

$$
\begin{array}{llllll}
\mathbf{N} & \mathbf{O} & \mathbf{T} & \mathrm{I} & \mathbf{C} & \mathbf{E}
\end{array}
$$

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
FINAL REPORT
BIOMEDICAL ENGINEERING TASKS CONTRACT NAS 9-12597
SUBMITTED TO
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS
BY
SCI SYSTEMS, INC.
HOUSTON DIVISION
8330 BROADWAY ST. HOUSTON, TEXAS 77017

DECEMBER, 1972

CONTENTS

FOREWORD

I. Bioinstrumentation Problems
II. ECG/VCG Electrode Harness System
III. Arrhythmia Detection
IV. ECG Signal Preprocessor
V. Sleep Monitoring System M 133 Cap Assembly Evaluation

Foreword

This Final Report documents the work accomplished for the duration of Contract NAS 9-12597 from March 1, 1972 to November 30, 1972. A11 requirements of the Statement of Work (Exhibit A of the Contract) have been completed within the budget and time allocated.
A11 technical concepts developed under the contract have been demonstrated to the cognizant NASA-MSC technical personne1. There is no deliverable hardware under this contract.

I. BIOINSTRUMENTATION PROBLEMS

Although no major problems arose during the performance of this program, several small problems were investigated and solved under direction of the Technical Monitor. These problems were largely associated with support of SMEAT testing. Also, specialized measurements of electrodes were performed and the results were reported in support of specific bioinstrumentation problems.

II. ECG/VCG ELECTRODE HARNESS SYSTEM EVALUATION

INTRODUCTION

The following study was undertaken to explore the possibility of selecting a new electrode system for Project Skylab both for experimental and continuous monitoring purposes. The present electrode configuration utilizing the sponge wetted with electrolyte and recessed in the plastic housing has been found to be troublesome and inconvenient in its use. This electrode has exhibited a continuing problem with bacterial contamination of the wetted sponges even though they are sealed in foil packets and treated with Benzoates. The sponges also tend to take a "set" and not provide the necessary thickness for proper skin contact. This electrode was originally chosen over the traditional paste filled electrode because of the messy: and time consuming task involved in filling the electrodes.

The selection of an improved electrode system would greatly enhance the efficiency with which the astronauts can conduct their experiments. Three major parameters were measured in the evaluation of various electrodesystems: impedance, voltage, and actual recorded EKG waveforms. The impedance and voltage measurements gave an approximation of time required to produce noise free recordings. Actual EKG strip chart recordings were utilized to confirm findings taken in the impedance and voltage measurements.

MATERIALS AND METHODS

For the present electrode study, 20 healthy male subjects were chosen with ages ranging from 30 to 40 with an average age of 32 . A11 subjects were of average complexion and with one exception, average build. The experiment was conducted

during the months of May and June. Laboratory conditions were maintained throughout the study: Temperatures ranged from 70° to $74^{\circ} \mathrm{F}$ and relative humidity ranged from 50% to 80%. All subjects were Caucasian.

Four types of electrode systems were utilized in this study. The ECG/VCG system consists of a recessed silver/silver chloride pellet of approximately 2 sq . cm. in area. The electrolyte whetted sponge is placed in the recessed electrode and attached to the skin with Stomaseal adhesive discs. The second system consists of an electrode with a silver/silver chloride disc mounted flush with the surface of the electrode. It was then whetted with a paste designated KM129B. The third system again consisted of a flush electrode utilizing a paste designated KM136. The fourth system consisted of a flush type electrode and standard flight electrode paste. All flush electrodes had a surface area of 2 sq . cm . They were also held to the skin utilizing stomaseal adhesive discs. Prior to application of the electrodes, the electrode skin site was prepared utilizing the Zephiran Chloride wipes planned for utilization during the VCG experiment. No rough treatment or decornification was utilized in preparation of the skin. The underside of the forearms was utilized as the placement sites for the electrodes extending approximately half way between the elbow and the wrist. This application is shown in Figure 1. For waveform measurements, the electrode sites were the manubrium and V5 placements. For exercise recordings, a friction type ergometer was utilized. Impedance measurements were made using a NASA-designed impedance meter with ranges from 1000 ohms to 1 megohm. This system uses a chopper to reverse polarize the electrodes at the chopper frequency thus preventing any polarity buildup. The voltmeter utilized for voltage measurements was a Hewlett Packard 412 A with an input impedance of approximately 10 megohms. The ECG recordings were made utilizing two sets of commercial clinical instrumentation. These were Abbott Medical Electronics, Model EK2 (EKG amplifier) and a CR1 (chart recorder). For a simultaneous recording, the recorders were initiated simultaneously and marked at their initiation point. The set up for the ECG recordings is shown in Figure 2. This recording system has a frequency response (plus ar minus 3 db) from 0.5 Hz to 100 Hz .

This page is reproduced at the back or the report by a different reproduction method to provide
better detail.

ELECTRODE IMPEDANCE/VOLTAGE
TEST SETUP
FIGURE 1

EXERCISE EKG STRIP CHART

 RECORDING SETUPThis page is reproduced at the back of the report by a different reproduction method to provide better detail.

FIGURE 2

With the subject sitting at rest at a table, the electrodes were attached to the underside of the forearm following a brief cleansing of the forearm with zephiran Chloride wipes. Immediately after application, the electrodes were checked for impedance and voltage. At 4 minute intervals, this data was rechecked. The intervals of measurements consisted of $4,8,12,16,20,30$, and 40 minutes respectively. After data was taken 45 minutes after appliction, the electrodes were removed and the underlying skin was checked for any irritation. No irritation appeared on any subject for any electrode system. The ECG recordings were taken both at rest and under vigorous exercies on the ergometer. To nullify any effects of instrumentation, the channels were reversed on the two systems and recordings were again taken both at rest and at exercise. The electrodes selected for exercise were the current ECG/VCG electrode with its internal sponge and the electrode that showed the best promise as far as impedance and voltage. The electrodes were placed $1 / 8^{\prime \prime}$ separating the two electrode housings. Approximately 2 minutes of recording were taken on each period of recording.

RESULTS

After all data were taken, graphs were plotted on both impedance and voltage for each subject. Extrapolation was used in many instances where the initial impedance was above 1 Megohm. After all graphs were drawn, the data were averaged as to time and magnitude of impedance and voltage. Figure 3 depicts the average impedance of the four electrode systems tested. As can readily be seen from this graph, the KM129B and KM136 electrode systems were far superior in their performance with impedance versus time. The voltage measurements were also averaged and their plot appears on Figure 4. As can be seen from this graph, the voltage measurements are quite random and centered about 4 millivolts. No particular system seemed to be superior as far as the voltage measurement was concerned. As can be seen from the impedance chart, the two KM-type pastes out-performed both the VCG and standard flight paste. Following the analysis of both the impedance and voltage data, the KM129B was selected as a candidate to compare with the VCG paste. To evaluate the KM129B in reference to the VCG paste, electrodes were attached to both the highest impedance subject and low impedance subject to evaluate the ECG recordings. Figure 5, 6, 7, and 8 depict the results of the ECG chart recordings.

Average /mpedance Curys

FLUSH MOUNTED/KA129B

ECG/VCG SPONGE
SIMULTANEOUS RESTING EKG RECORDINGS
(High Impedance Subject \#6)
FIGURE 5
$-12-$

SIMULTANEOUS EXERCISE EKG RECORDINGS
(High Impedance Subject \#6)
FIGURE 6
$-13-$

ECG/VCG SPONGE

SIMULTANEOUS RESTING EKG RECORDINGS

(Low Impedance Subject \#3)
FIGURE 7

- 14 -

ECG/VCG SPONGE

SIMULTANEOUS EXERCISE EKG RECORDINGS
(Low Impedance Subject \#3)
FIGURE 8

$$
-15-
$$

CONCLUSIONS

Test data indicated that the two KM type pastes produced impedance approximately one half the VCG.impedance at the end of 45 minutes. The KM129B was selected as a candidate to compare to the VCG because of tit consistency and probable ease of dispensing. Analog strip chart recordings from each of the two subjects indicated that the KM129B paste used in conjunction with the flush electrode did not significantly differ in quality from the sponge/recessed electrodes. Therefore, because of the KM129B low impedance characteristics and its apparent ease of application, this electrode system has been found to be far superior to the VCG sponge electrode.
/ge

ROE SEMI-LOGARITHMIC 484973

$\sin \frac{0}{0}$

Q
洜

 ,

$$
20 \quad 30 \quad 45
$$

GEEGTROLYTE GOMPARISON

\qquad

Subject Data:

Name \qquad Age \qquad Weight \qquad Height \qquad Complexion \qquad
Additional comments or observations on test subject \qquad

Comments regarding test+
4
III. ARRHYTHMIA DETECTION

Project Summary

The purpose of this project was to design and develop hardware/software ECG signal processing techniques suitable for use in a multi-subject real time cardiac arrhythmia detection system. In essence, the work is based on the concepts developed by Cox, Nolle, and Fozzard ${ }^{1}$. This technique reduces the incoming data, in a series of steps, to features essential to the proper classification of each QRS complex.

