

ţ

· · · · · · · ·

ŧ

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS 3-16720

NASA Lewis Research Center Cleveland, Ohio

1. Report No. NASA CR-134647	2. Government Acces	sion No.	3. Recipient's Catale	og No.		
4. Title and Subtitle	L		5. Report Date November	1973		
Development of Helicopter En	Development of Helicopter Engine Seals					
7. Author(s)			8. Performing Organi	ization Report No		
P. Lynwander	P. Lynwander					
9. Performing Organization Name and Address			10. Wark Unit No.			
Avco Lycoming Division		ŀ	11. Contract or Gran	t No.		
550 South Main Street			NAS 3-16720			
Stratford, Connecticut (06497	}	13. Type of Report a	and Period Covered		
12. Sponsoring Agency Name and Address			6	D		
U. S. Army Air Mobility Rese Moffett Field, California and	arch and Develop	ment Laboratory	Contractor 14. Sponsoring Agence			
National Aeronautics and Space	e Administration		14. Sportson and Address	.,		
Washington, D. C. 20546		l		·		
Project Manager, Lawrence P	Tudunia Et	Sustama Component	be Division			
NASA Lewis Research Center,			IS DIVISION			
conducted with shaft speeds to and air temperatures to 645 K Three conventional carbon s ferential segmented, and the r figurations, the face and circu- tation, were evaluated. Gas leakage test results ind pressure sealing because of ex- significantly lower leakage and test at sliding speeds to 145 m air temperatures to 408 K (275 achieved at shaft speeds of 43, Evaluation of the self-acting sional variations.	(675°F). seal designs were otating ring type: mferential incorp licate that conver accessive leakage. l operated with ir /s (475 ft/sec), a v°F). Wear mean 000 rpm.	e evaluated; these w s. In addition, two a porating self-acting ational seals will no The self-acting fa asignificant wear du air pressures to 124 surements indicate I seal was inconclus	ere the face, the advanced carbon geometry for 1 t be satisfactor .ce seal, however ring a 150-hour 4 N/cm ² (180 p that noncontact the because of	the circum- a seal con- iff augmen- y for high- er, had endurance osia), and operation was		
17. Key Words (Suggested by Author(s))		18. Distribution Statement				
shaft seals						
gas seals rotating seals		Unclassified	- Unlimited			
main shaft scals						
19. Security Classif, (of this report)	20. Security Classif, (c	f this page)	21. No. of Pages	22. Price"		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (c		21. No. of Pages	22. Price*		

ŝ

「「ない」ない

ちょうしていてきりまくとうというないかがないかい こうろうち いい したがあるかいがいないない

1

,

ι

,, ;

ļ

;

ŝ

1.2. 1.1.

' ۳۱

* For sale by the National Technical Information Service, Springfield, Virginia 22151

. I<u>.</u>

- 4

FOREWORD

This program was funded by the U. S. Army Air Mobility Research and Development Laboratory. Program management was by the Lewis Research Center of the National Aeronautics and Space Administration under Contract NAS 3-16720. The period of performance was May 1972 to December 1973.

Technical direction was provided by the NASA project manager, Mr. Lawrence P. Ludwig of the Fluid Systems Components Division. Mr. Leonard W. Schopen, NASA Lewis Research Center, was the Contracting Officer.

The Avco Lycoming test program was carried out by Mr. Harry Thornton. Acknowledgement is also made to the engineering staff of Stein Seal Company for their assistance in this program.

RECEDING PAGE BLANK NOT FILMED

iii

TABLE OF CONTENTS

ł

i an

FOREWORD iii
LIST OF ILLUSTRATIONS
LIST OF TABLES ix
SUMMARY 1
INTRODUCTION
TEST VEHICLE 3
EVALUATION OF CONVENTIONAL AND ADVANCED SEALS 8
Conventional Rotating Ring Seal
Circumferential Segmented Seal
Conventional Face Seal 34
Labyrinth Seal
Self-Acting Face Seal 46
Self-Acting Circumferential Seal
Discussion of Test Results
CONCLUSIONS AND RECOMMENDATIONS
Self-Acting Face Seal
Self-Acting Circumferential Seal
Conventional Seals
REFERENCES
DISTRIBUTION LIST

PRECEDING PAGE B'ANK NOT FILMED

÷,

. 1

••••••

Page

. .

ν

LIST OF ILLUŞTRATIONS

Figure		Page
1	Test Vehicle and Instrumentation Plan	4
2	Test Rig Installation	6
3	Rotating Ring Seal	9
4	Rotating Ring Components	10
5	Airflow Through Two Rotating Ring Seals Versus Pressure Differential Between Air Side and Oil Side, Tests III Through V	14
6	Aft Rotating Ring SealFlatness Trace of Axial real Face of Carbon Ring After Test V	18
7	Aft Rotating Ring SealRoughness Trace ofAxial Sealing Face of Carbon Ring AfterTest V	19
8	Forward Rotating Ring SealTrace of Runner Contact Area After Test V	20
9	Forward Rotating Ring SealTrace of Runner Roundness After Test V	21
10	Rotating Ring Seal Runners After Test	22
11	Circumferential Segmented Seal	24
12	Circumferential Segmented Seal Components	25
13	Circumferential Segmented Seal Assembly and Instrumentation	26
14	Airflow Through Two Circumferential Segmented Seals Versus Pressure Differential Between Air Side and Oil Side, Test III	29
15	Circumferential Segmented Seal Temperature Versus Pressure Differential Between Air Side and Oil Side, Test III	30

vi

LIST OF ILLUSTRATIONS (Cont)

Figure	Pa	ge
16	Airflow Through Two Circumferential Segmented Seals Versus Pressure Differential Between Air Side and Oil Side, Test V	32
17	Forward Circumferential Segmented Seal Runner Trace of Contact Area After Test V	33
18	Conventional Face Seal	35
19	Airflow Through Two Conventional Face Seals Versus Pressure Differential Between Air Side and Oil Side.	37
20	Conventional Face Seal Components After Test	40
21	Conventional Face Plate Trace of Roughness and Waviness After Test	41
22	Conventional Face Forward Seal Carbon Ring, Trace of Roughness and Waviness After Test	42
23	Labyrinth Geometry	43
24	Bearing Cavity Pressure Versus Airflow	44
25	Airflow Through Two Labyrinth Seals Versus Pressure Differential	45
26	Self-Acting Face Seal Design	47
27	Detail of Lift Pads	48
28	Forward (Top) and Aft (Bottom) Self-Acting Seal Components After Test VI	52
29	Airflow Through Two Self-Acting Face Seals Versus Pressure Differential at Various Speeds (Test V)	53
30	Self-Acting Face Seal Temperature Versus Pressure Differential at Various Speeds (Test V)	54
31	Aft Self-Acting Face Seal Seat Trace of Roughness and Waviness Before Test	56

vii

1.1

1 1

14.

LIST OF ILLUSTRATIONS (Cont)

Figure	Page
	Page
32	Aft Self-Acting Face Seal Seat Trace of Roughness and Waviness After Test VI
33	Forward Self-Acting Seal Seat Trace of Roughness and Waviness Before Test
34	Forward Self-Acting Seal Seat Trace of Roughness and Waviness After Test VI
35	Trace of Forward and Aft Seal Carbon Ring Sealing Faces Before Operation, Self-Acting Seal
36	Trace of Forward and Aft Seal Carbon Ring Sealing Faces After Test VI, Self-Acting Seal
37	Self-Acting Aft Seal Showing Condition After Failure . 63
38	Self-Acting Face Seal Components After 150-Hour Test
39	Self-Acting Circumferential Seal
40	Details of Carbon Segment, Self-Acting Circumfer- ential Seal
41 [.]	Condition of Carbon and Runners After Test I 79
42	Carbon Segment After Test I, Self-Acting Circum- ferential Seal
43	Typical Lift Pad Trace, Self-Acting Circumferential Seal
44	Seal Runners After Test, Self-Acting Circumfer- ential Seal
4 F	Roughness Traces of Forward Seal Runner, Self- Acting Circumferential Seal
46	Envelope of Airflow Through Two Self-Acting Cir- cumferential Seals Versus Pressure Differential 88
47	Envelope of Self-Acting Circumferential Seal Tem- perature Versus Pressure Differential
48 .	Details of Redesigned Carbon Segment, Self-Acting Circumferential Seal
49	Comparison of Seal Configurations

viii

. ____

100.00

LIST OF TABLES

<u> Table</u>	Page
I	Instrumentation Plan
п	Rotating Ring Seal Test Data
ш	Rotating Ring Seal Test Results - Comparison 13
IV	Operating Gap at Speed
v	Rotating Ring Seal Inspection Data 17
VI	Circumferential Segmented Seal Test Data 27
VII	Circumferential Segmented Seal Inspection Data 33
VIII	Conventional Face Seal Test Data
IX	Conventional Face Seal Surface Texture Measure- ments
x	Seif-Acting Face Seal Test Lata (Tests I-III) 50
XI	Self-Acting Face Seal Test Data (Tests IV-VII) 51
хп	Initial Endurance Test Results, Self-Acting Seal 64
хш	Second Endurance Run Results, Self-Acting Seal 64
XIV	Evaluation Test G Results, Self-Acting Seal 66
xv	Average Carbon Wear, Self-Acting Seal
XVI	Continued Endurance Test Results, Self-Acting Seal. 68
xvII	150-Hour Endurance Test Results Self-Acting Seal 70
хvш	Results of Tests I and II, Self-Acting Circumfer- ential Seal
XIX	Seal Carbon Temperatures Self-Acting Circum- ferential Seal
xx	Self-Acting Circumferential Seal Test Data

ix

\$'y

₹.N

1. 100

· į

. .*'.

िको जाती 👗

Ŷ,

í

SUMMARY

An experimental evaluation was conducted on main shaft seals for helicopter gas turbine engines. Seals were operated at conditions more stringent than those of existing engines.

Three conventional carbon seal designs were tested: face, circumferential segmented, and rotating ring.

In addition, two advanced carbon seal configurations incorporating self-acting geometry for lift augmentation were evaluated. One was a face seal and the other a circumferential (shaft-riding) seal.

Evaluation tests were conducted on all seal configurations at ambient temperature over a range of sliding speeds and sealed pressures. The maximum sliding speed was 213 m/s (700 ft/sec) and maximum air pressure was 148 N/cm² (215 psia). Basic design data such as air leakage and seal temperature were developed. Results indicated that conventional seals have high leakage rates. The conventional circumferential segmented seal and the self-acting circumferential seal had high wear rates, but results on the self-acting circumferential were inconclusive because of dimensional variations.

The self-acting face seal limited airflow effectively, and here the potential to operate successfully in high-pressure applications. A veries of evaluation tests over a temperature range(maximum temperature, $645 \text{ K} (675^{\circ}\text{F})$) was conducted on the self-acting face seal. During this temperature evaluation testing of the self-acting face seal, several random failures occurred during which the carbon primary ring contacted the rotating seat and created excessive heat and wear. These failures were attributed to a combination of dynamic effects and thermal distortion of the seal seat.

High rotating speed (43,000 rpm) capability of the self-acting face seal was demonstrated in a 150-hour endurance test that was successfully completed. Test conditions were sliding speed to 145 m/s (475 ft/sec), air pressure to 124 N/cm² (180 psia), and air temperature to 408 K (275°F). Wear was insignificant.

1.1

INTRODUCTION

Main shaft seals are becoming increasingly critical in advanced gas turbine engines for helicopters. As shaft speeds, air temperatures, and air pressures increase, engine size decreases, leaving less envelope to accomplish the sealing function.

The purpose of this program was to evaluate the performance of conventional seals and self-acting seals at operating conditions more severe than those experienced in current engines and to develop seals capable of operating in these environments.

Advanced Avco Lycoming engines in the 1.36 to 4.54 kg/s (3 to 10 lb/sec) class incorporate main shaft seals that operate with surface speeds to 137 m/s (450 ft/sec), air pressures to 72 N/cm² (104 psia), and air temperatures to 810 K (1000°F). Positive-contact carbon seals are used. In future high-performance engines, seal operating conditions will be more severe and existing positive-contact seal configurations may not be adequate. At high speeds and pressures, positive-contact carbon seals have a tendency to wear, generate heat, and coke up.

An alternative to positive-contact seals are labyrinth seals. Because of their noncontacting feature, labyrinth seals offer infinite life; however, at high air pressures and temperatures, simple labyrinths will not suffice, and complicated multistage labyrinths must be used. These latter seals incorporate venting and pressurization passages that are costly to produce and difficult to accommodate in small, high-performance engines. Compared with positive-contact seals, labyrinths also permit higher leakage airflows, (which must be absorbed by the lubrication system) that cause a loss in engine performance.

The self-acting seal concept incorporates the best features of positive-contact seals (low leakage) and labyrinth seals (noncontacting). During operation, self-acting seals are noncontacting, the sealing surfaces being separated by a thin gas film (sealing gap) which limits gas leakage. At shutdown the seal is positively contacting. Self-acting seal designs incorporate Rayleigh step lift pads on the primary (carbon) sealing faces. These lift pads provide hydrodynamic force to separate the sealing surfaces, and the gas film is sufficiently stiff so that the primary (carbon) ring tracks the runout motions of the seat without rubbing contact.

Analysis of the self-acting seal concept and experimental feasibility studies for large gas turbine engines have been detailed in many NASA-sponsored programs (References 1 through 10). However, as engine size decreases, the seal size decreases and it becomes increasingly more difficult to design in adequate lift pad geometry. Further, engine speeds increase as engine size decreases, and seal inertia forces (which increase as the square of the shaft speed) start to become a significant force to cause rubbing contact. Therefore the subject program was designed to investigate the operating conditions and problems peculiar to small, high-performance helicopter gas turbine engines.

The experimental evaluation was carried out in a test rig that simulates engine conditions in an advanced gas producer turbine bearing location. All seal and bearing package hardware was lightweight and typical of Avco Lycoming engine design practice.

Three conventional seal configurations used in Avco Lycoming engines were tested: face, shaft riding, and rotating ring.

In addition, two self-acting seal configurations were evaluated. One configuration had an internally pressurized, shaft-riding, circumferential seal design, and the other had a positive-contact face seal design. The basic seal designs were defined by NASA.

Test data pertaining to airflow, cavity pressure and seal temperature for all seals were developed for a range of speeds and pressures at ambient temperatures. These data provided design criteria and a basis for comparison of the seal configurations. A labyrinth configuration was analytically evaluated as part of the seal performance comparison.

The self-acting face seal configuration (which showed the best potential for successful operation at advanced engine conditions) was endurance tested and evaluated at elevated temperatures.

During the course of the program, 282 hours of rig evaluation was conducted.

TEST VEHICLE

The test rig bearing compartment (Figure 1) is typical of advanced, high-speed gas turbine packages. Sealing positions are located forward and aft of the bearing, which enabled two seal samples to be tested simultaneously.

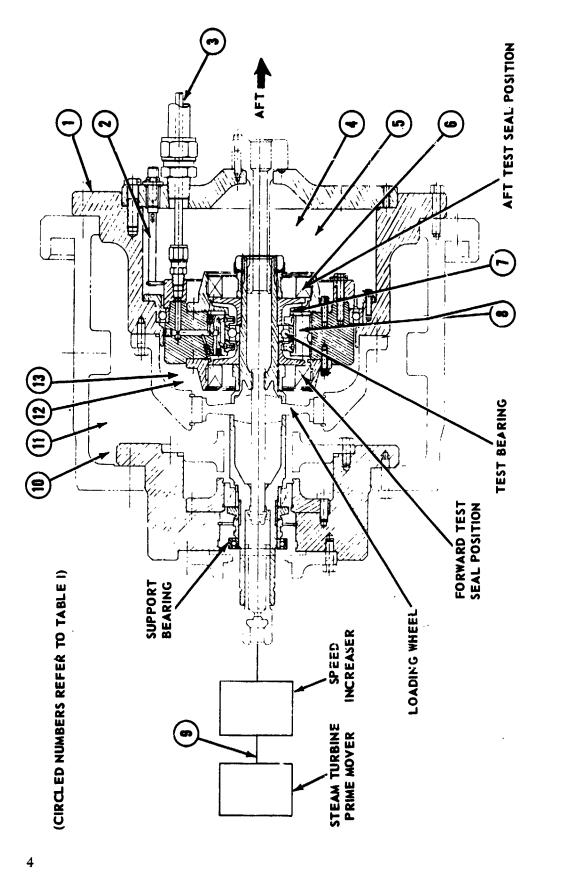


Figure 1. Test Vehicle and Instrumentation Plan.

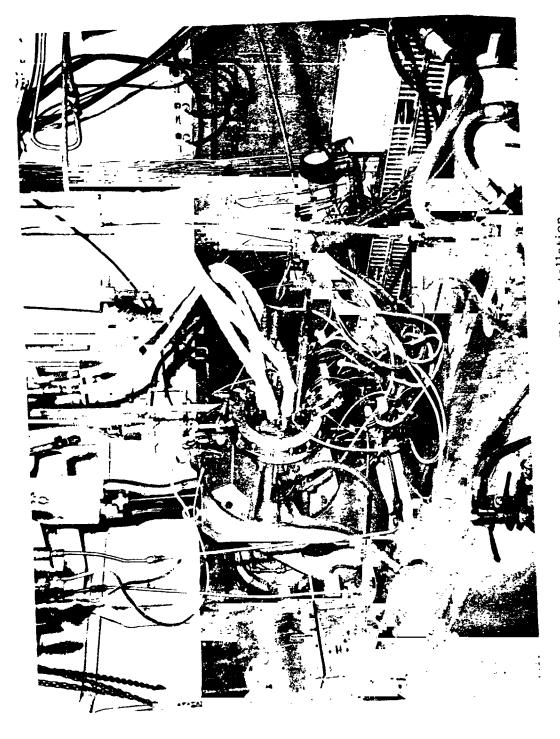
465

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

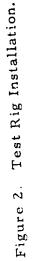
The rig prime mover is a 100-horsepower, 20,000-rpm steam turbine. Connecting the steam turbine to the rig is a 3:1 ratio speed increaser. The test installation is shown in Figure 2.

The shaft is supported by a 35-mm, split-inner-race ball bearing in the test position, and by a 25-mm, split-inner-race bearing in the support position. Both bearings are hydraulically mounted, and thrust loading is supplied by coil springs acting on the outer race of the support bearing and by pressure differentials across the loading wheel.

A single batch of MIL-L-23699 oil at $367 \pm 5 \text{ K} (200 \pm 10^{\circ} \text{F})$ was used throughout the test program.


The bearing conpartment drains by gravity into a static air-oil separator. The minimum scavenge area is 93 mm^2 (0.144 in²). Desired air pressure is introduced into the cavities adjacent to the test seals, and the air that leaks past the test seals in conveyed through a flowmeter from the air-oil separator to obtain a measure of seal performance.

Instrumentation incorporated in the test rig is listed in Table I. The location of the pertinent instrumentation is shown in Figure 1. All measurements were made with instruments using English unit. These were then converted to SI units for reporting purposes.


An attempt was made to measure seal operating torque by recording the housing reaction torque, but this was discontinued because the seal and bearing torque was so small it was being absorbed in the lines going to and from the housing and in friction in the large support bearing.

Much of the test data are reported as a function of seal sliding speed; the corresponding shaft RPM for the self-acting face seal is as follows:

<u>Slidir</u>	g Speed	Shaft Speed
<u>m/s</u>	ft/sec	rpm
61	200	18,200
91	300	27, 300
122	400	36, 400
152	500	45, 500
183	600	54,600
213	700	63,700

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

			· · · · · · · · · · · · · · · · · · ·
Parameter To Be Measured	Sensing Device	÷	Correspon ing Numbe in Figure
Shaft Speed	Magnetic pickup	Steam turbine shaft	9
Air Pressure	Gage Gage Gage	Fwd wheel cavity Fwd seal cavity Aft seal cavity	10 13 4
Air Temperature	Thermocouple Thermocouple Thermocouple	Fwd wheel cavity Fwd seal cavity Aft seal cavity	11 12 5
Seal Air Leakage	Glass tube rotameter	Scavenge air-oil mixture is passed th a static separator an dry airflow is passe through the flowmete	nd the d
Oil Temperature	Thermocouple Thermocouple	Oil feed line Scavenge line	3 8
Oil Flow	Glas = tube rotameter	Oil feed line	3
Oil Pressure	Gage	Oil feed line	3
Bearing Cavity Pressure	Gage	Within bearing cavity	r 7
Scavenge Pressure	Gage	Scavenge line	8
Shaft Torque (reaction torque measured)	Strain gage	Beam assembly	2
	- -		
Seal Temperature	Thermocouple	Seal case or carbon	6
Vibration	Velocity pickup		1
Chips	Chip detector	Scavenge line	8

Į

ł

.

1

.

ż

11111

ł

,

.

Ţ

7

7

- I

EVALUATION OF CONVENTIONAL AND ADVANCED SEALS

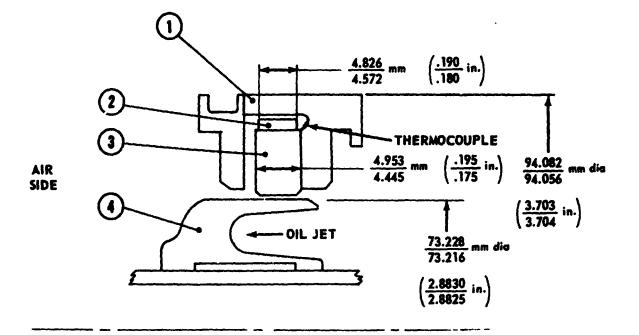
Conventional Rotating Ring Seal

Design

The rotating ring seal (Figure 3) is essentially a close clearance labyrinth that is free to rotate in the seal case. The rotating ring scaling element is composed of a carbon ring shrunk into a steel retaining band. The retaining band is used to control the expansion rate of the composite ring and to reinforce it against rotational stress.

The carbon-steel composite ring is designed to have a coefficient of thermal expansion similar to that of the seal runner. The purpose of matching thermal expansion characteristics is to hold a temperature-constant clearance between the runner outside diameter and the carbon inside diameter.

The carbon-steel composite ring is shaft driven (by friction) and is designed to rotate at a speed less than shaft speed. The expansion of the composite ring with speed is utilized to provide a minimum air leakage gap at all operating conditions. If the gap tends to increase, the driving torque decreases and the ring speed decreases. The opposite occurs if the gap decreases: the driving torque increases, the ring speed increases. The seal, therefore, is designed to be self-regulating.


The rotating ring configuration used in the test program is shown in Figure 3. Seal materials and critical dimensions are listed. Seal components are shown in Figure 4.

For the test program, the forward seal position was built with a static diametral gap of 0.0610 mm (0.0024 in.) and the aft seal with a static diametral gap of 0.1346 mm (0.0053 in.).

Test Results

ł.

Five tests were conducted, each test covering a range of speeds and air pressures at ambient temperature. Test data are shown in Table II, which lists test conditions and resulting airflows, bearing cavity pressures, and seal temperatures. Seal temperature was measured at the location shown in Figure 3. Only the aft seal was temperature instrumented.

<u>ه</u>د ..

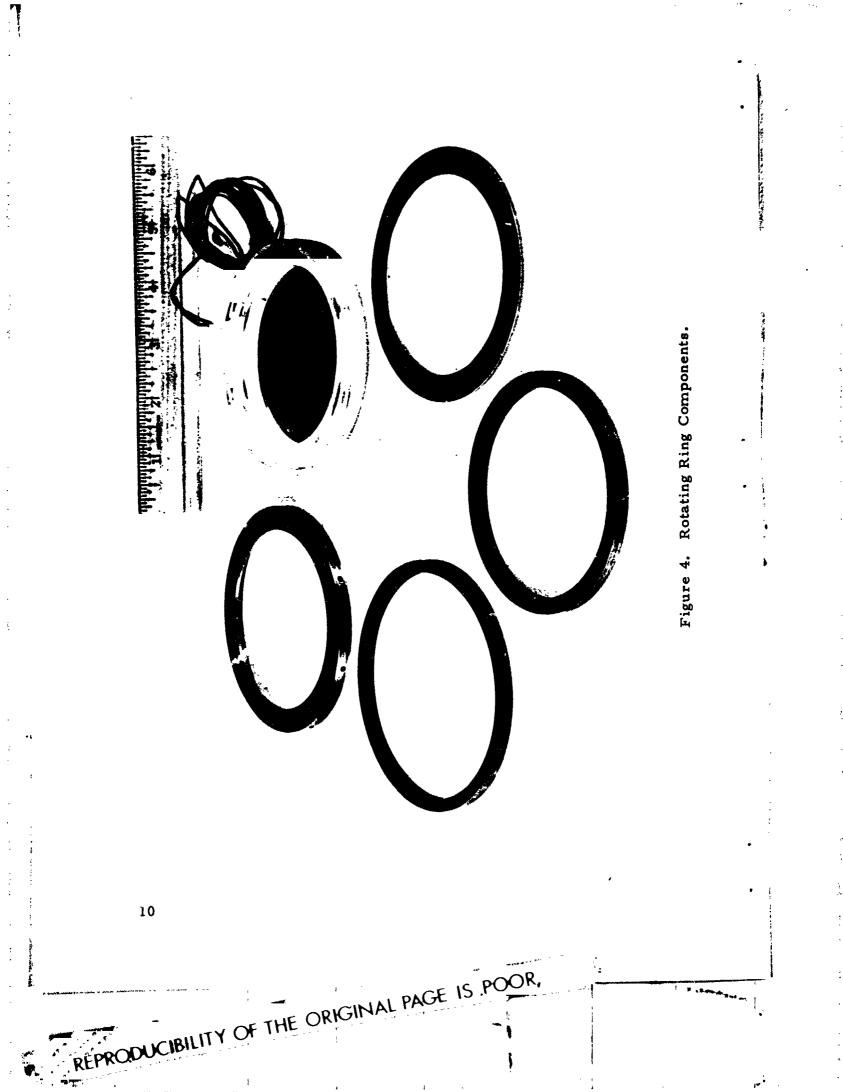
.

