, $\bar{x}_{c p}$, and the aerudynamic force, $\bar{F}_{\text {an }}$. The aerodynamic a.oment is wrizton in the missile fixed reference as

$$
\begin{equation*}
\bar{M}_{\mathrm{am}}=\bar{x}_{\mathrm{cp}} \times \bar{F}_{\mathrm{am}} \tag{18a}
\end{equation*}
$$

or

$$
\left[\begin{array}{l}
M_{a m x} \tag{r}\\
M_{a m y} \\
M_{a m z}
\end{array}\right]=\left[\begin{array}{ll}
F_{a} & y_{c p} S \alpha S \alpha_{y} \\
-F_{a} & z_{c p} S \alpha C \alpha_{y}{ }^{2} c p \\
C \alpha & F_{a} x_{c p} S \alpha S \alpha_{y} \\
-F_{a} & x_{c p} C_{\alpha} \\
+F_{a} y_{c p} S_{\alpha} C_{\alpha_{j}}
\end{array}\right]
$$

A system of roll jets is used to produce a pure roll control coupia ajout the $Y_{\text {:i }}$ axis. The jets are located with respect to the missile fixed coordinate systom so that

$$
\bar{F}_{r 1}=\left[\begin{array}{c}
F_{r} \\
0 \\
0
\end{array}\right] \text { lucated at } \bar{z}_{r}=\left[\begin{array}{l}
0 \\
0 \\
Z_{r}
\end{array}\right]
$$

$2: \dot{4}$

$$
\bar{F}_{\mathrm{r} 2}=\left[\begin{array}{c}
-\bar{F}_{\mathrm{r}} \\
0 \\
0
\end{array}\right] \text { located ai }-\bar{z}_{I}=\left[\begin{array}{c}
0 \\
0 \\
-z_{r}
\end{array}\right]
$$

yield a roll couple

$$
\begin{equation*}
\bar{M}_{r m}=2\left(\bar{Z}_{r} \times \bar{F}_{r}\right) \tag{19a}
\end{equation*}
$$

which may be expressed as

$$
\vec{M}_{r \mathrm{~m}}=\left[\begin{array}{c}
0 \tag{19b}\\
2 z_{r} F_{r} \\
0
\end{array}\right]
$$

The resultant moment about the center of mass of the vehicle in the i:issiie Fixed coordinate system is the sum of the roll couple and aerodynamic moment

$$
\begin{equation*}
\bar{x}_{\mathrm{Tm}}=\overline{\mathrm{N}}_{\mathrm{am}}+\overline{\mathrm{n}}_{\mathrm{rm}} \tag{20}
\end{equation*}
$$

Wren equations (ISO) and (1Y0) are substituted into equation (20), the result: is

$$
\bar{X}_{\mathrm{T}}=\left[\begin{array}{ccc}
F_{a} y_{c p} C_{C} S_{\alpha y} & +F_{a} z_{c p} C_{\alpha} \\
-F_{a} z_{c p} S \alpha C \alpha y & -F_{a} x_{c p} S \alpha S \alpha \\
-F_{a} x_{c p} C_{\alpha} & +F_{a} y_{c p} S_{\alpha} C_{\alpha y}
\end{array}\right]+\left[\begin{array}{c}
0 \\
2 z_{r} F_{r} \\
0
\end{array}\right]
$$

Whith can be reubucce to

$$
\bar{x}_{a=}=\left[\begin{array}{l}
\bar{r}_{a} y_{c p} S u S \alpha y+F_{a} z_{c p} C \alpha \tag{210}\\
2 z_{z} F_{z}-F_{a} z_{c ; p} S \alpha C \alpha_{y}-F_{a} x_{c p} S \alpha S \alpha{ }_{y} \\
-F_{a} x_{c p} C \alpha+F_{a} y_{c p} S C_{i} C \alpha y
\end{array}\right]
$$

C. Equations of Motion

it is possible to interpret the motion of a rigia body as the sum of two indeyencient effects--the motion of the center of mass of the vehicie witi: respect to an incrial coordinate system and the rotational rotion of tine veiticle about its center of mass. The motion of a rigid bocy in goneral requizes six indopendent coordinates to specify its orientäzon at any time. The six independent coordinates used in this problem are the three plumbline cooranates and three Eulerian angles.

The translational equations of motion are written for the center cí mass in the inerial rezerence as

$$
\begin{equation*}
\bar{F}_{\mathrm{F}}=m \ddot{\bar{X}} \tag{22a}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{F}_{g}+\left[A_{d}\right]_{i}^{T} \bar{F}_{a m}=m \ddot{\bar{X}} \tag{22b}
\end{equation*}
$$

where

$$
\ddot{\bar{x}}=\left[\begin{array}{c}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right]
$$

 translational ocuazions oz ration become

$$
\begin{equation*}
\ddot{\vec{x}}=-\frac{G K \bar{X}}{|\bar{R}|^{z}}+\left[A_{d}\right]_{i}^{m} \frac{F_{a m}}{m} \tag{22c}
\end{equation*}
$$

Tine tine second order differential equations, (22c), may be reduced to six first order differential equations by a change of variables. Le ะ

$$
\bar{u} \quad \cdot=\left[\begin{array}{l}
u \tag{23}\\
v \\
w
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\dot{\bar{x}} \quad .
$$

Wan tine above transformation is used, the second order differential equations oz ̃ motion, (22c), reduce to

$$
\begin{equation*}
\overline{\bar{i}}=-\frac{G M \bar{X}}{|\bar{R}|^{3}}+\left[A_{\dot{d}}\right]_{i}^{T} \frac{\bar{F}_{a m}}{m} \tag{24}
\end{equation*}
$$

For convenience, the following deininitions are made:

$$
\begin{gather*}
g=-\frac{G M}{|\bar{R}|^{3}} \tag{ab}\\
{\left[A_{d}\right]_{i}^{T} \frac{\overline{\bar{F}}_{m}}{m}=\frac{F_{a}}{m} \bar{N}_{i}=F_{a}^{*} \bar{N}_{i}} \tag{26}
\end{gather*}
$$

where

$$
\mathrm{F}_{\mathrm{a}}^{*}=\frac{\mathrm{F}_{\mathrm{a}}}{\mathrm{~m}}
$$

and

$$
\vec{N}_{1}=\left[\begin{array}{l}
N \\
P \\
Q
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
N \\
P \\
Q
\end{array}\right]_{I}=\left[\begin{array}{c}
-\left(S \alpha C \alpha_{y}\right)(C R C P+S R S Y S P)+C \alpha C Y S P+\left(S \alpha S \alpha_{y}\right)(-S R C P+C R S Y S P) \\
-\left(S \alpha C \alpha_{y}\right)(C R S P-S R S Y C P)-C \alpha C Y C P-\left(S \alpha S \alpha_{y}\right)(S P S R+C R C P S Y) \\
-\left(S \alpha C \alpha_{y}\right)(S R C Y)-C \alpha S Y+\left(C R C Y S \alpha S a_{y}\right)
\end{array}\right] r^{(27 a)}
$$

and

$$
\bar{N}_{2}=\left[\begin{array}{l}
\mathrm{N} \\
\mathrm{p} \\
\mathrm{Q}
\end{array}\right]_{2}
$$

where

$$
\left[\begin{array}{l}
N \\
P \\
Q
\end{array}\right]_{b}=\left[\begin{array}{c}
-\left(S \alpha C \alpha_{y}\right)(C R C P)+C \alpha(C Y S P+S Y S R C P)+S \alpha S \alpha_{y}(S Y S P-C Y S R C P) \\
-\left(S \alpha C \alpha_{y}\right)(C R S P)-C \alpha(C Y C P-S Y S R S P)-\left(S \alpha S \alpha_{y}\right)(S Y C P+C Y S R S P) \\
-\left(S \alpha C \alpha_{y}\right)(S R)-C \alpha(S Y C R)+\left(S \alpha S \alpha_{y}\right)(C R C Y)
\end{array}\right] \text { (27b) }
$$

and

$$
\bar{N}_{3}=\left[\begin{array}{l}
\mathrm{N} \\
\mathrm{p} \\
\mathrm{Q}
\end{array}\right]_{3}
$$

where

$$
\left[\begin{array}{l}
N \tag{27c}\\
P \\
Q
\end{array}\right]_{3}=\left[\begin{array}{c}
-\left(S \alpha C_{y}\right)(C P C R-S P S R S Y)+C \alpha(S P C R+C P S R S Y)-S \alpha S \alpha_{y}(C Y S R) \\
-\left(S \alpha C \alpha_{y}\right)(S P C Y)-C \alpha(C P C Y)-S \alpha S \alpha_{y}(S Y) \\
-\left(S \alpha C \alpha_{y}\right)(C P S R+S P S Y C R)-C \alpha(-S P S R+C P S Y C R)+\left(S x S \alpha_{y}\right)(C Y C R)
\end{array}\right]
$$

When these definitions are used in equation (24), it may be written as

$$
\begin{equation*}
\dot{\bar{u}}=g \bar{X}+F_{a}^{*} \bar{N}_{i} \tag{28}
\end{equation*}
$$

It is convenient to write the rotational equations of motion in the Lagrangian form. When the Eulerian angles (nitch, roll, yaw) are generalized coordinates, the rotational equations of motion take the form

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\phi}_{j}}\right)-\frac{\partial T}{\partial \dot{\phi}_{j}}=M_{\emptyset_{j}} \quad j=p, y, r \tag{29}
\end{equation*}
$$

T is the rotational kinetic energy of the vehicle and $M_{\emptyset_{j}}$ is the moment associated with the φ_{j} rotation. Based on the assumption of an offset center of mass, all components of the inertia matrix are assumed to be non-zer:. The inertia matrix is

$$
[\mu]=\left[\begin{array}{ccc}
I_{x x} & -I_{x y} & -I_{x z} \tag{30}\\
-I_{y x} & I_{y y} & -I_{y z} \\
-I_{z x} & . I_{z y} & I_{z z}
\end{array}\right]
$$

Min rotations kinetic energy may be expressed with respect to the missile fixed coordinate sysion as

$$
\begin{equation*}
T=\frac{1}{2} \bar{\omega}^{T}[\mu] \bar{\omega} \tag{31}
\end{equation*}
$$

wheeze \bar{w} is the angular velocity of the vehicle in the missile fixed cooríi.ate system.
then expressions (30) and (31) are substituted into equation (29), the result is

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial \bar{w}^{\top}}{\partial \dot{\varphi_{j}}}\right)[\mu] \bar{\omega} & +\frac{\partial \dot{\bar{\omega}}^{\top}}{\partial \dot{\phi}_{j}}[\mu] \frac{d}{d \dot{\epsilon}}(\dot{\bar{\omega}}) \tag{F}\\
& -\frac{\partial \bar{\omega}^{\top}}{\partial \phi_{j}}[\mu] \bar{\omega}=M_{\dot{j}} \tag{32}
\end{align*}
$$

The angular veicsity vector, $\bar{\omega}$, is obtained from a coordinate transformation of the angular velocity components $\dot{\bar{\phi}}_{y}, \dot{\bar{D}}_{r}$, and $\dot{\bar{G}}_{\mathrm{p}}$ into tine missile fixed reference. The transformation is dependent on the gimbal sat used. The transformation matrix is developed for gimbal set 1. (Girionl set 1 measures the Euler angles in the order pitch, yaw, roll.) A coordinate transformation is not required for $\dot{\bar{\emptyset}}_{r}$ since it is measured with respect to the missile coordinate system. The angular velocity
coroner: $\dot{\bar{j}}_{y}$ is expressed in the missile sized reference by use of the rotation matrix $\left[-p_{r}\right]^{T}$. The transformation is

$$
\left.\dot{\bar{\phi}}_{y}\right|_{\text {missile }}=\left[-\phi_{r}\right]^{T}\left[\begin{array}{c}
\dot{\phi}_{y} \\
0 \\
0
\end{array}\right]
$$

The angular velocity component $\dot{\bar{\phi}}_{y}$ is expressed in the missile fixed reference by use of two rotation matrices as follows

Thus, tine angular: velocity vector

$$
\begin{equation*}
\bar{\omega}=\dot{\bar{\varphi}}_{=}+\left.\dot{\bar{\varphi}}_{y}\right|_{\text {missile }}+\left.\dot{\bar{\varphi}}_{p}\right|_{\text {missile }} \tag{33a}
\end{equation*}
$$

or, in component form,

$$
\left[\begin{array}{c}
\omega_{\mathrm{xm}} \tag{35b}\\
\omega_{y \mathrm{~m}} \\
\omega_{\mathrm{zm}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\dot{\varphi}_{\mathrm{r}} \\
0
\end{array}\right]+\left[-\varphi_{\mathrm{r}}\right]^{\mathrm{T}}\left[\begin{array}{c}
\dot{\varphi}_{y} \\
0 \\
0
\end{array}\right]+\left[-\phi_{r}\right]^{\mathrm{T}}\left[\phi_{y}\right]^{\mathrm{T}}\left[\begin{array}{c}
0 \\
0 \\
\dot{\phi}_{\mathrm{y}}
\end{array}\right]
$$

37

whicia may be exprosscd as

$$
\begin{equation*}
\bar{\omega}=[]_{I} \dot{\bar{\phi}} \tag{33c}
\end{equation*}
$$

where

$$
\dot{\bar{\phi}}=\left[\begin{array}{c}
\dot{\phi}_{y} \\
\dot{\varphi}_{r} \\
\dot{\varphi}_{p}
\end{array}\right]
$$

and tine transfomation matrix .

$$
\left[A_{\omega}\right]_{1}=\left[\begin{array}{ccc}
C R & 0 & S R C Y \tag{34a}\\
0 & -1 & S Y \\
-S R & 0 & C R C Y
\end{array}\right]
$$

A similut anyiment is used to develop transformation matrices for gimbai sets 2 ãci 3 :

$$
\begin{align*}
{\left[A_{\omega}\right]_{2} } & =\left[\begin{array}{ccc}
1 & 0 & S R \\
0 & -C Y & C R S Y \\
0 & S Y & C R C Y
\end{array}\right] \tag{34b}\\
{\left[A_{\omega}\right]_{3} } & =\left[\begin{array}{ccc}
C P & -S P C Y & 0 \\
-S P & -C P C Y & 0 \\
0 & S Y & i
\end{array}\right] \tag{34c}
\end{align*}
$$

Thc anguine velocity doctor, $\bar{\omega}$, is restated for the three gimbal sets as

$$
\begin{equation*}
\bar{\omega}=\left[A_{\omega}\right]_{i} \dot{\vec{b}} \quad i=1,2, j \tag{35}
\end{equation*}
$$

It should be noted that tie transformation matrices $\left[A_{\omega}\right]$ are not 02\%inosonil.

Dy use of tine expressions obtained above, the rotational equations oi notion become

$$
\begin{align*}
& \frac{\therefore}{\dot{\varphi}_{i}}=[C]_{i} \sum_{i}^{i} H_{\varphi_{i}}^{\prime}-\left(\left\{\frac{d}{d i}\left[A_{\omega}\right]_{i}^{T}\right\}[\mu]\left[A_{\omega}\right]_{i}+\right. \\
& \left.\left.\left[A_{\omega}\right]_{i}^{T}[\mu] \frac{d}{d t}\left[A_{\omega}\right]_{i}\right) \frac{\dot{\phi}_{i}}{\bullet}+\frac{\dot{B}_{i}}{\dot{B}}\right\} \tag{36}
\end{align*}
$$

wiser

$$
\begin{align*}
& {[c]_{i}=\left[\left[k_{\omega} \omega_{i}^{\top}[\mu]\left[\hat{H}_{\omega_{i}}\right]^{-1}\right.\right.} \tag{37a}\\
& B_{j}=\dot{\bar{\phi}}_{i}^{\top} \frac{\partial\left[k_{\omega}\right]_{i}^{\top}}{\partial \dot{\phi}_{j}}[\mu]\left[A_{\omega}\right] \overline{\bar{\phi}}_{i} \tag{37b}
\end{align*}
$$

$$
\begin{align*}
& \bar{M}_{\rho_{i}}=\left[A_{\omega}\right]_{i}^{T} \bar{x}_{i m} \tag{37c}\\
& S_{i}=\left[\begin{array}{c}
B_{y} \\
B_{r} \\
E_{p}
\end{array}\right]_{i} \text {, and } \ddot{\bar{\varphi}}_{i}=\left[\begin{array}{c}
\ddot{\varphi}_{y} \\
\ddot{\varphi_{r}} \\
\ddot{\varphi}_{r}
\end{array}\right] \tag{37d}\\
& i=1,2,3 \quad j=p, y, r
\end{align*}
$$

Definitions for $\dot{\vec{\phi}}$ and $\ddot{\vec{\nabla}}$ are introduced that coniorm to the simplifications raizracd to in the problem statement. These definitions will be used throughout the remainder of the paper. For gimbal set 1 :

$$
\ddot{\bar{\varphi}}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad \dot{\bar{\varphi}}_{1}=\left[\begin{array}{l}
0 \\
\dot{\varphi}_{r} \\
0
\end{array}\right]
$$

for gimbal set 2 :

$$
\ddot{\bar{n}}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { and } \dot{\bar{\phi}}_{2}=\left[\begin{array}{l}
\dot{\phi}_{y} \\
0 \\
0
\end{array}\right]
$$

añ for giniual sci 3:

$$
\ddot{\bar{\phi}}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { and } \dot{\bar{\phi}}_{3}=\left[\begin{array}{l}
0 \\
0 \\
\dot{\varphi}_{\mathrm{p}}
\end{array}\right]
$$

It is noted that each of the matrices in the matrix product of equation (37a) is non-singular. Thus, the product is non-singular, and the rotational equations of motion, (36), can be reduced to the following form for each gimbai set.

$$
\begin{align*}
v_{T_{m}}= & {\left[A_{\omega}\right]_{i}^{-1}\left\{\left(\left\{\frac{d}{d \tau}\left[A_{\omega}\right]_{i}^{T}\right\}[\mu]\left[A_{\omega}\right]_{i}+\right.\right.} \\
& {\left.\left.\left[A_{\omega}\right]_{i}^{T}[\mu] \frac{d}{d t}\left[A_{\omega}\right]_{i}\right) \dot{\bar{\varphi}}_{i}-\bar{B}_{i}\right\} } \tag{38}
\end{align*}
$$

Three rotational equations of motion are obtained for each gimbal set from equation (38). The three equations may be solved for three urknows. Bccause a paricular computazional proceciure is anticipated, the equations for each gimbal set are solved for the roll force, F_{r}, the angle, α, and the angular velocity component that appears.

Gimbal Set 1

The three rotational equations of motion are:

$$
\begin{align*}
-\dot{\phi}_{r}^{2} I_{z y} & =F_{a} y_{c p} S_{\alpha} S_{\alpha_{y}}+F_{a} z_{c p} C_{\alpha} \\
0 & =-F_{a} z_{c p} S \alpha C \alpha_{y}-F_{a} x_{c p} S \alpha S_{y}+2 F_{r} z_{r} \tag{39}\\
\dot{\phi}_{z}^{2} I_{x y} & =-F_{a} x_{c p} C \alpha+F_{a} y_{c p} S \alpha C \alpha_{y}
\end{align*}
$$

The first and third of equations (jg) are solved for

$$
\begin{equation*}
\alpha=\arctan \left[\frac{I_{z y} x_{c p}-I_{x y} z_{c p}}{y_{c p}\left(I_{z y} C \alpha_{y}+I_{x y} S \alpha_{y}\right)}\right] \tag{42a}
\end{equation*}
$$

The second of equations (39) is solved for

$$
\begin{equation*}
F_{r}=\frac{F_{a} S \alpha\left(x_{c p} S_{\alpha_{y}}+z_{c p} C \alpha_{y}\right)}{2 z_{r}} \tag{43a}
\end{equation*}
$$

and the third is solved for

$$
\begin{equation*}
\dot{\phi}_{r}= \pm \sqrt{\frac{F_{a}\left(y_{c p} S_{\alpha} C_{\alpha}-x_{c p} C_{\alpha}\right)}{I_{x y}}} \tag{44a}
\end{equation*}
$$

Gimbal Set 2

The rotational equations of motion are:

$$
\begin{align*}
0 & =F_{a} y_{c p} S \alpha S \alpha \\
& +F_{a} Z_{c p} C \alpha \tag{40}\\
\dot{\emptyset}_{y}^{2} I_{x z} & =-F_{a} Z_{c p} S \alpha C \alpha_{y}-F_{a} X_{c p} S \alpha S \alpha_{y}+2 p_{r} Z_{r} \\
-\dot{\phi}_{y}^{2} I_{x y} & =-F_{a} X_{c p} C \alpha+F_{a} Y_{c p} S \alpha C \alpha_{y}
\end{align*}
$$

The first of equations (40) is solved for

$$
\begin{equation*}
\alpha=\arctan \frac{-z}{y_{c p} S \alpha_{y}} \tag{42b}
\end{equation*}
$$

The third. of equations (40) is solved for

$$
\begin{equation*}
\dot{\phi}_{y}= \pm \sqrt{\frac{F_{a}\left(X_{c p} C_{\alpha}-Y_{c p} S_{x} C_{y}{ }_{y}\right)}{I_{x y}}} \tag{43b}
\end{equation*}
$$

and the second is solved for

$$
\begin{equation*}
\psi_{x}=\frac{\dot{\phi}_{y}^{2 I_{x z}}+F_{a} S a\left(z_{c p} \alpha_{y}+X_{c p} S a_{y}\right)}{2 z_{r}} \tag{44b}
\end{equation*}
$$

Gimbal Sect 3

The three rotational equations of motion are:

$$
\begin{align*}
\dot{q}_{p}^{2} I_{y z} & =F_{a} Y_{c p} S \alpha S \alpha_{y}+F_{a} Z_{c p} C \alpha \\
-\dot{\phi}_{p}^{2} I_{x z} & =-F_{a} Z_{c p} S \alpha C \alpha_{y}-F_{a} X_{c p} S \alpha S \alpha_{y}+2 F_{r} Z_{y} . \tag{41}\\
0 & =-F_{a} X_{c p} C \alpha+F_{a} Y_{c p} S \alpha C \alpha_{y}
\end{align*}
$$

The third of equations (41) is solved for

$$
\begin{equation*}
\alpha=\arctan \frac{x_{c p}}{Y_{c p} c \alpha} \tag{42c}
\end{equation*}
$$

The first of equations (41) is solved for

$$
\begin{equation*}
\dot{\phi}_{p}= \pm \sqrt{\frac{F_{a}\left(Y_{c p} S \alpha S \alpha y+Z_{c p} C \alpha\right)}{I_{y z}}} \tag{43c}
\end{equation*}
$$

and the second is solved for

$$
\begin{equation*}
F_{r}=\frac{F_{a} S\left(z_{c p} c \alpha_{y}+x_{c p} S \alpha_{y}\right)^{\prime}-\dot{\phi}_{p}^{2} I_{x z}}{2 z_{x}} \tag{44c}
\end{equation*}
$$

V. THE RELATIVE VELOCITY CONSTRAINTS

The fact that the relative velocity vector may be written in terms of the threa coordinate systems constitutes an algebraic constraint given by

$$
\begin{equation*}
\bar{v}_{r m}=\left[A_{d}\right]_{i} \bar{v}_{R}=\left[A_{a}\right]^{T} \cdot \bar{v}_{r} \tag{16}
\end{equation*}
$$

where $\overline{\mathrm{V}}_{\mathrm{rm}}$ is the relative velocity vector expressed in the missile coordinate system. Vector equation (16) yields three equations for each gimbal set. The three equations of each set are not independents Hence, they may not be solved for three unknowns. For each gimbal set, the three equations are solved for two angular displacements. The uniqueness of these angular displacements is discussed in Appendix B.

Gimbal Set 1

The constraint equations are:
(CRCP+SRSYSP) $V_{R x}+(C R S P-S R S Y C P) V_{R y}+{S R S Y V_{R Z}}=V_{r m x}$
(-CYSP) $V_{R X}+C Y C P V_{R y}+S Y V_{R Z}=y_{r m y}$
$(-S R C P+C R S Y S P) V_{R X}-(S R S P+C R C P S X) V_{R y}=C_{R Z}=V_{r m z}$

The first and third of equations (45) are solved for

$$
s p=\frac{J V_{R Y}-V_{R X} \sqrt{V_{R X}^{2}-J^{2}+V_{R Y}^{2}}}{\left(V_{R X}^{2}+V_{R Y}^{2}\right)}
$$

and

$$
\begin{equation*}
C P=\frac{J V_{R X}+v_{R Y} \sqrt{V_{R X}^{2}-J^{2}+V_{R Y}^{2}}}{\left(R_{R X}^{2}+v_{R Y}^{2}\right)} \tag{46b}
\end{equation*}
$$

where

$$
\begin{gather*}
J=C R V_{\operatorname{Imx}}-S R V_{\mathrm{rmz}} \\
\therefore \quad \emptyset_{p}=\arctan - \tag{46c}
\end{gather*}
$$

As shown in Appendix B, equations (46) may be solved for a unique value of \emptyset_{p} only if

$$
-\pi \leqq \varphi_{p} \leqslant \pi
$$

The second set of equations (45) is solved for

$$
\begin{equation*}
\text { dY }=\frac{v_{r m y} v_{R Z}-K \sqrt{v_{R Z}^{2}-v_{r m y}^{2}+K^{2}}}{\left(v_{R Z}^{2}+x^{2}\right)} \tag{47a}
\end{equation*}
$$

and

$$
\begin{equation*}
G Y=\frac{v_{r m y} k+v_{R z} \sqrt{v_{R Z}^{2}-v_{r m y}^{2}+k^{2}}}{\left(v_{R z}^{2}+k^{2}\right)} \tag{47b}
\end{equation*}
$$

where

$$
\begin{array}{r}
X=C P V_{R Y}-S P V_{R X} \\
\varphi_{y}=\arctan \frac{S Y}{C Y} \tag{47c}
\end{array}
$$

As shown in Appendix B, equations (47) may be solved for a unique value of \emptyset_{y} only if.

$$
-\Pi \leqslant \emptyset_{y} \leqslant \pi
$$

Gimbal Set 2

The constraint equations are:

$$
\begin{gather*}
V_{R X} C R C P+v_{R Y} C R S P+V_{R Z} S R \\
-V_{R X} C P S R S Y-v_{R X} C Y S P+v_{R Y}(C Y C P-S Y S R S P)+v_{R Z} S Y C R=v_{r m y} \\
V_{R X}(S Y S P-C Y S R C P)-V_{R Y}(S Y C P+C Y S R S P)+v_{R Z} C R C Y=v_{r m z} \tag{48}
\end{gather*}
$$

The second and third of equations (48) are combined to give

$$
V_{R X} S P-V_{R X} C P=-V_{r m y} C Y+V_{r m z} S Y
$$

which is solved for

$$
\begin{equation*}
S r=\frac{F V_{R X}+V_{R Y} \sqrt{V_{R X}^{2}-F^{2}+V_{R Y}^{2}}}{\left(V_{R X}^{2}+V_{R Y}^{2}\right)} \tag{49a}
\end{equation*}
$$

and. $\because:$

$$
\begin{equation*}
C P=\frac{F V_{R Y}+V_{R X} \sqrt{V_{R X}^{2}-F^{2}-V_{R Y}^{2}}}{\left(V_{R X}^{2}+V_{R Y}^{2}\right)} \tag{49b}
\end{equation*}
$$

where

$$
\begin{gather*}
F=-V_{r a y} C Y+V_{r m z} S Y \\
\emptyset_{p}=\arctan \frac{S P}{C \bar{P}} \tag{49c}
\end{gather*}
$$

As shown in Appendix B, equations (49) may be solved for a unique value of θ_{p} only if

$$
-\pi \leq \emptyset_{p} \leqq \pi
$$

The first of equations (48) is solved for

$$
\begin{equation*}
S R=\frac{v_{R Z} v_{2 m x}-G \sqrt{v_{R Z}^{2}-v_{2 m x}^{2}+G^{2}}}{\left(v_{R Z}^{2}-G^{2}\right)} \tag{50a}
\end{equation*}
$$

and

$$
\begin{equation*}
S R=\frac{G V_{r m x}+V_{R Z} \sqrt{v_{R Z}^{2}-v_{r m x}^{2}+G^{2}}}{\left(V_{R Z}^{2}+G^{2}\right)} \tag{SOb}
\end{equation*}
$$

where

$$
\begin{array}{r}
\dot{G}=\dot{V}_{R X} C P+V_{R Y} S P \\
 \tag{50c}\\
\emptyset_{r}=\arctan \frac{S R}{C R}
\end{array}
$$

As shown in Appendix B, equations (50) may be solved for a unique value of \emptyset_{r} only if

$$
-\Pi \leqq \emptyset_{r} \leqq \pi
$$

Gimbal Set 3

The constraint equations are:

$$
\begin{align*}
& V_{R X}(C P C R-S P S R S Y)+V_{R Y} S P C Y+V_{R Z}(C P S R+S P S Y C R)=v_{r m x} \\
& -V_{R X}(S P C R+C P S R S Y)+V_{R Y} C P C Y+v_{R Z}(-S P S R+C P S Y C R)=v_{r m y} \tag{51}\\
& -V_{R X} C Y S R
\end{align*}
$$

The first and second of equations (51) are solved for

$$
\begin{equation*}
S R=\frac{V_{R Z} A-V_{R X} \sqrt{V_{R Z}^{2}-A^{2}+V_{R X}^{2}}}{\left(V_{R Z}^{2}+V_{R X}^{2}\right)} \tag{52a}
\end{equation*}
$$

and

$$
\begin{equation*}
C R=\frac{v_{R X} A+v_{R Z} \sqrt{v_{R Z}^{2}-A^{2}+v_{R X}^{2}}}{\left(v_{R Z}^{2}+v_{R X}^{2}\right)} \tag{52b}
\end{equation*}
$$

where

$$
\begin{gather*}
A=C P V_{r m x}-S P V_{r m y} \\
\emptyset_{r}=\arctan \frac{S R}{C R} \tag{52.c}
\end{gather*}
$$

As shown in Appendix B, equations (52) may be solved for a unique value of \emptyset_{r} only if

$$
-\pi \leqq \emptyset_{r} \leqq \pi
$$

The third of equations (51) is solved for

$$
\begin{equation*}
S Y=\frac{-v_{R Y} v_{r m z}+B \sqrt{v_{R Y}^{2}-v_{r m z}^{2}+B^{2}}}{\left(v_{R Y}^{2}+B^{2}\right)} \tag{53a}
\end{equation*}
$$

and

$$
\begin{equation*}
C y=\frac{B V_{r m z}+V_{R Y} \sqrt{V_{R Y}^{2}-V_{X M 2}^{2}+B^{2}}}{\left(V_{R Y}^{2}+B^{2}\right)} \tag{53b}
\end{equation*}
$$

where

$$
\begin{align*}
& B=V_{R Z} C R-V_{R X} S R \\
& \phi_{y}=\arctan \frac{S Y}{C Y} \tag{53c}
\end{align*}
$$

As shown in Appendix B, equations (53) may be solved for a unique value of \emptyset_{y} only if

$$
-\Pi \leqq \theta_{y} \leqq \pi
$$

The optimization problem is that of finding the optimum control process, $\alpha_{y}(t)$, that will transfer a vehicle from an initial state to a terminal state in an atmosphere in 2 manner so that the functional

$$
J=\int_{t_{0}}^{t_{1}} f\left(\bar{X}, \dot{\bar{X}}, \dot{\bar{\varphi}}, \emptyset_{r}, \emptyset_{y}, \varnothing_{p}, \alpha, \alpha_{y}, F_{r}\right) d t
$$

is a minimum. Since the Pontryagin formulation is to be used, it is necessary to write the Pontryagin H function for each gimbal set (5).'

Gimbal Set 1

The Pontryagin H function is

$$
\begin{equation*}
H_{1}=\bar{\lambda}_{1} \cdot \dot{\bar{X}}+\bar{\lambda}_{I I} \cdot \dot{\bar{u}} \pm \lambda_{7} \dot{\mathscr{D}}_{r}+\lambda_{8} \dot{J} \tag{55a}
\end{equation*}
$$

which may be expressed as

$$
\begin{align*}
& H_{1}=\bar{\lambda}_{I} \cdot \dot{\bar{X}}+\bar{\lambda}_{I I} \cdot\left(g \bar{X}+F_{a}^{*} \bar{N}_{1}\right) \\
& \pm \lambda_{7} \sqrt{I_{a}\left(y_{c p} S_{\alpha} C_{\alpha_{y}}-x_{c p} C_{\alpha}\right)}+\lambda_{8} f\left(\bar{x}, \dot{\bar{x}}, \dot{\bar{\varphi}}_{1}, \overline{D_{:}}, \alpha, \alpha_{y}, F_{r}\right) \tag{55b}
\end{align*}
$$

where

$$
\tilde{\lambda}_{I}=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right] \text {, and } \bar{\lambda}_{I I}=\left[\begin{array}{l}
\lambda_{4} \\
\lambda_{5} \\
\lambda_{6}
\end{array}\right]
$$

The $\lambda(t)$ are auxiliary variables used in a manner analogous to Lagrangian multipliers in the classical calculus of variations.

Gin 11 Set 2

The Pontryagin in function is

$$
\begin{equation*}
H_{2}=\bar{\lambda}_{I I I} \cdot \dot{\bar{x}}+\bar{\lambda}_{I V} \cdot \dot{\bar{u}} \pm \lambda_{15} \dot{\phi}_{y}+\lambda_{16} \dot{J} \tag{56a}
\end{equation*}
$$

which may be expressed as

$$
\begin{gather*}
H_{2}=\bar{\lambda}_{I I I} \cdot \dot{\bar{X}}+\bar{\lambda}_{I V} \cdot\left(g \bar{X}+F_{a}^{*} \bar{N}_{2}\right) \\
\pm \lambda_{1} \sqrt{\frac{F_{a}\left(x_{c p} C \alpha-y_{c p} S \alpha \alpha_{y}\right)}{I_{x y}}}+\lambda_{16} f\left(\bar{X}, \dot{\bar{X}}, \dot{\bar{\phi}}_{2}, \bar{\varnothing}, \alpha, \alpha_{y}, F_{r}\right) \tag{56b}
\end{gather*}
$$

where

$$
\bar{\lambda}_{I I I}=\left[\begin{array}{c}
\lambda_{9} \\
\lambda_{10} \\
\lambda_{11}
\end{array}\right] \quad, \text { and } \quad \bar{\lambda}_{I V^{\prime}}=\left[\begin{array}{c}
\lambda_{12} \\
\lambda_{13} \\
\lambda_{14}
\end{array}\right]
$$

Gimbal Sect 3

The Pontryagin f function is

$$
H_{3}=\bar{\lambda}_{V} \cdot \dot{\bar{x}}+\bar{\lambda}_{V I} \cdot \dot{\bar{u}}=\lambda_{23} \dot{\phi}_{p}+\lambda_{24} \dot{J},(57 a)
$$

which may be expressed as

$$
\begin{gather*}
H_{3}=\bar{\lambda}_{V} \cdot \dot{\bar{X}}+\bar{\lambda}_{V I} \cdot\left(g \bar{X}+F_{a}^{*} \bar{N}_{3}\right) \\
\pm \lambda_{23} \sqrt{\frac{F_{a}\left(y_{c D} S \alpha S \alpha_{y}+{ }^{2}{ }_{c p} C \alpha\right)}{I_{y z}}}+\lambda_{24} f\left(\bar{x}, \dot{\bar{X}}, \dot{\bar{\varphi}}_{3}, \overline{\bar{\phi}}, \alpha, \alpha_{y}, F_{r}\right) \tag{57b}
\end{gather*}
$$

where

$$
\bar{\lambda}_{v} \quad\left[\begin{array}{l}
\lambda_{17} \\
\lambda_{10} \\
\lambda_{19}
\end{array}\right]
$$

and

$$
5_{n} \cdot\left[\begin{array}{l}
1 \\
0 \\
n \\
n
\end{array}\right]
$$

The expressions for the auxiliary variables are obtained from the H functions as follows:

Gimbal Set 1

$$
\begin{align*}
& -\dot{\bar{\lambda}}_{I}=\frac{\partial H_{1}}{\partial \bar{x}} \\
& =F_{a}^{*} \frac{\partial\left(\bar{\lambda}_{I I} \cdot \bar{N}_{1}\right)}{\partial \bar{x}}+\left(\bar{\lambda}_{I I} \cdot \bar{N}_{1}\right) \frac{\partial F_{G}^{*}}{\partial \bar{x}}-\bar{\lambda}_{I I} g \\
& +\left(\bar{\lambda}_{I^{\prime}} \cdot \bar{x}\right) \frac{\partial g}{\partial \bar{x}} \pm \lambda_{7} \sqrt{\frac{\mathscr{Y}_{C p} S_{\alpha} C_{\alpha_{y}}-X_{c p} C \alpha}{I_{x y}}}\left\{\frac{\partial\left(\bar{\sigma}_{0}^{*}\right)^{\prime}}{\partial \bar{x}}\right\} \\
& +\lambda_{8} \frac{\partial F_{o}^{*}}{\partial \bar{x}} \cdot \tag{58a}\\
& -\dot{\bar{\lambda}}_{\overline{I I}}=\frac{\partial H}{\partial \bar{u}} \\
& =\bar{\lambda}_{I}+F_{a}^{*} \frac{\partial\left(\bar{\lambda}_{\pi} \cdot \bar{N}_{1}\right)}{\partial \bar{u}}+\left(\bar{\lambda}_{\bar{\mu}} \cdot \bar{N}_{1}\right) \frac{\partial F_{a}^{*}}{\partial \bar{\mu}} \\
& +\lambda_{7} \sqrt{\frac{S_{c p} S_{\alpha} C^{\alpha} \alpha_{y}-X_{c p} C \alpha}{I_{x y}}}\left\{\frac{\partial\left(F_{a}^{-x}\right)^{\frac{1}{2}}}{\partial \bar{u}}\right\} \\
& +\lambda_{\varepsilon} \frac{\partial \bar{\sigma}^{*}}{\partial \bar{u}} \cdot \tag{59a}
\end{align*}
$$

$$
\begin{align*}
& -\dot{\lambda}_{7}=\frac{\partial H_{1}}{\partial \phi_{r}}=F_{a}^{*}\left\{\bar{\lambda}_{I} \cdot \frac{\partial \bar{N}_{1}}{\partial \phi_{r}}\right\} \tag{60a}\\
& -\dot{\lambda}_{\delta}=\frac{\partial H_{1}}{\partial J}=0 \tag{61a}
\end{align*}
$$

Gimbal Set 2
The expressions for the auxiliary variables are:

$$
\begin{align*}
& -\stackrel{\circ}{\bar{\lambda}}_{\text {III }}=\frac{\partial H_{2}}{\partial \bar{x}} \\
& =\bar{F}_{a}^{*} \frac{\partial\left(\bar{\lambda}_{I X} \cdot \bar{N}_{2}\right)}{\partial \bar{x}}+\left(\bar{\lambda}_{I X} \cdot \bar{N}_{2}\right) \frac{\partial F_{a}^{*}}{\partial \bar{x}} . \\
& +\bar{\lambda}_{I \bar{T}} g+\left(\bar{\lambda}_{\bar{I}} \cdot \bar{x}\right) \frac{\partial g}{\partial \bar{x}} \\
& \pm \lambda_{15} \sqrt{\frac{\lambda_{c p} C_{\alpha}-y_{c p} S \alpha \bar{C}_{y}}{I_{x y}}}\left\{\frac{\partial\left(F_{a}^{*}\right)^{\frac{1}{2}}}{\partial \bar{x}}\right\} \\
& +\lambda_{16} \frac{\partial \stackrel{F}{0}^{*}}{\partial \bar{x}} \text {. } \tag{58b}
\end{align*}
$$

$$
\begin{align*}
& -\dot{\bar{\lambda}}_{\text {II }}=\frac{\partial \dot{H}_{2}}{\partial \bar{u}} \\
& \therefore=\bar{\lambda}_{I I}+F_{0}^{-* \partial\left(\bar{\lambda}_{X X} \cdot \bar{N}_{2}\right)} \frac{\partial \bar{u}}{}+\left(\bar{\lambda}_{I X} \cdot \bar{N}_{2}\right) \frac{\partial F_{\sigma}^{*}}{\partial \bar{u}} \\
& \pm \lambda_{15} \sqrt{\frac{X_{C_{p}} C \alpha-y_{C_{P}} S_{\alpha} C_{\alpha y}}{I_{x y}}}\left\{\frac{\partial\left(F_{0}^{x}\right)^{\frac{1}{2}}}{\partial \bar{u}}\right\} \\
& +\lambda_{16} \frac{\partial F_{0}^{*}}{\partial \bar{u}} . \tag{59b}\\
& -\dot{\lambda}_{15}=\frac{\partial H_{2}}{\partial \phi_{y}}=F_{0}^{*}\left(\bar{\lambda}_{I I} \cdot \frac{\partial \bar{N}_{2}}{\partial \phi_{y}}\right) . \tag{60b}\\
& -\dot{\lambda}_{16}=\frac{\partial H_{3}}{\partial J}=0 . \tag{61b}
\end{align*}
$$

Gimbal Set 3
The expressions for the auxiliary variables are:

$$
\begin{align*}
& -\overline{\bar{\lambda}}_{\Sigma}=\frac{\partial H_{3}}{\partial \bar{x}} \\
& =F_{c}^{*} \frac{\partial\left(\bar{\lambda}_{\text {II }} \cdot \bar{N}_{3}\right)}{\partial \bar{x}}+\left(\bar{\lambda}_{Z I} \cdot \bar{N}_{3}\right) \frac{\partial F_{a}^{*}}{\partial \bar{x}}+\bar{\lambda}_{I Z} g \\
& +\left(\bar{\lambda}_{\bar{\prime}} \cdot \bar{x}\right) \frac{\partial g}{\partial \bar{x}} \pm \lambda_{z z} \sqrt{\frac{4_{c p} S_{a} S_{\alpha y}^{\prime}+Z_{c p} C_{\alpha}}{I_{y z}}}\left\{\frac{\left.\partial\left(\sigma_{a}\right)^{\prime}\right)^{\frac{1}{z}}}{\partial \bar{x}}\right\} \\
& +\lambda_{24} \frac{\partial F_{a}^{*}}{\partial x} . \tag{58c}
\end{align*}
$$

$$
\begin{align*}
& -\dot{\bar{\lambda}}_{I I}=\frac{\partial \dot{H}_{3}}{\partial \bar{u}} \\
& =\bar{\lambda}_{I Z}+E_{a}^{*} \frac{\partial\left(\bar{\lambda}_{I T}-\bar{N}_{3}\right)}{\partial \bar{u}}+\left(\bar{\lambda}_{X I} \cdot \bar{N}_{3}\right) \frac{\partial F_{\bar{G}}^{*}}{\partial \bar{u}} \\
& \pm \lambda_{23} \sqrt{\frac{Y_{c p} S_{\alpha} S_{i y}^{\prime}+Z_{c p} C_{\alpha}}{I_{y z}}}\left\{\frac{\partial\left(F_{\bar{x}}^{* i}\right) \frac{1}{z}}{\partial \bar{u}}\right\} \\
& +\lambda_{24} \frac{\partial F_{n}^{-x}}{\partial \bar{u}} . \tag{59c}
\end{align*}
$$

$$
\begin{equation*}
-\dot{\lambda}_{24}=\frac{\partial H_{3}^{\prime}}{\partial J}=0 \tag{61c}
\end{equation*}
$$

Equations (61a), (61b) and (61c) imply that $\lambda_{8}, \lambda_{16}$, and λ_{24} are constant. The constant in each case is taken equal to plus cire. This insures that a minimization of the K function is also a minimization of the payoff function.

The necessary condition for a critical value of J is

$$
\begin{equation*}
\frac{\partial H_{i}}{\partial \alpha_{y}}=0 \tag{62}
\end{equation*}
$$

where

$$
1=1,2,3
$$

The inequality

$$
\frac{\partial^{2 y} i}{\partial \alpha_{y}^{2}} \geq 0
$$

must also be satisfied to insure a minimum of the payrff function.
Note: The criteria expressed in (62) and (63) are valid only if the H function is differentiable at each point on the trajectory.) Partial differentiation of the Y functions as indicated in (62) and (63) produces the equations given on the following page.

$$
\begin{aligned}
& \frac{\partial H_{1}}{\partial \alpha_{y}}=\bar{\lambda}_{\text {II }} F_{a} \cdot \frac{\partial \partial N_{1}}{\partial \alpha_{y}} \pm \lambda_{7} \frac{\partial}{\partial \alpha_{y}} \sqrt{\frac{F_{a}\left(y_{c p} S_{q_{1}} \alpha_{\alpha_{y}}-x_{c p} C_{\alpha)}\right)}{I_{x y}}} \\
& +\lambda_{\delta} \frac{\partial}{\partial \alpha_{y}} f\left(\bar{x}, \dot{x}_{,}, \bar{\phi}_{2}, \dot{\phi}_{1}, \alpha_{y}, \alpha_{2}, F_{r}\right)=0 .
\end{aligned}
$$

$$
\begin{align*}
& +\lambda_{16} \frac{\partial}{\partial \alpha_{y}} f\left(\bar{x}, \dot{x}, \bar{\phi}, \dot{\bar{\phi}}, \alpha_{y}, \dot{\alpha}, \vec{F}\right)=0 .
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial H_{3}}{\partial \alpha_{y}}=\bar{\lambda}_{\dot{I}} \cdot F_{0}^{*} \frac{\partial \bar{N}_{3}}{\partial \alpha_{y}} \pm \lambda_{z 3} \frac{\partial}{\partial \alpha_{y}} \sqrt{\frac{\left.F_{\left(y_{c}\right.} S_{\alpha_{1}} S_{\alpha_{y}}+Z_{c_{p}} C_{2}\right)}{I_{y z}}} . \\
& +\lambda_{24} \frac{\partial}{\partial a_{y}} f\left(\bar{x}, \dot{\bar{x}}, \bar{\phi}, \dot{\phi_{3}}, \alpha_{y}, \alpha, F_{y}\right):=0 . \quad \text { (64c) }
\end{aligned}
$$

$$
\begin{align*}
& +\lambda_{8} \frac{\partial^{2}}{\partial_{0}^{\prime}, z} f\left(\bar{x}, \frac{2}{x}, \bar{\phi}, \overline{\phi_{j}}, \alpha, \alpha_{y}, F_{r}\right)>0 . \\
& \frac{\hat{\partial}^{2} H_{z}}{\partial \alpha_{y}^{2}}=\bar{\lambda}_{\bar{x}} F_{a} \frac{\partial^{2} \bar{N}_{z}}{\partial \alpha_{y}^{2}} \pm ?_{15} \frac{\partial^{2}}{\partial \alpha_{y}^{2}} \sqrt{\frac{F_{a}\left(X_{c p} C_{a}-y_{c p} S_{x}\left(\sigma_{y}^{\prime}\right)\right.}{I_{x y}}} \\
& +\lambda_{1 / 6} \frac{\partial^{2}}{\partial \alpha_{y}^{2}} f\left(\bar{x}, \stackrel{\rightharpoonup}{x}, \bar{\phi}_{\bar{\prime}}, \dot{\phi}_{z}, \alpha, \alpha_{y}, F_{r}\right)>0 . \\
& \frac{\partial^{2} H_{3}}{\partial \alpha_{y}^{2}}=\bar{\lambda}_{\dot{z}} F_{o}^{x} \frac{\partial^{2} H_{3}}{\partial \alpha_{y}^{2}} \pm \lambda_{z B} \frac{\partial^{2}}{\partial \alpha_{y}^{2}} \sqrt{\frac{F_{0}\left(y_{c_{p}} S_{\alpha} S_{a_{y}}+Z_{c_{2}} C_{\alpha}\right)}{I_{y z}}} \\
& +\lambda_{34} \frac{\partial^{2}}{\partial x_{y}^{2}} f\left(\bar{x}, \dot{\bar{x}}, \bar{\phi}, \dot{\dot{\phi}_{3}}, \alpha^{\prime}, \alpha_{y}^{\prime}, F\right)>0 .
\end{align*}
$$

The algebraic and differential constraint equations (28), (42), $(43),(44),(46 c),(47 c),(49 c),(50 c),(52 c)$, and (53c), and the characteristic equations (58), (59), (60), (61), and (64) form a completo set of equations for the problem. To insure that the payoff function has been minimized, the inequality (65) must also be satisfied.
VII. COMPUTATIONAL PROCEDURE

The problem formulated is of a general nature and the equations involved are quite complex. It is highly improbable that a closed foin solution can be found. Therefore, no time has been spent in search of this type solution. A computational scheme is suggested in order that trajectories may be generated on a digital computer. For convenience in the discussion of the computational scheme, the panaciple equations are written in functional notation.

Gimbal Sot 1

The important equations expressed in functional notation are:

$$
\begin{align*}
& \alpha=\alpha\left(\alpha_{y}\right) \tag{66a}\\
& \dot{\varphi}_{r}= \pm \dot{\varphi}_{r}\left(\alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right) \tag{67a}\\
& \varphi_{p}=\varphi_{p}\left(\phi_{r}, \bar{x}, \dot{\bar{x}}, \alpha, \alpha_{y}\right) \tag{68a}\\
& \varphi_{y}=\varphi_{y}\left(\varphi_{p}, \bar{x}, \dot{\bar{x}}, \alpha, \alpha_{y}\right) \tag{69a}\\
& \ddot{\ddot{x}}=\ddot{\bar{x}}\left(\bar{x}, \dot{\bar{x}}, \bar{\varnothing}, \alpha, \alpha_{y}\right) \tag{70a}\\
& F_{r}=F_{r}\left(\alpha, \alpha_{y}\right) \tag{71a}\\
& H_{1}=H_{1}\left(\bar{x}, \dot{\bar{x}}, \bar{\varphi}, \alpha, \alpha_{y}, \lambda_{i}\right) \tag{72a}
\end{align*}
$$

$$
\begin{align*}
\dot{\lambda}_{i} & =\dot{\lambda}_{i}\left(\bar{x}, \dot{\bar{x}}, \bar{\varphi}, \alpha, \alpha_{y}, \lambda_{i}\right) \tag{73a}\\
\frac{\partial H_{1}}{\partial \alpha_{y}} & =\frac{\partial}{\partial \alpha_{y}} H_{1}\left(\bar{x}, \dot{\bar{x}}, \bar{\phi}, \alpha, \alpha_{y}, \lambda_{i}\right)=0 \tag{74a}
\end{align*}
$$

Giamol Set 2

The important equations expressed in functional notation are:

$$
\begin{align*}
& \alpha=\alpha\left(\alpha{ }_{y}\right) \tag{66b}\\
& \dot{\varphi}_{y}= \pm \dot{\varphi}_{y}\left(\alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right) \tag{67b}\\
& \phi_{r}=\varphi_{r}\left(\emptyset_{y}, \alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right) \tag{6sb}\\
& \phi_{p}=\emptyset_{p}\left(\phi_{r}, \alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right) \tag{69b}\\
& \ddot{\bar{x}}=\ddot{\bar{x}}\left(\bar{x}, \dot{\bar{x}}, \bar{\sigma}, \alpha, \alpha_{y}\right) \tag{70b}\\
& F_{r}=F_{r}\left(\not \varnothing_{y}, \alpha, a_{y}\right) \tag{71b}\\
& H_{2}=H_{2}\left(\bar{x}, \dot{\bar{x}}, \overline{\vec{v}}, \alpha, \alpha_{y}, \lambda_{i}\right) \tag{72b}\\
& \dot{\lambda}_{i}=\dot{\lambda}_{i}\left(\bar{x}, \dot{\bar{x}}, \vec{\theta}, \alpha, \alpha_{y}, \lambda_{i}\right) \tag{73b}\\
& \frac{\partial H_{2}}{\partial \alpha_{y}}=\frac{\partial}{\partial \alpha_{y}} H_{2}\left(\bar{x}, \dot{\bar{x}}, \vec{\phi}, \alpha, \alpha_{y}, \lambda_{i}\right)=0 \tag{74b}
\end{align*}
$$

GimMal Sal 3

The important equations expressed in functional notation are:

$$
\begin{align*}
& \alpha=\alpha\left(\alpha_{y}\right) \tag{66c}\\
& \dot{\varphi}_{p}= \pm \dot{\varphi}_{p}\left(\alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right) \tag{67c}\\
& \phi_{r}=\emptyset_{r}\left(\phi_{p}, \alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right) \tag{68c}\\
& \emptyset_{y}=\varphi_{y}\left(\phi_{r}, \alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right) \tag{69c}\\
& \ddot{\bar{x}}=\ddot{\bar{x}}\left(\bar{x}, \dot{\bar{x}}, \bar{\varnothing}, \alpha, \alpha_{y}\right) \tag{70c}\\
& F_{r}=F_{z}\left(\theta_{\gamma}, \alpha, \alpha_{\gamma}\right) \tag{71c}\\
& H_{3}=H_{3}\left(\bar{x}, \dot{\bar{x}}, \vec{\varphi}, \alpha, \alpha_{y}, \lambda_{i}\right) \tag{72c}\\
& \dot{\lambda}_{i}=\dot{\lambda}_{i}\left(\bar{x}, \dot{\bar{x}}, \bar{\varphi}, \alpha, \alpha_{y}, \lambda_{i}\right) \tag{73c}\\
& \frac{\partial H_{3}}{\partial \alpha_{y}}=\frac{\partial}{\partial \alpha_{y}} H_{3}\left(\overline{\bar{x}}, \dot{\bar{x}}, \bar{\emptyset}, \alpha, \alpha_{y}, \lambda_{i}\right)=0 \tag{74c}
\end{align*}
$$

A complete set of equations has been developed for each gimbal set. Therefore, three independent, but similar, computational procedures, are
writtcn. All tiarec computational proccdures require the following initial data:

Atmospheric tabies for p as a function of position Atmospherí tailes for \bar{T} as a function of position Aciodyanaic tables for $C_{x}\left(\alpha^{*}\right)$ and $C_{2}\left(\alpha^{*}\right)$ as a functicn of α^{*} Values for:
A
R_{0}
G $\bar{x}_{c p}$
m \bar{z}_{r}
M
[μ

Plumbline position, \bar{X}_{0}, and velocity, $\dot{\bar{X}}_{0}$, vectors at the initial point on the optimum trajectory

Computazional yexacure =on Gi...ial Sot 1

Indiad vaiues for ane auxiliary variablos, λ_{i}, and the roil angle, Gr, are recuirce. it is assumed that these values are known. These initial data are reEarred to as:

$$
\begin{aligned}
& \bar{\lambda}_{I_{0}}=\left[\begin{array}{l}
\lambda_{1_{0}} \\
\lambda_{2_{0}} \\
\lambda_{3_{0}}
\end{array}\right] \quad, \quad \lambda_{I I_{0}}=\left[\begin{array}{l}
\lambda_{4_{0}} \\
\lambda_{5_{0}} \\
\lambda_{0_{0}}
\end{array}\right] \\
& \lambda_{7_{0}} \quad, \quad . \\
& \lambda_{8}=1 \text {, } \\
& \phi_{r}
\end{aligned}
$$

Preload Compatiation. I

Use the initial data given to compute the following quantities in the vader indicated.

1. Chrose $a_{y}=-180^{\circ}$
2. Choose the positive sign in acuation (67a) and compute:
a. a from (66a); iterate (11c) for α^{*}
b. \dot{a}_{r} from (67a)
c. \emptyset_{p} from (68a)

e. $\ddot{\vec{X}}=\operatorname{Erc...}(703)$
f. H_{i} froin (72 i)
g. $\frac{\partial A_{1}}{\partial \alpha} \operatorname{srcan}(74 a)$
3. Choose $a_{y}=\alpha_{y}+5^{\circ}$ and repeat step 2. Continue until $\alpha_{y}=+180^{\circ}$.
4. Reyeat stezs i through 3 using the negative sign in equation (ó7a).

Tia resuits of Preivad Conputation I s', sild be tabulated as foliows:

A plot of H_{2} vs or shovid yield insight as to the number of solutions that exist. In addition, this piot should yield a starting value of a_{y} Eor the iteration of equation (74a).

Paeiond Cowa:tation :

5. Üse the gosizive sign in ecuation (07a) and tine resuits of

6. Use the a_{y} computed in step 5 to compite

$$
\frac{\hat{\partial}^{2} H_{1}}{\partial \alpha_{j}^{2}}
$$

7. İ̈ the inccuaiiny

$$
\frac{\partial^{2} L_{1}}{\partial a_{y}^{2}}>0
$$

is satisfice , a minimuin exists. Proreed to step l2. Use the positive sign in eçuaion (o7a) in all remaining calculations. If the inecuality is not satisfied, proceed to sicy 8.
8. Use the regative sign in oquation (o7a) and the results from Preioad Computatios i to iterate equation (74a) for α_{j}.
9. Use the a_{y} found in step S to compute

$$
\frac{\partial^{2} H_{1}}{\partial \alpha_{y}^{2}}
$$

10. Chock to assure that

$$
\frac{\partial^{2:} 1}{\partial a_{y}^{2}}>0 .
$$

11. Proceed to stey 12. U'se tine negative siğa in equation (67a) in all Fanaining calculaticns.
"N" Bine nomuar:ion
12. Use the initial deta ahd the coroct sign (as detemined in Prelouc Congutation II) in ectuation (67a) to iterate (74a) for a_{y}.
13. Use the a_{y} cowputed in step 12 aid the iritial data to compute:
a. a from culation (o6a); iterate (11c) for a*
b. \dot{D}_{T} zion ecuation (67a)
c. θ_{y} Ǎom çuation (6Sa)
d. σ_{y} Fron çuazion (09a)
e. $\ddot{\bar{\lambda}}$ from equation (70a)
f. F_{Y} fron açuation (71a)
g. 1_{1} from equation (72a)
h. $\dot{\lambda}_{I}$ from equation (73a)
i. $\dot{\bar{\lambda}}_{\text {II }}$ frow: equation (73a)
j. λ_{7} =ivan equation (73a)
14. Use a numerical integration technique to integrate

$$
\begin{aligned}
& \ddot{\bar{x}} \text { for } \dot{\bar{x}} \text { for } \overline{\mathrm{X}}, \\
& \dot{\phi}_{I} \text { for } \emptyset_{I}, \\
& \dot{\bar{\lambda}}_{I} \text { for } \bar{\lambda}_{I}, \\
& \dot{\bar{\lambda}}_{I I} \text { for } \bar{\lambda}_{I I}, \\
& \dot{\lambda}_{7} \text { for } \lambda_{7},
\end{aligned}
$$

15. Use the integrated values from step 14 for the new initial values in the " N - l" line computation.

Initial values for the auxiliary variables and the yak angie are required. it is assumed that these values a n now n. These initial data re referred to as:

$$
\bar{\lambda}_{I I I_{0}}=\left[\begin{array}{c}
\lambda_{9} \\
{ }_{0} \\
\lambda_{j 0} \\
\lambda_{0} \\
\lambda_{11_{0}}
\end{array}\right], \bar{\lambda}_{I V_{0}}=\left[\begin{array}{l}
\lambda_{12} \\
\lambda_{0} \\
\lambda_{13} \\
\lambda_{14} \\
{ }^{2}
\end{array}\right]
$$

4. Repest staps 1 thasugh 3 but use the negative sign in couation (675).

The resulis of ?raloả Computation I should be tabulated as follows:

 that exist. in adcizion, this piot should aid in selecting an initial value fo: α_{y} to be used in the iteration of equation (740).

Prelocd Comyu:ciion II

5. Use the positive sign in equation (67b) and the results of Prejoac Computazion I to iterate equation (74b) for $\alpha_{, y}$,
6. Use the value oi a_{y} found in step 5 to compute

$$
\frac{\partial^{2} H_{2}}{\partial a_{y}^{2}}
$$

PRACMING PAIM, BTANK NOT FTTMET

7. If the inequality

$$
\frac{\partial^{2} \mathrm{H}_{2}}{\partial \alpha^{2}}>0
$$

is satisfied a minimum exists. Proceed to -tep 12. Use the positive sign in equation (67 b) in all remaining calculations. If the inequality is not satisfied, proceed to step 8.
8. Use the negative sign in equation (67b) and the results from Preload Computation I to iterate equation (74b) for α_{y}.
9. Use the value of α_{y} found in step 8 to compute

$$
\frac{\partial^{2} \mathrm{H}_{2}}{\partial \alpha^{2}}
$$

10. Check to assure that

$$
\frac{\partial^{2} \mathrm{H}_{2}}{\partial \alpha^{2}}>0
$$

11. Proceed to step 12. Use the negative sign in equation (67b) in all remaining calculations.
"N" line computation
12. Use the initial data and the correct sign (as determined in Dreload Computation II) in equation (67b) to iterate equation (74b) for a_{y}.
13. Use tide value of α_{y} complied in step 12 and the initial data to compute:
a. α Exon çuazion ($6 \leq 5$) ; iterate (11c) for α^{*}

c. ϕ_{r} from equazion (cb)
d. \emptyset_{p} From equation (690)
e. $\ddot{\bar{X}}$ from equation (70j)
14. \vec{F}_{i} from ccuation (71b)
g. H_{2} from equation (720)
h. $\dot{\bar{\lambda}}_{\text {III }}$ from equation (73b)
i. $\dot{\bar{\lambda}}_{\text {IV }}$ From equation (7ラb)
j. $\dot{\lambda}_{15}$ from equation (73b)
15. Use a numerical integration technique to integrate

$$
\begin{aligned}
& \ddot{\bar{x}}_{\text {for }} \dot{\bar{x}}_{\text {for } \bar{x}}, \\
& \dot{\emptyset}_{y} \text { for } \emptyset_{y}, \\
& \dot{\bar{\lambda}}_{I I I} \text { for } \bar{\lambda}_{I I I}, \\
& \dot{\bar{\lambda}}_{I V} \text { for } \bar{\lambda}_{I V}, \\
& \dot{\lambda}_{15} \text { for } \lambda_{15},
\end{aligned}
$$

15. Use the iatiesrated values completed in stop 14 for the new initial values in tic " $+\mathrm{N}^{\prime \prime}$ in ne computation.

Compo: -itiomal proezenze =or cimon Sot 3

Initial values for the auxiliary variables ana the pitch angle are reçuired. It is assumed tint these values are known. These initial data are referred to as:

$$
\begin{aligned}
& \bar{\lambda}_{0}=\left[\begin{array}{c}
\lambda_{270} \\
\lambda_{18} \\
\lambda_{0} \\
\lambda_{19} \\
\\
0
\end{array}\right], \quad \bar{\lambda}_{V I_{0}}=\left[\begin{array}{c}
\lambda_{20_{0}} \\
\lambda_{21} \\
\lambda_{22} \\
{ }_{0}
\end{array}\right], \\
& \lambda_{23} \\
& \lambda_{24}=1, \\
& \varphi_{r_{0}}
\end{aligned}
$$

Prelona Compatation I

Use the initian data given to conpute the following guantities in the order indicated.

1. Choose $a_{y}=-280^{\circ}$

2: Choose the positive sign in ecuation (67c) and complite:
a. α from (osc); iverate (11c) for α^{*}
b. \ddot{G}_{p} 드N(67 c$)$
c. g_{2} Enc.. (6 Sc)
d. D_{y} from (69c)
e. $\ddot{\bar{x}}$ froin (700)
£. H_{3} from (72c)
g. $\frac{\partial H_{3}}{\partial \alpha_{y}}=x 0 i n(74 c)$
3. Choose $\alpha_{y}=\alpha_{y} \dot{+} 5^{\circ}$ and repeat step 2. Continue until $\alpha_{y}=+180^{\circ}$.
4. Repeat steps 1 through 3_{2} but use the negative sign in equation (67c).

The results of Proload Computation I should be tabulated as follows:

Ecan. + (67E)	${ }^{\circ} y$	${ }^{\mathrm{H}_{3}}$	$\frac{\partial H^{3}}{\partial \alpha_{y}}$	Eqa. - (67c)	α^{\prime}	H_{3}	$\frac{{ }^{2} \mathrm{H}_{3}}{\partial \mathrm{C}_{y}}$

A plot of H_{3} vs α_{y} should give insight as to the number of solutions that exist. In adaition, this plot should aid in selecting an initial value for α_{y} to be usec in the iteration of equation (74c).

Preload Computation II

5. Use the positive sign in equation (67c) and the results of Preload Computation I to iterate equation (74c) for α_{y}.
6. Use the value of α_{y} found in step 5 to compute

$$
\frac{\partial^{2} \mathrm{H}_{3}}{\partial \alpha_{y}^{2}} \quad \therefore
$$

7. If the inequaiity

$$
\frac{\partial^{2} \mathrm{H}_{3}}{\partial a_{y}^{2}}>0
$$

is satisfiod, a miniaum cxists. Droceed to stey 12. Use the positive sign in cquation (67c) in all ramaining calculations. If the incquality is not satisficd procecd to step 8.
8. Use the rogative sigri in equation (67c) and the results from Proload Computation I to itcrate equation (74c) for α_{y}.
9. Use the value of a_{y} found in step 8 to compute

$$
\frac{\hat{o}^{2} \xi_{3}}{\hat{\partial} \alpha_{\gamma}^{2}}
$$

10. Check to assure that

$$
\frac{\partial^{2 \%} 3}{\partial a^{2}}>0
$$

11. Proceed to step 12. Use the negative sign ... equation (74c) in all remaining calculations.

" V " line computation

12. Use the initial data and the correct sign (as determined in Preload Complitation II) in equation (67c) to iterate equation (74c) For a_{y}.
13. Use the value of α_{y} computed in step 12 and the initial data to compute:
a. α from equation (66c); iterate (11c) for α^{*}
b. $\dot{\emptyset}_{p}$ Erom equation (67c)
c. \emptyset_{r} from equation (68c)
d. \emptyset_{y} from equation (69c)
e. $\ddot{\bar{X}} \quad$ from equation (70c)
f. F_{r} from equation (71c)
g. H_{3} from equation (72c)
h. $\dot{\bar{\lambda}}_{V}$ from equation (73c)
i. $\dot{\bar{\lambda}}_{\mathrm{VI}}$ from equation (73c)
j. $\dot{\lambda}_{23}$ from equation (73c)
14. Use a numerical integration technique to integrate

$$
\begin{aligned}
& \ddot{\bar{x}} \text { for } \dot{\bar{x}} \text { for } \overline{\mathrm{x}} \\
& \dot{\emptyset}_{\mathrm{p}} \text { for } \emptyset_{\mathrm{p}}, \\
& \overline{\bar{\lambda}}_{\mathrm{V}} \text { for } \bar{\lambda}_{\mathrm{V}}, \\
& \dot{\bar{\lambda}}_{\mathrm{VI}} \text { for } \bar{\lambda}_{V I}, \\
& \dot{\lambda}_{23} \text { for } \lambda_{23}
\end{aligned}
$$

15. Use the integrated values computed in step 14 for the new initial values in the " $\mathrm{N}+1$ " line computation.

The problem studied has application to cases involving the flight of any "unpowered" vehicle through any atmosphere--subject to the assumptions given in the problem statement. For example any space vehicle rcturning to the earth's surface must pass through the earth's atmosphere. This paper provides a method for determining an optimum trajectory for the transfer dif the vehicle through the atmosphere. The piy-off function to be minimized over the atmospheric trajectory is a function of the state and control variables. For example, it may be desirable to minimize quantities such as the accumulative aerodynamic drag or the a: odynamic heating.

In order to solve the rotational equations of motion Eor three unknowns, it was necessary to introduce particular definitions for the angular acceleration, $\ddot{\bar{\varnothing}}$, and the anguiar velocity, $\dot{\bar{\phi}}$, of the ;ehicle. The definitions essentially eliminate all angular acceieration and two of the three components of the angular velocity for any given gimbal set. Thus, response of equipment and/or crew on the vehicle to a particular angular velocity may dictate choice of gimbal sets.

In the numerical generation of a trajectory, it is possible that an Euler angle will be computed that produces gimbal lock. A trajectory that produces gimbal lock is not admissible since gimbals will rot function when in the gimbel lock orientation. Should the situation of gimbal lock arise, a new set of initial values for the auxiliary variables may
be selected and a new trajectory generated. A particular set $0_{\text {. }}$ auxiliary variables will yield an optimum trajectory for each gimbal set. The trajectory generated will n be the same for each gimoal set even though the same initial values of the auxiliary variables are chosen. No attempt has been made in this paper to determine the initial values of the auxiliary variables for any of the gimbal cets.
(1) Fox, Charles, An Intzoduction to the Calculus of Variations, Oxford Universizy press, ioncion, 1954.
(2) Goidstein, Herbert, Classical Xechanics, Addison-Hesley Publishing Company, Inc., Readirg, Massachusetis, 1950.
(3) Halfman, R. L., Dynemics: Systems, Variational Kethods, and Relativity, dád son-Wesle; Publishing Conpany, Inc., Reading, Massachusctes, 1962.
(4) Harmon, i. y a Shaw, N. A., "An Investigation of Minimum Drag Athos.eric Re-citry Paths." Progress Report No. 5 on studies in the fields of Space Flight and Guidance Theory, NASA TM i $\mathrm{C}_{\mathrm{j}} \mathrm{j} 26$. NASA-Marshall Space Flignt Center, Huntsville, Alabunia, March 17, 1964.
(5) Kopp, Richard E., "Pontryagin Maximum Principle," Chapter 7 of r Optimization Technoucs. Edite. by George Leitmann, Academic Press, Bericley, California, 1961.
(6) Miner, K. E., "Methods for Trajectory Computation," NASA-Marshall Srace Flight Center, Internal Note, May 10, 1961.
(7) Parker, W. V., and Eaves, J. , Yatrices, The Ronald Press Company, New Yoik, New York, 1960.
(8) Pontryagin, V. G., The Mathematical Theory of Ontimal Processes, Interscience Pubísisers, diew York, New Yori, 1962.

Experimentally Deteminec Values of C_{x} and C_{z} for a Typical Space Vehicle

α^{*} Degrees	C_{2}	$C^{\text {x }}$
± 0	± 0	$+1.828$
± 5	$\pm .014$	+ 1.812
, ± 10	$\pm .028$	+1.772
± 15	$\pm .040$	+ 1.710
± 20	$\pm .052$	+ 1.626
± 25	$\pm .063$	$+1.520$
± 30	$\pm .074$	$+1.338$
± 35	$\pm .084$	+.1.246
± 40	. .096	+ 1.092
± 45	$\pm .118$	+ . 932
± 50	$\pm .146$	+ . 758
± 55	$\pm .182$	+ . 588
± 60	$\pm .224$	+. 416
± 65	$\pm .208$	+ . 256
± 70	$\pm .318$	+ . 112
± 75	$\pm .372$	- . 020
± 80	$\pm .426$	- . 134
± 85	$\pm .456$	-. 236
± 90	$\pm .575$	-. 322
± 95	$\pm .596$	-. 394
+ 100	+. 628	- . 444
\pm J.C5	$\pm .690$	- . 486
± 110	$\pm .728$	- . 516
± 115	$\pm .756$	- . 542
± 120	$\pm .712$	- . 566
± 125	$\pm .776$	- . 582
± 130	$\pm .772$	-. 586
± 135	$\pm .756$	- . 584
± 140	$\pm .730$	- . 576
± 145	$\pm .686$	- . 560
± 150	$\pm .628$	- . 544
± 155	$\pm .554$	- . 524
± 160	$\pm .468$	- 510
± 165	$\pm .366$	-. 498
± 170	$\pm .248$	-. 490
± 175	$\pm .130$	-. 484
± 180	± 0	-. . 480

APPENDIX B

Uniqueness of Solution for the Euler Angles
The relative velocity constraint equations are solved for two Euler angles in each gimbal set. The identity

$$
\sin ^{2} \phi+\cos ^{2} \phi=1
$$

is used. Thus, the question arises as to which sign should be used with the radical that appn-rs. This question is answered for each gimbal set by considering the way in which the coordinate systems r are defined.

Gimbal Set 1

A first algebraic solution of equations (45) for \emptyset_{p} and \emptyset_{y} yields

$$
\begin{equation*}
S P=\frac{J v_{R Y} \pm v_{R X} \sqrt{v_{R X}^{2}-J^{2}+v_{R Y}^{2}}}{\left(v_{R X}^{2}+v_{R Y}^{2}\right)} \tag{BI}
\end{equation*}
$$

and

$$
\begin{equation*}
C P=\frac{J V_{R X} \pm V_{R Y} \sqrt{v_{R X}^{2}-J^{2}+v_{R Y}^{2}}}{\left(Y_{R Y}^{2}+v_{R Y}^{2}\right)} \tag{B2}
\end{equation*}
$$

where

$$
\begin{gather*}
J=C R V_{r m x}-S R V_{r m z} \\
S Y=\frac{V_{r m y} V_{R Z}}{}=\frac{K \sqrt{V_{R Z}^{2}-v_{r m y}^{2}+K^{2}}}{\left(V_{R Z}^{2}+K^{2}\right)} \tag{BX}
\end{gather*}
$$

and

$$
\begin{equation*}
C Y=\frac{v_{Y m y} x+v_{R Z} \sqrt{v_{R Z}^{2}-v_{\text {rImy }}^{2}+x^{2}}}{\left(v_{R Z}^{R}+X^{2}\right)} \tag{BA}
\end{equation*}
$$

where

$$
K=C P V_{R Y}-S P V_{R X}
$$

The identity

$$
S P^{2}+C P^{2}=1
$$

is satisfied only if opposite signs appear with the radical in (B1) and (B2). Let $\emptyset_{r}=\alpha=0$. Then equations (B1) and (B2) reduce to

$$
\begin{equation*}
S P=\frac{ \pm V_{R X}}{\sqrt{V_{R X}^{2}+v_{R Y}^{2}}} \tag{BS}
\end{equation*}
$$

and

$$
\begin{equation*}
C P=\frac{ \pm v_{R Y}}{\sqrt{V_{R X}^{2}+v_{R Y}^{2}}} \tag{B6}
\end{equation*}
$$

Consider the positive pitch angle, \varnothing_{μ}, shown in Appendix Figure 1. Now restrict $\phi_{\mathrm{p}},-\pi \leqq \phi_{\mathrm{p}} \leqq \pi$.

Coordinate System Showing A Positive Pitch Angle
Appendix Figure 1
Thus, the correct signs for the sine and cosine are

$$
\begin{equation*}
\text { . } \quad S P=\frac{-V_{R X}}{\sqrt{V_{R X}^{2}+V_{R Y}^{2}}} \tag{BT}
\end{equation*}
$$

and

$$
\begin{equation*}
C P=\frac{+V_{R Y}}{\sqrt{V_{R X}^{2}+v_{R Y}^{2}}} \tag{BS}
\end{equation*}
$$

The identity

$$
s Y^{2}+C Y^{2}+1
$$

is satisfied only if opposite signs appear with the radical in (B3) and (B4). Lat $\alpha_{y}=90$ and $\emptyset_{p}=0$. Then equations (33) and (B4) reduce to

$$
\begin{equation*}
S Y=\frac{ \pm V_{R Y}}{\sqrt{v_{R Z}^{2}+v_{R Y}^{2}}} \tag{B9}
\end{equation*}
$$

and

$$
C Y=\frac{ \pm V_{R Z}}{\sqrt{V_{R Z}^{2}+V_{R Y}^{2}}}
$$

Consider the positive yaw angle, \varnothing_{y}, shown in Appendix Figure 2. Now restrict $\emptyset_{y^{\prime}} \quad-\pi \leq \emptyset_{y} \leqq \pi$.

