

CR-128623

SHUTTLE VEHICLE AND MISSION

SIMULATION REQUIREMENTS REPORT

VOLUME III

10/20/72

J. F. Burke Principal Investigator SMS Definition Study

This document is submitted in compliance with Line Item No. 2 of the Data Requirements List as Type I Data, Contract NAS 9-12836

> SINGER COMPANY SIMULATION PRODUCTS DIVISION

SHUTTLE VEHICLE AND MISSION SIMULATION REQUIREMENTS REPORT

VOLUME III

Prepared by:

JV F. Burke Principal Investigator SMS Definition Study

Approved by:

C. Olasky NASA Technical Manager

Contracting Officer

This document is submitted in compliance with Line Item No. 2 of the Data Requirements List as Type I Data, Contract NAS 9-12836

> SINGER COMPANY SIMULATION PRODUCTS DIVISION

DATE10/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

PREFACE

This document is submitted in compliance with Line Item No. 2 of the Data Requirements List as Type I Data, Contract NAS9-12836. The document is divided into four volumes for ease of handling. The contents of each volume is defined as:

Volume I:

Volume II:

Includes sections entitled Introduction, Mission Envelope and Flight Dynamics which correspond to Sections 1.0, 2.0 and 3.0 of the Table of Contents. Includes sections entitled Introduction and Shuttle Vehicle Systems which correspond to sections 1.0 and 4.0 to 4.18 of the Table of Contents.

Volume III:

Includes sections entitled Introduction and Shuttle Vehicle Systems which correspond to sections 1.0 and 4.19 to 4.22 of the Table of Contents.

Volume IV:

Includes sections entitled External Interfaces, Crew Prodedures, Crew Station, Visual Cues and Aural Cues which correspond to sections 5.0, 6.0, 7.0, 8.0 and 9.0 of the Table of Contents.

398-8

		
DATE 10/20/72 .	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. ii
REV.	BINGHAMTON, NEW YORK	REP. NO.
1.0 Intro	TABLE OF CONTENTS oduction	
2.0 Missi	on Envelope	
2.1 Space	Missions	
2.1.1 Lau	nch Phase	
2.1.2 Orb	it and Deorbit Phases	
2.1.3 Ent	ry and Landing Phases	
2.1.4 Pay	loads, Deploy and Retrieval	
2.1.5 Ref	erence Missions	
2.1.5.1 V	ertical Tests	-
2.1.5.2 E	asterly Launch	· · ·
2.1.5.3 R	esupply	
2.1.5.4 S	outh Polar	•
2.1.6 Tim	elines	
2.1.7 Abo	rts	
2.1.7.1 P	ad and Low Altitude	
2.1.7.2 R	eturn to Site (unpowered)	
2.1.7.3 R	eturn to Site (powered)	
2.1.7.4 0	nce-Around Orbit	
2.1.7.5 T	o Orbit Degraded Mission	
2.1.7.6 B	ooster Powered Glide Return	
2.1.8.7 Mis	sion Operations	
	taging	
, ,	rop Tank Maneuver	· · ·
	MU Alignment	•
~ • L • U • J L	The strategy of the strategy o	

÷

F-398-8-

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE	NO.	iii.
REV.	BINGHAMTON, NEW YORK	REP.	NO.	
2.1.844 Rei	ndezvous			
2.1.8.5 Doc	cking			
2.1.8.6 Pag	vload Deployment			
2.1.8.7 Pa	vload Retrieval			
2.1.8.8 Dec	orbit			-
21.8.9 Ent	try			
2.1.8.10 Hy	personic-Supersonic Transition			· ·
2.1.8.11 End	ergy Management			
2.1.8.12 Cru	iise			
2.1.8.13 La	nding and Rollout			
2.2 Atmosph	neric Flights			
2.2.1 Hori:	zontal Flight Test			
2.2.2 Ferry	y Flights			
3.0 Flight	Dynamics			
3.1 Vehicle	e Configurations			
3.1.1 Opera	tional Space Mission Configuration			
3.1.1.1 Ort	oiter Vehicle			
3.1.1.2 Pay	vload	·		
3.1.1.3 Sol	lid Rocket Motors			
3.1.1.3.1	56" Booster SRM		,	
3.1.1.3.2	56" Rocket Separation SRM's			
3.1.1.3.3	bort SRM's			
3.1.1.3.4 H	External Tank Deorbit SRM		·	
3.1.1.4 Ext	ernal Tank			
. .				
······································				

· .

٠

•

	DATE 10/00/70	THE SINGER COMPANY	PAGE NO. iv
	10/20/72	SIMULATION PRODUCTS DIVISION	
	REV.	BINGHAMTON, NEW YORK	REP. NO.
	3.1,1.5 Air	Breathing Engines	· · ·
	3.1.1.6 OMS	Engines	
	3.1.1.7 RCS		
	3.1.1.8 Doc	ked Configurations	
	3.1.2 Opera	tional Ferry Mission Configuration	
	3.1.3 Horiz	ontal Test Configuration	
	3.1.4 Verti	cal Test Configuration	
	3.2 Equation	ns of Motion	
	3.2.1 Coord	inate Systems	
	3.2.2 Trans	lational Equations of Motion	
	3.2.2.1 For	ces	
	3.2.2.1.1 E	arth Gravitational	
	3.2.2.1.2 0	ther Celestial Body Gravitational	
	3.2.2.1.3 D	ynamic Body Forces	
	3.2.2.1.4 P	ayload Forces	
	3.2.2.1.5 D	ocking Effects	
	3.2.2.1.6 S	taging_Effects	
	3.2.2.1.7 V	enting and Dumping	
	3.2.2.2 Tra	jectory Calculation Requirements	
	3.2.2.2.1 0	rbiter	
	3.2.2.2.2 T	arget Vehicles	
	3.2.2.3 Rel	ative Translational States	
	3.2.2.4 Acc	uracy	
V	3.2.3 Rotat	ional Equations of Motion	
-398-8-A	3.2.3.1 Mom	ents	
2			

Ŀ.

DATE 10/20/72	THE SINGER SIMULATION PROD		N	PAGE NO. V
REV.	BINCHAMTON			REP. NO.
3.2.3.1.1 Dynam	nic Body Moments			
3.2.3.1.2 Paylo	ad Moments			
3.2.3.1.3 Docki	ng Effects	~		
3.2.3.1.4 Stagi	ng Effects			
3.2.3.1.5 Venti	ing and Dumping			
3.2.3.2 Rotatio	onal State Calculati	on Require	ments	
3.2.3.4 Accurac	су.			
3.3 Mass Proper	ties			
3.3.1 Orbiter				
3.3.2 Solid Roc	eket Motors	• • • •	·	· :
3.3.3 External	Tanks			
3.3.4 Payload				
3.3.5 ΔΒΕS				
3.3.6 Ferry AB	S		· · ·	
3.3.7 Total Vel	nicles	•		
3.3.7.1 Operati	lonal Space Vehicle		- ,	
3.3.7.2 Operati	lonal Ferry			
3.3.7.3 HFTS			·	
3.3.7.4 VFT				
3.3.8 Retrieval	L Satellites			
-	Satellites			
3.3.10 Space Sta				5.4 L
-	c Characteristics			· · ·
	Requirements			

F-398-8-A

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE	NO.	vi
REV.	BINGHAMTON, NEW YORK	REP.	NO.	
3.4.2 Aerod	ynamic Flight Regimes			
3.4.2.1 Lau	nch and Abort			
3.4.2.2 Orb	ital Flight	•		
3.4.2.3 Orb	iter Only			
3.5 Ephemer:	is			
3.5.1 Celes	tial Bodies (stars, moon, sun, planets)			
3.5.2 Coord	inate Transformations (IM to IEO	,		·
4.0 Shuttle	Vehicle System			
4.1 Electric	cal Power			
4.1.1 Electr	rical Power Distribution and Control (EPDC)			
4.1.2 Power	Distribution Equipment Description			
4.1.2.1 Gen	erator Control Units (GCU)			
4.1.2.2 Powe	er Contactors			·
4.1.2.3 Inve	erters			
4.1.2.4 Trai	nsformer - Rectifiers (TR)	·		
4.1.2.5 Batt	tery Charger			
4.1.2.6 Rema	ote Power Controllers (RPC)			
4.1.2.7 Sequ	lencers			
4.1.2.8 Inte	erior Lighting			
4.1.2.9 Exte	erior Lighting			
4.1.2.10 Fuel	I Cell System			
4.1.3 Electi	rical Power Operational Characteristics			
4.1.4 Funct:	ional Interfaces and Support Requirements			
	a Control and Management (DCMO			
		-		

.

DATE 10/20/7	2		SIM			COMPANY			PA(GE NO. V	vii
REV.		·····		B INGH	IAMTON, N	EW YORK			REI	P. NO.	
4.1.4.2	Display	vs and	Con	trols	(D&C)	•					
4.1.4.3	Electri	cal P	ower	Genei	ration	n (EPG)) [.]	• ,			•
4.1.4.4	Electri	ical S	yste	m Powe	er Los	ses					
4.1.4.5	Enviror	menta	1 Co	ntrol	Life	Suppor	ct (ECL	S) In	terfac	e	
4.1.4.6	Power L	Jtiliz	atio	n Sub	systen	ns		·			
4.1.4.7	Support	Equi	pmen	t GSE							
4.1.4.8	Payload	i									
4.1.4.9	Space S	Station	n In	terfa	ce						
4.2 Mec	hanical	Power		·					•		
4.2.1 A	uxilliar	ry Pow	er U	nits	(AFU)						
4.2.2 H	ydraulic	: Power	r Sy	stem					. .		
4.3 Mai	n Propul	sion !	Subs	ystem	(MPS)						
4.3.1 E	ngine										
4.3.2 C	ontrol/N	ionito	r Sy	stem							
4.3.2.1	Engine	Thrus	t/Mi	xture	Ratio	D					
4.3.2.2	Engine	Monit	orin	E							
4.3.2.3	SSME Co	ontrol	ler i	Data 1	Flow						
4.3.3 S	SME Oper	ation	Det	ails							
4.3.3.1	SSME So	equenc	e Sc	hedul	e						
4.3.3.1.1	Engin	ne Sta	rt								
4.3.3.1.2	Engin	ne Shu	tdow	n							
4.3.3.2	SSME FI In-Flig	-	•	ation	s Moni	itoring	g and C	ontin	uous	·	
4.3.3.3	Data Ti	ansmi	ssio	n							
4.3.3.4	Control	ller B	uild	-In Te	est						

^{DAT} £0/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. viii
REV.	BINGHAMTON, NEW YORK	REP. NO.
4.3.3.4.1	Computer Checkout	
4.3.3.4.2	Computer Interface Electronics Checkout	
4.3.3.4.3	Input Electronics Checkout	
4.3.3.4.4	Output Electronics Checkout	
4.3.3.4.5	Power Supply Electronics Checkout	
4.3.3.5 Se	nsor Build-In Test	
4.3.3.5.1	Sensor Ground Checkout	
4.3.3.5.2	Sensor In-Flight Monitoring	
4.3.3.6 Ac	tuator/Valve Build-In Test	
4.3.3.7 Sp	ark Igniter Built-In Test	
4.3.4 Inst	rumentation Parameter List	
4.3.4.1 A1	ternate Performance Control Parameters	
4.3.5 Engi	ne Actuator	
4.3.5.1 Op	erating Characteristics	
4.4 Reacti	on Control Subsystem	·
4.4.1 Conf	iguration	
4.4.2 Thru	ster Description	
4.4.3 Prop	ellant Tankage	
4.4.4 Pres	surization Subsystem	
4.4.5 RCS	Operation	
4.5 Orbita	1 Maneuvering Subsystem (OMS)	
4.5.1 OMS	Configuration	
4.5.2 Engi	ne	

4.5.3 Tankage

F-398-8-A

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO.
REV.	BINGHAMTON, NEW YORK	REP. NO.
4.5.4 Press	urization	
4.5.5 Insta	llation	
4.5.6 Envir	onmental Control	
4.5.7 Maint	enance	
4.5.8 Opera	tions	
4.6 Airbrea	thing Propulsion Subsystem (ABPS)	
4.6.1 Confi	guration	
4.6.2 Fuel	Tank	
4.6.3 Ferry	Configuration	
4.6.4 Opera	tion	· .
4.7 Solid R	ocket Motion (SRM)	*
4.7.1 Main	SRM	·
4.7.2 Abort	Solid Rocket Motor	
4.7.3 Deorb	it SRM for External Tank (ET)	
4.8 Externa	1 Tank Subsystem (ET)	
4.8.1 Struc	ture	
4.8.2 Therm	al Protection System (TPS)	
4.8.3 Deorb	it Motor	
4.8.4 Avion	ics	
4.8.4.1 Ins	trumentation	
4.8.4.2 Sep	aration	
4.8.4.2.1 E	lectrical Power	
4.8.4.2.2 I	ntorface	
4.9 Guidanc	e, Navigation and Control (Less Computer)	

..

.

.

i

DATE 10/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

4.10	Communications	and	Tracking
------	----------------	-----	----------

4.10.1 S-Band System

4.10.1.1 S-Band Voice

4.10.1.2 S-Band T/M

4.10.1.3 Command Data

4.10.1.4 Video Link

4.10.1.5 Wide Bank Data Link

4.10.1.6 Range Measurement

4.10.2 VHF System

4.10.3 UHF System

4.10.4 Audio Control Center

4.10.5 TACAN

4.10.6 Radar Altimeter

4.10.7 ATC Transponder (ATCRBS)

4.10.8 Instrument Landing System (ILS)

4.10.9 GCA Radar

F-398-8-/

4.10.10 Air Route Surveillance Radar

4.10.11 Precision Ranging System (PRS)

4.10.12 Microwave Landing System (MLS)

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. xi
REV.	BINGHAMTON, NEW YORK	REP. NO.
4.11 Operation	al Instrumentation	
4.11.1 Recorde		
4.11.2 Sensors	and Signal Conditioning	•
	Support Equipment PCM Links	
	and Warning System	
	ntal Control and Life Support Subsystem	
•	eric Revitalization	
4.12.1.1 Press		
	Humidity, CO2, Odor, and Temperature (ontrol
		Joneror
4.12.2 Life Su		
4.12.2.1 Food	-	
4.12.2.2 Waste		
4.12.2.3 Perso		<u> </u>
	Detection and Extinguishing	
	vehicular/Intravehicular Service and Re on and Airlock	charge
4.12.3 Thermal	Control	
4.12.3.1 Coola	nt Loops	• •
4.12.3.2 Heat	Sinks	
4.12.3.3 Water	Nanagement	·
4.12.4 Fault D	etection Management	
	and Launch Operations	
4.12.6 Cabin N		
	on and Contamination Control	· · ·
	ecommodation System	

F-398-8-A

	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. xii
	REV.	BINGHAMTON, NEW YORK	REP. NO.
2	4.13.1 Str	uctural/Mechanical Interfaces	
	4.13.1.1 G	eneral Structural Attachment	
	4.13.1.2 P	ayload Deployment and Retrieval Mechanism	
	4.13.1.3 P	ayload Control/Display Panels	
	4.13.2 Pro	pulsive System Fluid Interfaces	
	4.13.3 Ele	ctrical/Instrumentation Interfaces	
	4.13.4 Pay	load Avionics Signal Interface	
	4.13.5 Pay	load Environment Control	
	4.13.6 Pay	load Doors	
	4.13.7 Ren	lezvous and Docking Sensors	
ļ	4.13.8 Pay	load Dedicated Recorder	
-	4.13.9 Pay	load Handling Station	
	4.13.10 P	ayload Bay Lighting	
	4.14 Crew	Station Instrumentation System	
	4.15 On-Bo.	ard Computers	
	4.15.1 GN&	Computer	
	4.15.2 Pay	Load Monitor System Computer	
	4.15.3 Ope:	cational Instrumentation Computer	
	4.15.4 Main	n Engine Computer	
	4.16 Misce	Llaneous Systems	
	4.16.1 Pur	ge and Vent System	
	4.16.2 Lan	ling/Ersking System	
	4.16.3 Gli	ie Erake System	
- 8 - A	4.16.4 Eje	ction Seat Mechanism	
F.398.	4.16.5 Doc!	ing Mechanism	
. · C			

DATE 10/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

PAGE NO. xiii

REP. NO.

4.17 Onboard Computer System

F.398-8-A

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE	NO.	xiv
REV.	BINGHAMTON, NEW YORK	REP.	NO.	
4.18 GN&C C	nboard Computer and Interface Systems Requ:	ireme	nts	
4.18.1 GN&C	General Functional Description			
4.18.2 GN&C	System Elements & Interfaces	-		
4.18.2.1 Ai	r Data Equipment			
4.18.2.2 Ra	te and Accelerometer Sensors		·	
4.18.2.3 IM	IU			
4.18.2.4 St	ar Tracker System			
4.18.2.5 Ho	orizon Sensor			
4.18.2.6 An	alog S.A.S.		-	
4.18.2.7 TV	C Electronics			
-4.18.2.8 AF	S Logic Drive Unit	, .		, , ,
4.18.2.9 GN	8:C Computer Interface			-
4.18.2.9.1	Computer Data Acquisition & Data Conversion	1		
4.18.2.9.2	Remote Multiplexing Unit			·
4.18.2.9.3	Input Buffer	-		
4.18.2.9.4	Output Decoder			
4.18.3 GN&C	Computer			
4.18.4 Orbi	ter GN&C Operational Flight Program	·		
4.18.5 Rati	onal			
4.18.6 Assu	mptions	-		
4.18.7 Data	References			

F-398-8-A

.

•

DATE 10/20/72	SIMULATION PRODUCTS DIVISION	PAGE NO. XV
REV.	BINGHAMTON, NEW YORK	REP. NO.
. رو د. ا		
4.19 MDE		
4.19 .1 Gener	al Function	. <u>.</u> .
4.19.2 Syste	em Operation and Interfaces	. .
4.19.2.1 Dis	splay Unit	·
4.19.2.2 Key	vboard	
4.19.2.3 10	3 Adapter	
4.19.2.4 Key	board Adapter	···· · · ·
4.19.2.5 Sym		··· ·· ·· ··
· · · · · · · · · ·	1 Adapter	· · · · · · · · · · · · · · · · · · ·
4.19.2.7 Pro	ocessor CPU-I/O	
4.19.2.8 Lan	np Buffer Adapter	• • • • • • •
4.19.2.9 Sys	stem Operation	····· - · · · · · · · · · · · · · · · ·
4 19.3 MDE C	Computer	· ·
4.19.4 MDE S	oftware & Systems Applications	
	Computer Software	- · · · · · · · ·
· · ·		· · · · · ·
	C MDE System Application	
4.19.4.2.1 G	N&C Display Systems Software	
4.19.4.2.2 G	N&C Performing Monitoring Software	· · · · · · · ·
4.19.4.3 Per	formance Monitor System	
4.19.4.4 Pay	load System	
4.19.5 Ratio	onale	
4.19.6 Assum	ptions	ана страната на страната н Подат на страната на странат
	References	
4.17./ Dala	VCTCTCHCC2	. /

DATE	= <u>10/</u>	20/72	THE SINGER COMPA SIMULATION PRODUCTS D		PAGE	NO.	xvi
REV.	REV.		BINGHAMTON, NEW YORK	BINGHAMTON, NEW YORK			
		_					· .
	4.20 N	íain Er	ngine Controller				. P. 1
	4.20.1	Cont	coller Design Requirements	· · ·	,		
	4.20.2	Contr	coller Design Description		·		. .
	4.20.3	Conti	roller Interfaces	· · · ·			
	4.20.4	Cont	coller Hardware				
_	4.20.5	Cont	roller Software	· · ·			
	4.21	Therma	l Protection System		·		
	4.22	Therma	l Control System			•	
	5.0	Extern	al Interfaces				
	5.1	Displa	y & Controls (D&C) Consoles				
	5.2 I	Univer	sal Control System (UCS)		·		
	5.3 (Comman	d Acquisition Unit	· · ·			
-	5.4 1	Remote	Interface Unit	· · · · · · · · · · · · · · · · · · ·			
	• -	×.	e Vehicle Systems Interfaces	s		•	
			· · ·			:	

•

-398-8-A

SIMULATION PRODUCTS DIVISION BINGHAMTON, NEW YORK Ocedures Objectives	REP. NO.
•	
Objectives	
objectives	
zvous	
·	
d Operations	
Operations	
Operations	
ents for Crew Participation	
uirements	
der and Pilot	
n Specialist	
d Specialist	
ion Intra-Relationship	
	vous of Operations Operations Operations ents for Crew Participation uirements der and Pilot n Specialist d Specialist tion Intra-Relationship

F-398-8-A

DATE10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. xviii
REV.	BINGHAMTON, NEW YORK	REP. NO.
8.0 Visual	Cues	
8.1 The Hum	an Visual System - Some Observations	· · · ·
8.1.1 Intro	duction	
8.1.2 Visua	l Simulation System Parameters	
8.1.2.1 Fie	ld of View	
8.1.2.2 Brig	ghtness	
8.1.2.3 Con	trast	
8.1.2.4 Res	olution	•
8.1.2.5 Cold	or	
8.1.2.6 Refe	erences	· · ·
8.2 Windows	· · · · · · · · · · · · · · · · · · ·	
8.2.1 Descr	iption	
8.2.2 Field	of View	·; · · ·
8.2.2.1 Form	ward Windows	
8.2.2.2 Payl	Load Handling Station	· · ·
8.2.3 Assum	otions	
8.3 Ascent	Phase (Vertical Launch to Orbit Insertion	n)
8.3.1 Scene	Content	
8.3.1.1 Hor:	izon	
8.3.1.2 Terr		
8.3.1.3 Cele		
8.3.1.4 Own		
	ospheric Effects	
8.3.2 Color		

ı

1

ш

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. xix
REV.	BINGHAMTON, NEW YORK	REP. NO.
8.3.3 Illuminat	ors/Non-Illuminators	
8.3,4 Displacem	ent	
8.3.4.1 Transla		· · · ·
8.3.4.2 Rotatio		
8.3.5 Velocity	 	· · · · · · · · ·
8.3.5.1 Transla	tion	• • • • •
8.3.5.2 Rotatio		· · · · ·
8.3.6 Accelerat		· · · ·
8.3.6.1 Transla		
8.3.6.2 Rotatio	n	
8.3.7 Assumptio	ns	• • • • • • • • • • • • • • • • • • •
8.4 Abort Phase	(Vertical Launch)	
8.4.1 Scene Con	tent	· · ·
8.4.1.1 Horizon		
8.4.1.2 Terrain	·	
8.4.1.3 Celesti	al Bodies	
8.4.1.4 Orbiting	g Vehicles	. •
8.4.1.5 Own Veh	icle	• •
8.4.1.6 Atmosph	eric Effects	
8.4.1.7 Other A:	ircraft	
8.4.2 Color		· · · · · · · · · · · · · · · · · · ·
	ors/Non-Illuminators	
8.4.4 Displaceme		
8.4.4.1 Translat		

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVI	SION	PAGE NO. XX
REV.	BINGHAMTON, NEW YORK		REP. NO.
8.4.4.2 Rot	ation		
8.4.5 Veloc:	ity		
8.4.5.1 Trai	nslation	· · · ·	
8.4.5.2 Rota		· •	
8.4.6 Accele			
8.4.6.1 Trai			
8.4.6.2 Rota	ation	• .	
8.4.7 Assum	otions	· · · · ·	
8.5 Orbital	Operations	• • • • • • • • •	
8.5.1 Scene	Content	1	
8.5.1.1 Hor:	izon		
8.5.1.2 Terr		• · ·	· · · · · · · · · · · · · · · · · · ·
8.5.1.3 Cele		· · · · ·	
		······································	· ····; · ··; ·
	iting Vehicles	··· · ·· ·	,
8.5.1.5 Own	Vehicle	· · · · ·	
8.5.1.6 Atm	ospheric Effects	· .	·
8.5.2 Color		• • • • • -	
8.5.3 Illum:	inators/Non-Illuminators		
8.5.4 Displa	acement		
8.5.4.1 Tra	· · ·		
8.5.4.2 Rota		•	, .
8.5.5 Veloc:			
8.5.5.1 Tra	nslation		
8.5.5.2 Rota	ation		

F-398-

	DATE 10/20/72		THE SINGE SIMULATION PRO		SION		PAGE	NO. ,	xi
. F	REV.		BINGHAMTON	NEW YORK			REP.	NO.	
	8.5.6 Accel	eration	· .			:			
	8.5.6.1 Tra	nslation	• •						
	8.5.6.2 Rot	ation				· .	•		
	8.5.7 Assum	ptions							·
		-	itude Rendezv	ous Phase	3				
	8.6.1 Scene			· · · · ·					•
						•••			•
	8.6.1.1 Hor	izon				-			
	8.6.1.2 Ter	rain	· · · · · · · · · · · · · · · · · · ·	· · ·					
	8.6.1.3 Cel	estial Bo	dies	• • • •	•				۱
	8.6.1.4 Orb	iting Veh	icles		• ·	· · · · ·		•:	
1	8.6.1.5 Atm	ospheric	Effects	· ·		• •			
	8.6.2 Color		, <u>.</u>	· · · · · ·	• • • •	• •	÷ .		
-	8.6.3 Illum	inators/N	on-Illuminato	rs	· · · · ·	· · · · · ·			
		acement			• • •	· • ·	· ·		
			. · ·			•	. •		•
		nslation							
	8.6.4.2 Rot	ation	· .		•				
	8.6.5 Veloc	ity							
-	8.6.5.1 Tra	nslation	· · ·		· · ·				
	8.6.5.2 Rot	ation		·	· · ·		:		
_	8.6.6 Accel	eration	•						
	8.6.6.1 Tra	nslation						•	
		ation							
			alting Bhasa						
	-		cking Phase			ı	•	1 · · · · · · · · · · · · · · · · · · ·	
A-8-	8.7.1 Scene	Content	· .	•					
-398		. · ·							1 -

.

	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. xxii
	REV.	BINGHAMTON, NEW YORK	REP. NO.
	8.7.1.1 Hor	izon	
	8.7.1.2 Ter	rain	
	8.7.1.3 Cel	estial Bodies	 -
	8.7.1.4 Orb	iting Vehicles	
	8.7.1.5 Atm	ospheric Effects	
	8.7.2 Color		
	8.7.3 Illum	inators/Non-Illuminators	· ·
	8.7.4 Displ	acement	
-	8.7.4.1 Tra	nslation	
	8.7.4.2 Rot	ation	
	8.7.5 Veloc	ity	
Ď	8.7.5.1 Tra	nslation	··· · · · · · · · ·
	8.7.5.2 Rot	ation	
	8.7.6 Accel	eration	
	8.7.6.1 Tra	nslation	
	8.7.6.2 Rot	ation	· · · ·
	8.8 Payload	Operations Phase	
	8.8.1 Scene	Content	
	8.8.1.1 Hor:	izon	· · ·
	8.8.1.2 Terr	cain	· · · · ·
	8.8.1.3 Cele	estial Bodies	
	8.8.1.4 Orb	iting Vehicles	
	8.8.1.5 Own	Vehicle	
8-A	8.8.1.5.1 P	ayload Bay Doors	
F-398-8			

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. XXI
REV.	BINGHAMTON, NEW YORK	REP. NO.
8.8.1.5.2 R	emote Manipulator System	
8.8.1.5.3 T	V Cameras and Monitors	· · · ·
8.8.1.6 Atm	ospheric Effects	
8.8.2 Color		• • • • • •
· · ·	inators/Non-Illuminators	· .
	acement	
· · · ·	nslation	
8.8.4.2 Rot		· · · · ·
	· · · · · · · · · · · · · · · · · · ·	· .
8.8.5 Veloc		
	nslation	
	ation	· · · ·
8.8.6 Accel	eration	•
8.8.6.1 Tra	nslation	n an
8.8.6.2 Rot	ation	
8.8.7 Assum	ptions	
8.9 De-Orbi	t Phase	·
8.9.1 Scene	Content	
8.9.1.1 Hor:	izon	
8.9.1.2 Ter:	rain	
8.9.1.3 Cel	estial Bodies	
8.9.1.4 Orb	iting Vehicles	
	ospheric Effects	
8.9.2 Color		
	inators/Non-Illuminators	

F-398-1

.

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. XXIV
REV.	BINGHAMTON, NEW YORK	REP. NO.
8.9.4 Displacen		
8.9.4.1 Transla	tion	
8.9.4.2 Rotatio	n	
8.9.5 Velocity		· · .
8.9.5.1 Transla	tion	
'8.9.5.2 Rotatio	n	
8 9.6 Accelerat	ion	· · · ·
8.9.6.1 Transla	tion	
8.9.6.2 Rotatio		
, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nee An an an an tha an	· · · ·
8.10 Entry		
8.10.1 Scene Cor	itent	
8.10.1.1 Horizor		
8.10.1.2 Terrair	·····	
8.10.1.3 Celesti	al Bodies	
8.10.1.4 Atmosph	eric Effects	
8.10.2 Color		
8.10.3 - Tllumir	ators/Non-Illuminators	
8.10.4 Displacen		
8.10.4.1 Transla		
8.10.4.2 Rotatic	n	
8.10.5 Velocity	· _	· · · · · ·
8.10.5.1 Transla	tion	
8.10.5.2 Rotatic	n s	• • •
8.10.6 Accelerat	ion	
		•

DATE 10/20/72		THE SINGER CO SIMULATION PRODUCT			PAGE NO.	xxv
REV.		BINGHAMTON, NEW	·	· · ·	REP. NO.	
				······	- 1	
8.10.6.1 Tra	nslation	· ·			· · ·	
8.10.6.2 Rot	ation					
8.10.7 Assum	ptions	•				· .
8.11 Approac	h and Lan	ding Phase				-
8.11.1 Scene		-		• •		
					- - 	
8.11.1.1 Hor	1201				r.	· .
8.11.1.2 Ter	rain	· .	. · ·		• • • •	-
8.11.1.3 Cel	estial Bo	dies	· ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·	
8.11.1.4 Atm	ospheric 3	Effects	· · · ·		, t	
8.11.1.5 Oth	er Aircra	ft.		· · · · · · · · · · · · · · · · · · ·	······································	
8.11.2 Color				· · · ·	 t	ŧ
8.11.3 - Illum	inators/N	on-Illuminators	• · · ··	•	" .	
8.11.4 Displ	acements	· * · _ • ·	a sun anna a ann ann an	<u></u>	• • • • • • • •	Ċ,
8.11.4.1 Tra	nslation	· · · · · ·			· ·	
8.11.4.2 Rot	ation	· · · ·		·. ·	· · ·	
8.11.5 Veloc	ity	· .				
8.11.5.1 Tra			•	•		
					: ·	·
8.11.5.2 Rot	ation			• •		
8.11.6 Accel	eration					
8.11.6.1 Tra	nslation	· · ·			· · · · · · · · · · · · · · · · · · ·	
8.11.6.2 Rot	ation	·				
8.11.7 Assum						
8.12 Ferry F	light Pha	se				
8.12.1 Scene	Content				•	

.

- -

. ..

DATE0/20/72					ER COMPA				PAGE	^{NO.} x	xvi
REV.		· · ·			. NEW YORK		-		REP.	NO.	
8.12.1.1	Hor	izon							.		
8.12.1.2	Terr	rain									
8.12.1.3	Cel	estial Boo	dies							·· ·	
8.12.1.4	Oth	er Aircra:	£t						· · ·		
8.12.1.5	Own	Aircraft									
8.12.2 C											
8.12.3 I		inatora/N		minato							
			on-111u		15	· · · ·	-				• •
8.12.4 D		*		• •	<i>.</i> .		• • • •			••	
- 8.12.4.1	Trai	nslation		.			-				- ,
8.12.4.2	Rota	ation		e e e		•					
8.12.5 V	eloci	ity						·			
8.12.5.1	Tra	nslation		•	• •		•				· · · · ·
8.12.5.2	Rota	ation		•							
8.12.6 A	ccele	eration	<u>.</u>	•		· ·					. '
8.12.6.1	Tra	nslation				 	 		- ·		
8.12.6.2	Rota	tion								•	
8.12.7 A								,			
0.12.17	ooum								•	•	
							·····		· • • •		
		•									• • • • •
				•.						• • •	
							,		• •		
							•				
				-				. <u>.</u>			
A						,	:				
398-8 - A											
Ч ш								·			

•

, ·

×.

•

1

DATE 10/20/	<i>3</i> /	SINGER COMPANY I PRODUCTS DIVISION		PAGE NO.	XX
REV.	BINGH	AMTON, NEW YORK		REP. NO.	
9.0 Cue	Requirements		· •		
	pulsion Cues	• • • • •			
	ain Rocket Engines	· · · · · · · · · · · · · · · · · · ·			
9.1.2 S	olid Rocket Motors		н <u>-</u>		·
9.1.3 A	irbreathing Engines	· · · · · · ·		. . .	
9.1.4 A	oort Solid Rocket Moto	rs	•••		
9.2 Sys	tem Equipment Cues			. .	
9.3 Aer	odynamic Cues		· · · ·	• • •	
9.4 Cau	tion and Warning Cues				•
9.5 Lan	ding Gear Cues	den no de de de com		· · · · ·	:
9.6 Mal	function Cues		·		
· · · · ·		· · ····	<u></u>		
·····	te a an an tao an tao		, , , , , , , , , ,	•	-
· · · ·	на на селото на селот На селото на селото н На селото на селото н				
	· ·		· .	'	
			·* .		
	- : :			. <u>.</u>	
•		•	· · ·		
· .			-		
	· · · · · · · · · · · · · · · · · · ·				
				ĩ	
· .					
				· ·	

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

REV.

1.0 Introduction

The objective of the Shuttle Vehicle and Mission Simulation Requirements report is to provide to NASA/MSC documentation of the requirements for faithful simulation of the Shuttle Vehicle, its systems, mission, operations and interfaces. To accomplish this objective the report was divided into eight topics which comprehensively cover the simulation requirements of the Shuttle mission and vehicle. The topics and their main objectives are summarized below.

Mission Envelope - This topic covers the space and atmospheric missions that are envisioned for the Shuttle program. The characteristics of each mission are described by an analysis of the mission phases, trajectory information, timelines and operations for nominal and abort conditions to the extent data was available.

Orbiter Flight Dynamics - This topic covers the flight regimes

which the Shuttle vehicle will encounter in the accomplishment of its missions. The requirements were established in the following manner.

The vehicle configurations that must be simulated for horizontal and vertical test flights, operational space missions, atmospheri missions and abort modes were defined.

DATE 10/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

PAGE NO. 1-2

REP. NO.

The dynamics requirements were established by defining the forces and moments that will act on the vehicle during the entire mission envelope which include, propulsion, gravity, aerodynamic effects, payload effects, docking effects, staging effects, ground reactions and the dumping of material overboard. The translational equations of motion requirements were established by defining the vehicles, satellites and payloads whose state vectors must be calculated and by defining the coordinate systems, relative equations of motion and accuracy of the calculations. similar analysis was performed for the rotational equations of motion. Mass property and ephemeris requirements were also identified.

Shuttle Vehicle Systems - The Shuttle vehicle systems required for simulation were identified and described. The descriptive data generated in this effort was primarily based on the North American Shuttle proposal. The Shuttle vehicle and its system configuration is currently in a state of flux and therefore the descriptive data

DATE	10/20	172
	10140	112

External Interfaces

Crew Procedures

-398-8

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

contained in this report undoubtedly will become out of date as the Shuttle program progresses. However, for the purposes of this study, the data is more than adequate to define simulator requirements and a baseline design when it is tempered with the past experience of Apollo and Gemini programs. A cross correlation between the NR definition of systems and LRU's and this report is shown in Table 1-1 for reference purposes. - The external interfaces of the Shuttle vehicle were identified and a preliminary type interface description established. Due

to the fact that for every external interface there also exists an equivalent on-board system, the descriptive data on the workings of the interfaces is contained in the Shuttle Vehicle Systems section of the report and cross references are provided in this section. The actual crew procedures for the Shuttle system will not be available for many years. As a result the study concentrated on identifying tasks by mission phase and crew member and identifying the probable interfaces between work stations. The data used for the

DATE 10/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

PAGE NO.1-4

REP. NO.

analysis was a RTOP study by MacDonald-Douglas, conversations with George Franklin of NASA/MSC, past experience, and the requirements of the Shuttle vehicle & mission. The latest available data at the time of the writing of this report was used to identify the configuration of the Crew Station. The shape of the interior cabin, the location of the work stations and the allocation of the C&D panels by work station were established. Detailed data on the interior composition of the cabin is not currently available. However, simulation requirements were identified based on past experience and accepted levels of fidelity for mission simulators. The visual scene content was established for each of the mission phases. Attributes of the scene elements, to the extent feasible, were established and will be further defined in the SMSR report. The vehicle window configuration is not defined at this time but the best data available was utilized. The accelerations, velocites and displacements were established to the extent possible. Sonie

Visual Cues

Crew Station

F-398-8

DATE	10/	20	/72
------	-----	----	-----

Aural Cues

REV.

.398.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION BINGHAMTON, NEW YORK

dynamics data was not available such as in the Abort phases of the mission. The missing information will be incorporated if it becomes available when the time frame and ground rules of the study or assumptions will be made.

The aural cues requirements associated with the mission and vehicle systems were identified and described. Detailed data on the characteristics of each sound was not available and probably will not be until the vehicle test program is in progress. This factor can be circumvented by specifying flexibility into the simulator aural cue equipment.

This report will be updated at the end of the study based on data received as of January 1, 1972.

Reference to study data sources are included in the margins and the text in order to facilitate update of this report. The numerical references are correlated with the data listing defined by Table 1-2.

, տ է	F.398.8.A				
	SYSTEM: AVIONICS	SPA(TABLE 1-1 SPACE SHUTTLE ON-BOARD EQUIPMENT	CROSS REFERENCES	DATE] REV.
•		NUMBER OF UNITS	SV & MSR Paragraph Numher and Title	/Remarks/Assumptions	L <mark>0/2</mark> 0/
1	Star Sensor		4.9	ITT Model used on Aero Bee but does not meet proposed specs. Specs. and data required.	72
1	Rate Sensor Package	e M	4.9	Honeywell GG 1027 Model used on F-14 AFCS. Data and Specs. required	-
	Angle of Attack Transducer	e S	4.9	Honeywell HG 280 used on DC 10.	51
l		m	4.9	Singer model KT70 used on A7D/E.	MULATI
8	IMU Power Supply	e e	4.9	Singer model KT70 used on A7D/E.	ON PRO
1.	TVC Monitor	2 (?)	4.9.	No Data Exact function not known.	ER COM. DDUCTS
	Air Data Package	3 (?)	4.9. 4.9.	Honeywell Model HG280 used on DC10.	DIVISI
·	MPS TVC Drivers	m	4.9. 	No Data Available	I ON •
ž	Manual TVC/RCS Control		.4.9°	Honeywell Model BG 286 used on Apollo SCŞ.	
2	Aero Control Electronics Unit	~	4.9,	Honeywell AFCS used on F-14.	.
<u></u>	Horizcn Sensor Assembly	m	4.9,	Barnes Model 15-163	E NO.
ğ	∵ OMS/TVC Driver Unit	3(?)	4.9.	No Data Available	1-6
<u>ن</u> ا:					

•

5- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-				Ł
· · ·	SPACE	TABLE 1-1 . SHUTTLE ON-BOARD EQUIPMENT	CROSS REFERENCES	DATE 1(REV.
SYSTEM: AVIONICS		ana 2007 tao mampina mangkang mangkang kana ang mangkang na kana na kana kana na mangkang kana mangkang kana m	us meres and a second secon)/2
EQUIPMENT	NUMBER OF UNITS	SV & MSR Paragraph Numher and Title	Remarks /Assumptions	20/72
APS Driver/Monîtor	m	4.9.	Honeywell Model BG.287 used on Apollo SCS.	
Accelerometer Package	m	4.9,	Honeywell Model G.G.1026 used on F-14 AFCS	
Aero Back-up Electronics	L	4.9,	No Data available	S I
Subsystem Sequence Controller	2(?)	4.9	To be used for unmanned flights. No data available	MULATI
Gyro Accelerometer Package	۱	4.9.	No Data Available	ON PRO
Backup Optical Unit	-	4.9.	Apollo COAS	R COMP DUCTS NEW YOR
Throttle/Speed Brake Electronics	~.		No Data	DIVISI
GN &C Computer	3(?)	4.1.8.3	IBM Model AP101 or Singer/Kearfott [.] SKC2000.	ON •
Program I/O Processor	(2)		IBM SP1	
FDA1/EDA	(2)		Honeywell JG 264/BG 285 used on Apollo SCS.	
FCS Control Panel	. (2)		HONEYWEIT F-14	SE NO. P. NO.
				1-7
a dia mandria da kana da da mandria da kana da Mandria	A	יי אינער אינעריינער אינער אינער אינער אינעראינער אינעראינער אינעראינער אינעראינער אינעראינייי.		

F.398.8.A				
	SPA	TABLE 1-1 SPACE SHUTTLE ON-BOARD EQUIPMENT	E 1-1 EQUIPMENT CROSS REFERENCES	DATE REV.
SYSTEM: ELECTRICAL POWER			-	10,
EQUIPMENT	NUMBER OF UNITS	SV & MSR Paragraph Number and Title	Remarks	/20/72
BATTERY	2	4.1 ELECTRICAL POWER	NICKEL-CADIUM - 10 AMPHOUR - 28 VOLT	2
GENERATOR CONTROL UNIT	3	4.1 ELECTRICAL POWER	APU DRIVEN GENERATOŘ	
TRANSFORMER RECTIFIER UNIT	°. R	4.1 ELECTRICAL POWER	150 AMP	S II
REMOTE CONTROL CIRCUIT BREAKER	. 6	4.1 ELECTRICAL POWER	MAGNETIC LATCH - HERMETIC SEALED UNITS	MULATI
REMOTE POWER CONTROLLER	4		- HERMETIC	SINGE ON PRO
BATTERY CHARGES		4.1 ELECTRICAL POWER	CONSTANT CURRENT CHARGER - DUAL REDUNDANT OUTPUT	DUCTS.
INVERTERS	4] [0 VA, 115/200V, 4	DIVISI
SEQUENCERS	~	4.1 ELECTRICAL POWER	NO DATA AVAILABLE	ON
CONTROL TRANSFORMER RECTIFIER	ذ		NO DATA AVAILABLE	
FUEL CELL	3	4.1 ELECTRICAL POWER	7/10 KW RESTARTABLE - CRYOGENIC O2 and H2 30 VOLT OUTPUT	
ALTERNATOR – GENERATOR	З	4.1 ELECTRICAL POWER .	20/30 KVA APU DRIVEN SPRAY OIL COOLED WITH INTEGRATED GEARBOX	E NO.
FUEL CELL HEAT EXCHANGER	3	4.1 ELECTRICAL POWER	יינער איז איזערט וואינערעער איזערער איזערער איזערער איזערערער איזערערער איזערערער איזערערערערערערערערערערערערע איזערערערערערערערערערערערערערערערערערערער	1-8

ł

•

.

F-398.8.A				
		TABLE 1-1	-	DAT
SYSTEM: MECHANICAL POWER	SPA	SPACE SHUTTLE ON-BOARD EQUIPMENT CROSS REFERENCES		
EQUIPMENT	NUMBER OF UNITS	SV & MSR Paragraph Number and Title		L0/20/
AUXILLARY POWER UNITS	. 4	4.2.1 AUXILIARY POWER UNITS 200 HORSEPOWER - USES HYDRAZINE	. •	72
HYDRAZINE TANK	4	POWER UNITS NO DATA AVAILABLE		
HELIUM TANK	4	4.2.1 AUXILIARY POWER UNITS NO DATA AVAILABLE	•	SII
HEAT EXCHANGER	. 4	4.2.1 AUXILIARY POWER UNITS NO DATA AVILABLE	-	MULATI
HYDRALIC PUMPS	8	4.2.2 HYDRALIC POWER SYSTEM 3000 PSI		SINGE ON PRO IGHAMTON,
ALTERNATOR	ю	ARY POWER UNITS 400 HZ, 30		DUCTS
				DIVIS
				ION
			•	
				SE NO.
۱.				1-9

F.398-8-A			•	
SYSTEM: OPERATIONAL INSTRUMENTATION	NTATION	TABLE 1-1 SPACE SHUTTLE ON-BOARD	1-1 OARD EQUIPMENT CROSS RÉFERENCES	DATE 10/
EQUIPMENT	NUMBER . UNTTS	SV & MSR Paragraph Number and Title	Remarks	20/72
PILOT VOICE RECORDER	F	4.11.1 RECORDERS		•
SWITCH SCAN MULTIPLEXER	12	FIGURE 4.11-1		
CAUTION AND WARNING	2	FIGURE 4.11-1, 4.11.4	AUTONETICS – APOLLO ÎYPE (NEW ITEM)	SI
CRASH RECORDER	-	4.11.1 RECORDERS	SUNSTRAND, ECHO SCIENCE, OR DAVOLL FERRY USE ONLY	MULATI
SIGNAL CONDITIONING UNIT-DFI	17	4.11.2 SENSORS AND SIGNAL CONDITIONING	SAT/APOLLO AUTONETICS SCE	SINGE ON PRO
TIMING UNIT (MTU)	2		APOLLO CTE, GENERAL TIMC	DUCTS
LOOP RECORDER	,	FIGURE 4.11-1 4.11.1 RECORDERS	SUNDSTRAND, ECHO SCIENCE, OR DAVOLL (5 MINUTE PLAYBACK)	DIVISI
PCM RECORDER - PAYLOAD		FIGURE 4.11-1 4.11.1 RECORDERS	SUNDSTRAND, ECHO SCIENCE OR DAVOLL (MAINT. AND PAYLOAD)	ÖN .
OPER. TRANSDUCERS	2359 DFI 2803 DFI	FIGURE 4.11-1 4.11.2 SENSORS AND SIGNAL CONDITIONING	VARIOUS MAKES	
PCM REMOTE UNIT DFI	-	FIGURE 4.11-1	SCI, TELEDYNE	
PCM MASTER UNIT - DFI	0	FIGURE 4.11-1	DFI ONLY SCI, TELEDYNE	E NO. :
GROUND CHECKOUT DECODER	~·	خ	MAY NOT EXIST	1-10

• •

DATE REV.	L	0/20/	72		SII	MULATI	SINGE ON PRO GHAMTON,	DUCTS	DIVISI	ON		1	E NQ	11
	OARD EQUIPMENT CROSS REFERENCES	Remařks	IBM MODEL AP101 OR SINGER/KEARFOTT SKC 2000	SP-1 COMPUTER STRUCTURES SKYLAB POWER SUPPLY, AP1/SP1	IBM SP1	NO DATA AVAILABLE	NO DATA AVAILABLE		GENERATOR, ANALOG AND DIGITAL CONTROL LOGIC, D/A'S AND POWER SUPPLIES	NO DATA AVAILABLE	NO DATA AVAILABLE	NO DATA AVAILABLE	NO DATA AVAILABLE	NO DATA AVAILABLE
1	SPACE SHUTTLE ON-BOARD	SV & MSR Paragraph Number and Title	4.18.3	f 4.18.2.9.3/ f 4.18.2.9.4	4.19-4.19-7	4.19.2	4.19.2	4.19.2.1						
	ENTATION	NUMBER UNITS	2?	· ~·	۰.	<u>ر.</u>	ب	8;				с		-
	SYSTEM: OPERATIONAL INSTRUMENTATION	EQUIPMENT	GN&C COMPUTER 64K	INPUT-OUTPUT BUFFER	MDE UNIT	MAGNETIC TAPE READER	TAPE CONTROL ELECTRONICS	CRT DISPLAY UNIT		DFI TIMING UNIT	WIDEBAND RECORDER	FREQUENCY MULTIPLEXER	PCM RECORDER DFI	PCM RFCORDER MAINTENANCF

.398.8.4				
SYSTEM: OPERATIONAL INSTRUMENTATION	1ENT AT I ON	T/ SPACE SHUTTLE ON-E	TABLE 1-1 ON-BOARD EQUIPMENT CROSS REFERENCES	DATE 10 REV.
1N	NUMBER UNTTS	SV & MSR Paragraph Number and Title	Remarkŝ)/20/7:
PCM MASTER UNIT - OFI	N		NO DATA AVAILABLE .	2
PAYLOAD DATA INTERLEAVER	2		NO DATA AVAILABLE	
PCM REMOTE ACQUISITION UNIT	24		NO DATA AVAILABLE	S I N
DEDICATED SIGNAL CONDITIONER	ى		NO DATA AVAILABLE	ULATI
COMMAND ACQUISITION UNIT	-		NO. DATA. AVAILARLE. ROMAN REPORT REPORT OF A REPORT	SINGE DN PRO SHAMTON
				DUCTS
				DIVISI
				ON
				r
				E NO. <u>1</u> . NO.
				-12

· •

•

•

.398-8-A					
system: D&C		TA SPACE SHUTTLE ON-E	TABLE 1-1 ON-BOARD EQUIPMENT CROSS REFERENCES	DA10/20 REV.	DATE IN
:QUIPMENT	NUMBER OF UNTTS	SV & MSR Paragraph Number and Title	Remarks	5/72	
ERTICAL SPEED		Note: The SV&MSR did not address detailed D&C Instruments due to the lack of firm data	BENDIX E-C, AAK-23/A24G-17A		
ARO ALTITUDE		р По́ DATA AVAILABLE	VICS,	· · · · · · · · · · · · · · · · · · ·	
AS/MACH	2	NO DATA AVAILABLE	BENDIX E-C, ASK-14/A24G-18	\$ II	
DAI (3 AXIS).	2	NO DATA AVAILABLE	MODIFIED APOLLO CM FDAI	MULATI	THE
SI	2	NO DATA AVAILABLE	BENDIX E-C, ACA AQU-4A	ON PRO	SINGE
.AS/SAT	-	NO DATA AVAILABLE	C 1	DUCTS	R COMP
CCELEROMETER	2	NO DATA AVAILABLE	NO DATA AVAILABLE	DIVISI	ANY
G POSITION	F	NO DATA AVAILABLE	3 DISPLAYS - LEFT, RIGHT, NOSE	0N	
.cs pressure	'n	NO DATA AVAILABLE	DOUBLE POINTER .	· ·	<u>.</u>
IMS PC		NO DATA AVAILABLE	NO DATA AVAILABLE		PAG
IMS FUEL		NO DATA AVAILABLE	NO DATA AVAILABLE	. NO.	E NO. 1
. XO SM	-	NO DATA AVAILABLE	NO DATA AVAILABLE	L-13	

CV. BINGHAMTON. NEW YORK REP. NO. MIA AVAILABLE MIA AVAILABLE M	DATE 10	/20/72			SIA		SINGEF			ON	PAG	SE NO.	1-14
SPACE SHUTTLE ON-BOARD EQUIPMENT CROSS SV & MSR Paragraph Number and Title DATA AVAILABLE NO DATA AVAILABLE DATA AVAILABLE NO DATA AVAILABLE	REV.							2			REF	P. NO.	
SPACE SHUTTLE ON-BOARD EQUIPMENT CROSS SV & MSR Paragraph Number and Title DATA AVAILABLE NO DATA AVAILABLE DATA AVAILABLE NO DATA AVAILABLE	RENCES		ene a sur d'Albert i ser a sur d'Albert en sur d'Albert de ser d'Albert de ser albert de ser albert de ser alb				وتوريدها فتعاويتهم والمتعادلين ومعودا والمتحادث والمحمدية الموامنية والمع	name tarangka karangang parakaran karangan panakaran karangan karangan karangan karangkarang karangkarang karan					
SPACE SHUTTLE SV & MSR Paragraph Number and Title DATA AVAILABLE DATA AVAILABLE	-I EQUIPMENT CROSS	Remarks		DATA	DATA	DATA	DATA	DATA	DATA	DATA			
	CE SHUTTLE	SV & MSR Paragraph Number and Title	DATA AVAILABI	DATA AVAIL	DATA AVAIL	DATA AVAIL	DATA AVAII	DATA AVAII	DATA AVAIL	DATA AVAII			
	SYSTEM: D&C	LΝ	EVENT TIMER	HYD. PRESSURE	MPS PC	4PS LH2/LO2	EXT. TANK QUANTITY	SS DISAGREE	CMD DISAGREE	DRIVER FAIL		-	

٠,

• •

		TABLE 1-1		
COMMUNICATION AND TRACKING	SPACE SHU	, ,	ON-BOARD EQUIPMENT CROSS REFERENCES	α τ<u></u>ξ0/2 εν.
NUMBER OF	ER SV & MSR Paragraph S Number and Title	ph e	Remarks	
2	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLĖ	
2	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	
2	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	S II
5	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	MULAT I BIN
∼	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	ON PRO
.	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	•
. 2	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	
∼	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	ON
	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	
2	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	
ю 	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	E NO.] . NO.
S-BAND 1	4.10 COMMUNICATIONS AND TRACKING		NO DATA AVAILABLE	
_	Participa			

•

F.398.8.A				• .
			E 1-1	DATE REV.
SYSTEM: COMMUNICATION AND TR	TRACKING	SPACE SHUTTLE ON-B	ON-BOARD EQUIPMENT CROSS REFERENCES	
EQUIPMENT	NUMBER OF UNITS	 SV & MSR Paragraph Number and Title 	Remarks	LO/20/
S-BAND ANTENNA	4	4.10 COMMUNICATIONS AND TRACKING	HELIX IN CAVITY (RHCP)	/ 72
C-BAND ANTENNA	9	4.10 COMMUNICATIONS AND TRACKING	HORN (LP) FOR RADAR ÅLTIMETER	
L-BAND ANTENNA	L.	4.10 COMMUNICATIONS AND TRACKING	ANNULAR SLOT (VP) FOR TACAN AND ATC	SI
UHF/VHF ANTENNA	3	. 4.10 COMMUNICATIONS AND TRACKING	HP DUAL CAVITY FOR ILS	MULATI
VHF ANTENNA	2	4.10 COMMUNICATIONS AND TRACKING	HELIX IN CAVITY (RHCP)	SINGE ON PRO
VHF ANTENNA		4.10 COMMUNICATIONS AND TRACKING	TOP CAP (VP)	DUCTS
VHF ANTENNA		4.10 COMMUNICATIONS AND TRACKING	SPIRAL (VP)	DIVISI
L-BAND ANTENNA	2	4.10 COMMUNICATIONS AND TRACKING	HELIX IN CAVITY (RHCÞ) FOR TACAN	0N
L-BAND ANTENNA SELECTOR		.4.10 COMMUNICATIONS AND TRACKING	NO DATA AVAILABLE	
VHF ANTENNA SELECTOR	-	4.10 COMMUNICATIONS AND TRACKING	NO DATA AVAILABLE	
S-BAND ANTENNA SELECTOR		4.10 COMMUNICATIONS AND TRACKING	NO DATA AVAILABLE	E NO. . NO.
CCTV CAMERA (B&W)	4	4.10 COMMUNICATIONS AND TRACKING	NO DATA AVAILABLE	1-16

	DATE		10/20	/72		51			R COMP DUCTS	ON .		PAG	E NO.	1-17	
	REV.				· .	51			NEW YOF	UN		REP	. NO.		1
•	TABLE 1-1 ON-BOARD EQUIPMENT CROSS REFERENCES		Remarks	NO DATA AVAILABLE	NO DATA AVAILABLE	NO DATA AVAILABLE	NO DATA AVAILABLE	-			•				
-	TABLE SPACE SHUTTLE ON-BOA		SV & MSR Paragraph Number and Title	4.10 COMMUNICATIONS AND TRACKING	4.10 COMMUNICATIONS AND TRACKING	4.10 COMMUNICATIONS AND TRACKING	4.10 COMMUNICATIONS AND TRACKING								
		ACKING	NUMBER OF UNITS	. –		З	4								
¢5.398.8.A		SYSTEM: COMMUNICATION AND TRACKING	EQUIPMENT	TV CAMERA - COLOR	DFI TRANSMITTER	ILS RECEIVER	SECURE TERMINAL								

•.	DATE 10	/20/72	2	*****	51		SINGE ON PRC			ON	 PAC	E NO.	1-18	
	REV.					Blt	GHAMTON	. NEW YO	RK		 REP	NO.		
•	TABLE 1–1 SHUTTLE ON-BOARD EQUIPMENT CROSS REFÊRENCES	Remarks	P&W F401-PW-400 MODIFIED	22,5										
	TABLE SPACE SHUTTLE ON-B	SV & MSR Paragraph Number and Title	4.6 AIRBREATHING PROPULSION SYSTEM	4 of AIRBREATHING PROPULSION SYSTEM										
	NOI	NUMBER OF UNITS	4	1,2,0r3										
398-8-A	YSTEM: AIRBREATHING PROPULSION	:QUIPMENT	TURBOFAN ENGINE	FUEL TANK										

• •

•

• 398•8-A				
			22042 FM1M41101	DATE REV.
SYSTEM: SOLID ROCKET MOTORS		SPACE SHUTTLE UN-BUAKD	JAKU EQUIPMENI UKUSS REFERENCES	1
EQUIPMENT	NUMBER UNFTS	SV & MSR Paragraph Number and Title	Remarks	0/20/7
MOTOR	2	4.7.1 MAIN SRM	SOLID PROPELLANT 156"	72
MOTOR	12	4.7.1 MAIN SRM	SOLID PROPELLANT 27K LBS @ 2 SECONDS	
MOTOŘ	2	4.7.2 ABORT SOLID ROCKET MOTOR	SOLID PROPELLANT 385,000 LBS AVERAGE @ 21 SECONDS	S II
моток	2	4.7.3 DEORBIT SRM FOR EXTERNAL TANK	SOLID PROPELLANT 18,500 LBS @ 37 SECONDS	MULATI
				ON PRO
				R COMP DUCTS NEW YOF
				DIVISI
				ON
			•	
				E NO.
				1-19

.

.

