# NASACONTRACTOR REPORT 



NASA CR-1900

## LOAN COPY: RETURNTO AFML (DOKL) KHRTHANO AFB, N. M.

# DEVELOPMENT OF CONTROL SYSTEMS FOR SPACE SHUTTLE VEHICLES 

Volume II - Appendixes
by C. R. Stone, T. W. Cbase, B. M. Kiziloz, and M. D. Ward

Prepared by
HONEYWELL, INC.
SYSTEMS AND RESEARCH CENTER
Minneapolis, Minn.
for George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • SEPTEMBER 1971

TECHNICAL REPORT STANDARD TITLE PAGE


[^0]
## NOTICE

Because of a waiver initiated and signed in compliance with NASA Policy Directive (NPD) 2220.4, para. 5-b, the International System of Units of measurement has not been used in this document.

## FOREWORD

This report fulfills the final reporting requirements for "Development of Control Systems for Space Shuttle Vehicles" performed under National Aeronautics and Space Administration Contract NAS8-25181. The program was conducted under the direction of John M. Livingston of the Aero-Astro Dynamics Laboratory, George C. Marshall Space Flight Center. The Honeywell Systems and Research Center work was managed by Dr. Grant B. Skelton with C.R. Stone as principal investigator. T.W. Chase was co-investigator.

The report is presented in two volumes. Volume I contains the ten sections for the main body of the report. Detailed derivations and data are presented in eight appendixes of Volume II.

Section I was developed by Drs. G. B. Skelton and E. E. Yore and Messrs. J. G. Rupert, T.W. Chase, R.K. Phelps, A.J. Pejsa and C. R. Stone. Sections II and III were prepared by C.R. Stone (covariance analyses) and T.W. Chase (conventional analyses).
M. D. Ward generated the covariance data and performed quadratic syntheses in these sections. T.W. Chase prepared Sections IV, V, and VI and Appendixes B, G, and H. Section VI was adapted from work performed by M. W. Reed. Dr. G. Stein prepared Section VII, C. R. Stone prepared Sections VIII, IX, and X, and Appendixes A, C, D, E, and F. E. D. Skelley synthesized the quadratic controllers and obtained the covariance results of Section XIII.

MSFC provided the trajectory, aerodynamic, and mass properties data for Vehicle B. Data for the North American orbiters 130G and 134C were used without restriction by permission of Mr. A. B. Kehlet of the North AmericanRockwell Corporation. Messrs. Stone and Chase and Mrs. B. M. Kizilos estimated missing data by use of the DATCOM Handbook, slender body theory, and impact theory.

## CONTENTS

Page
APPENDIX A LAUNCH PHASE RANDOM NORMAL WIND MODEL ..... 1
APPENDIX B EQUATIONS, DATA, AND SIMULATIONS FOR ..... 17
CONVENTIONAL LAUNCH STUDY
Equations ..... 17
The Stability Derivatives ..... 49
The Pitch Simulation ..... 54
The Lateral Simulation ..... 60
APPENDIX C PITCH EQUATIONS AND DATA FOR COVARIANCE ..... 65
ANALYSES OF THE LAUNCH PHASE OF MSFCVEHICLE B
Nomenclature ..... 65
Representations ..... 70
Derivations ..... 71
Winds ..... 71
Distributing the Wind Gust Loads ..... 71
Normal Motion Dynamics ..... 74
Pitch Rotation Dynamics ..... 76
Mass Rate Effects ..... 78
Actuator Dynamics ..... 78
Bending Moments ..... 79
Fanny Load ..... 80
$\bar{q} \alpha$ ..... 81
APPENDIX D LATERAL EQUATIONS AND DATA FOR COVARIANCE 160 ANALYSES OF THE LAUNCH PHASE OF MSFC VEHICLE B
Nomenclature ..... 160
Representations ..... 179
Derivations ..... 179
Euler Angles ..... 179
Winds ..... 180
Distributing the Wind Gust Loads ..... 181
Thrust Vectoring ..... 185
Body Dynamics ..... 192
Actuator Dynamics ..... 194
Bending Moments ..... 195
Pilot's Lateral Acceleration ..... 196
APPENDIX E LATERAL EQUATIONS AND DATA FOR NORTH ..... 254AMERICAN 130G.
Vector Representation ..... 254
APPENDIX $F$ LATERAL EQUATIONS AND DATA FOR NORTH ..... 268 AMERICAN 134D
Nomenclature ..... 268
Representations ..... 279
Derivations ..... 279
Euler Angles ..... 279
Winds ..... 280
Disturbing the Wind Gust Loads ..... 282
Dynamic Equations ..... 285
Control Surface Dynamics ..... 289
Pilot's Lateral Acceleration ..... 289
Resolution from Stability to Body Axes ..... 289
APPENDIX G HIGH-ALTITUDE ABORT SIMULATION ..... 314
APPENDIX H SYMBOLS AND NOTATION ..... 324
REFERENCES ..... 331

## ILLUSTRATIONS

Figure Page
A1 Mean Value of $\mathrm{E}-\mathrm{W}$ March Wind ..... 3
A2 Standard Deviation of E-W March Wind ..... 3
A3 Deviation Rate of $\mathbf{E}-W$ March Wind ..... 7
A4 Mean Rate of E-W March Wind ..... 9
A5 Mean Value of E-W March Wind ..... 9
A6 Standard Deviation of E-W March Wind ..... 10
A7 $\quad \dot{\sigma} / \sigma$ ..... 10
A8 $\quad C_{1} \sigma \sqrt{\dot{h}}$ ..... 11
A9 $\quad C_{2} \sqrt{\dot{h}}$ ..... 11
A10 $\mathrm{C}_{3} \sigma \dot{h}$ ..... 12
A11 $\mathrm{C}_{4} \dot{\mathrm{~h}}$ ..... 12
A12 $\mathrm{C}_{5} \dot{\mathrm{~h}} / \sigma$ ..... 13
A13 Analog Diagram for Vaughn-Skelton Wind ..... 14
A14 Simulated Wind ..... 15
B1 Launch Trajectories, 3 and $4 g^{\prime} s$ ..... 18
B2 Trim Angles of Attack and Gimbal Angle ..... 20
B3 Launch Vehicle Geometry ..... 21
B4 Launch Vehicle Perturbation Geometry; Stability Axes ..... 22
B5 Rear View of Booster Showing Launch Configuration Engine ..... 53 and Aileron Mass Centers
B6 Pitch Time Varying Simulation Launch ..... 55
B7 Simulation of Control System for Boost Pitch ..... 56
B8 Time Varying Parameters in Simulations ..... 57
B9 Time Varying Parameters in Simulations ..... 58
B10 Boost Pitch Conventional Controls ..... 59
B11 Vaughan-Skelton Wind ..... 61
B12 Vehicle B Lateral Boost Simulation ..... 62
B13 Vehilce B Lateral Boost Simulation ..... 63
B14 Simulation Stability Derivatives ..... 64
C1 Pitch Rate Derivatives ..... 82
C2 Indicial Angle of Attack Derivatives ..... 82
C3 Gust Penetration Derivatives ..... 83
C4 Indicial Angle of Attack Rate Derivatives ..... 83
C5 No Wind Flight Geometry ..... 84
D1 Slender Body Depth ..... 197
D2 Slender Body Area ..... 197
D3 Gust Penetration ..... 198
D4 $\quad \mathrm{C}_{\ell_{\mathrm{p}}}$ ..... 198
D5 $\quad C_{\ell}$ ..... 199
D6 $\quad C_{\ell \beta}$ ..... 199
D7 $\quad \mathrm{C}_{\ell}{ }_{\mathrm{a}}$ ..... 200
D8 $\quad \mathrm{C}_{\mathrm{n}_{\mathrm{p}}}$ ..... 200
D9 $\quad C_{n_{r}}$ ..... 201
D10 $\quad C_{n_{\beta}}$ ..... 201
D11 $\quad C_{n_{\delta}}$ ..... 202
D12 Side Force ..... 202
E1 Trim Data ..... 261
E2 $\quad \mathrm{C}_{\ell_{p}}$ ..... 261
E3 $\quad C_{n_{p}}$ ..... 262
E4 $\quad C_{\ell_{r}}$ ..... 262
E5 $\quad C_{n_{r}}$ ..... 263
E6 $\quad C_{\ell_{\beta}}$ ..... 264
E7 $\quad \mathrm{C}_{\mathrm{n} \beta}$ ..... 264
E8 $\quad \mathrm{C}_{\mathrm{y}_{\beta}}$ ..... 265
E9 $\quad \mathrm{C}_{1_{\delta a}}$ and $\mathrm{C}_{\mathrm{n}_{\delta \mathrm{a}}}$ ..... 266
E10 $C_{\ell}$ Spoiler ..... 267
E11 $\quad C_{n}$ Spoiler ..... 267
F1 Analog of Plant ..... 300
F2 Analog of Quadratic Controller ..... 306
F3 No Wind Flight Geometry ..... 307
F4 Damping in Roll (ref. 29) ..... 308
F5 Damping in Yaw (ref. 29) ..... 309
F6 Sideslip Derivatives (ref. 29) ..... 310
F7 Aileron Power (ref. 31) ..... 311
F8 Rudder Power (ref. 30) ..... 312
F9 Side Gust Penetration ..... 313
G1 Mass Properties Variations with Vehicle Weight ..... 323

## TABLES

## Page

A 1 Coefficients of the Differential Equation ..... 5
Ar Interpolated Wind Data ..... 16
BI Pitch Simulation Data ..... 19
Be MSFC Bending Moments ..... 24
B3 Honeywell Definitions ..... 26
B4 Numerical Values for the Dimensional Stability ..... 30 Derivatives
By Tail Wag Dog and Dog Wag Tail Stability Derivatives ..... 50
Cl State Equations ..... 85
C2 Response Equations ..... 87
Cu Numerical A Matrix ..... 89
Cu Numerical G Matrix ..... 94
CS Numerical H Matrix ..... 95
Cb Numerical D Matrix ..... 106
CT Retabulated Reference Trajectory Data ..... 107
CB Pitch Damper (ci) Covariance Results ..... 110
C 9 Attitude (ci) Covariance Results ..... 115
C10 Scheduled Attitude (c2) Covariance Results ..... 120
Cl Scheduled Attitude (c3) Covariance Results ..... 125
C12 Minimum Drift (ch) Covariance Results ..... 130
Cl Normal Acceleration (cs) Covariance Results ..... 135
Cl qa (cb) Covariance Results ..... 140
C15 Quadratic (Q13) Covariance Results ..... 145
C16 Quadratic (Q15) Covariance Results ..... 150
C17 Attitude (C7) Covariance Results ( $\Delta t / 0.02$ ) ..... 155
D1 State Equations ..... 203
D2 Response Equations ..... 204
D3 Numerical A Matrix ..... 205
D4 Numerical G Matrix ..... 213
D5 Numerical H Matrix ..... 214
D6 Numerical D Matrix ..... 224
D7 Ten-Second Gimbal Positions ..... 226
D8 Roll Gimbaling ..... 227
D9 Yaw Gimbaling ..... 228
D1 0 Rocket Gains ..... 229
D11 Heading ( $\mathrm{u}_{21 \mathrm{D}}$ ) Covariance Results ..... 230
D12 Drift ( $u_{22 \mathrm{D}}$ ) Covariance Results ..... 234
D13 Accelerometer Load Relief ( $\mathrm{u}_{24 \mathrm{D}}$ ) Covariance Results ..... 238
D14 Sideslip Load Relief ( $\mathrm{u}_{25 \mathrm{D}}$ ) Covariance Results ..... 242
D15 Heading ( $\mathrm{u}_{21 \mathrm{D}}$ ) Including Rolling Gust Covariance ..... 246 Results
D16 Heading ( $u_{21 D}$ with $\Delta t=0.04$ ) Covariance Results ..... 250
E1 State Data ..... 256
E2 State Equations ..... 258
E3 Flight Data ..... 259
E4 Body Axis Stability Derivatives ..... 260
F1 State Equations ..... 291
F2 Response Equations ..... 292
F3 A Matrix ..... 293
F4 G1 Matrix ..... 294
F5 G2 Matrix ..... 294
F6 H Matrix ..... 295
F7 D Matrix ..... 296
F 8 P Pots ..... 297
F9 Q Pots ..... 298
F10 Amplifiers ..... 299
G1 Equations of Motion ..... 315
G2 TVC Equations Added to Entry 6 DOF Simulation ..... 319
G3 Test Sequences to Check Out TVC and SAS ..... 322

## APPENDIX A

LAUNCH PHASE RANDOM NORMAL WIND MODEL

The random wind model used in Sections II and III is discussed. This wind model is used as the "normal". wind for pitch plane studies and as the side wind for the lateral investigations.

The random wind model is the Skelton differential fit (ref. 6) of Vaughan wind data (ref. 5). This wind model will be referred to as the VaughanSkelton model.

The Vaughan-Skelton model is used in two different ways in this report. First, the differential equation model is used directly in covariance analyses in Sections II and III and for the quadratic control synthesis in Section II, Second, an analog simulation of the differential equation was performed to generate typical samples. One of these (Figure 7) was stored on magnetic tape and used in the manner of a "synthetic wind" for the analog simulation studies of Sections III and IIII.

The wind $v_{W}$ is taken as made up of a mean $\bar{v}_{W}$ and a random component $\tilde{v}_{W}$ (page 29 of ref. 6).

$$
\begin{align*}
\mathrm{v}_{\mathrm{w}} & =\overline{\mathrm{v}}_{\mathrm{w}}+\tilde{\mathrm{v}}_{\mathrm{w}} \\
& =\overline{\mathrm{v}}_{\mathrm{w}}+\sigma \omega \tag{A1}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
\dot{\omega}  \tag{AL}\\
\dot{x}
\end{array}\right\}=\left[\begin{array}{cc}
0 & c_{3} \dot{h} \\
-c_{5} \dot{h} & -c_{4} \dot{h}
\end{array}\right]\left\{\begin{array}{l}
\omega \\
x
\end{array}\right\}+\left\{\begin{array}{l}
c_{1} \sqrt{\dot{h}} \\
c_{2} \sqrt{\dot{h}}
\end{array}\right\}
$$

$$
\sigma=\text { sta ndard deviation of the random component }
$$

$\mathrm{h}=$ altitude
$\eta=$ unity white noise

$$
\mathrm{a}_{1}=0.95 \cdot 10^{-4} / \mathrm{m}
$$

$$
\begin{aligned}
a_{2} & =0.735 \cdot 10^{-4} / \mathrm{m} \\
a_{3} & =-0.91 \cdot 10^{-8} \\
c_{1} & =\sqrt{2\left(a_{1}-a_{2} a_{3}\right)} \\
& =\left[2\left(0.95 \times 10^{-4}+0.735 \cdot 0.91 \times 10^{-12}\right)\right]^{1 / 2} \\
& =+1.378 \times 10^{-2} / \mathrm{m}^{1 / 2} \\
c_{2} & =\left[2\left(a_{1}+\mathrm{a}_{2} \mathrm{a}_{3}\right) \mathrm{c}_{5}\right]^{1 / 2}-2 \mathrm{a}_{1} \mathrm{c}_{1} \\
& \doteq\left[2\left(0.95 \times 10^{-4}\right)\left(1.442 \times 10^{-8}\right)\right]^{1 / 2}-2\left(0.95 \cdot 10^{-4}\right)\left(1.378 \cdot 10^{-2}\right) \\
& =-0.965 \times 10^{-6} / \mathrm{m}^{3 / 2} \\
c_{3} & =+1 \\
c_{4} & =2 \mathrm{a}_{1}=1.9 \cdot 10^{-4} / \mathrm{m} \\
c_{5} & =a_{1}^{2}+\mathrm{a}_{2}^{2} \\
& =10^{-8}\left(0.95^{2}+0.735^{2}\right) \\
& =1.44 \times 10^{-8} / \mathrm{m}^{2}
\end{aligned}
$$

For altitudes up to. 32 km , the mean wind is taken as the $\mathrm{E}-\mathrm{W}$ component at Cape Canaveral during March (page 13 of ref. 5. It is plotted in Figure A1. For altitudes greater than $37 \mathrm{~km}, \bar{v}_{\omega}$ is taken as $20 \mathrm{~m} / \mathrm{sec}$.

Similarly, for altitudes up to 30 km , the standard deviation $\sigma$ is taken as the E-W component at Cape Canaveral during March (page 13 of ref. 5). These data were smoothed as is shown on Figure A2. For altitudes greater than 30 km , it is assumed $\sigma=5.7-(1 / 6000)^{\prime}(\mathrm{h}-30,000)$ for $\mathrm{h}>30,000 \mathrm{~m}$ where $\sigma$ is in $\mathrm{m} / \mathrm{sec}$.

The a's are taken from page 23 of ref. 6, and the formulae for the c's from pages $B-6$ and $B-7$ of ref. Al.


Figure Á1. Mean Value of $E-W$ March Wind


Figure A2. Standard Deviation of E-W March Wind

Equations (A3) and (A4) which follow are an alternative (which was used in this report) to Equations (A1) and (A2). Equations (A3) and (A4) were derived under the false premise that $\dot{v}_{W}$ would be required at some place in the study: Equations (A1) and (A2) are the preferred form because less work is required to obtain them.

Differentiation of Equation (A1) and use of Equation (A2) yields

$$
\begin{align*}
\dot{\mathrm{v}}_{\mathrm{w}} & =\dot{\dot{\mathrm{v}}}_{\mathrm{w}}+\dot{\widetilde{v}}_{\mathrm{w}}  \tag{A3}\\
\dot{\widetilde{v}}_{\mathrm{w}} & =\sigma \dot{\sigma}+\dot{\sigma} \omega \\
& =\sigma\left|c_{3} \dot{h} \mathrm{x}+\mathrm{c}_{1} \sqrt{\dot{h}} \eta\right|+\dot{\sigma} / \sigma \tilde{v} \\
\dot{x} & =-c_{5} \dot{h} \omega-c_{4} \dot{h} x+c_{2} \sqrt{\dot{h}} \eta \\
& =-\frac{c_{5} \dot{h}}{\sigma} \tilde{v}-c_{4} \dot{h} x+c_{2} \sqrt{\dot{h} \eta}
\end{align*}
$$

Hence,

$$
\left\{\begin{array}{l}
\dot{\tilde{v}}  \tag{A4}\\
\dot{x}
\end{array}\right\}=\left[\begin{array}{cc}
\dot{\sigma} / \sigma & c_{3} \sigma \dot{h} \\
-\frac{c_{5} \dot{h}}{\sigma} & -c_{4} \dot{h}
\end{array}\right]\left\{\begin{array}{l}
\tilde{v} \\
x
\end{array}\right\}+\left\{\begin{array}{l}
\sigma c_{1} \sqrt{\dot{h}} \\
c_{2} \sqrt{\dot{h}}
\end{array}\right\}
$$

For simulation purposes $\overline{\mathrm{v}}_{\mathrm{w}}$ [Equation (A3)] and the coefficients of Equation (A4) are needed as functions of time. Most of these are calculated in Table A1.

Columns 1, 2, and 3 are taken from Table 1 ( 3.0 g limit trajectory) of ref. 18. Column 6 is taken from Table 3 of ref. 18.
$\dot{\mathrm{h}}=\mathrm{V}_{\mathrm{R}} \cos \gamma_{\mathrm{R}}$ is presented in column $4\left(\mathrm{~V}_{\mathrm{R}}=\right.$ relative velocity;
$\gamma_{R}=$ flight path angle)
o (column 7) is read from Figure A2, corresponding to the altitude in column 6.

The data of Figure A2 were differentiated and plotted as Figure A3.

Table A1. Coefficients of the Differential Equation

| $\begin{gathered} 1 \\ t \\ \text { Sec } \end{gathered}$ | $\begin{gathered} V_{R}^{2} \\ V_{R} / \mathrm{sec} \end{gathered}$ | $\begin{gathered} 3 \\ \gamma_{R} \\ \text { deg } \end{gathered}$ | $\begin{gathered} 4 \\ \dot{\mathrm{~h}} \\ \mathrm{a} / \mathrm{sec} \end{gathered}$ | $\begin{gathered} \frac{5}{\sqrt{h}} \\ (\mathrm{~m} / \mathrm{sec})^{\frac{1}{2}} \end{gathered}$ | $6$ | $\begin{gathered} 7 \\ \sigma \\ \text { ब/sec } \end{gathered}$ | $\begin{gathered} 8 \\ \mathrm{~d} \sigma / \mathrm{dh} \\ (\mathrm{~m} / \mathrm{sec}) / \mathrm{m} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0. | 90.0 | 0.0 | 0.0 | 0. | 4.7 | . 00078 | . 00000 |
| 4.0 | 19.6 | 89.8 | 19.6 | 4.43 | 38. | 4.7 | . 00078 | . 01530 |
| 8.0 | 40.1 | 89.8 | 40.1 | 6.34 | 158. | 4.7 | . 00078 | . 0312 |
| 12.0 | 61.5 | 89.8 |  |  |  |  |  |  |
| 16.0 | 83.9 | 88.7 | 83.9 | 9.17 | 651. | 5.1 | . 00080 | . 0671 |
| 20.0 | 107.4 | 85.8 |  |  |  |  |  |  |
| 24.0 | 132.3 | 82.4 | 131.0 | 11.44 | 1509. | 5.5 | . 00081 | . 106 |
| 28.0 | 159.0 | 78.8 |  |  |  |  |  |  |
| 32.0 | 187.7 | 75.4 | 181.5 | 13.48 | 2758. | 6.95 | . 00087 | . 158 |
| 36.0 | 218.5 | 72.1 |  |  |  |  |  |  |
| 40.0 | 251.5 | 69.0 | 234.5 | 15.3 | 4424. | 8.5 | . 00095 | . 223 |
| 44.0 | 286.3 | 65.8 |  |  |  |  |  |  |
| 48.0 | 320.6 | 62.6 | 284.5 | 16.88 | 6511. | 10.7 | . 00117 | . 333 |
| 52.0 | 354.8 | 59.4 |  |  |  |  |  |  |
| 56.0 | 389.9 | 56.3 | 325.0 | 18.00 | 8955. | 14.1 | . 00157 | . 510 |
| 60.0 | 426.8 465.4 | 53.1 50.1 | 357.0 | 18.9 | 11662. | 16.7 | -. 00014 | -. 050 |
| 66.0 | 487.4 | 48.6 |  |  |  |  |  |  |
| 72.0 | 557.5 | 44.2 | 388.5 | 19.72 | 14681. | 13.4 | -. 00144 | -. 560 |
| 78.0 | 638.8 | 40.1 |  |  | 17086. |  |  |  |
| 84.0 | 732.1 | 36.3 | 434.0 | 20.85 | 19628. | 9.2 | -. 00041 | -. 178 |
| 90.0 | 837.7 | 32.8 |  |  |  |  |  |  |
| 96.0 | 954.9 | 29.7 | 473.0 | 21.8 | 25094. | 6.9 | -. 00032 | -. 151 |
| 102.0 | 1083.3 1222.6 | 26.9 24.4 | 505.0 | 22.5 | 30997. | 5.5 | -. 00017 | -. 0841 |
| 114.0 | 1372.8 | 22.1 |  |  |  |  |  |  |
| 120.0 | 1528.3 | 20.1 | 525.0 | 22.95 | 37222. | 4.5 | -. 00017 | -. 0875 |
| 126.0 | 1685.7 | 18.2 |  |  |  |  |  |  |
| 132.0 | 1844.8 | 16.5 | 524.0 | 22.9 | 43581. | 3.5 | -. 00017 | -. 0874 |
| 138.0 | 2005.4 | 15.0 |  |  |  |  |  |  |
| 144.0 | 2167.5 | 13.6 | 510.0 | 22.55 | 49858. | 2.5 | -. 00017 | -. 0850 |
| 150.0 | 2330.9 | 12.3 | 501.0 |  | 52910. | 1.88 |  |  |
| 156.0 | 2495.6 | 11.1 | 481.0 | 21.95 | 55879. | 1.4 | -. 00017 | -. 0801 |
| 162.0 | 2661.4 | 10.0 | 466.0 |  | 58749. | . 9 | -. 00017 | -. 07.93 |
| 168.0 | 2828.3 | 9.0 | 443.0 | 21.05 | 61506. | 0.4 | -. 00017 | -. 0740 |
| 169.8 | 2879.7 | 8.7 | 437.0 |  | 623?8. | . 32 | -. 00017 | -. 0734 |

Table A1. (Concluded)

| $\begin{gathered} 10 \\ \dot{\sigma} / \sigma \\ 1 / \mathrm{sec} \end{gathered}$ | $\begin{gathered} 11 \\ \mathrm{c}_{3} \sigma \mathrm{~h} \\ \mathrm{ft}^{2} / \mathrm{sec}^{2} \end{gathered}$ | $\begin{gathered} 12 \\ \mathrm{c}_{1} \sigma \sqrt{\dot{h}} \\ \mathrm{ft} / \mathrm{sec}^{3 / 2} \end{gathered}$ | $\begin{gathered} 13 \\ 10^{6}\left(c_{5} \dot{\mathrm{~h}}\right) / \sigma \\ 1 / \mathrm{ft}^{2} \end{gathered}$ | $\begin{gathered} 14 \\ c_{4} \dot{h} \\ 1 / \mathrm{sec} \end{gathered}$ | $\begin{gathered} 15 \\ -10^{6} c_{2} \sqrt{\dot{h}} \\ 1 / \mathrm{ft} \sec ^{\frac{1}{2}} \end{gathered}$ | $\begin{gathered} 16 \\ \overline{\mathrm{v}}_{\mathrm{E}-\mathrm{W}} \\ \mathrm{ft} / \mathrm{sec} \end{gathered}$ | $\begin{gathered} 17 \\ v_{s} \\ \mathrm{ft} / \mathrm{sec} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . 0000 | 0. | 0. | . 0 | . 0 | 0 | 0. | 0 . |
| . 0033 | 1003. | . 940 | .00417 | . 0037 | 1.307 | . 4 |  |
| . 0065 | 2055. | 1.35 | . 0114 | . 0076 | 1.87 | 1.8 | 2.4 |
| . 0132 | 4620. | 2.12 | . 0219 | . 0159 | 2.7 | 7.4 | 10.1 |
| . 0193 | 7780. | 2.85 | . 0318 | . 0249 | 3.37 | 17.1 | 23.35 |
| . 0228 | 13620. | 4.23 | . 0349 | . 0345 | 3.965 | 31.3 | 42.7 |
| . 0263 | 21550. | 5.87 | . 0369 | . 0445 | 4.51 | 50.1 | 68.5 |
| +. 0311 | 32900. | 8.16 | . 0354 | . 0540 | 4.97 | 73.6 | 101. |
| +. 0362 | 49500. | 11.48 | . 0307 | . 0617 | 5.30 | 101.5 | 246. |
| -. 0030 | 64300. | 14.30 | . 0285 | . 0678 | 5.55 | 130. | 246. |
| -. 0417 | 56300. | 11.95 | . 03865 | . 0738 | 5.80 | 113.5 | 223. |
| -. 0193 | 43100. | 8.67 | . 0629 | . 0825 | 6.15 | 74.5 29.5 | 163. 94. |
| -. 0219 | 35200. | 6.80 | . 0915 | . 0896 | 6.43 | 10.2 | 0 |
| -. 0153 | 30000. | 5.59 | . 1224 | . 0958 | 6.63 | 45.5 |  |
| -. 0194 | 25550. | 4.66 | . 1555 | . 0996 | 6.75 | 65.5 |  |
| -. 0257 | 19200. | 3.51 | . 2055 | . 0995 | 6.74 | 65.5 |  |
| -. 0340 | 13780. | 2.55 | $\begin{aligned} & .272 \\ & .355 \end{aligned}$ | . 0969 | 6.65 | 65.5 |  |
| -. 0571 | 7270. | 1.39 | . 459 | . 0914 | 6.46 | 65.5 |  |
| -.081 -.185 -.229 | 1912. |  | .690 1.475 | . 0841 | 6.21 | 65.5 |  |



Figure A3. Deviation Rate of E-W March Wind
$\mathrm{d} \sigma / \mathrm{dh}$ (column 8) is read from Figure A3, corresponding to the altitude in column 6:

$$
\dot{\sigma}=\dot{h} \frac{d \sigma}{d h} \text { is tabulated in column } 9
$$

$h$ and $d \sigma / d h$ are from columns 4 and 8.
$\dot{\sigma} / \sigma$ in column 10 is the quotient of $\sigma$ and $\sigma$ from columns 9 and 7 . $\dot{\sigma} / \sigma$ is required in Equation (A4).

The remainder of the coefficients in Equation (A4) are tabulated in columns 11 through 15. Conversion from $m$ to ft is made during these calculations. The coefficients of Equation (A4) are presented in Figures A 7 through A12.
Finally, $\dot{\bar{v}}$ is required. $\overline{\mathrm{v}}$ as_a function of time (column 16) is obtained from Figure A 1 and $h$ (column 6). $\vec{v}(t)$ is plotted in Figure A5. $\dot{\vec{v}}$ is obtained by differentiating the data of Figure A5. $\frac{\stackrel{L}{v}}{}$ is plotted in Figure A4.

All of the data required are contained in Figures A4 through A12.
For the covariance analyses Figures A 5 through A 12 (for the mean wind and for the coefficients of Equation (A4) were tabulated at 5 -second intervals (Table A2).

The analog simulation is presented as Figure A13. $\dot{\mathbf{v}}_{\mathrm{S}}$ at the top left is the synthetic wind rate; its simulation was provided for but not used. Function switches 20 and 21 provide for selecting combinations of the synthetic, Vaughan-mean, and Vaughan-random winds.

Amplifier 10 (on the left near the bottom) generates time. It drives the servos (SM2, 3, 4).

Pot SM4A generates the mean wind rate. Pot SM4B generates $(\dot{\sigma} / \sigma) \tilde{v}$, etc.
Figures A5 through A12 contain the values for the analog simulation.
Figure A14 presents a typical recording. The top trace is the output of amplifier 80 (lower right corner of Figure A12). The amplitude of the analog room white noise generator changes over a period of weeks. Pot $\overline{4}$ was adjusted to 0.311 to yield peak ( 30 values of 7.5 volts from amplifier 80 .

The remainder ot the traces of Figure A14 are self explanatory. For the single sample analyses of Sections II and III, the analog simulation was used to generate the sample presented as Figure 1 ; it is also stored on magnetic tape in the Honeywell analog room.


Figure A4. Mean Rate of E-W March Wind


Figure A5. Mean Value of E-W March Wind


Figure A6. Standard Deviation of E-W March Wind


Figure A7. $\dot{\sigma} / \sigma$


Figure A8. $\bar{c}_{1} \sigma \sqrt{\dot{h}}$


Figure A..$C_{2} \sqrt{\dot{\mathrm{~h}}}$


Figure A10. $\mathrm{C}_{3} \sigma \dot{\mathrm{~h}}$


Figure A11: $\mathrm{C}_{4}$ in


Figure $A 12 . \quad C_{5} \dot{\mathrm{~h}} / \sigma$


Figure A13. Analog Diagram for Vaughn-Skelton Wind


Figure A14. Simulated Wind

Table A2．Interpolated Wind Data



00000040 E 80 12555344EO4 26524544 E 04 .42 月8R222E 04 .59639900 E4 83538353E O4 ．11939223E 05 $1632623 E \quad 05$
.163895 .21550000 E 05 $.28101492 E 05$ $.36529247 E 05$ $.47124992 E 05$ $48944463 E 05$
.59465 .6446 107E 05 $.59419078 E 05$ $.52120907 E 05$ $.46601270 E 05$ $.42307724 E O S$ .38733698 O $.39737869 E 05$ ．3322a514E 05 $.31115225 E 05$ $.29304929 E 05$ $.27577923 E 05$ .25550000505 ．2207月5＊ 05 －20231455E 05 $.20231455 E 05$ $.17793875 E 05$ .15623838 E 05 $.13274708 E 05$ $.10542561 E 05$ $10542561 E 05$
$77 B 5787504$ －77B577R7E 04 $.53776117 E 04$ －32177279E 04 .10000000 E 04

$\bar{F}$
．000n0000E－80 ． 46549826 E－02 $.96140281 E=02$ $.14824705 E=01$ $.20316386 \mathrm{~F}-\mathrm{Ul}$ $.26069286 \mathrm{~F}-\mathrm{Ul}$ $.32047960 \mathrm{E}=01$ $.38233935 E=01$ $.44500900_{E-1} 1$ －50593973E－01 $.56112526 \mathrm{E}=01$ －60842082E－01 $.64894305 E-H 1$ $.68610404 E-91$ $.72308361 E-n 1$ .76049768 E－01 $.79732630 E-01$ $.83153736 E-01$ －86212929E－n1 $.89045832 E-01$ $.91792023 E-01$ $.94384559 E-01$ － $96663734 E=01$ －98461586F－01 .99600000 E－01 $.99967327 E-01$ .99720500 E －ت̈l $.99071576 E-H 1$ $.98052717 E-01$ .96557804 F－01 $.94520045 E-01$ $.91968334 E=01$ $.88976780 \mathrm{E}-\mathrm{Ol}$ － $85857943 E=01$ $.83000000 \mathrm{~F}=01$
$.00000000 E-8 n$ $.58113625 E-08$ － $14541286 E-07$ － 206736 2lF－07 ．272711417．07 ． $32551303 \mathrm{E}=07$ －34457560E－07 －35750056E－07 －36900000E－07 －36461587E－07 $.34411297 E=07$ 31354431E－07 $.28498717 E-07$ $.291512067=0$ $.35267868 \mathrm{E}=07$ $.44155589 \mathrm{E}=0$ $.54211855 \mathrm{E}=0$ $.65144389 E=0$ $.76755601 E=07$ ． $88984034 E-07$ $.10175118 E-06$ －11471638E－06 $.12744593 \mathrm{E}-06$ －14045649E－06 1555リ0n05－05 －1740＜203F－06 － $19591246 E-06$ .22066979 E －Of $.24813490 \mathrm{E}=0$ .27829155 E ． 06 －3241ட592E－06 $.42742430 E=06$ $.640_{6}$ r1822－06 $.10660333 E=05$ $.18180000 \mathrm{E}-05$

n00000U0E－80 ． 410 26039E．02 $.81347159 E-02$ $.12347064 E-01$ ． $16523451 E-01$ $.19847599 E-01$ －21999542E－01 $-24171994 E O 1$ － 263 HOOOOE－O1 －28245285E－01 34152265E－01 $.37650936 E-01$ $.20700551 E-01$ $-10012253 E=01$ －． 363 A1934E－01
$-.41818923 E-01$ -29530865 EO1 － $17902946 E$－O1 －． 17648978 E－01 －．21493652E－01 $-.20998089 E=01$ $. .17113033 E-01$ －．14917164E－01 － $16378800 E-01$ － $19400000 \epsilon-01$ －22107769E－01 $-.24615898 E=01$ －． $27507173 \mathrm{E}=01$ －． 70949 A43E－01 －3480702E．01 －．40530958E－01 －．53272105E．01 －．794＊1022E－01 －．132A7049E 00 －．229n0000E 00
－0000DU00E．80 .64667113 F 00 $.28542543 E 01$ .64892161 E 01 ．11701041E 02 .18628 U05E 02 2733260 02 .2733269 F 02 －37771359E 02 $.5010900 n_{\text {E }} 02$ $.64404950 F 02$ .79890598 E 02 .97447523 E 02 $+11858061 E 03$ .13110347 F 03 $.12269797 E 03$ .94381030 E 02 $.56300969 E 02$ $.24353951 E 02$ －90847814E OI $.87673040 F 01$ .19714494 F 02 ． 36018227502 ． 50855833 E 02 $.60547083 E O^{2}$ .65508000 E 02 .65500000 F .02 $.6550 n+00 E 02$ .65500000 F 02 .65500000 E 02 .65500000 E 02 $.6550 \cup 000$ F． 02 ． 6550 ：JONOE 02 $.655 n 0000$ E 02 .653 DDNODE 02 .65500000 F 02

APPENDIX B<br>EQUATIONS, DATA, AND SIMULATIONS FOR CONVENTIONAL LAUNCH STUDY

This appendix presents the equations, data, and simulations used in Sections II and III. Figure B1 gives the reference trajectory used in these studies, supplied by MSFC.

## EQUATIONS

References 19 . and 20 provide the basic equations. Appendix $H$ gives nomenclature for this appendix. The 6-degree-of-freedom rigid body equations were decoupled into:

- Longitudinal trim equations
- Longitudinal perturbations
- Lateral perturbations

The longitudinal trim equations were used to estimate the required angle of attack and composite pitch gimbal deflection needed to fly the reference trajectory. The force normal to the trajectory is:

$$
\begin{equation*}
0=-\frac{13 F_{E}}{m}\left(\alpha_{0}+\delta_{y_{o}}\right)+\cos \gamma_{R}\left(g-\frac{u_{o}^{2}}{r}\right)+u_{o} \dot{\gamma}_{R}-\frac{q S}{m}\left(C_{N_{o}}+C_{N_{\alpha}} \alpha_{o}\right) \tag{B1}
\end{equation*}
$$

The moment equation is:

$$
\begin{equation*}
0=13 F_{E}\left[\left(\mathrm{x}_{\mathrm{CG}}-\mathrm{x}_{\delta}\right) \delta_{\mathrm{y}_{\mathrm{o}}}+\mathrm{z}_{\mathrm{CG}}-\mathrm{z}_{\delta}\right]+\mathrm{qS} \mathrm{\ell}\left(\mathrm{C}_{\mathrm{m}_{\mathrm{o}}}+\mathrm{C}_{\mathrm{m}_{\alpha}} \alpha_{0}\right) \tag{B2}
\end{equation*}
$$

Table B1 includes the data needed to compute these trim requirements. $\alpha_{0}$ and $\delta_{0}$ versus time are plotted in Figure B2. The actual $\delta_{o}$ is shown by the dashed line. The $\delta_{0}$ shown by the solid line would occur in vacuum; the deflection needed to track the cg .

The perturbation longitudinal equations were in body axes, although often described as stability axes because the unperturbed $x$ axis was chosen to lie on the reference trajectory, rather than the body $x$ axis. Figure B3 shows the launch vehicle reference pitch geometry, while Figure B4 gives


Figure B1. Launch Trajectories, 3 and 4 g's

Table B1. Pitch Simulation Data

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Trim Data |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1 \\ \text { Time } \end{gathered}$ | $\begin{gathered} 2 \\ \mathrm{w} 10^{-6} \end{gathered}$ | $\begin{gathered} 3 \\ \mathrm{~m} 10^{-6} \end{gathered}$ | $\begin{gathered} 4 \\ I_{y} 10^{-8} \end{gathered}$ | $\begin{gathered} 5 \\ \times_{\mathrm{CG}} \end{gathered}$ | $\begin{gathered} 6 \\ \mathrm{~T} 10^{-6} \end{gathered}$ | $\begin{aligned} & 7 \\ & \bar{q} \end{aligned}$ | $\begin{gathered} 8 \\ \bar{q} 5 / \mathrm{m} \end{gathered}$ | $\begin{gathered} 9 \\ \frac{9}{\mathrm{q}_{\mathrm{y}} \mathrm{y}} \end{gathered}$ | $\begin{gathered} 10 \\ M_{\alpha} \end{gathered}$ |  | $\left\lvert\, \begin{gathered} 12 \\ 10^{4} \mathrm{M}_{\mathrm{w}} \end{gathered}\right.$ | $\begin{aligned} & 13 \\ & z_{a} \end{aligned}$ | $\begin{aligned} & 14 \\ & z_{w} \end{aligned}$ | $\begin{gathered} 15 \\ \mathrm{M}_{8} \\ \left(4 \mathrm{~g}^{\prime} \mathrm{B}\right) \end{gathered}$ | $\begin{gathered} 16 \\ Z_{\delta} \\ \left(4 \mathrm{~g}^{\prime} \mathrm{s}\right) \\ \hline \hline \end{gathered}$ | $\begin{gathered} 17 \\ A_{x} \\ \left(\mathrm{ft} / \mathrm{sec}^{2}\right) \\ \hline \end{gathered}$ | $\begin{array}{\|c}  \\ \begin{array}{c} 18 \\ \gamma_{R} \\ (\operatorname{deg}) \end{array} \\ \hline \end{array}$ | $\left\|\begin{array}{c} 19 \\ \dot{\gamma}_{\mathrm{R}} \\ (\mathrm{deg} / \mathrm{sec}) \end{array}\right\|$ | $\begin{gathered} 20 \\ c_{N_{0}} \end{gathered}$ | $\begin{aligned} & 21 \\ & c_{m_{0}} \end{aligned}$ | $\begin{aligned} & 22 \\ & c_{N_{\alpha}} \end{aligned}$ | $\begin{aligned} & 23 \\ & c_{m_{\alpha}} \end{aligned}$ |
| 0 | 3.5 | 0.109 | 3.71 | 91 | 5.2 | 0 | 0 | 0 | -- | -- | -- | -- | -- | -- | -- | -- | 90 | -- | -- | -- | -- | -- |
| 3 | 3.46 | 0.107 | 3.66 | 92 | 5.2 | 5 | 0.5 | 0.03 | -0.03 | 60 | -5.0 | -1.5 | -0.027 | -1.43 | -49 | 48 | 90 | -- | +0.02 | -0.028 | 2.9 | -1.0 |
| 13 | 3.32 | 0.103 | 3.51 | 94 | 5.23 | 45 | 4.5 | 0.28 | -0.27 | 210 | -13.0 | -13.1 | -0.063 | -1.49 | -5 | 50 | 90 | 0 | +0.02 | -0.028 | 2.9 | -0. 86 |
| 23 | 3.19 | 0.099 | 3.36 | 97 | 5.34 | 188 | 19.3 | 1.21 | -1.1 | 330 | -33.0 | -56.0 | -0.170 | -1.54 | -54 | 53 | 82 | -0. 87 | +0.02 | -0.027 | 2.9 | -0.90 |
| 33 | 3.05 | 0.095 | 3.20 | 99 | 5.44 | 366 | 39.6 | 2.48 | -2.2 | 640 | -34.0. | -115.0 | -0.180 | -1.61 | -57 | 55 | 75 | -0.85 | +0. 02 | -0.027 | 2.9 | -0.89 |
| 43 | 2.91 | 0.090 | 3.05 | 101 | 5. 61 | 590 | 67.3 | 4.20 | -3.15 | 920 | -34.0 | -168.0 | -0.183 | -1.71 | -62 | 58 | 69 | -0.79 | -0.01 | -0.007 | 2.5 | -0.75 |
| 53 | 2.78 | 0.086 | 2.90 | 105 | 5. 72 | 728 | 87.0 | 5.35 | -5. 3 | 1195 | -44.0 | -270.0 | -0.226 | -1.76 | -66 | 56 | 63 | -0.78 | -0.04 | +0.014 | 3.1 | -0.99 |
| 63 | 2.64 | 0.082 | 2.74 | 107 | 5. 87 | 793 | 99.0 | 6.27 | -4.7 | 1500 | -31.0 | -248.0 | -0.165 | -1.86 | -72 | 58 | 50 | -0.76 | -0.04 | +0.006 | 2.5 | -0.75 |
| 73 | 2.50 | 0.078 | 2.58 | 110 | 5.94 | 750 | 99.0 | 6. 30 | -3.4 | 1870 | -18.0 | -198.0 | -0. 106 | -1.93 | -76 | 64 | 44 | -0.71 | -0.04 | 0 | 2.0 | -0. 54 |
| 83 | 2.37 | 0.074 | 2.41 | 114 | 6.0 | 590 | 82.0 | 5. 30 | -2.0 | 2370 | -8.4 | -140.0 | -0.059 | -1.98 | -81 | 74 | 35 | -0. 60 | -0.04 | -0.002 | 1.7 | -0.38 |
| 93 | 2.23 | 0.069 | 2.24 | 117 | 6.03 | 437 | 65.0 | 4.21 | -1.1 | 2943 | -3. 8 | -98.0 | -0.033 | -2.08 | -87 | 80 | 30 | -0. 52 | -0.04 | -0.005 | 1.5 | -0.26 |
| 103 | 2.09 | 0.055 | 2.06 | 121 | 6.04 | 317 | 50.0 | 3.33 | -0.5 | 3600 | -1.4 | -62.0 | -0.017 | -2.15 | -93 | 88 | 25 | -0.45 | -0.04 | -0.005 | 1.2 | -0.15 |
| 113 | 1.96 | 0.061 | 1.86 | 125 | 6.05 | 220 | 37.0 | 2.56 | -0.2 | 4180 | -0.5 | -37.0 | -0.0089 | -2.24 | -100 | 96 | 21 | -0. 37 | -0.033 | -0.007 | 1.0 | -0.08 |
| 123 | 1.83 | 0.057 | 1.66 | 129 | 6.05 | 150 | 27.0 | 1.96 | -0.12 | 5325 | -0.2 | -24.0 | -0.0045 | -2. 37 | -106 | 104 | 18 | -0.31 | -0.03 | -0.007 | 0.9 | -0.06 |
| 133 | 1.70 | 0.053 | 1.46 | 133 | 6.05 | 103 | 19.7 | 1.53 | -0.05 | 6324 | 0 | -17.0 | -0.0027 | -2. 53 | -114 | 113 | 15 | -0.26 | -0.03 | -0.008 | 0.85 | -0.03 |
| 143 | 1.54 | 0.048 | 1.15 | 140 | 6.05 | 72 | 15.4 | 1.36 | 0 | 7440 | 0 | -12.0 | -0.0016 | -2. 84 | -126 | 125 | 13 | -0.22 | -0.03 | -0.008 | 0.8 | 0 |
| 153 | 1.42 | 0.044 | 0.91 | 145 | 5.71 | 53 | 12.3 | 1.27 | +0.05 | 8650 | 0 | -9.0 | -0.001 | -3.07 | -129 | 129 | 11 | -0.20 | -0.03 | -0.009 | 0.7 | +0.014 |
| 160 | 1.33 | 0.041 | 0.74 | 150 | 5. 35 | 42 | 10.5 | 1.84 | +0.07 | 9512 | 0 | -6.0 | -0.0006 | -3.18 | -129 | 129 | 10 | -0.17 | -0.03 | -0.010 | 0.6 | +0.06 |

$S=10,250 \mathrm{ft}^{2} \quad \mathrm{St}=2.17 \times 10^{6}$
$\ell=211 \mathrm{tt}$
$\ell=211 \mathrm{ft}$


Figure B2. Trim Angles of Attack and Gimbal Angle

> NOTE THAT THE REFERENCE AXES FOR PHYSICAL LOCATIONS (C.G. HINGE LINE ETC) ARE POSITIVE X AFT, YINTO PAPER, AND Z UP AS GIVEN BY MSFC. THE C.G. CENTEREDAXES FOR ANALYSIS ARE X FWD, Y INTO PAPER, AND Z DOWN


Figure B3. Launch Vehicle Geometry


Figure B4. Launch Vehicle Perturbation Geometry; Stability Axes
perturbation geometry. The simulations ignored the longitudinal perturbation $u$. The resulting 2 -degree-of-freedom perturbation equations used were:

Pitch acceleration

$$
\begin{equation*}
\dot{\theta}=\dot{q}=M_{q} q+M_{w} w_{A}+M_{\delta} \delta+M_{\delta} \ddot{\ddot{ }} \tag{B3}
\end{equation*}
$$

Inertial $z$ axis acceleration

$$
\begin{equation*}
\dot{w}=q u_{o}-g \sin \gamma_{R} \theta+a_{C G} \tag{B4}
\end{equation*}
$$

Where the acceleration due to normal forces was:

$$
\begin{equation*}
a_{C G}=Z_{w} w_{A}+z_{\delta} \delta+Z \ddot{\delta} \ddot{\delta} \tag{B5}
\end{equation*}
$$

The acceleration normal to the trajectory

$$
\begin{equation*}
\dot{\mathrm{V}}_{\mathrm{N}}=\mathrm{a}_{\mathrm{CG}}-\mathrm{A}_{\mathrm{x}} \theta \tag{B6}
\end{equation*}
$$

Accelerometer at station 0

$$
\begin{equation*}
a_{z}=a_{C G}+\dot{q}\left(x_{A}-x_{C G}\right) \tag{B7}
\end{equation*}
$$

Normal component of velocity with respect to the air mass

$$
\begin{equation*}
\mathrm{w}_{\mathrm{A}}=\mathrm{w}+\sin \gamma_{\mathrm{R}} \mathrm{w}_{\mathrm{w}} \tag{B8}
\end{equation*}
$$

Gimbal acceleration

$$
\begin{equation*}
\ddot{\delta}=-2 \zeta \omega_{n} \dot{\delta}-\omega_{n}{ }^{2}\left(\delta-\delta_{i}\right)+\frac{\partial \ddot{\delta}}{\partial \dot{q}} \dot{q}+\frac{\partial \ddot{\delta}}{\partial a_{C G}} a_{C G} \tag{B9}
\end{equation*}
$$

Bending moment data supplied by MSFC are shown in Table B2. The pitch bending moment offsets were not considered, consequently, the equations used were of the form:

$$
\begin{equation*}
\mathrm{M}^{\prime}=\mathrm{M}_{\alpha}^{\prime} \alpha+\mathrm{M}_{\delta}^{\prime} \delta^{\delta} \tag{B10}
\end{equation*}
$$

The bending moments were computed at three distances from the nose: 660 inches, 1, 300 inches, and 1, 880 inches.

Table B2. MSFC Bending Moments


Pitch:
$\mathrm{M}^{\prime}=\mathrm{M}^{\prime} \alpha^{\alpha+\mathrm{M}^{\prime} \delta^{\delta}}$

| Station | $10^{-6} \mathrm{M}^{\prime} \delta^{\prime}$ <br> in. lbs/ deg | $10^{-6} \mathrm{M}^{\prime}{ }_{\alpha}$, in. $\mathrm{lb} / \mathrm{deg}$ | $10^{-6} \mathrm{M}^{\prime}$ <br> offset, <br> in. lbs |  |
| :---: | :---: | :---: | :---: | :---: |
|  | for $+\alpha$ | for $-\alpha$ |  |  |
| 660 | -1.62 | -5.72 | -6.72 | 7.98 |
| 1300 | -15.05 | -3.17 | -11.2 | 104.2 |
| 1880 | -22.8 | +5.84 | -10.1 | 182.1 |

Yaw:
$\mathrm{N}^{\prime}=\mathrm{N}^{\prime}{ }_{\beta} \beta+\mathrm{N}^{\prime} \delta_{\mathrm{z}} \delta_{\mathrm{z}}$

| Station | $10^{-6} \mathrm{xN}^{\prime}{ }_{\beta}$ <br> in. $\mathrm{lb} / \mathrm{deg}$ | $10^{-6} \mathrm{xN}^{\prime}{ }^{\prime} \delta_{\mathrm{z}}$ <br> in. $\mathrm{lb} / \mathrm{deg}$ |
| ---: | :--- | :--- |
| 660 | -8.96 | -1.62 |
| 1800 | -19.5 | -22.8 |

The angle-of-attack bending data supplied by MSFC (Table B2) were for the max q condition. The derivative $M^{\prime} \alpha$ was therefore assumed proportional to the normal acceleration derivative $Z_{w}$, for which aero data were available along the trajectory. The following substitution was then made in the bending moment equation:

$$
M_{\alpha^{\prime}}^{\prime}=\left(\frac{M_{\alpha}^{\prime}}{u_{o}}\right)_{\max q}\left(\underset{\max q}{ }\left(\frac{Z_{w}{ }^{w} A}{Z_{\text {at }}}\right)\right.
$$

The lateral perturbation equations had three degrees of freedom. These equations have no apparent product of inertia effects. This is done by modifying the stability derivatives as explained in Table B3. The product-ofinertia effect is included in the primed derivatives of Table B4:

## Roll acceleration

$$
\begin{align*}
& \dot{r}=N_{v}^{\prime} v_{A}+N_{p}^{\prime} p+N_{r}^{\prime} r+N_{\delta_{a}}^{\prime}{ }_{a}+N_{\delta_{x}^{\prime}}^{\delta_{x}}+\mathrm{N}_{\delta_{x}} \ddot{\delta}_{x} \tag{B11}
\end{align*}
$$

Lateral acceleration

$$
\begin{equation*}
\dot{v}=-u_{o} r+A_{C G}+g \sin \gamma_{R} \psi+g \cos \gamma_{R} \phi \tag{B13}
\end{equation*}
$$

Acceleration due to lateral forces

$$
\begin{equation*}
A_{C G}=Y_{v} v_{A}+Y_{\delta_{z}} \delta_{z}+Y_{\delta_{z}}^{\ddot{\delta_{z}}} \tag{B14}
\end{equation*}
$$

Acceleration normal to the trajectory

$$
\begin{equation*}
\dot{\mathrm{V}}_{\mathrm{N}}=\mathrm{A}_{\mathrm{CG}}+\psi \mathrm{A}_{\mathrm{x}}+\mathrm{g} \cos \gamma_{\mathrm{R}^{\phi}} \tag{B15}
\end{equation*}
$$

Acceleration at station 0

$$
\begin{equation*}
A_{y}=A_{C G}+\dot{r}\left(x_{C G_{o}}-x_{o}+\dot{x}_{C G}{ }^{t}\right) \tag{B16}
\end{equation*}
$$

Table B3. Honeywell Definitions

| Mnemonic | Symbol | Description | Computation |
| :---: | :---: | :---: | :---: |
| A LTITUDE | h | Altitude |  |
| MACH | M | Mach number |  |
| WEIGHT | w | Vehicle weight | g * m |
| C. G . |  | Distance from aerodynamic reference to center of gravity along the X body axis |  |
| A LPHA T | ${ }^{\alpha_{T}}$ | Total angle of attack | $\alpha_{a} \times 57.296$ |
| DEL E T | ${ }^{\delta} \mathrm{e}_{\mathrm{T}}$ | Tatal elevon deflection | 8 e * 57.296 |
| EAS |  | Equivalent airspeed |  |
| VELOCITY | $v_{a}$ | Venicle velocity |  |
| DYN PRES | $\bar{q}$ | Dyramic pressure |  |
| Q SUBC | $\bar{q}_{c}$ | Pitot differential pressure |  |
| P SUB S | $\mathrm{P}_{s}$ | Static pressure |  |
| L'SUB B | $L^{\prime}{ }_{\beta}$ |  | $\left(L_{\beta}+\frac{I_{X Z}}{I_{X}} N_{\beta}\right) / /\left(1-\frac{I_{X}{ }^{2}}{I_{X}{ }^{\prime} Z}\right)$ |
| L'B DOT | L' ${ }_{\beta}$ |  | $\left(L_{\dot{\beta}}+\frac{I_{X Z}}{I_{X}} N_{\dot{\beta}}\right) / /\left(1-\frac{I_{X Z}}{2}{ }^{I_{X}{ }^{I} Z}\right)$ |
| L'SUB P | $L^{\prime}{ }_{p}$ |  | $\left(L_{p}+\frac{I_{X Z}}{I_{X}} N_{p}\right) /\left(1-\frac{I_{X Z}^{2}}{I_{X}{ }^{1} Z}\right)$ |
| L'SUB R | $L^{\prime}{ }_{r}$ | $\left\{\begin{array}{l}\text { Prime } \\ \text { Derivatives }\end{array}\right.$ | $\left(L_{r}+\frac{I_{X Z}}{I_{X}} N_{r}\right) /\left(1-\frac{I_{X Z}}{2} I_{X Z Z}^{I_{Z}}\right)$ |
| L' DEL AI | $L^{\prime} \delta_{a i}$ | Aileron | $\left(L_{\delta_{8 i}}+\frac{I_{X Z}}{I_{X}} N_{N_{\delta}}\right) /\left(1-\frac{I_{X Z}}{2}{ }^{I_{X} \mathrm{I}_{Z}}\right)$ |
| L' DEL AG | $L^{4} \delta_{x}$ | $($ Primed gimbal | $\left(\mathrm{L}_{8}{ }_{20}+\frac{\mathrm{I}_{\mathrm{XZ}}}{\mathrm{I}_{\mathrm{X}}} \mathrm{N}_{\delta_{20}}\right) / /\left(1-\frac{\mathrm{I}_{\mathrm{XZ}}^{2}}{\mathrm{I}_{\mathrm{X}^{\mathrm{I}} \mathrm{Z}}}\right)$ |
| L'DEL RG | $L^{\prime} \delta_{z}$ | $\$ Derivatives & $\left(L_{\delta_{r}}+\frac{I_{X Z}}{I_{X}} N_{8_{r}}\right) /\left(1-\frac{I_{X Z}^{2}}{I_{X}^{1}{ }^{2}}\right)$ |  |
| I Y | $\mathrm{I}_{Y}$ | Moment of inertia about $Y$ axis |  |
| I XX | $\mathrm{I}^{\mathbf{X}}$ | $\left\{\begin{array}{l}\text { Moment of inertia about any } \\ \text { axis system (i.e. . principal, }\end{array}\right.$ |  |
| I ZZ | $\mathrm{I}_{Z}$ | $\int$ stability, body, etc.) |  |
| I X | ${ }^{\text {I }} \mathrm{X}$ | Moments of inertia about a new | $\mathrm{I}_{\mathrm{XX}} \cos ^{2} \eta+\mathrm{I}^{2} Z^{\sin 2 \eta+1} \mathrm{ZZ}^{\sin }{ }^{2} r$ |
| 1 Z | $\mathrm{I}_{Z}$ | axis system rotated in the XZ plane by an angle $\eta$. | $I_{Z Z} \cos ^{2} \eta-I_{X Z} \sin 2 \eta+f_{x Z} \sin ^{2} \eta$ |
| I XZ | ${ }^{1} \times 2$ |  | $\mathrm{I}_{\mathrm{XZ}} \cos 2 \eta-\left(\mathrm{I}_{X X}-\mathrm{I}_{Z Z}\right)^{1 / 2} \sin 2 \eta$ |

Table B3. (Continued)

| Mnemonic | Symbol | Description | Computation |
| :---: | :---: | :---: | :---: |
| IXZ/IZ |  |  | ${ }^{1} \mathrm{Xz}^{/ I_{z}}$ |
| Ixz/IX |  |  | $\mathrm{I}_{\mathbf{X z}} /{ }^{1} \mathbf{x}$ |
| THRUS'I z | Tz | Normal component of trim thrust |  |
| THRUST T | $\mathrm{T}_{\mathrm{X}}$ | Total thrust along the X axis |  |
| OMEGA SQ | $\sim^{2}$ |  | $-M_{\alpha}+Z_{W}{ }^{*} M_{q}$ |
| 2 ZET OM | 25. | $2 \zeta \omega$ | $-M_{\dot{\alpha}}-M_{q}-z_{W}$ |
| T SUBA | $\mathrm{T}_{\mathrm{A}}$ |  | $\begin{gathered} 1 . g\left[-z_{w}-\left(\frac{z_{\delta_{\mathrm{ei}}}+z_{\delta_{\mathrm{eo}}}}{U 1}\right) * M_{\alpha}\right] \\ \left.\left(\mathrm{M}_{\delta_{\mathrm{ei}}}+\mathrm{M}_{\delta_{\mathrm{eo}}}\right)\right] \end{gathered}$ |
| OMEGA A | ${ }^{\omega}$ A |  | $\sqrt{\omega^{2}}$ |
| ZETA A | ${ }^{6}$ A |  | 2 ¢ $6 / 2 \omega$ |
| Y Subib | $\mathrm{Y}_{\mathrm{B}}$ | Dimensional derivatives | $C_{Y_{\beta}} \bar{q} \dot{S} / m$ |
| $y \mathrm{~B}$ DOT | $Y_{B}$ |  | $\mathrm{C}_{\mathrm{Y}_{\mathrm{B}}} \dot{\mathrm{q}} \mathrm{Sb} / 2 \mathrm{Urm}^{\text {m }}$ |
| Y Sub P | $\mathrm{Y}_{\mathrm{p}}$ |  | $\mathrm{C}_{\mathrm{Y}_{\mathrm{p}}} \overline{\mathrm{q}} \mathrm{Sb} / 2 \mathrm{U} 1 \mathrm{~m}$ |
| y SUB R | $\mathrm{Y}_{\mathbf{r}}$ |  | $\mathrm{C}_{\mathrm{Y}_{\mathrm{r}}} \overline{\mathrm{q}}^{\text {Sb/2Ulm }}$ |
| y del al | $Y_{8}{ }_{\text {ai }}$ |  | $\mathrm{c}_{\mathrm{Y}_{\delta_{\mathrm{ai}}}} \bar{q} \mathrm{~S} / \mathrm{m}$ |
| Y DEL AO | $\mathrm{Y}_{8}{ }_{\text {a }}$ |  | $\mathrm{C}_{\mathrm{Y}_{\mathrm{goo}}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{m}$ |
| Y DEL R | $\mathrm{Y}_{8}$ |  | $\mathrm{C}_{\mathrm{Y}_{\delta_{r}}} \bar{q} \mathrm{~S} / \mathrm{m}$ |
| X SUB M | $\mathrm{X}_{\mathrm{M}}$ |  | $\mathrm{C}_{\mathrm{X}_{\mathrm{M}}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{m}$ |
| X SUBA | $\mathrm{x}_{\alpha}$ |  | $C_{X_{\alpha}} \bar{q} \mathrm{~S} / \mathrm{m}$ |
| X A DOT | ${ }^{\text {c }}$ |  | $\mathrm{C}_{\mathrm{X}_{\dot{\alpha}}} \bar{q}^{\mathrm{Sc} / 2 \mathrm{~m} \mathrm{Ul}}$ |
| $\mathbf{x}$ SUBQ | $\mathrm{x}_{\text {q }}$ |  | $\mathrm{C}_{\mathrm{x}_{\mathrm{q}}}^{\alpha} \overline{\mathrm{q}} \mathrm{Sc} / 2 \mathrm{~m} \mathrm{UI}$ |
| X DEL Ei | $\mathrm{x}_{\delta_{\text {ei }}}$ |  | $c_{x_{\delta_{e i}}} \bar{q} \mathrm{~s} / \mathrm{m}$ |
| X DEL EO | $\mathrm{X}_{\mathrm{C}_{\text {eo }}}$ |  | $\mathrm{C}_{\mathrm{x}_{\mathrm{f}}^{\mathrm{e}} \mathrm{o}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{m}$ |
| Y SUB V | $\mathrm{Y}_{\mathrm{V}}$ | Dimensional derivatives | $\mathrm{c}_{\mathrm{Y}_{\beta}} \overline{\mathrm{q}} \mathrm{~s} / \mathrm{mu}$ |