> Coord\&nate System Showing A Positive Yaw Angle Q_{y}. Appendix Figure 2

Thus, the correct signs for the sine and cosine are

$$
\begin{equation*}
S Y=\frac{-v_{R Y}}{\sqrt{v_{R Z}^{2}+v_{R Y}^{2}}} \tag{B11}
\end{equation*}
$$

and

$$
\begin{equation*}
C Y=\frac{+v_{R Z}}{\sqrt{v_{R Z}^{2}+v_{R Y}^{2}}} \tag{B12}
\end{equation*}
$$

Gimbal Set 2

A first algebraic solution of equations (48) for \emptyset_{p} and \emptyset_{r} yields

$$
\begin{equation*}
\quad s P=\frac{F v_{R X} \pm v_{R X} \sqrt{v_{R X}^{2}-F^{2}+v_{R Y}^{2}}}{\left(v_{R X}^{2}+v_{R Y}^{2}\right)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
C P=\frac{-F V_{R Y} \pm v_{R X} \sqrt{v_{R X}^{2}-F^{2}+v_{R Y}^{2}}}{\left(v_{R X}^{2}+v_{R Y}^{2}\right)} \tag{B14}
\end{equation*}
$$

where

$$
F=-V_{Y m y} C Y+V_{r m z} S Y
$$

$$
\begin{equation*}
S R=\frac{V_{R Z} V_{r m x} \pm G \sqrt{V_{R Z}^{2}-V_{r m x}^{2}+G^{2}}}{\left(V_{R Z}^{2}+G^{2}\right)} \tag{B15}
\end{equation*}
$$

and

$$
\begin{equation*}
C R=\frac{G V_{R T X} \pm V_{R Z} \sqrt{v_{R Z}^{2}-v_{\operatorname{Rix}}^{2}+G^{2}}}{\left(V_{R Z}^{2}+G^{2}\right)} \tag{B16}
\end{equation*}
$$

where

$$
G=V_{R X} C P+V_{R Y} s P
$$

The identity

$$
\mathrm{SP}^{2}+\mathrm{CP}^{2}=1
$$

is satisfied only if the same sign appears with the radical in (BI3) and (B14). Let $\alpha=0$ and $\emptyset_{y}=90^{\circ}$. Then equations (B13) and (B14) recuse to

$$
\begin{equation*}
S P=\frac{ \pm V_{R Y}}{\sqrt{V_{R X}^{2}+V_{R Y}^{2}}} \tag{B17}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{C P}=\frac{ \pm v_{R X}}{\sqrt{v_{R X}^{2}+v_{R Y}^{2}}} \tag{Bl}
\end{equation*}
$$

Consider the positive pitch angle, \emptyset_{p}, shown in Appendix Figure 3. Now restrict $\rho_{\mathrm{p}},-\Pi \leqq \varphi_{\mathrm{p}} \leqq \pi$.

> Coordinate System Showing A Positive Pitch Angle Appendix Figure 3

Thus, the positive sign is chosen for both the sine and cosine.

$$
\begin{equation*}
S P=\frac{+v_{R Y}}{\sqrt{v_{R X}^{2}+v_{R X}^{2}}} \tag{Big}
\end{equation*}
$$

and

$$
\begin{equation*}
C F=\frac{+v_{R Y}}{\sqrt{v_{R X}^{2}+v_{R X}^{2}}} \tag{B20}
\end{equation*}
$$

The identity

$$
S R^{2}+C R^{2}=1
$$

is satisEied only if opposite signs appear with the radical in (B15) and (B16). Let $\alpha=\emptyset_{p}=0$. Then equations (B15) and (B16) zeduce to

$$
\begin{equation*}
S R=\frac{\dot{\dot{r}} V_{R X}}{\sqrt{v_{R Z}^{2}+v_{R X}^{2}}} \tag{B2I}
\end{equation*}
$$

and

$$
\begin{equation*}
C R=\frac{ \pm V_{R Z}}{\sqrt{v_{R Z}^{2}+v_{R X}^{2}}} \tag{B22}
\end{equation*}
$$

Consider the positive roll angle, \emptyset_{r}, shown in Appendix Figure 4. Now restrict $\emptyset_{\mathrm{r}},-\boldsymbol{I} \leqq \emptyset_{\mathrm{I}} \leqq \mathbb{\pi}$.

> Coordinate Systom Showing A Positive Ro 4 Angle
> Appendix Figure 4

Thus, the correct signs for the sine and cosine are

$$
S R=\frac{-v_{R Z}}{\sqrt{v_{i Z z}^{2}+v_{R X}^{2}}}
$$

and

$$
\begin{equation*}
C R=\frac{+v_{R X}}{\sqrt{V_{R Z}^{2}+v_{R X}^{2}}} \tag{B24}
\end{equation*}
$$

Gimbal Set 3

A first algebraic solutic of equations (51) for \emptyset_{y} and \emptyset_{x} yields

$$
S R=\frac{V_{R Z} A \pm V_{R X} \sqrt{V_{R Z}^{2}-A^{2}+V_{R X}^{2}}}{\left(V_{R X}^{2}+V_{R Z}^{2}\right)}
$$

where

$$
\begin{equation*}
C R=\frac{V_{R X} A \pm V_{R Z} \sqrt{V_{R Z}^{2}-A^{2}+V_{R X}^{2}}}{\left(V_{R X}^{2}+V_{R Z}^{2}\right)} \tag{B26}
\end{equation*}
$$

where

$$
A=C P V_{z m x}=S P V_{r m y}
$$

$$
s Y=\frac{-\operatorname{vir}_{i y} v_{X m z} \pm 3 \sqrt{v_{R y}^{2}-v_{Y m Z}^{2}+B^{2}}}{\left(v_{R Y}^{2}+B^{2}\right)}
$$

and

$$
\begin{equation*}
C Y=\frac{B V_{Y m z} \pm V_{R Y} \sqrt{V_{R Y}^{2}-v_{F m z}^{2}+B^{2}}}{\left(V_{R Y}^{2}+B^{2}\right)} \tag{B28}
\end{equation*}
$$

where

$$
B=V_{R Z} C R-V_{R X} S R
$$

The identity

$$
\mathrm{SR}^{2}+\mathrm{CR}^{2}=1
$$

is satisfied only iE opposite signs appear with the radical in (B25) and (B26). Let $a=\phi_{p}=0$. Then equations (B25) and (B26) reduce to

$$
\begin{equation*}
\mathrm{SR}=\frac{ \pm \mathrm{V}_{\mathrm{RX}}}{\sqrt{\mathrm{v}_{\mathrm{RX}}^{2}+v_{R Z}^{2}}} \tag{329}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{k}=\frac{ \pm V_{R Z}}{\sqrt{v_{R X}^{2}+v_{R Z}^{2}}} . \tag{BIO}
\end{equation*}
$$

Note, equatcurs (B29) and (330) are the same as (B21) and (B22). The. identity

$$
S R^{2}+C R^{2}=1
$$

is satistied in the same way in of h case. Hence, the signs fo: the sine and cosine are ciosen tae same as in equations (B23) and (B24). The ideñity

$$
S_{X^{2}}^{2}+C Y^{2}=1
$$

is satisfied only if the same sign appears with the radical in (B27) and ($32 \hat{S}$). Let $\alpha=\emptyset_{r}=0$. Then equations (B2/) and (B28) reduce to

$$
\begin{equation*}
S Y=\frac{ \pm V_{R Z}}{\sqrt{V_{R Y}^{2}+V_{R Z}^{2}}} \tag{331}
\end{equation*}
$$

and

$$
\begin{equation*}
C Y=\frac{ \pm v_{R Y}}{\sqrt{v_{R Y}^{2}+v_{R Z}^{2}}} \tag{B32}
\end{equation*}
$$

Consider the positive yaw angle, \emptyset_{y}, shown in Appendix Figure 5. Now restrict $\oint_{y},-\Pi \leqq \varnothing_{y} \leqq \Pi$.

$$
\begin{gathered}
\text { Coordinate System Siowing A Positive Vaw Angle } \\
\text { Appendix Figune } 5
\end{gathered}
$$

Thus, the positive sign is clioson for both the siace and cosinc.

$$
\begin{equation*}
s Y=\frac{ \pm v_{R Z}}{\sqrt{v_{R Z}^{2}+v_{R Y}^{2}}} \tag{B33}
\end{equation*}
$$

ard

$$
\begin{equation*}
c Y=\frac{+v_{R Y}}{\sqrt{y_{Z Z}^{2}+v_{R Y}^{2}}} \tag{334}
\end{equation*}
$$

RESEARCH ON

DEVELOPMENT OF EQUATIONS FOR PERFORMANCE TRAJECTORY COMPUTATIONS

During the period November 1, 1967, to May $1,156 \%$, at the suggestion of Mr. N. E. Miner of NASA, ERC, Cambridge, Massachusets, r.ajor emphasis was placed on investigating the analytical foundation of the Hamilton-Jacobi theory from the standpoint of its possible applications of space flight. Several references were obtained, as listed in the back of this report, and a study of previous work by several authors was undertaken.

As of May 1, 1968, a specific problem area had been defined as follows.
To attempt to utilize the first order perturbation theory, which has been developed for the motion of a uniaxial satellite in a gravitational field (reference 8) in studying the motion of a triaxial satellite in a gravity field. Also to expand the theory for the uniaxial case to higher order.

LIST OF REFERENCES BEING STUDIED

1. Beletskii, V.V., "Motion of an Artificial Satellite About Its Center of Mass", NASA TT F-429, 1966.
2. Miner, N.E., "The Equations of Motion for Optimized Propelled Flight Expressed in Delunary and Poineare Variables and Modifications of These Variables", NaSA TN D-4478, May, 1968.
3. Miner, W.E., B.D. Tapley, and W.F. Powers, "The Hamilton-Jacobi Method Applied to the Low-Thrust Trajectory Problem", presented at the 18 th Congress of the International Astronautical Federation, Belgrade Yugoslavia, September, 1967.
4. Powers, William Francis, "Hamiltonian Pertarbation Theory for Optimal Trajectory Analysis", EMRL TR 1003, June, 1966.
5. Powers, W.F., and B.D. Tapley, "Canonical Transformation Theory and the Optimal Trajectory Problem", EMRL TR 1002 , August, 1967.
6. Colombo, G., "Cassini's Second and Third Lavs", Astronomical Journal 71, No. 9, November, No. 1344, 1966.
7. Fitzpatrick, Philip M., and Jack N. Crenshaw, "Application of the Methods of Celestial Mechanics to the Rigid Body Problem", Auburn Research Foundation, June 1, 1966.
8. Crenshaw, Jack W., and Philip M. Firzpatrick, "Theoretical Determination of Gravity Effects on the Rotational Motion of a Uniaxial Rigid Close Earth Satellite", AIAA No. 67-125.
9. Cranford, Kenneth H., and Phjlip M. Fitzpatrick, "On the Influence of Gravity on the Rotational Notion of Artificial Earth Satellites", presented at the Environment Induced Orbital Dynamics Seminar Program at George C. Marshall Space Flight Center, Huntsville, Alabama, June 6-7, 1967.
10. DeBra, D. B., "Altitude Stability and Motions of Passive Gravity-nriented Satellites", LMSC/^047126, May, 1962.
11. Kane, T.R., "Altitude Stability of Earth Pointing Satellites", AIAA, pages 726-731, June 3, 1965.
12. Pars, L.A., A Treatisc on Analytical Dynamics, John Wiley ε Sons, Inc., New York, New York, 1965.

AUBURN UNIVERSITY

VEHICLE CONTROL FOR FUEL OPTIMIZATION

By

Klaus D. Dannenberg and Grady R. Harmon Department of Mechanical Engineering

NASA Grant NGR-01-003-008-S-1

Prepared For

GUIDANCE LABCRATORY
ELECTRONICS RESEARCII CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
CAMBRIDGE, MASSACHUSETTS

November 1967
AUBURN, ALABAMA

VEHICLE CONTROL FOR FUEL OPTIMIZATION

Klaus D. Dannenberg and Grady R. Harmon
Department of Mechanical Engineering Auburn University

ABSTRACT

The problem considered in this report is that of predicting a minimum fuel trajectory for a six degree of freedom vehicle which has a motion characterized by the first order differential equations of translational and rotational dynamics. The thrust direction and center of gravity of the vehicle are assumed to be fixed with respect to the vehicle. Thrust magnitude and the control moment are used as controd variables and appear linearly in the equations of motion.

Pontryagin's Maximum Principle is used to solve the variational problem. With this formulation, the extremal controls are bang-bang with the exception of the singular case. A unique feature of this problem is a combination of nonlinear state and linear control will allow the computation of the initial values of the Lagrange multipliers by an appropriate choice of some of the initial states. Initial values of the multipliers are always necessary for the complete solution, but no process is generally available for their determination.

NOMENCLATURE

$A_{\text {d }}$	Matrix transformation from plumbline system to vehicle system
$\mathbf{A}_{\mathbf{j}}$	Exit area of vehicle engines
A_{ω}	Matrix transformatic or $\bar{\psi}$ vector into vehicle system
c	Abbreviation for cosine
$\overline{\mathbf{C}}$	Controi variable vector
$C_{\text {d }}$	Coefficient of drag
C_{L}	Coefficient of lift
\bar{F}	Force vector
G	Gravitational constant
H	Hamiltonian
m	Total mass of vehicle
\dot{m}_{a}	Mass flow rate of air through vehicle engines
m_{f}	Mass of vehicle's fuel
M	Mass of earth
M	Moment vector
p_{j}	Exit pressure of vehicle engines
P_{0}	Freestream pressure
$\overline{\mathbf{r}}$	Arbitrary vector
s	Abbreviation for sine
t	Time
T	Rotational kinetic energy of vehicle

$\overline{\mathrm{x}} \quad$ Translational position of vehicle
$\bar{x}_{c p} \quad$ Position vector of center of pressure in vehicle system
$\bar{X} \quad$ State variable vector
$\bar{\omega} \quad$ Angular velocity vector in vehicle coordinate system

Subscripts

a Relating to aerodymanic force

INTRODI'CTION

The Maximum Principle is a mathematical optimization process, yielding a continuous set of controls, as contrasted with the computer search technique of optimization. One of the primary drawbacks of the Maximum Principle is the necessity for determining the initial values of the Lagrange multipliers. Since no physical significance is attached to the Lagrange multipliers, a system of assumed initial values is commonly used with the hope that a maximum can be found.

In the problem formulated in this paper, a unique situation arises: the Hamiltonian is linear in the control variables and nonlinear in the state variables. If these nonlinearities are used with appropriate nonrestrictive initial values for some of the states, a set of equations is produced which can be solved for the initial lagrange multipliers. Thus, a complete extremal solution can be found for the optimization problem presented in this report.

COORDINATE SYSTEMS

Two coordinate systems are used to describe the motion of the vehicle. One of these, the plumbline system, is fixed to the earth's center and is assumed to be a primary inertial system. The other is fixed to the vehicle at the center of gravity and moves with the vehicle. The directions of the vehicle axes are shown in Figure 1. The position or the center of gravity of the vehicle is given by its Cartesian coordinates relative to the plumbline system. The angular orientation is given by a series of three consecutive rotations, which are illustrated in Figure 2. From an initial position in which all axes of the vehicle and plumbline systems are parallel, the following rotations are made about the vehicle's center of gravity:

1) Yawing rotation ϕ_{y} about the x axis
2) Pitching rotation ϕ_{p} about the z axis
3) Rolling rotation $-\phi_{\mathrm{r}}$ about the -y axis

Consequently,
or

$$
\overline{\mathbf{r}}_{v}=\left[-\phi_{\mathbf{r}}\right]\left[\phi_{p}\right]\left[\phi_{y}\right] \overline{\mathbf{r}}=\left[A_{D}\right] \bar{r}
$$

$\bar{r}_{\mathbf{v}}=\left[\begin{array}{ccc}\text { CRCP } & \text { CRSPCY - SRSY } & \text { CRSPSY + SRCY } \\ -S P & C P C Y & C P S Y \\ -C P S R & -S P S R C Y-S Y C R & -S R S P S Y+C Y C R\end{array}\right] \bar{r}$

Figure 1. Vehicle Axes Orientation

Figure 2. Euler Angles

PROBLEM FORMULATION

The minimization of the performance index

$$
\int_{0}^{t} \dot{m}_{f^{d}-}
$$

isl be accomplished through utilization of the Maximum Principle. Thus, for a minimum of

$$
\int_{0}^{t} \dot{m}_{f} d t
$$

a maximum of the Hamiltonian H is desired, where H is defined as

$$
H \equiv \bar{\Lambda} \cdot \dot{X}
$$

where X is the state variable vector and $\bar{\Lambda}$ is the Lagrange multiplier vector.

The state variables chosen for this problem are the translatonal and rotational position and velocity $\overline{\mathrm{x}}, \overline{\mathrm{u}}, \bar{\phi}$, and $\bar{\psi}$, respeclively. From a knowledge of mechanics, the state equations are as follows:

$$
\begin{aligned}
\dot{\bar{x}} & =\bar{u} \\
\dot{\bar{u}} & =\bar{F} / m-\dot{m} \bar{u} / m \\
\dot{\bar{\phi}} & =\bar{\psi} \\
\dot{\bar{\psi}} & =[B] \bar{M}+[C] \bar{\psi}+[F] \bar{D}
\end{aligned}
$$

Thus, the Hamiltonian becomes

$$
\begin{array}{r}
H=\lambda_{0} \dot{m}_{f}+\bar{\lambda}_{I} \cdot \bar{u}+\bar{\lambda}_{I I} \cdot\left(\frac{\overline{\mathrm{~F}}}{m}-\frac{\dot{m} \bar{u}}{m}\right)+\bar{\lambda}_{I I I} \\
\cdot \bar{\psi}+\bar{\lambda}_{I V} \cdot([B] \bar{M}+[C] \bar{\psi}+[F] \bar{D})
\end{array}
$$

After substitution of the forces and moments discussed in the appendix, the Hamiltonian takes the following form:

$$
\begin{aligned}
H= & \lambda_{0}\left[\frac{\left.F_{t}-\dot{m}_{a}\left(v_{j}-v_{0}\right)-A_{j}\left(p_{j}-p_{0}\right)\right]}{v_{j}}\right]+\bar{\lambda}_{I} \cdot \bar{u}+\bar{\lambda}_{I I} \\
& \cdot\left\{\begin{array}{l}
\bar{E} \frac{F_{a}}{m}+\left[A_{D}\right] \frac{T \bar{F}_{t}}{m}-\frac{G M}{|\bar{x}|^{3}} \bar{x} \\
\\
\\
\left.+\frac{m_{a}\left(v_{j}-v_{0}\right)+A_{j}\left(p_{j}-\dot{p}_{0}\right)-F_{v}}{v_{j} m} \bar{u}\right\} \\
\end{array}\right. \\
& \bar{\lambda}_{I I I} \cdot \bar{\psi}+\bar{\lambda}_{I V} \cdot\{[B] \bar{M}+[C] \bar{\psi}+[F] \bar{D}\}
\end{aligned}
$$

From the Hamiltonian, the necessary conditions can be obtained as

$$
\bar{\Lambda}=-\frac{\partial H}{\partial \bar{X}}
$$

Expanding into scalar form, these equations become:

$$
\begin{aligned}
& i_{0}=\pi_{I I} \cdot\left\{E \frac{F_{a}}{m^{2}}+\left[A_{D}\right]^{T} \cdot \frac{\bar{F}_{t}}{m^{2}}\right. \\
& \left.+\frac{m_{a}\left(v_{j}-v_{0}\right)+A_{i}\left(p_{j}-p_{0}\right)-F_{t}}{v_{j^{m^{2}}}} \bar{u}\right\} \\
& \dot{\lambda}_{1}=-\frac{1}{m}\left(\bar{\lambda}_{I I} \cdot \bar{E}\right) \frac{\partial F_{a}}{\partial x}+G M\left(\frac{1}{|\bar{x}|^{3}}-\frac{3 x^{2}}{|x|^{5}}\right) \\
& \dot{\lambda}_{2}=-\frac{1}{m}\left(\bar{\lambda}_{I I} \cdot E\right) \frac{\partial F_{g}}{\partial y}-G M\left(\frac{1}{|\bar{x}|^{3}}-\frac{3 y^{2}}{|\bar{x}|^{5}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\lambda}_{3}=-\frac{1}{m}\left(\bar{\lambda}_{I I} \cdot \bar{E}\right) \frac{\partial F_{a}}{\partial z}+G M\left(\frac{1}{\mid \overline{X_{\mid}}}-\frac{3 z^{2}}{|\bar{x}|^{5}}\right) \\
& \dot{\lambda}_{4}=-\frac{\lambda_{0}}{v_{j}} \frac{\partial v_{0}}{\partial u}-\lambda_{1}-\frac{\bar{\lambda}_{I I} \cdot E}{m} \frac{\partial \bar{F}_{a}}{\partial u}+\frac{\lambda_{4}}{v_{j} m}\left(v_{c}+u \frac{\partial v_{0}}{\partial u}\right) \\
& \dot{\lambda}_{5}=-\frac{\lambda_{2}}{v_{j}} \frac{\partial v_{n}}{\partial v} \cdot \lambda_{2}-\frac{\bar{\lambda}_{I I} \cdot E}{m} \frac{\partial \bar{F}_{a}}{\partial v}+\frac{\lambda_{4}}{v_{j} m}\left(v_{0}+v \frac{\partial v_{0}}{\partial v}\right) \\
& \dot{\lambda}_{6}=-\frac{\lambda_{0}}{v_{j}} \frac{\partial v_{0}}{\partial w}-\lambda_{3}-\frac{\bar{\lambda}_{I L} \cdot E}{m} \frac{\partial \bar{F}_{a}}{\partial w}+\frac{\lambda_{4}}{v_{j}^{m}}\left(v_{0}+w \frac{\partial v_{0}}{\partial w}\right) \\
& \dot{\lambda}_{7}=-\bar{\lambda}_{I I} \cdot\left\{\frac{\partial E}{\partial \phi_{y}} \frac{F_{a}}{m}+\frac{\partial\left[A_{D}\right]^{T}}{\partial \phi_{y}} \frac{\bar{F}_{t}}{m}\right\}-\bar{\lambda}_{I V} \\
& \text { - }\left\{\frac{\partial}{\partial \phi_{y}}[B] \bar{M}+\frac{\partial}{\partial \phi_{y}}[C] \bar{\psi}+\frac{\partial}{\partial \phi_{y}}([F] \bar{D})\right\} \\
& \dot{\lambda}_{8}=-\bar{\lambda}_{I I} \cdot\left\{\frac{\partial E}{\partial \phi_{r}} \frac{F_{a}}{m}+\frac{\partial\left[A_{D}\right]^{T}}{\partial \phi_{r}} \frac{\bar{F}_{t}}{m}\right\}-\bar{\lambda}_{I V} \\
& \text { - }\left\{\frac{\partial}{\partial \phi_{r}}[B] \bar{M}+\frac{\partial}{\partial \phi_{r}}[C] \bar{\psi}+\frac{\partial}{\partial \phi_{I}}([F] \bar{D})\right\} \\
& \dot{\lambda}_{9}=-\bar{\lambda}_{I I} \cdot\left\{\frac{\partial E}{\partial \phi_{p}} \frac{F_{a}}{m}+\frac{\partial\left[A_{D}\right]^{T}}{\partial \phi_{p}} \frac{F_{t}}{m}\right\}-\bar{\lambda}_{I V} \\
& \cdot\left\{\frac{\partial}{\partial \phi_{p}}[B] \bar{M}+\frac{\partial}{\partial \phi_{p}}[C] \bar{\psi}+\frac{\partial}{\partial \phi_{p}}([F] \bar{D})\right\} \\
& \dot{\lambda}_{10}=-\lambda-\bar{\lambda}_{I V} \cdot\left(\sum_{i=1}^{3} C_{i 1}+\frac{\partial}{\partial y y}([F] \bar{D})\right) \\
& i_{11}=-\lambda=\bar{\lambda}_{I V} \cdot\left(\sum_{i=1}^{3} c_{i 2}+\frac{\partial}{\partial \psi_{r}}([F] D)\right)
\end{aligned}
$$

$$
\dot{\lambda}_{12}=-\lambda_{g}-\bar{\lambda}_{I V} \cdot\left(\sum_{i=1}^{3} c_{i 3}+\frac{\partial}{\partial \psi_{p}}([F] \bar{D})\right)
$$

The solution of these equations for $\bar{\Lambda}$ depends on the initial values of $\bar{\lambda}$. Since no physical significance can be given to the Lagrange multipliers, some method must be developed to determine their iritial values. When one realizes that the Hamiltonian is of the form

$$
\mathbf{H}=\mathbf{f}(\bar{X}, \bar{\Lambda})+\frac{\partial H}{\partial F_{t}} F_{t}+\frac{\partial H}{\partial \bar{M}} \cdot \bar{M},
$$

the possibility arises that the nonlinear function of state can be made zero at the initial time by an appropriate choice of initial state without the necessity of all states being zero. Consequently, since on an σ_{1} timal path $H=0$, the remainder of the Hamiltonian must be zero; i.e.,

$$
\frac{\partial H}{\partial \bar{F}_{t}} F_{t}+\frac{\partial H}{\partial \bar{M}} \cdot \bar{M}=0
$$

Since F_{t} and \bar{M}, in general, are not zero,

$$
\frac{\partial H}{\partial \bar{F}_{t}}=0 \quad \text { and } \quad \frac{\partial H}{\partial \vec{M}}=\overline{0}
$$

This is the normal necessary condition used for the case of nonlinear controls.

If one chooses the initial state to be a position of rest, i.e., $\bar{\psi}=0$ and $\bar{u}=0$, and if one selects an initial thrust which satisfies the equation

$$
-\left(\lambda_{4} x+\lambda_{5} y+\lambda_{6} z\right) \frac{G M}{|\widetilde{x}|^{3}}+\lambda_{0}\left(\frac{m_{2}\left(v_{j}-v_{2}\right)+A_{j}\left(p_{j}-p_{0}\right)}{v_{j}}\right)=0
$$

the coefficients of the controls are zero at the initial time step, allowing ant analytic solution for the unknown initial values of the twelve variable Lagrange multipliers. If one uses these initial values, the given differential equations can be solved for the time history of $\bar{\pi}$. Similarly, the state equations can be solved for a time history of the state variables.

Extremal control is determined by the coefficients of the control variables. Since the Hamiltonian is linear in all controls, the extremal control is bang-bang unless the control coefficient is zero; i.e., if

$$
\begin{array}{lll}
\frac{\partial H}{\partial C_{i}}>0, & C_{i}=C_{i M A X} & i=F_{t}, \bar{M} \\
\frac{\partial H}{\partial C_{i}}<0, & C_{i}=C_{i M I N} & i=F_{t}, \bar{M}
\end{array}
$$

For the singular control case of a zero coefficient over a nonzero time interval, the equation(s)

$$
\frac{\partial H}{\partial C_{i}}=0
$$

$$
i=F_{t} \text { or } M_{x} \text { or } M_{y} \text { or } M_{z}
$$

can be added to the differential multiplier equations over the appropriate time period to solve for the extremal control.

CONCLUSIONS

A set of initial values of the Lagrange multipliers for the state problem can be found analytically through a choice of appropriate initial velocities. This is by no means a unique solution to the problem, but it is a method of making a feasible choice of initial multipliers for a certain realizable initial state. The actual numerical solution of the equations should present no major difficulties if the intial values are no longer a problem.

This method of solving for the initial Lagrange multipliers will not be applicable to most problems. With the selection of an appropriate number of initial states, the problem becomes too restrictive to be of any great general value.

BIBLIOGKAPHY

Athans, M., and P. L. Falb. Optimal Control. New York: McGraw-Hill Book Company, 1966.

Koelle, H. H. (Editor). Handbook of Astranautical Engineering. New York: McGraw-Hill Book Company, 1961.

Miner, W. E. Methods for Trajectory Computation. MTP-AERO-63-9, NASA/George C. Marshall Space Flight Center, January 30, 1963.

Pontryagin, L. S., et al. The Mathematical Theory of Optimal Processes. New York: The Macmillan Company, 1964.

Raney, Douglas, and W. A. Shaw. "Preliminary Investigations of Six Dimensional Optimum Reentry Trajectories " ${ }^{\prime}$ Progress Report Four on Studies in the Fields of Space Flight ard Guidance Theory. MTP-AERO-63-65, NASA/George C. Marshall Space Flight Center, September 19, 1963.

APPENDIX: MATHEMATICAL MNDEL

A mathematical model for the basic mechanics of the problem will be deduced using the separability of the rotational and translational motions of a rigid body. The fcrces and moments will be discussed first.
A. Forces

An aerodynamic force \bar{F}_{a} is assumed to act at the vehicle's center of pressure. The orientation of the acrodynamic force is determined by two rotations from the vehicle system to a new coordinate system denoted by \bar{r}_{a}. The rotations align the aerodynamic force with the -ya axis. The maneuvers necessary for this alignment (Appendix Figure 1) are:

1) Roll ay about the y axis.
2) Pitch α about the \angle axis to align the y axis with the relative volocity vector.

Thus, $\bar{r}_{a}=[-\alpha]\left[\alpha_{y}\right] \overline{\mathrm{r}}$.

Appendix Figure 1. Aerodynamic Force System

The magnitude of \bar{F}_{a} is given by

$$
\left|\bar{F}_{a}\right|=\frac{1}{2} v_{0}^{2} A\left(C_{D}^{2}+C_{L}^{2}\right)^{1 / 2}
$$

A thrust force \bar{F}_{T} is assumed to act along the longitudinal axis of the aircraft. The magnitude of this force is given by

$$
\left|\bar{F}_{T}\right|=\dot{m}_{a}\left(v_{j}-v_{o}\right)+\dot{m}_{f} v_{j}+A_{j}\left(p_{j}-p_{o}\right)
$$

where \dot{m}_{a}, v_{j}, and p_{j} are known functions of $\left|\bar{F}_{T}\right|$ for a given engine.
The gravitational force of a spherical earth acting at the center of gravity of the vehicle is

$$
\bar{F}=-\frac{G M m}{|\bar{x}|^{3}} \bar{x}
$$

B. Moments

An aerodynamic moment and a thrust moment are present as a result of the nonconcurrency of the center of pressure and the center of gravity. Collectively, the moments are

$$
\bar{x}_{c p} x\left\{\left[-\alpha_{y}\right][a]\left[\begin{array}{l}
0 \\
F_{a} \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
F_{T} \\
0
\end{array}\right]\right\}
$$

where $\bar{x}_{c p}$ is the position vector of the center of pressure in the vehicle Eystem.

The control surface moment \bar{M}_{F} is a control of the optimization problem. These are the collective moments resulting from the flaps, ailerons, and all other vehicle control surfaces.

Clasle's theorem for rigid body motion states that the motion may be divided into a pure translation of the center of gravity and a pure rotation about the center of gravity. Therefore, for the translational motion, the following equation results from Newton's law:

$$
\dot{\bar{u}}=\frac{\bar{F}}{m}-\frac{\dot{m} \bar{u}}{m}
$$

or

$$
\begin{aligned}
\dot{\bar{u}}=\bar{E} \frac{F_{a}}{m} & +\left[A_{D}\right]^{T} \frac{\bar{F} T}{m}-\frac{G M}{|\bar{x}|^{3}} \bar{x} \\
& +\frac{m_{a}\left(v_{j}-v_{0}\right)+A_{j}\left(p_{j}-p_{0}\right)-F_{T}}{v_{j}^{m}} \bar{u}
\end{aligned}
$$

where

$$
\bar{E}=\left[\phi_{y}\right]^{T}\left[\phi_{p}\right]^{T}\left[-\phi_{r}\right]^{T}\left[\cdot \alpha_{y}\right][\alpha] \frac{\bar{F}_{A}}{\left|\bar{F}_{A}\right|}
$$

and

$$
\left[A_{D}\right]=\left[-\phi_{\mathbf{r}}\right]\left[\phi_{p}\right]\left[+\phi_{y}\right]
$$

The rotational motion equation is obtained from energy consideractions. The rotational kinetic energy in matrix form is

$$
T=\frac{1}{2} \bar{\omega}^{T}[\mu] \bar{\omega}
$$

where $\bar{\omega}$ is the vehicle-fixed angular velocity vector and [μ] is the inertia tensor for motion about the vehicle axes. The Lagrangian form for generalized coordinates of angular character is

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \phi_{i}}\right)-\frac{\partial T}{\partial \phi_{i}}=M \phi_{i}
$$

When one carries out the indicated operations, the Lagrangian equations become:

$$
\frac{d}{d t}\left(\frac{\partial \bar{\omega}^{T}}{\partial \phi_{i}}\right)[\mu] \bar{\omega}+\frac{\partial \bar{\omega}^{T}}{\partial \phi_{i}}[\mu] \frac{d \bar{\omega}}{d t}-\frac{\partial \bar{\omega}^{T}}{\partial \phi_{i}}[\mu] \bar{\omega}=M_{\phi_{i}}
$$

After substitution of the angular velocity components of $\dot{\bar{\phi}}_{\mathrm{p}}, \dot{\bar{\phi}}_{y}$, and $\dot{\bar{\phi}}_{r}$ for $\mathbb{\sigma}$ in the vehicle system and simplification, the resulting equation is

$$
\dot{\psi}=[B] \bar{M}+[C] \Psi+[F] \bar{D}
$$

RESEARCH ON

dEvELOPMENT OF EQUATIONS FOR PERFORMANCE TRAJECTORY COMPUTATION

SIMAR

During the second six months of the original one-year period of the grant work has progressed on two projects:

1. Development of a computer program for the study formulated earlier, as discussed in the last report, and
2. An analytical study of a minimum fuel flight for high speed aircraft.

Included in this report are a listing of the program to compute a minimum time reentry into the atmosphere for an Apollo-type capsure, and a technical summary of the minimum fuel problem. A detailed report on item two is to be presented to the Guidance Laboratory of Electronics Research Center in Cambridge, Massachusetts, on April 19 an 20. A full report will be forwarded to you after this presentation.

```
A GAXIMUM DPINCIPLF RE-FVTRY STUNY RY GRANY R. HARMON
IS EDITED FIY FRANK J. #AIKER, JR. - FFRRUARY 1967
```

IMPUT CARN 5	JUMP	$=1$		PARTS 1 ANC 2
COL NO 35		2		PART 1 ONLY
IS JUMP		$=3$		PART 2 ONLY

SYMBOLS USED IN PROGRAM
PLANET DATA

```
r.4 = GRAVITATIONAL CONSTANT OF PLANET
R^ = RANIUS OF PLAMET
BHO = IFFNSITY OF PLAMFT ATMOSPHERE
    OHON =PARTIAL OF RHO N'.R.T. ALTITUNE
OUEGA = ANGULAR VELOCITY OF PLANET AROUT ROTATION AXIS
(WFX,NFY,NEZ) = ANGULAR VFLOCITY COMPONENTS OF THE PLANET IN THE
INFRTIAL FRA`AF
```

VEHICLE DATA
CX = AERODYNAMIC COEFFICIENT ILONGITUDINAL AXIS)
CXMD = PARTIMI. OF 「X WOR. T. ALFHA
CZ $\quad=$ AFRODYNAMIC SOFFFICILNT IPHZDENIICULAR TO LONGITUDINAL
AXISI
CIMN = DARTIAL OF CZ W.R.T. ALPHA
$\wedge \quad=$ CROSS-SFCTIOV OF VFHICLF
VM $\quad=$ MASS OF VFHICLF

GENFRAL DATA
$(X, Y, Z)=$ CARTESIAN COORDIMATES (INERTIAL FRANE)
$(U, V, W)=V F L O C I T Y$ COMPOMFNTS (INFRTIML FRAME)
R $=$ MAGNITUDF OF RADIUS VECTOR TO VEHICLE
HGT $=$ ALTITIINE
(VRX,VPY,VPL) = RFLATIVF WINO VFLOCITY COMPONFNTS(INERTIAL FRAMF.) (VRMX,VRMY, VR'Z) = RFLMIIVF WIND VELOCITY COMPONENTS IMISSILE-
F(XED FRAMF)
VR $=$ AAGNITU!E OF VFHICLE VELOCITY RELATIVE TO AIR
FPA $\quad=$ AERCDYNAMIC ACCFLERATION
GGG $=$ GRAVITATIONAL ACCELFRATION
H $\quad=$ PONTRYAGIN H FUNICTION
PHA $=$ PARTIAL OF H W.R.T. ALPHA
PHAY $=$ PARTIAL OF H W.R.T. ALPHA Y
XLAN(!) $=$ LAGRANGE MULTIPI.IFR (1)
XI.AM() $=$ LAGRAMGF MULTIDLIER (2)

XLAM(3) $=$ LAGRAMIGF MULTIPLIER (3)
XI_AM(4) $=$ LAGRANGF MULTIOL.IFR (4)
XLAM(5) $=$ LAGRANGF MULTIPLIFR (5)

```
REFRODUCIBILITYOF INF
XLAN.(6) \(=\) LAGRANGF MULTIPLIFR (6)
```

XLAM(7) $=$ COMSTANT $=+1$
prefix of r indicates angle is in radians. otmerwise it is assumed TO RE IN DEGOFES.
PHIO = INFRTIAL FRAME OPIFNTATION ANELF
AO = INFRTIAL FRAME ORIENTATION ANGLE
An9 $=(0 n-10)$
PHIR = RC.LL ANGLE
PHIY $=$ YAN $A N G L F$
PHIP $=$ PITCH ANGLF
ALFY = ROLL ANGLE OF VFHICLE (AERODYNAMIC FRAME)
ALF $=$ ANGLE OF ATTACK OF THE VEHICLF.
CRALF $=$ COS(RALF)
SRALF $=$ SIN(RALF)
CPAIFY $=$ COS(RALFY)
SRALFY = SINIRALFYI
CDHIO = OSS(PPHIO)
SPHIN = STM(RDHIT)
CRAOG = COSIRAOO)
CPHIR $=$ CNS(RDHIR)
SDHIR $=$ SIN(RPHIR)
CPHIP = COS(RFHIP)
SPHIP = SINIRPHIPI
CPHIY $=$ COS(RPHIY)
SPHIY = SIN(RPHIY)
 1.VFX(1))
 1 SRALF), (ODNS(5), ALFY), (ONOS(G), RALFY), (OחOS(7), RRALFY), (OONS(R),
? SRALFY), (OrinS(O), PHIO), (ONDS(10), (PLIO), (ONDS(11),SPHIO), (ONOS(12

$6(\operatorname{CONS}(25), \therefore F X),(O D O S(76), \operatorname{AFY}),(O \cap D S(77), W F Z),(O D D S(28), V R),(O D D S$
$7(29), V R X),(O \cap D S(20), V R Y), 10 \cap D S(31), V R L),(O \cap N S(32), V R M X),(O D D S(33)$
\& , VF:

- (27), VロッPD)

4 (OONS (54), H), (OONS (55), PLA), (ONOS (56), PHAY)
COITVALENTE (Onns(57),FA)
FOUIVALFMCE (TARS(1),ALT(1)), (TABS(89), PRFSS(1)):
1(TARS(गA5), ALPHAT(J)), (TAFS(303),TCL(1)), (TARS(34)),TCZP(1)),
?(TABS(277), TCZOR(1)).(TAOS(4)7),TCX(1)),(TABS(457),TCXP(1)),
3(TARS(405),TCXPP(1))

F?UIVALENEF (X:U(1), XNX), (XN1 (2), XNY), (XN(2), XNZ)

FOUIVALFNCE $(X P A R()), X),(X \cap A R(2): Y),(X R A R(3), Z)$
ERUIVALENCF (XLAMI(1):XLAN1), (XLAMI(2):XLAMZ):(XLAMI(3):XLAMZ)
FOUIVALFNCF (XLAMII(1):XLAM4), (XLAM11(2):XLAM5), (XLAM1:(3):XLAM6)
FN!JIVALFNCF (XLGID(1),XLAMID),(XLMID(2),XLAM2D),(XLMID(3),XLAM3D)
FOUIVALFNCE (XLMIID(1),XLAM4D),(XLMIID(2),XLAM5D),(XLMIID(3),XLAMG
1N)
FOUIVALFNCF (UR(1),U),(UP(`),V),(UR(2),*) CO`nON NASCOM
MlVFNSTतy :MMSCOM(893)

```

```

 N|NFA!SICN ALT(RR),PRFSF!&R),K(RQ)
 NI'JENSICN ALDHAT(38),TCZ(38),TCZP(38),TCZPP(38),YCX(38),TCXP(38),
 1TrXPO(2R),J(38)
DIMENSION URDOT(2),XN(3),XRAR(3),XLAMI(3),XLAFII(3),XLMID(3),
1XLN:IID(3),UN(z)
DINENSION OUTD(4,100)
DOUBLE PRECISION FA,AST
DOURLE PRECISICN MASCUIFODDS,TASS,VEX,ALF,RALF,CR^LF,SRALF,ALFY,
,1 RAIFY, TRALFY,SRALFY,PHIO,CPHIO.SPH1O,AO, PHIP,CP,SP,PHIY
?,CY,SY,PHIP,CR,SR,OHEGA,VFX,WFY,N'EZ,VR,VRX,VRY,VRZ,VRMX,VRMY,VRMZ
3 , VRMPNI,VR'AYNI,VOMRNI,CX,CXMN, CZ,CZMN ,Cr,RHO,DHON,R,RO,HGT,A,
4 V^,GU,FGC,FPA, XIMOT,H,PHA,PHAY,ALT,PRFSS,AI.PHAT,TCZ,
ETrZP,TCZPP,TrX,TCXP,TCXPP,XN,URNOT,XRAR,XLAMI,XLAMII,XLMID,XLMIID,
6 UR,XLAN:7,XपX,XNY,XNZ,VIO,VN,wD,X,Y,Z,XLAMI,XLAM2,XLAN3,XLAN4,

```

```

ASOALFP,RR^LFP
ONURLE PRECISION APCOS,COLAT,CRIT,DEL,TESP,TIREC,TLIMIT,TPRINT,
ITSTEP,TY,IO,
,VO,VLAT,VLONC,,WO,XO,XLAM1O,XLAM2O,XLAMIZO,XLAM4O,XLAM5O,XLAM6O,
320

```
    DOUFLF PRFCISTON SRAO9, CRAO9,RPHIO,RAD
    N1PFNSIOA: STX(2), STY(2), 「TAY(3)•RП(7)
    חOUULF DRFCISTCN STX:STY,STAY,SLUPF,STALF
    ПO!IRLF DRFEISIOM CONA, TOMD, CONC,YO,YZ,YOD,YつZ. RFL2
    OOUPLF PRFCISION HH
    DIUFNSION HHI?,4)
    nJ"EASION OF(l15), OUTA(45), OUTC(205)
    nata OUTC(7), OUTC(3), OUTC(4), OUTC(5), OUTC(7) , UJTC(8),
    1 OUTC(7) , OUTC(19), OUTC(: 7 ) OUTC(13), OUTC(14), OUTC(15), UUTC(17),

    2 OUTC(27), OUTr ( 78\()\), OUTr (2n) , CUTC(30), OUTC(72), OUTC(32), OUTC(34),
    4 OUTC(35), OUTC(37), OUTC(39), OUTC(39), OUTC(4C),OUTC(42), UUTC(43),
    5 CUTC(44), CUTC(45),OUTC(47), OUTC(48),OUTC(49),OUT (50), UUTC(5)),
    6 OUTr (5,2), OUTr (54), OUTr(55), OUTr(57), OUTC(5R), OUTC(59), UUTC(60),


の OUTC(79), OUTr(90), OUTr(97), OUTr(93), OUTC(04)/67*6HBLANKS/

    1 nUTr(9) , OUTC(92) , OUTr(94) , OUTr(95) , OUTC(97) , OUTC(98) ,

    3 OUTC(107), DUTC(108), OUTC(100), CUTr(1.10), OUTC(112), OUTC(113),
    4 OUTC(114), OUTC(1)5), OUTC(117), OUTC(118), OUTC(119), OUTC(120),
    5 OUTC(122), NJTC(123), OUTC(124), OUTC(125),OUTC(127), OUTC(128),
    6 OUTC(129), OUTC(130), OUTC(132), OUTC(133), OUTC(134), OUTC(135),
    7 nUTr.(137), OUTC(129), OUTC(132), OUTC(140), OUTC(142), OUTC(143),
    9 OUTC(144), CiJtr (145), OUTr(147), OUTC(14R), OUTC(149), OUTC(150),
; OUTC(15) , CUTC(152), OUTC(154), OUTC(155)/57*6HRLANKS/
    nATA OUTC(157), OUTC(158), OUTC(159),OUTC(160),OUTC(162),
    ] OUTC(163), OUTC(164), OUTC(165), OUTC(167), OUTC(168), CUTC(169).
    2 OUTC(170), OUTC(172), OUTC(172), OUTC(174), OUTC(175),OUTC(177),
    3 n'JTC(178), חUTC(179), OUTC(180), ПUTC(182), OUTC(1R3), OUTC(184),
4 nutr (185) , ПUTr (187), OUTC(188), OUTC(189), OUTC(190), OUTC(192).
5 OUTC(193), OUTC(194), OUTC(195), OUTC(197), OUTC(198), OUTC(199),
```

 6 OUTC(20C), OUTC(202), OUTr(70x), DUTC(2C4),OUTC(?05)/40*6HELANKS/
 OATA OF(2) ,OE(3) ,CF(4) , UF(5) ,OF(7) ,OE(8) , OF(9) ,OF(10),
    ```









```

 MATA OUTC(1), CUTC(6) , OUTC(11), OUTC(16), OUTC(21),
 1 DUTC(25), OJTC(31), DUTC(36), OUTC(41), OUTC(46), CUTC(51),
 2 OUTC(55) , OUTC(61), OUTC(56) ,OUTC(71), OUTC(76), OUTC(81),
 3 OUTC(85), , OUYC(91), OUTC(96), OUTC(101),OUTC(106),OUTC(111),
 4 OUTC(116), กUTC(121),OUTC(126), OUTC(1?1), OUTC(136)/
 | 5RHT1ME | ，6HX | ， 8 HY | － 6 HZ | ， 6 HU | ， 6 HV | ，6Hi\％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 66HLAIT | ，6HIA47 | －6HI．AVI 3 | ，6rilana | ，6HLAM5 | ，6HLAI．6 | ，6HALF |
| TGHALFY | ，SHPHIR | ，GHPHIY | ，6HPHIP | ，6Hrara | ， 6 HVR | ，6Hil |
| 864RHA | 6H0 | ，6HFA | ，6HN | ，6HP | ，6H8 | ，6HH |

 DATA \()\) OUTC(141), OUTC(146), OUTC(15)), OUTC(155),OUTC(161),
 1 OUTC(156),OUTC(171), OUTC(176),OUTC(181),OUTC(186),OUTC(191),
 2 OUTC(196), ,OUTC(201),OF(1),OF(6),OE(11),OF(16),OF(21),OE(26),
 3 OF (21), OF(26), OF(4)),CE(46), OF(51), OE(56),OE(61),OF(66),OE(71),
 4 OF(76),OF(?1),OF(86), CF(9?),OE(96), OE(101),OE(10́)/
    ```



```

 OSHLAツ60, 5HIA:17, GHTSTEP - GHTPRINT,GHTLINIT, GHALF , GHALFY /
 DATA OF(1C7; OF(108), OE(109) OE (110), OE(112),OE(113),OE(114),
 1 OF(115),OF(111)/8*6HRLANKSOUHOWFGA /
    ```

```

 TFSP \(=665.0\)
    ```
    PFAT IN DATA.
        DFAD IN HYDFPSOAIC DATA TARLE
    OC \(A \cap O 1 I=1.20\)

    AI.PHAT(1) = NחLF(RO(1))
    TC7(1) = MRLE(RN()))
    TCZZP(1) = חRI.F(RO(3))
    Tr ZPP(1) \(=\) NOL.F(RN(4))
    TCX(I) = RRLE(RN(5))
    TCXP(I) = DOLF(PD(6))
n) TCXDP(!) = חRLE(RN(7))
00 FOPMAT(F)C.0.F10.3,F10.5,F10.6,F10.2,F10.5,F10.6.12)
    no \(170 \quad 1=1,38\)
    1F(J!!)-1) 101.120.101.
    - COVTINUF
    GO TO 1 CO
?1 WDTE(5.? กQ)
    O FORNAT(1H1,15X, ग⿳亠䒑HOATA CARDS OUT OF ORNFR)
    gn TO 888
    RFAN IN ALTITUNF VS DFNSITY TARLE
    An On PROS \(I=?, \rho \Omega\)
    RFAD(5,1001) \(\quad\) RO(1),RП(?),K(I)
    PKHCLHLNG PAGL BLANA NOT FHNDD
    \(A L T(1)=\) חRLF(RO(1))
    PRESS(I) = DBLE(RD(2))

FORMAT（F10．0，E11．4．48X．131
กก \(122 \quad I=1\) ， 8
IF（K（I）－I）101，122，101
勒 2 CNNTIMIJF
PEAD I YPIT DARMFTERS
GO COMTINUL
RFAn（5．1002）Rn（1），RП（2），RD（3），RD（4），RD（5），L）
ri＂\(=\) NRLF（RN（i））
PO＝DRLE（RD（7））
ONEGA＝DOLF（RD（3））
\(A O=\) DRLF（RD（4））
PHIO＝NBLE（RD（5））
FOPMAT（2FフO．8．2F4．0，7X，1 2）
JF（LI－1）101，124，101
COMTINIUF
riO TO 10？

ALF＝NRLF（PN（1））
MLFY \(=\) DRLE（RO（2））
V：A＝NDI（r（Rn（2））
\(\Delta=\) DeLE（DT（4））
） 7 EORNAT（4Fl0．4，\({ }^{2} \mathrm{CX}, 12\) ）
［F（L2－2）10］，126，10！
COVTIMUS
GO TO 103

\(X \cap=\) MRLE（RO（1））
\(Y\) Y \(=\) NRLF（RN（7））
\(7 n=\) NOIF（RN（2））
！ 1 N＝NRLE（RN（4））
\(v n=\) nal \(F(\operatorname{Rn}(5))\)
\(00=\) nile（RO（R））
FOロMAT（2F10．0，2F10．3，10X，I2）
IF（L3－3）101，178．101
2R CONTINUE
PFAN（5，1005）RO（1），RO：\(\because\) ），RO（3），RD（4），RO（5），RO（6），RD（7），L4
XLAM10＝ORLF（RO（1））
\(X L A M 2 C=\) DRLF（iR \((?)\) ？\()\)
\(X L \wedge M 30=\operatorname{DBLF}(R \cap(2))\)
XIヘV4＝N2LE（inの（4））
XI A450＝NRL＝（RN（5））
\(X 1 . A M 60=\) NPLF（RN（R））
XLAM7 \(=\) NQLF（RN（7））
（5 FAPNAT17F10．2，17）
JF（L4－4）101，130，101
30 CONTTINUF
（G）TO 1.35
（5．RFAD（5．1010）RD（1），RD（？），RD（3），JUMP，IFF，L5
TPRIAT \(=\) DRLF（DDil1）
TLIMIT＝NQLF（RO（2））
TSTEP＝DRLE（RN（3））
TPRINT NUST RE GRFATFR THAN OR EQUAL TO TSTEP

［F（L5－5）101，137．101．
17 CONTIMUF
（F（ \((J I M P . F Q .7): O R .(J U M P . F Q .3))\) GO TO 138
JU＾＾P＝1
B CONTINUF
WRITF（ 6,1493\()\)
Fnmastit11y i

\section*{PDINT INPUT}
```

 OUTA(1) = SNGL(VM)
 OUTA(?) = SNOL(\Delta)
 NOTA(2) = SACLL(T,M)
 OUTA(4) = S.RL(PO)
 OUTA(5) = SNGL(XO)
 OUTA(6) = SNGL(YO)
 OUTA(T) = SNGL(ZO)
 9!TAA(R) = SNGL(1!0)
 OITA(O) = SVCL(VO)
 OUTA(JO)= SNOL(WOn)
 N!TA(11)= SMr.L (XLAM10)
 OUTA(1) = <NOLI (XIANつO)
 OUTA(13)= SNCL(XLA%20)
 OUTA(34) = SAICL. (XLAN40)
 OUTA(15) = SAICL(XI.A:A50)
 OUTA(16) = SMCL(XLAM60)
 OUTA(17) = SNGL(XLAM7)
 OUTA(18)=SNCL(TSTFP)
 OUTA(19)= SNGL(TPRINT)
 OUTA(20)=SMCL(TLIMIT)
 OUTA(7l)=SNFL(ALF)
 OUTA(つ) = SMGL.(ALFY)
 OUTA(??)= GNCI.(OMFRA)
 CNLL CONV(OE,`UTA,2`)
 WRITT(6.6854)
 Fa FOPMAT(IX,フTHINPUT VALIJES ARF AS FCLLOWSS
WEITE(6,6R55) (OE(LL),ILL=1,115)

```

INITIALIZE PROGRAM
ne continue
    CALL TRAD
    \(U=10\)
    \(V=V n\)
    \(M=!n\)
    \(X=X 0\)
    \(Y=Y 0\)
    \(7 .=20\)
    \(X L . A M]=X L \triangle M 1 C\)
    \(X I . \Delta M ?=X L \wedge, 120\)
    \(X L A N 2=X L A M 30\)
    \(X L \wedge M 4=X L A M 40\)
    \(X L \wedge M 5=X L A: 50\)
    \(X L \wedge M G=X L A N G O\)
    CALL JACOR(HH,-5.0,-5.0)
    rALL IAVFOS(4H, (NへX, INRク, 2, 4, KFRR)
    กO \(2 \cap 0 \quad 1=1, ?\)
    ก○ \(200 \quad \mathrm{~N}=1 \cdot 2\)
hn \(\mathrm{H}^{\prime}(1, \mathrm{~N}:=-4 H(T, N)\)
    WOITEIG,2991
39 FORMAT (1HO, 21HTHE FOLLOWINF. ARE VALUES FOR HH)
    WRITE(6,31) ((HH(N,I),I=1,2),N=1,2)
3) FORMAT(2F20.5)
IF (JUMP.FO,3) GO TO 4002
    THF FOLLCHING IS PART I AS CAIIFD FOR RY JUBP
    \(\Delta S T=\Delta L F\)
    \(\triangle S T 1=A L F Y\)
    ALFY \(=-130.0\)
    D \()^{4577}\) NIN \(=1.71\)
    \(A L F Y=A L F Y+5.0\)
    \(A L F=-18 \cap .0\)
    ก̣ก \(4500 \mathrm{JX}=1,71\)
        \(A L F=\triangle L F+5\).
    CALL HCAL?
    OITN(1,JX) = CMCL (ALF)
    Olln(7,JX) \(=\) CNTI_(H)
    nuTn(?,JX) \(=\) CN゚CL(PHAY)
    NITC(4, JX) \(=\) SACII (PHA)
    IF:IFF)457? 45ス2•45?
3? : ! 1 1TC(6,4511) ALFY
al EORNATI79H1 ALF H PHAY
1 PHA ALFY=,F6.1//1:
    WPITE:6,45]0) ((OUTD(KKK,LLL),KKK=1,4),LLL=1,71)
HO FORMAT (140,FIN.2,3F20.8)
\(\rightarrow 9\) - ANTIMIJF
    ज! ITF( 6,149 (1)

    JHMP \(=\) i
    \(\triangle I F=A S T\)
    Ai. \(F Y=A S T 1\)
    (in TO 4001
    continue
    THE FOLLONING IS PART II AS CALLED FOR BY JUMP
    3口!TE(6,4534)
24 FORYAT(1HO//,16HITERATIONS BEGIN/)
hn tiprr=n.
    \(T Y=T P R I M T\)
pl \(\mathrm{JZ}=0\)
    PTFRATF FOR ALPHAY
ho enaitinuf
    IFITIREC.EF. TLIMIT) TO TO 888
    COLAT \(=\) ARCOS(ПARS(Z)/ПSORT (X*X + Y*Y + Z*Z))
    VLAT \(=\) DSIGN( \(1.570796-\) COLAT). 2 )*57.2958
    VLONT, \(=(\) OATAN? \((Y, X)\) - ONFTIA*TIREC)*57.295日
    CALL SLVAL (ALF, ALFY,HH,PHA, 「HAY, 1.F-14, 28,TIRFC.)
        CONTINIIF
    rALL P!JYY
    IF(TIRFR,FN. 0.0 ) rO TO 8008
    \(T Y=T Y+T S T F P\)
    IF(TY.LT.TPPINT) GO TO 6甘48
5 CONTINUE
    \(T Y=C\) 。
```

 IKK=1
 GO T^ 8nng
 CO!T|N!!
 EOn!TIA!UF
 FXIT IF PHASE II IS COMPLETE
 CHECK FOR SPEED LESS THAN TESP
 IF(VR.IF.TESP) GO TO 690n
 TIRFC = TIRFC + TSTFP
 J7= J7+!
 (AILL TGRATE (JZ,TSTEP)
 GO TO 680n
 IKK= ?
 rn TO &nO.S
 CONITINUF
 ON TO 888
 TY = 0.0
 IKK = 1
 76 cOMTITNUE
OUTA(1) = SNGL(TIREC)
O!ITA())= SAGL(X)
O!:TA(3) = SNITL(Y)
n!!T^(4) = SMr.L(7)
O!TA(5) = SACQL(11)
OUTA(6)= SNOLIV)
O!T\A(7) = SNT!! (a:)
O!TTA(8) = SN!SL(XL^*^1)
O!JTA(9) = SNOL(XLAMD)
OUTA(10) = SNCL(XLAM3)
OUTAIIL) = SNCL(XLAM4)
OUTA(12) = SNCL(XI_A:15)
OUTA(13) = SNGL(XLA!G)
O(ITA(144) = SNIGL(NLF)
N!!TA(15) = SNCL(ALFY)
O!JA(16) = SNOI(PH|R)
O!TA(17) = GRCL(PMIV)
OUTA(18) = SNCOL(PHIP)
NITA(19) = SNr.L(GTG)
O'JTA(20)= SNOL(VR)
nUTA(71) = 0.
OUTA(22) = SNGL(RHO)
OUTA(23) = O.
OUTA(24)= SNCL(FA)
OUTA(?5) = SNPLL(XN(1))
OUTA(7E) = SNRLL(XN(2);
O!!TA(77) = SNOL(XN(2))
OITA(78) = SNICIL(H)
OUTA(2.9) = CNIFI.(PHAY)
O!JTA(30) = SNCL(PHA)
OITA(?!) = SNGLIUPNOT(1))
OUTA(3) = SNGL(!!RNOT(7))
OUTA(3?) = SNGL(l\NOT(2))
OUTAI34) = SNCL(XLMID(1))
OUTA(35) = SNOL(XLMIO(2))
OUTA(36)= SNGL(XLMID(3))
OUTA(37) = SNGL(XLMIIN(1))
OUTA(38) = SNGL(XLMIIO(2))

```
nita（3n）＝CANLIXLVITN（3））
n（1TA（4））＝
ก！\(!\) TA（41）＝SMITI．（HGT）
CALL CNNV（O：ITC，NUTA，41）
：！PITC（5，6R55）（OUTC（I）， \(1=1,2051\)
55 Fnfinit（ \(:(2 X, 46,1 X, A 1: F 10.8, A 1, I 2\) i）
！RITF（6，6856）
56 F こP：＾AT（1HO／／）
GOT）（80ク5・タロの7），IKK
\(2 R \leqslant T \cap P\)
5 5！
FTC DRELON
SIJRROUTINF PRFL．C．
EQUIVALTNCF（MASCOM（1），ONOS（1）（MASCOM（101）TAPS（1））（VASCON（569）
19VEX（1））
EQUIVALEATF（ODDS（1），ALF），（ODDS（2），RALF），（ODDS（2），CRALF），（ORNS（4），


 \(4(P),(O n \cap S(17), S P),(G \cap \cap S(1 R), P H T Y),(C R D S(1 ?), C Y),(O D D S(20), S Y)\),

 \(7(\geqslant 0), V R X),(\cap \cap \cap S(20), V R Y),(O \cap \cap S(31), V R 2),(\cap \cap \cap S(37), V R A X),(O n \cap S(33)\)
 の 127 ）VQannl）



 4 （OñS \(\left.\left(r_{1} 4\right), H\right)\) ，（CNOS（5．5），Pila），（ONOS（56），PHAY）
EQUIVALENCF（ODDS（57），FA）
FミLIVALFNCE（TADS（1），ALT（1））（1ARS（89），PRESS（1））

 3（TAPS（405）TCXOP（1））





FQUIVAl．FMCE \((X\) RAR（1），X），（XRAR（2），Y），（XRAR（Z），Z）
FQUIVALCNCE（XLAVI（1），XLA！H1）（XLAMI（2），XLA：12）（XLA：AI（3），XLAM3）

FתUIVALFNCF（XLMID（1），XLAMID），（XLAID（2），XLAM2D），（XLMID（3），XLAM3D）
 \(1 ワ 1\)

rП：ANON ：ASCOU
NIMFNSION MASCOM（693）
NIMFASISN NONC（100），TARS（568），VFX（25）
Пl•थFNSION ALT（RR），PRFSC（RR）
 1TCXPY（2R）
OI MENSION UPNOT（3），XA：（3），XRAR（3），XLAMI（2），XLAMII（3）：XLMID（3）， 1XI．AIIn（3），心F（3）

NCWRLE PRFEISION MASCOA，ONDS，TABS，VEX，ALF，RALF，CRALF，SRALF，ALFY，
1 RALFY，CRALFY，SRALFY，PHIO，CPHIO，SPHIO，AO，
PHIP，CP，SP，PHIY
2 ，\(C Y, S Y, P H I R, T R, S R, O B E G A, W F X, N F Y, W F Z, V R, V R X, V R Y, V R Z, V R M X, V R M Y, V R I A Z\)
3 ，VRMPN1，VR＇AYNI，VRMRDI，CX，CXMN，CZ，CZMN ，CC，RHO，RHON，R，RO，HCT，A．
4 Vi，GM，RGGi，FPA，XNDOT，H，PHA，PHAY，ALT，PRESS，\(A L P H A T, T C Z\),
```

5TRZP,TCZPR,TCX,TCXP,TCXPP,XA:,UROOT,XRAP,XLAMI,XLAMII,XLYID,XLMIID12

```

```

7 XLA:15,XLA:if,XLA:4]D,XLA,47П,XLA:13D,XLA114D,XLA:15D,XLA,M6D,J,V,W,
ESTALFP,CRA':P
DO!IRLF ORECISION RNOQ
NOIBLE PRFCISIOA FA
DOHBLF PRFCISION STALF,ALPHAI, C,CXMDI,CZNDI,DALF,B
NCLRLF PRECISICH ARCES,CCLAT,CRIT,DFL,TFSP,TIREC,TLIMIT,TPRINT,
1TCTEP,TY,UO,
2 VO,VLAT,VLONC, Y:O,XC,XLA:11O,XLAM2O,XLAM30,XLAM4O,XLAM50,XLAMGO,
27n
O\capIIRLF PPFCYSIOA SRAC9,CPA\cap9,RPHIO.RAN
OOURLF DRFCISION CONA,TONR,CONC,YO,Y2,YO2,Y22,OEG?
RAD=3.1415926535897932 /180. ARCOS (X) = DATAN2(DSORT(1. - X*X),X.)
RPHIO= PHIO * RAN
PA\cap9=(?(.-1\cap)*RAD
RALF=ALF*DAR
RALFY=ALFY*RAD
CALCULATE SINES AND COSINES FOR ALPHA,ALPHA Y,AND PHI
CRALF=DROS(RAI_F)
SPALF=DSIN(PALF)
CPALFY = DCOSIQNLFY)
SDALFY = OSTN(PNLFY)
rOH!?= \rnS(5PHIn)
SDHIO = NSIN(RPHIO)
CDAOQ = OROS(RA\cap9)
SRAOO= NSIN(RA\cap马)
CALCULATF G:A=GA-F RAR
WFX= CPH1IO*EPAOQ*OMEGA
AEY = SPHIO*O'FCRIA
AFZ = -TPHIO*CRAOQ*O:AEGA
rnlCULATP VR
VPX =Y* NEZ-Z*:NFY+U
VRY = Z*W:rX-X*W'FZ+V
VFZ =X**'EY-Y*WFX+W
VR = NCORT(VFX*VRX + VRY*VRY + VRZ*VRZ)
R=VPY
P= ncNpT(X*X + Y*Y + Z*Z)
r = ПSQQT(VロX*VZX + VRZ*VRZ)
rALCULATF ALTITUNF
HC゙T=R-RO
HrGG=-GM/R**3
CALCULATF VRM-RAR
VRMX=VR*SPALF*CPALFY
VQA'Y= VR*PRALF
VRMZ = -VR*SRALF*SRALFY
STALF=ALF
3n YF(ALF.LT.O.) NLF=-ALF
|F\ALF.LT.180.) GO TO 1390
MLF=NLF-360.
GO TO 1380
OO CNNTIM!JF
n\cap 140 1=1,26
J=I+?
\F(ALPHAT(J).GE.ALF) GOTO 141
C.ONTINUF
WT ITE(6:143)
FORMATIIHI,15X.42HPROGRAM DUMPEN RECAUSF ALPHAT IS LESS THAN/IGX,
127HALF AS COMPUTFN PY S'JMROUTINE PRFLON.I
STOP

```
```

41 DEL=(ALF-ALPHAT(J-1))/5.
DEL2=OFL*DEL
CX=TEX(J-1)+.5*(T「X(J)-TCX(J-2))*DFL+.5*(TCX(J)-2.*TCX(J-1)+TCX(J-
121)\#DEL2
rZ=TrZ(J-1)+.5*(TCZ(J)-TCZ(J-2))*DFL+.5*(TCZ(J)-2.*TCZ(J-1)+TCZ(J-
121)*DEL2
CX:ח=TCXP(J-1)+.5*(TCXF(J)-TCXP(J-2))*DFL+.5*(TCXP(J)-2.*TCXP(J-1)
1+TCZP(J-?))*nFL?
rZツn=TrZP(J-1)+.5*(TCZP(J)-TCZP(J-2))*DEL+.5*(TCZP(J)-2.*TCZP(J-1)
1+'(XP(J-7))*חFL)
0.) 202 I=1,86
J=1+?
IF(ALTIJI.GF.HGT) GO TO 203
n) rnm:TMMJF
MRITF(5,204)
O4 FORMAT(1H1,15X,39HPROGRAM DUMPED BECAUSE ALT IS LESS THAN/16X,
137HHGT AS COMPUTED BY SUBROUTINE PRELOD.)
STCP
hz Yn = ALT(J-?!-ALT(J-J)
YZ=ALT(J)-ALT(J-1)
C\capNA=YO*Y?*(YZ-YO)
Y\capT=YO*Y?
Y??=Y7*Y?
COVB=Y22*DRFSS(J-7)+(YO2-Y)?;\#FRESS(J-1)-YO2*PRESS(J)
CONC=-Y)*PRESS(J-2)+(Y)-YO)*PRESS(J-1)+YO*PRESSiJ).
COR:R=CONR/CONA
CONC=CONC/COINA
DFL=HGT-ALT(J-1)
RHO=PRESS(J-1)+CONR*NEL+CONC*DEL*DEL
RHOD=CONR+2.*RONC*NEL
ALF=STALF
CC = nSORT(rX* CX + CZ*CZ)
bo FPA = (^/(7.O*VM))*RHO*VR*VR*CC
FA = FPA * VM
XMAn\capT=FPA**)
SOALFP=CZ/SC
CRALFP=CX/EC
ralrULATR PHI-P
VRMPO1 = NSCRT(VRMX*VR:UX + VRMY*VRMY)
SP=VRMX/VR\MPN1
CP=VRVY/VRUPNI
PHIP=DATANZ(SP,CP)
CALCULATF FHI-Y
VRMMOI = NSART(VR*VR-VPNAZ*VRMZ)
SY=1-R*VRNIZ+C*VPMMYD1I/VR**2
CY=(r*VRYZ+R*VR:MYn!)/VR**)
DHfY = natAVP(SY,ry)
cALCULATE PHI-R
VRMRNI = MSNRT(VRX*VRX + VRZ*VRZ)
SR=VRX/VRI:RNI
CP=VRZ/VRMDNI
PHIP = NATANI) (SR,CR)
XNX=-(CP*-P+SO*SY*Sk;*SRALFP*CRALFY+(SP*CR-CP*SY*SR)*CRALFP+CY*SR*
1SRALFP*SRALFY
XNY=-1.jP*CY*CRALEY*SRALFP!-(CP*CY*(RALFP)-(SY*SRALFP*SRALFY)
XNZ=(CP*SR-SP*SY*(R)*(RALFY*SRALFP-(SP*SR+CP*SY*(R)*CRALFP
1+CY*CR*SRALHO*SPALFY
OFTURN
FNR
TS gETH

```
```

S'baROUTjaic gFTM


``` 1，VFX（1））
ESLIVALTNCE（OONS（1），NLF），（ODNS（2），RALF），（ODDS（3），CRALF），（UONS（4），
    ] SRALF),(ODOS(5),ALFY),(O\capПj(6),({ALFY),(ODOS(7),(RALFY),(ODDS(8::
    2 SRALFY),(OMOS(G),PHIO),(C\capAS(10),(PHIO),(ODDS(11),SPHIO),(OODS(12
    ?),AO),(\capNOS(12), RPAOJ), (COnS(14),SFAOO),(ONDS(15),PH1P),'ONOS(16),
    4 (P),(OnnS(17),SP),(OnnS(?R), PHiY),(OnNS(10), CY),(GONS(20),SY),
```



```
    7 (70),VRX),(On\capS(2C),VRY),(OnחS(21),VRZ),(ONOS(22),VR:|X),(OnnS(33)
    8,VRPY),(\capD\capS(24),VR'=2),(ONDS(25),VR\cupPDI),(ODDS(36),VRMYDI),(ODDS
    9 (27),VPNC?])
    SCUJVALF!CF (ONOS(38),CX),(0NOS(39),(X:An ),(00DS(40),(2),
```



```
    ? (CNOS (45),R), (OOnS(45), 20),(ODNS(47),HC,T),(ONOS(48),N),(ODOS(40),
    3 VK),(ON\capS(50), (., ),(ONNS(51), (GGG),(ODDS(5?),FPA),(ODDS(53),XMDOT),
    4 (CNOS(54),山),(ONOS(ん5),PH^),(ONDS(5, ), PHAY)
    EOUIVALFM(F ICNOS(57),FA)
    FGUIVALFNCE (TARO(1),ALT(1)),\TARS(89),PRFSS(1)),
```



```
    2(TARS(270),TrZDP(1)),(TARS(4`7),TrY'1)),(TARS(457),TCXP(1)),
    3(TADS(495),TCXFP(1))
    FOUIVALFNCF (VFX(1),XN(1)),(VFX(4),URDOT(1)),(VFX(7),XRAR(1)),
    |(VEX(10),XLAAT(1)),(VFX(1)),XLAM!|(1)),(V-X(16),XLMID(1)),(VFX(19)
```



```
    E?UIVALENCF (XN(l),XNX),(XN(~),XNY),(XN(3),XNZ)
    FOUIVALENCE (URNOT(1),.Iन),(LQNOT(7),VD),(URDOT(3),ND)
    EQUIVALFI!CE (XBAR(1),X),(XRAR(2),Y),(XGAR(3),Z)
    FQUIVALFNCF (XLAIP(1),XLA:1),(XLA&1(2),XLAM2),(XLAM1(3),XLAM2)
    FOUIVALENCF (XLAMII(1),XLAN4),(XLAMII(`), XLAVV5),(XLAMII(3),XLA:16)
    FOUIVALFNCF (XLMIN(1),XLA:1]O),(XLM1\cap(つ),XLAN2O),(XL:OI\cap(3),XLAMZD)
    FOUIVALFNRF (XLMIIN(1),XLAM&O),(XLNIID(7),XLAM5D),(XLMIIO(3),XLAM6
    1N1
    FgUIVA:FNCF (UR(1),(U),(UR()),V),(UA(3),4:)
    CRMMMN PASCOM
    N!:AF!SION NACPOM(693)
    #!MENSION ONNC(1OO),TA=S(568),VFX(25)
    DIMENSION ALT(8R),PRESS(BR)
    DIIENSICN ALPHAT(38),TrL(39),TCZP(38),TCLPP(3B),T(X(38),TCXP(3R),
    1T(XPP(38)
    DII'ENSION URDOT(3),XN(3);XRAR(3),XLAMI(3),XLAMII(3),XLMID(3),
    JXLNIID(3),U口(3)
        NOURLF PRFCISION MASCO`,ONOS,TARS,VFX,ALF,RALF,CRALF,SRALF,ALFY,
    I RALFYORRALFY,SRALFY,PHIO,CPHIO,SDHIO,AO, PHIP,CP,SP,PHIY
    2, CY,SY,PH!IR,TR,SR,OMERA,WFX,:FY,WFZ,VR,VRX,VRY,VRZ,VRMX,VRMY,VRMZ
    3,VRMPN1,VF:!YNI,VRMRNI,CX,CXMD,CZ,CZNR, TR,RHO,RHOD,R,RO,HGT,A,
    4 VN,GM,GGT,FPA,XYNCT,H,PHA,PHAY,ALT,PRESS,ALPHAT,TCZ,
    FTCZP,TCZPP,ICX,TCXF,TCXPP,XN,URDOT,XEAR,XLAMI,XLANII,XLMID,XLMIID,
    6 UQ,XLAM7,XMX,XNY,XNZ,!D,VП,WD,X,Y,Z,XLAM1,XLAM2,XLAM3,XLAM4,
    7 XLAM5,XLANE,XLAMID,XLAF;2D,XLAN3D,XLAM4D,XLAM5D,XLAMGD,U,V,W,
    RSRALFP,CRALFP
    DNURLE PRFCISION FA.
    DOUFLE PRECISION SRAO9,CPAO9,RFHIO,RAD
    DC inon l=1,?
OO \IRMOT(!)=FPA*XN(I)+rIr.G*XRAR(I)
    H=XLAN7*FPA**?
    D\cap 1100 I=1,3
)0}H=H+XLAMI(1)*UR(1)+XLAMII(1)*UBDOT(I)
    RFTUPN
```

1,VEX(1))
ESUIVALFNCF (CNOS(1), ALF), (CDOS(7), RALF), (ODNS(3), CRALF), (ONOS(4),

? (27),VRirpD1)
FOUIVALFNCF $\quad \operatorname{OONS}(38),(X),(O D O S(29), C X M D),(0,0 D S(40),(2)$,

$2(\operatorname{ODOS}(45), R) \cdot(\operatorname{CONS}(46), i 20),(O O D S(47), H C T),(O N D S(48), A),(O D O S(49)$,

4 (ONOS(54),H1,(ONOS(55), DHA), (ONDS(54), DHAY)
EOUIVALFACE (ONOS(57),FA)
FمUIVALFMrF (TAnS(1), ALT(1)),(TARS(89),PRFSS(1)),
! (TARS(765), ALPHAT(1)), (TARS(203),TCZ(1)), (TARS(34)),TCZP(1)),
2(TARS(779), TC (TPP(1)), (TARS(417),TCX(1)), (TARS(457),TCXP(1)),
3(TAPS(405),T(XPP(1))
FEUIVALENTE (VFX(1), XN(1)), (VEX(4), UPROT(1)), (VFX(7),XBAR(1)),
1(VFX(10), XLA:I())), (VEX(12), XLA:II(1)), (V5X(16), XLMID(1)), (VFX(19)
2, XLMIIN(1)), (VEX(22), UB(1)), (VEX(25), XLAM7)
EOUIVALEY! $(X N(1), X: N X),(X N(7), X N Y),(X N(3), X N Z)$

FOUIVALFNCE (XQAR(1), X), iXAAR(2),Y), (XロAR(3),Z)

FOUIVALFIUCE (XLMI)(1), XLANID), (XLMID(2), XLAMZП), (XLMID(3), XLAMZD)
FQUIVALENCE (XLHIID(1),XLA:~4D), (XLBIID(2), XLAM5D), (XLMIID(3), XLAMG
10)
FOUIVALFYCE (UR(1),U), (UQ(7),V), (UR(3), घi)
COMPOMN MASCO:?
DIMERSION YASCON(693)
DI:IENSION ODDS (100),TABS(568), VEX(25)
DIVENSION ALT(88),PRESS(天?)
П|MFNSION MLPHAT(28),TrZ(28),TCZP(38),TCZPP(38),TCX(38),TCXP(38),
1TRXPP(3R)