	DATE 10	0/20/72	2		SI		SINGE ON PRO		ON .		PAG	E NO.1	L-20	
	REV.						GHAMTON.	••••			REP	N0.		,
•	1-1 DARD EQUIPMENT CROSS REFERENCES	Remarks								•				
	TABLE 1-1 SPACE SHUTTLE ON-BOARD	SV & MSR Paragraph Number and Title	4.8.1 STRUCTURE	4.8.1 STRUCTURE	4.8.4 AVIONICS	4.8.4 AVIONICS	4.8.4 AVIONICS							
		NUMBER OF UNITS		L	5	-	-							
F.398.8.A	SVCTEM. EXTEDNAL TANK	NT	OXYGEN TANK - LIQUID	HYDROGEN TANK - LIQUID	BATTERY	ORDINANCE TIMING SYSTEM (DEORBIT AVIONICS)	RANGE SAFETY AVIONICS							

ſ

DAT	DATE 10/20/72				SII	THE MULAT I		R COMP DUCTS	ON	PAG	PAGE NO. 1-21				
REV			·	\$.				NEW YOF		 REF	P. NO.	1.	•		
	CROSS REFERENCES	Remarks	NO DATA AVAILABLE	NO DATA AVAILABLE	NO DATA AVAILABLE	NO DATA AVAILABLE	470K VAC THRUST	NO DATA AVAILABLE				ta uta dara kana kana kana kana kana kana kana k			
TABLE 1-1	SPACE SHUTTLE ON-BOARD EQUIPMENT C	SV & MSR Paragraph Number and Title	4.3 MAIN PROPULSION SYSTEM	4.3 MAIN PROPULSION SYSTEM	4.3 MAIN PROPULSION SYSTEM	4.3 MAIN PROPULSION SYSTEM	4.3 MAIN PROPULSION SYSTEM	ACTUATOR				n en de de la constante de la c	الله المحمد والمدمون فلالموالية والموالية للمحمد والمعاملة والمحمد والموالية والمحمد والموالية والمحمد والمحمد		
		NUMBER OF UNITS	m	m	ε	Э	n	و							
	SYSTEM: MAIN PROPULSION SYSTEM		MPS ENGINE INTERFACE UNIT	MPS CONTROLLER	FUEL PREBURNER	OXIDIZER PREBURNER	MAIN ENGINE	ENGINE ACTUATOR							

,

•

• ••

	TABLE 1-1		DAT
SYSTEM SPACE SHUILLE UN-B	BOARD EQUIPMENT CROSS REFERENCES		
NUMBER OF UNITS	SV & MSR Paragraph Number and Title		20/72
40	REACTION CONTROL SYSTEM 1000 LBS THRUST VAC		
4	PRESSURIZATION SUBSYSTEM 4000 PSI TANKS		
·œ	SYSTEM 25 INCH DIAMETER X 42	INCH LONG CYLINDERS	51
			MULATI
			SINGE ON PRO
			DUCTS
			DIVISI
NetTrake celitate		•	ON
		·	
			^{SE NO} .1 P. NO.
			-22

	DATE	1	.0/20/	72		SI			R COMP	ON	PAG	E NO.	1-23	
	REV.				······				, NEW YOR		 REF	Υ. NO.	,	
	CROSS REFERENCES		Remarks	5000 LBS VAC	י בא	12,200 LBS MAX MONOMETHYLHYDRAZINE	3200 PSIA	•						
	TABLE 1-1 SPACE SHITTLE ON-BOARD FOLITEMENT CROSS	SM)	SV & MSR Paragraph Number and Title	4.5 ORBITAL MANEUVERING SYSTEM	<pre>4.5 ORBITAL MANEUVERING SYSTEM</pre>	4.5 ORBITAL MANEUVERING SYSTEM	4.5 ORBITAL MANEUVERING SYSTEM						a Da da Tila Da	
	SPA	SYSTEM (OMS)	NUMBER OF UNITS	2	2	2	2							
F-398.8-A		SYSTEM: ORBITAL MANEUVERING	EQUIPMENT	ENGINE	TANK OXIDIZER	TANK FUEL	HELIUM TANK							

			SMSS REFÉRENCE POCUMENT LISTING		۲۸.	E 1-24			
00.				DATE		SEG			
RCE	DATE	NUMBER REV	DOCUMENT TITLE	KECU	LOUN	NG.			
	· · · · · · · · · · · · · · · · · · ·		SORTED BY INDEX NUMBER						
			DATA REFERENCES		,		······································		
		a a a cara manan ayan a sar da dada ka aman dad arapandaha	SHUTTLE MISSION SIMULATOR STUDY					,	
			0CT0.0CR 20, 1972				······································		
GB	_15M872	MSC-03824	SS PHASE B EXTENSION FINAL REPORT-PAYLOAD IMPACT V24	15JE72	비미	002		· · · · · · · · · · · · · · · ·	
NA	25FF72	FM347234	- PAN AMERICAN ABPRUACH TO SHUTTLE CREW SEL/TRNG/ASSIGN	15JE72	Hυ	003			
NA	134472	M3C-04217 C	SPACE SHUTTLE ON+O DESIGN EQUATION DUCUMENT	15JE72		UU4			
GР	154872	MSC-03824	SS PHASE B EXTENSION FINAL REPORTEMASS PROPERTIES V3	15JE72	Чü	005			•
GE	15472	MSC-03824	SS PHASE B EXTENSION FINAL REPORT-EXECUTIVE SUMMARYVI	15JE72	<u>ن H</u>	006		·	
ñΕ	154672	MDC-20558	TEUMNICAL REPORT SYSTEM + ORBITER PART 2 VOL 1	15JE72	ho	007			
ME	15M872	MDC-E0558	TECUNICAL REPORT SYSTEM + DOUSTER PART 2 VOL 2	15JE72	110	600			
ME	16ME72	MDC-20558	FINAL MASS PROBERTIES REPORT PART 4	15JE72	Ho	009			
Mr	184872	MDC-±0558	BEVELOPMENT REDUIREMENTS PART 3	15JE72	, He	010		··· · · · · · · · · · · · · · · · · ·	
ME	154672	MDC-E0558	TECHNICAL REPORT-MMC ACTIVITY PART 2 VUL 3	15JE72	Ны	011			
NR	168872	MSC-03332	SS PHASE B FINAL REPORT-TECHNICAL SUM. ADD. A-DOOSTER	15JE72	ΗÞ	012			
LC	15MA72	NAS326362	SPACE SHUITLE ONCEPTS TECHNICAL REPURT VOL 4	15JE72	hip	013			
ME	158572	MDC-L0558	EXECUTIVE SUMMARY PART 1	15JE72		<u> </u>			
NR	154872	MSC-03333	35 MASE B FINAL REPORT-MASS PROPERTIES STATUS REPORT	15JE72	Ho	U15	•		
GR	15MA72	MSC-03824	SS PHASE B FINLL REPURI-TECHNICAL REPORT V2	15JE72		016			
NA	04FF72	EG13728	SPATE SHUTTLE CUIDANCE AND NAVIGATION REVIEW	15JE72		U17			
ëC	04JA72		STUDY OF MOTION SYSTEM RED. FOR SIM. OF ADV. SPACECR.			010			
NA	158872	MSC-06720	SOURCE DOCHMENTATION LIST VOL 2 CAT 2	15JE72		01v			
NA			SPACE SHUTTLE SROGRAM REQUEST FOR PROPOSAL PHASE CD	15JE72		020			
NA	143472	A	SPACE SHUTTLE AVIONICS CONFIGURATION DEFINITION DATA	15JE72	Ho	021			
MM	0071	MSC-05218	PREL DES. OF CHUTTLE POCKING AND CARGO HANDLING SYS.	15JE72	He _	022			
NA	1514872		DATA PAG FOR SUUTTLE TRAINING AIRCRAFT DEFINITION	15JE72	Ho	üζJ			
NP .	1511572	MSC-03332	SS PHASE B FINAL REPURT-EXECUTIVE SUMMARY VI	15JE72	_ Ho	u24			
NR	15MR72	MSC-03332	SS PHASE B FINAL REPORT-TEUHNICAL SUMMARY V2	15JE72	Ho	620			
		MSC-03690	SS CRUITER GNAC SIN FUNCT. REW. VERTICAL FLIGHT OPNS.	15JE72	Ho	026			
IN A	J47u	NHB8040.2	APOLLO CONFIG.NOT. MANUAL	07JL72	Hþ	027			
NA	010071	MSC-04217 3	SHUTTLE GNC DECIGN EUNS VOL-1	15JE72	HÞ	028			
NA	010071	MSC-04217 8	SS ON+C DESIGN EQUATIONS-PREFLIGHT THRU ORBIT INS. V2	154272	Ha	<u>529</u>			
NA.	010071	MSC-04217 8	SS CN+C DESIGN EQUATIONS-ORBITAL OPERATIONS V3	15 JE72	Hp	030			~
NA	010071	MSC-04217 8	SHUTILE GNC DECIGN EQUATIONS VOL 4 DEURBITAL ATH OPNS	15JE72	Ho	USL			
			PROCRAM PLAN C DLASKY	15JE72	На	032			
N A	15MR72	MSC-06720	SOUPCE BOCHMENTATION LIST VOL 1 CAT 1 .	15JE72	Hu	035			
NA .	1	INDEX		15JE72	HD	034		·	
NR	124471	NAS510960	TECHNICAL REPORT PHASE & VOL 1	15JE72		ີ 03ສ່			
	12NV71	NA3510960	TECHNICAL REPORT PHASE B VOL 2	15JE72	. Ho	030	• • • • •		
NE	23JF71	NA5910900	TECHAICAL SUMMARY ORBITER DEFINITION VULUME 2 PARTL	13JE72	Но	037			
		NASS10960	TECUNICAL SUMMARY ORBITER DEFINITION VOLUME 2 PART2			030			
 GF	12Nv71	NASG11160	SPARE SHUTTLE, UN COST/RISK AVIONICS STUDY	13JE72		039	·····		
	100071	NASS11100	SHUTTLE SYSTEME EVALUATION OPENTER DATA VOLUME 3			04u		.,	
.98 . NR	- 150071 - 08MR72	NASS10960	SPACE SHUTTLE DHASE & FINAL AVIONICS REPORT	155272		041		.,	
		_ NAS226187	ENGINE DESIGN DÉFINITION REPORT AVIONICS-PHASE CD	30JE72		042			
	C14F72	- MAG220107	SIMPLATION RESULTS REPORT	263272		643			
		MDC-20338	DISPLAYS + CONTROLS FUNCTIONAL REQUIREMENTS SPEC.	28JE72		044			

1

DOC. DOC. DOC. DOC. DOC. BYCE ANY MERCE LOCUMENT LISTIN. MATE SEC BYCE ANY MERCE LOCUMENT LITUE MACEU ZALE BYCE ANY MERCE LOCUMENT LITUE MACEU ZALE BYCE ANY MERCE LITUE	, 		A									- 3
SUC. DUC AUT AUT <th></th> <th></th> <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th>· ··· = ······</th> <th></th> <th></th> <th>·</th> <th></th> <th></th> <th></th>					· · · · · · · · · · · · · · · · · · ·	· ··· = ······			·			
SPEC DUDURCH INTE HEGD LOAR NO. NA GUARZA NSC IAREX KSC IAREXTIC PERMETED APPRAISED STATUS 22,8272 HeG MA GUARZA NSC IAREX KSC IAREXTIC PERMETED APPRAISED STATUS 22,8272 HeG MA GUARZA KSC IAREXTIC PERMETED APPRAISED STATUS 24,8272 HeG MA GUARZA CALL INT SERVICE ARGUINS STATUS FRANCE STATUS USE/22 HeG MA GUARZA CALL INT SERVICE ARGUINS STATUS FRANCE STATUS HEGD HEGD HEGD MA GUARZA CALL INT SERVICE ARGUINS STATUS FRANCE STATUS HEGD HEGD HEGD HEGD MA GUARZA MSC IAREXT SERVICE ARGUINS STATUS FRANCE STATUS HEGD					SMSS REFERENCE DOCUMENT LISTING		۳۸3	<u>= 1-2</u>	5			
BACE OLDURENT 171.F. HEGE LOAN NO. NA GUAP74 NSC IADEX XSC						GATE		SEU				7 g /
Ak C JARYA NSC INDEX PSC IND				NUMBER REV	DOCUMENT TITLE	every way to be a second						9
Int ND-2004 Call Interset Call Interset <thcall interset<="" th=""> Call Interset</thcall>						·· · · · · · ·	mas	•				10
AF Dispect Fights for start Pictury Dispect Fights for start Dispect Dispect <thdispect< th=""> Dispect <thdisp< td=""><td>i</td><td>NΔ</td><td>OVAF72</td><td></td><td>MSC INFORMATION RETRIEVAL SYSTEM</td><td></td><td>H</td><td>-</td><td></td><td></td><td></td><td>11</td></thdisp<></thdispect<>	i	NΔ	OVAF72		MSC INFORMATION RETRIEVAL SYSTEM		H	-				11
					CREW INTERFACE DEPINITION STUDY PHASE 1		<u> </u>					12
No. 01421 MSC-02532 TTP.SMOTLE MISSIC RMF/LES + ATT.INELIES + ATT.INELIES V4 11/22 H 044 NA 27451 TTI.4330 m2755. RESULTS MINUTES NUMEROF. NO. 2 11/22 H 051 LC 14771 ASS.20302 ALTHANTE CONCEPT + JETINITIONAN DALLA LING CRONTON 11/27 H 052 LC 14771 MSS.20302 ALTHANTE CONCEPT + JETINITIONAN DALLA LING CRONTON 14/27 H 054 AR 20127 MSS.20302 ALTHANTE CONCEPT + JETINITIONAN DALLA LING CRONTON 14/27 H 054 AR 20127 MSS.20302 ALTHANTE CONCEPT + JETINITIONAN DALLA LING CRONTON 14/27 H 055 MSS.20302 MSS.000 UAT.ASGAA-PARJINES VOL 2 14/27 HE 056 MSS.20302 MSS.000 UAT.ASGAA-PARJINES VOL 2 14/27 HE 057 MSS.20302 MSS.000 UAT.ASGAA-PARJINES VOL 2 14/27 HE 057 MSS.20302 MSS.20302 MSS.20302 MSS.20302 14/27 HE 057 MSS.20302		-		FTCTR680	FAULLITY BEFIN, HUN STUDY FOR UNIV FLIGHT STOULTENR							
N. 27401 TT1-14030 MEMORY MISSION FROM. FON DUC 2 11412 N 050 N. 21132 AAS-2001 ECUMANT AAATYEIS SHUTTLE SYSTEM OUL 2 11412 H 051 LC 14477 AAS22302 ALTFRAITE CONCETT + LEFINITURATION ISS PART 4 114122 H 052 MA 201872 MSC-07004 PTART TRAITE CONCETT + LEFINITURATION ISS PART 4 114122 H 053 MA 201872 MSC-07004 PTART TRAITE CONCETT + LEFINITURATION ISS PART 4 114122 H 053 MA 201872 MSC-07004 PTART TRAITE CONCETT AND STAND INTERNATION INTERNAT					LEVAL OF SYNC/ACTNU EXECUTIVE SYSTEM FOR SPACE SHOTTLE		• • •					•
NA 3 113/2 MASL-2001 COUMDIC AALTYSIS HUTLE SYSTEM VOL 2 110/22 10/22 10/22 10/22 LC 1 KWVJ MASC2602 ALTYMATE CONCETT + LETINITURATIONED PART 4 110/22 H 000 MA 20.022 MSC2002 ALTYMATE CONCETT + LETINITURATIONED PART 4 110/22 H 000 MA 10.022 MSC2002 PLATT CONCETT + LETINITURATIONED PART 4 100/22 H 000 MA 10.022 MSC2002 PLATT CONCETT + LETINITURATIONED PART 4 100/22 H 000 MA 10.022 MSC2002 PLATT CONCETT + LETINITURATIONED PART 4 100/22 H 000 MA 10.022 H 000 LETINITURATIONED PART 4 100/22 H 000 MA 10.022 H 000 LETINITURATIONED PART 4 100/22 H 000 MA 10.022 H 000 LETINITURATIONED PART 4 100/22 H 000 MA 10.022 H 000 LETINITURATIONED PART 4 <td>•</td> <td>ΝA</td> <td>01MA71</td> <td>MSC=02542</td> <td>TERSTOLICE MIGOLOW PROF. FOR DELINES VA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•	ΝA	01MA71	MSC=02542	TERSTOLICE MIGOLOW PROF. FOR DELINES VA							
L1 Inv.7. NA3225302 ALTEMATE CONCET1 + UEFINITUR-SME SUBJESTART 3 ILUZ2 H U02 L1 INV.7 MS22302 ALTEMATE CONCET1 + UEFINITUR-SME VANCES PART 4 ILUZ2 H U03 NA 20.027 MSC-07034 FIRST UEFINITUR-SMETONIC SPART 4 ILUZ2 H U03 NA 20.027 MSC-07034 FIRST UEFINITUR-SMETONIC SPART 4 ILUZ2 H U03 NA 30.022 MSC-07037 PUBT ELCK 0/1 UNC ANALYSIS OF CMELTER SPLE SPUTTLE LSU22 HE U03 MS 30.022 MSC-07036 LESTUN DATA SUAA-UNCLE ARD VUL 3 ILUZ2 HE U03 MS 10.020 UESTUN DATA SUAA-UNCLE ARD VUL 3 ILUZ2 HE U04 U04 MS 11.0127 MSC-07036 LESTUN DATA SUAA-UNCLE ARD VUL 3 ILUZ2 HE U04 MS 11.0127 MSC-07036 LESTUN DATA SUAA-UNCLE ARD VUL 3 ILUZ2 HE U04 MSC-07036 LESTUN DATA SUAA-UNCLE ARD VUL 3 LESTUN DATA SUAA-UNCLE 3 LESTUN DATA S					KEPPES. REENIRY MISSION INDER FOR DELTA WING ONDITEN			•				FC
L 194027 MASC2002 ALTPANTE CONCETT + DEFINITION-AVIGNISS PART 4 111/122 H U03 NA 201672 MSC-07004 PIRT VERTICAL FLICTENT ISSUENCE PARTS 1 141/22 H U03 NA 201672 MSC-07005 OPTIMUM SAM TRUST PROFILE-MINITUM UUUU 140122 H9 003 NA 201672 MSC-07005 OPTIMUM SAM TRUST PROFILE-MINITUM UUUU 140122 H9 003 NA 201672 MSC-07005 OPTIMUM SAM TRUST PROFILE-MINITUM UUUU 140122 H9 003 NA 201672 MSC-07005 OPTIMUM SAM TRUST PROFILE-MINITUM UUUU 140122 H9 003 NA 201672 MSC-07005 OPTIMUM SAM TRUST PROFILE-MINITUM UUUU 140122 H9 003 NA 201672 MSC-07005 OPTIMUM SAM TRUST PROFILE-MINITUM SAUELINE PARTS 1 14072 H9 003 NA 201672 MSC-07005 OPTIMUM SAM TRUST PROFILE-MINITUM SAUELINE PARTS 1 14072 H9 003 NA 201672 MSC-00566 UC01AN DATA BOAN-PROFIMA AND SYSTEM BASELINE PARTS 1 14072 H9 003 NA 11172 ALAINOS DESKA DATA BOAN-PROFIMA AND SYSTEM SAUELINE DATA BOAN OUT 14072 H9 003 NA 11172 ALAINOS DESKA DATA BOAN-PROFIMA AND SYSTEM SAUALANCE DESCRIPTION OF THE 20072 H9 001 NA 11172 ALAINOS DESKA DUTIES SAUELING SAUELING SAUELING 20072 H9 001 NA 11172 ALAINOS DESKA DUTIES SAUELING SAUELING SAUELING 20072 H9 003 NA 104872 MSCC2000 ALAINOS SAUELING COMPUTER SAUELING 20070 00 070/20/2 H9 003 NA 204872 MSCC2001 ALAINOS SAUELING COMPUTER SAUELING CONTROLL 20172 H9 006 NA 204872 MSCC20151 ALITO SAUELING REVELTIONENTIES 20172 H1 006 NA 204872 MSCC20153 AUFU SATE TRUSTER UUITEE DUEL OUP FY MINE 20172 H9 006 NA 204872 MSCC20153 AUFU SAUELING REVELTIONENTIES AUTTER 20172 H 006 NA 204872 MSCC20153 AUFU SAUELING REVELTIONENTIES AUTTER 20172 H 006 NA 204872 MSCC20153 AUFU SAUELING REVELTIONENTIES AUTTER 20172 H 006 NA 204872 MSCC20153 AUFU SAUELING REVELTIONENTIES AUTTER SAUELING 20172 H 006 NA 204872 MSCC20153 AUFU SAUELING REVELTIONENTIES AUTOR 20172 H 006 NA 204877 MSCC20154 APACTSE DESCRIPTIES AUTTER FAUELING AUFORMUNG 20172 H 006 NA 204877 MSCC201555 AUFURE AUTOR PARTS 115 20172 H 006 NA 204877 MSCC201555 AUFURE AUTOR PARTS 115 20172 H 006 NA 204877 MSCC201555 AUFURE AUTOR PARTS 115 115 20172 H 007 NA 204877 MSCC201555 AUFURE AU					LUUMUMIU ANALYEIS SHUTTEE STSTED VUE Z N TERRATE CONCLET A REFINITIONLISKA BORSTERS MART R							SR.A
A 201672 MSC-07002 PIRKI VERTICAL FLIGHT LEST MISSION 14.122 He D04 NA 10472 MSC-07003 PD3T OLACK OUT WICH ANALYSIS OF OMPLICE-MINIPUM OLIN 14.122 He D05 NA 10472 MSC-07003 PD3T OLACK OUT WICH ANALYSIS OF OMPLICE-MINIPUM OLIN 14.122 He D05 MT 14472 MGC-07053 LESTUN DATA BORN-DRAIK ANA SYSTEM HASELINE PARTS VI 14.122 He D05 MT 14472 MGC-07053 LESTUN DATA BORN-DRAIKAN SYSTEM HASELINE PARTS VI 14.1272 He D05 MT 14472 MGC-07053 LESTUN DATA BORN-DRAIKAN 2012 14.1272 He D05 MA 11172 MGC-07053 LESTUN DATA BORN-DRAIKAN 2012 14.1272 He D06 MA 12172 MSC-04040 MAITA BORN-DRAIKAN 2012 COLATA He D06 MA 12172 MSC-04030 RQC-MENDER SAVE SHUTE COMPOLITIONER STEMS STANGARC Zub122 He D06 MA 12172 MSC-04030 RQC-MENDER SAVE SHUTE COMPOLITIONER STEMS STANGARC Zub122 He D06 MA 14172 MSC-04030					ALTERNATE CONCETT + DEFINITION-AVIONES PART A							<u></u>
NA 1A/BF2 MAC-27050 0PTHUM SAM TP-UST PADFILE=MIN(NUM CLU 12/172 HS 055 MA DAMF2 MEC-27050 DUST CLUCK DUT WIL ANAYSIS DE MARTIER SALE SMUTTLE 12/172 HS 056 MF 14472 MIC-00550 LESISM DATA BOA-LPRUKAM AND SYSIEM HASELINE PAKIS VI 12/172 HS 056 MF 14472 MIC-00556 LESISM DATA BOA-LPRUKALINES VOL 2 12/172 HS 056 MF 154472 MIC-00556 LESISM DATA BOA-LPRUKALINES VOL 2 12/172 HS 050 NA 11/172 470 ICULA MATA BOA-LPRUKALINES VOL 2 12/172 HS 050 NA 11/172 470 ICULA MATA BOA-LPRUKALINES VOL 2 12/172 HS 050 NA 12/172 MICU-2 HS MICU-2 12/172 HS 051 NA DASTES MACU-1000 FATA TASCALUDE COMPUTARE SALE MAUNICES 12/172 HS 051 NA DASTES MAUNICES SALE MAUNICES		-			ALICANALE UNNUELL E DEFINITIONERVIONIUS FART 4 Etret vertient Friedt 16ST Migstún							÷,
NA jmmsz MSC-07007 PUST 0LACK OUT ONC ANALYSIS OF OMELICS SPACE SMUTTLE 121/22 HE 000 HC 14M672 MIC-20558 UESTUN DATA BOA-UMALMOS VOL 2 121/22 HE 030 HT 14M672 MIC-20558 UESTUN DATA BOA-UMALMOS VOL 2 124/22 HE 039 MT 14M672 MUC-20556 LESTUN DATA BOA-UMALMOS VOL 2 124/27 HE 039 MT 14M672 MUC-20556 LESTUN DATA BOA-MERITER ALEV VOL 3 124/27 HE 039 MA 11172 ZATO ICHIA MATA BOA-MERITER ALEV VOL 4 124/27 HE 039 NA 11172 ZATO ICHIA MATA BOA-MERITER SPLEE SHUTTLE COMPARETER STREMES TANDAKC 20/27 HE 031 NA 124/27 HE 040 HE 124/27 HE 041 NA 042/27 HE MATE STREMENT SPLE EVENTILE 20/27 HE 040 NA 042/27 HE MATE STREMENT SPLE HE 124/27 HE					ADTIMUM CON TELLOT OFOTU FEMINIMUM GITU							· '
Mr 1sks22 MIDC-105G UESTUN DATA BORA-PROFEMA ÄND SYSTEM BASELTAE PARTS VI 142L72 He 057 Mr 1sks22 MIDC-105G UESTUN DATA BORA-PROFEMA ÄND SYSTEM BASELTAE PARTS VI 142L72 He 059 Mr 1sks22 MIDC-105G UESTUN DATA BORA-PROFEMA KAU VOL 3 142L72 He 059 MR 1JJJ72 A70 10014 KAIT SEGURA AU-ONSEITER AUVOL 2 144L72 HS 050 MR 1JJ72 A70 10014 KAIT SEGURA AU-ONSEITER AUVOL 2 144L72 HS 050 MR 1JJ72 A70 10014 KAIT SEGURA AU-ONSEITER AUVOL 2 144L72 HS 050 MR MATT SEGURADU RECOMPRESSION SEGURATES STATE STATES STATES STATES AUXONA 20L72 HE 060 NA MATT SEGURADU SAUTOTANTES STATE STATES AUXONA 20L72 HE 060 NA DATAT STASSTATE STATE STATES AUXONAUGE USER USELTAE AUXONAUS USE STATES STATES AUXONAUS 20L72 HE 060 NA DATAT STASSTATE STATE STASTERS STATES STATES AUXONAUS USE STATES AUXONAUSONAUSAUS </td <td></td> <td></td> <td></td> <td></td> <td>DOST BLACK ONT INC ANALYSIN DE ORBITER SPANE SHUTTLE Delender brut indost froetenenthinger geow</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					DOST BLACK ONT INC ANALYSIN DE ORBITER SPANE SHUTTLE Delender brut indost froetenenthinger geow						-	
Mrt 14972 MBC-2055 UESTSM DATA BOA-DKALINGS VOL 2 14172 He 055 Mrt 18472 MBC-20555 UESTSM DATA BOA-DKALINGS VOL 4 14472 He 055 Mrt 18472 ATA 210124 MA 150172 He 051 NA 11172 ATA 27012014 MATE HSOLWARD SPLOE SPLOTE 20172 He 051 NA 11172 ATA 27012014 MATE HSOLWARD SPLOTE SPLOTE 20172 He 051 NA 14172 ATA 2711053 MCC-210484 SPLOTE SPLOTE 20172 He 053 NA 246771 MSC-2000 AEK 374ACE INICITAL COMPUTERS SO 2000 07172 He 055 NA 04872 MSC-0715 PLTYN GALLTE REGUTRER NEL MAND CONNOLS UETS 25172 He 050 NA 21670 ATT-25550 SUPPLY + RESUPSLY OF STATUENS NUTLE MAND CONNOLS UETS 25172 H 050 NA 21670 ATT-2550 SUPPLY + RESUPSLY OF STATUE VARTS NUTLE MAND CONNOLS UETS 25172 H					TESTUN DATA BOLK_PROCRAM AND SYSTEM HASELINE PARTS VI							- ,
Disk International Control (International Control (Interational Contrational Control (Interational Control (Internationa												
MR INDU-DOBG LESTON DATA SCR-SCORTA ALRU VOL 4 141272 H3 Dou NA 11172 470 ICUL MAIL FROM CALL					LEST N BATA CO.K. DROITER AFRO VOL 3				· · · · · · · · · · · · · · · · · · ·			
NA 111172 470 120172 HAI 200172 He 001 NP 141672 ATA71056 ROCCTUYKEN SAUE SMUTLE MAIN ENSINE 200172 He 002 NP 141672 ATA71056 ROCCTUYKEN SAUE SMUTLE COOPDIATE SYSTEM STANDARD 20172 He 004 LC 204721 MSC02400 AEROSPACE DIDITAC ONPUTER SAC 2000 071/2 He 004 SK SNMUL SAC-2000 AEROSPACE DIDITAC SOC 2000 071/2 He 005 SK SNMUL SAC-2000 AEROSPACE DIDITAC SOC 2000 071/2 He 005 SK SNMUL SAC-2000 AEROSPACE DIDITAC SOC 2000 071/2 He 050 SK SNMUL SAC-20015 STTY HE RUSPICANDES INTICE FUNCTIONAL SOLVER SOLVER SOLVERONDUS DETIS 251/2 He 006 SK SNMUL SAC-20076 PEROSPORTIONAL SOLVER SOLVERONDUS DETIS 251/2 HE 070 SK SOLVERS SAC-20076 PEROSPORTIONAL SOLVERONDUS DETIS 201/2 070					ARSTON DATA SOUKLBOOSTER AFRO VOL 0							
NO 14/1672 AIAA71050 NGC+C1TYKEN SPLCE SHUTLE HENGINE 200172 H 002 NA MAT MSC-0400 REC-MARNEDE SPLCE SHUTLE COOPDINATE SYSTEMS STANEARC 20172 He 003 LC 26FF71 MSC-0200 ARRANENDES SYLES FOR SHUTLE DATA MAN. SYSTEM 20172 He 004 SK SUMPU SKC-2000 ARRANENDE SYLES FOR SHUTLE DATA MAN. SYSTEM 20172 He 004 SK SUMPU SKC-2000 ARRANENDE SYLE TRANENDE SYLES STANEARD CONTROLL 20172 He 004 SK SUMPU SKC-2015 GUTL STATE TRANENDER VELOPHEN REL MAND CONTROLL 20172 He 006 NA 127672 ATL25530 SUPPLY HESUBLY OF STATIGEN SHUTLE FUNCTIONAL SUMPTION 23172 H 006 SA 147672 ATLAATIST ISTAMERANENDE SHUTLE FUNCTIONAL SHUTLE FUNCTIONAL SHUTLE 20172 H 006 SA TATRAT MACCONCOLOR HARCENTRUE NERVERNEW RANT THE HAINT + OPERATION 23172 H 07172 NA TATLAT SUMMARA HARTINE SHUTTLE FUNCTIONAL SHUTLE FUNCTIONAL SHUTLE SHUTLE SHUTLE FUNCTIONAL SHU					BALL ENDINE AV. UNICS LUD-ROCKETBYNE			-		* · ****		·
NA NSC 10400 NECCAMENDER SPICE SHUTLE COOPDINATE SYSTEMS STANDARD 250L72 Ha 000 LC DAP51 MSC 2000 AEMOSPAGE DILIANE COMPUTER SAD 2000 070L/2 Ha 000 NA DSAF72 MSC 2010 AEMOSPAGE DILIANE COMPUTER SAD 2000 070L/2 Ha 000 NA DSAF72 MSC UP151 FLITING JULLITE, REGUIRCHENTS CLOSED LUDP FLY BY WIRE 200L72 Ha 000 NA DIFAT MSC UP151 FLITING JULLITE, REGUIRCHENTS CLOSED LUDP FLY BY WIRE 200L72 Ha 000 NA DIFAT MSC UP151 FLITING JULLITE, REGUIRCHENTS CLOSED LUDP FLY BY WIRE 200L72 Ha 000 NA DIFAT MSC UP151 FLITING JULLITE, RUDPLY OF STATINGS IN SYNCHOUS URE TIS 200L72 Ha 000 NA DIFAT MSC UP16070 FLITING JULLITE, RUDPLY OF STATINGS SUDPLY H 000 NA DIFAT MSC UP160700 FLITING UP1611144 SUDPLY FLITING JULLITE DUT NA DIFAT MSC UP16070 FLIT					- DOCKETOVNEG SP.CE SHITTLE MAIN ENGINE			062			•	
ic 2AF57 MSC.2000 ARROPACE DILIANL COMPLEX SAUTICE DATA MAN. SYSTEM 25J.72 He 004 MA 054872 MSC.0715 0.1014AL COMPLEX SAUTICE 000 07J.72 He 000 MA 054872 MSC.0715 0.100 STATE TRINSUCER VERLOMMENTALE MAND CONTROL(223.72 He 000 MA 0560200 AT1-2550 0.074.74 HE SUPACE VERLOMMENTS CLOSED LOUP FLY BY WIRE 263.172 H 000 MA 014772 AT4.73513 1.157.0000000000000000000000000000000000		N 4			SECOMMENDED SPICE SHOTHE COODDINATE SYSTEMS STANDARD				• • •			,
5X Shiry_ SKC-2000 AERSPACE DILITAL COMPUTER-SAC 2000 07J/2 He 000 NA 04AF72 MSC-07151 FLYING OLALITEL REGULERMENTS LOSED LOUP FLY BY UNE 26J.72 He 000 NA 21ECJU A71-25530 SUP-LY HE GUALITEL REGULERMENTS CLOSED LOUP FLY BY UNE 26J.72 He 000 NA 21ECJU A71-25530 SUP-LY HESUPLY OF SIATION KINCUNDUN WEITS 25J.72 H 000 NA 04AF72 NSC-00760 FERTURAL CLORENTS SALUTLE FUNCTIONAL DIMULATOR 25J.72 H 000 NA 04AF72 NSC-00760 FERTURAL CLARITY ET IN NUCENTIALIN KEUNING AND UNE TOWAL DIMULATOR 25J.72 H 070 NA 04AF72 NSC-00760 FERTURAL CLARITY ET IN NUCENTIAL 04D.72 H 070 NA 04AF72 NSC-00760 FERTURAL SUMMANY URLITE FUNCTIONAL DIMULATOR 25J.72 H 070 NA 04AF72 NSC-00760 FERTURAL SUMMANY URLITE FUNCTIONAL DIMULATOR 25J.72 H 070 NA 13J172 CE2-22R46 FATUNTCINNAL SUMMANY URLITE FUNCTIONAL DIMULATOR 25J.72 H 071 MT 30JF71 MDC-E03U6 TTCMNICAL SUMMANY URLITE FUNCTIONAL DIMULATOR 25J.72 H 071 </td <td></td> <td></td> <td></td> <td></td> <td>ANVIACED SZU TACHNIQUES FOR SHUTLE DATA MAN. SYSTEM</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>					ANVIACED SZU TACHNIQUES FOR SHUTLE DATA MAN. SYSTEM		,					
NA DARPZ MSC-UJ7215 SOLTD STATE TR, NSUCEY LEVENER/NIXHE HAND CUNTROL 1 28UZ Ho Udo NA DIPAZZ MSC-UJ711 PLYNG ULALITE, REQUERVINS CLOPED LUDY FY BY UNE 26UZ Ho Udo NA DIRCY AT1-23530 SUPLY + RESUPALY OF SIATIUNS IN SYNCREMOUS URENTS 25UZ2 H Udo DA DARPZZ MSC-00706 PERFORMACE REQUERENTS-SHUTLE FUNCTION 25UZ2 H U7U NA TAUTZ MSC-00706 PERFORMACE REQUERENTS-SHUTLE FUNCTIONAL DIMULATOR 25UZ2 H U7U NA TAUTZ MSC-00706 PERFORMACE REQUERENTS-SHUTLE FUNCTIONAL DIMULATOR 25UZ2 HD U7U NA TAUTZ MSC-00706 PERFORMACE WETO FMFTS CD/UZ2 U7Z U7Z MT JUF71 MDC-E0308 FTCHNICAL SULMARY URBITER PT11-28 U7UZ2 U7Z U7Z MT JUF71 MSC-U0706 SPERTA CONTROL SULMARY URBITER PT11-28 U7UZ2 U7A MSC-U0706 SPERTA CONTROL SULMARY URBITER PT11-28 U7UZ2 U7A U7D U7D					AFROSPACE DILITAL COMPUTER-SKC 2000			005				
NJ 192472 MSC-07151 FLYTMG JUALITE, REGUIRENTS CLOSED LUUP FLY BY HIRE 260172 Ho 007 NA 216070 A71-23550 SUPPLY + RESUPPLY OF STATIONS IN SYNCRONOUS URITS 250172 Ho 000 34 127872 ATAA772 STAUMENTATION RESULTE FUNCTIONAL STUDE TO PERSONOUS URITS 250172 H 000 NA 0.48772 MSC-00706 PERSONEACE REQUIREMENTS SHUTTLE FUNCTIONAL STUDE TO PERSONE 250172 H 000 NA 0.48772 MSC-00706 PERSONEACE REQUIREMENTS CLOSE PERSONEACE REQUIREMENTS CLOSE 110112 20172 H 000 NA 0.48772 CE2-22846 ALCJANTY CREATERSHUTTE FUNCTIONAL STUDENTS 20172 H 070 MT 301771 MDC-60308 Informitate SUMMARY URITES PERSONEACE READINER WITTER 070172 073 MT 301771 MDC-60308 Informitate SUMMARY URITES 11-3 070172 074 MT 301771 MDC-60308 Informitate READIS SUMMARY VDI1 070172 070 NR J170<		•		-	SOLID STATE TR.NSUCER DEVELOPMENTXNEW HAND CUNTROL							
NA 210070 ATI-25530 SUP-LY + RESUPPLY OF SITUATION IN SYNCRONOUS UREITS 25UL72 H Odd BA 19877 AIAA71513 19870/RAIGE REGUIRE/ISSHUTLE FUNCTIONAL SITUATION 25UL72 H UG9 NA 130172 CE2-72%66 MALFJNCTION STJVY (RELATIVE TO HFTS) 201/2 H U70 NA 130172 CE2-72%66 MALFJNCTION STJVY (RELATIVE TO HFTS) 201/2 H U70 NA 130172 CE2-72%66 MALFJNCTION STJVY (RELATIVE TO HFTS) 201/2 D71 MT 301771 MDC-E0308 FTCHNICAL SUMMARY URBITER PT11-28 U70/1/2 D73 MT 301771 MDC-E0308 FTCHNICAL SUMMARY URBITER PT11-28 U70/1/2 D74 MT 301771 MDC-E0308 FTCHNICAL SUMMARY URBITER PT11-28 U70/1/2 U70 MT 301771 MDC-E0308 FTCHNICAL SUMMARY URBITER PT11-28 U70/1/2 U74 MT 301771 MDC-E0308 FTCHNICAL SUMMARY URBITER PT11-28 U74/2 U74 MT JJTCT MBC-U3307							-	007	• •	•		
34 19872 ALA21313 13570/HENTLON REGUIRE FOR SHUTTLE MAINT + UPERATION 250172 H 009 NA 038772 MSC-06706 PERCORMANCE REAUREMENTS-SHUTTLE FUNCTIONAL SIMULATOR 250172 H 070 NA 13172 CE2-72M66 MALCJACHMANCE REAUREMENTS-SHUTTLE FUNCTIONAL SIMULATOR 250172 H 070 MT 301871 MDC-0330 PARCH TECHNIAL SUMMART PART 11-1 070172 072 072 MT 301871 MDC-0330 HTCHNICAL SUMMART PART 11-1 070172 073 074 MT 301871 MDC-0330 HTCHNICAL SUMMART PART 11-3 070172 074 074 MT 301871 MDC-0340 HTCHNICAL SUMMART PART 11-3 070172 074 075 MT 301871 MDC-0340 HTCH.SUMMART AUGEREC/0 070172 075 075 MT 301871 MDC-0340 HTCH.SUMMART PART 11-3 070172 074 074 NR 1175 MSC-0373 SHOTTLE EXECT SUMMART PART 11-3 070172 075 075 NR 2177 MSC-03307 HTRAL PARA STUP SUMART PA				· · · ·	SUPPLY + RESUPPLY OF STATIONS IN SYNCRONOUS URBITS			000				
NA OLART2 MSC-03706 PERTORMANCE REJUTEREMENS-SHUTTLE FUNCTIONAL STMULATOR 2531/2 H U7U NA 13172 CE2-72%66 HALFJNCTION STJUY (RELATIVE TO FFTS) 201/2 HD 071 MT 30JF71 MDC-E0302 PHACE TECHNICAL SUMMARY PART 11-1 07JJ72 073 MF 30JF71 MDC-E0303 B TCHNICAL SUMMARY URBITER PT11-28 07JJ72 073 MF 30JF71 MDC-E0303 B TCHNICAL SUMMARY URBITER PT11-28 07JJ72 073 MF 30JF71 MDC-E0303 B TCH.SUMMAR, HOUSTER PART 11-3 07JJ72 074 MR 30JF71 MDC-E0306 B TCH.SUMMAR, HOUSTER PART 11-3 07JJ72 075 MR 30JF71 MDC-E0306 SPERTA C/D CREW TBERT 11-3 07JJ72 075 MR 30JF71 MSC-03307 SHUTLE B EXEC SUMMARY VOL1 07JJ72 075 NR 24JF71 MSC-03305 PHORMARY VOL1 07JJ72 073 074 NR					LISTRUMENTATION REQUIRED FOR SHUTTLE MAINT + PERATION		H	übÿ	•		• • •	
NA 13J72 CE2-72%66 HALFJNCTIUN ST.JUY (RELATIVE TO PFTS) 20J1/2 He O/1 MT 30JF71 MDC-20302 PHAC & TECHNICAL SUMMARY PART 11-1 07J1/2 07J MT 30JF71 MDC-20302 PHAC & TECHNICAL SUMMARY PART 11-2A 07J1/2 07J MT 30JF71 MDC-20302 PT CHNICAL SUMMARY URFITEP PT11-2A 07J1/2 07J MT 30JF71 MDC-20302 PT CHNICAL SUMMARY URFITEP PT11-2A 07J1/2 07J MT 30JF71 MDC-20306 PT CHNICAL SUMMARY URFITEP PT11-2A 07J1/2 07J MT 30JF71 MDC-20306 PT CHNICAL SUMMARY PART 11-3 07J1/2 07J MT 30JF71 MDC-20306 STCTC SUMMARY POIST 07J NR JT70 MSC-00706 SP-TAL C/D CRAW TMB PLAR P UPTN 07J1/2 07J NR SUT7 MSC-007307 SHUTLE B EXEC SUMMARY VOL 1 07J1/2 07J NR SUT7 MSC-03307 SHUTLE B EXEC SUMMARY VOL 1 07J1/2 07J NR SUT7 MSC-03303 SHUTLE B EXEC SUMMARY VOL 1 07J1/2 07J <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Н</td> <td>U7U</td> <td></td> <td></td> <td></td> <td></td>							Н	U7U				
MT SDJE71 MDC-E0308 PHACE 'S TECHNICAL SUMMARY URBITER PT11-20 07172 072 MF SUJE71 MDC-E0308 D IFCHNICAL SUMMARY URBITER PT11-28 07172 D 074 MF SUJE71 MDC-E0308 D IFCHNICAL SUMMARY URBITER PT11-28 07172 D 074 ME SUJE71 MDC-E0308 D TFCHNICAL SUMMARY URBITER PT11-28 07172 D 074 ME SUJE71 MDC-E0308 D TFCHNICAL SUMMARY URBITER PT11-28 07172 D 074 ME SUJE71 MDC-E0308 D TFCHNICAL SUMMARY URBITER PT11-28 07172 D 070 ME JUT0 MSC-U0706 SP-RIA. C/D CR=M TMG PLAN R DEFIN. 07172 D 070 NP ZAJE71 MSC-U03030 HUTLE B EXEC' SUMMARY V01. 07172 D 073 NR SAJE71 MSC-U3307 SHUTLE B EXEC' SUMMARY V01. 07472 D 074 NR SAJE71 MSC-U3307 SHUTLE B EXEC' SUMMARY V01. 07472 D 064 NR SAJE71 MSC-U3308 SHUTRE ENG SIGUEATION SURVEY 07472 D 064 NR SAJE71 MSC-U3309 ALTERNATE CORCEPT SEASE SUM PART								071				
Mr Sujf71 M0C-ECGJ03 b IFCHNICAL SUUMARY URBITED PT11-2A 07JL72 b 07J Mr SnJF71 MDC-EGJ03 b TrOHNICAL SUUMARY URBITED PT11-2B 07JL72 b 07J Mr SnJF71 MDC-EGJ03 b TrOHNICAL SUUMARY URBITED PT11-2B 07JL72 b 07J Mr SnJF71 MDC-EGJ03 b TrOH. SUMMAR, HOUSTER PT11-2A 07JL72 b 07J Mr SnJF71 MDC-EGJ03 b TrOH. SUMMAR, HOUSTER PT11-3 07JL72 b 07J Mr SnJF71 MDC-EGJ03 b TrOH. SUMMAR, HOUSTER PT11-2A 07JL72 b 07J NR JJ70 MSC-00706 SPERTA. C/D CREMTRY PD11 07JL72 b 07J NR ZAJF71 MSC-03307 SHUTLE B EXEC' SUMMARY V0L1 07JL72 b 07J NR ZAJF71 MSC-03327 ExtFrankt PT2 A STUDY SUMMARY V0L1 07JL72 b 061 NR ZAJF71 MSC-03303 SHUTLE END CORCETSFERED SUM PART 1 07JL72 b 061 GP OJ171					PHASE & TECHNICAL SUMMARY PART 11-1	-	2	072				
MF 30JF71 MDC-E03UG H T'CHNICAL SUUMARY URLITED PT11-23 074L72 074 MF 30JF71 MDC-E03UG H T'CHNICAL SUUMARY URLITED PT11-3 071L72 075 MF 30JF71 MDC-E03UG H T'CHNICAL SUUMARY, HOUSTER PART 11-3 071L72 075 MF 30JF71 MSC-007UG SP.STA. C/D CREW TNG PLAN R JEFIN. 071L72 075 NP 24JF71 MSC-03307 SHUTTLE B EXEC" SUMMARY VOL1 071L72 075 NP 24JF71 MSC-03307 SHUTTLE B EXEC" SUMMARY VOL1 071L72 075 NR 24JF71 MSC-03307 SHUTTLE EXECT SUMMARY VOL1 071L72 074 NR 24JF71 MSC-03793 SHUTTLE ENG SINULATION SURVEY 070L72 064 NA 17007 MSC-03703 SHUTTLE CONCEPTS-EXEU SUM- PART 1 070L72 064 GP 04J171 MSC-03703 SHUTTLE CONCEPTS-EXEU SUM- PART 1 070L72 064 GP 04J171 MSC-03713 ALTICNOTS, TEC.SUMISHER SHUTTLE PARS 070L72 064 MA 27AF71 MSC-03311 ALTICNOPTS, TEC.SUMISHER					B IFCHNICAL SHUMARY URBITER PT11-2A	07JL72		073				
MC 30JE71 MDC-EGJUG a TrCH. SUMMAR, HOUSTEK PART 11-3 07JC72 a 075 ME 30JE71 MDC-EGJUG b TrCH. SUMMAR, HOUSTEK PART 11-3 07JL72 b 075 MF JI70 MSC-U0706 SP.CTA. C/D CRew TNG PLAN RUFTIL 07JL72 b 077 NR JI70 MSC-U0306 SP.CTA. C/D CRew TNG PLAN RUFTIL 07JL72 b 077 NR 2AJE71 MSC-U3307 SHUTTLE B EXEC SUMMARY V01.1 07JL72 b 079 NR 2AJE71 MSC-U3306 P40-RAM MGT.PL,N FOR PHASE C/D 07JL72 b 079 NR 2AJF71 MSC-U3793 SHUTTLE ENG.SIMULATION SURVEY 07JL72 b 061 NA 17NC70 MSC-U3793 SHUTTLE ENG.SIMULATION SURVEY 07JL72 b 061 GP CAJL7 MSC-U33610 ALTENNATE CONCEPTS-EXEUSING PLAN PART 1 07JL72 b 064 GP CAJL7 MSC-U33610 ALTENNATE CONCEPTS-EXEUSING PLAN PART 1 07JL72 b 064 GP CAJL7 MSC-U33610 ALTENNATE CONCEPTS-EXEUSING PLAN PART 1 07JL72 b 064 NA CAJE71 MSC-U33610 ALTENNATE CONCEPT			-		B TOCHNICAL SUUMARY ORBITER PT11-28		5	074				
MT BULE71 MDC-E03UG JICH. SUMMARy BUDSIER PT 11-3 APP U7JL72 U70 NR JI70 MSC-U07U6 SP-STA. C/D CR=* TNG PLAN R JEFIN. 07JL72 07 NP 2AJE71 MSC-U07U6 SP-STA. C/D CR=* TNG PLAN R JEFIN. 07JL72 075 NP 2AJE71 MSC-U3307 SHUTTLE B EXEC* SUMMARY V0.1 07JL72 075 NR 2AJE71 MSC-U3307 SHUTTLE B EXEC* SUMMARY V0.1 07JL72 070 NR 2AJE71 MSC-U3307 SHUTTLE B EXEC* SUMMARY V0.1 07JL72 070 NR 2AJE71 MSC-U3327 EXTERNAL H2 TA_K STUUY SUM-ARY V0.1 07JL72 060 NA 170070 MSC-U3793 SHUTTLE ENG SITULATION SURVEY 07JL72 060 GP 0AJT7 MSC-U3809 ALTENNATE CONCEPTSTEACU SUM PART 1 07JL72 064 MSC-U3217 MSC-U3311 ALTENNATE CONCEPTSTEACU SUM PART 1 07JL72 064 N4 2AG70 MSC-U3243 PRELENNERGE DERECHANDER TOR 1 07JL72 064 NA						073172	 	075				-
NR J175 MSC-00706 SP.STA. C/D CR.# TWO PLAN R UFIN. 07/L/2 07/ NP 24JE71 MSC-03307 SHUTTLE B EXEC* SUMMARY V01.1 07JL/2 07/ NR 25JE71 MSC-03306 PROTAM MGT.PL.N FOR PHASE C/0 07/J22 07/ NR 25JE71 MSC-03306 PROTAM MGT.PL.N FOR PHASE C/0 07/J22 07/ NR 25JE71 MSC-03307 EXTERNAL H2 TA_K STUDY SUMMARY V011 07/J72 080 NA 170C70 MSC-03793 SHOTTLE ENG.SH.ULATION SURVEY 07/J172 080 NA 170C70 MSC-03809 ALTERNATE CONCETSTELE.SUM_SHAT DEF. P2V1 07/J172 083 GP 06J171 MSC-03311 ALT.CNCPTS.ENC_DEV.PLAN-0RETTR_V2 07/J172 083 GE 06J171 MSC-03311 ALT.CNCPTS.ENC_DEV.PLAN-0RETTR_V2 07/J172 084 NA 274F71 MSC-04240 PRCLIM,MISSIUM PRUFILE=DESC.+LAND 07/J172 063 NA 274F71 MSC-04243 PRELIM,MISSIUM PRUFILE=DESC.+LAND 07/J172 066 NA 274F71 MSC-04243 PRELIM,MISSIUM PRUFILE=DESC.+LAND						U7JL72	þ	075				
NP 2AJE71 NSC-03307 SHUTTLE B EXEC SUMMARY V01.1 07JL72 0 070 NR 2AJE71 MSC-03306 PROPRAM MGT.PL.N FOR PHASE C/N 07JL72 0 070 NR 2AJE71 MSC-03306 PROPRAM MGT.PL.N FOR PHASE C/N 07JL72 0 070 NR 2AJE71 MSC-03327 EXTERNAL H2 TALK STUDY SUMMARY V01 07JL72 0 080 NR 17NC70 MSC-03793 SHUTTLE ENG.SINDLATION SURVEY 07JL72 0 061 GP 0AJT1 MSC-03809 ALTERNATE CONCEPTS-EXEC SUM PART 1 07JL72 0 062 GP 0AJT1 MSC-03816 ALT.CNCPTS.ENG DEV.PLAN-ORBITER V2 07JL72 0.04 GP 0AJT1 MSC-03311 ALT.CNCPTS.ENG DEV.PLAN-ORBITER V2 07JL72 0.04 NA PACLIM.MISSION PROFILE=DESC.FLAND 07JL72 0.04 07JL72 0.04 NA 27AF71 MSC-04243 PRELENDERS PORT HILTO (TRU) 07JL72 0.05 NA 2AAG70 17516H040 <td< td=""><td></td><td></td><td></td><td></td><td>SP.STA. C/D CREW ING PLAN B DEFIN.</td><td>07JL72</td><td>ن د</td><td>077</td><td></td><td></td><td></td><td></td></td<>					SP.STA. C/D CREW ING PLAN B DEFIN.	07JL72	ن د	077				
NF 25JE71 MSC-03306 PR0°RAM MGT.PL,N FOR PHASE C/0 07JL72 07JL72 07JL72 NR 25JF71 MSC-03327 EXTERNAL H2 TAGK STUDY SUMMARY VUL1 07JL72 080 NA 17070 MSC-03793 SHUTLE ENG.STAULATION SURVEY 07JL72 061 GP 06JL71 MSC-03809 ALTERNATE CONCEPTSERS SUM PART 1 07JL72 063 GP 06J171 MSC-03810 ALTERNATE CONCEPTSERS SUM SHOT.DEF. P2V1 07JL72 064 GP 06J171 MSC-03811 ALTERNATE CONCEPTSERS SUM SHOT.DEF. P2V1 07JL72 064 MA MSC-03811 ALTERNATE CONCEPTSERS SUM SHOT.DEF. P2V1 07JL72 064 MA MSC-03811 ALTERNATE CONCEPTSERS SUM SHOT.DEF. P2V1 07JL72 064 NA 27AF71 MSC-04243 PRELIMMISSION PROFILE=DESC.+LAND 07JL72 060 NA 27AF71 MSC-04243 PRELIMMISSION PROFILE=DESC.+LAND 07JL72 060 NA 27AF71 MSC-04243 PRELIMMISSION PROFILE=DESC.+LAND 07JL72 060 NA 27AF71 MSC-04243 PRELIMISIDENE PORT 07JL						07JL72	c					
NR 25JF71 MSC-03327 EXTERNAL H2 TALK STUDY SUMMARY VUL1 07 JZ72 080 NA 170070 MSC-03793 SHUTTLE ENG_SIGULATION SURVEY 07 JZ72 081 GP 00 JJ71 MSC-03809 ALTERNATE CONCEPTS-EXEC SUM PART 1 07 JJ72 082 GP 00 JJ71 MSC-03809 ALTERNATE CONCEPTS-EXEC SUM PART 1 07 JJ72 082 GP 06 JJ71 MSC-03809 ALTERNATE CONCEPTS-EXEC SUM PART 1 07 JJ72 082 GP 06 JJ71 MSC-03810 ALTERNATE CONCEPTS-EXEC SUM PART 1 07 JJ72 083 GF 06 JJ71 MSC-03311 ALTERNATE CONCEPTS-EXEC SUM PART 1 07 JJ72 064 NA 27 AF71 MSC-04240 PRELIM,MISSIUN PRUFILE-DESC.+LAND 07 JJ72 066 NA 27 AF71 MSC-04243 PRELEMINT GT FLANNING-ORBITER 07 JJ72 060 NA 27 AF71 MSC-04243 PRELEMINTY GT FLANNING-ORBITER 07 JJ72 060 NA 22 AGTU 176 BE004 0 ENTRY CORRIDORE FOR HI L/D 07 JJ72 060 NA 24 AG7U 176 BEORE CORF PERS-CORF ESCORE FO				-		07J£72	5	079				
NA 170070 MSC-03793 SHUTTLE ENG.SINULATION SURVEY 07JL72 002 GP 00JL71 MSC-03809 ALTERNATE CONCEPTS-EXEC SUM PART 1 07JL72 002 GP 00JL71 MSC-03809 ALTERNATE CONCEPTS-EXEC SUM PART 1 07JL72 003 GP 00JL71 MSC-03810 ALTERNATE CONCEPTS-EXEC SUM PART 1 07JL72 003 GE 06J171 MSC-03811 ALTERNATE CONCEPTS-EXEC SUM PART 1 07JL72 004 NA MSC-03811 ALTERNATE CONCETS-ENG BEVENCENT 07JL72 004 NA MSC-04240 PRELIMINSTUN PRUFILE-DESC.+LAND 07JL72 006 NA 27AF71 MSC-04243 PRELENTRY TGT DLANNING-ORBITER 07JL72 006 NA 27AF72 MSC-04243 PRELENTRY CORRIDORE FOR HILL/D (TRW) 07JL72 006 NA 27AF72 FLICHT PERS.CO.P.+SIMULATOR RES-INF 07JL72 067 NA 0AJF72 C.ULASKY PROCRAM PLANPESUCEDURES DEVELOPMENT 28JE72 059 'S 2AJA72 ER-C94 HFTF PROJECTED CONFIGURATION JE72 090 NR					EXTERNAL H2 TANK STUDY SUMMARY VUL1	07 JL72	5	080				
GP 00JL71 MSC-03809 ALTERNATE CONCEPTS-EXEC SUM PART 1 07JL72 0.02 GP 00JL71 MSC-03610 ALTERNATE CONCEPTS-EXEC SUM SHUT.DEF. P2V1 07JL72 0.03 GP 00J171 MSC-03511 ALT.CNCPTS.ENG DEV.PLAN-ORBITER V2 07JL72 0.03 GP 00J171 MSC-03511 ALT.CNCPTS.ENG DEV.PLAN-ORBITER V2 07JL72 0.04 NA MSC-04240 PRELIM, MISSIUN PRUFILE-DESC.+LAND 07JL72 0.05 NA 27AF71 MSC-04243 PRELEMMINSTOR PRUFILE-DESC.+LAND 07JL72 0.05 NA 27AF71 MSC-04243 PRELEMMINSTOR PRUFILE-DESC.+LAND 07JL72 0.05 NA 27AF71 MSC-04243 PRELEMMISSIUN PRUFILE-DESC.+LAND 07JL72 0.05 NA 24AG70 17518H004 ENTRY CORRIDURE ORBITER 07JL72 0.07 NA 26AF72 FLICHT PERS.CO.P.+SIMULATOR RESTINE 07JL72 0.07 NA 06AF72 FLICHT PERS.CO.P.+SIMULATOR RESTINE 07JL72 0.08 '' SI 2AJA72 ER-c94 HFTP PROJECTED CONFIGURATION 2EJE72 0.09					SHUTTLE ENG. SI ULATION SURVEY	07JL72	D D	ÛĊ1				
GP 0.5 JL71 MSC-03810 ALT.CNCPTS.TECH.SUM.SHUT.DEF. P2V1 07JL72 0.03 GE 0.6 J171 MSC-03811 ALT.CNCPTS.ENG DEV.PLAN-ORBITER V2 0.7 JL72 0.04 NA MSC-04240 PRELIM.MISSIUN PRUFILE-DESC.+LAND 07 JL72 0.05 NA 27 AF71 MSC-04243 PRELEMINSTOR PROFILE 07 JL72 0.05 NA 27 AF71 MSC-04243 PRELEMINGTOR, LANNING-ORBITER 07 JL72 0.05 NA 24 AG74 17618H004 ENTRY CORRIDOR FOR HIL/D (TRW) 07 JL72 0.05 NA 24 AG74 17618H004 ENTRY CORRIDOR FOR HIL/D (TRW) 07 JL72 0.05 NA 24 AG74 17618H004 ENTRY CORRIDOR FOR HIL/D (TRW) 07 JL72 0.06 NA 24 AG74 17618H004 ENTRY CORRIDOR FOR HIL/D (TRW) 07 JL72 0.07 NA 24 AG74 17618H004 ENTRY CORRIDOR ENTRY CORRIDOR 07 JL72 0.07 NA 0.64 F72 FLICHT PERS.CO.// PLSTWICHTOR ESET72 0.07 0.09 SI 28 JA72 ER-C94					ALIERNATE CONCEPTS-EXEC SUM PART 1	07JL72	3	002				i i i i i i i i i i i i i i i i i i i
GE 06 J171 MSC-03311 ALT.CNCPTS.ENG DEV.PLAN-ORBITER V2 07 JL72 064 NA MSC-04240 PRELIM.MISSIUN PRUFILE-DESC.+LAND 07 JL72 065 NA 27AF71 MSC-04243 PRELIM.MISSIUN PRUFILE-DESC.+LAND 07 JL72 065 NA 27AF71 MSC-04243 PRELEMENT TGT_PLANNING-ORBITER 07 JL72 065 NA 24AG70 17616H004 ENTRY CORRIDORE FOR HIL/D (TRU) 07 JL72 067 NA 064F72 FLICHT PERS.CO.P.+SIMULATOR RESTINE 07 JL72 066 NA 064F72 FLICHT PERS.CO.P.+SIMULATOR RESTINE 07 JL72 086 NA 07 JL72 C.OLASKY PROCRAM PLAN-PSOCEDURES DEVELOPMENT 28 JE72 HB 090 NR 19 JE72 AVIONICS WEEK- AR PHASE C/D CONFIG. 19 JE72 091 NR 9 PRELIM NAR CONTROLS DI	,				ALT. CNUPTS. TECH. SUM. SHUT. DEF. P2V1		C	003				ž
NA MSC-04240 PRCLIM, MISSIUN PRUFILE=DESC.+LAND 07JL72 000 NA 27AF71 MSC-04243 PRE_ENTRY TGT_DLANNING=ORBITER 07JL72 000 NA 24AG70 17610H004 0 ENTRY CORRIDORE FOR HIL/D (TRW) 07JL72 000 NA 24AG70 17610H004 0 ENTRY CORRIDORE FOR HIL/D (TRW) 07JL72 0007 NA 06AF72 FLICHT PERS.COMP.+SIMULATOR RES-INF 07JL72 0000 NA 0AJF72 C.0LASKY PROCRAM PLAN-PSUCEDURES DEVELOPMENT 26JE72 000 NA 0AJF72 C.0LASKY PROCRAM PLAN-PSUCEDURES DEVELOPMENT 26JE72 000 1 SI 2AJA72 ER-C94 HFIS PROJECTED CONFIGURATION JE72 090 1 SI 2AJA72 ER-C94 HFIS PROJECTED CONFIGURATION JE72 090 1 SI 2AJA72 ER-C94 HFIS PROJECTED CONFIGURATION JE72 091 1 NR PRELIM NAR CONTROLS DISPLAY LAYOUT 092 092 093 <td></td> <td></td> <td></td> <td></td> <td>ALT. UNCPTS. ENG DEV. PLAN-ORBITER V2</td> <td>07JL72</td> <td><u>.</u></td> <td>-</td> <td></td> <td></td> <td></td> <td>ć.</td>					ALT. UNCPTS. ENG DEV. PLAN-ORBITER V2	07JL72	<u>.</u>	-				ć.
NA 27AF71 MSC-04243 PRE_ENTRY TOT PLANNING-ORBITEP 07JL72 0.00 NA 24AG70 17610H004 0 ENTRY CORRIDORe FOR HIL/D (TRW) 07JL72 0.00 NA 06AF72 FLICHT PERS_COMP.+SIMULATOR RES-INF 07JL72 0.00 NA 06AF72 FLICHT PERS_COMP.+SIMULATOR RES-INF 07JL72 0.00 NA 06AF72 FLICHT PERS_COMP.+SIMULATOR RES-INF 07JL72 0.00 NA 06AF72 FUCRAM PLAN-POUCEDURES DEVELOPMENT 28JE72 0.00 NA 07JL72 FROJECTED CONFIGURATION JE72 0.00 NR 10JF72 AVIONICS WEEK-AR PHASE C/D CONFIG. 19JE72 0.90 NR PRELIM NAR CONTROLS DISPLAY LAYOUT 0.02 0.02 NR SI 15JL72 SSPEMM31 SSPE DATA BOOK 0.93					PRELIM MISSION PROFILE-DESC.+LAND	07JL72	<u>ت</u>	660				
NA 24AG7U 17618H004 0 ENTRY CORRIDOR: FOR HI L/D (TRW) 07JL72 0007 NA 06AF72 FLIGHT PERS.CO.P.+SIMULATOR RESTINE 07JL72 0008 NA 0AJF72 C.OLASKY PROCRAM PLAN-PSUCEDURES DEVELOPMENT 28JE72 009 1 SI 28JA72 ER-C94 HFTP PROJECTED CONFIGURATION JE72 090 0 NR 19JE72 AVIGNICS WEEK-AR PHASE C/D CONFIG. 19JE72 091 9 NR PRELIM NAR CONTROLS DISPLAY LAYOUT 092 092 3 SI 15JL72 SSPEMM31 SSPE DATA BOOK 093			274871		PRE.ENTRY TOT PLANNING-ORBITER	07JL72	9	000	-			
NA DGAF72 FLICHT PERS.CO.P.+SIMULATOR RESTINE D7JL72 0088 NA 0AJF72 C.OLASKY PROCRAM PLAN-PSUCEDURES DEVELOPMENT 28JE72 HS 069 1 SI 2AJA72 ER-C94 hFTP PROJECTED CONFIGURATION JE72 HS 090 0 NR 19JE72 AVIONICS WEEK-LAR PHASE C/D CONFIG. 19JE72 U91 9 NR PRELIM NAR CONTROLS DISPLAY LAYOUT 092 092 3 SI 15JL72 SSPEMM31 SSPE DATA BOOK 093				17618H004 0	ENTRY CORRIDORS FOR HI L/D (TRW)			007				
2 NA 0AJF72 C.OLASKY PROCRAM PLAN-PODCEDURES DEVELOPMENT 28JE72 HB UAV 1 SI 2AJA72 ER-C94 HFTP PROJECTED CONFIGURATION JE72 HB UAV 0 NR 19JF72 AVIONICS WEEK-NAR PHASE C/D CONFIG. 19JE72 UVI 9 NR PRELIM NAR CONTROLS DISPLAY LAYOUT 0 U92 3 SI 15JL72 SSPEMM31 SSPE DATA BOOK 093						07JL72_		ູປຽອ				
1 SI 2AJA72 ER-094 HFTP PROJECTED CONFIGURATION JE72 He U90 0 NR 19JF72 AVIONICS WEEK-NAR PHASE C/D CONFIG. 19JE72 U91 9 NR PRELIM NAR CONTROLS DISPLAY LAYOUT 0 092 3 51 15JL72 SSPEMM31 SSPE DATA BOOK 093					PROCRAM PLAN-PROCEDURES DEVELOPMENT	26JE72		ÚрЯ				
D NR 19JF72 AVIONICS WEEK-NAR PHASE C/D CONFIG. 19JE72 D U91 9 NR PRELIM NAR CONTROLS DISPLAY LAYOUT 0 092 3 SI 15JL72 SSPEMM31 SSPE DATA BOOK 093					HETE PROJECTED CONFIGURATION	JE72	H⊇	090				
9 NR 9 0 092 3 51 15JL72 \$\$\$PEHM31 \$\$\$PF DATA BOOK \$093	`				AVICNICS WEEK- AR PHASE C/D CONFIG.	19JE72		091				
SI 15JL72 SSPEMM31 SSPE DATA BOOK DOGS	`						<u>د</u>	092				
	3	SI	153172	SSPEMM31	SSPF DATA BOOK		5			•		
7 NA 30AF71 MSC-04347 SHUTILE TOUCHDAWN REQUIREMENTS D 094		.N.A		MSC-04347	SHUTTLE TOUCHDAWN REQUIREMENTS		<u>></u>	<u>Ú94</u>				

CASE 1-26 SMSS REFERENCE DOCUMENT LISTING 6 BATE ຮຬິຟ 8 (.00C 00C. DUCUMENT TITLE RECU LOUN NO. 9 NUPBER REV SRCE . DATE 10 TRANSFER OF INGT TRAINING + SYNTH FLIGHT TRAINING SYS 28JL72 11 095 HUNKRO772 AF 00MS72 FLICHT TEST REQUITS FOR SPACE SHUTTLES (LIFT. BODIES) 26JL72 Н 090 12 303670..... Tax-2101 NA. TYPTEAL SHITTLE MISSION PROFILES + ATT TIME LINE VOLD 23JL72 Hο **U**97 MSC-02542 110070 NΔ STUDY OF PERSONAL HYGIENE FOR FUTURE MANNED MISSIONS 28JL72 490 NAS910455 HS NA. 07AG74 GEN SPEC CONTRALS, FUNC DESIGN REUMTS MANNED SPACECRET 23JL72 1199 MSC-C-005 Ήu 010071 NA GEN SPEC DISPLAYS, FUNC DESIGN REUMTS MANNED SPACECRET 28JL72 100 Η¢ NA CINV71... MSC-0-007 HOUSEKEEPING CANCEPTS-WASTE CONTROL TASKS + SYS VOL 1 28JL72 101 MSC-03774 HΒ 300070 NA ORBITER FLIGHT TECH + LANDING PT SUBORBLE ABORT ONTRL 23JL72 102 Ho NA 17MA71_ MSC-04062 MAN RULE INTEG VEHICULAR INFORMATION MANAGEMENT SYS 28JL72 Ho 103 NAS9-4045 NA 00FH71 TOD FOR SPACE SHUTTLE SYSTEM 28JL72 104 ΗÞ NA 247571 MSC-03305 ORBITER FLIGHT TECHNIQUES FOR FLYBACK ABORTS 28JL72 НÞ 100 MSC-04711 27JL71 NΔ PAYLOAD CG ANA, YSIS FUR SHUTTLE, SIDE-SY-SIDE LUADING 28JL72 106 MSC-05140 Ho NA 11871 PAYLUAD CG ANA, YSIS FOR SHUTTLE, END-TO-END LUADING 28JL72 HS 107 MSC-05812 10JA72 A V PILOVED SIMUL OUDY-UNPOWERED CRUSSWIND LANDINGS 28JL72 He 108 MSGEGZ143_ :NA 150071 CHECKUUT SYS SUMMARY REPORTIUNIV CONTROL-DISPLAY CONS 28JL72 Ho 103 NA3411140 NA 00J171 TIFS SIMUL OF SV LANDING APPPOACH-MUNIPLY REPORT 26JL72 Ho 110 NAS512420 NA GUDC71 BEV OF OPTIMUM SIMUL OF SPACE STATION COMM TECHNIQUE 28JL72 111 NA5912218 Hυ 150071 NA. SSV ENTRY SINULATION 28JL72 112 Ho NAS912200 NA 000071 STUTY ANALYSIS REPORT OF SSV MANUAL DOCKING SIMULATOR 28JL72 NASS10950 Hΰ 113 NA 000071 AIRCRAFT FLIGHT TEST INSTR ANALYSIS FOR SSV 28JL72 114 ЪS AD44403 NA · 285P71 ... TIFS SIMUL OF SV LANDING APPRUACH-MUNIHLY REPORT 281172 115 NASS12420 80 N A 09F772 INTEG SPACE PROGRAM + VEHICLE SYS ANALYSIS-SIUDY B 28JL72 Ho 11ó 11.4 150071 NA51-2129 INTES OPERATIONS/PAYLOAD/FLEET ANALYSIS VOL 2 PAYLOAD 28JL72 117 NASU-2129 Ho NA OÚAGZ1 INTES OPERATIONS/PAYLOAD/FLEET ANALYSIS VOL D MISSION 28JL72 Ho 110 NASL-2129 NΑ ODAG71 INTEG OPERATIONS/PAYLOAD/FLEET ANALYSIS VOL S EXEC SM 28JL72 119 NAS1-2129 Ηœ NA. 00AG71 SIMUL EVAL OF WANDAL CONTROL MODES-UNPOWERED DELTA/WG 28JE72 120 151472 MSCEG-723 Ho NA SPACE SHUTTLE "PERATIONS REVIEW 28JL72 Ho 121 NA3510960 NA 02JF71 SPACE STATION DUCKING/PAYLUAD XFER TRADE STURY RESULT 28JL72 122 NA5910960 HD 053471 NA DEF OF ORBITER FLIGHT ENVELOPE + INVESTIGATION FLT-TS 28JL72 Ho 125 17FH72 724910432 TR 35V COMMUNICATIONS COVERAGE V-POLAR ORBIT 23JL72 HO 124 717251322 TR 25FF71 PROJECT SPACE CHUTTLE-SSV ENTRY SIMULATION 28JL72 125 MSGEG72-5 Ho NA 10JA72 28JL72 SSV CREW STATION REVIEW NO. 2 Ho 125 SV71-13 NR 024971 SSV DPERATIONS PLAN FOR PHASE C/U VOL. 2 ORBITER 28JL72 253671 MSC-03310 Ho 127 N A SSV PAYLOAD HANDLING + DOCKING 28JL72 128 H MSC-04411 ORMATI . NA ORBITAL CARGO -RANSFER SYSTEM 28JL72 129 Hэ A71-36409 N 4 194871 SPACE STATION OUILOUP SIMULATION-FINAL REPORT 28JL72 Нο 130 NA5911948 _NA 003171 SSV EVALUATION OF FOUR SIDESTICK CONTROLLERS ON SIMUL 28JL72 Ho 131 10FE71 SSPE-27 NA SSV_PERFORMANC=_CAPABILITIES-132 01AG72 HΒ 16MA7/ MSC-04013.1 A M. GISPLAYS + CONTROLS MECHANIZATION SUMMARY 01AG72 Нэ 133 225118329 NF 00J172 01AG72 Η_ REP INFU SSV PROPOSER DACUMENIATION INFORMATION 134 NA 10AG72 ່າວິວ່ PRELIMINARY CONTROL + DISPLAY PANEL SKETCH Hы SK C+D 116 003172 FLIGHT STATION + VISION PLOT-ORBITER 01AG72 130 Ηa NF 19MA71 ... NASS10960 01AG72 137 FLIGHT CONTROLS + DISPLAYS NASS10960 Ha 01JE71 NP CARGO DOCKING AUNTROL STATION 01AG72 Hэ 133 NAS910960. NR.____10JE7___ MANIPULATOR ARGS-OPERATING STATION TV + LIGHTING 01AG72 139 198871 NASG10960 110 NE 02AG72 140 MIN'TES-NASA/SINGER MEETING & C ULASKY SMS PHOGRAM ho SI .. 02AG72 MINUTES-NASA/SINGER MEETING & B SWINT MAIN ENGINE ICD 02AG72 Нø 141 02AG72 S1 SSV DPERATIONS PLAN FOR PHASE C/U VUL 3 BOUSIER 03AG72 h 142 MSC-03310 NR.__ .25JE71 03AG72 INTEGRATED OPEDATION/PAYLOAD/FLEET ANALYSIS VOL 4 143 NASACR H AE COAGZI PRELIM RESULTS MANNED CARGO XFER STUDY UNDER ZERO G 03AG72 144 AZ1-36642.

