UNIVERSITY OF ILLINOIS

ANALYSIS OF PARTIAL-REFLECTION DATA FROM THE SOLAR ECLIPSE OF JULY 10, 1972

October 1, 1973

Natiomal Aeronautics and Space Administration Grant NGR 14-005-181

Aeronomy Laboratory
Department of Electrical Engineering
University of Illinois
Urbana, Illinois

CITATION POLICY

The material contained in this report is preliminary information circulated rapidly in the interest of prompt interchange of scientific information and may be later revised on publication in accepted aeronomic journals. It would therefore be appreciated if persons wishing to cite work contained herein would first contact the authors to ascertain if the relevant material is part of a paper published or in process.

AERONOMY REPORT

$$
\text { N } 0 . \quad 55
$$

ANALYSIS OF PARTIAL-REFLECTION DATA FROM

THE SOLAR ECLIPSE OF JULY 10, 1972

by
T. A. Bean
S. A. Bowhill

October 1, 1973

PRECEDING PAGE BLANK NOT FILMED

Abstract

Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. Except for a couple of changes, the experiment was the same setup as used by Birley and Sechrist [1971]. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.

TABLE OF CONTENTS

Page
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES v

1. INTRODUCTION 1
2. PRODUCTION AND LOSS OF THE D-REGION IONIZATION 5
2.1 Ionization Sources. 5
2.2 Formation of Ions in the D Region 8
2.3 Recombination 13
2.4 Expected Results. 14
2.5 Statement of the Problem 15
3. EXPERIMENTAL TECHNIQUE 19
3.1 Development of Receiving and Storing Data 20
3.2 Partial-Reflection Data Collection for the Solar Eclipse 26
3.3 Real-Time Data Storage and Automatic Processing 37
3.4 Noise Rejection 43
3.5 Converting A /A Ratios to Electron-Density Profiles 48
3.6 Equipment Testing 51
3.7 Future Development 54
4. EXPERIMENTAL RESULTS 55
4.1 Reduction of Data 55
4.2 Electron-Density Results 58
4.3 Theoretical Applications 64
4.4 Summary 71
5. CONCLUSIONS 77
5.1 Review of Results 77
5.2 Suggestions for Further Work 78
REFERENCES 81
APPENDIX 86

LIST OF FIGURES

Figure Page1.1 The obscuration function of visible light at a heightof 75 km for the eclipse of July 10, 1972, nearUrbana, Illinois2
1.2 Obscuration functions for visible light (V), Lymanalpha (L_{α}) ultraviolet (UV), and X-ray (X) ionizingfluxes for the 1966 solar eclipse from Sears [1972]. 3
2.1 Ion-pair production rates from various D-region ioniza-tion sources as given by Sechrist [1972] 72.2 Average variations in 2-8 A X-ray flux during whichpartial-reflection data were collected on July 9, 10,and 11, 19729
2.3 Flow diagram of the formation of positive ions includingconversion rates [Donahue, 1972]. Three-body rate con-stants are in units of $10^{-28} \mathrm{~cm}^{6} \mathrm{sec}^{-1}$; two-body rateconstants not given by Donahue are from Good, et at. [1970]. . 102.4 Block diagram [Thomas, 1971] showing the negative ionchemistry during the day. The lifetimes of electronsand each ion are for a height of 65 km12
2.5 The variation of the solar zenith angle for July 10 ,
1972. The partial-reflection data collection periodis shown as well as the time of maximum obscurationfor the eclipse16
Figure Page
2.6 Variation of electron density during a solar eclipse at March equinox, mid-day, and sunspot minimum, at middle latitudes [Deeks, 1966] 17
2.7 Electron-density profiles for the eclipse of July 20,1963 [Smith, et al., 1965]. Profiles 1, 2, 3, and 4refer to obscurations of $92 \%, 86 \%, 40 \%$, and 2%, re-spectively. The solar zenith angle was 55° at tetalityand 61° at 40% obscuration 183.1 Block diagram of the partial-reflection transmitter.21
3.2 Partial-reflection antenna arrays for the Aeronomy
Field Station 22
3.3 Block diagram of the partial-reflection system 23
3.4 Typical frame of data as collected by Henry [1966] 24
3.5 Block diagram of the revised receiver used to operate with a PDP -15 computer 28
3.6 The RF amplifier module for the receiver 29
3.7 The IF and DC amplifier module 30
3.8 The encode pulses as set up by Birley and sechrist [1971] used to collect data during the eclipse, and the revised encode pulses used by the present programs 31
3.9 The encode pulse circuitry used to produce the former and present encode pulses. 32
3.10 Graphs of the input versus output of the receiver usedfor eclipse data collection (old receiver) and the re-ceiver presently being used. The input and output values
Figure Page
have been normalized to the maximum of the A / D converter (511) 34
3.11 The wiring diagram used to calibrate the receiver. The voltmeter is used in setting the initial signal level prior to calibrating 353.12 A diagram of the control flow of the partial-reflectionprograms. The programs operate on the API level of thepreceding program unless otherwise stated. The collec-tion and processing programs operated in parallel withthe collection programs operating on API levels 5 and 6whereas everything else operates serially. 41
3.13 A flow chart of the processing program PROC. 46
3.14 The collision frequencies used in the program CALCto obtain electron-density profiles. 50
4.1 Comparison of electron-density profiles on July 10and 11, 1972. The data were taken at 1432 CST withthe attenuator set at 30 dB .56
4.2 Comparison of the A_{x} / A_{o} ratio at 72 km for July 9, 10 , and 11 59
4.3 Comparison of the A_{x} / A_{o} ratio at 75 km for July 9 , 10 , and 11 60
4.4 Comparison of the A_{x} / A_{0} ratio at 78 km for July 9, 10 , and 11 61
4.5 Median electron densities between 75 and 82.5 km 62
4.6 Median A_{x} / A_{o} profiles between 1400 and 1500 CST for each day 63

4.7 Average electron densities for the three days using
method two 65
4.8 Median electron densities between 67.5 and 75 km 664.9 Median electron-density profiles between 1400 and1500 CST67
4.10 Electron production rate between 75 and 82.5 km during the eclipse and during the control days. The NO distribu-
tion used is from Meira [1971] 69
4.11 Theoretical electron densities between 75 and 82.5 km for eclipse and control day; calculated using an $\alpha_{\text {eff }}$ of 1.77×10^{-6}. 70
4.12 The ratio of electron densities for the average of the control day as compared to the unobscured sun. 72
4.13 The graph of the ratios of the theoretical [e] for the unobscured sun to the experimental [e] for the eclipse as compared to the unobscured sun. The $\alpha_{\text {eff }}$ used for 75 to 82.5 km is 1.77×10^{-6} and for 78 to 87.5 km is $8.46 \times 10^{-7} .73$
4.14 Scatter plot correlating the electron density for July 9, 1972 between 75 and 82.5 km to the solar zenith angle.74
4.15 The graph of the ratio of theoretical electron densities to the experimental electron densities for July 9 and 10 , 1972 75
5.1 Rocket measurements of the positive-ion chemistry by Krankowsky, et al. [1972]. 79

1. INTRODUCTION

A solar eclipse can be thought of as the obscuration of solar radiation by the intervention of the moon between the sun and a point on the earth. This obscuring of the sun is a function of time which varies with the location on the earth, altitude, and the type of radiation. Depending on the wavelength of solar radiation and the ionospheric constituents, solar radiation can cause three chemical processes known as dissociation, ionization and excitation [Whitten and Poppoff, 1971]. The variation in solar radiation with time during a solar eclipse is given as an obscuration function and varies according to the different wavelengths of radiation. The obscuration function for visible light is easily calculated, being just that for the visible disk. Figure 1.1 shows this obscuration function for the eclipse of July 10,1972 at 75 km altitude above the University of Illinois Aeronomy Field Station located near Urbana. At this location the eclipse was partial, with about 60% maximum obscuration. The obscuration functions for various other radiations during a total eclipse are shown in Figure 1.2 [Sears, 1972]. Notice the large difference between the obscuration functions for ultraviolet radiation and X-rays.

Solar radiation with wavelengths less than 2900 A causes various chemical reactions in the ionosphere [Whitten and Poppoff, 1971] with the most pronounced effects occurring in the D-region (50 to 90 km). For example, Turco and Sechrist [1970] show two orders of magnitude change in the electron density and more than three orders of magnitude change in $\mathrm{CO}_{3}{ }^{-}$and $\mathrm{CO}_{4}{ }^{-}$at 75 km during sunrise. Certain solar radiations greatly enhance the concentration of positive ions as well as the electron density so that during the daytime, except for during enhanced particle precipitation [Lauter and Knuth, 1967], the main ionization source above 70 km

Figure 1.1 The obscuration function of visible light at a height of 75 km for the eclipse of July 10, 1972, near Urbana, Illinois.

Figure 1.2 Obscuration functions for visible light (V), Lyman alpha (L_{α}), ultraviolet (UV), and X-ray (X) ionizing fluxes for the 1966 solar eclipse from Sears [1972].
is solar radiation as given in Section 2.1. Therefore by correlating the electron densities with the obscuration function for the ionizing radiation in a solar eclipse, values for the production and loss of positive ions and confirmation of the ionizing sources can be obtained.

Data from the D region have been obtained by both rocket measurements and ground-based techniques. Although rocket measurements seem to be more accurate [Mechtly, et al., 1967], the amount of data is limited by cost. Ground-based techniques can be set up anywhere and can gather large amounts of data, although the accuracy is not as great, and they are primarily limited to evaluating electron densities. One type of ground-based technique which is discussed in this paper is called the partial-reflection experiment. Data are collected using vertical incident radio waves which are partially reflected from the D region. The information obtained can be in one of two forms: differential absorption [Pirnat and Bowhill, 1968] and differential phase [Wiersma and Sechrist, 1972]. Partial-reflection data using the differential absorption method were collected from 1200 to 1700 CST for the solar eclipse of July 10, 1972, as well as July 9 and 11 as control days. The experiment was set up as described by Birley and Sechrist [1971] with two exceptions as described in Chapter 3. The solar and ionospheric conditions for this experiment are given in Chapter 2.

2. PRODUCTION AND LOSS OF THE D-REGION IONIZATION

Recently several papers have summarized the knowledge of the D region of the ionosphere. Thomas [1971] presents an overall review of the D region while theoretical models of the D region are presented by Sechrist [1972], Ferguson [1971], Donahue [1972], and RadiceI7a and Stowe [1970]. The D region is perhaps the most complicated part of the ionosphere as well as the most difficult part from which to obtain accurate data. The chemical composition is dependent on height and solar zenith angle [Thomas, 1971]; although it consists of neutral constituents, positive ions, negative ions, and free electrons, this chapter is mainly concerned with the processes of formation and loss of free electrons during the daytime (solar zenith angles less than 90°) and during a solar eclipse. Using results obtained from measurements on other eclipses, the expected results from the partial-reflection experiment are given.

2.1 Ionization Sources

Although there is general agreement on what ionizes the neutral D-region constituents, there is some doubt as to the relative importance of each source. The ionization sources for the daytime D region at midlatitudes, as given by Mitra and Rowe [1972] and by Aikin [1972] are:

1) Lyman- α (1216 A) ionizing nitric oxide (NO)
2) $1-8 \AA \mathrm{~A}$-rays ionizing all constituents
3) $1027-1118 \mathrm{~A}$ ultraviolet radiation ionizing metastable $0_{2}\left({ }^{1} \Delta_{g}\right)$
4) Galactic cosmic rays ionizing all constituents.

Along with these sources precipitating electrons may be considered another source of free electrons, but is of prime importance only in the polar regions, at night, or after a magnetic storm [Lauter and Knuth, 1967] and will not be considered in this paper.

The primary ionization source below 70 km is considered to be galactic cosmic rays [Sechrist, 1972], although its effect may extend as high as 75 km [Keneshea, 1967]. The primary ionization source above 70 km is either (1) or (3) depending upon the nitric oxide distribution adopted: Few measurements of nitric oxide have been made, so most distributions available are from theoretical models. Distributions measured by Barth [1966] and Pearce [1969] are at least an order of magnitude greater than distributions calculated from theoretical models of the ionosphere [Mitra, 1966], but distributions measured by Meira [1971] below 85 km are about the same as those calculated by Shimazaki and Laird [1970]. Using distribution by Barth [1966] for NO, the primary ionization source between 70 and 80 km is Lyman- α ionizing NO, but using nitric oxide distributions given by Shimazaki and Laird [1972] and photoionization rates for $\mathrm{O}_{2}\left(1_{\Delta_{g}}\right)$ given by Hunten and McElroy [1968], the main ionization source between 70 and 80 km is 1027-1118 A UV radiation ionizing $\mathrm{O}_{2}\left(\mathrm{I}_{\Delta_{g}}\right)$ [Thomas, 1971]. Somoyajulu and Avadbanulu [1972] pointed out that according to measurements by Huffman, et al. [1971], photoionization of $\mathrm{O}_{2}\left({ }^{l} \Delta_{g}\right)$ is important only above 80 km making Lyman- α the main ionization source. Figure 2.1 from Sechrist [1972] shows ion-pair production rates for various radiation during solar minimum. In any case the distribution of $N O$ is important to the rate of production of free electrons between 70 and 80 km , and the distribution by Meira [1971] is used in this paper.

The variation of ionization sources (1) and (3) with respect to solar activity is small [Thomas, [1971], but 2-8 A X-ray flux can change by several orders of magnitude. Typical X-ray fluxes for different solar activity as given by Aikin [1972] are less than 4×10^{-3} ergs $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ for a quiet sun, between 4×10^{-4} and 4×10^{-3} ergs $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ for moderate sun, and greater than 4×10^{-3} ergs $\mathrm{cm}^{-2} \mathrm{sec}^{-1}$ for an active sun. A solar flare on July 11 at

Figure 2.1 Ion-pair production rates from various D-region ionization sources as given by Sechrist [1972].

8:10 AM CST produced a 2-8 A X-ray flux of $1.5 \times 10^{-2} \mathrm{ergs} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$. With an active sun or a solar flare $2-8 \AA$ X-ray ionization can become the primary source of ionization. The $2-8 \AA$ flux for July 9, 10, 11 in Figure 2.2 from the Solar Geophysical Data, 1973 (U. S. Department of Commerce) shows the solar activity to be quiet to moderate. The X-ray flux is expected to have little or no correlation with the electron density of the upper D region except for the X-ray burst near 1435 on July 11.

2.2 Formation of Ions in the D Region

The electron density between 70 and 85 km is dependent on the formation of positive ions. The three main ionization reactions for this region are:
A) $\mathrm{O}_{2}+h \nu \rightarrow \mathrm{O}_{2}^{+}+e$
B) $\mathrm{NO}+h \nu \rightarrow \mathrm{NO}^{+}+e$
C) $\mathrm{N}_{2}+h \nu \rightarrow \mathrm{~N}_{2}^{+}+e$
as seen in Figure 2.3 adapted from Mitra and Rowe [1972] and Donahue [1972], which is a block diagram of the positive-ion chemistry at 75 km . The main loss process for $\mathrm{N}_{2}{ }^{+}$is by the charge-exchange reaction:
D) $\mathrm{N}_{2}{ }^{+}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$.

This reaction is very fast ($1 \times 10^{-10} \mathrm{~cm}^{3} \mathrm{sec}^{-1}$) [Fehsenfeld, et al., 1965]. Therefore concentrations of $\mathrm{N}_{2}{ }^{+}$are small and the production of $\mathrm{O}_{2}{ }^{+}$is either by photoionization or by charge transfer. Electron production, therefore can be determined by the production of NO^{+}and O_{2}^{+}minus the formation of NO^{+}by charge exchange reactions shown in Figure 2.3. Since the production of NO^{+}is dependent on NO distributions, the production rate of the free electrons also depends on the NO distribution which can differ by at least an order of magnitude (Section 2.1).

The main positive ions between 70 and 80 km are hydrated ions of the form $\mathrm{H}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) n$, n being some number greater than zero [Naraisi and Bailey, 1965].

Figure 2.2 Average variations in 2-8 \AA X-ray flux during which partial-reflection data were

Figure 2.3 Flow diagram of the formation of positive ions including conversion rates [Donahue, 1972]. Three-body rate constants are in units of $10-28 \mathrm{~cm} 6 \mathrm{sec}^{-1}$; two-body rate constants are in units of $10^{-9} \mathrm{~cm}^{3} \mathrm{sec}^{-1}$. Rate constants not given by Donahue are from Good, et al. [1970].

Two basic reaction schemes for the formation of water cluster ions as presented by Fehsenfeld and Ferguson [1969] are from NO^{+}and beginning with the reaction $\mathrm{O}_{2}^{+}+\mathrm{O}_{2}+M \rightarrow \mathrm{O}_{4}{ }^{+}+M$ where M is a third body. Both schemes are given in Figure 2.3. Each scheme raised several questions which are dealt with by Donahue [1972]. According to Figure 2.3, NO^{+}creates hydrates with masses of 55 and higher, yet 19^{+}and 37^{+}are the dominant hydrates detected. Also the first three reactions with NO^{+}are ton slow relative to the loss rate. Problems with the $\mathrm{O}_{2}{ }^{+}$ scheme are; it seems to ignore the large NO^{+}concentration and the ionization of $\mathrm{O}_{2}\left({ }^{1} \Delta_{g}\right)$ seems to be an overestimation according to Huffman, et al. [1971], but this may be the main source of water clusters between 77 and 85 km [Donahue, 1972]. Even with the large number of hydrated ions, the rapid recombination rate competes with the formation of hydrated ions [Thomas, 1971]. This recombination represents the main loss process for free electrons between 70 and 80 km .

The formation of negative ions would constitute a loss of free electrons by the attachment reaction;
E) $e+\mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}+\mathrm{O}_{2}$.

Figure 2.4 by Thomas [1971], giving a scheme for the daytime negative electrons at 65 km , shows reaction (E) to be fast, but the loss reactions
F) $\mathrm{O}_{2}{ }^{-}+\mathrm{O} \rightarrow \mathrm{O}_{3}+e$
G) $\mathrm{O}_{2}{ }^{-}+\mathrm{O}_{2}\left({ }^{1} \Delta_{g}\right) \rightarrow 2 \mathrm{O}_{2}+e$
are much faster. Although the formation of $\mathrm{O}_{4}{ }^{-}$is rapid, there is rapid return to $\mathrm{O}_{2}{ }^{-}$. The negative ion chemistry is dependent on atomic oxygen and $\mathrm{O}_{2}\left({ }^{1} \Delta_{g}\right)$ concentrations. At night these concentrations decrease so that reaction (E) constitutes an important loss process for free electrons.

At eclipse totality free electron production is reduced to that comparable of nighttime electron production, and the production of atomic oxygen and metastable $0_{2}\left({ }^{1} \Delta_{g}\right)$ are also greatly reduced [Shimazaki and Laird, 1972]. By

$\begin{array}{ll}\text { Figure } 2.4 & \begin{array}{l}\text { Block diagram [Thomas, 1971] showing the negative ion chemistry during the } \\ \text { day. The lifetimes of electrons and each ion are for a height of } 65 \mathrm{~km}\end{array}\end{array}$ day. The lifetimes of electrons and each ion are for a height of 65 km .
comparison of eclipse data, Mechtly, et al. [1972] shows the possibi1ity of attachment reactions as being the main loss process at totality. This would mean a large reduction in 0 and $O_{2}\left({ }^{1} \Delta_{g}\right)$, but the reduction measured by Hunt [1965] during an eclipse shows less than an order of magnitude change in atomic oxygen. More measurements of atomic oxygen are needed during eclipses to determine more accurately the loss process for free electrons during totality of a solar eclipse.

2.3 Recombination

Above 70 km during the daytime, negative-ion chemistry is not important; so the main loss process of free electrons above 70 km is by recombination with positive ions. The continuity equation for electrons as given by Whitten and Poppoff [1971] is:

$$
\begin{equation*}
\frac{d[e]}{d t}=\left(\frac{q}{1+\lambda}\right)-\left(\alpha_{D}+\lambda \alpha_{i}\right)[e]^{2}-\left(\frac{[e]}{1+\lambda}\right) \frac{d \lambda}{d t} \tag{2.1}
\end{equation*}
$$

where [e] is the electron density, λ is the ratio of negative ion concentrations to electron densities, q is the ionization rate, α_{D} is the ion-electron recombination coefficient, and α_{i} is the ion-ion recombination coefficient.

With the assumption that variation in λ is insignificant, then $d \lambda / d t=0$ and defining an effective recombination coefficient as $\alpha_{\text {eff }}=\alpha_{D}+\lambda \alpha_{i}$, Equation (2.1) reduced to:

$$
\begin{equation*}
\frac{d[e]}{d t}=\left(\frac{q}{1+\lambda}\right)-\alpha_{e f f}[e]^{2} \tag{2.2}
\end{equation*}
$$

During a solar eclipse at totality, the electron production decreases by several orders of magnitude. Using an ionization rate of zero ($q=0$), $\alpha_{\text {eff }}$ can be obtained from Equation (2.3) for short intervals of time.

$$
\begin{equation*}
\alpha_{e f f}=\frac{\Delta[e]}{\Delta t}[e]^{2} \tag{2.3}
\end{equation*}
$$

With small changes in the electron density $\alpha_{\text {eff }}$ can be obtained by the approximation [Mitra and Rowe, 1972]

$$
\begin{equation*}
\alpha_{\mathrm{eff}}=q /[e]^{2}(1+\lambda) \tag{2.4}
\end{equation*}
$$

Below 70 km the problem is complicated by the presence of negative ions [Mitra and Rowe, 1972] for which a time dependent analysis of the negative reaction scheme has to be used [Thomas, 1971]. As discussed in Section 2.2, there is the possibility of loss by attachment. Many problems about the loss process still remain unsolved including the question of the NO distribution.