Table B3. (Continued)

| Mnemonic | Symbol | Description | Computation |
| :---: | :---: | :---: | :---: |
| Y V DOt | $\mathrm{y}_{\mathrm{V}}$ | Dimensional derivatives | $\mathrm{C}_{\mathbf{Y}_{\dot{\beta}}} \overline{\mathrm{q}}^{\text {Sb} / 2 \mathrm{mU1}}{ }^{2}$ |
| $\mathrm{N}^{\prime}$ Sub V |  |  | $\mathrm{N}^{\prime}{ }_{\beta} \mathrm{U}$ |
| L' sub V |  |  | $L^{\prime}{ }_{\beta} / \mathrm{U}$ |
| Y DAI/U1 | $\mathrm{Y}_{\mathrm{Oai}}{ }^{\text {U }}$ |  | $\mathrm{C}_{\mathrm{Y}_{\delta_{\mathrm{ai}}}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{mU1}$ |
| IXZ UNTR |  | ${ }^{1} \times z{ }^{\text {as input }}$ |  |
| Y DR/E1 | $\mathrm{Y}_{\mathrm{O}_{\mathrm{r}}} \mathrm{UL}$ |  |  |
| L SUB ${ }^{\text {b }}$ | $L_{\beta}$ |  | $\mathrm{C}_{L_{\beta}}{ }^{\text {q }}$ Sb/ ${ }_{\mathrm{X}}$ |
| L B DOT | $L_{\beta}$ |  | $\mathrm{C}_{\mathrm{L}_{\beta}} \overline{\mathrm{q}} \mathrm{Sb}^{2} / 2 \mathrm{I} \mathrm{X}^{\mathrm{U} 1}$ |
| L Sub P | $L_{p}$ |  |  |
| L SUBr | $L_{r}$ |  | $\mathrm{C}_{\mathrm{L}_{\mathbf{r}}} \mathrm{q}^{\text {S }}{ }^{2} / 2 \mathrm{I}_{\mathrm{X}} \mathrm{Ul}^{1}$ |
| L del ai | ${ }^{L} \delta_{\text {ai }}$ |  |  |
| L DEL AG | ${ }^{L_{\delta_{x}}}$ |  |  |
| L DEL RG | $\mathrm{L}_{\mathrm{S}_{\mathrm{z}}}$ |  |  |
| n SUb b | $\mathrm{N}_{\mathrm{B}}$ |  | $\mathrm{C}_{\mathrm{N}_{\beta}}{ }^{\text {a }} \mathrm{Sb} / \mathrm{z} z$ |
| n b dot | $\mathrm{N}_{\dot{\beta}}$ |  | $\mathrm{C}_{\mathrm{N}_{\beta}} \overline{\mathrm{a}}^{\text {Sb}}{ }^{2} / 2 \mathrm{I} \mathrm{z}^{\mathrm{Ul}}$ |
| n Sub $\mathrm{P}^{\text {P }}$ | $\mathrm{N}_{\mathrm{p}}$ |  | $\mathrm{C}_{\mathrm{N}_{\mathrm{p}}}{ }^{\text {a Sb }}{ }^{2} / 2 \mathrm{I} \mathrm{z}^{\mathrm{U1}}$ |
| n SUB R | $\mathrm{N}_{\mathrm{r}}$ |  | $\mathrm{C}_{\mathrm{N}_{\mathrm{r}}} \overline{\mathrm{ab}}^{2} / 2 \mathrm{~L} \mathrm{z}^{\mathrm{U1}}$ |
| n del ai | ${ }^{\mathrm{N}_{\text {ai }}}$ |  | $\mathrm{c}_{\mathrm{N}_{\mathrm{o}_{\mathrm{a}}}} \overline{\mathrm{q}} \mathrm{Sb} / \mathrm{r} \mathrm{z}$ |
| N DEL AG | ${ }^{\mathrm{N}} \mathrm{\delta}_{\mathbf{x}}$ | $\dagger$ |  |
| N DEL RG | $\mathrm{N}_{\delta_{2}}$ |  |  |
| $\mathrm{n}^{\prime}$ sub b | $\mathrm{N}^{\prime}{ }^{\text {a }}$ | Primed derivatives | $\left(N_{\beta}+K_{1}{ }^{*} L_{\beta}\right) / K_{2}{ }^{*}$ |
| N'b dot | $\mathrm{Ni}_{\dot{\beta}}$ | 11 | $\left(N_{\dot{\beta}}+\mathrm{K}_{1} \mathrm{~L}_{\dot{\beta}}\right) / \mathrm{K}_{2}$ |
| $\mathrm{N}^{\prime}$ Sub P | $\mathrm{N}^{\prime}{ }_{\mathrm{p}}$ | Primed derivativea | $\left(N_{p}+K_{1} L_{p}\right) / K_{2}$ |

Table B3. (Concluded)

| Mnemonic | Symbol | Description | Computation | - |
| :---: | :---: | :---: | :---: | :---: |
| $N^{\prime}$ SUB R | $\mathrm{N}^{\prime}{ }_{r}$ | Primed derivatives | $\left(\mathrm{N}_{\mathrm{r}}+\mathrm{K}_{1} \mathrm{~L}_{\mathrm{r}}\right) / \mathrm{K}_{2}$ |  |
| $N^{\prime}$ del ai | $N^{\prime} \delta_{a i}$ |  | $\left(N_{\delta_{a i}}+K_{1} L_{\delta_{a i}}\right) / K_{2}$ |  |
| $N^{\prime}$ del ag | $N^{\prime}{ }_{\delta_{x}}$ | $1$ |  |  |
| $N^{\prime}$ del rg | $\mathrm{N}^{\prime} \mathrm{S}_{\mathrm{z}}$ |  |  |  |
| X M/Ui | $\mathrm{x}_{\mathrm{M}} / \mathrm{LI}$ | Dimensional derivatives | $\mathrm{C}_{\mathrm{X}_{\mathrm{M}}} \overline{\mathrm{q}} \mathrm{~s} / \mathrm{mUl}$ |  |
| x SLb ${ }^{\text {w }}$ | $\mathrm{x}_{\mathrm{W}}$ |  | $\mathrm{C}_{\mathrm{X}_{\alpha}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{mUl}$ |  |
| X W DOT | $\mathrm{x}_{\mathrm{W}}$ |  | $\mathrm{C}_{\mathrm{X}_{\dot{\alpha}}} \overline{\mathrm{q}} \mathrm{Sc} / 2 \mathrm{mul}$ |  |
| $\mathrm{XQ} / \mathrm{Ll}$ | $\mathrm{x}_{\mathrm{q}} / \mathrm{Cl}$ |  | $\mathrm{c}_{\mathrm{X}_{\mathrm{q}}} \overline{\mathrm{q}} \mathrm{Sc} / 2 \mathrm{mul}$ |  |
| X DEt | $\mathrm{x}_{\delta_{\text {ei }}} / \mathrm{Ul}$ |  | $\mathrm{C}_{\mathrm{X}_{\mathrm{S}_{\mathrm{ei}}}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{mUl}$ |  |
| x DEO/U1 | $\mathrm{x}_{\mathrm{S}_{\mathrm{eo}}} / \mathrm{Cl}$ |  | $\mathrm{C}_{\mathbf{x}_{\mathbf{g}_{\mathbf{e o}}}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{mUl}$ |  |
| Z M/U1 | $\mathrm{z}_{\mathrm{M}} / \mathrm{L}^{\prime \prime}$ |  | $\mathrm{c}_{\mathrm{Z}_{\mathrm{M}}} \overline{\bar{q}} \mathrm{~s} / \mathrm{mul} .$ |  |
| z sub w | $\mathrm{z}_{\mathrm{w}}$ |  | $\mathrm{C}_{\mathrm{Z}_{\alpha}} \bar{q} \mathrm{~S} / \mathrm{mU} \mathrm{l}$ |  |
| z W DOT | $z_{w}$ |  | $\mathrm{C}_{\mathrm{Z}_{\dot{\alpha}}} \overline{\mathrm{q}} \mathrm{Sc} / 2 \mathrm{mUl}$ |  |
| Z Q/U1 | $z_{q} / \mathrm{L} 1$ |  | $\mathrm{C}_{\mathrm{z}_{\mathrm{q}}} \overline{\mathrm{q}} \mathrm{Sc} / 2 \mathrm{~m} \mathrm{U} 1$ |  |
| 2 DEI/U1 | $\mathrm{Z}_{\delta_{\mathrm{ei}}} / \mathrm{LC1}$ |  | $\mathrm{C}_{\mathrm{Z}_{\delta_{\mathrm{ei}}}} \bar{q} \mathrm{~s} / \mathrm{mUl}$ |  |
| 2 DEO/U1 | $2_{\delta_{\text {eo }}} \mathrm{Nil}$ |  | $\mathrm{C}_{\mathrm{Z}_{\delta_{\mathrm{eo}}}} \overline{\mathrm{q}} \mathrm{~S} / \mathrm{mU1}$ |  |
| M SUB M | $\mathrm{M}_{\mathbf{M}}$ |  | $\mathrm{C}_{\mathrm{M}_{\mathrm{M}}} \overline{\bar{q} \mathrm{Sc} / \mathrm{I}_{\mathrm{Y}}}$ |  |
| m SUBAL | $\mathrm{M}_{\alpha}$ |  | $\mathrm{C}_{\mathrm{M}_{\alpha}} \overline{\mathrm{q}} \mathrm{Sc} / \mathrm{I} \mathrm{Y}$ |  |
| M AL DOT | $\mathrm{M}_{\dot{\alpha}}$ |  | $\mathrm{C}_{\mathrm{M}_{\dot{\alpha}}} \overline{\mathrm{q}} \mathrm{Sc}^{2 / 2 \mathrm{I}_{\mathrm{Y}} \mathrm{Ul}}$ |  |
| M SUBQ | $\mathrm{M}_{\mathrm{q}}$ |  | $\mathrm{C}_{\mathrm{M}_{\mathrm{q}}} \dot{\mathrm{q}} \mathrm{Sc}^{2} / 2 \mathrm{I}_{\mathrm{Y}} \mathrm{U} 1$ |  |
| M DEL EI | $\mathrm{M}_{\delta_{\text {ei }}}$ | $1$ | $\mathrm{C}_{\mathrm{M}_{\delta_{\mathbf{e i}}}} \overline{\mathrm{q}} \mathrm{Sc} / \mathrm{I}_{\mathbf{Y}}$ |  |
| M DEL EO | $\mathrm{M}_{\mathrm{BeO}^{\text {O }}}$ | Dimensional derivatives | $\mathrm{C}_{\mathrm{M}_{\delta_{\mathrm{eO}}}} \overline{\mathrm{q}} \mathrm{Sc} / \mathrm{I}_{\mathrm{Y}}$ |  |

> Table B4．Numerical Values for the Dimensional Stability Derivatives

| FLicton | 4 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ALTitude | 126．00゙0 0 | $y$ sub $v$ | ． 000642233 | － 920000 E 30 |
| MACH | ． 05600 | H＊SUBV | －．000002997 | －000000E－85 |
| WEIGHT | 3499999.99998 | $L^{\prime} \mathrm{SUB} V$ | －． 00023003 | － $000000 \mathrm{E}-80$ |
| C．G： | ． 00000 | Y R／U1 | ． 00000000 | － $000000 \mathrm{E}-80$ |
| ALPha $T$ | ． .45837 | Y DAI／UI | ． 0000000 | ． $0000000-80$ |
| DEL E T | ．48393 | IXZ UNTR | 47000800.00060500 | ． $000000 \mathrm{E}-80$ |
| EAS | 62，40411 | Y DR／Ul | ． 00000 \％00 | ． $000000 \mathrm{E}-80$ |
| veinctiy | 62.51930 | $\underline{L}$ SUB a | －．01148512 | －． 460000 E －01 |
| Cas | 62.429 .69 | $L$ B DOT | ． 00000000 | －000000E－8） |
| DYN PRES | 4.62815 | $\checkmark$ Sub P | .00000000 | $\therefore 000000 E-80$ |
| Q Sub ${ }^{\text {c }}$ | 4.63178 | $L$ SUB R | ．00000500 | ． $000000 \mathrm{E}-80$ |
| $P$ sise 5 | 2106.58236 | $\angle$ DEL A | －． 02496764 | －． 100000 O |
| LISUB B | ．．01438 | L DEL AG | －2．20386月76 | －000000E－80 |
| L＇s DOT | .00000 | $L$ del rg | －． 01222307 | ． $000000 \mathrm{E}-87$ |
| L．SUB P | .00000 | $N$ Sube | ．00000tino | －000000E－80 |
| L＇sUB | ． .05211 | N B Dot | .00000000 | $: 000000 \mathrm{E}-80$ |
| L•召L $A$ | ． .03123 | M Sus P | .00000000 | ：000000E－80 |
| L•DFL 46 | －2．72362 | N Sub R | ． 02691910 | －．100000E 01 |
| L＇AFL RG | －2．81692 | N DEL A | ．00061809 | ． 860000 －03 |
| 1 Y | 366500900.00090 | $N$ DEL $A G$ | ．01861453 | ． $000000 \mathrm{E}-80$ |
| 1 Xi | 30400000.00000 | N DEL RG | －1．44715166 | $\bigcirc 000000 \mathrm{E}-80$ |
| 127 | 360800000，00000 | N．SUS B | －． 00187343 |  |
| $1 \times$ | 30399999.99976 | N＇S Dot | .00000600 |  |
| 12 | 360799999.99609 | N：Sus P | ． 00000000 |  |
| $1 \times 7$ | 46999999.99976 | N＇SUB R | －． 0337077 \％ |  |
| $1 \times 2 / 12$ | ． 13027 | N＇DEL A | －． 0405001 |  |
| 1x $11 \times$ | 1．54605 | N＇DEL AG | －．33618157 |  |
| THRIIS 2 | 43919.17818 | N＇DEL RG | －1．81410050 |  |
| Phiust $T$ | 3200000.00060 |  |  |  |
| omega sa | ． 02731 | $x u / u 1$ | －． 00069808 | －． $500000 \mathrm{E}-01$ |
| 2 2FT OM | ． 02024 | $x$ Sub $W$ | － 0.0020244 | －． $290000 \mathrm{E}-01$ |
| T Sub ${ }^{\text {a }}$ | 49.39661 | $x$ W DOT | ． 00000 ño | ． $000000 \mathrm{E}-80$ |
| omésa A | .16526 | $x$－ 01 | ， 00000000 | ．000000E－80 |
| zeta | ． 06125 | $x$ DEl／U1 | ． 00000000 | $\bigcirc 000000 \mathrm{E}-80$ |
| Y SUB 8 | ． .40152 | $x$ DEOSU1 | ． 0000060 | $.000000 \mathrm{E}-80$ |
| Y 8 DOT | .00080 | 2 UJU | ． 00000000 | ． $000000 \mathrm{E}-80$ |
| $y$ siti $P$ | .00080 | 2 SUB W | －． 02024430 | ． 290000 E 01 |
| Y SUB R | ． 00000 | 2 W DOT | － 00000000 | ． 090000 E－80 |
| Y DEL Al． | .00000 | 2 Qul | ． 00000000 | －000000E－80 |
| Y DEL 10 | .00080 | 2 DEI／U1 | ， 00000000 | ．000000E．80 |
| Y 0 PL | .00080 | 2 DEONU1 | ． 000000000 | $\bigcirc 000000 \mathrm{E}-80$ |
| $x$ sise U | ． .08729 | M suB I | －．00152942 | －． $280000 \mathrm{E}-01$ |
| $x$ sub 1 | ． .01266 | M SUB AL | －．02731113 | －． 100000 O1 |
| $\times$ A not | ． 00070 | MAL DOT | －0goq0900 | ． $000000 \mathrm{E}=80$ |
| $\times$ súb 0 | .000 O | M 3UB | .0000000 | ．000000E－80 |
| $\times$ 㠰L Et | －000000 | M DEL EI | ． 00000600 | ． $000000 \mathrm{E}-80$ |
| $X$ Ifl EO | .00000 | MDEL EO | ． 08000800 | ．000000E－80 |

[^1]Table B4．（Continued）

```
    Pi'CON 12
\begin{tabular}{|c|c|c|c|c|}
\hline ALTITUDE & 1180.00000 & \(Y \operatorname{SIR} V\) & －． 21200924 & －．920000E 00 \\
\hline MACH & ． 18000 & N：SIJ \(V\) & －．00011625 & －．\(-900000 \mathrm{E}-80\) \\
\hline HEIGHT & 3321999.99998 & L＇sub v & －．0c074987 & ．050000E－8C \\
\hline C． \(0_{0}\) & .00000 & V R／ \(\mathrm{H}_{1}\) & ． 00000000 & ． \(000000 \mathrm{C}-80\) \\
\hline AípHa I & －． 43837 & \(v\) Dal／ul & ． 00000600 & ． \(0000005-80\) \\
\hline DEi E T & ． 52327 & IXZ UNTR & 45000 OT00：00000¢00 & \(\bigcirc 000000 E-80\) \\
\hline EAS & 196．78398 & Y DR／Ul & .00060 Tio & \(.000000 E-80\) \\
\hline VELOEITY & 200，22484 &  & －．11534415 & －460000E－01 \\
\hline CAS & 196.89685 & \(L\) D DOT & ． 00000600 & \(\because 000000 E-80\) \\
\hline DYN PRES & 46.02146 & \(L\) sub \(P\) & ． 00000800 & .000000 －80 \\
\hline a sut \({ }^{\text {c }}\) & 46：39544 & \(\checkmark\) SUB R & ． 06000600 & \(.000000 E-80\) \\
\hline P Su8 3 & 2027．5080\％7 & 1 DEL A & －． 25074815 & －．100000E 00 \\
\hline \(6 \cdot 5118\) & －． 15014 & \(L\) dEL AG & －2．22582079 & － 000000 E－80 \\
\hline L＇\({ }^{\text {a DOT }}\) & ． 00000 & L DEL RG & －． 01361193 & ． 000000 E－80 \\
\hline L＇sue P & .00000 & N SUB & －．00371476 & -170000 －01 \\
\hline L＇SUB R & －．16210 & N B DOT & －00000600 & \(\bigcirc 000000 E-80\) \\
\hline L•第し & －． 31110 & N SUB P & .00000600 & ． \(000000 \mathrm{E}-80\) \\
\hline L＇nPl AG & －2．72648 & N SuB P & ． .08730798 & －． 100000 El \\
\hline L＇DPL R 6 & －2．784i4 & N DEL A & .00016170 & ． 740000 E－03 \\
\hline 1 Y & 350900000.00000 & N DEL Ag & .02032970 & ． \(000000 \mathrm{E}-80\) \\
\hline \(1 \times 1\) & 30100000.00000 & N DEL RG & －1．49039896 & \(\bigcirc 000000 \mathrm{E}-80\) \\
\hline 127 & 345400000.00000 & N＇SUB & －．023275A0 & \\
\hline \(1 \times\) & 30099999．99976 & N＇B DOT & －00000500 & \\
\hline 17 & 345399999.99609 & N•SUB P & .00000000 & \\
\hline \(1 \times 7\) & 44999999.99976 & N＇SUB R & －．10842699 & \\
\hline \(1 \times 2 / 12\) & .13028 & N＇DEL A & －． 04036978 & \\
\hline \(1 \times 2 / 18\) & 1.49502 & H＇DEL AG & －． 33488774 & \\
\hline ThRist 2 & 47764 24829 & H＇DEL RG & －1．05310547 & \\
\hline THRIIS 9 & 5290000.00000 & & & \\
\hline OMESA SQ & ． 27230 & \(x\) U／U1 & －．00228361 & －． \(500000 \mathrm{E}-01\) \\
\hline 2 2ET OM & ． 06622 & \(x\) © U W & －．00066225 & －． \(290000 \mathrm{E}-01\) \\
\hline \(\boldsymbol{P}\) ¢ib \(A\) & 15．10009 & \(x\) W DOT & ．OQOQOẼ00 & ． 000000 E－8U \\
\hline OMEBA A & ． 32183 & \(x\) QJUl & －00000600 & .000000 E－80 \\
\hline 2ETA & ． 06345 & \(\times\) DEI／U1 & ． 00000000 & ． \(000000 \mathrm{E}-80\) \\
\hline \(y\) sifs & －4，20657 & \(\times\) DEOIUI & .06000600 & ． \(000000 \mathrm{E}-80\) \\
\hline Y 8 DOT & .00080 & 2 usul & .00000800 & ． \(000000 \mathrm{E}-80\) \\
\hline Y Su8 P & .00000 & 2 SUB W & －． 06622478 & －．290000E O1 \\
\hline \(y\) Sub \(R\) & .00000 & 2 W DOT & －0，0000000 & ． \(000000 \mathrm{E}-80\) \\
\hline \(Y\) DEL A！ & .00000 & 2 Q／U1 & .00000000 & ． \(000000 \mathrm{E}-80\) \\
\hline Y DEL AO & \(\bigcirc 00000\) & 2 DEI／！1 & ． 00000000 & － 0000000 －80 \\
\hline \(\boldsymbol{Y}\) 既L & .00080 & 2 DEO／U1 & .00000000 & －000000E－80 \\
\hline \(x\) 3is \(U\) & ． .91447 & M SUB I！ & －．01588442 & －280000E－01 \\
\hline \(\times 3118\) a & －． 13260 & M SUB AL & －． 27230435 & ． 9.960000 O 0 \\
\hline \(x\) A DOT & .00000 & M AL DOT & ． 00000000 & ． 000000 E－80 \\
\hline \(x\) sive 0 & ． 00000 & M Sub 0 & .00000000 & ． 000000 E －80 \\
\hline \(x\) ¢́Cl 1 & .00000 & M DEL EI & .00000000 & ¢000000E－80 \\
\hline \(\times\) DPL 80 & .00000 & MDEL EO & .00000000 & \(\bigcirc 000000\)－80 \\
\hline
\end{tabular}
```



``` （．007713．．00000）（．14613．．23307）（．14613：－．23307）（．．34498．．0000））
```




```
\[
(12 \mathrm{SEC})
\]
```

Table B4. (Continued)

|  | FIT CON | 24 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | aptituje | 4950.00000 | $y \operatorname{SUR} V$ | -. 04184694 | -.920000E OO |
|  | MACH | . 390 00 | N: sue V | -. 00025364 | - 000000 C 80 |
|  | WEIGHT | 3185999.99998 | L' sUe V | -. 00147697 | -000000E-80 |
|  | C.G: | . 000 ก̃o | $y$ R/Ul | .00000800 | . $000000 \mathrm{E}-80$ |
|  | ALPha T | -2.00535 | Y DAI 111 | .00000 İco | . OOOOODE-80 |
|  | DEi E T | 1.14745 | 1x2 UNTR | 43000800.00000000 | . $0000000 \mathrm{E}-80$ |
|  | EAS | 397.70459 | Y $\mathrm{DR} / \mathrm{Ll}$ | . 00000800 | . $000000 \mathrm{C}-80$ |
|  | VELOCITY | 428.11476 | $\checkmark$ SuR a | -. 47586914 | -.460000E-01 |
|  | CAS | 399.07537 | $L$ B DOT | .00000 तico | - $000000 \mathrm{E}=80$ |
|  | DYN PRES | 189.97588 | $\angle$ SUR P | .00000000 | -COCOOCE-80 |
|  | Q SIIB C | 195.23279 | L. SUB R | .00000600 | . $000000 \mathrm{E}-80$ |
|  | P 5118 5 | 1764.08752 | L DEL 4 | -1.03449814 | - Iosccor 00 |
|  | L'911B B | -.63231 | 1 DEL AG | -2.24787129 | - $0000 \mathrm{COE}-80$ |
|  | L' $\quad$ DOT | . 00000 | $1 . \mathrm{DEL} \mathrm{RG}$ | -. 03090910 | -000000E-80 |
|  | L' SUB P | .000 Oo | N SUB $\quad$ A | -. 02612946 | -.290000E-01 |
|  | L' sub R | -. 30976 | N D Dot | . 06000000 | -ODCOCOE-80 |
|  | $L \cdot n \vec{F} L A$ | -1.27253 | N SUB P | .00000ñ00 | - COSOCOE-80 |
|  | LVMÉL AG | -2.68762 | N SUR ${ }^{\text {a }}$ | -.17435353 | - 0 - oucecr ol |
|  | L'PFL RG | -2.77956 | N DEL A | . 00C65314 | -7cructeos |
|  | 1 Y | 335600000.00090 | N DEL G | . 04502356 | . $000000 \mathrm{E}-8 \mathrm{n}$ |
|  | $1 \times \mathrm{X}$ | 29800000.00000 | N DEL RG | -1.54313807 | .00009CE-80 |
|  | 127 | 330400000.00000 | N'SUB 8 | -.10841773 |  |
|  | $1 \times$ | 29799999.99976 | N'O DOT | .00000 io |  |
|  | 19 | 330399999.99679 | N'SUR ${ }^{\text {N }}$ | .00000000 |  |
|  | $1 \times 7$ | 42999999.99976 | N'SUE R | -. 21460997 |  |
|  | $1 \times 7 / 12$ | .13015 | N'dEL A | -. 16496041 |  |
|  | 1x2/1x | 1.44295 | N'DEL AG | -. 30475782 |  |
|  | THRISST 2 | 106935.65330 | N'DEL RG | -1.90488214 |  |
|  | THRIIST T | 5340000.00000 |  |  |  |
|  | OMFGA SQ | 1.09028 | UノU1 | -. 00545830 | -.60000CE-01 |
|  | 2 TFT OM | . 13191 | $x$ Sus $W$ | -. 00909716 | -200000E OO |
|  | 9 Sild A | 7.58099 | $x$ - Dot | .00000000 | . $000000 \mathrm{E}-8 \mathrm{U}$ |
|  | omfea a | 1.04415 | x - 111 | .00000500 | . 000000 E-80 |
|  | 2ETA A | .06317 | $x$ DEI/H1 | .00000000 | . $0000005-80$ |
|  | Y 51188 | -17.91529 | $\times$ deolui | .00000000 | $\bigcirc 000000 E-80$ |
|  | $y$ y a DOT | .00000 | $2 \mathrm{U} \mathrm{Ul}_{1}$ | . 00727773 | .8000COE-01 |
|  | $y 9118 \mathrm{P}$ | .00000 | 2 SUB $W$ | -. 13190 mat | . 290000 O1 |
|  | $\begin{array}{lll}Y & S 118 \\ Y & R \\ y\end{array}$ | . 00000 | $2 \mathrm{~W} \mathrm{DCT}^{\text {c }}$ | .00000500 | . 0000000 -80 |
|  | $y$ Hel Al | . 00000 | 2 asul | .00000 ¢00 | $.000000 \mathrm{E}-80$ |
|  | $Y$ YEL AO | . 00000 | 2 DEI/ll | . 00000000 | -000000E-80 |
|  | $y$ DFFL R | . 00000 | 2 DEOAUI | .00000000 | -0J0000E-80 |
|  | $x$ Sub U | -4.67355 | M Sub 11 | -.06541544 | -.270000E-01 |
|  | $x$ SIIB A | -3.89463 | $M$ SuR AL | -1.09025731 | -.900000E OO |
|  | $x$ A DOT | . 000 त̃o | M AL [nt | . 00000000 | $.000000 E-80$ |
|  | $x$ sils ${ }^{x}$ | .00000 | M Sub 0 | .00000000 | -000000E-80 |
|  | $x$ กEL EI | .00070 | M DEL FI | .00000500 | -000000E-80 |
|  | $X$ DFL EO | .000 Oio | MDEL EO | .00000000 | . $000000 \mathrm{E}-80$ |
|  <br>  |  |  |  |  |  |
|  |  |  |  |  |  |
|  (.003il. .00299)(.00311..0002991. .07120.1.0424211.0.07120.-1.04242) |  |  |  |  |  |

Table B4．（Continued）

```
    Fi`CON 32
\begin{tabular}{|c|c|c|c|c|}
\hline ALTITUDE & 9050．6．000 & \(\because s u^{4} \mathrm{~V}\) & －．0509b174 & －． 860000000 \\
\hline MACH & － \(\operatorname{Taccos}\) & N：slle V & －． 00034728 & －OUVOODE－8C \\
\hline WEIGHT &  & L＇¢りe V & －． 00048266 & ． \(000000 \mathrm{E}-80\) \\
\hline C：G： & \(\therefore \therefore\) 二ล̊̃ & y orul & .00000000 & ． \(000000 \mathrm{E}-80\) \\
\hline AlPMA T & －．6．595 & Y Dal／l1 & .00000600 & \(.000000 \mathrm{E}-80\) \\
\hline OELE T & －0．09177 & IXE UNTR & \(11000 \pi 00.00000000\) & －000000E－80 \\
\hline EAS & 528.30268 & Y DR／U1 & ． 00000060 & ． \(0000000 \mathrm{E}-80\) \\
\hline veilocity & 605.69312 & L sus \({ }^{\text {a }}\) & .06000000 & ．000000E－80 \\
\hline Cas & 534.03128 & \(L\) DOT & .00000500 & －000000E－80 \\
\hline DYN PRES & 331．－9082 & 1 SUBP & .00000800 & \(.000000 \mathrm{E}-80\) \\
\hline Q SHB C & 358.32804 & 1 Sus R & .00000800 & ． \(000000 \mathrm{E}-80\) \\
\hline P Suld 3 & 1509．79401 & L DEL A & －1．84403166 & －． 100000 e 0 \\
\hline Lisul & －． 20224 & L DEL \(\mathrm{L}_{\text {g }}\) & －2．27118353 & \(\therefore 000000 \mathrm{E}-80\) \\
\hline L＇A DOT & － 0 OCก̃a & \(L \mathrm{DEL} \mathrm{PG}\) & ． 00258265 & ， \(000000 \mathrm{E}-80\) \\
\hline L＇sub & ． 05000 & \(\cdots\) Sum \({ }^{\text {a }}\) & ． .17236671 & －100000E OD \\
\hline L＇SU8 R & \(\because 38613\) & N S Dot & .00000000 & ． \(000000 \mathrm{E}-80\) \\
\hline LOTEL & －2．24850 & N 3UB P & .00000600 & \(.000000 \mathrm{E}-80\) \\
\hline L＇TFL AG & －2．77773 & N SUB \({ }^{\text {P }}\) & －． 22766210 & －．100000E 01 \\
\hline LITFL RG & －2．7317i & N DEL A & ． 00108591 & ． \(630000 \mathrm{E}-03\) \\
\hline 1 Y & 320500000.00000 & N DEL \(\triangle\) g & －．00363967 & ． \(000000 \mathrm{E}-80\) \\
\hline \(1 \times x\) & 29500000.50060 & 4 DEL RG & －1．61247843 & ． \(000000 \mathrm{E}-80\) \\
\hline 177 & 315600000．06000 & \(N=3 \|\) a & －．21034559 & \\
\hline \(1 \times\) & 29499999.99076 & N＇B DET & .000000600 & \\
\hline 12 & 315599999．90679 & N＇SUB P & .00000000 & \\
\hline \(1 \times 7\) & 40999999.99975 & M＇Sus \({ }^{\text {a }}\) & －． 27782463 & \\
\hline 1 \(\times 2\)／12 & ．17991 & nedel a & －． 29101954 & \\
\hline 1 \(\times 2\)／1x & 1.38983 & N＇DEL G & －．36430269 & \\
\hline THRIIST 2 & －8713．03366 & N：DEL RG & －1．96735870 & \\
\hline THRIIST 9 & 5400000．00000 & & & \\
\hline OMÉGA SQ & 1.00212 & \(x\) U／1） & －． 00829935 & －． \(700000 \mathrm{E}=01\) \\
\hline 2 2̄́t OM & ．17192 & \(\because\) sue \(w\) & －．0゙0343a30 & －．580000E－01 \\
\hline \(\dagger\) Sll 4 & 5.81682 & x W Dot & ． 00000000 & ． 000000 E 88 C \\
\hline OMPGA & 1.41142 & \(x\) QsJ & ． 000000000 & ． \(000000 \mathrm{E}-80\) \\
\hline zETA & ． 06090 & \(\times \mathrm{DEI}\) ¢1 & ． 00000000 & －000000E－80 \\
\hline \(Y\) SIIB B & －30．87929 & \(\times\) DEO／U1 & ． 00000000 & ．000000E－80 \\
\hline \(y\) Y not & ． 000000 & －Uノリ1 & .00177943 & ． 150000 E －01 \\
\hline \(y\) Sllb \(P\) & － 00000 & 2 SUP \(w\) & －． 17191517 & ． 290000801 \\
\hline \(Y\) S \(1 / 8\) & ． 00000 & 2 W DCT & .00000 iot & .000000 －80 \\
\hline Y CEL A！ & － 9000 & 2 QノU1 & ． 00000000 & ．000000E－80 \\
\hline Y CEL 10 & ． 0 coño & \(z\) DEI／U1 & ． 000000000 & － \(000000 \mathrm{E}-80\) \\
\hline Y ifil \({ }^{\text {a }}\) & ． 00000 & 2 Deorul & ． 00000500 & .000000 －80 \\
\hline \(x\) sub U & －10．05372 & \(M\) SUR U & －．120870c2 & －． 270000 E－01 \\
\hline SIIB A & －2．08256 & M SUR AL & －1．99211696 & －．890000E 00 \\
\hline \(x\) A DOT & ． 0 cono & M AL DCT & .0000000 & ． 000000 E－80 \\
\hline \(\times\) Sus \({ }^{\text {a }}\) & .00000 & M sub \({ }^{\text {a }}\) & .00000000 & －000000E－80 \\
\hline \(x\) DEL EI & ． 00000 & M DEL EI & ． 000000000 & ． 000000 E－80 \\
\hline \(x\) nipl EO & ．00000 & MDEL EO & .000000 co & ．000000E－80 \\
\hline
\end{tabular}
```

```
LAT DEN S4E -.819445 S3m-.269A39 S2= .160760 S14.0.012736 S0= .000000
```

LAT DEN S4E -.819445 S3m-.269A39 S2= .160760 S14.0.012736 S0= .000000
(.000000. .00000)(.10214. .00000)(. 23017: .00000)(-.061110.00000)
(.000000. .00000)(.10214. .00000)(. 23017: .00000)(-.061110.00000)
LON DEN 54a 1:000000 53: .181210 S2m 1:993718 S1: 0.022348 50: 0000513
(.00561. .01502)(.0056).0.01502)(-.H9622. 1.40938)(-.n9622.-1.40938)

Table B4．（Continued）

```
    F! Y COI
    ALTITUDE 17800.00000
    MACH
    WEIGHT
    ALPHA T.
    DEL E T
    EAS
    VEINCITY
    CAS 
    Q SHB C
    l
    L! B DOT
    L: SUB P
    LIDTिL A
    !'DFLL AG
    L'DFL RG
    ll
    I77 300700000.00070
    l: \ 29199999.99976
    1 <7 38999999.99976
1\times7/12 . 12970
Ix2/IX 1.33562
    TMRIIST Z
    PHR||ST T
            220272.22443
            $40000.02000
            r
            .18285
                    2 TFT OM
                    TS|B A 5.46896
                    OMEGA A
                    ?ETA A
                    SHB B
                            Y a DOT
                    1.73291
                .05276
                    -51.21525
            .000ñ0
                    .000ño
                        .000%0
                        .00000
                        .000ño
        .000n0
            -23.04686
            -7.23415
        .000ñ0
        .000000
        .000ño
            .00000
                x U/U1
                x SUB W
                x W COT
                T
            Y SUBV
            689.51638
            889.51638
            719.02222
            565.02815
            565.02815
            1065.56217
            2912999.899997
                .000070
                    ..9740%3
            2.25025
                    .76999
                    .00000
                    .00000
                    -.43750
                    -3.83551
                    -2.62759
    -2.84063
                    305200000.00000
                    29200000.00000
                    300699999.996009
                    Y DR/Ul
                    39000त゙00
                        -. }5562616
        -.800000E 00
        -800000E OD
                        -.70056735
    .00084588 -0000U0E-80
    .00000$00 .000000E-80
    .00000N00 :000000E-80
39000त゙00.00000000
    -0J0000E-8%
    .00H000゙íO .000000E-80
    &.45978506 .400000E-01
    .00000000 .000000E-80
    L
    .000000E-80
    .00000500 .000000E-8%
    L SUB R
        -3.17344578 -.100000E OO
        -2.29275116 - OOOCGOE-8D
    -.06712096 -.000000E-87
    L DEL A
    -3.17344578
        .000CGOE-80
    ..61632602 -.200000E 00
            .00000000 :U0000UE-80
            .00000000 !OOOODOE=80
    -.27952166 -.1UJ000E 91
    .00175653 .570000E-03
    .09009254 .000000E-80
    -1.70815097 .000000E-80
    ..51646000
            .0000COANO
    .00000000
    0.49569897
    -.25069880
    -2.07657263
    2.07657263
    .0.01265%p.6
..900000E-0.1
    -.00794695 -.I13OOOE OC
    .00000000 .000000E-89
    .000000000 %O00000E-80
x DEI/U1 
        .000000E-8C
    .00000N00 .000000E.80
    .00745466 -.530000E-O1
    ..18285027 -.260000E 01
    .00000000 - OOUOCOE-80
    Y SIIB P
    .00000000
Y SIIB R
    .00000त100
    -000000E-80
Y NEL A!
    .00000n00 ,000000E-80
    .00000000 !000000E-80
    .0゙5605572 -.700000E-02
    -3.00298485 -.7500CDE 4J
    .00000N00 -000000E-8,3
    .00000$00 .000000E-80
    .00000000 . OJUOOOE-8E
    .00000NOO .000000E-80
LAT DEN S4# -.826774 53=.0.317337 s2m .411759 S1: .022519 S0= .013934
{.0336i. .17211)(.0.03361...17211)(.60006. .000001(..91667%.0000n)
```



(44SEC)

Table B4. (Continued)
FíC CON
52

| ALTITUDE | 25200.00000 | $y$ sub v | -.09725918 | -.136000E 01 |
| :---: | :---: | :---: | :---: | :---: |
| Mac̈h | 1:12000 | $N^{\prime}$ SUE V | -. 06066369 | .000000E-80 |
| WEIGHT | 2775999.99908 | L' sue y | -. 00203638 | $\bigcirc 000000 \mathrm{E}-80$ |
| C: ${ }^{\text {a }}$ | :300600 |  | -06060000 | :000000E-80 |
| ALPHAT | -1.31780 | $y$ Dal/Ul | . 06000600 | .000000E-80 |
| DEi E T | 7.99025 | IX2 UNTR | 38000000000000000 | .000000E-80 |
| EAS | 750.72474 | Y DR/Ul | \% $\quad 00000000$ | . 000000E-80 |
| veioclit | 1137941249 | $\square$ SUB E | -2:22062704 | - 570000E-01 |
| CAS | 824.61789 | 1 - 1 | -06060600 | $\bigcirc$ DODOOOE-80 |
| DYN PRES | 684, 19697 | $\square$ Sub | -06060800 | - $000000 \mathrm{E}-80$ |
| $Q$ sin ${ }^{\text {a }}$ | 923:17436 | L 818 \% | :06000606 | $\bigcirc 000000 \mathrm{E}-80$ |
| $P$ SUR 3 | 778.50351 | L DEL A | -3.89383692 | $\because 100000$ OS |
| Losub ${ }^{\text {L }}$ | -2.31691 | $L$ DEL AG | -2.30380371 | - $000000 \mathrm{E}-80$ |
| L. $\quad$ DOT | . 0600 | L. DEL RG | - 24418367 | -009000E-80 |
| L. SUP P $^{\text {c }}$ | -06000 | $\cdots 308$ - | ?23363200 | .600000E-01 |
| L. Sub | - ictin | N - ESt | \%odogotio | - 000000E-80 |
| LODE゙L | -649314 | M Sub ${ }^{\text {a }}$ | -0d010 ${ }^{\text {a }}$ | O000000E-80 |
| L'nFl AG | -2.27667 | N SUB R | -.27621993 | $\bigcirc 100000$ O1 |
| L- DFPL R 6 | -3:08003 | M DEL A | $: 00117816$ | $\bigcirc 300000 \mathrm{E}-03$ |
| 1 Y | 289800000000000 | M DEL AG | . 32337860 | . 0000000 E-80 |
| $\boldsymbol{I} \boldsymbol{X} \mathbf{X}$ |  | N EEL $\mathrm{NG}^{\text {a }}$ | -1673960366 | .000000E-80 |
| 122 | 285700000.00080 | N.ste 8 | -.07243881 |  |
| $1 \times$ | 2879940:94876 | MAB Def | . $06000800^{0}$ |  |
| 12 | 285699999.996 ¢9 | NOSUB P | .00000 İ00 |  |
| $1 \times 7$ | 39999999.09976 | M'SUB R | -. 33501300 |  |
| $1 \times 2 / 12$ | . 13201 | N'DEL A | -.62703560 |  |
| 182118 | 1.32944 | NODEL Ag | . 02056675 |  |
| PMRUS 2 | 795105;93509 | Megel RG | -2.14926933 |  |
| THRUS ${ }^{\text {P }}$ | 5720000.00060 |  |  |  |
| OMEGA 30 | 5.05467 | $x$ usul | -.0゙2860564 | -.200000E 00 |
| 2 757 OM | .23600 | $\times 303$ | -. 01398968 | -.190000E 00 |
| T 3118 | 4.23735 | $\times \mathrm{WDOT}$ | - 01000000 | - D00000E-80 |
| OMĖBA | 2.24826 | $x$ a/U1 | \%00606600 | . O00000E-80 |
| ZETA ${ }_{\text {a }}$ | \% 03248 | $x$ DEIAUI | $\bigcirc 00000800$ | $!000000 \mathrm{E}-80$ |
| $\checkmark$ sils 8 | -110.6330 | $x$ Drozul | . 000000000 | -008000E-80 |
| $Y$ Y DOT | .00000 | 2 U U1 | . 01573310 | . 110000 O 0 |
| $Y$ Sild $p$ | .00000 | 2 sub w | -. 23599654 | . 330000501 |
| $Y$ Sub R | - $00000^{\circ} \mathrm{C}$ | 2 W DOT | , 06000600 | \%,000000E-80 |
| $y$ bel Al | -00090 | $20<10$ | . 00060600 | . 000000 E-80 |
| $Y$ OPL 10 | - 0 goda | 2 DEIAJI | -00000000 | . $000000 \mathrm{E}-80$ |
| $Y$ MFL $R$ | - dóodo | P DEOMU1 | -06000800 | . $000000 \mathrm{E}-80$ |
| $x$ Stib U | -65.07283 | M sub U | . 14296028 | $.140000 \mathrm{E}-01$ |
| $x$ sus 1 | -15.454A0 | M Sub AL | -5.05466692 | -.990000E 00 |
| $x$ a dot | -00090 | M AL DCT | -06000600 | ; 000000E-80 |
| $\times \mathrm{sub} 0$ | -0dono | M sub 0 | \%0000800 | .000000E-80 |
| $\times$ DELCI | :000do | M DEL E1 | -00090600 | :000000E-80 |
|  | $\bigcirc 00080$ | matelso | -080.0600 | $.000000 \mathrm{E}-80$ |






$$
(52 \mathrm{sec})
$$

Table B4. (Continued)


[^2]


```
LOH S:EN 54* 1.000000 S3= . 244311 52= 4.301604 51= -.3505594 S0= -.0410j4
.000290゙. .00000)(.08389. .00000)(..16265. 2.07406)(.0.16265.-2.07406)
```

$$
(64 \text { see })
$$

Table B4．（Continued）

FI．TCON 72

| ALTITUDE | 48200.00080 | $y \sin v$ | －． 06401320 | －． $131000 E 01$ |
| :---: | :---: | :---: | :---: | :---: |
| MACH | 1.94000 | N＇SUE V | －． 0 O032843 | －OGCOUOE－80 |
| WEIGHT | 2902999.99998 | L＇sue V | －．00192505 | －OCOOOOE－80 |
| C．O： | ． 000 त̈0 | $y$ ¢ C | －000000̃̃o | $: 000000 \mathrm{E}-80$ |
| ALPHA T | ． .17189 | $y \mathrm{DAI}$ リI | ． 00000000 | ．000000E－80 |
| Dei E T | 2.94028 | IXI UNTR | 34000 N00：000000io | －000000E－80 |
| EAS | 765.40913 | $Y$ YR／U1 | ．000000co | －COCOOOE－80 |
| veincity | 1878.83577 | 1 SUR ${ }^{\text {a }}$ | －2．86487629 | － 7000000 －01 |
| CAS | 906．31510 | 18 DCT | ． 00000000 | ． 000000 E－80 |
| DYN PRES | 696．25478 | L SuB P | .00000000 | －000000E－80 |
| －S118 $C^{\text {c }}$ | 1146.71497 | 1 Sus R | ． 00000000 | ．000000E－80 |
| P SIIB 5 | 264.07448 | L DFL A | －1．39151134 | －．34COOOE－U1 |
| L－S118 | －3．61686 | $L$ DEL AG | －2．39827230 | ． 0000 O0E－80 |
| L．DOT | ． 00000 | $L D E L$ R | －． 09920932 | $\therefore 000000 \mathrm{E}-80$ |
| L．SUB P | ． 00000 | N Sus ${ }^{\text {a }}$ | －． 13444166 | －． $300000 \mathrm{E}-01$ |
| L＇SUB R | －． 27769 | N 8 DCT | .00000000 | ． $000000 \mathrm{E}-80$ |
| LOTFL $A$ | －1．66134 | N SUB $F$ | .00000800 | .000000 E－80 |
| L＇DFL AG | －2．68473 | N Sus R | －．19081\％56 | －．100000E 01 |
| L＇DFL RG | －2．92922 | N DEL A | ． 000026888 | ．60COU0E－04 |
| 1 Y | 258000000.00000 | N DEL AG | ． 12318176 | ．OOOOUOE－80 |
| 1 xy | 27900000.00000 | N DEL PG | －1．93140752 | ． $000000 \mathrm{E}-80$ |
| 127 | 254800000.00000 | N＇SUB A | －．617068c4 |  |
| 1 1 | 27899999.99976 | N＇8 DOT | .00000000 |  |
| 12 | 254799999.998 í5 | N＇SUR P | ． 00000 Noco |  |
| $1 \times 7$ | 39999999.99976 | N＇SUB R | －．22787011 |  |
| 1x7112 | ． 13344 | N＇DEL A | －．22141675 |  |
| 1x $211 \times$ | 1.21864 | N＇DEL AG | －． 23506310 |  |
| THRUST 2 | 304692.84961 | N＇DEL PG | －2．32227627 |  |
| PMRiISt $T$ | 5940000.00000 |  |  |  |
| OMḞgA SO | 3.15173 | ＊Uか1 | －．0̈1563681 | ． .160000 E 0 |
| 2 7FT OM | ． 10750 | $x$ Sub $w$ | －．00263871 | －．54COOOE－01 |
| ＋Sub ${ }^{\text {a }}$ | 9.30278 | $x$ W Det | ． 00000000 | －GUOCOOE－8～ |
| OMEGA | 1.77531 | $x$ Q Ul | ． 00000000 | － $000000 \mathrm{E}-80$ |
| 2ETA | ． 03028 | $x$ DEI／い1 | .00000 Niro | ． $000000 \mathrm{E}-8 \mathrm{C}$ |
| $Y$ Sul 8 | －120．27029 | $x$ DEOAL | ． 00000000 | ． $000000 \mathrm{E}-80$ |
| $y 8$ DOT | .000080 | 2 Uハ1 | ． 00449558 | ． $460 C O O E-01$ |
| $y \mathrm{Sul} P$ | .000 ío | 2 Sub w | －． 107503 ¢9 | ． 2220000 O1 |
| $y$ S11B R | .00000 | 2 W DCT | .0000000 | －00COOOE－8） |
| $Y$ DEL A1 | $\bigcirc 00000$ | 2 OUl | ． 00000000 | －000C00E－80 |
| $V$ DFl Ao | .00000 | 2 Del／l | .0000000 | ． 000000 E－80 |
| $Y$ nfl $R$ | .00000 | 2 De0，${ }^{4}$ | ． 00000 ¢iod | ． $000000 \mathrm{E}-80$ |
| $x$ subu | －58．758i1 | $M$ sub U | .00000000 | －000000E－80 |
| $x$ Sun A | －4．95771 | M SUB AL | －3．15172678 | －．540000E 00 |
| $x$－dot | ． 00000 | M AL DCT | .0000000 | ．000000E－80 |
| $\times$ Sus 0 | .0000 | $M$ Sub 0 | .00000500 | －000000E－80 |
| $\times$ DEL EI | .00000 | M DEL E1 | .00000000 | －OC0000E－89 |
| $\times$ BT̂l EO | .00000 | MDEL EO | .00000000 | －000000E－85 |

 （．0．09329．． 00000 ）（．22936．．00000）（．54010：．00000）（．96806．．00000）
 （．000237．． 000001 （0．2640．00000）（．11422．1．99740）（．0．11492．－1．77740）

$$
(72 \text { SEC })
$$

Table B4．（Continued）

| fir Con | 84 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Altitude | 64400．00000 | $y \operatorname{sub} v$ | －．04003934 | －． 131000 O |
| MACTH | 2．5000io | N＇sue V | －．00025919 | ． 000 COUE－80 |
| WEIGHT | 2366999.99997 | L＇sub V | －．00148331 | －DCOCOUE－80 |
| C．G： | .000 óo | Y R／U： | .00000600 | － $000000 \mathrm{C}-80$ |
| ALPHAT | －． 28648 | $Y$ DAl／ll | ． 00000000 | ． $000000 \mathrm{E}-80$ |
| DEi E T | 3.20919 | IXZ URTR | 3200000000000800 | －UCOOOOE－80 |
| EAS | 688.20177 | Y DR／UI | .00000000 | ． $0000 \mathrm{LOE-80}$ |
| VELinelty | 2421．18011 | L SUB | －2．85845891 | －．900000E－01 |
| cas | 820.42647 | $L$ B DOT | .00000 iot | －000000E－80 |
| DYA PRES | 530.63533 | L Sub | .00000000 | ．OOOOCOE－80 |
| Q silic $C$ | 913.00660 | $L$ SUB ${ }^{\text {a }}$ | ． 00000000 | ． $000000 \mathrm{E}-8 \mathrm{C}$ |
| P siln 5 | 121.193 ñ9 | $l$ del a | －．73049565 | －． 230000 COL |
| LSIH 8 | －3．59136 | $\angle D E L A G$ | －2．44142082 | － 0 COEJOOE－8n |
| －1 D DOT | .00000 | $L$ DEL RG | － 11136066 | ． $000000 \mathrm{E}-8 \mathrm{C}$ |
| L．3ub P | .000 ก̃o | N Sus a | －．14589136 | －． 4 CCOOOE－OI |
| L．sue R | －． 16688 | n－Dot | .06000500 | ．000000E－80 |
| L•TFL A | －． 86586 | N Sus P | ． 06000600 | －OCOCCSE－20 |
|  | －2．90528 | N Sub a | －． 12051260 | －．1000002 OJ |
| CDFFL RG | －2．88237 | N del a | ． 00021884 | －600C00E－04 |
| $1 . Y$ | 241300000.00000 | N DEL AG | －13688938 | ．00tcoce－80 |
| ： $\mathrm{x} \times$ | 27400000.000 00 | N DEL RG | －1．98610553 | －000000E－80 |
| 127 | 238600000.00000 | N＇SUB | －． 62754948 |  |
| $1 \times$ | 27399999.99976 | N＇B DOt | .00000 tio |  |
| 12 | 238599999.99805 | N＇SUB P | .00000 ńco |  |
| $1 \times 7$ | 31999999.99976 | N＇SUB R | －． 14289435 |  |
| 1 $\times 2 / 12$ | ．13412 | N＇del a | －．11590662 |  |
| $1 \times 2 / 1 \times$ | 1.16788 | N＇del Ag | －．22593138 |  |
| THRIIS ${ }^{\text {P }}$ | 355889，76946 | $N^{\circ} \mathrm{DEL}$ g | －2．37267639 |  |
| THRIIST $T$ | 6000000.00000 |  |  |  |
|  | 1.80729 | －ひノリ1 | －．0̈0916794 | －． 150000500 |
| 2 2FT OM | ． 055 \％1 | $x$ SUB $W$ | －．00197247 | －． 580000 －01 |
| T 5ub A | 18.17929 | $x$ W DCT | ． 0000000 | ． 000000580 |
| UMÉGA A | 1.34436 | x 0／U1 | .00000800 | ． $0000000-8 C$ |
| IETA | .02046 | $x$ DEI／${ }^{\text {c }}$ | ． 00000 Oico | －OCOCOOE－80 |
| $\because \sin 8$ | －96．92793 | $x$ DEOAU | －00000n00 | － 000 G00E－90 |
| Y a DOT | .000 º | $2 \mathrm{USU1}$ | ． 00293374 | ． $4900000-01$ |
| $y$ Sub $P$ | .00080 | 2 SUB W | －．05500764 | ． 180000501 |
| Y S 118 R | .00000 | 2 W DCT | ． 08000000 | － $000000 \mathrm{E}-80$ |
| －DEL AI | .00000 | 2 Qul | .00000000 | －OCCOGUE－80 |
| Y BFL 10 | .00000 | 2 DEISU | ， 000000000 | ．000000E－80 |
| y DFL $R$ | .00050 | 2 DEO／（1） | .0000000 | －OCOOOOE－80 |
| ） 5118 U | －44．39447 | $M$ sub U | －．01902415 | －．200000E－02 |
| $x$ Sub $A$ | －4．29147 | $M$ SUB AL | －1．80729378 | －．38COOOE OJ |
| $x$ a not | －00000 | M AL EOT | .0000000 | ．000000E－8n |
| $x$ sils 0 | .00000 | $M$ SUB ${ }^{\text {a }}$ | ． 00000000 | －0CU000E－80 |
| $\chi$ DEL EI | .00000 | M DEL EI | .00000 ioc | －0U0000E－80 |
| X DFPL EO | .000 ño | MDEL EO | ． 0000000 | －000002E－S0 |




```
!ON DFN S4= 1;000000 53= . 100847 S2% 1.809828. S1= -.083563 S0a - 0000141
(*.00144. .00000)(.04763. .00000)(..07342: 1.34583)( -.07342.0.1.34503)
```

$(84 \leq 5)$

Table B4. (Continued)

```
    Fi`̀ CON
        93
```





```
(-.0423ñ. .00000)(.10067. .0000n)(.65576:.0000(1)(-.t?311, .tur0(.)
```

```
(-.0423ñ. .00000)(.10067. .0000n)(.65576:.0000(1)(-.t?311, .tur0(.)
```






Table B4. (Continued)

```
    F! Y CON
        102
```



```
lY
! x 26099999.99976
iz 
1x7/12 112249
8x7/1x
                        !12249
                    503352.07888
                    6040000.00000
THRIIST T
                        .47004
                        .01715
        50,31385
                        .68560
                            .01231
Y得A
        -53.97043
                    .00000
                        .00000
                        :00000
                    .00000
                    .000no
                    .000त0
                    DMEGA SO
                    ? IFT OM
OMEGA A
* B DOT
y S118 P
                    -24.40393
        -6.57029
                        .000q0
                        .00000
                        .000go
        91800.000000
                    y sub v
                            -.01516990
        ..1J5CODE 01
        91800.000000
            2093999.99998
                .000n0
            -2.23454
                    4.78057
            500.53704
                    3557.71754
                    No Sue y
                    -00011941
        -OCOGOOE-8O
            Y L'sue V
        -.NOO58728 -OCOOCOE-80
        -.NOO58728 -OCOOCOE-80
        .000000C0 .OGCOOOE-80
        .000000c0
        -OGCOOOE-80
        .OCUCOOE=80
        -OCOCOGE-BC
        -.9COODOE-01
        :OCCOODE=80
        .0000COE-80
        .000000E-80
        -2300C0E-01
        -OCOOOOE-80
        -OCCOCOE-8O
        ..7CODOOE-01
        .0000COE-80
        .000000E-80
        -.ICOCODE Ol
        .6COCODE-O4
        OOOLOUUE-80
        OO00000E-80
        -2.13813258
    -.42340343
        .00000000
        .00000000
    -.06094986
    -.05955210
    -11262887
-2.44715022
    xUノU1 -.00342992
-.13CODOE 0O
. -140000E OO
    - OCCOUOE-8U
    -OCOCOOE-80
    OODOCUDE-80
    .000000E-80
    .85000CE-01
-.13000&E 01
    -OCOOOCE-8O
    .000000E=80
    .000COOE-80
    .00UNOUE-80
    -5CUCOOE-02
-.15000UE un
    -OCOCOOE-8O
    .OOCCOOE-8O
    .OCODOOE-8O
```



```
.02955. .000001(.07582,.00000)(.58558:.00000)(..70797,.00000)
SH OEN s4E 1:000000 33: .041843 32F .470483 31: ..012837 S0= .0000017
.00174. .00000)(.0284%..00000)(.003451. .68644)(.0.03451. -.064644)
(102 EEs)
```

Table B4. (Continued)