05JA7.1

			SMSS REFERENCE DOCUMENT LISTING		ۍ ۲ م	E 1-27		
			· · · ·	DATE		SEU		
.DOC. SRCE	DOC. DATE	NUMBER REV	DOCUMENT TITLE	RECD	LOUN			
NA	00J#71	N70-40951	SPACE XPORTATION SYS TECH VOL & INTEGRATED ELEC/POWER		. н –	140		-
<u>NA</u>			CREY PROCEDURES TASK DESCRIPTION-POST ABORT	03AG72	Н	140	4	
NE	04F271	SV71-13	SSV CREW STATION REVIEW NO 2	03AG72	H	147		
NP	17MA71	VA70+60U1	CREW COMPARTMENT-DELTA ORBITER	04AG72	Ho	148		
NR	14JF71	VA70-3103	CREW COMPARTMENI-AND IVA TUNNEL STRUCTURE	04AG72	hυ	149		
SR	041170	N71-20624	GENERAL PURPOSE SIMULATOR SYSTEM STUDY-	04AG72	Н	150		
SE		PROPOSAL	SOC PROPOSAL M, CROPROGRAM PROCESSORS IN AVIONICS	07AG72	Ho	151		
	_24M872	M3C-06747	GNC S/W FUNCTIONAL REQ. HOR. FLIGHT OPERATIONS	07AG72	ны	152		
NA	21486/		CREVMAN OPTICA, ALIGNMENT SIGHT %COASI APOLLU SPEC	CJAG72	Нэ	155		
HC.	GOAGES	M-1043	DOP 516 GP_COMBUTER USERS_GUIDE	10AG72	. h	154		/
нç	00AG60	H-978	EDP 516 GP COMBUTER PROGRAMMERS REFERENCE MANUAL	10AG72	н	155		
	. 1431.74.	_ 23A 22-70	SSV REENTRY NAV. BARD ALTIMETER AND VUR/DME	10AG72	HO	155		
MI	16FE72	23A 11-72	ENTRY + TERMINAL NAV USING MLS OR AILS + VOR/BME	10AG72	Ηu	107		
MI	G40C71	23A 49-71	ENTRY + LANDING ORBITER USING PRS NAVAID	10AG72	Ho	153		
IN A	311172	MSC-03690 C	55 PREITER GAC STW FUNCT. REGMATS VERTICAL FLIGHT OPN	104672	Ho	159		
_ NA	27 3272	MSC-06900	SS PASELINE ACCOMUDATIONS FOR PAYLOADS	10AG72	Ho	100		
ΝA	248771	LA112971- 1	SSV PROGRAM AV, UNICS SYSTEM RECOMMENDATIONS	14AG72	Hu	101		
ΝA	11AF72 .	502-23-33	CENTRAL MULTIP SUCESSOR + MAN-MACHINE TECHNIQUES		Ho	102		
ME	094672	M3C-06744	DESIGN RED. SPEC. VISUAL SIMULATION FOR SMS APRELIM.	11AG72	HÞ	163		
NP	·	VE70-0629	CABIN STUDY NO 12A (DRAWING)	15AG72	110	104		
NE	DCZ1	VE70-0705	DRUTTAL DISPLAYS + MAN FLT CUNTRULS SUBSYS CONF.	01AG72	ت ت	105		
NP	121472	PROFUSAL	SPACE SHUTTLE BROGRAM TECHNICAL PROPOSAL VOL.3	17AG72	HC .	160		
NR	MA72	PROFUSAL	SS PROGRAM ALRA DESIGN DATA BOOK VOL. + ORBITER	178372	Ha	167		
NF		PROFOSAL	SS PRUGRAM AERA DESIGN DATA BOUK VOL. 2 MATEH VEHICLE	17AG72	Ho	160		
NF	N472	PROPOSAL	SS PROGRAM THE=MODYNAMIC DESIGN WATA BOOK	17AG72	Hþ	169		
NE	A F.7.2	PROFUSAL	SS PROGRAM FLIGHT CONTROL DATA BOOK	17AG72		170	·	
NP		PROFOSAL	55 PROGRAM EXTERNAL TANK	17AG72		171		
. нс.		, HDC-601	DIGITAL COMPUTER GENERAL DESCRIPTION	234672	it	172		
нс		HUC-601	DIGTTAL COMPUTER SUFTWARE SYSTEMS DESCRIPTION	23AG/2	н	173		
. нс		HDC-601	PLATED WIRE NEWERY TECHNICAL DESCRIPTION		<u></u> н.	174		
sĸ	5 V 7 1	SKC-2000	SJEDUUTINE LIBOARY REFERENCE MANUAL .	22AG72	Н	175		
N.A	17A572	50H22157	SIMT ACTUATOR CERVU LOUP SPECIFICATIONS-MSFC	22AG72	<u>H</u>	170		
N A	104P7∠	IEEE CONF	JIGITAL CONTROLLER FOR HIGH PRESSURE RUCKET ENGINE	22AG72	'n	177		
NF	12MA72		SS TRUGRAM TEST PROPUSAL	24AG72		170		
ΝA	275E60	ISCHU	INTERPRETIVE STMULATION APULLO GUIDANCE COMPUTER	015E72	Нр	179		
. NA	18AL72	VISLAL	MINTHUM VISUAL REQUIREMENTS FOR APPROACH AND LANDING	065E72	Ны	160		
NΔ	13A272		SHUTTLE FLIGHT CREW NOMENCLATURE AND HUTTES-SFRANKLIN	06SE72	Hu	181		
NE	30AL7∠ -		SHUTILE CARIN_CUNCEPIS-PER GEORGE FRANKLIN	065E72	<u> </u>	162	m. Ala bina na panalinin danis madrid akaranan dan	
NR	154472	PRUPOSAL	SUPPORTING FUNCTIONAL ABSTRACTS	075E72	H	103		
	. 1→JE7∠	PRUPUSAL	URAL DISCUSSIONS	07SE72	. H	104		
NA	26 JI. 72	HAL HEMO	MINUTES HAL DEVELOPMENT MEETING 5	075272	Ho	100		
. NA			LOWFR PIVGT OF CONSOLE (PILOT SEAT TILT DRAWING)	075272	Hu	180	· · · · · ·	
IF		APIC1/SP1	13h UBC CANDIDALES FOR SHUTTLE	115E72	Ho	107		
A.I	20JL71		SHUTTLE UTILIZ, TION FOR SORTIES AND AUTOMATED PAYLOAD	14SE72_	H	188		
ΝA	06JI 72	MSC-07069	ABUTI CAPABILITY ASSESSMENT PARALLEL SKM SHUTTLE	14SE72	н	169		
NA .	20DE71		SHUTTLE INCREMENTAL VENTICAL FLIGHT TEST ASCENT STUDY	14SE72	н	190		
N A	17AL72	MSC-07-238	A REPRESENTATIVE REENTRY AND LANUING FOR SHUITLE	14SE72	Н	191		
NA.	101172	MSC-08869	AHOPT CONTROL OUNSIDERATIONS DURING DADC/EDHI LAUNCH	145272	H	192		
NA	10MA72	MSC-04026	COMPARATIVE ANALYSIS-SHUTTLE ASCENT TRAJ GRAVITY TURN	145272	H	193		
N.A.	22FE72	MSC-05390	LANTING CHARACTERISTICS OF THE 040A ORBITER	14SE72	н	194		

• •	SMSS REFERENCE DOCUMENT LISTING	FAGE 1-28	
0C. HOC.		DATE SEG	
RCE MATE . NUPBER	DOCUMENT TITLE	RECD_LOUN NO.	
	LANTING CHARACTERISTICS OF 3 SHUTTLE CONFIGURATIONS	148E72 H 195	
NA 06DE71 MSC-05239	MANUALLY FLOWN FINAL APPRUACH PACHS FOR ORBITER	145E72 H 190	
NA 26J172 MSC-07159 NA 16J572 MSC-07042		145E72 H 195	
	PRELIM. SHITTLE ABORT STUDY USING SKM	143E72 H 190	
NA 37AL72 MSC-07224	and the second	145E72 H 199	
NA 06M872 MSC-06002		01SE72 H 200	
NA 15MR72 1311150001 NA 19MA72 TM X-2571		145P72 H 201	
	SPACE SHUTTLE MAIN ENGINE CEI SPEC	14SP72 H 202	
NR ONOC71 CP320R00	SSE JASELINE CONFIGURATION CHANGE	145P72 H 203	÷
NROOJL74SSE4.1A-	SSE EPL CAPADI, ITY	145P72 H 204	
NP ONJIZU SSE4.1A-	SSE FUEL TANK PRESSURIZATION TAPOFF STUDY	145P72 H 205	
NE OUJIZU SSE4-1A-2	SSE SELECTION OF 1550 DEG F MAIN TURBINE OPEN. TEMP	145P72 H 200	
NE ODJEZU SSE4.1A-V NE ODJEZU SSE4.1A11		143F72 H 200 145P72 H 207	
		14972 H 200	
NE DUJI70 SSE4.1A12		145772 H 209	
N <u>E ODJL70 SSE4.1A1</u> NR ODAG70 SSE1.1A2	SSE HASELINE ENGINE CONFIGURATION CHANGE	143F72 H 209 145P72 H 210	
	B BASELINE ENGINE SEM TOORATION CHANGE	145772 H 211	
	BASELINE ACCOMPUATION FOR PAYLOAUS	14572 H 212	
	· · · · · · · · · · · · · · · · · · ·	145P72 H 213	
ME 01AG72 MSC-0442: NF 01J472 NASS1204(145772 H 214	
		14SP72 H 215	
NE01DC71NAS912046		14572 H 215	`
NF 013172 NA3612040	REUSABLE SURFARE INSULATION THERMAL PROTECTION-ADDEN	14SP72 H 21/	
ME 23JF72 MBCL0557		145P72 H 216	
NA 30HA72 TH λ-257(145F72 H 219	
NA 24DC70 TH V6212;		145P72 H 229	
NA 19MA72 TH X-2570		205P72 Hp 221	
NP 21J170 MSC-00711	DOD SHUTTLE SYSTEM REQUIREMENTS	205P72 H5 222	
AF 30AG72 PRELIM.	SAC-2000 ADVANCED DIGITAL COMPUTER	205P72 H 223	
SK SF72 SKC-2000	CUNTRULLER SPARE SHUTTLE MAIN ENGINE	205P72 H 225 225P72 Ho 224	
NR 183172 RC1007	CONFROLLER SPARE SHOTTLE MAIN ENGINE COMPUTER PROGRAM RECUIREMENTS-CONTROLLER	225772 Hp 225	
NP 18J172 RC1010	B ENGINE BALANCE AND DYNAMIC MODEL	non n (11) (Tomawai) on the second	· ·· -
NR 30MA72 RLOCUCI	SPACE + PLANETARY ENDIXONMENT URITERIA GUIDELINE-1971	226P72 H5 225 226P72 H 227	
NENZ-23908	CREW/DEMPUTER INTERFACE + DISPLAY FURMAIS DEFINITION		
NA 115F72 DRAFT	SPACE SHUTTLE AROGRAM REQUIREMENTS DOCUMENT-LEVEL 1	225P72 HD 228 225P72 HD 229	
NA MOC		the second se	
NA 263472 MSC-07070			
NA ONAF74 STULIOL.	ALTERNATE AVIONICS SYS STUDY + PHASE & EXTENDION	الماميون بالدرة المتحاصية الداخلية المالية والأراد والأرار والماسية	• •
NR 128V71 MSC-03329		295772 H 232 295772 B 233	
NF21 J1.7.0 MSC-00718	SPACE STATION ARED OPERATIONS DEF PHASE 5	a second se	
KF Strate Strate Strate		050C72 b 234	
NA FA72 SD72-SA3		295P72 H 235	·· · · ·
NA 243171 MSC-0407	LOW FINAT REVENUES VELEVELSA Low Finate Revenues reversioner atomics 212	295P72 H 230	
XR			· · · - · ~
GE	SYSTEMS CPERATION SIMULATOR	050C72 B 230	
CP	RULE OF MICRO BROGRAMMING IN FOURTH GENERALLIN COMPU	050072 b 239	
IP Deput	AEROSPACE SYSTEMS IMPLICATIONS OF MICRUPACGRAMMING	USUC72 = 240	
NA_ 10AG72_ SSPFT210;		050C72Hb241	
ME CASE72 982-HE-D:	MONTHLY PROGREGS REPORT-SIMUL COMPLEX STUDY	050C72 Rø 242	
AF030C72 ZR1	UDB SHUTTLE MISSION STAULATOR PLANNING WATA	050C72 Ho 243	
GR OLT LIS44012;	ICB FOR INTERP SIMUL LM GUIDANCE COMP/LMS	05UC72 He 244	

......

.

.....

SMSS REFERENCE POCUMENT LISTING FASE 1-29

|3

4

6

			SHOO ALEEKENCE SOUTHWILLESS AND			<u> </u>	<u></u>				(``
	110 c			DATE		SEU					8
SRCE	BATE	NUMBER LEV	DUCOMENT TITLE	RECD	LOUN	in Ü 🔹			,	:	9 10
NA	211869	FHP-5-2	ULU VU 5 MISSION SIMULATIUN + TRAINING FACILITY	050072	u. ۲۰	245					11
	< • J F (19	· 111 = 5 · 4	AIR FRAFFIC CONTROL SYS-DIGITAL SIMULATION FACILITY	050072	Ho	240					12
			A REAL TIME RAMAR SIMUL USING APL DIGITAL COMP LINKS	050072	H 🗆	247	- Parts - La Participation -				
			A COMPARISON OF 3 TYPES OF MANUAL CUNTROLS-3ND ORDER	050072	Hن	245					
1 1			INEPTIAL SYS FUNCTIONAL + DESIGN REW FUR ONBITER-P	050072	110	249					
1.1	FE72		REAL TIME SPACE VEHICLE + USE SOFTWARE SIMULATOR-COO	050072	Ho	250					
	•••••		TURGUE SENSITIVITY A-FUNCTION OF KNOB RADIUS + LOAD	050072		251					60
MI		E-2708	EVERGY MANAGEMENT DURING SHUTTLE TRANSITION	050072	нu	252					24
[4]	AG72_	<u>L=2/00</u>	SYSTEM 86 LIDMARY	050072		233		····			5
	AF72		SIMPLATION OF WANNED SPACE FLIGHT FOR CREW TRAINING	0600/2		254					ž
	J1.72	MSC-07036	PROGRAMMING ELEMENTS. SHS TRAINING-BURKE/VANBUCNEL/GRA	050072		233 233	•••	··· •	····· ·		·
ST	278F72			293P72		250			•		
MI	. MR7∠		AP 101	100072		257		-	• • •	•	
IF			AP 101	100072		207 200					
			VISLAL STUDY MAJONNELL-DOUGLAS	100072			••••••				
			COMPUTER STUDY MODONNELL-DOUGLAS								
			SHUTTLE DEVELOGMENT SCHEDULE	100072		200					•
			LAS CREW TRAINING SCHEUULE	100072		201					
GE .	AF72	NASS11948	REMOTE MANIPULATOR DYNAMIC SIMULATION	100072		202	-				
ΜA	AF72	CR12357J	SHUTTLE PROP SUS ONBOARD CHECKOUT + MONITORING DEV	1000/2		203					
20	UNMA74	CR61376	CUMPUTER SYS SIMULATION + ANALYSIS	100072		204					
IN	16FF72	N7221203	ANV SETUR TEUR FOR DATA MENT SYS VOL 3-PROG LANGUAGE	100072		200					
IN	16FE72	N7221205	ANV SFTUR TECH FOR DATA MENT SYS VOL 2-SSV EAEC SYS	106072		266					
IN	16JF71	N7221204	AJV SETUR TECH FOR DATA MENT SYS VOL 1-SSV S. STUDY	1000/2		207	-			7.	
MS .		CR123509	FLICHT PROGRAM LANGUAGE REGMT	100072		200					
SF	- 71		ATC FOR THE SENENTIES PART 1	100072		209					
	- /1 71		ATC FOR THE SEVENTLES PART 2	100072		2/0				•	
SF S⊢			ATO FOR THE SEVENTIES FART 3	100072		271					
		A71-30381	PROS TECH FOR BEAL TIME SYS FORM EXPERIENCE & EXPERMIT	100072		272					
	088471 877		JESTON E OPER MAR OF CENTRAL ONLINE DATA PROCELANGLY	100072		273	**	•			
NA	DEZL	IN-1-6066 Tho maara	CONCEPTUAL NETWORK MODEL OF ATH TRANS SYS	100072		274					
		TSC-FAA71	VIRTUAL MEMORY SYS DESIGN	100072		275		• •	· · · · · · · ·		
A٢	J471	CR118310	VIN GAL REMORT SYS DESIGN	100072		270					
	JA71	0x110000									
MŢ	MR71	MTR-1995	AIRCRAFT MOCKUD CUMPUTER PROGRAM SPECIFICATIONS	100072							
AI .	05256a		NOMOGRAM FOR ATRERAFT RUDDER PEAL DESIGN	100072	-	275					
AJ	CAMRAY,		UPTIMUM KNOB DIAMETER	100072		279					
	OSMR65	•	DESTREABLE DIMENSIONS FOR CONCENTRIC CUNTRULS	100072		280					
MJ	JFFY	08120370	MANUAL CONTRUL OF UNSTABLE VEHICLES-KINESTHEILC CUES	100072		201					ŝ
		RM-0027	UNLINE DEBUGGES FOR USYOU ASSEMBLY LANGUAGE PROGRAMS	100072		202			·····		
MA	JA7 J	CR110445	METHOD FOR UNIFIED HARDWARE-SOFTWARE DESIGN	100072		200					N IN C
			· · · · · · · · · · · · · · · · · · ·	· · · · · · ·							· +
							•				F
	· · · ·	• • • • • • •				·		*			
							•·•·	••		• •	
···· · · · · · · ·										• •	
							·····				
									~		
						• • • • • •					
		a second and the second s									

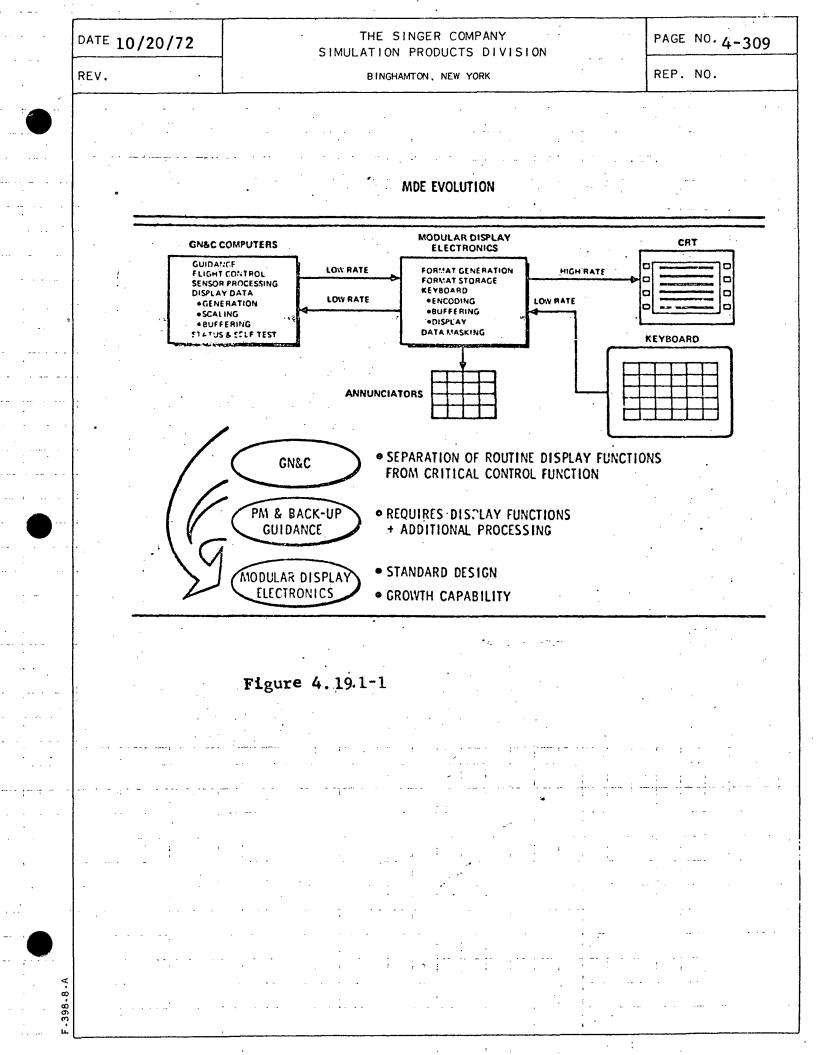
REV.

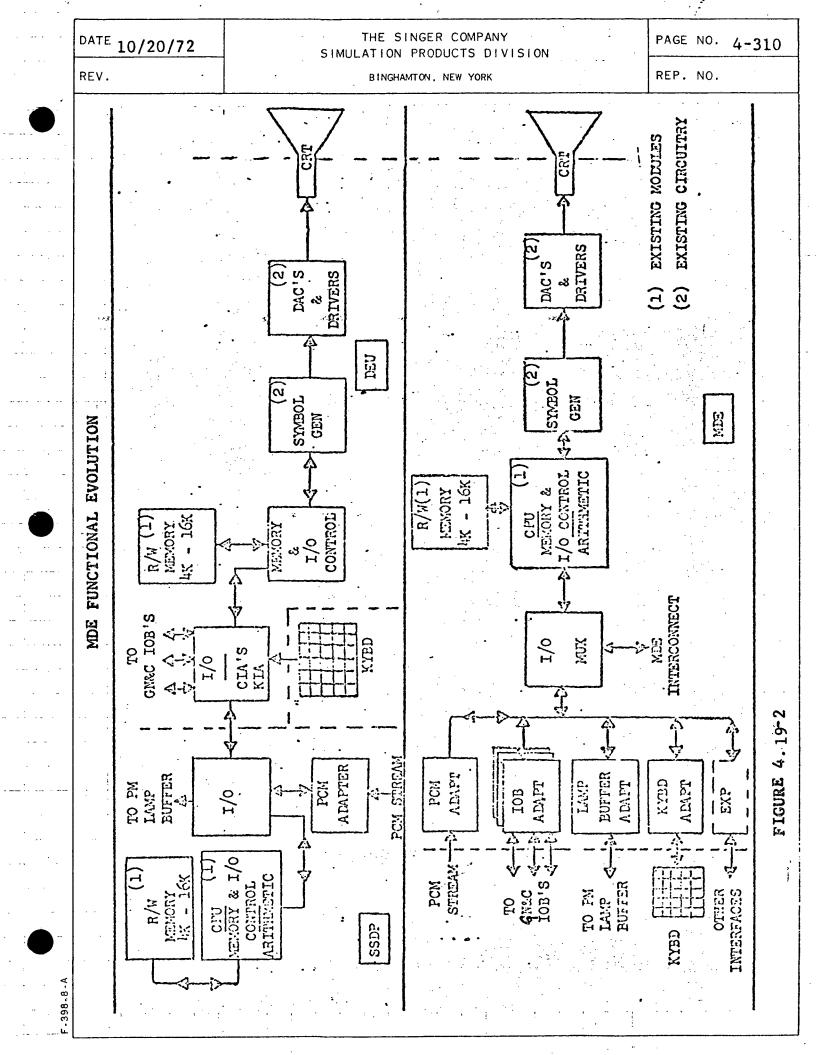
398.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.


4.19 Modular Display Electronics (MDE)


4.19.1 General Function

The Modular Display Electronics (MDE) equipments in the Space Shuttle are a part of the Data Processing and Software Subsystem. The six associated cathode ray tube (CRT) displays and keyboards supplement primary instruments for GN&C computer data entry and readout and are also used for backup guidance and subsystem status.

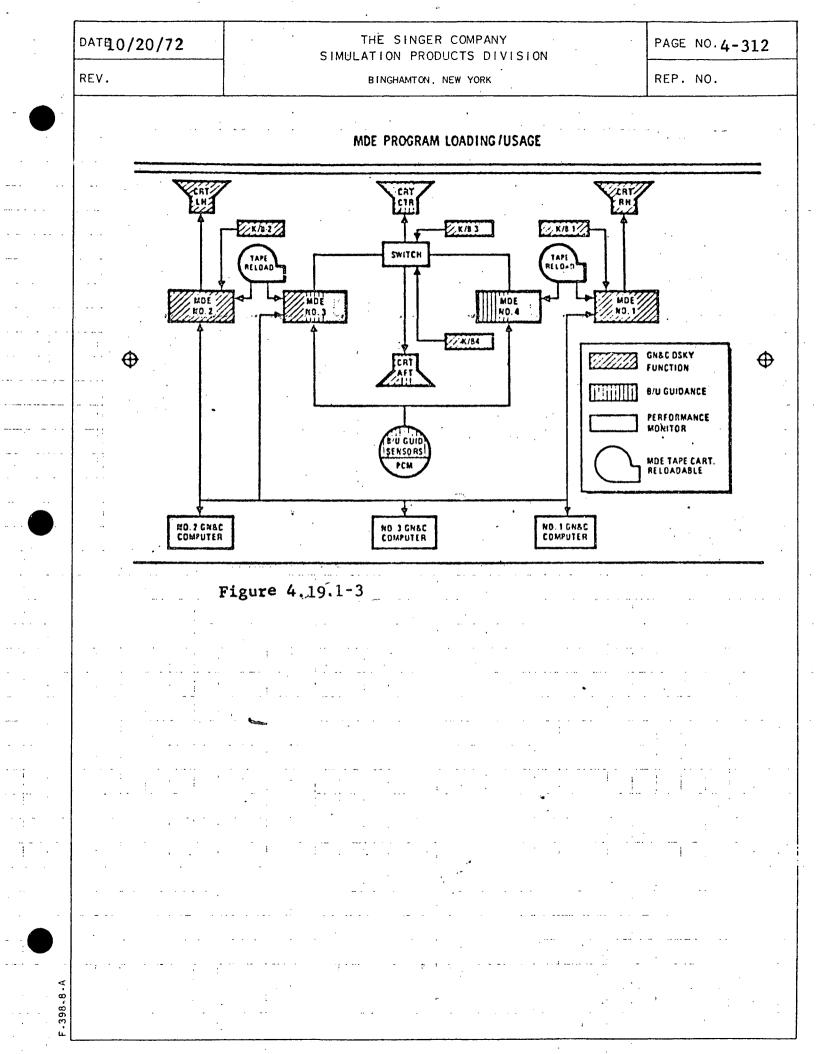
The MDE concept was developed to satisfy two basic needs: (1) provide separation of routine display functions from critical GN&C computer control functions, and (2) provide data processing capabilities over and above GN&C computers for both management simplification and avoidance of systematic errors. A standardized CRT/Keyboard interface results from this approach and system growth can be more easily accommodated. A simplified block diagram is shown in Figure 4.19.1-1.

Figure 4.19.1-1 is a more detailed block diagram showing the evolution of the MDE concept.

DATE 0/20/72

REV.

.398.8


THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

.

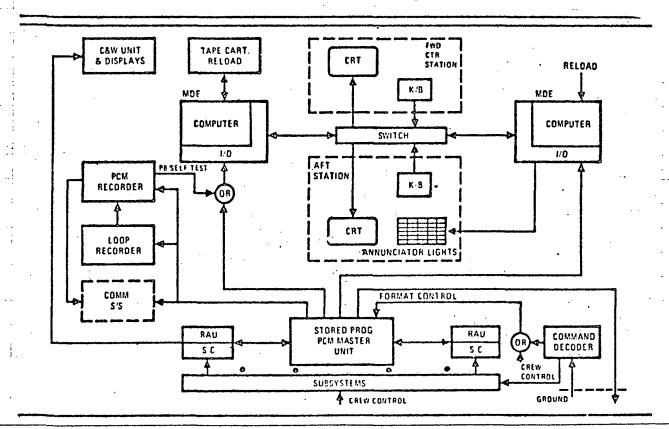
Four MDE's are used in the baseline system to provide GN&C Display/Keyboard interfaces, performance monitor, and backup guidance display processing. Three MDE's are interconnected with GN&C computers to provide prime GN&C display and control capability on any combination of the three forward CRT's/Keyboards. Backup guidance displays are normally presented on the center CRT and performance monitoring page formats on the aft CRT. All MDE's are tape cartridge reloadable in non-time critical periods. Refer to Figure 4.19-3.

Significant hardware and software growth capability is available through the addition of two PMS computers (same type as GN&C computer) and using MDE 3 and 4 in the same relationship as MDE 1 and 2 to GN&C computers. Two additional MDE's are used in the payload system for a total of six in the Orbiter vehicle.

DATE	0	/20	/72
------	---	-----	-----

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK


REP. NO.

Subsystem Management

Onboard and ground data/control relationships shown (Fig.4.20.1-4) illustrate how all data users have access to the same data. Up to four unique formats are available in the stored program PCM master unit to accommodate user unique requirements. Tape reload capability for MDE's is available during flight, but is used only in non-time-critical situations. A prerecorded PCM track is available on the PCM recorder for end-to-end ground self test of the MDE/CRT/Annunciator combinations. Continuous self monitoring of the PCM subsystem is accomplished through the use of standard analog and digital words generated within the remote units.

SUBSYSTEM MANAGEMENT

Figure 4.19.1-4.

REV.

F-398-8

	•	· ·
口10月20/72	THE SINGER COMPANY	PAGE NO: 4-314
10/20/12	SIMULATION PRODUCTS DIVISION .	4-314

REV.

BINGHAMTON, NEW YORK

REP. NO.

4.19.2 MDE System Operation and Interfaces

Processing of data for display on the subsystem CRT and for subsystem performance and operation monitoring is accomplished by MDE Subsystem Display Processor set which includes a modular, serial-output, address-programmable PCM data selector/buffer, a small stored-program processor CPU-I/O, and lamp driving logic. The equipment interfaces with the composite PCM stream, with an alphanumeric display/keyboard set which has been loaded with format skeletons for subsystem display, and with a number of fault status and agree/disagree annunciators located on the subsystem panels. There is also an interface with the vehicle Caution & Warning system for use in sleep periods or at times when the subsystem panels are unattended. Functional organization of the equipment is shown in Figure 4.19.1-2.

4.19.2.1 Display Unit (DU)

The unit employs a small (4 x 4 inches usable), highbrightness CRT to present up to 18 line of 24 alphanumeric characters each. Located on the DU bezel are 16 line designator pushbuttons used in conjunction with the keyboard for display selection and data entry. The face of the DU, with a typical GN&C format displayed, is shown in Figure 4.19.2-1. The top line of the format is normally used for page titles and numbers; lines 1 through 16 for data names, data and units; and the bottom line is reserved for keyboard data entry and verification, and for computer error messages.

DATE 10/20/72	- THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-315
REV.	BINGHAMTON, NEW YORK	REP. NO.
	· · ·	

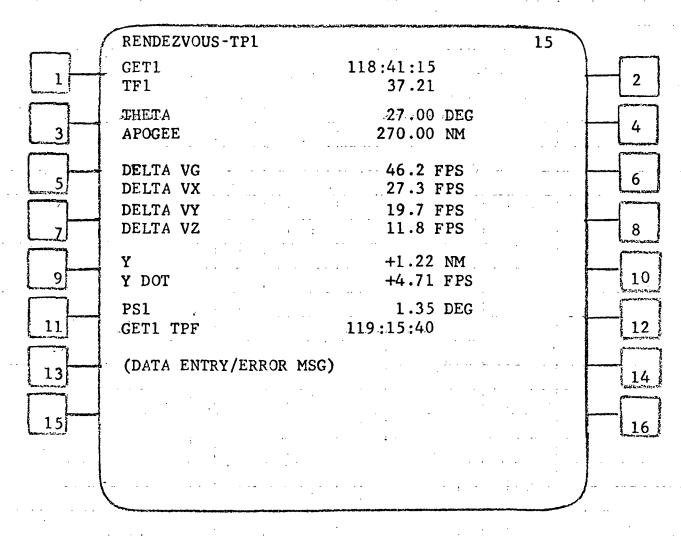


Figure 4.19.2-1 Alphanumeric Display CRT

DATE	10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-316
REV.		BINGHAMTON, NEW YORK	REP. NO.
4.1	9.2.2 <u>Keyboard</u>		

A 4 x 8 key matrix is used to control the CRT display, select index and data pages, and communicate with the interfacing computer. The standard keys are zero through 9, +, -, Decimal Point, Enter, Resume, Proceed, End, and Clear. The remaining function keys are reformattable for flight and subsystem display applications. See Figure 4.19.2-2.

System Operation

.398-8

The Display/Keyboard set operates in two basic modes, an index mode and a data mode. Index mode operation is initiated through actuation of an <u>INDEX</u> key on the keyboard; initially the top index page is called from a fixed location in MDE memory and displayed. Each line on this page represents either a subindex page or a data page. A oneselection may then be made by pushing the line selector push-button opposite the desired page title. Alternatively, data pages may be called directly by page number from the keyboard by actuating a PAGE SELECT key, or may be paged through consecutively. When data page selection is made via the index tree, the display shifts to data mode as soon as a specific data page is selected. In the data mode, the MDE assembles a data page from a fixed skeleton called from a selected. MDE memory location and variable data requested from the selected interfacing computer. The request to the computer is identified by data page number, which is decoded in the computer to initiate routines which select and convert constants from memory and results of on-going computations, and assemble this data in line order for transmission to the

SINGER-GENERAL PRECISION, INC. LINK DIVISION

4-317 PAGE NO.

REV.

..

BINGHAMTON, NEW YORK

REP. NO.

	·	
	· · · ·	
• .	• • • • •	
	· · · · ·	
	•	1 2 3 Enter
-	· · · · ·	
	· · · ·	Protection Contraction Contractions and Contraction Contractions and Contr
,	· · ·	4 5 6
		4 5 6
		and a second sec
•		
:		7 8 9 Resume
ma 1.,.	······································	+ Ø
· ·		
* ·· -	· · · · · · · · · · · · · · · · · · ·	
		Proceed End Clear
. :		
	· · · · · · · · · · · · · · · · · · ·	
• • •	· · · · · · · · · · · ·	
- · · · ·	· · ·	
	· · ·	
, _	·	
		Land house the second second
• • •	•	Figure 4.19.2-2
	· · · ·	
· · ·		
••	··· ·· -	
	.	· ···· · ···· ···· ···· ···· ··· ··· ·
	· · · · · · · · · · · · · · · · · · ·	
· ·	· - · · · · · · · ·	
σο		
F.398-8	· · · ·	
ш. Ш.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

DATE	•	10/20/72

REV.

398-8-A

REP. NO.

CRT. This cycle is repeated twice per second for update. The page number is sent with each update block and compared with the called page number in the MDE to assure data/format skeleton compatibility. By a combination of field masking techniques and special instructions, the average alphanumeric data page skeleton occupies less than 120 16-bit words in MDE memory and requires approximately 30 16-bit words of data from the computer for a full page update.

Actuation of the numeric and sign keys on the keyboard when in the data mode is interpreted as a data entry to the computer. The data goes into a buffer line in MDE memory and comes up on the bottom scratchpad line on the display as it is entered; the interfacing computer does not take cognizance of the data until it has been inspected, its disposition identified by a discrete from one of the display line selector buttons, and the ENTER key actuated. The computer then evaluates the entered data for acceptability. If the data is acceptable, the computer clears the scratchpad line and substitutes the entered value for the value in its memory, causing the same number to appear in the selected data line on the next update. If the data is unacceptable (not a program constant, wrong value, no disposition, etc.) the computer sends a discrete to light an OPERATOR ERROR annunciator and an error code to initiate display of an error message on the scratchpad line. If during the execution of programs the computer encounters problems, it can light a PROGRAM ALARM annunciator and send an error code to initiate display of an error message on the scratchpad line.

DATE 10/2	/72 THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-319
REV.	BINGHAMTON, NEW YORK	REP. NO.

The keyboard has priority in that error messages will not be forceddisplayed while keyboard entry is in process but will come up if the operator clears the scratchpad line. Error messages are stored in the MDE memory and addressed by conversion of error codes into memory locations.

4.19.2.3 IOB Adapter

The MDE is capable of interfacing with any of three computers, one at a time. The IOB Adapter, therefore, contains the driver and receiver circuits required to send and accept signals from 3 computers. The selection of the one active computer interface is based upon discrete signals received in the MDE from a panel control switch. The computer selection logic samples the selection control discretes and electrically ties the active computer interface to the remaining MDE logic.

Operation of a function key on the keyboard, such as enter, end, proceed, clear, etc., causes the MDE computer to initiate a command or a data transfer. The computer will first issue a read-I/O address command which causes the MDE to transfer the memory address where the last encoded key action is stored. (Keyboard entries, including line/ column select, are stored sequentially in a fixed portion of the MDE core memory.) By performing a subtraction, the computer then initiates read commands to the MDE beginning at the start of keyboard entry storage up to the last entry which initiated the transfer. The computer then issues a write command to reset the keyboard entry table to blanks.

DATE10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-320
REV.	BINGHAMTON, NEW YORK	REP. NO.

This has the effect of clearing line 17 the scratch pad line. The computer then operates upon the operator request.

The Computer IOB Adapter contains the logic required to communicate with the selected computer. It is capable of responding to read or write commands issued by the computer. It is also capable of generating an interrupt to the computer when commanded to initiate a transfer.

4.19.2.4 <u>Keyboard Adapter</u>

The Keyboard Adapter receives parallel data from the keyboard which is encoded to define which of the keys on the keyboard or display unit has been depressed. The keyboard initiates data transfers by raising a request line to indicate that a key has been pressed. The Keyboard Adapter acknowledges the keyboard input and then stores the data in the MDE memory.

For computer-destined data, the KA notifies the I/O Multiplex which interrupts the computer and requests a read of the desired data. An area in the MDE computer memory is reserved for keyboard service data. For this data, the computer does a special formatting operation for processing and display on the data entry (scratchpad) line. If the Enter Key is depressed, indicating that the scratchpad line should be sent to the computer, the computer reads the scratchpad locations in MDE memory and then clears them. This has the effect of transferring the data from the scratchpad line to the selected data line. The scratchpad line can also be cleared from the keyboard. BINGHAMTON, NEW YORK

REP. NO.

REV.

4.19 .2.5 Symbol Generator

The Symbol Generator is comprised of digital and analog circuitry which controls the presentation of display formats. It is used to generate alphanumeric characters. The refresh and generation of the symbols are controlled by a list of instruction words which are stored in the MDE core storage. The digital instruction words are processed by converting them to the x-deflection, y-deflection, and zaxis video signals required to drive the CRT display.

The Symbol Generator provides the following display capabilities:

Generate	alphan	umeric	characte	ers fr	om sti	oke	informat	ion
storedin	n the M	DE memo	ory.				· .	

Format characters in type mode or random positions.

Growth capability for drawing vectors of any length. Position characters at any location on a 512 by 512 matrix. Present a uniform display by controlling the intensity of the characters (and vectors).

Operate in a typewriter mode associated with either the X or Y direction.

4.19.2.6 PCM Adapter

A-8-398-

This element accepts a Manchester biphase coded data stream at rates up to 100 KB/S, strips sync from the stream to provide frame and word sync and bit clock, and sequentially selects, buffers and Both the incoming transmits RZ-coded logic-level data to the processor.

4 - 321

DATE 10/20/72

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

PCM address and the outgoing data are buffered for at least one PCM word interval in order that contiguous words in the stream may be selected.

4.19.2.7 <u>Processor CPU - I/O</u>

The processor is a low-cost general-purpose, high-speed, corememory machine which basically executes four tasks: data selection, display scaling, data limit checking and system self-test. The memory is modular up to 16K, 16-bit words. The processor retains in its reloadable memory the PCM address tables for selection of up to 1,000 measurement; the denormalizing constant tables for scaling of up to 1,000 measurements for display, together with the display address tables for up to 50 12-line tabular alphanumeric CRT display pages; the predetermined operating limits for limit-checking and logic comparison of up to 600 analog and discrete measurements, together with annunciator address tables for up to 150 fault status annunciators; and the program to accomplish the four tasks defined above. The limit-checking operation may apply up to three selectable sets of limits to monitored measurements, depending on subsystem configuration and/or mission phase. Further details are to be found in Section 4.19.3 and 419.4.

4.19.2.8 Lamp Buffer Adapter

.398.8

This electronics accepts and decodes outputs words from the CPU to determine which of the fault status annunciators should be activated. A provision is incorporated to hold annunciators activated_ until acknowledged by the crew. The decoded and processed discretes

DATE	10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	· • •	PAGE N0.4-323
REV.		BINGHAMTON. NEW YORK		REP. NO.

are outputted to the annunciators via lamp drivers to provide the required power switching.

4.19.2.9 System Operation

CRT displays are requested by index tree or page number via the keyboard as described in section 4.192.1. In either case the page number code is decoded by the processor to access the appropriate denormalizing constant and display address tables for the selected page. The processor then addresses and selects the requested data, converts the data and the PCM frame time into BCD-coded engineering units format, assembles it in display line order and transmits it to the display set as described previously. This operation is repeated an integral number of PCM frames later for update; the number is selectable to achieve a nominal twice-per-second update with either real-time or tape-delayed non-real-time input data.

Measurement selection for limit-checking will be established by a predefined PCM address table. The processor will select from its memory the appropriate limit and status tables for the selected operational phase and subsystem configuration, and will ordinarily make a limit check or a state comparison for all selected measurements. However, if a known off-nominal measurement repeatedly triggers the alarm, the processor can be instructed via the keyboard to disregard the condition of that measurement until it is notified to the contrary. The processor will maintain a table of inhibited measurements for

display upon request.

DATE 10/20/72

REV.

-398-8-A

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

PAGE NO4-324

REP. NO.

Limit checking can be done at repetition rates up to about 10 per second. However, the processor will normally be instructed to verify that an off-nominal condition persists for a number of consecutive data samples (2 to 5 for most measurements) before outputting an alarm discrete. When an off-nominal condition is verified, the processor will output discretes to the annunciator logic identifying the appropriate individual fault status annunciator, and to the master fault annunciator, and will write the number of the display page containing the offending measurement(s) on the scratchpad line. If the appropriate display page is up, or when it is brought up, the processor will identify the data it has evaluated as off-nominal by requesting a "bug" symbol on the appropriate display line which will flag the measurement(s) as out-of-tolerance high or low. A performance monitor status table will be maintained, to be displayed in page format on request, listing in chronological order the measurements which have been abnormal since the table was last cleared and indicating what that status was (high, low, off, failedy-etc.).

In each major cycle of processing for display and performance monitor, the Processor executes a routine which checks the data, the system hardware, and itself. A BITE annunciator is provided which is normally held off by a pulse train from the Processor I/O. However, should the PCM data fail, or a check of calibration words or PMC BITE discretes from the data stream indicate "no-go", or the processor selftest routine indicate "no-go", or the processor power fail, the output

DAT	F 1	0.	120	/72

F-398-8-A

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

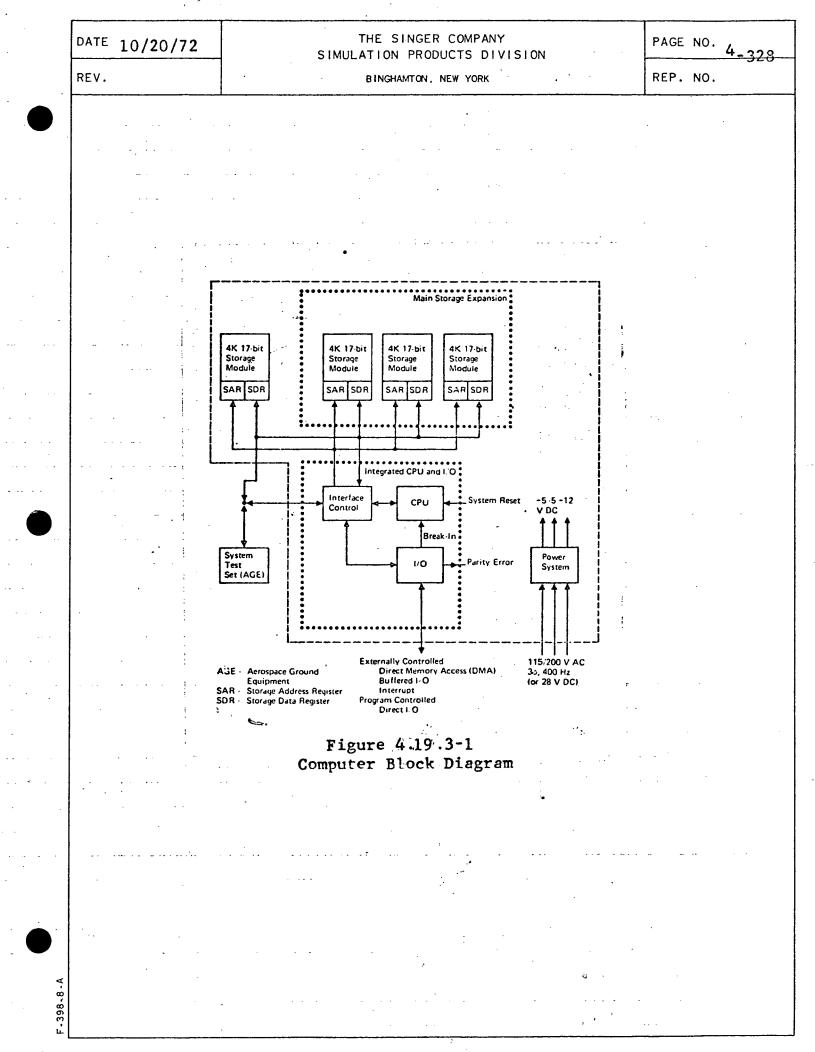
pulse train will cease and the BITE annunciator will illuminate. If the processor itself is still healthy, it will send an error code to the display set to initiate display of an error message identifying the problem.

		
DAID/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-
REV.	BINGHAMTON, NEW YORK	REP. NO.
	<u>omputers</u> are presently two different computers	being used for
MDE CPU applic	ation. For the non GN&C Performance Mo	nitoring applic
tion, two IBM	Model AP101's will be used. A detailed	description of
this computer	is to be found in section 4.18.3. For	the GN&C MDE's
and for the Pa	yload System MDE's, small IBM type SP-1	computer is to
be used. A de	tailed description of this computer fol	lows.
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	and a second second Second second second Second second	· · · ·
- · · · · ·		
		• · · ·
		· · · ·
• • • • • • • • • • • • • • • • • • •	·····	
· · · · ·	· · · · · · · · · · · · · · · · · · ·	•••
· · · · ·		
	· · · · · · · · · · · · · · · · · · ·	· · · ·
· · · · · · · · ·		
A	n an	<u>.</u>
198-88-1		· · · · · ·

REV. ΒΙΝΘΗΛΑΤΟΝ, ΝΕΨ ΥΟΡΚ 4. 19.3 MDE Computer_Type SP-1 Machine Type Organization Type Data Word Length 16 bits Instruction Word 16 bits Add 2.7 μs Multiply 5.7 μs Divide 30.000 operation/second Add 2.7 μs Multiply 5.7 μs Divide 30.000 operation/second Execution Rate 350,000 operation/second Registers 4 (A, Q, and B registers and instruction Main Type Storage Capacity Machinel Power Storage Capacity Main Type Storage Capacity Main Type Storage Capacity Access Time Goo ns Special Features Direct memory access; buffered I/	ON	PAGE NO. 4-
Machine Organization Type Number System Operation General purpose, stored program, sim Binary, fixed point, two's compleme Full parallel (16 bits) Data Word Length Instruction Word Length 16 bits Typical Execution Times 41 Add 2.7 µs Multiply 5.7 µs Divide 8.0 µs Average Instruction Execution Rate Registers 350,000 operations/second 4 (A, Q, and B registers and instruction Execution Rate Registers Main Type Capacity Ferrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi Modularity Modularity 4096 17-bit words per pluggable mod Cycle Time Access Time Special Features 1.3 µs (write or read/restore) I/O Parallel Externally Initiated Data Interface Maximum Data Transfer Rate Direct memory access; buffered I/O Direct I/O 16 bits plus address and control; sing Maximum Data Transfer Rate Ibio 20 V AC, 3-phase, 400 Hz, 72 V System Sit to 52 W for basic assembly (28 optional) Output Regulated DC 45, -5, +12 V DC Features Overwoltage and overcurrent protection sequencing pluggable modular con Physical Standard Structure		REP. NO.
Machine Organization Type Number System Operation Data Word Length Instruction Word Length General purpose, stored program, sim Binary, fixed point, two's complement Full parallel (16 bits) Number.of 16-bit word, including sign; 32-bit do Instructions 11 Number.of 16-bits 16-bits Number.of 16-bits 16-bits Mutiliply 5.7 μs 10 Add 2.7 μs 10 Mutiliply 5.7 μs 10 Divide 8.0 μs 2000 operations/second Average Instruction Execution Rate 350,000 operations/second Registers 4 (A, Q, and B registers and instruction Main Type Ferrite magnetic core, nonvolatile, ra Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit Modularity Modiarity 4096; 17-bit words per pluggable mod Cycle Time 1.33 μs (write or read/restore) Access Time Special Features Direct 1/0 Data Interface Direct T/O 16 bits plus address and control; sing Maximum Data Transfer Rate 150,000 to 600,000 words/second Circuits Type Transtor/t		
Machine Organization Type Number System Operation Data Word Length Instruction Word Length General purpose, stored program, sim Binary, fixed point, two's complement Full parallel (16 bits) Number.of 16-bit word, including sign; 32-bit do Instructions 11 Number.of 16-bits 16-bits Number.of 16-bits 16-bits Multiply 5.7 μs 10 Divide 8.0 μs 350,000 operations/second Average Instruction Execution Rate 350,000 operations/second Registers 4 (A, Q, and B registers and instruction Main Type Ferrite magnetic core, nonvolatile, ra Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit Wodularity Main Type Ferrite magnetic core, nonvolatile, ra Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit Wodularity Modiarity 4096; 17-bit words per pluggable mod Cycle Time 1.33 µs (write or read/restore) Access Time Direct I/O 16 bits plus address and control; sing Maximum Data Transfer Rate 150,000 to 600,000 words/second Logic Class Monolithic integrated <t< td=""><td><u></u></td><td>المراجع بالمراجع المراجع المراج موجع المراجع الم مراجع المراجع ال</td></t<>	<u></u>	المراجع بالمراجع المراجع المراج موجع المراجع الم مراجع المراجع ال
Machine Organization Type Number System Operation Data Word Length Instruction Word Length General purpose, stored program, sim Binary, fixed point, two's complement Full parallel (16 bits) Number.of 16-bit word, including sign; 32-bit do Instructions 11 Number.of 16-bits 16-bits Number.of 16-bits 16-bits Multiply 5.7 μs 10 Divide 8.0 μs 350,000 operations/second Average Instruction Execution Rate 350,000 operations/second Registers 4 (A, Q, and B registers and instruction Main Type Ferrite magnetic core, nonvolatile, ra Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit Wodularity Main Type Ferrite magnetic core, nonvolatile, ra Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit Wodularity Modiarity 4096; 17-bit words per pluggable mod Cycle Time 1.33 µs (write or read/restore) Access Time Direct I/O 16 bits plus address and control; sing Maximum Data Transfer Rate 150,000 to 600,000 words/second Logic Class Monolithic integrated <t< td=""><td></td><td>ې چې سمې د والې</td></t<>		ې چې سمې د والې
Organization Number System Operation Binary, fixed point, two's complement Full parallel (16 bits) Data Word Length Instruction Word 16-bit word, including sign; 32-bit dot Instruction Word 16 bits Length 16 bits Number.of 16 bits Instructions 41 Typical Execution 5.7 μs Multiply 5.7 μs Divide 8.0 μs Average Instruction Execution Rate Registers 4 (A, Q, and B registers and instruction Execution Rate 350,000 operations/second Main Type Storage Capacity Adod 2:7 μs 006 (8 192; 12,288; or 16,384 17-bit Modularity 4096; 8192; 12,288; or 16,384 17-bit Access Time 600 ns Special Features Power transient protection, separate: Externally Initiated Direct memory access; buffered I/O Direct I//O Direct I//O Data Interface 16 bits plus address and control; sing Maximum Data Transistor/transistor logic (TTL) and Flatpacks: 14, 16, and 24 leads Power Primary		
Operation Data Word Length Instruction Word Length Full parallel (16 bits) 16 bit word, including sign; 32-bit do Instruction Word Length 16 bits Number.of Instructions 41 Typical Execution Times 2.7 µs Add 2.7 µs Multiply 5.7 µs Divide 8.0 µs Average Instruction 250,000 operations/second Registers 4 (A, Q, and B registers and instruction Main Type Storage Capacity Modularity 4096; 8192; 12,282; or 16,384 17-bit Matinum Data 1.33 µs (write or read/restore) Access Time 600 ns Special Features Power transient protection, separate temperature compensation I/O Parallel Externally Initiated Direct I/O Data Interface Monolithic integrated Transfer Rate 150,000 to 600,000 words/se		· · · · ·
Data Word Length Instruction Word Length16-bit word, including sign; 32-bit do InstructionsMumber.of Instructions16 bitsMumber.of Instructions41Typical Execution Times Add2.7 µs 8.0 µsAdd2.7 µs B.0 µsMultiply5.7 µs DivideAverage Instruction Execution Rate Registers350,000 operations/second 4 (A, Q, and B registers and instruction Execution Rate (Appendix)MainType Capacity ModularityFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bit ModularityMainType Capacity ModularityFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bit words per pluggable mod Cycle Time Access Time Special FeaturesDirect magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bit words per pluggable mod 1.33 µs (write or read/restore) Access Time Boon s Special FeaturesI/O Parallel ChannelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/OLogic Class Class Transfer Rate150,000 to 600,000 words/secondLogic Class Class TypeTransistor/transistor logic (TTL) and PackagePower SystemPrimary Power Standard StructurePower PysicalPrimary Power115/200 V AC, 3-phase, 400 Hz, 721 Sequencing pluggable modular con sequencing plug	ent, fractional	
Instruction Word Length 16 bits Number.of Instructions 41 Typical Execution Times 4dd Add 2.7 μs Multiply Add 2.7 μs Multiply Divide 8.0 μs Average Instruction Execution Rate 350,000 operations/second Registers 4 (A, Q, and B registers and instructith Main Type Ferrite magnetic core, nonvolatile, ra Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit Modularity 4096; 8192; 12,288; or 16,384 17-bit Mode; 8192; 12,288; or 16,384 17-bit Modularity 4096; 8192; 12,288; or 16,384 17-bit Mode; 8192; 12,288; or 16,384 17-bit Modularity 4096; 8192; 12,288; or 16,384 17-bit Mode; 8192; 12,288; or 16,384 17-bit Modularity 4096; 8192; 12,288; or 16,384 17-bit Mode; 8192; 12,288; or 16,384 17-bit Main Type Ferrite magnetic core, nonvolatile, ra Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit Matimur Data Instruction Direct I/O Transfer Rate Direct I/O 16 bits plus address and control; sing		•
Length16 bitsNumber.ofInstructions41Typical ExecutionTimesAdd2.7 µsDivide8.0 µsAverage InstructionExecution RateRegisters4 (A, Q, and B registers and instructionExecution Rate350,000 operations/secondRegisters4 (A, Q, and B registers and instructionMainTypeStorageCapacityQcle Time1.33 µs (write or read/restore)Access Time600 nsSpecial FeaturesPower transient protection, separate stemperature compensationI/O ParallelExternally InitiatedDirect memory access; buffered I/OChannelProgram InitiatedDirect nemory access; buffered I/OData Interface150,000 to 600,000 words/secondLogicClassMonolithic integratedCircuitsTypeTransfer Rate150,000 to 20, 0, 3-phase, 400 Hz, 72 1SystemC31 to 52 W for basic assembly (28 optional)Output RegulatedDC+5, -5, +12 V DCPreaturesOvervoltage and overcurrent protection sequencing pluggable modular comPhysicalStandard StructureVolume0.35 ft ³ Weight18.1 lb, for 4K storage	oubleword, includin	ng sign
Number of Instructions 41 Typical Execution Times 41 Add 2.7 μs Add 2.7 μs Multiply 5.7 μs Divide 8.0 μs Average Instruction Execution Rate Registers 350,000 operations/second Main Type Storage Capacity Modularity 4096;8192;12,288; or 16,384 17-bit Modularity 4096;17-bit words per plugable mod Cycle Time Access Time 600 ns Special Features Power transient protection, separate temperature compensation I/O Parallel Externally Initiated Program Initiated Data Interface Direct I/O Direct I/O Data Interface Maximum Data Transfer Rate 150,000 to 600,000 words/secono Logic Class Monolithic integrated Transistor/transistor/logic (TTL) and Package Power Primary Power 115/200 V AC, 3-phase, 400 Hz, 72 M 31 to 52 W for basic assembly (28 optional) Output Regulated DC Features Overvoltage and overcurrent protection sequencing pluggable modular con Physical Standard Structure Volume 0.35 ft ³ Neight		·
Typical Execution TimesAdd2.7 µs MultiplyDivide8.0 µsAverage Instruction Execution Rate Registers350,000 operations/second 4 (A, Q, and B registers and instruction Execution Rate RegistersMainTypeFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi ModularityMainTypeFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi ModularityMainTypeFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi ModularityModularity4096; 8192; 12,288; or 16,384 17-bi ModularityAccess Time Access Time Special Features600 nsPower transient protection, separate temperature compensationI/O ParallelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateLogicClass Type Transistor/transistor logic (TTL) and PackageLogicClass Type Transistor/transistor logic (TTL) and PackagePowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 I 31 to 52 W for basic assembly (28 optional)Output Regulated DC FeaturesStandard StructureVolume Weight0.35 ft 3 18, 1 lb, for 4K storage	•	
Typical Execution TimesAdd2.7 µs MultiplyDivide8.0 µsAverage Instruction Execution Rate Registers350,000 operations/second 4 (A, Q, and B registers and instruction Execution Rate RegistersMainTypeFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi ModularityMainTypeFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi ModularityMainTypeFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi ModularityModularity4096; 8192; 12,288; or 16,384 17-bi ModularityAccess Time Access Time Special Features600 nsPower transient protection, separate temperature compensationI/O ParallelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateLogicClass Type Transistor/transistor logic (TTL) and PackageLogicClass Type Transistor/transistor logic (TTL) and PackagePowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 I 31 to 52 W for basic assembly (28 optional)Output Regulated DC FeaturesStandard StructureVolume Weight0.35 ft 3 18, 1 lb, for 4K storage		
Times Add 2.7 μs Multiply 5.7 μs Divide 8.0 μs Average Instruction Execution Rate Registers 4 (A, Q, and B registers and instruction Execution Rate 350,000 operations/second Registers 4 (A, Q, and B registers and instruction Storage Capacity 4096; 8192; 12,288; or 16,384 17-bi Modularity 4096; 8192; 12,288; or 16,384 17-bi Modularity Modularity 4096; 8192; 12,288; or 16,384 17-bi Modularity Access Time 600 ns Power pluggable mod Cycle Time 1.33 μs (write or read/restore) Access Time Access Time 600 ns Power transient protection, separate temperature compensation I/O Parallel Externally Initiated Direct memory access; buffered I/O Data Interface 16 bits plus address and control; sing Maximum Data Transfer Rate 150,000 to 600,000 words/second Logic Class Monolithic integrated Circuits Type Transistor/transistor logic (TTL) and Power Primary Power 115/200 V AC, 3-phase, 400 Hz, 72 M System <td></td> <td>· · ·</td>		· · ·
Multiply 5.7 μs Divide 8.0 μs Average Instruction 250,000 operations/second Registers 4 (A, Q, and B registers and instruction Main Type Storage Capacity Modularity 4096; 8192; 12,288; or 16,384 17-bi Modularity 4096; 8192; 12,288; or 16,384 17-bi Modularity 4096 17-bit words per pluggable mod Cycle Time 1.33 μs (write or read/restore) Access Time 600 ns Special Features Power transient protection, separate temperature compensation I/O Parallel Externally Initiated Direct memory access; buffered I/O Data Interface 16 bits plus address and control; sing Maximum Data Transfer Rate 150,000 to 600,000 words/second Logic Class Monolithic integrated Circuits Type Transistor/transistor logic (TTL) and Power Primary Power 115/200 V AC, 3-phase, 400 Hz, 72 M System 31 to 52 W for basic assembly (28 optional) Output Regulated DC 45, -5, +12 V DC Dc Features Overvoltage and overcurrent protecti s		• .
Divide8.0 μsAverage InstructionExecution RateRegisters350,000 operations/secondMainTypeStorageCapacityModularity4096; 8192; 12,288; or 16,384 17-biModularity4096 17-bit words per pluggable modCycle Time1.33 μs (write or read/restore)Access Time600 nsSpecial FeaturesPower transient protection, separate temperature compensationI/O ParallelExternally InitiatedChannelProgram InitiatedData Interface16 bits plus address and control; singMaximum DataTransfer RateTogicClassMonolithic integratedCircuitsTypeTransfer Rate150,000 v AC, 3-phase, 400 Hz, 72 MSystemStandard StructureOutput RegulatedDC+5, -5, +12 V DCFeaturesOvervoltage and overcurrent protectionPhysicalStandard StructureVolume0.35 ft 3Weight18.1 lb, for 4K storage	· · ·	· ·
Average Instruction Execution Rate Registers350,000 operations/second 4 (A, Q, and B registers and instruction 4 (A, Q, and B registers and instruction 4 (A, Q, and B registers and instructionMainType Capacity Modularity A096: 8192; 12,288; or 16,384 17-bit Modularity A096: 8192; 12,288; or 16,384 17-bit Modularity Access Time Book ns Power transient protection, separate remerature compensationI/O Parallel ChannelExternally Initiated Program Initiated Drata Interface Maximum Data Transfer RateDirect memory access; buffered 1/0 Direct 1/O I6 bits plus address and control; sing Maximum Data Transfer RateLogic CircuitsClass Type Transistor/transistor logic (TTL) and PackagePower SystemPrimary Power C SystemOutput Regulated DC Features115/200 V AC, 3-phase, 400 Hz, 72 N SystemOutput Regulated DC FeaturesOvervoltage and overcurrent protectit sequencing pl	· · · · ·	
Execution Rate Registers350,000 operations/second 4 (A, Q, and B registers and instructionMainTypeFerrite magnetic core, nonvolatile, ra 4096; 8192; 12,288; or 16,384 17-bi Modularity 4096; 8192; 12,288; or 16,384 17-bi Modularity address per pluggable modularity address per pluggable modularity address and control; separate temperature compensationI/O ParallelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/OLogicClass Monolithic integrated Transistor/transistor logic (TTL) and PackageTransistor/transistor logic (TTL) and PackageLogicClass Type Transistor/transistor logic (TTL) and Package115/200 V AC, 3-phase, 400 Hz, 72 N 31 to 52 W for basic assembly (28 optional)Output Regulated DC Features45, -5, +12 V DC Overvoltage and overcurrent protection sequencing pluggable modular comPhysicalVolume Weight0.35 ft 3 18.1 lb, for 4K storage		• • •
Registers 4 (A, Q, and B registers and instruction Main Type Ferrite magnetic core, nonvolatile, radius to the storage Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit words per pluggable models to the storage Storage Capacity 4096; 8192; 12,288; or 16,384 17-bit words per pluggable models to the storage View Cycle Time 1.33 μs (write or read/restore) Access Time 600 ns Special Features Power transient protection, separate temperature compensation I/O Parallel Externally Initiated Direct memory access; buffered I/O Channel Program Initiated Direct I/O Data Interface 16 bits plus address and control; sing Maximum Data Transfer Rate 150,000 to 600,000 words/second Logic Class Monolithic integrated Circuits Type Transfer Rate 150,000 V AC, 3-phase, 400 Hz, 72 Mait to 52 W for basic assembly (28 optional) Output Regulated DC +5, -5, +12 V DC Derivational Standard Structure Physical Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage		
MainTypeFerrite magnetic core, nonvolatile, raStorageCapacity4096; 8192; 12,288; or 16,384 17-biModularity4096 17-bit words per pluggable modCycle Time1.33 μs (write or read/restore)Access Time600 nsSpecial FeaturesPower transient protection, separateI/O ParallelExternally InitiatedDirect memory access; buffered I/OChannelProgram InitiatedDirect 1/OData Interface16 bits plus address and control; singMaximum DataTransfer Rate150,000 to 600,000 words/secondLogicClassMonolithic integratedCircuitsTypeTransistor/transistor logic (TTL) andPowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 VSystemC31 to 52 W for basic assembly (28 optional)Output RegulatedDC+5, -5, +12 V DCDCFeaturesOvervoltage and overcurrent protection sequencing pluggable modular conPhysicalVolume0.35 ft ³ Weight18.1 lb, for 4K storage		
StorageCapacity Modularity4096; 8192; 12,288; or 16,384 17-bi 4096 17-bit words per pluggable mod Cycle Time Access Time Special FeaturesI/O ParallelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/O 16 bits plus address and control; sing Maximum Data Transfer RateLogicClass Type PowerMonolithic integrated Transistor/transistor logic (TTL) and PackagePowerPrimary Power System115/200 V AC, 3-phase, 400 Hz, 72 N 31 to 52 W for basic assembly (28 optional)Output Regulated DC Features+5, -5, +12 V DC Overvoltage and overcurrent protecti sequencing pluggable modular comPhysicalVolume Weight0.35 ft 3 18, 1 lb, for 4K storage	ion counter)	- `
Modularity4096 17-bit words per pluggable mod Cycle TimeAccess Time600 nsSpecial FeaturesPower transient protection, separate temperature compensationI/O ParallelExternally Initiated Program Initiated Data InterfaceDirect memory access; buffered I/O Direct I/OLogicClass Transfer RateMonolithic integrated Transistor/transistor logic (TTL) and PackageLogicClass Type Primary PowerMonolithic integrated Transistor/transistor logic (TTL) and PackagePowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 N 31 to 52 W for basic assembly (28 optional)Output Regulated DC Features+5, -5, +12 V DC Overvoltage and overcurrent protection sequencing pluggable modular comPhysicalVolume Weight0.35 ft 3 18, 1 lb, for 4K storage	andom access, destr	uctive readout
Cycle Time Access Time Special Features1.33 µs (write or read/restore) 600 nsI/O Parallel ChannelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/O 16 bits plus address and control; sing Maximum Data Transfer RateLogic CircuitsClass Type Primary PowerMonolithic integrated Transistor/transistor logic (TTL) and Platpacks: 14, 16, and 24 leadsPower SystemPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 V 31 to 52 W for basic assembly (28 optional)Output Regulated DC FeaturesDC Features+5, -5, +12 V DC Overvoltage and overcurrent protectin sequencing pluggable modular conPhysicalVolume Weight0.35 ft 3 18, 1 lb, for 4K storage	it words	
Access Time Special Features600 ns Power transient protection, separate temperature compensationI/O Parallel ChannelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/O 16 bits plus address and control; sing Maximum Data Transfer RateLogic ClassClass Type PackageMonolithic integrated Transistor/transistor logic (TTL) and PackagePower SystemPrimary Power Support115/200 V AC, 3-phase, 400 Hz, 72 V Support 31 to 52 W for basic assembly (28 optional)Output Regulated DC FeaturesDC Features+5, -5, +12 V DC Overvoltage and overcurrent protectin sequencing pluggable modular conPhysicalVolume Weight0.35 ft 3 18.1 lb, for 4K storage	dule	
Special FeaturesPower transient protection, separate temperature compensationI/O ParallelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/OLogicClass Type Package16 bits plus address and control; sing Monolithic integrated Transistor/transistor logic (TTL) and PackagePowerPrimary Power System115/200 V AC, 3-phase, 400 Hz, 72 V 31 to 52 W for basic assembly (28 optional)Output Regulated DC FeaturesOvervoltage and overcurrent protecti sequencing pluggable modular conPhysicalVolume Weight0.35 ft 3 18.1 lb, for 4K storage	· ,	
I/O ParallelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/OLogicClass Type Package16 bits plus address and control; sing 150,000 to 600,000 words/secondLogicClass Type PackageMonolithic integrated Transistor/transistor logic (TTL) and PackagePowerPrimary Power System115/200 V AC, 3-phase, 400 Hz, 72 V 31 to 52 W for basic assembly (28 optional)Output Regulated DC Features5, -5, +12 V DC Overvoltage and overcurrent protecti sequencing pluggable modular conPhysicalVolume Weight0.35 ft 3 18.1 lb, for 4K storage		
I/O Parallel ChannelExternally Initiated Program Initiated Data Interface Maximum Data Transfer RateDirect memory access; buffered I/O Direct I/OLogic CircuitsClass Type Primary PowerMonolithic integrated Transistor/transistor logic (TTL) and PackagePower SystemPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 V 31 to 52 W for basic assembly (28 optional)Output Regulated DC Features5, -5, +12 V DC Overvoltage and overcurrent protecti sequencing pluggable modular conPhysicalVolume Weight0.35 ft 3 18.1 lb, for 4K storage	sense winding, 2-1/	2D organization,
ChannelProgram Initiated Data Interface Maximum Data Transfer RateDirect I/O 16 bits plus address and control; sing Maximum Data Transfer RateLogicClassMonolithic integrated Transistor/transistor logic (TTL) and PackagePowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 M 31 to 52 W for basic assembly (28 optional)Output Regulated DCFeaturesOvervoltage and overcurrent protecting sequencing pluggable modular comPhysicalVolume Weight0.35 ft 3 18.1 lb, for 4K storage	•	
Data Interface Maximum Data Transfer Rate16 bits plus address and control; sing Maximum Data Transfer RateLogic CircuitsClass Type PackageMonolithic integrated Transistor/transistor logic (TTL) and PackagePower SystemPrimary Power System115/200 V AC, 3-phase, 400 Hz, 72 M Support Support Support Support Support Transistor Support Suppo		
Maximum Data Transfer Rate150,000 to 600,000 words/secondLogicClassMonolithic integratedCircuitsTypeTransistor/transistor logic (TTL) and PackagePowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 M 31 to 52 W for basic assembly (28 optional)Output Regulated DC+5, -5, +12 V DC FeaturesPhysicalStandard StructureVolume Weight0.35 ft 3 18.1 lb, for 4K storage	•	
Transfer Rate150,000 to 600,000 words/secondLogicClassMonolithic integratedCircuitsTypeTransistor/transistor logic (TTL) and PackagePowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 V 31 to 52 W for basic assembly (28 optional)Output Regulated DC+5, -5, +12 V DC FeaturesPhysicalStandard StructureVolume Weight0.35 ft 3 18.1 lb, for 4K storage	gle-ended TTL inter	face
Logic CircuitsClass Type PackageMonolithic integrated Transistor/transistor logic (TTL) and PackagePower SystemPrimary Power (* 31 to 52 W for basic assembly (28 optional)Output Regulated DC Features-5, +12 V DC Overvoltage and overcurrent protecting sequencing pluggable modular comePhysicalVolume WeightVolume Weight0.35 ft 3 18.1 lb, for 4K storage		
Circuits Type Package Transistor/transistor logic (TTL) and Flatpacks: 14, 16, and 24 leads Power Primary Power 115/200 V AC, 3-phase, 400 Hz, 72 V 31 to 52 W for basic assembly (28 optional) Output Regulated DC +5, -5, +12 V DC Features Overvoltage and overcurrent protectin sequencing pluggable modular com Physical Standard Structure Volume Weight 0.35 ft ³ No 18.1 lb, for 4K storage	· .	· · ·
PackageFlatpacks: 14, 16, and 24 leadsPowerPrimary Power115/200 V AC, 3-phase, 400 Hz, 72 V 31 to 52 W for basic assembly (28 optional)Output Regulated DC+5, -5, +12 V DC FeaturesOvervoltage and overcurrent protecting sequencing pluggable modular comePhysicalStandard StructureVolume Weight0.35 ft 3 18.1 lb, for 4K storage	<u> </u>	· · ·
Power Primary Power 115/200 V AC, 3-phase, 400 Hz, 72 V System 31 to 52 W for basic assembly (28 optional) Output Regulated DC +5, -5, +12 V DC Features Overvoltage and overcurrent protecting sequencing pluggable modular com Physical Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage	d medium-scale integ	gration (MSI)
System 31 to 52 W for basic assembly (28 optional) Output Regulated optional) DC +5, -5, +12 V DC Features Overvoltage and overcurrent protecting sequencing pluggable modular com Physical Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage	•	· ·
Output Regulated optional) DC +5, -5, +12 V DC Features Overvoltage and overcurrent protecting sequencing pluggable modular com Physical Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage	W average for stand	lard structure,
Output Regulated DC +5, -5, +12 V DC Features Overvoltage and overcurrent protectines Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage	8 V DC primary inp	ut power
DC +5, -5, +12 V DC Features Overvoltage and overcurrent protectines Sequencing pluggable modular con Physical Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage	•	
Features Overvoltage and overcurrent protectine Sequencing pluggable modular con Physical Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage		·
sequencing pluggable modular con Physical Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage		
Physical Standard Structure Volume 0.35 ft ³ Weight 18.1 lb, for 4K storage		ction, power
Volume0.35 ft3Weight18.1 lb, for 4K storage	nstruction	
Weight 18.1 lb, for 4K storage	Basic Asser	mbly
Weight 18.1 lb, for 4K storage		
	0.06 ft ³	A12
21.7 lb, for 16K storage	3.6 lb, for	4K storage
	•	
Construction Plug-in modules used throughout	• •	
Cooling Indirect air, conductive Environment Meets or exceeds MIL E-5400, Class	•	

.