A portable ECG preprocessor has been designed and a breadboard has been built of the unit. This unit will sample ECG input data at a rate of 500 samples per second. The preprocessor will filter the ECG data input for noise, correct the base line, and provide significant data reduction by supplying the computer with digitized ECG data only when that data exceeds certain adjustable limits which have been set around the base line. When these limits are exceeded, the preprocessor will also provide the computer with information as to the length of time between data samples. In most instances, this will mean that the computer will receive information only during a QRS complex along with data which can be identified as the R-R interval. The programs were also developed for this project to provide for the detection of arrhythmias and the discrimination of probable premature ventricular contractions (PVC's).

The programs which SCI has developed for this project consist of a very fast small multi-programming real-time "executive", a display driver program, a waveform feature processor, and a general multi-dimensional statistical analysis program for analyzing selected QRS features.

1
Jerome R. Cox, Jr., et.al., "Some Data Transformations Useful in Electrocardiography," Monograph No. 83, Washington University School of Medicine, St. Louis, Missouri, September, 1968.

Initially, it was planned to interface the hardware preprocessor to the Varia 620 F Computer and to develop the software for that computer. Because of the work load on available NASA computers, however, it was decided that the concept feasibility could be proved utilizing another computer. SCI therefore offered the use of some existing equipment at no cost to the Government for the development of a breadboard test system. The Data General Nova computer was used for the development of the software and the Ann Arbor CRT display was utilized to display the processed information. It should be emphasized that use was made of available SCI equipment for testing concept feasibility and this equipment does not constitute a final deliverable system. The concepts, however, were kept general so that the programs can be easily translated to operate on another computer.

To date, the system has been given preliminary tests utilizing a QRS simulator and recorded data provided by the Dallas Heart Institute of patients residing in a coronary care ward. These tapes contain most of the classic arrhythmias (PVC's, nodal beats, abnormal rhythms, etc.). The results so far have been very encouraging in that the arrhythmia monitoring system seems to be able to classify the various shapes of the QRS complexes quite accurately and in most cases was able to discriminate the ectopic beats which should be classified as premature ventricular contractions (PVC's). The software has been able to "learn" what is normal or abnormal for a particular individual based on an analysis of the relationship of the current waveform to preceeding data. Much more qualitative work needs to be done in testing this system utilizing additional tapes (preferably those provided by NASA) and utilizing a chart recorder for an in-depth analysis of the quality of the computer's discrimination. The preprocessor has been designed with the ability to output data to a recorder as initiated by the computer.

For test purposes the computer provides only one output display to the CRT (See Figure 1). This allows the display of up to 10 families; a family being a statistically significant group of QRS complexes along with data describing the pertinent features of that family. Among these features are the maximum positive amplitude of the $Q R S$ complex, the width of the $Q R S$,
the area under the curve, the heart rate in the form of the $Q-Q$ interval, the maximum negative amplitude of the $Q R S$ complex, and the maximum slope. Included in this display are the number of members in each family and the amount of time since a member has been added to a particular family. In addition, on the lower part of this display is included information on the number of probable PVC's detected and how many beats have occurred normally during the time that these probable PVC's were indicated. Also, an instanttaneous indication comes ap on the bottom of this display when a probable PVC is detected or if the information is noisy enough to be classified as chaotic by the computer.

40

EXECUTIVE ROUTINE

The Executive Routine used on the NOVA computer in this project is a previously-developed proprietary package. It is designed to control the operation of real-time systems while allowing maximum flexibility in application programs.

Associated with each program to be run under executive control is an information list which defines features desired by the program and contains the present status of the program. Thus, by setting one bit the program may request exclusive use of a device when it needs it. It can call for queueing of data to be handled by other programs. The program can be scheduled to be run on a regular basis at given time intervals.

When running, the Executive Routine controls the flow of data throughout the system. It identifies "interrupts" from devices and switches control to the proper handling routine. It keeps track of program priorities and makes best use of available machine time. By spending as little time as possible performing its own bookkeeping chores, it is able to allow quicker response of the system to external events. In this way the system can come ever closer to acting upon the data as the external event occurs.

At the lowest level, the executive program is an assistant to both the program and the programmer. By performing necessary functions such as timekeeping and device coordination it frees the other programs to spend all their energies on the particular application at hand. In this way the Executive Routine reduces programming time, effort, and error.

While this version of the executive is written for the NOVA computer, its philosophy and form are easily adaptable to other dedicated minicomputer systems such as the Honeywell 316's and the Variant 620's. The fact that it is written in the particular machine language of the machine means that it is particularly tailored to that machine rather than a result of a slow, core-devouring, higher level program such as FORTRAN. Furthermore, the general nature of the Executive Routine makes it easily modified to control special or unusual applications.

DISPLAY PROGRAMS

The display package developed to assist in the checkout of this monitoring task is easily adaptable to other systems possessing a similar hardware configuration; that is, a NOVA-family computer and an Ann Arbor Terminal Video Controller.

The package is requested by programs within the system which require display of a particular page. Associated with this page number is a table of formatting instructions which call other display routines to fill a buffer with octal, decimal, or alphabetic information. Since these three basic routines are already available, additional displays may be included merely by adding more table entries.

The numerical display routines are designed to allow tables to be displayed in either rows or columns with only one change required. Alphabetic labels are easily set up and also readily changed. Provision has been made to allow for graphic information to be formatted, although at this time, a graphics-generating program is not being used.

-

The Feature Processor program measures the features of the curve. Currently the six features which it measures are Amplitude, Width, Area under the Curve, $Q-Q$ interval, maximum Change in Amplitude for a 2 -millisecond (ms) interval, and maximum amplitude of opposite sign of the major amplitude. The program is requested every 2 ms after the preprocessor detects a signal with exits from the baseline aperture. Every 2 ms the Change-In-Amplitude samples are stored in a buffer by the interrupt response code. This code then requests that the feature processor be run at the first opportunity. When the feature processor is called, its first action is to pick up the measured data from the buffer. If this is the first sample for a curve, this first sample is multiplied by a constant to give the initial amplitude of the signal. Subsequent samples are added to the amplitude to give the current amplitude. Each time a sample occurs, a counter is incremented. When this counter exceeds 400 (or .8 second), the curve is considered noise and the " K " aperture is reset. This counter is reset at the beginning of each curve.

The data is exponentially smoothed by the formula: $V_{i}=S_{i}+1 / 2\left(V_{i-1}-S_{i}\right)$ where $V_{0}=$ the initial change in amplitude and S_{i} is the input sample. This removes sharp spikes from the data. The new amplitude value is divided by 2 and added to the area. It is then divided again by 4 to give the criterion for judging when the curve has flattened out and QRS complex is complete. The width is measured by the number of samples required for the QRS to be considered complete. This occurs when a sufficient number of samples have satisfied the flat criterion. Each time the sample is "flat", a counter is incremented. Each time the sample is not flat the counter is decremented to a minimum of zero. When the counter reaches 64, the QRS is considered complete.

Comparison and selection are performed to obtain the maximum positive ampletude and maximum negative amplitude. The sign of the maximum negative amplitude may actually be positive. This is because the signal may be
inverted. Then the amplitude of positive sign will be classified as negative. The amplitude with largest absolute value is the positive amplitude and the amplitude of the opposite sign is the negative amplitude.

Each exponentially smoothed change of amplitude sample is compared to the maximum (absolute) value obtained thus far. If the new value is greater, then it replaces the previous maximum. This gives the maximum slope.

The $Q-Q$ interval is calculated by adding the width of the previous curve to the "long-line" length between QRS complexes. This long-line is measured in 16 ms intervals.

When the QRS is complete, the calculated features are stored in a buffer and the statistical processor is requested.

If the sample counter reaches 400 (. 8 second), the curve is considered noisy or chaotic and no statistical examination is requested. The "K" aperture is reset and the feature processor quits looking at data for this curve. (This is done by resetting " K ". The initial interrupt on K exit always causes all counters to be reset.)