2.4 Expected Results

Figure 1.2 by Sears [1972] gives the obscuration function for different D-region solar ionization sources from the eclipse of 1966. Lyman- α and visible light have the same obscuration function but not so with $U V$ and X-rays. The obscuration function for visible light at Urbana, Illinois for July 10, 1972 (Figure 1.1) is therefore expected to be different from the obscuration function for ultraviolet radiation and X-rays. Using the maps of the sun given in Solar-Geophysical Data, 1972 (U.S. Department of Commerce) and the moon's movement across the sun's disk, an idea of the obscuration function for different solar radiations can be obtained. Since the solar activity during the eclipse was quiet to moderate, the predominate ionization source between 70 and 80 km is expected to be Lyman- α.

The total obscuration is about 60%, therefore data is used from previous eclipses with a similar obscuration and about the same solar zenith angle. The
solar zenith angle is shown in Figure 2.5 to be about 37°. Figure 2.6 by Deeks [1966] gives various electron densities for an eclipse during March equinox noon at sunspot minimum. Figure 2.7 by $S m i t h$, et al. [1965] gives electron density distributions for various obscurations of the eclipse of July 20, 1963. In Figure 2.6 the electron density for 60% obscuration shows little change until above 70 km . For Figure 2.7 at 40% obscuration the electron density at 75 km has no change while above and below this altitude show marked changes. Below 75 km the change is, therefore, expected to be no larger than above 75 km and the change is expected to be approximately 36% (from equation (2.4)). Due to the changing solar zenith angle, the magnitude of the slope of the changing electron densities before the maximum obscuration of the sun is expected to be greater than the slope after maximum obscuration.

2.5 Statement of the Problem

The purpose of this paper is to present the setting up, collection, and analysis of the partial-reflection data taken before, during and after a solar eclipse and to present changes made in the partial-reflection computer programs in order to simplify the operation and more effectively reject noise.

Figure 2.5 The variation of the solar zenith angle for July 10, 1972. The partial-reflection data collected period is shown as well as the time of maximum obscuration for the eclipse.

Figure 2.6 Variation of electron density during a solar eclipse at March equinox, mid-day, and sunspot minimum at middle latitudes [Deeks, 1966].

Figure 2.7 Electron-density profiles for the eclipse of July 20, 1963 [Smith, et al., 1965]. Profiles $1,2,3$, and 4 refer to obscurations of $92 \%, 86 \%, 40 \%$, and 2%, respectively. The solar zenith ang1e was 55° at totality and 61° at 40% obscuration.

3. EXPERIMENTAL TECHNIQUE

The partial-reflection experiment was first performed by Gardner and Pawsey [1953]. Electron densities were deduced for 65 to 82 km from partially reflected, circularly polarized radio waves. The transmitter operated at 1 kw during each $30 \mu \mathrm{sec}$ pulse with a center frequency of 2.28 MHz , and the partially reflected signals were displayed on an A-scan oscilloscope. Several improvements have been made in the experiment and are discussed by Pirnat and Bowhill [1968].

Gregory [1956] used an increase in transmitter power of 4 kw and a decrease in the transmitter pulse width to $9 \mu s e c$. These changes improved the amplitude and resolution of the partial reflections. Fejer and Vice [1959] developed an improved receiving and storing method using a dual-beam cathode-ray tube oscilloscope and camera. The system was operated at 1.83 and 2.63 MHz . Belrose and Burke [1964] also operated at two different frequencies (2.66 and 6.275 MHz) and transmitter power of 1 Mw , were able to obtain electron densities from the D and E region. BeIrose and Burke [1964] were the first to use the generalized Appleton-Hartree formulas by Sen and Wyller [1960] for partial-reflection application.

Using the generalized Appleton-Hartree formulas and several approximations, the ratios of partially reflected extraordinary waves $\left(A_{x}\right)$ to the partially reflected ordinary wave (A_{o}) for two heights can be used to calculate electron densities [Pirnat and Bowhill, 1968 and Reynolds and Sechrist, 1970]. The ratio A_{x} / A_{o} at each height is inversely related to the absorption by the expression $\exp \left(2 \int_{0}^{h} k_{x}-k_{0}\right)$ from which the name differential absorption originates. At the University of Illinois the electron density was calculated directly from these ratios, and as seen in Chapter 4, small changes in these ratios can produce large variations in the electron densities.

Henry [1966] designed and built the hardware for the partial-reflection experiment at the University of Illinois. The transmitter that is presently being used was built for the purpose of making shipboard measurements. This transmitter operates at 40 kw during each $20 \mu \mathrm{sec}$ pulse and with 5 pulses per second. The center frequency is 2.66 MHz with a 50 -ohm unbalanced output. Figure 3.1 shows a block diagram of the transmitter. The reduction of power from the initial 50 kw used is to give longer life to the tubes used, and the pulse is shortened from $50 \mu s e c$ used by Henry [1966] for better height resolution.

Figure 3.2 shows the two antenna arrays used to transmit and receive circularly polarized signals. Each array consists of 30 half-wave dipoles in the north-south direction and 30 in the east-west direction [Wiersma and Sechrist, 1972]. Each direction has matching networks that differ by 90° from the other direction of the same array to give a circularly polarized radio wave as shown in Figure 3.3. Each array gives approximately 22 dB gain with the main beam in the vertical direction. The first sidelobe is down 14 dB . Since both arrays are the same, this is a decrease of approximately 30 dB in the sidelobes relative to the main signal which has 44 dB gain. Further details on the antennas are given by Pirnat and Bowhill [1968] and Reynolds and Sechrist [1970].

3.1 Development of Receiving and Storing Data

The receiver, storage and timing controls have had two main changes in the development of the partial-reflection system. The experiment was originally set up using photographic film to store the partially reflected signals as displayed on an oscilloscope (see Figure 3.4). The controlling circuitry or pulser sent pulses of 30 volts to the transmitter, receiver, and camera. The pulser has remained the same with the exception of the addition of extra control circuitry depending on the storage method. The amplitudes of the received signals

Figure 3.1 Block diagram of the partial-reflection transmitter.

Figure 3.2 Partial-reflection antenna arrays for the Aeronomy Field Station.

Figure 3.3 Block diagram of the partial-reflection system.

Figure 3.4 Typical frame of data as collected by Henry [1966].
were later measured visually and electron densities were obtained. Pimat and Bowhill [1968] shows that there is good correlation between electron densities calculated from the partial-reflection data and from rocket measurements with the transmitter operating at 25 kw of power during a $50 \mu \mathrm{sec}$ pulse. This system of collection and storage is inexpensive; but the processing of the data to obtain electron densities is very slow and preparation and operation are complicated.

Reynolds and Sechrist [1970] set up data storage on paper tape. Ordinary and extraordinary samples were punched on paper tape for heights corresponding to 75 km and 80 km . Data can be stored at a rate of 30 values of each sample in one minute. From the paper tape the data can then be read into a computer and processed. This data on paper can be used to obtain an electron density for between 75 and 80 km . Reynolds and Sechrist [1970] show the results using paper tape compares favorably with results from rocket measurements and with the results published by Belrose and Burke [1964]. Although the system has a faster operation than the original system, it produces only one electron.density and the added control circuitry is very complex.

Birley and Sechrist [1971] set up the partial-reflection experiment using a PDP-15 computer. The received signals were transmitted to the computer via an analog to digital converter and stored on DECtape to be processed later. The data consisted of four noise samples from 45 to 49.5 km and 21 data samples from 60 to 90 km in 1.5 km increments. The collection rate is 5 sets of 26 samples $\sec ^{-1}$. This collection is done alternating between ordinary partial reflection and extraordinary partial reflections. Electron densities obtained by Birley and Sechrist [1971] show good agreement with electron densities obtained from rocket measurements between 67.5 and 82.5 km . The other heights suffered
from too many rejections due to noise and saturation of the analog to digital converter, small signal to noise ratios, or inaccurate A_{x} / A_{o} ratios. Computer storage offers several advantages:

1) A fast rate of data collection (presently limited to the transmitter speed)
2) Data can be stored more compactly and in much larger quantities
3) The controlling circuitry is greatly simplified
4) The data processing is faster
5) [e] can be obtained for every 1.5 km

This type of system also poses several disadvantages:

1) High cost
2) Development of computer software
3) Loss of accuracy in digitizing the data
4) Development of new circuitry and modification of the old for adaption to the A/D converter
5) More complicated operations (operator must know computer operation)

These disadvantages have been reduced with additional equipment and development as given in Section 3.3.

3.2 Partial-Reflection Data Collection for the Solar Eclipse

The partial-reflection receiver was interfaced into the PDP-15 computer to obtain data to be processed as described by Birley and Sechrist [1971]. Several changes in the receiver and controlling circuitry and the addition of an analog-to-digital converter were required prior to using the computer. A block diagram of the original receiver is shown on page 18 of Aeronomy Report

No. 13, [Henry, 1966]. The analog-to-digital converter saturates with an input of one volt or greater and will be damaged with inputs greater than five volts. The maximum output of the receiver was therefore reduced from 10 volts to 1.5 volts by one of the IF amplifiers, and the full-wave bridge diode detector was replaced by a single diode to reduce the nonlinearity of the receiver. A second blanking gate was inserted with the mixer in the RF amplifier module to more completely remove the initial effects of the transmitter pulse. The polarity reversal circuitry was not used but was left intact while the differential amplifier and inverter were replaced by two DC amplifiers on integrated chips.

The block diagram of the modified receiver is shown in Figure 3.5. Figure 3.6 shows the RF module with the extra blanking gate and Figure 3.7 shows the IF amplifier/DC amplifier module with the revisions. Both modules were modificationsof the RF-3 module and IF-6 module respectively, given by Henry [1966]. The receiver power supply was unchanged as set up by Henry [1966]. Encode pulses as shown in Figure 3.8 were used to control the operation of the A/D converter after Birley and Sechrist [1971]. The encode pulse circuitry consists of a 5-volt power supply and 4 monostable multivibrators (Figure 3.9) with a variable timing for length of noise and signal pulses and the delay of each.

Two main modifications were made in the software set up by Birley and Sechrist [1971]. For the first change D. R. Ward [private communication] set up a computer-controlled synchronization with the external pulser. The timing shown in Figure 3.9 is used to determine which radio wave mode has been received. The computer programs are set up to store only pairs of sets of 26 numbers read from the A / D converter. A set of numbers is read in and assumed to be from a radio wave of ordinary mode. The computer's clock is set for $150 \mu \mathrm{sec}$ and the computer waits for another set of numbers. If another set is not read in prior

Figure 3.5 Block diagram of the revised receiver used to operate with a PDP-15 computer.

Figure 3.6 The RF amplifier module for the receiver.

Figure 3.7 The IF and DC amplifier module.

Figure 3.8 The encode pulses as set up by Birley and Sechrist [1971] used to collect data during the eclipse, and the revised encode pulses used by the present programs.

Figure 3.9 The encode pulse circuitry used to produce the former and present encode pulses.
to the $150 \mu \mathrm{sec}$, the set was from an extradordinary radio wave and is rejected. Othewise, both sets are accepted and the computer is synchronized with the pulser. This process is done only when the computer has a possibility of being out of synchronization with the pulser which are:

1) Beginning of every file
2) After the transfer of a block of data to disk
3) After collection is stopped and restarted by console control switch
4) During a timing error (no longer a terminal error, see Section 3.3)
5) When the computer "forgets to read" (discussed in. Section 3.3)

The second change is to account for the nonlinearity of the receiver as seen in Figure 3.10 and was initially set up to adjust the data during processing [Wiersma and Sechrist, 1972]. Due to the time needed for the calibrating operation (approximately a half day), the computer is used which increases the speed of the process while making it possible to account for inaccuracies in the analog to digital converter. This process takes about 40 minutes (including 30 minutes for the receiver warm up). The adjustment to the data is done by using a table look-up method in the collection programs. Since the data stored on the disk are linearized data, the table is not needed after the collection is done and can be deleted after all the data are stored. The method is to convert the A / D converter output to the corresponding normalized receiver input. This is done by injecting a CW signal of a known value using an attenuator with one dB increments and storing the output in the computer using the set up shown in Figure 3.11. Straight line segment approximations to the curve in Figure 3.10 are obtained as shown in Table 3.1. Using outputs from 0 to 511 the corresponding inputs are determined normalized to 511 maximum, stored in a table as shown in

Figure 3.10 Graphs of the input versus output of the receiver used for eclipse data collection (old receiver) and the receiver presently being used. The input and output values have been normalized to the maximum of the A/D converter (511).

Figure 3.11 The wiring diagram used to calibrate the receiver. The voltmeter is used in setting the initial signal level prior to calibrating.

Table 3.1
Straight line segment approximation to the relationship of receiver input to receiver output.

Slope	Input		Attenuation		
S(1) $=50.906$	TU (1) =	0.000	TUO(1) =	4.786	99DB
$S(2)=3.912$	TU(2) =	5.620	TUO(2) =	4.896	45DB
$S(3)=2.394$	TU(3) =	6.318	TUO(3) =	5.073	$44 D B$
$S(4)=7.762$	$\operatorname{TU}(4)=$	7.080	TUO(4) =	5.394	43 DB
$S(5)=9.151$	$\operatorname{TU}(5)=$	7.940	TUO(5) =	5.505	42 DB
$S(6)=2.576$	TU(6) =	8.910	TUO(6) =	5.611	41 DB
S (7) = 4.190	TU(7) =	10.090	TUO(7) =	6.834	4 CDB
$S(8)=1.983$	$\operatorname{TU}(8)=$	11.220	TUO(8) =	6.326	3908
$S(9)=2.255$	TU(9) =	12.598	TUO(9) =	7.016	38 DB
$S(10)=1.676$	$\operatorname{TU}(10)=$	14.130	TUO(10)=	7.699	37 DB
$S(11)=2.576$	TU(11) $=$	15.850	TUO(11)=	8.726	36 DB
$S(12)=1.946$	TU(12) $=$	17.780	TU0(12) =	9.475	35DB
$S(13)=1.356$	TU(13) $=$	19.950	TUO(13) $=$	10.598	34DB
$S(14)=1.754$	TU(14) $=$	22.390	TUO (14) =	12.389	33 DB
$S(15)=1.381$	TU(15) =	25.120	TUO(15) =	13.945	32 DB
$S(16)=1.012$	$\operatorname{TU}(16)=$	28.180	TUO(16) =	16.161	310 B
$S(17)=1.161$	TU(17) =	31.620	TU0(17) =	19.560	3008
$S(18)=0.969$	$T U(18)=$	35.480	TUO(18) =	22.886	29DB
$S(19)=0.910$	$\operatorname{TU}(19)=$	39.810	TU0(19) =	27.353	280 B
$S(20)=1.113$	$\operatorname{TU}(20)=$	44.670	TUO (29) =	32.694	2708
$S(21)=0.987$	$\mathrm{TU}(21)=$	50.120	TU0(21) =	37.591	26DB
$S(22)=0.771$	$\operatorname{TU}(22)=$	56.248	TU0(2,2) =	43.794	2.50 B
$S(23)=1.172$	TU(23) =	63.100	TU0 (23) =	52.693	24DB
$S(24)=0.708$	TU(24) $=$	70.808	TUO(24) =	59.260	23DB
$S(25)=0.880$	TU(25) =	79.430	TUO(25) =	71.451	22DB
$S(26)=0.832$	TU(26) =	89.130	TU0(26) =	82.478	210 B
$S(27)=0.980$	$\mathrm{TU}(27)=$	100.000	TU0(27) =	95.540	220B
$S(28)=0.789$	TU(28) $=$	112.200	TU0 (28) =	107.992	19 DB
$S(29)=0.900$	TU(29) $=$	125.900	TU0 (29) =	125.364	18 DB
$S(30)=0.816$	$\operatorname{TU}(30)=$	141.250	TU0(30) =	142.426	17 DB
$S(31)=0.918$	$\mathrm{TU}(31)=$	158.490	TUO(31)=	163.559	160 B
$S(32)=0.766$	TU(32) =	177.830	TUO(32) =	184.627	15DB
$S(33)=0.944$	TU(33) $=$	199.530	TU0(33) =	212.947	14 DB
$S(34)=0.913$	TU(34) $=$	223.870	TUO(34) =	238.730	13 DB
$S(35)=0.933$	TU(35) =	251.190	TU0(35) =	268.645	12 DB
$S(36)=1.030$	TU(36) $=$	281.840	TUO(36) =	301.499	1108
$S(37)=1.111$	$\operatorname{TU}(37)=$	316.230	TU0(37) =	334.895	1 ODB
$S(38)=1.260$	TU(38) $=$	354.820	IUO(38) =	369.618	9 DB
$S(39)=1.306$	TU(39) $=$	398.110	TUO(39) =	403.979	8 DB
$S(40)=1.471$	$\operatorname{TU}(40)=$	446.680	TUO(48) =	441.155	7DB
$S(41)=1.809$	$\operatorname{TU}(41)=$	501.190	TUO(41) $=$	478.202	6 DB
	TU(42) =	562.340	TU0(42)=	512.000	5DB

Table 3.2, and placed on a storage device (normally a disk). The program DLOGF (given in the Appendix in MACRO language) reads Table 3.2 into the computer, and the table is used during collection of the received partial-reflection signal. Using the table, the MACRO subroutine LIN does the linearization of the numbers read from the analog to digital converter. The programs responsible for the formation of these two tables are TBFORL (FORTRAN IV), LINAP (FORTRAN IV), RADC (MACRO), and TTM (MACRO).

The system as it has been described was used to collect and process the partial-reflection data for the three-day eclipse period of July 9, 10, and 11, 1972. The rest of this chapter will describe further changes and developments of the system. These changes have been due to an increase of 16 K core memory, the addition of 2 disk units capable of storing 262.144 words each, and the changing from a single user monitor system to a background/foreground monitor disk system.

3.3 Real-Time Data Storage and Automatic. Processing

A computer operates on its own timing system and if this timing system operates along with events outside the computer that affect the operation of the computer, then the computer is said to be operating in real time. For instance, if the computer reads in a set of 26 samples and is able to manipulate or process them before the next set of samples is read in, the computer is doing real-time processing; as opposed to saving the data on tape and processing it later, as done by Reynolds and Sechrist [1970]. With high-speed access on the disk (16 msec access time), the background/foreground system made possible real-time collection and processing of partial-reflection data, Due to the complicated timing, slow print-out, and the noise algorithm (discussed in Section 3.4), processing of the data is postponed until after the file is stored on the disk.

The background/foreground monitor system is a double monitor, multipriority level, software system. The two monitors are separate software systems

Table 3.2
The output of the A/D converter are numbers between 1 and 511. The input for each output is given in this table.

1	1	1	1	1	7	11	12	14	16
18	19	21	22	24	25	26	27	28	29
30	31	32	33	34	35	35	36	37	38
39	40	41	41	42	44	45	46	46	47
48	49	50	51	52	52	53	54	55	55
56	57	57	58	59	60	61	63	64	65
65	66	67	67	68	68	69	70	70	71
72	72	73	74	75	76	76	77	78	79
80	80	81	82	83	83	84	85	86	86
87	88	89	89	901	91	92	93	94	95
95	96	97	98	99	100	101	102	103	103
124	105	105	106	107	108	108	109	110	110
111	112	113	113	114	115	116	116	117	118
119	128	120	121	122	123	124	125	125	126
127	128	129	129	130	131	132	132	133	134
135	135	136	137	138	138	139	140	141	141
142	143	143	144	145	146	147	148	148	149
150	151	152	153	153	154	155	156	157	158
158	159	160	161	162	162	163	164	165	165
166	167	167	168	169	169	170	171	172	172
173	174	174	175	176	176	177	178	179	179
180	181	181	182	183	184	185	186	186	187
188	189	198	191	192	192	193	194	195	196
197	198	198	199	208	201	202	293	204	204
205	296	207	208	209	209	210	211	212	213
214	214	215	216	217	218	219	219	220	221
222	223	224	224	225	226	227	228	229	229
230	231	232	233	234	234	235	236	237	238
239	240	240	241	242	243	24.4	245	245	246
247	248	249	250	251	251	252	253	254	255
256	257	257	258	259	260	261	262	263	264
265	266	267	268	269	278	271	271	272	273
274	275	276	277	278	279	280	281	282	283
284	285	286	286	287	288	289	290	291	292
293	294	295	296	297	299	300	301	302	303
394	305	306	307	308	309	310	311	312	313
314	315	316	317	318	319	320	321	322	323
324	325	326	327	328	330	331	332	333	334.
335	336	338	339	340	341	342	343	344	346
347	348	349	350	351	353	354	355	356	357
358	359	361	362	363	364	365	366	368	369
370	371	372	374	375	376	377	378	379	381
382	383	384	385	387	388	389	390	391	393
394	395	396	397	399	400	401	402	433	404
406	407	408	410	411	412	414	415	416	418
419	420	422	423	424	426	427	428	430	431
432	434	435	436	438	439	440	442	443	444
446	447	448	450	451	452	454	455	456	458
460	461	463	465	466	468	470	471	473	474
476	478	479	481	483	484	486	488	489	491
493	494	496	498	499	501	502	504	506	507
509	511								

sharing the same hardware with programs operating in the foreground system having priority. Each system has 8 automatic priority (API) levels and a mainstream level. There are four hardware levels which have highest priority. The software levels are labeled $4,5,6,7$, and 0 where 4 is the highest and 0 is the mainstream, the lowest. When a program initially starts running in either background or foreground, it begins on mainstream. Certain commands require a special subroutine called a real-time subroutine and is designated a priority level from 0 to 4 and stops all operation on lower priority levels (background is lower than foreground) until it exists from the level or performs an I/O operation.