-•


•

- -

.

.

. . -

·	DATE10/20/72			SINGER COMP. N PRODUCTS I			PAGE NO. 4-	329
	REV.		BING	HAMTON, NEW YOR	К		REP. NO.	
· [Central Proces	ssing Uni	t	•				
							·	
						-	· · ·	
	· · 4 ·							
	The central processing	unit (CPU)	The 16-bit	immediate op	erand is		Exe	cutio
	contains the logic nece	essary to	formed fro	om the B field	(bits 0	Instruction	Tim	nes (µ
	fetch, decode, and exe	cute instruc-	through 7	of the operand	l) and			
	tions and to perform t			ement field (b		Logical	Compare High	:
	arithmetic, logical, and		through 1	5 of the operar	nd).		Compare Low	
	processing operations.	•			· ·		Compare Equal	
	tions are full 16-bit pa			Idressing is pro	vided in		AND	
	a basic cycle time of 3		two forma	ts:			AND to Storage	
	seconds. Sixteen-bit p						OR	
	terfaces are provided f		• Indirect		• • •		Exclusive OR	
	module, main storage,						R 1.1. AR -	
	memory loader/verifier	r, and op-	 Indirect ar 	a lally.	:	Branch	Exclusive OR to Stora	ge
ľ	erator control panel.	·.	1	1 .l	4 . A . H		Branch Out	
	Frank and the set of the second of the			Idressing permi			Unconditional	
- 1	Instruction Format			ecification with			Branch Unconditiona	
	An extensive set of ins			base register. A			Branch on A Negativ	
	is provided for arithme	· •		resses may be s tructions, thus		•	Branch on A Zero	
	cal, branching, data mo			. The Indirect			Branch and Link	
	I/O operations. Doubl add and subtract, toget			mode automat		Data	Load A	· · .
	the multiply and divide			he indirect add		Move	Store A	• •
	tions, provide for supp			each use, provi		more	Load Base	
	tended precision applic			er with excelle			Store Base	
	icided precision applie		• •	ta array•manip			Modify Base	
	A 16-bit instruction fo	rmat is used	potential.	a array mamp		•	Load Q	
-	to combine storage eff		P			•	Store Q	
	powerful addressing ca			• • •	•			
	Direct, indirect, relativ	• •			۰.,	Register	Reset Interface	
	mediate addressing mo					Operations	Base to A	
	vided in the short form		•		-		A to Base	
į	instruction.	•		·	Execution		Shift A Right	
			Instruction	·	Times (µs)	•	Arithmetic	
	SRS						Shift A Left Logical	
	OP 8 M DIS		Arithmetic	Add	2.7		Shift A, Q Right	
	0 4 5 6 7 8	15		Add Double	4.0 2.7		Arithmetic	
<u>ا</u> :	The D field enceifing wi	hathar ar	•	Subtract Subtract Double			Shift A, Q Left Logic	
	The B field specifies wi			Add to Storage	- 4.0 3.0		BITE Failure	
•	not the base register is address generation. The	-		Tally (Skip if ze		la mut l	In Service	
	specifies the addressing			Tally I/O	3.0	Input/	Out Service	
	be used. Direct mode		· .	Multiply	5.7	Output	Direct In	
	he first 512 locations		 .*	Divide	8.0		Direct Out	
[storage. Relative mode				U. U			. •
	an address displacemen				•		· .	
	spect to either the inst				•	+ Chife toward	(n): add n/6 if shift even	
	counter or the base reg					(n+3)/6, if o		0;

F-398-8-A

. .

•

- .

- - ---**...**.

- ---

...

-- -

.

- - -

DATE 10/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON. NEW YORK

PAGE NO. 4-330

REP. NO.

Input/Output

A fast parallel channel interacts with the high-speed CPU and main storage to provide excellent throughput and to feature performance, operation, and an I/O interface that are upward-compatible with other System/4 Pi machines, such-as-the IBM AP-1 computer.

Three I/O modes are provided for the transfer of data and command functions between the SP-1 computer and peripheral equipment: Direct Memory Access (DMA) I/O – The I/O device provides a 16-bit main storage address; 16 bits of data are written into or read from this storage location. The DMA I/O mode is initiated by the I/O device. A CPU lockout feature significantly increases the data transfer rate, providing a maximum data transfer rate of 600,000 words per second.

Buffered I/O – The I/O device provides an "address tag," used to access a channel control word (CCW) containing count and address; a single data word or a block of data words is written into or read from main storage. The Buffered I/O mode is initiated by the I/O device. A maximum data transfer rate of 175,000 words per second may be reached when the CPU is locked out. Direct I/O.— Under control of the CPU instruction stream, a command is sent to an I/O device, and one 16-bit word of data is written into or read from the device. The Direct I/O mode is initiated by the program. The data transfer rate is a function of the operation following the transfer and may be as high as 175,000 words per second.

In addition, an external interrupt is provided, allowing external equipment to cause the CPU to suspend current operations, store the current contents of the instruction counter, and load a new instruction count from the storage locations specified by the I/O device. The I/O device provides the interrupt service routine address, permitting the support of multiple interrupts. The I/O device also implements any priorities required.

		•	
Parallel Channel	Externally Initiated	Direct Memory Access: 600,000 words/s (maximum) Buffered I/O: 175,000 words/s (maximum)	
• •	Program Initiated	Direct I/O: 175,000 words/s (maximum)	
	Data Interface	16 bits plus address and control; single-ended TTL interface	
· · · ·	Maximum Data Transfer Rate	150,000 to 600,000 words/s	
Interrupt		One external interrupt line (multiple interrupts may be handl	ed)

F-398-8-A

DATE 10/20/72

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

PAGE NO. 4-331

REV.

F-398-8

BINGHAMTON, NEW YORK

REP. NO.

I/O Interface

The interface between the I/O channel and I/O devices is shown in the accompanying illustration. Each I/O device has unique Service Request and Service Acknowledge lines. Two pairs of these lines are built into the standard CPU and I/O logic pages, supporting two devices. More lines may be added on the custom I/O page if support for additional I/O devices is desired. The interface lines are implemented in standard TTL logic.

Either a single peripheral I/O device or a control unit may be attached to the I/O interface. Each control unit, addressed and controlled by a channel control word (CCW), may interface with as many as 127 peripheral I/O devices.

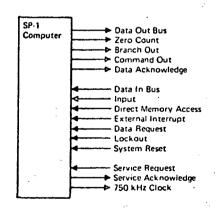


Figure 4.19.3-2.

DATE0/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

PAGE NO: 4-332

REP. NO.

SP-1 Computer Support Software

The SP-1 Support Programming System (SPS) provides the application programmer with a set of aids designed to effectively reduce the time required to get the application programs online and to support program modifications and maintenance. Continuing a field-proven concept, the SP-1. SPS provides the user with an assembler, a linkage editor, and a simulator program:

Assembler – Uses an efficient symbolic language. Allows modular programming and testing. Assembles relocatable programs. Provides syntax error detection and identification. Allows macroprocessing and conditional assembly. Produces listed output.

Linkage Editor – Combines and relocates program modules assembled at separate times. Resolves program linkages. Creates input for the simulator. Creates core image object programs for loading SP-1 computer storage.

Simulator – Allows SP-1 program analysis. Facilitates dynamic simulation through a user-written control program. Provides user access to simulated computer object program data (with absolute and symbolic reference). Allows object program correction. Provides program debugging options (dump, snap, trace). Enables simulation of I/O and interrupt initiation and response.

F-398-8-A

The SP-1 assembler gives the programmer a symbolic source language that produces storage efficient, high-throughput programs using the effective instruction set defined by the computer architecture. An excellent macroprogram capability significantly reduces the repetitive coding required of the application programmer.

Identical in most respects to the widespread, well known System/ 360 assembly language, the SP-1 assembler requires minimum retraining of experienced programmers and provides early online release of new trainees, thus significantly reducing training costs. High-quality user and programmer manuals assist programmers in the effective use of the SP-1 assembler language. Programming rules and techniques, such as modular programming (C-sects, D-sects, etc.), syntax, macroprogram generation, symbols and labels, source instructions, comments and continuation lines, and subroutine linkage, are in most cases identical to System/ 360 operations.

The linkage editor is used to combine object program modules into a core image load module for the SP-1 and to resolve all necessary program linkages. The linkage editor input to the SP-1 simulator program includes not only the core image load module, but symbolic reference data as well.

The simulator dynamically analyzes the SP-1 program modules at the instruction word level and executes any given set of SP-1 instructions prepared by the linkage editor. Facilities such as dumps, traces, and snaps are available under the control of a user-written simulation control program. DAID/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

Option Summary

Two major options are available for extending the capability and adaptability of the SP-1 computer:

• Expanded Main Storage – The minimum configuration SP-1 computer has a 4K-word main storage. Storage may be expanded in 4K increments to 16K words by inserting additional pluggable 4K storage pages into the structure. Self-contained timing and storage logic require no changes to the CPU and interface design. This modification can be installed in the field.

•Custom I/O — Space is provided, and the necessary control signals and data buses are included, for the insertion of a custom I/O module, individually designed to meet application requirements not covered by the standard broad-use, high-speed parallel channel.

F-398-8-A

-334	PAGE NO.4-3	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	ATE 10/20/72
	REP. NO.	BINGHAMTON, NEW YORK	EV.
		ftware and Systems Applications	4.19.4 MDE S
	· · · · · · · · · · · · · · · · · · ·	ftware and Systems Applications	4.19.4 MDE S

Software shall be provided to execute in the MDE Computers and shall perform the following functions:

Limit check analog parameters

Verify correct discrete status

Communicate results of the above two functions to CRT and panel annunciators.

Display crew selected subsystem status formats on CRT.

The combination of the above software functions along with the assumed hardware configuration will allow the crew to verify and make judgments as to subsystem status.

The software shall consist of a minimal control program, limit checking routines, display support routines and tables. Additionally, predefined format skeletons shall be supplied.

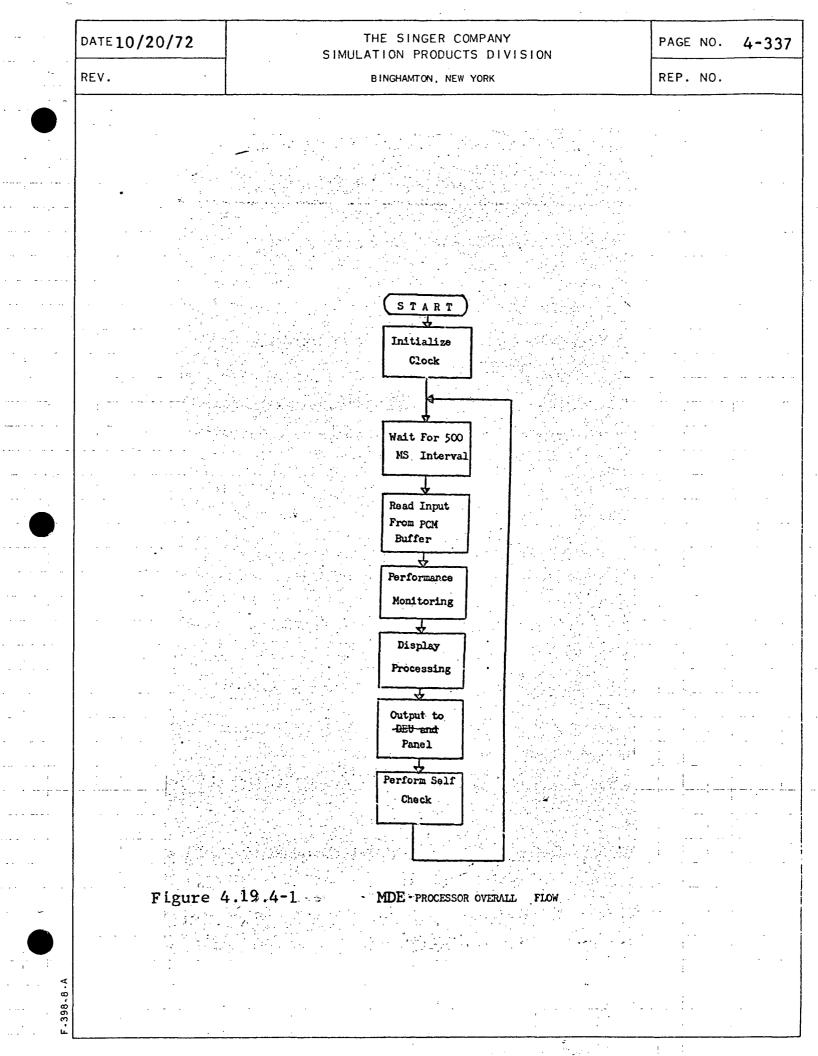
MDE Processor Control Program

The control program for the MDE processor schedules the processor software tasks for execution during a predefined fixed time slice processing cycle occurring every TBD ms, or at a preselected integral PCM frame count. The MDE processor cycle is shown in

-398-8

BINGHAMTON, NEW YORK

REP. NO.


Figure 4.19-8. Two control program subprograms, cycle control and data input, are executed prior to dispatching the performance monitor and display processing applications programs. Execution of data output and self-check subprograms complete this cycle. The control program subprograms are discussed in the following paragraphs:

1. Cycle Control - The cycle control function determine major cycle timing. It is presently planned that the occurrence of PCM master frames will be counted and that the processing cycle will be entered after that count reaches a value of two (a measurement sample rate and program iteration rate of 2/second was assumed for sizing purposes). The counter (or clock) is reset immediately before the major cycle is entered.

2. Data Input - Data input processing consists of initiating an I/O sequence to read the required PCM measurements into the processor main storage. Discrete measurements are assumed to be 1 bit each, and analog measurements are assumed to be 8 bits each. For sizing purposes, it was assumed that 300 analog and 300 discrete measurements are obtained for non GN&C performance monitor and display processing.

3. Data Output - The data output subprogram transfers the display update data to the MDE and transfers on/off signals to the subsystem annunciators as determined by the performance monitor software.

THE SINGER COMPANY DATE PAGE NO. 10/20/72 4-336 SIMULATION PRODUCTS DIVISION REV. REP. NO. BINGHAMTON. NEW YORK MDE and annunciator output lists are generated by the display processing and performance monitor application programs, respectively. These lists are processed by the control program to effect data output. Self-Check - The self-check subprogram is executed as 4. the last task in each processing cycle. Main storage, internal CPU, and I/O functions are tested. Anomalies detected by self-check are communicated by an external discrete indication and/or an error code to the MDE. 398-8

DATE	10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-338
REV.			REP. NO.
4.10	9.4.2 61	&C MDF System Application	

4.19.4.2.1 GN&C Display Systems Software

The Display subprogram in the GN&C MDE computers provides the capability to selectively support specific crew requested displays. This support includes arithmetic conversion, BCD conversion, formatting and transmission of GN&C data to the crew station displays. For output data, the display support software has the capability to process one parameter per line for twelve lines on each of fifty pages. In addition, the display software also processes input data passed from the crew station to the GN&C MDE computers via an alphanumeric keyboard. The processing of the input data includes interpretation, conversion, limit testing and reasonableness testing. The input processing function is capable of processing 100 parameters. The display system subprogram is capable of generating alphanumeric display messages and a vector symbol generation.

1. <u>Display System Subprogram</u>. The Display System Software performs the function of presenting the Oribter GN&C system status information to the crew via a combination CRT and keyboard (DSKY) displays. The DSKY consists of numeric and special character keys which the crew will use to communicate with the Display subprogram. The CRT display will accommodate 18 lines of alphanumeric data with 24 characters per data line. The 18 lines of data are dédicated to 1 title line, 16 measurement data lines, and 1 scratch pad line. Fifty CRT page formats, each containing 16 lines of data, are required to accommodate the GN&C display requirements.

DATE 10/20/72

.398-8

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

2. <u>Page Formats</u>. The 24 characters for each of the 16 measurement lines is subdivided into a group of 12 characters for measurement identification, 5 characters (including decimal point) for data, 4 characters for units, and 3 blank separator characters. The page skeleton information containing the page title, measurement ID's and units is contained in the MDE computer memory. The MDE memory contains 8K, 16 bit words. The memory required to perform data display calculations is included in the GN&C Display program.

3. <u>Display Selection</u>. The keyboards are each redundant. Data entered on each DSKY is directed toward each of the 3 GN&C computers simultaneously - so that all programs receive the same input data. Either display can be switched to read the outputs of any one of the 3 GN&C computers. The program structure is designed such that a different page of display data can be directed toward each of the CRT displays. Each DSKY can be coded to direct either a common or a unique display to each of the CRT displays.

As data is entered on the DSKY, the MDE will interrogate the DSKY and display the keyed data on the scratch pad line of the CRT display. The program will not react to keyed data requests until the ENTER button is depressed.

4. <u>Input Data Checks</u>. The program will perform input data tests on a selected set of DSKY input data. The tests will attempt to insure that erroneous or unrealistic data is not accepted by the program. In the event of a failure of the input data tests, the program

T	, 	
DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-340
REV.	BINGHAMTON, NEW YORK	REP. NO.
entered data. and forcing th clude 50 limit	he crew of the failure condition and will The crew has the option of overriding the he program to accept the data. The input t tests and 50 reasonablesness tests. <u>Display Types</u> . The program will provide	he test results data checks in-
data page dis	plays where each data page contains 12 sys	stem measurements
l title line a	and 1 scratch pad line. The 50 display pa	ages are further
defined as fol	llows:	·
· · · · · · · · · · · · · · · · ·	(a) 15 Systems Status Display Pages - '	To provide for
125 GN&C syste	em measurements including 40 analog, 60 d	
system status	measurements.	
· · · · · · · · · · · · · · · · · · ·	(b) 35 Parametric Data Displays - To p	rovide a capabili
for displaying	g approximately 400 measurements, interna	l computer calcu-
lations, or pr	rogram constants. The 400 lines of param	etric display
data are not j	presently defined.	
6.	Failure Indications. Any system failure	es detected by
the GN&C Fligh	ht program will be presented to the crew	via a caution and
warning indica	ation in addition to a failure message on	the scratch pad
line of the CH	RT display. The scratch pad line will in	form the crew of
the failure ty	ype and present a page number to be enter	ed via the
	btain a full set of CRT display data for	· · · · · · · · · · · · · · · · · · ·
	iple failure indications will be provided	
program.		
program.		

••

.

· -⁻;

.

•

۰,

.:

F-398-8-A

DATE10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-341
REV.	BINGHAMTON, NEW YORK	REP. NO.

4.19.4.2.2 GN&C Performing Monitoring Software

1. Analog Processing - A Performance Monitor module will be provided to verify that all GN&C system analog parameters are within a predefined set of high/low limits. An out-of-tolerance condition will cause notification to be made to the crew via subsystem annunciators and/or CRT displays. The current estimate is that 40 analog parameters will be processed by the routine. Each parameter will have four sets of high/low limits as an average. One set of these limits will be active during the various flight pases or modes.

The GN&C MDE computer control program will perform all input checks at either a 25/second or 2/second rate. The input data sources are the input buffers.

Upon completion of the input via the executive program, the control program will dispatch the Performance Monitoring tasks. After routine initialization, active interrogation of the current parameter value to the active limits is initiated. If no parameter is found out of tolerance, all parameters will quickly be processed and control passed back to the control program.

If a parameter is found out of tolerance, a test is made to determine if the parameter has been out of tolerance "n" times. The currently assumed value of "n" is two. This test prevents noise from causing superfluous no-go indications. If "n" successive conditions have been encountered, the type of crew notification required is interrogated. If an annunciator activation is specified, an 8-bit

.398.8

DATE 10/20/72

REV.

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

annunciator address code is placed on the control program output data list for transmission to the annunciator panel at the end of the processing cycle.

Measurements that are out of tolerance can be designated as a disregard for error notification by the crew. This capability is useful for stopping continuous error displays caused by invalid measurement readings. The disregard designation is made by requesting display of the format containing the measurement in error and utilizing the line designator switch on the MDE to identify the measurement. A cancel disregard designation is made in a similar manner.

If a CRT display is specified several actions occur. First, an indicator is set in the format skeleton associated with the out of tolerance parameter. When this format (page) is displayed, the appropriate parameter will have appended the out of tolerance flag which allows the crew to quickly see those out of tolerance conditions associated with the subsystem. For analog measurements, the flag will indicate the direction, high or low. of the out of tolerance condition.

The routine will then request a flag message display which will appear on the scratch pad (line 14) of the display the next time the Display Support routine updates the current display. The message will notify the crew that Performance Monitoring has detected an out of tolerance condition and will specify the page number on which the condition can be viewed. If the scratch pad is currently being used by the crew to enter a command, the display will be delayed until the

.398.

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	· · ·	PAGE NO. 4-343
REV		• •	

area is free. A related annunciator will notify the crew of the condition. The scratch pad line may then be cleared via the keyboard to free it for the error message.

In addition, a one line message is added to a queque of messages that reflect a summary of all out of tolerance conditions existing at the current time. These one line messages are displayed when the crew requests the Performance Monitor Status page and will reflect the 12 most recent out of tolerance conditions. Earlier malfunctions may be viewed by "paging" through the Performance Monitor Status displays via a special keyboard command. Provision will be made to accommodate up to 64 of the one line malfunction messages (4 x 16). If both panel and CRT crew notification action is specified for a particular parameter, both of the above described panel and CRT sequeces occur.

When a parameter that has previously been out of tolerance comes within tolerance, the converse of the above steps is performed. The annunciator is reset and/or the one line message in the Performance Monitoring Status format is purged and the remaining entries compressed. The crew notification scratch pad line message is removed if applicable.

The above discussion described the comparison of the current parameter value to the active limits. The active limits are established by a separate module identified as the Performance Monitor Phase Initializer. This module is called by the control program upon flight phase changes, or as commanded by the crew. Additionally,

i	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO.4-344
	REV.	BINGHAMTON, NEW YORK	REP. NO.

REP. NO.

measurement limit changes required for vehicle status change (e.g., engine firing) will be effected by monitoring discrete signals for the change in status. The Performance Monitor Phase initializer will have tables that associate the phase to the appropriate limits to use for each of the parameters for that phase. The tables have been sized to accommodate an average of four sets of high/low limits.

2. Discrete Processing - The Performance Monitor module will be provided to verify the correct status of certain subsystem input discretes Similar to the analog processing module, if a discrete is found to be in an incorrect state, the crew will be notified via panels and/or CRT displays.

The current assumption is that 60 GN&C discrete parameters will be monitored at a 25/second or 2/second rate.

The Executive control program will perform all input operation and pass control to the discrete processing module. After module initialization, groups of 16 discretes will be tested to determine if any one of the 16 discretes has changed. If none have changed, other groups are tested until the scan is complete.

If a discrete has changed a table entry is interrogated to determine the type notification specified. Again, this can be via annunciators, CRT, or both. If annunciator notification is specified, an eight bit annunciator address code and an associated on/off bit are quequed for output.

DATE10/20/72	 •	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	 PAGE NO. 4-345

REV:

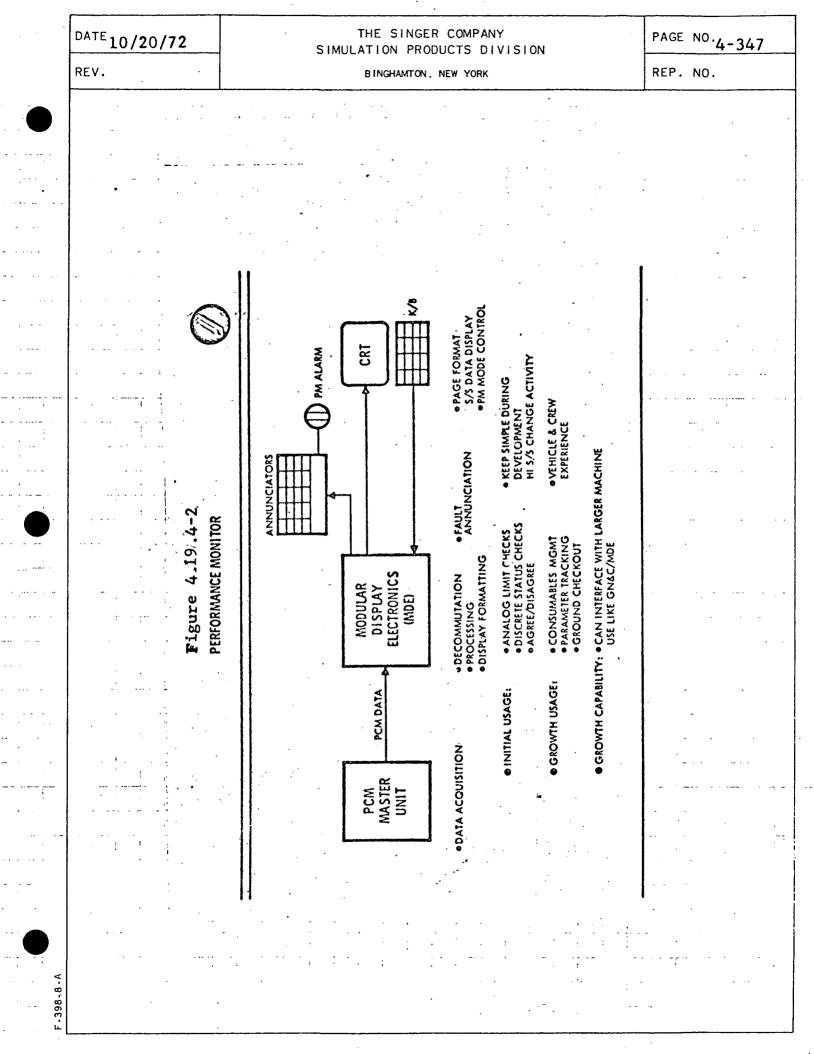
BINGHAMTON, NEW YORK

If CRT notification was specified, an "allow/disallow" table is interrogated to determine if the change was allowable. If so, no additional action is taken and the scan of other discretes continues. Presumably, the discrete for the current phase is not considered a part of the performance monitoring. If the discrete change is not allowed and is currently in the incorrect state, the same sequence as was **done** in analog processing is performed. The "out of tolerance" indicator is set in the format skeleton on which the discrete appears, a notification is placed on the scratch pad line, and a one line summary message is inserted in the Performance Monitoring Status format buffer. The use of this presentation is the same as described in the analog description. If the discrete change is to the correct state the converse of the above sequence is performed.

The initial discrete status and the control routines access to the proper "allow/disallow" and "should be" tables is established by the Performance Monitor Phase Initializer. This is the same routine mentioned earlier in the analog processing section. A set of allow/ disallow and should-be tables are provided for each flight phase.

DATE	10	120	172	
	LO.	140	116	

REP. NO.


4.19 .4.3 Performance Monitor (PM) System

The PM system consists of two MDE processors dedicated to the monitor and display of non-GN&C systems status or to the solution and display of the backup guidance and navigation function. One of the PM MDE processors capabilities is obtained by time sharing the center console GN&C MDE, between the GN&C display functions, the PM function, and the backup G&N functions. The PM MDE's will contain backup G&N programs so that a "get me home" capability is available in the event of a generic software error or other critical system failures. Reload of the MDE memory for a change of functions will be provided by a tape read-only memory under control of the crew.

Performance monitoring includes two primary functions: (1) Continuous limit/status checking of 300 analog and 300 discrete non-GN&C subsystem measurements with fault annunciation and PCM recorder control in the event of a malfunction: (2) Generate page format CRT display of related subsystem measurement sets at the flight crew's discretion.

The limit/status check program is executed at a two/second rate and contains false alarm avoidance provisions. No-go's are displayed on an annunciator light matrix that identifies the problem area and on a CRT "scratch pad" line that identifies the particular page on which the no-go parameter value can be observed. Growth provisions include consumables management, ground checkout usage, and redundant parameter tracking. Emphasis is placed on keeping the processing simple

REV.

DATE 10/20/72

REP. NO.

during the high vehicle subsystem change activity that will be encountered during the development phase.

Performance Monitoring Software

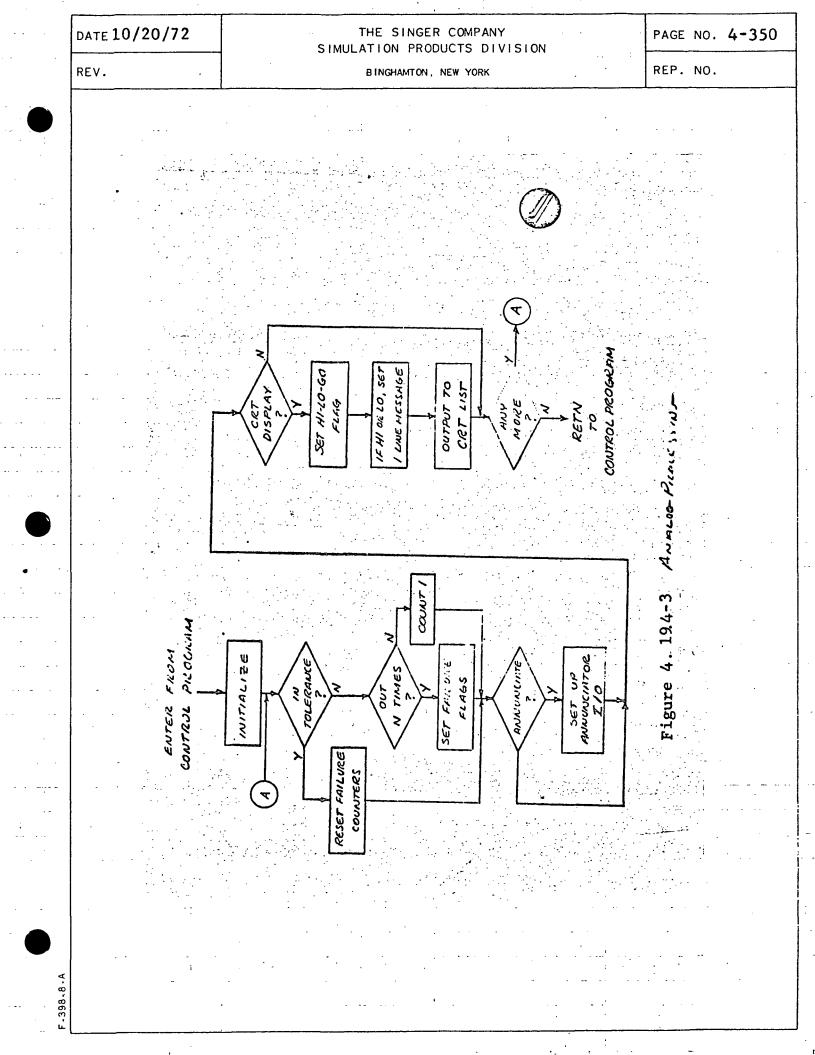
1. Analog Processing - A performance monitor module shall be provided to verify that all non-GN&C subsystem analog parameters are within a predefined set of high/low limits. An out-of-tolerance condition will cause notification to be made to the crew via subsystem annunciators, CRT display, or both annunciator and CRT. The current assumption is that 300 analog parameters will be processed by this routine. Each parameter will have three sets of high/low limits, on the average. One set of those limits will be active at a time.

The control program will input an entire set of the selected PCM measurements at a fixed predetermined rate, as described earlier. The input data source is the OFI Master Controller. Upon completion of the input routine, the control program will dispatch the performance monitor tasks.

After routine initialization, the analog measurements will be converted to engineering units, and in that form will be tested with respect to the active limits. Refer to the general program flow shown in Figure 4,19.4-3. If no parameter is found out of tolerance, all parameters will quickly be processed and control passed back to the control program. If a parameter is found out of tolerance a test is made to determine if it has been out of tolerance "n" consecutive times. This test prevents noise from causing superfluous no-go indications.

REV.

-398-


BINGHAMTON, NEW YORK

REP. NO.

If the error count has not yet reached "n" for that parameter, it's error counter is incremented and processing of other parameters continues. If the error count had reached "n", the type of crew notification required is interrogated. If an annunciator activation is specified, an 8-bit annunciator address code is placed on the control program output data list for transmission to the annunciator panel, at the end of the major processing cycle.

Measurements that are out of tolerance can be designated as "disregard for error notification" by crew. This capability is useful for stopping continuous error displays caused by invalid measurement readings. The disregard designation is made by requesting display of the format containing the erroneous measurement, and utilizing the line designator switch on the MDE assembly to identify the measurement. A "cancel disregard" designation is made in the same manner.

If a CRT display is specified several actions occur. First, an indicator is set to identify the no-go condition as "high" or "low". The routine then sets up a message for line 17 of the current display, which specifies the format number associated with the faulty parameter. The message notifies the crew that an out of tolerance condition has been detected and will specify the page number on which the condition can be viewed. If the scratch pad (line 17) is currently in use, the display will be delayed until the area is free and a discrete notification of the conflict will be issued to the MDE. Next, a one-line message is added to a queue of messages at the current time.

DATE	10	/20	/72
------	----	-----	-----

BINGHAMTON, NEW YORK

These one-line messages are displayed when the crew requests the Performance Monitor Status page, and will reflect the 16 most recent out of tolerance conditions. Earlier malfunctions may be viewed by "paging" through the four-page Performance Monitor Status displays via a special keyboard command. Provision will be made to accommodate up to 64 of the one-line malfunction messages (4 pages x 16 measurements per page). If both panel and CRT crew notification action is specified for a particular parameter, both of the above described panel and CRT sequences occur.

When a parameter that has previously been out of tolerance comes within tolerance, the converse of the above steps is performed. The annunciator is reset and/or the one line message in the Performance Monitoring Status format is purged and the remaining entries compressed. The crew notification scratch pad line message is removed is appropriate.

The above discussion described the comparison of the current parameter value to the active limits. The active limits are established by a separate module identified as the Performance Monitor Phase Initializer. This module is called by the control program upon flight phase changes or as commanded by the crew. Additionally, measurement limit changes required for vehicle status change (e.g., engine firing) will be effected by monitoring discrete signals for the change in status. The Performance Monitor Phase Initializer will have tables that associate the phase to the appropriate limits to use for each of the parameters for that phase. The tables have been sized to accommodate an average of three sets of high/low limits.

-398-

BINGHAMTON, NEW YORK

REP. NO.

2. Discrete Processing - A Performance Monitor module shall be provided to verify the correct status of certain subsystem input discretes. Similar to the analog processing module, if a discrete is found to be in an incorrect state, the crew will be notified via panels, CRT or both panel and CRT.

The current assumption is that 300 discrete parameters will be monitored at twice per second rate. The Discrete Performance Monitor module is briefly described. Refer to Figure 419.4-4 for the general program flow.

The control program will perform all input and pass control to the discrete processing module. After module initialization, groups of 16 discretes will be tested to determine if any one of the 16 discretes has changed. If none have changed, other groups are tested until the scan is complete.

If a discrete has changed, a table entry is interrogated to determine the type notification specified. Again, this can be via annunciators, CRT, or both. If annunciator notification is specified, an eight bit annunciator address code and an associated on/off bit are queued for output.

If CRT notification was specified, an "allow/disallow" table is interrogated to determine if the change was allowable. If so, no additional action is taken and the scan of other discretes continues. Presumably, the discrete for the current phase is not considered a part of the performance monitoring. If the discrete change is not allowed

DATE 10/20/72 THE SINGER COMPANY PAGE NO. 4-353 SIMULATION PRODUCTS DIVISION REP. NO. REV. BINGHAMTON, NEW YORK Enter From Control Prog Initialize Discred Yes Incorrect State А īa Flag Discrete No Discrete Clear Change In Wrong [Flag ? State Ycs. f Add 1-N' Output No Times o Failure 1 Line Message Count ? No Annunciate ? Yes Set Up Annunciator 1/0 CRI No Display Ycs **N** Discretes в Yes-Return To Control Pro Figure 4.19.4-4 Discrete Processing Flow. 2.10-43 SD 71-346

₽₽₽₽ ₽₽₽₽ ₽₽₽₽ ₽₽₽₽ ₽₽₽₽ ₽₽₽ ₽ ₽ ₽ ₽ ₽	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-354
REV.	BINGHAMTON, NEW YORK	REP. NO.
and is curren	itly in the incorrect state, the same sequend	ce as was done

in analog processing is performed. The "out of tolerance" indicator is set in the format skeleton on which the discrete appears, a notification is placed on the scratch pad line, and a one line summary message is inserted in the Performance Monitoring Status format buffer. The use of this presentation is the same as described in the analog description. If the discrete change is to the correct state, the converse of the above sequence is performed.

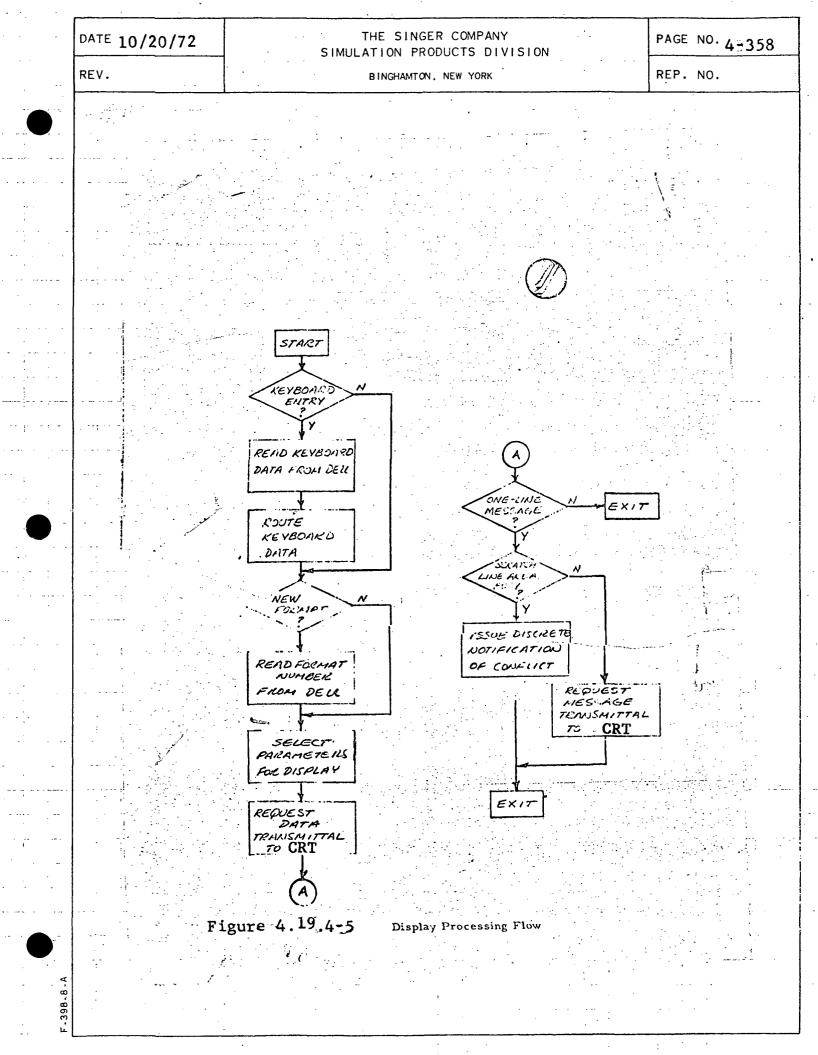
The initial discrete status and the control routines access to the proper "allow/disallow" and "should be" tables is established by the Performance Monitor Phase Initializer. This is the same routine mentioned earlier in the analog processing section. A set of allow/disallow and should-be tables are provided for each flight phase.

<u>Display Software</u> - The display software performs the function of organizing and presenting engineering unit subsystem data for CRT display. The following paragraphs describe the display software subprograms, which are stored in the processor, and the display formats, skeletons of which are resident in the MDE memory.

 For Description - Subsystem status information is presented on the CRT in predefined logical groups. A single group or format is presented at a time. Each format consists of a title line,
 to 16 measurement lines, and a scratch pad line. Each line may contain up to 24 characters. The measurement lines each contain

•	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-355		
	REV.	BINGHAMTON, NEW YORK	REP. NO.		
•••••	three fields;	for sizing purposes a 12-character measurer	ment description,		
	a 5-character	measurement value, and a 4-character engine	ering unit label		
	are assumed.	The scratch pad line is used for the displa	ay of keyboard		
	input data an	d messages from performance monitoring softw	vare. The		
· ·	format skeletons (exclusive of the actual parameter values) are stored				
	in the MDE me	mory, and contain the alphabetic measurement	name, engineer-		
· · · · · ·	ing units (fo	r example, "PSIA"), decimal points, display	edit information,		
	and Format Co	ntrol Words (FCW's). The FCW's specify char	acter genera-		
- ,	tion control	information, x and y CRT position data, and	mode control		
	data.	An "interface dictionary" (table of data),	which is		
	regident in t	he display processor, is associated with eac			
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
		which describes and controls the processing	•		
	each measurem	ent on a given format. The dictionary conta	ins the		
	measurement n	umber, conversion scale factors and biases,	output codes,		
	test limits,	and certain flags and pointers.			
	· · · · · · · · · ·	The maximum MDE storage requirement for a l	.6-measurement		
	format is:				
		17 lines of 24 characters + carriage return	215 words		
· · · ·		x, y position and control words	4 words		
	·····	Format Control and edit information	18-words		
			237 words		
	· · · · · ·				
F.398-8			······		

•


•

· •	· · · · · · · · · · · · · · · · · · ·	
DATE10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-356
REV.	BINGHAMTON, NEW YORK	REP. NO.
	The display processor storage requirement	for the inter-
face diction	ary data associated with a 16 (analog) measu	rement format
is:		· · ·
· ·· ·	Measurement designators, 16 x 12 character	s 96 words
· · · · · ·	Scale factors (1 # byte,+ Bias (2 bytes)	24 words
	Output codes (9 CRT, 3 annunciator)	2 words
	Test Limits, 3 sets at 1 word/set	48 words
	Total 16-bit words for one format:	170 words
·····	Total interface dictionary size for	· · · · · · · ·
· · · · · · · · · · · ·	35 formats:	5950 words
 ĵ	. MDE Keyboard Processing - The MDE keyboar	d and line-
	outtons are used by the crew to select format	
м к .,	fy flight measurements which are to be exclu	
-		
• •	nitor error notification. Activation of the	
	t keys result in its display on line 18 of t	
	keys are also stored, but not displayed. Ac	
specific key	will result in a signal of the display proc	essor, which
responds by	reading the input buffer data and routing it	to the proper
processing p	program. Figure 4.19.4-5 describes the displ	ay processing
flow.		· · · · · · · · · · · · · · · · · · ·
•	3. Display Update Processing - Display up	odate processing
consists of	determining which format has been selected f	for display,
assembling,	and organizing the appropriate parameter val	ues and status
flags, and s	scheduling data for output to the CRT and/or	annunciator.
		•
	· · ·	

.

• ;-

~	DATE 10/20/72	THE SINGER COMPANY	PAGE NO
	10/20/72	SIMULATION PRODUCTS DIVISION	PAGE NO. 4-357
	REV.	BINGHAMTON, NEW YORK	REP. NO.
		lay format has been identified, the inter	
······································		o determine which of the parameters are t	
	The engineeri	ng unit values (previously stored by the	performance monitor
· · ·	routines) are	queued for output to the CRT by the outp	ut program. The
	status (go or	no-go) of each parameter is inspected an	d if appropriate,
	a one line me	ssage is queued for transmittal and displ	ay on one of the
· · ·	four performa	nce mointor status pages.	
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
· • • • •	·····		
	· · · · · · · · · ·		
	······································		
	· · · · · · · · · · · · · · · · · · ·		n an
<u></u>	· · · · ·		
			· · ·
· · · · · ·			
	• • • • • • • • • •		
· · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
···· · · ·			
	· .		
	· · · · ·		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·		
	•		
F.398-8			
·			•

DATE	10	/20	/72

-398-8-

BINGHAMTON, NEW YORK

4-359

REP. NO.

4.19.4.4 Payload (PL) System

The PL system consists of two MDE processors dedicated to the status, control, checkout, initialization, and display of payload data. The PL computers which contain identical programs will both be active but only one will be in control. The PL system will not be required to process onboard experiment data which will be either recorded onboard or transmitted to the ground for processing. Data transmission and recording will not require the PL computer participation. Memory growth capability for the PL computer system is provided by a dedicated read-only tape memory unit.

•	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-360
•••	REV.	BINGHAMTON, NEW YORK	REP. NO.
	4.19.5 <u>Rati</u>	onale	
	Not	applicable.	
· · · .	4.19.6 <u>Assu</u>	imptions	
		lex"and "Page Select" keys are on keyboard.	
• •		References	· · · · ·
• • •			
		AP101/SP1 IBM OBC Candidates for Shuttl	
- 	232	MSC-03329 Space Shuttle Alternate Avion Study and Phase B Extension F	ics System inal Report
- ····		12 November 1971 Pages 2.10-1 thru 2.10-48 2.5-16 thru 2.5-24	· · · · · · · · · · · ·
··· ··································			o Chuttlo
······································	166	SD72-SH-50-3 Technical Proposal for Spac Program Volume III 12 May Pages 3-95 thru 3-122	1972
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	41	SD72-SH-0023 Space Shuttle Phase B Avion Report 8 March 1972 Pages 96 thru 103	lcs final
	· · · · · · · · · · · · · · · · · · ·	rages yo child top	
			· · · · · ·
· · · · ·	· · · · -· · · · · · · · · · · · · · · ·		·····
			· · · · ·
, , , , , , , , , , , , , , , , , , ,			
; '			
,			
· · · · · · · · · · · · · · · · ·			
	· · · · ·	· · · · · · · · · · · · · · · · · · ·	
	- * · · ·		
18-8-A			
-3 -3 -3			
		۰ ۵۰ ۱۰ ۱۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	

DAT	E 1	0	12	0	17	2	
	-	· · ·				£	

-398-8

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

4.20 MAIN ENGINE CONTROLLER

REF. 42 When the Space Shuttle vehicle operation requires the engine to start, operate at a given power level, or shut down, the vehicle sends a command to the engine. The controller is the electronic unit that receives these commands, determines the appropriate actions, and issues instructions to the engine controls. If the engine does not respond in a normal manner to these instructions, the controller modifies the instructions appropriately. If the engine parameters exceed predetermined limits and the limit control is enabled by the vehicle the engine is shut down by the controller.

Responsive control of the engine thrust level and mixture ratio is achieved by the controller updating the instructions to the engine controls fifty times a second (every 20 msec). The controller has the capability of interrupting the normal cycle for an update in less than 20 msec when the vehicle transmits a new command to the engine or acomponent failure warrants the interruption.

Precise engine performance is achieved through closedloop control, a 16-bit computer word, 12 bit input-output resolution and self calibrating analog to digital conversion.

DATE	10/20	/72
------	-------	-----

398-8

4.20.1 CONTROLLER DESIGN REQUIREMENTS

The controller is required to perform the following REF. 42 functions to implement the Avionics control, checkout and monitoring requirements.

1. Interface with the vehicle to receive engine commands and transmit data.

2. Interface with and provide signal conditioning, multiplexing and analog-to-digital conversion for 77 sensor signals and 93 analog built-in test signals. Also, provide pulse rate to digital conversion for 16 pulse sensor signals and 6 spark rate built-in-test signals.

3. Interface with and provide output electronics to command 5 proportional actuators (10 hydraulic servovalve torque motor coils and 22 solenoid coils), 13 pneumatic solenoid coils, and 6 spark igniters.

4. Process vehicle commands and engine performance data to provide closed-loop control at a rate of 50 times/ second (every 20 msec) for start, shutdown and mainstage control.

5. Provide built-in test hardware and software programs to validate the Avionics and engine system by conducting automatic self tests every 20 msec. performing engine BINGHAMTON, NEW YORK

REP. NO.

REV.

F-398-8

REF. checkout on vehicle command, and performing engine limit 42 monitoring.

6. Control engine purges upon vehicle command, monitor engines readiness to start and provide an engineready signal to the vehicle.

7. Provide engine maintenance data to the vehicle data recording system.

8. Provide redundancy to meet electronic fail-operational/fail-safe design requirements.

9. Provide electrical interfacing with redundant vehicle power buses and provide power switching, conversion, and distribution for the engine.

10. Provide connectors and circuitry for ground support equipment to alter and verify memory.

11. The controller is designed to operate without the use of external cold plates or cooling media.

The controller design requirements listed in Table 4.20-1 are principal requirements imposed by Rocketdyne for the controller design, including those imposed by the engine CEI and ICD requirements. DATE10/20/72

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

PAGE NO. 4-364

REV.

BINGHAMTON, NEW YORK

REP. NO.

REF. TABLE 4.20=1 SUMMARY OF SSME CONTROLLER REQUIREMENTS 42

REQUIREMENT	DESCRIPTION	REQUIREMENT	DESCRIPTION
		ENVIRGMENT	
CPEFATING DUPATION	0-500 SECONDS, MPL TO NPL	TRANSPORTATION AND	
estructure estruct	0-460 SECONDS, EPL	TEMPEPATURE	-65 TO +165 F
	UNLINITED, CHECKOUT AREA	HUMIDITY	100 PERCENT 4.0 G
ELECTRICAL		OPERATION TEMPERATURE	-170 TO +130 G
		HUHIDITY	100 PERCENT 15 PSIA TO VACUUM
pover	DUAL 115/200 VAC, 3 PHASE 400 HZ, 870 W PEAK, 560 W STEADY STATE MAXIMUM AT	VIBRATION	70 G PEAK SINE, 900-3000 HZ . 31 G RMS RANCOM, COMPOSITE
INTERFACES	NOMINAL VOLTAGE VEHICLE - PER ICO RSS-3500-5	ACOUSTIC	(I SIGHA LEVEL) 174 do
*********	GSE - AS REQUIRED TO ALTER	ACCELERATION ADDITIONAL REQUIRE-	±3.5 c
	HEHORY AND OPERATE CONTROLLER FRCH GROUND	MENTS	SALT SPRAY
	SENSORS - 23 PRESSURE, 13 TEMPERATURE, 6 FLOW, 8	· •	SAND AND DUST
	SPEED, 7 VIERATION AND 28 POSITION	VEIGHT	81 LBS
	OUTPUT - 10 SERVO VALVE COILS, 35 SOLENDID-COILS AND 6 SPARK		
	IGNITERS	SAFETY FACTORS	VIELD, 1.1 LIMIT DESIGN
· · · · · · · ·			ULTIMATE, 1.4 LIMIT DESIGN
DATA PROCESSING SAMPLE PATE			LCAD PROOF, 1.2 LIMIT DESIGN
DATA PATE	20 MS MAJOR CYCLE TIME 10,000 BITS/SEC - ENGINE TO VEHICLE		LOAD BURST, 1.5 LIMIT DESIGN LOAD
	100,000 BITS/SEC -DEVELOP- MENT TESTING	•	
DATA TRANSFER RATE	1,000,000 BITS/SEC	FATIGUE FACTOPS	4 (THERMAL CYCLES) 10 (MECHANICAL CYCLES)
MEMORY STORAGE	12,000 WORDS, FULLY REPRO- GPAMMABLE WITH MEMORY LOCKOUT	PARTS	PER 85403928
FAIL SAFE DESING	FAIL OPERATIONAL - FIRST FAILURE	CORROSION RESISTANCE	PROTECT FINISHES PER HSFC- SPEC-250
*• .	FAIL SAFE - SECOND FAILURE	CONNECTORS	PER HSFC - D#G-40H39569
SERVICE LIFE	100 ENGINE STARTS TO NPL	EHI/REI	PER MIL-STD-461, 462
· ·	6 ENGINE STARTS TO EPL CHECKOUT - UNLIMITED	BONDING	PER HIL-B-5087, CLASS R
MAINTAINABILITY	NO SCHEDULED SERVICING BETWEEN	IDENTIFICATION	PER HIL-STD-130
	RECYCLES-ACCESSABLE FOR REPLACEMENT BUILT-IN-TEST ISOLATES FAULTS	INTERCHANGEABILITY	PHYSICAL AND FUNCTIONAL, Complete,

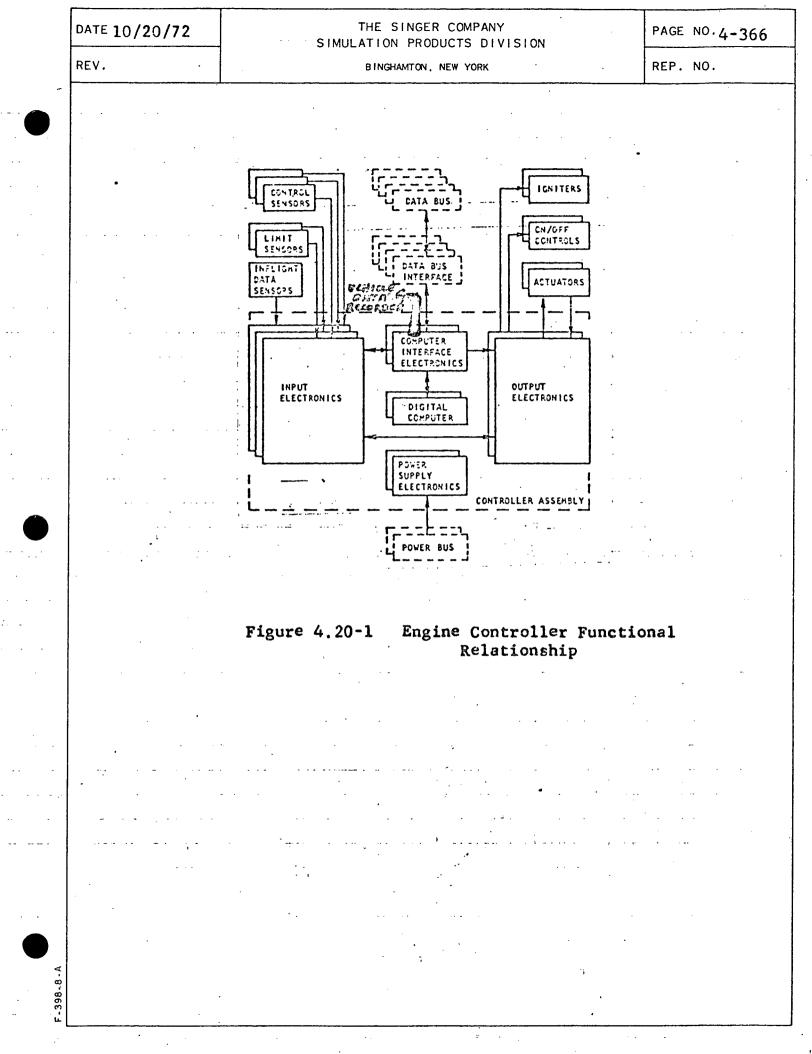
:

F-398-8-A

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE N2-365
REV.	BINGHAMTON, NEW YORK	REP. NO.

REF. 4.20.2 CONTROLLER DESIGN DESCRIPTION

42


398-8

The controller is a single integral electronics package mounted directly on each of the three main engines. The controller electronics are housed in a pressurized aluminum case assembly specifically designed to provide thermal and vibration protection during ground and flight operation. The total package weight is 81 pounds (36.7 kilograms).

The functional relationship of the controller to the engine is illustrated in Figure 4.20-1. Engine performance data are received from engine sensors. Vehicle commands and requests for data are received from the vehicle/engine interface. Control decisions made by the digital computer on the basis of these inputs are issued to three types of engine controls, i.e., actuators, on-off valves, and igniters. Information on operation of the actuators is fed back to the controller. The controller transmits engine data to the vehicle through the vehicle/engine data bus interface.

The electronics within the controller are divided into five subsystems:

1. Input Electronics - Receives data from all inflight sensors, converts it to digital form and sends it

REP. NO.

REF. to the computer interface electronics. Since the accuracy 42 of these electronic circuits contributes directly to controller accuracy, they are continuously monitored and recalibrated by the computer.

