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ABSTRACT

The problem of the threshold law for electron-atom impact

ionization is reconsidered as an extrapolation of inelastic cross

sections through the ionization threshold. The cross sections are

evaluated from a distorted wave matrix element, the final state

of which describes the scattering from the N th excited state of

the target atom. The actual calculation is carried for the e-H

-1
system, and a model is introduced in which the rl2 repulsion is

replaced by (rl+r 2) . This model is shown to preserve the

essential properties of the problem while at the same time reducing

the dimensionability of the Schrodinger equation. Nevertheless,

the scattering equation is still very complex. It is dominated

by the optical potential which is expanded in terms of eigen-

spectrum of QHQ. It is shown by actual calculation that the lower
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eigenvalues of this spectrum descend below the relevant inelastic

thresholds; it follows rigorously that the optical potential con-

tains repulsive terms. Analytical solutions of the final state

wave function are obtained with several approximations of the

optical potential: (o) omission of the optical potential (1)

inclusion of the lowest term and dominant pole term (2) a closure

approximation which depends on an effective energy &N for each

threshold energy EN. The threshold law in all these cases is

obtained. In the closure approximation the law depends on the

sign and N dependence of E- E , however it cannot be

excluded that the difference in an oscillating function of N.

In that case the derivative of the yield curve is an oscillating

(but non-negative) function of the available energy E. A form

of such a threshold law is suggested.

2



I. INTRODUCTION

In previous papers1' 2 we have begun to consider the impact

ionization problem from a completely quantum mechanical point of

view. The touchstone of our understanding of that problem is the

threshold law, and it is to that specific problem that we return.

The insight that we tried to gain was by a study of the

doubly excited (i.e. auto-detaching) states of the electron-atom

system associated with ever higher principal quantum numbers of

the target atom. The actual extrapolation procedure that was

used, however, was through a summation of inelastic cross sections

to such higher states, in which the final state wave function was

taken as being of the form as the doubly excited state which

minimized the energy.

As reasonable as this procedure would appear, it is at best

speculative, because the doubly excited states actually enter

the equation for the final state scattering functions as specific

terms in the optical potential. For each scattering function there

are an infinity of optical potential terms plus direct potentials,

not to mention coupling terms between various excited states that

must in principle be considered. In the light of this complexity

it is naive to expect that the final state scattering function

is simply of the form of the lowed lying doubly excited state.

Thus we here consider the scattering problem itself. First

we define a model which we believe contains all the essentials

of the electron-hydrogen ionization problem and yet greatly
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reduces the mathematical complexity: we replace the electron-

electron repulsion 2 (in rydberg units which we use throughout)

r12
by 2/(rl+r2):

2 2 (1.1)
r12 rl+ r 2

and thereby reduce the S-wave Schrodinger equation to a two-

3
dimensional partial differential equation. As a result the ex-

cited spectrum of target states contain only s-states and loses

the k degeneracy associated with the complete hydrogenic spectrum.

Nevertheless the long range dipole potential which the scattering

particle sees is retained in the model. These and other character-

istics will become clear as we go along.

In Section II we consider the scattering problem starting

from a general close coupling expansion. We show that because of

the nature of the spectrum of QNHQN that for N large the optical

potential starts to contain repulsive terms even when all the

coupling is included. This is our most important rigorous obser-

vation. We shall also argue (Section Ef that for purposes of

evaluating inelastic scattering matrix elements, we can neglect

the coupling terms, i.e. in effect we are considering a distorted

wave approximation and that is our most important approximation.

The direct potential (Hpp) problem is considered in Section

III. Here we can introduce some benign approximations which

allow analytic solutions to be given, which are nevertheless

essential for a cogent analysis of what happens in the limit
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N+c. Basically these are the zero energy solutions in a Coulomb

and in a dipole potential.

The optical potential is examined in Section IV. We consider

three approximations: a lowest term approximation; an effective

intermediate state (dominant pole) approximation; and an effective

energy or closure approximation. In Section V the threshold law

for these various approximations is worked out, and some dis-

cussion of the results is given including comparison with other

recent approaches to the problem based on Wannier4
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II. A MODEL OF THE ELECTRON-HYDROGEN INTERACTION AND THE

SCATTERING PROBLEM

We consider the Schrodinger equation (rydberg units throughout)

HTN  -ETN  (2.1)

for model corresponding to (1.1). The Hamiltonian is given by

.- -

-, ;' El + 2

and we expand the solution in two parts

YN = P  + QN Q N (2.3)
N-N

corresponding to open channels,

At

4-) Ad ~.-•,iL C (m) (11(r) ti ({->42) (2 4)

and closed channels

Qj A, r (? m t ) C ) g () + , ex 2-
for a total energy E where

EN<E<EN+l (2.6)

with EN being the energy of Nt h excited state of hydrogen

1
N NL (2.7)

[We consider for the present only singlet solutions giving rise to

only the + sign in (2.4) and (2.5).] The functions Un(r) are to

be determined; the target states *n(r) are S eigenstates of the
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of the hydrogen atom:

t = 1 R (r) (2.8)r n

As is by now well known, an equation equivalent to the

Schrodinger equation can be derived5 for the open channel wave

function P --N

[P HP.+2(Q - E] PT =O, (2.9)opt --

where the Q-part of the optical potential is given by

Q= P HQ. Q HP
opQt f= Q.P H (2.10a)

For use in Appendix C we define the Q-space Green's function in

the above equation.

