

NASA CONTRACTOR REPORT

「あたな」

CR-1900

ASA

Z

LOAN COPY: RETURN TO AFWL (DOUL) KIRTLAND AFB, N. M.

DEVELOPMENT OF CONTROL SYSTEMS FOR SPACE SHUTTLE VEHICLES

Volume II - Appendixes

by C. R. Stone, T. W. Chase, B. M. Kiziloz, and M. D. Ward

Prepared by HONEYWELL, INC. SYSTEMS AND RESEARCH CENTER Minneapolis, Minn. for George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • SEPTEMBER 1971

	TECHNIC	AL REPORT STANDARD TITLE PAGE
1. REPORT NO. NASA CR-1900	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE	NTROL SYSTEMS FOR	5. REPORT DATE September 1971
SPACE SHUTT Volume II:	LE VEHICLES Appendixes	6. PERFORMING ORGANIZATION CODE
7. AUTHOR (S) C. R. Stone, T. W. and M. D. Ward	Chase, B. M. Kiziloz,	8. PERFORMING ORGANIZATION REPORT # 14257-FR
9. PERFORMING ORGANIZATION NAME AND A	DDRESS	10. WORK UNIT NO.
Honeywell, Inc.		
Systems and Research Center	•	11. CONTRACT OR GRANT NO.
Minneapolis, Minnesota		NAS8-25181
12 CRONCORNIC ACENCY NAME AND ADDRES	c	
12. SPUNSORING AGENCY NAME AND ADDRES	3	CONTRACTOR REPORT
NASA		
Washington, D. C. 20546		14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES		
16. ABSTRACT		
Control of winged two-sa requirements were determined synthesized. Control require these requirements can be sa schedule controllers predomin in some of the control system	tage space shuttle vehicles wa and systems capable of meetin ements unique to shuttle were tisfied by conventional contro nate. Actuator saturations re ns.	s investigated. Control g these requirements were identified. It is shown that l logics. Linear gain quire nonlinear compensation

ιų; Ž

1(

5

17. KEY WORDS		18,	DISTRIBUTION STAT	EMENT	
Covariance analysis, entry control system, control surface displacement, dynamic derivatives			Unclassified - Unlimited		
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLAS	SIF.	(of this page)	21. NO. OF PAGES	22. PRICE
Unclassified Unclas			1	341	\$6.00

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151

NOTICE

Because of a waiver initiated and signed in compliance with NASA Policy Directive (NPD) 2220.4, para. 5-b, the International System of Units of measurement has not been used in this document.

ć

FOREWORD

۳

This report fulfills the final reporting requirements for "Development of Control Systems for Space Shuttle Vehicles" performed under National Aeronautics and Space Administration Contract NAS8-25181. The program was conducted under the direction of John M. Livingston of the Aero-Astro Dynamics Laboratory, George C. Marshall Space Flight Center. The Honeywell Systems and Research Center work was managed by Dr. Grant B. Skelton with C.R. Stone as principal investigator. T.W. Chase was co-investigator.

The report is presented in two volumes. Volume I contains the ten sections for the main body of the report. Detailed derivations and data are presented in eight appendixes of Volume II.

Section I was developed by Drs. G.B. Skelton and E.E. Yore and Messrs. J.G. Rupert, T.W. Chase, R.K. Phelps, A.J. Pejsa and C.R. Stone. Sections II and III were prepared by C.R. Stone (covariance analyses) and T.W. Chase (conventional analyses).

M.D. Ward generated the covariance data and performed quadratic syntheses in these sections. T.W. Chase prepared Sections IV, V, and VI and Appendixes B, G, and H. Section VI was adapted from work performed by M.W. Reed. Dr. G. Stein prepared Section VII, C.R. Stone prepared Sections VIII, IX, and X, and Appendixes A, C, D, E, and F. E.D. Skelley synthesized the quadratic controllers and obtained the covariance results of Section XIII.

MSFC provided the trajectory, aerodynamic, and mass properties data for Vehicle B. Data for the North American orbiters 130G and 134C were used without restriction by permission of Mr. A.B. Kehlet of the North American-Rockwell Corporation. Messrs. Stone and Chase and Mrs. B.M. Kizilos estimated missing data by use of the DATCOM Handbook, slender body theory, and impact theory.

CONTENTS

APPENDIX A	LAUNCH PHASE RANDOM NORMAL WIND MODEL	1
APPENDIX B	EQUATIONS, DATA, AND SIMULATIONS FOR CONVENTIONAL LAUNCH STUDY	17
	Equations	17
	The Stability Derivatives	49
	The Pitch Simulation	54
,	The Lateral Simulation	00
APPENDIX C	PITCH EQUATIONS AND DATA FOR COVARIANCE ANALYSES OF THE LAUNCH PHASE OF MSFC VEHICLE B	65
	Nomenclature	65
	Representations	70
	Derivations	71
	Winds Distributing the Wind Cust I ands	71
	Normal Motion Dynamics	74
	Pitch Rotation Dynamics	76
	Mass Rate Effects	78
	Actuator Dynamics	78
	Bending Moments	79
	Fanny Load	80
	q <i>a</i>	01
APPENDIX D	LATERAL EQUATIONS AND DATA FOR COVARIAN ANALYSES OF THE LAUNCH PHASE OF MSFC VEHICLE B	CE 160
	Nomenclature	160
	Representations	179
	Derivations	179
	Euler Angles	179
	Winds Distributing the Wind Gust Loads	180
	Thrust Vectoring	185
	Body Dynamics	192
	Actuator Dynamics	194
	Bending Moments	195
	Pilot's Lateral Acceleration	196

APPENDIX E	LATERAL EQUATIONS AND DATA FOR NORTH AMERICAN 130G.	254
	Vector Representation	254
APPENDIX F	LATERAL EQUATIONS AND DATA FOR NORTH AMERICAN 134D	268
	Nomenclature	268
	Representations	279
	Derivations	279
	Euler Angles	279
	Winds	280
	Disturbing the Wind Gust Loads	282
	Dynamic Equations	285
	Control Surface Dynamics	289
	Pilot's Lateral Acceleration	289
	Resolution from Stability to Body Axes	289
APPENDIX G	HIGH-ALTITUDE ABORT SIMULATION	314
APPENDIX H	SYMBOLS AND NOTATION	324
	REFERENCES	331

----- -

. ____

•••••••••••

ILLUSTRATIONS

,

Figure		Page
A1	Mean Value of E-W March Wind	3
A2	Standard Deviation of E-W March Wind	3
A3	Deviation Rate of E-W March Wind	7
A4	Mean Rate of E-W March Wind	9
A5	Mean Value of E-W March Wind	9
A6	Standard Deviation of E-W March Wind	10
A7	σ/σ	10
A8	$c_1 \sigma \sqrt{\dot{h}}$	11
A9	$C_2 \sqrt{h}$	11
A10	C ₃ σh	12
A11	C ₄ h	12
A12	C ₅ ή/σ	13
A13	Analog Diagram for Vaughn-Skelton Wind	14
A14	Simulated Wind	15
B1	Launch Trajectories, 3 and 4 g's	18
B2	Trim Angles of Attack and Gimbal Angle	20
В3	Launch Vehicle Geometry	21
B4	Launch Vehicle Perturbation Geometry; Stability Axes	22
B5	Rear View of Booster Showing Launch Configuration Engine and Aileron Mass Centers	53
B6	Pitch Time Varying Simulation Launch	55
B7	Simulation of Control System for Boost Pitch	56

.

.

B8	Time Varying Parameters in Simulations	57
В9	Time Varying Parameters in Simulations	58
B10	Boost Pitch Conventional Controls	59
B11	Vaughan-Skelton Wind	61
B12	Vehicle B Lateral Boost Simulation	62
B13	Vehilce B Lateral Boost Simulation	63
B14	Simulation Stability Derivatives	64
C1	Pitch Rate Derivatives	82
C2	Indicial Angle of Attack Derivatives	82
C3	Gust Penetration Derivatives	83
C4	Indicial Angle of Attack Rate Derivatives	83
C5	No Wind Flight Geometry	84
D1	Slender Body Depth	197
D2	Slender Body Area	197
D3	Gust Penetration	198
D4	C _{lp}	198
D5	C _{lr}	199
D6	C _{LB}	199
D7	Cloa	200
D8	C _{np}	200
D9	C _n r	201
D10	C _n _β	201
D11	C _{nδ}	202
D12	Side Force	202

viii

E1	Trim Data	261
$\mathbf{E2}$	C _{lp}	261
E3	C _{np}	262
E4	C _{lr}	262
E5	C _n	263
$\mathbf{E6}$	C _{LB}	264
$\mathbf{E7}$	C _{nβ}	264
E 8	C _y	265
E9	$C_{1\delta_0}$ and $C_{n\delta_0}$	266
E10	C _l Spoiler	267
E11	C _n Spoiler	267
F1	Analog of Plant	300
F2	Analog of Quadratic Controller	30 6
F3	No Wind Flight Geometry	307
F4	Damping in Roll (ref. 29)	30 8
F5	Damping in Yaw (ref. 29)	309
F6	Sideslip Derivatives (ref. 29)	310
F7	Aileron Power (ref. 31)	311
F8	Rudder Power (ref. 30)	312
F9	Side Gust Penetration	313
G1	Mass Properties Variations with Vehicle Weight	323

---- ---

-

TABLES

.

A1	Coefficients of the Differential Equation	5
A2	Interpolated Wind Data	16
В1	Pitch Simulation Data	19
B2	MSFC Bending Moments	24
В3	Honeywell Definitions	26
B4	Numerical Values for the Dimensional Stability Derivatives	30
В5	Tail Wag Dog and Dog Wag Tail Stability Derivatives	50
C1	State Equations	85
C2	Response Equations	87
C3	Numerical A Matrix	89
C4	Numerical G Matrix	94
C5	Numerical H Matrix	95
C 6	Numerical D Matrix	106
C7	Retabulated Reference Trajectory Data	107
C8	Pitch Damper (c1) Covariance Results	110
C 9	Attitude (c7) Covariance Results	115
.C10	Scheduled Attitude (c2) Covariance Results	120
C11	Scheduled Attitude (c3) Covariance Results	125
C12	Minimum Drift (c4) Covariance Results	130
C13	Normal Acceleration (c5) Covariance Results	135
C14	qa (c6) Covariance Results	140

_----

Â

C15	Quadratic (Q13) Covariance Results	145
C16	Quadratic (Q15) Covariance Results	150
C17	Attitude (C7) Covariance Results ($\Delta t/0.02$)	155
D1	State Equations	203
D2	Response Equations	204
D3	Numerical A Matrix	205
D4	Numerical G Matrix	213
D5	Numerical H Matrix	214
D6	Numerical D Matrix	224
D7	Ten-Second Gimbal Positions	226
D8	Roll Gimbaling	227
D9	Yaw Gimbaling	228
D10	Rocket Gains	229
D11	Heading (u _{21D}) Covariance Results	230
D12	Drift (u _{22D}) Covariance Results	234
D13	Accelerometer Load Relief (u $_{ m 24D}$) Covariance Results	238
D14	Sideslip Load Relief (u $_{25\mathrm{D}}$) Covariance Results	242
D15	Heading (u _{21D}) Including Rolling Gust Covariance Results	246
D16	Heading (u $_{ m 21D}$ with Δt = 0.04) Covariance Results	250
E1	State Data	256
E2	State Equations	258
E3	Flight Data	259
E4	Body Axis Stability Derivatives	260

· - • - • - • •

xi

ġ

F1	State Equations	291
F2	Response Equations	292
F3	A Matrix	293
F4	G1 Matrix	294
F5	G2 Matrix	294
F6	H Matrix	295
F7	D Matrix	296
F8	P Pots	297
F9	Q Pots	298
F10	Amplifiers	299
G1	Equations of Motion	315
G2	TVC Equations Added to Entry 6 DOF Simulation	319
G3	Test Sequences to Check Out TVC and SAS	322

x

xii

<u>A</u>

APPENDIX A

LAUNCH PHASE RANDOM NORMAL WIND MODEL

The random wind model used in Sections II and III is discussed. This wind model is used as the "normal" wind for pitch plane studies and as the side wind for the lateral investigations.

The random wind model is the Skelton differential fit (ref. 6) of Vaughan wind data (ref. 5). This wind model will be referred to as the Vaughan-Skelton model.

The Vaughan-Skelton model is used in two different ways in this report. First, the differential equation model is used directly in covariance analyses in Sections II and III and for the quadratic control synthesis in Section II. Second, an analog simulation of the differential equation was performed to generate typical samples. One of these (Figure 7) was stored on magnetic tape and used in the manner of a "synthetic wind" for the analog simulation studies of Sections II and III.

The wind v_w is taken as made up of a mean v_w and a random component \tilde{v}_w (page 29 of ref. 6).

where

Å

1

$$\begin{cases} \dot{\omega} \\ \dot{\mathbf{x}} \\ \dot{\mathbf{x}} \\ \end{cases} = \begin{bmatrix} \mathbf{0} & \mathbf{c}_{3}\dot{\mathbf{h}} \\ -\mathbf{c}_{5}\dot{\mathbf{h}} & -\mathbf{c}_{4}\dot{\mathbf{h}} \end{bmatrix} \begin{cases} \omega \\ \mathbf{x} \\ \end{pmatrix} + \begin{cases} \mathbf{c}_{1} & \sqrt{\mathbf{h}} \\ \mathbf{c}_{2} & \sqrt{\mathbf{h}} \\ \end{cases} & \eta$$
 (A2)

 σ = standard deviation of the random component

h = altitude

 η = unity white noise

$$a_1 = 0.95 \cdot 10^{-4} / m$$

$$a_{2} = 0.735 \cdot 10^{-4} / m$$

$$a_{3} = -0.91 \cdot 10^{-8}$$

$$c_{1} = \sqrt{2(a_{1} - a_{2}a_{3})}$$

$$= [2(0.95 \times 10^{-4} + 0.735 \cdot 0.91 \times 10^{-12})]^{1/2}$$

$$= +1.378 \times 10^{-2} / m^{1/2}$$

$$c_{2} = [2(a_{1} + a_{2}a_{3}) c_{5}]^{1/2} - 2a_{1}c_{1}$$

$$= [2(0.95 \times 10^{-4}) (1.442 \times 10^{-8})]^{1/2} - 2(0.95 \cdot 10^{-4}) (1.378 \cdot 10^{-2})$$

$$= -0.965 \times 10^{-6} / m^{3/2}$$

$$c_{3} = +1$$

$$c_{4} = 2a_{1} = 1.9 \cdot 10^{-4} / m$$

$$c_{5} = a_{1}^{-2} + a_{2}^{-2}$$

$$= 10^{-8} (0.95^{2} + 0.735^{2})$$

$$= 1.44 \times 10^{-8} / m^{2}$$

For altitudes up to 32 km, the mean wind is taken as the E-W component at Cape Canaveral during March (page 13 of ref. 5. It is plotted in Figure A1. For altitudes greater than 37 km, v_{ω} is taken as 20 m/sec.

Similarly, for altitudes up to 30 km, the standard deviation σ is taken as the E-W component at Cape Canaveral during March (page 13 of ref. 5). These data were smoothed as is shown on Figure A2. For altitudes greater than 30 km, it is assumed σ = 5.7 -(1/6000) (h - 30,000) for h > 30,000 m where σ is in m/sec.

The a's are taken from page 23 of ref. 6, and the formulae for the c's from pages B-6 and B-7 of ref. Al.

| `

Â

Figure A1. Mean Value of E-W March Wind

Figure A2. Standard Deviation of E-W March Wind

Equations (A3) and (A4) which follow are an alternative (which was used in this report) to Equations (A1) and (A2). Equations (A3) and (A4) were derived under the false premise that \dot{v}_w would be required at some place in the study. Equations (A1) and (A2) are the preferred form because less work is required to obtain them.

Differentiation of Equation (A1) and use of Equation (A2) yields

$$\dot{v}_{w} = \vec{v}_{w} + \vec{v}_{w}$$
(A3)
$$\vdots$$
$$\vdots = \sigma \dot{\omega} + \dot{\sigma} \omega$$
$$= \sigma \left(c_{3} \dot{h} x + c_{1} \sqrt{\dot{h}} \eta \right) + \dot{\sigma} / \sigma \vec{v}$$
$$\dot{x} = -c_{5} \dot{h} \omega - c_{4} \dot{h} x + c_{2} \sqrt{\dot{h}} \eta$$
$$= -\frac{c_{5} \dot{h}}{\sigma} \vec{v} - c_{4} \dot{h} x + c_{2} \sqrt{\dot{h}} \eta$$

Hence,

$$\begin{cases} \dot{\tilde{v}} \\ \dot{\tilde{x}} \\ \dot{\tilde{x}} \end{cases} = \begin{bmatrix} \dot{\sigma}/\sigma & c_3 \sigma \dot{h} \\ -\frac{c_5 \dot{h}}{\sigma} & -c_4 \dot{h} \end{bmatrix} \begin{cases} \tilde{v} \\ x \\ \end{cases} + \begin{cases} \sigma c_1 \sqrt{\dot{h}} \\ c_2 \sqrt{\dot{h}} \end{cases} \eta$$
(A4)

For simulation purposes \bar{v}_w [Equation (A3)] and the coefficients of Equation (A4) are needed as functions of time. Most of these are calculated in Table A1.

Columns 1, 2, and 3 are taken from Table 1 (3.0g limit trajectory) of ref. 18. Column 6 is taken from Table 3 of ref. 18.

- $\dot{h} = V_R \cos \gamma_R$ is presented in column 4 (V_R = relative velocity; γ_R = flight path angle)
- σ (column 7) is read from Figure A2, corresponding to the altitude in column 6.

The data of Figure A2 were differentiated and plotted as Figure A3.

Δ

	<u> </u>	T	1	T	1	1	1	1
1	2	3	4	5	6	7	8	9
l t	V.	N N	ĥ	√ i	h	σ	dσ/dh	ġ
Sec	R m/sec	'R deg	-/	$(-(aaa)^{\frac{1}{2}})$		-/	(-(1 2
Jee	<u><u></u> <u></u> </u>	ueg	iu/sec	(m/sec)=	<u> </u>	tt/sec	(m/sec)/m	m/sec
0.0	0.	90.0	0.0	0.0	0.	4.7	.00078	.00000
4.0	19.6	89.8	19.6	4.43	38.	4.7	.00078	.01530
8.0	40.1	89.8	40.1	6.34	158.	4.7	.00078	.0312
12.0	61.5	89.8						-
16.0	83.9	88.7	83.9	9.17	651.	5.1	.00080	.0671
20.0	107.4	85.8	1					í ·
24.0	132.3	82.4	131.0	11.44	1509.	5.5	.00081	. 106
28.0	159.0	78.8		i				
32.0	187.7	75.4	181.5	13.48	2758.	6.95	.00087	. 158
36.0	218.5	72.1	1					
40.0	251.5	69.0	234.5	15.3	4424.	8.5	.00095	.223
44.0	286.3	65.8				1		1 -
48.0	320.6	62.6	284.5	16.88	6511.	10.7	.00117	• 333
52.0	354.8	59.4						
56.0	389.9	56.3	325.0	18.00	8955.	14.1	.00157	.510
60.0	426.8	53.1						
63.9	465.4	50.1	357.0	18.9	11662.	16.7	00014	050
66.0	487.4	48.6						
72.0	557.5	44.2	388.5	19.72	14681.	13.4	00144	560
78.0	638.8	40.1			17086.			
84.0	732.1	36.3	434.0	20.85	19628.	9.2	00041	178
90.0	837.7	32.8						
96.0	954.9	29.7	473.0	21.8	25094.	6.9	00032	151
102.0	1083.3	26.9						
108.0	1222.6	24.4	505.0	22.5	30997.	5.5	00017	0841
114.0	1372.8	22.1						- 0
120.0	1528.3	20.1	525.0	22.95	37222.	4.5	00017	0875
126.0	1005.7	18.2			1 4 - 0 1			- 0-1
132.0	1844.8	16.5	524.0	22.9	43581.	3.5	00017	0874
138.0	2005.4	15.0		00.55	10853	0.5	00017	0070
144.0	2107.5	13.0	510.0	22.00	49070.	2.7	00017	0050
150.0	2330.9	12.3	501.0	01.05	52910.	1.00	00017	0801
150.0	2490.0	11.1	401.0	21.95	570/9·	1.4	00017	0801
102.0	2001.4	10.0	400.0	01.05	50/49.	•9	00017	0(93
160.0	2020.3	9.0	443.0	21.05	60206	0.4	00017	0740
109.0	2019.1	0.(431.0		02320.	• 52	00017	0134

Table A1. Coefficients of the Differential Equation

1. F

4

5

· · · · <u>-</u>

-

10	11.	12	13	14	15	16	17
ġ/σ	$c_{\sigma}\sigma$ h	c, Jh	$10^{6}(c_{h})/\sigma$	c, ĥ	$-10^6 \mathrm{c} \sqrt{\mathrm{\dot{h}}}$		
1/sec	\int_{ft^2/sec^2}^{3}	ft/sec ^{3/2}	1/ft ²	1/sec	$1/ft sec^{\frac{1}{2}}$	E-W ft/sec	s ft/sec
.0000 .0033 .0065	0. 1003. 2055.	0. .940 1.35	.0 .00417 .0114	.0 .0037 .0076	0 1.307 1.87	0. .4 1.8	0.
.0132	4620.	2.12	.0219	.0159	2.7	7.4	10.1
.0193	7780.	2.85	.0318	.0249	3.37	17.1	23.35
.0228	13620.	4.23	.0349	.0345	3.965	31.3	42.7
.0263	21550.	5.87	.0369	.0445	4.51	50.1	68.5
+.0311	32900.	8.16	.0354	.0540	4.97	73.6	101.
+.0362	49500.	11.48	.0307	.0617	5.30	101.5	246.
0030	64300.	14.30	.0285	.0678	5.55	130.	246.
0417	56300.	11.95	.03865	.0738	5.80	113.5	223.
 0193	43100.	8.67	.0629	.0825	6.15	74.5 29.5	163. 94.
0219	35200.	6.80	.0915	.0896	6.43	10.2	0
0153	30000.	5.59	.1224	.0958	6.63	45.5	
0194	25550.	4.66	.1555	.0996	6.75	65.5	
0257	19200.	3.51	.2055	•0995	6.74	65.5	
0340	13780.	2.55	.272	.0969	6.65	65.5	
0571	7270.	1.39	- 377 - 459	.0914	6.46	65.5	
185 229	1912.		.690 1.475 1.818	.0841	6.21	65.5	

Table A1. (Concluded)

Â.

Figure A3. Deviation Rate of E-W March Wind

 $d\sigma/dh$ (column 8) is read from Figure A3, corresponding to the altitude in column 6:

$$\dot{\sigma} = \dot{h} \frac{d\sigma}{dh}$$
 is tabulated in column 9.

h and $d\sigma/dh$ are from columns 4 and 8.

 σ/σ in column 10 is the quotient of σ and σ from columns 9 and 7. σ/σ is required in Equation (A4).

The remainder of the coefficients in Equation (A4) are tabulated in columns 11 through 15. Conversion from m to ft is made during these calculations. The coefficients of Equation (A4) are presented in Figures A7 through A12.

Finally, \bar{v} is required. \bar{v} as a function of time (column 16) is obtained from Figure A1 and h (column 6). \bar{v} (t) is plotted in Figure A5. \bar{v} is obtained by differentiating the data of Figure A5. \bar{v} is plotted in Figure A4.

All of the data required are contained in Figures A4 through A12.

For the covariance analyses Figures A5 through A12 (for the mean wind and for the coefficients of Equation (A4) were tabulated at 5-second intervals (Table A2).

The analog simulation is presented as Figure A13. v_s at the top left is the synthetic wind rate; its simulation was provided for but not used. Function switches 20 and 21 provide for selecting combinations of the synthetic, Vaughan-mean, and Vaughan-random winds.

Amplifier 10 (on the left near the bottom) generates time. It drives the servos (SM2, 3, 4).

Pot SM4A generates the mean wind rate. Pot SM4B generates $(\sigma/\sigma)\tilde{v}$, etc.

Figures A5 through A12 contain the values for the analog simulation.

Figure A14 presents a typical recording. The top trace is the output of amplifier 80 (lower right corner of Figure A12). The amplitude of the analog room white noise generator changes over a period of weeks. Pot $\overline{4}$ was adjusted to 0.311 to yield peak (3 σ) values of 7.5 volts from amplifier 80.

The remainder of the traces of Figure A14 are self explanatory. For the single sample analyses of Sections II and III, the analog simulation was used to generate the sample presented as Figure 1; it is also stored on magnetic tape in the Honeywell analog room.

1 : 1

4__

Figure A5. Mean Value of E-W March Wind

Figure A6. Standard Deviation of E-W March Wind

Figure A7. $\dot{\sigma}/\sigma$

⊐`Ø

á __

1.0

Figure A12. $C_5 \dot{h} / \sigma$

P POTS UNBARRED, Q POTS BARRED

Figure A13. Analog Diagram for Vaughn-Skelton Wind

A.

Table A2. Interpolated Wind Data

c, ouh	~ z Vh	ca or Jh	c, h	es h	510	
		5 V	Ŧ	<i>o</i> ~		C.
.U000000E-80	.000000000.80	.00000000E_80	.0000000F-80	.0000000F-80	. 00000000E_80	.00000u00E_80
,10820374E 01	- 15071135E-05	1255344E 04	.46549826F-02	-58113625E-0A	41036039E-02	.64667113E DO
,15278645E 01	- 40748258E-05	26524554E 04	-96140281F-U2	.14541286E-07	81347159E-02	.28542543E 01
.20279125E 01	- 26010943r - 05	42888222F 04	-14824705F-01	.206736715-07	-12347064F-01	.64892161F 01
,24461378E 01	- 30552883E_05	.59839900F 04	.20316386F-01	.272711415-07	.16523451E-01	.11701041E 02
29857845g ÓI	344625636_05	.83538353E 04	26069286F-01	.32551303E-07	19847599E_01	.18628005E 02
.38452125E 01	38199523E-05	.11939223E 05	.32047960E-01	.34457560E-07	-21989842E-01	.27332469E 02
.48106218E 01	41766140E_05	.16326898E 05	.38233935E-01	.35750056E-07	.24171994E.01	.37771359E 02
.58700000 _E 01	45100000F-05	21550000F 05	.44500000F-01	.36900000F-07	2630000E-01	.5010000E 02
,71938670Ë Ol	48114902F-05	28101492E 05	50593973E-01	.36461587E-07	28245285E-01	.64404950F 02
.58565514 <u></u> 01	- 50641504E-05	36529247E 05	56112526F=01	34411297E-07	34152265E-01	79890598E 02
.11004029E 02	52646777E-05	47124992E 05	6n842n82E-01	-31351431E+07	.37650936E-01	.974475235 02
13358246E D2	 54306652E_05	58941463E 05	.64894305E.nI	28498717E-07	20700551E_01	,11858061E 03
.14258429E 02	55A36747E-05	.64468107E 05	.6A610404E-91	29150206F-07	- 10012253E-01	.13110347F 03
12769456E 02	 57382402E.05	.59419078E 05	.72308361E-01	.35267868E-07	363A1934E-01	.12269797E 03
10877721E 02	5 8915939g-05	.52120907E 05	.76049768F-01	.44155589g-07	41818923E-01	.94381030E 02
.95097554E 01	603 91135Ĕ.05	46601270E 05	.79732630Ē-01	.54211855E-07	-,29530865E-01	.56300969E 02
.84814833E 01	61764465F_05	42307724E 05	.83153736E-01	65144389E-07	17902946E_01	24353951E 02
.76337293F 01	630032n8F-05	.38733698E 05	·86212929E-01	.767556018-07	17648978E-01	.90847814E DI
.69266290E 01	640 98607E _ 05	.35737869E 05	.89045832E-01	,88984034E-07	-,21493652E-01	.87673040F 01
.63369727E 01	-,65047508E-05	.3322x514E 05	.91792023E-01	.10175118E-06	-,20998089E-01	.19714494F 02
.28423254E D1	658 64219E-05	.31115225E 05	•94384559E•01	.11471638E-06	17113033E-01	.36018227E DZ
,24333842E 01	66569750E-05	.29304929E 05	•96663734E-01	.12744593E-06	14917164E-01	.50855833E 02
•50610690E 01	67141469E-05	.27577923E 05	.98461586F-01	.14045649E-06	16378800E-01	.60547083E 02
.466000000 01	-,67500000E_05	25550000E 05	.99600000E-01	,15559000E-06	1940000E_01	.65508000E 02
41852524E DI	-•67591619E-05	.22973566E 05	•99967327E-01	.17402203F-06	22107769E-01	•65500000E 02
,36932840E UI	-,67480366E_05	20231455E 05	.99720500E-01	.19591246E-06	24615898E-01	.6550000E 02
, 526011222 01	6725J700E-05	17793875E 05	.99071576E-H1	,22068979E-06	27507173E-01	.65500000E 04
-20/71332E 01	06909006E-05	15623838E 05	.98052717E-01	.24813490E-06	30949843E-01	.6550000E 02
-24012001E UI	- 66374577E-05	132747082 05	.96227804E-01	27829155E-06	- 34800702E-01	.65200000E 02
14850730C 01	656301831-05	10542561E 05	.94520045E+01	+32412592E-06	40530958E-01	•6550J000E 02
10330444		. 17827787E 04	.91968334E-01	-27424JUE-06	-,53232105E-01	.0500000E 04
62836345F 00		-53776117E 04	.8897678UE-01	+6406F162E+06	794×1022E-01	.655"UUUUE UZ
25000000- 00	+ 0 C B / UO I 4 L = UD	JODDODU0- 01	.8505/94JE+01	1060UJJJE-05	13287049£ 00	+05709700E 04
	•••••••••••••••••••••••••••••••••••••••		.83999999966			

APPENDIX B

EQUATIONS, DATA, AND SIMULATIONS FOR CONVENTIONAL LAUNCH STUDY

This appendix presents the equations, data, and simulations used in Sections II and III. Figure B1 gives the reference trajectory used in these studies, supplied by MSFC.

EQUATIONS

đ

.4 _

References 19 and 20 provide the basic equations. Appendix H gives nomenclature for this appendix. The 6-degree-of-freedom rigid body equations were decoupled into:

- Longitudinal trim equations
- Longitudinal perturbations
- Lateral perturbations

The longitudinal trim equations were used to estimate the required angle of attack and composite pitch gimbal deflection needed to fly the reference trajectory. The force normal to the trajectory is:

$$0 = -\frac{13F_{E}}{m} \left(\alpha_{o} + \delta_{y_{o}} \right) + \cos \gamma_{R} \left(g - \frac{u_{o}^{2}}{r} \right) + u_{o} \dot{\gamma}_{R} - \frac{qS}{m} \left(C_{N_{o}} + C_{N_{\alpha}} \alpha_{o} \right)$$
(B1)

.

The moment equation is:

$$0 = 13F_{E} \left[\left(x_{CG}^{-x} \delta \right) \delta_{y_{O}} + z_{CG}^{-x} \delta \right] + qS\ell \left(C_{m_{O}}^{-x} + C_{m_{\alpha}}^{\alpha} \alpha_{O} \right) \quad (B2)$$

Table B1 includes the data needed to compute these trim requirements. α_0 and δ_0 versus time are plotted in Figure B2. The actual δ_0 is shown by the dashed line. The δ_0 shown by the solid line would occur in vacuum; the deflection needed to track the cg.

The perturbation longitudinal equations were in body axes, although often described as stability axes because the unperturbed x axis was chosen to lie on the reference trajectory, rather than the body x axis. Figure B3 shows the launch vehicle reference pitch geometry, while Figure B4 gives

Figure B1. Launch Trajectories, 3 and 4 g's

1.000

				[-	[1										Trim Data			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Time	W10 ⁻⁶	m10 ⁻⁶	¹ y ^{10⁻⁸}	*cg	T10 ⁻⁶	q	qS/m	<u>ās</u> ī _y	Ma	u _o ft/sec	10 ⁴ Mw	Z _q	z,	М (4g's)	Z 8 (4g's)	A _x (ft/sec ²)	γ _R (deg)	Ϋ́ _R (deg/sec)	с _{Nо}	с _т	с _N а	С _{та}
0	3.5	0.109	3.71	91	5.2	0	D	0									90 .					
3	3.46	0.107	3.66	92	5.2	5	0.5	0.03	-0.03	60	- 5. 0	-1.5	-0.027	-1.43	-49	48	90		+0.02	-0.028	2.9	-1.0
13	3.32	0.103	3.51	94	5.23	45	4.5	0.28	-0.27	210	-13.0	-13.1	-0.063	-1.49	-5	50	90	0	+0.02	-0.028	,2.9	-0.96
23	3,19	0.099	3.36	97	5.34	188	19.3	1.21	-1.1	330	-33.0	-56.0	-0.170	-1.54	- 54	53	82	-0.87	+0.02	-0.027	2.9	-0.90
33	3.05	0.095	3,20	99	5.44	366	39.6	2.48	-2.2	640	-34.0	-115.0	-0,180	-1.61	-57	55	75	-0.85	+0.02	-0.027	2.9	-0, 89
43	2,91	0.090	3.05	101	5.61	590	67.3	4.20	-3,15	920	-34.0	-168.0	-0.183	-1.71	-62	58	69	-0.79	-0.01	-0.007	2.5	-0.75
53	2.78	0.086	2.90	105	5.72	728	87.0	5.35	-5.3	1195	-44.0	-270.0	-0.226	-1.76	-66	56	63	-0.78	-0.04	+0.014	3.1	-0.99
63	2.64	0.082	2.74	107	5.87	793	99.0	6.27	-4.7	1500	-31.0	-248.0	-0.165	-1.86	-72	58	50	-0.76	-0.04	+0.006	2.5	-0. 75
73	2.50	0.078	2.58	110	5.94	750	99.0	6.30	-3.4	1870	-18.0	-198.0	-0.106	-1.93	-76	64	44	-0.71	-0.04	O	2.0	-0.54
83	2.37	0.074	2.41	114	6.0	590	82.0	5.30	-2.0	2370	- 8.4	-140.0	-0.059	-1.99	- 81	74	35	-0.60	-0.04	-0.002	1.7	-0.38
93	2,23	0.069	2.24	117	6.03	437	65.0	4,21	-1.1	2943	-3.8	-98,0	-0.033	-2.08	- 87	80	30	-0.52	-0.04	-0.005	1.5	-0.26
103	2.09	0.065	2.06	121	6.04	317	50.0	3,33	-0.5	3600	-1.4	-62.0	-0.017	-2.15	-93	88	25	-0,45	-0.04	-0,005	1.2	-0.15
113	1,96	0.061	1.86	125	6,05	220	37.0	2.56	-0.2	4180	-0.5	-37.0	-0.0089	-2.24	-100	96	21	-0.37	-0.033	-0.007	1.0	-0.08
123	1.83	0.057	1.66	129	6.05	150	27.0	1.96	-0.12	5325	-0.2	-24.0	-0.0045	-2.37	-106	104	18	-0.31	-0.03	-0.007	0.9	-0.06
133	1.70	0.053	1.46	133	6.05	103	19.7	1.53	-0.05	6324	0	-17.0	-0.0027	-2.53	-114	113	15	-0.26	-0.03	-0.008	0.85	-0.03
143	1.54	0.048	1.15	140	6.05	72	15.4	1.36	0	7440	· 0	-12.0	-0,0016	-2.84	-126	125	13	-0.22	-0.03	-0.008	0.8	0
153	1.42	0.044	0,91	145	5,71	53	12.3	1.27	+0.05	8650	0	-9.0	-0.001	-3.07	-129	129	11	-0.20	-0.03	-0.009	0.7	+0.014
160	1.33	0.041	0.74	150	5.35	42	10.5	1.84	+0.07	9512	0	-6.0	-0.0006	-3.18	-129	129	10	-0.17	-0.03	-0.010	0.6	+0.06

Table B1. Pitch Simulation Data

. Q

 $S = 10,250 \text{ ft}^2$ $St = 2.17 \times 10^6$

ℓ = 211 ft

19

Ļ

į

1

ł

Figure B2. Trim Angles of Attack and Gimbal Angle

自由

 $\mathbb{R}^{\mathcal{B}}$

· \$___

Figure B4. Launch Vehicle Perturbation Geometry; Stability Axes

.

-- - --

perturbation geometry. The simulations ignored the longitudinal perturbation u. The resulting 2-degree-of-freedom perturbation equations used were:

Pitch acceleration

.

書0

$$\dot{\theta} = \dot{q} = M_{q}q + M_{w}w_{A} + M_{\delta}\delta + M_{\delta}^{*}\delta$$
(B3)

Inertial z axis acceleration

$$w = q u_o - g \sin \gamma_R \theta + a_{CG}$$
 (B4)

Where the acceleration due to normal forces was:

$$\mathbf{a}_{\mathbf{CG}} = Z_{\mathbf{W}} \mathbf{w}_{\mathbf{A}} + \mathbf{z}_{\delta} \delta + Z_{\delta}^{*} \delta$$
(B5)

...

The acceleration normal to the trajectory

$$V_{N} = a_{CG} - A_{x} \theta$$
 (B6)

Accelerometer at station 0

$$\mathbf{a}_{\mathbf{z}} = \mathbf{a}_{\mathbf{CG}} + \mathbf{q}(\mathbf{x}_{\mathbf{A}} - \mathbf{x}_{\mathbf{CG}})$$
(B7)

Normal component of velocity with respect to the air mass

$$w_{A} = w + \sin \gamma_{R} w_{W}$$
(B8)

Gimbal acceleration

$$\ddot{\delta} = -2\zeta \omega_n \dot{\delta} - \omega_n^2 (\delta - \delta_i) + \frac{\partial \ddot{\delta}}{\partial \dot{q}} \dot{q} + \frac{\partial \delta}{\partial a_{CG}} a_{CG} \qquad (B9)$$

Bending moment data supplied by MSFC are shown in Table B2. The pitch bending moment offsets were not considered, consequently, the equations used were of the form:

$$M' = M'_{\alpha} \alpha + M'_{\delta} \delta$$
(B10)

The bending moments were computed at three distances from the nose: 660 inches, 1,300 inches, and 1,880 inches.

_ _ ___
Table B2. MSFC Bending Moments

Pitch:

 $M' = M'_{\alpha} + M'_{\delta}\delta$

Station	$10^{-6} {\rm M'}_{\delta}$	$10^{-6} {\rm M'}_{\alpha}$,	10 ⁻⁶ M'	
	in.lbs/deg	for $+\alpha$	for $-\alpha$	in. lbs
660	- 1.62	-5.72	- 6.72	7.98
1300	-15.05	-3.17	-11.2	104.2
1880	-22.8	+5.84	-10.1	182.1

Yaw:

$$N' = N'_{\beta}^{\beta} + N'_{\delta_{\tau}}^{\delta_{z}} z$$

Station	10^{-6} xN ' $_{\beta}$ in. lb/deg	10 ⁻⁶ xN 'δz in.lb/deg
660	- 8.96	- 1.62
1800	-19.5	-22.8

The angle-of-attack bending data supplied by MSFC (Table B2) were for the max q condition. The derivative M'_{α} was therefore assumed proportional to the normal acceleration derivative Z_{w} , for which aero data were available along the trajectory. The following substitution was then made in the bending moment equation:

$$M_{\alpha}^{\prime} \alpha = \left(\frac{M_{\alpha}^{\prime}}{u_{o}}\right)_{at} \left(\frac{Z_{w}^{W}A}{Z_{w}^{W}A}}{\max q}\right)$$

The lateral perturbation equations had three degrees of freedom. These equations have no apparent product of inertia effects. This is done by modifying the stability derivatives as explained in Table B3. The product-of-inertia effect is included in the primed derivatives of Table B4:

Roll acceleration

V

$$\mathbf{p} = \mathbf{L}_{\mathbf{v}\mathbf{A}}^{\prime} + \mathbf{L}_{\mathbf{p}}^{\prime} \mathbf{p} + \mathbf{L}_{\mathbf{r}}^{\prime} \mathbf{r} + \mathbf{L}_{\delta_{\mathbf{a}}}^{\prime} \delta_{\mathbf{a}}^{\prime} + \mathbf{L}_{\delta_{\mathbf{x}}}^{\prime} \delta_{\mathbf{x}}^{\prime} + \mathbf{L}_{\delta_{\mathbf{x}}}^{\prime} \delta_{\mathbf{x}}^{\prime} + \mathbf{L}_{\delta_{\mathbf{a}}}^{\prime} \delta_{\mathbf{a}}^{\prime} + \mathbf{L}_{\delta_{\mathbf{z}}}^{\prime} \delta_{\mathbf{z}}^{\prime} + \mathbf{L}_{\delta_{$$

(B11)

$$\dot{\mathbf{r}} = \mathbf{N}_{\mathbf{v}}^{\prime}\mathbf{v}_{\mathbf{A}} + \mathbf{N}_{\mathbf{p}}^{\prime}\mathbf{p} + \mathbf{N}_{\mathbf{r}}^{\prime}\mathbf{r} + \mathbf{N}_{\delta_{\mathbf{a}}}^{\prime}\delta_{\mathbf{a}} + \mathbf{N}_{\delta_{\mathbf{x}}}^{\prime}\delta_{\mathbf{x}} + \mathbf{N}_{\delta_{\mathbf{x}}}^{\prime}\delta_{\mathbf{x}}^{\prime}$$
(B12)

Lateral acceleration

$$v = -u_0 r + A_{CG} + g \sin \gamma_R \psi + g \cos \gamma_R \phi$$
 (B13)

Acceleration due to lateral forces

$$A_{CG} = Y_{v}v_{A} + Y_{\delta_{z}}\delta_{z} + Y_{\delta_{z}}\delta_{z}$$
(B14)

Acceleration normal to the trajectory

$$\dot{V}_{N} = A_{CG} + \psi A_{x} + g \cos \gamma_{R} \phi$$
(B15)

Acceleration at station 0

в.

$$A_{y} = A_{CG} + r \left(x_{CG_{O}} - x_{O} + x_{CG} t \right)$$
(B16)

Mnemonic	Symbol	Description	Computation
ALTITUDE	h	Altitude	
MACH	м	Mach number	
WEIGHT	w	Vehicle weight	g * m
C.G.		Distance from aerodynamic reference to center of gravity along the X body axis	
ALPHA T	°т	Total angle of attack	α _a * 57.296
DELET	^б ет	Total elevon deflection	δ _e * 57.296
EAS		Equivalent airspeed	
VELOCITY	va	Venicle velocity	
DYN PRES	ā	Dynamic pressure	
Q SUB C	α _c	Pitot differential pressure	
PSUBS	Ps	Static pressure	· · · · · · · · · · · · · · · · · · ·
L' SUB B	L'B		$\left(L_{\beta} + \frac{I_{XZ}}{I_X} N_{\beta}\right) / \left(1 - \frac{I_{XZ}^2}{I_X I_Z}\right)$
L' B DOT	L'ġ		$\left(L_{\dot{\beta}} + \frac{L_{XZ}}{T_{X}} N_{\dot{\beta}}\right) / \left(1 - \frac{I_{XZ}^{2}}{T_{X}T_{Z}}\right)$
L' SUB P	L'p		$\left(L_{p} + \frac{I_{XZ}}{I_{X}} N_{p}\right) / \left(1 - \frac{I_{XZ}^{2}}{I_{X}I_{Z}}\right)$
L' SUB R	L'r	Prime Derivatives	$\left(L_{r} + \frac{I_{XZ}}{I_{X}} N_{r}\right) / \left(1 - \frac{I_{XZ}^{2}}{I_{X}I_{Z}}\right)$
L' DEL AI	L'o _{ai}	Aileron	$\left(L_{\delta_{ai}} + \frac{I_{XZ}}{I_X} N_{\delta_{ai}}\right) / \left(1 - \frac{I_{XZ}^2}{I_X I_Z}\right)$
L' DEL AG	L'ō _x	Primed gimbal	$\left(L_{\boldsymbol{\delta}_{ao}} + \frac{I_{XZ}}{I_X} N_{\boldsymbol{\delta}_{ao}}\right) / \left(1 - \frac{I_{XZ}^2}{I_X I_Z}\right)$
L' DEL RG	L'õz	Derivatives	$\left(\mathbf{L}_{\boldsymbol{\delta}_{\mathbf{r}}} + \frac{\mathbf{I}_{\mathbf{X}\mathbf{Z}}}{\mathbf{I}_{\mathbf{X}}} \mathbf{N}_{\boldsymbol{\delta}_{\mathbf{r}}}\right) / \left(1 - \frac{\mathbf{I}_{\mathbf{X}\mathbf{Z}}^{2}}{\mathbf{I}_{\mathbf{X}}\mathbf{I}_{\mathbf{Z}}}\right)$
ΙY	Т _Y	Moment of inertia about Y axis	
1 XX	^I х	Moment of inertia about any	
1 ZZ	I _Z	stability, body, etc.)	
I X	ıх)	$I_{XX}^{\cos^2\eta} + I_{XZ}^{\sin^2\eta} + I_{ZZ}^{\sin^2r}$
ΙZ	Ι _Ζ	Moments of inertia about a new axis system rotated in the XZ-	$I_{ZZ}^{\cos^2\eta} - I_{XZ}^{\sin^2\eta} + I_{XZ}^{\sin^2\eta}$
1 XZ	^I xz	prove by an angle in	$I_{XZ}^{\cos 2\eta}$ - $(I_{XX}^{-}I_{ZZ}^{-})^{1/2} \sin 2\eta$

Table B3. Honeywell Definitions

• •

• •

• • • -----

Mnemonic	Symbol	Description	Computation
IXZ/IZ			^I xz ^{/I} z
IXZ/IX			^I xz ^{/I} x
THRUS'I Z	т _z	Normal component of trim thrust	
THRUST T	Tx	Total thrust along the X axis	
OMEGA SQ	ω ²		$-M_{\alpha} + Z_{W} M_{q}$
2 ZET OM	2 Ç ω	2ζω	-M _a - M _q - Z _W
T SUB A	т _А		$1 \cdot 9 / \left[-Z_{W} - \left(\frac{Z_{\delta_{ei}} + Z_{\delta_{eo}}}{U_{1}} \right) \stackrel{\circ}{=} M_{\alpha} / \left(\frac{M_{\delta_{ei}} + M_{\delta_{eo}}}{W_{\delta_{ei}}} \right) \right]$
OMEGA A	ωA		$\sqrt{\omega^2}$
ZETA A	۲ _А		2 ζω/2ω
Y SUB B	Υ _β	Dimensional derivatives	C _{¥β} ą̃S/m
Y B DOT	Υ _β		C _{Yβ} q̃ Sb/2U1m
Y SUB P	Yp		C _{yp} ą Sb/2u1m
Y SUB R	Y _r		C _{Yr} q Sb/2Ulm
Y DEL AI	Y _{ðai}		C _Y ą S/m ai
Y DEL AO	Y ô ao		C _{Y o} ą S/m ao
Y DEL R	۲ _٥ ,		C _Y ổr ^{IS/m}
X SUB M	x _M		C _{XM} qS/m
X SUB A	Χ _α		C _{X_a} q S/m
X A DOT	x _à		$C_{\mathbf{X}_{\dot{\alpha}}} \bar{q} Sc/2m Ul$
X SUBQ	x _q		C _{Xq} q Sc/2m Ul
X DEL EI	Х _ð еі		C _{X_{δei} q S/m}
X DEL EO	х _{бео}		C _{X ðeo} g S/m
Y SUB V	ч _v	Dimensional derivatives	C _{Yβ} qS/mU

-

-

-

-

—

ं है

. . _

 $\mathbf{27}$

Mnemonic	Symbol	Description	Computation
Y V DOT	$\mathbf{y}_{\dot{\mathbf{V}}}$	Dimensional derivatives	C _{Yģ} q Sb/2mU1 ²
N' SUB V			N'β/U
L' SUB V			L' _β /U
Y DAI/U1	Y _ð /UI		C _{Yo} q S/mU1
IXZ UNTR		I _{xz} as input	aı
Y D R/ U1	Y _ð /U1		C _{Yð} q S/m Ul
L SUB B	Lβ		$C_{L_{\beta}}^{r} \bar{q} Sb/L_{X}$
L B DOT	Lġ		$C_{L_{\hat{\beta}}} \bar{q} Sb^2/2I_{X}U1$
L SUB P	L _p		$C_{L_p} \bar{q} sb^2/2I_X U1$
L SUB R	L _r		$C_{L_{r}} \bar{q} sb^{2}/2I_{X}U1$
L DEL AI	L _{õai}		C _{L_{on}} q Sb/I _X
L DEL AG	[⊥] õ _x		di
L DEL RG	L _{ðz}		
N SUB B	Ν _β		C _{Nβ} q̃ Sb/I _Z
N B DOT	Ν _β		C _{N3} q Sb ² /2IZ ^{U1}
N SUB P	N _p		$C_{N_p} \bar{q} sb^2/2I_{Z^{U1}}$
N SUB R	N _r		$C_{N_{r}} \bar{q} sb^{2}/2I_{Z}U1$
N DEL AI	N _ô ai		C _{N₀} q Sb/I _Z
N DEL AG	N _{ðx}		•
N DEL RG	N ô _z		
N'SUB B	Ν΄ _β	Primed derivatives	$(N_{\beta} + K_1^{*}L_{\beta}) / K_2^{*}$
N' B DOT	Ν´ġ		$(N_{\dot{\beta}} + K_1 L_{\dot{\beta}}) / K_2$
N' SUB P	N'p	Primed derivatives	$(N_p + K_1 L_p) / K_2$

.Ł

 $\kappa_1 = I_{XZ}/I_Z; \kappa_2 = 1.0 - I_{XZ}^2 / I_XI_Z$

Mnemonic	Symbol	Description	Computation _
N' SUB R	N'r	Primed derivatives	$(N_r + K_1 L_r) / K_2$
N' DEL AI	N'ðai	A A	$(N_{\delta_{ai}} + K_1 L_{\delta_{ai}}) / K_2$
N' DEL AG	^N 'õx		
N' DEL RG	Ν' _{δz}		
X M/U1	x _M /บเ	Dimensional derivatives	C _{XM} ą̃S/mU1
X SUB W	x _w	A	C _{X_a} ą S/mU1
X W DOT	$\mathbf{x}_{\dot{\mathbf{W}}}$		C _{Xa} qSc/2mU1
X Q /U1	x _q /បរ		C _{Xq} q Sc/2mU1
X DEI	X _{őei} /Ul		C _{X8ei} q S/mU1
X DEO/U1	X _ð /C1 eo		C _X q S/mU1
Z M/U1	z _M /ניז		C _{ZM} q S/mU1.
Z SUB W	z _w		C _{Za} q S/mU1
Z W DOT	z _w		C _{Z_α} q̃ Sc/2mU1
Z Q/U1	Z _q /ניו		C _{Zq} q Sc/2m U1
2 DEI/UI	Z _{ðei} /U1		C _{Zőei} ą S/mUl
Z DEO/UI	Z _ő /U1 eo		C _{Z_{deo} q S/m U1}
M SUB M	м _м		C _{MM} q Sc/I _Y
M SUB AL	м _а		C _{Ma} q Sc/I _Y
M AL DOT	Mġ		$C_{M_{\dot{a}}} \bar{q} Sc^2/2I_{Y}U1$
M SUB Q	м _q		$C_{M_q} q Sc^2/2I_Y U1$
M DEL EI	M _{ðei}	↓ ↓	C _{Mðei} ą Sc/I _Y
M DEL EO	М _{оео}	Dimensional derivatives	C _{M_{ðeo} ^q Sc/I_Y}
	L <u></u>		

Table B3. (Concluded)

Ĩ

۱. ۸

29

._____

-- --

Table B4.	Numerical Values for the Dimensional
	Stability Derivatives

·

. <u>È</u>.

FLT CON	4			
ALTITUDE	126.000ň0	Y SUB V	00642233	920000E 30
MACH	.05600	Nº SUB V	- ,ůð0ö2997	•000000E-80
WEIGHT	3499999.99998	L' SUB V	-,00023003	.000000E-80
C.G.	.00000	Y R/U1	•0000000	000000E=00
ALPHA T	45037	Y DAI/UI		•UUUUUUUUUUUU
	40393 42 AGA11		47000000000000000	.00000000000
VEINETTY	62,51930	I SUB B	01148512	460000E-01
CAS	62.42969	L B DOT	.00000000	.00000000.
DYN PRES	4.62815	L SUB P	• 00000000	.000000E-80
Q SUB C	4.63178	L SUB R	• 000000000	.000000E=80
P SUB S	2106.58236	L DEL A	••02496764	100000E 00
LISUB B	•• 01438	L DEL AG	-2.20386876	.000000E-80
	.00000		●•UI2223U/	• UUUUUUL = 81
	- 05211	N R hat	2000000000	1000000E+80
LINFL A	+.03123	N SUS P	.00000000	000000E-80
L'DFL AG	-2.72362	N SUB R	02691910	100000E 01
L'DFL RG	•2.81692	N DEL A	•000 0 1809	•860000E=03
IY.	366500000.00000	N DEL AG	+01861453	•000000E-80
IXX	30400000.00000	N DEL RG	-1.44715166	•000000E=80
1 77	360800000,00000	N'SUB B	-,00187343	
L X 7 7	30377997.79770	NICIB P	- 000000000	
1 2	4609009.90076	NISUB P	03370775	
1 x 7 / 1 7	13027	N'DEL A	00405001	
IXZ/IX	1.54605	NIDEL AG	-,33618167	
THRÚST Z	43919,17818	N°DEL RG	-1+81410050	
THRUST T	5200000.00000			·
OMEGA SR	.02731	X UZUI	00769808	500000E-01
	+02024	A SUD W	++NUUZUZ44	=.290000E=01
ONTRA A	. 16526		0000000	20000002-80
ZETAA	.06125	X DEI/UI	.00000.00	000000E-80
Y SUB B	40152	X DEO/U1	•00000600	.000000E-80
Y B DOT	•00000	Z U/U1	•00000000	.000000E-80
Y SHB P	• 00000	Z SUB W	02024430	290000E 01
Y SUB R	,00000	Z W DOT	.00000000	.000000E-80
T DEL AL	• • • • • • • • • • • • • • • • • • • •	Z WZUI T DETZUI	- 00000000 - 00060600	-000000E-00
Y něi R	.00000		000000000	10000002-80
X SUB U	08729	M SUB U	00152942	280000E-01
X SUB A	+,01266	M SUB AL	-, 02731113	100000E 01
X A DOT	•00000	M AL DOT	•00000 <u>0</u> 00	•00000E=80
X SÚB Q	.00000	M SUB Q	•00000000	.000000E-80
X DEL EI	•00000	M DEL EI	•00000000	•000000E=80
X BEL EO	•00000	MUEL EU	•00000000	•0000005•00
LAT DÊN SAR -	-798602 53# 01	2048 52= -0	01323 51=005015	50=000159
(0000) (20349.	.00000)(0950416623) (.09504
		•	· · · · · · · ·	- · · ·
LON DEN SAN 1	000000 \$3= .02	0322 52= .0	27313 51=000046	50= .000001
(.0008Å0	18565) (.00086+ ·	**00565)(**	0110216491)(-	.0110216491)
		1.		
		(4	FSEC)	

· ____

÷₿

<u>____</u>

FIT CON	12			
ALTITUDE	1180.00000	Y SUB V	-, 12100924	
MACH	.18000	NY SUE V	-,00011625	.000000E-80
WEIGHT	3321999.99998	L' SUB V	00074987	•030000E+80
G • G •	•00000	Y R/U1	•00000000	•00 0000E- 80
ALPHA T	45837	Y DAI/U1	+00000100	•000000E=80
	. 52327	IXZ UNIR	45000000,00000000	.000000E-80
LAD	140.10348	Y DR/UI	+00000100	•000000E=00
CAR CALL	106 80685		*•11234412 00040600	-4600002-01
DVN DEFS	46.02146		-00000000	•UUUUUUUUUUUUUUUUUU
R SUB C	46.30544		- 000000000	0000000E=80
P 508 5	2027 50807	I DEL A	-25074815	=.100000CC00
L+SIIB B	- 15014	I DEL AG	-2.22582079	-0100000E+80
L. R DOT	.00000	L DEL RG	••01361193	.000000E-80
LI SUB P	00000	N SUB B	+. 00371476	170000E-01
LI SUB R	-,16210	N B DOT	• ñ0000ñ00	.000000E-80
L+nël A	31110	N SUB P	.00000000	•000000E=80
LIDËL AG	-2,72648	N SUB R	08730798	1000002 01
LIDFL RG	-2.78414	N DEL A	•00016170	•740000E-03
ΙΥ	350900000,00000	N DEL AG	.02032370	•000000E-80
I XX	30100000.00000	N DEL RG	-1.49039096	.000000E-80
1 27	345400000.00000	N'SUB B	02327540	
	30099999.99976	NTE DOT	+00000000	
		N'SUD P	•00000000	
1 87	44977997,997/0	NISUD R	- 04026078	
1 7 7 7 1 7	1.49502	NIDEL A	- 3348877A	
THRUST 7	47764.24829	NIDEL RG	-1.45310547	
THRUST T	5230000.00000			
OMEGA SQ	.27230	X U/U1	-,00228361	-,500000E-01
2 ZET OM	.06622	X SUB W	00066225	290000E-01
T SUB A	15,10009	X W DOT	• 0 Q 0 Q 0 Q 0 Q	•000000E-8U
OMEBA A	•52183	X Q/U1	•00000000	•000000E-80
ZETĄ A	.06345	X DEI/UI	•00000000	.000000E-00
Y 5118 B	=4,20857	X DEU/UI	•00000000	.000000E+80
Y B DOT	.000.00		• 00000000	- 200000E=00
7 300 P	.00000	2 300 W		●.290000E 01
T SUD K V DÊL AT	- 00000		- 00000000	-000000E-80
	.00000	7 051/11	000000000	1000000E-80
Y NEL R	.00000	7 DF0/U1	-00000000	•000000E=80
X SUB U	91447	M SUB 1	01588442	280000E-01
X SIIB A	13260	M SUB AL	27230435	960000E 00
X A DOT	.00000	M AL DOT	•00000000	000000E=80
X ŞÜB Q	•00000	M SUB Q	÷ ñ ð 0 0 0 <u>ñ</u> 0 0	• 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X ĎĚL EI	•000g0	M_DEL EI	•00000000	0000000-80
X DFL 20	•00000	MDEL EO	•0000000	.000000E+80
		1995 82- A	16008 81	S0+ - 001420
LAI DEN 348 4		-23307)(-	14413	34458000000
		TENDULL A		
LON DEN SAR 1	-000000 53= -06	7047 52# .2	72359 51= -+000686	50= .000030
(.001270	1050) (.00127.		ō3480, , 52078)(- .	03480,52078)
			(12 502)	
			(IC SEC)	

31

FIT CON	24			
ALTTTIDE	4950.00000	Y SUB V	04184694	920000E 00
MACH	. 39000	N. SUP V	00025324	-000000E-80
WEIGHT	3185999.99998	L' SUB V	· 00147697	000000E-80
C.G.	.00000	Y R/U1	.000000000	.000000E-80
ALPHA T	-2.00535	Y DAI/HI	•00000000	.000000E-80
DEI E T	1.14745	IXZ UNTR 4	3000-00.00000000	.000000E-80
EAS	397.70459	Y DR/L1	.00000000	.000000E-80
VELOCITY	428.11476	LSUBB	47586914	460000E-01
CAS	399.07537	L B DOT	•00000ñG0	.000000E-80
DYN PRES	187.97588	L SUB P	.00000000	.000000E-80
Q 5118 C	195.23279	L SUB R	•00000000	.000000E-80
P SUB S	1764.08752	L DEL A	-1.03449814	1000CCE 00
L•SUB B	63231	L DEL AG	-2.24787129	•000000E-80
L. B DOT	.0000	L DEL PG	-,03090A10	.000000E-80
LI SUB P	• 00000	N SUB B	02612546	230000E-01
LI SUB R	30976	N B DOT	+ ÓÓ 7 0 0 ሺ 0 0	•000000E-80
LIDEL A	-1.27253	N SUB P	•00000000	•0000C0E-80
L PDEL AG	-2.68762	N SUB R	17435553	100000E 01
LIDFL RG	-2.77956	N DEL A	.00065314	 700002-03
ΙΥ	335600000.00000	N DEL AG	•04502356	+000000E+81
IXX	29800000.00000	N DEL RG	-1.54313507	•000000E=80
1 27	330400000.00000	N SUB B	10841773	
I X	29799999.99976	N'6 DOT	.00000000	
1 7	330399999.99609	Nº SUB P	.00000000	
	42999999.99976	N SUE R	21466897	
	• 13015	N'DEL A	16496041	
		N'DEL AG	•.30475782	
THRUST T	100935.05330	N'DEL RG	-1.90488214	
OMĚCA SO	33~0000.00000	V H dita		·
2 TET OM	13101		00042830	
T SHR A	7.58000	Y W DAT		200000E Bu
OMEGA A	1.04415	X 0/U1		0000000000000
7 F T A A	.06317	X DETZUI	-00000000	.000000000000
Y SUB B	-17.91529	X DEC/UI	-000000000	000000E-80
Y B DOT	.00000	7 11/11	-00727773	
Y SUB P	.000.00	Z SUB W	-13190884	- 290000F 01
Y SUB R	.00000	Z W DOT	.00000000	-0000005-80
Y DEL AI	.00000	2 9/01	.000000000	-000000E-80
Y NËL AO	.00000	Z DE1/11	.00000000	- 000000E-80
Y DĒL R	.00000	Z DEO/UI	.00000000	•0000000E-80
X SUB U	-4.67355	M SUB II	06541544	270000E-01
X SUB A	-3.89463	M SUB AL	-1.09025731	900000E 00
X A DOT	•000ñ0	M AL DOT	•000000000	.0000002-80
X SUB Q	•000 <u>0</u> 0	M SUB Q	.00000000	.000000E-80
X DEL EI	• 0 0 0 0 0	M DEL FI	.000000000	•000000E-80
X DEL EO	.000ñ0	MDEL ED	.00000000	.000000E-80
LAT DEN SAR .	.812206 53=208	344 52= .08t	0761 S1=038627 :	50=006240
1240A0	0000) (.20827.	.26350) (.20	827 26350) (5490000000)
LUN DEN 54= 1	.000000 53= 136	166 52= 1.090	345 S1=006793	50= .000020
	029910 003110 •	•00299)(•:07	120. 1.04242)((171201.04242)
			1	
			(24 SEC)	

Å.

ſ ŝ

· · · - .

FÍ T CON	32			
ALTITUDE	. ១០៩០៖ ៤០១ភ្នំ០	Y SUA V	05098174	860000E 00
MACH _	×860ñ3	Nº SILB V	- .ñ0ΰ34728	+0UU000E=80
WEIGHT	3048995-20997	L' SUE V	00048266	•000000E=80
L.G.	.00000	Y R/U1	•00000000	.000000E-80
ALPHA T	=+5 <u>8755</u>	Y DAI/(')	•0000000	.000000E=80
UEL E T	•.59177	IXZ UNTR	41000-00.00000000	•000000E-80
EAS	528.30265	Y DR/UI	•0000000	•000000E-80
VELOCITY	607.69312	LSUBB	•0000000	•000000E-80
DVN BDER	534.05128		•0000000	-000000E-80
DYN PRES	331. JV82 388 39804		.000000000	.000000E-50
Peur	1609.70401			.000000L-00
	=, 2023A		-2.27118253	
		I DEL PG		
LI SUB P	.00000	N SUB B	+ 17296471	
L+ SUB R	- 38613	N B DOT	.00000000	-00000000000
L. DFL A	-2.24850	N SUB P	.000000000	-000000E=80
L'DEL AG	-2.77778	N SUB R	- 22766210	100000F 01
LINFL RG	-2.73171	N DEL A	.00108591	.630000F+03
ΙY	320500000.00000	N DEL AG	00363767	•000000E=80
t xx	29500000.60000	N DEL RG	-1.61247843	.000000E-80
I 77	315600000.00000	N*SUB P	21034559	• • • •
Ιx	29499999.99976	N'B DOT	• 80000000	
I Z	315599999.99609	NºSUB P	.0000000	
Ι χ7	409999999,99975	N*518 R	27782463	
1xz/1Z	.12991	N*DEL A	- ,29101954	
IXZ/IX	1.38983	N'DEL AG	36450269	
THRUST Z	-8713.03366	N'DEL PG	-1.96735870	
THRUST T	5440000.00000			
OMEGA SA	1.99212	X U/U3	00029935	70000E-01
2 ZFT OM	-1/192	I SUE W	-+D0343430	580000E-01
T SUD A	7.0108Z		•00000000	•000000E=80
UMFGA A	1.41142		.00100000	.UUUUUUE=00
ZEIA A V RUB B	00090 20 87930	A DEL/UL	• UUUUUUUUU	•000000E=00
	-30×07729		-00177+43	150000E=01
V EIIR P	00000	7 SHB W	-17191817	- 290000E 01
VEHAD	00000		-00000000	-0000005-80
Y DEL AT	. 30000	7 0/01	• 00000660	.000000E=80
Y DÊL AO	0.000	Z DEL/UL	0000000	.U00000E-80
Y NEL R	0.00.00	Z DEO/U1	• 00000000	•000000E=80
X SUB U	-10.05372	MSUBU	12087002	270000E-01
X SIIB A	-2.08256	M SUB AL	-1.99211696	890000E 00
X A DOT	• 0 0 0 0	M AL DOT	• 0000000	.000000E-80
X SHB Q	.00060	M SUB Q	.00000000	.000000E-80
X DEL EI	• 0 0 0 0 0	M DEL EI	 00000000 	+000000E-80
X NFL ED	•00CÓO	MDEL EO	.00000dć0	.000000E-80
LAT DEN SAR -	.819445 53=26	9439 52= +1	60760 S1# ••012736	50# .000000
(•000no• •0	0000)(+10214+	•00000)(.	2301700000)(66111+ +00000)

LON DEN 54m 1,000000 53m .181210 52m 1,993718 51m -.022348 50m .000513 (.00561. .01502)(.00561. -.01502)(-.ñ9622. 1.40938)(-.ñ9622.-1.40938)

(32 SEC)

FIT COP	44			
ALTITUDE	17800.00000	Y SUB V	- • <u>0</u> 5626162	800000E 00
MACH	.87000	Nº SUE V	● •00056735	•00000UE-85
WEIGHT	2912999.99997	L' SUB V	.00084586	• UODGJOE = 80
C.G.	•00000	Y R/U1	•00000000	•000000E=80
ALPHA T	97403	Y DAI/UI	•0000000	000000E-80
PELET	2.25025	IXZ UPTR	39000000.00000000	•00000E=85
EAS	689.51638	Y DR/U1	•0000000	-000000E-89
VELOCITY	910.30734		1.43970506	• 460000E=01
VAS Duu oore	719.02222		.00000000	.000000E-80
DYN PRES			.00000000	•UUUUUUE=00
	1045.54217		-3-17344578	- 1000000E+00
	76909		-2,29275116	-00000000-00
	.00000	I DEL RG	04712096	000000E-80
	.000.00	N CHA A	- 61697607	- 200000E 00
LI GUR R	43750	N B DOT	.00000000	.0000002-00
i + nři A	23.83551	N SUB P	.0000000000	00000002-00
ine AG	-2.62759	N SUB R	27982166	-liggnoor 01
LINE RG	-2-84063	N DEL A	.00175653	.570000F+03
ĪV	305200000.00000	N DEL AG	.09009254	.000000E-80
T XX	29200000.00000	N DEL RG	-1.70815097	.000000E-80
1 77	300700000.00000	N'SUB B	51646000	
IX	29199999.99976	N'B DOT	•0000Cānu	
! Z	300699999.99609	N'SUB P	• 00000000	
1 X7	38999999,99976	N°SUB P	•.32756430	
1x7/12	.12970	N°DEL A	-,49569897	
1x7/1x	1,33562	N'DEL AG	-,25069880	
THRUST Z	220272.22443	N'DEL RG	-2.07657263	
THRUST T	5610000.00000			
OMEGA SR	3.00298	X UZU1	01265886	90000E-0-1
Z ZET OM	-18285	X SUB W	-+00794695	•.113000E 00
T SUB A	2.40096	X W LOT	•000000000	.000000E-89
UMEGA A	1.73291	X QZUI	.00000000	.0000UUE-80
ZETA P	+UJE70		•000000000	•000000E=00
3 500 0 V B 1001	-91.21729		-00745466	■ 0000002 = 00
	- 00000	7 CHR W	- 18285027	- 2400000000
V CIIR P	- 00000	7 8 067	-00000000	-0000000E-80
Y DEL AL	.00000	7 0/01	000000000	-000000E-80
Y NEL AO	.00000	Z DETZUI	.0000000000	.000000E=80
Y DEL R	.00000	Z DEO/U1	•000000000	000000E-80
X SUR U	-23.04686	M SUB U	05605572	700000E-02
X SUB A	-7.23415	M SUB AL	-3.00298485	750000E CO
X A DOT	•000ñ0	M AL DOT	.0000000	.000000E-80
X SUB Q	•000å0	M SUB Q	• 0 0 0 0 0 ñ 0 0	•000000E-80
X DEL EI	÷000ño	M DEL EI	•0000000	•00000E-80
X DĒL EO	.000ñ0	MDEL EO	.00000ñ00	•00 0000E-8 0
LAT VEN 544 4	••020//4 53# ●•31'	7337 522 .4	11759 518 .022519	SU= .013984
· ····································	(ETT), =+032014 (A100(+ +0000))
LON DEN 54= 1	.000000 53= .20	4877 S2= 3.8	07064 \$1=068258	50= -: 0ñ0373
	.15750.) (0000)	.00000) (11376. 1.73188) (11376+=1+/3188)

(44 SEC)

ő.

٠

. 4

. d.

-

- --

FLT CON	52			
ALTITUDE	25200.00000	Y SUB V	09725918	136000E 01
PACH WFIGHT	1.12000 9775999,99908	Nº SUB V	-,00006369	+000000E=80
C.G.	10000	Y R/U1	<u></u>	-0000002+80
ALPHA T	-1.31780	Y DAI/UI	.0000000	+000000E+80
DELET	7,99025	IXZ UNTR	380000000.000000000	.000000E-80
EAS	758,72474	Y DR/U1	00000000	.000000E=80
VELOCITY	1137,44247	LSUD	-2.22062704	+. 570000E=01
TAN PRES	624.14607	ו פווא א	• 00000n00	.000000E≠00
Q SUB C	923.47456	L SUB R	600000000	10000002000
P 5118 5	778,50351	L DEL A	-3.89583692	100000E 00
L+518 8	-2,31621	L DEL AG	-2.30380371	•000000E=80
L. A DOT	• 00000	L DEL RG	-,24418367	+00 000E-8 0
L' SUD P		N SUB D	.23363200	.60000E=01
	A17931A		00000000	-00000000-00
L'DEL AG	-2.27667	N SUB R	27621993	100000E 01
Ľ+DĒĽ RG	-3,08003	N DEL A	00117816	.300000E-03
I Y	289800000,00000	N DEL AG	.32337860	•000000E-80
T XX	Z8880600,00000	N DEL RG	-1+73960566	•00 0000E =80
	28700000.00000	NYSUD D Nie Dot	U7243881	
1 7	285699999.00669	NISUB P	- 00000900	
i x7	37999999.99976	NISUB R	33501300	
1x2/12	,1\$361	N'DEL A	-,62703560	
1x2/11	1.31944	N'DEL AG	02036675	
THRUST Z	795105,93509	NºDEL RG	2,14926953	
THRUST T	572UGDQ+90000 5`05A47	V 11/11V		- 2000005 00
2 7FT OM	23600	X 515 W	01358768	190000E 00
T SUB A	4,23735	X W DOT	.0000000	.DODOODE-80
OMEGA A	2,24826	X Q/U1	0000000	008000E-80
ZEŤA A	05248	X DETAUL	.00000000	000000E-80
Y SHB D	-110,62340	X DFOXUI	,0000000	000000E+80
Y CUL	- 00000	2 U7U1 7 4u8 W	•U12/3310 •23509454	-330000F 01
Y SUB R	.0000.	Z W DOT	.00000000	000000E-80
Y DEL AT	0000	I Q/UI	00000000	+000000E+80
Y DEL AO	. 000da	I DEI/UI	,00000000	.000000E-80
Y DEL R	• 000d0	I DEC/U1	• 00000000	•000000E=80
X 5115 U X eith A	=67±07663 =15.45440		• 146 YOUCO	- 990000F 00
X A TOT	00000	M AL DOT	.000000000	000000E-80
X SUB 4	.00000	N SUB Q	0000000	+000000E+80
X DĚĽ EI	00000	N DEL EI	• 00 00 0000	000000E-80
X NEL EO	.00060	MDEL EG	.00000000	-000000E-80
LAT Devi AAe -		4411 e2- 6	3286) 81# -: 854044 (R0#017365
(ZASES 0	0000)(58647.	*00000)(19887	9887 32848)
,		- u a u u u i i a		
LON DEN \$4= 1	.000000 53= .30	0073 82= 5.0	70028 S1=317178	30# 003591
{ -•00979• •0	0000)(.07201.	+00000) (=•	18115. 2.24955) (18115+=2+24955)
			(SZ SEC)	

35

-

_

AT CON	64			
ALTITUDE	38300.00000	Y SHR V	0815869	
MACH	1.56000	Nº SUR V	- 000 J 6907	-0000005-80
WEIGHT	2638999.99998	LI SUR V		-000000E-80
C.G.	.00000	Y R/U1	.000000000	-00000000-80
ALPHA T	.00000	Y DAI/U1	000000000	-0000000E+80
DEIET	3,29413	IXZ UNTR	3600000000000000000	-000000E-80
EAS	780.85472	Y DR/UI	0000000	
VEINCITY	1510.81639	L SUB B	-1-92488476	-460C00F=01
CAS	898.99716	L B DOT	.00000000	100000000000
DYN PRES	724.63848	L SUB P	.0000060	1000000F-80
Q SIIB C	1125.39080	L SUB R	.000000000	-000000F-80
P 5118 \$	425.04401	L DEL A	-2.09226604	50000000-01
LISHB B	-2.24867	L DEL AG	-2-35525693	•0000C0E=80
L* A DOT	.00060	L DEL RG	10705983	.0000002-80
LI SUB P	.00000	N SUB B	.04394997	.1000012-01
ET SUB R	-,35489	N B DOT	•000 00 000	.0000002-80
L'DEL A	-2,51625	N SUB P	000000	0000005-60
L'DÊL AG	-2,62671	N SUB R	-,23272169	-1000002 01
LIDFL RG	-2.96534	N DEL A	.00052740	.1200005-03
1 🗸	274100000.00000	N DEL AG	.13556097	.0000001-80
T XX	28400000.00000	N DEL RG	-1.86007367	.0000COE-80
1 7.7	270400000.00000	NºSUB B	25542869	• • • • • • • • • • •
1 x	28399999.99976	N'B DOT	.06000000	
17	270399999 .996 0 9	NISUB P	 00000ñ00 	
1 X 7	35999999,99976	NºSUB R	-,27997667	
1x7/12	,13314	N°DEL A	-,33447631	
[XZ/IX	1.26761	N°DEL AG	-,21414947	
THRUST Z	337299,98183	N'DEL RG	-2.25486786	
THRUST T	5870000.00000		•	
OMEGA SQ	4,28625	X U/U1	••02639385	220000E 00
2 ZFT OM	.16196	X SUB W	00239944	4000005-01
T 5118 A	6.17428	X W DOT	.00000000	• COOOUJE-80
OMEGA A	2.07081	X Q/U1	•00000000	•0000UDE-80
ZETA A	.03911	X DEI/UI	.00000000	•000000E-80
Y SUB B	-123.27389	X DEO/UI	.00000r00	• COOODCE - 80
	.00000	2 0/01	.00479885	• 40C000E - 01
7 500 P	.00000	Z SUD W	16196226	270000E 01
	• • • • • • • • • • • • • • • • • • • •		.00000200	•0000U0E=00
Y DEL AL	.00000		.00050000	•050000E=00
V DEL P	-00000		.000000000	•000000E=80
	- 79 75252		• 0 0 0 0 0 0 0 0	• UUUUUUUE - 80
	-3-62511		-0-28834040	- 360000JE=02
X JOD H	00000	M AL DOT		
	-00000	M SUB D	.00000000	.0000002=00
X. DEL ET	.000.00	M DEL ET	-06030600	•000000±=00 •00000€=80
X nFI FO	100000	MDFI FO	20030000	-0000001-07
LAT DEN SA= -	.831236 S3= +.300	1535 52= .1g	3336 Sl=039838	50=009547
(136810	0000) (.25603.	.21999) (560321999)(7367900000)
LON DEN SAN 1	.000000 S3= .244	311 52= 4.30	11604 51=350594	S0= - 801054
(002900	0000)(+08389+	+00000)(1	6265. 2.07406) (162652.07406)

(64 SEC)

-

.

с, **Р**

F1.T	CON	72											
ALTIT	UDE	48200	. 0 0 0 0 0	Y Y	508	v			064		n	- 131	000F 01
MACH		1	94000	Ň	۰ ŠŲ	e v	1		000	3284	3	.000	0005-80
WEIGH	IT	2502999	99998	Ë	• <u>s</u> u	ē V			001	9250	5	100	0005-80
C.G.		_	00000	Î Ŷ	R/U	1			000	D G G O	Ō	1000	000E-80
ALPHA	T	•	.17189	Y Y	DAT	101			000	0000	Ō	.000	000E-80
DELE	: T	2.	94028	1	XZ U	N TR	3400	onosi	000	0000	0	.000	000E-80
EAS		765	40913) Y	DR/	U1			000	0000	0	.000	000E-80
VELOC	1TY -	1878.	83577	' L	508	8		-2.	864	3762	9	700	000E-01
CAS		906.	31510) L	8 0	CT		•	0001	0000	0	.000	000E-80
DYN P	RES	696	25478) L	SUB	P		•	000	00Ő0	0	.000	0005+80
9 5118	C C	1146.	,71497	Ľ	SUB	R		•	000	5000	0	.000	000E+80
P 508	5	264	07448	L	DEL	Α.		-1.	391	5113	4	340	000E - 01
L+5()8		- 3	61686	L	DEL	AG		•2.	398	2723	0	.000	060E-80
L• 8	001		00000	Ľ	DEL	FG		••	0998	2023	2	.000	000E-80
L* 50			00000	I N	500				1344	416	6	300	000E+01
		-	27109	N N	B U	בי		٠	0000	0000	0	.000	000E-80
	A A		00139 44479	• N	300			•	0000	0000	U ć	.000	000E-00
L * UF L	90	-2	0007/3) N	300	R			1900	31-2 34 e c	•	100	
1 4	KU	258000000	.00000		- DEL - DEL	Åc		•	122	207C	4	• D U U	0002-04
1 T T		2700000000	000000	n N	DEF	90			123. a 11.	1017	2	1000	0005-80
1 77		254800000		N N	* SIIR	P G			617(1686	<u>ک</u>		
. 1 1		27899999	99976	N N	• 8 D	ο.T			000	1000	ñ		
T Ž		254799999	99865	N	ISUR	Γ ρ			0000	0000	ō		
1 17		31999999	99976	N	SUB	R			2271	761	ĩ		
1 x 7 / 1	Z		13344	N	DEL	A		•.	221	1167	5		
1 x 7 / 1	X	1.	21864	Ň	DEL	AG			235(0631	0		
THRUS	IT Z	304692	84961	N	DEL	P G		-2,	3222	2762	7		
THRUS	IT T	5940000	.00000										
OMĒĢĀ	59	3,	15173	X X	U7U	1		••	015e	5368	1	160	COOE 00
2 7FT	OM	_	10750	X	ំងប្រគ្គ	W		-,	002	5387	1	540	000E-01
T SUB	A	9.	30206	X	WD	0T		٠	0000	<u>,000</u>	0	• ÜÜÖ	0006-80
OMEGA	A	1.	77731	X	0/0	1		•	0000	0000	0	•000	000E+80
ZETA	<u>^</u>		03028	X	DEI	701		•	0000	100G	0	.000	000E=00
T 5110		-120	27629		DEO	101		•)U()L	•	.0000	
V 15 11			000000		0/0 6110	1 			107	1755	0 0	+460	500E-01
T 5110		(00000	2 7	- 300 11	n T			1013	1031. 1066.	, 0	-000	0005-80
Y 300	Å T		000000	7	0,11	1			0000	1000 100	0	-000	000E-80
Y něl	ÂÒ			7	nr I	201			0000	10ċ0	ñ	.000	00F-80
Y DEL	Ř		.000.00	ī	DEO	ZUI			0000	0000	ō	.000	00E-80
X SUB	Ü	_58	75801	Ň	SUB	Ū			0000	ieño	Ō	000	00E-80
X SUB	Ā		95771	M	508	AL		•3.	1511	267	5	540	00 300 D
XAD	OT		,00000	M	AL.	DOT		•	0000)0ŌC	0	+0000	00 6-8 0
X SUB	Q		000000	- M	SUB	۵			0000)0ñG	0	•000	000E-80
X DĒL	EI		000000	M	DEL	EI		•	0000	000	0	• 0 0 0 (00E-80
X DPL	ΕO		000ñ0	MI	DEL	ΕŌ		•	0000	000	0	.000	005-80
-									_			-	
LAT DEN S	4= •	.837387 \$3		44419	9 52	=	.50451(J_51#	-•0	1219	UT 50	2 -,0(804	14369
(09329.	• 0	0000)(•1	2936.	•0(0000) (-54010	J	0000	10) (••96	006.	•00000)
-	4- 1					. 1	184279	R 1=		912	18 80		0471
CON DEN 3		•000000 33 0000) (-1)- ···	201/1	0000	ີເ			7774	010	•.11	422	.77740)
						• •				• •			- · · ·

(72 SEC)

ALTYTUDE 64400.00000 Y SUB V 04003334 131000E D1 MACH 2.50000 Y SUB V 00025919 .00000E-80 WEIDHT 236699.9997 L'SUF V 00025919 .00000E-80 C.G. .000000 Y R/U1 .0000000 .00000E-80 DEL T 3.20919 IX2 UFTR 3200000 .0000000 .000000E-80 DEL T 3.20919 IX2 UFTR 3200000 .0000000 .000000E-80 VELOCITY 2421.18011 L SUB R .00000000 .000000E-80 .00000000 .000000E-80 DYN PRES 530.63333 L SUB R .00000000 .000000E-80 .0000000 .000000E-80 L'SUB R .130000 .000000 .000000E-80 .0000000 .000000E-80 L'SUB R .121.9309 L DEL A 133049505 230600E-01 L'SUB R .000000 L DEL A 133049505 230600E-01 L'SUB R .0000000 .0000000 .00000000 .0000000000000	Fit CON	84			
<pre>MACH 2365999.9997 L'SUE V0002291Y .000000C0 .000000E-80 G.G000000 Y R/U1 .000000C0 .000000E-80 DET E T 3.20919 IX2 UFTR 32000 00.0000000 .00000E-80 VELOCITY 2421.10011 L SUB 8 -2.83545991900000E-91 GAS 820.42847 L B DOT .0000000 .000000E-80 G SUB C 913.00460 L SUB P .0000000 .00000E-80 G SUB C 913.00460 L SUB P .0000000 .00000E-80 G SUB C 913.00460 L SUB P .0000000 .00000E-80 U SUB C 913.00460 L SUB P .00000000 .00000E-80 U SUB C 913.00460 L SUB P .00000000 .00000E-80 G SUB C 913.00460 L SUB P .00000000 .00000E-80 U SUB R -16468 N B DOT .00000000 .00000E-80 U SUB R -16468 N B DOT .00000000 .00000E-80 U SUB R -16468 N B DOT .0000000 .00000E-80 U SUB R -16468 N B DOT .0000000 .00000E-80 U TFL A86586 N SUB P .0000000 .00000E-80 U TFL A86586 N SUB P .0000000 .00000E-80 U TFL A86586 N SUB P .0000000 .00000E-80 I TZ 23599999.99976 N SUB P .1251260100000E 01 U TFL A86586 N SUB P .00000000 .00000E-80 I TZ 23599999.99976 N SUB P .1251260100000E 01 U TFL A86586 N SUB P .00000000 I Z 23599999.99976 N SUB P1458433 .000000E-80 I Z 23599999.99976 N SUB P1458433 .000000E-80 I Z 23599999.99976 N SUB P1458433 I X 27399999.99976 N SUB P1458433 I XZ/IZ 1.14678 N DEL A2593138 THRUST Z 33588775946 N PEL A2593138 THRUST Z 33588779978 N SUB P1459437 I XZ/IZ 1.14728 N DEL A2593138 THRUST Z 3050000.00000 VEEAA SQ 1.80729 X U/U1 .00000000 .00000E-80 I SUB B .000000 Z U/U1 .00000000 .00000E-80 I X SUB A .000000 Z U/U1 .00000000 .00000E-80 I N SUB R .000000 Z U/U1 .00000000 .00000E-80 I N SUB R .000000 Z U/U1 .00000000 .000000E-80 I N SUB R .000000 Z U/U1 .00000000 .00000E-80 I N DEL AG .25147 M SUB AL -1.400729374450000E 01 I N SUB R .000</pre>	ALTITUDE	64400.00000	Y SUB V	04003334	131000E 01
PETERT 250099797979 L'SUF -001148331 -00000600 -00000600 ALPHA T -28648 Y DAT/UT -00000600 -00000600 -00000600 DET T -28648 Y DAT/UT -00000600 -00000600 -00000600 -000000600 -000000600 -000000600 -000000600 -000000600 -000000600 -000000600 -000000600 -0000000600 -0000000600 -00000000 -00000000 -000000000 -00000000 -00000000 -00000000 -00000000 -00000000 -00000000 -00000000 -00000000 -00000000 -00000000 -000000000 -000000000 -000000000 -000000000 -000000000 -000000000 -000000000 -000000000 <	MACH URIANT	2366009 00907	Nº SUE V	••00423919	• UUUCUUE=09
ALPHA T *.200404 Y N.0. .00000000 .00000000 .00000000 DEL E T 3.20919 IX2 UNTR 32000'00.0000000 .00000000 .00000000 VELOCITY 2421.18011 L SUB R .2.83345891 90000000 00000000 DYN PRES 530.63533 L SUB P .00000000 000000000 000000000 DYN PRES 530.63533 L SUB P 00000000 000000000 000000000 DYN PRES 530.63533 L SUB P 00000000 000000000 000000000 00000000000000 L * SUB P 00000 0000000 00000000 00000000 000000000000000 0000000000 0000000000000000000000000000000000	WEIGHT	2300999.99997	L'SUN V		-UUUUUUUUUUU
DEF TX TX UNTR 32000 DUBLECON DUBLECON EAS 668.20177 Y DR/UI .00000000 .0000000 .0000000 CAS 820.42647 L B DOT .0000000 .0000000 .0000000 DYN PRES 530.63533 L SUB P .0000000 .0000000 .0000000 GS SUB 93.00660 L SUB P .0000000 .0000000 .0000000 L SUB B -3.59136 L DEL A .73049515 2300000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 0000000 0000000 0000000 0000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000	Ψουο Αιρώλ Τ	- 25648	T RZUJ V DATZIJI	- 0000000	•0000000E=00
EA3 668.20177 Y DR/U1 .00000000 .00000000 VELOCITY 2421.10011 L SUB R -2.83543593 .90000000 GAS 820.42647 L B DOT .0000000 .0000000 DYN PRES 530.43533 L SUB P .0000000 .0000000 .0000000 GAS 121.19309 L DEL A -73049555 .23000000 .23000000 L'SUB B -3.59136 L DEL AG -2.44142082 .00000000 .0000000 L'SUB R -100000 N SUB R -143589136 -40000000 .0000000 L'SUB R -100000 N SUB R -143589136 -4000000 .0000000 L'SUB R -16688 N SUB P .0000000 .0000000 .0000000 .0000000 L'NFL AG -2.86237 N DEL AG .13868938 .00000000 .00000000 L'NFL AG -2.86237 N DEL AG .13668938 .00000000 .00000000 I X 27400000.00000 N DEL AG .13568930 .00000000 .00000000 I X 2739999.99999 NSUB P .000000000 .0000000	Dri r t	3,20919	TXT HNTD	32000 "00.00000000	-UUUUUUUUUUUUUUU
VELOCITY 2421.16011 L SUB R -2.8384961 9008002-01 C43 820.42647 L B DOT .00000600 .0000002-80 DYN PRES 530.63531 L SUB P .06000600 .0000022-80 G siB C 913.00660 L SUB P .06000600 .0000022-80 L*SIB B -3.59136 L DEL AG -2.4414282 .0000022-80 L*SIB B -3.59136 L DEL AG -2.4414282 .0000022-80 L*SIB B -3.59136 L DEL AG -1459336 -4660002-00 L*SIB B -3.65266 N SUB P -1459336 -4660002-00 L*SUB R 66258 N SUB P -1205126 -1000002-00 L*DFL AG -2.70528 N SUB P -10000000 -00000000 L*DFL AG -1205126 -10	FAR	668.20177	V 89/111	.00000000000	00000000000
CLANTY 220.42647 L B DOT CONDICO CONCOLESS DYN FRES 330.63333 L SUB P CONDICO CONCOLESS DYN FRES 330.63333 L SUB P CONDICO CONDUCESS P SUB S 121.19369 L DEL A730495052300000E-80 U SUB B -3.59136 L DEL A73049505230000E-80 U SUB P CONCO L DEL RG41136666 CONCODE-80 U SUB R16688 N B DOT CONCOLESS U SUB R16688 N B DOT CONCOLESS U SUB R16688 N SUB P1135606 CONCODE-80 U SUB R16688 N SUB P120312601000000E 01 U SUB R16688 N SUB P12031260100000E 01 U SUB R160000 ON N DEL AG13668938 .000000E-80 I X 27400000.00000 N SUB R6275448 I X 2739999.9976 N SUB P00000000 I X 2739999.9976 N SUB P00000000 I X 2739999.9976 N SUB P00000000 I X 2739999.9976 N SUB P1150000E 00 U SUB R112050662 I X 21399999.9976 N SUB P1150000E 00 C MEGA SQ 1.20729 X U/U160916794150000E 00 C MEGA SQ 1.20729 X U/U160916794150000E 00 C MEGA A 1.34436 X Q/U100000000 .000000E-80 V MEGA A 1.34436 X Q/U100000000 .000000E-80 V SUB B96.92793 X DEC/U100000000 .000000E-80 V SUB B96.92793 X DEC/U10000000 .000000E-80 V SUB R .00000 Z U/U1 .00000000 .000000E-80 V SUB R .000000 Z U/U1 .000000000 .000000E-80 V SUB R .000000 Z U/U1 .00000000 .000000E-80 V SUB R .000000 Z U/U1 .00000000 .000000E-80 V SUB R .000000 Z U/U1 .00000000 .000000E-80 V SUB R .000000 Z U/U1 .000000000 .000000E-80 V SUB R .000000 Z U/U1 .00000000 .000000E-80 V SUB R .0000	VELOCITY	2421.18011		-2-85845891	- 900000C-01
DWN PRES 330.63333 L SUB P 00000600 00000000 0000000 00000000 0000000 0000000 00000000 0000000 00000000 00000000000 00000000000000 000000000000000000 000000000000000000000000000000000000	CAR	A20.42647	I B DOT	.0000000	10000005-80
9:18 C 913.00660 L SUB P .00000600 .00000600 P SUB S 121.19309 L DEL A 73049505 2306000-80 L*B DOT .00000 L DEL AG 244142082 .0000000-80 L*B DOT .00000 L DEL AG 1135606 .000000-80 L*B DOT .00000 L DEL AG 1135606 .000000-0000-00000- L*SUB R 16688 N BDOT .0000000 .0000000-00000- L*SUB R 16688 N BUB P .12051260 1000000-00000- L*DFL AG 286337 N DEL AG .13668938 .00000000- L*DFL AG 286337 N DEL AG .13668938 .00000000- L*DFL AG 286337 N DEL AG .13668938 .00000000- L*TZ 23600000.00000 N SUB P .000000000 .00000000 .00000000- 1 X 27399999.99976 N*SUB P .000000000 .000000000 1 X7 335869,76946 N*DEL A 112500000 .00000000 1 X7 31999999.99976 N*SUB P .000177277 .550000000- .5000000-	DYN PRES	530.63533	1 SHB P	00000000	000000000000000000000000000000000000000
P Silp S 121.103ñ0 L DEL A 73040505 2300002-01 L'SIB B -3.59136 L DEL AG -2.44142622 .000000E-80 L'SUB P .00000 DEL RG 11136666 .000000E-80 L'SUB P .00000 NSUB P 10589136 400000E-80 L'SUB R .16688 N BD P .0000000 .00000E-80 L'NFL A 86586 N SUB P 12051260 .100000E-80 L'NFL A 86586 N SUB P 12051260 .100000E-80 L'NFL AG 27400000.00000 N DEL AG .1368838 .000000E-80 I'Y 24130000.00000 N DEL AG .1368838 .000000E-80 I X 27400000.00000 N SUB P 12259438 .000000E-80 I X 27359999.99976 N'SUB P 0000060 .0000000 I X 27359999.99976 N'SUB P 0000000 .0000000 I X7 31999999.99976 N'SUB P 14289435 .00000000 I X7/1Z 1.1342 .150000E .00000000 .00000000 I X7/1Z 1.3412<	Q SUB C	913.00660	L SUB R	.00000000	-009000F-80
L+SHB B -3.59136 L DEL AG -2.4414202 .0000000.00 L+ R DOT .00000 L DEL RG1113666 .000700E-80 L+ SUB R16688 N B DOT .0000000 .0000002-80 L+ SUB R16688 N B DOT .0000000 .0000002-80 L+NFL A86586 N SUB P12051260100000280 L+NFL AG2.68237 N DEL A .0002184 .600700-04 I Y 24130000.00000 N DEL AG .1368838 .0300002-80 I NFL A862337 N DEL A .0002184 .600700-04 I Y 24130000.00000 N DEL AG .1368838 .0300002-80 I Y 24130000.00000 N DEL AG .1368838 .0300002-80 I Y 23600000.00000 N PEL RG .196810553 .0000002-80 I Y 23659999.99976 N*SUB P .00000000 I Y 3199999.99976 N*SUB P .00000000 I Y 3199999.99976 N*SUB P .00000000 I Y 3199999.99976 N*SUB P .00000000 I Y 3355897.6946 N*DEL A1590662 I X7/IX 1.16788 N*DEL A1590662 V SHB A 18.17929 X W DCT .00000000 .000000E-80 W GRA A 1.34436 X Q/U1 .0000000 .000000E-80 V SHB B .96.2793 X DEC/U1 .00000000 .000000E-80 V SHB B .96.2793 X DEC/U1 .0000000 .000000E-80 V SHB B .96.2793 X DEC/U1 .0000000 .000000E-80 V SHB B .90000 Z U/U1 .00000000 .000000E-80 V SHB A 18.17929 X W DCT .00000000 .000000E-80 V SHB B .90000 Z U/U1 .00000000 .000000E-80 V SHB A .00000 Z U/U1 .00000000 .000000E-80 V SHB A429147 M SUB U0190241520000E02 X SHB A429147 M SUB U0190241520000E-81 X SHB A429147 M SUB U0190241520000E-88 X DB A429147 M SUB U0190241520000E-88 X DEL EI .000000 H BEL EI .0000000 .00000E-80 X SHB A429147 M SUB U0190241520000E-88 X DEL EI .000000 M AL DCT .0000000 .00000E-88 X DEL EI .000000 M AL DCT .0000000 .00000E-88 X DEL EI .000000 M AL DCT .0000000 .00000E-88 X DEL EI .000000 M AL DCT .0000000 .00000	P 5118 5	121.19309	L DEL A	73049565	230000E-01
1.* BOT .00000 L DEL PG 1113606 .0000000 .00000000 00000000 00000000 00000000 00000000 000000000 0000000000 0000000000 000000000000 0000000000000000 00000000000000000000000000000000000	LISUB B	-3.59136	L DEL AG	-2.44142082	.0C0000E-80
L SUB P .000ñ0 Ñ SUB R -1458936 -4000000 .00000000000000000000000000000	LI B DOT	.00000	L DEL RG	11136006	.000000E-80
L: 3UB R -,16688 N B DOT ,0000000 .00000025-80 L: NFL A66586 N SUB P .0000000 .00000025-80 L: NFL AG -2.70528 N SUB P .12051260 .1000000 01 L: NFL AG -2.68237 N DEL A .00021A84 .6000002-04 I.Y 24130000.00000 N DEL AG .1368A938 .0000002-80 I XX 27400000.00000 N DEL AG .1368A938 .0000002-80 I XX 27400000.00000 N'SUB B62754948 I X 27399999.99976 N'SUB P .00000ñc0 I Z 238599999.99976 N'SUB P .00000ñc0 I X7 3199999.99976 N'SUB P .14289435 I X7/IZ .13412 N'DEL A .11590662 I X7/IX 1.16788 N'DEL AG .22593138 THRUST I 600000.00000 OMEGA SQ 1.80729 X U/U1 .00016794150000E 00 OMEGA SQ 1.80729 X U/U1 .00000ñc0 .000002E-80 VHEGA A 1.34436 X Q/U1 .00000ñc0 .0000002E-80 VHEGA A 1.34436 X Q/U1 .00000ñc0 .0000002E-80 V SUB B .96.92793 X DEC .00000ñc0 .0000002E-80 V SUB B .96.92793 X DEC/U1 .00000ñc0 .0000002E-80 V SUB A .000ñ0 Z U/U1 .00000ñc0 .0000002E-80 V SUB A .000ñ0 Z BEI/U1 .00000ñc0 .0000002E-80 V DÊL AI .000ñ0 Z BEI/U1 .00000ñc0 .0000002E-80 V DÊL AI .000ñ0 Z BEI/U1 .00000ñc0 .0000002E-80 X SUB A .429147 M SUB U .01902415 .200000E-80 X SUB A .429147 M SUB U .00000ñc0 .000000E-80 X SUB A .429147 M SUB AL .180729378 .3800000E.80 X SUB A .429147 M SUB AL .1.80729378 .3800000E.80 X SUB A .429147 M SUB AL .000000 .000000E-80 X DEL EI .000000 M BEL EI .0000000 .000000E-80 X DEL EI .000000 S3 .1008	LI SUB P	.00000	N SUB R	+14589136	4CC000E-01
$ \begin{bmatrix} 1 & n\overline{PL} & A & -165866 & N & SUB & P & -160000600 & -10000002 - 80 \\ 1 & n\overline{PL} & AG & -2.70528 & N & SUB & P & -12031260 & -10000002 - 80 \\ 1 & Y & 241300000.0000n & N & DEL & AG & -10061053 & 00000000000 \\ 1 & Y & 27400000.0000n & N & DEL & AG & -198610553 & 000000000000 \\ 1 & Y & 27309999.99976 & N'SUB & -6273448 \\ 1 & X & 27399999.99976 & N'SUB & -6273448 \\ 1 & X & 27399999.99976 & N'SUB & -00000nc0 \\ 1 & Y & 31999999.99976 & N'SUB & -00000nc0 \\ 1 & Y & 31999999.99976 & N'SUB & -14269437 \\ 1 & Y & 1.16786 & N'DEL & -11590060 \\ 1 & X7 & 31999999.99976 & N'SUB & -114269437 \\ 1 & Y & 1.16786 & N'DEL & -22593136 \\ THRUST & 335869,76946 & N'DEL & G & -2.37267639 \\ THRUST & 6000000.00000 \\ OMERA SQ & 1.80729 & X U/U1 & -00916794 & -150000000000 \\ 2 & ZFT & M & -055n1 & X SUB & -00177247 & -5800000000 \\ Y & SUB & -96.92793 & X DC/U1 & 00000n0n & 00000000 \\ WH GA & 1.34436 & Y DEL & 00000n0 & 00000000 \\ WH GA & 1.34436 & Y U/U1 & 00000n0n & 00000000 \\ WH GA & 1.34436 & Y U/U1 & 000000n0 & 00000000 \\ WH GA & 1.34436 & Y DE1/U1 & 000000n0 & 000000000 \\ Y & SUB & -96.92793 & X DE0/U1 & 000000n0 & 00000000 \\ Y & SUB & -96.92793 & X DE0/U1 & 000000n0 & 000000000 \\ Y & SUB & -96.92793 & X DE0/U1 & 000000n0 & 000000000 \\ Y & SUB & -96.92793 & X DE0/U1 & 000000n0 & 000000000 \\ Y & SUB & -44.39447 & M SUB & -0192415 & -2000000000 \\ Y & DFL & A & 00000 & Z & U/U1 & 000000n0 & 000000000 \\ Y & SUB & -44.39447 & M SUB & -01922415 & -2000000000 \\ Y & DFL & R & 00000 & Z & DE1/U1 & 00000000 & 000000000 \\ X & SUB & -44.29147 & M SUB & -01922415 & -200000000 \\ X & SUB & -44.29147 & M SUB & -01922415 & -200000000 \\ X & SUB & -44.39447 & SUB & -0000000 & 00000000 & 00000000 \\ X & SUB & -44.39447 & SUB & -01922415 & -200000000 \\ X & SUB & -44.39447 & SUB & -01902415 & -200000000 \\ X & SUB & -44.39447 & SUB & -0000000 & 00000000 & 000000000 \\ X & SUB & -44.39447 & SUB & -0000000 & 00000000 & 000000000 \\ Y & DFL & S443369 S34 &154275 S22 & .524431 S14 & -0400281 S04 & -004381 \\ Y & DFL & S443369 S34 &154275 S24 & .524431 S1$	LI SUB R	16688	N B DOT	.00000000	.000000E-80
L NĒL AG -2.70528 N SUB P -,12051260100000E 01 L NĒL RG -2.88237 N DEL A ,00021864 .600000E-04 I Y 241300000.00000 N DEL AG .1368638 .000000E-80 I XY 27400000.00000 N'SUB P .00000ñc0 I Z7 238600000.00000 N'SUB P .00000ñc0 I Z 238599999.99976 N'SUB P .00000ñc0 I Z 238599999.99976 N'SUB P .00000ñc0 I X7 3199999.99976 N'SUB P14289435 I X7/IZ .13412 N'DEL A11590662 I X7 1 3199999.99776 N'SUB P4289435 I X7/IZ .13412 N'DEL A1590662 I X7 1 3199999.99776 N'SUB P60916794150000E 06 2 ZTT 0M .055ñ1 X SUB W00916794150000E 06 0 MEGA A 1.34729 X W DET .00000000 .00000E-80 0 MEGA A 1.34729 X W DET .00000000 .00000E-80 0 MEGA A 1.3436 X Q/U100000ñn0 .000000E-80 V SINB B96.92793 X DEC/U1 .00000ñn0 .000000E-80 V SINB B96.92793 X DEC/U1 .00000ñn0 .000000E-80 V SINB R000ñ0 Z U/U100000ñn0 .000000E-80 V SINB R000ñ0 Z U/U100000ñn0 .000000E-80 Y SINB R000ñ0 Z U/U100000ñn0 .00000E-80 V SINB R000ñ0 Z U/U100000ñn0 .00000E-80 V SINB R000ñ0 Z U/U100000ñn0 .00000E-80 Y NEL AI000ñ0 Z U/U100000ñn0 .00000E-80 Y SINB R000ñ0 Z U/U100000ñn0 .00000E-80 Y DĒL AI000ñ0 Z SUB W75500764180000E 01 Y SINB R000ñ0 Z DEC/U1 .00000ñ0 .000000E-80 Y DĒL R000ñ0 Z DEC/U1 .00000ñ0 .000000E-80 Y DĒL R000ñ0 Z DEC/U1 .00000ñ0 .000000E-80 Y DĒL R000ñ0 Z DEC/U1 .00000ñ0 .000000E-80 X SUB U44.39447 M SUB AL1607237838000E 01 Y SINB A429147 M SUB AL00000000000E-80 X DĒL EI000ñ0 M DĒL EC00000000000E-80 X DĒL EI000ñ0 M DĒL EC00000000000E-80 X DĒL EI000ñ0 M DĒL EC00000000000E-80 X DĒL EI000ñ0 M DĒL EC000000004581 06241000000 Sa100847 S22 1.869328 S1=043263 S0=004581 (100 DĒN S4= 1.000000 S3=100847 S22 1.869328 S1=043263 S0=000141	L+DFL A	86586	N SUB P	.00000000	08-200000.
L'DÊL RG -2.86237 N DEL AG ,00021884 .600002-04 I Y 24130000.000ñ0 N DEL AG ,13688938 .000000E-80 I X 27400000.000ñ0 N DEL RG -1.96610553 .000000E-80 I Z7 23860000.000ñ0 N'SUB R62754948 I X 2739999.99976 N'SUB P .00000ñ00 I Z 235599999.99976 N'SUB P .00000ñ00 I X7 3199999.99976 N'SUB P .14289435 I X7/IZ .13412 N'DEL A11590662 I X7/IZ .13478 N'DEL A11590662 I X7/IZ .135889,76946 N'DEL &G -2.37267639 THRIST T 600000.000ñ0 OMEGA SQ 1.80729 X U/U160916794150000E 00 C Z ZFT OM .055ñ1 X SUB W .000177247550000E-00 C Z ZFT OM .055ñ1 X SUB W .0000ñ0 .000000E-80 U/KGA A 1.34436 X Q/U1 .00000ñ0 .000000E-80 V SUB B .96.9273 X DEC/U1 .00000ñ0 .000000E-80 V SUB B .96.9273 X DEC/U1 .00000ñ0 .000000E-80 V SUB R .000ñ0 Z U/U1 .00029374 .480000E-01 V SUB R .000ñ0 Z U/U1 .00029374 .480000E-01 V SUB R .000ñ0 Z U/U1 .00000ñ0 .000000E-80 V DEL AI .000ñ0 Z U/U1 .00000ñ0 .000000E-80 V DEL AI .000ñ0 Z U/U1 .00000ñ0 .000000E-80 V DEL AI .000ñ0 Z U/U1 .00000ñ0 .000000E-80 X SUB A .4.29147 M SUB U01902415200000E-80 X SUB A .4.29147 M SUB U01902415200000E-80 X SUB A .4.29147 M SUB U01902415200000E-80 X DĒL EI .000ñ0 M BEL EI .0000ñ0 .000000E-80 X DĒL EI .000ñ0 M DEL EI .0000ñ0 .000000E-80 X DĒL EI .0000ñ0 M SUB 0 .0000060 .000000E-80 X DĒL EI .0000ñ0 M SUB 0 .0000060 .000000E-80 X DĒL EI .0000ñ0 M SUB 0 .0000060 .00000E-80 X DĒL EI .0000ñ0 M SUB 0 .0000060 .00000E-80 X DĒL EI .0000ñ0 M SUB 0 .0000060 .000000E-80 X DĒL EI .0000ñ0 M SUB 0 .0000060 .000000E-80 X DĒL EI .000000 (.44753 .000000) (.645554 .000000) (.97342.1.34563 S0= .000141 (.	LINËL AG	-2.70528	N SUB P	-,12051260	100000E 01
I Y 241300000.000ñ0 N DEL AG 13688938 .000000000000000 I XX 27400000.000ñ0 N DEL RG 198610553 .000000000000000 I Z 236600000.000ñ0 N'SUB B62754948 I X 27399999.99976 N'SUB B62754948 I X 27399999.99976 N'SUB P .00000ñ00 I Z 23559999.99976 N'SUB P .14269435 I X7 3199999.99976 N'SUB P .14269435 I X7 1399999.99976 N'SUB P .14269435 I X7 13989769 N'SUB P .14269435 I X7/IX 1.16788 N'DEL A11590662 I X7/IX 1.16788 N'DEL A22593138 THRUST I 6000000.000ñ0 OMEGA SQ 1.80729 X U/U1ñ091679415000060 00 OMEGA SQ 1.80729 X U/U1ñ091679415000060 00 OMEGA SQ 1.80729 X W DCT .00000ñ0 .00000000 .00000000 I SUB A 18.17929 X W DCT .00000ñ0 .000000000000 I SUB B .96.92793 X DED/U1 .00000ñ0 .00000000000 V SUB B .96.92793 X DED/U1 .00000ñ0 .00000000000 V SUB R .000ñ0 Z SUB W75507641800000000 V SUB R .000ñ0 Z V/U1 .00000ñ0 .00000000000 V SUB R .000ñ0 Z DEI/U1 .00000ñ0 .0000000000000 V SUB R .000ñ0 Z DEI/U1 .00000ñ0 .0000000000000000000000000000	LIDFL RG	-2.88237	N DEL A	.00021884	.600000E-04
<pre>! Xx 27400000.000ñ0 N DEL RG -1.98610553 .000000E-80 I Z7 23860000.000ñ0 N'SUB R62734948 1 x 27399999.998ñ5 N'SUB P .00000ñc0 I z 23859999.998ñ5 N'SUB P .00000ñc0 I x7 3199999.998ñ5 N'SUB P .00000ñc0 I x7 3199999.998ñ6 N'DEL A1159662 IXZ/IZ 1.14786 N'DEL A1159662 IXZ/IZ 1.16786 N'DEL A22593138 THRUST I 600000.000ñ0 OMEGA SQ 1.80729 X U/U1ñ0916794150000E-06 2 ZFT OM .055n1 X SUB W00177247580000E-06 UMEGA A 1.34436 X Q/U100000ñ0 .000000E-86 UMEGA A 1.34436 X Q/U100000ñ0 .000000E-86 ZETA A0246 X DEL/U100000ñ0 .000000E-86 Y SUB B9692793 X DECT00000ñ0 .000000E-86 Y SUB R000ñ0 Z U/U100000ñ0 .000000E-86 Y SUB R000ñ0 Z U/U100293374480000E-01 Y SUB R000ñ0 Z U/U10000ñ00 .000000E-86 Y R NOT000ñ0 Z U/U10000ñ00 .000000E-86 Y SUB R000ñ0 Z U/U10000ñ0000000E-86 Y SUB R000ñ0 Z U/U10000ñ0000000E-86 Y SUB R000ñ0 Z U/U100000ñ000000E-86 Y SUB R000ñ0 Z U/U100000ñ000000E-86 Y SUB R000ñ0 Z U/U100000ñ000000E-86 Y NEL AI000ñ0 Z U/U100000ñ000000E-86 Y SUB R000ñ0 Z U/U100000ñ000000E-86 Y SUB R000ñ0 Z U/U100000ñ000000E-86 Y NEL AI000ñ0 Z W DCT00000ñ000000E-86 Y NEL AI000ñ0 Z W DCT0000ñ0000000E-80 Y NEL AI000ñ0 Z M DCT00000ñ000000E-80 Y NEL AI000ñ0 Z M DCT0000ñ000000E-80 Y NEL AI000ñ0 Z M DCT0000ñ000000E-80 Y NEL AI000ñ0 Z M DCT0000ñ000000E-80 Y NEL AI000ñ0 Z M DCT0000ñ0000000E-80 X SUB A429147 M SUB AL180729378386000E 60 X SUB A429147 M SUB AL180729378386000E 60 X DEL EI000ñ0 M AL DCT00000100000E-80 X DEL EI000ñ0 M BL EI04ñ281 S0=004581 X DEL EI00000 M SUB A000000100000E-80 X DEL EI000ñ0 M DEL ED00000000000E-80 X DEL EI000ñ0 M DEL ED000001004728104581 Y DE S4= 1.000000 S3=100847 S2= .524431 S1=083563 S0=004581 Y DEN S4= 1.000000 S3=100847 S2= 1.869828 S1=083563 S0=</pre>	ΙY	241300000.00000	N DEL AG	.13688938	.00tc000E-80
I 27 238600000.00000 I 2 23559999.99976 N*B DOT .00000ñ00 I 2 235599999.99976 N*SUB P .00000ñ00 I x7 3199999.99976 N*SUB P .14289435 I x7/I2 .13412 N*DEL A .11590662 I x7 3199999.99976 N*DEL A .25593138 THRUST Z 335889.76946 N*DEL PG .2.37267639 THRUST Z 335889.76946 N*DEL PG .2.37267639 THRUST T 6000000.00000 OMEGA SQ 1.80729 X U/U100916794150000E 0G 2 ZFT OM .05501 X SUB W00177247580000E-01 T 500 A 1.34436 X Q/U10000000 .000000E-80 UMEGA A 1.34436 X Q/U100000000 .000000E-80 UMEGA A 1.34436 X Q/U100000000 .000000E-80 V SUB B96.92793 X DEC/U10000000 .000000E-80 V SUB B96.92793 X DEC/U10000000 .000000E-80 V SUB B96.92793 X DEC/U10000000 .000000E-80 V SUB B96.92793 X DEC/U1000000000000E-80 V SUB B96.92793 X DEC/U1000000000000E-80 V SUB A00000 Z SUB W	1 X X	27400000.00000	N DEL RG	-1+98610553	.000000E+80
1 x 27399999.99976 N*B DOT .00000ñ00 1 Z 23599999.998ñ5 N*SUB P .00000ñ00 1 x7 3199999.99976 N*SUB P14289435 1 x7/1Z .13412 N*DEL A12590662 1 x7/1X 1.16788 N*DEL A22593138 THRUST Z 335889.76946 N*DEL A22593138 THRUST Z 335889.76946 N*DEL A22593138 THRUST G 600000.00000 0 MEA SQ 1.80729 X U/U10011772475800002-01 7 SUB A 18.17929 X W DCT .0000000 .000000E-80 UMEGA A 1.34436 X Q/U100000ñ00 .000000E-80 UMEGA A 1.34436 X Q/U100000ñ00 .000000E-80 V SUB B96.92793 X DEC/U100000ñ00 .000000E-80 Y SUB B96.92793 X DEC/U100000ñ00 .000000E-80 Y SUB R000ñ0 Z SUB W75500764180000E-01 Y SUB R000ñ0 Z VU/U100293374480C00E-01 Y SUB R000ñ0 Z VU/U100000ñ00000000E-80 Y DEL AI000ñ0 Z VU/U100000ñ00000000E-80 Y DEL R000ñ0 Z DEC/U100000ñ0000000E-80 Y SUB R000ñ0 Z DEC/U100000ñ0000000E-80 Y SUB R000ñ0 Z DEC/U100000ñ0000000E-80 Y SUB A429147 M SUB W75500764180000E 01 Y SUB A429147 M SUB U0190241520000E-02 X SUB A429147 M SUB AL	1 27	238600000.00000	N'SUB B	62754948	
I 7 238599999,99805 N*SUB P .00000ñC0 I x7 31999999,99976 N*SUB P .14289435 IX7/IZ 1342 N*DEL A1590662 IX7/IX 1.16788 N*DEL A2593138 THRUST Z 335869,76946 N*DEL PG .2.37267639 THRUST T 6000000000 OMEGA SQ 1.80729 X U/U100916794150000E 00 2 ZFT OM .05501 X SUB W00177247580000E-01 7 SUB A 18.17929 X W DCT00000000 .000000E-80 UMEGA A 1.34436 X Q/U100000000 .000000E-80 V SUB B96.92793 X DEC/U100000000 .000000E-80 Y SUB B96.92793 X DEC/U100000000 .000000E-80 Y SUB B	1 X	27399999.99976	NºB DOT	.000000000	
I x7 31999999.99976 N'SUB P14289435 IXZ/IZ .13412 N'DEL A11590662 IXZ/IX 1.16788 N'DEL AG22593138 THRUST Z 335889.76946 N'DEL °G -22.37267639 THRUST T 600000.00000 OMEGA SQ 1.80729 X U/U100916794150000E 0G Z ZFT OM .05551 X SUB W00177247580000E-01 T SUB A 18.17929 X W DCT .00000000 .000000E-80 UMEGA A 1.34436 X Q/U1 .00000060 .000000E-80 UMEGA A .02046 X DE1/V1 .00000060 .000000E-86 Y SUB B .96.92793 X DE0/U1 .00000000 .000000E-86 Y SUB B .96.92793 X DE0/U1 .00000000 .000000E-80 Y SUB R .00000 Z U/U1 .00293374 .480000E-01 Y SUB R .00000 Z V/U1 .00293374 .480000E-01 Y SUB R .00000 Z U/U1 .00293374 .480000E-01 Y SUB R .00000 Z U/U1 .0000000 .000000E-80 Y DÉL AI .00000 Z U/U1 .0000000 .000000E-80 Y DÉL A .00000 Z U/U1 .0000000 .000000E-80 Y DÉL R .00000 Z DEI/U1 .0000000 .000000E-80 Y DÉL R .00000 Z DEI/U1 .00000000 .000000E-80 X DEL EI .00000 M AL DOT .00000000 .000000E-80 X DEL EI .00000 M AL DOT .00000000 .000000E-80 X DEL EI .00000 M DEL E0 .000000000000000000000000000000000	1 7	238599999.99805	N'SUB P	•000000.00	
IXZ/IZ .13412 N*DEL A 11590662 IXZ/IX 1.16788 N*DEL AR 22593138 THRUST Z 335889,76946 N*DEL PG 2.37267639 THRUST T 600000.00000 00177247 580000E-01 OMEGA SQ 1.80729 X Y 00177247 580000E-01 T SUB A 18.17929 X N DCT .0000000 .00000E-80 UMEGA A 1.34436 X Q/U1 .00000000 .00000E-80 UMEGA A 1.34436 X Q/U1 .00000000 .00000E-80 V SUB B -96.92793 X DEC/U1 .00000000 .000000E-80 V SUB B -96.92793 X DEC/U1 .00000000 .000000E-80 V SUB R .00000 Z U/U1 .00293374 .480060E-01 V SUB R .00000 Z U/U1 .00000000 .000000E-80 V DEL AI .00000 Z U/U1 .00000000 .000000E-80 V DEL AI .00000 Z U/U1 .00000000 .000000E-80 V SUB R .000000 Z U/U1 .000000000 .000000E-80 <	I X7	31999999.99976	N'SUB P	14289435	
IX7/IX 1.16786 N*DEL AG22593138 THRUST Z 335889,76946 N*DEL PG -2.37267639 THRUST T 600000.00000 OMEGA SQ 1.80729 X U/U100916794150000E 00 2 ZFT OM .05501 X SUB W00177247580000E-01 T SUB A 18.17929 X W DCT .00000000 .000000E-80 UMEGA A 1.3436 X Q/U1 .00000000 .000000E-80 Y SUB B .96.92793 X DED/U1 .00000000 .000000E-80 Y SUB B .96.92793 X DED/U1 .00000000 .000000E-80 Y SUB R .00000 Z U/U1 .00293374 .480000E-01 Y SUB R .00000 Z W DCT .0000000 .000000E-80 Y DEL AI .00000 Z Q/U1 .00000000 .000000E-80 Y DEL AI .00000 Z Q/U1 .00000000 .000000E-80 Y DEL AI .00000 Z Q/U1 .0000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .0000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .00000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .00000000 .000000E-80 X SUB A .429147 M SUB U .01902415 .200000E-02 X SUB A .429147 M SUB AL .1.80729378 .38600E 00 X SUB A .429147 M SUB AL .1.80729378 .38600E 00 X SUB A .429147 M SUB AL .1.80729378 .38600E 00 X SUB A .429147 M SUB AL .000000 .000000E-80 X SUB A .429147 M SUB AL .000000 .000000E-80 X SUB A .00000 M AL DOT .00000000 .000000E-80 X SUB A .00000 M AL DOT .00000000 .000000E-80 X DEL EI .00000 M DEL EI .0000000 .000000E-80 X DEL EI .000000 M DEL EI .000000 .000000E-80 X DEL EI .000000 (.14758.000000) (.64554.000000) (.91363.00000000000000000000000000000000000	1xz/1Z	,13412	N'DEL A	-,11590662	
THRUST Z 335889,76946 N*DEL PG -2.37267639 THRUST T 6000000.00000 00916794 15000CE 0G Q ZET OM .05501 X SUB W 00177247 580000E-01 T SUB A 18.17929 X W DCT .00000000 .000000E-80 VMEGA A 1.34436 X Q/U1 .00000000 .000000E-80 VMEGA A 1.34436 X Q/U1 .00000000 .000000E-80 VETA A .02046 X DE1/V1 .0000000 .000000E-80 VSHB B -96.92793 X DE0/U1 .0000000 .000000E-80 Y SHB P .000000 Z U/U1 .00293374 .480000E-01 Y SHB P .000000 Z U/U1 .00293374 .480000E-01 Y SHB P .000000 Z U/U1 .0000000 .000000E-80 Y DEL AI .000000 Z U/U1 .0000000 .000000E-80 Y DEL AO .000000 Z DE0/U1 .0000000 .000000E-80 Y SHB P .000000 Z DE0/U1 .0000000 .000000E-80 Y DEL A .000000 Z DE0/U1 .0000000 <	IX7/1X	1,16788	N'DEL AG	-,22593138	
THR(IST T 6000000000000000000000000000000000000	THRUST Z	335889,76946	N'DEL PG	-2.37267639	
OMERA SQ 1.80729 X U/U1 00916794 150006E 0G 2 ZFT OM .05561 X SUB W 00177247 580000E-01 T SUB A 18.17929 X W DCT .0000060 .00000E-80 ÚMEGA A 1.34436 X QU1 .0000060 .00000E-80 ZETA A .02046 X DE1/U1 .0000060 .00000E-80 Y SUB B -96.92793 X DE0/U1 .0000060 .00000E-80 Y SUB B .96.92793 X DE0/U1 .0000000 .000000E-80 Y SUB B .96.92793 X DE0/U1 .0000000 .000000E-80 Y SUB B .96.92793 X DE0/U1 .0000000 .000000E-80 Y SUB B .00000 Z U/U1 .0000000 .000000E-80 Y SUB R .00000 Z Q/U1 .0000000 .000000E-80 Y DEL AI .00000 Z DE1/U1 .00000000 .000000E-80 Y DEL R .00000 Z DE0/U1 .00000000 .000000E-80 Y DEL R .000000 Z DE0/U1 .00000000 .000000E-80 Y DEL R .000000 M SUB Q <th>THRiist T</th> <th>6000000,00000</th> <th></th> <th></th> <th></th>	THR iist T	6000000,00000			
2 ZFT OM .055ñ1 X SUB W 00177247 580000E-01 T SUB A 18.17929 X W DCT .00000000 .00000E-80 UMÉGA A 1.34436 X Q/U1 .00000ñ00 .00000E-80 ZETA A .02046 X DE1/U1 .00000ñ00 .00000E-80 Y B .000ñ0 Z U/U1 .00000ñ00 .00000E-80 Y B .000ñ0 Z U/U1 .00000ñ00 .00000E-80 Y B .000ñ0 Z U/U1 .00293374 .480000E-01 Y SUB R .000ñ0 Z W DCT .0ñ000ñ00 .00000E-80 Y B .000ñ0 Z W DCT .0ñ000ñ00 .00000E-80 Y B .000ñ0 Z W DCT .0ñ000ñ00 .00000E-80 Y B .000ñ0 Z DEI/U1 .0ñ000ñ00 .00000E-80 Y B .000ñ0 Z DEI/U1 .0ñ000ñ00 .00000E-80 Y B .000ñ0 Z DEI/U1 .0ñ000ñ00 .000000E-80 Y B .000ñ0 Z DE/U1 .0ñ000ñ00 .000000E-80 Y B .000ñ0 .00000ñ0 .000000E-80 <th>OMEGA SQ</th> <th>1 80729</th> <th>X U/U1</th> <th>-,00916794</th> <th>15000CE 00</th>	OMEGA SQ	1 80729	X U/U1	-, 00916794	15000CE 00
T SUB A 18.17929 X W DCT .00000000 .0000000 UMEGA A 1.34436 X Q/U1 .000000000 .00000000 ZETA A .02046 X DE1/U1 .00000000 .00000000 Y SUB B .96.92793 X DE0/U1 .00000000 .0000000 Y SUB P .00000 Z U/U1 .00293374 .48000000 Y SUB R .00000 Z WDCT .00000000 .00000000 Y SUB R .00000 Z Q/U1 .00000000 .00000000 Y DEL AI .00000 Z DEI/U1 .00000000 .00000000 Y DEL R .000000 Z DEI/U1 .00000000 .00000000 Y DEL R .000000 Z DEI/U1 .00000000 .00000000 Y SUB A -4.29147 M SUB U 01902415 20000000 X SUB A -4.29147 SUB A .00000000	2 ZFT OM	.05501	X SUB W	00177247	580000E-01
UMEGA A 1.34436 X Q/U1 .00000n00 .00000E-80 ZETA A .02046 X DE1/U1 .00000n00 .00000E-80 Y SHB B .96.92793 X DE0/U1 .00000n00 .00000E-80 Y B DOT .000000 Z U/U1 .00293374 .480060E-01 Y SHB P .00000 Z U/U1 .00293374 .480060E-01 Y SHB P .00000 Z U/U1 .00293374 .480060E-01 Y SHB P .00000 Z U/U1 .0020000 .000000E-80 Y DEL AI .00000 Z Q/U1 .0000000 .000000E-80 Y DEL AI .00000 Z Q/U1 .0000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .0000000 .00000E-80 Y DEL R .00000 Z DEO/U1 .0000000 .000000E-80 X SUB A .429147 M SUB U .01902415 .200000E-80 X SUB A .429147 M SUB Q .0000000 .0000000 .000000E-80 X SUB A .429147 M SUB Q .0000000 .0000000 .0000000E-80 X DEL EI	T SUB A	18.17929	X W DOT	00000000	•000000E-80
ZETA A .02046 X DEI/U1 .00000000 .0000002 .00000002 .00000002	UMEGA A	1.34436	X Q/U1	•00000000	•000000E-86
Y SUB B -96.92793 X DED/U1 .00000000 .0000002 Y R DOT .00000 Z U/U1 .00293374 .480000E-01 Y SUB P .00000 Z SUB W	ZETA A	.02046	X DEI/U1	00000000	.0C0000E-80
Y R BOT .00000 Z U/U1 .00293374 .480060E-01 Y SUB P .00000 Z SUB W 75500764 180000E 01 Y SUB R .00000 Z W DCT .0000000 .000000E-80 Y DÉL AI .00000 Z Q/U1 .0000000 .000000E-80 Y DÉL AI .00000 Z Q/U1 .0000000 .000000E-80 Y DÉL R .00000 Z DEI/U1 .00000000 .00000E-80 Y DÉL R .00000 Z DEO/U1 .00000000 .00000E-80 Y DÉL R .00000 Z DEO/U1 .00000000 .00000E-80 Y DÉL R .00000 Z DEO/U1 .00000000 .00000E-80 X SUB A .429147 M SUB U .01902415 .200000E-02 X SUB A .429147 M SUB AL .180729378 .386000E G0 X SUB A .429147 M SUB AL .180729378 .386000E G0 X SUB A .429147 M SUB AL .180729378 .386000E G0 X SUB A .429147 M SUB AL .180729378 .386000E G0 X SUB A .000000 M SUB Q .00000060 .000000E-80 .0000000 X DEL EI .000000 M DEL E0 <td>¥ 5118 8</td> <td>.96.92793</td> <td>X DEO/U1</td> <td>•00000n00</td> <td>.000000E-80</td>	¥ 5118 8	.96.92793	X DEO/U1	•00000n00	.000000E-80
Y SUB P .00000 Z SUB W 75500764 180000E 01 Y SUB R .00000 Z W DCT .0000000 .000000E-80 Y DÉL AI .00000 Z Q/U1 .0000000 .000000E-80 Y DÉL AO .00000 Z DEI/U1 .0000000 .000000E-80 Y DÉL R .00000 Z DEI/U1 .0000000 .000000E-80 Y DÉL R .00000 Z DEO/U1 .00000000 .000000E-80 Y SUB A -44.39447 M SUB U 01902415 200000E-02 X SUB A -4.29147 M SUB AL -1.80729378 386000E 00 X SUB A -4.29147 M SUB AL -1.80729378 386000E 00 X SUB A -4.29147 M SUB AL -1.80729378 386000E 00 X SUB A -4.29147 M SUB AL -0.0000060 .000000E-80 X SUB A -0.00000 M SUB A .00000060 .000000E-80 X DEL EI .000000 M DEL EI .00000060 .000000E-80 X DFL EO .000000 M DEL EO .000000600 .0000000E-80 X DFL EO .0000001 .14758	Y R DOT	•00000	Z U/U1	.00293374	•4800G0E-01
Y SUB R ,00000 Z W DCT ,000000 .0000000 .000000E-80 Y DEL AI .00000 Z Q/U1 .0000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .0000000 .000000E-80 Y DEL R .00000 Z DEO/U1 .0000000 .000000E-80 Y DEL R .00000 Z DEO/U1 .0000000 .000000E-80 Y DEL R .00000 Z DEO/U1 .00000000 .000000E-80 X SUB U -44.39447 M SUB U 01902415 200000E-02 X SUB A -4.29147 M SUB AL -1.80729378 386000E GO X SUB A -4.29147 M SUB AL -1.80729378 386000E GO X SUB A -4.29147 M SUB AL -1.80729378 386000E GO X SUB A -4.29147 M SUB AL -1.80729378 386000E GO X SUB A -000000 M SUB A .000000000 .000000E-80 X DEL EI .00000 M DEL EI .000000000 .0000000E-80 X DEL EO .0000000000 .000000000000000000000000000000000000	Y SUB P	•00000	Z SUB W	15200764	180000E 01
Y DEL AI .00000 2 Q/U1 .000000 .0000000 .0000000 Y DEL AO .00000 Z DEI/U1 .00000000 .00000000 Y DEL R .00000 Z DEO/U1 .00000000 .00000000 . SUB U .44.39447 M SUB U .01902415 .2000000000000000000000000000000000000	Y SUB R	•00000	Z W DOT	•00000000	•000000E-80
T DEL AD ,00000 Z DEI/UI ,0000000 .00000000000000000000000000000	Y DEL AI	•00000	Z Q/U1	• D00000000	.0000001-80
Y DEL R .000000 Z DE0/01 .00000000 .0000000 X SUB U -44.39447 M SUB U 01902415 200000E-02 X SUB A -4.29147 M SUB AL -1.80729378 386000E 00 X SUB A -4.29147 M SUB AL -1.80729378 386000E 00 X SUB A -4.29147 M SUB AL -1.80729378 386000E 00 X SUB A -4.29147 M SUB AL .0000000 .0000000 X SUB A -4.29147 M SUB AL .0000000 .0000000 X SUB A -4.0000 M AL DOT .00000000 .0000000000 X SUB A .00000 M SUB A .0000000000 .0000000000000 X DEL EI .00000 M DEL EI .000000000000000000000000000000000000	T DEL AU	.00000	Z DEI/UI	•00000000	-00000E-80
1. SINB U -44.39447 M SUB U 01902415 200000E-02 X SUB A -4.29147 M SUB AL -1.80729378 386000E 00 X A DOT .00000 M AL DOT .00000000 .000000E-80 X SUB A .00000 M SUB A .00000000 .000000E-80 X SUB A .00000 M DEL EI .000000000 .000000E-80 X DEL EI .00000 M DEL EI .000000000000 .000000E-80 X DFL EO .000000 M DEL EO .000000000000 .000000E-80 X DFL EO .000000 M DEL EO .0000000000000 .0000000E-80 X DFL EO .000000 M DEL EO .000000000000000000000000000000000000	Y DEL R		Z DEOZUI	•00000000	• CC C C C C C E = 80
X SUB A -4.29147 M SUB AL -1.80729376 38000000000000 X A DOT 100000 M AL DOT .00000000 .000000000 X SUB Q .00000 M SUB Q .00000000 .000000000 X SUB Q .00000 M SUB Q .00000000 .000000000000 X DEL EI .00000 M DEL EI .0000000000 .0000000000000 X DFL EO .000000 MDEL EO .00000000000 .0000000000000000 LAT DEN S4=843369 S3=154275 S2= .524431 S1=004581 .000000000000000000000000000000000000	7. SUB U	-44,39447	MSUBU	01902415	200000E-02
X A HOT .000000 M AL DOT .00000000 .0000000 X SUB Q .00000 M SUB Q .00000000 .00000000 X DEL EI .00000 M DEL EI .00000000 .00000000 X DFL EO .00000 M DEL EO .000000000 .0000000000 X DFL EO .000000 M DEL EO .000000000 .0000000000000 LAT DEN S4m843369 S3m154275 S2m .524431 S1m040281 S0m004581 .000000000000000 .000000000000000000000000000000000000	X SUB A	-4.29147	M SUD AL	-1-80/293/8	386000E 00
X 3118 4 .00000 H 308 4 .00000000 .0000000 X DEL EI .00000 M DEL EI .00000000 .00000000 X DFL EO .000000 MDEL EO .000000000 .00000000 X DFL EO .000000000 .00000000 .00000000000 LAT DEN 54=843369 53=154275 52= .524431 51=040281 50=004581 .000000000000000000000000000000000000	X A DOT	.00000	M AL DOT	.00000000	.000000E-80
X DEL EI .00000 M DEL EI .0000000 .0000000 X DEL EO .00000000 MDEL EO .000000000 .00000000 LAT DEN 54= -,843369 53= -,154275 52= .524431 51= -,040281 50= -,004581 0624100000) (.1475a00000) (.64554	X 506 Q	•00000	T 300 W	0000000	• UCUOUUL=80
LAT DEN 54m843369 53m154275 52m .524431 51m040281 50m004581 0624100000) (.1475a00000) (.6455400000) (9136300000) 06241000000 53m .100847 52m 1.869828 51m083563 50m000141 (0016400000) (.0476300000) (07342. 1.34583) (073421.34583)	X DEL EL	•00000	M ULL LI MDei -0	0000000	•UUUUUUUU
LAT DEN 54=843369 53=154275 52= .524431 51=040281 50=004581 0624100000)(.1475a00000)(.6455400000)(9136300000) LON DEN 54= 1.000000 53= .100847 52= 1.809828 51=083563 50=000141 (0016400000)(.0476300000)(07342. 1.34583)(073421.34583)	A DEL EO	.00000	MNET ED	• • • • • • • • • • • • • • • • • • • •	.UUUUUUUL=80
<pre></pre>	AT DEN PAR		A278 +2		• 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
(LAI PEN 374 4	109007 334 4917 1000011 - 14784-	-000001/	LARKA	01343660063
LON DEN 54# 1,000000 53# .100847 52# 1,809828 51# +.083563 50#000141 (+.0016400000) (.0476300000) (+.07342. 1.34583) (073421.34583)	02410 00	VVVVVI +14128+	+000007(+)		100000 FEGETE
(0016400000) (.0476300000) (07342. 1.34583) (07342 34583)	ION TEN SAP 1	1000000 53m .10	0847 52+ 1-B	19828 Sta 083543	50=0 00141
	(001640	0000) (.04763.	.00000) (7342. 1.34583) (673421.34583)