1XI.M斤In(2), リロ(7)
DO!!RLE PPFCISION MFLA, DELA2,H2
DOURLE PRFCISION FA
NOL'GIF PRFCISICN DFL,S ГORF,DC,DA,DR
DCUELE FREC'SION MASCOM,ODDS, TAFSS, VFX,ALF,RALF, CRALF, SRALF, ALFY,
1 RALFY,CPALFY.SFAIFY,PHIO, PPHIO,SPHIO,AO, PHIP,CP,SP,PHIY
? , CY, SY, PHIF, CR, JR, OMESA, UFX, WEY,WEZ, VR, VRX, VRY,VRZ,VRMX,VRMY,VRMZ
? , VRUPDI, VRㅋYDI,VRMRN1,CX,CXYD, CL, CZMD, CC,RHO,RHOR,R,RO,HGT,A,
$4 \mathrm{VV}, \mathrm{G}, \mathrm{H}, \mathrm{GGO}, F P \mathrm{~F}, \mathrm{XMOOT,H,PHA,PHAY,ALT,PRFSS,ALPHAT,TCZ}$,
5TCZP, TCZPP,TCX,TCXP,TCXPD,XN,URDUT, XRAR, XLAMI, XLAFII,XLMID,XLMIID,
6 Un, XL $\triangle N 7, X N X, X N Y, X N Z, U \cap, V \cap, V Z O, X, Y, Z, X L A M 1, X L A M Z, X L A M 3, Y:-A H 4$,
7 XLAM5,XLAMG,XLAMID,XLAN2ח,XLAM?D,XLAM4N,XLAM5D,XLAMGD. OV,W,
8STALFP, CRALFP
DOURLF PRECISION SRAOF,CRAO9,RPHIO,RAD
DSLE. 1
STARE = ALF

```
ALF = STORE + DFL
CALL PRFLOD
CALL GETH
DA=H
ALF = ALF + DFL
CALL PRELOD
rall geth
DQ = H
ALF = ALF + DEL
CALL PRFLOD
CALL GETH
DC=H
    ALF = STORE - DEL
    CALL PRFLOD
    CALL GFTH
    DA=DA-H
    ALF = ALF-DEL
    CAIL PRFLOD
    CALL GETH
    DA=DR-H
    ALF= ALF-DFL
    FALL PRFLOD
     rALL GFTH
    DC=DC-H
    PHA=(.75*\capA-.15*DB+D(/60.)/DEL
    SDA = SNGL(DA)
    SNR = SNGL(DB)
    SDC = SNGL(DC)
    WRITF(G,1000) SNA,SDP,SDE
hO FORMATIRGH VALUFS DA,DB,DC USED TO COMPUTE PHA/IOX,3(E14.8,5X))
    ALF = STOPF
    STORE=ALFY
    ALFY=STORF+DFL
    CALL PRFLOD
    CALL GETH
    DA=H
    ALFY=ALFYY+DFL
    CALL PRFLOD
    CALL GFTH
    DR=H
    ALFY=ALFYY+DFL
    CALL PRFLOD
    CALL GFTH
    DC=H
    \triangleLFY=STORF-NEL
    CAIL PRELOD
    CAl.L GFTH
    nA=חA-4
    ALFY=ALFY-DFL
    CALL PRELOD
    CALL GETH
    DR=DP-H
    ALFY=ALFY-DFL
    CALL PDFLCD
    CALL GETH
    nrenc-H
    PHAY=(.75*DA-.15*DB+DC/60.1/DEL
    SDA = SNGL(DA)
    Sna= SNGL(na)
    SDC = SNGLIOCI
```

 \(A L F Y=S T O R E\)
 CALL PRELOD
 CALL GETH
 RETURN
 FNO
 ETC DDHY
SURROUTINF PNHY
FQUIVALFNCF (MASCOM(•), DDNS(1)), (MASCOM(101), TARS(1)) (NASCOM(669)
1.VEX(1))
FQUIVALFNCE (ODNS(1), ALF), (CODS(2),RALF), (ODDS(3), CRALF), (CDOS(4),
1 SRALF), (ODNS (5), ALFY), (ODDU(6), RALFY), (OONS(7), CRALFY), (ODDS (8),
2 SRALFY), (ONDS (Q), PHYJ), (ONCS(10), (PHIO), (ODOS(1)!,SPHIO), (ONDS(1Z
3), AO), (ONOS (13), CRAO7), (OONS (14), SRAO9), (ONES(15), PHIP), (ODDS (16),
$4(P),(O \cap \cap S(17), S P),(O \cap \cap S(? R), P H J Y),(O \cap n S(1 C),(Y),(C M D S(20), S Y)$,

9 (37), VRMPDI)

4 (CDDS $(54), 1+),($ ODNS (55), PHA),$(\operatorname{ODDS}(56)$, PHAY)
FOUIVALFM!F (OONS (57),FA)
FOUTVALFNCF (TARS(1), ALT(1)), (TAZS: R9), PRESS(1)),

z(TARS(495), TCXPD(1))
FRU•VALFNTF (VEX(1), XN(1)), (VFX(4), UROCT(1)), (VFX(7),XBAR(1),
f(VFX(10), XLAM「(1)), (VFX(12), XLAMII(1)), (V=X(16),XLMID(1)),(VEX(19)

FOUIVALFNRF (XN(1), XNX), (XN(21 , XNY) , (XN(3), XNZ)
FQUIVALENRF (URCOT(1),UD), (LRNOT(?),Vn), (JRDO\{(3), \%D)
FRUIVALFNCE (XRAR $(1), X),(X R A R(2), Y),(X P A R(3), 2)$
EOUIVALFNCE (XLAMI(1),XLAN]), (XLAMI(2), XLAM2), (XLAMI(3), XLA, V3)
FGUIVALFNCF (XLAMII(1),XLA:44), (XLAMII(2), XLAM5), (XLAMII(3), XLAM6)
FGUIVALENCE (XLMID(1), XLAM1D), (XLMID(?), XLAM?D), (XLNID(3), XLAM3D)
FQUIVALFNCF (XLMIID(1), XLAN,4ח), (XLMIID(2), XLAM5D) , (XLMIID(3), XLAM6
101
FRUTVAIENFF (UR(1), J), (UR(?),V), (UR(3),N)
COMMOM NASCOM
DIMFNSION MASCOM(693)
NTMFNSION ONOS(100), TARS(568),VFX(25)
DIMFNSISN ALT (89), PRFSS(88)

1TCXPP(38)
DINENSION UROOT(3):XN(3), XPAR(3), XLAM1(3), XLAMII(3), XLMID(3),
IXLMIID(3), UR(2)
DIMENSION STORFI 3 ;

DCURLF PPFCISIMA :AASCO:, ODDS, TARS,VFX, ALF,RALF,CRALF,SRALF,ALFY,
1 RALEY, CRALEY,SRALFY,PHIO, $P P H I O, S P H I O, A O, ~ P H I P, C P, S P, F H I Y$
? $-C Y, S Y, P H I R, C R, S R, O M F R A, W F X, W F Y, W F L, V R, V R X, V R Y, V R Z, V R M X, V R: A Y, V R M Z$
3 , VRUPN1, VRMYOI, VRMRNI, CX, CXYD, CZ, CEMD, CC,RHO,RHOD,R,RO,HGT,A,
4 VM,GM,GGG,FPA, XYOOT,H, PHA,PHAY, ALT,PRFSS, ALPHAT,TCZ,
5TCZP, TCZPP,ICX,TCXP,TCXPP, XN,UHDOT, XBAR, XLANI, XLA: :II, XLMID,XLMIID,
6 UR, XLAM7, XNX,XNY,XNZ,UD,VN,WD, X,Y,Z,XLAM1, XLAM2, XLAM3, XLAB: 4 ,
DOUBLE PRFCISION FA
DOLIRLF PRFCISION SRA09,CRAO9,RPHIO,RAD
$\cap F L X=10 \cap$.
$n E L U=10$.
DFLX2=200.
DFLU2 $=20$.
กO $1000 \quad \mathrm{I}=1.3$
STORF(I)=XBAR(1)
$\operatorname{XRAR(I)=STORF}(I)+\operatorname{DELX}$
CALL PRFLOD
CALL GETH
$H 7=H$
XAAR(II = STORE(I)-DELX
CALL PDFLOD
CALL GETH
XLNIn(I)=(H-H))/nFLX2
XRAR(I)=STOPF(I)
STARE(I)=UQ(I)
UR(I)=STORF(I)+MFLU
CALL PRFLOD
CALL GFTH
$\mathrm{H} 2=\mathrm{H}$
$\operatorname{UR}(1)=S T O R E(1)-\Gamma E L U$
CALL PPFLOD
CALL GFTH
XLN•ITก(I)=(H-H))/nELU2
UQ(I)=STORE(I)
fo ront inue
CALL PRELOD
MALL GETH
QFTURN
FND
-TC STF?
SURROUTINF STF2(DERIV)
EQUIVALENCE (MASCOM(1), CDI)S(1)), (MASCOM(101), TARS(1)) (IMASCOM(669)
1,VEX(1))

1 SRALF), (ODNS(E), ALFY), (ONOS(6),R^LFY), (OMOS(7), CRALFY), (ONOS(8),

4 (P), (OחNS(17),SP), (OחNS(1R), PHIY), (OONS (17), (Y), (ODOS (20), SY),
a (OחПS(21), P4IR), (ODNS(27), CR), (ODDS(7), SR), (ODDS(24), OMEGA),

R, VRUY), (ODNS (34),VRWL), (ONDS(35),VRMPD1), (ODDS(36),VRMYD1), (ODDS
9 (37),VRMRDI)
EOUIVALFNCE $($ ODDS $(38),(X),(O D D S(39),(x i n)),(O D O S(40), C Z)$,

3 VM), (ONNS(50), RM), (ONOS(51), racri), (ONNS(52),FPA), (ONDS(57), XMNOT).
4 (COnS(54), H (OnCS(55), PHA), (ONDS(56), PHAY)
FOll! LPNCF (OnnS(57),FA)
FOUI LENCE (TARS(1), ALT(1)), (TARS(89), PRESS(1)):
1(TARS(365), ALPHAT(1)), (TAQS(309),TCZ11):,(TARS(341):TCZP(1)).
ว(TARS(279):TCLPP(1)):(TARS(417):(CX(1)):(1AR5(457),TCXP(1)),
3(TARS(495),TCXPP(1))
FOUIVALFNCF (VFX(1), XN(1)):(VFX(4), UBDOT(1)):(VEX(7):XBAR(1)):
1(VEX(10):XLAMI(1)):(VEX(13):XLAMII(1)):(VEX(16):XLMID(1)):(VEXII9)

```
2,X!M!10(1)),(VEX(7) ,Ug(!)),(VFX(75),XLAN7)
    FOUTVALFNCF (XN(1),XNX),(XN(?),XNY),(XN(3),XNZ)
    FO!!VALFA!CF (UPNOT(l),UN),(LQROT(2),VN),!UNOOT(?),WD)
    F.OUIVALFNCF (XRAR(1),X),(XMAR(つ),Y),(XRAR(x),Z)
    FOUIV\DeltaLFNC% (XLAMI(i),XL{#1),(XLAN!(2),XLAV2),(XLAMT(3),XLAN2)
    FOUIVALFNCE (XLAMII(1),XLAO4),(XLAMII(2),XLAM5),(XLAMII(3),XLAMG)
    FQUIVALFNCF (XLMID(1),XLAM|D),(XLNID(%),XLAM2D),(XLMID(3),XLAMZD)
    EOU!VALFNGE (XLMIID(1),XLAM4D),(XLMIID(2),XLAF:5D),(XLMIID(?),XLAMG
    \because!
    \becauseTUIVALCNCE (UR(1),U),(UB(2),V),(UE(3),V:)
    COMMON MASCOM
    DINENSICN MASCO:(693)
    DIMENSION ODNS(100),TARS(568),VFX(25)
    DIMFNSION AIT(BR),PRESS(R8)
    DI'FFNSION ALPHAT(28),TrZ(39),TCZP(38),TrZPP(38),TCX(38),TCXP(38),
1TCXPP(39)
    DINFNSION UPOOT(3),XN(3),XPAR(3),XLAMI(?),XLAMII(3),XLMID(3),
    IXL*IIO(3),(12(3)
    DINFNSION DERIVI14;
    DOL'BIE PRFCISION NFRIV
        DOUBLE PRFCISION MASCOM,ODDS,TARS,VEY,ALF,RALF,CRALF,SRALF,ALFY,
    1 RALFY,CRALFY,SRALFY,FHIU,CPHIO,SPHIC,AO,SAOG,CAOY,PHIP,CP,SP,PHIY
    ? ,CY,SY,PHIR,CP,SQ,OUEGA,NFX,WEY,WEL,VR,VRX,VFY,VRZ,VR:AX,VRNFY,VFIVZ
    3 ,VRMPD!,VR`YMI,VRMRDI,CX,CXIVD ,CL,C\angleND, CC,RHO,RHOD,R,RC,HGT,A,
    4VV,GM,GGG,FPA, Xi\becauseDOT,H,PHA,PHAY,ALT,PRESS,ALPHAT,TCZ,
    5TCZP,TCZPP,TCX,TCXP,TCXPP,XN,UPNOT,XBAR,XLAMI,XLAMJI,XL.AID,XLMIID,
    6 UR,XLAN7,XNX,XNY,XNL,UD,VN,#D,X,Y,Z,XLAML,XLAMZ,XLAN3,XLAM4,
```



```
    8SR^LFP,(RALFP
    DCUFLF PRECISIOM FA
    DOURLE PRFCISION SRAO9,CRAO9,RPHIO,RAD
    NO 1000 i=1,3
    DFRIV(I)=UR(!)
    NFRIV(I+3)=\\QNOT(I)
    nFRIV(I+6)=XLMI\cap(I)
    DFPIV(II+9)=XLMIID(I)
    PETURN
    ENN
TTC CTF]
    SIIRROUTINF STFI(XVAL)
    FOUIVALFNCF (MASCOM(1),ONOS(1)),(MASCOM(101),TARS(1)),(MASCOM(G6?)
    ],VEX(1))
    FQUIVALFNCF (ODCS(1),ALF),(ONDS(2),RALF),(ONDS(3),CRALF),(ONDS(4),
    { SRALF),(ODNS(5),ALFY),(OONS(6),RALFY),(ONOS(7),CRALFY),(ODNS(E),
    2.SRALFY),(ONOS(O),PHIO),(ONOS(10),CPHIO),(ODNS(1:1,SPHIO),(ONOS(12
    3),AO),(ONOS(1?),(RAOQ),(OND'(14),SKAOQ),(ODDS(15),PriTP),(OONS(16),
    4 (P),(ONnS(17),SP),(ONNS(1, ), PHTY),(ONDS(19), (Y),(OND=(20),5Y),
    5 (ODNS(2.1),OHIR),(ODNj(2?),CR),(ODOS(23),SR),(ODD\(24)sUMEGA),
```



```
    7 (9n),VRX),(O\capDS(20),VQY),(ONOS(21),VRZ),(ODNS(32),VRIAX),(CONS(23)
```



```
9 (27),VRMPN1)
    FOUIVALEMEE (OnNS(2R),(X),(ONOS(22),rXMA ),(ODNS(40),CZ),
    1 (ONOS(4) , (2:An ),(ONOS(4) ,(C),(ONDC(43),RHO),(OODS(44),RHON),
    ~(ON\capS(45),R)*(ONNS(46), 20),(ONOS(47),HCT),(ONDS(48),A),(ODNS(49),
    2 VM),(O\capNS(50), (TM),(ON\capS(51),GGG),(ONOS(5%),FPA),(ODDS(53),XYDJT),
    4 (ODNS(54),H),(ODNS(55), FHA),(ONDS(56),PHAY)
    EOUIVALFNCE (ODDS(5%),FA)
    EOUIVALFNCF (TARS(1),ALT(1)),(TABS(89),PRESS(1)),
1(TARS(265);ALPMAT(1)),(T^RS(303),TCZ11)),(TARS(341):TCZP(1)),
```

```
    ?(TAAS(370),TrZPP(1)),(TAQ5(417).TrX(1)),(1^RS(457),TCXP(1)),
    7(T^RS(495),T(`XPP(]))
    FOUTVALFARE (VEX(1),XN(1)),(VFX(4),UROOT{1)),(VEX(7),XRAR(1)),
    !(VFX(10),XLANT(1)),(VFX(12),XLANI!(1)),(VFX(16),XLMID(1)),(VFX(19)
    2,XLM!!\cap(1)),(VFX(7)),(JR(1)),(VFX(?5),XL\triangleM7)
    ENUIVALENIF (XN(1),XNX),(Xa!(つ),XNY),(XM(3),XNZ)
    ECUIVALFNRF (UROOT(1),Un),(URONT(?),Vr!,(UROOT(3),'xn)
    EOUIVALFACF (XRAR(1),X),(XRAR(?),Y),(XBAR(3),Z)
    FQUIVALFNCE (XLA.{I(1),XLA!:l),(XLA:MI(2),XLA:!2),(XLAMI(3),XLAM3)
```



```
    EOUIVALENCE (XLMID(1),XLAMID),(XLMID(2),XLAM2O),(XLVFID(3),XLAM3D)
    FOUIVALFNCF (XLMIID(1),XLA:VAD),(XLMIII;(2),XLABFDD),(XLMIID(3),XLAMG
    1D1
    c@UPVALFNCF (UR(1),(U),(UR(?),V),(UP(?),N)
    CONMON NASCOM
    DINFNSINN UNSCON(692)
    DIMENSION ONDS(100),TARS(568),VFX(25)
    DI:"FNSION ALT(88),PRESS(88)
    DI:NFNSION ALPHAT(38),TCL(2, ),TCZP(38),TCZPP(28),T(X(38),TCXP(38),
1TOXPP(38)
    DINENSICN URDOT(3),XN(3),XRAR(3),XLAMI(3),XLAIIII(3),XLMID(3),
    1XL:4IIN(3),UR(?)
    DIVENSION XVAL(14)
    DOIIRLE PRECISION XVAL
        NOURLF PRECISION MASCOY,ODOS,TASS,VEX,ALF,RALF,CRALF,SRALF,ALFY,
    } RALFY,CRALFY,SRALFY,PHIO,CPHIO.SPHIO,NO,SAOQ,CAOO,PHIP,CP,SP,DHIY
    , CY,SY,PHIR,CR,SR,OMFGA,GFX,WFY,WEZ,VR,VRX,VRY,VQZ,VR邑X,VRMY,VRMZ
```



```
    5TCZP,TCZPP,TCX,TCXP,TCXPP,XN,UROOT,XBAR,XLAMI,XLA!II,KLMID,XLMIID,
    6 UR,XLAN7,X\X,XN!Y,XNZ,UD,VN,ND,X,Y,L,XLAM1,XLAM2,XLANT3,XLAN4,
    7 XLAM5,XLAV6,XL.AM1D,XLAN2D,XLAM3D,XLAM4D,XLAM5D,XLAM6D,U,V,W,
    8SRALFP,CRALFP
    DOURLF PRFCISION FA
    DOIURLE PRECISION SPAO9,CRAO9,B,RPHIO
    DO 100N I=1,3
    XVAL(1)=X\capAR(I)
    XVAL(I+子)=U口(!)
    XVAL(1+6)=XLAMI(I)
In XVAL(I+Q)=XLAMII(I)
    RFTURN
    ENN
:TC STFZ
    SURPOUTINF STF`(XVAL)
    EOUIVALFNCE (MASEOM(1),ONDS(1)),(MASCOM(10)),TABS(1)),(MASCOM(669)
    ],VEX(1))
    EOUIVALFNCE (ODDS(1),ALF):(UNDS(2),RALF),(UDDS(3),(RALF),(ODDS(4),
    1 SPALF),(OD\capS(5),ALFY),(ONOS(6),:ALFY),(ONOS(7),CRNLFY),(ODNS(8),
    ? SRALFY), (COnS(Q),FHIO), (ONOS(10),CPHIO),(ODDS(11),SPHIO),(ONOS(12
```



```
    4 PD),(OnNS(17),SP),(COnS(1R),PHTY),(ONOS(17),rY),(OnDS(2O),SY),
```



```
    & ,V MY):(ODNS(34),VRNL),(ODDS(35),VRMPN1),(ODNS(35),VRMYN1),(ODDS
    9 (37),VRW\RD1)
    FQUIVALFNRE (ONNS(39),CX),(ONOS(39), CXMN ),(ODNS(40),C2),
    1 (ODDS(41),CZMD ),(ODO心(42),CC),(ODDS(43),RHO),(ODDS(44),RHOD),
    2 (ODNS(45),R),(ONOS(46),RO),(ODNS(47),HOT),(ODNS(48),A),(ODNS(49),
    3 VM),(ONNS(50), ('^; (ODDS(51),GGG),(ODNS(52),FPA),(ODDS(53),XMDOT),
```

```
4 (\capDDS(54),H),(O\capNS(55),PHA),(ODDS(56), P|AAY)
        E\cap!!]VALENCF (\cap\capOS(57),FA)
        FOUIVALFNCF (TARS(1),ALT(1)),(TARS(89),DRESS(1)),
    1(TARS(2!5), ALPHAT(})),(TARS(202),TCZ11)),(TAQS(341),TCZ1)(1)),
    2(T^RS(270), TrLDP(1)),(T^AS(417),TCX(1)),(TARS(457),TCXP(1)),
    3(TARS(495),TrXPP(1))
        FQUTVALENFF (VFX(1),XN(1)),(VFX(4),URNOT(1)),(V.X(7),XRAR(1)),
    1(VFX(10),XLAM1(1)),(VEX(12),XLAMTT(1)),(VFX(16),XLMID(1)),(VEX(19)
    2,XLMII\cap(1)),(VFX(2) ,U(3(1)),(VEX(25),XLA;M7)
        FQUIVALFNPF (XN(1),XNX), (XN(7),XNY),(XA:(3;,X:!Z)
        FQUIVALFNC:- (URNOT(1),ND),(URDOT(?),VD).(URNOT(3),WD)
        FQUIVALFNCF (XRAR(1),X),(X口AR(2),Y),(XPAR(3),Z)
        FQUlvALFNGF(XLAMI(1),XLAM\),(XI_AMI(7),XLAM准),(XLAMI(3),XLAM3)
```



```
        FQUIVALFNCF (XLNIID(1),XLAM4D), (XLNIIN(2),XLAM5D),(XLVIID(3),XLAM6
    1\cap)
        FOUIVALFNPF (UR(1),U),(UR(?),V),(UR(3),%)
        CO:NMON NASCON
        DIMFNSION MASCO'(693)
        DI UENSINN ONDS(100),TABS(568),VEX(25)
        DIN'EMSISN ALT(88),PRES:2(98)
        OI.ENSION ALPHAT(38),TCL(73),TCZP(38),TCLPP(38),T(X(38),TCXP(38),
        1TCXDP(3, )
        DINFNSION UQNOT(3),XN(2),XRAR(3),XLAMI(3),XLANII(3),XLMID(3),
    ]XI.*!!n(2),!JF(2)
        OINFNSISN! XVAL(14)
        ONIRLF OPFCISION XVAL
            DOUFLE FRFRISICN MAST(M,ONOS,TARS,VFX,ALF,RALF,CRALF,SRALF,ALFY,
    1 RALFY, CRALFY,SRALFY,PHIU,RDHIO,SPHIU,AO,SAOO,(AOO,PHIP,CP,SP,PHIY
```



```
    4 V:4,GM,GGG,FPA,XMOCT, Fi,PHA, PHAY, NLT,PRESS,ALPHIAT,TCZ,
    bTCLP,TCLPP,TRX,TCXP,TCXPP,XN,U{AOUT,XBAR,XLAMI,XLA:GII,XLMID,XL:MIID,
    6 UP,XLAI:7,XNX,XNY,XNL,WH,V!,NO,X,i,L,XLAM1,XL NML,XLANB,XLAN4,
    7 XLAV5,XLANG,XLAM1D,XLAN2O,XLAM3D,XLAM4O,XLAIG5D,XLAMGO,U,V,W,
    RCRALFP,CRALFD
        O\capLIPI.F DRECISION FA
        NC!JRLF PRFCIGTON SRAOG,CRAOG,RPHIO,RAD
        \cap\cap 1OOO I= 1.'s
        XQAR(I)=XVAL(1)
        UQ{1)=XVAL(1+2)
        XL.AMI(I)=XVAL.(I+6)
OXL^M\I\\\)=XVAL(I+9)
        RETIJRN
        FND
TC SHIFT
    SIJQROUTINF SHTFT (A,R,K)
    OINFNSION A(14):Q114)
    OOIDLF ORECISION A,R
    n\cap ln\cap\cap }T=1,
@ 人(1)=n(1)
        QETUDN
        ENn
TC TCIRATE
    SIIRROUTINE TRGRATF(N,OTI
    DIMENSION XVAL(14),STORV(14,4),STORX(14),PCN(14)
    OOURLF. PRFCISION STDRV,STORX,PCN,XVAL
    IF(N.rr.3) GO TO 1000
    CALL POHY
```

```
    CALL GETH
                                    2 2
    CAIL RKINT(NT)
    (ALL STFว(STORVIL,N))
    RETURN
70 COMT|N|JF
    CALL STF](XVAL)
    CALL PDHY
    CALL GFTH
    CALL STF2 (STDRV(1,4))
    CALL SHIFT(STORX,XVVAL,14)
    PRFDICTOR - ADAMS RASHFORTH
    O\cap 1100 I=1.14
    XVAL(I)=STORX(I)+nT*(-9.*STDRV(I,1)+37.*STDRV(I,2)-59.*STDRV(I,3)
    1+55.*ST\capRV(It,4))/74.
    O CONTINUF
    O\cap 1200 J=1,3
10 CALL SHIFT(STDRV'(1,J),STORV(1,J+1),14)
    CORRFCTCR - ADAMS BASHFORTH
    CALL STF3(XVAL.)
    rALL PDH:
    CALL GFTH
    CALL 「TFY(STחPV(1,4))
    \cap\cap 1300 i=1,14
    STORX(I)=STriRX(I)+nT*(STINRV(I*1)-5.*STNRV(I, %)+19.*STDRV(I*3)
    1+9.*STIRVV(I*4))/24.
\capO PCN(I)=STORX(1)-XVAL(I)
    CALL STF3(STORX)
nO RETURN
    ENT
FTC COAV
    S!JQROUTINF CONV(R,N,K)
    DINENSI\capN N(1),R(2)
    NFAL MINUF
    OATA PLUS/IH+/,MINUS/IH-/
    FQ(IIVALFNTE(FX,IEX)
    OO 1000 I= 1,K
    IFX=0
    JJA=5*I-3
    X=A(I)
    fF(X) 1005.1001,1010
(1 R(JJA)=PLIS
    R(JJA+2)=PLUS
    a(JJ^+1)=0.0
    in TO inOO
5 a(JJN)=M|NUS
    X=-X
    mo T\cap 1020
10 R(JJ^)= PlUS
OO CONT|NUF
    R(JJA+2)= MINUS
    IF(X.LT.I.) GO TO 1035
    R(JJA+2)= PLUS
$5 JF(X.LT.J.) ,OTO 1040
    IFX={FX+1
    x= x/10.
    G\cap TO 1025
```

 lFX=15x+1
 X=X*10.
 OO TO 1035
 6!) R(J, 乹1) = X
lo R(.ijA+3) = FX
RFTURN
F.ND
- RKINT
SLRRO!JTINE PKINT(OT)
nTHFNSICN XK(14,4),STORX(14),XVAL(14),RFRIV(14),C(3),D(4)
nMIPLF F2ECISION G,NFRIV,R,STDRX,XK,XVAL
r(1)=. =
C(7)=.5
C(3)=1.
D(1)-.1656665667
n(2)=.333332222
; D(3)=.323232323
D(4) =. 166666657
DO 1000 J=1,4
CALL STFI(XVAL)
CALL SHIFTISTORX,XVAL,14)
CALL PDHY
PALL GFTH
(ALL STFO(D=?JV)
no inOn I=1,14
x<(I,J)=nt*nFRIV(I)
IF(J.NF.1) XVAL(I)=5TORX(I)+C(J-1)*XK(I,J)
O CONTINMF
no 1100 I=1,14
xVALII)=STORX(I)
DO 1100 J=1,4
:0 XV^!(I)=XVAL(I)+YK!I,J)*\cap(J)
CALL STFZ(XVAI.)
pETUPN
FnN
itr jacma
SIRROISTIMF JAROR(HH,NFL,,NFL??)
FOUIVALFNCE (AASCOM(1),ONOS(1)),(MASCOM(101),TARS(1)),(MASCON(669)
},vrx(11)
FQUI:ALENTE (ONNS,I),ALF),(ODNS(2),RALF),(ONOS(3),(RALF),(ODNS(4),
1 SRALF),(ODNS(5),ALFY),(ONח'(6),RALFY),(UNOC(7),CRALFY),(ODDS(8),
2 SPALFY),(ODOS(9),PHIO),(ONOS(10),(PHIO),(ONDS111),SFHIO),(ODDS(12
2,1,10),(ONחS(12),(CR^O9),(ONDS(14),SRA(%Q),(ODi)S(15), PHIP),(ODDS(16),
4 (P),(ODDS(17),SP),(ONOS(1P),PHTY),(OODS(10),(Y),(ODOS(20),SY),
= (OחNS(21),PHIR),(OONS(2),OR),(ODNS(23),SR),(ONDS(24),OMEGA),

```

```

 7(フ0),VPX),(OnnS(30),VRY),(OnnS(x1),VRZ),(OnnS(32),VRMX),(OnnS(33)
    ```

```

 9 (?7),VRMRO1)
    ```

```

 1 (OnnS(4)),r2Mn),(OnnS(4)),r(C):(OnnS(4z),RHO),(ONOS(44),RHON),
 ? (OnnS(45),R),(OnNS(46),RO),(OnnS(47),H[T),(ONDS(48),A),(ONOS(40),
    ```

```

 4 (ODDS(54),H), OODNS(55),PHA),(ONDS(56), PHAY)
 EQUIVAIFNCE (OONS(57),FA)
 -~UIVALENCF (TARS(1),ALT(1)),(TABS(89),PRESS(1)),
 , S(765),ALPHAT(1)),(TARS(302),TrL(1)!,(TARS(341),TCZP(1)),
 ?:IAFS(x7ח),TRZPP(:)),(TARS(417),TCX(1)),ITARS(457),TCXP(1)),
 2(TARS{4051,TRXPP(1)|
    ```
```

 FOUIVALFNCF (VFX(1),X^(1)),(VEX(G),UZCOT(1)),(VEX(7),XRAR(1)),24
 |(VFX(10),XLAM!{`)|,(VFX(12),XLANII(1):,(VFX(1G),XLMID(1)),(VFX(:9)
2,XL@!!^(1)),(VEX(2)),Un(1)),(VFX(こ\&),XL^N7)
FOUIVALFNCF (XN(1),XMX),(XN(つ),X:Y),(X!?(3),XNL)

```

```

 EQUIVALFNCE (XRAR(1),X),(XRAR(2),Y),(X@AN(3),2)
    ```

```

 EOU!VALENCF (XLA4i!(1),XLAF&),(XLAN1|(2),XLAMS),(XLANII(3),XLANG)
    ```


```

 !n
 F?(l|VAIFNrF (UR(1),U),(UR(7),V),(UP!2),:!)
 COMMON m\DeltaSCN:
 D|!FNSION KACRCN(602)
 nfarcagina! OnNC(100),TARS(568),VFX(25)
 CIMENSION ALT(88),PRFSS(BR),K(88)
 DI`iFVSION ALPHAT(38),T(L(2Q),TCZP!38),TCLPP(38),T(X(38),TCXP(38),
 IT(XPP(3A),J(98)
DI\becauseENJI(IN JIDOT(3),XN(3),XZAR(3),XLANI(3),XLA`II(3),XLMID(3),
1XLMID(2),UP(?)
BI\becauseFNSION OITT(4,]OO)
NOUPLF PRECISION FA,AST
ROUALF PRFCISIOM :AASCO:O,O\capDS,IARS,VFX,ALF,RALF,CRALF,SRALF,ALFY,
I RALEY,CRALFY.SPAIFY,PHIO,RPHIO.SPHIO,AC, PHIP,CP,SO,PHIY

```


```

 & V\because,CM,CC:r,FPA,XU\capOT,H,PHA,PHAY,ALT,PRFSS,NLPHAT,TCZ,
 5TRZP,TCZPP,TRX,TCXP,TCXP!,AM,URSUT,XAAR,XLAMI,XLAMII,XLAID,XLMIID, r
 6 UR,XLANi7,XMX,XNY,XNL,UD,V\cap,AD,X,Y,L,XLA:A1,XLAN2,XLA:!3,XLAl.i4,
    ```

```

 RSRALFP,CPALTF
 DOUPLEF PRFCIS!OF! \triangleRCNS,COLAI,CRIT,DEL,IFSP,TIREC,ILIVIT,TPRINT,
 1TSTFD,TY,|!N.
7 VR,VLAT,VLONT, NO,XO,XLAM1O,XLAV?O,XLAMZO,XLAV4O,XLAN5O,XL^MGO,
27C
NOIJRLF PRFCISITN SPAOQ,C!PANG,RPHIO,RAD
N|VFMSION STX(2),STY(2), TTAY(?)
NOURLF PRETISIOA STX,STY,STAY,SLGPF
OC!TRIE PRFCISIOM STALF
OOURLF PPFCISION CONA,CON2,CONC.,YO,Y2,YO2,Y22,DFL2
DINFNSION RI)(7)
OIMENSION (IF(?10),OUTA(40),OUTC(200)
\squareI`ENSION HH(2,4),PA(3),PAY(3)
DOUPLF PRECISIC. PA,PAY,HH,DELI,DEL22,SAVEI,SAVE2
SAVEI=\LF
SAVF?=ALFY
CALL HCALC
DA(1)=PHA
P^Y(1)=PHAY
ALF=S^VE?+DFLI
CALL HCALC
PA(2)=PHA
P^Y(2)=PHAY
HH(1,1)=(PA(2)-PA(1))/DFL1
HH(2,1)=(PAY(2)-PAY(1))/DEL1
A:F=SAVF1
^L.FY=S^VF 2+MFL2.2
CALL HFALC
DA(x) =DHA
PAY(3)=PHAY

```

WPITF(5,209)
70 FO: \(\because \triangle A T\left(1 H O, 5 O H T H E\right.\) FOLLOWIMG, VALUES ARE PHA AND PHAY RESPECTIVELY) \({ }^{25}\)

OO FCPMAT(FフO.R,5X,F?O.R)
HH(1, 2) \(=(P A(3)-P A\{1) \mid /\) ?
\(H H(2,2)=(\operatorname{PAY}(3)-P A Y(1)) / O E L 22\)
Al FY=SAVE2
QFTUPN
FAn
=TC SIVNL
SURRCUIIA!F SLVNLIXXI,XX2,H,FF,FFY,CRITA!TOP,TIPFCI
purpase
SOLVF A SYSTFM OF N NOMLJMFAR FQUNTIONS
DFSCRIPTION OF IMPUT PARARFTERS
\(X\) - IVITIAL VALUF OF VECTCR \(X\)
H - APPROXI:ATION OF THE INVERL JACOBIAN NAIRIX: H=1/A
N - NUMRER OF VARIARLES AND EQUATIONS
EVALF - FGRTFAR: SURPUUTIAE TO COUPUTE VECIOR F
CRIT - PRESCRIQED ACCURACY LIMIT OF NORM(F)

NFSCRIDT!OA OF CUTDIT DAPAMFTFJE
\(X\) - FINAL VALUF DF VECTCR \(X\)
H - APPROXIVATION OF THE INVERZ JACOBIAN MATRIX, H=1/A
F - VECTOR OF N FUNCTIOYS ITER - NUMRFR OF ITERATIONS

SUBROUTINES REQUIRED
vATMPY
LINCOM
F NORM
r, FTT
SHIFT
fVnlf
```

 NINTMSION X(2),H(7,?),F(2)
 O|MENSION P(IO),Y(]O),FN(IO),XN(1O)
 OOURLF DRFCISIOA P,Y,FW,XN,H,F,VAL,VALO,X,XXI,XX2,FF,FFY,SCALF
 N=?
 N!P=N*N
 1TFR=0
 X(1) = X X1
 X(2)=XX2
 F(1)=FF
 F(7)=FFY
 O rALL FVAIF(X,F,N)
START NEN ITERATINN
EVALUATE VFCTOR P=H*F
.O CALL :1^TMPY(H,F,P,N,N,I)
ITFR=1TFR+1
CALL FNOQN(F,N,VALO)
C^LL GETT(O.T.VALO)
Finin ^ VAlUF OF T SUR.H THAT THF NORM OF F(X+l*P) IS LESS
THAN THF NIOOM CF F(X)
XN IS THE NFW TPIAL VALUT OF X, UQTAINFN AS XN=X+T*P
-VAL- ANN -VALO- ARE THE NORM OF F(XN) AND F(X) RESPECTIVELY

```
```

 n0 1075 I=1,10
 C\DeltaLL LINCO:%(1.,X,T,P,XN,N-1)}2
 CALL FVALF(XN,FN!s!)
 CALL FVORN(FN,N,VAL)
 IF(VAL.LT.VALO; GO TO 1080
 CALL GFTT(IsT,VAL)
 75 cONTliNuF
GO T^ 20nO
ONCF A SATSFACTORY T U'AS FOUAD, X IS RFPLACD RY X.N,
F IS RTPLACEN DY FN
IF REGUIRED ACCURACY IS ORTAINEE OR ALLONED NUNBE? OF INTERATIONS
EXHAUSTFN RETUPN TO CALLINE PROGQAA:
A NEW APPROXIVATION OF M^TRIX H IS COMPUTEN
NEW H IS OBTAINFD AS H=H-(H*Y+T*P)*(P*H/SCALF)
30 CONTIMUF
IF(ITFR.GT.NTOPI GO TO 200N
CALLSHIFTI(X.XN,N)
COMPUJTE Y=EN-F
CALL LINCOM(1.,FN,-1,gF,Y,N,1)
PFPLACE F RY FN
C^LL SHIFTI(F,FN,N)
CONPUTE H*Y
CALL MATMPY(H,Y,FN,N,N,I)
CONPUTF H*Y+T*P
CALL LINCOM(1.,FN,T,P,FN,N,I)
CONPUTF P*H
CALL MATMPY(P,H,XN,I,N,N)
CONPUTE SCALE=(P*H)*Y
CALL MATMPY(XN,Y,SCALE,I,N,l)
COMPIJTF P*H/CCALF
no l10n l=1,N

```

```

 O\cap 1200 I= i,N
 n0 17>00 J=1,N
 O H(I,J)=H(I,J)-FN(I)*XN(J)
IFIVAL.LF.(RIT) GO TO 2000
GO TO 1050
NO WRITF(G.330N) ITFR,TIRFC
*O FOPMAT(12H 1TERATIONS=,IG,5X,2HT=,E14.8)
XX1=X(1)
x \ 7 = X(7)
FF=F(|)
FFY=F(2)
RFTURN

```

\section*{FA! \\ TC MAT:PY}

SURROUTINF NATMPY(A,R,C,N1,N?,N3)
DIMENSION A(N1,N2),B(N2,N3), C(N1,N3)
DOURLF PRECISION A,B,C,TEMP
DO \(3 \mathrm{I}=1, \mathrm{Nl}\)
DO \(2 \mathrm{~K}=1, \mathrm{~N} 3\)
TFNP \(=0\).
Dn \(1 \mathrm{~J}=1, \mathrm{~N}\) ?
\(T E M P=T E M P+A(1, J) * R(J, K)\)
(II,K)=TEMP
- continuf

3 continuf
RETURN
ENT
\({ }^{\circ} \mathrm{C}\) LINCOA
SURROUTINE LINCOM(S,A,T,R,C,M,N) DIMENSION A(M,N),R(M,N),C(M,N) DOUPLE PRECISION A,B,C
nn \(21=1, N\)
Dก \(1 J=1, N\)
( \((I, J)=S * A(I, J)+T * R(I, J)\)
CONTINUE
- continuf

RFTURN
FND
-C FNORM
SUQROUTINE FNORM(F,N,VAL)
DINENSION F(N)
DOURLE PRFCISION F,VAL
\(V \Delta L=0\).
no \(1=1, N\)
\(V \wedge L=V A L+F(1) * F(I)\)
SVAL \(=\) SNGL(VAL)
WRITE(6.1000) SVAL
FCRMAT(GH VAL \(=\) EE14.8)
RFTURN
ENC
C GETT
SURROUTINE GETT(IT,T,FI
IFIIT.NE.OI GO TO 1
\(T=1\) 。
FO=F
PFTURN
IF(IT.NF.1) GO TO 2
F] \(=F\)
\(T H=F 1 / F O\)
\(T=(\operatorname{SORT}(1 .+6 . * T H)-1.) / 3.1 T H\)
RFTURN
\(T=-T / 2\) 。
RETURN
END
C SHIFTI
SURROUTINF SHIFTIIA,B,K)
DIVENSION Al1), Blil
DOURLF PRFCISION A,R
n (1000 \(1 \times 1\), K
\(\Delta(1)=\square(1)\)
RFTURN
FND

SUAROUTINF FVALF：XX，F，N！：
FOUIVALENCE（MASCOM（1），ODNS（1）），（MASCOM（101）．TABS（1）），（MASCOM（669） 1，VFX（1））






 7 （ \(701, V R X),(O \cap \cap S i=0), V P Y),(O \cap \cap S(31), V R L),(O D O S(2 ?), V R \because X),(U \cap \cap S(z 3)\)
 ？（27），VRNPOl）
FQUIVALTNCE（ODNS（38），（X），（ODNS（39），CXMD 1，（ODDS（40），CZ），




Fnl！！Valfanf（COnS（57），FA）
FOUIVALFNCE（TAPS（1），ALT（1）），（TAPS（89），PRESS（：）），
（（TARS（？ 55\(), 9\) LPHAT（1）），（TADS（202），TrZ（1）），（TAロS（241），TCZP（1））， ？（TARS（270）•TrZPP（1）），（TAnS（417），T（X（1）），（TARS（457）：TCXP（1））， 2（TARS（405），T（XPP（1））

 2，XL：1！ID（！）），（VFX（27），U马（1）），（VEX（25），XLAM7） ？？（＇IVALFNCF（X：N（1），XNX），（XN（？），XilY），（XN（？），XNZ）

rCUIVALFARF（XRAR（1），X）\((X A A R(7), Y),(X R A R(2), 2)\)


 FQUIVALFNFF（XLOIIの（1），XLAM4D），（XLMIID（？），XLAMSD），（XLIFIID（3），XLAMG
10）

CO：MON VASCO：．
MINENSIOA IMASCON（603）
DIMENSION OONS（100），TABS（568），VFX（25）
II＇＾ENSION ALT（B8），PRESS（B8），K（88）
กTHFNSION \(\triangle L P H \wedge T(38), T(Z(28), T C Z P(38), T C Z P P(3 R), T C X(38), T C X P(38)\),
1TCXPD（3Q），J（2Q）
 IXINITN（2），UD（2） NIMFXSICN CיITC（4，100）
DOURLE PRECISION FA，AST
ROUPLF PRECISION MASCOM，ONDS，TARS，VFX，ALF，RALF：CRALF，SRALF，ALFY，
1 RALFY，CRALFY，SRAIFY，PI！IO，CPHIO，SPHiO，AO，PHIP，CP，SP，PHIY
\(2, C Y, S Y, P \| I R, C R, S R, ~ D i F F A, W E K, W F Y, A F Z, V R, V R X, V R Y, V R Z, V R, A X, V R M Y, V R N Z\)

14 V：1，GM，GGG，FPA，XMDOT，H，PHA，PHAY，ALT，PRESS，ALPHAT，TCZ，
［STCZP，TCZPP，TCX，TCXP，TCXPP，XN，URDUT，XBAR，XLAMI，XLAMIT，XLINID，XLMIID，

7 XLAV5，XLA：\(\because 6, X L A M 1 D, X L A: 2 \cap, X L A M ? D, X L A M 4 D, X L A M 5 D, X L A M G D, U, V, W\), SSRALFP，CRALFD
COUR：F PRECISIOA ARCOS，COLAT，CRIT，DFL，TFSP，TIREC，TLIMITOTPRINT， 1TSTEP，TYOUO．
\(\rightarrow\) VO，VLAT，VLONC，WO，XO，XI．AWIO，XLAMPO，XLAMZO，XLAN， 40, XLAM5O，XLAMGO，
270
DOURLF PRFCISION SRAO9，CRAO9，RPHIO，RAD

OIMFNSION STX(3),STY(3),STAY(3)
NOURLE PRECISION STX,STY,STAY,SLOPF
DCUELF PRECISION STALF
DOURLF PRFCISION CONA,CONR,CONC,YO,YZ,YOZ,Y22,DEL2
nOTRIF PRECTSION XX,F
nIPFASION RO(7)
RIMFNETON OF(1)O), OUTA(40), OUTC(2CO)
ПTYFNSION XX(NJ),F(NI)
nLF \(=X \times(1)\)
\(A L F Y=X X(7)\)
CALL HCALC
\(\mathrm{F}(1)=\mathrm{PHA}\)
\(F(2)=\) PHAY
RFTURN
FM!
TC. INVFRS
SIJPROUTINE INVFRS(A, INDX,IORD,V,NN,KERR)
nCI'RLF PRFCISION A,R
ПI:/FACION A(NONN)
MIMENSION IVIX(N), IORD(N)
- \(\Gamma P P=0\)
\(\mathrm{J} 1=\mathrm{N}+1\)
\(J 7=2 * N\)
nn 2? \(1=1, N\)
\(\mathrm{J}^{3}=1+\mathrm{N}\)
D \(024, \mathrm{~J}=\mathrm{J} 1, \mathrm{~J} 2\)
A!l.JI=n.0
A(1, J3) \(=\) ?. 0
「の \(10 \mathrm{I}=1\), N
\(\operatorname{lnnx}(1)=\) ?
\(03=\mathrm{N}-1\)
กn \(11 . J=1, n\)
in \(12 \mathrm{I}=1\), Nم
IF(Innx(I). CO .01 n O TO 13
(nntinulj
\(P=-.1 D+36\)
\(K=1\)
\(\mathrm{IL}=1\)
\(1 T=1\)
On 14 M K K, N
IF(INRX(M). IIF. O) GO TO 14
\(I \mathrm{~L}=\mathrm{IL}+1\)
IF(A(M:J).NF.n.n) GO Tn 17
\(T T=T T+1\)
GO Tn 14
IF((R-חARSIA(M.J))).GT.0.0) GO TO 14
\(\mathrm{D}=\mathrm{A}(\mathrm{N}, \mathrm{J})\)
\(B \cdot M=V\)
cant InuF
1F( (IT-IL).NF.O) \(\because 0\) TO 19
URITE(6,21)
FORMAT(///30h MATRIX [NVFRSION NOT POSSIBLF////I
KFRR=1
PETIPN
\(\ln x\left(M N_{1}\right)=1\)
1 \(\cap\) PR (J) \(=\) MM
\(10=J+1\)
กo \(25 \mathrm{JJ}=1 \mathrm{P}, \mathrm{J}\) ?
\(A(M M, J J)=A(M M, J J) / A(M M, J)\)
DO \(26 \mathrm{~K}=1, \mathrm{~N}\)
```

 IF((MN-K).EO.O) GO TO 26
 On 28 JJ=IP,J?
 A(K,JJ)=A(K,JJ)-\Delta(K,J)*A(MM,JJ)
 CONTINUE.
 CONTINUF
 On 29 l=1,N
 IPF=10RD(1)
 On 20 J=1,N
 L=,J+N
 A(I,J)=A(IRF,L)
 RFTURN
 FNO
 IP TRAP DECK
FNTRY TRAF
AXT **,4
TRA **
CXA TQAP-1,4
CIA \&
STA RESFT+1
CLA FIX
TSX S.STCR,4
GTO 8
TRA TRAP-1
i CLA 0
TV1 **
ARS 20
LRT
TRA k+?
TRA* DECET+1
SXA OUT,4
TCX S.NPIT,4
OTF 2,,MES
AXT ***4
ZAC
LRS 25
TPA* n
TRA RESFT
RCI 3, **** UNDFRFLOW
END
ir

| 0 | $n \mathrm{nn}$ | 789 | nnmann | 1878 | nnmon | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | n14 | nn782 | －noonl4 | 1812 | －nn122 | －nnnnas |
| 10 | $n>8$ | nnフ7n | －nnnn4） | 177？ | －nnn4n | －nn？448 |
| 15 | $\bigcirc 40$ | のnブ2 | －nncnita | 1710 | － 24.32 | －nnngas |
| 70 | n5？ | On234 | －nnon4\％ | 1676 | －02736 | －nnn4 76 |
| 25 | 062 | n¢フ14 | －กnกn？ 6 | 1520 | －nフe80 | －n00328 |
| 30 | 074 | กกว） | กกロก23 | 1288 | － 3314 | －กロヘフ52 |
| 25 | 084 | 00244 | n00124 | 1746 | －03136 | －000208 |
| 40 | n96 | 00336 | 000738 | 1092 | －03734 | －000184 |
| 45 | 118 | 00490 | 000274 | 093. | －03320 | －00015210 |
| 50 | 146 | 0064？ | nnopln | 0768 | －03380 | － 0 nncrisl1 |
| 55 | 187 | OO7R8 | nnon54 | 0 ¢88 | －03406 | 0กกn3．417 |
| 60 | 774 | n0874 | nnovan | 0416 | －02257 | nnnopli？ |
| 65 | 768 | nonfr | nononn | 0246 | －03178 | nrn4！614 |
| 70 | 218 | 0105？ | 000168 | 0112 | －02922 | 00056815 |
| 75 | 277 | 01124 | nonior | －rnon | －n26no | non64616 |
| R 0 | 476 | 01174 | 000044 | －0134 | －02264 | n0n67017 |
| 85 | 485 | 01178 | －nonn3？ | －0236 | －01934 | 00064618 |
| 90 | ． 546 | 01138 | －000108 | －0322 | －01622 | 00060019 |
| 95 | 596 | 01056 | －000187 | －0394 | －01340 | 00056020 |

```



The procedure for solving the problem of flying a minimum fuel point-to-point transfer with a high speed aircraft is as follows.

Minimize the integral
\[
I=\int_{t 0}^{t} \dot{m}_{f}(t) d t
\]
where \(\dot{m}_{f}(t)\) is the time variable fuel burning rate, subject to the differential constraints
\[
\begin{equation*}
\dot{\bar{x}}=\overline{\mathbf{u}} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\dot{\bar{u}}=\frac{[T] \bar{F}_{T}}{m}+\frac{[T]\left[\alpha, \alpha_{y}\right]}{m} \bar{F}_{a}+\frac{\bar{F}_{g}}{m}-\frac{F_{T} \bar{u}}{v_{e^{m}}} \tag{2}
\end{equation*}
\]
\[
\begin{equation*}
\dot{\bar{\phi}}=\bar{\Psi} \tag{3}
\end{equation*}
\]
and \(\quad \dot{\bar{Y}}=\left[B_{2}\right]^{-1}\left\{\bar{M}_{\phi}+(A) \bar{\psi}+\bar{B}_{3}\right\}\)
which are the equations of motion, and the al rebraic constraints
\[
\begin{equation*}
\bar{V}_{R}=\left[\alpha, \alpha_{y}\right] \bar{V}_{r} \tag{5}
\end{equation*}
\]

The Hamiltonian is formed as
\[
\begin{equation*}
H=\bar{\lambda}_{I} \cdot \dot{\bar{x}}+\bar{\lambda}_{I I} \cdot \dot{\bar{u}}+\bar{\lambda}_{I I I} \cdot \dot{\bar{\phi}}+\bar{\lambda}_{I V} \cdot \dot{\bar{\psi}}+\lambda_{13} \dot{m}_{f} \tag{6}
\end{equation*}
\]

The control variables will be \(F_{T}\) and \(\bar{M}_{F}\) where \({ }_{T}\) is the thrust magnitude and \(\bar{M}_{F}\) is the moment generated about the C.P. by the aircraft flaps.

The canonical and control equations become
\[
\begin{align*}
& \dot{\bar{X}}_{I}=-\frac{\partial H}{\partial \bar{x}}  \tag{7}\\
& \dot{\bar{X}}_{I I}=-\frac{\partial H}{\partial \bar{U}}  \tag{8}\\
& \dot{\bar{X}}_{I I I}=-\frac{\partial H}{\partial \bar{\phi}}  \tag{9}\\
& \dot{\bar{X}}_{I V}=-\frac{\partial H}{\partial \bar{\Psi}}  \tag{10}\\
& \dot{\lambda}_{13}=-\frac{\partial H}{\partial m_{f}}  \tag{11}\\
& \frac{\partial H}{\partial F_{T}}=0  \tag{12}\\
& \frac{\partial H}{\partial \bar{\mu}_{F}}=0 \tag{13}
\end{align*}
\]

There are four control variables \(F_{T}, \quad \bar{M}_{F}\), fourteen state variables, \(\bar{x}, \dot{\bar{x}} \bar{\phi}, \dot{\bar{\phi}}, \alpha, \alpha_{y}\), and thirteen multipliers. Equations (1-1z) provide thirty-one scalar equations from which to determine thirty-one unknowns.

From Equation (13)
\[
\begin{align*}
& \frac{\partial H}{\partial \bar{M}_{F}}=0 \rightarrow \bar{\lambda}_{I V}=0  \tag{14}\\
& \dot{\bar{\lambda}}_{I V}=0=\bar{\lambda}_{I I I}  \tag{15}\\
& \dot{\bar{\lambda}}_{I I I}=-\frac{\partial H}{\partial \bar{\phi}}={\underset{F}{2}}\left(\bar{\lambda}_{I I}, F_{T}, \bar{\phi}, \alpha, \alpha_{y}, \bar{x}, \dot{\bar{x}}\right)  \tag{16}\\
& \frac{\partial H}{\partial F_{T}}=0=f_{3}\left(\bar{\phi}, \bar{\lambda}_{I I}\right) \tag{17}
\end{align*}
\]

Solve Equations (16) and (17) simultaneously for \(\bar{\lambda}_{I I}\) and \(F_{T}\).
\[
\begin{aligned}
& \bar{\lambda}_{I I}=\bar{\lambda}_{I I}\left(\bar{\phi}, a, a_{y}, \bar{x}, \dot{\vec{x}}\right) \\
& { }_{P_{T}}=F_{T}\left(\phi, a, a_{y}, \bar{x}, \dot{\vec{x}}\right)
\end{aligned}
\]

Compute \(\dot{\bar{\lambda}}_{\text {II }}=f_{5}\left(\bar{\phi}, \dot{\bar{\phi}}_{;} \bar{x}, \bar{u}, \dot{\bar{u}}\right)\)
From (8) \(\dot{\bar{\lambda}}_{I I}=-\frac{\partial H}{\partial \bar{u}}=-\bar{\lambda}_{I}-\frac{\partial\left(\bar{\Lambda}_{I I} \cdot \bar{u}\right)}{\partial \bar{u}}\)
Solve for \(\bar{\lambda}_{I}=-\dot{\bar{\lambda}}_{I I}-\frac{\partial\left(\bar{\lambda}_{I I} \cdot \bar{u}\right)}{\partial \bar{u}}\)
Compute \(\dot{\bar{\lambda}}_{\mathrm{I}}=f_{7}(\bar{\phi}, \overline{\bar{Y}}, \dot{\bar{\psi}}, \bar{x}, \bar{u}, \dot{\bar{u}}, \dot{\bar{u}})\)
From (7) \(\dot{\bar{\lambda}}_{\mathrm{I}}=-\frac{\partial \mathrm{H}}{\partial \overline{\mathrm{X}}}=f_{B}(\bar{\phi}, \overline{\bar{\psi}}, \dot{\bar{\psi}}, \bar{x}, \bar{u}, \dot{\bar{u}}, \ddot{\bar{u}})\)
Solve for \(\dot{\bar{\varphi}}\).
Plug \(\dot{\bar{Y}}\) into Equation (4) and solve for \(\bar{M}_{F}\).

Prepared by
Philip M. Fitzpatrick, Grady R. Harmon, John E. Cochxan and W. A. Shaw

Six Months Report to
Computational Theory and Techniques Branch Computer Research Laboratory Electronics Research Center
National Aeronautics and Space Administration

\section*{On}

NASA Grant NGR-01-003-008-S-2
(May 1 - November 1, 1968)


Auburn, Alabame

\section*{SOME SUGGESTED APPROACHES}

\section*{TO SOLVING THE HAMILTON-JACOBı EQUATION} ASSOCIATED WITH CONSTRAINED RIGD BODY MOTION

\author{
Prepared by \\ Philip M. Fitzpatrick, Grady R. Harmon, John E. Cochran and W. A. Shaw
}

Six Months Report to
Computational Theory and Techniques Branch
Computer Research Laboratory
Electronics Research Center
National Aeronautics and Space Administration

On

NASA Grant NGR-01-003-003-S-2
(May 1 - November 1, 1968)

January 1969

ENGINEERING EXPERIMENT STATION
AUBURN UNIVERSATY

\section*{ABSTRACT}

Some methods of approaching a solution to the llamilton-Jacobi equation are outlined and examples are given to illustrate particular methods. These methods ma: be used for cases where the HamiitonJacobi equation is not separabie and have been particularly useful in solving the rigid body motion of an earth satellite subjected to gravity torques. It is felt that these general methods may also have applications in studying the motion of satellites with acrodynamic torque and in studying space vehicle motion where thrusting is involved.

\section*{TABLE OF CONTEVTS}
INTRODUCTION ..... 1
DEFINITION OF ANGLES ..... 3
Functional Relations ..... 5
Canonical Transformations ..... 6
Miscellancous ..... 9
A NOTE ON DISTTNCT CONjPLETE INTECRALS ..... 10
A NOTE DN ORTAINING A COMPLETE INTEGRAL OF TIIE HAMILTON-JACOBI EQUATION ..... 17
A NOTE ON DISTINCT INTEGRALS FOR A PARTICLE IN A INII:JRM GRAVITY PIELD IN A PLANE ..... 22
HAMILTON FUNCTION FGR A TRIAXIAL BODY (NO FORCES) ..... 26
RELATIONSIIIP BI:TWIEE CONJUGATE MOMENTA AND ANGULAR MOMIENTUM ..... 31
APPENDIX: ON A MIETIOD OF OBTAINING A COAPLETE INTEGRAL OF THE HAMILTON-JACOBI EQLiATION ASSOCIATED NITH A DYNAMICAL SYSTEM ..... :0

\section*{INTRODUCTION}

During the six months included in this reporting period (May to November 1968), work has continued on an investigation of the analytical foundation of the llamilton-Jacobi theory and its application to space flight problems.

In studying the literature, many questions arose. An attempt was made to formulate these questions and then find satisfactory answers to them. The first work during this reporting period was directed toward comparing the different methods available for solving the Hamilton-Jacobi partial differential equation. Five different methods for obtaining a generator \(S\) were studied:
1. \(S=\int\) - Ldt, Where L Is the Lagrangian
2. Liouville's Theorem for Obtaining \(S\)
3. Jacobi's Method of Integration of Partial Differential Equatious
4. Separation of Variables
5. Method of Characteristics

The following questions arose during the discussions of the different methods available for solving the llamilton-Jacobi equation.
1. Can a solution be obtained by Jaccbi's method; i.e., by obtaining half the integrals for \(p_{i}\) and then building \(S\) from
\[
d S=p_{1} d q_{1}+p_{2} d q_{2}+\cdots+p_{n} d q_{n}
\]
that cannot be obtained by quadratures
\[
\begin{aligned}
& \qquad \begin{aligned}
\frac{d t}{1} & =\frac{d q_{1}}{\partial H / \partial p_{1}}=\cdots=\frac{d q_{n}}{\partial H / \partial p_{n}} \\
& =-\frac{d p_{1}}{\partial H / \partial q_{1}}=\cdots=-\frac{d p_{n}}{\partial H / \partial q_{n}}
\end{aligned} \\
& \text { which result from Hamilton's equations? }
\end{aligned}
\]
2. Same question as one except separation of variables versus dacobi's method?
3. Same question except quadratures versus separation of variables?
4. All three of the above questions with the Hamiltonian given as an explicit function of time?

In discussing Jacobi's method, the following question and answer was developed. Given one complete integral, is there any technique for constructing another distinct complete integral? Yes, an infinite number of other distinct complete integrals can be constructed. Given a complete integral containing two arbitrary constants \(\alpha\) and \(\beta\), another complete integral can be constructed by replacing \(\alpha\) and \(B\) as arbitrary functions of two other arbitrary constants \(A\) and \(B\). Thus, the integration constants associated with each distinct complete integral of the llamilton-Jacobi equation can be functionally related. There is a question as to whether any of these constants are camonical. Also, if the same problem were solved by integrating llamilton's equations by quadratures, then there would be other constants of integration. One would want to know how these \(r\) constants are related to those obtained from the llamilton-Jacobi equation. Also, are they canonical?

Some of these questions are answered in subsequent sections of this report. One paper (sec Appendix) has grown out of this work and has been submitted to the Ameincon doumal if Physics for possible publication.

\section*{DEFINITIONS OF ANGLES}

The angles \(\theta, \phi-\phi^{\prime}, \theta^{\prime}, \phi^{*}, \theta^{*}\), and \(\psi-\psi^{*}\) are defined by their geometry in the spherical triangle (see Figure 1):


Figure 1
\[
\begin{aligned}
& \cos \theta=\frac{\alpha_{2} \alpha_{3}}{h^{2}}-\frac{\sqrt{\left(h^{2}-\alpha_{2}^{2}\right)\left(h^{2}-\alpha_{3}^{2}\right)}}{h^{2}} \cos \frac{h}{A}\left(t-\beta_{1}\right) \\
& \\
& =\cos \theta^{\prime} \cos \theta^{*}-\sin \theta^{\prime} \sin \theta^{*} \cos \phi^{*} \\
& \cos \left(\phi-\phi^{\prime}\right)=\frac{\alpha_{3}-\alpha_{2} \cos \theta}{h^{2}-\alpha_{2}^{2} \sin \theta}=\frac{\cos \theta^{*}-\cos \theta^{\prime} \cos \theta}{\sin \theta^{\prime} \sin \theta}- \\
& \sin \left(\phi-\phi^{\prime}\right)=\frac{\sin \phi^{*} \sin \theta^{*}}{\sin \theta} \\
& \cos \theta^{\prime} \quad=\frac{\alpha_{2}}{h} \\
& \sin \theta^{\prime} \quad=\frac{\sqrt{h^{2}-\alpha_{2}{ }^{2}}}{h}
\end{aligned}
\]
\[
\begin{aligned}
\cos \phi^{*} & =\frac{\alpha_{2} \alpha_{3}-h^{2} \cos \theta}{\sqrt{\left(h^{2}-\alpha_{2}^{2}\right)\left(h^{2}-\alpha_{3}{ }^{2}\right)}}=\cos \frac{h}{A}\left(t-B_{1}\right) \\
\cos \theta^{*} & =\frac{\alpha_{3}}{h} \\
\sin \theta^{*} & =\frac{\frac{h^{2}-\alpha_{3}^{2}}{h}}{\cos \left(\psi-\psi^{*}\right)}=\frac{\frac{\alpha_{2}-\alpha_{3} \cos \theta}{\sqrt{h^{2}-\alpha_{3}^{2} \sin \theta}}=\frac{\cos \theta^{\prime}-\cos \theta^{*} \cos \theta}{\sin \theta^{*} \sin \theta}}{\sin \left(\psi-\psi^{*}\right)}=\frac{\sin \phi^{*} \sin \theta}{\sin \theta}
\end{aligned}
\]

The angles \(\theta_{H}, \phi H\), and \(\psi_{H}\) are defined by their geometry.

\(\cos \theta_{\mathrm{H}}=\cos \mathrm{i} \cos \theta^{*}+\sin i \sin \theta^{*} \cos \left(\psi^{*}-\Omega\right)\)
\(\cot \left(\phi^{*}-\phi H\right)=\frac{\cos i \sin \theta^{*}-\sin i \cos \theta^{*} \cos \left(\psi^{*}-\Omega\right)}{\sin i \sin \left(\psi^{*}-\Omega\right)}\)
\(\cot \psi_{\mathrm{H}}=\frac{\cos i \sin \theta^{*} \cos \left(\psi^{*}-\Omega\right)-\sin i \cos \theta^{*}}{\sin \theta^{*} \sin \left(\psi^{*}-\Omega\right)}\)

Functional Relations
\[
\begin{aligned}
& h=h\left(\alpha_{1}, \alpha_{2}\right) \\
& \psi=\psi\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{3}, \theta\right)=\psi\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{3}, t\right) \\
& \psi^{*}=\psi^{*}\left(\beta_{3}\right) \\
& \psi_{H}=\psi_{H}\left(\psi^{*}, \theta^{*} ; i, \Omega\right)=\psi_{H}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{3} ; i, \Omega\right) \\
& \theta=\theta^{\prime}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, t\right) \\
& \theta^{\prime}=\theta^{\prime}\left(\alpha_{1}, \alpha_{2}\right) \\
& \theta^{*}=\theta^{*}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \\
& \theta_{H}=\theta_{H}\left(\psi^{*}, \theta^{*} ; i, \Omega\right)=\theta_{H}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{3} ; i, \Omega\right) \\
& \phi^{\prime}=\phi^{\prime}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{2}, \theta\right)=\phi^{\prime}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, t\right) \\
& \phi^{\prime}=\phi^{\prime}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{2}, \theta\right)=\phi^{\prime}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, t\right) \\
& \phi^{*}=\phi^{*}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \theta\right)=\phi^{*}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, t\right) \\
& \phi_{H}=\phi_{H}\left(\psi^{*}, \theta^{*}, \phi^{*} ; i, \Omega\right)=\phi_{H}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{3}, t ; i, \Omega\right)
\end{aligned}
\]

\section*{Canonical Transformations}

The motion of the body is such that \(\theta\) oscillates between \(\theta_{0}\) and \(\theta_{1}\), where \(\theta_{0} \equiv \theta^{\prime}+\theta^{*}\) and \(\theta_{1} \equiv\left|\theta^{\prime}-\theta^{*}\right|\). Let \(t_{0}\) denote an instant at which \(\theta=\theta_{0}\). Let \(\theta_{01}\) refer to \(\theta\) at the instant \(t_{0}, \theta_{11}\) refer to \(\theta\) at the first instant after \(t_{0}\) that \(\theta=\theta_{1}, \theta_{02}\) refer to \(\theta\) at the first instant after \(\theta_{11}\) that \(\theta=\theta_{0}, \theta_{12}\) refer to \(\theta\) at the first instant after \(\theta_{02}\) that \(\theta=\theta_{1}\), and so forth.

A generator, \(S\), of a canonical transformation is given by
\[
S=-\alpha_{1} t+\alpha_{2} \phi+\alpha_{3} \psi-\int_{\theta_{01}}^{\theta} \mathrm{Q}(\theta) \mathrm{d} \theta,
\]
where
\[
Q(\theta) \equiv\left\{\begin{aligned}
\sqrt{f(\theta)}, & \theta_{0 n} \rightarrow \theta \rightarrow \theta_{1 n}, \\
-\sqrt{f(\theta)}, & \theta_{1 n} \rightarrow \theta \rightarrow \theta_{0(n+1)},
\end{aligned}\right.
\]
and
\[
f(\theta) \equiv 2 A \alpha_{1}-\frac{A}{C} \alpha_{0}^{2}-\csc ^{2} \theta\left(\alpha_{3}-\alpha_{2} \cos \theta\right)^{2}
\]

The symbol \(\theta_{\text {on }} \rightarrow \theta \rightarrow \theta_{\text {in }}\) means that \(\theta\) has passed through \(\theta_{0 \mathrm{n}}\) and is going toward \(\theta_{1 n}\).

In terms of the variables \(\phi^{\prime}, \phi^{*}\), and \(\psi^{*}\),
\[
\begin{aligned}
S^{\prime} & =-\alpha_{1} t+\alpha_{2} \phi^{\prime}+\alpha_{3} \psi^{*}+h \phi^{*} \\
Q(\theta) & =h \sin \theta^{*} \sin \left(\psi-\psi^{*}\right)
\end{aligned}
\]

When \(\theta=\theta_{0}\), it can be shown that \(\phi^{*}, \phi-\phi^{\prime}\), and \(\psi-\psi^{*}\) must be multiples of \(2 \pi\). To avoid anbiguity, \(\phi^{*}=\phi-\phi^{\prime}=\psi-\psi^{*}=0\) is defined when \(\theta=\theta_{01}\).
\[
\begin{aligned}
& p_{\psi}=\alpha_{3} \\
& p_{\phi}=\alpha_{2} \\
& p_{\theta}=-Q(\theta)=-h \sin \theta^{*} \sin \left(\psi-\psi^{*}\right) \\
& \beta_{1}=t-\frac{A}{h} \phi^{*} \\
& \beta_{2}=-\phi^{\prime}-\frac{\alpha_{2}}{h}\left(\frac{C-A}{C}\right) \phi^{*} \\
& \beta_{3}=-\psi^{*} \\
& \phi^{*}=\frac{h}{A}\left(t-\beta_{1}\right) \\
& \phi^{\prime}=-\beta_{2}-\frac{\alpha_{2}}{A}\left(\frac{C-A}{C}\right)\left(t-\beta_{1}\right) \\
& \psi^{*}=-\beta_{3}
\end{aligned}
\]

Alternatively,
\[
\begin{aligned}
\beta_{1} & =t+A \int_{\theta_{01}}^{\theta} \frac{d \theta}{Q(\theta)} \\
& =t-\left.\frac{h}{h} \cos ^{-1} \frac{\alpha_{2} \alpha_{3}-h^{2} \cos \theta}{\sqrt{\left(h^{2}-\alpha_{2}{ }^{2}\right)\left(h^{2}-\alpha_{3}^{2}\right)}}\right|_{\theta_{01}} ^{\theta} \\
& =t-\frac{A}{h} \cos ^{-1} \frac{\alpha_{2} \alpha_{3}-h^{2} \cos \theta}{\sqrt{\left(h-\alpha_{2}^{2}\right)\left(h-\alpha_{3}^{2}\right)}} \\
\beta_{2} & =-\phi+\int_{\theta_{01}}^{\theta}\left\{\frac{\left(\alpha_{3}-\alpha_{2} \cos \theta\right) \cos \theta}{\sin ^{2} \theta}-\frac{A \alpha_{2}}{C}\right\} \frac{d \theta}{Q(\theta)}=
\end{aligned}
\]
\[
\begin{aligned}
= & -\phi+\left.\cos ^{-1} \frac{\alpha_{3}-\alpha_{2} \cos \theta}{\sqrt{2}^{2}-\alpha_{3}^{2} \sin \theta}\right|_{\theta_{01}} ^{\theta} \\
& -\left.\frac{\alpha_{2}}{h}\left(\frac{C-A}{C}\right) \cos ^{-1} \frac{\alpha_{2} \alpha_{3}-h^{2} \cos \theta}{\sqrt{\left(h^{2}-\alpha_{2}^{2}\right)\left(h^{2}-\alpha_{3}{ }^{2}\right)}}\right|_{\theta_{01}} ^{\theta} \\
= & -\phi+\cos ^{-} \frac{\alpha_{3}-\alpha_{2} \cos \theta}{\sqrt{h}^{2}-\alpha_{2}^{2} \sin \theta} \\
& -\frac{\alpha_{2}}{h}\left(\frac{C-A}{C}\right) \cos ^{-1} \frac{\alpha_{2} \alpha_{3}-h^{2} \cos \theta}{\sqrt{\left(h^{2}-\alpha_{2}^{2}\right)\left(h^{2}-\alpha_{3}^{2}\right)}} \\
\beta_{3}= & -\psi-\int_{\theta_{01}}^{\theta}\left(\frac{\alpha_{3}-\alpha_{2} \cos \theta}{\sin ^{2} \theta}\right) \frac{\operatorname{di\theta }}{Q^{(\theta)}} \\
= & -\psi+\left.\cos ^{-1} \frac{\alpha_{2}-\alpha_{3} \cos \theta}{\sqrt{\left(h^{2}-\alpha_{3}^{2}\right)} \sin \theta}\right|_{\theta_{01}} ^{\theta} \\
= & -\psi+\cos ^{-1} \frac{\alpha_{2}-\alpha_{3} \cos \theta}{\sqrt{\left(h^{2}-\alpha_{3}^{2}\right) \sin \theta}}
\end{aligned}
\]

The multi-valued \(\cos ^{-1}\) functions appearing above are to be interpreted as follows:
\[
\cos ^{-1} g(\theta) \equiv\left\{\begin{array}{cl}
2(n-1) \pi+\operatorname{Cos}^{-1} g(\theta), & \theta_{0 n} \rightarrow \theta \rightarrow \theta_{1 n} \\
2 n \pi-\operatorname{Cos}^{-1} g(\theta), & \theta_{1 n} \rightarrow \theta \rightarrow \theta_{0(n+1)}
\end{array}\right.
\]
where \(\operatorname{Cos}^{-1}\) denotes the principal value (that is, the value between 0 and \(\pi\) ) of the \(\cos ^{-1}\) function.


Miscellaneous
\[
\begin{aligned}
& h^{2}=2 A \alpha_{1}+\left(\frac{C-A}{C}\right) \alpha_{2}{ }^{2} \\
& \cos \theta=\frac{\alpha_{2} \alpha_{3}-\sqrt{\left(h^{2}-\alpha_{2}{ }^{2}\right)\left(h^{2}-\alpha_{3}{ }^{2}\right)} \cos \frac{h}{A}\left(t-\beta_{1}\right)}{h^{2}} \\
& =\cos \theta^{\prime} \cos \theta^{*}-\sin \theta^{\prime} \sin e^{*} \cos \phi^{*} \\
& \phi=-\beta_{2}+\cos ^{-1} \frac{\alpha_{3}-\alpha_{2} \cos \theta}{\sin \theta \sqrt{h^{2}-\alpha_{2}^{2}}} \\
& -\frac{\alpha_{2}}{h}\left(\frac{C-A}{C}\right) \cos ^{-1} \frac{\alpha_{2} \alpha_{3}-h^{2} \cos \theta}{\sqrt{\left(h^{2}-\alpha_{2}^{2}\right)\left(h^{2}-\alpha_{3}{ }^{2}\right)}} \\
& \psi=-\beta_{3}+\cos ^{-1} \frac{\alpha_{2}-\alpha_{3} \cos \theta}{\sin \theta{\sqrt{n^{2}}-\alpha_{3}}^{2}}
\end{aligned}
\]

\section*{A NOTE ON DISTINCT COMPLETE INTEGRALS*}

Problem: Show that the differential equation
\[
4 X Z Q^{2}+P=0, \quad P=\partial Z / \partial X, \quad Q=\partial Z / \partial Y
\]
possesses the distinct complete integrals
\[
z^{2}=\alpha Y-\alpha^{2} X^{2}+\beta
\]
and
\[
Z^{2}\left(4 X^{2}+a\right)=(Y+b)^{2}
\]

Find a functional relation between \(\alpha, \beta\), \(a\), and \(b\); hence, find the second solution as a particular case of the general integral obtained from the first.