2. Computer Interface Electronics - Controls the flow of all data within the controller.

3. Computer - Receives sensor data, vehicle commands, and vehicle data requests. It performs computations, issues engine control commands, and stores engine data until requested by vehicle. The computer also conducts tests of all control system components once very 20 msec. The computer includes a 12,288-word memory which stores the control and test programs and the engine performance data.

4. Output Electronics - Converts the computer digital control commands to voltages suitable for powering the engine igniters, on-off controls, and actuators.

5. Power Supply Electronics - Converts the vehicle electrical power to the individual power supply voltages required by the Avionics system.

Detailed functional schematic diagrams of the electronics are contained in Avionics (550K) Drawings Report, Volume 76.

398-8

REF.

42

REV.

F-398.8

REP. NO.

The controller design is straightforward for minimum risk in development and operation. Low risk is achieved through the use of proven technology, built-in flexibility,

and conservative design.

The most significant single factor in reducing development risk is the adaptation of the Honeywell HDC-601 airborne computer to the SSME application. The HDC-601 is completely developed, production released.

Much of the substance of the HDC-601 (Table 4.20-2) is directly transferable to the controller application. The remainder is straightforward adaptation with minimal development risk. The HDC-601 has the required speed and accuracy, and is designed specifically for real-time control. The HDC-601 and its commercial counterparts, the DDP-516 and H-316 are presently fulfilling the requirements of numerous real time control applications. The H-316 uses the same logic as the HDC-601 but is packaged for commercial applications. The computer uses a plated-wire memory. The process of reading data from the memory does not disturb the contents of the memory; therefore, no additional time is required to restore the data in the memory as is the case with core types. Plated wire memories are more

DATE10/20/72 THE SINGER COMPANY PAGE NO. 4-369 SIMULATION PRODUCTS DIVISION REV. REP. NO. BINGHAMTON, NEW YORK **TABLE 4.20-2** APPLICABILITY OF HONEYWELL HDC-601 TO SSME CONTROLLER ----CHARACTERISTICS HOC-SOI COMPUTER SSHE CONTROLLER -----LOGIC "SAME AS HOC-601 FULLY DEVELOPED WORD LENGTH 16 BIT SAME AS HOC-601 ----REAL-TIME CONTROL VIA PRIORITY INTERRUPTS SAME AS HOC-601 MEHORY ACCESS DIRECT AND UNDER PROGRAM CONTROL SAME AS HOC-601 SAME AS HOC-601 FULLY DEVELOPED AND FIELD TESTED. STANDARD SOFTWARE COMPATISLE WITH DOP-516 COMPER-OPERATIONAL SOFTWARE DEVELOPED SPECIAL FOR EACH MAY BE VERIFIED ON COMMERCIAL DOP-516 PRIOR TO APPLICATION CONTROLLER AVAILABILITY MEMORY 5 HIL PLATED WIRE SAME AS HOC-601 WITH 2 HIL PLATED WIRE FOR "LOWER POWER AND GREATER SPEED INTEGRATED CIRCUITS SMALL AND MEDIUM SCALE BIPOLAR SAME AS HDC-601 PLUS NASA X-RAY AND SERALIZATION AND QUALIFICATION TTL TO HIL-STO-833, LEVEL A EDGE SUPPORTED PRINTED WIRING CIRCUIT PACKAGING JARDS WITH PLUG-IN CONNECTORS CHASSIS WIRING WIRE-WRAPPED POINT-TO-POINT SAME AS HDC-601 -----DIRECT CONDUCTION TO CHASSIS VIA "FOAN PACK" COMPONENT COOLING FORCED AIR CONVECTION THERMAL INSERTS

	•
	.398-8-A

and the second secon

. <u>.</u> .

....

REP. NO.

REF	•
1.2	

REV.

F-398-8

environmentally resistant than core types and operate over wider temperature ranges for any given speed. Vibration resistance is superior since the plated wires are embedded in epoxy planes sandwiched with the electronics boards into a compact rigid package. The controller memory uses 2-mil wire which requires one-fifteenth the power of core memories. The 2-mil memory is operated with low-power electronics, minimizing the number of components and improving the reliability.

The majority of the input-output electronics circuits have been developed and proven on prior Honeywell systems.

Flexibility inherent in the controller design also reduces development risk by accommodating the changes and unforeseen contingencies that arise in a normal development program.

Twenty percent spare connector pins and input/output electronics are included to provide for additional growth in the quantities of sensors, actuators or solenoid valves. The spare electronics will be wired into the controllers for development engines and those needed for the final design can be included in production controllers by adding duplicates of existing wiring board assemblies. Similarly,

DATE	10	/20	/72
------	----	-----	-----

.398.8

BINGHAMTON, NEW YORK

REF. 42 added control functions can be accommodated since 30 percent of the computational duty cycle is unused and 41 percent of the memory is uncommitted.

A major contributor to the flexibility of the controller design is the assempted digital mather than analog computation. Changes in operational sequences and functions may be accomplished simply by changes in computer software programs, avoiding costly and time-consuming hardware redesign, retrofit, and reverification. The flexibility of software programming also accelerates the schedule by permitting hardware design and build to proceed while software development is conducted in paralle. The use of wire-wrap interconnections greatly simplifies wiring alterations.

4.20.3 CONTROLLER INTERFACES

The main engine controller interfaces are listed in Table 4.20-3.

DATE 10/20/72	SIMULATION PRODUCTS DIVISION		PAGE NU. 4-	
REV.	BINGHAMTON, NEW YORK			REP. NO.
			-	
TA	BLE 4.20-3 CONTROL	LLER INTERFACE	S	
	· · · ·		· · ·	
REF. 224	•		• . • •	•
	· · · · · · · · · · · · · · · · · · ·	Baseline	· · · · · · · · · · · · · · · · · · ·	
		Number of	Spare	Total
· · ·		Interface	Interface	Number
		Circuits		Interfa
Inter	face	Required	<u><u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	Circuits
Vehicle Power	Bus	3	0	3
Vehicle/Engin	ne Electrical Interf	ace		
a. Command		3	0	3
-	er Channels	2	0	2
Pressure Sens		28	6	34
a. Externa		20	U A	34 2
Temperature S		6 0		6
a. Not Gas		4	2	r,
b. LH2/LO	(5K ohms)	6	1	7
	(1.38K ohms)	· 1	. 5	G
d. Control	ller Internal	3	0	3
Leal: Detectio	on Sensors (Space Pr	ovision Only)		
Tlow Sensors	· · .	8	2	10
Speed Sensors		8	• . 0	3
Position Sens		10	`	10
a. Actuato b. Servova	alve/Bleed Valve	10	2	12
:		10	4 -	•••
Vibration Ser	nso rs	· · ·		
a. Padial	•	4	1	5
b. Longit	udinal	3	1	4
Spark Igniter	-	· · · · ·		•
a. Cormand		6	• • • 0 • •	G
b. l'onitor	•	6	0	6
On/Off Solend	oid Coils		•	
a. Pneumat		· 7	. 2	9
b. Hydraul		20	5	25
Survo Valve		8	2	10
GSE Interface	3		-	•
Gom THEELINC	• · · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·	e de la companya de l		· · · · ·
· · · ·		· · ·		. .
	· · ·	¢		-
			4	
	· ·	••		

.398-8

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

REF. 224

4.20.3.1 VEHICLE/ENGINE ELECTRICAL INTERFACE

The vehicle to each engine controller interface will consist of eight individually twisted shielded pairs of wire. These wires will be divided into three command channels of two shielded pairs each and two recording channels of one shielded pair each. Each command channel will consist of one pair for transmission of commands to the controller and one pair for transmission of data and command echoes to the vehicle. Each recorder channel will consist of one pair for transmission of recorder data to the vehicle. For redundancy, the controller will have three connectors, one connector for each command channel with a recording channel in two of the connectors as defined in the ICD.

<u>Vehicle to Controller Signal Characteristics</u>

Transmission Rate:	10 ⁰ bits per second
Code:	Manchester Bi-Phase (Level) Square Wave
Coupling:	Transformer Isolation
Characteristic Impedance:	150 ohms ± 10 percent
Input Impedance:	Characteristic impedance
Input Voltage Impedance:	Greater than 5 volts p-p
Signal Rise time:	Less than 250 Nano-seconds
Signal Fall time:	Less than 250 Nano=seconds

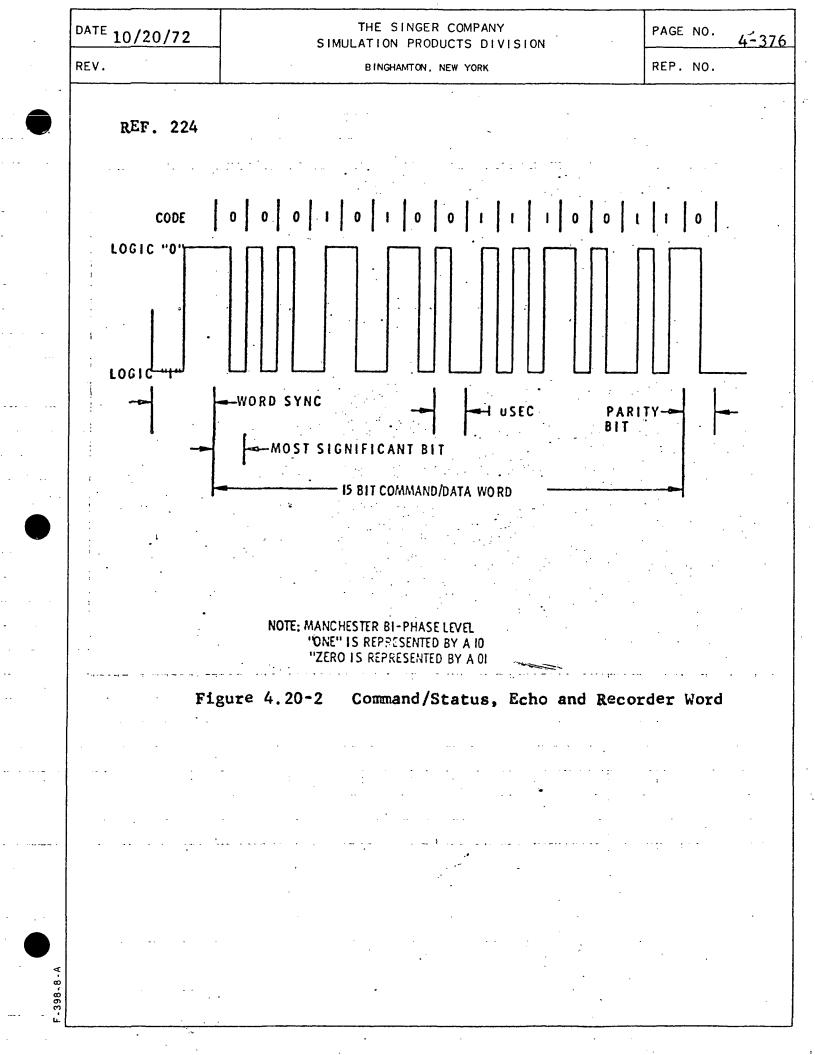
DATE 1	0/20/72 THE SINGER SIMULATION PROD		PAGE NO. 4-3
REV.	BINGHAMTON,	NEW YORK	REP. NO.
· ·. ·	·		••
REF.	Vehicle to Controller Signa	al Characteristics (c	ont [*] d.)
224	Signal Overshoot:	Less than 20 percen	t
	Signal Undershoot	Less than 20 percen	t
· .	Skew:	Less than 32 micros any two channels	econds betwe
	Controller to Vehicle Signa	1 Characteristics	
	Transmission Rate:	10 ⁶ bits per second	
•••	Code:	Manchester Bi-Phase Square Wave	(Level)
•	Coupling:	Transformer Isolati	on
	Characteristic Impedance:	150 ohms <u>+</u> 10 perce	nt
· · · ·	Driving Capability:	Minimum of 250 feet	· ·
	Output Voltage Amplitude:	Greater than 5 volt receiving end	s p-p at
	Signal Rise time:	Less than 250 nano-	seconds
	Signal Fall time:	Less than 250 nano-	seconds
	Signal Qyershoot:	Less than 20 percen	L .
· · · .	Signal Undershoot:	Less than 20 percen	
· · · · · · · · · · · · · · · · · · ·	Signal Droop:	Less than 20 percent	t
•••••		Less than 32 micros any two channels	
	• • • • • • • • • • • • • • • • • • •		
•			

·

.

REF. 224 REP. NO.

REV.


.398-8-A

<u>Channel Clock</u>. The clock for each command channel will be derived from the respective command channel information. The clock for each engine status data and command echoes channel to the vehicle will be derived from the controller internal clock. The clock for each recorder channel will be derived from the controller internal clock.

<u>Word Sync</u>. The word sync pulse, for both command and recorder channels, will be designated by two consecutive 360 degree pulses. Each pulse will be one-bit time in duration. The polarity of the first pulse will be equal to the first 180 degrees of a logical "1" state. The polarity of the second pulse will be inverted from the polarity of the first pulse.

<u>Command Word</u>. Command words from the vehicle will consist of 15 bits plus a parity bit per word. The relationship between the word sync pulse, command information, and parity bit is shown in Figure 4.20-2. Valid commands are listed in Table 4.20-4. Command code format is shown in Table 4.20-5.

Commands from the vehicle will consist of two basic types of commands. These are defined as absolute commands (i.e., start, shutdown, automatic checkout, etc.) and variable commands (i.e., thrust and mixture ratio).