(84 see)

1

1

÷ ____

FIT CON	93			
ALTITUDE	77700.00000	Y SHB V	+ .02443¤48	119000E 01
MACH	3,000ã0	Nº SUE V	-,00019386	.000000E-80
HEIGHT	2229999,99997	Lª SUB V	00096673	•0C0G00E=80
C.G.	• 0 0 0 0 0	Y R/U1	•00000nu0	•000000E=80
ALPHA T	••974G3	Y DAI/UI	•0000000	•000000E=80
PELET	3.80692	IXZ UNTR	28000000.0000000000	+000000E=80
EAS	582.42487	Y DR/U1	•00000000	+000000E+80
VELOCITY	2905.41614	LSUMM	-2.22030328	900000E-01
CAS	732.17047	L B DOT	•0000000	•000000E-80
DYN PRES	403.14450	L SUB P	•0000000	-0CC000E-8C
Q SIIB C	707.93970	L SUB R	•0000000	•000000E=80
P 508 5	63.94107	L DEL A	-,36741084	23000CE-01
	-2.00070	L DEL AG	-6.49448364	•000000E=80
	• 00000	L DEL PG	••13/654/U	.000000E=80
	.00010	N BUD D	• 20866090	
			- 00000000	00000000000000000000000000000000000000
L'UEL A	2 47171	N SUD P	- 08267761	-10000002400
	-2.44884	N DEL A	-00017+65	-600000E-04
	223000000.00000	N DEL A	14508410	000000E-8C
7 7 7	24800000.00000	N DEL RG	-2.06916348	.000000E+8C
1 77	221800000.00000	NISUB B	- 56323854	
t v	26799999.90974	NIB DOT	.00000000	
î î	221799999,99829	NºSUB P	0000000	
1 17	27999999.99976	NºSUB P	09454773	
117/12	.12624	NºDEL A	+ 08230663	
1x7/1x	1.04478	N'DEL AG	-,17154227	
THRUST Z	400358.48516	NIDEL RG	-2.40355429	
THRUST T	AN30000.000ñ0			
OMÈGA SQ	1.01248	X U/01	-,00575023	140000E 00
2 7 FT OM	.03286	X SUB W	00184829	9C000E-01
T SUB A	30,43356	X W DOT	•00000¢00	.OC0000E-80
OMFGA A	1.00622	X Q/U1	0000000	•06C000E-80
ZETA A	.01633	X DEI/11	0000000	•000000E-88
V SHB B	-71.00396	X DEO/U1	0000000	.000000E-80
Y B DOT	• 00000	Z U/U1	•00266975	.650000E=01
Y SUB P	•000 <u>0</u> 0	Z SUR W	-,03285846	16LCUUE UI
Y SUB R	.00070	ZWUCT	•000000000	• 000000t-00
T DEL AI	.00000		• 00000000	• UUUUUUUU = 09
T TEL AD	.00000	Z DE1701	• U U U U U D D T U	• UUVUUUL=00
T DEL R	00000. 2 4124 2	L DEOLOI	• UUUUUILU - 03004153	- 66(0005-02
	-5-3+0AE		-1-01207-155	=.246600E=08
A SUD A	- 00000		000000	-060600E-86
	- 00000		-000000000	-000000E=86
A 5110 M	-00000	M TEL ET		-0000001-00
Y DEL EL	- 00000 - 00000	MDEL ED	•0000000	-0666666E=8°
A 1191. 20	• • • • • • • • •	HAER EV		100000000000

LAT DEM 54= -.868108 53= -.103293 52= .486946 51= -.027(23 5P= -.002020 (-.0423A+ .00000) (.10067+ .00000) (.65576- .00000) (-.83311+ .00000)

LON DEN S4= 1.000000 S3= .067360 S2= 1.13628 S1= -.036443 SC= -.000047 -.00125. .000001(.03707. .00000)(-.05159. 1.00733)(-.05159.-1.00733)

(93 sec)

- -

· _

- -- -----

- ----

FLY CON	102			
ALTITUDE	91800.00000	Y SUB V	•.01516990	1]5000E 01
MACH	3.60000	N' SUE V	- +QÓO11961	• OC OG OO E = 80
WEIGHT	2093999.99998	L' SUE V	••00058728	.0C00C0E-80
G.G.	•00000	Y R/UI	•00000ác0	•00C000E-80
ALPHA T	-2.23454	Y DAI/U1	0000000	-00UC00E-80
DELET	4.78037	IXZ UFTR	25000000.00000000	•000000E=8C
EAS	500.53764	Y DR/U1	0000000	• OC OC OCE = 8 C
VELOCITY	3557,71754	L SUB B	-1.68383374	900000E-01
CAS	641-51215	L B DOT	•000000•	.00C000E-80
DYN PRES	297.75109	L SUB P	•00000000	.0000C0E-80
8 S118 C	530.33818	L SUB R	•0000000	.000000E-80
° SUB S	32.79208	L DEL A	43031307	2300002-01
L+SUB B	-2,08939	L DEL AG	-2.55812025	•0C0000E-80
L' A DOT	•00000	L DEL PG	17880633	•000000E-80
LI SUB P	,00000	N SUB B	•,16747587	70000E-01
LI SUB R	05538	N B DOT	.00000000	.000000E-80
L'RËL A	48736	N SUB P	•0000000	.000000E-80
L. DEL AG	-2.66600	N SUB R	05379882	100000E 01
LIBEL RG	-2.52282	N DEL A	.00014355	•6C0C0DE-04
1 Y	205500000.00000	N DEL AG	.21392878	.00000UE-80
I XX	26100000.00000	N DEL RG	-2.13813258	000000E-80
I 77	204100000,00000	N*SUB B	-,42340343	
1 X	26099999.99976	N'B DOT	•0000000	
12	204099999.99829	N'SUB P	.0000000	
Y X7	24999999.99976	NºSUB P	06094986	
IX7/IZ	,12249	N'DEL A	05955210	
1X7/1X	.95785	N'DEL AG	•,11262687	
THRUST Z	503352.07848	N'DEL RG	-2.44715022	
THRUST T	6040000.00000			
OMEGA SA	.47004	X U/U1	00342972	130000E 00
2 ZFT OM	.01715	X SUB W	00184677	140000E 00
7 SIIB A	50,31385	X W UDT	00000000	•DGGG00E=80
OMEGA A	-68760	X Q/U1	.0000000	.0000002-80
ZETAA	,01251	X DEI/UI	.00000000	.000C00E-80
7 5(18 B	=53.97023	X DEUZUI	•00000000	•000000E=00
Y 8 001	.00000		00224251	.85000CE=01
Y 500 P	.00000	Z SUD W	-•UI714859	• 130000E UI
2 300 K	.00000		• • • • • • • • • • • • • • • • • • • •	
1 UEL MI V DŘI 10	.00000		-060000000	
T DEL AU,	.00000		• 0000 0000	-000000C-80
1 (IP)L N V 201300 11	-24.40303			- 5000000000000
A SID U	4 87070		- 47004445	
7 300 M				00000000000
	- 00000			-005600E-80
X 500 K X 601 FT	- 00060	M DEI ET	_ 0.6m.0.800	.00000000000
Y DEL EI	- 00000		- 000000000	-000000E=80
A DEL LU	100000	HULL LU		
AT DEN SAR -	.882673 53=0A	7189 52=	72911 SI=016692	S0=0 00820
029550	0000) (.07582.	.000001(.5855800000) (-1	7079700000)
.OH BEN 54= 1	.000000 53= .04	1843 52# .4	70483 51=012837	SO= 000017
001240	0000) .02842.	• 00000) (•.	.0345168644)(03451 68644)

(102 cer)

ź

1

. 1

FLT CON	113			
ALTITUDE	110000.0000	Y SUB V	00773648	1C7000E 01
MACH	4.30000	N' SUP V	••00006270	-000000E-80
WEIGHT	195/999,99998	L. She A	-,00030228	.0000008-80
6.0.	•00000	Y R/U1	•0000000	-00000E-80
ALPHA I Del e T	-4.01070	Y DAIZU1	00000000	78-300000.
DEL E I	7+03100 308 68048			•000000L=80
VELOCITY	370.03740 AAN3 AA211		•U00D000U	•UUUUUUUUUU
CAR.	520.50349		=1\$10;92225 20000000	
DVN PEFS	188.87963		.000000000	000000C-00
Q SIIR C	339.64991		-00000000	_0C0000F=80
P SUB S	14.58038	L DEL A	28160235	230000E-01
L+SIIB B	-1,33108	L DEL AG	-2.63535099	000000E-80
L' B DOT	.00000	L DEL RG	22088328	.000000E-80
L+ SUB P	.000.00	N SUB P	- •12530849	750000E-01
L+ 508 R	02781	N B DCT	.00000000	• 06 U 0 0 0 E = 8 0
L'DĚL A	-,31073	N SUB P	•00000000	•000000E+80
LIDEL AG	-2.66992	N SUB R	03035407	1C0000E 01
L'NFL RG	-2.28894	N DEL A	.00010025	.600000E-04
IY	186100000.00000	N DEL AG	26077085	.0C0000E-80
		N DEL PG	-2.23624714	.00000UE=80
1 27		N'SUD C	+, 27007781	
	27277997.797/8	NTO DOI	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1 /	2000000 00074	NICHE P		
1 * 7 / 1 7	.11327	NITEL A	- 03509611	
117/11	.83004	NIDEL AG	- 04164726	
THRUST Z	595744.62007	N'DEL RG	-2.49151180	
THRUST T	6050000.00060			
OHEGA SQ	.17560	X U/U1	00187989	130000E 00
2 7 FT OM	.00795	X SUB W	-,00130146	180000E 00
T SUB A	125.73247	X W DOT	• 000000 <u>0</u> 00	•0C0000E-80
OMEGA A	41965	X Q/U1	•00000000	•000000E=80
ZETA A	-00949	X DEI/UL	+000000CU	•0C0000E=80
Y 5115 5	-34.06718	X DEO/UI	•00000000	.LUUUUUE+00
Y B DOI	.00000		• 00144667	- 110000E 00
T 3110 F	-00000	7 U DAT		-00000005-80
T 300 K V 1911 A.1	- 00000	7 0/01	00000000 000000	.060000E+80
Y NÊL AQ	.00000	7 051/01	0000000	-000000E-80
Y DEL R	.00000	Z DE0/01	.00000000	.0C0000E-80
X 5118 U	-16.55600	M SUB U	-,03 ⁿ 73075	700000E=02
X SUB A	-5.73092	M SUB AL	-,17560426	800000E-01
X A DOT	•00000	M AL DOT	÷00000ñu0	•06080GE-80
X SUB Q	•0000	M SUB Q	÷00000000	.000000E-80
X DËL EI	•00000	M DEL EI	00000000	• OC 0000E-8n
X DPL ED	•00000	MUEL EO	• 0 0 0 0 0 0 0 0 0	+00000t-00
LAT DEN PA-		-23 62-		50 000245
LHI NEN 348 4		.000001/		5616500000
/ ##01051# #/	100861 / 8034554	1040001 ()		
LON DEN 54= 1	1,000000 S3= 102	4120 52=	75741 51=003977	50=000000
(0000A C	0000) (.02257.	+00000)(+,	.8233141982)(02331,41982)

(113 ccc)

_··· ·

â.

THT CON	123			
ALTITUDE Mach Weight	127000+00000 5,00000 1827999,99998	Y SUP V N' SUE V E' SUE V	00429928 0002577 0013743	110000E 01 .010000E-80 .000000E-80
G.G.	.000n0	Y R/U1	00000000	•060000E-80
DEL E T	4.38362	IXZ UNTR	17000ñ00+0000n000	• 000000E=80
EAS VELOCITY	325.31585 5282.00911	Y DR/61 L SUB B	•00000000 ••63143754	•010000E-80 ••750000E-01
CAS	429.73996	L B DOT	• 00000ñ00	•UCUNDOE-80
Q SUB C	227.53645	L SUB P L SUB R	• 00000000 • 0000000	.000000E-80
- 5118 S	7.18078	L DEL A	-,19364ñ85 -2 72669393	230000E-01
	,000 <u>0</u> 0	L DEL RG	-++17935769	.000000E=80
1.4 SUS P	+000ñ0 -01407	N SUB P N B DAT	• 06198005 ↓06000600	500000E-01
L'ngL A	20836	N SUB P	.00000000	•00GU00E-80
I THEL AG	-2.77863 -1.94038	N SUB F N DEL A	01877469 .00ñ07438	100000E 01 .600000E-04
Y	166200000.00000	N DEL AG	.20902351	.000000E-80
I XX I Z7	166400000.00000	N'SUB P	• 13614077	•8600005=86
· X	24499999.99976	NºB DOT NºSub P	.00000000 .0000000	
I X7	16999999.99976	N'SUB R	02020715	
[X7/1Z [X7/1X	.10216	N'DEL AG	+,02121236 +,07485110	
THRUST Z	458603,81414	N'DEL RG	-2.53794162	
OMEGA SQ	•09820	X U/U1	00111761	130000E 00
2 7 FT OM T SUB A	,00430 232,59706	X SUB W X W Dot	-•00064489 •00000ñ00	150000E 09 .046000E=80
OMEGA A	,31337	X Q/U1	,0000000	.UC0000E-80
2218 8 5 518 8	-22,70884	X DEC/UL	•000000000	.CC0000E-80
Y SUB P	•000ñ0 •000ň0	Z U/U1 Z SUB W	•00068788 ••00429928	.800000E=01
Y SUB R	•000 <u>0</u> 0	Z W DOT	.00000000	08-3001030.
Y DEL AL Y DEL AD	.00000	Z 02/01 Z DEI/11	•00000000 •0000000	.0000000E-80
Y DEL R	-11 80840	Z DEO/U1	•00000000 •02201367	• 000000E=80
> 5118 A	-3,40633	M SUR AL	09520145	6.0000E-01
X A DOT X Sur Q	•00000 •00000	M AL FOT M SUB P	•00000 <u>0</u> 0 •00000 <u>0</u> 0	•0000002+80 •0000002+80
X DEL EI	-000n0	M DEL EI	•00000000	•060000E-80
F UFL ED				
. AT DEN 54= - 012650	•929111 53= ••02 0000)(•04604•	2769 SZ# .1 .00000)(.26409 51=004112 : .3376200000) (50=0000/2 39552: .00000)
04 BEN 84+ 1	- 00000 \$3- 01	RA77 82	08252 51#	5 0 = _ un0001
· • 01834• • 0	0000)(+00059+	+00000)(-	01720. •31400) (••(01720,3140")

.

(123 SEC)

FI'T CON	132			
AI TITUDE	143000.00000	Y 5118 V	- 00201753	- 1070005 - 1
MACH	5.70000	N SUF. V		
WEIGHT	1704999.99998	L' SUP V	= 000007277	•050000E=80
Cigi	.00000	Y R/U1	1000000000	-000000E-80
ALPHA T	-4.58366	Y DAIZUI	.00000000	.000000E=80
DELET	5.63389	TXZ UNTR	14000000.00000000000	-0000000000
EAS	270.83572	Y DP/U1	000000	.000000E=80
VEINCITY	6190.00019	L SUP B	34530232	57000000-00
CAS	360.42431	LBPOT	.00000000	.0(0000E=80
DYN PRES	87.17517	L SUB P	.000000000	-000000F-80
Q SUB C	158.31828	L SUP R	.00000000	-000000E-80
P SUB S	3.82969	L DEL A	13933251	23000CE-01
L+StiB B	39037	L DEL AG	-2-82526937	.0C0000E-80
L' B DOT	.0000	L DEL PG	21437138	.00000E-80
L' SUB P	.000ñ0	N SUB B	03584980	4L0000E-01
L! SUB R	- .00789	N B DOT	• ÖÖÖÖÖn	• 0C0C00E -80
LIDEL A	14763	N SUB P	•00000d00	.00000E-80
L'NËL AG	-2.81898	N SUB P	- .01255244	160000E 01
LIDEL RG	-1.59339	N DEL A	.00005A27	.600000E-04
I Y	146100000.00000	N DEL AG	.27870727	.060000E-80
1 XX	23600000.00000	N DEL RG	-2. 17 <u>3</u> <u>ñ</u> 9328	.00000E-8C
I 77	147200000.00000	N'SUE P	-,07397775	
T X	23599999.99976	N'B DOT	,00000n00	
17	147199999.99878	NºSUB P	•00000ń00	
I X7	13999999,99994	NºSUP P	01330300	
1x7/12	.09511	NºDFL A	01398235	
1 X 7 / 1 X	.59322	N'DEL AG	.01059751	
THRUST Z	513437.03703	N'DEL RG	-2.32463896	
THRUST	-230000.00000	M		
OMEGA SU	.03871		-,00070881	130000E 00
2 ZFT UM	.00273	X SUD W	00054524	2000UOE OF
1 5110 A	360,01114		.00000000	•00000E-80
UNEGA A	.19878	X QVUI	•00000000	.000000E-80
V CUD D		X DE1/11	•00000n00	.000000E=80
	0,000	7 11/11		- GUUUUUE = 00
VENDO	.00010	7 SUR W	- 00034524	
V CUD P	.000.00	7 W DOT	- 00272520	- 11,0000E 01
	- 00000	7 0/11	-000000000	• COUDUCE=00
V DEL AD	.00000	7 DF1/U1	-000000000	1000000E=80
Y TEL R	.00000	7 DE0/U1	-000000000	-000000E-80
X SUB U	-8.77509	M SUB II	+. n2064757	=_800000F=02
X SIIB A	-3.37503	M SUP AL	•.03871419	300000E-01
X A DOT	.00000	M AL DOT	.0000000	.000000E-80
X SUB Q	.00000	M SUB 0	•00000000	•000000E-86
X DEL EI	.00000	M DEL EI	.00000000	.0L0000E-80
X DEL EO	.00010	MDEL ED	.00000000	.060000E-80

LAT DEN S4= -,943580 53= -.015305 52= .071654 51= -.001916 50= -.000023 (-.00884...00000)(..03632...00000)(..25182...00000)(...29552...00000) LON DEN 54= 1.000000 53= .010807 52= .038738 51= -.000989 50= .000001 (..00110...00000)(...02390...00000)(...01790...19821)(...01790....19821)

(132 SEE)

-

- ---

_

·· __ ·

FLY CON	144			
ALTITUDE	164000.00000	Y SUB V	•00000000	107000E 01
MACH	6.57000	Nº SUR V	• 0000UñUD	.0(0000E-87
HETGHT	1589999.99998	L. SUB V	,00000000	+000000E=80
C.G.	•00000	Y R/U1	•000000	•000000E=80
ALPHA T	-6.30254	Y DAI/U1	•00000000	.000000E=80
DEI E T	7.46891	IXZ UNTR	9000ñ00+00n00nn0	• NCDUDNE=8n
EAS	•000d0	Y DR/U1	• 000000n0	•000000E=80
VEIOCITY	7267.66678	L SUP P	0000000e	570000£-01
CAS	•00070	L B DOT	• #000 0000	•DLJU09E-8ú
DYN PRES	•000ñ0	L SUB P	• 0 0 ñ 0 0 ñ 0 0	+000000E-80
Q SHB C	•00000	L SUB R	•000000000	•00000E-80
P SUR S	•00000	L DFL A	•0000000	2300002-01
L+SUB_B_	•00000	L DEL AG	-2.93944870	• D0 an C0E = 80
L B DOT	•00000	L DEL PG	-+27739102	• NC 0 N 0 0 E = 80
LI SUB P	•00000	N SUB B	•00000n00	•000n00E-8C
LT SIJB R	•000 <u>0</u> 0	N B DOT	•00000000	•000000E-80
LINEL A	.00000	N SUB P	•00000000	.000000E-80
L'DEL AG	-2.86637	N SUR P	•00000000	100u00E 01
CINEL RG	+1+15231	N DEL A	.00000000	.60000E-04
L Y	125700000.00000	N DEL AG	. 58736344	•000000E=83
	27500000.00000	N DEL PG	-2-11286417	.0100UUE-80
1 77		N'SUB P	•00000000	
IX	223999999.99976	N*B UDT	.00000000	
1 7	12779999.99902	N'SUB P	.00000000	
1 17	8999999.99993	N'SUP P	•00000000	
1 X Z / 1 Z	.07042	NYDEL P	•00000000	
182/18	+ J902J 4 924 + 7 • 24 1	NIDEL AG	-2 10701259	
TUBUST T	A790000-00000	N'DEL PO	-2.19/01/39	
OMECA SO	47400000000000	v (1711)		LABORDE 00
2 TET OM	.00000	X SUR W	. 000000000	26000(E 60
T SUR A	-00000	x w Dot	-000000000	-000000E=80
OMECA A	.00000	X 0/U1	.00000000	-000000E-80
7 F T A A	.00000	X DELZUI	.00000000	+0C0000E=80
5118 B	.00000	X DECZUI	•000000000	+6600.00E+80
4 8 50T	.00000	7 11/11	.00000000	130000E 06
Y SHE P	.00000	Z SUB W	.00000000	9*0000E 00
Y SUB R	.00000	Z W DOT	• 00000ru0	.0CUD00E-80
V DEL AL	00000.	2 0/01	• 00000000	.nn00000E=80
Y DEL AO	.00000	Z DE1/01	.00000000	.000000E=80
Y DEL R	•000ñ0	Z DEO/U1	•000000U	•00000E-80
X SUB U	.000ñ0	M SUP II	•00000 0 00	800000E-02
X 508 A	.00000	M SUB AL	0600000	.000600E-83
X A DOT	۰000ñ0	M AL DOT	•00700n00	•ncundoE=80
X SUB Q	.0a0ñ0	M SUB Q	•00000n00	•060000PE=86
X DEL EI	•00010	M DEL EI	•0000Un00	•00000 6 =86
X DĒL EO	.0000	M DE L EO	• 00 00 0 n n 0	.00 0000F-8 0
T UEN 54= -	.971956 53= .00(000 SZ= +6	00000 51= .000000 5	50= •00Crea
•000 <u>0n</u> • •0	0000)(.007,03	+00003)(+	00001	30001• •600000)

(Å T

(144 SEF)

FLT CON	153			
ALTITUDE	178000.00000	Y SUB V	00117763	107000F 01
MACH	7.40000	Nº SUE V	0000583	•000000E=86
WEIGHT	1481999.99998	LI SUB V	00002065	.000000E-80
C.G.	.000ñ0	Y R/U1	.00000000	.000000E-80
ALPHA T	-6.30254	Y DAIZUI	.00000000	.00000E-80
DEI E T	6.84950	IXZ UNTR	7000000.000000000	.000000E-80
EAS	183.69265	Y DR/UL	.00000000	-000000E-8C
VELOCITY	8114,66545	L SUB P	15223852	500000E-01
CAS	246.79174	L B DOT	.00000000	.000000E-80
DYN PRES	40.1815	L SUR P	•00000600	.00000E-80
A 5118 C	73.2il94	L SUB R	.00000000	•00000E-80
P SHB S	1.06564	L DEL A	••07002972	230000E-01
L+SH8 B	16757	L DEL AG	-3. ñ7971348	.000000E-80
LI A DOT	• 0 0 0 0 0	L BEL RG	26017643	-00000E-80
L1 408 P	.00000	N SUB P	03646971	600000E-01
L+ SUB R	00198	N B DOT	•0000000	-000000E-80
LIPPL A	+.07152	N SUB P	.00000000	.00000E=80
L'DEL AG	-3.02321	N SUB R	••00599239	100000E 01
L'DFI RG	98272	N DEL A	•00003647	.600000E-04
I Y	10520000.00000	N DEL AG	.36993213	.000000E-80
ΙΧΧ	21670000.00000	N DEL PG	-2.16598883	•00000E-80
1 27	104200000.00000	N'SUB P	+04731670	
<u>I X</u>	21599999.99976	NIB DOT	•0000000	
1 7	107199999.99902	N'SUB P	.00000000	
1 17	6999999,99997	N'SUB R	- ,00612672	
1 X 7 / 1 Z	.06470	N'DEL A	00459034	
117/11	.32407	N DEL AG	,17434536	
THRUST Z	336677.65247	N'DEL PG	-2.22950597	
THRUST I	4500000.00000	w 11/11	000017	1400005 00
DHEGA SH	֥01154		++UUU3"B17	- 340000E 00
Z ZFT UM	1000 55907		000020613	
1 SUD A	1007.53797		.00000000	-000000E=00
TPTA A	200000			.000000E-80
V CIB R	-9-55658		-00000000	-000000F-80
	- 00000	7 11/11	.00028615	1300COF 00
V SIR P	.00000	7 5118 W	+.000220053	03 300000 e.
V CIR P	- 0.000	7 W Dot	.00000000	-000000E-80
Y DEL AL	.000.00	2 0/11	.00000000	.000000E-80
Y NEL AO	.00000	Z BELZUI	0000000	+000000E+80
Y DEL R	.00000	Z DE0/11	.00000000	.000000E-80
X SUB U	-5.00131	M SUB II	01483978	900000E-0?
X SUB A	-2.32204	M SUR AL	.01154205	-140000E-01
X A DOT	• 0 0 0 0 0	M AL DOT	•000000000	•00000E-80
X SUB Q	• 0 0 0 n 0	M SUB G	 00000ñ00 	•00000E-80
X DÊL EI	.000ñ0	M DEL EI	• 0 0 0 0 0 0 0 •	.000000E+80
X DFL EO	-00000	MDEL ED	• 00 0 0 0 ñ 0 0	•000000E-8)
		146 63	14/212 ELA - 000/EL	50 00000A

LAT DEN S4= +,979034 53= -.007145 52= .J46312 51= -.00ñ651 50= +.000004 (+01847+ +00000) (+.00427+ +00000) (-20612+ +00000) (-.22763+ +00000) LON DEN S4= 1+000000 53= +005551 52= -.011537 51= +.0006415 50= +000001 (+.00193+ +00000) (-.0430ñ+ +00000) (-.08338+ +00000) (-.11959+ +00000)

(152 :21)

- -

FLT CON	162			
ALTITUDE	193000.00000	Y SUB V	≈.00082809	107000E 0)
WEIGHT	1382999.99998	IT SUB V	n. n0001193	10000000E=80
C.G.	.00000	Y R/U1	00000000	.000000E-80
ALPHA T	-8.59437	Y DAI/U1	00000000	.000000E-80
DEI E T	9.17182	IXZ UNTR	3000000.000000000	.000000E-80
EAS	155.93156	Y DR/UI	•00000600	•000000E=80
VELOCITY	8910,69035	LSUBR	-,10582382	460000E-J1
UAS DVN DDES	210.02072		.000000000	-0000000E=00
	52.84588	L SUB R	• 00000000	-000000E+80
P SUB S	.59589	L DEL A	•.05291191	230000E+01
LISUB B	-,10635	L DEL AG	-3.21084421	.000000E=80
L' A DOT	.00000	L DEL PG	36660991	.C00000E-80
Lº SUB P	.00000	N SUB B	•00000000	.000000E-80
LI SUB R	00070	N B DOT	•00000000	•000000E=80
LIDEL A	**UJJ[/ 3 150#7	N SUD P		- 1000000000
ADEL PG	•.70073	N DEL A	-00003206	-600000E=04
T V	84600000.00000	N DEL AG	.51842263	.000000E-80
T XX	20600000.00000	N DEL PG	+2.270594ñ1	.000000E-80
1 77	85700000.00000	NºSUB B	00359688	
I X	20599999.99976	N'B DOT	• 0 <u>0</u> 0 0 0 <u>0</u> 0	
I 7	88699999.99927	N SUB P	 000000n0 	
1 X7	2999999.99998	NISUR P	•••00482050 ••00136422	
*****	-14541	NIDEL AG	.41165446	
1 K Z Z 1 K THRUST 7	674243.44784	NIDEL PG	-2.29429403	
THRUST T	4230000.00000			
DMERA SQ	+.02955	X U/U1	00021670	14000UE 00
2 7FT OM	.00066	X SUR W	00027087	35000JE 00
T SUB A	1520,14808	X W DOT	•0000000	•000000E-8
OMEGA A	.00000	X Q/U1	• 00000000 0000000	.000000E=00
ZETA A V SUB B	-7.37888		•00000000	•0000000000000000000000000000000000000
	.0000	7 0201	.00026313	-170000E 00
Y SUB P	.000n0	Z SUB W	00065783	850000E 00
Y SHB R	•000nj0	Z W DOT	•00000000	•00000E+85
" DEL AT	.00000	Z Q/U1	.00000000	.000000E-8J
Y DEL AD	•00000	Z DEI/U1	•00000000	•000000E+80
Y DEL R	00000	Z DEO/11	•0000000U	•000000E=81
	-2.41345		- 01477427	400000E=01
XANDT	.00000	M AL BOT	.0000000	.000000E-87
X 5116 Q	.00000	M SUB Q	•000000000	.000000E-80
X DEL EI	.00000	M DEL EI	.00000000	000000E=80
X NÊL EO	•000ñ0	MDEL EO	•0000000	•000000E-80
		(0) (0)		
	(0nn) (•049571(_0	14458. =:n4957)(=.0	19020000002
		• U · Z = (] (= •)		
ON DEN 54= 1.	000000 \$3= .004	298 52=0	29546 sl= +•00n375 s	0= .000001
.0012900	000) (=.01402.	.00000)(1673600000)(.1	.7579000001

(162 SEC)

Å

Table B4. (Concluded)

÷

ALTITUDE 204000.00000 Y SUB V 00063?01 107000E SI MACH 9.30000 N' SUP V .00000902 .000000E-80 GE .00000 Y ZU1 .0000006-80 .000000E-80 GE .000000 Y ZU1 .0000000 .000000E-80 DEL E T 11.35963 YZ U'TR .0000000 .000000E-80 DEL E T 11.35963 L SUB R 08574431 460000E-80 VEINCITY 9614.07108 L SUB R 08574431 460000E-80 GR 185 .22.53696 L SUB R 08574431 460000E-80 DYM PRES 22.53696 L SUB R .0000060 .000000E-80 GR NIB C 41.28035 L SUB R .0000060 .000000E-80 VE NRES .37713 L DE L AG -3.33140218 .000000E-80 L'SUB R .00060 N SUE R .00000600 .000000E-80 L'SUB R .00060 N SUE R .00000600 .000000E-80 L'SUB R .00060<	FIT. CON	170			
MACH 9.300 no N° SUP ·.00000002 ·.000000E-80 C:G. .000000 Y R/U1 ·.0000000 ·.000000E-80 ALPMA T -10.8620 Y DA//U1 ·.0000000 ·.00000E-80 DEL E T 11.35963 IXZ VITR ·.0000000 ·.00000E-80 CAS 137.70739 Y DR/U1 ·.0000000 ·.00000E-80 ·.000000 VEInCITY 9614,07108 L SIB P ·.0000000 ·.000000E-80 DYN PRES 22.53964 L SIB P ·.0000000 ·.000000E-80 DYN PRES 22.53964 L SIB P ·.0000000 ·.000000E-80 C SIB 37913 L DFL A ·.04337216 ·.230000E-80 L'SIB B ·.00670 N SUB R ·.0000000 ·.0000000 L'SUB R ·.00060 N SUB R ·.0000000 ·.0000000 L'SUB R ·.00060 N SUB R ·.0000000 ·.0000000 L'SUB R ·.000000 N SUB R ·.0001000 ·.00000000 L'SUB R </th <th>ALTITUDE</th> <td>204000.00000</td> <td>Y SUB V</td> <td>00063291</td> <td>107000E 01</td>	ALTITUDE	204000.00000	Y SUB V	00063291	107000E 01
WEIGHT 130799.99998 L* SUN ** -,00000072 .000000E-80 ALPHA T -10.88620 Y DAI/U1 .000000E-80 .000000E-80 DEL E T 11.35963 IXZ U*TR .000000E-80 .000000E-80 VEIRCITY 9614.07108 L SUB R -,00674431 -,460000E-80 VEIRCITY 9614.07108 L SUB R -,0060000 .000000E-80 DYN PRES 22.3369 L SUB R -,0060000 .000000E-80 Q SUB C 41.22033 L SUP R .0000000 .000000E-80 Q SUB C 41.22033 L SUP R .0000000 .000000E-80 L 'SUB R .00000 N DEL A 04337216 223000E-80 L 'SUB R .00000 N DE A .0000000 .000000E-80 L 'SUB R .00000 N DE A .0000000 .000000E-80 L 'NT L RG 33140 N SUP R .0000000 .000000E-80 L 'SUB R .00000 N DE A .0000000 .00000E-80 L 'NT R .00000	MACH	9.30000	Nº SUP V	∙ ຍໍ່ດີ້ກົ່ວນຄື່ມ0	•00000uE=80
L.G	MEIGHT	1307999,99998	L' SUR V	-,00000902	•00 00 00 e =80
ALPMA T -10.8820 Y DAT/UI .0000000 .0000000 DEL E T 11.33943 1X2 U'TR .0000000 .0000000 VEINCITY 9614.07106 LSUB R .0000000 .0000000 .0000000 CAN 185.76023 LSUB P .0000000 .0000000 .0000000 DYN PRES 22.55696 LSUB P .0000000 .0000000 .00000000 GSUB C 41.28035 LSUP R .00000000 .00000000 .00000000 PSUB S .37913 LDFL A -0433716 .22010000 .00000000 L'SUB P .00000 NSUB R .00000000 .00000000 .00000000 L'SUB R .00000 NSUP R .00010000 .00000000 .00000000 L'SUB R .00000 .00000000 .00000000 .00000000 .00000000 L'SUB R .00000 .00000000 .00000000 .00000000 .00000000 L'SUB R .00000 .00000 .00000000 .00000000 .00000000 <th>₩aŭa</th> <th>.00000</th> <th>Y RZU1</th> <th>•00000000</th> <th>•000000E-80</th>	₩aŭa	.00000	Y RZU1	•00000000	•000000E-80
DEL E 11.3994.3 1AZ 0F1K .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .000000000 .0000000000 .000000000 .000000000 .000000000 .000000000 .000000000	ALPHA T	=10.88620	Y DAI/01	•0000000	.000000E=80
LAS 137.00739 Y DK/01 .0000000 .0000000 .40000000 .00000000 .00000000	DEL E I	11.37963	IXZ UPIR	•00000000	•000000E=80
VELOCITY	LAS		Y URZUI	.000000000	• 000000E=80
CAR 100.100.100 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.000000000 0.000000000 0.000000000 0.0000000000 0.000000000 0.000000000 0.0000000000 0.00000000000 0.0000000000000000 0.00000000000000000000000000000000000		7614,07100		*• U8074431	+,460000E=01
Dry Prod ZEL 33000 L SIB F COUNDAD	983 Den 6828	1034 (BVEJ		•000B0080	+00000002=00
P SIB S .37913 L DFL A .00337216 .2300002-30 L'SIB S .37913 L DFL A .00437216 .2300002-30 L'SIB S .00000 D DFL A .00437216 .2300002-30 L'SIB R .00000 N SUB R .0000000 .0000002-30 L'SUB R .00000 N SUB R .0000000 .0000002-30 L'NFL A .00031 N SUB R .0000000 .0000002-30 L'NFL AG -3.33140 N SUB R .00001000 .0000002-30 L'NFL AG -3.33140 N SUB R .0000100 .000002-30 L'NFL AG -3.33140 N SUB R .0000100 .000002-30 L'NFL AG -3.33140 N SUB R .0000100 .000002-30 L'Y 68300000.00000 N DEL AG .67331437 .0000002-30 I Y 73400000.00000 N'SUB R .00000000 .00000000 I X7 1950999.99997 N'SUB R .00001745 15000000 00000 I X7 19509999.99997 N'SUB R	Q RIN PRES	A1.9%016		-000000000	• UUUUUUL=0U
L'SIB B - 00674 L DEL AG -3.3314218 -000002-80 L' A DOT - 00070 L DEL RG48448805 -0000002-80 L' SUB R - 00070 N SUB R - 0000070 -000002-80 L' SUB R - 00070 N SUB R - 0000070 - 000002-80 L' TPL A - 04337 N SUR P - 00007070 -000002-80 L'TPL A - 04337 N SUR R004190111000002 01 L'TPL RG48449 N DEL A - 00003021 - 6000002-80 I TY 6330000.00070 N DEL AG -6733437 -0000002-80 I TX 19600000.00070 N DEL AG -6733437 -0000002-80 I TX 19600000.00070 N SUB R -000419011 I T 1959999.99977 N'SUB P -00000700 I T 1959999.99977 N'SUB P -00000700 I T 1959999.99977 N'SUB P -00000700 I T7 73309999.99977 N'SUB P -00000700 I T7 7356660831 N'DEL A -00003021 ITZ/IZ -00000 N'DEL AG -6733437 TMRUST Z 78786660831 N'DEL AG -67336437 TMRUST Z 78786660831 N'DEL AG -2241155668 TMRUST T 4000000.00060 OMERA SG -04282 X U/U100017745150000E 00 Z 7FT OM -0004 X SUB P -000070 -000000E-80 I T 00000 N'DEL AG -2241155668 TMRUST T 4000000.00060 OMERA SG -04282 X U/U10002745150000E 00 Z 7FT OM -00040 X U/U1 -00007745150000E 00 Z 7FT OM -00040 X U/U1 -0000070 .000000E-80 OMERA SG -04287 X U/U1 -00007745150000E 00 X SUB B -6.08487 X DEC/'1 -0002060 .000000E-80 Y SUB B -6.08487 X DEC/'1 -0002060 .00000E-80 Y SUB B -6.08487 X DEC/'1 -0000060 .000000E-80 Y SUB R .00070 Z U/U1 -00024366 .2000000E-80 Y SUB R .00070 Z U/U1 -00024366 .200000E-80 Y SUB R .00070 Z U/U1 -0000070 .000000E-80 Y SUB R .00070 Z U/U1 -0000070 .000000E-80 Y SUB R .00070 Z U/U1 -0000070 .000000E-80 Y SUB R .00070 Z U/U1 -0000070 .000000E-80 X SUB A -2.44332 M SUB AL -0428158 .600000E-80 X SUB A -2.44332 M SUB AL -000070 .00000E-80 X SUB A -2.44332 M SUB AL -000070 .00000E-80 X SUB A -2.44332 M SUB AL -000070 .0000070 .00000E-80 X SUB A -2.44332 M SUB AL -000070 .0000070 .00000E-80 X SUB A -2.44332 M SUB AL -0000070 .0000070 .000000E-80 X SUB A -2.74532 SE0000003 S1= -0007291 S	Peirk C	. 17911		- 04337216	-22000000-00
L' R DOT 10000 L DEL RG -48448605 000000E-80 L' SUB P 00000 N B DOT 0000000 000000E-80 L' SUB R -00000 N B DOT 0000000 000000E-80 L' NPL A -104337 N SUR P 00000000 000000E-80 L' NPL A -104337 N SUR P 00000000E-80 L' NPL A -104000000000 N DEL A -00000000 I Y 68300000.00000 N DEL A -00000000 I Y 68300000.00000 N DEL A -00000000 I Y 19600000.00000 N SUB B 00000000 I X 1999999.99974 N'SUB B 00000000 I X 1999999.99974 N'SUB P 00000000 I X 1999999.99974 N'SUB P 00000000 I X 1999999.99977 N'SUB P 00000000 I X 1999999.99977 N'SUB P 00000000 I X 1999999.99977 N'SUB P 00000000 I X 199999.99977 N'SUB P 000000000 I X 1999999.99977 N'SUB P 00000000 I X 1999999.99977 N'SUB P 00000000 V SUB P 000000 N'DEL A 00000000 OMEGA SQ -04282 X U/U1 -000017745 -1500000 00 Z FT OM 00004 X SUB W -00025435 -4300000 00 C MEGA A 00000 X DEL/U1 00000000 0000000 Z FT A -00000 X DEL/U1 00000000 0000000 000000E-80 V SUB B -6008487 X DEO/'11 00000000 0000000 000000E-80 Y SUB B -6008487 X DEO/'11 00000000 000000E-80 Y SUB B -6008487 X DEO/'11 00000000 000000E-80 Y SUB R 000000 Z W DOT 0000000 000000E-80 Y SUB R -000000 Z W DOT 00000000 000000E-80 Y SUB A -2244332 H SUB A -0000000 0000000E-80 Y TFL R 000000 Z DEI/U1 00000000 000000E-80 X SUB A -2244332 H SUB AL 0023640 200000E-80 X SUB A -2244332 H SUB AL 0023640 200000E-80 X SUB A -2244332 H SUB AL 0023640 200000E-80 X SUB A -2244332 H SUB AL 0020000 000000E-80 X SUB A -2244332 H SUB AL 00200000 000000E-80 X SUB A -2244332 H SUB AL 0000000 000000000000000000000000000		- 04674		-3-35140218	.00000000.00
L * SUB P00000 N SUB P0000000 .0000000 .00000000 .00000000	LI B DOT	.00000	I DEL RG	- 48448605	-000000E=80
L SUB R	LI SUB P	.00000	N SUB R	- 00000000	1000000E+80
L NPL A	LI SUB R	.000.00	N B DOT	.00000000	.000000E-80
L n T L AG -3.35140 N SUR R -00419011 -100000 0 01 L n T R G -48449 N DEL A 00003021 600000000 I XX 1960000.00000 N DEL AG 6731437 .000000000 I XX 1960000.00000 N DEL AG 0731437 .00000000 I XX 1960000.00000 N DEL AG 0731437 .00000000 I X 19599999.9997 N SUB R 00000000 I X7 00000 N DEL A 00000100 I X7 00000 N DEL A 00000000 I X7 00000 N DEL A 00000000 OMERA SQ -04282 X U/U1 -00017745 -4300000 00 I SUB A 225412850 X W DOT 0000000 0000000 00000000 I SUB A 225412850 X W DOT 0000000 0000000 000000000 V SUB B -608487 X DE0/11 00000000 00000000 000000000 V SUB B -608487 X DE0/11 00000000 0000000000000000000000000	L'NËL A	04337	N SUB P	.00000000	.000000E-80
L'NFL RG48449 N DEL A .00003621 .00000E-04 I Y 6830000.00000 N DEL AG .6733.437 .000000E-80 I X 1960000.00000 N'SUB 6 .00000000 I X 19599999.99974 N'SUB 7 .0000000 I X 19599999.99974 N'SUB 7 .0000000 I X 1959999.99977 N'SUB 7 .00000000 I X .00000 N'DEL A .000003021 I X7 .00000 N'DEL A .00003021 I X7 .00000 N'DEL A .000025435 .4300000 0 OMÉGA SQ .04282 X U/U1 .0000000 .000000E-80 OMÉGA A .00000 X U/U1 .0000000 .000000E-80 OMÉGA A .00000 X U/U1 .0000000 .000000E-80 Y SUB A .2254.12550 X W D07 .0000000 .000000E-80 OMÉGA A .00000 X Q/U1 .0000000 .000000E-80 Y SUB B .60060 X Q/U1 .0000000 .000000E-80 Y SUB B .60060 X Q/U1 .0000000 .000000E-80 Y SUB R .00000 Z U/U1 .00000000 .000000E-80 X SUB A .2254.3282 M SUB U .0000000 .000000E-80 Y SUB R .00000 Z U/U1 .00000000 .000000E-80 X SUB A .224352 M SUB U .0000000 .000000E-80 X SUB A .224352 M SUB U .0000000 .000000E-80 X SUB A .224352 M SUB U .0000000 .000000E-80 X SUB A .224352 M SUB A .000000 Z U/U1 .00000000 .000000E-80 X SUB A .224352 M SUB A .000000 Z U/U1 .00000000 .000000E-80 X SUB A .224352 M SUB A .000000 .000000E-80 X DFL EI .000000 M DEL EC .00000000 .000000E-80 X DFL EI .000000 S3= .000423 S2= .000003 S1= .0000000 .000000E-80 X DFL EI .000000 S3= .000423 S2= .000000 S1= .0000000 .000000E-80 X DFL EI .000000 S3= .000423 S2= .000000 S1= .00000000 .000000E-80	EINFE AG	-3.35140	N SUB R	00419011	100000E 01
I Y 6830000.00000 N DEL AG .6731437 ,000000E-80 I XX 1960000.00000 N DEL PG -2.41155068 .000000E-80 I X 1959999.99976 N'B DAT .00000000 I X 1959999.99976 N'B DAT .00000000 I X 1959999.99977 N'SUB P .00000000 I X 200000 N'DEL A .00000000 I XZ/IZ .00000 N'DEL AG .67330437 THRUST I 787666.6081 N'DEL AG .6730000E 00 2 7FT OM .0004 X SUB W00017745150000E 00 2 7FT OM .0004 X SUB W00025435430000E 00 7 SUB A 2254.12850 X W DOT .0000000 .000000E-80 OMEGA A .00000 X Q/U1 .0000000 .000000E-80 7 SUB B .60040 X Q/U1 .0000000 .000000E-80 Y SUB B .600487 X DE0/'11 .0000000 .00000E-80 Y SUB B .600487 X DE0/'11 .00023660 .2000000E-80 Y SUB R .00000 Z SU ^N W DAT .00024663750000E 00 Y SUB R .00000 Z V/U1 .00023660 .2000000 .000000E-80 Y SUB R .00000 Z V/U1 .00023660 .2000000E-80 Y DEL AI .00000 Z SU ^N W DAT .00004435750000E 00 Y SUB R .00000 Z SU ^N W DAT .00004680 .2000000E-80 Y DEL AI .00000 Z SU ^N W DAT .0000460 .000000E-80 X SUB A .22.44532 M SUB U .00004435750000E 00 Y SUB R .00000 Z SU ^N W .0000060 .000000E-80 X SUB A .22.44532 M SUB U .0000060 .000000E-80 X SUB A .22.44532 M SUB AL .04281458 .6000000E-80 X SUB A .22.44532 M SUB AL .04281458 .600000E-80 X DFL EI .000000 M SUB A .0000000 .000000E-80 X DFL EI .000000 S3=0004823 S2=000003 S1=0007361 .03291,057361	L'DÊL RG	48449	N DEL A	.00903021	.6U0000E-04
1 1 1 19600000.000f0 N DEL PG -2.41155668 .00000600 1 77 73400000.000f0 N'SUB B .00000f00 1 7 73399999.99976 N'SUB P .00000f00 1 7 73399999.99977 N'SUB P .00000f00 1 7 73399999.99977 N'SUB P .00000f00 1 77 .00000 N'SUB P .00000f00 1 17 .00000 N'SUB P .00000f00 1 177 .00000 N'SUB P .00000f01 1 177 .00000 N'BEL A .00000f01 1 177 .00000 N'DEL A .000017745 -150000E 00 1 177 4000000.00000 .000007 .000000f0 .0000000E 80 0 .0004 X X18 W 000017745 -150000E 00 2 7FT .0M .000425 XUU1 000000f0 .000	t Y	68309000,00000	N DEL AG	67331/437	•000000E=80
I 77 73400000.000ñ0 N*SUB 6 0000ñ00 I X 1959999.99976 N*B DOT 00000000 I 7 73399999.99976 N*SUB P 00000000 I X7 00000 N*SUB P 000419ñ11 I X7/I 00000 N*DEL A 00003621 I X7/IX 00000 N*DEL A 00003621 I X7/IX 00000 N*DEL A 000017745150000E 00 OMEGA SQ04282 X U/U100017745150000E 00 Z 7FT OM 00044 X SUB W00025435430000E 00 T SUB A 2254.12850 X W DOT 0000000 00000E-80 OMEGA A .000ñ0 X Q/U1 00000000 00000E-80 ZETA A 000ñ0 X Q/U1 00000000 00000E-80 Y SUB B -6.08487 X DEO/'11 00000ñ00 00000E-80 Y SUB P 000ñ0 X Q/U1 00023660 .200000E 00 Y SUB P 000ñ0 Z SUP W -00C44363750000E 00 Y SUB R 000ñ0 Z SUP W -00C44363750000E 00 Y SUB R 000ñ0 Z BEI/U1 00000ñ0 000000E-80 Y NEL AI 000ñ0 Z SUP W -00C4436375000E 00 Y SUB R 000ñ0 Z BEI/U1 00000ñ0 00000E-80 Y NEL AI 000ñ0 Z W DOT 00000ñ0 00000E-80 Y NEL AI 000ñ0 Z BEI/U1 00000ñ0 00000E-80 X SUB A -2.44532 M SUB U -0157001511000E-01 X SUB A -2.44532 M SUB U 0000ñ0 00000E-80 X SUB A -2.44532 M SUB AL 00281858 600000E-80 X SUB A -2.44532 M SUB AL 00281858 600000E-80 X SUB A -2.44532 M SUB AL 00281858 600000E-80 X SUB A -2.44532 M SUB AL 004281858 600000E-80 X DFL EO 000ñ0 M AL D^T 000001 00000E-80 X DFL EO 000ñ0 M SUB O 00000ñ0 000000E-80 X DFL EO 000ñ0 M SUB O 00000ñ0 000000E-80 X DFL EO 000ñ0 M SUB O 00000ñ0 000000E-80 X DFL EO 00000 C S3= -0004623 S2= -000003 S1= -0007291 S0= -000001	t XX	19600000.00000	N DEL PG	+2.41155 068	• 000000E+80
1 x 19599999.99976 N*8 D0T .0000000 1 7 73399999.99977 N*SUB P .0000000 1 x7 .00000 N*SUB R .00419611 1 x2/12 .00000 N*DEL A .00003621 1 x2/12 .00000 N*DEL AG .67330437 THRUST Z 787666.60831 N*DEL RG -2.41155668 THRUST T 400000.00000 .00044 \$U/U1 00017745 150000E.00 0 Z 7FT OM .00044 \$U/D 00000.00000 .0000000 .0000000.00000 7 SUB A .2254.12850 X W D0T .000000.000000 .0000000.000000 .00000000.0000000000 7 SUB A .2254.12850 X W D0T .0000000.0000000 .000000000000 .000000000000000000000000000000000000	1 77	73400000 .000 ñ0	N*SUB B	•00000ñ00	
I 7 73399999.99927 N'SUB P .00000000 I X7 .00000 N'SUB R .00419011 IX2/IZ .00000 N'DEL A .00003621 IX2/IX .00000 N'DEL AG .67330437 THRUST Z 787866.60831 N'DEL RG .2.41195668 THRUST Z 787866.60831 N'DEL RG .2.41195668 THRUST Z 400000.00000 0 MERA SQ .00044 X SUB W .00017745150000E 00 2 7FT 0M .00044 X SUB W0000000 .000000E-80 0 MERA A .2254.12850 X W D07 .00000000 .000000E-80 0 MERA A .00000 X Q/U1 .00000000 .000000E-80 Y SUB B .6.08487 X DE0/'11 .0000000 .000000E-80 Y SUB B .6.08487 X DE0/'11 .00023660 .2000000E 00 Y SUB B .6.08487 X DE0/'11 .00023660 .200000E 00 Y SUB R .00000 Z W D07 .000000 .000000E-80 Y SUB R .00000 Z W D07 .0000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .00000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .00000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .00000000 .000000E-80 Y DEL AI .00000 Z W D07 .0000000 .000000E-80 Y DEL AI .00000 Z BEI/U1 .00000000 .000000E-80 X SUB A .2.44532 M SUB U .0000000 .000000E-80 X SUB A .2.44532 M SUB AL .04281858 .600000E-01 X A D07 .00000 M BUE EI .0000000 .00000E-80 X DEL EI .000000 M DEL EI .000000 .00000E-80 X DEL EI .000000 M DEL EI .0000000 .000000E-80 X DEL EI .000000 M DEL EI .0000000 .00000E-80 X DEL EI .000000 M DEL EI .0000000 .00000E-80 X DEL EI .000000 M DEL EI .0000000 .00000E-80 X DEL EO .00000 M DEL EI .0000000 .000000E-80 X DEL EO .000000 MDEL EC .000000 .00000E-80 X DEL EO .000000 S3=0004823 S2=000003 S1=000001 (00419000000 (.002000E-80	1 X	19599999,99976	N'B DOT	•00000nn0	
I X7 .00000 N'DEL A .00003621 IXZ/IZ .00000 N'DEL A .00003621 IXZ/IX .00000 N'DEL AG .67336437 TWRUST Z 787866.60831 N'DEL RG .2.41155668 TWRUST T 4000000.00000 OWEGA SQ .00224 X U/U1 .000017745150000E 00 2 7FT OM .00044 X SUB W000254355430000E 00 T SUB A .2254.12850 X W DDT .0000000 .000000E-80 OMEGA A .00000 X Q/U1 .00000000 .000000E-80 Y SUB B .00000 X Q/U1 .00000000 .000000E-80 Y SUB B .00000 X Q/U1 .00000000 .000000E-80 Y SUB B .00000 X DEL/U1 .00000000 .000000E-80 Y SUB B .00000 Z U/U1 .00023660 .200000E 00 Y SUB P .00000 Z U/U1 .00023660 .200000E 00 Y SUB P .00000 Z U/U1 .00023660 .200000E 00 Y SUB P .00000 Z U/U1 .0000000 .000000E-80 Y DEL AI .00000 Z U/U1 .0000000 .000000E-80 Y DEL AI .00000 Z U/U1 .0000000 .000000E-80 Y DEL AI .00000 Z DEL/U1 .0000000 .000000E-80 Y DEL AI .00000 Z DEL/U1 .0000000 .000000E-80 X SUB A .22.44532 M SUB U .000000 .000000E-80 X SUB A .22.44532 M SUB U .00200000 .000000E-80 X SUB A .22.44532 M SUB AL .04281858 .600000E-80 X SUB A .22.44532 M SUB AL .04281858 .600000E-80 X SUB A .22.44532 M SUB AL .000000 .000000E-80 X SUB A .22.44532 M SUB AL .04281858 .600000E-80 X DFL EI .00000 M SUB 0 .0000000 .000000E-80 X DFL EI .000000 M SUB 0 .0000000 .000000E-80 X DFL EI .000000 M SUB 0 .0000000 .000000E-80 X DFL EI .000000 S3=004823 S2=000003 S1=0007291 S0=000001 (00419.000000) (006444.000000) (03291.005736) (03291.005736)	17	73399999.99927	N'SUB P	•00000000	
1XZ/IZ .00000 N*DEL AG .000001 1XZ/IX .00000 N*DEL AG .67330437 THRUST Z 787866.60831 N*DEL RG -2.41155668 THRUST T 4000000.00000 .00044 X U/U1 00017745 150000E 00 2 7FT OM .00044 X U/U1 00017745 150000E 00 7 SUB A 2254.12850 X W D07 .0000000 .000000E-80 OMEGA A .00000 X Q/U1 .00000000 .000000E-80 ZETA A .00000 X Q/U1 .00000000 .000000E-80 Y SUB B -6.02487 X DEO/'11 .00000000 .000000E-80 Y SUB R .00000 Z SUP W .00023660 .200000E 00 Y SUB R .00000 Z SUP W .00000000 .000000E-80 Y DEL AI .00000 Z W D07 .00000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .000000000 .000000E-80 Y DEL AI .00000 Z DEI/U1 .000000000000000000000000000000000000	1 X7	•00000	N*SUB R	-,00419011	
IIZ/IX .00000 N'DEL AG .6730437 THRUST Z 787866.60831 N'DEL RG -2.41155668 THRUST T 400000.00000 0025435 150000E 00 27FT OM .00044 X SUB W 0025435 430000E 00 27FT OM .00044 X SUB W 000000 .0000000 .000000E-80 OMEGA A .00000 X Q/U1 .0000000 .000000E-80 ZETA A .00000 X Q/U1 .0000000 .000000E-80 Y BB -6.08487 X DEO/'11 .0000000 .000000E-80 Y BDT .00000 X U/U1 .00023660 .200000E 00 Y SUB R .00000 X W DOT .0000000 .0000000E-80 Y SUB R .00000 X W DOT .0000000 .0000000E-80 Y NEL AI .00000 X W DOT .0000000 .000000E-80 Y NE R .00000 .000000 .0000000 .0000000 .0000000E-80 Y NE R .00000 .000000 .0000000 .0000000 .0000000E-80 Y NE R .000000 .0000000 <t< th=""><th>1 X Z / 1 Z</th><th>•00000</th><th>N'DEL A</th><th>.00003021</th><th></th></t<>	1 X Z / 1 Z	•00000	N'DEL A	.00003021	
THRUST Z 787866.0031 H*DEL RG +2.41133060 THRUST Z 4000000.00000 04282 X U/U1 00017745 150000E 00 2 7FT OM .00044 X SUB W 00025435 430000E 00 7 5HB A 2254.12850 X W DDT .0000000 .000000E-80 OMEGA A .00000 X Q/U1 .0000000 .000000E-80 ZETA A .00000 X Q/U1 .0000000 .000000E-80 Y SHB B -6.08487 X DEC/'11 .00000000 .000000E-80 Y R DOT .00000 Z U/U1 .00023660 .200000E 00 Y SHB P .00000 Z W DOT .00000000 .000000E-80 Y SHB P .00000 Z W DOT .000000000000000000000000000000000000	117/11		N'DEL AG	•67 3 30437	
OMERA SQ 042A2 X. U/U1 00017745 150000E 00 2 7FT OM .00044 X. SHE W 00025435 430000E 00 T SHB A 2254.12850 X. W. DOT .0000000 .000000E-80 OMERA A .00000 X. Q/U1 .0000000 .000000E-80 ZETA A .00000 X. DEL/!!1 .0000000 .000000E-80 Y SHB B -6.08487 X. DEO/!!1 .0000000 .000000E-80 Y SHB P .00000 Z. U/!!1 .00023660 .200000E .00 Y SHB P .00000 Z. U/!!1 .00023660 .200000E .00 Y SHB P .00000 Z. U/!!1 .00023660 .200000E .00 Y SHB R .00000 Z. U/!!1 .00000600 .000000E-80 Y SHB R .00000 Z. Q/!!1 .0000000E-80 .000000E-80 Y DEL AI .00000 Z. DEO/!!1 .00000060 .000000E-80 Y DEL AI .00000 Z. DEO/!!1 .00000060 .000000E-01 X SHB W .341206 M SHB H .01570015 .11	THRUST Z	787868.80831	NUEL KG	•2•41157068	
2 7FT 0M .00044 x \$118 W 00025435 430000E 00 T 5118 A 2254.12850 x W DDT .0000000 .000000E-86 OMEGA A .00000 x Q/U1 .0000000 .000000E-80 ZETA A .00000 x DEI/U1 .0000000 .000000E-80 Y 8 DDT .00000 x DEI/U1 .0000000 .000000E-80 Y 8 DDT .00000 Z U/U1 .00023660 .200000E 00 Y 8 DDT .00000 Z SU ^R W 0024363 750000E 00 Y 8 DDT .00000 Z W DOT .00000600 .000000E-80 Y 8 DDT .00000 Z W DOT .00000600 .000000E-80 Y 8 DT .00000 Z Q/U1 .00000600 .000000E-80 Y 8 DEL A1 .00000 Z Q/U1 .00000600 .000000E-80 Y 9 DEL A1 .00000 Z DEI/U1 .000000000 .000000E-80 Y 9 DEL A1 .00000 Z DEO/U1 .000000000000000000000000000000000000	INKIISI I		¥ 11/11	00017745	- 150000F 00
T SHB A 2254.12850 X W DDT 00000000 000000E-80 OWEGA A .00000 X QUI .0000000 .000000E-80 ZETA A .00000 X DEL/UI .0000000 .000000E-80 Y SHB B -6.08487 X DEO/'I .000000E-80 Y SHB B -6.08487 X DEO/'I .000000E-80 Y SHB B -6.08487 X DEO/'I .000000E-80 Y SHB P .00000 Z U/UI .00023660 .200000E 00 Y SHB P .00000 Z W -00023660 .200000E-80 Y SHB P .00000 Z WD .00000000 .000000E-80 Y DEL AI .00000 Z QUI .000000000000000000000000000000000000	2 TET OM		Y CUPOL		=_430n00F 00
OMEGA A .00000 x 4/U1 .0000000 .000000E-80 ZETA A .00000 x 1E/!1 .0000000 .000000E-80 Y SHB B -6.08487 x DEO/!1 .0000000 .000000E-80 Y SHB B -6.08487 x DEO/!1 .0000000 .000000E-80 Y SHB P .00000 Z U/U1 .00023660 .200000E 00 Y SHB P .00000 Z W DOT .000000600 .000000E-80 Y SHB R .00000 Z U/U1 .000000600 .000000E-80 Y SHB R .00000 Z U/U1 .000000600 .000000E-80 Y DFL AI .000000 Z DEI/U1 .0000000000 .000000E-80 Y DFL R .000000 Z DEO/U1 .000000000 .00000000000 Y DFL R .000000 Z DEO/U1 .00000000000 .0000000000000 Y DFL R .000000 Z DEO/U1 .000000000000000000000000000000000000	T SID A	2254.12850		.00000000	.000000F-80
ZETA A .000ñ0 X DEL/!!1 .0000000 .0000000 Y SHB B -6.08487 X DEO/!!1 .00000000 .0000000 Y R DOT .000ñ0 Z U/!!1 .00023660 .200000E 00 Y SHB P .000ñ0 Z SUR W -00044363 750000E 00 Y SHB R .000ñ0 Z W DOT .00000ñ00 .000000E-80 Y SHB R .000ñ0 Z Q/U1 .00000ñ00 .000000E-80 Y DFL AI .000ñ0 Z DEI/U1 .00000ñ00 .000000E-80 Y DFL R .000ñ0 Z DEO/!!1 .00000ñ00 .000000E-80 X SUB A -2.44532 M SUB !! 01570015 110000E-01 X SUB A -2.44532 M SUB A .00000ñ00 .000000E-80 X SUB A -2.44532 M SUB A .000000 .000000E-80 X SUB A .244532 M SUB A .0000000 .000000E-80 X DFL EI .000ñ0 .0000000 .0000000 .000000E-80	ONFGA A	.0000		.00000000	000000E-80
Y SHB -6.08487 X DEO/UI .000000 .000000E-80 Y R DOT .00000 Z U/UI .00023660 .200000E 00 Y SHB P .00000 Z U/UI .00023660 .200000E 00 Y SHB P .00000 Z U/UI .00023660 .200000E 00 Y SHB P .00000 Z U/UI .00023660 .200000E 00 Y SHB P .00000 Z U/UI .00023660 .200000E 00 Y SHB P .00000 Z W DOT .000000600 .000000E-80 Y DFL A .00000 Z DEO/UI .000000600 .0000000E-80 Y DFL R .00000 Z DEO/UI .000000600 .000000E-80 X SUB -2.44532 M SUB -01570035 -110000E-80 X SUB -2.44532 M SUB .000000 <t< th=""><th>TETA A</th><th>.00000</th><th>X DETZUS</th><th>.00000000</th><th>.UC0000E-80</th></t<>	TETA A	.00000	X DETZUS	.00000000	.UC0000E-80
Y R DOT .00000 Z U/U1 .00023660 .200000E 00 Y SHR .00000 Z SUR 00044363 750000E 00 Y SHR .00000 Z W .0000000 .0000000 .00000E-80 Y DFL AI .00000 Z .000000 .0000000 .000000E-80 Y DFL AO .00000 Z .0000000 .000000E-80 Y DFL AO .00000 Z .0000000 .000000E-80 Y DFL AO .00000 Z .000000E-80 Y DFL .000000 Z .000000E-80 Y DFL .000000 Z .0000000 .000000E-80 X SUB .2.44532 M .04281858 .600000E-80 X SUB .2.44532 M .04281858 .600000E-80 X SUB .2.44532 M .000000 .0000000 .000000E-80 X BFL .000000 M	Y SHB B	-6.08487	X DE0/11	•00000000	.000000E-80
Y SHR P .000ñ0 Z SUR W 00044363 750000E 00 Y SHR R .000ñ0 Z W DOT .00000ñ0 .00000ñ0 .00000E-80 Y DEL AI .000ñ0 Z Q/U1 .00000ñ00 .00000E-80 Y DEL AO .000ñ0 Z DEI/U1 .00000ñ00 .00000E-80 Y DEL R .000ñ0 Z DEO/U1 .00000ñ00 .00000E-80 Y DEL R .000ñ0 Z DEO/U1 .00000ñ00 .00000E-80 Y DEL R .000ñ0 Z DEO/U1 .00000ñ00 .000000E-80 X SUB A -3.41208 M SUB U 01570015 110000E-01 X SUB A -2.44532 M SUB U .04281858 .600000E-80 X SUB A -2.44532 M SUB A .00000ñ00 .000000E-80 X SUB A -2.44532 M SUB A .00000ñ00 .000000E-80 X SUB A -2.44532 M SUB A .00000ñ00 .000000E-80 X SUB A -2.44532 M SUB A .00000ñ00 .000000E-80 X SUB A .000ñ0 M DEL EI .00000ñ00 .0000000E-80 X DEL EO	Y B DOT	.00000	Z U7U1	• 0002 3660	.200000E 00
Y SUR R .00000 Z W DOT .0000000 .000000E-80 Y DEL AI .00000 Z Q/U1 .00000000 .000000E-80 Y DEL AO .00000 Z DEI/U1 .00000000 .000000E-80 Y DEL AO .00000 Z DEI/U1 .00000000 .000000E-80 Y DEL R .00000 Z DEO/U1 .00000000 .000000E-80 Y DEL R .00000 Z DEO/U1 .00000000 .000000E-80 X SUB A -3.41208 M SUB U 01570015 110000E-01 X SUB A -2.44532 M SUB U .04281858 .600000E-80 X SUB A -2.44532 M SUB A .000000 .000000E-80 X SUB A -2.44532 M SUB A .04281858 .600000E-80 X SUB A -2.44532 M SUB A .00000000 .000000E-80 X SUB A -2.44532 M SUB A .00000000 .0000000E-80 X SUB A -2.44532 M SUB A .00000000 .0000000E-80 X SUB A .000000 M DEL EI .00000000 .00000000 .0000000E-80 X DEL EO	Y SHR P	.000ñ0	Z SUP W	00044363	750000E 00
Y DEL AI .00000 Z Q/U1 .0000000 .00000E-80 Y DEL AO .00000 Z DEI/U1 .00000000 .00000E-80 Y DEL R .00000 Z DE0/U1 .00000000 .000000E-80 Y DEL R .00000 Z DE0/U1 .00000000 .000000E-80 X SUB U -3.41208 M SUB U .01570015 .110000E-01 X SUB A -2.44532 M SUB U .04281858 .600000E-80 X SUB A -2.44532 M SUB AL .04281858 .600000E-80 X A DOT .00000 M AL DOT .0000000 .000000E-80 X SUB Q .00000 M SUB Q .0000000 .000000E-80 X SUB Q .00000 M DEL EI .00000000 .000000E-80 X DEL EI .00000 M DEL EI .00000000 .0000000E-80 X DEL EO .000000 M DEL EC .000000000 .0000000E-80 LAT DEN S4=-1.0000000 S3=004823 S2=000003 S1=000021 .03291 .03291 .03291 .03291 .03291 .03291 .03291 .05736) .03291 05736	Y SUB R	.000 <u>0</u> 0	Z W DOT	• 00000 čá0	•000000E=80
Y DFL AO .00000 Z DEI/UI .00000000 .00000000 Y DFL R .00000 Z DE0/UI .000000000000 X SUB U -3.41208 M SUB U .01570015 .11000000000 X SUB A -2.44532 M SUB AL .04281858 .6000000000000 X A DOT .00000 M AL DOT .000000000 .00000000000000000 X SUB Q .00000 M SUB O .000000000000000000000000000000000000	Y DEL AI	•00000	Z Q/U1	•00000000	•00U00UE-80
Y NFL R .00000 Z DE0/01 .0000000000000 .000000000000000 X SUB N -3.41208 M SUB U 01570015 1100000000000 X SUB A -2.44532 M SUB AL .04281858 .60000000000 X A DOT .00000 M AL D^T .00000000 .000000000000 X SUB Q .00000 M SUB Q .00000000000000 .000000000000000000000000000000000000	Y DEL AO	.00000	Z DEI/UI	•00000000	-000000E=80
X SUR U -3.41208 M SUR U 01570015 1100002-01 X SUB A -2.44532 M SUR AL .04281858 .6000002-01 X A DOT .00000 M AL D^T .0000000 .6000002-80 X SUR Q .00000 M SUR A .00000000 .6000002-80 X SUR Q .00000 M SUR A .00000000 .0000002-80 X SUR Q .00000 M SUR A .00000000 .0000002-80 X DFL EI .000000 M DEL EI .000000000 .000000000000000000000000000000000000	Y DPL R	.00000	Z DEO/U1	.00000000	.00000E=80
X SUB A -2.44332 M SUB AL .0028(1996 .000000000 X A DOT .00000 M AL DOT .00000000 .00000000 X SUB A .00000 M AL DOT .00000000 .000000000 X SUB A .00000 M AL DOT .00000000 .000000000000 X SUB A .000000 M SUB A .000000000 .0000000000000 X DFL EI .000000 M DEL EI .000000000000000000000000000000000000	X SUB U	-3.41208	M SUH U	••01570015	
X & DUT .00000 H AL DUT .000000 .000000 .000000 X SHR Q .00000 M SUR Q .00000000 .000000E=80 X DFL EI .000000 M DEL EI .00000000 .000000E=80 X DFL EO .000000 M DEL EC .000000000 .000000E=80 LAT DEN \$4==1.000000 \$3=004823 \$2=0000003 \$1=0007291 \$0=0000001 (00419	X SUB A	- 2. 44732		• U 4 2 5 1 5 2 0 0 6 0 0 0 6 0 0	-000000C+01
X DFL EI .00000 M DEL EI .000000000 .0000000 X DFL EO .000000 MDEL EC .000000000 .0000000 X DFL EO .0000000000 .0000000000 LAT DEN \$4=-1.000000 \$3=004823 \$2=000003 \$1=000003 \$1=0000001 (03291 \$0=0000001 (0329105736) (03291,05736)	X A DUT	,00000	" AL D''I M RIB O	•••••••••••••••	.000000C=80
X DEL E0 .000000 MDEL E0 .00000000 .000000E-80 LAT DEN \$4=-1.000000 \$3=004823 \$2=000003 \$1=00736) .0000001 .0000001 (0041900000) .0664400000) .05736) .0329105736	x 5116 W y 51, PT	• • • • • • • • •	M BEL ET	- 000000000 - 268860600	-000000F-80
LAT DEN S4=+1.000000 \$3=004823 \$2=000003 \$1=000291 50=000001 (0041900000) (0664400000) (0329105736) (0329105736)	A DEL EL	•00000	HDEL CI HDEI FO	• 0000 00000	100000E=80
LAT DEN \$4=+1.000000 \$3=004823 \$2=000003 \$1=0007291 50=000001 (0041900000) (0664400000) (0329105736) (0329105736)	A UPL CO	• • • • • • •	HELLU		
(0041900000) (0664400000) (.0329105736) (.03291,05736	LAT DEN SAR+1	.000000 53=On	4823 52=000	003 S1=0007291	50=000001
	(004190	0000) [06644.	.00000) (.0	329105736)(.	03291,05736)

LON DEN S4= 1.000000 53= .003744 52= -.042817 51= -.000385 50= .000001 (.00127. .000001 (..01022. .00000) (..20416. .00000) (..20942. .00000)

(170 SEC)

- -----

Lateral component of relative wind

$$\mathbf{v}_{\mathbf{A}} = \mathbf{v} - \mathbf{v}_{\mathbf{w}} \tag{B17}$$

The lateral bending moments were computed at stations 660 and 1800. The same process as used in pitch was used to compute bending due to sideslip at conditions apart from max q.

$$\mathbf{N}' = \mathbf{N}_{\beta}'^{\beta} + \mathbf{N}'_{\delta_{\mathbf{Z}}}^{\delta_{\mathbf{Z}}}$$
(B18)

where

$$N_{\beta}^{\prime\beta} = \left(\frac{N_{\beta}^{\prime}}{u_{o \text{ at }}}\right) \left(\frac{Y_{v}v_{A}}{Y_{v} \text{ at max } q}\right)$$

The gimbal actuator dynamics were assumed similar to those used in reference ref. 21. In pitch:

$$\ddot{\delta}_{y} = -2\delta \omega_{n} \dot{\delta}_{y} - \omega^{2} (\delta_{y} \delta_{yi}) + \frac{\partial \delta}{\partial \dot{q}} \dot{q} + \frac{\partial \delta}{\partial A_{CG}} A_{CG}$$
(B19)

where

$$\zeta = 0.4$$
$$\omega_n = 33$$

Lateral

$$\ddot{\delta}_{z} = -2\zeta \omega_{n} \dot{\delta}_{z} - \omega^{2} \left(\delta_{z} - \delta_{z} \right) + \frac{\partial \delta}{\partial \dot{r}} \dot{r} + \frac{\partial \delta}{\partial A_{CG}} A_{CG}'' \quad (B20)$$

Roll gimbal control

$$\ddot{\delta}_{x} = -2\zeta \omega_{n} \dot{\delta}_{x} - \omega^{2} \left(\delta_{x} - \delta_{x} \right) + \frac{\partial \delta}{\partial p} \dot{p}$$
(B21)

Roll aileron control

1

$$\ddot{\delta}_{a} = -2\zeta \omega_{n} \dot{\delta}_{a} - \omega^{2} \left(\delta_{a} - \delta_{a} \right) + \frac{\partial \delta_{a}}{\partial \dot{p}} \dot{p}$$
(B22)

 $\omega_n = 10$

Aerodynamic hinge moment data were not available, thus neglected. They should be used if available.

THE STABILITY DERIVATIVES

Table B4 contains the pitch derivatives and other data needed for pitch analysis. Pitch (and lateral) tail wag dog (TWD) and dog wag tail (DWT) data are given in Table B5 for three times of flight: lift off, max q, and cutoff. These derivatives were obtained as follows: $-13F_{\rm T}$

$$Z_{\delta} = \frac{13m_{E}}{m} (x_{\delta} - x_{E})$$

$$M_{\delta} = \frac{13F_{E}}{I_{y}} (x_{CG} - x_{\delta})$$

$$M_{\delta}^{*} = \frac{-13}{I_{y}} [m_{E}(x_{\delta} - x_{E}) (x_{CG} - x_{E}) + I_{E}]$$

$$\frac{\partial \delta}{\partial q} = \left(\frac{1}{I_{E}}\right) [m_{E}(x_{\delta} - x_{E}) (x_{CG} - x_{E}) + I_{EO}]$$

$$\frac{\partial \delta}{\partial A_{CG}} = \frac{m_{E}}{I_{E}} (x_{\delta} - x_{E})$$

Stability Derivatives	Lift off	Max q	Cut off
$10^{+3} \times M_{\delta}$	-1.13	-1.3	-2.4
$10^{+3} \times Z_{\delta}$	-37.0	-49.0	-100.0
$\ddot{\delta}_{q}$	-44.0	-38.0	-19.0
δ _{Acg}	-0.43	-0.43	-0.43
$L_{\delta_x}^n \times 10^3$	-1.5	-1.6	-2.3
$L_{\delta_a}^{\cdot\cdot} \times 10^3$	-2.2	-2.3	-3.3
ġġ/ŷ ^x ġę	-4.8	-4.8	-4.6
³ σ́a ^{/∂} ṕ	-4.6	-4.6	-4.6
$10^3 \mathrm{N}_{\delta_z}$	-1.13	-1.3	-2.4
$10^3 \text{ Y}\ddot{\delta}_z$	+37.0	+49,0	+100.0
³ öz ^{/ð} ŕ	-44.0	-38.0	-19.0
^ð öz ^{/ð} ay	+0.43	+0.43	+0.43
$10^3 \text{ N'} \frac{3}{\delta_a}$	-0.29	-0.29	0
10 ³ N'ö _x	-0.18	-0.13	+0.46
10 ³ L'ö _z	-1.75	-2.0	-0.48

Table B5. Tail Wag Dog and Dog Wag Tail Stability Derivatives

The following values were estimated for the 450,000-pound thrust engine:

$$m_{E} = 144 \text{ slugs}$$

$$I_{E} = 724 \text{ slug ft}^{2}$$

$$I_{EO} = 50 \text{ slug ft}^{2}$$

$$x_{\delta} = 194 \text{ ft}$$

$$x_{\delta} - x_{E} = -2.2 \text{ ft}$$

_

x_{CG} is given in Table B1.

Yaw DWT and TWD terms were derived by similarity to the longitudinal terms:

 $Y_{\delta_{z}} = -Z_{\delta}$ $Y_{\delta_{z}}^{"} = -Z_{\delta}^{"}$ $N_{\delta_{z}} = M_{\delta}$ $N_{\delta_{z}}^{"} = M_{\delta}^{"}$ $O = L_{\delta_{z}} = L_{\delta_{z}}^{"}$ $\delta_{z_{r}} = \delta_{q}^{"}$ $\delta_{z_{A_{y}}} = -\delta_{A_{CG}}$

The roll control terms made use of the lateral geometry shown in Figure B5 which includes the ailerons. An aileron planform is, roughly, looking down:

Phase A reports were used to estimate, for one aileron:

mass,
$$m_{\delta_a} = 110$$
 slugs
 $x_{\delta_a} = 8$ ft (mass offset, no balance)
 $y_{\delta_a} = 21.5 + 16 = 37.5$ ft from vehicle centerline to
mass center

These data yield (for two ailerons)

$$L_{\delta_{a}}^{"} = -\left(\frac{1}{I_{x}}\right) \left(x_{\delta_{a}}\right) \left(y_{\delta_{a}}\right) \left(m_{\delta_{a}}\right) = \frac{-66,000}{I_{x}}$$

The engine roll control terms assumed (see Figure B5) all engines except No. 8 gimballed in pitch and yaw to produce as much torque as possible about No. 8.

Under this assumption the average moment arm is 11.1 feet. The roll torque for 13 engines is $(11.1)(13)(F_T) = -67 \times 10^6$ ft lb/rad

The roll control derivative is:

$$L_{\delta_{\mathbf{x}}} = \frac{-67 \times 10^6}{I_{\mathbf{x}}}$$

Å.

Figure B5. Rear View of Booster Showing Launch Configuration Engine and Aileron Mass Centers

The roll TWD term is:

$$L_{\delta_{x}}^{*} = \left(\frac{11.1\times13}{I_{x}}\right) \left(m_{E}\right) \left(x_{\delta}^{-}x_{E}\right) = \frac{-46,000}{I_{x}} \frac{\sec^{2}}{rad}$$

The roll DWT terms are

$$\frac{\ddot{\partial} \delta_x}{\partial \dot{p}} = (11.1) \left(\frac{\ddot{\partial} \delta_y}{\partial \dot{w}} \right) = -4.8$$

$$\frac{\partial \delta_{a}}{\partial \dot{p}} = -\left(\frac{1}{I_{\delta_{a}}}\right) \left(x_{\delta_{a}}\right) \left(Y_{\delta_{a}}\right) \left(m_{\delta_{a}}\right) = \frac{-Y_{\delta_{a}}}{x_{\delta_{a}}} = \frac{-37.5}{8} = -4.6$$

Table B4 presents most of the lateral stability data, as well as some longitudinal data which duplicated Table B1. The primed derivatives have the product of inertia accounted for, as explained in Table B3.

THE PITCH SIMULATION

Figures B6 and B7 are the analog computer diagrams for the pitch simulation. Time-varying coefficients in the diagram were obtained with padded potentiometers, driven by the time servomultipliers SM2 and SM3. Figure B8 plots $M_{\delta y}$, A_x , and γ_R . Figure B9 plots u_0 and z_w . The derivatives $Z_{\delta y}$ and M_w were scaled from the $M_{\delta y}$ and Z_w pots, respectively:

$$Z_{\delta_{y}} = 44 M_{\delta_{y}}$$
$$M_{w} = (\frac{1}{57}) Z_{w}$$

The 7 control systems examined in this study are shown in Figure B10. The first two (minimum drift and attitude hold) had constant gains. The remaining five had time-scheduled gains K_{ρ} and K_{Λ} .

A

ļ

Figure B7. Simulation of Control System for Boost Pitch

Γ,

Figure B8. Time Varying Parameters in Simulations

57

Figure B9. Time Varying Parameters in Simulations

58

ā

Figure B11 shows the wind used in all tests. It is a single sample obtained from the wind model described in Appendix A. It has a 3σ peak of 290 ft/sec at 55 seconds.

THE LATERAL SIMULATION

Table B4 shows stability derivative data for the lateral axes as well as pitch. Figures B12 and B13 are the simulation diagrams for this study. The time varying coefficients are shown in Figure B14.

The simulation includes tail-wag-dog and dog-wag-tail terms which can be switched in or omitted. Figure 39 shows the effect of these terms on performance. Close examination of the traces shows a discernible but negligible effect (for example, the bending moment traces with attitude control). Note that higher gains are used with TWD and DWT to get damping performance comparable to that without these terms. The higher gain has negligible effect on the magnitude of the control perturbations in the wind disturbance used in this study. It was concluded that TWD and DWT terms need not be simulated to assess the control authority needed when disturbed by this wind model. The results presented in the body of the report are without TWD and DWT.

The bending equations are given in Table B2. These coefficients for β were assumed to apply at max q, where the airspeed is 1510 ft/sec (1510 M'_v = M'_{\beta}). In terms of lateral velocity v_A then, the bending moments are:

$$M'(660) = 10^{6} [-1.62\delta_{z} - 0.0059 v_{A}]$$
$$M'(1800) = 10^{6} [-22.8\delta_{z} - 0.013 v_{A}]$$

The variation in M'_{v} with q was assumed to be the same as the stability derivative Y_{v} . Therefore

$$\left(Y_{v}v_{A}^{v}\right)\left(\frac{1}{Y_{v}}\right)$$
 (64 sec)

was substituted for vA to compute the bending moments.

Figure B11. Vaughan-Skelton Wind

Figure B12. Vehicle B Lateral Boost Simulation

- -1

ł

Figure B13. Vehicle B Lateral Boost Simulation

L

 $\frac{CONSTANTS}{NS_a} = \frac{1}{8} L_{S_a}(t)$ $N_p = \frac{L_p(t)}{6.7}$ $L_r = \frac{N_r(t)}{0.7}$ $L_{S_x} = -2.8$ $Y_{S_2} = -42 N_{S_2}(t)$

Figure Bl4. Analog Check of Simulation of Padded Pots

APPENDIX C

PITCH EQUATIONS AND DATA FOR COVARIANCE ANALYSES OF THE LAUNCH PHASE OF MSFC VEHICLE B

This appendix presents the data used to develop the covariance summary results of Section II. Nomenclature, representations, and derivatives are presented below. Computer output covariance data are presented in Tables C8-C16.

NOMENCLATURE

$$A[\mathbf{x}] = \text{Slender body area [Equation (C9)]} \qquad \text{ft}^{2}$$

$$\widetilde{A}' = \left\{ + \left[V\dot{\gamma}_{0} + \left(g - \frac{V^{2}}{r} \right) \cos \gamma_{0} \right] \sin \alpha_{0} - \left(g - \frac{V^{2}}{r} \right) \sin \gamma_{0} + \dot{V} \right\} \qquad \text{ft/sec}^{2}$$

$$\widetilde{B} = \left\{ - \left[V\dot{\gamma}_{0} + \left(g - \frac{V^{2}}{r} \right) \cos \gamma_{0} \right] \sin \alpha_{0} - \dot{V} \right\} \qquad \text{ft/sec}^{2}$$

$$G = \frac{\bar{C}}{r} G \qquad \text{sec/rad}$$

$$C_{L_q} = \frac{\bar{c}}{2V} C_L \left(\frac{q\bar{c}}{2V}\right)_{cm} \qquad \text{sec/råd}$$

 $\begin{array}{c} C_{L} \qquad \text{(Figure C1)} \\ \left(\frac{q\bar{c}}{2V}\right)_{cm} \end{array}$

 $C_{L_{\alpha}}$ (Figure C2) 1/rad

 $C_{L_{\alpha_{-}}}$ (Figure C3) 1/rad

$$C_{L_{\dot{\alpha}}} = \frac{\bar{c}}{2V} C_{L_{\dot{\alpha}}} \left(\frac{\dot{\alpha}\bar{c}}{2V} \right)$$

sec/rad

ŋ

L = 209 (gust penetration length)	ft
M = Aerodynamic pitching moment	ft-lb
M = Mach number (Table C7)	
M.R. = $\frac{(\ell + 15)^2}{32.17} \frac{d}{dt} W - \frac{d}{dt} I_{yy}$ (inertial rate and jet damping)	slug-ft ² /sec
M ₆₆₀ = Bending moment at station 660	in1b
M ₁₃₀₀ = Bending moment at station 1300	in. -1 b
M ₁₈₈₀ = Bending moment at station 1880	in. - 1b
$M'_{1\alpha} = -6.72 \times 10^6 \times 57.3 (M_{660} \text{ due to } \alpha \text{ at } \bar{q}_{max})$	inlb/rad
$M'_{2\alpha} = -11.2 \times 10^6 \times 57.3 (M_{1300} \text{ due to } \alpha \text{ at } \bar{q}_{max})$	inlb/rad
$M'_{3\alpha} = -10.1 \times 10^6 \times 57.3 (M_{1880} \text{ due to } \alpha \text{ at } \bar{q}_{max})$	inlb/rad
$M'_{1\delta} = -1.62 \times 10^6 \times 57.3 (M_{660} \text{ due to } \delta \text{ at } \bar{q}_{max})$	inlb/rad
$M'_{2\delta}$ = -15.05 x 10 ⁶ x 57.3 (M_{1300} due to δ at \bar{q}_{max})	inlb/rad
$M'_{3\delta} = -22.80 \times 10^6 \times 57.3$ (M ₁₈₈₀ due to δ at q_{max})	inlb/rad
S = 10,250 (reference area)	${\rm ft}^2$
T = Thrust (Table C7)	1b
V = Speed relative to earth (Table C7)	ft/sec
W = Weight (Table C7)	1b
a _{ij} = Element of A matrix	
ac = Aerodynamic center (subscript)	
\bar{c} = 211 (reference length)	ft
cm = Center of mass (subscript)	
$c_1 \sigma_w \sqrt{\dot{h}} = Coefficient in random wind model (Figure A8and Table A2)$	$ft/sec^{3/2}$

`,

Γ.

1

$c_2 \sqrt{h} = Coefficient in random wind model (Figure A9 and Table A2)$	$1/ft sec^{1/2}$
$c_3 \sigma_w h = Coefficient in random wind model (Figure A10 and Table A2)$	${\rm ft}^2/{ m sec}^2$
$c_4 \dot{h}$ = Coefficient in random wind model (Figure A11 and Table A2)	1/sec
$\frac{c_5 h}{\sigma_w}$ = Coefficient in random wind model (Figure A12 and Table C1)	1/ft ²
f = Force vector [Equation (C2) and Table C2]	
\widetilde{f} = Force vector [Equation (C1) and Table C1]	
g = 32.17 = Gravity	ft/sec^2
g = Gust (subscript)	
g _{ij} = Element of G matrix	
h = Altitude	ft
h _{ij} = Element of H matrix	
h = Altitude rate	ft/sec
$\ell = x_{\delta} - x_{cm}$	ft
mrp = Moment reference point (subscript)	
n = Normal acceleration at cm	ft/sec^2
n _{IT} = Normal acceleration at pilot's seat	ft/sec 2
p = Roll rate	rad/sec
q = Pitch rate	rad/sec
\overline{q} = Dynamic pressure (Table C7)	lb/ft^2
$r = h + r_e = (Table C7)$	ft
r = Roll rate	rad/sec
r _e = Earth's radius	ft
•	

r = Response vector [Equation (C2) and Table C2]

68

Ì

t = Time since launch (Table C7)	sec
u = Input from controller (Tables C1 and C2)	rad/seç
\overline{v} = Mean wind (Figure A5 and Table A2)	ft/sec
\tilde{v} = Random wind (Table C1; Cf Appendix A)	ft/sec
$v_{w} = \overline{v} + \widetilde{v} = Wind$ (Table C1; Cf Appendix A)	ft/sec
w = Wind (subscript)	
x = State vector [Equation (C1) and Table C1]	
x = Wind state (Table C1; Cf Appendix A)	1/ft
x = Distance from nose (Figure 1)	ft
x_{cm} = Center of mass (Table C7)	ft
x _{mrp} = 155.8	ft
$x_p = x_{cm} - 59.7 = (Pilot's position)$	ft
$x_{\delta} = 194 = (gimbal position)$	ft
$x_1 =$ First basis element for gust penetration (Table C1)	ft/sec
x_2 = Second basis element for gust penetration	ft/sec
x_3 = Third basis element for gust penetration	ft/sec
z = Downward distance normal to reference trajectory [Equation (C28) and Figure C5]	ft
Δ = Perturbation symbol	
Ω = Earth's rotational rate	rad/sec
α = Geometric angle of attack (Figure C5 and Table C2); does not include the wind.	rad
α_0 = Angle of attack along reference trajectory (Table C7)	rad
γ = Flight path angle relative to round earth [Equation (C20) and Table C1]	rad

γ_0 = Flight path angle along the reference trajectory (Table C7)	rad
δ = Gimbal deflection [Equation (C1) and Table C1]	rad
$\delta_0 = $ Gimbal deflection along the reference trajectory (Figure 2)	rad
δ = Gimbal position (subscript)	
η = Unity white noise	$1/\sec^{1/2}$
θ = Pitch angle [Equation (C1) and Table C1]	rad
$\theta_{\rm O} = \alpha_{\rm O} + \gamma_{\rm O}$	rad
 Lift associated with ith basis element (x_i) of gust penetration; note elements a₂₇, a₂₃, and a₂₄ of Table C1. Their determination is presented between Equations (C3) and C15) 	
μ_{li} = Moment associated with i th basis element $f(x_i)$ of gust penetration; note elements a_{17} , a_{13} , and a_{14} of Table C1. Their determination is presented between Equations (C3) and (C19)	
$\sigma_{\rm W}$ = Standard deviation of random wind (Figure A6)	ft/sec
σ/σ = Coefficient in random wind model (Figure A7 and Table A2)	1/sec

REPRESENTATIONS

The generic forms for the perturbation state transition and response are given by

x	=	Ax + Gf'	(C1)
r	=	Hx + Df	(C2)

They are presented explicitly in Tables C1 and C2. These tables and the nomenclature provide for generating all data.

The coefficients a_{55} , a_{56} , a_{65} , a_{66} , g_{53} , g_{63} , and \bar{v} are tabulated in Table A2. The remainder of the coefficients of matrices A, G, H, and D are presented in Tables C3 through C6.

DERIVATIONS

Winds

The wind normal to the vehicle v_w is taken as made up of a mean v_w and random v_w . The model is discussed in Appendix A.

The mean wind \overline{v} appears as a disturbance forcing function in Tables C1 and C2. Numerical values are shown in Figure A5 and column 2 of Table A2.

The random wind \tilde{v} is generated by the differential equations of rows 5 and 6 of Table C1. Coefficients are plotted in Figure A7 through A12 and columns 4 through 9 of Table A2.

Distributing the Wind Gust Loads

The wind lift force and the moment on the vehicle are the result of the integration of pressures developed by the winds. A lumped parameter representation is required for these distributed forces.

The lift and pitching moment coefficients due to normal gusts are taken to be

$$C_{L_{\alpha_{g}}} = \frac{C_{L_{\alpha}}}{V} \left\{ \mu_{1} x_{1} + \mu_{2} x_{2} + \mu_{3} x_{3} \right\}$$
(C3)

$$C_{m_{\alpha_{g}}} = \frac{C_{m_{\alpha}}}{V} \left\{ \mu_{11} x_{1} + \mu_{12} x_{2} + \mu_{13} x_{3} \right\}$$
(C4)

where x_1 , x_2 , and x_3 are system states driven by the wind, v_w . For constant winds $x_1 = x_2 = x_3 = v_w$. Rows 7, 3, and 4 of Table C1 show this and how the x_i s are driven by the wind, v_w . The μ 's are constant to the determined.

The step responses of x_1 , x_2 , and x_3 (called f_1 , f_2 , and f_3) for a sharp-edged gust are

$$f_1[x] = 1 - e^{-\frac{2.3}{L}x}$$
 (C5)

$$f_{2}[x] = 1 - e^{-\frac{2.3}{L}x} \left\{ \cos \frac{2\pi}{L} x - 1.165 \sin \frac{2\pi}{L} x \right\}$$
(C6)

$$f_{3}[x] = 1 - e^{-\frac{2.3}{L}x} \left\{ \cos \frac{2\pi}{L} + 1.167 \sin \frac{2\pi}{L} x \right\}$$
(C7)

The most gross result of slender body theory (references 22 or 23) yields the step responses for gust penetration as shown in Figure C4.

Determination of μ_1 , μ_2 , and μ_3 is presented first. The left gust penetration derivative is presented in Figure C4; it can be expressed mathematically.

$$C_{L_{\alpha_{g}}}[x] = \frac{2}{S} \int_{0}^{x} A' dx = \frac{2}{S} A[x]$$
 (C8)

where

$$A[x] = 0.1682x(122 - \frac{x}{2}) \text{ for } 0 \le x \le 122$$
(C9)
$$A[x] = 12,950 + x(-278.0 + 1.495x) \text{ for } 122 \le x \le 209 = L$$

Then let

$$g[x] = \frac{C_{L_{\alpha_g}}[x]}{C_{L_{\alpha_g}}[L]}$$
(C10)

Find $\widetilde{\boldsymbol{\mu}}_1,\;\widetilde{\boldsymbol{\mu}}_2,\;\widetilde{\boldsymbol{\mu}}_3$ from the solution of

$$\widetilde{\mu}_{1} \int_{0}^{L} f_{1}^{2} dx + \widetilde{\mu}_{2} \int_{0}^{L} f_{1} f_{2} dx + \widetilde{\mu}_{3} \int_{0}^{L} f_{1} f_{3} dx = \int_{0}^{L} f_{1} g dx \quad (C11)$$

$$\widetilde{\mu}_{1} \int_{0}^{L} f_{1} f_{2} dx + \widetilde{\mu}_{2} \int_{0}^{L} f_{2}^{2} dx + \widetilde{\mu}_{3} \int_{0}^{L} f_{2} f_{3} dx = \int_{0}^{L} f_{2} g dx \quad (C12)$$

$$\widetilde{\mu}_{1} \int_{0}^{L} f_{1}f_{3}dx + \widetilde{\mu}_{2} \int_{0}^{L} f_{2}f_{3}dx + \widetilde{\mu}_{3} \int_{0}^{L} f_{3}^{2}dx = \int_{0}^{L} f_{3}gdx \qquad (C13)$$

Then

$$\mu_{i} = k \widetilde{\mu}_{i}$$
(C14)

where

$$k = \frac{1}{\sum_{i=1}^{3} \widetilde{\mu}_{i}}$$
(C15)

Equations (C11) through (13) are solved for $\tilde{\mu}_1$, $\tilde{\mu}_2$, and $\tilde{\mu}_3$ to provide the least squared fit to penetration dynamics. The tilde values of $\tilde{\mu}$ are adjusted to enforce the correct steady-state response μ 's by Equations (C14) and (C15).

The gust moment parameters μ_{11} , μ_{12} , and μ_{13} are obtained in a manner similar to the gust lift parameters. g[x] is different and the μ 's differ only in notation; i. e., μ_{12} corresponds to μ_2 . g[x] is obtained from Equations (C16) through (C19).

$$g[x] = \frac{C_{m\alpha}[x]}{C_{m\alpha}[L]}$$
(C16)

where

$$C_{m\alpha g} \begin{bmatrix} x \end{bmatrix} = \frac{x_{cm}}{\tilde{c}} C_{L\alpha g} \begin{bmatrix} x \end{bmatrix} + C_{m\alpha (NOSE)_{g}}$$
(C17)

where

 $x_{cm} = 107.98$ ft (for this consideration only the value of 64 sec is taken; x_{cm} is usually taken to have the values of Table C7)

$$C_{m\alpha NOSE_{g}}$$
 [x] from Figure C3 or

$$C_{m} \begin{bmatrix} x \\ g \end{bmatrix} = \frac{-2}{S\bar{c}} \int_{0}^{X} xA' dx = -\frac{2}{S\bar{c}} \{m\}$$
(C18)
$$m = 0.1682x^{2} \left(\frac{122}{2} - \frac{x}{3}\right) \quad 0 \le x \le 122$$
(C19)
$$m = \ell^{2} \left[\ell \left(\frac{a}{6} - \frac{d}{3}\right) - \frac{c}{2}\right] + x^{2} \left(\frac{d}{3} x + \frac{c}{2}\right) \text{ for } 122 \le x \le 209$$

where

. .

 $\ell = 122 \text{ ft}$ a = 0.1682 c = -278 d = 2.99

Normal Motion Dynamics

The acceleration normal (upward) to the flight path is given by [Equation 4, page 6, reference 19].

$$n \simeq V\dot{\gamma} - \frac{V^2}{r}\cos\gamma - r\Omega^2\cos\gamma - 2\Omega V$$
 (C20)

As written it is for wings level with the velocity in the earth's equatorial plane. The third term is neglected because it is relatively small, i.e.,

$$\dot{V\gamma} \sim (1000) \left(\frac{1.5}{170}\right) = 8.82 \text{ ft/sec}^2$$

$$\frac{V^2}{r} \cos \gamma \sim \frac{(10^4)^2}{2.1 \times 10^7} = 4.76 \text{ ft/sec}^2$$

$$r\Omega^2 \cos \gamma \sim (2.1 \times 10^7) (7.27 \times 10^{-5})^2 \cos \gamma = 1.1 \times 10^{-1} \cos \gamma \text{ ft/sec}^2$$

The fourth term is omitted because it would subsequently be lost in the perturbation; V and Ω are not perturbed.

From Figure C5

$$\frac{W}{g} \left\{ V \dot{\gamma} - \frac{V^2}{r} \cos \gamma \right\} = L + T \sin(\alpha + \delta) - W \cos \gamma$$
(C21)

- -

 \mathbf{or}

-

$$\dot{\gamma} = \frac{g}{WV} L + \frac{g}{WV} T \sin(\alpha + \delta) + \left(\frac{V}{r} - \frac{g}{V}\right) \cos\gamma \qquad (C22)$$

Perturbations about a nominal trajectory are taken. Perturbations are restricted to γ , γ , α , α , q, θ , and v_w ; i.e., T, W, V, etc., are not perturbed. The perturbation equation corresponding to Equation (C22) is

$$\dot{\Delta \gamma} = \frac{g}{WV} \bar{q}s \left[C_{L_q} \Delta q + C_{L_{\alpha}} \dot{\Delta \alpha} + C_{L_{\alpha}} \Delta \alpha + \frac{C_{L_{\alpha}}}{V} (\mu_1 x_1 + \mu_2 x_2 + \mu_3 x_3) \right]$$

$$+ \frac{g}{WV} T \cos (\alpha_0 + \delta_0) (\Delta \alpha + \Delta \delta) - \left(\frac{V}{r} - \frac{g}{V}\right) (\sin \gamma_0) \Delta \gamma \qquad (C23)$$

Using

$$\alpha = \theta - \gamma \tag{C24}.$$

$$\dot{\alpha} = q - \dot{\gamma} \tag{C25}$$

$$\cos (\alpha_0 + \delta_0) \cong 1 \tag{C26}$$

in Equation (C23) 2.4 yields

$$\begin{split} \dot{\Delta \gamma} &= \left\{ \frac{1}{\frac{WV}{g} + \bar{q}SC_{L_{\alpha}}} \right\} \left\{ \bar{q}S\left(C_{L_{\alpha}} + C_{L_{q}}\right) \Delta q \\ &+ \left[W \sin \gamma_{o} \left(1 - \frac{V^{2}}{gr} \right) - \bar{q}SC_{L_{\alpha}} - T \right] \Delta \gamma + T \Delta \delta \\ &+ \left(\bar{q}SC_{L_{\alpha}} + T \right) \Delta \theta + \frac{\bar{q}SC_{L_{\alpha}}}{V} \left(\mu_{1}x_{1} + \mu_{2}x_{2} + \mu_{3}x_{3} \right) \right\} \end{split}$$
(C27)

Equation (C27) corresponds to row 2 of Table C1.

Drift rate (z) and drift (z) normal to the flight path are also required. z is taken positive downward. Consistent with the approximations taken thus far is the expression [from Equation (C20)].

$$\ddot{z} = -V\dot{\gamma} + \frac{V^2}{r}\cos\gamma \qquad (C28)$$

Previous studies (reference 6, for example) have approximated the content of Equation (C28) by

$$z \simeq -V\gamma$$
 (C29)

This is done here to take advantage of the format of reference 6. Hence,

$$\dot{\Delta z} = -V \Delta \gamma \tag{C30}$$

which is row 10 of Table C1.

Pitch Rotation Dynamics

.

Pitch rotation is given by

$$[-I_{xy}p + I_{yy}q - I_{yz}r + (I_{xx}-I_{zz})pr + I_{zx}(p^2-r^2) - I_{xy}qr + I_{yz}pq] =$$

$$M - T\ell \sin \delta + (M, R) q$$
(C31)

It is assumed that pitch plane and lateral perturbations are uncoupled. Hence, p and r can be considered to be zero.

$$\begin{split} \mathbf{\dot{q}} &\cong \frac{1}{1_{yy}} \mathbf{M} - \frac{\mathbf{T}_{L}}{1_{yy}} \sin \delta + \frac{(\mathbf{M}, \mathbf{R}, \cdot)}{1_{yy}} \mathbf{q} \\ \text{Taking perturbations yields} \\ & \Delta \dot{\mathbf{q}} &= \frac{\mathbf{q} \underline{S} \overline{c}}{1_{yy}} \left\{ \mathbf{C}_{\mathbf{m}_{\mathbf{q}}} \Delta \mathbf{q} + \mathbf{C}_{\mathbf{m}_{\alpha}} \Delta \boldsymbol{u} + \mathbf{C}_{\mathbf{m}_{\alpha}} \Delta \boldsymbol{u} + \mathbf{C}_{\mathbf{m}_{\alpha}} \Delta \boldsymbol{u} \\ & + \frac{\mathbf{C}_{\mathbf{m}_{\alpha}}}{\mathbf{V}} \left((\mathbf{m}_{\mathbf{1}} + \mathbf{n}_{\mathbf{1}} \mathbf{2} + \mathbf{n}_{\mathbf{1}} \mathbf{3} \mathbf{x}_{\mathbf{3}}) \right) \\ & - \frac{\mathbf{T}_{L}}{\mathbf{V}} \left(\cos \delta_{\mathbf{0}} \right) \Delta \delta + \frac{\mathbf{M}_{\mathbf{R}}}{\mathbf{1}_{yy}} \Delta \mathbf{q} \\ &\cong \left\{ \frac{\mathbf{q} \underline{S} \overline{c}}{1_{yy}} \left(\mathbf{C}_{\mathbf{m}_{\mathbf{q}}} + \mathbf{C}_{\mathbf{m}_{\alpha}} \right) + \frac{\mathbf{M}_{\mathbf{R}}}{\mathbf{1}_{yy}} \right\} \Delta \mathbf{q} - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{C}_{\mathbf{m}_{\alpha}} \Delta \mathbf{q} \\ & - \frac{\mathbf{T}_{L}}{\mathbf{1}_{yy}} \Delta \delta + \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{C}_{\mathbf{m}_{\alpha}} \Delta \theta - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{C}_{\mathbf{m}_{\alpha}} \Delta \mathbf{q} \\ & - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left(\mathbf{C}_{\mathbf{m}_{\mathbf{q}}} + \mathbf{C}_{\mathbf{m}_{\alpha}} \right) + \frac{\mathbf{M}_{\mathbf{R}}}{\mathbf{1}_{yy}} \right) \Delta \mathbf{q} - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{C} \mathbf{m}_{\alpha} \Delta \mathbf{q} \\ & + \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left(\mathbf{C}_{\mathbf{m}_{\mathbf{q}}} + \mathbf{C}_{\mathbf{m}_{\alpha}} \right) \left(\mathbf{1} - \mathbf{a}_{21} \right) \right\} + \frac{\mathbf{M}_{\mathbf{R}}}{\mathbf{1}_{yy}} \right) \Delta \mathbf{q} \\ & - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left(\mathbf{C}_{\mathbf{m}_{\alpha}} + \mathbf{C}_{\mathbf{m}_{\alpha}} \right) \Delta \mathbf{q} - \left\{ \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{C} \mathbf{m}_{\alpha}} \right\} \Delta \delta \\ & - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left(\mathbf{C}_{\mathbf{m}_{\alpha}} + \mathbf{C}_{\mathbf{m}_{\alpha}} \right) \Delta \mathbf{q} - \left\{ \frac{\mathbf{T}_{\mathbf{L}}}{\mathbf{1}_{yy}} + \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \right\} \Delta \delta \\ & - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left\{ \mathbf{C}_{\mathbf{m}_{\alpha}} - \mathbf{C}_{\mathbf{m}_{\alpha}} \right\} \Delta \mathbf{q} - \left\{ \frac{\mathbf{T}_{\mathbf{L}}}{\mathbf{1}_{yy}} + \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{C} \mathbf{m}_{\alpha}} \right\} \Delta \delta \\ & - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left\{ \mathbf{C}_{\mathbf{m}_{\alpha}} - \mathbf{C}_{\mathbf{m}_{\alpha}} \right\} \Delta \mathbf{q} + \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{Q} \right\} \Delta \delta \\ & - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left\{ \mathbf{C} \mathbf{m}_{\alpha}} - \mathbf{C} \mathbf{m}_{\alpha}}{\mathbf{q}} \right\} \Delta \delta + \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{Q} \mathbf{q} \\ & - \frac{\mathbf{q} \underline{S} \overline{c}}{\mathbf{1}_{yy}} \left\{ \mathbf{C} \mathbf{m}_{\alpha}} - \mathbf{C} \mathbf{m}_{\alpha}} \right\} \Delta \delta + \frac{\mathbf{q} \mathbf{q} \mathbf{S} \overline{c}}{\mathbf{1}_{yy}} \mathbf{Q} \mathbf{q} \\ & - \frac{\mathbf{q} \mathbf{S} \overline{c}}{\mathbf{1}_{yy}} \left\{ \mathbf{C} \mathbf{m}_{\alpha}} - \mathbf{C} \mathbf{m}_{\alpha}}{\mathbf{q}} \right\} \Delta \delta + \frac{\mathbf{q} \mathbf{S} \overline{c}}{\mathbf{Q} \mathbf{q} \\ & - \frac{\mathbf{q} \mathbf{S} \overline{c}}{\mathbf{Q}} \mathbf{Q}$$

(C32)

In line 1 the perturbations are taken. In line 2 Equations (C24) and (C25) are used and $\cos \delta_0 = 1$. Row 2 of Table C1 is substituted for $\Delta \dot{\gamma}$ to go from line 2 to line 3. The result is row 1 of Table C1.

Mass Rate Effects

Mass rate damping M.R.q is given by (Equation 7.8-2 of ref. 24) as

$$(M.R.)q = \left\langle \dot{m} \left(\hat{\ell}^2 - k^2 \right) - m \frac{d}{dt} k^2 \right\rangle q \qquad (C34)$$

where

m = vehicle mass $\hat{\ell} = x_{\delta} - x_{cm} + 15 \text{ ft} = \ell + 15$

15 ft = distance from gimbal to end of rocket nozzle

k = pitch radius of gyration

Using

$$\dot{I}_{yy} = \dot{m}k^2 + m \frac{d}{dt}k^2$$
(C35)

yields

M.R. =
$$\dot{m} (\ell + 15)^2 - I_{yy}$$

= $\frac{(\ell + 15)^2}{32.17} \frac{d}{dt} w - \frac{d}{dt} I_{yy}$ (C36)

Actuator Dynamics

Appendix B uses the second-order actuator dynamics

$$\ddot{\delta} = -2\zeta \omega_n \dot{\delta} - \omega_n^2 (\delta - u)$$
 (C37)

where

 $\zeta = 0.4$ $\omega_n^2 = 1,000$ Appendix B includes tail-wags-dog (TWD) and dog-wags-tail (DWT) dynamics which are neglected here. Section II shows the TWD and DWT dynamics are of minor importance. Furthermore, based on the considerations of ref. 6, it is is expected the second-order dynamics can be satisfactorily approximated with a first-order actuator with the same break frequency; i.e.,

$$\delta = -31.6\delta + 31.6u$$
 (C38)

This is row 8 of Table C1.

Bending Moments

The bending moments at stations 660, 1300, and 1800 are given by (page 15 of ref. 10). They were calculated by the procedure of ref. 26 as

$$M_{660} = M_{1\delta}^{\prime} \delta + M_{1\alpha}^{\prime} \alpha + 7.98 \times 10^{6}$$
(C39)

$$M_{1300} = M'_{2\delta}\delta + M'_{2\alpha}{}^{\alpha} + 104.2 \times 10^{6}$$
 (C40)

$$M_{1800} = M'_{3\delta}\delta + M'_{3\alpha}\alpha + 182.1 \times 10^6$$
 (C41)

where the numerical values for the maximum dynamic pressure condition are listed in the nomenclature. The perturbation equations corresponding to the above are

$$\Delta M_{660} = M_{1\delta}^{\prime} \Delta \delta + M_{1\alpha}^{\prime} \Delta \alpha$$
, etc.

Two modifications to the above must be made: 1) extension to the entire boost phase flight, and 2) smoothing for gust penetration.

The most desirable extension would utilize the data used in the ref. 26 computations. These were not provided, so the plausible approximations used in Appendix B are used. This has the added advantage in that it permits a direct comparison of results. It is thus assumed that

$$M_{\alpha}^{\prime\prime}(t) \Delta \alpha = \frac{\frac{\bar{q}SC_{L}}{w}[t]}{\frac{\bar{q}SC_{L}}{\frac{\bar{q}SC_{L}}{w}}[t=64]} M_{\alpha}^{\prime} \Delta \alpha$$

$$= \frac{\frac{\bar{q}C_{L_{\alpha}}}{W}}{\frac{\bar{q}}{W}C_{L_{\alpha}}[t=64]} M_{\alpha}' \Delta \alpha$$

$$= \frac{\frac{\bar{q}C_{L_{\alpha}}}{W}}{\frac{7.86 \times 10^{2}}{2.63 \times 10^{6}} 2.52} M_{\alpha}' \Delta \alpha$$

$$= \frac{\bar{q}C_{L_{\alpha}}}{W7.61 \times 10^{-4}} M_{\alpha}' \Delta \alpha \qquad (C42)$$

The bending moment contribution from gimbal deflection is assumed constant.

For gust penetration it is simply assumed the wind effects are filtered by x_1 . Hence, the final bending moment equation for station 660 becomes

$$\Delta M_{660} = \left\{ \frac{\bar{q} C_{L_{\alpha}} M'_{1\alpha}}{W 7.61 \times 10^{-4}} \right\} \left\{ -\Delta \gamma + \Delta \theta + \frac{x_1}{V} \right\} + M'_{1\delta} \Delta \delta \qquad (C43)$$

This corresponds to row 3 of Table C2. Similar expressions for ΔM_{1300} and ΔM_{1880} are given in rows 5 and 7.

Differentiation of row 3 of Table C2 yields row 4. Coefficients are taken as constant during the differentiation. Rows 6 and 8 are obtained similarly by differentiation of rows 5 and 7.

Fanny Load

The normal acceleration at the pilot's seat (sensed by the ischial tuberosities, is [from Equation (C20) and Figure C5] approximated by

$$n_{\text{IT}} \approx \left(\dot{V\gamma} - \frac{V^2}{r} \cos \gamma + g \cos \gamma \right) \cos \alpha + x_p \dot{q} - \dot{V} \sin \alpha$$
$$= \left[\dot{V\gamma} + \left(g - \frac{V^2}{r} \right) \cos \gamma \right] \cos \alpha + x_p \dot{q} - \dot{V} \sin \alpha \qquad (C44)$$

. .

Its perturbation is given by

$$\Delta n_{\text{IT}} = \left[\nabla \dot{\gamma}_{0} + \left(g - \frac{\nabla^{2}}{r} \right) \cos \gamma_{0} \right] \left(-\sin \alpha_{0} \right) \Delta \alpha + x_{p} \Delta \dot{q} - \dot{\nabla} \cos \alpha_{0} \Delta \alpha - \left(g - \frac{\nabla^{2}}{r} \right) \sin \gamma_{0} \cos \alpha_{0} \Delta \gamma + \nabla \Delta \dot{\gamma} \cos \alpha_{0} = x_{p} \Delta \dot{q} + \nabla \Delta \dot{\gamma} + \left\{ \left[\nabla \dot{\gamma}_{0} + \left(g - \frac{\nabla^{2}}{r} \right) \cos \gamma_{0} \right] \sin \alpha_{0} - \left(g - \frac{\nabla^{2}}{r} \right) \sin \gamma_{0} + \dot{\nabla} \right\} \Delta \gamma + \left\{ \left[\nabla \dot{\gamma}_{0} + \left(g - \frac{\nabla^{2}}{r} \right) \cos \gamma_{0} \right] \sin \alpha_{0} - \dot{\nabla} \right\} \Delta \theta \doteq x_{p} \Delta \dot{q} + \nabla \Delta \dot{\gamma} + \tilde{A} \Delta \gamma + \tilde{B} \Delta \theta$$
(C45)

Substituting for $\Delta \dot{q}$ and $\Delta \dot{\gamma}$ by use of rows 1 and 2 of Table C1 in Equation (C45) yields row 9 of Table C2.

Differentiation of row 9 of Table C2 yields row 10. Coefficients of row 9, are taken as constant during the differentiation.