Solution: First, transform to new variables according to the scheme
\[
\begin{array}{lll}
X \rightarrow x_{1}, & Y \rightarrow x_{2}, & Z \rightarrow x_{3} \\
P=-\frac{p_{1}}{p_{3}}, & Q=-\frac{p_{2}}{p_{3}}, & p_{3}=\frac{\partial u}{\partial x_{3}}
\end{array}
\]

See Frederic H. Miller, Partial Differential Equations (New York: John Wiley \& Sons, 1949), Chapter V, for details on transformation. The differential equation
\[
\begin{equation*}
F(X, Z, Q, P)=4 X Z Q^{2}+P=0 \tag{1}
\end{equation*}
\]
now becomes
\[
\begin{equation*}
F\left(x_{1}, x_{3}, p_{1}, p_{2}, p_{3}\right)=4 x_{1} x_{3} p_{2}^{2}-p_{1} F_{3}=0 \tag{1'}
\end{equation*}
\]

Jacobi's method will be used to solve Eq (1'). First, write
\[
\begin{equation*}
\frac{d p_{1}}{\frac{\partial F}{\partial x_{1}}}=\frac{d p_{2}}{\frac{\partial F}{\partial x_{2}}}=\frac{d p_{3}}{\frac{\partial F}{\partial x_{3}}}=-\frac{d x_{1}}{\frac{\partial F}{\partial p_{1}}}=-\frac{d x_{2}}{\frac{\partial F}{\partial p_{2}}}=-\frac{d x_{3}}{\frac{\partial F}{\partial p_{3}}} \tag{2}
\end{equation*}
\]

Explicitly,
\[
\begin{align*}
\frac{d p_{1}}{4 x_{3} p_{2}^{2}} & =\frac{d p_{2}}{0}=\frac{d p_{3}}{4 x_{1} p_{2}^{2}}=\frac{d x_{1}}{\cdots} \\
& =-\frac{d x_{2}}{8 x_{1} x_{3} p_{2}}=\frac{d x_{3}}{p_{1}}
\end{align*}
\]

Using the second ratio,
\[
\begin{equation*}
F_{1}=p_{2}=a_{1}=\text { constant } \tag{3}
\end{equation*}
\]

Using the first and sixth ratios,
\[
p_{1} d \dot{p}_{1}=4 a_{1}^{2} x_{3} d x_{3}
\]
and
\[
\begin{equation*}
F_{2}=p_{1}^{2}-4 a_{1}^{2} x_{3}^{2}=a_{2}=\text { constant } \tag{4}
\end{equation*}
\]

Using the third and fourth ratios,
\[
p_{3} d p_{3}=4 a_{1}^{2} x_{1} d x_{1}
\]
and
\[
\begin{equation*}
F_{2}^{*}=p_{3}^{2}-4 a_{1}^{2} x_{1}^{2}=a_{2}^{*}=\text { cons } 1 t \tag{5}
\end{equation*}
\]
\(\left(F_{1}, F_{2}\right)=0\); also, \(\left(F_{1}, F_{2}^{*}\right)=0\), as is readily verified. Using \(\mathrm{F}_{1}=\mathrm{p}_{2}=\mathrm{a}_{1}\), and \(\mathrm{F}_{2}=\mathrm{p}_{1}^{2}-4 \mathrm{a}_{1}^{2} \mathrm{x}_{3}^{2}=\mathrm{a}_{2}\), take
\[
p_{1}=\sqrt{a_{2}+4 a_{1}^{2} x_{3}^{2}}
\]

Substitute into Eq (1') and solve for \(p_{3}\)
\[
\begin{aligned}
4 x_{1} x_{3} a_{1}^{2}-\sqrt{a_{2}+4 a_{1} x_{3}^{2}} p_{3} & =0 \\
p_{3} & =\frac{4 x_{1} x_{3} a_{1}^{2}}{\sqrt{a_{2}}+\frac{x_{1}}{4 a_{1}^{2} x_{3}^{2}}}
\end{aligned}
\]

Use \(F_{1}\) and \(F_{2}\) in conjunction with \(F\) to obtain a complete integral. One has ( \(F_{1}, F_{2}\) ) \(=0\)
\[
\begin{aligned}
& d u=p_{1} d x_{1}+p_{2} d x_{3}+p_{3} d x_{3} \\
& \frac{\partial u}{\partial x_{1}}=p_{1} \\
& \frac{\partial u}{\partial x_{2}}=p_{2} \\
& \frac{\partial u}{\partial x_{3}}=p_{3} \\
& \frac{\partial u_{1}}{\partial x_{2}}=a_{1} \rightarrow u=a_{1} x_{2}+f\left(x_{1}, x_{3}\right) \\
& \frac{\partial u}{\partial x_{1}}=\frac{\partial f}{\partial x_{1}}=p_{1} \rightarrow f=p_{1} x_{1}+g\left(x_{3}\right) \\
& \frac{\partial u}{\partial x_{3}}=\frac{\partial f}{\partial x_{3}}=x_{1} \frac{\partial p_{1} \cdot x_{3}}{\partial x_{3}\left(x_{3}\right)} \\
& \\
& =p_{3}+g^{\prime}\left(x_{3}\right)=p_{3} \cdot x_{1} \frac{\partial r_{1}}{\partial x_{3}}
\end{aligned}
\]

But,
\[
\begin{aligned}
p_{3}-x_{1} \frac{p_{1}}{\partial x_{3}} & =p_{3}-x_{1}\left(\frac{1}{2}\right)\left(a_{2}+4 a_{1}^{2} x_{3}^{2}\right)^{-1 / 2}\left(8 a_{1}{ }^{2} x_{3}\right) \\
& =p_{3}-p_{3}=0+g\left(x_{3}\right)=a_{3}=\text { constant } \\
u & =a_{1} x_{2}+x_{1} p_{1}+a_{3}=0 \\
p_{1} & =\sqrt{a_{2}+4 a_{1}^{2} x_{3}^{2}} \\
x_{1} p_{1} & =-a_{3}-a_{1} x_{2} \\
p_{1}^{2} & =a_{2}+4 a_{1}^{2} x_{3}^{2}=\frac{\left(a_{3}+a_{1} x_{2}\right)^{2}}{x_{1}^{2}} \\
4 a_{1}^{2} z^{2}+a_{2} & =\frac{\left(a_{3}+\frac{\left.a_{1} y\right)^{2}}{x^{2}}=\frac{a_{1}}{x^{2}}-\left(\frac{a_{3}}{a_{1}}+v\right)^{2}\right.}{} \\
4 x^{2} z^{2}+\frac{a_{2}}{a_{1}^{2}} x^{2} & =\left(\frac{a_{3}}{a_{1}}+Y\right)^{2}
\end{aligned}
\]

Set \(A\) equal to \(a_{2} f_{1}{ }^{2}\) and \(B\) equal to \(a_{3} / a_{1}\). Then.
\[
\begin{equation*}
X^{2}\left(4 Z^{2}+A\right)=(Y+B)^{2} \tag{6}
\end{equation*}
\]
and Eq (6) is a complete integral of Eq (1).
If Eq (3) and (5) are used in conjunction with Eq (1'), observing that \(E q\left(1^{\prime}\right)\) is unchanged if \(p_{1} \rightarrow p_{3}\) and \(x_{1}+x_{3}\) are interchanged, one has
\[
\begin{aligned}
u & =a_{1} x_{2}+x_{3} p_{3}+a_{3}{ }^{*}=0 \\
p_{3}{ }^{2} & =\frac{\left(a_{3}+a_{1} x_{2}\right)^{2}}{x_{3}{ }^{2}} \\
x_{3}{ }^{2}\left(4 a_{1}{ }^{2} x_{1}{ }^{2}+a_{2}{ }^{*}\right) & =\left(a_{3}+a_{1} x_{2}\right)^{2}=a_{1}{ }^{2}\left(\frac{a_{3}}{a_{1}}+x_{2}\right)^{2} \\
z^{2}\left(4 X^{2}+\frac{a_{2}{ }^{*}}{a_{1}{ }^{2}}\right) & =\left(\frac{a_{3}}{a_{1}}+Y\right)^{2}
\end{aligned}
\]

Set a equal to \(a_{2} * / a_{1}{ }^{2}\) and \(b\) equal to \(a_{3} / a_{1}\)
\[
\begin{equation*}
z^{2}\left(4 x^{2}+a\right)=(Y+b)^{2} \tag{7}
\end{equation*}
\]
- Eq (7) is a complete integral of FC. (1).

Still another distinct complete integral of liq (1) can be obtained by separating the variables in liq (1'). Since \(4 x_{1} x_{3} p_{2}{ }^{2}-I_{1} p_{3}\) \(=0\) is free of \(x_{2}, p_{2}=\partial u / \partial x_{2}=a_{1}\), a constant, and
\[
\begin{equation*}
4 x_{1} x_{3} a_{1}^{2}-p_{1} p_{3}=0=4 x_{1} x_{3} a_{1}^{2}-\frac{\partial u}{\partial x_{1}} \cdot \frac{\partial u}{\partial x_{3}} \tag{8}
\end{equation*}
\]

Assume a solution of Eq (8) of the form
\[
\begin{align*}
u & =f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right) \\
& =a_{1} x_{2}+f_{1}\left(x_{1}\right)+f_{3}\left(x_{3}\right) \tag{9}
\end{align*}
\]

Substitute Eq (9) into Eq (8) to obtain
\[
\begin{align*}
\frac{4 x_{1} a_{1}{ }^{2}}{d f_{1} / d x_{1}} & =\frac{d}{x_{3}} \frac{d f_{3}}{d x_{3}}=C_{1}  \tag{10}\\
\rightarrow \quad f_{1} & =\frac{2 a_{1}{ }^{2} x_{1}{ }^{2}}{C_{1}}+C_{2} \\
f_{3} & =\frac{C_{1}}{2} x_{3}{ }^{2}+C_{3} \\
u & =\frac{2 a_{1}{ }^{2}}{C_{1}} x_{1}{ }^{2}+\frac{C_{1}}{2} x_{3}{ }^{2}+C_{2}+C_{3}+a_{1} x_{2}=0
\end{align*}
\]
where \(x_{3}=2, x_{1}=X\), and \(x_{2}=Y\).
\[
\begin{aligned}
\frac{C_{1}}{2} z^{2} & =-\left(C_{2}+C_{3}\right)-a_{1} Y-\frac{2 a_{1}{ }^{2}}{C_{1}} x^{2} \\
Z_{1}^{2} & =-\frac{2}{C_{1}}\left(C_{2}+C_{3}\right)-\frac{2 a_{1}}{C_{1}} y-\frac{4 a_{1}{ }^{2}}{C_{1}^{2}} x^{2}
\end{aligned}
\]

Set \(\alpha\) equal to \(-2 a_{1} / C_{1}\) and \(\beta\) equal to \(-2\left(C_{2}+C_{3}\right) / C_{1}\)
\[
\begin{equation*}
7^{2}=\alpha Y-\alpha^{2} X^{2}+\beta \tag{11}
\end{equation*}
\]
and Eq (11) is a complete integral of Eq (1).
Consider the distinct integrals Eqs (7) and (11), and renumben them I and II
\[
\begin{align*}
Z^{2}\left(4 X^{2}+a\right) & =(Y+b)^{2}  \tag{I}\\
Z^{2} & =\alpha Y-\alpha^{2} X^{2}+\beta \tag{II}
\end{align*}
\]
\(\frac{\partial I}{\partial X} ; \quad Z P\left(4 X^{2}+a\right)+4 X Z^{2}=0\)
\(\frac{\partial I I}{\partial Y} ; \quad Z C\left(4 X^{2}+a\right)-(Y+b)=0\)
\(\frac{\partial I I}{\partial X} ; \quad Z P+\alpha^{2} X=0\)
\(\frac{\partial \Pi}{\partial Y} ; \quad 2 Z Q-\alpha=0\)
\(X, Y, Z, P\), and \(Q\) must be eliminated from the six equations above. From Eq (III) and (V), eliminate P:
\[
4 Z^{2}=a^{2}\left(4 X^{2}+a\right)
\]

Use Eq (II):
\[
4 a Y-4 \alpha^{2} x^{2}+4 \beta=\alpha^{2}\left(4 X^{2}+a\right)
\]

Solve for \(Y\) to obtain
\[
\begin{equation*}
y=2 \alpha X^{2}+\frac{a \alpha}{4}-\frac{B}{\alpha} \tag{VII}
\end{equation*}
\]

From Eqs (IV) and (VI), eliminate \(Z Q:\)
\[
Y+b=\frac{\alpha}{2}\left(4 X^{2}+a\right)
\]

Solve for \(Y\) to obtain
\[
\begin{equation*}
Y=2 \alpha X^{2}+\frac{a \alpha}{2}-b \tag{VIII}
\end{equation*}
\]

Equating Eqs (VII) and (VIII), one obtains
\[
\begin{equation*}
\beta=a b-\frac{a a^{2}}{4} \tag{IX}
\end{equation*}
\]

Substitute Eq (IX) into Eq (II) to obtain
\[
\begin{align*}
Z^{2} & =a Y-\alpha^{2} X^{2}+a b-\frac{a a^{2}}{4}  \tag{X}\\
Y-2 \alpha X^{2}+b-\frac{2 a \alpha}{4} & =0 \\
\alpha\left(\frac{a}{2}+2 X^{2}\right) & =b+Y \\
a & =\frac{2(b+Y)}{a+4 X^{2}} \tag{XI}
\end{align*}
\]

Substitutc Eq (XI) into Eq (X):
\[
\begin{aligned}
Z^{2} & =\alpha(b+Y)-a^{2}\left(\frac{a}{4}+X^{2}\right) \\
& =\frac{2(b+Y)^{2}}{a+4 X^{2}}-\frac{4(b+Y)^{2}}{\left(a+4 X^{2}\right)^{2}}-\left(\frac{a+4 X^{2}}{4}\right) \\
& =\frac{(b+Y)^{2}}{a+4 X^{2}} \\
Z^{2}\left(4 X^{2}+a\right) & =(b+Y)^{2}
\end{aligned}
\]
*A Further Note:
\[
\begin{aligned}
& F=z^{2}-\alpha Y+\alpha^{2} x^{2}-\beta=0 \\
& G=z^{2}\left(4 X^{2}+a\right)-(Y+b)^{2}=0
\end{aligned}\left\{\begin{array}{l}
\beta=f(\alpha), \quad \frac{\partial F}{\partial \alpha}=0 \\
+ \text { General Integral }
\end{array}\right\}
\]

F and \(G\) are two distinct complete integrals. Let
\[
\beta_{1}=\alpha B-\frac{A \alpha^{2}}{4}
\]

Note that \(\beta_{1}\) is one possible functional form of \(\beta=f(\alpha)\). For all possible choices \(A\) and \(B\) in \(B_{1}\), only a subset of the elements for the arbitrary choice \(\beta=f(\alpha)\) is obtained. Better said; Let \(H\) be the set of functions of \(\alpha\)
\[
B=B \alpha-\frac{A \alpha^{2}}{4}
\]
for fixed \(A\) and \(B\). His a proper subset of the set \(Q\) of all possible functions \(B=f(\alpha)\). By inserting \(B=B \alpha-A \alpha^{2} / 4\) into \(F\) and forming \(\partial F / \partial \alpha\) for fixed \(A\) and \(B, \alpha\) can be eliminated, and the two-parameter family of surfaces \(G\) can be obtained. Thus, the surfaces \(G\) are part of the totality of envelopes which go to make up the general integral.

\section*{A NOTE ON OBTAINING A COMPLETE INTEGRAL}

OF THE HAMILTON-JACOBI EQUATION

On page 324 of A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge: The University Press, 1937), E. T. Whittaker states-without proof--the following lemma.

Lemma: If dW is the perfect differentiai of some function \(W\left(q_{i}, \alpha_{i}, t\right)\), then the first Pfaff's system of the differential form
\[
d W-\sum_{i=1}^{n} \frac{\partial w}{\partial \alpha_{i}} d \alpha_{i}
\]
is
\[
d\left(\frac{\partial w}{\partial \alpha_{i}}\right)=0, \quad d \alpha_{i}=0 \quad(i=1,2, \ldots, n)
\]

Let \(W\left(q_{i}, \alpha_{i}, t\right)\) be in \(C_{1}\) but otherwise arbiirary, and consider the differential form
\[
\begin{equation*}
\sum_{i=1}^{n} p_{i} d q_{i}-H\left(q_{i}, p_{i}, t\right) d t \tag{1}
\end{equation*}
\]
and the transformation
\[
\begin{equation*}
p_{i}=f_{i}\left(q_{i}, \alpha_{i}, t\right), \quad q_{i}=q_{n} \quad(i=1,2, \ldots, n) \tag{2}
\end{equation*}
\]

The followirig theorem is established.
Theorem 1: If the transformation Eq (2) transforms Eq (1) into the differential form
\[
d W-\sum_{i=1}^{n} \frac{\partial W}{\partial \alpha_{i}} d \alpha_{i}
\]
where
\[
\begin{aligned}
d W & =\sum_{i=1}^{n} f_{i} d q_{i}-H_{1}\left(q_{i}, f_{i}, t\right) d t+\sum_{i=1}^{n} \frac{\partial W}{\partial \alpha_{i}} d \alpha_{i} \\
& =\sum_{i=1}^{n} \frac{\partial W}{\partial q_{i}} d q_{i}+\sum_{i=1}^{n} \frac{\partial W}{\partial \alpha_{i}} d \alpha_{i}+\frac{\partial W}{\partial t} d t
\end{aligned}
\]
is a perfect differential of some function \(W\left(q_{i}, \alpha_{i}, t\right)\) of the variables ( \(q_{i}, \alpha_{i}, t\) ), which contains \(n\) independent constants \(\alpha_{i}\), then \(W\) is a complete integral of the Hamilton-Jacobi equation.

Proof: By equating coefficients, the necessary conditions can be cbtained
\[
\mathbf{f}_{\mathbf{i}}=\frac{\partial W}{\partial q_{i}}
\]
\[
H_{1}\left(q_{i}, f_{i}, t\right)+\frac{\partial W}{\partial t}\left(q_{i}, \alpha_{i}, t\right)=0
\]

Thus,
\[
H_{1}\left(q_{i}, \frac{\partial W}{\partial q_{i}}, t\right)+\frac{\partial W}{\partial t}\left(q_{i}, \alpha_{i}, t\right)=0
\]
which establishes the theorem.
Note: This result agrees with a statement in Pars, p. 450, if it is assumed that a typugraphical error has been made there and that he means equation 16.5-4 rather than 16.5-6. This would be consistent with his earlier reference to 16.5-4 as "the modified partial differential equation."

Example--Central Orbit, Polar Coordinates:
(a) \(H=\frac{1}{2}\left(p_{r}{ }^{2}+\frac{1}{r^{2}} p_{\theta}{ }^{2}\right)+V(r)=h\)
(b) \(p_{\theta}=\alpha=\) constant

Solve (a) for \(p_{r}\). One has*
\[
\begin{array}{ll}
p_{z}^{2}=2 h-2 V-\frac{\alpha^{2}}{r^{2}} & r=r \\
p_{r}= \pm \sqrt{2 h-2 v-\frac{\alpha^{2}}{r^{2}}}= \pm \sqrt{f(r)} & \theta=\theta
\end{array}
\]
where
\[
\begin{aligned}
f(r) & =2 h-2 V-\frac{a^{2}}{r^{2}} . \\
d W & =p_{r} d r+p_{\theta} d \theta-h d t \\
\text { (c) } W & =-h t+\alpha \theta \pm \int_{r_{1}}^{r} \sqrt{f(r)} d r
\end{aligned}
\]

Either \({ }^{ \pm}\)jields a complete integral of the Hamilton-Jacobi equation. The Hamilton-Jacobi equation is:
(d) \(\frac{\partial W}{\partial t}+\frac{1}{2}\left(\frac{\partial W}{\partial r}\right)^{2}+\frac{1}{2 r^{2}}\left(\frac{\partial W}{\partial \partial}\right)^{2}+V=0\)
\[
\frac{\partial W}{\partial \theta}=a
\]
\[
\frac{\partial W}{\partial t}=-h
\]
\[
\frac{\partial W}{\partial r}= \pm \sqrt{f(r)}
\]

Substituting into (d), one finds
\[
\begin{aligned}
-h+\frac{1}{2} f(r)+\frac{1}{2 r^{2}} \alpha^{2}+V= & -h+\frac{1}{2}\left(2 h-2 V-\frac{\alpha^{2}}{r^{2}}\right) \\
& +\frac{1}{2 r^{2}} a^{2}+V=0
\end{aligned}
\]
*A theorem on page 323 of Whittaker's A Treatise on the Analytical Dynamics of Particles and Rigid Bodies assures the reader that the transformation
\[
\begin{array}{ll}
\mathbf{p}_{\theta}=\alpha & \mathbf{r}=\mathbf{r} \\
\mathbf{p}_{\mathbf{r}}= \pm \sqrt{\mathbf{f ( r )}} & \theta=\theta
\end{array}
\]

\section*{trans forms}
\[
\sum_{i=1}^{n} p_{i} d_{i}-H\left(q_{i}, p_{i}, t\right) d t
\]
into the differential form
\[
d W-\sum_{i=1}^{n} \frac{\partial w}{\partial \alpha_{i}} d \alpha_{i}
\]

It is a simple matter to show that the functions
(a) \(\left\{\begin{array}{l}\frac{1}{2} p_{r}^{2}+\frac{1}{r^{2}} p_{\theta}^{2}+V(r) \\ \text { (b) }\left\{\phi_{1}\right. \\ p_{\theta}=a\end{array}=\phi_{2}\right.\)
are in involution; i.e., \(\left[\phi_{1}, \phi_{2}\right]=0\). Poisson brackets are zero, so that the theorem just cited may be applied.

It may be that there are \(n\) distinct integrals (in involution)
\[
\begin{equation*}
\phi_{i}\left(q_{i}, p_{i}, t\right)=\alpha_{i} \quad(i=1,2, \ldots, n) \tag{3}
\end{equation*}
\]
where \(\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\) are arbitrary constants, for the dynamical
system
\[
\left.\begin{array}{ll}
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}\left(q_{i}, p_{i}, t\right) & (i=1,2, \ldots, n) \\
\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}\left(q_{i}, p_{i}, t\right) & (i=1,2, \ldots, n)
\end{array}\right\}
\]

It may be that all of these integrals cannot be solved for ( \(p_{1}\), \(\mathrm{p}_{2}\), . . . , \(\mathrm{P}_{\mathrm{n}}\) ) so that they can be obtained in the form
\[
\begin{equation*}
p_{i}=f_{i}\left(q_{i}, \alpha_{i}, t\right) \tag{5}
\end{equation*}
\]
\[
(i=1,2, \ldots, n)
\]

However, it may be possible to solve \(\ell(\ell \leq n)\) of these integrals for the \(p\) 's and express them in the form of \(E \bar{q}\) (5). Suppose further that the remaining can be solved in integrals ( \(m \leq n, \ell+m=n\) ) for the \(q^{\prime} s\) and express them in terms of \(p_{i}, \alpha_{i}\), and \(t\). Relabel the coordinates, setting \(P_{j},(j=1,2, \ldots, \ell)\), in one-to-one correspondence with the \(\ell\) ''s which have been solved for explicitly, taken in any order, and \(Q_{k}\), \((k=1,2, \ldots, m)\), in one-to-one correspondence with the mq's which have beer solved for explicitly, taken in any order. Thus, the n integrals may be written in the form
\[
\begin{align*}
& P_{j}=F_{j}\left(q_{i}, \alpha_{i}, t\right)  \tag{6}\\
& Q_{k}=H_{k}\left(p_{i}, \alpha_{i}, t\right)
\end{align*}
\]
\[
\left.\begin{array}{l}
(j=1,2, \ldots, \ell) \\
(k=1,2, \ldots, m)
\end{array}\right\}
\]

Suppose now that in Eqs (6) none of the \(P_{j}\) appear in the right-hand sides of the expressions for \(Q_{k}\) and that none of the \(Q_{k}\) appear in the right-hand sides of the expressions for \(P_{j}\).

Introduce the following canonical transformation of coordinates

Equations (6) may now be written in the form
\[
\begin{equation*}
p_{i}^{*}=f_{i}\left(q_{i}^{*}, \alpha_{i}, t\right) \tag{8}
\end{equation*}
\]
\[
(i=1,2, \ldots, n)
\]

Since Eq (8) is in the form of Eq (2), Theorem 1 may be applied, in conjunction with Whittaker's theorem, to obtain a complete integral of the Hamilton-Jacobi equation expressea in the starred coordinates.

A NOTE ON DISTINCT INTEGRALS FOR A PARTICLE
IN A UNIFORM GRAVITY FIELD IN A PLANE
\[
\begin{aligned}
H & =\frac{1}{2}\left(p_{x}^{2}+p_{h}^{2}\right)+g h \\
\dot{x} & =\frac{\partial H_{0}}{\partial p_{x}}=p_{x} \\
\dot{h} & =\frac{\partial H_{0}}{\partial p_{h}}=p_{h} \\
H_{0} & =\frac{1}{2}\left(p_{x}^{2}+p_{h}^{2}\right)
\end{aligned}
\]
\[
\dot{p}_{x}=0 \rightarrow p_{x}=a
\]
\[
\dot{p}_{h}=-\frac{\partial H_{0}}{\partial h}=0 \rightarrow p_{h}=b
\]

Direct integration of canonical equations:


Unperturbed problem (Hamilton-Jacobi Equation):
\[
\frac{\partial S}{\partial t}+\frac{1}{2}\left(\left(\frac{\partial S}{\partial x}\right)^{2}+\left(\frac{\partial S}{\partial F_{1}}\right)^{2}\right)=0
\]

Assume
\[
\begin{aligned}
S & =-\alpha_{1} t+S_{1}(x)+S_{2}(h) \\
\left(\frac{d S_{1}}{d x}\right)^{2}+\left(\frac{d S_{2}}{d h}\right)^{2} & =2 \alpha_{1}
\end{aligned}
\]
\[
\begin{align*}
\left(\frac{d S_{1}}{d x}\right)^{2} & =2 \alpha_{1}-\left(\frac{d S_{2}}{d h}\right)^{2}=\alpha_{2}^{2} \\
S_{1} & =\alpha_{2} x \\
\left(\frac{d S_{2}}{d h}\right)^{2} & =2 \alpha_{1}-\alpha_{2}^{2} \\
S_{2} & =\sqrt{2 \alpha_{1}-\alpha_{2}^{2}} h \\
S & =-\alpha_{1} t+\alpha_{2} x+\sqrt{2 \alpha_{1}-\alpha_{2}^{2}} h  \tag{2}\\
p_{x} & =\frac{\partial S}{\partial x}=\alpha_{2} \\
p_{h} & =\frac{\partial S}{\partial h}=\sqrt{2 \alpha_{1}-\alpha_{2}^{2}} h \\
\beta_{1} & =-\frac{\partial S}{\partial \alpha_{1}}=t-\frac{h}{\sqrt{2 \alpha_{1}-\alpha_{2}^{2}}}  \tag{3}\\
\beta_{2} & =-\frac{\partial S}{\partial \alpha_{2}}=\frac{h \alpha_{2}}{\sqrt{2 \alpha_{1}-\alpha_{2}^{2}}}-x
\end{align*}
\]

A comparison of solution (3) with Eq (1) yields
\[
\begin{array}{ll}
\alpha_{2}=a, & \beta_{1}=t-\frac{h}{b}=-\frac{d}{b} \\
a_{1}=\frac{a^{2}+b^{2}}{2}, & \beta_{2}=-c+\frac{a d}{b}
\end{array}
\]

Substitute into Eq (2) to get
\[
\left.\begin{array}{l}
S^{*}=-\frac{\left(a^{2}+b^{2}\right)}{2} t+a x+b h \\
p_{x}=\frac{\partial S^{*}}{\partial x}=a, \quad \beta_{1}^{*}=-\frac{\partial S^{*}}{\partial a}=a t-x  \tag{6}\\
p_{h}=\frac{\partial S^{*}}{\partial h}=b, \quad B_{2}^{*}=-\frac{\partial S^{*}}{\partial b}=b t-h
\end{array}\right\}
\]

It appears that \(\beta_{1}{ }^{*}=-c\) and \(\beta_{2}{ }^{*}=-d\).

\section*{Perturbation:}
\[
\left.\begin{array}{ll}
\dot{\alpha}_{1}=\frac{\partial H_{1}}{\partial \beta_{1}}, & \dot{\beta}_{1}=-\frac{\partial H_{1}}{\partial \alpha_{1}} \\
\dot{\alpha}_{2}=\frac{\partial H_{1}}{\partial \beta_{2}}, & \dot{\beta}_{2}=-\frac{\partial H_{1}}{\partial \alpha_{2}} \tag{7}
\end{array}\right\}
\]
where, since \(h=\sqrt{2 \alpha_{1}-\alpha_{2}^{2}}\left(t-\beta_{1}\right), H_{1}=H_{1}\left(\alpha_{1}, \alpha_{2}, \beta_{1}, t\right)\).
\[
\begin{array}{ll}
\dot{\mathrm{a}}=\frac{\partial \mathrm{H}_{1}}{\partial \beta_{1}{ }^{*}}, & \dot{\beta}_{1}^{*}=-\frac{\partial \mathrm{H}_{1}}{\partial a} \\
\dot{\mathrm{~b}}=\frac{\partial \mathrm{H}_{1}}{\partial \beta_{2}^{*}}, & \dot{\beta}_{2}^{*}=-\frac{\partial \mathrm{H}_{1}}{\partial \mathrm{~b}}
\end{array}
\]
where, since \(h=b t-\beta_{2}{ }^{*}, H_{1}=H_{1}\left(b, \beta_{2}{ }^{*}, t\right)\).

\section*{Variation of Parameters:}

Assume
\[
\begin{array}{ll}
x=a t+c, & p_{x}=a \\
h=b t+d, & p_{h}=b
\end{array}
\]
is a transformation of variables from the canonical set of equations
\[
\begin{array}{ll}
\dot{x}=\frac{\partial H}{\partial p_{x}}, & \dot{p}_{x}=-\frac{\partial H}{\partial x} \\
\dot{h}=\frac{\partial H}{\partial p_{h}}, & \dot{p}_{h_{1}}=-\frac{\partial H}{\partial h}
\end{array}
\]
to new coordinates \(a, b, c\), and \(d\). Thus,
\[
\left.\left.\begin{array}{l}
\dot{x}=a+\dot{a} t+\dot{c} \\
\dot{h}=b+\dot{b} t+\dot{d} \\
\dot{p}_{x}=\dot{a} \\
\dot{n}_{h}=\dot{b}
\end{array}\right\} \begin{array}{l}
(1) \dot{c}+\dot{a} t=0  \tag{4}\\
(3) \dot{d}+\dot{b} t=0 \\
(4) \quad \dot{a}=0 \\
a=a_{1} \\
b=-g t+b_{1} \\
b=g
\end{array}\right\} \begin{aligned}
& d=\frac{g t^{2}}{2}+d_{1}
\end{aligned}
\]
\[
\begin{aligned}
& x=a_{1} t+c_{1} \\
& h=-\frac{g t^{2}}{2}+v_{1} t+d_{1}
\end{aligned}
\]

Return to Eq (8) \(\quad H_{1}=g\left(b 1-B_{2}^{*}\right)\)
\[
\begin{array}{ll}
\dot{a}=\frac{H_{1}}{\partial \beta_{1}^{*}}=0, & \dot{\beta}_{1}^{*}=-\frac{\partial H_{1}}{\partial a}=0 \\
\dot{b}=\frac{o r I_{1}}{\partial \beta_{2}^{*}}=-g, & \dot{\beta}_{2}^{*}=-\frac{\partial H_{1}}{\partial b}=-g t \\
\dot{A}=a^{*}, & \beta_{1}^{*}=\beta_{1}^{* \prime} \\
b=-g t+b^{*}, & \beta_{2}^{*}=-\frac{g t^{2}}{2}+\beta_{2}^{* \prime} \\
x=a^{\prime} t-\beta_{1}^{* \prime} &
\end{array}
\]

Return to Eq (7) \(\quad H_{1}=g \dot{2} 2 \alpha_{1}-\alpha_{?}\left(t-\beta_{1}\right)\)
\[
\begin{aligned}
& \dot{\alpha}_{1}=\frac{\partial H_{1}}{\partial \dot{\beta}_{1}}=-g \sqrt{2 \alpha_{1}-\alpha_{2}{ }^{2}}, \dot{\beta}_{1}=-\frac{\partial H_{1}}{\partial \alpha_{1}}=\frac{g\left(t-\beta_{1}\right)}{\sqrt{2 \alpha_{1}-\alpha_{2}}} \\
& \dot{\alpha}_{2}=0, \quad \dot{\beta}_{2}=-\frac{\partial H_{1}}{\partial \alpha_{2}}=\frac{g \alpha_{2}\left(t-\beta_{2}\right)}{\sqrt{2 \alpha_{1}-\alpha_{2}}}
\end{aligned}
\]

Conclusion: The constants which appear in the solution \(\varepsilon_{i}\) Hamilton's equations obtained by quadratures are not in general canonical even though in some problems it appears so.
hamilton function for triaxial body (no forces)

\section*{Let}
\[
\begin{aligned}
& f(\phi) \equiv\left(\frac{\sin ^{2} \phi}{2 A}+\frac{\cos ^{2} \phi}{2 B}\right) \\
& g(\phi) \equiv\left(\frac{1}{A}-\begin{array}{c}
j \\
H
\end{array}\right) \text { in } \phi \cos \phi \\
& 4-\frac{\operatorname{in}^{-}-\theta}{-\quad \psi^{2}}+\left(\frac{\cos ^{2} \dot{\phi}}{2 A}+\frac{\sin ^{2} \phi}{2 B}\right) P_{\theta}{ }^{2} \\
& +\frac{f}{\sin ^{2} \theta} \cos ^{2} \theta p_{\phi}^{2}+\frac{1}{2 C} p_{\phi}{ }^{2} \\
& +\frac{g}{\sin \theta} p_{\psi} p_{\theta}-\frac{g}{\sin \theta} p_{\theta} p_{\phi} \cos \theta \\
& -\frac{f}{\sin ^{2} \theta} 2 p_{\psi} p_{\phi} \cos \theta \\
& H=\frac{f}{\sin ^{2} \theta}\left[p_{\psi}-p_{\phi} \cos \theta\right]^{2}+\frac{1}{2 C} F_{\phi}^{2} \\
& +\frac{g}{\sin \theta} p_{\theta}\left(v_{\psi}-p_{\phi} \cos \theta\right) \\
& +\left(\frac{\cos ^{2} \phi}{2 A}+\frac{\sin ^{2} \phi}{2 B}\right) p_{\theta}^{2}
\end{aligned}
\]

Ii \(h=B, f(\phi)=1 / 2 A\) and \(g(\phi)=0\). and one has
\[
H=\frac{1}{2 A \sin ^{2} \theta}\left(p_{\psi}-p_{\phi} \cos \theta\right)^{2}+\frac{1}{2 C} p_{\phi}^{2}+\frac{1}{2 A} p_{\theta}^{2}
\]

Let
\[
q(\phi)=\frac{\cos ^{2} \phi}{2 i}+\frac{\sin ^{2} \phi}{2 B}
\]
and rewrite the general form of 14 . Note that \(q(\phi)=A+B / 2 A B-f(\phi)\).
\[
\begin{aligned}
H=\frac{f(\phi)}{\sin ^{2} \theta}\left[p_{\psi}\right. & \left.-p_{\phi} \cos \theta\right]^{2}+\frac{1}{2 C} p_{\phi}^{2} \\
& +\frac{g(\phi)}{\sin \theta} p_{\theta}\left(p_{\psi}-p_{\phi} \cos \theta\right)+q(\phi) p_{\theta}{ }^{2}
\end{aligned}
\]

The Hamilton-Jacobi equation may be written: \(\partial S / \partial t+H=0\), where \(\mathrm{H}=\mathrm{a}_{1}\), a constant.
\[
\begin{aligned}
& \frac{\partial S}{\partial t}=-\alpha_{1} \\
& \alpha_{2}=\frac{f}{\sin ^{2} \theta} z^{2}+\frac{1}{2 C}\left(\frac{\partial S}{\partial \phi}\right)^{2}+\frac{g}{\sin \theta} \frac{\partial S}{\partial \theta} z+q\left(\frac{\partial S}{\partial \theta}\right)^{2}
\end{aligned}
\]
where
\[
z=p_{\psi}-p_{\phi} \cos \theta=\frac{\partial S}{\partial \psi}-\frac{\partial S}{\partial \phi} \cos \theta
\]

Assume
\[
S=S_{1}(t)+S_{2}(\phi)+S_{3}(\psi)+S_{4}(\theta)
\]

Then
\[
\frac{\partial S}{\partial t}=\frac{d S_{1}}{d t}=-\alpha_{1}
\]
and
\[
s_{1}=-\alpha_{1} t
\]
\[
\alpha_{1}=\frac{f}{\sin ^{2} \theta} z^{2}+\frac{1}{2 \mathrm{C}}\left(\frac{\mathrm{dS}_{2}}{\mathrm{~d} \mathrm{\phi}}\right)^{2}+\frac{g}{\sin \theta}\left(\frac{\mathrm{dS}_{4}}{d \theta}\right) z+q\left(\frac{d S_{4}}{\mathrm{~d} \mathrm{\theta}}\right)^{2}
\]
where

Using the quadratic formula, one may write:
\[
z^{2}+\frac{\sin ^{2} \theta}{2 C f}\left(\frac{d S_{2}}{d \phi}\right)^{2}+\frac{\sin }{f} \frac{\theta}{f}\left(\frac{d S_{4}}{d \theta}\right) z+\frac{q \sin ^{2} \theta}{f}\left(\frac{d S_{4}}{d \theta}\right)^{2}=\frac{\sin ^{2} \theta a_{1}}{f}
\]
\[
\begin{aligned}
& z^{2}+\frac{g}{f} \sin \theta\left(\frac{d S_{L_{4}}}{d \theta}\right) z+\frac{\sin ^{2} \theta}{f}\left[\frac{1}{2 C}\left(\frac{d S_{2}}{d \varphi}\right)^{2}+q\left(\frac{d S_{4}}{d \theta}\right)^{2}-\alpha_{1}\right]=0 \\
& z=-\frac{g}{2 f} \sin \theta\left(\frac{d S_{4}}{\dot{d} \theta}\right) \pm \frac{1}{2}\left(\frac{\mathrm{~g}^{2}}{\mathrm{f}^{2}} \sin ^{2} \theta\left(\frac{\mathrm{dS} S_{4}}{\mathrm{~d} \theta}\right)^{2}\right. \\
& \left.-\frac{4 \sin ^{2} \theta}{f}\left[\frac{1}{2 \mathrm{C}}\left(\frac{d \mathrm{~S}_{2}}{\mathrm{~d} \phi}\right)^{2}+q\left(\frac{d \mathrm{~S}_{4}}{\mathrm{~d} \theta}\right)^{2}-\alpha_{1}\right]\right)^{1 / 2} \\
& \frac{d S_{\hat{3}}}{d \psi}=\frac{d S_{2}}{d \phi} \cos \theta+\frac{\sin \theta}{2}\left[-\frac{g}{f}\left(\frac{d S_{L_{4}}}{d \theta}\right)\right. \\
& \left.+\sqrt{\left.\frac{\dot{f}^{2}(\sqrt{d \theta})_{t}}{}\right)^{2}+\frac{4}{f}\left[\alpha_{1}-\frac{1}{2 C}\left(\frac{d S_{2}}{d \phi}\right)^{2}+q\left(\frac{d S_{4}}{d \theta}\right)^{2}\right]}\right] \\
& =\alpha_{3} \\
& S_{3}=\alpha_{3} \psi \\
& \frac{g^{2}}{f^{2}}\left(\frac{d S_{4}}{d \theta}\right)^{2}-\frac{4 q}{f}\left(\frac{d S_{4}}{d \theta}\right)^{2}=\left(\frac{d S_{4}}{d \theta}\right)^{2} \frac{1}{f^{2}}\left(g^{2}-4 q f\right) \\
& \alpha_{3}=\frac{d S_{3}}{d \psi}=\frac{d S_{2}}{d \phi} \cos \theta+\frac{\sin \theta}{2}\left[-\frac{g}{f}\left(\frac{d S_{4}}{d \theta}\right)\right. \\
& \left.+\sqrt{\left(\frac{g^{2}-4 q f}{f^{2}}\right)\left(\frac{d S_{\varphi_{6}}}{d \theta}\right)^{2}+\frac{4 a_{1}}{f}-\frac{4}{2 C f}\left(\frac{d S_{2}}{d \phi}\right)}\right] \\
& g_{2}^{2}=\left(\frac{1}{A^{2}}-\frac{2}{A B}+\frac{1}{B^{2}}\right) \sin ^{2}+\cos ^{2} 4 \\
& 4 q f=4\left(\frac{\cos ^{2} \phi}{2 A}+\frac{\sin ^{2} \phi}{2 B}\right)\left(\frac{\sin ^{2} \phi}{2 A}+\frac{\cos ^{2} \phi}{2 B}\right) \\
& =\frac{\sin ^{2} \phi \cos ^{2} \phi}{A^{2}}+\frac{\sin ^{2} \phi \cos ^{2} \phi}{B^{2}}+\frac{\sin ^{4} \phi+\cos ^{4} \phi}{A B}
\end{aligned}
\]
\[
\begin{aligned}
g^{2}-4 q f= & -\frac{\left(\sin ^{4} \psi+2 \sin ^{2}+\cos ^{2} \hat{\gamma}+\cos ^{4} \frac{d}{}\right)}{A B} \\
= & -\left(\frac{\sin ^{2} \phi+\operatorname{ccs}^{2} \phi}{A B}\right)^{2}=-\frac{1}{A B} \\
\alpha_{3}= & \frac{d S_{2}}{d \phi} \cos \theta+\frac{\sin \theta}{2}\left[-\frac{g\left(\frac{d S_{1}}{d \theta}\right)}{d \theta}\right. \\
& \left.+\sqrt{\frac{4 \alpha_{1}}{f}-\frac{1}{A B f^{2}}\left(\frac{d S_{4}}{d \theta}\right)^{2}-\frac{2}{C f}\left(\frac{d S_{2}}{d \phi}\right)^{2}}\right]
\end{aligned}
\]

There does not appear to be any way to separate the right-hand side of the preceding ag equation.
\[
2 \csc \theta\left(\alpha_{3}-p_{\phi} \cos \theta\right)=-\frac{g}{f} p_{\theta}+\sqrt{\frac{4 \alpha_{1}}{f}-\frac{1}{A B f^{2}} p_{\theta}^{2}-\frac{2}{C f} p_{\phi}^{2}}
\]

The explicit dependence on \(\theta\) can be eliminated by using the relationship
\[
p_{\theta}^{2}=h^{2}-p_{\phi}^{2}-\csc ^{2} \theta\left(\alpha_{3}-p_{\phi} \cos \theta\right)^{2}
\]
which is valid for the ti asl problem with no forces if \(h\) is constant.
\[
\begin{aligned}
a \csc ^{2} \theta\left(\alpha_{3}-p_{\phi} \cos \theta\right)^{2}= & \frac{4 \alpha_{1}}{f}-\frac{1}{A B f^{2}} p_{\theta}^{2}-\frac{2}{C f} p_{\phi}^{2}+\frac{g^{2}}{f^{2}} p_{\theta}^{2} \\
& -\frac{2 g}{f} p_{\theta} \sqrt{\frac{4 \alpha_{1}}{f} \cdot \frac{1}{A B f^{2}} p_{\theta}^{2}-\frac{2}{C f} p_{\phi}^{2}} \\
4\left(h^{2}-p_{\phi}^{2}-p_{\theta}^{2}\right)= & \frac{4 \alpha_{1}}{f}+\frac{1}{f^{2}}\left(g^{2}-\frac{1}{A B}\right) p_{\theta}^{2} \cdot \frac{2}{C f} p_{\phi}^{2} \\
& -\frac{2 g}{f} p_{\theta} \sqrt{\frac{4 \alpha_{1}}{f}-\frac{1}{A B f^{2}} p_{\theta}^{2}-\frac{2}{C f} p_{\phi}^{2}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{2}{\mathrm{Cf}} \mathrm{p}_{\phi}{ }^{2}+4\left(\mathrm{~h}^{2}-\mathrm{p}_{\phi}{ }^{2}-\frac{\alpha_{1}}{\mathrm{f}}\right)=\left[4+\frac{1}{\mathrm{f}^{2}}\left(\mathrm{~g}^{2}-\frac{1}{\mathrm{AB}}\right)\right] \mathrm{p}_{\epsilon}{ }^{2} \\
& -\frac{2 g}{f} p_{\theta} \sqrt{\frac{4 C_{l}}{f}-\frac{1}{4 马 f^{2}} p_{\theta}{ }^{2}-\frac{2}{C f} p_{\phi}{ }^{2}}
\end{aligned}
\]

Let
\[
\begin{aligned}
\tau & \equiv\left[\frac{2}{C f} p_{\phi}^{2}+4\left(h^{2}-p_{\phi}^{2}-\frac{\alpha_{1}}{f}\right)\right] \\
v & \equiv 4+\frac{1}{f^{2}}\left(g^{2}-\frac{1}{A B}\right) \\
\xi & \equiv \frac{T}{v} \\
n & =-\frac{2 g}{f v} \\
n \sqrt{\frac{4 \alpha_{1}}{f}-\frac{1}{A B f^{2}} p_{\theta}{ }^{2}-\frac{2}{C f} p_{\phi}^{2} p_{\theta}} & =\xi-p_{\theta}^{2} \\
n^{2}\left(\frac{4 \alpha_{1}}{f}-\frac{1}{A B f^{2}} p_{\theta}^{2}-\frac{2}{C f} p_{\phi}^{2}\right) & =\xi^{2}-2 \xi p_{\theta}^{2}+p_{\theta}^{4} \\
p_{\theta}^{4}+\left(\frac{n^{2}}{A B f^{2}}-2 \xi\right) p_{\theta}^{2} & =\xi^{2}-n^{2}\left(\frac{4 \alpha_{1}}{f}-\frac{2}{C f} p_{\phi}^{2}\right)
\end{aligned}
\]

\section*{RELATIONSHID BETKEEN CONJUGATE MOMENTA AND ANGULAR MOMENTUM}

Let
\[
\bar{p}=\left(\begin{array}{c}
p_{\psi} \\
p_{\theta} \\
p_{\phi}
\end{array}\right), \quad \underline{H}=\left(\begin{array}{l}
h_{x^{\star}} \\
h_{y^{\star}} \\
h_{z^{\star}}
\end{array}\right), \quad \underline{H}^{\prime}=\left(\begin{array}{l}
h_{x^{\prime}} \\
h_{y^{\prime}} \\
h_{z^{\prime}}
\end{array}\right)
\]
where the Euler angles \(\psi, \theta\), and \(\phi\) are shown below, relating the body-fixed axes \(\theta x^{\prime} y^{\prime} z^{\prime}\) to the space-fixed axes \(0 x^{*} y^{*} z^{*}\).


The matrix
\[
\bar{\xi}=\left(\begin{array}{c}
\dot{\psi} \\
\dot{\psi} \\
\dot{\theta} \\
\dot{\phi}
\end{array}\right)
\]
and \(\vec{P}\) represents the conjugate momenta matrix while \(H\) and \(H^{\prime}\) represent the angular momentum vector referenced to space-fixē and \(\bar{b} o d y-f i x e d\) axes, respectively.
\[
\begin{equation*}
\tilde{p}=\bar{x} \bar{\xi} \tag{1}
\end{equation*}
\]

Explicitly,
\[
\left(\begin{array}{l}
p_{\psi} \\
p_{\theta} \\
p_{\phi}
\end{array}\right)=
\]
\(\left[\begin{array}{ccc}\left(A \sin ^{2} \phi+B \cos ^{2} \phi\right) \sin ^{2} \theta+C \cos ^{2} \theta, & (A-B) \sin \phi \cos \phi \sin \theta, C \cos \theta \\ (A-B) \sin \phi \cos \phi \sin \theta, & A \cos ^{2} \phi+B \sin ^{2} \phi, & 0 \\ C \cos \theta, & 0, & C\end{array}\right]\left(\begin{array}{l}\dot{\psi} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{\phi}\end{array}\right)\)
The kinetic energy for a force free triaxial rigid body is given by
\[
\begin{equation*}
T=\frac{1}{2 A} h_{X^{\prime}}^{2}+\frac{1}{2 B} h_{y^{\prime}}^{2}+\frac{1}{2 C} h_{Z^{\prime}}^{2} \tag{2}
\end{equation*}
\]
where
\[
\left.\begin{array}{l}
h_{x^{\prime}}=A \omega_{x^{\prime}}=A \dot{\theta} \cos \phi+A \dot{\psi} \sin \theta \sin \phi  \tag{3}\\
h_{y^{\prime}}=B \omega_{y^{\prime}}=-\dot{B} \sin \phi+B \dot{\psi} \sin \theta \cos \phi \\
h_{z^{\prime}}=C \omega_{z} \prime=\dot{C}+\dot{C} \dot{\psi} \cos \theta
\end{array}\right\}
\]

Also,
\[
\begin{equation*}
\underline{H}=\tilde{T} \underline{H}^{\prime} \tag{4}
\end{equation*}
\]

Explicitly,
\[
\left(\begin{array}{l}
h_{x^{*}} \\
h_{y^{*}} \\
h_{z^{*}}
\end{array}\right)=
\]
\(\left(\begin{array}{cc}\cos \psi \cos \phi-\sin \psi \sin \dot{\varphi} \cos \theta, & -\cos \psi \sin \phi-\sin \psi \cos \phi \cos \theta, \sin \psi \sin \theta \\ \sin \psi \cos \phi+\cos \psi \sin \phi \cos \theta, & -\sin \psi \sin \phi+\cos \psi \cos \phi \cos \theta,-\cos \psi \sin \theta \\ \sin \phi \sin \theta, & \cos \phi \sin \theta,\end{array} \begin{array}{l}\mathrm{h}_{x^{\prime}} \\ h_{y^{\prime}} \\ h_{z}\end{array}\right)\)
\[
\begin{equation*}
\tilde{\mathrm{P}}=\tilde{\mathrm{N}}^{\mathrm{T}} \underline{\underline{H}}^{\prime} \tag{5}
\end{equation*}
\]

Explicitly,
\[
\begin{align*}
& \left(\begin{array}{l}
p_{\psi} \\
p_{\theta} \\
p_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \phi \sin \theta & \cos \phi \sin \theta & \cos \theta \\
\cos \phi & -\sin \phi & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
h_{x^{\prime}} \\
h_{y^{\prime}} \\
h_{z^{\prime}}
\end{array}\right) \\
& \tilde{\mathrm{P}} \tag{6}
\end{align*}
\]

Explicitly,
\[
\left(\begin{array}{l}
p_{\psi} \\
p_{\theta} \\
p_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\cos \psi & \sin \psi & 0 \\
\sin \psi \sin \theta & -\cos \psi \sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{l}
h_{x^{*}} \\
h_{y^{*}} \\
h_{z^{*}}
\end{array}\right)
\]

Also,
\[
\begin{align*}
& h_{x^{\prime}}=p_{\theta} \cos \phi+\frac{\sin \phi}{\sin \theta}\left(p_{\psi}-p_{\phi} \cos \theta\right) \\
& h_{y^{\prime}}=-p_{\theta} \sin \phi+\frac{\cos \phi}{\sin \theta}\left(p_{\psi}-p_{\theta} \cos \theta\right)  \tag{7}\\
& h_{z^{\prime}}=p_{\phi}=h \cos \theta^{\prime}
\end{align*}
\]

Consider the case in which the direction of the angular momenttum vector is fixed in space. Choose this direction as an axis and redesignate it by the letter 5 . Let the line of nodes of the angular momentum plane (a plane through the center of mass of the body perpendicular to the 5 axis) with the space-fixed plane \(x^{*} y^{*}\) be designate by \(\xi\). Consider the figure below.


H may be represented in the form
\[
\underline{H}=\left(\begin{array}{l}
0  \tag{8}\\
0 \\
h
\end{array}\right)
\]

If Eq (6) is used with \(\psi\) and \(\theta\) replaced by \(\phi^{*}\) and \(\theta^{\prime}\), respectively,
\[
\begin{aligned}
& \left(\begin{array}{l}
p_{\phi^{*}} \\
p_{\theta^{\prime}} \\
p_{\phi^{\prime}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\cos \phi^{*} & \sin \phi^{*} & 0 \\
\sin \phi^{*} \sin \theta^{\prime} & -\cos \phi^{*} \sin \theta^{\prime} & \cos \theta^{\prime}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
h
\end{array}\right)(9) \\
& p_{\phi^{*}}=h \\
& p_{\theta^{\prime}}=0 \\
& p_{\phi^{\prime}}=h \cos \theta^{\prime}
\end{aligned}
\]

Since \(p_{\theta^{\prime}}=0\),
\[
\left.\begin{array}{l}
h_{x^{\prime}}=\frac{\sin \phi^{\prime}}{\sin \theta^{\prime}}\left(p_{\phi^{*}}-p_{\phi^{\prime}} \cos \theta^{\prime}\right)  \tag{10}\\
h_{y^{\prime}}=\frac{\cos \phi^{\prime}}{\sin \theta^{\prime}}\left(p_{\phi^{*}}-p_{\phi^{\prime}} \cos \theta^{\prime}\right) \\
h_{z^{\prime}}=p_{\phi^{\prime}}
\end{array}\right\}
\]

By utilizing the fact that \(p_{\phi^{\prime}}=h \cos \theta^{\prime}\), one can write \(T\) in the form
\[
\begin{aligned}
& T=\frac{1}{2 A} h_{x}{ }^{2}+\frac{1}{2 b} h_{y}{ }^{2}+\frac{1}{2 C} h_{z}{ }^{2} \\
& T=\left(\frac{\sin ^{2} \phi^{\prime}}{2 A}+\frac{\cos ^{2} \phi^{\prime}}{2 B}\right)\left(p_{\phi^{*}}{ }^{2}-p_{\phi^{\prime}}{ }^{2}\right)+\frac{1}{2 C} p_{\phi^{\prime}}{ }^{2}
\end{aligned}
\]
= Hamilton Function

Designate \(H=\) Hamilton function \(=\alpha_{1}\), a constant of motion.
\[
\begin{align*}
& \dot{\phi}^{\prime}=\frac{\partial H}{\partial p_{\phi^{\prime}}} \\
& \dot{\phi}^{*}=\frac{\partial H}{\partial p_{\phi^{*}}}  \tag{12}\\
& \dot{p}_{\phi^{*}}=-\frac{\partial H}{\partial \phi^{*}}=0 \rightarrow h=\text { constant }=p_{\phi^{*}} \\
& \dot{p}_{\phi^{\prime}}=-\frac{\partial H}{\partial \phi^{\prime}}
\end{align*}
\]

Also,
\[
\cos \theta^{\prime}=\frac{P \phi^{\prime}}{h}
\]
and
\[
p_{\theta^{\prime}}=0
\]

Suppose \(\phi^{\prime}, \phi^{*}, \mathrm{p}_{\phi^{*}}, \mathrm{p}_{\phi^{\prime}}\), and \(\mathrm{p}_{\theta^{\prime}}\) are known. Are \(\theta, \psi, \phi, \mathrm{p}_{\theta}, \mathrm{p}_{\psi}\), and \(p_{\phi}\) referenced to some space-fixed system \(0 x^{*} y^{*} z^{*}\) known?
\[
\begin{align*}
& \theta=\theta\left(\theta^{\prime}, \theta^{*}, \phi^{*}\right) \\
& \psi=\psi\left(\theta^{\prime}, \theta^{*}, \phi^{*}, \psi^{*}\right) \\
& \phi=\phi\left(\theta^{\prime}, \theta^{*}, \phi^{*}, \phi^{\prime}\right)  \tag{13}\\
& p_{\phi}=h \cos \theta^{\prime}=p_{\phi^{\prime}} \\
& p_{\psi}=h \cos \theta^{*}=p_{\phi^{*}} \cos \theta^{*} \\
& p_{\theta}=\cos \psi h_{x^{*}}+\sin \psi h_{y^{*}}
\end{align*}
\]

Using Eq (4) with \(\psi, \theta\), and \(\phi\) replaced by \(\phi^{*}, \theta^{*}\), and 0 ,
\[
\begin{align*}
\left(\begin{array}{l}
h_{x^{*}} \\
h_{y^{*}} \\
h_{\mathbf{z}^{*}}
\end{array}\right) & =\left(\begin{array}{ccc}
\cos \psi^{*} & -\sin \psi^{*} \cos \theta^{*} & \sin \psi^{*} \sin \theta^{*} \\
\sin \psi^{*} & \cos \psi^{*} \cos \theta^{*} & -\cos \psi^{*} \sin \theta^{*} \\
0 & \sin \theta^{*} & \cos \theta^{*}
\end{array}\right)\left(\begin{array}{l}
\dot{\prime} \\
0 \\
h
\end{array}\right) \\
h_{x^{*}} & =h \sin \psi^{*} \sin \theta^{*}  \tag{14}\\
h_{y^{*}} & =h \cos \psi^{*} \sin \theta^{*} \\
h_{z^{*}} & =h \cos \theta^{*}  \tag{15}\\
p_{\theta} & =\cos \psi\left(h \sin \psi^{*} \sin \theta^{*}\right)+\sin \psi\left(-\cos \psi^{*} \sin \theta^{*}\right) \\
& =-h \sin \theta^{*} \cdot \sin \left(\dot{\psi} \cdot \psi^{*}\right)
\end{align*}
\]

If \(p_{\phi^{\prime}}\) is known, \(\theta^{\prime}\) is also known. Also, \(\theta^{*}\) and \(\psi^{*}\) are prescribed cons \(\phi^{\prime}\) ants, independent of ea \(n\) other and independent of \(\phi^{\prime}, \phi^{*}, p_{\phi^{\prime}}\), and \(p_{\phi *}\). Hence, \(\psi, \theta, \phi, p_{\psi}, p_{\theta}\), and \(p_{\phi}\) are known. Thus, the indepondent variables \(\phi^{\prime}, \phi^{*}, \mathrm{p}_{\phi^{\prime}}, \mathrm{p}_{\phi^{*}}, \theta^{*}\), and \(\psi^{*}\) serve to describe the motion of the triaxial body with respect to the space-fixed system \(0 x^{*} y^{*} z^{*}\).

If EqE (6) and (14) are used, \(p_{\psi}=h \cos \theta^{*}\) is obtained. Since \(P_{\psi}\) does not depend on \(\psi, p_{\psi^{*}}=h \cos \theta^{*}\) may be written where \(\psi\) and \(\psi^{*}\) lie in the same plane. If \(p_{\psi^{*}}\) is known, \(e^{*}\) is known; hence, the independent variables ( \(\phi^{\prime}, \phi^{*}, \psi^{*}, p_{\phi^{\prime}}, p_{\phi^{*}}\), and \(p_{\psi^{*}}\) ) will serve to describe the triaxial motion with respect to the space-fixed system \(0 x^{*} y^{*} z^{*}\). Kinetic energy \(T=H\) (for this extended problem) is expressed in terms of ( \(\phi^{\prime}, \phi^{*}, \psi^{*}, p_{\phi^{\prime}}, p_{\phi^{*}}\), and \(p_{\psi^{*}}\) ) and still given by Eq (11). The canonical equations, 'n be extended to include
\[
\left.\begin{array}{l}
\dot{p}_{\psi^{*}}=-\frac{\partial H}{\partial \psi^{*}}=0  \tag{16}\\
\dot{\psi}^{*}=\frac{\partial H}{\partial p_{\psi^{*}}}=0
\end{array}\right\}
\]
since Eqs (16) are consistent with the facts that \(p_{\psi^{*}}\) and \(\psi^{*}\) are constants of motion.

Thus, \(H\) can be interpreted, as given by Eq (11), as the Hamilton function for the motion of a triaxial body with respect to the space-fixed system under no forces. The corresponding canonical equations are
\[
\begin{array}{ll}
\dot{p}_{\phi^{\prime}}=-\frac{\partial H}{\partial \phi^{\prime}} & \dot{\phi}^{\prime}=\frac{\partial H}{\partial p_{\phi^{\prime}}} \\
\dot{p}_{\phi^{*}}=-\frac{\partial H}{\partial \phi^{*}} & \dot{\phi}^{*}=\frac{\partial H}{\partial p_{\phi^{*}}}  \tag{17}\\
\dot{p}_{\psi^{*}}=-\frac{H}{\partial \psi^{*}} & \dot{\psi}^{*}=\frac{H}{\partial p_{\psi^{*}}}
\end{array}
\]

The differential equations are explicitly:
\[
\begin{align*}
& \dot{p}_{\phi^{\prime}}=\left(p_{\phi^{*}}^{2}-p_{\phi^{\prime}}{ }^{2}\right) \frac{(A-B)}{A B} \sin \phi^{\prime} \dot{\cos \phi^{\prime}} \\
& \dot{p}_{\phi^{*}}=0 \\
& \dot{p}_{\psi^{*}}=0 \\
& \dot{\phi}^{\prime}=\left[\frac{1}{C}-\left(\frac{\sin ^{2} \phi^{\prime}}{A}+\frac{\cos ^{2} \phi^{\prime}}{B}\right)\right] p_{\phi^{\prime}}  \tag{18}\\
& \dot{\phi}^{*}=\left(\frac{\sin ^{2} \phi^{\prime}}{A}+\frac{\operatorname{ms}^{2} \phi^{\prime}}{B}\right) p_{\phi^{*}} \\
& \dot{\psi}^{*}=0
\end{align*}
\]

Then,
\[
\begin{aligned}
& p_{\phi^{*}}=\alpha_{2}, \text { a constant } \\
& F_{\psi^{*}}=\alpha_{3}, \text { a constant } \\
& \psi^{*}=-\beta_{3}, \text { a constant }
\end{aligned}
\]

The differential equations for \(p_{\phi^{\prime}}, \phi^{\prime}\), and \(\phi^{*}\) may now be written:
\[
\begin{align*}
& \dot{p}_{\phi^{\prime}}=\left(\alpha_{2}^{2}-p_{\phi^{\prime}}^{2}\right)\left(\frac{A-B}{A B}\right) \sin \phi^{\prime} \cos \phi^{\prime}  \tag{20a}\\
& \dot{\phi}^{\prime}=\left[\frac{1}{C}-\left(\frac{\sin ^{2} \phi^{\prime}}{A}+\frac{\cos ^{2} \phi^{\prime}}{B}\right)\right] p_{\phi^{\prime}}  \tag{20b}\\
& \dot{\phi}^{*}=\left(\frac{\sin ^{2} \phi^{\prime}}{A}+\frac{\cos ^{2} \phi^{\prime}}{B}\right) \alpha_{2} \tag{20c}
\end{align*}
\]

From Eqs (20a) and (20b),
\[
\begin{equation*}
-\frac{\mathrm{dw}}{\mathrm{w}}=\frac{\mathrm{du}}{\mathrm{u}} \tag{2.1}
\end{equation*}
\]
where
\[
\begin{aligned}
w & =\alpha_{2}{ }^{2}-p_{\phi^{\prime}}{ }^{2} \\
\mathbf{u} & =\frac{1}{C}-\left(\frac{\sin ^{2} \phi^{\prime}}{A}+\frac{\cos ^{2} \phi^{\prime}}{B}\right)
\end{aligned}
\]

Integration of Eq (21) yields
\[
\begin{equation*}
\text { wu }=\kappa \text {, a constant } \tag{22}
\end{equation*}
\]

To evaluate \(\kappa\), it is noted from Eq (11) that
\[
\alpha_{1}=\frac{\mu_{\phi^{\prime}}{ }^{2}}{2} u+\frac{\alpha_{2}^{2}}{2}\left(\frac{\sin ^{2} \phi^{\prime}}{A}+\frac{\cos ^{2} \phi^{\prime}}{B}\right)
\]
and from Eq (22), it is found that
\[
\begin{equation*}
w u=k=\frac{\alpha_{2}^{2}}{C}-2 \alpha_{1} \tag{23}
\end{equation*}
\]

Equation (23) pernits the expression of \(P_{\phi^{\prime}}\) in terms of \(\phi^{\prime}\). One first writes
\[
\begin{aligned}
u & =\frac{c^{\prime}+d^{\prime} \sin ^{2} \phi^{\prime}}{A B C} \\
c^{\prime} & \equiv A(B-C) \\
d^{\prime} & \equiv C(A-B)
\end{aligned}
\]

Then,
\[
p_{\phi^{\prime}}{ }^{2}=\alpha_{2}{ }^{2}-\frac{\left(\alpha_{2}^{2}-a C \alpha_{1}\right)}{C u}
\]

This last. equation reduces to
\[
\left.\begin{array}{rl}
p_{\phi^{\prime}}{ }^{2} & =\frac{\left.\Gamma a^{\prime}+b^{\prime} \sin ^{2} \phi^{\prime}\right]}{\left[c^{\prime}+d^{\prime} \sin ^{2} \phi^{\prime}\right]} \\
\mathbf{a}^{\prime} & =A\left(2 B \alpha_{1}-\alpha_{2}^{2}\right) \\
b^{\prime} & =a_{2}^{2}(A-B) \\
c^{\prime} & \equiv A(B-C)  \tag{24}\\
d^{\prime} & =C(A-B)
\end{array}\right\}
\]

Wheace,
\[
\begin{equation*}
p_{\phi^{\prime}}= \pm \sqrt{\frac{C\left(a^{\prime}+b^{\prime} \sin ^{2} \phi^{\prime}\right)}{c^{\prime}+d^{\prime} \sin ^{2} \phi^{\prime}}} \tag{25}
\end{equation*}
\]

\title{
APPENDIX \\ ON A METHOD OF OBTAINING A COMPLETE INTEGRAL O: THE HAMILTON-JACOBI EQUATION ASSOCIATED WITH A DYNAMICAL SYSTEM
}

\author{
Philip M. Fitzpatrick and John E. Cochran
}

Consider a dynamical system whose equations of motion: are
\[
\left.\begin{array}{rl}
\dot{q}_{i} & =\frac{\partial H\left(q_{j} ; p_{j} ; t\right)}{\partial p_{i}}  \tag{1}\\
\dot{p}_{i} & =-\frac{\partial H\left(q_{j} ; p_{j} ; t\right)}{\partial q_{i}}
\end{array}\right\} \quad i=1,2, \ldots, n ; j=1,2, \ldots, n
\]
where the Hamiltonian, \(H\left(q_{j} ; p_{j} ; t\right)\), is understood to be a function of the generalized coordinates, \(q_{j}\), and their conjugate momenta, \(p_{j}\), \(j=1,2, \ldots, n\), and possibly the time, \(t\). If one-half of the integrals of Eq (1) have been obtained in a suitable form, there is a well-known theorem, due to Liouville, \({ }^{1}\) which may be used to find the remaining integrals. The purpose of this note is to point up the related, but perhaps not so well-known fact that a method of obtaining a complete integral of the Hamilton-Jacobi partial differential equation associated with (1) is implicitly contained in the theorem. Since a complete integral of (1) will permit us to express the solution of (1) in terms of canonical constants of integration, recognition of this fact is of importance in studying perturbations of the original system. The method will be discussed and applied in what follows.

Suppose that n integrals of a dynamical system with 2 n degrees of freedom are known in the form
\[
\begin{equation*}
\Phi_{i}\left(q_{j} ; p_{i} ; t\right)=\alpha_{i}, \quad i=1,2, \ldots, n ; j=1,2, \ldots, n \tag{2}
\end{equation*}
\]

\footnotetext{
\({ }^{1} \mathrm{E}\). T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (New York: Cambridge University Press, 1959), pp. 323-325.
}
where the \(\alpha_{i}\) form a set of \(n\) independent constants of integration. If the Poisson bracket expression, ( \(\varphi_{i}, \phi_{j}\) ), vanishes for each \(i\) and \(j\) and if the \(\phi_{i}\) are solvable for the \(p_{i}\) in the form
\[
\begin{equation*}
p_{i}=f_{i}\left(q_{j} ; \alpha_{j} ; t\right), \quad i=1,2, \ldots, n ; j=1,2, \ldots, n \tag{3}
\end{equation*}
\]
the Liouville theorem states that the difference between
\[
\sum_{i=1}^{n} f_{i} d q_{i}
\]
and \(H\left(q_{j} ; \alpha_{j} ; t\right) d t\) is the perfect differential of a function \(W\left(q_{j} ; a_{j} ; t\right)\) and that the remaining \(n\) integrals of the system are given by
\[
\begin{equation*}
\frac{\partial W}{\partial \alpha_{i}}=\beta_{i}, \quad . \quad i=1,2, \ldots, n^{*} \tag{4}
\end{equation*}
\]
where the \(\beta_{i}\) form a set of \(n\) constants of integration which are independent of each other and of the set formed by the \(\alpha_{i}\).

To say that
\[
\begin{equation*}
\sum_{i=1}^{n} f_{i} d q_{i}-H\left(q_{j} ; \alpha_{j} ; t\right) d t, \quad j=1,2, \ldots, n \tag{5}
\end{equation*}
\]
is the perfect differential of a function \(w\left(a_{j} ; a_{j} ; t\right)\) means that
\[
\begin{align*}
& \frac{\partial W}{\partial q_{i}}=f_{i}=p_{i}, \quad i=1,2, \ldots, n  \tag{6}\\
& \frac{\partial W}{\partial t}=-H \tag{7}
\end{align*}
\]

Thus, implicit in the liouville theorem is the fact that the function \(W\) is a complete integral of (7) which is the Hamilton-Jacobi partial differential equation associated with the sysiem.

When the \(n\) integrals of (2) can be solved for the \(q_{i}\) instead of the \(p_{i}, i=1,2, \ldots, n\), the theorem may also be applied, if the canonical transformation
\[
\begin{align*}
& \mathbf{Q}_{\mathbf{i}}=\mathbf{p}_{\mathbf{i}} \\
& \mathbf{p}_{\mathbf{i}}=-\mathbf{q}_{\mathbf{i}} \tag{8}
\end{align*}
\]
to new variables ( \(Q_{i}, P_{i}\) ) is first introduced. Even if we are not able to solve the \(n\) integrals (2) explicitly for the \(p_{i}\), or for the \(q_{i}\), a complete integral may still be obtained in certain important cases now to be discussed.

Suppose we are able to solve the integrals (2) explicitly for \(\ell(\ell<n)\) momenta and \(n-\ell\) coordinates. Suppose further that, after reordering the subscripts, the expressions for the \(\ell\) momenta and \(n-\ell\) coordinates can be written in the restricted form
\[
\left.\begin{array}{ll}
p_{i}=f_{i}\left(q_{k} ; p_{m} ; a_{j} ; t\right), & \begin{array}{l}
i=1,2, \ldots, ; k \leq \ell ; \\
m>\ell ; j=1,2, \ldots, n
\end{array}  \tag{9}\\
q_{i}=h_{i}\left(q_{m} ; p_{k} ; a_{j} ; t\right), & \begin{array}{l}
i=\ell+1, \ell+2, \ldots, n ; k>\ell ; \\
m \leq \ell ; j=1,2, \ldots, n
\end{array}
\end{array}\right\}
\]

By introducing the canonical transformation
\[
\left.\begin{array}{ll}
p_{i}^{*}=p_{i}, & q_{i}^{*}=q_{i},  \tag{10}\\
i=1,2, \ldots, \ell \\
p_{i}^{*}=-q_{i}, & q_{i}^{*}=p_{i}, \\
i=\ell+1, \ell+2, \ldots, n
\end{array}\right\}
\]

Eq (9) may be written in the form
\[
\begin{equation*}
p_{i}^{*}=f_{i}^{*}\left(q_{j}^{*} ; \alpha_{j} ; t\right), \quad i=1,2, \ldots, n ; j=1,2, \ldots, n \tag{11}
\end{equation*}
\]

Equations (11) are in the form (3) and the theorem may be applied.

\section*{Example 1: Central Orbit in the Plane, Polar Coordinates}

For a particle moving in a plane under a central force derivable from the potential \(V(r)\), the Hamiltonian function is a constant \(\alpha_{i}\). If we designate by ( \(p_{F}, \mathrm{p}_{\beta}\) ), the momenta conjugate to the polar coordinates ( \(r, \theta\) ), respectively, see Figure 1, the system has the well-known integrals
\[
\begin{equation*}
p_{\theta}=a_{2}, a \text { constant } \tag{12}
\end{equation*}
\]

\[
\begin{equation*}
p_{r}= \pm \sqrt{2\left[\alpha_{1}+V(r)\right]-\frac{\alpha_{2}^{2}}{r^{2}}} \tag{i3}
\end{equation*}
\]

From (5), we write
\[
\begin{equation*}
d W=p_{r} d r+p_{\theta} d \theta-\alpha_{1} d t \tag{14}
\end{equation*}
\]

If \(r_{0}\) is chosen so that no new independent constant is introduced, the function
\[
\begin{equation*}
W=\int_{r_{0}} p_{r} d r+\alpha_{2} \theta-a_{1} t \tag{15}
\end{equation*}
\]
obtained by integrating (14), satisfies (7). Also, W is a complete integral of (7) since it contains two non-additive independent constants \(\alpha_{1}\) and \(\alpha_{2}\).

\section*{Example 2: Free Motion of a Triaxial Rigid Body}

For the free rotation of a triaxial, rigid body about a fixed point 0 , the Hamiltonian function, which is a constant of the motion, \(\alpha_{1}\), may be written in terms of the Euler angles ( \(\theta, \phi, \psi\) ), which specify the position of principal axes at 0 relative to space-fixed axes \(0 \xi \pi 5\) and their conjugate momenta \(\left(p_{\theta}, p_{\phi}, p_{\psi}\right)\). See Figure 2.


Three known integrals for this dynamical system are \({ }^{2}\)
\[
\begin{align*}
& P_{\psi}=\alpha_{3}, \text { a constant }  \tag{16}\\
& \theta=\tan ^{-1}\left\{\frac{\sqrt{\alpha_{2}{ }^{2}-\alpha_{3}{ }^{2}-p_{\theta}{ }^{2}}}{\alpha_{3}}\right\} \\
& -\tan ^{-1}\left\{\frac{\sqrt{\alpha_{2}^{2}-p_{\phi}^{2}-p \theta^{2}}}{p_{\phi}}\right\}  \tag{17}\\
& \phi=\tan ^{-1}\left\{\frac{p_{\theta}}{\sqrt{\alpha_{2}^{2}-p_{\phi}-p_{\theta}^{2}}}\right\} \\
& +\tan ^{-1}\left\{-\left(\frac{A}{B}\right) \frac{\left(2 B \alpha_{1}-\alpha_{2}^{2}\right) C+(C-B) p_{\phi}^{2}}{\left(2 A \alpha_{1}-\alpha_{2}^{2}\right) C+(C-A) p_{\phi}^{2}}\right\}^{\frac{1}{2}} \tag{18}
\end{align*}
\]
where \(A, B\), and \(C\) are the principal moments of inertie ac 0 and \(\alpha_{2}\) is the constant magnitude of the angular momentum suout 0.
\({ }^{2}\) See Whittaker, p. 325.

Although it is not possible to solve (17) and (18) so that \(p_{\phi}\) and \(p_{\theta}\) are expressed in the form (3), the set of equations (16), (17), and (18) is of the form (9); hence, the canonical transformation
\begin{tabular}{ll}
\(p_{1}=-\phi\) & \(q_{1}=p_{\phi}\) \\
\(\mathbf{p}_{2}=-\theta\) & \(q_{2}=p_{\theta}\) \\
\(p_{3}=p_{\psi}\) & \(q_{3}=\psi\)
\end{tabular}
allows us to write (16), (17), and (18) in the form (11). Then, from (5), we write
\[
\begin{equation*}
d W=p_{1} d q_{1}+p_{2} d q_{2}+p_{3} d q_{3}-\alpha_{1} d t \tag{20}
\end{equation*}
\]

If \(q_{10}\) and \(q_{20}\) are chosen in a manner so that no new independent constants are introduced, the function
\[
\begin{align*}
W= & -\alpha_{1} t+\alpha_{3} q_{3}+\int_{q_{20}}^{q_{2}} \tan ^{-1}\left\{\frac{\sqrt{\alpha_{2}^{2}-\alpha_{3}^{2}-x^{2}}}{\alpha_{3}}\right\} d x \\
& -\int_{q_{20}}^{q_{2}} \tan ^{-1}\left\{\frac{\sqrt{\alpha_{2}^{2}-a_{1}^{2}-x^{2}}}{q_{1}}\right\} d x \\
& +\int_{q_{10}}^{q_{1}} \tan ^{-1}\left\{-\left(\frac{A}{R}\right) \frac{\left(2 B \alpha_{1}-\alpha_{2}^{2}\right) C+(C-B) x^{2}}{\left(2 A \alpha_{1}-\alpha_{2}^{2}\right) C+(C-A) x^{2}}\right\}^{\frac{1}{2}} d x \tag{21}
\end{align*}
\]
obtained by integrating (20), is a complete integral of (7).