G Q =  - (2.10b)
E-Q HQ

Explicit forms for P. and Q. can be given as simple generalizations

of the formulas for N=l6

Q = Q 2 ' (2.11a)

where
N

Q = 1 - n(i)>< n(i), (2.11b)
n=l n n

and as usual

P = 1 - Q . (2.12)

However we shall not need them, as our functions will be constructed

to be manifestly in P or Q space.

In this and many other contexts it is most convenient to ex-

pand the optical potential in terms of the eigenfunctions of Q .HQ
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Q Q '4' N 5 NoD~ N(2.13)
where the eigenfunctions NV are understood to be in Q space:

Q. NV =Nv (2.14)

Using (2.13) we obtain the spectral representation of the( Q-part of)

thpoptical potential

opt <PNHQNV ><QNVHPN (2.15)

E - N

The expansion (2.15) is not only useful, but it manifests many
fro rn

features of interest. For example in scattering low lying states

the fact that the numerator of (2.15) is positive definite taken

together with the fact that the lowest states of QHQ are just

slightly below the next inelastic threshold (=> E- <o for E=EN)

implies that the optical potential is negative definite (i.e.

attractive) and this is the basis for lower bound principles for

6,7the scattering phase shifts

However, this is a situation that only obtains for low-

lying N as Table I shows. There we have computed

2 <D2 (2.16)
<N NH N N2 NVr1+r2 Nv

for

N = TN (r1) lpN(r2) (2.17)

and we see that E < EN EN-2 EN-2, whenever N

In other words the lowest eigen value associated with higher

th
N' states can descend below the N threshold, and when this

happens the contribution of those terms to the optical potential
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is repulsive. This does not prove that the effect of the whole

optical potential will be repulsive, but it does suggest that it

may be repulsive, and that in any event its effect will have to

be considered very carefully.

On the right hand side of Table I we have given similar

results for the full interaction, V=2/r12, in which case ON

refers to a configuration interaction wave function1

N-l
(=N Z CNR) ~N (rl) Nk (r2) P (cos12

k=o

and the linear combination giving the lowest energy is given

(j=l). Details of this calculation are given in Ref. 1. The

point of showing those results is to demonstrate that the lower-

ing of QHQ eigen values below lower N states is a property of the

full e-H problem and not simply of the model. Indeed the Table

shows that the model is remarkably accurate.

Finally it should be realized that in the model (and corres-

pondingly in the complete interaction case) there are many other

linear independent functions in Q space, for example

A(rJ fr2) er z / d i

which have similar type of spectral properties going over finally

to the purely dipole type states (labelled D (N) in Ref. 1) in

which the outer electron sees the induced dipole moment from the

inner electron and the nucleus. Here too, there are an infinity

of states but that spectrum probably always remains between EN- 1

and EN.
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III. THE DIRECT POTENTIAL PROBLEM

The Hpp problem, i.e.,

[P HP - EN]P!N=o (3.1)

is itself a complicated problem by virtue both of the coupling

between different open channels as well as the exchange terms

associated with P Y. The latter, however, involve the same type

of integral terms as those coming from the optical potential

without involving the small energy denominators. Thus they are

negligible in this context (although it should be recalled that

they are essential even for qualitative purposes in low energy

elastic scattering from the ground state to give the right nodal

structure to the scattered orbital).

The coupling terms in (3.1) involve terms of the form

Vn~ri)Um(rl) and assuming n and m are of the order of N then

Vn m 3 m) for all values of r. In perturbation theory thesenm N 3

potentials are to be divided by the energy differences which

are also of the order ~(n-m). But the energy differences are of

N 3

both signs, thus it is not unreasonable to assume that a kind of

random phase phenomenon will ensue in which the various terms will

have a cancelling effect on each other. Furthermore, it must be

recalled that the physical distance between the various N shells,

<N/r/N>-<N+l/r/N+il>N, actually increases with N. Finally it

should be realized that the wave function we are attempting to

calculate is to be used in an integral expression for the in-

elastic amplitude. This is consistent with the philosophy of the

10



distorted wave approximation that the integral expression corrects

to some extent for the inadequacies of the approximations of the

wave functions that one puts into it. None of these arguments,

however, is intended to imply that the omission has been rigor-

ously justified.