ąα

I

The term $\bar{q}\alpha$ is used as an indicator of aerodynamic loading. It is most commonly employed in preliminary design where aerodynamic loads due to q, $\dot{\alpha}$, and gust penetration are neglected. Since these latter effects are included here, the $\bar{q}\alpha$ computation used includes q, $\dot{\alpha}$, and gust penetration. This is done by defining a $\bar{q}\alpha$ that meets the intended use of the $\bar{q}\alpha$ indicator; i.e., it is taken to be

$$\bar{q}\alpha = \frac{L}{SC_{L_{\alpha}}}$$

$$= \frac{\bar{q}}{C_{L_{\alpha}}} \left\{ C_{L_{q}}q + C_{L_{\alpha}}\dot{\alpha} + C_{L_{\alpha}}\alpha + C_{L_{\alpha}}\frac{\mu_{1}}{V}x_{1} + C_{L_{\alpha}}\frac{\mu_{2}}{V}x_{2} + C_{L_{\alpha}}\frac{\mu_{3}}{V}x_{3} \right\}$$
(C46)

Figure C2. Indicial Angle of Attack Derivatives

Figure C4. Indicial Angle of Attack Rate Derivatives

|._

The perturbation equation is

$$\bar{\mathbf{q}} \Delta \alpha = \frac{\bar{\mathbf{q}}}{C_{L_{\alpha}}} \left[\left(C_{L_{q}} + C_{L_{\alpha}} \right) \Delta \mathbf{q} - C_{L_{\alpha}} \dot{\Delta \gamma} + C_{L_{\alpha}} \Delta \theta - C_{L_{\alpha}} \Delta \gamma \right. \\ \left. + C_{L_{\alpha}} \frac{\mu_{1}}{V} \mathbf{x}_{1} + C_{L_{\alpha}} \frac{\mu_{2}}{V} \mathbf{x}_{2} + C_{L_{\alpha}} \frac{\mu_{3}}{V} \mathbf{x}_{3} \right]$$
(C47)

With the usual substitutions this becomes row 11 of Table C2. Row 12 is obtained by differentiation of row 11.

Figure C5. No Wind Flight Geometry

Table C1. State Equations

85

L

Т

Table C2. Response Equations

		Δq	Δγ	*2	x ₃	ĩ	x	x ₁	Δδ	Δ <i>θ</i>	Δz		u	÷	
	0	0	0	0	0	0	0	0	1	0	٥		o	•]	
	δΔ	0	0	0	0	0	0	0	-31.6	0	0		+31.6	0	
	∆M ₆₆₀	o	-h39	0	0	0	0	^h 39 V	м _{1δ}	$\frac{q C_{L_{\alpha}}}{7.61 \times 10^{-4} W} M_{1\alpha}'$	0	₽¤	0	0	
	∆ [.] 660	$\binom{h_{32} a_{21}}{+h_{39}}$	^h 32 ^a 22	h ₃₂ ^a 23	^h 32 ^a 24	^h 37 ^a 75	0	$\binom{h_{32} a_{27}}{+h_{37} a_{77}}$	$\binom{h_{32} a_{28}}{+h_{38} a_{88}}$	^h 32 ^a 29	0	۵γ	^{p38} 8 ⁸¹	h ₃₇ g ₇₂	
	△M ₁₃₀₀	0	~ ^h 59	0	0	0	0	^h 59 V	M'20	$\frac{\bar{q} C_{L_{\alpha}}}{7.61 \times 10^{-4} W} M'_{2\alpha}$	o	x 2	0	o .	
	∆ [™] 1300	$\binom{h_{52} a_{21}}{+h_{59}}$	^h 52 ^a 22	^b 52 ^a 23	^h 52 ^a 24	^h 57 ^a 75	0	$\begin{pmatrix} h_{52} & a_{27} \\ + & h_{57} & a_{77} \end{pmatrix}$	$\binom{h_{52} a_{28}}{+ h_{58} a_{88}}$	^h 52 ^a 29	0	×3	^h 58 ^g 81	h ₅₇ g ₇₂	
	ΔM ₁₈₈₀	•	-h ₇₉	0	0	0	o	<u>h79</u> V	M ₃₀	$\frac{\bar{q} C_{L_{\alpha}}}{7.61 \times 10^{-4} W} M'_{3\alpha}$	o	v +	0	o	u
	∆M ₁₈₈₀	$\binom{h_{72} \ a_{21}}{+h_{79}}$	h ₇₂ a ₂₂	^h 72 ^a 23	^h 72 ^a 24	^h 77 ² 75	0	(^h 72 ^a 27 (+ h ₇₇ a ₇₇)	$\binom{h_{72} a_{28}}{+ h_{78} a_{88}}$	^h 72 ² 29	0	x	h ₇₈ g ₈₁	^b 77 ^g 72	Ÿ
	Δη _{IT}	$\begin{pmatrix} x_p a_{11} \\ + V a_{21} \end{pmatrix}$	$\begin{pmatrix} x_p \ a_{12} \\ + V \ a_{22} \\ \vdots \\ + A \end{pmatrix}$	$\begin{pmatrix} \mathbf{x}_{p} \ \mathbf{a}_{13} \\ + \mathbf{V} \ \mathbf{a}_{23} \end{pmatrix}$	$\begin{pmatrix} x_{p} & a_{14} \\ + & v & a_{24} \end{pmatrix}$	0	0	(x _p a ₁₇) + v a ₂₇)	(xp a 18 + V a 28)	$\begin{pmatrix} x_{p} a_{19} \\ + v a_{29} \\ + \widetilde{B} \end{pmatrix}$	0	*1	0	D	
	۵'n _{IT}	$\begin{pmatrix} h_{91} & a_{11} \\ +h_{92} & a_{21} \\ +h_{99} \end{pmatrix}$	$\begin{pmatrix} \mathbf{h}_{91} \ \mathbf{a}_{12} \\ \mathbf{+h}_{92} \ \mathbf{a}_{22} \end{pmatrix}$	$\begin{pmatrix} h_{91} a_{13} + h_{92} a_{23} \\ + h_{93} a_{34} \\ + h_{94} a_{43} \end{pmatrix}$	$\begin{pmatrix} h_{91} a_{14} + h_{92} a_{24} \\ + h_{93} a_{34} \\ + h_{94} a_{44} \end{pmatrix}$	$\begin{pmatrix} h_{93} a_{35} \\ + h_{94} a_{45} \\ + h_{97} a_{75} \end{pmatrix}$	0	$\begin{pmatrix} h_{91} a_{17} \\ + h_{92} a_{27} \\ + h_{97} a_{77} \end{pmatrix}$	$\begin{pmatrix} h_{91} & a_{18} \\ + & h_{92} & a_{28} \\ + & h_{98} & a_{88} \end{pmatrix}$	$ \begin{pmatrix} h_{91} & a_{19} \\ + h_{92} & a_{29} \end{pmatrix} $	0	Δô	h ₉₈ g ₈₁	$\begin{pmatrix} h_{93} g_{32} \\ + h_{94} g_{42} \\ + h_{97} g_{72} \end{pmatrix}$	
	ą̃Δα	$\begin{bmatrix} \frac{\bar{\mathbf{q}}}{C_{\mathbf{L}_{q}}} \left[\mathbf{c}_{\mathbf{L}_{q}} + \mathbf{c}_{\mathbf{L}_{a}} \right] \\ + \mathbf{c}_{\mathbf{L}_{a}} \left(1 - \mathbf{a}_{21} \right) \end{bmatrix}$	$ \begin{pmatrix} -\bar{q} \\ C_{L_{\alpha}} \\ -\bar{q} \frac{C_{L_{\alpha}}}{C_{L_{\alpha}}} a_{22} \end{pmatrix} $	$\begin{pmatrix} \ddot{q} & \frac{\mu_2}{V} \\ - \ddot{q} & \frac{C_{L_{\alpha}}}{C_{L_{\alpha}}} & a_{23} \end{pmatrix}$	$\begin{pmatrix} \bar{\mathfrak{q}} & \frac{\mu_3}{\nabla} \\ & \\ -\bar{\mathfrak{q}} & \frac{C_{\mathbf{L}_{\boldsymbol{\alpha}}}}{C_{\mathbf{L}_{\boldsymbol{\alpha}}}} & a_{24} \end{pmatrix}$	O	0	$\begin{pmatrix} \tilde{\mathfrak{q}} & \frac{\mu_1}{\nabla} \\ & C_{L} \\ -\tilde{\mathfrak{q}} & \frac{C_{L}}{C_{L}} \end{pmatrix}$	-q C _{La} -q C _{La} ^a 28	$\begin{pmatrix} \bar{\mathfrak{q}} \\ & \\ -\bar{\mathfrak{q}} & \frac{\mathbf{C_{L_{\alpha}'}}}{\mathbf{C_{L_{\alpha}'}}} \mathbf{a}_{29} \end{pmatrix}$	O	Δθ	0	o	
	īαά	$\begin{pmatrix} h_{11, 1} & a_{11} \\ +h_{11, 2} & a_{21} \\ +h_{11, 9} & a_{91} \end{pmatrix}$	$\binom{h_{11, 1} a_{12}}{+h_{11, 2} a_{22}}$	$\begin{pmatrix} h_{11, 1} a_{13} + h_{11, 2} \\ + b_{11, 3} a_{33} \\ + h_{11, 4} a_{43} \end{pmatrix}$	$ \begin{pmatrix} a_{23} \\ +h_{11, 3}a_{14} + h_{11, 2}a_{24} \\ +h_{11, 3}a_{34} \\ +h_{11, 4}a_{44} \end{pmatrix} $	$\begin{pmatrix} h_{11, 3} a_{35} \\ + h_{11, 4} a_{45} \\ + h_{11, 7} a_{75} \end{pmatrix}$	0	$\begin{pmatrix} h_{11, 1} & a_{17} \\ + & h_{11, 2} & a_{27} \\ + & h_{11, 7} & a_{77} \end{pmatrix}$	$\begin{pmatrix} h_{11, 1} & a_{18} \\ + & h_{11, 2} & a_{28} \\ + & h_{11, 8} & a_{88} \end{pmatrix}$	$\binom{h_{11, 1} *_{19}}{*_{h_{11, 2}} *_{29}}$	O	مع ا	^b 11, 8 ^g 81	$\begin{pmatrix} h_{11, 3} g_{32} \\ +h_{11, 4} g_{42} \\ +h_{11, 7} g_{72} \end{pmatrix}$	
	Δż	0	-v	0	0	0	0	0	0	0	0		o	o	
l	Δz	0	0	0	0	0	0	0	0	0	1		L o	_ ٥	

87

T

1

1 ŀ

Table C3. Numerical A Matrix

A.

a ₁₁	^a 12	^a 13	^a 14	⁸ 17	a 18
.0000000E+80	.0000000E-50	.4000000000-87	_0000000E_80	.0000000E-80	-14416526E 01
5648?304E 00	.10305180E-01	.43964124F-03	2437667AE-03	12007670F-02	-13742A36E 01
11715199E 01	13374192E 00	.90785462E-03	.58144149E-03	24787823E+02	- 13908502E 01
17843377r 01	\$4989974E 00	.13677690F-02	.87599675E-C3	37344491 -02	-14158476F 01
-,23933169E 01	.66101005E 01	.18134130E-02	11594860E+02	49435404E-02	-,14393482E 01
.29617440E 01	. 10714235E 01	22281774E-C?	14270240E_02	- 60861192E-02	14708571E 01
35436442E 01	.15657354E U1	.23934070E-02	.16544883E-02	70599754E-02	-,10072941E 01
35453156E 01	.21315404E 01	.23630337E-UZ	_18367040E=02	78437484E-02	-,15493405E 01
+,27224937E 01	23938000E 01	.26859179E=02	.17200169E-02	-,73508887 _F -02	-,15948951g 01
-,47699168Ē 01	.22207161E 01	.20966260E-02	.13424110E-02	 57586313Ë-02	. ,16654529E 01
- 63299543E 01	3764U169E 01	_3J015577E+02	_19Z10996E_02	83069804E-02	17726927E 01
58243469E 01	•57495831E 01	• 4 J 4 3 9 0 3 0 E - 0 2	.25880436E-02	11208686E-01	18342424E 01
40925548E 01	.5292333E 01	.33342267E-02	21339724E-02	92317691E-02	.,18623943E D1
28479082E 01	.45025176E 01	.25464434E-02	. 16298419E≠û2	 70445209E-02	- ,18920044E 01
-,16344286E 01	.38007920E 01	.19271425E+02	12335031E+02	53276730E-02	-,19224934E 01
-,10070807E 01	29233132E 01	.13255237E+02	840443UVE-03	- , 36629600E-02	- 19535777E 01
-,63699872E 00	+22125519E 01	.89642710E-03	.57379664E=03	24762784E-02	+,19835105E 01
-,37072590E 00	.16395870E 01	.59351363E+03	.37990858E.03	-,16390997E-02	Z0188107E 01
41219676E 00	12102012E 01	.39156874E-03	.25087764E=03	-,10820327E-02	•,21085155E 01
-,42974302E 00	.84048243E 01	.24472245E+03	.15640107E+03	67372954E-03	-,20901654E 01
52437920E 00	.58728453E 00	.15334135E-03	.98125512E-04	42334151E-03	-,Z1272742E 01
62041126E 00	-41098435E 30	.969553 <u>n9E=04</u>	.61998329E-04	26738188E+03	=,21729U34E 01
-,67399802E 00	.47249326E 00	.58151777E-04	.37223764E-04	-,16053001E-D3	_,22239641E 01
703603A7E 0n	.16627051E 00	.32258355E-04	.20649042E-04	89048701E-04	-,22520522E 01
6859798/E 00	.089/19982-01	.15782972E-04	.10102911E-04	-,43568239E-04	231129926 01
+ 67269727E 00	.44607461E=01	.74779833E-05	.40587409E-05	-,20090938E-04	- Z3115712E D1
-,57443638E 00	.13816700E=01	.16193845E+D5	.10365832E-05	-,447104Z6E-05	-,220917238 01
47982137E 00	-,16142261E-01	22965146E-05	-,14709476E-05	.63381533E+05	_,213U9448E 01
-+41505677E 00	292284840-01	38715354E-05	+.24782437E-05	.10685764E-D4	-,21327471E 01
-, 37743456E UU	-, 36730800L-01	42637672E-U3	+,29213526E-05	12796768E-U4	+,21583/57E 01
31601003E 00	77624139E-01	51296326E-U5	•.J71+7977E-05	.14710268E-04	-, ZI 731895E 01
JUIJ9198E 00	70737975L-01	••• 77961 J79E•05	•, J784 1889t - 05	.1044619/E=04	-,21998943E 01
- 209820698 00	=,23311779E=01	- 22657846E-U3	• 37673726E-07	123101896-04	- 22316643E UL
24910496E 00 22334286E 00	-•35575053E-01 -•\$\$8248622E-01	55204619E=05 55044538E=05	•.35337482E-05 •.35239011E-05	•15237357E=04 •15193177E=04	-,23075303E 01 -,24075251E 01

Table C3. (Continued)

a 19	^a 21	^a 22	^a 23	^a 24	^a 27
•000u0000 E-8 0	.U0063000E-50	. <u>.</u>	.00000000E-50	.000000E-80	.00000n00E-80
44618131F-01	11503847E 00	- 22424267E 01	15700568E=03	- 11868820g-03	.60574447E-03
78136320E-01	11999333E 00	- 13467382E 00	-1906n98xE-03	12097567E-03	61741894E-03
.29511706E 00	.11876994E 00	15023542E 00	.18921972E-03	-,1200934VE-03	.61291613E=03
60778738E 00	,11616127E 00	16196904E 00	. .18554012E-03	1177580 <u>4</u> E-03	.60099726E=03
-,10203710E 01	.11195368E 00	17951658E 00	17944232E-03	- . 11388791E-03	,58164539E+03
15192338E 01	.10588424 _E 00	19411344E 00	<pre>=.17043971E=03</pre>	-,10817416 _E -03	,55Z08435E+03
-,20903925E 01	.98710355E-01	21534009E 00	•.15959452E+03	10129097E-03	.51695485E∞03
23585137E 01	.85900706E.01	2 ¹ 061055E 00	 13184867E_03	-,83681315E-04	42708115E .03
-,22018192E 01	.79105597E-01	17753453E 00	. 92690478E-04	- . 58828513E-04	,30024085E+03
-,37751311E 01	.75000644E-01	21766425E 00	10400636E=03	66010445E-04	33689500E+03
-,57686296E 01	.65858938E+01	25100515 <u>e</u> 00	• 10921937E-03	69319022E-04	373780862+03
53055140E 01	. 53653897E-01	21682940E 00	.82620658E-04	 5243743 <u>4</u> E-04	.26762292E=03
_,45110533E 01	_36545847E_01	- 18109725E 00	60040011E_04	_,38106013E_04	_19448021E_03
38060027E 01	.26001398E-01	15279090E 00	43957197E-04	27898621E-04	14238513E=03
-,29266785E 01	,18250930E+01	11965541E 00	+;2905744ÛE+04	 18442088E-04	,94122185E=04
-,22145344E 01	.11785230E-01	94407645E=01	- .19094731E-04	1211898 <u>5</u> E-04	.6 <u>1851210</u> E=04
164J7495E 01	.74594264E-02	74432540E+01	•.12299343E-04	- , 78061096E-05	, 39539745E=04
- 12109000E 01	.47559322E-02	- 55684119E+01	- 77126102E-05	- . 48950162E-05	249822065404
84089809E 00	• 30920163E-02	47656840E-01	#.49207755E+05	312310298-05	15939262E-04
58754965E 00	,202981928-02	-,39951515E+01	•.32257911E-05	-,20473354E-05	10446988E -04
_,41114749E 00	,12949389E-02	#,33994115E#01	+,Z1037292E-05	1335188°E-05	,68143506E=05
27255189E 00	.81030258E-03	29575504E+01	+,13843540E+05	-* 87861759E=06	44541672E=05
- 16633052E 00	20170315E-01	-,25766018E=01	• 91555331E=06	-,58108061E-06	296563902+05
89009345E-01	.30557704E+03	72298332E=01	#.59079717E-06	37496536E-06	19136965E=05
••44631388E=01	_18994957E_03	19706361E-01	.39604736E_06	-,25174295E-N6	,12848109E+05
-,10831642E-01	,11330114E+03	17698412E+01	-,27280204E+06	+,17314117E+06	+88365403E+06
.16133245E=01	.54914784E-04	15974521E=01	•.17975988E-06	-,11408946E-06	58227403E-06
,29222937 _E =01	.32057812E-04	14648671g=01	-,12404768E-06	-,78728940 <u>e</u> -07	.40180590g-06
•36753266Ē=01	.88757544E-05	▲.13608228Ē+01	•.91165178E-07	-,57860440Ĕ-N7	29530013E+06
45620200E_01	60297392E_05	12697530E_01	•.66153330E.07	41985994E_07	_Z1428233E+06
.50734835E=01	- .15971982E-0 4	11922038E+01	+.49181466E+07	31214345E-07	159307462-06
,93311101€+01	23064917E-D4	11247374E-01	-,37123733E-07	-,23561579E-07	,12025033E=06
,55674845 _{E=01}	-, 2551632 6 E+04	-,10633780 _E =01	•.27085937E-07	-,17190821g-87	.87736140g+07
•58248622Ē=01	-, 26952846E+04	10112246Ĕ+01	.20366047E.07	-, 12925861Ē- 0 7	63969226Č-0 7

.

Table C3. (Continued)

a 28	^a .29	^a 33	^a 34	^a 35	^a 43
•00000000E+80	.0000000E-81	.0000000000-50	.0000000E-80	•0000000E-80	.0000000E=80
.58701755E 00	.6112282UE 01	37178514E #1	20268660E 01	.57447174E 01	.68604>89E 01
.29157531E 00	.34241759E DA	76593474E 01	w.41759293E 01	.11835777E 02	1413452KE 02
,194U1028E 00	.27190652E 01	11822032E 02	6445 0332E 01	.18267065F 02	218149D3E 02
1455129 ⁰ E 00	2504003E 7^	- 16233968E 02	g_88502943E 01	25084263E 02	29976139E 02
.11623962E 00	-2474J255E U)	209906828 02	•.11443518E 02	.3243420VE n2	.38733585E 02
.96541594E.01	.25185601E 0 7	26163651E 02	• 14266398E 02	.40435049E 02	4828A362E 02
. <u>8</u> 2341471E=01	.25923726E 0º	31831237E 72	-17377933E 02	.4918317 ⁰ F 02	.58735547E 02
,71642289E=01	.24617369E 00	39013527E 02	. 20723885E 02	.58737412E D2	_70145417E 02
.636J5717E=01	20735430E 01	- 44545044E U2	• 24284681E 02	.68829725E 02	_82197864E 02
.57727773E+01	.24260806E 00	- 513479965 02	•.27829414E D2	.78876510E 02	94195939E 02
_532Ī3717E_0Ī	.27226826E 0h	- 57596079E JZ	.31399731E 02	.889958I0E 02	10A28061E 03
.49346334E-01	23495990E 00	64515102E 02	.35171785E 02	.99686887E 02	11904812E 03
.45844566E+01	,1965UZD3E 1n	72159330E 02	.39284681E 02	.11134404E 03	13796929E 03
.42457760E=01	.16577557E 00	9J563J97E 02	•.43920692E 02	.12448379E 03	"14×66108£ 03
.39286618E-01	13054525E 0h	90189696E 02	- 49168837E 02	,13935853F 03	16642481E D3
36296872E-01	10349519E 01	101^6137E 03	55095760E 02	.1561571 ⁵ E 03	18648603E 03
.33498112E=01	*81987998E-C1	11321180E 03	61719828E 02	.17493163E 03	20890692E 03
.3094U380E=01	.04951666E-01	-,12663740E 03	69039083E 02	.19567649E 03	23368086E 03
.28650487E=01	.72858868E-01	14127735F 03	•.77020361E 02	.21829771F 03	.26069558F 03
.26648085E+01	.44275290E+01	-,13710138Ē 03	.85647172E 02	.24274856Ë 03	28989529F 03
_24842951E=01	37595411E-01	_ 17477824E 03	94902467E 02	26898071E 03	321222256 03
.23316668E=01	32582221E-01	- 1722J493E J3	0.10478462E 03	29698954E D3	.35467098E 03
.21543613E-01	.28283436E-01	21140012E 03	.11524929E 03	.32664940E 03	390091395 03
.19664838E=01	.24417841E=01	23103059E 03	2,12595142E 03	.35698231E 03	426315568 03
.1a036118E=01	.2150U741E+01	25083710E 03	.13674920E 03	.3875863GE 03	46286348E 03
16651530E=01	19224292E-01	- 27082724E 03	.14764725E 03	41847449E 03	49975078E 03
.15455047E+01	17276523E-91	29n98533E 03	•.15863686E 03	44962220E 03	53694801E 03
14417996E-01	157626888-01	.31130184E 03	. 16971284E 03	48101469E 03	57443757E 03
.13510048E+01	14563272E-01	33176639E 93	- 18D86952E 03	51263591F 03	61220028E 03
12705649E=01	+13517373E+01	3523683AE 03	.19210414E 03	54446952F D3	.690×1663E 03
.11987343E=01	.12626327E-01	37310345E 03	.20340531E 03	.5765U87>E 03	68817853E 03
.11343444E+01	.11852698E-n1	39393381Ē n3	•.21476142E n3	.60869523E 03	72691628E D3
10762232E-01	11153584E-01	41491878E 03	- 22620183E 03	64112061E 03	76563933E 03
.10251732E-01	.13560465E-01	43532830E 03	-,23732851E 93	+67265681E 03	.8 ⁹ 330050E 03

.

Т

Ţ

1

ţ

Table C3. (Continued)

^a 44	^a 45	^a 55	a 56	a 65	a 66
.0000000F-80	.0000000E-81	.00000000E-80	.00"000J0E-80	•00000000F-86	.0000000F+80
19419307E 01	58023896E 01	.41036J39E-02	12555344E 04	58113625F-08	46549826E-02
,40009380E 01	18135464E 02	_91347159E-02	26524554E 04	14541286F_07	96140251E.02
•61749556E 01	27989858E 02	·12347064E-01	.42888222E 04	20673621E-07	14824705E+01
.84794248E 01	38433564E 02	.16523451E=0l	.59839900E 04	-,27271141E-07	-,20316386E-01
.10963980E 02	43697565E 02	.19847599E-01	.83538353E 04	32551303E-07	-,26069286E-01
.13668568E 02	61956930E 07	.21989842E=01	.11939Z23E 05	3445756UE-07	32047960E-01
16625762E 02	- 15361309E 02	.24171994E-01	16326898£ 05	- 35750056F-07	- 38233935 <u>E</u> =01
19855456E 02	40000873E 02	.26393000E-01	.21550000E 05	36900000E-07	44500000E=01
23267038E 02	-,10546490E 03	,23245285E•01	28101492E 05	36461587E.0 7	-,50593973E-01
.26663229E 02	12085917E 03	.34152265E-01	.36529247E 05	34411297E-07	-56112526E-01
,30083933E 02	13636455E 03	.37650936E-01	.47124992E D5	-,3135143 ¹ E-07	60A420A2E=01
,33697919E 02	-,15274604E 03	.20700551E-01	_53941463E 05	-,28498717 <u>F</u> -07	- 64894305E=01
.37638466E 02	17060776E 03	10012253E-01	.64468107E 05	29150206E-07	68610404E-01
,42080206E 02	-,19074129E 03	 36381934E+01	,59419078E 05	 35267868E_87	
,47108429E 02	-,21353324E 03	418189235-01	.52120907E 05	44155589E-07	76049768E=01
.52786985E 02	-,23927301E 03	29530865E+01	46601270E 05	+,54211857E-07	- 79732630E-01
.59133473E 02	-,26804039E 03	17942946E-01	.423J7724E 05	651443895-07	8+153736g-01
.66146016E 02	29982687E 03	17648978E+01	.35733698E 05	+,76755601E-07	
,73792841E 02	-,33448843E 03	21493652E_01	35747869E 05	88984U34E-07	89045832E.01
.8205A148E 02	37195343E 03	20998089E-01	33228514E 05	10175118E-06	+ 91792023E=01
.90925601E 02	-,41214785E 03	17113033E+01	.31115425E 05	-,11471638E-06	.,94384559E=01
,100393648 03	-,4550646ZE 03	14917164g-01	29304929E 05	-,1274459 ³ F-06	96663734F-01
.11041979E 03	50051118E 03	-,163788JOE~01	27577923E 05	14045649E+06	.98461586E=04
12067345E 03	-,24698902E 03	- 19400000E-01	25550000E 05	- 15550000g-06	99600000E_01
+13101876E 03	59388224E 03	22107769E-01	22975566E 05	17402203E-06	99967327E-01
,14146013E 03	-,64121091E 03	-,24615898E+01	20231455E 05	-,19591246E-06	
.15198922E 03	-,6889 3 724E 03	■.27537173E=01	17793875E 05	220689795-06	99071576E-01
.16260107E 03	-,73703863E 03	 30949843 2+01	.15643838E 05	-,248134902-06	98052717E-01
17329023E 03	- 78549051E 03	34500702E+01	13274708E 05	- 27829155E-06	- 96527804E-01
.18405119E 03	83420782E 03	4J530958E-01	.10542161E 05	32412592E-n6	94520045E=01
,19488165E 03	-,88336018E 03	- . 53232105E-01	.77857787E 04	4274243UE-06	9196n334E-01
.20576190E 03	93267818E 03	79451022E-01	\$3776117E 04	640621621-06	ARE76720E-01
21672289E 03	98236222E 03	-,13287049E 00	32179279E 04	-,10660333E-05	85857943E+01
.22738332E 03	-,10306 8 38E 04	00 30C0C0652	10000000E 04	18180080F-05	83000000g-01

Table C3. (Concluded)

a 75
.0000000E

+88796036E ,18294547E

.28235383E

,38772718E

,50133509E

•62500412E •76022373E •90790354E

,10639003E

,12191934E •13756073E •15408591E .17210432E ,19241446E 21540633E 24137190E 27039163E .30245693E ,33742253E 37521618E ,41576319Ē .45905641E .50490163E ,55178717E .59909173E ,64683557Ē .69498055E •74350389E •79238078E .84158596E .89110896E 94085956E 99097943E 10397249E

_

-80 .0000000E-81 .01 0080796036E 0081 0118294547E 0116 0128235383E 0125	533000 639572E 624176E 657370E 232600E 556101E	-80 32 03 03 03
0080796036E 0081 0118294547E 0116 0128235383E 0125	639572E 624176E 657370E 232600E 556101E	02 03 03 03
01 18294547E 01 16 01 28235383E 01 25	624176E 657370 <u>E</u> 232600E 556101E	03 03 03
01 2A235383E 01 25	657370 <u>e</u> 232609e 556191e	03 03
	232600E 5561015	03
01 = 38772718E 01 = 35	556101E	
		03
	793853E	03
	18150JE	03
	211200E	0.0
02 - 12191934F 02 - 11	0/010UL	00
	5151516	0.4
02 .154085918 0214	001720F	04
02 - 1721U432E 02 - 15	630045F	04
02 -,19241446E 02 -,17	484618E	04
02 - 21540633E 0? - 19	573880E	04
0224137190E 0221	933360Ē	04
0227039163E 0?24	570369E	ñ4
02 30249693F 02 27	434130E	04
02 - J3742253E 02 - JJ	661439E	04
$02 = .37521618 \pm 02 = .34$	395731E	04
02 -,41576319E 0?37	789220E	04
	714257E	04
U2 -,50490163E 3? -,45	839192E	04
	1436505	04
02 - 644835875 D2 50	4346478	3.4
	1525400	04
	1 J & J & J & U	0.4
02 - /9238078E 02 - 72	113297F	04
0284158596E 0276	474550E	04
0289110896E 0280	974683E	Ñ4
02 - 940829268 02 - 85	495499F	04
02 - 99097943E 02 - 99 03 - 19397249E 03 - 99	049870E	04 04

93

^g 53	^g 63
g_{53} .000J00u0E-80 .1082J374E 01 .15279645E 01 .20279125E 01 .24461378E 01 .29857845E J1 .38452125E 11 .48106218E 01 .58700000E 01 .71938670E 01 .88565514E J1 .11004029E 02 .13358246E 02 .14258429E 02 .12769456E J2 .10877721E J2 .95097554E 01 .84814833E 01 .76337293E 01 .6926629JE 01 .63369727E 01 .58453254E 01 .54333842E 01	g ₆₃ .00000000E-80 .15071135E-05 .207482>8E-05 .26010943F-05 .30552883E-05 .34462563E-05 .34462563E-05 .41766140E-05 .45100000E-05 .48114902E-05 .50641504E-05 .52646777E-05 .54306652E-05 .55836747E-05 .57382402F-05 .57382402F-05 .58915939E-05 .60391135E-05 .63003208E-05 .63004205E-05 .65864219E-05 .65864219E-05 .65864219E-05 .66569750E-05
.54333842E 01 .50610690E 01	66569750E-05 67141469E-05
.41852524E 01 .36932846E 01	6759101000E-05 67591019E-05 67480366E-05
28751335E 01 24612601E 01	-,67253700E-05 66909006E-05 66374577E-05
19803648E 01 14850739E 01 10330448E 01	65630183E-05 64774424E-05 63894456E-05
.62836345E 00 .25000000E 00	62870614E-05 61500000E-05

Table C5. Numerical H Matrix

^h 32	^h 37	^h 39	h ₄₁	^h 42	^h 43
.00000000E-80	.U0000000E-81	.0000000E-81	.30000000E-83	.00000000E-RD	.0000000E-80
13367689E 08	- 50411138F 05	- 133676895 38	-11763655F 08	-28676314F 07	
31597720E 08	.12315261E 06	03	27844861E 08		.59789118E 04
58384238E 08	16571084E 06	58384235E 08	#.51602251E 08	+.94564389E 07	-,10832619E 05
.94292086E 08	-,20698015E D6	94292096E 08	83735740E 03	16927021E 08	-,1691999DE 05
.13897424E 09	24469943E 06	13997424E 09	.12425905E 09	27532664E U8	23686728E 05
19215642E 09	CT816022E 06	19215642E 09	17318859E 09	41475059E 08	-30667111E 05
22587448E U9	-, 47378439E UK	.22487448E U9	8,20647034E 09	- 4/57154/E UB	- 297012492 05
21739391E U9	224868172 06	21739391E U9	*.20019683E U9	+.38669143F U8	- 20150345E US
+3193UCU4E U9			•.29373918E U9 - 307700745 00	•• BY2441715 UD	- JJ2JU2451 UJ
A0320000F 00	- 28707105F 04	403200005 00	- 301575305 00		
364752535 00	- (3323)98F 06	- 354752535 00	- 3514223AF 09	- 66055682r 08	_ 718907465 05
- 22260962F 09	- 1907AAB95 06	- 333808635 09	- 32489791F 09	- 56957237F 08	-14660148F DE
.27570982E 09	- 14082599E 06	27570982F 09	. 27067786E 39	32990171F DA	00114216F 04
22697758E 00	-10348509E 06	22697758E 09	2243025oE 00	21428418F 08	4334075AE 04
.18321963E 09	-,74569343E 05	-,13321963E 09	4.18185292E 09	-,13637504E N8	- 22534810E 04
14364062E 09	- 52263113E 05	- 14364062E 09	14295747E 09	- 84294232E 07	- 11078441E 04
11400214E 09	-,37180949E 05	114)J214E 09	# 11364964E ŋ9	-,54329818E 07	- 50097894E 03
,92384146E 08	., 27095517E 05	92334146E 09	.9219662JE 05	369088662 07	 29801196E 03
.73959083E 08	19576139E 05	739590 <u>8</u> 38 UB	#.73863311E 08	+.25141736E 07	-,12528988E 03
,59323924E D8	-,14221498E 05	59323924E 08	-,592/5850E 08	-,1754535VE 07	•,82125309E 02
4/457965E UB	10343890E 05	1/457965E 05	***1434135E 18	12228028E 07	=,43450297E 02
, 36573654E UB	-,72942103E 04	35573652E 08	-, J6562476E 08	-,81553144E U6	-,216U7610E 02
2220442002 08	- 10100445 04	23944200E 0A	- 233091036 00	-, JUJ8490E UB	- 11450643E UC
174518615 08	- 270511#25 0A	++232U3738C V8			- 317310816 01
13041119r 04	- 20634504r 04	- 130411195 08	- 139446725 08	- 20421886- 06	- 17283386# 01
11637055F 0a	-16161837F 04	- 116370555 0A	- 11636952F (A	- 158359705 04	- 104040495 01
95256126F 07	12455925F 04	- 95256126F 07	- 95256701F 17	- 12095176F 06	63015099F 00
79397324E 07	98052033E 03	79397324E 07	• 79395592E n7	+.94657788F 85	39048748E 00
.66810233E 07	T8144737E 03	65810233E 07	#.66811774E 07		
54077223E 07	60052527E 03	54077223E 07	-54078603E 07	-,57584527E 05	-14647323E 00
44759426E 07	-,47374824E 03	44759426E 07	+,44760632E 07	-,45261832E 85	•••91157256E•01
Table C5. (Continued)

^h 44	h45	^h 47	^h 48	h ₄₉	^h 52
•0000000E-80	•0000000E-5n	• 00000000E-80	.29333016E 10	• 0000u000E-80	.00n00000E-80
_,366545A7E 03	J3980178E 05	.35356904E J5	29351145E 10	,18876617E 07	51471821E 07
16171651E 04	14710854E 06	.15536200E 76	.293/1993E 10	.45773318E 07	22279481E 08
-,37946777E 04	-, 34772610E 06	.36709286E 06	29394319E 10	.85916357E 07	,55662866E D8
68752137E 04	64250597E 06	.67759474E 06	.29417973E 10	.14619415E 08	.973V7064E 08
10738728E 05	10376641E 07	-10924709E 07	.29442621E 10	23328102E 08	.15715348E 09
_,15033421E 05	.15293815E 07	.15061070E 07	29407184E 10	.35001497E n8	23162373E 09
19463709E 05	21146400E 07	.22139762E 07	.29491240E 10	.49814104E 08	-32026070E 09
-,18901473E 05	-,24857000E 07	.25821667E 07	29494538E 10	.55604353E 18	376-5746E 09
1278896UE 05	23923732E 07	.24576437E 07	294/1291E 10	42084083E 08	-36232318E 09
21090472E 05	-,35160512E 07	.36236898E 07	.29517457E 10	.77513772E 08	53230340E 09
- 29518495E 05	- *6864272E 07	. 3368796E 07	29579019E 10	,11594147E 09	,70972571E 09
21143244E 05	44372282E 37	+45451362E 07	.29531985E 10	.94737945E 08	.67201500E 09
-,13899265E 05	-,40140231E 07	4J849603E 07	29500435E 10	,71674613E 08	60792089E 09
93044568E 04	J6702017E 07	.37176885E 07	.294/4617E 10	.37287750E 08	,775849388 09
-,50846649E 04	-,30341272E 07	.30690776E 07	.29441333E 10	,35992607 <u>F</u> 08	47951637E 09
- 27507381E 04	- 24975394E 07	25119782E 07	29415402E 10	23491986E D8	378295962 09
14302325E 04	20162926E 07	-23235923E 07	29394391E 10	+15021444E 08	30 ⁵ 3660 ⁵ E 09
.70312315E 03	1580/341E 07	.15843226E 07	29377459E 10	,93296975E D7	23940103£ 09
356J4042E 03	- 12545690E 07	.14563861E 07	29365678E 10	.60260242E 07	,19000357E 09
18914133E 03	-,10166676E 07	.10176329E 07	29357616E 10	,48903349E 07	17397358E 09
98749316E 02	81390379E 06	.91440777E 06	.24351390E 10	.27805221E 07	14326514E 09
-,52123043E 02	65284701E 06	.65311302E 06	.29346848E 10	,19329052E 07	,988732 86E 08
_,27576903E 02	_, >2226468E 06	52243543E 06	2934324JE 10	,1342274JE 07	79096608E D8
13713853E 02	40248516E 06	.4J255515E 06	29340235E 10	.8930496ZE 06	.60956086E 08
-,72864997E 01	-,31852475E 06	.31856194E U6	29339236E 10	.62232187E 06	. 48240343E 08
-,40178687E 01	-,25537415E 06	25539465E 06	293368802 19	44611388g D6	.38676230E 08
-,20138949E 01	-,19425528E 06	.19426556Ë OG	29335744E 10	,304963J3E 06	29419821E 08
-, ¹⁰ 975695E 01	-,15341901E 06	15342461E 06	29335026E 10	21974951E 06	232351982 08
67332514E 00	12806329E 06	.12806672E 06	29334588E 10	16947361E 06	19395092E D8
-,39994233E 00	-, 10482732E N6	.1J482936E 06	29334226E 10	128761262 06	19876021E 08
24783354E 00	-,87375045E 05	.87376310E 05	293339688 10	.10024969E 06	13232887E 08
-,15741546E 00	-,13523223E 05	.73524026E US	,29333774E 10	,79188151g 05	,11135039E 08
92963186E-01	- 5951V819E 05	59511294E 35	29333798E 10	60315483£ 05	90128705E 07
57855412E-01	49250785E 05	.49257080E 05	.29333475E 13	47268036E 05	74599043E 07

,

Table C5. (Continued)

.

^h 57	^h 59	^h 61	^h 62	^h 63	^h 64
.0000000E-A0	.0000000E-30	.0000000E-90	.#000000E-AD	.0700000000-80	.0000000E+80
-,63790720E 05	51474821E 07	45396145E 07	11542179E 07	-,96255230E 03	.61090979E 03
- 13401856g 06	- 2279481E 08	- 19646092E 08	8 34460524E 07	- 42466881g 04	- 26952752E 04
20525434E 06	- 52662866E 08	46408101E 05	•.79118279E 07	- 99648529E 04	63244628E 04
	97307064E 08	86003751E 08	.15769731E 08	180543 <u>6</u> 4E 05	.11458690E 05
34496691E 06	-,15715348E 0g	13955957E 09	28211701E 08	=.28199984E 05	-,17897881E 05
-,40783239E 06	-,23162373E 09	20709842E 09	#.45887773E 05	- . 39477880E 05	-,25055702E 05
-,46360037E 06	- 32026070£ U9	23864765 <u></u> 09	#*03152033E 02	51111851 _E 05	-,35439515E 05
-,45630765E 06	37645746E 39	34411724E 09	-,79285911E 05	49635415E 05	31502455E 05
 37478028E 06	.,36232318E 09	33366139E U9	 64433572E 08	_,33583909E 05	_,21314934E 05
-,48065266E 06	- 53250340E 09	49256530E J9	a. 11590695E 09	55383742E 05	-,35150786E 05
56777678E 06	70972571E 09	- 66298457E 09	17814481E 09	77515797E 05	-,49197492E D5
47995175E 06	67201500E 09	63595884F 09	-14571261E 09	-,55522321E 05	-,35238739E 05
38871997E 06	60792089E 09	53570391E 09	.110V9283E 39	364995/7E 05	.,23165441E 05
_,31790765E 06	_, 55584938E 09	- 54139652E 09	• 84928725E 08	-,24433581E 05	-,15507431E 05
-,23475998E 06	-+45951637E 09	45112977E 09	#.54983618E 08	133523698 05	-,84744414E 04
-,17247515E 06	-, J7829596E 09	37383765E 09	-,35714031E 35	-,72234596E 04	-,45845635E 04
-,12428224E 06	-,30536605E 09	3J318819E 09	.22729171E 08	37558017E 04	-,23837209E 04
87105189E 05	23940103E 09	23826246E 09	#.14049039E 05	18464068F 84	-,11718719E 04
€1968249E 05	- 19000357E 09	- 18941607E 09	90549696£ 07	-,9349649UE 03 .	•,59340070E 03
-+45159194E 05	+15397358E 09	15366104E 09	•.61514777E 07	49668959E 03	••31523555E 03
32626898E 05	-,12326514E 09	12310552E 09	41902893E 07	-,25931647E 03	•,16458219E 03
-,23702497E 05	-,98873206E DA	95793083E 05	+ 29242249E 07	-,13687521E 03	-,86871738E 02
17239816E 05	79096608E OA	79056925E 05	20380046E 07	+,72417161E 02	-,47961705E 02
=,12157017E 05	- 00000000 08	- 6J937460E 08	• 13592191E 07	- 363126835 02	- SE826421E 05
-,88613239E 04	-,4824U343E <u>n</u> A	48231180E 03	•.97064160E 06	19134402E 02	12144166E 02
-,65800893E 04	-, 38670230E DA	35671848E 08	.65470786E 06	-,10550954E DZ	
46585304E 04	-,29419821E 0A	29417912E U8	•.46996755E 06	52885036E 91	33564915E D1
-,3439099UE 04	23235198E 08	=,23234453E 08	.34036477E 06	-,2882226VE 01	•,18292825E 01
26936397E 04	10302092E 04	1339492UE 08	20393283E 06	+,1/681579E 01	-11222086E 01
-,20759875E 04	15876021E DA	15876117E 08	20158626E 06	-,1050Z517E 01	66627035E 00
-,16342006E 04	13232887E 08	-13233U99E D8	.1776298E 06	6208128VE 00	-4130220E 00
13024123E 04	11135039E 05	11135296F 08	•.12523995E 06	+.4133742YE 00	-,29235909E 00
-,10008753E 04	-, Y0128705E 07	9J131004E 07	0.95870879E 05	+,Z441Z607E 00	••12493864E 00
78958041E 03	-,74599043 <u>6</u> 07	74691J54g 07	••73436387E 05	•,1719287°E 00	• ,96 483687g=01

1

-

Table C5. (Continued)

^h 65	^h 67	^h 68	^h 69	h72
.0000000E-50	.0000000E-80	27200734E 11	.0000000E-80	_0000000E+80
- 56643630E 05	57761597E 05	.272>3755E 11	.31461028E 07	46416553E 07
24518089E 06	.25893667E 06	27277230E 11	,76288863E 07	.20091318E 08
57954391E 05	.61132143E 06	27200951E 11	.14319393E 08	47490621E 08
10708433E 97	.11293246E 07	.27264893E 11	.24365692E D8	.87750120E D8
- 17294402E 07	15207849E 07	27269001E 11	_38880171E 08	14171876E 09
25489692E 37	.26768451E 07	27273095E 11	.58335828E N8	20887497E 09
35244000E 07	.30599604E 07	27277105E 11	.830235U7E 08	28880652E 09
41428333E 07	.43036112E 07	.27277704E 11	.9 ² 673922E 08	.339483968 09
39878866E 07	.40960728E 07	.27273780E 11	.75140138E 08	.32673787E 09
-,58600853E 07	.60394830E 07	27281474E 11	12918962 <u>F</u> 09	48040396g 09
- 78103786E 07	.30614660E 07	.27288501E 11	19323778E n9	64002051E 09
/3953804E 07	.75752270E 07	27283895E 11	.15789657E 09	,6º601353E 09
669003 <u>45</u> E 07	.65U82671C 07	.2727 8604E 11	.11945769E 09	54821437E 09
611700Z8E NT	-61961475E D7	,27274334E 11	.9214625UE BB	,50125703E 09
-,>0568787£ 07	.51001294 _E 07	27208787E 11	.59987678E 08	.41438529E 09
-,41630656E 07	.41864636E 07	27264465E 11	.39151811E D8	34114189E 09
33604876E U7	33726533E 07	27260963E 11	.25035740E 08	27537474E 09
26345568E 07	.26405377E 07	.27228141E 11	.15549496E 08	.Z1588843E 09
-,20909484E 07	.20939769E 07	.27256178E 11	.19043374F 08	,17134250E 09
-,16944461E D7	.16960549E 07	27254834 _E 11	.68172248g 07	,13885117g 09
13565063E 07	.13573463E 07	.27253796E 11	, 46342036E D7	,11115874E 09
1088U783E 07	1)885217E 07	272>3039E 11	.32215086E 07	89162445E 08
87044114E 06	-87067571E 06	.27252438E 11	.22371239E 07	71328191E 08
-,67080861E 06	.67092526E U6	,27251933E 11	.14884160E 07	.54969328E N8
>3087459E 06	.53093657F 06	27251604E 11	.10372031E 07	43502452E 08
-,42564358E 04	.42565776E Q6	272>1378E 11	,7435231JE 06	34877671E 08
-,32375880E 06	_32377593E 06	27251189E 11	,50827222E 06	26530375 <u>7</u> 08
25569835E 06	.25570768E 06	-272 ³ 1069E 11	.36624918E 06	20953169E 08
21343881E N6	_21344454 <u>F</u> _06	27250996E 11	28245601E 06	,17490217E 08
17471219E 06	.17471560E 06	.27Z>0936E 11	.2146021VE 06	14316769E 08
-,14562508E 06	.14562718E 06	27250893E 11	,16708276E 06	,11933229E 08
12253870E 06	12254004 _E 06	.Z72>0860E 11	.13198 ⁰ 2 ⁵ 5 06	.10041419E 08
99184699E 05	, 99185490E 05	27220831E 11	.10052580£ 06	81276778E 07
_,82094641E 05	"82095133E 05	272>0810E 11	,78780060E 05	.67772352E 07

. 1.

Table C5. (Continued)

h ₇₇	h79	h ₈₁	h ₈₂	h ₈₃	^h 84
-0000000E-80	.0000000E-8º	.00000000E-80	.0000000E-80	.070000000 -80	.000000000-80
57525560r 05	-,46416593E 117	4J937595F 07	-10408572F 07	86801591r 03	57090972E 03
12085603E 06	20091318E 05	17680494F 08	.3107600AE 07	38296027F 04	- Z4305607E 04
18509543E 06	- 474906Z1E 04	- 41850163E 08	. 71347734E 07	89861624E 04	. 57033102E 04
24905945E 06	87750120E 0A	77556954E 08	.14212802E 08	16281168E 05	-14333283E 05
.,3110A623E 06	14171876f. Ug	12585282E 09	25440909E 08	-,254303438 05	.16140053E 05
36777742E 06	- 20887497E (19	18675840E 09	41380938E 08	35600>88F 05	- 22594874F 05
418J6819E 06	28880652E N9	76029833E 09	62336027E 08	4609193/E 05	-,29253491E 05
- 41149172E 06	- 33948396E 09	- 31032001E 09	• 71498902E 08	44760208E 05	- 28408464E 05
33797150E 06	32673787E 09	30089108E 09	# 58105275E g8	302854898 05	19221503E 05
_,43344570E 06	_,48020396E 09		-1U452323E 09	49944267E 05	.31698477E 05
-,51201299E 06	64002051E 09	59787001F 0g	-16064845E 09	69902039 <u>F</u> 05	44365596E 05
43281363E 06	-,60601353E 09	57349859E 09	•.1314n155E 09	-,50069236 <u>f</u> 05	-,31777792E 05
-,3505421 ¹ E 06	54821437E 09	52817942E 09	•.99280118E 05	32914797E 05	70890264E 05
-,28668457E 06	-,9 ₀₁ 297a3E a9	48A22365E 09	. 76587513E 08	-,22033854E 05	-,13984380E 05
21170320E 06	_,41438529E 0 9	4J682238E 09	.49583441E 08	 120409745 05	.76421302E 04
-,15553563E 06	34114189E Do	33712146F 09	-32206403E 08	65140127E 04	-,41342939E D4
11207595E 06	27537474E 09	27332060E 09	.20496841E 08	33869283E 04	-,21496054E 04
78550215E 05	21588843E 09	21486168E 09	.12669222E 08	16650633 _E 04	•,10567774 <u>e</u> 04
-,55882082E 05	17134250E 09	17081271E 09	w.81656422E 07	84313799Ë 03	-,535120Z8E 03
_,40723916g 05	13885117E 09	13856933E 09	8,5>473147E 07	_ ,44790488E 03	Z8427491E 03
29422471E 05	11115874E 09	11101480E 09	*.37787439E 07	23384789F 03	14841787E 03
-,21374573E 05	-,89162445E 05	A9090191E 08	.26370243E 07	12343236E 03	-,78339693E 02
15546620E 05	71328191E 08	71292406E 0B	.183/8434E 07	65304761E 02	-,4±447429E 02
10963024E 05	\$4969328E 08	54952530E 08	.12257243E 07	-,32475723F 02	-,2U611594E 02
-,79910153E 04	- 43502452E DA	- 43494189E 08	.85727501E 06	- 17255133E 02	.10951436E 02
59338306E 04	34877671E D8	34873720E 08	.61727941E 06	-,9514699 ⁸ E 01	60387610E 01
-,42009962E 04	-,26530375E 0A	26528652E 08	-,42381002E 06	47690970E 01	-,30268361E 01
-,31013303E 04	20953169E OA	29952497E 08	.30693609E 06	•.25991594E 01	-,10496208E 01
24290856E 04	17490217E 08	17490J62E 08	23801085E 06	15944987E D1	-,10119917E 01
- 18720959E 04	- 14310769E 0A	- 14316855E 08	- INI/8761E 06	-,94710194E 00	- 6A110380E 00
14736987E 04	11933229E 08	11933419E 05	• 14226840E 06	586893988 00	37248741E 00
., 11744968E 04		-10041651E 08	.11293960E 06	372774952 00	-,Z3659168E DD
-,9UZ57519E 03	81276778E 07	51278852E UT	864Z7935E 05	ZZU14577E 00	-,13972145E 00
71703733F 03	67272352F 07	6727#165F B7	688276565 85	- 13700719 5 0 0	

ł

Table C5. (Continued)

^h 85	h ₈₇	^h 88	^h 89	^h 91	^h 92
•0000000E-80	•0000000E-80	-41283504E 11	•00000000E-80	•aaaaaaaa=8a	321700n0E 02
-51080417E 05	238940741 05	412A6229E 11	.2E371106E 07		-,333660066 02
22110063E 06	23359539E UA	.41289362E 11	-68796207E U7	196026100 02	-,337839322 02
-,52262406E 06	. 75173162E 116	.412927184 11	21072623- 00	-, 319420910 02	- 45205721- 02
96567116E U6	1010700E U/	41296273E 11	-219/2033E 30	5007481/F 02	
	-104173/85 U/	41299777E 1	57646A175 00	771006010 02	50711433F 02
2298624UE UT	24139406E 37	413036696 1	5260R417E 08		
- 31782536L J7	• JJ2/75535C U7	+413U72852 11	*15730105 08	- ALALO7208 82	- 77029540F 02
3505479E U7	360310005 07	A) 3042845 11	67760303C 00	- 124040705 03	- 77757434E 02
= . J J J J B / J J B / J J B / J J B / J	5040 N 1085 07	A13112985 11		- 1054000010 03	- 7870225eF 02
- 704328705 07	726071405 07	A 1 3 1 7 6 4 7 F 1 1	174287295 00	- 182303475 A3	- 50217815c 02
66602.075 07	680120101 07	443173022 11	140388885 00	- 116603.05 03	
403208125 07	61105080F 07	+41313407C 11	1077252AF 00	_ 03342704F 02	- 54520027F 02
- 551472875 07	55a75c735 07	A13847465 11	#30061725 Ap	- 35##30428 82	- 615477258 02
- 456022095 07	450922385 07	A1200784F 11	540040315 05	- 159592995 02	612148475 02
- 37541031E 07	377529315 07	A12058866 11	35304544F 04	_ 78546338c 01	- 600407307 02
- 303043075 07	-30414106F 07	A: 202729F 11	22576873F A8	- 189501155 01	- 565302675 02
237540575 07	23811001F R7	A1200184F 11	140223135 08	_ 1011s024F 02	- 494954735 02
	langlaAF 07	41200413F 11	0056070eF 07	- 1545742US 02	- 4710830AF 02
-15280272F 07	152947A1F 87	412A7201F 11	61476759F 07	-24526218F 02	- 445530915 02
-122327AUE 07	12240355 07	412862665 11	417905865 07	334491895 02	- 404990857 02
- 94121351F 06	98161333F 06	A1285583F 11	29051104F 07	- 396274475 02	- 373987577 02
.78495139E 06	78516292E 06	41285041F 11	20174064F 07	_ 44054225F 02	34021307F 02
- 60492542E 06	AU 3180503081E 06	-41284585F 11	13442323E 07	+.45116563E 02	- 30926145E 02
- 47573512E 06	47879102E NK	41284289E 11	93533496E 06	44769242E 02	.27569838E 02
383821265 06	38385208E U6	41284085r 11	.67049853E 06	-,40920004F 02	-,25142549E 02
29196106E 06	29197651E 06	41283914E 11	45835262E 06	35404405E 02	- 22545881E 02
23058512E 06	23059353E 06	41283806E 11	33047827E 06	- 31711239E 02	_ 20343891E 02
19247607E 06	19240124E 06	41283740E 11	25471479E 06	29862002E 02	-18767020E 02
-15755296E 06	157556N3E 0K	,41283686E 11	19352511E 06	. 27509750≠ 02	-1749522nE 02
13132261E 06	,13132451E 06	_41283647E 11	,19067285E 06	-,25509801£ 02	.,16451704E 02
11050365E 06	,11050486E 06	.41283618E 11	.11901791E 06	-,23591990E 02	-,15336440g 0Z
- 89443345E 05	.89444058E 05	_41283591E 11	97652734E 05	- 224656925 02	- 15631687g 04
74031775E 05	.74032218E 05	-41283573E 11	.71042733E 05	20767208E 02	-,16770635E 02

Ł

Table C5. (Continued)

h ₉₃	^h 94	^h 97	^h 98	h ₉₉	^h 10,1
.0000000E-A0	.0000000E-mn	.0000000E-80	40196749E 02	.53695754E-09	.53695754E=09
77889916E-03	41178291E-03	.97916916E-02	.26326775E 01	.34169544E 02	35240475E 02
10381412g-02	48174480E-03	.18957118E-01	15168875E 01	.36703395r 02	57374409E 02
70428115E-03	17044227E-03	.266271 33E-01	.35652681E no	.4n853664E n2	93113660E 02
18444693E-03	.49576591E.03	.32741371E-01	.85081943E DJ	463009878 02	150498618 03
17428844E-02	.15876997E-0?	.3u745853E-01	-,21587737E 01	.52863179E 02	22468879E 03
.32560766E-02	.26420598E+02	.40117122E+01	=.35478097E 91	.606965328 02	.32762302E 03
.45002203E=02	.35135108E+02	.4J290251F-01	51058381E 01	.69713028 _E 02	.32406101E 03
,22059199Ë+02	,20333437E+02	_48606649Ĕ+01	679>6050E 01	.77827081Ē 02	18421975E D3
. . 18849573E . 03	38068257E -03	_44655698E=01	#:95400012E 01	.78014217E 02	.67745514E 03
.16872430E-01	,114162Z4E=01	•76475772E+02	•.14061009E 02	•74755838F 02	13065202E 04
•47270262E-01	.30977225E-01	672n5773E-01	w.16847818E 02	.48994042 <u>F</u> 02	.11080097Ę 04
.40592073E+01	_26597868E=01	57974902E-01	-1819706AE 02	.49185972E 02	52407324 <u>E</u> 03
.29045303E-01	,19094602E-01	3596 0 999E-01	.,19649452E 02	.54895246 <u>F</u> 02	28167>D9E 03
,19056404E+01	,12611773E-01	16203318E=01	•,21446726E 02	.61146682E OZ	11819362E 03
+11149192E-01	.74437721E-0?	37494696E-02	#.23358453E 02	+60917251E 02	75872254E 02
+55487973E+02	• 37783719E-02	.46405938E+02	.25442126E 02	.59864333E Q2	.64160131E 02
.21562293E-02	,15441134E+02	_84748350E-02	.27820027E 02	.56425668E 02	.56706515E 02
•84909738E-D3	+55854954E=03	.77A70910E-02	33588137E 02	.49432026E D2	53367617E D2
-,92718301E-03	-,51153469E-03	.97755450E-02	• 33445782E 02	47159838E 02	53656618E 02
18026902E-02	10941537E-D2	-1U238524E-01	#.36782227E 02	.44528429E 02	57299063E 02
-,19622769E-02	12128747E-D2	.92205666E=02	.40428217E 02	,40483715E 02	61183475E 02
-,20640648E+02	-, 12898396E+U2	+84619505E=0Z	*.44647399E 02	.37389495F DZ	.64067809E 02
20752753E-D2	-,1305573DE-02	.77395480E-02	. 49531093E 02	.34015554E 02	.649952D9E D2
18890052E-02	-,11030720E-02	.60326054E-02	• 38374696E UZ	.30922478E 92	.618620B1E 02
-,16485811E=D2	10437395E-07	.55845183E-D2	.64028316E 02	.27567494F D2	.50783020E 02
-,1486Z3Z4E.0Z	-, 94264063E-D3	48702339E-02	. 62057837E 02	25141072E 02	48644163E DZ
-+13066442E-02	830230222-03	+1502970E-02	#+61453292E 02	+22544974E 02	.39531301E OZ
-,11358899E+D2	+,7225439DL+03	.353666772-02	6664A762E 02	28343316E DZ	335046Z8E 0Z
-,101826992-02	-, D4847131E-03	.312501092-02	-,73855797E 02	1876667UE UZ	.30037435E 0¢
94151987L+03	*,7999JJJ5L003	.20410/678-02	•.80928839L 02	.1/495VIJF 0Z	.Z6738671E 02
	·,22471622E-03	.20917242E+U2		10421282E 02	24140297E 02
8U021516E-03	210505326-03	-23607562E-02	. 90249141E 02	.15336071E 02	+Z1702032E 02
		.213#1980E+02	+ JVYZ4Z412 03	,17631867E DZ	,ZJZC8379E DZ
- .6 9797203E=03	- . 9457J762E=03	.ZU186859E+02	#.1646874E UJ	.1077U0JJE CZ	*514AA391616 05

.

1

ł.

Table C5. (Continued)

^h 10,2	^h 10,3	^h 10,4	^h 10.5	^h 10.7	^h 10.8
.0000000E-80	.9000000E-80	-0000000F-80	00000005-80	6000000F-80	149821735 04
73818023E 01	+24074651E=02	-22396146E=02	.78447520F-02		- 905785405 03
,29131543E 01	98327821E-02	46610116E-02	13113064AE_01	- 418426395-02	- 11030435 02
-,51849600E 01	- 31535947E-01	19705534F-01	67088235F-01	196613056-01	74164444 02
-,22895034E 02	62538808E-01	45124183E-01	11251884F 00	719248395-01	861/3082F 02
54951080E 02	99410075E-01	82218015F-01	.16184411F 00	150658398 00	15040490r 03
10890360E 03	14669468E DO	13145701E 00	21869937F 00	26069247E 00	262873005 03
-,14215293E 03	-,13714666E 00	14799510E 00	28565209E 00	213079595 00	260701215 03
83407768E 02	42856879E+01	7U483536E=01	38786841E 00	16825446F 00	278602135 03
-,2681157 ¹ E 03	-,21929388E ON	15242417E 00	42196935E 00	23268178F 00	50796229F 03
71934960E 03	-, 36482730E 00	53571486r 00	.44321819F-01	15051883r 01	.78620120r 03
-,10360815E 04	16239994E DU	10209180F 01	.94182754E 00	.29511126F 01	
-,60672131E 03	,16267978E DA	77779724E 00	.90953304E 00	19571952F 01	78988514F 03
35169016E 03	.24475600E Ch	55117431E 00	#.64257104E BO	11740831F 01	77038628F 03
-,12697401E 03	.27314241E 00	-,34880808E 00	.34514780E 00	49417931E 00	.74408662E 03
-,39329136E 02	21391054E 00	2U993995E 00	-11652370E 00	13346229E 00	76689977F 03
-,11710481E 02	,13798719E DO	11083512E 00	.74384849E-01	96274226F-01	61738735F 03
11006550E 01	.78035953E-01	- 42051963g-01	19246037E 00	- 22829848F 00	.68104488F 03
-+93413353E 01	.42791067E-01	17353094E-01	.20420852E 00	22581348E 00	10811896E 04
-,10742368E 02	-, 29045817E-02	.31397312E=01	29854942E 00	-,32018710E 00	10878430E 04
-,12623905E 02	37602019E-01	.62294931E=01	35353976E 00	37424857E 00	121330407 04
-,12370330E 02	51167161E-01	.73923842E=01	.35547629E 00	37468930E 00	.13492072E 04
-,96905399E 01	-,02997888E-01	.85348317E-01	36240798E 00	- 38225757g 00	1498115AF 04
64483227E 01	[1969329E-01	•94122984E-01	36633751E 00	-,38694896E 00	16636620E 04
-,33245052E 01	72900400E-01	.93506559E=01	,34443448E DO	36407218E 00	195463D1E 04
14537411E 01	69802897E-01	-88517273E-01	31533298E 00	-,33369984E 00	21262848E 04
.23637763E-02	-,086323892-01	.86053994E=01	,29750517E 08	-,31486331E 00	205100835 04
.93166677E 00	02498804E-01	.81150513E-01	,27291784E 00	28867209r 00	20170204# 04
12248824E 01	61326448E-01	.75368884E-01	.24911567E 00	+,263299+5E 00	21734396E 04
13530193E 01	-, 2888/922E-0'	7192939JE-01	23480570E 00	24800156g 00	23980431E 04
•14771997E 01	58175726E-01	.7 ⁰ 543551E=01	22697554E 00	*.23950944E 00	2604060AE 04
.149040198 01	27146455E-01	-68907371E-01	21933630E 00	-,23125840E 00	28426557E 04
•1430222E 01	73730877E-01	.66897260g=01	21116403 <u>6</u> 00	-,22247897r 00	31576201r 04
+14170025E 01	74243911E-01	.648#7553E+01	.20272074E 00	.,21342397E 00	35037773F 04
13792672E 01	-,740996Z5E-01	_64368755E+01	19980671E 00		347646577 04

Table C5. (Continued)

^h 10,9	^h 11,1	^h 11,2	^h 11,3	^h 11,4	^h 11.7
.0000000E-80	.0000000E_8n	.000 00000 E-80	.000000005-80	.0000000E-80	.000000000 - 50
-,20765140E 02	. 34715648E 02	53414813E G1	54999 ^U 33E-01	3490662UE-01	17815159E 00
→,10721372E 02	.71127372E D?	28243626F 02	.11298609E 00	71709669E-01	30598191E 00
-,14175861E 01	,1062 <u>4</u> 391E 03	67707914E 02	.16923124E 00	- 10740717E 00	548169895 00
.16455331E 02	.13938716E 03	12383202E 03	•.22263798E 00	1413032VE 00	72116378E 00
,48399559E 02	.16950212E D3	19650801E 03		-,17243061E 00	.58002757E 00
,10210883E 03	.19531417E 03	28438276E 03	•.31439325E 00	-,19953816E 00	.10183753E 01
.13613598E 03	. <1573042E 03	38449825E D3	-,34879210E 00	22137032E 00	,11297993E 01
.79199747E 02	.4328790E 03	49199636E 03	-37339559E 00	-,23698579E DD	12094943E 01
26341883E 03	,32877360E 03	59484236E 03	.38523421E 00	-,24449929E 00	12478417E D1
,71963401E 03	.47549530E 03	67711683E 03	.38204024E 00	.,24247215E 00	,14374959E 01
.10384877E 04	CELLBUISE 03	73423549E 03	36680656E 00	23280368F 00	11881513E 01
,607351122 03	ECCEBBELL US	76756203E U3	34249505E 00	-,217240795 00	,11087542E DI
•35152065E 03	+188/89/2E U3	7/687731E 03	# 31012669E 00	+,19684931E 00	.10046523E 01
120301298 03	.159/08821 U3	75638588E 03	•. Z7013393E 00	-,17144779E 00	87501156E 00
	100555705 US	., /US48259E US	#,22394128E 00	-,14282852E 0D	,72894850F 00
152545125 01	A2861880F 02	64377788L U3	#,17720738E 00	*,11265985E 00	•57497777E 00
-003010175 01	-64406708E 02	- A(0126785 02	- 10444734E 00	•• 60/12930E+01	
10503246F 02	49942875F 02	- 300678075 03	- 79481364F DI	6629032-E+01	-3383234UE UU
124377695 02	370721455 02	- 320882485 03	- 60345407F-01	- 38700808r-01	10000730 00
122279775 02	27925998F A3	- 37483509F 03	- 45367961 F-01		
958200108 01	19816308E 02	- 22645093F 03	- 33852482F-01	- 214853015-01	100654105 00
.63653201E 01	1379241AE 02	-18520022F 03	-25160652F-01	- 15074508F-01	a15240535-01
.32606460E 01	.96469284E 01	14999168E 03	- 18651198E-01	-11837486F-01	60414520F=01
14053415g 01	.66195829E 01	- 12070071F 03	- 13642627F-01	- A7730303F-02	44774581
40116843E-01	42759501E 01	97070128E 02	= 10295465E-01	65342944F+02	333488305-01
.,96070236E 00	27943397E 01	78390470E 02	.77379933E_02	49111263E-02	.2506472AF-01
-,12473699E 01	15195886E 01	63727973E 02	58799522E-02	3731A704F-02	.1+046205E-01
-,13708353E 01	44467085E 00	52753257E 02	. 45673298E-02	-,28987791E-D2	.14794389E-01
-,14914897E 01	-,32741523E 00	44071655g 02	-,35921301E-02	-,22798423F-02	11635545g-01
-+15019601E 01	91939742E 00	36779130E 02	•,28310395E-02	17967950E-02	.91702375E-02
.,14394896E 01	_,13894242E 01	3J676046E 02	•,22363234E_02	.,1419343 ⁰ E_02	72438467E-02
14251233E 01	16656129E D1	25545447E 02	#,17688714E-02	-,11221544E-02	.57270959E-D2
-,13867844E 01	18674648E 01	-,21391000E 02	. .14110894E-02	+,89558594E=03	.45707679E-02

Table C5. (Continued)

^h 11.8	^h 11,9	^h 12,1	^h 12,2	^h 12,3	^h 12,4
.00000000E-80	.0000000E-80	-0000000E-80	.0000u000E-80	.0000000E-80	.0000000UE+80
52205602F 01	18990785E 01	_ 18338853E 02	15555391E 01	-1873588>E-01	54098178E_01
+ 53037766E 01	-24533552E 02	-61883225E 02	13882004E 02	78168236E=01	28968977E 00
52564493E 01	.64411389E 07	13316669E 03	473397068 02	- 18431905E QU	54864915E 00
51666752E 01	.12069213E 03	- 2272900QE 03	11219327E 03	34327626E 00	94844145E 00
49944925E 01	.19359115E 03	- 33043054E 03	21688507E 03	56311265E 00	.14867410E 01
- 47603582E 01	28173277E 03	- 44050281E 03	36215037E 03	- 85507755F OU	21117663E 01
-44519167E 01	38215194E 03	42063446E 03	54282825E 03	-12200854E 01	28072948E 01
-,45210071E 01	48975214E 03	-21486342E 03	68600J66E 03	-,17110493E 01	34923807E DI
50818430E 01	.59248145E 03	1J227966E 04	.83589633E 03	-,219259288 01	41428590E 01
35088570E 01	.67560067E 03	- 11190562E 04	,11843531E 04	24405073E 01	47408163E 01
- 24078754E 01	73327335E 03	- 6J331204E 03	14559907E 04	- 26412748r 01	51372975E 01
22601029E 01	76673164E 03	- 18416947E 03	13425432E 04	29750520E 01	52329646E 01
-,20995006E 01	77617183E 03	210124315 03	99071952E 03	-,32978449E 01	51126016E 01
20883038E 01	,75574722E 03	.47491703E 03	72289220E 03	33836038F 01	48681128E 01
-,17826453E 01	.70498846E Q3	.54976385E 03	.49761944E 03	326594478 01	44695273E 01
-121038886 01	62347484E 03	.54633565E 03	30129038E 03	-,29602286F 01	39033533E 01
-,82580728E 00	•23779435E 03	.50306228E 03	.17590252E 03	 25915403€ 01	33445334E 01
58692999E 00	46000789E 03	43127128E 03	10494731E 03	2 ² 350517E 01	284451578 01
41619248E 00	39060250E 03	.367931928 33	60594591E 02	-,19077608E 01	240822948 01
-,29509784E 00	,32983457E 03	.309253162 03	35479758E 02	-,16157119g 01	203000900 01
-,20821014E 00	27480491E 03	.25712341 03	20819924E 02	-,13484161g 01	19895179g 01
-,14406316Ē 00	22643235E 03	21289269Ē 03	,12096418E 02	-,11121651g 01	,13911593E 01
_,96887402E_01	,18518890E 03	17539159E 03	70651446E 01	- 91007158E 00	11372650E 01
-•65541471E-01	.14998462E 03	.14332118E 03	42028700E 01	73726085E 00	920828242 00
-,42752744E-01	12069646E 03	11635295E 03	26738545E 01	-,59334134 <u></u> 00	74089027E 00
-,27650061E-01	.97067594E 02	.946♥0335E 02	17642388E 01	-,47719 308E 00	39577615E 00
-,18894696E+01	.78388878E D2	.77043006E 02	12071432E 01	•,385369Z7E 00	48109756E 00
-,13527559E-01	.03726928E 02	.63094169E 02	_88911485£ 00	-,31328452g 00	391098562 00
83647192E-02	,92757666E 07	52589363E 02	.70160166E 00	-,25934409E 00	32376243E 00
-,53486425E-02	44071310E 02	44181590E 02	57453856E ÖÖ	-,21663364E 00	27044758E 00
30061776E-02	.36778953E 02	.37056640E 02	48512868E 00	-,18077765E 00	225690400 00
-,13540725E-02	,30675974E 02	.31051577E 02	41999764E 00	-,15077125E 00	18823496E 00
-,56017897 E =03	.25545419E 02	,25960984 _E 02	,36437773E 00	•,12554949E 00	12675080g 00
+0000000E=80	*1391000E 02	.218g8661E g2	32508830E 00	-,10512679E 00	13125729E 00

Table C5. (Concluded)

^h 12,5	^h 12,7	^h 12,8	^h 12,9
.0000000E-80	.0000000E-50	•0000000E-80	.0000000E-80
,14949932E DA		-11412501E U3	- 1523045er 02
144273215 01	- 10859643F 01	280813485 01	- A075861AF 02
26425066F 01	U	55378875E 02	_11572530E 03
41694648E 01	55577165E 01	11432945E 03	22165639E 03
.60151530E 01	-,79008042E 01	+.17142334E 03	•.36835139E 03
8117058 ⁰ E 01	-,10479906E N2	22521516E 03	• 55063755E 03
10377661E 02	12979346E U2	-,28040261g U3	
1674632VE U2	17604110F 02	42409000L 03 A1687708E 03	_ 1204304oF 94
1 \$ 4 \$ 4 9 1 7 F 02	-19083193E 02	= 368676175 03	n.14758155E 04
16145598E 02	-19341852E 02	38044169E 03	13596889E U4
,16340430E 02	-,18771521E 02	32546242F U3	.10042986E 04
.15911364E 02	17795487E 02	27331663E 03	.,73354622E 03
14839226E 02	-,16286166E 02	- 24751854E 03	•,50577772E 03
+13115767E 02	= 14180223L 02	2019198/E 03	
.06705574F 01			-10787618E 03
.82097510E 01	07269598E 01	+.1J243030E 03	a.62647669E 02
.69313370E 01	-,73538628E 01	8J236210E 02	.36916163E 02
.57741210E 01	-,61191813E 01	60928771E 02	.21814242E 02
47571535E 01	-,50379418E 01	-,44798443E 02	.12779247E 02
.38902237E 01	41181876E 01	31989484E 02	•.75361987£ 01
+ 31504234E 01	- 26926062r 01	- 16127623e 02	
20385025F 01	- K1576258F 01	- 10188935F 02	- 19124200E 01
.16462341E 01	17419778E 01	- 65690396E 01	13092330E 01
.13382820E 01	-,14161021E 01	37322570E 01	.96011733E 00
11078651E 01	-,11722889E D1	14082082E 01	-,75198976E 00
92542478E 00	-,97924535E 01	.32059346E 00	-,61066974E 00
•77226673E 00	◆,81718814E 00	.16766883E U1	
**************************************	- * 4 7 B 7 1 0 A F A A	SECOREGAE AL	- 277686A1F AA
+730370321 00 .44912119E 00	47526391E DO	.44766735E 01	.33467616E 00
	• • • • • • • • • • •		-

Table C6. Numerical D Matrix

^d 42	^d 62	d ₈₂	^d 10,2	^d 12,2	^d 10,1	d _{12,1}
.0000000E-80	.0000000E-89	-0JC00000E-8A	.000000000.00	.000n0000E+80	14282173E 04	.0000000E=50
- 33986178 <u>F</u> 05	-,26643630E 05	51080417E 05	.78447520E-02	,14949932E 00	.83192611E 0Z	.,19496970E 03
14710854E 06	24717089E D6	22110063E 06	.31130648E-01	.63275738E 00	.47933647g 02	- 167599342 03
-,34772610E 06	-, 57954351E 06	52262406E 06	.67088235E-01	,14627321E 01	,11266247E 02	-16610380E 03
-,64250597E 06	10708433E 07	96567118E 06	.11251886E 00	26425066E N1	.26885894E 02	-16356694E 03
-,10376641E 07	-,17294402E 07	-,15595844E 07	,16184411E OD	,41694648E 01	68217249E 02	-127825962 03
15293815E 07	25489692E 07	22986240E 07	21869937E 00	.60151530E 01	-,11211079 <u>2</u> 03	-,15042732E 03
21146400E 07	-,35244000E 07	-,31782536E 07	.28505509E 00	.8117058VE 01	-,16134448E 03	-14068457E 03
-,24857000E 07	_,41428333E 07	37359479E 07	.38786881E 00	.10377661E D2	•;21474112 _E 03	=14286382E 03
-,23923732E 07	39872886E 07	35956799E 07	,42196935E 00	,1254632UE 02	""30146404Ē 03	-16098624Ē N3
-,35160512E 07	5860V853E 07	52845412E 07	,44321819E-01	,14258449E 02	44432790E 03	# 11087988 <u>8</u> 03
46862272E 07	78103786E 07	74432879E 07	.94182754E 00	.15446217E 02	53239105E 03	-,76088664E D2
44372282E 07	-,73953804E 07	66690484E 07	-,90953304E 00	,16145298E D2	-,57502734g 03	
40140231E 07	b6900385E 07	60329812E 07	64257104E 00	,16340430E 02	62092267E 03	66344221E 02
36702017E 07	61170028E 07	55162257E 07	#.34514780E 00	.15911364E 02	677716552 03	-6599040NE N2
30341272E 07	-,50568787E 07	456022098 07	1165237JE 00	.14839426E 02	73812718E 03	-196331592E 02
24978394E 07	••• [•] 1630696E D7	-,375419318 07	, 74384849E≈01	.13115767E 02	60397119E 03	- 38248287E 02
20162926E 07	-,33604876E UT	3U304397E 07	19246037E 00	.11308762E DZ	87911287E 03	- 20095510E 02
-,15807341E 07	-, ² 6349968E 07	- 23759057E 07	20420852E 00	.96705574€ Ol	10613851E 04	-18546988E 02
-+12545690E 07	-+20909484E 07	1855874E 07	.29854942E 00	+8209751UE 01	-,10568807E 04	-,13151682E DZ
-,10166676E 07	-,16944461E 07	-,15280272E 07	35353976E DO	69313374E 01	11623184 <u>e</u> 04	-,93250918E 01
81390379E 06	-, 13565063E D7	12232780E 07	35542629E 00	.57741210 <u>e</u> 01	-,12775317E 04	
-,65284701E 06	-,10889783E 07	•,98121351E 06	. 36240>98E 00	.47571535E 01	. ,14108578g 04	.49523957E Öl
-,52226468E 06	-,87044114E 06	78495139E D6	36633751E 00	,38902 <u>4</u> 37 <u>e</u> 01	-,15651825E 04	. 30616419E 01
40248516E 06	67080861E 06	60492562E 06	34423448E 00	.31504234E 01	18509604E 04	-,20711105E 01
-,31852475E 06	93U87499E 06	47873512E 06	31533598E 00	25350165E 01	20232948r 04	-13509867r 01
-,25537415E 06	-,42564358E D6	38382126E 06	,29750517E 00	.20385945E 01	+,19610277Ē 04	
-,19425528E 06	-,32375880E 06	-,29196106E 06	27291784E 00	,16462344E 01	.19419240g 04	
=,15341901 <u>E</u> 06	-,45569835E 06	23058512E 06	24911567E 00	,13382820 _E 01	21861009E 04	42747085E 00
-,12806329E 06	-,21343881E 06	19247607E 06	23480570E 00	,11078651Ē 01	-,23338432E 04	-,264325138 00
_,10482732E 06	17471219E 06	15755296E 06	22697554E 00	,92542478E DD	-,254249928 04	-16901710E 00
-+87375045E 05	14562308E 06	13132261E 06	21933630E JO	•77226674E 00	-,27867341E 04	94995213E-01
-,73523223E 05	12253870E 06	11050365E 06	21116403E 00	.644093 892 0 0	- 31846729E 04	+ 48788691E+01
-,59510819E 05	99184699E 05	89443345E 05	Z0272474E 00	.53635832 ₂ 00	34520603E 04	.17701655E+01
-,49256785E 05	-,62094641E 05	74031775Ē 05	.19980671E 00	.44912119Ë OD	392663945 84	000000000-80

.

Ξ

Table C7.	Retabulated Reference Trajectory Data	
-----------	---------------------------------------	--

.

			• () • (F T 2)		0/FFFT)		WEIGHT (1 m)
(1.HE (SEC)	MACH NUMBER	V(r(/3/C)	M(CB)(12)	GANA (RAD)	R(ICCI)	1180311267	ACTONI (\$B)
	•0000003-E-80	•0000000eE-80	+0000000E-80	.15787963E 01	.2n909836E 08	.>1999999f 07	.35000000E 07
500000n0E 01	71263973E_01	8061572E Q2	73357528E 01	.15676379E 01	.20910033F 0A	52058045 € N7	34319256E DT
1000000E 02	.14351522E DU	.16624176E \$3	,31062154E 02	.15689525E OL	.20910653E 08	5224U028f 07	.33638514E 07
15000000E 02	22563208E UD	.25657370E 03	.71778342E 02	.15561124E 01	.20911707E 08	,52541773E D7	.34957771E 07
2000000E 02	.31340000E UP	.35232600E 03	.12059300E 03	.14978241E 01	.20913224E 08	22960620L UL	-34277027E 07
.25000000E 02	40738409E UU	•45556101E 03	-20422135E 03	.14217918E 01	20919227E 68	-53482860F 07	31596284E 07
30000000E 02	51233025E 00	.56793853E 03	29415151E US	.13470047E 01	20917734E 08	-2410014hF 07	10774700E 07
.35000000E 02	.6281000JE 00	+2500+00C 03	. 33414800E US	.12034743F 01	200243435 GB	565091716 07	20854/987 07
AB000000 02	.003311032 00	-966761695 03	. 60005063r 03	.113456025 01	200204676 68	.56251042r 07	ZRA73312r 07
500000000 02	.105465865 #1	11078787F 04	69034707F 03	.10650814E 01	200330875 88	269753621 07	28192569E 07
55007090F 02	12179218F 91	125000#3F 04	74559326E 03	995966V1E 00	20938136E 08	57652369E 07	27511326E 07
6000000E 02	14007980E 01	14001779E 04	777493UNE 03	.92757268E 00	20943564E 08	.582637238 07	26831083E 07
65000000E 02	.16086496E 0L	.15639045E 04	.78517C85E 03	.86066282E 00	.20949331E 88	.58797317F 07	,26150341E 07
70000000E 02	,18407917E 01	.17484618E 04	.76390U97E 03	.79607360E 00	20955420E 08	.5944267E 07	25469596E 07
.75000000E 02	.208788884E D1	.19573880E 04	.71091200E 03	.73459163E 00	20961825E 08	.59602436E 07	.7.788854E 07
9000000E 05	23281/75E 01	21933360E 04	64692608E 63	67676374E 00	20968738E 08	29074456E DT	24108111E 07
.8500000E 02	-25745649E 01	+24570369E 04	.53981550F C3	.62291820L 00	209722566 08	.60071321E D/	-23427367E 0/
.90000000E 02	.2842900JE UI	-27484130E 84	.46124000E U3	+5/31406/L HU	. <u9848681 88<="" td=""><td>.00411/801 U/</td><td>2684526 07</td></u9848681>	.00411/801 U/	2684526 07
100000000000000000000000000000000000000	- 31373786E V4	14005731F 04	336338338 03	ASSIGNE 00	200052005 08	603800365 07	213851355 07
105000000 03	34201447C VI	37780226c 04	27512000c 03	.44696137r 00	210063518 08	60429349: 07	207043968 97
110000000 03	413469865 01	41714257E 04	.22663366E 03	-41181889E nn	21n14612E n8	.6025291E 07	20023613E 07
11500000E 03	44885733E 01	45880192E G4	18531610E 03	.37960002E 00	210230428 08	594482916 07	19345J07E 07
12000000E 03	48305000E 01	.50140660E U4	.15006600E C3	.35"25267E 00	21031599E 08	57475769E 07	18685113E 07
12500000E 03	,51836889E 01	54439205E 14	12074742E 03	,32317312E 00	21040227E 88	.55103832E 07	,10072963E 07
13000000E 03	552"9737E 01	.58777667E 04	.97099517E 02	.29819422E 00	.21048870E 08	.53073874 07	,17444U07E 07
,13500000E 03	.58748000C 01	.631525A0E 04	.78410000E 02	.27504644E 00	21057478E 08	51145021F 07	.16857015E 07
1400000E 03	62377461E 01	.67561875E 04	63741717E 02	25357055E 00	21066008E 08	493308856 07	10291264E 07
.14500000E 03	+66621198E U1	+72003297E J4	-52766682E 02	+23358041E 00	21074410E 08	47612036E U7	15745382E U7
15000000E 03	+71359889E 81	#0-746+30 04	-44077000E 02	10752322F 00	210060011 00	443e36o6r 07	147065868 07
140000000 03	. 103820492 VI	-454054000 04	- JO/DELEVE VE	.18127864F 80	21007555 00	428671361 07	.142405716 07
-145000000 03	47171030c 01	90049870r 04	25546000¢ 02	16540826F 00	2110611Ar 08	41404768r 07	14744U7AF 07
1700000F 03	9-784688F 01	-94479386F 04	21391000F 02	15214035E 00	21113189E #8	ANUA3459E 07	13299904E 07
**.nevenh- n3	**5.8484.4 41				ARTERAALS B.		AAAA

ī.

Table C7. (Continued)

TIME(SEC)	DW/DT	1 Y Y (5LUG-FT2)	IXX	Laz	Ixz	XCM(FEET)	z _{cm}
0000000E-80	1361480GE 05	.37133000E 09	.30492000E 08	.36551000g 09	.47500000E .8	.910500#0E n2	.77480000E 01
.20000000E 01	13614873E 05	+36340000E 09	30363000E 08	35771000E 09	.46102941E 08	+92250000E 02 -93460000E 02	.7900000E 01
15000000E 02	13614847E 05	.34785000E 09	300870002 08	34244000E 09	43308824E 68	.94680000E 02	.822000000 01
20000000E 02	•,13614879E 05	,34022000E 09	299400000 08	33495000E 09	41911765E #8	,95910 00000 U2	.8400000E 01
.30000000E 02	13614848E n5	-32501000E 09	29787000E 08	32743000E Ug	40514706E 08	.98430680E D2	.858080000 01
35000000E 02	13614806E 05	,31741000E 09	29461000F 08	312620005 09	37720588F #8	.99710080E 02	.89700000F 01
40000000E 02	13614862E 05	.30980000E 09	29286000E 08	30918000E 09	36323529E .8	.10102000E 03	.91700000E 01
5000000c 02		.30ZI7000E 09	29103000E 08	,29774000E 09	,34926471E •8	10235000E 03	,93900000E 01
55000000E 02	-,13614877E 05	-Z8672000E 09	.28912000E 08	29023000E 09	.33529412E 08	10515000E 03	.986880007E 01
6000000E 02	-,13614839E 05	27889000E 09.	28499000g 08	27908000E 09	.30735294E 08	10657000E 03	.10110000r 02
.65000000E 02	13614864E 05	•27096010E 09	28276000E 08	26735000E 09	29338235E 08	+10798000E 03	.10370000E 02
750000000 02	-13614837E 05	.25475000F De	280420000 08	259550000 09	279411765 08	11102000E 03	,10650000E DZ
.8000000E 02	-,13614880E 05	.24642000E 89	27533000E 08	243560002 09	251470595 08	.11261000E U3	.112600000 02
85000000E 02	-,13614862E 05	23791000E 09	27256000E 08	23532000E 09	23750000E .8	,11425000E 03	,11580000g 02
.90000000 02 195000000F 02		•22322010E 09	6936000E 08	22693000E 09	22352941E 88	+11796880E 03	,11930000E 02
10000000E 03	13614814E 05	.21117000E 00	26320000F 08	21833000E 09	19558824F A8	11967000E 03	123000000E 02
,10500000E 03	-,13615914E 05	,20173000E 09	25 67000 08	200440000 09	18161765E #8	,12150000E 03	.131200002 02
11000000 03	••13612296E 05	+19200000E 09	25589000E 08	19108000E 09	16764706E 88	.12351VV0E 03	,13568000E 02
120000000 03	-12919420E 05	16431352F A9	24770173- 04	181009642 09	153676472 08	12770308E 03	,140310395 02
12500000E 03	12392889E 05	+15287771E 0g	243487518 08	16257236E 09	125735296 88	12987543E 03	.158360918 82
.13000000E 03	11963160E 05	-14873507E 09	23901617E 08	15295547E 09	11176471E 08	,132 ⁹ 9437E 03	,155635668 02
114000000F 03	-111129095 R4	+14319531E 09	-23439302E 08	14328875E 09	97794118E 07	+13434102E UJ	.16112358E 82
14500000E 03	-10724635E 05	12135563r 09	27440808F 08	12386875F 00	608520415 ØT	13898768E 03	,10007037E UZ
15000000E 03	10358926E 05	+11118505E 09	219244695 08	11411899E 09	.55882353E #7	+14143457E 03	.178995778 82
15500000E 03	•,99846827E 04	.10105767E 09	21419331g 08	104306998 09	41911765E 07	,14391083E 03	10537247E 02
.16500000E 03		40741680F 08	-20925013E 08	94514347E 08	27941176E BT	14640497E 03	+19194521E 02
17000000E 03	95587525E 04	.70614292E DA	1a70a447F 04		134/0588E #/	15154471E 03	,178733762 82 .265736867 84
•	•		************ võ	11238424EC A9		• • • • •	APASILEASE AC

· ____

·

TIME (SEC)	θ _ο	l _o	Ϋ́ο
.00000000E-80 .1561	55E 01 +.9250	025E=028299	77E-03
-10000000E 02 -1560	15e 01 - 8370	053F=02 _2520	46E-03
-1600000E 02 .153c	70F 01 =.1631	91F=01 = .6761	575-02
-20000000F 02 1466	49E 01313	96E-01 1466	32F-01
-2500000F 02 -1388	31E 013346	58E=01 -1551	215-01
-3000000F 02 -1328	79E 011621	107E+011504	93E-01
.35000000E 02 .1267	78E 014028	318E+021408	57E-01
.4000000E 02 .1197	85E 015622	95E-021358	85E-01
.45000000E 02 .1120	18E 011437	/53E-011390	067E=01
.50000000E 02 .1042	76E 012232	243E-011384	91Ē-01
.55000000E 02 .9758	36E 002013	09E-011376	19E-01
.60000000E 02 .9184	01E 00 -•9171	139E-021355	50E-01
.65000000E 02 .8613	90E 00 •7271	08E-031317	788E-01
.7000000E 02 .7995	59E 00 .3484	99E=021263	011E-01
.75000000E 02 .7363	54E 00 .1762	200E-021194	39E=01
.8000000E 02 .6745	71E 002193	03E-021117	58E-01
.85000000E 02 .6155	47E 00 -,7371	41E-021036	11E-01
•90000000E 02 •>598	56E 001329	27E-019549	082E-02
.95000000E 0Z .5067	50E 002061	82E-018767	94E-02
.1000000E 03 .4539			59E+02
•1050000E 03 •5978	ALE UU = • • • • 14		199E-02
			67E+U2
			TOL-UZ
	395 00 5673		7965-02
	755 00 - 6891		IPE 02
			718-07
1450000c 03 .120a	alf 00 = 1126		845-02
1500000c 03 1060	165 00 -1080	22F 00 3602	15-02
15500000F 03 .835A			
.1400000r 03 .4363	3(F_VI 901133	TUE UU	176_02
	93F_01 +1376	39F 003150	205-02
16500000F 03 .2362	93E_011376 75E_021636	39E 00 -3150 36E 00 -2894	17E=02 20E=02

ŀ.

Table C8. Pitch Damper (c1) Covariance Results

MEAN RESPONSES (1)

ť	DELTA	DDELTA	NSUBIT	DNSUB	IT QAL	F QDALF	DZ	Z
1	.000E+80	000E-80	.000E-80	.000E=80	.000E=8C	.000E-s0	.600E-80	.000E=80
2	_,137E,05	102E_03	,108E-02	.236E-02	.457E-62	•349E-Ŭ2	915E-03	-,877E=03
3	-,102E-02	-758E-03	105E-01	699E-02	.361E 00	•979E=01	531E-01	112E 00
4	-, 324E-02	- 655E-03	,603E-02	144E-^1	.116E UI	.231E 00	.884E-01	246E 00
5	604E-02	824E-04	217E-01	195E-01	228F 01	.473E 00	127E 01	2405 01
6	872E-02	111E-02	8020-01	207E-31	•347E 01	.885E 00	.483E 01	-162E 02
7	.,107E.01	217E_02	-,147E 00	•.679E=C2	.455E 01	.155E 01	.124E 02	.569E 02
8	-,126E-01	274E-02	•,302E 00	.124E-01	.527E U1	.247E D1	.256E 02	148E 03
9	. .140E-01	.361E-02	662E 00	.819E+0]	•577E 01	•363E 01	.468E 02	.324E 03
10	 108£-01	.533E=02	-,3915 00	.477E-01	•843 <u>5</u> 01	•572 _E 01	.759E 02	.627E 03
11	++131E=01	298E-02	•747E-01	929E+0]	.993E 01	•556E 01	•109E 03	.109E C4
12	. 154E.01	324E_02	- ,484E 00	425E OP	.829E G1	.63AE 01	.148E 93	.172E 04
13	-+1548+01	499E-02	132E 01	615E 0C	•759E 01	•913E 01	.200E 03	.259E 04
14	++123E+01	•534E=02	174E 01	207E 0r	.644F C1	•56]E 01	.265E 03	.374E 04
15	631E-02	383E-02	• 180E 01	.286E 00	•353E 01	217E 01	.343E U3	.526E 04
16	=,743E+03	.197E-02	-,142E 01	.331E 00	.788E UP	754E 01	.430E 13	718E 04
17	,168E-02	387E 03	-,868E 00	134E CC	-,721E 00	796E 01	.523E 03	.956E U4
18	+104E-02	+.163E-03	-•349E 00	•817E=02	-•551E 00	-•549E 01	.620E 23	.124E 05
19	772E-03	.687E_04	•334E=01	.342E-02	•688E 00	226E 01	.721E 03	158E 05
20	-+183E-02	596E-03	259E 00	.215E-0)	•196F U1	1 55E 00	.827E 33	196E 05
21	-,226E-02	.884E-03	4040 00	.752E-01	.297E U1	.162E 01	.9398 03	.248E 05
22	-,214E-02	986E=03	,466 <u>F</u> 00	104E 00	347E U1	195E 01	106E 04	29"E 05
23	-•167E-02	945E-03	•474E 00	899E-01	•342E 01	•145E 01	•118E 74	.346E 05
24	-,110E-02	761E_03	450E 00	.545E-01	.305E G1	.803E 00	.1325 04	.409E 05
25	-+611E=03	524E-03	407F 00	.233E-"1	-258F UI	•362F 00	-145E 04	478E 05
26	-,311E-03	296E-03	362 00	775E+02	.213E C1	-398E-01	.159E 04	.554E 05
27	-+890E=04	1895-03	•332E 00	• 362E=03	+1/3E UI	•326 <u>6</u> =01	-172E 24	-036E US
28	+115E+03	115E-03	•302F 00	.923E=03	£144E 01	.335E-01	-186E 04	.726E 05
29	234E_03	920E_05	.280E 00	487L-02	121E 01	.166E_01	.200E 04	.822E 05
30	• 308E=03	433E-04	+267E 00	•768t=67	.104E GI	•165E=01	•213E 14	926E U5
31	,396E-03	- 572E-04	.255F CU	379L-02	•899E UT	•155E-01	.221E U4	.104E 06
32	•475E=03	977E-04	• 44E 00	•217E-02	•//be 00	•114F=91	-241E "4	.115E U6
33	•487E≠03	=.126E=03	,231E 00	.181E=02	•667E 00	•139F=U1	-254E 04	128E 06
34	+913E=03	= 157E 03	.236E 00	170E-02	•271E 0"	.741E-12	260E 14	141E U6
35	•532E=03	+.147E=03	•254F UU	·1576-02	•491E CO	+656F-02	-281E 04	.154E 06

MEAN RESPONSES (1)

ĩ	IBI	D181	IB2	n182	183	DIB3
,	.000E-80	.000E-80	.000F-80	.00uE=86	.00JE-80	•009E=80
2	876F 04	- 226E 05	-136F 05	110E 06	- 115F U5	153F 06
3	010F5	633E 05	-567F 06	858E 06	165E N7	134E 97
ă	299F 06	776F 05	18UF 07	.126E U7	333E U7	211F 07
5	653E 06	367E 05	.319F 07	129E 17	6,75 07	.2 JAE 07
6	110E 07	622E 05	434F 07	964E 96	.853E L7	167E 07
-	-15eF 07	- 237E 06	494F 07	340E 26	ILLE UP	-852F J6
Ŕ	-193E 07	- 410E U6	.570E U7	511E 05	.118E 08	597E 06
ă	188F 07	- 672F 06	.680r 07	7ñ0r ^6	.136F 08	313F 06
10	-250E 07	-122E 07	.351E 07	350E 07	.890F 07	425E 07
ĩĩ	-400E 07	- 974E 06	26UE 07	940E 06	.927E U7	347E 06
12	-+403E 07	-127E 07	421F 07	115E 07	.120E .8	301E 06
13	-,318E 07	201E 07	.558E 07	362E 07	.132E 08	344E 07
14	-,220E 07	- 155E 07	.505E 07	376F 07	.111E US	427F 07
15	102E 07	-338E 06	.277F 07	194E U7	.584E C7	276E 07
16	-,177E 06	.667E 06	232E 06	137E "6	.602F 06	104E-07
17	173E 06	112E 07	-•\$00E 06	•123E U7	•.170F U7	•640E 06
18	125E 06	A63E 06	-•22£ 06	.133E 07	-,102F 07	.112E 07
19	••139E 06	327E 06	•314E 06	.66UE 06	.692E V6	•682E 06
20	- +408E 06	566E 05	•614F 06	126E uf	.152E G7	139E 06
21	-,629E 06	• 257E 06	548F 06	• 572E 06	.169E 67	625E 06
22	738E 06	300E 06	287E 06	744E j6	•139E U7	852E 06
23	.,744E 06	240E 06	602F 05	717E 06	.827E 06	856E 06
24	••681E 06	150E 06	359F 06	557L 06	.256E 06	731E 06
25	-,574E 06	821E 05	524E 06	378E 06	15"E 06	72E U6
26	475E 06	- 280E 05	- 571E 06	-100E 66	370F 06	219F 06
27	404E 06	- 220E 05	611E 06	-151E 06		- 222E 06
28	335E 06	194E U5	640E D6	138E UE	-, - 30E UO	- CHOE BA
29	-+287E 06	116E 05	-•644E 06	- 7485 US	7040 06	- 110E 06
30	278E 06	73UE 04		- 479E UP	141E DO	070E UD
31	••231E 06	866E U4	662E 06	773E UD		- 640C DE
32	-+210E 06	-,501E 04	- 074F 00	- 374E UT	040t 00 855c (/	9935 DE
33	-,191E 06	335E 04	- 004E 00	- 198L 02	- AFOF 04	- COSE UD
34	=+169L 06	277C 04	-+644E 06	- 1625 U5	- 850E 06	- 173F 05

.

RESPONSE COVARIANCES (1)

$\widetilde{\mathbf{t}}$	DELTA D	ELTA*DELTA	DDELTA	DZDOT	PELO	58	4 0	4 Z
1	.000E-80	000E-80	.000E-80	ngeE-an	.000E-8t	.0=0E-80	.(L0E-86	.000E=80
2	•214E-08	111E-06	.873E-05	.764E-03	.313E-08	•113E-06	.757E-97	·112E=02
3	,589E-04	274E-05	.217E-04	.241E-01	.104E_C4	.88°E-06	.862E-C4	128E 01
4	•894E-04	188E-04	.100E-03	•763F 01	·156E-64	·127E-03	•736E≈€3	.138E 02
5	,108E-03	287E-04	•247E-03	.1ດ5E ປ3	.188E-04	•853F-J3	.223E-02	.115E 04
6	.121E-03	374E-04	•498E-03	.521E 03	.211E-C4	.254F-92	.47062	.129E #5
7	+128E-03	493E-04	.100E-02	.169F C4	.222E-C4	.529E-02	.815E+02	.730Ē 05
8	,145E-03	- 662E-04	.198E-02	.433E U4	.253E-L4	.915E-02	.126E+01	.284E 06
9	-159E-03	877E-04	• 306E-02	.959E 34	·277E-04	•]42F-0]	-182E-01	.879E 06
10	+841E-04	-,812E-04	.271E-D2	.186E 05	.144E-04	•200E-01	.236E-01	.231E 07
11	.119E-03	-135E-03	.721E-02	.313E 05	.208E-04	.256r-01	•289E-01	.528E 07
12	•191E=03	285E-03	.17UE-01	488E u5	.336E-C4	.314E-01	.354E-Cl	.1Č8E 08
13	,201E-03	300E03	.163E-01	.739E 05	.35UE-U4	.378E-0]	422E-C1	.203E 08
14	•168E-03	245E-03	•121E-01	.109E 06	•291E-04	-447F-01	.483E-31	.361E U8
15	•121E-03	168E.03	•777E-02	.157E û6	.208E-U4	+514E=ül	•534E-01	.610E 08
16	•692E-04	874E-04	•353.F=02	.220E U6	.119E-04	•577E-0]	.580E-01	.993E 08
1'7	•395E-04	405E _04	.138E-02	.303E 06	.678E-05	.633F-01	.624E-01	156E C9
18	,233E-04	-;189E-04	,494F-03	.410E C6	.399E-05	.652E-01	.£64E-11	.239E 09
19	+130E=04	917E-05	•172E-03	.545E c6	•224E-05	•725F-01	.€99E-01	.357E 09
20	.718E-05	468E_05	.556E.04	.712E 06	.123F_05	.761E-01	.728E-01	.522E U9
21	400E-05	240E-05	-188E-04	.915E 66	•684E-0£	•791E-01	•751E-01	.748E 09
22	,221E-05	128E-05	.671E-05	.116E ú7	.378E-66	•815E=01	.769E-01	.105E 10
23	,111E-05	6R0E-06	.232E-05	.145E 07	.]89F-06	.834E-J1	.783E-01	.145E 10
24	•478E - 06	327E-06	.741E-06	.178E 07	.811E-07	•850E-jl	.792E-01	.197E 10
25	,162E-06	131E_06	\$19E-06	216E 07	.273E-07	.862E-01	.7995-01	.265E 10
26	•482E-07	428E-07	•572E-07	.257E 07	•8C7E-08	• R72E-01	.002E-01	.350E 10
27	.430E-08	874E-08	.187E-07	.303E U7	.668E-69	•879E=01	. E 0 4 E - 0 1	.455E 10
28	•786E-08	.761E-08	.818E-08	.352E 07	-148E-08	•884E+01	. E04.E-01	.585E 10
29	•337E-07	.147E-08	.220E-08	.404E C7	.599E-08	•888E=01	.8G2E-01	.743E 1U
30	.607E-07	- 812E-08	,337E-08	460E 07	106E-07	.890E-01	.7995-01	.933E 10
31	•103E-06	+,144E-07	•408E-08	•520E 67	-181E-07	•891E-01	.796E-01	•116E 11
32	139E-06	-,291E-07	•744E-08	.583E 07	,243E-07	•891E-01	.792E-01	.143E 11
33	+162E=06	412E-07	•112F-07	.650E U7	.282E-07	•891E-01	•788E-01	.174E 11
34	+182E=06	480E-07	.129E-07	.720E 07	-317E-07	•889E+01	.783E-01	.210E 11
35	.1985-06	- 5475-07	1495-07	7015 07	3445-67	8875-01	7785-01	·251e 11

Т

Table C8. (Continued)

RESPONSE COVARIANCES (1)

ĩ	NIT	NITÉDNIT	DNIT	QALF	QALF*DQALF	DQALF
1	+000E-80	.000E-80	.000E-80	.0n0E+80	.000E-80	•000E-80
2	,648E=03	146E-02	.331E-02	.116E-01	.490E-02	.529E-02
3	+298E=02	.338E-02	•577E=02	.577E 01	.289E-01	.194E 00
4	+210E=01	.394E-02	•734E+02	.978E 01	.311E GO	.146E 01
5	.254E-01	159E-02	.276E-01	.135E 02	.904E 00	.633F 01
6	+481E+01	.291E-02	.900E-01	.172E 02	.163E U1	•222E 02
7	,132E 00	657E-02	.279E 00	.214E P2	241E 01	.723E 02
8	+250E 00	111E-01	.636E 00	.243E U2	• 301E 01	.192E 03
9	,328E 00	179E-01	.104E 01	.267E 02	,363E 01	.422E 03
10	•736E 00	-133E-01	229E 01	508E 02	.602E 01	.876E 03
11	187E 01	-152E 00	•720E 01	.641E 02	-,432E 01	186E 04
12	103E 01	- 59NE 00	35/E UZ	474E UZ	- 603F 01	.361E U4
13	+177E 01	- 426E 00	.378E 02	-409E 02	• 316E 01	.786E 04
14	138C 01	- 363E 00	•217E 02	- 368E "r	.1146 82	. DOUE 04
15	+117E UI	- 254E UU	•720E 01	•260E ·12	• 963E UI	•470E 04
16	+104E UU	841C-01	978 D	1425 02		+CIDE-04
10	-2005 -00		4515 00	142E 02		172E 04
10	242F 00		445F 00	-110- 07 AOAF 01	- 150F 01	•74UC UJ 556F 03
20	21AF 00	- 160F-02	A04E 00	-7-AE 01	- 556E UC	330F 83
21	207F 00	- 141E-02	533F 00	678E 01	172E 00	.197E 03
22	191F 00	-196F-02	448F 00	.574E 01	647E-01	.116F 03
23	178E 00	246E-02	.396F 00	.468E 01	314E-01	.681F 02
24	161E 00	- 236E-02	349E 00	.374E 01	- 793E-02	395E 02
25	146E 00	- 227E-02	.262E 00	.292E 01	.692E-62	+220F 02
26	.127E 00	118E_02	.177E 00	.221E "1	.853E-02	.115E U2
27	.113E 00	-100E-02	123E 00	.165E ⁿ 1	•837E=02	.582E 01
28	.962E-01	-103E-02	.808E-01	.122E 01	.824E-02	.296E 01
29	.836E-01	- 333E-03	,524E-01	.912E CO	.606E-02	.152E 01
30	•751E=01	122E-03	• 342E - 01	.694E (D	•434E-02	.765F 00
31	.672E-01	467E_03	208E-01	.533E 00	.351E-02	.348E 00
32	•608E-01	- 203E-03	·110E-01	.4P4E 01	-2631-62	.13AE 00
33	+236E=01	442E-05	•504E=02	.304E LD	• 186t+62	•470F-01
34	•571E=01	159E+04	•177E-02	.226E 30	.153F=02	•125E=01
35	+682E=n1	.107E-03	•304E-n3	.168t ur	• 9728-63	•125E=a2

Table C8. (Concluded)

RESPONSE COVARIANCES (1)

$\widetilde{\mathbf{t}}$	181	181*D181	D1B1	182	195*#185	n i B ?	1 E 3	183*D183	DIB3
1	•000E-80	•000E-80	•000E=80	•06uE+80	•U00E-80	-000E-8U	•6006 - 80	.000E=80	•000E-80
2	•581E 11	139E 12	•334E 12	.184E 12	.130E 13	•937E 13	.166E 12	.175E 13	.187E 14
3	.181E 12	929E 11	.236E 12	.225E 14	.788E 13	.190E 14	.695E 14	211E 14	.434F 14
4	+455E 12	104E 12	.933F 12	.315E 14	.329E 13	.723F 14	.101 _E 15	.100E 14	.166E 15
5	•889E 12	137E 12	.248 <u></u> [13	.342E 14	7198 12	.179E 15	.116E 15	.144E 13	.409E 15
6	,151E 13	- 212E 12	567F 13	345E 14	- 578F 13	.366F 15	123E 15	- 882E 13	.834E 15
7	•240E 13	382E 12	•134E 14	.319E 14	158E 14	.749E 15	-122F 15	295E 14	.170E 16
8	.323E 13	9 ⁰ 6E 12	.305E 14	352E 14	312 <u>F</u> 14	.150E 16	.136F 15	587E 14	.338E 16
9	.306E 13	147E 13	.525E 14	.432E 14	506F 14	.233F 16	.157E 15	971F 14	.524E 16
10	.461E 13	440E 12	•57 ¹ E 14	.124E 14	495E 14	.209E 16	.617E 14	1ú7E 15	.464E 1f
11	,109E 14	-325E 13	169E 15	126E 14	- 110F 15	,564E 16	.715E 14	- 218E 15	125E 17
12	•124E 14	907E 13	433E 15	.339E 14	261E 15	•134E 17	145E 15	511E 15	-295F 17
13	.862E 13	.104E 14	,512E 15	.492E 14	-,280E 15	.131E 17	.181€ 15	5455 15	.286E 17
14	•545E 13	9 ⁰ 3E 13	446E 15	.468E 14	- 553E 12	•987F 16	.163E 15	435E 15	.212E 17
15	,289E 13	577E 13	297F 15	.366E 14	143F 15	.636E 16	.124E 15	284E 15	.136E 17
16	•141E 13	241E 13	.144E 15	.206E 14	667E 14	•291 _E 16	.706E 14	136E 15	.621E 16
17	.852E 12	966E 12	.703F 14	.106E 14	273F 14	.11PF 16	.35FF 14	564E 14	.246E 16
18	,562E 12	.368E 12	343E 14	.550E 13	- 197F 14	.445E 15	.215E 14	226E 14	.897E 15
19	•405E 12	120E 12	164E 14	.252E 13	411F 13	.166E 15	.]10F 14	913E 13	•319E 15
20	.336E 12	-,267E 11	.826F 13	.961E 12	159F 13	.612E 14	.523F 13	388E 13	.109E 15
21	.304E 12	174E 10	.44 ⁰ E 13	.279E 12	5H7E 12	.249E 14	.231E 13	162E 13	·398F 14
22	260E 12	.950E 10	.236F 13	.524E 11	204F 12	.] IGE 14	.953E 12	763E 12	.157E 14
23	,222E 12	116E 11	130E 13	565E 10	-,393E 11	.506F 13	.279E 12	294E 12	.633E 13
24	•187E 12	108E 11	.718F 12	.547E 11	.361E 11	.242E 13	.269E 11	798E 11	.261F 13
25	.144E 12	.825E 10	.362E 12	.122E 17	.583F 11	.111E 13	.108E 11	.203E 11	:107E 13
26	.113E 12	497E 10	.183E 12	.165E 12	.457E 11	.534F 12	. C26E 11	.417E 11	.474E 12
27	.905E 11	.396E 10	,915F 11	.207E 12	,463E 11	.265E 12	141E 12	.569E 11	.231E 12
28	.663E 11	331E 10 .	415E 11	.242E 12	.498F 11	125F 12	241F 12	740E 11	.117F 12
29	•511E 11	.175E 10	• 201E 11	.257E 12	.293E 11	.605E 11	307E 12	474E 11	.561E 11
30	,427E 11	109E 10	.103F 11	269E 17	.197E 11	.315F 11	3585 12	.334E 11	.301E 11
31	.352E 11	113E 10	.452E 10	.291E 12	.251E 11	.161F 11	421E 12	.454E 11	.184E 11
32	,295E 11	.716E 09	,179E 10	.363E 12	.170E 11	.686F 10	.481F 12	.317E 11	.837E 10
33	.248E 11	.394E 09	.625F 09	.299E 12	.936 _E 10	.251 10	.499E 12	.177 E 11	.318F 10
34	,197E 11	.286E 09	.161F 09	.287E 12	.764F 10	.840E 89	.5.2F 12	.148Ē 11	.125E 10
35	.162E 11	200E 09	218E 08	2776 17	556F 10	208F 09	504E 12	110F 11	379F 09

MEAN RESPONSES (7)

ť	DELTA	DDELTA	NSUBIT	DNSUB	IT QAL	F ODAL	F D7	2
1	.000E-80	.000E-80	.000E-80	.000E+8#	. UUUE- 80	.0/0E-86	.0005-80	.00CE-80
2	-+191E+05	123E-03	•117E-02	.243E=02	.469E-02	.335E-02	962E-(3	866E-03
3	134E-02	-,112E-02	.175E=01	218E-02	.390F 60	.113E 00	553E+01	-,109E UC
4	5 ⁰ 0E-02	164E-02	•591E=01	.775E-V3	.140E 01	.288E QU	226F L0	741E 00
5	++113E+01	146E-02	.137E 00	.975E=02	•318E ul	•597E 00	621E 00	273E 01
6	202E-01	301F-03	.255F 00	.234E-01	.567r Pl	.108⊭ ŭ1	-,135F 01	747F 01
7	- ,307Ē+01	210E-02	419F 00	.467E+01	.87,2E 01	•177E 01	245E 91	168Ê 02
8	-,418E-01	525E_02	618E 00	.721E-01	,120E (2	.266F Č1	.415E 01	331E 02
9	-•489E-01	111E-01	+821F 00	145E 00	.160E C2	.396E 01	635E 01	590E 02
10	-+490E=01	.166E_01	,950E 00	.811E=01	.216E F2	.563E 01	939E 01	978E 02
11	- +645E+01	758E-02	120E 01	.561E≠01	.227E 02	•249E 01	136E 62	 ■.155E 03
12	-,862E-01	•938E=02	.602E 00	180E 00	.222E 02	.672E 01	159E U2	=,230E 03
13	-,957E-01	252E+01	453E 00	•.464E 00	267F 02	101E 05	=_143E-62	-307E 03
14	904E-01	-340E-01	.774E 00	249E 00	.298E ∪2	.622E 01	120E 02	372E 03
15	. +688E+01	359E-01	•106E 01	- .105E+01	.263E 02	-•257E 01	108E 02	428E 03
16	- : 387E=01	297E-01	.818E 00	130E CD	.181E 02	-•872E 01	 112E 02	483E 03
17	++151E=01	.173E-01	•379E 00	292E CO	.844F UI	934F 01	120E 02	541E 03
18	-,292E-02	692E-02	-,469E-02	⇒ ,256E 00	,195E (1	647E 01	123E 02	-,602E 03
19	•496E=03	138E-02	149E 00	102E 00	349E CO	-•274E 01	122E 02	664E 03
20	.359E_03	. .175E_03	••116E 00	.484E-U2	-,344E CO	127E_01	-,120E 92	724E G3
21	-•541E-03	122E-03	-,202E-02	.910E-01	.651E 00	•160F 01	-120E 02	784E 03
22	-,108E=02	261E-03	,108E 00	.125E 00	.156E C1	•197E 01	-,124E 02	845E 03
23	106E-02	519 <u>E</u> =03	.169E 00	.104E 00	193E 01	•145 _E 01	=131E 65	-,908E 03
24	-,739E=03	514E-03	182E 00	,6 <u>0</u> 9E-01	-181E 01	•790E 00	140E C2	976E 03
25	. ,395E=03	367E-03	,156E 00	.254E=01	,149E 01	.336E 00	■ ,15°E 02	=,105E 04
26	-•103E=03	193E-03	•119E 00	839E-02	•110E 01	•139F-01	158E 02	113E 04
27	-+460E=04	107E_03	918E-01	361E+03	.814E 00	•133E=01	-164E U2	= 121E 04
28	•548E=04	526E-04	•685E=01	.924E=J3	.608E 00	.140F→01	169E 72	- 129E 04
29	,969E=04	- 252E-05	•22E=01	.385E-02	459E DU	.112E-02	173E U2	137E 04
30	,113 <u>E</u> =03	- 237E-04	.421 _E =01	.656 <u>F</u> =02	355E 60	.468E-02	• 177E C2	-146E 04
31	•131E=03	-,274E-04	•345E=01	344E+62	•277E LO	•594E-02	186E 02	-155E 04
32	,136E_03	379E-04	284E-01	202E-02	218F CG	.372E-02	-182E U2	- 164E 04
33	+132E=03	- 422E-04	•236E=01	.119E-02	.171E 00	.805E-02	184E 02	173E 04
34	•127E=03	- 413E-04	.166E-01	.118E-02	135E 00	-288E-02	186E U2	+.183E 04
35	.121E-03	399E-04	•993 _E =02	•818E+03	.107 <u>e</u> 60	.304 _E =02	188E 02	192E 04

ļ

MEAN RESPONSES (7)

\widetilde{t}	181	DIBI	182	UI95	183	DIR3
Tt 12 34 5 6 7 8 90112 34 5 6 7 8 90112 134 5 6 7 8 90112 134 5 6 7 8 90112 134 156 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10	IB1 .000E-80 .872E 04 .667E 05 .200E 06 .458E 06 .458E 06 .142E 07 .211E 07 .276E 07 .324E 07 .494E 07 .509E 07 .540E 07 .333E 07 .359E 06	DIB1 .000E-80 .245E 05 .103E 06 .202E 06 .285E 06 .317E 06 .241E 06 .723E 05 .531E 06 .120E 07 .13E 06 .154E 05 .215E 07 .233E 07 .142E 07 .430E 06 .502E 06 .644F 06	IB2 .000E-80 .132E 05 .836E 06 .320E 07 .727E 07 .129E 08 .193E 08 .261E 08 .293E 08 .293E 08 .528E 08 .528E 08 .550E 08 .550E 08 .550E 08 .404E 08 .218E 08 .806E 07 .146E 07	D182 .000E-80 .127E 06 .125E P7 .256E 97 .391E 07 .504E 97 .543E 97 .528E 97 .162E 07 .162E 07 .162E 07 .132E 08 .132E 08 .132E 08 .132E 08 .132E 08 .335E 07 .335E 07	IB3 . CDOE-20 - 109E C5 . 146F C7 . 553E C7 . 126C C8 . 223E C8 . 337E 28 . 456E C8 . 523E C8 . 682E C8 . 932E C8 . 104E 08 . 104E 08 . 401E 08 . 401E C8 . 286E C7	DIR3 .C(CE-80 -170F 06 193F 07 .396E C7 .61CE 07 .791F 07 .864E C7 .864E C7 .864E 07 .334E 07 .334E 07 .399E 07 .139F 08 .192E 08 .920CE 08 .20CE 08 .21AF 08 .141E 08 .6679F 07
17 18 19 20 21		644E 06 317E 06 361E 04	•146E 07 •210E 06 •142E 06 •161F 06	321E 37 557E 06 -544E 05 139E 06	.286E U7 .451E C6 .318E E6 .431E 06	6°9F 07 131E 07 .247F 05
22	-,321E 06 -,407E 06	- 268E 06 - 220E 06	-228F 06	4ñ4E 06 512E 06	.776E C6 .619E 06 .267E 06	331F 06 567E 06
25 26 27	327E 06 247E 06 190E 06	- 674E 05 - 158E 05 - 104E 05	265E 06 282E 06	288E 06 124E 06 830E 05	298E 05 158E 06 232E 06	185E 06 125E 06
28	142E 06 110E 06	751E 04 330E 04	276E 06 251E 06	611E 05 237E 05	278E U6	915F 05 359F 05
30 31 32	-+808E 07 -+722E 05	-1125 04 -1975 04	220E 06 213E 06	- 103L 05 - 111E 05	262E 06 248E 06	14/E 07 162E 05
33 34	++496E 05	.460E 02	-,176E 06 -,157E 06	.186E 04 .233E 04	228E U6 209E C6	.312E 04 .393E 04
35	-337Ē n5	179Ē 02	• 142E n6	.263E 04	-,192E 06	.432E 04

ŧ

RESPONSE COVARIANCES (7)

ť	DELTA	DELTA#DELTA	DDELTA	DZEOT	BELO	Δγ	49	4 Z
1	+000E-80	.000E-80	.00UE-8U	.00LE-80	.900E=80	•8°0E-30	.LU"E-80	.000E=80
2	• 343E=08	175E-06	.128F-04	.967E-03	.243E-07	.155E-05	.766E-"A	.12"E=02
3	,107E-03	.674E-05	295E-04	.117E UF	.384E-66	.431E-05	1430-94	.157E 01
4	,2316-03	229E_04	.117E-03	264E 00	381E_66	4 ⁴ 6E-85	355E-04	20 351L
5	-377E-03	630E-04	.278E-03	.679E 30	.595E-06	•553E-35	. Ct 3F-94	426E 02
6	,529E-03	_,111E_03	.551E_03	159E 61	951F-46	.772E-15	.86.E-14	131E 03
7	•663E-03	 166E-03	.109E-02	.331E UL	.1595-05	.] ⁰ 3E−u4	.1096-03	.345E 03
8	,780E-D3	220E- 03	•212E-02	.647E "1	.278E-05	-137E-34	.12°E-93	.816E 03
9	,763E-03	-,284E-03	.333E-02	119E EZ	418E=05	.176F-04	.130E-03	178E 04
10	+600E+03	279E-03	•278E-02	.213E UZ	•285E-U5	•23PE-04	.107E-03	.369E 04
11	•917E=03	-,227E-03	.702E-02	383E .7	.566E-05	.314E-04	.142E-UR	.726E 04
12	•162E-02	405E-03	168E-01	.471E 82	•138E=F4	-353E-94	·143E=13	.133E 05
13	+185E=02	821E-03	173E-01	.337E 92	.1758-04	·1736-34	.304E=03	.207E -05
14	+146E-05	875E-03	•136F=01	.204E 92	.163E-04	.84(F-05	.256F-03	.281E U5
15	.791E-03	-,595E-03	•915E-05	151E 07	•116E=C4	495F-15	.149E-13	348E 05
16	,306E-03	263E_03	,425 <u>F</u> -02	150E C2	.561E-05	.394E-05	.S95E=04	,417E 05
17	+115E=03	100E-03	▶169E=02	.174E 72	•227€-D5	• 3K3E-05	•€20E=C4	. 494E C5
18	,454E-04	 386E-04	.617E-03	207E 12	•P77E=06	.345E-85	.2642-15	.580E 05
19	.174E-04	-,150E-04	.213E-03	.240E U2	.312E-CK	.319F-05	. 334€ - 05	.677E 05
20	,625E-05	- .554E-05	•686E+04	.265E M2	.111E-06	.283E-05	.1258-05	.786E 05
21	\$09E-02	=,186E-05	,225E-04	282E 97	376 <u>E</u> -C7	.24°E=05	423E+16	,907E 05
22	+713E=06	623E-06	•7596-05	.291E 02	•155E=01	•205E-05	•143E=96	-104E Q6
23	,228E-06	.209E.06	,242F-05	-293E 02	.391E-03	169E-05	.468E-07	114E 00
24	.638E-07	633E-07	•666E-06	.292E 92	.115E-38	•139E-05	.137E-97	.134E 66.
25	+134E=07	-,155E-07	-145F-06	-288E 12	.285E-D9	•115E=45	_310E=08	.151E 06
26	,249E=08	- 304E-N8	.262E-07	283E 32	229E-10	.958E-06	995-99	168E 06
27	+137E=09	336E-09	•196E-08	.277E 22	•106E+10	•A_5F=36	.536E-1C	.187E 06
28	,161E-09	,125E_09	.105E-08	.272E 02	445F-11	.684E-86	126E-10	.207E 06
29	•423E=09	794E-10	•256F=08	.267E J2	•391E=11	•587F- ⁿ 6	•622F+10	.558E ne
30	478E-09	-,174E-09	+279E=08	.263E U2	• 399E-11	•598E-96	.782E-10	.251E 06
31	+518E-09	+.186E-09	-25508	•259E U2	-362 = 11	.444E=96	.657g-10	.274E 06
32	435E-09	-,184E-09	•168F-08	256E 02	-740E-11	•391E=06	.759E-19	.299E 06
33	.310E-09	140E_09	.87NE-09	253E 02	127E_11	.347E_06	.56LE-19	. 324E UG
34	+221E-09	++919E=10	+353E+09	250E JZ	•550E-12	•309F-06	.4UCE-10	.351E 06
35	•173E=09	627E_10	+853 <u>F</u> =10	26 384ST	•142E-12	•278E-36	.389E-10	3795 06

ł

RESPONSE COVARIANCES (7)

ĩ	NIT	NIT#DNET	DNIT	Q^LF	QALF*DQALF	DQALF
1	.000E-80	1000E-80	.000E-80	.0n0E-85	.000E-80	.030E-80
2	•838E=03	.169E-02	. 343F02	.124E-D]	.441F-02	•479E+02
3	.360E-02	 152E-02	,161 <u></u> =02	.731E 01	.198E 00	.197 _E 00
4	•146E - 01	163E-02	•644E=02	•161E 02	.542E 00	•146E B1
5	•346E-01	101E_02	.266E_01	.268E 02	,126E 01	.633E 01
6	\$662E=01	•774E+03	•871E-01	.385E 02	.226E ul	•221E U2
7	.126E 00	.634E-02	.272E 00	.5ñ4E 02	.3538 01	.721E 02
8	.214E 00	.180E-01	•616 _E 00	.620E 92	.508F Ul	192F 03
9	.281E 00	•447E⊷01	.997E 00	.816E)2	.753E 01	.421E J3
10	,409E 00	986E-02	223E 01	_117E_03	_883F U1	.874E 03
11	•835E 00	 314E-01	•694E 01	•119E 03	.135E u0	•186E 04
12	+850E 00	416E 00	-352E 02	.115E 03	.203E P1	•36LE 04
13	•578E 00	212E 00	.377E 02	.148E 03	.285F Ul	•585E 04
14	436E 00	.305E-01	•513E 05	.158E ∂3	-,288E 62	.659E 04
15	,327E 00	700E_01	.747E 01	.114E 03	- 447E U2	_470F 04
16	+218E 00	•562E=02	•24UE 01	.656E 02	315E 02	•276E U4
17	+156E 00	165E-01	. II OF OI	.345E 02	162E 02	.159E 04
18	.107E 00	171E-01	.713E 00	.1g0E U2	816E 01	.939F ⁰ 3
19	+671E=01	147E-01	.481E 00	.107E 02	-,472F úl	•556F 03
20	,406E-01	- ,116E=01	.506E UU	.560E 01	- 279F 01	.330E 03
21	+257E=01	870E-02	•239E 00	•283E 01	-•152E C1	•197E J3
22	,153E=01	516E_02	451E 00	.143E Ul	 772E Du	.116F Q3
23	•964E=02	359E-02	·397E 00	.731E 00	409E UC	.681F 02
24	•613E=02	 269E-02	.349F 00	.373E)r	286E UC	.395F 02
25	•359E=02	176E-02	•265 ^E 00	185E 90	=.123 Ę ₽0	•550 ^E 05
26	+205E-02	109E-02	.178F 00	.885E+01	- •634E=(1	-115E 02
27	,121E-02	_,661E_03	123F 00	.417E_01	315F_01	.582E 01
28	+680E=03	391E-03	•808E-01	-196E-01	156E-01	•296E 01
29	•399E=03	225E_ Ú3	.524 <u>F</u> -01	.934E-02	' ≠ •787F≠02	.152E 01
30	+252E+03	135E-03	.342E-01	•460E=32	389E-62	•765E 00
31	•162E-03	897E-04	•208F-01	.228E-02	188E-02	•349E 00
32	,106E-03	 506E_04	,11VE-01	.110E-02	8×9F-U3	.138F 90
33	•690E=04	274E-04	•502E-02	•518E-03	383E-u3	•469E-J1
34	•557E=04	116E-04	.177E-02	.249E-U3	131E-03	•125E=01
35	•540E≈04	.306E-0 5	,302E-03	.136E-93	-,247F- ⁿ 4	.154F-02