Table B4. (Continued)






$$
(123 \leq E C)
$$

Table B4．（Continued）

| Fit CON | 132 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Mltitude | 143000.00000 | $y$ sus $v$ | $\because 00291783$ | －．1CTLUDE LI |
| MACH | 5.700 ก0 | N＇SUE，V | －．00001727 | －OCOOOOE－80 |
| WEIGHT | 1704999.99998 | L＇sup V | －． 00006367 | －OCUOOOE－80 |
| C：g． | ． 000 00 | $y$ Y 0 ll | ， 000000000 | －CCODOUE－8？ |
| alphat | －4．58366 | Y DAl／ll | －00000000 | －OGUNOUE－80 |
| Del E T | 5.63389 | IXZ UPIR | 14000 त̇00．00000ñ̃o | －OCCOODE－80 |
| EAS | 270.83572 | Y $\mathrm{BP} / \mathrm{Hl}$ | ． 0000000 | －dúdcooes－8í |
| VEİCITY | 6190.00019 | L SIIP a | －． 34530232 | －．570000E－01 |
| CAS | 360.42431 | L B not | .08000 ¢00 | －OCUOOOE－8N |
| DYM PRES | 87.17517 | L Sub P | .00000 n00 | －CuOGOOE－80 |
| $0 \sin C$ | 158．31828 | L SUPD | ． 00000000 | － 0 C0G00E－80 |
| $P \mathrm{SHR} 5$ | 3．82969 | L DEL A | －．13933251 | －． $23000 \mathrm{CE-01}$ |
| L＇sils B | －． 39097 | $l$ del ${ }^{\text {ar，}}$ | －2．82526937 | －Or0000E－80 |
| L．A DOT | .00000 | L DEL RG | －． 21437138 | －0i0000E－80 |
| L＇sub P | ． 000 ño | n Sura | －． 03884980 | －． $440000 \mathrm{E}-01$ |
| L．SUB R | ．． 00789 | norot | －0゙0000ñ0 | －OLOCOOE－80 |
| Lonfl A | ．．14763 | N 3u8 P | ． 00000000 | －OOUUOOER80 |
| L•官L AG | －2．81898 | $N$ SuR－ | －0i1255244 | －．160000E Ul |
| L＇nFl RG | －1．59339 | N DEL A | ． 000005 c ¢ 7 | －600000E－04 |
| 1 Y | 146100000.00000 | N DEL AG | ． 27870797 | － $0400005-80$ |
| $1 \times x$ | 23600000.00000 | N DEL RG | －2．17309328 | －OGunOnE－8C |
| 177 | 147200000.000 10 | N＇sue a | －．07597775 |  |
| $1 \times$ | 23599999.99976 | N＇B DCT | .06000800 |  |
| 7 | 147199999.99878 | $N^{\prime} \mathrm{SUR} \mathrm{P}$ | .00000000 |  |
| $\times 7$ | 13999999.99994 | N＇SIIR－ | －． 0133090 |  |
| $1 \times 2 / 12$ | .09511 | N＇DFL A | －． 01398935 |  |
| 1x7／1x | ． 59322 | N＇DEL AG | ． 01059751 |  |
| THRUST 2 | 513437.03703 | N＇DEL PG | －2．32463896 |  |
| THRIS ${ }^{\text {P }}$ T | 5230000.000 0 |  |  |  |
| OMÉga 50 | .03871 | $x$ ¢ U ${ }^{\text {a }}$ | －． 00070881 | －． 130000 on |
| 2 2Ft OM | ． 00273 | $x$ Sus w | －．00054524 | －． 260000 or |
| $T$ Sll ${ }^{\text {a }}$ | 366.81114 | $x$ W DCT | ． 00000000 | －DCUOOOE－80 |
| omera a | .19676 | $x$ Q U1 | ． 00000000 | ． $000000 \mathrm{E}-80$ |
| zeta | ． 00693 | $x$ del／H1 | ． 00000000 | ．000000E－80 |
| $Y$ SHR B | －18．05643 | $x$ DEOAI | .00000 Tico | －COOOOOE－80 |
| $y \rightarrow$ DOT | ． 0000 | 2 UNU | ． 00054524 | －liviolec or． |
| $y \leqslant 118 \mathrm{P}$ | .000 Oro | 2 SH | －．00272420 | －－1r，uocoe 01 |
| $Y \mathrm{SUB} R$ | ． 000 Oñ | 2 w not | ． 00000000 | －CuH00cE－80 |
| Y \EL Al | .00000 | 2 QノU1 | .00000000 | －OOU000E－80 |
| $y$ ypl a | .00000 | 2 DEI／l | ． 00000 iño | － 0 ：0000E－80 |
| $y$ fril $R$ | .00000 | 2 DEO／U1 | .00000 त̃00 | －000000E－80 |
| $x$ sur U | －8．77509 | M SUB II | －． 02064757 | － $810000 \mathrm{E}-02$ |
| $x \operatorname{sil} x^{\prime}$ | －3．375 3 | m SUE ${ }^{\text {a }}$ L | －．03871419 | － 3 CUUNOE－0i |
| $x$ A Dot | .00000 | M AL Dnt | .00000000 | －OGOOUOE－80 |
| $\times \mathrm{sil} \mathrm{B}^{0}$ | ． 00000 | M Sub | ． 00000000 | － $0: 10000$ E－8C |
| $x$ net．El | .00000 | M del EI | ． 000000600 | －OLOOODE－80 |
| X MFL EO | ． 00000 | MDEL En | ． 00000000 | －0G0000E－80 |

 （．00084．．000001）．03632．．00000）（．25182：．00000）（．．20552．．Cunon）



$$
(132=\mathrm{Ec})
$$

Table B4. (Continued)

```
    #% CrN 144
\begin{tabular}{|c|c|c|c|c|}
\hline al Trtude & 164000.00000 & Y Sut V & . 00000000 & -.jutocoe 0j \\
\hline MACH & 6.57000 & N' SUA V & . 0000 unioo & - OTUOOUE-87 \\
\hline iNETGHT & 1589999.99998 & L' SUB V & . 00000000 & - OU0000E-80 \\
\hline COG: & .000 00 & \(y\) R \({ }^{\text {P }}\) & .00000500 & -000000E-80 \\
\hline ALPHAT & -6.30254 & Y DAI/ / 1 & .00000090 & - UUOCOUE-8! \\
\hline Dei e t & 7.46891 & IXZ UPTR &  & - OCOUOCE-8n \\
\hline EAS & . 0000 & Y DR/Ul & . 000000000 & - UCONOOE-8́ \\
\hline VEİCITY & 7267.66678 & \(1 \mathrm{SUR} R\) & -0000n0úo & -.57)uctiol \\
\hline CAS & \(.000 n 0\) & \(L\) B DOT & . 00000000 & -0LUU0DE-8i \\
\hline DYN PRES & . 000 no & \(L\) Sus P & . 00000000 & -000nOOE-80 \\
\hline Q SHB C & .000 io & \(L\) Sun R & .00000190 & - OCOOOOE-8C \\
\hline - SIIR 5 & .00000 & L DFL \({ }^{\text {a }}\) & . 00000000 & -. 23 OnOEE-01 \\
\hline L'SIIB B & .000 ก̃o & L DEL AG & -2.93944870 & - 00ancoe-80 \\
\hline L. DOT & .000 ก́o & \(L\) DEL PG & -.27739102 & - \(\operatorname{COONOOE-80}\) \\
\hline L. SUB P & .000 ño & N SUR A & . 00000 กiJo & - OOUNOOE-8C \\
\hline L. SIJB R & . 00000 & N B DOT & . 00000000 & - OCOOCOE-8C \\
\hline L- \(n \boldsymbol{L}\) L \(A\) & . 000 त́o & N Sub P & . 00000500 & -0conoderso \\
\hline L. DFL AG & -2.86637 & N SUR \({ }^{\text {P }}\) & . 00000500 & - If:uugje úl \\
\hline \(\therefore\) ¢ \(\quad\) L RG & -1.15231 & N DEL A & . 00000 rino & . 6U0000E-04 \\
\hline 1 Y & 125700000.00000 & N DEL AG & . 38536344 & -00JOCCE-89 \\
\hline \(1 \times x\) & 27600000.00000 & N DEL RG & -2.1158Gal7 & - Of0000E-80 \\
\hline 177 & 127800000.00000 & N'SUB R & . 06000000 & \\
\hline \(1 \times\) & 22599999.99976 & N'B DOT & . 00000000 & \\
\hline 17 & 127799999.99902 & N'SUB P & .0000n000 & \\
\hline \(1 \times 7\) & 8099999.99995 & \(N^{*} \mathrm{SUR}\) R & . 00000000 & \\
\hline \(1 \times 2112\) & . 07042 & \(N^{\circ} \mathrm{DEL}\) a & . 00000000 & \\
\hline 1x \(\mathrm{x} / 1 \mathrm{x}\) & . 39823 & N'dEL AG & . 18351.633 & \\
\hline THRIIST 2 & 622643.78261 & N'dEL PG & -2.19701259 & \\
\hline THRIST T & 4790000.00000 & & & \\
\hline OMFGA SQ & . 000 ก̃o & \(x\) - 119 & .00000100 & -. 140nOTE OR \\
\hline C ZFT OM & .00000 & \(x\) Sun \(w\) & .00000500 & - 26unoce ui \\
\hline r SUB A & .00000 & \(x\) W DחT & . 00700000 & - OCUUUCE-8? \\
\hline OMFGA A & .00000 & \(x\) - \({ }^{\text {a }} 1\) & .00000000 & - OCUOUUE-8\% \\
\hline TETA A & .00070 & \(x\) OEI/H1 & - 000000000 & - uruloneari \\
\hline \$118 B & . 000010 & \(x\) DEO/UI & -000norino & - Guducouembr \\
\hline - not & .00050 & \(2 \mathrm{U} \| 1\) & . 00000000 & - 130700E Or. \\
\hline Y 5118 P & \(.000 n 0\) & 2 SUR \(W\) & . 0000000 & -.9Evacoe o\% \\
\hline \(y\) SHR R & .00000 & 2 HDOT & . 0000000 & - OCunuOE-8! \\
\hline \(\because\) TFI AI & .0000 & 2 Q/U1 & -00nocnioo & - OnOUCOE-8i, \\
\hline y nét AO & .00000 & 2 DEI/II & .00000000 & - oJunook-8? \\
\hline \(y\) MFl \(R\) & .0000 & 2 DEO/l1 & .00000000 & -0C0000E-80 \\
\hline \(\times\) SIIR U & .00080 & M SUR \({ }^{\text {P }}\) & . 00000 ก̃ou & -. 8turuvero? \\
\hline \(x\) ¢ \(x^{\prime}\) & .000 io & M SIIS AL & . 00000000 & - OROLOOE-8: \\
\hline - A DOT & . 00000 & M Al DCT & . 00700000 & - ricuocoe-8i \\
\hline - SHA Q & .000 तo & \(M\) SUB 0 & .00000500 & - GOOCUTE-89. \\
\hline - DEL EI & .000 ino & M DEL EI & . 00000000 & - OOONOCE-8C. \\
\hline \(X\) DFL EO & .00000 & MDEL EO & . 00000 Rino & - OGUNOOF-86 \\
\hline
\end{tabular}
```





```
    .000ñin. .00000)(.00003...00003)(-.00001.-.00001)(-.00000, -000(!)
\[
\left(14.4=E e^{\circ}\right)
\]
```

Table B4．（Continued）

FITCON 153

| Altitude | 178000.00000 | $y \operatorname{SUR} y$ | －．00117763 | －． 107000 O |
| :---: | :---: | :---: | :---: | :---: |
| MACTH | 7.40000 | N－SHF V | －． 00000583 | －OOJGOSE－86 |
| WEIGHT | 1481999．99998 | L＇s期 V | －． 000020065 | －OCOOOOE－80゙ |
| C：6： | ． 00000 | $Y$ R／U1 | .00000000 | ． 000000 E－8？ |
| Alpha t | －6．30254 | Y DA！ 1111 | .00000 iño | －nuonoole ${ }^{\text {c }}$ |
| DEIE T | 6.84950 | IXZ UnTr | 7000000：00000i00 | － $000000 \mathrm{E}-80$ |
| EAS | 183.69265 | Y DR／［1］ | .00000 icio | ．000000E－8r |
| VEİACITY | 8114.66545 | L Susf | －． 15223852 | － 5110000 E－01 |
| CAS | 246.79174 | 18 not | ． 06000000 | －000000E－80 |
| DYN PRES | 40.1 त̈185 | $\llcorner$ Su¢ $P$ | ． 00000060 | － $000000 \mathrm{E}-8 \mathrm{n}$ |
| 12 sub | 73．2il94 | L Sus | .00000000 | －OU0000E－80 |
| P S118 3 | 1.06564 | L DFL A | －．07002972 | －． 23000 UE－01 |
| L＇S118 B | ． .16757 | $L$ DEL AG | －3．7゙7971348 | －00000JE－80 |
| L．DOT | .00000 | $L$ DEL RG | －． 26017643 | － $000000 \mathrm{E}-80$ |
| L．Qub P | .00000 | N S 11 m | －． 03646971 | －．600000E－01 |
| L．sild R | ． 000198 | n B Dot | .00000000 | $\bigcirc 000 G 00 E-8$ ？ |
| L．${ }^{\text {Prel }}$ | ．．07152 | N Sub ${ }^{\text {a }}$ | .00000600 | $\bigcirc 000000 \mathrm{E}-8 \mathrm{C}$ |
| L＇DF゙L AG | －3．02321 | $N$ SUB ${ }^{\text {a }}$ | －． 00599239 | －． 100000 Ol |
| I．Díl RG | －．98272 | N DEL A | $.00003 \mathrm{Ha7}$ | －6rígooer－04 |
| 1 Y | 10520000000000 | N DEL AG | ． 36993213 | ．OUOOOOE－80 |
| $1 \times x$ | 21600000.00000 | N DEL PG | －2．16598883 | －000000E－80 |
| 127 | 108200000．000no | N＇Sus | －．04731年70 |  |
| $1 \times$ | 21599999.99976 | Nig DOT | $.00000 n 00$ |  |
| 12 | 109199999．999．72 | N＇SUR F | .00004000 |  |
| $1 \times 7$ | 6999999.99997 | N•SUR R | －．00617072 |  |
| 1x7／12 | ． 06470 | N＇DFL ${ }^{\text {N }}$ | －． 00459034 |  |
| 1x7／1x | ． 32407 | N＇DEL AG | ． 17434536 |  |
| PHRUST 2 | 536677.65547 | N＇DEL PG | －2．22956597 |  |
| PHRUS ${ }^{\text {P }}$ T | 4500000.00000 |  |  |  |
| OMEgA 3a | ． 010154 | $x$ U／11 | －．0003 ${ }^{\text {cha }} 7$ | － 140000 E 0： |
| 2 7F̄T OM | ． 00099 | $x$ SIIR W | －．00028615 | －2hulluob uj |
| T S118 A | 1009．55997 | $\times$ W DOT | .00000000 | ．000000E－8C． |
| OMFEA | ． 000 ño | $x$ Q Ul | －00000rioo | － $016000 \mathrm{E}-80$ |
| 2ETA | ． 00000 | $\times \mathrm{DEI} / \mathrm{H}$ | ． 00000 त̇̃0 | －OUOUUOE－80 |
| $Y \sin 8$ | －9．556nis | $\times$ DEO／UI | .0000000 | －000000E－80 |
| $Y$－not | .00070 | $2 \mathrm{U} \\| \mathrm{l}$ | ． 000028615 | －130NCOE OR |
| $\checkmark$ Silf P | .00050 | 2 Sun w | －． 000099053 | －．9locoer co |
| $y \sin$ R | ． 000 iñ | 2 WDOT | ． 00000000 |  |
| Y חicl Al | .000 no | 2 QノJ | .00000000 |  |
| Y Hf̣l 10. | ． 000000 | 2 DEI／U1 | ． 000000000 | －000000E－8n |
| $Y$ Hful $R$ | .00000 | 2 DEOM11 | .00000000 | －OnOOOOE－80 |
| $x$ she U | －5．00131 | M SuR＂ | －．01483978 | －． $900 G 00 E-0$ ？ |
| $\times$ suld | －2．32204 | M SUA ${ }^{\text {a }}$ | ． 01154205 | －140000E－01 |
| $\times$－bot | .00000 | M AL $\mathrm{D}^{n T}$ | ． 00000000 | －OUDOODE－80 |
| $\times$ Sub 0 | .00000 | M sub e | .00000000 | －OGOOCOE－8C |
| $x$ DEL EI | .000 त̃o | M DEL EI | ． 00000000 | －000000E－80 |
| $\times$ BFL EO | $\bigcirc 00000$ | MDEL EO | .00000000 | － $0 C 0000 \mathrm{E}-8$ ） |






$$
(i \leq v: \therefore)
$$

Table B4．（Continued）

| ： 1 T CON | 162 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ALTitude | 193000.00000 | $Y$ SUR V | ． 000082009 | －．1UTOCDE 0I |
| Mach | 8.40000 | N：SIJg V | －． 00000060 | － 60 Ongos－8j |
| HFIGHT | 1382999.99998 | L＇sur V | －．00001193 | $: 000000 E=85$ |
| C． $6:$ | .000 O | $y \mathrm{R} / \mathrm{Ul}_{1}$ | .00000000 | －000UU゚ロEー8C |
| ALPHA T | －8．59437 | y Dal／ll | .00000000 | －000000E－8C． |
| deit e T | 9.17182 | IXZ UMTR | 3000ก00．00000600 | －000UU0E－Sn |
| EAS | 155.93156 | Y DR／U］ | ． 00000600 | －OnOOCOE－8\％ |
| VEincity | 8910.69035 | LSUBa | －． 10582382 | －．460000E－J1 |
| CAS | 210.02672 | $\angle \mathrm{B}$ DOT | .00000000 | ． $000000 \mathrm{E}-80$ |
| DYN PRES | 28.89675 | $L \operatorname{Lub} P$ | .00000000 | ． $000000 \mathrm{C}-811$ |
| $Q$ Sul $C$ | 52.84588 | $L$ SUB R | ． 00000000 | －000000E－80 |
| －sur S | ． 59589 | L DELA | －． 05291191 | －． 23000 UE－01 |
| L．51］B B | －． 10635 | $L$ DEL AG | －3．21084421 | ．00000UE－80 |
| L＇a not | .000070 | L DELPG | －． 36660991 | －C00000E－8r． |
| L．SUB P | ． 00000 | NSUB | －10000600 | －OUOOUOE－8？ |
| L．SUB R | －． 000970 | n －חot | .00000000 | －00000UE－80 |
| ：$\quad$ Mfl $A$ | －． 05317 | $N$ SUB $P$ | ． 00000000 | .0000005 .80 |
| L．dFl AG | －3．15087 | $N$ SUB $R$ | －．00479676 | －． 10000 cose |
| － 0 Fl RG | －．70073 | N DEL A | ． 00003206 | ． $600000 \mathrm{E}-04$ |
| $1{ }_{1} \mathrm{Y}$ | 84600000，000000 | N DEL AG | ． 51842263 | －000U00E－80 |
| $1 \times x$ | 20600000.00000 | N DEL PG | －2．270594ñ | ． $000000 \mathrm{E}-80$ |
| ！ 77 | 85700000.00000 | N＇SUB B | －． 00359 ARA |  |
| $1 \times$ | 20599999.99976 | N＇B DOT | ． 00000000 |  |
| 17 | 88699999.99927 | N＇SUB P | .0000050 |  |
| $\times 7$ | 2999999.99998 | N＇SUR | －．004820550 |  |
| $1 \times 2 / 12$ | .03382 | NODELA | －． 00196622 |  |
| 1x2／1x | ． 14563 | N＊DEL AG | .41185446 |  |
| THRHST 2 | 674243.44784 | N＇DEL RG | －2．29429403 |  |
| THRIST T | 4230000.00000 |  |  |  |
| TMEEA SQ | ． 022955 | $x$ U／U1 | －． 00021670 | －．14000UE OA |
| ¢ TFT OM | ．00066 | $x$ SUR W | －．000027ก87 | －．35000JE On |
| Y SIIB A | 1570.14808 | $x$ W DOT |  | －0000LOE－8r |
| OMEGA A | .00000 | x Q／UI | ． 00000000 | －OUUOGOE－80 |
| 7ETA A | ． 000080 | x DEI／＂I | .00000000 | CODOOCOE－80 |
| Y S11B B | －7．37888 | $x$ DEO／II | .00000000 | －00000LE－80 |
| \％A DOT | ． 000 ño | $2 \mathrm{UsU1}$ | ． 00026313 | －170100E OJ |
| $y \mathrm{Sum} P$ | .00070 | 2 SuB w | ．． 000065713 | －．85uncoe ur |
|  | .000 ño | 2 W Do＇ | ． 00000000 | －OuOJOOE－8．j |
| $\because$ DEL AI | .000 no | 2 QノU | .00000000 | ．000000E－83 |
| $Y$ YFFL $A O$ | .000 io | $2 \mathrm{DEI/H}$ | .00000800 | ． 000000 E．80 |
| $Y$ TFFL $R$ | .00000 | 2 DEO／H1 | .00000000 | －U00000E－8n |
| $\triangle \mathrm{SuB} \mathrm{U}$ | －3．86184 | M Sus 11 | －．01477457 | －．100000E－01 |
| $x$ Silb A | －2．41365 | M SUB AL | ． 02954915 | －400000E－01 |
| $x$ a dot | ． 000 Nio |  | ． 00000000 | －000000E－87 |
| $x \sin 0$ | ． 000 तro | M SuB o | ． 00000000 | －000000E－8u |
| $X$ DEL EI | .00070 | M DELEI | .00000000 | －ODOJOOE－89 |
| $\times$ Tfl EO | .00080 | MDEL EO | ．00000000 | －CUOOUOE－80 |





（ 162 SEC）

Table B4．（Concluded）

| Fi＇t CON | 170 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| AL．titude | 204000.00000 | Sub | －．00063971 | －．107000 01 |
| MACH | 9.300 oro | N＇SUA |  | －0こ000uE－80 |
| WEIgHT | 1307999.99998 | L＇SUn | －．00000902 | ．00000012－80 |
| Cic： | ． 00000 | R 八才1 | －00000rino | ．000000E－80 |
| Alpha 9 | －10．88620 | Y DAI／ll | ． 00000 niluo | －nonouotero |
| Dele t | 11．35963 | ：$\times 2$ UHTR | ．00000000 | －0C00COE－80 |
| EAS | 137.70739 | DR／U1 | ．0000nciuo | －ouvucoerso |
| veioncity | 9614.07108 | L S118 ${ }^{\text {a }}$ | －．08694431 | －．460000E－01 |
| CAs | 185．76023 | $l$ b | ．00000000 | ．000000E－80 |
| DYN PRES | 22.53696 | L SUB P | －00000000 | －000000E－80 |
| a s118 | 41.28035 | SIIR P | ． 00000000 | ．000000E－80 |
| －sism 5 | ． 37913 | DFL A | －．04337216 | －．2301100E－01 |
| Losilm 8 | －． 08674 | DEL Ag | －3．35140218 | －00U000E－80 |
| L＇A DOT | ． 000 j | del rg | －．48448605 | －000000E－80 |
| L＇sub P | ．00000 | sue | － 00000 Ono | －000000E－80 |
| L＇sub ${ }^{\text {a }}$ | ． 00000 | －Dot | ． 00000000 | －00U000E－80 |
| L＇nêl | －．04337 | $\cdots$ SuR P | ． 000000000 | －00NOOOE－80 |
| linfl 19 | －3．35140 | Sul R | －．00419011 | －．lovocoe 01 |
| Lonfl mg | －． 48449 | DEL A | ． 003030121 | ．6UU000E－04 |
| 1 Y | 68300000，00090 | N Del ag | ．67331．437 | ．000000E－80 |
|  | 19600000．000n0 | $N$ del rg | －2．41155068 | －000000E－80 |
| 17 | 73400000．000rio | N＇Sub B | ， 00000 rion |  |
| $x$ | 19599999.99976. | wig ont | ．00000nno |  |
| 17 | 73999999．99937 | N＇SuB ${ }^{\text {a }}$ | ． 0000 nnuo |  |
| $1 \times 7$ | ． 000 กio | N＇sub ${ }^{\text {a }}$ | －．00419011 |  |
| 1x2／12 | ． 00000 | N＇DEL A | ．00003n22 |  |
| 1x2／1x | ． 00000 | N＇DEL AG | ． 693304.37 |  |
| THRIIST 2 | 187866．60831 | N＇DEL RG | －2．41155068 |  |
| THRIIST ${ }^{\text {P }}$ | 4000000．00080 |  |  |  |
| OMEfa 30 | －．042a2 | UノU1 | －000177as | －． 150000 do |
| 2 PF゙T OM | ．00044 | 3118 | －．n0025a35 | －．430000E On |
| $\bigcirc$ Stis A | 2254．12850 | W Dio | ，000000n0 | ：000000E－80 |
| OMESA A | ． 00000 | a／U1 | ． 00000000 | －000000E－80 |
| 2ETAA | ． 000 io | DEIA | ．00000n00 | －000000E－80 |
| $y$ Sile ${ }^{\text {c }}$ | －6．08487 | DEO\％：1 | －oónjorico | －000u00E－80 |
| r a not | ． 000 ino | 2 Uハ1 | ． 00023660 | －200000e on |
| Y SIIR P | ． 00000 | 2310 m | －．00C44363 | －．750000e 00 |
| Y Sun $R$ | ． 00000 | 2 WDOT | －000006ijo | －Gitunoom－8， |
| $y$ nel al | ． 000 no | 2 arc | ． 00000000 | －00U00UE－80 |
| y nfl ao | ． 000 nio | 2 DEI／Ui | －00000riuo | －0C0000E－80 |
| y níl R | ． 00000 | 2 DEOAD | ．00000irio | －000000E－80 |
| $\times$ siln U | －3．41208 | M Sub 1 | －．015900i5 | －．110000E－01 |
| $\times$ sue 4 | －2．44532 | $M$ SUR ${ }^{\text {a }}$ | ．04281858 | ．600000E－01 |
| $\times$－ 0 OT | ：000ño | $M$ AL $\mathrm{D}^{\text {¢ T }}$ | ． 00000000 | －000000E－80 |
| $\times$ sile 0 | ． 00000 | M sun o | ． 00000000 | －00000nE－80 |
| $x$ Opl El | ． 00000 | M del el | .06000600 | －DOD000E－80 |
| $x$ bel co | －000ño | MDEL EC | ． 00000000 | ．000000E－80 |

[^3]Lateral component of relative wind

$$
\begin{equation*}
v_{A}=v-v_{w} \tag{B17}
\end{equation*}
$$

The lateral bending moments were computed at stations 660 and 1800 . The same process as used in pitch was used to compute bending due to sideslip at conditions apart from max $q$.

$$
\begin{equation*}
\mathrm{N}^{\prime}=\mathrm{N}_{\beta^{\prime}}+\mathrm{N}^{\prime} \delta_{\mathrm{z}} \delta_{\mathrm{z}} \tag{B18}
\end{equation*}
$$

where

$$
\mathrm{N}_{\beta}^{\prime} \beta=\left(\frac{\mathrm{N}_{\beta}^{\prime}}{\mathrm{u}_{\mathrm{o} \text { at }}^{\max \mathrm{q}}}\right)\left(\frac{\mathrm{Y}_{\mathrm{v}^{\mathrm{v}} \mathrm{~A}}}{\mathrm{Y}_{\mathrm{v}}^{\text {at } \max \mathrm{q}}}\right)
$$

The gimbal actuator dynamics were assumed similar to those used in reference ref. 21. In pitch:

$$
\begin{equation*}
\ddot{\delta}_{y}=-2 \delta \omega_{n} \dot{\delta}_{y}-\omega^{2}\left(\delta_{y} \delta_{y i}\right)+\frac{\partial \ddot{\delta}}{\partial \dot{q}} \dot{q}+\frac{\partial \ddot{\delta}}{\partial A_{C G}} A_{C G} \tag{B19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \zeta=0.4 \\
& \omega_{n}=33
\end{aligned}
$$

Lateral

$$
\begin{equation*}
\ddot{\delta}_{\mathrm{z}}=-2 \zeta \omega_{\mathrm{n}} \dot{\delta}_{\mathrm{z}}-\omega^{2}\left(\delta_{\mathrm{z}}-\delta_{\mathrm{z}_{\mathrm{c}}}\right)+\frac{\partial \ddot{\delta}}{\partial \dot{\mathrm{r}}} \dot{\mathrm{r}}+\frac{\partial \ddot{\delta}}{\partial \mathrm{A}_{\mathrm{CG}}} \mathrm{~A}_{\mathrm{CG}} \prime \prime \tag{B20}
\end{equation*}
$$

Roll gimbal control

$$
\begin{equation*}
\ddot{\delta}_{x}=-2 \zeta \omega_{n} \dot{\delta}_{x}-\omega^{2}\left(\delta_{x}-\delta_{x_{c}}\right)+\frac{\partial \ddot{\delta}}{\partial \dot{p}} \dot{p} \tag{B21}
\end{equation*}
$$

Roll aileron control

$$
\begin{equation*}
\ddot{\delta}_{a}=-2 \zeta \omega_{n} \dot{\delta}_{a}-\omega^{2}\left(\delta_{a}-\delta_{a}\right)+\frac{\partial \ddot{\delta}_{a}}{\partial \dot{p}} \dot{p} \tag{B22}
\end{equation*}
$$

. $C=0.4$
$\omega_{n}=10$
Aerodynamic hinge moment data were not available, thus neglected. They should be used if available.

THE STABILITY DERIVATIVES
Table B4 contains the pitch derivatives and other data needed for pitch analysis. Pitch (and lateral) tail wag dog (TWD) and dog wag tail (DWT) data are given in Table B5 for three times of flight: lift off, max q, and cutoff. These derivatives were obtained as follows:

$$
\begin{aligned}
& Z_{\delta}=\frac{-13 F_{E}}{m} \\
& Z_{\delta}^{\ddot{\delta}}=\frac{13 m_{E}}{m}\left(x_{\delta}-x_{E}\right) \\
& M_{\delta}=\frac{13 F_{E}}{I_{y}}\left(x_{C G}-x_{\delta}\right) \\
& M_{\ddot{\delta}}^{\prime \ddot{ }}=\frac{-13}{I_{y}}\left[m_{E}\left(x_{\delta}-x_{E}\right)\left(x_{C G}-x_{E}\right)+I_{E}\right] \\
& \frac{\partial \ddot{\delta}}{\partial \dot{q}}=\left(\frac{1}{I_{E}}\right)\left[m_{E}\left(x_{\delta}-x_{E}\right)\left(x_{C G}-x_{E}\right)+I_{E O}\right] \\
& \frac{\partial \ddot{\delta}}{\partial A_{C G}}=\frac{m_{E}}{\mathrm{I}_{E}}\left(x_{\delta}-x_{E}\right)
\end{aligned}
$$

Table B5. Tail Wag Dog and Dog Wag Tail Stability Derivatives

| Stability Derivatives | Lift off | $\begin{gathered} \text { Max } \\ \mathrm{q} \\ \hline \end{gathered}$ | Cut off |
| :---: | :---: | :---: | :---: |
| $10^{+3} \times \mathrm{M}_{\ddot{\delta}}$ | -1.13 | -1.3 | -2.4 |
| $10^{+3} \times \mathrm{Z} \ddot{\delta}$ | -37.0 | -49.0 | -100.0 |
| $\ddot{\delta}_{\dot{q}}$ | -44.0 | -38.0 | -19.0 |
| $\ddot{\delta}_{A_{c g}}$ | -0.43 | -0.43 | -0.43 |
| $L_{\ddot{\delta}_{x}} \times 10^{3}$ | -1.5 | -1. 6 | -2.3 |
| $L_{\ddot{\delta}_{\mathrm{a}}} \times 10^{3}$ | -2.2 | -2.3 | -3.3 |
| $\partial \ddot{\delta}_{x} / \partial^{\prime} \dot{p}$ | -4. 8 | -4. 8 | -4. 6 |
| $\partial \ddot{\delta}_{a} / \partial \dot{p}$ | -4. 6 | -4. 6 | -4. 6 |
| $10^{3} \mathrm{~N} \ddot{\delta}_{\mathrm{z}}$ | -1.13 | -1.3 | -2.4 |
| $10^{3} \mathrm{Y} \ddot{\delta}_{\mathrm{z}}$ | +37.0 | +49.0 | $+100.0$ |
| $\partial \ddot{\delta}_{z} / \partial_{\dot{r}}$ | -44.0 | -38.0 | -19.0 |
| $\partial_{\ddot{\delta}_{\mathbf{z}}} / \partial_{\mathbf{a}}$ | +0.43 | +0. 43 | +0.43 |
| $10^{3} \mathrm{~N}^{\prime} \ddot{\delta}_{\mathrm{a}}$ | -0.29 | -0.29 | 0 |
| $10^{3} \mathrm{~N}^{\prime} \ddot{\delta}_{\mathrm{x}}$ | -0.18 | -0.13 | +0.46 |
| $10^{3} \mathrm{~L}^{\prime} \ddot{\delta}_{z}$ | -1.75 | -2.0 | -0.48 |

The following values were estimated for the 450,000 -pound thrust engine:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{E}}=144 \text { slugs } \\
& \mathrm{I}_{\mathrm{E}}=724{\text { slug } \mathrm{ft}^{2}}^{2}=50 \text { slug } \mathrm{ft}^{2} \\
& \mathrm{I}_{\mathrm{EO}}=-54 \mathrm{ft} \\
& \mathrm{x}_{\delta}=194 \\
& \mathbf{x}_{\delta}-\mathrm{x}_{\mathrm{E}}=-2.2 \mathrm{ft}
\end{aligned}
$$

${ }^{x_{C G}}$ is given in Table B1.
Yaw DWT and TWD terms were derived by similarity to the longitudinal terms:

$$
\begin{aligned}
& Y_{\delta_{z}}=-Z_{\delta} \\
& \mathrm{Y}_{\dot{\delta}_{\mathbf{z}}}=-\mathrm{Z}_{\dot{\delta}} \\
& \mathrm{N}_{\delta_{\mathrm{z}}}=\mathrm{M}_{\delta} \\
& \mathrm{N}_{\delta_{z}}^{\prime \cdot}=\mathrm{M}_{\dot{\delta}}^{\bullet} \\
& O \quad=L_{\delta_{z}}=L_{\delta_{z}} \\
& \ddot{\delta}_{z_{\dot{r}}}=\ddot{\delta}_{\dot{q}} \\
& \ddot{\delta}_{z_{A}}=-\ddot{\delta}_{A_{C G}}
\end{aligned}
$$

The roll control terms made use of the lateral geometry shown in Figure B5 which includes the ailerons. An aileron planform is, roughly, looking down:


Phase A reports were used to estimate, for one aileron:

$$
\begin{aligned}
\operatorname{mass}, \mathrm{m}_{\delta_{\mathrm{a}}} & =110 \text { slugs } \\
\mathrm{x}_{\delta_{\mathrm{a}}} & =8 \mathrm{ft} \text { (mass offset, no balance) } \\
& =21.5+16=37.5 \mathrm{ft} \text { from vehicle centerline to } \\
\mathrm{y}_{\delta_{\mathrm{a}}} & =\begin{array}{l}
\text { mass center }
\end{array}
\end{aligned}
$$

These data yield (for two ailerons)

$$
\mathrm{L}_{\delta_{a}}=-\left(\frac{1}{\mathrm{I}_{\mathrm{x}}}\right)\left(\mathrm{x}_{\delta_{a}}\right)\left(\mathrm{y}_{\delta_{\mathrm{a}}}\right)\left(\mathrm{m}_{\delta_{a}}\right)=\frac{-66,000}{\mathrm{I}_{\mathrm{x}}}
$$

The engine roll control terms assumed (see Figure B5) all engines except No. 8 gimballed in pitch and yaw to produce as much torque as possible about No. 8.

Under this assumption the average moment arm is 11.1 feet. The roll torque for 13 engines is (11.1)(13)( $\mathrm{F}_{\mathrm{T}}$ ) $=-67 \times 10^{6} \mathrm{ft} \mathrm{lb} / \mathrm{rad}$

The roll control derivative is:

$$
L_{\delta_{x}}=\frac{-67 \times 10^{6}}{I_{x}}
$$



Figure B5. Rear View of Booster Showing Launch Configuration Engine and Aileron Mass Centers

The roll TWD term is:

$$
L_{\delta_{x}}=\left(\frac{11.1 \mathrm{x} 13}{\mathrm{I}_{\mathrm{x}}}\right)\left(\mathrm{m}_{\mathrm{E}}\right)\left(\mathrm{x}_{\delta}-\mathrm{x}_{\mathrm{E}}\right)=\frac{-46,000}{\mathrm{I}_{\mathrm{x}}} \frac{\mathrm{sec}^{2}}{\mathrm{rad}}
$$

The roll DWT terms are

$$
\begin{aligned}
& \frac{\ddot{\delta}_{\mathrm{x}}}{\partial \dot{p}}=(11.1)\left(\frac{\ddot{\delta}_{\mathrm{y}}}{\partial \dot{w}}\right)=-4.8 \\
& \frac{\partial \ddot{\delta_{a}}}{\partial \dot{p}}=-\left(\frac{1}{\overline{\mathrm{I}}_{\mathrm{a}}}\right)\left(\mathrm{x}_{\delta_{\mathrm{a}}}\right)\left(\mathrm{Y}_{\delta_{a}}\right)\left(\mathrm{m}_{\delta_{a}}\right)=\frac{-\mathrm{Y}_{\mathrm{o}}}{\mathrm{x}_{\delta_{a}}}=\frac{-37.5}{8}=-4.6
\end{aligned}
$$

Table B4 presents most of the lateral stability data, as well as some longitudinal data which duplicated Table B1. The primed derivatives have the product of inertia accounted for, as explained in Table B3.

## THE PITCH SIMULATION

Figures B6 and B7 are the analog computer diagrams for the pitch simulation. Time-varying coefficients in the diagram were obtained with padded potentiometers, driven by the time servomultipliers SM2 and SM3. Figure B8 plots $M_{\delta y}, A_{x}$, and $\gamma_{R}$. Figure B9 plots $u_{o}$ and $z_{w}$. The derivatives $Z_{\delta y}$ and $M_{W}$ were scaled from the $M_{\delta_{y}}$ and $Z_{W}$ pots, respectively:

$$
\begin{aligned}
Z_{\delta_{y}} & =44 \mathrm{M}_{\delta_{y}} \\
M_{w} & =\left(\frac{1}{57}\right) Z_{w}
\end{aligned}
$$

The 7 control systems examined.in this study are shown in Figure B10. The first two (minimum drift and attitude hold) had constant gains. The remaining five had time-scheduled gains $K_{\theta}$ and $K_{A}$.


Figure B6. Pitch Time Varying Simulation - Launch


Figure B7. Simulation of Control System for Boost Pitch


NOTE: $z_{\delta_{y}}=-Y_{\delta_{z}}=44 M_{\delta_{y}}$
Figure B8. Time Varying Parameters in Simulations


Figure B9. Time Varying Parameters in Simulations


Figure B10. Bost Pitch Conventional Controls

Figure B11 shows the wind used in all tests. It is a single sample obtained from the wind model described in Appendix A. It has a $3 \sigma$ peak of 290 ft / sec at 55 seconds.

## THE LATERAL SIMULATION

Table B4 shows stability derivative data for the lateral axes as well as pitch. Figures B12 and B13 are the simulation diagrams for this study. The time varying coefficients are shown in Figure B14.

The simulation includes tail-wag-dog and dog-wag-tail terms which can be switched in or omitted. Figure 39 shows the effect of these terms on performance. Close examination of the traces shows a discernible but negligible effect (for example, the bending moment traces with attitude control). Note that higher gains are used with TWD and DWT to get damping performance comparable to that without these terms. The higher gain has negligible effect on the magnitude of the control perturbations in the wind disturbance used in this study. It was concluded that TWD and DWT terms need not be simulated to assess the control authority needed when disturbed by this wind model. The results presented in the body of the report are without TWD and DWT.

The bending equations are given in Table B2. These coefficients for $\beta$ were assumed to apply at max $q$, where the airspeed is $1510 \mathrm{ft} / \mathrm{sec}\left(1510 \mathrm{M}_{\mathrm{v}}^{\prime}=\right.$ $M^{\prime}{ }_{\beta}$. In terms of lateral velocity $v_{A}$ then, the bending moments are:

$$
\begin{aligned}
& M^{\prime}(660)=10^{6}\left[-1.62 \delta_{z}-0.0059 v_{A}\right] \\
& M^{\prime}(1800)=10^{6}\left[-22.8 \delta_{z}-0.013 v_{A}\right]
\end{aligned}
$$

The variation in $\mathrm{M}^{\prime}{ }_{\mathrm{v}}$ with q was assumed to be the same as the stability derivative $\mathrm{Y}_{\mathrm{V}}$. Therefore

$$
\left(\mathrm{Y}_{\mathrm{v}^{\mathrm{v}} \mathrm{~A}}\right)\left(\frac{1}{\mathrm{Y}_{\mathrm{v}}}\right)(64 \mathrm{sec})
$$

was substituted for $\mathrm{v}_{\mathrm{A}}$ to compute the bending moments.


Figure B11. Vaughan-Skelton Wind


Figure B12. Vehicle B Lateral Boost Simulation


Figure B13. Vehicle B Lateral Boost Simulation


Figure Bl4. Analog Check of Simulation of Padded Pots

## APPENDIX C

PITCH EQUATIONS AND DATA FOR COVARIANCE ANALYSES OF THE LAUNCH PHASE OF MSFC VEHICLE B

This appendix presents the data used to develop the covariance summary resuits of Section II. Nomenclature, representations, and derivatives are pressented below. Computer output covariance data are presented in Tables C8-C16.