. • •

1. SEAL CASE	AMS 5610
2. RETAINING BAND	431 SST
3. CARBON RING	HIGH-TEMPERATURE CARBON
4. RUNNER	AMS 6382
	CHROME PLATE PER AMS 2406

INTERFERENCE FIT BETWEEN RETAINING.356
.305 mm(.014)
(.012)
in.)BAND AND CARBON RING.305mm(.014)
(.012)
in.)

Figure 3. Rotating Ring Seal.


1.

9

.

1.1 -

1 .

		S	Air Speed Pressure			Cavity Pressure		Airflow (Two Seals)				Seal	
est	Run	(m/s) (ft/s				²) (psia)	(kg/s)	(acfm)	(lb/sec	$\overline{i} \frac{\text{Temp}}{(K)}$	erature ("F	
1	1	61	200	30.8	44.7	20,4	29.7	. 011	18.5	. 024		نصب م	
	2	91		30.8	44.7	19.8	28.7	. 310	16.5	. 021	352	17	
	3	61		46	66.7	Z6.7	38.7	-	-	-	363	19	
	4	91		46.7	67.7	26. 0		-	-	-	367	203	
	6	61 91		79.1	114.7	36.4		.028	48	. 061	377	220	
				79.1	114,7	35.6	51.7	.025	43.5	.055	386	23	
r I	7 8	61 91		34.3 34.3	49.7	26.7	38.7	.014	25	. 032	322	120	
	9	122		34.3	49.7 49.7	26 24.6	37.7	.013	23	. 029	337	145	
	10	61		55	79,7	37.8	35.7 54.7	.012 .027	20 47,5	. 025	363	195	
	11	91		55	79,7	36.4	52.7	.027	47.5	.061	339	150	
	12	122		55	79,7	34, 3	49.7	. 021	37	.055 .047	361 368) 90 205	
	13	61	200	73.6	106.7	48.1	69.7	.038	65	.083	361	190	
	14	91	300	73.6	106,7	46.7	67.7	. 036	60.5	.077	363	195	
	15	122	400	77.7	112.7	45, 3	65.7	.032	56	.071	371	210	
I	16	61	200	34.3	49.7	26.6	32.7	.014	23.5	.030	300	80	
	17 18	91	300	34.3	49.7	22,6	32.7	.011	18.5	. 024	337	145	
	19	122 152	400 500	34.3	49.7	20.5	29.7	. 109	15	.019	350	170	
	20	61	200	34, 3 55	49.7 79.7	18.4 30.8	26.7	.006	11	.014	366	200	
	21	91	300	55	79.7	29.5	44.7 42.7	.023	40 33,5	. 051	333	140	
	22	122	400	55	79.7	27.4	39.7	.014	28	.043	344	160	
	23	1 52	500	55	79.7	23.2	33.7	.011	19.5	. 025	361 375	190	
	24	61	200	78.4	115.7	39.2	56.7	•	-	-	361	215 190	
	25	91	300	79.1	114.7	39.2	56,7	•	-	•	363	195	
	26 27	122	400	79.1	114.7	36,4	52.7	-	-	•	366	200	
	61	1 52	500	79.1	114.7	30.8	44.7	•	-	-	378	220	
,	28	122	400	34.3	49.7	19.8	28,7	.010	16.5	. 021	339	150	
	29 30	152	500	34.3	49,7	18.4	26,7	.006	11	.014	361	190	
	31	183 122	600 400	34.3	49.7	15. '	22.7	.003	5.5	.007	388	240	
	32	152	500	55 55.7	79,7 80,7	25.	36.7	.016	27	.034	339	150	
	33	183	600	55	79.7	22.E 19.1	32.7 27.7	.012	20	. 025	361	190	
	34	122	400	77.7	112.7	34, 3	49.7	.007 .024	12 42	.015	392	245	
	35	152	500	79.1	114.7	30.8	44.7	.016	28	.054 .036	366 375	200 215	
	36	183	600	79.1	114,7	23,9	34.7	.011	19	. 024	399	260	
	37	122	400	103, 2	149,7	42,6	61.7	.034	59.5	.076	366	200	
	38	152	500	103,2	149,7	37.8	54.7	.025	43	.055	388	240	
,	39 40	183	600	103.2	149,7	30.8	44.7	.013	23	.029	399	260	
	41	61 91	200 300	34.3	49.7	21.9	31.7	.013	23	.029	344	160	
	42	122	400	34.3 34.3	49.7	20.6	29.7	.011	18.5	.024	358	185	
	43	152	500	34, 3	49,7 49,7	19.8 18.4	28,7 26,7	.009	15 12	.019	368	205	
	44	183	600	35	50.7	15.7	22.7	.007	6	.015 .008	385 399	235 260	
	45	213	700	35	50,7	14, 3	20.7	.001	2.5	.003	428	315	
	46	61	200	55	79.7	32, 2	46.7	.0.3	40	. 051	338	145	
	47 48	91	300	55	79.7	30,8	44.7	. 020	34	.043	341	155	
	49	122 152	400 500	55 55	79.7	. 28	40.7	.016	28	.036	358	185	
	50	183	600	55	79,7 79,7	24,6	35.7	.011	19.5	.025	388	240	
	51	213	700	55	79,7	20,6 16,4	29.7 23.7	.006	11 4	.014	410	280	
	52	91	300	77.7	112.7	39.2	56.7	.029	50	.005	435 361	330	
	53	122	400	78.4	113,7	36.7	52,7	.025	44	.056	366	190 200	
	54	152	500	79.1	114,7	30,8	44.7	.019	33, 5	.043	375	215	
	55	183	600	79.1	114.7	25, 3	36.7	.011	19	. 024	394	250	
	56 57	213	700	79.1	114.7	21.9	31,7	.008	13.5	.017	420	300	
	58	122 152	400 500	103.2	149.7	50,9	73.7	•		•	358	185	
	59	183	600	103.2 103.2	149.7	43.3	62.7	.029	50	,064	388	240	
	60	213	700	103.2	149,7 149,7	35.7 28,8	51,7 41,7	. 020	35.		405	270	
	61	183	600	123.9	179.7	41.9	60.7	.013	23		405	270	
	62	213	700	123.9	179.7	34, 3	49.7	. 019	33		382 394	230 250	
	63	183	600	148.2	214.7	47.4	68.7	. 035	60		382	230	
	64	213	700	146.8	212,7	51.6	74.7				~ **	~	

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOK.

11

s`

Carbon-runner static diametral gaps showing the carbon wear experienced after each test are listed in Table III.

It can be seen that the forward seal gap increased to 0.1245 .mm (0.0049 in.) after test I. The aft seal did not change from the original gap of 0.1346 mm (0.0053 in.). These gaps did not change again until test V, where further wear occurred.

Test II values of airflow are high compared with those of the other test runs. This disparity was attributed to a distorted aft seal housing that was first used in this test. The distortion was due to a hole drilled in the housing to lead out the thermocouple wires, which raised a 0.0127 mm (0.0005 in.) bump on the axial face that contacts the carbon ring. The housing was lapped flat for subsequent operation.

Data for tests III through V are presented in Figure 5. As a design guide, airflow versus pressure differential is plotted for various operating gaps. The operating gaps were calculated at various speeds under the following assumptions:

- 1. Static gaps of 0.132 mm (0.0052 in.) were assumed for both seals.
- 2. The runner is treated as an unsupported thin ring.
- 3. The growth of the runner and the carbon-metal composite due to temperature are equal.
- 4. The composite ring does not rotate.

Runner growth due to speed and the resulting operational gap at each speed point are listed in Table IV.

During test V, substantial carbon wear occurred (Table III). This is why some points for the 0.005 mm (0.0002 in.) and 0.03 mm (0.0012 in.) gaps trail off from the straight lines shown in Figure 5. Wear was to be expected at the 213 m/s (700 ft/sec) point, since the calculated diametral operating gap closes to 0.005 mm (0.0002 in.).

The following traces were taken after each test:

- 1. Carbon axial flatness and roughness
- 2. Casing axial flatness and roughness
- 12

20	- 22		
		2.5	

	New	I	п	III	IV	V
Fwd Carbon ID (mm)	73. 29170	73.35520	73.35520	73.35774	73.35774	73.43394
Fwd Runner OD (mm)	73.23074	73.23074	73.22820	73.23074	73.23074	73.21804
Diametral Gap (mm)	.06096	. 12446	. 1 2700	.12700	. 12700	. 21 590
Fwd Carbon ID (in.)	2.8855	2.8880	2.8880	2.8881	2.8881	2.8911
Fwd Runner OD (in.)	2.8831	2.8831	2.8830	2.8831	2.8831	2.8826
Diametral Gap (in.)	. 0024	. 0049	.0050	.0050	. 0050	.0085
Aft Carbon ID (mm)	73.36028	73. 36028	73. 36028	73.36028	73. 37044	73.39076
Aft Runner OD (mm)	73.22566	73.22566	73, 22312	73.22566	73.22566	73.22566
Diametral Gap (mm)	. 13462	. 1 3 4 6 2	.13716	. 1 3462	.14478	.16510
Aft Carbon ID (in.)	2.8882	2.8882	2.8882	2.8882	2.8886	2.8894
Aft Runner OD (in.)	2.8829	2.8829	2.8828	2.8829	2.8829	2.8829
Diametral Ga ₂ (in.)	.0053	.0053	.0054	.0053	.0057	.0065

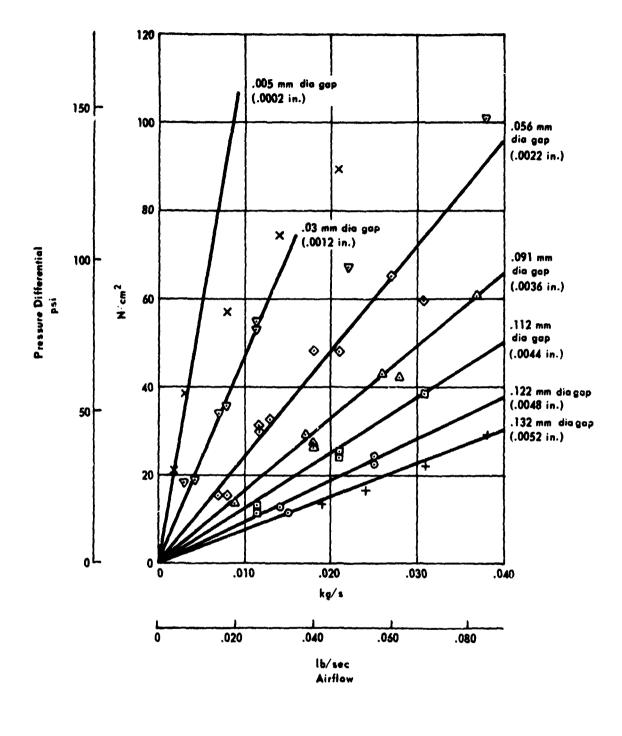


Figure 5. Airflow Through Two Rotating Ring Seals Versus Pressure Differential Between Air Side and Oil Side, Tests III Through V.

İ.

11

14

1

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

Speed		Diametral of Runn		Resulting Operating Gap		
(m/s) (ft/sec)		(mm)	(in.)	(mm)	(in.)	
0	0	0	0	, 1 32	. 0052	
61	200	.01016	.0004	.122	.0048	
91	300	.02032	.0008	.112	.0044	
122	400	.04064	.0016	.091	.0036	
152	500	.06604	.0026	.056	.0022	
183	600	.09144	.0036	.030	.0012	
213	700	. 12700	.0050	.005	. 0002	

1 4

3. Runner roughness, waviness, and roundness

Inspection results of carbon flatness and roughness and runner roughness, waviness, and roundness are listed in Table V. Casing flatness, roughness and waviness did not change significantly during the test program. Typical values were:

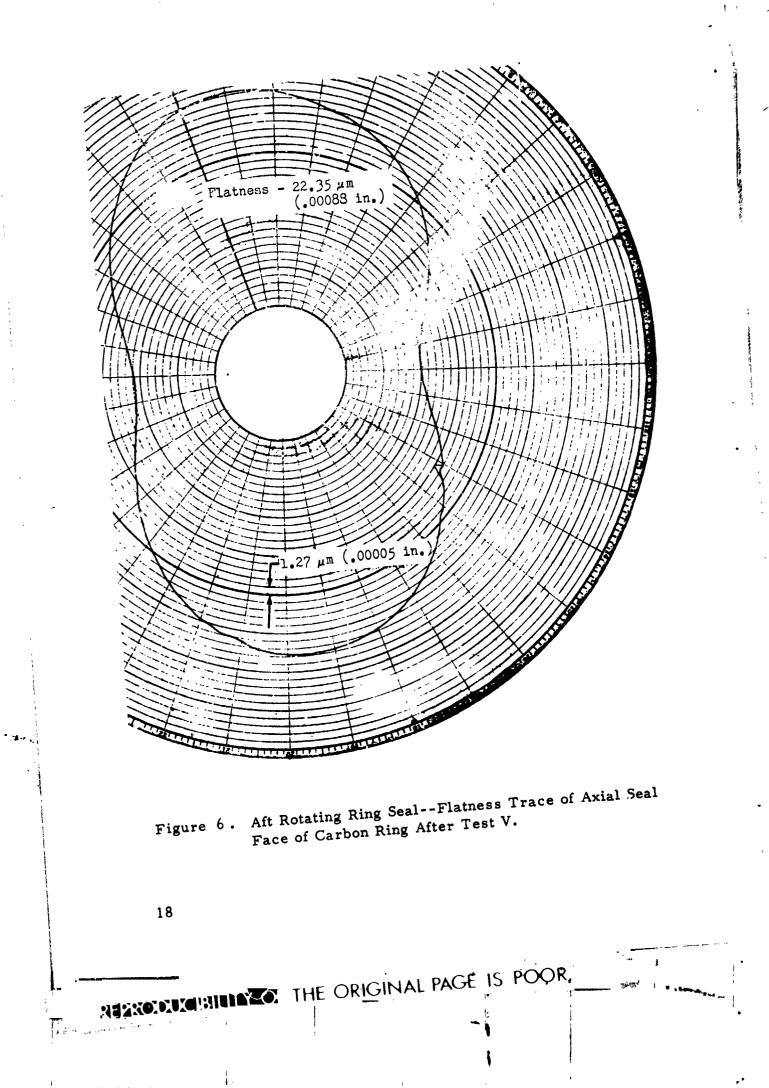
Casing flatness	7.62 µm	(0.0003 in.)
Casing roughness	0.127 µm	(5 µin. AA)
Casing waviness	1.27 µm	(0.00005 in.)

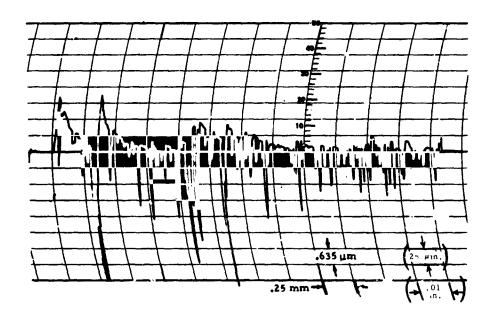
The carbon rings did not wear axially throughout the test program.

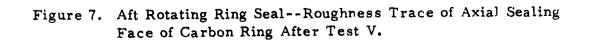
Charts showing the aft carbon axial sealing face condition following test V are shown in Figures 6 and 7. Forward runner condition after test V is shown in Figures 8 and 9. Both the forward and aft runners after testing are shown in Figure 10. Carbon deposits can be seen on the runners. Inspection revealed 0.038 mm (0.0005 in.) wear on the forward carbon.

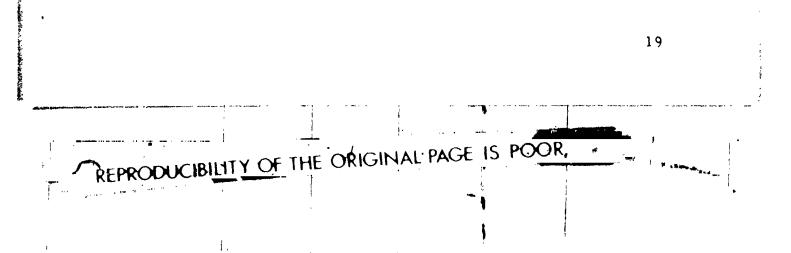
Total oil flow to the pearing compartment was varied with speed as follows:

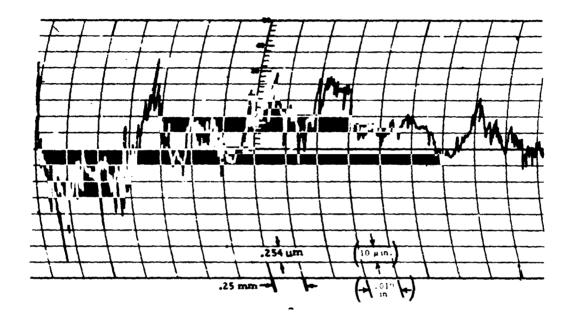
Shaft Speed		Oil Flow				
m/s	ft/sec	kg/hr	lb/hr			
61	200	48	106			
91	300	75	166			
122	400	95	210			
152	500	115	254			
183	600	142	314			
213	700	170	374			

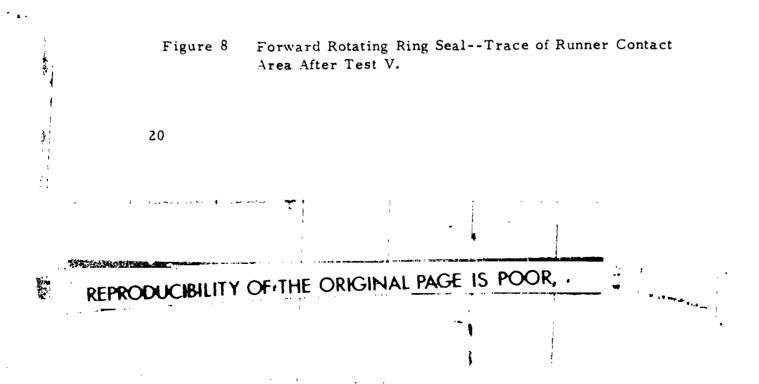

The bearing was fed by four 0.81 mm (0.032 in.) jets and each seal runner was cooled by one 0.81 mm (0.032 in.) jet. Oilin temperature was 366 K (200°F). MIL-L-23699 oil was used.

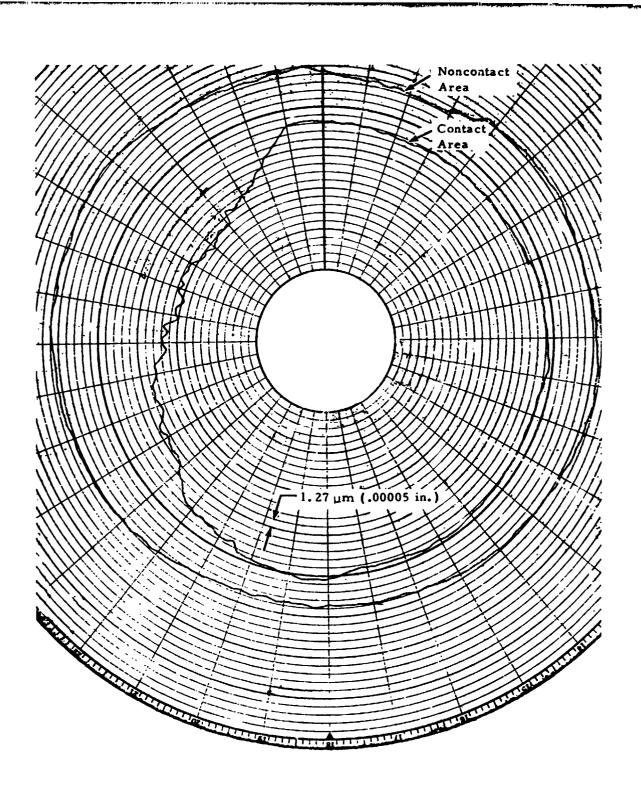

Runs 1 - 15 were of 30-minute duration each. All succeeding runs were of 15-minute duration.

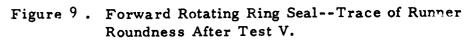

1.1


		II	Test III	IV	v			
Fwd Carbon	•		~~ ~	. .	•			
Flatness (um)	6.35	5.84	4. 32	5.84	3.05			
(in.)	.00025	. 00023			.00012			
	.13	. 18 20			. 18 20			
(u in. AA		7-8	8-9	6	7-8			
Aft Carbon								
Flatness (um)	2.54	9.39	2.54	3.05	22.35			
(in.)	.00010	.00037	.00010	.00012	.00088			
Roughness (µm)		. 15 18	.18	.13	. 53			
(1 in. AA	.)	6-7	7	5	21			
Fwd Runner								
Roundness (µm)		1.27	3.05	2.54	13.96			
(in.)		.00005	.00012	.00010	.00055			
Roughness (µm)	.2528	. 30 33	. 25 28	. 25	. 25 28			
(Lin. AA) 10-11	12-13	10-11	10	10-11			
Waviness (um)		1.14	1.52	1.01	1.19			
(in.)		.000045	.000060	.000040	.00047			
Aft Runner								
Roundness (µm)		5.58	8.88	5.08	2.54			
(in.)		.00022	.00035	.00020	.00010			
Roughness (µm)	. 25 28	.2830	. 25 28	. 28 30	. 30			
(u in. AA) 10-11	11-12	10-11	11-12	12			
Waviness (um)		2.04	1.78	2.04	3.04			
(in.)		.000080	.000070	.000080	.00011			

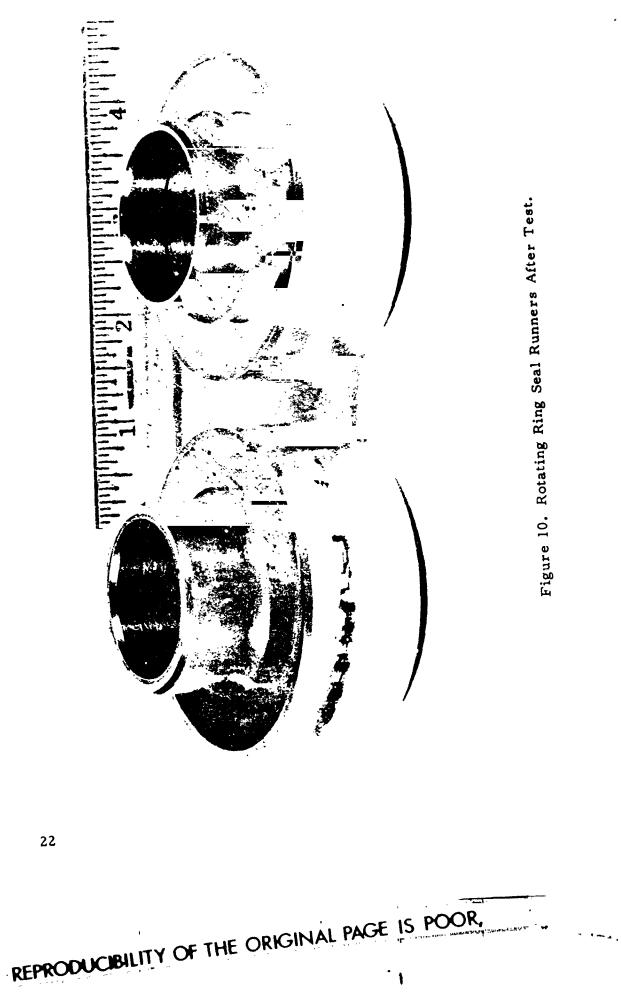

- [







J. .



REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR;

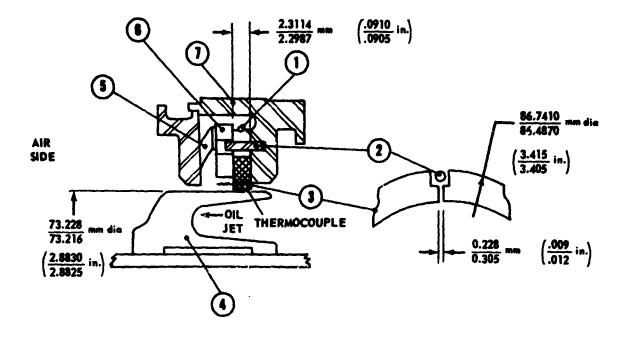
.

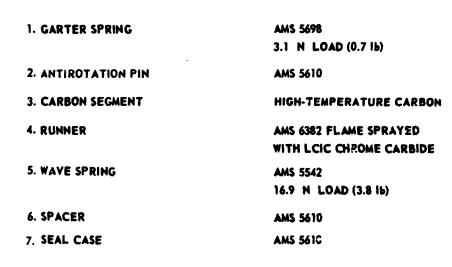
Circumferential Segmented Seal

Design

The circumferential segmented seal (Figure 11) is a carbon ring consisting of three 120-degree segments held together by a garter soring on the outside diameter. When the ring is installed on the runner, clearance between the adjacent ends of the segments allows a limited airflow into the bearing cavity. Design clearance, at each gap, is 0.229/0.305 mm (0.009/0.012 in.). During operation, if the carbon wears from shaft contact, the garter spring forces the segments radially inward. When the clearance between the adjacent carbon segment ends is zero, the ends butt up and the carbon inside diameter no longer contacts the runner. Approximately 0.127 mm (0.005 in.) of radial carbon wear will cause this condition. The seal then operates as a close clearance labyrinth. The minimum gap is formed at the maximum speed, pressure, and temperature conditions, where the runner is at its largest diameter.