With this system the partial-reflection collection and processing programs as mentioned could operate in real time, but due to several problems in the processing of data, the data could not easily be saved except in processed form. The solution used is to collect one file of data and process that file while the next file of data is being collected. After each file is collected, the operator is told what the next attenuator setting is. The collection program also checks the setting of the switches on the console to allow the operator to control parts of the collection program. Switch 0 acts as an on/off switch which causes collection to stop collecting and wait in a loop if set to 1 . Switch 1 allows the background system to share the collection and processing storage device (1 disk) if the switch is set to 1 . This sharing is necessary if the collected files are to be stored on DECtape. Switch 3 allows the processed data which are printed out onto the teletype to also be punched onto paper tape if the switch is set to 0 . This option is presently used to allow for later plotting of the data using a programmable calculator. Switches 2 and 5 are not used at the present. The rest of the switches are used for determining the length of each file (default length is 513 pairs of sets of

26 numbers). The time of day is determined by using the clock within the computer to give the time in hours and minutes.

The flow diagram of the programs is shown in Figure 3.12. The programs are loaded into the computer and the computer's clock is set to the time of day. The operator is given the option of calibration of the receiver. The linearization table is stored on a disk and some initial information is read in. If the table read in is erroneous the operator must re-do the calibration procedures. The collection is started on priority leve1 6 and processing waits for the first file to be collected. After collection of the number of sets of samples set on the console switches and the operator changes the attenuator setting, the second file is collected while the first is processed and printed out. This process continues until stopped by the operator. Information used to calculate the noise threshold as described in Section 3.4 is transferred to the processing program after each file is collected and is not stored on the disk. The processing program therefore must remain faster than the collection or this information will be lost.

The processing of files involves rejecting sets of samples that are too noisy (discussed in Section 3.4), summing the squares of unsaturated data, subtracting off the sum of the squared acceptable data, and taking the square root. The resulting data are two sets of 21 samples, one of ordinary modes (A_{0}) and one of extraordinary mode $\left(A_{x}\right)$ radio waves. This process is done in the main processing program PROC (given in the Appendix). The electron densities are calculated in CALC2 which is discussed in Section 3.5. The results are typed out on the teletype in tabular form as shown in Table 3.3.

The first line of the print-out of processed data is the heading. This gives the time the collection of the file stopped, the date, the reason for the run, and the attenuator setting for the file. The next line contains the noise threshold and the square of the multiplying constant used in the

Figure 3.12 A diagram of the control flow of the partial-reflection programs. The programs operate processing program operated in parallel with the collection programs operating on API levels 5 and 6 , whereas everything else operates serially.

MAX A ALLOW • NOISE= 19.8 MUT. CONST. $=9.610$

O-NOISE AU.(1)	19.9	(2)	11.6
X -NOISE AU.(1)	12.0	(2)	7.5

O-NOISE AU.(1)
X-NOISE AU.(1)
12.0 (2)
7.5
513 SAMPLES
44 REJ. (NOI SE)
HEJ.
(N.+SAT.) HEIGHT AV. AO AV. AX AX/AO ED

44	60.8	6.9	4.1	0.59	
44	$61 \cdot 5$	9.9	$2 \cdot 0$	$0 \cdot 20$	5173.
					0.
44	63.8	3.3	-2.1	0.00	
44	64.5	3.8	4.6	1.22	-
44	66.2	$7 \cdot 8$	11.5	1.46	-247.
44	67.5	14.4	22.0	$1 \cdot 53$	59.
					5.
44	69.6	22.5	$34 \cdot 9$	1. 55	
					199.
44	70.5	30.6	44.9	1.47	
44	72.8	30.8	43.8	$1 \cdot 30$	271.
					339 .
44	73.5	36.2	39.0	1.38	
44	75.0	54.2	49.8	0.92	298.
44	76.5	59.1	$45 \cdot 1$	0.76	340.
					2.
44	78.0	58.9	34.1	3.58	
					416.
44	$79 \cdot 5$	57.5	$27 \cdot 3$	0.48	
44	81.0	56.5	20.2	1. 36	682.
44	82.5	$52 \cdot 7$	14.4	0.27	778.
44	84.0	46.6	10.8	0.23	623.
44	85.5	99.8	12.8	0.12	38.
44	87.0	$228 \cdot 9$	26.0	0.11	445.
					-694.
53	88.5	307.2	38.0	0.12	
99	90.10	324.0	41.9	B. 13	-469.

maximum noise criterion discussed in Section 3.4. The next two lines are the ordinary and extraordinary mode noise before (number 1) and after (number 2) rejections due to excessive noise. The next line gives the number of pairs of sets of 26 samples collected and the number of these pairs rejected due to saturation. The first column of the table is the number of rejections due to both saturation and excessive noise for each height. The next column gives the height of the reflected signals for each row. The next two columns give RMS of the ordinary $\left(A_{0}\right)$ and extraordinary $\left(A_{x}\right)$ signals. The fifth column gives the ratios of extraordinary partial reflections to ordinary partial reflections from the fourth and third column respectively. The last column gives the electron density for between the heights. The last electron density is given as zero since only one height is available to calculate it.

The present method of collection and processing of partial-reflection data is fast, efficient, and easy to operate, but two problems needed to be removed. The increase of input/output operations have increased timing errors which are discussed by Birley and Sechrist [1971], and the A/D converter sometimes fails to respond to read commands.

The A/D converter transfers data to the computer using multicycle block transfer as described by Birley and Sechrist [1971]. The process is a three cycle operation for each word transferred. After each transfer, the A / D converter interface is tested for synchronization. If the timing between the interface and the I / O processor is altered, transfer is stopped resulting in a timing error. With the present system, this error can result from hardware malfunction or excessive I/O operation occurring. If the latter is the reason, the problem is only temporary and can be remedied by issuing another read. Care is taken to keep the computer synchronized with the pulser. If the error is a hardware problem, the condition will not clear up and collection must stop. The error
will usually occur when data are being collected, processed data are being printed out, and a tape is being copied onto the disk in background, all simultaneously. The second problem has to do with the A/D converter's interface refusal to transmit data. The problem has been traced to failure in the A/D converter interface logic. The collection program will issue an A / D converter read, but not receive control back and no data are transferred. This problem occurs only with the background/foreground system and it occurs infrequently (once in about every 10,000 read commands). One solution is to issue a double read, but the problem could still occur. The solution used is for the processing to check for this stoppage, restart the collection in an orderly fashion if it has stopped and to ring the teletype bell to let the operator know of the stoppage. This solution does not prevent the failure of the A / D converter interface to transfer data, and the problem will have to be removed for faster ratio of collection, but presently the operator need not be concerned with this problem. The rest of the data is unaltered by this problem.

3.4 Noise Rejection

The partially reflected radio waves from the D region are usually small in amplitude on the order of 10 to 1000 mvolts at the output of the 80 dB gain receiver. Noise amplitudes vary between 30 to 1000 mvolts. For the purpose of the noise algorithm, noise is considered to be any interference which is part of the receiver output signal that is not attributed to the partially reflected waves from the vertically transmitted pulse. This noise is divided into two types: background noise and noise bursts. Background noise is noise caused by the reciever ($14 \pm 3 \mathrm{mV}$) and general atmospheric noise which is always present ($40 \pm 10 \mathrm{mV}$). Noise bursts are caused by lightning and other radio transmitters, and the amplitude of this noise is dependent on the location of the source. Lightning noise will usually last for the duration of one encode pulse while noise due to other
transmitters will last for at least $1 / 2$ second which is several encode pulses (see Figure 3.8) and the noise will be increased usually by 10 to 1000 mvolts. Both types of noise are rejected in the processing program PROC (FORTRAN IV) as shown in the block diagram of this program in Figure 3.13.

Data are collected in pairs of sets of 26 numbers. Each set contains 5 noise samples and 21 samples of partially reflected signals. Each pair contains a set of ordinary mode samples and a set of extraordinary mode samples. In PROC a noise threshold is determined and the square of this multiplied by five is compared to the sum of the squares of the five noise samples of each set. This method of comparison is faster than comparing the RMS of the noise as set up by Birley and Sechrist [1971] since square root operations take approximately 1 msec and squaring takes 70 sec on the PDP-15, and the squaring need on 1 y be done once per file. If the noise of either mode is greater than the noise threshold, both sets of 21 signal samples are rejected and the next pair of sets are tested. If the noise of both modes is less than this threshold, the noise of both sets are considered acceptable and saved for later processing. The partially reflected signals with acceptable noise for each mode are checked for A/D converter saturation (. 997 volts receiver output) at each height. If either of the two samples (one of each mode) is saturated at a height the two samples are rejected; otherwise the data are considered acceptable. This processing of pairs of 26 samples continues until the end of the file is reached. After the file of collected data has gone through this processing, the average of the sum of the squared acceptable noise for each mode is subtracted from the average of the sum of the squared acceptable partially reflected samples of the same mode at each height, and the square roots are printed out as shown in Table 3.3 and as described in Section 3.3.

Figure 3.13 A flow chart of the processing program PROC.

Originally, the noise threshold was determined by the operator typing in a value chosen by him as seen in the program PROC73 in the Appendix. This was 1ater changed to an automatic determination based on the attenuator setting used as given at the beginning of a run. This method did not account for the day-to-day variation in noise nor in an erroneous attenuator setting. The noise threshold value is presently determined by the following equation:

$$
\begin{equation*}
M=\left(K\left(\sum_{0}^{45} N\right) / 45\right)^{2} \tag{3.1}
\end{equation*}
$$

where $M=$ maximum allowable noise value
$K=$ arbitrary constant
$N=$ certain noise samples collected as explained in the following paragraph.

In the collection programs RSUB and LIN, the maximum and sum of each group of 45 noise samples are stored, and the maximum values are compared. The sum of the group with the lowest maximum value is transferred to the processing program PROC and is used in equation (3.1). The constant K has been chosen by trial and error, and values between 2.5 and 3.5 seem to give the best results (equation 3.1 is being used).

Other algorithms have been tried, but none seem to give any obvious improvement in the resulting electron densities. One method is to split 5 noise samples collected with each set of data into 2 for comparison with the noise threshold value and 3 subtracted from the reflected signals. This method works on the theory that the noise within the 5 noise samples is not the same amplitude as the noise within the 21 data samples for each set of 26 data samples, but is statistically the same over the number of samples collected
for one file. With the present system, when the number of rejections due to noise is large, (greater than 200 out of 513 pairs of sets of samples), the noise within the noise gate is restricted to a lower level than the noise in the data frame. Therefore, the noise in the data frame would not be completely subtracted off; as it would be with splitting the noise samples. The application of this technique using 4 noise samples showed no improvement in the results. Two possible causes are too few noise samples being used and the noise samples being too close together.

Another method has been developed and tested by $D . R$. Ward [private communication]. A CW signal is inputed into the receiver along with the received data from the antenna. The noise and partially reflected signals are each defined as $A \cos \theta$; where A is the amplitude and θ is the phase. The noise is assumed to be random while the partially reflected signals are assumed to have only a small variation between two sets of samples. Using an algorithm developed by $D . R$. Ward [private communication], the phase and the amplitude of the noise portion of each signal average to zero while the phase and amplitude of the signals do not. This method is used to reject the noise from the partially reflected signals at each height. This method fails to reject interference caused by other transmitted signals since this type of noise does not have random phase. D. R. Ward [private communication] has obtained useful electrondensity profiles from the method but generally found no improvement over the present system. Further study and development of either method may improve the processing and should not be discarded.

3.5 Converting A_{x} / A_{o} Ratios to Electron-Density Profiles

The partial-reflection programs assume a constant collision frequency for each height with seasonal variation. The values used were determined from the
following equation [Birley and Sechrist, 1971]:

$$
\begin{equation*}
v_{m}=K p \tag{3.2}
\end{equation*}
$$

where $K=$ constant $=7.3 \times 10^{5}$

$$
\begin{aligned}
p & =\text { pressure in pascals } \\
v_{m} & =\text { collision frequency in } \sec ^{-1}
\end{aligned}
$$

The pressures used are from the mean atmospheric model from COSPAR International Reference Atmosphere (1965) with seasonal variations given by U. S. Standard Atmospheric Supplements (1966). Using these pressures, experimentally the values calculated for K vary by as much as 2×10^{5} [Lodato and Mechtly, 1971]. The seasonal variations in the collision frequency (Figure 3.14) can vary by as much as 20%. This 20% variation in ν_{m} can cause the calculated $[e]$ to vary by a factor of 1.2. The electron densities are calculated using the refractive index equation given by Sen and WyZler [1960] and several approximations as discussed by Pirnat and Bowhill [1968]. The resulting equation given by Reynolds and Sechrist [1970] is:

$$
\begin{gather*}
{[e]=\ln \left\{\left(\left(A_{x} / A_{0}\right) /\left(R_{x} / R_{0}\right)\right)_{h_{1}} /\left(\left(A_{x} / A_{0}\right) /\left(R_{x} / R_{0}\right)\right) h_{2}\right\} / \mathrm{FD}} \tag{3.3}\\
\mathrm{FD}=\left(5 \Delta h e^{2} / 2 c m \varepsilon_{o} \nu_{m}\right)\left\{\zeta_{5 / 2}\left(\left(\omega-\omega_{L}\right) / \nu_{m}\right)-\zeta_{5 / 2}\left(\left(\omega+\omega_{L}\right) / \nu_{m}\right)\right\} \tag{3.4}
\end{gather*}
$$

where

$$
\begin{aligned}
\zeta_{y}(x) & =\frac{1}{y!} \int_{0}^{\infty} \frac{\varepsilon y}{\varepsilon^{2}+x^{2}} e^{-\varepsilon} d \varepsilon \\
\varepsilon & =m V^{2} / 2 k T \\
{[e] } & =\text { electron density } \\
e & =\text { electron charge }=1.6 \times 10^{-19} \mathrm{C} \\
m & =\text { electron mass }=9.1 \times 10^{-31} \mathrm{~kg} \\
\varepsilon_{0} & =\text { permittivity of free space }=8.85 \times 10^{-12} \mathrm{Fm}^{-1}
\end{aligned}
$$

Figure 3.14 The collision frequencies used in the program CALC to obtain electron-density profiles.

$$
\begin{aligned}
\omega & =\text { angular frequency of the transmitted wave } \\
\omega_{L} & =\text { gyro-frequency of the electron } \\
h_{1} & =\text { lower height } \\
h_{2} & =\text { higher height } \\
\Delta h & =h_{2}-h_{1} \\
K & =\text { Boltzmann constant }=1.38 \times 10^{-23} \mathrm{~J}^{\circ} \mathrm{K}^{-1} \\
T & =\text { temperature } \\
V & =\text { electron velocity } \\
R_{0} & =\text { ordinary mode reflection coefficient } \\
R_{x} & =\text { extraordinary mode reflection coefficient }
\end{aligned}
$$

This equation required a set of collision frequency constants which are given in the program CALC (FORTRAN IV). The ratio $\left(R_{x} / R_{o}\right)_{h_{2}} /\left(R_{x} / R_{o}\right)_{h_{1}}$ and FD (equation (3.4)) are calculated in ELDEN (FORTRAN IV). CAL2 (called by PROC) uses these values (which vary only with ν_{m}) as constants for each pair of heights to calculate the electron densities according to Equation (3.5)

$$
\begin{equation*}
[e]=\ln \left(\text { RATIO2 } \times\left(A_{x} / A_{o}\right)_{h_{1}} /\left(A_{x} / A_{o}\right)_{h_{2}}\right) / \mathrm{FD} \tag{3.5}
\end{equation*}
$$

where \quad RATIO2 $=\left(R_{x} / R_{o}\right)_{h_{2}} /\left(R_{x} / R_{0}\right)_{h_{1}}$.
This method is used to reduce the amount of core memory required and increase speed of execution of the program. A new CALC2 can be obtained by revising the collision frequencies and running the program CALC which writes the program CALC2. The electron densities are printed out as shown in Table 3.3 and described in Section 3.3

3.6 Equipment Testing

The equipment needs to be tested periodically to determine if it is in operating order. The transmitter is tested by observing and keeping a log of
the voltage and current at various locations via meters and an oscilloscope. The antennas are tested by transmitting and receiving signals at various times during the day. At noon the extraordinary signal should be absorbed and at night the ordinary signal should be absorbed. By transmitting and receiving ordinary and extraordinary signals as described in Progress Report 73-1 [Ectuards, 1973], the phase and attenuation of each antenna of each array can be set and checked for possible damage. This process is also a partial check for the transmitter and receiver. A spot check of 30 dB difference in ordinary and extraordinary reflections from the E region at noon is done on a daily basis.

The program CHECK (FORTRAN IV) has proved valuable in checking the receiver and the analog to digital converter. CHECK performs a modified dump of the A / D converter as read by the computer. If the number 31 is typed, the output is in the form of partial-reflection data (ordinary and extraordinary pairs), patterned after the new encode pulse shown in Figure 3.8. If any other number is typed in an average of that number rounded to the next higher multiple of 50 is printed out. The 31 pairs of samples are printed out in millivolts only, while the averages are printed out in millivolts and as represented in the A / D converter. This program has had many applications; it showed the blanking gate on a new receiver to be too long. It was used to calibrate the A / D converter using an input from a standard source. Table 3.4 shows the accuracy of the A/D converter as the standard voltage source was varied from 1.0 volts to .1 in . $1, .01$, and . 001 volt increments. It was used in comparing the paper punch system set up by Reynolds and Sechrist [1970] with the computer storing method presented in Section 3.3. CHECK has also been used to determine the number of samples required to have less than 10% error due to noise (at least 100 samples are required). The program is easy to operate and has become important in testing and checking the receiver and the analog to digital converter.

Table 3.4
The output of the A / D converter using a calibrated input source

ADC
Output Input
$\frac{\text { Average }}{511.2 \emptyset 4}$
460.558
409.625
358.528
307.957
$256 . \emptyset 2 \emptyset$
205.252
$154 . \emptyset 82$
102.787
51.076
46.349
40.843
$35.2 \emptyset 8$
39.844
25.769
19.976
$15 . \emptyset 22$
10.200
$4.83 \emptyset$
3.857
3.233
3.910
2.847
2.443
2.954
1.404
ø. 659
0.125
$0.01 \emptyset$

Voltage
998.444 mV
899.527 mV
$800.05 \emptyset \mathrm{mV}$
700.250 mV
$599.72 \emptyset \mathrm{mV}$
$5 \emptyset \emptyset . \emptyset 4 \emptyset \mathrm{mV}$
$4 \emptyset \emptyset .883 \mathrm{mV}$
$30 \emptyset .941 \mathrm{mV}$
290.756 mV
99.758 mV
90.525 mV
79.772 mV
68.766 mV
60.242 mV
50.330 mV
$39 . \emptyset 16 \mathrm{mV}$
29.339 mV
19.922 mV
9.433 mV
7.533 mV
6.315 mV
$5.88 \emptyset \mathrm{mV}$
5.560 mV
4.771 mV
$4 . \emptyset 12 \mathrm{mV}$
2.743 mV
1.286 mV
$\emptyset .244 \mathrm{mV}$
$\emptyset . \emptyset 2 \emptyset \mathrm{mV}$

Voltage
1000 mV 900 mV 800 mV 700 mV 600 mV 500 mV 400 mV 300 mV 200 mV 100 mV 90 mV 80 mV 70 mV 60 mV 50 mV 40 mV 30 mV 20 mV 10 mV 9 mV 8 mV 7 mV 6 mV 5 mV 4 mV 3 mV 2 mV 1 mV 0 mV

3.7 Future Development

Several improvements are being made to the system. A new receiver is being made using a linear detector and new $R F$ and $I F$ stages to reduce the receiver noise. Figure 3.10 shows a comparison of the input versus output between the new receiver and the old one. With no input signal, the noise level of the new receiver is 2.5 mV and the level of the older receiver is 14 mV . The circuitry and discussion of it are given in the Aeronomy Progress Report 73-1 [Edwards, 1973].

A digital input/output device is presently being sought which would improve the calibration time and free the operator for other tasks as well as simplify the operation of the system. The purchase of such a device would also reduce the amount of paper presently required.

Another asset would be a line printer. One could reduce the processing time by at least half and allow for more sophisticated processing (with possibly better noise rejection) if such a line printer were purchased.

As mentioned by Birley and Sechrist [1971], an increase of transmitter power is also needed. This would improve the signal-to-noise ratio and give better data below 70 km .

The noise problem should be studied more carefully. Perhaps a combination of the method discussed in Section 3.4 would improve the results. Another possibility would be to reject extremely low values of reflected signals.

An additional program to transfer collected data to tape would be helpful. The original programs set up by Birley and Sechrist [1971] saved data on tape for future processing. With the present system, collected data can be stored on tape by using a system program called PIP. This requires knowledge in operation of the computer, and the transferring of files can get complicated.

4. EXPERIMENTAL RESULTS

This chapter describes the results from partial-reflection data which was collected and processed by the computer on July 9, 10, and 11, 1972. A solar eclipse occurred on July 10, 1972. The obscuration function shown in Figure 1.1 shows the first contact to be at 1319 CST and the last contact to be at 1536 CST with 60% of the solar disk obscured. The data were collected from 1200 to 1700 CST to show the effects of the solar eclipse on the electron density and collected between the same times on July 9 and 11 to be used as control data. Data were collected in blocks called files. Each file of data, consisting of 1026 sets of 26 numbers, was collected and stored on DECtape every 3.8 minutes. The signal prior to entering the receiver was attenuated with four attenuator settings $(0,10,20$, and 30 dB$)$. Each file was collected beginning with the lowest attenuator setting of 0 dB with each subsequent file collected at the next attenuator settings; 10,20 , and 30 dB , respectively. This process was then repeated. This process was used to obtain the very small echoes as well as the very large ones. The files of data are divided into approximately 15 minute intervals, corresponding to the four attenuator settings.