NOMENCLATURE
$A=$ Matrix [Equation (C1) and Tables C1 and C3]
$A[x]=$ Slender body area [Equation (C9)]
$\tilde{A}=\left\{+\left[V \dot{\gamma}_{o}+\left(g-\frac{V^{2}}{r}\right) \cos \gamma_{o}\right] \sin \alpha_{o}-\left(g-\frac{V^{2}}{r}\right) \sin \gamma_{o}+\dot{V}\right\rangle$
$\tilde{B}=\left\{-\left[V \dot{\gamma}_{o}+\left(g-\frac{V^{2}}{r}\right) \cos / \gamma_{o}\right] \sec { }^{2}\right.$
$C_{L_{q}}=\frac{\bar{c}}{2 \bar{V}} C_{L}\left(\frac{q \bar{c}}{2 \bar{V}}\right)_{\mathrm{cm}} \quad \mathrm{sec} / \mathrm{r} \hat{\mathrm{d}}$
$\mathrm{C}_{\left.\left.\mathrm{L}_{\left(\frac{\mathrm{q}}{2 \mathrm{c}}\right.}^{2 \mathrm{~V}}\right)_{\mathrm{cm}} \text { (Figure } \mathrm{C} 1 \text { ) }\right)}$
$\mathrm{C}_{L_{\alpha}}$ (Figure C2) $\quad 1 / \mathrm{rad}$
$\mathrm{C}_{\mathrm{L}_{\alpha_{g}}}$ (Figure C3) $\quad 1 / \mathrm{rad}$
$C_{L_{\dot{\alpha}}}=\frac{\bar{c}}{2 V} \quad C_{L^{\left(\frac{\alpha}{\bar{c}}\right.}}$
sec/rad

```
l}\mp@subsup{C}{(\frac{\alpha\overline{c}}{2\overline{V}})}{}\quad\mathrm{ (Figure C4)
Cm}\langle\frac{q\overline{c}}{2V}\mp@subsup{)}{cm}{cm
C}\mp@subsup{m}{\mp@subsup{\alpha}{cm}{}}{}={\frac{\mp@subsup{x}{cm}{}-\mp@subsup{x}{mrp}{}}{\overline{c}}}\mp@subsup{C}{\mp@subsup{L}{\alpha}{}}{}+\mp@subsup{C}{\mp@subsup{m}{\alpha}{mrp}}{
\(D=\) Matrix [Equation (C2) and Tables C2 and C6]
\(G=\) Matrix[Equation (C1) and Tables C1 and C4]
\(H=\) Matrix [Equation (C2) and Tables C2 and C5]
IT \(=\) Ischial tuberosities (subscript)
\(I_{y y}=\) Inertia (Table C7)
\(L=\) Lift
```slug-ft \({ }^{2}\)1b
```

$L=209$ (gust penetration length) ..... ft
$\mathrm{M}=$ Aerodynamic pitching moment ..... ft-lb
$\mathrm{M}=$ Mach number (Table C7)---
M. R. $=\frac{(\ell+15)^{2}}{32.17} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{W}-\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{I}_{\mathrm{yy}}$ (inertial rate and jet damping) ..... slug-ft ${ }^{2} /$ sec
$M_{660}=$ Bending moment at station 660in. $-1 b$
$\mathrm{M}_{1300}=$ Bending moment at station 1300 ..... in. -1 b
$M_{1880}=$ Bending moment at station 1880 ..... in. $-1 b$
$M_{1 \alpha}^{\prime}=-6.72 \times 10^{6} \times 57.3\left(M_{660}\right.$ due to $\alpha$ at $\left.\overline{\mathrm{q}}_{\text {max }}\right)$ ..... in. - $\mathrm{lb} / \mathrm{rad}$$\mathrm{M}_{2 \alpha}^{\prime}=-11.2 \times 10^{6} \times 57.3\left(\mathrm{M}_{1300}\right.$ due to $\alpha$ at $\left.\overline{\mathrm{q}}_{\text {max }}\right)$in. $-1 \mathrm{~b} / \mathrm{rad}$$M_{3 \alpha}^{\prime}=-10.1 \times 10^{6} \times 57.3\left(M_{1880}\right.$ due to $\alpha$ at $\left.\bar{q}_{\max }\right)$in. $-1 \mathrm{~b} / \mathrm{rad}$
$\mathrm{M}_{1 \delta}^{\prime}=-1.62 \times 10^{6} \times 57.3\left(\mathrm{M}_{660}\right.$ due to $\delta$ at $\left.\overline{\mathrm{q}}_{\mathrm{max}}\right)$ in. $-1 \mathrm{~b} / \mathrm{rad}$
$\mathrm{M}_{2 \delta}^{\prime}=-15.05 \times 10^{6} \times 57.3\left(\mathrm{M}_{1300}\right.$ due to $\delta$ at $\left.\overline{\mathrm{q}}_{\max }\right)$ in. $-1 \mathrm{~b} / \mathrm{rad}$
$M_{3 \delta}^{\prime}=-22.80 \times 10^{6} \times 57.3\left(\mathrm{M}_{1880}\right.$ due to $\delta$ at $\left.q_{\text {max }}\right)$ ..... in. - $1 \mathrm{~b} / \mathrm{rad}$
$S=10,250$ (reference area)$\mathrm{ft}^{2}$
$\mathrm{T}=$ Thrust (Table C7) ..... 1b
$\mathrm{V}=$ Speed relative to earth (Table C7) ..... ft/sec
$W=$ Weight (Table C7) ..... 1b
$a_{i j}=$ Element of A matrix
$\mathrm{ac}=$ Aerodynamic center (subscript)
$\overline{\mathrm{c}}=211$ (reference length)ft
$\mathrm{cm}=$ Center of mass (subscript)
$c_{1} \sigma_{w} \cdot \sqrt{\dot{h}}=\underset{\text { Coefficient in }}{\text { and Table A2) }} \underset{\text { random wind model (Figure A } 8}{ }$ ..... $\mathrm{ft} / \sec ^{3 / 2}$
$c_{2} \sqrt{\dot{\mathrm{~h}}}=\underset{\text { Table A2) }}{\text { Coefficient }}$ in random wind model (Figure A9 and
$1 / \mathrm{ft} \mathrm{sec}^{1 / 2}$
$c_{3} \sigma_{w} \dot{h}=\begin{aligned} & \text { Coefficient in random wind model (Figure A10 and } \\ & \text { Table A2) }\end{aligned}$ $\mathrm{ft}^{2} / \mathrm{sec}^{2}$
$c_{4} \dot{h}=\underset{\text { Table A2) }}{\text { Coefficient in random wind model (Figure A11 and }}$
1/sec
$\frac{c_{5} \dot{h}}{\sigma_{w}}=\underset{\text { Table } C 1 \text { ) }}{\text { Coefficient }}$ in random wind model (Figure A12 and
$\mathrm{f}=$ Force vector [Equation (C2) and Table C2]
$\tilde{f}=$ Force vector [Equation (C1) and Table C1]
$\mathrm{g}=32.17=$ Gravity
$\mathrm{ft} / \mathrm{sec}^{2}$
$\mathrm{g}=$ Gust (subscript)
$g_{i j}=$ Element of G matrix
$h=$ Altitude
ft
$h_{i j}=$ Element of $H$ matrix
$\dot{\mathrm{h}}=$ Altitude $\dot{\text { rate }}$
ft/sec
$l=x_{\delta}-x_{c m}$
ft
mrp $=$ Moment reference point (subscript)

| $\mathrm{n}=$ Normal acceleration at cm | $\mathrm{ft} / \mathrm{sec}^{2}$ |
| :--- | :--- |
| $\mathrm{n}_{\mathrm{IT}}=$ Normal acceleration at pilot's seat | $\mathrm{ft} / \mathrm{sec}^{2}$ |
| $\mathrm{p}=$ Roll rate | $\mathrm{rad} / \mathrm{sec}$ |
| $\mathrm{q}=$ Pitch rate | $\mathrm{rad} / \mathrm{sec}$ |
| $\bar{q}=$ Dynamic pressure (Table C7) | $\mathrm{lb} / \mathrm{ft}^{2}$ |
| $\mathrm{r}=\mathrm{h}+\mathrm{r}_{\mathrm{e}}=$ (Table C7) | ft |
| $\mathrm{r}=$ Roll rate | $\mathrm{rad} / \mathrm{sec}$ |
| $\mathrm{r}=$ Earth's radius | ft |
| $\mathrm{r}=$ Response vector [Equation (C2) and Table C2] |  |


| $\mathrm{t}=\mathrm{Time}$ since launch (Table C7) | sec |
| :---: | :---: |
| $\mathrm{u}=$ Input from controller (Tables C1 and C2) | rad/sef |
| $\overline{\mathrm{V}}=$ Mean wind (Figure A5 and Table A2) | ft/sec |
| $\tilde{v}=$ Random wind (Table C1; Cf Appendix A) | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{v}_{\mathrm{w}}=\overline{\mathrm{v}}+\tilde{\mathrm{v}}=$ Wind (Table C1; Cf Appendix A) | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{w}=$ Wind (subscript) |  |
| $\mathrm{x}=$ State vector [Equation (C1) and Table C1] |  |
| $\mathrm{x}=$ Wind state (Table C1; Cf Appendix A) | $1 / \mathrm{ft}$ |
| $\mathrm{x}=$ Distance from nose (Figure 1) | ft |
| $\mathrm{x}_{\mathrm{cm}}=$ Center of mass (Table C7) | ft |
| $\mathrm{x}_{\mathrm{mrp}}=155.8$ | ft |
| $\mathrm{x}_{\mathrm{p}}=\mathrm{x}_{\mathrm{cm}}-59.7=$ (Pilot's position) | ft |
| $\mathrm{x}_{8}=194=$ (gimbal position) | ft |
| $\mathrm{x}_{1}=$ First basis element for gust penetration (Table C1) | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{x}_{2}=$ Second basis element for gust penetration | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{x}_{3}=$ Third basis element for gust penetration | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathbf{z}=$ Downward distance normal to reference trajectory <br> [Equation (C28) and Figure C5] | ft |
| $\Delta=$ Perturbation symbol |  |
| $\Omega=$ Earth's rotational rate | rad/sec |
| $\begin{aligned} & \alpha= \text { Geometric angle of attack (Figure C5 and Table C2); } \\ & \text { does not include the wind. } \end{aligned}$ | rad |
| $\alpha_{0}=$ Angle of attack along reference trajectory (Table C7) | rad |
| $\gamma=\underset{\text { Flight path angle relative to round earth [Equation (C20) }}{\text { and }}$ | rad |


| $\gamma_{0}=\underset{(\text { Table } C 7)}{\text { Flight path angle along the reference trajectory }}$ | rad |
| :---: | :---: |
| $\delta=$ Gimbal deflection [Equation (C1) and Table C1] | rad |
| $\begin{aligned} \delta_{0}= & \text { Gimbal deflection along the reference trajectory } \\ & (\text { Figure 2) } \end{aligned}$ | rad |
| $\delta=$ Gimbal position (subscript) |  |
| $\eta=$ Unity white noise | $1 / \mathrm{sec}^{1 / 2}$ |
| $\theta=$ Pitch angle [Equation (C1) and Table C1] | rad |
| $\theta_{0}=\alpha_{0}+\gamma_{0}$ | rad |
| $\mu_{i}=$ Lift associated with $i^{\text {th }}$ basis element ( $x_{j}$ ) of gust penetration; note elements $a_{27}$, a 23 , and $a_{24}$ of Table C1. Their determination is presented between Equations (C3) and C15) |  |
| $\mu_{l i}=$ Moment associated with $i^{\text {th }}$ basis element $f\left(x_{j}\right)$ of gust penetration; note elements $\mathrm{a}_{17}, \mathrm{a}_{13}$, and $\mathrm{a}_{14}$ of Table C1. Their determination is presented between Equations (C3) and (C19) |  |
| $\sigma_{\mathrm{w}}=$ Standard deviation of random wind (Figure A6) | $\mathrm{ft} / \mathrm{sec}$ |
| $\begin{aligned} \dot{\sigma} / \sigma= & \text { Coefficient in random wind model (Figure A7 and } \\ & \text { Table A2) } \end{aligned}$ | 1/sec |

## REPRESENTATIONS

The generic forms for the perturbation state transition and response are given by

$$
\begin{align*}
& \dot{x}=A x+G \tilde{f}  \tag{C1}\\
& r=H x+D f \tag{C2}
\end{align*}
$$

They are presented explicitly in Tables C1 and C2. These tables and the nomenclature provide for generating all data.

The coefficients $\mathrm{a}_{55}, \mathrm{a}_{56}, \mathrm{a}_{65}, \mathrm{a}_{66}, \mathrm{~g}_{53}, \mathrm{~g}_{63}$, and $\overline{\mathrm{v}}$ are tabulated in Table A2. The remainder of the coefficients of matrices A, G, H, and $D$ are presented in Tables C3 through C6.

## DERIVATIONS

## Winds

The wind normal to the vehicle $v_{w}$ is taken as made up of a mean $\bar{v}_{w}$ and random $\widetilde{\mathrm{v}}_{\mathrm{w}}$. The model is discussed in Appendix A.

The mean wind $\bar{v}$ appears as a disturbance forcing function in Tables C1 and C2. Numerical values are shown in Figure A5 and column 2 of Table A2.

The random wind $\tilde{v}$ is generated by the differential equations of rows 5 and 6 of Table C1. Coefficients are plotted in Figure A7 through A12 and columns 4 through 9 of Table A2.

## Distributing the Wind Gust Loads

The wind lift force and the moment on the vehicle are the result of the integration of pressures developed by the winds. A lumped parameter representation is required for these distributed forces.

The lift and pitching moment coefficients due to normal gusts are taken to be

$$
\begin{align*}
& C_{L_{\alpha}}=\frac{C_{L_{\alpha}}}{V}\left\{\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} x_{3}\right\}  \tag{C3}\\
& C_{m_{\alpha_{g}}}=\frac{C_{m_{\alpha}}}{V}\left\{\mu_{11} x_{1}+\mu_{12} x_{2}+\mu_{13} x_{3}\right\} \tag{C4}
\end{align*}
$$

where $x_{1}, x_{2}$, and $x_{3}$ are system states driven by the wind, $v_{w}$. For constant winds $\mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{x}_{3}=\mathrm{v}_{\mathrm{w}}$. Rows 7, 3, and 4 of Table C1 show this and how the $x_{i} s$ are driven by the wind, $v_{W}$. The $\mu^{\prime}$ 's are constant to the determined.

The step responses of $\mathrm{x}_{1}, \mathrm{x}_{2}$, and $\mathrm{x}_{3}$ (called $\mathrm{f}_{1}, \mathrm{f}_{2}$, and $\mathrm{f}_{3}$ ) for a sharpedged gust are

$$
\begin{align*}
& f_{1}[x]=1-e^{-\frac{2.3}{L} x}  \tag{C5}\\
& f_{2}[x]=1-e^{-\frac{2.3}{L} x}\left\{\cos \frac{2 \pi}{L} x-1.165 \sin \frac{2 \pi}{L} x\right\} \tag{C6}
\end{align*}
$$

$$
\begin{equation*}
f_{3}[x]=1-e^{-\frac{2.3}{L} x}\left\{\cos \frac{2 \pi}{L} \cdot x+1.167 \sin \frac{2 \pi}{L} x\right\} \tag{C7}
\end{equation*}
$$

The most gross result of slender body theory (references 22 or 23) yields the step responses for gust penetration as shown in Figure C4.

Determination of $\mu_{1}, \mu_{2}$, and $\mu_{3}$ is presented first. The left gust penetration derivative is presented in Figure C4; it can be expressed mathematically.

$$
\begin{equation*}
C_{L_{\alpha_{g}}}[x]=\frac{2}{S} \int_{0}^{x} A^{\prime} d x=\frac{2}{S} A[x] \tag{C8}
\end{equation*}
$$

where

$$
\begin{align*}
& A[x]=0.1682 x\left(122-\frac{x}{2}\right) \text { for } 0 \leq x \leq 122 \\
& A[x]=12,950+x(-278.0+1.495 x) \text { for } 122 \leq x \leq 209=L \tag{C9}
\end{align*}
$$

Then let

$$
\begin{equation*}
g[\mathrm{x}]=\frac{\mathrm{C}_{\mathrm{L}_{\alpha}}[\mathrm{x}]}{\mathrm{C}_{\mathrm{L}_{\alpha_{\mathrm{g}}}}[\mathrm{~L}]} \tag{C10}
\end{equation*}
$$

Find $\tilde{\mu}_{1}, \tilde{\mu}_{2}, \tilde{\mu}_{3}$ from the solution of

$$
\begin{align*}
& \tilde{\mu}_{1} \int_{0}^{L} f_{1}{ }^{2} d x+\tilde{\mu}_{2} \int_{0}^{L} f_{1} f_{2} d x+\tilde{\mu}_{3} \int_{0}^{L} f_{1} f_{3} d x=\int_{0}^{L} f_{1} g d x  \tag{C11}\\
& \tilde{\mu}_{1} \int_{0}^{L} f_{1} f_{2} d x+\tilde{\mu}_{2} \int_{0}^{L} f_{2}{ }^{2} d x+\tilde{\mu}_{3} \int_{0}^{L} f_{2} f_{3} d x=\int_{0}^{L} f_{2} g d x \tag{C12}
\end{align*}
$$

$$
\begin{equation*}
\tilde{\mu}_{1} \int_{0}^{L} f_{1} f_{3} d x+\tilde{\mu}_{2} \int_{0}^{L} f_{2} f_{3} d x+\tilde{\mu}_{3} \int_{0}^{L} f_{3}^{2} d x=\int_{0}^{L} f_{3} g d x \tag{C13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mu_{i}=k \tilde{\mu}_{i} \tag{C14}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\frac{1}{\sum_{1}^{3} \tilde{\mu}_{i}} \tag{C15}
\end{equation*}
$$

Equations (C11) through (13) are solved for $\tilde{\mu}_{1}, \tilde{\mu}_{2}$, and $\tilde{\mu}_{3}$ to provide the least squared fit to penetration dynamics. The tilde values of $\tilde{\mu}$ are adjusted to enforce the correct steady-state response $\mu$ 's by Equations (C14) and (C15).

The gust moment parameters $\mu_{11}, \mu_{12}$, and $\mu_{13}$ are obtained in a manner similar to the gust lift parameters. $g[x]$ is different and the $\mu$ 's differ only in notation; i. e., $\mu_{12}$ corresponds to $\mu_{2} . \mathrm{g}[\mathrm{x}]$ is obtained from Equations (C16) through (C19).

$$
\begin{equation*}
\mathrm{g}[\mathrm{x}]=\frac{\mathrm{C}_{\mathrm{m}_{\alpha_{g}}}[\mathrm{x}]}{\mathrm{C}_{\mathrm{m}_{\alpha_{g}}}[\mathrm{~L}]} \tag{C16}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{C}_{\mathrm{m}_{\mathrm{g}}}[\mathrm{x}]=\frac{\mathrm{x}_{\mathrm{cm}}}{\overline{\mathrm{c}}} \mathrm{C}_{\mathrm{L}_{\alpha_{\mathrm{g}}}}[\mathrm{x}]+\mathrm{C}_{\mathrm{m}_{\alpha_{(N O S E)}}}[\mathrm{x}] \tag{C17}
\end{equation*}
$$

where

$$
\begin{aligned}
x_{\mathrm{cm}}= & 107.98 \mathrm{ft} \text { (for this consideration only the value of } 64 \mathrm{sec} \text { is } \\
& \text { taken; } x_{\mathrm{cm}} \text { is usually taken to have the values of Table C7) }
\end{aligned}
$$

$\mathrm{C}_{\mathrm{m}_{\alpha_{\text {NOSE }_{g}}}}[\mathrm{x}]$ from Figure C3 or

$$
\begin{align*}
& \mathrm{C}_{\mathrm{m}_{\alpha_{N O S E}}[\mathrm{x}]}=\frac{-2}{\mathrm{Sc}} \int_{\mathrm{o}}^{\mathrm{x}} \mathrm{xA} \mathrm{~A}^{\prime} \mathrm{dx}=-\frac{2}{\mathrm{Sc}}\{\mathrm{~m}\}  \tag{C18}\\
& \mathrm{m}=0.1682 \mathrm{x}^{2}\left(\frac{122}{2}-\frac{\mathrm{x}}{3}\right) \quad 0 \leq \mathrm{x} \leq 122 \\
& \mathrm{~m}=\ell^{2}\left[\ell\left(\frac{\mathrm{a}}{6}-\frac{d}{3}\right)-\frac{c}{2}\right]+\mathrm{x}^{2}\left(\frac{\mathrm{~d}}{3} \mathrm{x}+\frac{\mathrm{c}}{2}\right) \text { for } 122 \leq \mathrm{x} \leq 209
\end{align*}
$$

(C19)
where

$$
\begin{aligned}
\ell & =122 \mathrm{ft} \\
\mathrm{a} & =0.1682 \\
\mathrm{c} & =-278 \\
\mathrm{~d} & =2.99
\end{aligned}
$$

## Normal Motion Dynamics

The acceleration normal (upward) to the flight path is given by [Equation 4, page 6, reference 19].

$$
\begin{equation*}
\mathrm{n} \cong \mathrm{~V} \dot{\gamma}-\frac{\mathrm{v}^{2}}{\mathrm{r}} \cos \gamma-\mathrm{r} \Omega^{2} \cos \gamma-2 \Omega \mathrm{~V} \tag{C20}
\end{equation*}
$$

As written it is for wings level with the velocity in the earth's equatorial plane. The third term is neglected because it is relatively small, i.e.,

$$
\begin{aligned}
& \mathrm{V} \dot{\gamma} \sim(1000)\left(\frac{1.5}{170}\right)=8.82 \mathrm{ft} / \mathrm{sec}^{2} \\
& \frac{\mathrm{~V}^{2}}{\mathrm{r}} \cos \gamma \sim \frac{\left(10^{4}\right)^{2}}{2.1 \times 10^{7}}=4.76 \mathrm{ft} / \mathrm{sec}^{2} \\
& {\mathrm{r} \Omega^{2} \cos \gamma \sim\left(2.1 \times 10^{7}\right)\left(7.27 \times 10^{-5}\right)^{2} \cos \gamma=1.1 \times 10^{-1} \cos \gamma \mathrm{ft} / \mathrm{sec}^{2}}^{2} \sim(2)
\end{aligned}
$$

The fourth term is omitted because it would subsequently be lost in the perturbation; $V$ and $\Omega$ are not perturbed.

From Figure C5

$$
\begin{equation*}
\frac{W}{g}\left\{V \dot{\gamma}-\frac{V^{2}}{r} \cos \gamma\right\}=L+T \sin (\alpha+\delta)-W \cos \gamma \tag{C21}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{\gamma}=\frac{\mathrm{g}}{\mathrm{WV}} \mathrm{~L}+\frac{\mathrm{g}}{\mathrm{WV}} \mathrm{~T} \sin (\alpha+\delta)+\left(\frac{\mathrm{V}}{\mathrm{r}}-\frac{\mathrm{g}}{\mathrm{~V}}\right) \cos \gamma \tag{C22}
\end{equation*}
$$

Perturbations about a nominal trajectory are taken. Perturbations are restricted to $\dot{\gamma}, \gamma, \alpha, \alpha, q, \theta$, and $\mathrm{v}_{\mathrm{w}}$; i.e., T, W, V, etc., are not perturbed. The perturbation equation corresponding to Equation (C22) is

$$
\begin{align*}
\Delta \dot{\gamma}= & \frac{g}{W V} \overline{\mathrm{q}} \mathrm{~s}\left[\mathrm{C}_{\mathrm{L}_{\mathrm{q}}} \Delta \mathrm{q}+\mathrm{C}_{\mathrm{L}} \cdot \Delta \dot{\alpha}+\mathrm{C}_{\mathrm{L}_{\alpha}} \Delta \alpha+\frac{\mathrm{C}_{\mathrm{L}_{\alpha}}}{\mathrm{V}}\left(\mu_{1} \mathrm{x}_{1}+\mu_{2} \mathrm{x}_{2}+\mu_{3} \mathrm{x}_{3}\right)\right] \\
& +\frac{\mathrm{g}}{\mathrm{WV}} \mathrm{~T} \cos \left(\alpha_{\mathrm{o}}+\delta_{\mathrm{o}}\right)(\Delta \alpha+\Delta \delta)-\left(\frac{\mathrm{V}}{\mathrm{r}}-\frac{\mathrm{g}}{\mathrm{~V}}\right)\left(\sin \gamma_{\mathrm{o}}\right) \Delta \gamma \quad \text { (C23) } \tag{C23}
\end{align*}
$$

Using

$$
\begin{align*}
& \alpha=\theta-\gamma  \tag{C24}\\
& \dot{\alpha}=q-\dot{\gamma}  \tag{C25}\\
& \cos \left(\alpha_{0}+\delta_{0}\right) \cong 1 \tag{C26}
\end{align*}
$$

in Equation (C23) 2.4 yields

$$
\begin{align*}
\dot{\Delta \gamma}= & \left\{\frac{1}{\frac{\overline{W V}}{g}+\bar{q}^{S C_{L}}}{ }_{\dot{\alpha}}\right\}\left\{\overline{\mathrm{q} S}\left(\mathrm{C}_{\mathrm{L}_{\alpha}}+\mathrm{C}_{\mathrm{L}_{\mathrm{q}}}\right) \Delta \mathrm{q}\right. \\
& +\left[\mathrm{W} \sin \gamma_{o}\left(1-\frac{\mathrm{V}^{2}}{\mathrm{gr}}\right)-{\overline{\mathrm{q} S C_{L_{\alpha}}}}-\mathrm{T}\right] \Delta \gamma+\mathrm{T} \Delta \delta \\
& \left.+\left({\overline{\mathrm{q} S C_{L_{\alpha}}}}+\mathrm{T}\right) \Delta \theta+\frac{\overline{\mathrm{qSC}}_{\mathrm{L}_{\alpha}}}{\mathrm{V}}\left(\mu_{1} \mathrm{x}_{1}+\mu_{2} \mathrm{x}_{2}+\mu_{3} \mathrm{x}_{3}\right)\right\} \tag{C27}
\end{align*}
$$

Equation (C27) corresponds to row 2 of Table C1.
Drift rate ( $\dot{z}$ ) and drift ( $z$ ) normal to the flight path are also required. $z$ is taken positive downward. Consistent with the approximations taken thus far is the expression [from Equation (C20)].

$$
\begin{equation*}
\ddot{\mathrm{z}}=-\mathrm{V} \dot{\gamma}+\frac{\mathrm{V}^{2}}{\mathrm{r}} \cos \gamma \tag{C28}
\end{equation*}
$$

Previous studies (reference 6, for example) have approximated the content of Equation (C28) by

$$
\begin{equation*}
\dot{\mathrm{z}} \cong-\mathrm{V} \gamma \tag{C29}
\end{equation*}
$$

This is done here to take advantage of the format of reference 6. Hence,

$$
\begin{equation*}
\Delta \dot{z}=-V \Delta \gamma \tag{C30}
\end{equation*}
$$

which is row 10 of Table C1.

## Pitch Rotation Dynamics

Pitch rotation is given by

$$
\begin{align*}
& {\left[-I_{x y} \dot{p}+I_{y y} \dot{q}-I_{y z} \dot{r}+\left(I_{x x}-I_{z z}\right) p r+I_{z x}\left(p^{2}-r^{2}\right)-I_{x y} q r+I_{y z} p q\right]=} \\
& M-T \ell \sin \delta+(M . R .) q \tag{C31}
\end{align*}
$$

It is assumed that pitch plane and lateral perturbations are uncoupled. Hence, $p$ and $r$ can be considered to be zero.

$$
\dot{q} \cong \frac{1}{I_{y y}} M-\frac{T \ell}{I_{y y}} \sin \delta+\frac{(M . R .)}{I_{y y}} q
$$

Taking perturbations yields

$$
\begin{aligned}
& \Delta \dot{q}=\frac{q S \bar{c}}{I_{y y}}\left\{C_{m_{q}} \Delta q+C_{m_{\alpha}} \Delta \alpha+C_{m_{\alpha}} \Delta \alpha\right. \\
& \left.\begin{array}{l}
C_{m_{\alpha}}\left(\mu_{11} x_{1}+\mu_{12} x_{2}+\mu_{13} x_{3}\right)
\end{array}\right\} \\
& -\frac{\mathrm{T} \ell}{\mathrm{I}_{\mathrm{yy}}}\left(\cos \delta_{o}\right) \Delta \delta+\frac{\mathrm{M} \cdot \mathrm{R} .}{\mathrm{I}_{\mathrm{yy}}} \quad \Delta q \\
& \approx\left\langle\frac{q S \bar{c}}{I_{y y}}\left(C_{m_{q}}+C_{m_{\alpha}^{\prime}} \left\lvert\,+\frac{M \cdot R \cdot}{I_{y y}}\right.\right\} \Delta q-\frac{q S \bar{c}}{I_{y y}} C_{m_{\alpha}} \Delta \gamma\right. \\
& -\frac{T \ell}{I_{y y}} \Delta \delta+\frac{q S \bar{C}}{I_{y y}} C_{m_{\alpha}} \Delta \theta-\frac{q S \bar{C}}{I_{y y}} C_{m_{\alpha}} \Delta \dot{\gamma} \\
& +\frac{\overline{\mathrm{qS}} \overline{\mathrm{I}}_{y y}}{\mathrm{I}^{\prime}}\left(\mu_{11} x_{1}+\mu_{12} x_{2}+\mu_{13} x_{3}\right) \frac{\mathrm{C}_{m_{\alpha}}}{\mathrm{V}} \\
& \begin{array}{l}
=\left\{\frac{q S \bar{c}}{I_{y y}}\left[C_{m_{q}}+C_{m_{\alpha}}\left(1-a_{21}\right)\right]+\frac{M \cdot R \cdot}{I_{y y}}\right\} \Delta q
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{q S \bar{c}}{I}\left\{C_{m_{\alpha}}-C_{m_{\alpha}^{\prime}}{ }^{{ }^{2} 29}\right\}  \tag{C33}\\
& -\frac{q S \bar{c}}{I_{y y}} C_{m_{\alpha}}\left\{a_{23} x_{2}+a_{24} x_{3}+a_{27} x_{1}\right\}
\end{align*}
$$

In line 1 the perturbations are taken. In line 2 Equations (C24) and (C25) are used and $\cos \delta_{o}=1$. Row 2 of Table C 1 is substituted for $\Delta \dot{\gamma}$ to go from line 2 to line 3. The result is row 1 of Table C1.

## Mass Rate Effects

Mass rate damping M. R. q is given by (Equation 7. 8-2 of ref. 24) as

$$
\begin{equation*}
(\mathrm{M} . \mathrm{R} .) \mathrm{q}=\left\{\dot{\mathrm{m}}\left(\hat{\imath}^{2}-\mathrm{k}^{2}\right)-\mathrm{m} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{k}^{2}\right\} \mathrm{q} \tag{C34}
\end{equation*}
$$

where
$\mathrm{m}=$ vehicle mass
$\hat{\imath}=\mathrm{x}_{\delta}-\mathrm{x}_{\mathrm{cm}}+15 \mathrm{ft}=\ell+15$
$15 \mathrm{ft}=$ distance from gimbal to end of rocket nozzle
$k=$ pitch radius of gyration
$\mathrm{q}=$ Pitch rate
Using

$$
\begin{equation*}
\dot{\mathrm{I}}_{\mathrm{yy}}=\dot{\mathrm{m}}^{2}+\mathrm{m} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{k}^{2} \tag{C35}
\end{equation*}
$$

yields

$$
\begin{align*}
\text { M.R. } & =\dot{m}(\ell+15)^{2}-\dot{I}_{y y} \\
& =\frac{(\ell+15)^{2}}{32.17} \frac{d}{d t} w-\frac{d}{d t} I_{y y} \tag{C36}
\end{align*}
$$

## Actuator Dynamics

Appendix $B$ uses the second-order actuator dynamics

$$
\begin{equation*}
\ddot{\delta}=-2 \zeta \omega_{n} \dot{\delta}-\omega_{n}^{2}(\delta-u) \tag{C37}
\end{equation*}
$$

where

$$
\begin{aligned}
\zeta & =0.4 \\
\omega_{n}^{2} & =1,000
\end{aligned}
$$

A ppendix B includes tail-wags-dog (TWD) and dog-wags-tail (DWT) dynamics which are neglected here. Section II shows the TWD and DWT dynamics are of minor importance. Furthermore, based on the considerations of ref. 6, it is is expected the second-order dynamics can be satisfactorily approximated with a first-order actuator with the same break frequency; i.e.,

$$
\begin{equation*}
\delta=-31.6 \delta+31.6 \mathbf{u} \tag{C38}
\end{equation*}
$$

This is row 8 of Table C1.

## Bending Moments

The bending moments at stations 660, 1300, and 1800 are given by (page 15 of ref. 10), They were calculated by the procedure of ref. 26 as

$$
\begin{align*}
& M_{660}=M_{1 \delta}^{\prime} \delta+M_{1 \alpha}^{\prime} \alpha+7.98 \times 10^{6}  \tag{C39}\\
& M_{1300}=M_{2 \delta}^{\prime} \delta+M_{2 \alpha}^{\prime} \alpha+104.2 \times 10^{6}  \tag{C40}\\
& M_{1800}=M_{3 \delta}^{\prime} \delta+M_{3 \alpha}^{\prime} \alpha+182.1 \times 10^{6} \tag{C41}
\end{align*}
$$

where the numerical values for the maximum dynamic pressure condition are listed in the nomenclature. The perturbation equations corresponding to the above are

$$
\Delta \mathrm{M}_{660}=\mathrm{M}_{1 \delta}^{\prime} \Delta \delta+\mathrm{M}_{1 \alpha}^{\prime} \Delta \alpha, \text { etc. }
$$

Two modifications to the above must be made: 1) extension to the entire boost phase flight, and 2) smoothing for gust penetration.

The most desirable extension would utilize the data used in the ref. 26 computations. These were not provided, so the plausible approximations used in A ppendix B are used. This has the added advantage in that it permits a direct comparison of results. It is thus assumed that

$$
\mathrm{M}_{\alpha}^{\prime \prime}(\mathrm{t}) \Delta \alpha=\frac{\frac{\overline{\mathrm{q}} \mathrm{C}_{\mathrm{L}_{\alpha}}}{\mathrm{W}}[\mathrm{t}]}{\frac{\overline{\mathrm{W}} \mathrm{~S}_{\mathrm{L}_{\alpha}}}{\frac{\mathrm{W}}{}}[\mathrm{t}=64]} \mathrm{M}_{\alpha}^{\prime} \Delta \alpha
$$

$$
\begin{align*}
& =\frac{\frac{\overline{\mathrm{q}} \mathrm{C}_{L_{\alpha}}}{\overline{\mathrm{W}}}}{\frac{\overline{\mathrm{~W}}}{\mathrm{~W}} \mathrm{C}_{\mathrm{L}_{\alpha}}[\mathrm{t}=64]} \mathrm{M}_{\alpha}^{\prime} \Delta \alpha \\
& =\frac{\frac{\overline{\mathrm{q}} \mathrm{~L}_{\alpha}}{\mathrm{W}}}{\frac{7.86 \times 10^{2}}{2.63 \times 10^{6}} 2.52} \mathrm{M}_{\alpha}^{\prime} \Delta \alpha \\
& =\frac{\overline{\mathrm{q}} \mathrm{C}_{\mathrm{L}_{\alpha}}}{\mathrm{W} 7.61 \times 10^{-4}} \quad \mathrm{M}_{\alpha}^{\prime} \Delta \alpha \tag{C42}
\end{align*}
$$

The bending moment contribution from gimbal deflection is assumed constant.
For gust penetration it is simply assumed the wind effects are filtered by $\mathrm{x}_{1}$. Hence, the final bending moment equation for station 660 becomes

$$
\begin{equation*}
\Delta \mathrm{M}_{660}=\left\{\frac{\overline{\mathrm{q}}_{\mathrm{L}}^{\alpha}}{\mathrm{M}_{1 \alpha}^{\prime}} \underset{\mathrm{W} 7.61 \times 10^{-4}}{\}}\right\}\left\{-\Delta \gamma+\Delta \theta+\frac{\mathrm{x}_{1}}{\mathrm{~V}}\right\}+\mathrm{M}_{1 \delta}^{\prime} \Delta \delta \tag{C43}
\end{equation*}
$$

This corresponds to row 3 of Table C2. Similar expressions for $\Delta \mathrm{M}_{1300}$ and $\Delta \mathrm{M}_{1880}$ are given in rows 5 and 7 .

Differentiation of row 3 of Table C2 yields row 4. Coefficients are taken as constant during the differentiation. Rows 6 and 8 are obtained similarly by differentiation of rows 5 and 7.

## Fanny Load

The normal acceleration at the pilot's seat (sensed by the ischial tuberosities, is [from Equation (C20) and Figure C5] approximated by

$$
\begin{align*}
\mathrm{n}_{\mathrm{IT}} & \cong\left(\mathrm{~V} \dot{\gamma}-\frac{\mathrm{V}^{4}}{r} \cos \gamma+\mathrm{g} \cos \gamma\right) \cos \alpha+\mathrm{x}_{\mathrm{p}} \dot{\mathrm{q}}-\dot{\mathrm{V}} \sin \alpha \\
& =\left[\mathrm{V} \dot{\gamma}+\left(\mathrm{g}-\frac{\mathrm{V}^{2}}{\mathrm{r}}\right) \cos \gamma\right] \cos \alpha+\mathrm{x}_{\mathrm{p}} \dot{\mathrm{q}}-\dot{\mathrm{V}} \sin \alpha \tag{C44}
\end{align*}
$$

Its perturbation is given by

$$
\begin{align*}
\Delta \mathrm{n}_{\mathrm{IT}}= & {\left[\mathrm{V} \dot{\gamma}_{\mathrm{o}}+\left(\mathrm{g}-\frac{\mathrm{V}^{2}}{\mathrm{r}}\right) \cos \gamma_{\mathrm{o}}\right]\left(-\sin \alpha_{\mathrm{o}}\right) \Delta \alpha+\mathrm{x}_{\mathrm{p}} \Delta \dot{\mathrm{q}}-\dot{\mathrm{V}} \cos \alpha_{\mathrm{o}} \Delta \alpha } \\
& -\left(\mathrm{g}-\frac{\mathrm{V}^{2}}{\mathrm{r}}\right) \sin \gamma_{\mathrm{o}} \cos \alpha_{\mathrm{o}} \Delta \gamma+\mathrm{V} \Delta \dot{\gamma} \cos \alpha_{\mathrm{o}} \\
= & x_{\mathrm{p}} \Delta \dot{\mathrm{q}}+\mathrm{V} \Delta \dot{\gamma} \\
& +\left\{\left[\mathrm{V}_{\mathrm{o}}+\left(\mathrm{g}-\frac{\mathrm{V}^{2}}{\mathrm{r}}\right) \cos \gamma_{\mathrm{o}}\right] \sin \alpha_{\mathrm{o}}-\left(\mathrm{g}-\frac{\mathrm{V}^{2}}{\mathrm{r}}\right) \sin \gamma_{\mathrm{o}}+\dot{\mathrm{V}}\right\} \Delta \gamma \\
& +\left\{\left[\mathrm{V} \dot{\gamma}_{\mathrm{o}}+\left(\mathrm{g}-\frac{\mathrm{V}^{2}}{\mathrm{r}}\right) \cos \gamma_{\mathrm{o}}\right] \sin \alpha_{\mathrm{o}}-\dot{\mathrm{V}}\right\} \Delta \theta \\
\triangleq & x_{\mathrm{p}} \Delta \dot{\mathrm{q}}+\mathrm{V} \Delta \dot{\gamma}+\tilde{\mathrm{A}} \Delta \gamma+\widetilde{\mathrm{B}} \Delta \theta \tag{C45}
\end{align*}
$$

Substituting for $\Delta \dot{q}$ and $\Delta \dot{\gamma}$ by use of rows 1 and 2 of Table C1 in Equation (C45) yields row 9 of Table C2.

Differentiation of row 9 of Table C2 yields row 10. Coefficients of row 9 , are taken as constant during the differentiation.
$\overline{\mathrm{q}} \alpha$
The term $\overline{\mathrm{q}} \alpha$ is used as an indicator of aerodynamic load ing. It is most commonly employed in preliminary design where aerodynamic loads due to $\mathrm{q}, \dot{\alpha}$, and gust penetration are neglected. Since these latter effects are included here, the $\bar{q} \alpha$ computation used includes $\mathrm{q}, \dot{\alpha}$, and gust penetration. This is done by defining a $\bar{q} \alpha$ that meets the intended use of the $\bar{q} \alpha$ indicator; i.e., it is taken to be

$$
\begin{align*}
& \bar{q} \alpha=\frac{\mathrm{L}}{\mathrm{SC}_{L_{\alpha}}} \\
& =\frac{\overline{\mathrm{q}}}{\mathrm{C}_{\mathrm{L}_{\alpha}}}\left\{\mathrm{C}_{\mathrm{L}_{\mathrm{q}}} \mathrm{q}+\mathrm{C}_{\mathrm{L}_{\dot{\alpha}}} \dot{\alpha}+\mathrm{C}_{\mathrm{L}_{\alpha}} \alpha+\mathrm{C}_{\mathrm{L}_{\alpha}} \frac{\mu_{1}}{\mathrm{~V}} \mathrm{x}_{1}+\mathrm{C}_{\mathrm{L}_{\alpha}} \frac{\mu_{2}}{\mathrm{~V}} \mathrm{x}_{2}+\mathrm{C}_{\mathrm{L}_{\alpha}} \frac{\mu_{3}}{\mathrm{~V}} \mathrm{x}_{3}\right\} \tag{C46}
\end{align*}
$$



Figure C1. Pitch Rate Derivatives


Figure C2. Indicial Angle of Attack Derivatives


Figure C3. Gust Penetration Derivatives


Figure C4. Indicial Angle of Attack Rate Derivatives

The perturbation equation is

$$
\begin{align*}
\overline{\mathrm{q}} \Delta \alpha= & \frac{\overline{\mathrm{q}}}{\mathrm{C}_{\mathrm{L}_{\alpha}}}\left[\left|\mathrm{C}_{\mathrm{L}_{\mathrm{q}}}+\mathrm{C}_{\mathrm{L}_{\dot{\alpha}}}\right| \Delta \mathrm{q}-\mathrm{C}_{\mathrm{L}_{\alpha}} \Delta \dot{\gamma}+\mathrm{C}_{\mathrm{L}_{\alpha}} \Delta \theta-\mathrm{C}_{\mathrm{L}_{\alpha}} \Delta \gamma\right. \\
& \left.+\mathrm{C}_{\mathrm{L}_{\alpha}} \frac{\mu_{1}}{\mathrm{~V}} \mathrm{x}_{1}+\mathrm{C}_{\mathrm{L}_{\alpha}} \frac{\mu_{2}}{\mathrm{~V}} \mathrm{x}_{2}+\mathrm{C}_{\mathrm{L}_{\alpha}} \frac{\mu_{3}}{\mathrm{~V}} \mathrm{x}_{3}\right] \tag{C47}
\end{align*}
$$

With the usual substitutions this becomes row 11 of Table C2. Row 12 is obtained by differentiation of row 11.


Figure C5: No Wind Flight Geometry

## Table C1. State Equations



## Table C2. Response Equations



Table C3．Numerical A Matrix

| ${ }^{11}$ |
| :---: |
| O00E－80 |
| 5b4y？304E 00 |
| －．11715199E 01 |
| －．1784337t 01 |
| 23933169 El |
| 29617440 E 01 |
| －．35436422 01 |
| －．35453156E 01 |
| －．27224937 01 |
| ．．47699168E 01 |
| －．6329943E 01 |
| －．58243469E 01 |
| 40925548E O1 |
| －．284700R2E O1 |
| －．16344286E 01 |
| －．10070807E 01 |
| －．63699872 00 |
| －．37072590E 00 |
| －．41219676E 00 |
| －．42974302E 00 |
| －．52437920E 00 |
| －．62041126E 00 |
| －．6739902E 00 |
| －．703603ate on |
| ．．68597987E 00 |
| －．65269727E 00 |
| －．57443638E 00 |
| －．47982137E On |
| －．41505671E 00 |
| －． $37743456 E 00$ |
| －．33691005E 00 |
| －．30139198E 00 |
| －．26982069E 00 |
| $-.24910496 \mathrm{E} 00$ <br> ． 22334286 OO |



| ${ }^{a_{13}}$ | ${ }^{a_{14}}$ |
| :---: | :---: |
| ． $00000000 \mathrm{E-8}$ | ． $00000000 \mathrm{E}-80$ |
| ． $13054124 \mathrm{~F}=03$ | （24］76678E－ 3 |
| ． $30785462 \mathrm{E}-03$ | ．58144149E－03 |
| ．13677690F－02 | ．87599675E－C3 |
| ． $18194130 \mathrm{E}-02$ | ． 11594860 －02 |
| ．22281714E－C？ | ：14270240E－62 |
| ．25934070E－02 | ． $16544883 \mathrm{E}-\mathrm{fz}$ |
| ．23690337E－12 | ．18367040E－02 |
| ．26859179E02 | ．17200169E－02 |
| ． 20956260 E 02 | ．134く4110E－02 |
| ． 3 J915517E．02 | ．19210996E－02 |
| － $15439030 \mathrm{E}=0$ ？ | ．25080436E－02 |
| ． $33342267 E-02$ | ． $21339724 \mathrm{E}-02$ |
| ． $25464494 \mathrm{E}=02$ | ．16298419E－0゙2 |
| ．19271425E－02 | ．12335031E－02 |
| ．13255237E＝0？ | ：84n44．9UUE－03 |
| ．89642710¢003 | ．59379664E－03 |
| ． 57351363 E 03 | ． 37990858 E 03 |
| －39136874E－03 | ．25082764E－03 |
| ． 24412245 E－03 | ．156＜0107E－03 |
| ．15334135E－03 | ．98155512E－？4 |
| ． 969553 त9E－04 | ．61998329E－04 |
| ．58151717E－04 | ． $37223764 E$－04 |
| －32258395E－04 | ． $20649042 \mathrm{E}-04$ |
| ． 15732972 －014 | ．10102911E－04 |
| ． 16719833 E－US | ． $46587409 \mathrm{E}=05$ |
| ．15193043E－05 | ．10365832E－05 |
| ．． 22965146 E 05 | －． 14709476 E．05 |
| －． 38715354 E －05 | －．24782437E05 |
| －． 45637675 E 05 | －． $29213526 \mathrm{E}-05$ |
| －．53296326E05 | －．34115957E－05 |
| －．55961359E－15 | －．35821889E－05 |
| －． $55655846 E=05$ | －．35645326E－05 |
| －．55204619E005 | －35357adzE－05 |
| －． 5504453 E．05 | －． 35235011 cos |


| ${ }^{17}$ | ${ }^{a_{18}}$ |
| :---: | :---: |
| ．00000000E－80 | －．14416526E 01 |
| ．12907670F－n2 | －137a2a36E Ol |
| －． 24787823 ［－02 | －13908502E 02 |
| －． $31344491 \mathrm{c}=02$ | －．14158476E 01 |
| －．4943540くE－02 | －．14393432E OL |
| －．6086192E－02 | －14748571E OL |
| －．7059975aE－92 | －．15012941E O1 |
| －． 7843748 15－02 | －．15493405E 01 |
| －．73508887E－02 | －．15948951E 01 |
| ．57586313E－02 | －．16654529E 01 |
| ． 83069804 E－02 | －17726927E O1 |
| －． 11208686 E－01 | －．18342C24E 01 |
| －．92317691E－02 | －．18623943E OL |
| －． $704452095-02$ | －．18920044E O1 |
| －．53276730E－02 | －．19224934E O1 |
| －． $36629600 \mathrm{E}-02$ | －． $19535717 \mathrm{E}^{\text {O1 }}$ |
| －．24762784E－02 | －． $19855105 \mathrm{C}^{01}$ |
| －．16390991E－02 | －．20188107E 01 |
| －．10820327E．02 | －．21085155E 01 |
| －． $67372954 \mathrm{E}-03$ | －．20901654E OL |
| －． $42334151 \mathrm{E}-03$ | －．2l272742E 01 |
| －． 26738188 E 03 | －．21729U34E Ot |
| －． 16053001 E．03 | －．22239641E OL |
| －．89048701E－04 | －．22520522E 01 |
| －．43568539E－04 | ．．23112995E O1 |
| －． $20090938 \mathrm{E}-74$ | －．23115712E 01 |
| －． $44710422 \mathrm{E}-05$ | －．22091723E 01 |
| ．63381533E－05 | －．21309448E Ol |
| ． $10685764 \mathrm{E}-04$ | －2t327a71E 01 |
| ．12596968E－04 | －．21583757E 01 |
| ． $14710560 \mathrm{E}-04$ | －．21731595E 01 |
| ．15446197E－04 | －．21998943E 01 |
| ． $15370169 \mathrm{E}-04$ | －．22516643E 01 |
| －15237357E－04 | － 23095303801 |
| 5193177E－04 |  |

Table C3. (Continued)

| $\mathrm{a}_{19}$ | $\mathrm{a}_{21}$ | $\mathrm{a}_{22}$ | $\mathrm{a}_{23}$ | $\mathrm{a}_{24}$ | ${ }^{27}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .000UNOOOE-80 <br> $44612131 \mathrm{E}=01$ | - 4000000ne.so <br> HIGU3847E 00 | $-320003006-80$ |  | - GCOROOODE-80 <br> $-.11868820 \mathrm{~F}-03$ |  |
| $\therefore 78136320 \mathrm{E}-01$ | -11999333E 00 | $\therefore 1^{3467382 E} 000$ | $-\therefore 1906 n 982 \mathrm{t}-03$ | $\therefore 12997567 \mathrm{E}-03$ | -61741894E-03 |
| -. 29511706600 | -11876944E 50 | -. 15 523542E 00 | -18921972E-033 | $\cdots{ }^{-12009344 E-033}$ | -61291613E033 |
|  | 1116161278 -119936800 00 |  |  | $\bigcirc{ }^{-11795804 E-03}$ |  |
| $\rightarrow 15192338_{\text {E }} 01$ | -14988424E 00 | $\because 19911344^{\text {c }}$ CO | $\because 17043971 \mathrm{E}-03$ | $\bigcirc \cdot \square 10817416 \mathrm{E}-03$ | . $95208435 \mathrm{E}=03$ |
| -. $20993923 \mathrm{E}^{\text {a }} 01$ | -98710395E-01 | $\cdots{ }^{-2} 5334009600$ | -. $15959452 \mathrm{E}-0^{3}$ | - $102^{29097 E-03}$ | -51695485E-03 |
| - 23583637801 | -05900706E.01 | -. 2 2nat 055 E 00 | -. $131848666 \mathrm{E}-03$ | -. $83661315 \mathrm{E}-04$ | :92708115E003 |
| - $2201010{ }^{2}$ | -19109597E-01 |  | - $926090478 \mathrm{E}-04$ | $\bigcirc{ }^{-58828513 E-044}$ |  |
| -:37751311E 01 |  |  | $\bigcirc \quad \because \quad 1040063 \mathrm{EE-N3}$ |  |  |
| -.53059140E 01 | . 536598975 -01 | -.21682940E 00 | -.82620698E-04 | -. 5243743 EE-04 | .26762'92E-03 |
| -. $45110933 \mathrm{E} \mathrm{O1}$ | .36545897E-31 | -. 18109725E 00 | -. 60040011 E -04 | -. $30106013 \mathrm{E}-04$ | ,19448021E-03 |
| $\cdots 3006022^{\text {E }} 01$ |  | $-152999900^{0}$ | - $04395719{ }^{\text {a }}$ | - $278989621 \mathrm{E}-84$ | -1423893EE03 |
|  | -11789230E001 | $\because \because 9467645 \mathrm{Col}$ | -:1099471E-044 | $\because 12118980604$ | - 61851210 E04 |
| $\rightarrow 164 J 74950^{01}$ | . $745942048-02$ | $\bigcirc .74432540 \mathrm{E} 0 \mathrm{O}$ | $\because 12299343 \mathrm{E} 004$ | $\bigcirc-78061096 \mathrm{E}^{-05}$ | ; $39 \mathrm{~B} 39743 \mathrm{E}=04$ |
| -. 1210900 01 | .47599322E-02 | -. 59684119 E 01 | -. $71126102 \mathrm{E}-05$ | -. $48950162 \mathrm{E}-05$ | [29982008E004 |
| -ib4089809E 00 | - 30929163 E -02 | $\therefore .47656840 \mathrm{E}=01$ | -.49207755E-05 | $\rightarrow 31231029 \mathrm{E}-05$ | -19939262E-04 |
|  |  | $\bigcirc{ }^{-39951515 E-01}$ | -. 322579116.05 | -. $2001313354 \mathrm{E}-05$ | -100498998E04 |
| $\rightarrow 27255189 \mathrm{E} 00$ | -010302985-03 | $\because 29575504 \mathrm{E} 001$ | -.13843540E-05 | -.87861799E06 | - 4 4B41672E-05 |
| $\because 16633092^{2} 00$ | ,90170315E.97 | $-.25766018 \mathrm{E}=01$ | $\because 91553311 \mathrm{EO6}$ | $\bigcirc .98108061 L_{\text {-06 }}$ | . $29656390 \mathrm{E}-05$ |
|  |  |  | -.59079717E-06 |  |  |
| -. 04631388 E . $\mathrm{O}_{1}$ | -18994957E.03 | -. 19706361 Coj | $\because 39609736 E 06$ | - $25174295 \mathrm{Con6}$ | .12R40109E-05 |
| $\rightarrow 10831642 \mathrm{E}-01$ | . 11330114 E 03 | -.17698412E.01 | -i27200204E-06 | $\cdots 17314117 E-0_{6}$ | -68365403E-06 |
| .16133245c-01 | -64914764E-04 | -.15974521E01 | -.17979988E-06 | -.11408946E-06 | -98227403E-06 |
| . $29222937{ }^{\text {c }}$-01 | - $32057812 \mathrm{E}-04$ | -. 14648671 F 001 | -.12404968E-06 | -.78720940[-07 | . $00280590 \mathrm{E}-06$ |
| -36753266E-01 | . $88751544 \mathrm{E}-0 \mathrm{~K}$ | $\because 13608228 \mathrm{E}=01$ | -.91165178E007 | -.,57860440E-n7 | -29530013E-06 |
| . $45620200 \mathrm{E}_{\text {¢ }} 01$ | -. 60297392 E .09 | -. $126975300^{\text {a }} 01$ | ..66153330E.07 | $\because 419699960.07$ | ,21428233E.06 |
| .50734835 [-01 | -. 15971982E-04 | $\because 11922038 \mathrm{E} 01$ | -. $441181466 \mathrm{E}-07$ | -.3121434]E-07 | 15950746E-06 |
| -9331101E.01 | --23064917E-04 | -.11247374E-01 | -.37123733E-07 | -. 23561979 E-07 | .12025033E-06 |
| -. $596744445 \mathrm{E}=01$ | --23516326E004 | -. $10633780 \mathrm{E}^{\text {e }}$ O1 | -. $21035937 \mathrm{E}-07$ | --17190821E-17 | .67136140E.07 |
| . $58248622 \mathrm{E}=01$ | -, $26952846 E .04$ | -.10112246E-01 | -. 20366047 F .07 | -.12925861E-87 | .69869286007 |

Table C3．（Continued）

|  | ${ }^{2} 8$ | ${ }^{2} 9$ | $\mathrm{a}_{33}$ | ${ }^{3} 3$ | $\mathrm{a}_{35}$ | ${ }_{43}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ．00000000E－80 | ．OODAOUODE－8． | ． $000000005-80$ | ．00309000E－80 | － COUOOUOOE－RU | ． 00000000 EFSO |
|  | .58701755 E On | $.6117 C \Delta C U E 37$ | ．．37178514E O1 | －． $20268660 E 01$ | ．57447474E O1 | ．68604589E 01 |
|  | －29157531E 00 | －34241759E On | －．70573474E 01 | －．41739293E 01 | ．11835777E 02 | ．1413456E 02 |
|  | ．19401028E 00 | ． 27190682 JT | －．11422032E 02 | －．64450332E 01 | ．18267063F 02 | 21814903E 02 |
|  | $.14551290{ }^{\circ} 0$ | ．25040003E 7n | －．162339385 02 | －．88502942E 01 | ． 25084263 E 02 | ．299？6139E 02 |
|  | ．11623962E 00 | ． 2474325350.3 | －． $20990652^{5} 02$ | －．11443518E 02 | ．3243420UE n2 | ．3873358E 02 |
|  | ．96541594E．O1 | ．25183601E 07 | －．2ら1ヶ3651E 02 | － 14265398 EL | ．40435049E 92 | －9828A362E 02 |
|  |  | ．25923726E 0n | －．31831237E 3？ | －1132？933E 12 | ．49183170F 92 | ．5873554E 02 |
|  | ．71642209E－01 | ．24617349E 0？ | －．39U13527E 02 | －．20723885E 02 | ．58737412E 02 | ．70145417E 02 |
|  | ．636U5717E－01 | .20735430 E 07 | －． 44545044 E － 2 | －． 24284681 CL | ．68829725E 02 | $.821978640^{\text {c }}$ |
|  | ． $57727773 E-01$ | －${ }^{4} 260806 \mathrm{E} 00$ | － 51347396502 | －．27829414E 02 | .78876510 O | －94195939E 02 |
|  | ． $5321.3717 E .01$ | ． 21226826 O7 | －．57596979E 32 | －．31399731E 02 | ．88995810E 02 | ．10828061E 03 |
|  | ．49348334E－01 | ． 23493940 E 07 | －．54515102E 02 | －．35171785E 02 | ．99686887E ${ }^{\text {¢ }}$ | ．11904812E 03 |
|  | ． $45844566 E-01$ | ．19650293E 71 | －．72159330E 02 | －．39284681E 02 | －11134404E 03 | ．1379R929E 03 |
|  | ．42459760E－01 | －16577557E On | －．9J5G3J37E 02 | －．43920692E 02 | ．12448379f 03 | .14866108503 |
| 6 | ． $39286618 \mathrm{E}=01$ | ． 13054525 g 0 | －．97199696E 02 | －．4916月837E 02 | ．13935853f 03 | －16642481E 03 |
| $\stackrel{\sim}{\square}$ | ． 36296872 E － 01 | －10349519E On | －101n6137E 03 | －．55119576UE 02 | ．15615713E 03 | ．18648603E 03 |
|  |  | －01987998E－で1 | －1132118JE 03 | －．61719月28E O2 | ．17493163E 03 | .20890692803 |
|  | $.30944380 \mathrm{E}-01$ | ．04951666E－01 | －．126637ACE 03 | －．69039083E 02 | ．195670日9E 03 | .23368086 E 03 |
|  | － $28650487 E-01$ | － $3<858868 \mathrm{E}=01$ | －．14177735E 03 | －．77029361E 92 | ． 21829771 F 93 | .26069558803 |
|  | $.266<B \cap B 5 E=01$ | －44279290E－01 | －．13710138E 03 | －．85647172E 02 | ．24274856E 03 | ． 28989529003 |
|  | ．24842951E－01 | －37595411E－01 | －．17477824E 03 | －．94902467E 02 | ．26898071E 03 | ．32122225E 03 |
|  |  |  | －．17223493E 03 | 0.10478462 E 03 | －29698954E03 | ． 35467098 C |
|  | $.21543613 \mathrm{E}-01$ | $.28283436 E=01$ | ．．P1143012E 03 | －．11524929E 03 | ． 32664940 O | ．39009139E 03 |
|  | ． 19664838 E －01 | ．24417841E－01 | ． 33103059 E 03 | ＝．12595142E 03 | ． 35698231593 | ．46631556203 |
|  | －1an36118E－01 | －＜15nU741E－01 | －． 5 ST83710E 03 | －．13674920E 03 | ． 38758636 C 03 | .46286348 Cl |
|  | $.16651530 \mathrm{E}=01$ | ．19224292E－01 | －． $21082724 E 03$ | －．14764725E 03 | ． 4184744903 | ． $49975078 \mathrm{OS}^{\text {O }}$ |