HAMILTON/JACOBI PERTURBATION METHODS APPLIED TO THE ROTATIONAL MOTION OF A RIGID BOI IN A GRAVITATIONAL FIELD

\section*{by}

Philip M. Fitzpatrick, Grady R. Harmon, Joseph J. F. Lii and John E. Cochran

Six Months Report to
National Aeronautics and Space Administration Electronics Research Center Computer Research Laboratory Computational Theory and Techniques Branch Cambridge, Massachusetts 02139
on

Grant NGR-01-003-008-S-2
(November 1, 1968 - May 1, 1969)


\section*{HAMILTON/JACOBI PERTURBATION METHODS}

\section*{APPLIED TO THE ROTATIONAL MOTION OF A RIGID BODY}

IN A GRAVITATIONAL FIELD
by

\author{
Philip M. Fitzpatrick, Grady R. Harmon, Joseph J. F. Liu and John E. Cochran
}

\author{
Six Months Report to
}

National Aeronautics and Space Administration Electronics Research Center Computer Research Laboratory Computational Theory and Techniques Branch Cambridge, Massachusetts 02139
on
Grant NGR-01-003-008-S-2
(November 1, 1968 - May 1, 1969)

October 1969

AUBURN UNIVERSITY
ENGINEERING EXPERIMENT STATION
FUSURN, ALABAMA 36830

\section*{N24.3 1305}

\title{
HAMILTON/JACOBI PERTURBATION METHODS \\ APPLIED TC THE ROTATIONAL MOTION OF A RIGID BODY IN A GRAVITATIONAL FIELD
}
by
Philip M. Fitzpatrick, Grady R. Harmon, Joseph J. F. Liu and John E. Cochran

\section*{ABSTRACT}

The formalism for studying perturbations of a triaxial rigid body within the Hamilton-Jacobi framework is set up. In particular, r the motion of a triaxial artificial earth satellite about its center of mass is studied. Variables are found which permit separation, and the Euler angles and associated conjugate momenta are obtained as functions of canonical constants and time.
table of CCNTENTS
INTRODUCTION ..... 1
rectangular coordinate system and euler angles ..... 1
SOLUTION OF THE HAMILTOY/JACOBI EQUATION ASSOCIATED WITH A TRIAXIAL BODY PROBLEM WITH NO EXTERNAL FORCES ..... 3
Hamilton Function and Canonical Equations Description of the Motion in the \(0 x^{*} y^{*} z^{*}\) System Generator and Equations of Transformation
INVERSIUN OF THE SOLUTION FOR THE TRIAXIAL RIGID BODY PROBLEM WITH NO EXTERNAL FORCES ..... 11
Inversion of the Equation \(t-\beta_{1}=L\left(\phi^{\prime}\right)\) Inversion of the Equation \(\phi^{*}+\beta_{1}=M\left(\phi^{*}\right)\) Expressions for \(\mathrm{p}_{\phi^{\prime}}\) and \(\theta^{-}\) Inverted Solution for the Triaxial Rigid Body Problem with No External Forces
UNIAXIAL SOLUTION ..... 17
perturbation of the force free motion of the triaxial RIGID BODY ..... 20
GRAVITY GRADIENT FOR THE TRIAXIAL BODY ..... 21
REFERENCES ..... 25

\section*{INTRODUCTION}

This report summarizes the results obtained on Grant NGR-01-003-008-S-2(ME) between November 1068 and May 1969.* These studies are aimed at applying the perturlacion methods of celestial mechanics to the rigid body problem with particular emphasis on the problem of motion of an artificial earth satellite about its center of mass. During this reporting period, the investigators were able to express the Hamiltonian for the triaxial rigid body in terms of variables in which it is readily separable. This, in turn, permits introduction of a canonical transfor nation to new parameters which are constants in the torque-free motion. The equations of transformation are then inverted to allow the investigators to express the original Euler angles and associated conjugate momenta in terms of the canonical constants and the time. Thus, they are able to set up the formalism for studying perturbations of a triaxial rigid body within the HamiltonJacobi framework.

\section*{rectangular coordinate system and euler angles}

Let 0 represent the center of mass of the rigid body. Choose a space-fixed rectangular system \(0 \xi_{15}\) such that the positive \(\zeta\) axis lies along the angular momentum vector \(\underline{H}\) and in the sense of \(\underline{H}\). Consider a plane through the center of mass and perpendicular to the 5 axis. This plane intersects the fundamental plane of the space-fixed, but otherwise arbitrary, rectangular frame \(0 x * y^{*} z^{*}\) in a line of nodes \(O N\), shown in the figure. The \(\xi\) axis is chosen to lie along the line of nodes, its positive sense being arbitrarily chosen. Then, the \(n\) dxis is chosen to form a right-handed system.

Let \(0 x^{\prime} y^{\prime} z^{\prime}\) be a body-fixed (principal axes) rectangular frame and let \(\phi^{*}, \theta^{\prime}\), and \(\phi^{\prime}\) represent the Euler angles relating the \(0 x^{\prime \prime} y^{\prime} z^{\prime \prime}\) and \(0 \xi n \xi\) systems. The \(x^{\circ} y^{\wedge}\) plane will be called the body-fixed plane. The angle \(\psi^{*}\) is the angle between the \(x^{*}\) and the \(\xi\) axes, measured in the \(x^{*} y^{*}\) plane while the angle \(\theta^{*}\) is the angle between the positive \(z^{*}\) and \(\zeta\) axes.

\footnotetext{
*Work co-sp:isored by Contract NAS8-20175 with the Beorge C. Marshall Space Fligh. Center.
}

(1).

Angular-Momentum Plane
(2)

Body-Fixed Plane
Ox*y*z* . . . . . . . . . . . . . . Space-Fixed Axes
\(0 x^{\prime} y^{\prime} z^{\prime}\). . . . . . . . . . . . . . . Body-Fixed Axes
0xyz
Angular-Momentum Axes

\section*{SOLUTION OF THE HAAMILTON/JACOBI EQUATION}

ASSOCIATED WITH A TRIAXIAL BODY PROBLEM WITH NO EXTERNAL FORCES

\section*{rianll ton Function and Canonical Equations}

Although the eventual goal is to give a complete discription of the motion in the \(0 x^{*} y^{*} z^{*}\) system, the description of the motion will first be given in the \(0 \xi \eta \zeta\) system. In this manner, a straightforward, coherent approach to the prolem and its solution can be presented.

Let
\[
\begin{align*}
& \underline{p}=\left(\begin{array}{l}
p_{\psi} \\
p_{\theta} \\
p_{\phi}
\end{array}\right)  \tag{1a}\\
& \underline{\xi}=\left(\begin{array}{l}
\dot{\psi} \\
\dot{\theta} \\
\dot{\phi}
\end{array}\right) \\
& \underline{H}^{*}=\left(\begin{array}{l}
h_{x} \\
h_{y^{*}} \\
h_{z}^{*}
\end{array}\right)  \tag{1b}\\
& \underline{H}^{*}=\left(\begin{array}{l}
h_{x} \\
h_{y} \\
h_{z}
\end{array}\right)
\end{align*}
\]
where \(P\) represents the conjugate momenta matrix and \(H\) and \(H^{\prime}\) represent the angular momentum w.r.t. space-fixed and body-fixe \(\bar{d}\) axes. respectively. A recapitualation of some of the formulas from an
earlier report (Some Suggested Approaches to Solving the HamiltonJacobi Equation Associated with Constrained Rigid Body Motion, January 1969, pp. 31-35) is given below to help the reader follow the subsequant discussion. It should be pointed out for anyone who has a copy of the referenced rep u-t that \(\underline{H}\) should read \(\underline{H}^{*}\) through Eq (6); the other notation is correct.

One has
\[
\begin{equation*}
\underline{p}=X \underline{E} \tag{2}
\end{equation*}
\]

\[
\left(\begin{array}{ccc}
\left(A \sin ^{2} \phi+B \cos ^{2} \phi\right) \sin ^{2} \theta+C \cdot \cos ^{2} \theta & (A-B) \sin \phi \cos \phi \sin \theta & C \cos \phi \\
(A-B) \sin \phi \cos \phi \sin \theta & A \cos ^{2} \phi+B \sin ^{2} \phi & n \\
C \cos \theta & 0 & C
\end{array}\right)\binom{\dot{\phi}}{\dot{\theta}}
\]
\[
\begin{equation*}
\underline{H}^{*}=\mathrm{TH}^{-} \tag{3}
\end{equation*}
\]
or
\[
\left(\begin{array}{l}
h_{x}^{*} \\
h_{y}^{*} \\
h_{z}^{*}
\end{array}\right)=
\]
\(\left(\begin{array}{ccc}\cos \psi \cos \phi-\sin \psi \sin \phi \cos \theta & -\cos \psi \sin \phi-\sin \psi \cos \phi \cos \theta & \sin \psi \sin \theta \\ \sin \psi \cos \phi+\cos \psi \sin \phi \cos \theta & -\sin \psi \sin \phi+\cos \psi \cos \phi \cos \theta & -\cos \psi \sin \theta \\ \sin \phi \sin \theta & \cos \phi \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{l}h_{x^{\prime}} \\ h_{y^{\prime}} \\ h_{z^{-}}\end{array}\right)\)
\[
\begin{equation*}
\underline{\mathrm{P}}=\mathrm{N}^{\mathrm{T}} \underline{H}^{\top} \tag{4}
\end{equation*}
\]
or
\(\left(\begin{array}{l}\mathrm{P}_{\psi} \\ \mathrm{P}_{\theta} \\ \mathrm{P}_{\phi}\end{array}\right)=\left(\begin{array}{ccc}\sin \phi \sin \theta & \cos \phi \sin \theta & \cos \theta \\ \cos \phi & -\sin \phi & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}h_{x^{\prime}} \\ \mathrm{h}_{y^{\prime}} \\ \mathrm{h}_{z^{\prime}}\end{array}\right)\)
or \(\quad \underline{P}=M^{T} \underline{H^{*}}\)
\[
\left(\begin{array}{l}
p_{\psi} \\
P_{\theta} \\
P_{\phi}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\cos \psi & \sin \psi & 0 \\
\sin \psi \sin \theta & \cdot-\cos \psi \sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{l}
h_{x^{*}} \\
h_{y^{*}} \\
h_{z^{*}}
\end{array}\right)
\]
and from Eq (3),
\[
\begin{equation*}
\underline{H}^{\top}=\mathrm{T}^{\mathrm{I}}{\underline{H^{*}}}^{*} \tag{6}
\end{equation*}
\]
or explicitly,
\[
\left(\begin{array}{l}
h_{x^{\prime}} \\
h_{y^{\prime}} \\
h_{z^{\prime}}
\end{array}\right)=-p_{\theta} \cos \phi+\frac{\sin \phi}{\sin \theta}\left(p_{\psi}-p_{\phi} \cos \theta\right)
\]

In the ognc system the angular momentum can be writi.n as
\[
\underline{H}=\left(\begin{array}{l}
0  \tag{7}\\
0 \\
h
\end{array}\right)
\]

If Eq (5) is used and \(\psi, \theta\), and \(\phi\) are replaced by \(\phi^{*}, \theta^{\circ}\), and \(\phi^{\prime}\), respectively, then
\[
\left(\begin{array}{l}
p_{\phi^{*}}  \tag{8}\\
p_{\theta^{\prime}} \\
p_{\phi^{\prime}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\cos \phi^{*} & \sin \phi^{*} & 0 \\
\sin \phi^{*} \sin \theta^{*} & -\cos \phi^{*} \sin \theta^{\circ} & \cos \phi^{*}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
h
\end{array}\right)
\]
or
\[
\begin{aligned}
& \mathbf{P}_{\phi^{*}}=h \\
& \mathbf{P}_{\theta^{*}}=0 \\
& \mathbf{P}_{\phi^{*}}=h \cos \theta^{-}
\end{aligned}
\]

Similarly, after Eq (8) is used and with \(\psi, \theta\), and \(\phi\) replaced by \(\phi^{*}\), \(\theta^{\prime}\), and \(\phi^{\prime}\), respectively, from Eq (6) one has
\[
\left(\begin{array}{l}
h_{x^{\prime}}  \tag{9}\\
h_{y^{\prime}} \\
h_{z^{\prime}}
\end{array}\right)=\frac{\sin \dot{\phi}^{\prime}}{\cos \theta^{\prime}}\left(p_{\phi^{*}}-p_{\phi^{\prime}} \cos \theta^{\prime}\right)
\]

Using Eq (9), coupled with (8), the kinetic energy (the Hamiltonian function) of the rigid body can be written in the form
\[
T=\frac{1}{2 A} h_{x}^{2}+\frac{1}{2 B} h_{y}^{2}+\frac{1}{2 C} h_{z}^{2}=H
\]
or
\[
\begin{equation*}
H=T=\left(\frac{\sin ^{2} \phi^{-}}{2 A}+\frac{\cos ^{2} \phi^{-}}{2 B}\right)\left(p_{\phi^{*}}{ }^{2}-p_{\phi^{\prime}}{ }^{3}\right)+\frac{p_{\phi}{ }^{2}}{2 C} \tag{10}
\end{equation*}
\]
where \(A, B\), and \(C\) are the moments of inertia of the rigid body referenced to the principal axes \(0 x^{\prime} y^{\prime} z^{\prime}\). It is assumed that
\[
A>B>C
\]

The associated canonical equations are
\[
\begin{equation*}
i^{*}=\frac{\partial H}{\partial p_{\phi^{*}}}=h\left(\frac{\sin ^{2} \phi^{*}}{A}+\frac{\cos ^{2} \phi^{*}}{B}\right) \tag{118}
\end{equation*}
\]
\[
\begin{gather*}
\phi^{\circ}=\frac{\partial H}{\partial p_{\phi^{\prime}}}=-h \cos \theta^{-}\left(\frac{\sin ^{2} \phi^{\circ}}{A}+\frac{\cos ^{2} \phi^{-}}{B}\right)+\frac{p_{\phi^{-}}}{C}  \tag{1lb}\\
\dot{p}_{\phi^{*}}=-\frac{\partial H}{\partial \phi^{*}}=0  \tag{11c}\\
\dot{p}_{\phi^{\prime}}=-\frac{\partial H}{\partial \phi^{\prime}}=h^{2}\left(\frac{1}{B}-\frac{1}{A}\right) \sin \phi^{-} \cos \phi^{-} \sin ^{2} e^{-}=-h \sin \theta^{\circ} \dot{\theta}^{-}  \tag{11d}\\
p_{\theta^{\prime}}=0  \tag{11e}\\
\cos \theta^{-}=\frac{p_{\phi^{\prime}}}{h} \tag{11f}
\end{gather*}
\]

Description of the Notion in the \(0 x^{*} y^{*} z^{*}\) System
A set of relationships is given which allows the description of the motion in the space-fixed \(\operatorname{system}\left(\psi, \theta, \phi, p_{\psi}, p_{\theta}\right.\), and \(\left.p_{\phi}\right)\) to be obtained completely from the description of the motion in the body-fixed system ( \(\phi^{*}, \theta^{\prime}, \phi^{\prime}, p_{\phi^{*}}, p_{\theta^{\prime}}\), and \(p_{\phi^{\prime}}\) ).

From elementary trigonometry,
\[
\begin{gather*}
\cos \theta^{=} \cos \theta^{*} \cos \theta^{*}-\sin \theta^{*} \sin \theta^{*} \cos \phi^{*} \\
\sin \theta=\sqrt{1}-\cos ^{2} \theta  \tag{12a}\\
\sin \theta^{*} \sin \theta \cos \left(\psi-\psi^{*}\right)=\cos \theta^{*}-\cos \theta^{*} \cos \theta \\
\sin \theta \sin \left(\psi-\psi^{*}\right)=\sin \phi^{*} \sin \theta^{*}  \tag{12b}\\
\sin \theta^{\circ} \cos \theta^{\circ} \cos \left(\phi-\phi^{\prime}\right)=\cos \theta^{*}-\cos \theta^{\circ} \cos \theta \\
\sin \theta \sin \left(\phi-\phi^{\prime}\right)=\operatorname{sir} \phi^{*} \sin \theta^{*} \tag{12c}
\end{gather*}
\]

Wit : Eqs (3), (4), and (5), the variables \(p_{\psi}, p_{\theta}\), and \(p_{\phi}\) can be related to the variables \(p_{\phi^{\prime}}, p_{\phi^{*},} \theta^{*}, \psi^{*}\), and \(\phi^{*}\). Explicitly, these relationships can be written as
\[
\begin{align*}
& P_{\theta}=-P_{\phi^{*}} \sin \theta^{\circ} \sin \left(\phi-\phi^{\circ}\right)  \tag{13a}\\
& P_{\psi}=h \cos \theta^{*}  \tag{13b}\\
& P_{\phi}=P_{\phi^{*}}
\end{align*}
\]

Since \(\theta^{\star}\) and \(\psi^{*}\) are prescribed constants, independent of each other and independent of \(\phi^{*}, \phi^{\prime}, p_{\phi^{*}}\), and \(p_{\phi^{\prime}}\), the independent quantities ( \(\phi^{*}, \phi^{*}, \theta^{*}, \psi^{*}, \mathrm{p}_{\phi^{*}}\), and \(\mathrm{p}_{\phi^{\circ}}\) ) serve to describe the motion of the triaxial body in the \(0 x^{*} y^{*} z^{*}\) system.

\section*{Generator and Equations of Transformation*}

The Hamilton-Jacobi equation associated with Eq (10) is
\[
\begin{equation*}
\frac{1}{2}\left(\frac{\sin ^{2} \phi^{\prime}}{A}+\frac{\cos ^{2} \phi^{\prime}}{B}\right)\left[\left(\frac{\partial S}{\partial \phi^{*}}\right)^{2}-\left(\frac{\partial S}{\partial \phi^{\prime}}\right)^{2}\right]+\frac{1}{2 C}\left(\frac{\partial S}{\partial \phi^{*}}\right)^{2}+\frac{\partial S}{\partial t}=0 \tag{14}
\end{equation*}
\]
from which the generator \(S\) of a canomical transformation is to be determined. A complete integral S of Eq (14) can be obtained by separation of variables. It is found that
\[
\begin{equation*}
S=-\alpha_{1} t+h \phi^{*}+\alpha_{3} \psi^{*}+S_{1}\left(\phi^{\prime}\right) \tag{15}
\end{equation*}
\]
where
\[
\begin{gather*}
\alpha_{1}=H \\
h=p_{\phi^{*}}=\frac{\partial S}{\partial \phi^{*}}  \tag{16}\\
\alpha_{3}=p_{\psi^{*}}=\frac{\partial S}{\partial \psi^{*}}
\end{gather*}
\]
are independent canonical variables. The function \(S_{1}\left(\phi^{\circ}\right)\) is related to \(\alpha_{l}\) and \(h\) through the expression
\[
\begin{equation*}
s_{1}\left(\phi^{\prime}\right)=\int_{\phi_{0}^{\prime}}^{\phi_{\phi}^{\prime}} p_{\phi^{\prime}} d \phi^{\prime} \tag{17}
\end{equation*}
\]
where
\[
p_{\phi^{\prime}}= \pm \sqrt{C\left(\frac{a^{\prime}+b^{\prime} \sin ^{2} \phi^{\prime}}{c^{\prime}+d^{\prime} \sin ^{2} \phi^{\prime}}\right)}
\]
*The variables ( \(\phi^{*}, \phi^{*}, \theta^{*}, p_{\phi^{*}}, p_{\phi^{*}}, p_{\psi^{*}}\) ) in which \(\theta^{*}\) is replaced by \(\cos ^{-1}\left(p_{\psi^{*}} / h\right)\) are introduced here (see "Perturbation of the Force Free Motion of the Triaxial Rigid Body, page 20, for justification).
and
\[
\begin{align*}
& a^{\prime}=A\left(2 B a_{1}-h^{2}\right) \\
& b^{\prime}=h^{2}(A-B) \\
& c^{\prime}=A(B-C)  \tag{19}\\
& d^{\prime}=C(A-B)
\end{align*}
\]

The complete set of transformation equations from ( \(\psi^{*}, \phi^{*}\), \(\left.\phi^{\prime}, p_{\psi^{*}}, p_{\phi^{*}}, p_{\phi^{\prime}}\right)\) to ( \(\alpha_{1}, h, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\) ) is obtained from Eq (15). The equations are:
\[
\begin{align*}
& \beta_{1}=-\frac{\partial S}{\partial \alpha_{1}}=t-L\left(\phi^{\prime}\right)  \tag{20a}\\
& \beta_{2}=-\frac{\partial S}{\partial h}=M\left(\phi^{\prime}\right)-\phi^{*}  \tag{20b}\\
& \beta_{3}=-\frac{\partial S}{\partial \alpha_{3}}=-\psi^{*}  \tag{20c}\\
& p_{\psi^{*}}=\frac{\partial S}{\partial \psi^{*}}=\alpha_{3}  \tag{20d}\\
& p_{\phi^{*}}=\frac{\partial S}{\partial \phi^{*}}=h  \tag{20e}\\
& p_{\phi^{\prime}}=\frac{\partial S}{\partial \phi^{*}}= \pm \sqrt{C\left(\frac{a^{*}+b^{\prime} \sin ^{2} \phi^{\prime}}{c^{2}+d^{\prime} \sin ^{2} \phi^{\prime}}\right)} \tag{20f}
\end{align*}
\]
where
\[
\begin{align*}
& \mathrm{L}\left(\phi^{\prime}\right)= \pm \mathrm{AB} \sqrt{\mathrm{C}} \mathrm{I}_{2}\left(\phi^{\prime}\right)  \tag{21}\\
& \mathrm{M}\left(\phi^{\prime}\right)= \pm \sqrt{\mathrm{C}} \alpha_{2} \mathrm{I}_{3}\left(\phi^{\prime}\right)
\end{align*}
\]
and
\[
\begin{align*}
& I_{2}\left(\phi^{\prime}\right)=\int_{\phi_{0}^{-}}^{\phi^{-}} \frac{d \phi^{\prime}}{\sqrt{\left(a^{\prime}+b^{\prime} \sin ^{2} \phi^{\prime}\right)\left(c^{\prime}+d^{\prime} \sin ^{2} \phi^{\prime}\right)}}  \tag{22a}\\
& I_{3}\left(\phi^{\prime}\right)=\int_{\phi_{0}^{\prime}}^{\phi^{-}} \frac{\left[(A-B) \sin ^{2} \phi^{\prime}-A\right] d \phi^{\prime}}{\sqrt{\left(a^{\prime}+b^{\prime}-\sin ^{2} \phi^{\prime}\right)\left(c^{\prime}+d^{\prime} \sin ^{2} \phi^{\prime}\right)}} \tag{22b}
\end{align*}
\]

In three of the six Eqs (20), the right-hand sides are preceded by \({ }^{ \pm}\)symbols. The choice of the sign in these equations is determined by the choice of sign for \(p_{\phi}\).. Also,
or
\[
\underline{p}=M^{\top} \underline{H}
\]
\[
\left(\begin{array}{l}
p_{\phi^{*}}  \tag{23}\\
p_{\theta^{*}} \\
p_{\phi^{*}}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
\cos \phi^{*} & \sin \phi^{*} & 0 \\
\sin \phi^{*} \sin \theta^{*} & -\cos \phi^{*} \sin \theta^{\circ} & \cos \theta^{*}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
h
\end{array}\right)
\]
hence,
\[
\mathbf{p}_{\phi^{\prime}}=h \cos \theta^{\prime}
\]

Thus, the sign of \(p_{\phi}\) - depends upon whether \(\cos \theta^{-}\)is positive or negative. It is assumed that \(0<\theta^{\prime}<\pi / 2\). Therefore, Eqs (20) and (21) become
\[
\begin{gather*}
t-\beta_{1}=L\left(\phi^{\prime}\right) \\
\phi^{*}+\beta_{2}=M\left(\phi^{\prime}\right)  \tag{24b}\\
B_{3}=-\psi^{*}  \tag{24c}\\
p_{\phi^{*}}=\sqrt{C\left(\frac{a^{2}+b^{-} c^{\prime}+\sin ^{2} \phi^{\prime}}{\sin ^{2} \phi^{\prime}}\right)}  \tag{24d}\\
p_{\phi^{*}}=h  \tag{24e}\\
p_{\psi^{*}}=\alpha_{3} \tag{24f}
\end{gather*}
\]
where
\[
\begin{align*}
& L\left(\phi^{*}\right)=A B \sqrt{C} I_{2}\left(\phi^{\circ}\right)  \tag{25a}\\
& M\left(\phi^{\circ}\right)=-h \sqrt{C} I_{3}\left(\phi^{\prime}\right) \tag{25b}
\end{align*}
\]

INVERSION OF THE SOLUTION FOR THE TRIAXIAL RIGID BODY PROBLEM
WITH NO EXTERNAL FORCES

Equation (24) must be inverted to express the variables ( \(\phi^{*}\), \(\phi^{*}, \psi^{*}, p_{\phi^{*}}, p_{\phi^{-}}, p_{\psi^{*}}\) ) in terms of the canonical constants ( \(\alpha_{1}, h\), \(\alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\) ) and time \(t\). The inversion is shown below.

Inversion of the Equation \(t-\beta_{1}=L\left(\phi^{\prime}\right)\)
Since it is assumed that \(A>B>C\), the quantities \(b^{\prime}, c^{\prime}\), and \(d^{\wedge}\), given in Eqs (19), are positive. The quantity \(a^{\prime}\) may be either positive or negative. In what follows, it is assumed that \(a^{\circ} \geq 0\).

From Eq (8), it is noted that
\[
\begin{equation*}
\frac{a^{-}}{b^{-}}<\frac{c^{-}}{d^{\prime}} \tag{26}
\end{equation*}
\]
since
\[
\frac{2 C \alpha_{1}}{h^{2}}=\frac{A C \omega_{x}{ }^{2}+B C \omega_{y}{ }^{3}+C^{2} \omega_{z}{ }^{3}}{A^{2} \omega_{x}{ }^{3}+B^{B^{2} \omega_{y}{ }^{2}+C^{2} \omega_{z}{ }^{2}}}
\]
where \(\omega_{x}{ }^{-}\), \(\omega_{y}\), and \(\omega_{z}\), are components of the angular velocity w.r.t. the primed system.

For convenience the following parameters are defined:
\[
\begin{align*}
& n_{1}^{2} \equiv \frac{b^{n}}{a^{-}+b^{n}}  \tag{27a}\\
& n_{2}^{2} \equiv \frac{d^{-}}{c^{-}+d^{0}}  \tag{27b}\\
& \xi \equiv \frac{1}{\sqrt{\left(a^{-}+b^{\prime}\right)\left(c^{\prime}+d^{\prime}\right)}}=\frac{1}{B \sqrt{(A-C)\left(2 A \alpha_{1}-h^{2}\right)}}  \tag{27c}\\
& k \equiv \sqrt{\frac{n_{1}^{2}-n_{2}^{2}}{1-n_{2}^{2}}}=\sqrt{\frac{(A-B)\left(h^{2}-2 C \alpha_{1}\right)}{(B-C)\left(2 A \alpha_{1}-h^{2}\right)}}  \tag{27d}\\
& g \equiv \frac{1}{\sqrt{1-n_{2}^{2}}}=\sqrt{\frac{B(A-C)}{A(B-C)}}  \tag{27e}\\
& k^{-} \equiv \sqrt{1-k^{2}}=\sqrt{\frac{(A-C)\left(2 B \alpha_{1}-h^{2}\right)}{(B-C)\left(2 A \alpha_{1}-h^{2}\right)}} \tag{27f}
\end{align*}
\]

Clearly, \(1 \geq n_{1}^{2}>n_{2}^{2}>0\); thus, \(0<k<1\), and \(k-i s\) real since \(a^{\prime} / b^{-}<c^{-} / \bar{d}^{-}\).

To cast Eq (22a) into a more convenient form, a new variable is introduced by the equation
\[
\begin{equation*}
\alpha=\phi^{\prime}+\pi / 2 \tag{28}
\end{equation*}
\]

It follows immediately, by substituting \(\alpha\) and the parameters in Eq (16) into (22a), that
\[
\begin{equation*}
I_{2}\left(\phi^{-}\right)=\xi \int_{\alpha_{0}}^{\alpha} r(\alpha) d \alpha \tag{29}
\end{equation*}
\]
where
\[
\begin{gather*}
\alpha_{0}=\phi_{0}^{\prime}+\pi / 2 \\
r(\alpha)=\frac{1}{\sqrt{\left(1-n_{1}^{2} \sin ^{2} \alpha\right)\left(1-n_{2}^{2} \sin ^{2} \alpha\right)}} \tag{30}
\end{gather*}
\]

Since the lower limit of integration of Eq (29) may be taken to be an absolute constant, \(\phi_{0}^{\prime}=-\pi / 2\) is chosen; hence, \(a_{0}=0\). Therefore,
\[
\begin{equation*}
I_{2}\left(\phi^{\prime}\right)=\xi \int_{0}^{\alpha} r(\alpha) d \alpha \tag{31}
\end{equation*}
\]

In what follows, the formulas which appear in Byrd and Friedman [1] will be referenced. Such formula numbers will be indicated by prefixing the numbers with the designation B-F.

Using B-F (284.00) and Eq (24a),
\[
\begin{equation*}
\int_{0}^{a} r(\alpha) d \alpha=g u=\frac{1}{\xi A B \sqrt{C}}\left(t-\beta_{1}\right) \tag{32}
\end{equation*}
\]
or
\[
\begin{equation*}
u \equiv \lambda t+\varepsilon \tag{33}
\end{equation*}
\]
where
\[
\begin{align*}
\lambda \equiv \frac{1}{g \xi A B \sqrt{C}} & =\sqrt{\frac{\left(2 A a_{1}-h^{2}\right)(B-C)}{A B C}}  \tag{34a}\\
\xi & \equiv-\lambda B_{1} \tag{34b}
\end{align*}
\]

Also from Byrd-Friedman,
\[
\begin{equation*}
\operatorname{sn}^{2} u \equiv[\sin (a m u)]^{2}=\frac{\left(1-n_{2}^{2}\right) \sin ^{2} \alpha}{1-n_{2}^{2} \sin ^{2} \alpha} \tag{35}
\end{equation*}
\]

Solving the above equation for \(\sin \alpha\), one writes
and
\[
\begin{equation*}
\sin \alpha=\frac{\operatorname{snu}}{\sqrt{1-n_{2}^{2} n^{2} u}} \tag{36a}
\end{equation*}
\]
\[
\begin{equation*}
\cos \alpha=\frac{\sqrt{1-n_{2}^{2}} \mathrm{cnu}}{\sqrt{1-\mathrm{n}_{2}^{2} \mathrm{cn}^{2} \mathrm{u}}} \tag{36b}
\end{equation*}
\]
where
\[
c n u \equiv \cos (a m u)
\]
and
\[
\operatorname{sn}^{2} u+c n^{2} u=1
\]

Since \(\alpha=\phi^{\bullet}+\pi / 2\),
\[
\begin{align*}
& \sin \phi^{\prime}=\frac{\sqrt{1-n_{2}^{2}} \mathrm{cnu}}{\sqrt{1-n_{2}^{2} \mathrm{cn}^{2} u}}  \tag{37a}\\
& \cos \phi^{\prime}=\frac{\mathrm{snu}}{\sqrt{1-n_{2}^{2} \mathrm{cn}^{2} u}}  \tag{37b}\\
& \tan \phi^{\prime}=-\frac{\mathrm{cnu}}{g \operatorname{snu}} \tag{37c}
\end{align*}
\]

The quadrant of \(\phi^{-}\)is uniquely determined by studying the signs of cnu and snu.

Equation (37) is not in a convenient form for calculation since powers of \(t\) appear in the expressions for cnu and snu. This difficulty can be avoided by introducing theta functions. From B-F (907.01), \((907.02),(907.03),(900.04)\), and (901.01), for \(|u| \leqslant K^{+}\),
\[
\begin{align*}
\text { snu }=u & -\left(1+k^{2}\right) \frac{u^{3}}{31}+\left(1+14 k^{2}+k^{4}\right) \frac{u^{5}}{5 T} \\
& -\left(1+135 k^{2}+135 k^{4}+k^{6}\right) \frac{u^{7}}{7!}+\cdots \tag{38a}
\end{align*}
\]
\[
\begin{align*}
\mathrm{cnu}= & 1-\frac{u^{2}}{2!}+\left(1+4 k^{2}\right) \frac{u^{4}}{4!}-\left(1+44 k^{2}+16 k^{4}\right) \frac{u^{6}}{6!} \\
& +\left(1+408 k^{2}+912 k^{4}+64 k^{6}\right) \frac{u^{8}}{8!}-\cdots \cdot  \tag{38b}\\
\mathrm{dnu}= & 1-k^{2} \frac{u^{2}}{2!}+\left(4+k^{2}\right) k^{2} \frac{u^{4}}{4!} \\
& -\left(16+44 k^{2}+k^{4}\right) k^{2} \frac{u^{6}}{6!}+\cdots \cdots \tag{38c}
\end{align*}
\]
where
\[
\begin{align*}
& K^{-} \equiv K\left(k^{-}\right)  \tag{39a}\\
& K \equiv \frac{\pi}{2}\left(1+4 \sum_{m=1}^{\infty} \frac{q^{m}}{1+q^{2 m}}\right)=\int_{0}^{\pi / 2} \frac{d v}{\sqrt{1-k^{2} \sin ^{2} v}}  \tag{39b}\\
& 9 \equiv \frac{l_{2} k}{}\left[1+2\left(\frac{k_{1}}{2}\right)^{4}+15\left(\frac{k_{1}}{2}\right)^{8}+150\left(\frac{k_{1}}{2}\right)^{12}\right. \\
& \left.+1707\left(\frac{k_{1}}{2}\right)^{16}+\cdots \cdot\right]  \tag{39c}\\
& k^{\prime} \equiv \frac{1-\sqrt{k^{\prime}}}{1+\sqrt{k^{2}}}\left(k_{1}^{2}<k^{2}<1\right) \tag{39d}
\end{align*}
\]

If \(B-F(1050.01),(1052.01)\), and (1052.02) are used, then
\[
\begin{equation*}
\tan \phi^{\circ}=-\frac{\sqrt{k}}{g} \frac{\cos v+q^{2} \cos 3 v+q^{6} \cos 5 v+\cdots}{\sin v-q^{2} \sin 3 v+q^{6} \sin 5 v \ldots} \tag{40}
\end{equation*}
\]
where
\[
v \equiv \frac{\pi}{2 K} u
\]

The series (c) of (39) for computing q converges rapidly. Hence, the angle \(\phi^{\circ}\) can be expressed in terms of canonical parameters and time through Eq (37) and can be computed by using expression (40).

\section*{Inversion of the Equation \(\phi^{*}+B_{1}=M\left(\phi^{*}\right)\)}

By using Eqs (27), (28), and (30) and recalling that \(\alpha_{0}=0\), Eq (24b) can be rewritten as
\[
\begin{equation*}
\phi^{*}+B_{2}=-h \sqrt{C} \xi \int_{0}^{\alpha}\left[(A-B) \cos ^{2} \alpha-A\right] r(\alpha) d \alpha \tag{41}
\end{equation*}
\]

From Eq (32) ,
\[
\begin{equation*}
\phi^{*}+\beta_{2}=\frac{h}{B}\left(t-\beta_{1}\right)-h \sqrt{C} \xi(A-B) \int_{0}^{\alpha} \cos ^{2} \alpha r(\alpha) d \alpha \tag{42}
\end{equation*}
\]

Using B-F (284.08) and (432.03), Eq (42) becomes
\[
\begin{equation*}
\phi^{*}+\beta_{2}=\frac{h}{B}\left(t-\beta_{1}\right)-\left(\frac{\pi}{2 K}\right)\left[\Omega_{5}-u \Lambda_{0}(\beta, k)\right] \tag{43}
\end{equation*}
\]
where
\[
\begin{align*}
& B \equiv \sin ^{-1} \frac{1}{\sqrt{1-\gamma^{2}}}  \tag{44a}\\
& \gamma^{2} \equiv-\frac{n_{3}^{2}}{1-n_{3}^{2}} \quad\left(1<-\gamma^{2}<\infty\right) \tag{44b}
\end{align*}
\]
and the functions \(\Omega_{5}\) and \(\Lambda_{0}\) are defined in B-F, Sections 430 and 150, respectively. Since \(u=\lambda\left(t-\beta_{1}\right)\), it can be written
\[
\begin{equation*}
\phi^{*}+B_{2}=M^{*}\left(\tau-\beta_{1}\right)-\frac{\pi}{2 K}\left(\Omega_{5}-u\right) \tag{45}
\end{equation*}
\]
where
\[
\begin{equation*}
M^{*}=\frac{h}{B}-\frac{\pi}{2 K}\left[1-\Lambda_{0}(\beta, k)\right] \lambda \tag{46}
\end{equation*}
\]

Expressions for \(P_{\phi}{ }^{-}\)and \(\theta^{\prime}\)
By applying Eq (27) and (37), Eq (24d) can be written as
\[
\begin{equation*}
p_{\phi^{\prime}}=\sqrt{\frac{\left(a^{\prime}+b^{\prime}\right)\left(1-n_{2}^{2}\right)}{\sqrt{C^{\prime}}}}\left(k^{-2}+k^{2} \mathrm{cn}^{2} u\right)^{\frac{1}{2}} \tag{47}
\end{equation*}
\]

From B-F \((121.00)\), one has
\[
\begin{equation*}
\operatorname{dn}^{2} u=k^{-2}+k^{2} \mathrm{cn}^{2} u \tag{48}
\end{equation*}
\]

Hence. Eq (47) takes the form
\[
\begin{align*}
p_{\phi^{\prime}} & =\frac{\sqrt{C\left(a^{\prime}+b^{2}\right)\left(1-n_{2}^{2}\right)}}{\sqrt{C^{\prime}}} d n u \\
& =\sqrt{\frac{C\left(2 A \alpha_{1}-h^{2}\right)}{A-C}} d n u \tag{49}
\end{align*}
\]
and since \(p_{\phi^{\prime}}=h \cos \theta^{-}\),
\[
\begin{equation*}
\cos \theta^{-}=\frac{p_{\phi^{\prime}}}{h}=\sqrt{\frac{C\left(2 A \alpha_{1}-h^{2}\right)}{h^{2}(A-C)}} d n u \tag{50}
\end{equation*}
\]

\section*{Inverted Solution for the Triaxial Rigid Body Problem with No External Forces}

The general solution for the triaxial rigid bois problem with no external forces can then be summarized as follows:
\[
\begin{align*}
& \tan \phi^{\prime}=-\frac{c n u}{g \operatorname{snu}} \\
&=-\frac{\sqrt{k^{\prime}}}{g} \frac{\cos v+q^{2} \cos 3 v+q^{6} \cos 5 v+\cdots}{\sin v-q^{2} \sin 3 v+q^{6} \sin 5 v \cdots} \\
& \phi^{*}+\beta_{2}=M^{*}\left(t-\beta_{1}\right)-\frac{\pi}{2 K}\left(\Omega_{5}-u\right)  \tag{5lb}\\
& \psi^{*}=\beta_{3}  \tag{51c}\\
& p_{\phi^{*}}= \sqrt{\frac{C\left(2 A \alpha-h^{2}\right)}{A-C}} d n u  \tag{5ld}\\
& p_{\phi^{*}}=h  \tag{51e}\\
& p_{\psi^{*}}=\alpha_{3} \tag{51f}
\end{align*}
\]

This solution coupled with Eqs (12) and (13) gives a complete description of the motion of the triexial body in the space-fixed system Ox*y*z* in terms of the canonical constants and time.

\section*{UNIAXIAL SOLUTION}

By letting \(A\) equal \(B\), the triaxial solution (51) can be reduced to the corresponding uniaxial solution. To distinguish between the canonical parameters which appear in the triaxial solution and the reduced solution, the latter will be labeled with the subscript \(u\); that is, \(\alpha_{1 u}, h_{u}, \alpha_{3 u}, \beta_{1 u}, \beta_{2 u}\), and \(\beta_{3 u}\).

For the case \(A=B\), one has
\[
\begin{array}{ll}
\mathrm{n}_{2}^{2}=\mathrm{n}_{2}^{2}=0, & k=0 \\
\mathrm{k}^{2}=1, & g=1 \\
\operatorname{snu}=\sin u, & \operatorname{cnu}=\cos u,
\end{array}
\]
and
\[
\lambda=\sqrt{\frac{\left(2 A a_{11}-h_{12}^{2}\right)(A-C)}{A^{2} C}}
\]

Thus, froia Eq (37e), one obtains
\[
\begin{equation*}
\phi^{\prime}-\phi_{0}=\sqrt{\frac{\left(2 A \alpha_{\mu \mu}-h_{1}^{2}\right)(A-C)}{A^{2} C}}\left(t-\beta_{i u}\right) \tag{52}
\end{equation*}
\]

When \(A=B\),
\[
\begin{aligned}
B & =\frac{\pi}{2}, & \Lambda_{0}\left(\frac{\pi}{2}, 0\right) & =1, \\
M^{*} & =\frac{h_{\mu}}{A}, & \Omega_{5} & =u ;
\end{aligned}
\]
therefore, Eq (45) reduces to
\[
\begin{equation*}
\phi^{*}=-\beta_{2 u}+\frac{h_{\mu}}{A}\left(t-\beta_{1 u}\right) \tag{53}
\end{equation*}
\]

Furthermore, for \(A=2, \operatorname{dn}(u, 0)=1\), and Eq (49) reduces to
\[
\begin{equation*}
p_{\phi}: \sqrt{\frac{C\left(2 A \alpha_{1 u}-h_{1}^{2}\right)}{A-C}} \tag{54}
\end{equation*}
\]

In summary, the uniaxial solution is given as follows:
\[
\begin{gather*}
\phi^{*}-\phi_{0}^{\prime}=\sqrt{\frac{\left(2 A \alpha_{1 u}-h_{u}^{2}\right)(A-C)}{A^{2} C}}\left(t-\beta_{1 u}\right)  \tag{55a}\\
\phi^{*}=-\beta_{2 u} \div \frac{h_{u}}{A}\left(t-\beta_{1 u}\right)  \tag{55b}\\
\psi^{*}=-\beta_{3 u}  \tag{55c}\\
\mathbf{p}_{\phi^{\prime}}=\sqrt{\frac{C\left(2 A \alpha_{1 u}-h_{u}^{2}\right)}{A-C}}  \tag{55d}\\
\mathbf{p}_{\phi^{*}}=h_{u}  \tag{55e}\\
\mathbf{p}_{\psi^{*}}=\alpha_{3 u} \tag{55f}
\end{gather*}
\]
and the corresponding generator is
\[
\begin{equation*}
S_{u}=-\alpha_{1,1} t+h_{u^{*}} \phi^{*}+\alpha_{3 u^{*}} \psi^{*}+\sqrt{\frac{C\left(2 A \alpha_{u}-h_{u}^{2}\right)}{A-C}}\left(\phi^{*}-\phi_{0}^{\prime}\right) \tag{56}
\end{equation*}
\]

Through the use of Eqs (12) and (13), the complete solution of the force-free uniaxial motion can be obtained in the space-fixed system \(0 x * y^{*} z^{*}\).

The parameters which appear in the treatiment of the force-free uniaxial problem, given in [2], will be labeled with superscript asterisks; that is, \(\alpha_{1 u}^{*}, \alpha_{2}{ }_{u}^{*}, \alpha_{3}{ }_{u}^{*}, \beta_{1}{ }_{u}^{*}, 3_{2}{ }_{u}^{*}\), and \(\beta_{3}{ }_{u}^{*}\). It has been shown that
\[
\begin{equation*}
h_{u}^{2}=2 A \alpha_{1 u}^{*}+\left(\frac{C-A}{C}\right) \alpha_{2}{ }_{u}^{* 2} \tag{57}
\end{equation*}
\]

The corresponding generator, in which \(h_{u}\) is interpreted as a function of \(\alpha_{1}{ }_{u}^{*}\) and \(\alpha_{2}{ }_{u}^{*}\) through Eq (57), takes the form
\[
\begin{align*}
S_{u}^{*}=-\alpha_{1} u^{*} & +\sqrt{2 A \alpha_{1} u^{*}+\left(\frac{C-A}{C}\right) \alpha_{2} u^{2}} \phi^{*}+\alpha_{3} u_{u}^{*} \\
& +\alpha_{2}^{*} \dot{u}^{*}\left(\phi^{*}-\phi_{0}^{*}\right) \tag{58}
\end{align*}
\]

Afte: inversion, the associated equations of transformation are
\[
\begin{gather*}
\phi^{*}-\phi_{0}^{\prime}=-\beta_{2 u}^{*}+\frac{\alpha_{2} u^{*}}{A}\left(\frac{A-C}{C}\right)\left(t-\beta_{1} u^{*}\right)  \tag{59a}\\
\left.\phi^{*}=\sqrt{2 A \alpha_{1 u}^{*}+\left(\frac{A-C}{C}\right) \alpha_{2} u^{* 2}} i t-\beta_{1 u}^{*}\right)  \tag{59b}\\
\psi^{*}=-\beta_{3 u}^{*}  \tag{59c}\\
P_{\phi^{*}}=\alpha_{2 u}^{*}  \tag{59d}\\
p_{\phi *}=\sqrt{2 A \alpha_{1 u}^{*}+\left(\frac{C-A}{C}\right) \alpha_{2 u}^{*}}  \tag{59e}\\
P_{\psi^{*}}=\alpha_{3 u}^{*} \tag{59f}
\end{gather*}
\]

If EqS (59) and (60) are compared, the parameters ( \(\alpha_{1}{ }_{u}^{*}, \alpha_{2}{ }_{u}^{*}, \alpha_{3}{ }_{u}^{*}\), \(\beta_{1 u}^{*}, \beta_{2}{ }_{u}^{*}\), and \(\beta_{3}{ }^{*}\) ) and ( \(\alpha_{1 u}, h_{u}, \alpha_{3 u}, \beta_{1 u}, \beta_{2 u}\), and \(\beta_{3 u}\) ) are related. as follows
\[
\begin{gather*}
\alpha_{1 u}^{*}=\alpha_{1 u}  \tag{60a}\\
\alpha_{2 u}^{*}=\sqrt{\frac{C\left(2 A \alpha_{1}-h_{1}^{2}\right)}{A-C}}  \tag{60b}\\
\alpha_{3 u}^{*}=\alpha_{3 u}  \tag{60c}\\
\beta_{1 u}^{*}=\beta_{1 u}+\frac{A}{h_{u}} \beta_{2 u}  \tag{60~d}\\
\beta_{2 u}^{*}=-\frac{1}{h_{u}} \sqrt{\frac{\left(2 A \alpha_{1 u}-h_{1}^{2}\right)(A-C)}{C}} \beta_{2 u}  \tag{60e}\\
\beta_{3 u}^{*}=\beta_{3 u} \tag{60f}
\end{gather*}
\]

\section*{PERTURBATION OF THE FORCE FREE MOTION OF THE TRIAXIAL RIGID BODY}

Recalling the section entitled "Generator and Equations of Transformation," page eight, \(\theta^{*}\) must be replaced with an equivalent paraneter \(p_{\psi^{\star}}\), the momentum conjugate to \(\psi^{*}\), to use the canonical perturbation equations of Hamilton-Jacobi theory in studying the perturbations of the force free motion of the triaxial rigid body. It follows from Eq (13b) that either \(\theta^{*}\) ©r \(p_{\psi^{*}}\) will give an equivalent description of the motion. It is clear from this equation that the momentum conjugate to any angle \(\psi\) which lies in the \(x^{*} y^{*}\) plane is independent of the angle \(\psi\) and depends only on \(h\) and \(\theta^{*}\). Therefore,
\[
\begin{equation*}
\mathbf{p}_{\psi}=\mathbf{p}_{\psi^{*}}=\mathrm{h} \cos \theta^{*}=\mathrm{P}_{\phi^{*}} \cos \theta^{*} \tag{61}
\end{equation*}
\]

Thus, the six independent quantities ( \(\phi^{*}, \phi^{\prime}, \psi^{*}, P_{\phi^{*}}, P_{\phi^{\prime}}\), and \(p_{\psi^{*}}\) ) will completely describe the motion of the triaxidl rigid body with respect to the \(0 x y^{*} z^{*}\) system. The Hamilton function from which \(\phi^{*}\), \(\phi^{\prime}, p_{\phi^{*}}\), and \(p_{\phi^{\prime}}\) are to be obtained is, of course, still given by Eq (10). Furthermore, H, as given in Eq (10), can be considered to be the Hamilton function of an extended system of variables ( \(\phi^{*}, \phi^{*}, \psi^{*}\), \(\mathbf{P}_{\phi^{*}}, \mathbf{P}_{\phi^{\prime}}, \mathrm{P}_{\psi^{*}}\), which satisfy the canonical equations of motion.
\[
\begin{align*}
& \dot{\phi}^{*}=\frac{\partial H}{\partial p_{\phi^{*}}}  \tag{62a}\\
& \dot{\phi}^{-}=\frac{\partial H}{\partial p_{\phi^{*}}}  \tag{62b}\\
& \dot{\psi}^{*}=\frac{\partial H}{\partial p_{\psi^{*}}}  \tag{62c}\\
& \dot{p}_{\phi^{*}}=-\frac{\partial H}{\partial \phi^{*}}  \tag{62d}\\
& \dot{p}_{\phi^{\prime}}=-\frac{\partial H}{\partial \phi^{*}}  \tag{62e}\\
& \dot{p}_{\psi^{*}}=-\frac{\partial H}{\partial \psi^{*}} \tag{62f}
\end{align*}
\]
subject to the constraints
\[
\begin{gather*}
\psi^{*}=\text { constant }  \tag{63a}\\
p_{\psi^{*}}=h \cos \theta^{*}=\text { constant } \tag{63b}
\end{gather*}
\]

This follows from the fact that the twn differontiai equatiuns (62c) and (62f), which have been added to the system, are entirely consistent with (63), the equations of constraint.

GRAVITY GRADIENT POTENTIAL FOR THE TRIAXIAL BODY
The gravity gradient potential \(V\) for the triaxial body is given by
\[
\begin{equation*}
v=-\frac{3}{2} k\left[(A-C) \cos ^{2} x+(A-B) \cos ^{2} B\right] \tag{64}
\end{equation*}
\]
where \(k=n^{-2}\) and \(n^{-}\)is the mean motion of the Earth about the triaxial body. A circular orbit will be considered for which \(k\) is a constant. The angles \(\alpha, \beta\), and \(x\) are the direction angles of the line segment from the center of mass of the body to the center of mass of the Earth with respect to \(0 x^{\prime} y^{\prime} z^{\prime}\), the principal axes of the body. Since \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\), Eq (64) can be rewritten as
\[
\begin{equation*}
v=\frac{3}{2} k(B-A)+W \tag{65}
\end{equation*}
\]
where
\[
\begin{equation*}
W=\left(\frac{B-C}{A-C}\right) W_{1}+W_{2} \tag{66}
\end{equation*}
\]
and
\[
\begin{align*}
& W_{1}=-\frac{3}{2} k(B-C) \cos ^{2} x \\
& W_{2}=\frac{3}{2} k(A-B) \cos ^{2} \alpha \tag{67}
\end{align*}
\]

The expression for cos \(x\) in terms of canonical constants and time \(t\) is deduced in [1] and can be written in the form
\[
\begin{equation*}
\cos x=D_{1} \cos \theta^{\circ}+D_{2} \sin \theta^{-} \sin \phi^{*}+D_{3} \sin \theta^{-} \cos \phi^{*} \tag{68}
\end{equation*}
\]
where
\[
\begin{align*}
D_{1}=\sin i \sin \ell \cos \theta^{*} & -\left[\cos i \sin \ell \cos \left(\Omega+\beta_{3}\right)\right. \\
& \left.+\cos \ell \sin \left(\Omega+\beta_{3}\right)\right] \sin \theta^{*} \\
D_{2}= & -\cos i \sin \ell \sin \left(\Omega+\beta_{3}\right)+\cos \ell \cos \left(\Omega+\beta_{3}\right)  \tag{69}\\
D_{3}= & -\sin i \sin \ell \sin \theta^{*}-\left[\cos i \sin \ell \cos \left(\Omega+\beta_{3}\right)\right. \\
& \left.+\cos \ell \sin \left(\bar{\Omega}+\beta_{3}\right)\right] \cos \theta^{*}
\end{align*}
\]

Note that \(D_{1}, D_{2}\), and \(D_{3}\) are functions of three canonical constants only, namely, \(\alpha_{2}=h, \alpha_{3}\), and \(\beta_{3}\) and contain \(t\) explicitly only through \(\ell\) and \(\Omega\), which are both linear in \(t\).

A suitable expresion for \(\cos \alpha\) can be derived similarly. From spherical trigonometry,
\(\cos \alpha=\cos \phi^{\prime} \cos \phi_{\mathrm{H}}-\sin \phi^{*} \sin \phi_{\mathrm{H}} \cos \theta^{\prime}\)
\(\cos \theta_{\mathrm{H}}=\cos \mathrm{i} \cos \varepsilon^{\prime}-\sin \mathrm{i} \sin \theta^{*} \cos \left(\Omega+\beta_{3}\right)\)

Introducing
\[
\begin{align*}
& E_{1} \equiv \cos \left(\phi^{*}-\phi_{H}\right)=\frac{\cos i-\cos \theta_{H} \cos \theta^{*}}{\sin \theta_{H} \sin \theta^{*}}  \tag{72}\\
& E_{2} \equiv \sin \left(\phi^{*}-\phi_{H}\right)=-\frac{\sin i \sin \left(\Omega+\beta_{3}\right)}{\sin \theta_{H}} \tag{73}
\end{align*}
\]

Equation (7) can be written in the form
\[
\begin{align*}
\cos \alpha=E_{l}\left(\cos \phi^{\prime} \cos \phi^{*}\right. & \left.-\cos \theta^{\prime} \sin \phi^{\prime} \sin \phi^{*}\right) \\
& -E_{2}\left(\cos \phi^{\prime} \sin \phi^{*}\right. \\
& \left.+\cos \theta^{\prime} \sin \phi^{*} \cos \phi^{*}\right) \tag{74}
\end{align*}
\]

Note that \(E_{1}\) and \(E_{2}\) aye functions of only three canonical constants, namely, \(\alpha_{2}, \alpha_{3}\), and \(\beta_{3}\) and contain \(t\) explicitly only through \(\ell\) and \(\Omega\). It is important to note that \(D_{1}, D_{2}, D_{3}, E_{1}\), and \(E_{2}\) do not contain the moments of intertia \(A, B\), and \(C\). Thus, these coefficients can be treated as constants when \(\cos x\) and \(\cos \alpha\) are expanded in Taylor's series about their values at \(B=A\). The reason for the expansion is the angles \(\phi^{*}, \phi^{\prime}\), and \(\theta^{\prime}\) for the unperturbed triaxial body are no longer either constant or simple linear functions of time (as was the case in the uniaxial problem). Thus, since difficulties are anticipated in the integration of the perturbation equations, attempts are made to linearize the arguments of the trigonometric functions which will appear in the integration.

Introducing the notation
\[
\begin{align*}
& f(x) \equiv \cos x \\
& g(\alpha) \equiv \cos \alpha \tag{75}
\end{align*}
\]
\(f(X)\) and \(g(\alpha)\) are treated as functions of \(B\) and are expanded about the value \(B=A\). Using prime notation to indicate derivatives with respect to \(B\), one has
\[
\begin{equation*}
\left.f(x)=f(B)-f^{\prime}(B)(A-B)+\frac{1}{2} f^{-1}(B)(A-B)^{2}+O(A-B)^{3}\right] \tag{76}
\end{equation*}
\]
where
\[
\begin{align*}
f(B)=D_{1}\left[\cos \theta^{-}\right]_{B=A} & +D_{2}\left[\sin \theta^{-} \sin \phi^{*}\right]_{B=A} \\
& +D_{3}\left[\sin \theta^{-} \cos \phi^{*}\right]_{B=A} \\
f^{\prime}(B)=D_{1}\left[\frac{\partial}{\partial B} \cos \theta^{-}\right]_{B=A} & +D_{2}\left[\frac{\partial}{\partial B}\left(\sin \theta^{-} \sin \phi^{*}\right)\right]_{B=A} \\
& +D_{3}\left[\frac{\partial}{\partial B}\left(\sin \theta^{-} \cos \phi^{*}\right)\right]_{B=A}  \tag{77}\\
f^{\prime}(B)=D_{1}\left[\frac{\partial^{2}}{\partial B^{2}} \cos \theta^{\prime}\right]_{B=A} & +D_{2}\left[\frac{\partial^{2}}{\partial B^{2}}\left(\sin \theta^{-} \sin \phi^{*}\right)\right]_{B=A} \\
& +D_{3}\left[\frac{\partial^{2}}{\partial B^{2}}\left(\sin \theta^{-} \cos \phi^{*}\right)\right]_{B=A}
\end{align*}
\]
and
\[
\begin{equation*}
g(\alpha)=g(B)-g(B)(A-B)+O\left[(A-B)^{2}\right] \tag{78}
\end{equation*}
\]
where
\[
\begin{align*}
& g(B)=E_{1}\left[\cos \theta^{\prime} \cos \phi^{*}\right.\left.-\cos \theta^{\circ} \sin \phi^{\prime} \sin \phi^{*}\right]_{B=A} \\
&+E_{2}\left[\cos \phi^{*} \sin \phi^{*}\right. \\
&\left.+\cos \theta^{*} \sin \phi^{*} \cos \phi^{*}\right]_{B=A} \\
& g^{-}(B)=E_{1}\left[\frac{\partial}{\partial B}\left(\cos \phi^{\circ} \cos \phi^{*}-\cos \phi^{*} \sin \phi^{*} \sin \phi^{*}\right)\right]_{B=A}  \tag{79}\\
&+E_{2}\left[\frac { \partial } { \partial B } \left(\cos \phi^{*} \sin \phi^{*}\right.\right. \\
&\left.\left.+\cos \theta^{*} \sin \phi^{*} \sin \phi^{*}\right)\right]_{B=A}
\end{align*}
\]

In Eq (78), only two terms are carried since \(g(\alpha)\) is multiplied by the fact \(r(A-B)\) in \(W\).

Equations (66), (67), (76), and (78) yield
\[
\begin{equation*}
W=\left(\frac{B-C}{A-C}\right) W_{1 u}+W_{2 t}+O\left[(A-B)^{3}\right] \tag{80}
\end{equation*}
\]
where
\[
\begin{aligned}
W_{l u}= & -\frac{3 k}{2}(A-C)[f(B)]^{2} \\
W_{2 t}= & \frac{3 k}{2}(A-B)\left\{2(B-C) f(B) f^{\wedge}(B)+\left[g(B)^{2}\right]\right\} \\
& -\frac{3 k}{2}(A-B)^{2}\left\{(B-C)\left[f^{-}(B)\right]^{2}\right. \\
& \left.\left.+f(B) f^{\circ}(B)\right]+2 g(B) g^{-}(B)\right\}
\end{aligned}
\]

These expressions for \(W_{1 u}\) and \(W_{2 t}\) can be used to study the perturbations of the variables ( \(\alpha_{1}, h, \alpha_{3}, \beta_{1}, \beta_{2}\), and \(\beta_{3}\) ) which are given by the following relations
\[
\begin{align*}
& \dot{\alpha}_{i}=\left(\frac{B-C}{A-C}\right) \frac{\partial W_{1 \mu}}{\partial \beta_{i}}+\frac{\partial W_{2 t}}{\partial \beta_{i}} \\
& \dot{\beta}_{i}=-\left(\frac{B-C}{A-C}\right) \frac{\partial W_{1 \mu}}{\partial \alpha_{i}}-\frac{\partial W_{2 t}}{\partial \alpha_{i}}
\end{align*}
\]

\section*{REFERENCES}
1. Byrd, P., and Friedman, M. Handbook of Eliiptic Integrals for Engineers and Physicists. Wurzburg: Springer-Verlag, 1954.
2. Cranford, K. H., and Fitzpatrick, P. M. "On the Influence of Gravity on the Rotational Motion of Artificial Earth Satellites," Vol II of Environment Induced Orbital Dynamics. Huntsville, Alabama: NASA/George C. Marshall Space Flight Center, Aero-Astrodynamics Laboratory, October 31, 1967.

STRESSES IN DOME-SHAPED SHELLS OF REVOLUTION WITH dISCONTINUITIES AT THE APEX

\author{
C. H. Chen, J. C. M. Yu, W. A. Shaw
}

\section*{ABSTRACT}

Asymptotic solutions to Novorhilov's equations of shells of revoIution are derived for axisymnetric and first harnonic loadings. The solutions obtained ara valid throughout the shallow and nonshallow regions.

Stresses in dore-shaped shells of revolution with a discontinuity in the form of a circular hole; or a circular rigid insert; or a nozzle, at the apex hava been investf.gated. Numerical results are obtained for spheres, ellipooids, and paraboloids, containing a discontinuity under an internal pressure and a moment. Good corralation between theoretical and experimental stresses is ohtained for the spherical shell. Curves depicting stress distributions are given. The influence of three types of dissontinuity on the stresses of the sheils is also investigated.

\section*{TABLE OF CONTENTS}
LIST OR TABLES ..... vi1
IIST OF FIGURES ..... viii
LIST OF SYMBOLS ..... \(x\)
I. INTRODUCTION ..... 1
Background ..... 1
(A) Ceneral theory ..... 1
(B) Shells of revolution ..... 1
(C) Application ..... 5
Statement of the problems ..... 6
II. GOVERNING DITFERENITAL EQUATIONS ..... 8
Shells of Revolution ..... 8
(A) Axisymmetric deformation ..... 10
(B) Nor-symnetric deformation - edge loads only ..... 15
Circular Cyilindrical Shells ..... 19
(A) Axisymetric deformation ..... 23
(B) Non-symmetric deformation ..... 22
III. SOLUTIONS OF THE GOVERNING DIFFERENTIAI EQUATIONS ..... 24
Shells of Revolution ..... 24
(A) Axisymuetric deformation ..... 24
(a) Homogeneous solution ..... 25
(b) Remarks on the characteristics of the solution ..... 31
(c) Reduction to the solution of spherical shells ..... 33
(d) Complex forces ..... 33
(e) Particular solution ..... 34
(f) Displacements ..... 37
(B) Nonmsymmetric deformation ..... 38
(a) Homogeneous solution ..... 39 ..... 39
(b) Particular solution ..... 41
(c) Displacenents ..... 43
Circular Cylindrical Shells ..... 49
(A) Axisymmetric defomation - internal pressure .... ..... 49
(B) Nonosymmetric deformation - under a moment •••• ..... 50
IV. BOUNDARY CONDITIONS AND DETERMINATION OF CONSTANTS ..... 54
Axisynmetric Deformation - Internal Pressure ..... 54
Case ai a circular hole at the apex ..... 54
Case bs a circular rigid insert at the apox ..... 55
Case c: a nozzle at the apex ..... 56
Non-symmetric Deformation - under a Moment ..... 58
Case a: a circular hole at the apex ..... 59
Case bi a circular rigid insert at the apex ..... 60
Case ci a nozzle at the apex ..... 61
v. ANALYSIS OF NUMERICAL RESULIS ..... 63
Comparison of Theoietical and Experimental Stresses ..... 63
Pressure Loading ..... 65
(A) Spherical shells ..... 65Effect of a discontinuity on stresses and itsphysical interpretation65
Optimur ratio \(x_{0} / h^{*}\) of a nozzle ..... 72
(B) Ellipsoids ..... 73
(C) Paraboloids ..... 75
(D) Optimum ratio a/l of ellipsoids with a nozzleunder internal pressure79
Homent Loading ..... 80
VI. SUMMARY AND CONCLUSIONS ..... 85
REFERENCES ..... 88
APPENDIX ..... 95

\section*{LIST OF TABLES}
3-1. BENDING SOLUTIONS OF A SIELL OF REVOLUTION UNDER INTERNAL PRESSURE ..... 36
3-2. MEMBRANE SOLUTIONS OF A SHELL OF REVOLUTION UNDER INTERNAL PRESSURE ..... 36
3-3. BENDING SOLUTIONS OF A SHELL OF REVOLUTION UNDER A MOMENT ..... 42
3-4. MEMBRANE SOLUTTIONS OF A SHELL OF REVOLUTION UNDER A HOKENT ..... 44
3-5. SOLUTIONS OF A CYLINDRICAL SHELL UNDER INTERNAL PRESSURE ..... 51
3-6. SOLUTIONS OR A CYLINDRICAL SHELL UNDER A MONENT ..... 53

\section*{LIST OF FIGURES}
2-1. Coordinate system of a shell of revolution ..... 9
2-2. Cylindricil coordinate system ..... 20
3-1. Equilibrium of the forces in a shell of revolution ..... 34
4-1. Internal pressure equilibrated with vertical shear ..... 54 acting along the hole
4-2. Forces and defomations at the junction of a nozzle and a shell of revolution ..... 57
4-3. Free body diagram of a shell of revolution under a moment ..... 58
4-4. Free body diafam of a cylindrical shell under a moment ..... 59
4-5. Deformation of a shell of revolution with a rigid insert under a moment ..... 60
4r-6. Deformation of a shell of revolution With a. nozzle under a moment ..... 61
5-I. Generating curves of shells of revolution ..... e 4
5-2. Comparison of theoretical and experimental stresses, internal pressure, 200 psi ..... 66
5-3. Comparison of theoretical and exporinental stresses in the plane of loading - moraent, 2400 in-libs. ..... 67
5-4. Comparison of stresses among different types of discontinuity for internal paressure. ( \(\mathrm{sphere}, \mathrm{R} / \mathrm{h}=100, \mathrm{r}_{0} / \mathrm{h}^{\text {T}}=20, \theta_{0}=5^{\circ}\) ) 69
5-5. Deformation of a spharical shell ..... 70
5-6: Doformation of a spherical shell with a circular hole ..... 70
5-7. Deformation of a spherical shell with a rigid insert ..... 70
5-8. Strusses of a spherioal shell at the junction ..... \(74^{\circ}\)

5-10. Comparisen of stresses among different types of disccitinuity, internal pressure. ( Ellipsoid, \(a^{2} / l^{2}=0.8, / h=100\),
\[
\left.x_{0} / h^{*}=20_{1} \quad \theta_{0}=5^{0}\right\} \ldots 77
\]

5-11. Comparison of stresses among different types of discontinuity, internal pressure, ( Paraboloid, \(\gamma=7, / h=10\),
\[
\begin{aligned}
& r=1, / h=101 \\
& \left.r_{0} / h^{*}=20, \theta_{0}=5^{6}\right) \ldots . . .78
\end{aligned}
\]

5-12. Stress distributions of ellipsoids having the same volume and the same weight 81
5-13. Comprison of stresses among different types of discontinuity, momeni loading, (Sphere, \(\mathrm{R} / \mathrm{h}=100, \mathrm{r}_{0} / \mathrm{h}^{*}=20, \theta_{0}=5^{\circ}\) ) 82
5-14. Sitresses of ellipsoids with different values of eccentricity, moment lowing ..... 84
A-1. Coordinate lines of a surface ..... 96
A-2. Positive directiuns of forces and moments ..... 101

\section*{Upper-case Letters}
\begin{tabular}{|c|c|}
\hline \(A_{1}, A_{2}\) & Lame' paraneters. \\
\hline D & Ex'ensional stiffness, Eh/(1- \(\mu^{2}\) ) \\
\hline E & Young's modulus. \\
\hline G() & Differential operator defined by Eq. (2-26) \(^{\text {. }}\) \\
\hline \(\mathrm{G}_{1}()\) & Differential operator defined by Eq. \(\mathrm{E}_{\text {(2-29) }}\) \\
\hline \(\mathrm{H}_{2}\) & - \(A_{1}\left(1+z / R_{1}\right)\) \\
\hline \(\mathrm{H}_{2}\) & - \(A_{2}\left(1+z / R_{2}\right)\) \\
\hline \(\mathrm{I}_{0}, \mathrm{I}_{2}\) & Modified Bessel functions of the first kind of order zero and one, respectively. \\
\hline \(\mathrm{J}_{0}, J_{1}\) & Bessel functions of the first kind of onder zero and one, respectively. \\
\hline K & Bending rigidity, \(E h^{3} /\left(12\left(1-\mu^{2}\right)\right.\) ) \\
\hline \(\mathrm{K}_{0}, \mathrm{~K}_{\text {I }}\) & Modified Bessel functions of the second kind of order zero and one, respectively. \\
\hline \(M_{1} ; M_{2} ; M_{12}, M_{21}\) & Bending moments and twisting moments definei by Eqs. (A-13). \\
\hline M & - \(\mathrm{K}_{1}+\mathrm{M}_{2}\), or applied external moment. \\
\hline \(\mathrm{N}_{2}, \mathrm{~N}_{2}\) & Transverse shears defined by Eqs. (A-13). \\
\hline \(\mathrm{R}_{1}\), \(\mathrm{R}_{2}\) & Principal radii of curvature. \\
\hline \(\mathrm{R}_{0}\) & Minimum radius of curvature of a shell of revolution. \\
\hline \(\mathrm{R}^{*}\) & Radius of curvature at the apax of a shell of revolution. \\
\hline s & - \(\mathrm{T}_{12}-\mathrm{M}_{21} / \mathrm{R}_{2}-\mathrm{T}_{21}-M_{12} / R_{1}\) \\
\hline S & A complex force \\
\hline
\end{tabular}
\(T_{1}, T_{2}, T_{12}, T_{21}\)
\(T_{1}, \bar{T}_{2}, \bar{T}\)
\(T\)
\(T_{1}^{*}, T_{2}^{*}\)
\(\bar{U}, \bar{v}\)
\(\nabla\)
\(X_{2}\),
\(Y_{0}, Y_{1}\)

\section*{Lower-case Letters}
a,
\(\mathrm{b}^{2}\)
\(b_{1}\)
\(b_{2}\)
-
\(c^{*}\)
\(J_{1}, \boldsymbol{J}_{2}, J_{n}\)
\({ }^{\circ} 11,{ }^{0} 22 i^{0}{ }^{2}\)
- 31 , e32, \({ }^{-3}\)
\(h, h^{*} \quad\) Thicknesses of a shell of rovolution and a cylindrical sinell, respoctively.
\[
h_{1}
\]
ker, kel, \(\mathrm{ker}_{\mathrm{I}}, \mathrm{kel} \mathrm{I}_{1}\)
\(p\)
\(p(\theta)\)
Major and minor semiaxes of an ellipsoid.
\(=\sqrt{3\left(1-\mu^{2}\right)} x_{0} / h^{*}\)
\(4 b\left(1+1 /\left(2 b^{2}\right)\right)\)
- \(b\left(1-1 /\left(2 b^{2}\right)\right)\)
\(\left.a h / \sqrt{12\left(1-u^{2}\right.}\right)\)
\(=h^{*} / \sqrt{12\left(1-u^{2}\right)}\)
Unit vectors in the directions of \(\alpha_{1}, d_{2}\) and along the nomal to the middle surface.

Strain compunents,
\(=\left(R_{0} / R_{2}\right)^{3 / 4}(\eta / \lambda \sin \theta)^{\frac{1}{2}}\)
Thompson functions of order eero and ono.
Internel pressure.
A. function of 0 .

Nomal forces and in plane shearing forces defined by eqs. \((A-1 j)\).

Complex forces defined in Eqs. (A-26).
\(=T_{1}+T_{2}\)
Menbmane direct forces.
Complex auxiliaty functions defined by Eqs.(2-24).
Gimplex function defined by Eq. (2-30).
Rotatica about the line \(\alpha_{1=}\) constant.
Pessel functions of the second kind of order zero and one, respectively.
xi.
\begin{tabular}{|c|c|}
\hline \(q_{1} ; q_{2} ; q_{n}\) & Conponents of a surfacs loading in the directions of \(\vec{e}_{1}, \overrightarrow{\mathrm{e}}_{2}, \overrightarrow{\mathrm{e}}_{n}\), respectively. \\
\hline q( \({ }^{(0)}\) & A function of \(\theta\). \\
\hline \(r_{0}\) & Radius of a circular cylindrical sholl. \\
\hline \(u,{ }_{\text {r }}, w\) & Displacenents of the middle surface in the directions of \(\mathbf{E}_{1}, \Xi_{2}\), \({ }_{n}\), respectivaly. \\
\hline \(u_{z}, v_{z}, u_{z}\) & Displacenents of a point, at a distance \(z\) from the niddje surfaco, in the directions of \(\overrightarrow{\vec{b}}_{1}, \overrightarrow{\mathrm{\theta}}_{2}, \overrightarrow{\mathrm{t}}_{\mathrm{n}}\), respectively. \\
\hline \(\bar{u}, \bar{v}, \bar{w}\) & Complex displacements. \\
\hline z & Distance along the normal from the middle surface. \\
\hline \multicolumn{2}{|l|}{Graek Letters} \\
\hline \(a_{1}, a_{2}\) & Coondinates of a middle surface. \\
\hline 0. \(\phi\) & Coordinates of the middic surface of a shell of revolution, see Eq. (2-2). \\
\hline a, B & Coordinates of the middle suriace of a cylindrical shall, see Eq. \((2-41)\). \\
\hline \(\epsilon_{1}, \epsilon_{2}, \omega_{,} k_{1}, x_{2}, \gamma\) & Deformation paramoters of a middle surface, see Eqs. ( \(A-6\) ) and (A-9). \\
\hline \[
\begin{array}{ll}
\sigma_{11}, & \sigma_{22}, \\
\sigma_{12}, \\
\sigma_{31}, & \sigma_{32}, \\
\sigma_{33}
\end{array}
\] & Stress components. \\
\hline \(\mu\) & Poisson ratio. \\
\hline \(\lambda^{2}\) & \(=\sqrt{12\left(1-\mu^{2}\right)} \mathrm{R}_{0} / h_{\text {c }}\) \\
\hline \(\eta\) & \[
=\int_{0}^{0} \frac{R_{1}}{\sqrt{R_{2} R_{0}}} d \theta
\] \\
\hline V. 1 & . Angles of rotation definod by Eqs. ( \(A-3 d\) ). \\
\hline \(\Delta 1)\) & Differential operntor dofined by Eqs. (A-3a), (2-5), (2-7) and (2-43). \\
\hline
\end{tabular}

\section*{I. INTROUUCTION}

\section*{Background}
(A) General Theory

The basic equations of the linear theory of thin elastic shells have been well developed (1-5)*. These equations involve the deformationdisplacement relations, the equations of equilibrium and rolations between forces, moments and the deformation parameters. The derivation of these equations and methods for effecting solutions, especially the deduction by means of complex transformations to a fourth order systen of idiferential equations, are briefly outlined in the Appendix. (B) Shells of Revolution

The basic equations for shells of revolution can be deduced from those of the general theory of thin elastic shells by proper choice of a coordinate system and Lame' parameters. There are several methods of reduction of the basic equations to a system of equations from which solutions can be readily derived.

Axisymmetrio Doformation
Reduction of the basic equations to a set of two equations which relate the rotation \(\eta\) and the transverse shear \(N_{1}\) was first obtained by Reissner (6) for spherical sholls and generalized by Meissner (7) for shells of rovolution. The procedure of this derivation is also given in reference (3). By similar procedure, Naghdi and DeSilva (8) extended the work of * Numbers inside the brackets refer to the references.