The data between 1400 and 1430 on July 9 was lost due to an erasure of the disk before it could be processed. These data have been interpolated. The data from July 10 between 1200 and 1300 was erroneous and therefore has been eliminated from the results. The computer results were processed further combining the files with different attenuator settings.

4.1 Reduction of Data

Individual results shown in Figure 4.1 show valid electron densities but are limited height range; therefore, multiple attenuator settings were used to obtain usable data over a greater range of heights. The computer processes

Figure 4.1 Comparison of electron-density profiles on July 10 and 11, 1972. The data were taken at 1432 CST with the attenuator set at 30 dB .
only one file at a time; therefore, further processing was necessary to combine four files corresponding to the four attenuator settings into one set of results. Three methods have been developed to accomplish this. The first method was originally used but problems developed in determining acceptab1e data and method two was used. Using method two, some acceptable data were being ignored and the 20 and 30 dB settings were found to give similar results. Therefore, method three was developed to utilize much of this acceptable data that were being ignored.

1. In method one, the results with the lowest attenuator setting (0 dB) were used for 60 km up to the height where 5% of the ordinary and extraordinary data was rejected due to saturation (see Section 3.4). The electron densities for the higher heights were obtained from the next higher attenuator setting under the same restrictions of saturations. This process continued until the last electron density was obtained. The results of this method seemed to be satisfactory except for above 81 km and below 66 km .
2. Method two is the same as method one, but accounts for inaccuracies in the receiver by rejecting electron densities that used A_{X} / A_{o} ratios that were less than .09. Electron densities were rejected also if the signal to noise ratio was less than l. These two revisions eliminated much of the results below 65 km and above 85 km .
3. Method three is similar to method two except for the way the multiple atienuators are combined. The electron densities are considered acceptable if the $A_{\mathscr{X}} / A_{o}$ ratios for both heights are greater than .08 , the signal to noise ratio is above 1 for both heights, and the rejections due to saturations were less than 5% for both heights used to calculate the
electron density. If more than one attenuator setting had acceptable electron densities for between two heights, then the median of the acceptable electron densities was used. Using these three methods, the computer results were combined to give one electron-density profile for every 4 attenuator settings. Using either average or medians, electron densities of different heights or of different times were combined as discussed in Section 4.2 .

4.2 Electron-Density Results

The results are presented in two forms: by the total differential absorption below each height (A_{2} / A_{o} ratios) and by electron densities. The A_{x} / A_{0} ratios given in Figures 4.2, 4.3, and 4.4 are plotted using a sixth order polynomial approximation of the ratio as calculated by method one. The eclipse shows a reduction in absorption which indicated a reduction in electron density as expected. The third day shows irregular absorption with a large increase in absorption. Referring to Figure 2.2. the increase in absorption is related to the X-ray flux burst. The electron density for above 75 km for the three days given in Figure 4.5 shows a good correlation between the large increase in electron density on July 11 and the burst of X-ray flux. Due to this obvious contamination, the second control day is not used for comparison during the burst period.

Figure 4.6 gives the A_{x} / A_{o} ratios versus height. The ratios were determined using method one and taking the median of the groups within the hour corresponding to the maximum obscuration of the solar eclipse (1400-1500 CST). Due to the much larger absorption in the control days than during the eclipse, the electron densities above 81 km (approximately) are not valid according to method two and three, but with the eclipse day, the values should be acceptable up to 85 km .

Figure 4.2 Comparison of the A_{x} / A_{0} ratio at 72 km for July 9,10 , and 11 .

Figure 4.3 Comparison of the A_{x} / A_{o} ratio at 75 km for July 9,10 , and 11.

Figure 4.4 Comparison of the A_{x} / A_{o} ratio at 78 km for July 9,10 , and 11.

Figure 4.5 Median electron densities between 75 and 82.5 km .

Figure 4.6 Median A_{x} / A_{o} profiles between 1400 and 1500 CST for each day.

Figure 4.7 gives the electrontdensity variation with time. The electron densities are averages between 70.5 and 78 km and between 78 and 87.5 km with the electron densities obtained by using method one for processing the computer result. Figure 4.5 and 4.8 give the electron-density median for 75 to 82.5 km and 67.5 and 75 km , respectively, as each varies with time. These electron densities were obtained using method three. At the lower altitudes, the median electron densities show no effect from the eclipse while the average electron densities do show a slight effect. This difference, though, is mainly attributed to the higher heights the averages were taken from rather than to the method used. The highest heights show large effects due to the eclipse. Figure 4.7 shows a minimum electron density near maximum obscuration of the eclipse while Figure 4.5 shows the minimum being delayed by half an hour. This is attributed to the variation in the data due to the inaccuracies in the partial-reflection equipment. The X-ray burst shown in Figure 2.2 seems to have no effect at the lower altitudes.

Median electron-density variations with height are given in Figure 4.9. These values are the median obtained by processing the computer results utilizing method two and finding the median value between 1400 and 1500 CST. Below 75 km the eclipse does not seem to have much effect on the electron density as shown in Figure 4.9 , but above 75 km , the electron density decreases by 45 to 65%. The upper height for this comparison is 81 km due to the small A_{x} / A_{o} ratios (shown in Figure 4.6). The electron-density profile shows some conformity to the expectation given in Section 2.4.

4.3 Theoretical Applications

Since the eclipse never reached totality, the electron production (q) cannot be assumed to be zero, but equation (2.4) can be used as an approximation

Figure 4.7 Average electron densities between the altitudes $78.0-82.5 \mathrm{~km}$ and $70.5-78.0 \mathrm{~km}$.

Figure 4.8 Median electron densities between 67.5 and 75 km .

Figure 4.9 Median electron-density profiles between 1400 and 1500 CST.
to $[e]$ and $\alpha_{\text {eff }}$. Equation (3.1)

$$
\begin{equation*}
q=\sigma_{i}(\mathrm{NO})[\mathrm{NO}] I_{\infty} e^{-\tau} F_{o} \tag{3.1}
\end{equation*}
$$

where $q=$ electron production rate in $\mathrm{cm}^{-3} \mathrm{sec}^{-1}$

$$
\begin{aligned}
\sigma_{i}(\mathrm{NO})= & \text { ionization cross-section of nitric oxide }=2 \times 10^{-18} \mathrm{~cm}^{2} \\
{[\mathrm{NO}]=} & \text { number density of nitric oxide in } \mathrm{cm}^{-3} \\
I_{\infty}= & \text { incident Lyman-alpha flux at the top of the atmosphere }=3.1 \times 10^{11} \\
& \text { photons } \mathrm{cm}^{-2} \mathrm{sec}^{-1}
\end{aligned}
$$

$F_{0}=$ the function of the unobscured solar disk $\tau=$ optical depth
given by Sechrist [1966], was used to approximate the electron production rate and equation (3.2) was used to approximate the optical depth.

$$
\begin{equation*}
\tau=\sigma_{a}\left(\mathrm{O}_{2}\right]\left[\mathrm{o}_{2}\right] H \sec \chi \tag{3.2}
\end{equation*}
$$

$$
\begin{aligned}
{\left[\mathrm{O}_{2}\right] } & =\text { number density of molecular oxygen in } \mathrm{cm}^{-3} \\
H & =\text { scale height } \\
X & =\text { solar zenith angle }
\end{aligned}
$$

Figure 4.10 shows the variation of q during the eclipse as compared to the variation without the eclipse. The electron production rates were used to obtain theoretical electron densities with $\alpha_{\text {eff }}$ being chosen to give the best fit to the experimental results. A value of 2×10^{-6} for $\alpha_{\text {eff }}$ was determined for the eclipse day between 75 and 82.5 km and 1.77×10^{-6} for the same height range on the control days. For the heights 78 to $87.5 \mathrm{~km} \alpha_{\text {eff }}$ was found to be 8.46 x 10^{-7}. These values for $\alpha_{\text {eff }}$ are similar to ones given by Mitra [1968]. Figure 4.11 shows a comparison between the theoretical [e] during the eclipse and without the eclipse using $\alpha_{\text {eff }}$ of 1.77×10^{-6}.

Figure 4.10 Electron production rate between 75 and 82.5 km during the eclipse and during the control days. The NO distribution used is from Meira [1971].

Figure 4.11 Theoretical electron densities between 75 and 82.5 km for eclipse and control day; calculated using an $\alpha_{\text {eff }}$ of 1.77×10^{-6}.

The electron density of the eclipse was divided by average electron density of the control data and compared to the obscuration function as seen in Figure 4.12. The comparison of the experimental [e] during the eclipse and the theoretical [e] without the eclipse using equation (2.4) was also made and is shown in Figure 4.13.

The electron density for July 9 shows a good correlation with the solar zenith angle (Figure 4.14) and was therefore divided by the theoretical [e] to eliminate the effects of the solar zenith angle and to determine the variability of the experimental [e] (Figure 4.15). The same comparison is made with the eclipse [e] (Figure 4.15) and shows a similar but greater variability.

Generally, the eclipse electron densities show a decrease that is greater than expected from the equation (2,4). Other than the possibility that this is caused by variabilities due to inaccuracies in the experiment, there are three reasons why this may occur:

1. The obscuration function of the ionization source (Lyman- α) is different than the uniform-disk obscuration function used.
2. The $\alpha_{\text {eff }}$ increased during the eclipse. This could be caused by a change in the hydrated-ion composition between 75 and 81 km .
3. Loss by attachment is increased by the eclipse.

The electron-density profiles in Figure 4.10 show good comparison with the profile with 40% obscuration given in Figure 2.7 and with 60% obscuration shown in Figure 2.6. Smith, et al. [1965] described small changes below 70 km as the C-layer caused by cosmic rays which disappear as the eclipse reaches totality. The effect can be seen up to 69 km in Figure 4.9 .

4.4 Summary

Comparing Figure 4.9 Figures 2.6 and 2.7 , the electron-density profiles of this eclipse are similar to previous eclipses for the same obscuration. Generally, similar conclusions can be drawn. The difficulty in interpreting the

Figure 4.12 The ratio of electron densities for the average of the control day as compared to the unobscured sun.

Figure 4.13 The graph of the ratios of the theoretical [e] for the unobscured sun to the

Figure 4.14 Scatter plot correlating the electron density for July 9, 1972 between 75 and 82.5 km to the solar zenith angle.

Figure 4.15 The graph of the ratio of theoretical electron densities to the experimental electron densities for July 9, 10, 1972.
results lies in the variation of the electron density of the eclipse with time. In Figures 4.12 and 4.13 a small decrease in electron density precedes the obscuration of the sun. An error of 20% can be expected due to the equipment and 20% error can be expected in the collision frequencies. Errors due to collision frequencies will cancel in Figure 4.12 but the errors due to the equipment will increase. For Figure 4.13, the reverse is true, but there are also errors due to the approximations made in equations (2.4), (3.1), and (3.2). With these possibilities of errors and observing that the ratio after the eclipse can get as low as .8 in Figure 4.12, the initial decrease can be interpreted as experimental error. The errors in Figure 4.13 can be seen in the variations in Figure 4.15. No correlation could be seen between the X-ray flux and the electron density on the third day except furing the X -ray burst period. Therefore, Lyman- α is assumed to be the main ionization source and the theoretical calculations were made on that assumption.

Of the three reasons for the large decrease in [e], the effects due to changes in hydrated ions is the most likely. During the day electron loss by attachment is insignificant above 75 km . Since the obscuration of the sun was only 60% which corresponded to a production rate similar to that of 65° solar zenith angle, the loss process would still be by recombination.

The larger concentrations of Lyman- α on the solar disk were in the southern hemisphere and were not obscured and the intensity of 1-8 \AA X-ray flux was too small to have any large effect. Therefore, the obscuration function of the ionizing source would have the same obscuration or less. This leaves the only possibility for the larger decrease in free electron as being due to changes in the hydrated ions.

5. CONCLUSIONS

The solar eclipse provides a good opportunity to study several processes of the D region and to develop its theoretical model. Accurate interpretation of the eclipse data is required to determine exactly the D-region ion production and loss processes, the variation of $\alpha_{\text {eff }}$, formation of hydrated ions, and negative ion chemistry. A brief theory of the D-region chemistry is presented in Chapter 2 and used to analyze the data in Chapter 4. The equipment used in the collecting and processing of the partially reflected waves, as well as the refinements made in the collection process are given in Chapter 3. The newer partial-reflection system, discussed in Chapter 3, has been in use for the daily collection of data. Results from this newer system are given by Denny and Bowhill [1973]. This chapter reviews the results of the partialreflection data taken during the eclipse and suggests further developments of the partial-reflection system.

5.1 Review of Results

The effect of the eclipse below 75 km is below the experimental errors. These errors are due to the variability of receiver gain caused by temperature fluctuations, the $40 \mu \mathrm{sec}$ pulse width of the transmitter, inaccuracies in the collision frequencies, and inaccuracies in noise reduction. In comparing the [e] profiles for July 9 and 10, 1972 in Figure 4.8, the beginning of the formation of a C layer can be seen resulting from cosmic rays. From Section 2.1, the main ionization source between 70 and 80 km is Lyman- α since the X -ray source effects were not observed below 81 km except when the X-ray flux increased above $1 \times 10^{-3} \mathrm{erg} \mathrm{cm}{ }^{-2} \mathrm{sec}^{-1}$.

The decrease between the electron density from July 9 and from July 10 is dependent on the height and is very marked between 79 and 81 km . Near 80 km ,
this change in electron density is as much as 55% between the results of July 9 and 10 , which was not expected according to equation (2.4). The most probably answer given in Chapter 4 is that it is due to an initial large decrease in hydrated positive ions which are the major ions between 75 and 80 km during the daytime (as seen in Figure 5.1 by Krankowsky, et al: [1972]).

The theoretical [e] were used to compare with the experimental [e] in Figure 4.13 to remove any electron density variability not due to the eclipse. The results in Figures 4.12 and 4.13 show unexpected initial decreases in [e] prior to the eclipse and larger decreases than would be expected during the eclipse, but allowing for 20% error in these results, these variations are within the error limits. In general, there is good agreement with the data from Smith, et al., [1927] and Deeks [1966].

5.2 Suggestions for Further Work

The present partial-reflection system has proved invaluable in presenting variations in electron densities diurnally and from day-to-day as presented by Denny and Bowhill [1973]. The system has several limitations, though. Either the signal-to-noise-ratio should be increased or the rates of data collection increased. Both of these changes would require alterations in the transmitter. By doubling the peak power of the transmitter, meaningful partial reflections could be obtained at lower altitudes without excessively disturbing the ionosphere due to the slow pulse rate as is done in the cross modulation experiment. By increasing the pulse rate, more data could be collected in the same interval of time, allowing for a more accurate statistical evaluation of the noise.

A new receiver has been built as mentioned in Chapter 3. The initial results obtained using it show an improvement in the results, but the problem of eliminating atmospheric noise remains. The main problem lies in defining the noise.

Figure 5.1 Rocket measurements of the positive-ion chemistry by Krankowsky, et al. [1972].

A study should be done on the specific types of noise received and the algorithms required to reject each. This would include receiving and storing noise on DECtape for later evaluation of the amplitude and phase.

A digital input/output would increase the efficiency of the collection and process. Presently the system requires the assistance of the operator every 3-1/2 minutes and uses one page of computer paper for every page of data. With a digital input/output, the computer could set the attenuators and control other switching which would free the operator for other tasks. This would also improve the usefulness of taking differential phase measurements as described by Wiersma and Sechrist [1972].

Using a line printer for outputting the data would allow for more sophisticated and complicated processing of data. This would also be required if the rate of collection is increased. To collect one file of data takes 3.5 minutes, to process one, about 45 sec , but to print out the results on the teletype and paper tape takes 2.6 minutes. Therefore, the processing would not be able to keep up with a faster collection unless the speed of printing the results increased.

REFERENCES

Aikin, A. C. (1972), The relationship of theory and experiment in the D region, J. Atmos. Terr. Phys. 34, 1591-1599.

Barth, C. A. (1966), Rocket measurement of nitric oxide in the upper atmosphere, Planet. Space Sci. 14, 623-630.
Belrose, J. S. and M. J. Burke (1964), Study of the lower ionosphere using partial reflection, J. Geophys. Res. 69, 2799-2818.
Birley, M. H. and C. F. Sechrist, Jr. (1971), Partial-reflection data collection and processing using a small computer, Aeron. Rep. No. 42, Aeron. Lab., Dep. Elec. Eng., Univ. Ill., Urbana-Champaign.
COSPAR International Reference Atmosphere (1965), North Holland Publishing Company, Amsterdam.
Deeks, D. G. (1966), D-region electron distributions in middle latitudes deduced from the reflexion of long radio waves, Proc. Roy. Soc. A291, 413-437. Denny, B. W. and S. A. Bowhill (1973), D-region electron densities for the winter of 1972-73, Aeron. Rep. No. 56, Aeron. Lab., Dep. Elec. Eng., Univ. I11., Urbana-Champaign
Donahue, T. M. (1972), Positive ion chemistry of the D and E regions, Radio Sci. 7, 73-80.

Edwards, B. (1972), Research in Aeronomy: October 1, 1972 - March 31, 1973, Prog. Rep. 73-1, Aeron. Lab., Dep. Elec. Eng., Univ. Ill., UrbanaChampaign.

Fehsenfeld, F. C., A. L. Schmeltekopf, and E. E. Ferguson (1965), Correction in the laboratory measurement of the rate constant for $\mathrm{N}_{2}^{+}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}^{+}$ at $300^{\circ} \mathrm{K}$ Planet. Space Sci. 13, 919-920.

Fehsenfeld, F. C. and E. E. Ferguson (1969), Origin of water cluster ions in the D-region, J. Geophys. Res. 74, 2217-2225.

Fejer, J. A. and R. W. Vice (1959), An investigation of the ionospheric D region, J. atmos. Terr. Phys. 16, 291-306.

Ferguson, E. E. (1971), D-region ion chemistry, Rev. Geophys. Space Phys. 9, 997-1008.

Gardner, F. F. and J. L. Pawsey (1953), Study of the ionospheric D-region using partial reflections, J. Atmos. Terr. Phys. 3, 321-344.

Good, A., D. A. Durden, and P. Kebarle (1970), Ion-molecule reactions in pure nitrogen and nitrogen containing traces of water at total pressures .5-4 torr. kinetics of clustering reactions forming $\mathrm{H}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{n}$, J. Chem. Phys. 52, 222-229.

Gregory, J. B. (1956), Ionospheric reflections from heights below the E region Australian J. Phys. 9, 324-342.

Henry, G. W., Jr. (1966), Instrumentation and preliminary results from shipboard measurements of vertical incidence ionospheric absorption, Aeron. Rep. No. 13, Aeron. Lab., Dep. Elec. Eng. Univ. Ill., Urbana-Champaign.

Huffman, R. E., D. E. Paulsen, J. C. Larrabee, and R. B. Cairns (1971), Decrease in D-region $\mathrm{O}_{2}\left({ }^{(} \Delta_{\mathrm{g}}\right)$ photoionization rates resulting from CO_{2} absorption, J. Geophys. Res. 76, 1028-1038.

Hunt, B. G. (1965), A theoretical study of the changes occuring in the ozonosphere during a total eclipse of the sun, TeZZus XVII, 516-523.

Hunten, D. M. and M. B. McElroy (1968), Metastable $0_{2}\left({ }^{1} \Delta\right)$ as a major source of ions in the D region, J. Geophys. Res. 73, 2421-2428.

Keneshea T. J. (1967), A technique for solving the general reaction-rate equations in the atmosphere, Environmental Res. Papers No. 263, Air Force Cambridge Research Laboratories, Bedford, Massachusetts.

Krankowsky, D., F. Arnold, H. Wieder, J. Kissel, and J. Zahringer, (1972), Positive-ion composition in the lower ionosphere, Radio Sci. 7, 93-98.

Lauter, E. A., and R. Knuth (1967), Precipitation of high energy particles into the upper atmosphere at medium latitudes after magnetic storms, J. Atmos. Terr. Phys. 29, 411-417.

Lodato and Mechtly (1971), Rocket measurements of electron collision frequency, Aeron. Rep. No. 45, Aeron. Lab., Dep. Elec. Eng., Univ. Ill., UrbanaChampaign.

Mechtly, E. A., S. A. Bowhill, L. G. Smith, and H. W. Knoebel, (1967), Lower ionosphere electron concentrations and collision frequency from rocket measurements of Faraday rotation, differential absorption, and probe current, J. Geophys. Res. 72, 5239-5245.

Mechtly, E. A., C. F. Sechrist, Jr., and L. G. Smith (1972), Electron loss coefficient for the D-region of the ionosphere from rocket measurements during the eclipses of March 1970 and November 1966, J. Atmos. Terr. Phys. 34, 641-646.

Meira, L. G., Jr. (1971), Rocket measurements of the upper atmospheric nitric oxide and their consequences to the lower ionosphere, J. Geophys. Res. 76, 202-212.

Mitra, A. P. (1966), An ionospheric estimate of nitric oxide concentration in the D-region, J. Atmos. Terr. Phys. 28, 945-955.

Mitra, A. P. (1968), D-region processes in non-polar latitude, J. Atmos. Terr. Phys. 30, 1065-1114.

Mitra, A. P. and J. N. Rowe (1972), Ionospheric effects of solar flares - VI changes in D-region ion chemistry during solar flares, J. Atmos. Terr. Phys. 34, 795-806.