|  | $15455047 E-01$ | －17276523E－91 | －29n98533E 03 | －15863686E 03 | －14962220E 03 | $.53694801 E 03$ .574475780 |
|  | $.14417996 E-O 1$ $.13510048 E O 1$ | $15762688 E-01$ $.14563272 E-01$ | $\begin{aligned} & =.31130184 E 03 \\ & =.33176639 E 03 \end{aligned}$ | $.16971284 E 03$ $-18086952 E 03$ | $481 n 1469 E 03$ .51263591703 | $.57443757 E 03$ $.61220028 E 03$ |
|  | ． $12705649 \mathrm{E}=01$ | ． $13517373 E-01$ | ．．3523683AE 03 | －．19210114E 03 | ．54446952F 03 | ．65041663E 03 |
|  | ．11987343E－O1 | $.12626327 \mathrm{E}-01$ | －．37314345E 03 | －．20340531E 03 | ． 57650875 E | ．68847853E 03 |
|  | －11343444E－O1 | ．11852698E－01 | －．37393381E 03 | －．21476142E 03 | ．60869523E 03 | ． 72691628 E3 |
|  | ．10762232E01 | ．11153584E－01 | －．41491878E 03 | －．22620183E 03 | $.64112061 E 03$ | ．70563933E 03 |
|  | ． 10251732 Col | ．17560465E－01 | －．43532330E 03 | －．23732851E 03 | ．67265681E 3 | －8U330050E 03 |

## Table C3. (Continued)

| ${ }_{45}$ |  |
| :---: | :---: |
| .00000000E-B9 |  |
| H8723896E 7 | H1 |
| 18139464E 0 | 0? |
| -.27989858E | O? |
| -.38433564E 3 | 32 |
| -.47697565E | 3? |
| -.61956930E 0 | 0? |
| -.15361309E ${ }^{\text {c }}$ | 37 |
| -. 90000873 g | و2 |
| -. 10546498 E | $\mathrm{S}_{3}$ |
| -12085917E | 03 |
| -.13636453E 0 | 0\% |
| -. 15274604 E | -3 |
| -.17960776E | 03 |
| -.19074129E | 03 |
| -21353324E 0 | 03 |
| -.23927301E 0 | 03 |
| -. 26804039 E | ${ }^{0} 3$ |
| -.29982687E 0 | 03 |
| 33448843E 0 | 0.3 |
| -.37193343E | H3 |
| -.41214785E 0 | 03 |
| -.45506462E 0 | 03 |
| -. 50051118E 0 | 03 |
| -.24698902E 0 | 03 |
| -. 59388224 E |  |
| -64121091E 0 | 03 |
| -.08893724E 0 | 03 |
| -.73703863E 0 | 03 |
| -.78549091E 0 | 03 |
| -.83426782E | 03 |
| -.88336018E 0 | 03 |
| -.93261818E 0 | 03 |
| -.98236222E | 03 |
| -.10306838c 0 | 04 |


| ${ }^{2} 5$ | ${ }^{56}$ |
| :---: | :---: |
| -000000000F-30 | - Onnjopuot-80 |
|  | -26524554E O4 |
| -12347064E-01 | -42888222E 94 |
| -19623451E.01 | - 63539333504 |
| -21999842E001 | -119392238 05 |
| -24171794E-01 | . 16326898805 |
|  | -21530000E 05 |
| . $34152265 \mathrm{E}-01$ | . 36529247805 |
| -31590936E-01 | . 41124992 E 5 |
| .20700551E-01 | . 54941463 E 95 |
| $\because \square 13912295001$ | . 94419610768 |
| -.4181.9923E-01 | . 92120907E 05 |
| -. 27330865 E -01 | -46601270E 05 |
| -.179U2946E-01 | . $423477245^{09}$ |
| 17648978E-01 |  |
| $\because 29998089 \mathrm{COO}$ | . 3322 8914E 05 |
| -. 17113033 EvO | . $31119625 E 05$ |
| - 14917164E-01 | -29304999505 |
| -. $163788 \mathrm{JOE}-01$ | . 27577923805 |
| -. $17409090 \mathrm{EvO1}$ | .25550000E 05 |
|  |  |
| $\because 27507173 \mathrm{E} 01$ | . 17793875805 |
| -. $349498933 \mathrm{E}=01$ | -13623838E 05 |
| -. $34900702 \mathrm{E}-01$ | . 13274708 E 05 |
| $-.4 J 530938 E 001$ $-.3323205 E 001$ |  |
| -. 79451022 E 01 | :53776117E 04 |
| $\rightarrow 13207049500$ | -32179279E 04 |


| $a_{65}$ | $\mathrm{a}_{66}$ |
| :---: | :---: |
| -000njonofebc | - Conojouoderor |
| -. $581136235-08$ | -.96549826E-02 |
| $\because 145412665-07$ | -. 96140291 E .02 |
| $\cdots 20673621 E-07$ |  |
|  | $\square 20316386 E-01$ $\because 2606926 E E 01 ~$ |
| -. $34457560 \mathrm{E}-\mathrm{OT}$ | $\therefore 32047960 \mathrm{E}-01$ |
| -. $35750056 \mathrm{f}-07$ | $-38233935 \mathrm{e}=01$ |
| - $36900000 \mathrm{C}-07$ | $\bigcirc 94500000 \mathrm{E}=01$ |
| $\because 344112976$ | $\bigcirc 9.96112526 \mathrm{E} 0 \mathrm{O}$ |
| 31351431E-07 | -.60naronzeool |
| -. $28498717 \mathrm{E}-07$ | $\bigcirc .64 \mathrm{n94305E} \mathrm{O}$ |
|  | -rbe610404E-01 |
| $\because 44155969 \mathrm{O} 07$ | $\because 16049768001$ |
| 5421105วE-07 | -.79132630 -01 |
| -.651443695-07 | $\because 89153796 \mathrm{E} 01$ |
| - 767536011 Col | -9802129292001 |
| -.88984034E-07 | -,89049832E-01 |
| -.1017s11at-06 | -9179202se-01 |
| $-11471638 \mathrm{E}-06$ | - 9 94364959E=02 |
|  | -9,9663734E 0 O1 |
| $-14045649 E-06$ -1550000506 | -996461966E001 |
| --13550000¢-066 | -999600000E-01 |
|  | -9996327e01 |
| $\rightarrow 2206 \mathrm{AgT9E} 006$ | $-9990715960001$ |
| -. 2481349 UE -06 <br> - $27829135 \mathrm{E}-06$ | -99032717E-01 |
| $\begin{array}{r} 27829155 \mathrm{E}=06 \\ \therefore 32^{4} 12592^{52}-06 \end{array}$ |  |
| -.42742430E-06 | -991968334E.nt |
| -. $64062362 \mathrm{E}-06$ | -.88976780E001 |
|  | -:85857943E001 |

Table C3．（Concluded）


| ${ }^{a_{77}}$ |  |
| :---: | :---: |
| 00000000 | 87 |
| －．88796056E | n |
| ． $18294547 E$ | 01 |
| －．2A235383E | 1 |
| ． 58772718 L | 31 |
| ． 50133509 E | 11 |
| －． 62500412 L | 51 |
| ． $76022373 E$ | 01 |
| －． 90790354 E | 01 |
| 10639003 E | 07 |
| －．12191934E | $0 ?$ |
| 13756073 E | 32 |
| 15408591E | 02 |
| 17210432 E | 02 |
| 19241446E | 02 |
| 21540633 E | 0 ？ |
| －．24137190E | 0 ？ |
| $27039163 E$ | 0？ |
| 50249693F． | 02 |
| 33742253 E | 02 |
| －． 57521618 E | 72 |
| －．41576319E | 0 ？ |
| 45905641 E | 02 |
| －． 5049 U163E | リ？ |
| 55178717 E | 0？ |
| 59909173E | 0 ？ |
| －． $64683537 E$ | 0 ？ |
| 69498055E | 02 |
| －．74350389E | 02 |
| －． 99238078 E | 0？ |
| $84158596 E$ | 02 |
| 89110896E | 02 |
| 91085956 E | 02 |
| 9091943E |  |
| 3397249E |  |



89 －RJGd9572E J2 . $.15624176 E 03$ . $.25657370^{\circ} 03$
．． 352326 JDE 03
. .4555 5191F 33
－．55793853E 33
－．57．781く07E 03
－．825JJ830E 33
．．11379757E 04
－125クJJ83E กA
－．14：101720E 04
.15539045 F 34
-17484618 E － 4
－． 19573880 E 04
－． $24570369 E \pi 4$
－．？ 7434130 F 04
－．3」561439E 04
－． $34335731 E 04$
－． $31789220 E 04$
－．4588リ192E 04
－．5U149660E 04
－． 54439205604
－． $58777667 E$ O4
$-.63152580 E 04$
$-.67561875 E 04$
－．72713297E 04
－． 76474550 OA
－AJ974683E $\cap 4$
－． $85195499 E 04$
$-93079870 \%$
-.74479350 P 04

Table C4. Numerical G Matrix

| $g_{53}$ |  |
| :---: | :---: |
|  |  |
|  |  |
| $.10823374 E \text { ク1 }$ |  |
| . $20279125 E$ |  |
| . 24461378 21 |  |
| .29857845E |  |
|  |  |
| .48109218601 |  |
| .58700000E O1 |  |
| 7193867 |  |
| .88565514E |  |
| -110U4029E 02 |  |
| 335924 |  |
| 425a429E 02 |  |
| 2769456 |  |
| 0877721E J2 |  |
| 5097554E O1 |  |
| - 84814833 El |  |
| 63」729 |  |
| 69266290E 01 |  |
| .63369727E O1 |  |
| 5845325 |  |
| . 54333842E 01 |  |
| . 5061 O690E 31 |  |
| .46600000E OL |  |
| .41852524E 01 |  |
| 36932846 EL |  |
| $32601122 E 01$ |  |
| -26751335E 01 |  |
| $.24612601 E$ |  |
| -19803648E |  |
| 14850739 E |  |
| 10330448 E |  |
| $\begin{array}{ll} 62836345 E & 00 \\ 25000000 E & 00 \end{array}$ |  |
|  |  |

$$
\begin{aligned}
& g_{63} \\
& .00000000 \mathrm{E}-80 \\
& -.15071135 E-05 \\
& \text {-. 20748258E-05 } \\
& \text {-. } 26010943 \text { F-05 } \\
& \text {. . } 30552883 \text { E-05 } \\
& \text {-. } 3446256^{3} \mathrm{E}=05 \\
& \text {-. } 38199523 E-05 \\
& -.41766140 E-05 \\
& -.45100000 \mathrm{E}-05 \\
& \text {-. } 48114902 \mathrm{E}-05 \\
& -.50641504 E=05 \\
& -.52646777 E-05 \\
& \text {-. } 54306652 E-05 \\
& -.55836747 \mathrm{~F}-05 \\
& -.573824025-05 \\
& \text {-. } 58915939 \mathrm{E}=05 \\
& \text {-.60391135E-05 } \\
& \text {.. } 61764463 \mathrm{E}-05 \\
& \text {-. } 6300320 \text { 8E-05 } \\
& \text {-. } 64098607 E-05 \\
& \text {. . } 65047508 \varepsilon-05 \\
& \text {-. } 65864219 E-05 \\
& \text {-. } 66569750 E-05 \\
& \text {-. } 67141469 E-05 \\
& . .67500000 \text { E-05 } \\
& \text {-. } 67591019 \mathrm{E}-05 \\
& -.67480366 E-05 \\
& \text {-. } 67253700 E=05 \\
& \text {-.66909006E-05 } \\
& \text {-. } 66374577 E-05 \\
& -.65630183 \mathrm{E}-05 \\
& -.64774424 \mathrm{E}-05 \\
& \text {-. } 63894156 \text { E-05 } \\
& \text {-. } 62870^{6} 14 \varepsilon-05 \\
& -.61500000 \varepsilon=05
\end{aligned}
$$

Table C5. Numerical H Matrix

| $\mathrm{h}_{32}$ | $\mathrm{h}_{37}$ | $\mathrm{h}_{39}$ | $\mathrm{h}_{41}$ | $\mathrm{h}_{42}$ | ${ }_{43}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -00000000E-80 <br> -30883092E 07 | .00000000 E -8n |  | - Ju00000nE-83 | - 0000000002-RO | $\therefore 57933 \text { Sefe } 030$ |
| - 133676 9E 08 | - $60411138 \mathrm{E} 0^{5}$ | $\because 13367689 \mathrm{E}$ 08 | $\therefore 11763653 \mathrm{E} 08$ | $-206763{ }^{4}{ }^{4} \mathrm{E}$ O7 | $\therefore 2^{5480129 E 04}$ |
| . 31397720 E O8 | $\cdots 12315261809$ | -. $31597720 \mathrm{E}^{0} 9$ | -. $278448661 E 08$ | -.47470964F 07 | - $59789118 E^{04}$ |
|  |  | $\begin{array}{rl}-583842396 & 08 \\ -912920968080\end{array}$ |  |  |  |
| -13897424E 09 | -. 24469943 E 06 | $-13997424 \mathrm{E}^{39}$ | -. $12425905 \mathrm{E}^{\text {a }}$ 9 | -. $273326644^{\text {e }} 08$ | -23686728E 05 |
| -1921.5642E 09 | --C7A15022E 06 | -. 13215642 E 09 | -. 173188895 EO | -. 414750999 E 98 | -i30667111 05 |
| -21739391E 09 |  | $\because \square$ |  | $\because \square$ | $\therefore \therefore 29150349 \mathrm{E}$ |
| -31950204E 09 | $\rightarrow 28839159606$ | $\because 31950204{ }^{\text {a }} 09$ | $\because 29593918809$ | $\because 69544171208$ | $\therefore 33230245805$ |
| . 42383543 E 09 | -34060607 E - ${ }^{\text {J }}$ | -- 42.5933543 E O9 | - 3971 UV74E 99 |  | -.46909478E ${ }^{\text {a }}$ |
| .40320900E 09 |  | $\begin{array}{rl}-.40329900509 \\ -3 & 34152535 \\ 09\end{array}$ |  |  | $-33313393 E 05$ $-\quad 2189974 E E 05$ |
| - 33350963809 | $-{ }^{-19074499 E} 06$ | $\therefore 33359963 \mathrm{E} 09$ | $\because 32483791809$ | $\therefore 50957237 \mathrm{~EB}$ | 14660146E 05 |
| -27570982E 09 |  | --27570982E 09 |  | - 3 O999171E no | - 80114216808 |
| -18321963E 09 | $\bigcirc \cdot .74569343 E^{05}$ | $\bigcirc 1332196380$ | $\because 18189292 E^{09}$ | $\bigcirc$ | - $\because 22354810 \mathrm{O}$ |
| . 14364062 E 09 | -. $\mathrm{P}^{2265113 \mathrm{E}} 05$ | -. 17364962 E 09 | -14295747E 09 | -. 04294232 E 07 | -. 11078441 E 04 |
| -1142400214E ${ }^{\text {a }}$ |  |  |  |  |  |
| - 739390003 EEO |  |  | $\bigcirc 7^{3669311 E ~} 08$ | $\therefore 251417336897$ | $\because 19598988 \mathrm{EE} 03$ |
|  |  |  |  | ( $\because 17949350807$ |  |
| . 36573652 E O8 | $\bigcirc$ |  | $\cdots{ }^{-36362476 E ~} 08$ | -.1228026E 07 |  |
| -26944206E $\mathrm{OB}_{8}$ | -. $33167944 E 04$ | $\because 29944206 E$ OR | $-28938708 \mathrm{E} 08$ | $\bigcirc \cdot, 57038496 \mathrm{E}^{06}$ | $\rightarrow 11480643 \mathrm{O}$ |
|  |  |  | - 23233109 E 09 |  |  |
| -13941119E OB | $\bigcirc \cdot-206345945^{04}$ | $\because 13941199^{05}$ | $\because: 13949672{ }^{\text {O }}$ |  |  |
| -11637035E 08 | -. 16161837 E O4 | -. 11637055808 | -. 11636952 E 08 | -. $15835970 \mathrm{E}^{06}$ | -10608942E 01 |
| .95256126E 07 | -. 12435925 E O4 | -. $95256126{ }^{07}$ | -. 95296701 E 37 | -. $12095176 \mathrm{Cl}^{06}$ | -.63013099E 00 |
| . 79397324 E 87 | -:98052033E ${ }^{\text {a }}$ |  | -.79394592E 07 |  |  |
| -94077223E 07 | -.6005252TE 03 | $\bigcirc \cdot .54017223 \mathrm{OF}$ | :-654079603E 07 |  | -ib4643323 00 |
| .44759426E 07 | -.47374824E 03 | -. $44759426 E 07$ | -.44760632E 07 | -, 45261632 E as | -9,9157256E001 |

Table C5. (Continued)

| $\mathrm{h}_{44}$ | $\mathrm{h}_{45}$ | $\mathrm{h}_{47}$ | $\mathrm{h}_{48}$ | $\mathrm{h}_{49}$ | ${ }^{h_{52}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -00000000E-80 | -00000000E-3n | - ogojo $000 \mathrm{E}-8 \mathrm{n}$ | -29333016E19 | . 00000000E-80 | - OOnOOOOOE-80 |
| -. 366545 TE 03 | -. 3 39861785 0 K | . 35356904 E J5 | $.29351145 E 10$ | .18876617 ET | .51471821E 07 |
| -.16171651E O4 | -. 14710854 SO | .15536200E 16 | .29311993E 10 | .45773318E Of | - 22279481E08 |
| -.37946777E O4 | -. 14772610 O | . 36799286806 | . 29394319 E 10 | .85916357E 07 | . 55662866808 |
| -.68752137E 04 | -. 64250597 ES | .67759474E 06 | . 29417973 E 10 | .14619415 E O8 | .97307064E 08 |
| -.14738728E 05 | -.10376641E 37 | . 10924709 E 07 | .29442621E 10 | $.2332810^{2} \mathrm{E} 08$ | .15715348E 09 |
| -.15033421E 05 | -.15299815E 09 | .15061070E 07 | . $29467184 E 10$ | .35001497E $0_{8}$ | .25162373E 09 |
| -.19463709E $\mathrm{O}_{5}$ | -.21146400E 07 | . 22139762 07 | . 29491240 E 10 | $.49814104 E 08$ | . 32026070 O9 |
| -.18901473E 05 | -. 24857000509 | . 25821667E 07 | .29494338E 10 | .55604353F. 08 | -3769546E 09 |
| -.12788960E 05 | -.23923732E 97 | .24576431 E OT | :29411291E 10 | .45084083808 | .36232318E 09 |
| -.21090472E 05 | -. 35160512 O | . 36236998 O7 | .29517457E 10 | .77513772E 08 | .53250340E 09 |
| -.29518495E 05 | -.46865272E 07 | . 43368796 Of | . 29559619610 | .1159414E 09 | . 70972511809 |
| -.21143244E 05 | -.44372282E 07 | . 45451362807 | 29531985E 10 | .94737945E 08 | .67201500E 09 |
| -.13月99265E 05 | -.4014n231E OT | . 418496133 Of | -29500635E 10 | . 71674613 E 08 | .60792089E 09 |
| -.93044586E 04 | -.36702017E 07 | . 3717688507 | .29414617E 10 | .35287750c 08 | . 59584938 Ca |
| -.50846649E O4 | -.30341272E 07 | . 30670776 F 07 | . 29441333 E 10 | . 35992607 E O8 | .49951637E 09 |
| -.275073818 04 | - 24975394E 07 | .25119782E 07 | 29415402E10 | . $23491.86{ }^{\text {c }}$ O8 | -37829596E 09 |
| -14302325E84 | $\therefore 20162926 E 07$ | - 23235329 OT | -29394391E 10 | -15021444E08 | . 31536605809 |
| -.70312315E 03 | -15801341E 07 | . $15443226 E 07$ | -29377459E 10 | -93296973E 07 | . 23940103809 |
| -. 356 J042E 03 | -.12545690E 07 | .12563.61E 07 | . 29365678 E 10 | .60260242E 09 | .19000359E O9 |
| -.18914133E 03 | -. 10166676 07 | . 10176329807 | . 29357616 E 10 | .40903349E 07 | .17397358E 09 |
| -.98749316E 02 | -.81390379E 06 | .91440717E 06 | .24351390E 10 | .27805221E 07 | .1<326514E 09 |
| -.52, ${ }^{33} 0{ }^{435} 82$ | -.65289701E $0^{6}$ | .65311302E $0^{6}$ | . 29346848 E + 8 | -19329052E 87 | ? 9087328 ¢ 08 |
| - 27576903 E 82 | -. 22226468 E 8 | . $52243543 E 86$ | .29343243EIf | 13422749E 07 | ¢79096608E 08 |
| -.13713853E 02 | -.90248516E 0n | . $43255515 \mathrm{O}_{6}$ | .2934023gE 10 | .89304962E 06 | $.604560860^{\circ}$ |
| -.72864997E 01 | -. 31852475 E 06 | . 31850174 E U6 | .29338236E 13 | .62232187E 06 | .48240343508 |
| -. 40178687 El | - 25537415 O | . 25339465 E 06 | -29336880E 19 | .446113a8E 06 | -38676230E 08 |
| -. 20138949 OL | -.19425520E 06 | . $19426556 E 06$ | . 29335144 E 10 | .30496333E 06 | .29419821E O8 |
| -.10975695E 01 | - | . 15342461 E6 | -29335026E 13 | ¢ 21974951806 | -23235198E 08 |
|  | - 12800329E DS | -12895672E On | .29334388E 19 | .16947361206 | -19395092E 08 |
| -.39994233E 00 | -. 10482732 E Of | -1)482936E 06 | . 29334226510 | .12876126E 06 | .193760212 08 |
| -.24783354E 00 | -. 07375045 ES | . 87376310 E 05 | .29333968E 10 | . 10024960 E 06 | -13232887E 08 |
| -. $15741546 E 00$ | - $13523223 E 05$ | . $73524026 E$ US | .29333774E 10 | . 79188151 CO | .11135038E 08 |
| -. $92963186 \mathrm{E}=01$ | -. 59510819 EF | . 5951129485 | .29333998E 1U | .60315483t 05 | :90128709E 07 |
| -.57855412E-01 | -49256785E 75 | .47257080E 05 | .29333475E 13 | .47268036505 | .74599043t 07 |

Table C5. (Continued)

| $\mathrm{h}_{57}$ | $\mathrm{h}_{59}$ | $\mathrm{h}_{61}$ | $\mathrm{h}_{62}$ | $\mathrm{h}_{63}$ | $h_{64}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| . $00000000 E-80$ | . $00000000 \mathrm{E}-30$ | . $00000000 \mathrm{E}-30$ | . $800000005-80$ | - 07000000500 | . 000000005080 |
| . 63790720 OS | -. 5147tu21E 07 | . $45396145 E 07$ | -.11542179E 07 | . . 96255230E 03 | ..61090919E 03 |
| -.13401856E 06 | -. $2279481 E 08$ | -.19606092E 08 | -.34460524E 07 | -.42466881E 04 | -26952752E 04 |
| - 20525434E 06 | -.52662866 OB | -.16408101E 03 | -.79118279E 07 | -.99648529E 04 | -.63244620E 04 |
| -.27618474E 06 | -. 97307064 O | -.86003751E OA | -15767731E 0S | ..18054364E 05 | -11458690E 05 |
| -.34498691E 06 | -.15915348E 03 | -.13955957E O3 | .28211701508 | -.28199984E05 | - 178978.ale 05 |
| -.40783239E 06 | -.23162373E 99 | -.20709842E 09 | -.45887773E OS | -.3947788uE 05 | -.25055702E 05 |
| . 46360037 E 06 |  | -. 23964765 E 07 | -.69125099E 05 | -.51111851E 05 | -. 3 <439515E 05 |
| -. 45630765 E6 | -.37645746E 99 | . 34411724 E 09 | -.79285911 0 O | ..49635415E 05 | -.31502455E 05 |
| -.3747A028E 06 | ..36232318E 09 | -. 33366139 EF | ..64453572E 08 | -. 33583909 E 05 | -2I314934E 05 |
| - $48065266 \mathrm{O}_{6}$ | -.33250340E 9 | -.43256530E Jo | -.11599695E 99 | -.59383742E 05 | -.35150786E 05 |
| -.5677767BE 06 | -.70972571E 09 | -.60298457E 09 | -.17814481E 09 | -. 77515797 ES | -.49197492E 05 |
| -.47995175E 06 | -.67201500E 09 | -.63595884F07 | -.14571261E 09 | -. 55522321 E 05 | -.35238739E 05 |
| -.38871997E 06 | -.60792009E 09 | -. 5357 U91E O9 | -.110U928JE 39 | -. $36499517 E 5$ | -. 25165441205 |
| -.31790765E 06 | ..55584938E 09 | . $54139652 \% 09$ | -.84928729E 08 | -24433584E 05 | -. 15507431 E 05 |
| -.23475998E O6 | -.45951637E 09 | -.45112977E 09 | - 54983618 E 08 | -.13352369E 05 | -.84744414E 04 |
| -17247515E 06 | -. 37829596809 | -. $-37383765 E 09$ | -.35714031E 33 | -.72234596E 04 | -.45845635E 04 |
| -12428224E 06 | -.30536605E 99 | -.3J3n8819E 09 | -.22729171E 98 | -.37558017E 04 | -. 23837209E 04 |
| -.87105189E 05 | -. 23940103509 | -. 23A26246E 09 | -.14049039E 0S | -. 18464068 F 84 | -.11718719E 04 |
| -.61968249E 05 | -. 19000357E 09 | -. 18941607 E 09 | -. 90549696 E 97 | -.9349649id 03 | -.59340070E 03 |
| -.45159194E 05 | -. 25397358 E 29 | -.15366104E 09 | -61514777E 07 | -.49668659E 03 | -.31523555 03 |
| ..32626898E 05 | -.12326514E 09 | -.12310552E 09 | . 011902893807 | -.25931647E 03 | -.16458219E 03 |
| -.23702497E O5 | -.98873206E 0n | -.93793083E OS | -.29242249E 07 | -.13687551E 03 | -.86871738E 02 |
| -.17239816E 05 | -.79096698E OR | -.79056925E 0.9 | -. 20380946 E 07 | -.72417161E 02 | -.45961505E 02 |
| -.12157017E 05 | -.00950086E OA | -. 61937460 F ¢ | -.1359?191E 07 | -.36J1268JE 92 | - 2 C65642dE 02 |
| $\bullet .886{ }^{3} 239 E 04$ | - A824u343E nA | $\cdots 42^{3} 11800^{\text {O }}$ | -.95064160E 06 | -19134405E 02 | -12144166E 02 |
| . 6.6580893 E 04 | -.38676230E OS | -. 33671848 O | -.68490786E 06 | -10550954E 02 | -.66964478E 01 |
| -.46585304E O4 | -. 29419821809 | -. 29417912808 | -.46996755E 96 | -.52805036E 91 | -.33564915E 01 |
| -.34390990E 04 | -. 232351988 OA | -.23234453E O8 | -.34036477E 06 | -.2882226UE O1 | -18292825E 01 |
| -.26936395E 04 | -. 19395092 E O | -. 17394920E O8 | - 263932A3E 06 | -. 1768157 EE O1 | -.11222086E 01 |
| -. 20759875 O4 | -.15870021E DA | -. 15876117E 08 | -. 29159626E 06 | -.10502517E 01 | -.66657035E 00 |
| -16342006E 04 | -. 13232887 08 | -. 13233499 ES | -.15776298E 96 | ..65081280E 00 | -41305590E 00 |
| -.13024123E 04 | - 61135039 EF | - 011135296 F 08 | -.12523995E 56 | -.4133142UE 00 | -20235909E 00 |
| -.10006755E 04 | -.40120705E 07 | -9J131004E 07 | -.95840.79E 05 | - 244122 SE 00 | -15493864E 00 |
| -.78958041E 03 | -.74599043c 07 | .. 74691 JFAE 07 | -.75436387E 05 | -.15192876E 00 | -.96425687e-01 |

Table C5. (Continued)



| $\mathrm{h}_{68}$ | $\mathrm{h}_{69}$ |
| :---: | :---: |
| 27230734 E 11 | .000n0000E |
| . $27233755 \mathrm{~S}^{2} 11$ | -314010206 07 |
| .27200951E I1 | -143193935 08 |
| .27<64893E 11 | .24365692E Oo |
| .27269001E 11 | . 38880171 E O8 |
| -27273095E ${ }^{2727} 1$ |  |
| :27277704E II | -92673922E $0_{0}$ |
| .27273780E 11 | , 75140138 E O8 |
| .27281474E 11 | , 12910962e 09 |
| -2728850 ${ }^{27283895}$ | -19323374E 09 |
| .27274604E 11 | -11945769E 09 |
| .27274334E 11 | .92146230E 08 |
| .27208787E 11 | .59987670E 08 |
| -27264465E 11 | -3915181E 08 |
| 129B141E 11 |  |
| . 27296141811 |  |
| .27294834E 11 | .60172248E 07 |
| 27233796E 11 | . 4634203 |
| .2723039E 11 | . 32215086807 |
| - 27232438 EE 11 | -22371239E 07 |
| -27231604E II | -103720312 07 |
| 21201378E 11 | . 74332313 E 06 |
| .27231189E 11 | . 50827222 E 06 |
| . 27291069 E 11 |  |
| :27290936E 11 | - 2146021 UE $^{\text {O }}$ |
| 27250893E 11 | . $16708276{ }^{\text {c }} 06$ |
| .27290860E 11 | .13198023E 06 |
| .27290631E 11 | 10052580 E |
| .27200010E 11 | 787800608 |

[^4]Table C5．（Continued）



$$
\begin{aligned}
& \mathrm{h}_{82}
\end{aligned}
$$

3.3109600 EE 07
$-14212302 E 08$
-.41380938 E 08
$-.62336027 E 08$
－．71498902E 98
－．58105275E 98
－． $10452323 E 09$
－． 16064845 E 09
－．1314n155E 09
-.99280118 E 0月
$\begin{array}{r}.76587513 E 0^{8} \\ .4958342 E 08\end{array}$
－ 32206403 O
－． $20496841 E 08$
-12669222 E
$\begin{aligned} & .12669222 E \\ & .81856422 E 07\end{aligned}$
－． $0.55473147 E 07$
$\begin{array}{r}-59473147 E 07 \\ -.3776743 D E 07\end{array}$
$\begin{array}{r}.37787435 E \\ 07 \\ -.26370243 E ~ \\ \hline\end{array}$
－． $18318434 E 07$
$.12257243 E$ O7
－．85727501E 06
－．61727941E 06
－．42381002E 06
$-.30693609 E 06$
$\begin{aligned} & -23801085 E 06 \\ & -1 月 178761 E 06\end{aligned}$
－ 14226840 E 06
-.86427935 E 05
$-68021456 E 05$

| ${ }^{\text {h }} 83$ | $h_{84}$ |
| :---: | :---: |
| －07000000E－80 | ．00000000E－80 |
| －．86801591E 03 | －．59090972E 93 |
| ． 38296027 P 04 | －．24305607E 04 |
| －．8986162UE O4 | －．57033102E 04 |
| ． 16281166805 | －10333203E 05 |
| ．254303438 05 | －．16140053E 05 |
| －． 25600388 F 05 | －． 22594814 F 05 |
| ．46091931E 05 | －． 29253491805 |
| －．44160508E 05 | －．28408464E 05 |
| ．30285489E 05 | －．19221503E 05 |
| －．49944267E 05 | －．31698477E OS |
| －． 69902039 F .05 | －． 44365596805 |
| ． 50069236 F 05 | －．31777792E 05 |
| －．32914797F 05 | －．20890264E 05 |
| －．22033854E 05 | －．13984380E $0^{5}$ |
| ． 12040976 F | －．76421302E 04 |
| －．65140127E 04 | －．91342939E 04 |
| ． 33669283 E 04 | －．21496054E D4 |
| －． 16650633 E 04 | －10567774E 04 |
| －．84313799E 03 | $\cdots .53512028803$ |
| ．． 44790488 CJ | －．28427491E 03 |
| －．23384789F 03 | －．14841757E 03 |
| －．12343238E 03 | － 78339693 O |
| －．63304761F 02 | －．an447429E 02 |
| －． 32475723 F 02 | －． 20.61544202 |
| －．17255133E 02 | －10951436E 02 |
| －．95146990E 01 | －66987610E 01 |
| －．47690970E 01 | －90268381E 01 |
| －．25991506E 01 | －10498208E 01 |
| －．15944987E 01 | －ibl19917E 01 |
| －．94710194E OO | －6，6110380E 00 |
| －．58689308E 00 | $\bigcirc 37248741200$ |
| ．37277495E 00 | － 23659160 DO |
| －．22014577\％ 00 | 13972145E 00 |
| ． 13700719800 | －．06953307E－01 |

Table C5. (Continued)

|  | ${ }^{\mathrm{h}} 85$ | ${ }^{\mathrm{h}} 87$ | ${ }^{\mathrm{h}} 88$ | ${ }^{\text {h }}$ 89 | $\mathrm{h}_{91}$ | $\mathrm{h}_{92}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -00008000E-80 | -000nu00eE-8n |  | -0000903uE-8, |  |  |
|  |  |  |  | -68796207E 07 | $\because 88660261{ }^{\text {a }}$ |  |
|  | $\cdots$ | -95173182E 06 | - 41292718 PE 11 | $\bigcirc 12913024 \mathrm{E} 38$ | $\because 31942891802$ | $\because 398631067{ }^{-1}$ |
|  |  | -10184088E 07 | -41296213E A1 $^{\text {d }}$ | - 21912633 E 98 |  |  |
|  |  | - ${ }^{164195185}$ |  | $\begin{array}{r}.35061582 E \\ \hline .5646417 E \\ \hline 88\end{array}$ |  |  |
|  |  |  |  |  |  |  |
|  |  |  | . 413072858111 | -74869413E 08 |  |  |
|  | -.35956799E 07 | . 36931800507 | . 41304286811 | . 67760303808 | -.12696010E 03 | -. 1775743 BE 02 |
|  | -.528444128 07 | - 54463195807 | .41311225E 11 | - 11650135 E 09 | $\cdots 195489900^{03}$ | -C 75702258E 02 |
|  | -.T0432979E 07 | . 72697149607 | . 41317562 E 11 | -17425727E 09 | -.14239347E 03 | -. $30217815 \mathrm{E} \mathrm{O}^{2}$ |
|  | -. $6869948485^{\text {e }} 07$ | .68312318E 07 | -4313409E 11 | -142388885 09 | $\because 11669349 \mathrm{E}$ 03 | -950084297E 02 |
| - | $\begin{array}{rl}\square 60329812 E & 07 \\ \because S 5162257 E ~\end{array}$ | -61399980E 07 | - 41308637611 |  |  |  |
|  | $\bigcirc \cdot .45602209507$ | -4599C238E 07 | -41299784E 11 | -94096031E 06 | $\rightarrow-15959229802$ | $\because 61214847 \mathrm{C}$ |
|  | $\because 37541931 \mathrm{E} 07$ | .3775<9318 07 | . 41295866811 | . 3530 K 944 E O8 | -. 76946336 E 01 | -.60040730E 02 |
|  |  |  | $-41292729 E 11$ $-41290184 E$ 0 |  | $\because 18950115 \mathrm{FE}$ |  |
|  | $\cdots$ |  |  |  | - $-10118924{ }^{\text {a }}$ | $\cdots$ |
|  |  |  | -41287201E 11 | . 61476759 St 07 | $\cdots 24526218802$ | $\because 949530918$ O2 |
|  | $\rightarrow 12232780 \mathrm{E} 07$ | -12244395E 07 | - $11286266 \mathrm{E}^{11}$ | -41790596E 07 | $\bigcirc \cdot .33449109{ }^{\text {O2 }}$ | $\because 404990 \mathrm{HSE} 02$ |
|  | -.98121351E 06 | . 98161333 E On | -41285303E 11 | . 29051004807 | -.39627447E 02 | -. 313988757502 |
|  | -. 7 R495139E 06 | -18510292E On | -41285041E 11 | -20174064E 07 | -.44054229E 02 | -. $34021397 E 02$ |
|  |  |  |  |  |  |  |
|  | $\because 383821266^{06}$ | - 38389208 EE | - 412840858 II | . 6770498535806 | $\bigcirc$ | $\bigcirc \because .25142549 \mathrm{C}$ |
|  | -. 29196106606 | . 29197651806 | . 41283914 E 11 | .45035262E 06 | -.35404405E 02 | -223458618 02 |
|  | -. 2305 A512E 06 | .23059393E 06 | . $11283806 E_{11}$ | . $330<7827 \mathrm{E} 06$ | -.31711239E 02 | - 20343891802 |
|  |  | -19240124E On | $\therefore 412^{83} 3740 \mathrm{E}$ 11 |  | $\therefore 29862002 \mathrm{E}$ 02 | $-1.18767020 \mathrm{E} 02$ |
|  | $\because 15755296806$ $\because \quad 13132261 \pm$ 066 |  | -41283606E 11 | -119352511E 06 | - 279690750 c 02 | -ilapserne |
|  | $\cdots 13132261 E 06$ | - 13132451 E Of | -41283647E 11 | -1067235E 06 | -. $25509801 E 02$ | -.164517 OUE 02 |
|  | -. 11050365506 | -11050486E 06 | -41283618E 11 | . 11901791806 | -. 23991990802 | -.19336140E 02 |
|  | -. 894433435 E O5 | . 19444058 Cb | .41283591E 11 | .97652734E 05 | $-.22465692 \mathrm{E} 02$ | -. 1363168780 |
|  | ..740317t5e 05 | . 14032218605 | .41283573E 11 | .71042733E 05 | -.20767908E 02 | -.16770633E 0 |

Table C5. (Continued)

| $\mathrm{h}_{93}$ | $\mathrm{h}_{94}$ | $\mathrm{h}_{97}$ | ${ }^{\mathrm{h}} 98$ | $\mathrm{h}_{99}$ | ${ }^{\mathrm{h}} 10,1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .00000000E.80 | .00000000E*- | . $000000000 \mathrm{E}-80$ | -.43196749E 02 | . $53695754 \mathrm{E}=09$ | . 59695754 E 0.09 |
| -. 77889916 E 03 | -.41178291E-0. | . 97916916 C -0? | .26326775E 01 | . 3416954 CE 02 | . 35340475802 |
| -.10381412E-02 | -.48174480E-03 | .14957118E=01 | . 15168875 E 01 | . 36703395902 | .593744998 02 |
| -.70428125E-83 | - $-170442<7 E-0^{7}$ | . $20627133 \mathrm{E}-01$ | . 35652681 E 0 | .40853664E $0^{2}$ | .93113660E O2 |
| .18444693E. ${ }^{3}$ | -99576591E.03 | . 32741371 E -01 | -.85081943E 00 | .4630098? 02 | .15049861E 03 |
| -17428844E-02 |  | . $31.745853 \mathrm{E}-01$ | -.21587737E 01 | .52863179F 02 | 22468879E 03 |
| . $32560766 \mathrm{E}-02$ | - < $6420598 \mathrm{E}=0$ ? | . $40117122 \mathrm{E}-01$ | E.3547A097E 91 | .6069653F 02 | . 32762302 E 03 |
| .450u2203¢002 | . 35139108 E - 0 ? | .41290251F-u1 | -.51058381E ग1 | .69713028E 72 | . 32406101803 |
| .22059199E-02 | - $20333437 E-02$ | . 48686649 E-01 | -.67956050E 01 | .77827001E 02 | -184919750 ${ }^{\text {d }}$ |
| . 18849573 E 03 | . 38060257 E -03 | . 446556988 -01 | -:95400012E 01 | .70014217E 02 | .6774554E 03 |
| .16872430E-01 | -11416224E-C) | . $76475772 \mathrm{E}-0$ ? | -.14061009E 02 | -74755036F 22 | .13065202E O4 |
| -47270262E-01 | -30971225E-01 | -.672n5773E-01 | -.16847818E 02 | .48994042F 02 | . 11080097504 |
| .40592073E-01 | . 26597868 -01 | -.57974902E-01 | -.1A19706AE 02 | .49185972E 02 | . 52407324803 |
| .29045303E-01 | .19094602E-01 | -.35960999E-01 | 0.19649452 E 02 | .54893246F 02 | .28167909 03 |
| . $19056404 \mathrm{E}=01$ | .12611713E-01 | -.16203318E-01 | -.21446726E 02 | .61146682E 02 | -11819362E 03 |
| -11149192E-01 | .74431721E-0? | -.37494696E-02 | -.23358433E 02 | .60917251E 02 | :19872254E 02 |
| . $554.87973 \mathrm{E}-02$ | - $37705119 \mathrm{E}-02$ | .46405938E-0? | -.25442126E 02 | .59864333E 02 | .64160331E 02 |
| .21562293E-02 | . $15441134 E-02$ | . $9474 \mathrm{~A} 350 \mathrm{E}-02$ | -.27820027E 32 | .56425668E 02 | .56706515E 02 |
| .84909738E-03 | .65854954E-03 | . 77 770910E-02 | -.33588137E 02 | .49432026E 02 | ,59369617E 02 |
| -. $92718301 \mathrm{E}-03$ | -. $51153469 \mathrm{E}-03$ | . $97753450 \mathrm{E}-02$ | -.33445782E 02 | . 47159836 E 02 | -35656618E 02 |
| -.18026902E-02 | --10941537E-02 | -10238524E-01 | -i36702227E 02 | . 44528499 O | .57299063E 02 |
| -. 19622769 E 02 | -12128747E.02 | . 92203666 E-02 | -.40428217E 02 | . 40483715 E 02 | .61183475 02 |
| -.20640648E.02 | -.12898396-02 | .04619505E-02 | -.44647399E 02 | .31389295 02 | .64067809E 02 |
| -. $20752753 \mathrm{Co2}$ | -.13059730E-02 | . $77395480 \mathrm{E}-02$ | -.49531U93E 02 | . 34015554E 02 | .64995209E 02 |
| -. $10890052 \mathrm{c}=02$ | -.11930720E-02 | . $60326054 \mathrm{E}-02$ | -58574696E U2 | .30922476E 02 | .61s62081E 02 |
| -.16485811E02 | - 10435395 E - ${ }^{\text {P }}$ | . $55845183 \mathrm{E}-02$ | -64028916E 62 | . 27567494802 | .50783020E 02 |
| -.14862324E.02 | -.44264063E.0. | .48702339E.02 | -.62037837E 02 | .25141072E 02 | .48644163E O2 |
| - $13066442 \mathrm{E}-02$ | -083023022E-03 | -41502970E-02 | -61453292E 02 | -22544974E 02 | . 39331301502 |
| --11350099E-02 | - P2254390E.03 | -35366677E=02 | - 66649762 E 02. | . $2634316 E^{02}$ | . 359504628 E 02 |
| $-10182699 \mathrm{E}=02$ <br> -.94151985 E <br> .03 |  | $.31250109 \mathrm{E}-02$ $.28410765 \mathrm{E}-02$ |  | $\begin{array}{r}.16766650 \\ .17495013 \% 02 \\ \hline 02\end{array}$ | 30037435 E . .267366715 02 |
| $-94151985 \mathrm{E}-03$ -86950059 E 03 | $-99999133 E-03$ $-.55441625 E-03$ | $.28410765 E-02$ $.25907242 E-02$ |  | .17495013 F <br> .164515858 <br> 1 | $\begin{aligned} & 26738671502 \\ & .24140297 E 02 \end{aligned}$ |
| -.80021516E.03 | -931050532E-03 | -23607562E-02 | -90249141E 02 | -1533607E 02 | 21702032 02 |
| -.936682s8E-03 | -.4723697E.03 | . 21501988 -02 | -.1092424iE 03 | -156jisge d2 | ? 2122337980 |
| -.69797203E-03 | -.44573762E-03 | .2018h859E-02 | -i12a26074E 03 | .16770635E 02 | .21409361E 02 |

Table C5. (Continued)

|  | $\mathrm{h}_{10,2}$ | $\mathrm{h}_{10,3}$ | $\mathrm{h}_{10,4}$ | $\mathrm{h}_{10,5}$ | ${ }^{\text {10, }} 1$ | ${ }^{h_{10,8}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -00009000E-80 | -60000000E-80 | . $0 \cdot 3000009 \mathrm{E}-\mathrm{BO}$ | . $00000000 \mathrm{E}-80$ | . $00000000 \mathrm{E}-\mathrm{BO}$ | -142821T3E 04 |
|  |  | -24074655E=0? | P2396146E-02 $\therefore 86610116 E 02$ | - 7 P4447520E-02 | $\therefore 16242124 E-01$ $\therefore 184239 E-02 ~$ | -i9099534E 02 |
|  | $\because 51849600 \mathrm{E} 01$ | $\because 91939947 E 01$ | $\because 19709534 \mathrm{E}-01$ | . $6708 \mathrm{~F} 23 \mathrm{EEF01}$ | $\begin{array}{r}-\% \\ -19661395 \mathrm{~F} \\ \hline 1001\end{array}$ | :261)6464E 02 |
|  | $\because 228990348 \mathrm{E}$ | $-62538808 E-01$ | $\therefore 45124183 \mathrm{E}-01$ | ¢11231886E 00 | - $71924639 \mathrm{E}-01$ | - $601<39082 \mathrm{E} 02$ |
|  | $-.54951080 \mathrm{E} 02$ | -.99410015E-0! | $\because-.52180015 \mathrm{E}-01$ | -16184411E 00 | - 150659399 E 00 | -15040499E 03 |
|  |  |  | - $\because 131457016$ On | - ${ }^{2} 18699937 E$ 00 |  |  |
|  | $\because 6340$ Y760E 02 | $\rightarrow 62656879 \mathrm{E}-01$ | $\because \because 74433536 E-01$ | .36766801E 00 | $\cdots 16825446800$ | :26979821E 03 |
|  | $\because 2681157$ LE 03 |  | -. 15242424178 on | -42196935E 00 | - 23268676800 | -50796329E 03 |
|  | $\bigcirc \cdot \rightarrow 10360819 \mathrm{E}$ O4 |  |  |  | -130510638 ${ }^{\text {a }}$ | . 1886902929 E 03 |
|  | $-.50672131803$ | -.i6267978E On | $\because 77779724 \mathrm{E} 00$ | $\because \cdot 90953304 \mathrm{E}$ On | -29311126E 01 |  |
|  |  |  | $\because 55117431500$ |  | -11740931E 01 | -77038625E ${ }^{\text {P3}}$ |
| 앙 | $\triangle 39329136 E 02$ | :21391054E on |  |  |  |  |
|  |  | -13798719E 00 | - 11003512 E 90 | . 743848495 ENO | $\rightarrow 96274226 E-n 1$ |  |
|  | - $110065300^{\circ} \mathrm{O}$ | . $780733993 \mathrm{E}-01$ | $\because 4: 051963 \mathrm{E}=01$ | -19246037E 00 | -.22829848F00 | - B81044abe ${ }^{\text {a }}$ |
|  |  | - $929791087 \mathrm{~F}-01$ | $\bigcirc \cdot .17333094 \mathrm{EFO1}$ | -20420852E 00 |  | -10011896E O4 |
|  |  |  |  |  |  | .10878430E ${ }^{\text {O }}$ |
|  | $\bigcirc 12370330 \mathrm{E} 02$ | - $91167101 \mathrm{E}-01$ | -73923842E=01 | . 35949629880 | $\because \cdot \mathrm{O} 746897500$ | -13492092E 04 |
|  | - 96903399 E 01 | -. $62991088 \mathrm{E}-01$ | -85348317¢ 01 | . 363240398800 | $\because, 38225757800$ | -14908198E ${ }^{\text {a4 }}$ |
|  | $\because 64483227 \mathrm{El}$ | - $11969329 E-01$ |  |  | $\therefore 36694896 \mathrm{E}^{\circ} \mathrm{OD}$ | -16636620E 04 |
|  | -. 33245052 E 01 | -. $12900400 \mathrm{E}-11$ | . $93506559 \mathrm{E}-01$ | . 344 C3448E 00 | -.36407218E 00 | [195463015 04 |
|  | - 124337411 E 01 | -.69007897E-01 | -88517273E-01 | $\bigcirc 31933798 \mathrm{E} 00$ | $\because 333699640^{00}$ | :21262048E 04 |
|  | . 23637763 E 02 | -. $68632569 \mathrm{E}-01$ | -86053994E=01 | -29r909ife of | -. 31486331800 |  |
|  | -93166677E 00 | $-.654988044^{\text {E }}$-01 |  | . $27291784{ }^{\text {c }} 00$ | $\rightarrow 28867$ P09E 00 | . 20170204 E O4 |
|  | -12248824E 01 | -. $61326448 \mathrm{E}-01$ | -75368884E=0) | .24911567t 00 | $\because \because 263299050^{0} 00$ | -20170204E 24. |
|  | -13330193E 01 | -. 98881922 E 01 | . $71929390 \mathrm{~F}-01$ | .23480570E 00 | $\because 24800156600$ | .239804312 04 |
|  |  |  |  | -22697354E 00 | $\because 23930944 \mathrm{E} 00$ | ? $2602060_{8 E} 04$ |
|  | .14904019 E 01 | --97146495E-01 | -68907371E-01 | $\bigcirc 21933630500$ | $\cdots 23125040 \mathrm{E} 00$ |  |
|  | -14302222E 01 | --957368717e01 | . $66897260{ }_{[0}=01$ | :21116403E 00 | -.22247097E 0 | -915762018 O4 |
|  | -13170023E 01 |  | -64807953Em01 | .20272974E 00 | -.21342397E 00 |  |
|  |  | -. $94099625 \mathrm{E}-01$ | .64360753E-01 | . 19980671800 | - 21026443 E 8 | .39764697E 04 |

Table C5. (Continued)

|  | $\mathrm{h}_{10,9}$ | $\mathrm{h}_{11,1}$ | $\mathrm{h}_{11,2}$ | $\mathrm{h}_{11,3}$ | $\mathrm{h}_{11,4}$ | $\mathrm{h}_{11,7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -00000000E-80 | -00000000EE8n | -00000000E-80 | -0000n00 E-80 | -00000000E-80 | -00000000E-80 |
|  |  |  |  |  | -34906620E-01 |  |
|  | $\rightarrow 141738610^{0}$ | . 1062 S391E 03 | -.67707914E 0 ? | $-16923+24 E$ On | -.10740717E 00 | - SAB16989E 00 |
|  | -16455331E 02 | -13936716E 03 | $\because 12383202503$ $\because 1+6508015$ 03 |  | $\because 141332$ UE 00 | .12116378E 00 |
|  | -10210893E 03 | -19931417E ${ }^{\text {O }}$ |  | $\bigcirc \because 31439329590$ |  | -8802757E 00 |
|  | -13613998E 03 | - 1573042 Cl | $\because 38449828 \mathrm{O}$ | $-34879210 \mathrm{E} 00$ | -:22337332 00 | -11299993E 01 |
|  | ;79199747E 02 | - 24320790 E 03 | $\because 49199636 \mathrm{E} 03$ | -:31339959E 00 | $\because 2369899900$ | -12094943E 01 |
|  |  | - $228773600^{3} 0^{3}$ | -. 5948423680 | -. $38323422^{1 E} 80$ | - 244499929 E 00 |  |
|  | . 11963401803 | -27549530E 03 | $\bigcirc 67711683 \mathrm{E}^{03}$ | $\because 38200024800$ | $\cdots 24297215 \mathrm{E}$ OO | -1 1314959 E OI |
|  |  |  | $\bigcirc$ |  | - -2328368680 | -11881513E of |
| $\stackrel{\sim}{0}$ | -35152065 ${ }^{\text {O }}$ O | -18878975E03 | $\because 77687731{ }^{\circ} 03$ | -,3101965de 00 | $\because 19684931{ }^{-1}$ | -10046523E 01 |
|  | -12636129E 03 | -15978062E 03 | -. 75638588803 | -. 27013393800 | -.171447998 00 | . 87301136800 |
|  | -38716225E 02 | . 14134806803 | -. 70348259 E 03 | $-2204128 \mathrm{ED} 0$ | $\because 14282852 \mathrm{E} 00$ | . 72894890 F , 00 |
|  |  | .109357202 03 |  | -17730733E 00 | $\therefore 11259895800$ | -3749717 ${ }^{\text {a }}$ |
|  | $\because \cdot 90301917 E 01$ |  | $\bigcirc \cdot \rightarrow 46012670803$ | \#-10444734E 00 |  | . 33832334020800 |
|  | -10303226E 02 | -499a28T3E 03 | -. $39067807 \mathrm{Cl}^{03}$ | $-{ }_{-} 79451366 \mathrm{E}-01$ | -. 50444993 F-01 | - 25745419800 |
|  | , 12437769 E 02 | . 39797245802 | -. $32988248 E 03$ | -;60343497E-01 | $\because, 38299998 \mathrm{E}-01$ | -19398973E 00 |
|  |  |  |  |  |  |  |
|  | . 95820010 E O1 | : 19816308 c | $\begin{array}{rl}-22645093 E ~ & 03 \\ -.18520022 E ~ & 03\end{array}$ |  | -214893918.01 $-.15974999 E 01$ | -1096941aE ${ }^{\text {P }}$ |
|  | . 63636536460 E O2 | :96469284E OI | $\because \because 14999168 E$ | $\cdots{ }^{-18691988 E-01}$ | $\bigcirc \rightarrow 178374066.01$ |  |
|  | -14053415E 01 | . 666199829 E O! | $\because 12070071503$ | $-1382282 \mathrm{TE} 01$ | $\bigcirc \cdot 67730303 \mathrm{E}=02$ | $\bigcirc 6474581$ coil |
|  |  | -42759501E 01 | $-9.9797018{ }^{8 E} 82$ | -.10299463E-01 | $\therefore 653429445-02$ | - 33940630 E 01 |
|  | -.96070236E 00 | -27943397E O1 | -. 78390470 022 | -.773799335.02 | -. $49711263 \mathrm{E}-02$ | - 29064728 E 001 |
|  |  | -15199886E 01 | -.63727973E 02 | -.50799522E-02 | -37318703 Cl -02 | -19046205E00 |
|  | -13708353E 01 | -44467nisge on | -. $52752257 E 02$ | -. $45673298 \mathrm{E}-02$ | -. $28987791 \mathrm{E}-02$ | -14794389E001 |
|  | -.14914897E 01 | -. 32741523 E 0 | -. $44071655_{\mathrm{E}} 02$ | -, $35921301 \mathrm{E}-02$ | -,2279842 ${ }^{3} \mathrm{E}=02$ | -11635545t-01 |
|  | $\rightarrow 15019601$ O1 | -.91939742E $n$ O | $\therefore 36779130 \mathrm{E} 02$ | $\therefore 28310395 \mathrm{E}-02$ | $\bigcirc 17967950 \mathrm{E}-02$ | -91702373602 |
|  | $\rightarrow 14394896 \mathrm{E} 01$ | -13899242E 01 | -. 3 U676046E 02 |  | $\bigcirc 1419343{ }^{\text {- }}$-02 | ,12436067E02 |
|  | -.14251233E 01 | -.16656129E 01 | -.25545447E 02 | $0.176807145-02$ | -.1122154CE-02 | -912709995-02 |
|  | -.13867844E 01 | -1.16674648E 01 | -. 21391000 E 02 | -.1414094E-02 | $\rightarrow 89550594$ | :45907679E002 |

Table C5. (Continued)

|  | $\mathrm{h}_{11,8}$ | $\mathrm{h}_{11,9}$ | $\mathrm{h}_{12,1}$ | $\mathrm{h}_{12,2}$ | $\mathrm{h}_{12,3}$ | ${ }^{\mathrm{h}} 12,4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - $000092000 \mathrm{E}-80$ | -00000000E-80 | . $00000000 \mathrm{E}-8 \mathrm{n}$ | -00000000E-80 | -000090,0e-80 | - 000000000 EERO |
|  |  | - ${ }^{189990765 E}$ | $\because 18338853 \mathrm{E}$ O2 | - 135353916 | $\because 1873588 \mathrm{E}$-01 |  |
|  | - -53037766801 | -24935352E 02 |  |  |  |  |
|  | $-51666752 \mathrm{El}$ | -12059213E 03 | -.22729000FE 03 | -11219327E 03 | -. 34337626800 | -94844143E 00 |
|  | --49944925E 01 | - 19359115803 | -. 33043054503 | . 21688507803 | -. $56311265 \mathrm{~F}^{0} 0$ | - 14867410 E Of |
|  | -. 47603582 E 01 | - $23173277 \mathrm{C}^{03}$ | $-.44750281 E^{03}$ | . $36215037{ }^{\text {03 }}$ | -.05307755 00 | 21117663E 01 |
|  |  |  |  | .5428282356 $.686009668 ~$ 03 03 |  |  |
|  | $\because 950818430801$ | $\bigcirc \cdot 9248145803$ | $\bigcirc \rightarrow 015279660^{04}$ | -63509633E 03 | $\because 21925928801$ | - 41428590801 |
|  | -. 3508 BSTOE 01 | -673600672 03 | -. 11190562804 | -11843531E 04 | $-24405073 \mathrm{EOL}$ | -47408163E 01 |
|  |  | . 13327335 E 03 | -. $533312045^{03}$ | -1455999TE 04 | $-26412748 \mathrm{E} 01$ | . 51372975 E o1 |
|  |  |  | $\cdots$ |  |  |  |
|  | $\because 20883030 \mathrm{E} 01$ | .,75574722E 03 | - 47491703 E 03 |  | $\because \because 33836036 \mathrm{~F} 01$ |  |
|  | -.17826433E O1 | . 70498846803 | . 54976385 E 03 | - 19761944 E 03 | -. 326594478 or |  |
|  |  | .02347484E 03 | . 54633569 E 03 | - $30129036 E 03$ | $\rightarrow 29602286 \mathrm{E}$ O1 | - 39033933 E 01 |
|  | -. 82380728500 | . $03779435 \mathrm{E}_{03}$ | . 503062288 E 03 | . 17590252503 | -. $25915403{ }^{\text {c }} 01$ | - 334 प3394E 01 |
|  | -. 58692999 E 00 | . $460007898 \mathrm{C}^{03}$ | .43127128E $0^{3}$ | , 10494731E 03 | $\because 22350517 \mathrm{E}$ O1 | . 28445157801 |
|  |  |  | -367931928 23 | ? 605994951 E 02 |  | -2408822g4E 01 |
|  |  |  | -30923316E ${ }^{\text {P3 }}$ |  | $\cdots$ | -20300990E 01 |
|  |  |  |  |  |  |  |
|  | $\bigcirc, 96887402$ E.01 | -itis 18890 E 03 | $\bigcirc .1739159 \mathrm{E} 03$ | ¢70651446E 01 |  | . 11372690801 |
|  | $\because 65541471201$ |  | -14332118E 03 |  | $\because 7372085850$ | -92082824E 00 |
|  | - ${ }^{427527274 E-01}$ | -12069646E 03 | -116332935 03 | i26739545E 01 | - 5933311341800 | -140899027E 00 |
|  | -. $27650061 \mathrm{E}=01$ | -97067594E 02 | . 946400335 E 02 |  |  | - 99977615 E 000 |
|  | $-18894696 E=01$ $-1359599 E=01$ |  | . 71043006 Cl 02 c |  | $\cdots$ |  |
|  | $\bigcirc \rightarrow 83647192 \mathrm{E}-02$ | ; 5 STIT7666E 07 |  |  | - $\because 259344098080$ | .391096968 ${ }^{\text {a }}$ |
|  | $-\square 36471925002$ $-93406425 E 002$ | . 44071319 E 02 |  | . 901601668000 | -25934098 00 |  |
|  | $\because \because 30061776 E 002$ | -35779953E 02 | - 31056540 E 02 | -40512668E 00 | $\rightarrow 1800776{ }^{\text {a }}$ | :22969040E 00 |
|  | $\because \quad \because \quad 13540725 \mathrm{E}=02$ | -30679974E 02 | -31051577E 02 | -11909764E 00 | - 15077123880 |  |
|  | -. $36017897 \mathrm{c}=03$ | .25545419E 02 | .25960984E 02 | -36437773E 00 | -.12554949E 00 | P19675080E 00 |
|  | -00000000E-80 | .<1391000E 02 | .21898661E 02 | :32508830E 00 | -.10512679E 00 | .19125729E 00 |

Table C5. (Concluded)

| $\mathrm{h}_{12,5}$ |
| :---: |
| . $00000000 \mathrm{E}-80$ |
| .14949932E Ón |
| .63275738E 00 |
| .14627321E 01 |
| .26425066E 01 |
| .41694648E 01 |
| .60151530E 01 |
| .81170580E 01 |
| .10377661E 02 |
| . 12546320 E 02 |
| .14258449E 02 |
| .15446217E 02 |
| .16145598E 02 |
| .16340430E 02 |
| .15911364E 02 |
| .1483926E 02 |
| -13115767E 02 |
| .11308762E 02 |
| .96705574E 01 |
| . 82097510 OL |
| .69313370E 01 |
| .57741210E 01 |
| .47571535E 01 |
| .38902237E 01 |
| .31504234E 01 |
| . 25350165 E 01 |
| . 20385925 E1 |
| .16462341E 01 |
| .13382820E 01 |
| .11078651E 01 |
| .925424.78E 00 |
| . 77226673 OO |
| .64409509E 00 |
| .53635832E 00 |
| .44912119E 00 |

$\mathrm{h}_{12,8}$