•

RESPONSE COVARIANCES (7)

ĩ	161	181#D181	D181	182	182#D182	D182	163	183*D183	D183
1	.000E=80	.000E-80	.000E-80	.0ñ0E-80	.060E-80	•000E-80	.CDCE-80	.000E=80	.ñ00E-80
2	.588E 11	154E 12	405E 12	.193E 12	157E 13	.130 _E 14	.179E 12	216E 13	.265F 14
3	.602E 11	-,924E 11	,382Ē 12	.480E 14	.221E 14	.326E 14	.137E 15	. 570E 14	.736E 14
4	172E 12	.164E 12	,117E 13	.163E 15	,255E 14	.925E 14	.295E 15	667E 14	.212F 15
5	+385E 12	279E 12	.280E 13	.164E 15	.253E 14	•205E 15	.476E 15	.691E 14	•469E 15
6	.729E 12	454E 12	.613E 13	.226E 15	.200E 14	.401E 15	.660E 15	.599E 14	.913E 15
7	.130E 13	-,783E 12	•141E 14	.276E 15	.462E 13	•8∪0E 15	.817 _E 15	205E 14	.181E 16
8	216E 13	-,142E 13	.320E 14	.315E 15	-,189E 14	.159F 16	946E 15	166E 14	.357E 16
9	,289E 13	178E 13	,553E 14	297E 15	703E 14	.251E 16	907E 15	• 135E 15	,562E 16
10	+333E 13	- 110E 13	•578E 14	.221E 15	881E 14	•210F 16	•692E 15	190E 15	•467E 16
11	.707E 13	- 519E 13	169E 15	.322E 15	- 552E 14	•555E 16	103E 16	425E 14	122E 17
12	.979E 13	-121E 14	.438E 15	.614E 15	- 145E 15	.134E 17	.189E 16	-,143E 15	.294E 17
13	+872E 13	- 122E 14	•227E 15	726E 15	347E 15	•139E 17	.221E 16	655E 15	.301E 17
14	,719E 13	-101E 14	464E 15	558E 15	- 371E 15	.110E 17	172E 16	803E 15	236E 17
12	+498E 13	647E 13	•311E 12	2846 17	•.276E 15	•731E 16	.901E 15	590E 12	+158E 1/
16	+ COUE 13	273E 13	*121E 12	1826 15	- 118E 12	.341F 16	.335E 15	-279E 17	.733E 16
17	- 141E 13	-112E 13	•732E 14	.342E 14	+.439E 14	.139E 16	.119E 15	+.104E 15	•294E 16
18	+705E 12	-,434L 12	• J J J E 14	.119E 14	+,1021 14	531E 15	.442E 14	-,387E 14	109E 16
19.	9417E 12	• 1/7E 12	•108E 14	-388E 13		•192E 12	15/E 14	+,143E 14	• 286E 12
20	11/5 12		030E 13	-111C 13	- 192E 13	•/()4E 14	• 511E 13	- 200E 13	-130E 15
<u>e</u> 1	110C 16		9446E 10	-27+C 12		•C//E 14	1496 13	- E04E 12	404L 14
22	- 327F 11	-2076 II	1205 13	+2065 11 6425 18	++1956 12 - 4016 11	•1188 14 Kode 19	403C 12	- 1565 12	•1/6C 14
24	- 17er 11-	- 871E 10	.717e 12	3605 10	- 164r 11	+ JZ 0E 43	113-11	- 4180 11	+0010 1J
25	.890F 10	- 295F 10	3615 12	617F 10	- 397F 10	.1105 13	7455 00	- 7/45 10	10AF 13
26	446F 10	_'161F_10	182F 12	589F 16	- 200F 10	.522F 12	196F 10	- 137F 10	A50F 12
27	228E 10	- A36E 09	912F 11	510E 10	-103E 10	25AF 12	-340E 10	+.138F 09	208F 12
28	107E 10	387E 09	413F 11	.404E 10	-536E 09	.115F 12	1409F 10	.337E N8	.944E 11
20	532E 09	201E 00	200F 11	.2. 0E 10	580E 09	.573F 11	.342F 10	- 452F 09	.493E 11
30	288E 09	-110E 09	102E 11	.191E 10	440E 09	.304F 11	.259E 10	469E 09	277E 11
31	155E 09	536E 08	449E 10	135E 10	- 261E 09	142E 11	204E 10	- 307E 09	.143E 11
32	.828E n8	- 281E D8	178E 10	.894E 09	-190E 09	.610E 10	144E 10	263E 09	.674E 10
<u>3</u> 3	434E 08	139E 08	620E 09	548E 09	.120E 09	232E 10	925E 09	- 182E 09	.279E 10
34	223E 08	497E 07	157E 09	338E 09	529E 08	.677E 09	597E 09	- 853E 08	.908E 09
35	134E 08	-114E 07	,194E 08	.237E 00	-,168E 08	.103E 09	434E 09	-,296E 08	.156E 09
	· · · · · · · · · · · · · · · · ·				· ·			_	

Table C10. Scheduled Attitude (c2) Covariance Results

MEAN RESPONSES (2)

$\mathbf{\widetilde{t}}$	DELTA	DDELTA	NSURIT	DNSUB	IT QAL	F QUAL	F DZ	Z
1	.000E=80	.009E=80	.000E+80	•0ñuE+80	.000E-80	•0 ⁵ 0F-80	.JJJ7E-80	.000F-80
2	-+191E-05	123E-03	.117E-02	.243E-J2	•469E=02	.335E- ⁹ 2	152E-J3	866E-03
3	+ +134E=02	112E-02	.175E-01	218E-02	.39AE 00	.113E UD	353E-U1	109E 00
4	-,500E-02	164 <u>E</u> -02	,591E-01	.775E+73	1405 01	238E 00	- 556E 30	741E 0)
5	-+113E-01	146E-02	•137E 00	.975E-02	•318E U1	.597E 00	0215 07	273E n1
6	. .202E-01	-,301E-03	.255E 00	.234E-01	.5675 ul	.1J3E 01	135E)1	747E U1
7	-•307E-01	210E-02	•419E 00	.467E=01	•372E 21	•177E 01	249E -11	-,168E 02
8	376E-01	.773E-02	,528E 00	.244E-01	.111E 02	.241E 01	398E 01	330E 05
9	-:385E-01	130E-01	•412F 00	.553E-Jl	•131E 05	.349 _E 01	-,4315 01	-,546E U?
10	289E-01	183E-01	.273F 00	633E~1)1	.148E 02	.434E 01	225E ∩l	722E 92
11	141E_01	.227E_01	935E_02	-458E 08.	,7915 ul	.335E 01	.290E 01	-,728E 12
12	++112E-01	249E-02	118E 01	439E 00	•600€ 01	.679E 71	•172E J2	-:278E J2
13	-•113E=01	.373E-02	185E 01	606E UM	.5525 ul	•913E VL	.413E J2	.113E 03
14	÷=850E=02	403E-02	217E 01	-*509E 00	.4445 01	.555E 01	.755E)2	.400E 03
15	274E-02	257E-02	215E 01	.284E UN	.168F 01	21?E 01	118E 13	.379E 03
16	.233E.02	,763E_03	- 172E 01	.338E 00	947= UJ	735E 01	165E 13	158E 04
17	•428E-02	713E- 03	113E 01	.139E 00	2365 Ul	799E 01	.213E 03	.253E 04
18	• 322E • 02	112E-02	-•594F 00	.1<u>3</u>8E−01	239F D1	532E 01	.259E 03	.371E 04
19	•980E-03	743E-03	203E 00	.1ñ9E=⊍1	781E CO	230F 01	.3)5E 13	.512E 04
20	174E-01	374E-U2	•SIDE 01	.817E JC	.1525 92	•424E 01	.345E 73	675 04
21	-,228E-01	972E-02	406E 01	173E 30	2415 UZ	.235E 01	354E 93	.851E 04
22	-+174E-01	-101E-01	•408F 01	- 742E-01	.246E 02	•130E U1	• 347E .)3	-1035 ND
23	 +111E01	749E-02	.354F 01	+.113E 00	.199E D2	.118E U1	.337E 03	120E 05
24	622E-02	.479E-02	.289E 01	116E 00	152E U2	.530E 0ŋ	.327E 13	136E 05
25	-,302E-02	280E-02	.233E 01	107E J0	.1135 92	.136E 00	.319E 03	.1535 05
26	-+139E-02	135E-02	.184E 01	900E-01	.834E 61	113F 00	.312F)3	.168 05
27	349E-03	.759E-03	.149E 01	- 575E-01	.616F UI	711E-01	.3.j6E ŋ3	134E 05
28	414E-03	359E-03	.119E 01	-,416E-01	.460E D1	452E-01	.302E 03	.199E 05
29	•731E=03	 330E-04	•967E 01	206E-01	•347E BL	423E-01	.293E J3	.214E 05
30	.855E-03	185E-03	.810F DD	921E-02	.267E 01	271E-01	•295E 13	.229E 05
31	.+987E+03	214E-03	.683g 00	-182E-01	.2J9 <u>r</u> Cl	172E-01	.292E J3	.243E 95
32	+102E-02	287E-03	•584E 00	705E-J2	.164E 01	136E-01	•535E 33	.258E 05
33	.990E-03	-;318E-03	496E 00	- 347E-02	129E UL	471E+02	_288E 03	.272E 05
34	•953E-03	310E-03	•462E 00	247E-02	•101E C1	677E-02	.286E J3	287E 05
35	.907E_03	301F_03	-456F NO	- 147E-02	.3858 68	4265-02	2956 33	1115 05

120

ļ

i

İ

:

-

MEAN RESPONSES (2)

ĩ	181	DIBI	182	DIB2	183	D183
1	•000E+80	.000E-80	.000E-80	.000E+85	•003E=87	•030E-80
5	-+ 872E 04	- 245E 05	132E 05	127E 06	-,109E 05	179E 06
3	-,667E 05	103E 06	.836g 06	125E 07	146E 07	.193F 07
4	••200E 06	202E 06	.320E 07	.256E 07	553E 07	.396E 67
5	•• ⁴⁵ 8E 06	285E 06	,727E 07	.391E 07	,126E 08	.610F 07
6	-+861E 06	317E 06	129E 08	.504E 07	.223E 08	•791F J7
7	-,142E 07	241E 06	.193E 08	.543E 07	.337E 08	.864E 07
8	216E 07	-170E 06	.230E 08	.223E U7	.407g 03	.390F 07
9	256E 07	811E 06	.230E 08	-,239E 07	.411E 08	292E 07
10	-,292E 07	-167E 07	,156E 08	961E 07	2938 09	138E 08
11	+ 395E-07	-205E 07	.342E 07	165E J8	.106E 03	246E 08
12	-+294E 07	-137E 07	,305E 07	168E 07	.869E UT	105E 07
13	233E 07	- 204E 07	•408E D7	365E 07	.963E J7	347E 07
14	++151E 07	- 155E 07	.349E 07	363E J7	.764E 07	407E 07
15	.,468E 06	- 337E 06	116E 07	.180E "7	250E U7	- 254E 07
16	260E 06	697E 06	••121E 07	.115E 36	233E 07	655E 06
17	556E 06	116E 07	-,21VE 07	.152E 07	416E U7	.107E 07
18	464E 06	899E 06	151E 07	.161E 07	336E 07	.153E 07
19	,167E 06	364E 06	-,415E 06	.924E 96	893E U6	.107E 07
20	- 265E 07	- 415E 06	.79 ³ E 07	566E U7	.164 <u>5</u> U3	.986E 07
21	-+214E 07	864E 06	•753E 07	348E 07	•138E 08	466E 07
22	. SUDE 07	- 713E 06	.400E 07	467E '97	.128E 05	690E D7
23	++419E 07	517E 06	•838E 06	381E 07	.660E 07	-•555E 07
24	++332E 07	31ZE 06	113E 07	259E "7	.227E 07	358E 07
27	249E 07	176E 06	201E 07	164E 07	2195 06	248E 07
26	+107E 07	620E 05	••214E 07	7A6E U6	12)E 07	122E 37
27	++14E 07	-415E U5	-, 215E 07	-,532E 06	-1765 07	826E 06
28	-+107E 07	- 324L 05	• 208E 07	-396E 06	21JE U7	-•612E 06
29	-+ 0C/C U0	80JL U4	19UE 07	- 146E UB	2105 07	230E 96
30	- 54AF 04	201E 03	17ZE 07	•.016E 05	2005 07	843g 05
32	4405 04	- 373L 04	1000 07	6371 05	1975 07	1JIE 06
52		1392 04	• 147E 07	- 113E V5	1075 07	202E 05
33	3035 04	+401C 04	-•132t 0/	-22/L U5	1/28 07	•317E 05
35	- 253E 04	387F 04		2-3F JK	- 144E 07	.342E 05

RESPONSE COVARIANCES (2)

ĩ	DELTA	DELTAPDELTA	DUELTA	DZPOT	νειο	<u>۵</u> ۲	40	4 2-
1	•000E-80	000E-80	.000E-80	.CADE-SA	•000E=80	•000E=80	•UDDE=8()	.JODE-80
Ž	.343E.08	175E_06	128E-04	.967E−13	.243F.07	.155E-06	.768E_09	120E-02
3	.107E-03	674E-05	.295F-04	.117E UC	•384E-C6	•431E=J5	.143E=94	.157E 01
4	+231E+03	3229E_04	1175-03	.264E 00	.381F-06	•4°6E=05	<u>.355E=34</u>	.112E 02
5	•377E-03	3 6 30E-04	•273E-03	.679E 30	•595E=06	•553E-05	• 666令E=44	.426E 92
6	,529E-03	3 _,111E=03	.551F=03	.159E Ul	.951F-N6	•772E+05	_860E=94	131E 03
7	,663E-03	3166E_03	,109 <u>5</u> =02	_331E A1	<u>1595-05</u>	.1∪3E=04	•T∩3E⇔Ú3	.345E 03
8	+630E-03	233E-03	•S11E-05	•585E 01	•331E=05	•123F+04	•164E=03	.812E 03
9	•474E=03	3243E.03	.321F-02	.484E J1	•539E+05	.716E-05	.254E=13	.153E 04
10	•213E=03	3 185E-03	.278F-02	.2r9E "1	.419E-05	.225E-05	•377E-03	.203E 04
11	.763E=04	172E-03	.734E-02	.150E J2	123E-04	.123F=04	.724E-03	157E 04
15	,122E-03	3 - 263E-03	.169E-01	_104E_J3	217E-C4	.667F=04	-131E-02	375E 03
13	+150E=03	3 - 281E-03	•1637-01	.399E 33	•263E=04	•2(5E=03	•195E-12	.452E 04
14	,134E-03	-230E-03	,121E-01	1098 34	-232F_14	446E-03	-741E-32	.37UE 05
15	•936E=04	154E-03	•776E=02	-230E 14	•162E=04	•755E=93	-44E=92	151E 06
16	+474E=04	794E_04	•353E=02	.40.3E 14	-8125-U5	106E=02	•224E=12	.435E 06
17	,241E-04	- 335E-04	-138E-02	.626E ""	175-05	131E-05	*rn\E=us	1026 07
18	•101E=04	-133E-04	•492E=03	905E)4	•1/2L=(°)	•1:1E=02	•200E=02	-20/E 0/
19	441E-0	517E-05	.170E_03	-1255 VD	- / 1 / 5 - L 5	-100F-02	100E=02	380E 07
20	+436E+04	-671E=05	•573E-04	-160E J5		•171E=02	•889E=23	-646E U7
21	+008E+04	304E=04	• 3235 = 04	.170E 97	• 2011 + 02	•14/E=32	■135E=03	.101E 00
22	+ 374E=04	-2195-04	• 20 LE=04	-164E 22	+008E+00	•112E=AS	•194E=04	-14/E UN
23	.130E+U4	- 91/2-05	•873E=02 2nom 05	1500 00		-870E-03	-32AE=119	-199E 00
24	+ 300E=U:		• 299E=05	1475 VC	.100E.U/	. /	• CO (<u>+</u> - CO	2011 UQ
25	+8/8C+06	5 +•819E+06	+892E=06 2020 06	+141C 05	• H Z / S = V B	• 563E=03	• <u>∠ 1 4 t</u> = "6	· 3/2E UN
20	11045-01		552e-07	130L 00	-1235-00 6605-00	9600E=03	•430 <u>C</u> =47	- JYEC 00
28	1635-01		1205.07	120E J5	350E-09	- 100E=00	1325-19	5ADE 08
20	510e 01	7 -1396+07 7 -940r 00	91675+UI 269m 08	1296 35	584E 10	• 32.3E=03	-1346-08	47E 00
29	9 . F - A			JANE OF		-211 <u>1</u> =0.3	1155-07	
30	020L-01	7	• 6 U 4 5 = U 9 6 6 1 5 0 9	•124 UD	+1625-10 1425-10	2205 03	•1105-57 1545-07	8256 08
32	+ 405F=0		.051F-88	120E 35	302F-11	184F=03	• 1976=07	-0776 00 -928F 08
33	-934F_N	7300F_07	-1055-07	1198 35	-196E=11	.1636-03	-164E=07	1045 04
34	.8645=01	7 = 281 = 0.7	9445-08	118F 35	142F=11	1465-03	1525-07	1156 09
15	+782E=0	7	•87aF=∩8	117E 35	148E-11	-131E=03	38E-07	127E 09
							- -	

RESPONSE COVARIANCES (2)

\tilde{t}	NIT	NITADNIT	DNIT	QALF	QALF¢DQALF	DQAEF
1	•000E-80	.000E-80	• ^ 0 0 E = 8 0	.000E-3C	• 000E=80	•Uñ0F-80
2	•838E-03	169E-02	•343E-02	.124E-01	•441F=02	.479E-02
3	+360E+02	152E-02	161E=02	.731E 01	.198E 00	.197E 00
4	.146E-01	-163E-05	•644 <u>5</u> -02	.161E 32	.542E 00	.146g ?L
5	.346E=01	-101E-02	.266E-01	.268E UP	.126E 01	.633E 01
6	,662E_01	774E_03	.871E-01	_385E J2	226E 01	.221E 02
7	.126E 00	634E-02	.272E 00	504E 02	•353E 01	•721E 02
8	,180E 00	889E-02	.62UF 00	.533E U2	.369F 01	.191E 03
9	,160E 00	263E-01	.101E 01	542E J2	.4755 0]	421E 03
10	.310E 00	548E-02	.227E 01	.589E U2	.366F 01	.875E 03
11	,782E 00	- 115E 00	,723F 01	.362E J2	- 599E ul	186E 04
12	•136E 01	- 655E 00	•357E 02	271E)2	4008 01	.361E 04
13	,155E 01	. 529E 00	.378E 02	.279E 0?	.677E 01	.586F 14
14	.156E 01	479E 00	-217F 02	.268E 32	.179E U2	•600E 04
15	.108E 01	315E 00	.720E 01	.182E 02	.150E U2	.470E 04
16	,570E 00	-102E 00	221E 01	1 16E 92	.307E C1	.276E 04
17	#275E 00	123E-01	•979E 00	.7 ₀ 8E gj	321E 01	•159E U4
18	.139E 00	_180E_02	.651E 00	.432E 01	- 2875 01	.940E 03
19	•8°5E-01	.146E-02	•445E 00	.276E J1	146E 01	•226F 33
20	,586E 00	216E 00	.578F 00	331E 02	.534F 01	.331E 03
21	.213E 01	258E-01	\$33E 00	.877E 02	.738E 09	•197F 03
22	.204E 01	-120E 00	.456E 00	.704E U2	2175 01	.116E 03
23	.146E 01	-105E 00	_404E 00	.421E 02	-154 <u>F</u> 01	.681F U2
24	•933E 00	667E-01	•354E 00	-230E J2	833E na	• 395E 02
25	.596E 00	-,392E-01	.264F 00	.124E ^2	395E 00	.220E 02
26	•375E 00	-,190E-01	173F CO	•666E "1	-188E 00	.115F 02
27	.246E 00	. 106E.01	123F 00	.362E 01	8825-01	•582F 01
28	120E 00	- 625E-02	810E-01	501E ul	- 427E-01	-536E 01
29	+106E 00	- 292E-02	•524E=01	•115E 01	• 220E • 01	•153E 01
30	.746E-01	-,178E-02	.342F_01	.6BIE 00	-,L18E-DI	.765E 00
31	•533E-01	124E-02	•208E-01	-416E 00	646E-12	•348E 00
32	•391E=01	648E-03	+110E=01	.256E 0P	362E-02	•138E 00
33	-283E-01	. =.281E=03	•502E=02	.158E 00	203E-U2	.470E-01
34	+251E=01	202E-03	•177E-02	.978E=j1	112E-02	-125E-01
35	,252E,01	137E_03	_303E_03	.616E.01	. 643E_03	.155E.02

,

I

RESPONSE COVARIANCES (2)

ť	181	181+0181	DIB1	182	185#0185	0182	133	183*0183	D133
1	.000E-80	000E-80	.000E-A0	.000E-80	.000E-80	•010E-80	.)985-49	.000E-8U	.000E-80
Ž	.588E 11	.154E 12	405E 12	.193E 12	157E 13	.130F 14	.17JE 12	.216E 13	.265E 14
3	.602E 11	- 924E 11	382F 12	480E 14	221E 14	.32)E 14	137E 15	.570E 14	.736E 14
4	172E 12	-164E 12	117E 13	103E 15	255E 14	.925E 14	.295E 15	.667F 14	.212E 15
5	385E 12	- 279E 12	280F 13	164E 15	253F 14	205F 15	176F 15	691E 14	469E 15
6	729E 12	- 454E 12	613E 13	226E 15	200E 14	431E 15	561E 15	597E 14	913E 15
7	130E 13	-783E 12	.141E 14	276E 15	4625 13	.800E 15	J17E 15	295F 14	.1815 16
A	224E 13	-11RE 13	315E 14	.247E 15	473E 14	.156E 16	152F 15	959E 14	.351E 16
ğ	.264E 13	-148E 13	538E 14	.176E 15	- 8795 14	.241E 16	550E 15	- 190F 15	.549E 16
10	308F 13	588E 12	.574F 14	.659E 14	869F 14	.210F 16	224F 15	- 203E 15	463E 16
2.1	.647E 13	- 241E 13	169E 15	115E 14	- 120E 15	.571E 16	52.1E 14	- 266E 15	126E 17
īż	.785E 13		433E 15	287E 14	- 261E 15	.134F 17	103E 15	512E 15	.295E 17
13	.644E 13	103E 14	512F 15	426E 14	- 280E 15	.131E 17	.144E 15	- 542E 15	.2865 17
14	430E 13	- 887E 13	.446E 15	412E 14	- 222E 15	937E 16	136F 15	431E 15	-212E 17
15	221E 13	- 561F 13	297F 15	313E 14	144F 15	.636F 15	.190F 15	283F 15	-136r 17
16	,955E 12	236E 13	.144E 15	.158E 14	- 665E 14	.291E 16	.319Ē 14	- 135E 15	.621E 16
17	465E 12	966E 12	703F 14	.690E 13	- 268F 14	.118F 16	23"E 11	- 546E 14	.246F 16
1.	•242E 12	-386E 12	.343E 14	-285E 13	101F 14	.445E 15	.191E 14	206E 14	· A975 15
īğ	134E 12	145E 12	.164E 14	988E 12	-,351E 13	156E 15	.381E 13	7535 13	.3195 15
20	.101g 13	313F 11	.822F 13	.912E 13	.512E 13	.658F 14	.376F 14	.198- 14	.124E 15
21	.339E 13	.349E 12	445E 13	.741E 13	370E 13	.272F 14	.459E 14	- 125E 14	.447E 14
22	290E 13	224E 12	239F 13	190E 13	- 226F 13	138F 14	172F 14	- 107E 14	.224E 14
23	186E 13	121E 12	131F 13	813E 11	- 182F 12	.664E 13	465E 13	405E 13	.131E 14
24	,110E 13	556E 11	721E 12	128E 12	253E 12	.392E 13	513F 12	885E 12	.473E 13
25	•597E 12	254E 11	.362E 12	.300E 12	.291E 12	.132E 13	.526E 10	4225 11	.153E 13
26	.335E 12	757E 10	.182E 12	438E 12	.152E 12	.576E 12	.137E 12	.1335 12	.584E 12
27	,198E 12	410E 10	.914E 11	443E 12	104E 12	279F 12	295F 12	134E 12	.269F 12
28	•110E 12	261E 10	.413E 11	414E 12	.757E 11	•129E 12	.42JE 12	.119E 12	.129E 12
Ž9	.652E 11	342E 09	200E 11	343E 12	.249E 11	.59?E 11	.419E 12	443E 11	.542F 11
30	427E 11	- 166E 0g	,102E 11	.282E 12	•754E 10	.3 '4E 11	- 332F 12	1508 11	.283E 11
31	,282E 11	614E 08	.449E 10	.245E 12	.908E 15	.146E 11	.369E 12	.130E 11	.152E 11
32	•192E 11	-124E 09	.178E 10	.266E 12	.118e 1º	.611F 17	.332E 12	.317 LO	.677F 10
33	.132E 11	 193Ē 09	.622E 09	.166Ē 12	307E 10	.237Ē 10	.2A)E 12	551E 1U	.290E 10
34	,875E 10	134E 09	,159E 09	132E 17	477E 10	.732E 09	.234E 12	- 523E 10	102E 10
35	•607E 10	107E 09	•212E 08	.107E 12	287F 10	-179E 33	.197E 12	546E 10	.313E N9

MEAN RESPONSES (3)

	•000E-80 •191E-05 •134E-02 •500E-02	•0ñ0E-80 •123E-03 ••112E-02	.009E-80	.000E-80	.0005-80	8085 80		
2	-,191E=05 -,134E=02 -,500E=02	,123E-03 -,112E-02	117F-02	_		• U B U L = 0 U	•UOVE=80	+000E=80
	+134E=02 -,500 _E =02	112E-02		,243E+02	•469E=02	.335E-02	962E-03	••866E=03
	-,504 <u>E</u> -02	• - • - • - • - •	.175E-01	+,218E+02	.390E 00	.113E 08	-,553E-01	109E 00
4		-,164E-02	;591 _E =01	775E+03	,140 _E 01	288E 90	- ²²⁶ 00	•,741 _E 00
:	••113E-01	146E-02	-137E 00	975E-02	•318E 01	597E 00	621E 00	=.273E 01
	-,202E-01	-,301E-03	255E 00	,234E=01	,567E 01	,108E 01	-,435E 01	••747E 01
]	-,307E-01	•210E-02	419E 00	467E=01	•872E 01	.177E 01	249E 01	168E 02
8	5 • • 579E=UI	.708E.02	.523E UU	.3335-01	•112E U2	.246E UI		••330E 02
	2415 01	+121E-01	474E UU	.077- 07	+135E UZ	.362E VI	-,440E UI	74 E U2
14	1 000000000000000000000000000000000000	10/E-01	423E UU		+167E UZ	+717E WI	=, JIYE UI	742E 02
11		+002L-U2	294E UU	•• ² 04E 00	.1416 02	+2895 MI	ALTOL UU	-041E UZ
		+5246-02	-+464L UU	330E UU	+124L U2	+658C W1	+892E UI	-+656E 02
1	475=01	+102C=01	- 7.4- 00		144E 02	4773E W1	472 02	101 <u>0</u> UC
1	4105-01	.1415-01	- 3215 00	2855 08	1595 02	1715 01	7198 02	.A015 03
1	301-01	1885 A1	·2855 00	2555 00	1405 02	729r 81	9836 02	910-03
	- 208F-01	122E=01	7825 00	1095-01	A11AF 02	795F 01	114F 03	
1	-148F-01	.874F_02	1112F 01	-108F 00	-974F 01	554F #1	.128F 03	204F 04
id	- 125E-01	+433F-02	131F 01	.147F+01	.949E 01	-1A2E 01	138F 03	271F 04
2	-130E-01	.543E-02	179E 01	.328E+01	123E 02	622E 00	.143E 03	-342E 04
21	+ 108F=01	576F+02	195F 01	411r=03	126F 02	.167F 01	1415 03	413r 04
22	- 795E-02	457E-02	179E 01	201E=01	113E 02	186E 01	136E 03	482E n4
ź.	- 517E-02	344E 02	157E 01	839E 02	939E 01	131E 0 1	1322 03	5498 04
24	-,300E-02	.228E-02	130E 01	=,123E=01	.734E D1	682E 00	127E 03	.614E 04
2	•+148E+02	+137E-02	,105E 01	-,294E=01	+556E 01	,262E 00	,123E 03	.676E 04
26	679E=03	•683E-03	829E 00	421 _E =01	•409E 01	387E-01	120 E 03	•737E 04
27	-,171E=03	.376E-#3	668E 00	-,24 <u>0E-0</u> 1	.302E 01	-,228E-gl	.117E 03	.796E 04
28	203E+03	,179E_03	531E 00	- <u>166</u> -01	225E 01	., 109E.€1	,115E 03	.854E Ū4
29	+359E=03	151E-04	430E 00	•.623E+02	.170E 01	168E-01	.113E 03	•911E 04
3	420E-03	-,901E-04	359E 00	,449E=04	.131E 01	842E.02	,111E 03	,967E 04
31	+484E=03	-,104E-03	.302E 00	-,954E=U2	+103E 01	••362E=02	.110g 03	,102E 05
37	.502E+03	-,141E-03	258E 00	-173E-02	+805E 00		109E 03	108E 05
33	4002-03	+,156E=03	2196 00	• /34E+03	.033E 00	2702-02	100E 03	113E 05
34	+460E+U3	-+152E-03	-201E 00	*•331E=03	+498E DO	111E-02	.107E 03	+119E 05

· ··· · · ·

~

ļ

ł

MEAN RESPONSES (3)

\tilde{t}	181	DIBL	182	D182	183	DIB3
1	, 0 00E-8	0 .000E-80	.000E-80	.000E-80	.000E-80	.000E-80
2	-+872E 0)4 -+245E 9 5	-,132E 05	-127E 06	■ +109E 05	179E #6
3	-,667E 0	15 ,103 _E 06	836E 06	125 _E 07	+146 <u>e</u> 07	193g 07
4	-,200E C	16 1202E 86	32 8 Ē 07	256E 07	+553E 07	•396Ē 87
5	458E 0)6 , 285E 06	;727E 07	; 391 <u></u> 07	,126E 08	610E D7
6	*+861E 0	6 +317E 06	129E 08	504E 07	+223E 08	•791E 07
7	-+1425 0	17 +241E 06	193E 08	543E 07	•337E 08	•864E 87
8	-,214E 0	17 •,123E 06	232 08	283E 07	410E 08	482E 07
9	+ 278E C	17 -+727E 06	.242E 08	-1232 07	.432E U8	-+111E #7
10	- 540E 0	11 +,147E D7	192E 00	- 1026 01	. 354E U8	-,973E B7
11	=+39/E (17 -+479E 06	+162E 08	138E 07	+317E 08	+285E 07
12		J/ ●•0000 B0	-225E 00	J4/E 0/	4185 08	
13	-,J701 0	7 ●•196E U7	272E U8	- BUGE UG	1965 US	1151 U7
19	++369E U	77 - 717- 66	+2011 UO	- 300E 07	+2022 08	SEAL AT
12	- <u> </u>		2445 00	- 307E UT	-34E UD	• 774E U/
19	91270L (+1/2L 00	3140 07	+312L DO	
11			1122 00	- 222E 04	+211E UO	
15		// 04892 00 17 .1385 06	-/41E U/	-1765 06	1205 08	4565 A
20			524- 07	-164= 07	-114- 80	- 220- 07
21	2525	7 - 4868 -6	1344E -7	- 2595 .7		3665 .7
22	230	7 _ 448F 06	1795 07	2385 07	582r N7	3225 87
23	-lest C	7	380E 04	+ 101F 07	-304F 07	272 87
24	-160E C	07 = 1207F ₿6		-11325 07	.109F 07	-192F #7
25	- 122 0	97 +•112r 06	- 9865 06	- 845 - 06	10Ar 06	-125F 07
26	.918Ē (06349E 05	-105E 07	- 397E 06	*.586E 06	612E 86
27	- 706E C	06 .,232E 85	_106E 07	268E 06	862F 06	414E 06
28	- 527E 0	76 -178E A5	-102E 07	- 199E 06	•103E D7	387E 86
Ž9		06 -,550E 04	-930E 06	-741E 05	•,103E 07	116E #6
30	-,328E (06576E 03	844E 06	- 273E 05	-,983E 06	-435E 05
31	++267E C)6 -+262E 04	788E 06	-;327E 05	**966E 06	510E #5
32	• 220 E 0	06 ,946E 02	- 722E 06	- 670E 04	• 916E 06	-119E 05
33	••183E (96 • 193Ē Ω4	-649E 06	105E 05	*.842E 06	150E 15
34	,149E C)6 "Ī64Ē 0 4	-,579E Õ6	ĴĪIE Ŏ5	•,77ŌE Ŏ6	,164E 0 5
35	124F C	76 -141F 84		12mg 05	8.707F 06	101F 85

-

RESPONSE COVARIANCES (3)

t	DELTA	DELTA*DELTA	DDELTA	DZDOT	DELQ	4 ¥	A <i>G</i>	4 2
1		• 000E-60	000E-80	009E-08	.000E-80		-000E-80	•000E-80
6	19732-00		2201-04	11.00		1995-00	1430 04	1205-01
3	21172-04	0 +074L-87	+697E+U4	2440 00	13842-00	, 7312003	***********	1120 07
- 1	277-0		117L-03	+ 207E UV	9381L-UD	1 4 8 0 L 4 8 7	.3752-04	ATTEL DE
2	-317E-0.	- • • • • • • • • • • • • • • • • • • •	, C78E-03	0/4E 00	*242E=06	2225-82	.0000-04	120E 02
	SCAF-0	•• <u>111</u> E- <u>6</u> 3	• 221E=03	+127E 01	+ 7 2 1 E • D 0	+ / / 6L = 67	• 0 0 0 E • 0 •	+1215 02
1	603E-0.	3 +166L-03	109E-02	331E DI	+1396-03	.1836.84	1092-03	345E UJ
8	.639E+U	3 •,224E-03	2105-02	.268E 01	+3242-05	,1246-44	+45E+U3	, BUGE U3
. 9	+ 5 E UE + 0.	5 • • 243E • 83	+321E=02	-70/E 01	1289E=05	+/JUL+82	+ 23 / E= 03	152E U4
1.	.2945-0	•• 200 E• 0 3	2762-02	CINE DI	+3662-03	* 2 9 1 2 4 2 7	.3145003	1212E U4
11	2432-0	5 ••157E•83	.713E-02	100E 01	+ YOSE=07	• D97L+97	.7362-03	+ CUDE 04
12	4016-0	2965.83	168E-01	420E 02	,198E_04	270E-04	.074E.03	102E 04
13	+466L-D	3 =+3 <u>74</u> E-93	+164E=01	162E 03	+231E=04	+830L+84	+122E=02	\$735E 03
14	4922-0	3 =+350L+03	+122E-01	+37E 03	+211E+04	+1796-83	+1326+02	993E 04
15	• 204 L = U.	> •+249Ľ+₩3	,7926-02	BONE US	+1772+04	.2832-83	+114E+U2	+ 872 07
.16	1405-0	5 ••132E-83	+361E+02	1392 04	.0392.000	.3742-83	. / 50E+U3	4147E UD
17	PPIE-D	• • • • • • • • • • • • • • • • • • •	142E-02	1005 04	+07E+05	376E-03	4922-03	330E 06
10	•523E+0	• ••••••••••••	•514E+03	•221E 04	•2005-05	• 367E-•3	•312E=03	+632E 05
19	3312-04		177E-03	+ CODE U4	+1542.05	.348L.83	20VE-03	LUTE UT
Z	• 283E • 6	4 ·	638E-04	4674E U4	+1582-05	.2922-83	+ 3945+04	IGTE UT
Z1	4177E+0	+965E+82	+251E+04	.2602 04	\$ 375E+06	2322-03	.1102-04	2408 07
. 22	10-4E-0	- 433E-82	969E-02	624E 04	133E-07	1792-83	-20E-02	366E 07
23	+221E-0	2 =+104E+@2	-342E-02	278E 07	+131E+07	130E-83	• 702E=00	121E Q7
Z4	,640E.U	6 JZZE 6	103E-02	2205 04	1358E U8	109E-03	+47E+06	226E 07
25	+145E+U	6 ••138E- 0 6	259E-06	218E 04	+120E+08	• 869E • 04	+349E=U7	.640E 07
Z	+277E+8	7 •••301E+#7	+238E+87	1210E 04	• < 8 8 E + 09	4711E404	+740E+08	162E 07
27	107g-0	5 -+406g+88	9985-00	2042 04	+109E-00	+291 <u>E</u> =#4	./462-09	+892E 07
20	ZODEOU	5 . 2218-00	-284E-98	1995 04	01-388C	• 7 8 V E • V 4	.2092-09	103E 08
29	SAOL-D	0 430E	259E-09	142E 04	,1ZZE,10	4202.84	1215-00	1105 00
3	+110E+0	T •+244E+98	328E-08	191E 04	•526E-11	+37 8 E+84	-181E-08	+133E 08
31	+146E+D	7 •••323E•08	321E-08	189E 04	+226E+11	+323E-84	+244E=08	150E 08
32	+1775+#	7 -, 44ZE+88	287E-08	186g 04	+ 250E+11	.Z85E-84	. 667E=08	+167g 08
33	\$145E**	7 ++470E=08	233E-88	104E 04	+137E+11	+232E+84	. 4556-08	185E 08
34	134E+0	T .,436E.48	174E.08	152E 04	679E-12	2255-04	236E+08	Z04E 06
35	121E+0	7 ++402E+#8	+140E-08	180E 04	•345E•12	+282E+84	•214E•08	+223E 08

 \mathbf{r}

RESPONSE COVARIANCES (3)

ť	NIT	NIT#DNIT	DNIT	QALF	QALF+DQALF	DQALF
1	. 800E-80	•000E-80	.000E-80	000E-80	• 000E=80	
2	.838E-03	,169E- 8 2	,343E-02	,124E-01	•441E•02	•479E-02
3	,3602+02	-,152E-02	-161E-02	731E 01	+198E 00	,197E 80
4	;146E-01	-,1636-02	644E-02	161E 02	.542E 00	.146E 01
5	,346Ē+01	-,101E-92	266E-01	268E 02	.126E D1	.633E 01
6	662 <u>5</u> 01	,774E_93	.871E.01	385E 02	,226E 01	,221E #2
7	126E 00	+634E-02	+272E 00	504E 02	+353E 01	•721E 02
8	+178E 00	,106E- B 1	619E 00	535E DZ	.395E 01	,191E 0 3
9	171E 00	•288E-01	.101E 01	-282E 02	+239E UI	.421E U3
1	.310E 00	-,603E-92	226E 01	710E 02	+512E 01	075E 03
11	725E 00	-,119E BU	713E 01	240E UZ	. JZBE UI	1005 04
12	100E 01	-+610E 00	356E 02	467E 02	••231E 01	+361L 04
13	912E 00	-,447E UD	378E 02	220E U2	410C UI	4 200L 04
14	1687E UU	C78E 00	-217E UC	-7342 02	- 1385 63	4756 84
15	-303E 00	++947E+91	+/28E UL	121- 02		274- 84
16	TOTE OF	. 263E-42	2216 01	JELE UZ	4 104E UZ	+ 505 - A
11	1091 DO	+101L-01	- 970L 00	2245 02	7295 81	0107 01
10	2422 00	••J/22-02		1025 02	- JARE 01	
19	12085 UV	- 6185-82	1445L UV	2518 02		.3305 83
21	482- 00	- 30102-02	537- 60	210 02	2455 01	.197r 03
22	1528 00	3245-81	AB25 00	11386 02	-143F 01	1167 03
23	236r 00	- 2255-01	309F 00	7255 01	7437 00	681F 82
	JAAF DO	-118F-01	358F 00	3855 01	**368E 00	.395E 82
55	.938F_01	• 7A3E - 62	262E 00	204F 01	+.179E 00	.229E 02
26	.586r-01	*.390r-92	178F 00	1087 01	*+853E-01	,115g 02
27	354E-01	217E-82	123E 00	582E 00	••399Ē•01	.582E #1
28	247E-01	+.125E-#2	808E-01	321E 00	190E_01	.296E 01
29	+164E+01	-+605E-03	-524E+01	181E 00	*.945E-02	152E 01
30	116E-0I	•,332E-03	342E-01	,107E ÖØ	++475E_02	.765E 00
31	.826E-D2	-,248E- 0 3	208E-01	653E=01	••239E-02	,348E 00
32	.606E-02	-+131E-03	•110E+01	,399E-01	•+121E+D2	+138E ##
33	438E-02	-,595 _E -84	502E-02	245E-01	•,584E-03	4695-01
<u></u> ģ4	389E-02	-,365E-04	177E-02	151E-01	*+259E+03	+1256+01
15	.390E_02	216E-04	:302E_03	1953E_02	112E_0 3	154E_02

RESPONSE COVARIANCES (3)

t	181	181#D181	D181	182	182+D182	D182	183	183+D183	D183
1		•006E-80	0685-80	000E-80			.009E-50	.000E-80	.000E=80
Z	4500E 11	154E 12	405E 12	193E 12	157E 13	138E 14	1798 12	216E 13	265E 14
J	1728 12	- 16AF 12	1175 13	103c 15	2555 1A		·2052 15	667E 14	10125 1a
5	385F 12	• 279F 12	280r 13	164F 15	253r 14	205r 15	476# 15	691F 14	469F 15
6	729E 12	#####E 12	613E 13	226E 15	+208E 1A	AB1E 15	660E 15	599E 14	913E 15
7	130E I3	••783E 12	141E 14	276E 15	462E 13	880E 15	.817E 15	285E 14	18IE 16
8	220E 13	.,123g 13	315E 14	252 15	-,413 <u>E</u> 14	156E 16	.765E 15	-,787E 14	351E 16
9	265E 13	155E 13	539E 14	196E 15	••821E 14	241E 16	.607E 15	+173E 15	541E 16
10	310g 13	•,754E 12	573E 14	982E 14	+ 059E 14	2095 16	324E 15	195E 15	464E 16
11	-033E 13	- <u>J04E 13</u>	•169E 17	077E 14	**108E 12	+229E 10	+23/E 12	•+207E 17	+123E 17
18	1030E 13		- 433E 15	LAF 18	0463VL 13 44203F 14	133E 1/	510E 15		293C 17
14	1477E 13	94DE 13	14498 15	1478 15	-246E 15	1998F 16	457F 15		1214E 17
15	270, 13	-,615r 13	2995 15	956r 14	-160r 15	.647F 16	.300, 15	**331r 15	139F 17
16	1482 13	-,269 <u>E</u> 13	145E 15	497E 14	= •748ë 14	297Ĕ 16	1612 15	-160E 15	633E 16
17	110g 13	-,111 <u>E</u> 13	;707E 14	259E 14	-,310E 14	120 <u>6</u> 16	899E 14	.,681E 14	251E 16
18	904E 12	••413E 12	345E 14	134E 14	* +131E 14	456E 15	.505E 14	••301E 14	921E 15
19	684E 12	•,170E 12	164E 14	759E 13	••398E 13	+169E 15	305E 14	•,865E 13	327E 15
20	1910E 12	**84CE IV	.823E 13	14AF 13	4 1685 13	+D41E 14	.C29E 14	474UE 13	+115E 15
22	539r 12	1145 11	-217# 13	1350r 12	- SSAE 12	120c 14	361e 13	_ 232# 13	
	122E 12	444E 10	110F 13	164F 11	**108F 12	548F 13	7865 12	-774F 12	736F 19
24	1836 12	238E 10	1718E 12	227E 11	.245E 11	252E 13	.892E 11	1717 12	1289E 13
25	981E 11	.944E 09	361E 12	645E 11	.404E 11	113E 13	143E 10	.586E 08	112E 13
26	4545E 11	••311E #9	182E 12	;712g 11	.211E 11	530E 12	223E 11	,189E 11	470E 12
27	318E 11	-,874E B8	913E 11	711E 11	,148 <u>5</u> 11	257E 12	,474E 11	201 _E 11	217E 12
28	+176E 11	+ 073E 00	113E 11	1008E 11	•111E 11	+117E 12	+069E 11	181E 11	996E 11
29	1036 11		1025 11	1045E 11	, J J J E IU	770E 11	00 E 11	04UE 10	- 201E 11
11	.4416 10	301E PA	449F 10	3855 11	128F 10	.143F 11	.579# 11	2548 10	144F 11
32	299- 10	-393r AA	178r 10	322 11	.451g 0A	610r 18	518r 11	282r D9	.675r 10
33	205E 10	-, 394E A8	62 aE a9	2586 11	554E n9	.233E 1A	4352 11	.970E 09	.281E 1n
34	136E 10	238E B8	158E 09	205g 11	.459E 09	687E 99	362 11	858E 09	925E 09
35	1939E 09	170E 08	197E 08	166E 11	-+450E 09	115E 09	.304E 11	# 885E 09	181E 09

t

MEA" RESPONSES (4)

~t	DELTA	DDELTA	NSUBIT	DNSUBIT	QALF	QDALF	DZ	Z
1	+000E=80	.000E-80	.000E-80	.000E=80	•000E-80	.000E-80	.000E-80	.000E+80
,	+110E+02	+123E=03	+17E+UC	2235 - 2		-334E-UZ	-,9646-03	**860E=03
3		- 1625 02	+173t=01 -5+25 01	5735 02	• 389E 00	113C 00	**242E*01	••108E 00
	- 1125-01	• 102C • UZ	1245 00	01/5E=03	14VE 01	. COTE OU		- 722E UU
5	-199F-D1	-,232F-03	2475 00	.2205-01	-562F 01	+794E 00		- 607E 01
7	30101	2105-02	403- 00	.441 == 01	A50- 01	175e 01	- 217- 01	- 153- 02
8	407E.01	529F-02	584F 00	679F-01	1175 02	264F 01	344F01	-2915 02
9	474F-01	.110F_01	755F 00	139F 00	156F 02	393F 01	- 4915 01	- 4985 02
10	*+466E=01	+165E-01	870E 00	.688E-01	208E 02	-557E 01	#4682F 01	#+788E 02
îİ	601E.01	.771E-02	108E 01	.285E-01	215E 02	.543E 01	- 946E 01	-119E 03
12	805E-01	•769E=02	.466E D0	-,183E 00	.210E 02	.676E 01	962E 01	.169E 03
13	••918E•01	.223E-01	337E 00	431E 00	.257E 02	102E 02	-,559E 01	.208E 03
14	• 893 <u>E</u> =01	,319 _E =01	729E 00	- 206E 00	294E 02	637E 01	- 71°E 00	• 224E 03
15	••698E•01	•353E-01	•111E 01	•209E=01	.267E 02	244E 01	.266E 01	218E 03
16	+ 40/E-01	,300E-91	945E DD	-,112E 00	,191E 02	-,861E 01	415E 01	.201E 03
17	-,175E+U1	.180E-01	.559E 00	282E 00	•973E 01	924E D1	.487E 01	178E 03
18	++)CZE+UZ	•773L-02	215E 00	-,25UE 00	• 345E 01	-+639E 01	.259E 01	. .152E 03
19	**101F**C	+745 - 1	9465-01	- 101 00	+125g U1	267E 01	.634E UI	••122E 03
20	1905 02	+0/0C+0J	•141E DO	.JJ4E=0J	+134E 01	- 373L-01	.06 JE 01	••094E 02
21		,0242.003	2346 00	1125 00	1222E UI	162C UI	010E 01	•• 57UE UZ
23	162F-02	9315-03	3415 00	112E 00	2895 01	196C UI	+4941 U1 3235 N1	*+289E U2
24	10102	.7635-93	331e 00	1484c=01	254e 01	.764E 00	142- 01	- 3AR- 01
25	493E-03	.490F-03	264F 00	1546-01	197F 01	3135 00	-1495 00	.6535 01
26	. 203E-03	236E-03	191F 00	-: 148F-01	.139F 01	351F_02	- 125F 01	288F 01
27	+.324E+04	-118E-03	139E 00	- 446F=02	985E 00	138E-02	-185F 01	- KO1F 01
ŽŠ	.786E-04	475E-04	971E-01	-148E-02	.703E 00	.662E.02	204E 01	-149E D2
29	,116E=03	-,125E-04	•692E-01	.269E=02	.511E 00	292E-02	- 190E 01	-249E 02
30	.125E-03	-:313E-04	•527E-01	.607E=02	.385E 00	,290E-02	-,153E 01	336E 02
31	,139E-03	- ,315 <u>E</u> -04	421E-01	- ,356E+02	298E 00	562E-02	- 103E 01	400E 02
32	•142E+03	-+395E-04	-354E-01	.212E-02	.236E 00	.425E-02	+.465E 0D	438E 02
33	.14UE-03	-,426E-84	.312E-01	.139E-02	.190E 00	.901E-02	.878E-01	**448E 02
34	+139E+U3	-,416E-04	-264E-01	1416=02	155E DO	• 396E - 82	.584E 00	431E 02
32	+I=UE=U3	••412E-04	•234E=01	*10eE=0S	•129E 00	.406E-02	.979E 00	 391E 02

Table C12. (Continued)

```
MEAN RESPONSES (4)
```

t 181	DIBL	182	DIB2	183	D183
t I81	DIB1	182	DIB2	183	D183
1 .000E-80	.000E-80	000£-80	000 E - 80	•000E-80	.000g-80
2 .873E 04	.245E 05	133E 05	128 E 06	•111E 05	.180E 06
3 .671E 05	.102E 06	831E 06	124 E 07	•145E 07	.192E 07
4 -202E 06	.199E 06	318E 07	253 E 07	•550E 07	.392E 07
5 .462E 06	.279E 06	719E 07	385 E 07	•124E 08	.601E 07
6867E 06	.306E 06	127E 08	491 E 07	•220E 08	.771E 07
7 .143E 07	.221E 06	189E 08	521 E 07	•330E 08	.830E 07
8 .210E 07	.467E 05	253E 08	498 E 07	•443E 08	.815E 07
9 .273E 07	.547E 06	290E 08	137 E 07	•512E 08	.296E 07
10 .320E 07	.124E 07	277E 08	- 381 E 07	•496E 08	.472E 07
11 .461E 07	.109E 03	349E 08	- 734 E 07	•632E 08	.121E 08
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	449E 05	.490E 08	115E 08	.867E 08	.191E 08
	203E 07	.567E 08	323E 06	.997E 08	.313E 07
	224E 07	.543E 08	.742E 07	.962E 08	942E 07
	139E 07	.410E 08	.124E 08	.739E 08	.188E 08
	441E 06	.230E 08	.134E 08	.422E 08	215E 08
	.472E 06	.930E 07	.822E 07	.176E 08	.142E 08
	.604E 06	.260E 07	.336E 07	.511E 07	.629E 07
	.274E 06	.756E 06	.783E 06	.153E 07	.163E 07
	406E 05	.582E 06	.243E 06	.128E 07	.351E 06
	243E 06	.604E 06	.439E 06	.155E 07	424E 06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293E 06 143E 06 143E 06 704E 05 888E 04 604E 04 201E 04 352E 03 175E 04 968E 03 363E 03 363E 03	446L 06 104E 06 211E 06 375E 06 382E 06 382E 06 287E 06 228E 06 228E 06 208E 06 199E 06 199E 06 175E 06	-, 713E 06 -, 713E 06 -, 359E 06 -, 149E 06 -, 910E 05 -, 602E 05 -, 184E 05 -, 611E 04 -, 3956E 04 -, 3956E 04 -, 342E 03 -, 109E 04	.147E 07 .947E 06 .347E 06 .773E 05 .237E 06 .312E 06 .312E 06 .320E 06 .292E 06 .279E 06 .263E 06 .245E 06 .232E 06	713E 06 878E 06 751E 06 227E 06 140E 05 289E 05 883E 04 139E 05 522E 04 538E 01 102E 04
RESPONSE COVARIANCES (4)

t	DELTA	DELTAODELTA	DDELTA	DZDOT	DELQ	48	40	ΔZ
1	.000E-80	•0ñ0E-80	.000E-80	.000E-80	.000E-80	.000E-80	.000E-80	•000E+80
2	.300E-00	.190E-06	.130E-04	962E-03	.229E.07	.154E-06	.872E-08	.120E-02
3	+100E+03	•6306-05	-89E-04	106E 00	•404E=06	-391E-05	153E=04	.152 _E 01
9 5	3745 03	0 ++C <u>36t</u> +U4	.114E=03	.207E 00	•410E-06	•319E-05	.383E-04	•989E 01
	• JI7E+0.		2702-03	,492E UU	.047E_06	401L-05	.661E.04	.344E D2
7	650F-03	3 -165F-03	•533E=03	208F 01	•102C=05	+5220+05	•973L=U4	+974L 02
8	.755 .03	.21603	20402	.379. 01	20305	.890c=05	157-03	-520- 03
9	,728E-D3	3 275E-03	320E-02	626E 01	432F-05	9266-05	1677-03	1045 04
10	552E_03	266E_03	267E_02	103E 02	292F_05	111E_04	151F_03	198r 04
11	.806E-03	-+218E-03	675E-02	184E 0Z	+604E-05	150E-04	-204E-03	-357E 04
12	.142E-02	2 -•361E-03	.161E-01	.196E 02	•143E-04	.126E-04	.332E+03	•598E 04
13	.170E-02	-+736E-03	-166E-01	.872E 01	.180E-04	•446E=05	.40≤E=03	.802E 04
14	-140E-02	821E-03	.131E-01	462E 01	.168E-04	.190E-05	.338E-03	.839E 04
12	,7758-03	-,276E-03	.878E-02	,726E 01	120E-04	238E-05	_197E=03	.720E 04
17	•277E=03	-262E-03	• 408E • 02	101E 02	• 776E • 0 7	•264E•05	.861E-04	•546E 04
10	+ 1202 = 0.3		-162L-02	12) C 02	, C3CL_05	,245E.05	365E-04	.387E 04
19	156F_04	1385_04	-2892-03		•891L=06	1505 AF	•177E=04	• 276E 04
20	.545 - 05		-6455-04	-938r 01	· 112c-06	-190L-09	• 792 <u>1</u> =07	+22VE 04
21	179E+0	163F-a5	208F-04	1695F A1	-303F-07	- 595E-06	4035-05	2185 .4
22	.601E.06	536E_06	696E-05	497E 01	161F-07	.350F-86	4065-05	.2325 04
23	-188E-06	177E-06	-218E-05	383E 01	+924E=0A	.221E-06	.330F+05	.233F 04
24	.503E-07	517E-47	-580E-06	.359E 01	•789E-08	.171E-06	.251E-05	.213E 04
25	.101 _E -07	119 _E -07	.119E-06	.388 _E 01	•779E=08	.155E=06	.177g=05	.177E 04
26	.218E-08	2?9E-08	-194E-07	423E 01	•741E-08	.143Ē.06	.12 ⁰ Ē.05	.135Ē D4
21	4816-09	-,375E_09	108E-08	432E 01	.641E.08	125E-06	_851E_06	,947E 03
20	+ 370L=0%	306L-10	•175E-08	+402E 01	•507E-08	•101E-06	•694E=06	•644E 03
27			.J24L-U8	- J4CE UI	- 367E_08	•750E•07	•67E=06	.460E D3
31	- 694F-09		- 3291-08	1015 01	+COZE=U8	• 21 3E • 07	•694E=06	.381E 03
32	678=-09	-245 - 09	· LA3r_08	131-01	136-08	- J2/E=U/	- /U ⁰ E=UD	• 368E 03
22	.548E=n9		9555-09	9185 00	-102-00	1065-07	504E-06	300E 03
34	412E-09	1716-09	407E_09	7228 00	124E_08	- 120C-07	- 48UF_04	- 304E 03
35	.289E=09	123E-09	125E-09	.664E 00	.127E.08	.745E-08	359E-06	-318E 03

RESPONSE COVARIANCES (4)

$\widetilde{\mathbf{t}}$	NIT	NIT ^e DNIT	DNIT	QALF	QALF#DQALF	DQALF
		0005.88	-		-000F-80	
1	.0002=00		342- 02	12301	4385-02	4785-82
2	+835E=03	+1096+42	- 3426-02	7306 01	lose Bo	1975 88
3	- 34 / E=UZ	-,1451-82	.1761-UC	141- 02	530r 00	1460 01
4	1405-01	•,161E-42	040E-UC	TOTE OF	1346 00	• 140E "1
5	•349E-01	•.105E-02	•266E-01	•26°E 02	+126L UI	•633C WI
6	.661E-01	.628E-03	.871E-01	.383E 02	+224E UI	+221C V2
7	,124E 00	.589E-02	.272E 00	498E 02	.347E UI	,/215 02
8	,208E 00	;168E -0 1	614E 00	605E 02	495E 01	19CE 03
9	262E 00	,422E-01	991E 00	,774E 02	,725E 01	421E 03
10	390E 00	.577E-02	.222E 01	.110E 03	•824E 01	.574E 03
îī	.803E 00	-,471E-81	686E 01	,109E 03	-,494E 00	.186E 04
12	.838E 00	435E 00	349E 02	104E 03	.162E 01	.369E 94
13	57ŬE 00	225E 00	374E 02	,137E ő3	.327E 01	,585E B4
14	.417r 00	.235F-01	217F 02	151 _E 03	••267 <u>e</u> 02	.659E 84
15	.309E 00	.729E-al	.731E ol	;111Ē 03	++44E 02	.478E 64
16	206F 00	.807E-92	231E 01	643E 02	.,316E 02	276E 04
17	144E 00	151E-01	105E 01	332E 02	162E 02	.159E 04
18	.957E-01	-155E-01	693E 00	177E 02	••814E 01	.939E 03
10	.583r-01	127r-01	470F 00	959F 01	••459E 01	.556E 03
20	.355F-01	- 965F-82	502F 00	489F 01	+.261E 01	.330E #3
21	2325-01	- 7025-02	5375 00	244F 01	137E 01	197E 03
• 7	1435-01	- A11E-02	ASAF 00	123E 01		116E 03
26	.004F-02	-290F-02	3075 00	1628F 00	362E 00	681E 02
24	5925-02	-2105-02	340F 00	316F 00	201F 00	395E 92
27	3055-02	- 1425-82	2425 00	153F 00	109F 00	228F 02
25	1665-02	- \$605-03	- 17AF 00	719-01	- 5625-01	1155 02
20	0725-02	- 6072-03	102 00	3415-01	#.279F-01	582E A1
2'	47136403	3055 63	+123C UU	:168F-01	-137F-01	2965 01
20	AZ05-03	-1-45-03	524E-01	"self=02	-601F-02	142F 41
29		1055 03	3425-01	4915-02		765F 88
30	+ 3632003		20001	27702		3485 80
31	+ 4 7 3 F 4 U 3	- 3025 - 4	-2005-01	14959		1385
32	+1.05+03	•• 3926 • 64	• • • • • • • • • • • • • • • • • • • •	*177L#04	3245 02	A405 A1
33	+1116-03	++190L=04	-JUCE-UC	1405-03	-10AE-05	1245-61
34	+876E-04	••653L-05	177E-02	+3576+03	-+1046+03	1845-49
35	•784E+04	++823£+#6	•302E=03	**!TE#03	-+1 (0C+U4	**245*86

RESPONSE COVARIANCES (4)

~ t	181	IB1*D181	DIBL	182	182*0182	D182	183	183*D183	DIB3
1	.000E-80	•000E-80	000E-80	.000E-80	•000E=80	.000E-80	.000E-80	•000E=80	•000E=80
2	.590E 11	.155E 12	408E 12	.196E 12	•159E 13	.131E 14	183E 12	.220E 13	•268E 14
3	.606F 11	916E 11	374F 12	.479F 14	•218F 14	.314F 14	137F 15	.562F 14	•721E 14
4	174E 12	• 163E 12	114E 13	102E 15	•251E 14	901E 14	293E 15	658E 14	206E 15
	391E 12	• 276E 12	273E 13	163E 15	•248E 14	199E 15	473E 15	677E 14	454E 15
6 7 8	132E 13 217E 13	762E 12 138E 13	.138E 14 .313E 14	270E 15 .304E 15	•335E 13 ••203E 14	•771E 15 •153E 16	.800E 15 .914E 15	.248E 14	.174E 16
10	332E 13	1/3E 13 102E 13 493E 13	.545E 14 .568E 14 .167E 15	201E 15 278E 15	-,873E 14 -,648E 14	.202E 16 .534E 16	634E 15	.190E 15 	.447E 16 .118E 17
12	.930E 13	118E 14	.432E 15	.733E 15	•.148E 15	+129E 17	.165E 16	••138E 15	.289E 17
13	.848E 13	121E 14	.521E 15	.665E 15	•.322E 15	+134E 17	.202E 16	••594E 15	.289E 17
14	.701E 13	100E 14	.459E 15	.534E 15	•.351E 15	+105E 17	.164E 16	••751E 15	.227E 17
15	490E 13	-,641E 13	308E 15	277E 15	•,248E 15	.705E 16	.881E 15	••569E 15	152E 17
16	•256E 13	-,272E 13	150E 15	996E 14	•,115E 15	.328E 16	.328E 15	••272E 15	•704E 16
17	•136E 13	-,112E 13	725E 14	329E 14	•,427E 14	.134E 16	.114E 15	••101E 15	•282E 16
18	.736E 12	438E 12	352E 14	.111E 14	156E 14	.511E 15	.412E 14	**372E 14	.105E 16
19	.377E 12	180E 12	167E 14	.350E 13	548E 13	.187E 15	.141E 14	**134E 14	.368E 15
20	.191E 12	818E 11	1827E 13	.976E 12	181E 13	.675E 14	.446E 13	**458E 13	.123E 15
21	101E 12	403E 11	441E 13	216E 12	•.564E 12	.266E 14	124E 13	••143E 13	•436E 14
22	522E 11	195E 11	237E 13	427E 11	•.180E 12	.113E 14	337E 12	••451E 12	•166E 14
23	255E 11	965E 10	130E 13	593E 10	•.551E 11	.509E 13	713E 11	••138E 12	•643E 13
24 25 26	.154E 11 .750E 10 .369F 10	524E 10 271E 10	717E 12 361E 12	.449E 10 .660E 10	146E 11 356E 10	.238E 13 .198E 13 .517E 12	.893E 10 .202E 10 .308E 10	••346E 11 ••569E 10	+254E 13 +998E 12 +439F 12
27 28	188E 10 923E 09 500F 09	748E 09 338E 09	912E 11 413E 11	469E 10 .363E 10 2675 10	-,997E 09 -,483E 09	253E 12 116E 12	375E 10 39 ⁰ E 10	*,219E 09	206E 12
30	.307E 09	443E 08	102E 11	207 £ 10	•.321E 09	.307E 11	285 10	••319E 09	.285E 11
31	.189E 09		449E 10	171 £ 10	•.172E 09	.144E 11	261 10	••174E 09	.148E 11
33 34	656E 08 344E 08	123E 08 472E 07		.900E 09 .581E 09	••118E 09 ••679E 08	•237E 10 •696E 09	155E 10 105E 10	•.190E 09 •.121E 09	•289E 10 •289E 10 •951E 09
30	103C AQ	-++245 01	•1905 V0	• • • • • • • • • • • • • • • • • • •	-10405 08	***>E 49	*09+E U9	AFLOOF AS	410cc ng

MEAN	RESPONSES	(5)								
~ t	DELTA	DDELTA	NSUBIT	• D1	SUBIT	QALF	ODALF	DZ	Z	
1	•000E=80	•000E-80 •123E-03	•000E-80 •117E-02	•000E	80 000E	-80 -02	•000E-80 •335E-02	.000E-80	•000E-8	03
3	134E-02	112E_02	+175F_01	218E	02 ·390E	00	.113E 00	+.553E-01	#.109E 0	0
4	500E-02	-+164E-02	•591E=01	.775E.	-03 -140E	: 01	.288E 00	226E 00	741E 0	0
5	-++13E+01	-+146E-02	•137E 00	.975E	•Ö2 •318E	E 01	.597E 00	₽.621E 00	273E 0	1
6	-,202E=01	301E-03	•255E 00	.234E.	•Öl •567t	. 01	.108E 01	⊷. 135E 01	747E 0	1
7	307E=01	+210E-02	•419E 00	.467E	•01 •872E	01	.177E 01	•.249E 01	+.168E 0	2
-8	●•?64E=01	+813E=02	•497E 00	•120E	•01 •109E	02	.235E 01	392 <u></u> 01	330E 0	2
9	-,369E-01	.125E.01	•334E 00	•536E	.01 .126	02	.348E 01	-,376E 01	-,533E 0	2
10	473E-01	.173E_01	•191E 00	",595E	.01 .141E	E 02	.489E 01	-853E 00	-,661E 0	2
11	# . 155E#01	•147E_01	125 E 00	 335E	00 .983	01	.446E 01	552E 01	=6571E 0	Z
12	. .485E.01	_,489E_03	-•816E 00	-,276E	00 •963E	01	.688E 01	196E 02	222E 0	1
13	-,361E-01	•7 6E 02	117E 01	498E	00 . 118E	02	.969E 01	406E 02	149E 0	3
14 -	-,346E-01	.136E_01	121E 01	. .216E	00 .126	02	,583E 01	.683E 02	.417E U	3
15	••255E+01	•147E=01	-+102E 01	•166E	00 •103	02	= •236E 01	.101E 03	•839E U	3
16	*•137E=01	•111E-01	-•714E 00	•189E	00 .650	01	••787E 01	137E 03	•143E 0	: 4
17	-+208E+02	.617E.02	402E 00	-586E	-02 +2820			,172E 03	•220E 0	-
18	•••12E=02	.250E.U2		767E	01 7291	00	- 78E UI	207E 03	+212E 0	4
19	••71En03	-753E-05	-424E_01	-45UE			##248E UL	2425 03	4427E V	
20	-9.3UE=02		+111E 01	•391E	00 .010	- 01	•199E UI	2745 03	+770E U	1941.
21	1250 01	+375E+UZ	•231E 01	-278E	00 +1220	<u> </u>	294E UL	-292E U3	098E U	17 A
<u> </u>	-++37t=U1	• 798E-UZ	•29VE UI	6140E		02	140E 01	-29/E U3	0045 0	
23	##7792#UZ	4599CeVE	2855 01	0215	AL 44766	: 02	100E 01	2925 03	.1145 0	R ·
24	240r 02	0424E=02	205- 01		A1 .101s	: 02	1705 00	2745 03	.1295 0	5
27	- 122E 02	-1-25 02	-1425 Å1		nui •10×0	02	+179E 00	270E 03	141F Ó	5
- 20	3105.03	- A # 4 5 03	-1315 01	E035	.01 .5485	= 01		265F 03	.1555 0	5
2.	-3405 03	3205 03	-105c 01	3496	01 409i	- 01	- 3965 01	261E 03	149F 0	5
20	-6518-03	-201E-04	-8515 00	44562L	-01 -309	i oi	368F 01	258E 03	-181F 0	5.
30	-761E-03	144F-03	-713E 00	-721F	.02 .238	= 01	-230F_01	255E 03	194E 0	5.
31	-878F-03	100F_03	-601F 00	-163E	-01 -186	01	143E_01	253E 03	207E 0	15
32.	909F-03	-256E_03	514F 00	590E	02 146	E 01	-114E_01	251E 03	.219E 0	/5
33	881E-03	283E_03	436E 00	-288E	-02 -115	E 01	-326E_02	249E 03	.232E 0	15
34	-848F-03	-276E_03	405F 00	-201E	-02 -9021	E 00	-555E_02	248E 03	.244E 0	15 1
35	807E-03	268E_03	400E 00	-135E	.02 .716	E 00	333E.02	246E 03	.256E 0	15. ,

.

MEAN RESPONSES (5)

136

RESPONSE COVARIANCES (5)

ť	DELTA	DELTA*DELTA	DDELTA	DZDOT	DELQ	48	40	AZ
1	•000E-8	•000E-80	•000E-80	.000E-80	•000E-80	•000E-80	.000E-80	•000E+80
Z	.343E-08	-175E-00	128E_04	.967E-03	•243E+07	.155E_06	•768E-08	.120E.02
3	+107E+03	674E-05	•295E=04	.117E 00	•384E-06	.431E_05	•143E - 04	.157E 01
4	+431E+0	229E-04	•117E-03	.264E 00	•381E=06	.406E-05	•355E=04	.112E 02
5	• 377E=03	630E-04	•278E-03	•679E 00	•595E-06	•553E_05	.600E_04	•426E 02
6	.529E=03	-111F-03	•551E-03	.159E 01	•951E-06	•772E_05	.860t_04	•131E 03
7	•663E=03	166E_03	•109E=02	.331E 01	+159E=05	.103E_04	.109E_03	•345E 03
8	•297E+03	-227E_03	•179E_02	•565E 01	•445E=05	•119E_04	•174E_03	•811E 03
9	.442E.03	-238E-03	.362E-02	.36°E 01	•891E=05	.532E_05	.280E.03	•148E 04
10	•212E-03	- <u>-1r0</u> E-03	•183E_02	.120E 01	•117E=04	129E_05	•418Ĕ_03	•180E 04
11	• 423E-03	-•451E-03	•318E-01	•169E 02	•378E=04	•138E_04	.789E_03	•117E 04
12	•744E•03	-131E_02	•831E_01	.105E 03	•641E=04	•674E_04	.124E_02	•317E ⁰ 3
13	•489E-03	•498E-03	•267E_01	•355E 03	+650E+04	.182E_03	165E_02	•576E 04
14	•217E•03	-269E-03	•111E_01	.862E 03	•561E=04	•354E_03	185E_02	•369E 05
15	•119E-03	-187E_03	•800E=02	.167E 04	•339E=04	•549E_03	.173E.02	.132E 06
16	.505E.04	986E-04	•441E_02	.277E 04	•165E-04	•725E_03	.149E_02	-352E 06
17	.212E-04		•249E=02	•416E 04	•822E=05	•869E_03	.134E_02	•777E 06
18	.945E.05	5 _•269E_04	.140E_02	.592E 04	.416E-05	.984E_03	_128E_02	.152E 07
19	-360E-05	5124E_04	•661E=03	.811E 04	•217E-05	.108E_02	.126E_02	.270E 07
20	-149E-04	-+238E_05	•213E=03	.105E Ó5	•572E=05	.112E_02	.776E_03	.451E 07
21	.261E-04		.671E_04	119E 05	•452E=05	.103E_02	_289E_03	•704E 07
22	.413E=04	104E_04	•201E=04	124E 05	.226E-05	.869E.03	.648E.04	.103E 08
23	.106E.04	667E_05	•679E=05	120E 05	•745E-06	.694E_03	_512E_05	.141E 08
24	.301E.0	6 ••237E-05	.247E_05	114E 05	.137E-07	.545E_03	.680E_06	.185E 08
25	,684E-06	639E_06	•725E=06	.109E 05	•493E=08	.437E_03	165E_06	.233E 08
26	•±43E+06	.142E_06	•164E - 06	.105E Ö5	.120E-08	.357E_03	.355E.07	285E 08
27	.904E.08	195E_07	•432 _{E=} 07	102E 05	•514E=09	.297E_03	359E_08	.342E 08
28	-127E-07	.108E_07	•102E - 07	.997E 04	.279E-09	.251E_03	102E_08	.404E 08
29	-396E-07	1ă4E_08	•265E=08	.977E 04	.463E-10	215E_03	.594E_08	•469E 08
30	,541E-07	118E_07	•531E-08	960E 04	.104 <u></u> = 10	.186E_03	.895E_08	•539E 08
31	.720E.07	157E_07	•59 ² E=08	•946E 04	•119E-10	.162E_03	.119E_07	.613E 08
32	•772E•07	218E_07	•775E-08	934E 04	.288E_11	143E_03	133E_07	.691E 08
. 33	.725E.07	-,233E_07	•832E_Ó8	.924E 04	.181E.11	127E_03	127E_07	.774E 08
34 -	.671E.07	218E_07	•740E=08	915E 04	.122E-11	.113E_03	118E_07	.860E 08
35	-007E_07	2025 07	.677E 09	0055 04	.118E_11	1025 03	1075 07	9515 09

ı

RESPENSE COVARIANCES (5)

ĩ	NIT	NIT#DNIT	DAIT	GALF	QALF*DQALF	DUALF
1	•000E-80	• 000E-80	•000E-80	•000E-80	•000E-80	•000E-80
2	•838E=03	•169E=02	•343E-C2	.124E-01	.441t-02	.479E_02
3	• 200E = 02	-152E-02	•161E=02	•731E 01	-198E UU	.197E 00
4	•146E=01	-163E-02	•644E=02	•161E 02	.542E 00	.146E 01
5	• 346F-01	-•101E-02	•266E-01	•268E 02	•126E 01	•633E 01
6	•002E=01	•774E=03	•871E-01	•385E 02	•220E 01	•221E 02
7	•126E 00	•634E=02	•272E 00	•504E <u>0</u> 2	•353E 01	•721E 02
8	.171E 00	.683E-02	.613E 00	•509E 02	.340E 01	.190E 03
9	-134E 00	.265E-01	•956E 00	.498E 02	.451E 01	.418E 03
10	.343E 00	-,409E_01	.233E 01	509E 02	.264E 01	.870E 03
11	-124E 01	921E 00	.222E 02	.25°E 02	803E 01	187E 04
12	. <u>∔84</u> E 01	273E 01	•956E C2	.256E 02	584E 01	.364E 04
13	.122E 01	100F 01	•590E 02	.331E 02	.298E 01	•588E 04
14	.827E 00	- 405E 00	.285E 02	.333E 02	.223E 01	.661E 04
15	.357E 00	135E 00	.972E 01	.215E 02	-,422E 01	.470E 04
16	•±42E 00	214E-01	•303E 01	121E 02	806E 01	.276E 04
17	•288E=01	.477E_02	.155E 01	.655E 01	724E 01	.160E 04
18	•469E=01	563E-05	•121E 01	.368E 01	 443E 01	•940E 03
19	.156E=01	-•382E-02	•941E 00	.207E 01	237E 01	•556E 03
20	•73E 00	•534E-01	.669E OC	.113E 02	-295E 00	.330E 03
21	. <u>108</u> E 00	.470E-01	•586E 00	311E 02	.324E 00	,197E 03
22	•104E 01	-•524E-02	•459E 00	•382E ó2	-,141E 00	.116E 03
23	•±04E 01	-•441E-01	•399E 00	.313E 02	-•562E 00	.681E 02
24	.725E 00	527E-01	.353E 00	.180E 02	720£ 00	.395E 02
25	•463E 00	310E-01	•264E 00	.966E 01	343E 00	.220E 02
26	.291E 00	-•150E_01	•178E ÓO	.518E 01	162E 00	.115E 02
27	.191E 00	-840E_02	.123E ÖO	.282E 01	~ •759E=01	•582E 01
28	• 123E 00	493E-02	.810E_01	.157E 01		.296E 01
29	.822E.01	231E-02	•524E-01	.891E 00	187E _01	.152E 01
30	•579E-01	125E_02	.342E_01	•529E 00	 995E-02	.765E 00
31	•414E=01	-•973E-03	•208E⊷Ó1	.323E 00	- •537E-02	•348E 00
32	• 204E-01	-•510E-03	•110E⊷Ó1	.199E ÖO	297E=02	.138E 00
33	.220E.01	222E_03	.502E.02	123E 00	164E-02	.470E_01
34	.195E-01	-•1 <u>5</u> 8E-03	•177E-02	•759E-01	889E-03	.125E_01
38	-196F-01	106E-03	-303E-Ó3	- 478F-01	502F=03	-155F 02

RESPONSE COVARIANCES (5)

ĩ	181	IB1*DIB1	DIBI	1P2	182*0182	DIB2	183	183*D183	D183
1	•00cE=80	•000E-80	•000E-80	•000E-80	.000E-80	•000E-80	.000E-80	•000E-80	.000E-80
ź	.288E 11	.154E 12	405E 12	193E 12	.157E 13	.130E 14	179E 12	216E 13	265E 14
3	.602E 11	924E 11	.392E 12	.48CE 14	.221E 14	.320E 14	.137E 15	•570E 14	736E 14
4	•172E 12	164E 12	•117E 13	103E 15	255E 14	.925E 14	295E 15	.667E 14	212E 15
5	. \$85F 12	279E 12	280E 13	164E 15	253E 14	205E 15	.476E 15	691E 14	469E 15
6	.129E 12	-454E 12	.613E 13	226E 15	.200E 14	.401E 15	.660E 15	•599E 14	913E 15
7	130E 13	7e3E 12	.141E 14	276E 15	.462E 13	.800E 15	817E 15	285E 14	181E 16
8	.433E 13	110E 13	.319E 14	235E 15	 476E 14	.137E 16	.713E 15	981E 14	303E 16
9	.477E 13	.165E 13	.077E 14	17CE 15	929E 14	.287E 16	520E 15	=,200E 15	632E 16
10	.373E 13	.3 4E 12	.653E 14	.882E 14	 507E 14	.166E 16	255E 15	129E 15	343E 16
11	968E 13	.163E 13	•424E 15	185E 15	199E 15	.244E 17	.395E 15	536E 15	550E 17
12	127E 14	708E 13	.108E 16	.25 ⁷ E 15	832E 15	.633E 17	.565E 15	197E 16	143E 18
13	,926E 13	-•799E 13	.684E 15	16CE 15	350E 15	220E 17	399E 15	- 759E 15	477E 17
14	.59°E 13	-•747E 13	•496E 15	106E 15	199£ 15	•998E 16	.280E 15	-4 ⁰ 8E 15	207E 17
15	. <u></u> 475E 13	618E 13	.328E 15	•523E 14	_, 153E 15	•695E 16	,146E 15	310E 15	146E 17
16	. 111E 13	290E 13	.163E 15	213E 14	-•793E 14	.372E 16	.607E 14	164E 15	792E 16
17	523E 12	-132E 13	.845E 14	.874E 13	402E 14	.207E 16	251E 14	847E 14	443E 10
18	.457E 12	602E 12	.441E 14	.382E 13	208E 14	.114E 16	,110E 14	447E 14	247E 16
19	126E 12	252E 12	213 E 14	139E 13	926E 13	.538E 15	.405E 13	203E 14	116E 16
20	.371E 12	-945E 11	•978E 13	.331E 13	_,125E 13	.183E 15	134E 14	-,382E 12	385E 15
21	.414E 13	.666E 11	.487E 13	346E 13	-132E 13	.604E 14	,191E 14	- 284E 13	120E 15
22	, 15°∈ 13	.120E 12	•247E 13	153E 13	119E 13	184E 14	126E 14	446E 13	326E 14
23	1 35E 13	.104E 12	•131 _E 13	14 ¹ E 12	-397E 12	633E 13	422E 13	- 294E 13	927E 13
24	.856 <u>F</u> 12	.412E 11	•720E 12	101E 12	192E 12	.289E 13	404E 12	-,695E 12	376E 13
25	.165E 12	.188F 11	•362E 12	304E 12	225E 12	127E 13	.425E 10	.311E 11	140E 13
26	261E 12	.544E 10	+82E 12	341E 12	117E 12	.564E 12	107E 12	103E 12	222E 12
27	.±54E 12	.297E 10	.913 _E 11	.344E 12	-805F 11	.273E 12	229E 12	104E 12	-255E 16
28	.857E 11	.194E 10	.413E 11	322E 12	-286E 11	126E 12	.326E 12	-925E II	1246 14
29	207E 11	.223E 09	.200E 11	266E 12	192E 11	.586E 11	.326E 12	-342E 11	*202C 11
30	331F 11	-150E 09	.162E 11	219E 12	.576E 10	.306E 11	297E 12	•115E 11	*284E 11
31	.219E 11	.375E U8	.449E 10	19CE 12	.699E 10	145E 11	-287t 12	•139E 11	•150F 11
32	.149E 11	-101E 09	178E 10	16CE 12	-884E 09	.611E 10	278E 12	-233E 10	011F 10
33	.±02E 11	-152E 09	.622E 09	.129E 12	-•240E 10	.236E 10	217E 12	-430E 10	287E 10
34	.979E 10	105E 09	129E 09	103E 12	- 210E 10	720E 09	182E 12	- 407E 10	- 990E 09
36	471c 10	829F U8	.4085 08	834F 11		167F UQ	1536 12	#_439F 10	_ CBCE U9

i

MEAN RESPONSES (6)

ĩ	DELTA	DDELTA	NSUBIT	DNSUB	IT QAL	F QDALF	DZ	Z
1	.000E-80	.060E-80	.000E-80	0085-80	.000E_80	.080E-88	.000E-80	+000E=80
ş	-,191E-05	+123E-\$3	117E-02	-243E-02	+469E=02	•335E-02	962E-03	••866E=03
	5005-02	••112E•02	+175E+01 . Eele-01	2105-02	+ 390E 00	,113E BB		••109E 00.
5	+113E+01	146E-02	137E 00	-775F-02	.31AF 01	.597F 06	621F 00	2735 01
6	- 202E-01	-,301E-03	2555 00	234F+01	.567F 01	108F 01	- 135r 01	•.747F 01
7	- 307E-01	-210E-02	419E 00	467E=01	872E 01	177E 01	- 249E 01	-168E 02
8	++345E-01	• 890E- 02	454E 80	952E-02	105E 02	,225E #I	384E 01	.,330E 02
.2	320[-0]	.132E-01	146E 00	124E-01	.112E 02	.327E 01	281E 01	•.512E 02
11	215=-02	+182E=01	846E-01	=,116E DW	+114E U2	+455E 01	235E 01	•,543E 02
12	194F=02	.3525	- 154F 01	3836	.3.5E 01	6705 01	3325 02	· 200E 02
13	585E-03	.834E.03	12116 01	-1607E 08	.292E 01	.911E #1	6337 02	.324F 03
14	169E-02	.161E-02	-,239E 01	-,194E 00	+243E 01	.561E 01	104E 03	•737E 03
15	-+827E-03	+384E-03	223E 01	330E 00	,101E 01	.,198E 81	.154E 03	138E 04
16	,111g+02	134E-02	-,164E 01	420E 00	-,424E 00	720E 01	.207E 03	.228E 04
17	+202E+02	•,175E-02	-,966E DU	2116 00	•,118E 01	-,764E #1	.262E 03	345E 04
10	+1E+VC	••11/L+UC	- 430E UU	3355-02	0,995E 00	-,534E D1	-212E 03	489E 04
20	170E-01	••373E-#2	206F 01	1767F 08	+148F 02		+ JAYE 03	+857E U4
21	-,240g-01	. 520r - 02	415# 01	322, 00	.26AF 02	.354- 01	437# 03	.107r 05
22	+,205E+01	,107Ē-01	465E 01	205E-01	283E 02	.241E 01	437E 03	129E 05
23	-,137g-01	,896E _8 2	433E 01	- 114E 00	243E 02	131E 01	427E 03	151g 05
24	-,762E-02	+588E-02	358E 01	-161E 00	186E 02	+464E 00	414E 03	172E 05
27	+,309E+UZ	,342E-82	2885 01		+139E UZ	,110E 00	404E 03	,192E 05
27	- 4265-03	.925F-83	184F 01	-17216-01	.7525 A1	- 146E UU	3955 03	212E 05
28	505E-03	438F-#3	147F 01	-: 525:=01	.561F 81	- 615F-81	3837 03	251c 05
29	.893E-03	-+408E-04	120E 01	- 268E+01	474E 01	534E-01	379F 03	2705 05
30	,104E-02	-,226E_ 0 3	IOIE OI	-,132E-01	,327E 01	.,352E.01	375E 03	289E 05
31	,1212-02	••261E=03	849E 00	-,22 9 E-01	.255E 01	-,231E-01	.372E 03	.308E 05
32	121002	** 321E*83	,726E 00	•••937E=02	SCAE 01	-,1802-01	,369E 03	.326E 05
14	1165-62		-DITE UU		177 UL	•••••	-366E 03	+345g 05
35	1116-02		5785 00	- 2385-02	,1641 01 ,9835 00	# # 767 L # BC	107E 03	+ 363E 05
				Atractant	1,00E 00	********	*20~E N3	* 301 C 03

Table C14. (Continued)

MEAN RESPONSES (6)

ĩ	IB1	DIBI	182	DIB2	183	0183
		0.5.5 D.0				
ļ	+800L=00 A725 84	•U00C=00 245F 05	1325 05		109F 05	179F 06
	- 6678 05	1035 04	10345 DA	1255 07	1465 07	103F 07
, j	-200F 06	2028 06	1328F 07	256F 07	-553E 07	.396E 07
5	- 458c D6	-245r D6	7276 07	.391e 07	1265 08	.610r 07
6	- 861E n6	317F 06	129E 08	.504E n7	.223E D8	791E 87
7	.142E 07	241E 06	193E 08	543E 07	.337E D8	.864E 97
Å	.,218E 07	294E 06	208E 08	-336E 06	.370E 08	126E 87
ğ	.,2418 07	••917E #6	186E 08	-,406E 07	,338E 08	-,554E 07
10	-,273E 07	-,184E 07	1892E 07	•;119 <u>6</u> 08	.181E 08	173E 08
11	.,336E 07	-,199E 07	-,712E 07	-152E 08	*.756E 07	-,227E 88
12	-,249E 07	-,136E Ó7	- 553E 07	- 197E 06	-,601E 07	,137 <u>E</u> 07
13	203E 07	-+204E 07	-297E 07	387E 07	••237E 07	383E 07
14	•,124E 07	-,150E M7	-877E 06	- 329E 07	.102E 06	-,356E 07
15	• 355E U6	••251E 06	686E 04	•.523E 06	.432E 06	*• 536E 06
16	,1885 06	,798E D6	-,474E 06	203E 07	• 102E 07	237E 07
17	,375E V6	1505 01	- 834E UO	281E 01	18KE 07	, 314E UT
10	• 202C 00	+099E 00	204L 00	• 202E 01	-129C 0/	• 2222 O/
19	- 05 5 57	- 3505 UO		.013E 00		0776 00
20	5215 07	- 878F 86	A305 07	-2175 07	-202F 08	- 748F 87
52	- 56Ar 07	- 124r 06	501e 07	442- 07	153r 0a	- 65AF 07
.3	5n9f n7	6.7F	1215 07	- 446F n7	833F n7	- 659E o7
54	406F 07	- 357F 66	138F 07	_314F 07	278E 07	473E 07
25	304E 07	204E 06	- 246E 07	.losE 07	26AE 06	381E 97
26	-,229E 07	-,738E 05	-261E 07	.956E 06	•.146E D7	_,148E 07
27	•.176E 07	-,495 _F 85	263E 07	-;646g 06	215E 07	160E 67
28	-,131Ē 07	-,388Ē 05	255E 07	-,482E 06	256E 07	-,746E 06
29	-,101E 07	-, 999E 04	-;232€ 07	_,177E 06	*,256E 07	-,280E 06
30	**817E 06	•539E Q3	210E 07	622E 05	*+245E 07	102E 06
31	-,604E D6	393E 64	-,196E 07	769E 05	*+240E 07	• 1226 66
32		197E 04	-180E 07	+,134E 05	- CCBE 07	+.C4CE 03
33	-++77E U6	+578E 04	-1618 07	.200 D	+210E 07	,JYJL #7
34	- 370E 06	,50DE 04	1446 07	270E 05	• 191E 07	414E 02
35	■•30%2 06	+486E 84	-130E 01	•3368 05	-+1/6C 07	.473C 05

141

RESPONSE COVARIANCES (6)

\tilde{t}	DELTA DELT	A*DELTA	DDELTA	DZDOT	DELQ	۵8	40	AZ
1	.000E-80	000E-80	000E-80	.000E-80	•000E-80	.00UE-80	.000 - 80	.000E-80
2	.343E+U8	1756-00	.128E-U4	•96/E+03	+ C 4 3 L . U /	+177L=UD	+ / DOL = UO	+1206=02
3	107E-03	674L_85	295E_04	LIVE 00	-384E U6	431C.07	1431_U4	4157E UI
4	+231E=03 -+	229E-04	+117E=03	•264E 00	+381E+06	+4861=05	•355E=04	+1121 02
2	+3/7E=U3 ++	630E=04	• 478E=03	•079E 80	+2926-06	+273L=U2	+ 0 U U L = U 4	121 UC
6	.5498+03 -0	1116-03	551E-03	1595 01	+9512-06	+772E+V5	-86VE=04	+131E U3
1	+603L=03 =0	166E+03	+109E+U2	+331E 01	+1596+05	.1036-04	.107E=03	+ J47E UJ
0	*22AE+03 =	2406-03	253E+UC	237E UI	476E#U7	•114E=04	+ 192E=U3	PONAE NO
.9	+344E+D3 -0	2576-03	-624E-02	+198E 01	+9198-05	+2016-05	•3541=03	•1305 04
10	4109C+U3 -4	2201-03	.003L-04	-269E UI	+09UC+UJ	+037C+87	• 3975=03 115r 03	2445 03
11	+479E+V4 +1	4902-03	-333E-01	+0CIE UZ	+230C=04	• 7 8 5 C = V 4	+17L=U2	1466E US
12	+102E=U3 =(1241-82	.8212=01	• 291E UJ	0411 <u>C</u> =U4	+10/L+UJ	2/8- 02	12/5- AB
13	*122E=02 =	1225-05	TDAE NO	.003E U3	, 77/E=V4	4466-03		-07E U7
17	+129E=03 =0	1336-02	-059E-01		+7401+04	• 022L • 03	+ JZ1L=02	+11/E 00
12	,101E+03 -(864E.B3	-749E-01	.303E 04	4036-04	,120L.UC	J241-02	, JEJE 00
16	+5612404 -0	3926-03	-241E-01	-63JE U4	+2102+04	+166t+02	-2992-02	1015 07
17	107 0A	1631-03	•994L+UC	136 - 08	40/-04	+199C+UC	+COJL=UC	191E U/
18	A11E 0E	000E-04	- 397E-UC	.1306 02	190E-U2	+CCDE+UC	• 2 / 9 E = U 2	+367E U/
19	+411E=V7 =(2586-44	+154E+U2	100L U7	+6242+07	+ C4/L+02	• 48-1-U2	+ D4 JE U/
20	+420E-04	1696-02	408E-03	- CJYE UD	+ 15/E-V4	+C371+WC	+73E+U2	TUOE NO
21	+760L=04 =0	2685-04	+100E+03	*263E U5	+1U3L=U4 9405 04	+227t+42	+ 3996 + 03	+164E UB
26		147- 04	- JJJJL-04	262 AE	+ CO7C+UJ	145-02	40/7C+U4 64885	121- 00
23	+CICE+V4 +4	143E+04	+122E=04	+ 5 C E U7	4708E=08	+192E+VC	+0908+U7	• 321E U8
24	142- 84	132- 05	4993E=U2	+637E U7	1 CODE 01	0120 02	342- 64	+TIDE U0
27		1366.02	- 302-00	- C 7 E U 7	- 444F 00	7136-03	- 7 - 7 7	220E 00
29	12702-06 -4	+2951-06 4085 07	•3145=06	+220L U5	+245C+00	+ 146C+03	+131E=01 747E 04	+6331 UO
21	100CBV/ -(22/5-07	+007E+U/	2045 05	4107Cm00	+ 0 C U C + U J	2135-00	
20	. 8265-07	. AÃOS O B	2755 08	2045 05	.9245 10	4485 62	1248-07	1036 00
27	1135-06	245-07			172 10	3445-03	107-07	118- 00
30	1305-06		0605-08		- 2085 10	, 300E-493		1105 07
3	1615 04	ARAF 47	· 102C=00	1900 05	3405 11	+ 337L+83 2085 81	2778 07	1332 07
	.151Fa04 -	********	1/#E=07	1035 05	+	+ - 70 L + - D	-2468-0-	140E 04
14	140F-06 -	4555-47	1515-07	191F 05	196F-11	.2365-83	.2478-07	1868 NO
37	127=-06	. #22e=67	141-07	189- 65	.212-11	212-02	22404	.205- 00
30	****5* *	*******	*******	****F V/	*****	****5**3	********	

÷

RESPONSE COVARIANCES (6)

ť	NIT	NIT#DNIT	DNIT	QALF	QALF+DQALF	DQALF
1	.000E-80	.000E-80	.000E-80	:000E-80	.0005-80	.5895-88
2	,838E+03	,169E -02	343E=02	;124 _E =01	,441E+02	,479 E-0 2
3	+360E=02	-+152E-02	161E-02	•731E 01	+198E 00	197E 📲
4	1465-01	-,163E-02	644E-02	161E 02	,542E 00	,146E 01
5	-346E-01	-,101E-02	266E-01	268E 02	.126E 01	,633E 01
6	,662E=01	•774E=83	.871E+01	385E 02	+226E 01	,221E 0 2
7	126E D0	+634E-D2	272E 00	.504E 02	.353E 01	.721E 02
8	128E 00	+935E-02	612E 00	473E 02	+290E 01	+188E 63
9	1226 00	.419E.01	886E 00	399E 02	377E 01	,407E 83
10	351E 00	+315E=01	276E 01	347E 02	,264E 01	1834E B3
11	106E 01	,461E-01	183E 02	131E 02	+,470E D1	,176E B4
12	,184g 01	-,112E 00	881E 02	945 _E 01	••591E 01	.343E 84
13	194E D1	.107E 00	105E 03	960E 01	•926E D1	,563E 04
14	1778 01	. ,564E.01	773E 02	103E 02	,223E D2	549E 84
15	106E 01	-+174E Q0	383E 02	735E 01	172E 02	+461E 04
16	12026 00	••068E•B1	1516 02	491E 01	,370E 01	,273E 04
17	234E UU	•.134E-01	579E 01	.312E 01	-,281E 01	.159E B4
18	118E 00	+117E+82	223E 01	1936 01	* •259E D1	,939E B3
19	-040E=nT	,260E-03	123E UI	1525 01	- 121E 01	,226E #3
20	•5'0E 00	+208L 00	494E 00	310E 02	+505E 01	+331E 03
21	12412 VL	1112 00	4042 00	7432 02	1364E UI	1912 05
22	12735 01	*+822E=UI	- 388E UV	+96/2 02	- 1445 D1	+116E W3
23	151-01	- 108- 00	1284- 00	1000L UC	- 118- 01	.001E W2
24	101E 01	+105E 00	, J J DE UU	, 371E UZ	- 5475 UI	- 395E WZ
25	408F 00	3015 d1	1705 UU	104F 02	- 2625 00	+ C20C 82
20	2000 00		1245 00	1000 02	- 1225 00	
21	257r 00		-1246 00	3265 01	******* UV	+2865 HL
20	172- 00	46502	628-01	19206 01	- 3100 01	152- 81
27	.1215 00		3425-01	1165 01	-1735-01	17685 0A
1		-108F 62	12045 01	414 <u>5</u> 01 675c AA		TARE AA
	14 34F=01		.1185_01	A SE 00	**70VL#UC *****	138F A4
36	450F-D1		+11WL-U1 .5025-02	2866 nA		#130C WU
14	.4075-01	**3245-A1	1775-02	180r 00		1285-61
35	.4896-01	2225-83	3038-03	:909r_01		1555-02
3-	********	~	ミッセンビマグノ		~	モモノノビモリビニ

Table C14. (Concluded)

RESPONSE COVARIANCES (6)

ť	181	IB1#D181	DIB1	182	182+0182	D182	183	183*D183	D183
ł	•000E=80 •588F 11	•000E-80 .154F 12	-008E-80	.000E-80 .193r 12	•000E=80	.000E-88	.000E-80 .179F 12	•000E-80 .216F 13	•000E=80 -265E 14
3	602E 11	- 024F 11	3#2F 12	440E 14	221E 14	.320E 14	1378 15	.570E 14	.736E 14
Ă	172E 12	164E 12	117E 13	103E 15	255E 14	925E 14	295E 15	.667E 14	212E 15
5	385, 12	-,279 12	280, 13	164 15	253 14	205F 15	476F 15	691F 14	469g 15
6	7292 12	••454E 12	.613E 13	2262 15	,200 <u>ĕ</u> 14	401Ē 15	660E 15	,599Ē 14	,913Ē 15
7	130E 13	-,783E 12	:141E 14	276E 15	462E 13	.800E 15	817E 15	285E 14	,181E 16
8	236E 13	-•148E 13	451E 14	209E 15	**712E 14	202E 16	.638E 15	••152E 15	443E 16
9	,267E 13	-,306E 13	116E 15	132E 15	=+143E 15	,521E 16	.403E 15	+,302E 15	,113E 17
10	,331g 13	-,328 _E 13	175E 15	437E 14	=,169g 15	.760g 16	,126g 15	**365E 15	,163E 17
11	,737E 13	-,116Ē 14	647E 15	723E 14	=,461E 15	288E 17	,122E 15	••958E 15	,621E 17
12	102E 14	-,318E 14	163E 16	130E 15	• 151E 16	,713g 17	238E 15	• 248E 16	153E 18
13	899E 13	-,397E 14	200E 16	137 <u>E</u> 15	•.150E 16	,870E 17	269E 15	•,307E 16	187E 18
14	621E 13	-+342E 14	174E 16	114E 15	*+129E 16	+745E 17	+230E 12	• 265E 16	+160E 18
15	325E 13	•,215E 14	1112 16	787E 14	• 5ZUE 15	474E 17	474E 15	**169E 16	1022 18
16	,133E 13	-,929E 13	504E 15	-374E 14	••364E 15	209E 17	+854E 14	**756E 45	4496 17
17	15/UE 12	=,386E 13	2258 15	.163E 14	**151E 12	.0/4E 10	+ 379E 14	•• JIJE 17	10/L 17
18	4235 12	-,157E 13	1016 12	084E T3	• 007E 14	328E 10	163E 14	**159E 12	4730E 16
12	• 11/5 12	••• <u>10</u> <u></u>	+44E 17	2496 13	*+237E 14	+143 <u>2</u> 10	.5022 13	***YOE 1*	+290C 16
20	99712 42		1098 17	, YEIE 13	0,2072 12 	1148 18	+ J / J / J /	- 1026 1A	0302 17
21	300g 13	93415 16 . 3428 19	208E 13	3126 13	- 3145 13	91196 17 .3#88 14	+39%C +4 2888 14	-1335 14	55105 17 18447 14
26	292-13	218-12	1111-11	173-12	-651-12	764-11	786-13		123# 14
2 J 3 A	1778 13	.9842 11	1793E 12	2062 12	A215 12	. 33AF 13	A337 12	-1415 13	A95F 13
25	964F 12	.436F 11	1363F 12	630r 12	476F 12	146F 13	809F 10	.733r 11	193E 13
24	BA3E 12	114F 11	1+3F 12	70AF 12	4248E 12	ATIF 12	2218 12	217F 12	667E 12
27	Jile 12	.716E 10	1914ë il	17172 12	170E 12	295E 12	477E 12	2182 12	1306E 12
28	178r 12	445r 10	414r 11	671 m 12	123r 12	138r 12	680r 12	194r 12	150p 12
29	1062 12	656E 09	200E 11	5552 12	407E 11	.684E 11	679E 12	7212 11	1571E 11
30	691g 11	217E 09	102g 11	457E 12	124E 11	307E 11	619g 12	246E 11	287E 11
11	456E 11	124E 09	449E 10	397E 12	148E 11	148Ē 11	598E 12	294E 11	158E 11
3Ž	ji gile ii	-,1886 89	1178E 10	334 2 12	,200E 10	,612E 10	,538E 12	,509E IÕ	679E 10
33	1214E 11	-,307E Øg	624E Ø9	Z69Ĕ 12	••494E 10	,241E 10	454E 12	-,886E 10	,296E 10
34	142E 11	++216E 89	168E 89	;Z15E 12	••448E 10	.768E 8 9	.379E 12	•,846E 10	109E 10
35	1984r 19	• 1735 4 9	1224# 08	174r 12	•:466# 10	227 09	319s 12	<u>-</u> :917≓ 10	1419g 09

Table C15. Quadratic (Q13) Covariance Results

MEAN RESPONSES

ť	DELTA	DHELTA	NSURIT	0N \$119	IT QAL	F QDAL	F DZ	2
1	.000E+80	•010E=30	.0890 - 80	.000E-80	•000 <u>5</u> -80	.D00E-80	•000E-80	•000E-80
2	-,955E-03	.125E_02	.158€ CU	7816-01	.146E 00	481E-01	738E 00	541E 00
3	237E-03	•343F= 3	421F 00	9248-01	•628E-01	.639E=u2	709E 01	182E 02
4	856F-05	•137E-u3	5186 00	3875-01	491E-01	.186E 00	157E 02	• 740E 02
5	.103F-03	.537E-04	194E 01	115E-01	-+816F=02	483E 00	258E 02	177E 03
6	.168E-03	.552E-34	121E ŭ1	.456E-U2	158E 00	.961E 00	372F 02	- 3338 03
7	.215F-03	.717F 4	135r 01	.2347=01	.379F 00	.168F 01	492r 02	549F 03
8	.267E=03	.502E-04	-149E 01	.4702-01	.544E 00	.260E 01	608E 02	824E n3
9	.641F.03	.344E_03	175F 01	.982E-01	.371E 00	.374E 01	707E 02	115E 04
10	+109E-02	•834F=34	-•132E 01	.734E-01	•107E 01	.547E 01	775E 02	#+152E ñ4
11	.101E-02	-+549E-13	174E 01	6475-01	.233E 01	.582E 01	81 ⁵ E 02	192E n4
12	•804E-03	-•404E-04	199E 01	411E 00	•55JE 01	.672E UL	822E 02	►.233E 04
13	.478E-03	-•195E=32	25iE 01	5858 00	.173E 01	.923E nl	769E 02	=. 274E Ö4
14	-,334 _E =05	-+202E=02	274F Ul	145 ₈ 00	.109 _E 01	.587E 01	640E 02	309E 04
15	-,2RUE-03	-+167E=32	- 243Ë Ul	.374Ē UO	.275Ē 00	174Ē 01	464E 02	337Ē 04
16	-,309E-03	-,408F-03	165E Jl	411E 00	531E=01	- . 718E 01	-,299E 02	⊷,356E n°4
17	343 <u>F</u> -04	•665E+⊴3	850E 00	.152E 00	-•119E Do	786E ₀ 1	185E D2	368E 04
18	248E_03	•734E=13	-326E 00	 155E_01	 1305 00	5 58E 01	132E 02	376E 04
19	•275E-03	•486E-33	136E 00	345E=01	-•234F QJ	241E U1	-•151E 05	=.382E ñ4
20	.291E-03	•5o3E=13	955E-01	2095-01	-•236E 00	106E 00	124E 02	388E 04
21	.321E-03	•614E- 4	151E 00	.429E-01	170E 00	.137E úl	121E 02	+,394E 04
22	,313E=03	=+129E=*3	■153 n0	.940E-01	-•128E 00	.178E 01	983E 01	4 00E n4
23	.244E-03	1A1F-J3	196E 00	.982E+01	-•129E 00	.135E 01	539E 01	404E 04
24	.160E-03	-•142E-73	- 500E 70	.715E-01	146E 00	.759E OU	.917E DD	-,405E 04
25	.730E-04	961E-)4	-132E 00	.43JE=01	-139E 00	.343E 0ú	.836E 01	403E 04
26	-291E-04	- 34FF-04	174E 00	.5472-02	140E 00	.332E-01	.163E 02	396E n4
27	-,118E-04	2?7.E-04	-++12E 00	,115 <u>E</u> _01	928E_01	.337E-U1	.243E 02	.386E 04
28	481E+04	-•302E=05	112E 80	•117E-01	-•274E=0ì	•365E-01	•322E 02	372E 04
29	-,659E-04	•155E=04	758E-01	.131E-01	•539F-01	.276E_01	- J97E 02	354E 04
30	6656-04	•253E-14	33VE-01	•164E=01	+149E UD	-356E-01	.464E 02	-,333E 04
31	76UL-04	•256E=04	•199 <u>E</u> =01	.948E-J2	.263E 00	.449E.01	•217E 05	#+308E 04
32	7801-04	•967E=05	•946E=01	• C C T E = J1	•418E 00	.604E=01	•248E 02	Z81E 04
53	-,11UE-03	-•529E-04	.222E 00	.421 <u>č</u> =01	•674E 00	.104E 00	.537E 02	254E 04
34	248E-03	-•197E=03	•518E 00	•102E 00	•115E 01	-180F 00	.44VE 02	229E 04
35	=_>79F=n3		.137F al	. 646F nn	•212F ol	.368F /A		_ 2125 #4

I.

MEAN RESPONSES

~t	IB1	<u>181</u>	182	2610	183	UIB3
1 2	.000E-80 .611F 05	.000E-80 942E 05	.000E-80	.000 <u>5-</u> 80 - 8395 06	•0005-80 •1215 07	.039E-83 -125E 07
3	- 888E 04	280E 05	153E n6	- 2397)6	-263E 06	369E 06
4	174E U5	681E 05	_ 351E 02		171F 94	=.314F 06
5	168E 06	258E 06	-3795 06	513g 36	4492 06	-,51°E 06
7	342E 06	417E 06	722E 06	793F 16	7655 06	+•7855 US
8	504E 06	618E 06	103E 07	112 07	1078 07	108E 07
.9	511g 06	-•832E 06	130E 07	- 17/E 17	-+152E U7	- 167E UT
10	- 151 DO	- 100E 07	200E 07	- 205- 07	3445 07	188F 07
12	- 175E D7	164E 07	- 318E n7	2878 07	357 07	- 27')E J7
13	- 135F 07	1945 07	259E 07	- 2602 07	-,259: 07	-,196E 07
14	659E 06	130E 07	LIQE 07	743F J6	987 06	•391E U6
15	.137E 02	1560 06	197E 116	.9695 06	•3272 US	101E U7
16	1845 UG	•741F 06	100VE 00	+126E UT	• 7041, 06	881c 06
1 / 1 A	.902r 05	.821r 06	- 2195 05	798- 06	-+1547 06	292F 06
19	.678F 05	.308E 05	- 814E N5	.110E 06	219E 06	201E 06
20	386E US	-,110E 05	- 111E 06	- 287E 06	281E 06	461E u6
21	.858E 04	180E 06	213E 06	4 <u>9</u> 85 <u>9</u> 6	362E 06	- 452E US
22	=,174F U4	218E 06	- 225E 00	- 349F 36	- 2-AL 06	- 1215 UC
23 21	•723E 04	-,164E 06			-•155F 06	- 259F 05
25	260E 05	3A7E 05	677F 04	-1195 05	447F 05	280E U5
26	.308E 05	518E 04	307E 05	.987E 14	·123E 05	.217E 05
27	.233E 05	- 409F 04	472E 05	122E 05	-488E 05	.244E 05
28	.107 <u>F</u> 05	457F 04	519E 15	.497E 14	·/225 05	.135E 05
29	- 263E 04	623E 04	3735 15	- 1725 04	-000E VD	- 18AF5
3U 31	517E 05	-•/40° 04	- 4365 15		1245 05	249E 05
32	852E 05	121E 05	101E 06	- 1487 05	604E 05	929E 04
33	-138E 06	-160E 05	151E 06	128£ 05	778E 05	.411E 05
34	224E 06	214E 05	198E 06	.928F 05	474E 05	1808 06
35	- . 397E 06	524E 05	253E 06	.923E 05	•783E 05	.217E 06

Table C15. Continued

RESPONSE COVARIANCES

č	DELTA	DELTA*DELTA	DDELTA	ΠΖΟΟΤ	DειQ	48	∆ ⊖	ΔZ
1	.00UE-80	.010E-80	.070E-80	.000E-80	•00gE-80	.067E-80	.000E-80	.000E-80
ž	.267F-05	198p-05	.732r-05	.174 _F 01	•559 <u>=</u> -04	.278F-03	.679E-03	•995 <u>e</u> ñ0
з	.762E-05	i21Ē-05	.344F-J4	.132Ē 03	. <u>388</u> E_04	.489E-02	•76 ⁵ E+03	.102E 04
4	284E-04	- 193E-06	.871E-94	.261 _E 03	.633E-05	402E-02	.804E-04	,107E 05
5	545F-04	124F-04	.9825-04	.296E 03	·112E-05	.241E-02	•217E-04	•350E 05
6	573E-04	218E-14	.697F_04	.302E 03	.209E_05	-147E-02	.542E-05	.745E 05
7	.404F-04	1alE-)4	•478E-04	.286E 73	•534E-05	•895F= ⁿ 3	•689E-04	128E 06
8	.288E-04	117E-04	.4748-^4	.251E 93	.1015_04	.537E-03	.255E-03	.193E 06
9	.341E-04	182E-04	•647E-04	.221F 03	.16JE_04	.326E-03	•555E-D3	.265E 06
10	.161E-04	124E-04	•598E-04	.248E D3	•900E-05	.267E-03	.8A1E=03	.337E 06
11	.655g-0	5 -•546E-05	-178E-33	.396E 03	•155E-04	-324E-03	-134E-02	.412E 06
12	.680F-0	5 - 825E-35	.49VE-03	.750F N3	.326 <u>E</u> _04	.482E-03	.203E-02	•499E 06
13	832E-05	5 115E-04	.642E-u3	148E 04	.4775-04	.759E-03	287E-02	.628E 06
14	.852E-0	5 -+117E-:4	•611E-03	.282E 04	• <u>529E</u> =04	-116E-UZ	•343E-02	•856E 66
15	.782E-0	5918E_35	.44UF-U3	.497E 04	.510E_04	-161E-02	.343E-D2	.129E 07
16	.663E-0	5 -•5°5E-5	•234E=03	•765E ⁿ 4	•349E-04	.201E-02	•316E-D2	.200E 07
17	.604E-0	5382E_15	.125E-ü3	.111E 05	•203E-04	.232F-02	-295E-02	348E 07
18	•593F=0	5273E-05	·6345-04	.153E 05	•113E=04	.254F-02	.2x1E-02	•571E 07
19	.584F-0	52188_05	.232E-J4	203E 05	.541E-05	.27^E-02	.265E-D2	.911E 07
20	.615g=0	52^υε-25	$-135_{E}-04$.26JE 05	•264E-05	•278F-02	.242E-02	•141E 08
21	.636E-0	5199E_ ¹⁵	.717E-05	.323E 75	.156E_05	.279E-02	.211E-02	•210E 08
22	.646E-0	5202E_J5	.407E_05	_388E 05	.148E_05	273E-02	172E-02	,303E 08
23	.609E-0	5 -•20°É-35	•25 ⁸ E-65	.452E 05	•219E-05	.261E-02	-125E-02	•425E 08
24	.5295-0	51936_05	.173E=05	.507E 05	.359E_05	.242E-02	./48E-03	•778E N8
25	.391E-D	5171E-15	.127E-05	.543E 05	•610F=05	.217E-02	• 475E=03	•764E 08
26	.245E-0	51218-15	.858£-£6	.550E 05	•721E-05	-186E-02	.171E-04	•982E N8
27	.11JE-0	5795E-v6	•690E=06	526E 75	•853E-05	.153E="2	.115E-03	122E 09
2 A	•2550E+D	7 -155E-26	.494E-06	.471E 05	.879E-05	.118E-02	.647E-03	•148E 09
29	.349E-0	6 •145E=36	.108g-06	.391E 05	•469E-05	•858E=03	•149E-02	•175E 09
30	.129E-0	5656E-07	.183E-07	.30 JE 05	•966E_06	.587E-03	.21/E-02	.200E 09
31	_2C4E_0	5494E_06	.1212_06	215E 05	.558E_07	.369E.03	.242E.02	.223E 09
32	.188E-0	5772E-76	•319E-06	.144E 05	•139E-06	-227E-ú3	•248E-02	•243E 09
33	.R45E-6	664^E36	486E-16	.8612 04	.DASE_05	118E_03	.303E-02	.260E 09
34	•728E=0	85AUE-J7	•631E= ⁶⁶	.354E 04	•976E=04	438E-04	•664E+02	.473E 09
35	_ 890F=0	6 120F-16	-153F-07	.651F 01	•878F=03	•731E•0/	.ZR/F.DI	•278E 09

L

RESPUNSE COVAPIANCES

\widetilde{t}	NIT	NITHJHIT	DALL	QALF	QALF#DQALF	DQALF
1	.0005-80	•000C-80	·243E-80	.00ÚE-80	•000E-80	.000E-80
2	.879E-01	2845-01	. 358 €_ä2	.11UE 00	5 <u>915</u> -02	.520E-02
3	.1245 01	.340F 00	.954 <u>F</u> _01	.157E 01	135 <u>5</u> 00	.296E 00
۵	.309E 01	- • 390 E = 01	.7655-02	.192E 01	·1975 00	.184E UI
5	.2415 01	-144E 00	•309E=01	.447E 01	.203E 00	.7115 01
6	.161E 01	102E CO	-804F-01	.626E 91	·2675 00	.232E 0?
7	.115E 01	659E-01	.237E 00	.668F 01	.607E 00	.7398 02
8	.0465 00	50901	.529r DJ	.691E 01	.117E 01	.195 <u>e</u> 03
9	.849E 00	6401-01	.939Ē DD	.879E 01	.198E 01	.428E 03
1ΰ	.880F 00	6512-01	173F 01	173E 02	.173E 01	.882E G3
11	.119E 01	276F GC	•452E 01	.205E 02	5005 01	•187E G4
12	16UE 01	904E 00	-247E 02	.176F 02	595E DĪ	.363E 04
13	.178F 01	ACTE 00	249E 02	.172E 02	•525E 01	.590E UA
14	.1665 01	775E 00	.123E 112	.167E 02	.185E 02	.665E 04
15	.942E UU	470E 00	.249E 01	.123E U2	.135 <u>F</u> 02	.474E 04
16	.409E DU	135E 00	.234E DC	.837E U1	.287E 00	.279E 04
17	1895 00	1905-01	364E 00	.624E P1	470E 01	167E 04
18	114F 00	•462E-q3	535E DU	.487E 01	354 <u>5</u> 01	.943E J
10	101E 00	.184E_02	.459E OU	_473E Ul	189E 01	.557E 03
20	.128E 00	•547F-02	.615E 00	.587E 01	859E 00	•339E u3
21	.197E DU	•797E+Ô?	650F NN	.7995 01	305E 00	.197E 03
22	.291E OU	•119E=01	.541E 00	.107E 02	.132F 00	.116E U3
23	.433E 00	•175E-01	.47JE JD	.138E U2	•528E 00	.681E U2
24	.617E DU	•240 _E =01	.408E 00	.172 _E U2	•854F 00	.396E 02
25	.884E 00	.309E-01	.305E OU	.209E °2	.115E 01	.221E 02
26	.116E 01	.325E.01	.205E 00	.234E 02	.107E 01	.115E 02
27	•143E 01	•256E-Q1	•139E OU	•235E n2	•939E 00	•586E ul
28	.158E 01	.105E-01	.839E_11	.222E 02	•719E UO	.298E 01
29	.162E 01	176F-0?	.571E-01	-139E 02	.307E 00	.15ZE 01
30	-147E 01	-•176E-01	.373E-01	1406 02	-•868E_02	.765E 00
31	.116E 01	196 _L -01	228E-01	•913 _F 01	-•982r=01	.349E UO
32	.877E OU	•118E-03	.118E-01	->69E 01	48001	138E 00
33	749E 00	405£-01	758 - 02	415E 01	.975E-01	494E-01
34	.133E 01	.19gE 00	.29ÿ£−j1	•503E ul	+489E 00	•600E-01
36	5576 81	907F 100	1485 00	129F 02	.284F 01	- 325F NA

RESPONSE COVARIANCES

ĩ	181	IB1*DIB1	2181	182	18240182	DIR2	183	183#D183	183 ו
1	.000E-80	•030E+80	.000E-80	.00JE-80	·000E-80	.009E-80	-000E-80	+000E+80	.000E-80
Ž	.167E 11	.510E 11	1985 12	975F 12	916E 12	573E 13	.396E 13	219E 13	.121E 14
3	.380r 12	298F 11	135= 12	.381- 13	.248r 13	.244F 14	.960F 13	.590F 13	.580F 14
4	.615F 11	-162F 11	318F 12	132F 14	.495F 13	581F 14	.371F 14	125F 14	.141E 15
5	122= 12	- 358F 11	237= 12	224F 14	147F 13	560F 14	.668F 14	471F 13	142F 15
é.	2918 12	- 672E 11	622E 12	200F 14	- 4105 12	281F 14	644F 14	- 880F 13	788F 14
ž	904F 12	- 6275 11	3005 13	.119F 14	- 523F 13	101F 14	409F 14	-114F 14	344E 14
,	1575 13		- 348E 13	.848± 13	-390F 13	470F 13	274F 14	-710F 13	161F 14
â	188F 13	1385 12	1015 14	1225 14	303F 13	608F 13	.387F 14	- 425F 13	114F 14
10	255F 13	2305 12	260F 14	573F 13	307F 13	124F 14	137F 14	- 967E 13	-217E 13
11	5855 13	5305 11	8100 14	7125 13	1015 13	348E 14	3475 13	A71E 12	684F 13
12	.850c 13	• / 3 × 2 11	210- 15	104- 14	-420r 13	- 80 JE 14	-304r 13	.350c 13	-1455 14
12	7366 13	1336 13	2076 15	7835 13	317E 13	1145 15	301F 13	165E 13	250F 1A
1-4	513r 13	174-13	2460 15	605-13	8025 12	1025 15	447E 13	- 1065 13	254F 1A
			. 795 . 5	4445 13	-1815 10	644E 14	- 61 2E 13	- 4225 13	
12	1336 13	••143C 13 705# 12	•1/7C [7	300c 13	- 247E 13	3345 14	606E 13	- ASSE 13	2665 14
1-	1000 10		001E 14	2125 13	L472 13	107E 14	5,25 13		202E 14
17	175c 12	-+434E 10	2325 14	172 13	- 1035 13	100F 14	• 5600 13	- JZBE 13	1125 14
10	2045 12	7505 11		1370 13	-201E 12	525E 13	518F 13	550E 12	200F 13
20	2385 12	2155 11	4 1AC 13	113= 13		2786 13	503r 13	150E 12	7525 12
21			2240 13	837c 12	-281c 11	160r 13	. Asge 13		2025 12
22	AD75 12	•445E 10	1030 13	-057E 12		1625 13	410E 13	- 1595 12	2135 12
22	5407E 12	• C < / E 11	172-13	204- 12	- 704r 11	652c 12	318r 13	- 363# 12	2125 12
6.3		,446E 11	5747 10	646- 11	- 4495 11	.0020 12		- 3045 10	
24	•/110 12	• D[9E 1]	· 204 E 12	3040 11	5105 11	3235 12	•20JUE 13	4136 12	•2056 12 286F 12
2.9	1025 12		.6302 12	33/5 12	2036 12	2225 12	10AE 12	- 1405 12	2755 12
<u>56</u>	1120 13	•833E II	• 1535 1C	1050 13	. 4616 12	•2315 12	140# 12	2325 12	- A325 12
20	1005 13	• 97 2E 11	.0195 11	2/05 13	· · · · · · · · · · · · · · · · · · ·	+COUL 14 3505 12	149E 12	1075 13	4366 12
28	1085 13	•931E 11	-4145 11	A385 13	A015 12	1025 12	•157C 13	1275 13	1045C 12
29	.1012 13	·274E II	.1900 11		572- 12	4720 11	• 457E 13	100 - 13	1420 12
30	4104E 12	• 2 3 9 E 1 1	-099E 10	520c 13	1527 12	0735 1A	+149E 13	9100E 13	144E 12
30	+13E 12	•1"3E 10	- JANE 10	A14r 12	- 2020 10	208C 11	658r 13	- 506E 10	4355 11
52	4168 16	- 1105 11	1/36 10	-10E 13	-, LOZE 12	- CUDE 11	-070E 13	- 9055 10	- 435C X1
33	2365 12	-•170E 11	•132t 10	+2335 13 7415 12	- 4025 12	•121C 12	+ 34 TE 13	- 745E 12	• 207C 12
34	.2305 12		.0146 09	20-5 12		- JZOE 12	•060E 12	96/476 14 30ec 11	12KE 10
35	.456E 12	•561E 11	.69JE 10	• 2 U 9 E 1 2	₹+694 <u>Ľ</u> II	•23UE 11	•744E 13	+305E 11	*1C2C 1%

ł

Table C16. Quadratic (Q15) Covariance Results

HEAN RESPONSES

ť	DELTA	DDELTA	NSUBIT	DNSUB	IT QAL	F QDALF	DZ	Z
1	.000E=80	.000E+80	.000E-80	.000F+88	.000E-80	.0005-80	.000E+80	.000E=80
2	-,947E-03	124E-02	,167E 00	••776E•€1	.145E QQ	476F-81	733E 00	-,537E 00
3	233E-03	.343E-03	418E 00	 919E- 0 1	.640E.01	.677F-02	704E 01	1A1E 02
4	-,638E-05	.146E.D3	-,813E 00	•.387E•01	-,440E-01	.186F 0Ö	-,155E 02	-,734E 02
5	,107E-03	.627E-04	+,104€ 01	-,1178-01	,320E+03	.488F 00	- 255E 02	-,175E 03
6	178E=03	507E+04	120E 01	.440E-02	+169E 00	.960E QO	368E 02	+.330E 03
7	,225E-03	.638E.04	+,134E 01	202E_01	, 393E 00	.168E 01	- 485E 02	• 543E 03
8	•275E=03	.462E-04	-,149E 01	.468E-01	.558E 00	•260F 01	- 598E 02	814E 03
9	.658E-03	•340E-03	++174E 01	.977 <u>E</u> .∎1	, 377E 00	.374E 01	•.693E 02	=,114E 04
10	.110E-02	.869E-04	+.181E 01	.734E-01	.110E 01	.547F Q1	756E 02	•.150E 04
11	,102E=02	254E _03	-,173E 01	650E.01	.237E 01	.582E 01	- 792E 02	•.189E 04
12	.813E-03	- ,436E+04	•¦198E 01	-,412E 00	223E 01	.672E 01	=,793E 02	-,229E 04
13	.488E-03	105E-02	-,250E 01	- 586E DO	.175E 01	.923E a1	733E 02	- 267E 04
14	+603E-05	-,203E-02	273E 01	.145E 00	,110E 01	.587F 01	• 597E 02	-,301E 04
15	-+272E=03	-,167E-02	242E 01	-374E QO	.284E 00	174F 01	413E 02	326E 04
16	-,302E-03	.,409E.03	• 165E 01	411E ••	•,490E,01	 718F 01	238E 02	•,343E 04
17	-,288E-04	.664E=03	••849E 00	.152E UU	118E 00	786F 01	114E 02	+.351E 04
18	.252E-03	.733E-03	• 325E 00	-,156E+01	-,130E 00	558E 01	496E 01	= 355E 04
19	2792-03	4856-03	-,135E OU	•,345E+01	- 235E 00	-,244E 01	=,255E 01	- 357E 04
ZQ	.295E-03	.292E-03	-,953E-01	209E-01	236E 00	-106F 00	141E 01	-,358E 04
Z 1	324E-03	590E_04	-120E 00	430E-01	-,170E 00	.137F 01	470E DO	.358E 04
22	+314E=03	131E-03	162E 00	.941E+01	•.124E 00	+178E 01	•433E 01	357E 04
Z 3	242E=03	-,183E-03	• 195E OU	.985E-81	-,122E 00	135F Q1	.105E 02	+,354E 04
24	#154E=03	•.144E=03	197E DU	-719E+V1	-,133E 00	•761F AD	.186E 02	=,346E 04
25	.624E-04	-,958E-04	-,191E 00	.436E-01	-,118E 00	.345F UO	278E 02	-,335E 04
26	+147E=04	-,331E+04	-167E 00	•031E+02	108E 00	•368E-01	.376E 02	319E 04
27	291E-04	-,186E_U4	-1352 00	.125E+91	••494E•DI	•383E=01	473E 02	•.297E 04
28	••632E=04	477E-05	●●977E● 01	128E-01	302E-01	.421E-01	.20 3095 C	- 271E 04
29	-+744E+04	.231E-04	++555E-01	+144E-71	+127E 00	÷336E-01	656E 02	+.241E 04
30	-,677E-04	311E-04	-,592E-02	180E-01	238E UD	.421E-01	734E 02	- 206E 04
31	••502E=04	2802-04	•556E-01	.118E-01	.369E 00	•532F=01	.794E 02	+.168E 04
3Z	••567E=04	-+127E-04	145E 00	.289E-01	,554E 00	.734E-01	.827E 02	- 127E 04
33	••278E=03	-,17ZE-03	-314E OU	.71ZE-01	.886E 00	.141E DO	.807E 02	- 860E 03
34	••877E=03	434E-03	,789E 00	.205E 00	.167E 01	.3ñ3E QO	665E 02	484E 03
35	216F-02	+.121F=03	.230F 01	.507e 00	.356F 01	.7085 AA	.193F 02	

Table C16. (Continued)

MEAN RESPONSES

$\widetilde{\mathbf{t}}$	181	DIBI	162	D185	183	.0183
1	.000E-80	.000E-80	.000É-80	.000E-88	.000E-80	•000E+80
2	.605E 05	937E 05	.771E 06	834E 06	120E 07	-126E 07
3	102E 05	283E 05	+148E 06	241E U6	-256E 06	362E 06
4	138E 07	- 0902 UD	143e 04	4.21/2 0D	1845 04	- 1205 04
7	4051 07	- 147E UE	+315 00	- Solt Oc	- A7AE 06	- 575 04
÷.		- A160 06	- 748= 06	- 7485 06	- 793r 06	- 778r 06
-	- 5/5E 00		0,1400 00	- 1125 07	-110F c7	-108F 07
â	- 520F 06	- 831E 06	-133F 07	177E 07	.155E 07	188E 07
10	-750F 06	-100E 07	+ 203E 07	106E 07	241E 07	199F 07
11	-153E 07	-121E 07	327E 07	- 205E 07	-,349E 07	187F 07
ÎŻ	177F 07	-,163E 07	353F 07	287E 07	361E 07	270E 07
13	137E 07	194E 07	-,262Ē 07	260E 07	-,262E 07	186F 07
14	- 670E 06	-130E 07	- 112E 07	- 741E 06	• 101E 07	395E 0 6
15	+.638E 04	-,156E 06	181E 06	971E 06	.308E 06	181E 07
Ī6	,225E 06	.741E 06	589E 06	158E P7	.692E D6	169E 07
17	.182E D6	.110E 07	.325E 06	.136E 07	.308E 06	.881E 06
18	+894E 05	.821E 06	- 296E 05	.797E 06	-,160E 06	.291F 06
19	.674E 05	305E 06	•.851E 05	.110E 06	-,224E 06	20UE 06
20	.382E 05	110E 05	-+145E 06	286E 06	287E 06	-,460F U6
21	,801E 04	-1805 06	-,<16E 06	- 407E 86	- 3665 06	-,451E 06
22	270E 04	-217E 06	- 227E 00	339E 06	- 3/0E 00	20/E 06
23	.562E 04	1641 06	162E UO	- 190E 00	- 1515 04	- 3375 OF
24	+185E U5	-,90%E U5	- 179E 03	- 185C 05	- 3855 05	- 22/L VJ
27	265E UD	5785 04	**0155 DF	100E 05	199F 05	2415 05
26	1447E UD	- 507E 04	- 3012 05	1135 85	.559F 05	.243F 05
	1482 03				774- 05	7482 64
28	•.862£ 03	•.611E U4	433E 05	.906E UZ	./24F UD	.1002 04
29	- 207E 05	-,800E 04	+181E.07	*.133E 05	+776E U7	
30	* 401L 05	• 942C U4	- ROOF 07	- 200E -E	- 77JE U4	- 3305 AB
21	* 173E 07	-123C 03	- 151F 06	- 54AF 01	- 106F 05	
36		- 5445 04		1715 04	-716F 05	-200E 04
33	-274F 04	2535 03	.) ADF 06	AOZE DA	6DAE DA	AIZE DA
35	557E 06	-,790E 05	603E 06	413E 06	.169E 07	779F 06

RESPONSE COVARIANCES

$\widetilde{\mathbf{t}}$	DELTA	DELTAPDELTA	DDELTA	DZDOT	DELO	۵ ک	70	ΔZ
1	.000E-80	000E-8ő	.000E-80	.000E-80	.000F-80	.000F-80	.000E-80	.000E=80
2	,267E+0!	5 - 195E-05	733E-05	174E 01	558E-04	.278E-03	679E-03	995E 00
2	.767E-0!	5 .127E-05	.350E+04	.132E 03	.388E-04	.489F-02	.764E+03	102E 04
4	.299E-04	4 . 529E . 06	.959E-04	.260E 03	.653E-05	401F-02	.814E+04	.107E 05
5	•651E-04	4112E-04	. 132E . 03	296E 03	.130E-05	.241F-02	.276E=04	.350E 05
6	•845E=04	4259E-04	.117E-03	304E 03	.129E-05	•148F+ñ2	.599E-05	.745E 05
7	•740E-04	4 -, 284E - 04	•879E-04	.293E 03	.377E-05	.916F-03	.309E-04	128E 06
8	.620E-04	4213E-04	, 776E-04	.259E 03	.820E-05	•546E-Ö3	150E+03	194E 06
9	.844E-04	4 - 204E-04	, 964 E −04	209E Ø3	.131E-04	.310E-03	.345E-03	.266E 06
10	.447E=04	315E-04	•928E-04	.176E n3	.797E-05	.190F-03	.550E+03	339E 06
11	.163E-04	4 _,122E_04	,189E_03	202E 03	,150E_04	,165F-03	920E-03	407E 06
12	.114E-04	101E-04	.486E-03	.355E Ø3	.321E-04	.228F-03	.152E-02	.472E 06
13	•132E=04	126E-04	•647E=03	.769E M3	•472E-04	•394E=03	.224E-02	546E 06
14	.143E-04	-,133E_04	•615E-03	.163E 04	. 526E-04	•671E-03	.269E-02	.660E 06
15	.145E=04	107E-04	.442E-03	.304F 04	.509E-04	•997F=03	.262E=02	.883E 06
16	,144E-04	-,784E-05	236E-03	488E 04	350E-04	128F-05	2275+02	132E 07
17	+147E+04	613E-05	•126E=03	.768E 04	.204E-04	-148E-02	•197E•02	.212E 07
18	,158E-04	510E_05	,645E_04	.961E 04	,115E_04	,160E-02	172E-02	.342E 07
19	•170E=04	522E-05	•293E=04	.124E 05	-580E-05	•165E=02	144E=02	.543E 07
20	+185E=04	550E-05	•146E-04	.152E 05	.358E-05	•163E•02	.110E-02	.832E 07
21	.192E-04	583E-05	•839E=05	.178F 05	.307E-05	.153E-02	.715E-03	.123E 08
22	193E-04	-,604E-05	•337E+05	.196E 05	.390E-05	•138E•02	.342E+03	. 174E 08
23	+177E=04	-,620E-05	+405E-05	.203F 05	.630E-05	.117 <u>e</u> -02	.675E-04	.236E 08
24	-148E-04	562E-05	•317E-05	.192E 05	.998E-05	•917F=03	.570E-04	309E 08
25	104E-04	476E_05	272E-05	,161F 05	,158E-04	.641F.03	.608E-03	. 386E 08
26	•591E-0	316E-05	■195E=05	.110E 05	•167E-04	•373E-03	202E-02	.461E 08
27	219E-05	.,179E-05	+159E-05	.534E 04	.168E_04	•155E•Q3	.426E+02	523E 08
2 A	.107E-07	985E-07	.103E-05	.106E 04	.131E-04	.267E-04	-721E+02	.561E 08
29	139E-0	.391E-06	.139E-06	.58.3E 03	,300E-05	.128F-04	981E-02	. 565E 08
30	-385E-02	433E-06	.637E-07	.572 _F 04	•879E=06	•111F=03	103E-01	.530 _E 08
31	526E-0	149E_05	•427E-06	.159E 05	.120E-04	.273F-03	815E-02	459Ē 08
32	496E-05	- 122E-05	302E-06	281E 05.	.371E-04	429F-03	448E-02	365E 08
33	•963E=0	-+155E+05	+251E=06	.370E 05	•225E-03	.507F-03	.403E-03	263E 08
34	,102E-04	-,142E_05	.204E.06	.317E 05	,12 0 E,02	.391E-03	.984E-02	.175E 08
35	•256E=04	,143E-05	•797E=07	.539E 04	•675E-02	.605F-04	135E ON	122E 08

Table C16. (Continued)

RESPONSE COVARIANCES

ť	NIT	NIT#DNIT	DNIT	QALF	QALFODALF	DQALF
1	.000E-80	.000E-80	•000E-80	.000E-80	.000E-80	•000E-80
2	■879E=01	284E-01	950E+02	.IIUE 00	20UL-U2	•20E+05
3	,124E 01	340E 00	954E+01	157E UI	- 135E UU	296E 00
4	•309E 01	387E-01	+773E+02	-196E 01	•207E 00	-185E 01
5	242E 01	-,143E 00	.305E-01	.493E 01	.76UE 00	•721E 01
6	•162E 01	-,102E 00	•772E=01	.787F UI	.363E 00	.234E U2
7	.115E 01	672E-01	229E 00	.925E 01	.698E 00	.740F 02
A	•916E 00	-,503 <u>E</u> -01	•20E 00	.974E 01	.138E 01	195E 03
9	.770E 00	-,599E-01	937E 00	.137E 02	.290E 01	428F U3
10	,799E DO	-,591E-01	193E 01	238E 02	232E 01	.882F 03
11	+115E 01	-,268E 00	.461E 01	-228E 02	496E 01	+187F Q4
12	158E 01	. 897E 00	246E 02	183E 02	-,585F 01	.363F N4
13	+174E 01	-,805E 00	.249E 02	.178E 02	+515E U1	•590F 04
14	,159E 01	-,764E 00	123E 02	.172E 02	.173E 02	.664E 04
15	•865E 00	455E 00	.249E 01	.131E 02	.113g 02	•474F 04
16	.357E 00	-,124E 00	283E 00	.104E 02	171E 01	278E 04
17	,175E 00	=,135E=01	364E 00	.880E 01	-,582E 01	.160F n4
18	•152E 00	.706E-02	•287E 00	.898E ÓI	403E 01	.942F 03
19	.205E 00	.928E.02	470E 00	1136 02	-,218E 01	.557F 03
20	•332E 00	.177E-01	+607E 00	.161E 02	777E 00	.330F 03
21	558E 00	.243E=01	651E 00	229E 02	.146E 00	.197F 03
22	.837E 00	.350E.01	542E 00	.308E 02	.102E 01	.116E 03
23	,124E 01	.489E=01	472E 00	.394E 02	,187E 01	.682F 02
24	.173E 01	.620E-01	+409E 00	482E 02	.252E 01	.396F 02
25	,241E 01	.725E-01	.306E 00	569E 02	,304E 01	.222E 02
26	,304E 01	.645E_01	206E 00	.608E 02	252E 01	.116F 02
27	•352E 01	•336E-01	•139E 00	574E 02	+191E 01	•588E 01
28	,362E 01	131E_0 1	+888E+01	500E 02	,114E 01	.298E 01
29	•333E 01	494E-01	•579E+01	378E 02	•699E=01	152E 01
30	,254E 01	- _853E_01	.400E-01	232E 02	-,585E 00	•780E Q0
31	.145E 01	-,831E-01	+272E=01	.107E 02	+,649E 00	387F 00
32	•522E 00	-,738E-01	,224E+01	295E 01	-,423E 00	. 198 € 00
33	,323E-02	•,140E-02	.456E-01	223E-01	298E-01	.257E 00
34	+204E 01	.653E QO	+211E 00	.896E 01	.253E 01	1728F 00
35	.271E 02	.629E 01	.146E Ol	.626E 02	.131E 02	.273F 01

Ţ

Į.