The statistical processor is general in design and thus easily modified to classify different features or numbers of features. It classifies the data given to it into related groups or families. Additionally, there is a section of code which looks for premature ventricular contractions (PVC's) and keeps a record of these. This program is activated by the Executive Routine upon request by the feature processor.

The first action of the program is to retrieve the feature measurements from the buffer of the feature processors. It then compares each feature to a high and low allowable limit value. If any feature is outside its limits, the statistical program rejects this set of features as unusable and terminates itself. If all the features are within these gross limits, a search is make to determine if this curve fits into an active family. A family is called active if it has added a member within the last 20 beats. If it is not an active family, it is an inactive family and the storage is make available for a new family.

There are per cent limits for each feature. Thus, if the percent limit is 30 for amplitude, a new curve must have an amplitude of between 70% and 130% of a family's amplitude to fit in that family. There is also a count value which may override the percent value. If the amplitude is 60 , the percent value 30%, and the count value 25 , then a new amplitude will fit if it is from 35 to 85 , since the 25 is greater than 30% of 60 .

Each feature of the new curve is compared to that of the first family. If any feature does not fit, the comparison is repeated for all features on the next active family. This continues until either a family is found into which the curve fits or all the active families are exhausted. If the curve fits, then the family age is reset to the maximum of 20 , one is added to the number of members in the family and the family is modified by the new member. This modification is a weighted average of each feature giving a weight of 0.1 to the new member and 0.9 to the previous value to yield the new family value.

If the curve does not fit into any active family, then an inactive family slot is taken and turned into a new active family whose features are those of the new curve. The age is set to 20 and the number of members to 1 .

If there are no more slots available, the curve is ignored and all the other families are aged by one. The aging process is performed on each family not receiving a new member after each curve has been placed. After aging is complete, the processor looks for PVC's.

The first step in abnormality classification is determining what is normal. It is assumed that the family with the most members is normal. If the new curve is in this family, it is not a PVC. If it is not in this family, comparisons are made. To be a PVC the new curve's area must be greater than 110% of the normal family's area, $Q-Q$ interval must be less than 93% of normal, and maximum change of slope must be greater than 70% of normal. This last criterion is to eliminate T waves from being called PVC's. If the curve is a probable PVC, a PVC counter is incremented.

Before terminating the NOVA console switches are scanned. If they are set to a value of 1777778 , a display of the families is requested. This includes a report of how many probable PVC's have been spotted in the previous N beats. This display will not be updated until some switch(es) is toggled for one beat's duration to reset the display request (flag). A switch value of 777778 will cause the beat and PVC counters to be zeroed. (This also resets the display request flag.) Finally, 37777_{8} causes all feature and member tables to be zeroed.

SCI ELECTRONICS, INC.
LONG-LINE INTERRUPT RESPONSE PROGRAM

SCI ELECTRONICS, INC.

SCI ELECTRONICS, INC.

END OF RS
4 sci ELECTRONICS, INC.
FEATURE PROCESSOR
(E) T TMIN IS THE minimum acceptable width
REST

MOVE FEATURE
DATA TO BUFFER increment bath

BATE ES BEATS AT THIS SCALE FACTOR

feature processor

SCI ELECTRONICS, INC.
DISPLAY PROGRAM

SCI ELECTRONICS, INC.
STATISTICAL (CYCLIC) PROCESSOR

59

30730
400319
は7®1：177777
1711916434
67：112 193453
97313736433
9791482433
サ615 123453
91816 i？ 4432
97917 133：30
9702942431
$37 \% 113243$
3／6？2 440433
（17：23 j4．j433
17：324 $84: 543$
177） 242433
$37: 320 \quad 342424$
17137133434
97137942414
0731 192320
07032 942432
$97933 \quad 0494 ? 1$
01034 ग90jう3
070351 175\％4！
97 936 す3円うう？
07137 0．36：193
3704084643
10741 0．1421
17 742 1343417
071043 1012551
197344137235
07045.116403

37945935113
07：347 13777

97.301607223

37153 507？23
470う3 30722？

\＃7030 111030

197461 小多多
97：10 $23: 17034$
$197363 \quad 177226$
47104517330
$37365: 114714$
07100 कीय4！

11：17：1：10017
भ7：\％1 נ210：？1

971731.1112

1） $1.1 / 41: 534.41$
11：j15 1」3．j33
サ75\％リ：74：5？

37173153627
37174143411
9717514341
$37176 \quad 117113$
37177 ，31450
$3725 \% 11160$
47201929654
17324433
07313122033
31344 ：19．1443
117：30 9194：11
473．50́ 9272．37
07207 ！14303

07211 क $7 x=19$
17 21？43 5447
$97213 \quad 377345$
57214 आ？1531
91215 304517
07216 92401
37217 074197
97220630919
07231030193

11203 379920
97324 औ3957
37225 301902
07226 03090：
37327396
37230 פうごロ33
！7：？31 ！1才113
0723215144
37233177439
07234395124
197235 13才ी00
97336 9．7909n
07237 3 3ो 19
0724\％93105
$97 ? 41$ 97336！
3734：3 31779
67343 176777
97244 1963337
37243 16．2133
97246 ：113035
.173473476
0720．135112
リ72つ1 124403

17703 110：33
17354 1．9\％40
51200 ：123405
Q7230 1．j11．j
：172つ 314454
91？？：1 9j9411

13723111451
$14733 \quad 12940 \%$
$47 \div 04 \quad 32440 . j$
47205123433

NDA：NDAMI？
PINP：PIN
SCL： 2 ？；SCALE FAC「O？
43：vivip：\Rightarrow
EMil：

CHAD：LDA $\quad \mathrm{CO}$
J．j：PDIS
Jivo ©HC
CHC：CHOYK
ら所保：
AIOTH： 9
A：EA：g
RiUR：ध ；R \dot{R} R DISIANCE
NSMK： 3 FNEG SAMP MAK AMP
＂XJLP： 7
ivAiur ：〕

DIU：J ；aIDIH IN CUNivi

C17749：1774．13
i3r？J：3124
rL411：
JLロA1： 3 ；ULD AMP

ENSLP： 1π ；iviv SL？

I唯 3 ：
；NJVA I．NI VASK

にEらE ：VIJP 37
$\because \operatorname{VIJS} \quad 33$
Jut－
；

mJVL\＃ $1,1,5 \pm C$
．VEG ． 1,1
LuA Ge in

J：゙い r．iil
r゙vja：LDA \lim rilil

Jット $\quad+1$

LDA \quad ？ HL CO
LDA $1, r$ LVA

197：266	131463		Jiver	くES		
（）1367	1）34／41	P．＜112：	LUA	1：1じく	．．	
07278	344731		3 i 4	1，\％1014		
011271	：1403\％3	．	S［A］	1，くて：		
97372	13：3514		LDA	の＊airin		
97313	1.5333		入り心ご学	\％，1，D．v	．	
$97 \geq 74$	$0114 \% 3$		JMP	$\cdots: 2: 4$		
37275	） 10.1132		Jうス3	2	；REQJEST CYCLIC	
47276	73007		9			
17271	133305		亏			
973%	9．735		PRE：			
97391	313730		9			
97302	939476		LDA	2，Simp		
97319	． 334474		LUA	3．c3 3		
97314	921：9才1		Lisa	O，\％ 2		
973\％	14143		Sil	O， 0,3		
131396	1121391		LDA	1， 1,2		
1973：97	．1414！1		514	！，1， 3		
3731%	931\％）		L！A	－ 3 ？		
$3 / 311$	$34147 ?$		SIA	7，？ 3		
07312	1219．13		Lis	$0,3,2$		
07313	941493		314	13，3， 3		
07314	321374		IDA	（1），4， 2		
（1） 315	141494		SIA	－ $1,4,3$		
07316	921935		LDA	6，j，？		
3731%	141455		SiA	0，5，3		
07329	13321		I Sis	3iAF	；IVE 3is Ai Hato FaCiJR	
17731	13134.11		Jivip	$\bullet+1$	；PLAY SAFE	
97322	19.72		Jite	र6ら5		
37323	863\％17	PeRR：	HALI；	そर吅		
173.24	153971		JinP	－－ 1		
973：25	354415	Pリİ：	S1A	3，PSV3		
37326	174343		jiA	g，P：5Cum		
97327	＋29411		L．A	Q，P汉		
9733%	142411		S［A3	3，Cup		
07331	9.36 .32		Jられて	2	；REQJEST DTSPLAT	
$\therefore 1733$ ？			0			
\％7333	313，36		6		，	
07334	，5／351		PRER			
01335	150．93\％		3		－	
47336	13， 194		Jijp ？	－3\％3		
97331	1.17237	，VA！$¢:$ ：v1	Aip			
！ 9734	3リ7351		；Jid			
Q7341	91111		11			
17343	3\％33\％	P＞v3： 3	－SAvci	REIJ？		
91343	1）191．1	rLiUi：	3	；Cuvjroj	JIVE riLai eJJVis	
97344	！1913	rLvA：	101	；NJ UF C	U⿴囗⿰丨丨⿹勹冫	
1.7345	－31\％	ここ：	3			
47340	196：19？		Jら，	2		
27347	1159390		0	；）I ¢ Juiv	Eくら アNIME	
97354	953．177	Pぐって：	HAL：	3Jiv erazu	R R2E1U．R，	
17301	：103．3．3	P：SCuf：	\％			
3735	A1） 51.30		：	；PAUE A．V	U）PAITEVI（N）	
97353	3）476\％	P！${ }^{\text {P }}$	314	3，i．$\times 3$		
97354	111654		13\％	1） BC		
97350	リ6054		Jje？	Sij	；UEi jilut satio Tiv AC：1	
\％1350	1,3419		jul	2， 2		
．97331	1913：\％		MJVo	（1， 9		
$9736: 1$	120323		3 538	1，1	；SEi SIGV BITHI	
． $1 / 301$	123112		ADOL；	1，${ }^{\text {a，}}$ ，		