Meissner and obtained two equations which, for uniform tnickness and for sone classes of variable thicknoss, can be combined to give a single complex differential equation. Novozhilov(2), from the approach of the complex transfomation, obtained a single differential equation, which is valid only for sholls of uniform thickness.

Exact solutions to these equations have been derived for same particular classes of sholls of revolution, such as circular cylindrical shells, conical shells and spherical shells \(\{2,3,51\), of which the curvatures of the generutors of the middle surfaces ore either zero or a constant. When the curvatures of the generators are functions of position, as is the case in ellipsoidal, paraboloidal and other shells of revoliution, the exact solution bccomes prohibitively difficult. Dovelopnent of approximite solutions such as asympintic solutions is indispensable to the analysis.

The method of asymptotic integration has been widely applied to obtaining approximate solutions for shell equations, which for shells of revolution may be transfonuod into the form
\[
\begin{equation*}
\frac{d^{2} w}{d^{2} \theta^{2}}=\{\lambda p(\theta)+q(\theta)\} w \tag{1-1}
\end{equation*}
\]
where \(\lambda\) is a large parameter. The asymptotic character of the solutions of Eq. (1-1) as \(\lambda\) approachos infinity can take many different forms depending on the properties of \(p(\theta)\) and \(q(\theta)\). However, three cases are usualily encountered in the equatione of sheils of revolution. The first oase, the so-called alassical type, is an asymptotic solution of Eq. (2-1) In whioh, on some interval \(\theta_{1} \& \theta \theta_{2}, p(\theta)\) and \(q(\theta)\) are both bounded and \(p(\theta)\) is also bounded from zero. The socond case is an asynptotic solution of Eq. (1-1) containing a tuming point. In this case, \(p(\theta)\) vanishes at a
point \(\theta_{0}\) within the interval \(\theta_{1} \leqslant \theta \leqslant \theta_{2}\) such a point is called a turming point. The third case is an asymptotic solution of Eq. (1-1) containing a singular point. In such a case, trere exists a point \(\theta_{0}\) in the interval. \(\theta_{1} \leqslant \theta \leqslant \theta_{2}\) at which \(q(\theta)\) may tave a pole of first or second order and \(p(\theta)\) contains as a factor \(\left(\theta-\theta_{0}\right)^{a}\) where \(a\) is a real nonnegative constant, and \(p(\theta)\) and \(q(\theta)\) are both bounded in the rest of the interval. The solutions of these three cases have been investigated extensively by Langer (9) and 01 ver \([10,11]\). The first case occurs in the differential equation for sinells of revolution with two open edges where the region of interest lies in the nonshallow region (large values of \(\theta\) ). The second case occurs in the differential equation for toroidal shells, and the third case is encounitered in the differential equation for dome-shaped shells of revolution where the region of interest lies in the shallori region (small values of \(\theta\) ) including a singular point at the apex.

Asymptotic integration of the thind case has been applied to the investigation of ellipsoidal, paraboloidal and other dcmemshaped shells of revolution. Naghdi and DeSilva [22] applied this method to the study of deformations of eilipsoidal shells of revolution of uniform thickness under axisymmetric loading. Solutions valid in the shallow region were obtained in terms of Kelvin functions. Clark and Reissner [13] ortained the solution based on the bending theory for complete ellipsoidal shells of revolution subjected to internal pressure by the use of small-parameter expansion. Deformation of paraboloidal shelis of uniform thickness subjected to a load uniformly distributed over a small region about the apex and olanped at the open edge was studied by DeSilva and Arbor (14). Study of dome-shapod shalls of revolution subjected to axisymmetric loading
was made by Eaker and Cline [15], and Steele and Hartung [16].
Application of the first case of asymptotic solution which is valid oniy in the nonshallow region was made by Novozhilov in the study of nonshallow shells of revolution under axisymetric loads.

\section*{Nonsymnetric Deformation}

There are three basic procedures in reducing the basic equations of shells of revolution subjected to arbitrary loads. In the first of these, the basic equations are reduced to three differential equations which relate the displacements \(u, v\) and \(w\). This procedure was employed bf Viasov (i) and Donnell (17) in deriving the goveriing equations for circular cyling drical shells. Stelle [18] also used the same procedure for reduction of the tasic equations of shells of revolution under nonsymmetric edge loads, and obtained, by neglecting the transverse shear terms in the first two equations of equilibrium, three differential equations which relate the
… displacenents \(u, v\) and \(H\). The membrane and bending solutions that are valid throughout the shallow and nonshallow regions were obtained by means of asymptotic integration. In the second, a stress function is introduced and the governing equations are reduced to tro differential equations which relate the stress function \(F\) and the normal dispiacement \(W_{\text {. }}\) Reissner [19] employed this method and obtained a set of two equations for small deformation of shallow spherical shells. In the third, the basic equations are reduced by means of complex transtimation developed by Novozhilor (2) to two differential equation which relate to two cim: x functions. The procedure of derivation is given in the Appendix and in Chapter II. Asymptotic solutions to Novozhilo'is equations valid in in the nonshallow region were derived by Schile [20] for external loads including (a) sinusoi-
dal loading and (b) higher hamonic load disiribution. No literature on solutions to Novozhilov's equations that are valid in the shallow region 1s.known to the author.
(c) Application

Numerous investigations have been made on the application of the solutions mentioned previousiy to engineering structures. Attention here will be limited to done-shaped shells of revolution having a discontinuity of the types; (a) a hole; (b) a rigid insert; (c) a nozzle attachment. The problem of the stress distribution around holes in shells has been investigated by a nunber of workers. Hemispherical shells with a circular opening at the vertex subjected to axisymmetric self-equilibrating forces were studied by Galletiy (2]. An elliptical opening in a spherical sheli under internal pressure was investigated by Leckio and Payne (22) who expressed the equation in e.lliptical coordinates and obtained the solution in toms of Mathieu functions, For a more general case, Savin (23) investigated the stress distribution around an arbitrary hole with smooth contour in thin shells and obtained solutions to the shell equations which had been transformed by the use of conformal mapping into a coordinate system such that along the contour of the hole one of the coordinates is constant. The general method was described and applied to a cylindrical shell with a circular hole and to a splerical sholl with either a circular or an elliptical hole. Further studies (24) were made of a spierical shell under internal prossure weakened by an elliptical hole, square and triangular holes kith rounded comners.

Spherical shells with a olrcular rigid insert have been considered by Bijlasid (25) and, with an elliptical rigid insert, by Leckie and payne
(22), and Foster (26).

The effect of local loading on spherical sholls in which external loads are transmitted from a nozzle radialily attached to the shells has been investigated extensively by Bijlaard (27) and Leckie and Payne (28). Studies of the case in which the nozzle is obliquely attached to a spherical shell were made by Johnson (29) and Yu, Chen and Shaw [30].

All the investigations mentioned here are restricted to shallow shells with a hole or a rigid insert, the size of which is small compared to the radil of curvatures of the shells so that shallow shell equations hold for the problems under consideration. The nase of a nozzle attachment has been also limited to nozzle-to-spherical shells.

As far as the author knows, little attention has been given to systematic studies of stress distribution in nonshaliow shells of dome shape around a discontinuity of a size which is not necessarily small compared to the radius of curvature of the shells.

Statement of the Problems

Investigation of the folloring problems is suggested upon the revier made in the preceding sections:
(1) Derivation of solutions to Novozhilov's equations for shells of revolution which are valid in the shallow and nonshaliow regions under axisymmetric and first hamonic loads. This extends the work of Novozhilov Who derived the equations and obtained solutions valid only in the nonshallow region. The levelopnent here also differs from that of Steele in that it does not neglect the transverse shoar terms in the first two equations of equilibrium.
(2) Application of the solution derived in (1) to the study of the stresses in the vicinity of a discontinuity at the apex of dome-shaped shells of revolution under external loads including (a) internal pressure and (b) a couple applied to the discontinuity. The discontinuity is in the form of a circular hole, or a circular rigid insert, or a nozzle. No restriction is placed on the size of the discontinuity in rejation to the zadius of the sheils. Application to discontinuities is embedded in a uniform treatment and iacludes discontinities in geometries on which little information is available.
(3) Analysis of the influence of the different types of discontinuity on the stresses of the shells.

For systenatic study of these problems, the procedures for the reduction of the basic shell equations to a fourth order system of three equations are briefly outlined in the Appendix. Further reductions to a second order differential equation in terms of a complex force are derived in Chapter II. Solutions to this equation valid in the shallow region are derived in Chapter III using the method of asymptotic incegration..

Applications of these solutions to the study of proisaem (2) are investigated in Chapter IV in which the boundary conditions for each of the appropriate cases are derived. The study of problem (3) is given in Chapter V.
II. GOVERNIG DIFFERENTIAL EQUATIONS

A second order diffeizntial equation governing the deformation of dome-shaped shells of revolution and of circular cylindrical shells will be deduced from the system of differential equations (A-27) for both axisymmetric and first hamonic loads.

\section*{Shells of Revolution}

The coondinate system chosen for shells of revolution w1ll be \(\theta\) and 4. which determine the position of a point on the middle surface (Fig. 2-1a). Let \(R_{1}\) be the radius of curvature of the meridian ( \(\phi=\) constant) and \(R_{2}\) be the length along the nomal to the middle surface between the axis of revolution and the middle surface. \(R_{2}\) is sometines referred to as the second radius of curvature. Thus, the first fundamental form of the surface is (Fig. 2-1b)
\[
\begin{equation*}
(d s)^{2}=\left(R_{1} d \theta\right)^{2}+\left(R_{2} \sin \theta d \phi\right)^{2} \tag{2-1}
\end{equation*}
\]

By comparison of Eq. (2-1) with Eq. (A-1) for shells of arbitrary shapo one sees that
\[
\begin{array}{ll}
a_{1}=\theta, & a_{2}=\emptyset  \tag{2-2}\\
A_{1}=R_{1} & A_{2}=R_{2} \sin \theta
\end{array}
\]

The last two of the conditions of Causs-Codazzi, Eq. (A-2), are identically satisfied, since \(R_{1}\) and \(R_{2}\) are functions of \(\theta\) only. The first condition reduces to
\[
\begin{equation*}
\left(R_{2} \sin \theta\right)^{\prime}-R_{2} \cos \theta \tag{2-3}
\end{equation*}
\]

\(R_{1}\) : radius of curvature of the line \(\&=\) constant.
\(\mathrm{R}_{2}\) l length between the axis of revolution and the middle surface.
(a)

(b)

Fig. 2-1; Coordinate system of a shell of rovoiution
where the prime indicates differentiation with respect to \(\theta\). Dy use of these relations, Eqs. (A-27) and (A-29) as given in the Appendix are expresses by
\[
\begin{array}{r}
\frac{1}{R_{1}} \frac{\partial \bar{T}_{1}}{\partial \theta}-\frac{\cot \theta}{R_{2}}\left(\bar{T}_{1}-\bar{T}_{2}\right)+\frac{1}{R_{2} \sin \theta} \frac{\partial \bar{S}}{\partial \phi}+i \frac{c}{R_{2}} \frac{\partial \bar{T}}{\partial \theta}=-q_{1} \\
\frac{1}{R_{i}} \frac{\partial \bar{S}}{\partial \theta}+2 \frac{\cot \theta}{R_{2}} \bar{S}+\frac{1}{R_{2} \sin \theta} \frac{\partial \bar{T}_{2}}{\partial \phi}+\frac{c}{R_{2}^{2} \sin \theta} \frac{\partial \bar{T}}{\partial \phi}=-q_{2}  \tag{2-4a}\\
\frac{\bar{T}_{f}}{R_{1}}+\frac{\bar{T}_{2}}{R_{2}}-i c \Delta(\bar{T})=q_{n}
\end{array}
\]
and
\[
\begin{align*}
& R_{1} \bar{E}_{1}=\frac{\partial \ddot{u}}{\partial \theta}+\bar{w}=\frac{R_{1}}{E \dot{H}}\left(\bar{T}_{1}-\mu \bar{T}_{2}\right) \\
& R_{2} \vec{E}_{2}=\frac{1}{\sin \theta} \frac{\partial \vec{v}}{\partial \phi}+\bar{u} \cot \theta+\bar{w}=\frac{R_{2}}{E h}\left(\bar{T}_{2}-\mu \bar{T}_{1}\right) . \\
& \bar{x}_{1}=-\frac{1}{R_{1}} \frac{\partial}{\partial \theta}\left[\frac{1}{R_{1}}\left(\frac{\partial \bar{\omega}}{\partial \theta}-\bar{u}\right)\right]=\frac{i}{C E K}\left(\bar{T}_{z}-T_{2}{ }^{*}\right)  \tag{2-4b}\\
& \vec{K}_{z}=-\frac{1}{R_{2}^{2} \sin \theta} \frac{\partial}{\partial \phi}\left(\frac{1}{\sin \theta} \frac{\partial \bar{w}}{\partial \phi}-\bar{V}\right)-\frac{\cot \theta}{R_{1} R_{2}}\left(\frac{\partial \bar{w}}{\partial \theta}-\bar{u}\right)=\frac{i}{C E \hbar}\left(\vec{T}_{1}-T_{1}{ }^{\mu}\right) \\
& R_{1} \bar{\omega}=\frac{R_{3}}{R_{1}} \frac{\partial \bar{v}}{\partial \theta}-\dot{v} \cot \theta+\frac{1}{\operatorname{Sin} \theta} \frac{\partial \ddot{u}}{\partial \phi}=\frac{2(1+\mu) R_{2}}{E h} \bar{s} \\
& \bar{r}=-\frac{1}{R_{1}} \frac{\partial}{\partial \theta}\left[\frac{1}{R_{2}}\left(\frac{1}{\sin \theta} \frac{\partial \bar{w}}{\partial \bar{\phi}}-\bar{v}\right)\right]+\frac{i}{R_{1} R_{2} \sin \theta}\left(\frac{\partial \bar{u}}{\partial \bar{\phi}}-\bar{v} \cos \theta\right)=-\frac{i}{C E \dot{h}^{\prime}}\left(\bar{s}-s^{*}\right)
\end{align*}
\]
where \(\overline{\mathrm{T}}, \overline{\mathrm{T}}_{1}, \overline{\mathrm{~T}}_{2}\), and S are complex forces defined by Eqs. \((\mathrm{A}-26) ; q_{1}, q_{2}\); and \(q_{n}\) are components of surface loading in the directions of \(\vec{E}_{1}, \vec{g}_{2}\), and \(\vec{t}_{n}\), respectivelyi \(\bar{z}_{1}, \overline{\vec{G}}_{2} \quad \bar{\omega}_{1}, \bar{k}_{1}, \bar{x}_{z}\) and \(\bar{i}\) are the complex deformation parameters of the middle surface and \(\tilde{U}_{1} \forall\), and \(\bar{\eta}\) are the complex displacements; and
\[
\begin{equation*}
\left.\left.\Delta()=\frac{1}{R_{1}^{2}} \frac{\theta^{2}( }{\theta \theta^{2}}+\left(\frac{\cot \theta}{R_{1} R_{z}}-\frac{1}{R_{1}^{3}} \frac{d R_{1}}{d \theta}\right) \frac{\partial( }{\partial \theta}\right)+\frac{1}{R_{z}^{2} \sin ^{2} \theta} \frac{\partial^{2}()}{\partial \phi^{2}}\right) \tag{2-5}
\end{equation*}
\]

\section*{(A) Axisymmetric Deformation}

Because of the assumed symmeiry all quantities are independent of申. If, in addition,
\[
q_{1}=q_{2}=0 \text { and } I_{n}=p=\text { corstant }
\]
then, Eqs. \((2-4 a)\) reduce to the form
\[
\begin{array}{r}
\frac{1}{R_{1}} \bar{T}_{1}^{\prime}+\frac{\cot \theta}{R_{2}}\left(\bar{T}_{1}-\bar{T}_{2}\right)+i \frac{c}{R_{1}^{2}} \bar{T}^{\prime}=0 \\
\frac{1}{R_{1}} \bar{S}^{\prime}+2 \frac{\cot \theta}{R_{2}} \bar{S}=0  \tag{2-6}\\
\frac{\bar{T}_{1}}{R_{1}}+\frac{\bar{T}_{2}}{R_{2}}-i \operatorname{c} \Delta(\bar{T})=p
\end{array}
\]
where
\[
\begin{equation*}
\Delta()=\frac{1}{R_{1}^{2}}()^{\prime \prime}+\left(\frac{\cot \theta}{R_{1} R_{2}}-\frac{1}{R_{1}^{3}} R_{1}^{\prime}\right)\left(y^{\prime}\right. \tag{2-7}
\end{equation*}
\]
and the prims indicates differentiation with respect to \(\theta\). By use of the first Gauss-Codazzi condition, Eq. (2-3), the second of Eqs. (2-6) may be written in the form
\[
\frac{d \bar{S}}{\bar{S}}+2 \frac{d\left(R_{2} \sin \theta\right)}{R_{z} \sin \theta}=0
\]
which, upon integration, has the solution
\[
\begin{equation*}
\ddot{s}=\frac{\bar{c}_{1}}{R_{2}^{2} \sin ^{2} \theta} \tag{2-8}
\end{equation*}
\]
where \(C_{l}\) is a complex constant of ixiegration. Since, due to symmitry, \(\overline{\mathrm{S}}\) vanishes on an edge of \(\theta=\) constant \(\bar{C}_{1}\) must be set to zero.

Next, the solution for the auxiliary functions \(\overrightarrow{\mathrm{T}}_{1}\) and \(\overline{\mathrm{T}}_{\mathcal{Z}}\) (soe Jqs. (A-26) in the Appendix) will be obtained from the first and the third of Eqs. \((2-6)\). By use of Eq. (2-3) the first of Eqs. (2-6) may be written in the form
\[
\begin{equation*}
\cdot \frac{1}{R_{1} R_{2} \sin \theta}\left(R_{2} \sin \theta \bar{T}_{1}\right)^{\prime}-\frac{\cot \theta}{R_{2}} \bar{T}_{2}+i \frac{c}{R_{1}^{2}} \bar{T}^{\prime}=0 \tag{2-9}
\end{equation*}
\]

Eliminating \(\bar{T}_{2}\) from Eq. (2-9) by multiplying the thind of Eqs. (2-6) by \(\cot \theta\) and adding it to Eq. (2-9), and multiplying the result by \(R_{1} R_{2} \sin \theta\), there results
\[
\begin{equation*}
\left(R_{2} \sin \theta \bar{T}_{1}\right)^{\prime}+R_{2} \cos \theta \bar{T}_{1}+i c R_{1} R_{2} \sin \theta\left(\frac{1}{R_{1}^{2}} \bar{T}^{\prime}-\cot \theta \Delta(\bar{T})\right)=R_{1} R_{z} \cos \theta p \tag{2-10}
\end{equation*}
\]

The first tho terms of Eq. (2-z 0 ) may be combined to give
\[
\left(R_{2} \sin \theta \bar{T}_{1}\right)^{\prime}+R_{2} \cos \theta \bar{T}_{1}=\frac{1}{\sin \theta}\left(R_{2} \sin ^{2} \theta \bar{T}_{1}\right)^{\prime}
\]
and the third term of Eq. \((2-10)\) can be shown to te equal to
\[
-\frac{i c}{\sin \theta}\left(\frac{R_{2}}{R_{1}} \sin \theta \cos \theta \bar{T}^{\prime}\right)^{\prime}
\]

Thus, Eq : (2-10) reduces to
\[
\begin{equation*}
\left(R_{2} \sin ^{2} \theta \vec{T}_{1}\right)^{\prime}-i c\left(\frac{R_{2}}{R_{1}} \sin \theta \cos \theta \bar{T}^{\prime}\right)=\mu R_{1} \dot{R}_{2} \sin \theta \cos \theta \tag{2-11}
\end{equation*}
\]

Now, introduce a function \(\bar{U}\) defined by
\[
\begin{equation*}
\bar{U}=R_{2} \sin ^{2} \theta \bar{T}_{1}-i c \frac{R_{2}}{R_{1}} \sin \theta \cos \theta \bar{T}^{\prime} \tag{2-12}
\end{equation*}
\]

En, (2-11) becomes
\[
\bar{U}^{\prime}=P R_{1} R_{2} \sin \theta \cos \theta
\]

It follows upon integration that
\[
\begin{equation*}
\bar{u}=\bar{C}_{2}+\frac{P}{2} R_{2}^{2} \sin ^{2} \theta \tag{2-13}
\end{equation*}
\]

The fourth of Eqs. (A-26), 1.e.,
\[
\begin{equation*}
\bar{T}=\bar{T}_{1}+\bar{T}_{2} \tag{2-14}
\end{equation*}
\]
can be substituted into the third of Eqs. (2-6) to eliminate \(\vec{T}_{2}\). Also, \(\mathcal{T}_{1}\) can be elininated by usiag Eq. (2-12). The final result of this manipulation is a second order differential equation on Thich can be written as

\section*{13}
\[
\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\left(\frac{\bar{U}}{R_{2} \sin ^{2} \theta}+i c \frac{1}{R_{1}} \cot \theta \bar{T}^{\prime}\right)+\frac{\bar{T}}{R_{z}}-i c \Delta(\bar{T})=p
\]
or after rearrangenent
\[
\begin{equation*}
\bar{T}^{\prime \prime}+\left[\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right] \bar{T}^{\prime}+i \frac{R_{1}^{2}}{R_{2} c} \bar{T}=i \frac{R_{1}^{2}}{R_{2} c} F(Q) \tag{2-15}
\end{equation*}
\]
where
\[
\begin{equation*}
F(\theta)=\rho R_{2}-\left(\frac{1}{R_{1}}--\frac{1}{R_{z}}\right) \frac{\vec{U}}{\sin ^{2} \theta} . \tag{2-16}
\end{equation*}
\]

Thus, the axisymmetric defcmation of shells of revolution under internal pressure reduces to the so?ution of the second order differential equation (2-15). Eqs. \((2-12)\) and \((2-14)\) can be writien as
\[
\begin{align*}
& \bar{T}_{1}=i \frac{c}{R_{1}} \cot \theta \bar{T}^{\prime}+\frac{\bar{U}}{R_{2} \sin ^{2} \theta} \\
& \dot{T}=\dot{T}-\bar{r}+\ldots \quad . \quad \bar{j}=\ldots \quad \bar{J}
\end{align*}
\]
\[
\begin{align*}
& \frac{1}{R_{1}}\left(\bar{u}^{\prime}+\bar{w}\right)=\frac{1}{E h}\left(\bar{T}_{1}-\mu \bar{T}_{2}\right) \\
& \frac{1}{R_{2}}(\bar{u} \cot e+\bar{w})=\frac{1}{E h}\left(\overline{T_{2}}-\mu \bar{T}_{1}\right) \\
& -\frac{1}{R_{1}}\left(\frac{1}{R_{1}}\left(\bar{w}^{\prime}-\bar{u}^{\prime}\right)\right)^{\prime}=\frac{i}{c E h}\left(\overline{T_{2}}-T_{2}^{*}\right)  \tag{2-19}\\
& -\frac{\cot \theta}{R_{1}}\left(\bar{R}_{2}\right. \\
& \left.\tilde{w}^{\prime}-\bar{u}\right)=\frac{i}{C E h}\left(\overline{T_{1}}-T_{1}^{*}\right)
\end{align*}
\]

The last one of Eqs. (2-19) may be written in the form
\[
\begin{equation*}
-\frac{1}{R_{1}}\left(\bar{w}^{\prime}-\bar{u}\right)=\frac{i R_{2}}{\epsilon E h} \tan \theta\left(\bar{T}_{1}-T_{1}^{*}\right) \tag{2-20}
\end{equation*}
\]

Comparing this equation with the third of Eqs. (2-19), one observes that these two equations are compatible only if
\[
\begin{equation*}
\frac{1}{R_{1}}\left[R_{2} \tan \theta\left(\bar{T}_{1}-T_{1}^{*}\right)\right]^{\prime} \equiv \bar{T}_{2}-T_{2}^{*} \tag{2-21}
\end{equation*}
\]
is identically satisfied. Eq. (2-21), upon substitution for \(\overline{\mathrm{T}}_{1}\) and \(\overline{\mathrm{T}}_{2}\) by their expressions from Eqs. (2-17) and with the consideration of Eq. (2-15), becomes
\[
\vec{T}-F-\frac{i c}{R_{1}} \cot \theta \bar{T}^{\prime}+\frac{1}{R_{1}}\left[R_{2} \tan \theta\left(\frac{\bar{u}}{R_{2} \sin ^{2} \theta}-T_{1}^{*}\right)\right]^{\prime} \equiv \bar{T}-\frac{\bar{u}}{R_{2} \sin ^{2} \theta}-T_{2}^{\prime \prime}-\frac{i c}{R_{1}} \cot \theta \bar{T}^{\prime}
\]

This equation is satisfied if
\[
T_{i}^{*}=\frac{\bar{U}}{R_{z} \sin ^{2} \theta}
\]
and
\[
\begin{equation*}
F \quad A \quad T_{2}^{*}+\frac{\bar{U}}{R_{2} \sin ^{2} \theta}=T_{2}^{*}+T_{1}^{*} \tag{2-22}
\end{equation*}
\]

Comparison of the first of Eqs.(2-22) with the third of Ens. (2-18) yields
\[
\bar{u}=U
\]
from which it follows that
\[
C_{2}=C_{2}=\text { real constant }
\]
(B) Non-symmetric Deformation - Eàge Loads only

In that which follows, equations will be developed for the nonsymmetric deformation of shells of revolution due to edge effects only. In addition, deduction to a single second-order differential equation will be obtained for the special case where the resultant edge loads consist only of moment.

Since the surface loads \(q_{1}, q_{2}\), and \(q_{n}\) are zero, Eqs. (2-4) become
\[
\begin{array}{r}
\frac{1}{R_{1}} \frac{\partial \bar{T}_{1}}{\partial \theta}+\frac{\cot \theta}{R_{2}}\left(\bar{T}_{1}-\bar{T}_{2}\right)+\frac{1}{R_{2} \sin \theta} \frac{\partial \bar{S}}{\partial \phi}+i \frac{c}{R_{1}^{2}} \frac{\partial \bar{T}}{\partial \theta}=0 \\
\frac{1}{R_{1}} \cdot \frac{\partial \bar{S}}{\partial \theta}+2 \frac{\cot \theta}{R_{2}} \bar{S}+\frac{1}{R_{2} \sin \theta} \frac{\partial \bar{T}_{2}}{\partial \phi}+i \frac{c}{R_{2}^{2} \sin \theta} \frac{\partial \bar{T}}{\partial \phi}=0  \tag{2-23}\\
\frac{\bar{T}_{1}}{R_{1}}+\frac{\bar{T}_{2}}{R_{2}}-i(\Delta(\bar{Y})=0
\end{array}
\]

Following the procedure of reduction to a single second-order differential equation for symnetric deformation, one may introduce, on the basis of Eqs. \(2-8\) ) and (2-12), two auxiliary functions
\[
\begin{align*}
& \bar{U}=R_{2} \sin ^{2} \theta \bar{T}_{1}-i c \frac{R_{2}}{R_{1}} \sin \theta \cos \theta \bar{\top}^{\prime}  \tag{2-24}\\
& \bar{V}=R_{z}^{2} \sin ^{2} \theta \bar{s}
\end{align*}
\]

Eqs.(2-23), through certain manipulations with the help of Eqs. (2-3) and (2-24), may be reduced to the following system of three partial differential equations(2) of which the first two involve two unknowns \(\bar{U}\) and \(\boldsymbol{T}\).
\[
\begin{align*}
& G(\bar{u})-\left[1-i c\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{1}{\sin ^{2} \theta}\right] \frac{\theta^{2} \bar{T}}{\partial \phi^{2}}=0 \\
& -i c G(\bar{T})+\bar{T}+\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{\theta}{\sin ^{2} \theta} \bar{U}=0  \tag{2-25}\\
& \frac{\partial \bar{U}}{\partial \phi}+\frac{R_{2}^{2} \sin \theta}{R_{1}} \frac{\partial \bar{U}}{\partial \theta}-i c R_{2} \cos \theta \frac{\partial^{2} \bar{T}}{\partial \phi^{2}}=0
\end{align*}
\]
where
\[
\begin{equation*}
G\left(,=\frac{1}{R_{1} R_{2} \sin \theta} \frac{\partial}{\partial \theta}\left[\frac{R_{2}^{2} \sin \theta}{R_{1}} \frac{\partial r}{\partial \theta}\right]+\frac{1}{R_{2} \sin ^{2} \theta} \frac{\partial^{2}()}{\partial \phi^{2}}\right. \tag{2-26}
\end{equation*}
\]

Thus, the analysis of shells of revolution subject to any type of edge loading has been reduced to the solution of the system of Eqs.(2-25). However, the following will be restricted to the case where the resultant edge load at \(\theta=\theta_{0}\) (near the apax) of a shell of revolution is equivalent to a moment. For this particular case the auxiliary functions \(\bar{T}, \bar{U}\) and \(\sqrt{ }\) may be expressed as
\[
\begin{align*}
& \bar{T}=\bar{T}^{0}(\theta) \cos \phi \\
& \bar{U}=\bar{U}^{\prime}(\theta) \cos \phi  \tag{2-27}\\
& \bar{V}=\bar{V}^{0}(\theta) \sin \phi
\end{align*}
\]

Substitution of Eqs.(2-27) into Eqs. (2-25) yields
\[
\begin{align*}
G_{1}\left(\bar{U}^{\bullet}\right)+\left(1-i c\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{1}{\sin ^{2} \theta}\right) \bar{T}^{\bullet} & =0 \\
-i c G_{1}\left(\bar{T}^{\bullet}\right)+\bar{T}^{\bullet}+\left(\frac{1}{R_{0}}-\frac{1}{R_{2}}\right) \frac{1}{\sin ^{\prime} \theta} \bar{U}^{\bullet} & =0  \tag{2-28}\\
\bar{V}^{\bullet}+\frac{R_{2}^{2} \sin \theta}{R_{1}} \bar{U}^{\circ}+i c R_{2} \cos \theta \bar{T}^{\bullet} & =0
\end{align*}
\]
where
\[
\begin{equation*}
G_{1}()=\frac{1}{R_{1} R_{2} \sin \theta}\left(\frac{R_{2}^{2} \sin \theta}{R_{1}}()^{\prime}\right)^{\prime}-\frac{1}{R_{2} \sin ^{2} \theta}() \tag{2-29}
\end{equation*}
\]

The first two of Eqs. (2-28) may bs uncoupled by subtracting the second equation from the first and then introducing the new funation
\[
\begin{equation*}
\bar{W}=\bar{U}^{*}+i c \bar{T}^{\bullet} \tag{2-30}
\end{equation*}
\]
into the result. In this way there results
\[
\begin{equation*}
G_{1}(\bar{W})-\left(\frac{1}{R_{1}}-\frac{1}{R_{i}}\right)-\frac{1}{\sin +\theta} \bar{W}=0 \tag{2-31}
\end{equation*}
\]

Expanding this equation with the hely of Eq. (2-29) one arrives at
\[
\begin{equation*}
\left(\frac{R_{1}^{2} \sin \theta}{R_{1}} \bar{W}^{\prime}\right)^{\prime}-\frac{R_{1}}{\sin \theta} \bar{W}=0 \tag{2-32}
\end{equation*}
\]

It may be verified that one of the solutions of Eq. (2-32) is
\[
\bar{W}=\frac{1}{R_{2} \sin \theta}
\]

The second solution may be obtained by assuming
\[
\begin{equation*}
\bar{W}=\frac{A}{R_{z} \sin \theta} \tag{2-33}
\end{equation*}
\]
where \(A\) is a function of \(\theta\). Eq. (2-32) upon substitution for \(\bar{W}\) from Eq. (2-33) reduces to the fom
\[
\left(\frac{1}{R_{1} \sin \theta} A^{\prime}\right)^{\prime}=0
\]
from which it follows
\[
A=\bar{B}_{1}+\bar{B}_{2} \int R_{1} \sin \theta d \theta
\]

Thus
\[
\begin{equation*}
\bar{W}=\frac{\bar{B}_{1}}{R_{2} \sin \theta}+\frac{\bar{B}_{z}}{R_{z} \sin \theta} \int R_{1} \sin \theta d \theta \tag{2-34}
\end{equation*}
\]

Eliminating \(\overrightarrow{\mathrm{U}}^{0}\) in the second of Eqs.(2-28) by its expression from Eq. (2-30), one arrives at the following differential equation in a single unknown fo
\[
G_{1}\left(\bar{T}^{-}\right)+\frac{i}{c} \bar{T}^{\bullet}+\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{1}{\sin ^{2} \theta} \bar{T}^{\bullet}=-\frac{i}{c}\left(\frac{1}{R_{1}}-\frac{1}{R_{1}}\right) \frac{\bar{W}}{\sin ^{2} \theta}
\]
which may be written in expanded form
whare
\[
\begin{align*}
& \ddot{T}^{* 4}+\left(\left(2 \frac{R_{2}}{R_{1}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right) \bar{\tau}^{\prime \prime}+\frac{R_{1}}{R_{2}}\left(1-2 \frac{R_{1}}{R_{2}}\right) \frac{1}{\sin ^{2} \theta} \tilde{T}^{\circ}  \tag{2-35}\\
& +i \frac{R_{1}^{2}}{R_{1} c} \tilde{\sigma}^{\bullet}=i \frac{R_{1}^{2}}{R_{2} c} F_{1}(\theta)
\end{align*}
\]
\[
\begin{equation*}
F_{1}(\theta)=-\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{1}{\sin ^{2} \theta} \vec{W} \tag{2-36}
\end{equation*}
\]

Oncs \(\bar{U}^{0}\) and \(\bar{T}^{0}\) have been found the auxiliary function \(\overline{\mathrm{V}}^{0}\) can be found from the third of Eqs. (2-28). It is noted that, by letting \(c \sim 0\) in the thind of Eqs. (2-23), the first of Eqs. (2-24) and Eq. \((2-30)\), one arcives at the membrane theory solution.
\[
\begin{array}{ll}
\bar{U}^{\bullet}=W, & T_{1}^{\bullet \nu}=\frac{W}{R_{2} \sin ^{2} \theta} \\
T_{R}^{\circ \varphi}=-\frac{W}{R_{1} \sin ^{2} \theta}, & S^{\circ N}=-\frac{W^{\prime}}{R_{1} \sin \theta} \tag{2-37}
\end{array}
\]

And Eq. (2-36) becomes
\[
F_{1}(0)=T_{1}^{0 *}+T_{2}^{0 n}
\]

There remains the evaluation of the displacements which for this particular problem are assumed to be
\[
\begin{align*}
& \bar{u}=\bar{u}_{1}(\theta) \cos \phi \\
& \overline{\bar{v}}=\bar{v}_{1}(\theta) \sin \phi  \tag{2-38}\\
& \bar{w}=\bar{w}_{1}(\theta) \cos \phi
\end{align*}
\]

On substituting these expressions into Eqs. \((2-4)\), a system of equations relating the complex displacements \(\bar{u}_{1}, \bar{v}_{1}, \bar{N}_{1}\) to the complex forces is obtained
\[
\begin{align*}
& \bar{u}_{1}^{\prime}+\bar{w}_{1}=\frac{R_{1}}{E h}\left(\bar{T}_{1}^{\prime}-\mu \bar{T}_{2}^{*}\right) \\
& \frac{1}{\sin \theta} \bar{v}_{1}+\bar{u}_{1} \cot ^{2} \theta+\bar{w}_{1}=\frac{R_{2}}{E h}\left(\bar{T}_{2}^{*}-\mu \bar{T}_{1}^{*}\right) \\
& \frac{R_{2}}{R_{1}} \bar{v}_{1}^{\prime}-\bar{v}_{1} \cot \theta-\frac{1}{\sin \theta} \bar{u}_{1}=\frac{2(1+\mu) R_{2}}{E h} \bar{s}^{\circ} \\
& -\frac{1}{R_{1}}\left(\frac{\vec{N}_{1}^{\prime}-\vec{u}_{1}}{R_{i}}\right)^{\prime}=\frac{i}{C E h}\left(\vec{T}_{z}^{0}-\dot{T}_{z}^{0 n}\right)  \tag{2-39}\\
& \frac{1}{R_{i}^{2} \sin \theta}\left(\frac{1}{\sin \theta} \bar{W}_{1}+\bar{\nabla}_{1}\right)-\frac{\cot \theta}{R_{1} R_{i}}\left(\bar{W}_{1}^{\prime}-\bar{u}_{1}\right)=\frac{\dot{\theta}}{c \bar{E} h}\left(\bar{T}_{1}^{\circ}-T_{1}^{\circ}\right) \\
& \frac{R_{1}}{R_{1}}\left(\frac{1}{R_{1}}\left(\frac{\vec{\omega}_{1}}{\sin \theta}+\bar{v}_{1}\right)\right]^{\prime}-\frac{1}{R_{1} R_{8} \sin \theta}\left(\bar{V}_{1}+\bar{v}_{1} \cos \theta\right)=-\frac{i}{\sigma E h}\left(\overline{5}^{\circ}-s^{-\theta}\right)
\end{align*}
\]

This completes the reduction of the basie equations of tho general theory to the governing equations for shells of revolution pertaining to investigation stated in Chapter I.

\section*{Circular Cylindrical Shells}

The coordinates identifying the position of points on the middle surface are \(\alpha\) and \(B\) (Fig,2-2) and \(r_{0}\) is the radius of a circular cross section. Thus, the first fundamental form of the surface is
\[
\begin{equation*}
(d s)^{2}=\left(r_{0} d \alpha\right)^{2}+\left(r_{0} d \beta\right)^{2} \tag{2-40}
\end{equation*}
\]
from this one may verify that
\[
\begin{align*}
& \alpha_{1}=\alpha_{1} \quad \alpha_{2}=\beta  \tag{2-41}\\
& A_{1}=A_{2}=r_{0}
\end{align*}
\]

Hence, the differential equations (A-27) for complex forces may be written in the form
\[
\begin{align*}
\frac{\partial \bar{q}_{1}}{\partial \alpha}+\frac{\partial \bar{s}}{\partial \beta} & =-g_{1} r_{0} \\
\frac{\partial \bar{s}}{\partial \alpha}+\frac{\theta \bar{z}_{2}}{\partial \beta}+\frac{i}{2 b^{2}} \frac{\partial \bar{T}}{\partial \beta} & =-g_{z} r_{0}  \tag{2-42}\\
\bar{T}_{z}-\frac{i}{2 b^{2}} \Delta(\bar{T}) & =q_{n} r_{0}
\end{align*}
\]
where
\[
\begin{align*}
4 b^{4} & =12\left(1-\mu^{2}\right)\left(\frac{r_{2}}{h}\right)^{2} \\
\Delta() & =\frac{\partial^{2}(1)}{\partial a^{2}}+\frac{\partial^{2}()}{\partial \beta^{2}}  \tag{2-43}\\
\bar{T} & =\bar{T}_{1}+\bar{T}_{2}
\end{align*}
\]

The complex forces in these equations are related so the forces and


Fig. 2-2: Cyiindrical Coordinate system
moments by the following expressions
\[
\begin{align*}
& \bar{T}_{1}=T_{1}-i \frac{2 b^{2}}{r_{0}} \frac{M_{2}-\mu M_{1}}{1-\mu^{2}} \\
& \bar{T}_{2}=T_{2}-i \frac{2 b^{2}}{r_{0}} \frac{M_{1}-\mu M_{2}}{1-\mu^{2}}  \tag{2-14}\\
& \vec{S}=S+i \frac{2 b^{2}}{r_{0}} \frac{H}{1-\mu}
\end{align*}
\]

Also \(q_{1}, q_{2}\) and \(q_{n}\) are the components of the surface loading in the directions of \(\vec{e}_{1}, \vec{e}_{2}\) and \(\vec{e}_{n}\), respectively.

The relations (A-29) between complex displacements and complex forces for circular cylindrical shells (taking into account Eq. (2-4i) and \(P_{1}=\infty\), \(R_{2}=x_{0}\) ) may be expressed in the form
\[
\begin{align*}
& \bar{\epsilon}_{1}=\frac{1}{r_{0}}\left(\frac{\partial \bar{u}}{\partial \alpha}\right)=\frac{1}{E h}\left(\bar{T}_{1}-\mu \bar{T}_{2}\right) \\
& \bar{\epsilon}_{2}=\frac{1}{r_{0}}\left(\frac{\partial \bar{v}}{\partial \beta}+\bar{w}\right)=\frac{1}{E h}\left(\bar{T}_{2}-\mu \bar{T}_{1}\right) \\
& \bar{\omega}=\frac{1}{r_{0}}\left(\frac{\partial \bar{u}}{\partial \beta}+\frac{\partial \bar{v}}{\partial a}\right)=\frac{2(1+\mu)}{E h} \bar{S}  \tag{2-45}\\
& \bar{x}_{1}=-\frac{1}{r_{0}^{2}} \frac{\partial^{2} \bar{w}}{\partial \alpha^{2}}=i \frac{2 b^{2}}{E h r_{0}}\left(\bar{T}_{2}-T_{2}^{*}\right) \\
& \bar{x}_{2}=-\frac{1}{r_{0}^{2}} \frac{\partial}{\partial \beta}\left(\frac{\partial \bar{w}}{\partial \beta}-\bar{v}\right)=i \frac{2 b^{2}}{E h r_{0}}\left(\bar{T}_{1}-T_{1}^{*}\right) \\
& \bar{r}=-\frac{1}{r_{0}^{2}} \frac{\partial}{\partial \alpha}\left(\frac{\partial \bar{w}}{\partial \beta}-\bar{v}\right)=-\frac{i 2 b^{2}}{E h r_{0}}\left(\bar{s}-S^{*}\right)
\end{align*}
\]
(A) Axisymmetric Deformation

On account of the assumed symmetry all quantities are independent of \(\beta\), and \(q_{2}=1\). Thus, Eqs. \((2-42)\) reduce to
\[
\begin{align*}
& \bar{T}_{1}^{\prime}=-g_{1} r_{0} \\
& \bar{s}^{\prime}=0  \tag{2-46}\\
& \bar{T}_{2}-\frac{i}{2 b^{\prime}} \ddot{T}^{\prime \prime}=q_{n} r_{0}
\end{align*}
\]

The prime indicates the derivative with respect to \({ }^{*}\). From the second of

Eqs. (2-46) one obtains, in view of symmetry
\[
\begin{equation*}
\bar{s}=\bar{C}_{1}=0 \tag{2-47}
\end{equation*}
\]

The first of Eqs. \((2-46)\) gives
\[
\begin{equation*}
\bar{T}_{1}=\ddot{c}_{2}-r_{0} \int q_{1} d \alpha \tag{2-48}
\end{equation*}
\]

Eliminating \(\overline{\mathrm{T}}\) in the third of Eqs. \((2-46)\) by its expression in terms of \(\bar{T}_{1}\) and taking into consideration Eq. (2-48) one arrives at a second order differential equation for a sincle unknown \(\bar{T}_{2}\)
\[
\begin{equation*}
\bar{T}_{2}^{\prime \prime}+i 2 b^{2} \bar{T}_{2}=i 2 b^{2} g_{n} r_{0}+r_{0} g_{1}^{\prime} \tag{2-49}
\end{equation*}
\]

The displacements can be obtained from Eqs. \((2-45)\) which, for this case, reduce to the form
\[
\begin{align*}
& \frac{1}{r_{0}} \bar{u}^{\prime}=\frac{1}{E h}\left(\bar{T}_{1}-\mu \bar{T}_{2}\right) \\
& \frac{1}{r_{0}} \bar{w}=\frac{1}{E h}\left(\bar{T}_{2}-\mu \bar{T}_{1}\right) \tag{2-50}
\end{align*}
\]
(B) Non-symraetric Deformation

Eliminating \(\overline{\mathrm{S}}\) from the first two of Eqs. (2-42), there results
\[
\begin{equation*}
\frac{\partial^{2} \bar{T}}{\partial \alpha^{2}}-\Delta\left(\bar{T}_{2}\right)-\frac{i}{2 b^{2}} \frac{\partial^{2} \bar{T}}{\partial \beta^{2}}=r_{0}\left(\frac{\partial g_{2}}{\partial \beta}-\frac{\partial g_{1}}{\partial a}\right) \tag{2-51}
\end{equation*}
\]

Substitution in Eq. (2-51) for \(\bar{T}_{2}\) by its expression from the third of Eqs. (2-42) yields a fourth order partial differential equation in a single unienown \(\bar{T}\)
\[
\begin{equation*}
\Delta \Delta(\bar{T})+\frac{\partial^{2} \bar{T}}{\partial \beta^{2}}+i 2 b^{2} \frac{\partial^{2} \bar{T}}{\partial \alpha^{2}}=i 2 b^{2} r_{0}\left(\frac{\partial g_{2}}{\partial \beta}-\frac{\partial g_{1}}{\partial \alpha}+\Delta\left(g_{n}\right)\right] \tag{2-52}
\end{equation*}
\]

Thus, the analysis of the non-synmetric deformation of a circular cylin-: drical shell has been reduced to the solution of this equation. Once it has been obtained the complex forces may be found from the following equations:
\[
\begin{align*}
\bar{T}_{2} & =r_{0} g_{n}+\frac{i}{2 b^{2}} \Delta(\bar{T}) \\
\bar{T}_{1} & =\bar{T}-\bar{T}_{2}=\bar{T}-\frac{i}{2 b^{2}} \Delta(\bar{T})-r_{0} q_{n} \\
\frac{\partial \bar{S}}{\partial \alpha} & =-\frac{i}{2 b^{2}}\left(\frac{\partial}{\partial \beta} \Delta(\bar{T})+\frac{\partial \bar{T}}{\partial \beta}\right)-r_{0}\left(\frac{\partial g_{n}}{\partial \beta}+q_{2}\right)  \tag{2-53}\\
\frac{\partial \bar{S}}{\partial \beta} & =-\frac{\partial \bar{T}}{\partial \alpha}+\frac{i}{2 b^{2}} \frac{\partial}{\partial \alpha} \Delta(\bar{T})+r_{0}\left(\frac{\partial q_{n}}{\partial \alpha}-g_{1}\right)
\end{align*}
\]

As was done in the non-symmetric deiormation for shells of revolution the problem will be restricted to that of pure bending. For such a case
\[
q_{1}=q_{2}=q_{n}=0
\]
and the complex forces can be assumed to be
\[
\begin{array}{ll}
\bar{T}=\bar{T}^{\bullet}(\alpha) \cos \beta, & \bar{T}_{1}=\bar{T}_{1}^{\bullet}(\alpha) \cos \beta \\
\bar{T}_{2}=\bar{T}_{2}^{\bullet}(\alpha) \cos \beta, & \bar{S}=\bar{S}^{\bullet}(\alpha) \sin \dot{\beta} \tag{2-54}
\end{array}
\]

On substitution in \(\dot{A} .(2-52)\) for \(\bar{T}\) by its expression from the first of Eqs.(2-54), there results an ordinary differential equation for \(\mathbb{T}^{6}\)
\[
\begin{equation*}
\bar{T}^{+\prime \prime \prime}+\left(i 2 b^{2}-2\right) \bar{T}^{\cdot N}=0 \tag{2-55}
\end{equation*}
\]
where the prime denotes differentiation with respect to \(\alpha\).
The complex displacements for the given case are assumed to be of the form
\[
\begin{equation*}
\bar{u}=\bar{u}_{1}(\alpha) \cos \beta, \quad \bar{v}=\bar{v}_{1}(\alpha) \sin \beta, \quad \bar{v}=w_{1}(\alpha) \cos \beta \tag{2-56}
\end{equation*}
\]

On substituting these expressions into the first three of Eqs. \((2.45)\) the following equations are obtained for the determination of the complex displacements \(\bar{u}_{1}, \bar{v}_{1}\), and \(\bar{H}_{1}\).
\[
\begin{align*}
& \bar{u}_{i}^{\prime}=\frac{r_{i}}{E h}\left(\bar{T}_{i}-\mu \bar{T}_{i}\right) \\
& . \bar{w}_{1}+\bar{w}_{1}=\frac{r_{0}}{C h}\left(\bar{T}_{2}^{0}-\mu \bar{F}_{0}^{0}\right)  \tag{i-5i}\\
& --\vec{U}_{1}+\bar{V}_{0}^{\prime}=\frac{3(1+\mu) H_{6}}{\varepsilon h} \bar{S}^{+}
\end{align*}
\]
III. SOLUTIONS OF THE GOVERNING DIFFERENTIAL EQUATIONS

In this Chapter solutions are obtained to the governing differential equations derived in Chapter II. In addition, formulas for forces, moments and displacements are listed in tables.

\section*{Shells of Revolution}
(A) Axisymmetric Deformation - Internal Pressure

The analysis of shells of revolution under internal pressure has been reduced to the solution of the second order differential equation (2-15)
\[
\begin{equation*}
\bar{テ}^{\prime \prime}+\left[\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot 0-\frac{R_{1}^{\prime}}{R_{1}}\right] \vec{T}^{\prime}+i \frac{R_{1}^{2}}{R_{2} c} \vec{\tau}=i \frac{R_{1}^{2}}{R_{2} c} F(\theta) \tag{2-15}
\end{equation*}
\]
where
\[
\begin{align*}
F(\theta) & =R_{z} p-\left(\frac{1}{R_{1}}-\frac{1}{R_{z}}\right\} \frac{\bar{U}}{\sin ^{2} \theta}-T_{1}^{*}+T_{2}^{*}  \tag{2-16}\\
\bar{U} & =C_{z}+\frac{p}{2} R_{z}^{2} \sin ^{2} \theta \tag{2-13}
\end{align*}
\]

It is noticed that the coefficient \(1 R_{1}^{2} / R_{2} c\) of \(\bar{T}\) is a magnitude of order R/h. For convenience of analysis this coefficient will be expressed in terms of a parameter \(\lambda\)
\[
\begin{equation*}
i \frac{\cdot R_{1}^{2}}{R_{2} c}=i \lambda^{2} \frac{R_{1}^{2}}{R_{2} R_{0}} \tag{3-1}
\end{equation*}
\]
where
\[
\begin{equation*}
\lambda^{2}=\frac{R_{0}}{c}=\sqrt{12\left(1-\mu^{2}\right)} \frac{R_{0}}{h} \tag{3-2}
\end{equation*}
\]
and \(R_{0}\) is the minimum radius of ourvature of a shell of revolution. For thin shells \(\lambda^{2}\) is a large parameter.
(a) Homogeneous Solution

It is well known that a second order differential equation of the type
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]
may be reduced to the form
\[
\begin{equation*}
\xi^{\prime \prime}+m(x) \xi=0 \tag{3-3}
\end{equation*}
\]
by the transformation
\[
y=\xi(x) \eta(x)
\]
where
\[
\begin{align*}
\xi & =y e^{\int p / 2 d x} \\
m(x) & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \tag{3-4}
\end{align*}
\]

Now, let \(\overline{\mathcal{J}}\) be the solution of the homogeneous equation
\[
\begin{equation*}
\bar{T}^{\prime \prime}+\left[\left(2 \frac{R_{1}^{\prime}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right) \bar{T}^{\prime}+i \lambda^{2} \frac{R_{1}^{2}}{R_{2} R_{0}} \bar{T}=0 \tag{3-5}
\end{equation*}
\]

Applying the results shown above to Eq. (3-5) one oitains
\[
\begin{equation*}
\xi^{\prime \prime}+m(\theta) \xi=0 \tag{3-6}
\end{equation*}
\]
where
\[
\begin{align*}
\xi & =\bar{J} \exp \left\{\frac{1}{2} \int\left(\left(2 \frac{R_{1}^{\prime}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right) \delta \theta=\bar{J} R_{2}\left(\frac{\sin \theta}{R_{1}}\right)^{1 / 2}\right. \\
m(\theta) & =i \lambda^{2} \frac{R_{1}^{2}}{R_{2} R_{1}}-\frac{2+\cos ^{2} \theta}{4 \sin ^{2} \theta}+\frac{R_{1}}{R_{2} \sin ^{*} \theta}-\frac{R_{1}^{\prime}}{2 R_{1}} \cot \theta+\frac{R_{1}^{\prime \prime}}{2 R_{1}}-\frac{3 R_{1}^{2}}{4 R_{1}^{2}} \tag{3-7}
\end{align*}
\]

The condition of Codazzi has been used in the above transformation,
It is noted that the coefficient \(m(\theta)\) contains a singuiar point at \(\theta=0\), which chazacterizes solutions of Eq. (3-6) as two completely dif. ferent types. The first type is an asymptocic solution of classic tye which is valid only in the nonsheillov region, i.e. large ir iuis of \(\theta_{n}\)

The other type is an asymptotic solution valid in all regions including tha singular point \(\theta=0\). Attention here will be directed more to the second than the first, since the problef of interest is that of the stress distribution near the apex which belongs to the second type. .

As regaris the first type of solution, comparison of the magnitude of each term in \(m(\theta)\) shows that, if the region of interest ilies in the nonshallor region, the first term is \(O\left(\therefore^{2}\right)\) and the remaining terms are \(O(1)\), provided the shell is suficiciently smooth so the the derivatives of \(\mathrm{R}_{1}\) and \(R_{2}\) have the same order of magnitudes as \(R_{1}\) and 'i2. Thus, Eq. (3-6) may be written in the form
\[
\begin{equation*}
\left.\xi^{\prime \prime}+\left[j \lambda^{2} \frac{R_{1}^{2}}{R_{z} R_{0}}\left(1+0, \lambda^{-2}\right)\right)\right] \xi=0 \tag{3-8}
\end{equation*}
\]

Through the use of the transformations
\[
\xi_{1}=\left(i \lambda^{2} \frac{R_{1}^{2}}{R_{2} R_{0}}\right)^{\frac{1}{4}} \xi . \quad<\theta_{1}=\left(i \lambda^{2} \frac{R_{1}^{2}}{R_{2} R_{0}}\right)^{\frac{1}{2}} d \theta
\]
\(\cdots\) and by neglecting terms of order \(\lambda^{-2}\) in comparison with unity, Eq. (3-8) may be reduced to a familiar form
\[
\frac{d^{2} \xi_{1}}{d \theta_{1}^{2}}+\xi_{1}=0
\]
which has the solution
\[
\xi_{1}=e^{ \pm i \theta_{1}}
\]

Expressing this solution in terms of the original variables \(\xi\) and \(\theta\), one obtains the solution of Eq. (3-8)
\[
\begin{equation*}
\xi=\left(\frac{R_{0} R_{2}}{R_{z}^{z}}\right)^{1 / 4} e^{ \pm i^{i / 2} \eta} \tag{3-9}
\end{equation*}
\]
where
\[
\eta(\theta)=\lambda \int_{0}^{\theta} \frac{R_{1}}{\sqrt{R_{2} R_{0}}} d \theta
\]

Hence
\[
\begin{equation*}
\overline{\mathcal{J}}=\frac{1}{R_{2}^{2 /+\sin ^{2 / 2} \theta}}\left[\bar{c}_{1} e^{\frac{1}{\sqrt{2}}(1-i) \eta}+\bar{C}_{2} e^{-\frac{1}{\sqrt{2}}(1-i) \eta}\right] \tag{3-10}
\end{equation*}
\]

In which \(\bar{C}_{1}\) and \(\bar{C}_{2}\) are complex constants of integration.
As regards the second type of solution which is valid in the ontire region including a singular point \(\theta=0\), it is necessary to rewrito Eq. (3-6) in the form
\[
\begin{equation*}
\left.\xi^{\mu}+\left[i \lambda^{2} \psi^{2}(\theta)+\lambda \cdot \theta\right)\right] \xi=0 \tag{3-11}
\end{equation*}
\]
where
\[
\begin{align*}
& \Psi^{2}=\frac{R_{1}^{2}}{R_{0} R_{2}} \\
& \Lambda=\frac{1}{\sin ^{2} \theta}\left(\frac{R_{1}}{R_{2}}-\frac{2+\cos ^{2} \theta}{4}\right)-\frac{R_{1}^{\prime}}{2 R_{1}} \cot \theta+\frac{R_{1}^{\prime \prime}}{2 R_{1}}-\frac{3}{4}\left(\frac{R_{1}^{\prime}}{R_{1}}\right)^{( } \tag{3-12}
\end{align*}
\]

It was shown by Langer [9] that there exists, corresponding to Eq, (3-11), a related difforential equation whose solution is asymptotic with respect to the solution of Eq. (3-11). The domain of validity of this asymptotic solution depends on the function in the cofficient of \(\xi, 1.0 ., \psi^{2}(\theta)\) and

1, which meet the following roquirements:
(i) Within the interval \(I_{\theta}\) which includes a singuiar point \(\theta_{0}, \psi^{8}(\theta)\) is of the fom
\[
\psi^{2}(\theta)=\left(\theta-\theta_{0}\right)^{\alpha-2} \psi_{1}^{2}(\theta)=\left(\theta-\theta_{0}\right)^{1-2}\left(1+a_{1}\left(\theta-\theta_{0}\right)+a_{2}\left(\theta-\theta_{0}\right)^{2}+\cdots\right)
\]
with d being any real positive constant.
(1i) Within \(I_{\theta \rho} \Lambda(\theta)\) is of the form
\[
\Lambda(\theta)=\frac{A_{1}}{\left(\theta-\overline{\left.\theta_{0}\right)^{2}}\right.}+\frac{B_{1}}{\left(\theta-\theta_{0}\right)}+C_{1}(\theta)
\]
with \(A_{1}\) and \(B_{1}\) any constants and \(C_{2}(\theta)\) is analytic and bounded uniformily with respoot to \(\lambda\) in \(I_{\theta}\) 。

If the constants \(\alpha_{1}\) and \(B_{1}\) are toth zero, the differential equation will be defined to be nomal. Thus the normal form of the differential equation which reflects the foregoing requirements can be represented by
\[
\begin{equation*}
\left.\xi^{\prime \prime}+\left[i \lambda^{2}\left(\theta-\theta_{0}\right)^{d-2} \psi_{1}^{2}+\frac{A_{1}}{\left(\theta-\theta_{0}\right)^{2}}+C_{1}(\theta)\right]\right\}=0 \tag{3-13}
\end{equation*}
\]

If \(\alpha_{1}\) and \(B_{1}\) are not zera, the differential equation may aiways be normalized ly substitution
\[
\theta-\theta_{0}=z^{2} / 4, \quad \xi=z^{\frac{1}{3}} u
\]

Then, according to Langer the functions
\[
\left[\begin{array}{l}
z_{1}  \tag{3-14}\\
z_{2}
\end{array}\right]=\psi^{-\frac{p}{2}}(\theta) \quad \sigma^{\frac{1}{2}}\left[\begin{array}{l}
J_{P}(\sigma) \\
Y_{p}(\sigma)
\end{array}\right]
\]
are the solutions of the related differential equation
\[
\begin{equation*}
i^{\prime \prime}+\left[i \lambda^{2} \psi^{2}+\frac{A_{1}}{\left(\theta-\theta_{0}\right)^{2}}+\Omega(\theta)\right] z=0 \tag{3-15}
\end{equation*}
\]
where \(\Omega(\theta)\) is ansiytic and bounded with respect to \(\lambda\) in \(I_{\theta} ; J_{f}(\sigma)\) and \(Y_{p}(\sigma)\) are Bessel functions of the first and second kinds and
\[
\begin{align*}
& p=c / d, \quad c=\left(1-4 A_{1}\right)^{1 / 2} \\
& \sigma=\int_{\theta_{0}}^{0}\left(i \lambda^{2}\right)^{\frac{1}{2}} \psi(\theta) d \theta \tag{3-16}
\end{align*}
\]

It will be shown that the finctions in the ccefficient of \(\varepsilon\) in Eq. (3-1i) satisfy the requirements stipulated above, provided the shells are smooth at the apox, 1.e., if
\[
R_{1}, K_{2} \rightarrow R^{*} \text { as } \theta \rightarrow 0
\]
or more specifically, if
\[
\begin{equation*}
R_{2} / R_{1}=1+f(\theta) \sin ^{2} \theta \tag{3-17}
\end{equation*}
\]
where \(f(\theta)\) is analytic and bounded in \(I_{\theta}\). For such a shell
\[
R_{2}^{\prime}=R_{1}^{\prime}\left(1+f \sin ^{2} \theta\right)+R_{2}\left(f \sin ^{2} \theta\right)^{\prime}
\]

By use of the condition of Codazzi and Eq. (3-17) the preceding equation may be vritten in the form
\[
\begin{equation*}
R_{1}^{\prime}=-\frac{R_{r}}{1+f \sin ^{2} \theta}\left[f \sin \theta \cos \theta+\left(f \sin ^{2} \theta\right)^{\prime}\right] \tag{3-18}
\end{equation*}
\]

As an example, shells of revolution generated by rotation of the second order curves
\[
\begin{align*}
& R_{1}=\frac{R^{*}}{\left(1+\gamma \sin ^{2} \theta\right)^{3 / 2}} \\
& R_{z}=\frac{R^{*}}{\left(1+r \sin ^{2} \theta\right)^{1 / 2}} \tag{3-19}
\end{align*}
\]
satisfy the condition given by Eq.(3-17). In fact, these curves generato the classes of surfaces incluaing (i) sphere for \(\gamma=0 ;\) (ii) paraboloids for \(\gamma=-1\) (iii) ellipsoids for \(\gamma>1_{;}\)and (iv) hyporboloids for \(\gamma<-1\). By use of Eqs. (3-1\%) and (3-18) \(\Lambda(\theta)\) in the second of Eqs. (3-12) reduces to
\[
\begin{equation*}
\Lambda(\theta)=\frac{1}{4} \frac{1-\sin ^{2} \theta}{\sin ^{2} \theta}+\Lambda_{1}(\theta) \tag{3-20}
\end{equation*}
\]
where
\[
\Lambda_{1}(\theta)=\frac{1}{2}+\frac{R_{1}^{*}}{2 R_{1}}-\frac{3}{4}\left(-\frac{R_{1}^{\prime}}{R_{1}}\right)^{2}+\frac{1}{2\left(1+f \sin ^{2} \theta\right)}\left(3 f \cos ^{2} \theta+f^{\prime} \sin \theta \cos \theta\right)
\]
and is bomized in \(I_{\theta}\), and Eq. ( \(3 \cdots 1\) ) becomes
\[
\begin{equation*}
\left.\xi^{n}+1 i \lambda^{2} \psi^{2}+\frac{1}{4} \frac{p-\sin ^{2} \theta}{\sin ^{2} \theta}+\Lambda_{1}(\theta)\right) \xi=0 \tag{3-2l}
\end{equation*}
\]

To make this equation fit the form of Eq. (3-13), a new independent variable \(\times w i l l\) be introduced
\[
x=\sin \theta / 2, \quad d x=\frac{1}{2}\left(1-x^{2}\right)^{\frac{1}{2}} d \theta
\]

Thus, Eq. (3-21) becomos
\[
\frac{d^{2} \xi}{d x^{2}}-\frac{x}{1-x^{2}} \frac{d \xi}{d x}+\left[4 i \lambda^{2} \frac{\psi^{2}}{1-x^{2}}+\frac{1}{4 x^{2}}+\frac{1}{1-x^{2}}\left(-\frac{3}{4}+\frac{1}{(3(1-22)}+\Lambda_{1}\right)\right] \xi=0
\]

Now, by means of the transformation
\[
\begin{equation*}
\bar{\xi}=\xi\left(1-x^{2}\right)^{1 / 4} \tag{3-23}
\end{equation*}
\]

Eq. (3-22) -educes to the desired form
\[
\begin{equation*}
\frac{d^{2} \bar{\xi}}{d x^{2}}+\left[i \lambda^{2} \frac{4 \psi^{2}}{1-x^{2}}+\frac{1}{4 x^{2}}+\Lambda_{2}\right] \bar{\xi}=0 \tag{3-24}
\end{equation*}
\]
where
\[
\begin{equation*}
\Lambda_{2}=\frac{1}{1-x^{2}}\left(\lambda \Lambda_{1}-\frac{9}{4}+\frac{9}{4} \frac{1}{1-x^{2}}\right) \tag{3-25}
\end{equation*}
\]
is bounded in \(|x|<1\), 1.e., \(0 \leqslant \theta<\pi\). From this one finds
\[
\begin{aligned}
& c=\left(1-4 A_{1}\right)^{1 / 2}=0, \quad r=c / d=0 \\
& \sigma=i^{\frac{1}{2}} \lambda \int_{0}^{x} \frac{2 \psi}{\left(1-x^{2}\right)^{1 / 2}} d x=i^{\frac{1}{2}} \lambda \int_{0}^{0} \frac{R_{1}}{\sqrt{R_{0} R_{2}}} d \theta=i^{\frac{1}{2} \eta}
\end{aligned}
\]
where
\[
\begin{equation*}
n(\theta)=\lambda \int_{0}^{\theta} \frac{R_{1}}{\sqrt{R_{0} R_{z}}} d \theta \tag{3-26}
\end{equation*}
\]

Thus the asymptotic - - 2utions of Eq. (3-24) are given by
\[
\left[\begin{array}{l}
\bar{\xi}_{1}  \tag{3-27}\\
\bar{\xi}_{2}
\end{array}\right]=\left(\frac{4 \psi^{2}}{1-x^{2}}\right)^{-\frac{1}{4}} \eta^{\frac{1}{2}}\left[\begin{array}{l}
J_{0}\left(i^{\frac{1}{2}} \eta\right) \\
Y_{0}\left(i^{\frac{1}{2} \eta}\right)
\end{array}\right]
\]
which, in terms of \(\varepsilon\), becomes
\[
\left[\begin{array}{l}
\xi_{1}  \tag{3-28}\\
\xi_{2}
\end{array}\right]=\left(\frac{R_{0} R_{2}}{R_{1}^{2}}\right)^{\frac{1}{4}} \eta^{\frac{1}{2}}\left[\begin{array}{l}
J_{9}\left(i^{\frac{1}{2}} \eta\right) \\
Y_{0}\left(i^{\frac{1}{2}} \eta\right)
\end{array}\right)
\]
\(J_{0}\left(i^{\frac{I_{n}}{n}}\right)\) and \(Y_{0}\left(i^{\frac{1}{\eta}}\right)\) are Bessel functions of the first and second kinds which are the solutions of the differential equation
\[
\begin{equation*}
y^{\prime \prime}+\frac{1}{\eta} y^{\prime}+i y=0 \tag{3-29}
\end{equation*}
\]

Since these solutions are not tabulated for complex arguments, they will be transformed to modified Bessel functions which are well iabulated in terms of Thompson functions, To do this, iet
\[
n=i^{1 / 2} x
\]

Equation (3-29) is thus transformed to
\[
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}-y=0
\]
which has solution
\[
y=\bar{A} I_{0}(x)+\bar{B} K_{0}(x)=\bar{A} I_{0}\left(i^{-\frac{1}{2}} \eta\right)+\bar{B} K_{0}\left(i^{-\frac{1}{2}} \eta\right)
\]
where \(I_{0}\) and \(K_{0}\) are modified Bessel functions of the first and second kinds and are related to Thompson functions by
\[
\begin{align*}
& I_{0}\left(i^{-\frac{1}{2} \eta}\right)=\operatorname{Ber} \eta-i B_{e i} \eta \\
& K_{0}\left(i^{-\frac{1}{2} \eta}\right)=\text { Ker } \eta-i \operatorname{kei} \eta \tag{3-30}
\end{align*}
\]

Using the relation between \(\xi\) and \(\overline{\mathcal{J}}\) given by Eq. (3-7) one finally obtains the solution of Eq. (3-5) to be
\[
\bar{J}=\binom{\bar{A}}{\bar{B}}\left(\frac{R_{0}}{R_{z}}\right)^{3 / 4}\left(\frac{\eta}{\lambda \sin \theta}\right)^{1 / 2}\left[\begin{array}{l}
I_{0}\left(i^{-\frac{1}{2} \eta} \eta\right.  \tag{3-31}\\
K_{0}\left(i^{-\frac{1}{2} \eta} \eta\right.
\end{array}\right]
\]

It was shown in (9) that for \(\lambda \gg 1\), Eq. (3-31) furnishes asymptotic Bolution of Eq. (3-5) to within terms of relative order \(1 / \lambda\) uniformily on an interval \(0 \leqslant \theta<\pi\) provided the function \(f(\theta)=0(1)\) on the interval.
(b) Remarks on the Characteristics of the Solution

The foliowing observations on the characteristics of the function are of importance.
(1) The coeifficient outside the bracket of Eq.(3-31) is a non~zero slowly varying function of. \(\theta\) while the terms in the bracket vary rapidly with
respect to \(\theta\). In viek of this fact, this coefficient may be regarded as a constant in perfoming differentiation, admitting the same onder of error as the asymptotic solution. This consideration results in a great. algebraic simplification.
(ii) The order of magnitude between \(\vec{J}\) and its derivatives obeys the relation
\[
\bar{J}^{\prime \prime}=\lambda O\left(\bar{J}^{\prime}\right)=\lambda^{2} O(\bar{J})
\]

Thus, the differential equation, Eq. (3-5), is essentially equivalent to the following in the non-shallcw region.
\[
\bar{T}^{n}+i \lambda^{2} \psi^{2} \bar{T}=0
\]
(1i1) Let
\[
h_{1}=\left(\frac{R_{0}}{R_{2}}\right)^{3 / 4}\left(\frac{\eta}{\lambda \sin \theta}\right)^{1 / 2}
\]

By iegarding \(h_{1}\) as constant in performing differentiation \(i^{+}\)may be shown from the property of Bessel function that the solution \(\tilde{F}\) given by Eq. (3-31) sotisfies the differential equation
\[
\overline{\mathcal{J}}^{n}+\frac{1}{\theta} \overline{\mathcal{J}}^{\prime}+i \lambda^{2} \psi^{2} \overline{\mathcal{I}}=0
\]

Transition to this equation from Eq. (3-5), 1.e.,
\[
\bar{J}^{\prime \prime}+\left[\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot 0-\frac{R_{1}^{\prime}}{R_{1}}\right] \bar{J}^{\prime}+i \lambda^{2} \psi^{2} \overline{\mathcal{J}}=0
\]
is made possible by ths assumption that the shell is smooth near the apex. Thus, in the \(\bar{J}^{\prime \prime}\) term, one may approximate \(R_{1} / R_{2}\) by unity and neglect the terms of \(O(\theta)\) in comparison with \(1 / \theta\), since thin tem is signifiant only In the shallow region. However, it should be noted that one can not make the same approxination on the last term, which is of the order \(\lambda^{2} \psi^{2}\) o(f).

Since in the expression for \(\psi^{2}\), 1.e.,
\[
\psi^{2}=\frac{R_{1}}{R_{0}} \frac{R_{1}}{R_{2}}
\]
\(R_{1} / R_{2}\) may be far removed from unity in the non-shallow region.
(c) Reduction to the Solution of Spherical Shells

The solution for the spherical shell is ubtained from Eq. (3-31) by letting
\[
R_{1}=R_{2}=R_{0}
\]
and
\[
\eta=\lambda \theta
\]

Thus, Eq. (3-31) reduces to
\[
\overline{\mathcal{J}}=\binom{\bar{A}}{\bar{B}}\left(\frac{\theta}{\sin \theta}\right)^{1 / 2}\left[\begin{array}{l}
I_{0}\left(i^{-\frac{1}{2} n}\right.  \tag{3-32}\\
K_{\theta}\left(i^{\left.-\frac{1}{2} n\right)}\right.
\end{array}\right]
\]

If attention is restricted to shallow spherical shells, then, one may write
\[
\sin \theta=\theta\left(1+\frac{1}{3!} \theta^{2}+\cdots\right)=\theta\left(1+o\left(\lambda^{-1}\right)\right)
\]

Which may be approximate by \(\theta\) within an error of \(O\left(\lambda^{-1}\right)\) if \(\theta\) is restricted to the interval \(0 \leqslant \theta \leqslant \theta_{1}=0\left(\frac{1}{\sqrt{\lambda}}\right)\). Thus, the standard solution for shallow spherical shell is obtained (19).
\[
\overline{\mathcal{J}} \pi\binom{\bar{A}}{\bar{B}}\left[\begin{array}{l}
x_{0}\left(i^{-\frac{1}{2} \eta} \eta\right.  \tag{3-33}\\
K_{0}\left(i^{-\frac{1}{3} \eta}\right)
\end{array}\right]
\]
(d) Complex Forces

With the solution for \(\overline{\mathcal{J}}\), the complex forces are ready to compute. In the following the manipulation will be performed only for the solution associated with \(\overline{\mathrm{B}}\). The other solution may be simply obtained from that associated with \(\bar{E}\) by replacing \(K_{0}\) with \(I_{0}\) and \(K_{0}^{0}\) with \(I_{0}^{0}\).
\[
\begin{equation*}
\overline{\mathcal{J}}_{1}=i \frac{c}{R_{1}} \cot \theta \bar{J}^{\prime}=\bar{B} i \sqrt{\frac{c}{\bar{K}_{2}}} \cot \theta h_{1} K_{0}^{\prime} \tag{3-34}
\end{equation*}
\]
\[
\begin{equation*}
\bar{J}_{z}=\bar{J}-\bar{T}_{1}=\bar{B} h_{1}\left[K_{0}-i \sqrt{\bar{R}_{2}} \cot \theta K_{0}^{\prime}\right] \tag{3-35}
\end{equation*}
\]

Upon separating the real and imaginary part of Es. (3-34) and (3-35) and applying the definition of complex forces and also Eq. (3-30), the forces and moments are obtained which are listed in Table 3-1.