1

1

Table C16. (Concluded)

.

RESPONSE COVARIANCES

1 .000E-80 .00E-80 .00E-80 .000E-80	000E+80 13 121E 14 590E 14 156E 14 156E 13 150E 14 150E 13 150E 14 455E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 .121E 14 13 .590E 14 14 .156E 15 14 .156E 15 13 .150E 15 14 .630E 14 13 .455E 14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 .590E 14 14 .156E 15 14 .197E 15 13 .150E 15 14 .830E 14 13 .455E 14
4 .615E 11 .192E 11 .366E 12 .141E 14 .568E 13 .645F 14 .393E 14 .143E 5 .108E 12 .351E 11 .344E 12 .279E 14 .406E 13 .790E 14 .814E 14 .113E 6 .338E 12 987E 11 .564F 12 .231E 14 .233E 13 .561E 14 .814E 14 .137E 7 .842E 12 .137E 12 .262E 13 .244E 14 .657E 13 .270F 14 .804E 14 .134E 7 .842E 13 .204E 12 .867E 13 .125F 14 .646E 14 .992E 14 .134E 8 .153E 13 .204E 12 .860F 13 .116F 14 .428E 14 .266E 10 .262E 13 .142E .1485E 14 .135E .14	14 .156E 15 14 .197E 15 13 .150E 15 14 .830E 14 13 .455E 14
5 .108E 12 .351E 11 .344E 12 .279E 14 .406E 13 .790E 14 .814E 14 .113E 6 .33AE 12 .987E 11 .564E 12 .321E 14 .233E 13 .561E 14 .992E 14 .364E 7 .842E 12 .137E 12 .262E 13 .244E 14 657E 13 .270F 14 .804E 14 134E 9 .185E 13 .204E 12 .887E 13 .106E 14 .578E 13 .127F 14 .646E 14 .99PE 9 .185E 13 .231E 12 .254E 14 .135E 14 .101E 14 .144E 14 .428E 14 .206E 10 .262E 13 .231E 12 .254E 14 .135E 14 .101E 14 .144E 14 .206E 11 .592E 13 .142E	14 .197E 15 13 .150E 15 14 .830E 14 13 .455E 14
6 .338E 12 987E 11 .564E 12 .321E 14 233E 13 .561E 14 .992E 14 364E 7 .842E 12 137E 12 .262E 13 .244E 14 657E 13 .270F 14 .804E 14 134E 8 .153E 13 279E 12 .887E 13 .196E 14 578E 13 .125F 14 .646E 14 989E 0 .185E 13 279E 12 .182E 14 .306E 14 306F 13 .116F 14 .941E 14 .206E 10 .262E 13 .231E 12 .254E 14 .135E 14 .101E 14 .144E 14 .226E 14 .260E 13 .300F 14 .270E 13 .266E 13 .111F .5 .428E 14 .266E 13 .216E 13 .216E .30F 14 .142E 1	13 .150E 15 14 .830E 14 13 .455E 14
7 $.842E$ 12 $137E$ 12 $.262E$ 13 $.244E$ 14 $657E$ 13 $.270F$ 14 $.804E$ 14 $134E$ 8 $.153E$ 13 $204E$ 12 $.887E$ 13 $.196E$ 14 $578E$ 13 $.125F$ 14 $.646E$ 14 $989E$ 9 $.185E$ 13 $279E$ 12 $.182E$ 14 $.306E$ 14 $380E$ 13 $.116F$ 14 $.941E$ 14 $206E$ 10 $.262E$ 13 $.231E$ 12 $.254E$ 14 $.135E$ 14 $101E$ 14 $.144E$ 14 $.428E$ 14 $266E$ 11 $.592E$ 13 $.142E$ 11 $.815E$ 14 $.722E$ 13 $603E$ 12 $.330F$ 14 $266E$ 12 $.857E$ 13 $.4689E$ 12 $.218E$ 13 $.280E$ 13 $.860F$ 14 $.520E$ 13 $.132E$ 13 $.734E$ 13 $138E$ 13 $.287E$ 13 $.280E$ 13 $.860F$ 14 $.520E$ 13 $.132E$ 14 $.512E$ 13 $138E$ 13 $.287E$ 13 $.236E$ 13 $.111F$ 15 $.746E$ 13 $.798E$ 14 $.512E$ 13 $178E$ 13 $123E$ 13 $.633E$ 14 $.144E$ 4 $.299E$ 16 $.136E$ 13 <t< td=""><td>14 .830E 14 13 .455E 14</td></t<>	14 .830E 14 13 .455E 14
A.153E13204E12.887E13.196E14 $=$.578E13.125F14.646E14 $=$.989E0.185E13279E12.182E14.306E14 $=$.380E13.116F14.941E14 $=$.206E10.262E13.231E12.254E14.135E14 $=$.101E14.144E14.428E14 $=$.266E11.592E13.142E11.815E14.722E13 $=$.603E12.330F14.970E13 $=$.543E12.857E13138E13.218E15.954E13.280E13.860F14.520E13.132E13.734E13138E13.287E15.877E13.236E13.111F15.746E13.798E14.512E13178E13.266E15.828E13.810E12.995E14.116E14 $=$.209E14.512E13178E13.266E15.828E13.810E12.995E14.116E14 $=$.209E14.512E13178E13123E13.633E14.144E14 $=$.299E16.136E13179E15.718E13123E13.329F14.146E14	13 .455E 14
a.185E13279E12.182E14.306E14380E13.116F14.941E14206E10.262E13.231E12.254E14.135E14101E14.144E14.428E14266E11.592E13.142E11.815E14.722E13603E12.330F14.970E13543E12.857E13689E12.218E15.954E13.280E13.860F14.520E13.132E13.734E13138E13.287E15.877E13.236E13.111F15.746E13.798E14.512E13178E13.266E15.828E13.810E12.995E14.116E14299E14.512E13178E13.266E15.828E13.810E12.995E14.116E14299E14.512E13178E13123E13.633E14.144E14299E15.718E13123E13633E14.144E14299E16.136E13149E14572E13123E329F14.148E14267E16.136E1362E13107F <td< td=""><td></td></td<>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 . 399E 14
11 $.592E$ 13 $.142E$ 11 $.615E$ 14 $.722E$ 13 $603E$ 12 $.330F$ 14 $.970E$ 13 $543E$ 12 $.857E$ 13 $689E$ 12 $.218E$ 15 $.954E$ 13 $.280E$ 13 $.860F$ 14 $.520E$ 13 $.132E$ 13 $.734E$ 13 $138E$ 13 $.287E$ 15 $.877E$ 13 $.236E$ 13 $.111F$ 15 $.746E$ 13 $.798E$ 14 $.512E$ 13 $178E$ 13 $.266E$ 15 $.828E$ 13 $.810E$ 12 $.995E$ 14 $.116E$ 14 $102E$ 15 $.283E$ 13 $148E$ 13 $.179E$ 15 $.718E$ 13 $123E$ 13 $.633E$ 14 $.144E$ 14 $299E$ 16 $.136E$ 13 $826E$ 12 $.883E$ 14 $.572E$ 13 $200E$ $.329F$ 14 $.148E$ 14 $267E$ 16 $.136E$ 13 $826E$ 12 $.883E$ 14 $.572E$ 13 $162E$ $.107F$ 14 $.146E$ $267E$ 18 $.517E$ 12 $439E$ 12 $467E$ 13 $622F$ $632E$ <	14 .218E 14
12 $.857E$ 13 $689E$ 12 $.218E$ 15 $.954E$ 13 $.280E$ 13 $.860F$ 14 $.520E$ 13 $.132E$ 13 $.734E$ 13 $13RE$ 13 $.287E$ 15 $.877E$ 13 $.236E$ 13 $.111F$ 15 $.746E$ 13 $.798E$ 14 $.512E$ 13 $178E$ 13 $.266E$ 15 $.828E$ 13 $.810E$ 12 $.995E$ 14 $.116E$ 14 $102E$ 15 $.283E$ 13 $148E$ 13 $.179E$ 15 $.718E$ 13 $123E$ 13 $.633E$ 14 $.144E$ 14 $299E$ 16 $.136E$ 13 $826E$ 12 $.883E$ 14 $.572E$ 13 $200E$ $.329F$ 14 $.148E$ 14 $267E$ 17 $.754E$ 12 $439E$ 12 $.450E$ 14 $.467E$ 13 $162E$ 13 $.190E$ 14 $.146E$ 14 $267E$ 18 $.517E$ 12 $202E$ 12 $.232E$ 14 $.423E$ 13 $798E$ 12 $.107F$ 14 $.151E$ 14 $267E$ 18 $.517E$ 12 $202E$ 12 $.232E$ 13 $798E$ 12 $.107F$ 14 $.151E$ 14 $267E$ 18 $.517E$ 12 $712E$ 11 $.116F$ 14 $.382E$ 13 $233E$ 12 $.512F$ 13 $.153E$ 14 $294E$ 20 $.587$	13 .964E 13
13 $.734E$ 13 $138E$ 13 $.287E$ 15 $.877E$ 13 $.236E$ 13 $.111F$ 15 $.746E$ 13 $.798E$ 14 $.512E$ 13 $178E$ 13 $.266E$ 15 $.828E$ 13 $.810E$ 12 $.995E$ 14 $.116E$ 14 $102E$ 15 $.283E$ 13 $148E$ 13 $.179E$ 15 $.718E$ 13 $.633E$ 14 $.144E$ 14 $299E$ 16 $.136E$ 13 $826E$ 12 $.883E$ 14 $.572E$ 13 $200E$ 13 $.329F$ 14 $.148E$ 14 $267E$ 16 $.136E$ 12 $439E$ 12 $.450E$ 14 $.467E$ 13 $162E$ 13 $.190E$ 14 $.146E$ 14 $267E$ 18 $.517E$ 12 $202E$ 12 $.232E$ 14 $.423E$ 13 $798E$ 12 $.107F$ 14 $.151E$ 14 $267E$ 18 $.517E$ 12 $202E$ 12 $.232E$ 14 $.423E$ 13 $798E$ 12 $.107F$ 14 $.151E$ 14 $267E$ 18 $.517E$ 12 $712E$ 11 $.116F$ 14 $.382E$ 13 $233E$ 12 $.512F$ 13 $.53E$ 14 $294E$ 20 $.587E$ 12 $.264E$ 10 $.603E$ 13 $.337E$ <td>13 .161E 14</td>	13 .161E 14
14 $\cdot 512E$ 13 $\cdot .178E$ 13 $\cdot 266E$ 15 $\cdot 828E$ 13 $\cdot 810E$ 12 $\cdot 995E$ 14 $\cdot 116E$ 14 $- \cdot 102E$ 15 $\cdot 283E$ 13 $148E$ 13 $\cdot 179E$ 15 $\cdot 718E$ 13 $- \cdot 123E$ 13 $\cdot 633E$ 14 $\cdot 144E$ 14 $- \cdot 299E$ 16 $\cdot 136E$ 13 $- \cdot 826E$ 12 $\cdot 883E$ 14 $\cdot 572E$ 13 $- \cdot 200E$ 13 $\cdot 329F$ 14 $\cdot 144E$ 14 $- \cdot 299E$ 17 $\cdot 754E$ 12 $- \cdot 439E$ 12 $\cdot 450E$ 14 $\cdot 467E$ 13 $- \cdot 162E$ 13 $\cdot 190E$ 14 $\cdot 146E$ 14 $- \cdot 267E$ 18 $\cdot 517E$ 12 $- \cdot 202E$ 12 $\cdot 232E$ 14 $\cdot 423E$ 13 $- \cdot 798E$ 12 $\cdot 107F$ 14 $\cdot 151E$ 14 $- \cdot 267E$ 18 $\cdot 517E$ 12 $- \cdot 202E$ 12 $\cdot 232E$ 14 $\cdot 423E$ 13 $- \cdot 798E$ 12 $\cdot 107F$ 14 $\cdot 151E$ 14 $- \cdot 267E$ 19 $\cdot 470E$ 12 $- \cdot 712E$ 11 $\cdot 116F$ $\cdot 382E$ 13 $- \cdot 233E$ 12 $\cdot 512F$ 13 $\cdot 153E$ 14 $- \cdot 294E$ 20 $\cdot 587E$ 12 $\cdot 264E$ $\cdot 603E$ 13 $\cdot 337E$ 13 $- \cdot 109E$ 12 $\cdot 269F$ 13 $\cdot 153E$ 14 $- \cdot 294E$ 21 $\cdot 853E$ 12 $\cdot 465E$ 11 $\cdot 333E$ 13 $\cdot 254E$ 13 $- \cdot 163F$ 13<	12 .240E 14
15 .283E 13 148E 13 .179E 15 .718E 13 123E 13 .633E 14 .144E 14 299E 16 .136E 13 826E 12 .883E 14 .572E 13 200E 13 .329F 14 .148E 14 361E 17 .754E 12 439E 12 .450E 14 .467E 13 162E 13 .190E 14 .148E 14 361E 18 .517E 12 439E 12 .450E 14 .467E 13 162E 13 .190E 14 .146E 14 267E 18 .517E 12 202E 12 .232E 14 .423E 13 798E 12 .107F 14 .151E 14 267E 19 .470E 12 712E .11 .116F 14 .382E 13 233E 12 .512F 13 .153E 14 294E 20	13 :251E 14
16 .136E 13 826E 12 .883E 14 .572E 13 200E 13 .329F 14 .148E 14 361E 17 .754E 12 .439E 12 .450E 14 .467E 13 .162E 13 .190E 14 .148E 14 361E 18 .517E 12 .202E 12 .232E 14 .423E 13 798E 12 .107F 14 .151E 14 267E 19 .470E 12 .712E 11 .116F 14 .382E 13 233E 12 .512F 13 .153E 14 294E 20 .587E 12 .264E .603E 13 .337E 13 .109E 12 .269F 13 .153E 14 294E 21 .853E 12 .465E 11 .333E 13 .254E 13 149E 12 .163F 13 .140E 14 343E 22 .116E <	13 .291E 14
17 .754E 12 .439E 12 .450E 14 .467E 13 .162E 13 .190E 14 .146E 14 267E 18 .517E 12 .202E 12 .232E 14 .423E 13 798E 12 .107F 14 .151E 14 267E 19 .470E 12 712E 11 .116E 14 .382E 13 233E 12 .512F 13 .153E 14 294E 20 .587E 12 .264E 10 .603E 13 .337E 13 .109E 12 .269F 13 .153E 14 294E 21 .853E 12 .465E .603E 13 .254E 13 109E 12 .269F 13 .140E 14 343E 22 .116E 13 .841E 1 .163E 13 .177E 13 .215E .163F 13 .140E 14 .634E 23 .116E 13	13 .270E 14
18 .517E 12 .202E 12 .232E 14 .423E 13 798E 12 .107F 14 .151E 14 104E 19 .470E 12 712E 11 .116E 14 .382E 13 233E 12 .512F 13 .153E 14 294E 20 .587E 12 .264E 10 .603E 13 .337E 13 109E 12 .269F 13 .153E 14 136E 21 .853E 12 .465E .333E 13 .254E 13 149E 12 .163F 13 .140E 14 343E 22 .116E 13 .841E 1 .163E 13 .177E 13 .215E 12 .160E 13 .124E 14 .634E 23 .13E .13 .177E 13 .215E .100E 13 .124E 14 .634E	13 .205E 14
19 .470E 12 .712E 11 .116E 14 .382E 13 .233E 12 .512F 13 .153E 14 .294E 20 .587E 12 .264E 10 .603E 13 .337E 13 .109E 12 .269F 13 .153E 14 136E 21 .853E 12 .465E 11 .333E 13 .254E 13 149E 12 .163F 13 .140E 14 343E 22 .116E 13 .841E 11 .183E 13 177E 13 215E 163F 13 .124E 14 634E 23 .116E .13 .143E .13 .177E 13 215E 100E 13 .124E 14 634E	13 .114E 14
20 .587E 12 .264E 10 .603E 13 .337E 13 .109E 12 .269F 13 .153E 14 .136E 21 .853E 12 .465E 11 .333E 13 .254E 13 .149E 12 .163F 13 .140E 14 343E 22 .116E 13 .841E 11 .183E 13 .177E 13 215E 12 .100E 13 .124E 14 634E 23 .116E .13 .127E 13 215E 12 .100E 13 .124E 14 634E	12 .302E 13
21 +853E 12 +465E 11 +333E 13 +254E 13 +149E 12 +163F 13 +140E 14 +343E 22 +116E 13 +841E 11 +183E 13 +177E 13 +215E 12 +160E 13 +124E 14 +634E	12 ,741E 12
22 .116E 13 .841E 11 .183E 13 .177E 13 .215E 12 .100E 13 .124E 14634E	12 .270E 12
35 184F 19 19-F 19 102F 19 1-44F 19 2-9F 19 -44-F 19 1-51- 19 104-F	12 .212E 12
	13 _315E 12
24 .199E 13 .180E 12 .584E 12 .153E 12 .154E 12 .540E 12 .566E 13 .129E	13 .408E 12
25 .235E 13 .229E 12 .310E 12 .842F 11 .172E 12 .575F 12 .212F 13 .121F	13 .763F 12
26 ,268E 13 ,216E 12 ,163E 12 ,102E 13 ,631E 12 ,495F 12 ,148E 12 - 326E	12 .791E 12
27 ,279E 13 ,220E 12 ,907E 11 ,302E 13 ,132E 13 ,633F 12 ,622E 12 ,855E	12 .121E 13
28 +2 ⁵ 1E 13 +19 ^R E 12 +490E 11 +660E 13 +227E 13 +810F 12 -513E 13 +295E	13 .171E 13
29 ,212E 13 ,965E 11 ,206E 11 ,106E 14 ,194E 13 ,370F 12 ,127E 14 ,321E	13 .820E 12
30 .155E 13 .914E 10 .839E 10 .120E 14 .945E 12 .827E 11 .173E 14 .183E	13 200E 12
31 .846E 12361E 11 .520E 10 .995E 13119E 12 .537E 10 .165E 14554E	11 .3258 10
32 .332E 12 .243E 11 .322E 10 .643E 13 .379E 11 .175F 10 .120E 14 .266E	12 .711F 10
33 .738E 11164E 11 .417E 10 .700E 13 .540E 12 .429F 11 .162F 14 .166E	13 .172E 12
34 ,123E 12 ,464E 11 ,179E 11 ,283E 13 ,237E 12 ,254F 11 103F 14 128F	13 .1728 12
35 .148E 13 .225E 12 .340E 11 .239E 13 .149E 13 .930F 12 .165E 14 .740E	

154

Т

Table C17. Attitude (C7) Covariance Results ($\Delta t=0.02$)

MEAN RESPONSES

~ t	DELTA	DDFLTA	NSUBIT	DNSUBI	T QALF	QDALF	DZ	2
1	000E-80	•000F-80	.000E-80	.DCDE-80	•000E-80	.000E-80	.000E-80	•000E=80
2 -	.268E-04	•584E=05	.695E-03	.264E-02	•806E-02	•398E-04	039E-D3	**216E=03
3 -	.139E-02	211E-03	-180E-01	-,173E-02	.403E 00	•964E=01	578E+01	••112E 00
4 -	.510E-02	•248E•~3	.603E=01	528E-03	.143F UI	234E 00	233E 00	••172E 00
5 -	115E-01	146F-02	140E 00	2365-02	. JZZE UI	478E BU	634E UU	- 263E 01
6 •	-205E-01	• 374E -02	•258E 00	•813E=02	•274E 01	.144F 01	136E 01	- 172F 02
	A21F-01	• • • • • • • • • • • • • • • • • • •	- 24E 00	3445-01	121F 02	21°E 81	420F 01	-33eF 02
8 -	491F-01	1335-11	.827F 00	-801F-01	161F 02	.362F 01	643F 01	-601F 02
16 -	4895-01	•15*=01	948 00	122 00	-217F 02	.518F 01	954r 01	997F 02
11 -	.647F-01	-1465-01	1205 01	115F 00	227E 02	.561E 01	-139E 02	-158E 03
12 -	867E-01	192E-01	601F 00	- 678E 00	222E 02	.741E 01	161E 02	- 235E 03
13 -	9555-61	.273E-01	461E 00	807E 60	268E 02	105E 02	1458 02	••312E 03
14	.000E-80	.000E-80	.000E-80	.00UE-80	.000E_80	.06uE.80	.000E-80	.000E.80
15	.000E-80	•000E-80	• U O U E = 80	• 60 ú E = 80	• UCOE-80	•00nE-80	•000E=80	+000E-80
16	.UG0E-80	.000E_80	.000E-80	.00UE-80	.00UE_80	.09uE-80	.000E-80	.000E.80
17	•000E-80	•00uE=80	.000E-80	•00DE-80	+000E-80	•000E-80	.000E-80	.000E-80
18	.0006-80	•000F-80	.00uE-80	•000E-80	•000E+80	•00JE=80	•000E-80	•000E-80
19	0006-90	•000E-80	.000E-80	,000E-80	.000E-80	.009E-80	000F-80	,000E-80
20	.000E-80	•000E-80	•000E-80	.000E-80	•000E-80	•00uE=8ū	•000E-80	•000E-80
21	,Gro£_80	•000E_80	.000E-80	.00uE-80	•000E=80	.0UNE-80	.000E-80	.000E-80
22	. 100E-80	• 000E=80	.000E-80	.000E-80	•000E-80	.000E-80	•000E-80	.000E-80
23	•000E-80	•000E-80	•000E+80	-00UE-80	•UOQE-80	.000E-80	•000E-80	+000L+80
24	.00JE-80	•000E-80	.000E-80	.000E-80	•00nE=80	•000E-80	.000E-80	•000E=80
25	.000E-80	•000E-80	.0CUE-80	.000E-80	• UODE = 80	.001F-80	.00"E-80	+U00E=80
26	000E-80	.00CE-80	000E-80	0006-80	.000E-80	00UE-80	000E-60	.UUUE=80
21	•000L-80	•000F=80	•000E-80	•000E-80	•000E=00	• 800L = 80	•000t=00	•000E=80
28	.000L-80	•000L_80	.007E-80	.0002-80	•000F =00	.000E-00	+UUUE=0U	• UUUE = 80
29	+000E-80	• 906E + 80	.000E-80	+UUUE+8U	+000E=80	• UU92 - 8U	+ UUUE=8U	+000C+80
30	•UPUE=PU	+UUUE-80	• UUUE = 80	000g=00	+VU!!E=0U	• UUUL=0U	+000E=00	•000E+80
32	.000E-80	+000E-00	0005-80	-0005-80	-BOOF-80	.080F-84	-0005-80	-000F-90
35	0000-00	000r-80	00000-00	0005-80	0005-80	0005-80	0005-80	0005-00
. 4	.000E-80	.000E-00	0005-80	-000E-80	•000E-80	- AGAE-86	-000E=80	+000E+80
37	+000C+00	•000E-80	•000E=80	.000E-80	+000E-80	.00.3E-80	.000E-80	.000E_AD

,

Table C17. Continued

MEAN RESPONSES

.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ť	1 B 1	D181	IB5	D182	183	n I B 3
3	12	.000E-80	•000 ^F -80	.000E-80	.000E-80	•000E -80	.000E-80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	.675E 05	224E 05	.871F 06	4828 06	152E 07	.767F #6
5 463E 06 .117E 13 .739E 07 .148E 07 .128E 08 .396E 07 6 869E 06 .162E 05 .130E 08 .167E 07 .226E 08 .396E 07 7 143E 07 541E 05 .195E 197E 07 .430E 08 .330E 07 9 279E 07 491E 06 .262E 08 .182E 07 .521E 08 .322E 07 11 474E 07 922E 05 .379E 08 .326E 07 .684E 08 .546E 07 12 447E 07 922E 05 .379E 08 .161E 07 .104E 09 782E 06 13 517E 07 151E 07 .590E 08 .161E 07 .104E 09 .782E 06 14 .000E .000E .000E .000E .000E .000E	4	- 203E 06	.377E 05	.327E 07	971E 06	+565E 07	-155E 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5	463E 06	•417E 45	.739E 07	148E 07	128E 08	.239E 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	869E 06	.162E 05	130E 08	.187E 07	.226E 08	.306E 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	143E 07	-•541E 65	.195E 08	.197E 07	•340E 08	.330E 07
9 279E 0.7 491E 0.6 .301E 0.8 .183E 0.6 .531E 0.8 .929E 0.7 11 474F 0.7 922E 0.5 .379E 0.8 .326E 0.7 .684E 0.8 .546E 0.7 11 474F 0.7 922E 0.5 .379E 0.8 .441E 0.7 .531E 0.8 .758E 6.7 12 447E 0.7 151E 0.7 .590E 0.8 161E 0.7 .04E 0.9 .782E 0.6 13 517E 0.7 151E 0.7 .590E 0.8 161E 0.7 .104E 0.9 .782E 0.6 14 .000E-80 .0	8	+,213 _E 07	165 _E 06	.262 ^E 08	.182E 07	.459E 08	.322E 07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	-,279E 07	491E 06	.301E 08	.183E 06	•531E 08	.929E 06
11 474F 07 922E 05 .379E 08 .326E 07 .684E 08 .546E 07 12 497E 07 151E 07 .531E 08 .441E 07 .937E 08 .758E 07 13 517E 07 151E 07 .590E 08 .161E 07 .104E 09 782E 06 14 .000E=80 .	10	-,326E 07	-,830E 06	291E ü8	-,198E 07	,521E 08	-,220E 07
12 447E 07 217E 08 531E 08 441E 07 937E 08 788E 07 13 517E 07 151E 07 .590E 08 161E 07 .104E 09 782E 06 14 .000E-80 .000E	11	474F 07	922E 05	-379E 08	• 376E 07	•684E 08	+546E 07
13 $, 517E 07$ $, 599E 08$ $, 167E 07$ $, 104E 09$ $, 792E 08$ 14 $, 000E - 80$ $, 00$	12	=,49/C U/	••217E 06	•231E 08	441E U/	•93/E U8	.758E D/
14 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 15 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 16 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 17 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 18 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 19 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 20 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 21 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 22 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 23 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 24 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 25 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 26 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 26 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 27 $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ $0.002-80$ 29 $0.002-80$ <td>15</td> <td>••• JI/E 0/</td> <td>• 101E V/</td> <td>-294E U8</td> <td>101E U/</td> <td>+104E UG</td> <td>7421 40</td>	15	••• JI/E 0/	• 101E V/	-294E U8	101E U/	+104E UG	7421 40
16 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 16 .000E-80	14	•000C=00	+0001,=00	•000E=80	.UUUL=00		
17 .000E-80 .000E	16	.000E-80	+UUUUE+80	•UUVE=OV	-000E-80	- 800E 80	000E=00
18 .000E-80 .000E	17	.000E_80	- 000F 80	000E-00	000E-80	.000E 80	APAF SO
19 .000E-80 .000E	18	-0001-000	•000C=00	.000E=80	+000C+00	+000C-00	.000C=00
20 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 21 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 22 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 23 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 24 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 25 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 26 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 27 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 28 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 29 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 30 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 31 .000E-	19	.000E-80	•000E-80	+000F-80	.DOUF-80	+800E-80	▲880F-80
21 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 22 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 23 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 24 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 25 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 26 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 27 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 28 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 29 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 30 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 31 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 <	20	.000E-80	•000E-80	.000E-A0	.000E-80	+000E+80	.000E+80
22 .000E-80 .000E	21	.000E-80	.000E-80	.000E-80	.000E-80	.000E-80	.000E-80
23 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 24 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 25 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 26 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 27 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 28 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 29 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 30 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 31 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 32 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 33 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 34 .000E-	22	+000E-80	.000E-80	.000F-80	.000F-80	.000E-80	.000F-80
24 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 25 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 26 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 27 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 28 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 29 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 30 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 31 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 32 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 33 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 34 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 <	23	.000E-80	•000F-80	.000Ē-80	.000 <u>ë</u> -80	.U00E-80	.000E-80
25 .000E-80 .000E	24	.000E_80	.000E_80	.00VE-80	.000E-80	.000E_80	.DUJE-80
26 .000E-80 .000E	25	• 006E=80	•00úE=80	1000E-80	•000E+80	•000E_80	•000E-80
27 .000E-80 .000E	26	.000E=80	•000E-80	.000E-80	.000E-80	.000E_80	.000E-80
28 .000000000000000000000000000000000000	27	•000E=80	•000E-80	000E-80	•000E-80	+000E-80	.060E-80
29 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 30 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 31 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 32 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 33 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 34 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 35 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80	28	•U()UE=0U	•000E=80	•00UE=80	•060E=80	•000E=80	.080E-80
30 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 31 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 32 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 33 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 34 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 35 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80 .000E+80	29	+UUUE=8U	•000E=80	.00VE-80	.UCUE-80	+U00E-80	.000E+84
31 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 32 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 33 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 34 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 35 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80	50	+UUUE=0U	+UUUE=0U	•UUUE=80	•UUUE=8U	•UD0E=80	.0V0E-80
32 +000E-80 +000E-80 +000E-80 +000E-80 +000E-80 +000E-80 +000E-80 33 +000E-80 +000	31	.UUUE.0U	+UUUE-0U	.000E-80	.UUVL-0U	.0002.00	DUDE-80
34 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80 .000E-80	32	•UUUUC=00 .000E_80	+000E=00	•000t=80	+U0011+00 D085 00	• UOOL =00	• 0001 - 80 005 - 80
35 +000E+80 +000E+80 +000E+80 +000E+80 +000E+80 +000E+80	30	.000F-00	-000C=00	000E=00	.0005-00	*VUVE=00	+UVUL=8V 84858
	35	+000E=80	•000E=80	+000E#80	.000E=80	+000E=80	- BOOF-80

RESPONSE COVARIANCES

ĩ	DELTA	DELTAPDELTA	DDELTA	nznot	DELQ	۵8	40	ΔZ
1	•00UE-80	•000E-80	•000E-80	•000E-80	•000E-80	+00gE+80	008=3000.	•000E-80
2	•458E+06	-•2 ⁸ 7E-Q6	195E-06	•298E+03	+108E-07	•461E+07	•308E-07	+307E+03
3	.108E-03	161E-04	•561E=05	.125F 00	•421E=06	•453E+05	•139E=04	•132E 01
4	.232E+03	••501E≖04	.224E-04	.280E 00	.344F.06	.426E-Q5	. 354 <u>E</u> =04	.109E Ö2
5	.379E-03	••916E=04	.484E-04	.700E UD	•524E-06	•262E •0 2	•601E=04	.431E n2
6	•232E+03	••137 _E =03	.873 _E =04	.161 _E 01	•817E=06	•777E=05	•862 _E =04	.133E 03
7	,666E-03	180F-03	.149E+03	.337E 01	•134É-05	.165E-04	.110Ē∞03	.351E D3
8	781E_03	217E_03	247E-03	,657E 01	229E_05	,138E_04	,129E_03	.832E 03
9	•760E=03	-•233E=03	•342E-03	.121E 02	•332E_05	.178E-04	+130E-03	•182E 04
10	•592E=03	-+203E-03	•252E=03	.219E 02	•232E-05	•235E -0 4	.106E+03	.376E D4
11	•920E=03	217E-03	•499E=03	.396E 02	•460E-05	.323E-04	.142E-03	•744E 04
12	.163E-02	-•362E=03	.135E-02	.483E UP	•111E-04	.31oE-04	.245E-03	.136E Ö5
13	.183 _E +02	-•567 _E -03	.177 _E -02	.346E 02	•139E=04	•176E=04	•303E-03	•213 _E n5
14	.000E-80	•000E-80	.00CE-80	.00 <i>u</i> E=80	•U00E-80	.00JE-80	.000E-80	.000Ē-80
15	,000E_80	.00uF_80	.000E_80	.00vE_80	.000E_80	.00.E_80	.000E-80	.000E_80
16	+000E+80	• 000E-80	•000E-80	•000E+80	•nooE-80	•009E-80	•000E-80	•000E+80
17	• G N U E + 8 O	•000E-80	•000E-80	•000E=80	+000E_80	•00ñE-80	•00nE+80	•000E-80
18	.000E-80	•000E-80	.000E-80	.00úE-80	•000E-80	•000E-80	.000E-80	•000E-80
19	+00UE-80	•000E=80	.00CE-80	.000F-80	•000E=80	.000E-8U	.00nE-8U	.000E-80
20	•CODE-80	•000E-80	•000E-80	.000E-80	•00nE+80	•D00E-8D	•000E-80	•000E=80
21	.000E+80	•000F=80	.00CE-80	.00úE-80	•000E-8ñ	.0UiE-8U	.000F-80	.000E-80
22	.000E_80	.000F_80	.00°E_80	.000E-80	.000E_80	.OUUE-80	.00nE-80	.000E_80
23	+000E-80	• nooE=8u	•000E-80	•000E-80	•000E-8u	F=80،	•00nE=80	+000E-80
24	•000E=80	•000E_80	•00 ⁴ E-80	.00UE-80	•UOOE_80	+080E-80	.000E-80	•000E-80
25	•000E-80	•000E-80	.000E-80	.000E-80	•000E-80	•00JE-80	•000F-80	•000E-80
26	•000E-80	•000E=80	•00CE-80	.00üF=80	•000E_80	.0UOE-80	•000E+80	.000E-80
27	•009E-80	•000E-80	•000E-80	•000 _E -80	•0006-80	•08uE=80	•000E-80	•000E-80
28	.000E+80	•000E-80	.GOGE-80	.000E-80	+000E+80	.00aE-80	.000E-80	•000E-80
29	.000E_80	.000E_80	000E_80	.000E_80	.UOUE_80	,000E_8U	.000E_80	08_3000.
30	•000E-80	•00 <u>6</u> F=80	•000E-80	.00JE-80	•000E_80	•009E-8u	•000E-80	•000E-80
31	•UNUE-80	•000E-80	•000E-80	.000E-80	•000E-80	.00aE-80	•000E-80	.000E_80
32	.000E-80	•000E-80	•0CCE-80	•000E-80	•000E-80	•00úE-80	•000E-80	•000E-80
33	.00UE-80	•000E=80	.000E-80	.UCUE-80	•000E-80	•08.1E=80	.000E-8D	.000E_80
34	.000E-80	•000E-80	.00° <u>-</u> 80	.000 _E -80	•000E-80	.00^E-80	.000E-80	.000 _E -80
35	.00vE-80	+000E-80	•000Ē-80	.00UE-80	•000E=80	.06uE-80	.00rĒ-80	+000Ē-80

·····

Table C17. Continued

.....

.

PESPONSE COVARIANCES

$\widetilde{\mathbf{t}}$	NIT	NITODNIT	DNIT	QALF	QALF +DQALF	DQALF
1	.000E-80	•000E-80	.0n0E-80	.000E-80	.000E_80	.00JE-80
2	258E-C3	.103E-02	.411E-02	.377E-01	•5 <u>82</u> E=02	.313E-02
3	.391E+02	158E-02	.144E-02	.739E 01	•199E 00	.157E 00
4	147E-01	140E-02	4905-02	.162 _E 02	.606E 00	.977E 00
5	.349E-D1	125E-02	-187E-01	.271E 02	+155E 01	.358E 01
6	.667E-01	_, 546F_04	.591E-01	.389E 02	.305E 01	,108E 02
7	.125E 00	•296E-J2	.182E 00	.508E N2	•541E 01	.315E 02
8	.213E 00	.860E-02	.416E ÓD	.626E 05	.826E 01	.786E UZ
9	.280E 00	•201 <u>E</u> =01	.617E 00	.813 _E 02	.147E 02	.173E 03
10	.40UE 00	.272E-01	.112E 01	.118E 03	•539E 05	.346E U3
11	.7º4E 00	599E-02	.392E 01	,119E C3	254E 02	629E 03
12	.748E 00	854E-U1	.178E 02	.116E U3	•328E 02	•107E g4
13	.516E 00	••755F= [∩] 1	.206E 02	.149E 03	. 455E D2	,165E U4
14	•000E-8C	• 1 00E=80	•000E-80	•000E-80	•000E-80	•000E=80
15	•00UE-80	•000E=80	•00CE-80	+000F+80	•UCOE_80	• DQuE=84
16	•000E-80	+000E-80	.000E-80	•000E-80	•800E-86	.000E-80
17	.000E-80	•0^0E=80	.000E-80	.000E-80	•000E-80	.DQ0E+8V
18	000E-80	.000E-80	.COOE-80	.000E-8n	.UODE-80	,00uE-80
19	+0005+80	• 000E=80	• 000E = 80	•00LE=80	•000E=80	•000t-80
20	.009E-80	•000E-80	.000E-80	.009E=80	•000E_00	.00002-80
21	.000E-80	•000t-80	• UGOE - 80	+000E=8n	• UODE = 80	•000L-80
27	•UUUUE=OU	•000E=80	•000E=80	+UUUE=OU	•UUUL=00	• UUUL = 0U
23	+0005-80	•000E=80	.0005-80	• VUVE= 80	+UUUE=0U	•009E=80
24	.0000-00	+UU0E+UU	•UUVE=0U	000E+80		0000E+00
27	0002-00	.UUUE=0U	0002=00	00000000	.000E=00	
20	+000C=00	• 1011 • 00	• UCOL = 0 U	• UNUE - 00	- 000C = 00	+ COUL-00
20	-000E=00	+000C=80	.00002=00	-0005-00	+000F-80	-0005-00
20	.000E=80	+000F-80	-00000-80	.000F-80	+000E-80	- 0009C-80
20	.0005-80	+0005-80	.0065-80	.000==80	+000E_80	-0005-80
31	.000E-8G	•000F=80	.000F-80	.DOUE-80	•000E=80	.000F-80
32	000F-80	.000F=80	.000F-80	000F-80	.000F_80	00uF+80
22	000E-80	• 0 05E=80	-000F=80	-000E-80	+000F_80	+ nn čF+8u
34	.000E-80	•000E-80	.000E-80	.000E-80	.000E_80	0001-80
35	.000E-80	.006E-80	.00GE+A0	.000E-A0	+000E-80	.000E-A0
	• · · •			- · - • ·		

PESPONSE COVARIANCES

ĩ	181	181*D181	D181	182	182*D182	D185	183	183*D183	DIB3
1	.000E-80	•000E-80	.000E-80	.000E-80	.000E_80	.00jE-80	.000E-80	.000E-80	.000E-80
2	.772E 10	.361E 11	169E 12	111E 12	-,280E 12	.717E 12	432E 12	.,576E 12	,788E 12
3	.613E 11	-•332F 11	.586E 11	.484E 14	•928E 13	.419E 13	.138E 15	.239E 14	.962E 13
4	.173E 12	448E 11	.191E 12	103E 15	.108E 14	.987E 13	.296E 15	.281E 14	,225E 14
5	.384E 12	571E 11	.544E 12	165E 15	.115E 14	219E 14	.479E 15	.311E 14	,472E 14
6	,726E 12	-,578E 11	.144E 13	.226E 15	.104E 14	.413E 14	.663E 15	.292E 14	,913E 14
7	.129E 13	477E 11	.385 _E 13	.277 _E 15	.677E 13	.823E 14	.820E 15	.219E 14	.177E 15
8	213E 13	441E 11	.928E 13	.314E 15	.243E 13	.159E 15	.945E 15	.143E 14	.334E 15
9	283E 13	,125E 12	.161E 14	293E 15	-,130E 14	238E 15	899E 15	••226E 14	4908 15
10	.330E 13	•430E 12	•183E 14	.215E 15	••231E 14	•179E 15	•679E 15	=.507E 14	•345E 15
11	.702E 13	394E 12	.536E 14	-318F 15	•167E 14	.466E 15	103E 16	.622E 14	.B71E 15
12	.925E 13	101E 13	-136E 15	-609E 15	.J44E 14	129E 16	-190E 16	.132E 15	.245E 16
13	•841E 13	•.151E 12	.167E 15	.703E 15	• 525E 14	.161E 16	.216E 16	*•681E 14	,307E 16
14	•UCDE-90	•000E-80	•000E-80	.000E-80	•000E-80	.000E-80	•000E-80	•000E-80	.000E-80
12	•000E=80	.000E-00	.000E-80	.000E+80	•UD0E=80	.0002-80	.0002-00	.000E-80	.DODE-00
16	.000E-80	.000E_80	.000E-80	.000E-80	•NODE_80	.000E-80	000E-80	,000E_80	,000E-80
17	.000E-00	•000E-80	•000E-80	.000E-80	•000E-80	•040E-80	•000E=00	•000E=80	.000E-00
18	.0001-80	•000E-80	.000E-80	.009E-80	•UQUE-80	.0002-80	.000E-80	+000E+80	.000E-80
19	.000E-80	• NONE-80	.000E-80	.000E-80	•000E=80	.0002-80	.000E-80	•000E-80	.000E=80
20	.000L-00	.000E-80	.000E-80	.000F-80	•U00E=80	.0002-80	•000E=80	•000E=80	.UUUE=80
21	•000E+80	•000E-80	.000E-80	-000E+80	•000E-80	.0875-80	.0005-80	•000E=80	*000E=80
22	.UCUE-00	•000E-80	.UOUE-80	.UNUE-80	•U00E_80	.0002-80	.000E+80	•000E=80	.0005-80
23	.0006-00	.000F_00	.000E-80	000E-80	.000E_80	.0006-80	.000E-00	.000E-80	0000-00
24	.00UL-80	•000E-80	•000E-80	.000E-80	•000E=00	.0001-80	• 000E = 00	+000L+A0	.000E+00
27	.U00E-80	•000E=80	•000E=80	.0002-80	•VOUE_80	.UUDE-80	.0002-00	+000E-80	.000E-00
26	.000E-80	•000E=80	•000E-80	.UUUL-80	+000180	• DUTE = 80	.000E-80	+000E+80	.000E+80
21	.0002-00	•000E=80	.000E-80	.0001-00	+UUUL-80	.080E=80	.0001-00	•000E-80	.UUUE.00
28	•000E-60	• DUDE - 80	.000E-80	.000E-80	•000E-80	•000E-80	•000E+80	.000E=80	+000E=00
29	.000L-00	•UUDE=80	.000E-80	.000E=80	•U09E=80	. DUGE=80	.0005+00	• UUUE + 80	.0001-00
30	,0000-00	.000E_80	.000E-80	,0005-00	.0002_80	.0001.80	.000E-00	.000E-80	,000E_00
31	• 000L = 00	•000t=00	•000E+80	.UCUL-00	•000L_00	.0002-00	•00nL+00	+000L=80	+0000
32	+UU()C+OU	+UUCE=00	+UUUE+80	+UUUL-8U	+UUUL_00	DEUL-OU	• UUUE = 00	00000000	+UUUE+00
33	.UUUL+80	+ UUUE + 8U	.UOUE-80	-000E-80	+VUUL-80	.0002-80	.UUUE-80	+0002-80	.0001+80
34	+UUUL+8U	•UUDE=00	•UCUL-80	.0002-80	+0001.+80	.0002-80	.0005+80	+UUUE+80	+UUUE+50
32	•000E-90	+0005-20	.UQUE-80	.UUUE-80	•0006-90	*DBQE=98	.000F+90	€000£=80	+000E+00

•

APPENDIX D

LATERAL EQUATIONS AND DATA FOR COVARIANCE ANALYSES OF THE LAUNCH PHASE OF MSFC VEHICLE B

This appendix presents the equations and data used to generate the covariance analyses in Section III. The nomenclature, representation, and derivations are presented below. A sketch of the vehicle is presented in Figure 1.

NOMENCLATURE

 \sim

 $\sim -$

A = Matrix [Equation (D1) and Table D1]

$$C_{\ell_p} = \frac{\partial C_{\ell}}{\partial (\frac{pb}{2V})}$$
 Figure D4 1/rad

-

$$C_{\ell_r} = \frac{\partial C_{\ell}}{\partial \left(\frac{rb}{2V}\right)}$$
 Figure D5 1/rad

$$C_{\ell_{\beta_{cm}}} = C_{\ell_{\beta_{mrp}}} - C_{y_{\beta}} \left(\frac{z_{cm} - z_{mrp}}{b}\right)$$
 1/rad

$$C_{\ell_{\beta_{mrp}}}$$
 Figure D6 1/rad

$$C_{\ell}$$
 Figure D7 1/rad δ_{a}

$$C_{n_p} = \frac{\partial C_n}{\partial \left(\frac{pb}{2V}\right)}$$
 Figure D8 1/rad

$$C_{n_r} = \frac{\partial C_n}{\partial \left(\frac{rb}{2V}\right)}$$
 Figure D9 1/rad

$$\begin{split} & C_{n_{\beta_{cm}}} = C_{n_{\beta_{mrp}}} + C_{y_{\beta}} \left(\frac{x_{cm} - x_{mrp}}{b} \right) & 1/rad \\ & C_{n_{\beta_{cm}}} & Figure D10 & 1/rad \\ & C_{n_{\delta_{a}}} & Figure D11 & 1/rad \\ & C_{y_{\beta}} & Figure D12 & 1/rad \\ & D &= Matrix [Equation (D2) and Table D2] \\ & G &= Matrix [Equation (D1) and Table D1] \\ & H &= Matrix [Equation (D2) and Table D2] \\ & I &= I_{xx}I_{zz} - I_{xz}^{2} & slug^{2}ft^{4} \\ & I_{xx} & Table C7 & slug ft^{2} \\ & I_{xz} &= 47.5 \cdot 10^{6}(1-t/170) & slug ft^{2} \\ & I_{yy} & Table C7 & slug ft^{2} \\ & I_{zz} & I_{zz} &$$

V = Speed (Table C7) ft/sec

$$W$$
 = Weight (Table C7)1b \dot{W} Table 11 (Table C7)1b/sec $\frac{Y}{T} \frac{\delta_p}{T}$ = Side force due to roll command (Table D10)1/rad $\frac{Y}{T} \frac{\delta_r}{T}$ = Side force due to yaw command (Table D10)1/rad a_{ij} Element of A matrix

$$\begin{aligned} a_{11} &= \frac{1}{I} \left\{ \frac{\bar{q}Sb^2}{2V} \left[I_{zz}C_{\ell_{p}} + I_{xz}C_{n_{p}} \right] + I_{xz} \left(I_{zz}+I_{xx}-I_{yy} \right) q_{o} \right\} \\ a_{12} &= \frac{1}{I} \left\{ \frac{\bar{q}Sb^2}{2V} \left[I_{zz}C_{\ell_{r}} + I_{xz}C_{n_{r}} \right] + \left[I_{zz} \left(I_{yy}-I_{zz} \right) - I_{xz}^2 \right] q_{o} \\ &+ I_{xz}(M.R.) \right\} \\ a_{13} &= \frac{1}{I} \left\{ \frac{\bar{q}Sb}{V} \left[I_{zz}C_{\ell_{\beta}} + I_{xz}C_{n_{\beta}} \right] \right\} \\ a_{17} &= \frac{1}{I} \left\{ \frac{\bar{q}Sb}{V} \left[I_{zz}C_{\ell_{\beta}}\mu_{21} + I_{xz}C_{n_{\beta}}\mu_{11} \right] \right\} \\ a_{18} &= \frac{1}{I} \left\{ \frac{\bar{q}Sb}{V} \left[I_{zz}C_{\ell_{\beta}}\mu_{22} + I_{xz}C_{n_{\beta}}\mu_{12} \right] \right\} \end{aligned}$$

163

_...

$$\begin{split} \mathbf{a}_{19} &= \frac{1}{1} \left\{ \frac{\bar{\mathbf{g}} \mathbf{S} \mathbf{b}}{\mathbf{V}} \left[\mathbf{I}_{zz} \mathbf{C}_{\ell_{\beta}} \mu_{23} + \mathbf{I}_{xz} \mathbf{C}_{\mathbf{n}_{\beta}} \mu_{13} \right] \right\} \\ \mathbf{a}_{1,10} &= \frac{1}{1} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}^{2}}{2 \mathbf{V}} \left[\mathbf{I}_{zz} \mathbf{C}_{\ell_{p}} + \mathbf{I}_{xz} \mathbf{C}_{\mathbf{n}_{p}} \right] \right\} \\ \mathbf{a}_{1,14} &= \frac{1}{1} \left\{ \mathbf{I}_{zz} \left(\frac{\mathbf{L}_{\delta_{p}}}{\mathbf{T}} \right) \mathbf{T} + \mathbf{I}_{xz} \left(\frac{\mathbf{N}_{\delta_{p}}}{\mathbf{T}} \right) \mathbf{T} \right\} \\ \mathbf{a}_{1,15} &= \frac{1}{1} \left\{ \mathbf{I}_{zz} \left(\frac{\mathbf{L}_{\delta_{p}}}{\mathbf{T}} \right) \mathbf{T} + \mathbf{I}_{xz} \left(\frac{\mathbf{N}_{\delta_{p}}}{\mathbf{T}} \right) \mathbf{T} \right\} \\ \mathbf{a}_{1,16} &= \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}}{1} \left\{ \mathbf{I}_{zz} \mathbf{C}_{\ell_{\delta \mathbf{a}}} + \mathbf{I}_{xz} \mathbf{C}_{\mathbf{n}_{\delta \mathbf{a}}} \right\} \\ \mathbf{a}_{21} &= \frac{1}{1} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}^{2}}{2 \mathbf{V}} \left[\mathbf{I}_{xx} \mathbf{C}_{\mathbf{n}_{p}} + \mathbf{I}_{xz} \mathbf{C}_{\ell_{p}} \right] + \left[\mathbf{I}_{xx} \left(\mathbf{I}_{xx} - \mathbf{I}_{yy} \right) + \mathbf{I}_{xz}^{2} \right] \mathbf{q}_{0} \right\} \\ \mathbf{a}_{22} &= \frac{1}{1} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}}{2 \mathbf{V}} \left[\mathbf{I}_{xx} \mathbf{C}_{\mathbf{n}_{p}} + \mathbf{I}_{xz} \mathbf{C}_{\ell_{p}} \right] + \mathbf{I}_{xz} \left[\mathbf{I}_{yy} - \mathbf{I}_{xx} - \mathbf{I}_{zz} \right] \mathbf{q}_{0} + \mathbf{I}_{xx} \left(\mathbf{M} \cdot \mathbf{R} . \right) \right\} \\ \mathbf{a}_{23} &= \frac{1}{1} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{V}} \left[\mathbf{I}_{xx} \mathbf{C}_{\mathbf{n}_{\beta}} + \mathbf{I}_{xz} \mathbf{C}_{\ell_{\beta}} \mu_{21} \right] \right\} \\ \mathbf{a}_{28} &= \frac{1}{1} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{V}} \left[\mathbf{I}_{xx} \mathbf{C}_{\mathbf{n}_{\beta}} \mu_{12} + \mathbf{I}_{xz} \mathbf{C}_{\ell_{\beta}} \mu_{22} \right] \right\} \\ \mathbf{a}_{29} &= \frac{1}{1} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{V}} \left[\mathbf{I}_{xx} \mathbf{C}_{\mathbf{n}_{\beta}} \mu_{1} + \mathbf{I}_{xz} \mathbf{C}_{\ell_{\beta}} \mu_{23} \right] \right\} \end{split}$$

. . .

.

. .

Т

$$a_{3,15} = \frac{g}{W} \left(\frac{Y_{\delta_{T}}}{T} \right)_{T}$$

$$a_{3,16} = \frac{g}{W} \bar{q}SC_{y_{\delta_{a}}}$$

$$a_{41} = 1.0$$

$$a_{45} = -q_{0}$$

$$a_{52} = 1.0$$

$$a_{54} = q_{0}$$

$$a_{63} = 1.0$$

$$a_{64} = -w_{0}$$

$$a_{65} = u_{0}$$

$$a_{77} = -a_{7,11}$$

$$a_{7,11} = +2.3 \frac{V}{L_{s}}$$

$$a_{88} = -9.63 \frac{V}{L_{s}}$$

$$a_{8,11} = +14.88 \frac{V}{L_{s}}$$

$$a_{8,11} = +14.88 \frac{V}{L_{s}}$$

-

$$a_{2,10} = \frac{1}{I} \left\{ \frac{\bar{q}Sb^2}{2V} \left[I_{xx}C_{n_p} + I_{xz}C_{\ell_p} \right] \right\}$$

$$a_{2,14} = \frac{1}{I} \left\{ I_{xx} \left(\frac{N\delta_p}{T} \right) T + I_{xz} \left(\frac{L\delta_p}{T} \right) T \right\}$$

$$a_{2,15} = \frac{1}{I} \left\{ I_{xx} \left(\frac{N\delta_r}{T} \right) T + I_{xz} \left(\frac{L\delta_r}{T} \right) T \right\}$$

$$a_{2,16} = \frac{\bar{q}Sb}{I} \left\{ I_{xx}C_{n_{\delta a}} + I_{xz}C_{\ell_{\delta a}} \right\}$$

$$a_{31} = w_0$$

$$a_{32} = -u_0$$

$$a_{33} = \frac{g}{W} \frac{\bar{q}S}{V} C_{y_\beta}$$

$$a_{34} = g(c\theta_0)$$

$$a_{35} = g(s\theta_0)$$

$$a_{37} = \frac{g}{W} \frac{\bar{q}S}{V} C_{y_\beta} \mu_{31}$$

$$a_{38} = \frac{g}{W} \frac{\bar{q}S}{V} C_{y_\beta} \mu_{32}$$

$$a_{3,14} = \frac{g}{W} \left(\frac{Y\delta_p}{T} \right) T$$

-

 $a_{99} = +5.03 \frac{V}{L_s}$ $a_{9,11} = -22.8 \frac{V}{L_s}$ $a_{10,10} = -a_{10,13}$ $a_{10,13} = +2.3 \frac{V}{r.c.}$ $a_{11,11} = \frac{\dot{\sigma}}{\sigma}$ a_{11,12} = c₃ơh $a_{12,11} = -c_5 \frac{\dot{h}}{\sigma}$ $a_{12,12} = -c_4 \dot{h}$ $a_{13,13} = -\frac{\pi}{4} \frac{V}{b}$ $a_{14,14} = -g_{14,1}$ $a_{15,15} = -g_{15,2}$ $a_{16,16} = -g_{16,3}$ b = 160 (wing span) Body (subscript) b Cosine С Center of mass (subscript) \mathbf{cm}

 \mathbf{ft}
Coefficient in random side wind (Figure A7 and Table A2) $ft/sec^{3/2}$ $c_1 \sigma_v \sqrt{h}$ $c_{2}\sqrt{h}$ Coefficient in random side wind (Figure A8 and Table A2) $1/\text{ft sec}^{1/2}$ Coefficient in random side wind (Figure A9 and Table A2) ft^2/sec^2 c₃σ_vh c⊿ĥ Coefficient in random side wind (Figure A10 and Table A2) 1/sec c₅h/o_v Coefficient in random side wind (Figure A11 and Table A2) $1/ft^2$ d_{ii} Element of D matrix $d_{21} = g_{14,1}$ $d_{42} = g_{15,2}$ $d_{63} = g_{16,3}$ $d_{82} = h_{7,15}g_{15,2}$ $d_{84} = h_{77}g_{74}$ $d_{10,2} = h_{9,15}g_{15,2}$ $d_{10,4} = h_{97}g_{74}$ $d_{12,1} = h_{11,14}g_{14,1}$ $d_{12,2} = h_{11,15}g_{15,2}$ $d_{12,3} = h_{11,16}g_{16,3}$ $d_{12,4} = h_{11,7}g_{74} + h_{11,8}g_{84} + h_{11,9}g_{94}$

$$d_{14,4} = h_{13,7}g_{74} + h_{13,8}g_{84} + h_{13,9}g_{94}$$

$$e Earth (subscript)$$

$$f Force vector [Equation (D2) and Table D2]$$

$$f Force vector [Equation (D1) and Table D1)$$

$$f_1 Step response of x_1 [Equation (D13)]$$

$$f_2 Step response of x_2 [Equation (D14)]$$

$$f_3 Step response of x_3 [Equation (D15)]$$

$$g = 32.17 \text{ Gravity} \qquad ft/sec^2$$

$$g_{ij} Element of G matrix$$

$$g_{74} = a_{7,11}$$

$$g_{84} = a_{8,11}$$

$$g_{94} = a_{9,11}$$

$$g_{11,5} = c_1 \sigma \sqrt{h}$$

$$g_{13,6} = \sigma_p \sqrt{0.8 \frac{V}{L_p}} \frac{\pi}{4b} \left(\frac{\pi}{4} - \frac{L_p}{b}\right)^{1/6}$$

$$g_{14,1} = 31.6$$

$$g_{15,2} = 31.6$$

$$g_{16,3} = 10.0$$

1

- ____

-

_

- - -

h Altitude h_{ij} Element of H matrix $h_{1,14} = 1.0$ $h_{2,14} = -g_{14,1}$ $h_{3,15} = 1.0$ $h_{4,15} = -g_{15,2}$ $h_{5,16} = 1.0$ $h_{6,16} = -g_{16,3}$ $h_{73} = -\frac{\bar{q} C_{y_{\beta}}}{VW4.19x10^{-4}} M'_{1\beta}$ $h_{77} = h_{73}$ $h_{7,15} = \left(Y_{\delta_r}/T\right) M'_{1\delta}$ $h_{83} = h_{73}a_{33}$ $h_{84} = h_{73}a_{34}$ $h_{85} = h_{73}a_{35}$ $h_{87} = h_{73}a_{37} + h_{77}a_{77}$ $h_{88} = h_{73}a_{38}$

ft

 $h_{89} = h_{73}a_{39}$ $h_{8,11} = h_{77}a_{7,11}$ $h_{8,14} = h_{73}a_{3,14}$ $h_{8,15} = h_{73}a_{3,15} + h_{7,15}a_{15,15}$ $h_{8,16} = h_{73}a_{3,16}$ $h_{93} = - \frac{\bar{q} C_{y_{\beta}}}{VW4.19x10^{-4}} M'_{2\beta}$ $h_{97} = h_{93}$ $h_{9,15} = \left(Y_{\delta_r} / T \right) M'_{2\delta}$ $h_{10,3} = h_{93}a_{33}$ $h_{10,4} = h_{93}a_{34}$ $h_{10,5} = h_{93}a_{35}$ $h_{10,7} = h_{93}a_{37} + h_{97}a_{77}$ $h_{10,8} = h_{93}a_{38}$ $h_{10,9} = h_{93}a_{39}$ $h_{10,11} = h_{97}a_{7,11}$

$$h_{10,14} = h_{93}a_{3,14}$$

$$h_{10,15} = h_{93}a_{3,15} + h_{9,15}a_{15,15}$$

$$h_{10,16} = h_{93}a_{3,16}$$

$$h_{11,1} = + x_{p}a_{21} - z_{p}a_{11}$$

$$h_{11,2} = + x_{p}a_{22} - z_{p}a_{12}$$

$$h_{11,3} = a_{33} + x_{p}a_{23} - z_{p}a_{13}$$

$$h_{11,7} = a_{37} + x_{p}a_{27} - z_{p}a_{17}$$

$$h_{11,8} = a_{38} + x_{p}a_{28} - z_{p}a_{18}$$

$$h_{11,9} = a_{39} + x_{p}a_{29} - z_{p}a_{19}$$

$$h_{11,10} = + x_{p}a_{2,10} - z_{p}a_{1,10}$$

$$h_{11,14} = a_{3,14} + x_{p}a_{2,14} - z_{p}a_{1,14}$$

$$h_{11,15} = a_{3,15} + x_{p}a_{2,16} - z_{p}a_{1,15}$$

$$h_{12,1} = h_{11,1}a_{11} + h_{11,2}a_{21}$$

$$h_{12,2} = h_{11,1}a_{12} + h_{11,2}a_{22}$$

$$h_{12,3} = h_{11,1}a_{13} + h_{11,2}a_{23} + h_{11,3}a_{33}$$

ł

- $h_{12,5} = h_{11,3}a_{35}$
- $h_{12,7} = h_{11,1}a_{17} + h_{11,2}a_{27} + h_{11,3}a_{37} + h_{11,7}a_{77}$
- $h_{12,8} = h_{11,1}a_{18} + h_{11,2}a_{28} + h_{11,3}a_{38} + h_{11,8}a_{88} + h_{11,9}a_{98}$
- $h_{12,9} = h_{11,1}a_{19} + h_{11,2}a_{29} + h_{11,3}a_{39} + h_{11,8}a_{89} + h_{11,9}a_{99}$
- $h_{12,10} = h_{11,1}a_{1,10} + h_{11,2}a_{2,10} + h_{11,10}a_{10,10}$
- $h_{12,11} = h_{11,7}a_{7,11} + h_{11,8}a_{8,11} + h_{11,9}a_{9,11}$
- h_{12,13} = h_{11,10}a_{10,13}
- $h_{12,14} = h_{11,1}a_{1,14} + h_{11,2}a_{2,14} + h_{11,3}a_{3,14} + h_{11,14}a_{14,14}$ $h_{12,15} = h_{11,1}a_{1,15} + h_{11,2}a_{2,15} + h_{11,3}a_{3,15} + h_{11,15}a_{15,15}$ $h_{12,16} = h_{11,1}a_{1,16} + h_{11,2}a_{2,16} + h_{11,3}a_{3,16} + h_{11,16}a_{16,16}$ $h_{13,3} = \frac{\bar{q}}{V}$
- $h_{13,7} = \frac{\bar{q}}{V} \mu_{31}$ $h_{13,8} = \frac{\bar{q}}{V} \mu_{32}$ $h_{13,9} = \frac{\bar{q}}{V} \mu_{33}$

|__

$$h_{14,3} = h_{13,3}a_{33}$$

$$h_{14,4} = h_{13,3}a_{34}$$

$$h_{14,5} = h_{13,3}a_{35}$$

$$h_{14,7} = h_{13,3}a_{37} + h_{13,7}a_{77}$$

$$h_{14,8} = h_{13,3}a_{38} + h_{13,8}a_{88} + h_{13,9}a_{98}$$

$$h_{14,9} = h_{13,3}a_{39} + h_{13,8}a_{89} + h_{13,9}a_{99}$$

$$h_{14,11} = h_{13,7}a_{7,11} + h_{13,8}a_{8,11} + h_{13,9}a_{9,11}$$

$$h_{14,14} = h_{13,3}a_{3,14}$$

$$h_{14,15} = h_{13,3}a_{3,15}$$

$$h_{14,16} = h_{13,3}a_{3,16}$$

$$h_{15,4} = 1.0$$

$$h_{16,1} = a_{41}$$

$$h_{16,5} = a_{45}$$

$$h_{17,6} = 1.0$$

$$h_{18,3} = a_{63}$$

$$h_{18,4} = a_{64}$$

$$h_{18,5} = a_{65}$$

.....

. ..

 $\hat{i} = \hat{i}_b, \hat{j} = \hat{j}_b, \hat{k} = \hat{k}_b$ Unit vectors along aircraft x, y, and z axes $\hat{i}_e, \hat{j}_e, \hat{k}_e$ Unit vectors in the flat earth

$$l = x_{\delta} - x_{cm}$$
 ft

mrp ,	Moment reference point (subscript)	
0	Implies value on reference trajectory (subscript)*	
р	Body axis roll rate	rad/sec
р	Pilot (subscript)	
pg	Rolling wind velocity. An element of the state.	rad/sec
q	Body axis pitch rate	rad/sec
9 ₀	Body axis reference pitch rate (Table C7) (use $\dot{\gamma}_0$)	rad/sec
q	Dynamic pressure (Table C7)	$1b/ft^2$
r	Body axis yaw rate	rad/sec
r	Response vector [Equation (D2) and Table D2]	
r.c. = 133.5	Root chord	ft
S	Laplace operator	1/sec
S	Side (subscript)	
S	Sine	
t	Time from launch	sec
u	Velocity along aircraft x axis	ft/sec
$u_0 = V \cos \alpha_0$		ft/sec
^u 1, ^u 2, ^u 3	Control inputs [Equation (D1) and Table D1]	
v	Velocity along aircraft y axis	ft/sec

175

. ---

$v_v = \overline{v} + \widetilde{v}$	Side wind velocity	ft/sec
$\tilde{\mathbf{v}}$	Mean side wind (Figure A5 and Table A2). An element of Υ	ft/sec
Ŷ	Random side wind. A component of the state x	ft/sec
$w_0 = V \sin \alpha_0$		ft/sec
x	Distance forward of cm measured on x-axis (aircraft coordinates)	ft
x	Distance aft of nose measured on x-axis (shop coordinates)	ft
x	State vector [Equation (D1) and Table D1]	
x	A side wind state	1/ft
^x cm x _{mrp} = 155.8	Center of mass (shop coordinates, Table C7) (shop coordinates)	ft
$x_{p} = x_{cm} - 59.7$	(Pilot's position in aircraft coordinates)	ft
$x_{\delta} = 194.0$	Gimbal position in shop coordinates	ft
x ₁ , x ₂ , x ₃	Lumped parameters side wind distribution states	ft/sec
^x ₄	Lumped parameter rolling gust distribution state	rad/sec
У	Coordinate axis in aircraft	
У	State component along y _e	
y _{cm}	In shop coordinates; taken to be zero (Table C7)	ft
Уe	Coordinate axis in earth	ft
$y_{\delta_{i}} = -16.0$	In aircraft coordinates (i = 1,6, Figure B9)	ft
$y_{\delta_{i}} = -8.0$	In aircraft coordinates (i = 2, 7, 11, Figure B9)	ft

y _{ði} =	0.0	In aircraft coordinates (i = 3, 8, 12, Figure B9)	ft
y _{δi} =	+8.0	In aircraft coordinates (i = 4,9,13, Figure B9)	ft
y _ð =	+16.0	In aircraft coordinates (i = 5, 10, Figure B9)	ft
^z cm ⁼ ^z mrp ⁼	= Center = 20.0 (of mass (shop coordinates Table C7) shop coordinates)	ft
^z p = z	cm ^{-32.5}	(Pilot's position in aircraft coordinates)	ft
^z δ _i = +	-12.0 - z	In aircraft coordinates (i = 1-5, Figure B9) cm	ft
^z δ _i = +	-4.0-z _c	In aircraft coordinates (i = 6-10, Figure B9)	ft
^z δ _i = -	4.0 - z _{cr}	m In aircraft coordinates (i = 11-13, Figure B9)	ft
Δ	Perturba	ation symbol (suppressed after derivations)	
α _o	Angle of	attack (Tables C7 and Figure B6)	rad
β	Side slip	o angle	rad
δ _a	Aileron	deflection state component	rad
δ _p	Gimbal 1	roll command state component	rad
δ _r	Gimbal y	yaw command state component	rad
δ _y	Gimbal o	deflection about aircraft y-axis	rad

ļ

_ ----

δ _z	Gimbal deflection about aircraft z-axis	rad
η ₁	Unity white noise for side wind disturbance	1/sec ^{1/2}
^η 2	Unity white noise for rolling gust wind disturbance (η_1 is independent of η_2)	1/sec ^{1/2}
θ	Pitch angle	rad
θο	Body axis reference pitch angle (Table C7)	rad
μ _{1j}	Obtained from the solution of Equations (D19) through (D21)	
μ _{2j}	Obtained from the solution of Equations (D19) through (D21)	
μ _{3j}	Obtained from the solution of Equations (D19) through (D21)	
σ _p	Standard deviation of rolling gust (Table C7)	ft/sec
σ _v ≈σ _p	Standard deviation of random side wind	ft/sec
σ _v /σ _v	Coefficient in random side wind (Figure A6 and Table A2)	1/sec
Ø	Roll angle	rad
Ø	Roll angle state component	rad
ψ	Yaw angle	rad
ψ	Yaw angle state component	rad

178

REPRESENTATIONS

The generic forms for the perturbation state transition and response are given by:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{G}\mathbf{\widetilde{f}}$$
 (D1)

$$\mathbf{r} = \mathbf{H}\mathbf{x} + \mathbf{D}\mathbf{f} \tag{D2}$$

They are presented explicitly in Tables D1 and D2. These tables and the nomenclature provide for generating all data.

The coefficients a77, a7, 11, a8, 11, a88, a99, a9, 11, g74, g84, g94, and \bar{v} are tabulated in Table A2. The remainder of the coefficients of matrices A, G, H, and D are presented in Tables D3 through D6.

DERIVATIONS

Euler Angles

A pitch (θ), roll (ϕ), yaw (ψ) system relative to a flat earth is used. This system is nonsingular at liftoff as would be a heading, elevation, roll system.

Body axis base vectors (i, j, k) are given relative to flat earth base vectors (i, j, k) by

$$\left\{ \begin{array}{c} \hat{i} \\ \hat{j} \\ \hat{k} \end{array} \right\} = \begin{bmatrix} (c\theta c \psi + s\theta s\phi s\psi) & (c\phi s\psi) & (-s\theta c\psi + c\theta s\phi s\psi) \\ (-c\theta s\psi + s\theta s\phi c\psi) & (c\phi c\psi) & (s\theta s\psi + c\theta s\phi c\psi) \\ (s\theta c\phi) & (-s\phi) & (c\theta c\phi) \end{bmatrix} \left\{ \begin{array}{c} \hat{i}_e \\ \hat{j}_e \\ \hat{k}_e \end{array} \right\}$$
(D3)

Rotation rates p, q, and r in body axes relative to $\dot{\theta}$, $\dot{\phi}$, $\dot{\psi}$, and the inverse are given by Equations (D4) and (D5).

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{r} \end{pmatrix} = \begin{bmatrix} \mathbf{c}\psi & (\mathbf{c}\phi) (\mathbf{S}\psi) & \mathbf{0} \\ -\mathbf{s}\psi & (\mathbf{c}\phi) (\mathbf{c}\psi) & \mathbf{0} \\ \mathbf{0} & -\mathbf{s}\phi & \mathbf{1} \end{bmatrix} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}$$
(D4)

$$\begin{cases} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \\ \dot{\psi} \\ \end{pmatrix} = \begin{bmatrix} c\psi & -s\psi \\ (s\psi/c\phi) & (c\psi/c\phi) \\ (tan\phi) (s\psi) & (tan\phi) (c\psi) \end{bmatrix} \begin{pmatrix} 0 \\ q \\ q \\ r \\ \end{pmatrix}$$
(D5)

The perturbation equations for ϕ and $\dot{\psi}$ are

$$\Delta \phi = \Delta p - q_0 \Delta \psi \tag{D6}$$

.

$$\Delta \psi = \Delta \mathbf{r} + q_0 \Delta \phi \tag{D7}$$

which correspond to rows 4 and 5 of Table D1.

By use of Equation (D3), the cross-course velocity is

$$\dot{\mathbf{y}} = (c\phi) (s\psi)\mathbf{u} + (c\phi) (c\psi)\mathbf{v} - (s\phi)\mathbf{w}$$

Its perturbation equation is

$$\Delta \mathbf{y} = \mathbf{u}_0 \Delta \boldsymbol{\psi} + \Delta \mathbf{v} - \mathbf{w}_0 \Delta \boldsymbol{\phi} \tag{D8}$$

This corresponds to row 6 of Table D1.

In deriving (D6), (D7), and (D8), the variables u and w are not perturbed; $s\phi_0 = s\psi_0 = 0$.

<u>Winds</u>

Laterally, the shuttle is forced by side winds v_w and by rolling gusts p_g .

The side wind v_w is made up of a mean \bar{v}_w and ramdom $\widetilde{v}.$ The model is discussed in Appendix A.

The mean wind \bar{v} appears as a disturbance function in Tables D1 and D2. Numerical values are shown in Figure A5 and column 2 of Table A2.

The random wind \tilde{v} is generated by the differential equations of rows 7 and 8 of Table D1. Coefficients are plotted in Figures A6-A11 and columns 4-9 of Table A2.

There does not appear to be a rolling gust model specifically derived for vertically rising vehicles. The rolling gust model specified for horizontal flight (pp. 48-53 of ref. 13 will be adapted. This model is

$$p_{g} = \sigma_{p} \sqrt{\frac{1}{L_{p}V}} \sqrt{\frac{0.8 \left(\frac{\pi}{4} \frac{L_{p}}{b}\right)^{1/3}}{1 + \frac{4b}{\pi V}s}} \eta_{2}$$
(D9)

Values for the scale length ${\rm L}_p$ and gust intensity σ_p have to be chosen. These are taken as

$$L_p = 1750 \text{ feet}$$

 $\sigma_p = \sigma_v$

These choices are motivated, reference 13; $\sigma_{_V}\,$ is plotted in Figure A2 and tabulated in Table A2.

A state representation for Equation (D9) is given by

$$\dot{p}_{g} = -\frac{\pi}{4} \frac{V}{b} p_{g} + \sigma_{p} \sqrt{0.8 \frac{V}{L_{p}}} \frac{\pi}{4b} \left(\frac{\pi}{4} \frac{L_{p}}{b}\right)^{1/6} \eta_{2}$$
 (D10)

This corresponds to row 13 of Table D1.

Distributing the Wind Gust Loads

The side force due to winds on the vehicle is the integrated sum of the local body and fin pressure developed by side gusts (v_w) . Analogous statements prevail for the yawing and rolling moments due to side gusts and for the rolling moment developed by the rolling wind (p_g) .

These are all distributed forces for which it is desirable (mandatory in the present context) to find a lumped parameter representation. Lumped parameter approximations for the side gusts are discussed first. Then the rolling gust approximation is presented.

The side force and yawing moment coefficients due to side gusts are taken to be

$$C_{y_{sg}} = \frac{C_{y_{\beta}}}{V} \left\{ \mu_{31} x_1 + \mu_{32} x_2 + \mu_{33} x_3 \right\}$$
(D11)

$$C_{n_{sg}} = \frac{C_{n_{\beta}}}{V} \left\{ \mu_{11} x_{1} + \mu_{12} x_{2} + \mu_{13} x_{3} \right\}$$
(D12)

where x_1 , x_2 , and x_3 are system states driven by the wind v_w . For constant winds $x_1 = x_2 = x_3 = v_w$. Rows 7, 8, and 9 of Table D1 show this and how the x_i s are driven by the wind v_w . The μ_{ij} s are constants to be determined.

The step responses of x_1 , x_2 , and x_3 (called f_1 , f_2 , and f_3) for a sharp-edged side gust v_w are

$$f_1[x] = 1 - e$$
 (D13)

$$f_{2}[x] = 1 - e^{\frac{-2.3}{L_{s}}x} \left\{ \cos \frac{2\pi}{L_{s}} x - 1.165 \sin \frac{2\pi}{L_{s}}x \right\}$$
(D14)

$$f_{3}[x] = 1 - e^{\frac{-2.3}{L_{s}}x} \left\{ \cos \frac{2\pi}{L_{s}} + 1.167 \sin \frac{2\pi}{L_{s}} x \right\}$$
(D15)

$$L_{g} = 228.5$$

The most gross result of slender body theory (refs. 22 or 23) give the step responses for gust penetration as

$$C_{y\beta}[x] = \frac{-2}{S} \int_{0}^{x} A' [\tilde{x}] d\tilde{x}$$

$$C_{n\beta}[x] = \frac{2}{Sb} \int_{0}^{x} (\tilde{x} - x_{ref}) A' [\tilde{x}] d\tilde{x}$$

$$(D17)$$

$$0 \le x \le L_{s}$$

$$A[x] = \frac{\pi}{4} (d[x])^{2}$$

where d[x] is the "slender body maximum" projected side dimension.

If the theory was correct, Equations (D16) and (D17) would yield the same results as the wind tunnel (Figures D10 and D11). The slender body depth is plotted in Figure D1 (from Figure 1), the slender body area in Figure D2. The slender body area is assumed to vary linearly between $0 \le x \le 120$ and $190 \le x \le 228.5$. It is assumed constant for $120 \le x \le 190$. With

$$\mathbf{A'[x]} = \begin{cases} \frac{4260}{120} & \text{for } 0 < \mathbf{x} < 120 \\ 0 & \text{for } 120 < \mathbf{x} < 190 \\ \frac{2900}{38.5} & \text{for } 190 < \mathbf{x} < 228.5 \end{cases}$$
(D18)

both $C_{\gamma\beta}$ and $C_{n\beta}$ Figure D3 computed from Equations (D16) and (D17) agree with Figure D10 and D12 for M = 1.5 (maximum \bar{q}). The amount of finagling is not large; the vertical fins are less effective than the theory estimates.

The $\mu_{ij}s$ are to be determined to provide a least-squared fit of $C_{y\beta}[x]$ and $C_{y\beta}_{cm}$ from the solution

$$B_{\tilde{\mu}_{ij}} = c_{ij}$$
 for $i = 1, 3$ (D19)

$$\mu_{ij} = k_i \widetilde{\mu}_{ij} \quad \text{for } i = 1,3 \tag{D20}$$

$$k_i = \frac{1}{\sum_{j} \tilde{\mu}_{ij}}$$
 for *i* = 1,3 (D21)

$$B = \begin{bmatrix} L_{s} & L_{s} & L_{s} & L_{s} \\ \int f_{1}^{2} dx & \int f_{1}f_{2} dx & \int f_{1}f_{3} dx \\ o & o & o \end{bmatrix}$$
$$B = \begin{bmatrix} L_{s} & L_{s} & L_{s} \\ \int f_{1}f_{2} dx & \int f_{2}^{2} dx & \int f_{2}f_{3} dx \\ o & o & o \end{bmatrix}$$
$$L_{s} & L_{s} & L_{s} \\ \begin{bmatrix} L_{s} & L_{s} & L_{s} \\ \int f_{1}f_{3} dx & \int f_{2}f_{3} dx \\ o & o & o \end{bmatrix}$$

183

$$c_{ij} = \begin{pmatrix} L_{s} \\ \int_{0}^{} f_{1}g_{i} dx \\ L_{s} \\ \int_{0}^{} f_{2}g_{i} dx \\ L_{s} \\ \int_{0}^{} f_{3}g_{i} dx \\ g_{1} = c_{n}\beta_{cm} [x] \\ g_{3} = c_{y\beta} [x] \\ x_{cm} = .107.68 (@ \bar{q}_{max})$$

The least-squared fit for the $\tilde{\mu}s$ is obtained by Equation (D19). These are adjusted by Equation (D20) to enforce the correct steady state. The μs provide the correct steady-state side force and yawing for all flight conditions. Good accuracy should be obtained dynamically in the critical maximum dynamic pressure flight range. For the purpose intended, the representation should be reasonably good over the whole flight regime. To do better would require aerodynamic estimates appropriate to each flight regime, an increase in the number of basis functions (f_i), and calculation of time-varying μs ; straightforward in principle but not warranted at this time.

For a constant side gust v_w , the rolling moment coefficient is

$$C_{\ell} = C_{\ell \beta} \frac{v_{w}}{V}$$
(D22)

For a sharp-edged side gust it is assumed that

$$C_{\ell\beta}[x] = \begin{cases} 0 & \text{for } 0 < x < 95.0 \\ \\ \frac{(x-95.0)}{r.c.} \end{cases}^2 (-0.055) & \text{for } 95 < x < 228.5 \end{cases}$$
(D23)

where

$$r.c. = 133.5$$

 $C_{\ell\beta}$ is generated primarily by the wing which starts at x = 95 and extends to x = 228.5. The quadratic variation for 95 < x < 228.5 is motivated by the results of slender-body theory. $C_{\ell\beta}$ at M = 1.5 is -0.055 (Figure D6).

The μ_{2js} are obtained by use of Equations (D19) through (D21) (with a notational adjustment) and (D22).

Treatment of the rolling gusts is analogous to, but simpler than, those for the side gusts.

The rolling gust (p_g) drives x_4 through the equation shown in row 10 of Table D1. Time to 90 percent is taken as the time to traverse the wing root chord. x_4 " distributes" p_g over the wing chord. Steady-state values of x_4 and p_g are the same. x_4 drives the equations of motion in the same way as the geometric roll rate (p).

Thrust Vectoring

There are a number of alternatives available in selecting the manner in which roll and yaw torques are obtained from gimbaling of the rocket engines. The one selected here has merit for this particular vehicle.

The gimbaling scheme selected:

- Yields pure roll torques (no yawing moments) about the velocity vector due to roll commands
- Yields pure yaw torques (no roll torques) about the velocity vector due to yaw commands

For roll commands, the sidewise motion of most of the engines is twice the vertical motion (to conserve pitch power).

For yaw commands, the maximum yawing moment used from thrust vectoring is less than that available, in order to obtain yawing moments without rolling

moments. This is not a loss. The resulting $|N_{\delta r}/N_{\beta}| >> 1$ (yawing moment due yaw vectoring divided yawing moment due to sideslip is much greater than one, as it must be). This open-loop compensation should give better control than can be attained with closed-loop control alone. Most importantly, it will permit a comparison between the results to be attained from these equations and those obtained from those of Appendix B.

There may be concern that the scheme selected will generate large payload losses. This is not the case. For maximum propulsive efficiency, the thrust vector should be aligned along the velocity vector. If it is not, there is a thrust loss (TL)

$$(TL) = T(1-\cos \delta) \cong T\frac{\delta^2}{2}$$

The fuel for control (FC)

(FC) =
$$\int_{0}^{170} \frac{T\delta^2}{2I_{sp}} dt$$

where

 I_{sp} is the specific impulse (taken equal to 450 lb thrust/fuel/sec). The analog results of Section III show that the gimb al angles approaching 0.1 radian are obtained over less than 20 seconds of flight. That is,

$$(FC) \le \frac{(6 \cdot 10^6) (0.1)^2 20}{2(450)} = 1330 \text{ lb}$$

This is booster fuel. Using the 1/6 rule of thumb, this implies a loss in payload of less than 225 lb for control.

Derivation of the equations is now presented. Forces and moments for a single engine are determined first. Coupling of the engines is then presented.

An engine with thrust T_i is mounted at (x, y, z) in aircraft coordinates. The nominal thrust is in the positive x direction (directed along the unit vector, i_1). Engine gimbals are provided along the y and z axes; positive rotations about the gimbal axes are δ_y and δ_z (radians). The ordering of gimbal rotations is δ_v and δ_z .

Unit vectors i_1 , j_1 , and k_1 are aligned along the body axes, x, y, and z. Unit vectors i_2 , j_2 , and k_2 are oriented with respect to the rocket nozzle after the rotation δ_y . Unit vectors i_3 , j_3 , and k_3 are oriented with respect to the rocket nozzle after rotations δ_y and δ_z .

$$\begin{cases} \mathbf{i}_{2} \\ \mathbf{j}_{2} \\ \mathbf{k}_{2} \end{cases} = \begin{bmatrix} \mathbf{c} \, \delta_{\mathbf{y}} & \mathbf{0} & -\mathbf{s} \, \delta_{\mathbf{y}} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{s} \, \delta_{\mathbf{y}} & \mathbf{0} & \mathbf{c} \, \delta_{\mathbf{y}} \end{bmatrix} \begin{pmatrix} \mathbf{i}_{1} \\ \mathbf{j}_{1} \\ \mathbf{k}_{1} \end{pmatrix}$$

$$\begin{cases} \mathbf{i}_{3} \\ \mathbf{j}_{3} \\ \mathbf{k}_{3} \end{pmatrix} = \begin{bmatrix} \mathbf{c} \, \delta_{\mathbf{z}} & \mathbf{s} \, \delta_{\mathbf{z}} & \mathbf{0} \\ -\mathbf{s} \, \delta_{\mathbf{z}} & \mathbf{c} \, \delta_{\mathbf{z}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{pmatrix} \mathbf{i}_{2} \\ \mathbf{j}_{2} \\ \mathbf{k}_{2} \end{pmatrix}$$

187

$$\begin{pmatrix} \mathbf{i}_{3} \\ \mathbf{j}_{3} \\ \mathbf{k}_{3} \end{pmatrix} = \begin{bmatrix} (\mathbf{c} \delta_{\mathbf{y}}) (\mathbf{c} \delta_{\mathbf{z}}) & \mathbf{s} \delta_{\mathbf{z}} & (-\mathbf{s} \delta_{\mathbf{y}}) (\mathbf{c} \delta_{\mathbf{z}}) \\ (\mathbf{c} \delta_{\mathbf{y}}) (-\mathbf{s} \delta_{\mathbf{z}}) & \mathbf{c} \delta_{\mathbf{z}} & (\mathbf{s} \delta_{\mathbf{y}}) (\mathbf{s} \delta_{\mathbf{z}}) \\ \mathbf{s} \delta_{\mathbf{y}} & \mathbf{0} & \mathbf{c} \delta_{\mathbf{y}} \end{bmatrix} \begin{pmatrix} \mathbf{i}_{1} \\ \mathbf{j}_{1} \\ \mathbf{k}_{1} \end{pmatrix}$$

Hence, the force F along the body axes is

$$\mathbf{F} = \mathbf{T}_{i} \left[(c\delta_{y}) (c\delta_{z}) \hat{\mathbf{i}}_{1} + (s\delta_{z}) \hat{\mathbf{j}}_{1} - (s\delta_{y}) (c\delta_{z}) \hat{\mathbf{k}}_{1} \right]$$

The moment is

$$\begin{split} \frac{M}{T_{i}} &= \begin{bmatrix} \hat{i}_{1} & \hat{j}_{1} & \hat{k}_{1} \\ x & y & z \\ (c\delta_{y}) (c\delta_{z}) & (s\delta_{z}) & -(s\delta_{y}) (c\delta_{z}) \end{bmatrix} \\ &= \hat{i}_{1} [-y(s\delta_{y}) (c\delta_{z}) - z(s\delta_{z})] + \hat{j}_{1} [z(c\delta_{y}) (c\delta_{z}) + x(s\delta_{y}) (c\delta_{z})] \\ &+ \hat{k}_{1} [x(s\delta_{z}) - y(c\delta_{y}) (c\delta_{z})] \end{split}$$

The perturbation and moment equations are (for $s\delta_{z_0} = 0$; $c\delta_{z_0} = 1$)

$$\begin{split} \Delta F &\cong T_{i} \hat{i}_{1} \left[-s \delta_{y_{0}} (\Delta \delta_{y}) \right] & \text{Thrust} \\ &+ T_{i} \hat{j}_{1} \left[\Delta \delta_{z} \right] & \text{Side force} \\ &+ T_{i} \hat{k}_{1} \left[-(c \delta_{y_{0}}) (\Delta \delta_{y_{0}}) \right] & \text{Heave} \\ \Delta M &\cong T_{i} \hat{i}_{1} \left[-y(c \delta_{y_{0}}) (\Delta \delta_{y}) - z(\Delta \delta_{z}) \right] & \text{Rolling moment} \\ &+ T_{i} \hat{j}_{1} \left[-z(s \delta_{y_{0}}) (\Delta \delta_{y}) + x(c \delta_{y_{0}}) (\Delta \delta_{y}) \right] & \text{Pitching moment} \\ &+ T_{i} \hat{k}_{1} \left[x(\Delta \delta_{z}) + y(s \delta_{y_{0}}) (\Delta \delta_{y}) \right] & \text{Yawing moment} \end{split}$$

These are approximated to

 $\Delta Y = T_i \Delta \delta_z$ Side force (D24)

 $\Delta L = T_i \left[-y(\Delta \delta_y) - z(\Delta \delta_z) \right] \quad \text{Rolling moment}$ (D25)

$$\Delta N = T_i [x(\Delta \delta_{\sigma})] \qquad Yawing moment \qquad (D26)$$

The gimbals are to be driven to obtain:

- Yawing moment without rolling moment about the velocity vector due to yaw control
- Rolling moment without yawing moment about the velocity vector due to roll control
- The maximum yawing moment per gimbal deflection due to yaw commands
- The maximum rolling moment per gimbal deflection due to roll commands

The first two of the above are obtained by enforcing

$$L_{\delta_{r}} = -(\tan \alpha) N_{\delta_{r}}$$
(D27)
$$N_{\delta_{p}} = (\tan \alpha) L_{\delta_{p}}$$
(D28)

where $\delta_{\mathbf{r}}$ and $\delta_{\mathbf{p}}$ are the yaw and roll commands.

Obtaining the latter two objectives is illustrated by example.

Figure 1 shows the vehicle; Figure B3 the engine numbering system. The x-axis is taken midway between the bottom two rows of engines. The engines are taken as being 8 feet on centers. Table C7 presents the positions of the center of mass in "manufacturing shop" coordinates. At 10 sec x_{cm} - 93.46 ft, $y_{cm} = 0$ (by assumption), and $z_{cm} = 8.08$ feet. The x gimbal positions are all taken as 194 feet. For the 10-sec flight condition the gimbal positions in flight coordinates are presented in Table D7. Engine numbers are identified in Figure B3. Figure B7 and Table C7 show the angle of attack is -0.6 degree so that tan $\alpha = -0.0105$.

Roll commands are considered first. From Equations (D25) and (D26) the perturbation rolling and yawing moments for roll commands are

$$L_{\delta_{p}} = \sum_{i=1}^{13} T_{i} \left\{ -y_{i} \frac{\partial \delta_{y_{i}}}{\partial \delta_{p}} - z_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{p}} \right\}$$
(D29)

$$N_{\delta_{p}} = \sum_{i=1}^{13} T_{i} x_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{p}}$$
(D30)

It is assumed

$$T_i = T_j$$
 for all i and j (D31)

$$\frac{\partial \delta_{y_i}}{\partial \delta_p} = \begin{cases} +\frac{1}{2} & \text{for} & i = 1, 2, 6, 7, 11 \\ 0 & \text{for} & i = 3, 8, 12 \\ -\frac{1}{2} & \text{for} & i = 4, 5, 9, 10, 13 \end{cases}$$
(D32)

$$\begin{bmatrix} \partial \delta_{\mathbf{z}_{i}} \\ \partial \delta_{p} \end{bmatrix} \leq 1$$
(D33)

Hence, $\frac{\partial \delta_{z_i}}{\partial \delta_p}$ have to be determined to minimize L_{δ_p} subject to

$$N_{\delta_{p}} = -0.0105 L_{\delta_{p}}$$
 (D34)

Some fussing yields the solution of Table D9.

Yaw commands are derived similarly,

$$L_{\delta_{\mathbf{r}}} = \sum_{i=1}^{13} T_{i}(-z_{i}) \frac{\partial \delta_{z_{i}}}{\partial \delta_{\mathbf{r}}}$$
(D35)

$$N_{\delta_{r}} = \sum_{i=1}^{13} T_{i} x_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}}$$
(D36)

where it is now assumed

 $T_i = T_j$ for all i and j (D37)

$$\left| \frac{\partial \delta_{z_i}}{\partial \delta_r} \right| \le 1$$
 (D38)
$$\frac{\partial \delta_{z_i}}{\partial \delta_z}.$$

He

ľ

nce,
$$\frac{1}{\partial \delta_r}$$
 have to be determined to minimize N_{δ_r} subject to

$$L_{\delta_r} = +0.0105 N_{\delta_r}$$
 (D39)

A little more fussing yields the solution of Table D9.

 L_{δ_p}/T , N_{δ_p}/T , L_{δ_r}/T , and N_{δ_r}/T

from Tables D8 and D9 were interpolated and are presented at 5-second intervals in Table D 10. These quantities are used in coefficients $a_{1, 14}$, ^a1, 15' ^a2, 14' ^{and a}2, 15'

Side forces are also required. Equation (D24) shows they result from gimbal deflections δ_{γ} . For yaw control

$$\frac{Y_{\delta_{r}}}{T} = \frac{1}{T} \sum_{i} T_{i} \frac{\partial \delta_{Z_{i}}}{\partial \delta_{r}}$$
(D40)

$$\frac{Y_{\delta_{r}}}{T} = \begin{cases}
\frac{1}{13} \sum_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}} & \text{for } t < 117 \\
\frac{1}{10} \sum_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}} & \text{for } 117 < t < 148 \\
\frac{1}{8} \sum_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}} & \text{for } 148 < t < 170
\end{cases}$$
(D41)

At 10 seconds, Table D9 yields

$$\frac{Y_{\delta}}{T} = \frac{1}{13} (10 + 3 \cdot 0.294) = 0.834$$
(D42)

 $\frac{Y_{\delta_p}}{T}$ is obtained in a similar manner from Table D8. Y_{δ_r}/T and Y_{δ_p}/T are tabulated for use in Table D10. The latter is so small it will be neglected in the analyses; it is presented here for completeness.

Table D10 contains all the data needed for perturbation control synthesis. For flight purposes, the open-loop gains of Tables D8 and D9 would have to be implemented.

Body Dynamics

The equations of motion are

$$\dot{p} = \frac{1}{I} \{I_{zz} [L - (I_{zz} - I_{yy})qr + I_{xz} pq] + I_{xz} [N - (I_{yy} - I_{xx})pq - I_{xz} qr]\}$$
(D43)

$$\dot{r} = \frac{1}{I} \{I_{xx} [N - (I_{yy} - I_{xx})pq - I_{xz} qr] + I_{xz} [L - (I_{zz} - I_{yy})qr + I_{xz} pq]\}$$
(D44)

$$\dot{v} = \frac{g}{W} Y + g(s\theta)(s\psi) + g(c\theta)(c\psi) - ur + wp$$
(D45)

$$\Delta \dot{\mathbf{p}} = \frac{1}{\mathbf{I}} \{ \mathbf{I}_{zz} [\Delta \mathbf{L} + (\mathbf{I}_{yy} - \mathbf{I}_{zz}) \mathbf{q}_0 \Delta \mathbf{r} + \mathbf{I}_{xz} \mathbf{q}_0 \Delta \mathbf{p}]$$

$$+ \mathbf{I}_{xz} [\Delta \mathbf{N} + (\mathbf{I}_{xx} - \mathbf{I}_{yy}) \mathbf{q}_0 \Delta \mathbf{p} - \mathbf{I}_{xz} \mathbf{q}_0 \Delta \mathbf{r}] \}$$

$$\Delta \dot{\mathbf{r}} = \frac{1}{\mathbf{I}} \{ \mathbf{I}_{xx} [\Delta \mathbf{N} + (\mathbf{I}_{xx} - \mathbf{I}_{yy}) \mathbf{q}_0 \Delta \mathbf{p} - \mathbf{I}_{xz} \mathbf{q}_0 \Delta \mathbf{r}]$$
(D46)

+
$$I_{xz} [\Delta L + (I_{yy} - I_{zz}) q_o \Delta r + I_{xz} q_o \Delta p]$$
 (D47)

$$\Delta \mathbf{v} = \frac{g}{W} \Delta \mathbf{Y} + g(s\theta_0) \Delta \psi + g(c\theta_0) \Delta \phi - u_0 \Delta \mathbf{r} + w_0 \Delta p \qquad (D48)$$

The perturbation rolling moment ΔL is taken as made up from two contributions from aerodynamics and thrust vectoring forces:

$$\Delta L = \Delta L_1 + \Delta L_2 \tag{D49}$$

where

$$\Delta L_{1} = \left\langle \overline{q}Sb \quad \frac{b}{2V} C_{\ell_{p}} \Delta p + \frac{b}{2V} C_{\ell_{r}} \Delta r + C_{\ell_{\beta}} \Delta \beta + C_{\ell_{\delta a}} \delta a + \frac{b}{2V} C_{\ell_{p}} x_{4} + \frac{C_{\ell_{\beta}}}{V} \left[\mu_{21} x_{1} + \mu_{22} x_{2} + \mu_{23} x_{3} \right] \right\rangle$$
(D50)

$$\Delta L_2 = T \left(\frac{L_{\delta_p}}{T} \right) \Delta \delta_p + T \left(\frac{L_{\delta_r}}{T} \right) \Delta \delta_r$$
 (D51)

The first four terms of Equation (D50) are the usual aerodynamic force terms; the last four are associated with gust penetration which was discussed previously under Distributing the Wind Loads.

The thrust vectoring terms appear in Equation (D51). Their derivation was discussed under Thrust Vectoring.

Equations (D36), (D49), and (D51) correspond to row 1 of Table D1.

ŕ

The perturbation rolling moment ΔN is made up of three contributions:

$$\Delta N = \Delta N_1 + \Delta N_2 + \Delta N_3 \tag{D52}$$

where

$$\Delta N_{1} = \bar{q}Sb \left\{ \frac{b}{2V} C_{n_{p}} \Delta p + \frac{b}{2V} C_{n_{r}} \Delta_{r} + C_{n_{\beta}} \Delta \beta + C_{n_{\delta a}} \delta a + \frac{b}{2V} C_{n_{p}} x_{4} + \frac{C_{n_{\beta}}}{V} [\mu_{11}x_{1} + \mu_{22}x_{2} + \mu_{13}x_{3}] \right\}$$
(D53)

$$\Delta N_2 = T \left(\frac{N_{\delta_p}}{T}\right) \Delta \delta_p + T \left(\frac{N_{\delta_r}}{T}\right) \Delta \delta_r$$
(D54)

$$\Delta N_{3} = \left\{ \frac{(\ell+15)^{2}}{32.17} \frac{d}{dt} W - \frac{d}{dt} I_{zz} \right\} \Delta r \stackrel{\Delta}{=} (M.R.) \Delta r \qquad (D55)$$

Equations (D53) and (D54) are in direct correspondence with (D50) and (D51). Equation (D55) is the mass rate damping term (from Equation 7.8-2 of ref. D5).

Equations (D47), (D52), (D53), (D54), and (D55) correspond to row 2 of Table D1.

The perturbation side force ΔY is taken as made up of two contributions:

$$\Delta Y = \Delta Y_1 + \Delta Y_2 \tag{D56}$$

where

$$\Delta \mathbf{Y}_{1} = \bar{q} S \left\{ C_{\mathbf{y}_{\beta}} \Delta \beta + C_{\mathbf{y}_{\delta a}} \delta a + \frac{C_{\mathbf{y}_{\beta}}}{V} \left[\mu_{31} \mathbf{x}_{1} + \mu_{32} \mathbf{x}_{2} + \mu_{33} \mathbf{x}_{3} \right] \right\}$$
(D57)

$$\Delta Y_2 = T \left(\frac{Y_{\delta_p}}{T}\right) \Delta \delta_p + T \left(\frac{Y_{\delta_r}}{T}\right) \Delta \delta_r$$
(D58)

Equations (D48), (D56), (D57), and (D58) correspond to row 3 of Table D1.

Actuator Dynamics

Appendix B uses second-order actuator dynamics for both the gimbals:

$$\ddot{\delta} = -2(0.396)(31.6)\dot{\delta} - (31.6)^2\delta$$
 (D59)

and for the aileron

$$\ddot{\delta}_{a} = -2(0.5)(10)\dot{\delta}_{a} - (10)^{2}\delta_{a}$$
 (D60)

First-order approximations to each of these are used here

$$\dot{\delta}_{r} = -31.6 \, \delta_{r} + 31.6 \, \mu_{1}$$
 (D61)

$$\delta_{\rm p} = -31.6 \,\delta_{\rm p} + 31.6 \,u_2$$
 (D62)

$$\delta_a = -10.0\delta_a + 10.0u_3$$
 (D63)

These correspond to rows 14 through 16 of Table D1.

Bending Moments

The bending moments at stations 660 and 1800 are given by (page 15 of ref. 25) as

$$M_{660} = M_1 = M'_{1\delta}\delta + M'_{1\beta}\beta$$
 (D64)

$$M_{1800} = M_2 = M'_{2\delta}\delta + M'_{2\beta}\beta$$
 (D65)

where the numerical values for the maximum dynamic pressure condition are listed in Appendix B. The same assumption used in Appendix B is used to estimate M_{β} 's for all flight conditions. The assumption on the M_{δ} 's used here is comparable to that in Appendix B; it differs slightly due to the differences in thrust vectoring.

For the $M'_{\beta}s$ Appendix B assumes

- -

$$M_{\beta}'[t] = \frac{\frac{qS}{W} C_{y_{\beta}}[t]}{\left(\frac{\bar{q}S}{W} C_{y_{\beta}}[t=64]\right)} M_{\beta}'$$

$$= \frac{\bar{q}}{W} \frac{C_{y_{\beta}}}{\left[\frac{7.86 \times 10^{2}}{2.63 \times 10^{6}} (-1.4)\right]} M_{\beta}'$$

$$= -\frac{\bar{q}}{W} \frac{C_{y_{\beta}}}{4.19 \times 10^{-4}} M_{\beta}' \qquad (D66)$$

It is the gimbaling about the z-axis gimbals that yields the side-bending moments. For the gimbaling selected here the rockets are not all fully slewed in yaw. They are deficient by the amount Y_{δ_r} (column 6 of Table D10). Hence, consistency with Appendix B requires

$$M'_{\delta} = (Y_{\delta_r}/T) M'_{\delta}$$

For gust penetration the winds are assumed filtered by x_1 . Thus,

195

$$M_{1} = (Y_{\delta_{r}}/T) M_{1\delta}' \delta_{r} - \frac{\tilde{q} C_{y_{\beta}}}{VW4.19 \times 10^{-4}} M_{1\beta}' (v+x_{1})$$
(D67)

Similarly for M_2 . These equations correspond to rows 7 and 9 of Table D2.

īβ

The term $\bar{q}\beta$ is used as an indicator of aerodynamic loading. It is most commonly employed in preliminary design where gust penetration is neglected. Since gust penetration is included here, an equivalent $\bar{q}\beta$ is defined to be

$$\bar{q}\beta = \frac{\bar{q}}{\bar{V}} \{v + \mu_{31}x_1 + \mu_{32}x_2 + \mu_{33}x_3\}$$
(D68)

This is row 13 of Table D2.

Pilot's Lateral Acceleration

The lateral acceleration felt by the pilot is $\mbox{[from Equation (D45)]}\ \mbox{approximately}$

$$a_{y} = \dot{v} + ur - wp - g(s\theta) (s\psi) - g(c\theta) (s\psi) + x_{p}\dot{r} - z_{p}\dot{p}$$
$$= \frac{g}{w}Y + x_{p}\dot{r} - z_{p}\dot{p}$$
(D69)

Its perturbation [using Equations (D56) through (D58)] is

$$\Delta a_{y} = \frac{g}{W} \frac{\tilde{q}}{S} \left\{ \frac{C_{y_{\beta}}}{V} \left[v + \mu_{31} x_{1} + \mu_{32} x_{2} + \mu_{33} x_{3} \right] + C_{y_{\delta a}} \delta a \right\}$$
$$+ \frac{g}{W} T \left(\frac{Y_{\delta}}{T} \right) \Delta \delta_{p} + \frac{g}{W} T \left(\frac{Y_{\delta}}{T} \right) \Delta \delta_{r} + x_{p} \Delta r - z_{p} \Delta p \qquad (D70)$$

When rows 2 and 1 of Table D1 are used to obtain $\Delta \dot{r}$ and $\Delta \dot{p}$, the result is that listed in Table D2.

Figure D1. Slender Body Depth

Figure D2. Slender Body Area

Figure D6. $C_{\ell_{\beta}}$

199

i

!