DATE 10	/20/72				THE SINGER C				PAGE NO.4-	377
REV.	· · · · · · · · · · · · · · · · · · · ·			SIMUL	ATION PRODUC BINGHAMTON, NEW		IVISION		REP. NO.	
	COMMAND ACCEPTED TO PERFORM CHECKOUT OF VEHICLE/ENGINE INTEPFACE PHASES WHEN COMMAND IS ACCEPTED	PHASES WHEN COMMAND IS NORMALLY REQUIRED BY ENGINE	COMMAND	ATIC CHECKOUT INITIATES COMPLETE ENGINE CHECKOUT	SEQUENCE NO. 1 INITIATES 1) START PREPARATION PHASE 2) GN2 PURGE 3) HPOT INTERMEDIATE SEAL PURGE AND RELEASES FLOW- METER BRAKES	SEQUENCE NO. 2 INITIATES FUEL SYSTEM PURGE	SEQUENCE NO. 3 OPENS BLEED VALVES AND APPLIES PUMP LIFTOFF SEALS TERMINATES 1) FUEL SYSTEM PURGE 2) HPOT INTERMEDIATE SEAL PURGE AND APPLIES FLOWMETER BRAKES	SEQUENCE NO. 4 INITIATES FUEL SYSTEM PURGE DURING PROPELLANT RECIRCULATION	 START PHASE HPOT INTERMEDIATE SEAL PUFGE AND RELEASES FLOWMETER PRAKES 	TEPMINATES 1) GN2 PURGE 2) FUEL SYSTEM PURGE CLOSES BLEED VALVES AND RELEASES PUMP
• •	 × ×			AUTOMATIC	PURGE	PURGE	PURGE	PUFGE	START	•
	NMO		-TSO4	×				•		•
	•		TUHS	l 			· · · · · · · · · · · · · · · · · · ·			
		TAGE	SNIAM	1 1						
		,	TAATZ	• •	<u>.</u>	· · ·			×.	
)	NOITAAA	•		} } !	\bigotimes	\bigotimes	$\overline{\otimes}$	(\times)		· · · ·
	4	TUO	СНЕСК	X				•	×	· · · · · · · · · · · · · · · · · · ·
		~~~~~		37					1~1	

	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION PAGE NO. 4-378
	REV.	BINGHAMTON, NEW YORK REP. NO.
		· · · · · · · · · · · · · · · · · · ·
	E TO ENGINE COMMANDS (cont'd.) REF. 224 TO PERFORM CHECKCUT OF VEHICLE/ENGINE INTERFACE ND IS ACCEPTED ND IS NOFMALLY REQUIRED BY ENGINE	INITIATES ENGINE SHUTDOWN PHASEINITIATES ENGINE SHUTDOWN PHASETERMINATES HPOT INTERMEDIATE SEAL PURGEAND APPLIES FLOWMETER BRAKESCOMMANDS ENGINE MIXTUKE RATIOCOMMANDS ENGINE MIXTUKE RATIOCOMMANDS ENGINE MIXTUKE RATIOCOMMANDS ENGINE MIXTUKE RATIOEXECUTES COMMAND AFTER VALIDATIONINHIEITS PREBURNER TEMPERATURE LIMITCONTROL AND CONTROLLER INITIATED ENGINESHUTDOWNINITIATES 1ABDLES PREBURNER TEMPERATURE LIMITCONTROL AND CONTFOLLER INITIATED ENGINESHUTDOWNINITIATES 1ABDRT TURNAROUND MODESHUTDOWNINITIATES 1ABDRT TURNAROUND MODE3FUEL SYSTEM PURGE4PURGE AND FELEASES FLOW-METER BFAKESOPENS ELEED VALVES AND APPLIESPUMP LIFTOFF SEALSPUMP LIFTOFF SEALS
	TABLE 4.20-4VEHICLX-COMMAND ACCEPTEDX-FHASES WHEN COMMAX-FHASES WHEN COMMAX-PHASES WHEN COMMA	SHUTDOWN THRUST LEVEL MIXTURE RATI COMMAND EXEC COMMAND EXEC LIMIT CONTRO LIMIT CONTRO LIMIT CONTRO SEQUENCE NO.
	NWOOTUHS-TSC	
	NMOGIUH	<u> </u>
	TATAGE	
	TAAT	
	NOITAAAAAAA TAAT	
,	HECKOUT	
	• .	

1

•

F-398-8-A

DATE	10/20/72		SI		THE S	INGER CO		IY VISI	ON		PAG	E NO.4	-379
COMMANDS (cont'd.)	OUT OF VEHICLE/ENGINE INTERFACE	REQUIRED BY ENGINE FUNCTION	TBD	TBD	DINCH	CONTROLS VALVES DURING ENGINE			RESETS CONTROLLEF TO INITIAL CONDITION OF CHECKOUT PHASE - STANDBY OPERATING SELFTEST MODE	INITIATES CHECKOUT OF FUEL FLOWMETER	INITIATES CHECKOUT OF OXIDIZER	INITIATES SIMULATED STAPT AND SHUTDOWN 5 SEQUENCE	
TABLE 4.20-4 VEHICLE TO ENGINE	COMMAND ACCEPTED TO PERFORM CHECKOUT PHASES WHEN COMMAND IS ACCEPTED	PHASES WHEN COMMAND IS NORMALLY RI COMMAND	đM	TE PROPELLANT DUMP	FUEL VALVE	OXIDIZER VALVE PREBURNER OXIDIZER VALVE	R PREBURNER OXIDIZER VALVE	CONTROL VALVE	RESET	FLOWMETER SPIN TEST	FLOWMETER SPIN TEST	CHECK	
	 × × (	UH2-T204	X FUEL DUMP	X TERMINATE	MAIN FU	MAIN OX FUEL PR	OXIDIZER	COOLANT	X CONTROLLER	FUEL FL	OXIDIZER	SEQUENCE	
		NWOQTUHS				• _ •						· · · · ·	
•	ਤ	DATZNIAM	1				· .					• •	· · ·
		TAAT2					· · · ·		•				
ATC									× .				
NC		AG TAATZ	l L										· · · · ·
		CHECKOUT	) L		×	××	×	×	×	×	×	<b>`</b> ×	

DATE10/20/72		SI	THE S MULATION	INGER ( PRODU			5 I ON			PAGE	^{NO} .4-	380
REV.	-			MTON, NE						REP.	NO.	
COMMANDS (cont'd:) CKCUT OF VEHICLE/ÉNGINE INTEFFACE REQUIFED BY ENGINE	FUNCTION			INITIATES CHECKOUT OF PNEUMATIC VALVES DURING COMPONENT CHECKOUT		INITIATES CHECKOUT OF SENSORS	INITIATES CHECKOUT OF SPARK IGNITERS	REQUESTS CURRENT ENGINE STATUS				
TABLE 4.20-4VEHICLE TO ENGINE COMMX- COMMAND ACCEPTED TO PERFORM CHECKUTX- PHASES WHEN COMMAND IS ACCEPTEDX- PHASES WHEN COMMAND IS NORMALLY REQU	COMMAND	SYSTEM PURGE CONTROL V	FUEL SYSTEM PURGE CONTROL VALVE LIFTOFF SEAL AND BLEED VALVE CONTROL VALVE	HPOT INTERMEDIATE SEAL PURGE AND FLOWMETER BRAKES CONTROL VALVE	EMERGENCY SHUTDOWN CONTROL VALVE	SENSOR CHECKOUT	SPARK IGNITER CHECKOUT	K STATUS REQUEST				
NMOQTUH2-1		·				-		. ×	· · · · · · · · · · · · · · · · · · ·			
IDOMN IDOMN	L							×	· ·			
	8	<b>.</b>	L.					×				
•	IAT2			-				×	•			
NOITARAGARG TS								×				••••••
TUOX	CHE	×	× ×	<b>`</b> ×	×	×	. ×	×			•	•

.

DATE10/20/7	2		SIMU		SIN ON PI				SION		PAGE	NO.	4-381
REV.					IGHAMT						REP.	NO.	
TABLE 4.20-4 VEHICLE TO ENGINE COMMANDS (cont'd.)	X - COMMAND ACCEPTED TO PER	X - PHASES WHEN COMMAND IS ACCEPTED X - PHASES WHEN COMMAND IS NORMALLY REQUIRED BY ENGINE	COMMAND	COMMAND CHANNEL 1 INHIBIT	X COMMAND CHANNEL 2 INHIBIT COMMANDS TO DISQUALIFY FAILED CHANNELS	CCMMAND CHANNEL 3 INHIBIT	X COMMAND CHANNEL 1 ENABLE	COMMAND CHANNEL 2 ENABLE COMMANDS TO DISABLE CHANNEL INHIBITS	COMMAND CHANNEL 3 ENABLE			· ·	
4 4 - 4		MOUTUHS				×		×	×	.	. •		
	•		DUTUHS		×	×	×	× ·	×	1 - <b>-</b> - <b>-</b> -	 ·		
ч	•	<b>ADA</b>	LS <u>NIY</u> W		×	<b>×</b> , .	·~×	×	×				
			TAAT2	×	×	×	× 	× 	× 				
:	NOITA	PREPAR		×	×	×	×	×	× 	ļ			
		TUC	CHECKC	X	×	×	×	×	×	1			

.

..

.

.

DATE10/20/72	•	GER COMPANY RODUCTS DIVISION	PAGE NO. 4-382
REV.		ON, NEW YORK	REP. NO.
REF. 225	TABLE 4.20-5	VEHICLE/ENGINE COMMANI	D CODE FORMAT
			••••
PINARY CODE	OCTAL COL	DE COMMANE	) 
000 000 010 001 111	217	AUTOMATIC CHECKOU	л
000 000 010 000 001	201	PURGE SEQUENCE NO	). 1
000 000 010 000 010	202	PURGE SEQUENCE NO	
000 000 010 000 011	203	PURGE SEQUENCE NO	
000 000 010 000 100	204	PURGE SEQUENCE NO	). 4
000 000 010 001 000	210	START	
000 000 010 000 101	205	SHUTDOWN	· · · · · · · · · · · · · · · · · · ·
000 000 001 000 000	100	THRUST LEVEL ⁽¹⁾	
to	to 177		
000 000 001 111 011	173 001	MIXTURE RATIO ⁽²⁾	• •
000 000 000 000 001 to	to	MIXIURE RALLO	
200 000 000 010 110	026	· · · · · · · · · · · · · · · · · · ·	
000 000 011 000 010	302	COMMAND EXECUTE	
000 000 010 000 110	206	LIMIT CONTROL INF	IIBIT
000 000 010 000 111	207	LIMIT CONTROL ENA	
000 000 010 001 001	211	•	PURGE SEQUENCE NO
000 000 010 001 010	212	ABORT TURNAROUND	PURGE SEQUENCE NO
000 000 010 001 011	213	OXIDIZER DUMP	
000 000 010 001 100	214	FUEL DUMP	•
000 000 010 001 101	215	TERMINATE PROPELI	ANT DUMP
000 000 010 010 000	220	MAIN FUEL VALVE	
000 000 010 010 001	221	MAIN OXIDIZER VAL	.VE
000 000 010 010 010	222	FUEL PREBURNER ON	AIDIZER VALVE
00 000 010 010 011	223	OXIDIZER PREBURNE	ER OXIDIZER VALVE
000 000 010 010 100	224	COOLANT CONTROL V	ALVE
000 000 010 001 110	216	CONTROLLER RESET	
000 000 010 011 100	234	FUEL FLOWMETER ST	IN TEST
000 000 010 011 101	235	OXIDIZER FLOWMETE	ER SPIN TEST
000 000 010 011 110	236	SEQUENCE CHECK	· · ·
000 000 010 010 101	225	GN2 SYSTEM PURGE	CONTROL VALVE
000 000 010 010 110	226	FUEL SYSTEM PURGE	CONTROL VALVE
		·····	•

DATE	1	0/2	0/7	2					GER COMPANY RODUCTS DIVISION		PAGE NO. 4-383
REV.					•.				ON, NEW YORK		REP. NO.
	• •				TABLI	54.	. 20-5	VEHI	CLE/ENGINE COMMAND (cont'd.)	CODE	FORMAT
•	BINA	RY C	CODE		•		OCTAL	CODE	· · · · · · · · · · · · · · · · · · ·	• • •	
000 0	00 0	10 0	010	111		•	22	7	LIFTOFF. SEAL AND BLE	ED VA	ALVE CONTROL VAL
000 0	00 00	10 (	011	000			23	0	HPOT INTERMEDIATE SE BRAKES CONTROL VALVE		JRGE AND FLOWMET
000 0	00 0	10 (	)11	001	•	•	23	1	EMERGENCY SHUTDOWN C	ONTR	DL VALVE
000~0	00 00	ro ~(	)11	010		• .	-23	2	SENSOR CHECKOUT		ана стана стана Стана стана стан
000 0	00 0	10 (	011	011	••		23	<b>3</b> .	SPARK IGNITER CHECKO	UT	
000 0	00 0	11 (	000	100			3.0	4	STATUS REQUEST		
000 0	00 0	10 1	111	001			.27	1	COMMAND CHANNEL 1 IN	HIBIT	ſ
000 0	00 0	10 3	111	010	•		27	2	COMMAND CHANNEL 2 IN	HIBIT	r i i
000 0	00 0	10 1	11	100			27	4	COMMAND CHANNEL 3 IN	HIBIT	ſ
000 0	00 0	10 1	110	001	•		26	1	COMMAND CHANNEL 1 EM	ABLE	·
000 0	00 0	10 1	110	010			26	2	COMMAND CHANNEL 2 EN	ABLE	•
000 Q	00 0	10	110	100		. *	26	4	COMMAND CHANNEL 3 EN	ABLE	
000 0	00 0	11.1	111	111			37	7	• MESSAGE REJECT (3)		

NOTES:

F-398-8-A

Commands Thrust Level between 50 and 109 percent NPL in one percent increments.
 Commands Mixture Ratio between 5.5 and 6.5 in 0.05 unit increments.

3. Code transmitted to vehicle from engine if voted command is determined invalid.

BINGHAMTON, NEW YORK

REP. NO.

REV.

398-8

REF. 224 Absolute commands will agree exactly in content for all operable command channels. Voting with 3 good channels, 2 of 3 agreement will constitute a good vote. After first channel failure, 2 out of 2 agreement will constitute a good vote.

The variable command which is executed, assuming that all 3 channels are good, will be the average of all 3 variable commands after it has been determined that all three are within a TBD percentage difference of each other. After the first channel failure, an average of 2 variables will be made to a variable TBD percentage difference. Command values which are outside this limit will be disregarded.

The interval between successive commands from the vehicle to the controller will be a minimum of 2 milliseconds. The number of commands from the vehicle to the controller will not exceed 3 commands for a 20 millisecond period.

<u>Command Echoes to Vehicle</u>. Commands from the vehicle will be echoed twice by the controller. Commands will be echoed immediately, upon receipt of a command, on each individual command channel exactly as received from the vehicle. Concurrent with the individual channel echo and commensurable with the allowable skew between command channels, the controller will initiate voting of commands from BINGHAMTON, NEW YORK

REP. NO.

REV.

-398-8-A

all operable command channels. A validated command will REF 224 result in the transmission of the voted command to the vehicle to indicate message acceptance by the controller. Conversely, a command which is voted and determined to be invalid by the controller due to disagreement or incorrect phase of engine operation, will result in the transmission of a "message reject" code to the vehicle indicating the command has been rejected. The transmission of either the voted command or message reject code will occur within 400 microseconds of receiving absolute type command words from all operable channels. The transmission of either the voted command or message reject code will occur within 600 microseconds of receiving variable type command words from from all operable channels. All command word echoes will be transmitted on all command channels. The design of the controller will be such that, if in the future the command echo requirement is removed, the controller operation would not be degraded.

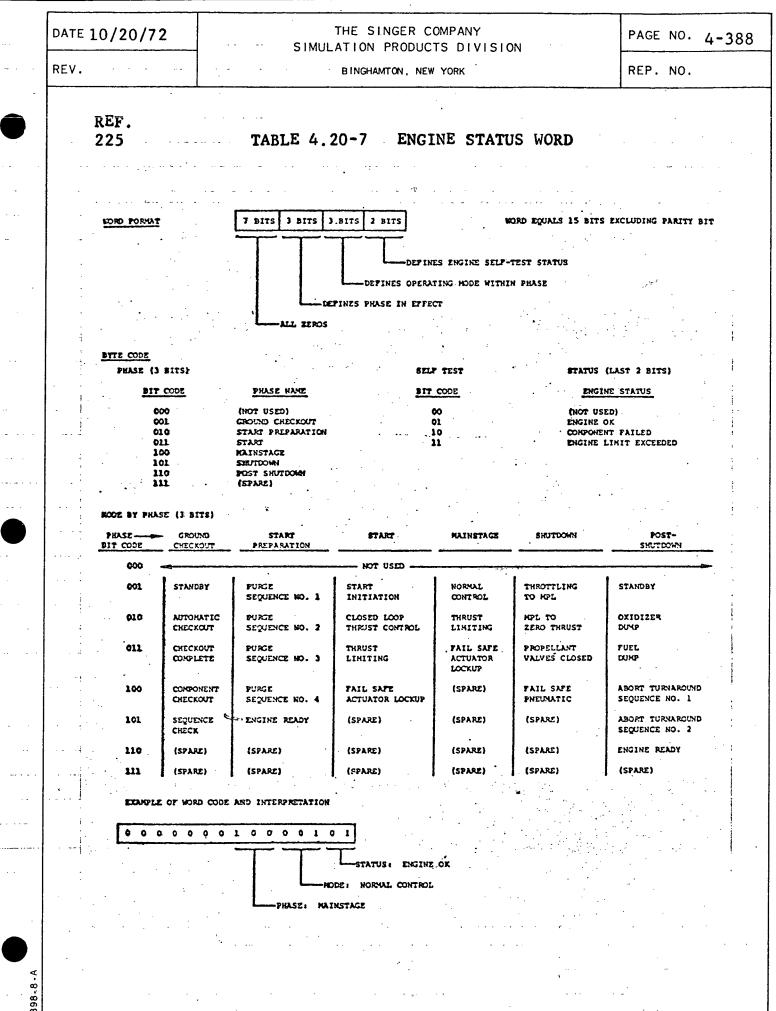
Execute Command. All commands from the vehicle, except the "status request" command, will be implemented with a "command execute" command. The command execute will be received from the vehicle within 200 microseconds following the transmission of the voted command from the controller. REF.

224

BINGHAMTON, NEW YORK

The controller will implement the most recent command which has been received and accepted prior to the command execute. Implementation will be concurrent with the transmission to the vehicle which indicates acceptance of the command execute.

Encine Status Data to Vehicle. The parameters listed in Table 4.20-6 Engine Status Transmitted to Vehicle, will be transmitted to the vehicle from the controller via the command channels in response to a "status request" command word. A command execute word is not required to initiate the transmission. The transmission of the parameters will be initiated immediately following the transmission of the voted status request echo. The format of the engine status data will be as shown in Figure 4.20-2 and Table 4.20-7 and will be transmitted on all command channels.


Word 4 of Tables v.20-6 and 4.20-9 is a failure identification of the items listed in Table 4.20-8 Failure Identification. Word 5 is an identifying test number associated with word 4 and shall include information concerning the number of failures experienced. This will not be limited to failures which cause redundancy switching but all detectable failures. Word 6 of Tables 4.20-6 and 4.20-9 is a parameter value associated with information contained in words 4 and 5. The data interval listed in

REV.

F-398-8

DATE10/20/72		THE SINGER C		PAG	E NO. 4-387
REV.		BINGHAMTON, NE			. NO.
REF. 224	TABLE 4.20-6	5 ENGINE STA	TUS TRANSMI	TTED TO VEHI	CLE
DATA			DATA WORD	SCALED RANGE	PRECISIO OF DATA
TEST NUMBER			1 2 3 4 5 6	- 0-8 0-520K - -	±1% ±6K lbs.
· · · · · · · · · · · · · · · · · · ·					
NOTES:					
1. THI	S DATA PROVID A STATUS REQU	ED TO VEHICLE	VIA COMMAN	D CHANNELS I	N RESPONSE
2. THE		ALL BE'OBTAINE	D FROM SAM	E DATA TABLE	AS FIRST
3. THRU	ST AND MIXTUR	E RATIO VALUES	S ARE 15 BI	r words.	
•	• • • • • • •				

•



.398.

* * *

DATE10/	20/72	S I MUI	THE SINGER CO ATION PRODUCT			PAGE NO.	4-389
REV.	-		BINGHAMTON, NEW	YORK		REP. NO.	
	F. 24	TABLE 4.20-8	FAILURE I	DENTIFICATI	on		
1.	Contro	ller Channel '	) 	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		
2.	Contro	ller Channel :	2		· .		
3.	GN2 Pu	rge Control Va	alve				, ·
-4.	Fuel S	ystem Purge Co	ontrol Valve	9		· · · ·	-
5.	Emerge	ncy Shutdown (	Control Valu	ve Channel '	1		е 
6.	-	ncy Shutdown (		· · · · ·	· · ·		· · ·
7.		d Vehicle Comr			n . 		· -
: 8.	Liftof	f Seal and Blo	eed Valve Co	ontrol Valve	<b>9</b>		
. 9.	Pressu	re Actuated Fu	lel Bleed Va	alve	•		:
10.	Pressu	re Actuated O	cidizer Blee	ed Valve	 		an di Angla an
11.	High P	Pressure Oxidi: ter Brakes Con	zer Turbopui	np Intermed:	iate Sea	al Purge	anđ
12.		ressure Oxidi: ter Brakes Con			iate Sea	al Purge	and
13.	Oxidiz	er System Pur	ge Pressure	Sensor	· · · · · · · · · · · · · · · · · · ·		
14.	Fuel S	ystem Purge Pi	cessure Sen	sor			· ·
15.	Fuel L	ifto <u>ff</u> Seal an	nd Bleed Va	Lve Control	Pressu	re Senso	r
16.	Oxidiz	er Bleed Valve	e Control P:	ressure Sen	sor	· .	
17.		eressure Oxidi: ter Brakes Pro				al Purge	and
18.		Pressure Oxidi: ter Brakes Pro				al Purge	and
19.	. Fuel P	reburner Igni	ter Channel	1		· ·	
20	. Fuel P	reburner Igni	ter Channel	2		· · · · · · ·	
21.	. Oxidiz	er Preburner	Igniter Cha	nnel 1	•		
22.	, Oxidiz	er Preburner	Igniter Cha	nnel 2	•	· · ·	•

DATE 10/20/72		THE SINGE	R COMPANY DUCTS DIVISIO	)N	PAGE NO. 4-39
REV.		BINGHAMTON,	NEW YORK	· · ·	REP. NO.
REF. 224	TABLE 4.20-8	5 FAILURE	IDENTIFICA	TION (cont	'd.)
•	· · · ·	• · ·	. •		
23. Main	Combustion Ch	namber Ign	iter Channe	211	•••
24. Main	Combustion Ch	namber Ign:	iter Channe	212	
25. Main	Fuel Valve Ac	tuator Ch	annel 1		
26. Main	Fuel Valve Ac	tuator Cha	annel 2		
27. Main	Oxidizer Valv	e Actuato:	r Channel 1		
28. Main	Oxidizer Valv	e Actuato:	r Channel 2		
29. Main	Combustion Ch	amber Coo.	lant Valve	Actuator C	Channel 1
30. Main	Combustion Ch	amber Coo	lant Valve	Actuator C	Channel 2
31. Fuel	Preburner Oxi	dizer Valv	ve Actuator	Channel 1	l
32. Fuel	Preburner Oxi	dizer Valv	ve Actuator	Channel 2	2
33. Oxidi	zer Preburner	Oxidizer	Valve Actu	ator Chanr	nel 1
34. Oxidi	zer Preburner	Oxidizer	Valve Actu	ator Chann	nel 2
35. Spare			•		
36. Spare					
37. Spare				· · · · · · · · · · · · · · · · · · ·	
38. Spare			· · · ·		
39. Spare	· · ·				
. 40. Spare	·.		•	•	
41. Spare					
42. Spare		· · · ·		•	
43. Low-E Chanr	ressure Fuel el 1	Turbopump	Discharge	Pressure S	ensor No. 1
44. Low-F Chanr	ressure Fuel el 2	Turbopump	Discharge	Pressure S	Sensor No. 1
	· · ·		••••••••••••••••••••••••••••••••••••••		

•

•

----- (

ATE <u>1</u>		IGER COMPANY RODUCTS DIVISION	PAGE NO. 4-
EV.	BINGHAMT	ON, NEW YORK	REP. NO.
REF 224		RE IDENTIFICATION (C	ont'd.)
45.	Low-Pressure Fuel Turbopum Channel 1	p Discharge Pressure	e Sensor No. 2
46.	Low-Pressure Fuel Turbopum Channel 1	p Discharge Temperat	ure Sensor No.
47.	Low-Pressure Fuel Turbopum Channel 2	p Discharge Temperat	ure Sensor No.
48.	Low-Pressure Fuel Turbopum Channel 1	p Discharge Temperat	ure Sensor No.
49.	Low-Pressure Fuel Turbopum	p Shaft Speed Sensor	<b>C</b>
50.	High Pressure Oxidizer Tur Sensor	bopump Turbine Seal	Purge Pressure
51.	Low-Pressure Fuel Turbopum	p Radial Vibration S	Sensor
52.	Fuel Flowrate Sensor No. 1	Channel 1	
53.	Fuel Flowrate Sensor No. 1	Channel 2	
54.	Fuel Flowrate Sensor No. 2	Channel 1	
55.	Spare		
56.	Fuel Preburner Temperature	Sensor No. 1	
57.	Fuel Preburner Temperature	Sensor No. 2	
58.	Fuel Preburner Chamber Pre	ssure Sensor	
59.	High-Pressure Fuel Turbopu	mp Discharge Pressu	re Sensor
60.	Spare		
61.	High-Pressure Fuel Turbopu	mp Shaft Speed Sense	or Channel 1
62.	High-Pressure Fuel Turbopu	mp Shaft Speed Sense	or Channel 2
63.	High-Pressure Fuel Turbopu	mp Radial Vibration	Sensor
64.	Full Preburner Longitudina	· · · ·	
	· · ·	· · · ·	

	DATE			THE SINGER	COMPANY		
		10/20/72	SIMU		CTS DIVISION	•	PAGE NO. 4-392
	REV.	·		BINGHAMTON, N	EW YORK	·	REP. NO.
		REF. 224 1	TABLE 4.20-8	FAILURE 1	DENTIFICATI	ON (cont'	d.)
				e se	<b>.</b>	-	. ·
	65.	Low-Press Channel 1	ure Oxidizer	Turbopump	Discharge P	ressure S	Sensor -
	66.	Low-Press Channel 2	ure Oxidizer	Turbopump	Discharge P	ressure S	Sensor
(	-6 <b>7</b> .	Low-Press	ure Oxidizer	Turbopump	Shaft Speed	Sensor	
	68.	Spare	•			•	
	69.	Low-Press	ure Oxidizer	Radial Vib	ration Sens	or	
	70.	High-Pres Channel 1	sure Oxidizer	Turbopump	Discharge	Pressure	Sensor No. 1
	71.	High-Pres Channel 2	sure Oxidizer	Turbopump	Discharge	Pressure	Sensor No. 1
	72.	High-Pres Channel 1	sure Oxidizer	Turbopump	Discharge	Pressure	Sensor No. 2
-	73.	High-Pres Channel 1		Turbopump	Discharge	Temperatu	re Sersor No.
	74.	High-Pres Channel 2		Turbopump	Discharge	Temperatu	re Sensor No.
	75.	High-Pres Channel 1		Turbopump	Discharge	Temperatu	re Sensor No. 2
	76.	High-Pres	sure Oxidizer	Turbopump	Shaft Spee	d Channel	1
	77.	High-Pres	sure Oxidizer	Turbopump	Shaft Spee	d Channel	2
	78.	High-Pres Pressure	sure Oxidizer Sensor	Turbopump	Boost Stag	e Dischar	ge
-	79.	High-Pres	sure Oxidizer	Turbopump	Radial Vib	ration Se	ensor
	80.	Oxidizer	Preburner Tem	perature S	ensor No. 1		
	81.	Oxidizer	Preburner Tem	perature S	ensor No. 2		
	82.	Oxidizer	Preburner Cha	mber Press	ure Sensor	•	
	83.	Oxidizer	Preburner Lon	gitudinal	Vibration S	ensor	
-398-8-A			• 	•		· . :	

_ .. . . .

REV. BIMOMANTON, NEW YORK REP. NO. REF. 224 TABLE 4.20-8 FAILURE IDENTIFICATION (cont'd.) 84. Oxidizer Flowrate Sensor No. 1 Channel 1 85. Oxidizer Flowrate Sensor No. 1 Channel 2 86. Oxidizer Flowrate Sensor No. 2 Channel 1 87. Spare 88. Oxidizer Tank Pressurat Pressure Sensor Channel 1 89. Oxidizer Tank Pressurat Pressure Sensor Channel 1 89. Oxidizer Tank Pressurat Pressure Sensor Channel 2 90. Main Combustion Chamber Fuel Injection Pressure Sensor 91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1 92. Main Combustion Chamber Pressure Sensor No. 1 Channel 1 93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1 94. Main Combustion Chamber Pressure Sensor No. 2 Channel 1 94. Main Combustion Chamber Coolant Temperature Sensor 95. Main Combustion Chamber Longitudinal Vibration Sensor 96. Main Combustion Chamber Longitudinal Vibration Sensor 97. Hydraulic System Pressure Sensor Channel 1 98. Hydraulic System Pressure Sensor Channel 1 100. Controller Internal Temperature Sensor Channel 2 101. Controller Internal Temperature Sensor Channel 1 102. Controller Internal Pressure Sensor Channel 1 103. Vehicle/Engine Command Channel 1 104. Vehicle/Engine Command Channel 3 106. Spare 107. Oxidizer Inlet Pressure Not Ready	DAT 10/20	/72	SIMU	THE SINGER COMPANY LATION PRODUCTS DIVIS	ION	PAGE NO.4-393
224TABLE 4.20-8 FAILURE IDENTIFICATION (cont'd.)84. Oxidizer Flowrate Sensor No. 1 Channel 185. Oxidizer Flowrate Sensor No. 2 Channel 286. Oxidizer Flowrate Sensor No. 2 Channel 187. Spare88. Oxidizer Tank Pressurant Pressure Sensor Channel 189. Oxidizer Tank Pressurant Pressure Sensor Channel 189. Oxidizer Tank Pressurant Pressure Sensor Channel 290. Main Combustion Chamber Fuel Injection Pressure Sensor91. Main Combustion Chamber Pressure Sensor No. 1 Channel 192. Main Combustion Chamber Pressure Sensor No. 1 Channel 193. Main Combustion Chamber Pressure Sensor No. 2 Channel 194. Main Combustion Chamber Coolant Temperature Sensor95. Main Combustion Chamber Longitudinal Vibration Sensor96. Main Combustion Chamber Longitudinal Vibration Sensor97. Hydraulic System Pressure Sensor Channel 198. Hydraulic System Pressure Sensor Channel 199. Controller Internal Temperature Sensor Channel 299. Controller Internal Temperature Sensor Channel 1100. Controller Internal Pressure Sensor Channel 1101. Controller Internal Pressure Sensor Channel 2103. Vehicle/Engine Command Channel 1104. Vehicle/Engine Command Channel 3105. Spare	REV.	· · ·	· · ·	BINGHAMTON, NEW YORK		REP. NO.
<ul> <li>TABLE 4.20-8 FAILURE IDENTIFICATION (cont'd.)</li> <li>Oxidizer Flowrate Sensor No. 1 Channel 1</li> <li>Oxidizer Flowrate Sensor No. 2 Channel 1</li> <li>Oxidizer Flowrate Sensor No. 2 Channel 1</li> <li>Spare</li> <li>Oxidizer Tank Pressurant Pressure Sensor Channel 1</li> <li>Oxidizer Tank Pressurant Pressure Sensor Channel 2</li> <li>Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>Main Combustion Chamber Coolant Temperature Sensor</li> <li>Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>Hydraulic System Pressure Sensor Channel 1</li> <li>Controller Internal Temperature Sensor Channel 2</li> <li>Controller Internal Temperature Sensor Channel 1</li> <li>Controller Internal Pressure Sensor Channel 1</li> <li>Vehicle/Engine Command Channel 1</li> <li>Vehicle/Engine Command Channel 3</li> <li>Spare</li> </ul>	REF	_	· . ·	•	•	
<ul> <li>85. Oxidizer Flowrate Sensor No. 1 Channel 2</li> <li>86. Oxidizer Flowrate Sensor No. 2 Channel 1</li> <li>87. Spare</li> <li>88. Oxidizer Tank Pressurant Pressure Sensor Channel 1</li> <li>89. Oxidizer Tank Pressurant Pressure Sensor Channel 2</li> <li>90. Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>93. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>		•	TABLE 4.20-8	FAILURE IDENTIF	ICATION (con	t'd.)
<ul> <li>85. Oxidizer Flowrate Sensor No. 1 Channel 2</li> <li>86. Oxidizer Flowrate Sensor No. 2 Channel 1</li> <li>87. Spare</li> <li>88. Oxidizer Tank Pressurant Pressure Sensor Channel 1</li> <li>89. Oxidizer Tank Pressurant Pressure Sensor Channel 2</li> <li>90. Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>93. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>			· ·	<b>7</b>	. ,	
<ul> <li>86. Oxidizer Flowrate Sensor No. 2 Channel 1</li> <li>87. Spare</li> <li>88. Oxidizer Tank Pressurant Pressure Sensor Channel 1</li> <li>89. Oxidizer Tank Pressurant Pressure Sensor Channel 2</li> <li>90. Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>94. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 1</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	84	. Oxidi	izer Flowrate	Sensor No. 1 Chan	nnel 1	
<ul> <li>87. Spare</li> <li>88. Oxidizer Tank Pressurant Pressure Sensor Channel 1</li> <li>89. Oxidizer Tank Pressurant Pressure Sensor Channel 2</li> <li>90. Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Temperature Sensor</li> <li>96. Main Combustion Chamber Coolant Pressure Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Tressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	85	. Oxidi	izer Flowrate	Sensor No. 1 Chan	nel 2	
<ul> <li>88. Oxidizer Tank Pressurant Pressure Sensor Channel 1</li> <li>89. Oxidizer Tank Pressurant Pressure Sensor Channel 2</li> <li>90. Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Temperature Sensor</li> <li>96. Main Combustion Chamber Coolant Pressure Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	86	Oxidi	izer Flowrate	Sensor No. 2 Chan	nnel 1	•
<ul> <li>89. Oxidizer Tank Pressurant Pressure Sensor Channel 2</li> <li>90. Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	87	Spare	9			
<ul> <li>90. Main Combustion Chamber Fuel Injection Pressure Sensor</li> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 1</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 1</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	88	. Oxidi	izer Tank Pres	ssurant Pressure S	Sensor Channe	el 1
<ul> <li>91. Main Combustion Chamber Pressure Sensor No. 1 Channel 1</li> <li>92. Main Combustion Chamber Pressure Sensor No. 2 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	89	. Oxidi	Lzer Tank Pres	ssurant Pressure S	Sensor Channe	el 2
<ul> <li>92. Main Combustion Chamber Pressure Sensor No. 1 Channel 2</li> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 1</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	90	. Main	Combustion Ch	namber Fuel Inject	ion Pressure	e Sensor
<ul> <li>93. Main Combustion Chamber Pressure Sensor No. 2 Channel 1</li> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 1</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	91	. Main	Combustion Ch	namber Pressure Se	ensor No. 1 (	Channel 1
<ul> <li>94. Main Combustion Chamber Coolant Temperature Sensor</li> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>105. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	92	. Main	Combustion Ch	namber Pressure Se	ensor No. 1 (	Channel 2
<ul> <li>95. Main Combustion Chamber Coolant Pressure Sensor</li> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>105. Vehicle/Engine Command Channel 3</li> </ul>	93	. Main	Combustion Ch	namber Pressure Se	ensor No. 2 (	Channel 1
<ul> <li>96. Main Combustion Chamber Longitudinal Vibration Sensor</li> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 3</li> <li>105. Vehicle/Engine Command Channel 3</li> </ul>	94	.' Main	Combustion Ch	namber Coolant Tem	mperature Ser	nsor
<ul> <li>97. Hydraulic System Pressure Sensor Channel 1</li> <li>98. Hydraulic System Pressure Sensor Channel 2</li> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 2</li> <li>105. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	95	. Main	Combustion Ch	namber Coolant Pre	essure Sensor	r
98. Hydraulic System Pressure Sensor Channel 2 99. Controller Internal Temperature Sensor Channel 1 100. Controller Internal Temperature Sensor Channel 2 101. Controller Internal Pressure Sensor Channel 1 102. Controller Internal Pressure Sensor Channel 2 103. Vehicle/Engine Command Channel 1 104. Vehicle/Engine Command Channel 2 105. Vehicle/Engine Command Channel 3 106. Spare	96	. Main	Combustion Ch	namber Longitudina	al Vibration	Sensor
<ul> <li>99. Controller Internal Temperature Sensor Channel 1</li> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 2</li> <li>105. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	97	. Hydra	aulic System I	Pressure Sensor Ch	nannel 1	
<ul> <li>100. Controller Internal Temperature Sensor Channel 2</li> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 2</li> <li>105. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	; 98	. Hydra	aulic System I	Pressure Sensor Ch	nannel 2	:
<ul> <li>101. Controller Internal Pressure Sensor Channel 1</li> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 2</li> <li>105. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	99	. Conti	coller Interna	al Temperature Ser	nsor Channel	1
<ul> <li>102. Controller Internal Pressure Sensor Channel 2</li> <li>103. Vehicle/Engine Command Channel 1</li> <li>104. Vehicle/Engine Command Channel 2</li> <li>105. Vehicle/Engine Command Channel 3</li> <li>106. Spare</li> </ul>	100	. Conti	coller Interna	al Temperature Ser	sor Channel	2
103. Vehicle/Engine Command Channel 1 104. Vehicle/Engine Command Channel 2 105. Vehicle/Engine Command Channel 3 106. Spare	- 101	. Conti	coller Interna	al Pressure Sensor	Channel 1	
104. Vehicle/Engine Command Channel 2 105. Vehicle/Engine Command Channel 3 106. Spare	102	. Conti	coller Interna	al Pressure Sensor	Channel 2	
105. Vehicle/Engine Command Channel 3 106. Spare	103	. Vehic	cle/Engine Cor	nmand Channel 1		
106. Spare	104	. Vehic	cle/Engine Cor	nmand Channel 2		
	105	. Vehic	cle/Engine Cor	nmand Channel 3		
107. Oxidizer Inlet Pressure Not Ready	106	. Spare	e .	•		
	107	. Oxid:	izer Inlet Pro	essure Not Ready		

-

. . .

• • -

4.

. -

•

DATE	10/20/72	SIML	THE SINGER COMPANY		PAGE NO. 4
REV.			BINGHAMTON, NEW YORK		REP. NO.
	EF . 24	TABLE 4.20-8	FAILURE IDENTIE	ICATION (cont	'd.)
•			۰. ۱	 • •	
10	8. Oxidi:	zer Inlet Tem	perature Not Rea	dy	
10	9. Fuel :	Inlet Pressur	e Not Ready		
-   11	0. Fuel :	Inlet Tempera	ture Not Ready	•	
11	1. Hydrau	ulic System P	ressure Out of L	imits	
11	-		order Channel 1		
[`] 11			order Channel 2		
11		le 400 Hz Pow			
		le 400 Hz Pow			
	6. Spare	٠			
;	· -	-	përature Out of	T.imits	
		•	Temperature Out		**
· • *	•		Turbopump Shaft		Timite
. 11			izer Turbopump S		•
÷		• •			
12	:		amber Pressure O		
	•		anger Pressure D	and the second sec	
12 			izer Turbopump I es Pressure Out		ear Purge
12	4. and g:	reater are Sp	ares	•	
NC			Sensor, Harness, put or Output El		

F-398.8.A

REF. 224 TABLE 4.20-9	DATA	TRANSMITTED TO RECORDER			DATO/2 REV.
DATA(2)	DATA WORD	SCALED RANGE	PRECISION(3) OF DATA	DATA INTEPVAL-MS	20/72
ENGINE STATUS MIXTURE RATIO	- 01	ωı		-	
TIFICATI	かまい	ŧ ŧ .	±6K LDS.		
TEST NUMBER OF DATA BYTE NO. 4 PARAMETER VALUE OF DATA BYTE NO. 4	n o			00	SIN
LOW PRESSURE FUEL TURBOPUMP DISCHARGE PRESSURE	7-10	ISA 000-0	±2% F.S.	10	AULA
DISCHARGE TEMPERATURE	11	m m	1 1. 16-R	07	AT I
SHAFT SPEED	12	-20,00	ы. Ж		S I ON IGHAI
RADIAL VIERATION ETTET ELOUDATE	13 14-17	0-300g RMS	4 4 4 4 7	00	PR
			• 4 . R	2	ODL
SCHARGE PR	18-21	8	±2% F.S.	10	лст
SHAFT SPEED	22	-45,000	5	01	s c
CLAL VIERAT	23	- 300g	Z ~ ~		) I V
FUEL FREBURNER CHAMBER FRESSURE FUEL PREBURNER TEMPERATURE	26 26	0-7300 FSI	+2% F.S.	70	
PRESSURE OX	··· ·		t 1		ON
DISCHARGE PRESSURE	27-30	-600 F	æ	10	
SHAFT SPEED	۳. ۲	0-5500 RPM	1% F.S.	60	
FALTAL VIERATION HTCH PEESSHPF AXIDIZEE THRRADIMD	34	50.05 -	±0.2 MV/9	0 7	
CHARGE PRESSURE	33-36	S4 00		10	
	37	00 to	ે કે કરો	07	
	38-39	ST 00		20	
ທ	40	-35,000	ы. ж	01	
FACIAL VIERATION	41 50-55	$\circ \circ$	0.2 M	03	N
	46-47	0002-			
FEBURNER TEMPERAT	48	-2300F	•	40	
MAIN COMB. CHAMBER FUEL INTECTOR DEFERING	C		ن ۲		4-3
<u> </u>	רת בי נ		· · · · · · · · · · · · · · · · · · ·	5	<u>.</u>

--

(

•

		0/20/72	_	S	IMUL		N PRO	DUC	TS D	IVI	SION	4			┝		NO.		-396
	REV.					BING	IAMTON	. NEV	/ YORK	(						REP.	NO.		
	· · · ·	DATA INTERVAL-MS	0 0 5 <del>4</del>	00	0 0 C		20		0 0 0 1 <del>-</del>	4 4	110	40,	<b>0</b> 3	C 3		40(1)	0 11	40	40 40
	(cont'd.)	PRECISION(3) OF DATA	128 128 F.S.	±2% F.S. +3% F.S.	1 L4 L4	ы 14 18 18	н 1 2 8	1) 76, 7	. L. L	4 64 8 68 - (N	±2% F.S.	±2% F.S.	±2% F.S.	±2% F.S.	1 1 1	+ 2 % F . C .	±0.2 MV/9	±0.2 MV/9	±0.2 MV/9 ±2% F.S.
	TRANSMITTED TO RECORDER	SCALED RANGE	-423 to +700F 0-6500 PSI	.0-6500 PSI 10-4000 PST	-100%	0-100%	0-100%	0-10.0%	0-100%	- 1000 P	IS4 000L-0	0-1000 PSI	0-1000 PSI	ISA 001-0	с С	154 0001-0	0-1000g RMS	0-1000g RMS	0-10009 RMS 0-50 PSI
	DATA TRANS	TA RD	Q				3	9							•		•	· · ·	
	4.20-9 D/	DATA WORD	54 55-56	<b>5</b> 7 58	60	62	/E 63-64	65-66	67 68	69	2	71	72	73	74	75	76	77	78 79
F.398.8-A	REF. 224 TABLE	DATA(2)	MAIN COMBUSTION CHAMBER COOLANT TEMPERATURE OXIDIZER TANK PRESSURANT PRESSURE MAIN COMBUSTION CHAMBED	NULIC SYSTEM	FUEL VALVE ACTUATOR OXIDIZER VALVE ACTU	MAIN COMBUSTION CHAMBER COOLANT VALVE ACTUATOR POSITION	OXIDIZER PREBURNER OXIDIZER VALV ACTUATOR POSITION	FUEL PREBURNER OXIDIZER VALVE ACTUATOR POSITION	FUEL BLEED VALVE POSITION OXIDIZER BLEED VALVE POSITION	SYSTEM PURG	OXIDIZER BLEED VALVE	CCNTFOL PRESSURE FUEL LIFTOFF SEAL AND BLEED	OL PI	DWIETER BRAKE PRESS	HPOT TURBINE SEAL PURGE PRESSURE	TONGT	PRATION PRATION T775 DDFBHC	ON CON CON	NGITUDINAL V RCLLEF INTER

,

:

REF. 224 TABLE 4.20-9 DATA TRANSMITTED TO RECORDER (cont'd.)		DATE 10/20, REV.
DATA(2) PRECISION(3) DATA SCALED PRECISION(3) DATA(2) FANGE OF DATA INTERV	DATA INTERVAL-MS -	
<ul> <li>CONTROLLER INTERNAL TEMPERATURE 80 -320 to +300F ±2%</li> <li>CONTROLLER BUS NO. 1 VOLTAGE 81 TBD</li> <li>CONTROLLER BUS NO. 2 VOLTAGE 81 TBD</li> <li>CONTROLLER BUS NO. 2 VOLTAGE 82</li> <li>R2</li> <li>TBD</li> <li>TBD</li> <li>TBD</li> <li>TBD</li> <li>TBD</li> <li>Updated every 20 milliseconds, maximum value equals 5.10 seconds.</li> <li>(2) Data shall be transmitted at a rate of 25 times per second.</li> </ul>	0000	BINGHAMTON, NEW YO
<ul> <li>(3) Precision of Thrust and Mixture Ratio is a firm requirement. Precisions stated for other data are desired values. Final precision values are to be determined.</li> <li>(4) Useable range of scaled flow data shall extend from 3 percent of full scale to 100 percent of full scale.</li> </ul>	for	
<ul><li>(5) Data word order is not necessarily the order of transmission.</li><li>(6) Word 83 contains first vehicle command received in a 40 millisecond period.</li></ul>		
		REP. NO.
		4-397

REF. Table 4.20-9 will be alterable by modification of the con-224 troller's software program.

Data to Vehicle for Recording. The controller will initiate a transmission of the parameters listed in Table 4.20-9 Data Transmitted to Recorder to the vehicle on the recorder channels every 40 plus or minus 2 milliseconds. The transmission of recorder data will not be interrupted by command words from the vehicle. The data words for recording will consist of 15 bits plus a parity bit per word. The number of logical "ones" in the data word, including the parity bit will sum to an odd number. The relationship of the word sync pulse, data bits, and parity bit will be shown in Figure 4.20-2 and will be transmitted on all recorder channels. A "no data" message will be all zeros.

Operational Capability. The controller will be capable of full operation with the vehicle after the vehicle interface has experienced one failure (Fail Operational). The controller will continue operation in accordance with the most recent valid command after the vehicle interface has experienced a second failure (Fail Safe). The electronics interfacing with the vehicle in the controller must satisfy the requirement of no-single-point-failure (Fail Safe Design). Each failure in the receipt of a command

-398-8

.398.8

Ċ

REF. 224 word from the vehicle will be duly reported in the failure identification provision in the transmission of engine status data and recorder data to the vehicle. The appropriate number will be inserted in the failure identification word. The number of occurrences will be contained in the test number word. Three consecutive transmission failures on any command channel will cause that command channel to be disqualified by the controller and the vehicle will have the capability to reset the command channel.

<u>Command Validation</u>. The command words from the vehicle to the controller will be verified by:

- (a) Correct number of bits per word
- (b) Parity check for each word
- (c) Direct vote of all operable inputs
- (d) Command execute word

The number of bits in each command word will include the parity bit and will equal 16 bits. The parity check of each word will sum the number of logical "ones" in a word, including the parity bit, to be an odd number. Command words from the vehicle which do not pass the number of bits per word or parity check will be disregarded and inhibited from entering the voting. Command words, which are received from the vehicle but not implemented with a

BINGHAMTON, NEW YORK

REP. NO.

REF. command execute word, will be disregarded upon receipt of 224

a new command word.

<u>Command Channel Control</u>. The controller will be capable, upon command of the vehicle, of disqualifying any si single command channel which is found to be in error. Conversely, the controller will be capable, upon command of the vehicle, of removing the inhibit to any single command channel. Command words from the vehicle, to disqualify and restore individual command channels, will be via remaining operational command channels.

Intervals Between Transmissions. Command words consisting of a word sync pulse with the data bits and parity bit equal to logical "zero" will be received from the vehicle whenever any command listed in Table 4.20-4 Vehicle to Engine Commands is not being transmitted. Transmissions to the vehicle during periods of inactive transmission of engine status, command word echo, or recorder data, will consist of data words containing a word sync pulse with the data bits and parity bit equal to logical "zero".

398-8

DATE10	/20	/72
--------	-----	-----

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

# REF. 4.20.3.2 CONTROLLER/ENGINE INTERFACES

224

20. J. Z CONTROLLARY ENGINE MAINTAGES

Sensor Input/Output Interfaces. The controller will conform to the requirements of this specification when interfaced with sensors having the following characteristics when installed on the engine. Sensor ranges and levels of redundancy will be as specified in Table 4.20-10 Sensor Ranges and Redundancy Levels.

(a) <u>Pressure Sensors</u> :	
Input Impedance:	1250 to 2500 ohms at 75F. Change with temperature, 0.4 percent per 100F.
Output Impedance:	1500 plus or minus 150 ohms at 75F. Change with temperature, 0.4 percent per 100F.
Excitation Voltage:	10.00 plus or minus 0.025 volts dc
Output Voltage Range:	0 to 30 millivolts dc (nominal)
Error Band:	plus or minus 0.6 millivolts dc from nominal straight line
Frequency Response:	Greater than 600 rad per sec (equivalent first order)
Sensor Repeatability:	Readings taken on each sensor under the same pressure conditions will repeat within plus o minus 0.87 percent of the NPL reading at all applicable environmental conditions. This is equivalent to plus or minus 0.75 percent of sensor full scale range. Individual sensor calibration constants, derived from curve fitting equations, will be supplied for the software program defined in RC1010. The form of the equation is: $y = a_0 + a_1 X + a_2 X^2 + + a_6 X^6$
• • • • • •	



DATE	10/	20/7	72				IGER COMPAI RODUCTS D			PAGE NO.4-40
REV.					BI	NGHAMT	ON, NEW YORK	- 		REP. NO.
REDUNDANCY LEVELS	SENSOR RANGE		0 to 400 PSIA -423 to +700F (R _o =5000 ohms) 0 to 20,000 FPM 0 to 18,000 GPM 0 to 300 g EMS	-	to 8000 PSIA to 45,000 RPM to 300 g RMS		to 7000 PSIA to 2300F (P _o =50 ohms) to 1000 g RMS	to.600 PSIA to 5500 RPM to 300 g RMS	423 to +7	to 7000 PSIA to 9500 PSIA to 6500 PSIA to 35,000.FPM to 7000 GPM to 300 g FMS
4.20-10 SENSOR RANGES AND	REDUNDANCY	· · · · · · · · · · · · · · · · · · ·	m m N ≠ # ₩		- 0 -	· · ·	- NF	000 NÅF	<b>m</b> (	SSUFE PRESSURE 2 2 4 4 4 0 0 0
REF. 224 TABLE	PARAMETER	LOW PRESSURE FUEL TURBOPUMP	DISCHARGE PRESSURE DISCHARGE TEMPERATURE SHAFT SPEED FUEL FLOWRATE RADIAL VIBRATION	HIGH FRESSURE FUEL TURBOPUMP	DISCHARGE PRESSURE SHAFT SPEED RADIAL VIERATION	FUEL PREBURNER	CHAMBER PRESSSURE TEMPERATURE LONGITUDINAL VIBF	LOW PRESSURE OXIDIZER TURBOPUMP DISCHARGE PRESSURE SHAFT SPEED RADIAL VIBRATICN	0	LISCHARGE FRESSURE BOOST STAGE LISCHARGE PFESSUFE OXIDIZER TANK PRESSURANT PFESS SHAFT SPEED CXIDIZER FLOWEATE RALIAL VIEFATION

. .

•

·

· · ·

- -

. . .

. . ..

DATE 10/20/72

REV.

# THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

PAGE N04-403

REP. NO.

F-398-8-X		
REF. 224 TABLE 4.20-10	SENSOR RANCES A	AND REDUNDÂNCY LEVELS (cont'd.)
PARAMETER. R	REDUNDANCY	SENSOR RANGE
CTTTTTC	i i	•
	-	•
CHAMBER PRESSURE TEMPERATURE LONGITUDINAL VIBRATION	-0-0	) to 7000 PSIA ) to 2300 F (R _o =50 ohms) ) to 1000 g RMS
MAIN COMBUSTION CHAMBER		
PRESSURE FUEL INJECTION PRESSURE COOLANT TEMPERATURE COOLANT PRESSURE LONGITUDINAL VIBRATION		0 to 3500 PSIA 0 to 4500 PSIA -423 to +700 F (P _o =1380 ohms) 0 to 6500 PSIA 0 to 1000 g PMS
HYDRAULIC SYSTEM PRESSURE	2	) to 4000 PSIA
PNEUMATIC CONTROL SYSTEM		
EM PURGE PRESSU URGE PRESSURE OFF SEAL AND BL		1000
FUEL LIFTCFF SEAL AND BLEED VALVE CONTROL PRESSUFE HIGH PRESSURE CXIDIZER TURBOPUMP TNTERMEDIZTE SFAL PURGE AND FLOWMETER	5 0 - 7	) to 1000 PSIA ) to 100 PSIA
JRE 5 OXIDIZER TUPBO 5 PURGE FRESSURE	<b>C</b>	to 1000 PSIA
CONTRCLLER		
PRESSUFE TEMPEFATURE - OPERATING TEMPEPATURE - MON-OPERATING	NN-	) to 50 FSIA 320 to +300 F (F _o =200 ohms) 320 to +300 F (P _o =200 ohms)
	·	

^{AT} F0/20/72	SIM	THE SINGER ( ULATION PRODUC			PAGE	^{NO} 4-404
EV.		BINGHAMTON. NE	W YORK	·	REP.	NO.
	NOMINAL	NOMINAL NOMINAL	NOMI NAL NOMI NAL	NOMINAL NOMINAL		NOMI NAL NOMI KAL
REDUNDANCY LEVELS (cont'd sensor range	0 to 90 DEGREES 2.500 in NOMINAL 1.40 VOLTS p-p/in NO	0 to 90 DEGREES 2.389 in NOMINAL 1.47 VOLTS P-P/in NO 15.6 VOLTS P-P/in NO	0 to 90 DEGREES 1.286 in NOMINAL 2.72 VOLTS p-p/in NO 15.6 VOLTS p-p/in NO	0 to 90 DEGREES 1.286 in NOMINAL 2.72 VOLTS p-p/in NO 15.6 VOLTS p-p/in NO		0 to 90 DEGFEES 1.286 in NOMINAL 2.72 VOLTS P+F/in NC 15.6 VOLTS P-F/in NO
SENSOR RANGES AND REDUNDANCY	<b>7 4 1</b>	TTY	ITY	ITY SENSITIVITY 2	COOLANT VALVE	11Υ Senstfivrov 2
REF. 224 TABLE 4.20-10 PAPAMETER FLOW CONTROL VALVES	2.0.0.	ROTATICN ACTUATOF STROKE ACTUATOF LVDT SENSITIVITY SERVOVALVE SPOOL LVDT SENS OXIDIZEF PREUPNEF OXIDIZEF	DN. DF STROKE DF LVDT SENSITIV ALVE SPOOL LVDT PUFKER OXIDIZER	FOTATION ACTUATOF STROKE ACTUATOF LVET SENSITIVITY SERVOVALVE SPOOL LVDT SENS	MAIN COMEUSTICN CHAMBER COOL	ROTATION ACTUATCE STROKE ACTUATCE LVDT GENSITIVITY SETHOUTUE SPOCT TVDT SENS

.

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-4(
REV.	BINGHAMTON, NEW YORK	REP. NO.
CY LEVELS (cont'd.)	SENSOR RANGE 0 to 0.133 in NOMINAL PROPORTIONAL TO SQUARE ROOT OF DISTANCE FROM SENSITIVE FACE 0 to 0.133 in NOMINAL PROPORTIONAL TO SQUARE ROOT OF DISTANCE FROM SENSITIVE FACE	
REDUNDANCY	SENSOR 0 to 0 PROPOR 0 to 0 PROPOR FACE FACE	
AND	JANCY	
DR RANGES		
) SENSOR		
4.20-10	tr.	· · ·
TABLE	LITY VALVE	
5	FUEL BLEED VALVE STROKE LVDT SENSITIVITY OXIDIZER BLEED VAL STROKE LVDT SENSITIVITY	
REF. 224	PARAM FUEL BLEE STROKE LVDT SE STROKE LVDT SE LVDT SE LVDT SE	
-	щ U	• • • • •

٠.

.....

DATE 10/20/72	SI	THE SINGER COMPANY MULATION PRODUCTS DIVISION		PAGE NO. 4-406.
REV.		BINGHAMTON, NEW YORK		REP. NO.
REF. 224	· · ·	· · ·		
(b) <u>Temperature Se</u>	ensors:		•••	
Sensor Output: R	/R_= 1+	α[(T - δT(T-100)/10*) -	β <b>T³ (</b> T <del>-</del>	100)/109]
	where:	I = Temperature in Centi	grade	
	•	$\alpha = 0.00391$ to 0.0039275	5	
		$\delta = 1.492 \pm 0.07$		
		$\beta = 0.11 \pm 0.035$		
	•	R ₁ = Sensor resistance at	T (oh	nms)
	-	R _o = Sensor resistance at	0C	
		= $50\pm1$ , $200\pm2$ , $1380\pm3$ , as specified in Tabl	or 50 .e 4.20	000±10 ohms 0-10
Sensor Excitation Current:	· ·	2 milliamperes dc maximu	1m	
Sensor Response:		Equivalent first order t sec for sensors with $R_0$ 0.1 sec for sensors with ohms at the engine opera conditions	of 50 n R _o of	and 200 ohms; 1380 and 5000
Sensor Repeatabilit	ty:	Readings taken on each s temperature conditions w plus or minus 0.25 perces span at all applicable e tions. Individual sense constants, derived from tions, will be supplied program defined in RC101 equation is:	vill re ent of enviror or cali curve for th	epeat within the measurement mental condi- bration fitting equa- ne software
	., .	$y = a_0 + a_1 X + a_2 X^2 + .$	••ª6	Xe
				· · · · · · · · · · · · · · · · · · ·
· · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
			<i>.</i>	
- 398.8				

DATE 10/20/72		THE SINGER COMPANY SIMULATION PRODUCTS DIVI	SION	PAGE NO. 4-40
REV.	· · · · ·	BINGHAMTON, NEW YORK		REP. NO.
REF. 224	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
(c) <u>Flow Sensc</u>	ors			
Sensor Coil Res	sistance:	1	500 ohms maxi	mum .
Sensor Coil Ind	luctance:	1	.0 henry maxi	mum at 1 K Hz
Sensor Output V (Peak to Peak		(	Based on resi O plus or min	
			to 500 Hz.	ency range of
Flowmeter Frequ Response:	lency		reater than 2 equivalent fi	00 rad per se rst order)
3 Sigma Precisi	lon:		lus or minus eading at all	
•			nvironmental	
•		r flow sensor output Servo Valves and Ble		
(d) <u>Position S</u> Sensor Primary	<u>Sensors -</u> Current:	<u>Servo_Valves_and_Ble</u> 2	<u>ed Valves</u> 0 milliampere	· · · · ·
(d) Position S	<u>Sensors -</u> Current:	<u>Servo Valves and Ble</u> 2 2	ed Valves	· · · · ·
(d) <u>Position s</u> Sensor Primary Sensor Excitati	<u>Sensors</u> - Current: Lon	<u>Servo Valves and Ble</u> 2 2 (	<u>ed Valves</u> 0 milliampere 0 volts peak-	to-peak
<pre>(d) <u>Position 5</u> Sensor Primary Sensor Excitati Voltage: Sensor Excitati</pre>	Current: Lon	Servo Valves and Ble 2 2 ( 2 m P W	<u>ed Valves</u> 0 milliampere 0 volts peak- nominal) 000 plus or m	to-peak inus 100 Hz plus 0.25 vol nominal) into a 10 K
<pre>(d) Position S Sensor Primary Sensor Excitati Voltage: Sensor Excitati Frequency:</pre>	Current: Lon Lon Range:	Servo Valves and Ble 2 2 ( 2 m p w o 0 P 0 d	ed Valves 0 milliampere 0 volts peak- nominal) 000 plus or m inus 0.25 to eak-to-peak ( hen operating hm resistive lus or minus oint plus or .5 percent fu eviation from	to-peak inus 100 Hz plus 0.25 vol nominal) into a 10 K load 0.5 percent o minus ll scale
<pre>(d) Position S Sensor Primary Sensor Excitati Voltage: Sensor Excitati Frequency: Sensor Output F Sensor Error Ba Sonsor Output F</pre>	Current: Lon Lon Range:	Servo Valves and Ble 2 2 4 2 9 0 9 9 9 0 0 0 3 5	ed Valves 0 milliampere 0 volts peak- nominal) 000 plus or m inus 0.25 to eak-to-peak ( hen operating hm resistive lus or minus oint plus or .5 percent fu	to-peak inus 100 Hz plus 0.25 vol nominal) into a 10 K load 0.5 percent o minus ll scale nominal
<pre>(d) Position S Sensor Primary Sensor Excitati Voltage: Sensor Excitati Frequency: Sensor Output F Sensor Error Ba</pre>	Current: Lon Lon Range:	Servo Valves and Ble 2 2 4 2 9 0 9 9 9 0 0 0 3 5	ed Valves 0 milliampere 0 volts peak- nominal) 000 plus or m inus 0.25 to eak-to-peak ( hen operating hm resistive lus or minus oint plus or .5 percent fu eviation from traight line	to-peak inus 100 Hz plus 0.25 vol nominal) into a 10 K load 0.5 percent o minus ll scale nominal
<pre>(d) Position S Sensor Primary Sensor Excitati Voltage: Sensor Excitati Frequency: Sensor Output F Sensor Error Ba Sonsor Output F</pre>	Current: Lon Lon Range:	Servo Valves and Ble 2 2 4 2 9 0 9 9 9 0 0 0 3 5	ed Valves 0 milliampere 0 volts peak- nominal) 000 plus or m inus 0.25 to eak-to-peak ( hen operating hm resistive lus or minus oint plus or .5 percent fu eviation from traight line	to-peak inus 100 Hz plus 0.25 vol nominal) into a 10 K load 0.5 percent o minus ll scale nominal
<pre>(d) Position S Sensor Primary Sensor Excitati Voltage: Sensor Excitati Frequency: Sensor Output F Sensor Error Ba Sonsor Output F</pre>	Current: Lon Lon Range:	Servo Valves and Ble 2 2 4 2 9 0 9 9 9 0 0 0 3 5	ed Valves 0 milliampere 0 volts peak- nominal) 000 plus or m inus 0.25 to eak-to-peak ( hen operating hm resistive lus or minus oint plus or .5 percent fu eviation from traight line	to-peak inus 100 Hz plus 0.25 vol nominal) into a 10 K load 0.5 percent o minus ll scale nominal

-

---

·· -

. . . .

i

DATE	10	/20	172

## THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

PAGE NQ-408

REV.

BINGHAMTON, NEW YORK

REP. NO.

REF. 224

(e) <u>Vibration Sensors</u>

Sensor Source Capacitance:

Sensor Output Voltage:

Sensor Frequency Range:

2000 picofarad minimum

5.0 plus or minus 0.7 millivolt RMS per g RMS operating into a load of 300 picofarads in parallel with 100 megohms.

1 Hz to 6 K Hz (300 g) for radial (turbopumps) 100 Hz to 15 K Hz (1000 g) for longitudinal (combustors)

Sensor Frequency Response: Greater than 10 K Hz (equivalent first order)

Vibration sensors are for the purpose of obtaining and recording engine maintenance trend data. Controller input circuits for the longitudinal vibration sensors shall be capable of selectively sampling predetermined frequency windows throughout the frequency range of the sensor. Controller input circuits for the radial vibration shall be sensitive to a narrow frequency band centered about the fundamental rotating frequency of the appropriate turbopump. Vibration sensor inputs shall be demodulated and sampled at a frequency rate sufficient to satisfy the data requirements for the vibration parameters listed in Table 4.20-9 Data Transmitted to Recorder.

DATE 10/20/72		HE SINGER COMPA TION PRODUCTS D	···· ,	PAGE NO.4-409
REV.		BINGHAMTON, NEW YORK		REP. NO.
REF. 224			а. 	
(f) <u>Position</u> Senscr Primary	Sensors - Hydra	<u>iulic_Actuato</u>	20 milliamper	oc mavîmum
Sensor Excitat: Voltage:	· · · · ·		20 volts peak (nominal)	· • •
Sensor Excitat: Frequency:	ion	•	2000 plus or	minus 100 Hz.
Sensor Output I	Range:		0.25 to 4.75 peak-to-peak when operatin ohm resistive	(nominal) g into a 10 K
Sensor Error Ba	and:		plus or minus point plus or percent full from nominal	minus 0.5 scale deviatio
Sensor Output I Shift:			0 to 5 degree	S
(g) <u>Speed Sens</u>				•
Sensor Coil Res			1500 Onms max	
Sensor Coll Inc Sensor Output V (Peak-to-Peak	oltage:		0.1 henry max 0.2 minimum t (Based on res 10 plus or mi	o 16.0 maximu istive load o
Sensor Output F	requency	•	400 Hz to 10	K Hz
Pulse character	istics for spe		tputs are TBD.	
Leak detection circuit charact	eristics are n	ot defined,	later date. Si space equivalen	
inches of circu	it board shall	be reserved	•	
	. ·	· -		· · ·

.

DATE10/20/72	
--------------	--

F-398-8-A

THE SINGER COMPANY SIMULATION PRODUCTS DIVISION .

BINGHAMTON, NEW YORK

REP. NO.

• -

	REF. 224	Igniter and Control Devices In	terface. The controller
	224	will conform to the requirements of	this specification when
ŗ	-	interfaced with igniters and control	devices having the
		following characteristics when insta	lled on the engine.
		(a) <u>Servoactuators</u>	
-		Servovalve Load Resistance:	500 ohms max.
		Servovalve Current Range:	<u>+</u> 20 milliamperes dc
		Actuator Closed-Loop Frequency Response: (Equiv. second order):	
		Main Oxidizer Valve Area:	4 to 10 Hz
		Oxidizer Preburner Oxidizer Valve Area:	12 to 20 Hz
	•	Fuel Preburner Oxidizer Valve Area:	12 to 20 Hz
		Combustion Coolant Valve Area:	12 50 20 Hz
		Actuator Closed-Loop Damping Ratio:	0.5 minimum
•		Actuator Closed-Loop Threshold:	1% full scale max.
		Actuator Closed-Loop Slew Rate:	
		Main Oxidizer Valve Area:	150 to 300%/perosecond
•	-	Main Fuel Valve Area:	230 to 400% per second
		Oxidizer Preburner Oxidizer Valve Area:	150 to 250% per second
		Fuel Preburner Oxidizer Valve Area:	150 to 250% per second
		Combustion Coolant Valve Area:	150 to 250% per second
		· · ·	

DATE 10/20	/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVIS	SION	PAGE NO. 4-41
REV.		BINGHAMTON. NEW YORK		REP. NO.
REF.	(b)	Solenoid Valves (Non-Latching)	· .	
224	Coil	Current (Energizing):	1 ampere de	e max.
•	Coil	Current (Holding):	0.5 ampere	dc max.
	Coil	Voltage (On):	26 volts do	max.
	Valv	e Response Time:	· .	
	'n¶	eumatic - Electrically Actuated	: 20 millised	conds max.
	Pn	eumatic - Pressure actuated:	50 millised	conds max.