The circumferential segmented seal configuration used in the test program is shown in Figure 11. Seal materials and critical dimensions are listed. Seal components are shown in Figure 12, and the seal assembly is shown in Figure 13.

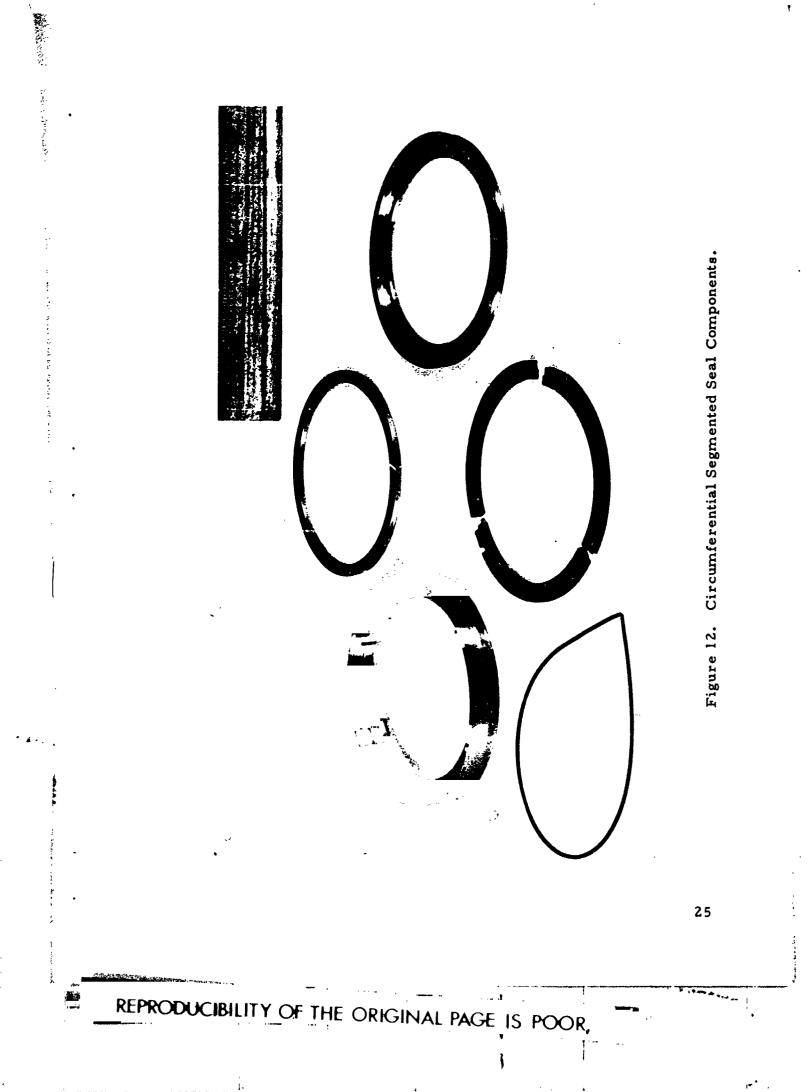

Test Results

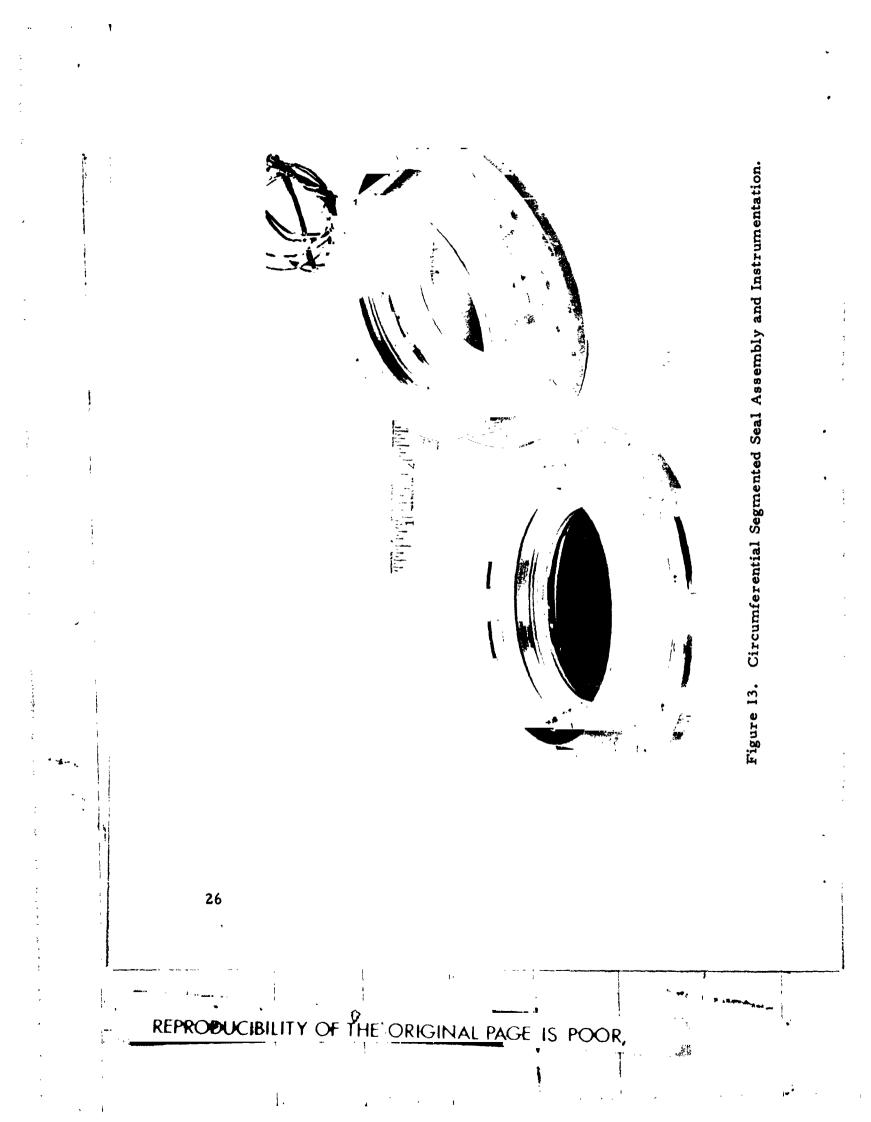

1.

Five tests were conducted, each test covering a range of speeds and air pressures at ambient temperatures. Table VI lists test conditions and resulting airflows, bearing cavity pressures, and seal temperatures. Seal temperature was measured at the location shown in Figure 11. Only the aft seal was temperature instrumented.

<u>Test I.</u> - Disassembly of the seal following test I revealed that one forward seal carbon segment was cracked in two places. It was determined that the damage had occurred at assembly prior to testing when the forward seal was slipped over the runner. A larger lead-in chamfer on the forward runner was incorporated to correct the problem. The airflows in test I are high as a result of the cracked carbon element. Average radial wear on the carbon elements following test I was 0.0178 mm (0.0007 in.) on the forward seal and 0.0102 mm (0.0004 in.) on the aft scal. The cracked forward seal was replaced.

< 1




Figure 11. Circumferential Segmented Seal.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

م بن الم الم

				Air		Cavity					Seal	
[est	Run		peed (ft/sec	Press c) (N/cm ²)		Press (N/cm ²)		Airf (kg/s)	low (Two Se (scfm)	(lb/sec)	Temp (K)	(*F)
1	1	61	200	34.3	49.7	17.0	24.7	. 006	10	.013	378	220
•	ź	91	300	34.3	49.7	17.0	24.7	,006	ii	.014	405	270
	3	61	200	55	79.7	19.8	28.7	.009	16	. 020	399	260
	4	91	300	55	79.7	19.8	28.7	.009	15	.019	407	275
	5	61	200	79.1	114.7	22.6	32.7	.013	22.5	.029	433	320
	6	91	300	79.1	114.7	24,6	35,7	.013	22	.028	455	360
n	7	61	200	34, 3	49.7	12.5	18.2	.002	3.4	.004	352	175
	8	91	300	34.3	49.7	12.5	18.2	.002	3.3	.004	389	240
	9	122	400	34.3	49.7	12.9	18.7	.002	3.2	.004	407	275
	10	61	200	55	79.7	12.9	18.7	.003	5.9	.008	383	230
	11	91	300	55	79.7	12.9	18.7	.003	5.9	.008	408	285
	12	122	400	55	79.7	13.6	19.7	.003	5.6	, 607	425	305
	13	61	200	79.1	114.7	28.8	41.7	.035	60 58	.070 .074	405	270 280
	14 15	91 122	300 400	79.1 79.1	114.7	34, 3 34, 3	49.7 49.7	.034	57	.073	410 425	305
ш	16	61	200	34.3	49.7 49.7	11.9	17.2 17.7	.003 .003	4.8 4.4	.006 .006	378 383	220 230
	17 18	91 122	300 400	34. 3 34. 3	49.7	12.2 12.5	17.7	.003	4,5	.008	410	280
	19	61	200	55	79.7	12.5	19.2	.003	7.5	.010	383	230
	20	91	300	55	79.7	13.6	19.7	.004	7.3	.009	415	285
	21	122	400	55	79.7	14.3	20.7	.004	7.5	.010	433	320
	22	61	200	79.1	114.7	13.9	20.2	.006	10.2	.013	422	300
	23	91	300	79.1	114.7	15.0	21.7	.006	10.5	.013	472	390
	24	122	400	79.1	114.7	15.6	22.7	.006	10.7	.014	483	410
	25	61	200	34, 3	49.7	12.9	18.7	,003	5.0	. 006	385	230
	26	91	300	34, 3	49.7	13.2	19.2	.003	4.7	. 006	399	Z60
	27	122	400	34, 3	49.7	13.2	19.2	.003	5.0	. 006	415	285
	Z8	152	500	34, 3	49.7	13.6	19.7	,003	4.8	.006	433	320
	29	61	200	55	79.7	13.2	19.2	.004	7.5	. 910	399	260
	30	91	300	55	79.7	13.6	19.7	.004	7.4	.009	416	290
	31	122	400	55	79.7	14.3	20.7	.004	7.3	.009	427	310
	32	152	500	55	79.7	14.6	21.2	.004	7.3	.009	444	340
	33	61	200	76.3	110.7	13.9	20.2	.005	3.3	.011	428	315
	34	91	300	76.3	110 7	14.6	21.2	.006	9.7	.012	433	320
	35 36	122 152	400 500	77.0 77.7	111.7	15.3 16.0	22, 2 23, 2	.006 .006	9.8 13.0	.012	444 480	340 405
IV	37	61	200	34.3	49.7	12.2	17.7	.002	3	.004	-	-
	38	122	400	34. 3	49.7	12.9	18.7	.002	3.2	.004 .004	-	-
	39	152	500	34.3	49.7	12.9	18.7	.002	3.1	.004	-	-
	40	183	600	34.3	49.7	13.6	19.7	.002	3, 4	.007	-	•
	41	152	500	55	79.7	13.9	20.2	.003	5.4	.006	•	•
	42	183	600	55	79.7	14.3	20.7	.003	4.7 14.5	,018		-
	43 44	122 152	400 500	79.1 79.1	114.7	17.4 19.8	25.2 28.7	.009	15.0	.020	-	-
	44	183	600	79.1	114.7	19.8	28.7	.008	14.0	.018	•	•
								.005	3.4	.011	_	
v	46	122	400	55 55	79.7		23.7 24.7	.005	3. 9	.011	-	-
	47 48	152 183	500 600	55 55	79.7 79.7		25.2	.005	8,4	.011	-	-
	49	213	700	55	79.7		26.7	.004	7.7	.010	-	-
	50	122	400	79.1	114.7	24.6	35.7	.012	21.5	.027	•	-
	51	152	500	79.1	114.7	22.6	37.7	.011	12	, 024		-
	52	183	600	79.1	114.7	24.0	35.7	.012	20	.025	-	-
	53	213	700	79.1	114.7	25.3	36.7	.011	18, 5	.024	-	-
	54	152	500	103	149.7		66.7	0 30	52.5	.017	-	-
	55	183	600	103	149.7	• 36.3	52.7	.020	35	.045	-	-
	56	213	700	103	149.7	39.7	57.7	•	-	-	-	-
	57	183	600	55	79.7	32.2	46.7	.017	30	.038	-	-
	58	152	500	55	79.7		48.7	. 020	35	.045	-	-
	59	122	400	55	79.7	35.6	51.7	.025	43	.03=	•	-
	60	91	300	55	79.7	37	53.7	.028	48 50 5	.061 Bér	-	-
	61	61	200	55	79.7	37.7	54.7	.029	50,5 32,5	.065 .041	•	•
	62	61	200	34.3	49.7		39.7	.019	28.5	.036	•	-
	63	91	300	34.3	49.7	27.4	39.7 38.7	.016	28.5	.031	•	-
	64	122	400	34.3	49.7	26.7 25.3	36.7	.012	21	.027	-	-
	65	152	500 600	34, 3 34, 3	49.7	25.5			16, 5	.021	-	-
	66	183			49.7		35,7	.010	10.3		-	

KEPKODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

THE HAL

27

*** 3 A

j.

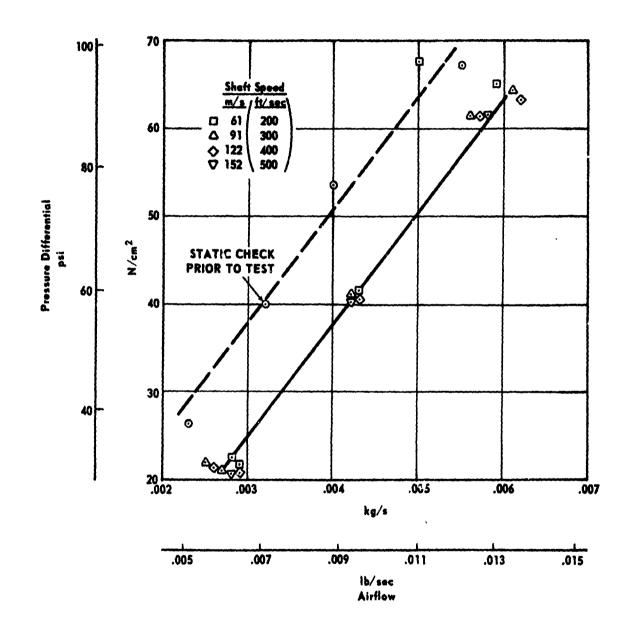
! 1 4

<u>:</u>,•

<u>Test II.</u> - During run 13 of test II (see Table VI), airflow was noted to increase drastically. The test was aborted, and disassembly revealed that an air leak had developed in the bearing package scavenge line. The leak was repaired, and a static check was made with dummy seals to ensure that no airflow entered the bearing cavity other than through the shaft seals.

<u>Test III.</u> - Test III data were consistent, and they were representative of circumferential segmented seals that are not worn out. Test III data for airflow through the seals versus the pressure differential between the air and oil sides for various speeds are shown in Figure 14. It can be seen that speed does not affect the amount of airflow. Carbon temperature versus pressure differential is shown in Figure 15.

Average radial carbon wear of 0.005 mm (0.0002 in.) on both the forward and aft seal was measured for test III.


<u>Test IV.</u> - Prior to test IV, the temperature instrumentation on the aft seal was damaged, and new instrumentation was installed. Static checks revealed that reinstrumentation caused the seal to hang up and allow large airflows, so the aft instrumented seal was replaced by a new seal that was not instrumented.

During run 43 of test IV, the airflow increased sharply. Upon disassembly, the new aft seal was found to have worn out to 0.17 mm (0.0067 in.) average radial wear, and it had worn a 0.025 mm (0.001 in.) groove in the runner. The forward seal average radial wear was 0.018 mm (0.0007 in.) in test IV. For further testing, the aft and forward seals were shimmed so as to run on an unworn portion of the runner.

<u>Test V.</u> - The objective of test V was to wear out the forward seal and obtain an airflow plot for both seals operating as labyrinths.

Measurements following test V revealed that the forward seal had worn 0.150 mm (0.0059 in.) during test V and had a total average radial wear of 0.170 mm (0.0069 in.). In test V the forward seal wore a 0.051 mm (0.002 in.) groove in the runner.

The aft seal wore an additional 0.06 mm (0.0023 in.) and again wore a 0.025 mm (0.001 in.) groove in the runner.

,

;

1

;;;

Figure 14. Airflow Through Two Circumferential Segmented Seals Versus Pressure Differential Between Air Side and Oil Side, Test III.

1.

i,

1.1

29

۰,۰

Τ.

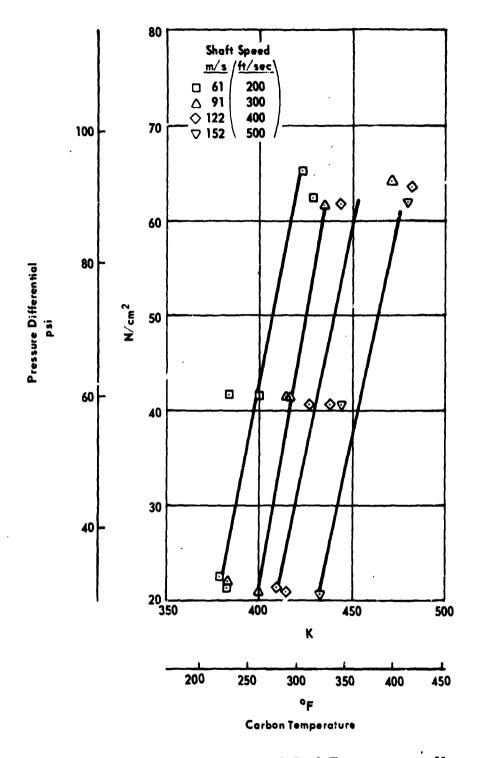


Figure 15. Circumferential Segmented Seal Temperature Versus Pressure Differential Between Air Side and Oil Side, Test III.

ь і

30

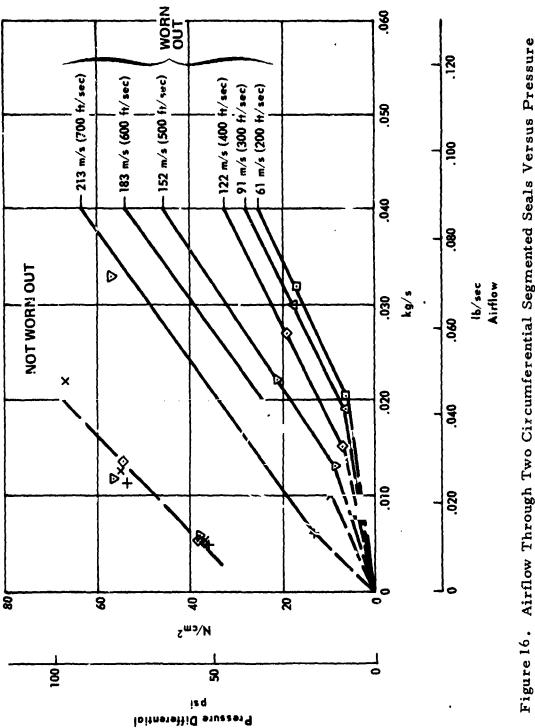
Airflow versus pressure differential for test V is shown in Figure 16. The curves showing the least pressure differential reflect the two worn out seals as the airflow was speed sensitive. As the runner grows with speed, the airflow decreases. The upper points reflect data taken early in the test before the forward seal wore out.

The following traces were taken after each test:

1. Casing axial flatness, roughness, and waviness

2. Runner roughness, waviness, and roundness

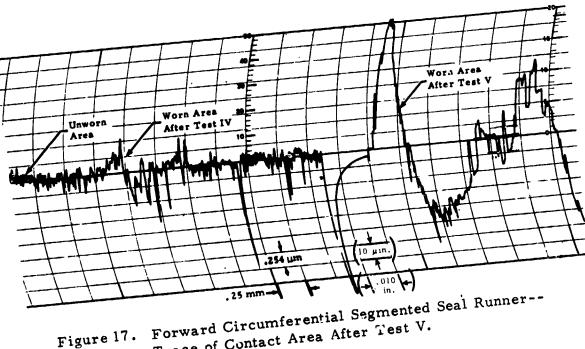
Inspection results of runner roundness, roughness, and waviness are listed in Table VII. Casing flatness, roughness, and waviness did not change significantly during the test program. Typical values were:

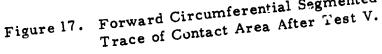

Casing flatness	50 . 8 µm	(0.002 in.)
Casing roughness	0.304 µm	(12 µin. AA)
Casing waviness	5.08 jum	(0.0062 in.)

A chart showing the condition of the forward runner after test V is presented in Figure 17. Runner runout was measured at assembly and was found to be 0.015 min (0.0006 in.) on the forward runner and 0.038 mm (0.0015 in.) on the aft runner.

'Total oil flow to the bearing compartment was varied with speed as follows:

Shaft	Speed	Oil	Flow
<u>m/s</u>	ft/sec	kg/hr	lb/hr
61	200	48	105
91	300	75	166
122	400	95	210
152	500	115	254
183	600	142	314
213	700	170	374


The bearing was fed by four 0.81 mm (0.032 in.) jets and each seal runner was cooled by one 0.81 mm (0.032 in.) jet. Oil-in temperature was 366 K (200°F) . MIL-L-23699 oil was used.



|.

TABLE VII. CIRCU	MFERENT		After 7	lest	IV	V
	New	T	n	111	1	
wd Runner Roundness (um) (in.) Roughness (um) (uin. AA) Waviness (um) (in.)	2.54 .0001 16 2.54 .0001	2.54 .0001 .381 15 2.54 .0001	2.54 .000i .15 6 2.54 .0001	2.54 .0001 .15 6 .13 .00005	2.54 .0001 .18 7 .18 .00007	50.8 .002 .51 20 50.8 .002
Aft Runner Roundness (um) (in.) Roughness (um) (u in. A Waviness (um)	1.27 00005 .36 (A) 14 2.54 .0001	. 30 12 2. 54	5.08 .0002 .15 6 .51 .00002	5.81 .00015 .08 3 .15 .00006	3.04 .0012 .41 16 24.2 .00095	2.80 .0011 .18 7 25.4 .001

REPRODUCIBILITY OF THE ORIGINAL PAGE, IS POOR,

Runs 1-15 were of 30 minutes duration each. All succeeding runs were of 15 minutes duration.

Conventional Face Seal

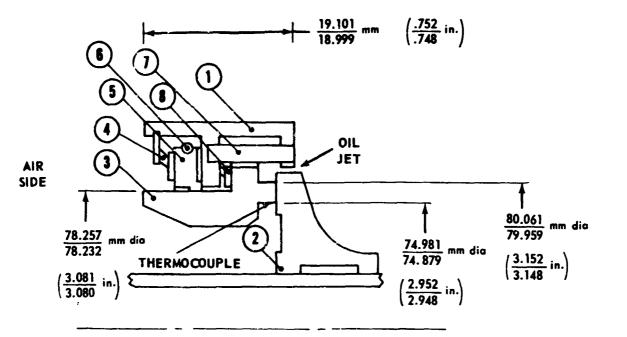
Design

The conventional face seal design is shown in Figure 18. Seal materials and critical dimensions are listed. The primary ring(carbon) is pressure balanced with an area ratio of 0.645. Pressure balancing is also applied to the secondary carbon piston ring seal both axially and radially. A chronium carbide flame spray is applied to the seal seat. The seal was assembled with a 3.02 N (6.8 lb) spring force, which results in an interface pressure of 67 N/cm² (9.7 psi).

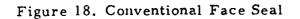
Test Results

Five tests were conducted, each test covering a range of speeds and air pressures at ambient temperatures. Test conditions and resulting airflows, bearing cavity, pressures, and seal temperatures are listed in Table VIII. Each run was of 15 minutes duration. Seal temperature was measured at the location shown in Figure 18. Only the aft seal was temperature instrumented.

Airflow through two seals versus the pressure differential between the air side and oil side is shown in Figure 19. Airflow values varied from test to test, particularly at the higher pressures. Within each test, airflow decreased with increasing speed at any external air pressure setting.


Face seal carbon nose wear was minimal throughout the test program: 0.0051 mm (0.0002 in.) on the forward seal and 0.0102 mm (0.0004 in.) on the aft seal. This wear and the fact that the temperature did not exceed 372 K (210° F) indicate the seals were operating on an air film.