Table D2. Response Equations

		_	Р	r	v	ø	x	У	×1	^x 2	×3	×4	ĩ	x	Pg	° _p	δ _r	^õ a		^u 1 .	^u 2	^u 3	v	
	δ _p		0	0	0	0	0	0	0	0	0	0	0	n	0	^h 1, 14	0	•]	[]	0	0	0	•]	
	° _p		0	0	0	0	0	0 -	0	0	0	0	o	0	0	^h 2, 14	0	0	p	d ₂₁ -	0	0	0	
	δ _r		0	0	0	0	0	0	0	0	0	0	0	0	0	0	^h 3, 15	0	r	0	0	0	0	
	ð _r		0	0	0	0	0	0	0	0	0	0	0	0	0	0	^h 4, 15	0	v	0	d ₄₂	0	0	
	ð _a		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	^h 5, 16	¢	0	0	0	0	
	Ša		0	0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	^h 6, 16	x	o	0	^d 63	0	
	м1		0	0	^h 73	0	0	0	^h 77	0	0	0	0	0	0.	0	^h 7, 15	0	у	0	0	0	0	
	м1		0	0	^h 83	^h 84	^h 85	0	^h 87	^h 88	^h 89	0	^h 8, 11	0	0	^h 8, 14	^h 8, 15	^h 8, 16	×1	0	^d 82	0	d ₈₄	["1]
	м ₂		0	0	^h 93	0	0	0	h ₉₇	0	0	0	0	0	0	0	h _{9,15}	o	×2 +	0	0	0	0	^u 2
	м2	ĺ	0	0	h _{10, 3}	^h 10, 4	^h 10, 5	0	^h 10,7	h _{10,8}	^h 10, 9	0	^h 10, 11	0	0	^h 10, 14	^h 10, 15	^h 10, 16	×3	0	d _{10, 2}	0	d _{10,4}	^u 3
	ау		^h 11, 1	^h 11, 2	^h 11,3	0	0	0	^h 11, 7	^h 11, 8	^h 11,9	^h 11, 10	0	0	0	^h 11, 14	^h 11, 15	^h 11, 16	x4	0	0	0	0	ī
	^a y		^h 12, 1	^h 12, 2	^h 12, 3	^h 12, 4	^h 12, 5	0	^h 12, 7	^h 12, 8	^h 12, 9	^h 12, 10	^h 12, 11	o	^h 12, 13	^h 12, 14	^h 12, 15	^h 12, 16	v	d _{12, 1}	d _{12, 2}	^d 12, 3	^d 12, 4	
	qβ		0	0	^h 13, 3	0	0	0	^h 13, 7	^h 13, 8	^h 13,9	0	0	0	0	0	0	0	x	o	0	0	0	
:	āβ		0	0	^h 14, 3	^h 14, 4	^h 14, 5	0	^h 14,7	^h 14, 8	^h 14,9	0	^h 14,11	0	0	^h 14, 14	^h 14, 15	^h 14, 16	Pg	0	0	0	d _{14,4}	
	ø		0	0	0	^h 15, 4	0	0	0	0	0	0	0	0	0	0	0	0	δ _p	0 1	0	0	0	
	ø		^h 16, 1	0	0	0	^h 16,5	0	0	0	0	0	0	0	0	0	0	0	δ _r		0	0	0	0
İ	у і		0	0	0	0	0	^h 17, 6	0	0	0	0	0	0	0	0	0	0	δ _a	0	0	0	0	
l	у ј	-	0	0	h _{18,3}	^h 18,4	h _{18,5}	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	

Table D3. Numerical A Matrix

^a 11	^a 12	a 13	^a 17	^a 18	^a 19
++10942510E+03	23103390E=01	+0000000E-A5	•00080000F+80	.0000000E-A0	.0000000E-80
84797199E-01	-13202627E 00	-,60147640E-03	11422768E-01	.673>8367E.02	,40854553E-02
17467967E 00	-,24283685E 00	-,117894538-02	17422992E-01	10112008E-01	.61320388E-02
-,26357672E 00	-,29307379E 00	-,16607447E-02	22870958E-01	132º3788E-01	.80064249E-02
- 34842418E 00	- 50625468E 00	- 21540495E-02	- 25261668g=01	14385855E-01	87217632E-02
-+42706874E 00	64655902E 00	-+24155099E-02	23660017E-01	13247087E=01	.80174207E+02
48883976E 00	58805965E 0n	-,2544U727E-07	-,12708472E-01	.63320766E.02	.383232275-02
-,54334984E 00	60148619E 00	-,25251617E+02	,12023875E+01	90475717E-02	55014647E-02
58485227E 00	-,65906769E 00	-+27177593E+02	.46010607E-01	-, 30317462E-01	-,18410905 <u>E</u> -01
62068003E 00	-,70244405 _E 00	-,33133073g-02	.49242667 F ≠01	32697905 <u>E</u> -01	-,19858070r-01
-,61304345Ē 00	-,71604642Ē 0D	-,56083615E-07	474 0 1886Ē-01	26023372E+01	.15778152E+81
_,57349562E 00	. 66593643E 00	 59842818E_02	_,585II386E+0I	3274040E.01	198230652-01
+.50304859E 00	-•56460461E 00	5197139VE-02	46806461E-01	.25907674E-01	.15701648E-01
_,41562944E 00	-4 3491984E 00	 43586164E=02	-,35654633E+01	,19487352E.01	,11808665E+01
32402157E 00	33837082E 00	 37740315E-02	26300027E=01	_14028100E-01	.84978949E=82
25068073E 00	-,27348222E 00	-, 33438407E=02	18499904E+01	,94405488E-02	.57155145E+02
18985170E 00	- 21712020E 00	-,27694113E-02	12344139E=01	59656978E-02	36090297E-02
14076694E DO	17237086E 00	-+21609383E+02	795931898-02	.36140343E-02	.21843462E-02
-, 10396201E 00	_,13486889E 00	_,16797116E_02	-,51905344E+02	,21892000E,02	13216227E-02
76004863E-01	-,11126729E 00	- . 13229675E-02	33558861E=02	.12685530E_02	.76437058E-03
53880166E_01	89458464E-01	-,99557663E-03	_, 24495412E=02	_90740810E_03	.54655646E+D3
 39315363E-01	-,71920031E-01	- . 73548752E+03	-,17132532E-02	.61038705E-03	.36737859F-03
29271441E-01	- ,55534495E+01	 52992214E-03	-,1Z179963E-02	.42957416E-03	.258580822-83
21195606E_01	40699454 <u>E</u> =01	 36324813E=03	98333411E=03	38683186E.03	23325411g-03
-+14536144E+01	24744501E-01	2428U646E-03	70937814E-03	.29098505E-03	.17558663E-83
_,10221221E_01	-,16022124E-01	_,1 6012421E=03	- ,50721867E+03	21641797E-03	,13067648E-03
77182732E-02	12655222E-01	-,10443928E-03	37046496E=03	16582311E_03	190202566-03
-,60342651E-0Z	-,10278249E-01	-,66928279E-04	-,26211499E-03	.12164160E-03	.73545165E-84
48050249E+02	- 75199463E=02	-,45038493E-04	23019704 <u>E</u> =03	_11534412E+03	69814424E-84
-+36394110E-02	+,49970559E=02	32868993E-04	17532533E=03	.887382528-04	.53718087E-84
Z6120359E.02	-,283229292-02	_,Z3460767E-04	- . 14376917E+03	,749J8820E,04	.45377584E. 0 4
19575419F-02	15323552E-02	-,169306647-04	110892562-03	58518003E-J4	.35443891E-84
15042244E-02	76147946E-03	-,1ZZ51Z34E+04	71793184E+04	.37085695E+04	,ZZ456174E-84
11771341g-0Z	84241776E-03	9#123335E=05	45702614E-04	.ZZ856234E-84	,13833844g-84
-•9 ₀ 42739 8E-0 3	-,110338805-85	-+\$780⁴³⁴⁹E-0 5	14 839681E-0 4	.45358687E-us	,2724a772 <u>2</u> -a5
^a 1,10	^a 1, 14	^a 1 <u>,</u> 15	^a 1,16	^a 21	^a 22
-----------------------------	---------------------------	----------------------------	--------------------------------	-------------------------------	-----------------
•0000000E-80	19683964E 01	25265932E 01	•0000000E+80	.75973300E-03	14729223E+01
-84765201E-01	-19626653E 01	-,24995296E 01	57693019E-02	-,11100319E-01	8278144UE-01
17464716E UU	-,19619674E 01	-,25052905F D1	24309152E-D1	22988113E-01	- 154R35R7E DD
+,26271923E UU	- 1963369VE UI		55871643E+01	-,28802598E-01	184111212 00
		- JI920006E UI	-, IVU44592E UU	= 33994297E-01	- 296-7991E 00
44701363F 00		20340058c 01	12726220L 00		- J04J2J8/E 00
			-225005996 00		
	204785895 01	203482065 01	+.JU2/1526E UU 38304533E 00		
610070435 00		-216597716 01	AA 1 A0475 00	- 6310s432c 01	- ABBBO6500 00
-61146692F 00	20922415F 01	- 22795988F 01	- 484252665 00	- 61240848F_01	- 486457665 00
-57195325F 00	- 21150633F 01	- 22489222F 01	- 486689135 00	- 5737A750F-01	- 46419688F DD
	21A16459E 01	-18044276F 01	46111225F 00	- 451925365-01	- 427029985 00
41420578E 00	21635550E 01	14677959E 01	38486098E 00	- 32661569E-01	
32267603E 00	-,21818280E 01	-13757273E 01	29890895E 00	21247652E_01	32785610F 00
- 24943691E 00	21982849E 01	-12577333E 01	25068473E 00	g.13588241E-01	27599026F 00
-18871002g 00	-,22130387E 01	150364Z1E 01	-,21139672E 00	9.87882600E=02	-,21855412F 00
••1 ³ 972935€ 00	- ,22265331€ 01	12917047Ē 01	18311225E 00	■.55445010Ē-02	-,17119926Ĕ BO
 10279651€ 00	-22417879E 01	_,13213641E 01	-,16138103E 00	4,34356434E-02	- 13258572E 00
-•75162259E-01	2251250 ⁰ E 01	13958814E 01	13990685E 00	<pre>=.15893629E=02</pre>	10392252E 00
-,53125124E-01	 22677807E 01	15712193E 01	11976772E 00	.18126116E_02	-,80712604E-01
38639610E-01	-,22879168E 01	-,16745998E 01	10127779E 00	.26924450E.02	-,62852102E-01
78668594E-01	23172269E 01	18577491E 01	B3267372E-01	.11558793E-02	-,482563492-01
- 20656093E+01	- 23038495E 01	- 20231202E 01	65010917E-01	17462773E-02	-,37105313E-01
-+13905402E-01	-+21057217E 01	-+12315931E 01	54535841E=01	.23421193E-02	+.27364172E-01
-,96356718E-02	-,20335281E 01	-,12167244E 01	-,43051574E+01	25319551E-02	-,19991631E+01
72907240E-02	19616808E 01	12025329E 01	33965933E-01	-26475981E-02	+,14527324E-01
57197917E_UZ	- 18996742E UI	-,118/8371E 01	26907511E=01	26552345E-02	-,100192028-01
45290603E-02	18440206E UI	1143C399E U1	21439103E=U1	.24974698E-02	026095945-02
	- 17951205E UI	-11423337E UI	1/434/24E+U1	23409148E-UZ	-,31341476E+02
-, 24094/43E-02	- 10687406E UI	-,93841336E 00	= 141C517CE=U1	24639424E=U2	• 170383462-03
-+180071896-02	1634/9012 01	-+9/430320t On	112571028-01	-Z1/41123L=02	•21003314E•02
	15	1002201/E 01	-0+2+01=5+02	17743VOULAUC	+J740//07t+UZ
-+14196388L-V2	1777225VC UI	10158330F 01	7U8C8U17t+U2	164887015 A9	11474833p A1
** 3114C/390F*03	-110430206 UL	- + + O 1 2 2 2 0 6 0 1		• • • • • • • 7 / 0 1 K • V C	****(43375#AT

i

Table D3. Numerical A Matrix (Continued)

a ₂₃	^a 27	^a 28	^a 29	^a 2,10	^a 2, 14
+00000000E-80	.0000000000-80	.00000000E-80	.0000000E-80	.00000000.5-50	25423851E 00
41997086E_05	67114124E-02	41740256E-02	25331871E-02	11324986E_01	- 25149999E 00
38850537E-04	10210139E-01	.63298698E-02	-38414187E-02	#.23219079E-01	24916353E 00
-,59858085E-04	13623668E-01	.84411494E-02	.51226610E-02	.35048567E+01	24679823E 00
1º2A3322E-03	-,15072639E-01	.93162362E-02	.56535697E=02	47278166E_U1	24204392F 00
14371238E-03	14015546E-01	.8633U547E-02	.52387785E-02		23982172E 00
- 24666648F-03	- 61464034F+02	36721479E-02	22275890E-02	- 63133931E-01	-,24012402E 00
45963645E-03	12523016E+01	80781379E+02	49n45142E=02	.68004701E+01	24280016E 00
	39964200E-01	-,25369988E-01	-,15400334E+01	",72053872E_01	-,24210591E 00
93496892E-03	.44812876E+01	28467253E-01	17280592E=01	a.75673901E+01	.23999825E 00
.28443013E-03	-,31449545E+01	.19395329E-01	.11769787E=01	,73739526E=01	-,23739161E 00
19108445E-03	-,41603814E=01	25772354E=01	.15640375E=01	-67782557E-01	23552534g 00
18U89770E.03	33797191E+01	.20920471E-01	.12695822E=01	= 57364262E=01	-,23801997E 00
16898221E_03	 260 ¹ 5414E _ 01	,16085121E-01	.97613114E-02	a. 44468250E_01	-, ²³⁷⁴²²⁴³ E 00
18102876E-03	18927064E-01	11666452F-01	.70795832E+02	#.32528363E+01	23476486E 00
_,20448460E_03	-,12545080E-01	.76802962E-02	.46602988E-02	.24229705E-U1	23160994E 00
19679148E-03	76444104E-02	46352924E+02	.28123265E-02	18714058E-01	-,22775411E 00
16848635E-03	-,43481925E-02	.2601>403E-02	.15781658E-02	-,14714841E-01	-,22318431E 00
_,13968163E_03	-,23528722E-02	,13776689E+02	.83552162E=03	-11580994E-01	-,21784771E 00
11712138E-03	10266636E-02	.56632747E-03	•34321472E-03	92052671E-02	20972754E 00
-,86327407E-04	.,70101156E-03	.38275238E-03	.23193177E-03	-,52019303E-UZ	20189908E 00
63175199E-04	40297095E-03	21162455F-03	.1281712UE-03	36917783E-02	193438722 00
44131147E-04	-,27567116E+03	.14420576E-03	.87334251E=04	•.46416276L+U2	-,18492475E UU
25849234E-04	-,43252157E-03	.25314625E-03	.15352609E •03	. 34669721E-02	171381150 00
14951956E-04	-,39744065E-03	.23806810F-03	.14442059E=03	+.21/81137E+02	-,155776902 00
_,79 ⁴² 3660E_05	35662361E_03	21701097E-03	13167028E-03	4.15328340E_U2	-,13829415E UU
++32992622E+05	33662632E-03	+20744376E-03	-12588330E-03	12412399L-02	12078591E 00
-,65558571E-06	-,29744263E-03	.18409742E-03	.11208962E+U3	10497453E,02	-,102524976 00
21582122E-05	37059771E-03	23196687E-03	.14078905E=U3	e.88675986E-UJ	-,83779937E-UI
.2752A356E_05	-,33904136E-03	21269731E-03	.12909688E+03	-,71946V35L+03	••07234324E=U1
.38671050E-05	-,36545943E=03	.22982828E-03	13949826E=03	. 522192588-03	
.45493548E=0 ⁵	-,37814558E+03	.23814590E-03	.14454904E=03	•.380°0161E-03	40203920E-01
43477798E_05	_,33867745E_03	21349928E-03	,12956596E=03	32510318E_03	-26011626E-02
+52082566E+05	38350299E-03	.24188824E-03	-14682300E-03	27790604E-03	•30597871E-01
.5394A141E.05	 38549185E=03	,24324156E-O3	.14764510E=03	. 23643949E.03	•64277311E+01

--

1

,

Table D3.	Numerical A	Matrix (Continued)	

^a 2, 15	^a 2.16	^a 31	^a 32	^a 33	^a 34
15233870E 01	.00000000E-80	.00000000E-80	.000000E-80	.0000000E-80	.297450 n 9E 00
- 15446290F 01	- 18685709F-02	- 76746020E 00	- 50684922E 02	• 96086507E+02	40746484E 00
-,15887353E 01	79811333E+02	-13915154E 01	16623594E 03	#,18315955E=01	32865352E 00
17314486E 01	18564862E_01	.,41865660E 01	25653954E 03	27849760E_01	.99731371E 00
19015786E 01	33775838E-01	11036427E 02	35215310E 03	0.37198029E-01	.33494532E 01
19959582E 01	53623667E-01	_,15251974E 02	 45530562€ 03	.45847915E_01	.58380564E 01
18631020E 01	77767144E-01	92062779E 01	56786391E 03	53032128E-01	.77095716g 01
-15549365E 01	10552477E 00	-,27827076F 01	69080640E 03	-,5503A938E-01	.9599543UE 01
-,15336096E 01	135U3347E 00	_,46389543E 01	<u>-</u> 82499496E 03	€,50567405E,01	,11721487E 02
15954602E D1	15321173E 00	13897009E 02	96666171E 03	■.56118613E=01	-14010692E 02
-,16767950E 01	-,15759971E 00	_,24730495E 02	-,11075996E 04	#,94745824E_01	16208472E 02
17035732E 01	14183503E 00	-,25162093E 02	12497550E 04	.10080V74E 00	.18030510E 02
15783547E 01	-1164158IE 00	-,12841343E 02	14001131E 04	9553A817E-01	19530135E.02
-,14146521E 01	-,81246874E-01	,11371274E 01	15639041E 04	= 87996684E=01	20955405E 02
13806915E 01	-,46658681E-01	.60933596E 01	17484512E 04	78027182E-01	22423230E 02
.13170035E 01	-,38491173E-01	34489159E D1	-,19573850E 04	-65704681E-01	23835464E 02
13844000E 01	-,31113299E-01	48100478E 01	21933307E 04	51605602E-01	.25123964E 02
-,13812148E 01	-,25628850E-01	-,18111662E 02	-,24569701E 04	•,39581759E=01	,26265445E D2
-,14037517E 01	21882939E-01	-,36532754E 02	27481702E 04	.30409756E-01	27258657E 02
-,14875102E 01	-,18667354E-01	-,63213889E 02	30654922E 04	.23270669E-01	281270A3E 02
- 15500079E D1	-,15756891E-01	_,10736062E 03	-,34078824E 04	3,17776720E.01	28912521E 02
16290037E 01	13134042E=01	1855UZZQE 03	37734651E 04	+.13569252E+01	.29657510E 02
17158548E 01	-,10701826E+01	-,2780A652E 03	-,41621461E 04	.10199461E-01	30273255E 02
18079024E 01	86534747E-02	321367 33E 03	45767503E 04	*.77797505E-92	.30640710E 02
13644883E 01	-,68859673E=02	-,30098431E 03	-,50050241E 04	.59154731E-02	.308249602 02
-,13482162E 01	- 54101339E=02	-,30869462E D3	-,54351613E 04	• 44969435E=02	31034878E 02
13370298E 01	-,42476135E-02	40418164E 03	58638536E 04	#.34662220E+02	·31327426E D2
-,13303479E 01	33477103E-02	-,55775480E 03	62995771E 04	-26715745E-02	316115036 02
-,12535278E 01	=+26548591E=02	71652192E 03	6718085DE 04	#.21196550E-92	.318215548 02
-,12175341E 01	-,21428855E-02	80975329E 03	71546522E 04	.17128169E.02	.31935249E DZ
12140470E 01	17355795E-02	82448774E 03	76028802E 04	a.13986735E-02	.31986307E 02
-,12731309E 01	-,13984528E-02	-,9206J053E 03	80449632E 04	. 114U4598E-02	.320576927 02
-,12992987E 01	11319331E-02	_,11730395E 04	-,84686942E 04	a,93066218E-03	JZ139373E 02
12836415E 01	91452961E-03	14669728E DA	88846937E 04	•.75843583E=03	+32169910E 02
_,13280436E 01	. ,74462166E . 03	_, 16519861E 04	_,930Z3877E 04	623U7968E-03	J21610318 02

a 35	^a 37	^a 38	^a 39	^a 13,13	^a 3, 15
.32168625E 02	.0000000E-80	.00000000E+80	.0009000F-80	.00000000c 80	.40148159F 02
.32167419E 02	-,10583982r=01	,722217J9F-03	.25305371F=03	-39607877F 00	4099042Ar 02
.32168321E 02	-,20175125E-01	.13768010E-02	48236954E-03	81603664F 00	42465534F 02
.32154537E 02	30676664E-01	20934523E-02	73345212F-03	-12504521F 01	456444445 02
.31995157E 02	40973834E-01	.27961570E-02	97964842E+03	-17294747F 01	-51201A58F 02
.31635834E 02	50501730E-01	.34463645E=02	.12074521E-02	- 22362280 01	-54457040F 02
,31232538E 02	- . 58415181E-01	,39863982E+02	.13966557E=02	++27878594E n1	54043553E 02
,30704359E 02	-,60625693E=01	.41372490E+02	.14495071E=02	33910126E 01	46631747F 02
29958565E 02	-,557ñ0054E-01	.38011111E-02	13317394E=02	-+40497451E 01	45921042F 02
.28958754E 02	61814961E-01	42144076E-02	14779415E+02	47455759E 01	48258715E N2
27788385E 02	10436305E 00	,71219954E-02	24952289E-02	54382675r 01	52010795E 02
.26642253E 02	-,11103256E 00	.75771401E-02	.26546912E-02	61359587E n1	53931039E 02
,25563308E 02	-,10523653E 00	.71816043E=02	.25161131E=02	68730724E 01	48900031E 02
.24408946E 02	-,96928832 _E -01	.66146661 _E =0?	.23174833F=02	76767918F 01	46292559# 02
23067459E 02	85980416E-01	.58675187Ē+02	20557163E-02	-,85827345E 01	47142855E 02
21605082E 02	-,72374067E-01	,49389875E-02	1738400AE-02	96082978E 01	47956813E 02
•20092170E 02	- •56843854E-01	.38791669E-02	.13590867E-02	-,10766504E 02	49536024E 02
18575126E 0Z	43599525E_01	_29753407E-02	.10424264E+02	-,12060941F 02	51143030g 02
,17084335E 02	-,33496514E-01	.22858859E-02	.80087226E-03	13491229E 02	53648318E 02
,15613332E 02	-,25632770E-01	,17492443E-02	.61285703E+03	_,15050886E 0Ž	56272334E 02
14105852E 02	19581155 <u>E</u> =01	,13362670g-02	.46816823E=03	16736689E 02	59957166F 02
12463587E 02	14946606E=01	,10199938E-D2	.35736022E-03	-,18545306E 02	63847710E 02
10882966E 02	-,11234763E-01	, 76668832E - 03	.26861332E-03	-,20476421 _E 02	.68101825E 02
•98008068E 01	85694380E-02	•58479989E=03	.20488774E-03	-,22521368E D2	.72166837E 02
,92049092E 01	-,65159261E-02	,44466310E-03	.15579008E+03	-,24612718E 02	.66069507E 82
.84702581E 01	-,49533860E=02	.33803145E=03	.11843111 _E =03	26722760E 02	65789892E 02
,73144587E 01	-,38180626E-02	,26055415E-03	. 91286527E≠04	•,28852395E 02	.65578 ³ 37ĕ 02
59683990E 01	- 29427540E-02	,20082090E-03	_70358667E-04	30999924E 02	65395592 82
+47220328E 01	-+23348117E-02	.159333395-03	•55823299E=04	_,33164330E 02	.65266450E 02
.38792782E 01	-,18899817E-02	,12897708E-03	.45187804E-04	35344506E 02	65176257E 02
.34329386E 01	-,15406465E=02	.10513757E+03	.36835507E=04	+,37539325 <u>E</u> 02	45668 ³ 18E 02
.26857579E 01	-,12562228E-02	.85721787E-04	30035185E=04	" 39748321E 02	,51445802E 02
,14034307E 01	-,10246889E=02	,69927335E-04	24499413E=04	-+41967469E 02	57219103g 02
.76009597E-01	83542124E-03	.57011236E-D4	.19974189E-04	-,44203089E 02	629939968 82
,75960143E 00	68632570E-03	,46836583E.Ö4	,Ĩ64 0 9445E_04	++46377403F 02	.68768965E #Z

^a 45	^a 54	^a 64	^a 65	^a 77	^a 7,11
.82997700E.03	82997700E-03	.00000000E-8n	.0000000E-80	.000000u0E_80	.00000000E-80
.24574100E-03	24574100E-03	.76746020E 00	.80684922E 02	81218256E 00	.51218256E 00
25294600E-03	-,25294600E-03	.13915154E 01	.16623594E 03	-,16733306E 01	.16733306E 01
.67615700E-02	-,67615700E-02	41868660E 01	25653954E 03	• 25825799E 01	25825799E 01
•14663200E-01	14663200E-01	.11036427E 02	.35215310E 03	#,35463886E 01	.35463886E 01
.15512100E-01	15512100E-01	15251974E D2	.45530562E 03		45855156E DI
.15040300E-01	15049300E-01	.92062779E 01	.56786391E 03	•.57166679E 01	.57166679E 01
	- 14085700E-01	.2782/U76E 01	.69080640E U3	0.69034687E UI	.69534687E 01
13556500E-01	- 1358450VE-01	40389543E 01	84499496E U3	. 83042381E 01	83042381E 01
•13906700E•01	13906700E-01	1393/009E 05	.96666171E 03	97310796E 01	.97310796E 01
.138491000-01	-,13849100E-01	24730495E 02	.11075996E 04	W.11151484E 02	11151484E 02
.137819000-01	13781900E-01	•25162093E 02	.1249755UE 04	•.12582140E 02	1258214UE 02
133550000000	-,1355500000-01	128413436 02	.14001131E U4	3.14093635E 02	14093635E D2
131788005-01			.15639041E 04	a.13771708E 02	15741708g 02
		-,009333966 01	.1/484512E U4	•,17599397E 02	17599397E 02
119439005-01	-11943900E-01	-, 34409139E UI	19573850E 04	. 19/02374E 02	19702374E 02
•111/58000-01	111/5800E-01	+6100478E 01	-21933307E 04	*.22077343L 02	•22077343E 02
,103611002-01	.,10361100E-01	,181116626 02	,24569701E U4	p.24/31662E 02	, C4731666E UZ
.954982001-02	95498200E+02	. 365327548 02	.27481702E U4	a.27664551E 02	.27664551E UZ
.876754001-02	876754001-02	.03213089E 02	.306549226 04		.30862/18E 02
.803039002-02	- 80303900E-02	.10730062E 03	.34078824E 04	0.34319554E 02	.34319354E 02
• 73703900E=02	/3503900E-02	18550C20E 03	.37734651E 04	•.38048230E 02	.36028230E 02
.67176700 .02	-,07176700E-02	. 2 1808652E U3	41621461E 04		419880925 02
•61469600E=02	614686DUE-D2	·32136733E 03	•45767503E D4	D.46181375E 02	.46181375E D2
-563R9600E-02	-, 56389600E-02	.300984342 03	.50050241E 04	•.50469811E 02	,20469811E DZ
.519871002-02	519871002-02	.30869464E U3	.54351613E U4	•.54796574E U2	.34796374E UZ
.480318006-02	-,48031800E=02	404101042 03	.28638230E U4	59103516E UZ	.59163516E 0Z
445871002-02	-,587100E-02	5577848VE 03	.62985771E U4	- 63567148E 02	. 53567148E DZ
•41397/00E=02	-,41397700E-02	•/1652192E 03	•6/100050E 04	00005388E 02	.000033885 02
-35598600E-02	- 30398600E-02	, BU91-329E U3	71346522E U4	. 72473966E 02	,12475960E D2
• 36028100E-02	36028100E-02	.82448774E 03	.76028802E 04	76976571E 02	.76976571E 02
-336C1700E_02	-,33621700E+02	920B3053E 03	.80449632E 04	- BIDV6245E D2	DIDU6245E 02
• 21202000E • 02	3130200vE-02	.117393958 04	.84686944E 04	86026739E 02	.860767398 02
28946400E-02		17009/28E 04	.70896937E U4	-,906+1007E 02	, 90641007E 02
.27913700E.02	-,27913700E-02	*T021ABDIE 04	93023877E 04	- 92099265E 0Z	,97 0 99567E D2

^a 88	^a 89	^a 8,11	^a 9, 8	^a 99	^a 9,11
.00000000E_80	.00000000E-80	.0000000E-8n	.00080000E+80	.000000000.80	.00000000.
34005731E 01	18538950E 01	.52544681F 01	.62740931F 01	177620ADE 01	80512011F 01
70061626E 01	-,38195590E 01	.10825722E 02	12928298E U2	36595013E 01	- 16587799E 02
-,10813150F 02	58950104r 01	.16705169F 02	.19953237r 02	56479900r 01	25601227# 02
14848575Ĕ 02	80950175E 01	22943592F 02	27399707F 02	.77557977E 01	- 35155505F 02
_,19199355E 02	- 10466938E 02	29666292E 02	35428093F 02	10028323E 02	+ 45456416E 02
23935440E 02	13048916E 02	.36984356E D2	.44167473E 02	.12502104E 02	56669578E 02
+.29113871E 02	-,15872048E 02	44985919E 02	53723104E 02	15206934E 02	68930038E 02
-,34769484E 02	-,18955326E 02	53724810E 02	64159265E 02	18101008E 02	82320273E 02
40743607E 02	22217247E 02	,6295>854E 02	.75183167E 02	21281448E 02	-,96464615E 02
- 46690779E DZ	- 25454475E 02	72145253E 02	86157336E 02	24387811E 02	- 11054515r 03
52680875E 02	+ 28720103E 02	81400978E 02	97210711E 02	27516594E 02	12472731E 03
-59009437E 02	-,32170254E 02	.91179691E 02	10888865E 03	30822167E 02	-,13971082E 03
-,659 ⁰ 9848E 02	-,3593216 ⁰ E 02	10184201E 03	12162181E 03	,34426432E 02	-,15604824E 03
. 73687909E 02	-,40172536E 02	,11386044E 03	,13597447E 03	.38489115E 02	-,17446358E 03
82492982 <u>e</u> 02	-,44972810 _E 02	.12746579E 03	.1522225 _E 03	43088235E 02	-,19531049g 03
-,92436874E 02	 50393934E 02	.14283Q81Ē <u>0</u> 3	.17057147E 03	.48282189E 02	-,21885366E 03
10355040E 03	_, 56452708E 02	16000310E 03	. 19187897E 03	. 54087070E 02	-,24516605E 03
115g3027E 03	-+63147345E 02	1789/762E 03	.21373873E 03	.60501170E 02	27423990E 03
-,12922086E 03	-,70447508E 02	,19966836E 03	,23844804E 03	67495422E 02	-,30594346E D3
-,14369448E 03	78338113E 02	22203259E 03	.26515586E 03	,75055373E 02	-,34021123 <u>2</u> 03
-,15922255E 03	•,86803569E 02	24602612E 03	29380941E 03	.83166086E 02	-,37697550E 03
17580232E U3	••95842385E 02	27164470E 03	.32440365E 03	,91826132E 02	41622979E 03
++19335941E 03	-+10541401E 03	.29877342E 03	•35680132E 03	10099666E 03	++45779798E 03
"21131490E 03	-,11520283E 03	32651773E 03	,38993415E 03	11037528E 03	-,50030943E D3
22943087E 03	12507914E 03	.35451001E 03	.42336310E 03	.1198377ZE 03	-,54320082E 03
24771507E 03	-,13504716E 03	,38276223E 03	.45710247E 03	12938804E 03	-,786499512 03
-,26615289E 03	•,14509893E 03	41125181E 03	49112532g 03	13991859E 03	-,63014391E 03
-,28473560E 03	-,15522969E 03	.43996530E 03	,52541554E 03	.14872483E 03	67414037E p3
_,3034537ZE 03	• 16543427E 03	46888799E 03	_55995562E 03	15850179E 03	-,71845741E 03
32229756E 03	-+17570739E 03	+49800495E 03	+59472768E 03	.16834441E 03	76307210E 03
	-,18604686E 03	,52730997E 03	.6Z97Z434E 03	.17825062E 03	-,887974962 83
-,3603158ZE 03	-,19643386E 03	.55674968E 03	.66488185E 83	.188Z0Z35E 03	453984192 83
-,37950996E 03		,58640791E 03	.70838030E 83	.19822794E 83	07652824[03
- Je817774# 03	■.Z1707509F 03	.61929284r 03	.73474751# 83	Z#797861E 03	• 942726128 83

^a 10,10	^a 10, 13	^a 11,11	^a 11, 12	^a 12,11	^a 12, 12
.0000000E.80	.00000000E-80	.00000000E-80	.0000000E-80	.00000000E_80	.0000000E-80
16279273E 01	.16279273E 01	.41036039E-02	.12555344E 04	58113625E-08	46549826E-02
33540004E 01	.33540004E 01	.81347159F-02	26524554E 04	14541286E-07	-,96140281E-02
51764869E UI	51764869E 01	12347064E-01	.42888222E 04	-,20673621E-07	-,14824705E-01
71083316E U1	71083316E 01	,16523451E-01	59839900E 04	27271141E-07	-,203163862-01
-,91911432E 01	91911432E 01	,1984/299E-01	.83538353E 04	.32551303E.07	-, ²⁶⁰⁶⁹²⁸⁶ E-01
-+114584098 02	11458409E 02	·21989842E-01	-11939223E 05	34457560E-07	32047960E-01
	13937435E U2	.24171994E-01	.16326898E 05	35750056E-07	-,38233935E-01
	16644898L UZ	.2630000000001	.21550000E 05	*.36980000E-07	44500000E-01
223810300 02	19504839E UZ	• 28297285E • 01	28101492E 05	-36461287E-07	-, ^{20593973E-01}
	223518785 02	,J413665E-01	.36529247E 05	#.3441297E-07	-,56112526g-01
2+24+00E UZ	20219460E 02	• 37620936E=01	.47124992E 05	31351431E-07	608420822-01
		20/005516-01	58941463E U5	-28498717E-07	-,04894305E-01
**31552459E V2	+31552459E U2	-,10012253E-01	.64468107E 05	29150206E-07	68610404E-01
	372/39842 02	-, +0304934E+01	.59419078E U5	. 35267868E.07	-,72308361E-01
	.394911612 02	-,41818923E-01	.52120907E 05	.44155589E-07	76849768E-01
	44251516E U2	-,29539867E-01	.46601270E 05	#.54211855E-07	-,79732630E-01
-,49571797E 02	495/179/E UZ	-,17992946E-01	42307724E 05	•,65144389E-07	-,83153736E-01
55450430L UZ	*5545043°E 02	17040970E-01	.38733698E 05	*.76755601E=07	062129296-01
••••••••••••••••••••••••••••••••••••••	01800/98E 02	-,214936366-01	35737869E 05	- 88984034E_07	-,890456326-01
087800332 02	.68789633E U2	CU998U89E-01	.33228514E 05	-,10175118E-06	91792023E-01
•• 76273251E UZ	.76243251E U2	-,17113033E-01	.31115225E 05	-,11471638E-06	-,94384559E-01
84160343E V2	.84160343E UZ	-,14917164E-01	.29384929E 05	12744593E-06	-,96663734E-01
92365300E 02	92363300E 02	163/8800E-01	.27577923E 05	14045649E-06	-,98461586E-01
-,101160982 03	10110098E 03	-194000007-01	.25558000E 05	-,15520000E.06	- , 9960 8 000E-01
10983348E U3	10983348E U3	22107769E-01	-22978566E 05	17402203E-06	99967327E-01
	,11858654E U3	-, 4617898E-01	20231455E 05	-,19591246E_06	-,9972850UE-01
12741310E US	.1274131UE 03	-,27507173E-01	.17793875g 05	.22068979E-06	-,99871576E-01
13630905E 03	13630902E 03	-, 30949843E-01	.15623838E 05	-,24813490E-06	-,98052717E+01
- 14726981E U3	145269818 03	-,34800702E-01	13274708E D5	# 27829155E 06	-,96557804E-01
15429076E 03	15429076E 03	4053U950E-01	·10542561E 05	+.32412592E-06	++94528045E=01
-16336997E U3	,16336997E 03	.,53Z3Z105E-01	.77857787E 04	.,42742430E.06	-,91968334E-01
172490922 03	.17249092E 03	79451UZZE-01	.53776117E 04	64062162E_06	-,88976780E-01
- 18167956E 03	18167956E 03	-,13287049E 00	.32179279E 04	•,10660333E-05	- , 85857943E-01
+,19061623E 03	.19061623E 03	-,2290000E D0	.1000000E 04	-18180000E-05	-,53000000E-01

Table D4. Numerical G Matrix

g ₇₄	g ₈₄	g ₉₄	^g 11, 5	^g 12, 5	g _{13,6}
.0000000E-80	.0000000E-80	.0000000E-80	.0000000E.80	. 0000000E-80	0000000E=80
.81218256E 00	•52544681E 01	80512011E 01	10820374E 01	15071135E-05	.20777371E-01
.16733306E 01	.10825722E 02	16587799E 02	.15278645E 01	-, 20748258E-05	29823228E=01
25825799E 01	,16708169E 02	- 25601227E 02	20279125E 01	-, 26010943E=05	.38974894E-01
.35463886E 01	.2294J592E 02	35155505E 02	.24461378E 01	.30552883E+05	,49055245E-01
45855156E 01	29660292E 02	-,45456416E 02	29857845E 01	-,34462563g=05	.61551460 _E .01
.57166679E Q1	.36984396E 02	56669578E 02	-38452125E 01	38199523E-05	.76957860E-01
.69534687E 01	,44985919E 02	68930038E 02	.48106218E 01	-,41766140E-05	,95929033E_01
.83042381E 01	.53724810E 02	82320273E 02	.58700000E 01	-,45100000E-05	•11906991E 00
.97310796E 01	62955854E 02	-,96464615E DZ	71938670E 01	-,48114902E-05	.15037631E UD
.11151484E 02	.72145253E 02	-,11054515E 03	.88895514E 01	506415042-05	18747383E UU
.12582140E 02	.81400978E 02	-,12472731E 03	.11004029E 02	-,52646777E-05	23737109E UU
14093635E 02	91179691E 02	-13971082E D3	13358C46E 02	-,54306652E-05	29337632E UU
-15741708E 02	.10184201E 03	15604824E U3	14258429E U2	55836747E-05	32371698E 00
,17599397E U2	11386044E 03	-,1/446358E U3	,12769456E UZ	-,7/38/40/2-05	29706609E 00
19702374E UZ	12746579E U3	=.19531049E U3	.108/7721E UZ	••28913939E=03	-26381095E 00
22077343E 02	1420JUBIE U3	-,21885366E U3	,92097554E 01	-,003911372=05	-23635006E 00
2473166CE 02	16000310E 03	-,245166052 03	.84814833E UI	-,017644678-05	-218141012 00
27604551E 02	•1/69//62E 03	-+2/423990E D3	1835/293E 01	**************************************	+21102119E 00
JU862/16E U2	1330230E 03	-,30394346E U3	8728629UE UI		192951486 00
+34319554C UZ	266076125 03	34U21123E U3	.63369727E UI	-+07V473U8L4V5	175408125 00
	27168470- 03		54333642 01		1/07/3445 00
4198809CE 02	208773425 03	410229/9E UJ	504) 86005 D1	- 67141460F-85	143705445 00
	12681773- 03	++43/19190E U3	-JUOTUBJUE UI	67688000 86	167405750 00
50469611E 02	36451001F 03		A1862524F 01	- 67591619F-8K	147301145 00
+24/762/46 UZ 501635168 02	3#2762235 03	- 54320002C US	36932846F 01	674AB366F_05	.13818194F 00
435491485 B2	All25101F 03	- 43014301F 03	326#1122F 01	- 67253700F=05	12771538F 00
68005388F 02	A1996530F 03	67A1A037F 03	.28751335F 01	- 66909006F-05	.1135A017F 00
.72475046c 02	- 46888799F 03	71#45741e 03	24642601F 01	66374577E-85	.go411048F=01
769765715 02	498an495F A3	763e7210F 03	19803648E 01	656301837-05	.85375976E_01
A1504245F 09	52730997F N3	_ A0707496F 03	148507396 01	647744245-05	70281631F_01
. # C N K Z 7 3 0 F N 2	-55474048F B3		1033044#E 01	638941562-05	-51385100E-01
-90641007F 02	-58640791F 03	-A9A52824F 03	62836345E 00	6287 0614E-05	32781833E_01
,95099565E 02	.61527284F 03	94272612E 03	.25000000E 00	61500000g=05	,14599309E_01

Table D5. Numerical H Matrix

.000000000000000000000000000000000000	^h 14, 15	h ₇₃	h ₇₇	^h 7, 15	^h 83	^h 84
37266019g 01	.0000000E=80	.00000000F+80	.000000000-80	-,77973840F 08	.0000000E-80	.0000000F=80
79346546E 01 .68051771E 05 .7692160E 06 .12465163E 02 .12465163E 02 .1236273E 06 .10349923E 06 .28621912E 08 .28621902E 04 .1032123E 18531533E 02 .1382273E 06 .1032273E 06 .9041220E 08 .7811111E 04 .46296565 24412296E 02 .117037006E 06 .17037006E 06 .92226000E 08 .781111E 04 .962334E 05 .1512298E 2632446E 05 .1936647E 06 .10797466E 06 .74260800E 08 .11256770E 05 .1512298E 26224736E .20633340E 06 .74260800E 08 .31757313E 05 .20633340E .20633474E 06 .74260800E 08 .33757326E 05 .57057663E .20737462 .20737462 .20737462 .20737462 .20737462 .20737462 .20737462 .20737453E .20737453E .20737453E .20737453E .20737453E .20737453E .20737453E .20737453E .2073737563E .207373563E .2077373731E<	.37266019E 01	35705580E 05	3570558nE 05	77973840F 08	34308244E 03	14548768F 85
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79346546E 01	68061771E 05	68061771E 05	78902100E 08	.12466163E 04	- 22368740F 05
118031533E 02 11822723E 06 13822723E 06 90041220E 08 .1417607E 04 46208565 24412296E 02 17037006F 06 17037006F 06 92826000F 08 .78111119F 04 .99463000F 279906,93E 02 1703706647E 06 1703706477E 06 17037067E 08 .11256770E 05 1533247E 28124946E 02 170976662E 06 179706662E 06 74260800E 08 .31277313E 05 92827478E 30402532E 02 2085350E 06 71476020E 08 .311707740E 05 979757632 3216822E 02 33207384E 06 374720800E 08 .33777313E 05 675737563E 27153401E 07 35207384E 06 37460800E 08 .3379731850E 66933600E 27153401E 07 35502059E 06 32699416E 06 57552120E 08 .26774402E 05 .6592662E 27153401E	,12769363E 02	103489238 06	10348923E 06	82615140F 08	.28821502E 04	10321123E D6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.18831533E 02	-,13822723E 06	-,13822723E 06	90041220E 08	.51417807E 04	.46298565E 06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24412296E 02	17037006E 06	17037006E 06	92826000F 08	.78111119E 04	99463000F 06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.27990693E 02	-,19706647Ē 06	-,19706647E 06	89112960E 08	.10450854E 05	-,15192981E D7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.26742451E 02	_,20452374E 06	_,20454374E 06	74260800E 08	11256770E 05	-19633344E 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28124946E 02	18790686E 06	18799686E 06	70547760E 08	.95019245E 04	+.22025478E 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.30402532E 02	-,20853580E 06	-,20853580E 06	71476020E 08	11702740E 05	-,29217308E 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,32409321E 07	35207384E 06	-,35207384£ 06	74260800E 08	33357526E 05	-,57065788F 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.321682828 02	-,37457379E 06	-,37457379E 06	74260800E 08	.37727313E 05	67537563E D7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,27153401E 02	-35502059E 06	_,35502059E 06	-,64978200E 08	33918247E 05	69336001E 07
205966600 02 20003914E 06 29003914E 06 29003914E 06 24413746E 06 2641396E 05 65046627E 17417637E 02 24415746E 06 24415746E 06 57552120E 08 6042288E 05 5816062E 14156391E 02 19176552E 06 19176552E 06 19176552E 06 57552120E 08	,23241552E 02	32699416E 06	-,32699416E 06	59408640E 08	.28774402E 05	-,68521642E 87
.17417637E 0224415746E 0624415746E 0657552120E 08 .16042288E 0558196062E .14158991E 0219176552E 0619176552E 0657552120E 08 .98991751E 0448179102E .1236217E 0214708513E 0614708513E 0657552120E 08 .58218881E 0438632564E .90032867E 0111300213E 0611300213E 06575486380E 08 .3463672E 0439692863E .71827430E 0186473402E 0586473402E 0559408640E 08 .20122939E 0424322445E .58087520E 0166057984E 0566057984E 0561265160E 08 .11742983E 0419099028E .46994652E 0150423105E 0550423105E 0563121680E 08 .38677000E 0311470873E .29149130E 0128909418E 0528909418E 0562193420E 08 .38077000E 0311473673E .29149130E 0121981795E 0521981795E 0562193420E 08 .13093272E 036775881E .16533409E 0112880421E 0512680421E 0562193420E 08 .13093272E 036775881E .16535409E 0112880421E 0516766014E 0462193420E 08 .13093272E 0240351043E .81194915E 0099275247E 0499275247E 0462193420E 08 .13093272E 0240351043E .81194915E 0078766014E 0478766014E 0462193420E 08 .16695678E 0223064570E .4237945E 0122890448E 0451974464E 0462193420E 08 .10939955E 0223064570E .4237945E 0078766014E 0478766014E 0462193420E 08 .10939955E 0223064570E .4237945E 0078766014E 0478766014E 0462193420E 08 .16695678E 0223064570E .2366856E 0078766014E 0478766014E 0462193420E 08 .16695678E 0223064570E .2366856E 0078766014E 0478766014E 0462193420E 08 .16695678E 0225064570E .2366856E 0078766014E 0478766014E 0462193420E 08 .16695678E 0225064570E .2366856E 0042379291E 0443379291E 0443628220E 08 .16695678E 0225064570E .2366856E 0042379291E 044379291E 0443678220E 08 .16695678E 0225064570E .2366856E 0042379291E 044379291E 0443678220E 08 .16695678E 0225064570E .2366856E 0042379291E 044379291E 0443678220E 08 .16695678E 01110061E	20596660E 02	-,29003914E 06	-,29005914E 06	-,58480380E 08	22641199E 05	. 65040627E 07
14158991E 02 19176552E 06 19176552E 06 57552120E 08 .98961751E 04 48179102E 11236217E 02 14708513E 06 14708513E 06 57552120E 08 .58218881E 04 38632564E 90032867E 01 86473402E 05 86473402E 05 59488640E 08 .20122939E 04 4322445E .71827430E 01 86473402E 05 66037984E 05 61265160E 08 .20122939E 04 4322445E .58087520E 01 66037984E 05 61265160E 08 .11742943E 04 19099028E .46494652E 01 57901022E 05 50423105E 05 61265160E 08 .38627000E 03 1473872 .36999738E 01 37901022E 05 64978200E 08 .2290086E 03 88580509E .19773945E 01 21981795E 05 62193420E 08 .13003272E 03 -67758011E .197739	17417637E 02	24415746E 06	-,24415746E 06	57552120E 08	,16042288E 05	-,58196062E 07
.11236217E 02 14708513E 06 14708513E 06 57552120E 08 .58218881E 04 38632564E .90032867E 01 11300213E 06 11300213E 06 58480380E 08 .34363672E 04 38632564E .71827430E 01 86473402E 05 86473402E 05 59488640E 08 .20122939E 04 24322445E .86473402E 01 50423105E 05 66057984E 05 6615160E 08 .11742943E 04 147942237E .36999738E 01 50423105E 05 37901022E 05 63121660E 08 .22490806E 03 1473873E .29149130E 01 37901022E 05 28909418E 05 6776280E 08 .22490806E 03 88580509E .19773945E 01 16710490E 05 21981795E 05 62193420E 08 .1309327E 03 .6775881E .10833409E 01 12880421E 05 62193420E 08 .44	.14158991E 02	19176552E 06	-,19176552E 06	-,57552120E D8	.98961751E 04	-,48179102E 07
•90032667E 01 11300213E 06 11300213E 06 58480380E 08 .34363672E 04 3080263E •71827430E 01 66473402E 05 86473402E 05 59408640E 08 .20122939E 04 .24322445E •50087520E 01 66057984E 05 66057984E 05 61265160E 08 .11742943E 04 19099028E •46494652E 01 50423105E 05 50473102E 05 63121680E 08 .68420381E 03 14954237E 29149130E 01 37901022E 05 37901022E 05 64978200E 08 28909418E 05 6978800E 03 1475873E 29149130E 01 28909418E 05 28909418E 05 61293420E 08 2490806E 03 80580509E 19773945E 01 21981795E 05 21981795E 05 62193420E 08 13093272E 03 67758811E 14592351E 01 16710490E 05 12880421E 05 62193420E 08 13093272E 02 51868801E 10833409E 01 12880421E 05 12880421E 05 62193420E 08 46464399E 02 40351043E 10833409E 01 12880421E 05 62193420E 08 46695678E 02 31382398E 61576082E 00 78766014E 04 62193420E 08 <	,11236217E 02	14708513E 06	14708513E 06	57552120g 08	58218881E 04	-,38632564E 07
.71827430E 01 86473402E 05 86473402E 05 59408640E 08 .20122939E 04 24322445E .58087520E 01 66057984E 05 6057984E 05 61265160E 08 .11742943E 04 19099028E .46494652E 01 50423105E 05 50423105E 05 50423105E 05 63121680E 08 .68420381E 03 14954237E .36999738E 01 37901022E 05 37901022E 05 64978200E 08 38657000E 03 1473673E .29149130E 01 28909418E 05 28909418E 05 67762980E 08 2490806E 03 60380509E .19773945E 01 21981795E 05 21981795E 05 26919418E 05 62193420E 08 130U3272E 03 67758811E .14592351E 01 16710490E 05 12880421E 05 62193420E 08 14564399E 02 51868801E .10833409E 01 12880421E 05 12880421E 05 62193420E 08 46464399E 02 40351043E .6119490E 01 12880421E 05 12880421E 05 62193420E 08 46646399E 02 40351043E .6119490E 01 12880421E 05 12880421E 05 62193420E 08 4669578E 02 20364570E	.90032867E 01	11300213E 06	11300513E 06	58480380E 08	.34363672E 04	-,30802863E 07
.58087920E 01 66057984E 05 66057984E 05 61265160E 08 .11742943E 04 19099028E .46494652E 01 .50423105E 05 50423105E 05 50423105E 05 63121680E 08 .68420381E 03 .14954237E .36999738E 01 37901022E 05 37901022E 05 67762980E 08 .28490806E 03 8857000E 03 11473873E .29149130E 01 28909418E 05 28909418E 05 67762980E 08 .22490806E 03 88580509E .19773945E 01 21981795E 05 21981795E 05 21981795E 05 62193420E 08 .13093272E 03 6775881E .14592351E 01 16710490E 05 12880421E 05 62193420E 08 .144646399E 02 51866801E .10833409E 01 12880421E 05 12880421E 05 62193420E 08 .44646399E 02 40351043E .81194915E 00 9275247E 04 99275247E 04 62193420E 08 .16695678E 02 205064570E .47668014E 04 63759458E 04 63759458E 04 62193420E 08 .1669578E 02 205064570E .47676574E 00 51974464E 04 51974464E 04 62193420E 08 .1669578E 02 20564570E	,71827430E 01	.,86473402E 05	-,86473402E 05	_ ,5940864DE 08	20122939E 04	- 24322445E 07
.46494652E 01 50423105E 05 50423105E 05 63121680E 08 .68420381E 03 14954237E .36999738E 01 37901022E 05 37901022E 05 64978200E 08 .38677000E 03 11473873E .29149130E 01 28909418E 05 28909418E 05 67762980E 08 .22490806E 03 88380509E .14792351E 01 16710490E 05 21981795E 05 62193420E 08 .13043272E 03 67758811E .14592351E 01 16710490E 05 16710490E 05 62193420E 08 .13043272E 02 51866801E .10833409E 01 16710490E 05 12880421E 05 62193420E 08 .144646399E 02 40351043E .81194915E 00 99275247E 04 99275247E 04 62193420E 08 .26522122E 02 31382398E .61576082E 00 978766014E 04 63759458E 04 662193420E 08 .16695678E 02 20361741E .26321468E 00 51974464E 04 63759458E 04 62193420E 08 .166950578E 02 20361741E .2336856E 00 51974464E 04 63759458E 04 62193420E 08 .16695305E 01 16624712E .23368856E 00 42379291E 04 42379291E 0	-28087520E 01	-+66057984E 05	-+66037984E 05	61265160E 08	.11742943E 04	190990288 07
.36999738E 01 37901022E 05 37901022E 05 64978200E 08 .38657000E 03 11473673E .29149130E 01 28909418E 05 .28909418E 05 67762980E 08 .22490806E 03 .88580509E .19773945E 01 21981795E 05 21981795E 05 21981795E 05 62193420E 08 .13093272E 03 .67758811E .14592351E 01 16710490E 05 16710490E 05 62193420E 08 .13093272E 02 671860801E .10833409E 01 12880421E 05 16710490E 05 62193420E 08 .44646399E 02 40351043E .81194915E 00 99275247E 04 99275247E 04 62193420E 08 .26522122E 02 31382398E .61576082E 00 978766014E 04 78766014E 04 62193420E 08 .16695678E 02 205064570E .47763574E 00 63759458E 04 63759458E 04 62193420E 08 .10939955E 02 20361741E .23367856E 00 51974464E 04 51974464E 04 62193420E 08 .10939955E 01 16624712E .23367856E 00 42379291E 04 42379291E 04 49197780E 08 .48331879E 01 1358562E .20531287E 00 34568381E 04 <td>46494652E 01</td> <td>-50423105E 05</td> <td>-,50423105E 05</td> <td>-,6312168DE 08</td> <td>.68420381E D3</td> <td>-,14954237E 07</td>	46494652E 01	-50423105E 05	-,50423105E 05	-,6312168DE 08	.68420381E D3	-,14954237E 07
.29149130E 01 28909418E 05 28909418E 05 67762980E 08 .22490806E 03 88580509E .19773945E 01 21981795E 05 21981795E 05 21981795E 05 62193420E 08 .13093272E 03 67758811E .14592351E 01 16710490E 05 16710490E 05 62193420E 08 .75145794E 02 51866801E .10833409E 01 12880421E 05 12880421E 05 62193420E 08 .26322122E 02 31382398E .6176082E 00 78766014E 04 99275247E 04 62193420E 08 .1695678E 02 25064570E .47763574E 00 63759458E 04 63759458E 04 62193420E 08 .1693955E 02 2061741E .26321468E 00 51974464E 04 63759458E 04 62193420E 08 .10693955E 02 2064570E .26321468E 00 51974464E 04 51974464E 04 62193420E 08 .10693955E 02 2064570E .26321468E 00 51974464E 04 42379291E 04 43628220E 08 .10693955E 01 16624712E .23368856E 00 42379291E 04 42379291E 04 43568381E 04 4313831879E 01 13585822E .20531287E 00 34568381E 04	36999738E 01	37901022E 05	37901022E 05	64978200E 08	38677000E 03	-,11473873E 07
.197739456 01 219817956 05 219817956 05 219817956 05 62193420E 08 .13003272E 03 67758811E .145923516 01 16710490E 05 16710490E 05 16710490E 05 62193420E 08 .75145794E 02 51860801E .10833409E 01 12880421E 05 12880421E 05 62193420E 08 .44646399E 02 40351043E .61194915E 00 99275247E 04 99275247E 04 62193420E 08 .26522122E 02 31382398E .61576082E 00 78766014E 04 78766014E 04 62193420E 08 .16695678E 02 25064570E .47763574E 00 63759458E 04 63759458E 04 62193420E 08 .10893955E 02 20631741E .26321468E 00 51974464E 04 51974464E 04 43628220E 08 .1093955E 01 16624712E .23368856E 00 42379291E 04 42379291E 04 49197780E 08 .48331879E 01 13585822E .20531287E 00 34568381E 04 34568381E 04 34568381E 04 421792B 08 32157658E 01 11110061E	29149130E UI	-,28909418E 05	-,28909418E 05	67762980E 08	,22490806E 03	-,8858 0 509E 06
-14923912 0116710490E 0516710490E 0562193420E 08 .75145794E 0251866801E 10833409E 0112880421E 0512880421E 0562193420E 08 .44646399E 0240351043E .81194915E 009275247E 0499275247E 0462193420E 08 .26522122E 0231382398E .61576082E 0078766014E 0478766014E 0462193420E 08 .16695678E 0225064570E .47763574E 0063759458E 0463759458E 0462193420E 08 .10939955E 0220361741E .26321468E 0051974464E 0451974464E 0443628220E 08 .72695305E 0116624712E .23367856E 0042379291E 0442379291E 0449197780E 08 .48331879E 0113585822E .20531287E 0034568381E 0434568381E 0434568381E 0454767340E 08 .32157658E 0111110061E	19773945E UI	- 21981795 05	-,21981795E 05	-,62193420E 08	130V3272E 03	67758811E 06
.10833409E 0112880421E 0512880421E 0562193420E 08 :44646399E 0240351043E .81194915E 0099275247E 0499275247E 0462193420E 08 .26522122E 0231382398E .61576082E 0078766014E 0478766014E 0462193420E 08 .16695678E 0225064570E .47763574E 0063759458E 0463759458E 0462193420E 08 .10939955E 0220361741E .26321468E 0051974464E 0451974464E 044362820E 08 .72695305E 0116624712E .23367856E 0042379291E 0442379291E 0449197780E 08 .48331879E 0113585822E .20531287E 0034568381E 0434568381E 0454767340E 08 .32157658E 0111110061E	.14092351E UI	16710490E 05	16710490E 05	62193420E 08	.75145794E 02	-,5186g801E 06
.81194915E 00 99275247E 04 62193420E 08 .26522122E 02 31382398E .61576082E 00 78766014E 04 78766014E 04 62193420E 08 .16695678E 02 25064570E .47763574E 00 63759458E 04 63759458E 04 62193420E 08 .10939955E 02 20361741E .26321468E 00 51974464E 04 51974464E 04 43628220E 08 .72695305E 01 16624712E .23367856E 00 42379291E 04 42379291E 04 49197780E 08 .48331879E 01 13585822E .20531287E 00 34568381E 04 34568381E 04 34568381E 04 34568381E 04 41110061E	106334092 01	-,12880421E 05	-,12880421E 05	-,62193420E 08	44646399E 02	.,40351043E 06
-615760822 00 -,78766014E 04 -,78766014E 04 -,62193420E 08 ,16695678E 02 -,25064570E ,47763574E 00 -,63759458E 04 -,63759458E 04 -,62193420E 08 ,10939955E 02 -,20361741E ,26321468E 00 -,51974464E 04 -,51974464E 04 -,43628220E 08 ,72695305E 01 -,16624712E ,23368856E 00 -,42379291E 04 -,42379291E 04 -,49197780E 08 ,48331879E 01 -,13585822E ,20531287E 00 -,34568381E 04 -,34568381E 04 -,54767340E 08 ,32157658E 01 -,11110061E	,81194915E UU	99275247E 04	99275247E 04	62193420E 08	.26522122E 02	31382398E 06
.47763574E 0063759458E 0463759458E 0462193420E 08 .10939955E 0220361741E .26321468E 0051974464E 0451974464E 0443628220E 08 .72695305E 0116624712E .23368856E 0042379291E 0442379291E 0449197780E 08 .48331879E 0113585822E .20531287E 0034568381E 0434568381E 0454767340E 08 .32157658E 0111110061E	•61576082E 00	-,78766014E 04	-,78766014E 04	-,62193420E D8	16695678E 02	-,25064570E 06
-26321468E 0051974464E 0451974464E 0443628220E 08 .72695305E 0116624712E -23368856E 0042379291E 0442379291E 0449197780E 08 .48331879E 0113585822E -20531287E 0034566381E 0434568381E 0454767340E 0832157658E 0111110061E	47763574E UU	63759458E 04	63759458E 04	62193420E 08	.10939955E 02	20361741E 06
.23567850E 0042379291E 0442379291E 0449197780E 08 _48331879E 0113585822E .20531287E 0034568381E 0434568381E 0454767340E 0832157658E 0111110061E	-26341468E UU	51974464E 04	51974464E 04	43628220E 08	.72695305E Q1	-,16624712E 06
-10751287E 0034568381E 0434568381E 0454767340E 08 -32157658E 0111110061E	.233678701 UU	-,42379291E 04	- 42379291E 04	49197780E 08	.48331879E 01	-,13585822E 06
	-20531287E 00	34568381E 04	34568381E D4	+.54767340E 08	.32157658E 01	11110061E 06
.1/940240E UU .,28183344E U4 .,28183344E 04 .,60336900E 08 .21375258E 01 .,90665565E	17940548E 00	-,28183344E 04	-,28183344E 04	60336900E D8	21375258E 01	.,90665565E 05
.12209931E UU =.23153533E U4 =.23153533E U4 =.65906460E 08 .14426496E 01 =.74464149E	12269931E 00	••C3153533E 04	-,23153533E 04	65986460E 08	.14446496E 01	-,74464149E 05

^h 85	^h 87	^h 88*	^h 89	^h 8, 11	^h 8, 14
.0000000E-80	.00000000E-80	.0000000E-50	.0000000E-50	.000000000-80	.0000000E-80
11485564E 07	29377356F 05	25789333E 02	90354295E 01	.28999449E 15	•0000000E+80
-,21894329E UT	,1152630UE 06	-,93707516E 02	32830925E D2	2,11388985E 06	,0000000000.00
33276482E U7	•27044390E 06	21664976E D3	75904393E U2	26766920t 06	.00000000E-80
530070000 07	•4950/119E U6	JODJUJU4E UJ	13541409E U3	- 49U2U/49E U6	.0000000000000000
	11380752E 00	- 785585425 03	- 275234025 03	- 112654345 07	\$0000000E=80
- 627977045 07	143454s8c 07	- 84610565F 03	- 20645862= 03	- 14221A045 07	000000000000000000000000000000000000000
-5629A199F 07	157088975 07	- 71422484F 03	- 25024297F 03	-1560A233F 07	.88008000E-80
60389367E 07	20421690E 07	- 87968899F 03	- 30820370F 03	- 202927846 07	. BODOODOF_80
97835635E 07	39628893E 07	25074683E 04		3926145RE 07	0700000E-A0
.,99794894E 07	47545299E 07	-,28381980E 04	99437773E 03	47129400E 07	.0000000E-50
90755007E 07	.50408917E 07	-,25496174E 04	89327197E 03	.50035306E 07	.9000000g-80
79815828E 07	51791418E 07	-,21629571E 04	-,75780350Ē 03	.51474466E 07	,0000000 ² -80
66909273E 07	51298052E 07	-,17019274E 04		-,51048658E 07	, 0000000E-80
52750418E 07	.48281521E U7	-,12058976E 04	42249017E 03	-,48104814E 07	.0000000E-80
385298552 07	.42445738E 07	-,74389046E 03	-,26062597E 03	42336731E 07	,90008000E-80
103054425 DT	- 36440726E. UT	25530008F 03	15332542E US	- 312615315 OT	.00000008-80
135013705 07	26710207E 07	151263116 03	52005532r 02	266880425 DT	80000000E=80
-92180A13F 06	22483740F 07	- 6827110AF 02	- 20924249F 02	- 22678804F 07	. 86866000E=80
62845274E 06	191825518 07	51431253F 02	-100192125 02	-19175914E 07	.90000000F-50
41247552E 06	15918174E 07	29058271F 02	- 10180719F 02	.15913916E 07	0000000F-00
-,28333562E 06	13353244E 07	-,16906225E 02	59231854E 01	.13350767E 07	.0000000E-80
20234043E 06	11095603E 07	-,97744934E 01	-, 34245456E 01	0;11094171E 07	.80000000E-80
14154216E 06	,91576037E 06	-,56486712E 01	19790419E 01	#.91567759E g6	.0000000E-80
94213308E 05	76210018E 06	_,33560472E 01	_,11758089E 01	, 76205100E 06	. 0000000 .60
59251428E 05	.63109365E 06	19936544E 01	69848740E 00	*.63106444E 06	.0000000E-80
37193570E 05	.53566973E 06	-,12550056E 01	43969787E 00	#,53565134E 06	,000000000-80
24734067E 05	.46211488E 06	82235088E 00	28811499E 00	9.46210283E 06	
17842515E U5	.40008961E 06	-,74647692E 00	-,19145057E 00	. 40008161E 06	,00000000E-80
- 11382051E 05	J4742301E 06	- JOJJV868E 00	- 127280985 00	- 3-3-1769E UB	,000000000000000
-+40514327L U4	25545002F 04	- 241 (2'40L 00	04070304L-01 562030445_01	- 255456478 04	. 8000000000000000000000000000000000000
	2201-04-5 04	10_A432AF 00	- 170014435=01	- 2201-000F 06	.00000000F-80
/20/-2/6	**************************************	- * * - 0 0 0 - 0 - 0 - 0 - 0 -			

.

^h 8, 15	^h 93	^h 97 •	^h 9,15	^h 10,3	^h 10,4
.24639733E 10	.0000000E=80	.0000000E-80	10974096E 10	.0000000E-50	.0000000e-80
24625098E 10	-,77707456E 05	-,77707456E 05	-,19974096E 10	.74666380E 03	-,31663056E D5
,24904161E 10	_,14812551E 06	_,14812551E 06	_,11104740 <u>E</u> 10	27130601E 04	-,48681968E 05
•26059147E 10	22522767E 06	22522767E 06	11627316E 10	.62725366E 04	-,22462264E 06
-28382251E 10	- 30082936E 06	-,30084936E 06	-,12672468E 10	11190259E 05	-,100761392 07
-2924U238E 10	- 37078305E UG	3/0/83056 06	-,13064400E 10	.1699963UE 05	-,216465238 07
23371040- 10		445113055 U6	14541824E IU	26/446071 07	
					-, -Z/26819E 0/
224857865 10	#1400949016 00 45384446 04	48384464F 04		254401325 05	+++/734712C U/ 43844775# 07
232032045 10	- 74423213F 0/	766232135 0/	- 10461820F 10	7250720AF 05	- 124104525 04
23264401F 10	- A1519965F 06		- 10451520F 10	82172724F 05	- 14608465F 08
203505061 10	- 77264526F 06	77264526F 06		73847614F 05	150A9A66r 0A
18621756F 10	- 71165023E 06	71165023F 06	A3612160F 09	62622A60E 05	- 14912634F DA
18343058E 10	- 63126710E 06	_63126710E 06		492/4931E 05	14155047# 08
18069380E 10	531369468 06	53136946E 06	80999280E 09	349134616 05	12665436E 08
.18091477E 10	-41734684E 06	-,41734684E 06	80999280E 09	21537435E 05	-10485407E 08
,18111246E 10	-,32010715E'06	-,32010715F 06	- 80999280E 09	12670404E 05	84077567E 07
,18419176E 10	-,24593097E 06	-,24593097E 06	82305720E 09	.74787009E 04	-,67837481E 07
18724470E 10	-18819546g 06	-,18819546E 06	-,83612160E 09	43794343E 04	- 52933893 <u>E</u> 07
+19320184E 10	-,14376459E 06	-,14376459E 06	-,86225040E 09	25556628E 04	-,41565965E 07
19914257E 10	-10973778E 06	-,10973778E 06	-,88837920E 09	14898596E 04	
.20507300E 10	82485482E 05	-+82482482E 05	91450800E 09	84130749E 03	-,24971040E 07
213922396 10	-,62916702E 05	-62916702E 05	-,95370120E 09	48947625E 03	-,19278124E 07
+19638597E 10	47839842E US	478-9842E 05	8753148UE 09	.28299531E 03	=.14746616g D7
19642127E 10	- 36367696E US	-, 3630/096E U3	-,87531480E U9	.16324274E 03	-,1128667UE 07
19046748 10	• 28032168E 05		-,8/5514802 09	971057136 02	-,0/81/361E UB
•19646629E 10	-+21603662C US	-+ CI602062L U5	*•87531480E 09	•57721136C 02	60ZY0743E 06
	- 13+742215 0s			238400E UE	- 443140577 04
1378A1445 10	- 11311407F 05	113114075 05	414824805 00	158200455 02	_ 34181013F 84
1554431ac 10			- 40241320e 00	10514657F 02	_ 20967390- A4
-173045015 10	- 750305075 04	- 752325975	- 770708405 00	699850745 01	- 241702695 #6
100646855 10	61336519F DA	61336519F 0A	840186008 09	46510814F 01	_ 19731903# 06
+20824849E 10	**503A99A4E 0A		- 027572AOF 09	31396050E 01	-16205925F 06

_

^h 10, 5	^h 10, 7	^h 10, 8	^h 10,9	^h 10, 11	^h 10, 14
+0000000E=80	+0000000E=80	.0000000E+80	.0000000E-80	.0000000E-80	.0000000E=80
24996483E 07	.63935095E 05	56126338E 02	19664160E 02	.63112641E 05	,0000000E+80
-,47649489E 07	25085140E 06	-,20393935E 03	-,71451232 <u>e</u> 02	- 24786295E 06	,00000000E-80
+•72420915E 07	.58827769E 06	-,47120339E 03	16519371E 03	58106846E 06	+0°000000E-80
-,96250825E 07	,10791839E 07	-,84116610E 03	29470700E D3	.10668378E 07	.0000000nE-50
11730031E U8	17189567E 07	-,12778535E 04	44770276E 03	- 17002315E 97	.000+0000E=80
13666011- 0a	-24768379E U7	-,1/09/004E 04	+,5990026UE U3	*.24747846L U/	.0000000000000
123515365 08					+0000000E=80
131427785 08	AAAAA527F 07	10140017F 04	470765420 03	**************************************	00000000000000000000000000000000000000
- 13172113E 00					
-21718755F 08	10347470F 0a	61768819F DA	- 21641033F 04	- 10256956F 0A	_00000000F_A0
10751360F 0A	10070601F 08	554AHJ25F 04	- 10440629F 04	- 10559350E 0A	.00000000F-A0
-17370632F 08	11271570F 0A	47073286F 04	-16492375F 04	- 11242590E 08	.0000000F-80
- 14561728F D8	.11164197F 0A	- 37039715F 04	- 12977061r 04	- 11109920E 08	0000000F-80
-11480281E 08	10507697E 08	26244271E n4	- 91948195E 03	- 1046924nE n8	.0000000E-80
	92376328E 07	16189580E 04	- 56721053E 03	. 92139092E 07	.00000000c_80
-,59460305E 07	.79307384E 07	-,95242782E 03	33368814E 03	•.79107819E 07	,000n000E-80
-,42015671E 07	.68118077E 07	-,56217015E 03	-,19695929E 03	.68035699E 07	,W000000E-80
-,29383582E 07	58130474E 07	-,32914985E 03	-,11533691E 03	.58082234E 07	.9000000e-80
-,20279219E 07	.49367515E 07	_,19210787E 03	-,67306011E 02	. 49339365E 07	.80008000E-80
-,13677264E 07	41747739E 07	_,11193186E 03	-,39215919E 02	•,41731337E 07	*0000000£-90
89768669E 06	+34643340E 07	-+63240656E 02	22156699E 02	•.34634081E 07	+9800000E+80
-01003997E V0	290011902 07	-, JO193001E U2	-,12890861E UZ		
**************************************	•24147797t U7	CIC/6014E U2 122034255 02	74529731E VI	0,241440792 07	00000000000000000000000000000000000000
- 20504012- 04	165656667 07	-73038073-01		- 165+A+15r 87	-00000000000000
128981215 04	137347395 67	433886855	- 182414565 01	- 137341-35 -7	
R0g458285 05	11657001F 07	273131A0F 01	056911765 00	_ 116575918 07	. BODBOOOF_80
	100571#8F 07	-17897145F 01	- 42783597F 00	- 10056925E 07	. BODOBOOF = A0
3A831366E 05	.87073074E 05	-118925395 01	-41666140E 00	.87071332E 06	.00000000.00
24771205r 05	.75175767r 06	-,79068208F 00	27701966r 00	.75174608E 06	.000000080
10558364E 05	64743430E 06	.,52608101 <u>₹</u> 00	-,18431527E 00	.64742659E 06	,80000000e-80
- 46621641g 03	55596551E 06	- 34968708E 00	- 12251472 00	• 55596039E 06	.0000000E-80
38276273E DA	47920963E 06	23608928E 0n	82687102E-01	. 47920617E 06	.0000000E-80

İ

.

1

1

+

i

^h 10, 15	^h 11, 1	^h 11, 2	^h 11, 3	^h 11, 7	^h 11, 8
•34678143E 11	.21108264E-01	10336011E 01	.0000000E-80	.00000000E-80	.U000000E-80
-346/4938E 11	-,24473265E 01	-,79423821E 01	-,24541671E-01	•.51004056E 00	JU228839E 0D
- 347320386 11	- 74099595F 01	- 135560415 02	48440972E+UI	- 106253045 01	40221067E UU
40020506F 11	- 962469735 01	229362755 02	- 028342125-01	- 11958403E 01	686836185 DU
A1263312E 11	-11880209F 02	29124476F 02	-109011815 00	-11416118F 01	6A331883F 00
.39608985E 11	-13516054E 02	29449153E 02	-12295637E 00	.59803743E 00	29646886F 00
.33006047E 11	14994922E 02	-, 31600390E 02	13284605E 00	72334193E 00	-,53195841E 00
,31356684E 11	16113633E 02	-, 34793070E 02	14728147E 00	26690482E 01	-,17517932E 01
. ³¹ 766396E 11	- 1703549 ⁰ E 02	-,37084922E 02	- 17256557E 00	298/A522E 01	- 19655585E 01
.32986951E 11	16722040E 02	37792144E 02	23558290E 00	25730127E 01	.14561252E 01
.34982839E 11	-,15500905E 02	-,36174549E 02	-,24496966E 00	- 33266237E 01	.19193501E 01
-28860670E 11	- 13381432E U2	32636392E 02	22038143E 00	•.27373075E 01	.13677969E D1
2507004985 11	• 10774780E 02	-,27941387E 02	-,19261133E 00	•,21419901E 01	,121445948 01
25570200c 11	4000B1+2E 01		10952957E UU	- 100-030VE UI	.09302080E 00
25575000r 11	440743405 01	161753326 02	1486706VE UU	723400125 0A	375943015 80
25570A01F 11	- 32472048F 01	- 120AA01AF 02		- AA730220F 00	220404045 00
.25995414E 11	23317879F 01	-10233525F 02	728199135-01	-27203839E 00	1248253AF 00
.26410852E 11	- 16275200E 01	82782229E 01	56791065F-01	-15299896E 00	.60237997F-01
.27238493E 11	- 95812497E 00	66116124E 01	426661925-01	11012173E 00	42256607F-01
28065776E 11	- 59553864E 00	- 52789701 01	- 31727227g=01	+ 73053057E-01	25927692 -01
.28892835E 11	48064444E 00	41310610E 01	-23052195E+01	- 51894190E-01	18104592E-01
30132417E 11	27639259E 00	.,3196Z805E 01	. 16191319E-01	- 55225944E-01	24407092E-01
.27656787E 11	10200921E 00	-,23056190E 01	11296587E-01	-,46293861E-01	,21864350E-01
.27657555E 11	-,82143439E-03	-,16827302E 01	-,78506771E=02	38837622E-01	,19346373E-01
.27658109E 11	.60951167E+01	-,12660308E 01	54738991E=02	34462268£-01	.18086767g-01
.27658535E 11	,99302036E-01	-,91627970E 00	-,38173040E+02	-,29439622E-01	.15988244£-D1
27658829E 11	11612408E 00	- 600343698 00	+,26639187E+UZ	• 34483227E-01	,19827316E-01
•27659043E 11	•13005282E 00	-,32454009E 00	199/7/50E-02	314400121-01	.10343/362-01
	15878113C 00		-,14251344E+U2		200572445-01
243548375 11	152001025 00	45686840F 00	- 714206805-01	- 31344040F-01	1087135081
26833801r 11	14385848c 00	715634075 00	- A0738940c=03	- 356451235-01	21017203-41
2931n941E 11	14063224E 00	10407203E 01	208432498-03	-362290968-01	22441355F-A1

Table D5. Numerical H Matrix (Continued)

^h 11, 9	ⁿ 11, 10	^h 11, 14	^h 11, 15	^h 11, 16	^h 12, 1
.00000000E-80	.0000000E-80	56707881E 07	70168471E 02	.0000000E-80	*.78772259E=03
2.0035405 00	- 505225285 01	-, 56362230F 02	- 723004685 02	- #6335#74F 00	113700036 01
374320135 00	- 760482195 01	56356140F 02	822197A7F 02	- 2005962AE 01	2344627AF 01
41588990r 00	- 10064069F 02	- 56235276F 02	- 94596569F 02	- 36437696E 01	41311156g 01
-38928118E 00	-12363045E 02	- 56389485E 02	- 99872800E 02	.57710714E 01	63676139E 01
.17861219E 00	14002011E 02	56773958E 02	87752347E 02		.80639682E 01
32422957E 00	15466282E 02	-,57370820E 02	65926869E 02	#.11344936E 02	.98928953E 01
10645365E 01	-16584585E 02	57780365E 02	-,64920072E 02	-14537028E 02	,115031156 02
-,11944593E UI	•.17534209E 02	56075645E 02	69843394E U2	•.16591010E 02	12913968E 02
.88130461E UU	+1723764UE U2	-,78310V89E UP	-,/39421/2E U2	- 17455044F 02	18803002# 02
1 (02 30 3 9E 01	100197396 02	- 59107448E 02	- (5479595 02	- 15788712F 02	82073384F 01
73491935F 00	-11313301F 02	59342227F 02	54489170F 02	-12439573E 02	539092546 01
.5400#55AE 00	86694079E 01	59357189E 02	- 51633803E 02	#.88533631E 01	31404812E 01
.36406627E 00	-66188338E 01	-,59259261E 02	46735961E 02	.73776230E 01	18015759E 01
22681507E 00	- 49983617E 01	- 59055412E 02	- 55649936E 02	- 61362710E 01	99599907E 00
.13282789E 00	37258325E 01	58753776E 02	51224699E 02	- 52287620E 01	.52888514E 00
,74993098E_01	-,27660709E 01	-,58369689E D2	-,52507623E 02	.45507419E 01	277576100 00
359698932-01	-,20571017E 01	-,57645740E 02	5824469UE UZ	8.39093849E 01	306306478-81
.271989376-01	•,13638372E UI	5,71009940E UZ	-,64672022E UZ	- 27764474F 01	02828847=_82
173981385-01	• 97698754E UU	556883555 AD	- 092/84DIE 02	- 92506675F AL	929414745-82
+10/3/4020+01	60934305F 00	538390916 02	- 843BA3A1F 02	- 18261597E 01	27671616F-03
121227555E-01	30804144F 00	48442691F 02	- A8857225F 02	-14485237E 01	39172142E-02
.116405726_01	-27584379E 00	45218203E 02	50070526E 02	.11315072E 01	-,42522014E-02
.10901603F-01	-,21333765F 00	41968099F 02	51581710E 02	.88276519E 00	-,38223784E-02
.96420744E-02	-,17208796E 00	-,38783751E 02	-53368782E 02	.69082719E 00	-,30321523E-02
_11989992E_01	1398169 ⁵ E 00	-,35592417E 02	-,49272166E 02	54359725E 00	-,20578238E-02
·11098501E-01	-,10865838E 00	32414014E 02	48744052E 02	•.43523862E 00	12305630E-02
.12101198E.01	-,77860529E-01	-,27657278E Q2	•,67262520E U2	- 27404E015 00	154726012-A1
12697524E-01	-,57699035E-01	-, C4529644E U2	-,6937U397E U2	- 21852178F AA	.68]136g2r_81
113773026-01		- 17180607 02	- 64246747c 02	-171051605 00	11031319-02
1360030AF_01	324966515-01	12747353F 02	-65315780E 02	- 13629460E 00	15885386E-02
**?0°%°°°°°					

I.

^h 12, 2	^h 12, 3	^h 12,4	^h 12, 5	^h 12,7	^h 12, 8
•14739415E-01	-00000000E-80	•0000000E-8d	+0000000E=80	.0000000E-80	+00000000E-80
.81503034E 00	17327777E-02	99998678E-02	78944221E 00	.48234282E DO	.80384653E-01
295348U3E 01	•72689733E=02	-,15920296E-01	15582647E 01	15259295E 01	.260322222 00
.46674840E UI	.15074394E=01	-,70077721E+01	22593861E 01	.31004045E 01	.57446647E 00
,11672693E UZ	26543935E-01	-,31094385E 00	- 29702452E 01	483257132 01	.84432411E 0D
•18297881E 02	-37880274E-01	-,63641711E 00	34486797E 01	.59296656E 01	.10312340E D1
197298UBE UZ	481/0581E-01	-,94/9-093E 00	-,38402394E UI	3/107387E 01	.99852010E 0U
.22799426E UZ	•59701001E+01	12752613E 01	40789528E 01	55977109E 01	15408600E 01
.269598728 02	19288027E=01	-,1/203578E U1	-,44123414E UI	-,24288V831 UZ	
- 39097171E 02	10080120E 00		499/2838E UI	•.31761223E UZ	
2-11-20-02	12685297E UU	- JBL0-JB8E UI	•.62464682E U1	300980980 UZ	0//34V62E UI
27114730E 02	12436730E 00	-,44169279E UI	65265437E UI	44295225E UZ	104346458 02
•215004//E U2	.9650/011E=01	43040792E 01	50336/651 01	4033103/C 02	•70D3134UE D1
1052-19-5 02	4-23-01/E 01	3001000FF 01		20003302 02	
-10327178E 02	342348236 01	353361245 01	J9106164E VA	223405005 02	55014471F 01
AB1146085 01		- 3035ca33- 01	- 24270406- 01	1615mo75m 02	38440475- 01
277540045 41	120101255-01	246841305 01	7 AB(. AF	11140742F 02	254258828 41
147130AOF 01	754040245-02	10849730r 01	124407085 01	-11140/0EE 0E 75818304F 01	15510017# 01
101130492 01	++++3+27E-02			A7372400E 01	70/002725 00
41038284F 00	22a311siF_02	- 12335A71F 01	40144208F 00	378714616 01	- 100092722 00 .60614685F 00
374548045 00	120106015-02	04000056r00	- 30543504# 00	278140005 01	.30433184r 00
226042275 00	672132565-03	- 607864985 00	- 250876255 00	218802135 01	200683365 00
120848026 00	308984925-03	_ 40611351r 00	_ 15868799r 00	255220305 01	49885678# 00
-4=41=8225-01	1260666665	- 348216915 00		23378047F 01	-300129045 00
.336536A3F_01	-48800285F_DA	24364480F 00	- 66497261F-01	21288080E 01	.48916509F 00
-17620688E-01	16785021E=04	-1714#317F 00	- A003a60oF+01	20393335E 01	50253101F 00
A1597399F-02	415280265-05	- 120670725 00	- 227831036-01	18716506F 01	48212093F 00
2	- A753307106		- 12588556r=01	234524736 01	65405919- 80
.36330275F-03	-17666120F-05	637994405-01	7749924AF=02	22787361E 01	.648135n1F nn
.41322737F.03	17021445F_05	- 45584788F-01	_:48923991F-02	257951668 01	75609737# 00
.355503392-03	+.533511a7F=04	+.31857446E=01	**************************************	.28239750E 01	.8440587AF 00
23277425E-02	.77947132F-06	.230213236-01	10052727F-02	26972791E 01	.812634097 00
.57014126F-02	.273050025+05	13103120r-01	- 300504535-04	3238A201F 01	.98911310r 00
.11786607E.01	47908120E-05	67034036E-02	15832561E+03	34478212E 01	10640109E 01

Table D5. Numerical H Matrix (Continued)

^h 12, 9	^h 12, 10	^h 12, 11	^h 12, 13	^h 12, 14	^h 12, 15
+0000000E=80	•00000000E-80	+00000000E-8ñ	•00080000E=80	.17921903E 04	.22188452E 04
-,26004882E 00	•42694386E 01	-,3n094588E 00	•.39946931E 01	.17906832E 04	.22509089E 04
-,8 ^{1448965E 00}	•18085572E 02	-,96449312F 00	•.16945258E 02	.17937266E 04	.23161397E 04
16575094E 01	.41788120E 02	-,20022871E 01	39366261E 02	.17986372E 04	.26389469E 04
25481000E 01	.75958499E 02	-,31022514E 01	71538737E 02	.18015445E 04	.30588414E 04
-, 30/76976E 01 -, 17531392E 01	16888251E 03	-,38453217E 01 -,25759489E 01	11363052E 03 16044076E 03	18124360E 04 18281686E 04	28608601E 04
.14705051E 02	28795405E 03	15682588E 02	-,27604873E 03	18672816E 04	21308583E 04
.19218534F 02		20559777# 02	-,34200194F 03	186793556F 04	22947895F 04
-,16280913E 02	39826067E 03	-,21064338E 02	38524892E 03	18808097E 04	24258091E 04
-,24014998E 02	41557924E 03	-,30590105E 02	40426145E 03	18927387E 04	24340349E 04
21807470E 02 18737925E 02 18324556F 02	.40177028E 03 .36266795E 03 .30021000F 03	-,28230994E 02 -,24718470E 02 -,20739946F 02	39318542E 03 35696247E 03	.19042265E 04 .19051601E 04 .180000-05 04	.21340359E 04 ,17682838E 04
-,11539338E 02	,26339286E 03	-,16268680E 02	26138544E 03	18996466E 04	.15038336E 04
-,80510112E 01	.22233650E 03	-,14930157E 02	22118508F 03	18797880E 04	.17817077F 04
-,52908864Ē 01	18534044Ē 03	-,83475429E 01	18469621Ē 03	18667386E 04	16359683Ē 04
-,33569116E 01	15373805E 03	-,57675688E 01	15337984E 03	18519389E 04	16727807E 04
-,181993376 01 -,14210645E 01 -,97091996E 00	*12/45315t 03 *93903155E 02 *74511663E 02	220390947E 01 2203909AF 01	12725395E 03 93817861E 02 74460166F 02	.102/00552 04 .18090220E 04 .17512#47F 04	.10319222E 04 ,20522780E 04 .21967689F 04
-,74970440E 00	.70657404E 02	-,17301481E 01	70624450E 02	17616288E 04	24261068E 04
-,10960759E 01	.56420805E 02	-,19546749E 01	56484022E 02	17024998E 04	26693141E 04
-,10696374E 01	.40274749E 02	-,17678703E 01	40268308E 02	15313630E 04	.15464136E 04
-,10250707E 01	.30299471E 02	-,15928537E 01	-,30296884E 02	14291296E 04	.15839818E 04
-,97838428E 00 -,12946552F 01	21926655E 02 19058321E 02	_,13753831E 01 _,17046522F 01	23298970E 02 21926261E 02 19058315F 02	12254718E 04 11245564E 04	.163124250 04 .168730490 04 .15574463F 04
-,12755854Ē 01	15784571E 02	-,16512874E 01	15784782E 02	10240688E 04	15404275E 04
-,14741814E 01	12012830E 02	-,18614343E 01	12013160E 02	87460882E 03	21253559E 04
-+16356555E 01 -,15710850E 01	-94259270E 01 -80595244E 01 -70748722E 01	20323797E 01 19385274E 01 23176001E 01	94262899E 01 80598860E 01 70740321E 01	.77582573E 03 .66777595E 03 .54278210F 03	.21916302E 84 .21684926E 84 .28201087F 84
-,204086028 01	.61940159E 01	-,24709672E 01	61943892E 01	40266325E 03	206243935 04

T.

^h 12, 16	^h 13, 3	^h 13, 7	^h 13, 8	^h 13,9	^h 14, 3
.0n00000E=50	.0000000E-80	.0000000E-80	.000 0 0000E=80	.00000000E-80	+80000000E-80
20526912E 01	90914396E+01	10014271E 00	- 68339890E-02	23943243E_02	 87356468E _ 03
.88473201E 01	.18684929E 00	20581552E 00	14045366E=01	49208684E=02	34223231E-02
20725296E 02	27975721E 00	,30815410E 00	-,21029207E-01	.,73676942E_02	-,77911712E-02
-38179150E UZ	,3677929UE 00	40512590E 00	27646805E=01	•.96862048E+02	=,13681171E-01
.61140823E UZ	4482854UE 00	49378883E 00	-,33697386E-01	-,118V6058E-01	-,20552951E-01
.88994973E U2	51792843E UD	57050101E 00	=,38932417E=01	=_13640179E=01	-, 274668478-01
•12132318E 03	-27348164E 00	•03169318E 00	43108324E=01	15183230L-01	-,313638218-01
.156255262 03	+61246315E UU	.6/463153E UN	-,46U38544E=UI	• 16149848L•U1	-,309705502-01
•18222624E U3	.62999051E 00	•6939380IE 00	47356066E+01	•.16591449C=U1	-,35354494t-U1
19470141E US	.02312683E UU	+57015700 00	-+40540127E+U1	-10410087C+Ul	-,J9038067E+UI
187325366 03	- JAPA 100 JE 00	411448705 00		14623034F 01	
130013475 05	55546394E UU	\$53010715 00	-,41/40410E=01	1322921/8 01	-,JJUJIIOYE-UI
,130812676 03	90203803E 00	, 553019/1E UU			- 341030048-01
92072278L 02	+436898861 UU	+4812463UL UU 408060435 00	*+36841467C*V1	- 056500385 02	- 238435406-01
A3014727- 02	2 5 5 1 7 4 2 2 00	314#4575r 00		- 75274+574-02	- 1475654301
8321 ADD FEEL VE		242002775 00	14514070000000	- 578687405-02	- 860618485-02
AA107665F 02	167820485 00	1848551oc 00	- 12614077E=01	- 441072538-02	- 51833800F-02
	107820405 00	10702292 00	950480405-00	- 336150755-00	- 297032705-02
333823485 02	96881608F_01	10671572F 00	- 72825480F-02	-:2551A793F-02	-172223AAF-02
278741115 02	72+211+55-01		- 547303075-02	-191/0204F-02	
226839075 02	-54330024F-01	.598448215-01		- 1430A372E-02	5541369AF-D3
1s30s054r 02	403913095-01	444912495-01	- 30361942 -02	-10637467F-02	314234301-03
-14506677F 02	29929004F-01	329669625-01	224974845-02	78821114E-03	- 177044225-03
11324212 02	221402325-01	2443464AF_01	- 1667276AF-02	- 58413926F-03	- 997428076-04
-BABOGRAAF 01	165197985=01	181966485-03	-12A178A8F=02	- A350A589E-03	57261287F+84
.60086673F 01	.12415961F-01	13676250F-01	-,93330152F-03	-326987136-03	33170166F-04
-54350750F 01	-04345400F=02	.10392230F-01	- 70010176F=03	. 24846909E-03	199980325-84
4350A003E 01	.73283703E-02	.80722401E-02	550869876-03	1930001AE-03	12574141E-04
3478A956F 01	57636168F=02	63486556F+02	- 43324615r-03	#:1517907AF-03	- 80614179#-05
27473986E 01	454242226-02	.50035031E-02	34145157E-03	11962937E-n3	518045028-05
218331735 01	35881875E-02	39524083E-02	26972223E_03	- 94498613E-04	
170A#424E 01	-28479775F+02	-313706ZAE+02	214BA102F=03		216080812-05
13613701E 01	22640926E-02	24939105E-02	-,17019069E-03		-,141071016-05

i

Table D5. Numerical H Matrix (Concluded)

^h 14, 4	^h 14, 5	h ₁₄ ,7	^h 14, 8	h 14, 9	h 14,11
•0000000E-80	.0000000E-80	.0000000E-80	•000 0 0000E=80	.0000000E-80	.0000000E-80
37044420E-01	29244815E 01	- 82296397E+01	82807761E+02	84396863E-02	64702370E-01
.61408674E-01	60106278E 01	34816711E 00	35042918E-01	35729310E+01	27397256E DO
.27900570E 00	.89954636E 01	-,80441462E 00	.80968278E=01	.82560109E.01	.63309506E 00
12319051E 01	,11767591E 02	-,14518038E 01	.14614490E 00	.14943743E 00	11429403E 01
.26171154E 01	,1418188 ³ E 02	-,22869156E 01	.23024691E 00	23485476E 00	18012610g 01
.39930063E 01	,16176219E 02	32916197E 01	.33147697E 00	.33821827E 00	.25944576g 01
.55051617E 01	17608386E 02	-,44272265E 01	44693044E 00	45537484E 00	.34942574F D1
71789788E 01	18348517E 02	56364151E 01	,56818525E 00	58955696E 00	44567023E D1
.88266029E 01	.18243740E 02	67917088E 01	.68471684E 00	.69972567E 00	.53719121E 01
,10099933E 02	17315688E 02	-,77191606F 01	,77753887E 00	,79302494E 00	,60889581E 01
10754670E 02	15891322E 02	83328915E 01	.83948922E 00	.85704029E 00	.65762373E 01
.10844770E 02	.14194894E 02	-,86787840E 01	.87468116E 00	.89345418E 00	.68575975E 01
,10520629E 02	12254708E 02	-,87541388E 01	.88261249E 00	90292972E 00	69253172E 01
.97966836E 01	.10078147E 02	-,85072128E 01	.85883550E 00	.87736034E 00	.67377138E D1
.86269026E 01	.78468407E C1	.,79084259E 01	.79792489E 00	81629375E 00	62703437E 01
.718123836 01	,57429895E 01	-,6967¢054E 01	-70318631E 00	.71969246E UO	.55295761E 01
.57705663E UI	40809891E. 01	-,79947098E 01	-60517843E 00	.01928604E UU	.4/612485E DI
	*286/1014E UI	JII 4 J J / I E U I	.516913792 00	.929338378 00	.400820108 01
.359021192 01	199292516 01		.43828833E UU	370444195 00	345194156 01
,280109415 01	13603464E 01	-,366433312 01	310051732 00	31944192 00	291351498 01
•21596947E UI	• 90761302E 00	-+ 30314440E 01	• 30017371E 00	-313605116 00	+2426377UL 01
123741045 01	3912/1802 00	204581325 01	20-5642552 00		143451407 01
-2254053F 00	275403765 00		16866155 00	172182075 00	112360328 81
6-836070- 00	14747220- 00	- 13388605- 01	13522026- 00	13854228c 00	186580.02 - 81
5.75.2735 00	10/0/2296 00		105229202 00		856431387 80
302407205 00	741034125 01	86939674F 00	• 100 / 4 J 4 2 C 00	- ROG64631F 01	69158721F 80
200222455 00	++==03++E=01	- 70474044F 00	+13+41245-01	31342215-01	56721000F 00
234033335 00	284287875-01		. 59092927 - B1	605422135-01	465409555 00
1.435682 00	10786143=01	- 44879662- 00	A0361243r=01	505719A3F-01	3AA76533= 00
14561957F 00	12199846F-01	- 40782246F 00	A1191688F+01	422921226-01	324423467 00
11532210r 00	503577265-02	_ 34013504r no	343550268-01	35197806F_01	27057887# 00
916191795-01	216473625-03		-287204225-01	29425009E-01	22628132F 80
.72815553E_01	.171980A0E-02		239553076-01	24543013E.01	18867162E 00

Table D6. Numerical D Matrix

--- - - ----

- -

d ₈₂	^d 84	^d 10,2	^d 10,4
24639733E 10	.0000000E-80	34678143E 11	.0000000E-80
- 24639733r 10	-,289994495 05	- 340/8143E 11	- 247842055 84
-,24933064E 10		367423105 11	581668468 06
- 26100384E 10	- 20120420E 00	- ADMAAGGOF 11	
20453026t 10	49020747E 06	_ A1283804F 11	-170023155 07
20150/-BE 10	- 112454365 07	- 3063216AF 11	- 24517846F 07
234664135 10		-133046A03E 11	30950797F 07
- 22203002r 10	- 15684233r 07	= 31375463F 11	- 33960105F 07
22586422F 10	- 20292784F 07	-3178829AE 11	- 44163983E 07
23466413E 10	- 39261458E 07	-33026803E 11	. 85446254E D7
23466413E 10	- 47129400E 07	33026803E 11	-,10256956E Da
20533111E 10	-,50035306E 07	-,28898453E 11	-,10889380E 08
18773130E 10	51474466E 07	•.26421443E 11	-,112025902 08
-,18479800E 10	- .51048658E 07	-,26008608E 11	-,11109920E 08
18186470E 10	-,481 0 4814E 07	. 25595772E 11	•,10469240E 08
18186470E 10	42336731E 07	=.25595772E 11	••92139092E 07
-,18186470E 10	36376598E D7	-,25595772E 11	-,79167819E 07
18479800E 10	31261531E 07	•,26008608E 11	050356995 07
-,1877313UE 10	26688042E U7	**************************************	• J8U82234E U7
- 19359791E 10	- 22670806E 07		4,73,3755E U/
=.19940451F 10	-+191/5014E 07	=.200'2/0JC 11 288084535 11	34634081 F D7
2) + 1 + 1025 10	133507/75 07	- 30134080E 13	
-106531216 10	- 11094171E 07	- 27659948F 11	-24144679F 07
19653121r 10	- 01567759r 06	- 27629948r 11	- 19928251- 07
19653121F 10	- 76205100F 06	- 27659948E 11	-16584815F D7
19653121F 10	- 63106444F 06	. 27629948E 11	13734103F 07
19653121E 10	53565134E 06	- 27629948E 11	11657591E 07
_,19653121E 10	- 46210283E 06	-,27659948E 11	-10056925E 07
13786518E 10	40008161E 06	19403247E 11	87071332E 06
15546498E 10	34541769E 06	-21880257E 11	-,75174608E 06
17306479E 10	29748422E 06	-,24357267E 11	-64742659E 06
-,19066460E 10	-,25545667E 06	-,26834278E 11	-,55596039E 06
-,20826441E 10	22018909E 06	" 29311288E 11	- ,47920617E 06

Table D6. Numerical D Matrix (Concluded)

^d 12, 1	d _{12,2}	^d 12, 3	^d ₁₂ , 4	^d 14, 4
17919691E 04	22173237E 04	.0000000E-80	_0000000E_80	_00000000E_80
17843854E 04	22366186E 04	-,20274681E 01	- 30094588E 00	.64702370E.01
17810467E 04	-,22878232E D4	- . 86355874E 01	96449312E 00	27397256E 00
17807283g 04	2598144 ⁰ E 04	-,20059624 <u>e</u> 02	20022871g 01	.63309506E 00
17770347E 04	29892516E 04	-,36437696E 02	-,31022514E 01	.11429403E 01
17819077E 04	-,315598D5E D4	-,57714714E 02	38453217E 01	18012610E 01
-+17940571E 04	27729742E DA	83652495E 02	25759489E 01	.25944576E 01
T. 181291792 04	208328918 04	11344936E 03	.34482539E UI	.34942574E 01
184383938 04	-,20314743E 04	-,14537028E 03	-12682288E 02	.44567923E 01
183519048 04	-,2207051JE 04	-,16891010E 03	20550777E 0Z	.53749121E 01
18458210E V4	- C3365727E U4	-*19A01454E 03	210643388 02	00889581E 01
185143332 04	+235077401 D4	17465044E D3	30590105E 02	.67762373C 01
1.7871447 04	1-21-5-5 04	124305935 03	2471-4-05 02	
107548777 GA	163162-77 AA		207500466 02	4737713eF 01
- 147250264 04		- 73776230r 02		42793437F 01
				8598574 F AL
	0187005F 0A	- 522876205 02	- 83475429F 01	47612485F 01
-1-4449275 04	- 16502400F 04	- 4550741oF 02	- 57675688F 01	40682014F 01
-182140546 04	- 18405322F DA	- 39093849F 02	- 36990947F 01	34519415F 01
ALADISIASE DA	- 204 30229E 04	- 33163417F 02	-29499483F 01	29135140E 01
17786012E 04	21891994E 04	27744474E 02	22039098F 01	24265970E 01
-,17597511E 04	- 24196954E 04	- 22599675E 02	-17301481g 01	19989407E 01
17013153E 04	- 26641448E 04	-18261597E 02	-19546749E 01	16345140E 01
-,15307890g 04	- 1543888 ³ E 04	- 14485237E 02	- 17678703E 01	13236032E 01
14258952E 04	+15822286E 04	++1131072E 02	-15928537E 01	10650092E 01
_,13261919E 04	_,16299820E 04	-,88276510E 01	■ ,15096645E 01	85643138E DO
12255665E 04	- 16864535E 04	69082719E 01	13753831E 01	69158721E 00
-,11247204E 04	15570005E 04	-, 54359725E 01	-,17046522E 01	56221090E 00
10242829E 04	15403121 <u>e</u> 04	43523862E 01	16512874E 01	465 <u>70955</u> E 00
87485479E 03	-,21254956E 04	348U9032E 01	-,18614343E 01	.38876533E 00
-,77608474E 03	21921046E 04	_,27494501E 01	-,20323797E 01	32442346E 00
++66802029E 03	-+21692790E 04	21852178E D1	19388274E 01	.27027887E 00
54Z90719E 03	-,20301972E 04	-,17105160E 01	-,23176001E 01	.22620132E 00
-,40Z81636E 03	+ 20639786E 04	-,1364946VE 01	-,Z47#9672E 01	-18807162E UU

Engine	Flight Coordinates						
	x ft.	y ft.	z ft.				
1	-100.54	-16.0	- 3.92				
2	-100.54	- 8.0	- 3.92				
3	-100.54	0.0	- 3.92				
4	-100. 54	+ 8.0	- 3.92				
5	- 100.54	+16.0	- 3.92				
6	- 100.54	-16.0	4.08				
7	- 100.54	- 8.0	4.08				
8	-100.54	0.0	4.08				
9	-100. 54	+ 8.0	4.08				
10	-100.54	+16.0	4.08				
11	-100.54	- 8.0	12.08				
12	-100.54	0.0	12.08				
13	-100.54	+ 8.0	12.08				

Table D7. Ten-Second Gimbal Positions

$$x_{cm} = 93.46$$
 $z_{cm} = 8.08$
 $x_{g} = 194.00$

100.54 ft.

--

Table [D8.	Roll	Gimbaling
---------	-----	------	-----------

							о° _Р								
ENGINE t~sec	1	2	3) ₄	5	6	7	8	9	10	11	12	13	L _{δp} /T	Ν _δ /Τ
10	-1.0	-1.0	-1.0	-1.0	-1.0	+1.0	00418	00418	00418	+1.0	+1.0	+1.0	+1.0	-9.24	+ ,0972
24	-1.0	-1.0	-1.0	-1.0	-1.0	+1.0	01433	01433	01433	+1.0	+1.0	+1.0	+1.0	-9.21	+.321
38	-1.0	-1.0	-1.0	-1.0	-1.0	+1.0	 00372	00372	00372	+1.0	+1.0	+1.0	+1.0	-9.20	+.0805
54	-1.0	-1.0	-1.0	-1.0	-1.0	+1.0	0118	0118	0118	+1.0	+1.0	+1.0	+1.0	-9.21	+ .243
64	-1.0	-1.0	-1.0	-1.0	-1.0	+1.0	0.0	0.0	0.0	+1.0	+1.0	+1.0	+1.0	-9.23	0.0
90	-1.0	-1.0	-1.0	-1.0	-1.0	+1.0	00623	00623	00623	+1.0	+1.0	+1.0	+1.0	-9.22	+ .1125
115	-1.0	-1.0	-1.0	-1.0	-1.0	+1.0	0429	0429	0429	+1.0	+1.0	+1.0	+1.0	- 9.35	+ .711
120	-1.0	-1.0	-1.0	-1.0	-1.0	+ .986	+. 986	+.986	+. 986	+.986				-8.73	+ .455
145	-1.0	-1.0	-1.0	-1.0	-1.0	.965	.965	.965	.965	.965				-8.365	+.962
150	-1.0	0601	-1.0	0601	-1.0	+1.0		+1.0		+1.0				-7.91	+ .791
160	-1.0	0926	-1.0	0926	-1.0	+1.0		+1.0		+1.0				-7.84	+1.104

^{ðδ} z _i	
٥6 م	

.

Table D9. Yaw Gimbaling

	δδ _r														
ENGINE t~sec	1	2	3	4	5	6	7	8	9	10	11	12	13	$L_{\delta_r}^{/T}$	Ν _{δr} /T
10	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+.294	+.294	+.294	871	-84.2
24	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	-3.33	-96.5
38	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	0749	0749	0749	612	- 70.3
54	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+.1538	+.1538	+.1538	-1.88	-71.7
64	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	539	539	539	0.0	- 55.5
90	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	639	639	639	67	-48.5
115	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	+1.0	2085	2085	2085	-3.80	-49.4
120	+1.0	+1.0	+1.0	+1.0	+1.0	+.129	+.129	+ .129	+ .129	+ .129				-1.985	-38.1
145	1.0	1.0	1.0	1.0	1.0	+.138	+ .138	+.138	+ .138	+ .138				-3.565	-31.3
150	+1.0	+1.0	+1.0	+1.0	+1.0	127		127		127				-3.025	-30.25
160	+1.0	+1.0	+1.0	+1.0	+1.0	0958		0958		0958				-3.96	-28.0

ð٥ _z i	
36	

t sec	$\frac{L_{\delta}}{T}$ ft/rad	$\frac{\frac{N_{\delta_p}}{T}}{ft/rad}$	$\frac{\frac{N_{\delta_r}}{T}}{ft/rad}$	$\frac{\frac{L_{\delta_{r}}}{T}}{ft/rad}$	$\frac{\frac{Y_{\delta_r}}{T}}{1/rad}$	$\frac{\frac{Y}{\delta_p}}{T}$ 1/rad
510152253354450550657778889950051015225335445055065777888995005101512253055445056057778889950051015122530554450560570	$\begin{array}{c} -9.22\\ -9$.100 .097 .115 .280 .330 .260 .090 .150 .220 .240 .06 .005 .012 .030 .060 .112 .230 .340 .460 .580 .720 .455 .560 .650 .760 .870 .962 1.020 1.020 1.041 .104 1.160 1.210	-84. -85. -90. -95. -97. -89. -71. -71. -71. -71. -71. -71. -71. -71	$\begin{array}{c} - & .9 \\ - & .9 \\ - & .9 \\ - & .6 \\ - & .3.4 \\ - & .2.6 \\ - & .8 \\ - & .7 \\ - & .1.7 \\ - & .1.7 \\ - & .1.7 \\ - & .1.7 \\ - & .1.8 \\ - & .$.84 .85 .89 .97 1.00 .96 .80 .77 .62 .62 .63 .64 .65 .67 .73 .77 .67 .77 .59 .57 .59 .57 .57 .77 .67 .59 .55 .55 .55 .55 .55 .55 .55 .55 .55	0020 0025 0032 0034 0035 0012 0010 0015 0023 0023 0023 0023 0023 0023 0023 0023 0020 0000 0001 0005 0027 0042 0060 0081 0105 0125 0125 0125 0125 0125 0125 0125 0125 0125 0125 0125 0125 0125 0125 0125 0126 0190 230 0270 0310

Table D10. Rocket Gains

229

·- ____

Table D11. Heading (u_{21D}) Covariance Results

MEAN RESPONSES

ĩ	δp	δ _p	δ_r	δ _r	δ _{a.}	δ _a	^M 660		^M 1880
1	.COOE-80	.000L-80	.000E-80	.CCOE-80	•000E-80	.000E-80	•000E-80	.000L-80	-000E-80
Ž	.918E-04	•753E-U3	.133E-03	.115E-02	•000E-80	•000E-RU	155E 05	104E 06	157E 06
3	197E-02	-•813F-C3	•175E-02	473E-04	•000F-80	•000E-80	331E 06	321t 05	236E 07
4	653E-02	-•147E-02	.258E-02	.376E-04	•000E-80	.000E-80	883E 06	794E 05	446E 07
5	143E-01	-•224E-02	•312E-02	382E-04	.000F-80	.000E-80	181E 07	118E 06	72/E 07
6	224E-01	-•203E-02	•3∠5E+02	117E-03	•000E-90	•000E-80	304E 07	155E 06	102E 08
7	279E-01	-+111E-02	•168E-02	5856-03	•000E-80	.000E-80	431E 07	138E 06	112E 08
8	280E-01	•216E-03	529E-02	228E-02	•000E-80	.000E-80	481E 07	.135E 05	578E 07
9	268E-01	•624E_03	-•176E-01		.000E-80	.000E-80	417E 07	.107E 06	.568E 07
10	341E-01	169E_02	209E-01	537E_03	•000E-80	.000E-80	487E 07	-103F 06	.716E 07
11	871E-01	-•147E-01	•119E-01	-818E-02	•000E-80	.000E-80	113E 08	11RE 07	351F 08
12	11CE 00	-•598E-02	.167E-01	•169E-02	.000E-80	000F-80	-143E 08	959E 06	47/E 08
13	112E 00	.113E-02	-190E-01	475E-03	•000E-90	-000F-80	163E 08	779E 06	501F 08
14	887E-01	.607t-02	.138E-01	857E-03	.000E-80	.000E-80	142E 08	14RE 06	40/E 08
15	426E-01	•973E-02	•434E-02	-,112E-02	000E-80	.000E-80	693E 07	.911E 06	181E 08
16	.104E-01	.108E-01	164E-02	471E-03	•000E-80	.000E-80	.175E 07	.148E 07	.50/E 07
17	.499E-01	•722E-02	383E-02	.132E-03	.000E-90	.000E-80	.76ZE 07	.137E 07	192E 08
18	.600E-01	•736E-03	290E-02	.387E-03	•000E-80	.000E_80	.90/E 07	-79RE 06	.21/E 08
19	.501E-01	288E-02	135E-02	.327E-03	•000F-80	.000E-80	.753 <u>E</u> 07	.192E 06	173E 08
20	.345E-01	365E=02	263E-03	.196E-03	.000E-80	.000E-80	.508E 07	133E 06	.112E 08
21	-187E-01	346E-02	464E-04	.235E-04	.000E-80	.000E_80	.281E 07	263E 06	.615E 07
22	.755E-02	231E-02	•344E=04	.198E-05	•000F-80	.000E-80	.118E 07	264E 06	.255E 07
23	.173E-02	113E_02	.195E_04	-,713E-05	.000E-80	000E_80	.284E 06	185E 06	.604E 06
24	371E-03	367E-03	.139E_04	.417E-05	•000E-80	.000F-80	707E 05	102E 06	165E 06
25	P37E-03	588L_04	.278E_04	.808E-05	.000E-80	000F-80	162E 06	419E 05	372E 06
26	567E-03	•744E_04	.199E_04	272E-06	.000E-80	.000E_80	121E 06	- 863E 04	277E.06
27	384E-03	.496E_04	.156E_04	692E-06	•000E-80	.000E_80	912E 05	679E 04	210E 06
28	255E-03	•348E-04	.139E_04	774E-07	•000E-80	000E-80	693E 05	551E 04	161F 06
29	180E_03	.204E_04	.195E_04	.161E-05	.000E-80	.000E_80	549E 05	461E 04	134E 06
30	- .137E _0 3	•117t_04	•174E_04	 384E _ 06	•000E-80	•000F - 80	441 <u></u> 05	400E 04	109E 06
31	1 05E _0 3	.927E_05	.144E_04	717E-06	.000E-80	000E_80	355E 05	313E 04	847E 05
3Z	779E-04	.729E_05	.132E_04	249E-06	.000E_80	000E_80	289E 05	312E 04	706E 05
33	588E_ 0 4	.514L_05	_141E_04	331E-06	000F-80	000E_80	237E 05	195E 04	607E 05
34	478E-04	.291E_05	.145E_04	233E-06	•000E-80	000E_80	195E 05	215E 04	-,528E 05
35	388E-04	.239E_05	.155E_04	334E-06	•000 ^F -80	000E_80	163E 05	181E 04	476E 05

Table D11. Heading (u_{21D}) Covariance Results (Continued)

MEAN RESPONSES

ĩ	^М 1 880	ay	a _y	$ar{\mathbf{q}}_{m{eta}}$	$\bar{q}\beta$	¢	¢	У	ÿ
1	.000E-80	.000E-80	.000E-80	000E-80	.000E-80	.000E-80	.000E-80	.000E-80	-000F-80
ž	129E 07	+138E-01	•397E-01	.107E-01	•300E-01	+286E-05	•197E-04	245E-02	163E-02
3	248E C5	.236E-C1	329E-01	.523E 00	•991E=01	-+149E+03	471E-04	.879E 00	.330E 00
4	-,209E 06	-•613E-01	132E 00	.180E 01	.208E 00	-•514E-03	891E-04	•290E 01	.408E 00
5	-,215E 06	251E 00	331E 00	.405E 01	.327E 00	114E_02	137E-03	.397E 01	151E 00
6	210E 06	-•555E 00	723E 00	.720E 01	.451E 00	181E-02	126E-03	-+545E 00	193E 01
7	.32CE 06	103E 0]	- 560E 00	.109E 02	•525E 00	-+229E-02	711E-04	185E 02	569E 01
8	.205E 07	1 64E 01	.181E 01	.146E 02	•495E 00	232E-02	•124E-04	622E 02	124E 02
9	.284E 07	-•227E C1	.850E 01	.176E 02	•446E 00	223E-02	•363E-04	148E 03	22/E 02
10	.239E 06	272E 01	.148E 02	.192E 02	•585E 00	279E-02	106E-03	-,294E 03	360E 02
11	-,980E 07	216E 01	-,148E 02	184E 02	.125E 01	693E-02	895E-03	508E 03	48/E 02
12	342E 07	250E 01	276E 02	206E 02	.149E 01	898E-02	370E-03	778E 03	597E 02
13	124E 07	-•307E 01	298E 02	.235E U2	.169E 01	932E-02	•567E-04	111E 04	72/E 02
14	.283E 06	-•290E 01	272E 02	205E 02	•799E 00	745E-02	•377E-03	151E 04	870E 02
15	274E 07	1 55Ë 01	187E 02	101E 02	809E 00	371E_02	.618E_03	198E 04	989E 02
16	. 358E 07	.⇒05E 00	880E 01	-244E 01	180E 01	.656E_03	.684E-03	248E 04	102E 03
17	.289E 07	.178E 01	-,230E 01	-,110E 02	185 _E 01	.399E-02	.466E_03	298Ł 04	963E 02
18	.147E 07	.224E 01	.179E QO	-,133E 02	114E 01	•494E-02	•577E-04	344L 04	854E 02
19	.193E C6	.193E 01	.306E 00	111E 02	287E 00	.419E_0Z	175E-03	384E 04	754E 02
20	429E 06	.135E 01	.187E_01	747E 01	•194E 00	.292E_02	-,228E-03	-,420E 04	671E 02
21	 589E 06	•753E 00	-,212E 00	-,412E 01	•399E 00	.162E_02	218E_03	452E 04	619E 02
22	- ,577E 06	.321E 00	_,278E 00	-,171E 01	.407E 00	.670E_03	147E-03	482E 04	591E 02
23	395E 06	•780E-01	240E 00	410E 00	•284£ 00	.166E_03	724E-04	511£ 04	582E 02
24	221E 06	-•182E-01	258E 00	.973E-01	•156E 00	238E_04	242E-04	-•240E 04	580E 02
25	- ,106E 06	421E-01	- .166E 00	218E 00	•636E-01	647E_04	_,309E-05	_ _569E 04	582E 02
26	169E 05	309E-01	553E-01	.158E 00	.896E-02	454E-04	•435E-05	598E 04	584E 02
27	148E 05	234E-01	940E-02	.115E UO	•528±=02	_, 304E_04	•284E-05	628E 04	-•285E 02
28	-,968E 04	173E-01	•305E-01	.#56E-01	•204E-05	201E-04	•20 ⁰ E-05	657t 04	⇒ •586E 02
29	141E 05	134E-01	•283E-01	.642E-01	.355E-02	140E_04	.117 <u>E</u> _05	686E 04	58/E 02
30	 985E`04	106E_01	.850E_01	_495E_01	.327E-02	105E_04	.666E-06	716E 04	587E 02
31	655E C4	802E-02	124E 00	.387E-01	434E-02	760E-05	.570E-06	745E 04	588E 02
32	599E 04	_,708E_02	.115E 00	.303E-01	117E-02	561E_05	.386E-06	774E 04	588E 02
33	 588E 04	-•566E-02	•110E 00	.238E-01	-•441E-02	422E_05	.271F-06	804E 04	589E 02
34	420E C4	395E-02	.127E 00	.188E-01	•232E•02	338E_05	.157E-06	933E 04	589E 02
35	- 420E 04	290E_02	.116E 00	149E-01	-,797E-03	- 272E-05	.128E-06	963E 04	- 589E 02

231

1

î.