1136233 ;051 0736312334 97364 143.j\% 07365 . 17275 87300639754 07367292496 $0737 \% 133 \% 3$
97371942493
97372 192411
07373 פ7244
137374975
37375 117233
47370 893924
37317 37431
47493 237324
3013960
$37417 \quad 314437$
17413 232763
37411 3e.3434
87412 14:14:34
07413 .3.340
07414 13.34?6
$1741593: 420$
3741613343
3741713043
0743020303
$37421 \quad 326426$
07422147393
$37423 \quad 125964$
17424 !111433
$07435 \quad 1533 ? 1$
$974: 39377$
$137427 \quad 33415$
$0743: 145433$
37431 13:14.13
$974321529 \pi 4$
177433 919765
67434146413
$11430 \cdot 140475$
$97430 \quad 10230$
$0743794 \% 42$
197443 :3:5133
17441 \%) 9531

67443 $\because j 91$
9444 .10193.
:1/445 9:j!j3
$17446 \quad 3 . j 130$

- E. (D)


```
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MDÖ IS IFE WiSTEF LISFLAY FKOGFAN.
IT FICKS LF ITEFS FFOM THE NASTEE DISFLAY
TAELE AND SGITCHES CON IFOL TO THE FFOFES
FOFMATIING SLFFOUTINE. UFON FICKING LF
A ËEFO IT FEGUESIS OUTFUT OF THE ELIFFEF
TO THE LISFLAY DEVICE.
INFLIS AKE THE FAGE LESIKEL ANE FAIIENT
NUDEER, EOTH STARIING AT G.
-1
G SOPNLNNICATION HORD
;GET INFEIS
CONSTF.lCT EliFFEF
JSFE 2 ;EUIT FROGFAV
6
DISFLAY FOLITINE INITIALIEATION - LFI
LDA 2,C! ;COMM FOINTEN
STA G,PAGE ;FAGE NLGEER
SIA G,FAT ;FATIENT NUMEEF
LLA 0,FAGE.
MOVL##0,0,SĖC
JNMP KETN
LDA 1,MXFG
ADCi## E,1,SNC
J%FFRETN
LDA 2,FG ;GET FIK TO FAGE INFO
ADL @,2
LDA 2.G.e
FORiv: DTA FTF
6;NAAX FAGE NG FLUS 1
FACE: O
FAT: G
CONSTKUCT DISPLAY EUFFEN - DCF
```

LCK: STA' $3, S T I N$; SAVE RETURN
LCHL: LDA
3,FDIF
FDIF ; PDVANCE FUINTEF
3, 3, SNR ; CHECK FOF ENL
ST:TN ; KETUKN
0,3 ; GOTU FBUC. EOlit
DCFL ;GET NE入T EOLT ADD
SnTiv: ह́
DISFLAY OUTFUT EUFFFR ROLTINE - DOK
; NII COINTEIS

16221814422
10222020422
10223151404
10224000760 10225220416 10226024414 16227123006 16230824416 10231123068 10232648411 10233610405 10234214405 10235000740 10236 02E4E1 10237600006 10240 Ecec 0 e 102.41060000 10242000000 10243 6e000e 10244 Q600e 16245177772 1 10246 00e206 10247003007 10250600060 10251 に06677 1025217776

DSE OCP
LDA G.OSHV .
INC 2,2.SEF
JMF OCLF
LDA E,OCF
LDA 1.OSEN
ADD 1,0
LDA 1,C6
ADD 1,0
STA 0.OCF
ISE ODAD
DSE ONKG
JMF OMCL
JMFe OFTN
ORTN: 0 ; KETURN ADDRESS
ODAD: E ; INPLIT DATA ADDRESS
DNMB: G; NUQBEK OF NTMBERS TO DISFLAY
OSEN:O ; SFACE BET! BEEN NLMBERS
OCF: 0 ; OLITBLF ADDFESS
OSHV: O ; SAVE SHIFTED VALUE
CM6: -6
C6: 6
C7: 7
C60: 60
C77: $\quad 77$
CGFF: 177700 ; MASK FOR GRAFH INFO
; ALFO STOKES PACKED ASCII IN THE OLTELIFF.
; CALLING SEQUENCE:
3 ALFO
; A START ADDFESS IN BLFFF. D-1279.
; B ;TEXT DATA ADDFESS
3: C \quad UOFD COLNT OF TEXT
;
;
10253054764
10254822636
10255034676
16256163060
102574434
1026 E 010632
10261032631
10268 10630
16263 \& 36627
16264054426
10265 616625
10266621600
10267 - 04467
16276101360
16271004455
$1027215140 E$
10273014417
10274000772
10275002742
10276654413
16277 6c4 452
163 EC 183400
10361 C36412
10302 124: 106
10363137406

Alfo:	STA	3,ORTN	; SAVE RETN ADD
	LDAE	0, FLTP	; GEt Stakt ade in Euff
	LDA.	3. $\mathrm{BFF}^{\text {F }}$	
	ADD	3,0	
	STA	U, ALST	
	ISE	FDTP	
	LLAE	2, FDTF	; GET DATA ADD
	ISE	FDTF	
	LDAE	3, FDTF	; GET HORD COLNT
	STA	3, AL WiC	
	1 SE	FDTP	
ALLF:	LDA	0.0 .2	
	JSk	SSK	; UNFAC AND STORE CHAR
	MOVS	0.0	
	JSE	SSR	; DO 2ND CHAR
	INC	2.2	
	LSE	AL tiC	
	JMiP	ALLF	
	JMFPe	ORTN	
SSF:	S1A	3, 5SR3	
	LDA	1,C77	
	AND	1.6	
	lifo	3,ALST	
	Cuif	1,1	
	AND	1,3	

－－－
13062010253
13063 002304
13064013234
13065 600062
13066006006
13067010141
13076610314
13071 608363
13072006012
U 13073000000
13674000112
13675810253
13076806245
$13677<13164$
131 EE 000042
13101810314
13182 \＆iQE373
13103006012
U 131640 CEODE
$13165 E 00112$
13106 ש10314
13107000403
13110 GECE12
U 13111 ब凸CGDO
13112600112
13113016314
13114064413
13115 gQOD 12
U 13116 e0coce
13117800112
13120910314
13121006423
13122066012
（1） 13123606006
13124860112
13125010314
13126900433
13127 EEOE12
U 13136 CEGGFE
13131 EGC112
13132 C10314
13133 E00443
13134060812
（ 13135 606e00
13136 60\％112
13137016314
13140600453
13141506912
$1131 \angle 2$ 0ewore
13143 リヒC112
13144810314
13145 कС6463
13146066012
L 13147 efteve
1315686112
13151516253
$1315{ }^{2}$ 662164
13153 －113237
15154 pgoter
13155816314

FG5：	ALFO	
	1220.	
	FVC	
	2	
	0	
FG4：	CLEF	
	DECD	
	243.	
－	10.	
	AFI	
	74．	
	A．LFO	
	165.	
	LN2	
	34.	
	DECD	
	251.	
	16.	
	CNT1T 14555	
	74.	
	DECD	
	259.	
	10.	
	CKT2T 14567	
	74.	
	DECD	
	267.	
	10.	
	CRT3T	14601
	74.	
	DECD	
	275.	
	10.	
	CET4T	14613
	74.	
	DECD	
	283.	
	10． 14625	
	CKT5T	14625
	74．	
	DECD	
	291.	
	10.	
	CFT6T 14637	
	74.	
	DECD	
	299.	
	10． 496	
	FMT 14651	14651
	74.	
	DECD	
	367.	
	$10 \cdot 14663$	
	FAT 14663	
	74.	
	ALPO	
	1143.	
	REFT	
	18.	
	DECD	

1220.