ì


The following traces were taken after each test:

1. Primary ring (carbon) flatness, roughness, and waviness

2. Seat flatness, roughness, and waviness

1. SEAL CASE	AMS 5610
2. SEAT	AMS 6382 FLAME SPRAYED
	WITH LCIC CHROME CARBIDE
	COATING
3. PRIMARY RING	HIGH-TEMPERATURE CARBON
4. WAVE SPRING	AMS 5542
5. SECONDARY SEAL	HIGH-TEMPERATURE CARBON
6. GARTER SPRING	AMS 5698
	2.21 N LOAD (.5 Ib)
7. ANTIROTATION PIN	AMS 5610
8. WAVE SPRING	AMS 5542
	TOTAL WAVE SPRING LOAD
	31.1 N (7 lb)

\$

35

and the statement of the state

1*

		Spe	ed		ur ssure		avity	Airf	low (1wo S	eelu)	Seal Temper	
Test	Run		(ft/sec)	(N/cm ²) (psia)	(kg/ s)	(scfm)	(lb/sec)	(16)	(*F
1	1	05	214	34.3	49.7	12.2	17.7	. 00 1	2. ,	. 003	322	120
1	2	126	414	35	50.7	12.2	18.2	.001	23	.003	358	18
	3	162	532	34.3	49.7	12.5	18.2	.001	2.3	.003	363	19
	4	05	214	55	79.7	15.7	22.7	.004	7	.009	330	13
	5	97	318	55	79.7	15	21.7	.004	£.£	.008	347	16
	6	65	214	17.7	112.7	18.8	27.2	.009	15.0	. 01 -	350	17
	7	97	318	77	111.7	19.5	28.2	.008	13.0	.01-	357	18
11	8	61	200	34.3	49.7	11.9	17.2	.001	1.7	. 002	344	16
	9	91	300	34.3	49.7	11.9	17.2	. 00 1	1.7	.002	357	18
	10	122	400	34.3	49.7	12.2	17.7	.001	1.7	.002	372	21
	11	152 61	500	34, 3 55	49.7 79.7	12.2	17.7 18.2	002	4.3	.005	366 318	20
	13	91	200 300	55	79.7	12.5	18 2	.002	3.7	.005	339	15
	14	122	400	55	79.7	12.9	18.7	.002	3, 5	.004	350	17
	15	'52	500	55	79.7	.2.9	8.7	. 002	3.3	.004	361	19
	16	61	200	79.1	114.7	16.1	23.2	.006	11	.014	350	170
	17	91	300	79.1	114.7	16.3	23.7	.006	10	.013	350	170
	18	122	400	79.1	114.7	16.3	23.7	.005	9 8	.011	357	18
	19 20	152	500	79.1	114.7	16.1 19.4	23.2 28.2	.005 .010	18	.010	363 352	17
	20	61 91	200 300	103	149.7	19.4	28.2	.009	15	.019	358	18
	22	122	400	103	149.7	19.4	28.2	.008	14	.018	266	20
	23	152	500	103	149.7	18.8	27.2	.007	12.5	. 01.	372	21
	• •	<i>.</i>						000		<i>.</i> .		
ш	24 25	91	300	79.1	114.7	17.7	25.7	.007 .007	12.5 12	.01+ .015	350 363	170
	25	122 152	400 500	75 I 79.1	114.7	18.1 17	26.2 24.7	.007	12	.013	394	19:
	27	91	300	103	149-7	21.5	31.2	.011	.9	.024	383	230
	28	122	400	103	149.7	21.8	31.7	.010	17.5	. 022	350	170
	29	152	500	103	149.7	20.6	29.7	.008	14.5	. U I R	366	200
	30	91	300	123.9	179.7	23.9	34.7	.01+	24	.0.1	352	17
	31	122	400	123.9	179.7	25.3	36.7	.013	23	. 323	333	140
	32 33	152	500	123,9 148,2	179.7	23.9	34.7	.011	19 30	. 324	344 347	160
	34	91 122	300 400	148.2	214.7	28.8 27.4	41.7 39.7	.017	26	1018	330	13
	35	152	500	148.2	214.7	30.8	44.7	.01-	29	.)	340	15
	36	122	400	148.2	214.7	31.6	45,7	.01 -	32.5	. 941	333	140
	37	91	300	148.2	214.7	30.2	43.7	018	31.5	.04%	306	90
	38	61	200	148.Z	214.7	30.2	43.7	.019	33.5	.043	30 3	8
	39	61	200	123.9	179.7	Z6.7	36.7	.016	27	. 034	306	90
	40 41	91 122	300 400	123.9	179.7 179.7	27.4 26.7	39.7 38.7	.01+	27.5 24.5	.) 15	312	100
	42	152	500	123.9	179.7	27.4	37.7	.612	21.5	-027	322 333	120
.												
IV	43 44	91	300 400	77.7	112.7	19.5	28.2	.009	14.5	.013	•	-
	45	122 152	500	79.1 79.1	114.7	19.8 19.8	28.7 28.7	.008	14	.018	-	-
	46	183	600	79.1	114.7	19.8	28.7	.008	13	.017	-	-
	47	91	300	103	149.7	23.7	34.7	.0:3	23	.02 -	•	-
	48	122	400	103	149.7	23.7	34.7	.013	21	. 027	-	-
	49	152	500	103	149.7	23.7	34.7	.011	19	. 024	•	-
	50 51	183	600	103	149.7	23.7	34.7	.010	17	. 022	-	-
	52	122	30C 400	123.9	179.7	28.1 28.1	40.7 40.7	.018	30.5 30	.017	•	-
	53	152	500	123.9	179.7	Z8.1	40.7	.01-	26.5	.034	-	•
	54	183	600	123.9	179.7	28.1	40.7	.014	23.5	. 0 . 0	•	-
	55	91	300	148.2	214.7	34, 3	49.7	. 02 5	35.	050	-	-
	56	122	400	148.2	214.7	33.0	48.7	.021	35, 5	. 04 -	-	-
	57 58	152 183	500 600	148.2 148.2	214.7 214.7	32.9	47.7	.012	33	.042	•	-
	30	103		1 40.6	-19./	32.2	46,7	.017	29.5	, 3 38	•	•
v	59	122	400	77	111.7	17.7	25.7	.007	12	.015	-	
	60	152	500	79.1	114.7	18.4	26.7	.007	12	.015	-	-
	61	183	600	79.1	114.7	17.7	25.7	.005	9.5	_012	•	•
	62 63	213 122	700 400	79,1 103	114.7 149.7	19.8 23.9	28.7 34.7	.000. 510.	10.5	.015	-	-
	64	152	500	103	149.7	23.2	33.7	.010	18	.027	-	•
	65	183	600	103	149.7	21.2	30.7	,008	14	.023	-	-
	66	213	700	103	149.7	23.9	34.7	.010	16.5	. 0,21	-	:
	67	122	400	123.9	179,7	31.6	45.7	. 020	34.5	.044	-	-
	68	152	500	123.9	179.7	31.6	45.7	.017	30	.038	-	-
	69 70	183	600	123.9	179.7	28.8	41.7	.015	26	.033	-	-
	70 71	213	700 400	123.9	179.7	29.5	42.7	.014	24	.031	•	-
	72	122 152	500	148.2	214.7 214.7	36.4 35	52.7 50.7	.025	43 39	.050	-	•
	73	183	600	148.2	214.7	34,3	49.7	.023	35,5	.04-	-	-
	74	Z13	700	148.2	214.7	30.8	44.7	.016	27.5	.035	-	-

98.73M W

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

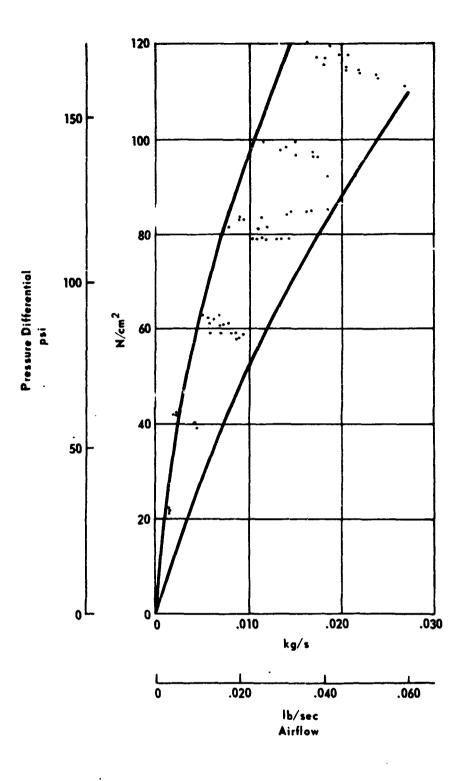


Figure 19. Airflow Through Two Conventional Face Seals Versus Pressure Differential Between Air Side and Oil Side.

×

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

1.

Surface texture measurements before and after the test program are shown in Table IX.

Seal components after testing are shown in Figure 20. Total oil flow to the bearing compartment was varied with speed as follows:

Shaft	Speed	Oil	Flow
<u>m/s</u>	ft/sec	kg/hr	lb/hr
61	200	45	100
91	300	68	150
122	400	89	195
152	500	114	250
183	600	136	300
213	700	161	355

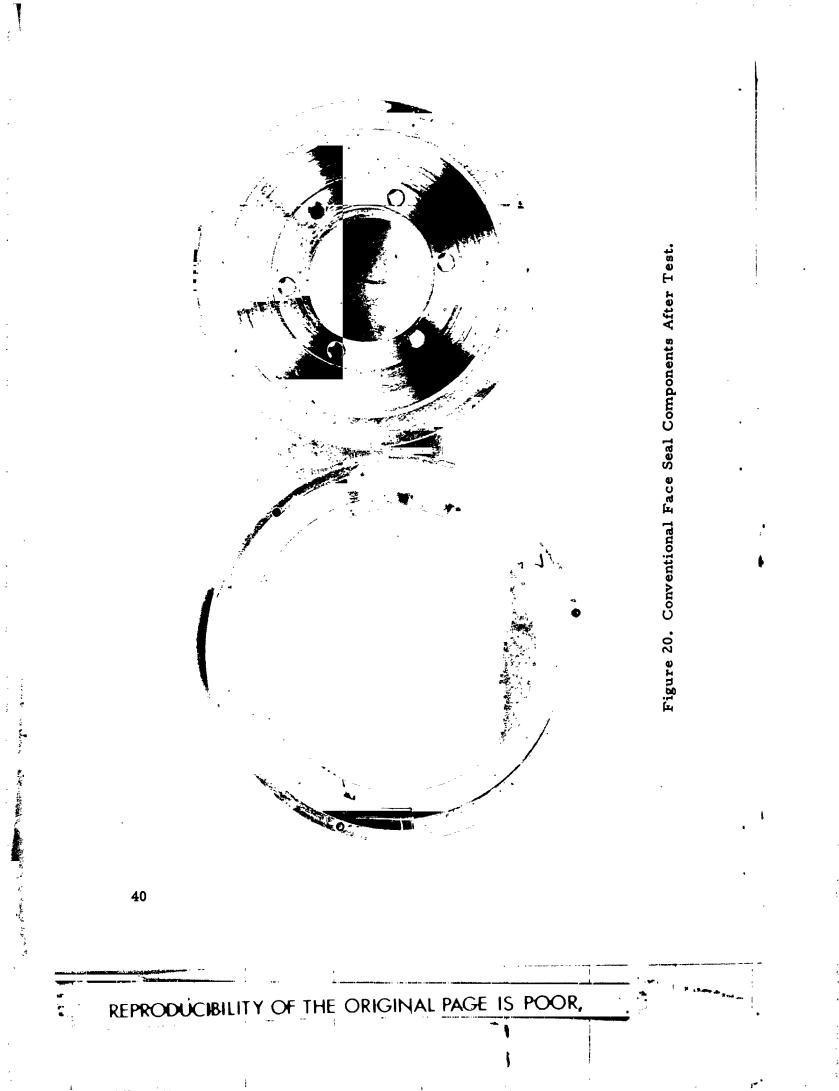
The bearing wa. fed by four 0.81 mm (0.032 in.) jets, and each seal face plate was cooled by one 0.81 mm (0.032 in.) jet. Oil-in temperature was 366 K (200°F). MIL-L-23699 oil was used.

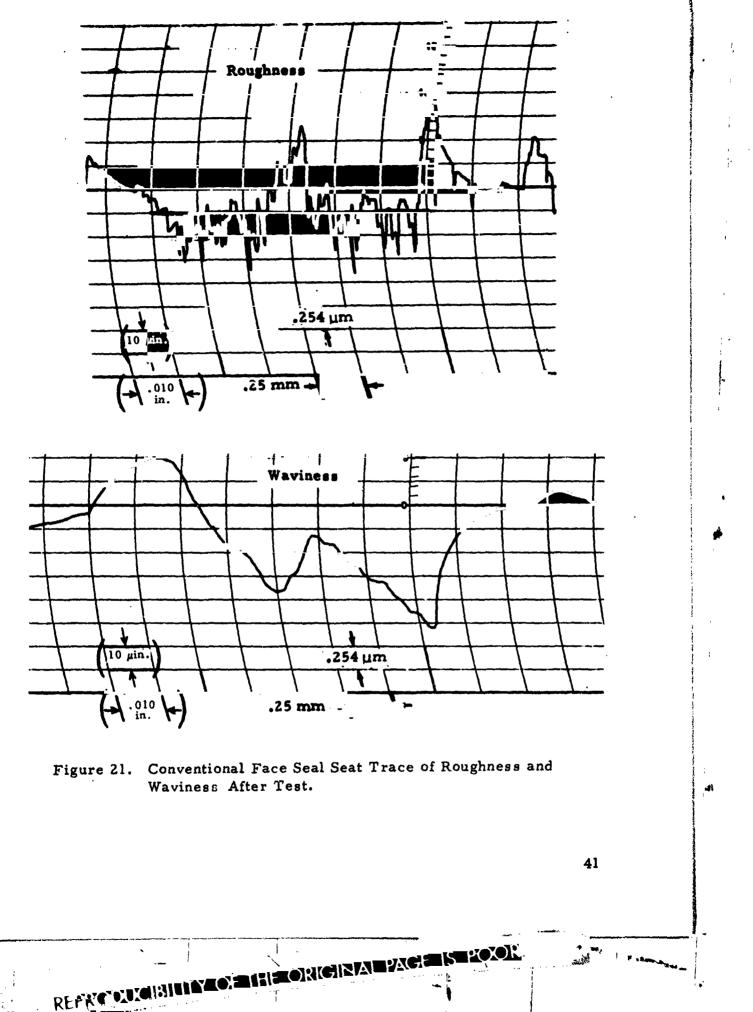
Traces of component surface texture following testing are shown in Figures 21 and 22.

Labyrinth Seal

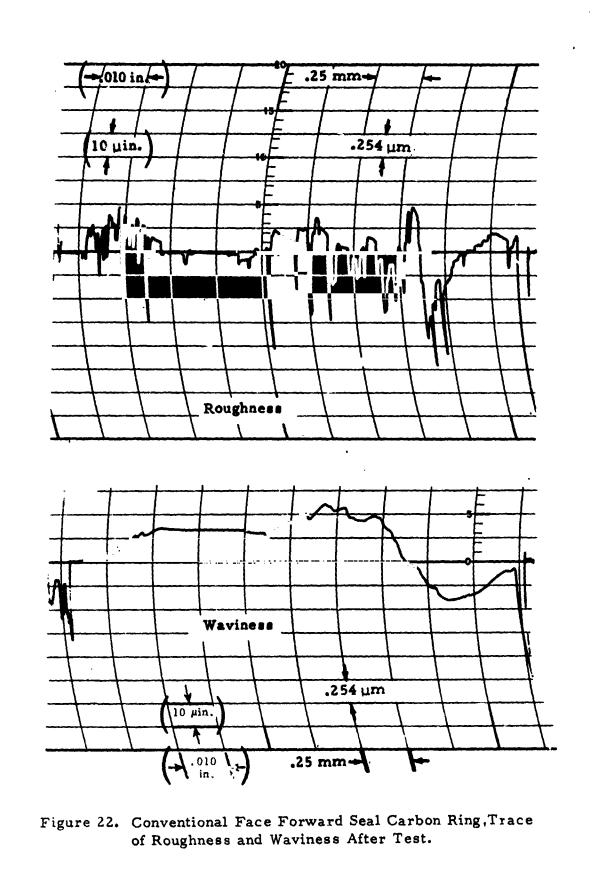
An analytical evaluation was made of a labyrinth seal that could be compared with the experimental results of the conventional and selfacting seals. Labyrinth geometry was chosen that would fit into the envelope of the test seals. The labyrinth seal is shown in Figure 23.

The method used to calculate airflow is that of Reference 11. The bearing cavity pressure versus airflow relationship, which is known from the experimental program, is presented in Figure 24. This relationship is used in the leakage analysis. The airflow through two labyrinth seals versus pressure differential from the air side to the oil side is shown in Figure 25. Airflow through two seals is used for ease of comparison with airflow from the test rig programs, in which two seals were incorporated flanking the bearing cavity to simulate an engine installation. Airflow is calculated for several different diametral operating gaps at 294 K (70 °F) air temperature.


j

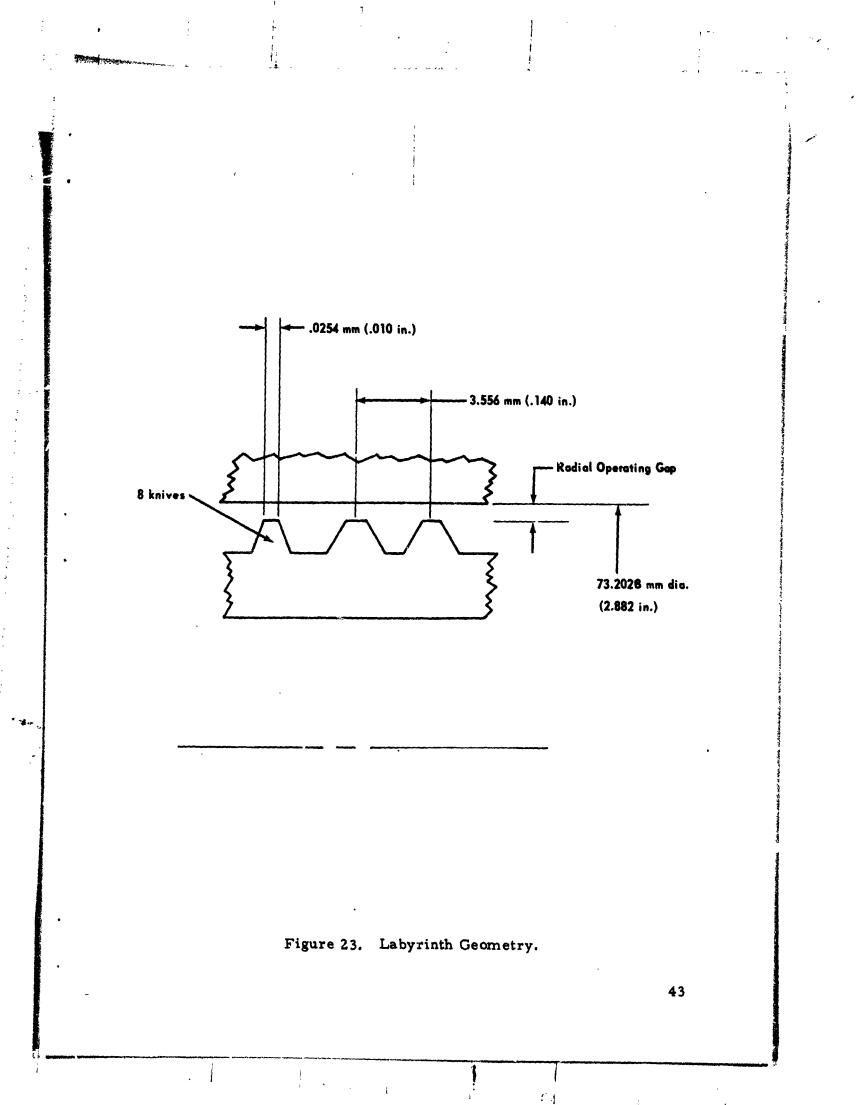

	New	After Test
Fwd Carbon		
Flatness (µrı)	. 381	2.54
(in.)	.000015	. 0001
Roughness (1 m)	. 381	. 280
(1 in. AA)	15	11
Waviness (µm)	-	1.02
(in.)	-	.00004
Aft Carbon		
Flatness (1m)	2.54	7.62
(in.)	.0001	.0003
Roughness (1 m)	. 381	. 127
(1 in. AA)	15	5
Waviness (1m)	2.28	. 51
(in.)	.00009	.00002
Fwd Seat		
Flatness (1m)	. 254	1.52
(in.)	. 00001	. 00006
Roughness (1 m)	. 051	. 280
(1 in. AA)	2	11
Waviness (um)	. 254	1.78
(in.)	. 00001	. 00007
Aft Seat		
Flatness (um)	1.78	1.27
(in.)	.00007	.00005
Roughness (1m)	.025	. 203
(1 in. AA)	1	8
Waviness (µm)	. 254	1.02
(in.)	.00001	.00004

1.

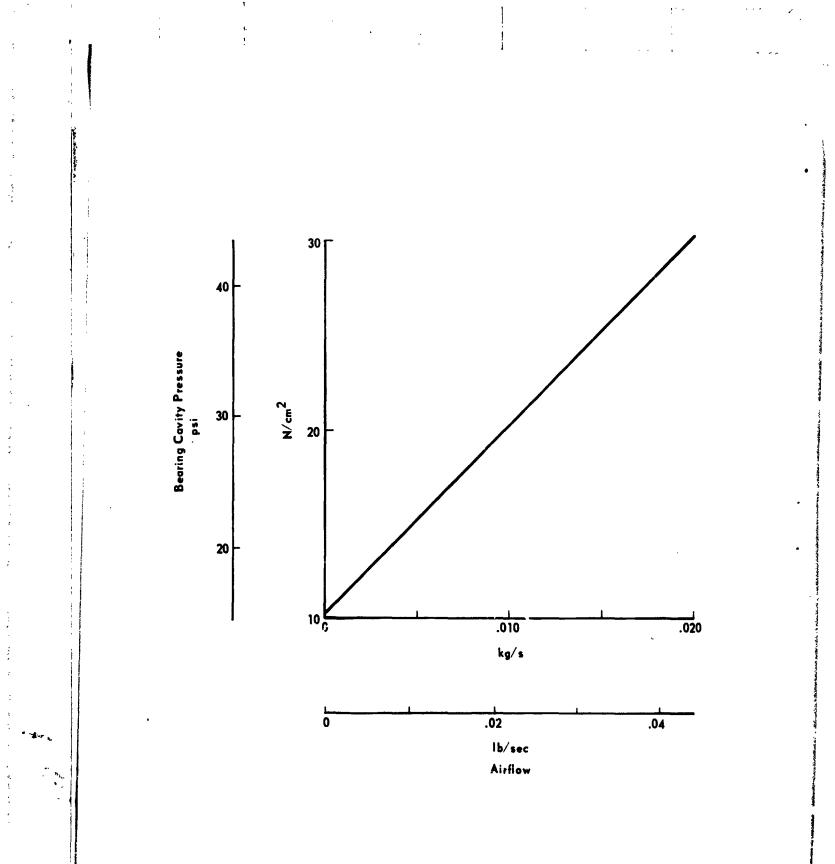

39

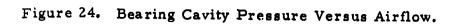
i •

1.



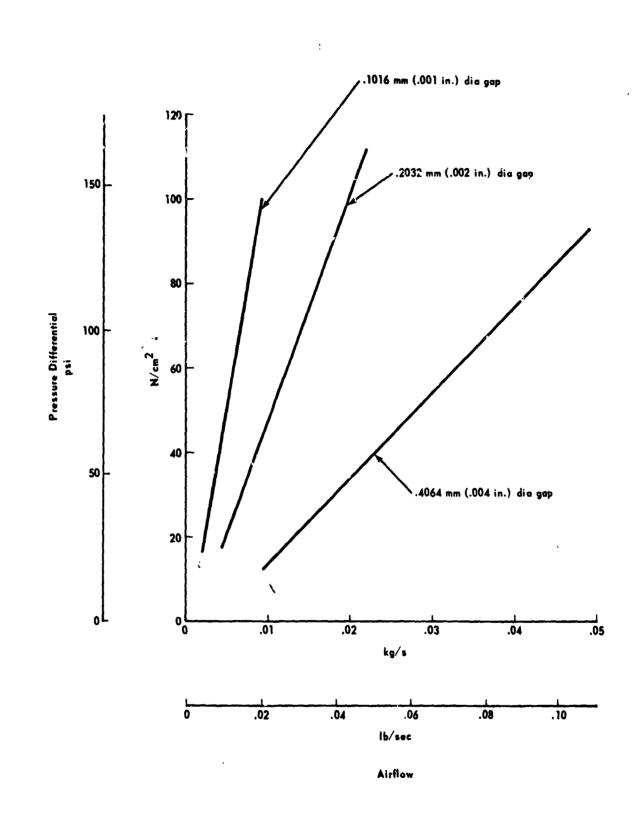
1.


7.4°5.48


REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

1.1

(<u>*</u>



5.

44

ź,

. 1

Berner une

.

.

•

2

Figure 25. Airflow Through Two Labyrinth Seals Versus Pressure Differential.

1

1. . .

١.

45

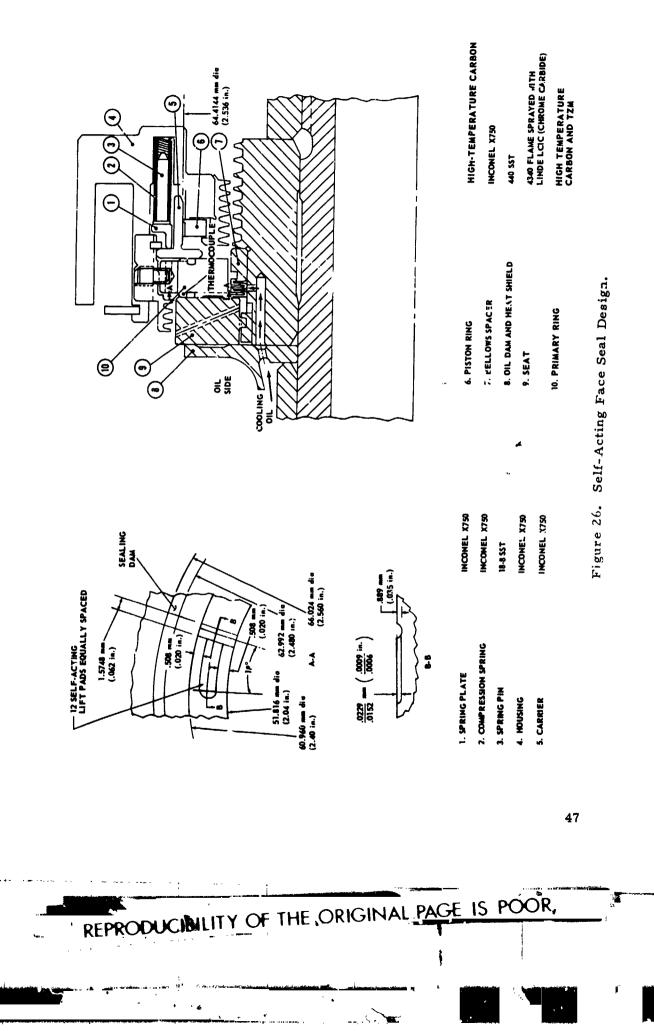
.*

Self-Acting Face Seal

Design

The self-acting face seal used in the test program is shown in Figure 26. It is similar to a conventional face seal with the addition of the self-acting geometry for lift augmentation.