Narcisi, R. S. and A. D. Bailey (1965), Mass spectrometric measurements of the positive ions at altitudes from 64 to 112 kilometers, J. Geophys. Res. 70, 3687-3700.

Pearce, J. B. (1969), Rocket measurements of nitric oxide between 60 and 96 kilometers, J. Geophys. Res. 74, 853-861.

Pirnat, C. R. and S. A. Bowhill (1968), Electron densities in the lower ionosphere deduced from partial reflection measurements, Aeron. Rep. No. 29, Aeron. Lab., Dep. Elec. Eng., Univ. Ill., Urbana-Champaign.

Radicella, S. M. and D. W. Stowe (1970), D-region ion chemistry, Aeron. Rep. No. 38, Aeron. Lab., Dep. Elec. Eng. Univ. I11., Urbana-Champaign.

Reynolds, D. A. and C. F. Sechrist, Jr. (1970), Measurement of average electron density between 75 and 80 kilometers, Aeron. Rep. No. 36, Aeron. Lab., Dept. Elec. Eng., Univ. I11., Urbana-Champaign.

Sears, R. D. (1972), Analysis of the 1966 solar eclipse data, DNA2863F, LMSC D246526, Lockheed Palo Alto Res. Lab., Calif.

Sechrist, C. F., Jr. (1966), A theory of the winter absorption anomaly at middle latitudes, J. Atmos. Terr. Phys. 29, 113-136.

Sechrist, C. F., Jr. (1972), Theoretical models of the D-region, J. Atmos. Terr. Phys. 34, 1565-1589.

Sen, H. K. and A. A. Wyller (1960), On the generalization of the AppletonHartree magnetoionic formulas, J. Geophys. Res. 65, 3931-3950.
Shimazaki, T. and A. R. Laird (1970), A model calculation of the diurnal variation in minor neutral constituents in the mesosphere and lower thermosphere including transport effects, J. Geophys. Res. 75, 3221-3235.

Shimazaki, T. and A. R. Laird (1972), Seasonal effects on distributions of minor neutral constituents in the mesosphere and lower thermosphere, Radio Sci. 7, 23-44.

Smith, L. G., C. A. Accardo, L. H. Weeks, and P. J. McKinnon (1965), Measurements in the ionosphere during the solar eclipse of 20 July 1963, J. Atmos. Terr. Phys. 27, 803-829.

Somayajulu, Y. V. and M. B. Avadbanula (1972), Rocket measurements of D-region electron densities at the equator, Indian J. Radio Space Sci. 1, 81-83.

Thomas, L. (1971), The lower ionosphere, J. Atmos. Terr. Phys. 33, 157-195.
Turco, R. P. and C. F. Sechrist, Jr. (1970), An investigation of the ionospheric D region at sunrise, Aeron. Rep. No. 41, Aeron. Lab., Dep. Elec. Eng. Univ. Il1., Urbana-Champaign.
U. S. Standard Atmosphere Supplements (1966), U. S. Government Printing Office, Washington, D. C.
U. S. Department of Commerce (1972), Solar-Geophysical Data 337, part I, 58-59.
U. S. Department of Commerce (1973), Solar-Geophysical Data 341, part II, 48-49.

Whitten, R. C. and I. G. Poppoff (1971), Fundamentals of Aeronomy, John. Wiley and Sons, Inc., New York.

Wiersma, D. J. and C. F. Sechrist, Jr. (1972), Differential phase measurements of D-region partial reflections, Aeron. Rep. No. 47, Aeron. Lab. Dep. Elec. Eng. Univ. Ill., Urbana-Champaign.

APPENDIX

- TITLE DLOGFI
(DLOGFI IS A COMBINATION OF ALL THE PARTIAL REFLECTION
/ MACRO PROGKAMS USED IN COLLECTING AND PROCESSING DATA. THE
$/$ PROGRAMS CONTAINED IN THIS UERSION AREt

/INITIALIZATION:	INTIM		StARTS THE TIME
1	DLOGF		INITAILIZES COLL. 4 PROC. PARAM.
1	READM		READS UNFOHMATTED CHAR, FROM TTY
/	TOD		INCREMENTS THE TIME OF DAY
/CALIBAATION:	RADC		READS SAMPLES FROM A/D CONUERTER
/	FOR FORTRAN PROGRAMS		
'	TTM		WRITES LIN. TABLE OUT ON DISK
/COLLECTION:	BEGIN		MAIN COLL. PROG.--A REAL TIME
/	SUBROUTINE API LEVEL 6		
1	\$T1		GIVES TIME TO LO\#ER API LEVELS
1	RSUB		SETS UP DATA PACK \& CHECKS NOISE
'		- -R.-T.	SUB. AT API LEVEL 5
,	PAC		PACKS DATA DOJGLE
1	DTRANS		WRITES DATA ON STORAGE DEUICE
'	CKCNT		CHECKS FOR ENOUGH DATA
1	CHECK		SEES 1F AX \& AO IS IN THE RIGHT
/		ORDER	AND ARE COLL. IN PAIRS--API 5 LIN. DATA,NEG $=0, \&$ CHECKS NOISE
/	LIN		
,	ADREAD		PREPARES A/D CONVERTER READ
1	ADINT		A/D INTERRUPT SERUICE ROUTIUE
Processinio	CHNG		INIT. DEV. \& CHECKS FOR COLL.FIE
1	CONTH		WAITS FOH FILE TO BE COLLECTED
,	SAITI		ALLOWS TIME FOR BACKGROUND
1	CKCOL		CHECKS FOR UNWANTED COLL. STOP
,	SNIT		USED TO SNITCH DISKS
,	DUMPT		READS OATA, UNPACKS IT, \& PUTS
1		IT INTO	A FORTRAN ARHAY

1 DATA IS COLLECTED ALTERNATELY ORDINARY AND EXTRAORDINARY /AS DISCRIBED BY BIRLEY (AEHONOMY REPORT 42). THE TIMING OF THE /DATA IS DETEKMINED BY AN EXTEKNAL ENCODE PULSE. THE MODE OF THE /DATA INPUTED INTO THE COMPITER IS DETERMINED BY A TIMING PROSiAM /(CHECK) SET UP BY D. WARD. ESSENTIALLY HOW IT WORKS IS AFTER A /FRAME OF DATA HAS BEEN READ IN THE COMPUTERS CLOCK IS SET FOR 9/6は /OF A SECOND (9 PULSES). IF NO OTHER DATA IS READ IN BEFDRE THE -TIME EXPIHES THE DATA FIAME JAS EXTHAOHDINARY MODE AND IS REJECTED. COTHEHWISE BOTH FHAMES AKE ACCEPTED. THIS CHECK IS MADE AT THE /BEGINNING, AFTER EACH DATA THANSFEH, AND IHENEVEH THE COLLECIION IIS HESTARTED OR AN ERKOH CONDITION EXIST. THE PROGZAM IS SET SO /AS TO NOT OUER MAXIMUM STORAGE ON THE DISK.

1
,
TTI=4 /TELETYPE IN
T TO=6
$T B I=10$
/TELETYPE OUT
OUTPT=2
DUTPT2=1
DATIN=5
/. Dat sldt of lin. table
/SECOND PLACE TO STORE DATA
DATIN2=3
/. DAT SLOT TO READ DATA
OUT=1
COUTPUT TO t/O DEUICE
I $\mathrm{N}=0$
$A S C=2$
I $A=3$
DUMP $=4$
SKAH=5
TNSAM=37
N SAM = TNSAM-SKAR
NSAMP=NSAM $/ 2+1$
IINPUT FROM $1 / 0$ DEUICE
TTYPE OF $1 / 0$ MODE
TYPE OF I/O MODE
TYPE OF $1 / 0$ MODE
/ OF DATA TO he deleted
/* OF SAMPLES TO BE READ IN
11 OF SAMPLES PER FRAME TO BE STORED
DATBLK=TNSAM+2
SIZE OF ONE FRAME PACKED DOUBLE
DTBLK $=374$
DATSTR=DTBLK/NSAMP
/SIZE OF INITIAL DATA BLOCK
SIIZE OF 1 BLOCK OF STORA:IE
/d OF FRAMES FOR 1 BLOCK OF STORAGE
RBLK=10
/SIZE OF BLOCK FOR TTI READ
CCOUNT. FOR OF NOISE FOR MAX. NOISE
MINUS ($\%+1$) OF NOISE PER FRAME
/" OF DATA PER FRAME
/RESET FOR POINTER TO DATA
MAX. FRAMES PER DEUICE
$1 /$ OF DISKS TO BE USED
-GLOBL CHNG, - DA, , AD, DUYPT, DLOGF, CKCOL, CONTL, PROC, RADC, ITM
-GLOBR TBFOKL,PP7,y'yPP
-IODEV $1,2,3,4,5,6,1$ / $/$ DAT TO BE USED
, THE FOLLOWING SUKIUO'IINE IS ISFE TO PREPARE THE
/COLLECTION AND PROCESSING PROGKAMS FOK MINIPULATIUN OF DATA.
THEE VARIABLES OF THE MACHO PhOGKAMS ARE STORED IN THIS SURROUTINF: /THEREFORE AFTFK THIS SUBHOUTINE IS EXECUTED IT IS WRITTEN OUEH
/AND SHOULD NOT BE REENTHEDE (FOR IT WILL NOT EXIST).

DCTP	LAC	NDKE	/HAS THE LOC. BEEN CHANBED
	SAD	HDUM1	, TO USE 2 DEVICES 7
	ALP	SAUN1	MES, SAVE
	HPP	DLTDS	/NO. DELETE LOCATIONS
	LAC*	DUM	/GET FIRST WORD AGAIN
	AND	CODE1 5	/CHECK THE UNIT NUMEER
	TAD	CODE36	IIS THE UNIT LESS
SAUN1	SPA		1 THAN 47
	JMP	DLTDS	TYES, DELETE IT
	1 Sz	DUMI	/NO, GO TO NEXT WORD
	dMP	ANO1	/GO TO NEXT DEVICE
/DD - EJECT			
CALERR			
	- WRITE	TTO,ASC, ERRCAL, 8	8 N.IN. TABLE ERROR
	- WAI T	TTO	
	JMS*	TBFORL	/RECALIBRATE
	JMP	CALTB	
BUF3	- BLOCK	DTBLK-342	'PROCESSING'S BUFFER
ノ /			
ONC3	- INIT	TBI, IN,RES	AINEARIZATION TABLE IN
	LAC*	DB	GET ADDR. OF DB SETTINGS FOR
	DAC	DE	, THE FORTRAN PROG.
	LAS		/CHECK CONSOLE SWI TCH
	AND	CODE4 6	, 11
	SZA		/IS IT SET 3
	JMP	ENDDB	YES, USE DEFAUTT DE SETTING
	-WRITE	TTO,ASC, MSGD8.0	IDE MESSAGE
	JMS	READM	MET RESP ONSE
$\begin{aligned} & \text { DBG } \\ & \text { CKDB } \end{aligned}$	0		/LOCATION OF THE RESPONSE
	LAW	-46	/SET ASCII CHAR. LESS THAN
	TAD*	D86	, 46 TO A NEG.
	ISZ	DBE	/PREPARE FOR NEXT CHAR.
	SPA		IIS CHAR. ${ }^{\text {P }} 40$?
	JMP	ENDDB	NO, THERE ARE NO MORE CHAR.
	TAD	CODE17	NO, IS THE ASCII LESS THAN
	SMA		' THAN 72 ?
	JMP	NUMI	NO, USE ONLY ONE NUMBEIG
	TAD	CODEI 2	CES, IS THE ASCII CHAR. AN
	SPA		$\text { ASCII }(>57) ?$
	JMP	NUMI	/NO, USE ONLY ONE NUMBER
	152	DECNT2	MES, IS THIS THE SECOND ?
	SKP		NO. CONTINUE
	JMP	NUME	MES. PROCESS THE TWO *S
	DAC	DBP I	/SAVE THE FIRST
	JMP	CKDB	1 AND GET SECOND
NUMI	152	DECNTE	/HAS ONE BEEN OBTAINED ?
	JMP	RESETD	/NO, RESET COUNTER
	LAC	DBP 1	CYES, GET THE NUMEER AND
	DAC*	DB	1 SET INTO FORTRAN ARRAY
	TAD CLLIRAL	CODE3	/SEI THE NUMBER UP AS A SPACE / AND A IN ASCII FORMAT
	DAC*	DBP	/USED TO PRINT OUT DB MESSAGE
	JMP	DEINC	PPREPARE FOR NEXT DB
RESETD	LAU	-2	/RESET COUNTER FOR
	DAC	DBCNT2	/ 2 NUMBERS
	JMP	CKDB	/TRY AGAIN
NUME	DAC*	DB	/SAUE SECOND IN FORTRAN ARRAY
	TAD	CODE1G	/SET LP NUMBER IN
	CLLIRAL		, ASCII CODE
	DAC	D8P2	1 AND STORE
	LAC	DBPI	SGET FIRST NUMBER
	JMS*	-AD	/SET UP THE BCD
	LAC	CODE12	, EQUIVALENT
	TAD*	DB	/ADD TO THE SECOND
	DAC*	DB	AND STORE IN FORTRAN PROG,
	LAC	DAPI	GET FIRST NUMBER AGAIN
	TAD	CODEIO	/SET UP THE NIMEER
	SWHA		IN ASCII
	CLLIRAR		, CODE
	TAD	DBP2	AADD TO PRIUIOUS TO FORM
	DAC*	DEP	, THE DB SETTING IN ASCIS CODE
DEINC	LAW	-2	/RESET COLNTER FOR THE
	DAC	DBCNT2 /	/ NEXT 2 Numbers
	1 S2	DEP /N	NEEXT LOC. IN THE FORTRAN ARRAY
	I Sz	DBCNTI 1 C	/NEXT LOC. IN THE MACRO ARRAY
	I SZ	DBCNT 3 /	HAS FOUR DE SETTINGS BEEN OBTAINED
	JMP	CKDE /No	(NO, GET NEXT SETTING
ENDDE	LAC	DBO	CHECK--HAS ANY NUMBERS

DECP T	LAP	$\begin{gathered} \text { CNUM } \\ -1 \end{gathered}$	res, Exit /SET COUNTER TO GET ONLY
	DAC	TC8	, ONE MORE NUMBER
	LAG	-2	/CHECK THE NUMBER
	TAD	DSTOR	, COUNTER
	SMA		fhas two numbers been obtained ?
	JMP	gethr	MES, GET THE LAST NUMBER
	LAC	TC.	NO, If THERE WAS A NIMBER, IT IS
	CLL		, OFF BY A FACTOR OF TEN TOO HIGH
	1 DIV		/THEREFORE REDUCE THE NuMBER by a
	12		' FACTOR OF TEN (zero is Uneffected)
	LACQ		/GET THE QUIOTIENT
	DAC	TC1	/REPLACE WITH CORRECTED
	LAC	Coder	/SET THE bGd pointer to
	DAC	mineac	, THE LAST MULTIPLIER
	$15 z$	DSTOR	IINCREMENT NUMBER COUNTER
	JMP	GETHR	g get next number
FNUM	LAW	-2	/CHECK THE NUMBER
	TAD	DSTOR	, Counter
	SMA		has 2 Numbers been read in
	JMP	CNUM	MES, IGNORE THE FOLLOWING CODE
	IAC		/HAS EUEN ONE NUMBER beEn
	SZA		, READ IN ?
	JMP	NONUM	/NO, USE THE defall
	LAC	TC1	cyes, THERE IS ONE NLMBER BUT
	CLL.		
	1 dIV		EQuI Valent so reduce it by
	12		' A FACTOR OF TEN
	$\begin{aligned} & \text { LACA } \\ & \text { DAC } \end{aligned}$		/GET THE INTEGER ANSWER
CNUM	LAC	$\underset{\text { TC1 }}{\text { T }}$	/SAVE CORRECTED NUMBER
	TCA	TCI	/GET LENGTH OF RLN NLMBER
	DAC	TC3	, AND SAVE the negative
nonum	DZM	TCI	/INITIALIZE LOC, to determine
	DZM	TC2	, THE END OF THE RUN
	DZM	MCNTB	/INITIALIZE BINAKY TIME OF DAY
	LAC	CODE18	/SET UP MAX. STORAGE FOR
	DAC	DSTOH	, Storage device
	JMS	FRDT	/FREE BACKGROUND DEVICES
	-TIMER	O.8EGIN. 6	SEET UP MAIN REAL TIME SUb.
	JMS*	Proc	START PROCESSING PROG.
	JMP	-+4	/ of parameters +1
	- DSA	Sum4	/the season of the year
	- DSA	ALF	LINE FEED
	$\begin{aligned} & \text { - DSA } \\ & . \end{aligned}$	TIMR	ftime at the end of each file
END	2000		
	. ASClI	<14>"***END OF	PROCESSING***"く15>
STPM	2000		
	- ASCII	<7><7><15>	
	- EJECT		
/TELETYPE ONE AT A TIME UNTIL A CARHIAGE RETURN IS FOCND. THE			
/INSTRUCTION USED TO CALL THIS ROUTINE. THE PROGRAME CONTR R READM			
/'then retuhned to two locations after the calling instruction.			
HEADM ©			
	LAC	NUMB	/SET THE ADDR. Of the block containing
	DAC*	HEADM	, the read in char. into the calling
CONR	$15 z$	READM	
	- READ	TTI, IA,MTTI, 3	/READ IN ONE CHARACTER
	- WAC	$\underset{\text { ITI }}{\text { MTI }}$	/GEt the character
	DAC*	NUME	ISTORE IN THE GHAR. BLOCK
	SAD	6177	IS THE CHAR. A RUBOUT ?
	JMP	HOU	'Yes. DElete privious char.
		NUMB	NO, PREPARE FOR NEXT CHAR.
	SAD	${ }^{2} 25$	IIS THE CHAR. A IU ?
	JMP	DLT	CYES. DELETE THE LINE
	SAD	(15	NO, IS THE Char. a Carriage return
	SKP		CYES, EXIT FROM THE READ LOOP
	JMP	CONE	ANO, GET NEXT CHAR.
	LAC	${ }^{\text {c NBLK }}$	I INITIALIzE CHARACTER 日lock
	DAC	${ }_{\text {NLIAB }}$, pointer
	DAC	$\mathrm{Cl}_{\text {RB0 }}$	/WRITE OUT ON TTY

UPDATE	LAC	TIME	/SETS THE TIME TO THE END
	TAD	(5	, OF THE COLLECTED FILE AND
	DAC	TIMR	/ AND ROUNDS OFF TO THE NEAREST MIN.
	-WRITE	TTO, ASC, MSO 1,0	/FILE PRESENT
	-WAIT	TTO	
UPDATI	NOP		/REPLACED BY "JMP ELK2" FOR 1 DB SET*
	- WRITE	TTO,ASC,MSG2,34	/KEEP IT?
	- WAIT	530	
$\begin{aligned} & \text { BLK1 } \\ & \text { COM } \\ & \text { GETCHI } \end{aligned}$	JMS	READM	/READ RESPONSE
	0		/ADDRESS OF THE RESPONSE
	LAC*	COM	/GET READ IN CHARACTER
	DZM*	COM	/ AND ZERO THE LOC.
	SAD	(116	/IS CHARACTER A "N* 7
	JMP	STAGN	PYES
	TAD	C-72	/CHECK IF NUM IS LESS
	SMA		1 THAN 72 OCTAL
	JMP	BLK 3	/NO, CONTINUE
	TAD	C12	MYES, IS NUM. GREATER THAN
	SPA		/ 57 OCTAL?
	JMP	BLK 3	/NO, CONTINUE
	DAC*	COM	MES, Save
	152	COM	/NEXT CHARACTER
	JMP	GETCHI	/REPEAT
ELK3	LAC	LETCHG	/INITIALIZE THE BLOCK
	DAC	COM	1 CONTAINING THE INPUT CHAR.
	LAC*	COM	GET FIRST CHAR.
	SNA		/LS IT A ZERO?
	JMP	CONDE	MYES, IGNORE IT
	DAC*	CHG	/PASS TO PROC THE DB CHANGE
	TAD	<-1	/OFFSET THE BY - I
	CLLIRAR		/DIVIDE BY TWO AND SAVE REMAINDER
	TAD	(60)	/SET UP AS ASCI 1 CHAK.
	SWHA		/PHEPARE FOR MESSAGE
	DAC*	DBP	/SAVE NUMBER
	LAC	C140	/ASCII FOR ZERO
	SZL		
	LAC	(152	/ASCII FOR NUMGER 5
	TAD*	DBP	/ADD TO OTHER DB SETTING
	CLLIRAR		ISET UP AS CHAR. 485 IN ASCII WORDS
	DAC*	DAP	/SAVE NEW DB SETTING
CONDE	I SZ	COM	/GET NEXT CHAR.
	LAC*	COM	/SET UP NEXT CHAR.
	SAD.	(15	/IS CHAR. A CARRIAGE RETURN ?
	JMP	- +3	MYES. EXIT
	SZA		NO, 1S IT A ZERO ?
	DAC*	CMULC	/NO, SET UP MUL - CONSTANT CHANGE
	DZM*	COM	/CLEAR CHAR.
BLK2	JMS	DBSUB	SSET UP NEXT DB MESAGE
	LAC	CN2	AEET STORAGE ALREADY USED
	TAD	CNI	/ADD STORAGE SIZE OF LAST
	DAC	CN2	\prime FILE AND SAVE
	TAD	TEM 1	/ADD IT AGAIN AND CHECK--
	TAD	DSTOR	/ WILL ANOTHER FILE OF THE SAME
	SMA		/ LENGTH OVERFLOW THE Storage allow?
MDUM3	JMP	RPTI	CYES, RESTART THE COUNTING
	ISZ	NAME +1	/NO, INCREMENT NAME
	I SZ	MSG I + 3	/INCREMENT TELETYPE
	152	MSE1+3	/ MESSAGE TWICE
	JMP	WRITE	/RETURN TO NEW FILE
STAGN	LAC	CNI	/REMDUE THE SIZE OF
	TCA		, THE LAST FiLE
	TAD	CNE	, FROM THE
	DAC	CN2	/ STOMAGE COUNTER
	LAC	DBC	/REMOUE THE AMOUNT OF
	TCA		/ TIME USED
	tad	TC2	, BY THE PRECEEDING
	DAC	TC2	1 FILE
	MP	WRITE	/RECOLLECT FILE
,	SUBROUTINE TO CHANGE THE DB MESSAGE TO BE PRINTED OUT		
DBSUB			
	\bigcirc		
	1 SZ	D8P	/GET NEXT DE
	LAC*	DBP	/ MESSAGE
	SMA		IIS IT THE END OF THE DE MESSAGES ?
	JMP	- 44	NO, USE THIS MESSAGE
	LAC	(DBO	MES, HEPEAT THE
	DAC	DEP	1 FIRST DB
	LAC*	DBP	, SETTING GIVEN
	DAC	MS3 2+11	/INSERT MESSAGE
	JMP*	desua	/RETURN