The Hpp equation becomes in this approximation

- VN + kN (r) = o (3.2)
dr

where

kN2= E - EN  (3.3)

and

(r) = 1<~5 ) j- 2 + 2
VN,N - N( > (3.4)

r 1  r2+r

=-2 4VNN(r) (3.5)
r1

Little VNN is then the diagonal element of the electron-electron

repulsion and it alone survives in off-diagonal elements

N / t ) I r >( r 3

Although the potentials in their entirety are complicated their

effect in our application can be simply approximated by (N=M)

2r
V -) 2 ()

V'

N1 no rv

Sy go>
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where r. is the mean radius of the N t h state

3 2
rO = <Nir> 

= 2N

and bN the dipole moment '

- + > bN + O(r- 3 )

k ir+fC- ( 2-r2

Where

bN=2r =3N2
N 0

The approximation of VN N enables a solution of (3.7) to be

analytically determined:

(0) r) ( /'or)
(r)= ry [A -°

4/

where

>A/= -4

for kN=O corresponding to the usual procedure of multiplying the

solution by a kN dependent normalization factor to properly take

care of both the kN dependence and the normalization to a plane

wave at infinity (see below).

On matching function and derivative at r=ro and using the

well known asymptotic form8 of J1' one obtains to leading order 0e r>. >)

(cN' )

II (3., ' b)

12

(3.8)

(3.9)

(3.10)

ran

/ Pr) /3 cd(w4 ) I
(3, /i)

(3 ro

(3, 12 )

I/ /2- ·- & " r ) t /-a -- IT



IV. APPROXIMATIONS OF THE OPTICAL POTENTIAL

We consider here three approximations of the optical potential.

(i) The first includes only the lowest energy term coming from

the

A)- =i2(r,) Sp (r>) (4
~ +l/Vt

Substitution of this into (2.15) gives rise to an integro-differen-

tial equation.

-_ 1 (r)V r)/a4/ < A/,

In this case because we have a separable kernel, the solution is

given by

oA)/F ) (= t C , r)

where C (o)(r) is the homogeneous solution Eq. (3.11), U%(1) is a

solution of the homogeneous eq.

and C can be solved for to be

C= -K (° )

E- N + K (1 )

with

X .,/ L, %l,, A,/VO

(4.5)

and

k /v /r) (xr) "/'
-'V4 / (q -7)

13
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The coupling potential VN,N + 1' Eq. 3.6) is also a complicated

function which can simply be approximated:

W :r) 2- u, N' f/ t (./] - 4
In Figure 1 we plot N2VNN+l vs. r for two values of N exactly cal-

culated from (3.6) together with the approximation (4.8). ..

- 2 The convergence as a function of N can be appreciated by our

pointing out that the difference between N=10 and N=ll results would

be indistinguishable on the graph. The fit of (4.8) is not perfect

around r/ro==.5, however, our results below are not affected. A

better fit can be obtained with

- - ------------ ----------------

VIt / 2-i2tr/-) N >1 7]

The solution of the UN (1) equation, (4;4), is effected with a

Green's function technique

CT' ) -I Gr,')[ ., ) . (4,
where the Green's function is

(o) (0)'
G (rr')= (-2n) N (r<) X (r>), (4.10)

and vN is (any) irregular solution of the homogeneous equation.

We choose the complementary form of (3.11) whose asymptotic form is

/ , r -3 ) / 2 c.

¢ ( Ion ) v I f t 777 /2( zfi Xo An cettd X AAR r
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The details of the quadrature involved in (4.8) are given in

Appendix A. The result is (r<rO )

(1)= () i*(r) + (o) (4.12)

where I(r) and II(r) are given in (A.7) and (A.10).

The eva.l14t¢oof the N dependence of K (° ) is exceedingly

simple. One finds

K(°) 1(4.13)

The N dependence of K!1) is derived in Appendix B:

In order finally to evaluate C of Eq. (4.5) and thus

NU(r) of (4.2) we need to know the energy differences E- 6+1

The total energy, as was indicated, is taken as that energy to

excite the Nth level

EE N = - 1 , (4.15)

and from Table I we find that CN+i can be well fit by

N' 1.272 (4.16)
(N+l)

To lowest order therefore

EN+1iL+ 1 = .27 + 0 (1 ) (4.17

N N

The function UN(r) in the region r-r o is dominated by the term

VN(o) (r)I(r) by noting that for r-r 0

I(r) 1/2 (4.18)
N1 "2
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as opposed to II(r) - N - 3 / 2 [using (A.11) and (A.12)]. Thus

putting these behaviors together we find

, r)) - / (r (-/,19)
N-> Orv

where

1(N) E CN (4.20)

1-Bsin (2 N'tNW)

The above is the essence of the Pi contribution to the wave
N

function, however the total wave function includes a contribution

Qp . This may be derived from Pi using the relation
-N N

Q~ = 1 QHP2 (4.21)
E-QHQ

Eq. (4.21) is the first step in deriving the optical potential( 5)

equation (2.9) from the Schrodinger equation (2.1). For the one

term approximation that we are here considering, (4.21) reduces

to

where DN+1 is given in (4.1). The integral reduces to

<v / z j '(rzIt15C =A) "/ (r) JcNr)cyrj (41.z2)

and using (4.19) for UL(r) reduces this to a form involving K(° )

and K (1 ). One finds in fact

&vb'ee) i 23 )
vi/ b e re
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which upon substitution reduces to

where the C 'and B 's are constants which can in principle be de-

termined.

The threshold law is derived for this as w11l other approxi-

mations of the optical potential in the next section.