The primary sealing interface consists of the rotating face plate, which is keyed to the shaft, and the nonrotating primary ring assembly, which is free to move in an axial direction, thus accommodating axial motions due to thermal expansion. Axial springs provide the mechanical force that maintains contact between the seat and primary ring at shutdown. Initially the seal incorporated 16 springs producing an axial lc. a of 58 N (13 lb). The secondary seal is a carbon piston ring, which is subjected only to the axial motion of the carrier assembly.


Great care is taken to ensure flatness of the sealing surfaces. The seat is keyed to the shaft spacer and is axially clamped by a machined bellows which minimizes distortion of the seat since the major part of the clamping force goes through the shaft spacers. The bellows also acts as a static seal between the seat and the shaft spacer. Cooling oil is passed through the seat to reduce thermal gradients, and the oil dam disc also serves as a heat shield. Windbacks are used to prevent contaminants from approaching the sealing surfaces.

In operation, the sealing faces are separated slightly, in the order of 0.00508 mm (0.0002 in.), by action of the self-acting lift geometry. This positive separation results from the bə¹ance of seal forces and the gas film stiffness of the self-acting geometry. The primary ring carbon face with the lift pads is shown in Figure 27.

To determine film thickness and air leakage in a self-acting face seal, the axial forces acting on the primary ring assembly must be determined for each operating condition. These forces comprise the self-acting lift force, the spring force, and the pneumatic forces due to the sealed pressure. Essentially the analysis requires finding the film thickness for which the opening forces balance the closing forces. When this equilibrium film thickness is known, the leakage rate can be calculated. References 3 through 9 detail the design procedure.

46

i.

Ð

алар 1977 - 1973 1973 - 1973 - 1973 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1974 - 1 **

41

ļ

Figure 27. Detail of Lift Pads.

Test Results

Testing of the self-acting face seal was accomplished in three phases. First, evaluation tests were conducted at ambient temperature over a range of speeds and air pressures. During the evaluation testing and initial endurance testing, failure modes were uncovered. A second series of tests was conducted at elevated temperatures to investigate seal failures. Finally, 150 hours of endurance operation were accomplished.

Initially, seven evaluation tests were conducted, each test covering a range of speeds and air pressures. Operating conditions for the first three tests are documented in Table X. It was found that there were air leaks into the rig during the first three tests, and therefore the seal air leakages recorded were erroneous. Inspection following test I revealed no measurable wear of the carbon ring nor of the rotating seat. The carbon ring of both seals wore approximately 0.0025 mm (0.0001 in.) during test II. During test III, the aft seal wore an additional 0.0050 mm (0.0002 in.) while the forward carbon remained the same. The seal spring force had been set at 58 N (13 lb). In view of the wear that occurred, the spring force was reset at 42 N (9.5 lb) by reducing the number of coil springs.

Rig air leakage was corrected and four more tests were conducted. Test conditions and resulting airflows, bearing cavity pressures, and seal temperatures are listed in Table XI. Only the aft seal was temperature instrumented with a thermocouple implanted close to the sealing nose (Figure 26). Each run of tests I to VI was 15 minutes. Test VII points were held for 5 minutes.

Neither the forward nor the aft carbon ring or seat wore during tests IV and V. During test VI, at each pressure setting as the speed was increased above 203 m/s (660 ft/sec), it was noted 'hat the aft seal temperature rose rapidly indicating that the carbon was contacting the runner. After the test it was found that the aft seal lift pads were almost worn out. The forward seal had not worn. The seal carbon rings and seats are shown in Figure 28.

A new aft seal was used for test VII.

Data taken during tests IV to VII were consistent for each test; however, there was some scatter from test to test. Airflow and seal temperature data for test V, which was typical, are shown in Figures 29 and 30.

		Spe	ed	Air Pre	ssure	Time
ſest	Run	(m/s)	(ft/sec)	(N/cm^2)	(vsia)	(min)
I	1	91	300	34.3	49.7	15
	2	122	400	34.3	49.7	15
	3	91	300	55.0	79.7	15
	4	122	400	55.0	79.7	15
	5	91	300	79.1	114.7	15
	6	122	400	79 1	114.7	15
	7	91	300	34.3	49.7	15
	8	122	400	34.3	49.7	15
	9	91	300	55.0	79.7	15
	10	122	400	55.0	79.7	15
	11	91	300	77.7	112.7	15
	12	122	40 0	73.5	106.7	15
п	13	91	300	34.3	49.7	15
	14	122	400	34.3	49.7	15
	15	152	500	34.3	49.7	15
	16	91	300	51.6	74.7	15
	17	122	400	54.2	78.7	15
	18	152	500	55.0	79.7	15
	19	91	300	78.3	113.7	15
	20	122	400	79.1	114.7	15
	21	152	500	79.1	114.7	15
	-2	91	300	103.0	149.7	15
	23	122	400	103.0	149.7	15
	24	152	500	103.0	149.7	15
Ш	25	91	300	34.3	49.7	15
	26	122	400	34.3	49.7	15
	27	152	500	34.3	49.7	15
	28	91	300	55,0	79.7	15
	29	122	400	55.0	79.7	15
	30	152	500	55.0	79.7	15
	31	91	300	103.0	149.7	15
	32	122	400	103.0	149.7	15
	33	152	500	103.0	149.7	15

÷

		Т							_																																				Т
	l rature	(K) (*F)	164	247	185	951	212	234	292	252	282	140	174	012	166	200	226	253	180	212	260	196	212	263		1961 2.31	270	245	297	208	245	240	265	Ĩ		219	220	216	248	270	260	276	248	247	
	Seal Temper	(K)	142	193	850		373	385	402	396	412	333	352	172	346	366	361	396	655		004	364	373	200 402		365 384	105	392	420 420	371	265		19	423	1	22	504	376	262	402 402	104	64	26C	402 420	
((s [s	(1b/sec)	×.0011	6 100 ·	. 101.	P100.	.0024	. 0020	. 0037	0400	1 5 00 .	<. 0013	<. 0013	 . 0013 . 0013 	- 200 ·	6100	. 1027	ECOU .	. 00.38	. 0046	, 00.85	. 00 50	. 0070	, 1079 102		<. 0013 . 0014	. 0022	. 0018	\$200 ·	. 0047	. 0055	. 0064	.0062	. 0080	<. 0013	. 0014	0017	.0071	9600 .	.0121	00800	.0179		.0.53	
TS IV - VII)	Airflew (Two Seals)	(acfm)			1.2	- · ·	6.1	2.3	6 · 0	0.7	•	1 V	ī			1.5	2.1	2.6	0.0		0 ° °	3.9	າດ ທີ່	9 0 8	,	-1-1 -1-1	1.7	* (5.7		0.0	•	63	۲ ،	1.1	n o 	. 4	7.7	6 °		14.0		12.0	
SELF-ACTING FACE SEAL TEST DATA (TESTS IV	AirO	(kg/s)	9000	.0006	. 00.07	6000 ·	1100	. 0013	. 0017		. 1023	د. 000 <i>1</i> ,	 . 0006 	< 0000 ×	1100	6000	. 0012	.0015	. 0017	1200.	6700 .	0023	. 00 32	9000		 . 0006 . 0006 	0100	. 0008	1100	.0021	. 0025	6200.	0028	. 0036	<, 0006	, 0006	. 0008	0032	1400	.0054	96000	.0081		. 0069	
AL TEST		(peia)	15.2	16.7	15.2	10.7	16.7	16.9	18.2	12.1		15.7	16.2	16.2	16.2	16.7	17.2	18.7	17.2	1	21.7	18.2	19.2	23.7		16.7	18.7	17.2	11.7	18.7	19.7	20.2	19.7	21.7	16.7	16.9	17.2	21.2	23.7	25.7	25.7	29.7	25.2	29.5	
G FACE SE	Cavity	(N/cm ²)	10.5	11.5	10.5	•••	11.5	11.6	12.5		14. 7	10.8	11.2	2.11	2.21	11.5	11.9	12.9	11.9	12.2	15.0	12.5	13.2	16.3		11.5	12.9	11.9	12.0	12.9	13.5	6.1	13.6	15.0	11.5	11.6	6.11	14.6	16.3	17.7	15.7	20.6	17.4	18.1	
F-ACTIN		(bala)	49.7	49.7	78.7	7.67	114.7	114.7	14.7	140.7	149.7	49.7	49.7	- 64	10.7	79.7	79.7	79.7	149.7	1.94	149.7	179.7	179.7	179.7		49.7	49.7	79.7	7.67	149.7	149.7	149.7	179.7	179.7	49.7	49.7	49.7	149.7	149.7	149.7	179.7	179.7	214.7	214.7	
XI . SEL	Air	Z	34.3		54.4	55.0	79.1	79.1	79.1	103.0	103.0	34.3	34.3	34.3		55.0	55.0	55,0	103.0	103.0	103.0	123.9	123.9	123.9		34,3		55. O	000	103.0	103.0	103.0	123.9	123.9	34. 3	34.3		103.0	103.0	103.0	123.9	123.9	148.2	148.2	-
TABLE		((t/sc.)	000	200	300	04	200	407	000		500	300	400	200		101	200	600	300	000	009	300	004	2009		0 0 0 0 0 0 0 0 0 0	909	9 1	00 00 00	90 1	000	8	2005	000	300	000	600 640	2005	009	660		660	200	600 644	
	heens	(s/u)	6	152	16	122	16	122	152	F []	152	16	122	152	5	122	152	183	16	221	191	16	122	183	2	122	181	127	152	122	152		152	183	16	152		152	163	203	251	203	152	183	
		Run	÷.	6 %	37	38	ţ	Ę	22	5 4 4	12	46	47	9	4 9	3.2	22	53	1	5:	0 r	85	5	2 2 2	5	29	33	59	99 77	68	69	22	22	13	74		9/	78	79	80		36	1 0 ,	82 9 4	
		Test	Ŋ									>														١٨									ПЛ										

51 A 15 199988 REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

n

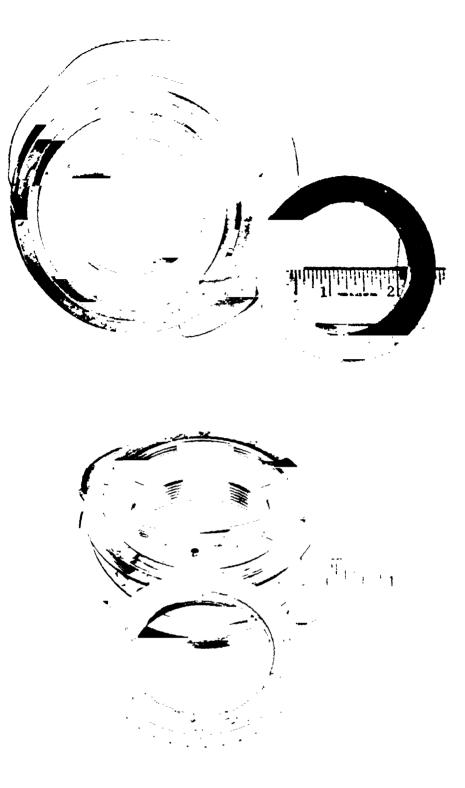
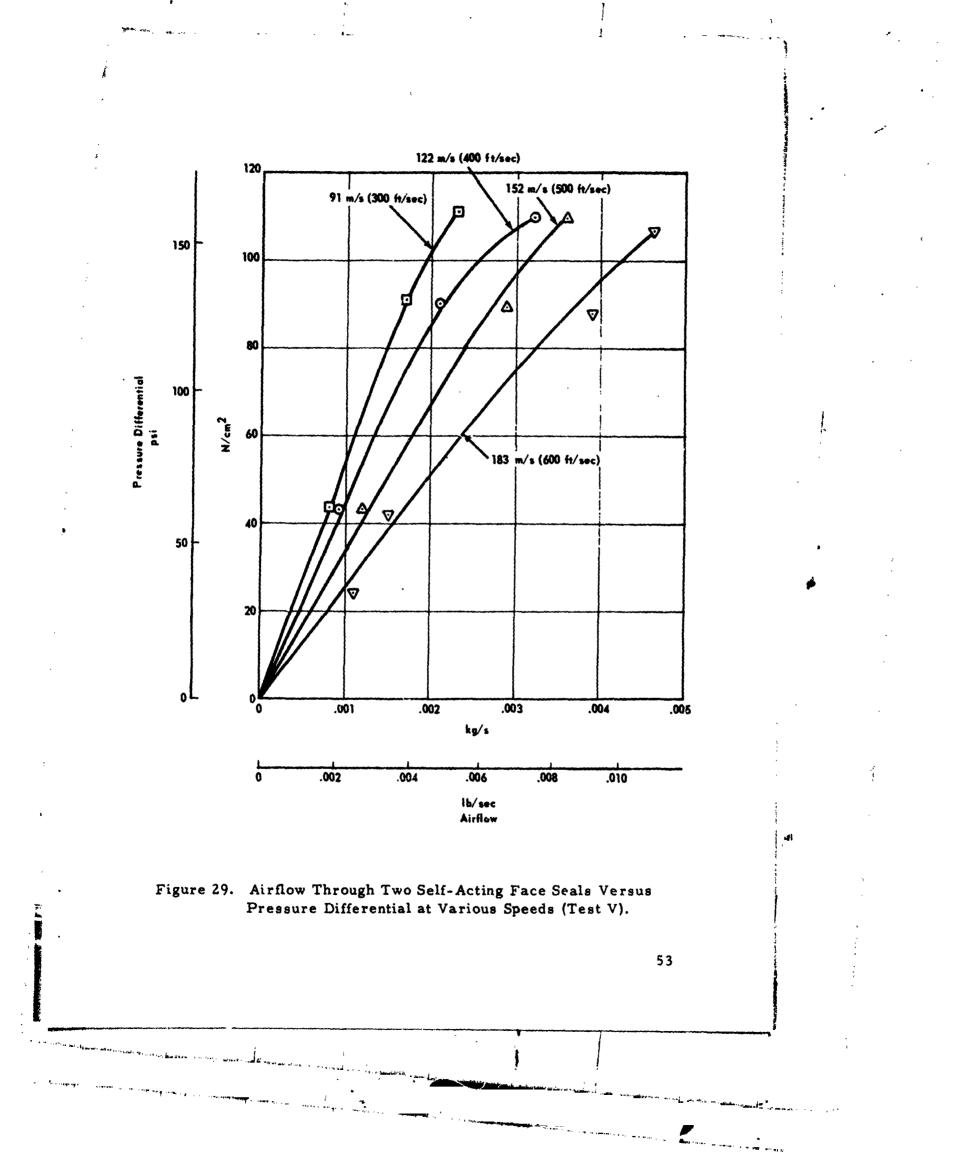
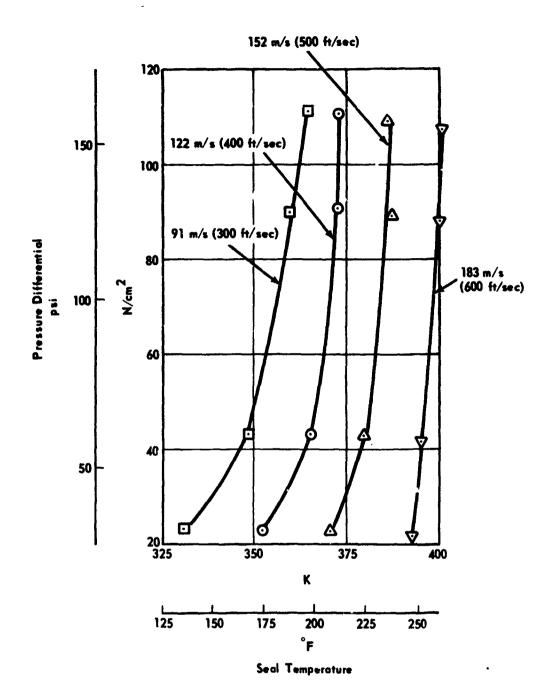
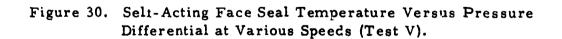





Figure 28. Forward (Top) and Aft (Bottom) Self-Acting Seal Components After Test VI.

REPRODUCIBILITY OF THE CIRCINAL PAGE IS POOR,

Following each test a visual and analytical inspection was performed on the primary ring (carbon) and the seat. Seats were traced for roughness and waviness. Flatness of the assembled seats clamped in place on the shaft was measured to be 0.0013 mm (0.000050 in.) on the forward seat and 0.0019 mm (0.000075 in.) on the aft seat. The forward seat roughness was 0.1016 mm (4 AA) and waviness was 0.254 mm (0.00001 in.) throughout the six tests. The aft seat roughness was 0.0762 mm (3 A through test V and increased to 0.2794 mm (11 AA) during test VI. Waviness was 0.254 mm (0.0001 in.) through test V and increased to 1.524 mm (0.0006 in.) during test VI. The 1.524 mm (0.0006 in.) is actually seat wear.

Measurement charts showing seat surface texture before testing and after test VI are presented in Figures 31 through 34.

The depth of the lift pads on the primary ring (carbon) was measured by taking a proficorder trace across the face. Traces of sealing faces of the forward and aft seals prior to testing are shown in Figure 35. Only one pad is depicted. Traces of four of twelve pads were taken before and after each test. The original lift pad depths varied from 0.0153 mm (0.00065 in.) to 0.0203 mm (0.00082 in.) on the forward seal. The lift pads on the aft seal were originally all 0.025 mm (0.0010 in.) Traces of the lift pads after test VI are shown in Figure 36.

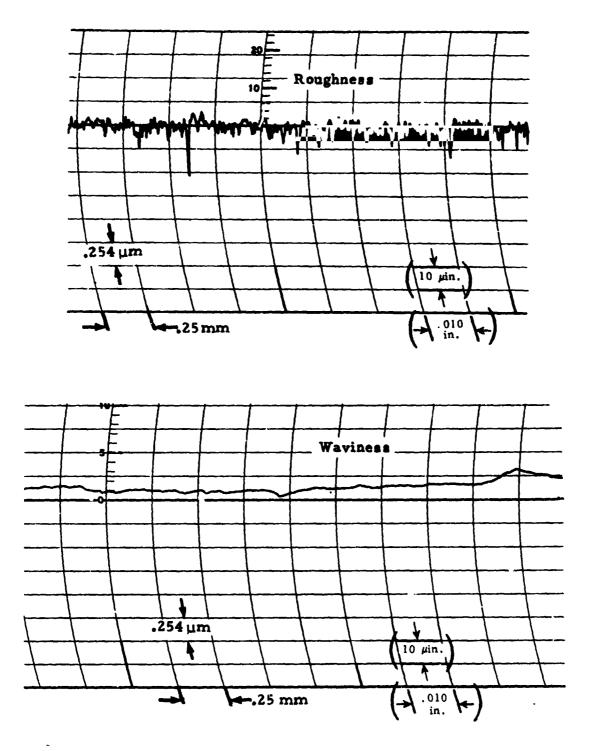
Total oil flow to the bearing compartment was varied with speed as follows:

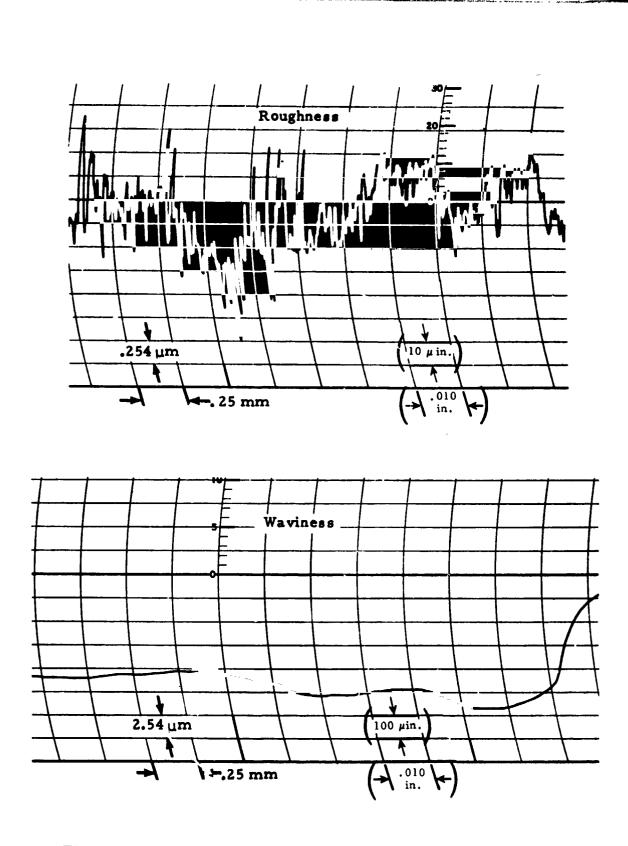
Shaft	Speed	Oil I	Tlow
m/s	ft/sec	kg/hr	<u>lb/hr</u>
61	200	54	120
91	300	81	180
122	400	108	240
152	500	136	300
183	600	162	360
213	700	189	420

The bearing was fed by eight 0.81 mm (0.032 in.) jets and each seal face plate cooled by one 0.81 mm (0.032 in.) jet. Oil-in temperature was 366 K (200°F) . MIL-L-23699 oil was used.

4

ミう



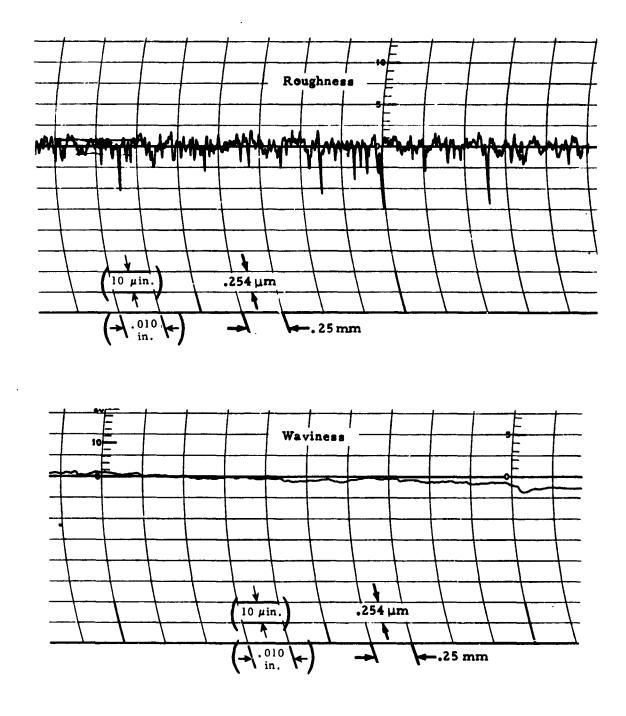

Figure 3... Aft Self-Acting Face Seal Seat Trace of Roughness and Waviness Before Test.

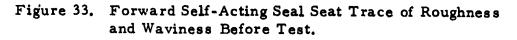
.4 1

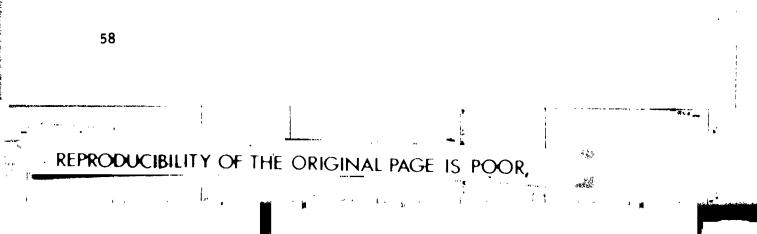
NEW DILITY OF THE ORIGINAL PAGE IS POOR,

١,

56

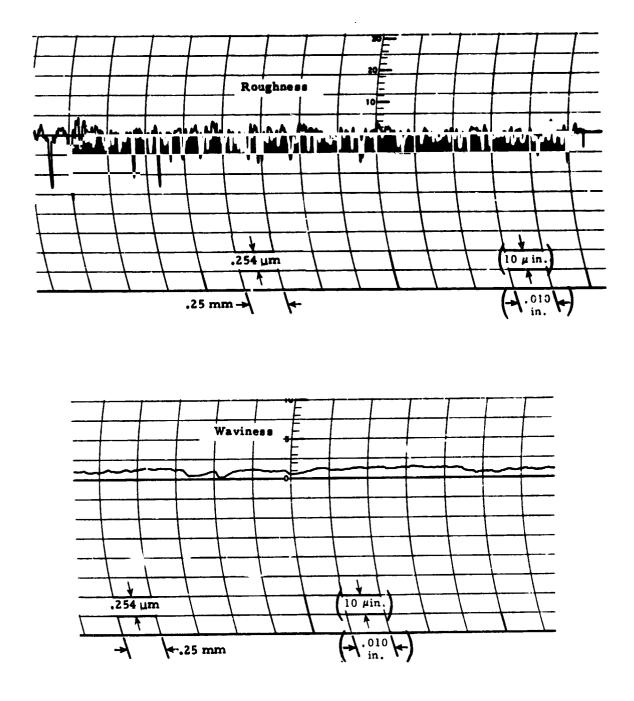


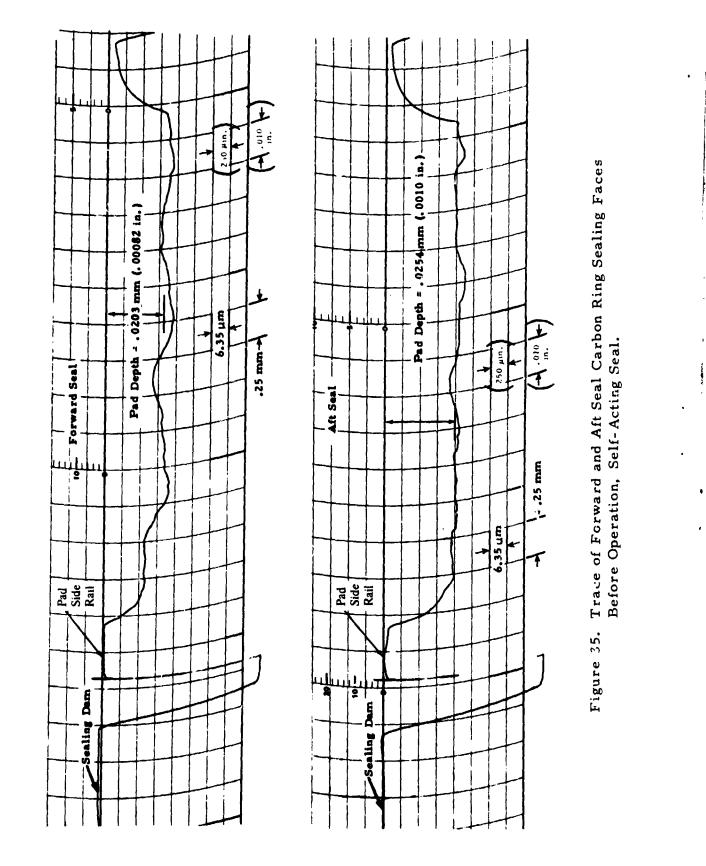



-1

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

1.