FVC
2
CLEF
DECD
243.
10.

AFI
14675
A．LFO
165.

LN
34.

DECD
25
Сनт1т 14555
74.

DECD
259.
10.

CKT2T 14567
74.

DECD
267.
10.
（13T 14601
DECD
275.
10.

CRTAT 14613
74.

DECD
283.
10.

CKT5
DECD
291.
10.

7．167 14637
74.
299.

FMT 1465／
74.

DECD
367.

FAT 14663
74.

PLPO

KEFT
DECD

13156 民62166
1315760602
U 13160600090
13161 0CEOQ7
13162000000
13163686408
13164040506
13165020115
13166260640 13167626040 13170446501
13171 620120
13172 226\％40
13173626046
13174044527
13175052164
13176020110
II
LN2：
M

AM
F

13177 C 26040
13260 O51101 AF
13201 © 40505 EA
13262.020040

13263 E 20840
13204650440
13205050455 6

13206 ع20040 13207026640
1321004455
13211 G50115
－A
13212620940
13213046440 M
$13214051536 \times S$
13215050114 LF
$13216 \quad 526040$
13217 ع26040
13220042515 NE
13221041115 HB
13222626123 S
13223026040
132240435 E 1 AG
13265 C20105 E
13226060080
SI
DT
Ha-6

MF
1142.

2
BTCT（ $5 / 4$
7
0
0
－TXT＇FFA

13227	－44163	CHAO：	－JxT	${ }^{\prime \prime} \mathrm{CH}$
13 c 36	－ 47561	AO		
13631	644524	T I		
13232	026103	C		
13233	U6せ0R6	＂		
13234	853120	FVC：	－TXT	＇FV
13235	620103	C		
13236	060680	＂		
13237	143117	FEFT：	－TX T	＇OF
13240	520646			
13241	¢26040			
13242	こと6¢45			
13243	¢ 41046	B		
13244	646565	EA		
13245	05152．4	TS		
13246	026654	，		

1322744163
CHAO：
－J×T
＂CH
$13 \varepsilon 36647561$
AO
13231 C44524
C
＂1324762004013250 E E604013251 C2004013252051120 Fス13253 641117 OE13254041101 A A13255 C 42514 LE
13256 ©50640 F
13257041526 VC
13269020123 S
13261 日GQEEE

S

- END

14156045600
$14157 \% 10416$
1416010413
14161 6б5 754
$14162 \operatorname{LOC} 534$ Edgee6
14171 E日612．
14172177778
14173 écoco
14174614163
14175 geteco
$14176 \mathrm{~F} 1<716$
14177614724
14265 E14732
14661 U 14555
$14262 \quad 14740$

148 C 4 OSecuc
14255 esoded
1 LECú $1446 e$
$14 \varepsilon 67014 \leq 51$
$1481001 \leq 663$
$14 C^{2} 11$ \＆RO日， 4
1421266132
14213 COED 2
$1481<614366$
14215 e15104
14816 OLSG12
$1 \angle 27604524$
142 C に 20763
14221101133
142 C 民 0633

1422410 U4E6
14225 ！es 771
14226536454

1423013365
14831 60：4 4
1423215146

14833 \＆10763
1463464
$1423 う$ Cu45
$14: 36$ 4：745

$1 \angle 54185500$
$148<1 \quad 185113$
148くた ひたち770
1424？1051とも
$1<4<125 a \mathrm{c}$
$14: 2504500$
$14246 \quad 144735$
1 124 63074
1485：．2く7ころ

1434513350 E
143：6 C2160c
1434704634
14355616745
14351 CEL4

14353161162
14354 ！66767
14355 ？ 140
14356 629736
1435704736
14360 6． 1400
14361 fel 600
$1 \angle 3 \in 8$ © 14710
14363015144
14364 CU4722．
$1 \angle 365102460$
$1 \angle E 66$ UK5 5
14367 6० 405
14970 664753
14 Q71 に86c18
14272161112
14373 C0C413
14374036613
14375 024666
14376133 LL
14377 6c15 5
1446 U3055：
14401 1426？
$14 \& 6 \mathrm{C}$ ゆ6766
18403644566
$144 \mathrm{C}, \mathrm{C} 4 \mathrm{CL} 46$
144656763
14466 0． 673
14407 － $\mathrm{C}<4<74$
$14416 \quad 106<15$
14411 とくc535
14418 竞0475
14413 บ56536
144141330 CC
14415 e560\％
$1<416 \quad 0 \quad 4<44$
14417 － $0<465$
1ムムど ひたノくあ
1ム421 1と6もこ

14153 斤C 466

$14<6513016$
14466 अद5
$1<27$ ？cc 461
14436 084436

1 LiÁ́ 175×6 ！
14433 a 146
1400410633
14405 （65 511
1426 Éc516
14437 6f：46：
1 144 13306：

AFT＋11．
FVCr： VCC
AES：J JSF GTAFA
SLB B，O
STA ESNFMCT ；SET NOSM FMA CT TU \therefore
Ji？CfiECK
LEG GOAR

AES1 ；FOLND NOFH：FAB：
2，Fiyfi
ADL 1,2
LIA b，O， 2
$A D C=\ddot{F} \quad 2, G, \operatorname{SNC}$
JMF－AES2
STA 1，NFN
STA GONFBCT
ABSE
O，CUFB ；CHECK FOR：FVC
$\mathrm{C}, \mathrm{B}, \mathrm{SN}$ ．
TU
cocticste
$1, \varepsilon$
FCIG
GッNIN
Co0，3 ；GET NED AREA
Filn jNUT FVC
1，NFin
1，8
$1,6,8$
FCTE
3，NINP
0，0，3 ；GET Oe
，1，SNC ；EnIF IF SHORT CC 1TN ；But FVC

79
LLA 1．AFis
ALD 1,2
$144 \angle 1$ 62565 14442 6204447 $144<3664417$ 14444534440 $144<5175406$ 14446175456 14：47 17546
1445062065
1445110663
14452 ，28474

$14454661: 33$
$14455 \quad 26431$
$14456 \div 4435$
14457 に1を7ぁ
14460 oscuc
14461 घ62465
$14462 \quad 654415$
14463 644415
14464125112
1446512446
14466111660
14467 16c 46
14476 －66003
14471 E3C416
14472 － 66064
14473625455
144741 C 1112
$1447512<46$
14476002401

1450% ש606e
14561 反あな144
145 E 2 שevoje
14503 C6e600
14564014165
145 E 5 CEOEO
14566 E， 14065
145 F 7 FO 156
1451656135
14511 066106
$145128 \sin 12 \%$
14313654764
14514 と4 $4 \subset 4$
$145151: 6415$
14516 4！416
$1<517 \quad \therefore<42$
1452 i 亿e757
1 15el 54764
$145 \varepsilon 2$ i，4i 16

$1<565$ 6くも415
$1<366$ ！ 16

$1<531$ ：$\because 646$
14 ぶ $\because 151<6$
1く536－1 4 54

LDA $1,6,2$ ；CHECK MAX SLOFE
LDA G，FCS
JEN FCTG
LDA 3．NINF
INC 3,3
INC 3,3
INC 3,3
LLA 0，0，3
ADC二゙ $\quad 1$, ，SNC $\quad \mathrm{SKIF}$ IF FVC
NiFe Fitus ；NOI FVC
ALC $\quad \theta, b$
LOA $\quad, 33$
LDA GOMS5 ；DISFLAY＂FVC＂
JSE DIFE ；EFEFOFT FVC
ISEC FUCF
Jip $\quad+1$
JHFO FIUN
；FEF CENT FULTINE

FCTG：	STA	$3,7 \mathrm{CE} 3$	；SAVE TETURN	
	SiA	1，5cN3	；Efve fort Sien	
	－OUL	1，1， C C	；TAKE AES VAL	
	NEG	1，1		
	VOV	0,2		
	StE	C， 0		
	JSTO	3	；MLL ${ }^{\text {SY P PERCENT }}$	EG 10
	LDA	2．C100		
	JSFie	4	；DIV BY 190	
	L．LA	C．SGN3	；FEFLACE SIGN ON	FESULT
	MOVL\＃	0，C，SEC		
	MEC	1，1		
	JMFO	FCS3		
FCS3：	E；SAVE	FETURN		
SGNS：	G：SAVE	SICN		
C130：	16\％			