. 00000000E-80 $.11412501 E 03$ .60435217 E 02 $.28961368 E 01$ -.55378875E 02 -. 11432945E 03 -. 17142334E 03 -. 22521516 F 03 -. 28040261 E 03 -.4248j6U8E 03 -. 41657708 E 03
-. $36867617 E 03$
. $.38044169 E 03$
$-.32546242 F 03$
$-.27331663 E 03$
-. 24751854 E 03
$-.2019198703$
-. 15925823E 03
-. 13149222E 03
-.1J24303n5 03
$-8.8236210 \mathrm{E} 02$
-. $60928771 E 02$
. $.44798443 E 02$
-. $34989484 E 02$
-. 23175392 E O?
-. 16127623 E 02
$-.10188935 E 02$
. . 65690396 OL
-. 37322570 E OL
-. 14082082 E 01
.32059346 E 0
.16766883 E 01 $.28233336 E 01$ .35895590 E 01 .46766735 OI
$\mathrm{h}_{12,9}$
$.00000000 \mathrm{E}-80$
-.17159167E 01
-.15250458E 02
$0.49758614 E 02$
$-11572530 E 03$
-. 22165639E 03
$-.36835139 E 03$
-.55063755E 03
-. 69491440 E 03
-.84726099E 03

- 1204.3049E 04
-. 14758155 E 04
$-1359689 E$ U4
-10042986 04
$-.73354622 E 03$
- 50577772 E 03
-.30717619E 03
-. $18006246 E 03$
$0.10787618 \mathrm{E} ~ 03$
2.62647069E 02
-.36916163E 02
-:21814242E 02
0.12779247 O
-. 75321987 O1
-.45211398E 01
-.28905959E O1
-. 19124200E OI
$-13092330 E 01$
-. $96011733 E 00$
$-.75198976 E 00$
$-.61066974 E 00$
-.51147080E 00
-. $43766564 E 00$
. $37765601 E 00$
-.33467616E 00

Table C6. Numerical D Matrix

|  | $\mathrm{d}_{42}$ | ${ }_{6}{ }_{62}$ | $\mathrm{d}_{82}$ | $\mathrm{d}_{10,2}$ | $\mathrm{d}_{12,2}$ | $\mathrm{d}_{10,1}$ | $\mathrm{d}_{12,1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -00000000E-80 | -00000000E-87 | - 0 Jegouote -80 | -00009000E-80 | -000n00006-80 | -. 14282ipe ${ }^{\text {a }}$ | -00000000E-80 |
|  | $\cdots$ | $\bigcirc \cdot \square 24515089 \mathrm{E} 06$ | $\because 22110063 E 06$ | : 311306485000 | -63275136E 00 |  |  |
|  | -141717610E 06 |  | $\because 52262406 E^{06}$ |  | - 114262732181801 | -11266297E 02 | $\bigcirc 16610387803$ |
|  | -664253997E 06 |  |  |  |  |  |  |
|  | - $\because 15293815 \mathrm{E}$ O7 | -T, | $\because 22986240 \mathrm{E}$ 07 | -2186997E 00 | . 6015153150 c |  |  |
|  |  |  |  |  | -81170580E 0101 |  |  |
|  | $\because 23923732 \mathrm{E} 07$ |  | -35996796 37 | -42196935E 00 | -12546320 02 |  |  |
|  |  |  |  | - $44331311919 \mathrm{E}-01$ |  | $\because .94432790 \mathrm{E}_{03} 0$ | $\bigcirc 11007988 \mathrm{E}$ - ${ }^{\text {a }}$ |
|  |  | -18103786E 07 | -7104328796 <br> .669904046 <br> 07 |  | - 1544468217 E O2 |  |  |
|  | $-\cdot 40140231507$ | -.06900365E 07 | -.601329812E 07 | -64237404E 00 | -16340430E 02 | $\because 6.62092267903$ | $\because 66344221 E 02$ |
|  |  | -961170928E 07 | -.35162357\% 07 | -34914900E 00 | -13911364E ${ }^{\text {a }}$ |  | -ith990900E 02 |
| - | - $\because 24978394 \mathrm{El}$ O7 | -9,41630696E 07 | $\cdots$ | -.716323374E00 |  | - ${ }^{\text {P13812718E }}$ | -is6331592E ${ }^{\text {a }}$ |
|  | -20162926E 07 | -. 336046768 U7 | -. 30304397507 | -192460376 00 | -11308762E 02 | $\because: 61911267 E^{03}$ | $\bigcirc$ |
|  | $-15807341507$ | -, 26349596807 | -23759057 E 07 | -2042n892E 00 | -96709574E 01 | - 10613651 E 04 | - $185469888 E^{\text {O2 }}$ |
|  | - 12349690680 |  |  | :29354942E 00 |  |  |  |
|  | $\because{ }^{-813903796} 0$ | -16964063E 07 |  | -.35942629e800 | : 5774121210 E Oi | $\cdots$ |  |
|  |  | -,108530753E 07 | $\bigcirc 98121351 E 06$ | :3624n998E 00 | -47571539E ${ }^{\text {a }}$ |  |  |
|  |  |  | - -784999139 E 06 |  | - $389022378 \mathrm{E}^{01}$ |  |  |
|  |  |  |  |  | . 31504234 E O1 |  |  |
|  | $\because 25937415 E 06$ | -:94256398E 06 | $\because 36382126806$ | :29150917t 00 | -203699<9E Oi |  | -.13309867E 03 |
|  | -. 194239288806 | -T323T50800 06 | -. 24196106806 | :27911764E 00 | -1646234E 01 | $\rightarrow{ }^{-19419240 E 804}$ | $\bigcirc 96707239800$ |
|  | $-.15341901_{E} 0_{6}$ <br> -. $12806329 E 06$ | $-25567035 \mathrm{E} 06$ | $-.23050512 \mathrm{E} 06$ <br> -.1 19247607E 06 | 24911567800 <br> 23405706 <br> 00 |  |  | -9274996E 00 |
|  | -. $12806329 E 06$ | $-21343601 E 05$ | $-.19247607 E 06$ | -23480570E ${ }^{226975545}$ | - $11078691 \mathrm{E}^{01}$ |  | - ${ }^{\text {a }}$ |
|  |  |  | - $\quad=1375329666^{066}$ |  | -92542478E 00 | $\because 23424992 \mathrm{E}$ | -.16902710E 00 |
|  |  |  |  |  | -71226693E 00 |  | -i94995213E=01 |
|  | -3.39519019 E 09 |  |  |  | . 33635032 EP 00 |  | $\bigcirc \cdot 177016 \pm 5 \mathrm{E} 0 \mathrm{O}$ |
|  | -.99256785E 09 | -.62094641E 0.5 | -. 74031779 O5 | .19960671E 00 | -449121t9E 00 | 0.39266394804 | .000000006-80 |

Table C7. Retabulated Reference Trajectory Data

| TIME(SEC) | mach number | $V\left(F T / 5^{\circ} \mathrm{C}\right)$ | - (LB/FT2) | gamatrad) | R (FEET) | THRUST(LE) |  | WEIGHT(LB) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | -00000njuE-80 |  | $05-80$ $8 E O 1$ | $\begin{array}{r} 5707963 \mathrm{E} \\ -15676379 E \text { ol } \\ -150 \end{array}$ | $\begin{aligned} & 2 n 909836 E \text { of } \\ & .20910033 F \\ & 2001 \end{aligned}$ | - 31999999 F $.52058045 k$ | $\begin{aligned} & 07 \\ & 07 \end{aligned}$ | .35000000 E 07 <br> $.34319256 E 07$ |
| -500000noe ol |  |  | 0 | E 01 | -2090. 20.1053 OB |  | 17 07 |  |
| .15000000E n2 | . 22569208 E U0 | . 25657370 O 03 | . 71778342 E 02 | -15961124E OI | $.2091+7 \times 7 E$ O8 | .525417731 | 07 | .3S9577T1E 07 |
| $\because 20 n 00000 \mathrm{E} 02$ | .31340900 E U0 | $.35232600{ }^{-1} 03$ | . 12059300E O3 | -1497A24E 01 | . 20913229E08 | .229606201 | 07 | .32277027E 07 |
| .25000000E 02 | .4073040,jE 00 | .45556101E 03 |  | .14217918E 01 | . 20915227E OB | .534A58601 | 07 | . 315962AAE O7 |
| -30000node 0? | .51233025E 09 | .56793853E 63 | .29415151E03 | .134500<9E 01 | . 20911734E 68 | . 5410il4AF | 07 | - S0915541E 07 |
| .35000000 E 02 | -6281000JE OO | .69081200E 03 |  | -12718040E 01 | .20920769E P\% | .54783?401 | 07 | . 30234798 F 07 |
| -40000000E 02 | . 75950000 O OT | .82500800E 03 | $.50528700 \mathrm{E}^{\circ} \mathrm{O}$ | -12034743E 01 | . 20924343E 08 | . 55509171 F | 07 | . 29554055807 |
| $\because 45000000$ E 02 | .90331193E 00 | . 96676167 E 03 | .80935063E 03 | .11945602E 01 | .20928467 E 68 | . 56251042 L | 07 | -28873312E 07 |
| .50000000E 02 | -10545586E 11 | -11078757E O4 | .69034707E 03 | -10650814E 01 | . 20933087 E O8 | . 26975362 F | 07 | -28192569E 07 |
| .5500n000E 02 | .12179218E 1 | .125000R3E d4 | . 74359326 E 03 | . 995966 y1E 00 | . 20938136E 08 | .57652369 E | 07 | .27511326E 07 |
| .60000000 E 02 | .14007900E 01 | -190017PJE O4 | .77749340E 03 | -92757268E 00 | . $20943564 E 08$ | .50<637238 | 07 | -268319A3E 07 |
| .65000000 E 02 | .16085496E O1 | .15639045E 04 | . 78517 CA5E 03 | - 86066282 E 00 | . $20949331 E$ 08 | . 38797317 F | 07 | . 26150341507 |
| . 70000000 E 02 | .184n7917E O1 | .17484618E 04 | .76390U97E 03 | -7969736E OO | .20955420E 08 | . $59544267 E$ | 07 | . 25469596 E 07 |
| . 75000000 O | . 20878880 E O1 | . 19573880 E 04 | . 71091200803 | . 73459163 E 00 | . 20961825E O8 | . 59602436 E | 07 | . 74788854 ET |
| $.80000000 \mathrm{E}^{\text {. }} 02$ | ,2328175t 01 | .219333AUE 04 | .64692608E 63 | .67476374E 00 | . 20968538 E 08 | .59874456E | 07 | .24108111E 07 |
| $.8500000 n E ~$ <br> .92 <br> $.90000000 E ~$ | $25749649 E$ $.28429089 E ~$ . | . 245703 S9E 94 | $.53981550 F C 3$ <br> $.4612400 E ~$ | $\begin{array}{r} .62291820 E 00 \\ .57314867 E 00 \end{array}$ | $\begin{aligned} & 20972956 \mathrm{E} \\ & .20982868 \mathrm{BE} \end{aligned}$ | $\begin{aligned} & .60071321 E \\ & .60 ? 11780 \mathrm{E} \end{aligned}$ | $\begin{aligned} & 07 \\ & 07 \end{aligned}$ | -23427367E 07 <br> $.26746625 E 07$ |
| .95000000 E 02 | .313E3786E OL | .3066143gE OA | $.39137036 E 03$ | .52736866E 00 | . 20990455008 | . $6034945 \%$ | 07 | .26065seze 07 |
| .10000000E 03 | 43488419E 31 | .34095731E 04 | . $33032523 E 03$ | .48539838E 00 | . 20998290808 | . 60989036 | 07 | . 21385135 O 07 |
| . $10500000 \mathrm{E}^{\text {c }}$ | .379R4680E D1 | .31780220 E OA | $.27512000{ }^{\text {c }} 03$ | .44696137E 00 | .21006351 E 0 | . 60429349 E | 07 | . 20704396E 07 |
| -11000000E 03 | -41340986E O1 | . $41714257 E 04$ | . $226633660^{3}$ | .41181889E 00 | . 21014612 E O8 | .60555291E | 07 | -20023613E 07 |
| -115000n0E 03 | .44885733E DL | . 45880192 EG | .18531610E 03 | .3796ADO2E 00 | . 21023 42E 08 | .59448291E | 07 | .19345307E 07 |
| .12000000E 03 | .48395900E 01 | . 50140669 UA | .15006600EC3 | . 35n25267E 00 | . 21031599 O | .57<75769E | 07 | .186851135 07 |
| . 12500000003 | .51866899E O1 | . 544392055 a4 | .12974742E 03 | .32317312E00 | . 21046227808 | . 55103832 E | 07 | . 10092963 E 07 |
| .13000000 E 03 | .592^9737E 01 | .58177667E 04 | $.97099517 E 02$ | .29819422E00 | . 21048870 E 08 | . 53073874 t | 07 | .17494007E 07 |
| . 13500000 E 03 | .58748080E DI | .631523A0E O4 | . 78410000002 | .27504644E 00 | . 21057478 ECO | . 511450218 | 07 | . 16857015 E 07 |
| -14000000E 03 | .62377461E 01 | .67561875E O4 | . 63741717 E 2 | . 25357055 E Ot | . 21066088 ECO | . 493308856 | 01 | .16291264E 07 |
| .14500000E 03 |  | . 72003297E J4 | . 52766682 E 02 | -2335041E 00 | .21074410E O8 | . 47612036 E | 07 | -157453R2E 07 |
| . 15000000503 | .71359isije ol | .76474550E 04 | $.441377600 E 02$ | . 21493730 CO | .21082661E 08 | .459661158 | 07 | .15248495E 07 |
| -15500000E 03 | $.76382699 \mathrm{ED}$ | .809746R3E 54 | .36782120E 02 | .19752322E 00 | . 21096073E 08 | -4438696E | 07 | .14709386E 07 |
| . $160000000^{03}$ | .81656911E 0t | .85495499E 04 | .3U677388E 02 | .18127864E 00 | . 21-9a765E 08 | .92867136 E | 07 | .142t9571E 07 |
| 6500000E 03 | .87173030E 01 | $.90049870 \mathrm{E}^{04}$ | . 25546000 E 02 | .16599826E 00 | . 21106118E08 | .41404768 E | 07 | 13744078E 07 |
| .17000000E 03 | .92704007E O1 | .94479350E O4 | .21391000E 02 | .15214033E 00 | .21113189E © | -406434592 | 07 | . 13249904 E OT |

Table C7. (Continued)

|  | time(sec) | DW/nt | Iry(SLug.ft2) | Ix |  | ${ }_{\text {x }}$ | XCH(PEET) | $\mathrm{c}_{\mathrm{cm}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 000000E-80 | -.13614800E 05 |  |  |  | ${ }^{4} 7500000{ }^{\text {e }}$ - |  | 77400000E 01 |
|  | . 50000000 E E 01 |  |  | - $303633000 \mathrm{E}^{08}$ | -33771000E 09 |  |  | . 79000000 E 01 |
|  | :13000000E 02 |  |  | . $302227000 \mathrm{E}^{08}$ | -34999000E 09 | -44709882E 88 | -94680080E O2 | ${ }^{8} 86608000801$ |
|  | ?20000002 02 | -13614879E 05 | -34022000E 09 | . 290849400000008 | .34244000E 3349000 | -4193017965 ${ }^{\text {a }}$ | -959100802 02 | . 84808000008 O1 |
|  | -23n00000E 02 | -136148988 05 | -33254009E 09 | -29787000E 08 | . $32743000 \mathrm{E}^{09}$ | -40514706E ${ }^{\text {a }}$ | -97170nooe 02 | . $158000000 e^{\text {a }}$ of |
|  | -3000000E ${ }^{\text {O2 }}$ | $\because 1361484868$ $\square O 136148068$ 05 | .32301000E 09 |  | .32005000 E 09 <br> $31262000=09$ |  | .98439680F 02 | -61700000E ${ }^{\text {of }}$ |
|  | ¢40000000E 02 |  | -30980030E 09 | -2928600 E ${ }^{\text {d }}$ | ${ }^{-3} 309180800^{29}$ | -36323529E ${ }^{8}$ | -10102080E 03 | :91709000E O1 |
|  | -49000000E 02 |  | -30217000E 09. | Cil 103008 E 08 | -29744000E 09 | -34926471E | -10235800E ${ }^{\text {O3 }}$ | -939000000E oi |
|  | :53000000E 02 | -13614877E 05 | -286720noe og | .28720000 08 | .28268000e 09 | .33232353E 88 | -10515000E 03 | P9629900ne ${ }^{\text {al }}$ |
|  | -60000000E 02 | $-{ }^{-136148395} 05$ | . 27889000 E |  | -27908000E 09 | . $30735294{ }^{\text {a }}$ ¢ 08 | . 1065500 JEE 03 | ${ }^{10} 10110000 \mathrm{E}$ 02 |
| $\infty$ | -69000000E 702 |  | -27096070E 09 | :282960000 08 | - 267350008080 | -29338235E 27901176 | -10798090E ${ }^{\text {O3 }}$ | -1037909E 02 |
|  | :75000000E 02 | $\because 13614837 \mathrm{ES}$ | -25475000E 09 |  | .25959000E 09 | -26544718E O8 | -111820408 03 | -10990000E 02 |
|  | - 00000000 E 02 |  | -24642000E 89 | -27533000 08 | -24356000209 | -25147059E 0 | -11261800E ${ }^{\text {c }}$ | -112600002 02 |
|  | :90 | $\bigcirc{ }_{-13614625 E}$ | ${ }^{-2}$ | . 27256000 E of | -22693000E 09 | .22352941E ${ }^{\text {ab }}$ | - $115969100^{\text {a }}$ O |  |
|  | -95000000E 02 | $\because 13614913 E \quad 05$ <br> $13614814 E 05$ | :2201170 | .26692000E 08 | . 212839000 E 09 | -209598020 ${ }^{\text {a }}$ | -1179301JE O3 | -1230000日e 02 |
|  | -10500000E 03 | $\because 13615914{ }^{-1} 05$ | -21173000E ${ }^{2017}$ | .2632098080808 |  | ${ }^{-19556824 E}{ }^{108}$ | -121969010e 03 | - 12700008 E 02 |
|  | $11000000 \mathrm{E}^{03}$ | -13612296E 05 | -19200000E 09 | -29589000E 08 | $\bigcirc 19108000 E^{09}$ | :16764706E 8 | -123510006E 03 | :13500000E 02 |
|  | :11509000E ${ }^{\text {d }}$ |  |  | -29194415e oi | .101089694E 09 | -15367647E 0 |  | -140311039E 02 |
|  | $\bigcirc 12500000 \mathrm{E}^{0}$ | $\because 123928890^{05}$ |  |  |  |  |  |  |
|  |  | $\because 11963160 E$ $\square$ $\because 11521024 E 5$ 05 | -14873507E O9 | -23901617E 08 | -19293547E 09 | 111764712 ${ }^{\circ}$ |  | -13563566E ${ }^{\text {P2 }}$ |
|  | -13500000 ${ }^{140000005}$ | $\because 11521$ | -14319331E ${ }^{132716395}$ |  |  | -99794118E 3635 | -13434102E ${ }^{\text {d3 }}$ | -161123saE 92 |
|  | -14500000E 09 | $\because 10724635 \mathrm{E}$ OS | . 1213596358 | [ |  | :6382359E |  |  |
|  | ${ }^{15000000 E} 030$ | -.10358926E 05 | -11115s「5E 09 | - $21924469{ }^{2} 08$ | -114111099E 09 | . 396868353 E 97 |  | -17699577 02 |
|  | ${ }^{1} 16000000 \mathrm{E}^{\text {O3 }}$ | O4 |  | ${ }^{214193318} 08$ | -104306998 09 | -41911765E 09 |  | -16531247E 82 |
|  | -16500000E 03 | -.90315293E 04 | -POTA10REE OB |  | -94936142E ${ }^{\text {a }}$ |  | -146963258 03 | -191943218 ${ }^{\text {che }}$ |
|  | OE 03 | 9588929E 04 | . 70614292 E Of | !197096ate Oa | :19380542E OB | ? 00000000 -80 | ch154471E | [20s77000E 02 |

Table C7. (Concluded)

| TIME(SEC) | ${ }^{0}$ | $\boldsymbol{\sigma}_{0}$ | $\dot{Y}_{0}$ |
| :---: | :---: | :---: | :---: |
| .00000000E-80 | .156155E 01 | -. 925025E-02 | -.829977E-03 |
| . 50000000 E 01 | . 155813 E O1 | -.951153E-02 | . 245741 E-03 |
| .10000000E 02 | .156058E 01 | -.837053E-02 | .252946E-03 |
| .15000000 E 02 | . 153979 El | -. $163191 E=01$ | -.676157E-02 |
| -20000000E 02 | . 146649 El | -.313296E-01 | -0146632E-O1 |
| .25000000E 02 | .138831E OL | -. $334858 \mathrm{E}-01$ | -. 155121 E -01 |
| .30000000E 02 | .132879E 01 | -.162107E-01 | -. 150493 E -01 |
| .35000000E 02 | .126778E O1 | -. $402818 \mathrm{E}-02$ | -.140857E-01 |
| .40000000E O2 | .119785E OL | -.562295E-02 | -.135885E-01 |
| .45000000E 02 | . 112018 E O1 | -.143753E-01 | -.139067E-01 |
| -50000000E 02 | .104276E 01 | -.223243E-01 | -.138491E-01 |
| .55000000 E 02 | .975836E 00 | -.201309E-01 | -. 137819 E -01 |
| -60000000E 0̇2 | .918401E 00 | -.917139E-02 | -.135550E-O1 |
| .65000000E 02 | .861390E 00 | . $727108 \mathrm{E}-03$ | -.131788E-01 |
| .70000000E 02 | . 799559 EO | . $348499 \mathrm{E}-02$ | -.126311E-01 |
| .75000000E 02 | .736354E 00 | .176200E-02 | -.119439E-01 |
| .80000000E OZ | .674571E 00 | -219303E-02 | --111758E-01 |
| .85000000E 02 | .615547E 00 | -.737141E-02 | -. 103611 -01 |
| -90000000E 02 | .559856E 00 | -. $132927 \mathrm{E}-01$ | -.954982E-02 |
| -95000000E 02 | . 506750 E 00 | -. $206182 \mathrm{E}-01$ | -.876794E-02 |
| . 10000000E 03 | .453905E 00 | -.314932E-01 | -.803059E-02 |
| . 10500000E 03 | .397841E 00 | -.491201E-01 | -.735039E-02 |
| -11000000E 03 | -345105E 00 | -. $667141 \mathrm{E}-01$ | -.671767E-02 |
| -11500000E 03 | .309578E 00 | -.701023E-01 | -.614686-02 |
| -12000000E 03 | .290189E 00 | -.600641E-01 | -.563896E-02 |
| -12500000E 03 | .266438E 00 | -. 567349E-01 | -. 519871 -02 |
| -130000006 03 | .229375E 00 | -. $688188 \mathrm{E}-01$ | -.480318E-02 |
| .13500000E 03 | . 186608 CO | -.884386E-01 | -.445871E-02 |
| - 14000000 E 03 | .147316E 00 | -. 106254 EO | -.413977E-02 |
| -14500000e 03 | -120881E 00 | -. 112699 00 | -.345986E-02 |
| -150000008 03 | . 106916 E 00 | -. 108022E 00 | -360201E-02 |
| -15500000E 03 | .835837E-01 | -.113940E 00 | -.336217E-02 |
| .16000000E 03 | .436393E-01 | -.137639E 00 | -.315020E-02 |
| -16500000E 03 | . 236275 E-02 | -.163636E 00 | -.289464E-02 |
| -17000000E 03 | 236143E-01 | -.175755E 00 | -.279137E-02 |

Table C8. Pitch Damper (c1) Covariance Results


Table C8. (Continued)

|  | RESPONSES | (1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{t}{ }$ | IB1 | D[B] | 18? | Mib2 | $1^{\text {R }} 3$ | F183 |
| 1 | .000E-80 | . $000 \mathrm{E}=80$ | . 000E-80 | . O~UE-8「 | - ©ujE-8: | -00?E-80 |
| 2 | -.876E 04 | -.226E 05 | -. 136 C 05 | -.11UE CE | -115F U5 | . 153 F 26 |
| 3 | ..919E 05 | .633E 05 | . 567F 06 | . A5AE JF | .165E 77 | .134E 97 |
| 4 | -.299E 06 | . 776 C | . bue e7 | .128E UT | . 333 E ט7 | -2Cle 07 |
| 5 | -.653E 06 | . 367 E 05 | . 319 O | . 129E 27 | .667E07 | -2U'R 07 |
| 6 | -.110E 07 | -.622E 05 | . 434 E 07 | .964E CE | .853F l? | .167E 47 |
| 7 | -.15BE 07 | -.237E $0_{6}$ | .494E 07 | . 340 E -6 | - 1lle uo | . 85 ¢F 36 |
| 8 | -.193E 07 | -.410E O6 | . 57 UE U7 | .511E 65 | .1186 | . 597E 06 |
| 9 | -.188E 07 | -.672E Of | .680e 07 | -. 7rioc ${ }^{\text {a }}$ | .130F 08 | -.313E 06 |
| 10 | -. 250 E 07 | -.122E 07 | .351E 07 | -.3505 C7 | . 896507 | -.425E 07 |
| 11 | ..400E 07 | -.974E 06 | . 260E 07 | -.940F 06 | . 9078 - 7 | -. 347 E 06 |
| 12 | -.403E 07 | $\because 127 E 07$ | . 421 F 07 | -. 115 E - 7 | - İOE 8 | -.361F 06 |
| 13 | -.318E 07 | -.201E 07 | .558E 07 | -.362E 67 | . 132 E \% | -.344E 97 |
| 14 | ..220e 07 | -.155E 07 | -505E 07 | -.376F | .111F 49 | -.427F 97 |
| 15 | -.102E 07 | -.33RE 06 | . 2.77 F 07 | -.194E 47 | . 584 E | -.276E 07 |
| 16 | -.177E 06 | .667E 06 | .232E 06 | -.137E ne | .602F Ce | -.104E -37 |
| 17 | $\cdot 173 E 06$ | -112E 07 | -. CJUE OG | -123E 47 | -.170F ${ }^{\text {¢ }} 7$ | .640E 06 |
| 18 | .125E 06 | :863E 06 | -.525E 06 | .133517 | -.10cF 07 | .117e Of |
| 19 | -.139E 06 | $.327 E 06$ | . 314 F 06 | . 664 E ? 6 | .692F 66 | -682E 76 |
| 20 | - 4 4 4806 | -. 566 ES U5 | .614r. 06 | -.126E Uf | . 15 CE 47 | -.139F 06 |
| 21 | -.629E 06 | -.257E 06 | . 548906 | -.572E ! f | . 1 AgF 67 | -.625 ${ }^{\text {E }} 36$ |
| 22 | -.738E 06 | -300E O6 | .297506 | -.744E j 6 | -139E U? | -.852E ${ }^{\text {- } 6}$ |
| 23 | ..744E 06 | -. 240 OE OR | -. 0 OLF 05 | -.717E 06 | . 827 F ט6 | - 8SLE 06 |
| 24 | -. 681 E 06 | -.150E Of | -. 359F06 | -. 557 E U U 6 | . 256 E 36 | -.731F $\mathrm{n}_{6}$ |
| 25 | -. 574E 06 | -.821E 05 | -.524E00 | -. 378 E U6 | -.15Ce UE | -.572E U6 |
| 26 | -.475E 06 | -.280E 05 | -.571E 06 | -. 190 E -16 | -. 350 F . 06 | -.279F 8.6 |
| 27 | . .40406 | $-220 E 05$ | -.611E $0^{6}$ | -.15]E UA | -.5J4F C6 | -. 22?E U6 |
| 28 | -. 335 E 06 | ..194E 05 | -.640E D6 | -. 138E Of | -. ${ }^{-2885}$ U6 | - 2:3E br |
| 29 | $-287 E 06$ | -.116E05 | -.644E 96 | -.746E 5F | -.744E 06 | $-.11 U E 06$ |
| 30 | $\begin{array}{r} .258 E 06 \end{array}$ | -.730E 04 | $\begin{array}{r} .648 \mathrm{E} \\ -66 \end{array}$ | -.479E UE | . .747 E 06 | -.691E ii5 |
| 31 | -.231E 06 | -.866E 04 | -.665 06 | -. 573t U5 | -.8i9F uf | -.84GE 05 |
| 32 | -.210E 06 | -.581E 04 | -.672F 06 | -. 372 E - | -. 3465 i6 | -.54CF 05 |
| 33 | -.191E 06 | -.333E 04 | -.662E 06 | -. 198 Em | -. 8.55 E lie | -. 203 E ¢ 05 |
| 34 | -169E 06 | -. 277504 | -.6445 06 | -.162E 05 | -.652E C6 | -231F 05 |
| 35 | -.152E 06 | ..220E 04 | -.63:15 06 | -.121F. 35 | -.850E i6 | -.173E 65 |

Table C8．（Continued）

RESPONSE COVARIANCES（1）

| $\underline{\mathrm{t}}$ | DELTA | DELTA＊DEI．TA | UDELTA | 02001 | IELO | $\Delta \gamma$ | $\Delta \theta$ | $\Delta \Sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ．000E－80 | ．000E－80 | －10jE－80 | －ncte－8r |  | － 018 CE － | －（L）E－RG） | ．Donesou |
| 2 | －214E－08 | －111E－06 | ． $873 \mathrm{E}-05$ | －7バ4E－03 | －313E－r¢ | －113E－136 | ． $757 \mathrm{E}-17$ | －112E＝0？ |
| 3 | ． 589 E .04 | ．．274E．05 | ．217E－04 | ．2a1E－U1 | ．1UAE－C4 | ． 8 90E－06 | ． $66 \hat{C} E$ C 4 | ． 128 E |
| 4 | ． 894 E －04 | －．188E－04 | ．100E－03 | －79̇3F 01 | －196E－し品 | ． $1298-03$ | ． 736 Em 3 | －13AE 82 |
| 5 | ．108E－03 | －．287E－04 | ． $247 \mathrm{E}-03$ | ．1ri5E i3 | －1r8E－ria | ． $853 \mathrm{~F}-33$ | － 2 23E－i3 | ．115E ${ }^{4}$ |
| 6 | ．121E－03 | －． $374 E-04$ | ． $408 \mathrm{E}=03$ | ．521E t3 | ．211E－C4 | $.254 \mathrm{~F}=93$ | ． 47 Cr－C2 | ．120E 85 |
| 7 | －128E－03 | －． $493 \mathrm{E}-04$ | ． 10 UE－02 | ． 169764 | ．$\angle 22 \mathrm{~F}-\mathrm{C} 4$ | － 52 QE－02 | －¢15E－0？ | ． 730 E 05 |
| 8 | ．145E－03 | ．．662E．04 | ． $198 \mathrm{E}-02$ | .433 EC | ． 253 E －L4 | ． $915 \mathrm{E}=02$ | ．126F－31 | ．284E 06 |
| 9 | －159E－03 | －．877E－C4 | ． 306 E－02 | ．959E 34 | ． 277 F －04 | －142F－01 | ．182F－01 | ． 879 Cb |
| 10 | ．841E－04 | －．812E－04 | ．271F－n2 | .186 E 5 | ． $144 \mathrm{~F}=04$ | －200E－01 | － c 3FF－il $^{\text {a }}$ | ． 231 ET |
| 11 | ．119E－03 | －135E－03 | ．721E－02 | $.313 E 15$ |  | ． 25 EE－J1 | － $689 \mathrm{c}-31$ | ．528E 07 |
| 12 | ．191E－03 | －．285E－03 | ．17UE－01 | ． 488 E U5 | ． 336 E －C4 | ． $314 \mathrm{E}-01$ | ． 354 EmCl | ． 1 C8E 08 |
| 13 | ．201E－03 | －．300E－03 | ． $163 \mathrm{E}-01$ | ．739E 6 | ．35UE－C4 | ． 37 AE －1］ | ． $422 \mathrm{EF-r} 1$ | ．2n3E C8 |
| 14 | －168E－03 | －245E－03 | －121E－01 | －109E U6 | －29］E－04 | ．447F－01 | ． $483 \mathrm{E}-31$ | ． 361 E U8 |
| 15 | －121E－03 | －168E－03 | ．777E－02 | $.157 E$ Ú | ．208E－U4 | －514F－61 | ． $534 \mathrm{E}-31$ | ．610E O8 |
| 16 | －692E－04 | －．874E－04 | －353F－02 | ． 220 ELV | ． $119 \mathrm{EF-04}$ | ． 5778 －01 | ． 5 cce－［1 | ．993E 08 |
| 17 | ． 395 E－04 | －．405E－04 | －138E－02 | ．3n3E Of | ．678E－C5 | ． $633 \mathrm{~F}-31$ | ．624E－31 | ．156E 09 |
| 18 | ． $233 \mathrm{E}-04$ | $-189 \mathrm{E}=04$ | ． $494 \mathrm{~F}-03$ | ．410E C6 | ． 399 E －${ }^{\text {c }}$ | ． $662 \mathrm{E}-01$ | ． $664 \mathrm{EF-11}$ | ．239E 09 |
| 19 | －130E－04 | －．917E－05 | －172E－03 | ． 545 E c6 | －224E－05 | $.725 \mathrm{~F}-91$ | ．-9 SE－0） | －3E7E 09 |
| 20 | ．718E－05 | ． 4688.05 | ． 556 E．04 | ． 712 E | ．123F－rs | ．761E－01 | ． 72 ¢ E－ 1 | ．522E U9 |
| 21 | ． $400 \mathrm{E}=05$ | －240E－05 | －188E－04 | ．915E Li6 | ． 684 E －06 | －7cle－01 | ．751E－01 | ． 748 ES |
| 22 | －221E－05 | －．128E－05 | ．671E－05 | $.116 E$ UT | ． 378 E －6E | $.815 \mathrm{E}=01$ | ． $769 \mathrm{E}-01$ | ．105E 10 |
| 23 | ．111E－05 | － $680 \mathrm{E}=06$ | $.232 E-05$ | ．145E 07 | ．189F－it | －83aE－J1 | $.783 \mathrm{E}-01$ | ． 145 E 10 |
| 24 | ． $478 \mathrm{E}-06$ | －．327E－06 | ．741E－06 | $.178 \mathrm{E} \mathrm{Cl}^{7}$ | ．811E－07 | － 8 50E－j1 | ． 79 E－01 | ．197E 10 |
| 25 | ．162E－06 | －131E．06 | ．216E－06 | ．216E 07 | ．273E－u゙7 | ．A62E－01 | ． 799 Ec －1 | ． 26.5 E 10 |
| 26 | －482E－07 | $\therefore 42 B E-07$ | －572E－07 | ． 257507 | －8C7E－0E | －972E＝01 | － en EE－Cl | .350 E 10 |
| 27 | ． $430 \mathrm{E}-08$ | －．874E－08 | ．187E－07 | ． 303 EL | ． 668 －69 | －879E－n1 | － $604 \mathrm{E}-01$ | ． 455 E 10 |
| 28 | ． 786 E－08 | ：761E－08 | ．818E－08 | ．352E 07 | ．148E－c8 | ． $884 \mathrm{EF-01}$ | －E04．E－OI | .585 E 10 |
| 29 | ． 337 －07 | －147E－08 | ．220E－08 | ．404E C7 | ． 599 E －08 | ．88RE－01 | ． 8 f 2 E －01 | ． 743 E 10 |
| 30 | ．607E－07 | －812E－08 | ，337E－08 | ． 460 E 二T | ．106E－07 | ．89CE－01 | ． 799 F －01 | ．933E 10 |
| 31 | －103E－06 | －144E－07 | －408E－08 | ． 520 ECT | ．181E－07 | ．891E－0］ | ． $796 \mathrm{E}-01$ | －116E 11 |
| 32 | －139E－06 | ．．291E－07 | ． $744 \mathrm{E}=08$ | ． 583 CT | ． $243 \mathrm{E}=07$ | ．891E－01 | $.792 \mathrm{E}-01$ | .143 E 11 |
| 33 | －162E－06 | － $412 \mathrm{E}-07$ | －112F－07 | ． 650 E U | ． 28 ล́E－07 | －891F－01 | ． $788 \mathrm{EF-01}$ | ．174E 11 |
| 34 | －182E－06 | －．480E．07 | ．129F．07 | $.720 E 07$ | ． $317 \mathrm{E}=07$ | －889E－01 | ． $783 \mathrm{E}-01$ | .210 Cl 11 |
| 35 | ．198E－06 | －．542E－07 | ．149E－07 | .791507 | $.344 E-67$ | ． $887 \mathrm{E}-31$ | ． 778 E －01 | 251E 11 |

Table C8. (Continued)

RESPONSE COVARIANCES (1)

|  | $\tilde{\mathrm{t}}$ | NIT | NITADIT | DNIT | Qalf | QALF DQALF | DQALF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2}$ | $\begin{aligned} & .000 E-80 \\ & .648 E-03 \end{aligned}$ - 20aE=n2 | $\begin{aligned} & 000 \mathrm{E}-80 \\ & 146 \mathrm{E}=02 \end{aligned}$ | $\begin{array}{r} .000 E=80 \\ .331 E=02 \end{array}$ | $\begin{aligned} & .0 n 0 E-8 n \\ & .116 E-01 \end{aligned}$ | $\begin{aligned} & .000 E-80 \\ & .490 E=02 \end{aligned}$ | $\begin{aligned} & .000 E-80 \\ & .529 E=02 \end{aligned}$ |
|  | 3 | $298 \mathrm{E}=02$ <br> .210 O <br> 2 l | $.338 \mathrm{E}-02$ $.394 \mathrm{E}=02$ | $.577 E-02$ $.734 E-02$ | $.577 E 01$ $.978 E 01$ | $289 E-01$ $.311 E 60$ | $.194 E 00$ $.146 E ~$ |
|  | 5 | .254E-01 | :159E-02 | . 276 E -01 | .135E U2 | .904E 00 | .633 F 01 |
|  | 6 | -481E-01 | .291E-02 | $.900 E=01$ | .172E 02 | .163E Ul | .222E 02 |
|  | 7 | .132E 00 | .657E-02 | .279E 00 | . $214 \mathrm{EP2}$ | .241E 01 | .723E 02 |
|  | 8 | -250E 00 | :111E-01 | .636E 00 | . 243 E U2 | -301E 01 | -192E 03 |
|  | 9 | -328E 00 | -179E-01 | -104E O1 | . 267 E 0? | . 363 E 01 | .422E 03 |
|  | 10 | .736E 00 | -133E-01 | $.229 E 01$ | .508E U2 | .602E 01 | -876E 03 |
|  | 11 | . 187 OL | -152E 00 | . 720E 01 | .641E 02 | -.432E U1 | .186 E 4 |
|  | 12 | .183E 01 | - 598E 00 | .357 E 02 | .474E 02 | -.603F 01 | .361E 04 |
|  | 13 | $157 E 01$ | -426E 00 | . 378 E 02 | - 40 OE U2 | -316E 01 | . 586 E 04 |
| $\mapsto$ | 14 | -158E 01 | - 363 EO | . 217E 02 | . 368 A \% | .114 E O | . 660E 04 |
| $\omega$ | 15 | -117E 01 | -.254E 00 | .720E 01 | . 260 EF 7 | .963E 01 | . 470 E UA |
|  | 16 | . 704 E 00 | -841E-01 | . 221E 01 | -1ARE O? | . 608 Cb Of | .276E.04 |
|  | 17 | . 434 E 00 | $\because 105 E-01$ | .978 E 00 | -142E 02 | -.410E 61 | .159E 04 |
|  | 18 |  | -.519E-03 | .651E 00 | . 110 E O? | -.317E U1 | . 940 O ${ }^{3}$ |
|  | 19 | .242E 00 | -317E-C2 | . 445 E 0 O | .898E J | . .150 F 01 | . 556 E 03 |
|  | 20 | .214E 00 | -. $160 \mathrm{E}-02$ | - 494E 00 | -.774E 01 | -. 556 E UC | -330E O3 |
|  | 21 | .207E 00 | -.141E.02 | . 533 EO | .678E Ol | -. 172 E 0 | .197E 03 |
|  | 22 | -191E 00 | - $196 \mathrm{E}=0$ ? | . 448 E DO | .574E O1 | -.647E-01 | .116E 03 |
|  | 23 | .178E 00 | -. 246 -0? | . 396 EO | . 468 El | -. $314 \mathrm{E}-61$ | .681E 02 |
|  | 24 | .161E 00 | -.236E-02 | . 349 E 0 | . 374 E ? | -.793E-C2 | . 395 E 02 |
|  | 25 26. | 1615600 $.127 E 00$ | $-227 E-02$ $-118 E-0 ?$ | -262E 00 | -292E 01 | $.692 E-i ́ z$ .853 E - 2 | .220F 9? $.115 \mathrm{E} \text { U2 }$ |
|  | 27 | .113E 00 | $\because 100 \mathrm{E}-0$ ? | . 123 F 00 | .165E n1 | . 837 E -02 | .382 El |
|  | 28 | -962E-01 | -103E-02 | .808E-01 | .122E 01 | . $824 \mathrm{E}-\mathrm{i} 2$ | . 296201 |
|  | 29 | .836E-01 | -.333E-03 | . $524 \mathrm{E}-01$ | .912E 60 | . 6C6E-02 | .152E 01 |
|  | 30 | -751E-01 | - 122E-03 | - $342 \mathrm{E}-01$ | .694E CO | . $434 \mathrm{E}-0 \mathrm{C}$ | . 765 F 00 |
|  | 31 | .672E-01 | -.467E.03 | . 208E-n1 | . 533 E in | . 351 E - 0 | . 348 E 0 |
|  | 32 | -608E-01 | - $203 \mathrm{E}-03$ | -1JJE-nl | -4R4E UN | - 2 F3E-L2 | . 13 AE 00 |
|  | 33 | .536E-01 | -442E-05 | -50くE-02 | - 3CAE LO | -186E-62 | . $4705-01$ |
|  | 34 | .571E-01 | .159E-04 | $.177 \mathrm{E}=02$ | .226E JC | . $133 \mathrm{~F}-02$ | . 125 E - ${ }^{\text {P1 }}$ |
|  | 35 | -6B2E-01 | -107E-03 | - $302 \mathrm{E}-\mathrm{O}^{3}$ | . 168 E Or | . $952 \mathrm{~F}=\mathrm{C}^{3}$ | . 155 E-32 |

Table C8. (Concluded)
response covariances (1)

|  | $\tilde{\mathrm{t}}$ | 181 | 1B10D ${ }^{\text {P }}$ | CIRI | I 82 | $182 * \pi I 82$ | ח18? | IE3 | 183*D183 | D183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | - $000 \mathrm{E}-80$ | . 000E-80 | -000F-80 | - Of̈uc-80 | - UDOE-R: | -0) MEE-94 | -ugreseru | - OCNE=83 | . OOOE-8C |
|  | 2 | . 581E 11 | -139E 1? | - 334 F .12 | .184E 12 | . 13UE 13 | . 937E 13 | . 166 E 12 | .175E 13 | .187E 14 |
|  | 3 | .181E 12 | -.929E 11 | . 236 F 12 | . 225 E 14 | .788E 13 | -190E 14 | -695E 14 | -211E 14 | . 434 F 14 |
|  | 4 | . 455 E 12 | $\ldots 104 E 12$ | . 933 F 12 | . 315 E 14 | . 32 ge 13 | .723F 14 | . DJE 15 | .100814 | .166E 15 |
|  | 5 | -889E 12 | . 137 E 12 | . 248 C 13 | . 342 E 14 | -.719F12 | .179E 15 | . 11615 | $.144 E 13$ | .409E 15 |
|  | 6 | ,151E 13 | -.212E 12 | . 567 F 13 | . 345 F 14 | -.5785 13 | .366 F 15 | .123E 15 | -.882E 13 | .834E 15 |
|  | 7 | -240E 13 | -.3RzE $1 ?$ | . 134 F 14 | .319E 14 | -. 158 EE 14 | . 749 E 15 | $.122 F^{15}$ | -. 295 E 14 | -170E 16 |
|  | 8 | . 323 E 13 | -906E 12 | .305 F 14 | . 3 52E 14 | -.312E la | .150 F 16 | - ijef ie | -.587E 14 | .338 E 16 |
|  | 9 | . 306 E 13 | -.147E 13 | . 525 E 14 | .432E 14 | -. 506 U F 14 | .233 F 16 | .157E 15 | -.971F 14 | . 524 Elt |
|  | 10 | .461E 13 | ..440E 12 | . 571214 | .124E1a | -.495E 14 | . 269E 16 | .617F. 14 | -. 1-17E 15 | . 464 L 1F |
|  | 11 | .109E 14 | -.325E 13 | $.169 E 15$ | $.126 \mathrm{E}^{14}$ | -. 110F 15 | $.564{ }^{516}$ | . 719 E 10 | -. 21re 15 | .125E 17 |
| + | 12 | -124E 14 | $\therefore 907 E 13$ | -4336 15 | . 339 F 14 | -261E 15 | -13AE 17 | - J4EF 5 | $\because 511 E 15$ | -295F 17 |
| + | 13 | .862E 13 | -.104E 14 | - 516F 15 | . 402 CE 14 | -. 203E 15 | .131E 17 | -lele 15 | -. 545515 | . 286517 |
|  | 14 | . 545 E 13 | -.903E 13 | .446[15 | $\because 468 \mathrm{l}$ | -.2235 15 | .997F 16 | .103E 15 | -.435E 15 | .212E. 17 |
|  | 15 | .289E 13 | -. 577 E 13 | .297F 15 | . 366 E 14 | -.143F 15 | .63FE 16 | . 124 E 15 | -. 284 E 15 | . 136 L 17 |
|  | 16 | .141E 13 | -.241E 13 | .144E 15 | . 2 rite la | -.667E 14 | .291E 16 | . 70 EE 14 | -. 126 E 15 | - G21E 16 |
|  | 17 | .852E 12 | -.966E 12 | . 7.33 F 14 | - ICAGE 14 | -. 673 F 14 | .1/8F 16 | . $3 y^{\text {F F }} 14$ | -. 564E 14 | . 246 E 16 |
|  | 18 | . 562 E 12 | ..368E 12 | . 343 E 14 | . 550 E 13 | -.137F 14 | .44c.F 15 | . 215 E 14 | -. 226 E 14 | .897E 15 |
|  | 19 | . 405 E 12 | -.120E 12 | . 164 E 14 | .25cE 13 | -.411F 13 | . 166815 | - JICF 14 | -.913E 13 | $.319 \mathrm{~F} \quad 15$ |
|  | 20 | -336E 12 | -:P67E 11 | - 82 iif 13 | . 9t.1E $1 ?$ | -.1595 13 | -612E IA | - E23F $1^{2}$ | -3EAE 13 | .109E 15 |
|  | 21 | . 304 E 12 | $\because 174 \mathrm{E} 10$ | -4ate 13 | . 279 E 12 | -. 547E1? | .24GE 1a | .c3le 13 | -. 162 E 13 | . 398 r 14 |
|  | 22 | . 260E 12 | .950E 10 | . 236513 | .524E 11 | -. 26.4E 12 | .jlue 14 | . S¢3E 12 | -.7t3E 1? | . 157514 |
|  | 23 | .222E 12 | .116 El 1 | . 130 E 13 | . 565 E 1 C . | -. 3935 11 | .536F $1 ?$ | . 679 l 12 | -.294E 12 | . 633 F. 13 |
|  |  | -187E 12 | $\bigcirc 108511$ | .718512 | $.547 E 11$ | -361E 11 | . 242 E 13 | - 269 F 11 | -.798E 11 | -26]F13 |
|  | 25 | .144E 12 | - 825 E 10 | -362E 12 | . 122 E 17 | . 58.3F 11 | . 111E 13 |  | . 203E 11 | $\bigcirc 107 \mathrm{E} 13$ |
|  | 26 | .113E 12 | -497E 10 | .183E 12 | .165 E 1? | . 457 E 11 | .534F12 | - 626 E 11 | . 417 E 11 | .474 E . ${ }^{\circ}$ |
|  | 27 | -905E 11 | . 396 E 10 | .915F 11 | . 207E 12 | . 463F 11 | - $2 \mathrm{~K}^{5} \mathrm{E} 12$ | .141 1? | . 567 E 11 | .231[ 12 |
|  | 28 | .663E 11 | .331 E 10 | .415E11 | . 24 cel 12 | . 498 F 11 | $.1255^{12}$ | .c4lf l? | .740 E 11 | .117512 |
|  | 29 | - 511 E [11 | -175E 10 | -201E 11 | . 257 L +? | -293F 11 | - A:5E 11 | - 3 C7E 12 | $\bigcirc 474{ }^{\text {P }} 12$ | . 561 El 1 |
|  | 30 | . 427E 11 | -109E 10 | . 103511 | . 269 E 1? | .1975 11 | .315F 11 | . 354512 | .334 E 11 | $.301 \mathrm{El1}$ |
|  | 31 | .352E 11 | -113E 10 | .452E 10 | -2gEl2 | -231E11 | .161F 11 | .4? 4 l? | . 454 E 11 | .18AE 11 |
|  | 32 | ,295E 11 | .716 E 00 | . 179 F 10 | -3r.3E 1 ? | .176 Ll | .636F 10 | .481F 12 | .317 E 11 | - 837 El 10 |
|  | 33 | . 248 E 11 | $\because 394 \mathrm{E}$ O9 | .625\% 09 | $.299{ }^{.29}$ | .936F 10 | .251 E - 10 | -499E 12 | .177 ll | .318 F 16 |
|  | 34 | .197E 11 | . 286E 09 | .161F 09 | .2RTE Lí | . 76.4 F ¢ | .84CE O9 | - SuCF lí | .148E 11 | . 125 E 10 |
|  | 35 | .162E 11 | :200E 09 | .218E08 | .277E 1 ? | . 556 F 1\% | . 2erfog | - ¢4E | .110 E 11 | . 379 E 0 |

Table C9. Attitude (c7) Covariance Results

MEAN RESPONSES (7)

|  | $\tilde{t}$ | DELTA | dDELTA | NSUBIT | DNS 11 | QALF | ODALF | F D7 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | . $000 \mathrm{E}-80$ | . OONE-80 | - COUE-80 | . 00uE-8n | - JuuE-8i: | . OCOE-86 | - conc-eco | . OOCE-8G |
|  | 2 | -.191E-05 | -123E-03 | -117E-02 | . $243 \mathrm{E}-12$ | - 469E-Ci2 | . 3 35E02 | -. 5 - 2E-( 3 | -.866E-03 |
|  | 3 | -134E-02 | . 112E-02 | .175E-01 | -. 218E-13 | -390F ic | .113E U0 | -.553E-0̇ | -. 109E UC |
|  | 4 | -.500E-02 | -.164E-02 | -591E-01 | .775E-U3 | .14JE 01 | . 2f8E Oú | -. 226 F 1.0 | -.741E 00 |
|  | 5 | -113E-01 | -.146E-0? | $.137 E 00$ | .975E-72 | -318F U! | . 597E 0 | -.t2lf on | -.273E 01 |
|  | 6 | -. $202 \mathrm{E}=01$ | -.301E-03 | .255E 00 | . 234 E -01 | . 567 F ¢1 | .109 - 17 | -. 135 Er | . .747 E ¢ 01 |
|  | 7 | -1307E-01 | .210E-02 | . 419800 | .467E-01 | - $87,2 \mathrm{E}$ [1 | .177F ${ }^{\text {a }}$ | -. 0 C4SE 71 | -.16BE 02 |
|  | 8 | -418E-01 | .525E.02 | .618E 00 | .721E-71 | .120E 42 | . 266 F C1 | ..415E 0! | -.331E 02 |
|  | 9 | -.489E-01 | -111E-01 | . 821 FCO | .145 E 0 | -1HOE C2 | . 396 EL | -.t35 31 | -.590E 02 |
|  | 10 | -.490E-01 | -166E.01 | .950E 00 | .811E-01 | . 216 E P2 | . 563 E U1 | -.53c5 i1 | -.978E 02 |
|  | 11 | -.645E-01 | -758E-02 | .120E OL | .561E-J] | .227E ${ }^{\text {22 }}$ | .549E O1 | -.13tE 22 | -.155E 03 |
|  | 12 | - 862 E -01 | .938E-02 | .602E 00 | -.18UE 00 | . 222 E | .672E Ol | -.159E li2 | -.230E 03 |
|  | 13 | -.957E-01 | . $252 \mathrm{E}-01$ | .453 E 00 | -.464E CO | . 2675 C | .101 F 0 ? | -.14je 6? | -.307E 03 |
| $\stackrel{\sim}{\sim}$ | 14 | $\because 904 E-01$ | - $340 \mathrm{E}-01$ | .774 E 00 | $\sim 249 E 30$ | . 2985 U2 | . 622 E 01 | -.12rer 2 | -.372E 03 |
| cr | 15 | -.688E-01 | $\because 359 \mathrm{E}$-01 | -106F 01 | -. 105 E.01 | . 263502 | -.257E 01 | -.108E 0 | -.428E 03 |
|  | 16 | -.387E-01 | -297E.01 | . 818 CO | -.130ECD | -1ble O? | -.872E 01 | -.112E ¢2 | -.483E 03 |
|  | 17 | -151E-01 | $\because 173 \mathrm{E}-01$ | . 379 O | -.292E CO | . 8445 Cl | -.934F 01 | -.120E 02 | -.541E 03 |
|  | 18 | -.292E-02 | .692E-02 | -.469E-02 | -. 256 E NO | .195E 11 | -.647E 21 | -.123E 4 ? | -.60? E C3 |
|  | 19 | .496E-03 | -138E-02 | -149E 00 | -.102E OC | -.349E OE | $\cdots 274 \mathrm{E}$ - | -.122E 2 | -.664E 03 |
|  | 20 | .359E-03 | . 175 E - 03 | -116E 00 | . 4 A4E-U2 | -.344E Ci | -.127F-01 | -.12re j2 | -.7?4E C3 |
|  | 21 | -.541E-03 | -.122E-03 | -.202E-02 | .910E-21 | -ASIE 00 | .160F 01 | -.12CE 02 | -.784E 03 |
|  | 22 | -108E-02 | .261E-03 | .108E 00 | $.125 E 00$ | .156 Cl | -197E ${ }^{\text {j1 }}$ | -.134E 02 | -.845E 03 |
|  | 23 | -.106E-02 | $\bigcirc 519 \mathrm{E}-03$ | .169E 00 | .104 E 40 | .193E 01 | .145 E 01 | -.13lE (2) | -.908E O3 |
|  | 24 | -.739E-03 | $\because 514 E-03$ | -182E 00 | .609E-01 | - IRIE O1 | .790E 00 | -.14FE C2 | -.976E O3 |
|  | 25 | -. $395 \mathrm{E}=03$ | :367E-03 | .156 E 0 | . 254 E -01 | . 109701 | .336 E 0 | -.150́E l2 | -.105E 04 |
|  |  | -183E-03 |  | -119E 00 | -.839E-02 |  |  | -.158E O2 |  |
|  | 27 | - $460 \mathrm{E}=04$ | -107E-03 | .918E-01 | -. 361 EF 03 | .814 F 0 | -133E-01 | -.164E U2 | $-121 E 04$ |
|  | 28 | . 548 E - 04 | -526E-04 | -685E-01 | . $924 \mathrm{EF-J3}$ | -6CgE 00 | $.140 \mathrm{E}-01$ | -.169E 72 | -.1P9E U4 |
|  | 29 | -969E-04 | -.252E-05 | -522E-01 | . 3 ¢5E-32 | . 459E 0] | -112E-02 | -. 0.173 E リ2 | -.137E 04 |
|  | 30 | .113E-03 | -:237E-04 | . $421 \mathrm{E}-01$ | . $656 \mathrm{~F}-02$ | . 355 E C0 | . 469 E-02 | -. 177 E - 2 | -.146E 04 |
|  | 31 32 | $131 E-03$ $.136 E-03$ | - $274 E-04$ $-379 E-04$ | - $345 \mathrm{~F}-01$ $.284 E-01$ |  | $.277 E \quad 4$ | $.594 E-02$ $.372 E-02$ |  | $\begin{array}{r} -155 E 04 \\ -164 E 04 \end{array}$ |
|  | 33 | -132E-03 | - 42 2E-04 | $.236 \mathrm{E}-01$ | .119E-02 | -171E OC | -805E-n2 | -.184E 2 | -.173E 04 |
|  | 34 | -127E-03 | -.413E-04 | -166E-01 | .118E-02 | .135 F 00 | - 2 Q8E-02 | ..186E U2 | -.183E 04 |
|  | 35 | .121E-03 | -. $399 \mathrm{E}=04$ | .993E-02 | . 818 -03 | .107E60 | $.304 E^{4}-02$ | -.188E 02 | -.192E 14 |

Table C9．（Contioued）

MEAN RESPONSES（7）

|  | 181 | DIB1 | 182 | 0182 | 1 R 3 | ！1／83 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ． $000 \mathrm{E}-\mathrm{BO}$ | ．000E－80 | －J0UE－80 | ．Once－80 | －croe－rig | －Cire－80 |
| 2 | －．872E 04 | ．．245E 05 | －．132E 05 | －．1275 26 | －．Lige ry | －．179F 06 |
| 3 | －．667E 05 | －103E 06 | ．836E 06 | ． 125 E 77 | ．146F 77 | －193F 07 |
| 4 | － 200 E 06 | ．202E 06 | ． 321 E 07 | ． 256 E ：17 | ． 553 E 7 | 396F． 67 |
| 5 | ．．458E 06 | .285 E 06 | ．727E 07 | ：391E し7 | ． 126 E $_{\text {．} 8}$ | ．615．${ }^{\text {c }} 37$ |
| 6 | ．．861E 06 | $.317 E 06$ | ．129E 08 | ． 504 E ： 7 | ． 223 Er | ． 791 F 07 |
| 7 | ．．142E 07 | ．241E 06 | ．193E 08 | ． 543 E 57 | ．337E 28 | 860E 07 |
| 8 | －．211E 07 | $.723 E 05$ | －261E ns | ． 526 E ； 7 | －426E 28 | － P ¢ 2 F 07 |
| 9 | －． 276 E 07 | －．531E 06 | ．300E 08 | ．1ヶ2E U7 | － 530 FCB | ．33aE 37 |
| 0 | ．．324E 07 | －．120E 07 | ． 293 E 78 | －． 335 E 07 | ． 523 E 08 | －．39af 07 |
| 1 | －．470E 07 | ．113E 06 | ． 378 E 08 | ．855E C7 | ．682F 08 | ．139F08 |
| 2 | －．494E 07 | －．154E 05 | ． 528508 | ． $116 \mathrm{E}^{\text {98 }}$ | ．932E LS | ．192E is |
|  | －．509E 07 | －．215E 07 | $.592 \mathrm{E} 0^{8}$ |  | －104E U9 | － 889 Ca |
|  | －．540E 07 | －．233E 07 | ． 55 リE 08 | －．880E 37 | ． 974 E U8 | －． 116 E |
|  | －．497E 07 | －．142E 07 | ． 404 E 08 | －．132E UE | －728E U8 | －－2nre as |
|  | －．333E 07 | ．．430E 06 | ．218E O8 | －．136E jR | －agle os | －．218F JA |
|  | －．159E 07 | ．502E 06 | －gnbe 07 | －．819E J7 | ． 153 Ec C | －．1415 48 |
|  | ．．365E 06 | ．644E 06 | ．146F 07 | －．321E 77 | ．2865 47 | ．．6iaf 07 |
|  | ．848E 05 | ．317E 06 | －．21UE 06 | ． 557 E － 6 | ．．451E C6 | ．131F 07 |
|  | ．673E 05 | ．361E 04 | －．142E 06 | ．544E j5 | ． .318 E 6 6 | －P37F 05 |
|  | －133E 06 | ．．206E O6 | ．161E 06 | －．139E Of | .431506 | ． 247 F 05 |
|  | －．321E 06 | －． 26 RE OR | .228 F 06 | －．4ine 06 | ．776E 66 | －．331F ${ }^{6}$ |
|  | －．407E 06 | －．220E 06 | .680 E 05 | －．512E 06 | ．619E 06 | ．．567E 06 |
|  | －．396E 06 | －．134E 06 | －．137E 06 | －．430E 06 | ． 267 E U6 | －．543E 06 |
|  | －．327E 06 | $\bigcirc 674 E 05$ | －．265E 06 | －．288E 06 | －．298E 05 | －． 392 E 56 |
|  | －1247E 06 | －．158E 05 | －．2B2E 06 | ． .124 E 66 | －．158E 06 | －．185E 06 |
|  | －190E 06 | －．104E 05 | －．2A5E 06 | －．830E 05 | －． 232 U U6 | －． 125 F 06 |
|  | －．142E 06 | ．．751E 04 | －． 276 E 06 | －．611E 05 | ．．278E U6 | －．915F 05 |
|  | －．110E 06 | －．330E 04 | －．25LE 06 | －．237E 05 | －． 278 E U6 | －．359F 05 |
|  | －．888E $0^{5}$ | －112E 04 | －228E06 | $\because 1$ O3E 05 | －． 266 E 06 | $\because 147 \mathrm{E} \quad 0^{5}$ |
|  | ．．722E 05 | －．197E 04 | －．213E 06 | －．111E 05 | －．262E 06 | －．162e 05 |
|  | －．597E 05 | －．815E 03 | －．195E 06 | －．343E U4 | －．248E 06 | －．454E 04 |
|  | －．496E 05 | ． 460 E 02 | －．176E 06 | ．186E 04 | －．220E U6 | －312F 34 |
|  | －．404E 05 | －．356E 01 | －．157E 06 | .233 E 04 | －．209E C6 | $.393 \mathrm{E}^{\text {¢ }}$ |
|  | －．337E $0^{5}$ | $\because 179 \mathrm{O}$ | －．142E 06 | ．263E 04 | ． 192806 | ． 432 E 04 |

Table C9．（Continued）

RESPONSE COYARIANCES（＇

|  | $\tilde{t}$ | DELTA | deltaabelfa | DDELTA | D2EOT | HELT | $\Delta \gamma$ | $\Delta \Theta$ | $\Delta 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ．000E－80 | ．000E－80 | ． 000508 | －Ỡ心－80 | － 1968 CL |  | －L！E－8？ | －0coersu |
|  | 2 | ． 34 3E－08 | ．175E－08 | －128F－04 | ． $967 \mathrm{E}-43$ |  | ．15 E＝U 5 | ． 764 E － Pa | － $12^{n} \mathrm{E}=0.2$ |
|  | 3 | ．107E－03 | ． $674 \mathrm{E}-05$ | ． $295 \mathrm{E}=04$ | ． 117 E UT | ．384E－66 | ． 431 E－ 05 | －143E－TA | .157 E 02 |
|  | 4 | ，2318－03 | ．．229E．04 | ．117E．03 | ． 264 ECO | ． 381 E －L6 | ． 476 E －35 | － 5 EEPO／ 4 | ．112e yo |
|  | 5 | －377E－03 | －．630E－04 | －278E－03 | ．679F J， | ． 595 ECO | －5 53E－35 |  | － 426 OP |
|  | 6 | ，529E－03 | －．111E－03 | ． 5514.03 | ． 150 E （1） | ．951F－i6 | ．77？${ }^{\text {c／}}$－ 5 | －8bic－＂4 | ．1315 93 |
|  | 7 | ．663E－03 | －．168E－03 | ．179F．02 | ． 331511 | －1395－U5 | ．1：3F－u号 | ．159：－ 3 | ． 345 E 3 |
|  | 8 | ，780E－03 | －．220E－03 | －212E－02 | ．647E 11 | ． 278 E － 25 | －137E－14 | ．1208－：3 | ． 816 E 13 |
|  | 9 | ． $763 \mathrm{c}=03$ | －． $284 \mathrm{E}-03$ | ． $333 \mathrm{~F}-02$ | ． 1195 ！＇？ | ． $418 \mathrm{E}-\mathrm{C}_{5}$ | ． $176 \mathrm{~F}=1 \mathrm{~A}$ | ． $13!\mathrm{E}=: 13$ | ． 17 BE ga |
|  | 10 | －600E－03 | $-279 E-03$ | －278E－02 | － 213 L u2 | － $285 \mathrm{E}-65$ | － $230 \mathrm{E}-74$ | －1：TE－3 | ． 369 E $0^{4}$ |
|  | 11 | ．917E－03 | －．227E－03 | ． 70 ？5．022 | ． 383 E ¢？ | ． 5 H6E－fi5 | ． 314 E －in | ．14रE－iz | ． 726 E M！ |
|  | 12 | －162E－02 | －．405E－03 | ．168E－01 | ． $471 E$ E2 | ． $138 \mathrm{EF-r} 4$ | －3C？E－？ 4 | －i4アE－3 | ．133E OA |
|  | 13 | －185E－02 | $\therefore 821 E 03$ | －173F－01 | ． 337 E ： j ？ | $.175 \mathrm{E}-\mathrm{c}^{4}$ | －173F－j4 | ． $3: 4 \mathrm{E}-\mathrm{C} 3$ | ．2n7E U 5 |
| $\stackrel{\sim}{\square}$ | 14 | ． $146 E-02$ | －．875E－03 | －136F－01 | ． 2 C4E j2 | $.163 E-64$ | － 94 （f－135 | － 35 ¢fai3 | ． 28.15 US |
| $\stackrel{\sim}{\sim}$ | 15 | ．791E－03 | －．593E．03 | ．915Eu2 | ．151E 6 | ．116F－r． 4 | －A95F－115 | ． 14 ¢8－33 | －3AHE CS |
|  | 16 | ．306E－03 | －．269E－03 | ． 425 － 02 | ．150E C？ | ．561E－C5 | ． $394 \mathrm{E}-\mathrm{US}^{\text {S }}$ | ．59EERA | ． 417 E IS |
|  | 17 | －115E－03 | －．100E－03 | －169F－02 | $.174 \mathrm{E}^{7}$ | －227E－1；5 | －3F ？E－25 |  | －AOAE CS |
|  | 18 | － $454 \mathrm{E}-04$ | －． $386 \mathrm{E}-04$ | ．617E－03 | $.207 E$ ？ | － 077 F － 6 | － $345 \mathrm{~F}=05$ | － $2048-15$ | －EROE OS |