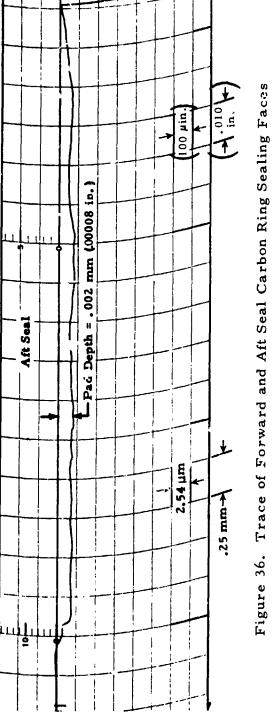

Figure 34. Forward Self-Acting Seal Seat Trace of Roughness and Waviness After Test VI.

59

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

1 . S. I

. •



REPRODUCIBILITY OF ITERORIGINAL PAGE IS POOR

 $\left(+ \frac{010}{\text{in}} + \right)$ 250 µin. Pad Depth = .019.mm (.00075 in.) Forward Seal 6.35 µm -25 mm-1

「ないい」のないないないです。 とうれいしょう

;; ...

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

61

After Test VI, Self-Acting Seal

Immediately after test VII. without a teardown, an attempt was made to conduct endurance testing. A tentative 5-hour cycle had been set as follows:

	S		a in Da		Air Tur		1 ime
	<u></u>	eed	AIT Pr	essure	Air 1011	perature	1
Foint	m/s	<u>ft/sec</u>	N/cm ²	psia	_ <u></u> K	oF	hr
1	<u>91</u>	300	34.3	49.7	4.8	400	1
2	122	400	55.0	79.7	-+78	400	1
3	152	500	103.0	149.7	590	600	1
-1	183	600	123.9	179.7	700	800	1
5	203	660	148.2	214.7	812	1000	1
<u> </u>		000	1-10.6	617.1	012	1.000	•

Points 1 and 2 were completed without incident, but 3/4 hour into point 3 the aft seal failed. The first indication of distress was smoke, and then seal temperature and bearing cavity pressure rose rapidly while rig speed decreased. The carbon lift pads had completely worn out and the seat was found to be buint and distorted. The aft seal after the failure is shown in Figure 37. The forward seal had not worn during the endurance run. Test results during the endurance run are listed in Table XII.

Because two failures had occurred on the aft seal, it was decided to continue endurance testing with a conventional face seal in the aft position. The original self-acting face seal was still in the forward position.

Operation continued with 1/2 hour at points 1 and 2. An hour of operation at point 3 was completed and point 4 had been set when the forward self-act. g face seal failed. Again, failure was characterized by a decrease in rig speed and a rapid increase in seal temperature. Inspection revealed that the lift pads had worn out and that the seat was burnt. Test results during the endurance run are listed in Table XIII. Note that airflows and cavity pressures are higher because of the use of the conventional seal in the aft position.

Inspection of the carbon nose reverled a taper of 0.0508 mm (0.0020 in.) from the outside diameter to the inside diameter, indicating the failure was associated with thermal distortion of the seat.

The face of the seat closest to the hot air expands faster than the face exposed to the oil side. This differential expansion tends to rotate the inside diameter of the seat toward the carbon sealing nose, which results in contact at the inside diameter of the sealing interface. This seat-carbon contact generates additional heat, which causes increasing distortion and further contact, heavier at the inside diameter.

Figure 37. Self-Acting Aft Seal Showing Condition After Failure.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

			TABLE X	XII. INITIAL ENDURANCE		1091 9046						
\	Speed	Air Pressurc		Cavity Pr	essure.		Airflow (Two	Seals)	Aft Temp	Aft Seal mperature	Tempe	Air perature
(m/s)	(ft/sec)	(N/cm ²)	(psia)	(N/cm ²) (psia)	(psia)	(kg/s)	(scfm)		(K)	(K) (°F)	(K)	(K) (°F)
16	300	34.3	49.7	11.2		<. 0006	۲ ۲	<.0013	407	273	426	307
91	300		49.7	11.5		.0006	I	001	415	288	448	347
16	300	34.3	49.7	11.5	16.7	.0006	-	.0013	421	2 98	465	376
16	300	34.3	49.7	•		.0006	I	.0013	434	321	488	418
122	400	55.0	79.7	11.6		.0013		.0028	440	333	479	404
122	400	55.0	79.7	•		.0012	2.3	.0025	421	298	4-48	346
122	400	55.0	79.7	11.5		.0010		.0023	427	310	47.2	390
122	400	55.0	79.7	•		.0010	1.8	.0023	442	336	488	418
152	500	103.0			19,7	.0032	5.5	.0070	403	428	525	48(
152	500	103.0	149.7	14.3	20.7	. 00 38		.0083	509	454	544	520
152	500			•	20.7	9400.	8.0	.0010	511	460	554	536
		T A	T ABLE NIII.	SECOND	ENDURANCE	RUN	RESULTS,	SELF-ACTING SEAL	ING SEA			
									Forward	rrd Seal	A	Air
	Speed	Air Pr	Air Pressure	Cavity Pressure	ressure	Airf	Airflow (Two	Seals)	Temp	Temperature	Tempe	الم
(in/s)	(ft/sec)	Z.	(psia)	(N/ cm ²)	(psia)	(kg/s)	(scfm)	(lb/sec)	(X)	(J.)	(X)	(.E)
6	300	34.3	49.7	11.5	16.7	.0015		.0033	405	268	470	386
91	300	34.3		11.5		.0014	2.5	.0032	433	320	526	486
122	400	55.0	79.7			.0058		.0128	412	282	•	•
122	400	55.0	79.7			.0058		.0128	428	310	192	424
152	500	103.0	149.7			.0087		.0178	482	40fi	528	490
152	500	103.0	149.7	13.4	19.5	. 0098		.0216	488	418	552	532
152	500	103.0		13.6		.0110		. 02.12	+6+	430	285	288
152	500	103.0	149.7	13.6	19.7	.0116	20.0	.0255	4 90	438	584	540

í

•

يۇ. .

.

;

#1

ł

1 ł

£

Ì

The final result is seal failure and the characteristic tapered wear.

To alleviate this problem, more oil flow was provided to cool the seat. Also, the spring force was reduced from 42 N (9.5 lb) to 31 N (7 lb).

					Ai	r	Total Pa	ackage	Time at
	Spe	ed	Air Pre	essure	Tempe	rature	Oil F	Point	
Test	<u>m/s</u>	ft/sec	N/cm^2	psia	K	<u>°</u> F	kg/hr	lb/hr	hr
Α	1 52	500	103.2	149.7	366	200	159	350	2.5
В	152	500	103.2	149.7	478	400	227	500	2.6
С	152	500	103.2	149.7	589	600	250	550	3.0
D	1 52	500	103.2	149.7	589	500	250	550	1.5
E	183	600	123.9	179.7	478	400	295	650	3.0
F	183	600	123.9	179.7	589	500	295	650	3.0
G	183	600	123.9	i79.7	645	67 5	295	650	2.5

A series of seven evaluation tests was then conducted as follows:

These tests were conducted with a self-acting face seal in the forward rig position and a conventional face seal in the aft postion.

During test B, airflow and cavity pressure readings were erratic, and package oil flow was increased to 227 kg/hr (500 lb/hr). During test C oil flow was increased again to 250 kg/hr (550 lb/hr).

For tests A and B the bearing and package incorporated eight 0.81 mm (0.032 in.) jets, six to the bearing and one to each of the seal runners. Therefore, 1/8 of the total package flow was for seal cooling. Pricr to test C the rig was reworked with two bearing jets plugged and an additional jet opened to each seal runner. Therefore, from test C on, 1/4 of the total package flow was directed to the seal seat for cooling.

Test results for test G are listed in Table X. There was a normal shudown after the last point shown in Table XIV. At the next startup, bearing cavity pressure and air leakage were excessively high. Teardown revealed that the self-acting pads had worn out and the runner was burnt and discolored. The carbon face was worn on a 0.025 to 0.050 mm (0.001 to 0.002 in.) taper from the outside diameter to the inside diameter, again indicating that thermal distortion of the face plate caused initial contact at the inside diameter.

Some slight carbon wear occurred after each test. Average wear of four pads measured following each test is listed in Table XV.

TABLE XIV. EVALUATION TEST G RESULTS, SELF-ACTING SEAL

Spe	ed
Oil	Flow

645 kg/hr (700 lb/hr)

Air Pressure

Time at Each Point

15 minutes

183 m/s (600 ft/sec)

123.9 N/cm² (179.7 psia)

Cavity I	Pressure		Airflow			eal erature		ir erature
(N/cm ²)	(psia)	(kg/s)	(scfm)	(lb/sec)	(L)	(°F)	(K)	(*F)
37.8	54.7	.015	26. 5	.034	500	440	623	6-0
37.0	53.7	.014	24.5	.031	511	460	ú31	675
37.8	54.7	.014	24.5	.031	524	484	623	66 0
37.8	54.7	.015	26.0	.033	526	486	609	636
38.4	55.7	.01	25.5	.032	522	480	-	
38.4	55.7	.015	25.5	.032	512	462	-	-
38.4	55.7	.015	25.5	.032	513	464	-	-
37.8	54.7	.015	25.5	.032	518	474	-	-
38.4	55.7	.015	26.5	.034	527	488	-	-
38.4	55.7	.015	26.5	.034	526	486	-	-

	Avg. Dep	th of Pockets	Avg.	Wear
Test	(നന)	(in.)	(mm)	(in.)
New	. 0224	. 000854	•	-
А	.0192	.000755	.0033	.000129
В	.0186	.000731	.0006	.000024
С	.0164	.000644	.0022	.000087
D&E	.0170	.000668	-	-
F	.0157	.000618	.0013	.000050

66

It was decided to continue endurance operation at reduced air temperatures to the following schedule:

Air

					A 1.					
	Sp	eed	Air Pre	essure	Tempe	rature	Oil	Flow	Time	
Point	m/s	ft/sec	N/cm ²	psia	K	٥F	kg/hr	lb/hr	hr	
1	91	300	34.3	49.7	366	200	136	300	. 5	
2	122	40 0	55.0	79.7	366	200	182	400	. 5	
3	1 52	500	103. Z	149.7	478	400	250	550	. 5	
4	183	600	123.9	179.7	589	500	295	6 50	4	
5	1 52	500	103.2	149.7	478	40 0	250	550	. 5	
6	122	400	55,0	79.9	366	200	182	400	.5	
7	91	300	34.3	49.7	366	200	136	300	. 5	

Self-acting face seals were installed in the forward and aft positions. Points 1 and 2 were completed, but as rig speed approached 152 m/s (500 ft/sec), a failure of the aft seal occurred. Inspection revealed the lift pads were completely worn out. Carbon face wear varied from 0.051 to 0.127 mm (0.002 to 0.005 in.). The forward seal carbon had worn approximately 0.0051 mm (0.0002 in.). Data taken are listed in Table XVI.

A conventional face seal was installed in the aft position and testing was contunued. As shown in Table XVI, test points 1 through 4 had been run when cavity pressure, seal temperature, and airflow readings started to fluctuate. The rig was disassembled and the `lfacting zeal was inspected. The seal was in good condition with no measureable wear.

Testing continued with oil flow increased 45.4 kg/hr (100 lb/hr) at each point. During test cycle point 4 the self-acting seal contacted the face plate. This occurrence was indicated by a reduction in rig speed and a rapid increase in seal temperature. The rig was shut down and restarted. Readings indicated that the seal had failed and was operating as a labyrinth. Disassembly confirmed this conclusion. The forward lift pads were completely worn out.

The test program to this point had indicated that thermal distortion of the face plate combined with dynamic effects resulted in failure of the self-acting seals.

Test Cycle	Time	Cavity Pr	#5 511 F#	٨	irflow (Two	Sea al	-	Seal rature
Point	min	$\frac{O_2(R)}{(N/cm^2)}$	(psia)	(kg/s)	(scfm)	(lb/sec)	(K)	(*F)
1	15	12.9	18,7	.0006	1.0	. 0013	363	194
1	15	12.9	18.7	.0006	1.0	.0013	363	194
z	15	13.6	19.7	.0009	1.5	.0019	373	211
2	15	13.9	20.2	.0010	1.8	.0023	378	220
	Aft S	eal Failure	2					
				Conventior	al Seal in	Aft Position		
							Fwd	Seal
							Temp	erature
1	15	13.9	20.2	.0013	2.3	.0029	3.68	204
1	15	13.9	20.2	.0013	2.2	. 9028	370	205
2	15	16.4	23.7	,0026	4.6	.0059	381	226
2	15	16.4	23.7	.0028	4.8	.0061	382	228
3	15	23.2	33.7	.0064	11.0	.0140	409	276
3	15	23.2	33.7	.0066	11.5	.0147	424	304
4	15	30.8	44.7	.0121	21.0	.0268	472	390
4	15	35.7	51.7	.0159	27.5	.0350	474	394
4	15	35.7	51.7	.0144	25.0	.0320	498	437
4	15			g Fluctuat				
				eardown				
1	15	14.6	21.2	.0013	2.4	.0031	371	208
1	15	15.0	21.7	.0016	2.7	.0034	371	208
2	15	17.0	24.7	.0024	4.2	.0053	382	228
2	15	17.0	24.7	.0026	4.5	.0057	382	228
3	15	24.6	35.7	.0066	11.5	.0146	410	279
3	15	26.7	38.7	.0078	13.5	.0172	430	314
4	15	33.6	48.7	.0116	20.0	.0254	465	378
4	15	35.7	51.7	.0133	23.0	.0293	499	438
4	15	35.0	50.7	.0133	23.0	.0293	498	436
				hut Down				
3	15	37.0	53.7	.0156	27.0	.0344	455	360
3	15	41.2	59.7	.0182	31.5	.0402	578	580
4	15	44.7	(4.7	.0231	40.0	.0510	56 7	560
4	15	48.8	70.7	.0231	40.0	.0510	565	558
4	17	48.8	70.7	.0231	40.0	.0510	567	560
4	15	49.4	71.7	.0231	40.0	.0510	567	560

è

To further explore the operating limits of the existing seals, 150 hours of endurance operation at ambient temperature was conducted as follows:

Spe	ed	Air Pre	essure	Time
m/s	ft/sec	N/cm ²	psia	hr
102	334	103	149.7	28
122	400	165	149.7	22
137	450	103	149.7	65
145	475	103	149.7	20
145	475	124	179.7	15

Air temperature varied throughout the test but was generally from 372 to 408 K (200 to 275°F).

Test results are listed in Table XVII. Initially airflows were somewhat higher than in the evaluation testing performed previously, due probably to the lower spring force, 31 N (7 lb). After the 100-hour teardown, however, airflow increased significantly for no apparent reason. Teardown inspection revealed that an air leak had developed in the scavenge line. The test seals were in excellent condition after the 150-hour run. Seal components after testing are shown in Figure 38.

The aft seal carbon nose wore an average of 0.0044 mm (0.000175 in.) after the first 50 hours. No other wear occurred on the carbons or seats during the test.

Seal seat flatness in the assembled state was measured to be 1.8 μ m (70 μ in.). Axial runout was approximately 0.03 mm (0.0012 in.).

Oil flow to the bearing compartment was as follows:

Sha	ft Speed	Oil Fl	wo
m/s	ft/sec	kg/hr	lb/hr
102	334	182	400
122	400	182	400
137	450	205	450
145	475	205	450

	ت ڪيند . من	- ed	Aı Pri z		Cav Pres	•	Airfle	w (Two	5-als)		Seal mp.		Seal mp.
lour		ft/sec'			(N/cm2		(kg/s)	(scfm)	(lb/sec)	(K)	(*F)	(K)	(°F
	192	514	105	149.7	15.1	21.9	. 003	5.07	. 006	36.2	191	360	189
2	102	334	103	147.7	15.0	21.7	. 003	5.17	.007	367	200	36.6	148
-							Down						
4	102	334	103	149.7	14.8	21.5	, 003	5.10	.007	360	189	157	18.
4	102	334	103	149.7	14.7	21.3	. 003	4.45	. 006	373	211	37.8	20
5	102	334	103	149.7	14.0	21.2	. 003	4,85	.006	378	219	372	210
۴.	102	334	103	149.7	14,6	21.2	. 003	4,80	. 006	378 380	221	373 375	21. 21
7	102	344	103	149.7	14 6	21.2	.003	4,68 4,70	.006 .006	180	224 224	375	21
8	102	334	173	149.7	14.+	21.2 21.0	.003	4.10	.006	381	221	377	21
4	102	334	103	149.7	15.8		Down	4.10		361	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
10	102	3 14	103	149.7	14.1	20. 5	, 003	4, 95	.006	149	168	348	1.
11	102	334	103	149.7	14.3	20.7	. 003	4, 90	.006	51.8	201	Acr	19
12	102	334	103	149.7	14.3	20.7	. 003	1, 90	.006	376	216	372	20
13	102	334	103	149.7	14.3	20.7	.003	4,88	.006	379	222	374	21
14	102	334	103	149.7	14.3	20.7	. 003	5,00	.006	370	223	:75	21
15	102	334	103	149.7	14.3	20.7	. 003	4.98	.006	379	222	374	21
16	102	434	103	149,7	14.3	20.7	. 003	4, 98	. 006	378	224	375	21
17	102	334	103	149,7	14.3	20.7	. 103	4, 90	.004	380	225	376	21
							Down						
18	102	334	103	149.7	14, 3	20.7	. r	5.13	.007	358	185	351	18
19	102	334	103	149.7	14.3	20.7	•	5.20	.007	374	213	372	20 20
20	102	334	103	149,7	14.3	20.7	. 003	5,35	.007 .007	375 371	215 217	371 370	20
21	102	334	103	149.7	14.3	20.7	. 003	- 25 5.05	.006	376	216	370	20
22	102	334	103	149.7	14.3	20.7	.003	5.05	. 006	377	218	371	20
24	102	334	103	149.7 149.7	14.3	20.7 20.7	.003	5.00	. 006	378	220	372	20
24	102	3 34	103	144.7	14.3		Down	7.40					
25	102	334	103	149.7	14.3	20,7	. 003	5.24	.007	356	182	395	17
26	102	334	103	149.7	14.3	20.7	.003	5.17	. 007	370	207	368	20
27	102	334	103	149.7	14.3	20.7	003	5.22	.007	377	218	372	21
28	102	334	103	149.7	14.3	20.7	. 003	5.30	.007	379	223	371	21
29	122	400	103	149.7	15.0	21.7	. 004	6.25	.008	388	238	382	4
30	122	400	103	149,7	15.0	21.7	. 004	ŕ.30	.008	388	238	382	22
31	122	400	103	149.7	15.0	21.7	.004	6.30	.008	388	239	182	22
							Down						
32	122	400	103	149.7	14.3	20.7	.004	+. 10	.008	354	176 198	350	17
33	122	400	103	149.7	14.8	21.4	.004	0.20	.008	366		3(4 374	21
34	122	400	103	149.7	14.8	21.5	. 004 . 004	(, 32 (, 42	.008 .008	379 384	223 232	378	21
35	122	400	103 103	149.7	15.0 15.0	21.7 21.7	.004	6.52	.008	335	233	378	22
36 37	122	400 400	103	149.7	15.0	21.7	, 004	6.50	.008	382	228	378	22
38	122	400	103	149.7	15.0	21.7	. 004	6. 52	.008	386	234	370	23
39	122	400	103	149.7	15.0	21.7	. 004	f. 45	.008	387	230	379	22
-							Down						
40	122	400	103	149.7	14.8	21.5	.004	6.25	.008	359	186	356	18
41	122	400	103	149.7	15.0	21.7	.004	6,30	.008	370	207	371	20
42	122	400	103	149.7	15.0	21.7	.004	6, 38	. 008	379	223	377	21
43	122	400	103	149.7	15.0	21.7	.004	6.45	.008	383	Z 30	377	21
44	122	400	103	149.7	15.0	21.7	.004	6.43	.008	383	230	377	21
45	122	400	103	149.7	15.0	21.7	.004	6.38	,008	384	231	377	21
46	122	400	103	149.7	15.0	21.7	. 004	6.35	.008	384	231	377	21
47	122	400	103	149.7	15.0	21.7	. 004	6.48	.008	384	232	378	22
. 0			103	1.10 -	1.0		Down	6.10	. OCB	364	195	362	19
48	122	400	103	149.7	14.8 15.0	21.5 21.7	.004	6.10 6.32	.008	379	222	375	21
49	122	400 400	103 103	149.7 149.7	15.0	21.7	.004	6.52	.008	384	232	380	22
50	122	400	105				for inspect						

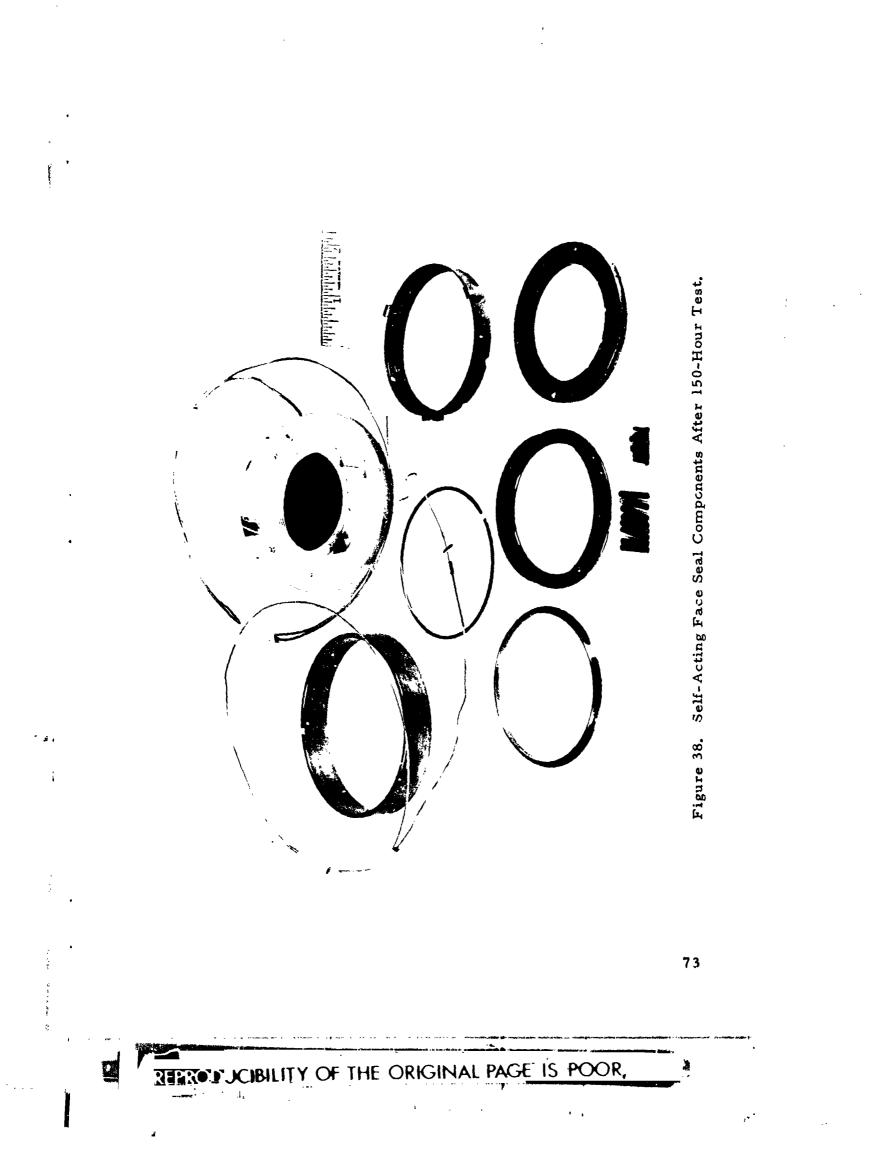
REPRODUCIBILITY OF THE ORIGINAL PAGE-IS POOR,

.