RESP	CASE COVARIA	NCES							
ĩ	ð p	۰ ۵p	δ _r	δ _r ΄	٥ _a	δ _a	м ₆₆₀	м ₆₆₀	M ₁₈₈₀
1	CO0E-80	.000L-80	000E-80	000E-80	.000E-80	.000L-80	.000E-80	000E-80	.000F-80
2	.584E-05	• 359E-03	-13eE-04	.900E-03	.000E-80	.000E-80	•175E 12	•773E 14	.184E 14
3	•184E-03	•620E-03	.296E-04	•301E-03	•000E+80	•000E-80	•212E 13	•183£ 15	•576E 14
4	.356E-03	•341E=02	•436E-04	.831E-03	•000E-80	.000E-80	.427E 13	.293E 15	.976E 14
5	.536E-03	.787E-02	•417E-04	-122E-02	•000E-80	.000E-80	•659E 13	.331E 15	.123E 15
6	.507E-03	•105E-61	.330E-04	.138E-02	.000E-80	.000E-80	.85ME 13	.274L 15	.124E 15
7	.434E-03	•367E+02	•774E-05	•424E-03	.000E-80	•000E-80	.952E 13	•571£ 14	.716E 14
8	.315E-03	.107E_61	.615E_04	.411E-02	.000E-80	.000E_80	.814E 13	.35RE 15	.634E 14
9	.843E-03	.154E 0C	.719E_03	.585E_01	•000E-80	.000E_80	.67/E 13	.362L 16	.590E 15
10	.128E-02	.250E 00	.105E-02	.954E-01	.000F-80	.000E-80	.876E 13	.542E 16	.87 ⁰ E 15
11	335E-02	.166E 00	402E-03	469E-01	.000E-80	000E-80	.474E 14	211E 16	.869E 15
12	723E-02	.411E 00	107E_02	123E 00	.000E-80	000E_80	991E 14	563E 16	208E 16
13	716E-02	.333E 00	105E-02	140E 00	000E-80	000E_80	125E 15	431E 16	192E 16
14	498E-02	.189E CO	714E-03	998E-01	.000E-80	000E_80	109E 15	255E 16	.134E 16
15	290E-02	.726E_01	267E-03	380E-01	000E-80	000E_80	708E 14	100E 16	.686E 15
16	181E-C2	.224E-01	.779E-04	105E-01	.000E-80	000E-80	434E 14	334E 15	.342E 15
17	119E-02	.737E-02	.178E-04	244E-02	.000E-80	000E_80	264E 14	108E 15	173E 15
18	703E-03	.217E-02	.373E-05	501E-03	.000E-80	000E-80	.157E 14	410E 14	916E 14
19	412E-03	•760£-03	.670E_06	884E-04	.000E-80	000E-80	920E 13	190E 14	.494E 14
20	242E-03	.291E-03	473E-07	977E-05	.000E-80	000E_80	518E 13	978E 13	256E 14
21	130E_03	.133E_03	107E_07	304E_05	000 _f 80	000E_80	291E 13	556E 13	141E 14
22	674E_04	.581E_04	231E_08	763F_06	000 80	000E_80	165E 13	322E 13	77/E 13
23	333E_04	256E_04	156F_08	271F_06	000F_80	000E_80	914E 12	1841 13	424E 13
24	157F_C4	127E_04	153F 08	461F_06	000F_80	000E_80	52 JE 12	109E 13	253E 13
25	824E_05	584E_05	476F_08	366F_06	000F_80	000E_80	295E 12	639E 12	150E 13
26	371F_C5	235E_05	4021-02	228F_06	000F_80	000E_80	163F 12	349E 12	851E 12
27	164E_C5	923E_06	390F_08	147F_06	000F 80	000E_80	926F 11	192E 12	4986 12
28	697F_06	346E-06	310F_08	799F_07	000- 80	000E_80	522F 11	105E 12	288F 12
29	346F_C6	171E_06	643F_08	829F_07	000F_80	000F_80	318F 11	761F 11	198F 12
30	193F_C6	743E_07	529F_0P	414F_07	000F-80	000F_80	200F 11	487 ⊢ 11	130F 12
31	115F_C6	-362E-07	618F_08	507F_07	000F_80	000F_80	126F 11	254+ 11	A12F 11
32	667F_C7	127E-07	547F 08	173F_07	000F_80	000F 80	820F 10	202F 11	5861 11
33	377F_07	334E_0A	444F 08	363F_08	000F 80	000F 80	532F 10	1541 11	4084 11
34	259F_07	812F_00	576F_08	864F_09	0005 80	000F_80	3621 10	216F 11	344+ 11
35	1745_77	130F U9	5316 08	6825-10	000- 80	0005 80	250 10	231- 11	2765 11

Table D11. Heading (u_{21D}) Covariance Results (Continued)