	TAD＊	POINT	PPACK INTO PREUIOUS ONE
	DAC＊	POINT	／STORE IN BUFI
	I S2	POINT	MOVE POINTER UP ONE WORD
	152	COUNTP	／ONE WORD HAS BEEN PACKED
	JMP	PAKINA	113 WORDS HAUE NOT BEEN PACKED
	LAC＊	POINT	113 WORDS HAVE BEEN PACKED
	ISZ	CTT8	／END OF BUFFER ？
	JMP＊	PAC	／NO．CONTINUE COLLECTION
	LAW	－DATSTR	CYES，RESET THE BUFFER
	DAC	CTT8	，COUNTER
	LAC	BuF2l	／SET POINTER TO SECOND
	DAC	POINT	／BUFFER－－BUF2
	LAC	BuFI！	／GET FIRST BUFFER ADDRESS
		CTI 6	／JUST FINISHED FILLING EUFI
	JMP	－+5	TYES，PREPARE TO STORE BUFI
	DAC	POINT	／NO，SET POINTER TO BUF1
	LAW	－2	／RESET COUNTER WHICH DETEFMINES
	DAC	CTT6	\prime WHICH BUFFER TO TRANSFER
	LAC	BUF21	／PREPARE TO TRANSFER
	DAC	TBUF	1 BUF2
	DAC	tranf	／SET TRANSFER FLAG
	JMP＊	PAC	／CONTINUE COLLECTION
ERS！	－WRITE	TTO，ASC．MSG5．0	／TIMING ERROR
	LAC	MDUMI	PUT CLOCK OPERATION BACK
	DAC	ONCE	，IN PROGRAM
	ISZ	CNT	／PREPARE TO REJECT $0-X$ PAIR
	LAC	（JMP RDO	／REJECT NEXT X－SAMPLE
	158	CNT2	／WAS THE LAST AN O－SAMPLE ？
	LAC	（ JMP ONCE	／NO，REJECT THE FORMER O－SAMPLE
	DAC	Start	＇YES，REJECT NEXT SAMPLE
	－TIMER	D，BEGIN， 6	／RETURN TO COLLECTI ON
	－RLXIT	RSUB	
MSGS	2000		
	\square		
	．ASCII	＂TIMING ERROR＂	15＞
／＋＋			
，SU	BROUTINE	THANSFERS 1 BLO	CK OF DATA FROM A DESIGNATED BUFF
，TO the storage device being used．			
DTRANS	6		
	LAC	TBuF	PPASS NAME OF BUFFER
	DAC	－+3	，TO－WRITE
C4	－WRITE	OUTPT．DUMP，0．25	
C5	－WAIT	OUTPI	
	DZM	THANF	／Clear tiansfer flag
	JMS	CKCNT	／CHECK CKCNT ROUTINE
	LAC	（ NOP	／PUT CLOCK BACK INTO OPERATION
	DAC	ONCE	（ ${ }^{\text {d }}$
	JMP＊	DTRANS	
，			
，SUBHOUTINE TO CHECK WHICH DATA CONSOLE SWITCHES ARE SET			
＇TOO LARGE SETTINGS AND TOO SMALL SETTINGS ARE GUARDED			
1 AGA	INST＊T	HE DEFAULT SETTI	NG IS 2の日®．
，AbAlnst JHE DEFAUT SETITNG 15 20be．			
CKCNT	\square		，
	LAS		LOAD DATA SWITCHES FROM CONSOLE
	RTL		APUT AC EIT I INTO LINK
	CLA		／TO DI SALLOU SHARING
	SZL		IIS AC BIT 1 SET ？
	LAW	－1	CYES，DO ALLOW
	DAC＊	（177	，SHAKING
	LAS		ARELOAD DATA SNITCHES
	AND	（17777	／IGNORE TOP 5 BITS
	TAD	（－7	／ARE THE SWI TCHES SET TO
	SPA		，LESS THAN SEVEN？
	TAD	（2000	／YES，USE DEFAULT SETTING
	TAD	（－10000	／NO．ARE THEY SET TO GREATER
	SMA		，THAN 1日DDE（DISK OUERFLOW）
	TAD	（2000	／YES，USE THE DEFAULT SETTING
	TAD	（18007	NO，RESET THE AC BACK
	DAC	TEMI＊	／TEMPARILY STORE NUMBER
	CMA		／COMPARE THE DATA SWICHES
	TAD	IDCOU	，TO THE ID NUMBER
	SMA		／IS THE ID LESS 7
	JMP	RESTAR	IID GREATER THAN SWITCH SETTING
	LAC	TEM1	CWILL THE SIZE OF
	TAD	CN2	，THIS FILE
	TAD	DSTOH	，OVERFLOW
	SMA		1 THE DISK ？
	JMP	hestar	YES，CLOSE FILE
	JMP＊	CKCNT	／ID LESS THAN SWITCH SETTING


```
I
ADWCR=26
ADCAR*ADWCR+1
- SCOM=10B
A DNI =70 3724
ADSO=763701
ADSO=703701
ADCO=703704
ADCT=703744
/
\prime}\mathrm{ ENTRY POINT FOR A-D INTERFACE INITIALIZATION
/
ADREAD 0
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
JMP \\
TCA
\end{tabular} & INSET & /REPLACED BY "LAC* ADREAD" \\
\hline DAC* & (ADWCR) & /SET WORD COUNT \\
\hline I SZ & ADREAD & SET WORD Coun \\
\hline LAN & -1 & \\
\hline TAD* & ADREAD & /BUFFER ADDRESS -1 \\
\hline DAC* & (ADCAR) & , TO CUHRENT ADORESS REG. \\
\hline I S2 & ADREAD & TO Curkekt adoress reg. \\
\hline LAC* & ADHEAD & /GET FLAG ADORESS \\
\hline DAC & INFLAG & \\
\hline DZM* & INFLAG & /CLEAR FLAG \\
\hline I SZ & ADREAD & clear mag \\
\hline LAC* & ADAEAD & /GET REAL-TIME SUBROUTINE ADDRESS \\
\hline DAC & INSUB & GE REAL TIME SUBROUTINE ADDRESS \\
\hline I SZ & ADREAD & PPOINT TO RETUNN LOCATION \\
\hline ADW I & & IINITIALIZE INTERFACE \\
\hline JMP* & ADREAD & /RETURN \\
\hline
\end{tabular}
\prime'THE FOLLOWING CODE IS EXECUTED ONLY ONCE
INSET LAC* (.SCOM+55) /GET ENTRY POINT ADDERSS OF .SETUP
A DSVA
SAV
LAC* (.SCOM+5!
/ENTRY POINT OF REALTP
LAC <4DD010 /RAISE THE API
JMS* ADSVA MCALL SETUP TO CONNECT
ADSO ADINT ADINT TO
DBK / THE API
LAC (LAC* ADHEAD /DEBHEAK FROM API LEUEL
DAC ADREAD+1 MMODIFY INSTKUCTION
JMP ADREAD+1 / AND JUMP TO IT
/
/INTERRUPT SERUICE ROUTIN
/ OF DATA THANSFER. DETERMINES (HED IMMEIATELY AFTEH COMPLETION
, DETERMINES STATUS OF A-D INTERFACE, SETS
/ COMPLETION FLAG AND ACTIVATES REAL-TIME SUBHOUTINE.
\prime}\mathrm{ HUNS AT API LEVEL D.
\prime
ADINT O
        DBA ADSVA /PAGE ADDHESSING MODE
    /SAVE AC
    SKP Y CLLAI IAC
    /TIMING ERROR?
    SKP Y CLAI I AC
        DAC* INFLAG /SET FLAGG
        ADCO /CLEEAR
        ADCT MCLEAR INTERFACE FLAGS
        LAC* C.SCOM+102 THAISE TO API
        ISA %RAISE TO API 
        LAC INSUB
        SNA 
        /HEAL-TIME SUBROUTINE ADDRESS
        JMP ADXI
        JMS* REALTP
        LAC <404a@0
        ISA 
        LAC ADSUA
        DBH 
        /EYPASS MONITOR CALLS IF ZERO
        /ACTIVATE REAL-TIME SUBROUTINE
        /REQUEST AN API INTERRUPT
        / AT SOFTWARE LEUEL 4
        /RESTORE AC
        DBK AMP* /SET TO LEAUE HARDWARE API LEVEL
/
/A-D WORD COUNT
/AND CURRENT ADDRESS REGISTERS
MMONITOR'S COMMUNICATI ON AREA
AA-D CONUERTER WRITE INITIALIZE
/SKIP ON WORD COUNT OVERFLOW
/SKIP ON DATA TIMING ERROR
\primeCLEAR OVERFLOW FLAG
/CLEAR TIMING FLAG
```


ссccccccccccccccccccc－－contl－－cccccccccccccccccccccccccccccccccc
C program sets up calibration and the heading for the print
C OUT OF THE PROCESSED DATA IN PROC．THE PROGRAM CALLS：
C OUT OF THE TBFORL－－CALIBRATION PROGRAM
C DLOGF－－－INITIAL MACRO PROGRAM

c
SUBROUTINE CONTL（ISURP）
INTEGER DB（4），DBC
REAL DATE（2），REAS（5）
COMMON／STAT／DB，DATEsREAS，DEC，DBS，NC4
DATA NR／120784／
REWIND 4
C INITIALIZE THE DB SETTINGS USED
DBC＝ 3
$D B(2)=10$
$D B(3)=25$
IFCISUNP．NE．D）GOTO 5
C GIVE PRECALIBHATION SETUP
WKITE（6．1日ठ）
100 FOHMAT（46H TURN OFF PULSER AND ENCODE PULSE POUER SUPPLY 1$)$
C SET UP CALIBRATION AND LINEAFIZATION TABLE
CALL TBFORL
C ASK FOR AND GET THE DATE
5 WRITE（6，101）NR
101 FORMAT SH DATE，A：2）
READ（4．261）DATE
201 FORMAT（2A5）
C ASK FOH AND GET THE HEASON FOR THE KUN
MKITEC6．1023NK
102 FORMAT（16H REASON FOR DATA」AZ） READ（4．202）REAS
202 FORMAT（5A5）
C PREPARE FOR COLLECTION AND PROCESSING
CALL DLOGF（DB，DBC，DATE）
RETUAN
END

[^0]NAUI = 5
$\mathrm{NAV}=500$
$A V=N A V I * N A V$
ICT=0

NUMEER OF ATTENUATOR SETTINGSONTI
NTI=42
NT20NTI-1
NT3aNT1-2
TU(NTI) $=562.34$
TU(NT2)=561.19
$T U(N T 3)=446.68$
TU(NTI-3)=398.11
TU(NTI-4) $=354.82$
TU(NTI-5)=316.23
TU(NT1-6)=281.84
TU(NT1-7)=251-19
$T U(N T 1-8)=223 . B 7$
TU(NT1-9)=199.53
TU(NTI-10)=177.83
$T U(N T 1-11)=158.49$
TU(NTI-12) $=141.25$
$T U(N T 1-13)=125.98$
TU(NT1-14)=112.20
TU(NT1-15) $=1010.02$
TU(NT1-16) $=89.13$
$T U(N T I-17)=79.43$
TU(NTI-18)=70.80
$T U(N T 1-19)=63.10$
TU(NT1-20) $=56.24$
$T U(N T 1-21)=50.12$
$T U(N T 1-22)=44.67$
TU(NT1-23) $=39.81$
TU(NT1-24) $=35.48$
$T U(N T)-25)=31.62$
$T U(N T 1-26)=28.18$
$T U(N T 1-27)=25.12$
TU(NTI-28) $=22.39$
TU(NTI-29): 19.95
$T U(N T I-3 i)=17.78$
$\operatorname{TU}(N T 1-31)=15.85$
TU(NT1-32) $=14.13$
$T U(N T 1-33)=12.59$
TU(NT1-34) $=11.22$
$T U(N T 1-35)=13.630$
$T \cup(N T I-36)=8.91$
$T i J(N T 1-37)=7.94$
$T U(N T 1+38)=1.48$
TU(NTI-39) $=6.31$
$\begin{array}{ll}T U(N T 1-39)= & 6.31 \\ T U(N T 1-40)= & 5.62\end{array}$
$T U(1)=0.00$
$\begin{array}{lr}20 \\ \mathrm{C} & \text { SET UPORNT1)=512. } \\ \text { TUSSABES FO }\end{array}$
SET UP MESSABES FOR TELLING NHICH ATTENIAATOR SETTING TO DO
DO $11 I=1$-NT3
$\operatorname{IAS}(I)=1+5$
IAS(NTZ) -99
C DO LOOP TO INPUT ALL THE OUTPUTED SIGNALS
DO $211=1 \times$ NTa
$12=\mathrm{NTI}$ II
DUM=7
NRITE (6,1D(1) IAS(11), NH
FOHMAT (EH SET TO, IE, $23 H$ HB ATTENJATION AND C. R*.AZ)
HEAD (4.203)F
FORMAT (F5.1)
200
C IF THE INPUTED NUMGER IS TNO DI'SITS RESTART THE SETTINGS
IF(FOGT.1日.).30 TO 23
CALL LINAP(XF,NTI)
1F (XF=LE.O.)XF=512
GET THEXI*FLOAT(2*I-IN
CALL LINAP (X3,NTI)
X3=(X3* K1+1.)/2.
IF(X3.LE.1.) X3=1.1
C
C
4
C
103
C WHITE LINEARIZATION TABLE ON TELETYPE
C WHITE LINEARIZATION TABLE ON TELETYPE
FOGMAT (10(15,2x))
164
C
NEW PAGE
WתITE(6,103)
C
6
9
107
ISSUE AN A/D CONUERTER READ "NAUI" TIMES
DO 1B J1=1,NAU1
READ "NAU" NUMPERS FROM THE A/D CONVERTER
CALL RADC(START,NAV,STAT)
IF(STAT.EQ.B)GO TO 400
DO 1 J=1.NAV
IF(START(J).GT.511) START(U)=\
STORE THE INPUTED NUMBERS IN A HEAL VARIABLE
DUM= DUM*FLOAT(START(J))
CONTINUE
AVERAGE THE OUTPJTED NGMBERS AND GO TO THE NEXT SETTING
TUO(I2)=DUM/AU
DO 3 11=1,NT2
I2=I I + I
1CT=1CT+1
13=NT1-11
SET UP THE SLOPES OF EACH LINE SEGMENT APPROXIMATION
S(I1)=(TU(I2)-TU(I1))/(TUO(I2)-TUU(II))
1F(ICI.ER.2)OO TO 3
WHITE OUT STHAIGHT LINE APPROXIMATION TABLE
W:IITE(6,10:2) 11,S(I1),I1,TJ(I1),I1,TUO(11),IAS(I3)
ICT=1
IF(DLPO.GT, -1) ICT=3
POSSIBLE ERROR CONDITIONS FOR THE APPROXIMATION JJST FORMEO

```

```

 FORMAT (}4\textrm{H}\quad\textrm{S},12,2H)=,F6.3,5\textrm{K},3\textrm{HTUC,I 2,2H)=,FB.3,5X,
 14HTUO(,12,2H)=,F8.3,3X,I 2,2HDB)
 NAITE OJT LAST UALIES OF THE TASLE
 WHITE(6,1B!) TU(NT1),TUO(NT1)
 FO:MMAT(19K,7HTU(42)=,F8.3,5X,6HTUO(42)=,F8, 3,7H 5DE//1/)
 I ERतS=g
 FINAL OUTPUT VALIJE FOIR THE LINEA.IIZATION TABLE FOMMATION
 NOGMALIZATION FACTON OF THE OUTPUT VALUES OF THE LIN. TABLE
 K1=1023./KF
 INITIAL DIJTPUI USED TO DETEHMINE THE INPUT UALJE
 X1=511.5/1024.
 FLAST INPU'G VALUE OF THE TASLE
 STAHT (1) =1
 DO 4 I=2.512
 NEXT UJT PUT VALUE USED
 UJT PuT VALUE USED
 GET THE INPUT VALUE AND STOIE IN "X3"
 STORE INPUT UALUE IN INTEGE:Y LIN. TABLE
 START(1)=1FIX(X3)
 ENROA CONDITION FO.S LINEAKIZATI ON TABLE
 IF(START(I)+1.LT.START(I-1))IENR2=1ERR2+1
 LAST VALUE OF THE TABLE
 STANT(512)=511
 IF(DLPO.LT.1) GO TO 6
 NEW PAGE
 WRITE (6.183)
 FORMAT (1H1)
 WHITE TABLE ON A STORAGE DEUIVE (DUMP MODE)
 CALL TTM(STAHT)
 WHITE OUT ANY ERRON AND ALLO'S RECALIBRATION IF NEEDED
 IFKIERHE.NE*OSGO TO 9
 IF(IEHK.EQ-\Delta)RETURN
 GKITE(6,166)
 FOHMAT(//47H ****CHECK CALIBRATION FOR POSSIBLE ERROAS****///)
 gO TO 7
 GOTO 7
 NHITE(6.187)
 GO TO 7
 RETUNN
 END
    ```

```

C LINAP TRANSFORMS OUTPUT VOLTAGES INTO INPUT VOLTAGES OF
C THE RECEIUER. THE CALIBRATION DATA IS CONTAINED IN SUB-
THE RECEIVER.