NFMC7： 0
NFN： 8
NINF：INS＋2
SAV9： 4
1：S5：5
FCA： 11% ；AREA
FCL － $93 . \quad$ ；CO
rCS：7E． SLOFE
FCl：BE．；！IDTH
；DISFLAY TECUEST FOLTINE
LIF゙：\quad Tí $\quad 3, F C \leqslant 3$
LLA 1．LSFG
SUB\＃U，1，SNR
JiF FFiSF
MED：JST ADIS
जWFO FCS3
ALIS： GTA 3，SAV9
STA B．LSFG
STA EPFNCOB
LDA C，FFCF
SiAO O．CiAR
JSiC そ
0

DERE：
Fi：COB

FFCF:FFICOA
C.
FFCOM: G COMADNICATION FORDS
SEFLG ; EEFT REG FLAG
FILN:TETN
CATBS: CHTIT FFOINTEKS TO CRITENIA
CETET
CRTST
CET 4 T
CいT5T
CFTGT
CET1T: •ELK 1 - CRITERION1
CRTعT: •ELK 1 C - CRITEIION己
CET3T: ELK 1 ECNITEFION 3
CWTAT • BLK 16.
CRT5T: •ELK 10.

FAT: \quad LLK 10 -FABILY AGE TAELE
AFT: ELK 1 C . CACTIVE FAirILY TAELE
LL: $\quad 4 \%$;AMF

- $\because 1 \mathrm{ITH}$

20. \quad -
6
$1776 \quad$; filif
4ठ6 ; $\because \mathrm{IDTH}$
76 OE ; AREA
21.

1770
4. \quad : ULDTF:
36. \quad \& ATEA
3%
36.
2. \quad BMA SLOFE
FTE: 36 ;ABF
5. ; MIDTH
20. ; AFEA
C6. ; C
50. \quad - -Ave
1\% - Sif: SLÚFE
;

INITALIOATION FU: CYCLIC

150543413
15043 654410
15 元 6 elded
15567 636411
$15 \% 10$ 4140
15 E 11616407
15012151460
15012 e14616
15014 L 0772
$15 \% 15$ 4c＜4
$1501615: 61$
1517 a $156 \subset 4$
$15: 20$－15024
15.21 0．060

1502 560： 3
1563 60cec3
154 \＆ 4614555
156 25 914567
1 56： 6 14：6： 1
156 C 7 －14613
$15: 36 \quad 014625$
15631 ：14663
$1503281<651$
15035 614675
15634014076
$15035-14677$
1543661476
$15 \div 3764761$
$15046 \quad 64742$
1564161475

$15 \therefore 43014705$
$15 \%<4014706$
15045015143
15646615144 recte
$15: 61$ とL0くらE
1556806670
15063606500
1566460068
15005 60世 4\％

15.67 60ccc

156796060
15 y 1160 Cl
157 E 16 coc
15 yS 16 6 6 3
154741006
16451065
$15: 7610606$
1557710607
15106160016
15101 100c11
15162 vereg
15162660 c
1510418457
$15105 \quad 6$
$13166 \quad 6<47$
$151 \% 7166 \%$
1011！16：vece

VLF：VL
DESE：DES
DEST：DES
IS3：SBETV ADD
CI1：19．；NO OF ：OFDS TO INITIALIEE
CIE：19．
DES：CKIIT
Criet
Chisi
CETAT
CEIST
ref
Firi
AFT
$\mathrm{AFT}+1$
$A F T+2$
$\mathrm{AFI}+3$
$\mathrm{AFT}+4$
$A \mathrm{Fi}^{1}+5$
$\mathrm{AFI}_{\mathrm{I}}+6$
$\mathrm{AFT}+7$
AFT＋16
$A \bar{T}+11$
ETCT
FVCC
－CK
1．；SPAKES
VL：
450 ；ARP
70 ；IDTH
4 CC ；AFEA
40．\quad F～

1
1
0
10 coc
106002
100063
10054
1006s
10066
1006e7
106016
166011
6
E
VETA：ISE ETCT ；INCEEAT GT
Ji，－+1 BHAY SAFE

GLC：1，1
fuvei 1,1
$15111182<15$
15110604456
15113 6． 477
15114126660
$151151<2<15$
15116 जलिए 4
$15117126 \angle 6$
15126446466
$151 \varepsilon 1$ बधल《11
151% 632く24
15163151604
15124 6世406
15125126520
$151 E 6<46420$
15197.0 .480

1513606415
15131 6́：477
1513 12 $6 E E$
$15132185<14$
15134 亿6＜
1515510 亿的
15136 亿 $4<15$
15137 戶低他
15148 66502
15141 ○¢еध6
1514263677
15143 206680

15145614521
$15146 \quad 14545$
15147 戶णण64
$1515 ; 524<11$
15151 亿36 46
1515 E 16 4 CO
15153 ， 4166
$1515 \angle 1514$ 亿化
1515515546
15156 66775
151576 C 14.
1516614555
$1516117767 E$

```
    S!S## 1,O,SNE ; CONPANE TO S!:ITCHES
    JSF ETSS
    READS 0
    ADC 1,1
    SUE# 1,g,SN
    JNF FCCL
    SUE 1,1
    STAS 1,REF ;FESET KEEPOFT FEO FLG
    JNF KSVC ;CHECK TO EEFO COUNTEFS
    LDAC 2,FEF
    MOV E.2,Sixf
    JNiF FSVC
    SLEEL 1,1
    STA0 1,F5F
    LEA GOHS4
    JSSE RE ;EEOLEST DISF OF PACE 3
    FFADS O
    ADC:K 1,1 ;CHECK FOR ALL ELTT SIGN ET SET
    SUE# 1,0,SEK
    JHF
    SUE B,O
    STA S,ETCI
    STA E,PVCC
    JSF! .2
        6
        HALT
        O
        FVCC:O
    FE:ALIS
    FFF:KRFL
    MSく: 4
        ZTES: 1 
            LLC
            SLIE
                #゙Tg: STA &,O,2
            INC E,E
            INC 1,1,SZV
            JWF EZTE
            Ji.jF ¢,3
            CiliF: C:ilT
            E.OCI: - 7%
            - EN:D
```

1， EC CT $; \mathrm{EFO}$ O FAN TAELES
2，CITTF
©， 6
r， 0,2
E． 2
$1,1,2 \mathrm{E}$
动配
厅， 3
； 7 FAV TAELES $\because 16 F A M S$

IV. ECG SIGNAL PREPROCESSOR

Development

As previously discussed six features of the QRS are to be continuously examined: amptitude, width, area under the QRS, Q-Q interval, max change in amptitude per unit time, and max amptitude of opposite sign. It was determined that by measuring the S to Q interval, determining an initial value amplitude of the QRS complex as it crosses the "K" apeture threshold level, and incrementaly measuring amptitude changes of the QRS complex software could be developed to calculate all of the QRS features needed. The processor to be discussed performs this pre-software signal processing.

The processor consists of a band pass filter which limits baseline drift and signal slew rate. Following this filter is a sample and hold circuit, difference amplifier, and a MOSFET switch which is sequentially selected for slope or amplitude data. In addition an A to D converter, a set of counters, and a 2 msec clock (which establishes the basic timing for the processor) establish the major signal processing circitry. The remainder of the circutry is involved in timing requirements for computer interfacing and data transfer.

In order to meaningfully synchronize the signal processor to the computer an interface code has been developed which permits the computer to dedicate its time to other jobs until an interrupt from the signal processor occurs signifying a QRS has exceeded the 'K" aperture threshold. This event starts the cycle sequence to be discussed.

CYCLE SEQUENCE

Note: Each device is referred to by its schematic designation and the board number where it is physically located. For example $\mathrm{Z5}-\mathrm{B} 3$ refers to J-K flip flop designated $Z 5$ located on board 3 of the signal processor chassis.