(ii) The second approximation we shall consider is motiva-

ted by the observation the optical potential (2.15) is (formally)

dominated by states ; = E (dominant pole approximation). The

actual states for which

N+ =N (4.25)

are readily deduced from (4.15) and (4.16) to be

p = .12 N (4.26)

[Cf. below Eq. (2.17)]. In other words we consider an optical

potential based on one intermediate state

=A,) Rv) (4 -.27)

Because the energy denominator vanishes (to order N2) in this

case, p(N) may be simply gotten by putting E= L in (4.5). Then

using (4.19) we see that

C/ + q . o. '(2 ' /7"-
'! / c

Cl C r44Wi _ 2

17



On the other hand q2(N) must be evaluated more carefully,

because the expression (4.21) is indeterminate. One finds

The relation (4.19) for vU(r) applies in this case also.

(iii) Finally we consider a closure approximation; the in-

termediate energies in (2.15) are replaced by a mean energy

so that

p1 Z P HQON><Q NVHP =1 PHQ2HP
op NV Nv

=1A

=1 PH (Q) HP (4.29)

E-EN

1 1 PV(1-P)VP ,

E- C

since [P) Hl = 0 = PQ.

In the uncoupled approximation, P reduces to

The optical potential V Q of (2.10) becomes

-opQ  1 [PV2p-(PVP)2 ], (4.30)

E- <S

where

V= - 2-- + 2 (4.31)

r~ ,rk

18



Based on an approximation similar to that used to derive the

form (3.7) for VNN, we can show (Appendix C)

<RIJ (rr) I V' 1 tI 'AI(Y -' {'
Therefore, with use of (3.7) for VNN, (4.30) becomes

The N-dependence of may be estimated variationally (Appendix

The N-dependence of EN may be estimated variationally (Appendix

C) to give

ENN 1
N2

4,3.3)

(4.34)

Our approximations are not sufficiently accurate for either the

sign or the N-dependence of the energy difference EN- occurring

in (4.33) to be determined. The best we can do is to limit the

difference by

IEP.- 1O(2) (4

This gives rise to an effective local potential for the scattering

function

d2

[- 2 + Vc (r)] %U(r) = odr c

-J r ~6

~6

19
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In (4.37) we have made the assumption that the optical potential

in fact exceeds the dipole potential in some finite region (i.e.

r >ro ), where r B may be determined by the condition

hIVc K -tr I =
which leads to

Av

If (4,39) does not lead to r >ro, then the equation and solution

revert back to U (o) of Eq. (3.11b).

The solutions of (4.36) must again be determined by matching

and one finds to- lowest order r<ro

S(f) (r) = Ut (°)~(r)

and for ro<r<\

r, co-itly ±(KY -7F

ar3 1

where V 37/

2 4
1 N

I EN 41I

(.3k')

(a q3 3)

(4.43?a)

(4 .40a)

(4.41)

The solutions for r>r, go into the general form of the dipole

potential given in the lower part of Eq. (3.11a). The coefficients

are again determined by matching,but we shall not consider them

further.

20
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V. THRESHOLD LAWS

Threshold laws are calculated from the expression

I -/'1. i 1 d. E.(
% is the yield as a function of the available energy E after

ionization. M.E. is a matrix element

,l.. E =E < i I /a, >I
which causes the transi.tion from the unperturbed initial state

.. h 't ' / / ) X trl)
to a final state -N the calculation of which we have discussed in

the previous sections. The quantity p is a normalization constant

which adjusts the UtJ to be a plane wave at rl+1 . n was evaluated

in the appendix of Ref. 1

1/2It should be noted the factor aN  was omitted in Ref. 1.

9
(We are indebted to A.K. Bhatia for finding the error9.) From

(3.12) we see that

De - -o
/V- 41

and in (5.4)

(

&wa(r,) a, (re)

where rm a matching radius beyond which only the dipole potential

b /r2 and the outgoing energy kN2 enter the equation for UO. The

point is that the kN dependence of U is completely absorbed in n

and the calculation for X are done at kN=0.

21
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In order to arrive at the ionization region we have assumed

an analytic continuation of the inner electron's energy from EN=

-1 [Eq. (2.7)] to ArN=+l
2  2

N N

EN+ANr-. (5.7)
N

This continuation is motivated by the well-known fact that a

Coulomb wave for negative energy becomes a positive energy solution

by changing N+-i/ ANU, in the confluent hypergeometric function 8 .

The threshold laws are then derived from (5.1) wherein from

(5.4) the explicit kN dependence cancelSout, and the remaining part

of the integrand is converted to a function of a N via (5.7), so

that integration gives the E dependence of .,which is what we are

seeking.

To gain confidence in the analytic continuation - let us

consider as an example, the homogeneous solution of the Hpp prob-

lem, i.e. UN( ° ) given in Eq. (3.llb). Here the matching radius is

naturally taken as ro:

rm= r (5.8)

so that to leading order

,c /_/ --

and

Y-9

22



Thus using (5.5) and (5.8) for the N-dependence of ro and aN we

find

v/E . .- .....-- .

or finally,

v/

What is nice is that the oscillating factors in the denominator

cancel away; we shall find this to be essentially always the case

as regards n.