```

```

 INPUT AND OUTPUT:
 A IS THE OUTPUT VOLTAGE THAT IS TRANSFORMED INTO
 INPUT VOLTAGE
 NC5 IS THE NUMBER OF DB SETTINGS
 SUBROUTINE LINAP(A,NCS)
 COMMON /TA/ S(43),TU(44), TUO(44)
 N=1
 C DIUIDE THE STRAIGHT LINE APPROXIMATION INTO 4 AREAS
NC54=(NC5+2)/4
NC53=NC5*3/4
NC52-(NC5+1)/2
FIND WHERE THE INPUTED NUMBER LIES
IP(A.GT.TUO(NC54))NaNC54
IF(A.GT.TUO(NC52))NaNC52
IF(A.GT.TUO(NC53))NaNC53
SET THE UPPER LIMIT OF THE SEARCH
K=N+NC54
C SEAKCH FOR THE CORRECT LINE SEGMENT
DO S I~N,K
J=I+1
IF(A.GT.TUO(I).AND.A.LE.TUO(J)) GOTO 10
CONTINUE
LINE SEGMENT COULDN'T BE FOUND
A=0.
RETUNN
GET THE VALUE OF THE COHHESPONDINO OUTPUT
A0(A-TUO(I))*S(I)+TU(I)
HET!J RN
END

```

```

 DO 110 1=1:4
 BNO(I)=0.
 10 BNX(I)=0.
C INITIALIZE STORAGE DEVICE AND
C PGEPARE TO READ DATA
CALL CHNG (IBNX, I DBCH, IMCC)
1F(IMCC.LE.O.OR.IMCC.OT.9)GO TO E0
CMC= FLOAT(IMCC)-4.5
RBMX-RBMX+CMC*CMC*-4
20 1F(IBMX-LT.1)IBMX=216
IMCC=|
C NOISE CRITERION
IBMX=THE SUM OF THE SET OF 45 NOISE SAMPLES WHICH HAS THE
MIN. MAXIMUM OF ALL THE MAXIMUMS OF EACH SET OF GS NOISE SAMPLES
THE AVERAGE NOLSE FOR THE FIHST 5 IN EACH FRAME HAS
TO BE LESS THAN SRBMX*IBMX/45. WHERE RBMX IS THE SUPPLIED CONSTANT.
FOR SPEED RBMX* (IBMX/45*)**2*5. IS COMPARED TO THE SUM OF THE
SQUARES OF THE NOISE.
DUMX= FLOAT (I BMX)/45.
IF(DUMX*SRBMX.GT-500.) DUMX= 500./SRBMX
BMXNS=RBMX*DUMX* 5.*DUMX
KEOFO=0
KEOFX=0
ID=0
C
30
SET UP CHECK FOR REJECTION BECAUSE OF NOISE CRITERION
BMEANO=D.
BMEANX=0.
DO 120 I=1.5
BMEANO= BMEANO+BNO(I)*BNO(I)
BMEANX=BMEANX+BNX(I)*BNX(I)
IF(BMEANO.GT.BMXNS.OR.BMEANX.GT.BMXNS\GO TO 50
c
NOISE USED TO SUTRACT FROM DATA SAMPLES
BMO = EMO+RMEANO
BMX = BMX + BMEANX
C
SUM OF THE SQUAHE OF THE UNSATURATED DATA AT EACH HEIGHT
DO 140 I= 1,21
1F(AO(I).GE.510..OR.AX(I).GE.510.)GO TO 40
A\cupAO(I)=A\cupAO(I)+AO(I)*AO(I)
A\cupAX(I)=A\cupAX(I)*AX(I)*AX(I)
GO TO 140
REJECTIONS DUE TO SATURATIONS OF DATA
IRJ(I)=IRJ(I)+I
CONTINUE
GO TO 60
4 0
140
REJECTIONS FROM NOISE CRITERION
IK=1H+1
C0
C SET
NOMG NOISE USED IN REJECTION CHITERION
NO= BMEANO + SNO
SNX= BMEANX + SNX
GO TO 30
ID=1D/2
B1D=1D*5.
MAXIMUM ALLOWABLE NOI SE
BMXNS=BMXNS/(DUMX*5.*SEBMX)
C RMS OF ALL NOISE SAMPLES
AUNO=SQRT(SNO/BID)
AUNX=SQRT(SNX/EID)
C NUMBER OF ACCEP TABLE NOISE SAMPLES
HN=5\#(ID-IR)
DO 150 1=1.21
C NUMEER OF REJECTIONS AT EACH HEIGHT
IHJ(I)=IRJ(I)+1R
C NUMBER OF ACCEPTABLE DATA AT EACH HEIGHT
HSAM=ID-IRJ(I)
C AUERAGE SUM SQUARED OF ACCEPTABLE DATA FOR EACH HEIGHT MINUS THE
C AUERAGE SUM SQUARED OF THE ACCEPTABLE NOI SE
AVOC=AVAO(I)/RSAM-BMO/RN
A\cupXC=AVAX(I)/RSAM-BMX/RN
C THE RMS OF THE ACCEPTABLE DATA AT EACH HEIGHT (PAESERUING THE SIGN)
A\cupAO(I)=(ABS(A\cupOC)/AVOC)*SQRT(ABS(A\cupOC))
A\cupAX(I)=(ABS(AUXC)/AUXC)*SQRT(ABS(AUXC))
EL(1)=0.
xO(1)=0.
IF(AUAO(I).LE.0.B.OR.AVAX(I).LE.@.0)GO TO 150
XO(I)=AUAX(I)/AUAO(I)

```
```

150 CONTINUE
C THE RMS OF THE ACCEPTABLE NOI SE
BMO= SQRT(BMO/RN)
BMK=SQRT (BMX/RN)
CALL. CALCE(XO,1,26,EL,,IA)
C GET THE TIME OF DAY
DO 155 I=1.4
I1=5-1
155 ITIM(I)mITIME/(10**I1)
C URITE THE HEADING ON THE TELETYPE
WRITE(6,1050)ITIM, RDATE, REAS,IDB(NC4)
1050 FORMAT(1H1,4I1,4X,2A5,3X,5A5,3X,12,2HDB)
WRITE (6,1100) BMXN5,RBMX
FORMAT(//19H MAX. ALLOW* NOISE=,F7.1.16H MULT. CONST.E.F7.3/)
WRITE<6,120OJAUNO, BMO,AUNX, BMX
WRITE<6,120日)AUNO,BMO,AUNX,BMX
116H X NOISE AV.(1),F8.1.7H (2),F8.1)
WRITE(6,1300)ID,IR
FOKMAT(//IX,I4,BH SAMPLES,5X,I 5.12H REJ.(NOISE)//3X,
14HREJ.148H (N.+SAT.) HEIGHT AV. AO AV. AX AX/AO ED/S
HT=5 8.5
DO 160 1=1,21
C CHECKS FOR COLLECTION STOPPAGE
CALL CKCOL
HT*HT+1.5
WRITE(6,1400) IRJ(I),HT,AVAO(I),AVAX(I),XO(I),PLF,EL(I)
1400 FORMAT (4X,I 4,4X,F5.1,3X,F6.1,2X,F6.1,2X,F5,2,A3,F6.6)
160 CONTINUE
C ALLOWS RESULTS TO EE SAVED ON PAPER TAPE
CALL PP7
C NEXT ATTENUATOR SETTING
NC4aNC4+1
TF(NC4.3 T.IDBC)NC4EI
IF(IDBCH.GT.O)IDB(NC4)=5*1DBCH
GO TO 13
FORMAT(1H)
RETURN
END

```
C************************SUBROUTINE, DHD7 3***************************
\(\begin{array}{ll}\text { C************************ } \\ \mathrm{C} & \text { DREAD HEADS } 21 \text { SAMPLES OF SIGNAL AND } 5 \text { SAMPLES OF NOISE }\end{array}\)
    FROM DECTAPE. THE OUTPIJT VOLTASES HAVE BEEN THANSFORMED INTO
    I NPUT VOLTASES. THE PHDGRAM USES SUBFOUTINE DUMPT CMACROX TO
    nEAD DATA FROM STORAGE DEUICE.
    *********************************************************************
C C S*************)
    DIMENSION A(21), IDAT(27), BMEAN(5)
    DIMENSI
\(K E O F=B\)
    \(N=5\)
    \(\mathrm{NI}=\mathrm{N}+1\)
    \(\mathrm{N} 2=\mathrm{N}+2\)
    \(N 3=N 1+2!\)
C GET ONE SET OF DATA (26 NJMBERS)
    CALL DUMPT(IUATANESF)
C LHEC: ID CONSECUTIVE
    1F(10-IDAT(1)+1) 1,1,15,1!
C CHECK FOR END OF FILE
\(1 \Delta \quad I F(I D A T(1)\).NE. \(13(1853) 30\) TO 20
C TELL PHOC II'S THE END OF THE FILE
        \(K B O F=1\)
        にゼU紋
15 SET DATA SANPLES INTO A REAL AKAGAY
40 DU \(42 \mathrm{MIN}=\mathrm{N} 2\)-N3
        MFUE MIN-NI
        \(A(M F V E)=I D A T(M I N)\)
        A(MFVE) \(=1\)
CONTINE
\(\begin{array}{ll}42 & \text { CONTINGE } \\ C & \text { SET NOISE SAMPLES INTO A NEAL. N.JMBEH A:KAY }\end{array}\)
        DO \(133 \mathrm{~J}=1\) ~N
        \(\mathrm{JEL}=\mathrm{J}+1\)
13! B. BEAV \(J\) ) = I DAT (JEL)
        HETU.N
C THE ID IS EHGONEOJS, IGNO:RE THE REST OF THE DATA
己
iĐj FUTMAT (44i ID JAS NOT CONSECJTIUE AND NOT=13.353; ID=,3(I7.3X))
        \(\mathrm{KEOF}=1\)
        sETURN
        END
```

ссссссссссссссссссссссссссс---CALC2---сссссссссссссссссссссссссссссс
C CALCE IS A LIST OF CONSTANTS CALUATED FRON THE PROGRAMS
C CalC and EldEN and CONTAINS the function that calculates the
c electron dEnsitiEs for the partial-reflection procesSing prolrams.
C THE PROGRAM CALC WRITES THIS PROGRAM.

```

```

SUBROUTINE CALCR (ARRAY,LL,LH;FD,IA)
DIMENSIDN ARRAY(21) ORATIOR(21),FD(21)
C GET THE PREDETERMINED CONSTANTS FOR THE RIGHT SEASON
1F(IA)206,300.100
c CONSTANTS FOR THE SUMMER
100 RATIO2(1)= 1.0731152
RATIO2(2)= 1.0778633
RATIO2(3)= 1.0841143
HATIO2(4)= 1.0909986
RATIO2(5)= 1.0990518
HATIO2(6)= 1.0901243
RAT102(7)= 1.0880302
gATIO2(8)= 1.0864129
RATIO2(9)= 1.0768397
RATIOE(16)= 1.0596323
RATIO2(11)= 1.0495014
RATIO2(12)= 1.0328141
RATI02(13)= 1.0262468
RATIO2(14)= 1.0166022
RAT102(15)= 1.0117923
RATIO2(16)= 1.0076428
RAT102(17)= 1.0044388
RATIO2(18)= 1.0029128
RATIO2(19)= 1.0015084
BATIO2(2B)= 1.0008443
FD(1)= 0.170327E-03
FD(a)=0.243443E-63
FD(3)= 0.329813E-03
FD(4)=0.427651E-03
FD(5)= 0.532698E-03
FD(6)= 0.627513E-03
FD(7) =0.699730E-03
FD(B)=0.744879E-03
FD(9)= 0.753246E-03
FD(10)= 0.722645E-03
FD(11)=0.660879E-03
FD(12)= 0.579908E-03
FD(13)=0.492934E-03
FD(14)=0.405772E-03
FD(15)= 0.328260E-03
FD(16)=0.258682E-03
FD(17)=0.201748E-03
FD(18)= 0.155429E-03
FD(19)= 0.118415E-03
FD(20)=0.915812E-04
GO TO 400
C CONSTANTS FOR THE WINTER
200 RATIO2(1)= 1.0682487
HATIO2(2)= 1.0890572
RATIO2(3)= 1.0699695
RATIO2(4)= 1.0979884
RATIO2(5)= 1.0692204
RATIO2(6)= 1.3854059
RATIO2(7)= 1.0770541
HATIOR(8)= 1.0745673
HATIO2(9)= 1.0665843
RATIO2(10)= 1.0531266
RATLO2(11)= 1.0458097
RATIO2(12)= 1.0329590
RATIO2(13)= 1.0286678
RATIO2(14)= 1.0167225
HATIO2(15)= 1.0127123
RAT1O2(16)= 1.0876488
RATIOZ(17)= 1.0046818
RATIO2(18)= 1.0023713
RATIO2(19)= 1.0019426
RATIO2(28)= 1.0007090
FD(1)=0.237897E-03
FD(2) = 0.319960E-03
FD(3)=0.410827E-83
FD(4)=0.502861E-63
FD(5) = 0.592594E-83
FD(6) = 0.662825E-83
FD(7)=0.720342E-03
FD(8)= 0.750909E-03
FD(9)=0.751034E-03
FD(10)=0.720293E-03
FD(11)=0.663644E-63

```

FD(12) \(=0.588398 \mathrm{E}-63\) \(F D(13)=0.500527 E-03\) \(F D(14)=0.410427 E-03\) FD(15) \(=0.330916 \mathrm{E}-03\) FD(16)=0.258602E-63 \(F D(17)=0.200210 \mathrm{E}-03\) FD(18)=0.156383E-03 FD(19)=0.119390E-03. FD(20) \(=0.899351 E-64\) GO TO 400
C CONSTANTS FOR EQUINOX
\(300 \quad\) RAT1O2( 1 ) \(=1.0670392\) RAT102( 2) 1.0803050 RAT102( 3) \(=1.0780858\) HATIO2 (4) \(=1.0912947\) HATIO2 (5)m 1.0914306 RATIO2 (6)= 1.0917337 RATIO2( 7 ) \(=1.0897206\) RATIO2 \((8)=1.0825763\) RATYO2 (9) \(=1.0714581\) RATIO2(10)=1.0590323 HATIO2(11) \(=1.8482702\) HATIO2(12) \(=1.0351881\) HATIO2(13) \(=1.0240435\) RATIO2(14)= 1.0176469 RATIO2(15) = 1.0117923 PATIO2 (16) \(=1.00710148\) RATIO2(17)=1.0048179 RAT102(18) \(=1.0027836\) tATIO2(19) \(=1.0015986\) HATIO2(20) = 1-0007970 FD ( 1 ) \(=0.188515 \mathrm{E}-63\) FD( 2) \(0.261225 E-03\) FD( 3) \(=8.347697 E-03\) FD( 4) \(=0.442169 \mathrm{E}-03\) FD ( 5 ) \(=0.542672 \mathrm{E}-03\) FD ( 6) \(=0.633402 \mathrm{E}-83\) FD ( 7 ) \(=0.705094 \mathrm{E}-03\) \(F D(8)=0.747132 \mathrm{E}-63\) FD( 9) \(=0.752781 E-03\) \(F D(1 G)=0.722645 E-03\) \(F D(11)=0.661807 E-33\) \(F D(12)=0.579908 E-133\) \(F D(13)=0.492934 E-13\) \(F D(14)=0.408145 E-83\) FD(15) \(=0.328260 E-03\) \(F D(16)=0.2615055-03\) \(F D(17)=0.236349 \mathrm{E}-03\) \(F D(18)=0.160\) 195E-33 \(F D(19)=4.124978 E-\Delta 3\) \(F D(26)=3.997959 \mathrm{E}-84\) 430 DO \(13 \mathrm{I}=\mathrm{LL}, \mathrm{LH}\) IF(ARHAY (1).EQ.J. OR-ARHAY (I +1).EQ. G.)GO TO 50 FD(I)=ALOS( (ARKAY (I)/ARKAY (I +1) ) *RATI 02(1))/FD(I) 30 TO 10
\(F D(I)=0\). CONTINUE RETUHN

\section*{CPPPPPPPPPPPPPPPPPPPPPPPPPP---WHPP*--PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP}

C WRPP PUNCHES THE PHOCESSED PAKTIAL REFLECTION DATA
C ON PAPER TAPE
CPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPRPPPPPPPPPPP C COMMON /PPC/ AO(21), AX(21), AUAO(21), \(\operatorname{AVAX}(21), 1\) TIM(4), 1XO(21), IRJ(21), BNO (5), BNX(5), EL(21), 2RBMX, AUNO, BMO, AUNX, BMX, ID, IR COMMON /STAT/ IDB(4),RDATE(2)sREAS(5), !DBC.EMXNS,NCA WRITEC7,10563 ITIM, RDATE, HEAS, I DE (NC4), BNXNS, REMX, IAUNO, BMO, AUNX, BMX, ID, IR
1050 FORMAT (1H1, \(4 I I, 4 X, 2 A 5,3 X, 5 A 5,3 X, 12,2 H D B / F 7,1, F 7,3, F B, 1\), \(1 \mathrm{FB}, 1, \mathrm{FB}, 1, \mathrm{FB}, 1,14,15\) )
DO \(160 \quad 1=1,21\)
CALL CKCOL
WRITE (7,1400) YRJ(I), AVAO(I), AVAX(I), XO(I), EL (I)
1400 FORMAT(IX,I4,F6.1,F6.1.F5.2,F6. D)
160 CONTINUE
RET URN
END
```

C**************************-PROC73-***************************************
PRINTS OUT THE ELECTRON DENSITY. PROCT3 USES THE FOLLOUING PROGRAMS:
HEAD-\cdots--SETS UP AND PRINTS THE HEADING (FORTAAN)
DINIT-*-INITIALIZES THE STORAGE DEVIVE (MACRO)
FSTAT---LOCATES THE DATA FILE (MACRO)
SEEK----FINDS THE FILE ON THE STORAGE DEVICE (NACRO)
DRD73--SETSSAMPLES INTO THE REAL ARRAY (FORTRAN)
CALC2=-=CALCILATES THE ELECTRON DENSITY (FORTRAN)
C**
C
INTEGER DATIN
DIMENSION FNAM(2),AO(21),AX(21),AVAO(21),AVAX(21),
1XO(21),1RJ(21),BNO(5),BNX(5),EL(21)
WRITE(6.105)
FOIMAT(48H TYPE IN SEASON--(1) FOH SUMMER, (-1) FOR WINTER
115H. (0) OTHERWISE)
READ(4,200)IA
FORMAT(12)
DATIN=2
CALL HEAD(O)
C INITIALIZE VARIABLES
SNDa@.
SNX=8.
1R=0
1RNag
BMO=0.
BMX=0.
DO 16 1.1.81
AVAO(I)=8.
AUAX(I)=0.
IRJ(I)=0
DO 17 I=1.4
BNO(I)=D.
BNX(I)=0.
INITIALIZE TAPE STORING THE DATA
CALL DINIT
GET THE DATA FILE NANE
NRITE(6.20)
FORMAT(ISH WHICH DATAFILE)
READ(4,30)FNAM
FORMAT (2A5)
CHECK THE VALIDITY OF THE NAME GIUEN
CALL FSTAT(DATIN,FNAM,LOG)
IF(LOG*NE.D)GO TO 4:
NHITE(6,35) FNAM
FOKMAT(6H FILE, 2A5,19H NOT FOUND ON DAT 2)
30 TO 10
FIND LOCATION OF FILE ON THE TAPE
CALL SEEK(DATIN, FNAM)
GET THE MAXIMUM ALLOWAZLE NOISE
WRITE(6,57)
FOHMAT(14H MAXIMUM NOISE)
KEAD(4,56)BMXNS
FONMAt(F10.0)
IF(BMXNS.GE.S10.) BMXNS=400.
FOR SPEED USE THE SQUARE OF THE MAX. ALLON. NOISE TIMES 5
DUM4= BMXNS*5.
BMXNS=BMXNS*DIJM4
KEOFO=|
KEOFX=O
ID=0
GET ONE SET OF 26 ORDINARY SAMPLES
CALL DRD7 3(AO, BNO,IERR, ID, KEOFO)
1F<KEOFO.EQ.1)GO TO 50
GET ONE SET OF 26 EXTHAOHDINAGY SAMPLES
CALL DID7 3(AX,BNX, I ENH, I D, KEOFX)
IF(KEOFX.EQ.I)SO TO 49
GET THE SUM SQUARED OF THE NOI SE
GMEANO=0.
BMEANX=0.
DO 440 {=1,5
BMEANO=BMEANO+BNO(I)*ENO(I)
440 BMEANX=BMEANX+BNX(I)*BNX(I)
C CHECK FOR SETS OF SAMPLES THAT ARE TOO NOISY
IF(BMEANO.GT.BMXNS.OR.BMEANX.GT.EMXNS)GO TO 510
SUM THE SQUARED NOISE SAMPLES FOR THE
LAST FOUR NOISE SAMPLES PER 25 TOTAL SAMPLES
BMO=BMO+BMEANO-8NO(1)*BNOC1)
BMX=BMX+BMEANX-BNX(1)*BNX(1)
DO 47 1m1,21
IF(AO(I).GE.510..OR.AX(I).GE.510.)GO TO 46

```
```

C SUM OF THE SQUARED GOOD AO AND AX SAMPLES
AVAO(I)=AVAO(I)+AO(I)\#AO(I)
126 A\cupAX(I)=A\cupAX(I)+AX(I)由AX(I)
GO TO 47
C THE TOTAL OF REJECTIONS DUE TO SATURATION
C PLUS NOI 5E ABOUE THE GIVEN MAXIMIM
46 IRJ(I)=IRJ(I) +1
CONTINUE
GO TO 520
GO TO 5
510 IR=1R+1
520 SNO=BMEANO+SNO
SNX=BMEANX + SNX
GO TO 48
ID=ID-1
I D=ID/2
BID=1D*5
GMXNS=BMXNS/DUM4
C THE RMS OF ALL NOISE SAMPLES TAKEN
AUNO= SQRT (SNO/BID)
AUNX=SQRT(SNX/BID)
C THE NUMBER OF THE ACCEPTABLE NOISE SAMPLES
RN=4*(ID-IR)
DO 52 I=1,21
C NUMBER OF REJECTED DATA AT EACH HEIGHT
IHJ(I)=IRJ(1) +1 R
C NUMBER OF ACCEPTABLE DATA AT EACH HEIGHT
RSAM=ID-1RJ(1)
C ACCEPTABLE NOISE IS SUBTRACTED OFF
AVOC=AVAO(I)/RSAM-BMO/RN
AUXC=AUAX(I)/RSAM-BMX/KN
C RMS OF GOOD DATA WITH THE SIGN PRESERVED
AVAO(I)=(ABS(A\cupOC)/A\cupOC)*SQRT(ABS(A\cupOC))
A\cupAX(I)=(ABS(A\cupXC)/A\cupXC)*SQRT(ABS(A\cupXC))
EL(I)=0
XO(I)=0
IF(AVAO(I).LE.0.0.OR.AVAX(I).LE.ロ.0)GO TO 52
XO(I)=AVAX(I)/AVAO(I)
CONTINUE
52 HMS OFNTINUE ACCEPTABLE NOISE
BMO=SQKT(BMO/RN)
BMX=SQRT (BMX/RN)
C GET ELECTHON DENSITIES
CALL CALC2(X0,1,20,EL,IA)
C WRITE THE HEADING
CALL HEAD(1)
WRITE (6,100) BMXNS,AUNO,BMO,AUNX,BMX
FORMAT (25H MAXIMUM ALLOWABLE NOI SE=,F6.1//16H O-NOI SE AU.(1) ,
1F8.1,7H (2),F8.1/16H X-NOISE AU.(1),F8.1.7H (2),F8.1)
NHITE(6,54)ID,1R
FOHMAT(//1K,I4.8H SAMPLES,5X,15,12H REJ.(NOISE)//8H REJECTS,
12X,6HHEIGHT, 2X, 6HAV. AD, 2X, 6HAV. AX, 2X, 5HAX/AO, 4X, 2HED)
HT=58.5
WHITE OUT TABLE
DO 53 t=1.2
HT=HT+1:5
WKITE(6,58)IRJ(I),HT,AUAO(I),AUAX(I),XO(I),EL(I)
FORMAT(3X, 14,3X,F5.1,3X,F6.1, 2X,F6.1,2X,F5,2,3X,F6,0)
CONTINUE
30 TO 10
STOP
END

```

C HEAD SETS UP AND PRINTS OUT ONF LINE OF INFORMATION AS A
C HEADING \(\operatorname{GOR}\) A NEW PAGE.