RESPONSE COVARIANCES

ĩ	^{. М} 1880	ay	ay	$ar{\mathbf{q}}eta$	ąβ	φ	φ	У	ŷ
1	.000E-80	.000E-80	.000E-80	.000E-80	.000F-80	.000E-80	.000E-80	.000E-80	.000E-80
2	.113E 16	•132E 00	•102E 01	•715E-01	•512E 00	•606E-08	•254E-06	.998E-02	•334E=02
3	.374E 15	•784E-01	•713E 00	•111E 02	.737E-01	•102E=05	•747E-06	.874E 02	.451E 01
. 4	.113E 16	.232E 00	.898E 01	.234E 02	.435E 00	-211E-05	-257E-05	.274E 03	-531E UO
5	.198E 16	.492E 00	.369E 02	.370E 02	.147E 01	.314E_05	450E-05	.223E 03	-208E 01
6	.242E 16	.753E 00	.810E 02	498E 02	.408E 01	.338E-05	.486E-05	-513E 01	-160E 02
7	.724E 15	.710E 00	.392E 02	.613E 02	.109E 02	-283E-05	-100E-05	.008E U3	.498E 02
8	.431E 16	•164E 01	.245E 03	.734E 02	•249E 02	-190E-05	-298E-05	-481E 04	•115E 03
9	.569E 17	.124E UZ	.470E 04	.884E UZ	•200E 02	.198E-05	.401E-04	.172E 05	•214E 03
10	.949E 17	.215E 02	.104E 05	.104E 03	.978E 02	.293E-05	.613E-04	452E 05	-379E 03
11	.542E 17	.144E 02	.896E 04	.116E 03	-183E 03	108E-04	.403E-04	-940F 02	-560E V3
12	141E 18	-360E U2	.270E 05	-189E 03	-300E 03	-3/4E-04	.IIIE-03	188E 00	•751E 03
13	125E 18	-346E 02	-289E 05	250E 03	.436E U3	-408E-04	-888E-04	- 324E U6	1250 04
14	.761E 17	-231E 02	-212E 05	.221E 03	-467E U3	.298E=04	- JZ 4E-04	-516E 06	120E 04
15	-292E 17	106E 02	IDIE UN	143E 03	-329E U3	.182E-04	.2201-04	107C 07	1402 04
16	-837E 16	.441E UI	. 364E U4	-880E 02	-192E 03	.110E-04	- H41E-05	1416 07	1176 04
17	220E 16	.210E 01	123E 04	-22E 02	-100E 03	- /9/E-UD	- 34+E=U3	1751 07	.11/E 04
10	•201E 12	.112E VI	.381E 03	-338E UZ	- JOIE 02	-407E-07	-120E-05	-1/75 07	.9900 03
19	-1/3E 15	.039E 00	116E 03	19ME 02	- JEZE 02	-200E-05	- JJTE-06	2476 07	-8272 03
20	-777E 14	-3105 00	-288E UZ	-112E UZ	1020 02	0155 04	1135 04	2825 07	4576 03
21	- JTTF 14	•210E 00	138E 02	3485 01	.IUZE UZ	4705 04	514c 07	3105 07	. 657E 03
~~~	10/E 14	.122E 00	-201E 01	1000 01	- JIE 01	2295 04	2245 07	3576 07	501E 03
23	-945E 13	-001E-01	201E 01	1070 01	- Jeze 01	1155 04	1075 07	3045 07	4046 03
24	-770E 13	- 3/0E-01	1715 01	5305 00	102E 01	5306 07	4486-09	4346 07	466E 03
23	1850 13	1106 01	1000 01	2030 00	503c 00	2365 07	180- 08	4735 07	444E 03
20	07r 17	+045 07	-109E 01	1495 00	2485 00	1036 07	6985 00	5156 07	4286 03
20	523c 17	3316 02	. 607E 00	7035 01	123 - 00	4305 09	2645 00	5576 07	4155 03
20	2105 12	1705 62	-009E 00	4335 01	618c 01	2076 09	114= 00	402L 07	4065 03
29	-JA9E 12	1044 02	- 740E 00	2485 01	303 01	1135 08	4965 10	6471 07	3046 03
31	048c 11	4756 03	505c 00	1465 01	1345 01	6036 09	2045 10	445F 07	394F 03
32	-075E 11	3415 03	3000 00	8450 02	5150 02	3445 00	7506 11	7445 07	300- 03
32	• JJ 7 L 11	2226 02	160E 00	5175-02	1705-02	1946 00	2546-11	7956 07	386F 03
34	323 10	1046 03	7475 03	3155-02	4365-03	1295 00	6865-12	8476 07	3846 03
35	3736 00	5136 0A	1245 01	1065-02	4875-04	8546 10	2196-12	002F 07	382F 03
	• J / J C 0 9	+)!)[#04						• 7- KL • 1	

233

## Table D12. Drift $(u_{22D})$ Covariance Results

MEAN RESPONSES

Ŧ	δ _p	δ _p	$\delta_{\mathbf{r}}$	δ _r	δ _a	δ _a	^M 660	^M 660	^M 1880
1	.000E-80	.000E-80	.000E-80	.000E-8J	•000E-80	• 900E-80	.000E-80	-00JE-80	•000E=80
2	•831E-04	.663E-03	•145E-03	125E-02	•;j <b>3</b> -3j	•9u3E+8ģ	-164E 05	-•112F 06	170E 06
3	189E_02	-,950E_03	.169E_02	229E-04	.000E_80	. n10E_83	329E 05	353E n5	23JE 07
4	627E_02	-,136E-02	.248E-02	217E-04	.000E_g0	*JJJE*8J	856E ⁰ 6	755F Q5	437E 47
5	132E-01	192E-02	•288E-02	696E-04	•000E-80	•933E-89	168E 07	122E 06	674E 07
6	198E-01	-,153 _E -02	235E-02	148F-33	•JJQE-8J	•0UJE-80	27UE 07	191E 06	903E 07
7	233E_01	-,460E_03	.114E-02	- 567E-93	.000E_80	.000E-80	- 36UE 07	241E 06	905E 07
8	- 215E-01	921E-03	<b>-</b> _533€-02	- 194E-75	<b>,</b> 113€-83	<b>,</b> )J∂E+8%	- 365E 07	207E 06	- 325E 07
9	195E-01	772E-03	154 <u>E</u> -01	-:237E-02	•J)0E-8J	•ეეეE+8ე	29JE 07	-•213E 06	.662E 07
10	.,250E_01	-,156E.02	182E-01	576E_33	.000E_80	.019€_81	- 347E 07	463F 06	.793E 07
11	826E-01	210E-01	•117E-01	.849E-J2	.000E-80	.003E-8.	- 1J8E 09	167E 07	338E 98
12	115E 00	- 569E-02	•189E=01	1726-02	• <u>1995</u> 81	• J J J E = 8 H	- 1492 33	125E 97	492E 08
13	-1098 00	.603E-05	.1g1E-01	- 963E-J3	•000E=8)	• 300 E= 30	- 138E 13	123E 07	- 483E UB
14	892E_01	533E-02	.137E=01	7618-03	.000E_80	•307E=80	-143E 08	578E 96	438E 08
15	-,670 <u>E</u> -01	369E-02	.713E-J2	- 636E-03	.000E-80	•JJ95-88	- 109E 05	.333E 06	- 288E 08
16	459E-01	.407E-02	.315E-02	- <u>38</u> 2E-J3	• J30 E= BJ	.ງງŋE_8ĝ	- 719E J7	.182E Q7	178E 08
17	269E_01	.482E_02	.806E_03	339E_U3	.000E_80	•1))E_30	- 399E 07	.190E N7	923E 07
1 e	140E-01	.399E-02	.127E-03	156E-13	.101E-01	•JJJE-80	208E 07	.123E 07	46JE 07
19	891E_02	.22?E.02	.105E.03	<b>-</b> 557E_04	.010E_80	.100E_8)	-133E 07	•486E 06	296E 07
20	740E-02	. 904E-03	•461E=04	-1304E-04	.^30E-83	.100E=8ù	1098 37	• 373E J5	240E 07
21	783E-02	201E-03	.534E-04	264E-05	.100E_80	.0008-80	118E 07	188E 06	261E 07
22	850E-02	,360E-04	.139E-04	- <u>1915</u> -05	.)00E-80	,180E-80	- 134 _E 07	23g ú6	- 292E 07
23	814E-02	213E-03	138E-04	- 3465-05	•jjjE-8j	• 00 )E-8j	-135E 07	-•109E 05	294E 07
24	698E_02	,401E_03	_555E_04	_285E_)4	.∩00E_80	_0nuE_au	128E 07	949E U5	••283E 07
25	580E-02	451E-03	·134E-03	417E-14	•∪J0E-80	.00(E-8)	110E 07	390F 05	250E 07
26	418E_02	,470E_03	.1278.03	_503E_05	.000E_80	_00gE_80	831E 06	-,589E.04	201E 07
27	-,2 ₉₈ £_02	.34 <u>8</u> E-03	•134E=03	1705E-05	.000E-8J	.JUNE-80	7998 06	-•536E 04	164E J7
28	207E_02	.261E_03	.130E_03	2835-05	.J00E_83	.000E_80	- 566E 05	150E 04	133E 07
29	-,154 _E -02	,149E-03	,198E-03	.53, ^E -)4	.000E-80	•009E+80	- 169E 06	519 _E 04	117E 07
30	121E-02	937E-04	•191E-03	.911E-J6	•0∪9E=89	.ეკენ_მკ	- 391E 06	358E 04	993E 06
3 Ĭ	_,965E_03	,785E_04	.208E_03	.952E_15	.U00E_90	.000E_83	.322E 06	325E 04	RO8E 06
32	764E-03	.555E-04	.218E-03	.506E-36	.039E-80	•JJJE-8J	270E J6	293E 04	714E J6
33	593E_03	.472E_04	.199E_03	676E_05	.000E_80	. <b>)</b> 0)E_80	- 224E 06	140E 04	617E 06
34	5N4E-03	.241E-04	•231E=03	818E-05	_000E-80	.າ <b>ງ</b> ລE=80	-190E 06	253E 04	578E 06
35	421E_03	284E_04	.226E-03	- 577E-05	.0006_80	.UNJE_80	- 161E 06	135E 04	528E 06

## Table D12. Drift ( $u_{22D}$ ) Covariance Results (Continued)

MEAN RESPONSES

ĩ	М ₁₈₈₀	ay	a y	$ar{ar{q}}eta$	$ar{\mathbf{q}}oldsymbol{eta}$	ą	φ	У	y
1	.000E-80	.000E-80	.000E-80	.000E-80	.000F_81	.):.5=80) 	.)])E=3]	-100E-80	- 1)E-30
2	1400 07	227 - 01	2055 01	-1-00-01 1531-00	0275 01	112-53	405m J1	111-11	2105 10
۲ ۸	105E 06	- 5825 01	- 136F 00	1755 21	2018 01	- 4225-113	- 3227-11	1518 11	3365-11
ŝ.		- 232 00	- 3536 00	3776 (1	3475 1	- 116 - 02	- 11013	565e 01	7 is 1)
ĥ	- 2545 06	4936 00	775E 00	64.5	.553F 11	1515-13	2578 1	- 377F	•
7	757E 05	-,879E 00	664E 00	9192 11	731E ()	19-2-12	3125 14	1235 02	235E 11
8	127E 07	133E 01	.162E 01	114[ 12	.1.4E .1	170E-02	.4948-04	?742 )?	755E 11
ğ.	.152E 07	179E 01	.824E 01	13:E 02	.132E 01	163E-02	1658-04	1758 32	445ë 71
10	512E 06	- Z16E 01	.145E 02	144F J2	.163E VI	² . 4 E = J ²	159E-04		- 165E UL
11	111E 08	204E 01	147E U2	175E J2	• 17E ) I	-,545E-32	- 1258-12	307F 32	- 306E at
12	429E 07	- 264E 01	279E 02	•415E U2	•511E 31	3395-32	15 (r-)3	*• (JAE 33	••251E UL
13	185E 01	301E 01	304E 02	- C2PE - 92	• 245 E jl	کن میلان م	· 35 32 - 3 3	-+LL/E 03	• 1' <u>)</u> E <u>1</u> 1
14	/20E 00	- 2930 01	+. 274C UZ	21/6 12	• 140C 01	•• / + / <u>•</u> • / <u>*</u>	- 3 5 9 C - 1 3		
15	+226E 07	- 1705 D1	= 1845 UZ	104E 02	- 737E J	- 33/6-02	2535-03		1395-01
17	436F 07	-103F 01	-le2F 01	544F 01	25oF 81	- 23)E-02	.2075-03	LUAE 03	550E 01
18	282F 07	- 545F 00	-281E 00	31)E 01	- 176E )1	- 123E-02	247E-03	7616 02	576E 01
19	.110r 07	- 345F 00	206F 00	1955 1	597F 1.1	7175-33	.1305-03	491 - 02	475: 01
20	.888E 05	-,288E 00	-132E 00	16 E 31	285E-11	- 629E-J3	5532-11	2165 02	.3.J2E J1
21	410E 06	315E 00	.371E 00	173E 01	.291E u)	- 552c - 33	1155-31	1848 02	.152E 31
22	492E 06	361E 00	358E 00	193E 01	.357E ()	705E-03	.7718-13	-•135E 02	.544E 00
23	<b></b> 363E 06	-,368E 00	-,304E 00	.194E cl	.261E 0J	- <b>.</b> 581E-03	1117F=04	120E 02	-129E 00
24	226E 06	-,349E 00	296E 00	.179E 11	• 144E ))	59"c-J3	-231E-)4	114F )2	.1-17E 90
25	.124E 06	-,287E 00	190E 00	1498 1	•569E_01	- 1645-03	314E-J1	-107F 02	.167E 00
26	-148E 05	- 227E 00	=.719E=01	1165 01	•488E=#2		-272E=31	7632 01	•265E 00
27	175E U5	- 180E 00	-,2146-01	838E 00	-282E-02	235E-03	294E=91	- 126E 01	2895 00
28	958E U4	- 1416 00	2205-01	6995 01	335E-02	- 162E-03	1446-04	= 59JE 01	2648 40
29	••311E 07	-,110E 00	•229L-01	247E JJ	• 207L=02	119t-03	•049E=97 5926 03	754F []]	•241E 00
30	- 1005 04	= -3+E 01	+9245-01 1995 00	E	erruc_uz		, ))2C=0)		145E 00
32 51		- 584E 01	•1220 00	2795 11	4/10-32	- 5435-014	• +3355703	- 288F 01	1346 36
33	- 2735 02	+ 465=01	.110F 00	221 11		- 1245-64	25915	?3Jr 01	103F 00
34	107F 05	- 328F-01	127E 00	177F 03	.21F-J2	- 355F-UI	132F-13	1846 01	867E-01
35	164F 04	- 236F-01	116E 00	143, 00	- 845E-N3	- 295F-04	1125-33	- 142F 01	199E-01
-							• •		

## Table D12. Drift ( $u_{22D}$ ) Covariance Results (Continued)

RESP T	UNSE CUVARIA δ	δ _n	δ	δ _r	δ	δ	M 660		M ₁₈₈₀
	þ	P	1	•	a	a	000	000	1000
1	.000Ė_80	,000E-80	.000E-80	.)] F-80	.JC0E_87	.) : E_3)	. J7)E-81	.)0)2-8)	•11JE-80
2	.445E-05	272E-03	-166E-04	-137E-32	•069E=8)	•JY.E-0,	- 2) ] = 1 ?	• 742 E 14	.2°5E 14
3	.172E_03	,104E_02	• 377E - 04	.4548.33	• 000E-80	ູ່ 1 ທີ່ 2 - 8 ກ	198F 13	.233£ 15	.335E 14
4	_321E_03	.455E_02	.564E_04	137E-35	0 <u>0</u> 16_81	, 10 E.O	343E 13	.33)E 15	17E 15
5	.452E-03	.966E-02	.536E-04	1+3E-J?		.1. 5-81	.1 3 E 13	. 123E 15	.127E 15
6	.479E_03	122E_01	.415E-04	1576-92	• 000E_30	11.5-19	.657E 13	- 114F 15	122E 15
7	.351F.03	396E-02	•885E-05	. 4 3 4 5 - 13	•°33F=8)	•)).c=g.i	.7325 13	-351E 14	.539E 14
8	.270E-03	,127E_01	•939E=04	SL-3944.	• JOE_31	<ul> <li>)a:E=∂?</li> </ul>	.613F 13	•337F 13	. 3756 14
9	.105E-02	.170g 00	.102E-05	615 _E -31	• ) ) ] = = 9 j	• •• • == • •	.356- 13	• 5122 16	• " JE 15
10	.161E_02	.276E 00	.153E-32	.9902-11	• 130E-83	.13:E-3.	. J J J L J	-789F 15	.133E 16
11	.275E_02	173E 00	.455E.03	145PE_)1	.019E_89	112-91	37 E 14	. 2335 10	544E 15
12	•620E-02	.433E 00	•130E-02	-121ē lu	••:1E-8)	• 10 12-31	. ( ) 25 14	• 43 55 15	.211E 16
13	488E_02	.350E 00	.123E.02	1376 15	.00055_80	. 1 - 3.	. 1946 11	• 573F 16	.163E 16
14	-292E-05	197E 00	.816E-03	-971E-JI	• • • • • • • •	·) =-; /	.)15E 11	· 33F 16	•1)E 16
15	.137E_02	,749E_01	.290E-03	.307E-01	.000E_80	·))`E-d)	.2962 14	•117E 16	.4!7E 15
16	•684E=03	.227E-01	•756E-04	-1) E-31	•	•)) <u>=</u> -3	.151, 11	125F 15	. 50F 15
17	.384E-03	.733E-02	•144E-04	-228E-12	• · · E-3J	. 11.7-3.	. HLUE 13	. 767E 14	.5 17F 14
18	2055-03	211E-02	25 E-05	4205-33	)E-80	• • • • • • • • •	+++= 13	. 173E 14	·1 35/ 14
19	•114E-03	.718E-03	•577E-06	.833E-14	•1,75-31	• ) ; [-3]	·251E 13	1375 14	135E 14
20	.631E_04	267E_03	.2516.06	163E - 14	•3E_3J	. 1 . 16 . 3	.133E 13	.105E 14	.653E 13
21	.323E-04	120E-03	-132E-76	.634E- 5	• 7 J J E = 3 J	11,5-9	.7176 17	·613E 13	. 14 yE 13
22	.161E_04	.520E-04	.708E-07	217E-15	•FSOE•8)		•397E 15	15)F [3	.195E 13
23	•774E-05	.226E-04	•334E-97	-122E-15	• 6 • 3 • 4 • 4 • 1	.)	• 211 2 1 2	•131E 13	
24	.364E-05	113E-04	•117E=07	•731E • 15	• 1E = 33	.)),2-3/	1 3-51	.1148 13	.5838 12
25	180E-05	,530E-05	901E-08	5132-15	. U ; 1E - 8.5	• ) ; ) E = 8 )	.03/E LL	636E 12	.3315 (2
26	•746E-06	•210E-05	•484E-08	-2/95-15	•009E-89	• ) : > = -3 >	•3232 11	• 3 3 3 F 1 ?	•173E 12
27	.2916_00	\$18E_06	.255t.08	ISLE JS	• 110E_90	.)))2.54		13/6 12	.3946 11
28	•106E-06	302E-06	-133E-Ug	• 8 2 4 E = 17	•)))E=33	• 3435-33	.1798 11	• 3 4 3 E 1 1	-133E 11
29	.445E.07	.153E_06	.126E-08	.7548-17		.).175-81	.1 JE 11	•559E 11	2542 11
30	.203E-07	.664E-07	•752E-09	.373E - 17	• 992-9)	• )J-E-3	. 4048 10	.317E 11	.134E [1
31	.887E.08	.324E-07	.546E-09	419E - 7	1995-83	. 7 / 15 - 3 :	1512 39	.115F 11	.613E 10
32	349E-08	,112E-07	335E-09	1215-77	.uajE-3)	11 2-01	121E 0)	,533 L)	1:3E 10
33	•105E-08	.276E-08	-125E-09	3)58-18	• 7 • 7 5 • 9 )	• 7 ] (Ē=3 )	117E 07	. 246F 10	.112E 17
34	253E_09	,561E_09	515E_10	518E-J9	. 1.115 N)	. JIE . 37	135E 01	.755F 10	. 3252 19
35	•295E-10	.640E-10	•762E-11	-521E-17	.~)][=80	.10\E-91	.1442 07	•111E 19	•451E 79

## Table D12. Drift ( $u_{22D}$ ) Covaraiance Results (Concluded)

RESPONSE COVARIANCES

ĩ	М ₁₈₈₀	a y	a _y	ąβ	ąβ	φ	φ	У	ÿ
1	•000E-80	.000E-80	•000E-80	. 300E-80	• 16 DE - 30	• 10.1E-81	. 3375-81	• 000E+80	• 100E-80
2	.135E 16	126E 00	.913E 00	.711E-01	.515E UD	.493E-08	.188E-05	.963E-12	2368-02
3	563E 15	880E_01	.9 <u>3</u> 3E 00	S0 38LL	.7748_01	.931E_06	134E_05	493E JZ	.543E 00
4	-146E 16	21 ₉ E 00	106E 02	191E 95	.440E 10	-176E-J5	377E-05	•283E 05	.142E 01
5	233E 16	45AE 00	.410E 02	.266E 02	•147E 01	.241E-05	616E-05	•643E J1	.333E 01
6	.266E 16	.697E DU	.861E 02	374E J2	.498E UI	- 262E-U5	0295-15	.129F U3	132E 31
7	.745E 15	.610E 00	40ZE 02	439E UZ	-109E 12	.223E-J5	1992-35	• 377E J3	2982 01
8	470E 10	,150 01	251E 03	50/E UZ	243E 02	*123E+02	2405-92	•,03E 03	3495 01
.9	•297E 17	124E 02	476E 04	- 776E JC	•534E 32	215E=()5	• 7198-04	•111 <u>E</u> 24	.600E 01
10	.9900 17	1.00 00	,105C 05	. 641C J2	-910L U2	1205	• ) ( ) C = () +	• 100C (14)	
12	+531C 17	1402 02	+895C J4	-8575 JC	•135C '5	·1235-04	•)146⇔U}  205 13	•274E 04	-464E UI
12	1225 14	32.5 02	2005 05	1355 93	A34E 33	2425 JA	112 - 11	.2425 34	10,50,00
10	.7AIF 17	2042 02	211F 05	1345 13	.456E 13	142-14	5915-01	2816 14	196 12
15	-282c 17	1853c 01	.1006 05	5755 12	328E 03	.7225-05	2455-33	277 14	.0336 .01
16	802F 16	287F 01	. 363E 04	2995 112	191E 03	3955-05	:873F-05	213F 04	.776E 01
17	208E 16	10 1E 01	123E 04	1675 02	195E 03	2366-45	334E-05	1446.04	
18	+550E 15	413E 00	- 380E 03	962E 01	591E J2	1345-05	.1178-05	-157F 13	459E 01
19	168E 15	1978 00	116E 03	541E 01	322E 02	7646.06	4675-05	.492E 03	286E 01
20	618E 14	101E 00	288E 02	2398 11	.191E 92	427E-06	201E-05	• ? 7 3 E + 1 3	.69E 11
21	.328E 14	,541E_01	.138E 02	1548 01	13SE 05	.222E.06	-707E-07	.153E 13	.971E NR
22	.178E 14	296E-01	,552 _E 01	.816E 00	.577E 11	1125-06	339E-07	.129E J2	.554 <u>-</u> 10
23	<b>.</b> 986E 13	.161E_01	.262E 01	.435E 1J	.325E 01	.544E.J7	171E-07	.133E J2	-303E DU
24	.612E 13	20-3868	.283E 01	233E 00	185£ 01	.26∩E=07	19233	.359E 03	.169E 0D
25	.350E 13	457E-02	.171E 01	.116E J7	.936E 00	•l145=j7	.345E-"9	•115F J2	.398E-JI
26	.188E 13	229E_02	.109E 01	55-E_01	.503E an	.167 <u>č</u> _uq	134E=33	.581€ al	.467E-91
27	.100E 13	112E-02	•867E 00	.25¤E-01	-243E 3J	•179E=08	•513E-J3	• 292E 11	•239E-01
28	.7218 12	-531E-03	.669E UU	.118F-JI	123E 04	-545L-U9	181E-07	•1436 91	.1225-01
29	• 313E 12	+C63E=03	-94UE UU	-5116-02	-619L-J1	• 62E=47	.3542-11	•737E 30	•6<3E=92
30	+164C 12	+20- 0A	./UZE UU		134- 61	■ 115E=99 172= 13	. 3/31-17	• 100E UU	•317E=76
22	3,26 11	-020E-04	- J95E 00	1116-07	•134E=01 EFEC .0	• + D < F = L +	- CJJE- LJ	•1097 40 7005 1	7755-3
32	+ J468 11 1188 11	+ C J I L = 0 4 7675 05	140E 00	-477(=}'	170F 12	• L 1 ) L = L ) 56 1 5 1 1	1545 11	• 70E=01	+/>)E=u/ 25.4F=12
3.2	- 114C II	, 1076-05	- TOUC 00	3145-04	-149512 	1336-11	.205-12	• ****C=91	.1235-132-
34 35	.359E 09	127E_06	.126E_01	.356E-05	.487E_14	.161E_12	.524F_13	.5278-12	.779E=14

MC A "	*12L14212								
ĩ	δ _p	δ _p	$\delta_r$	$\dot{\delta}_{\mathbf{r}}$	$\delta_a$	δ _a	^M 660	[.] м660	^M 1880
1	.000E-80	.000E-80	.000E-80	.000E-80	.000E-80	.UO0E-80	.000E+80	.000E-80	.000E-80
2	.918L+U4	.753L-01	.133E-03	.115E=02	.000E+80	.000E-80	<b>.</b> 155E 05	104E 06	157E 06
3	-,19/E+02	8136-03	.175E-02	473E+04	.00nE-80	.000E-80	331E 06	321E 05	236E 07
4		1476-02	.2586-02	.J76E=04	•000E-80	•000E-00	- 883E 06	+,794E 05	446E 07
2			.3120.02	- 382E-04	.0001.80	.0000.00	-181E 07	-,118E-06	727E 07
ę	224L-UI	2N3L-U2	-325L-02	- 1178-03	1000E-80	.000E-80	304E 07	••155E 06	102E N8
	2/90-01	++111L=U?	•108C+UZ	2826-03	.000E-80	.0006-80	••431E U7	13BE 06	112E 08
8	2745 01	.1416-03		2281-02	.0001-80	.0001-80	482E U7	143E U5	585E 07
	•• C/OL=UI	.2302=03	1//2-01	-,3276=02	.000L-80	.0002-80	•.434E U7	.136E U6	.54DE 07
10	3026-01	324E=02	- 2176-01	- 1625-03	.000E-80	-000E-80	•.552E 07	651E 04	.642E 07
11	01	3/6L-02	•105E=01	.07/8=04	.0002-00	+ UOOE - 80	• 110E 08	101E 07	••332E 08
12		.6210.02	.1262.01	2101-03	0002.00	,000E_80	. 198E 01	-137E 07	285E ON
13	4410-01	.1712-07	.1092-01	+.574L=U3	.0001-80	.000E-80	363E 07	180E 07	••229E 08
15	3140-01	· 1896-02	.09/0-02		·0001-80	.UUUE-80	520E U7	116E U7	16ZE 08
15	2135-01	- 37 3L-02		- 360Fe03	.0005-80		126E U7	-188E 06	-334E 07
10	425c=01	.7246402		• 640EUV7 251- 03	.0000-00	.0002-80	.J45E U7	.113E 07	.926E 07
17	+ 4 3 5 1	.3748-02	3692-86	2016 -3	0006-80	.000E-00	.648E U/	128E 07	-164E 08
18		209L-03	224L-02	. 321E+03	.00UE+00	.000E-80	.671E 07	.806E 06	.161E 08
19	,JJ4C,01		-,9366-03	.234E.U3	.0001-80	.000E.00	.50ZE 07	.217E 06	.116E 08
20	- 1202-01	938E-02	5201-03	=.417E=03	.000E-80	.UDDE-80	18DE 07	.624E 05	356E 07
21		.1026-02	.1136-04	•954E=04	.000E-80	.000E-80	36ZE 07	147E 06	788E 07
22	+ 215E=01	.10gE=07	2716-04	310E=04	000E-80	.000E-80	-,338E U7	-,196E 06	733E 07
23	-,1/6L-UI	•125E•02	-,827E=04	• 224E+07	.000E-80	.000E-80	294E 07	-,150E 06	-+632E 07
24	-,1325-01	1295-02	.7002-04	.5465=04	.000E-80	.000 <u>5</u> -80	-24ZE 07	863E 05	532E 07
25		•984E=03	.212E-03	.525E-04	.000E-80	• UNDE = 00	-189E 07	-,343E 05	428E 07
26	008E-U2	.8A5E_03	.197E_03	.529E.05	,000E_80	,000E_80	<b>.</b> ,140E 07	318E 04	<b>-,</b> 320E 07
27	447L-02	•595E-03	•200E=03	•674E=05	.000E-80	•00E-80	106E 07	394E 04	246E 07
28	-,296E-02	.412E.U3	.185E_03	.637E.U6	.000E.80	.000E_80	810E 06	.,364E 04	<b>190E 07</b>
29	-,211E+0Z	.227E-03	.272E-03	.277F=04	.000E-80	.000E-80	•.643E 06	-,511E 04	<b></b> 160E 07
30	••161E•07	.137E-03	.258E-U3	-,2207-05	.000E-80	.000E-80	-,518E 06	317E 04	••132E 07
31	-,126[-02	.10#E+03	.280E-03	.771E=05	.000E-80	.600 _E -80	419E 06	-,305 _E 04	106E 07
32	974E-03	.773E-04	.281E-03	135E+05	• 000E • 80	• 000E-80	-,343E 06	-,290E 04	••915E 06
33	- 145E 03	.620E_04	249E 03	734E_05	000E_80	. <b>00</b>	•,281E 06	_,132E 04	.,774E 06
34	623E-03	• 323E • 04	•286E-03	.108E-04	.000E-88	.000E-80	•.235E 06	267E 04	716E 06
35	5148.03	.291E_04	_278E_03	149F_05	0006-88	_ #ODE80	- 196F 06		445F 06

## Table D13. Accelerometer Load Relief ( $u_{24D}$ ) Covariance Results

J.

# Table D13. Accelerometer Load Relief $(u_{24D})$ Covariance Results (Continued)

MEAN RESPONSES

ĩ	м ₁₈₈₀	a _y	ay	ąβ	ąβ	φ	ф	У	ÿ
12	.000E-80	•000E=80	•000E-80	.000E-80	.000E-80 300E-01	-000E-80	.000E-80	•000E=80	.000E-80
3	248E 05	234F-01	- 320F-01	523F 00	0015-01	1AoF_03	- A71F-04		330F 00
Ă	209E 06		-132E 00	1A0F 01	208F 09	514F-01		290F 01	ADAF DO
5	- 2155 06	251r 00	331 - 00	405- 01	3276 00	11407	-1375-03	.307- 01	-151- 00
6		- 5556 00	- 723F 00	.720F 01	451F 00	- 181F-02	-1265-03	- 545F 00	- 1935 01
7	320E 06	- 103F 01	- 560E 00	109F 02	525F 00	- 2295-02	• 711F-0A	- 185F 07	- 569F 01
8	205E 07	-1658 01	181E 01	146F 02	492F 08	232F-02	819F-05	- 629F D2	-12AE 00
9	.303E 07	-233E 01	855E 01	182E 02	386E 00		134E-04	.149E 03	229E 02
10	.641E 06	205E 01	.150E 02	2135 02	342E 00	310E-02	lo2E-03	200E 03	370E 02
11	800E 07	214E 01	153E 02	.182E 02	.116E 01	697E-02	•.325E-03	530E 03	•.537E 02
12	322E 07	124F 01	286F 02	.112F 02	.247F 01	5095-02	·387F=03	819F 03	605F 02
13	.339Ē 07	103Ē 01	.305E 02	925Ĕ 01	329Ĕ 01	368Ĕ.O2	.117E-03	112E 04	.593E 02
14	- 223 _E 07	912E 0A	- 275E 02	735E 01	232E 01	- 263E-D2	123E-03	- 141E DA	- 542E 02
15	635E 06	246E 00	-188E 02	.183E 01	-213E 00	712E-03	-244E-03	166E DA	48E 02
16	,249E 07	.716E 00	868E 01	. 490E 01	132E 01	,166E_02	336E 03	_,184E 04	.303E 02
17	.261E 07	.151E 01	214E 01	937E 01	-173E 01	.344E-02	.238E-03	195E 04	114E 02
18	,154E 07	.166E 01	.243E 00	.,982E 01	.115E 01	.367E.02	<b></b> 119E <b>.</b> 04	-,196E 04	.892E 01
19	.313 _E 06	.129E 01	.299E 00	$737_{F}01$	316E 00	.281E-02	•.153E=03	186E 04	.280E 02
20	430E 06		.478E 00	.271E 01	-:411E-01	•,799E=03	•.646E-03	-,169Ē 04	,392F 02
21	- 388E 06	961E 00	-,394E.00	530E 01	222E 00	-,200E+02	_501E=04	•,150E 04	357E 02
22	404E 06	••910E 00	426E 00	.488E 01	312E 0	180E-02	.635E-04	133E 04	.308E 02
23	323E 06	798E 08	-,35NE 00	.421E 01	234E 00	-,149E-02	.747E.04	-,119E 04	.264E 02
24	2286 06	645E 00	341E 00	.337E 01	,129E 00	- 1136-02	.783E-04	-,107E 04	.227E 02
27	-,1226 06	492E U0	-,213E 00	.256E UI	.494L-01	001E-03	.667E-04	96DE 03	.198E 02
26	911E 04	362E 00	893E-01	187E 01	127E-02	••• ⁵³⁵ E=03	-218E-04	866E 03	.177E 02
27	142E 07	270E UU	-,312E-01	.135E UI	.103E-02	-,3558-03	.347E-04	-,782E 03	.161E 02
28	-,0002 04	2036 00	,166E-01	996E 00	265E-02	- 233E-03	237E=04	- 705E 03	149E 02
27		121C 00	• 4992 -01	•/20E 00	• 220E • 02	104E-03	•13•E=04	633E 03	•139E 02
20			+812C+VI	.5772 00	-400-02	-,1232-03	./801-05	•• 262L UJ	.133E UZ
32	106E 05		1210 00	3636 00		+,913E+U4	+624L+U5		127E 02
11	.530c 01		110 00	278- 00	-'440c-02	- 53304	3290=		120- 02
34	1295 05	- A03E-01	124F 00	2205 00	2225-02		1785-08	=. 317E 03	1146 05
35	229F D4	- 2865-01	115F 00	174r 00	_·857r_03	- 360F-04	1565-05	- 2695 01	-1165 02

# Table D13. Accelerometer Load Relief ( $u_{24D}$ ) Covariance Results (Continued)

PESPONSE COVARIANCES

1       .000E-80       .295E 13       .135E 15       .975E 14         4       .356E-03       .34E-02       .435E.04       .331E.03       .000E-80       .000E-80       .422E 13       .138E 15       .575E 14         5       .535E-03       .747E-04       .122E 02       .000E-80       .000E-80       .659E 13       .231E 15       .122E 15         6       .557E-03       .105E-01       .331E-04       .134E-02       .000E-80	ĩ	δ _p	δ _p	$\delta_{\mathbf{r}}$	$\dot{\delta}_{r}$	δ _a	δ _a	^M 660	^M 660	M ₁₈₈₀
c       .756E-07       .336E-03       .900E-00       .400E-00       .477E       12       .777E       14       .177E       14       .177E       14       .187E       187E       187E         3       .184E-03       .620E-03       .34E-02       .433E.04       .631E.03       .000E-80       .000E-80       .222E       .331E       15       .122E       15       .131E       .122E       .131E       <	1	.000E-80	.010E-80	.0002-80	.000E-80	.000E-80	.000E-80	.000E-80	.000E-80	.000E-80
3       .107L-03       .200L-03       .200L-08       .000L-00       .412L-13       .108L-13       .576L-14         4       .336E-03       .77E-07       .417E-04       .122E-02       .000E-00       .659E 13       .331E 15       .128L 15         6       .557E-03       .105E-01       .336E-04       .137E-02       .000E-00       .000E-00       .659E 13       .574E 14       .126E 14         7       .434E-03       .10E-01       .562E-04       .375E-02       .000E-00       .000E-00       .618E 13       .320E 16       .478E 15       .957E 14         9       .11E-02       .207E-03       .444E-03       .000E-00       .000E-00       .616E 13       .320E 16       .478E 15       .597E 14         9       .11E-02       .277E 00       .601E-03       .795E-01       .000E-00       .000E-00       .616E 13       .302E 16       .617E 15         10       .11E-02       .277E 00       .601E-03       .934E-01       .000E-00       .000E-00       .371E 14       .436E 16       .617E 15         11       .307E 02       .136E 00       .425E-03       .757E-01       .000E-00       .000E-00       .366E 14       .161E 16       .672E 15         12       .304E-02       .158E 04	2	104E-07	.3595-03	.138E-04	.9002-03	.000E-80	.000E-80	.1756 12	.773E 14	•189E 14
3         3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	3	-104C=03	+620C-03	• 296L • 04	. 301E=03	.000E-00	.000L-00	A275 13	.183E 15	.576E 14
2       276 - 03       106 - 01       336 - 02       106 - 04       106 - 04       000 - 80       000 - 80       000 - 80       13       311 - 15       1124 - 15         7       434 - 03       367 - 02       774 - 03       424 - 03       000 - 80       000 - 80       052 - 13       571 - 14       716 - 14         9       750 - 03       136 - 00       599 - 03       494 - 01       000 - 80       000 - 80       600 - 60       636 - 13       3226 - 16       6473 - 15         10       111 - 02       207 - 0       601 - 03       759 - 01       000 - 80       000 - 80       103 - 14       416 - 16       617 - 15         11       307 - 02       207 - 0       601 - 03       759 - 01       000 - 80       000 - 80       103 - 14       416 - 16       617 - 15         12       30 - 207 - 237 - 0       604 - 03       .094 - 03       934 - 01       000 - 80       000 - 80       .371 - 14       .389 - 16       .115 - 16         13       250 - 02       274 - 03       .575 - 03       .755 - 01       000 - 80       000 - 80       .368 - 14       .161 - 667 - 15       .154 - 15       .154 - 15       .154 - 15       .154 - 15       .154 - 15       .154 - 15       .154 - 15       .154 - 15 <td< td=""><td></td><td>63/F=03</td><td></td><td>+1=E=0+</td><td>1225-02</td><td>0005-00</td><td>000C_00</td><td></td><td>.2956 15</td><td>.9/86 14</td></td<>		63/F=03		+1=E=0+	1225-02	0005-00	000C_00		.2956 15	.9/86 14
7       434E-03       .367E-02       .774E-05       .424+03       .000E-80       .992E       13       .571E       14       .714E-04         8       .312E-03       .100E-01       .562E-04       .375E-02       .000E-80       .000E-80       .616E       13       .322E       15       .571E       14       .714E-04         9       .750E-03       .136E       00       .592E-03       .494E-01       .000E-80       .616E       .302E       16       .413F       15         10       .111E-02       .207E       .00       .601E-03       .759E-01       .000E-80       .00E-80       .103E       14       .136E       16       .615E       15         11       .307E-02       .734E       .334E-01       .000E-80       .000E-80       .372E       14       .466E       16       .617E       15         12       .308E-02       .156E       .004E-80       .000E-80       .000E-80       .372E       14       .468E       16       .677E       15         13       .250E-02       .274E       .644E-03       .100E       .000E-80       .000E-80       .285E       14       .657E       15       .554E       15       .554E       15       .	6	567E-03	.105E-D1	-330E-04	138F-02	.000E-80	.000F_80	+6595 13	- 331C 15	+123C 15
312E-03       .100E-01       .562E-04       .375E-02       .000E-80       .000E-80       .616E 13       .321E 15       .567E 14         9       .750E-03       .136E 00       .599E-03       .499E-01       .000E-80       .600E-80       .676E 13       .302E 16       .473F 15         10       .111E-02       .136E 00       .266E.03       .359E_01       .000E-80       .000E-80       .442E 14       .138E 16       .617E 15         12       .30gE-02       .331E 00       .674E-03       .934E+01       .000E-80       .000E-80       .372E 14       .349E 16       .115E 16         13       .250E-02       .274E 01       .664E-03       .755E+01       .000E-80       .000E-80       .372E 14       .657E 15       .354E 15         14       .486E-02       .158E 00       .455E+03       .755E+01       .000E-80       .000E-80       .202E 14       .232E 15       .108E 15         15       .123E-02       .644E+01       .171E+03       .286E+01       .000E+80       .000E+80       .202E 14       .232E 15       .316E 14       .935E 14       .958E 14         16       .667E+03       .195E-02       .110E+04       .173E+02       .000E+80       .000E+80       .000E+80       .000E+80       .000E+	7	434E-03	- 367E-02	.774F-05	4245-03	0005-00	.000F-+0	.052F 13	5715 14	
9       .750E-03       .136E       00       .599E-03       .494E-01       .000E-80       .676E       13       .302E       16       .413E       17         10       .111E-02       .207E       00       .601E-03       .759E-01       .000E-80       .000E-80       .103E       14       .416E       16       .617E       15         12       .307E-02       .136E       00       .664E-03       .359E       0100E-80       .000E-80       .372E       14       .436E       16       .158E       16       .678E       15         13       .250E-02       .274E       00       .664E-03       .106E       000E-80       .000E-80       .372E       14       .268E       16       .958E       15         14       .168E-02       .158E       00       .657E-03       .105E-01       .000E-80       .000E-80       .368E       14       .611E       16       .672E       15         15       .123E-02       .614E-03       .171E-03       .286E-01       .000E-80       .000E-80       .312E       14       .657E       15       .534E       15         16       .667E-03       .639E-02       .10E-04       .173E-02       .000E-80       .000E-80	8	312E-03	.100E-01	.562E-04	.375F=02	.000E+80	.000F+80	.81AF 13	32AF 15	.587F 14
1111E=02       .207E 00       .801E=03       .750E=01       .000E=80       .000E=80       .103E 14       .416E 16       .615E 15         11       .307E=02       .136E 00       .266E=03       .359E_01       .000E=80       .000E=80       .307E 14       .138E 16       .678E 15         12       .304E=02       .274E 00       .664E=03       .104E 00       .000E=80       .000E=80       .372E 14       .349E 16       .678E 15         13       .250E=02       .274E 00       .664E=03       .104E 00       .000E=80       .000E=80       .372E 14       .268E 16       .958E 15         14       .128E=02       .614E=01       .171E=03       .755E=01       .000E=80       .000E=80       .205E 14       .657E 15       .354E 15         15       .123E=02       .614E=01       .173E=02       .000E=80       .000E=80       .202E 14       .232E 15       .100E 15         16       .664E=03       .193E=02       .100E=80       .000E=80       .000E=80       .000E=80       .000E=80       .202E 14       .232E 15       .100E 15         17       .599E=03       .635E=02       .110E=04       .173E=02       .000E=80       .000E=80       .000E=80       .000E=80       .000E=80       .000E=80       .000	9	750E-03	.136E 00	599E-03	.494F+01	00080	000r-80	.676F 13	.302r 16	A73E 15
11       ,307E.02       ,136E 00       ,268E.03       .359E.01       .000E.80       .000E.80       .371E 14       .138E 16       .115E 16         12       ,308E.02       .333E 00       .674E.03       .934E.01       .000E.80       .000E.80       .371E 14       .349E 16       .115E 16         13       .250E.02       .274E 00       .664E.03       .755E.01       .000E.80       .000E.80       .372E 14       .266E 16       .958E 15         14       .188E.02       .158E 00       .455E.03       .755E.01       .000E.80       .000E.80       .368E 14       .161E 16       .672E 15         15       .123E.02       .614E.01       .171E.03       .266E.01       .000E.80       .000E.80       .285E 14       .637E 15       .354E 15         16       .667E.03       .635E.02       .110E.04       .173E.02       .000E.80       .000E.80       .607E 13       .355E 14       .435E 14       .435E 14       .445E 14       .435E 14       .445E 14       .445E 14       .435E 14       .445E 14       .445E 14       .435E 14       .445E 14       .435E 14       .445E 14       .455E 15       .556E 15       .56E 15	10	.111E=p2	.207E 00	.801E-03	.759E+01	innE-8m	.0002-80	.103E 14	416E 16	615F 15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	307E_02	.136E 00	268E_03	359E 01	000E-80	.000E_80	442E 14	.138E 16	.675E 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	,30,E+02	.333E 00	.674E-03	.934E=01	.000E-80	.000E-80	.371E 14	.349E 16	-115E 16
14       .188E-02       .158E 00       .455E-03       .755E-01       .000E-80       .368E 14       .161E 16       .672E 15         15       .123E-02       .614E-01       .171E-03       .286E-01       .000E-80       .800E-80       .285E 14       .657E 15       .354E 15         16       .667E-03       .195E-01       .489E-04       .775E=02       .000E-80       .000E-80       .202E 14       .232E 15       .180E 15         17       .599E-03       .635E-02       .110E-04       .173E-02       .000E-80       .000E-80       .007E 13       .355E 14       .463E 14         10       .364E-03       .195E-02       .224E-05       .336E 03       .000E-80       .000E-80       .007E 13       .355E 14       .463E 14         19       .218E-03       .706E-03       .399E-06       .537E+05       .000E-80       .000E-80       .017E 14       .990E 13       .655E 13       .655E 14         20       .626E-03       .135E-03       .785E-06       .163E+05       .000E-80       .000E-80       .137E 14       .956E 13       .650E 14         21       .606E-03       .135E-04       .306E+06       .2069E+06       .000E-80       .000E-80       .137E 14       .556E 13       .650E 14	13	250E-02	.274E 00	.664E.03	.106E 00	000E-80	.000E.80	.372E 14	268E 16	,958E 15
15       .123E-02       .614E-01       .171E-03       .286E01       .000E-80       .205E 14       .657E 15       .354E 15         16       .860E+03       .193E+01       .489E+04       .775E+02       .000E+80       .000E+80       .202E 14       .232E 15       .180E 15         17       .599E+03       .635E+02       .110E+04       .173E+02       .000E+80       .000E+80       .807E 13       .355E 14       .483E 14         19       .218E+03       .700E+03       .389E+06       .537E+04       .000E+80       .000E+80       .807E 13       .355E 14       .463E 14         20       .626E+03       .135E+03       .785E+08       .183E+05       .000E+80       .000E+80       .137E 14       .990E 13       .625E 14         21       .606E+03       .135E+04       .306E+06       .000E+80       .000E+80       .137E 14       .990E 13       .625E 14         22       .270E+03       .668E+04       .306E+06       .000E+80       .000E+80       .664E 13       .322E 13       .135E 13       .149E 14         23       .117E+03       .270E+04       .394E+06       .266E+06       .000E+80       .000E+80       .900E 12       .668E 13       .322E 13       .149E 13         24 <t< td=""><td>14</td><td>.188E-02</td><td>.158E 00</td><td>.455E-03</td><td>.755E.01</td><td>000E-80</td><td>.000E-80</td><td>.368E 14</td><td>.161E 16</td><td>.672E 15</td></t<>	14	.188E-02	.158E 00	.455E-03	.755E.01	000E-80	.000E-80	.368E 14	.161E 16	.672E 15
16       .666E=03       .193E=01       .469E=04       .775E=02       .000E=60       .000E=60       .202E       14       .232E       15       .180E       15         17       .599E=03       .635E=02       .116E=04       .173E=02       .000E=60       .800E=60       .131E       14       .831E       14       .915E       14         10       .364E=03       .195E=02       .224E=05       .336E=03       .000E=60       .000E=80       .483E       13       .179E       14       .263E       14         20       .626E=03       .309E=03       .121E=06       .538E=05       .000E=80       .000E=80       .137E       14       .990E       13       .625E       14         21       .606E=03       .135E=03       .785E=06       .163E=05       .000E=80       .000E=80       .137E       14       .990E       13       .625E       14         22       .270E=03       .668E=04       .306E=08       .561E=06       .000E=80       .000E=80       .137E       14       .556E       13       .322E       13       .145E       13       .112E       14       .142E       .142E       .131E       .131E       .131E       .131E       .131E       .131E	15	123E-02	.614E-01	.171E-03	.286E-01	.0005-80	,800E-80	.285E 14	.657E 15	.354E 15
17       .599E-03       .635E-02       .110E-04       .173E-02       .000E-80       .000E-80       .131E       14       .831E       14       .990E       13       .623E       14       .132E       .600E       .600E       .600E       .137E       14       .556E       13       .149E       14       .131E       14       .131E       14       .131E       14       .556E	16	•860E+03	.193E-01	.489E-04	.775E=02	.000E-80	.000E-80	.202E 14	.232E 15	.180g 15
10       .364.03       .195.02       .224.00       .3380.03       .0000.80       .8007E       13       .355E       14       .483E       14         19       .2180.03       .7080.03       .3890.06       .3370.04       .0000.80       .0000.80       .483E       13       .1970.14       .263E       14         20       .6260.03       .3390.03       .1210.06       .5380.05       .0000.80       .0000.80       .137E       14       .990E       13       .625E       14         21       .6060.03       .1350.03       .7850.08       .1630.000.0000.80       .0000.80       .137E       14       .556E       13       .625E       14         22       .2700.03       .6680.04       .3060.08       .5610.0000.0000.80       .00000.80       .0000.80       .322E       13       .135E       13       .149E       14         23       .1170.03       .2700.04       .3940.08       .4610.06       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .0000.80       .00000.80       .0000.80 <td< td=""><td>17</td><td>•299E=03</td><td>.635E-02</td><td>+110E=04</td><td>.173E=02</td><td>•000E-80</td><td>•000E-80</td><td>,131E 14</td><td>.831E 14</td><td>.915E 14</td></td<>	17	•299E=03	.635E-02	+110E=04	.173E=02	•000E-80	•000E-80	,131E 14	.831E 14	.915E 14
19       .2182-03       .7002-03       .3892-06       .5372-04       .0002-80       .0002-80       .187E       13       .179E       14       .2632       14         20       .6262-03       .3092-03       .1212-06       .5382-05       .0002-80       .0002-80       .137E       14       .990E       13       .6551       14         21       .6062-03       .1352-03       .7852-08       .1832-05       .0002-80       .0002-80       .137E       14       .556E       13       .650E       14         22       .2702-03       .6682-04       .3062-08       .5612-06       .0002-80       .0002-80       .322E       13       .185E       13       .119E       14       .2635E       14         23       .1172-03       .2702-04       .3942-08       .2692-06       .0002-80       .0002-80       .168E       13       .110E       13       .811E       13         24       .5042-04       .6072-05       .1152-07       .3672-06       .0002-80       .0002-80       .900E       .232E       13       .110E       13       .811E       13       .110E       13       .811E       13       .110E       .2482-05       .101E-07       .2286-06       .0002-80	18	, 364CU3	.1951.02	2246-05	338E-03	000E_80	.000E_80	.807E 13	.355E 14	.483E 14
20       .606E-03       .306E-03       .121E-06       .53ME+05       .000E+80       .000E+80       .137E 14       .990E 13       .625E 14         21       .606E-03       .135E+03       .785E-08       .163E+05       .000E+80       .000E+80       .137E 14       .556E 13       .650E 14         22       .270E-03       .666E-04       .306E-08       .561E+06       .000E+80       .000E+80       .664E 13       .322E 13       .112E 14         23       .117E+03       .27DE-04       .394E+08       .269E+06       .000E+80       .000E+80       .00E+80       .664E 13       .322E 13       .185E 13       .149E 14         24       .504E+04       .133E+04       .215E+08       .461E+06       .000E+80       .000E+80       .000E+80       .900E 12       .668E 12       .459E 13         25       .251E+04       .607E+05       .115E+07       .367E+06       .000E+80       .000E+80       .900E 12       .668E 12       .459E 13         26       .111E+04       .248E+05       .101E+07       .228E+06       .000E+80       .000E+80       .900E+80       .278E 12       .218E 12       .218E 12       .218E 12       .218E 12       .218E 12       .218E 12       .218E 12       .617E 12       .218E 12	19	.218C-03	•700C-03	-389E-06	•537E=04	.000E-80	.000E-80	+483E 13	.179E 14	+263E 14
21       .6662.03       .133E.03       .785E.08       .183E.05       .000E.80       .000E.80       .137E 14       .556E 13       .650E 14         22       .270E.03       .668E.04       .306E.08       .561E.06       .000E.80       .600E.80       .664E 13       .322E 13       .312E 14         23       .117E.03       .270E.04       .394E.08       .269F.06       .000E.80       .000E.80       .322E 13       .185E 13       .149E 14         24       .504E.04       .133E.04       .215E.08       .461E.06       .000E.80       .000E.80       .900E 12       .668E 12       .458E 13         25       .251E.04       .607E.05       .115E.07       .367E.06       .000E.80       .900E.80       .900E 12       .668E 12       .458E 13         26       .111E.04       .248E.05       .101E.07       .228E.06       .000E.80       .900E.80       .278E 12       .218E 12       .149E 13         27       .491E.05       .981E.06       .105E.07       .147E.06       .000E.80       .000E.80       .278E 12       .218E 12       .149E 13         28       .212E.05       .374E.06       .862E.08       .799E.07       .000E.80       .000E.80       .278E 12       .218E 12       .618E 12	20	.020L=U3	.309L-V3	.1216.00	-23NE-02	.UODE.80	.000E_80	.137E 14	,990E 13	.625E 14
22       .270E=03       .666E=04       .306E=06       .961E=06       .000E=80       .600E=80       .664E=13       .322E=13       .185E=13       .149E=14         23       .117E=03       .270E=04       .394E=08       .269E=06       .000E=80       .000E=80       .322E=13       .185E=13       .149E=14         24       .504E=04       .133E=04       .215E=08       .461E=06       .000E=80       .000E=80       .900E=12       .668E=12       .450E=13         25       .251E=04       .607E=05       .115E=07       .367E=06       .000E=80       .000E=80       .900E=12       .668E=12       .450E=13         26       .111E=04       .248E=05       .101E=07       .228E=06       .000E=80       .000E=80       .900E=80       .218E=12       .218E=12       .254E=13         27       .491E=05       .981E=06       .105E=07       .147E=06       .000E=80       .000E=80       .159E=12       .218E=12       .877E=12         28       .212E=05       .374E=06       .882E=08       .799E=07       .000E=80       .000E=80       .992E=11       .128E=12       .877E=12         29       .107E=05       .179E=06       .187E=07       .830E=07       .000E=80       .600E=80       .992E=11       .128E=12 </td <td>21</td> <td>. 606C=03</td> <td>·135E-03</td> <td>•785E=08</td> <td>.183E=05</td> <td>.000E-80</td> <td>.000E-80</td> <td>137E 14</td> <td>.556E 13</td> <td>.650E 14</td>	21	. 606C=03	·135E-03	•785E=08	.183E=05	.000E-80	.000E-80	137E 14	.556E 13	.650E 14
23       .117603       .206004       .394600       .2096000       .000680       .000680       .322613       .185613       .149614         24       .504604       .133604       .215608       .461606       .000680       .000680       .168613       .110613       .811613         25       .251604       .607605       .115607       .367606       .000680       .000680       .900612       .668612       .458613         26       .111604       .248505       .101607       .228506       .000680       .000680       .489612       .374612       .254613         27       .4916.05       .9816.06       .1056.07       .1476.06       .000680       .000680       .278612       .218612       .149613         28       .2126.05       .3746.06       .8826.08       .7996.07       .000680       .000680       .159612       .128612       .877612         29       .1076.05       .1796.06       .1876.07       .8306.07       .000680       .000680       .992611       .128612       .61A6122         30       .6176.06       .7386.07       .2018.07       .000680       .000880       .992611       .128611       .417612         31       .3776.06       .3786.07       .20	22	11703	.018L+V4	- JUGE - 00	.261E.00	.0002-80	.000E-80	.664E 13	.322E 13	.312E 14
24       .251E.04       .607E.05       .135E.07       .251E.00       .000E.80       .000E.80       .900E 12       .668E 12       .458E 13         25       .251E.04       .607E.05       .115E.07       .367E.06       .000E.80       .900E.80       .900E 12       .668E 12       .458E 13         26       .111E-04       .248E-05       .101E-07       .228E.06       .000E.80       .000E.80       .278E 12       .218E 12       .2149E 13         27       .491E.05       .901E.06       .105E.07       .147E.06       .000E.80       .000E.80       .278E 12       .218E 12       .149E 13         28       .212E.05       .374E.06       .882E.08       .799E.07       .000E.80       .000E.80       .159E 12       .128E 12       .877E 12         29       .107E.05       .179E.06       .187E.07       .830E.07       .000E.80       .000E.80       .992E 11       .125E 12       .61AE 12         30       .617E.06       .773E.07       .166E.07       .414E.07       .000E.80       .000E.80       .992E 11       .125E 12       .61AE 12         31       .377E.06       .378E.07       .201E.07       .507E.07       .000E.80       .000E.80       .277E 11       .545E 11       .198E 12	23	5045-04	1225 -4	- 3445-00	.2092.00	0002-00	.000E-80	.32CE 13	-185E 13	+149E 14
23       .23       .23       .23       .012.04       .0012.00       .0002.80       .9002.10       .668E       12       .458E       13         26       .111E-04       .248E-05       .101E-07       .228E+06       .000E-80       .000E-80       .489E       .212       .374E       12       .254E       13         27       .491E-05       .981E-06       .105E-07       .147E_06       .000E-80       .000E-80       .278E       12       .218E       12       .149E       13         28       .212E+05       .374E-06       .882E-08       .799E=07       .000E-80       .000E-80       .992E       .128E       12       .877E       12       .618E       12       .877E       12       .618E       12       .877E       12       .618E       12       .877E       12       .618E       12       .618E       13       .617E-06       .179E-06       .167E-07       .000E-80       .000E-80       .992E       .11       .129E       12       .618E       12       .618E       .618E       13       .617E-07       .618E       .000E-80       .000E-80       .640E       .992E       .11       .129E       .618E       .618E       .233E       .225E_06       .137E-07	24	2516 04	• 1 3 3 5 - 0 4	+ 213E+00	1451E+00	0001-00	•000E=00	.168E 13	.110E 13	.811E 13
27       .491E-05       .981E-06       .105E-87       .147E-06       .000E-80       .000E-80       .278E 12       .278E 12       .149E 13         28       .212E-05       .374E-06       .882E-08       .799E=07       .000E-80       .000E-80       .159E 12       .128E 12       .877E 12         29       .107E-05       .179E-06       .187E-07       .830E=07       .000E-80       .000E-80       .992E 11       .125E 12       .61AE 12         30       .617E-06       .773E-07       .166E=07       .414E=07       .000E-80       .000E-80       .992E 11       .125E 12       .61AE 12         31       .377E-06       .378E-07       .201E-07       .507E-07       .000E-80       .000E-80       .640E 11       .924E 11       .417E 12         32       .225E-06       .137E-07       .201E-07       .507E-07       .000E-80       .000E-80       .277E 11       .545E 11       .198E 12         33       .131E-06       .398E-08       .154E-07       .364E=08       .000E-80       .000E-80       .277E 11       .545E 11       .198E 12         33       .131E-06       .398E-08       .154E-07       .364E=08       .000E-80       .165E 11       .428E 11       .142E 12         34       <	2.5	1115-04	.007C-05	1015.0-	, JO/E 00	0005-00	,0000,000	9001 12	.065E 12	428E 13
28       .212E-05       .374E-06       .802E-08       .79E-07       .000E-80       .000E-80       .159E 12       .128E 12       .877E 12         29       .107E-05       .179E-06       .187E-07       .830E-07       .000E-80       .000E-80       .992E 11       .128E 12       .877E 12         30       .617E-06       .773E-07       .166E-07       .414E-07       .000E-80       .000E-80       .640E 11       .924E 11       .417E 12         31       .377E-06       .378E-07       .201E-07       .507E-07       .000E-80       .000E-80       .640E 11       .924E 11       .417E 12         32       .225E-06       .137E-07       .201E-07       .507E-07       .000E-80       .000E-80       .277E 11       .545E 11       .198E 12         33       .131E-04       .398E-08       .154E-07       .364E-08       .000E-80       .000E-80       .185E 11       .426E 11       .142E 12         34       .917E-07       .902E-07       .666E-09       .000E-80       .000E-80       .126E 11       .746E 11       .122E 12         35       .623E-07       .271E-09       .190E-07       .666E-09       .000E-80       .000E-80       .126E 11       .746E 11       .122E 12         35 <t< td=""><td>25</td><td>491F-05</td><td>• 2485 • 07</td><td>104F 87</td><td>1475 06</td><td>- 000E-80</td><td>.0001-80</td><td>•489t 12</td><td>• 3741 12</td><td>•254E 13</td></t<>	25	491F-05	• 2485 • 07	104F 87	1475 06	- 000E-80	.0001-80	•489t 12	• 3741 12	•254E 13
29       .107E-05       .179E-06       .187E-07       .830E=07       .000E=80       .000E=80       .992E 11       .128E 12       .61AE 12         30       .617E-06       .773E-07       .166E=07       .414E=07       .000E=80       .000E=80       .600E=80       .992E 11       .125E 12       .61AE 12         31       .377E-06       .378E-07       .201E-07       .507E=07       .000E=80       .600E=80       .640E 11       .924E 11       .417E 12         32       .225E-06       .137E-07       .201E-07       .507E=07       .000E=80       .000E=80       .277E 11       .545E 11       .198E 12         33       .131E-04       .398E=08       .154E=07       .364E=08       .000E=80       .000E=80       .277E 11       .545E 11       .198E 12         34       .917E=07       .962E=09       .204E=07       .666E=09       .000E=80       .125E 11       .482E 11       .142E 12         35       .623E=07       .271E=09       .190E=07       .668E=10       .000E=80       .600E=80       .895E 10       .824E 11       .127E 12         35       .623E=07       .271E=09       .190E=07       .668E=10       .000E=80       .600E=80       .895E 10       .824E 11       .127E 12	2.	212F-05	. 37AF-06	**2F_0*	7005-07	0005-00	0000-00	. 2/0C 12	12-5 12	1491 13
30       .617E=06       .773E=07       .166E=07       .414E=07       .000E=80       .600E=80       .640E 11       .924E 11       .417E 12         31       .377E=06       .378E=07       .201E=07       .507E=07       .000E=80       .600E=80       .415E 11       .519E 11       .267E 12         32       .225E=06       .137E=07       .202E=07       .173E=07       .000E=80       .000E=80       .277E 11       .545E 11       .198E 12         33       .131E=04       .398E=08       .154E=07       .364E=08       .000E=80       .000E=80       .155E 11       .482E 11       .142E 12         34       .917E=07       .982E=09       .204E=07       .666E=09       .000E=80       .000E=80       .126E 11       .748E 11       .122E 12         35       .623E=07       .271E=09       .190E=07       .668E=10       .000E=80       .000E=80       .895E 10       .824E 11       .126E 11	29	107E-05	179E-06	187F-07	A30F-07	000E-88	400E-80	009E 11	1286 12	•BITE 12
31       .377E-06       .378E-07       .201E-07       .507E-07       .000E-80       .415E 11       .519E 11       .267E 12         32       .225E-06       .137E-07       .202E-07       .173E-07       .000E-80       .000E-80       .277E 11       .545E 11       .198E 12         33       .131E-04       .398E-08       .154E-07       .364E=08       .000E-80       .000E-80       .155E 11       .482E 11       .142E 12         34       .917E-07       .962E-09       .204E-07       .866E-09       .000E-80       .000E-80       .125E 11       .482E 11       .142E 12         35       .623E-07       .271E-09       .190E-07       .688E-10       .000E-80       .000E-80       .895E 10       .824E 11       .126E 11       .124E 11       .124E 11	30	.6175-06	.7735-07	-1665-07	.414=07	10005-80	.0000-00	4792C 11	+125C 1C	+DINE 10
32       .225E_06       .137E_07       .202E_07       .173E_07       .000E_80       .000E_80       .277E 11       .545E 11       .198E 12         33       .131E=04       .398E=08       .154E=07       .364E=08       .000E=80       .000E=80       .277E 11       .545E 11       .142E 12         34       .917E=07       .962E=09       .204E=07       .364E=08       .000E=80       .105E 11       .482E 11       .142E 12         35       .623E=07       .271E=09       .190E=07       .688E=10       .000E=80       .600E=80       .895E 10       .824E 11       .127E 12	31	377F=06	-3785-07	2015-07	5075-07	1000E-80		A185 31	+724E 11	+417E 16
33 .131E-04 .398E-08 .154E-07 .364E=08 .000E-80 .000E-80 .185E 11 .482E 11 .142E 12 34 .917E-07 .982E-09 .204E-07 .866E-09 .000E-80 .000E-80 .126E 11 .142E 12 35 .623E-07 .271E-09 .190E-07 .688E-10 .000E-80 .000E-80 .895E 10 .824E 11 .086E 11	32	225E_06	137E-07	202E_07	1738-07	.000E_80	.0005-80	277F 11	-545E 11	198F 12
34 .917E=07 .982E=09 .204E=07 .886E=09 .000E=80 .000E=80 .128E 11 .748E 11 .122E 12 35 .623E=07 .271E=09 .190E=07 .688E=10 .000E=80 .000E=80 .895E 10 .824E 11 .886E 11	33	.131E+04	. 39 . E-0.	-154E-07	364E=0=	.000E-+*	-000F-+0	.1.sF 11	- A + 2F 11	149F 19
35 .623E+07 .271E+09 .190E+07 .688E+10 .000E+80 .000E+60 .895E 10 .824E 11 .886E 11	34	.917E.07	.982E-09	204E-07	.886E.09	.000E.8	.000E_80	128E 11	.748E 11	1275 12
	35	.623E+07	.271E-09	.190E-07	688E-10	000E-80	.000E-80	.895E 10	.824E 11	.986E 11

# Table D13. Accelerometer Load Relief ( $u_{24D}$ ) Covariance Results (Concluded)

_

_

#### PESPONSE COVARIANCES

ĩ	М ₁₈₈₀	a _y	a y	$ar{\mathbf{q}}eta$	ąβ	φ	÷	У	ý
1			.8005-80	.008E+88	.080E-88	.0005-80	.008E+80	.0002-80	.800E-80
2	,113E 16	.132E 00	.1028 01	.715E-01	.512E 08	.646E-0A	.254E-06	.998E-02	.334E-02
3	,374E 15	.784E-01	,713E 00	111E 02	.737E-01	,102E.05	.747E-06	.874E DZ	.451E 01
4	,113g 16	.232E 09	+898E ♥1	,234 ₅ 02	.435E 00	,211g=05	.257E-05	.274E 03	.531g 00
5	,198E 14	.492E 88	,369E 02	.378E 02	.147E 01	314E-05	.458E-05	,223E Q3	.208E 01
	24ZE 16	.753E 09	810E 02	498E 02	10 380°,	3385-05	4862-05	,513E 01	160g 02
7	•724E 15	.710E 00	+3 ⁹ 2E #2	•613E 02	109E 02	.283E+05	.166E-05	,668E 03	498E 02
8	,3926 16	,162E 01	235E 03	,739E 0Z	2506 02	,1916_05	,Z73E,05	.481E 04	,113E 03
.2	+479E 17	118E 02	,448E U4	.956E UZ	.306E DZ	.1936-05	.34 E-04	.172E 05	222E 03
1.	+733E 17	ZAJE UZ	+953E 04	136E 03	,979E DZ	,315E-05	.470E+04	.458E 05	.408E 03
11	,461E 17	1316 05	-822E 44	.11ZE 03	193E 03	,169E=04	.358E-04	.103E 06	.668g 03
12	, IVOL 10	. JUBE 07	.2382 93	.59WE 02	299E 03	,133E-04	835E-04	202E 06	.816E 03
13	.96JE 17	2416 02	2716 05	.611E UZ	4356 03	106E=04	.689E-04	343E 06	.820E 03
14	·	-1025 07	+202L 07	.07/E 02	467E 03	.0982-05	•420E=04	• 522E 06	.751E 03
14	4485 14	. 7072 01	,9092 44	, J 38E UZ	3272 03	,0/01.03	,183E-04	,731E 06	.779E 03
17	1775 14	1975 61	1265 84	2718 02	1055 03	,7252-05	.7102-05	.970E 06	IDE 03
1.	4450 15		. 378- 83	177- 02	1 548- 02	245-04	296L-07	1256 07	,124E 04
19	1526 15	1485 00	1145 03	10AF 02	1225 02	1405 05	.1156-05	-161E UY	-180E 04
28	565F 14	927F 06	286F 82	3086 02	IALE N2	3865-05	, 5010-06	2092 07	.276L U4
	101E 14	9755 00	197F 80	3945 03	1016 02	, JOOE - 05	,3052-00		307E 04
źź	. 164ē 17	486E 00	.549E 01	139F 02	-103C UC	1956-05	• 1 3 3 C = 0 C		*2315 84
23	026E 13	23.E 00	.261E 01	664F 01	325E 01	.8525-04	2.55-07	52+F 07	1045 04
24	596E 13	.120E 00	.283E 01	.327E 01	182E 01	3715-06	1316-07	-621F 07	178F 04
25	,343g 13	.611F-01	.171r 01	.164r 01	.986F 08	.163e-06	553e-0A	.721c 07	.168c 04
26	,185E 13	.3266-01	.109E 91	.847E 00	503E 0	.709E-07	226E-08	825E 07	159F 04
27	9978 12	1795-01	867E 00	446F 00	248F 88	308F-07	8985-09	936F 07	1536 04
28	522E 12	.999E+82	.669E 80	242E 00	1238 08	131E-07	355F+09	1055 08	IAGE DA
<b>?</b> 9	320E 12	.546E.#2	.940E 00	135E 00	618E_01	.645E_0A	141E-09	117E DA	1467 04
30	.168E 12	.3332-02	.702E 00	.793E=01	.303E-01	-341E=0#	.504E-10	130E 0.	JASE DA
31	,845E 11	,2196-02	595E 00	480E.01	134E-01	1985-08	.266E-10	144E 08	.141F 04
32	,354E 11	.177E-02	.390E 00	292-01	515E+02	,116r=08	.102r=10	15AF 0A	140 m 04
33	,117Ē 11	.765Ē-83	.160Ē ₿0	.179Ĕ.01	170Ē-02	671E-09	430E-11	172E 08	139E 04
34	,325E 10	.366E-O3	.767E-01	_112E+01	436E-03	456E-09	118E-11	188E 08	138E 04
35	,374E 89	.1836-03	-126E-01	.700E+02	487E=04	.385E=09	626E-12	204E 08	-137E 04

241
ME A "	RESPONSES								
ĩ	$\delta_{\mathbf{p}}$	ό _p	$\delta_{\mathbf{r}}$	δ _r	$\delta_{\mathbf{a}}$	$\dot{\delta}_{a}$	M ₆₆₀		^M 1880
1	.0002-80	.008E-88	.000E-80	.000E+80	.000E-88	.000E-80	+000E-80	•000E+80	.000E-80
Ż	.918E-04	·753E-03	.133E-03	.115E-02	,000E-80	, <b>8</b> 78E-80	•.155E 05	1 <i>1</i> 4E 06	-,157E 06
3	197E-02	813E-03	•175E+02	473 _E =04	.000E+88	.000E-80	331E 06	321E 05	236E 07
4	-,653E-02	147E+07	,258E-02	,376E+04	.000£-8∎	. ##0E-80	-,883E 06	-,794E 05	-,446E 07
5	143E_01	224E_02	.3126_02	<b></b> 382E <b>_</b> 04	000E_80	.000E_80	-181E 07	118E 06	.,727E 07
6	224E-01	203E-02	• 325E-02	117E-03	000E-80	.000E-80	•.304E 07	155E 06	102E 08
7	279E-01	••1116•02	.168E-02	•.585E+03	.000E+80	.000E-80	- 431E 07	14ME 06	11ZE 08
8	281E-01	.134E-03	-525E-02	-,228E+UZ	000E-80	.000E-80	483E 07	.149E 05	+587E 07
9	_,279E+01	.204E.03	.,177E.01	-,328E-02	000E+88	,000E-80	. 436E UT	139E U6	SARE OF
10	387E-01	344E-02	217E-01	795E+03	.000E+80	.000E-90	••559E 07	.507E 04	.63ZE 07
11	-,908E-01		.113E-01	,724E.UZ	000E-80	.000E-80	-,117E UB	-,9A9E U6	-,3756 08
1 Z	_,745E.01	.394E.02	,143E-01	.515E.03	000E-80	,000E_80	- 980E 07	.,116E U7	-,340E U8
13	- 6252-01	.A17E-03	•132E-01	443E=03	.000E-00	.0002-00	••923E 07	150E 07	303t 08
14	_,517E_01	175E-02	954E.02	- 381E-U3	0005-84	,000E-80	- 638E U/		- 2702 08
15	28UE-01	•412E-02	.307E-02	504E=U3	.000E-80	.0006-80	**457E U7	.560E UG	121E UR
16	.325E=02	.619E-02	-,105E-02	• 187E=03	,0006-80		.0002 00	.1442 07	.2026 07
17	.294E-01	+503E+02	••255E=02	+669E=04	.000E-8.	.0005-90	.4512 07	.149E U7	-116E UB
1,0	.367E+01	.108E-07	-,195E-0Z	224E-U3	0006-85	.0002-80	. 226E UT	.9296 06	1346 08
19	295E-01	161E.07	.,844E.03	1956-03	000E-80	.000E-80	444E 07	290E 06	103E 08
20	•165E-01	++245E-02	210E-03	.97€E+04	.000E-88	. 000E-00	+242E 07	- 625E D5	+541E 07
21	.603E-02	197E-02	-+141E-05	.152E-04	.000E-88		902E 06	297E U6	-196E UT
22	944E-03	+131E-07	.168E-04	814E-05	.0008-80		# 156E U6	-,244E UG	- 343E U6
23	-,392E-02	-,429E-03	-,104E-04	•.57CE+05	000E-80	.000E-80	-,657E U6	-,175E 06	-,14ZE 07
24	412E-02	•116E=03	.303E-04	•189E+04	000E-90	.000E-80	*.756E 06	974E 05	-167E 07
25	-,350E+02	.245E-03	.814E-04	.210E-04	.000E-80	,000E-80	*,667E U6	-, 397E US	=,151E 07
26	2356.02	,311E.03	,715E_04	135E-05	000E-00		•,495E 06	704E U4	• 113E 07
27	158L-02	.209E-03	+695E+04	.140E=05	.000E+0		••375E 06	596E U4	865t 06
28	_,104E-0Z	+1455-03	.638E-04	1315-06	.000E-80	, •••E-80	•,285E 06	-,497E U4	+.668E 06
29	-,744E+03	•8"8E=04	.9332-04	.9215-05	000E-8		. ZZGE UG	476E U4	+.562E U6
30	767E-03	.481E-04	.875E-04	912E+00	.000E+80		.18CE U6	. J76E 04	-40ZE 06
31	442E-03	•357E=04	.919E-04	.1745+05	0005-80	.000E-80	•.147E 06	JIIE 04	**308E 06
32	-,339E-03	.277E-04	.914E_04	.217E+06	0000-80	. 000E-80	-121E 06	-,306E U4	316E 06
33	_,Z59E-03	.217E.04	827E 04	.191E-05	000E-80	.000E-80	.988E 05	-,177E 04	-,Z89E 06
34	-+216E+03	+115E=04	+938E=04	•333E=05	000E-60	.000E-80	•.522E 05	23DE 04	246E 06
35	177E-03	.107E-04	.92NE_04	••199E•U6	000E+80	. <b>BODE</b> - 80	•.688E 05	<b>≈</b> ∎175E 04	••ZZZE 06

____

### Table D14. Sideslip Load Relief ( $u_{25D}$ ) Covariance Results

### Table D14. Sideslip Load Relief ( $u_{24D}$ ) Covariance Results (Continued)

MEAN RESPONSES

ĩ	М ₁₈₈₀	a _y	ày	ąβ	ąβ	¢	φ	У	ÿ
12	.000E+80 -129E 07	.000E-80 .138E_01	.000E-80 .397E_01	.000E-80 .107E-01	.000E-80 [3n0E_01	.000E-80 .286E.05	.000E-80 .197E-04	.000E-80 245E_02	•000E-80
3	248E 05	-236E-01	32gE-01	523E 00	991E-01	-,149E-03	471E=04	.879E 00	.330E 00
4	209E 06	-+613E-01	++132E 00	.188E 01	268E 00	514E-03	891E=04	.290E 01	408E 00
5	215E 06	251E 00	331E 00	.405E 01	327E 00	-,114E-02	137E-03	.397E 01	151E 00
6	.,210E 06	<b></b> 555E 00	••723E 00	.720E 01	451E OD	<b></b> 181E-02	<b>.</b> 126E-03	<b>-</b> ,545E 00	•.193E 01
7	320E 06	•.103E 01	- 560E 00	,109 <u>e</u> 02	525E 00	-,229E-02	=,711E=04	-,185E OZ	- 569E 01
8	205E 07	••165E 01	182E 01	.146E 02	491E 00	232E-02	.775E+05	622E 02	-+124E 02
9	.3n5E 07		.856E 01	.182E 02	379E 00	.,231E.02	119E.04	.,149E 03	-,230E 02
10	•694E 06	#+298E 01	•150E G2	.216E 02	314E 00	314E-02	204E-03	300E 03	-+381E 02
11	856E 07	=.228E 01	151E 02	.193E DZ	.103E 01	- 736E-02	=.50ZE=03	513E 03	546E 02
12	JUAL 07	160E 01	284E U2	.139E UZ	214E 01	-,624E-02	.246E-03	83ZE 03	-,639E 02
13	785E 07	158E 01	-,302E 02	.131E UZ	282E 01	+, <b>719E</b> =02	.61JE=U4	+,116E 04	673F 0Z
14	- 14 <u>7</u> E UT	• 161E 01	- 273E V2	1705 02	1766 01	312-02	1136-03	150E 04	• 691E 0Z
12	•155E 07	999E 00	1861 02	.063L 01	-,337L 00	2-06-02	• 200E • 03	-1872 0-	-,600L 02
16	.330C U7	.469C.UI	-+855C VI	/88L UU		+1226+03	.3922-03	•.210C U4	049L UZ
17	-319C U7	•[U3C 0]	210C VI	6491 VI	2022 01	3015 02	- 320E=03	**2491 V4 2745 DA	573L UZ
10	407E 04	1145 01	2075 00	- 4625 01	420C 08	2475.02	1085-03	- 2-05 04	AD45 02
19	2055 04	+114C UI	250F 02	- 3666 01	0.42VE 00	1415 02	1485-01	- 3175 04	3885 02
21	- 50AF 06	2438 00	- 2716 00	- 1326 01	-3475 08	5375-03	- 1246-03	- 3546 04	- 33AE 02
21	5046 00	243C 00	- 300E 00	-132E 01	3795 00	- 5386-04	- 8445-04	- 38.65 04	- 339E 02
24	374F 06	177F 00	272F 00	939F 00	2765 08	- 318F_03	- 2935-04	- 347F 04	- 335F 02
24	- 723E 04	201F 00	- 242F 00	108F 01	JANE DO	- 344F-03	.871F=0#	H. SAAF DA	- 345F 02
25	-111E 06	173F 00	100E 00	.901F 00	595F-01	279E-D3	.173F-04	4015 04	- 354F D2
26	-146E 05	-127E 00		.651E 00	672E-02	188E-03	1A2E-04	41eE 04	-362E 02
27	.147E 05	954E-01	-157E-01	475E 00	404E-02	.125E-03	1226-04	-417E 04	367E 02
28	- 863E 04	+.713F=01	264F-01	352F 00	434F+0Z	- 821F+04	832F+05	- 456F 04	• 372F 02
29	- 200E 05	+.535E-n1	559E-n1	264F 00	3156-02	577E-n4	463E - 05	475E n4	375E n2
30	894E 04	420E_01	.839E_01	2035 00	304E_02	434E_04	275E-05		.377E 02
31	773E 04	++336E=01	.123E 00	159E NU	- 449E-02	-,320E-04	.222E-05	512E 04	379E 02
32	609E 04	267E-01	.114E 00	124E 00	-,126E-02	-,244E-04	.147E=05	-,531E 04	381E 02
33	401E 04	209E-01	.110E 00	.979E+01	447E-02	-,185E-04	.115E+05	550E 04	382E 02
34	673E 04	++145E+01	.127E 00	<b>,</b> 774E <b>+</b> 0↓	229E-02	<b>-,</b> 152E-04	.622E=06	-,569E 04	-,383E 02
35	- 364E OA	104E-01	116E 00	613E=01	- 814E-03	124E-04	546E-06	- 5A9E 04	- 383E 02

### Table D14. Sideslip Load Relief (u_{25D}) Covariance Results (Continued)

#### PESPONSE COVARIANCES

ĩ	δ _p	δ _p	δ _r	δ _r	δ _a	δ _a	^M 660	М ₆₆₀	^M 1880
1	.DnQE-80	•000E-80	.0005-80	.0002-80	.000E-80	. 909E-80	.000E-80	.000E-80	.0002-80
Z	.584E+05	•359E•03	.138E-04	-90CE-03	000E-89	.000E-90	175E 12	•773E 14	.169E 14
3	.184E-03	.628E-03	.296E-04	.301E-03	.000E-88	, <b>UUE</b> -80	212E 13	,183E 15	.576E 14
4	356E-03	.341E.OZ	.436E.04	\$31E-03	000E_80	,000E_80	427E 13	,293E 15	,976E 14
5	•536E•03	•787E-02	+417E-04	.122E-02	.000E-88	.000E-80	+659E 13	•331E 15	+123E 15
6	,567E≠03	.105E_01	.330E-04	138E-02	000E-80	.000E_80	858E 13	274E 15	174E 15
7	.434E+03	•367E-02	.774E-05	.424E=U3	000E+8"	.000E-80	•95ZE 13	.571E 14	•716E 14
8	*313E+03	.103E-01	.566E-04	.387E+UZ	.00CE-80	.00-300.	.818E 13	.331E 15	,59ZE 14
9	.770E-03	+143E 00	.610E-03	.532E=01	000E+80	.000E-80	.680E 13	.308E 16	+483E 15
10	.116E.05	.273E 00	,823E-03	.844E+01	.000E-88	,00080	,104E 14	.476E 16	.635E 15
11	.306E-02	.149E 00	.279E_03	_418E_03	.000E.80	.000E+80	.436E 14	.146E 16	.684E 15
12	.308E-02	•365E 00	.704E-03	.109F 00	.000E-80	<b>.000E</b> =80	+357E 14	•369E 16	-117E 16
13	.249E+02	.299E 00	.700E-03	126E NO	000E-80	. <b>000E-80</b>	.357E 14	.286E 16	.975E 15
14	.186E-0Z	.172€ 0Ø	.480E-03	-897E=01	1000E+80	.900E-80	"354E 14	.173E 16	.679E 15
15	.120E-07	.6K1E-01	,180E-03	.344E=01	.DOOE-80	,000E-80	<b>,274E</b> 14	.7n6E 15	<b>.</b> 353E 15
16	.#33E=03	+206E=01	+515E+04	.953E=02	.000E-80	.00E-30	.195 <u>E</u> 14	+247E 15	+177E 15
17	.578E≠03	.676E-02	.116E_04	223E-02	.000E-80	<b>,999</b> E-80	,126E 14	<b>.878E 14</b>	<b>.888E 14</b>
18	,349E,03	,204E_02	,236E_ <b>0</b> 5	_462F_03	_0ñ0E_80	,000E_80	.773E 13	.369E 14	.465E 14
19	.209E-03	•724E=03	•411E-06	.821E=04	.U00E-80	.000E-80	+463E 13	+183E 14	+252E 14
20	.454E-03	.315E_03	.126E.06	.93ME.05	.000E-80	.00.3000.	"143E 14	.100E 14	.653E 14
21	.636E-03	.137E- <b>0</b> 3	•876E- <b>0</b> 8	.285E+05	_000E=80	,000E-80	<b>,144E 14</b>	.559E 13	•683E 14
22	.284E-03	•613E=04	.334E-08	_718E <b>=0</b> 6	000E-80	,000E-80	.699E 13	.323E 13	328E 14
23	,123E-03	•271 <b>6-04</b>	.414E=08	,27€ _E =06	.000E=8₽	<b>.000</b> E-80	,339 <u>e</u> 13	.185E 13	.157E 14
24	.530E=04	.134E-04	,220E <b>.0</b> 8	.461£#06	.0Q0É-88	<b>.000</b> E-80	.177Ē 13	.110Ē 13	,854É 13
25	,264E-04	.609E_05	.120E.07	.367E.06	.000E.80	.000E_80	.947E 12	.670E 12	.482E 13
26	.117E-04	•249E=05	+106E=07	.228E=06	.000E-80		•515E 12	.376E 12	.267E 13
27	.517E-05	.9A6E.06	,111E_07	.147E-06	;000E-80	,000E-80	292E 12	,Z20E 12	,157E 13
28	.223E+05	• 376E - 86	.927E-08	.799E=07	000E+8	.000E-80	.168E 12	.129E 12	.924E 12
29	.113E=05	+180E-06	,Í97E-07	.830E-07	1000E-80	.0002-80	,105E 12	.178E 12	.651E 12
30	.651E+06	•775E-07	.175E-07	.414F=07	000E-80	.400E-80	.675E 11	.959F 11	.439E 12
31	.398Ē-C6	•379Ē-07	.212E.07	.507E.07	.000Ē-8 <b>9</b>	.000Ē-80	,438E 11	<b>.</b> 541Ē 11	.282F 12
32	238E-06	.1376.07	.213E.07	173E-07	000E_80	.000E-80	.293E 11	572E 11	209E 12
33	13AE+06	+403E+08	163E-07	-364E=08	000E-80	.000E-80	.195E 11	.508E 11	.150E 12
<u>3</u> 4	.969E-07	.996E.09	216E-07	888E-09	.000E-80	.000E-50	135E II	.790E II	.129E 12
35	.639E-07	.782E-09	.201E-07	.689E=10	.000E-80	.000E-80	.946E 10	.871E 11	,104E 12

____

### Table D14. Sideslip Load Relief ( $u_{25D}$ ) Covariance Results (Concluded)

#### FESPONSE COVARIANCES

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ĩ	M ₁₈₈₀	a _y	a _y	ąβ	ąβ	φ	φ	· <b>y</b>	ý
2       113E       132E       00       102E       111F       132E       00       .112F       00       .111F       02       .132E       00       .234E       .2	1	.0C0E-80	•nn0E=80	.000E-80	.000F=80	.000E-80	.800E-80	.008E+80	•00DE=80	.0095-80
3       374E       15       00       111E       02       737E-01       102E-05       747E-06       .874E       02       451E         4       113E       16       .232F       00       .896E       01       .234E       02       .435E       02       .211E-05       .257E-05       .24E       03       .531E         5       .198E       16       .449E       04       .338E       02       .211E-05       .257E-05       .274E       03       .208E         6       .242E       16       .753E       00       .316E       02       .498F       02       .406E       .338E-05       .468F+05       .513E       01       .666E       .666E       .498E         7       .724E       15       .716E       08       .322E       02       .613E       02       .199E-05       .353E+04       .172E       05       .222E       .239E       .248E       .333E+04       .102E       .459E       04       .957E       02       .199E-05       .353E+04       .102E       .228E       .112E       .434E       03       .164E+04       .363E+04       .103E       06       .669E       .669E       .212E       .434E       .147E+04       .363E	2	.113E 1A	132E 00	.102E 01	.715E+01	.512E 00	.606E-08	.254E=06	.998E=02	.334E-02
4       .113E       16       .232F       00       .696E       01       .234E       02       .435E       00       .211E_05       .257E_05       .274E       03       .230E         5       .196E       16       .497E       00       .369E       02       .370E       02       .147E       01       .314E_05       .439E_05       .257E_05       .274E       03       .231E       05       .435E_05       .166E_05       .53E       01       .160E         7       .724E       15       .716E       08       .392E       02       .613E       02       .191E_05       .279E_05       .441E       04       .113E         9       .517E       17       .121E       02       .635E       04       .957E       02       .507E       02       .191E_05       .279E_05       .441E       04       .113E         9       .517E       17       .121E       02       .101E       05       .136E       03       .147E_04       .383E_04       .132E       04       .322E       05       .402E       .113E       .113E       .112E       14       .436E       .667E       .557E_02       .268E       03       .162E_04       .733E_04	3	374E 15	.784E-01	713E 00	,111£ OZ	.737E-01	,102E-05	.747E=06	.874E 02	.451E 01
5       .198E 16       .492E 0.0       .369E 02       .370E 02       .14TE 01       .314E-05       .490E-05       .273E 03       .272E 03       .272E 03       .272E	4	113E 16	.232E 00	.898E 01	.234E 02	.435E 0₿	_211E_05	<b>,257E=05</b>	274E 03	<b>.</b> 531E 00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	198E 16	.492E 0Ó	.369E OZ	.370E 02	147E 01	,314E-05	<b>.</b> 450E+05	,273E 03	.208E 01
7       724E       15       .716E       08       .392E       02       .6.3E       02       109E       02       .283E-05       .166E-05       .666E       03       .498E         8       .406E       1.65E       01       .240E       03       .738E       02       .250E       02       .191E.05       .279E.05       .4A1E       04       .113E         9       .51FE       17       .121E       02       .459E       04       .97FE       02       .50FE       02       .191E.05       .551E-04       .479E       05       .404E         11       .482E       17       .139E       .377E       04       .110F       03       .183E       03       .161E-04       .438E-04       .103E       06       .669E         12       .122E       1A       .296E       02       .296E       03       .128E-04       .996E-04       .272E       06       .669E	6	242E 16	.753E CC	810E 02	498E 02	408E 01	,338E-05	<b>486E=0</b> 5	<b>513E 01</b>	160E 02
8       .4066       163E       01       .2406       03       .738E       02       .250E       02       .191E.05       .279E.05       .411E       04       .113E         9       .517E       17       .121F       02       .459E       04       .957E       02       .507F       02       .192E.05       .353F-04       .172E       05       .222E         10       .440E       17       .131E       02       .101E       05       .136E       03       .147E-04       .333F-04       .102E       .459E       .409E         11       .462E       17       .139E       02       .877E       02       .298E       .128E-04       .896E-04       .202E       .669E         12       .125E       18       .374E       .265E       .557E       02       .434E       .128E-04       .896E-04       .202E       .668E       .669E         13       .122E       14       .664E       .7       .632E       .27E       .642E       .73E-04       .322E       .668E       .669E       .669E       .669E       .669E       .669E       .669E       .669E       .669E       .773E       .642E       .73E-05       .122E       .73E-05 <t< td=""><td>7</td><td>724E 15</td><td>.710E 08</td><td>392E 02</td><td>.613E OZ</td><td>109E 02</td><td>.283E+05</td><td>•166E•0⁵</td><td>.668E 03</td><td>.498E 02</td></t<>	7	724E 15	.710E 08	392E 02	.613E OZ	109E 02	.283E+05	•166E•0 ⁵	.668E 03	.498E 02
9       .517E       17       .121F       02       .459E       04       .957E       02       .199E-05       .538E-04       .172E       05       .222E         10       .840E       17       .211E       02       .101E       05       .136E       03       .981E       02       .319E-05       .501E-04       .459E       05       .409E         11       .482E       17       .139E       02       .877E       04       .110F       03       .183E       .147E-04       .353E-04       .103E       06       .669E         12       .125E       18       .374E       02       .265E       05       .577E       02       .298E       03       .128E-04       .596E-04       .202E       06       .811E         13       .112E       18       .206E       02       .210E       05       .625E       .444E       .03       .668E-05       .444E       .452E       06       .777E       06       .778E       06       .727E       06       .778E       077E       .131E       .132E       .304E-05       .107E-05       .62E       07       .131E         14       .506E       .101E       .306       .399E       .372E-	8	.406E I6	.163E 01	,24ūE 03	,738E 02	250E 02	_191E_05	_279E_05	4A1E 04	113E 03
10       .40E       17       .21E       02       .13E       03       .98E       02       .319E-05       .50E-04       .499E       05       .409E         11       .482E       17       .13gE       02       .87TE       04       .110F       03       .163E       03       .167E-04       .383E-04       .103E       06       .669E         12       .125E       18       .296E       02       .265E       05       .57TE       02       .298E       03       .128E-04       .89E-04       .342E       06       .81IE         13       .112E       18       .296E       02       .285E       05       .57TE       02       .434E       03       .101E-04       .735E-04       .342E       06       .810E         14       .684E       17       .190E       02       .210E       05       .625E       02       .464E       03       .649E-05       .444E-04       .520E       06       .773E         15       .266E       17       .611E       06       .360E       02       .105E       03       .372E-05       .304E-05       .125E       07       .131E         16       .726E       15       .6	9	.517E 17	.121F 07	.459E 04	.957E 02	507E 02	,195E=05	.353E=04	.172E 05	.222E 03
11       .482E 17       .139E 07       .877E 04       .110F 03       .183E 03       .167E-04       .383E-04       .103E 06       .669E         12       .125E 14       .374E 02       .265E 05       .557E 02       .298E 03       .128E-04       .996E-04       .262E 06       .811E         13       .112E 1A       .296E 02       .205E 05       .578E 02       .464E 03       .101E-04       .735E-04       .342E 06       .810E         14       .684E 17       .190E 02       .210E 05       .625E 02       .464E 03       .656E-05       .444E=04       .520E 06       .773E         15       .263E 17       .613E 01       .999E 04       .515E 02       .327E 03       .649E-05       .192E-04       .727E 06       .784E         16       .758E 16       .300E 01       .632E 04       .382E 02       .191E 03       .574E-05       .134E-05       .966E 06       .940E         17       .200E 16       .126E 01       .123E 04       .260F 02       .191E 03       .574E-05       .117E-05       .162E 07       .131E         18       .226L 15       .611E 06       .360E 03       .165F 02       .580E 02       .234E-05       .117E-05       .162E 07       .190E         19       <	10	,840E 17	.211E 02	,101E 05	.136E 03	.981E 02	.319E=05	.501E+04	459E 05	409E 03
12       .125E       18       .324E       02       .265E       05       .577E       02       .298E       03       .128E-04       .896E-04       .202E       06       .811E         13       .112E       18       .296E       02       .285E       05       .577E       02       .434E       03       .101E-04       .735E-04       .342E       06       .810E         14       .664E       17       .190E       02       .210E       05       .652E       02       .327E       03       .666E-05       .444E-04       .520E       06       .773E         15       .263E       17       .813E       01       .999E       04       .382E       02       .191E       .03       .574E-05       .734E-05       .966E       06       .940E         16       .758E       16       .300E       01       .363E       04       .382E       02       .105E       .374E-05       .304E-05       .125E       07       .131E         17       .200E       16       .126E       01       .322E       .234E-05       .117E-05       .162E       07       .271E         19       .155E       1535E       02       .313E	11	.482E 17	.139E 07	.877E 04	110F 03	183E 03	.167E=04	.383E=04	.103E 06	669E 03
13       112E       1A       .296E       02       .285E       05       .578E       02       .434E       03       .101E       .735E       04       .342E       06       .810E         14       .664E       17       .190E       02       .210E       05       .625E       02       .464E       03       .669E       .65E       .192E       .044E       .664E       .735E       06       .727E       06       .784E         15       .263E       16       .300E       .363E       04       .352E       02       .191E       .645E       .192E       .734E       .966E       06       .940E         16       .758E       16       .300E       01       .363E       04       .362E       02       .191E       .372E       .304E       .966E       .940E         17       .200E       16       .126E       01       .123E       04       .260E       .232E       .234E       .05       .125E       07       .131E         18       .262E       14       .963E       .00       .161E       .360E       .309E       .131E       .234E       .055E       .234E       .07       .271E         19	12	,125E 18	.324E 02	.265E G5	.557E 02	298E 03	.128E=04	.896E=04	SUSE 06	.811E 03
14       .684E       17       .190E       0.2       .210E       0.5       .625E       0.2       .464E       0.3       .606E-0.5       .444E-0.4       .520E       0.6       .773E         15       .263E       17       .613E       0.1       .363E       0.4       .362E       0.2       .327E       0.3       .649E-0.5       .192E.04       .727E       0.6       .773E         16       .758E       16       .300E       0.1       .363E       0.4       .382E       0.2       .191E       0.3       .734E-0.5       .125E       0.734E-0.5       .125E       0.734E-0.5       .125E       0.734E-0.5       .125E       0.734E-0.5       .125E       0.734E-0.5       .125E       0.734E-0.5       .125E       0.7       .131E         17       .200E       16       .126E       0.3       .994E       0.1       .322E       0.2       .143E-0.5       .505E-0.6       .212E       0.7       .271E         19       .155E       1.336E       0.0       .165F       0.2       .163E       0.2       .234E-0.5       .505E-0.6       .212E       0.7       .271E         19       .155E       1.3       .336E       0.0       .167E       0.	13	115E 14	296E 07	285E 05	578E 02	434E 03	101E=04	.735E=04	,34ZE 06	810E 03
15       .263E       17       .813E       01       .999E       04       .515E       02       .327E       03       .649E       .192E       04       .727E       06       .784E         16       .758E       16       .300E       01       .363E       04       .382E       02       .191E       03       .574E       05       .734E       05       .966E       06       .940E         17       .200E       16       .126E       01       .123E       04       .260E       02       .105E       03       .372E       .304E       05       .125E       07       .131E         18       .526L       15       .611E       06       .380E       03       .165F       02       .234E       .17E       .17E       .12E       07       .190E         19       .155E       15       .336E       00       .165F       02       .143E       .05       .505E       .221E       07       .271E         20       .544E       14       .963E       00       .267E       02       .103E       .245E       .05       .505E       .239E       .221E       07       .276E         21       .292E       <	14	.684E 17	•190 <u>5</u> 02	210E 05	-625E 02	.464E 03	.060E-05	.444E=04	• 20E 06	.773E 03
16       .758E       16       .300E       01       .363E       04       .382E       02       .191E       03       .578E-05       .734E-05       .966E       06       .940E         17       .200E       16       .126E       01       .123E       04       .260E       02       .105E       03       .372E-05       .304E-05       .125E       07       .131E         18       .526L       15       .611E       06       .360E       03       .165F       02       .135E       03       .372E-05       .304E-05       .125E       07       .131E         19       .155E       15       .336E       00       .116E       03       .994E       01       .322E       02       .143E-05       .505E-06       .212E       07       .271E         20       .544E       14       .963E       00       .267E       02       .309E       .103E       .2<45E-05	15	263E 17	.813E U1	.999E U4	515E UZ	3276 03	049E.U5	192L-04	.727E U6	.784E 03
17       .200E       16       .126E       01       .123E       04       .260E       02       .105E       03       .372E-05       .304E=05       .125E       07       .131E         18       .526E       15       .611E       06       .380E       03       .165F       02       .234E=05       .117E=05       .162E       07       .190E         19       .155E       15       .336E       00       .116E       03       .994E       01       .322E       02       .143E=05       .505E=06       .212E       07       .271E         20       .544E       14       .963E       0C       .207E       .313E       02       .161E       02       .402E=05       .394E=06       .261E       07       .275E         21       .292E       14       .102E       01       .137E       02       .309E       02       .103E       C2       .455E=05       .134E=06       .363E       07       .276E         22       .162E       14       .511E       00       .549E       01       .146E       02       .578E       01       .206E=.05       .649E=07       .452E       07       .235E         23       .926E	16	.758E 16	.300E 01	.363E U4	.38ZE 02	191E /03	.5"4E=05	+734E=05	.966E U6	-940E 03
18       .266 15       .611 00       .380 03       .165 02       .280 02       .23 02       .117 03       .162 07       .190 0         19       .155 15       .336 00       .116 03       .994 01       .322 02       .143 05       .505 06       .212 07       .271 0         20       .544 14       .963 00       .287 02       .313 02       .181 02       .402 05       .399 06       .281 07       .271 0         21       .292 14       .102 01       .137 02       .309 02       .103 02       .455 05       .134 06       .363 07       .276 07         23       .926 13       .511 00       .949 01       .146 02       .578 01       .206 05       .649 07       .452 07       .235 07         24       .596 13       .251 00       .261 01       .70 0       .344 01       .182 01       .391 0.06       .133 0.07       .466 07       .109 0         25       .343 13       .643 0.01       .171 00       .263 01       .344 01       .182 01       .391 0.06       .133 0.07       .646 07       .169 0.07       .169 0.07       .169 0.00       .171 0.00       .171 0.07 0.07 0.07 0.00       .162 0.00       .171 0.00       .169 0.07       .169 0.00       .162 0.00       .169 0.00       .169 0.00<	17	200E 16	126E DI	,123E U4	260E UZ	1058 03	.J72E-05	.304E=05	125E U7	.131E 04
19       .1552       15       .3362       00       .1162       03       .9942       01       .3222       02       .1432-05       .2052+06       .2122       07       .2742         20       .5442       14       .9632       00       .2872       02       .1812       02       .4922-05       .3992-06       .2212       07       .2742         21       .2922       14       .102E       01       .137E       02       .309E       02       .103E       02       .455E-05       .1342-06       .263E       07       .276E         22       .162E       14       .102E       01       .146E       02       .576E       01       .266E-05       .649E-07       .452E       07       .235E         23       .926E       13       .251E       06       .261E       01       .700E       .1325E       .2982E-06       .2892E-07       .546E       07       .207E         24       .596E       13       .127E       00       .263E       01       .344E       .162E       .391E-06       .133E-07       .546E       07       .109E         25       .343E       .134E-01       .177E       .177E       .162E	18	-226E 15	.611E 00	.380E U3	.165F 02	20 308 DZ	234E-05	.117E=05	162E 07	.190E 04
20       .544E       .463E       .287E       02       .313E       02       .181E       02       .399E=06       .281E       07       .325E         21       .292E       14       .102E       01       .137E       02       .309E       02       .103E       c2       .455E=05       .134E=06       .363E       07       .276E         22       .162E       14       .511E       00       .549E       01       .146E       02       .578E       01       .206E=.05       .649E=07       .452E       07       .235E         23       .926E       13       .251E       00       .261E       01       .70E       01       .325E       01       .898E=06       .289E=07       .546E       07       .207E         24       .596E       13       .127E       00       .263E       01       .142E       01       .391E=06       .138E=07       .646E       07       .109E         25       .343E       13       .643E=01       .107E       01       .173E       01       .986E       .171E=06       .1561E=08       .750E       07       .177E         26       .189E=01       .647E       00       .503E       .608	19	155E 15	.336E 00	.116E 03	.994E UI	322E 02	.143E-05	.>05E≠06	2126 07	271E 04
21       .292L 14       .102L 01       .137L 02       .309E 02       .103E C2       .73E-05       .134L-06       .363E 07       .275E         22       .162E 14       .511E 00       .949E 01       .146E 02       .578E 01       .206E-05       .649E-07       .452E 07       .235E         23       .926E 13       .251E 00       .261E 01       .70E 01       .325E 01       .898E-06       .289E-07       .546E 07       .207E         24       .596E 13       .127E 00       .261E 01       .70E 01       .325E 01       .391E-06       .133E-07       .646E 07       .109E         25       .343E 13       .643E-01       .111E 01       .173E 01       .986E 00       .171E-06       .561E-08       .750E 07       .177E         26       .185E 13       .343E-01       .109E 01       .691E 00       .503E 00       .746E-07       .229E-08       .660E 07       .169E         27       .997E 12       .189E-01       .667E 00       .470E 08       .248E 08       .324E+07       .914E+09       .977E 07       .162E         28       .522E 12       .105E-01       .669E 00       .254E 00       .123E 08       .138E-07       .363E-09       .110E 08       .157E         29	20	244E 14	.963E UC	287E 02	3132 02	181E UZ	+02E+05	390E-06	281E 07	325E 04
22       .1622       14       .5112       00       .1462       02       .5762       01       .6052       .605205       .605207       .4522       07       .2522         23       .9262       13       .2512       00       .2612       01       .7062       01       .3252       01       .8982-06       .2892-07       .5462       07       .2072         24       .5962       13       .1272       00       .2632       01       .3442       01       .1622       .3912-06       .1332-07       .5462       07       .1092         25       .3432       13       .6432-01       .1112       01       .1732       01       .9662       00       .1712-06       .5612-08       .7502       07       .1772         26       .1892-01       .6432-01       .1092       01       .6912       .5032       00       .7462-07       .2292-08       .6602       07       .1692         27       .9972       .1892-01       .6672       00       .2542       .1232       .1232-07       .9142-09       .9772       .1692         28       .5222       .1892-01       .6692       .2542       .2542       .1052-01       .6692	21	+2926 14	•102 <u></u> 01	137E 02	-309E 02	-103L CZ	• 772E = 07	.134L=06	.363E 07	• 2/6L 04
23       .926E       13       .251E       00       .261E       01       .760E       01       .325E       01       .898E-06       .269E-07       .946E       07       .207E         24       .596E       13       .127E       00       .263E       01       .344E       01       .162E       01       .391E-06       .133E-07       .646E       07       .169E         25       .343E       13       .643E-01       .171E       01       .173E       01       .966E       00       .171E=06       .561E=08       .750E       07       .177E         26       .189E=01       .343E=01       .109E       01       .503E       00       .746E=07       .229E=08       .660E       07       .169E         27       .997E       12       .189E=01       .667E       00       .254E       00       .324E=07       .914E=09       .977E       07       .162E         28       .522E       12       .105E=01       .669E       .254E       00       .123E       .138E=07       .363E=09       .110E       .157E         29       .320E       12       .576E=02       .940E       00       .142E       .608E=01       .668E=08	22	.1026 14	•511E UU	+549C UI	.1461 UZ	.278C U1	+400L+U7	.049C.U/	.4526 07	.2351 U4
24	23	•966 13	.7510 00	-2616 01	304E 01	1025 01	- 898L-V6 3015 04	-2891-07	+746C UT	1805 04
27       .343E 13       .643E 01       .171E 01       .173E 01       .986E 00       .171E 06       .501E 08       .760E 08       .760E 08       .760E 08       .760E 08       .760E 08       .760E 08       .760E 07       .169E         26       .185E 13       .343E 01       .109E 01       .891E 00       .503E 08       .746E 07       .229E 08       .660E 07       .169E         27       .997E 12       .189E 01       .667E 00       .470E 08       .248E 08       .324E 07       .914E 09       .977E 07       .162E         28       .522E 12       .105E 01       .669E 00       .254E 08       .123E 08       .138E 07       .363E 09       .110E 08       .157E         29       .320E 12       .576E 02       .940E 00       .142E 00       .618E 01       .688E 08       .144E 09       .123E 08       .154E         30       .168E 12       .351E 02       .702E 00       .836E 01       .303E 01       .3381E 08       .602E 10       .136E 08       .154E         30       .168E 12       .351E 02       .702E 00       .836E 01       .303E 01       .3381E 08       .154E	27	2425 13	.1210 00	,703L VI	1225 01	1022 01	1715-04	-133C001	TRAE OT	177E 04
27       997E       12       189E-01       .667E       00       .476E       00       .248E       00       .324E+07       .914E+09       .977E       07       .162E         28       .522E       12       .105E-01       .669E       00       .254E       00       .123E       .00       .324E+07       .914E+09       .977E       07       .162E         28       .522E       12       .105E-01       .669E       .00       .254E       00       .123E       .00       .138E-07       .363E+09       .110E       08       .157E         29       .320E       12       .576E=02       .940E       00       .142E       .168E=01       .668E=08       .144E=09       .123E       .154E         30       .166E       12       .351E=02       .702E       00       .636E=01       .303E=01       .361E=08       .602E+10       .136E       08       .144E         30       .166E       12       .351E=02       .702E       .600       .637E=01       .303E=01       .303E=01       .602E+10       .136E       .140E	27	1865 11	+043C=V1 3+3E=01	• ] / ] C U I	-1/JC VI	-960E UU '503E 08	7445-07	*701C=V8 228E=08	84N5 07	-11/L U4
28 .522E 12 .105E-01 .669E 00 .254E 00 .123E 00 .138E-07 .363E-09 .110E 08 .157E 29 .320E 12 .576E-07 .940E 00 .142E 00 .618E-01 .688E-08 .144E-09 .123E 08 .154E 30 .168E 12 .351E-02 .702E 00 .836E-01 .303E-01 .381E-08 .602E-10 .136E 08 .154E 31 .168E 12 .351E-02 .702E 00 .836E-01 .303E-01 .381E-08 .602E-10 .136E 08 .154E	20	10JE 13	+3436401	+ 107C 01	478c 08	2485 08	3245-07	0145-00	000L 07	1690 04
29 320E 12 .576E-07 .940E 00 .142E 00 .618E-01 .688E-08 .144E-09 .123E 08 .154E 30 .168E 12 .351E-02 .702E 00 .836E-01 .303E-01 .381E-08 .602E-10 .136E 08 .154E 31 .168E 12 .351E-02 .702E 00 .836E-01 .303E-01 .381E-08 .602E-10 .136E 08 .151E	21	5005 10	109C-VI	.00/2 00	-545 00	2402 00	1385-07	3635-00	- 7//E 0/	.575 .4
30 .168E 12 .351E=02 .702E 00 .836E=01 .303E=01 .361E=08 .602E=10 .136E 08 .151E	20	3205 12	•10 ⁵ C=01	+607C 00	+237C UD	+123E 0	-130C-U/	1445 00	193F 08	15AF 04
30 -1086-12 -3312-02 -7022-00 -3362-01 -3362-01 -3612-08 -5022-10 -1362-08 -1362 	29	1405 12	*J/0L+U/	-025 00	-1420 00	-010C=01	3015-00	4095-10	1236 00	1816 04
	30	. 845F 11	2315-02	-595F 00	.507F-01	134F-01	2095-08	.2715-10	.1x0F 08	.140F 04
	32	354F 11	134E-02	. 300F 00	300F-01	5156-02	1235-08	1045-10	145E 08	. 14mF 04
	33	.117E 11	.A0AF=03	160E 00	.190F-01	1706-02	.709F-09	4445-11	IATE DA	146F 04
34 325F 10 386F=03 767F=01 118F=01 436F=03 482F=09 122F=11 1a7F 08 145F	34	3255 10	386F+03	767F=01	1185-01	4366+03	4825-09	1225-11	107F 08	1455 04
35 .374E 09 .194E-03 .126E-01 .739F+02 .487E+04 .322E-09 .658F+12 .214E 08 .145E	35	374E 09	194E=n3	-126E-01	7395-02	4876+04	3225-09	656E-12	214E n8	145E n4

.

245

!

1

Table D15. Heading $(u_{21D})$ Including Rolling Gust Covariance Results	ble D15.	Heading (u _{21D} ) Including Rolling Gust Covariance Results	3
--------------------------------------------------------------------------	----------	-----------------------------------------------------------------------	---

MEAN	RESPONSES								
ĩĩ	δ	δ _n	$\delta_r$	δ _r	$\delta_{a}^{\cdot}$	δ _a	$\mathbf{M}_{660}$	^M 660	^M 1880
	P	P	-						
1	.000E_80	000E-80	.000E-80	• ^ ) ^ E • 9 J	.nj0E_5j	.1395-83	1015-51	-000F-40	• 0 0 UE = 2 0 VE 7 C 0 6
Ž	.918E_04	753E_03	.133E_03	1156 32	_000E_80	, TOAL_80		- 121 15	- 276- 17
3	197E-02	813E-03	-175E-02	- 473E-34	•000E-80	•000E-80	- 3312 05	- 701C 15	- AA62 97
4	653Ē-02	-,147E-02	.258E-02	3765-14	•000E=80	.J36E-8J	- 0432 10	- 1945 15	- 7976 17
5	-,143E-01	- 224E-02	3126-02	- 387E-J4	000E-80	.1136-00	= 101E J7	- 1105 40	
6	224E-01	203E-02	• 32 ⁵ - 02	-117E-13	• • • • • • • • • • • • • • • • • • • •	• )) ; E=07	- 3 4 37	1216 10	-1122 08
7	279E_01	-,111E_02	-168t-02	-595E-03	.790⊑_89	. 1995.0)		1366 35	- 570F 27
8	280E-01	.216E-03	529E-02	- 223E-12	-000F-80	- 11/1 -81	43-6 07	-1076-06	-568F 07
9	268E-01	.624E-03	-176E-01	- 3125-02	• 0 0 0 C = 0 0	•11111C=00	- 407- 07	-101- 16	.7165 37
10	341 _E -01	-,169E-02	2092-01	- 237 - 33	- 100E=80	- 10-2E=00	- 1135 04	-1186 97	- 351F 18
11	871E-01	147E-01	.1196-01	-818E-94	- 3 JUE = 8 J	11112-00	- 135 39	- 350- 16	- 477F 15
12	-,110E 00	-, <u>298E-02</u>	187E-01	1075-12		 	- 1615 19	- 7795 16	- 5AVE 08
13	-•112E 00	•113E-02	•1905-01	4/72-13	•011C=04 013F 04	• 199%.•09 • • • • • • •	1426 08	-1191 - 16	- 107E 05
14	88/E_01	.0076.02	• 1 3 3 C = 0 1	1125 32	• 0000000000	1005-00	- 603F 37	-011F J6	1 F) E 18
15	4265-01	.973E-02	•434C=02	- 1715-03	.011F-31	1116-85	1758 17	148F 17	.507E 07
16	•104L=01	722-02	- 3035-02	132 - 13	-9395-83	, ]i].) = -8.) '	762 - 27	.137 . 17	.192 08
17	+49E=01	7345 03	- 2005-02	3475-13	. 010E_81	. J 1. F - 8.)	. J. 7F 17	.7985 15	. 217E UR
18	.000E=01	- 288c 02	- 1355-02	3275-33	0,05-80	1005-50	75377	1928 16	173E 08
19			- 0608-02	965-02	CUDE-BU	-3108-81	5.181 57	-133E 16	-112E 08
20	• 34 5C - 01	344F 02	464E-04	2355-11	. 1005_81	Juge 8)	2A1E 07	263E 116	.615E 07
22	7655-02	2315-02	344F-04	198F-15	000E-80	199E-20	118E 17	264E 16	.255E 07
23	1736.02	1115-02	195E-04	- 713E-05	-000E-80	ວກິຍ6-80	284E 06	1858 06	.694E 06
24	-371-03	-3676-03	1305-04	4175-05	.00080	.000E-80	707r u5	102E 06	1452 06
25	- 8375-03	- 388F-04	278E-04	338E-05	.0002-80	. 1106-80	- 162Ē 06	419F J5	372E 05
26	- 567F-03	7445-04	1996-04	- 272E-J6	000E-81	2005-80	- 121 <u>E</u> 06	- 963E 34	- 2772 06
	38AE-03	A96E-04	156E-04	- 692E-J6	. <u>390</u> E-83	• ງ ງ ່ງ E = 8 ງ	- 912E J5	679F 134	21 JE 06
ŽR	255E_03	348E_04	139E_04	- 774E-07	0035_80	.000E_81	693E_05	551F 14	141E 06
20	1.0E_03	204E-04	105E-04	161E-05	,000€ <b>-</b> _g0	.JJ9E-30	549E 05	161F 04	134E 06
30	137E_03	.117E_04	.174E-04	-1384E-16	<b>.</b> ∩JUE_80	. 1012-31	441E 05	40 16 94	109E 06
31	105F-03	927E-05	.144E→04	717E-06	•00 <b>∈</b> =80	•JJJE-90	3552 05	313g 04	
32		.729Ē.05	.132E-04	249E-06	.0105-80	.1105-30	- 239E J5	112F 14	706E 05
33	- 588E-04	514E-05	141E-04	331E-06	<b>,</b> 000E-80	<b>,</b> ]jjj£=8j	- 237E 05	-195E J4	- SF7E J7
34	478E-04	291E-05	-145E-04	233E-06	•00NE-80	• <u>]</u> ];[ <b>-</b> 8]	1958 05	215E 04	D20E 07
35	388E_04	239E_05	155E_04	.332E.04	.noue_8.)	.JUDE-80	16JE J9	••151E 04	4/6C 97

___

## Table D15.Heading (u21D) Including Rolling Gust Covariance Results<br/>(Continued)

MEAN RESPONSES

ĩ	м ₁₈₈₀	a _y	åy	$ar{\mathbf{q}}oldsymbol{eta}$	ąβ	φ	$\overset{\bullet}{\phi}$	У	ÿ
1	.0005-30	.00hE_80	•00) <b>C</b> =30	.)))E=31	.3×3€_3;	·))*E=30	1105-81	• <b>1</b> JJE=30	.aruE=80
2	<u>1295 07</u>	1386_01	.3975_01	1972_91	_3.°E_01	234 5	<b>,</b> 1976_04	- <b>.</b> ?45E=32	163E=02
3	+ 243E 05	236E-01	<u>329E-01</u>	•523E I)	. 791 F. Ul	1492-03	471E-ù4	-379E 30	.330E 00
4	<b>.</b> 209E 06	6132-01	132E 00	193E 1	•5185 J1	- 5145-33	<b>- 391</b> 2-04	•290E 01	.408E 00
5	→ ?15E 06	251E 00	331E 00	145E 11	•µ545 J?	ll4I-)2	-,137==03	.397F 01	-121E 00
6	210E 06	- 555- 00	773E 00	<b>.</b> 72 ³ 트 01	•#5(E A)	1312-32	1252-03	-•345C JU	1932 01
7	.320E 06	-,103g 01	<b></b> 560g 00	•1.35 15	•525€ Si	??!?	71l _E -01	135_ 32	569E 31
8	275E 07	= <b>.</b> 164€ j1	.181E gl	1150 12	• ⁰ 955 (.)	- 232 - 2	121E-4	- 6227 32	124Ē .)2
9	284E 07	227E Öl	<b>,</b> 950€ 01	176E 17	446E 0.1	223 02	3,3,3,14	<b>-1</b> 485 33	227E 02
10	.239E 06	272E 01	.14RE 02	.1925 12	•5855 hh	1795-02	1965-93	7948 03	368E 02
11	<b></b> 980E 07	- 2165 01	1482 02	1045 12	125€ 11	- 593 - 02	B95E-53	-•508F 03	497E U2
12	342E 37	<b>-</b> ,250E 01	?76E 32	2)KE 17	.140E 11		37 ³ F-3 <b>3</b>	7735 33	507E U2
13	124E 07	<b>-,</b> 307∈ 01	2782 02	2355 12	- 59F il	93?2-12	<b>.</b> 567€=14	1112 04	727E 32
14	.233F 06	290 ₇ 01	272E 02	.235g u?	.730= an	745=-12	.377 _F = 33	151 _F . 94	976g 02
15	.274Ë n7	<b>- 155</b> 01	-187E 02	ڊز غلر <b>ا</b> .	-•399Ē aa	3715-12	6186 - 63	198E 14	989Ē <u>j</u> 2
16	.355E 07	305E 00		244F_P1	-180E DI	556 J3	6291 13	- 2432 04	102E 03
17	-2A9E 07	178L 01	230E 01	50 2011 -	-1855 01	- 399E-02	.1666-03	2935 14	9K3E 02
ĪŔ	147E 07	224E 01	17°E 00	1336 12	- 14- 01	.4915.12	5712-34	3442 04	3592 02
10	.1.35 06	193E 01	.3J6E 00	-1175 12	375 31	.11912	-,1758-13	384E 94	754E 32
20	.429€ 06	1358 01	.197E.01	- 7 75 31	. 94E -11		2282-13	4205 .14	- 4712 92
21	- 589- 06	753 n0	212E 00	- 4125 01	.199= 01	.15212	218r+J3	452 J4	619E 02
22	.577F n6	3216 00	?78Ē 00	171È pi	.:37E 43	.5715-03	<b>1</b> 472 <b>_</b> 93	482E 14	591E 02
23	3955 16	780E_01	240E 00	41. E U)	194E ก็ไ	1652-03		- 5112 04	582E 02
24	2215 06	- 1822-01	-,25AE 00	9735-11	. 545 11	) 4	- 2428-01	510E 04	SAUE 02
25	106E 06	-,421E_01	166E 00	2138 33	.43611		3:92-35	569E J4	582E 92
26	1695 05	30gE_01	553E_01	.1545 01	· 3362-02	- 1517-74	4358-45	598E 04	554E 02
27	148E 05	<b>23</b> 4€_01	740E-02	.1152 1)	.528E_02	314 14	.289 <u>€</u> -35	- 6235 04	5856 02
28	968F 04	17301	.305E-01	8555-11	.504=102	?01==04	.2002-05	557 JA	586r 02
29	-141E 05	- 134E-01	• 583E - 01	61?E=ji	, 155E - J?	- 141 - 11	.iJ7ਵੈ=j5	- 6865 34	587E 02
30	985E Ő4	106E_01	.350E_01	1955_11	275 02	- 1955 UT	0662 36	716E 94	- S07E 02
31	6555 04	802E-02	.124E UD	337E-31	1345-02	- 76 2-05	.5715-06	745E 04	583E 12
32	5995 04	708E_02	.115E 00	303E11	1175_02	- 5415-05	3962-15	77 IE 14	5882 02
33	593E 04	5662-02	.110E 00	2345-01	1415-02	- +222-05	-271E-14	304E )4	589E 92
34	4ŹĴE 94	395E_02	.127E 00	1935-01	232E_12	3395-05	1572-36	933E J4	- 589E 02
35	42UE 04	29002	.116E 00	1105-11	797 <u>E-</u> 63	- 272-05	.1232-06	963E 04	589E 02

ł

### Table D15. Heading (u_{21D}) Including Rolling Gust Covariance Results (Continued)

RESPONSE COVARIANCES

ĩ	δ _p	δ _p	$\delta_{\mathbf{r}}$	$\delta_{\mathbf{r}}$	δ _a	δ _a	$\mathbf{M}_{660}$	^м 660	^M 1880
1	.000E-80	.000E-80	.000E-80	0))5-89	.) ⁰¹ E→80	.3.02-8)	.000E=80	•000E=80	.JOJE-89
ž	5gJE-05	3602-03	.13gE=04	9715-03	-)JE-8-)	• ))JE=8)	175E 12	•773E 14	-lay: 14
3	.187E.03	.63°E_03	.296E-04	391E-13	.0005-80	. 1075-90	.212 <u>6</u> 13	183F 15	.576E 14
4	.366E-03	3506-02	436E-04	<u>8325-03</u>	300E-80	.007F-90	427 - 13	293g 15	976E 14
5	555E=03	817E-02	.418E-04	122E-02	• JJJE=8.)	- JUNE-80	.659E 13	-331E 15	•123E 15
6	.601E_03	113E_01	.331E_04	.139E_92	• 1 ]ÜE_A4)	.103£.30	.358E L3	•275E 15	.124E 15
7	•492E=03	.541E-02	• 7·92E=05	4475-73	.^)05 <b>-</b> 8J	.)JJJE=3J	. 952E 13	• 585F 14	.71AE 14
ė.	•4065-03	.143E-01	•620E=04	_415E-J2	•JJ0E=80	•11)E=8)	.314E 13	•360E 15	•044E 14
9	•976E-03	.160g 00	•20E=03	597E-11	.ji0E=8j	•JA95-9J	.677E 13	•362 16	.591E 15
10	.147E-02	.261E 00	.105E-02	<u>9565-11</u>	J)0E-89	.1006-80	877E 13	•543E 16	.871E 15
11	.360E-02	183E 00	404E-03	4725-01	.330E-81	1116-80	475E 11	.?12E 16	871E 15
12	.7535-02	435E 00	.107E-02	123E J)	000E-81	∙ງປຽ€=8ე	.991E 1ª	.365 <u>E 1</u> 6	-208E 16
īĴ	.748E_02	<b>,361</b> € 00	,105E_02	141E 09	•JJD2_80	.)03E_80	1252 (5	•432F 16	.192E 15
14	•522E-02	.213E 00	•717E-03	-119E 0J	•100E_84	.)00E-8)	.109E 15	•256F L6	-134E 16
15	.300E_92	.945E_01	.269E_03	.333E-01	■100E=83	.]JJJ€_83	.7J8E 14	•100E 16	.687E 15
16	•lg5E⇒02	.27 <u>9</u> E-01	•786E-04	-1.96E-01	-33JE-84	· Jude-gj	.434 _E 14	• 336E 15	.3422 15
17	.120E-02	•971E=02	•181E=04	.2195-02	• 10E=8)	•J00E=80	2616 11	•107E 15	.174E 15
18	.710g_03	3212-02	.382E-05	_525 _E -43	-110E-84	1116-81	157g 14	.114E 14	.916E 14
19	.415E-03	1255-02	.712E-06	.995E-ji	·1305-83	.;jjj€=3)	.92 JE 13	•191F 14	.494E 14
20	2435_03	_493E_03	.642E_07	1475_)4	<b>,</b> 190€_80	*)0)£*90	513E 13	.9835 13	2566 14
21	.130E_03	215E-03	.154E-07	445E-J5	.))0E-g)	.)0)E-8J	291E 13	•558E 13	.141E 14
22	.675E_04	,944E_04	_403E_08	131E-05	<b>.</b> ∿07€ <b>.</b> 80	<b>.</b> ))))€_81	1658 13	.323E 13	.777E 13
23	-333E-04	.42xE=04	.310E-08	.7038-36	.00)E=g∪	•)0)5-80	.gl4 <u>e</u> 12	•185ř 13	.424E 13
24	1575 04	,202E-04	.220E-03	6755-76	.]JJĒ_9J	<b>.</b> 1432 <b>.</b> 31	523: 17	.110E 13	.2532 13
25	825E-05	9102-05	<b>504E-0</b> 8	,149 _E -36	*)99E=3)	1112-01	275 1?	.640 <u>c</u> 12	127E 13
26	3725-05	362E-05	413E-08	2078-16	.1305-8)	• jjj2-3j	-163E (?	.35gE 1?	.351E 12
27	.165E_05	1526_05	.396E.08	161E-06	_0:0E_80	ູງຍາ5-80	11 3659 P	.1925 12	498E 12
28	•698E-06	•636E-06	•314E=08	-8335-17	•000 <b>°</b> ⊸gu	• 34)5-81	.5225 11	-193F 12	·288E 12
29	.346€_06	<b>.</b> 306E_06	.625E.98	.87+E_07	,1)0€_80	• 7975 <b>-</b> 90	.3135 11	.762E 11	.198E 12
30	•lg4 <u>5</u> =06	.12 ₉ E-06	.530E-0g	434F-17	. \J9E=8)	.ld)≟=d)	2036 11	•437E ll	.130E 12
31	.1156_06	<b>.</b> 57?∈ <b>.</b> 07	.618E-08	•23E=37	.190€ <b>-</b> 83	<b>_</b> )JJ)E≠83	.126≝ il	.754F 11	.812E 11
32	.667E-07	202E-07	<b>,</b> 597£-08	173E-07	(6-36(^,	)40 ⊑ = 3 )	.32) E 1)	202E 11	586E 11
33	•3775 <b>−</b> 07	.562E-08	.444E-08	.3755-38	• 300∑=8g	•10j€ <b>-</b> 8j	.532E 1)	+154E 11	.408E 11
34	.259E_07	1392_08	.576E.03	391E 19	. 109E_83	_ງປາ∈_ສາ	.3622 11	.216E 11	.344E 11
35	·174E-07	.205E-09	.531E-08	715E-10	_000E_80	<b>,</b> )∪)E=8)	.25 F 17	.231E 11	.Z76E 11

248

ł

# Table D15. Heading (u21D) Including Rolling Gust Covariance Results(Concluded)

RESPONSE COVARIANCES

ĩ	М ₁₈₈₀	a y	ay	ąβ	$ar{f q}eta$	φ	φ	У	ÿ
1	.000E_80	.000E-80	•000E-80		•⊐03E_81	· ) i )=-3)	.1918-0)	• 17,1E=37	• 179 E=8 1
2	.1135 16	132E 00	.102E 01	7158-11	-512E	.6245-13	.256E-06	.9931-12	- 334E-12
3	.374E 15	7865 01	745E 00	1115 02	7372 11	1141-05	775E-06	374E 02	.451E 91
4	.114E 16	234 00	.923E 01	2312 12	.135F )]	. 216: - 15	.2715-35	.745 13	.531E JO
5	.199E 16	4985 00	.381E 02	37 ME 12	.1375 nL	. 1236-15	.43+E13	2236 13	.908E 01
6	.243g 16	.771E 00	-84a= U2	113- 12	. 799- 11	353-415	.5úlg=03	•513E 01	.1662 12
7	.751F 15	752 00	.500Ē 02	613F J?	1492 32	•317±=15	.3112-15	-663F 13	103E 15
A	436 16	1735 01	.271E 03	731E J2	2496 32	2252.05	5565-13	.481 <u>1</u> .04	.1135 93
9	.570E 17	125E 02	476E 04	8342 12	.546E )?	-2158-05	4422-04	-1725 05	-219E 03
10	.9518 17	2185 02	.105E 05	ູ້ ເວກຮ່ວ3	. 378E 62	3532-05	6796-91	.452E 05	. 3798 33
11	.545E 17	14 gE 02	. 720E U4	1465 03	.1335 F3	.1765-04	.554E-74	. 19 1F 15	.566E 33
12	.1415 18	3675 02	.274E 05	1396 13	.3017 13	.3335.31	.1222-03	·133E 46	.751E 43
13	.125 la	354= 02	.294F 05	2538 03	.436: 13	.117:-14	.1)2g=03	•324p 06	.183E 13
14	.764E 17	23AE 02	217E 95	2:15 13	. 167 - 33	3155-14	.6712-01	.516E 16	1255 14
15	294F 17	111 ⁵ F ถ2	1032 35	113 0 13	3292 03	1355-04	274E= 34	771F 16	1402 74
16	8455 16	156E n1	380E 04	83 E J7	90E 03	1196-34	.100E+41	1178 17	134E 14
17	2242 16	217E 01	132E 04	5528 32	165 33	3112 15	4236-05	.141E 07	.117E 34
1.	5965 15	115E 01	.420E 03	337E 12	- SALE 32	4135-75	1698-05	175F J7	ncaE 13
19	180F 15	.654E 00	146E D3	199E 12	122 12	2172-15	6816-05	.?ile 07	.3575 13
20	.629F 14	.378F 30	.452F J2	1120 02	181- 02	1495-75	.2945-15	•247 B 17	745F J3
21	. 3225 14	213E 00	217E 02	6245 11	1)2E 02	715E-J6	1356-75	.283E 17	5572 13
22	171F 14	123F 00	100E 02	315- 11	577F ol	4775-95	6.17 - 37	312F 17	5P.7E 73
21	967F 13	688E-01	6385 อา	138E 11	125E 01	237 - 10	269E-n7	157E 17	534E .13
24	616E 13	380E_01	508E 01	1022 01	1826 11	1156.06	124E-J7	394E a7	404E 33
25	. 340F 13	20 1 01	.278E 01	535E 3.)	1965 H	-5315-07	-514E-Ja	.433E 17	466E 13
26	188E 13	1105-01	.163E 01	2335 01	5.35 11	2352-37	205-13	473E 17	444E 13
27	.101r 13	506F-02	.121F 01	1495 31	249F 11	1735-07	-899F-17	•515F 07	. 1287 33
28	528F 12	3326-02	.892E 00	.793F-J1	.123F 9.1	4345-08	3175-19	557F 17	.115E 03
20	323F 12	1795-02	108F 01	433F-J1	.518E-11	?)7-03	1386-13	.602F 07	196F 03
20	170E 12	1065-02	777E 00	2485-11	-3-3[-11	1135-63	59.16-11	-6.11 07	199E 03
3ĭ	1951E 11	676E 13	628E 00	1165 11	345_01	603E 09	2356-17	695E 17	194E 13
32	-356E 11	381E-03	.404E 00	- 965E+J2	-15E-02	-314E-Uo	- 359E-11	.744F J7	. 300E 33
33	118E 11	2225-03	166E 00	517E-1?	170E-02	1945-39	286E-11	.795E 17	396E 13
34	325r 10	104-03	.786F-01	3155-02	1365-13	.1205-19	.76712	+147= 07	.3945 03
35	.376E 09	513E_04	.129E-01	1965-02	+875 - 64	.354E-11	23JE-12	.902E 07	. 382E 03

249

L

ĩ	δ _p	δ _p	δ _r	$\dot{\delta}_{r}$	δ	δ _a	^M 660	[.] м660	^M 1880
1	.000E-80	.000E-80	.000E-80		.0008-00	.000E-80	.DC0E-80	.000E-80	.390E-80
Ż	-128E-03	.868E-03	.335E-03	206E-02	.000E-80	.000E-80	- J26E 05	-+174E 06	382E 06
3	197E_02	1032_02	174E_02	. 614E.04	,000E_80	,000E_8C	329E 06	310E 05	<u>.235E</u> 07
4	649E-02	191E-02	256E-02	470E-04	.000E-8U	.000E-80	878E 06	-+511E 05	442E 07
5	-,141E_01	-,290E_02	.3162.02	178E-04	.000E_80	.000E_80	18CE 07	127E 06	•.731E 07
6	-,224E-01	<b>-,</b> 276E-02	.335E-02	-,134E-03	.QODE-80	•J09E+80	305E 07	164E 06	103E UB
7	280E-01	<pre>+143E+02</pre>	+168E-02	817E-03	.000E-80	.00QE-8U	431E 07	125E 06	•.112E UR
8	-,280E-01	280E-03	-,523E-02	= 295E=02	<b>*</b> 000E=80	000E-80	- 481- 07	.503E 05	- 584E 07
9	-,Z66E-01	.954E-03	-,182E-01	- 449E-02	+ 600E - 80	•000E-80	- 413E 07	+191E 06	.631E 07
10	_,340E_01	<b></b> 233E_02	<b>,,</b> 211E_01	-,463L-03	.000E_80	.000E_80	- 483E 07	139E 06	.738E 07
11	874E-01	-,196E-01	+125E+01	.112E-01	+000E-80	.000E-80	113E 08	*•148E 07	356E 08
12	-109E 00	•••7E=02	.178L-01	,146L-UZ	.000E-80	.700L_80	- 14JE U8	91/E 06	468E 08
13	114E UU	.153E-03	•217E•UI	.1001+02	.UUUE-80	.000E-80	64E UB	1078 07	524L US
14	-,90/E_UI	,793E-02	.163L_UI	-,148L-UZ	.0006_80	.0002_80	- 147E UG	190E 06	- 43UL UD
15	0005-40	0005-80	0006-90		0005-80	000E-89	.00VE-00	*006E+90	-100E+80
15	+000t-00	.000L-80	•000L=00		•0001-80	•00UE-80	•00UE=00	+000E-80	• <u>9</u> • <u>9</u> • <u>9</u> • <u>9</u>
17	.0001.80	,0002,00	.0000.00	SUCC-BU	. 490E. MD	000E_30	.0005-00	.UUUE=09	-800E-00
18	+000t-80	•000L=80	+000L+80	-00-100 -005	+000C=80	• 30GE = 80	•UCCL=80	+300E=80	-Jn05-80
19	.0000.00	+0000-00	.0005.00		.0000.00	.0000.00	.UUUL=0U	+UUUE=aU	+700E=00
20		+0000-50	,000E+80		+UUUE-RU	• VUUL = 59	.UUUL-FU	+0UUE+80	UL-80
21	+UUUE+8V	.0002-80	.UUUL+0U		0000-00	.0002.00	.0002-00	• UUUE • 80	.0005-00
22		,0008-50	,0000-00		,00000	.0001-00	.0006400	.0006-00	
2.3	•000t=00	•000C=70	•000L=00	• <b>• • •</b> • • • • • • • • • • • • • • •	+UUUL+80	• 000E - 00	.UUUL-00	• UUUL = 00	+100E=00
24	.0000.00	,0002.00	+UUUC=0U		.0005.00	.0002.00		+UUUE+09	
25	+000C+80	+000C=80	+ UUUL = 80	. UUGE - 80	+UUUE=80	• JUOL-80	+000L=80	+0002+80 -000E-80	+496E-80
20		000L-00	0005-00	#00E=00	3065 44		0000000	+000L+00	
28	1000E480	1000E-80	-000E-80	##0F-80	1000L=20	0000C+00	BODC-40	-0005-80	+UVUE-80
20	CODE_80	0000-80	0005-80	#B65+30	000c=80	000c=00	0000-000	0000-00	
3		,000E 80	000[-80	-0×E-80			.0005-80		-0002-00
11	.000F 80	.000E #0	-000t 80	BOOF_AD	.000E AO	-000E 80	000C-00	-00uE-80	• 0000C-00
	-0-0E-00	-0005-00	-000E-80	. 00. F-80	-000E_00	.000E-00	.0000-00	• • • • • • • • • • • •	
35	.000E_A0	.000E_A0	-000E-80		.000F_A0	-000E-80	.0002-80	-000E-80	
34	-000E_=0	.000F==0	-000E-=0	.BOUF-AD	-000F-#0	-000E=00	-00050	.0005-00	-100E+40
15	.000F_80	.0005_80	.000F_80		.0005_80	0000E-80	0006-80	-0005-8.	-0006-80

Table D16. Heading ( $u_{21D}$  with  $\Delta t = 0.04$ ) Covariance Results

MEAN RESPONSES

### Table D16. Heading $(u_{21D} \text{ with } \Delta t = 0.04)$ Covariance Results (Continued)

HEAN RESPONSES

-

ĩ		a _y	a _y	ąβ	ąβ	φ	¢	У	У
1	•000E-80	.000E-80	.000E-80		.030E-80	•000E-80	.008E-A0	•000E-80	• 100E-80
<u>د</u>	++CZ7C UI	+2212-U1	- 100C-U1	#34C=01	8270CeUI	+744C+U7	476-04		+ JJ25+V2
3	-+7216 04	+C36E-01	+.ZU/E+UI	- 261E VU	2105 00	[49E-U3	/0E-04	+00/E UU	+3/1E UU
	-+CZEL UB	+, #CUL-#1		119E 01	247F 00	-,7112-03	1945 81	+29UE UI	.70VE UU
?	-,236L VO	-,2902 00		7105 01	.3470 00	- 1136-02		.39/2 01	+210L=VI
6	-+2102 06	1095 01	**/35C 00	180F 02	547E 00	• 102C-02	-+122E-U3		**16/C U1
	2-25 0-	- 1445 01	1.1F 01	14/5 02	52-5 00	- 9325-02	3725-04		- 12-5 02
8	A175 07	231F 01		1765 02	-511F 00	- 777F-07	1315-04		- 2445 02
10	-984- 05	- 273- 01	.131# 02	191- 02	-671c 00	- 2786-02	- 14803	201- 01	- 1870 88
iĭ	1 % 1 7 0 8	- 2105 01	-1325 02	1835 02	1396 01	- 6975-02	- 8955-03		- A7AF 02
12	334F 07	- 247F 01	_ 22AE 02	286F 02	156E 01	- 889F-02	_ 291F_03	776F 03	_ 369F 02
1.	= 302F 07	- 104F 01		234E 02	192E 01	-940F-02	.313F=04		
14	492E 06	297E 01	-1A3E 02	206E 02	.780E 00	-7615-02	.3995-03	-150F 04	- A39F 02
15	.000F-A0	.000E_s0	.000E-A0		.000E	-000E-A0	.000F		-000E+80
16	.000E_80	.000E_80	.0008-80		.000E-88	.000E-80	.0006-80	-000E-80	.400E+80
17	.000r.80	.000F-80	.000F+80		.000F-80	.000F-80	.000r-80	+000r+80	.390F=80
18	.000E-80	.000E-80	.000E-80		.000E-80	.000E-80	.004E-80	+000F+80	.ANDE-80
19	.000F_80	0005_80	.000E.80	900E_80	000E_80	000E_80	000E-80	.000E-80	_U00E+80
20	.0n0E-80	.000E-80	.000E-80	.808E-80	.000E-8n	.nonE-8n	• D G D E = 8 8	•000E=80	E=8n
ŽĬ	.ÖŎŎĔ_8Ŏ	000E_80	.000E.80	.000E_80	.000E_80	.000E_80	.000E-80	.000E-80	-100E-80
22	+000E-80	.000E-80	+000E=80	.000E-80	.000E-80	.000E-80	.000E-80	+000E-80	.nooE=80
23	.000E_80	,000E_80	+000E+80	.800E-50	000E-80	.000E-80	.0046-80	+000E+80	.00E-80
24	.000 <u>e</u> -80	.000E-80	.000E=80	00CE-80	.000E-#0	•000E-80	.000 _{E-8} 0	.000F-80	.700E=80
25	•000Ē_80	,000Ē-80	.000E=80	.840Ē-80	.0006-80	.000Ē-80	.0a₽ <u>∃</u> €n0.	+000E=80	<b>.</b> 000Ē-80
26	,000E_80	0005_80	000E_80	<b>\$€0</b> E_80	000E_*0	.000E_80	.000E.80	.000E-80	_700E-80
27	•000E-80	•000E-80	•000E=80		000E-80	•000E-80	•000E+80	•000E=50	• 900E=80
28	,00QE_80	,000£_80	,000E_80	<b>.000</b> E-80	,000E_80	.000E_80	.00\$E.80	+000E+80	.000E-80
29	•000E=80	000E-80	.000E-80	. <b>800</b> E-87	.000E-#0	•006E-8C	.000E-80	•000E-80	•300E-80
30	.000E-80	.000E-80	•000E+80	.000E-80	•000E-80	.000E-80	.000E+80	•00QE=80	•100E=80
31	*000E=80	.000E-80	000E+80	.890E-80	*000E=80	•000E-80	.000 _E -80	•000E+80	•000E-90
32	.000E-80	,000E-80	+000E=80	.800E-80	.000E_A0	.000E-80	.000E+80	+000F-80	•JU7=80
33	000E_80	0005-80	,000E_80	<b>BOBE</b> -80	,000E_*0	.000E.80	.000E-88	,000E+80	.000E=80
34	•000E=80	•00gE=80	+000E=80	E-80	•000E=80	•000E-80	.000E-80	•80aE+80	+n00E+80
35	•000E_80	.000E_A0	-000E_80	.BOGE_AO	.000E_8 <b>6</b>	-00nE-8n	.0085_88	-000F-80	

## Table D16. Heading $(u_{21D} \text{ with } \Delta t = 0.04)$ Covariance Results (Continued)

RESPONSE COVARIANCES

ĩ	δ _p	δ _p	δ _r	δ _r	δ _a	δ _a	M660	[.] м660	^M 1880
1	.000 E 80	.000E-80	.000E-80	.00UE-80	.000 E-80	-00uE-80	-PODE-80	+300E-90	•198E+80
2	105E_04	443E_03	.889E_04	287E 02	000E_80	COUE_80	<b>1136 12</b>	.525E 15	"115E 15
2	+198E-03	,153E-0Z	.309E-04	.571E- ⁿ 3	.CODE-+0	.000E-80	.213E 13	•190E 15	+388E 14
4	,385E_03	,994E_0Z	.460E.04	163E-02	.0C0E-80	.000E.80	427E 13	.310E 15	.10JE 15
•	.590E-03	*296E-01	.457E-04	2595-02	.CODE-90	•000E-80	.664E 13	•362E 15	-130E 15
6	.641E_03	,361E-01	.372E-04	.319E+02	.009E-P0	.000E-87	.868E 13	•311E 15	.133E 15
7	*58E=03	123E-01	.8896+05	1056-05	080E-60	.000E-80	957E 13	.668E 14	.736E 14
A	•361E-03	•347E=01	.683E-04	.904E+02	•000E-Pü	•00 <u>0</u> E-80	•820E 13	•394F 15	.715E 14
9	,144E_0Z	487E 00	,825E,03	130E 00	,000E_80	.000E_80	.707E 13	.413F 16	_688E 15
10	.225E-02	•793E 00	.122E-02	.212E 00	.000E-80	.000E-80	.930E 13	•625E 16	•1"3E 16
11	.3845.02	,461E 00	.456E.03	.986E-01	,000E_80	.000E_80	.475E 14	•244E 16	.930E 15
12	+861E-02	,123g 01	.124E-02	.269E OU	.00JE-80	•000E-80	•99 ⁴ E 14	•667 _E 16	.275E 16
13	.846E_0Z	,1026 01	,129E-02	314E "C	.CUDE-80	.00JE_80	.127E 15	•546E 15	.216E 16
14	, ⁵⁷⁶ E-02	,573E 00	<b>886E+03</b>	SS3E 00	000E-80	.00E-80	112 _E 15	.325E 16	_149E 16
15	.0coE.80	.000E-80	•000£=80		+000E-80	.000E-80	.00E-88	+ 800F-80	-100E+80
16	.000E_80	,000E_80	,000E_80	.00.30 <b>0</b> 0	.000E_80	.000E_80	.000E-80	.00GE-8C	.100E-80
17	+000E-80	.000E-80	+000E-80	.@QQE-80	+009E-88	.000E-80	.000E-80	•000E+80	.200E-80
18	.000E_80	,000E_80	,000E_80	.000E-80	,000E_80	.000E-80	.000E-80	.000E-89	.000E-80
19	.000E-A0	.000E-80	•000E+80	.0005-900	•CODE-RB	+900E-80	.000F-80	.000F-80	.000E-80
20	.000E_80	,000E-80	.000E.80	.000E-80	.°00E-80	.000E-8c	.00uE-80	.UO0E-80	.10UE-80
21	.000E-80	000E-80	000E-80	00°E-80	000E-80	060E-80	.000E-80	.000F-80	.300E-80
22	+0n0E+80	.000E-80	.000E-80		.upgE=80	.nnnE-8c	.00eE+80	•nnnE=8n	
23	,000E_80	,000E_80	.000E.80	. \$\$\$E.80	.000E_+0	.000E_80	.000E-80	.00GE-80	CO0E-80
24	.000E-80	.000E-80	.000E-80	. 000E-an	.000E-80	- PUDE-AG	.COCE-A0	.000F-A0	.000E-80
25	.000E_80	.000E.80	.000E-80	.000E-80	.000E-80	.00nE_80	.00uE-80	.000E-80	.000E+80
26	.000£-80	.000E-80	.000E-80	.000E-80	.000E-R0	.000E-80	.000E+80	+00?F-80	. PODE-80
27	.000E_80	.000Ē-80	.000E-80	.800E-80	.000E-80	.000E-80	.009F-80	. TODE - 80	-00uE-80
28	000E-80	000E-80	000E-80	100E-80	000E-80	000F-80	0065-80	-000F-80	-000F-80
29	.0n0E-80	.000E-80	.0008-80		.UADE-86	.nnnE_8n	.0005-88	+0005+80	E=8n
30	000E_80	.000E_80	.000E.80	08_300 <b>8</b>	000E_0	.000E_80	.008E_80	.000E-80	-00uE-80
31	.000E-A0	.000E-A0	.000E-80	. 804E-A0	. PODE-80	-000E-80	-004E-A0	.006F-80	
32	.000E_80	.000E_80	.0006.80		.0008-80	-000E-80	.008E-80	.00GE-80	
33	.000F-80	.000F-AD	.000E-80		.000	-9005-80	.0065-80	.000r.e0	
34	.000E.80	.0002.80	.0008.80	.890E-80	.000E-80	.000E_80	.0005-00	-00uF-A0	-0005-80
35	0005-80	0005-80	0005-80	8005-80	0005-80	0605-86	000	00000-00	500C-00

____

## Table D16. Heading ( $u_{21D}$ with $\Delta t = 0.04$ ) Covariance Results (Concluded)

RESPONSE COVARIANCES

ĩ	^М 1880	ay	a y	ąβ	$\bar{\mathbf{q}}_{\boldsymbol{eta}}$	φ	• •	у	У
1	.0005.80	.000E-80	+000E+80	.000E-80	.CUDE-80	.0008-80	.UCGE-80	.00uE-80	.100E-80
Z	,354g 16	,349E 00	.Z42E 00	.119E UD	+61E 00	•196E=07	+291E+06	•645E+02	•773E-05
3	.708E 15	.816E-01	.269E 01	112E 02	.754E_n1	.107E-u5	-106E+05	•981E 02	.494E 01
4	,222E 16	,Z86E 00	.308E 0Z	234E 02	451E 00	216E_05	426E.05	.299E 03	.763E 00
5	+419E 16	.696E 00	.121E 03	.369E 02	+155E "1	•320E-05	-812E-05	•249E U3	.193E 01
6	,55ZE 16	,112E 01	,245E 03	499E 02	439E 01	.350E-05	.921E-05	-103E 02	.150E 0Z
7	.168E 16	.834E 00	,103E 03	.616E UZ	,1206 02	.285E-U5	2982-05	.60ZE 03	.483E 02
A.	,967E 16	,207E 01	<b>503E 03</b>	,736E 02	284E 12	.196E-05	.605E-05	•459E 04	.116E 03
9	+127E 18	*185 ^E 02	.874E U4	.886E 02	•297E 02	.250E-05	-C10E-04	•167E 05	-240E 03
19	212E 18	.308E 02	,177E 05	104E 03	.11AE 03	.378E-05	.128E=03	+45F C5	.420E 03
11	,111E 18	<b>,188E 0Z</b>	135E 05	115E 03	221E 03	_175E_04	_8C7E_04	<b>,</b> 983E 05	<u>554E_03</u>
12	+301E 18	+483E 02	+397E 05	.190E h3	.370E M3	+384E-04	•211E-03	•187E 06	•733E 03
13	,271E 18	450E OZ	406E 05	249E 03	.553E 03	,423E_04	173E-03	<b>.</b> 322E 06	<b>956E 03</b>
14	164E 18	.289E 02	.280E 05	223E 03	.609E 03	.310E-04	.106E=03	•513E 06	+122E 04
15	.000E_80	.000E_80	.000E-80	.000E-80	.000E_80	.000E.80	.000E-80	+000E+80	•700E-80
16	.000 <b>E-80</b>	.000E-80	.000E-80	.809E-80	•000E+80	•D00E-80	.COBE-88	•000E=80	*06AE-90
17	+000E=80	•000E-80	•000E=80	. ###F=80	•000E-80	•000E=80	.0006-88	+000E=8c	•00uE=80
18	.000E_80	,000E_80	.000E_80	,888E_80	,nooe_*o	.000£_80	.OG@E_80	.000E.80	_n0uE=80
19	+0005-80	+000E-80	+000 ^E =80	1000E-80	•000E-80	•009E-80	• UODE-80	• 00uE = 80	•nngE=80
20	.000E_80	.000E_80	.000E.80	. ##@E-80	.000E.¶0	.0C0E_80	.00GE-80	•000E-80	.00.E-80
21	.000E-80	,000E-80	.000E+80	<b>.020E-</b> 80	.000E-80	•300E-80	0 <u>6</u> -3090.	+090E+80	•00uE=80
22	.000E_80	+000E-80	.000E-80	.070E-80	.000E_80	.000E_80	.UC#E-80	+000F=80	•990E=80
23	.000E-80	.000E-80	*000E=90	.00€=90	+000E+40	.000E-80	.CC#E-80	•000E=8ú	*000E-90
24	•000E=80	•000E-80	•000E=80	.800E-80	•000E=80	• <u>00</u> 9E-80	•000E+80	+0^CE+80	•regE=8g
25	.000E_80	,000E_80	,000E_80	,000E_80	.000E_80	,00cE_80	0C4E_80	•00GE-80	.^QUE-80
26	•000E-80	.000E-80	•000E+80	• 808E • 80	•000E-=0	•000E-80	•000E-80	•009E-80	•100E-80
27	.000 <b>5_80</b>	,000E_80	.000E_80	.000E_80	,000E_80	.000E_80	.00wE_80	+00¥E+80	.j00E+80
28	.000E-80	.000E-80	.0002-80	.000E-80	.000E-80	.00uE-80	.000E-80	•09úE+80	-000E-80
29	.000E_80	,000E.80	.000E-80	.800E+80	.000E-80	.00úE_80	.D08E-80	•000E=80	.^00E=80
30	+000E-80	.000E+80	•000E-80	.900E-80	•000E-80	•000E-80	.006 _E =80	•900E-80	+000E=80
31	•0 <u>00</u> E-80	.000E-80	. <u>000</u> E-80	. <b>800</b> E-80	.000E-80	<b>.</b> 0u0€.80	.00¢Ē+80	+000F=80	•900E=80
32	.000E_80	,000E_80	,000E_80	, <b>00</b> E .80	,000E_PÖ	.0CūE_80	.000E_80	.00úE-80	_100E+80
33	+000E-80	.000E-80	+000E+80	.800E-80	+000 <b>E-80</b>	•000 <u>E</u> -80	•000E-80	•00nE-80	• 200 E-80
34	.000E_80	,000E_80	.000E_80	<b>.00</b> 0E_80	.000E_*0	.000E_80	.008E-A0	•000E•80	00E-80
35	.000E_A0	.000E-x0	.000E-A0	.000E-A0	.0006-80	.000E_A0	.000E-A0	•000E=#0	_u0uE=s0

253

i

#### APPENDIX E

#### LATERAL EQUATIONS AND DATA FOR NORTH AMERICAN 130G.

This appendix presents the vehicle equations and data used in Section VII.

#### VECTOR REPRESENTATION

A three-view of the airplane is presented as Figure 70. All data except for the rudder aerodynamics and actuator dynamics are taken from ref. 27. Honeywell obtained the missing data from North American.

The state equations are presented in Table E2, and the numerical data for them are presented in Table E1. The FC (flight conditions) referred to correspond to those being used by Honeywell Aerospace in the Phase B shuttle program. Table E3 identifies the flight conditions used.

#### DISCUSSION

The weights, inertias, and centers of gravity used (Table E3) were obtained from North American.

Stability derivatives except for rudder were obtained from Figures E1 through E11. The signs of the derivatives for aileron  $\delta_a$  (differential tail deflection) and spoilers are reversed in going to Tables E1 and E4 to conform to conventional NASA practice. It is noted that both the ailerons and spoilers yield proverse yaw. The spoiler data were resolved from stability axes as presented in Figures E10 and E11 to body axes in Table E4. Table E4 also assumes a spoiler gearing has been provided to yield the linear effectiveness between 0 and  $\pi/2$  radians.

The generic form of the state perturbation equations of Table E2 is:

$$\dot{\mathbf{p}} = \mathbf{L}_{\mathbf{p}}'\mathbf{p} + \mathbf{L}_{\mathbf{r}}'\mathbf{r} + \mathbf{L}_{\beta}'\beta + \mathbf{L}_{\delta a}'\delta_{a} + \mathbf{L}_{\delta r}'\delta_{r} + \mathbf{L}_{\delta s}'\delta_{s}$$
$$\dot{\mathbf{r}} = \mathbf{N}_{\mathbf{p}}'\mathbf{p} + \mathbf{N}_{\mathbf{r}}'\mathbf{r} + \mathbf{N}_{\beta}'\beta + \mathbf{N}_{\delta a}'\delta_{a} + \mathbf{N}_{\delta r}'\delta_{r} + \mathbf{N}_{\delta s}'\delta_{s}$$
$$\dot{\beta} = \frac{\mathbf{w}_{0}}{\mathbf{V}}\mathbf{p} - \frac{\mathbf{u}_{0}}{\mathbf{V}}\mathbf{r} + \mathbf{Y}_{\beta}\beta + \mathbf{Y}_{\delta r}\delta_{r} + \frac{\mathbf{g}}{\mathbf{V}}(c\theta_{0})\phi$$
$$\dot{\phi} = \mathbf{p} + (\tan\theta_{0})\mathbf{r}$$

$$\ddot{\delta}_{a} = -\frac{T_{a_{1}} + T_{a_{2}}}{T_{a_{1}} T_{a_{2}}} \dot{\delta}_{a} - \frac{1}{T_{a_{1}} T_{a_{2}}} \delta_{a} + \frac{1}{T_{a_{1}} T_{a_{2}}} u_{1}$$
$$\ddot{\delta}_{r} = -\frac{T_{r_{1}} + T_{r_{2}}}{T_{r_{1}} T_{r_{2}}} \dot{\delta}_{r} - \frac{1}{T_{r_{1}} T_{r_{2}}} \delta_{r} + \frac{1}{T_{r_{1}} T_{r_{2}}} u_{2}$$
$$\dot{\delta}_{s} = -\frac{1}{T_{s}} \delta_{s} + \frac{1}{T_{s}} u_{3}$$

-----

where

$$\begin{split} \mathbf{L}_{\mathbf{p},\mathbf{r}}^{\prime} &= \left(\frac{\bar{q}Sb}{I}\right) \left(\frac{b}{2V}\right) \left\langle \mathbf{I}_{\mathbf{zz}} \mathbf{C}_{\mathcal{L}_{\mathbf{p},\mathbf{r}}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\mathbf{n}_{\mathbf{p},\mathbf{r}}}\right\rangle \\ \mathbf{L}_{\boldsymbol{\beta}}^{\prime}, \delta \mathbf{a}, \delta \mathbf{r}, \delta \mathbf{s} &= \frac{\bar{q}Sb}{I} \left\{ \mathbf{I}_{\mathbf{zz}} \mathbf{C}_{\boldsymbol{\ell}_{\boldsymbol{\beta}}, \delta \mathbf{a}, \delta \mathbf{r}, \delta \mathbf{s}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\mathbf{n}_{\boldsymbol{\beta}}, \delta \mathbf{a}, \delta \mathbf{r}, \delta \mathbf{s}} \right\} \\ \mathbf{N}_{\mathbf{p},\mathbf{r}}^{\prime} &= \left(\frac{\bar{q}Sb}{I}\right) \left(\frac{b}{2V}\right) \left\langle \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}_{\mathbf{p},\mathbf{r}}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\boldsymbol{\ell}_{\mathbf{p},\mathbf{r}}} \right\rangle \\ \mathbf{N}_{\boldsymbol{\beta}}^{\prime}, \delta \mathbf{r} &= \frac{\bar{q}Sb}{I} \left\{ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}_{\boldsymbol{\beta}, \delta \mathbf{r}}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\boldsymbol{\ell}_{\boldsymbol{\beta}, \delta \mathbf{r}}} \right\} \\ \mathbf{Y}_{\boldsymbol{\beta}, \delta \mathbf{r}} &= \frac{g}{V} \left. \frac{\bar{q}S}{W} \left\{ \mathbf{C}_{\mathbf{y}_{\boldsymbol{\beta}, \delta \mathbf{r}}} \right\} \\ \mathbf{I} &= \mathbf{I}_{\mathbf{xx}} \mathbf{I}_{\mathbf{yy}} - \mathbf{I}_{\mathbf{xz}}^{2} \end{split}$$

The time constants ( $T_{a_1}$ ,  $T_{r_1}$ ,  $T_{a_2}$ , and  $T_{r_2}$ ) for the aileron and rudder servo and actuator are taken as 0.030 second. The spoiler time constant is taken as 0.15 second.

ŀ		FC 9		FC 11	_	
a11		-2.85		-1.299		
a ₁₂		+1.367		+1.336		
a ₁₃		-6.37		-1.668		
a ₁₆		-7.48		-1.555		
a ₁₈		+4.46		+ .963		
a ₁₉		698		- ,212		
a ₂₁		+ .1766		+ .0846		
a_22		586		405		
a ₂₃		+2.15		+ .491		
^a 26		985		1633		
^a 28		-1.286		332		
a29		0466		01603		
a 31		+ .0262		+.191		
<b>a</b> 32	.	-1.00		982		
<b>a</b> 33	.	444		325		
a ₃₄		• .0477		+.1275		
^a 38		.0723		+.0405		
a ₄₁ .		1.0		+1.0		
a ₄₂ .		.0262		+.1942		
а ₄₄		0.0	ŀ	0.0		

Table E1. State Data

### Table E1. State Data (Continued)

<b>a</b> 55	-	66.7		
<b>a</b> 56	-1	111.0		
<b>a</b> 65	+	1.0		
a.77	-	66.7		
<b>a</b> 78	-13	111.0		
<b>a</b> 87	+	1.0		
<b>a</b> 99	-	.15		
^b 51	+11	111.0		
^ь 72	+11	111.0		ĺ
^ь 93	+	.15		
δ _a   ≤		.262	rad/sec	
δ _a   ≤		.262	rad	
$ \delta_r  \leq$		•349	rad/sec	
δ _r   ≤		.1742	rad	
δ ₁   ≤		•523	rad/sec	
δ _s   ≤		1.572	rad	

ALL FLIGHT CONDITIONS

257

_ ____

____

		р	r	β	ø	đa	δ _a	δ _r	δ _r	δ _s		- ^u 1	^u 2	^u 3 -	
[ i ]		a ₁₁	^a 12	^a 13	0	0	^a 16	0	^{a`} 18	^a 19	р	0	0	0	
ŕ		^a 21	^a 22	^a 23	0	0	^a 26	0	^a 28	^a 29	r	o	0	0	
β		^a 31	^a 32	a ₃₃	^a 34	0	0	0	^a 38	0	β	o	0	0	
ø		^a 41	^a 42	0	^a 44	0	0	0	0	0	ø	o	0	0	
 ⁰ a	=	o	0	0	0	^a 55	^a 56	0	0	0	δ _a +	^b 51	0	0	^u 2
δ _a		o	0	0	0	^a 65	0	0	0	0	δ _a	o	0	0	^u 3
δ _r		0	0	0	0	0	0	^a 77	^a 78	0	ό _r	0	^b 72	0	
δ _r		o	0	0	0	0	0	^a 87	0	0	^ŏ r	0	0	0	
δ _s		0	0	0	0	0	0	0	0	^a 99	δ _s	0	0	^b 93	

Table E2. State Equations

		<u>FC 9</u>	FC 11	
CL		0.234	0.922	
1 _{xx}		1.91·10 ⁶	1.92·10 ⁶	slug $ft^2$
I _{xz}		.220·10 ⁶	.222·10 ⁶	slug $ft^2$
Izz		13.4·10 ⁶	13.47·10 ⁶	slug ft 2
M	Mach	0.650	0.226	
s	Wing area	308	84	ft ²
W	Weight	208,000	214,495	1Ъ
v	Speed	674.	252.	ft/sec
b	Span	121	+.2	ft
h	Altitude	20,000	0	ft
P	Dynamic pressure	287.	75.5	1b/ft ²
°		674.	247.	ft/sec
۳o		+17.67	+48.1	ft/sec
× cm	Center of mass	1615.	1465.	in.
× сш	Center of mass	67.0	59.8	Ж
ao	Attack	1.5/57.3	11/57•3	rad

Table E3. Flight Data

I

259

____

F.C.	9	11	9	11	9	11	
(•)	°¢(	•)	C _n	(•)	^C y(·)		
р	540	350	+.295	+.200	_		
r	+.270	+.370	804	806			
β	115	115	+.275	+.241	<b>-</b> 2.18	-2.35	
δ _a	128	101	105	064			
⁸ r	+.080	+.066	166	162	• 355	+ .292	
δ _s	0120	01377	00427	0058			

Table E4. Body Axis Stability Derivatives



Figure E1. Trim Data



Figure E2. C_l

I











ł

 MACH 0 → 0.6
 0.9
 1.1
 1.5
 20.0
 10.0









I.





Figure E11. C_n Spoiler

#### APPENDIX F

#### LATERAL EQUATIONS AND DATA FOR NORTH AMERICAN 134D

This appendix presents the equations and data used to generate the results of Section VIII. The nomenclature, representations, and derivations are presented below.

NOMENCLATURE

A = Matrix [Equation (F1)]

 $A[x] = Slender body area [Equations (F19) and (F20)] ft^2$ 

B = Matrix [Equation (F22)]

$$C_{L} = 0.345 = \frac{W}{\bar{q}S[c\gamma - (s\gamma)C_{D}/C_{L}]}$$

$$C_{\ell_{p}} = (c\alpha)^{2} \overline{C}_{\ell_{\bar{p}}} - (s\alpha)(c\alpha)\left(\overline{C}_{\ell_{\bar{r}}} + \overline{C}_{n_{\bar{p}}}\right) + (s\alpha)^{2} \overline{C}_{n_{\bar{r}}}$$
1/rad

$$\bar{C}_{\boldsymbol{\ell}} = \frac{\partial \bar{C}_{\boldsymbol{\ell}}}{\partial \left(\frac{\bar{p}b}{2\nabla}\right)} \quad (\text{Figure F4}) \qquad 1/\text{rad}$$

$$C_{\boldsymbol{\ell}_{\mathbf{r}}} = (c\alpha)^2 \, \overline{C}_{\boldsymbol{\ell}_{\mathbf{\bar{r}}}} + (s\alpha)(c\alpha) + \left(\overline{C}_{\boldsymbol{\ell}_{\mathbf{\bar{p}}}} - \overline{C}_{\mathbf{n}_{\mathbf{\bar{r}}}}\right) - (s\alpha)^2 \, \overline{C}_{\mathbf{n}_{\mathbf{p}}} \qquad 1/rad$$

$$\overline{C}_{\boldsymbol{\ell}} = \frac{\partial C_{\boldsymbol{\ell}}}{\partial \left(\frac{\overline{r}b}{2V}\right)} \quad (Figure F5) \qquad 1/rad$$

$$C_{\ell_{\beta}} = 57.3 \left[ (c_{\alpha}) \overline{C}_{\ell_{\beta}} - (s_{\alpha}) \overline{C}_{n_{\beta}} \right]$$
 1/rad

$$\overline{C}_{\boldsymbol{\ell}_{\beta}} = \frac{\partial C_{\boldsymbol{\ell}}}{\partial \beta} \quad (\text{Figure F6}) \qquad 1/\text{deg}$$

$$C_{\mathcal{L}_{\delta a}} = 57.3 \begin{bmatrix} (c\alpha) \overline{C}_{\mathcal{L}_{\delta a}} - (s\alpha) \overline{C}_{n} \\ \delta a \end{bmatrix}$$
 1/rad

ι

$$\bar{C}_{\boldsymbol{\ell}} = \frac{\partial \bar{C}_{\boldsymbol{\ell}}}{\partial \delta_{\mathbf{a}}} \quad (\text{Figure F7}) \qquad 1/\text{deg}$$

I

$$C_{\ell} = 57.3 \left\{ (c\alpha) C_{\ell} - (s\alpha) \overline{C}_{n} \right\}$$
 1/rad

$$\bar{C}_{\ell} = \frac{\partial \bar{C}_{\ell}}{\partial \delta_{r}} \quad (Figure F8) \qquad 1/deg$$

$$C_{n_{\bar{p}}} = (c\alpha)^{2} \bar{C}_{n_{\bar{p}}} + (s\alpha)(c\alpha) \left( + \bar{C}_{\ell_{\bar{p}}} - \bar{C}_{n_{\bar{r}}} \right) - (s\alpha)^{2} C_{\ell_{\bar{r}}}$$
 1/rad

$$\bar{C}_{n_{\bar{p}}} = \frac{\partial C_{n}}{\partial \left(\frac{\bar{p}b}{2V}\right)} \quad (Figure F4) \qquad 1/rad$$

$$C_{n_{\bar{r}}} = (c\alpha)^{2} \bar{C}_{n_{\bar{r}}} + (s\alpha)(c\alpha) \left( + \bar{C}_{\ell_{\bar{r}}} + \bar{C}_{n_{\bar{p}}} \right) + (s\alpha)^{2} \bar{C}_{\ell_{\bar{p}}}$$
 1/rad

$$\overline{\overline{C}}_{n_{\overline{r}}} = \frac{\partial C_{n}}{\partial \left(\frac{\overline{r}b}{2V}\right)} \quad (Figure F5) \qquad 1/rad$$

$$C_{n_{\beta}} = 57.3 \left\{ + (s\alpha) \overline{C}_{\ell_{\beta}} + (c\alpha) \overline{C}_{n_{\beta}} + \frac{x_{cm} - x_{mrp}}{b} \overline{C}_{y_{\beta}} \right\}$$
 1/rad

$$\overline{C}_{n_{\beta}} = \frac{\partial \overline{C}_{n}}{\partial \beta}$$
 (Figure F6) 1/deg

$$C_{n_{\delta a}} = 57.3 \left\{ + (s\alpha) \overline{C}_{l_{\delta a}} + (c\alpha) \overline{C}_{n_{\delta a}} + \frac{x_{cm} - x_{mrp}}{b} \overline{C}_{y_{\delta a}} \right\}$$
 1/rad

$$\overline{C}_{n_{\delta a}} = \frac{\partial \overline{C}_{n}}{\partial \delta_{a}} \quad (\text{Figure F7}) \qquad 1/\text{deg}$$

$$C_{n_{\delta r}} = 57.3 \left\{ + (s\alpha) \overline{C}_{\ell_{\delta r}} + (c\alpha) \overline{C}_{n_{\delta r}} \right\}$$
 1/rad

$$\overline{C}_{n} = \frac{\partial C_{n}}{\partial \delta_{r}} \quad (\text{Figure F8}) \qquad 1/\text{deg}$$

$$C_{y_{\beta}} = 57.3 \overline{C}_{y_{\beta}}$$
 1/rad

$$\overline{C}_{y_{\beta}} = \frac{\partial C_{y}}{\partial \beta}$$
 (Figure F6) 1/deg

$$C_{y_{\delta r}} = 57.3 \ \overline{C}_{y_{\delta r}}$$
 1/rad

$$\bar{C}_{y_{\delta r}} = \frac{\partial \bar{C}_{y}}{\partial \delta_{r}} \quad (Figure F8) \qquad 1/deg$$

D = Matrix [Equation (F2)]

 $E_0 = 2.5/57.3$  (Elevation angle) rad

G = Matrix [Equation (F1)]

H = Heading angle (rotation sequence H, E,  $\phi$ )radI = I  $_{xx}I_{zz} - I_{xz}^2$  $slug^2/ft^4$ I  $_{xx}$  = 2.75  $\cdot$  10⁶ (Inertia about x axes) $slug/ft^2$ 

$$I_{xz} = -0.006 \cdot 10^6$$
 (Product of inertia)  $slug/ft^2$ 

$$I_{zz} = 14.394 \cdot 10^6$$
 (Inertia about z axis) slug/ft²

$$L_w = 600$$
 (Vertical gust scale of turbulence) ft

N = Yawing momentft/lbS = 6084 (Reference area)ft²
$$T_a = 1/6$$
 (Aileron actuator time constant)sec

 $T_r = 1/6 (Rudder actuator time constant) sec$ V = 291 (Airspeed) ft/secW = 212, 740 (Weight) lbY = Side force lb _____

 $a_{i}$  = Element of A matrix

---

271

- -

•

ł

 $a_{3,15} = \frac{g}{W} \bar{q}SC_{y_{\delta r}}$  $a_{41} = 1$ a₄₂ = tan E_o  $a_{44} = q_0 \tan E_0$  $a_{52} = \frac{1}{\cos E}$  $a_{54} = \frac{q_0}{\cos E}$ a₆₃ = 1.0 a₆₄ = -w_o  $a_{65} = u_0 \cos E + w_0 \sin E$  $a_{77} = -a_{7,11}$  $a_{7,11} = +2.3 \frac{V}{L}$  $a_{88} = -20.34 \frac{V}{L}$  $a_{89} = -51.86 \frac{V}{L}$  $a_{8,11} = +72.2 \frac{V}{L}$  $a_{98} = +7.04 \frac{V}{L}$  $a_{99} = +15.76 \frac{V}{L}$  $a_{9,11} = -22.8 \frac{V}{L}$  $a_{10,10} = -a_{10,13}$ 

$a_{10,13} = 2.3 \frac{V}{r.c.}$	
$a_{11,12} = 1.0$	
$a_{12,11} = -\left(\frac{V}{L_v}\right)^2$	
$a_{12,12} = -2\left(\frac{V}{L_v}\right)$	
$a_{13,13} = -\frac{\pi}{4} \frac{V}{b}$	
$a_{14,14} = -g_{14,1}$	
$a_{15,15} = -g_{15,2}$	
b = 118.5 Span	ft
c = Cosine	
cm = Center of mass (subscript)	
d[x] = Slender body diameter [Equation (F21)]	ft
d _{ij} = Element of D matrix	
$d_{81} = g_{14,1}$	
$d_{10,2} = g_{15,2}$	
$d_{12,1} = h_{11,14}g_{14,1}$	
$d_{12,2} = h_{11,15}g_{15,2}$	
e = Earth (subscript)	
f = Equation (F2)	
$\tilde{f}$ = Equation (F1)	
$f_i = \text{Step response of } x_i [i = 1, 2, 3; \text{ Equations (F16) through (F18)}$	ft/sec

g = 32.17 (Gravity)

g_{ij} = Element of G matrix  $g_{11,3} = \sigma_v \sqrt{\frac{3V}{\pi L_v}}$  $g_{12,3} = \frac{\left(1 - 2\sqrt{3}\right)}{\sqrt{\pi}} \sigma_{v} \left(\frac{V}{L_{v}}\right)^{3/2}$  $g_{13,4} = \frac{\pi}{4} \frac{\sigma_{w}}{b} \sqrt{\frac{V}{L_{w}}} \sqrt{0.8 \left(\frac{\pi}{4} - \frac{L_{w}}{b}\right)^{1/3}}$  $g_{14,1} = \frac{1}{T_{a}}$  $g_{15,2} = \frac{1}{T_r}$ h = 600 (Altitude) h_{ij} = Element of H matrix  $h_{14} = 1.0$  $h_{21} = a_{41}$  $h_{22} = a_{42}$  $h_{24} = a_{44}$  $h_{35} = 1.0$  $h_{42} = a_{52}$ 

^h44 ^{= a}54

 $h_{56} = 1.0$ 

 $h_{63} = a_{63}$ 

ft

 $ft/sec^2$ 

$$h_{64} = a_{64}$$

$$h_{65} = a_{65}$$

$$h_{7,14} = 1.0$$

$$h_{8,14} = -g_{14,1}$$

$$h_{9,15} = 1.0$$

$$h_{10,15} = -g_{15,2}$$

$$h_{11,1} = +x_{p}a_{21} - z_{p}a_{11}$$

$$h_{11,2} = +x_{p}a_{22} - z_{p}a_{12}$$

$$h_{11,3} = a_{33} + x_{p}a_{23} - z_{p}a_{13}$$

$$h_{11,4} = zero$$

$$h_{11,7} = a_{37} + x_{p}a_{27} - z_{p}a_{17}$$

$$h_{11,8} = a_{38} + x_{p}a_{28} - z_{p}a_{18}$$

$$h_{11,9} = a_{39} + x_{p}a_{29} - z_{p}a_{19}$$

$$h_{11,10} = x_{p}a_{2,10} - z_{p}a_{1,10}$$

$$h_{11,14} = a_{3,14} + x_{p}a_{2,14} - z_{p}a_{1,14}$$

$$h_{11,15} = a_{3,15} + x_{p}a_{2,15} - z_{p}a_{1,15}$$

$$h_{12,1} = h_{11,1}a_{11} + h_{11,2}a_{21} + h_{11,3}a_{31}$$

$$h_{12,3} = h_{11,1}a_{13} + h_{11,2}a_{23} + h_{11,3}a_{33}$$

$$h_{12,4} = h_{11,3}a_{34}$$

• • · • • • • • • • • • • • •

. _ . . _ .

_ _

____

--

$$\begin{aligned} h_{12}, 7 = h_{11}, 1a_{17} + h_{11}, 2a_{27} + h_{11}, 3a_{37} + h_{11}, 7a_{77} \\ h_{12}, 8 = h_{11}, 1a_{18} + h_{11}, 2a_{28} + h_{11}, 3a_{38} + H_{11}, 8a_{88} + h_{11}, 9a_{98} \\ h_{12}, 9 = h_{11}, 1a_{19} + h_{11}, 2a_{29} + h_{11}, 3a_{39} + h_{11}, 8a_{89} + h_{11}, 9a_{99} \\ h_{12}, 10 = h_{11}, 1a_{1}, 10 + h_{11}, 2a_{2}, 10 + h_{11}, 10a_{10}, 10 \\ h_{12}, 11 = h_{11}, 7a_{7}, 11 + h_{11}, 8a_{8}, 11 + h_{11}, 9a_{9}, 11 \\ h_{12}, 13 = h_{11}, 10a_{10}, 13 \\ h_{12}, 14 = h_{11}, 1a_{1}, 14 + h_{11}, 2a_{2}, 14 + h_{11}, 3a_{3}, 14 + h_{11}, 14a_{14}, 14 \\ h_{12}, 15 = h_{11}, 1a_{1}, 15 + h_{11}, 2a_{2}, 15 + h_{11}, 3a_{3}, 15 + h_{11}, 15a_{15}, 15 \\ i, j, k = Unit vectors in aircraft (Figure F3) \\ i_e, i_e, k_e = Unit vectors relative to flat earth \\ mrp = Moment reference point (subscript) \\ p = Roll rate (Figure F3) \\ rad/sec \\ p_g = Rolling wind \\ rad/sec \\ q = Pitch rate (Figure F3) \\ q_0 = 0 (Reference pitch rate) \\ ad/sec \\ r = Response vector [Equation (F2)] \\ r, c. = 90 Root chord \\ ft \\ s = Sine \\ s = Differentiation operator \end{aligned}$$

---
s.g. = Side gust (subscript)	
$u_0 = 2.82 = V(c\alpha)$	ft/sec
v = Side velocity (Figure F3)	ft/sec
$\widetilde{\mathbf{v}}$ = Side gust at aircraft nose	ft/sec
$w_0 = 72.8 = V(s\alpha)$	ft/sec
x = State vector [Equation (F1)]	
x = Side gust state at aircraft nose	$ft/sec^2$
x = Distance forward of cm (Figure F2)	ft
x = Distance aft of nose	ft
x _{cm} = 117 (Aft of the nose; Figure 90)	ft
$x_{mrp} = 117$ (Aft of the nose; Figure 90)	ft
x = 58.6 Distance pilot is forward of cm	ft
$x_1, x_2, x_3 = Side gust distribution states$	ft/sec
$x_4$ = Rolling gust distribution state	rad/sec
y = Lateral displacement relative to ground	ft
z = -7.5 (Distance pilot is below x axis)	ft
$\Delta$ = Perturbation symbol	
Ø = Roll angle	rad
$\alpha = 14.5/57.3$ (Angle of attack)	rad
$\beta$ = Sideslip angle (Figure F3)	rad
$\gamma = -12/57.3$ (Flight path angle)	rad
$\delta_a$ = Aileron deflection; each (Figure F3)	rad
$\delta_r$ = Rudder deflection (Figure F3)	rad

-

-----

278

____

$$\eta_1 = \text{Unity white noise (drives } \widehat{v})$$
  $1/\sec^{1/2}$ 

$$\eta_2$$
 = Unity white noise independent of  $\eta_1$  (drives  $p_g$ )  $1/sec^{1/2}$ 

 $\mu_{ii}$  = Wind weights [Equations (F23) and (F26)]

$$\sigma_v = 9.54$$
 (Standard deviation of side gusts) ft/sec

$$\sigma_w = 6.7$$
 (Standard deviation of up gusts) ft/sec

= Overscore indicating quantity is in stability axes

# REPRESENTATIONS

The generic forms for the perturbation state transition and response are given by Equations (F1) and (F2).

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{G}\mathbf{f} = \mathbf{A}\mathbf{x} + \mathbf{G}_1\mathbf{u} + \mathbf{G}_2\eta \tag{F1}$$

$$\mathbf{r} = \mathbf{H}\mathbf{x} + \mathbf{D}\mathbf{f} = \mathbf{H}\mathbf{x} + \mathbf{D}\mathbf{u} \tag{F2}$$

They are presented explicitly in Tables F1 and F2. These tables and the nomenclature provide for generating all data.

Evaluation of these data for the flight condition investigated yields the numerical values for the matrices A,  $G_1$ ,  $G_2$ , H, and D listed in Tables F2 through F7. Gain matrices are listed in Tables 24 and 27.

The analog simulation for the plant and quadratic controller are presented as Figures F1 and F2. Pot settings are given in Tables F8 and F9, Table F10 lists the amplifiers used.

#### DERIVATIONS

#### Euler Angles

The aircraft body axes (i, j, k: Figure F3) relative to their initial position  $\hat{i}_e$ ,  $\hat{j}_e$ ,  $\hat{k}_e$  over a flat earth are given by (Equation 1-4B of ref 28).

$$\begin{pmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{pmatrix} = \begin{bmatrix} (cEcH) & (cEsH) & (-sE) \\ (-sHc\bar{\Phi} + sEcHs\bar{\Phi}) & (cHc\bar{\Phi} + sEsHs\bar{\Phi}) & (cEs\bar{\Phi}) \\ (sHs\bar{\Phi} + sEcHc\bar{\Phi}) & (-cHs\bar{\Phi} + sEsHc\bar{\Phi}) & (cEc\bar{\Phi}) \end{bmatrix} \begin{pmatrix} \hat{i}_{e} \\ \hat{j}_{e} \\ \hat{k}_{e} \end{pmatrix}$$
(F3)

These equations are for the Euler rotation sequence heading H, elevation E, and roll  $\phi$ . The inverse of the above system is required but it will not be written explicitly, because it is available by transposing (inverting) the matrix. For example, the cross-course velocity  $\dot{y}$  (in earth's coordinates) is required. By use of Equation (F3)

$$\dot{y} = (cEsH)u + (cHc\phi+sEsHs\phi)\nabla + (-cHs\phi+sEsHc\phi)W$$
 (F4)

Taking perturbations in y, H, V, and v yields

$$\Delta \dot{y} = (u_o cE + w_o sE) \Delta H - w_o \Delta \phi + \Delta v$$
(F5)

Equation (F5) corresponds to rows 6 of Tables F1 and F2; the perturbation symbol is dropped in Tables F1 and F2.

Evaluation of the goodness of roll control requires determination of the excursions in heading and roll. Their rates are given by (Equations 1 - 15, ref. 28).

$$\dot{H} = \frac{1}{cE} (qs\phi + rc\phi)$$
(F6)

$$\phi = p + \tan E (qs\Phi + rc\Phi)$$
 (F7)

Taking perturbations yields

$$\Delta H = \frac{1}{cE} (q_0 \Delta \phi + \Delta r)$$
 (F8)

$$\dot{\Delta}\phi = \Delta p + \tan E(q_0 \Delta \phi + \Delta r)$$
 (F9)

which agree with rows 5 and 4 of Table F1.

#### Winds

The clear air wind turbulence models of the Dryden form for shuttle in post entry flight are specified on pages 48-53 of ref. 13. The lateral axis is forced by side gusts

$$\widetilde{\mathbf{v}} = \sigma_{\mathbf{v}} \sqrt{\frac{\mathbf{L}_{\mathbf{v}}}{\pi \mathbf{V}}} \frac{1 + \frac{\sqrt{3} \mathbf{L}_{\mathbf{v}}}{\mathbf{V}} \mathbf{s}}{\left(1 + \frac{\mathbf{L}_{\mathbf{v}}}{\mathbf{V}} \mathbf{s}\right)^2} \eta_1$$
(F10)

and by rolling gusts

$$p_{g} = \sigma_{W} \sqrt{\frac{1}{L_{W}V} \frac{\sqrt{0.8 \left(\frac{\pi}{4} - \frac{L_{W}}{b}\right)^{-1/3}}}{1 + \frac{4b}{\pi V} - s}} \eta_{2}$$
(F11)

State representations for Equations (F10) and (F11) are given by

and

$$\dot{p}_{g} = \frac{\pi}{4} \frac{V}{b} p_{g} + \sigma_{w} \sqrt{0.8 \frac{V}{L_{w}}} \frac{\pi}{4b} \left(\frac{\pi}{4} \frac{L_{w}}{b}\right)^{1/6} \eta_{2}$$
(F13)

They correspond to rows 11 through 13 of Table F1.

Numerical values of  $\sigma_w, \, \sigma_v, \, L_w, \, \text{and} \, L_v$  are needed. For 600-feet altitude these are

$$\sigma_w = 6.7 \text{ ft/sec}$$
  
 $\sigma_v = 9.54 \text{ ft/sec}$   
 $L_w = 600 \text{ ft}$   
 $L_v = 1220 \text{ ft}$ 

 $\boldsymbol{\sigma}_w$  is taken directly from ref 13. For altitudes below 1750 feet

$$L_w = h$$
  
 $L_v = 145h^{1/3}$ 

Furthermore,

$$\sigma_{\mathbf{v}} = \sqrt{\frac{\mathbf{L}_{\mathbf{v}}}{\mathbf{L}_{\mathbf{w}}}} \sigma_{\mathbf{w}}$$

#### Distributing the Wind Gust Loads

The side force due to winds on the vehicle is the integrated sum of the local body and fin pressure developed by side gusts ( $\tilde{v}$ ). Analogous statements prevail for the yawing and rolling moments due to side gusts and for the rolling moment developed by the rolling wind ( $p_g$ ).

These are all distributed forces for which it is desirable (mandatory in the present content) to find a lumped parameter representation. Lumped parameter approximations for the side gusts are discussed first. Then the rolling gust approximation is presented.

The side force and yawing moment coefficients due to side gusts are taken to be

$$C_{y_{sg}} = \frac{C_{y_{\beta}}}{V} \{\mu_{31}x_1 + \mu_{32}x_2 + \mu_{33}x_3\}$$
(F14)

$$C_{n_{sg}} = \frac{C_{n_{\beta}}}{V} \{\mu_{11}x_1 + \mu_{12}x_2 + \mu_{13}x_3\}$$
(F15)

where  $x_1, x_2$ , and  $x_3$  are system states driven by the wind  $\tilde{v}$ . For constant winds  $x_1 = x_2 = x_3 = \tilde{v}$ . Rows 7, 8, and 9 of Table F1 show this and how the  $x_i$ 's are driven by the wind  $\tilde{v}$ . The  $\mu_{ij}$ 's are constants to be determined.

The step responses of  $x_1$ ,  $x_2$ , and  $x_3$  (called  $f_1$ ,  $f_2$ , and  $f_3$ ) for a sharpedged side gust  $\tilde{v}$  are

$$f_1[x] = 1 - e^{-\frac{2.3}{L_s}x}$$
 (F16)

$$f_{2}[x] = 1 - e \begin{bmatrix} -\frac{2.3}{L_{s}} & x \\ & \{\cos\frac{2\pi}{L_{s}} & x - 2.00 \sin\frac{2\pi}{L_{s}} & x\} \end{bmatrix}$$
(F17)

$$L_{s} = 1 - e \qquad \{\cos \frac{2\pi}{L_{s}} + 3.985 \sin \frac{2\pi}{L_{s}} + 3.985 \sin \frac{2\pi}{L_{s}} \}$$
 (F18)

The most gross result of slender body theory (ref. 22 or 23) gives the step responses for gust penetration as

$$C_{y_{\beta}}[x] = \frac{2}{S} \int_{O}^{X} A'[\tilde{x}] d\tilde{x}$$
(F19)

$$C_{n_{\beta_{o}}}[x] = \frac{2}{Sb} \int_{o}^{x} \widetilde{x} A' [\widetilde{x}] d\widetilde{x}$$
(F20)

A[x] is taken as

$$A[x] = \frac{\pi}{4} (d[x])^2$$
(F21)

where d[x] is the "slender body maximum" projected side dimension.

Step responses for  $C_{y_{\beta}}[x]$ ,  $C_{n_{\beta_{O}}}[x]$ , and  $C_{n_{\beta_{Cm}}}[x]$  are presented in Figure F9. The  $\mu_{ij}$ 's are determined to provide a least squared fit of  $C_{y_{\beta}}[x]$  and  $C_{n_{\beta_{Cm}}}[x]$  from the solution of

$$B\widetilde{\mu}_{ij} = c_{ij} \text{ for } i = 1, 3 \tag{F22}$$

$$\mu_{ij} = k_i \widetilde{\mu}_{ij} \text{ for } i = 1, 3$$
 (F23)

$$k_{i} = \frac{1}{\sum_{j=1}^{3} \tilde{\mu}_{ij}}$$
 for  $i = 1, 3$  (F24)

where

-----

The k's may be considered as scale factors that enforce agreement between dsta sets for steady winds.

For a constant side gust  $(\tilde{v})$ , the rolling moment coefficient is

$$C_{\iota} = C_{\iota_{\beta}} \frac{\widetilde{v}}{V}$$
(F25)

For a sharp-edged side gust it is assumed that

$$-g_{2} = \frac{C_{\ell \beta}[x/L]}{C_{\ell \beta}[1]} = \begin{cases} 0 & \text{for } 0 \le x/L \le 0.6 \\ \frac{(0.6 - x/L)^{2}}{0.16} & \text{for } 0.6 \le x/L \le 1 \end{cases}$$
(F26)

 $C_{\ell\beta}$  is generated primarily by the wing which starts at x/L = 0.6 and extends to x/L = 1.0. The quadratic variation for  $0.6 \le x/L \le 1.0$  is motivated by slender body theory.

The  $\mu_{2j's}$  are obtained by use of Equations (F22 through (F24) (with a notational adjustment) and (F26).

Treatment of the rolling gusts is analogous to, but simpler than, those for the side gusts.

The rolling gust  $(p_g)$  drives  $x_4$  through the equation shown in row 10 of Table F1. Time to 90 percent is taken as the time to traverse the wing root chord.  $x_4$  "distributes"  $p_g$  over the wing chord. Steady-state values of  $x_4$  and  $p_g$  are the same.  $x_4$  "drives the equation of motion in the same manner as the geometric  $p_s$ .

# **Dynamic** Equations

The equations of motion are

$$\dot{\mathbf{p}} = \frac{1}{I} \{ \mathbf{I}_{zz} [\mathbf{L} - (\mathbf{I}_{zz} - \mathbf{I}_{yy})q\mathbf{r} + \mathbf{I}_{xz} pq] + \mathbf{I}_{xz} [\mathbf{N} - (\mathbf{I}_{yy} - \mathbf{I}_{zz})pq - \mathbf{I}_{xz} qr] \}$$
(F27)

$$\mathbf{r} = \frac{1}{I} \{ \mathbf{I}_{xx} [N - (\mathbf{I}_{yy} - \mathbf{I}_{xx})pq - \mathbf{I}_{xz}qr] + \mathbf{I}_{xz} [L - (\mathbf{I}_{zz} - \mathbf{I}_{yy})qr + \mathbf{I}_{xz}pq] \}$$
(F28)

$$\dot{\mathbf{v}} = \frac{\mathbf{g}}{\mathbf{W}} \mathbf{Y} + \mathbf{gcEs}\phi - \mathbf{ur} + \mathbf{wp}$$
 (F29)

The corresponding perturbation equations are

.

.....

$$\Delta \dot{p} = \frac{1}{I} \{ I_{xx} [ (\Delta L - I_{zz} - I_{yy}) q_0 \Delta r + I_{xz} q_0 \Delta p + I_{xz} [ \Delta N - (I_{yy} - I_{xx}) q_0 \Delta p - I_{xz} q_0 \Delta r] \}$$
(F30)

•••

- -----

_____

$$\Delta \dot{\mathbf{r}} = \frac{1}{I} \{ \mathbf{I}_{\mathbf{x}\mathbf{x}} [\Delta \mathbf{N} - (\mathbf{I}_{\mathbf{y}\mathbf{y}} - \mathbf{I}_{\mathbf{x}\mathbf{x}}) \mathbf{q}_{\mathbf{0}} \Delta \mathbf{p} - \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{q}_{\mathbf{0}} \Delta \mathbf{r} ]$$
  
+ 
$$\mathbf{I}_{\mathbf{x}\mathbf{z}} [\Delta \mathbf{L} - (\mathbf{I}_{\mathbf{z}\mathbf{z}} - \mathbf{I}_{\mathbf{y}\mathbf{y}}) \mathbf{q}_{\mathbf{0}} \Delta \mathbf{r} + \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{q}_{\mathbf{0}} \Delta \mathbf{p} ] \}$$
(F31)

$$\Delta \mathbf{v} = \frac{g}{w} \Delta \mathbf{Y} + g(cE)(c\phi_0) \Delta \phi - u_0 \Delta \mathbf{r} + w_0 \Delta \mathbf{p}$$
(F32)

Aerodynamic forces are given by

$$L = \bar{q}Sb \left\{ \frac{b}{2V} C_{\ell p}^{p} + \frac{b}{2V} C_{\ell r}^{r} + C_{\ell \beta}^{\beta} + C_{\ell \delta a}^{\delta a} + C_{\ell \delta r}^{\delta r} + \frac{b}{2V} C_{\ell p}^{x} + \frac{C_{\ell \beta}}{V} [\mu_{21}x_{1} + \mu_{22}x_{2} + \mu_{23}x_{3}] \right\}$$
(F33)

$$N = \bar{q}Sb \left\{ \frac{b}{2V} C_{n_{p}} p + \frac{b}{2V} C_{n_{r}} r + C_{n_{\beta}} \beta + C_{n_{\delta}a} \delta a + C_{n_{\delta}r} \delta r + \frac{b}{2V} C_{n_{p}} x_{4} + \frac{C_{n_{\beta}}}{V} [\mu_{11}x_{1} + \mu_{12}x_{2} + \mu_{13}x_{3}] \right\}$$
(F34)

$$Y = \bar{q}S \left\{ C_{y\beta}^{\beta} + C_{y\delta}^{\delta}a + C_{y\delta}^{\delta}r + \frac{C_{y\beta}}{V} \left[ \mu_{31}x_1 + \mu_{32}x_2 + \mu_{33}x_3 \right] \right\}$$
(F35)

and their perturbations by

_ ___

$$\Delta L = \bar{q}Sb \left\{ \frac{b}{2V} C_{\ell_{p}} \Delta p + \frac{b}{2V} C_{\ell_{r}} \Delta r + C_{\ell_{\beta}} \Delta \beta + C_{\ell_{\delta}a} \delta a + C_{\ell_{\delta}r} \delta r + \frac{b}{2V} C_{\ell_{p}} x_{4} + \frac{C_{\ell_{\beta}}}{V} [\mu_{21}x_{1} + \mu_{22}x_{2} + \mu_{23}x_{3}] \right\}$$
(F36)

$$\Delta \mathbf{N} = \left\{ \bar{\mathbf{q}} Sb \frac{b}{2V} C_{\mathbf{n}p} \Delta \mathbf{p} + \frac{b}{2V} C_{\mathbf{n}r} \Delta \mathbf{r} + C_{\mathbf{n}\beta} \Delta \beta + C_{\mathbf{n}\delta \mathbf{a}} \delta \mathbf{a} + C_{\mathbf{n}\delta r} \delta \mathbf{r} + \frac{b}{2V} C_{\mathbf{n}p} \mathbf{x}_{4} + \frac{C_{\mathbf{n}\beta}}{V} [\mu_{11}\mathbf{x}_{1} + \mu_{12}\mathbf{x}_{2} + \mu_{13}\mathbf{x}_{3}] \right\}$$
(F37)

$$\Delta y = \bar{q}S \left\{ C_{y_{\beta}} \Delta \beta + C_{y_{\delta a}} \delta a + C_{y_{\delta r}} \delta r + \frac{C_{y_{\beta}}}{V} [\mu_{31}x_1 + \mu_{32}x_2 + \mu_{33}x_3] \right\} (F38)$$

Substituting Equations (F36) through (F38) into Equations (F30) through (F32 yield Equations (F39 through (F41).

$$\begin{split} \Delta \dot{\mathbf{p}} &= \frac{1}{I} \left\{ \frac{\ddot{\mathbf{q}} \mathbf{S} \mathbf{b}}{2 \mathbf{V}}^2 \left[ \mathbf{I}_{\mathbf{z}\mathbf{z}} \mathbf{C}_{\boldsymbol{\ell}_{\mathbf{p}}} + \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{C}_{\mathbf{n}_{\mathbf{p}}} \right] + \mathbf{I}_{\mathbf{z}\mathbf{z}} \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{q}_{\mathbf{0}} + \mathbf{I}_{\mathbf{x}\mathbf{z}} (\mathbf{I}_{\mathbf{x}\mathbf{x}^{-1}} \mathbf{I}_{\mathbf{t}\mathbf{t}}) \mathbf{q}_{\mathbf{0}} \right\} \Delta \mathbf{p} \\ &+ \frac{1}{I} \left\{ \frac{\ddot{\mathbf{q}} \mathbf{S} \mathbf{b}}{2 \mathbf{V}}^2 \left[ \mathbf{I}_{\mathbf{z}\mathbf{z}} \mathbf{C}_{\boldsymbol{\ell}_{\mathbf{r}}} + \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{C}_{\mathbf{n}_{\mathbf{r}}} \right] + \mathbf{I}_{\mathbf{z}\mathbf{z}} (\mathbf{I}_{\mathbf{y}\mathbf{y}^{-1}} \mathbf{I}_{\mathbf{z}\mathbf{z}}) \mathbf{q}_{\mathbf{0}} - \mathbf{I}_{\mathbf{x}\mathbf{z}}^2 \mathbf{q}_{\mathbf{0}} \right\} \Delta \mathbf{r} \\ &+ \frac{1}{I} \left\{ \frac{\ddot{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{V}} \left[ \mathbf{I}_{\mathbf{z}\mathbf{z}} \mathbf{C}_{\boldsymbol{\ell}_{\beta}} + \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{C}_{\mathbf{n}_{\beta}} \right] \right\} \Delta \mathbf{v} \\ &+ \frac{\ddot{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{I} \mathbf{V}} \left\{ \mathbf{I}_{\mathbf{z}\mathbf{z}} \left[ \mathbf{C}_{\boldsymbol{\ell}_{\beta}} (\boldsymbol{\mu}_{21} \mathbf{x}_{1} + \boldsymbol{\mu}_{22} \mathbf{x}_{2} + \boldsymbol{\mu}_{23} \mathbf{x}_{3}) + \frac{\mathbf{b}}{2} \mathbf{C}_{\boldsymbol{\ell}_{p}} \mathbf{x}_{4} \right] \right\} \\ &+ \mathbf{I}_{\mathbf{x}\mathbf{z}} \left[ \mathbf{C}_{\mathbf{n}_{\beta}} (\boldsymbol{\mu}_{11} \mathbf{x}_{1} + \boldsymbol{\mu}_{12} \mathbf{x}_{2} + \boldsymbol{\mu}_{13} \mathbf{x}_{3}) + \frac{\mathbf{b}}{2} \mathbf{C}_{\mathbf{n}_{p}} \mathbf{x}_{4} \right] \right\} \\ &+ \frac{\ddot{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{I}} \left\{ \mathbf{I}_{\mathbf{z}\mathbf{z}} \mathbf{C}_{\boldsymbol{\ell}_{\delta \mathbf{a}}} + \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{C}_{\mathbf{n}_{\delta \mathbf{a}}} \right\} \delta \mathbf{a} \\ &+ \frac{\ddot{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{I}} \left\{ \mathbf{I}_{\mathbf{z}\mathbf{z}} \mathbf{C}_{\boldsymbol{\ell}_{\delta \mathbf{a}}} + \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{C}_{\mathbf{n}_{\delta \mathbf{a}}} \right\} \delta \mathbf{a} \\ &+ \frac{\ddot{\mathbf{q}} \mathbf{S} \mathbf{b}}{\mathbf{I}} \left\{ \mathbf{I}_{\mathbf{z}\mathbf{z}} \mathbf{C}_{\boldsymbol{\ell}_{\delta \mathbf{r}}} + \mathbf{I}_{\mathbf{x}\mathbf{z}} \mathbf{C}_{\mathbf{n}_{\delta \mathbf{r}}} \right\} \delta \mathbf{r}$$
 (F39)

287

_

$$\begin{split} \Delta \dot{\mathbf{r}} &= \frac{1}{I} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}^2}{2 \mathbf{V}} \left[ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}p} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\boldsymbol{\ell}p} \right] + \mathbf{I}_{\mathbf{xx}} (\mathbf{I}_{\mathbf{xx}} - \mathbf{I}_{\mathbf{yy}}) \mathbf{q}_0 + \mathbf{I}_{\mathbf{xx}}^2 \mathbf{q}_0 \right\} \Delta \mathbf{p} \\ &+ \frac{1}{I} \left\{ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}^2}{2 \mathbf{V}} \left[ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}p} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\boldsymbol{\ell}p} \right] - \mathbf{I}_{\mathbf{xx}} \mathbf{I}_{\mathbf{xz}} \mathbf{q}_0 + \mathbf{I}_{\mathbf{xz}} (\mathbf{I}_{\mathbf{yy}} - \mathbf{I}_{\mathbf{zz}}) \mathbf{q}_0 \right\} \Delta \mathbf{r} \\ &+ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}}{1 \mathbf{V}} \left\{ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}\beta} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\boldsymbol{\ell}\beta} \right\} \quad \Delta \mathbf{v} \\ &+ \frac{\bar{\mathbf{q}} \mathbf{S} \mathbf{b}}{1 \mathbf{V}} \left\{ \mathbf{I}_{\mathbf{xx}} \left[ \mathbf{C}_{\mathbf{n}\beta} (\boldsymbol{\mu}_{11} \mathbf{x}_1 + \boldsymbol{\mu}_{12} \mathbf{x}_2 + \boldsymbol{\mu}_{13} \mathbf{x}_3) + \frac{\mathbf{b}}{2} \mathbf{C}_{\mathbf{n}p} \mathbf{x}_4 \right] \right\} \\ &+ \mathbf{I}_{\mathbf{xz}} \left[ \mathbf{C}_{\boldsymbol{\ell}\beta} (\boldsymbol{\mu}_{21} \mathbf{x}_1 + \boldsymbol{\mu}_{22} \mathbf{x}_2 + \boldsymbol{\mu}_{23} \mathbf{x}_3) + \frac{\mathbf{b}}{2} \mathbf{C}_{\boldsymbol{\ell}p} \mathbf{x}_4 \right] \right\} \\ &+ \frac{\mathbf{q} \mathbf{S} \mathbf{b}}{\mathbf{I}} \left\{ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}\delta \mathbf{a}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\boldsymbol{\ell}\delta \mathbf{a}} \right\} \quad \delta \mathbf{a} \\ &+ \frac{\mathbf{q} \mathbf{S} \mathbf{b}}{\mathbf{I}} \left\{ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}\delta \mathbf{r}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C} \boldsymbol{\ell}_{\delta \mathbf{r}} \right\} \quad \delta \mathbf{a} \\ &+ \frac{\mathbf{q} \mathbf{S} \mathbf{b}}{\mathbf{I}} \left\{ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}\delta \mathbf{r}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C}_{\boldsymbol{\ell}\delta \mathbf{r}} \right\} \quad \delta \mathbf{a} \\ &+ \frac{\mathbf{q} \mathbf{S} \mathbf{b}}{\mathbf{I}} \left\{ \mathbf{I}_{\mathbf{xx}} \mathbf{C}_{\mathbf{n}\delta \mathbf{r}} + \mathbf{I}_{\mathbf{xz}} \mathbf{C} \boldsymbol{\ell}_{\delta \mathbf{r}} \right\} \quad \delta \mathbf{r} \qquad (F40) \\ \Delta \dot{\mathbf{v}} &= + \mathbf{w}_0 \Delta_p - \mathbf{u}_0 \Delta \mathbf{r} + \frac{g \mathbf{q} \mathbf{S}}{\mathbf{W}} \mathbf{C}_{\mathbf{y}\beta} \Delta \mathbf{v} + \mathbf{g} (\mathbf{c} \mathbf{E}) \Delta \phi \\ &+ \frac{g \mathbf{q} \mathbf{q}}{\mathbf{W}} \left\{ \mathbf{u}_{\mathbf{3}1} \mathbf{x}_1 + \mathbf{u}_{\mathbf{3}2} \mathbf{x}_2 + \mathbf{u}_{\mathbf{3}2} \mathbf{x}_3 \right\} + \frac{g \mathbf{q} \mathbf{q}}{\mathbf{W}} \left\{ \mathbf{C}_{\mathbf{y}\delta \mathbf{a}} \mathbf{a} + \mathbf{C}_{\mathbf{y}\delta \mathbf{r}} \delta \mathbf{r} \right\}$$

.

Equations (F39)through (F41) correspond to rows 1 - 3 of Table F1.

#### **Control Surface** Dyamics

Tail-wags-dog and dog-wags-tail dynamics are neglected.

Servo dynamics are also neglected. Actuator dynamics are taken as 6 rad/sec. For aileron actuation

$$\dot{\delta}a = -\frac{1}{T_a} \,\delta a + \frac{1}{T_a} \,u_1 \tag{F42}$$

Equation (F42) corresponds to row 14 of Table F2. With an obvious notation change it also corresponds to row 15.

#### **Pilot's Lateral** Acceleration

The lateral acceleration at the pilot's station is approximated by

$$a_{y} = \dot{v} + ur - wp + x_{p}\dot{r} - z_{p}\dot{p} - g(CE(s\phi))$$
(F43)

The perturbation equation is

$$\Delta \mathbf{a}_{\mathbf{y}} \approx \Delta \mathbf{\dot{v}} + \mathbf{u}_{\mathbf{o}} \Delta \mathbf{r} - \mathbf{w}_{\mathbf{o}} \Delta \mathbf{p} + \mathbf{x}_{\mathbf{p}} \Delta \mathbf{\dot{r}} - \mathbf{z}_{\mathbf{p}} \Delta \mathbf{\dot{p}} - \mathbf{g}(\mathbf{CE}_{\mathbf{o}})(\mathbf{C}\phi_{\mathbf{o}})\Delta\phi \qquad (F44)$$

Row 11 of Table F2 is the equivalent of Equation (F44). The  $\Delta v$  of Equation (F44) is obtained from row 3 of Table F1. Similarly,  $\Delta r$  and  $\Delta p$  are obtained from rows 2 and 1 of Table F1.

 $\Delta \dot{a}_v$  is obtained from differentiation of row 11 of Table F1.

## Resolution From Stability to Body Axes

The aerodynamic data of Figures F4 through F9 are given in stability axes (which here are the "barred" axes). The equations of motion are in body (unbarred) axes. From the sketch on the following page



$$\begin{cases} L \\ N \end{cases} = \begin{bmatrix} c\alpha & -s\alpha \\ s\alpha & c\alpha \end{bmatrix} & \begin{cases} \tilde{L} \\ \tilde{N} \end{cases}$$
(F45)

This implies  $L_{\beta} = (c\alpha) L_{\beta} - (s\alpha)N_{B}$ , etc.; as listed in the nomenclature. Also from the previous sketch

$$\begin{bmatrix} \frac{\partial \bar{p}}{\partial p} & \frac{\partial p}{\partial r} \\ \frac{\partial \bar{r}}{\partial p} & \frac{\partial \bar{r}}{\partial r} \end{bmatrix} = \begin{bmatrix} c\alpha & s\alpha \\ & & \\ -s\alpha & c\alpha \end{bmatrix}$$
(F46)

Therefore,

$$\begin{bmatrix} L_{p} & L_{r} \\ N_{p} & N_{r} \end{bmatrix} = \begin{bmatrix} c\alpha & -s\alpha \\ s\alpha & c\alpha \end{bmatrix} \begin{bmatrix} \bar{L}_{\bar{p}} & \bar{L}_{\bar{r}} \\ \bar{N}_{\bar{p}} & \bar{N}_{r} \end{bmatrix} \begin{bmatrix} c\alpha & s\alpha \\ -s\alpha & c\alpha \end{bmatrix}$$

with the particular implication

$$L_{r} = (c\alpha)^{2} \overline{L}_{r} + (s\alpha c\alpha) (\overline{L}_{p} - \overline{N}_{r}) - (s\alpha)^{2} \overline{N}_{p}$$
(F47)

etc., as listed in the nomenclature.

	•1	р -	r	v	ø	н	У	. ×1	×2	×3	×4	Ŷ	x	Pg .	ба	ðr	<b>.</b>			- ^u 1	^u 2	^ח 1	ⁿ 2 _	
p		^a 11	^a 12	^a 13	0	0	0	a. 17	a 18	<b>a</b> 19	a _{1 10}	0	0	0	a _{1 14}	a _{1.15}	į	р		0	0	0	0	
r	l	a ₂₁	^a 22	^a 23	0	0	0	a ₂₇	^a 28	a	^a 2,10	0	0	0	a2,14	^a 2,15		r		0	0	0	0	
v		a ₃₁	^a 32	^a 33	a 34	0	0	^a 37	^a 38	<b>a</b> 39	0	0	0	0	a ₃ ,14	a ₃ ,15		v		0	0	0	0	
ø	İ	a ₄₁	^a 42	0	a 44	0	0	0	0	0	0	0	0	0	0	0		ø	l	0	0	0	0	
н		0	^a 52	0	a 54	0	0	0	0	0	0	0	0	0	0	0		н		0	0	0	0	
y		0	0	^a 63	a. 64	a 65	0	0	0	0	0	0	0	0	0	0		у		0	0	0	0	
ż,	ļ	0	0	0	0	0	0	a.,77	0	0	0	a. 11	0	0	0	0		×,		0	0	0	0	[ [u, ]
ż2		0	0	0	0	0	0	0 ·	a ₈₈	a ₈₉	0	a 8. 11	0	0	0	0		x,		0	0	0	0	u,
ż3		0	0	0	0	0	0	0	a _{a8}	agg	0	a _{q 11}	0	0	O	0		x	+	0	0	0	0	n ₁
×,		0	0	0	0	0	0	0	0	0	a, 10	0	0	a. 13	0	0	-	×,		0	0	0	0	т _р
ŕ		0	0	0	0	0	0	0	0	0	0	0	a., 10	0	0	0		v		0	0	g., 2	0	L*_
x	ļ	0	0	0	0	0	0	0	0	0	0	a _{10 11}	ца 10 10	0	0	0		x		0	0	-11,3 Bin 2	0	
P_		0	0	0	0	0	0	0	0	0	0	0	عد, <i>ع</i> د 0	a	0	0		p		0	0	-12,3 0	En .	
δa		0	0	0	0	0	0	0	0	0	0	0	0	0 0	а	0		·g δa		g	0	0	~13,4 0	
δr		0	0	0	0	0	0	0	0	n n	0	n n	0 0	0	74,14 0	a		δ		□14,1 0	đ	0	0	
		1	2	5		•	5	5	5	5	0	•	5	5	5	~15, 15		, °` .			ы5,2		· ·	]

Table F1. State Equations

÷

			р	р	v	ø	Н	У	×1	$\mathbf{x}_2$	×3	×4	v	х	^р g	δa	δr		р		^u 1	^u 2	
ſ	ø ]	ſ	- o	0	0	^h 14	0	0	0	0	0	0	0	0	0	0	• 7	ſ	r ]	ſ	0	[ ہ	
	ø		^h 21	^h 22	0	h24	0	0	0	0	0	0	0	0	0	0	0		v ø	ļ	0	0	
	н		0	0	0	0	^h 35	0	0	0	0	0	0	0	0	0	0		н		0	0	
	н		0	^h 42	0	^h 44	0	0	0	0	0	0	0	0	0	0	0		у		0	0	
	у		0	0	0	0	0	^h 56	0	0	0	0	0	0	0	0	0		x ₁		0	0	
	ÿ		0	0	^h 63	^h 64	^h 65	0	0	0	0	0	0	0	0	0	0		^x 2		0	0	
	δа		0	0	0	0	0	0	0	0	0	0	0	0	0	^h 7,14	0		×3		0	0	^u 1
	δa		-	0	0	0	0	0	0	0	0	0	0	0	0	h _{8,14}	0		×4	+	d ₈₁	0	^u 2
	δr		0	0	0	0	0	0	0	0	0	0	0	0	0	0	^h 9,15		ĩ		0	0	
	δr		0	0	0	0	0	0	0	0	0	0	0	0	0	0	^h 10, 15		x		0	^d 10,2	
	a _y		^h 11,1	^h 11,2	^h 11, 3	h 11,4	1 ⁰	0	^h 11,7	^h 11,8	^h Ц,9	^h ц, Ю	0	0	0	^h 11, 14	h 11, 15		pg		0	0	
	a _y	- {	^h 12,1	^h 12,2	^h 12,3	^h 12,4	0	0	^h 12,7	^h 12,8	h _{12,9}	^h 12, 10	^h 12, 11	0	^h 12,13	^h 12, 14	h 12, 15		δa		^d 12,	1 ^d 12,2	
L	J	Į	_														-	ΙL	δr	ļ	L		ļ

Table F2. Response Equations

Table F3. A Matrix

		p/5	1	/x	5/	/pg	٩	e /sa.		H/sr		Y		×ı	×2	×3		×4		
þ	•	ROW 1 10643E 0 -30003E 0	1 •17 0 •00	830E 01	17	90E-0	1	•00000E •30080E	00 21	•000005E •10595E	00 01	•00000E	00	39080E-01	• 45750E-02	•16700E-0	oī <b>/</b>	06 <b>4</b> 08	E01	P
F		• 30000E 0	0 -•11 0 •00	800E 00 000E 00	•123 • <b>0</b> 00	80E-0	2	•00000E •42610E	00 -01	•00000E ••43790E	00 00	•00000E	00	-•29180E•02	•93300E-03	•32630E+0	05 -•5	1550E	0ò	r
• •		•72600E 0 •00000E 0	0 •00 5 ••58	100E 0	•000	10E 0	0	•32170E •00000E	0 <b>2</b> 00	•00000E •17963E	00 02	•00000E	00	-•25600E 00	•17750E-0	•65980E-0	oī ∙0	00 <b>80E</b>	OÒ	~
ø		•10000E 0 •00000E 0	1 •43 0 •00	640E-0	•000 •000	00E 0	0 0	•00000E •00000E	00 00	•00300E •00909E	00 00	•00000E	00	•00000E 0ñ	•00000E 0	• 30000CE (	0• ĉ	0000E	ōō	Þ
H		+00000E 0 +00000E 0	0 •10 0 •00	010E 0	•00 •00	000E 0	0	•00000E	00 00	•000000E •00000E	00 00	+00000E	00	•00000E 00	•00000E 0	•00000E	0. 00	30000	ōō	н
Ŷ		•00000E 0 •00000E 0 R04 7	0 •00	0000E 0	•10	00E 0	1 -	•72400E •00000E	0 <b>2</b> 00	•2839)E •0000)E	03 00	•00000E	00	•00000E 00	•00000E 0	900000E	00 O	0000E	0ō .	Y
x,	=	+00000E 0 +38780E 0 R0w 8	00 •00	0000E 0	•00	COOE 0	0	•00000E •00000E	00 00	•000002E •000002E	00 00	• 30000E	00	-•38780E 01	•00000E 0	300000• 0	•• •0	0000E	0c	×ı
×2		.000000 0 .121655 0 ROW 9	•00 •00	0000E 0	•00 •00	000E 0	0	•00000E •00000E	00 00	•000002E •000002E	00 00	•00000E	ეი	•00000E GÕ	-•34250E 0	2 -•87600E	02 •0		0 <b>0</b>	×2
×.		+00000E 0 38450F 0 Rew 10	00 •00	0000E 0	• • • • • • • • • • • • • • • • • • •	COOE 0	0	•00000E •00000E	00 00	•000005E •000005E	00 00	•00000E	00	•00000E 00	•11850E 0	5 •5990E		0000E	0 <b>0</b>	×3
×4		+00000E 0 +00000E 0 R8W 11	•••	0000E 0	6 •00 0 •74	110E 0	)ŋ- )1	• 00000E • 00000E	00 00	•000005E •00005E	00 00	•00000E	00	•00000E 00	•00000E 0	C •00000E	007	4110E	01	×4 ~
r a		+000002 0 +000002 0 R0w 12	00 •10	0000E 0	0 •00 1 •00	000E 0	00	.00000E	00 00	• 00000E • 00000E	00 00	•00000E	00	•00000E 00	•00000E 0	0 •00000E	•••••	0000E	00	
×		•00000E 0 ••47540E 0 ROW 13	וסי 00 פי- 00	6500E-0	0 .00 1 .00	000E 0	20	•00000E	00 00	•0000nE •0000nE	00	•00000E	00	•00000E 00	•00000E 0	00000E	•••••	10000E	00	
Pg		+00000E 0 +00000E 0 R0W 34	00 •0	0000E 0	0 ••00 0 ••32	080E (	00	•000005 •00005	00 00	•000005E •000005E	00	•0000 <b>0</b> E	00	•00000E 00	•00000E 0	0 .00000E	00 .0	0000E	00	B
2		+0000025 0 +0000066 0 	60 00 00 •0	0000E 0	0 -00 0 -00	000E (	70 10 -	•000000 •60000E	00 01	• 000005E • 000005E	00	•00000E	00	-00000E 00	-0 <b>90</b> 00E 0	0 •00000E	•••••	0000E	00	2
Sr		•000002 •000005	00 •0	0000E 0	0 .00	000E (	<b>20</b>	•00000E	00	•00000E •••60000E	00	• <b>0000</b> 0E	Cd	•00000E 00	•00000E 0	0 •00000E	<b>00 •</b> 0	0000E	00	- <b>-</b>

+

293

# Table F4. G1 Matrix

R0W 1			
•00000F	00	• 00000E	00
ROW 2			
+00000E	00.	•00000E	00
ROW 3			
•00000E	00	•00000E	00
ROW 4			
•00000E	00	•0000E	00
ROW 5			
.00000E	00	•00000E	00
R0W 6			
•00000F	00	•00000E	00
R0W 7			
•00000E	00	• 00000E	00
R8W 8			
•00000F	00	•00000E	00
ROW 3			
•00000E	00	•00000E	00
R8W 10			
•00000E	00	• 20000E	00
ROW 11			
• 00000E	00	•00000E	00
KAM 15			
•00000E	00	•00000E	0ũ
R0W 13			
•00000E	00	• 00000E	00
R8W 14			
•60000E	01	•00000E	00
R8W 15			
•00000F	00	• 60000E	01

Table F5. G2 Matrix

R8W 1			
•00000E	00	•00000E	00
KOM 5			
•00000E	00	•00000E	00
KAM 3			
•00000E	00	•00000E	00
ROW 4			
•00000E	00	•00000E	00
ROW 5			
•00000E	00	•0000E	00
ROW 6			
•00000E	00	•00000E	00
R0W 7			
•00000E	00	•00000E	00
ROW 8		• • •	
•00000F	00	•00000E	00
ROW 9		-	
+00000F	00	•0000E	00
R8W 10		00001	••
+00000F	00	•00000E	00
ROW 11		00000	••
45500F	01	•0000F	00
R0W 12	~	-000000	00
15400F	01	• 20200E	00
RHW 13		· )00000	00
•000005	20	- 34600E-	01
R9W 1/	00	*.34000E-	01
*00000F	00		~~
PAN 15	00	*30000E	00
100 15	~~		•
•00000E	90	• 20000F	CC.

____

-

## Table F6. H Matrix

p/~ U/Pg 4/Ja H/Sr r/x ×2 X4 . X. Y x, ROW 1 +00000E 00 +00000E 00 +00000E 00 +10000E 01 +00000E 00 +00000E 00 +00000E 00 +00000E 00 +00000E 00 •00000F 00 .00000E 00 .0000E 00 .00000E 00 .00000E 00 ROW 2 -10000E 01 -+3660E-01 -00000E 00 -00000E 00 -00000E 00 -00000E 00 -00000E 00 -00000E 00 -00000E 00 .000000E 00 .00000E 00 .00000E 00 .00000E 00 •00000E 00. ROW 3 - 300000E 00 - 00000E 00 - 00000E 00 - 00000E 00 - 10000E 01 - 00000E 00 - 00000E 00 - 00000E 00 - 00000E 00 .00000E 00 .00000E 00 .00000E 00 .00000E 00 .00000E 00 ROW 4 +00000E 00 +00000E 00 +00000E 00 +00000E 00 +00000E 00 .000002E 00 .10010E 01 .00000E 00 .00000E 00 .000002E 00 Row 5 +00000E 00 +00000E 00 +00000E 00 +00000E 00 +00000E 00 +10000E 01 +00000E 00 +00000E 00 +00000E 00 +00000E 00 ROW 6 •00000E 00 •00000E 00 •10000E 01 ••72600E 02 •28390E 03 •00000E 00 •00000E 00 •00000E 00 •00000E 00 •00000E 00 ROW 7 : .00000E 00 .00000E 00 .00000E,00 .10000E 01 .00000E 00 ROW S 5. .00000E 00 .00000E 00 .00000E 00 -.60000E 01 .00000E 00 ROW 9 •000001 00 •00000E 00 •00000E 00 •00000E 00 •00000E 00 +00000E 00 +00000E 00 +00000E 00 +00000E 00 +00000E 00 δr +000002E 00 +00000E 00 +00000E 00 +000000E 00 +10000E 01 ROW 10 Sr R0_W 11 -.20420F 02 +64570E 01 -+23140E 00 +00000E 00 +00000E 00 -+72070E 00 +10650E 00 +38250E 00 -+20420E 02 ay .00000E 00 .00000E 00 .00000E 00 -.20060E 02 .24549E 00 884 15 é, -35740E 01 +27760E 02 +41140E 00 -+55470E 01 +00000E 00 +00000E 00 +36340E 01 +22050E 00 ++76030E 00 +17170E 03 -.26910E 01 .00000E 08 -.15130E 03 .18240E 03 -.30080E 02

29 ū ø

đ

H

H

•

50

.

N

Table F7. D Matrix

L

R0W 1			
•00000E	00	•00000E	00
KOM 5			
•00000E	00	•00000E	00
K0W 3			
•00000E	00	•00000E	00
ROW 4			
•00000E	00	• 00000E	00
ROW 5			
•00000E	00	•00000E	00
ROW 6			
•00000E	00	•00000E	00
ROW 7			
•00000E	00	•00000E	00
ROW 8		-	
•60000E	01	•00000E	CO
ROW 9		_	
•00000E	20	• <u>)                                   </u>	00
RBW 10		_	
•00000E	00	•60000E	01
R0W 11			
00000E	00	•00000E	,00
KUW 12		• • • <b>-</b>	<b>.</b> .
•00000E	00	•0000E	00

# Table F8. P Pots

í.

	· 00		28	.2696
	01		29	.0243
	02	.2000	30	
	03	.6010	31	
	04	.0865	32	
	05	.0113	33	ĺ
	06	•3484	34	
	07	.0703	35	.0073
I	08	.2000	36	.2618
I	09	.0188	37	.8350
	10	.6400	38	.1328
I	11	.0444	39	.0264
	12	.1650	40	
	13	.1796	41	
I	14		42	
l	15	.0422	43	
	16	.0168	44	
	17	.1435	45	•9770
ł	18	.0208	46	.5008
	19	•0988	47	.0706
	20		48	.1612
	21		49	.2287
	22			
	23			
	24			:
	25	.2128		
	26	.7411		
Í	27	.7411		

297

-

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16	. 2500 . 2500 . 2400 . 2400 . 6000 . 3845 . 2743 . 0246 . 1914 . 0703 . 0181 . 0403 . 0160 . 0820 . 6000 . 5925 . 6080	40 41 42 43 44 54 78 90 55 55 55 55 55 55 55	.1134 .2904 .2042 .9562 .3217 .1278 .1783	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	.2825 .4754 .1820 .3080 .1021 .4000 .0437 .3592 .5000 .3460 .4180 .4639
18 19 20 21 22 23 24 26 27 28 29 31 22 29 31 32 33 4 35 36 37 8 39	.0025 .2006 .0289 .1188 .0244 .2236 .8760 .3343	58 59 60 62 63 64 65 66 70 71 73 75 76 77 8 79	.2810 .8758 .1779 .1180 .7260 .2662 .1802 .4665 .1459 .2122 .1064 .3208 .1157 .2000 .0326 .0852 .4244 .1630	98 99	.0887 .1280

Table F9. Q Pots

Table F10. A	mplifiers
--------------	-----------

·			T		
00	-500.8 _a	20	40	60 +10.v	80 +2.v
01	-500.δ _r	21	41	61 +1000.r	81 +10.x
02	+500. 8'r	22	42	62 -1000.p	82 -5.M ₁
03	+500.8 _a	23	43 (1000.r)	63 +200.8 _a	83 +5.η ₁
04	+200.u _{1Q}	24 -5.a _{cm}	44 +5.a _y	64 +200.δ _r	84 +5.N2
05		25 +500.x ₄	45 +2.x ₁	65	85
<b>0</b> 6		26	46 +4.y	66	86
07	-1000.H	27	47 -4.y	67	87
<b>o</b> 8		28	48 -2.x ₁	68 [°]	88
09		29	49 -2.x ₂	69	89
10		30	50 +1000.H	70 +1000.p	90 nm ₁
11		31	51 +1000.ø	71 +500.p _g	91 nm ₂
12	-200.u _{1Q}	32	52 -1000.ø	72 -500.pg	92 -5.N ₂
13	-200.u ₂ Q	33	53 -10.v	73 -10.x	93 -wn ₁
14	+200.u ₂ Q	3 ⁴ (4.y)	54 -1000.r	74 -2. <del>v</del>	94 -wn ₂
15		35 +2.x ₃	55	75	95
16		36 +2.x ₂	56	76	96
17		37 -2.x ₃	57	77	97
18		38 <b>-</b> 500.x ₄	58	78	98
19	,	39	59	79	99

$$+ 1000.p = -\int \left\{ \begin{pmatrix} -.1a_{11} \\ Q70 \end{pmatrix} (10)(+1000.p) + \begin{pmatrix} +.1a_{12} \\ Q54 \end{pmatrix} (10)(-1000.r) + \begin{pmatrix} -10.a_{13} \\ Q60 \end{pmatrix} (10)(+10.r) \\ + \begin{pmatrix} -25.a_{17} \\ P45 \end{pmatrix} (20)(+2.x_1) + \begin{pmatrix} +50.a_{18} \\ P49 \end{pmatrix} (10)(-2.x_2) + \begin{pmatrix} +50.a_{19} \\ P37 \end{pmatrix} (10)(-2.x_3) \\ + \begin{pmatrix} -.2a_{1,10} \\ P25 \end{pmatrix} (10)(+500.x_4) + \begin{pmatrix} -.2a_{1,14} \\ P03 \end{pmatrix} (10)(+500.\delta_a) \\ + \begin{pmatrix} -2a_{1,15} \\ P01 \end{pmatrix} (10)(-500.\delta_r) \right\} dt$$

$$-1000.p = - \{(1)(+1000.p)\}$$

$$+ 1000.r = -\int \left\{ \begin{pmatrix} -a_{21} \\ q69 \end{pmatrix} (1)(+1000.p) + \begin{pmatrix} -a_{22} \\ q61 \end{pmatrix} (1)(+1000.r) + \begin{pmatrix} +100.a_{23} \\ q53 \end{pmatrix} (1)(-10.v) \\ + \begin{pmatrix} -50.a_{27} \\ q68 \end{pmatrix} (10)(+2.x_1) + \begin{pmatrix} +500.a_{28} \\ q67 \end{pmatrix} (1)(-2.x_2) + \begin{pmatrix} +50.a_{29} \\ q79 \end{pmatrix} (10)(-2.x_3) \\ + \begin{pmatrix} -2.a_{2,10} \\ q78 \end{pmatrix} (1)(+500.x_1) + \begin{pmatrix} +2.a_{2,14} \\ q77 \end{pmatrix} (1)(-500.\delta_a) \\ + \begin{pmatrix} -2.a_{2,15} \\ q59 \end{pmatrix} (1)(+500.\delta_r) \right\} dt$$

- 1000.r = -  $\{(1)(+1000.r)\}$ 

Figure F1. Analog of Plant

$$+10.v = -\int \left\{ \begin{pmatrix} +.01a_{31} \\ q62 \end{pmatrix} (1)(-1000.p) + \begin{pmatrix} -.001a_{32} \\ q58 \end{pmatrix} (10)(+1000.r) + \begin{pmatrix} -a_{33} \\ q57 \end{pmatrix} (1)(+10.v) \\ + \begin{pmatrix} +.01a_{34} \\ q52 \end{pmatrix} (1)(-1000.\phi) + \begin{pmatrix} -.5a_{37} \\ q99 \end{pmatrix} (10)(+2.x_{1}) + \begin{pmatrix} +5\cdot a_{38} \\ q98 \end{pmatrix} (1)(-2.x_{2}) \\ + \begin{pmatrix} +6\cdot a_{39} \\ q97 \end{pmatrix} (1)(-2.x_{3}) + \begin{pmatrix} +.02a_{3}, 15 \\ q89 \end{pmatrix} (1)(-500.\delta_{r}) \right\} dt$$

$$-10.v = - \{(1)(+10.v)\} \\ + 1000.\phi = -\int \left\{ (1)(+1000.p) + \begin{pmatrix} +a_{b2} \\ q88 \end{pmatrix} (1)(-1000.r) \right\} dt$$

$$-1000.H = - \left\{ (1)(+1000.H) \right\} \\ + 1000.H = -\int \left\{ (1)(-1000.r) \right\} dt$$

$$-1000.H = - \left\{ (1)(+1000.H) \right\} \\ + \frac{1}{2}.y = -\int \left\{ \begin{pmatrix} +.4a_{63} \\ q87 \end{pmatrix} (1)(-1000.H) \right\} dt$$

$$+ \begin{pmatrix} -.0004a_{64} \\ q46 \end{pmatrix} (1)(+1000.\phi)$$

$$+ \begin{pmatrix} -.0004a_{65} \\ q45 \end{pmatrix} (10)(-1000.H) \right\} dt$$

$$- 4.y = - \left\{ (1)(+4.y) \right\}$$

Figure F1. Analog of Plant (Continued)

301

| ___

$$- 10.x = - \left\{ (1)(+10.x) \right\}$$

$$+ 2.x_{1} = - \int \left\{ \left\{ -.1a_{77} \\ q_{36} \right\} (10)(+2.x_{1}) + \left( +.1a_{7,11} \\ q_{37} \right) (10)(-2.\tilde{v}) \right\} dt$$

$$- 2.x_{1} = - \left\{ (1)(+2.x_{1}) \right\}$$

$$+ 2.x_{2} = - \int \left\{ \left\{ -.00978a_{88} \\ q_{26} \\ q_{26} \\ q_{26} \\ q_{26} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27} \\ q_{27$$

Figure F1. Analog of Plant (Continued)

$$\begin{split} & \int \left\{ -\frac{1}{q_{73}} \int_{(1)(-10,x)}^{-1} + \int_{(0)}^{00} \int_{(0)(-5,\frac{1}{\eta_1})}^{1} \int_{(1)(+5,\frac{1}{\eta_2})}^{1} \int_{(1)(+2,\frac{1}{\eta_2})}^{1} \int_{(1)(+2,$$

****

$$+ 5 \cdot a_{y} = -\left\{ \begin{pmatrix} -.005h_{11,1} \\ 0.005h_{11,1} \\ 0.001 \end{pmatrix} (1)(+1000 \cdot p) + \begin{pmatrix} +.005h_{11,2} \\ 0.001 \end{pmatrix} (1)(-1000 \cdot r) + \begin{pmatrix} -.5h_{11,3} \\ 0.001 \\ 0.001 \end{pmatrix} (1)(+10 \cdot r) \right.$$

$$+ \left( -.25h_{11,7} \\ 0.001 \\ 0.001 \end{pmatrix} (10)(+2 \cdot x_{1}) + \left( +2.5h_{11,8} \\ 0.001 \\ 0.001 \\ 0.001 \end{pmatrix} (1)(-2 \cdot x_{2}) + \left( +2.5h_{11,9} \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.001 \\ 0.$$

Figure F1. Analog of Plant (Continued)

. .. ..... . . .

•••

.

. .

ī

----

_ .

· __



l



Figure F1. Analog of Plant (Concluded)

$$+ 200. u_{1Q} = -\left\{ \begin{pmatrix} 2k_{11} \\ Q7 \end{pmatrix} (1) (-1000p.) + \begin{pmatrix} 2k_{12} \\ Q8 \end{pmatrix} (1) (-1000.r) + \begin{pmatrix} 20.k_{13} \\ Q9 \end{pmatrix} (1) (-10.v) \\ + \begin{pmatrix} 2k_{14} \\ P05 \end{pmatrix} (1) (-1000.\phi) + \begin{pmatrix} 2k_{15} \\ P06 \end{pmatrix} (1) (-1000.H) + \begin{pmatrix} 50.k_{16} \\ P07 \end{pmatrix} (1) (-4.y) \\ + \begin{pmatrix} -100.k_{17} \\ P08 \end{pmatrix} (1) (+2.x_{1}) + \begin{pmatrix} 100.k_{18} \\ P09 \end{pmatrix} (1) (-2.x_{2}) + \begin{pmatrix} 100.k_{19} \\ P15 \end{pmatrix} (1) (-2.x_{3}) \\ + \begin{pmatrix} -.4k_{1,10} \\ P16 \end{pmatrix} (1) (+500.x_{4}) + \begin{pmatrix} -100.k_{1,11} \\ P17 \end{pmatrix} (1) (+2.\tilde{v}) + \begin{pmatrix} -20.k_{1,12} \\ P18 \end{pmatrix} (1) (+10.v) \\ + \begin{pmatrix} -.4k_{1,13} \\ P19 \end{pmatrix} (1) (+500.p_{g}) + \begin{pmatrix} +.4k_{1,14} \\ P28 \end{pmatrix} (1) (-500.\delta_{a}) + \begin{pmatrix} +.4k_{1,15} \\ P29 \end{pmatrix} (1) (+500.\delta_{r}) \right\}$$

$$+ 200. u_{2Q} = -\left\{ \begin{pmatrix} +.2k_{21} \\ P35 \end{pmatrix} (1) (-1000.p) + \begin{pmatrix} +.2k_{22} \\ P36 \end{pmatrix} (1) (-1000.r) + \begin{pmatrix} +20.k_{23} \\ P38 \end{pmatrix} (1) (-10.v) \\ + \begin{pmatrix} -.2k_{24} \\ P39 \end{pmatrix} (1) (+1000.\phi) + \begin{pmatrix} +.2k_{25} \\ P46 \end{pmatrix} (1) (-1000.H) + \begin{pmatrix} +50.k_{26} \\ P47 \end{pmatrix} (1) (-4.y) \\ + \begin{pmatrix} -100.k_{27} \\ P48 \end{pmatrix} (1) (+2.x_{1}) + \begin{pmatrix} +100.k_{28} \\ 010 \end{pmatrix} (1) (-2.x_{2}) + \begin{pmatrix} +100.k_{29} \\ P11 \end{pmatrix} (1) (-2.x_{3}) \\ + \begin{pmatrix} -.4k_{2,10} \\ Q21 \end{pmatrix} (1) (+500.x_{4}) + \begin{pmatrix} -100.k_{2,11} \\ Q12 \end{pmatrix} (1) (+2.\tilde{v}) + \begin{pmatrix} -20.k_{2,12} \\ P23 \end{pmatrix} (1) (-10.v) \\ + \begin{pmatrix} -.4k_{2,13} \\ Q21 \end{pmatrix} (1) (+500.p_{g}) + \begin{pmatrix} -.4k_{2,14} \\ Q22 \end{pmatrix} (1) (+500.\delta_{a}) + \begin{pmatrix} +.4k_{2,15} \\ Q23 \end{pmatrix} (1) (-500.\delta_{a}) \right\}$$

$$-200.u_{1Q} = 1 \{(1) (+200.u_{1Q})\}$$

 $-200.u_{2Q} = 1 \{1\} (\pm 200.u_{2Q})\}$ 

# Figure F2. Analog of Quadratic Controller



Figure F3. No Wind Flight Geometry





Figure F4. Damping in Roll (ref. 29)

i

. . . .

-



~

Figure F5. Damping in Yaw (ref. 29)

309

+



Figure F6. Sideslip Derivatives (ref. 30)



Figure F7. Aileron Power (ref. 31)



Figure F8. Rudder Power (ref. 30)



Figure F9. Side Gust Penetration

ł
# APPENDIX G HIGH-ALTITUDE ABORT SIMULATION

This appendix discusses the simulation used to generate the high-altitude abort results of Section V.

The basis for the simulation is a 6-degree-of-freedom (6 DOF) hybrid simulation developed at Honeywell for performing entry simulations. This simulation includes data for the North American Rockwell (NR) 134D delta wing orbiter. The equations of motion are presented in Table G1. It is capable of simulating entry from orbiter to final approach, including navigation, guidance, and control. Closed-loop guidance was not used in this study. The high-altitude abort investigation of Section V required modifications to the entry simulation. Table G2 presents the thrust vectoring forces and control equations added to the basic entry simulation. This includes provisions for variable mass, center of gravity, inertias, and the effects of offset between the center of mass and the aerodynamic moment reference center.

The thrust vector control system (TVC) is presented in Figure 56. Figure 60 gives power levels (PL), angle-of-attack commands ( $\alpha_c$ ), and bank angle commands ( $\phi_c$ ) intended to duplicate the point mass trajectory obtained from NR. This abort trajectory initiated at 226, 987 feet, at a velocity of 10,308 fps, with +6 deg of flight path angle. The commands are presented in Table G3 and are stored in the modified entry simulation.

Figure G1 shows the simulated mass properties variations with vehicle weight. The table at the top of the figure permits comparison with the source data. All of the tests began at the 650,000 pounds gross weight used by NR in generating the abort trajectory. The mass properties, as generated, are open to argument, since the cg's and inertias associated with 760,000 pounds gross weight were used at 650,000 pounds. This is an error, but the consequences are considered minor; they should not influence the conclusions of this report.

Table G1. Equations of Motion

BODY AXES LINEAR ACCELERATIONS					
$a_x = (F_x + F_{xE})/m$					
$a_y = (F_y + F_{yE})/m$					
$a_z = (F_z + F_{zE})/m$					
BODY AXES EQUATIONS OF MOTION					
$\dot{U} = a_x - (WQ - VR) + E_{11}g_x + E_{12}g_y + E_{13}g_z$					
$\dot{V} = a_y - (UR - WP) + E_{21}g_x + E_{22}g_y + E_{23}g_z$					
$\dot{\mathbf{W}} = \mathbf{a}_{\mathbf{z}} - (\mathbf{VP} - \mathbf{UQ}) + \mathbf{E}_{31}\mathbf{g}_{\mathbf{x}} + \mathbf{E}_{32}\mathbf{g}_{\mathbf{y}} + \mathbf{E}_{33}\mathbf{g}_{\mathbf{z}}$					
$\dot{\mathbf{P}}\mathbf{I}_{\mathbf{X}} = \mathbf{L} + \mathbf{L}_{\mathbf{E}} + \mathbf{I}_{\mathbf{X}\mathbf{Z}} [\dot{\mathbf{R}} + \mathbf{PQ}] + \mathbf{QR}[\mathbf{I}_{\mathbf{Y}} - \mathbf{I}_{\mathbf{Z}}]$					
$\dot{Q}I_{y} = M + M_{E} + I_{xz}[R^{2} - P^{2}] + RP[I_{z} - I_{x}]$					
$\dot{R}I_{z} = N + N_{E} + I_{xz}[\dot{P} - QR] + PQ[I_{x} - I_{y}]$					
EULER PARAMETERS					
$ \begin{pmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ \dot{\omega}_3 \\ \dot{\omega}_4 \end{pmatrix} = \begin{pmatrix} O & -P & -Q & -R \\ P & O & R & -Q \\ Q & -R & O & P \\ R & Q & -P & O \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix} $					

_

315

DIRECTION COSINES BETWEEN INERTIAL AND BODY AXES
$E_{11} = \omega_1^2 + \omega_2^2 + \omega_3^2 + \omega_4^2$
$\mathbf{E}_{12} = 2(\omega_2 \omega_3 - \omega_1 \omega_4)$
$\mathbf{E}_{13} = 2(\omega_2 \omega_4 - \omega_1 \omega_3)$
$E_{21} = 2(\omega_2 \omega_3 - \omega_1 \omega_4)$
$E_{22} = \omega_1^2 - \omega_2^2 + \omega_3^2 - \omega_4^2$
$E_{23} = 2(\omega_3\omega_4 + \omega_1\omega_2)$
$\mathbf{E}_{31} = 2(\boldsymbol{\omega}_2\boldsymbol{\omega}_4 + \boldsymbol{\omega}_1\boldsymbol{\omega}_3)$
$E_{32} = 2(\omega_3 \omega_4 - \omega_1 \omega_2)$
$E_{33} = \omega_1^2 - \omega_2^2 - \omega_3^2 + \omega_4^2$
RELATION BETWEEN INERTIAL (X, Y, Ż) AND BODY VELOCITIES (U, V, W)
$ \begin{pmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{pmatrix} = \begin{pmatrix} E_{11} & E_{21} & E_{31} \\ E_{12} & E_{22} & E_{32} \\ E_{13} & E_{23} & E_{33} \end{pmatrix} \begin{pmatrix} U \\ V \\ W \end{pmatrix} $
GRAVITY COMPONENTS IN AN INERTIAL FRAME
$\mathbf{r} = (X^2 + Y^2 + Z^2)^{1/2}$
$g' = g_0 r_0^2 / r^2$
$g_x = -g'\left(\frac{X}{r}\right), g_y = g'\left(\frac{Y}{r}\right), g_z = g'\left(\frac{Z}{r}\right)$

-----

· _

-----

Table G1. Equations of Motion (Continued)



Table G1. Equations of Motion (Concluded)

• ••

AIRSPEED, MACH NUMBER, $\alpha$ , AND $\beta$				
$V_{t} = \sqrt{(U_{a}^{2} + V_{a}^{2} + W_{a}^{2})}$				
$M = V_{t/a}$				
$\alpha = \tan^{-1} \left[ \frac{W_a}{U_a} \right]$				
$\beta = \tan^{-1} \left[ \frac{V_a}{\sqrt{U_a^2 + W_a^2}} \right]$				
$\dot{\alpha} = (\mathbf{U}_{a}\dot{\mathbf{W}} - \mathbf{W}_{a}\dot{\mathbf{U}})/(\mathbf{U}_{a}^{2} + \mathbf{W}_{a}^{2})$				
$\dot{\beta} = \frac{\left[ (U_{a}^{2} + W_{a}^{2}) \dot{v} - V_{a} (U_{a}\dot{U} + W_{a}\dot{W}) \right]}{\sqrt{U_{a}^{2} + W_{a}^{2} (U_{a}^{2} + V_{a}^{2} + W_{a}^{2})}}$				

Table G2. TVC Equations Added to Entry 6 DOF Simulation

-

--- ·

ENGINE THRUSTS (See Figure 60 for Power Level Program)  
FE1 = PL1 [477,000 - (A_e)P_{ATMOS}]. If PL1 < 0.5, FE1 = 0  
FE2 = PL2 [477,000 - (A_e)P_{ATMOS}]. If PL2 < 0.5, FE2 = 0  
P_{ATMOS} = atmospheric pressure, lbs/ft²  
A_e = 50 ft², the effective nozzle exit area retracted  

$$\beta$$
 command for unsymmetric thrust:  
IF |PL1 - PL2| > 0.1,  $\beta_c = \beta_{c_0}$  SIGN (PL1 - PL2)  
PROPELLANT BURNED BY MAIN ENGINES  
WPRO = 400,000 -  $\int$  1,043 (PL1 + PL2)dt  
Vehicle Weight = 225,000 + WPRO + (250,000 - 225,000)  
If WPRO = 0, go to orbit maneuver burn  
MASS PROPERTIES, MAIN ENGINE BURN  
 $x_{CG} = x_{CG_{BO}} + (x_{CG_{FULL}} - x_{CG_{BO}}) (\frac{WPRO}{400,000})$   
 $z_{CG} = z_{CG_{BO}} + (z_{CG_{FULL}} - z_{CG_{BO}}) (\frac{WPRO}{400,000})$   
 $I_x = I_{x_{BO}} + (I_{x_{FULL}} - I_{x_{BO}}) (\frac{WPRO}{400,000})$ 



# Table G2.TVC Equations Added to Entry 6 DOFSimulation (Concluded)

ENGINE FORCES AND MOMENTS, BODY AXES  $FXE = FE1 + FE2 + x_{FORCE}$  $FYE = (FE1)\delta_{1z} + (FE2)\delta_{2z}$  $FZE = -(FE1)\delta_{1y} - (FE2)\delta_{2y}$  $LE = FE1[\delta_{1y}(Y_{CG} - Y\delta_1) - \delta_{1z}(z_{CG} - z_{\delta_1})]$ + FE2[ $\delta_{2y}(Y_{CG} - Y_{\delta_2}) - \delta_{2z}(z_{CG} - z_{\delta_2})]$  $ME = FE1[\delta_{1y}(x_{CG} - x_{\delta_1}) + (z_{CG} - z_{\delta_1})]$ + FE2[ $\delta_{2y}(\mathbf{x}_{CG} - \mathbf{x}_{\delta_2}) + (\mathbf{z}_{CG} - \mathbf{z}_{\delta_2})]$  $NE = FE1[\delta_{1z}(x_{CG} - x_{\delta_1}) + (y_{CG} - y_{\delta_1})]$ +  $FE2[\delta_{2z}(x_{CG} - x_{\delta_1}) + (y_{CG} - y_{\delta_2})]$  $\boldsymbol{y}_{CC}$  is zero. Gimbal position coordinates are converted to feet. In inches, they are:  $x_{\delta_2} = 2200$  $x_{\delta_1} = 2200$  $y_{\delta_1} = -68$   $y_{\delta_2} = +68$  $z_{\delta_1} = +490$  $z_{\delta_2} = +490$ AERODYNAMIC MOMENTS CORRECTED FOR CG OFFSET FROM REFERENCE MOMENT CENTER  $x_{\rm RMC} = (1422 + 211)/12$  $C_{\text{NORM}} = C_{\text{LIFT}} \cos \alpha + C_{\text{DRAG}} \sin \alpha$  $C_{m_{CG}} = C_{m_{RMC}} + C_{N}(x_{CG} - x_{RMC})/\bar{c}$  $C_{n_{CG}} = C_{n_{RMC}} + C_y (x_{CG} - x_{RMC})/b$ 

TVC Test Sequence								
Time	P11	PL2	α _C	¢C				
0	1.0	1.0	50.0	0				
5.0				0				
5.1				70.0				
20.0	{ }			70.0				
20.1				0				
35.0			50.0					
35.1		↓	30.0					
45.0		1.0						
45.1		o						
75.0			30.0					
75.1			11.0					
85 <i>.</i> 0	1.0			↓				
85.1	0	V	V					

Table G3. Test Sequences to Check Out TVC and SAS

SAS Alpha Command Sequence				
Time	^α C			
0	11.0			
10.0	11.0			
10.1	30.0			
30.0	30.0			
30.0	50.0			
50.0	50.0			
50.1	11.0			
1000.0	11.0			

 $0 = PL1 = PL2 = {}^{\phi}C$ 

____

NR 134D AUGUST 1970

L

MASS PROPERTIES (NO PAYLOAD)

		C.G. STATION		INERTIAS × 10 ⁻⁶			
CONDITION	WEIGHT	×	Z	×	l y	z	xz
LIFTOFF	760,000	1578.1	484.6	5.74	22.9	26.3	1.04
BURNOUT	250,587	1692.8	486.5	3.49	15.0	16.1	1.21
ENTRY	214,861	1648.8	473.9	3.36	13.3	14.6	0.96



Figure G1. Mass Properties Variations with Vehicle Weight

# APPENDIX H SYMBOLS AND NOTATION

## Reference: Thelander, J. A., "Aircraft Motion Analysis", Air Force Technical Documentary Report FDL-TDR-64-70, March 1965

The above reference provided the bulk of the notations used in this report as well as the equations of motion given in Appendix B. Additional symbols are due primarily to powered flight with thrust vector control systems.

a = speed of sound, ft/sec

- $A_e = effective nozzle area of main engine, ft², used to compute engine thrust: <math>A \ell = (F_{VAC} F_{SL}) / P_{SL}$
- $a_{cg}$  = lateral acceleration at c.g., equations decoupled from pitch

ACPS = attitude control propulsion system (acronym)

 $a_x, a_y, a_{cg} =$ linear c.g. accelerations along body x, y, and z axis, respectively

- $a_{z}$  = normal acceleration at station  $x_{a}$
- b = wing span, or reference length for lateral aerodynamic moment coefficients
- B = inertial longitude; B =  $\tan^{-1} \left(\frac{-X}{Y}\right)$
- C = basic symbol for aerodynamic force and moment coefficients
- $\bar{c}$  = wing mean aerodynamic chord

 $C_{D_{\alpha}}, C_{L_{M}}, C_{n_{\beta}}, C_{m_{\alpha}}$ , etc. = nondimensional stability derivatives with reference to stability axes

 $C_{p}$ ,  $C_{m}$ ,  $C_{n}$  = rolling, pitching, and yawing moment coefficients, respectively

$$C_{\ell} = \frac{L}{qSb}, C_m = \frac{M}{qSc}, C_n = \frac{N}{qSb}$$

 $C_L$ ,  $C_D$  = life and drag force coefficients, respectively, (stability axes)

 $C_N^{}$ ,  $C_A^{}$  = normal and axial force coefficients, respectively (body axes)

 $C_x$ ,  $C_y$ ,  $C_z$  = longitudinal, side-force, and normal-force coefficients, respectively (body axes)

- D = aerodynamic drag the aerodynamic force in the plane of symmetry along the projection of the relative wind on the plane of symmetry. Drag is positive in the negative X (downstream) direction
- DWO = Delta Wing Orbiter (acronym)
- DWT = Dog-Wag-Tail (acronym)
- ECS = Entry Control System (acronym)

 $F_{Ei}$  = thrust of ith engine, lbs: (T =  $\Sigma F_{Ei}$ )

 $F_{VAC}$ ,  $F_{SL}$  = engine thrust in vacuum and at sea level, respectively

$$F_x$$
,  $F_y$ ,  $F_z$  = total force components along body axes  
 $F_x = X_g + X + F_{xe}$   
 $F_y = Y_g + Y + F_{ye}$   
 $F_z = Z_g + Z + F_{ze}$ 

 $F_{xe}$ ,  $F_{ye}$ ,  $F_{ze}$  = engine force components along body axes

- g = gravitational acceleration constant
- h = altitude, feet
- H = heading; more often denoted by  $\psi$

I_{sp} = engine specific impulse, lbs thrust/lb/sec propellant consumed I_E = moment of inertia of one engine about hinge line  $I_x$ ,  $I_y$ ,  $I_z$  = moments of inertia about X-, Y-, and Z-axes, respectively Ixz = product of inertia with respect to X- and Z-axes

- K = control system gain (G sometimes used in FORTRAN)
- l = reference length for aerodynamic moment coefficients
- L = aerodynamic lift the aerodynamic force in the plane of symmetry perpendicular to the projection of the relative wind on the plane of symmetry. Life is positive in the negative Z (upward) sense.
- L = inertial latitude, positive North
- $L_E$ ,  $M_E$ ,  $N_E$  = engine rolling, pitching, and yawing moments about X, Y, and Z axes, respectively
- L, M, N = aerodynamic rolling, pitching, and yawing moments about X-, Y-, and Z-axes

L(), M(), N() = basic symbols for dimensional moment derivatives; subscript denotes variable of differentiation, e.g.,  $L_{\beta} = \partial L/\partial\beta$ ,  $M_{\alpha} = \partial M/\partial\alpha$ 

- m = mass
- M = Mach number
- $m_{\rm F}$  = mass of one engine
- N = normal force; force component along negative Z axis

 $P = atmospheric pressure, lbs/ft^2 (P_{SL} = 2116 PSF)$ 

- PL = power level of propulsion engine; a value of 1.0 denotes 100% of normal power level
- p, q, r = small-disturbance angular velocity components about X-, Y-, and Z-axes, respectively
- P, Q, R = rolling, pitching, and yawing velocity components (angular) about X-, Y-, and Z-axes, respectively
- q = dynamic pressure

$$q = \frac{\rho V^2}{2}$$

- rmc = reference moment center for aerodynamic data, normally
  used as a subscript
- S = wing area or reference area for aerodynamic coefficients
- SAS = stability augmentation system (acronym)
- t = time
- T = total direct thrust force =  $\Sigma F_{F_i}$
- TVC = thrust vector control (acronym)
- TWD = Tail wag dog
- u, v, w = small-disturbance linear velocity components along X-, Y-, and Z-axes, respectively
- U, V, W = linear velocity components along X-, Y-, and Z-axes, respectively

 $U_A$ ,  $V_A$ ,  $W_A$  = vehicle velocity components with respect to the air mass along X-, Y-, and Z-axes, respectively:

$$U_{A} = U - U_{w}$$
$$V_{A} = V - V_{w}$$
$$W_{A} = W - W_{w}$$

 $U_w$ ,  $V_w$ ,  $W_w$  = wind velocity components along X-, Y-, and Z-axes, respectively

V = total linear velocity of vehicle c.g.

 $V_N$  = velocity normal to the reference trajectory

 $V_t$  = total velocity with respect to the relative wind,  $[U_A^2 + V_A^2 + W_A^2]^{1/2}$ , the true airspeed

W = weight, lb.

I

W = wind vector, or horizontal component

$$W_x$$
,  $W_y$ ,  $W_z$  = wind components with respect to launch local vertical (the boost study assumed  $W_z$  = 0)

- X, Y, Z = inertial position coordinates
- x, y, z = lengths. measured from mass properties axes. The MSFC launch vehicle axes center at the booster nose on its  $C_L$ . x positive aft, y to right, and z up. This is viewing the combination with orbiter on top, its belly to the belly of the booster, which is upside down

$$x_{E_i}$$
,  $y_{E_i}$ ,  $z_{E_i}$  = ith gimballed engine mass center coordinates

x_{CG}, y_{CG}, z_{CG} = C.G. coordinates

- $x_{\delta_i}, y_{\delta_i}, z_{\delta_i}$  = ith gimballed engine hinge line coordinates
- X, Y, Z = aerodynamic force components along X-, Y-, and Z-axes, respectively
- X(), Y(), Z() = basic symbols for dimensional force derivative; subscript denotes variable of differentiation. For example,

$$Xu = \frac{\partial X}{\partial u}; X\delta_e = \frac{\partial X}{\partial \delta_a}; Xw = \frac{\partial X}{\partial w}$$

Xg, Yg, Zg = gravity force components along X-, Y-, and Z-axes. The boost analysis in this report uses:

$$\begin{array}{l} Xg = - mg \sin \Theta \\ Yg = mg \cos \Theta \sin \Phi \\ Zg = mg \cos \Theta \cos \Phi \end{array} \right\} \otimes = \gamma_{R} + \theta$$

 $\alpha$  = angle of attack; tan  $\alpha$  =  $W_A / U_A$ 

 $\beta$  = sideslip angle; sin  $\beta$  =  $V_A/V_+$ 

 $\delta i_y$ ,  $\delta i_z$  = ith engine gimbal rotations about gimbal pitch and yaw hinges; the notation implies control moments predominantly about body y and z axes

$$\delta_x, \delta_y, \delta_z$$
 = TVC system parameters, denoting rotational commands about the X-, Y-, and Z-axes to be distributed to the  $\delta_{i_y}$  and  $\delta_{i_y}$ 

 $\delta_{xp}$ ,  $\delta_{p} = typical control system gains, denoting <math>\partial \delta x / \partial p$  and  $\partial \delta a / \partial p$ , respectively

 $\zeta$  = damping ratio

- $\gamma$  = flight-path angle, the angle between the velocity vector and the plane of the horizon
- $\gamma_{\mathbf{p}}$  = flight-path angle of boost reference trajectory

 $\delta_a$ ,  $\delta_e$ ,  $\delta_r$  = deflection of ailerons, elevator, and rudder, respectively

 $\rho$  = air density

- $\psi$ ,  $\theta$ ,  $\Phi$  = orientation angles of vehicle body axes in yaw, pitch, roll sequence
- $\chi$  = heading of inertial velocity vector in local vertical frame
- $\phi, \theta, \psi$  = perturbations of vehicle axes orientation angles  $\Phi, \theta, \psi$ , respectively. In the small-disturbance approximation  $\phi = \int pdt, \theta = \int qdt, \psi = \int rdt$ , respectively

## $\omega$ = frequency, rad/sec

 $\omega_{\rm F}$  = earth's rotation rate, rad/sec

General Notes:

- 1. All angles and angular velocities are in radian measure.
- 2. Fundamental units are used throughout, i.e., slugs, feet, seconds.
- 3. Throughout this table, the symbol q denotes dynamic pressure when multiplied by the wing area (qS).
- 4. The subscripts o denote steady-state reference condition for small-disturbance analyses, c command, j jet, respectively.

#### Subscripts

- o steady-state value
- c command
- j reaction jet
- e local vertical coordinates

. . . . .

- a total velocity or component with respect to air mass
- w wind velocity
- E rocket engine

### REFERENCES

- 1. Anonymous, "Guidance, Navigation, and Control System: Flight Control Analysis," Honeywell Document 21602-1.3.3.7.3, Circa December 1970.
- Ellison, D. E., et al, "USAF Stability and Control Datcom", McDonnell Douglas Corp., Air Force Flight Dynamics Laboratory, 1970.
- Anonymous, "Study of Automatic and Manual Terminal Guidance and Control Systems for Space Shuttle Vehicles," First through Fifth Monthly Progress Reports to NASA ARC under Contract NASA2-5804 by Sperry Flight Systems Division; April, May, --- 10 August 1970.
- 4. Smith, Herbert E., Jr., and Walter, Parry M., "Project Apollo Manned Simulation of a Straight Wing Orbiter Unpowered Approach and Landing", MSC-IN-EG-70-34, NASA MSC, 30 September 1970.
- 5. Vaughan, William W., "Interlevel and Intralevel Correlations of Wind Components for Six Geographical Locations," NASA TN D-561, December 1960.
- 6. Skelton, G.B., et al., "Final Technical Report: Design of a Load-Relief Control System," Honeywell report 12013 FR1 for NASA MSFC, Contract NAS8-20155, St. Paul, Minnesota, 9 May 1966.
- 7. Harvey, C.A., et al., "Application of Optimal Control Theory to Launch Vehicles," Honeywell report 12073-FR1 for NASA MSFC Contract NAS8-21063, 1968.
- 8. Harris, Robert D., "Analysis and Design of Space Vehicle Flight Control Systems, Volume XIV -- Load Relief," NASA CR-833, ' August 1967.
- 9. Edinger, L. D., "Saturn V/Voyager Load Relief Study," NASA CR-61956, March 1968.
- 10. Anon., "NAS8-25181 Reference Data Package," supplied by MSFC.
- 11. Etheridge, Orval, "Preliminary Reference Trajectories of the MSFC In-house Space Shuttle," MSFC S and E-Aero-GT-5-70, February 4, 1970.

12. Hoernor, S.F., Fluid-Dynamic Drag, published by the author, 1965.

ļ

- 13. Staff of NASA Flight Research Center, "Preliminary Flying Qualities Specifications for Space Shuttle Vehicles," January 28, 1970.
- Stein, G. and A. H. Henke, "A Design Procedure and Handling-Quality Criteria for Lateral-Directional Flight Control Systems," AFFDL-TR-70-152, October 1970.
- Anon, "Study of Automatic and Manual Terminal Guidance and Control Systems for Space Shuttle Vehicles," First through Eighth Monthly Progress Reports to NASA ARC under Contract NASA2-5804 by Sperry Flight Systems Division; April, May, ---, 10 November 1970.
- 16. Schofield, B. L., Richardson, D. F., and Hoag, P. C., "Terminal Area Energy Management, Approach and Landing Investigation for Maneuvering Reentry Vehicles Using F-111A and NB-52B Aircraft," Technology Doc. No. 70-2, Air Force Flight Test Center, June 1970.
- Smith, Herbert E., Jr., and Walter, Parry M., "Project Apollo Manned Simulation of a Straight Wing Orbiter Unpowered Approach and Landing", MSC-IN-EG-70-34, NASA MSC, 30 September 1970.
- McAnnally, R.C., "Preliminary Reference Trajectories of the MSFC Inhouse Space Shuttle," MSFC, February 4, 1970.
- 19. Thelander, J.A., FDL-TDR-64-70, "Aircraft Motion Analysis," March 1965 (AD617 354)
- 20. Nelson, F.R., Koerner, W., and Trudel, R.E., BUAER Report AE-61-4II, Dynamics of the Airframe, September 1952.
- Edinger, L.D., Hughes, T.W., and Pluimer, M.J., "Data Base Report for Saturn/Voyager Load Relief Study," NASA MSFC Contract NAS8-21171, 30 January 1968.
- Rheinfurth, Mario H., "Control-Feedback Stability Analysis," Report No. DA-TR-2-60, Army Ballistic Agency, Redstone Arsenal, Alabama, January 11, 1960; AD 232447.
- 23. Miles, John W., <u>The Potential Theory of Unsteady Supersonic Flow</u>, Cambridge University Press, 1959.
- 24. Thomson, William Tyrrell, Introduction to Space Dynamics, John Wiley and Sons, Inc., 1962.

- 25. Anon., "NAS8-25181, Reference Data Package, " supplied by MSFC.
- 26. Anon., "Simplified Flight Loads Analysis Program," Boeing publication circulation 1964.
- Space Shuttle Aerodynamics Group, "NR Space Shuttle Program Aerodynamics Design Data Book: Volume 1, Straight-Wing Orbiter," Report 2.1.5-13000-00, SD 70-414, Space Division, North American Rockwell, August 1970.
- 28. Graham, K.D., "Kinematic Model for Fire Control," MR10757, August 7, 1969.
- Sokolosky, O. M., "SSV Aerodynamic Rotary Derivatives for the Delta Wing Orbiter (Aero Design Data Book II-DB 2.1.5-13000-10)," NAR, August 31, 1970.
- 30. Ehlers, H. L., "Aero Data for 134D Vehicle."
- 31. Anon., "Aileron Effectiveness in Roll," NAR 11 August 1970.
- Wyllie, C., "Unpowered Orbiter Touchdown State Limits," Honeywell Internal Memorandum, 29 January 1971

333