\section*{(e) Particular Solution}

Let \(\bar{t}\) be the particular solution of the equation
\[
\begin{equation*}
\bar{T}^{\prime \prime}+\left[\left(2 \frac{R_{1}}{R_{z}}-1\right) \cot \theta-\frac{R_{i}^{\prime}}{R_{1}}\right] \bar{T}^{\prime}+i \lambda^{2} \psi^{2} \bar{T}=j \lambda^{2} \psi^{2} F(\theta) \tag{2-15}
\end{equation*}
\]
where
\[
\begin{align*}
& F(\theta)=R_{2} p-\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{U}{\sin ^{2} \theta}=T_{1}^{*}+T_{2}^{*}  \tag{2-16}\\
& U=C_{2}+\frac{p}{2} R_{2}^{2} \sin ^{2} \theta  \tag{2-13}\\
& T_{1}^{*}=\frac{U}{R_{2} \sin ^{2} \theta} \quad T_{2}^{*}=R_{2} p-\frac{U}{R_{1} \sin ^{2} \theta} \tag{3-36}
\end{align*}
\]

The constant \(\mathrm{C}_{2}\) will be determined prior to finding the solution \(\overline{\mathrm{f}}\). The equilibrium of the forces (Fig.3-1) in the vertical direction requires that
\(T_{1} \sin \theta-N_{1} \cos \theta=\frac{p}{2} R_{2} \sin \theta\) (3-37) It may be shown that the left hand side of this equation is the real part of the complex force \(\overline{\mathrm{V}}_{\mathbf{z}}\)
\[
\begin{equation*}
\bar{V}_{2}=\bar{T}_{1} \sin \theta-i \frac{c}{R_{1}} \bar{T}^{\prime} \cos \theta \tag{3-38}
\end{equation*}
\]

The second term on the right hand


Fig.,3-1/ Equilibrium of the forces in a shell of revolution
side is deduced from
\[
N_{1}=\frac{1}{1+\mu} \frac{1}{R_{1}} \frac{d M}{d \theta}=\operatorname{Re}\left(i \frac{c}{R_{t}} \frac{d \check{T}}{d \theta}\right)
\]
which is the first of Eqs. (A-24). Substituting for \(\bar{T}_{2}\) in Eq.(3-38) by its expression from the first of Eqs. \((2-17)\) one obtains
\[
\bar{V}_{z}=\frac{U}{R_{2} \sin \theta}=\frac{C_{2}}{R_{2} \sin \theta}+\frac{P}{2} R_{2} \sin \theta
\]

It follows, from Eq. (3-37) that
\[
\begin{aligned}
& C_{2}=0 \\
& F(\theta)=R_{2} p-\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{p}{2} R_{2}^{2}
\end{aligned}
\]

If there were a vertical force \(V\) applied at the apex, then, \(C_{2}=v / 2 \pi\).
Now, return to the particular solution of Eq. (2-15). In view of the assumption that \(R_{1}\) and \(\Gamma_{2}\) are sufficiently smooth so that \(F(\theta)\) is a slowly varying function, the particular solution may be assumed to be
\[
\begin{equation*}
\bar{t}=\bar{t}^{(0)}+\frac{1}{\lambda^{2}} \bar{t}^{(1)}+\frac{1}{\lambda^{4}} \bar{t}^{(2)}+\cdots \tag{3-39}
\end{equation*}
\]

On substituting this expression into Eq. (2-15) and equating to zero the coefficient. of each power of \(\lambda\), there results the following equations for determination of \(\bar{t}^{(0)}, \bar{t}^{(1)}, \ldots\)
\[
\begin{align*}
& \bar{t}^{(0)}=F(\theta)  \tag{3-40}\\
& \bar{t}^{(n)}=i \frac{R_{0} R_{2}}{R_{i}^{\prime}}\left[\vec{t}^{\prime \prime}(n-1)+\left\{\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right\} \vec{t}^{\prime}(n-1)\right] \\
& n=1: 2.3, \cdots
\end{align*}
\]

Having determined \(\bar{t}^{(0)}\) from the firsi equation, \(\bar{t}^{(1)}, \bar{t}^{(2)}, \ldots\) may be successively found from the second of Eqs. (3-40). However, for consistency in the degree of accuracy with the homogeneous solution only the first term of Eq. (3-39) will be retained as the particular solution of Eq. (2-15). In this way one simply identifies the particular integral as the solution of
table 3-1
bending solutions of a shell or revolution under internal pressure
\[
\begin{aligned}
& u:-\frac{R_{2}}{E h}\left(\frac{R_{2}}{R_{1}}+\mu\right) \sqrt{\frac{c}{R_{2}}} h_{1}\left[B_{1} \text { kei }^{\prime} \eta-B_{2} \text { ker }^{\prime} \eta\right] \\
& w: \quad \frac{R_{2}}{E h} h_{1}\left(B, k \in \rho \eta+B_{2} k e i \eta\right) \\
& X_{2}:-\frac{1}{E h} \sqrt{\frac{R_{2}}{c}} h_{1}\left[B_{1} \operatorname{ker}^{\prime} \eta+B_{2} \text { kei } \eta\right\} \\
& J_{1}: \sqrt{\frac{\epsilon}{R_{2}}} \cot \theta h_{1}\left[B_{1} \text { kei' } \eta-B_{2} \text { ker' } \eta\right] \\
& \mathcal{J}_{2}: \quad h_{1}\left[B_{1}\left(\operatorname{ker} \eta-\sqrt{\frac{c}{R_{2}}} \cot \theta \operatorname{kei} \eta\right)+B_{2}\left(\operatorname{kei\eta }+\sqrt{\frac{c}{R_{2}}} \cot \theta \operatorname{ker} \eta\right)\right] \\
& M_{1}: \quad c h_{1}\left[B_{1}\left(\text { kein }+(1-\dot{d}) \sqrt{\frac{c}{R_{2}}} \cot 0 \text { kerin }\right)\right. \\
& \left.+B_{2}\left(-\operatorname{ker} \eta+(1-\mu) \sqrt{\frac{c}{R_{2}}} \cot \theta \text { keín }\right)\right) \\
& M_{2}: \quad c h_{1}\left[B _ { 1 } \left(\mu \text { kein }-(1-\mu) \sqrt{\frac{c}{R_{2}}}\right.\right. \text { cot o keriil) } \\
& \left.+B_{2}\left(-\mu \operatorname{ker} \eta-(1-\mu) \sqrt{\frac{C}{R_{2}}} \cot \theta \operatorname{kei} \eta\right)\right) \\
& N_{1}: \sqrt{\frac{c}{R_{2}}} h_{1}\left(B, \text { kei } \eta \text { - } B_{2} \text { Ker'ク }\right]
\end{aligned}
\]

TATSLE 3-2
MEMBRANE SOLUTIONS OF A SHELL OF GEVOLUTION UNDER INTERNAL PRESSURE
\[
\begin{aligned}
& u: \quad-\frac{p}{E h} \sin \theta \int R_{2}^{2} \frac{1+\frac{R_{1}}{R_{2}^{2}} \mu}{\sin ^{2}}\left[1-\frac{1}{2}\left(\frac{R_{2}}{R_{1}}-1\right)\right] d \theta \\
& w: \quad \frac{p}{E h} R_{2}^{2}\left(\frac{1}{2}-\mu\left(1-\frac{1}{2} \frac{R_{2}}{R_{1}}\right)\right]+\frac{p}{E h} \cos \theta \int R_{2}^{2} \frac{1+\frac{R_{1} \mu}{R_{2}} \mu}{\sin \theta}\left(1-\frac{1}{2}\left(\frac{R_{2}}{R_{1}}-1\right)\right] \alpha_{i} \\
& T_{1}^{*}: \quad \frac{1}{2} P R_{2} \\
& T_{2}^{*}: \quad P R_{2}-\frac{p}{2} \frac{R_{2}^{2}}{R_{1}}
\end{aligned}
\]
membrane theory, and the homogeneous solution as the solution of bering theory. Thus, the complex forces \(\bar{E}_{1}\) and \(\bar{E}_{2}\) are found from the expressions
\[
\begin{align*}
& \bar{t}_{1}=\frac{U}{R_{2} \sin ^{2} \theta}+i \frac{c}{R_{1}} \cot \theta \bar{t}^{\prime} \approx T_{1}^{*}  \tag{3-41}\\
& \bar{t}_{2}=\bar{t}-\bar{t}_{1} \approx T_{2}^{*}
\end{align*}
\]

They are also listed in Table 3-2.
(f) Displacements

The displacements for symmetric deformation may be found from the first two of Eqs. (2-19)
\[
\begin{align*}
& \ddot{u}^{\prime}+\bar{w}=\frac{R_{1}}{E h}\left(\ddot{T}_{1}-\mu \bar{T}_{2}\right)  \tag{3-42}\\
& \bar{u} \cot \theta+\bar{w}=\frac{R_{2}}{E h}\left(\bar{T}_{2}-\mu \bar{T}_{1}\right)
\end{align*}
\]

Eliminating \(\overline{\mathrm{w}}\) by subtracting the second from the first equation and taking into consideration the relations between complex forces, one obtains
\[
\begin{equation*}
\sin \theta\left(\frac{\bar{u}}{\sin \theta}\right)^{\prime}=\frac{i c(1+\mu)}{E h}\left[\left(1+\frac{R_{2}}{R_{1}}\right) \cot \theta \bar{T}^{\prime}+\frac{i}{6} \frac{R_{2}+\mu R_{1}}{1+\mu} \bar{T}\right] \tag{3-43}
\end{equation*}
\]
in which
\[
\overline{\boldsymbol{T}}=\bar{J}+\bar{t}
\]
is the general solution of the governing equation ( \(\dot{2}-15\) ). Within the admissible error, it has been concluded that this solution is the sum of the solution of membrane theory and bending theory.
(1) Membrane solution' Lat \(0=0\), Eq. (3-43) reduces to
\[
\begin{align*}
& \sin \theta\left(\frac{U}{\sin \theta}\right)^{\prime}=-\frac{1}{E h}\left(R_{2}+\mu R_{1}\right) t \\
& u=-\frac{\sin \theta}{E h} \int \frac{R_{2}+\mu R_{1}}{\sin \theta}\left(R_{2} p-\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{p R_{2}^{2}}{2}\right) d \theta \tag{3-44}
\end{align*}
\]
and
\[
\begin{equation*}
w=\frac{p}{E h} R_{2}^{2}\left[\frac{1}{2}-\mu\left(1-\frac{1}{2} \frac{R_{2}}{R_{1}}\right)\right]-u \cot \theta \tag{3-45}
\end{equation*}
\]
(ii) sending solution

Upon substitution of \(\overline{\mathrm{T}}\) by \(\overline{\mathrm{T}} \mathrm{Eq} .(3-43)\) becomes
\[
\begin{equation*}
\sin \theta\left(\frac{\bar{u}}{\sin \theta}\right)^{\prime}=\frac{i c(1+\mu)}{\bar{E} h}\left[\left(1+\frac{R_{2}}{R_{1}}\right) \cot \theta \overline{\mathcal{F}}^{\prime}+\frac{i}{6} \frac{R_{2}+\mu R_{1}}{i+\mu} \overline{\mathcal{F}}\right] \tag{3-46}
\end{equation*}
\]

Exact integration of this equation is difficult, however, it is possible to determine as approximate solution within the admissible error.

Observing the characteristics of the solution mentioned in the previous section one may write this equation in the form
\[
\begin{aligned}
\sin \theta\left(\frac{\bar{v}}{\sin \theta}\right)^{\prime} & =\frac{i c(1+\mu)}{E h}\left[2 \cot \theta \bar{J}^{\prime}+\frac{1}{1+\mu} \frac{R_{2}}{R_{1}}\left(-\bar{J}^{\prime \prime}-\cot \theta \bar{J}^{\prime}\right)\right] \\
& \approx \frac{R_{i}}{E h} \frac{i c}{R_{1}}\left(\frac{R_{z}}{R_{1}}+\mu\right)\left[-\bar{J}^{\prime \prime}+\cot \theta \bar{J}^{\prime}\right] \\
& =-\frac{R_{z}}{E h} \frac{i c}{R_{1}}\left(\frac{R_{2}}{R_{1}}+\mu\right)\left(\frac{\bar{J}^{\prime}}{\sin \theta}\right)^{\prime} \sin \theta
\end{aligned}
\]

It follows that
\[
\vec{u}=-\frac{R_{z}}{E h} \frac{\dot{C} c}{R_{1}}\left(\frac{R_{2}}{R_{1}}+\mu\right) \bar{J}^{\prime}
\]
and
\[
\bar{w}=\frac{R_{2}}{E h}\left(\vec{x}_{2}-\mu \dot{y}_{1}\right)-\bar{u} \cot \theta \approx \frac{R_{2}}{E h} \ddot{J}
\]

The real parts of Eqs. (3-rin) are also listed in Table 3-1.
(B) Non-symnetric Deformation - under a Moment

The analysis of shells of revolution subject to a moment has been reduced to the integration of the se ord order differential equation (2-35)
\[
\begin{aligned}
\bar{T}_{\bullet}^{\prime \prime}+\left[\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right] \bar{T}_{0}^{\prime}+\frac{R_{1}}{P_{2}}\left(1-2 \frac{R_{1}}{R_{2}}\right) & \frac{1}{\sin ^{2} \theta} \bar{T}^{\theta}+i \lambda^{2} \frac{K_{1}^{2}}{R_{0} R_{2}} \bar{T}^{\bullet} \\
& =i \lambda^{2} \frac{R_{1}^{2}}{R_{0} R_{2}} F_{1}(\theta) \quad(2-35)
\end{aligned}
\]
\[
\begin{align*}
& F_{1}(\theta)=-\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{\bar{W}}{\sin ^{2} \theta}=\cdot T_{1}^{* *}+T_{2}^{o *} \\
& \bar{W}=\frac{1}{R_{2} \sin \theta}\left[\overline{B_{1}}+\bar{B}_{2} \int R_{1} \sin \theta d \theta\right)  \tag{3-48}\\
& T_{1}^{* *}=\frac{\bar{W}}{R_{2} \sin ^{2} \theta} \quad T_{2}^{* *}=-\frac{\bar{W}}{R_{1} \sin ^{2} \theta}
\end{align*}
\]
(a) Homoger sous Solution

Let \(\overline{\mathcal{F}}\) - be the homogeneous solution of Eq. \((2-35)\). By use of the transformation given in Eq. (3-4) the homogeneous purt of Ec. (2-35) becumes
\[
\begin{equation*}
\xi^{\prime \prime}+m(\theta) \xi=0 \tag{3-49}
\end{equation*}
\]
where
\[
\begin{align*}
\xi= & \bar{\jmath}^{\cdot} R_{2}\left(\frac{\sin \theta}{R_{1}}\right)^{\frac{1}{2}}  \tag{3-50}\\
m(\theta)= & i \lambda^{2} \frac{R_{1}^{2}}{R_{0} R_{2}}+\frac{3-\sin ^{2} \theta}{\sin ^{2} 6}\left(\frac{R_{1}}{R_{2}}\left(1-\frac{R_{1}}{R_{2}}\right) \frac{1}{4}\right] \\
& +\cot \theta\left(-\frac{R_{1}^{\prime}}{2 R_{1}}+\frac{R_{1}^{2}}{R_{2}^{2}} R_{2}^{\prime}\right)+\frac{R_{1}^{\prime \prime}}{2 R_{1}}-\frac{3}{4}\left(\frac{R_{1}^{\prime}}{R_{1}}\right)^{2} \tag{j-51}
\end{align*}
\]

The assumption that shells are smooth near the apex gives the relation (3-17), from which \(m(\theta)\) may be reduced to the form
\[
\begin{equation*}
m(e)=i \lambda^{2} \frac{R_{1}^{2}}{R_{0} R_{2}}-\frac{3}{4 \sin ^{2} \theta}+\lambda(\theta) \tag{3-52}
\end{equation*}
\]
and Eq. \((3-49)\) becones
\[
\begin{equation*}
\xi^{N}+\left[i \lambda^{2} \psi^{2}-\frac{3}{4 \sin ^{2} \theta}+\Lambda(\theta)\right] \xi=0 \tag{3-53}
\end{equation*}
\]
where
\[
\begin{equation*}
\psi^{2}=\frac{R_{1}^{2}}{R_{0} R_{z}} \tag{3-54}
\end{equation*}
\]
and \(\Lambda(\theta)\) is analytic and small with respact to \(\lambda\) in \(0 \leqslant \theta<\pi\). Then, with the procedure estabiished in the previous section, it is found that
\[
\begin{align*}
& c=\left(1-4 A_{1}\right)^{\frac{1}{2}}=?, \quad r=c / d=1 \\
& \sigma=i^{\frac{1}{2}} \lambda \int_{0}^{\theta} \psi d \theta=i^{\frac{1}{2}} \eta \tag{3-55}
\end{align*}
\]
where
\[
\begin{equation*}
\eta=\int_{0}^{\theta} \lambda \frac{R_{1}}{\sqrt{R_{0} R_{x}}} d \theta \tag{3-56}
\end{equation*}
\]

Thus, the asymptotic solutions of Eq. (3-53) are given by
\[
\left[\begin{array}{l}
\xi_{1}  \tag{3-57}\\
\xi_{2}
\end{array}\right]=\left(\frac{R_{0} R_{2},}{R^{i}}, \eta^{\frac{1}{4}}\left[\begin{array}{l}
I_{1}\left(i^{-\frac{1}{2}} n\right) \\
K_{1}\left(i^{-\frac{1}{2}} n\right)
\end{array}\right]\right.
\]
where \(I_{1}, K_{1}\) are \(\cdots f_{1}\) st and second kinds of modified Bessel function of onder on:. Using the relation between \(\xi\) and \(\overline{\mathcal{J}}^{\bullet}\) given by Eq.(3-50) one finally finds the homogeneous solution of Eq.(2-35)
\[
\bar{\sigma}^{\bullet}=\left[\begin{array}{l}
\bar{A}  \tag{3-58}\\
\bar{B}
\end{array}\right] I_{1}(\theta)\left\{\begin{array}{l}
I_{1}\left(i^{-\frac{1}{2} n}\right) \\
k_{1}\left(j^{-\frac{1}{2} n}\right)
\end{array}\right\}
\]
hur \(\lambda \geqslant\) - Eq. (3-58) furmishes asymptoti. solution to within \(O\left(\frac{1}{\lambda}\right)\) on ix \(\quad\).. ral \(0 \leqslant \theta<\pi\). The foregoing statements on the characteristics of the solution in Section (A-b) also apply to this solution, which in this case mas be regarded as the solution of the differential equation
\[
\begin{equation*}
\overrightarrow{7}^{\prime \prime}+\cot \theta \overline{7}^{\prime}+\left(i \lambda^{2} \psi^{2}-\frac{1}{\sin ^{2} 6}\right) \overrightarrow{7}=0 \tag{3-59}
\end{equation*}
\]

This terms with coefficients \(\cot \theta\) and \(: \sin ^{2} \theta\) are significant only in the shallow region.

\[
\begin{align*}
& \bar{T}_{1}^{+}=i \bar{B} \cdot \sqrt{\frac{c}{R_{2}}} h_{1}\left(\cot \theta K_{1}^{\prime}-\sqrt{\frac{c}{R_{2}}} \frac{1}{\sin _{12}^{2} \theta} K_{1}\right) \\
& \left.\overline{\mathcal{F}}_{2}^{+}=\bar{B} h_{1} i K_{1}-i\left(\sqrt{\frac{c}{R_{2}}} \cot \theta K_{1}^{\prime} \cdot \frac{c}{R_{2}} \frac{1}{\sin ^{2} \theta} k_{1}\right)\right] \tag{3-60}
\end{align*}
\]

From the thim if Eqy. (2-28) and the second of Eqs. \((2-24)\) one obtains
\[
\begin{align*}
\bar{S}^{\bullet} & =\frac{i c}{R_{1} \sin \theta}\left(-\frac{R_{1}}{R_{z}} \cot \theta \bar{J}^{\bullet}+\bar{J}^{\circ}\right) \\
& =\sqrt{\frac{c}{R_{z}}} h_{1}-\frac{1}{\sin \theta} \dot{E}\left[K_{1}^{\prime}-\sqrt{\frac{c}{R_{z}}} \cot \theta K_{1}\right] \tag{3-61}
\end{align*}
\]

Separation of the real and laaginary parts of Eqs. (3-60) and (3-61) yiclds the expressions for the forces and moments which are listed in Table 3-3.
(b) Particular Solution

Let \(t\) bo the particular solution of Eq.(2-35). From the assumption given by Eq. (3-i7) it may be shown that
\[
\begin{equation*}
\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \frac{1}{\sin ^{2} \theta}=\frac{f}{R_{2}} \tag{3-62}
\end{equation*}
\]

Hence, the expression for \(F_{1}(\theta)\) becomes
\[
\begin{equation*}
F_{1}(\theta)=-\frac{f}{R_{2}} \bar{W} \tag{3-63}
\end{equation*}
\]

Thus, \(t\) will be assumed in the form
\[
\begin{equation*}
t=t^{(0)}+\frac{1}{\lambda^{2}} t^{(1)}+\frac{1}{\lambda^{4}} t^{(8)}+\cdots \tag{3-64}
\end{equation*}
\]

Substituting this expression into Eq. \((2-35)\) and squating to zern the coefficients of each power of \(A\) one obtains ficr the determination of \(t^{(\omega)}, t^{(\prime)}\)... the system of equations
\[
\begin{align*}
& t^{(\theta)}=F_{1}(\theta) \\
& t^{(n)}=\frac{i}{4^{2}}\left[t^{(n-1)}+\left\{\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right\} t^{\prime(n-1)}\right.  \tag{3-65}\\
&\left.+\frac{R_{1}}{R_{2}}\left(1-2 \frac{R_{1}}{R_{2}}\right) \frac{1}{\sin ^{2} \theta} t^{(n-1)}\right\} \\
& n=1,2,3, \cdots .
\end{align*}
\]

Notice that \(\bar{W}\) satisfies Eq. \((2-32)\), which, in the expanded form, is
\[
\bar{W}^{\prime \prime}+\left[\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right] \bar{W}^{\prime}-\frac{R_{0}}{R_{2}} \frac{1}{\sin ^{2} \theta} \bar{W}=0
\]
table 3-3
bending solutions of a shell of revolution under a morent
\[
\begin{align*}
& u:-\frac{R_{2}}{E \hbar}\left(\frac{R_{2}}{R_{1}}+\mu\right) \sqrt{\frac{c}{R_{2}}} h_{1}\left(D_{1} \text { кcii } \eta-D_{2} \text { keri } \eta\right) \\
& v: \quad \frac{R_{2}}{E h}\left(2+\mu-\frac{R_{2}}{R_{1}}\right) \frac{c}{R_{2}} h_{1} \frac{1}{\sin \theta}\left(D_{1} \text { KCi, } \eta-D_{2} \text { ker, } \eta\right)  \tag{sn}\\
& w: \quad \frac{R_{2}}{E h} H_{1}\left(D_{1} k e r_{1} \eta+D_{2} k(i, \eta)\right. \\
& X_{2}:-\frac{1}{E h} \sqrt{\frac{R_{3}}{s}} h_{1}\left(D_{1} \text { keri }{ }_{i}^{\prime}+D_{2} \text { кei, } \eta\right) \\
& J_{1}: \quad \sqrt{\frac{c}{R_{2}}} h_{1}\left(D_{1}, \cot \theta k \sin \eta-\sqrt{\frac{c}{R_{2}}} \frac{1}{\sin ^{2}} \cdot \operatorname{sei}_{1} \eta\right) \\
& \left.+D_{2}\left(-\cot \theta \text { kerrin } \eta+\sqrt{\frac{c}{R_{2}}} \frac{1}{\sin ^{2} \theta} \operatorname{ker}_{1} \eta\right)\right]
\end{align*}
\]
\(\cos \phi\)
\(J_{z}: \quad h_{1}\left(D_{1}\left(\right.\right.\) Ker \(_{1} \eta-\sqrt{\frac{c}{R_{2}}} \cot \theta\) кедí \(\eta+\frac{c}{R_{2}} \frac{1}{\sin ^{2} \theta}\) кei, \(\left.\eta\right)\)
\[
\left.+D_{2}\left(\text { kein } \eta+\sqrt{k_{2}^{c}} \cot \theta \text { kerin }-\frac{c}{R_{2}} \frac{1}{\sin ^{2} \theta} \operatorname{ker}, \eta\right)\right] \cos \phi
\]

\(M_{1}: \quad c h_{1}\left\{D_{1}\left\{\right.\right.\) Kei, \(\eta+(1-\mu) \sqrt{\frac{c}{R_{2}}}-\sin ^{2} \theta\) Kerin \(-\frac{c}{R_{2}}(1-\mu) \frac{1}{\sin ^{2} O}\) Ker, \(\left.\eta\right\}\)
\[
\left.+D_{z}\left\{-k_{c} \psi_{1} \eta+(i-\mu) \sqrt{\frac{c}{R_{z}}} \cot \text { o kei; } \eta-\frac{c}{R_{z}}(1-N) \frac{1}{\sin \theta} \text { кei, } \eta\right\}\right]
\]
\(\cos \phi\)
\(M_{2}: \quad c h_{1}\left[D_{1}\left\{\mu \kappa \operatorname{ci}, \eta-(1-\mu) \sqrt{\frac{c}{R_{2}}} \cot \theta\right.\right.\) kerin \(\left.^{\prime} \eta+\frac{c}{R_{2}}(1-\mu) \frac{1}{\sin ^{2} \theta} \operatorname{ker}_{1} \eta\right\}\)
\(+D_{2}\left\{-\mu k e r_{1} \eta-(1-\mu) \sqrt{\frac{\epsilon}{R_{2}}} \cot \theta K \cdot i_{1}^{\prime} \eta+\frac{c}{R_{2}}(1-\mu) \frac{1}{\sin ^{2} \theta} x\left(x_{1} \eta\right\}\right\}\)
\(\cos \phi\)
\[
\begin{align*}
M_{12}: \quad c h_{1}(1-\mu) \sqrt{\frac{c}{R_{k}}} \frac{1}{\sin \theta} & {\left[D_{1}\left(\text { keri, } \eta-\sqrt{\frac{c}{R_{2}}} \cot \theta \text { ker, } \eta\right)\right.} \\
& \left.+D_{2}\left(\text { kei, } \eta-\sqrt{\frac{c}{R_{2}}} \cot \theta \text { kej, } \eta\right)\right]
\end{align*}
\]
\(N_{1}: \quad h_{1} \sqrt{\frac{c}{R_{2}}}\left[D_{1}\right.\) Kei, \(\eta\) - \(D_{2}\) Kin \(\left._{1}^{\prime} \eta\right]\)

Through the use of this equation the expression for computing \(t\) is obtained in the form
\[
t^{(1)}=\frac{i}{f^{2}}\left\{-2\left(\frac{f}{R_{2}}\right)^{\prime} \bar{W}^{\prime}-\left[\left(\frac{f}{R_{2}}\right)^{\prime \prime}+\left(\left(2 \frac{R_{1}}{R_{2}}-1\right) \cot \theta-\frac{R_{1}^{\prime}}{R_{1}}\right)\left(\frac{f}{R_{2}}\right)^{\prime}+2 \frac{R_{1}^{2}}{R_{2}}\left(\frac{f}{R_{2}}\right)^{2}\right] \bar{W}\right\}
\]

It is noted that the terms containing \(\bar{n}^{\prime \prime}\) and \(\cot \theta \overline{\mathrm{H}}\) in the above equation involve a singularity \((\theta=0)\) of one onder hieher than \(\bar{N}\). For the solution given by Eq. (3-65) to be applicable in th shallow region, a restriction must be imposed on the function \(f\) such that the oxder of magnitude of these terims is at most the order of \(\bar{H}\). The condition which is sufficient for this \(f\) rpose is
\[
f / R_{2}=k=\text { constant }
\]

Thus, the expression for \(t^{(1)}\) reduces to
\[
\begin{equation*}
t^{(\prime)}=-2 i k^{2} R_{0} \bar{W} \tag{3-66}
\end{equation*}
\]

However, this restriction is not necessary if the solution sought is in the non-shallow region.

For consistency in tre degree of accuracy with the homogeneous solution, only the first terie ii Ey. (3-64) will be retained. In doing this, one essentially identifies the particuiar integral of Eq. \((2-35)\) with the solution of membrane theory. Accordingly, one may write
\[
\begin{align*}
& t_{1}=T_{1}^{\circ \nu}=\frac{W}{R_{2} \sin ^{2} \theta}, \quad t_{2}=T_{2}^{\Delta v}=-\frac{W}{R_{1} \sin ^{2} \theta}  \tag{3-67}\\
& S=S^{\circ \omega}=-\frac{W^{\prime}}{R_{1} \sin \theta}
\end{align*}
\]
which are listed in Table 3-4.
(c) Displacements

With the solution for \(\mathcal{T}\) and complex forces, the displacements may

TABLE 3-4
Membrane solutions or a shell or revolution under a moment
\[
\begin{aligned}
& W: \frac{1}{R_{2} \sin \theta}\left(D_{3}+D_{4} \int R_{1} \sin \theta d \theta\right) \\
& \epsilon_{1}^{*}: \quad \frac{1}{E h} \frac{N}{\sin ^{2} \theta}\left(\frac{1}{R_{2}}+\frac{\mu}{R_{1}}\right) \\
& \epsilon_{2}^{*}:-\frac{1}{E n} \frac{W}{\sin ^{2} \theta}\left(\frac{1}{R_{1}}+\frac{\mu}{R_{2}}\right) \\
& \omega^{*}:-\frac{2(1+\mu)}{E \hbar} \frac{\omega^{\prime}}{R_{1} \sin \theta} \\
& \phi: \quad \frac{1}{E h}\left(\frac{W}{\sin ^{2} \theta}\left\{\frac{1}{R_{1}}\left(1+\frac{R_{1}^{2}}{R_{1}^{2}}\right)+\frac{2 \mu l}{R_{2}}\right\}\right. \\
& \left.-2(1+\mu)\left\{\frac{1}{R_{1}} W^{\prime \prime}+\frac{\sin \theta}{R_{2}}\left(\frac{R_{z}}{R_{1} \sin \theta}\right)^{\prime} W^{\prime}\right\}\right) \\
& \text { u: } \quad R_{2} \sin ^{2} \theta \int \phi / \sin ^{2} \theta d \theta-\cos \theta \int R_{1} \sin \theta\left(\int \phi / \sin ^{2} \theta d \theta\right) d \theta \\
& -R_{2} \sin \theta \omega^{*} / \sin \phi \\
& v: \quad \int R_{1} \sin \theta\left(\int \Phi / \sin ^{2} \theta d \theta\right) d \theta \\
& W: R_{2}\left(\epsilon_{2}^{*} / \cos \phi+\cos \theta \omega / / \sin \phi\right)-R_{2} \sin \theta \cos \theta \int \phi / \sin ^{2} \theta d \theta \\
& -\sin \theta \int R_{1} \sin \theta\left(\int \Phi / \sin ^{2} \theta d \theta\right) d \theta \quad \cos \phi \\
& T_{1}^{*} \quad W /\left(R_{2} \sin ^{2} \theta\right) \\
& T_{2}^{*}=-W /\left(R_{1} \sin ^{2} \theta\right) \\
& S^{*}-W^{\prime} /(R, \sin \theta) \\
& 1 \\
& \cos \varphi \\
& \cos \phi \\
& \sin \phi \\
& 1 \\
& \cos \phi \\
& \sin \phi \\
& \cos \phi \\
& \cos \phi \\
& \sin \phi
\end{aligned}
\]
be found from the system of Eqs.(2-39). The first three are
\[
\begin{align*}
& \vec{u}_{1}^{\prime}+\bar{w}_{1}=R_{1} \bar{z}_{1}^{\bullet} \\
& \frac{1}{\sin \theta} \bar{v}_{1}+\bar{u}_{1} \cot \theta+\bar{w}_{1}=R_{2} \bar{\epsilon}_{2}^{\bullet}  \tag{3-68}\\
& \frac{R_{2}}{R_{1}} \bar{v}_{1}^{\prime}-\vec{v}_{1} \cot \theta-\frac{1}{\sin \theta} \bar{u}_{1}=R_{2} \bar{\omega}^{\bullet}
\end{align*}
\]
where \(\bar{\epsilon}_{1}^{-}, \bar{\epsilon}_{2}^{0}\) and \(\bar{\omega}^{\bullet}\) are related to the complex strain components by the re?ation
\[
\left[\bar{\epsilon}_{1}, \bar{\epsilon}_{2}, \tilde{\omega}\right]=\left[\bar{\epsilon}_{1}^{0}(\theta) \cos \phi, \bar{\epsilon}_{2}^{0}(\theta) \cos \phi, \bar{\omega}^{0}(\theta) \sin \phi\right]
\]

Elimination of \(\bar{x}_{1}\) from the first tro of Eqs. (3-68) by subtracting the second from the first gives
\[
\begin{equation*}
\sin \theta\left(\frac{\bar{u}_{1}}{\sin \theta}\right)^{\prime}-\frac{\bar{u}_{1}}{\sin \theta}=R_{1} \bar{\epsilon}_{1}^{*}-R_{2} \bar{\epsilon}_{2}^{*} \tag{3-69}
\end{equation*}
\]

The third of Eqs. (3-68), upon using the relation of Codazzi, may be written in the form
\[
\begin{equation*}
R_{2} \sin \theta\left(\frac{\bar{\nu}_{1}}{R_{2} \sin \theta}\right)^{\prime}-\frac{R_{1}}{R_{2}} \frac{\dot{\psi}_{1}}{\sin \theta}=R_{1} \bar{\omega}^{0} \tag{3-70}
\end{equation*}
\]

Elimination of \(\bar{u}_{2} / \sin \theta\) from Eqs. \((3-69)\) and (3-70) yiolds after some rearrangement
\[
\begin{equation*}
\frac{\sin \theta}{R_{2}}\left\{\frac{R_{2}^{2} \sin \theta}{R_{1}}\left(\frac{\bar{v}_{1}}{R_{2} \sin \theta}\right)^{\prime}\right]^{\prime}-\frac{\bar{v}_{1}}{R_{2} \sin \theta}=\frac{R_{1}}{R_{2}} \bar{\epsilon}_{1}^{*}-\bar{E}_{2}^{*}+\frac{\sin \theta}{R_{2}}\left(R_{2} \bar{\omega}\right)^{\prime} \tag{3-71}
\end{equation*}
\]

Now, letting
\[
\begin{aligned}
& ==\frac{\nabla_{1}}{R_{2} \sin \theta} \\
& \Phi=\frac{R_{1}}{R_{2}} \bar{\epsilon}_{1}^{0}-\bar{\epsilon}_{2}^{0}+\frac{\sin \theta}{R_{2}}\left(R_{2} \bar{\omega}^{-}\right)^{0}
\end{aligned}
\]
equation (3-71) reduces to
\[
\begin{equation*}
\frac{\sin \theta}{R_{2}}\left[\frac{R_{2}^{2} \sin \theta}{R_{1}} \ddot{z}^{\prime}\right]^{\prime}-z=\Phi \tag{3-72}
\end{equation*}
\]
which takes es,uen'iaily the same form as Eq. (2-32). Hence, the transfor-
mation
\[
Z=\frac{Z_{1}}{R_{z} \sin 0}
\]
reduces Eq. (3-72) to the form
\[
\sin ^{2} \theta\left(\frac{Z_{1}^{\prime}}{R_{i} \sin \theta}\right)^{\prime}=\Phi
\]
from which it follows that
\[
\begin{equation*}
\bar{F}_{1}=z_{1}=C_{1}+C_{2} \int R_{1} \sin \theta d \theta+\int R_{1} \sin \theta\left(\int \Phi / \sin ^{2} \theta d \theta\right) d \theta \tag{3-73}
\end{equation*}
\]

The solution assoniated with \(C_{1}\) and \(C_{2}\) are the solutions of the homogeneous system of Eqs. (3-68), 1.e., solutions of Eqs. (3-68) with \(\bar{\epsilon}_{1}=\bar{z}_{2}=\bar{\omega}^{\circ}=0\). Hence, these two solutions are rigid body displacements and will be discarded in the following computation.

The displacement \(\bar{u}_{1}\), whicn may be obtained from Eq. \((3-70\) ), is
\[
\bar{u}_{1}=R_{2} \sin ^{2} \theta \int \Phi / \sin ^{2} \theta d \theta-\cos \theta \int R_{1} \sin \theta\left(\int \Phi / \sin ^{2} \theta d \theta\right)-R_{2} \sin \theta \bar{w}^{\bullet}(3-74)
\]
and \(\bar{W}_{1}\), which is found from the first of \(E_{L^{\prime}} \cdot(3-68)\), takes the form
\[
\begin{equation*}
\bar{w}_{1}=R_{2}\left(\bar{E}_{2}^{0}+\cos \theta \bar{\omega}^{\bullet}\right)-R_{2} \sin \theta \cos \theta \int \Phi / \sin ^{2} \theta d \theta-\sin \theta \int R_{1} \sin \theta\left(\int \Phi / \sin ^{2} \theta d \theta\right) d \theta \tag{3-75}
\end{equation*}
\]
(1) Membrane solution

The strain conponents are related to the solution \(\bar{W}\) by the expressions
\[
\begin{align*}
& \epsilon_{1}^{*}=\frac{1}{E h} \frac{W}{\sin ^{2} \theta}\left(\frac{1}{R_{2}}+\frac{\mu}{R_{1}}\right) \\
& \epsilon_{2}^{*}=\frac{1}{E h} \frac{W}{\sin ^{2} \theta}\left(\cdot \frac{1}{R_{1}}-\frac{\mu}{R_{2}}\right)  \tag{3-76}\\
& \omega^{0}=-\frac{2(1+\mu)}{E h} \frac{W^{\prime}}{R_{1} \sin \theta}
\end{align*}
\]
where
\[
W=\frac{1}{R_{2} \sin \theta}\left[B_{1}+B_{2} \int R_{1} \sin \theta d \theta\right]
\]

Substitution of these relations into the expression for \(\$\) yields
\[
\begin{equation*}
\Phi=\frac{1}{E h}\left[\frac{W}{\sin ^{2} \theta}\left\{\frac{1}{R_{1}}\left(t+\frac{R_{1}^{2}}{R_{2}^{2}}\right)+\frac{2 \mu}{R_{2}}\right\}-2(1+\mu)\left\{\frac{1}{R_{1}} W^{\prime \prime}+\frac{\sin \theta}{R_{2}}\left(\frac{R_{2}}{R_{1} \sin \theta}\right)^{\prime} W^{\prime}\right]\right. \tag{3-77}
\end{equation*}
\]
which are then substituted into Eqs, (3-73) to EqS. (3-75) to obtain the displacements due to the particular solution \(t\). These displacements are also listed in Table 3-4.
(ii) Bending solution

App:oxinate integration of Eq. (3-71) is possible, however, it involves considerable algbraic manipulation. Only some iniemediate steps are shown belnw. Obseiving the properties of the function \(\overline{\mathcal{F}}^{*}\), and the smoothness of the shell near the apex, one may write the deformation parameters in the following form
\[
\begin{align*}
& \bar{E}_{1}^{\bullet}=\frac{1}{E h}\left(\frac{i c}{R_{1}}(1+\mu)\left(\cot \theta \overline{\mathcal{F}}^{\circ}-\frac{1}{\sin ^{2} \theta} \overline{\mathcal{J}}^{\bullet}\right)-\mu \overline{\boldsymbol{T}}^{\circ}\right) \\
& \bar{E}_{2}^{*}=\frac{\gamma}{\bar{E} b}\left[\bar{J}^{\circ}-\frac{i c}{R_{1}}(1+\mu)\left(\cot \theta \overline{\mathcal{J}}^{\circ}-\frac{1}{\sin ^{2} \theta} \overline{\mathcal{J}}^{\circ}\right)\right]  \tag{3-78}\\
& \boldsymbol{\omega}^{\bullet}=\frac{1}{E h}\left[2(1+\mu) \frac{i c}{R_{1}}\left(\frac{1}{\sin \theta} \overline{\mathscr{F}}^{\prime}-\frac{1}{\sin ^{2} \theta} \overline{\mathcal{F}}^{\bullet}\right)\right]
\end{align*}
\]

Substitution of these equations into the expression for \(\Phi\) yields
\[
\Phi=\frac{1}{E h} \frac{i c}{R_{1}}(1+\mu)\left(2 \bar{J} \bar{J}^{0}-2 \cot \theta \overline{\mathcal{F}}^{\prime}+\frac{2}{\sin _{1}^{2} \theta} \overline{\mathcal{F}}^{0}\right)-\bar{J}\left(1+\mu \frac{R_{1}}{R_{z}}\right)
\]

With the nbservation that \(\bar{F}^{\circ}\) satisfies the differential equation
\[
\overline{\mathcal{J}}{ }^{\bullet}+\cot \theta \overline{\mathcal{F}}^{\delta}+\left(i \lambda^{2} \psi^{2}-\frac{1}{\sin \mathcal{D}^{2} \theta}\right) \overline{\mathcal{J}}=0
\]
the expression for \(\$\) reduces to the form
\[
\begin{equation*}
\Phi=\frac{1}{E h} \frac{i c}{R_{1}}\left(2+\mu-\frac{R_{2}}{R_{1}}\right)\left(\bar{J}^{\prime}-3 \cot \theta \bar{J}^{d}+\frac{3}{\sin ^{2} \theta} \bar{J}^{-}\right) \tag{3-79}
\end{equation*}
\]
from which it follows that
\[
\begin{equation*}
\int \frac{\phi}{\sin ^{2} \theta} d \theta \approx \frac{1}{K_{h}} \frac{\dot{i} c}{R_{1}}\left(z+\mu-\frac{R_{2}}{R_{1}}\right)\left(\frac{5^{\prime}}{\sin ^{2} \theta}-\frac{5^{5}}{\sin ^{2} \theta}\right) \tag{3-80a}
\end{equation*}
\]
and
\[
\begin{equation*}
\int R_{1} \sin \theta\left(\int \frac{\phi}{\sin ^{2} \theta} d \theta\right) d \theta=\frac{1}{E h} i<\left(2+\mu-\frac{R_{x}}{R_{t}}\right) \frac{\bar{j}^{\bullet}}{\sin \theta} \tag{3-80~b}
\end{equation*}
\]

Thus, the displacement \(\bar{v}_{1}\) is obtained
\[
\begin{equation*}
\vec{v}_{1}=\frac{R_{2}}{E h} \frac{i c}{R_{2}}\left(2+\mu-\frac{R_{2}}{R_{1}}\right) \frac{\dot{j}^{\bullet}}{\sin \theta} \tag{3-81}
\end{equation*}
\]
and \(\bar{u}_{1}\) and \(\bar{w}_{1}\) are found from Eqs. (3-74) and (3-75), respoctively,
\[
\begin{align*}
& \bar{u}_{1}=-\frac{R_{2}}{E h} \frac{i c}{R_{1}}\left(\frac{R_{2}}{R_{1}}+\mu\right) \bar{j}^{0}  \tag{3-82}\\
& \bar{w}_{1}=\frac{R_{2}}{E h} \overline{\boldsymbol{J}}^{\bullet} \tag{3-83}
\end{align*}
\]

It is noticed from Eqs. (3-81) to (3-83) that the magnitudes of disflacements obey the following order of magnitude relationships
\[
\bar{v}_{1}=\frac{1}{\lambda^{2}} O\left(\bar{w}_{1}\right) . \quad \bar{u}_{1}=\frac{1}{\lambda} O\left(\bar{w}_{1}\right)
\]
and
\[
\frac{d^{n} g}{d \theta^{n}}=\lambda^{n} O(g)
\]
where \(g\) denotes one of \(\bar{u}_{1}, \bar{v}_{1}\), and \(\bar{w}_{1}\). With these relations at the outset, the displacement \(F_{1}\) could have been easily obtained from the fourth of Eqs. (2-39), which is
\[
-\frac{1}{R_{1}}\left(\frac{\bar{w}_{1}^{\prime}-\bar{w}_{1}}{R_{1}}\right)^{\prime}=\frac{i}{C E h}\left(\bar{T}_{2}^{\bullet}-T_{2}^{\bullet \bullet}\right)
\]

Neglecting \(a_{1}\) in comparison with \(\bar{w}_{1}^{\prime}\) from the above equation, there results
\[
\left(\frac{\overline{H i n}_{1}^{\prime}}{R_{1}}\right)^{\prime}=-\frac{1}{E h} \frac{i R_{1}}{c} \tilde{J}_{2}^{\circ}=-\frac{1}{E h} \frac{i R_{1}}{c}\left(\mathcal{F}^{\circ}-\frac{i c}{R_{1}}\left(\cot \theta \bar{j}^{\circ}-\frac{R_{1}}{R_{2} \sin x^{2} \theta} j^{\circ}\right)\right)
\]

By virtue of Eq. (3-59) the preceding equation reduces to
\[
\left(\frac{\bar{W}_{1}^{\prime}}{R_{1}}\right)^{\prime}=\frac{1}{E h} \frac{R_{3}}{R_{1}} \bar{J}^{* n}
\]

It follows thet
\[
\tilde{w}_{1}=\frac{R_{1}}{E h} \tilde{J}^{\bullet}
\]

\section*{Gircular Cylindrical Shells}
(A). Axisymmetric Deformation - Internal Pressure

The analysis of cylindrical shells under internal pressure has been reduced to the solution of Eqs. \((2-48)\) and (2-49), which after dropping the terms containing \(q_{1}\) give
\[
\begin{align*}
& T_{1}=B_{5} \\
& T_{2}^{\prime \prime}+12 b^{2} T_{2}=12 b^{2} p_{c} \tag{3-84}
\end{align*}
\]

The last equation has the solution
\[
\begin{equation*}
\bar{T}_{2}=\bar{A} e^{(1-i) b a}+\bar{B} e^{-(1-i) b a}+p r_{b} \tag{3-85}
\end{equation*}
\]

The displacements may be obtained from Eqs.(2-50), which, upon substitution for \(\bar{T}_{1}\) and \(\bar{T}_{2}\) by their expressions from the first of Eqs (3-84) and (3-85), yield
\[
\begin{align*}
& \left.\bar{u}=\frac{r_{0}}{E h} r_{-\mu} \frac{1+i}{2 b}\left(\bar{A} e^{(1-i) b \alpha}-\vec{B} e^{-(1-i) b a}\right)-\mu \rho_{0} a+\bar{B}_{5} \alpha\right]  \tag{3-86}\\
& \tilde{N}=\frac{r_{0}}{E h}\left[\bar{A} e^{(1-i) b \alpha}+\bar{B} e^{-(1-i) b \alpha}+P r_{0}-\bar{B}_{5} \mu\right] \tag{3-87}
\end{align*}
\]

It is noted that the fifth of Eqs. \((2-45)\) is compatible only if
\[
\bar{T}_{1}=\mathbb{T}_{\bar{I}}^{*}
\]
from which it follows that
\[
\Psi_{1}=\dot{B}_{5}=\text { real constant }
\]

Letting
\[
\bar{B}=B_{3}+1 B_{4}
\]
and separating the real and inaginary parts of Eqs.(3-85) to (3-87), then, using the definition of the complex forces given by Eqs. (2-44) one obtains the forces, moments, and displacements as shown in Table 3-5, in which the
solution associated with \(\bar{A}\) has been dropped by virtue of the grop rty that it becomes unbounded when a increases.
(B) Non-symmetric Deformation - under a Monent

The analysis of circular cylindrical shells due to a moment loading has been reduced to the solution of the differential equation (2-55)
\[
\begin{equation*}
\bar{T}^{a n}+\left(i 2 b^{2}-2\right) \bar{T}^{\circ}=0 \tag{2-55}
\end{equation*}
\]

It follows that upon integration
\[
\begin{equation*}
\vec{T}^{+\prime}+\left(i z b^{2}-2\right) \boldsymbol{7}^{0}=\left(a z b^{2}-2\right)\left(\bar{D}_{7}+\bar{D}_{b} a\right) \tag{3-88}
\end{equation*}
\]
which has solution
\[
\begin{equation*}
F \cdot=\bar{D} e^{-a \alpha}+\bar{E} e^{a \phi}+\bar{D}_{7}+\bar{D}_{a} a \tag{3-89}
\end{equation*}
\]

Where
\[
\begin{equation*}
a=i\left(i 2 b^{2}-2\right)^{\frac{1}{2}} \approx-b\left(\left(i+\frac{1}{2 b^{2}}\right)-i\left(1-\frac{1}{2 b^{2}}\right)\right] \tag{3-90}
\end{equation*}
\]

The complex forces obtained from Eqs. (2-53) take the form
\[
\begin{align*}
& \mathcal{F}_{z}^{\bullet}=\left(1+\frac{i}{2 b^{2}}\right) \bar{T}^{\bullet}-\left(1+\frac{i}{b^{2}}\right)\left(\bar{D}_{7}+\bar{D}_{8} \alpha\right)  \tag{3-91}\\
& \mathcal{T}_{8}^{\bullet}=-\frac{1}{2 b^{2}} \bar{T}^{\bullet}+\left(1+\frac{i}{b^{2}}\right)\left(\bar{D}_{7}+\bar{D}_{8} \alpha\right)  \tag{3-92}\\
& \bar{S}^{*}=\frac{1}{2 b^{2}} \bar{\top}^{i}-\left(1+\frac{i}{b^{2}}\right) \bar{D}_{3} \tag{3-93}
\end{align*}
\]

Hith the complex forces expressed in terms of \(\bar{T}^{0}\) and its derivatives, the displacements are obtainable from Eqs. (2-58)
\[
\begin{align*}
& \bar{U}_{1}^{\prime}=\frac{r_{0}}{E h}\left(\bar{T}_{1}^{0}-\mu \bar{T}_{2}^{0}\right) \\
& \nabla_{1}+\bar{W}_{1}=\frac{\hat{\theta}_{1}}{E h}\left(\bar{T}_{2}^{0}-\mu \bar{T}_{i}^{0}\right)  \tag{2-58}\\
& -\bar{U}_{1}^{\prime}+\nabla_{1}^{\prime}=\frac{\hbar_{0}}{\varepsilon h} 2(1+\mu) \bar{S}^{0}
\end{align*}
\]
table 3-5
SOLUTIONS OF A CYLINDRICAL SHELL UNDER INTERNAL PRESSURE
\[
\begin{aligned}
& u: \frac{r_{0}}{E h^{k}}\left[\frac{\mu}{2 b} e^{-b \alpha}\left\{B_{3}(\cos b a-\sin b \alpha)-B_{4}(\sin b a+\cos b \alpha)\right\}\right. \\
& \left.+\left(B_{5}-\mu P r_{0}\right) \alpha\right] \\
& w: \frac{r_{0}}{E h^{2}}\left[e^{-b a}\left\{B_{3} \cos b a-B_{4} \sin b a\right\}+p r_{0}-\mu B_{5}\right] \\
& T_{1}: \quad B_{5} \\
& T_{2}: \quad e^{-b a}\left[B_{3} \cos b a-B_{4} \sin b a\right]+P r_{0} \\
& M_{1}: \quad::^{*} e^{-b a}\left[B_{5} \sin b \alpha+B_{4} \cos b \alpha\right] \\
& M_{2}: \quad-c^{\omega} \mu e^{-b \alpha}\left[E_{3} \sin b \alpha+B_{4} \cos 6 \alpha\right] \\
& N_{1}: \quad \frac{c^{*}}{k_{0}} b e^{-b \alpha}\left[B_{3}(=\operatorname{not} \alpha-\cos b \alpha)+B_{4}(\cos b \alpha+\sin b \alpha)\right] \\
& c^{*}=h^{\prime \prime} / \sqrt{12\left(1-\mu^{2}\right)}
\end{aligned}
\]

Substituting in the first of Eqs. (2-58) for \(\bar{T}_{1}, \bar{T}_{2}\) by their expressions from Eqs. (3-91) and (3-92) and taking into consideration that \(\overline{\mathrm{T}} 0\) satisfies Eq.(3-88), one has, after neglecting terms of onder \(1 / b^{2}\) compared with 1
\[
\bar{u}_{i}^{\prime}=\frac{r_{0}}{E h}\left[-\mu \frac{i}{2 b^{2}} \bar{T}^{\circ}{ }^{\wedge}+\left(\bar{D}_{7}+\bar{D}_{a}(a)\right]\right.
\]

Integration of this equation yields
\[
\begin{equation*}
\bar{U}_{1}=\frac{r_{0}}{E h}\left[-\mu \frac{i}{2 b^{2}} \mathcal{T}^{d}+\bar{D}_{7} a+\frac{1}{2} \bar{D}_{8} a^{2}\right] \tag{3-94}
\end{equation*}
\]

The thind of Eqs. (2-58) gives
\[
\bar{V}_{1}^{\prime}=\frac{r_{0}}{E h}\left[(2+\mu) \frac{i}{2 b^{2}} \bar{T}^{\prime}+\bar{D}_{2} \alpha+\bar{D}_{B}\left(-2(1+\mu)+\frac{1}{2} a^{2}\right)\right]
\]
which yields the solution for \(\overline{\mathrm{v}}_{1}\), upon integration \({ }^{\circ}\)
\[
\begin{equation*}
\bar{v}_{1}=\frac{R_{0}}{E h}\left[(2+\mu) \frac{i}{2 b} \bar{T}^{\bullet}+\frac{\bar{D}_{2}}{2} a^{2}+\bar{D}_{8}\left(-\dot{s}(1+\mu) \alpha+\frac{1}{6} \alpha^{3}\right)\right] \tag{3-95}
\end{equation*}
\]

Finally, \(\vec{k}_{1}\) is obtained from the second of Eqs. \((2-58)\)
\[
\begin{equation*}
\bar{w}_{1}=\frac{r_{0}}{E h}\left[\bar{T}^{0}-\bar{D}_{7}\left(1+\mu+\frac{1}{2} \alpha^{2}\right)+\bar{D}_{a}\left(11+\mu j \alpha-\frac{1}{6} \alpha^{3}\right)\right] \tag{3-96}
\end{equation*}
\]

It may be shown that the constants \(\bar{D}_{7}\) and \(\bar{D}_{8}\) are real. This follows from the fi. th of Eqs. \((2-45)\) that it is compatible only if
\[
T 1^{*}=D_{7}+D_{8} \alpha=\text { real value }
\]

The forces, moments and displacements are ovtained upon substitution for \(\overline{\mathrm{T}}^{0}\) into \(\mathrm{Eq},(3-91)\) through Eq. (3-96) by its expression from Eq. (3-89) and then separation of thereal and suaginary parts. The results of these mandpulations are shown in Table 3-6.
\(\mu: \frac{h_{0}}{E \hbar^{*}}\left[-\frac{\mu}{2 i^{2}} e^{3}\left\{D_{5}\left(b_{2} \sin b_{2} a-b_{1} \cos b_{2} \alpha\right)+D_{6}\left(b_{2} \cos b_{2} \alpha+b_{1} \sin b_{2} \alpha\right)\right\}\right.\)
\[
\left.+D_{1} \alpha+\frac{D_{0} \alpha^{2}}{2}\right) \quad \cos \beta
\]
\(v: \frac{r_{0}}{5 h^{\beta}}\left[\frac{2+\mu}{2 b^{2}} e^{-b, \alpha}\left(-D_{5} \sin b_{2} \alpha-D_{6} \cos b_{2} \alpha\right)+\frac{D_{7} \alpha^{2}}{2}\right.\)
\[
\left.+D_{B}\left(-2(1+\mu) \alpha+\frac{-k}{6} \alpha^{3}\right)\right\} \quad \sin \beta
\]
\(w: \quad \frac{r_{1}}{E \hbar^{\prime \prime}} i p^{-b, \alpha}\left(D_{5} \cos b_{2} \alpha-D_{A} \sin h_{2}(\lambda)-D_{7}\left(\mu+\frac{1}{2} \alpha^{2}\right)\right.\)
\[
\left.+C_{y}\left((2+\mu) \alpha-\frac{1}{6} \alpha^{3}\right)\right) \quad \cos \beta
\]
\(T_{1}: \quad \frac{1}{2 b^{2}} e^{-b_{1} \alpha}\left(D_{S} \sin b_{2} \alpha+D_{6} \cos b_{2} \alpha\right)+D_{T}+D_{8} \alpha\)
cosfs
\(T_{2}: \quad e^{-b_{1} \alpha}\left(D_{B} \cos \alpha_{2} \alpha-D_{0} \sin D_{2} \alpha\right)\)
\(\cos \beta\)
\(M_{1}:-c^{\mu}\left[e^{. . b_{1} \alpha}\left(D_{5} \sin b_{2} \alpha+D_{6} \cos b_{2} \alpha\right)-\frac{i-\mu}{2 b^{2}}\left(D_{:}+D_{8} a\right)\right] \quad \cos \beta\)
\(M_{2}:=E^{*}\left(\mu e^{-b, \alpha}\left(D_{5} \sin b_{2} \alpha \rightarrow D_{6} \cos b_{2} \alpha\right)+\frac{1-\mu}{2 b^{2}}\left(D_{7}+D_{8} \alpha\right)\right] \quad \cos \beta\)
\(T_{18}: \quad \frac{1}{2 b^{2}} e^{-b_{1} \mu}\left[D_{3}\left(b_{1} \sin b_{2} \alpha-b_{3} \cos b_{2} \alpha\right)+D_{6}\left(b_{1} \cos b_{2} \alpha+b_{2} \sin b_{2} \alpha\right)\right]-D_{2} \sin \beta\)
\(\begin{aligned} M_{r}: \quad-\frac{c^{\prime \prime}(1-\mu)}{2 b^{7}} e^{-b \alpha}\left(D_{5}\left(b_{1} \cos b_{2} \alpha+b_{2} \sin b_{2} \alpha\right)\right. & +D_{6}\left(-b_{1} \sin b_{2} \alpha b_{2}\left(\cos b_{2} \alpha\right)\right. \\ & -\frac{c^{4}(1-1}{2 b^{2}} D_{1}\end{aligned}\)
IV. BOUNDARY CONDITIONS AND DETERYINATION OF CONSTANTS

As an application of the solutions derived in the previous Chapters, the stresezs of a snell of revolution due to the presence of a discontinuity in terms of either a nircular hole, a circular rigid insert, or a nozzle will be studied. The external loading is an internal pressure or a moment.

\section*{Axisymmetric Deformation - Internal Pressure}

Case as a circular hole at the apex

The discontinuity presented in this case is a small circular hole discribed by \(\theta=\theta_{0}\). The boundary of the hole is free from stresses. However, the internal pressure must be equilibiated with a vertical shear uniformly distributed along \(\theta=\theta_{0}\). The boundary conditions are (Fig.4-1)
\[
\begin{align*}
& M_{1}=0 \\
& \theta_{x}=0
\end{align*} \quad \text { at } \theta=\theta_{0}
\]

2u which \(Q_{x}\) is the component of force in the direction perpendicular to the axis of the abell, i.e.,
\[
Q_{x}=T_{1} \cos \theta+N_{1} \sin \theta
\]

Substitution in Eqs. (4-1) for \(M_{1}\)
and \(Q_{x}\) by their expressions from Table 3-1 yleids, for the determination of the


Fig. 4-11
Intemal pressure equilibrated with verticai shear acting along the hole
two constants \(B_{1}\) and \(B_{2}\), the following equations
\[
\begin{align*}
& A_{11} B_{1}+A_{12} B_{2}=0  \tag{4-2}\\
& A_{21} B_{1}+A_{22} B_{2} \ddot{H} H_{2}
\end{align*}
\]
where
\[
\begin{aligned}
& A_{11}=h_{1}\left[K_{e i n}+(1-\mu) \sqrt{\frac{c}{R_{2}}} \cot \theta \text { Keri' } \eta\right]_{\theta_{0}} \\
& A_{12}=h_{1}\left[-K e r \eta+(1-\mu) \sqrt{\frac{c}{R_{2}}} \cot \theta \text { Kern }^{\prime} \eta\right]_{\theta_{0}} \\
& A_{21}=\left.h_{1} \sqrt{\frac{\epsilon}{R_{2}}} \frac{1}{\sin \theta} \operatorname{Ker}^{\prime} \eta\right|_{\theta_{0}} \\
& A_{22}=-\left.\dot{h}_{1} \sqrt{\frac{c}{R_{2}}} \frac{1}{\sin \theta} K_{e r}{ }^{\prime} \eta\right|_{\theta_{0}} \\
& H_{2}=-\left.T_{1}^{*} \cos \theta\right|_{\theta_{0}}
\end{aligned}
\]
\[
(4-3)
\]

Having determined \(B_{1}\) and \(B_{2}\) the direct stress \(\sigma_{D}\) and the bending stress \(\sigma_{B}\) are obtained by the formulas
\[
\begin{align*}
& \sigma_{j D}=T_{j} / h \\
& \sigma_{j B}=6 M_{j} / h^{2}
\end{align*} \quad j=1,2
\]

Case bi a circular rigid insert at the apex

Since the rigid insert, by its definition, does not deform during the deformation of the shell, the rotation \(X_{2}\) of the shell about the Ins \(\theta\) - \(\theta_{0}\) and the strain \(\epsilon_{2}\) of the shell along the insert \(\theta=\theta_{0}\) should be zero. Thus
\[
\epsilon_{8}=0 \quad \text { at } \theta=\theta_{0}
\]
where
\[
\begin{equation*}
\epsilon_{2}=\left(T_{i}-\mu T_{i}\right) / \Sigma h \tag{4-6}
\end{equation*}
\]
and \(X_{2}\) is the real part of Eq. (2-20)
\[
x_{2}=-\frac{1}{R_{1}}\left(w^{\prime}-u\right)=R_{c}\left(\frac{i R_{2}}{C E h} \tan \theta \bar{J}_{1}\right)=-\frac{R_{2}}{R_{1}} \frac{1}{E h} J^{\prime}
\]

Substitution for \(X_{2}\) and \(\epsilon_{2}\) in Eqs. (4-5) by their expressions from Tables 3-1 and 3-2 results in a system of tro equations for the determination of the constants \(\mathrm{B}_{1}\) and \(\mathrm{B}_{2}\)
\[
\begin{align*}
& A_{31} B_{1}+A_{32} B_{2}=H_{3} \\
& A_{4,6} B_{1}+A_{42} B_{2}=0 \tag{4-7}
\end{align*}
\]
where
\[
\begin{align*}
& A_{31}=h_{1}\left[\text { ker } \eta-\sqrt{\frac{c}{R_{2}}} \cot \theta \operatorname{kei}^{\prime} \eta(1+\mu)\right]_{\theta_{0}} \\
& A_{32}=h_{1}\left[\operatorname{kei}^{\eta}+\sqrt{\frac{c}{R_{2}}}(1+\mu) \cot \theta \text { kerin }\right]_{\theta_{3}} \\
& A_{41}=\left.h_{1} \sqrt{\frac{R_{1}}{c}} \operatorname{ker}^{\prime} \eta\right|_{\theta_{0}}  \tag{4-8}\\
& A_{42}=\left.h_{1} \sqrt{\frac{R_{2}}{c}} \operatorname{ker}^{\prime} \eta\right|_{\theta_{0}} \\
& H_{3}=-T_{2}{ }^{*}+\left.\mu T_{1}{ }^{*}\right|_{\theta_{0}}
\end{align*}
\]

\section*{Case ci a nozzle at the apex}

The discontinuity in this case is a nozele attached to the apex of a shell of revolution (Fig.4-2). The conditions of equilibuium and continuity across the junction of the nozele with the shell of revolution at \(a 0\) and \(\theta=\theta_{0}\) require that the following conditions be satisfied
\[
\begin{array}{ll}
M_{1}=M_{1}^{e}, & \epsilon_{2}=\epsilon_{8}^{e} \\
Q_{x}=-Q_{x}^{e} & X_{2}=\dot{X}_{2}^{e} \tag{4-9}
\end{array}
\]

The quantities on the left of :he uqual signs of Eqs.(4-9) represent the
moment, force, strain, and rotation of tho shell of revolution, while those on the right hand side with superscript \(c\) denote the corresponding quantities for nozzle (or cylinder), in which \(\epsilon_{z}^{e}\) and \(X_{2}^{C}\) are \(n_{1}^{c} E_{q_{x}^{c}}^{p+1} x_{2}^{c}\) given by
\[
\begin{aligned}
& \epsilon_{2}^{c}=\left(T_{2}-\mu T_{1}\right)^{s} / E h^{r} \\
& X_{2}^{e}=\frac{1}{\sigma_{0}} \frac{d W_{2}}{d a}
\end{aligned}
\]


Fig. 4-? 1
Forces and deformations at the junction of a nozzle and a sheila of revolution 3-1, 3-2 and 3-5, with \(B_{5}\) set equal to \(\frac{1}{2} p_{0}\) yields a system of four equations for determination of the four constants \(B_{1}, B_{2}\), \(\mathrm{B}_{3}\) and \(\mathrm{B}_{4}\).
\[
\begin{align*}
& A_{11} B_{1}+A_{12} B_{2}+A_{24} B_{4}=0 \\
& A_{21} B_{1}+A_{22} B_{2}+A_{23} B_{3}+A_{24} B_{4}=H_{2}  \tag{4-10}\\
& A_{31} B_{1}+A_{32} B_{2}+A_{33} B_{3}=C_{3} \\
& A_{41} B_{1}+A_{42} B_{2}+A_{43} B_{3}+A_{44} B_{4}=0
\end{align*}
\]
in which \(A_{j k}(k=1,2, \cdot j=1,2,3,4)\) and \(H_{2}\) have been given by ERs. (4-8) and (4-3). The rest are defined by
\[
\begin{align*}
& A_{14}=c^{*} / c \\
& A_{23}=-A_{24}-c^{*}{ }^{*} / x_{0}  \tag{4-12z,b,c}\\
& A_{33}=h / h^{*}
\end{align*}
\]
\[
\begin{align*}
& A_{43}=A_{44}=-b h / h^{*} \\
& G_{3}=H_{3}-h / h^{*} \mathrm{pr}_{0}(1-\mu / 2) \tag{4-11d,e}
\end{align*}
\]

Non-Symnetric Deformation - under a Moment

A couple is applied in the plane \(\phi=0\) either at the apex of a shell of revolution or at the far end of a nozzle when it is attached to the shell. The constants \(3^{\prime} \mathrm{D}_{4}\) and \(\mathrm{D}_{7}, \mathrm{D}_{8}\) which associjate with the membrane solutions of the shell of revolution and the cylindrical shell, respectively shown in Tables \(3-4\) and \(3-6\) will be first determined from the condition of equilibrium. Notice the propexties of the functions ker, jei, which diminish rapidly when their argument becomes largen Hence, the bending solutions are insignificant in the range of large values of \(\theta\). The state of stress in this region is, in fact, of the membrane type. The equilibrium of monent bout the plane \(\$=\frac{1}{2} \pi\) (Fig.4-3) gives
\[
\int_{0}^{8 \pi} T_{1} \sin \theta\left(R_{1} \sin \theta \cos \phi\right) R_{2} \sin \theta d \phi=M \quad(4-12)
\]
in which
\[
T_{1}=T_{1}^{*}+J_{1} \approx T_{1}^{*} \text { for large } \theta
\]

Equation (4-12) upon introducing the expa ression for \(T_{1}\) and performing integration reduces to
\[
\begin{equation*}
\pi\left(D_{3}+D_{4} \int_{0}^{2 \pi} R_{1} \sin \theta d \theta\right)=M \tag{4-13}
\end{equation*}
\]

The equilibrim of the forces in the direction of \(d=0\) gives
\[
\int_{0}^{2 \pi}\left(T_{1} \cos \theta \cos \phi-S \sin \phi\right) R_{2} \sin \theta d \phi=0_{( }
\]


Substitution for \(T_{1}\) and \(S\) in Eq. (4-14) by thair exncessions from Tale 3-5 and then integration give the result that
\[
D_{4}=0
\]
from which Eq. (4-15) yields
\[
D_{3}=M / \pi
\]

Similarly, when the moment is applied at the far end of the nozzle (Fig.4-4), the equilibrium of moment absut the plane \(\beta=\pi / 2\) and sur of the forces in the direction \(\beta=0\) gives
\[
\begin{align*}
& \int_{0}^{2 \pi} T_{1} r_{0} \cos \beta\left(r_{0} d \beta\right)=M  \tag{4-15}\\
& \int_{0}^{2 \pi}\left(S \sin \beta-N_{0} \cos \beta\right) r_{0} d \beta=0
\end{align*}
\]

Equations (4-15) upon substitution for \(T_{1}\) and \(S\) from Table 3-6 and then integration reduce to
\[
\begin{aligned}
\pi r_{0}^{2}\left(D_{1}+D_{g} \alpha\right) & =M \\
D_{g} & =0
\end{aligned}
\]

Hence,
\[
D_{r}=M /\left(\pi r_{0}^{2}\right)
\]

Case as a circular hole at the apax
A couple \(M\) is applied by means of a vextical force distribution along the hole \(\theta=\theta_{0}\) with the magnitude of \(M \cos / /\left(R_{2}^{2} \sin ^{2} \theta\right)\). The boundary conditions are
\[
\begin{equation*}
H_{1}=0, \quad Q_{x}=0 \quad \text { at } \theta=e_{0} \tag{4-16}
\end{equation*}
\]

In which \(Q_{x}\) is the component of force in the direction perpendicular to the axis of the shell, le.,
\[
Q_{x}=T_{1} \cos \theta+\left(N_{1}+\frac{1}{R_{2} \sin \theta} \frac{\partial M_{12}}{\partial \phi}\right) \sin \theta
\]

Substitution for \(M_{1}\) and \(Q_{x}\) from Tables 3-3 and 3-4 into Eqs.(4-16) results in a system of two equations for the two constants \(D_{1}\) and \(D_{2}\)
\[
\begin{align*}
& E_{11} D_{1}+E_{12} D_{2}=0  \tag{4-17}\\
& E_{21} D_{1}+E_{22} D_{2}=F_{2}
\end{align*}
\]
where
\[
\begin{aligned}
& E_{11}=h_{1}\left[\operatorname{Kel}, \eta+(1-\mu) \sqrt{\frac{c}{R_{2}}}\left\{\cot \theta \operatorname{ker} r_{1}^{\prime} \eta-\sqrt{\frac{c}{R_{2}}} \frac{1}{\sin ^{2} \theta} \operatorname{Ker}, \eta\right\}\right\}_{\theta_{0}}
\end{aligned}
\]
\[
\begin{aligned}
& E_{z 1}=h_{1} \sqrt{\frac{c}{R_{z}}} \frac{1}{\sin \theta}\left(k_{\text {er, }}^{1} \eta-\sqrt{\frac{c}{R_{z}}} \cot \theta k_{e i, \eta}\right) \theta_{0} \\
& E_{22}=h_{1} \sqrt{\frac{c}{R_{2}}} \frac{1}{\sin \theta}\left(-K_{\operatorname{er}}^{1} r^{\prime} \eta+\sqrt{\frac{c}{R_{2}}} \cot \theta \text { key, } \eta\right) \|_{\theta_{0}} \\
& F_{Z}=-T_{1}^{*} \cos \theta /\left.\cos \phi\right|_{\theta_{0}}
\end{aligned}
\]

Case bi a oircular rigid insert at the apex

As shown in Fig.4-5 the rigid insert does not deform but rotates through an angle when the moment \(M\) is arpilied. The shell has to rotate through the same angle to keep its original angle between the insert and the shell. The boundary conditions


Fig. 4-5:
Deformation of a shell of revalotion with a rigid insert under a moment
\[
\begin{equation*}
\epsilon_{2}=0, \quad y_{2}=-w / r_{0} \quad \text { at } \theta=\theta_{0} \tag{4-19}
\end{equation*}
\]

Substitution for \(\epsilon_{2}, X_{2}\) and \(w\) from Tables 3-3 and 3-4 into Ens. (4-19) yields a system of two equations for the determination of the two constants \(D_{1}\) and \(D_{2}\)
\[
\begin{align*}
& E_{31} D_{1}+E_{32} D_{2}=F_{3}  \tag{4-20}\\
& E_{41} D_{1}+E_{42} D_{2}=0
\end{align*}
\]
where
\[
\begin{align*}
& E_{31}=h_{1}\left(\text { Key, }_{1} \eta-(1+\mu) \sqrt{\frac{c}{R_{2}}}\left\{\cot \theta \text { lei, } \eta-\sqrt{\frac{c}{R_{2}}} \frac{1}{\sin ^{2} \theta} \operatorname{kei}_{1} \eta\right\}\right) \theta_{0} \\
& E_{z z}=h_{1}\left[k_{c i}, \eta+(1+\mu) \sqrt{\frac{c}{R_{2}}}\left\{\cot \theta K_{e r_{1}^{\prime} \eta-\sqrt{\frac{c}{R_{2}}} \frac{1}{\sin ^{2} \theta}} K_{e r}, \eta\right\}\right] 0_{0} \\
& E_{41}=h_{1}\left[-\sqrt{\frac{F_{6}}{c}} K_{e r_{1}^{\prime} \eta}+\frac{1}{\sin \theta} \operatorname{Ker}_{1} \eta\right] \theta_{0}  \tag{4-21}\\
& E_{42}=h_{1}\left[-\sqrt{\frac{R_{3}}{c}} \text { rest, }_{i} \eta+\frac{1}{\sin \theta} k e i_{i} \eta\right]_{\theta_{0}} \\
& F_{3}=\left(-T_{z}^{*}: \mu T_{1}{ }^{\mu}\right) / \cos \phi
\end{align*}
\]

Case cs a nozzle at the apex

The boundary conditions are the same as those in the case \(a\) for the axisymmetric deformation, except the rotation which, for this case, is shown in Fig. 4-6
\[
\begin{aligned}
M_{1} & =M_{1}^{a}, \quad \epsilon_{2}=\epsilon_{2}^{c} \\
Q_{x} & =-Q_{x}^{c}, x_{2}+x_{2}^{0}=-w / r_{0} \\
\text { at } a & =0 \text { and } \theta=\theta_{c} .
\end{aligned}
\]


Fig. 4-6:
Deformation of a shell of revolution with a nozzle under a moment

These conditions upon substitution for the quantities \(M_{1}, Q_{x}, \epsilon_{2}\) and \(x_{2}\) by their expressions from Tables 3-3 and 3-6 result an a system of four equations for determination of the four constants \(D_{1}, D_{2}, D_{5}\) and \(D_{6}\).
\[
\begin{align*}
& E_{11} D_{1}+E_{18} D_{2}+E_{16} D_{6}=F_{1} \\
& E_{21} D_{1}+E_{22} D_{2}+E_{25} D_{5}+E_{26} D_{6}=F_{2}  \tag{4-63}\\
& E_{32} D_{1}+E_{32} D_{2}+E_{35} D_{5}+E_{36} D_{6}=G_{3} \\
& E_{41} D_{1}+E_{42} D_{2}+E_{45} D_{5}+E_{46} D_{6}=0
\end{align*}
\]
in which \(E_{j k}\) for \(j=1,2,3,4\) and \(k \mu 1,2\) and \(F_{2}\) have been defined in Eggs. (4-16) and (4-21). The remainder are given by
\[
\begin{align*}
& E_{16}=c^{*} / c \\
& E_{25}=-E_{26}=-L_{2} c^{*} / x_{0} \\
& E_{35}=-h / h^{*} \\
& E_{45}=b_{1} h / h^{*} \\
& E_{36}=\left(h / h^{*}\right) \mu /\left(2 b^{2}\right)  \tag{4-24}\\
& E_{46}=b_{2} h / h^{*} \\
& E_{1}=-(1-\mu) /\left(2 b^{2}\right) M /\left(\pi x_{0}^{2}\right) \\
& G_{3}=F_{3}-\left(h / h^{*}\right) \mu M /\left(\pi r_{0}^{2}\right)
\end{align*}
\]
and
\[
r_{0}=\left.R_{2} \sin \theta\right|_{\theta_{0}}
\]

\section*{V. ANALYSIS OH NUSERICAT, RESULTS}

Numerical results are obtained for spherical shells, ellipsoids, and paraboloids, which are of common interest in engineering structures, of which the generating curves (Fiz.5-1) are defined by the equations
\[
\begin{align*}
& R_{1}=R^{*} /\left(1+r \sin ^{\hat{}} \theta\right) \cdot 3 / 2 \\
& R_{2}=R^{*} /\left(1+r \sin ^{2} \theta\right)^{\frac{1}{2}} \tag{5-1}
\end{align*}
\]

The results are compa:ed with the limited experimental data which are available only for the spherical shell attached to a cylindrical nozzle. For each class of shells stresses are computed for tiree different types of discontinuity. Physical interpretation as to the effects on the stresises due to the \(\mathfrak{r r e s e n c e}\) of a discontinuity is given with the spherical shell under internal pressure. A study of the optimum ratio \(r_{0} / h^{*}\) of the nozzle which makes the stresses of a given spherical shell a minimum has been determined. Determination of a favorable ratio a/l. among' ellipsoids with a nozzle attachent, which contain the same volume and use the same amount of material, is also studied. A computer program feasible for all these stixdies has been written in Fortran IV language to accomplish all the necessary computation.

Comparison of Theoretical and Experimental Stresses

Let \(Y=0\) and \(R^{*}\). \(R\) in Eqs. (5-1) from which one obtains the equations for the spherical shell


Fig. 5-1: Genorating curves of shells of revolution
\[
R_{1}=R_{2}=R=\text { constant }
\]

The dimensions of the experimental model tested by Maxwell and Holland (31) and the external loads are as follows:
\[
\begin{array}{llrl}
R & =15.255 \mathrm{in}, & h & =0.38 \mathrm{in} . \\
x_{0} & =1.281 \mathrm{in} . & h^{*} & =0.0625 \mathrm{in} . \\
p & =200 \mathrm{psi} & M & =2,400 \mathrm{in}-1 \mathrm{bs} .
\end{array}
\]

In all cases Poisson ratio \(\mu\) is set equal to 0.3. Comparisons of theoretical and experimental stresses are shown in Fig. 5-2 for the pressure loading and in Fig. 5-3 for the moment loading. In general, good agreement is obtained except for \(\sigma_{i}\) of the outer surface of the sphere (Fig. 5-2) which shows a different trend between theoretical and experimental stress rear the junction. However, this discrepency is rather insignificant because of its maliness in magnitude in comparison with the magnitude of \(\sigma_{2}\). It is seen that better agreement is obtainer in the moment loading (Fig. 5-3).