|  | 19 | ． $1748=04$ | －．150E＝04 | ． $213 \mathrm{E}-03$ | ． 2408 E | －312E－ra | ． $310 \mathrm{~F}-15$ | － $336 \mathrm{E}-\mathrm{T} 5$ | ． 677 E 05 |
|  | 20 | ．625E－05 | －．554E－05 | ．686E－04 | ． 265 E 78 | ．111E－l6 | ．283E－35 | ． $1 \chi^{5} \varepsilon-r$－ | $.786 E 05$ |
|  | 21 | ． $209 \mathrm{E}=05$ | － $186 \mathrm{E}-05$ | ． 225 E－04 | ．282F ${ }^{\text {d }}$ | ． 37 UE－C7 | $.24^{2} E-05$ | ． $423 \mathrm{E}-16$ | .907 O 05 |
|  | 22 23 | $\begin{aligned} & 713 E=06 \\ & .228 E-06 \end{aligned}$ | $\begin{array}{r} 663 E-06 \\ -.209 E .06 \end{array}$ | $\begin{aligned} & 759 \varepsilon=05 \\ & .242 F-15 \end{aligned}$ | $\begin{array}{rl} -291 E \\ .293 E & 0 ? \end{array}$ | $\begin{aligned} & -122 \varepsilon-C 7 \\ & -3 y 1 E-60 \end{aligned}$ | $-2 J 5 E-05$ $.1 \leqslant 9 E-05$ | $-143 E-.6$ $.46 A E-O 7$ | .144 L <br> －l）$A F$ ng |
|  | 24 | $.638 E-07$ | －．633E．07 | － $686 \mathrm{E}=06$ | ． 2.92 E | ． 115 F －${ }^{\text {¢ }}$ | －130F－35 | －137E－7 | －13AE lo |
|  | 25 | ．134E－07 | －．155E－07 | ． $145 \mathrm{~F}-06$ | ． 288 El ？ | ． $245 \mathrm{E}-\mathrm{CO}$ | ． $115 \mathrm{E}-15$ | ． $31: \mathrm{E}-\mathrm{C}$ | .151 l |
|  | 26 | ． $249 \mathrm{E}-08$ | $-.304 E=78$ | ．262E－U7 | ． 283 E ¢？ | ．559E－6． | ． $959 \mathrm{P}=0 \mathrm{~A}$ | －5995－＂9 | $.169{ }^{\text {．}} 106$ |
|  | 27 | －137E－09 | － $336 \mathrm{E}-09$ | －196E－08 | ．277E | －146E－10 | － A $_{\text {a }} 5$ F－0 6 | －EteE－16 | －127E Of |
|  | 28 | ．161E－09 | ．125E．09 | ．105E－08 | ．272E | ． 945 F －11 | ． $684 \mathrm{E}=06$ | ． 12 EE－İ | ．2cien nt |
|  | 29 | ．423E－09 | －．794E－10 | ． $2565-08$ | －267E J？ | －3ylE－l？ | ． 587 F －76 | －622F－1n | －2？8E U6 |
|  | 30 | －478E－09 | －174E－09 | － $279 \varepsilon-08$ | ． 263 E U2 | －399E－11 | －519E－36 | ． $7 \times 2 \mathrm{c}-10$ | $.25150{ }^{\text {f }}$ |
|  | 31 | －518E－09 | －．186E－09 | ． $255 \mathrm{~F}=08$ | ． 259 E －2 | － $3625-11$ | ． 444 EFOB | － $857 \mathrm{~F}-10$ | .274 fan |
|  | 32 | ，435E－09 | －184E－09 | －168F－08 | ． 256 O2 | ． 3 90E－11 | ．391E－16 | ． 75 GE－1？ | ． 299 Of |
|  | 33 | ． $310 \mathrm{E}-09$ | －．140E．09 | ． 87 ¢1F－C9 | ． 253 F 32 | ．127E－11 | ． 347 E .36 | ．EbiE－1） | .374 EV |
|  | 34 35 | － $221 E-09$ $-173 E-09$ | $-919 E-10$ $-627 E-10$ | $.353 E-09$ $.853 F-10$ | $.250 E ~$ <br> 248 <br> 24 | $.550 E-12$ $.142 E-12$ | － 3 ？ $9 \mathrm{~F}-36$ .278 Cl | ． 40 CF－18 | $\begin{aligned} & 351606 \\ & : 3795 \\ & 06 \end{aligned}$ |
|  | 35 | －1736－09 | －0627E－10 | －853F－10 | ．248E U？ | － 4 CE－12 | －278F－36 | －3E9E－1r | ． 379506 |

Table C9. (Continued)

|  |  | NSE COVAR | lances (7) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\tau$ | NIT | NITADIT | DNIT | QALF | QALFADQALF | DQALF |
|  | 1 | . 000E-80 | : 000E-80 | . 000 E-80 | . OROEA8? | .00ce-80 | -DUE-80 |
|  | 2 | . $838 \mathrm{E}=03$ | . $169 \mathrm{E}-02$ | - $343 \mathrm{E}-02$ | .1245-0] | .441F-02 | . $479 \mathrm{E}-02$ |
|  | 3 | . $360 \mathrm{E}-02$ | -.152E-02 | .161E-02 | .731E 11 | .198 E O? | .197E 00 |
|  | 4 | .146E-01 | -.163E-02 | . $644 \mathrm{E}-02$ | -161E O? | - 542E OC | .146 E -1 |
|  | 5 | . 346 E -01 | -101E-02 | , 266E-01 | $.268 \mathrm{E}^{2} \mathrm{O}$ | , 126E ni | .633E 7 1 |
|  | 6 | -662E-01 | -774E-03 | -871E-01 | - 385 E O? | . 226 E 1 | .221E 02 |
|  | 7 | .126E 00 | . 634 E -02 | . 272500 | $.5 n 4 \mathrm{ta}$ | . 353 F -11 | . 721 F 02 |
|  | 8 | .214E 00 | .180E-01 | .616E 00 | .620E 3 ? | . 508 FW | .19? 93 |
|  | 9 | -281E 00 | . 447 E -01 | .997E 00 | .806E J2 | .753E 81 | .421E 33 |
|  | 10 | .409E 00 | .986E.02 | . 223 E 01 | $.117 E^{\text {j3 }}$ | . $853 \mathrm{FFU1}$ | .874E 73 |
|  | 11 | -835E 00 | $\cdots 314 E-01$ | .694E O1 | .119E 93 | . 135 E W | .196E 04 |
|  | 12 | -850E 00 | -.416E 00 | .352502 | .115E 53 | - 2u3E PI | - 36: 04 |
|  | 13 | . 578 C 00 | -.212E 00 | .377E 02 | .14RE 13 | . 2859 -1 | . $59^{5} \mathrm{~F} 64$ |
| $\stackrel{\sim}{\square}$ | 14 | . 436 E 00 | . $305 \mathrm{E}-01$ | .219E 02 | . 158 E C3 | -. 2rie la | . 6598.14 |
| $\infty$ | 15 | .327E 00 | $\because 700 \mathrm{E}-01$ | . 747 El | .114E 03 | -. 047 F l2 | .470F 94 |
|  | 16 | - 218 E 00 | . $562 \mathrm{E}-02$ | . 24 UF 01 | .656E 92 | -315E O? | . $2756 \mathrm{G4}$ |
|  | 17 | -156E 00 | -.169E-01 | .llue OI | .345 E i? | -. 162 E 02 | . 159E 04 |
|  | 18 | .107E 00 | -.171E-01 | .713E00 | . 190 E 92 | -.816F fi | . 939703 |
|  | 19 | .671E-01 | ..147E-01 | -4RIE 00 | .107E J? | -. 472 F ¢ 1 | . 556 F 1)3 |
|  | 20 | .406E-01 | -.116E-01 | . 506 F U0 | . 5aOE 01 | -. 279 Cl | . 33 nc 03 |
|  | 21 | -257E-01 | . 870 E-02 | . 539 E 00 | -283E J1 | -.152E 01 | -197E 33 |
|  | 22 | -153E-01 | -.516E.02 | . 451 E 00 | $.143 E$ Ul | -. 772 F | .116F 43 |
|  | 23 | -964E-02 | -.359E-02 | . 397 [00 | - 7315 CL | -.4C尹E UT | .681F 12 |
|  | 24 | . $613 \mathrm{E}-02$ | -.269E-02 | . 349 F 00 | . 373 E Jr | -. 2 2.6F u\% | - 39FF 0 ? |
|  | 25 | -359E-02 | -.176E-0? | .262 E 00 | .185 E gr | -.123Fror | - 2\%ne J? |
|  | 26 | , $205 \mathrm{E}-0^{2}$ | ..109E-02 | . 178500 | . $885 \mathrm{E}-1$ | -. $634 \mathrm{~F}_{-1}$ (1) | .115F up |
|  | 27 | . 121E-02 | -.661E.03 | . 123500 | .417E-01 | .. 315F-U1 | . 582 E 51 |
|  | 28 29 | $\begin{aligned} & 680 E=03 \\ & : 399 E=03 \end{aligned}$ | - $391 E-03$ $.225 E-03$ | $.898 E-01$ $.524 F-01$ | $.196 E-01$ $.934 E-07$ |  | .29世E 01 |
|  | 30 | - 252 E -03 | -.135E-03 | - $342 \mathrm{E}=1$ | $.460 \mathrm{E}-7 \mathrm{Z}$ | - $769 \mathrm{E}-\mathrm{C}$ | .765 E 00 |
|  | 31 | -162E-03 | -.897E-04 | -203F-01 |  | -.188F-r? | .34 AE 70 |
|  | 32 | .106E-03 | -. 5065.04 | , 11NE-01 | .110E- 2 | -. 3R9F-U3 | $.13^{9}$ F ${ }^{0}$ |
|  | 33 | -690E-04 | $\therefore 274 E-04$ | - 50 cE-n2 | -518E-23 | -.3835-4 | -469E-U1 |
|  | 34 | . $557 \mathrm{E}=04$ | ..116E-04 | .177E-U2 | . $249 \mathrm{E}-\mathrm{U}^{3}$ | -.131E-r3 | . $125 \mathrm{E}-01$ |
|  | 35 | . $540 \mathrm{E}-04$ | -. $306 \mathrm{E}=05$ | . 302E-03 | .136E-33 | ..247F-144 | .154F-02 |

Table C9. (Concluded)
aEsponse covariances (7)


Table C10．Scheduled Attitude（c2）Covariance ìesults
mean responges（2）

| t | DELTA | DDELTA | HSURIT | DNSI | QALF | QJALF | 77 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ． $000 \mathrm{E}-80$ | ．000E－80 | － 0 COF－80 | －OnUE－8E | －JJUE－8） | －013F－80 | E－9， | －${ }^{\text {PJ－8．}}$ |
| 2 | －．191E－05 | －123E－03 | －117E－72 | $.243 \mathrm{E}-\mathrm{J}$ \％ | －thyE－0． | ． $335 \mathrm{E}-32$ | －． 3 SE－J3 | －． $366 \mathrm{E}-03$ |
| 3 | －．134E－02 | －．112E－02 | ．175E－01 | －． 218 Em － | －3yne C！ | .11350 | －． $053 \mathrm{E}-\mathrm{Jl}$ | －．109E 0） |
| 4 | －．500E－02 | －．164E－02 | ．591E－01 | ． $775 \mathrm{E}-73$ | ．17JE 01 | ． 238 F | －． 226 E －${ }^{\text {a }}$ | －．741E OJ |
| 5 | －－113E－01 | －146E－02 | ．137E 00 | ．975E－112 | － 318 F ．U1 | ． 537 F 30 | －．021E ！ 17 | －． 2731 |
| 6 | －202E－01 | － $301 \mathrm{E}-03$ | ． 255 F 00 | ． $234 \mathrm{E}-\mathrm{Cl}$ | ． 507501 | －1J9F 31 | －．135E 11 | －． 747 E |
| 7 | －．307E－01 | ？ $210 \mathrm{E}-02$ | －4l9E 00 | ． 467 E－ 1 | －312E 91 | ．177F J1 | $.279 \mathrm{E}^{11}$ | －．168E |
| 8 | －． $376 E-01$ | ．773E－U2 | ，528E 00 | ． 244 EFOI | ．111E 0 | －219 J | 373E 11 | －． 330 E 92 |
| 9 | －． 385 E －01 | ． $130 \mathrm{E}=01$ | ． 412 F 00 | ．553E－J1 | .131 E 02 | .379 FD | ． 431591 | －．546E U？ |
| 10 | －．289E－01 | ．183E－01 | ． 273 F 00 | －．633E－1） | ． 198 E ？？ | ． 434 E J1 | $.225 \mathrm{E} \rightarrow 1$ | －．722E 9\％ |
| 11 | ．．141E－01 | ．227E－01 | －．935E．n2 | －．458E 00 | －7915ul | ． 335 E 31 | ．230E 91 | ． 729 E |
| 12 | －．112E－01 | －249E－02 | －．110E 01 | －．439E JJ | －6JリE U1 | ．679E 71 | ．172E J？ | －．279E |
| 13 | －．113E－01 | ． $373 \mathrm{E}=02$ | －．195E 01 | －．606E JR | ． $552^{5} \mathrm{Cl}$ | .913 E U | .413 E 3？ | ． 113 E |
| 14 | －．850E－02 | $.403 \mathrm{E}-02$ | －．217E 01 | －．206E 00 | .44451 | ．5S5F 01 | .155 E 12 | .700 E |
| 15 | －． $274 \mathrm{E}-02$ | ．257E－02 | －． 215 F 01 | ．284E Un | ．158501 | －．21？E 01 | ： 118813 | ． 379 E 03 |
| 16 | ． $233 \mathrm{E}-02$ | ．763E－03 | －．172E 01 | ． 338 E ） 0 | 7475 10 | ．．7jse 31 | ．155E ？${ }^{\text {a }}$ | ．158504 |
| 17 | － $428 \mathrm{E}-02$ | －．713E－03 | －．113E 01 | ．139E 110 | －．636 0.4 | －．779E 11 | ．213E 73 | －253E 04 |
| 18 | －322E－02 | －． 112 F －02 | ． 594 F 00 | ． $138 \mathrm{E}-\mathrm{U}$ | ． 3.39 F （1 | －．532E 71 | －？ 99 ¢3 | 371E 01 |
| 19 | －980E－03 | $.743 \mathrm{E}-03$ | ．203E 00 | ．1กэEーッ1 | －7xiEr！ | ． 230 F 71 | ．3）5E 13 | ． 512 E |
| 20 | －．174E－01 | －． $374 \mathrm{E}-12$ | －21ie 01 | ．R17E jo | ．152E ？？ | －4．24E 01 | ． 345 E 73 | 6755 |
| 21 | －．228E－01 | ． $972 \mathrm{E}-02$ | －406E O1 | ．173E JP | ．2ヶ1F U2 | ． 235 F | .354 E 73 | 8516 34 |
| 22 |  | ．101E－01 | －408F 01 | －．742E－G1 | －240E 02 | －139F U1 | －347E 33 | －1735 15 |
| $23$ | －．111E－01 | ．749E．02 | ． 354 F .01 | －．113E JE | －19yF 0 ？ | －lire ul | ． 337 E ：33 | －120E 05 |
| 24 | －．622E－02 | ． 479 E－02 | －2R9E 01 | －． 116 E ¢ | －152Fu？ | ． 537 E （1） | .327 F J | ． 176585 |
| 25 | －．302E－02 | ． $280 \mathrm{E}-0$ ？ | .233 El | －．107E ${ }^{\text {S }}$ | －113F 3 ？ | －156E 09 | ． 317 E ：3 | ．153\％． 15 |
| 26 | －．139E－02 | －139E－02 | ． 184 E 01 | －9－ 0 －${ }^{\text {－}}$ ） 1 | ．834ELI | －．113F 20 | $.3128) 3$ | ．168E 05 |
| 27 | －． $349 \mathrm{E}-0^{3}$ | ． $759 \mathrm{E}-03$ | －149E O1 | －．575E－j1 | ．616F ¢ | －． 7 71E－01 | ． $3.36 E$ O3 | $.134 E 05$ |
| 28 | ．414E－03 | ． 359 E －03 | ．119F 01 | －． $416 \mathrm{E}-31$ | ． 460 F －1 | －．4；2E－01 | ． 3 J2E 3 | ．199E OS |
| 29 | －731E－03 | －． $330 \mathrm{E}-04$ | －967E On | －． 2066 －${ }^{\prime} 1$ | －347F 9 ！ | －423f－91 | ．293E 13 | 214F 05 |
| 30 | －855E－03 | －．185E－03 | ． 811 F .00 | －．921E－72 | －207E 01 | －． 211 E －ñ | －？ 35 5 73 | －229E 05 |
| 31 | ．987E－03 | －．214E－03 | ．693500 | －．182E－131 | ．2J9r 01 | －．1？？Emb1 | －C）2E 47 | －243E 95 |
| 32 | ．102E－02 | －．28TE．03 | ． 584 E 00 | －．7ñ5E－j2 | ． 1 ¢if 01 | －．135E－J1 | C．EAE 33 | ． 258 F 95 |
| 33 | ．990E－03 | －．318E－03 | ． 496800 | －． $347 \mathrm{Em} \mathrm{B}^{2}$ | ．129E U！ | －． $471 \mathrm{E}-12$ | ． 299 P 7 | 272E 05 |
| $\begin{aligned} & 34 \\ & 35 \end{aligned}$ | 9 $.953 E-03$ $.907 E-03$ | $+310 E-03$ $-301 E-03$ | $.462 E 00$ $.456 E ~$ | $-247 E-32$ $-167 E-02$ | -1 U1F Cl $-335 E 0$ | －． $617 \mathrm{E}-32$ $.0426-02$ | $236 E \div 3$ <br> $.235 E$ | $\begin{aligned} & 287 E 05 \\ & .331 E 05 \end{aligned}$ |

Table C10. (Continued)

MEAN RESPONSE (2)

|  | 1 | D181 | 182 | DIB2 | 183 | 183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | .000E-80 | . 000E-80 | -000E-80 | -000Es8f | -0才JE-89 | -07JE-80 |
|  | -972E 04 | -245E 05 | . 132 E 05 | -.127E 06 | .1J9E 05 | . 179 E 06 |
| 3 | - 8667 F 05 | 103E 06 | -836E 06 | .125E 07 | .146 E 07 | . 193 E |
|  | -200E 06 | -202E 06 | . 320 E 07 | . 256 E C7 | $.553 E 07$ | . 396 E |
| 5 | -458E 06 | ,285E 06 | .727E 07 | .391E 07 | . 126508 | 610 E |
| 6 | -.861E 06 | . 317E 06 | . 129 F 08 | . 504 E O7 | $.223 E 08$ | -731F 37 |
| 7 | -9142E 07 | $\bigcirc 241 E 06$ | .193E 08 | . 543 ET | .337 E 38 | 864 E |
| 8 | -.216E 07 | -:170E 06 | .230E 08 | .223E 47 | 4075 09 | .390 E |
| 9 | -.256E 07 | - 811E 06 | . 230 E 08 | -.239E 07 | .411E 08 | -.272E 07 |
| 0 | -.292E 07 | -167E 07 | 156E 08 | ..961E 07 | 293E 09 | .1385 |
| 11 | -3958-07 | -205E 07 | -342E 07 | -.165E J8 | 10GE 03 | -. 276 E |
| 12 | -1294E 07 | -137E 07 | . 305 O 07 | -.168E 77 | .869E U7 | -.1J5E |
| 13 | -.233E 07 | -204E 07 | .408E 07 | -.365E 07 | .963E 47 | .347807 |
| 14 | -.151E 07 | -.155E 07 | .349F 07 | -.363E JT | 764E 77 | .4J7E 07 |
| 15 | -.468E 06 | - 337 E 06 | .116E 07 | $\cdots .180 E 77$ | . 250 U 4 | . 254 E |
| 16 | . 260 E 06 | .697E 06 | -121E 07 | $\because .115 \mathrm{E}$ | -.233E 07 | . 655 |
| 17 | . 556 E 06 | 116E 07 | -.2lue 07 | $.152 E 17$ | .416E U7 | . 137 |
| 18 | . 464 E 06 | 899 O6 | -.151E 07 | $161 E 97$ | -. 3J6E 07 | 153 E |
| 19 | .167E 06 | 364E 06 | -.415E 06 | .924E 16 | -.893E U6 | 137E |
| 20 | -.265E 07 | -.415E 06 | .793E 07 | . 566 U7 | . 1595 L | 35E 07 |
| 21 | - 515407 | -864E 06 | .753 E 07 | . 348 E O7 | -198E OS | .465607 |
| 2 | -.500E 07 | -.713E 06 | .400E 07 | -.467E 97 | 128503 | -.690E 07 |
| 3 | -.419E 07 | -517E 06 | -838E 06 | -.381E 07 | 66JE 07 | -.555E 07 |
| 2 | -0332E 07 | -312E OG | -.113E 07 | -. 259 E - 7 | 227E 07 | .398 |
| 25 | -249E 07 | -.176E 06 | -.201E 07 | . $.164 E^{-1}$ | -.219546 | -.243E 37 |
| 26 | -.187E 07 | -.620E 05 | -.214E 07 | -.7a6E je | -. 12 Je 27 | -12? 37 |
| 7 | -144E 07 | -.415E 05 | -.215E 07 | -.532E 16 | -.1765 07 | B26E 06 |
|  | -107E 07 | -:324E 05 | -.208E 07 | - 396 E 06 | -. 21JE u7 | -.612E 06 |
| 29 | -.827E 06 | -.863E 04 | -.190E 07 | -.146E U6 | -.2135 37 | - ? 30 E 26 |
| 0 | -669E 06 | -201E 03 | -.172E 07 | -. 516 C5 | -.23! 97 | -.843E 35 |
| 1 | -.544E 06 | -.353E 04 | -.160F 07 | -.635 0.6 | -.1975 ${ }^{\text {¢ }}$ | .1J1E |
| 3 | ..449E 06 | $.139 E 04$ | -147E 07 | -.113E u5 | -.1875 U7 | -.212r 05 |
|  | - 372 C 06 | -461E 04 | -.132E 07 | -227E U5 | -.172E 07 | -3178 05 |
|  | .P303E 06 | -39BE 04 | -.118E 07 | . 236 E O5 | -. 157 E - 7 | 342 F |
| 5 | -.253E 06 | . 387 OL | .106E 07 | 273E 05 | E | 4 4 2 f 95 |

Table C10. (Continued)

RESPONSE COVARIANCES (2)

|  | $\tilde{t}$ | DELTA D | DEITA*DELTA | unflta | dztot | nelo | $\Delta \gamma$ | $\Delta \theta$ | $\Delta z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2}$ | $\begin{array}{r} .000 \mathrm{E}-80 \\ .343 \mathrm{E} .08 \end{array}$ | $\begin{aligned} & .000 E-80 \\ & .175 E-06 \end{aligned}$ | - noue-80 $.12 B E-04$ | $\begin{aligned} & . \operatorname{LnQE}-3 n \\ & .967 E-13 \end{aligned}$ | $\begin{array}{r} \sec -86 \\ -43 \mathrm{~F}-\mathrm{c} 7 \end{array}$ | $\begin{aligned} & -13 \cup N E-80 \\ & .155 E-36 \end{aligned}$ |  <br> .7685 .10 | . $\mathbf{u}$ ane-80 <br> .170 E 02 |
|  | 3 | -107E-03 | .674E-05 | -295F-04 | .1F7E JC | -3845-06 | -431E-J5 | - i $43 \mathrm{E}-14$ | .157E 01 |
|  | 4 | .231E-03 | -.229E-04 | -1175-03 | -264E | . 321F-C6 | -4TGE-05 | . $755 \mathrm{~F}-14$ | -112E 02 |
|  | 5 | . $377 \mathrm{E-03}$ | -.630E-04 | - 273E-03 | .679E 70 | . $595 \mathrm{~F}-66$ | - $553 \mathrm{E}-25$ | -01: E-114 | .426E 92 |
|  | 6 | -529E-03 | -.111E-03 | . 551F-03 | . 159 V U | . $9515-06$ | -7- PE-15 | . $66.15-74$ | :131E U3 |
|  | 7 | .663E-03 | -.166E-03 | . 1095-02 | . 331 E - 1 | .1595-65 | -1:3E- 04 | .1U7E-? | .345 E 03 |
|  | 8 | . $630 \mathrm{E}=03$ | -. $233 \mathrm{E}-03$ | - 21LE-02 | -585F 31 | - 331 E - Ci 5 | -173F-04 | - $264 \mathrm{E-T3}$ | .812E 03 |
|  | 9 | -474E-03 | -. $243 \mathrm{E}=03$ | -326F-02 | . 484 E 31 | . 537 C - 5 | $.716 \mathrm{E}-\mathrm{U}$ | . 25 位-73 | . 153 E 04 |
|  | 10 | . $213 \mathrm{E}=03$ | -.185E-03 | -273F-02 | .2r9E "1 | -419E- 15 | -2'5E-i) 5 | . 377 E-93 | - 2 IISE 04 |
|  | 11 | . 763E-04 | -. 172E-03 | . $7345-02$ | .150 E .17 | . 123 E -0. 4 | -12.3F-0.4 | . $724 \mathrm{E}-\mathrm{n} 3$ | . 157 Ea |
|  | 12 | .122E-03 | -. $263 \mathrm{E}-03$ | .169E-01 | .104E J3 | . 217 EFCA | , 667F-014 | . $3^{\prime} \mathrm{E}$-i'? | . 375 E 03 |
|  | 13 | - $150 \mathrm{E}-03$. | -. $2^{8} 1 \mathrm{E}-03$ | -1635-01 | . 399 E 33 | - 2f3E-134 | -2 EE-:3 | -195F-^? | $.452 E 04$ |
|  | 14 | .134E-03 | -. $230 \mathrm{E}-03$ | . 121 E -01 | . 109 El , | . $2325-54$ | . $446 \mathrm{~F}-\mathrm{V}^{3}$ | - ¢4E-3? | .370805 |
| N | 15 | -936E-04 | -.15aE-03 | .776E-02 | . 230 EA | - DACE= ${ }^{\text {a }}$ (14 | - 75.5E-33 | - 4 4- 5 - 2 | .151E 06 |
| N | 16 | . $474 \mathrm{E}-04$ | -.794E=04 | - $353 \mathrm{~F}=02$ | . 4 HBE n4 | -R12F-u5 | .1965-52 | - 224E-12 | .435E 46 |
|  | 17 | . $221 E=04$ | -. $335 \mathrm{E}=04$ | .138E-02 | .626E ${ }^{\text {ma }}$ | -377E-L5 | .121F-n2 | $\therefore$ cu7E-n2 | .102E 07 |
|  | 18 | -101E-04 | - $1^{3} 3 \mathrm{E}=0^{4}$ | .492E-03 | . $905 \mathrm{E} \mathrm{J}^{4}$ | -172E-f. 5 | -151E-32 |  | -207E 07 |
|  | 19 | .421E-05 | -.517E-05 | .17UE-03 | . 125 E P | . 717 F - 6 | .166F-92 | .20isera | . 380 ET |
|  | 20 | . $436 \mathrm{E}-04$ | -671E-05 | -573E-04 | .160 E 55 | - $2115-$ - 4 | -171E-U2 | - \{ 87F-? $\}$ | $.646 E^{07}$ |
|  | 21 | .668E-04 | -.304E-04 | . 325 F-04 | .170E 95 | .581E-05 | .147E-72 | .13AE- -3 | . 101E OB |
|  | 22 | . $354 \mathrm{E-04}$ | - 219 E -04 | . 201 E-04 | .164E 15 | - $6+8 \mathrm{~F}=06$ | .115E-ل2 | -191E-Ia | .147E OR |
|  | 23 | -130E-04 | -.917E-05 | . $57.2 \mathrm{E}=05$ | .155E U5 | .1116E.ne | -896E-13 | - 32AE-115 | . 199 EB |
|  | 24 | .386E-05 | -.303E-05 | . 299E-05 | .147E 35 | .166F-67 | . $7^{\text {n }} 3 \mathrm{~F}$ - 23 | . 6 67E-nt | . 257F 08 |
|  | 25 | -878E-06 | $\because 819 E-00$ | -292E-06 | .141E 95 | - $6275-08$ | - 56, ${ }^{\text {E - }}$ - 3 | - 12F-ng | -322E UR |
|  | 26 | .184E-06 | -.182E-06 | . $203 \mathrm{E}-06$ | . $136 E 15$ | . 153 F -08 | - AE, $5 \mathrm{E}=03$ | . $450 \mathrm{E}-.17$ | . 392 E OR |
|  | 27 | .116E-07 | -.251E-07 | . $55^{2} \mathrm{E}=07$ | .132E | . 660 E -L9 | . $3 \mathrm{E} 3 \mathrm{E}-03$ | .4n1E-18 | . 467 F 08 |
|  | 28 | .163E-07 | .139E-07 | . 129E-07 | .129E 35 |  | . $323 \mathrm{E}-03$ | .132E-U8 | . 549 E 08 |
|  | 29 | . $510 \mathrm{E}-07$ | - $249 \mathrm{E}=08$ | . 263 E-08 | .126E j5 | .5R6E-1n | . 277 F -0.03 | . $704 \mathrm{EF-7a}$ | . 635 F 08 |
|  |  |  | $-152 \mathrm{E}=07$ | -604F-188 |  |  |  | -115F-n7 | $.7 \text { P7E OR }$ |
|  | 31 | .928E-07 | -.202E.07 | .69UE-03 | .122E 15 | .142F-1\% | - ? $9 \mathrm{~F}-03$ | . 154 E -:17 | $.825 E O R$ |
|  | 32 | -995E-07 | -.280E-07 | -951E-08 | .1つEE $\because 5$ | -3C2E-11 | .184E-03 | . 17 IE-n7 | .928 E O |
|  | 33 | -934E-07 | -. $300 \mathrm{E}=07$ | . 105E-07 | .119E 5 | .1065-11 | .163E-ñ | . 164E-il | . $104 E$ DY |
|  | 34 | . $864 \mathrm{E}-07$ | -.281E-07 | . $944 \mathrm{E}-18$ | $.118 E^{15}$ | .1A25-11 | .14 1 E-03 | .152E-07 | .115 09 |
|  | 35 | $.782 \mathrm{E}-\mathrm{O}^{7}$ | $-2^{6} 0 \mathrm{E}=07$ | .879F-08 | $.11^{7 E} 9^{5}$ | -148E-11 | -131E- 3 | - - $^{\text {AEE- }}$ | $.127 E 09$ |

Table C10. (Continued)

## RESPONSE COVARIANCES

| t | NIT | NITEDIT | DNIT | QALF | QALF © JQALF | DQAEF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 000E-80 | . 000E-80 | - nojes-80 | . DOOE-3C | - 100 F 80 | - Uijuf-80 |
| 2 | -838E-03 | .169E-02 | -343E-02 | . 124 E - J1 | -491F-U2 | . $479 \mathrm{E}-52$ |
| 3 | - 360 E -02 | -152E-0? | -161E-02 | .731E 01 | -198E U0 | -177E OJ |
| 4 | .146E-01 | -.163E-02 | .644E-02 | .161E J2 | . 542F 00 | . 14 FE ? 1 |
| 5 | . $346 \mathrm{E}=01$ | -101E-02 | -266E-01 | . 268 E U? | .126F 01 | .633E 91 |
| 6 | .662E-01 | .774E.03 | - 871501 | . 385 EJ J | . 22ne ul | .22.1E 32 |
| 7 | -125E 00 | 634E-02 | .272E 00 | . 5 ก̃4 | -353E 01 | .721E j2 |
| 8 | -180E 00 | -889E-02 | .6205 0 | . 533542 | . 369 F . 1 | .141E 33 |
| 9 | -160E 00 | .263E-01 | .101E 01 | .54.2E J2 | . 475: 01 | .421E 93 |
| 10 | .310E 00 | -.543E-02 | .227E 01 | .589E U2 | . 366F $n 1$ | .875E 03 |
| 11 | .782E 00 | -.115E 0 O | . 723 F 01 | .362 E J2 | . 599 U U | .186E U4 |
| 12 | $.136 E 01$ | -. 655 E 00 | . 357502 | .271E j2 | -499E 01 | . 3618 g \% |
| 13 | .155E 01 | -.529E 00 | . 378 E 02 | . 279 O? | .677E D1 | . 585 F 84 |
| 14 | .156E 01 | -.479E 00 | $.217 F 02$ | .268E 32 | -179Fu? | .600\% 34 |
| 15 | $\cdots 108 \mathrm{O} 01$ | -.315E 00 | . 720 F 01 | .182E 02 | . 150 E し2 | . 470 E 04 |
| 16 | .570E 00 | -:102E 00 | 221E 01 | .116E 12 | . 307 ECl | . 275E 04 |
| 17 | -275E 00 | -.123E-01 | .979E 00 | .708 BJJ | -.32IE OL | $.159 \mathrm{U} \mathrm{U}^{4}$ |
| 18 | .139E 00 | .180E.02 | .654E 00 | .432 El | -.287r il | .940 E 33 |
| 19 | -805E-01 | $\because 146 E-02$ | .445E 00 | $.276 E 31$ | -.140F J | $.556 F 33$ |
| 20 | . 586 E 00 | .216E 00 | .578F. 00 | . 331 E )2 | . 534 F - 1 | .331503 |
| 21 | .213E 01 | .258E-01 | .533 E 00 | .877E j2 | .738 E U! | $.197 F 03$ |
| 22 | . 204E O1 | -.120E 00 | .456E 00 | .7ก゙4E U2 | -.217501 | .116E 33 |
| 23 | .146E 01 | -105E 00 | .404E 00 | .421E J2 | . 154 F 01 | .681F 02 |
| 24 | $.933 E 00$ | -.667E-01 | -354E 00 | .230E J? | -.833E na | - 325 E 02 |
| 25 | . 596 E 00 | -.392E.01 | . 264500 | .124E ${ }^{\text {¢ }}$ | -.395E 90 | . 220 F 32 |
| 26 | .375E 00 | $\bigcirc 190$-01 | .173500 | .666E 11 | -.188E 07 | .1.5F 02 |
| 27 | .246E 00 | -106E-01 | .123F. 00 | .362 E U1 | -.082F-01 | . 542 F 31 |
| 28 | .159E 00 | -.625E-02 | .8105-01 | .201En1 | -.427E-61 | .296601 |
| 29 | -106E 00 | - $2^{9} 22^{\text {E-02 }}$ | - $524 \mathrm{~F}-01$ | -115E J1 | $\because 220 \mathrm{E}-01$ | -15?E Ol |
| 30 | . $746 \mathrm{E}-01$ | . 15 SE.02 | . 342 F .01 | .6B1E JS | -. 110 EnI | .765 E 00 |
| 31 | -533E-01 | -.124E-02 | -208E-01 | -416E Jn | -.646E-6? | -34AE 00 |
| 32 | .391E-01 | ..648E-03 | . $110 \mathrm{~F}-01$ | . 256 E UR | -. 3 C2E-02 | . 138 E 0 |
| 33 | .283E-01 | -.281E-03 | . $502 \mathrm{E}-02$ | .158E 00 | -. $203 \mathrm{E}-\mathrm{v} 2$ | . $470 \mathrm{E}=01$ |
| 34 | .251E-01 | -.202E-03 | -177E.02 | .978E-J] | -.112E-02 | . $125 \mathrm{E}-01$ |
| 35 | . 252E.01 | 137E.03 | . 303 E .03 | .616E.01 | 643 E .03 | 155E-02 |

Table C10．（Concluded）

RESPONSE COYARIANCES（2）

|  | $\tilde{t}$ | 181 | IB1＊DIB1 | DIB1 | 182 | IB2alj ${ }^{\text {R }}$ ？ | J18？ | 133 | 18300183 | DI33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | ． $000 \mathrm{E}-80$ | ：000E－80 | ．OOOE－80 | ． $0000 \mathrm{E}-80$ | －90UF－8is | －019E－80 | －J！！ 1 －${ }^{\text {an }}$ | ．0JOE－BU | － $2705-80$ |
|  | 2 | ．588E 11 | ．154E 12 | ． 405 E 12 | －193E 12 | ．157E 13 | ．133F 14 | .17 E LC | ． 216 E 13 | ． 265 E 14 |
|  | 3 | ．602E 11 | －．924E 11 | －382E 12 | .480 Cl 14 | .221614 | －33．je 14 | $.137 \mathrm{E} / 5$ | ． 570 E 17 | ． 736 E 14 |
|  | 4 | ．172E 12 | －．164E 1？ | －117E 13 | .1 İ3E 15 | ． 255 E 14 | ． 925 S 14 | .275 E 15 | ．6675 14 | ．212E 15 |
|  | 5 | ．385E 12 | －279E 12 | .280 E 13 | $.164 E 15$ | ． 253717 | －？ SE $^{\text {a }} 15$ | ． 47 ÓE ！ 5 | ．691E 14 | ．469E 15 |
|  | 6 | ． 729 L 12 | －．454E 12 | .613 E 13 | ．226E 15 | －200F 14 | －4jE 15 | $\because 55 \mathrm{E} 15$ | .597814 | .913515 |
|  | 7 | 130 Cl | －．783E 12 | －141E 14 | ． 276 E 15 | ．4A2F 13 | －8．ue 15 | －dTE ！ 5 | ．295E 14 | ．181F． 16 |
|  | 8 | ．224E 13 | －．11aE 13 | ． 315 E 1.4 | ．247E 15 | －．473F 14 | $.156 E 16$ | －152F 15 | －．757E 14 | ．351E 16 |
|  | 9 | ．264E 13 | －．148E 13 | ． 530 EF 14 | ．176E 15 | －．8795 14 | ．241E 16 | ． 55 jE 15 | －．190F 15 | － 54 ！j 16 |
|  | 10 | ．308E 13 | －．58AE 12 | ． $5744^{\text {E }} 14$ | ． 659 E 14 | －．8695 14 | .217 E 16 | 22＾E 15 | －．203E15 | ．453F 16 |
|  | 11 | ．647E 13 | －． $2^{4} 1 E^{3}$ | －169E ${ }^{5}$ | － $115 \mathrm{E} \mathrm{l}^{4}$ | －129E 15 | －571E 16 | －jal ${ }^{\text {a }}$ |  | －126F 17 |
|  | 12 | ．785E 13 | －．881E 13 | －433E 15 | ．287E 14 | －．261E 15 | .134517 | －1i3E Ij | －．512F 15 | ． 295 E 17 |
|  | 13 | ．644E 13 | －．103E 14 | ． 512 F 15 | ． 426 E 14 | －－2ane 15 | .131517 | ． 144515 | －．542E 15 | －？ 26 F 17 |
|  | 14 | $.430 E 13$ | －A87E 13 | ．446F15 | ．412E 14 | －． 222515 | ． 937 E 16 | ． 335 F 15 | －．431E 15 | － 212 F 17 |
| N | 15 | ．221E 13 | －．561E 13 | ．297E 15 | .313 E 14 | ．．174F15 | ． 636 F 15 | －＇J？${ }^{\text {a }}$ | －．233r 15 | ． 1365.17 |
| ＋ | 16 | ．955E 12 | －．236E 13 | ．144E 15 | ．158E l4 | －．665E 14 | ．271E 16 | －jlJE A | －． 135 É $^{\text {E }} 15$ | －6？ 16 |
|  | 17 | ．465E 12 | －．966E 12 | ．703F 14 | ．690E 13 | －．2byF 14 | ．119F16 | $\because 3^{\prime \prime} \mathrm{E}$ ！ 1 | －．546E 14 | ． $246 \mathrm{~F} \quad 16$ |
|  | 18 | －242E 12 | －．386E 1 ？ | － 343 E 14 | ．2p5E 13 | －．101F 14 | －AtaE 15 | －UJE 1 a | －．20GE 14 | －897E 15 |
|  | 19 | －134E 12 | －．145E 12 | ．164E 14 | ． 988 Cl 12 | －．3ヶ1E 13 | －Ljge 15 | －3ile ${ }^{\text {a }}$ | －．75） 13 | ． 317 F |
|  | 20 | －101E 13 | $\bigcirc 313$ E 11 | －82dE 13 | －912E 13 | ． 512 E 13 | －6199E14 | ． 376 F 11 | ．1985 14 | ．124E 15 |
|  | 21 | ． 339 E 13 | ． 349 E 12 | ． 445 E 13 | .741513 | －． 37.1 EF 1.3 | ．21？ 14 | －$+59 \mathrm{E} \quad 14$ | －．125E゙ 10 | ． 447 F 14 |
|  | 22 | ，290E 13 | ．224E 12 | ．239E 13 | ．lgue 13 | －．228E 13 | ．13AE 14 | .172614 | －．107E 14 | ． 224 － 14 |
|  |  |  | $\bigcirc 121 E 12$ | ． 131713 | $.813 E 11$ | －． 382512 | ． 694 E 13 | －＋55E 13 | $\bigcirc 195 E 13$ | －1J1E 14 |
|  | 24 | －1l0e 13 | $\because 556 E 11$ | ．721E 12 | $.128 E 1$ ？ | ． 253 F 12 | ． $3: 32 \mathrm{E} 13$ | － 13 F 1？ | －8A5E 12 | －47BE 13 |
|  | 25 | －597E 12 | ．254E 11 | ． 362 E 12 | ．300E 12 | ．291F 1 ？ | .132 E 13 | －S？GE l］ | －4？25 11 | －153F 13 |
|  | 26 | ．335E 12 | ：757E 10 | ． 182 E 12 | .438 El | ．152E 1 ？ | ． 570 E 12 | $.177 E 17$ | ．133E12 | ． 584 F l？ |
|  | 27 | ．198E 12 | ．410E 10 | ．914 E 11 | .443 El 12 | .104 E 12 | .279 F 12 | $\therefore 95712$ | $.134 E 12$ | .269512 |
|  | 28 | －110E 12 | － $2^{6} 1{ }^{\text {E }} 10$ | ．413E 11 | － 414 E ？ | ． 757 F 11 | － 129 E 12 | －＋2JE 12 | －119E12 | －129E 12 |
|  | 29 | ．652E 11 | ．342E 09 | ． 200 F 11 | ．343E 12 | .249 E 11 | － $57 ? \mathrm{El}$ | .+19 El | .443 E 11 | －542F． 11 |
|  | 30 | ，427E 11 | － 166 O9 | ． 102 E 11 | $.282 \mathrm{E} 1 ?$ | －754F 1： | － $3^{\text {－}}$ E 11 | － $33^{2} \mathrm{~F}$ 1？ | ．159E 11 | －2ヶ35 ！ 1 |
|  | 31 | ．282E 11 | ． 614508 | .449 E 10 | ． 245 E 1？ | －9113F 17 | －146E 11 | ． 369 E 12 | －130E 11 | ． 152 E 11 |
|  | 32 | －192E 11 | －．124E 09 | －178E 10 | ． 2 O6E 1？ | －ilor lo | ．611e 17 | ． $33-\mathrm{E} \quad 12$ | ． 377 \％ 11 | .671 ． 10 |
|  | 33 | ．132E 11 | －．193E 09 | ．622E 09 | ．166E 12 | －．307F 10 | .237 E 1） | －Sn） 12 | －．551E LU | ．29：JE 10 |
|  | 34 | ．875E 10 | －．134E 09 | ．159E 09 | .132 El | －．677E 12 | ． 732 E 79 | .234510 | －．503E 10 | ．102F 10 |
|  | 35 | ．607E 10 | $-107 E 09$ | ． 212 E 0 | $.107 E 12$ | $-.297 \% 10$ | .179 F 3 | $\bullet 197 \mathrm{E}$ | －．5AGE 10 | .313 O 0 |



Table C11. (Continued)

response covariances (3)

|  | t | DELTA | elta*delta | DDEliA | D2Dot | DELQ | 4r | $\Delta \theta$ | $\Delta z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2}$ | $; 935-80$ | $: 909 E-80$ |  |  | $\begin{gathered} 909 E-80 \\ : 243 E 67 \end{gathered}$ | -198E-80 | $\begin{aligned} 900 E-80 \\ : 768 E=08 \end{aligned}$ | $\begin{array}{r} 090 \mathrm{E}=80 \\ .120 \mathrm{E}=02 \end{array}$ |
|  | 3 | -107E-03 | .674E-65 | ?295004 | :117E 00 | . $384 \mathrm{ECO6}$ | -431E-63 | . $143 \mathrm{E}-04$ | -157E 01 |
|  | 4 | 231E03 | -. $229 \mathrm{E}-14$ | :17E-03 | ¢264E O8 | -381E.06 | 4 4 6E-05 | . 355E-04 | -112E 02 |
|  | 5 | ¢ $317 \mathrm{E}-03$ | - $630 \mathrm{E}=04$ | :278E=03 | . 679800 | , $595 \mathrm{E}=06$ | \% $593 \mathrm{E}-05$ | $.600 \mathrm{E}-04$ | -426E 02 |
|  | 6 | 529E-03 | - $111 \mathrm{E}-{ }^{\text {a }}$ | :551E-03 | $\bigcirc 159 \mathrm{El}$ | -951E-06 | . $712 \mathrm{E}-\mathrm{g} 5$ | . 860 E-04 | $11^{3} 120^{3}$ |
|  | 7 | ¢663E.03 | -. 166 E.03 | ¢109E.02 | \%3318 01 | .159E.05 | .183E.04 | . 109 E .03 | -345E 03 |
|  | 8 | $6398 E 03$ $.520 E 003$ | $\rightarrow$ - $224 \mathrm{E}-03$ |  | ? 568801 | $.324 E .05$ $.509 E-05$ |  | $165 E-03$ $? 237 E-03$ |  |
|  | 10 | ? 2945003 | - 200 - 03 | !276E-02 | ? 270801 | -366E=05 | :790E85 | -3115003 | ? 212 l |
|  | 11 | .245E-03 | -. 159 ¢ ${ }^{\text {ch3 }}$ | ? $713 \mathrm{E}=02$ | ? $788{ }^{\text {ce }} 01$ | .908E.05 | . 645 E -05 | -53eter | $\bigcirc 2060^{24}$ |
|  | 12 | ¢401E.03 | -.296E.e3 | ! 168 E .01 | !420e 02 | .190E.04 | :270E.04 | .874E.03 | ¢102E 04 |
|  | 13 | 466E-03 | - 3 34E-93 | 1 $164 \mathrm{E}-01$ | ? 162503 | -231E-04 | - 0 joE-84 | -122E-02 | .735E 03 |
|  | 14 | Q402E-03 | - 9350 E ( 3 | \$122E-01 | $\bigcirc 437803$ | -211E44 | -179E-83 | -132E-02 | 993804 |
| N | 15 | -264E-03 | - 24.9 ECO | ,792E-02 | ${ }_{6}^{0608} 03$ | .155E=04 | -283E-03 | -110E-02 | - 465 E 05 |
|  | 17 | :146E083 | $-6132 E-3$ $-649 \mathrm{E}-64$ |  | isker |  | !352E-03 | . $498 \mathrm{Ec-03}$ | ! ${ }^{143 E} 06$ |
|  | 19 | -st3E•84 | $\because 142 \mathrm{E}-14$ |  | ? 2251584 | -100E-95 | :367E-83 | -319E-03 | $632 E$ 1078 187 |
|  | 20 | :2g3E-04 | - $-14050{ }^{\text {d }}$ | ! 6308004 | ? $274 E 04$ | -156E0S | !2g2E-E3 | -590E-04 | ? 167807 |
|  | 21 | -155E-04 | -.965E¢ ${ }^{\text {W }}$ | :251E.04 | ? 260 E 04 | . 375 E 06 | .232E.03 | -110E-04 | -240E 07 |
|  | 22 | ! $649 \mathrm{E}-05$ | - $433 \mathrm{E}-\frac{18}{}$ | :969E-05 | ¢254 04 | ¢733E-07 | ! $179 \mathrm{E}-13$ | ;230E-05 | 326E 07 |
|  | $2{ }^{3}$ | 22ikeg | -1964E-9 | $345 E-95$ 3 3 |  |  | ${ }_{1}^{385 E-8}$ | -592E-86 | :421E ${ }^{2} 87$ |
|  | 25 | i 145 EPO 6 | - -138 E - 6 | ? 259 EE06 | ? 210E O4 | -120E008 | - 869 E.94 | -349E007 | ? 640807 |
|  | 26 | t29EA09 | - 301 - ${ }^{\text {b }}$ | ¢536E07 | ¢210E 04 | . 2805809 | ¢11E-04 | \%740E-08 | - 762 E O7 |
|  | 27 | 1878008 | -. 4065080 | ! $998 \mathrm{E}=00$ | :204\% 04 | -108E-09 | . 591 [-64 | $\bigcirc 742000$ | -92E 07 |
|  | 28 | d260E008 | 221E48 | :284E08 | :199E 04 | . 5808.10 | .500 . 04 | $\bigcirc 209 \mathrm{E} 09$ | -103E 08 |
|  | 29 | isioteos | - $438 \mathrm{E}=9$ | ; 230E08 | !195E 04 | :122E:10 | ¢420E. 44 | :121E.08 | ¢110E 08 |
|  | 30 | $110 \mathrm{E}-97$ $i 146 E 007$ | - $2424 \mathrm{E}-18$ | ? 328 E 008 3218008 | ¢191E 04 | . $526 \mathrm{E}=11$ | -37 323 EOCO | $181 E-08$ 2415088 | ?133E 08 |
|  | 38 | 195EPe7 | - 442 c - 8 | !297e-08 | ? 186504 | .250Epl1 | ? 2aseel | ? 2675008 |  |
|  | 33 | d1450.07 |  | ¢233E-b0 | $1184{ }^{1} 8$ | -197E.11 | -252E.E4 | .255E000 | . 18580 |
|  | 34 | 1134ED | -496E-16 | ! 174 E ¢ 06 | dic2e dia | $\bigcirc 699{ }^{6} 9$ | ,225E.04 | 12368008 | itiote ob |
|  | 35 | .121E007 | - 40 2E-8 | -140E-08 | C100E 04 | . 345 E. 12 | -202E.E4 | -214E-08 | -223E 08 |

Table C11. (Continued)


| t | ${ }^{\text {B }} 1$ | 18140101 | 0181 | ${ }^{182}$ | 182.0182 | 1182 | 183 | 183.0183 | 183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | - $\mathrm{H} 900 \mathrm{E}=00$ | -006E-s0 |  | 9000kego |  | $\begin{gathered} .000 E-08 \\ \text { ol } 130 \mathrm{l} \end{gathered}$ | - OOOE O-SO |  | - $000 \mathrm{E}-\mathrm{BO}$ |
| ${ }^{2}$ | ¢580E 11 |  |  | [193E ${ }_{\text {d }}{ }^{12}$ | $\begin{aligned} & 147 E 13 \\ & 221 E \\ & \hline 20 \end{aligned}$ | $\begin{aligned} & \text { P130E } 14 \\ & .320 E \\ & \hline 14 \end{aligned}$ | (1979 | ? 216813 | [265E 14 |
| 4 | d. 312 E 12 | -. 164812 | :117E 13 | ${ }_{10} 103 \mathrm{E} 15$ | -259E 14 | .925E 14 | :295E 15 | :667E 14 | ${ }^{2} 212815$ |
| 5 | ${ }^{3} 385 \mathrm{E}$ 12 | $-279 \mathrm{E} 12$ |  | ${ }^{164 E} 15$ | -253E 14 | $\stackrel{205 E}{ }$ | :476E 15 | . 69718 | ¢469E 15 |
| 7 |  |  |  | :226E ${ }^{2768}$ | - $200 \mathrm{E} \times 14$ |  | . 6608 E 15 |  | .913E ${ }^{1815} 16$ |
| 8 | ${ }^{2} 2200^{2} 13$ |  | ¢319E 14 | P232 ${ }^{2}$ | - 413 El 14 | P156E 16 | ¢769E 15 | -i791E |  |
| 10 |  | - 9 P54E 13 |  | -196E 15 | -.821E | (241E 16 | . 607815 | -.t73E 15 |  |
| $1 \frac{1}{12}$ |  | $\cdots$ | :169E ${ }^{1695}$ |  |  | :599E 1338 |  |  | -1293E ${ }^{29} 17$ |
| 13 | ¢ $49478{ }^{35} 13$ |  | : 41448 C | \%ifat 15 |  | -132E 176 |  | -:959E |  |
| 15 | ${ }^{2} 270{ }^{13}$ |  | :299E 15 | P956E 14 |  | -647E 16 | ${ }^{-30015}$ | - 31315 | .139E 17 |
| 17 | : 140813 | - $269{ }^{\text {a }}$ | (143E 15 |  | $\bigcirc$ | .297E ${ }^{120}$ | -.161E 15 |  | $\begin{array}{r}\text {. } 633816 \\ .2512 \\ \hline 16\end{array}$ |
| 8 |  |  |  | :134E 14 |  | [496E 13 | - 3 S03E ${ }^{14}$ |  | -9921E ${ }^{15}$ |
| 20 | ${ }^{9} 916{ }^{\text {a }} 12$ | $\bigcirc{ }^{-1} 842 \mathrm{E} 10$ | : 023 SaE 13 |  |  | if $611 \mathrm{El4}$ | -229E 14 |  |  |
| ${ }_{22}^{21}$ |  | . 219 E 11 11 |  |  |  | - $2711{ }^{\text {Pr }} 14$ |  |  |  |
| ${ }_{2}^{23}$ |  |  |  | ? ${ }_{\text {l }}$ |  | [548E 13 | PT86E 12 | -:776E |  |
| 25 | :901E 11 | -944E ${ }^{\text {O }}$ | :361E 12 | ? 943811 | . 404811 | -113E 13 | :143E 10 | -986E 08 |  |
| 26 27 |  | $\cdots$ |  | ¢122e 11 | . 2111811 | . 530 SbE 12 |  | ${ }^{1} 189 \mathrm{E}$ |  |
| 2889 | ${ }_{\text {a }}$ |  | ${ }^{\text {a }}$ | ${ }^{[664 E} 5$ | - 396 E E 16 |  | . $6669 \mathrm{El\mid}$ |  |  |
| 30 | : 612 T 10 | $\because{ }^{-10} 108080$ | ! 102 E 11 | :444E 11 | - $826 E$ | . 304811 | :602E 11 | -193E 10 | \%276E it |
| 31 | 441610 | $-301508$ | :449E 10 | ? 385 Ec 11 | -120E 10 | P143E 11 | ¢ 579811 | :254E 10 | :144E 11 |
| 32 |  | $-{ }_{-393}-308$ | ${ }^{1798}$ | ${ }^{3} \mathbf{3 2 2 5} 11$ | -4519 08 | ${ }^{6} 610{ }^{\text {che }} 10$ | - 1318 E 11 | ${ }^{2828}{ }^{\text {280 }}$ 09 | -675E 10 |
| 33 34 | $\left.{ }_{\cdot 1}^{2}{ }^{2}\right]_{68}^{5 E} 28$ | ${ }^{-394 E}$ |  | - 25811 |  | - 2338 CO | ${ }^{4} .4398111$ |  | - 2818180 |
| 35 | :93ge ${ }^{\text {g }}$ | $\rightarrow{ }_{\text {O }} \rightarrow$ | lige of | [166E 11 | $\because 450 \mathrm{E} 0$ | CHISE 0 | :304E 11 | :P805E 09 | Clbie 0 |

Table C12. Minimum Drift (c4) Covariance Results

MEAN RESPONSES (4)

| t | DELTA | DDELTA | NSUBIT | DNSUB | QALF | QDALF | D2 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | $\begin{array}{r} 000 E=80 \\ -176 E=05 \end{array}$ | $\begin{array}{r} 000 E-80 \\ .123 E-03 \end{array}$ | - 000E-80 <br> $.117 E-02$ | $\begin{aligned} & .003 E=80 \\ & .243 E=02 \end{aligned}$ | $\begin{aligned} & .000 E=80 \\ & .469 E=02 \end{aligned}$ | $\begin{aligned} & .000 E=80 \\ & .334 \varepsilon=02 \end{aligned}$ | $\begin{array}{r} .000 E-80 \\ -.962 E-03 \end{array}$ | $\begin{array}{r} .000 E=80 \\ .866 E=03 \end{array}$ |
| 3 | -.133E-02 | -.111E-02 | -173E-01 | -223E-n2 | -389E 00 | .113E 00 | -.545E-01 | -.108E 00 |
| 4 | -.497E.02 | -.162E.02 | -582E.01 | .573E-03 | $.140 E 01$ | . 287800 | -.217E 00 | -.722E 00 |
| 5 | - 112 E -01 | -.141E-02 | -134E 00 | $.9165-02$ | -316E 01 | . 594 E 00 | -.581E 00 | -.?6]E 01 |
| 6 | -199E-01 | -.232E-03 | $\because 247 E 00$ | . $220 \mathrm{E}-1$ | -562E O1 | .107E 01 | -.122E 01 | -.697E 01 |
| 7 | -.301E-01 | -219E-02 | : 403 E 00 | .441E-01 | .859E 01 | .175 E 01 | -.217E O1 | -.153E 02 |
| 8 | -.407E-01 | . $529 \mathrm{E}-02$ | -584E 00 | .679E01 | .117E 02 | . 264 El | ..344E 01 | -. 291 E2 |
| 9 | -. $474 E-01$ | .110E-01 | . 755 E 0 | .139E 00 | .156E 02 | .393E 01 | -.491E O1 | . .498 E 02 |
| 10 | -466E-01 | -165E-01 | -870E 00 | .688E-01 | -208E 02 | .557E O1 | -.682E O1 | -.788E 02 |
| 11 | -.601E-01 | .771E-02 | .108 OL | . 285 E-01 | .215E 02 | . 343 E 01 | . .946 E DI | -.119E 03 |
| 12 | -.805E-01 | .769E-02 | . 466 E 0 | -.183E 00 | .210E 02 | .676E 01 | -.962E 01 | -169E 03 |
| 13 | -.918E-01 | -223E-01 | . 337 E 0 | ..431E 00 | . 257E 02 | .102 O | -.559E 01 | -.208E 03 |
| 14 | - $893 \mathrm{c}=01$ | - $319 \mathrm{E}=01$ | .729E 00 | $-206{ }^{-1} 00$ | . 294E 02 | .637E 01 | . $.710^{\circ} 00$ | -.224E 03 |
| 15 | -698E-01 | - 3 33E-01 | .111E Of | - $209 \mathrm{E}-01$ | -267E O2 | -244E 01 | - 266 E 01 | - 218 E 03 |
| 16 | -407E01 | - $300 \mathrm{E}-81$ | $\bigcirc 945 \mathrm{O} 00$ | -112E 00 | . 191802 | -.861E 01 | $45 E 01$ | -. 201503 |
| 17 | -175E-01 | -180E-01 | .559E 00 | -.282E 00 | -973E O1 | -.924E O1 | 487E 01 | -.178E 03 |
| 18 | - 522E-02 | -773E-0゙2 | .215E 00 | -.250E 00 | . 345 El | . 639 El | .559E 01 | .152E 03 |
| 19 | -.161E=02 | . 223 E -02 | -946E-01 | -.101E 00 | -125E 01 | -. 267 El | .632 F 01 | -.122E 03 |
| 20 | - $142 \mathrm{E}-0^{2}$ | . $676 \mathrm{E}-0^{3}$ | .141500 | . 354 E - $0^{3}$ | -134E 01 | . $373 \mathrm{E}-01$ | .663E 01 | . $0.894{ }^{\text {c }}$ |
| 21 | -190E.02 | .624E-B3 | .254E 00 | .813 E 01 | . 222E 01 | .162E 01 | .618 Cl | ..570E 02 |
| 22 | - 202E-02 | -838E-03 | .337E 00 | .112 OD | -289E 01 | -196E 01 | -494E 01 | .289E 02 |
| 23 | -.162E02 | -931E-03 | $.361 E 00$ | $.904 \mathrm{E}-01$ | . 295 O1 | .143E 01 | .323 O1 | -.822E 01 |
| 24 | -.101E-02 | .763E-03 | $: 331 \mathrm{EO}$ | :484E=01 | . 254E O1 | .764 E 00 | .142 OL | . 345 E O1 |
| 25 | ..493E-03 | . 490 E-03 | .264E 00 | .154E-01 | .197E 01 | .313E 00 | . 149 E O | .653E 01 |
| 26 | -. 203E-03 | .236E-03 | 191E 00 | -.148E-01 | .139E 01 | . 351 E. 02 | -.125E 01 | .288E Ol |
| 27 | - $324 E=04$ | -118E-03 | -139E 00 | - 446 E-02 | .985E 00 | . 138 E-02 | -.185E 01 | -.301E 01 |
| 28 | . $786 \mathrm{E}-04$ | . 473 E-04 | ¢971E-01 | -.148E-02 | .703E 00 | .662E.02 | -.204E OL | -149E 02 |
| 29 | -116E03 | -.125E-04 | .692E-01 | . 269 E -02 | .511E 00 | -.292E-02 | -.190E 01 | -.249E 02 |
| 30 | -125E-03 | -.313E-04 | -527E-01 | . $607 \mathrm{E}=02$ | .385E 00 | .290E.02 | -.153E 01 | -.336E 02 |
| 31 | .139E-03 | -. $315 \mathrm{E}-04$ | :421E-01 | -. $356 \mathrm{E}-02$ | . 298 E 00 | . $362 \mathrm{E}-02$ | -.103E 01 | -.400E 02 |
| 32 | -142E-03 | -. 395 E -04 | -354E-01 | -212E-02 | -236E 00 | -425E-02 | -.465E 00 | -.438E 02 |
| 33 | -140E-03 | -. $426 \mathrm{E}-04$ | -312E-01 | . 139 E 02 | .190E 00 | .901E-02 | .878E-01 | -.448E 02 |
| 34 | -13gE-03 | -.416E-04 | . 264E-01 | $.141 E 02$ | . 155000 | -396E-02 | .58 CE 00 | -.43lE 02 |
| 35 | .140E-03 | -.412E-04 | -234E-01 | .106E-02 | .129E 00 | . 406 E-02 | .979E 00 | -.391E 02 |

Table C12. (Continued)


Table C12. (Continued)


Table C12. (Continued)

|  | RESPONSE COVARIANCES (4) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\sim$ | NIT | NITMNIT | DNIT | Qalf | QALF PDGALF | DQALF |
|  | 1 2 3 4 | $\begin{aligned} & .000 E=80 \\ & .832 E=03 \\ & 347 E=02 \\ & \vdots 148 E=01 \end{aligned}$ | $\begin{array}{r} .000 E=80 \\ -169 E=82 \\ -146 E=02 \\ -161 E=02 \end{array}$ | $\begin{aligned} & 000 E-80 \\ & 342 E=02 \\ & 158 E=02 \\ & 646 E-02 \end{aligned}$ | $\begin{aligned} & .008 E=80 \\ & 123 E=01 \\ & .730 E 01 \\ & 161 E 02 \end{aligned}$ | $\begin{array}{r} .000 E=80 \\ .438 E=02 \\ .198 E 00 \\ .539 E 00 \end{array}$ | $\begin{array}{r} \text { A80E-80 } \\ .478 E=\theta 2 \\ .197 E O \theta \\ 146 E-1 \end{array}$ |
|  | 5 | $\begin{aligned} & 349 E-01 \\ & .661 E=01 \end{aligned}$ | $\begin{array}{r} -105 E=02 \\ .628 E-03 \end{array}$ | $\begin{aligned} & 266 E-01 \\ & -871 E-01 \end{aligned}$ | $\begin{array}{r}1268 E 02 \\ -383 E 02 \\ \hline\end{array}$ | P $.126 E 01$ $.224 E 01$ 347501 | $\begin{aligned} & 633 E 01 \\ & 021 E \end{aligned}$ |
|  | 7 8 | $124 E 00$ .208500 | $.589 E-02$ $.168 \mathrm{E}-01$ | $.272 E 00$ $.614 E 00$ | $498 E 02$ $.605 E 02$ | $.347 E ~$ .495 .491 | $\begin{aligned} & 721 E 02 \\ & 192 E ~ \end{aligned}$ |
|  | 9 | . 262 L 00 | . $422 \mathrm{E}-01$ | -991E 00 | .774E 02 | .725E 01 | $421 E 03$ |
|  | 10 11 | 390 C .300 $.803 E 0$ | $.577 E-02$ $.471 E-81$ | 222E Of 6862 01 | $118 E 03$ $+109 E 03$ | $.824 E 01$ $.494 E 00$ | $\begin{array}{r} 874 E 03 \\ .186 E 84 \end{array}$ |
|  | 12 | -838E 00 | -.435E 00 | $\bigcirc 349 \mathrm{O}$ | -104E 03 | $.162 E 01$ | . 360 E O4 |
|  | 13 | -570E 00 | -.225E 00 | ?374E 02 | .137E 03 | -327E 01 | . 585 E 04 |
| $\stackrel{\sim}{\omega}$ | 14 | .417E 00 | . $235 \mathrm{E}-01$ | $\because 217$ E 02 | .151E 03 | -.267E 02 | .659E 04 |
| $\omega$ | 15 | $.309 E 80$ .206800 | $.729 E-01$ $.807 E-02$ | $731 E$ $; 231 E$ O1 | $1111 E 03$ $643 E 02$ | $\begin{aligned} & -.444 E 02 \\ & -0316 E 02 \end{aligned}$ | $\begin{aligned} & 470 E g 4 \\ & 0276 E 84 \end{aligned}$ |
|  | 17 | .144E 00 | $-151 E-01$ $-155 E 01$ | $.105 E$ <br> $.693 E 0$ <br> 6700 | 332E 02 177E 02 | -.162E 02 | $\begin{array}{r}159 E 04 \\ .159503 \\ \hline 959\end{array}$ |
|  | 19 20 | .583 E .355 E .01 | -.127E-01 | 470 .502800 $i 537$ | $\begin{array}{r}959 E \\ \hline 489 \mathrm{El} \\ \hline 1\end{array}$ | $\begin{aligned} & -459 E 01 \\ & -261 F \end{aligned}$ | $.556 E O 3$ $.330 E 3$ |
|  | 20 21 | $.355 E-01$ $.232 E-01$ | $-.965 E-02$ $-.702 \mathrm{E}-02$ | ¢ <br> 537200 <br> 5700 | $\begin{gathered} 489 E \\ i 244 E \\ \hline \end{gathered}$ | -. 2615 OL | - 197 O |
|  | 22 23 | 1 $.143 E-01$ $.904 E=02$ | $-411 E-02$ $-290 E-02$ | 4490800 $.397 E 00$ | $.123 E$ <br> $.626 E$ <br> 68 |  | $116 E 03$ .6815 |
|  | 24 | -552E-02 | - 219 C -02 | $\bigcirc 349 \mathrm{OO}$ | .316E 00 | -. $201 E 00$ | $395 E 02$ |
|  | 25 26 | $.305 E-02$ $.166 E-02$ | $-142 E-02$ $-869 E-03$ | 262 E 00 <br> $i 178 \mathrm{O}$ <br> 17 | $153 E 00$ <br> 719 E <br> 1 | $-109 E 00$ $.562 E-01$ | $\begin{aligned} & 220 \mathrm{E} 02 \\ & .115 \mathrm{E} 02 \end{aligned}$ |
|  | 26 27 28 | \% $.973 E 03$ $.600 E-03$ | - $521 E-03$ $-305 E-03$ | $123 E 00$ $808 E 01$ | $341 E-01$ $168 E-01$ | - $279 E=01$ | $.582 E 01$ $.298 E 1$ |
|  | 29 | -420E-03 | -. 174 E -03 | ? 524 E-01 | \%881E-02 | -691E-02 | -152E 01 |
|  | 30 | -323E-03 | - 10゙5E-03 | :342E-01 | -491E-02 | -341E-02 | . 765 E |
|  | 31 | -243E03 | - $708 \mathrm{E}=04$ | ? $208 \mathrm{E}=01$ | ?277E-02 | -. $165 \mathrm{E}-02$ | . 348 E 80 |
|  | 32 | -176E03 | -.392E-g ${ }^{4}$ | -110E-01 | $149 \mathrm{E}-0^{2}$ | - $772 \mathrm{E}-0^{3}$ | .138E 80 |
|  | 33 | -117E03 | -.196E-d4 | ?502E-02 | ! 748E03 | - 324 E03 | . $469 \mathrm{E}-1$ |
|  | 34 35 | $.876 E-04$ $.702 E 04$ | $+653 E-05$ $-825 E-H 6$ | $177 E-02$ $302 E-03$ | $: 357 E-03$ <br> $171 E-03$ | $-104 E-03$ $-176 E-04$ | $\begin{aligned} & 125 E-B l \\ & -154 E-E 2 \end{aligned}$ |

Table C12. (Concluded)

| t | $1{ }^{181}$ | 1810D181 | D181 | $1^{182}$ | 182*D182 | D182 | 183 | 1830183 | D183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | -000E-80 | -000E-80 <br> .155E 12 | $\begin{array}{r} 000 \mathrm{E}-80 \\ \quad 408 \mathrm{E} \\ \hline \end{array}$ | $\begin{array}{r} 000 E=80 \\ .006 E=80 \\ 19 \end{array}$ | $\begin{array}{r} 000 \mathrm{OE}-80 \\ \mathbf{1 S 9 E} 13 \end{array}$ | $\begin{array}{r} 000 E-80 \\ : 131 E 14 \end{array}$ | $\begin{array}{r} 000 \mathrm{E}-80 \\ : 183 \mathrm{E}=8 \end{array}$ | $\begin{array}{r} 000 E=80 \\ .220 E 13 \\ .220 \end{array}$ | $\begin{array}{r} .000 \mathrm{E}-80 \\ .268 \mathrm{~B} \\ \hline 2 \end{array}$ |