The remaining piece of the integrand is the matrix element

which in this approximation is

(VIC < r If

In Appendix D we show

M c N 3 /  (5.9b)o

With M.E. being M0 in this case and substituting for n, we find

or

-oOC E (5.10)

A linear law is precisely what we expect in this approximation in

which the potential felt by the outer electron is purely Coulombic

on the inside and attractive dipole on the outside. For it is now

well known that the latter also causes a finite inelastic cross
So

section at threshold 3 and this is guaranteed in our formulation

by the normalization constant n. (The subscript on I will attempt

23



to specify the particular approximation used.)

We next consider the lowest term and dominant pole approxi-

mations of the optical potential. In these cases the matrix ele-

ment contains a part from Q-space (the term multiplied by qi(N)

below) in addition to the P-space contribution:

M.E.=L +N- 3/2 qi (NMo0+pi(N)M. (5.11)

The index i=1,2 specifies the two approximations. M1 is the part

of matrix element coming from the irregular solution part of N:

M1=<& (1) (ri)N (r2 ) JvlJ > (5.12)
initial

rl

a (1) (r) is given in (4.12). Although M1 is more difficult to

calculate exactly we have shown in Appendix D that

1M- 3 (5.1Zb)
N

From (4.20) and (4.28a) we see that Pl(N), are essentially

proportional to N thus Pi(N)M1 is smaller than the Mo term of

(5.11). Concerning the evaluation of n the

dominant term of U is dominated by Pi(N) [Eq. 4.19] which one

power N larger than in the % (o) case.' On the other hand the

logarithmic derivative is the same

aside from the interchange of sine and cosine factors. The same
,-£'erchamye 6') (0)

is true for - vs. * therefore the oscillating factors con-

tinue to cancel out and we are left with

24



1 l-Bstnh(2,t 2N) (5.14)

kN1/2 N

In comparison with q this normalization constant is dominated by

the N in the denominator which causes the threshold to be contain

an extra power of Egg

2
2liAl 1-Bsin( ) ] 2dw

which to leading order is

z2 (5.15)

This result is at first sight very unexpected. However, from

the point of view of the lowest optical potential term approxima-

tion, wherein we have shown that this term is rigorously repulsive,

the result is seen to be reasonable consequence of the repulsive

optical potential term retained. In the dominant pole approxima-

tion, in which the term selected is at the border-line between

attraction and repulsion, the physical origin of the result is not

clear. This is particularly true because the shift, K(1) of

Eq. (4.14), is also very likely to be an oscillating function of

N. [We have, together with Dr. Bhatia, numerical solutions of the

exact lowest term eqs. up to N=9 which indicates that this is the

case.] The lesson to be learned is whether we understand or not

the optical potential can be expected to have a profound effect

on the threshold law.

We finally consider the closure approximations. Here we have

the possibility of many results in view of our ignorance of the

25



sign and the exact N-dependence of EN - ~ even within the confines

of (4.35). We shall subdivide these into attractive and repulsive
2

cases, both with the assumption that the 8 /r4  potential is

stronger than the bN/r2 in the region ro<r<r B [i.e. r >r from

(4.31)].

In the attractive case we find, using the upper solution of

(4.40), C/ A/ (-'IL)

Furthermore we have shown in Appendix D that the N dependence

of the matrix element is not altered by the contribution of

u1) from ro<r<r s providing EN- C-N- 2 .

M.E.~ 'tc ,C A B (5.17)

Thus substituting gives

2, < (5.18)

c And now considering, as implied above,

E - -C 1 , (5.19)
N

which implies from (4.39)

re12P (5.20)

gives using (5.7) in (5.18):

.la2E (5.21)

Another conceivable alternative would be for example,

EN- ~b 3 . For this case the matrix element would be dominated by
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the Q' part of T, as shown in Appendix D. The net effect would

be to give an E1 / 4 threshold which we shall not pursue further.

Penultimately we consider the repulsive closure approxima-

tions corresponding to UN(B) of (4.40b). Here the normalization

constant turns out to be

/ a- /T/ (_72 4

The cosh factor in the denominator which appears to dominate n2 is

however, cancelled by a similar factor in the transition matrix

element (Appendix D)

Using rPCNY, where y>o in all cases, we are left with
o

? O /L- o u-

If now we restrict ourselves to quadratic dependence of rg on

N specified by (5.20) [albeit now in a repulsive sense], we find

X E5/ 2 (lnE)2 (5.25)

There is absolutely nothing at this time which prevents the

effective optical potential, as contained in the energy difference

EN- from being an oscillating function of N in sign. From (4.39) We

t rNg+ when EN-  changes signs. Assuming the amplitude of

these oscillations is 1/N , we see from (5.18) that attractive

portions give a linear rise whereas from (5.24) the repulsive

portions are essentially flat. There are of course many analytical

functions which can give this type of behavior - an example would be
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,cE [l-Csin (lnE)] (5.2 )

where in order for the slope not to be negative we must have

-1/2C<2/.

A sketch of such a threshold law is given in Figure 2 for C=1/2.

It can be seen that such a threshold is distinctly non-linear.