					TA	BLE XV	II - Conti	nued					
			Air Press		Cav Presi			w (Two Si		Fwd Tei	Seal	Ait S Ten	np.
Hour	the second se	(It/sec)	(N/cm ²)		(N/cm ²) (ps1a)		(scfm)	(1b/ sec		(*F)	(K)	(°F
51	1 37	450	103	149.7	17.7	25.7	. 004	7.6	.010	372	210	369	20
52	137	450	103	149.7	17.5	25.3	.004	7.5	.010	383	Z 30	378	22
53	137	450	103	149.7	17.6	25.5	. 005	7.9	.010	389	240	382	22
54	137	450	103	149.7	17.8	25.8	005	7.8	.010	391	244	384	23
55	137	450	103	149.7	17.7	25.7	,005	8.0	.010	390	243	383	23
56	137	450	103	149.7	17.4	25. Z	.005	7.8	.010	190	243	385	23
						Shut D	lown						
57	1 37	450	103	149.7	17.7	25.7	.005	9.0	.011	370	2.79	368	20
58	1 37	450	103	149.7	15.3	23.7	.004	6,8	.009	390	242	382	22
59	1 37	450	103	149.7	16.3	23.7	.004	6.6	.008	394	250	384	23
60	1 37	450	103	149.7	16.3	23.7	.004	6.6	.008	309	258	388	23
61	1 37	450	103	149.7	16.3	23.7	.001	(.7	. 009	399	258	388	53
6Z	1 37	450	103	149.7	16.3	23.7	.004	6.7	.009	309	258	387	23
63	1 37	450	103	149.7	16.3	23.7	.004	6.7	.009	492	262	388	53
						Shut Do		• •	.009	374	Z! 3	372	21
64	1 37	450	103	149.7	16.2	23.5	.004	7.Z 6.8	.009	387	236	381	22
65	1 37	450	103	149.7	16.0	23.2	.004	6.7	.009	397	255	389	24
66	1 37	450	103	149.7	15:9	23.0	.004	6.6	.009	403	264	393	24
67	1 37	450	113	149.7	15.7	22.7	.004		.009	404	265	392	24
68	1 37	450	103	149.7	15.7	22.7	.004	6.7 6.7	.009	403	204	390	2.
69	1 37	450	103	149.7	15.7	22.7	. 004	6.1	.009	403	204	392	2-
70	1 37	450	103	149,7	15.7	22.7	. 004	6.5	.008	403	264	392	2-
71	1 37	450	103	149.7	15.7	22.7 Shut D	. 004	0.3	.000	40.3	6 04		
-	1 27		103	149.7	16.3	23.7	. 004	7.1	.009	376	216	373	21
72 73	137 137	450 450	103	149.7	16.2	23.5	.004	7.0	.009	386	235	381	22
13	137	410	105	1.4.4.1	10.6	Shut E							
74	1 37	450	103	149.7	15.7	22.7	. 004	n, 8	. 009	307	254	387	2
75	1 37	450	103	149.7	15.7	22.7	.004	6.4	. 008	403	264	301	2.
76	1 37	450	103	149.7	15.7	22.7	. 004	6.5	.008	402	262	384	2.
77	137	450	103	119.7	16.3	23.7	.004	7.0	.009	395	251	386	2
78	137	450	103	149,7	15.9	23 U	.004	6.5	.008	400	259	389	24
•••	• • •					Shut D)own						
79	1 37	450	103	149.7	15.9	23.1	.004	7.2	.009	370	206	370	2(
80	137	450	103	144.7	15.9	23.1	. 004	7.0	.009	380	22.	378	27
81	137	450	103	149.7	16.0	23.2	. 004	7.0	.009	392	246	384	Z
82	137	450	103	149.7	15.9	23.1	,004	6.9	.009	394	249	384	2
83	1 37	450	103	149.7	15.9	23.1	. 004	6.9	.009	396	252	385	2
84	137	450	103	149.7	15.7	22.8	. 004	6.8	. 009	396	253	387	2
85	1 37	450	103	149.7	15.7	22.7	.004	6.8	.009	397	254	388	2
8 6	1 37	450	103	149.7	15.7	22.7	. 004	6. A	.009	397	254	388	2
						Shut I							
87	137	450	103	149.7	15.7	22.7	. 00-	7.0	.009	378	220	377	2
88	1 37	450	103	149.7	15.8	22.9	. 004	6.8	.009	392	246	386	2
89	1 37	450	103	149.7	15.7	22.7	. 004	6.4	.008	402	262	391	2
90	1 37	450	103	149.7	15.7	227	. 694	6.4	.008	404	266	392 391	2
91	137	450	103	149.7	15.7	22.7	.003	6.4	.008	405	267 268	391	2
92	137	450	103	149.7	15.7	22.7	.004	6.5	.008	405 406	208	394	2
93	137	450	103	149.7	15.7	22.7	.004	6.6	.008		910	274	6
						Shut I		4.9	.009	374	214	374	2
94	137	450	103	149.7	15.9	23.0	.004	r.9 6.7	.009	390	242	386	2
95	1 37	450	103	149.7	15.8	22.9	.004	6.5	.008	400	· 260	390	2
96	137	450	103	149.7	15.8	22.9	.004	6.4	.008	404	266	392	2
97	137	450	103	149.7	15.7	22.8	.004	6.4	.008	404	267	393	ž
98	137	450	103	149.7	15.7	22.8	.004 .004	6.4	.008	405	268	394	2
99	1 37	450	103	149.7	15.7	22.7		6.4	.005	405	268	393	2.
100	1 37	450	103	149.7	1,5.7	22.7	.004 or Inspec			T U '	200	3/3	

COODINCIBILITY OF THE ORIGINAL PAGE SPOOL

. . . ! -


.

					TA	BLE XV	II - Contin	ued					
	Sp	eed	Ai Pres		Cav Presi	•	Airfl	low (Two	Seals)		Seal	Aft S Ter	Seal np.
Hour		(ft/sec)) (psia)	(N/cm ²			(scfm)	(lb/sec)	(K)	(°F)	(K)	(')
101	1 37	450	103	149.7	18.4	26.7	. 005	9.5	.012	378	220	377	21
102	137	450	103	149.7	18.4	26.7	. 005	9.2	.012	394	250	386	23
		•					Down	. –					
103	1 37	450	103	149.7	17.0	24.7	.005	9.5	.012	369	204	372	21
104	1 37	450	103	149.7	17.0	24.7	. 005	8.8	.011	385	233	381	2
105	1 37	450	103	149.7	17.0	24.7	.005	9.0	.011	300	243	386	2
106	1 37	4 5ú	103	149,7	17,0	24.7	.005	8.7	.011	398	256	388	2
107	1 37	450	103	149.7	16.7	24. 2	.005	8.4	.011	404	266	39 i	2
108	137	+50	103	149.7	16.9	24.5	.005	8.2	.011	404	26.6	320	2
109	137	450	103	149.7	17.0	24.7	.005	9.0	.011	40 0	254	388	2
						Shut	Dow						
110	1 37	450	103	149.7	17.0	24.7	.005	8.7	.0il	367	200	368	2
111	1 37	450	103	149.7	17.0	Z4.7	.005	8.9	.011	382	227	378	2
112	1 37	450	103	149.7	17.0	24.7	.005	8.7	.011	395	251	386	2
113	1 37	450	103	149.7	17,0	24.7	. 005	8,4	.011	400	259	388	2
114	1 37	450	103	149.7	17.0	24.7	.005	8,4	. 011	401	260	388	2
115	1 37	450	103	149.7	17.0	24.7	. 005	8.4	011	401	2/0	388	2
116	145	475	103	149.7	17.0	24.7	.005	8. 6	.011	405	268	393	2
117	٩5 ا	475	103	140.7	17:0	24.7	.005	8.7	.011	406	270	393	2
						Shut	Down						
118	145	475	103	149.7	17.4	25.2	.006	9.6	.012	378	221	378	2
119	145	475	103	149.7	17.4	25.3	. 005	9.1	.012	2.13	247	387	2
120	145	475	103	149.7	17.1	24.8	.005	8.7	.011	400	260	389	2
121	145	475	103	149.7	17.2	24.9	. 005	8.5	.011	405	268	343	2
122	145	475	103	149.7	17.0	Z4.7	.005	8.5	.011	403	214	392	2
123	145	475	103	149.7	17.0	24.7	.005	8.7	.011	402	262	390	2
124	145	475	103	149.7	17.0	24.7	.005	8.2	.010	407	271	394	2
						Shut	Down						
125	145	475	103	149.7	17.4	25.2	6، 0 .	9.6	.012	377	510	377	2
126	145	475	103	149.7	17.4	25.2	.005	9.4	.012	392	246	384	2
127	145	475	103	149.7	17.1	Z4. 8	.005	9.1	.012	402	262	389	2
128	145	475	103	149.7	17.0	24.7	.005	8.9	.011	405	267	390	2
129	145	475	103	149.7	17.0	24.7	.005	9.0	.011	406	270	391	2
130	145	475	103	149.7	17.0	24.7	.005	8.9	.011	407	272	392	2
131	145	475	103	149.7	17.2	24.9	.006	10.0	.013	397	255	387	2
							Down		~ • • •				
132	145	475	103	149.7	16.7	24.3	.005	9.0	.011	388	239	383	2
133	145	475	103	149.7	17.0	24.7	.005	8.5	. 011	399	258	390	2
134	145	475	103	149.7	16.7	24.2	.005	8.5	. 011		263	390	2
135	145	475	103	149.7	16.7	24.2	.005	8.3	.011	405	268	394	2
136	145	475	124	179.7	19.1	27.7	.008	13.0	.017	404	266	388	2
137	145	475	124	179.7	19,1	27.7	.008	13.0	.017	402	262	386	2
138	145	475	124	179.7	19,1	27.7	.008	13.0	.017	398	256	383	2
							Down		017		2.19	380	-
139	145	475	124	179.7	18,4	26.7	.008	13.0	.017	304	253	379	2 2
140	145	475	124	179.7	19.1	27.7	.008	13.0	.017	396 392	233	377	2
141	145	475	124	179.7		28.2	,008 ,008	13.0	.017 .017	392	246	377	2
142	145	475	124	179.7		28.2	-	13.0	.017	390	244	378	2
143	145	475	124	179.7	19.2	27.8	.008	13.0	.017	391	245	378	2
144	145	475	124	179.7	19.1	27.7	.008	13.0	.017	394	245	379	ž
145	145	475	124	179.7	20.1	28.2	. 008	13.0	.017	394	250	379	2
146	145	475	124	179.7	19.1	27.7	.008	13.0	• • • • •	374	6.30	J 17	4
			1.7.4	120 -	10.1		Down	13.5	.017	392	246	382	,
147	145	475	124	179.7	19.1	27.7	.008 .008	13.5	.017	391	245	301	2
148	145	475	124	179.7		27.7 26.7	.008	13.9	.017	392	245	381	ž
149	145	475	124	179.7				13.0	.017	395	251	384	· 2
1 50	145	475	124	179.7	18.4	Z6.7	.008	13.0		413		204	-

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

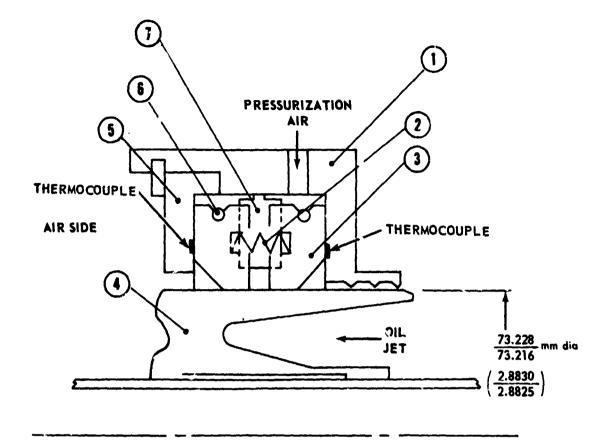
e

¥.

The bearing was fed by four 0.81 mm (0.032 in.) diameter jets, and two 0.81 mm (0.032 in.) diameter jets were directed at each selfacting face seal dam. Oil-in temperature was 366 K (200°F), and MIL-L-23699 oil was used.

Self-Acting Circumferential Seal

Design

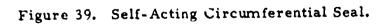

The self-acting circumferential seal configuration is shown in Figure 39. It is similar to a conventional circumferential seal with the addition of self-acting geometry on the carbon bore for lift augmentation. A detail of a carbon segment illustrating the self-acting geometry is shown in Figure 40.

The seal is internally pressurized with two rings, made up of three carbon segments each, comprising the sealing elements. The segment joints are overlapped and an antirotation lock in the center of the seal prevents the segments from turning with the shaft.

Test Results

Initially, two evaluation tests were conducted over a range of speeds and internal seal air pressures at ambient air temperatures. Test conditions and resulting airflows and bearing cavity pressures are listed in Table XVIII. Each run was of 15 minutes duration. Two thermocouples were placed adjacent to each oil-side and air-side carbon ring as shown in Figure 39, and resulting temperatures are listed in Table XIX. Some of the instrumentation was not operative in test II.

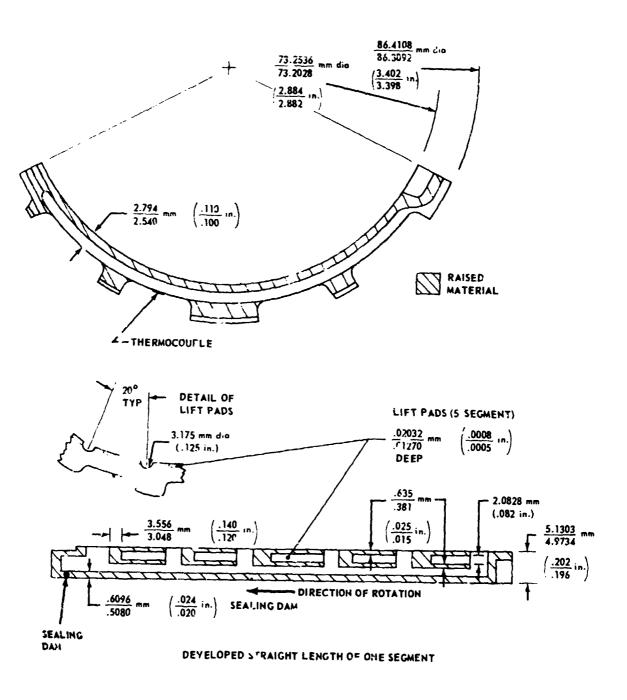
After test I, carbon wear was noted on the sealing dams and half way across the pad lands (Figures 41 and 42). The wear was in the order of 0.0102 mm (0.0004 in.) at the sealing dam. The carbon bores had been manufactured with a taper of 0.204 mm (0.0008 in.) from the sealing dam to the opposite end in order to account for possible distortion of the seal runner.

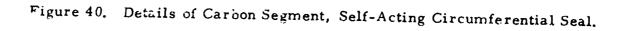


第二十

5

<u>م</u> - ۱


1. That is the	18-8 STAINLESS STEEL
2. COMPRESSION SPRING	INCONEL X
3. CARBON SEGMENT	HIGH-TEMPERATURE CARBON
4. RUNNER	AMS 6382 FLAME SPRAYED
	WITH LCIC CHROME CARBIDE
5. SEALING PLATE	18-8 STAINLESS STEEL
6. GARTER SPRING	INCONEL X
	.71 N (.159 lb)
7. ANTIROTATION LOCK	18-8 STAINLESS STEEL



ì

75

•

REPRODUCIBILITY OF THE ORICH ALL PAGE IS POUR,

1923

7u

4

;

٠,

		TABLE	E XVIII.	RESULT	S OF TE	T UNN I STS	VI.SELF-ACTING		RCUMFE	CIRCUMFERENTIAL 3	SEAL	
			-	1 1	Aır	C C	Cavity	AiA	-flow (Two	Scale)	0 U	Flow
Test	Run	E	/s) (ft/sec)	$\frac{1}{(N/cm^2)}$	2) (psia)	(N/cm ²)	m ²) (psia)	-	(scfm)		(kg/hr)	(lb/hr)
-	-	16	300	4	6.			.0005	8.	1100.	75	
•	2	122	400	34, 3				.0005	8.	.0011	95	-
	ŝ	152	500	4	6	•		.0005		1100.	115	ŝ
	4	16	300	ŝ	°.			.0007	•	.0015	75	SO.
	ŝ	2	400	55		•	•	.000	1.2	.0015	95	-
-	9	152	500	5 5	۴.	<u>.</u>	•	.0007	•	.0015	115	ഹ
	2	16	300	34.3	49.7	10.6	15.4	.0005	8.	.0010	75	166
	80	2	400	34.3	÷	。	•	.0005	8.	.0010	95	-
	6	152	500	4.		•	٠	0005	8.	0100.	115	ഹ
	10	æ	600	÷.	٩.		ŝ	.0005	8.	.0010	142	-
	11	ው	300	55	ę.		ۍ.	.0005	6.	.001	75	D
	77	· ~1	400	55	5	0	ۍ.	.0005	6.	1100.	95	-
	13	տ	500	55	6	0	ŝ	.0005	6.	1100.	115	ŝ
	4	œ	600	5 1 1 1 1	6	-	0	•	•	•	142	-
	15	2	400	89.4		•	•	1 00.	2.5	.0032	95	-
	16	152	500	5	6		6.			.0041	115	ŝ
Ħ	21	16	300	34.3	49.7	10.8	15.7	.0005	•	.0010	75	166
	200	771	400	÷.	5			,0005		.0010	95	210
	510	152	500	÷.	÷.			.0005	æ.	0100.	115	254
	2	101			.	.		5000.		0100.	142	314
	 			÷.			•	<000.		0100.	170	374
	2 C 2 C	771				<u>.</u>	•	0000.	2	. 001.3	95	210
	2 4	102				÷.	•	9000.		. 001.3	115	254
	1 u 1 c	100	000		, .	÷.,	•	9000		. 100.	142	314
	1 C	122		- 07	<u>.</u>		•	4100	- 1 - -	.0014	0/1	374
	1 C	100			i.	:.	•			4000. 1000	46 2	210
	20	201		1.4.	+			3100.	2	.0025	115	254
	00	160		1.67		4		+ 100 ·	•••	.0032	142	314
	2 0	C13		~ 0		si.	•			.0038	170	374
	3:	201	000	501				1200.	50	.0046	115	254
				D 0						. 0016	142	314
	27	213	002	η i	÷.			6700 ·		.0051	170	374
	', , , ,	70T	000	123.9	179.7			1 700.	- 0	.0047	115	254
	4 L				÷	n' I		. 100.	0 · C	.0038	142	314
	ς Σ	115	067		÷.		٠	.0023	• .0	.0051	170	374

REPRODUCIBILITY OF THE OLEGINA PAGE IS POOR, _____;

1 1

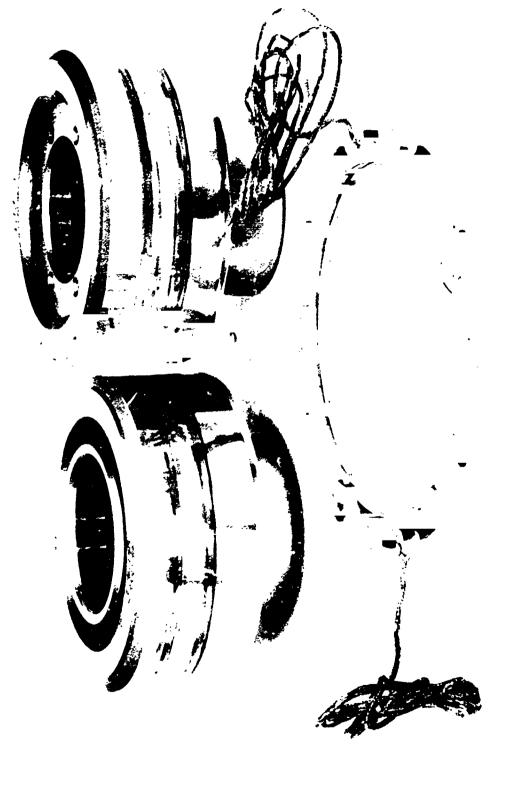

i

		TABLE NIN.	. SEAL CARBON	ON TEMPER	ATURES SEL	L.	ACTING CIRCUMFERENTIAL	INTIAL SEAL	
			Aft Seal Te	emperature			Forward Se	al Temperatu	re
		ö	Side	Air	Side	, lio	Side	1.1	1:2
Test	it Run	(K)	(.i.,)	(K)	(°F)	(K)	(.E)	1 1	
F1	-	05/42	~	1/41	0/28	417/408	0/27	4	2701280
	2	10 17	120/3-0	44/4	40/3	36/42	325/310	423/423	300/300
	~	55146	<u>~</u>	33/44	20/34	36/44	5/34	42	310/300
	-].	61/45		55/42	60/31	145	0/31	4	330/330
	ſ,	66/4	380/390	/45	370/350	145	0/36	4	330/330
	ç	66/47		58/45	65/36	/46	0/37	4	330/330
	r~ (12/47		63/48	75/4C	46	0/38	4	350/325
	80	39/45		44/45	40/35	/42	5/30	42	300/300
		42/46		50/45	50/36	/42	5/31	42	315/300
	10	42/46		52/46	5/37	4	0/32	42	320/310
		50/47		55/45	50/36	142	0/30	40	290/270
		55/45		61/46	70/38	42	5/31	4	300/290
-		72/48		78/47	00/40	44	0/34	43	330/320
		72/49		78/49	00/42	45	5/35	44/44	340/340
		00/51		9	ŝ	45	0/35	4	350/340
		94/51		89/49	/43	45	5/35	61/45	370/360
Ħ	17	~	22.0			3/39	 	11.37	022/061
	18	σ	255			3/39		8/41	220/280
	19		285			8/41	1 00	0/40	260/270
	20	423	300			423/433	300/320	417/428	290/310
	21	m (320			7/46	33	9/45	330/205
	22	m (320			3/43	33	3/42	300/30
	52	~ ~ (320			0/45	5	2/43	335/330
	4 i	\mathbf{n} ,	325			3/46	3	5/45	32 5/ 355
	5	۰۰	370			3/48	3	3/42	37 5/ 300
	910	d" 1	340			3/43	3	5/42	360/310
	17	Ω,	350			66/44	Ξ.	3/42	320/310
	87	۰۵	370			50/45	ŝ	9/44	330/340
	67	، م	380			44/45	36	9/43	330/330
	0	0	440			44/45	36	3/40	300/270
	5	-	520			55/48		3/46	375/370
	22	η.	500			61/53	<u></u>	66/52	380/480
			640 / 10			514/550	ŝ	/ 56	430/560
	- - - -	-	500			28/60	<u>m</u> :	97/60	15/
	رر ا	<u> </u>				589/578	80	72/55	2
Ĺ									

REPRESENTING OF THE ORIGINAL PAGE IS POOR,

78

₿,

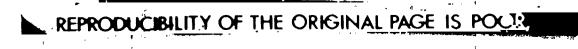
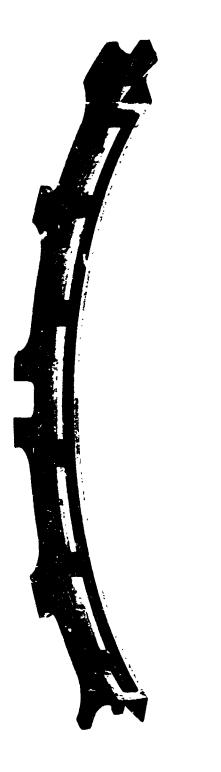



Figure 41. Condition of Carbon and Runners After Test I.

Carbon Segment After Test I, Self-Acting Circumferential Seal. Figure 42.

80

ŝ

j

REPRODUCIBILITY OF THE ORIGINAL PAGE IS MOVER,

During test II, carbon wear was excessive: 0.305 to 0.737 mm (0.012 to 0.029 in.) radial wear. The lift pads had completely worn out and there was grooving on both runners. Seal carbon temperatures (Table XIX) were recorded as high as 628 K (670° F) and there were brief excursions as high as 700 K (800°F).

Typical traces of the lift pads prior to operation and after test I are shown in Figure 43. Note the taper on the sealing dam. In addition to tracing the lift pad profile, traces were taken of the runner, seal case, and seal plate. Inspection data are listed in Table XX. No axial wear of the carbon segments was noted throughout the test program.