When an ECG exceeds the " K " apeture threshold level established by the front panel potentiometer setting, the next clock pulse from $21-\mathrm{B} 2$ sets $\mathrm{Z5}-\mathrm{B} 3$. Z5 \bar{Q} terminates counters $Z 1, Z 5$ ($B 4$). Simultaneously the interrupt pulse from $23-B 1$ begin. The first interrupt pulse clocks the counter data in the MUX ($Z 2, Z 6, Z 7,-B 4$) to the computer; then the computer generates a DATIA and DEVICE 37 code, toggling Z9A via $23-B 4$. This event converts Data Select Line Z9-Q from a 0 to a 1 establishing a Device Code 33 . Z9B- $\bar{Q}-\mathrm{B} 4$ has been keeping Q3-B1 in an "on" state permitting ECG amptitude data into the A/D (B2) which has been continuously converting but not sending its data to the computer since a Device Code 33 is required. When the 33 code is generated the MUX is activated for amp-slope data permitting the current ECG amp (initial value above "K" apeture) to be presented to the machine. Immediately the software generates a 33P pulse turning $Q 3-B 1$ "off" and $Q 2-B 1$ "on" thereby permitting slope data to be sent to the A/D. Slope data is calculated by taking the difference between the current value of the QRS amplitude and the previous value stored in the sample and hold circuit consisting of Q1 and AR2 on Board 1. The sample and hold circuit is updated every 2 msec . Figure IV-1 shows some of the important wave forms associated with this process. At the end of the slope data (software determined by slope settling) a 37 P code is generated resetting the initial conditions of $23-B 3$ and $25-B 3$ as well as $29-B 9$ thereby permitting the interval counters to begin again.

Each completed cycle resets the counters as described above and each time a QRS exceeds the " K " aperture level the value in the counters representing a length of line value, which when added to the width of the QRS (software calculated), provides the $Q-Q$ interval data. The width of the QRS itself is determined by the computers clock which is set when the QRS exceeds the "K" apeture threshold and is stopped when the slope of the $S-T$ segment flattens out. The remainder of data is calculated from the change in amptitude per unit time (2 msec) and the initial amplitude value.

Figure IV-1

Note constant amplitude of difference signal except at the peaks of the test signal where the shape changes sign:

V. SLEEP MONITORING SYSTEM M 133

CAP ASSEMBLY EVALUATION

The Work Plan on the following page is a summary of the objectives of the Sleep Monitoring Cap Assembly Evaluation Task. These objectives and several additional ones were accomplished during the program as discussed in this section.

SCI engineers worked closely with NASA-MSC engineers to develop techniques for refilling and refurbishing cap assemblies which were delivered under a previous contract. These techniques are documented in the NASA document MSC-06080, "Procedure for Refurbishing M133 Cap Assembly Electrodes". Supplies sufficient to refurbish quantities of caps for testing purposes were delivered to NASA-MSC.

Over 80 electrodes were built to flight specifications, but without flight inspection. Some of these electrodes were hand-carried by an SCI engineer to the Union Carbide facility to Boundbrook, New Jersey. Approximately 50 electrodes were coated with a l-mil. thickness of Parylene C. The process appeared to be a feasible one, and the enviroments were not too harsh for the electrodes. Union Carbide has used this Parylene C coating process on other flight hardware and is equipped to handle the quality control procedures associated with flight hardware. Thus, if this study were to prove that the Parylene coating provides a sufficient moisture barrier for the electrodes, it would be suggested that Union Carbide apply the coating as a subcontract activity after the electrodes are coated with the vinyl coating, but before they are filled with electrolyte.

WORK PLAN
SLEEP MONITORING SUPPORT PROGRAM

1. Build 70 electrodes to flight specifications using commercial parts and including 100% inspection - do not fill with electrolyte.
2. Ship electro.ies to Union Carbide for application of Parylene.
3. Manufacture 6 sleep caps to flight specifications using commercial parts and excluding 100% inspection.
4. Fill Parylene-coated electrodes with electrolyte, mount to caps with vinyl sheet backing, assemble final cap assembly, seal in retort stock bags. 久
5. Store caps on shelf for periodic opening and inspection.
6. Do a literature material search for coating materials that would make electrodes less permeable to water vapor.
7. Try out various coating materials on electrode samples.
8. Explore other methods for increasing the shelf life of the cap assemblies.
9. Support NASA-MSC as required in refurbishment of existing cap assemblies.
10. Support NASA-MSC in tests involving cap assemblies.
11. Coordinate all activities with Dr. Frost and NASA-MSC.
12. Report activities and results to NASA-MSC.

Work Plan (Cont'd)
Sleep Monitoring Support Program
13. Write process specifications for any new processes designed to increase shelf life.

This task specifically excludes the following activities:

1. Thorough studies of the effects of ambient pressures on the electrodes and studies of methods for alleviating these effects.
2. Studies of electrostatic discharge design changes and modifications of the cap assembly not related to increasing its shelf life.

One problem was experienced during the evacuation of the coating chamber prior to the first application of Parylene. The vinyl coating on some of the electrodes was stretched out of shape by air entrapped on the back side of the electrode. Of the batch of electrodes, approximately 20 did not stretch. It is felt that, in the future, a small hole be placed on the back side of the electrodes to allow this trapped air to escape without deforming the vinyl coating. (This procedure was subsequently shown to work in preventing this problem).

The electrodes were filled with electrolyte using flight specifications and procedures. Caps were manufactured and the electrodes were attached to the caps in the following configurations:

1. Parylene coated electrodes (7) attached to a layer of vinyl 20 mils . thick and then cemented to cap.
2. Standard electrodes (7) attached to a layer of vinyl 20 mils . thick and then cemented to cap.
3. Standard electrodes (7) cemented directly to a cap in a standard (control) configuration.

One cap assembly of each type was placed in the clean bench on March 28 without being bagged. One cap assembly of each type was bagged under an evacuated nitrogen atmosphere using standard procedures. In addition, five electrodes of each type have been left exposed to room ambient conditions without being attached to a cap.

A11 of the electrodes and cap assemblies were weighed on a daily basis. Preliminary results were that the Parylene-coated electrodes are loosing weight at a far less rapid rate than those that were uncoated.

The following configurations of electrodes and cap assemblies were stored for life testing at the end of March, 1972:

1. Completed Electrodes, Untagged
A. Parylene-Coated
B. Original Configuration
2. Completed Cap Assemblies, Unbagged
A. Parylene-Coated, Vinyl-Backed
B. Non-Parylene-Coated, Viny1-Backed
C. Original Configuration
3. Completed Cap Assemblies, Bagged
A. Parylene-Coated, Vinyl-Backed
B. Non-Parylene Coated, Vinyl Backed
C. Original Configuration
4. Cap Only, Without Electro odes, Unbagged

It was found that the unbagged caps varied in weight directly with the relative humidity of the room. Thus, a cap was built without electrodes and left exposed to the same room environment as the unbagged test cap assemblies.

Figure 1 is a plot of the weights of the three different configurations of unbagged cap assemblies versus the days from the start of the test. It is anticipated that an exponential decrease in weight will occur when the caps are exposed to laboratory ambient conditions for a sufficiently long period of time. For this plot, a straight line approximation has been made. Thus, the following weight losses were measured for the 40 -day duration of test data:

1. Parylene-Coated, Vinyl-Backed - 0.015 grams/day
2. Non-Parylene-Coated, Vinyl-Backed - 0.015 grams/day
3. Original Configuration - 0.130 grams/day

Thus, the loss in weight was significantly reduced by the 1 -mil thickness of Parylene coating. The average weight of electrolyte per electrode was 1.25 grams per cap assembly. The original configuration cap assembly lost approximately 5.10 grams (or 58.2%) of its electrolyte in 40 days, while the Parylenecoated electrodes lost only 0.6 grams of its electrolyte over the same period of time. Some improvement in weight loss was ubserved on the cap which was built with a vinyl-backing but without Parylene. On the basis of these data, it would appear that the loss of electrolyte is improved by approximately an order of magnitude by the use of the Parylene coating.

The moisture absorbing properties of the cap material are apparent from Figure 2. This property makes the interpretation of a limited amount of early data difficult.

The weights of the caps which have been sealed in the metallized bags have not changed more than +0.01 grams for the entire 40 -day period -- the resolution of the scale being used. Thus, it appears that the metallized bag is retaining the electrolyte within its boundaries.

Table I is a summary of the data from Parylene-coated and non-Parylene coated electrodes taken of May $1,1972,34$ days after the start of the test.

FIGURE 2

Weight of Cap Without Electrodes and Relative Humidity of Laboratory Versus Days From Start

TABLE I

SUMMARY OF DATA AFTER 34 DAYS

Electrode Number	Parylene Coated	Original Weight	Weight of Electrolyte	Weight on 5/1/72	Weight Change In 34 Days	$\begin{gathered} \text { Electrolyte } \\ \text { Loss } \\ \hline \end{gathered}$
12	No	4.84	1.70	3.97	0.87	51\%
13	No	4.75	1.49	3.90	0.85	57\%
14	No	4.92	1.67	4.19	0.73	44\%
105	No	5.26	2.11	4.28	0.98	46\%
123°	No	4.59	1.44	3.75	0.84	58\%
3	Yes	4.82		4.77	0.05	2.9\%
4	Yes	4.80		4.76	0.04	2.4\%
5	Yes	4.62	Avg. $=1.7$	4.59	0.03	1.8\%
6	Yes	4.90		4.85	0.05	2.9\%
7	Yes	4.64		4.60	0.04	2.4\%

The average loss of electrolyte for the uncoated electrodes is 51% after 34 days while it is only 2.5 for the Parylene-coated electrodes over the same period of time. Figure 3 is a plot of the weights of two representative samples of electrodes, coated and uncoated. The improvement in weight loss due to the Parylene coating is obvious.