In addition its oscillations about the line A=E continue right

down to origin.
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V. DISCUSSION

We have not attempted to derive a unique threshold law.

Our purpose in this paper has been to present what we believe is

potentially useful and rather different approach to the problem.

The approach naturally leads to the optical potential as the key

element beyond the obvious potentials that the outermost

(scattered) electron sees. We have been able to show rigorously

that this optical potential contains repulsive terms, although we

have not been able to determine whether the repulsion or attracti(

dominates in the potential as a whole. The repulsive approxima-

tions can lead to a considerable diminution even beyond a simple

phase space dependence on E:

ZI
a'( Ynd d 2 >) o Et /

Conventional wisdom on the subject might have dictated that we

delete those approximations which lead to a higher power than two
ov er

however, we have included them because we know in contexts that

threshold barriers can have overwhelming effect on threshold

cross sections and we cannot exclude that situation here.

We have not discussed the salient recent workl1 '1 2 which

attempts to justify the Wannier law on the basis of a more con-

sistent WKB approach. That work is significant but it is not

rigorous. It can be shown in fact that the Wannier threshold

law remains the same in that approach 4 when the r 12  interaction

with that of our model (rl+r2) 1. However, the most provocative

of our results is the oscillating derivative threshold expressed
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in (5.27). It is the possible existence of such a threshold law

which makes a reliable calculation e an attractive initial endeavor

as part of the general problem of synthesing the optical potential

in a definitive manner.
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APPENDIX A: Evaluation of 'I()

We wish to compute the function 1 (1) of (4.9) with

G(r,r/) given by (4.10), (0) by (3.11), vN(0) by (4.11),

VN,N+1 by (4.8), and RN+1 by a similar asymptotic expansion:

f(( C3F& (7 g) -r-< 2r,

Kl C N r, ,, 2 r arc,

CN is the Nth (last) coefficient in the expansion of the

RN (which is rxR.0 in the notation of Bethe & Salpeter8)

N-i N

CN= (-1) 2 (A.2)

N3/2 N! NN ' 1

It should first be noted that our approximation of RN(r)

is not continuous at r=2r 0 and that the part for r>2r0 is

the very asumptotic form to be used only in showing that

contributions to 4 (1) (r) from r>2r0 are negligible. (CI. FLU 3).

It is to be emphasized that the rhs of (A.1) is divided

into two regions at r=2r0. The fit of RN by the rhs of (A.1)

is no longer accurate even for r=r 0; the well-known but com-

plicated WKB expressions 8 for RN could be used between the

4 2
classical turning points 0, T-ro=2N , particularly around

r<r0 and they are much more accurate that (A.1). However

reference to Figure 3 shows that the exact function is some-

what larger than (A.1) around r=r 0 and oscillates more
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slowly, it does continue to oscillate beyond r=r 0 but it

ceases to oscillate and is much smaller than the rhs of

(A.1) at r=2r 0. For this reason we believe, for integra-

tion purposes, these compensating effects are adequately

accounted by simply continuing the rhs to r=2r0.

From (4.9)

4,,1 r) -t- T7 } r) ((43)
with

r

and u

flIrx) 7rF , ) i,$ ( c(4b,)

Assuming r<r0 and using the equations stated above, we find

Replacing cosine square factor by its average value (1/2)

gives

.,._) f

For r<r0 the factor II(r) contains two contributions.

We shall show later that the contribution from 2r 0 to X is

negligible, therefore we have contributions from r to r 0

and r0 to 2r 0.

The first is

Ti7(1) a- .q 1/(;VP) ) // V c/r &1m)
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Making similar approximations as above but retaining the

sinusoidal factors, we get

The factor ;is a number of the order 1< <10 to make up for

the fact that the bound

rJ- > (r2 ->,4- > (34

has also been used in deriving (A.9). Here the sinusoidal

factor cannot be dropped because its mean value is zero, but

(A.9) can be integrated to give

The expressions (A.10) and (A.7) into (A.3) are to be

used in Eq. (4.12). Note that the N dependence of II(r)

dominated by the second term and that (for rir 0) it is

II(r)s -4.11)

We shall now show that the contribution to II(r) from

r0<r<2r 0 is of maximum order N- 3 / 2 . Using the r>rO

form of VrN(0) gives for IIjr)^

ro· _

(4*r2L
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The potential r0

(r0+2r)20

1 and (r) beingbeing bounded by and being
r + N+ b

bounded by setting the cosine factor equal to one:

t4'4- l

gives aside from numerical factors
J /

1et ,

1W At/
cir)

hwhere- ba vv We K l

I
tie

t/7 & 'e 6 r a/

Corn6 ri , f£L27 1/ 2 " '''
V) VV,- (C RA4 V.NIAla -

Cr f6e rhA

CVI I

tc O, s(e iCle
19 2/'e 17^ cT

//. T1-.as
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/ ,7 -41~V

TA Is
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/
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We next show that the contribution to II(r) (and also for the

similar contribution to I(r)) from 2ro<,X< is truly negligible.