\section*{Pressure Loading}
(A) Sphertcal Shells

Effect of a Discontinuity on Stresses and Its Physical Interperetation
To study the effect of the different types of discontinuity on the stresses, the numerical results were obtained for the following set of data
\[
\mathrm{R} / \mathrm{h}=100, \quad \mathrm{r}_{0} / h^{*}=20
\]
and were shown in Fig.5-4 for f :essure loading.
Study of Fig. 5 - 4 reveals that the stress concentration in the case


Fig. 5-2: Comparison of thoorstical and exparimental atresses internal prassure, 200 psi.


Fig. 5-31 Comparison of theoratical and exporimental stresses in the plane of loading - moment 2400 in-lbs.
of the hold is much higher than that in the case of tho rigid insert. Presence of the hole causes large values of hoop stress \(\sigma_{2}\), while preserce of the rigid insert induces significant meridian stress \(\sigma_{i}\).

These results can be deduced from the consideration of the deformation. Suppose that the shell does not have any discontinuity, then, due to the application of internal pressure, the shell is essentially in the state of membrane stresses for which \(T_{1}=T_{2}=\frac{1}{2} p R_{0}\) Let \(Q_{X}, Q_{Z}\) be the horizontal and vertical components of \(T_{1}\), respectively. The radius \(\dot{r}_{0}\) before deformation is stretched into \(r_{0}^{*}\) after deformation (Fig.5-5), and the strain \(\epsilon_{8}\) in the circumferential direction is equal to (l- \(\mu\) ) \(\mathrm{pR} / 2 \mathrm{Eh}\). When a discor:tinuity in terms of a circular hole of radius \(r_{0}\) is present the boundary conditions imply that
\[
H_{I h}=0, \quad Q_{x h} \dot{F} T_{I h}=0
\]
along the hole (where subscript \(h\) is associated with the hole). The hole of radius \(r_{0}\) deforms into a hole of radius \(r_{\text {oh }}^{*}\) (Fig. 5-6), which , because of the zero value of Qxh, will be larger than \(r_{0}^{*}\). Consequently, the strain En Will be also larger than \(\epsilon_{2}\). From this it follows that the hoop tension \(T_{2 h}\left(a n G_{2 h}\right)\) is also larger than \(T_{2}\) 。

To show there exists a moment \(M_{2 h}\) in the circunferential direction,
: it is noticed that
\[
M_{1}=\frac{E h^{3}}{12\left(1-\mu^{2}\right)}\left(x_{1}+\mu k_{2}\right)=0
\]

From this it follows that
\[
k_{1}-u k_{2}
\]
and
\[
M_{1 h}=\frac{E h^{2}}{12\left(1-\mu^{2}\right)}\left(x_{2}+\mu x_{1}\right)=-\frac{E h^{3}}{12 \mu} K_{1}=-\frac{E h^{3}}{12 \mu} \frac{\partial x_{2}}{R \partial \theta}
\]




Fig. 5-4: Comparison of stressos anong different types of discontinuity fer internal pressure. (Sphere, \(1 / \mathrm{h}=100, r_{0} / h^{*}=20, \theta_{0}=5^{\circ}\) )

70




Fig. 5-5:
Deformation of a spherical shell


Fig. 5-6,
Deformatior: of a spherical shell with a cimular hole

(a)

(b)

(a)

Fis. 5-71 Deformation of a spherical sholl with a rigid insert
in which \(X_{2}\) is the rotation about the line \(\theta=\theta_{c}\). It can be seen from Fig. 5-6 that \(\frac{\partial X_{2}}{\partial \theta}\) is a negative quantity, hence, \(M_{2 h}\) is a positive value. This agrees with the stress shown in Fig. 5-4. The stress on the surface of the shell is computed using the formula
\[
\sigma_{2}=\frac{T_{2}}{h} \pm \frac{6 M_{2}}{h^{2}}
\]

Hence, \(\sigma_{2}\) of the outer surface is a significant stress in the case of the circular hole discontinuity.

When a discontinuity in terms of a rigid insert is present in a shell, the strain \(\epsilon_{2}\) and rotation \(X_{2}\) vanish along the rigid insert. The deformation of the shell:is shown in Fig. 5-7 in tro steps. Because of the mero strain, \(r_{0}{ }^{*}\) ( (he subscript \(R\) is associated with rigid insert) must be equal to its original length \(r_{0}\). To fulfil this condition, the horizontal force \(Q_{x R}\) has to be larger than \(Q_{x}\) of the membrane state. As a consequence oi inis larger \(Q_{x R}\) a \(I 0\) ation is produced as shown in Fig. 5-7b. Since the shell has to retain zero rotation along the insert, a . negative moment is required to compensate this rotation. The \(f: n a l\) configuration is shown in Fis. \(5-70\). The eero value of strain along the insert implies that
\[
T_{2 R}=\mu T_{1 R}
\]

To show the relative magnitude between \(K_{1}\) and \(M_{2}\) it is necessary to evaluate the change of curvature \(k_{2}\).
\[
x_{2}=-\frac{\cot \theta}{R^{2}}\left(w^{\prime}-\mu\right)=\frac{\cot \theta}{R} x_{z}=0
\]

Thus,
\[
M_{2 R}=\mu M_{1 n}
\]

Notice that \(M_{1 R}\) is a negative value, hence, \(M_{2 R}\) is also a negative value. This agree with the stress shown in Fig. 5-4. Both the ratios \(T_{2 R} / T_{1 R}\)
 ifisace, \(\sigma_{1}\) of the inner surface is a significant stress in the case of rigid insert.

Next, when the shell is connected by a nozzle, with a rigidity letween that of a rigid inseri and that of a circular hole, one would anticipate that the siresses of the shell would fall in between these two extreme sases. The rigidity of a nozzle of \(r_{0} / h^{*}=20\) being used for computing the numerical results is rather close to the flexibility of a circular hole, in which case \(\sigma_{2}\) is of significance. Consequently, the stress \(\sigma_{2}\) of the shell should close to that in the case of a circular hole. This result again agrees with the stress \(\sigma_{2}\) shown in Fig. 5-4. However, the stress \(\sigma_{1}\) does not follow this conclusion at and near the junction. The physical interpretation of this behavior is possible, however, it is complicated by the fact that four conditions are required to be fulfilled across the junction. Besides, the magnitude of \(\sigma_{1}\) is less important. No attempt is made to analyze this behavior. Optimum ratio \(r_{0} / h^{*}\) of a Nozzle

From the previous analysis it is understood that a discontinuity of a circular hole causes a higher stress concentration than that of a rigid insert. With a nozzle attached to a shell the stress variations of the shall between these two extreme cases can te studied ioy changing the ratio \(r_{0} / h^{*}\) of the nozzle. It is believed that a proper chnice of a noszle could minimize the stress concentration in the shell. The stresses
of a shell with \(9 / h=1,000\) have been computed for various values of \(r_{0} / h^{*}\) of a nozzle and the nondimensional stresses \(\sigma_{1} / p\) and \(\sigma_{2} / p\) at the Junction ( \(\theta=5^{\circ}\) ) are plotted in Fig. 5-8. The stress \(\sigma_{i}\) on both the outer ard the inner surface attains its maximum values at \(x_{0} / h^{*}\). arourr: 80, and decreases as \(x_{0} / h^{*}\) increases ana finally approches zero as \(r_{0} / h^{*}\) goes to infinit.r (which is the case of the circular hole). \(\sigma_{2}\) of the inner and the outiry surface increases as the nozzle becomes thinner and thinner and finaliy approches the values of the stresses for the case of a cicular discontinuilis as the ratio \(x_{0} / h^{*}\) reaches infinity. The stresses of the shell with a discontinuity of rigid insert are shown on the left hand side of the figure. The curves shown in solid lines are terminated at \(r_{0} / h^{*}=20\) since below this value the accuracy of tinin shell theory is questionable. Nevertheless, the curves showing the stresses in the region between \(r_{0} / h^{*}\). 20 and rigid insert are connected in a manner with stresses obtained from thin shell theory as a guide. It is quite interesting to see that all curves meet at a point where the stress \(\sigma / p\) is approximately equal to 500 , which is the membrane stress. At this point \(\sigma_{1}\) mener \(=\sigma_{1}\) outor and the moment \(M_{1}=0\). For this optimum value the ratio \(r_{0} / h^{*}\) is located around 8.

\section*{(B) Ellipsoids}

When the value of \(\gamma 13\) great than -1 , Eqs. (5-1) represent generating curves of ellipsoids. \(\gamma\) is relatod to the ratio of semiaxes by
\[
y=\frac{a^{2}}{l^{2}}-1
\]

Two ellipsolds with \(=0.2\) and -0.2 , which are equivalent to iaving the
\(74\)

square ratio of semiaxes \(a^{2} / \ell^{2}\) equal to 1.2 and 0.8 (Fig. 5-1), respectively, are chosen for computing the stresses. Other parameters used are \(l / \mathrm{h}=100\), and \(x_{0} / h^{*}=20\). The length of semiaxis \(l\) remains the same for the two einipsoids and equals the radius \(R\) of the sphere.

Comparison of the stresses due to the effects of three types of discontinuity are shown in Fig. 5-9 and Fig. 5-i0. The stress variations along the meridian reveal a similar pattern to those of the spherical shell shown in Fig. 5-4. The silipsoid with \(\mathrm{a}^{2} / \ell^{2}=1.2\) appears to have higher stresses and another one with \(a^{2} / \ell^{2} 00.8\) has luwer stresses than the spherical shell. The effects of the discontinuity on the stresses also show that a circular hole type of discontinuity gives higher stresses than a rigid type and that the stresses for the shell with a nozzle fall in between.
(c) Paraboloids

When \(\gamma=-1\), Eqs.(5-1) represent generaing curves of paraboloids and are reduced to
\[
\begin{aligned}
& R_{1}=R^{*} / \cos ^{3} \theta \\
& R_{2}=R^{*} / \cos \theta
\end{aligned}
\]
\(R^{*}\) is chosen to be equal to \(a^{2} / 2 \ell\) such that the generating curve passes through the end points of the major axis of the ellipsoid with \(\mathrm{a}^{2} / \ell^{2}=1.2\) as shown in Fig. 5-1. The stresses axe shown in Fig. 5-il for three typas of discontinuity. Similar conclusions to the spherical shell are obtained except that the magnitudes are lower than those of the apherical shell.


Fig. 5-91 Comparison of stresses among different types of discontinuity, intermal pressure, (ellipsoid, \(a^{2} / l_{*}^{2}=1.2, \ell / h=100\),
\[
\left.r_{0} / h^{*}=20_{0} \theta_{0}=5^{\circ}\right)
\]


Fig. 5-10: Comparison of stresses among different type of discontinuity, internal pressure. (Ellipsoid, a \(\mathrm{a}^{2} / \mathrm{t}^{2}=0.8, \ell / \mathrm{h}=100\), \(\left.x_{0} / h^{*}=20, \quad \theta_{0}=5^{\circ}\right\}\)


Fig. 5-11: Comparison of stresses among different types of discontinuity, internal pressura. (Paraboloid, \(\gamma=1,1 / \mathrm{h}=100\),
\[
\left.x_{0} / h^{*}=20, \theta_{0}=5^{\circ}\right)
\]
(D) Optimum Ratio \(a / 8\) of Ellipsoids with a Nozzle under Internal Pressure

It is the attempt of this section to find, among ellipsoids which contain the same volume and use the same amount of material, the one which has minimum stress due to the effect of a nozzle attachment under internal pressure.

Let V and S be the volume and surface area, respectively. For a spherical shell having thickness \(h\), its volume and surface area are given by
\[
\begin{aligned}
& V=4 \pi R^{3} / 3 \\
& S=4 \pi R^{2}
\end{aligned}
\]

For an sllipsoid with its major axis as the axis of revoluicion, and its semi-major 2 , semi-minor \(a\), thickness \(h_{g}\), the volume and surface area are given by
\[
\begin{aligned}
& V=4 \pi a^{2} \ell / 3 \\
& S=2 \pi a^{2}+2 \pi \frac{\partial l}{\epsilon} \sin ^{-1} \epsilon
\end{aligned}
\]
whare 6 is the eccentricity defined by
\[
\epsilon^{2}=1-a^{2} / l^{2}
\]

The condition that all ellipsoids have the same volume as the spherical shall of radius \(R\) gives
\[
\frac{l}{R}=1 /\left(\frac{a}{T}\right)^{2 / 3}, \quad \frac{a}{R}=\left(\frac{d}{l}\right)^{1 / 3}
\]

Another condition that they use tive saine amount of material as the sphoricel shell gives
\[
4 \pi R^{2} h=2 \pi\left(a^{2}+\frac{a l}{4} \sin ^{-1}\right) h_{s}
\]
from which one obtains, after certain manipulation

\section*{80}
\[
\frac{p}{h_{e}}=\frac{1}{2} \frac{R}{i n}\left(1+\frac{\sin ^{-1} \epsilon}{6} \frac{p}{d}\right)
\]

The data chosen for this study are
\[
R / h=100, \quad x_{0} / h^{2}=20, \text { and } \theta_{0}=5^{\circ}
\]

The stresses are computed for various values of the ratio \(2 / l\), and are shown in Fig. 5-12 for \(\sigma_{2}\) on the outer surface, which gives the maximum stress. For these ellipsoids the correponding ratios \(l / h_{e}\) are
\[
\begin{array}{ll}
a / k & l / \mathrm{h}_{\mathrm{e}} \\
\mathrm{l} & 100 \\
0.8 & 117.03 \\
0.6 & 146.59 \\
0.5 & 170.92
\end{array}
\]

As shown in Fig. j-12 when the value of \(a / 8\) decreases the stress \(\sigma_{2}\) at the junction ( \(\theta_{0}-5^{\circ}\) ) decrenses, however, it increases at \(\theta=90^{\circ}\) where the effect due to discontinuity disappears. The ellipsoid which acquires the minimum stress falls somewhere betreen \(a / \ell=0.6\) and 0.5 .

\section*{Moment Loading}

The stresses of spherical shells due to the effact of three types of discontinuity under moment luading are plotted in Fig. 5-13. It can be seen from this figure that high hoop tensile stress ( \(\sigma_{2}\) ) occurs in the discontinuity of a circular hole, while the meridian stress \(\left(\sigma_{1}\right)\) is significant in the discontinuity of a rigid insert, and that \(\sigma_{2}\) in the former case is higher than \(\sigma_{1}\) in the latter case. In other word, a ciroular hole causes a higher stress concentration than does a rigid insert in the same spherical shell. The stresses of the spiere with a nozzle



Fig. 5-13i Comparison of stresses among different types of inscontinuity, mament loading. (Sphere, \(R / h=100, r_{0} / h^{* *}=20, \theta_{0}=5^{\circ}\) )
' 83
attachment fall in between these two extreme cases. The same conclusions were also true in the case of pressure laading.

The stress distribution along the meridian for ellipsoids under moment loading shows a pattern similar to that of a spherical shell except for a slight difference in the magnitude of the stresses. In the case of nozzle ataachment, there is little difference in \(0_{1}\) among the ellipsoids of the ratio \(a^{2} / l^{2}=0.8,1\), and 1.2 with \(\&\) remaining constant (Fig. 5-14). However, the difference in \(\sigma_{2}\) is pronounced, which increases rapidly as the ratio \(a^{2} / l^{2}\) decreases. This result is contrary to the one obtained in the pressure loading, where the stresses decrease as \(a^{2} / l^{2}\) decreases.


\section*{VI. SUAMAR" AND CONCLUSIONS}

Governing differential equations for shells of revolution pertaining to axisymetric and moment loadings have been reduced from the basic equisions of the general theory of thin shells in terms of somplex forces.

For tl: axisymetric case, the analysis of shells of revolution has been reduced to the integration of a second order differential equation. Method of asymptctic integration is employed. Tha solution valid in the region \(0 \leqslant \theta<\pi\) is obtained in texms of Thompson function of order zero, provided the shell is sufficiently smooth near the apex.

For moment loading applied at the apex the problem has been further reduced to the integration of a second order differential equation. Asyaptotic solutions valid in the resion \(0 \leqslant \theta<\pi\) are also obtained in tems of Thompson function of onder one.

Pormulas for displacements, forces, and moments for both axisymmetric and moment loadings are also obtaired aid listed. Side by side with the shell of revolution the governing differential equations for circular eylindrical shells are also derived. Solutions in texms of exponential functions are obtained for both axisymmetric and moment: loadings.

As an application of the solutions derived previously, three cases of discontinuity at the apex of shells of revolution have been st died a circular hole, a circular risid insert, and a nozzio. The boundary conditions and the determination of the c.nstants for each of the
eppropriate cases have been derived.
Numerical results in terms of dimensionless stresses aro obtained for shells cf revolution having the shayes of spheres, ellipsoids, and paraboloids in which sach of the three types of discontinuity is present. Good agreement between theoreticil and experimental stresses has been obtained for a spherical pressure vessel with a nozzle. Careful studies of these results reveal signiflcant phenomena from which the following conclusions can be drawn:
(1) A circular hole present at the apex of a shell of revolution weakens the shell more than does a rigid insert on the same shell, that is, the stress concentration in the former is higher than that in the latter. (2) For the case of a circular hole, the hoop stress \(\sigma_{2}\) is higher than the meridian stress \(\sigma_{1}\), and the maximum stress \(\left(\sigma_{2}\right)\) occurs on the outer surface of the hole. In the other hand, in the case of a rigid insert, \(\sigma_{1}\) is larger than \(\sigma_{2}\) the maximum stress \(\left(\sigma_{1}\right)\) also occurs on the outer surfic of the insert.
(3) The suressez of a shell of revolution with a nozzle attached at the apex fall in retween the stresses of the case of a circular hole and the case of a rigid insert. When the radius to thickness ratio \(r_{0} / h^{*}\) of the nozele becomes large the stress distribution of the shell tends toward the case of a circular hole.
(4) The stress concentration due to the attachment of a nozale may be alleviated, to is certain extent, by proper choice of the value \(\Sigma_{0} / h^{*}\) of the noeslo.
(5) By proper adjustment of the ratio of semiaxes of elypooid, it is

\section*{87}
possible \(t\) obtain, among ellipsoidal pressure vessels containing the same volume and using the same amount of materials, the one which has the rinimum stiess concentration die to the effect of a nozzle attached at the apex.

The solutions obtained in this dissertation can be easily extended to include the study of the problems in which the externel loads are one of the followings: (a) a vertical load; (b) a torsion; (c) a horizontal force, applied at the apex of a shell of revolution. The same computer progras with a slight modification can be used in obtaining the stresses for thesc three cases of loadings.

\section*{RGFERENCES}
1. Vlasov, V, Z., General Theory of Shells and Its Applications in Engineering, U. S. Departnent of Commerce, Apiil 1964.
2. Novozhilov, V. V., Thin Shell Theory, Translated from the second Russian edition, P. Noorihoff Itd, 1,64.
3. Kraus, H., Thin Elastic Shells, John Wiley \& Sons, Inc., New York, 1967.
4. Love, A. E. H., The Mathematical Theory of Elasticity, 4th edition, New York, Dover Puclication, 1927.
5. Flugge, W., Stresses in Shells, Fourth Pxinting, Springer-Verlag, New York Irc., 1967.
6. Reissner, K., "Spannungen in Kugelschalen," Muller-Breslau Festschrift, Leipaig: Kroner (1912), pp. 181.-193.
7. Meissner, E., "Das Elastizitatsproblem fur durne Schalen von Ringflachen-, Kugel-, und Kegel-form," Physik, Zeit., 14, 343-349 (1913).
8. Naghdi, P. M. and DeSilva, G. N., "On the Deformation of Elastic Shells of Revolution," Quarterly Appl. Math., Vol. 12, No. 4, 1955. 369-374.

Small deformation of shells of revolution under axisymetric loading was considered. The basic equations were reduced to a single complex equation which is valid for uniform thickness, as well as for a large class of variable thickness.
9. Langer, R. E., "On the Asymptotic Solutions of Ordinary Differential Equations with Reference to Stokes' Phenomenon about a Singular Point," Trans. Amer. Math. Soc., 37(1935), 397-416.

Asymptotic solutions of the differential equation
\[
\frac{d^{z} w}{d s^{s}}+\{\lambda \psi(s)+r(\lambda, s)\} w=0
\]
are investigated, where \(\lambda\) represents a large parameter, and the roefficients \(\psi(s)\) and \(T(\lambda, s)\) take the following forms:
\[
\begin{equation*}
\psi(s) \equiv\left(s-s_{0}\right)^{\nu} \psi_{1}(s) \tag{1}
\end{equation*}
\]
with \(\nu>-2\) and \(\psi_{1}(s)\) a non-vanishing single-valued analytic function.
(i1) \(\quad T(\lambda, s) \exists A_{1} /\left(s-s_{0}\right)^{2}+B_{1} /\left(s-s_{0}\right)+C_{1}\left(\lambda_{0} s\right)\)
with \(A_{1}\) and \(B_{1}\) any constants, and \(C_{1}(\lambda, s)\) an analytic function which is bounded uniformly with respect to \(\lambda\).
10. Olver, F. W. J., "The Asymptotic Solution of Linear Differential Equations of the Second Order for Large Values of a Farameter," Philo. Trans. Roy. Soc., London Ser. A, 24?(1955), 307-

Asymptotic solutions of the differential equations
\[
\frac{d^{2} w}{d z^{2}}=\left\{u z^{n}+f(z)\right\} w \quad(n=0,1)
\]
for large positive values of \(u\), have the formal expansions
\[
w=P(z)\left\{1+\sum_{s=1}^{\infty} \frac{\Lambda_{s}(z)}{u^{5}}\right\}+\frac{P^{\prime}(z)}{u} \sum_{s=0}^{\infty} \frac{b_{s}(z)}{u^{s}}
\]
where \(P\) is an exponential or Airy function for \(n=0\) or 1 , respectively. The cocfficients \(A_{s}(z)\) and \(B_{s}(z)\) are given by recurrence relations. This paper proves that solutions of the differential equations exist whose asymptoitc expansions in Poincare's sense are given by these series, and that the expansions are uniformly valid with respect to the complex variable \(z\).
11. Olver, F. W. J., "The Asymptotic Solution of Linear Differential Equations of the Second Order in a Domain Containing One Transition Point." Philo. Trans. Roy. Soc., London Ser. A, 249(1956), 65-97.

The differential equation
\[
\frac{d^{2} w}{d z^{2}}=\left\{u z^{n}+\frac{r}{z^{2}}+g(\cdot)\right\} w
\]
where \(n\) is an integer \((\geqslant-1)\), u a parameter and \(r\) a constant, has the formal solution
\[
w=P(z)\left\{1+\sum_{s=1}^{\infty} \frac{A_{s}(z)}{u^{s}}\right\}+\frac{P^{\prime}(z)}{\psi} \sum_{s=0}^{\infty} \frac{B_{s}(z)}{u^{s}}
\]
where \(P\) is a solution of the equation
\[
\frac{d p}{d z^{2}}=\left(u z^{n}+\frac{r}{z^{2}}\right) p
\]

The roefficients \(A_{s}(z)\) and \(B_{s}(z)\) are given by recurrence rolations. It is shown that they are anelytic at \(z=0\) if, and only if, the differential equation for \(w\) can be transformed into a similar equation with \(n=0, x=0\), or \(n=1, r=0\), or \(n=-1\). The first two cases have been treated in (NO) of this raference. The third case, for
which \(P\) is a Bessel function of order \(t(1+4 r)^{\frac{3}{2}}\) is examined in detail in the present paper.
12. Naghdi, P. M. and DeSilva, C. N., "Deformations of Elastic Eliffsoidal Shells of Revolution," Proc. 2nd U. S. Nat. Ccng. Appl. Mern., Ann Arbor, 1964, \(\operatorname{ASME}(1965), 333-343\).

Deformations of thin elastic ellipsoidal shells or revolution of uniform thickness under axisymmetric loading are considered in detail. By means of asymptotic integration due tc Langer, a solution is obtained which is valid at the apex of the shell and involves Kelvin functions. The stress distribution is obtained for ellipsoidal shells under both uniformly distributed surface and edge loadings.
13. Clark, R. A, and Reissner, E., "On stresses and Deformations of Ellipsoidal Shells Subject to Internal Pressure," J. Mech. Phys. Solids, (1957), 63-70.

Couplete ellipsoidal shells of revolution subjected to internal pressure were considered. Stresses and deformations based on bending theory were obtained and compared with those obtained from meinbrane theory. The range of validity of the membrane solution was established and quantitative corrections to this solution vere also determined.
14. DeSilva, A. N. and Arbor, A., "Deformation of Elastic Paraboloidal Shells of Revolution," J. Appi. Mech., Sept. 1957, 397-404.

Asymptotic solution is obtained for paraboloidal shells of uniform thickness subjected to a load unjformly distributed over a small region about the apex and clamped at the open edge. Naghdi's equations for shells of revolution in which the effect of transverse shear deformation on the bending is considered are employed.
25. Baker, B. R. and Cline, G. B., "Influence Coefficients for Thin Smooth Shells of Revolution Subjected to Symmetric Loads," Trans. ASME Series E, 29(1962), 335-339.

The differential equations soverning the deformation of shells of revolution of unifonn thic raess subjected to axisymetric selfequilibrating edge loads ars transformed into a form suitable for asymptotic integration. Asyinptotic solutions are obtained for all sufficientiy thin shells that possess a smooth meridian curve and that are spherical in the neighborhood of the apex.
16. Steele, C. R. and Hartung, R, F., "Symmetric Loading of ól thotropic Shells of Revolution," Lockheed Missiles and Space Co., Technical Report, March 1964.

Stresses and deformations in thin, homogeneous, orthotropic shells of revolution under action of axisymmetric loads is reduced to
solution of a single inhomogeneous sacond-order diffarential equation with complex dependent variable; asymptotic solutions are obtained which are uniformly valid in both steep and shallow regions of domeshaped shell; the solution is equivalent to well-known membrane solution in steep region of shell but in shallow region it gives significant bending stresses.
17. Donnell, L. H., "Stability of Thin Walled Tubes Under Torsion," N. A. C. A. Report Nc. 479 (1933).
18. Steele, C. R., "Nonsymmetric Deformation of Dome-shaped Shells of Revolution," Trans, ASME, Series E, 29(1962), 353-361.

Bending solutions that are uniformly valid in both shallow and nonshallow regions of a dome with arbitrary meridian are detemined for edge loads that vary sinusoidally in the circumferential direction. The membrane and inextensional deformation solutions are obtained in terms of a function which satisfies a simple integral equation. For specific application, curve and formulas are obtained for the stresses and deformations of a dome with rigid rings clamped to the edges under the action of axial forces, side force and tilting moment.
19. Reissner, E., "Stresses and Small Disulacements of Shallow Spherical Shells, I, II," J. Math. Phys., 25(1946), 80-85, and 26(1947), 297-300.

In the first paper, a set of two equations which relate stress function \(F\) and normal displacement \(\boldsymbol{y}\) was obtained for small deformation of shallow spherical shells. The assumptions used in the derivation are: (a) shallow shell; (b) the transverse shear terms in the first two equations of equilibrium are neglected; (c) the tangential dis. placements \(u\) and \(v\) are neglected in the expressions of bending and twisting defonation parameters.
In the second paper, solutions to these tro equations:.were obtained for the casf of axisymmetry. Applications were given to obtain results for the following problems: (a) a shell with no edge restraint carrying a point load at the apex, (b) a shell with no edge restraint carrying a load uniformly distributed over a small area with center at the apex, (c) a sholl with edge restraint carrying a point load at tlal apex.
20. Schile, R. D., "Asymptotic Solution of Nonshallow Shells of Revolution Subjected to Nonsymmetric Loads," J. of the Aerospace Sciences, Nov. 1962, 2375-1379،

Asymptotic solutions of Novozhilov's equations are derived for a constant thickness, nonshallow shell of revolution. Two cases of loadings are considered, (a) sinusoidal loading and (b) higher harmonic load distritution. The asymptoti: solutions are obtained by the use of small-panimeter expansions and by the use of a standard method for the singular perturbation problem and are valid for a nonshallow shell frue of singularities.
21. Calletly, G. D., "Influence Coefficients for Hemispherical Shell with Small Openings at the Vertex,"J. Appl. Mech., March 1955, 20.24.

Memispinerical shells of thin, constant thickness with a circular opening at the vertex subjected to axisyminetric self-cquilibrating forces were considered. Three methods for obtaining influence coefficients were investigated aind utilized in a nunerical example.

22, Leckie, F. A., Payne, D. J. and Penny, R. K., "Elliptical Discontinuity in Spherical Shells,". J. of Strain Analysis, Vol. 2, No. 1(1967), 34-42.

In part l, shallow-shell equations expressed in elliptical coordinates have been solved in terms of liathieu functions. Boundary conditions for the rigid insert and for the unreinforced hole are discussed in some detail. Results for an unreinforced opening are compared with experiment and satisfactory agreement is obtained. In part 2, a perametric study has been made of factors affecting the stresses at rigid inclusions and at unreinforced holes of eiliptical shape in spherical shells.
23. Savin, G. N., "The Stress Distribution in a Thin Shell with an Arbitrary Hole," Problem of Continuum Nechanics, Society of Industria]. and Applied Mechanics, (1961), 382-405.

The method yields the perturbation of membrane state of stress caused by holes with smooth countours, the size of which is small compared to radil of curvatures of the shell. The perturbation, being confined to.a narrow zone, can be established by thecry of shallow shells. The isometric system of curvilinear coordinates pertaining to the shell is in this zone replaced by a system such that along the contour one of the coordinates is constant. The deflection and the stress function are combined into one unknown complex function; likewise, the two homogeneous equations for the shallow shell into one romplex equation. The general method is described and applied to the cyilndrical shell with a circular hole and to a spherical shell with either a circular or an elliptical hole; the solutions are given for the case of the sphere.
24. Savin, G. N., "Concentration of Stresses around a Curvilinear Hole in Plates and Shells," Proceedings of Eleventh International Congress of Applied Mechanics, Springer-Verlag, 1964, 289-298.
25. Bijlaard, P. P., " Computation of the Stresses from Local Loads in Spherical Pressure Vessels or Pressure Vessel Heads," Welding Research Council Bulletin No. 34, March 1957.

As a first approach to the determination of the effect of local loads acting upon attachments to spherical shells, the case of a rigid cylindrical insert, locded by a radial load or an external monent, is considered. Dfieect solutions are obtained by using the theory of shallow spherical shells. The numerical resuits are presented in graphs.
26. Foster, K., "The Hillside Problems Stresses in a Shallow Spherical Stiell due to External Loads on a Nonradial Rigid Cylindrical Insert," Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1959.
Shallow spherical shells with a rigid elliptical insert at the apex subjected to radial and tangential forces, and external moment applied to the insert wers investigated. Reissner's equations for shallow spherical shells were expressed in elliptical coordinate system. Solutions were obtaitad in terms of Mathieu functions.
27. Bijlaard, P. P., "Stresses in a Spherical Vessel from Radial Lcac's Acting on a Pipe,"
"Stresses in a Spherical Vessel from External Moments Acting on a Pipe," Welding Research Council Bulletin, No. 49, April 1959.

In the first paper, a spherical vessel with a radially inserted tube is investigated for the case where the tube is subjected to a radial load. After deriving the solutions for cylindrical shelis and shallow spherical shells the continuity conditions botween tube and vessel are established in order to determine the constants involving in thr solutions. Graphs showing deflections, forces and moments of the vessel for some values of geometric parameters are presented. In the second paper, the same structure is investigated for the case of extemal moment acting on an insert pipe, Solutions in the form of the first hamonic are shown to be suitable for this analysis. Curves showing deflections, forces and moments are also presented.
28. Leckie, F. A., and Penny, R. K., "Stress Concentration Factors at Nozzle Intersections in Pressure Vessels," Welding Research Council Bulletin, No. 90, 1963.

The methods of calculation presented apply to the ponetration of a spherical pressure vessel by a radial, circular cylindzical nozzle. This nozzle may protrude into the vessel, and allowance is made for the case when local reirfurcenent in the form of pad is present. Solutions for various loadings given include pressume and nozzle thrust, monent and shear.
29. Johnson, D. E., "Stresses in a Spherical Shell with a Nonradial Nozele," : App]. Mech., Trans. ASME, Vo:, 34(1967), 299-307.

An analytical investigation is made of stresses due to extermal forces and moments acting on an alastic nonradial circular cylindrical nozzle attached to a spherical shell. Results are obtained by combining solutions from shell theory by a Calerkin-type method so as to satisfy boundary conditions at the intersection of the two shells. It is found that, as the nozzle inclination increases, the stresses change gradually from those previously given by Bilaard for the radial nozele.

\section*{4}
30. Yu, J, C. M., Chen, C. H. and Shaw, H. A., "Stress Distribution of a Cyifurical Shell Nonradially At+ached to a Spherical Pressure Vessel," f.SME paper 71-pVp-42, Contrj ated by the Pressure Vessels and Piping Division of the ASME for presentation at the First National Congress on Pressure Vessels and Piping; San. \(\overline{\text { Prancisco, }}\) Callf., May 197l.
31. Maxwell, R. L., Holland, R. W. and Stengl G. Ro, "Experimental Stress Analysis of the Attachment Region of Hemispherical Shells with Attached Nozzles," Teshnical Report Fart 3a, ME-i-69-1, The University of Tennessee.

\section*{APPENDIX}

\section*{A BRIEF REVIEN OF THE GENERAL THEORY OF THD ELASTIC SHELS}

The derivation of the basic equations for thinelastic shells has been well established and can be found in most of the books on thin shells, for example, in \([1,2,3]\). For completeness of the text and convenionce of applicaticn, a general procedures as to the deduction of these basio equations to a system of differential equations which may be readily applied to tine problems studied here, will be outlined. The basic assumptions and their consequences will be pointed cut wherever they are introdused.

The fundamental assumptions in shell theory are:
(a) Straight fibers normal to the middle surface of a shell before deformation remain so after deiormation and do not change their length. (b) The normal stress acting on surfaces parallel to the micidle surface may be neglected in comparison with the other stresses.
(c) The relative thickess of the shell is eufficientiy small in comparison with unity.
(d) The displacements are small compared to the thickness of the sixill.

In that which follows, the notation and procedures used are those introduced by Novozhilov(2).

Coordinate System and Conditions of Gauss-Codazzi

Let \(\alpha_{1}=\) constant, \(a_{z}=\) constant be the coordinate lines of the principal curvature of the middle suriace of a shell ard \(R_{1}\) and \(R_{2}\) be the corresponding radil of curvature (Fig. A-j). Since the lines of principal curvature are oxthogonal, the first fundamental form of a surface may be written in the form
\[
\begin{equation*}
(d s)^{2}=\left(A_{1} d \alpha_{1}\right)^{2}+\left(A_{2} d a_{2}\right)^{2} \tag{A-1}
\end{equation*}
\]

where ds is the length of the differential segment of a line on the middle surface and \(A_{1}, A_{2}\) are called Lame' parameters. The parameters \(A_{1}, A_{2}, R_{1}\) and \(\mathrm{R}_{2}\) ame related by the conditions of GaussCodazel
\[
\begin{align*}
& \frac{\partial}{\partial \alpha_{1}}\left(\frac{A_{2}}{R_{2}}\right)=\frac{1}{R_{1}} \frac{\partial A_{2}}{\partial a_{1}} \\
& \frac{\partial}{\partial \alpha_{2}}\left(\frac{A_{1}}{R_{1}}\right)=\frac{1}{R_{2}} \frac{\partial A_{2}}{\partial A_{2}}  \tag{1-2}\\
& \frac{\partial}{\partial a_{1}}\left(\frac{1}{A_{1}} \frac{\partial A_{2}}{\partial a_{1}}\right)+\frac{\partial}{\partial a_{2}}\left(\frac{1}{A_{2}} \frac{\partial A_{1}}{\partial a_{2}}\right)=-\frac{A_{1} A_{2}}{R_{1} R_{2}}
\end{align*}
\]


Fig. A-1:
Coordinate lines of a surface

The first two conditiona may be obtained from the identity
and the thime one from
\[
\frac{\partial^{2} \vec{b}_{1}}{\partial a_{1} \partial a_{2}}=\frac{\partial^{2} \vec{a}_{1}}{\partial a_{2} \theta a_{1}}
\]
where \(J_{2}\) is a mit veotor tangent to the ine \(a_{1}=\) constant and \(t_{n}\) is a
unit nomal to the middle surface (Fig: A-1). A surface is uniquely defined if the parameters \(A_{1}, A_{2}, R_{1}\) and \(R_{2}\) satisfy the condition (A-2). Hence, these conditions are usuaidy referred to as the compatiollity conditions of a surface.

\section*{Strain-Displacement Relations and Comprtibility Equations}

Let \(u, v, w\) be the displacements of a point \(A\) on the riddile surface in the directions of \(\stackrel{\rightharpoonup}{e}_{1}, \vec{c}_{2}, \vec{e}_{n}\), respectively, and \(u_{z}, v_{z}, W_{z}\) be the displacenents of a point \(B\) on the nomal through \(A\), at a distance \(z\) from the middle surface (Fig. A-1). The assumption (a) implies that
\[
\theta_{31}=e_{32}=e_{33}=0
\]

Expressing these relations in terms of the displacements one obiains
\[
\begin{align*}
H_{1} \frac{\partial}{\partial z}\left(\frac{U_{2}}{H_{1}}\right)+\frac{1}{H_{1}} \frac{\partial W_{2}}{\partial a_{1}} & =0 \\
H_{2} \frac{\partial}{\partial x}\left(\frac{V_{2}}{H_{2}}\right)+\frac{1}{H_{2}} \frac{\partial W_{x}}{\partial a_{2}} & =0  \tag{A-3a}\\
\frac{\partial W_{z}}{\partial z} & =0
\end{align*}
\]
in which
\[
\begin{align*}
& H_{1}=A_{1}\left(1+z / R_{1}\right) \\
& H_{2}=A_{2}\left(1+z / R_{2}\right) \tag{A-3b}
\end{align*}
\]

Equations (A-3a) upon integration with respect to \(z \operatorname{over}(0, z)\) and use of the relation \(\left(u_{z} ; v_{z}, w_{z}\right)=(u, v, w)\) at \(z=0\), yiele
\[
\begin{align*}
& u_{z}=v+z 0 \\
& v_{z}=v+2 \psi  \tag{A-3c}\\
& w_{z}=w
\end{align*}
\]
where
\[
\begin{align*}
& V=-\frac{1}{A_{1}} \frac{\partial w}{\partial a_{1}}+\frac{u}{R_{1}}  \tag{A-3d}\\
& \psi=-\frac{1}{A_{2}} \frac{\partial w}{\partial a_{2}}+\frac{v}{R_{2}}
\end{align*}
\]

Equations (A-3c) show that the variation of the displacements through the tinickness is linear and \(w_{z}\) is independent of \(z_{0}\)

The remaining three strain components are related to the displacements by
\[
\begin{align*}
& e_{11}=\frac{1}{H_{1}}\left(\frac{\partial u_{2}}{\partial a_{1}}+\frac{1}{H_{2}} \frac{\partial H_{1}}{\partial u_{2}} v_{z}+\frac{\partial H_{1}}{\partial x} w_{2}\right) \\
& e_{22}=\frac{1}{H_{2}}\left(\frac{\partial V_{2}}{\partial T_{2}}+\frac{1}{H_{1}} \frac{\partial H_{2}}{\partial a_{1}} u_{2}+\frac{\partial H_{2}}{\partial x} w_{2}\right.  \tag{A-4}\\
& e_{12}=\frac{H_{1}}{H_{1}} \frac{\partial}{\partial \alpha_{1}}\left(\frac{v_{2}}{H_{2}}\right)+\frac{H_{1}}{H_{2}} \frac{\partial}{\partial a_{2}}\left(\frac{u}{H_{1}}\right)
\end{align*}
\]

Substitution of Eqs, \((A-3 b)\) and ( \(A-3 c\) ) into Eqs. ( \(A-4\) ) and use of conditions of Codazzi yield, after ceriain manipulation, the fuliouing explicit expressions
\[
\begin{align*}
& e_{11}=\frac{1}{1+z / R_{1}}\left(\epsilon_{1}+z x_{1}\right) \\
& e_{22}=\frac{1}{1+z / R_{2}}\left(\epsilon_{2}+z K_{2}\right)  \tag{A-5}\\
& e_{18}=\frac{1}{1+z / R_{1}}\left(\omega_{1}+z \tau_{1}\right)+\frac{1}{1+z / R_{2}}\left(\omega_{2}+z \tau_{\varepsilon}\right)
\end{align*}
\]
where
\[
\begin{aligned}
& \epsilon_{1}=\frac{1}{A_{1}} \frac{\partial u}{\partial a_{1}}+\frac{1}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial a_{2}} v+\frac{w}{R_{1}} \\
& \epsilon_{2}=\frac{1}{A_{2}} \frac{\partial v}{\partial a_{2}}+\frac{1}{A_{1} A_{2}} \frac{\partial A_{3}}{\partial a_{1}}+\frac{w}{R_{2}} \\
& x_{1}=\frac{1}{A_{1}} \frac{\partial v}{\partial a_{1}}+\frac{\psi}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial a_{2}} \\
& K_{2}=\frac{1}{A_{2}} \frac{\partial \psi}{\partial a_{2}}+\frac{\rho}{A_{1} A_{2}} \frac{\partial A_{2}}{\partial a_{1}}
\end{aligned}
\]
and
\[
\begin{align*}
& \omega_{1}=\frac{1}{A_{1}} \frac{\partial \psi}{\partial \sigma_{1}}-\frac{1}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial a_{2}} u \\
& \omega_{2}=\frac{1}{A_{2}} \frac{\partial u}{\partial a_{2}}-\frac{1}{A_{1} A_{2}} \frac{\partial A_{2}}{\partial a_{1}} \varphi \\
& T_{1}=\frac{1}{A_{1}} \frac{\partial \psi}{\partial a_{1}}-\frac{1}{A_{1} A_{2}} \frac{\partial A_{1}}{\partial a_{2}} v  \tag{A-7}\\
& \tau_{2}=\frac{1}{A_{2}} \frac{\partial \vartheta}{\partial a_{2}}-\frac{1}{A_{1} A_{2}} \frac{\partial A_{2} \psi}{\partial a_{1}} \psi
\end{align*}
\]

It is possible to reduce the last of Eqs. (A-5) to a form involving only two parameters. In doing this, observing the identity
\[
r_{1}+\frac{\omega_{2}}{R_{1}}=T_{2}+\frac{\omega_{1}}{R_{2}}
\]
and introducing the new notations
\[
\begin{aligned}
& \omega=\omega_{1}+\omega_{2} \\
& T=T_{1}+\frac{\omega_{2}}{R_{1}}=T_{2}+\frac{\omega_{1}}{R_{2}}
\end{aligned}
\]
one reduces the last of Eqs. (A-5) to the following form
\[
\begin{equation*}
C_{12}=\frac{1}{\left(1+x / R_{1} X_{i}+x / R_{i}\right)}\left\{\left(1-\frac{x^{2}}{R_{1} R_{2}}\right) \omega+2\left(1+\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \frac{x}{2}\right)=\tau\right\} \tag{A-8}
\end{equation*}
\]
whare
\[
\begin{align*}
\omega= & \omega_{1}+\omega_{2}=\frac{A_{1}}{A_{2}} \frac{\partial}{\partial a_{2}}\left(\frac{u}{A_{1}}\right)+\frac{A_{2}}{A_{1}} \frac{\partial}{\partial a_{1}}\left(\frac{v}{A_{2}}\right) \\
\tau= & -\frac{1}{A_{1} A_{2}}\left(\frac{\partial^{2} w}{\partial a_{1} \partial a_{2}}-\frac{1}{A_{1}} \frac{\partial w}{\partial a_{1}}-\frac{1}{A_{2}} \frac{\partial A_{2}}{\partial \sigma_{1}} \frac{\partial w}{\partial a_{2}}\right)  \tag{A-9}\\
& +\frac{1}{R_{1} A_{2}}\left(\frac{\partial u}{\partial \omega_{2}}-\frac{1}{A_{1}} \frac{\partial A_{1}}{\partial a_{2}} u\right)+\frac{1}{R_{2} A_{1}}\left(\frac{\partial v}{\partial \sigma_{1}}-\frac{1}{A_{2}} \frac{\partial A_{2}}{\partial a_{1}} v\right)
\end{align*}
\]

Thus, the defornation of the middle surface is completely described by the six parameters \(\epsilon_{1}, \epsilon_{z}, \omega_{1} k_{1}, k_{z}\) and \(r\), which are usually referred to 3 the deformation parameters of a middle surface.

Negleoting the terms \(2 / R_{1}\) and \(\varepsilon / R_{2}\) in Eqs. ( \(1-5\) ) in comparison with unity one obtains the expressions given in (3) which differ only in \(T\)
from Novozhilov's expressions, 1.e.,
\[
\begin{equation*}
r^{\prime}=\tau_{1}+T_{2}=\frac{A_{2}}{A_{1}} \frac{\partial}{\partial \sigma_{1}}\left(\frac{\psi}{A_{2}}\right)+\frac{A_{1}}{A_{2}} \frac{\partial}{\partial \sigma_{2}}\left(\frac{y}{A_{1}}\right) \tag{A-10}
\end{equation*}
\]
ixpanding the factors \(\left(1+2 / R_{1}\right)^{-1}\) and \(\left(1+z / R_{2}\right)^{-1}\) in Eqs. \((A-S)\) in the form of a sories in the variable \(z\) and collecting the tems in the coeffioients of \(z^{0}\) and \(z^{1}\), one obtains Viasor's expressions (li which relate Novozihiloy's expressions by
\[
\begin{align*}
& \epsilon_{1}^{\prime \prime}=\epsilon_{1}, \quad \epsilon_{2}^{\prime \prime}=\epsilon_{2}, \\
& x_{1}^{\prime \prime}=R_{1}-\epsilon_{1} / R_{1} \quad N_{2}^{\prime \prime}=x_{2}-\epsilon_{2} / R_{2}  \tag{A-21}\\
& 2 T^{\prime \prime}=T_{1}+T_{2}-\frac{\omega_{1}}{R_{1}}-\frac{\omega_{2}}{R_{2}}=2 T-\left(\lambda_{1}+\frac{1}{R_{2}}\right) \omega
\end{align*}
\]

The six parameters relating to the displacements must satisfy the compatibility conditions of the strains, which ire given below[2]
\[
\begin{align*}
& \frac{\partial}{\partial \alpha_{2}}\left(A_{1} K_{1}\right)-K_{2} \frac{\partial A_{1}}{\partial a_{2}}-\frac{\partial A_{2} T}{\partial a_{1}}-\tau \frac{\partial A_{2}}{\partial a_{1}}+\frac{\omega}{R_{1}} \frac{\partial A_{2}}{\partial a_{1}} \\
& -f_{k}\left(\frac{\partial A_{1} \epsilon_{i}}{\partial a_{z}}-\frac{\partial A_{2} \omega}{\partial a_{i}}-\epsilon_{2} \frac{\partial A_{1}}{\partial o_{2}}\right)=0 \\
& \frac{\partial}{\partial a_{1}}\left(A_{2} K_{2}\right)-*_{1} \frac{\partial A_{2}}{\partial a_{1}}-\frac{\partial A_{1} r}{\partial a_{2}}-\tau \frac{\partial A_{1}}{\partial a_{2}}+\frac{\omega}{R_{2}} \frac{\partial A_{1}}{\partial a_{2}} \\
& -\frac{1}{R_{1}}\left(\frac{\partial A_{2} \epsilon_{t}}{\partial \alpha_{1}}-\frac{\partial A_{1} \omega}{\partial \alpha_{2}}-A_{1} \frac{\partial A_{2}}{\partial \alpha_{1}}\right)=0  \tag{A-12}\\
& \frac{K_{1}}{R_{2}}+\frac{K_{1}}{R_{1}}+\frac{1}{A_{1} A_{2}}\left\{\frac{\partial}{\partial x_{1}} \frac{1}{A_{1}}\left(A_{2} \frac{\partial \epsilon_{2}}{\partial a_{1}}+\frac{\partial A_{2}}{\partial a_{1}}\left(\epsilon_{2}-\epsilon_{1}\right)-\frac{A_{1}}{2} \frac{\partial \omega}{\partial O_{2}}-\frac{\partial A_{1}}{\partial a_{2}} u^{\prime}\right\}\right. \\
& \left.+\frac{\partial}{\partial \sigma_{2}} \frac{1}{4_{1}}\left[A_{1} \frac{\partial \epsilon_{1}}{\partial \sigma_{2}}+\frac{\partial A_{1}}{\partial a_{2}}\left(A_{1}-\epsilon_{2}\right)-\frac{A_{2}}{2} \frac{\partial w}{\partial a_{1}}-\frac{\partial A_{3}}{\partial a_{1}} \omega\right)\right]=0
\end{align*}
\]

The relations (A-12) play in the theory of shoils the same role as the compatibility equations in the theory of elasticity, the fulfilment of which ensures the possibility of determining displacements from the civen defcrmation parameters of a shall.

\section*{Equations of Equilibitum}

The equations of equilioxium of a shell element may be derived in a sinilar manner as those which are derived in the theory of elasticity, except in the theory of shell, the siresses are replaced by staticaliy equivalent forces and moments (Fig. A-2), which are defined by the following expressions
\[
\begin{align*}
& T_{1}=\int_{-h / 2}^{1 / 2} \sigma_{11}\left(1+z / R_{2}\right) d z \\
& T_{12}=\int_{-h / 2}^{h / 2} \sigma_{12}\left(1+x / R_{3}\right) d x \\
& N_{1}=\int_{-h / 2}^{N / z} \sigma_{13}\left(1+\dot{z} / R_{2}\right) d z \\
& T_{z}=\int_{-N / 2}^{h / z} \sigma_{2 z}\left(1+x / R_{1}\right) d z \\
& T_{31}=\int_{-W / 2}^{W / 2} \sigma_{21}\left(1+x / R_{1}\right) d x  \tag{1-13}\\
& N_{2}=\int_{-N / 2}^{W / 2} \sigma_{2} 3\left(1+x / R_{1}\right) d x \\
& M_{1}=\int_{-N / 3}^{h / 2} \sigma_{11} x\left(1+x / R_{2}\right) d z \\
& M_{12}=\int_{-M / 2}^{A / 2} \sigma_{12} z\left(1+x / R_{2}\right) d x \\
& M_{2}=\int_{-h / 2}^{h / 2} \sigma_{22} x\left(1+x / R_{1}\right) d x \\
& M_{21}=\int_{-h / 2}^{H / 2} \sigma_{21} z\left(1+x / R_{1}\right) d z
\end{align*}
\]



Fis. A-2
Positive directions of forces and moments

The condition that the equilibriun of a shell slement requires that tive resultant force and moment vanish yields the following equations
\[
\begin{array}{r}
\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} T_{1}}{\partial a_{1}}+\frac{\partial A_{1} T_{21}}{\partial a_{2}}+\frac{\partial A_{1}}{\partial a_{2}} T_{12}-\frac{\partial A_{2}}{\partial a_{1}} T_{2}\right]+\frac{N_{1}}{R_{1}}+g_{1}=0 \\
\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} T_{2}}{\partial a_{1}}+\frac{\partial A_{1} T_{2}}{\partial a_{2}}+\frac{\partial A_{2}}{\partial a_{1}} T_{21}-\frac{\partial A_{1}}{\partial a_{2}} T_{1}\right]+\frac{N_{2}}{R_{2}}+g_{2}=0 \\
\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} A_{1}}{\partial a_{1}}+\frac{\partial A_{2} N_{2}}{\partial a_{2}}\right]-\frac{T_{1}}{R_{1}}-\frac{T_{2}}{R_{2}}+g_{n}=0  \tag{A-14}\\
\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} M_{1}}{\partial J_{1}}+\frac{\partial A_{1} A_{1}}{\partial a_{2}}+\frac{\left.\partial A_{1} M_{12}-\frac{\partial A_{2}}{\partial \alpha_{2}} M_{2}\right)-N_{1}=0}{\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} M_{2}}{\partial a_{1}}+\frac{\partial A_{1} M_{2}}{\partial a_{2}}+\frac{\partial A_{2}}{\partial a_{1}} M_{21}-\frac{\partial A_{1}}{\partial a_{2}} M_{1}\right]-N_{2}=0}\right. \\
T_{12}-T_{21}+\frac{M_{12}}{R_{1}}-\frac{M_{21}}{R_{2}}=0
\end{array}
\]

The last of Eqs. (A-14) is identically satisfied. Tilis can be verified upon substitution into the equation the forces and moments by their expressions from Eqs. (A-13).

Relations betwcen the Forces, Moments and the Deformation Farameters

The relations between the forces, moments and the deformation parameters (from now on called constitutive equations) can be obtained from Eqs. \((A-13)\). For this purpose, the stress components in these equations are replaced by the sicrain components through the use of Hookels law (neglecting \(\sigma_{31}\) in comparison with \(\sigma_{1}\) and \(\sigma_{z z}\) )
\[
\begin{align*}
& \sigma_{11}=\frac{E}{1-\mu^{2}}\left(e_{11}+\mu e_{z E}\right) \\
& \sigma_{2 z}=\frac{E}{1-\mu^{2}}\left(e_{28}+\mu e_{11}\right)  \tag{1-15}\\
& \sigma_{12}=\frac{E}{2\left(1+\mu_{1}\right.} e_{18}
\end{align*}
\]
aid then, the strain components are replaced by the deformation paraneters from Eqs. \((A-5)\) and ( \(A-8\) ). On carrying out integration on the result of these manipulations and then, neglecting terms of the order \(h / R\) in comparison with unity, Eqs, (A-13) finaily yield the following reletions
\[
\begin{array}{ll}
T_{1}=D\left(\epsilon_{1}+\mu \epsilon_{2}\right), & T_{2}=D\left(\epsilon_{2}+\mu \epsilon_{1}\right) \\
T_{12}=T_{21}=\frac{D(1-\mu)}{2} \omega, & M_{1}=K\left(x_{1}+\mu K_{2}\right)  \tag{A-16}\\
M_{2}=K\left(x_{2}+\mu x_{1}\right) . & M_{12}=M_{21}=K(1-\mu) \tau
\end{array}
\]
where
\[
D=\frac{E h}{1-\mu^{2}}, \quad K=\frac{E h^{3}}{12\left(1-\mu^{2}\right)}
\]

Adopting these relations one is essentially disregarding the differences between \(T_{12}\) and \(T_{21}\), and \(M_{12}\) and \(M_{21}\). On substituting these relations into the last of Eqs. (A-14) it may be verified that this equation is not satisfied identically. As mentioned previously, the fact that this equation is identically satisfied secures the syr netry of the stress tensor ( \(\sigma_{18}=\sigma_{21}\) ) from which it follows that Eqs. \((A-16)\) contradict the symmetric properties of the stress tensor.

This contradiction can be avoided if the constitutive equations are developed from the variational principle of the potential energy by neglecting terms of order \(h / R\) in comparison with unity. This approach yield (2)
\[
\begin{array}{ll}
T_{1}=D\left(\epsilon_{1}+\mu \epsilon_{2}\right), & T_{2}=D\left(\epsilon_{r}+\mu \Theta_{1}\right) . \\
T_{12}=\frac{D(1-\mu)}{2}\left(\omega+\frac{h^{2}}{6 R_{2}} \tau\right) & T_{21}=\frac{D(1-\mu)}{2}\left(\omega+\frac{h^{2}}{6 R_{1}} r\right) \\
M_{1}=K\left(x_{1}+\mu N_{2}\right), & M_{2}=K\left(K_{2}+\mu x_{1}\right)  \tag{1-17}\\
M_{12}=M_{21}=K(1-\mu) \tau &
\end{array}
\]

Jntroducing the new notations
\[
\begin{align*}
& S=T_{12}-M_{31} / R_{2}=T_{31}-M_{12} / R_{1} \\
& H=M_{12}=M_{n} \tag{A-18}
\end{align*}
\]
and substituting from Eqs.( 1 -17) in Eqs. (A-18), one obtains
\[
S=\frac{D(1-\mu)}{2} \omega, \quad H=K(1-\mu) T
\]

For later use the inverse relation of Eqs.(A-17) is obtained as followsi
\[
\begin{array}{ll}
\epsilon_{1}=\frac{1}{E h}\left(T_{1}-\mu T_{2}\right), & \epsilon_{2}=\frac{1}{E h}\left(T_{2}-\mu T_{1}\right) \\
\omega=\frac{2\left(1+\mu_{1}\right.}{E h} S & k_{1}=\frac{12}{E h^{3}}\left(M_{1}-\mu M_{2}\right)  \tag{A-20}\\
K_{2}=\frac{12}{E h^{3}}\left(M_{2}-\mu M_{1}\right) & r_{=}=\frac{12\left(1+\mu_{1}\right)}{E h^{2}} H
\end{array}
\]

Reduction of the Basic Equations to a Fourth Order System
So far, a system of nineteen equations including six strain-displacement relations, five equations of equilibrium and eight constitutive equations, has been introduced. These equations in:olve the same number of unknowns, i.es, six forces, four momerts, sin deformation parameters and three displacements. One now faces the problem of solving these equations subject to appropriate boundary conditions. A.s in the theory of - lasticity, there exist two methods of solving problens of thin ulastic shells - in temas of the displacements of the midile surface or in terms of the forces and moments. Before procceding to further discussion of these methods, the equations of equilibrium will be fisst simplified. To du this, the forces \(N_{1}\) and \(N_{2}\) in the first three of Eqs. (A-14) will be - Lininated by substituting for them their expressions as given by the
fourth and fifth of Eqs. (A-14). Then, taking into consideration the notations given in Eqs.(A-18) and the conditions of Codazzi, the first three of Eqs. (A-14) may be written in the form
\[
\begin{align*}
& \frac{\partial A_{2} T_{1}}{\partial a_{1}}+\frac{\partial A_{1} S}{\partial \alpha_{2}}+\frac{\partial A_{1}}{\partial \sigma_{2}} S-\frac{\partial A_{2}}{\partial a_{1}} T_{2} \\
& +\frac{1}{R_{1}}\left[\frac{\partial A_{2} H_{1}}{\partial a_{1}}-\frac{\partial A_{2}}{\partial \alpha_{1}} M_{2}+2 \frac{\partial A_{1} H}{\partial \alpha_{2}}+2 \frac{R_{1}}{R_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} H\right]=-A_{1} A_{2} g_{1} \\
& \frac{\partial A_{2} S}{\partial \alpha_{1}}+\frac{\partial A_{1} T_{2}}{\partial \alpha_{2}}+\frac{\partial A_{2}}{\partial \alpha_{1}} S-\frac{\partial A_{1}}{\partial \alpha_{2}} T_{1}  \tag{A-2I}\\
& +\frac{1}{R_{2}}\left[\frac{\partial A_{1} M_{3}}{\partial \alpha_{3}}-\frac{\partial A_{1}}{\partial \alpha_{2}} M_{1}+2 \frac{\partial A_{3} H}{\partial a_{1}}+2 \frac{R_{2}}{R_{1}} \frac{\partial A_{2}}{\partial \alpha_{1}} H\right]=-A_{1} A_{2} g_{2} \\
& \frac{\Pi_{1}}{R_{f}}+\frac{T_{2}}{R_{2}}-\frac{1}{A_{1} A_{2}}\left\{\frac{\partial}{\partial \alpha_{1}} \frac{1}{A_{1}}\left[\frac{\partial A_{2} R_{1}}{\partial a_{1}}+\frac{\partial A_{1} H}{\partial a_{2}}+\frac{\partial A_{1}}{\partial a_{2}} H-\frac{\partial A_{2}}{\partial a_{1}} M_{2}\right]\right. \\
& \left.+\frac{\partial}{\partial a_{2}} \frac{1}{A_{2}}\left\{\frac{\partial A_{2} H}{\partial a_{1}}+\frac{\partial A_{1} M_{2}}{\partial C_{2}}+\frac{\partial A_{2}}{\partial \alpha_{1}} H-\frac{\partial A_{1}}{\partial \alpha_{2}} M_{1}\right]\right\}=g_{n}
\end{align*}
\]

Now, return to methods of obtaining solutions. The first method involves replacement in Eqs. (A-21) the forces and moments by their exprassions in terins of the strains of the middle surface. Then, one obtains, upon substitution for the straine by their expressions in terms of the displacements as given in Eqs. \((A-6)\) and (A-9) a system of three partial differential equations in terms of the three displacements of the middle surface.

The second methor? consists in supplementing the equations of equilibrium ( \(A-21\) ) by the compatibility equations ( \(A-12\) ), which, for this purpose, must be expressed in torms of the forces and moments. Then, one obtains a system of six partial differential equations for the deter-. mination of unknowns \(T_{1}, T_{2}, S, M_{2}, M_{2}\) and \(H_{0}\)

In that which follows, attention kill be limited to the second method of solution: Subs:1tuting in Eqs.(A-12) the strains from Eqs. (A-20) one
obtains the compatibility equations in terms of the forces and moments
\[
\begin{align*}
& \frac{\partial A_{2}\left(M_{3}-\mu M_{1}\right)}{\partial a_{1}}-(1+\mu)\left(\frac{\partial A_{1} H}{\partial \alpha_{2}}+\frac{\partial A_{1}}{\partial a_{2}} H\right)-\frac{\partial A_{2}}{\partial \alpha_{1}}\left(M_{1}-\mu M_{2}\right) \\
& -\frac{h^{2}}{12 R_{1}}\left[\frac{\partial A_{2}\left(T_{2}-\mu T_{1}\right)}{\partial a_{1}}-\frac{\partial A_{2}}{\partial \alpha_{1}}\left(T_{1}-\mu T_{2}\right)-2(1+\mu) \frac{\partial A_{1} S}{\partial \alpha_{2}}-2(1+\mu) \frac{P_{1}}{R_{2}} \frac{\partial A_{1}}{\partial a_{2}} S\right]=0 \\
& \frac{\partial A_{1}\left(M_{1}-\mu M_{2}\right)}{\partial \alpha_{2}}-(1+\mu)\left(\frac{\partial A_{2} H}{\partial \alpha_{1}}+\frac{\partial A_{2}}{\partial a_{1}} H\right)-\frac{\partial A_{1}}{\partial \alpha_{2}}\left(M_{2}-\mu M_{1}\right) \\
& -\frac{h^{2}}{12 R_{2}}\left[\frac{\partial A_{1}\left(T_{1}-\mu T_{2}\right)}{\partial \alpha_{2}}-\frac{\partial A_{1}}{\partial a_{2}}\left(T_{2}-\mu T_{1}\right)-2(1+\mu) \frac{\partial A_{2} S}{\partial a_{1}}-2(1+\mu) \frac{R_{2}}{R_{1}} \frac{\partial A_{2}}{\partial a_{1}} S\right]=0  \tag{A-22}\\
& \frac{M_{2}-\mu M_{1}}{R_{1}}+\frac{M_{1}-\mu M_{2}}{R_{2}}+\frac{h^{2}}{12} \frac{1}{A_{1} A_{2}}\left\{\frac { \partial } { \partial a _ { 1 } } \frac { 1 } { A _ { 1 } } \left[\frac{\partial A_{2}\left(T_{2}-\mu T_{1}\right)}{\partial \alpha_{1}}\right.\right. \\
& \quad-(1+\mu)\left(\frac{\partial A_{1} S}{\partial \alpha_{2}}+\frac{\partial A_{1}}{\partial a_{2}} S\right)-\frac{\partial A_{2}}{\partial a_{1}}\left(T_{1}-\mu T_{2}\right) \\
& \left.\frac{\partial}{\partial a_{2}} \frac{1}{A_{2}}\left[\frac{\partial A_{1}\left(T_{1}-\mu T_{2}\right)}{\partial a_{2}}-(1+\mu)\left(\frac{\partial A_{2} S}{\partial a_{1}}+\frac{\partial A_{2}}{\partial \alpha_{1}} S\right)-\frac{\partial A_{1}}{\partial a_{2}}\left(T_{2}-\mu T_{1}\right)\right]\right\}=0
\end{align*}
\]

The fulfilment of Eqs. (A-22) ensures the possibility of determining the displacements from the given forces and moments. Eqs.(A-22), after transformation employing the equations of equilibrium and than noglecting a number of terms of the order \(h / R\) compared with unity, can be reduced to the form
\[
\begin{align*}
& (1+\mu) N_{1}=\frac{1}{A_{1}} \frac{\partial M}{\partial \alpha_{1}}-\frac{h^{2}}{12} \frac{1}{R_{1} A_{1}} \frac{\partial T}{\partial a_{1}} \\
& (1+\mu) N_{2}=\frac{1}{A_{2}} \frac{\partial M}{\partial a_{2}}-\frac{h^{2}}{12} \frac{1}{R_{2} A_{2}} \frac{\partial T}{\partial a_{2}}  \tag{A-23}\\
& \cdot \frac{M_{1}-\mu M_{2}}{R_{2}}+\frac{M_{2}-\mu M_{1}}{R_{1}}+\frac{h^{2}}{12} \Delta(T)=-\frac{h^{2}}{12} \frac{1+\mu}{A_{1} A_{2}}\left[\frac{\partial A_{1} q_{1}}{\partial a_{1}}+\frac{\partial A_{1} q_{8}}{\partial a_{2}}\right]
\end{align*}
\]
in which
\[
\begin{align*}
& M=M_{1}+M_{2}, \quad T=T_{1}+T_{2} \\
& \Delta()=\frac{1}{A_{1} A_{2}}\left[\frac{\partial}{\partial a_{1}}\left(\frac{A_{2}}{A_{1}} \frac{\partial()}{\partial a_{1}}\right)+\frac{\partial}{\partial a_{2}}\left(\frac{A_{1}}{A_{2}} \frac{\left.\partial\left(\frac{1}{\partial a_{2}}\right)\right]}{}\right.\right. \tag{A-23a}
\end{align*}
\]

The second tem on the right hand side of the first two of Egs. (A-23) is likewise of negiigible magnitude. Thus, the ifrst two of the compatibi-
lity equations can be written in the following simple form
\[
\begin{align*}
& (1+\mu) N_{1} \approx \frac{1}{A_{1}} \frac{\partial M}{\partial \alpha_{1}}  \tag{A-24}\\
& (1+\mu) N_{2} \approx \frac{1}{A_{2}} \frac{\partial M}{\partial \alpha_{2}}
\end{align*}
\]

The compatibility equations have been simplified in the form of Eqs. (A-23) or (A-24), which will be employed to eliminate \(N_{1}\) and \(N_{2}\) in the equations of equilibrium. Eliminating from the first three of Eqs. (A-14), letting \(T_{12}=T_{21}\), the normal shearing forces \(N_{1}\) and \(N_{2}\) by use of Eqs. \((A-24)\), and from the fourth and fifth of Eqs. \((A-14) N_{1}\) and \(N_{2}\) by use of Eqs.(A-23), one obtains a system of six equations with the last one coming from the thind of Eqs. (A-23)
\[
\begin{align*}
& \frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} T_{1}}{\partial a_{1}}+\frac{\partial A_{1} S}{\partial a_{2}}+\frac{\partial A_{1}}{\partial a_{2}} S-\frac{\partial A_{2}}{\partial a_{1}} T_{2}\right]+\frac{1}{1+\mu} \frac{1}{R_{1} A_{1}} \frac{\partial M}{\partial a_{1}}+g_{1}=0 \\
& \frac{1}{A_{1} A_{2}}\left[-\frac{\partial A_{1}\left(M_{2}-\mu M_{1}\right)}{\partial a_{1}}+(1+\mu)\left(\frac{\partial A_{1} H}{\partial \alpha_{2}}+\frac{\partial A_{1}}{\partial \alpha_{2}} H\right)+\frac{\partial A_{2}}{\partial \alpha_{1}}\left(M_{1}-\mu M_{2}\right)\right] \\
& +\frac{h^{2}}{12 R_{1} A_{1}} \frac{\partial T}{\partial a_{1}}=0 \\
& \frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} S}{\partial \sigma_{1}}+\frac{\partial A_{1} \bar{T}_{2}}{\partial \alpha_{2}}+\frac{\partial A_{2}}{\partial \alpha_{1}} S-\frac{\partial A_{1}}{\partial \alpha_{2}} T_{i}\right]+\frac{1}{1+\mu} \frac{1}{R_{2} A_{2}} \frac{\partial M}{\partial \alpha_{2}}+q_{2}=0  \tag{A-25}\\
& \frac{1}{\lambda_{1} A_{2}}\left[-\frac{\partial A_{1}\left(M_{1}-\mu M_{2}\right)}{\partial \alpha_{2}}+(1+\mu)\left(\frac{\partial A_{2} H}{\partial \alpha_{1}}+\frac{\partial A_{2}}{\partial \alpha_{1}} H+\frac{\partial A_{1}}{\partial \alpha_{2}}\left(M_{2}-\mu M_{1}\right)\right]\right. \\
& +\frac{h^{2}}{18 R_{2} A_{2}} \frac{\partial T}{\partial a_{2}}=0 \\
& \frac{T_{1}}{R_{1}}+\frac{T_{B}}{R_{i}}-\frac{1}{1+\mu} \Delta(M)-g_{n}=0 \\
& \frac{M_{2}-\mu M_{1}}{R_{1}}+\frac{M_{1}-\mu M_{2}}{R_{2}}+\frac{h^{2}}{12} a(\tau)=-\frac{h^{2}}{12} \frac{1+\mu}{A_{1} A_{2}}\left[\frac{\partial}{\partial \omega_{2}}\left(A_{2} g_{1}\right)+\frac{\partial}{\partial a_{1}}\left(A_{1} g_{2}\right)\right]
\end{align*}
\]

These six equations constitute an eighth oxder system and can be reduced to three equations of fourth order system by the use of coaplex transfor-
mation. For this purpose, the auxiliary functions
\[
\begin{align*}
& \bar{T}_{1}=T_{1}-\frac{i}{c} \frac{M_{2}-\mu M_{1}}{1-\mu^{2}} \\
& T_{2}=T_{2}-\frac{i}{c} \frac{M_{1}-\mu M_{2}}{1-\mu^{2}} \\
& \bar{S}=S+\frac{i}{c} \frac{H}{1-\mu} \\
& \bar{T}=T_{1}+\bar{T}_{2}
\end{align*}
\]
will be intrcduced, where
\[
c=\frac{h}{\sqrt{12\left(1-\mu^{2}\right)}}
\]

Substituting in Eqs. ( \(A-25\) ) the forces \(T_{1}, T_{2}, S\) by their exprossions in terms of \(\mathrm{T}_{1} ; \mathrm{T}_{2}, \mathrm{~S}\) and \(\mathrm{M}_{1}, M_{2}, H\) as defined in Eqs. \((A-26)\). In this way one obtains a system of six equations from which the quantities \(M_{1}, M_{2}\), H may be eliminated. This process leads to the following system of three partial differential equations in terms of three complex forces \(\bar{T}_{1}, \bar{T}_{2}\), and \(\mathbf{S}_{\text {. }}\)
\[
\begin{array}{r}
\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} \bar{T}_{1}}{\partial \sigma_{1}}+\frac{\partial A_{1} \bar{S}}{\partial a_{2}} \cdot \frac{\partial A_{1}}{\partial a_{2}} \bar{s}-\frac{\partial A_{2}}{\partial a_{1}} \bar{T}_{2}\right]+i \frac{c}{R_{1} A_{1}} \frac{\partial \bar{T}}{\partial a_{1}}+g_{1}=0 \\
\frac{1}{\pi_{1} A_{2}}\left[\frac{\partial A_{2} \bar{S}}{\partial a_{1}}+\frac{\partial A_{1} \bar{T}_{2}}{\partial a_{2}}+\frac{\partial A_{2}}{\partial a_{1}} S-\frac{\partial A_{1}}{\partial a_{2}} \bar{T}_{1}\right]+i \frac{c}{R_{2} A_{2}} \frac{\partial \bar{T}}{\partial a_{2}}+g_{2}=0  \tag{A-27}\\
\frac{\bar{T}_{1}}{R_{1}}+\frac{\bar{T}_{2}}{R_{2}}-i\left(\Delta(=)=\bar{Z}_{n}\right.
\end{array}
\]
where
\[
\vec{f}_{n}=g_{n}+i c \frac{1+\mu}{A_{1} A_{2}}\left[\frac{\partial A_{2} g_{1}}{\partial \alpha_{1}}+\frac{\partial A_{1} g_{2}}{\partial a_{2}}\right]
\]

Equations (A-27) include the equations of equilibrium of the shell element and the equations of compstinility for the strains of the middle surface. It is a fourth order systom with three unknowns, and is half the number of equations, onder and unknorns of tine syster ( \(A-25\) ).

Letting \(c=0\) and identifying \(\bar{T}_{1}, \bar{T}_{2}, \bar{S}\) by \(T_{1}{ }^{*}, T_{2}^{*}, \mathrm{~S}^{*}\), repectively in Eqs. (A-27), this system reduces to the equations of the membrane theory.
\[
\begin{array}{r}
\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} T_{1}^{*}}{\partial a_{1}}+\frac{\partial A_{1} S^{*}}{\partial a_{2}}+\frac{\partial A_{1}}{\partial \alpha_{2}} s^{*}-\frac{\partial A_{2}}{\partial a_{1}} T_{2}^{*}\right]+g_{1}=0 \\
\frac{1}{A_{1} A_{2}}\left[\frac{\partial A_{2} S^{*}}{\partial \alpha_{1}}+\frac{\partial A_{1} T_{2}^{*}}{\partial \alpha_{2}}+\frac{\partial A_{2}}{\partial \alpha_{1}} S^{*}-\frac{\partial A_{1}}{\partial \sigma_{2}} T_{1}^{*}\right]+q_{2}=0  \tag{A-28}\\
\frac{T_{1}^{*}}{R_{1}}+\frac{T_{2}^{*}}{R_{2}}=q_{n}
\end{array}
\]

To get a complete solution, the displaceuents of the middle surface have to be found. Define the complex displacements \(\bar{u}, \overline{\mathrm{v}}, \vec{n}\) which relate to the complex forces by six differential equations
\[
\begin{array}{ll}
\bar{F}_{1}=\frac{1}{E h}\left(\bar{T}_{1}-\mu \bar{T}_{2}\right), & \bar{E}_{2}=\frac{1}{E h}\left(\bar{T}_{2}-\mu \bar{T}_{1}\right) \\
\bar{\omega}=\frac{2(1+\mu)}{E h} \bar{S}, & \bar{x}_{1}=\frac{i}{c} \frac{1}{E h}\left(\bar{T}_{2}-T_{2}^{*}\right)  \tag{A-29}\\
\bar{x}_{2}=\frac{i}{c} \frac{1}{E h}\left(\bar{T}_{1}-T_{1}^{*}\right), & \bar{\gamma}=-\frac{i}{6} \frac{1}{E h}\left(\bar{S}-s^{*}\right)
\end{array}
\]

In these equations \(\overline{\bar{G}}_{1}, \overline{\bar{x}}_{2}, \bar{u}, \bar{x}_{1}, \bar{x}_{2}, \bar{r}\) are related to \(\bar{u}, \vec{v}, \bar{w}\) in the samo way as the strain-displacement relations given in Eqs. \((A-\sigma)\) and (A-9), and \(T_{1}^{*}, T_{2}^{*}, S^{*}\) are solutions of the membrane theory, \(1 . e_{0}\), of the system ( \(A-28\) ). The real parts of \(\bar{u}, \bar{v}, \bar{w}\) are the displacenents \(u, v, v\), respactively.

Thus, the solution of problems of a shell reduces to the determination of the complex forces \(\bar{T}_{1}\), \(\bar{T}_{2}\), \(S\) from Eqs。 \((A-27)\) and the complex displacements \(\bar{u}, \overline{\mathbf{v}}, \overline{\boldsymbol{h}}\) from Eas. (A-29) subject to appropriate boundary conditions.

In conclusion it 13 noted that the error introduced in the system (A-27) is of order \(h / R\) compared with unity. Hence, the system of EqSil A-29) are only approximately compatible with each other within an error of this oxder.```