On the basis of the test results, it must be concluded that the Parylene coating reduces the electrolyte loss by approximately an order of magnitude. Thus, the shelf life of the coated electrodes is predicted to be sufficiently long in order to permit immediate fabrication for Project Skylab usage.

It is obvious that the 1 -mil thickness of Parylene reduces the flexibility of the tip of the electrode. It is felt that this will not significently impair the comfort of the cap, and limited tests were run to insure that this is true.

During the month of April, SCI manufactured and delivered two prototype caps with conductive thread sewed into the fabric and with a resistor included within a cover patch. This design was to provide a safe electrostatic discharge path. The Principal Investigator (PI) subsequently tested and approved this design.

Of the two samples of conductive thread furnished by NASA-MSC, the KARMA No. $1219015 z$ was chozen as being the most satisfactory from a handing viewpoint. A zig-zag stitch was used to loop the thread around the cap. The resistor was connected to the thread by wrapping the thread around the lead wires and further securing the junction with conductive epoxy. The cap drawings weremodified in accordance with the chosen approach.

$$
\begin{aligned}
& \text { - } 0 \text { Couffel atsserto. } \\
& \text { - - U UNCOATED NO. } 4
\end{aligned}
$$

The differences in weight loss and performance between these two caps are obvious. The Parylene coating is reducing the loss of electrolyte from the individual electrodes; however, the performance of the Parylene-coated cap assembly is still marginal after this period of time.

The lectrodes were dissected and inspected. Inspection of the silver chloride plated disc within some of the electrodes revealed the onset of corrosion, especially in the Parylene-coated electrodes. Measurement of dc resistance between pins of the cap connector revealed low resistance paths (on the order of 100 M) between electrodes. Thus, a conductive path exists across the cap, between wires, and/or between pins on the connector. Electrolytic corrosion and possible electrolysis of the water in the electrolyte are suspected because of the dissimilar metals used within this assembly.

Modified sized cap patterns were received from NASA-MSC. These patterns were designed by the PI for a better fit in the EOG and occipital regions of the cap. Prototype caps were built with this pattern and furnished for further evaluation.

New cap materials were submitted to NASA-MSC for approval during May. The cap patterns and conductive thread routing were finalized during the program.

The three experimental cap assemblies which were sealed in flight bags on March 28, 1972 were opened on May 23, 1972. The results of the tests on these caps were observed by the PI, NASA-MSC representatives, and SCI bioengineers. The data taken on this date are summarized below.
I. Original Configuration Cap (Bagged)

The weight of this cap just prior to bagging on March 28 , 1972 was 78.90 grams. The weight of the cap when it was removed from the bag on May 23, 1972 (56 days later) was 78.87 grams. The relative humidity in the room at the time of unbagging was 64% and the temperature was $75^{\circ} \mathrm{F}$.

The following weight changes were observed on this cap:
78.90 grams - when bagged
78.87 grams - when unbagged
78.46 grams - $2-1 / 2$ minutes after unbagging
78.33 grams - 5 minutes after unbagging
78.20 grams - 6-1/2 minutes after unbagging

The cap was prepared for application and applied. The following data were taken utilizing the NASA-MSC electrode impedance measuring instrument.

Subject: C.R. Booher
Times Measured from application
101

Impedances

Time	EOG 1	EOG 2	C1	C2	01	02
1 min.	1 M	1 M	1 M	1 M	1 M	1 M
3 min.	440 K	120 K	150 K	200 K	740 K	385 K
5 min.	490 K	130 K	150 K	175 K	600 K	310 K
On SMS	NO	YES	YES	YES	NO	NO

The last line in this table indicates how the electrodes checked when the cap assembly was connected to the SMS DVTU approximately six minutes after application.

II. Parylene-Coated, Vinyl Backed Cap (Bagged)

The following data were taken on this cap:
Temperature - $75^{\circ} \mathrm{F}$ Relative Humidity - 64%
Weight prior to bagging (3-28-72) 83.95 grams
Weight after unbagging (5-23-72) 83.92 grams
Weight 2-1/2 minutes after unbagging 83.78 grams
Weight 5 minutes after unbagging $\quad 83.70$ grams

Times measured from application
Subject: C.R. Booher

Time	EOG 1	EOG 2	C1	C2	01	02
1 min.	1 M	50 K	100 K	91 K	310 K	240 K
3 min.	1 M	55 K	100 K	80 K	250 K	185 K
5 min.	1 M	42 K	86 K	77 K	200 K	150 K
On SMS	NO	YES	YES	YES	YES	YES

A meeting followed this test at which the following items of cap assembly critique were discussed:

1. Pouch - Two objectives were found with the current pouch; (1) the preamplifier can slip out at a corner and (2) the electrodes under the pouch are difficult to "rock" during the electrode stabilization period.

Action - Look at making pouch smaller or at designing shell for preamplifier.
2. Silicone Electrode -to-Wire-Seal - The electrode-to-wire seal at the base of the electrode was thought to be too large and might ittitate the scalp. It is required to seal the Vyna-Kote to the siliconeinsulated wire.

Action - Make smaller.
3. Wire Routing on Cap - The wire on the cap is sufficiently tight to not allow a full stretch of the fabric.

Action - Allow more slack in the electrode wires.
4. Strain Relief on Cap Connector - The strain relief on the cap connector is too long and interferes with preamplifier installation. Action - Reduce length of strain relief. Suggest looking at NASA-MSC strain relief molds for this application.
5. Bond between Parylene and Spandex - Samples of epoxy bonding were shown.

It was decided that the epoxy stiffened the back of the electrodes enough to reduce the comfort of the cap.

Action - Find a flexible adhesive that. will adhere to both the Parylene and the Spandex. (Subsequently, it was shown that a silicone adhesive, with proper cleaning and priming of all surfaces, will do an excellent job for this application.)

103
6. Continuity of Conductive Thread - A completed cap assembly with
conductive thread and current-1imiting resistor was shown for approval. It was pointed out that the continuity of the conductive thread must be assured.

Action - Make sure that the continuity of the conductive thread is checked at several points in the ATP. The routing on the conductive thread and the mounting of the resistor were approved.

Electrodes were built for life testing of wire attachment of back of silver disc. Five electrodes were built using Eccobond conductive epoxy and Scotch case 8 epoxy sealant. Five additional electrodes were built using silver bearing solder and RTV-112. These electrodes were filled with electrolyte and sealed in metallic bags for inspection at a later date. A decision on which approach to use was made prior to the completion of SMEAT. The silver-bearing solder and RTV-112 will be used.

On June 12, 1972, a design review of the cap assemblies was conducted at NASA-MSC. Several decisions on the configuration of the cap assemblies were made as documented in the minutes of this meeting.

A two-part connector mold that has been used at NASA-MSC for several years was evaluated by SCI for potential use on the SMS cap assemblies. Drawings were generated for this new potting procedure for the strain relief of the cap connector.

All drawings, process specifications, and material specifications were updated. to reflect the latest changes in configuration.

Four caps were built from government-furnished, flameproof "Spandex". One was delivered with electrodes and one without. Two chain strap assemblies were built and delivered to NASA-MSC.

Two special caps were built and delivered to the PI in November. These caps were wired such that the 01 and 02 electrodes and the $C 1$ and $C 2$ electrodes were in parallel. The ground electrode: was also relocated on these caps.

This configuration was subsequently approved for the remainder of the cap assemblies.

Meetings with the $P I$ and NASA-MSC representatives resolved two remaining problems. It was decided to package the cap assemblies in the metallized bags with small holes punched in the corners to allow ambient pressure equalization The one-mil thick coating of Parylene was causing some irritation of the skin local to the cut-off electrode tip and was causing the wire (also coated in the process) to bend at right angles such that it appeared to break. It was decided to reduce the thickness of the coating to approximately 0.5 mil . Electrodes which were subsequently coated appeared to be improved in the qualities of concern.

All of the objectives of this program have been completed and flight cap assemblies are currently being manufactured which incorporate all of the improvements identified and tested during this program.