Using (A.1), (4.8) j (3.11) o-(Y./.I/) piefy'L'(

·(c)

(C

Use of rop CNshows the rhs is bounded by

N (log6-2)/ 21

or finally

0 f.

f C'v V(4/ ~-l
cr e

That is smaller than any inverse power of N.

35



APPENDIX B: Evaluation of K(

From (4.7), (4.12) and the fits to VNN+1 and %N+1' the

main contribution comes from

",- /\/ r,

0
(, -2rj) 2  / UA/ 2 6 r.c rof~H;

Consider the first term in c¢rly brackets; using (A.12.)

V-0

(ro -- ;zO '2

c2 i
(' i-n-f utj r) 7Etcr) c/ NC 4' rY8c c 4- - LJ7 7r

Al- ( 2f - rJ

which is to leading order is

t 2Yr

I/

1½ j/j (iL/FA/ n

The other contribution to K( 1) is

Al1/ 01, rL v - T- (el) 1 --r Z r
(ro -2r>)L

C 2-cc t Ll
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Now use Dwight3, Eq. (416.17),

2 a /4 1 6 Ct A - ,

and realize that the main contribution comes

Thus find that the above contribution is

J7 & . At____ ( J
r'.1 0

4- - "

from first term.

This is the order as the first term but of oscillating sign.

The sum is

A-0 Cf X C x," ( l ] /It)
V, Z-
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APPENDIX C: Closure Approximation and Evaluation of the

Average Energy (N.

The closure approximation is introduced in (4.29) to

simplify the Q-part of the optical potential 2/pQ We con-
op

sider here in more detail the evaluation of the average

energy e which appears as a parameter in that approximation,

(i) Since V assumes the form

V .= -2 . = --
+I

-2 )-/ L

- -11/we simply set

2 rz

i/ > > V

PIF ,- rL I

//

, ch tq -

and, from (3.7), '1 /

< (D v, > --- = (l/) - , / ( ,',' z
/Az/5= V ,,l,,~ =

therefore, pQ may be approximated as
"op

0 ,/d&lC M (,
C?

, "
C-

or

r/
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where A is the unit step function.

The approximations involved in (C.2) is essentially the

same as that employed in the evaluation of VNN and (C.3), so

that opQ is the form (C.4) is consistent with the P-part of
op

the problem treated in Sec. mlj,

(ii) The evaluation of the average EN is carried out by a

variational procedure developed earlier. That is, we have

replaced GQ in (2.10b) by GQ :

6 % ___ '-_ __ > L (r.m)y(E-/+ )-& Lr

On the other hand, we can introduce a separable form for

GQ with a set of variational functions Q4 and Q~, as

G ' _ C G (C 6)

It is to be emphasized here that the final state wave function

we are trying to calculate corresponds to the elastic scatter-

ing from the Nth excited state at total energy E. Thus in

the analysis below we will eventually put the initial and

final state wave functions equal to each other. Consider

first, however, the somewhat more general case itf where

the transition element is given by

Ji th (c7)
with

%-t' y· ' ..( P

aW- 42SP8P

39



We require that both (C.5) and (C.6) give the same

That is, q

which gives then the connection between Fand <9 >

Substituting for GQ as given by (C.6) allows (C.9) to be

solved for 6 in the form:

Thus far, the trial functions Q~ and Q4 are left arbitrary,

except the normalization (linear) parameter which was elimin-

ated by writing GQ in the normalization-independent form (C.6).
s

Now, we choose these trial functions such that (C.10) assumes

a simple form, i.e. let

(3 riz Ys (C.11)

Substitution of (C.ll) into (C.10) immediately reduces

to a form

iD /ciz)

where, using (C.8), we can write

D<7W>-'HV P V1t9 vP'.>
(c, /3)"'ti~)Yi~
(C -
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We can explicity estimate the N-dependence of B and D

for N using the result of Sec. III for the case PiPi = P-P

(r)N(r2) Firstly, consider the constant D, which becomes

rl

(using Q=1-P) as in (C.4)

Using (3.11b) for ~0) (the part for r>ro0) and replacing the

by 1/2, we get for the integral

Uirg/a 4for (h pr foLr a t'a'~ l ~ e (~) ./

Thus

A A , / - (C.14)

The evaluation of B is longer and somewhat more involved.

We have

/3 -P PV9 Vp/ R>
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wheyce

½ ~~ ct ~ c1~r,)/ r,

H -4 =i/ f f V

F= z:~2)XAS>)LV)
Thus using h2qN (

2)=E Nq N (
2 ) gives

QHQ = Q(hl+h2+1V)Q

=Qhl+Qh2-ENQ+QVQ

so that

) YC-I

(C.16)

4
B= ,

i1=1'

where the four terms come directly from the substitution of

(C.16) into(C.15). Consider first

B =< UN (0) ( 2)VQhlV' N (0) () (2) >
1 N N( > N(2)

Al) 4'p/ / 4(1 7 TV w/' A'/ -IfW / IVI

=-

Here we have used the definition

One can also readily find that

One can also readily find that

-< ( / <L')- ,,, < U, 2/) (v t

(C.17)

B2 + J33

and

V/-, (0: ,1 >vi v1'~ ()