	Hy	draulic Actuator Solenoids:	14 millised	conds max.
	Coil	Inductance:	0.05 to 0.3	3 henries
	Valv	e response time is defined as t	the time inter	rval from the
	appl	ication of the electrical signa	1 to the comp	oletion of
<b>.</b> ¹	the	travel of the actuated device.	· · ·	•
•		· · · · · ·		
	(c)	Spark Igniters		
	Igni	ter Power Supply Current (On):	1 ampere do	max.
	Igni	ter Control Current (on):	50 milliamp	eres dc max.
	Igni	ter Voltage (On):	26 volts do	max.
	The	servoactuators and solenoid coi	ls will be dr	iven by
	curr	ent sources. The controller wi	11-contain ne	tworks to
· ·	supp	ress electrical transients and	protect soler	oid coil
-	driv	er circuits. The spark igniter	s will be dri	ven by voltag
	sour	ces. The solenoid valve and ig	niter control	. current in
	the e	off-state will not exceed 5 mil	liamperes dc	and 1 milli-
	amper	re dc, respectively.	*	
			·	

DATE	10/20/72	,
------	----------	---

224

## THE SINGER COMPANY SIMULATION PRODUCTS DIVISION BINGHAMTON, NEW YORK

PAGE NO.4-412

REP. NO.

REF. 4.20.3.3 GROUND EQUIPMENT INTERFACE

The controller shall contain ground support equipment (GSE) interface connections in accordance with RC1009. The GSE interface will be capable of duplicating the commands and data transmission normally provided through the vehicle/ engine electrical interface, and the controller will be capable of operating the engine while installed on the vehicle through this GSE interface. Controller electrical power will be supplied through the vehicle power interface during this mode of operation. The GSE interface will contain provisions for complete reprogramming and verification of the controller memory without removing the controller from the engine. The controller design will preclude acceptance of commands from the vehicle/engine electrical interface when the GSE interface is connected to operating external ground equipment.

REV.

.398.

# THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

PAGE NO4-413

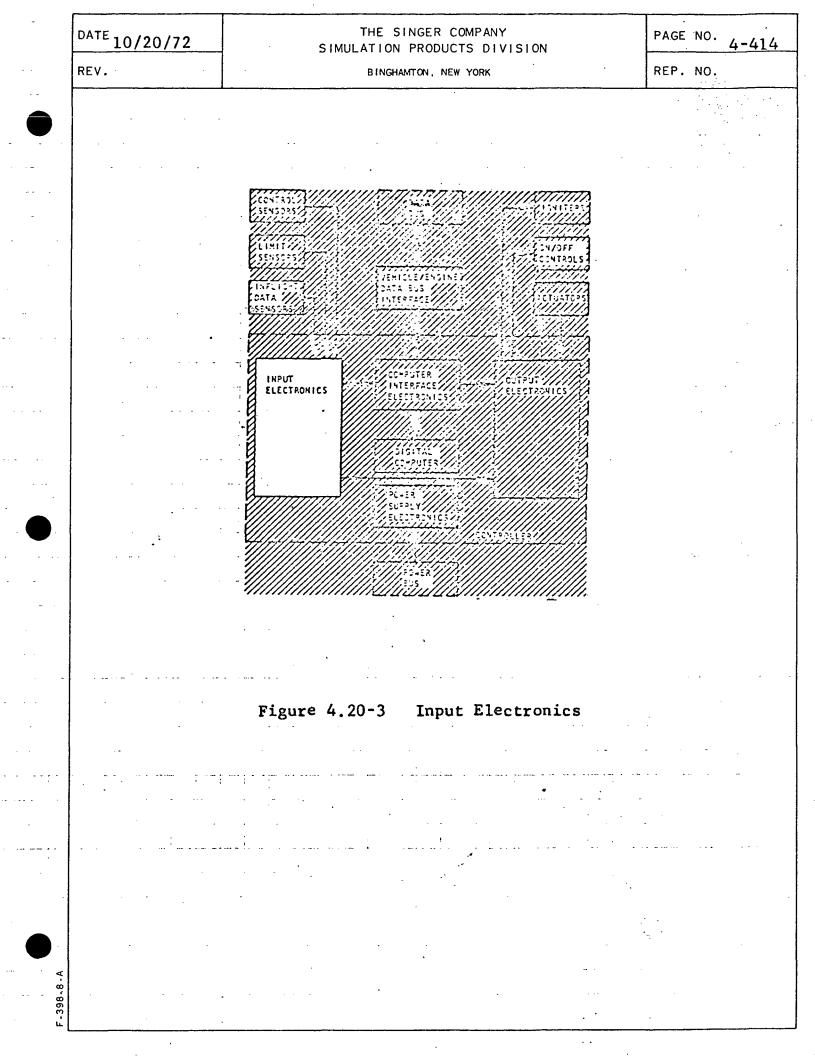
REV.

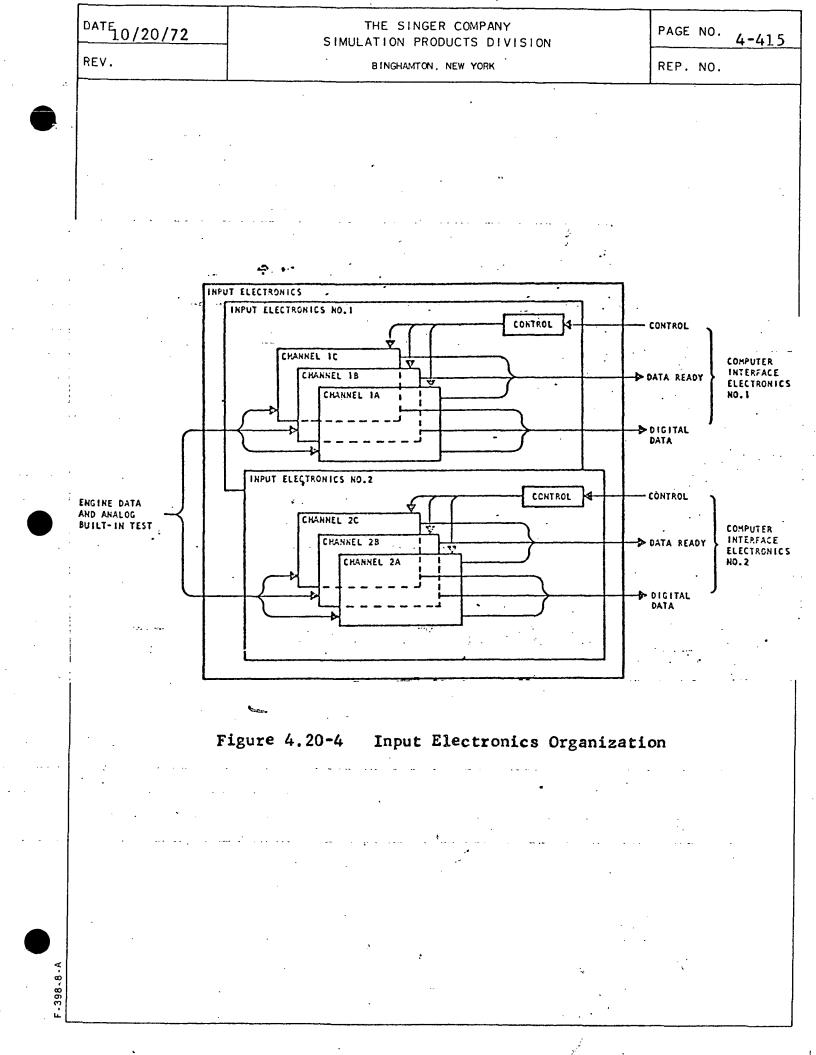
.398.8

#### BINGHAMTON, NEW YORK

REP. NO.

REF. 4.20.4 CONTROLLER HARDWARE


42


4.20.4.1 INPUT ELECTRONICS DESCRIPTION

The input electronics (Figure 4.20-3) receive analog and pulse rate signals from all inflight sensors, including temperature, pressure, vibration, position, rotational speed and flow rate. Built-in test signals from other portions of the controller are also received. The incoming signals are "conditioned" by amplification, filtering and/or demodulation and then converted to digital form suitable for the computer. Data from nonflight sensors for test stand requirements are not processed through the input electronics.

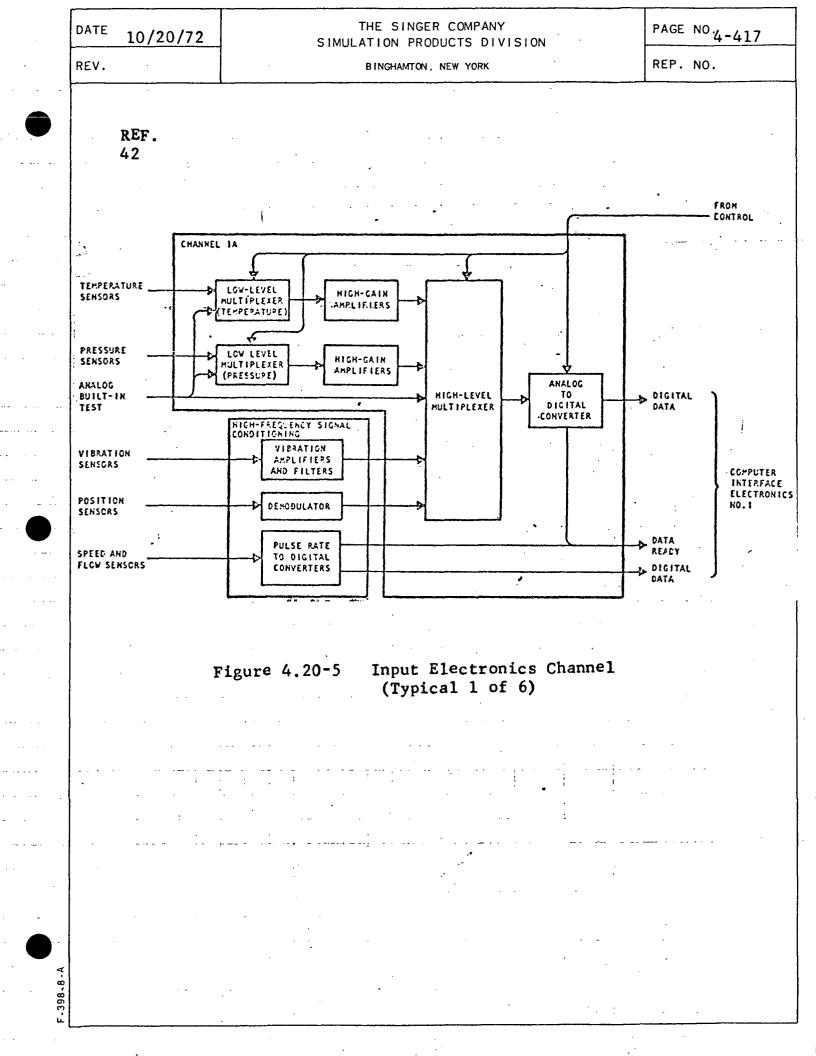
Because two independent digital computers are necessary for fail-operational/fail-safe performance, two sets of input electronics are provided. One set of input electronics is assigned to each digital computer. These sets are designated as Number 1 and Number 2.

In addition, each of the two sets of electronics contains three redundant data channels, designated A, B, and C, to match the triple redundant inputs from the performance control sensors (see Figure 4.20-4). Inputs from dual redundant limit control sensors, non-redundant maintenance data sensors, and built-in test are distributed among the three data channels in a manner which preserves redundancy





DATE10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-416
REV.	BINGHAMTON, NEW YORK	REP. NO.


REF. and at the same time achieves equality of signal flow between 42 the channels. The latter is significant because it minimizes data processing time and achieves a fast high response sampling rate. Each of the three data channels in a set of input electronics processes approximately one-third of all the engine inflight sensor outputs.

# Input Channel Function

F-398-8-A

The basic function of each input channel is to convert the analog and pulse rate sensor and built-in test signals to digital form. In order to handle the many pieces of data from multiple sensors with a minimum of hardware, each channel samples or multiplexes the data in a time sequence. Each input is sampled once every 20 msecond operating cycle, conditioned, converted to digital format, and sent to the computer interface electronics.

The signal conditioning and conversion functions for a typical data channel are shown in Figure 4.20-5. To minimize hardware costs, all data channels are identical. The only functional differences are minor variations in the quantities and types of inputs to each channel to accommodate the requirements for sensor redundancy.



DAT	٩c	11	20	17	2

F.398.8

BINGHAMTON, NEW YORK

REP. NO.

REF. Each input channel has the following additional 42 functions:

> Distributes redundant dc excitation voltages to the temperature and pressure sensors, and provides reference voltages to the analog-to-digital converters.

2. Generates signals for self-calibration.

3. Provides test signals and switching for sensor calibration and integrity checks.

 Accepts analog built-in test inputs from power supply and output electronics.

Each input data channel is independently supplied from two sets of redundant power supply regulators. Sensor excitation and converter reference voltages are supplied from the same regulators used to power the respective electronics to take advantage of the resulting cancellation of errors from power supply voltage variations. Failure of a data channel or its regulated power supplies will not propagate into another channel. Figure 4.20-5 presents a complete discussion of power supply decoupling and redundancy.

DATE 0/20/72	DATE	.0/	20	1	7	2	
--------------	------	-----	----	---	---	---	--

REF

42

REV.

.398.8

BINGHAMTON, NEW YORK

REP. NO.

## Types of Inputs

Two categories of inputs are processed: one is analog and the other is a variable pulse rate where the voltage amplitude and the pulse rate, respectively, are proportional to the measured parameter.

Analog temperature, pressure, vibration, position, and built-in test signals are conditioned through low-level multiplexer gates, amplifiers, and/or modulators to achieve a common scale factor. As shown in Figure 4.20-5, these are then gated through a high-level multiplexer to the analog-todigital converter. The analog-to-digital converter transforms the high-level multiplexer analog outputs to digital words. Parallel sequencing of the analog-to-digital conversion in all three channels is regulated by the computer interface electronics through a common control in each set of electronics. At fixed intervals, when a conversion is complete, the three data channel digital outputs are transferred sequentially by the computer interface electronics to the computer to update the memory. The transfer is completed inl memory cycle (1 microsecond). Data transfer of sensor and built-in test values continues until all inputs have been sampled. The process is repeated every 20 msec for a new sampling cycle.

REF. 42

REV.

F-398-8

A common control unit associated with each set of input electronics regulates the sequencing of the multiplexing and the analog-to-digital conversion in the three associated data channels by decoding control signals from the computer interface electronics.

Low-icLow-level multiplexing reduces the number of components by requiring a single high-gain amplifier for up to eight temperature or pressure inputs. It also improves performance by permitting calibration and reference signals to be multiplexed through the high-gain amplifiers to check and correct amplifier gain and offset. Normalizing all the high-level multiplexer inputs to a common scale factor reduces the number of multiplexer components by a factor of 2.

Pulse rate shaft speed and flow rate signals are converted directly to digital format by measuring the pulse period with a high frequency precision clock signal. This yields the reciprocal of the measured parameter. Each pulse rate input is processed through a separate converter. When a conversion is complete, the computer interface electronics transfer the data to the computer in 1 microsecond to update the memory.

REP. NO.

REF. 42

## Analog Signal Processing

Processing of the various analog inputs for a typical channel shown in Figure 4.20-5 is as follows:

1. <u>Temperature sensor</u> dc inputs to each channel are processed through a corresponding number of low-level multiplexer gates to one common programable-gain amplifier. A reference ground is multiplexed into the amplifier just prior to each sensor signal. This improves accuracy by erasing residual signals from prior inputs. Sensor operating range and range midpoint values are multiplexed simultaneously with each sensor input to adjust the amplifier gain and offset for maximum dynamic scaling. The high-gain amplifier output is gated through the high-level multiplexer to the analog-todigital converter.

2. <u>Pressure sensor</u> dc inputs are processed in a manner similar to those of temperature sensors. The number of inputs to each high-gain amplifier is limited to ensure that gate leakage does not adversely affect the precision of the lowlevel pressure signals.

3. <u>Vibration sensor</u> ac inputs are individually amplified, filtered, and multiplexed directly through the highlevel multiplexer to the analog-to-digital converter. The

398-8-4

DATE	10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	 PAGE NO. 4-422
REV.		BINGHAMTON, NEW YORK	REP. NO.

REF. 42

.398-8-

amplifier is operated in the current mode to protect the high-impedance, low-level signal from electrical noise pickup in the engine or in the controller. In this mode the signal from the sensor feeds directly to the input of an operational amplifier acting as a charge integrator.

4. <u>Linear position sensor</u> ac inputs are demodulated to an analog voltage, scaled, and multiplexed directly to the analog-to-digital converter. The use of an operational amplifier and full-wave synchronous demodulation provides good accuracy and high=frequency response.

5. <u>Analog built-in test</u> signals from the output electronics and the power supply electronics are gated through the high-level multiplexer to the analog-to-digital converter. Calibration signals to verify the operation and/ or accuracy of the input electronics are supplied in accordance with Table 4.20-11. The measured outputs are used by the computers to continuously recalibrate the input électronics by automatic software changes:

Digital output word format is 12 bits from the analogto-digital converter. Twelve bits provide a resolution of one part in 4095 or 0.025 percent, which is more than adequate to meet engine accuracy requirements. Total

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION
REV.	BINGHAMTON, NEW YORK

REP. NO.

REF. 42

TABLE 4.20-11 INPUT ELECTRONICS CALIBRATION

	•	TEST SIGNAL			US	AGE	
FUNCTION	TYPE	ілрит – –	OUTPUT	PARAMETER MEASURED	IN FLIGHT	GROUND Checkout	
ANALOG TO DIGITAL Converter	REFERENCE VOLTAGE	HIGH-LEVEL MULTIPLEXER	ANALOG/DIGITAL (A/D) Converter output	CONVERTER GAIN	×	x	
	REFERENCE GROUND	HIGH-LEVEL MULTIPLEXER	A/D CONVERTER CUTPUT	CONVERTER OFFSET	x	x	
HIGH-LEVEL MULTIPLEXER	REFERENCE Voltage	HIGH-LEVEL MULTIPLEXER	ANALOG/DIGITAL (A/D) CONVERTER OUTPUT	MULTIPLEXER OPERATION	x	x .	
HIGH-GAIN AMPLIFIER	REFERENCE Voltage	LOW-LEVEL MULTIPLEXER	A/D CONVERTER OUTPUT	AMPLIFIER GAIN	x	<b>. X</b>	
	REFERENCE GROUND	LOW-LEVEL MULTIPLEXER	A/D CONVERTER OUTPUT	AMPLIFIER OFFSET	x	x	
LOW-LEVEL MULTIPLEXER	REFERENCE VOLTAGE	LOW-LEVEL MULTIPLEXER	A/D CONVERTER OUTPUT	MULTIPLEXER	, <b>X</b> -	X _	
ACCELERATION, AMPLIFIER	REFERENCE Voltage	AMPLIFIER TUPUT	A/D CONVERTER CUTPUT	AMPLIFIER GAIN		x	
LINEAR POSITION DEMODULATOR	(1)	-	- •• •	•		<b>X</b> .	
PULSE RATE CONVERTER	KNOWN FREQUENCY	REDUNDANT Sensor Winding	REDUNDANT PULSE RATE CONVERTER	SENSOR AND CON- VERTER OPERATION	- ·-· ·	x	
(1) CALIBRATED DURING BUILT-IN TEST BY COMPARISON OF COMMANDED POSITION WITH THAT DERIVED FROM DEMODULATED LINEAR VARIABLE DIFFERENTIAL TRANSDUCER FEEDBACK							

F-398-8-A

DATE10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-424
REV.	BINGHAMTON, NEW YORK	REP. NO.

REF accuracy of the analog-to-digital converter is ±0.223 percent 42 random and 0.07 percent non-random.

# Analog Signal Control

All multiplex switching and analog-to-digital conversions are under the control of the computer interface electronics. A conversion cycle is initiated every 200 microsec. upon receipt of an 11-bit word from the control unit in each set of input electronics (Figure 4.20-4). Eight bits contain the addresses of the multiplexer gages to be closed for that particular conversion, and 3 bits provide synchronizing information. Control of the multiplexing and conversion process occurs in the following sequence:

1. Receipt of coded control signal by the control. Control addresses and closes designated low- and high-level gates in the three channels (A, B, and C). Control admits timing clock signal to analog-to-digital converters.

2. Timing circuits initiate analog-to-digital conversion after a suitable settling time.

3. Upon completion of conversion (which requires an average of 110 microseconds, excluding settling and decoupling time), each converter sends adata ready signal to the computer interface electronics.

.398-8

42

REV.

-398-8

REP. NO.

REF.

4. When data ready signals are received from all three channels, the computer interface electronics sequentially acquires the digital data from the converters. If due to a failure, a data ready signal is not received from one or more channels within 190 microsec of initiation of the conversion, the acquisition is performed on the remaining channels.

The process is then repeated for a new set of multiplexed signals. All input signals are sampled once every 20 msec.

## Pulse Rate Signal Processing

Each pump speed or flow rate signal is routed directly to its respective pulse-rate-to-digital converter. The pulse period is measured by a clock signal to provide an output proportional to the reciprocal of pulse rate. Pulse-rateto-digital conversion occurs asynchronously with the analogto-digital conversion. The frequency of conversion is proportional to the pulse rate. As each conversion is completed, a data ready signal is transmitted to the computer intefface electronics. The output is held in the converter for a period dependent upon the incoming pulse rate. The computer interface electronics has the option of acquiring the output data during this period or waiting for the next output if occupied with higher priority operations.

DATE 10	/20	/72
---------	-----	-----

REF. 42 BINGHAMTON, NEW YORK

REP. NO.

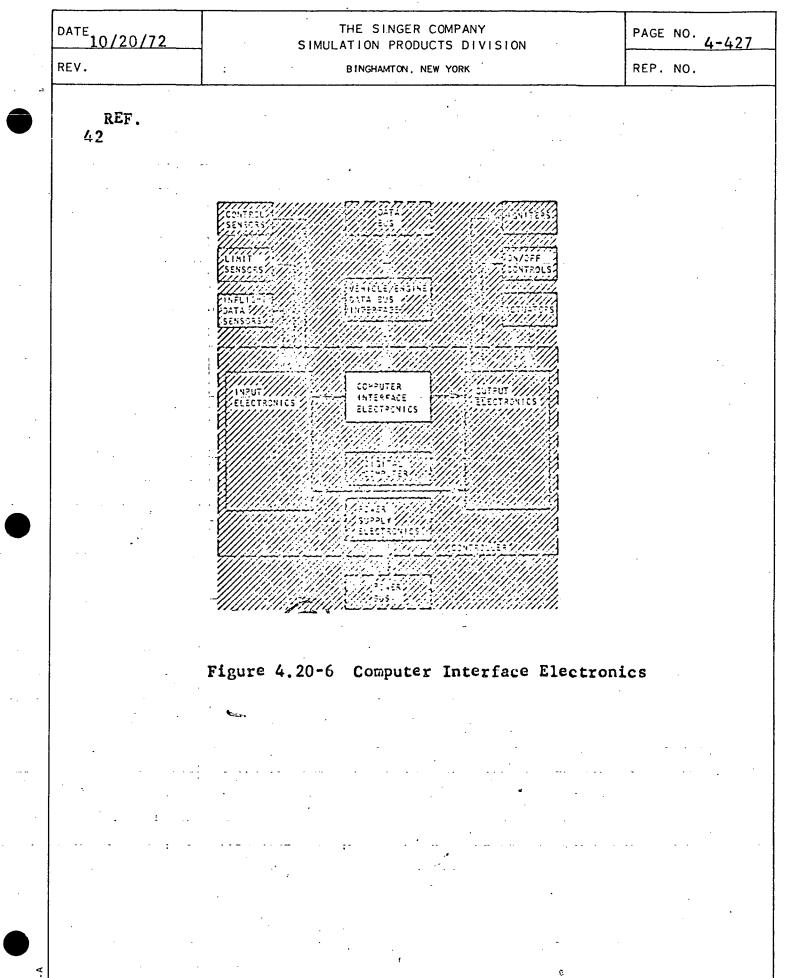
REV.

.398-

The pulse-rate-to-digital converter outputs are 16-bit words, providing a resolution of 0.015 percent at full scale (minimum pulse period) and 0.0015 percent at 10-percent scale.

4.20.4.2 COMPUTER INTERFACE ELECTRONICS DESCRIPTION

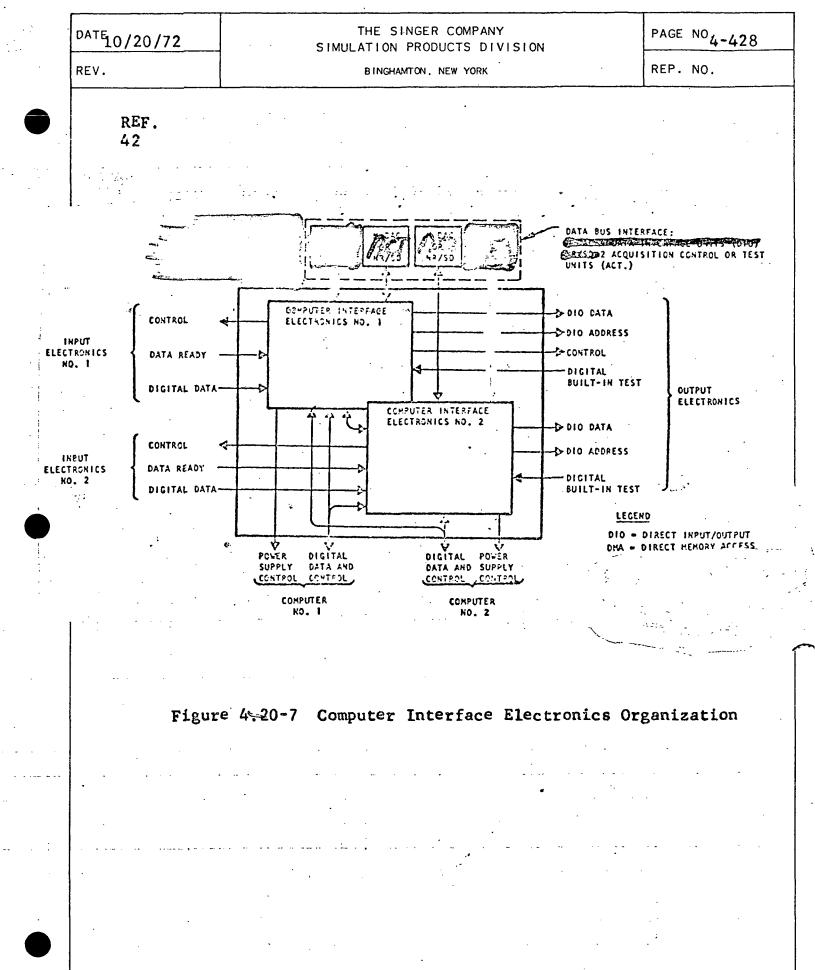
The computer interface electronics (Figure 4.20-6) control data flow to and from the computers. Each of two electronic sets (Figure 4.20-7) is dedicated to a computer and a set of input electronics performing the functions of:


 Transferring the commands and data requests from the vehicle/engine data bus interface to the computer, and the data responses from the computer to the vehicle/engine data bus.

 Controlling the flow of data between the computer and the input and output electronics.

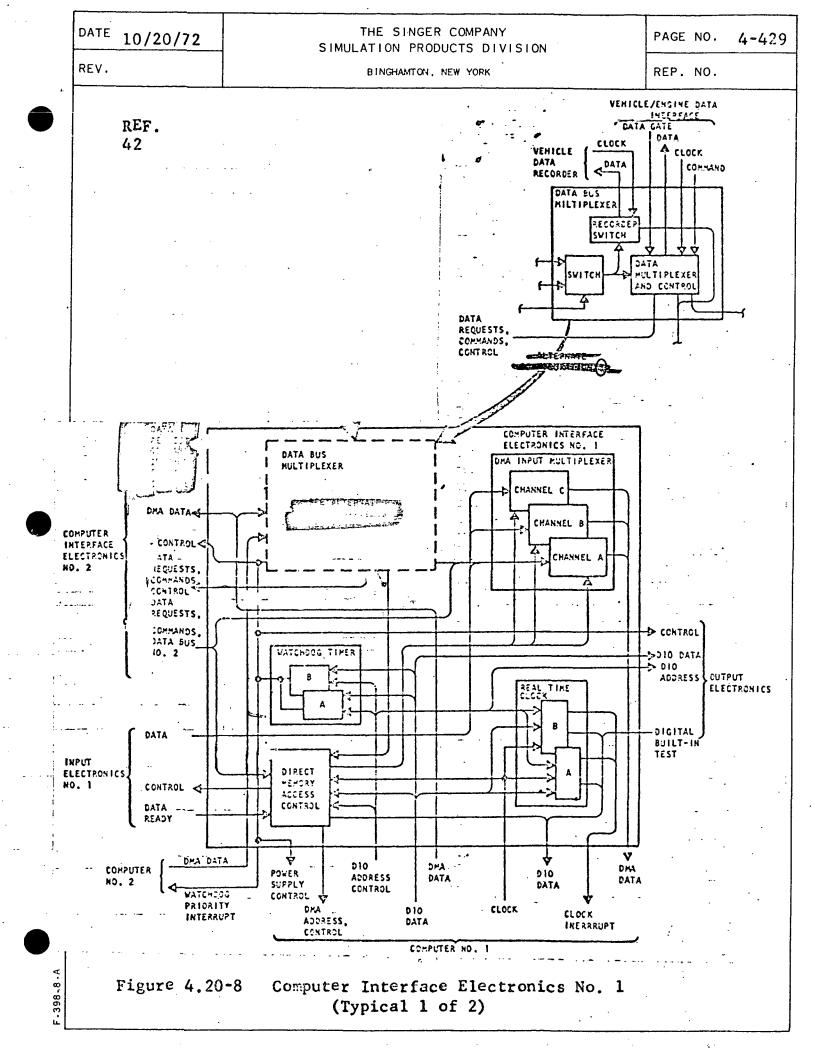
3. Monitoring computer operation by watch-dog timers.

4. Providing a redundant time reference to the digital computer.


The above functions are performed by groups of circuits in each set of electronics, as shown in Figure 4.20-8. These are:



-398-8-A


_____

_____



F - 398 - 8 - A

f_____



F-398-8

BINGHAMTON, NEW YORK

REP. NO.

REF. 42 1. Data Bus Multiplexer - Provides the communication link between the controller and the vehicle. This communication link is bidirectional, receiving commands and data requests from the vehicle and transmitting the requested data to the vehicle. Commands and data are transmitted via redundant vehicle data buses. These data buses interface with the controller through Acquisition, Control and Test (ACT) units.

2. Direct Memory Access Input Multiplexer - Processes all data entering the computer memory through the direct memory access (DMA) input. This includes data from the associated set of input electronics and from the data bus multiplexer. The DMA multiplexer is triple redundant to match the redundancy of the control sensors and their input electronics. Multiplexer control is provided by the DMA control.

3. Real Time Clock - Provides the computer with redundant time references to initiate the start of each 20 msec control cycle.

4. Direct Memory Access Control - Controls the flow of data in and out of the memory via the DMA data channel. Data is transferred into the memory by halting computer

	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-431	
-	REV.	BINGHAMTON, NEW YORK	REP. NO.	

REF. 42

operations for 1 microsec memory cycle for each data transfer. Requests for access to the memory are granted on a priority basis. The order of priority is:

a. Vehicle commands and requests for data.

- b. Analcg-to-digital converter data.
- c. Pulse-rate-to-digital converter data.

5. Watchdog Timer - Monitors computer operation to verify that it is progressing through its program per a predetermined schedule. Two watchdog timers are used with each computer to ensure fail-safe computer monitoring.

## Data Bus Multiplexer

The controller interfaces with the vehicle through two Acquisition, Control, and Test (ACT) units and a vehicle recorder bus (Figure 4.20-8). The ACT units transmit commands and data requests to the controller and receive requested data from the controller. Engine maintenance data is sent by the controller directly to the recorder data bus. One ACT unit is normally in control with the other in standby. The data bus multiplexer is capable of communicating with either at any time. As all communication with both sets of computer interface electronics is identical, only one is discussed in detail.

F-398-8

BINGHAMTON, NEW YORK

REF. 42

Each data bus multiplexer has four signal paths with the ACT unit: clock, data input, data output and data gate. The clock serves to clock the data into and out of the controller and operates continuously. The data input supplies the controller with vehicle commands. The data output transmits controller data to the vehicle when enabled by the data gate.

The controller accepts inputs from the two ACT units through separate connectors. The vehicle recorder, used to record engine maintenance data, has data channels dedicated to each engine. The data is transmitted to the recorder bus from the controlling computer.

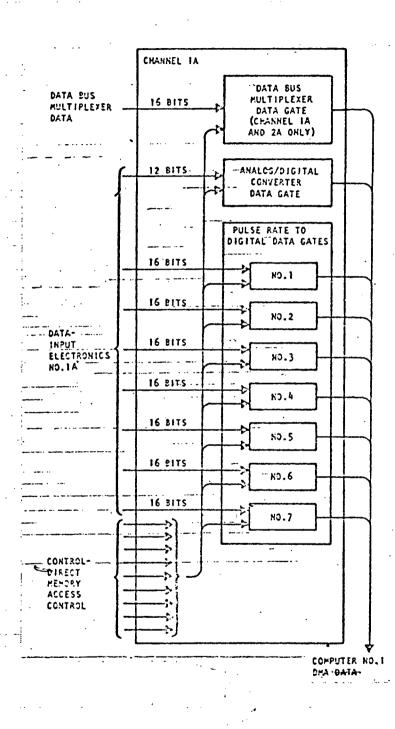
### Direct Memory Access (DMA) Input Multiplexer

Data from the input electronics and the data bus multiplexer is gated into the memory through the DMA input multiplexer. Each of the two multiplexers (No. 1 and No. 2) includes three channels (A, B, and C) that interface with the corresponding channels of the input electronics. The A channels also interface with their respective data bus multiplexers. The functional arrangement of channel 1A is shown in Figure 4.20-9.

DATE 10/20/72

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK


PAGE NO.4-433

REP. NO.

REV.

# REF.

42

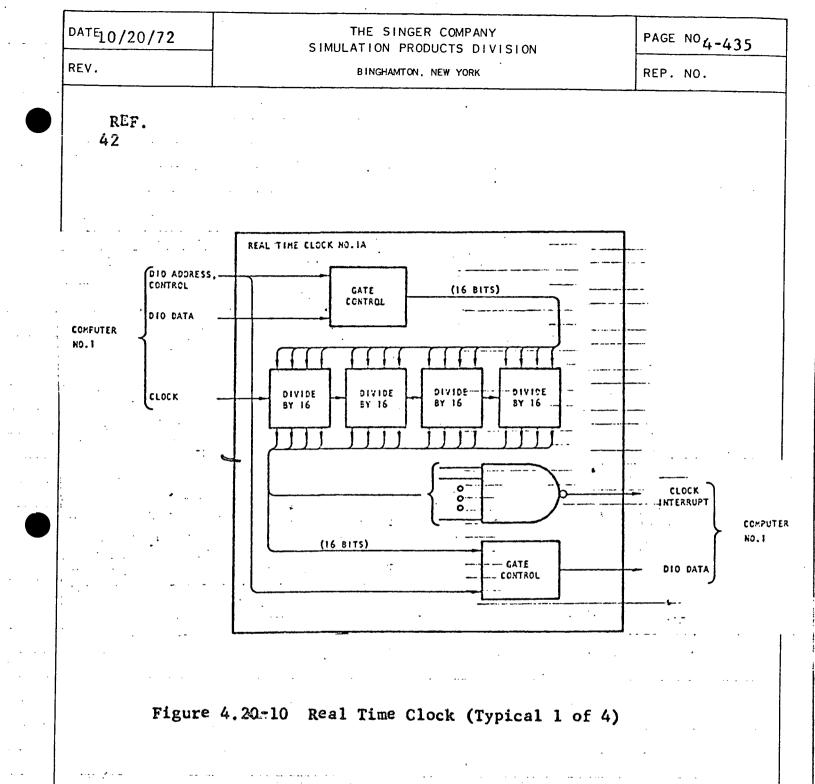


# Figure 4.20-9 Direct Memory Access Input Multiplexer Channel (Typical 1 of 6)

F-398-8-A

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-434
REV.	BINGHAMTON, NEW YORK	REP. NO.

REF. 42


-398-8

Each of the six multiplexer channels includes one 12-bit gate for analog-to-digital converter data and seven 16-bit gates for pulse-rate-to-digital converter data. As indicated in Figure 4.20-9, channel 1A (and 2A) include an eighth 16-bit gate for data bus multiplexer data. The data is gated under control of the DMA control unit.

## Real Time Clock

Each computer interface electronics includes redundant real time clocks. The function of the clock is to interrupt the computer at precise time intervals. As shown in Figure 4.20-10, each real time clock consists of a four-section counter with means for setting time in to and reading time out of the counter. This provides the capability of performing specific tasks in real-time.

In normal operation, the counter is incremented by the incoming-clock frequency. When the gate becomes true, the counter is reset and an external priority interrupt is sent to the computer. This interrupts the computer to increment a time location in memory by one. A new cycle is initiated when the preset time location overflows from all ones to all zeros. At the time of the new cycle, the computer also presets the time location and countdown resumes for the next cycle.



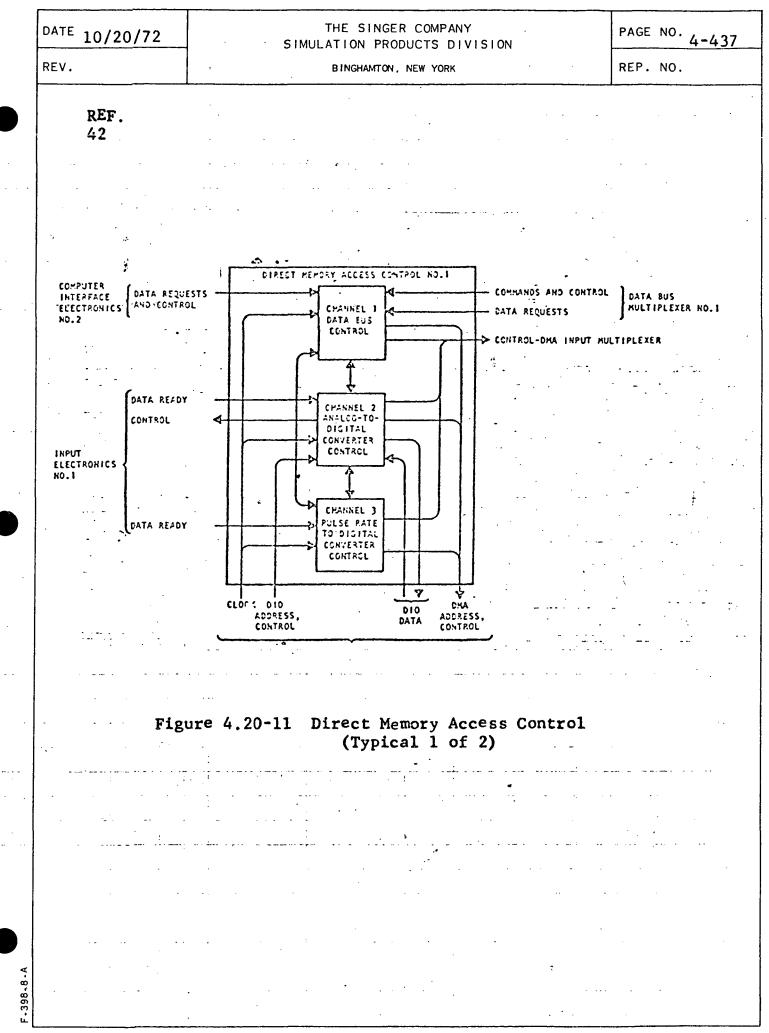
.

F-398-8-A

3

:

F-398-8


BINGHAMTON, NEW YORK

REF. 42 When operational requirements demand a higher sampling rate, i.e., when limit monitoring indicates a parameter is beyond limits, the computer programs a smaller number into the memory time location and the sampling period is proportionately shorter.

To ensure that a clock failure will be detected, each computer is provided with two real time clocks. The clocks outputs are periodically compared during built-in test, and if they differ, appropriate action is taken.

## Direct Memory Access Control

The function of the direct memory access control unit is to regulate the data flow in an orderly manner and in accordance with a set order of priorities. To perform this function, the direct memory access control (Figure 4.20-11) is organized into a hierarchy of three channels. Each channel accepts data requests, memory addresses and control signals, and transmits data transfer and memory address control signals. Each channel includes the necessary decoders, counters, and priority and sequence control logic to perform the above functions.



**.**...

DATE	10	120	/72
	111	120	112

## THE SINGER COMPANY SIMULATION PRODUCTS DIVISION BINGHAMTON, NEW YORK

PAGE NO. 4-438

REP. NO.

REF.

42

REV.

F-398-8

Channel 1 Data Bus Control first priority is to vehicle commands and data requests. Upon receipt of a command or data request from the data bus multiplexer, the data bus control will service the request by providing a memory output within 3 microseconds. If either Channel 2 or 3 is transferring data, Channel 1 will interrupt at the completion of the 16-bit transfer in process and will assume control. When the Channel 1 transfer is complete, control will be relinquished to the channel with the next highest priority. The validated command is transferred to both computers, since normally only one ACT unit is operational at a time. Data requests from either data bus multiplexer activate the DMA control to route the requested data onto the DMA data bus by the requesting data bus multiplexer. Channel 2 Analog to Digital Converter Control provides second priority control for data transfer to memory from the analog-to-digital converters. Channel 2 normally receives a data-ready signal from each of the three converters when a conversion is complete. When the three-signals have been received or when a predetermined time has elapsed, the ready data is transferred sequentially to dedicated locations in the memory. Memory locations for converters which have not issued a data ready signal are coded in the upper four bits to prevent the processing of incorrect or obsolete data. Channel 2

.398.8

BINGHAMTON, NEW YORK

REP. NO.

REF. will not transfer data while Channel 1 is servicing a request 42 and has the same priority relationship with Channel 3 as Channel 1 with Channel 2.

Channel 3, Pulse Rate to Digital Converter Control, processes pulse rate converter data in a manner similar to Channel 2, except that both Channels 1 and 2 have higher priority.

#### Watchdog Timer

The watchdog timer (Figure 4.20-12) is a circuit used to verify that the computer is progressing through its program. The timer is designed to be reset by the computer software program within a predetermined time. If the timer is not reset within that period, the output will switch from a logic one to a zero (failed indication). Reset is initiated by instructions within the computer program. Absence of a reset and the resultant shift to zero in the timer output indicates a computer failure. All computer and timer failures modes result in the watchdog timer output going to zero. To avoid the possibility of a failure where the computer repeatedly issues reset instructions from the same subroutine, two watchdog timers are used with each computer. Each subroutine resets only one of the timers.

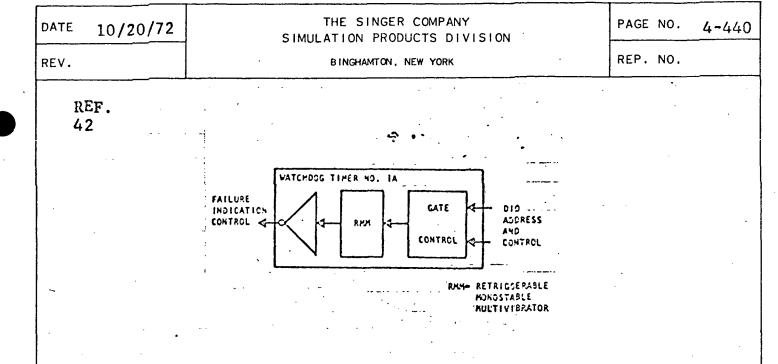



Figure 4.20-12 Watchdog Timer (Typical 1 of 4)

F-398.8.

If the computer fails to reset either of its watchdog timers, the output goes to zero. A failure indication by the watchdog timer for computer No. 1 will cause the output switch described in paragraph 4.20.4.4 to transfer control to computer No. 2. Simultaneously, the watchdog timer will issue a control signal to the power supply electronics to cause shutdown of computer No. 1 power. The shutdown procedure includes a HALT instruction to the computer to prevent further processing. A failure in No. 2 computer subsequent to a failure in No. 1 will cause the No. 2 watchdog timer to remove computer power, issue a HALT instruction, and remove power from the output electronics to enable a fail-safe shutdown. Each computer monitors the watchdog timer output of the other to determine

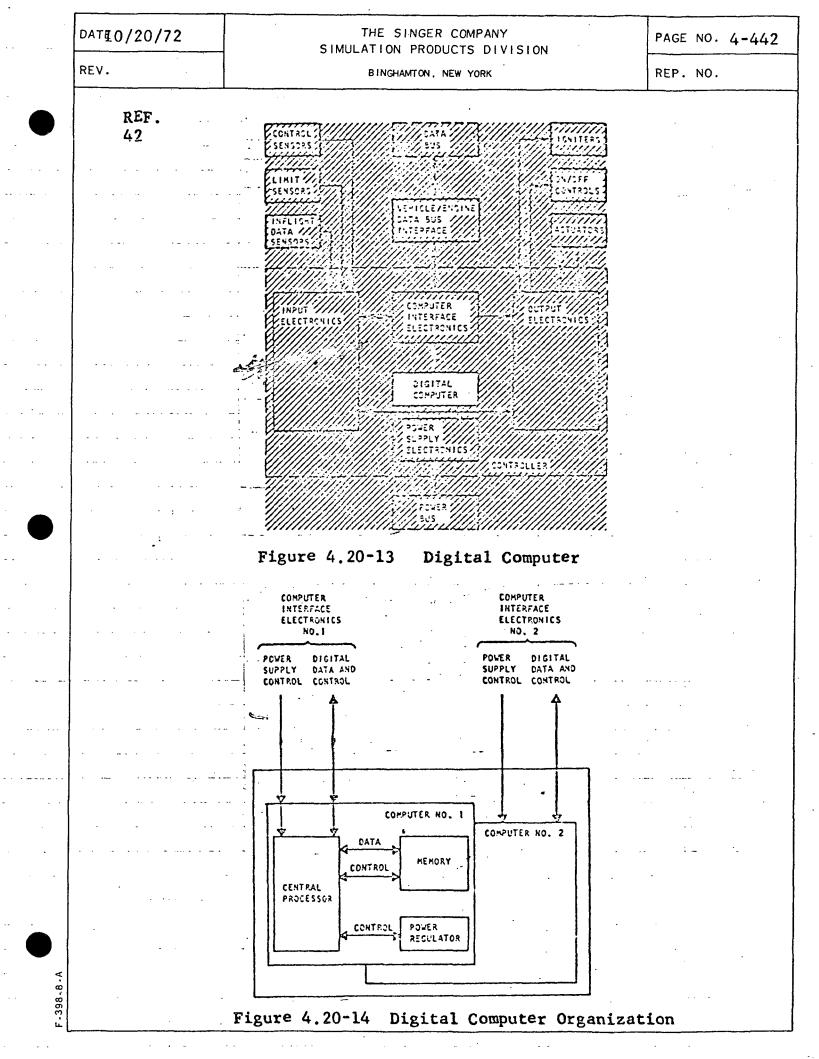
BINGHAMTON. NEW YORK

....

REP. NO.

REF. operational status which is made available to the vehicle 42 by the controlling computer.

4.20.4.3 DIGITAL COMPUTER DESCRIPTION


Two independent digital computers (Figure 4.20-13 and 4.20-14) receive commands from the vehicle and data from the sensors. Each performs the computations necessary for fullauthority closed-loop control of the engine thrust and mixture ratio. Each computer also schedules the sequencing commands for all phases of ground and flight operations.

Normally, computer No. 1 is in control and computer No. 2 is in operational standby. In the event of a failure in computer No. 1 or its power supply, control is transferred to computer No. 2 without impairing engine operation.

In addition to the primary function of engine control each computer performs the following functions:

- Accepts maintenance data from the sensors, stores the information in the memory and transmits it to the vehicle upon request.
- 2. Performs continuous self test.
- Monitors the performance of the engine sensors, igniters, valves, actuators, and the other computer.

-398-8-



DATE 0/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-443	
REV.	BINGHAMTON, NEW YORK	REP. NO.	
		• • • • • • • • • • • • • • • • • • •	

REF. 4. Stores sensor calibration constants and uses 42 them to correct raw sensor data.

> 5. Measures and compensates for errors introduced into the sensor data by the signal conditioning and analog-to-digital conversion circuitry of the input electronics.

### Computer Selection

F-398-8

The Honeywell HDC-601 computer with a plated-wire memory is used for the SSME controller application. The HDC-601 was selected for the following reasons:

1. Off the shelf. The HDC-601 is a fully developed digital computer and has been in production on two U. S. Air Force programs for over six months. Commercial equivalents, the H-316 and DDP-516, have seen extensive application over the last 3-1/2 years. The HDC-601 is repackaged to conform to the controller form factor, but the proven logic, direct memory access, printed wiring board layouts, support software, and diagnostic and maintenance documentation are retained intact.

2. <u>Available support software cuts costs and schedules</u>. The HDC-601 computer is software-compatible with the DDP-516 and the extensive software system developed for the DDP-516 is also available for the HDC-601.

REP. NO.

REF. 42

REV.

F-398-8

3. Plated wire memory. The plated-wire memory used in the HDC-601 is rugged in construction and is fast because of its true nondestructive readout characteristics. The contents of the memory are not altered during a readout operation and do not have to be restored as is the case with The controller computer uses a 2-mil plated wire cores. memory to take advantage of its greater speed and reliability and lower power consumption. The word-organized structure of the plated-wire memory in conjunction with the nondestructive readout makes possible a convenient means of increasing system reliability by implementing memory lockout. Memory lockout allows that part of memory that contains the operational program and program constants to be operated in a read-only mode, thus preventing the inadvertent alteration of these instructions and constants.

4. Efficient data transfer. The HDC-601 achieves efficient data transfer by providing access to the memory through two routes. One is through the customary direct input/output processing channel under control of the computer program. The other is a direct memory access channel which permits independent transfer of data into and out of the memory while normal computing operations continue without interruption. The customary direct input/output cycle

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-445
 REV.	BINGHAMTON, NEW YORK	REP. NO.

requires from 5 to 15 microsecond per input while the HDC-601 REF. 42 direct memory address requires only 1 microsecond. Since 120 sensor and 105 analog and digital built-in-test inputs (including spares) must be sampled during each 20,000 msec period, the 4 to 14 microsec per cycle saving through direct memory access frees an additional 1000 to 3500 microsec or 5 to 17 percent of each sampling period for other operations. Stated in another way, the 1-microsecond direct memory access makes more than 98 percent of the sampling period available for computations. Direct memory access mode of operation is accomplished on a memory cycle steal basis. That is, requests for access to the memory are granted at the next memory cycle on a priority basis.

5. <u>Real time control</u>. The HDC-601 was designed for real time control and meets the requirements for fast, efficient, and reliable computations. As previously noted, the HDC-601 is an aerospace version of the Honeywell H-316 and DDP-516 computers, which were designed for and have established an excellent record in the field of real time control. An important function in a real time control system is the capability to interrupt the normal computations for priority operations without jeopardizing process control. The HDC-601 provides priority interrupts for use by the

.398.8

REP. NO.

REF. controller in (1) processing vehicle commands, (2) detecting 42 power failure and initiating action to preserve the engine . control status, and (3) detecting errors in the output of the memory.

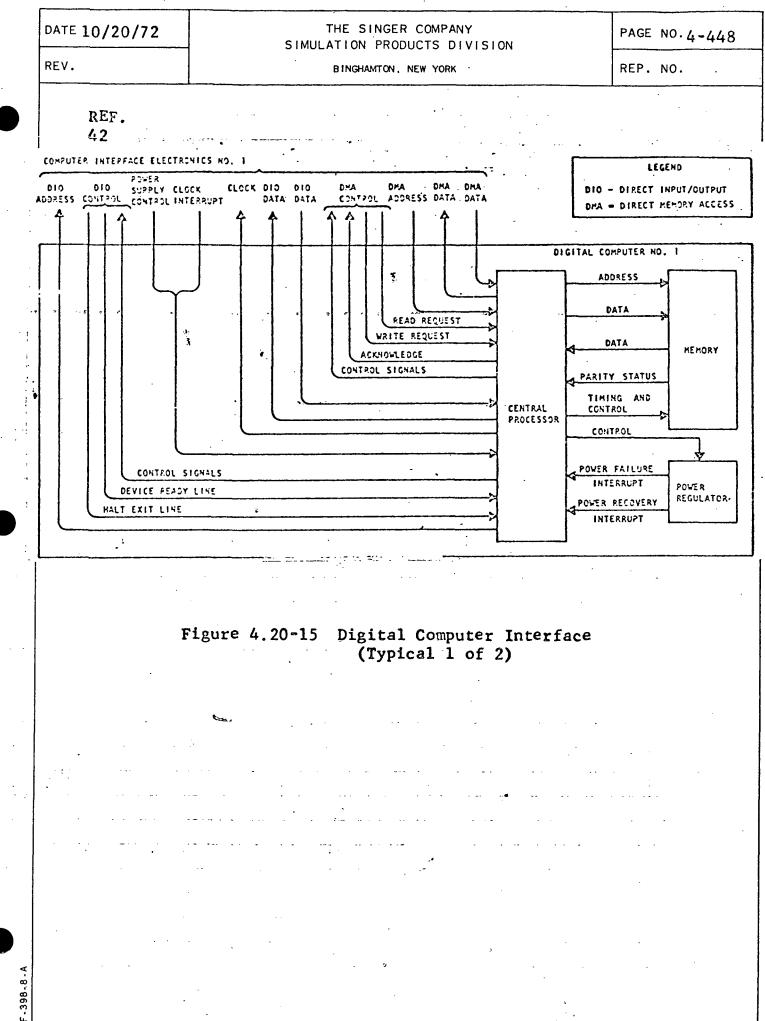
Optimum word length. The HDC-601 uses a 16-bit word, 6. which is optimum for applications that must encompass both control and computation functions. While 12-bit word length is sufficient for most control purposes, in certain types of computations such as multiplication, accuracy is degraded unless the slower double precision mode is used. The 16-bit word length in the HDC-601 provides ample accuracy in the single precision mode for virtually all computations. The double precision operation is still available for the infrequent operations which demand it. The 16-bit instructional word length is also more efficient in memory addressing capability. The memory may be addressed by the fast direct mode in sectors of 512 words. This size is ample to accommodate the majority of addressing requirements with the fast direct mode.

7. <u>Growth capability</u>. The HDC-601 provides growth margin in both memory capacity and computational capability. The memory is organized for optimum cost, size, and weight into planes or increments of 2048 words each. The controller

F-398-8.

# DATE 10/20/72

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION


REV.

BINGHAMTON, NEW YORK

REF. uses six planes totaling 12,288 words, providing ample growth 42 allowance beyond the current requirements of 7000 words. This capacity for growth permits the user to capitalize on new functions that may subsequently become needed or desirable. If necessary, the controller memory capacity can be expanded to a maximum of 32,768 words. The HDC-601 also has a 30percent growth margin in computational speed capability since only 14 msec out of each 20 msec sampling period are utilized for computation and built-in test.

## Computer Organization

Each of the dual redundant computers in the controller are functionally divided into processor and memory sections as shown in Figure 4.20-15. The processor provides the computer's arithmetic, control, and input/output interfacing capabilities. Interface with the remainder of the system is through the computer interface electronics described in paragraph 4.20.4.2. The memory provides storage for instructions, computational constants, and data from the vehicle and the sensors. Portions of the memory are used as a "scratch pad" to store intermediate computations. The memory system provides a parity bit for each memory word for use in detecting memory system errors.



BINGHAMTON, NEW YORK

REV.

REF.

42

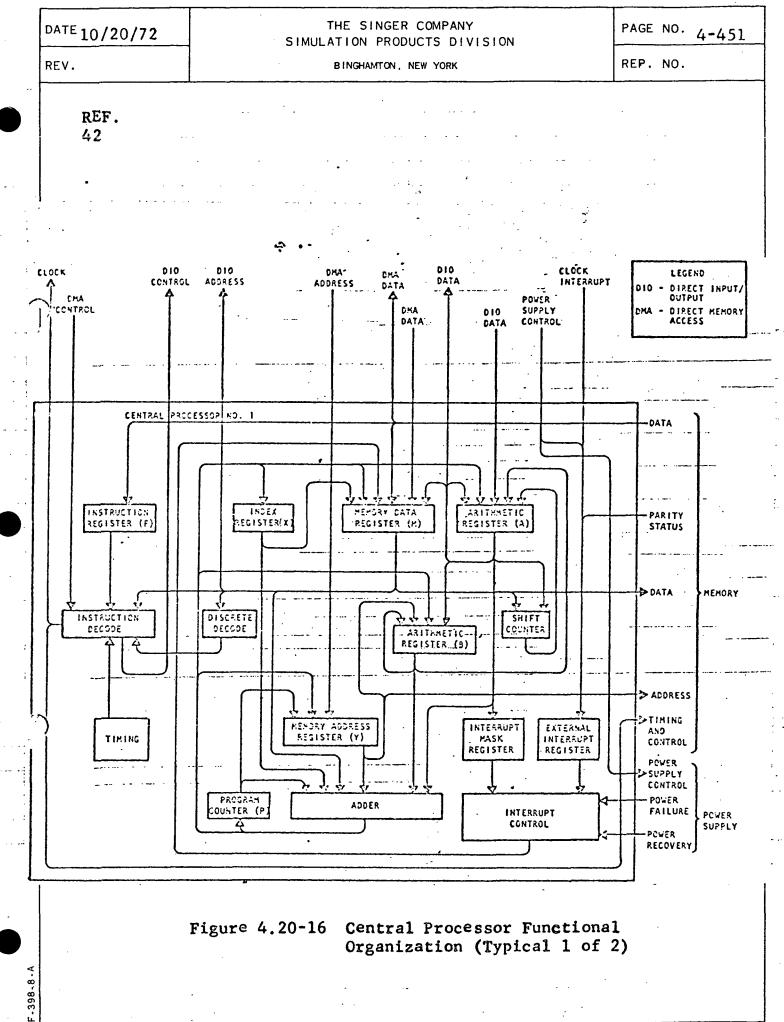
REP. NO.

The characteristics of the computer are summarized in Table 4.20-12. A more detailed description may be found in the Honeywell HDC-601 Digital Computer General Description P9-003B (Phase B Supporting Analysis Data, Volume 63).

### Central Processor

The central processor for the HDC-601 computer employs a parallel-organized data flow structure with conventional organization relative to memory interfacing and instruction Implementation of the logic is accomplished using execution. small and medium scale bi-polar transistor-transistor-logic (TTL) integrated circuits. These circuits have proven reliability backed by substantial field data.

Organization. In its basic functional organization, the central processor can be represented as shown in Figure Interfaces to the central processor are: 4.20-16.


- 1. Memory interface
- Direct memory access channel 2.
- Direct input/output channel 3.
- Computer clock 4.
- 5. Interrupt inputs
- Input discretes. 6.

All communication with the central processor is via these

interfaces.

F-398-8

DATE	0/20/	72	_		NGER COMPANY PRODUCTS DIVISION		PAGE	^{NO} 4	-45
REV.				BINGHAM	TTON. NEW YORK	··· •	REP.	NO.	
					**		<u></u>		
	REF		• • •		• · · · · ·	-		• • •	
	42 -	•			••••••				
				••••					
						•			
			· .		· · · · · · · · · · · · · · · · · · ·	· .			
		• •	· · ·	PAFAMETER	CHARACTERISTICS				
	-	- ·		ARITHMETIC	PARALLEL BINARY, TWO'S COMPLEX SINGLE ADDRESS WITH INDEXING A INDIRECT ADDRESSING				
		• •	. •	INCEX REGISTER INDIPECT ADDRESSING	E HARDWARE MULTILEVEL				
			•	LOGIC TIPE CIRCUITRY	TRANSITOR, TRANSISTER LOGIC SMALL AND MEDIUM SCALE INTEGR	ATICN			
				DATA INBUTZOUTPUT CHANNELS - PROGRAM	CONTROLLED AND DIRECT MEMORY				
				-ACCESS SPEED	16 SIT PARALLEL				
-			•	ADD AND SUBTRACT Multiply Divice	2 MICROSECONOS 9 MICROSECONOS 19 MICROSECONOS				:
		•		INSTRUCTION COMPLEMENT	87				
-				WORD LENGTH	16 BITS# 16 STANDARD				
	·	<b>.</b>		MEMORY CYCLE TIME -READ/WRITE	1 MICROSECCND				
				-ACCESS MEMORY	350 NANOSECONOS 12,203 NORDS	-			
		• • • • •	. •	INPUTS AND CUTPUTS REGISTERS	BUFFERED TWO FULL-WORD ARITHMETIC, CNE			•	
•••				DOUTBLE PRECISION	HARDWARE INDEX				•
		•	-	CAPABILITY	18 EXTERNAL PRIORITY, POWER	ļ.			
	• • •				FAILURE/RECOVERY				
			1 · ·		) AND ASSOCIATED PARITY GENERATI ED AT THE COMPUTER/MEMORY INTERF				
				·					
			•	· · · · · · · ·	· ·				
			• ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·			
			TABL	E 4.20-12 HD	C-601 COMPUTER CHA	RACTER	ISTIC	S	
		-			•				
		••••••	tion.		· · · · · · · · · ·		• • •		
-	<b>.</b> .		_ ·						
					·				
•		· · · · · · · · · · · · · · · · · · ·	i	· · · · · · · · · · · · · · · · · · ·		:	-		•
							• •		A
	<b>.</b>			. <u>.</u>					
		··• ·····							<b>.</b>
	-		• •			-	, ·		
	· .	•	•			•			
		· •			•				<i>,</i> ,
			-	<b>.</b> .		-			
						· .•	1		



	DATE0/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE N0.4-452
i	REV.	BINGHAMTON, NEW YORK	REP. NO.

REF. 42

.398.8

Data Flow. As shown in Figure 4.20-16, the data flow between the central processor and memory is through the memory data register with memory address information supplied by the memory address register. From the memory data register, data cen be routed through the adder to any other register. The adder serves both as a transfer gate and as an arithmetic element during arithmetic operations. Data and information are routed throughout the central processor in accordance with the dictates of the particular instruction being executed. Data is transferred between the central processor ane the system via both the direct input/output channel and the direct memory access channel.

Control. Execution of instructions is controlled by timing and instruction decoding logic within the central processor, Each instruction is performed in basic steps called microprograms. These microprogram steps include all the basic operations necessary for operation of the central processor. Timing for central processor operations is obtained from a stable 3-MHz clock, which also supplies timing signals to other points in the system. The interrupt inputs provide control of the central processor by other parts of the system.

# THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

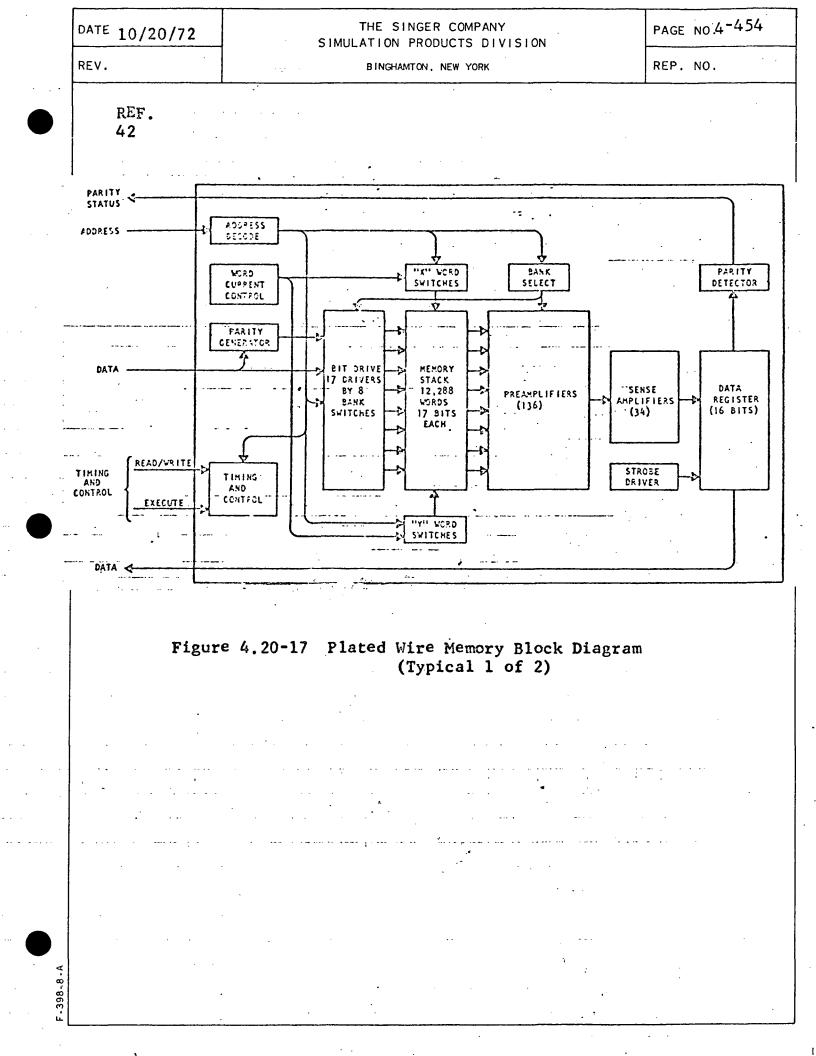
REV.

398.

BINGHAMTON, NEW YORK

REP. NO.

REF. 42


# Memory

A plated wire memory is used with each redundant computer A functional block diagram of the memory organization channel. is shown in Figure 4.20-17. The package consists of four printed wiring boards containing sense/digit and word/timing electronics, and six boards forming a memory stack. Each memory board contains its own word select electronics. The two surfaces of each memory board also contain printed wiring interconnections for the electronics plus parallel conductors (word straps) used for word selection. The 2-mil plated wire memory elements are supported in parallel tunnels lying between and at right angles to the word straps on the board surfaces. All boards are securely fastened and supported by a rigid frame. Interconnections are made by flexible flat cable.

Characteristics of the memory are as follows:

1. Capacity: 12,288 x 17-bit words.

- Cycle Time: 1 microsec (capability to execute any combination of read and write cycles at the rate of 1 MHz.
- 3. Access Time: 350 nanosecond
- 4. Operating Power: 9 watts average



DATE 10/20/72		0/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-455
REV.			BINGHAMTON, NEW YORK	REP. NO.
REF. 42			The 2-mil plated wire memory was so oller application over other memory wing reasons:	
	•	-	1. <u>Operating speed</u> . The high-speed d wire exceeds that required for the and provides higher reliability of o	e controller applica-

2. <u>Low power</u>. Nine watts average power is achieved through power switching the fast switching characteristics of the plated-wire memory element and the nondestructive readout characteristic of plated wire.

3. <u>Minimization of electronics</u>. Two-mil wire can be interfaced directly with standard small- and medium-scale integrated circuits eliminating the need for high current drivers.

4. <u>Low volume and weight</u>. Optimization of electronics and use of multilayer printed circuit boards and mediumscale integrated circuits (MSIC's) minimizes volume and weight.

5. <u>High reliability</u>. High reliability is derived from reliability of plated wire and minimization of electronics.

6. <u>Nondestructive readout (NDRO)</u>. During a read cycle, the memory contents are not altered (nondestructive readout) precluding the need for a"read restore" cycle.

F-398.

REP. NO.

REV.

398.8

<u>REF</u>. 42 7. Lockout capability. By virtue of the "word organized" structure and nondestructive readout operation, blocks of memory can be electrically disabled to prevent inadvertent alterations of critical instructions and constants. Alternatively, the memory can be energized during ground maintenance operations and altered via a special GSE connector. This flexibility is useful for revising the calibration constants stored in the memory, following a sensor replacement.

8. <u>Temperature stability</u>. No temperature compensation is required by the 2-mil plated wire memory over the controller operating temperature range.

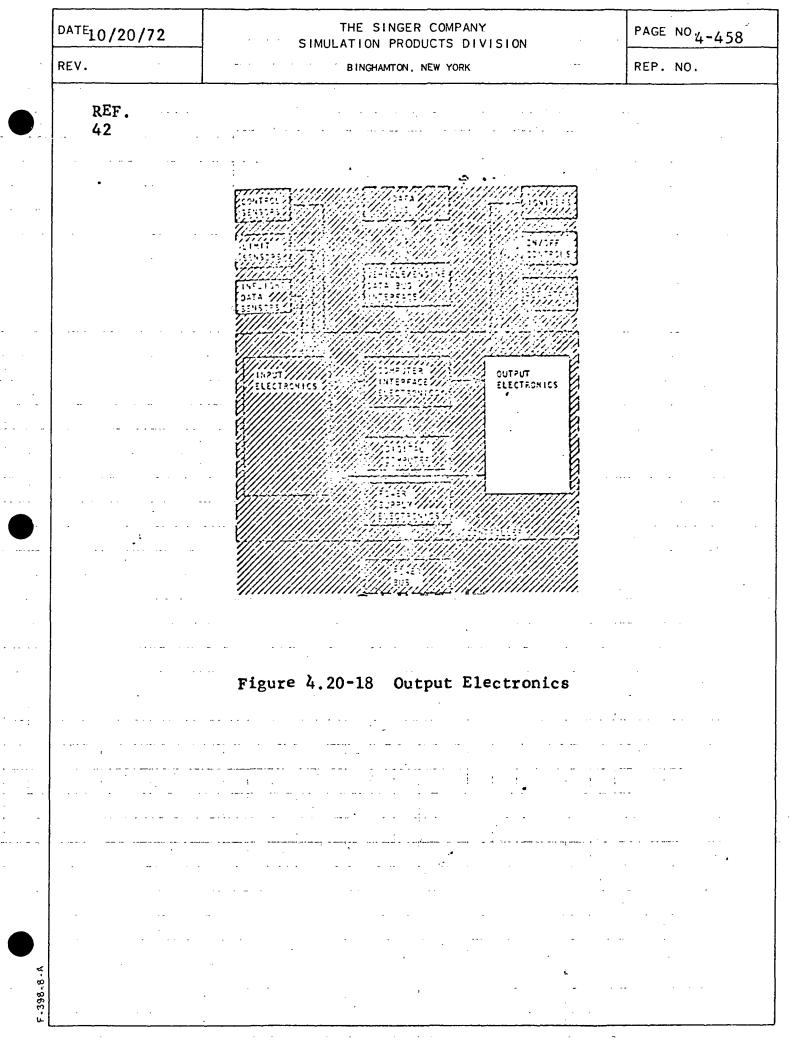
9. <u>Rugged vibration-resistant construction</u>. The plated-wire elements, word straps, and associated electronics are securely supported by a sandwich structure of memory planes and electronics boards mounted in a rigid frame.

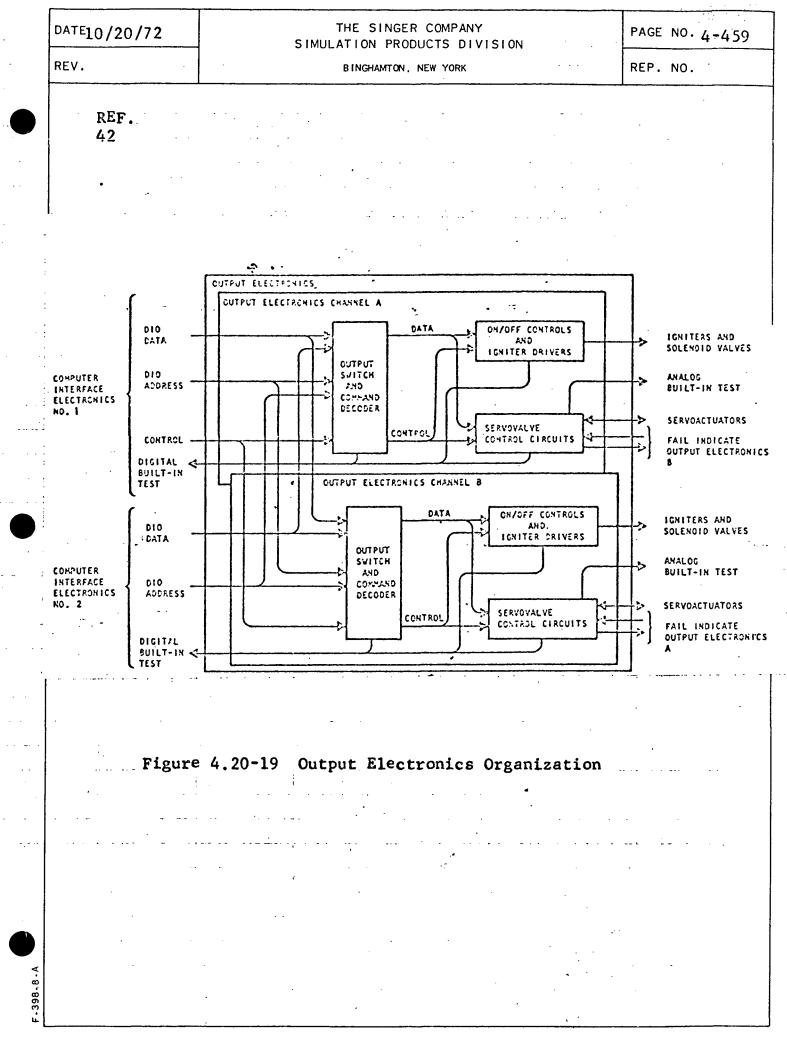
Details relative to the selection of the memory are presented in the Honeywell Controller Technology Trade Study, 970-1327B (Phase B Supporting Analysis Data, Volume 58).

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-457
REV.	BINGHAMTON, NEW YORK	REP. NO.

REF. 4.20.4.4 OUTPUT ELECTRONICS DESCRIPTION

42


F-398-8


The output electronics (Figures 4.20-18 and 4.20-19) accept digital control commands from computer interface electronics No. 1 converting them to analog voltages for control of servovalve actuators, on/off controls, and spark igniters. The output electronics are dual redundant. Each consist of:

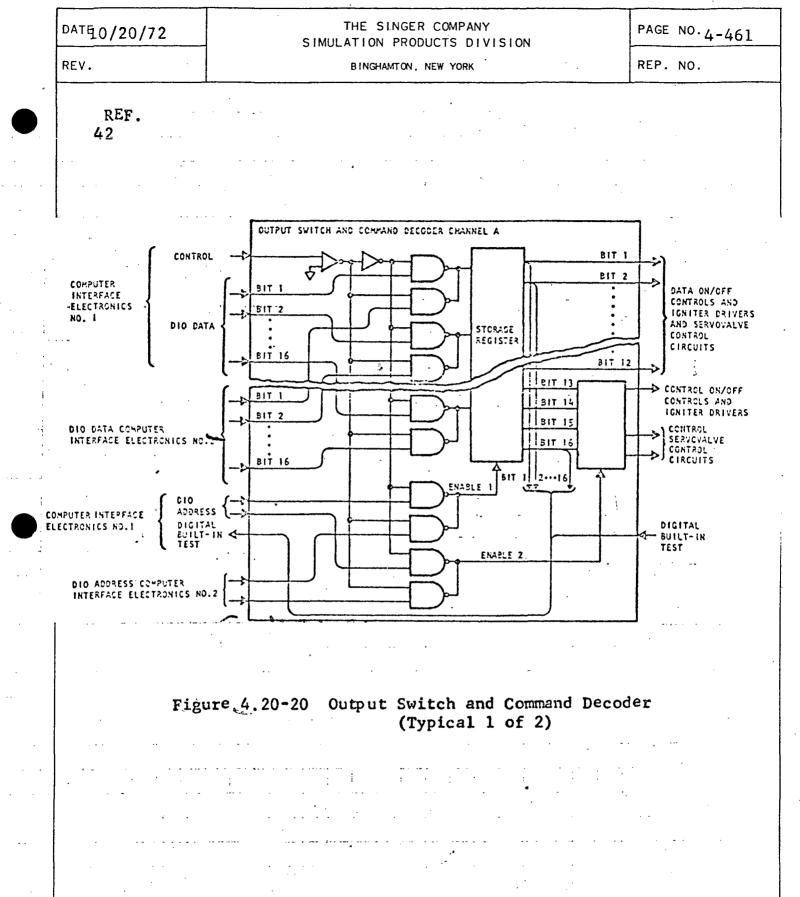
1. Output switch and command decoder.

- On/off controls and igniter drivers to energize engine on-off valves and spark igniters.
- Servovalve control circuits to energize and position proportional servovalve actuators, and to operate fail-operational and fail-safe solenoids.

Both redundant output electronics channels (A and B) accept digital data from the controlling computer, converting it to on/off and analog commands for the engine controls. Channel A energizes the operational torque motors for the proportional valves, and channel B the standby torque motors. Channels A and B each energize half of the redundant outputs. Nonredundant coils on valves are divided between channels A and B. All output commands are fed back to the digital computer to verify the output electronics operation. In addition, the operation of the actuator servovalves is






398-8-A

REF. 42 compared to an electronic model. If an unacceptable error or failure is detected in one of the dual servovalves, the channel is disabled by removing power. If the second servovalve fails, the associated actuator is hydraulically locked in its last position to maintain engine operation.

### Output Switch and Command Decoder

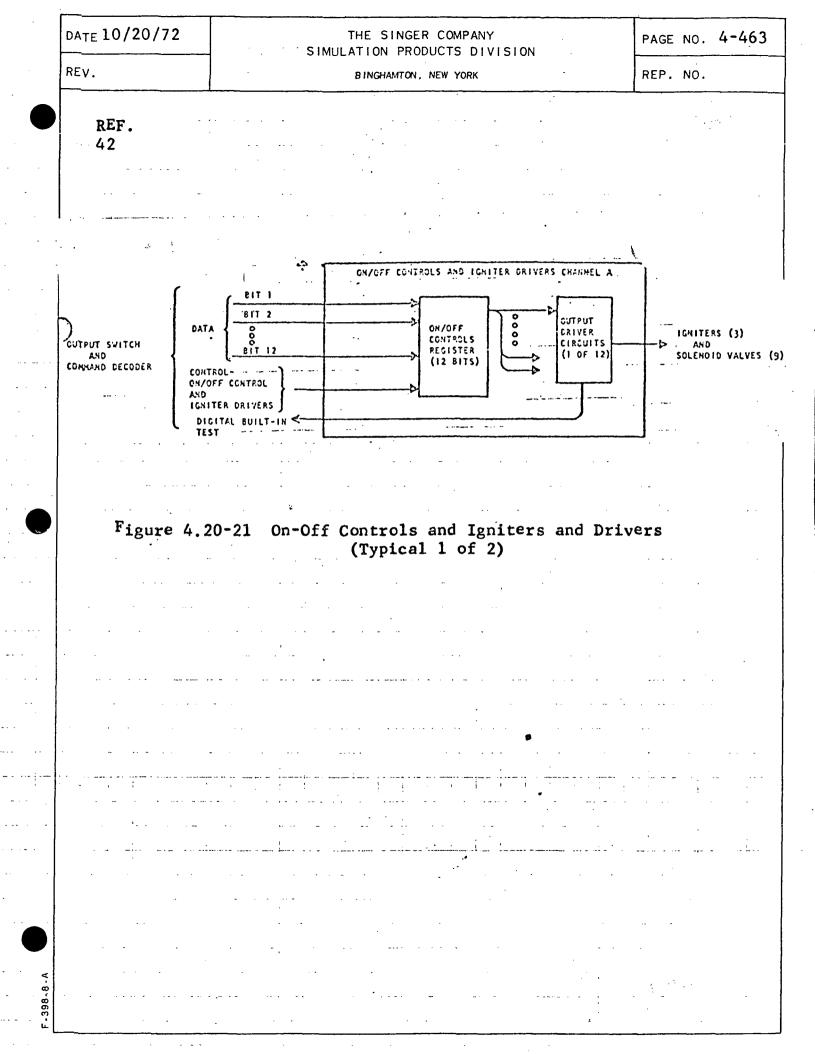
Digital engine commands are presented at the outputs of No. 1 and No. 2 computer interface electronics in 16-bit parallel format. The output switch and command decoder, Figure 4.20-20, is controlled by computer No. 1 watchdog timer. The watchdog timer output logical one enables 18 AND gates to transfer 16 bits of direct output data from computer interface electronics No. 1 into a storage register. The 17th and 18th bits control enable signals from the computer direct input/output address bus to the storage register and the command decoder.

If the watchdog timer output switches to zero signifying a failure in computer No. 1, the first set of AND gates will be disabled and a second set enabled transferring the output of computer No. 2 to the storage register.



F-398-8

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-462
REV.	BINGHAMTON, NEW YORK	REP. NO.


REF. 42

F-398-8

While the digital data is in the storage register, it is fed back to the digital computer built-in-test inputs for verification. Lack of verification will initiate a new command from the computer. Repeated nonverification (3 times) is a failure.

When the data in the storage register is verified, 12 bits are available to the on/off controls and igniter drivers and to the servovalue control circuits. The remaining 4 bits are decoded in the command decoder and used to control the sequencing, routing, and timing of the output signals.

When the controller has verified commands for the igniters and on/off controls in the output switch storage register, all 12 bits are clocked by a second enable signal and routed by the command decoder into the register for the on/off controls and igniter drivers, Figure 4.20-21. The appropriate "on" or "off" inputs are then enabled to the 12 drivers to set the controls for the command. Under software control the register maintains the initially commanded output to each driver until a change is commanded, i.e., to reduce solenoid power to the hold-in level or to energize or de-energize a specific solenoid. The driver outputs are checked periodically by built=in-test.



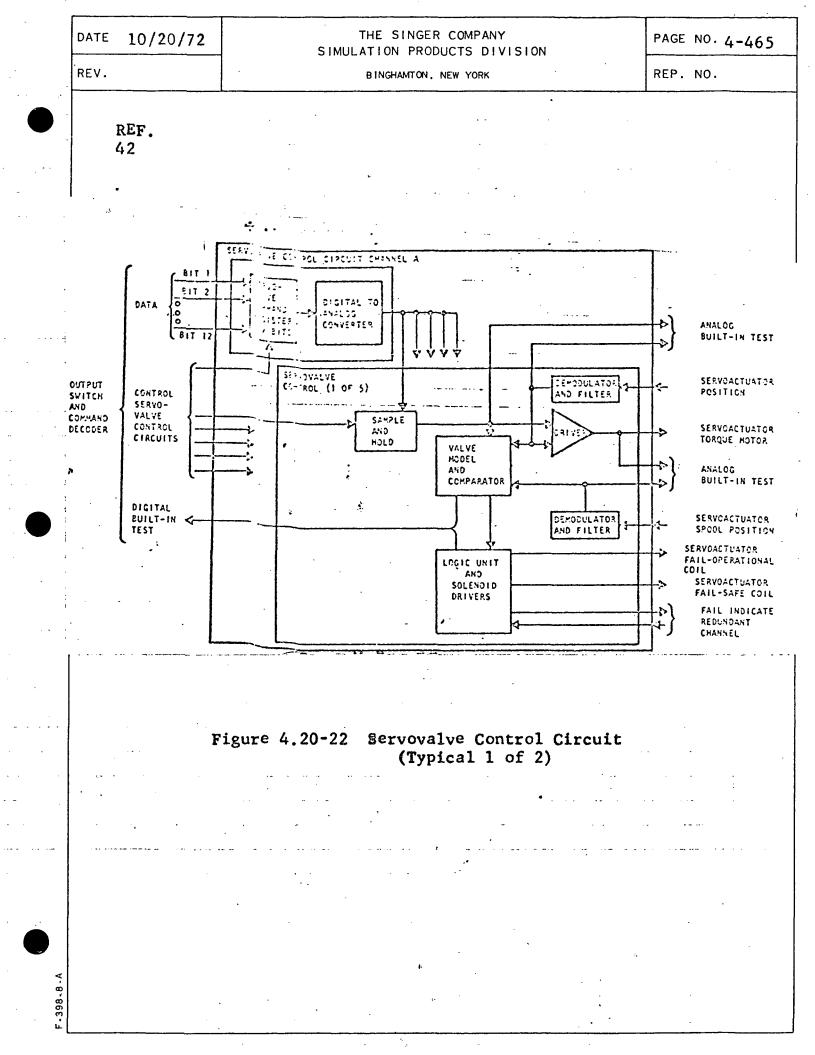
DATE	10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-464
REV.	•	BINGHAMTON, NEW YORK	REP. NO.

BINGHAMTON, NEW YORK

REF. 42

-398-8-A

### Actuator Servovalve Operation


Each proportional valve actuator is driven by two servoyalves. One is normally in control and is energized by output electronics Channel A.

The second is energized by Channel B, but is in standby. Actuator control is transferred to the standby servoyalve when either servovalve fail-operational solenoid is energized. When both fail-safe solenoids are de-energized, the actuator is hydraulically locked in its last position.

# Servovalve Control Circuits

Verified proportional valve commands in 12-bit digital format are transferred by the command decoder from the output switch storage register to the servovalve command register, Figure 4.20-22. Once every 20 msec the command for each proportional value is converted to an analog voltage by the digital-to-analog converter and clocked into one of the five sample and hold circuits. Multiplexing these signals one at a time eliminates the need for four additional sets of storage registers and digital-to-analog converters.

The sample and hold analog voltage proportional to the commanded valve position is summed in the driver input circuit with the demodulated actuator position feedback



REP. NO.

REF.

REV.

.398.8

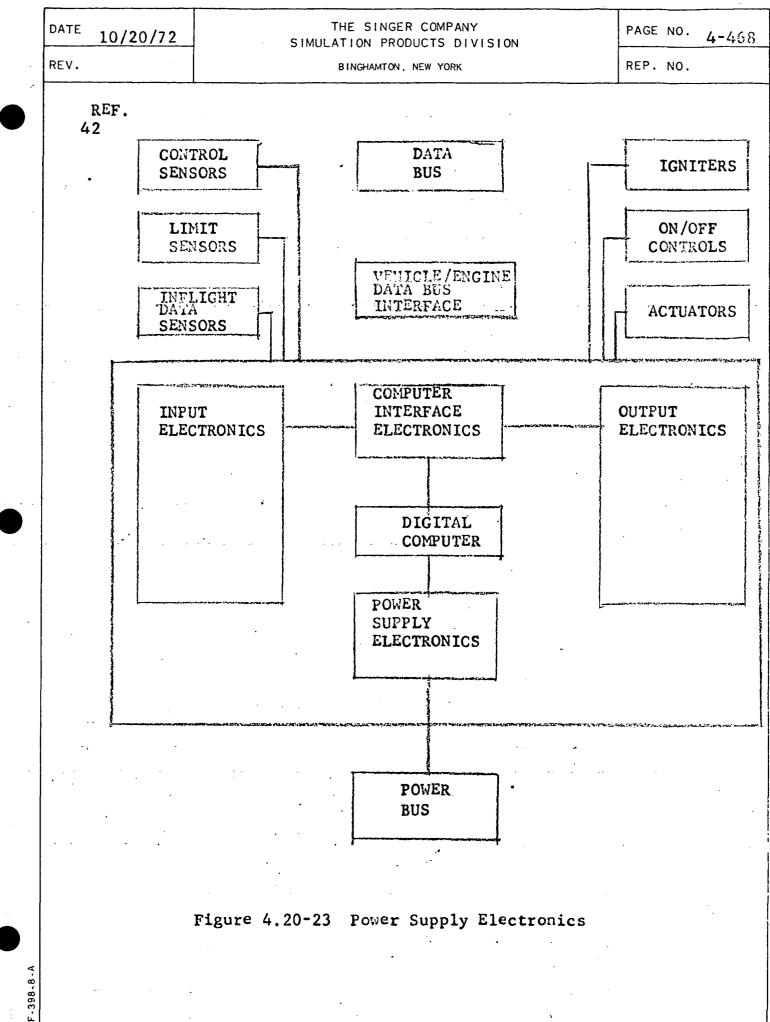
42

signal from a linear variable differential transformer (LVDT). The resulting error signal drives the servovalve torque motor until the actuator reaches its commanded position and the error signal is a null.

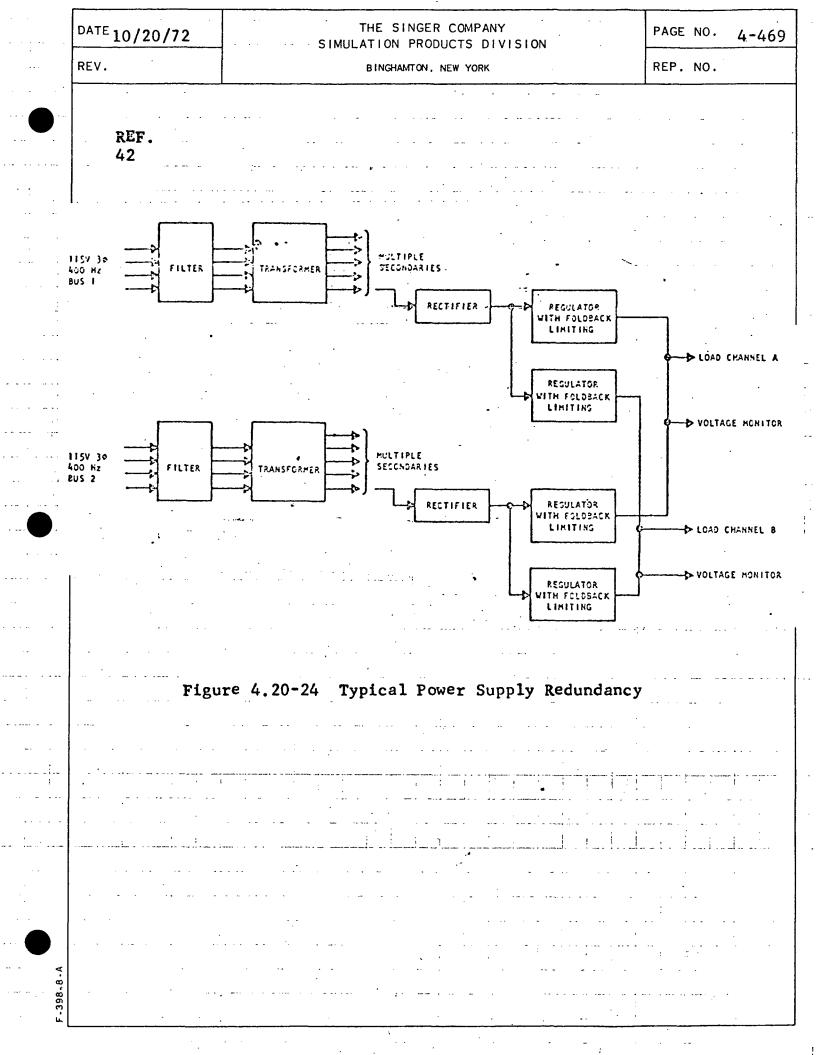
The analog command from each sample and hold circuit is also summed with the demodulated actuator position feedback signal in a servo valve model and comparator circuit. The resultant error signal is the same as that seen by the servovalve and is applied to an electronic model of the servovalve. The electronic model output is dynamically compared with demodulated LVDT feedback signal representing the servovalve second stage spool position. When either electronic model (Channel A or B) indicates a servovalve is not following its command signal, a fail indicate signal is generated in the logic unit. The logic unit then emergizes or de-energizes the servoactuator fail-operational or fail-safe coils per the following logic.

· ·· ·	<u>CHANNEL</u>	STATUS	SERVOACTUATO	R COIL	CHANNEL IN CONTROL
	<b>A</b>	<u>B</u>	Fail-operational, volts	Fail-safe volts	
	OK	OK	0	28	Α
	OK	Fail	0	28	А
	Fail	OK	28 Momentary	28	<b>B</b> .
	Fail	Fail	Not applicable	0	Hydraulic Lock

4-466


DATE/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-46
REV.		REP. NO.
	20 4 5 DOLIED CIEDRIN FIFCTRONICS DESCRIPTION	

The power supply electronics (Figure 4.20-23) rectify, filter, and regulate 115 volt, 3-phase, 400 Hz for use in the engine controls. Dual redundant power supply electronics energized from redundant vehicle power buses maintain the required fail-operational, fail-safe capability. Redundancy in the regulators matches that of the electronics functional subsystems. Protection is provided against propagation of overload failures. The power supply electronics include provisions for detecting and reacting to out of tolerance voltage, power failure and power recovery.


### Power Supply Redundancy

F-398-8-1

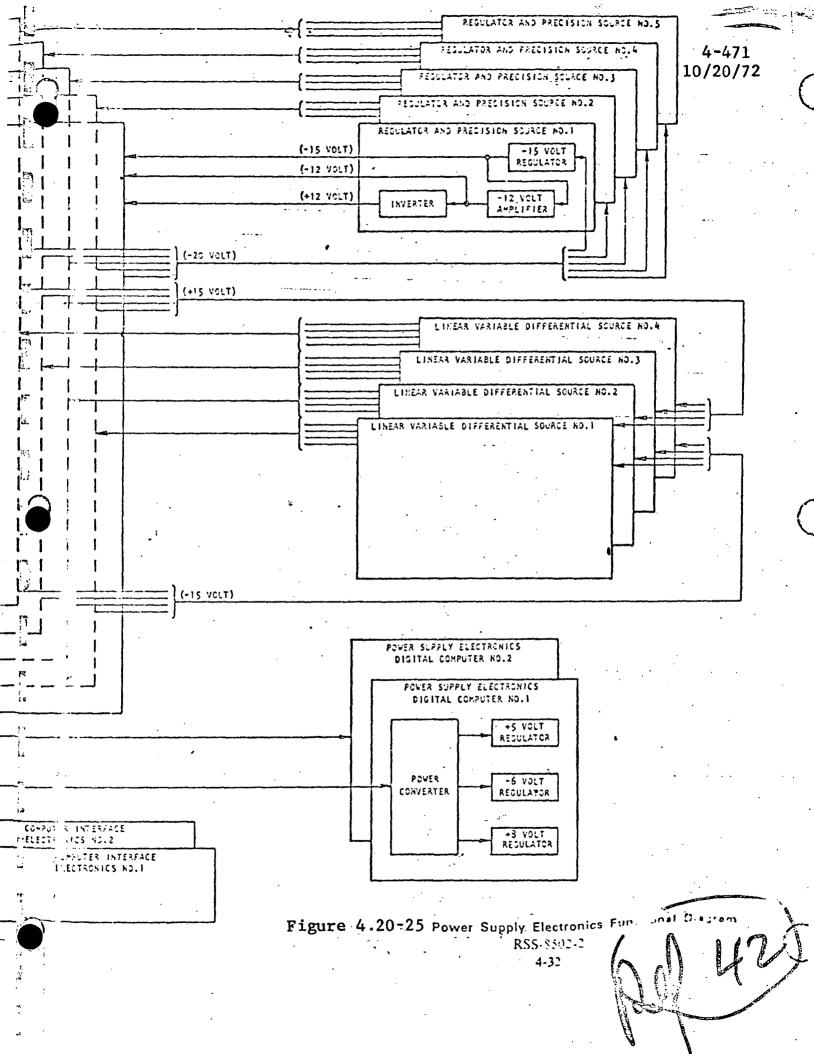
Each of the two redundant power supplies consists of line filter transformer with multiple secondary windings and associated rectifiers, and a family of voltage regulators. As shown in Figure 4.20-24, each load branch is supplied from the redundant vehicle power buses through separate regulators. Uninterrupted power will be maintained to each load in the event of a failure in a power bus, rectifier or regulator. A minimum of two regulator failures to the same load are necessary to shut down a computational channel.



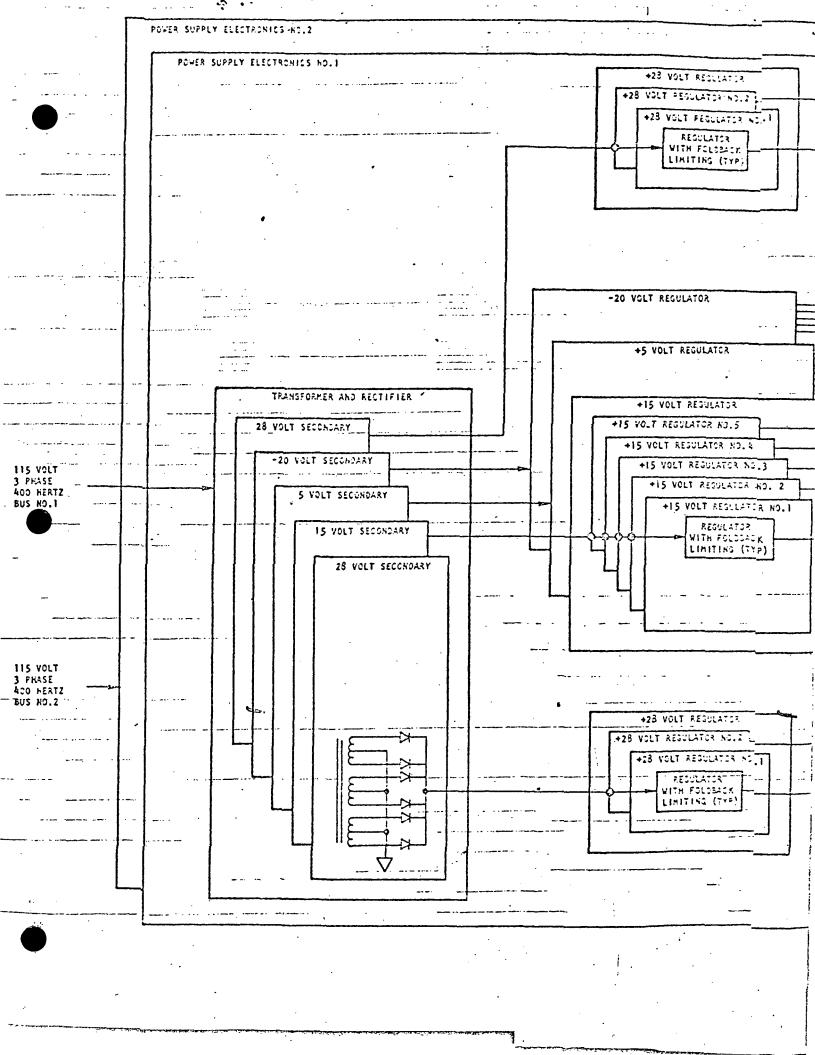
۰.



DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE	NO.	<b>4-47</b> 0
REV.	BINGHAMTON, NEW YORK	REP.	NO.	


F-398-8

The redundancy if protected from propagation of overload failure by foldback limiting incorporated in each regulator. If load current exceeds an acceptable level, the foldback limiter will isolate the load until the overload is removed. This feature protects the primary supplies and the remaining functions dependent upon them.


Power supply and regulator redundancy is shown in greater detail in Figure 4.20-25. The two sets of power supply electronics, No. 1 and No. 2, are dedicated to the corresponding computers and computer interface electronics. In addition, each of the three input electronics data channels and the two output electronics data channels are supplied from separate regulators to preserve their redundancy. This also provides a selective turn off capability if an out-of-tolerance condition arises.