Testing continued with an effort to determine the regimes of operation within which the seal could operate successfully. A 10-hour test was conducted at the following conditions:

Speed	91 m/s (300 ft/sec)
Air pressure	55 N/cm ² (80 psia)
Air temperature	Ambient

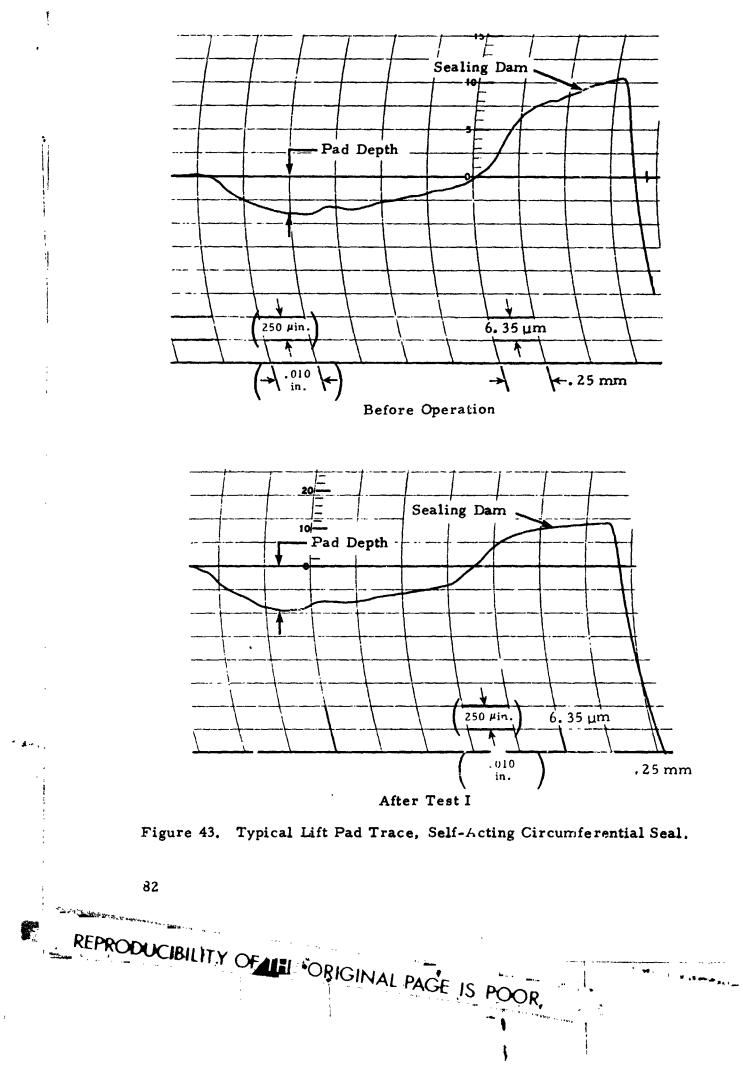
Operating parameters held constant throughout the test as follows:

Airflow into bearing cavity through two seals - 0.0009 kg/s (0.0019 lb/sec or 1.5 scfm)

Bearing cavity pressure - 11.2 N/cm² (16.3 psia)

Carbon temperature

Forward seal


Oil-side carbon - Not instrumented Air-side carbon 428 K max (310°F)

Aft seal

1 -

the second state of the second s

Cil-side carbon - 450 K max (350°F) Air-side carbon - 447 K max (345°F)

 $\mathbf{i}_{\mathbf{r}}$

<u>ا</u>• •

rd Seal Runner (Air-Side Contact ¹ Roundness, µm (µin.) Waviness, µm (µin.) Rough-ess, µm (µin. AA) Runner (Oil-Side C·ntact) Roundness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin.) Waviness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin.) Roughness, µm (µin. AA) Plate	. 635 . 05 . 635 . 051 3. 81 . 71 . 38	(25) (2) (25) (25) (2) (150) (24) (15)	2.04 1.02 .38 2.04 1.02 .38 7.11 .51 .36	(80) (40) (15) - (80) (40) (15) (280) (20) (14)	30. 5 2. 54 - 22. 8 5. 34 - 16. 0 1. 14 . 25	(1200) (100) - (900) (210) - (630) (45) (10)
Roundness, µm (µin.) Waviness, µm (µin.) Rough-ess, µm (µin. AA) Runner (Oil-Side C ntact) Roundness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA) Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin.)	. 05 . 635 . 051 3. 81 . 71	(25) (25) (2) (150) (24)	1.02 .38 2.04 1.02 .38 7.11 .51	(40) (15) (40) (15) (280) (20)	2.54 - 22.8 5.34 - 16.0 1.14	(100) (900) (210) - (630) (45)
Waviness, um (µin.) Rough-eas, µm (µin. AA) Runner (Oil-Side C·ntact) Roundness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA) Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin.)	. 05 . 635 . 051 3. 81 . 71	(25) (25) (2) (150) (24)	1.02 .38 2.04 1.02 .38 7.11 .51	(40) (15) (40) (15) (280) (20)	2.54 - 22.8 5.34 - 16.0 1.14	(100) (900) (210) - (630) (45)
Rough-ess, µm (µin, AA) Runner (Oil-Side C ntact) Roundness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA) Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA)	. 635 . 051 3. 81 . 71	(25) (2) (150) (24)	. 38 2.04 1.02 .38 7.11 .51	(15) (80) (40) (15) (280) (20)	22. 8 5. 34 - 16. 0 1. 14	(900) (210) - (630) (45)
Runner (Oil-Side C. ntact) Roundness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA) Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA)	. 635 . 051 3. 81 . 71	(25) (2) (150) (24)	2.04 1.02 .38 7.11 .51	(80) (40) (15) (280) (20)	22.8 5.34 - 16.0 1.14	(900) (210) - (630) (45)
Roundness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA) Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA)	. 051 3. 81 . 71	(2) (150) (24)	1.02 .38 7.11 .51	(40) (15) (280) (20)	5, 34 - 16, 0 1, 14	(900) (210) - (630) (45)
Waviness, µm (µin.) Roughness, µm (µin. AA) Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA)	. 051 3. 81 . 71	(2) (150) (24)	1.02 .38 7.11 .51	(40) (15) (280) (20)	5, 34 - 16, 0 1, 14	(210) - (630) (45)
Roughness, µm (µin. AA) Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin. AA)	. 051 3. 81 . 71	(1 50) (2d)	. 38 7. 11 . 51	(15) (280) (20)	- 16.0 1.14	- (630) (45)
Case Flatness, µm (µin.) Waviness, µm (µin.) Roughness, µm (µin.AA)	3.81	(1 50) (2d)	7.11	(280) (20)	16.0 1.14	(630) (45)
Flatness, μm (μin.) Waviness, μm (μin.) Roughness, μm (μin. AA)	. 71	(28)	. 51	(20)	1.14	(45)
Waviness, μm (μin.) Roughness, μm (μin.AA)	. 71	(28)	. 51	(20)	1.14	(45)
Roughness, µm (µin, AA)		• •		• •		
-	. 38	(15)	. 36	(14)	. 25	(10)
Plate						
Flatness, µm (µin.)	1.27	(50)	21,4	(840)	30, 5	(1200)
Waviness, µm (µin.)	. 43	(17)	. 41	(16)	. 25	(10)
Roughness, µm (µin, AA)	.13	(5)	.18	(7)	.13	(5)
Seal						
Runner (Air-Side Contact)						
Roundness, µm (µin.)	1.91	(75)	2.04	(80)	19.1	(750)
Waviness, µm (µin.)	1.52	(60)	1.27	(50)	9.4	(370)
Roughness, µm (µin. AA)	.08	(3)	. 36	(14)	-	-
Runner (Oil-Side Contact)						
Roundness, µm (µin.)	1.91	'75)	2.04	(80)	38.1	(1 500)
Waviness, µm (µin.)	1.52	.60)	1.27	(50)	58.5	(2 300)
Roughness, µm (µin. AA)	.076	(3)	. 36	(14)	-	-
Case						
Flatness, um (µin.)	2.54	(100)	14.7	(580)	14.0	(550)
Waviness, µm (µin.)	. 46	(18)	. 76	(30)	. 84	(33)
Roughness, µm (µin. AA)	. 18	(7)	.18	(7)	. 18	(7)
Plate			•			
Flatness, µm (µin.)	3.05	(120)	22.4	(880)	24.2	(950)
Waviness, µm (µin.) Roughness, µm (µin. AA)	. 46	(18) (9)	.64 .25	(25) (10)	. 51 . 25	(20)

REPRODUCIBILITY OF THE URIGINAL PAGE SERVICE

¦.

X

83

ای

Inspection of the seals following test revealed light carbon wear at the sealing dams in the order of 0.0102 mm (0.0004 in.). The runners exhibited a full light carbon pattern on the oil side and a single light line corresponding to the sealing dam on the air side.

Testing continued with a 10-hour run at the following conditions:

Speed 122 m/s (400 ft/sec)

Air pressure 79 N/cm² (115 psia)

Air temperature Ambient

Operating parameters held constant throughout the test as follows:

Airflow into bearing cavity through two seals - 0.012 kg/s (0.0026 lb/sec or 2.0 scfm)

Bearing cavity pressure - 11.2 N/cm^2 (16.3 psia)

Carbon temperature

Forward seal

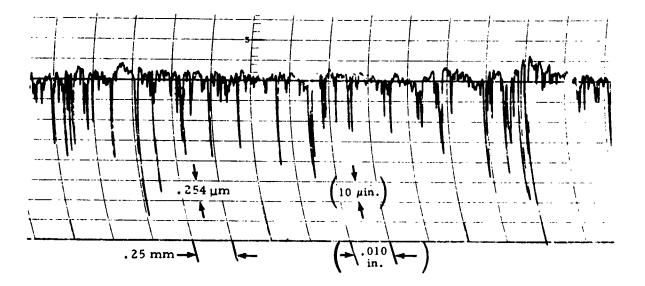
Oil-side carbon - 514 K max (465°F) Air-side carbon - 514 K max (465°F)

Aft seal

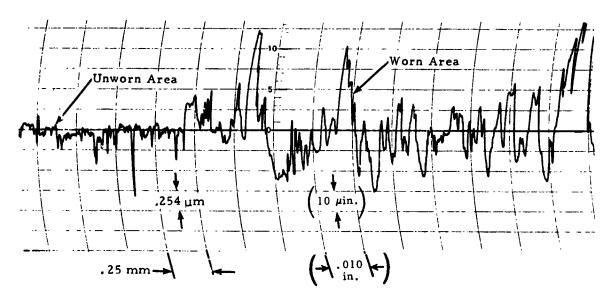

Oil-side carbon - 517 K max (470°F) Air-side carbon - Not instrumented

Inspection of the seals following test revealed excessive wear of the forward seal. Seal dam wear varied from 0.036 to 0.228 mm (0.0014 to 0.009 in.). The lift pads were completely worn out.

The aft seal revealed carbon wear at the sealing dam of 0.0102 mm (0.0004 in.).


The runners after testing are shown in Figure 44. Surface roughness traces of the forward seal runner following the first and second 10-hour test are shown in Figure 45. During the self-acting circumferential seal test program, airflow into the bearing cavity and

-



REACTION OF THE ORIGINAL PAGE IS POOR

Ŷ

After First 10-Hour Test

After Second 10-Hour Test

Figure 45. Roughness Traces of Forward Seal Runner, Self-Acting Circumferential Seal.

NELINE DUXE BIRDAY TO THE ORIGINAL PAGE IS P

86

T

carbon temperature increased with increasing air pressure. These paremeters did not appear to change significantly with speed. Envelopes of the airflow and temperature data recorded in the test program are shown in Figures 46 and 47.

Total oil flow to the bearing compartment was varied with speed as follows:

Shaft S	Speed	Oil Flow				
<u>m/s</u>	ft/sec	kg/hr	<u>lb/hr</u>			
91	300	75	166			
122	400	95	210			
152	500	115	254			
183	600	143	314			
213	700.	170	374			

The bearing was fed by four 0.81 mm (0.032 in.) jets and each seal runner was under cooled by one 0.81 mm (0.032 in.) jet. Oil-in temperature was 366 K (200° F). MIL-L-23699 oil was used.

Failure of the seal to operate successfully at speeds of 122 m/s(400 ft/sec) and pressure differentials of 79 N/cm² (115 psia) was attributed to insufficient lift force generated by the self-acting geometry. The 0.0204 mm (0.0008 in.) taper contributed to the inability of the pads to produce sufficient lift force. The self-acting geometry (Figure 48) was redesigned, which will increase the lift force. No taper will be incorporated.

Discussion of Test Results

A comparison of the performance of the various seal configurations is shown in Figure 49. The plot shows that self-acting face seals have the potential of significantly coducing airflow as compared to the conventional seals.

Of the conventional configurations, face seals allowed the least airflows at high pressure differentials. Circumferential segmented seals are as tight as face seals at moderate operating conditons; however, experience and the subject test program results have shown that at pressure differentials above approximately 41.4 N/cm^2 (60 psi) and speeds above approximately 107 m/s (350 ft/sec) circumferential segmented seals wear out and finally operate as labyrinths. In that case there is little to choose between circumferential, rotating ring, and labyrinth seals in terms of airflow.

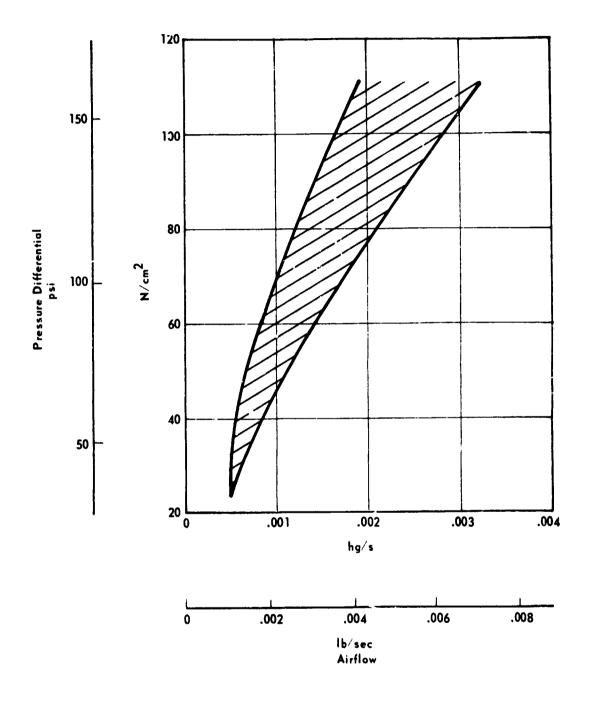
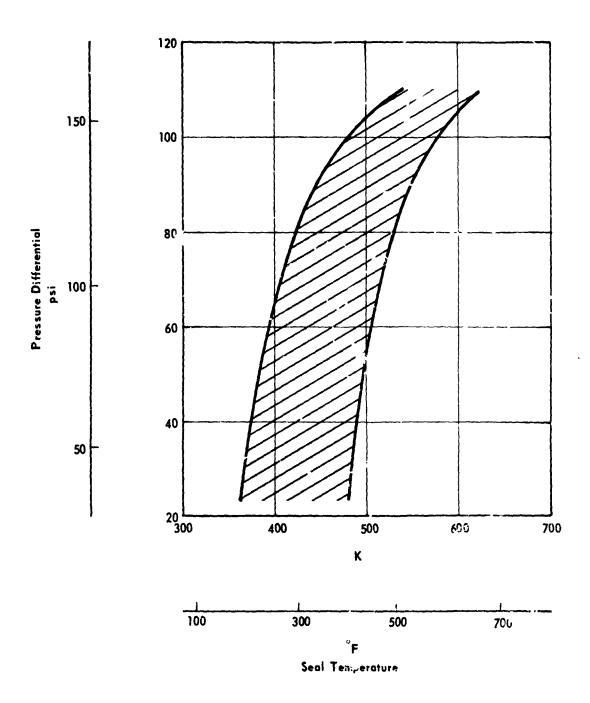
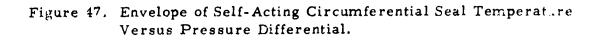
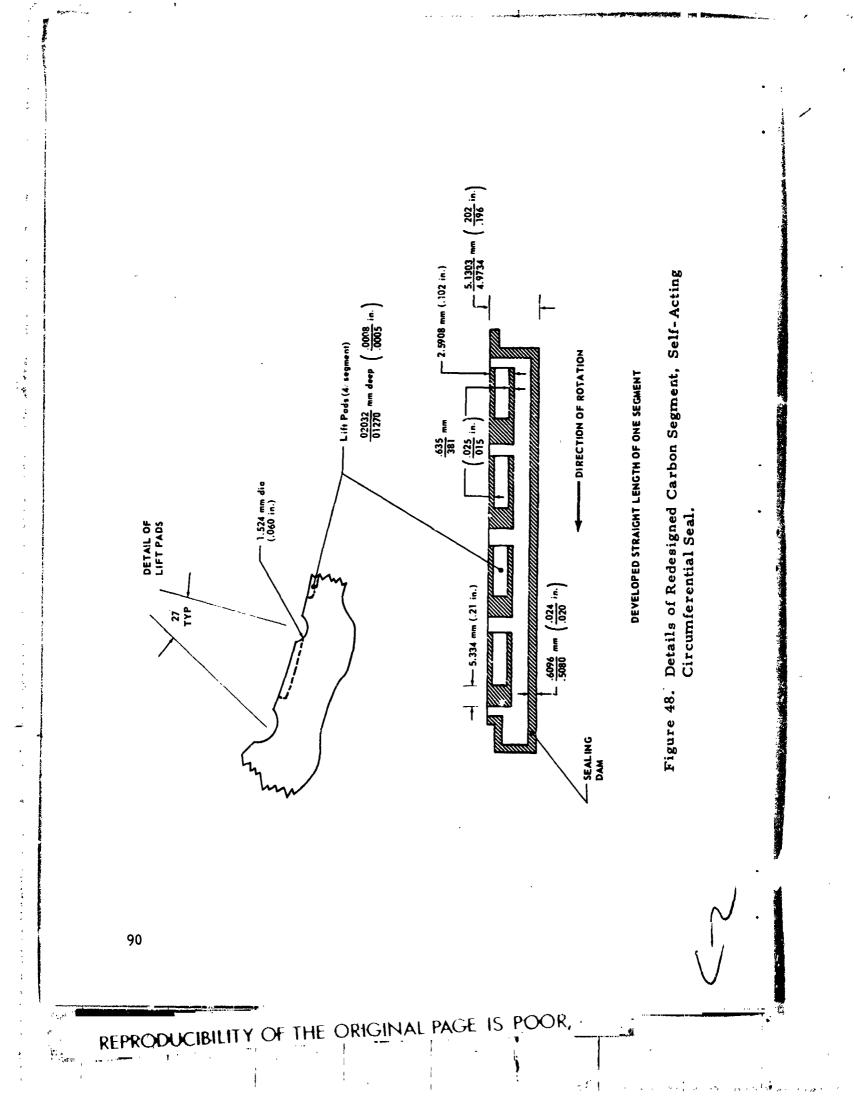
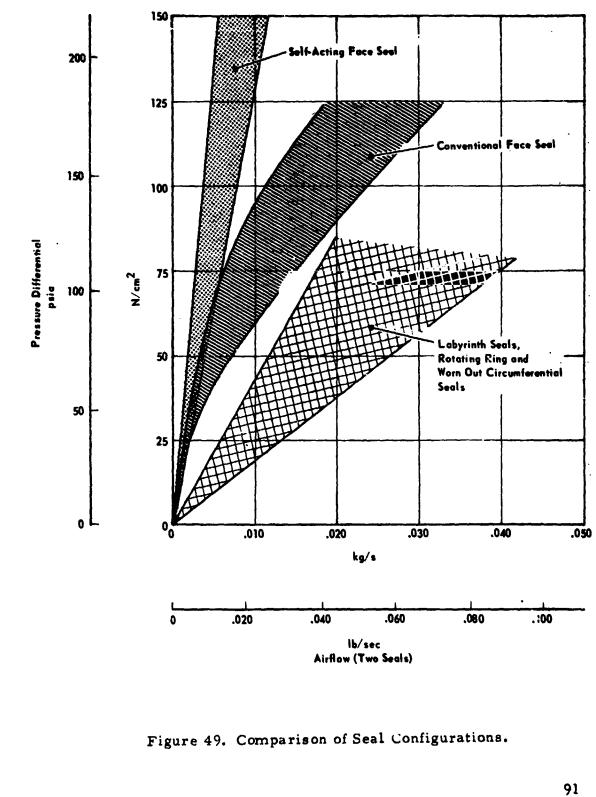




Figure 46. Envelope of Airflow Through Two Self-Acting Circumferential Seals Versus Pressure Differential.

1.




ł

89

ŧi

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR,

• ;

Several problems can occur as a result of high seal leakage airflow into the lubrication system:

- 1. The air-oil separation system may not be able to handle the volume of air, and accessory gearbox pressure will increase and back pressure the bearing cavities that are in low-pressure areas of the engine, causing oil leakage. Also, oil might be vented out of the air-oil separator.
- 2. Depending on the scavenge area of the bearing cavity and the pressure downstream, excessive airflow can pressurize the bearing cavity and limit the oil flow into it, thereby precipitating bearing failure.
- 3. Excessive hot air flowing into the bearing cavity can degrade the lubricant and be detrimental to the bearings.

To gain some perspective of the magnitude of airflow under discussion, engine experience has shown that excessive airflow into a bearing package incorporating seals of the size used in the test program would be in the order of 0.012 kg/s (0.028 lb/sec). Taking midpoint values of the range of pressure differentials in Figure 49, the face seal could not meet this criterion at pressure differentials above approximately 85 N/cm² (123 psia). The limiting pressure differential for worn out circumferential segmented seals, rotating ring seals, and simple labyrinths is approximately 40 N/cm² (58 psia).

Test program results indicated the effect of pressure differential on airflow was more significant than speed for circumferential segmented and conventional face seals. Airflow through the face seals decreased with increasing speed at a given air pressure. This is also the case with rotating ring seals and labyrinths since the leakage gap closes with speed. The self-acting face seal airflow increased with speed as would be expected since the lift force increases with speed and therefore the leakage gap increases.

CONCLUSIONS AND RECOMMENDATIONS

Self-Acting Face Seal

The self-acting face seal limited airflow ε uccessfully at operating conditions more severe than those of present small engine applications. Endurance running of 150 hours showed that the seal could operate without rubbing contact at high shaft rotative speed (43,000 rpm, 145 m/s (475 ft/sec)) with leakages less than conventional seals.

A redesign of the seal is required to overcome difficulties related to dynamic effects and distortion of the face plate, which led, in some runs, to contact of the sealing surfaces and excessive heat generation and wear.

It is recommended that a dynamic analysis of the redesigned seal be conducted to analytically determine the response of the seal to motions of the rotating face plate. Following the dynamic analysis, environmental testing should continue to determine the full potential of the self-acting face seal configuration.

Self-Acting Circumferential Seal

A 10-hour test was successfully conducted at a speed of 91 m/s (300 ft/sec) and air pressure of 55 N/cm² (80 psia). The self-acting circumferential seal did not develop sufficient lift force and wore excessively at speeds above 122 m/s (400 ft/sec) and at air pressure differentials above 79 N/cm² (115 psia).

The carbon bore, which was manufactured with a 0.0004 mm (0.0008 in.) taper from the sealing dam to the opposite end, proved detrimental to the self-acting lift pad performance. A redesigned seal with modified self-acting geometry and no bore caper should be evaluated.

Conventional Seals

Test results indicated that conventional seals may not be satisfactory in future advanced engines because of excessive airflow.

Of the conventional seals tested, the face seal configuration was most successful at limiting airflow; however, at air-to-oil pressure differentials above approximately 85 N/cm² (123 psia), airflow was considered excessive.

The circumferential segmented seal configuration operated well at moderate conditions, but at air-to-oil pressure differentials above approximately 41.4 N/cm² (60 psia) and speeds above approximately 107 m/s (350 ft/sec), it wore excessively and eventually operated as a labyrinth.

Airflow through worn out circumferential segmented seals, rotating ring seals, and simple labyrinths is comparable for a given air-to-oil pressure differential. At pressure differentials above 40 N/cm^2 (58 psia), airflow through these seal configurations was considered excessive.

In advanced engines, if conventional seals are to be used, complicated pressure-breakdown stages will be required, adding cost and weight. Incorporation of the self-acting concept offers an attractive alternate seal design for critical applications.

mile Pl

ne the

Ser Louis

with the montemportant that I want

and the second
. •

REFERENCES

- Parks, A. J., McKibbin, A. H., Ng, C. C. W., and Slayton, R. M.: "Development of Mainshaft Seals for Advance Air Breathing Propulsion Systems," Pratt & Witney Aircraft Rep. PWA-3161, NASA CR-72338, 1967.
- Povinelli, V. P., and McKibbin, A. H.: "Development of Mainshaft Seals for Advanced Air Breathing Propulsion Systems - Phase II, Pratt & Whitney Aircraft Rep. PWA-3933, NASA CR-72737, 1970.
- 3. Ludwig, L. P., and Johnson, R. L.: "Design Study of Shaft Face Seal with Self-Acting Lift Augmentation. III - Mechanical Components," NASA TN D-6164, 1971.
- 4. Ludwig, L. P., Zuk, J., and Johnson, R. L.: "Design Study of Shaft Face Seal with Self-Acting Lift Augmentation. IV - Force Balance," NASA TN D-6568, 1972.
- 5. Zuk, J., Ludwig, P., and Johnson, R. L.: "Quasi-One-Dimensional Compressible Flow Across Face Seals and Narrow Slots. I - Analysis," NASA TN D-6668, 1972.
- Zuk, J., and Ludwig, L. P.: "Investigation of Isothermal, Compressible Flow Across a Rotating Sealing Dam. I Analysis," NASA TN D-5344, 1969.
- 7. Zuk, J., and Smith, P. J.: "Computer Program for Viscous Isothermal Compressible Flow Across a Sealing Dam with Small Tilt Angle," NASA TN D-5373, 1969.
- Zuk, J., Ludwig, L. P., and Johnson, R. L.: "Design Study of Shaft Face Seal with Self-Acting Lift Augmentation. I - Self-Acting Pad Geometry," NASA TN D-5744, 1970.
- 9. Colsher, R., and Shapiro, W.: "Steady State and Dynamic Performance of Gas-Lubricated Seals," NASA CR-121093 (in process).
- Povinelli, V. P., and McKibbin, A. H.: "Development of Mainshaft Seals for Advanced Air Breathing Propulsion Systems - Phase III," Pratt & Whitney Aircraft Rep. PWA-4263, NASA CR-72987, 1971.
- 11. Elli, A.: "The Leakage of Steam Through Labyrinth Scals," Transactions of the ASME, Vol. 57, 1935.

95

1 :