- ['K3

(C i8)

- 2 (VV-A

42
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where in our approximation

0

r, Ark 6 a -

1 A

(a r1c

Each of these terms may 6e evaluated in a straightforward

manner except for the first term of (C.18). In that case

we use our approximation for V (but we neglect the cusp)

before differentiating to find

re) X (0a

A4'3 ,, j/1/

The first term of (C.21) cancels with the second term of

(C.18). All the remaining terms are of order N 3 . Thus

B c3 (C.22)
N3

so that combining that with

4/
- "3

(C.14), we get finally

,C . /V K
i/>

-Z

WI
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APPENDIX D: Evaluation of Transition Matrix Elements

We want to find the N dependence of M.E. in the

VarVi'ous approximations we have used. The PY part of M.E.

is

(K TE) Adr Vr2)1 V (>

(l1)

d 0

The first term of V gives zero by orthogonality and since

R,(r 2 )er 2e r2, the r2 coordinate is confined to be close to

origin; we can very accurately expand

2 2 2r2
2  (D.2)

r~+r2  rf r,2

Thus

(M E u < A/10 (>J 1 41

The lower limit on the integral can be extended to O(rather

than r2) because the integrand converges at the origin. If

now we divide the integral into two regions,

KK 2o

+ an frj 4 ,r /yj
J¢ -,.- ,
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we note that the first term is cut off by the oscillations in

sinkr (which are independent of N). And because (O<y<1l),

uN(r)< r ,sinusoidal function of r;

V 3/4

the second integral always converges and is proportional to

3 ,--hLk£
N3 / ' ith scond term in (D.4) is negligible compared to the

first term. This is true whether uN(r) Ir>r is either the

u(o) (rs l 0)attractive uN of (4.40b) or simply uN (r>ro) of (3.11b)

Thus the N dependence of (ME)p is controlled by the first term

of (D.4) and this in turn is determined by <NIr 2 11> which is,

trivially, 1
<Nlr2 11> N3/2 1 (D.5)

Mo is a special case of (ME)pT so that we have finally

M K (ME)p IN 3 / 2  (D.6)
-4attractive r

We must also consider the contribution from the Q' of

the wave function. In the closure approximation (4.21a) re-

duces to

/_- -l_

Assuming

and using i) /( _ >4y '- j'- / Af t

one can reduce (D.7) to

E,, - e,
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To calculate the Q-part of matrix element

we bound the r<r0 contribution by

ov L/ L

I(r i-r,
V/ I

!
06oC

Thus

or finally

_I_

C/ visj Jet V

/V (Ir v V!_ i t"

Note that as long as IEN-E lNc|<that both the PY and Q'

contributions to M.E. have the same N dependence. However

if IEN- gNI<0(12 ) then the QY contribution dominates.

We next consider the repulsive -2 case which is now
r

dominated by the contribution from ro to ri. Using (4.40c)

in the second term of (D.4)

OC C (VY 4 $ ( 37zn?

/i/ 3 /G
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Integration by parts give

?.<lr , t-f: fr -'- / V ] - BY A l r (D /#)

rr

r 4Žf 1111

In the region r>ro, r-2 <<r - 1 and since sinh is less than

cosh throughout the interval, the second integral has higher

Ih.verse power of N dependence than the first term, so that

we obtain in leading order

rea'p.,ve r)

Finally, we consider the part of the matrix element

coming from the % (1) which occurs in the lowest term and

dominant pole approximations:

. C', o

where U(1) is given by (4.12). The functions I(r) and II(r)

can be shown to be of the order of or bounded by

7r o /1/
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Thus the two contributions to M 1 are

C, <.I/CI ,/) f> d/ r dr

and

Considering the latter first and using (D.18) -

1(o) rnr

The integrand bounded at the origin, since both u(o) andA N

sinr)vanish at r=o, and it is bounded at since / ' / ra
Therefore,

C,~ ,v-3 (/D2)
For M1i we have

/ fL ~

3

If we use N-1/2 [1 - e-- ] to interpolate on I(r) from (D.17)

and put all sinusoidal factors equal to 1, we can bound M 1 1 by

I<, r
rl, ,r(LZ z3)

C-Ž
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The term in square brackets forces the contribution from the

lower limit of the integral to be O ; thus the major contribu-

tion comes from the upper limit, so that we are left with

,I, CI t t-
/V/ 'L I r 7/¢ j

/

Thus to leading order

!', i = /II, 1, ¢- P~ / 2/4 / 3
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

C2 cur Ves
N N1 vs. r/r The lowe'r are from numerical

evaluations for N=2,5,11 as indicated. The analyt-

ical approximation is the top curve.

~3 vs. E from Eq. (5.26), curve 2, (C=1/2).

Note that the curve is monotonically increasing

but it oscillates (infinitely rapidly as E+o)

about .=E (curve 1).

The radial function RN(r) for N=15 (denoted by *)

vs. the approximation (A.1). The abscissa is

p= trj so that the average value of ;r N 3A/

occurs at p=N. Beyond r=2r6 the approxima-

tion in (A.1) is denoted by * and is barely

distinguishable from the exact curve.
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