# Power Supply Electronics Design

Each set of power supply electronics, Figure 4.20-25, incorporates radio frequency interference filtering (not shown), multiple transformer secondaries, and 3-phase, fullwave rectifiers with combination passive and active filtering. Redundant 28-volt regulators in each of the two power supplies independently supply power to both digital computers. The 28 volt regulators also supply power to the randem 5 volt



· · ·								<b>t</b> :	
		• •		ł		CUTPUT E	LECTRONICS CHANNEL B	70	·``•
				: [		100	PUT ELECTRONICS CHANNEL &	1-1	
AT RESULATIN			3• • • •	·	···	INPUT	ELECTRONICS CRANNEL IS AND 2		
EGULATON NO.2		·	<b>-</b>	$\left\{ \right\}$	· ·				
LET ATLA ADAL	· .	1					INPUT ELECTRONICS CHANNEL 13 AND 28		
REGULATOR		<u>,</u>	· •• •				INPUT ELECTRONICS CHANNEL IA AND 24	-+	
IMITING (TYP)		Ĩ					CIGARCE IN AND 24		- ا ا
		j.							i he
		Í					· ·		
	ł	<b> </b>		<u>⊢</u>					
			an a de annancestation a mòra com		:				il
		[ ] ·				••• •			
-DULATOR		L		]					
-SOLATOR .		<u> </u>	f			• •			
•. •									
T REGULATOR					-	-		011	1
•					<u></u>				·
	· · · · · · · · · · · · · · · · · · ·		- (					1 1	1
LET RESULATOR			·	· ["		-  · ·			··
T RESULATOR NO. 4		· · · · · ·						<u> -    </u>	
OLT REGULATOR NO.3		)				••••			
VOLT REQULATOR NO. 2	5								
-15 YOLT RESULATIR NO.		,	· .·				· · ·		
LEQULATOR						ŀ		()	
WITH FOLDLACK		·							
								1. 1. 1.	
						~			
er, me tra det —			. I						
	]  · _							<b>1</b>	1
	I						,	e i end Gi	i
	1		۔ محمد بی محمد میں محمد المحمد الم		<b>ال</b> م			'	i i
			• • .			L		-[	
VOLT RESULATOR	- Ì							÷#	
RESULATOR NO.2	···		A	-		6			
COLT RESULATIS NO.	Y		Ĭ				:	} }4	
RESULATON	······		'		•		1	•	
WITH FOLDBACK									
· · · · · · · · · · · · · · · · · · ·						-			<u> </u>
······			+5 YOLT RE					COMPUT 3 17ELECT: 11	INTERFACE ) ICS NO.2
	-		+5 VCLT		· · · · · · · · · · · · · · · · · · ·	יי. רי			PUTER INTER CTRONICS NO
<b></b> .				EGULAT H FOLT	SEACK			1.6	LINGAILS NO
•		-		IT ING	(TYP)	J.   .		<b>n</b>	
	·····	] · • ·	· · · ·			J	L_	-	·
		•		<b></b> .			· · ·		
	. •							i N	}
	•			•	-	•			
							· · ·	*# *	
						•		_(	
									i



DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-472
REV.	BINGHAMTON, NEW YORK	REP. NO.

regulators for the input electronics, eliminating an additional regulator in each supply. The digital computer power is obtained from a dc to dc converter to provide isolation and to preserve the existing circuit and logic design of the HDC-601 computer.

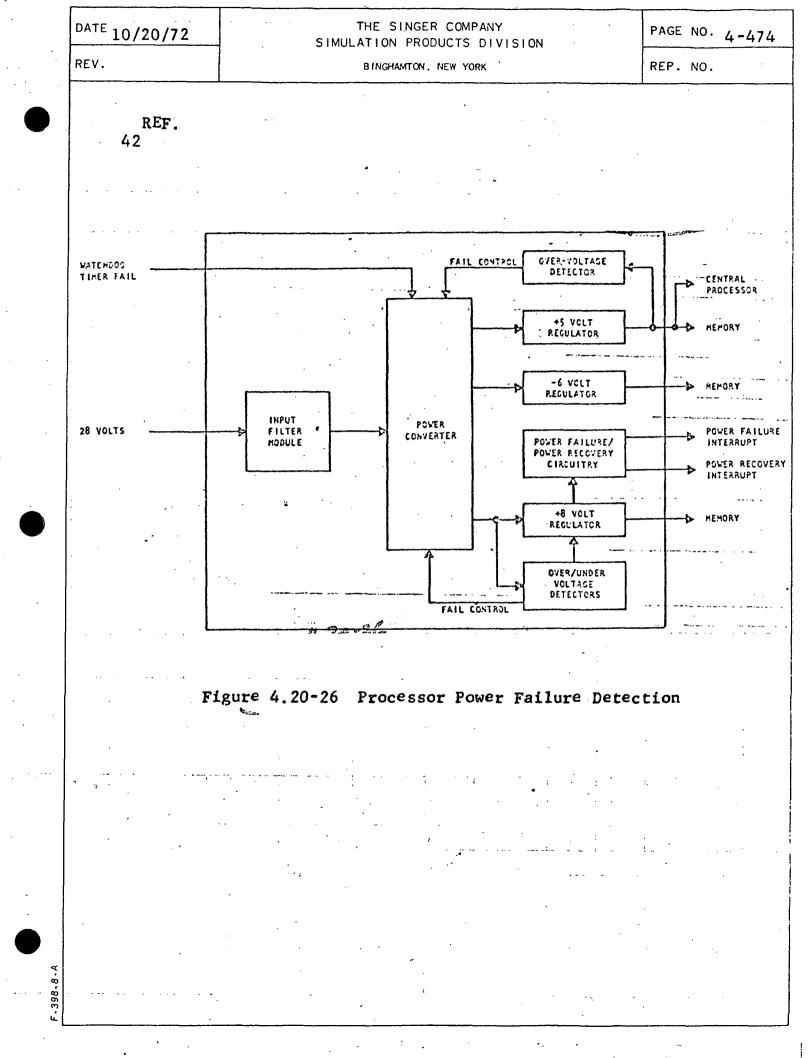
Redundant regulators provide +15 volts, +5 volts, and -20 volts for the input and output electronics. Separate +28 volt regulators supply the solenoid valves. The power supply electronics for each input and output electronics channel includes a precision dc reference source for the analog-to-digital and digital-to-analog converters, and the temperature and pressure sensors. Also included is a precision ac reference source for the linear variable differential The power supplies use both series and switchtransformers. ing type regulators. The choice is dictated primarily by efficiency considerations, with the aim of minimizing internal power supply dissipation. The 28 volt regulators with their high and variable current loads and the high-current, 5 volt regulators are of the switching type with noise suppression.

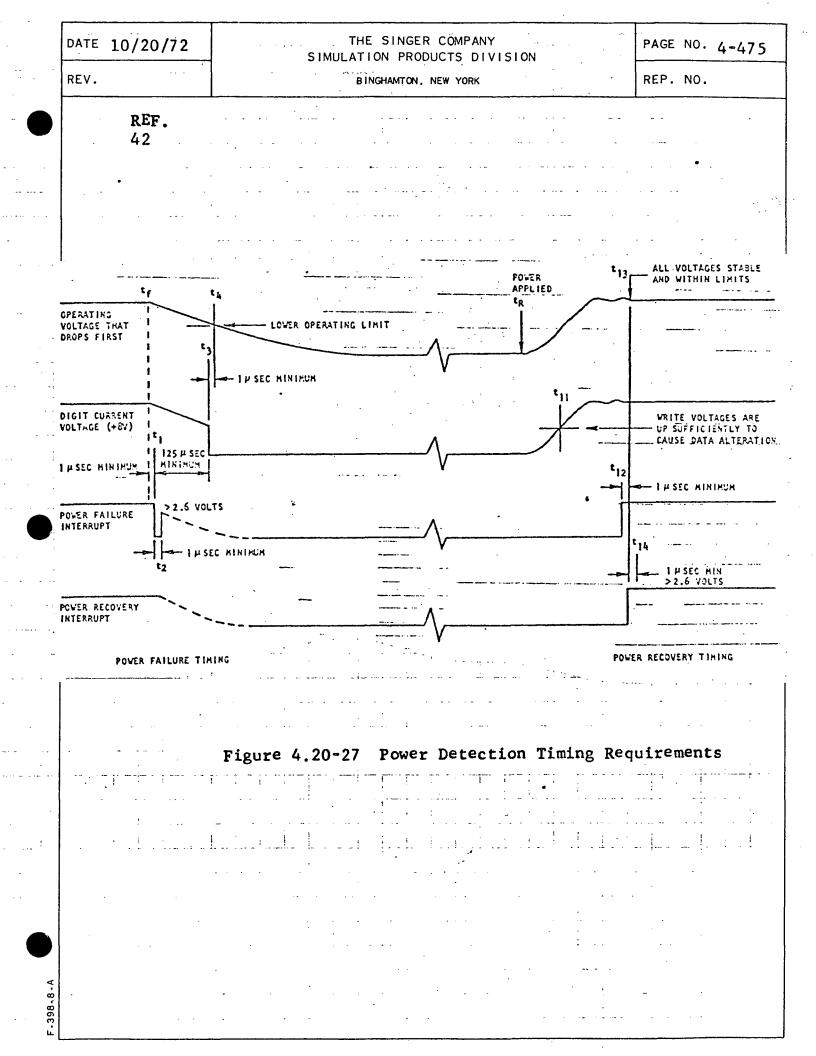
Each power supply branch includes provisions to monitor the voltage levels and to shut down the branch if high outof-tolerance voltages are experienced. Power shut down

DATE	10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-473

REV.

BINGHAMTON, NEW YORK


REP: NO.


REF. 42 capability is also controlled by the watchdog timers and by the digital computers.

Simultaneous loss of power on both input power buses for more than a few milliseconds will force the controller winto an inactive standby condition. If power is restored on one of the buses within 50 msec, normal operation will resume. If not, a safe engine shutdown will be initiated.

The power supply electronics for the digiral computer include a power failure and recovery interrupt circuit. Figure 4.20-26. This circuit initiates a computer interrupt to store all critical computation parameters before shutdown, enabling a successful reinitiation of the computer program upon power recovery. The interrupt is initiated by over voltage, under voltage, or loss of power either due to power bus failure or to an intentional shutdown by the watchdog timer.

As shown in Figure 4.20-27, the energy stored in the power supplies will sustain computer operation for a minimum of 125 microsec after power interruption. This is more than adequate time for the computer to perform an orderly and safe shutdown. When power recovery occurs and the supply voltages





DA	Т	F	0	1	2	0	1	72	
----	---	---	---	---	---	---	---	----	--

# THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

REV.

F-398-8

BINGHAMTON, NEW YORK

REP. NO.

REF. 42

stabilize, the power recovery circuit generates an interrupt to resume normal computer operation.

# Power Requirements

The total electrical power required by the engine is a maximum of 560 watts during steady state conditions and 870 watts for 3.5 seconds during engine start. Of the 560 watts total required during steady state conditions, 443 watts are dissipated in the controller and 117 watts are dissipated in valves and sensors.

DATE	10	120	172	
------	----	-----	-----	--

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

PAGE NO. 4-477

REP. NO.

•	
REF	•
42	

REV.

F-398-8

### 4.20.5 CONTROLLER SOFTWARE

The selected avionics approach incorporates two generalpurpose Honeywell HDC-601 digital computers packaged within each of the three main engine controllers. The computers can be fully reprogrammed to solve any computational problem within the hardware limitations of word length, processing speed, and memory capacity. Each computer has its own program stored within its 2-mil plated-wire computer memory. The programs may easily be changed by using a portable memory loader. The memory loader interfaces with the controller through ground support equipment electrical connectors on the controller. The memory loader obtains the program information from a punched tape, which it encodes into electronic information to be stored in the computer memories. The memory loader also checks the computer program against the punched tape after it is read into the computer memory to ensure that no errors have been introduced into the program.

The capability of easily changing the programs stored in the controller computer memories provides a flexibility to accommodate normal development changes quickly, safely, and at low cost. The approach to developing the flight program for the controller is to create one main program, called the executive program, and several special purpose subprograms.

DATE	10/	20/	/72
------	-----	-----	-----

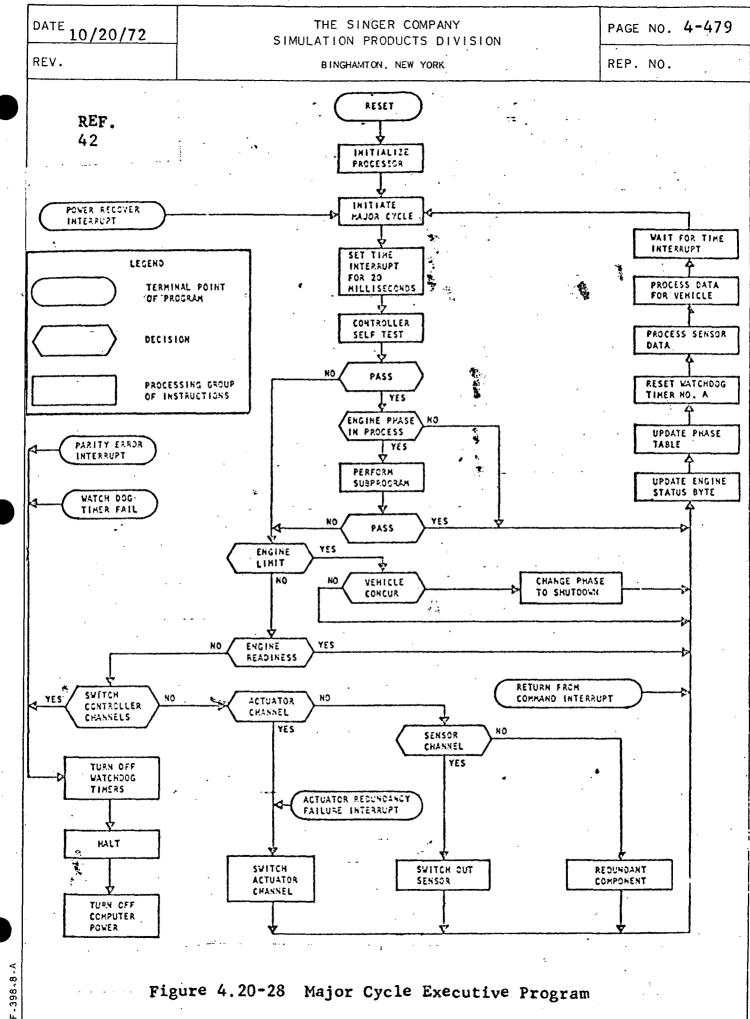
BINGHAMTON, NEW YORK

REP. NO.

REF. 42

REV.

-398-8-


The individual subprograms perform special numerical computations on data or make logical decisions (e.g., igniter checkout, start preparation, or start). The executive program has the primary task of supervising the sequence of processing subprograms when needed and for keeping track of the total status of the engine, avionics and commands from the vehicle.

The HDC-601 has a fully developed standard software programming library consisting of:

- 1. DAP-16 Assembler
- 2. FORTRAN IV Compiler
- 3. Standard Input/Output Library
- 4. Mathematical Library
- 5. Utility Routines

4.20.5.1 CONTROLLER EXECUTIVE PROGRAM

The executive program establishes the sequence of operations to be performed by the digital computer. Operation of the executive program is cyclic. A complete cycle (one pass through the executive program) is completed every 20 milliseconds. Figure 4.20-28 is a simplified flow chart of the executive program. Under normal operation, whether on the ground for checkout or during flight, the computer progresses through the executive program, performing the indicated operations in an endless loop. The loop is broken and the



DATE 10/2	20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-480
REV.		BINGHAMTON, NEW YORK	REP. NO.

398.

sequence of operations is revised by any one of several

possible events:

- Command received from vehicle alters control or checkout phase of operation.
- 2. Built-in test determines component failure.
- 3. Engine limit detection monitor determines engine exceeded allowable limits.

The executive program contains the logic to evaluate all of the three events listed, update the engine status byte and phase table stored in computer memory, and change the subprograms to be processed by the computer.

As indicated in Figure 4.20-28, by the five terminal points, the executive program may be entered from several points with different external conditions. The start of the executive program cycle during ground operation begins with application of power to the controller which resets and initializes the computer. This inhibits controller outputs during the transition to full electrical power and forcesthe executive program to start from a predetermined memory location. The engine status byte and phase tables are set to the initiation condition. A controller self-test is processed each cycle. Successful completion of the controller self-test is required prior to performing a subprogram of

DATE	10	/20	/72
------	----	-----	-----

REP. NO.

REF. 42

REV.

engine operation. The logical decision"engine phase in process" is processed by the executive program to determine which subprogram, listed in Table 4.20-13, is to be processed. A failure detected during controller self-test or engine phase subprogram processing is evaluated and corrective action taken as indicated. Exceeding an engine limit condition will result in an engine shutdown only if the vehicle will permit a shutdown. The engine status byte and phase tables are updated each cycle to indicate current engine status and engine sequencing phase.

One watchdog timer is reset each time through the executive program cycle. Sensor data which does not require executive program control to be processed into memory are validated, redundancy verified, and parameter values averaged in the block "process sensor data". Maintenance data for vehicle recording is processed in the block process data for vehicle. This completes the major executive cycle in less than 20 msec. The executive program then waits for the computer real time counter to signal a time interrupt to repeat the cycle.

The executive program cycle may be interrupted in any part of the repetitive cycle by interrupts generated by builtin test within the controller or by vehicle command interrupts.

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4	848
REV.	BINGHAMTON. NEW YORK	REP. NO.	
REF. 42	TABLE 4.20-13 SUBPROGRAM		
· -	SUBPROGRAMS	· · ·	
•	<ol> <li>AUTOMATIC CHECKOUT         <ul> <li>MEMORY SUM CHECK</li> <li>PRESSURE SENSORS CALIBRATION O</li> <li>C. TEMPERATURE SENSOR FUNCTIONAL</li> <li>D. FLOW/SPEED SENSOR FUNCTIONAL O</li> <li>E. VIBRATION SENSOR FUNCTIONAL CHECK</li> <li>G. ACTUATOR/VALVE FUNCTIONAL CHECK</li> <li>G. ACTUATOR/VALVE FUNCTIONAL CHECK</li> <li>H. PNEUMATIC SHUTDOWN TEST</li> <li>I. EMERGENCY BOOST MODE LIMIT SHU CONTROL FUNCTIONAL CHECK</li> <li>J. EXTENDABLE NOZZLE FUNCTIONAL CHECK</li> </ul> </li> </ol>	CHECK CHECK IECK C C K ITDOWN	· · · ·
	2. START PREPARATION A. GN ₂ PURGE B. INTERMEDIATE SEAL PURGE C. HELIUM FUEL SYSTEM PURGE D. PROPELLANT RECIRCULATION E. HELIUM FUEL SYSTEM PURGE: PRO DROPPED	PELLANTS	
· · · ·	3. FLIGHT A. START B. MAINSTAGE C. SHUTDOWN		
· ·	4. POST-SHUTDOWN A. PROPELLANT DUMP (1) LIQUID OXYGEN DUMP (2) FUEL DUMP		
	B. ABORT TURNAROUND BOOSTER (1) HELIUM FUEL SYSTEM PURGE (2) PROPELLANT RECIRCULATION	·······	•
			-

DATE	10	/20	/7	•

REP. NO.

REF. 42

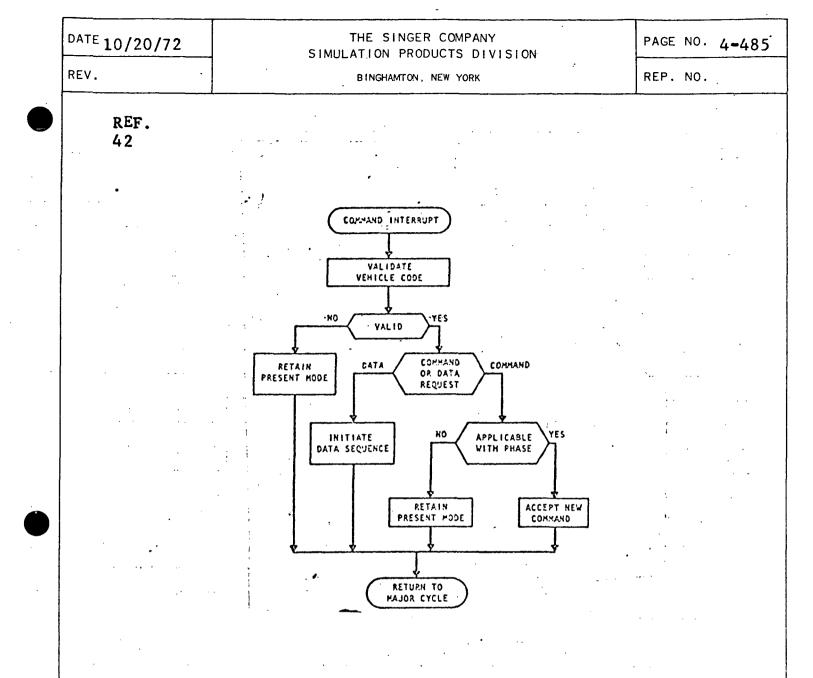
REV.

.398.

Memory parity, watchdog timers, actuator redundancy failure, and loss of electrical power initiate interrupts by hardware built-in test within the controller. A loss of power results in a power interrupt which causes computational operation to stop for the duration of the failure. If power is restored, a power recovery interrupt is generated which starts the executive program at the "initiate major cycle" block. This is different from normal power startup because the computer memory still retains all data processed prior to the interrupt, including engine status byte and phase tables. Thus, if the power failure is not too long (less than 50 milliseconds), normal control may be resumed.

Parity error or watchdog timer failure are failures of a controlder channel and cause control to switch to the redundant operational channel. They generate interrupts, which turn off both watchdog timers for the failed channel, command the failed computer channel to HALT processing, and turn off power to the failed computer. Power can be restored to the failed channel only by cycling the reset. Nornally, this is not done until the flight is ended and the controller is being checked out.

DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-484
REV.	BINGHAMTON, NEW YORK	REP. NO.


R	EF	•
1.	2	

F-398-8

Vehicle command or data requests are input to the vehicle at any time and interrupt the executive program for processing, as illustrated in Figure 4.20-29. The executive program resumes control upon completion of the processing and implements the command or request for data.

The six engine mission phases are: (1) checkout, (2) start preparation, (3) start, (4) mainstage, (5) shutdown, and (6) post-shutdown. Subprograms common to engine phases are not duplicated for each phase, which conserves memory. The executive program determines entry and exit points for linking programs together. The subprograms are expanded and described in detail in later sections. For the three flight phases (start, mainstage and shutdown), all computations in the subprograms assocaited with each phase are accomplished each major cycle. The remaining phases each require multiple cycles to complete the required operations. For example, the automatic checkout subprogram may command an actuator to move. It will verify the motion on later major cycles, giving time for the actuator to respond.

Inputting sensor data into memory is not a function of the executive program, but is under control of the direct memory access. This requires no processor time; however, the direct-memory access sequence may be altered by the executive program.



# Figure 4.20-29 Vehicle Command Interrupt

F-398-8-A

10/20/7	2
	10/20/7

# THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

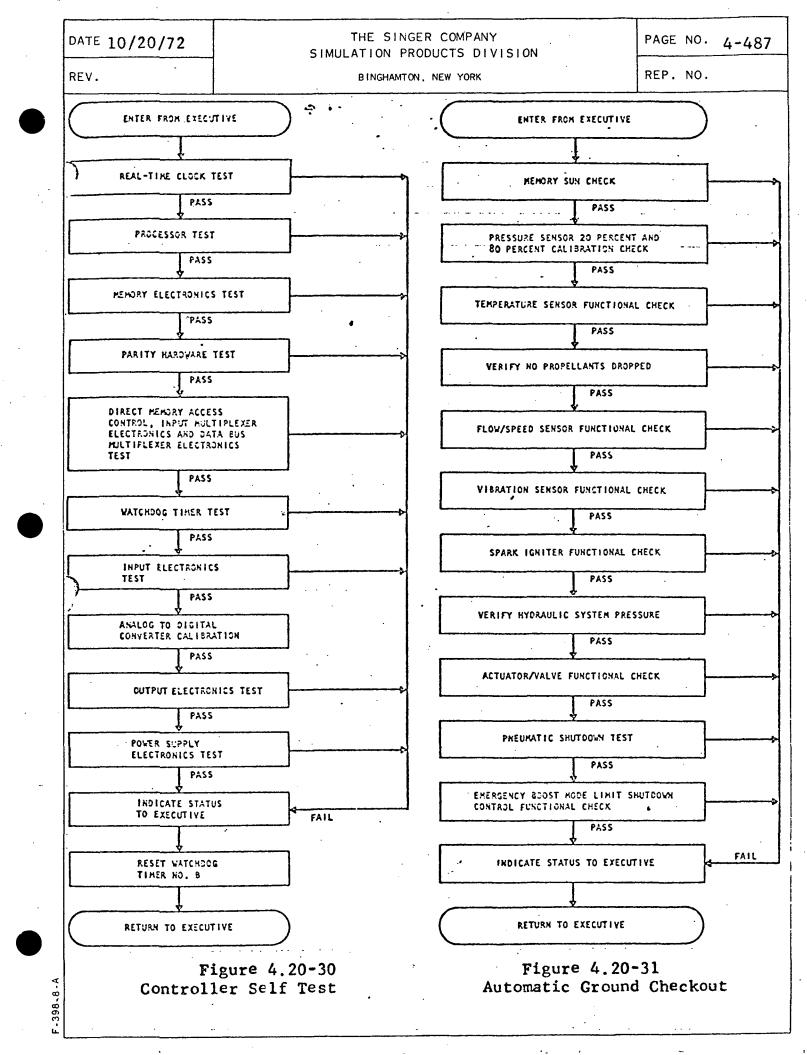
BINGHAMTON, NEW YORK

REP. NO.

REF. 42

REV.

-3398-8


4.20.5.2 CONTROLLER SELF-TEST

The controller self-test program (Figure 4.20-30) is executed during each cycle through the executive program. It verifies the status of all controller components except for some of the low-level multiplexer switches, vibration sensor input amplifiers, and position sensor input demodulators. Those components are checked as part of the sensor input tests.

The individual controller subsections are tested in sequential fashion, as shown in Figure 4.20-30. If a component failure which does not impair the operability of the controller is detected, the failure is indicated to the executive and the program returns to the next step normally performed in the test sequence. If a failure occurs which results in an inoperative controller channel, the controller self-test program indicates the failure to the executive and transfers control to the executive for the processing of channel shutdown, indicated in Figure 4.20-28.

4.20.5.3 AUTOMATIC GROUND CHECKOUT

Upon receiving a checkout command via the vehicle data bus, the executive program selects the automatic ground checkout mode. Since the controller self-test has been performed as a part of each pass through the executive program,



DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-488
REV.		REP. NO.

F-398-8

the components remaining to be checked include actuators, valves, spark igniters, sensors, and certain sensor interface circuits which cannot be completely checked by the controller self-test. An additional memory sum test of the computer memory is also performed as further assurance that the program is valid and that all memory locations can be addressed.

The automatic checkout begins with the memory sum test, as shown in Figure 4.20-31, and continues with a checkout of pressure and temperature sensors. A check is made to ensure that no propellants have been dropped before any further checkout is performed. Tests of the remaining components noted above are then made. This includes a verification of all redundancy and fail-safe backup provisions.

Any failure detected in the checkout sequence is identified to the executive. If the failure does not prohibit further checkout, the program returns to the checkout sequence and completes the tests. Status upon completion of the checkout is indicated to the executive, which in turn processes it for transmittal to the vehicle when requested.

REP. NO.

REF. 42

REV.

F-398-8-1

Subprograms which provide a checkout of individual components or types of components are contained in the computer memory. The propellant and pneumatic valves and extendible nozzle may be individually checked out. The sensors are checked out as a group. The spark igniters are also checked out as a group. The flow charts for these component tests are presented in Figures 4.20-32, 4.20-33 and 4.20-34.

The propellant valve, extendible nozzle, and spark igniter test programs contain interlocks to verify that propellants have not been admitted to the engine. Since the executive program verifies the engine's operating mode before calling on a subprogram, no additional interlocks are required for the sensor tests.

4.20.5.4 START PREPARATION

The start preparation phase of engine operation may be entered and sequenced by commands from the vehicle following successful completion of an engine checkout. Four purges are required to condition the engine for start. These include:

1. GN₂purge until engine start and helium purge of

high-pressure oxidizer turbopump intermediate seal for approximately 10 minutes prior to dropping propellants.

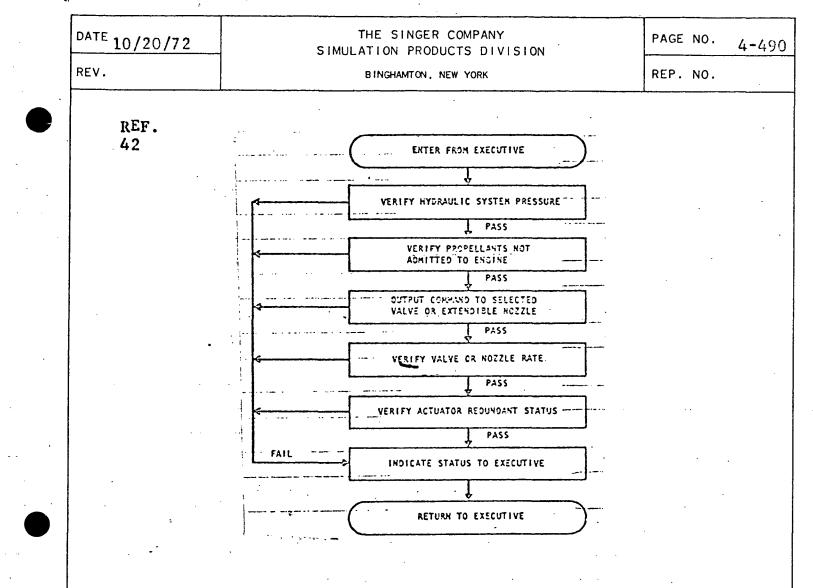
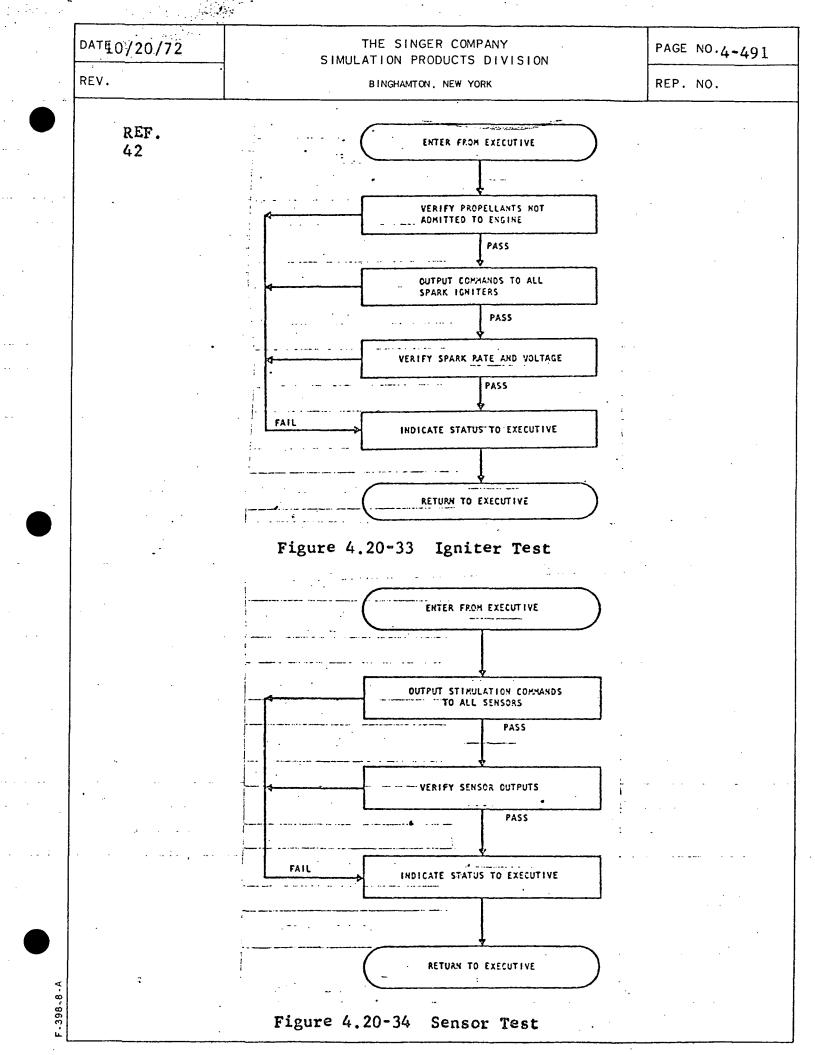
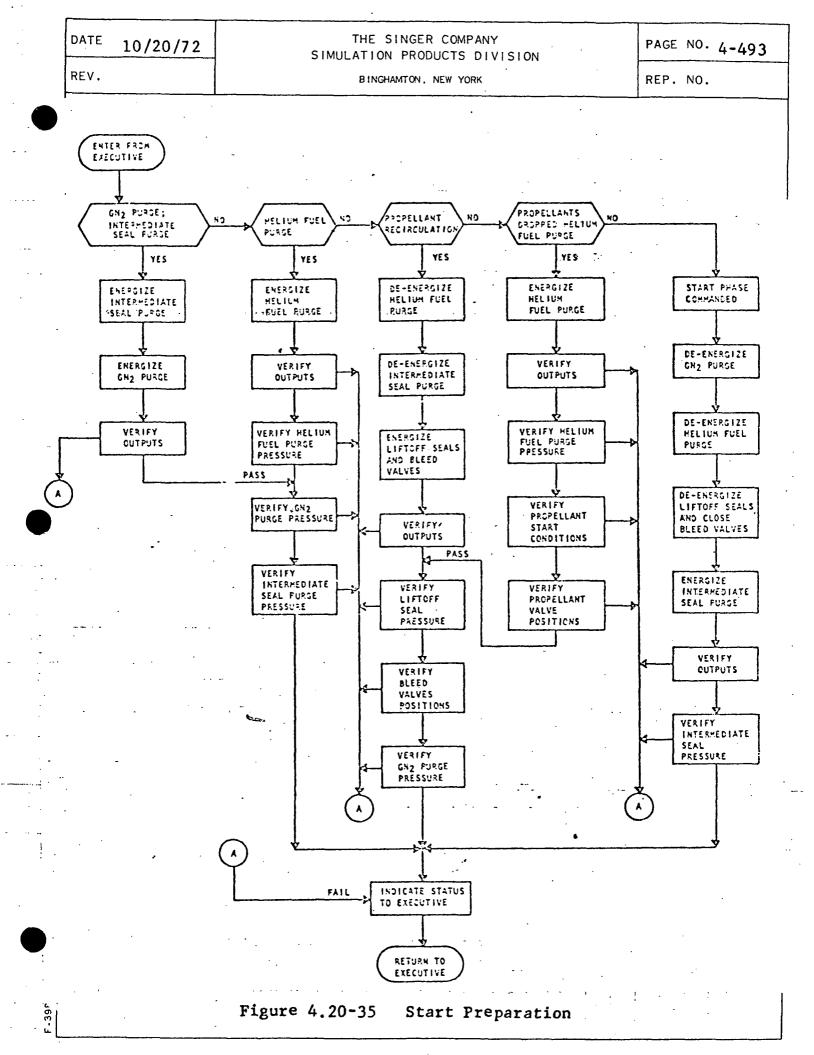




Figure 4.20-32 Propellant Valve/Extendable Nozzle Test

F-398-8-A




DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-492
REV.	BINGHAMTON, NEW YORK	REP. NO.
REF. 42	<ol> <li>Helium purge of the fuel syst</li> <li>3 minutes prior to dropping p</li> </ol>	
	<ol> <li>Propellant recirculation when dropped, and</li> </ol>	n propellants are

4. Helium purge of the fuel system repeated for

approximately 3 minutes prior to engine start. The time allocated for each purge is controlled by the vehicle. Interlocks in the executive program phase table verify that the sequence is correct and that conditions are acceptable prior to initiating the first purge.

A flow chart of the start preparation phase is shown in Figure 4.20-35. Each subprogram is designed to be executed for each major cycle.

The first subprograms performed by command from the vehicle are the nitrogen purge and high-pressure oxidizer turbopump intermediate seal purge. Commands to energize the nitrogen and high-pressure oxidizer turbopump intermediate seal solenoids are issued the first time through the subprogram. Correct output command signals and pressure sensor measurements are verified each major cycle of the esecutive program forthe duration of the subprogram. Status is indicated to the executive for evaluation.



REV.

F-398-8

BINGHAMTON, NEW YORK

REP. NO.

REF.

The helium fuel system purge control command from the vehicle sequences the helium fuel system purge subprogram. A command is issued the first time through the subprogram to energize the helium fuel system purge solenoid. Outputs to the solenoids and GN₂ purge pressure, helium fuel system purge pressure, and intermediate seal purge pressure are verified each major cycle for the remainder of the subprogram.

When propellants are admitted to the engine, the vehicle issues a propellant recirculation command. This command terminates the helium fuel system purge and high-pressure oxidizer turbopump intermediate seal purge subprograms and initiates the propellant recirculation subprogram. Commands are issued to de-energize the helium fuel system and intermediate seal purge solenoids. The GN₂ system solenoid remains energized. Additionally, the first time through the subprogram, commands are issued to energize liftoff seals and open bleed valves. Subsequently, GN₂ purge pressure, liftoff seal pressures, fuel and oxidizer bleed valve positions as well as controller output are verified each major cycle for the duration of the subprogram.

The last subprogram of the start preparation is again a helium fuel system purge control commanded by the vehicle and is an addition to the previous subprogram. A command is

-398-8

issued the first major cycle to energize the helium fuel system purge solenoid. Outputs to solenoids, GN₂ purge pressure, liftoff seal pressures, helium fuel system purge pressure, and bleed valve positions are verified each major cycle for the duration of the subprogram.

In addition, the propellant pressures and temperatures, and propellant valve positions are measured and verified each major cycle. The engine status byte is updated to "engine ready" 3 minutes after the start of this subprogram if propellant conditions are acceptable for starting the engine. The normal exit from this subprogram is by receiving a start command from the vehicle. Commands are issued to de-energize the  $GN_2$  purge solenoid, the helium fuel system purge solenoid, the liftoff seal solenoids which also close the bleed valves, and energize the intermediate seal purge solenoid. At least one additional major cycle is required to verify that the intermediate seal purge pressure is within limits prior to completing the start preparation phase.

## 4.20.5.5 FLIGHT PROGRAMS

Repeatable start, mainstage, and shutdown control are implemented with open-loop sequencing of valves, switching to closed-loop thrust control from a thrust level of approximately 10 percent to EPL. Closed-loop mixture ratio control

4-496


REP. NO.

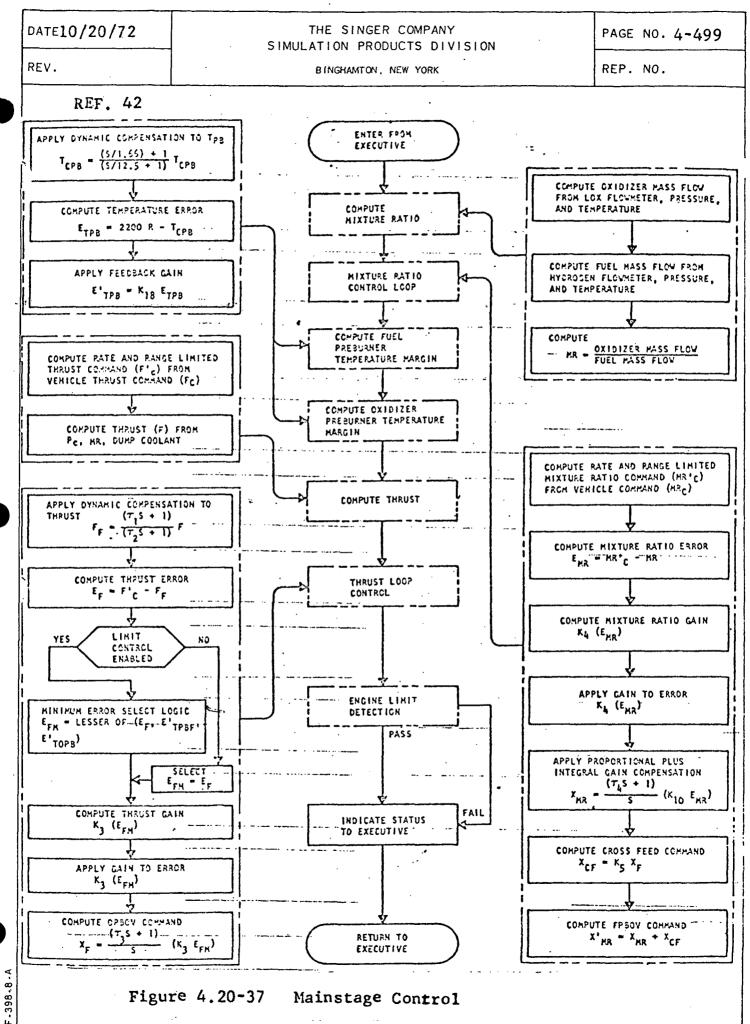
REF 42

is implemented 3.5 seconds after start initiation until shutdown. The flexibility of the digital controller allows modification to the sequence of closed-loop logic with simple software program changes.

### Start Control

The executive program initiates the start control subprogram upon receipt of the start command from the vehicle. Three interlocks are provided to ensure proper initiation of The engine must be in an "engine ready" status and start. have received thrust level and mixture ratio command values from the vehicle. The start control, shown in Figure 4.20-36, contains a start sequence timer (software program) to control which program branch is followed until time for the next event, The branches correspond to the phases of start control described previously in Section under Engine Start. Actuator commands, are computed in the appropriate start control branch, outputted and verified each major cycle. The start sequence timer switches phases as each is completed. Ignition is confirmed at 1 second by verifying that a thrust level of 5 to 15 percent has been achieved. All propellant valves are closed immediately if ignition is not confirmed. The thrust control loop is closed for mainstage control at 1.7 seconds and the thrust is ramped to the commanded level. The loop




DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-498
REV.	BINGHAMTON, NEW YORK	REP. NO.

REF 42

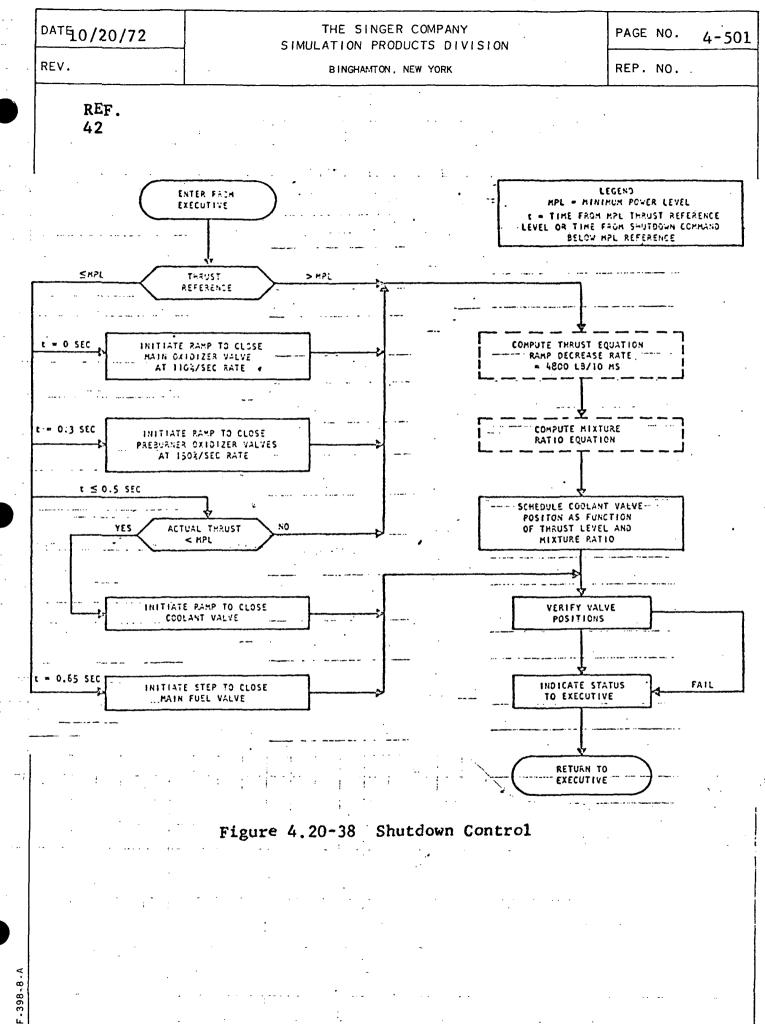
is closed on mixture ratio control at 3.5 seconds and ramped to the commanded value. Engine limit parameters are monitored each major executive program cycle to ensure safe engine operation throughout the start control. The executive will initiate a shutdown at any time during the start control if an engine limit is exceeded and limit control is enabled by the vehicle or a shutdown command is received from the vehicle.

## Mainstage Control

The transition from start to mainstage control is smooth. Closed-loop thrust control is initiated in the start control mode at a 10 percent thrust level. Closed-loop mixture ratio control is initiated at the mixture ratio level present 3.5 seconds after start and ramped to the commanded value. Mainstage control consists of computing and outputting thrust and mixture ratio commands from computed mixture ratio thrust, fuel preburner temperature margin, and oxidizer preburner temperature margin, as illustrated in Figure 4.20-37. Preburner temperature control is only applicable if limit control is enabled by the vehicle. Thrust error is used exclusively to compute the oxidizer preburner oxidizer valve command if limit control is inhibited. The thrust and mixture ratio commands from the vehicle are processed immediately. A shutdown willobe initiated during mainstage control by either an



DATE	0	/20	172


BINGHAMTON, NEW YORK

REF engine limit condition with limit control enabled or a 42 shutdown command from the vehicle.

#### Shutdown Control

Normal shutdown control is accomplished by closed-loop control thrust decrease followed by a sequencing of propellant valves closed, as shown in Figure 4.20-38. The closed-loop phase uses the same closed-loop thrust and mixture ratio control subprograms as mainstage control. Normal shutdown control is accomplished upon command from the vehicle or by the executive if an engine limit is exceeded and limit control is enabled. The internal thrust reference level determines the entry point of the shutdown phase. Thrust level above MPL initiates a controlled decrease rate of 4800 pounds (21.351 newtons) per 10-msec interval to MPL. Below MPL, a software timer is used to control the sequencing of propellant valves closed. The times indicated in Figure 4.20-38 correspond to when that branch is initiated and followed until the next branch is applicable. Valve positions are monitored each cycle throughout the shutdown subprogram. The executive program automatically initiates retraction of the extendible nozzle 4 seconds after orbiter shutdown.

REV.



DATE	10/20/72
------	----------

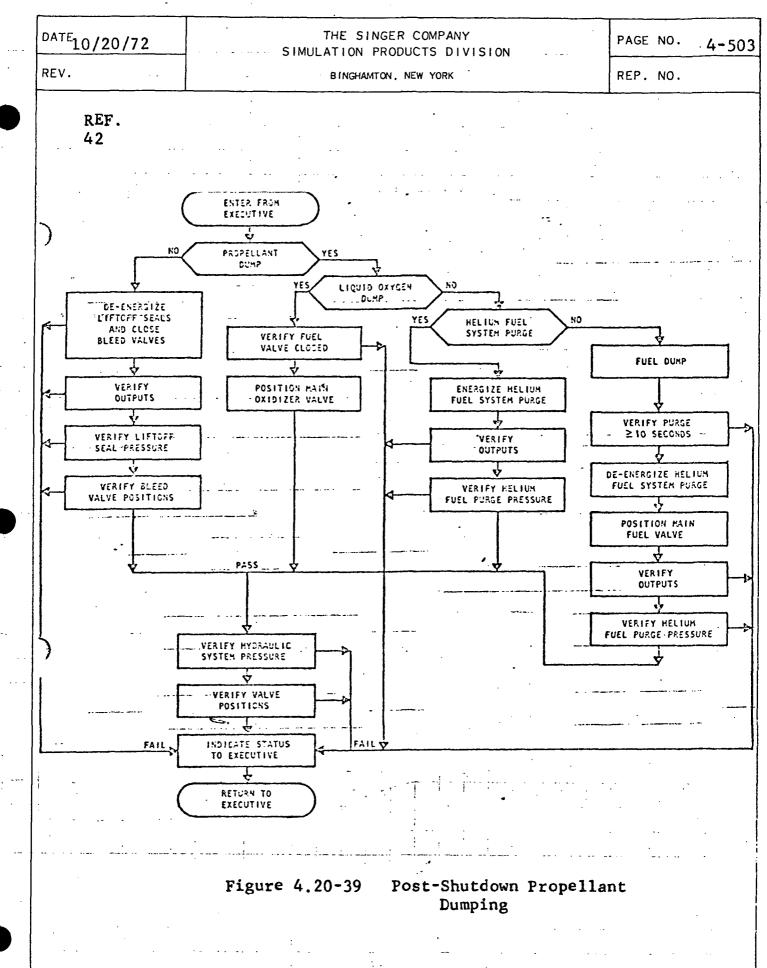
REF.

42

#### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.


### Post-Shutdown

The post-shutdown phase is entered by the executive with the completion of the nozzle retraction. No subprograms are active during this time; only the controller self-test is performed each major cycle. Power may be safely removed from the engine at this time. Two other options are also available. Propellant dumping through the engine for either the booster or orbiter or an abort turnaround may be commanded for the booster if the preceding shutdown was not due to an engine malfunction.

## Propellant Dumping

The executive enters the propellant dump mode of the post-shutdown phase by command from the vehicle. Interlocks are provided by the executive to prohibit opening both fuel and oxidizer values at the same time. The duration of the mode is controlled by the vehicle. Figure 4.20-39 is a flow chart for the subprogram. Liftoff seals are verified open and bleed values closed following the propellant dump mode command from the vehicle. Individual value commands from the vehicle are outputted to the actuators during the appropriate major cycle. An interlock is included to ensure a helium fuel system purge is active for a minimum of 10 seconds following an oxygen dump and prior to a fuel dump.

REV.



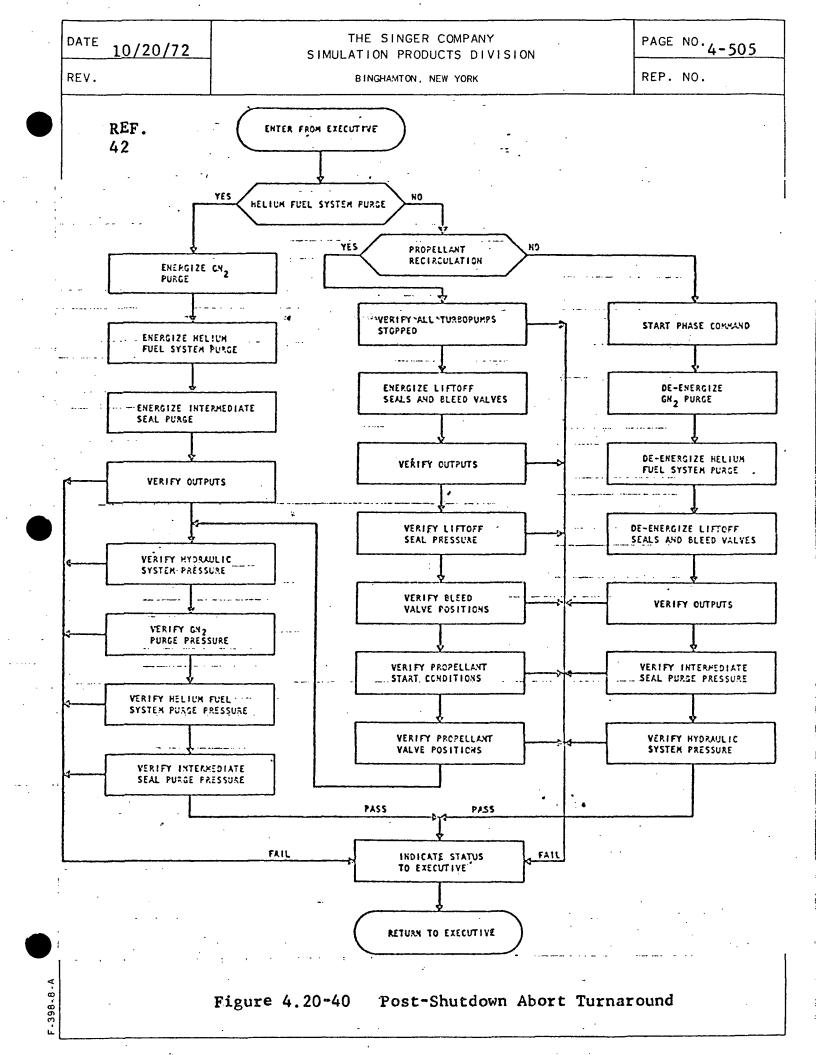
-398-8 L,

٩

#### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

REP. NO.

42 REF.


Following the closing of the main fuel value, the sequence is complete.

#### Abort Turnaround

The executive may be commanded to enter an abort turnaround mode of the post-shutdown phase by command from the vehicle. This applies to a booster only if the abort was not due to an engine system malfunction. The sequencing of the mode is controlled by the vehicle, resulting in an engine-ready condition approximately 5 minutes following the shutdown. A flow chart of the subprogram is shown in Figure 4.20-40 and is similar to subprograms of the start preparation phase. Each subprogram is designed to be executed each major cycle.

The first subprogram performed by command from the vehicle is the helium fuel system purge. Commands to energize the helium fuel system intermediate seal, and GN₂ solenoids are issued the first time through the subprogram. Correct output signals and pressure sensor measurements are verified each major cycle for the duration of the subprogram, and any failure detected will be indicated to the executive for evaluation.

The propellant recirculation command from the vehicle sequences to the propellant recirculation subprogram, which



^{DATE} 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-506
REV.	BINGHAMTON, NEW YORK	REP. NO.
	· ·	

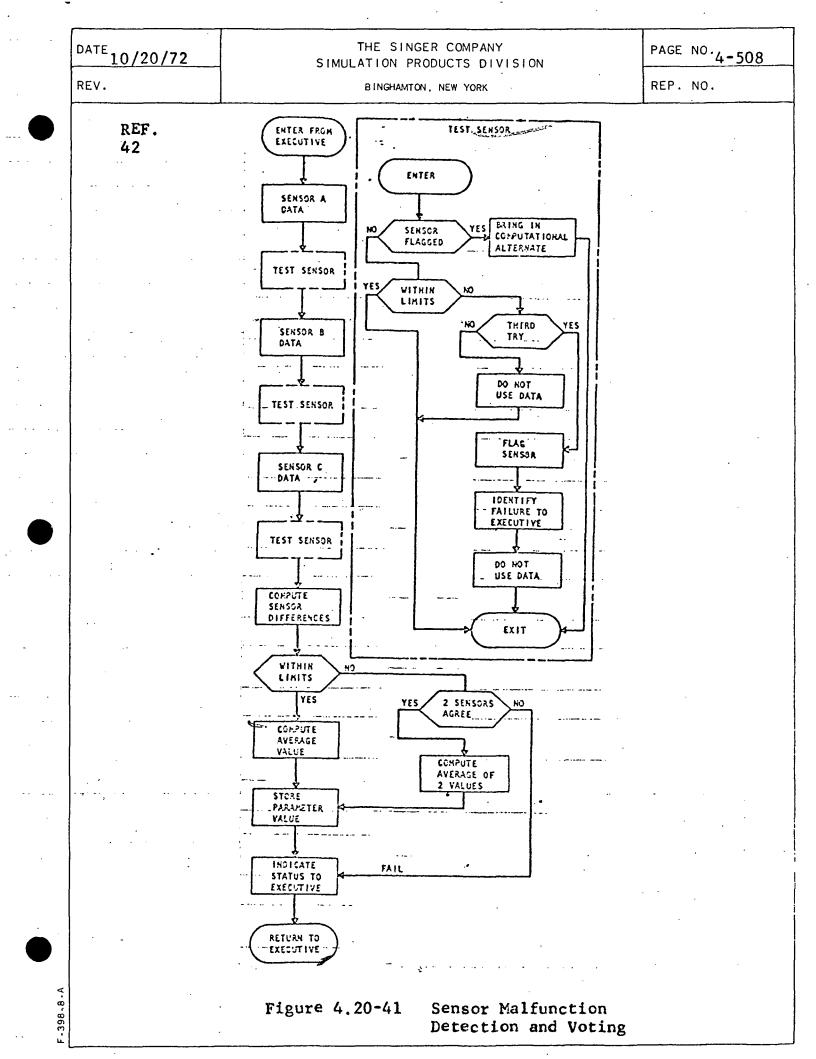
REF. 42

is an addition to the previous one, and a command is issued to energize the liftoff seals and open the bleed valves. Liftoff seal pressure measurements and bleed valve positions are verified each major cycle of the subprogram. In addition, propellant conditions and propellant valve positions are verified each major cycle. Engine status is updated to engineready 3 minutes after propellant recirculation commences if propellant conditions are satisfactory for engine start.

The mode is exited when a start command is received from the vehicle. Solenoids for the helium fuel system, GN₂ purge, and propellant recirculation are de-energized. Outputs, intermediate seal pressure, and hydraulic pressure are verified prior to transferring to the start phase.

#### Power Off

A reset command is required from the vehicle prior to removing engine power. The purpose of the reset is for the executive to differentiate removal of power and a power transient. The phase table and status byte are cleared by the executive with a reset command. Following a power recovery, the executive examines the phase table and determines the correct engine operating phase to return to.


DATE0/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-507
REV.		REP. NO.

REF.	
1.7	- <u> </u> .

F-398-8

## 4.20.5.6 SENSOR DATA

Reading of sensor data into memory is sequenced and controlled by direct memory access on a cycle-stealing basis from the processor. Each direct memory access cycle interrupts processing for one memory cycle time (1 microsecond) to directly insert or extract data to/from memory without disturbing computations. Sensor values are computed from raw data and calibration constants stored in memory. Temperature equations are second order and pressure equations first order. After the sensor equations have been calculated, the sensor values are voted and averaged to determine a parameter value which is used in the computational equations and engine limit detection. Figure 4.20-41 is a flow chart illustrating sensor voting and averaging. Each sensor is individually tested and the differences computed. If the differences are within limits, the average value is stored as the parameter value. The subprogram is repeated each major cycle for each parameter except sensors which are for flight maintenance recordings only.



REP. NO.

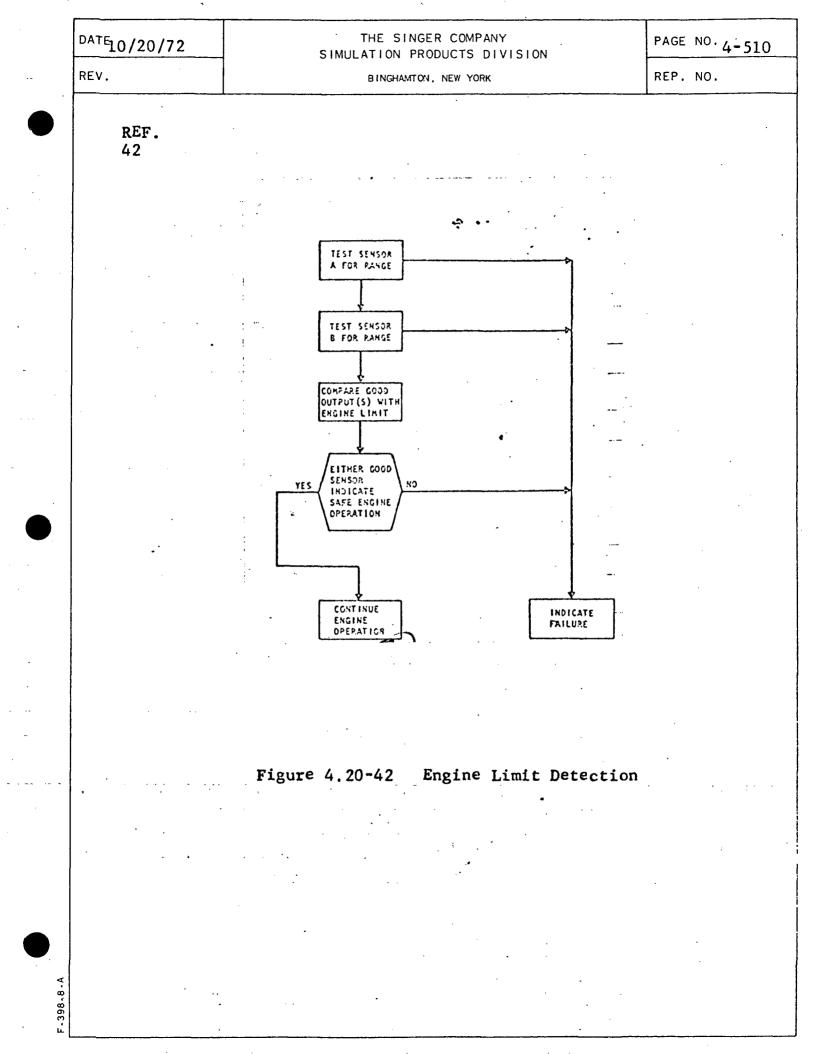
REF.

REF. Min. Meet.

F-398-8

REV.

42 4.20.5.7 ENGINE LIMIT DETECTION


The engine limit flow chart is shown in Figure 4.20-42. Each sensor is tested for range, and if either sensor indicates safe operation, no failure is indicated.

4.20.5.8 COMPUTER SPEED AND MEMORY SIZE CAPABILITY

The controller software requirements are within its computer speed and memory size capabilities, with spare speed and capacity for further software growth.

The required computer speed is dictated by the amount of processing to be performed in the main computational loop, which has an iteration rate of 50 samples per second. The speed requirements for the other executive functions is a slow rate in comparison to the main loop requirements and does not affect the iteration cycle time requirement. The tabulation of the requirement is shown in Table 4.20-14. This requirement is currently being expanded to 16K of memory.

Since there are 20 msec in each 50 sample per second iteration available for computation, the HDC-601 performs the loop computations 6 msec faster than required, leaving a spare duty cycle capacity of 30 percent for future software growth.



# DATE10/20/72

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

REV.

BINGHAMTON, NEW YORK

REP. NO.

REF 42

# TABLE 4.20-14 C

### 0-14 COMPUTER MEMORY AND SPEED ESTIMATES

·		· ·
FUNCTIONS	MEMORY SIZE (17 BIT WORD)	TIME
CONTROLLER BUILT-IN- TEST	1 300	1.5
SENSOR BUILT-IN-TEST	- 1400	7.5
ACTUATOR/VALVE BUILT-	.200	0.5
DATA TRANSMISSION	200	0.5
EXECUTIVE PROGRAM	1000 .	1.0
AUTCHATIC CHECKOUT SUBPROGRAM	500	-
START PREPARATION SUBPROJEAN	300	•
FLIGHT SUBPROGRAM START MAINSTAGE SHUTDOWN	300 1200 300	3.0
POST-SHUTDOWN SUBPROGRAM	300	··· • •
SUBTOTAL	7000	14.0
GROWTH	5000	6.0
TOTAL	12000	20.0

BINGHAMTON, NEW YORK

REP. NO.

REV.

.398.8.4

#### REF. 42

#### Computer Memory Size

Computer memory size is dictated by the capacity required for all programs executed by the controller. The tabulation of this is shown in Table 4.20-14. This tabulation shows that there is a 41 percent spare memory capacity for future software growth.

#### 4.20.5.9 HDC-601 PROGRAMMING FEATURES

The cost and time for development(during Phase CD) of the controller control and checkout program is reduced by the off-the-shelf availability of the complete, thoroughly debugged HDC-601 library. Control of the main program and subprograms is optimized for minimum processor time and software by:

- Timely processing of vehicle commands using the HDC-601 priority interrupt function.
- 2. Initiation of main program loop at 20 msec intervals under a lower priority computer clock-driven interrupt.
- Initiation of lower frequency data transmission sorting loops by lower priority computer clockdriven interrupts.
- 4. Direct memory access of sensor data independent of central processor operation.

The two standard software systems available for use in programming, debugging and maintenance of the controller processor

	DATE 10/20/72	THE SINGER COMPANY SIMULATION PRODUCTS DIVISION	PAGE NO. 4-513
	REV.	BINGHAMTON, NEW YORK	REP. NO.
•	REF.		

42 and associated memory are (1) DDP-516 standard software and

(2) HDC-601 diagnostic programs.

### DDP-516 Standard Software

A comprehensive package of DDP-516 programs is available for use with the HDC-601 and controller as part of the Honeywell standard product line software. These programs, designed for a wide range of user skills and applications, include the most widely used programming practices and conventions. The software package includes the following items: DAP-16 Assembly Program, FORTRAN IV Compiler, Utility Routines, Input/Output Routines, and Mathematical Subroutines. For example, the DAP-16 program is used off line in the DDP-516 to convert the controller instructions from the initial assembly language to machine language. Another program simulates all controller programs on a computer with FORTRAN IV capabilities.

#### HDC-601 Diagnostic Programs

.398-8-A

In addition to the DDP-516 programs, an extensive package of diagnostic programs for use with repair depot level is available with the HDC-601. These programs are designed to verify the operation of the processor and memory, and in the case of a faulty operation, to detect and isolate faults to the replaceable subassembly level. The diagnostic package consists of a computer self-test, a processor module

SIMULATION PRODUCTS DIVISION	4-514
REV. BINGHAMTON, NEW YORK REP. NO.	

REF. 42

F-398-8

test, and a plated wire module test. The diagnostic tests are performed in conjunction with three pieces of support equipment, the Computer Control Unit (CCU), the ASR-35 Teletype Unit, and a high-speed paper tape reader.

#### Computer Self-Test

The purpose of this program is to determine whether the processor and memory of the computer are functioning properly and indicate failed subsystems. It is the same as used in flight controller self-tests.

#### Processor Module Test

The purpose of the processor module test is to check all of the functions of the processor and the Computer Control Unit and to isolate functional failures to the board level.

The processor module test is a semiautomatic procedure composed of a manual portion and an automatic portion. The manual portion is used to check the hard-core of the processor, to check any instructions which require operator intervention, and to initiate the automatic portion. The instructions checked in this manual fashion are those associated with the hard-core (PAS, SKP, and HLT), the switch testing instructions (SR 1, 2, 3 and 4, SSR and SSS), and the interrupt-associated instructions (ENB and INH). Instruction repertoire and

BINGHAMTON, NEW YORK

REP. NO.

REF.

42

definitions are included in Volume 62, Honeywell Report, "Honeywell HDC-601 Digital Computer Programmers Reference Manual".

In addition to the above instructions, the functions of the PPI/PPH switch and power failure/power recovery circuitry are checked in the manual portion of the processor test.

The automatic portion tests the remaining instructions of the processor. Checkout of the indexing, indirect addressing, and extended addressing function of the processor is included in the automatic portion.

The basic approach of the test program is to use the "successive tests" technique. This technique requires that the individual checks of processor functions be organized in a building-block fashion starting with the hard-core and building toward the more complex functions. Such an approach yields an automatic functional isolation of processor failures. Whenever a functional fault is encountered, the program will output a message to the ASR Teleprinter informing the operator which board has failed.

F-398-8-

DATE

REV.

F.398.8

BINGHAMTON, NEW YORK

REF. 42

#### Plated Wire Module Test

The purpose of the plated wire module test program is to detect functional faults within a plated wire memory and to isolate these faults to the replaceable subassembly. This program is designed for use with the processor and the plated wire memory. "The program tests the functions of the memory, i.e, addressing, writing, and reading. The plated wire modules test is designed to exercise the memory in two parts. The test is contained on two tapes, one of which checks the lower portion of memory, the other checks the remainder.

The test is designed to detect errors through the use of the following checks: (1) addressing test, (2) data complement, and (3) disturb test. The addressing test is designed to ensure all the address electronics are functioning properly and are addressing the proper memory locations. The memory address is decoded by the X and Y decoder to select the proper word strap, and by the bank selection logic to select one of eight banks. The data complement is designed to demonstrate the ability of the memory to accept and retain alternate "ones" along any plated wire. The disturb test exercises the memory by alternately reading and writing. The test also attempts to disturb the data stored in one bit location by writing data of the opposite polarity on either

F-398-8-/

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REF. 42

side of this location along the plated wire.

Through use of the teleprinter a hard copy of the test results is made available to the operator. In the case of a fault in the memory, the printout will indicate the faulty subassembly.

DATE 10/20/72

BINGHAMTON, NEW YORK

#### REP. NO.

#### Ref. Key

-398-8

REV.

#### 4.21 Thermal Protection System (TPS)

The orbiter thermal protection and control system consists of two elements. One, the thermal protection system (TPS), is external to the structural shell of the vehicle. It maintains the airframe outer skin within acceptable temperature limits during the vehicle mission. Where internal vehicle special compartments require additional thermal control, the external TPS is augmented by a second element; the internal thermal control system (TCS). The vehicle thermal system also includes the ECLSS, the purge and vent subsystem, and other subsystems. See Figure 4. 21-1.

The baseline TPS consists of: (1) ceramic reusable surface insulation (CRSI) (ceramic panels with an external waterproof coating on a strain-isolation foam pad) directly bonded to the airframe in areas exposed to surface temperature between  $650^{\circ}F$  and  $2500^{\circ}F$ ; (2) elastomeric reusable surface insulation (ERSI) directly bonded to the airframe in areas exposed to temperatures below 650°F, and (3) reinforced carbon-carbon (RCC) material in the wing leading edge and body nose cap in areas exposed to temperatures above 2500°F.

4.21.1Ceramic RSI

The ceramic insulation material basically consists of mullite and silica.

> Mullite panels - A low-density insulative composite material formed by coating a matrix of mullite fibers rigidized with an aluminum-boria silica refractory glass binder. The panel

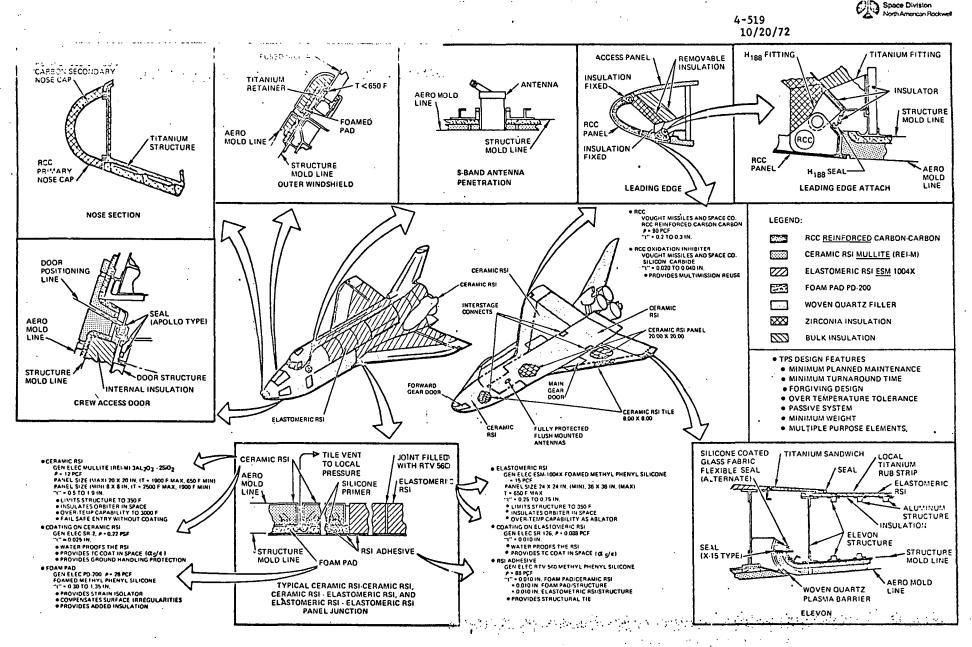



Figure 4.21-1 THERMAL PROTECTION SYSTEM (TPS)

# DATE10/20/72

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

and pad dimensions are determined by the thermal/structural analyses.

- PD-200 pad A chemically foamed methylphenyl silicone elastrmeric material. This pad provides strain isolation of the CRSI from the aluminum structure and accommodates local surface irregularities. Its outer surface design temperature is 650°F, determined by the allowable bond temperature. The inner surface design temperature is 350°F. This temperature was selected to yield the lowest TPS and aluminum primary structural weight. Analyses indicate that the bottom and chine pad thickness ablative characteristics provide a ceramic panel loss fail safe entry.
- SR-2 coating A waterproof ceramic coating fired at 2500°F on the top and sides of the panel. This coating is chemically compatible with and simular in expansion coefficient to the mullite insulation. The coating provides the necessary
   Shermal control optical characteristics, rain erosion protection, and abrasion resistance for ground handling and atmospheric flight.
- RTV-560 adhesive A silicone elastomer room-temperature-cured adhesive system used for both panel and pad bonding.

Panel-to-panel gaps (0.12 to 0.25 inch) are sized to avoid CRSI panel compressive loads at maximum expansion during entry. The gaps are partially filled with a low-density-quartz expandable gasket to thermally protect the substructure at the base of the joint.

Ref. Key

--398-8-1

REV.

DATE 10/20/72

BINGHAMTON, NEW YORK

PAGE NO. 4-521

REP. NO.

A panel self-venting system is provided which allows venting to the boundary layer pressure through the panel gaps. It consists of a local interruption in the panel to PD-200 bond line (adjacent to the lower outer edge.) A silicone primer, applied to the lower panel surface, provides a water barrier while allowing venting of internal gases.

Two CRSI test prototypes, mounted on simulated air-frame structure and configured to two critical areas of the baseline system, have been successfully tested to withstand 100 orbiter thermal environment cycles. During the test series the prototypes were also subjected to a dynamic/ acoustic energy spectrum of 163 db for the equivalent of 25 missions.

4.21.2 Elastomeric RSI

ERSI (ESM1004X) is used as the primary TPS on the orbiter upper surfaces where lower temperatures ( < 650°F) are experienced. Using an elastomer instead of a ceramic results in a TPS weight reduction of 3500 pounds. It is a flexible, open-cell structure material possessing good low-temperature flexural properties, and is attached to the airferame in coated sheets with RTV-560 bond. The ESM1004X is coated with an elastomeric silicone resin (for waterproofing) pigmented with titanium dioxide and carbon black (for thermal control). It is an impact-resistant, easily repairable material which minimizes the susceptability to handling damage.

The ESM1004X is similar to the material used on Minuteman reentry vehicle. Its thermal stability for 100 missions at 650°F has been demonstrated by tests. No difficulty is anticipated in extending its capacity to 500 missions. Excellent coating stability has been demonstrated

Ref.

Key

F-398-8

REV.

REP. NO.

Ref.

Key

REV.

to peak temperatures of 750°F in a vacuum maintained below 500 microns.

#### **4.21.3** Reinforced Carbon-Carbon (RCC)

Reinforced carbon-carbon (RCC) materials are used for wing leading edge and body nose cap applications. The RCC leading edge elements are approximately 30 inches long, with the radii variations illustrated. Adjacent elements are downstream-lapped for spanwise expansion capability and utilize common attachment points to the prime structure. The joints are designed for individual leading edge element removal for maintainability. Cross-radiation effects are used to reduce maximum temperature and associated thermal stress, wherever possible. High-temperature bulk insulation backs up the RCC material to protect the structure. A silicone carbide oxidation inhibitor covers 100 percent of the RCC surface. The RCC vehicle body nose cap is simular to the leading edge in material details, construction, insulation, and attachment. The RCC material (and oxidation inhibitor) has been tested for 100 thermal cycles.

4.21.4 Special TPS Areas

4.21.4.1 TPS Outer Window

The TPS window employs a pane of fused silica (CGW 7940) to act as a heat shield. The windows, nominally 30 inches wide and 30 inches high, are subjected to a maximum temperature of 1200°F. They are sealed with a wire-mesh core jacketed with a woven ceramic cloth to prevent plasma impingement on internal structure. The outer window is part of a three-pane redundant system where the middle crew cabin window pane (fused silica for thermal protection) is also sealed to contain cabin pressure. The inner crew cabin pane is the primary

r-398-8-A

DATE	10/20/72

Ref. Key

REV.

pressure-containing window.

4.21.4.2 Seals

State-of-the-are Apollo CSM seal materials are generally -utilized for doors and hatches. The elevon requires the use of hightemperature metals in the seal contact area to ensure adequate abrasion resistance. The upper seal panel is titanium with a metallic mesh seal simular to the seals used on the X-15 aircraft. It consists of an Inconel 602 mesh encased in an Inconel foil sleeve. This concept was proven by test to be reusable for 100 missions at 1200 °F during Phase B development testing. There are no proven fully reusable seal concepts for 1800°F environments in the lower elevon seal area. The current approach is to use a woven quartz plasma shield upstream to protect the metallic mesh seal inside the cavity be reducing the seal temperature. An alternate internal flexible longitudinal total pressure may be used to preclude outer seal leakage.

:.

4.21.5 <u>Rationale</u>

Not Required.

Pages 3-32 - 3-51

Reference

166

4.21.6

.398-8

398.8

### THE SINGER COMPANY SIMULATION PRODUCTS DIVISION

BINGHAMTON, NEW YORK

REP. NO.

### 4.22 Thermal Control System (TCS)

The TCS basically is passive and integrally deisgned with the TPS. It consists essentially of insulation (TG 15000) heat sinks and optical coatings, with local active elements as required to maintain vehicle compartments within allowable temperature limits. Where individual components require closer control (heaters, cold plates, etc.), details are given in the applicable system description. FIGURE 4.18-1 shows the salient features of the TCS which is similar to that used on the Apollo CSM. The various subsystem components have been grouped essentially in the cabin area and the aft equipment bay with the required insulation located along the basic structure. This arrangement maximizes energy exchange among the subsystem components and facilitates equipment maintainability. Maximum utilization of existing heat sources and sinks to minimize make-up heater requirements and to achieve a flexible TCS design.

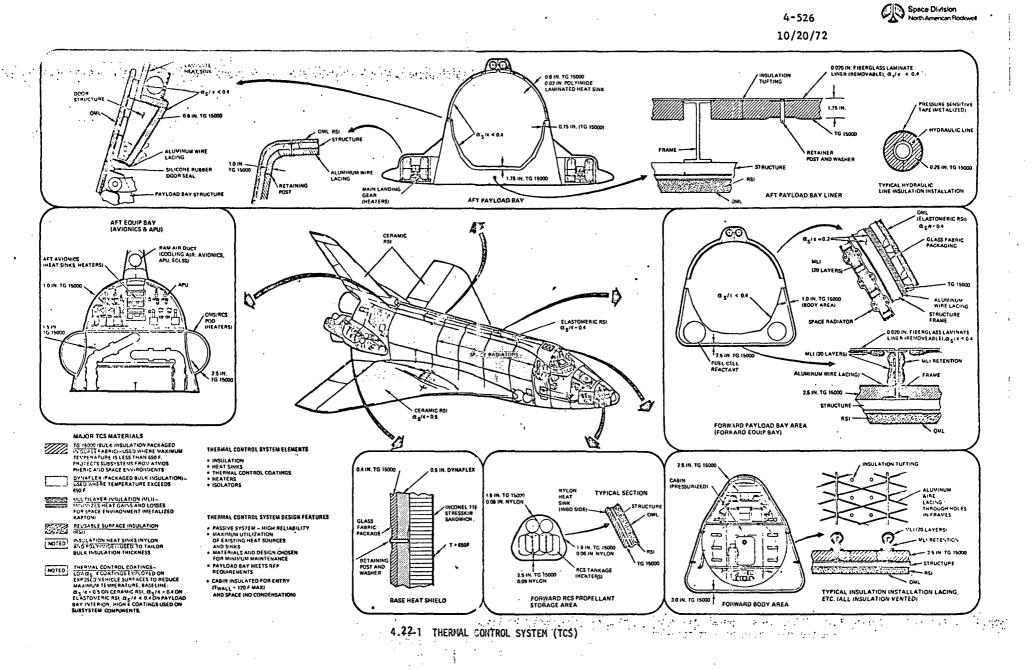
Thermal conditioning is most critical for the vehicle in high inclination orbits where the vehicle is placed in an adverse attitude that is maintained for a long period. This creates <u>cold soak</u> and <u>hot soak</u> conditions that may require special operation on the part of the crew.

The cold soak condition results in temperatures that may go below the "glass-transition" temperature (-170°F) of the foamed pad and room-temperature-vulcanized (RTV) bond, thus causing a ductility loss and sensitivity to thermal and load deformation. There are two aspects of cold soak, both concerned with maintaining ceramic RSI attachment integrity. These occur during (a) on-orbit periods under no loads relating to a "no mission interrupt" for thermal conditioning design approach and (b) entry heating with initial low RSI bondline temperatures

.398-8

BINGHAMTON, NEW YORK

relating to a "no attitude constraint" for thermal conditioning design approach.


Hot soak is a related preentry thermal conditioning aspect. Internal subsystems that are sensitive to the hot-soak orbital condition are currently located in the vehicle fuselage, where temperatures are primarily influenced by the elastomeric RSI thermal control coating properties. As discussed, thermal coatings fot the elastomeric RSI which exhibit an  $\alpha_s/\xi = 0.4$  are already developed.

4.22.1 Rationale

Not required.

### 4.22.2 <u>Reference</u>

166, Pages 3-32 - 3-51



• •