C
    SUBROUTI NE HEAD (J)
    REAL REAS (12)
    IF(J) 6,6,19
\(1 \pi\) WRITE(6,25) RFAS
2.5 FORMAT (1H1/1X,12A5)
RETURN
6 WRITE (6,1 Ba)
IAT FORMAT (IHI/RTH GIVE I LINE OF INFORMATION)
2, FORMAT(12A5)
RETURN
F.ND
- TITLE READ DATA IN DUPP MODE

/ READ. DUMP MODE FROM DECTAPE ON A VARIABLE .DAT SLOT
/FILLS 252 DEC YORD BUFFER AND OUTPUTS 26
/WORDS TO ARRAY IDAT EUERY TIME CALLED.
/THESE ARE UNPACKED FROM 18 WORDS OF THE BUFFER.
/ IDAT: WORD \(1 \quad\) I.D.
1 WORD 2-6 NOI SE SAMPLES
/ NEGF:
WORD 7-27 DATA

1
.BLOBL DINIT,DUMPT,.DA


NDPCNSSAM/2
- IODEU

DINIT 0
\begin{tabular}{ll}
-INIT & DATIN, 0, DINIT \\
LAN & - \\
DAC & CTT9
\end{tabular}
/INITIALIZE DEUICE STOAING THE DATA
PREPARE TO READ
1 IN ONE BLOCK OF DATA
/RESET THE BUFFER POINTER WITH
/ THE ADDR. OF GUF3
PREPARE TO READ TWO
/ DUMMY BLOCKS
/END OF INITIALIZATION
DUMPI
A2

FLAG


GET ADD
FET ADDR.
' OF ARHAY
/SET COUNTER OF DATA TO BE
, PHOCESSED
GET POINTER
ANO, CONTINUE WITH PRESENT SET OF DATA
/RESET COUNTEH TO THE NUMBER
, OF SETS PER BLOCK OF STORAGE
/PICKUP ADDK OF ADDK
/OF ARRAY
\(\mathrm{Cl4}\) *WAIT DATIN
\begin{tabular}{ll} 
ISZ & SNITC \\
JMP & LBA \\
LAN & -3
\end{tabular}

INITIALLY READ TNO DUMMY BLOCKS
/RESET CONTROL TO HEAD
, TWO DUMMY BLOCKS
/READ ONE BLOCK OF DATA
ノ AT A TIME

LBE LAC* POINTE CGET THE ID (FIRST WORD IN DATA SET)
\(\angle E N D\) OF FILE ID?
CYES, RESET PARAM'S AND CLOSE FILE
CGET ID AND PUT
, INTO THE FORTHAN AHRAY
GO TO NEXT ADDR. OF THE ARRAY
GO TO NEXT DATA WORD
PIBEPARE TO UNPAC
f TNO DATA NORDS
GET DATA YORDS FROM BUF3
/FIRST NOHD IN LEFT HALF
/SAVE ONE DATA WORD
CHECK FOR NEG. NUMEER
CHECK FOR NEG. NUMEER
/SETF NEG. NIMEER FOUND
LOAD INTO FORTIAN ARRAY
CGET DATA WORD AGAIN
/GO TO NEXT LOC. IN ARRAY
IUNPACED TWO WORDS?
/NO. LOOP AROUND
CYES, HAS 34 DATA WOHDS EEEN UNPACKED?
NO, REPEAT UNPACKING PRDCESS
CYES, GO TO NEXT ID
/RETURN
SuITC

SWITC
CTT9 LAW
SEUN 376002
IC1B 0
POINT2 •DSA BUF3
BUF31 •DSA BUF3
BUF3 •BLOCK DTELK


C FHOM GIVEN COLLISION FREQUENCIES，CALC ALONG WITH ELDEN
C CALCULATES THE CONSTANT VALUES USED IN THE ELECTRON DENSITY
C EQUATION GIUEN BY PI RNAT IN AERONOMY REPORT 29 AND NRITES THE
C PROGRAM CALCZ WHICH CALCULATES THE ELECTRO DENSITIES FOR THE
C PARTIAL－REFLECTION PROGRAMS．
C＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
DIMENSI ON AKRAY（21），P（21）， \(12(3), C F(3), E L(26), C A L C 2(2)\)
DATA CALCZ（1），CALCZ（2）／5HCALC2，4H SRC／
IDAT＝I
\(L A B L=0\)
C COLLISION FREQUENCY PidOFILES
\(100 \quad P(1)=19.2 .3\)
\(P(2)=156.9\)
\(P(3)=127.5\)
\(P(4)=102.7\)
\(P(5)=82.37\)
\(P(6)=66.25\)
P（7）＝52．58
\(P(8)=41.66\)
\(P(9)=32.81\)
\(P(10)=25.84\)
\(P(11)=2(9.1\)
\(p(12)=15.53\)
\(p(13)=11.89\)
\(P(14)=9.057\)
P（15）＝6．817
\(P(16)=5.399\)
\(P(17)=3.827\)
\(P(18)=2.962\)
\(P(19)=2 \cdot 124\)
\(P(20)=1.553\)
\(P(21)=1.1813\)
C WRITE THE PGOXAAM HEADING ONTO TAPE
CALL EN FER（IDAT，CALCE）
今rite（IDAT，10）
 1CCCCCOCCCCCCCCCCCCCC／59H C CALCS IS A LIST OF CONSTAVTS
2 CAL JATED FIROM THE PTUSHAMS／63H C CALC AND ELUEN AND COVT
3AINS THE FUNCTION THAT CALC：JLATES THE／69H C ELECTRON DENSITIES 4 FDN THE PARTIAL－REFLECTION PHOUESSINS PROSHAMS．／4DH C THE PRO 5GHAM CALC NIITES THIS P：iOJHAK． 169 CCCCCCCOCCCCCCCCCCGCCCCCCCC 6CCCCCCCCCCOCOCCCCCCCCCCCCCCCCCCCCCCCCCCCC／37H SUヨROUTINE 7 CALCZ（ARHAY，LL，LH，FD，IA）／39H DIMENSION AKRAY（21），HATIO2 8（21），FD（21）／57H C GET THE PREDETE！MINED CONSTANTS FOR THE 9 HI3HT SEASON／19H IF（IA）283．333．10』／ \(128 H\) C CONSTANTS FOR THE SJMMER） 30 TO 42a
C COLLISION FREQUENCY PHOFILE FOA THE IINTER
20．\(\quad P(1)=133.5\)
\(P(2)=187.8\)
P（3）－87．12
\(P(4)=70.04\)
\(P(5)=56.33\)
\(P(6)=45.28\)
\(p(7)=36.55\) \(P(8)=29.32\) \(P(9)=23.52\) \(P(10)=18.80\) \(P(11)=14.97\) \(P(12)=11.99\) \(P(13)=9.561\) \(P(14)=7.541\) \(P(15)=6.1008\) \(P(16)=4.748\) \(\mathrm{P}(17)=3.758\) \(p(18)=2.941\) P（19）＝2．321
```

 P(26)=1.816
 P(21)=1-431
 WRITECIDAT,11)
 FORMATC&1H
 128H C CONSTANTS FOR THE WINTER)
 30 T0 400
 C COLLISION FREQUENCY PROFILE FOR SHE EQUINOX
306 P(1)=160.2
P(2)=130.2
P(3)=165.3
P(4)=84.90
P(5)=68.25
P(6)=54.75
P(7)=43.57
P(8)=34.31
P(9)=27.07
P(16)=81.32
P(11)=16.82
P(12)=13.86
P(13)=10.33
P(14)-8.062
P(15)=6.246
P(16)=4*835
P(17)=3.758
P(18)=2.915
P(19)=2.260
P(20)=1.733
P(21)=1.359
WRITE(IDAT,18)
12 FOKMATCIIH GO TO 400/
125H C CONSTANTS FOR EQUINOX)
C SET THE COLLISION FREQUENCIES TO THE RIGHT ORDER OF MAGNITUDE
400 DO 401 I=1,21
P(I)=P(I)*(10.**5)
M P(I)aP(I)*(10.***S)
C STATEMENT LABLE FOR THE NEN PHOSRAM
LABL=LABL+100
JI= J! +4
K=0
D0 20 I=1,20
K=K+1
CF(1)=P(K)
CF(2)=P(K+1)
C CALCULATE CONSTANTS FOR THE ELECTRON DENSITY EQUATION
20 CALE ELDEN(R,CF,ARHAY(I),ARHAY(I+1),EL(I))
AHRAY (1)=ARHAY(2)/ARHAY (1)
C WRITE FIRST CONTSTANT WITH A STATEMENT LABLE
:NKITE(I DAT,405)LABL,AHRAY(1)
405 FORMAT(1H.13,12H HAT1026 1)=,F1D.7)
C WHITE THE REST OF THE RO AND RX CONSTANTS
DO 25 In2,20
ARHAY(I)=ARRAY(I+1)/ARHAY(I)
NHITE(IDAT,418) I,AHRAY(I)
FORMAT(9H HATIOZ(,12,2H)=,F10.7)
410 FORMATC9H WRITE THE CONSTANT DENOMINATORS
DO 30 Ir1,20
30 WRITE(IDAT,480) I,EL(1)
420 FOHMAT(5H FD(.I8.2H)=,E13.B)
C CALCULATE THE REST OF THECONSTANTS
IF(JI.LT*5)90 T0 200
IF(JI*LT.ID)GO TO 300
C WRITE THE REST OF THE PROGRAM TO CALCULATE ELECTRON DENSITIES
C WRITECIDAT,40)
FORMATC1BH 400 DO 10 I=LL,LH/48H IF(ARAAY(I).EQ.0..OR.
IARRAY(I+I).EQ.0.)GO TO 50/59H C THE FUNCTION FOR THE CALCULA
ETION OF ELECTRON DENSITIES/
351H FD(I)=ALOG((AARAY(I)/ARRAY(I+I))*FATI O2(I))/FD(I)/
410H GO TO 10/12H 50 FD(I)=0./12H 10 CONTINUE/8H RETUKN)
GALL CLOSE(IDAT)
STOP
END

```

C DURING DATA PROCESSI NG THERE ARE ONLY 2 VARIABLFS
C FOR EACH HEIGHT (AO AND AX). THE EOUATION FOR THE
C ELECTRON DENSITY AS GIVEN BY RIRLY (I97I) IS:
C \(E D=L N(((A X(1) / A O(1)) /(R X(1) / R O(1))) /((A Y(2) / A O(2)) /(R X(2) / R O(2)))) / F D\)
\(C\) WHERE LN IS IHE NATURAL LOQ AND 1 AND 2 ARE HEIGHT I AND 2
C SUBROUTINE ELDEN CALCULATES IHE CONSTANTS RX,RO,AND FD
C FOR EACH HEIGHT.

```

SUBROUTINE ELDEN(AXBYAO,GNU,RXRO1,RXROR,FD)
DIMENSION AXBYAO(3),RXBYRO(3),RX(3),RO(3),ONU(3),RATIO(3)
C
AXBYAO(3)=0
C GNU(3) IS MEAN COLLISI ON FREQUENCY AT THE INTERMEDIATE HEI GHT
C CALCULATE C INTEGRALS AT BOTH HEIGHTS AND FOR AVERAGE GNU
DUM=GNU(1)+GNU(2)
GNU(3)=0.5*DUM
DO 22 K=1.3
O=(2.59614E+7)/GNU(K)
X=7.38R6E+6/GNU(K)
CT N=O*(O* (O* (O+A1)+A2)+A3)+A4
CTD =O* (O* (O* (O* (O* (O+B1)+B2)+B`)+B4)+B5)+B6
CTO=CTN/CTD
CTYN=X* (Y* (X* (X+A 1) +A2) +A.3) +A 4
CTXD =X*(X* (X* (X* (X* (X+BI) +B2) +B3)+B4)+B5)+86
CTY =ETYN/CTXD
CFO= (O* (O* (O+D1) +D2) +D3)/(O* (O* (O* (O* (O+F.1) +F2) +E3)+E4)+ES)
CFY=(X* (X* (X+D1) +D2) +D3)/(X* (X* (X* (X* (X+F1) +F2) +E3)+EA +E5)
CAL.CULATE RATIOS
RX(K)=SQRT ((X*CTX)**2+(2.5*CFX)**2)
RO(K)=SQRT ((O*CTO)**2+(2.5*CF0)**2)
RXBYRO(K) =RX(K)/RO(K)
RATIO(K)=AXRYAO(K) RXRYYOO(K)
CONTINUE
CALCULATE FD FROM FINAL VALUES OF DO LOOP
FO=(5.*3.1824E+3*CF0)/(4.*3.0F+8*GNU(3))
FX=(5.*3.1 B2,4E+3*CFX)/(4.*3.0E+8* RNU (3))
FD=(FX-F0)*3.DE+9
RXR01=RXBYRO(1)
RYRO2 =RXBYRO(2)
RETURN
END

```

C PROGRAM READS IN THE NUMEFR OF SAMPLES ASKS FOR BY OPFRATOR C IF THE NU: MBER IS ZERO, \(3!\) NUMBERS ARE READ IN AND SET UP AS PARTIAL C REFLECTION DATA IS (I.EE. 5 NOISE SAMPLES AND 21 DATA POI NTS \& 5 EXTRAJ C DATA IS PRINTED OUT IN THE FORM OF ONE NUMBER PER HEIGHT AFTER EACH C GROUP OF 26 SAMPLES ARE READ IN. THIS HAS BEFN USE TO CHECX THE C RECIEVER AND A \(D\) CONVERTFR AGAINST THF RFYYOLDS SYSTEM AND TO SEE C IF EVERYTHING IS OPERATING AS IT SHOULD. IF THE NUMRER READ IN IS C NOT ZERO, THAT NUMBFR OF SAMPLES ARE READ FROM THF A/D CONVEFTER
C AND AN AVERAGE OF ALL THE NUMRERS ARF. TAKEN AND PRINTED OUT.
© ******************************************************************
\(c\)
DIMENSION IA (5a), RAI (5a), RAZ (5a)
MAX \(=50\)
I31 \(=3 \mathrm{l}\)
WRITF ( 6,110 )
FORMAT (1) AH ADC CHECK)
\(\stackrel{11}{4}^{1}\)
DEFALILT VALUE FOR THF * OF SAMPLES \(=31\)
NS =131
READ OF SAMPLE TO RE READ FROM A D CONVERTER
READ (4,21B) IDV
210
FORMAT (I 5)
IF (IDU, NE, 3) NS =I DV
IF (NS, NE.I31) GO TO 5 月

C
C AS IN THE PARTIAL REFLECTION COLLEETION \(11=0\)
\(25 \quad 1 \mathrm{CH}=0\) \(11=11+1\) CALL INPAD（IA，NS，ICH） IF（ICH．FQ．A）GOTO 6 IF（11．GT．1） 30 TO 11 DO \(131=1\) ， 131
CONVERSI ON ALGORTHOM FOR AD CONVERTER NEG．＇S TO COMPUTER
NEGATIVE NUMBERS
IF（IA（I）．\(G T .511) I A(I)=3972+(4996+32768) * 7+I A(I)\)
RAI（I）＝FLOAT（IA（I））／．511
GO TO 25
11 WRITE（ 5,1 19！）
\(C\)
DOOP FOR SFCOND SET OF NUMEERS READ IN
DO \(15 \quad 1=1,131\)
\(I F(I A(I), G T .511) I A(I)=3072+(4696+32768) * T+I A(I)\)
\(H T=45 .+F 1 . O A T(I-1) * 1.5\)

IF（I EQ． 11 ）WRITF \((6,196)\)
RAZ（I）\(=\) FLOAT（IA（I））／．511
WRITE OUT THE NUMRERS IN AN ORDERLY WAY
WRITE（ 6,1 月日）HT，RAI（I），RA2（I）
FORMAT（ \(3 X, F 4.1,4 \mathrm{HKM}, F 5 . \mathrm{B}, 4 \mathrm{HMV}, F 5.0,2 \mathrm{HMV})\)
15
100
1al FORMAT（SH NOISE）

IMG FORMAT（SH DATA）
GOTOS
the following dumps the average of the a \(/ D\) converter numbers
c AND ALSO GIVES THE VALUE IN MILLIVOLTS
50 INS \(=(N S+\) MAX－1）\(/\) MAX
T NS＝I NS＊MAX
DO 69 J＝1．I NS
ICH \(=1\)
CALL INPAD（IA，MAX，ICH）
2．\(\quad 1 F(I C H . E Q . a)\) FO TO \(2 . 月\)
DO 55 I \(=1\) ，MAX
IF（IA（I）．GT．511）IA（I）\(=3 \times 72+(4996+32769) * 7+1 A(I)\)
AV＝AV＋FLOAT（IA（I））
55 CONTINUE
\(A V=A V / T N S\)
AVV＝AV／．512

GO TO 5
STOP
F ND
```

－TITLE A／D CONUFRTER SERUICE ROUTINES FOR BT．－FG．
，RFKMI5 V3A SERUI CE ROUTI NES FOR THF．HP 561 GA A TO D
converter．thesf routines permit input of any spficified
，NUMBER OF SAMPLES INTO A CORE BUFFFR．I NPUT MAY PF．OVER－
LAPPED WITH PROGPAM EYCUTION，AND CONTROL MAY BE PFLINQUISHED to LOWER PRIORITY PROGRAMS WHILF DATA TRANSFF．P TAKES PLACE． Macro－15 Calli NG SFQUFNCE：
JMS INPAD
NUMRER OF SAMPLES RFQUIRED
RUFFER ADDRESS
COMPLETION FLATG ADDRFSS
PFAL－TIME．SUBROUTINF．ADDRFSS，PPIORITY LEVEL IN GITS a－2
（EXAMPLF：50GAQA + RTSUBA）
（RETURNS HEPE IMMEDIATELY）
IF THE ATH WORD AFTER THE JMS IS M ，NO REAL－TIME SUBROUTINE WILL PF ACTIVATED．NOTE：THF PRIORITY CODF FOR MAINSTREAM IS 1
THE COMPLETION FLAG IS CLFARED BY THE CALL TO INPAD．
AND SET TO＋1 FOR NORMAL COMPLFTION OR－IGQI IF A DATA
TIMING ERROP OCCURS．
$A D W C R=25 \quad / A-D$ WORD COUNT
$A D C A R=A D W C P+1$
$. \operatorname{SCOM}=170$
ADWI＝ 7×3724
ADSO $=703721$
TI ON AREA
／MONITOR＇S COMMUNICATIONAREA
／SKIP ON WORD COUNT OVERFLOY
／SKIP ON TATA TIMI NG ERROR
／CLEAR OVERFLOW FLAG
ADCO $=7.23744$
$A D C T=793744$

```

1
```

/ ENTRY POINT FOR A-D INTERFACE INITIALIZATION
INPAD :GLOBL INPAD,.DA
lll}\begin{array}{ll}{\mathrm{ JMS** }}\&{.0A}
{\mathrm{ JMP }}\&{:+4}
INAR
INWC
I NFLAG
INR IMP INSET PPPLACED BY "LAC* INWC"
TCA
DAC* (ADWCR)
LAW -1
TAD* I NAR
DAC* (ADCAR)
DZM* INFLAG
DZM INSUB*
AMP* INPAD
\prime
/ THE FOLLOWING CODE IS EXECUTFD ONLY ONCE
INSFI L.AC* (.SCOM+55) /GET ENTRY POINT ADDERSS OF .SETUP
ADSVA DAC .
JMS* --1 CALL .SETUP TO CONNECT ADINT TO API
ADSO
DZM* (2044
LAC <LAC* INWC
DACC INRR MMODIFYINSTRUCTION
JMP INR IAND JUMP TOIT
%
IINTERRUPT SFPVICE ROUTINE, EYECUTFD IMMFDIATFLY after COMPLETION
/ OF DATA TRANSFER. DFTERMINES STATUS OF A-D INTEPFACE, SETS
/ COMPLETION FLAG AND ACTIVATES PEAL-TIME SUBROUTINE.
\prime}\mathrm{ guns at api level o.

```

```

ADINT a
DRA ADSVA /PAGF ADDRESSINGI MODF
ADST
SKP!CLA!IAC
LAN左 - 001
DAC* INFLAF
ADCO
ADCT
ADYIT LAC ADSVA
DBR
JMP* ADINT
/SAVF AC
TIMING FRROR?
NO,+I TO AC
MYES, ERROR CODE
SFTT FLAG
Clfat
I I NTERFACE flagS
/RESTORE AC
/SET TO LEAVE HARDWARE. API LEVEL
RFTURN TO INTERRUPTED PROGRAM

```
```


[^0]:
 C THIS PROGRAM SETS UP A LINEAR APPROXIMATION TO THE INPUT OF
 C THE RECEIUER UERSUS THE OUTPUT OF THE A／D CONUERTEH AS READ BY THE
 C COMPUTER．FROM THISLINEAR APPROXIMATION，A TABLE IS FORMED BY
 C USING INPUTS FROM－S TO 511．5 INCREMENTED BY 1．THE OFFSET OF－ 5
 C IS USED FOR BETTER ACCURACY IN THE ROUNDOFF ERROR OF THE A／D CONVER－
 C TER．ALL THE VALUES OF ZEHO IN THE TABLE ARE CHANGED TO 1 SINCE
 C IS USED TO DESIGNATE NEGATIUE NUMEERS DURING THE COLLECTION．
 C THE PROGRAM CALLS THE SUBROUTINES！
 JRADC－－－READS＊S FROM THE A／D CONVEHTEA（MACRO）
 LINAP－－CONVERTS INPUTS TO OUTPUTS FOR THE FORMATION OF THE LINEARIZATION TABLE
 OF THE LINEARIZATION TABLE
 CTTTTTTTIT ITTITITTITナTITTITTRTTETTTTTTIJTTTTTTTTTTTTITTTTITITTITTTTTIT