| 3 | .606E 11 | -916E 11 | $\bigcirc 374{ }^{-12}$ | . 479 E 14 | . 218 E 14 | . 314 E 14 | -137E 15 | . 562 E 14 | .721E 14 |
| 4 | .134E 12 |  |  | $\begin{array}{r}\text {-102E } \\ .1635 \\ \hline 15\end{array}$ |  | :901E ${ }^{4}$ | . 293 BE 15 | .658E ${ }^{\text {. } 6771^{4}}$ | $.206 E 15$ $.454{ }^{15} 15$ |
| 6 | -790E 12 | $\because 446 E 12$ | $\bigcirc 509 \mathrm{E} 13$ | . 223 E 15 | -192E 14 | . 388 E 15 | .659E 15 | -577E 14 | -b82E ls |
| 7 | -132E 13 | -.762E 12 | -138E 14 | -270E 15 | . 335 E 13 | . 771515 | -800E 15 | -24AE 14 | -174E16 |
| 8 | - 217E 13 | $-138 E^{-13}$ | $.313 \mathrm{E}^{14}$ | . $304 \mathrm{E}^{\text {E }} 15$ | -.203E 14 | . 153 E 16 | .914E 15 | -.212E 14 | . $344 \mathrm{E}^{16}$ |
| 9 | . 287 L 13 | -.173E 13 | . 543 E 14 | . 282 E 15 | -. Pote $^{\text {c }} 14$ | - 242 E 16 | . 863 SE 15 | -.136E 15 | . 541 LE 16 |
| 10 | . 332 E 13 | .-102E 13 | . 568 E 14 | . 201E 15 | -.873E 14 | . 202 E 16 | .639E 15 | -.190E 15 | -447E 16 |
| 11 | - 7300 E 13 | $\because 493 \mathrm{Cl}$ | -167E 15 | . 278815 | -1648E 14 | - 534 E 16 | -891E 15 |  | -118E 17 |
| 12 | .938E 13 | $\begin{array}{ll}\because 118 E \\ \because 1214 \\ \square & 14\end{array}$ | $.432 E 15$ .521515 | . 533 E 15 |  | 129 E <br> 174 <br> .134 <br> 17 |  | -158E 15 | $283 E 17$ $.289 E 17$ |
| 14 | .701E 13 | -.100E 14 | . 459 E 15 | . 534 E 15 | -.351E 15 | . 105 E 17 | . 164 E $^{16}$ | -.751E 15 | .227E 19 |
| 15 | . 490 E 13 | $\rightarrow 641 E^{13}$ | P308E 15 | . 277 E 15 | -.248E 15 | . 705 E 16 | .881E 15 | -. 569 E 15 | -152E 17 |
| 17 | -256E 13 |  | ? 150 EE 15 | .996E 14 | $\because 115 E 15$ $-427 E 14$ | $\begin{array}{r}\text { ¢ } \\ . \\ .134 E E 16 \\ \hline 16\end{array}$ |  |  |  |
| 18 | . 736 E 12 | $\rightarrow 438 E^{-9}$ | -392E 14 | :111E 14 | -.156E 14 | .511E 15 | .414E 14 | -.372E 14 | . $105{ }^{16}$ |
| 19 | . 377 E 12 | $\because 180 \mathrm{E} 12$ | $: 167 \mathrm{E} / 4$ | . 350 E 13 | $\because 548 \mathrm{E} 13$ | . $187 \mathrm{El}{ }^{\text {c }}$ | -141E 14 | ..134E 14 | . 368815 |
| 20 | .191E 12 | $\cdots$-.818E 11 | :827E 13 | . $976{ }^{\text {E }} 12$ | -.181E 13 | .675E 14 | -446E 13 | $-458 \mathrm{E} 13$ | .123E 15 |
| 21 | - 10218 | -.4n3E 11 | $: 441 E 13$ | . 216 E 4212 | $-564 E$ <br> $-180 E$ <br> -12 | -266E 14 | -124E 3 13 | $-143 E 13$ <br> $-451 E$ | $1436 E 14$ .166814 |
| 23 | -285E 11 | -965E 10 | $\bigcirc 130 \mathrm{E} 13$ | -593E 10 | -.531E 11 | -509E 13 | -71JE 11 | $\because 138 E 12$ | -643E 13 |
| 24 | - 154511 | -.524E 10 | T17E 12 | . 449 E 10 | $-146 E 11$ | $.230{ }^{13}$ | .893E 10 | -.346E 11 | .234E 13 |
| 25 | - 750 E 10 | -271E 10 | $\because 361$ E 12 | . $660{ }^{\text {E }} 10$ | -.356E 10 | -108E 13 | .202E 10 | -.569E 10 | -998E 12 |
| 26 | - 369 E E 10 | $\cdots{ }_{-146 E 10}$ | $\bigcirc 182 \mathrm{E} 1^{2}$ | . 580 E 10 | -. 188 E 10 | . $517 \mathrm{~L} 1^{2}$ | - 30810 | -. $0106{ }^{6} 10$ | . 439 E 12 |
| 27 | -188E 10 | ..748E 09 | :912E 11 | . 469 E 10 | -.997E 09 | .253E 12 | . 373E 10 | -.219E 09 | . 206 E 12 |
| 28 29 | -923E 9 |  | !413E 11 | . 363 E 10 |  |  | . $30^{0} \mathrm{E}$ E 10 |  | -956E 11 |
| 29 30 | ,307E 09 | $\because 1715$ $\because 9235$ $\square$ | ! ${ }_{\text {200 }} 102 \mathrm{E} 11$ | . 267 E 寿10 |  | .570E 11 | . 235810 |  | . 505 Cl [ 285 l |
| 31 | . 189E 09 | -.443E 08 | $\bigcirc 449 \mathrm{E} 10$ | .171E 10 | -.172E 09 | .144E 11 | . 261 E 10 | -174E 09 | .148E11 |
| 32 | .115E09 | -. 238 E 08 | .178 E 10 | .131E 10 | -.150E 09 | . 620e 10 | . 215E10 | -.204E 09 | .697E 10 |
| 32 34 3 | .656E 08. |  | $\begin{array}{r}621 E \\ \hline 1585 \\ \hline 09\end{array}$ | .900E 99 | -1118 E -6790 08 | $.237 E 10$ $.696 E 09$ | -155E 10 | $\begin{array}{r}\square 1908 \\ \because 121 E \\ \hline 09\end{array}$ | -289E 10 |
| 34 35 | -185E OB | -9472 $-154 E$ |  | .581809 .368809 | $-.679 E 08$ $-396 E ~ O B$ | .696E O9 |  | $-121 E$ $-786 E 09$ -7 | P91E .182 O .189 |

Table C13. Normal Acceleration (c5) Covariance Results


Table C13．（Continued）

|  | R | （5） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| t | 181 | DIB1 | 182 | D182 | 183 | DIB3 |
| 1 | ． 000 E＝80 | －OñOE－80 | －000E－80 | －OODE－80́ | －000r－80 | －000E－80 |
| 2 | －．872E 04 | －． 245 E 05 | －．132E 05 | －．127E 06 | －．109上 05 | －．179E 06 |
| 3 | －． 067 E 05 | ．1发3E 06 | ．836E 06 | －125E 07 | ．146E 07 | ．193E 07 |
| 4 | －． 200 E 06 | －20゙2E O6 | .320 E 07 | ．256E 0 O7 | ． 553 t 07 | ． 396 E 07 |
| 5 | －．458F 06 | ． 285 E Ot | ． 727 E 07 | ？91E ${ }^{\text {a }}$ | －126E 08 | ．610E 07 |
| 6 | －．86lE 06 | ．317E 06 | ．129E 08 | ． 504 O 7 | －223E 08 | ．791E 07 |
| 7 | －． 242 E 07 | ．241E 06 | ．193E O8 | ． 543 E OT |  | ．864E 07 |
| 8 | －．216E 07 | ． $2216 E 06$ | ．222E 08 | ．161E OT | ．392E 08 | .294 E 07 |
| 9 | －．251E 07 | －．810E 06 | ．219E 08 | ．．241E 07 | ．392E 08 | －．295E 07 |
| 10 | －． 285 E 07 | －．163E 07 | ．145E 08 | ．－913E 07 | ．275E 08 | －．130E 08 |
| 11 | －．371E 07 | ．．151E 07 | ．481E 07 | ．．965E 07 | ．125E OR | －．140E O8 |
| 12 | －．330E 07 | －．835E 06 | ．146E．08 | .498 E 7 | ，283E OR | ．926E 07 |
| 13 | －．313E 07 | ．．191E 07 | ．204E 08 | ．．516E 06 | －375E 08 | ．156E 07 |
| 14 | －．280E 07 | $.180 E 07$ | ．198E 08 | －．527E 07 | ．362E O8 | －．645E 07 |
| 15 | －．207E 07 | ．．740E 06 | ．146E 08 | －．62CE 07 | ．266E OB | ．．931E 07 |
| 16 | －．116E 07 | －292E 06 | ．779E 07 | －．450E Ö7 | －143t OR | －．777E 07 |
| 17 | －．467E 06 | －9TOE DE | ．281E 07 | －．179E 07 | ．522E 07 | －．408E 07 |
| 18 | －．108E 06 | －770E 06 | ． 612 E 06 | －． 248 E 06 | ．114E 07 | －．137E 07 |
| 19 | －． 449 C 05 | ．318E O6 | ． 188 E 06 | $.754 E 05$ | ．365E 06 | －．271E 06 |
| 20 | －．$\downarrow 42 \mathrm{E} 07$ | ．．164E 06 | $.42 l_{\text {E }} 07$ | $.294 E 07$ | ．87le 07 | ． 506 E 07 |
| 21 | －． 294 E 07 | ． .569 E 06 | ．497E 07 | ．．636E 06 | ．119t 08 | －．339E 06 |
| 22 | －．361E 07 | －． 0676 E6 | .354 E 07 | －． 24 ÖE OT7 | ．103E 08 | ．．317E 07 |
| 23 | －．358E 07 | －．520E 06 | －lle 07 | －．298E 07 | ．628E 07 | －． 427 C 07 |
| 24 | －．-95807 | －． 289806 | －．100E 07 | $.231 E 07$ | .201607 | －．345E 07 |
| 25 | ．．221E 07 | ．－163E 06 | －．179E 07 | －．146E 07 | －．195E 06 | －．221E 07 |
| 26 | ．．167E 07 | －．561E 05 | －．190E 07 | －．702E 06 | ．．106E 07 | －．109E 07 |
| 27 | ．．128E 07 | －．376E 05 | －．192E 07 | －．475E Ö6 | ．．156E 07 | ．．737E 06 |
| 28 | －．956E 06 | －．292E 05 | －．185E 07 | －．353E 0 O6 | －．187E 07 | －．546E 06 |
| 29 | ． .736 E 06 | －．795E 04 | －． 169 OT | －．130E 06 | －．187E 07 | ． 206 E 06 |
| 30 | －．595E 06 | ．328E 02 | ．－153E 07 | －．464E 05 | －．178E 07 | －．755E 05 |
| 31 | －． $484 E 06$ | －．333E 04 | －．143E 07 | －．568E 05 | －．175E 07 | －．898E 05 |
| 32 | －．399E O6 | －111E 04 | －．131E 07 | －．103E 05 | －． 166 E 07 | －．182E 05 |
| 33 | ．．331E 06 | ．403E 04 | －．118E 07 | ．201E 05 | －． 153 E 07 | ． 283 O 05 |
| 34 | ．．270E 06 | ． 348 E O4 | －．105E 07 | ．209E OS | －．140E 07 | ．304E 05 |
| 35 | －．-25 E 06 | ．338E 04 | ．946E 06 | $.241 E 05$ | 128E 07 | ． 356 E 05 |

Table C13．（Continued）

RESPONSE COVARIANCES（5）

|  | r | oelta | delta＊delta | doelta | OZDOT | DELO | $4 \gamma$ | $\Delta \theta$ | 42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | $\begin{array}{r} .000 \mathrm{En} 80 \\ .343 \mathrm{E}=08 \end{array}$ | $\begin{array}{r} 000 \mathrm{E}=80 \\ -175 \mathrm{E}=06 \end{array}$ | $\begin{array}{r} .000 E-80 \\ -128 \mathrm{E} \end{array}$ | $\begin{array}{r} .000 \mathrm{E}-80 \\ .967 \mathrm{E}-\mathrm{O} \end{array}$ | $\begin{array}{r} .000 \mathrm{E}-80 \\ .243 \mathrm{E}-07 \\ \hline \end{array}$ | $\begin{array}{r} .000 E=80 \\ .155 E .06 \end{array}$ | $\begin{aligned} & .000 \mathrm{E}-80 \\ & .768 \mathrm{E} .08 \end{aligned}$ | －000E－80 |
|  | 3 | －107E－03 | －674E－05 | ．295E－04 | ．117E OO | ．384E－06 | ．431E．05 | ．143E－04 | －157E 01 |
|  | 4 | ．231E．03 | －．229E．04 | －117E－0゙3 | ． 264 Eño | ． $381 \mathrm{E}-06$ | ．406E．05 | ．355E．04 | ．112E 02 |
|  | 5 | ． 3 77E－03 | －．630E．04 | ． $278 \mathrm{E}-03$ | ． 679 EO | －595E－06 | ． 553 E － 05 | ．600E．04 | －426E 02 |
|  | 6 | ．529E．03 | －．111F－03 | －551E－べ3 | ．159E 01 | ． $951 \mathrm{E}-06$ | ．772E．05 | －860E－04 | ．131E 03 |
|  | 7 | ．663E．03 | －．166E．03 | －109E－02 | ．331E O1 | ．159E－05 | ．103E．04 | ．109E．03 | ．345E 03 |
|  | 8 | －997E．03 | －．227E．03 | －179E．02 | ． 565 E O1 | ． $445 \mathrm{E}-05$ | ．119E．04 | ．174E．03 | －811E 03 |
|  | 9 | .442 E .03 | －．238E．03 | －362E．02 | ．360E ${ }^{\text {Of }}$ | －891E－05 | ．532E．05 | －780E．03 | －148E 04 |
|  | 10 | －212E－03 | － | －183E－02 | －120E 1 | －117E－04 | ．129E．05 | ．418E．03 | －180E 04 |
|  | 11 | － 623 E 03 | $\bigcirc 0451$ E． 03 | ． 318 E －${ }^{\text {d }}$ | ． 169 E ？ | －378E－04 | －138E．04 | ．789E．03 | －117E 04 |
|  | 12 | ． 344 E .03 | －．131E．02 | －831E＿ól | ．105E ${ }^{\text {O }} 3$ | －641E－04 | ．674E．04 | ．124E．02 | ．317E 03 |
|  | 13 | ． $2^{89}$ E．03 | －．498E．03 | ．267E．01 | －355E ${ }^{\text {Ö3 }}$ | ．650E－04 | －182E＿03 | ．165E．02 | ．576E 04 |
| $\omega$ | 14 | ． $217 \mathrm{E}^{\text {．}} 03$ | －．269E．03 | －111E．01 | －R62E 03 | ．561E．04 | ． $354 \mathrm{E}_{\text {．}} 03$ | ．185E＿02 | ．369E 05 |
| $\checkmark$ | 15 | ． 119 E 03 | －．187E．03 | －800 E． 02 | －167E ${ }^{\text {O4 }}$ | －339E－04 | ．549E．03 | ．173E．02 | －132E 06 |
|  | 16 | ．505E．04 | －．986E．04 | ．441E．0゙2 | ． 277 E 04 | ．165E－04 | －725E．03 | ．149E．02 | ． 352 E O6 |
|  | 19 | ．212E．04 | －． 507 F －04 | －249E．02 | ．416E 04 | －822E－05 | ． 869 EE ． 03 | －134E＿02 | －177E 06 |
|  | 18 | ．945E．05 | ．．269E．04 | －140E－02 | ． 592 E Ö4 | ．416E－05 | ．984E，03 | ． $128 \mathrm{E}_{.02}$ | ．152E 07 |
|  | 19 | ． 360 E．05 | －．124E．04 | －661E－03 | －RILE 04 | ．217E－05 | －108E．02 | ．126E－02 | ．270E 07 |
|  | 20 | ．149E．04 | －－238E．05 | ． 213 Em 03 | ．105E O5 | ． $572 \mathrm{E}-05$ | ．112E．02 | ． $776 \mathrm{E}_{\text {－}} 03$ | ．451E 07 |
|  | 21 | ．261E．04 | －90゙7E．05 | ． 671 LE －04 | ．119E OS | ．452E－05 | ．103E， 02 | ． $289 \mathrm{Em}{ }^{\text {a }}$ | －704E 07 |
|  | 22 | －$\leq 13 \mathrm{E}-04$ | －．10̈4E．04 | ．201E．04 | ．124E 05 | ．226E－05 | ．869E．03 | ．648E．04 | －103E 08 |
|  | 23 | ．106E．04 | －．667E．05 | ． 679 E 05 | $.11200^{55}$ | ．745E－06 | ．694E．03 | ．512E．05 | ．141E 08 |
|  | 24 | ． 301 E .05 | －．237E．05 | ．247E－05 | ．114E 05 | ．137E－07 | ．545E．03 | ．680E．06 | －185E OB |
|  | 25 | ． $684 \mathrm{E}-06$ | －．639E．06 | － $725 \mathrm{E}-06$ | －109E O5 | －493E－08 | ． 437 E －03 | ．165E－06 | ．233E OB |
|  | 26 | ． 143 E .06 | －．142E．06 | ．164E－06 | ．105E 0 | －120E－08 | ．357E．03 | ． $355 \mathrm{E}_{\text {．}} 07$ | ． 285 E 08 |
|  | 27 | ． 904 Em 08 | －．195E．07 | ． 432 Em －${ }^{\text {a }}$ | ．102E ${ }^{\text {O5 }}$ | ． 514 E －09 | ． 297 F E03 | ． $359 \mathrm{EE.08}$ | ． 342 E OB |
|  | 28 | －127E－07 | ．108E－07 | ．102E－0̈7 | ．997E ${ }^{4}$ | ．279E－09 | －251E．03 | －102E．08 | －404E 08 |
|  | 29 | ． 396 E －07 | －．194E＿08 | ． 265 E －${ }^{\text {¢ }}$ | －977E ${ }^{\text {O }}$ | ． $463 \mathrm{E}-10$ | ． 215 E．03 | ． 594 E －08 | ．469E O8 |
|  | 30 | ．541E．07 | －．118E－07 | ．531E．08 | ． 96 CE O 04 | ． $104 \mathrm{E}-10$ | ．186E＿03 | ．895E．08 | ． 539 E O8 |
|  | 31 | ．720E．07 | －．157E．07 | ． 592 E － 8 | ．946E 04 | ．119E－10 | ．162E．03 | ．119E．07 | ．613E 08 |
|  | 32 | ．772E．07 | －．218E．07 | ． 775 E －008 | ．934E 04 | －288E－11 | ．143E．03 | ．133E．07 | ．691E 08 |
|  | 33 | ． 725 Em 07 | －． 233 E －07 | ． 832 E － 08 | ．924E 04 | －181Em11 | ．127E．03 | ．127E．07 | .774 E O8 |
|  | 34. | .671 E．07 | －．218E．07 | $.740 \mathrm{E}-08$ | ．915E 04 | ．122E－11 | ．113E．03 | ．118E．07 | ．860E O8 |
|  | 35 | ．907E．07 | ．．20゙2E．07 | ．677E－08 | ．905E 04 | ．118E－11 | ．102E．03 | ．107E．07 | ．951E 08 |

Table C13. (Continued)

Resplise ccuarlances (5)

| NIT | NIT*ENIT | CRIT | GALF | QALF*DQALF | DUALF |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - OCOE-80 | - UñoE-80 | -0comar | - $000 \mathrm{E}-80$ | -000E- | 8 |
| . $838 \mathrm{E}-03$ | .1月9E.02 | . $343 \mathrm{E}-\mathrm{C} 2$ | .124E-01 | .441t-02 | .479E_02 |
| -360E.02 | -.152E.02 | .161E-02 | .731E 01 | .198E 00 | .197E 00 |
| .146E-01 | -.163E-02 | .644Em? | .161E 02 | .542E 00 | .146E O1 |
| -346F-01 | -.101E-nz | -266E-01 | . 268 E 02 | - 120t 01 | .633E 01 |
| .662E-01 | . $774 \mathrm{E}=03$ | -871E-Cl | -385E ${ }^{\text {O2 }}$ | . 226E 01 | . 221E 02 |
| . 126E 00 | .634E-02 | .272E 00 | -504E ก2 | . 353 t 01 | . 721E 02 |
| -17le 00 | .683E-02 | .613E 00 | . 509E ${ }^{\text {O2 }}$ | . 340 E 01 | . 190E 03 |
| -134E 00 | .265E-01 | .956E OQ | .498E 02 | . 451 l 01 | .418 C 03 |
| . 343 E 00 | -.409E-01 | .233 E 01 | .509E 02 | . 264E 01 | .870E 03 |
| -124E 01 | -.921E00 | .222E 02 | -25CE O2 | -.803E 01 | $.187 E 04$ |
| - 184 El | -.273E 01 | .956E 82 | .256E 02 | ..584E 01 | . 364 E 04 |
| - -22 E 01 | -.100) 11 | . 590E C2 | -731E 02 | . 298E OL | .588E 04 |
| - $427 E 00$ | -.405E 00 | . 285 E 02 | . 333 E 02 | . 223E 01 | .661E 04 |
| $.357 E 00$ | -.135E 00 | .972E 01 | .215E 22 | -.422E 01 | .470E 04 |
| - 142 E 00 | -.214E.01 | -303E 01 | -121E | -.806k 01 | . 276 E 04 |
| - $588 \mathrm{E}-01$ | .477E-02 | . 155E O1 | .655E 01 | -. 724 E 01 | .160E 04 |
| . 269E.01 | -.563E-05 | -12le Ol | . 368 Cl | -.443E 01 | . 940E 03 |
| . 156E-01 | -.382E.02 | .941E 00 | . 207E 01 | -.237E 01 | -556E 03 |
| - 273 E 00 | -5a4E-01 | .669E OC | .113 O | -.295E 00 | . 330E 03 |
| -108E 00 | .470E.01 | .586E 00 | .31IE 02 | . 324 E 00 | .197E 03 |
| - 104 OL | -. $524 \mathrm{E}-02$ | . 459 E 00 | .382E ${ }^{3} 2$ | -.141E 00 | -116E 03 |
| - 504E 01 | -. 0441 E.01 | -399E 00 | .313E 02 | -.562E 00 | .681E 02 |
| . 725 E 00 | -.527E-01 | . 353 E 00 | .180 E 02 | -.720e 00 | . 395 E 02 |
| . 463E 00 | -.310E=01 | . 264 E 00 | . 966 O1 | -. 343 E 00 | . 220E 02 |
| .291E 00 | -.150E-01 | -178E 00 | .518E O1 | -. 162E 00 | .115E 02 |
| .191E 00 | -. $840 \mathrm{E}_{-} 02$ | -123EOO | -282E O1 | -.759E-01 | . 582E 01 |
| - 223 E 00 | -. $493 \mathrm{EmO2}$ | -810E-01 | .157E OL | . $366 \mathrm{E}=01$ | . 296E 01 |
| . $822 \mathrm{E}-01$ | -.231E-02 | -524E-01 | -991E OO | . 187E-01 | . 152 El |
| . $579 \mathrm{E}-01$ | -.125E-02 | . $342 \mathrm{E}-01$ | . 529E 00 | -.995E-02 | . 765E 00 |
| $.414 \mathrm{E}-01$ | -.973E-03 | . $208 \mathrm{E}-01$ | . 323 E 00 | -.537E-02 | . 348 E 00 |
| . 04 E. 01 | . 510E-03 | . $110 \mathrm{E}-01$ | . 199E ÖO | -.297E-02 | . 138 E 00 |
| .220E.01 | .222E.03 | . 502E.02 | .123E 00 | -. $264 \mathrm{E}-02$ | .470E. 01 |
| 195E.01 | $.158 \mathrm{E}-03$ | $\cdot 177 \mathrm{E}-02$ | .759E-O1 | .889E-03 | $.125 \mathrm{E}=01$ |
| E-01 | 6E-03 | - 303E-03 |  | 03 | 5-02 |

Table C13. (Concluded)

RESPCNSE CCVARIANCES (5)



|  | RESPONSES | (6) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\tilde{t}$ | IB1 | DIB1 | 182 | DIB2 | 183 | 0183 |
| $\frac{1}{2}$ | $\begin{array}{r} -000 E-80 \\ -872 E 04 \end{array}$ | $\begin{array}{r} \text { - } 200 E-80 \\ \therefore 245 E O S \end{array}$ | $\begin{array}{r} 00 \mathrm{EE} \mathrm{~B}_{0} \\ -132 E \text { OS } \end{array}$ | $\begin{array}{r} .900 E-80 \\ -\quad: 27 E 06 \end{array}$ | $\begin{aligned} &-000 E-B O \\ & \Rightarrow 109 E O S \end{aligned}$ |  |
| 3 | -.667E 05 | $.103 E 06$ | .836E 06 | .125E 07 | $.146 E 07$ | .193807 |
| 4 | -.200E 06 | . 202806 | -320E 07 | .256507 | .553E 07 | $.396 E 07$ |
| 5 | .458506 | -2ase 06 | $\because 727$ ¢ 07 | .391E 07 | .126E 08 | .610E 07 |
| 6 | -8612 06 | -317E 06 | $\bigcirc 129 \mathrm{O} 0^{8}$ | .504E 07 | -223E 08 | $.791 E 8$ |
| 7 | -.142E 07 | . 241506 | :193E 08 | ,543E 07 | .337E D8 | . 864 E 07 |
| 8 | -218E 07 | -.294E 06 | $\because 208 \mathrm{E}$ O8 | .536E 06 | . 370 O8 | $.126 E 07$ |
| 9 | - 241807 | -.917E 66 | -186E 08 | - $406 E$ OT | .338E 08 | -.554E 07 |
| 10 | -273 E 07 | - 0.184507 | -892E 07 | -.119E 08 | .181E O8 | -.173E 08 |
| 11 | -.336E 07 | -.199E 07 | -.712E 07 | -.152E 08 | - 0 756E 07 | -.227E 18 |
| 12 | - 249E 07 | -.136E 07 | -.553E 07 | -.197E 06 | . $.601 E 07$ | $.137 E 07$ |
| 13 | -.203E 07 | -.204E 87 | -.297E 07 | -.387E 07 | -.237E 07 | -.303E 09 |
| 14 | -.124E 07 | -.150E ${ }^{\text {H7 }}$ | -.877E 06 | -.329E 07 | -102E 06 | -.356E 07 |
| 15 | - 355 E $0_{6}$ | -.251E 06 | -.686E O4 | -. 523 E 06 | .432E 06 | -.536E 06 |
| 16 | .188E 06 | .798E 06 | -.474E 06 | .203E 07 | -.102E 07 | .237E 07 |
| 17 | .355 E 06 | .120 E 67 | -.834E 06 | :281E 07 | -.182E 07 | -314E 07 |
| 18 | - $2^{6} 2{ }^{\text {c }} 06$ | .899E $0^{6}$ | -584E $0^{6}$ | -202E 07 | -129E 07 | -222E 07 |
| 19 | .574E 05 | .356E 06 | - 567805 | .813E 06 | -.165E 06 | . 699806 |
| 20 | - 258207 | -.331E 06 | -177E 07 | -5TLE 07 | - 260808 | .983E 97 |
| 21 | -.521E 07 | -.875E 86 | .830 O 07 | -.217E 07 | -202E 08 | - 2488 |
| 22 | -.568E 07 | -. 824 E 06 | :501E 07 | -. $462{ }^{\text {E }} 07$ | -133E 08 | $\cdots .6500^{0} 07$ |
| 33 | - 509E 07 | -.617E ${ }^{66}$ | - 121 E 07 | -446E $0^{7}$ | .833E 07 | -.699E ${ }^{\text {- }}$ |
| 24 | $-8406 E$ -304 -37 | $-0357 E 66$ $-204 E 6$ | -246E 07 | - 3 laE 07 -101 | -278E 07 | -077E -3018 -37 |
| 25 26 | -. 229207 | -.738E 05 | -2261E 07 | -.936E 06 | -.146E 07 | -.148E 7 |
| 27 | -.176E 07 | -.495 - 05 | -.263E 07 | -.646E 06 | -.215E 07 | $-160 \mathrm{E} 87$ |
| 28 | -.1312 07 | -.388E 05 | -.255E 07 | -.482E 06 | -.236E 07 | ..746E 06 |
| 29 | -.1015 07 | -.999E 04 | -932E 07 | - 177E 06 | -.256E 07 | -280E 06 |
| 30 | -.817E 06 | .539E 03 | -210E 07 | -.622E 05 | $\text { -245E } 07$ | -.102E 06 |
| 31 | -.664E 06 | -.393E O4 $^{\text {a }}$ | -i96E 07 | ..769E 05 | $-240 E 07$ | -.122E 66 |
| 32 | -.548E 06 | .195E 04 | -.1s6E 07 | -.134E 05 | -.228E 07 | -.242E 05 |
| 33 | -.455E 06 | -57RE O4 | -.161E 07 | .280E 05 | -.210E 07 | $.393 E 5$ |
| 34 | -.370E 06 | .500E 04 | -:144E 07 | 290E OS | -.191E 07 | .419E05 |
| 35 | -.309E 06 | -486E O4 | -130E $0^{7}$ | :336E 05 | -176E 07 | .493E 05 |

Table C14. (Continued)

|  | $\tilde{\mathbf{t}}$ | delta | deltamdelta | ddelta | $\mathrm{D}_{2}$ Dot | Dela | $\triangle \gamma$ | $\Delta \theta$ | $4 z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2}$ | $\begin{gathered} 000 \mathrm{E}=80 \\ .343 \mathrm{E}=08 \end{gathered}$ | $\begin{array}{r} 000 E-80 \\ -175 E-86 \end{array}$ |  | $\begin{array}{r} .000 \\ .967 E=000 \\ .960 \end{array}$ | $\text { :000 } 0$ | 000 F .155 E .06 | $\begin{aligned} & .000 \mathrm{E}-80 \\ & .768 \mathrm{E}-08 \end{aligned}$ | $\begin{array}{r} .000 \mathrm{E}=80 \\ .120 \mathrm{E}=02 \end{array}$ |
|  | 3 | -107E.03 | .674E_A5 | :293E.04 | ¢117E00 | . 384 E. 06 | .431E.05 | . 143 E -04 | -157E 01 |
|  | 4 | -231E-03 | - $229 \mathrm{E}-04$ | $\because 117 E-03$ | -264E 00 | - 381E.06 | .406E-05 | . $355 \mathrm{E}-04$ | -112E 02 |
|  | 5 | -371E-03 | -.630E-04 | . 278 E-03 | .679E 00 | -595E.06 | . 553 E -05 | .600E-04 | .426E 02 |
|  |  | -529E-03 | - $111 \mathrm{E}-03$ | :351E-03 | .159 El | - 951 -06 | . 772 E -05 | .860E-04 | -131E 03 |
|  | 7 | -663E-03 | - 166E-f3 | -109E-02 | $\bigcirc 331 \mathrm{E} 01$ | -159E05 | -103E-04 | -109E-03 | -343E 03 |
|  | 8 | . $539 \mathrm{E}=03$ | -.240E-03 | , 253E-02 | -539E1 01 | . 456 E 05 | .114E-04 | .192E-03 | . 809 E 03 |
|  | 10 |  | $-257 E-93$ $-226 E-63$ | \% $624 \mathrm{E}-0 \%$ | - 1989 E Of | $.919 E-05$ $.890 E .05$ |  | -354E=03 | $138 E$ $.125 E 4$ 0 |
|  | 11 | - $439 \mathrm{E}=04$ | $\because \because 490$-03 | $!333 \mathrm{E}=01$ | ¢621E 02 | :230E.04 | -508E-04 | -115E=02 | -266E 03 |
|  | 12 | -102E-03 | --124E-02 | -821E-01 | .291E 03 | -411E-04 | -187E-03 | -188E-02 | .270E 04 |
|  | 13 | . $133 \mathrm{E}=03$ | -. 153E-02 | -100e 00 | . 863 E 03 | .557E-04 | -442E-03 | . 2688 ¢ 02 | . $265{ }^{\text {c }} 05$ |
| $\stackrel{+}{\text { + }}$ | 15 | -129E-03 |  | !859E-81 |  | $\begin{array}{r}540 \mathrm{E}-0^{4} \\ .403 \mathrm{O} \\ \hline 04\end{array}$ |  | $321 \mathrm{E}-02$ 322 E . 0 |  |
|  | 16 | -521E004 | $\because \mathrm{O}$ | !249E-01 |  | : $210 \mathrm{E} 0 \mathrm{O}_{4}$ | -166E.02 | -326-02 | $.363 E 106$ $\cdot 900 E 06$ |
|  | 17 | .240E-04 | - $163 \mathrm{E}-03$ | $\bigcirc 994 \mathrm{Col}$ | $\because 953 \mathrm{E} 04$ | -102E.04 | -199E.02 | -283E-02 | -191E 07 |
|  | 18 | -107E-04 | -660E-04 | $!397 E-02$ | $\bigcirc 136805$ | .496E05 | . $226 \mathrm{E}=02$ | -279t-02 | .$^{365} 007$ |
|  | 19 | -411E-05 | -. 238 E-0. | :154E-02 | -186E 05 | . 224E.05 | . 247 E -02 | -281E-02 | -643E 07 |
|  | 20 | .420E.04 | -169E.0is | -408E.03 | $\bigcirc .239 \mathrm{E} 05$ | -187E.04 | . 255 E -02 | .153E.02 | . 1068 O8 |
|  | 21 22 | - $7690 \mathrm{E}=04$ |  | -109E-03 | . 263 E E 05 | .103E=0 ${ }_{\text {- }}^{\text {269E.0 }}$ | .227E-02 | . 3979 ¢003 |  |
|  | 23 | . $212 \mathrm{C}=04$ | - $1143 \mathrm{E}=04$ | -122=04 | $\bigcirc 252505$ | - 5080 E06 | -145E=02 | . 6988 cos | . 321 E O8 |
|  | 24 | .622E.05 | -.488E-05 | -443E.05 | . 239 E 05 | . 265 E.07 | .114E-82 | . 140 E.05 | . 415 E8 |
|  | 25 | .142E-03 | -. 132 E .05 | -136E.05 | :229E 05 | .999E.08 | . 913 E .03 | . 342 E 06 | . 520 E O8 |
|  | 26 | -298E-06 | - $295 \mathrm{EE-06}$ | . $314 \mathrm{E}-06$ | -220E 05 | - 245 E -08 | -746E-03 | -737E-07 | -633E OB |
|  | 27 28 | .188E=07 | $-405 E=07$ $-226 E-97$ | ! $\%$ 885E-07 | ?214E 05 <br> 208505 | $.107 E .08$ $-580 E .09$ | $.620 E-03$ $.524 E .03$ | -747E-08 | P155E O8 |
|  | 29 | -826E-07 | -940E-08 | . 275 E 000 | -204E 03 | -928E.10 | .448E-03 | .124E-07 | .103E 09 |
|  | 30 | .113E-06 | -. $245 \mathrm{E}=07$ | . $807 \mathrm{E}-08$ | .201E 05 | .173E-10 | . $388 \mathrm{E}=03$ | .187E=07 | .118E 09 |
|  | 31 | -150E-06 | -327E-Q7 | ¢962E-08 | :198E $0^{5}$ | -208E-10 | -339E-03 | -249E-07 | -133E 09 |
|  | 32 | .161E.06 | -. $454 \mathrm{E.07}$ | -144E.07 | -195E OS | . 340 E 11 | . 298 E .03 | .277E.07 | . 150 29 |
|  | 33 | -151E-06 | - $488 \mathrm{~A} E-07$ | 165E-07 | -193E 05 | -240E.11 | -263E-03 | -266E-07 | -168E 09 |
|  | 34 | .140E-06 | -.453E-玉7 | -151E-07 | :191E 05 | -196E-11 | .236E-03 | .247E-07 | -186E 09 |
|  | 35 | -127E06 | - -422E-67 | :141E-07 | .189E 05 | -232E=11 | .212E-03 | . $224 \mathrm{E}=07$ | . 205E 09 |

Table C14. (Continued)

RESPONSE COVARIANCES (6)

|  | $\widetilde{\mathrm{t}}$ | NIT | NIT*DNIT | DNIT | QALF | QALF -DQALF | DQALF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | . $000 \mathrm{E}-80$ | . 060E-80 | .000E-80 | :000E-80 | .000E. 80 | - 0 ¢0E-8t |
|  | 2 | , 838E-03 | .169E-02 | $: 343 \mathrm{E}-02$ | -124E-01 | , 441E02 | .479E-62 |
|  | 3 | $3^{36} 0 \mathrm{OE}-02$ | -152E-02 | $\cdots 161 E-02$ | $\because 731501$ | -198E 00 | .197E 14 |
|  | 4 | $146 E-01$ $346 E-1$ | $-163 E-62$ $-101 E-02$ | ? $644 E-02$ | 161502 268502 | . 542 E 00 | $146 E 1$ 0.638 |
|  | 6 |  | $-1701 E-82$ $.774-83$ | $? 666-01$ <br> $871 \mathrm{O}-01$ |  | -126E 01 | -623E |
|  | 7 | $.1260^{120}$ | .634E-02 | $\because 272 \mathrm{O}$ | $\because 504 \mathrm{E} 02$ | -353E 01 | .721E 82 |
|  | 8 | 1158E 00 | , 935E-42 | ¢612E 00 | $\bigcirc 473$ O2 | -290E 01 | $.1800^{3}$ |
|  | 9 | 152E 00 | -419E-61 | ¢886E 00 | $\because 399 \mathrm{OL}$ | .377E 01 | 4a7e 3 |
|  | 10 | $\bigcirc 351 \mathrm{OL}$ | . $315 \mathrm{E}-01$ | ? 276801 | ? 347 E 02 | .264E 01 | -83E 3 |
|  | 11 | . 106201 | .461E-61 | 183E 02 | O31E 02 | -.470E 01 | -176E 14 |
|  | 12 | -184E 01 | $-112 E^{0}$ | -881E 02 | :945E 01 | -291E O1 | .34358 |
|  | 13 | .194E 01 | . 107 E 0 | -105E 03 | $\bigcirc 969 \mathrm{El}$ | . 926 O1 | -563E O4 |
| \& | 14 | 177801 | -.364E-01 | :773E 02 | ¢103E 02 | .223E 02 | -84eE 84 |
| $\omega$ | 15 | 12060 ${ }^{10}$ | -. 174 E g0 |  |  |  | -461E94 |
|  | 16 17 | \$ 503500 | -.868E. ${ }^{\text {d }}$ | ishic 02 | ¢912 01 | .370E 01 | -273E 04 |
|  | 17 18 | $234 E 00$ $.118 E 00$ | $-.134 E-01$ $.117 E-82$ | P79E 01 $.223 E 01$ | $312 E ~ 01$ $.193 E 01$ | $-281 E$ $\sim .259 E ~ O 1$ | $.159 E 04$ $.939 E 83$ |
|  | 19 | ,696c-01 | . $260 \mathrm{E}-03$ | :123E 01 | 125E 01 | - 121801 | . 556 E |
|  | 20 | $370 E 00$ 227601 | -208E 00 | A9AE 00 <br> 409E <br> O | $310 E$ 9 9 | $.505 E$ $.369 E 1$ .4 | $.331 E$ .19783 |
|  | 22 | -275E 01 | -022E-01 | . 388 CO | .967E 02 | -.494E 00 | .116E 03 |
|  | 23 | .228E 01 | -134E DO | : $404 E 00$ | .666E 02 | -146E 01 | .881E 02 |
|  | 24 | ,151E01 | -.105E 00 | :356E 00 | !371E 02 | -.115E 01 | $\bigcirc 395{ }^{-32}$ |
|  | 25 | -966E 00 | -.621E-01 | !266E 00 | ?200E 02 | -.547E 00 | -220E 02 |
|  | 26 | ,608E 00 | -.301E-E1 | 179E 00 | 108E 02 | -.262E 00 | -115E |
|  | 27 | -399E 00 | -.169E-01 | .124E 00 | :586E 01 | -125E 00 | .582E 91 |
|  | 28 | 257E 00 | -.996E-d2 | 811E-01 | -326E 01 | -609E-01 | -296E 01 |
|  | 29 | $.1720^{0}$ | -.465E-02 | . $525 \mathrm{E}=01$ | -186E 01 | - $318 \mathrm{E}=1$ | $\because 152 \mathrm{El}$ |
|  | 30 | .121E 00 | -.231E-02 | -342E-01 | .110E 01 | - $173 E=01$ | . 765 E0 |
|  | 31 | .864E-01 | -.198E.02 | :208E-01 | .675E 00 | -.960E. 02 | . 348 CO |
|  | 32 | $\bigcirc 634 E=01$ | -104E-02 | -118E-01 | $\bigcirc 415000$ | -.547E-02 | . 138 E8 0 |
|  | 33 | -459E-01 | -.449E-03 | ; 502E-02 | 256E 00 | - 312E-02 | -470E-01 |
|  | 34 | -407E01 | -.326E-03 | -177E-02 | :159E 00 | -.177E-02 | -125E-01 |
|  | 35 | .409E=01 | -.222E-83 | -30゙3E-03 | -999E-01 | -104E-02 | .155E-82 |



Table C15. Quadratic (Q13) Covariance Results


Table C15. Continued
MEA: DESPONSES


Table C15．Continued

RESPONSE COVARIANCES

| $\underset{\mathrm{t}}{\sim}$ | DELTA | חE！TA DDELTA | DDELTA | 77095 | DELQ | $\Delta \gamma$ | $\Delta \theta$ | $\Delta Z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | －？OUF－80 | －0ヘOE－80 | －7？TE－80 | －OUUE－80 | －00才E－80 | －0GへE－80 | － 0005080 | ． 000 E－80 |
| 2 | $.267 E-05$ | －199E－L5 | ． $732=-95$ | $.174{ }^{4} \mathrm{OL}$ | －559E－04 | － 270 － 53 | $.679 \mathrm{E}-03$ | .995 Oio |
| 3 | ． $762 \mathrm{E}=05$ | ．121E－75 | ． $3445=34$ | .132 O | －3n8E－04 | ． 489 É－ 12 | .765 － 03 | ．102E 04 |
| 4 | －ZRAE＝04 | －．193E－－6 | ． $871 E-94$ | .261503 | ． $633 \mathrm{E}-05$ | ． 462 E － 2 | ． 804 E－04 | ．107E 05 |
| 5 | ． $545 \mathrm{~F}-04$ | － $12^{\text {AF }}$－${ }^{\text {a }}$ | $.9825-34$ | ．296E 03 | －112E－05 | ． $241 E=72$ | －217E－04 | －350E $0^{5}$ |
| 6 | ． 273 F－04 | － 219 Ca | ．697F－04 | －3r2e 03 | － $2095-05$ | ．147E－ 12 | －5aてE－05 | － 745 E D5 |
| 7 | ． $4045-04$ | －．191E－．14 | ． 478 E－24 | ． 286 E ¢ 3 | －534E－U5 | ．895F－n3 | －6ヶ9E－04 | －128E Ö6 |
| 8 | ．288E－04 | －1i Et－ 4 | ． 474 E－${ }^{\text {a }}$ | ．251E 93 | －1015－04 | ． 53 TE－03 | －25 5E－03 | －193E O6 |
| 9 | ． $3415=04$ | －．112E－j4 | ．647E－94 | $.221 F 33$ | ．169E－04 | ． $326 E-03$ | －555E－03 | ． 265 E 06 |
| 10 | ．161E－04 |  | ．598E－04 | ． 248573 | －909E－D5 | ． $267 E-03$ | －8R1E－03 | ． 337 E － 6 |
| 11 | ． $6555-05$ | ． $.546 E-35$ | ．178E－？ | $.396 E \$ 3$ | －155E－04 | ． $324 \mathrm{E}-\mathrm{j} 3$ | $.134 E-02$ | －412E 06 |
| 12 | ．68， 6.05 | ．．875F－j5 | －490上－J3 | ． 759 O3 | －326E－04 | $.482 E-03$ | －203E－02 | －499E 4 ÓS |
| 13 | ． $836 \mathrm{CE}-05$ | －．11年 ${ }^{\text {－}}$－ 4 | ． $642 E-43$ | ．148E 04 | ． 4775 －04 | ．759F－03 | －2R7E－02 | ．628E O6 |
| 14 | － 25 ？E－05 | －－117E－ 4 | ．611E－f3 |  | －529F＝04 | －115F－U2 | － $343 E-02$ | .856 E －6 |
| 15 | ．722E－05 | －．918E－ 5 | ． $44 \cup \mathrm{UF}$－U3 | $.497 E 04$ | －51UE－04 | －161E－02 | ． $343 \mathrm{E}-02$ | ．129E 07 |
| 16 | －663E－05 | －．595E－5 | －？ $34 E=03$ | ． 765 E n4 | －349E－04 | －201F－U2 | －316E－02 | －200E Ö7 |
| 17 | ． $604 \mathrm{E}=05$ |  | －125E－03 | ．111E 05 | －203E－04 | －23？F－02 | －295E－02 | $.348 E 07$ |
| 18 | － $593 \mathrm{~F}=05$ | －．273E－J5 | －6345－04 | $.153 E 05$ | $.113 E-04$ | ． $2545-02$ | －2atE－02 | $.571 E 07$ |
| 19 | ． 5845.05 | －． 21 吅－5 | －232E－34 | ． 203 E － | ． $541 E=05$ | ． $27^{\wedge} \mathrm{E}-02$ | － 265 F－02 | ．911E 07 |
| 20 | －615E＝05 | －2＾UE－ －$^{\text {a }}$ | $.135 F-34$ | ． 26 UE 05 | －264E－05 | － $2797-02$ | － $242 E-02$ | －141E Ö |
| 21 | ． $636 \mathrm{E}=0.5$ | －．199E＝ 5 | $.717 \mathrm{E}-\mathrm{C}$ | ． 323 E N5 | ．1565－05 | ． $2797-02$ | －211E－02 | － 210 OR |
| 22 | ．646F－U5 | －29？$-{ }^{-15}$ | ． 4 ．37－55 | ． 388 E 5 | －148E． 05 | $.273 E-02$ | －172E－02 | ． 303 E Ö |
| 23 | ． $609 \mathrm{~F}-05$ | －${ }^{\text {Pnot－i }}$ | $\cdot 25^{8 E}-65$ | $.452 F 05$ | $-219 E-05$ | $.261 E-02$ | $-125 E-02$ | $.425 E 0^{\circ}$ |
| 24 | －529E－05 | －－－？¢－u5 | －173F－B5 | ． 537 E 5 | － $359 \mathrm{~F}=05$ | － $242 \mathrm{~F}-1)^{2}$ | －748E－03 | $.578 E \quad 08$ |
| 25 | ． $391 \mathrm{~L}-05$ | －．171E－ 5 | ．127E－95 | ． 543 E － 5 | ．619F－05 | ．217E－02 | －275E－03 | ． 764 E 08 |
| 26 | － 245 E －05 | －．171E－95 | －9，58F－66 | ．550 05 | ．721E－05 | ． $186 \mathrm{E}-12$ | ．171E－04 | －982E 08 |
| 27 | ．11UE－U5 | －．725E－U6 | －636E－n6 | ． $520 E^{\text {a }}$ | －853E－05 | ． $153 E-n 2$ | －115E－03 | －122E Ó9 |
| 28 | －5？TE－07 | －．15べE－ 6 | ． $494 E=06$ | ．471E 05 | －870E－05 | .11 PE－02 | $.647 E-03$ | $.148 E 09$ |
| 29 | ． $349 \mathrm{E}-06$ | －145E－if | －1385－n6 | ．391E 35 | －467E－05 | － 85 RE－03 | －149E－02 | ．175E Ö9 |
| 30 | ．129E－05 | －． $6965 . .7$ | －193F－C7 | －301E 05 | ． 965 － 06 | －58？E－03 | $.217 E-02$ | －200E 09 |
| 31 | ．2C 4E．05 | －．494E－$\therefore$ ¢ | ．121E－56 | ．215E 05 | ． 5 58E－07 | －369E－じ3 | ．242E－02 | $.223 E$－9 |
| 32 3 3 | $\begin{aligned} & .188 E-05 \\ & .845 E-66 \end{aligned}$ | $\begin{aligned} & . .777 E-i 6 \\ & . .64 \text { तE } \end{aligned}$ | $\begin{aligned} & -319 E-176 \\ & -4 R G E-56 \end{aligned}$ | $\begin{aligned} & .144 E 05 \\ & .861 E 04 \end{aligned}$ | $\begin{aligned} & -139 F=06 \\ & -5 R 2 E=05 \end{aligned}$ | $\begin{aligned} & \text {-22TE-U3 } \\ & \text { IIRE-C3 } \end{aligned}$ | $\begin{array}{r} -24^{8 E-02} \\ -3{ }^{3} E=02 \end{array}$ | $\begin{array}{r} 243 E \quad 09 \\ .260 E \text { O9 } \end{array}$ |
| 34 |  | －．5ajE－J7 | －6） 1 － 5 － 6 | ． 354 E － 4 | －9？6E－04 | －439E－U4 | －664E－02 | －273E 09 |
| 35 | ． 890 －06 | －190E－j6 | ．153E－07 | ．651E 01 | － 828 E－03 | ．731E－07 | －2¢7E－01 | －278E 0 O |

Table C15. Continued

|  | RESPUNSF COVADIMNCSS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\widetilde{t}$ | NIT | NIT*) ${ }^{\text {a }}$ | DUIt | Qalf | QALF* ${ }^{\text {a }}$ (QALF | DQALF |
|  | 1 | - 20uc-80 | . $000 \mathrm{CL}-80$ | - $2055-80$ | .0nUE-80 | - U0, E-80 | . $067 \mathrm{~F}-8 \mathrm{O}$ |
|  | 2 | .879E-01 | -. 284F-01 |  | .1lue 00 | -.591F-02 | . 520E-02 |
|  | 3 | .174E01 | . 340 r 00 | .954F-31 | .157E 01 | -. 135 E 0J | . 296 E O |
|  | 4 | . 309 EL | -.390F-01 | -755F-a? | .192 01 | .197E00 | . 184 E U1 |
|  | 5 | . 241801 | -.144E 00 | -3,99-T1 | .447E 01 | - 203 EO | . 711501 |
|  | 6 | - late 01 | -. 102F co | -8.14E-il | .626E 91 | -287E0u | .232 E O? |
|  | 7 | .115F 01 | -. $659 \mathrm{c}-01$ | . 237 E iJ | .658F 11 | . 607E 00 | . 739 F |
|  | 8 | .046803 | -. $509 \mathrm{c}=01$ | . 529503 | .691E ${ }^{\text {¢ }}$ | -117E 01 | .195E 03 |
|  | 9 | -RAGE 00 | . $6.6401-01$ | . 939 E 20 | .879E 01 | .198E 01 | .429E O3 |
|  | 10 | . 383 F 00 | -.651E-01 | .1335 11 | .173E J? | . 179E 01 | .882E 03 |
|  |  |  | -.276F00 | . 432 El | . 205 E 02 | -50jE 01 | -187E ${ }^{4} 4$ |
|  | 12 | -160r 01 | . .904800 | .247E 02 | .176F i2 | -.505E 01 | . 363 EA |
|  | 13 | .178F 01 | - 807 c - 00 | .249E 02 | .172E 02 | .525E 01 | . $5975 \mathrm{Ul}^{4}$ |
|  | 14 | .1608 01 | .. 77500 | .123E !2 | .167E 02 | -185E 02 | .665E04 |
|  | 15 | $.942 E 00$ | . 470 E 00 | . 449 E - 1 | .123E u2 | .135E 02 | .474E 94 |
|  | 16 | . 409 EO | -.135000 | . 294 E - C | .892E U1 | . 2ATE 00 | . 279 E ( 4 |
|  | 17 | .189E00 | -. 190F-01 | . 304500 | .624E 71 | -.47ne Ol | .167E ${ }^{\text {a }}$ |
|  | 18 | .114F 00 | . $462 \mathrm{~F}-\mathrm{a}^{3}$ | $.5350^{\circ} \mathrm{O}$ | -487E 01 | -.354F 01 | . $943 \mathrm{~F}{ }^{3}$ |
| $\underset{\sim}{\sim}$ | 10 | . 10180 | . 184 F .02 | .459800 | . 473 El | -.187E 01 | . 5575 |
|  | 20 | .128E00 | . $547 \mathrm{~F}-02$ | -615E00 | $.587 E 01$ | -.859E 01 | -332E 43 |
|  | 21 | .197E OU | $.797 E-0^{\text {a }}$ | -650r 00 | . 709501 | -. 305800 | $.197 E 03$ |
|  | 22 | .29if DU | .119E-01 | .541E un | .107E 12 | .132F 00 | .115E U3 |
|  | 23 | . 433200 | -175E-01 | . 473 S S 0 | .138E U2 | . 529800 | . 681 E U? |
|  | 24 | .617E OU | . $240 \mathrm{E}-01$ | $.438{ }^{40}$ | .172 L U? | -854F00 | . 395 E O2 |
|  | 25 | .8R4E 00 | - 30nE-01 | . 359800 | . 279 E n2 | -115E 01 | -221E 0? |
|  | 26 | .110E 01 | . $325 \mathrm{E}-01$ | . 21580 | . 234E $\cap 2$ | $.107 E 01$ | . 115 E 02 |
|  | 27 | .143601 | - $256 \mathrm{E}-\mathrm{Cl}$ | -139E Ou | -235E 0 ? | -939E 00 | -5ASE U1 |
|  | 28 | .158E 01 | -105T-c1 | -839F-71 | - 222 02 | .719 O | . 298801 |
|  | 29 | .162501 | -176F-0? | - $571 E-91$ | $\begin{array}{r}139 \mathrm{E} \\ .1402 \\ \hline 102\end{array}$ | .307E 00 | .152 El |
|  | 30 31 | .147801 .116701 | -.176E-01 $-196-91$ | $\begin{array}{r}3773 E-01 \\ \hdashline 228 E-01\end{array}$ | $.140 E ~$ .913 .91 |  | $.765 E 00$ $.349 E 00$ |
|  | 32 | .877 E 00 | -118E-03 | -118F-01 | . 569 El | -. $489 \mathrm{P}-01$ | . 139800 |
|  | 33 | . 747800 | $.405 E-01$ | . $758 \mathrm{c}-32$ | . 415 E G1 | . 975 E-01 | . $494 \mathrm{E}-01$ |
|  | 34 | .133 E 01 | .190 c 0 | . 29 ¢5-31 | $.503 \mathrm{E} \mathrm{U}^{1}$ | - 4 R9E 00 | - baje-jl |
|  | 35 | . 557 El | .907E 60 | -148E 0 | .129E 02 | . 204 EL | . 325 E0 |

Table C15. Concluded

RESPONSE COVARIANCES

|  | $\tilde{t}$ | 181 | 1R1*DIB1 | J181 | 137 | 18203182 | DIR2 | $1^{83}$ | 183*D183 | 7183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | .300E-80 | -0n\E-80 | -310E-80 | . 00NE-80 | -000E-80 | .007E-83 | .00UE-80 | . $000 \mathrm{E}-8 \mathrm{~B}$ | . $.200 E-A O$ |
|  | 2 | .167511 | . 510 DE 11 | .198三 12 | .975F 12 | -.916E 12 | . 573 F 13 | -376E 13 | ..219E 13 | $.121 E^{14}$ |
|  | 3 | .380E 12 | . 2988 L 11 | .135 E 12 | $.381=13$ | $.248 \mathrm{C}^{13}$ | $.244 E 14$ | .960 E 13 | .5905 13 | .580 El 14 |
|  | 4 | .615E 11 | .162E 11 | .318 E 12 | .132E 14 | . 495513 | . 581 E 14 | -371E 14 | . 125E 14 | .141E 15 |
|  | 5 | .122 l 12 | . .358 E 11 | $.237=12$ | .224E14 | .147E 13 | . 56 ¢E 14 | .668E 14 | . 471513 | .142E 15 |
|  | 6 | .391E 12 | -.673E 11 | . 632 F 12 | .2U0E 14 | -.4175 13 | . $281 E 14$ | .644E 14 | -.880E 13 | . 788 F 14 |
|  | 7 | . 904512 | ..697E 11 | -3:35 13 | .119E14 | -.593E 13 | .101E 14 | .4n9E 14 | -.114E 14 | . 344 El 14 |
|  | 8 | .157E 13 | -.9n8E 11 | - 378 E 13 | . 848 F F 13 | -.3a9F 13 | .479E 13 | -274E 14 | -.710E 13 | .161E 14 |
|  | 9 | -188E 13 | . .138 E 12 | .191E 14 | .122E 14 | -.303E 13 | .699E 13 | $.357 F 14$ | ..425E 13 | . 114 E E 14 |
|  | 10 | . 255 E 13 | . 238 F 12 | -2¢0E 14 | . 573 E 13 | -.307E 13 | .129E 14 | .137E 14 | -.967E 13 | . 917 E 13 |
|  | 11 | . 585 E 13 | .539E 11 | .819E 14 | . 712 E 13 | . 191E 13 | . 349 E 14 | -367E 13 | .471E 1 ? | .654E 13 |
|  | 12 | -859E 13 | . .634 E 12 | $.219 \mathrm{E}^{2} 15$ | .1UUE 14 | -4?JE 13 | .89)E 14 | -3n4E 13 | . 359513 | -165E 14 |
|  | 13 | . $736 E 13$ | ..173E 13 | - 237E 15 | . 733 E 13 | . 317813 | . 114 E 15 | - 3nte 13 | .165E 13 | . 250 F 14 |
|  | 1.4 | . 513 E 13 | -.174E 13 | .296815 | . 605 E 13 | .802E 12 | .102 E 15 | -467E 13 | -.106E 13 | . 254 E 14 |
| $\stackrel{+}{6}$ | 15 | -283E 13 | -.143E 13 | -179 ${ }^{-15}$ | $.444 E 13$ | $\cdots{ }^{8} 1^{8} E 13$ | $.644 E 14$ | $.613 E 13$ | -.422E 13 | -287E 14 |
| 6 | 16 | . 133 E 1.3 | ..795E 12 | . 8.34 E 14 | .300813 | -.247E 13 | . 334 El 14 | .676E 13 | -. 459 E 13 | . 266 E 14 |
|  | 17 | .676E 12 | -.4laE l? | .4Fle 14 | . 212 E 13 | -.1897 13 | .192E 14 | . 562 E 13 | -.328E 13 | - ? 02 El 14 |
|  | 18 | . 375 E 12 | -.1aRE 1? | . 232 E 14 | .172F 13 | -.103E 13 | . 109 E 14 | . 55be 13 | -. $176 \mathrm{E}^{13}$ | .112E 14 |
|  | 19 | $.346 E 12$ | -.759E 11 | . 116 E 14 | $.137 E 13$ | -.291E 12 | . 525 E 13 | . 518 E 13 | -.550E l? | - $399 \mathrm{E} / 3$ |
|  | 20 | . 238 E 12 | ..215E 11 | .6)4E 13 | .113E 13 | -.634E 11 | . 279 E 13 | . 5 O3E 13 | -.150E 12 | . 752 E 12 |
|  | 21 | . $3100_{E} 12$ | .440E1n | . 334 E 13 | .837 El l? | -.251F 11 | .16RE 13 | . 459 E 13 | -.930E 11 | - 292E 1 ? |
|  | 22 | .407 El 12 | . 2?7E 11 | .1A3E 13 | .589 E 12 | -.449E 11 | .102E 13 | . 410 E 13 | -. 158 E E 1 ? | - P13E 12 |
|  | 23 | . 543 E 12 | . 4A2E 11 | .1225 13 | $.294 E 12$ | -. 786811 | . 652 E 12 | .318 E 13 | -. 363 E 12 | - ? 12 E 1? |
|  | 24 | $.711 E 12$ | .619 E 11 | $.574 \mathrm{E}^{-12}$ | $.646 E 11$ | . .448 F 11 | - 424 E 12 | - 203 BE 13 | -.396E 12 | - 205812 |
|  | 25 | .861E 12 | .833E 11 | . 236 E 12 | . 304 E 11 | . 517F 11 | . 329 E 12 | $.848 E 12$ | -.413E 1? | .286E 12 |
|  | 26 | . 102 L 13 | -833E 11 | .153E 1 ? | . $336 E 12$ | . 203E 12 | .232E 12 | .194E 12 | -. 148E 12 | . 275812 |
|  | 27 | , 112E 13 | -9?2E 11 | . 811 E 11 | .105E 13 | .461E 12 | .262E 12 | .140 E 12 | . 232 E 12 | .432E 12 |
|  | 28 | .108 E 13 | .931E 11 | . 414 E 11 | $.248 E 13$ | -802E 12 | . 359 E 12 | .169E 13 | .107E 13 | .695E 12 |
|  | 29 | $.101 E 13$ | . 594 E 11 | .196 - 11 | . 438 E 13 | . 881 l 12 | .192E 12 | . 4 A4E 13 | .137E 13 | . 396 E 12 |
|  | 30 | .964E 12 | .239 E 11 | - 379 E 10 | .553 El 3 | . 572 r 12 | . 673 E 11 | . 747 E 13 | .100E 13 | .142F 12 |
|  | 31 | .618E 12 | .173 F 10 | . 357 E 10 | . 539 E 13 | .152E 12 | .82aE 10 | .811E 13 | .302 E 12 | .144E 11 |
|  | 32 | . 412 E 12 | -.118E 11 | .179 E 10 | . 416 E 13 | -.282E 12 | . 203 E 11 | .658E 13 | -.526E 12 | .435E 11 |
|  | 33 | -278E 12 | -15UE 11 | -132E 10 | $.233 E 13$ | - $527 E 12$ | -127E 12 | . 347 E 13 | -.995E 1 ? | -285E 1 ? |
|  | 34 | . 236512 | -.1lle 11 | .672E 09 | . 741 El 12 | -.492E 12 | . 326 E 12 | .666 E 12 | -. 745 E 1? | - A3E 1? |
|  | 35 | . 456 E 12 | .561F11 | .693E 10 | .209E 12 | -.694E 11 | .233E 11 | .744E 10 | .305 E 11 | .125E 1 ? |

Table C16. Quadratic (Q15) Covariance Results
mean responses

| t | DELTA | doElta | NSUBIT | DNSU | $\boldsymbol{T}$ OALF | ODALF | 02 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 000 E-80 | . D00E-80 | . $000 \mathrm{E}-80$ | .000F-80 | . $000 \mathrm{E}-80$ | -000F-80 | . ODOE-80 | -000E-80 |
| 2 | -.947E-03 | .124E-02 | .167E 00 | ..776E-11 | .145E 00 | -.476F-01 | .733E 0n | .337E 00 |
| 3 | -.233E-03 | . 343 E 03 | -.418E 00 | -.919E-81 | .640E-01 | .677F-0? | -.704E 01 | -.1A1E 02 |
| 4 | -.638E-05 | .148E-03 | -.813E 00 | -.387E-01 | -440E-01 | $.186 F 00$ | -.155E 02 | -.734E 02 |
| 5 | .107E-03 | . $627 \mathrm{E}-04$ | -104E 01 | -.117E-01 | . $320 \mathrm{E}-03$ | . 488 F 00 | -.235E 02 | .175E 03 |
| 6 | -178E-03 | :507E-04 | -120E 01 | $.440 E-02$ | .169 O | .960 Q 2 | $\bigcirc 368$ E 02 | $.330 E 03$ |
| 7 | . 225 E-03 | .638E.04 | -.134E Ol | ?202E-01 | . 393 EO | .168E 01 | -.485E 02 | :543E 03 |
| 8 | .275E-03 | .462E-04 | -.149E 01 | .468E-01 | .558E 00 | -260F 01 | 598E 02 | .814E 03 |
| 9 | -65aE-03 | . 340 CO 03 | ..174E 01 | .977E-11 | -377E 00 | . 374 El | .693E 02 | .114E 04 |
| 10 | .110E-02 | .869E-04 | -.181E 01 | . $734 \mathrm{E}-01$ | .110E OI | .547501 | -.756E 02 | .150E |
| 11 | .102E-02 | - 254E-03 | -.173E 01 | -.650E-01 | .237E 01 | .582E 01 | . .792 O | -.189E 04 |
| 12 | $.813 \mathrm{E}-03$ | -. $436 \mathrm{E}-04$ | $\because 1980^{-1}$ | -.412E 00 | .223E 01 | .672F 01 | -.793E 02 | -229E 04 |
| 13 | -488E-03 | -. 103E-02 | -.250E O1 | -. 586 F 00 | -175E 01 | $\bigcirc 923 \mathrm{El}$ | .733E 02 | . 267 F |
| 14 | .603E-05 | -. 203 E . 02 | -.273E O1 | . 143 E | .110E 01 | .587 F 01 | :597E 02 | -301E 04 |
| 15 | -.272E-03 | -.167E-02 | -.242E 01 | .374E 00 | .284E 00 | -.174F 01 | -413E 02 | . 326 E O4 |
| 16 | -.302E-03 | .409E.03 | -.165E 01 | Alle 00 | -.490E-01 | -.718F 01 | 238E 02 | -343E 04 |
| 17 | - $288 \mathrm{E}-04$ | .664E-03 | -.849E 00 | .152E 00 | -.118E 00 | -.786F 01 | :114E 02 | .351E 04 |
| 18 | .252E-03 | $.733 E-03$ | .332500 | -.156E-01 | -.130E 00 | -.558F 01 | .496E 01 | .353E 04 |
| 19 | .279E-03 | .485E-03 | .135 00 | -, 345E-01 | -.235E 00 | -.244E O1 | 255E 01 | 357E |
| 20 | -295E-03 | .292E-03 | -.953E-01 | $\therefore 209 E-01$ | $\bigcirc 236 E 00$ | -.106F.80 | :141E 01 | OE |
| 21 | . 324 E-03 | . 590 E04 | -120E 00 | $.430 E-1$ | -. 170 E0 | .139\% 81 | ? 470 E Do | $\bigcirc 358$ O4 |
| 22 | -314E-03 | -131E-03 | -.162E 00 | -941EO1 | - 124E 00 | -178E 01 | -433E 01 | . 357204 |
| 23 | -242E-03 | -.183E.03 | -195E 00 | 985E-01 | .122E 00 | .135F 01 | 105E 02 | .354E 04 |
| 24 | .154E-03 | -.144E-09 | -.197E 00 | 719E.01 | -. 133 E 0 | .761F 80 | 186E 02 | .346E 04 |
| 25 | .624E-04 | -.958E-04 | -.191E 00 | $436 \mathrm{E}-1$ | -118E 00 | :345F 00 | .278E 02 | .335E 04 |
| 26 | .147E-04 | -.331E-04 | -167E 00 | .631E-02 | -. 108 E 00 | . $368 \mathrm{E}-01$ | ?376E 02 | . 319 OL |
| 27 | -.291E.04 | -.186E.04 | -.135E 00 | 125E-01 | -.494E-01 | - $383 \mathrm{~F}-01$ | 473E 02 | . 297804 |
| 29 | ..632E.04 | .477E.05 | -.977E-01 | 128E-01 | .302 E 01 | . $421 \mathrm{E}-01$ | ¢568E 02 | -.271E 04 |
| 29 | -.744E-04 | -231E-04 | -955E-01 | 144E-71 | -127E 00 | -336E-01 | 656E 02 | -241E 04 |
| 30 | -.677E-04 | -311E-04 | - 592E-02 | 180E01 | .238 CO | .421E01 | 734E 02 | .206E 04 |
| 31 | -.502E-04 | .280E-04 | .556E-01 | .118 E 01 | . 369 EO | .532F-01 | 794E 02 | .168E 04 |
| 32 | -.567E-04 | -.127E.04 | .145E 00 | . 289 E 01 | .354E 00 | $.734 \mathrm{F-01}$ | .827E 02 | -.127E 04 |
| 33 | -.278E-03 | -.172E.03 | .314E 00 | .712 E 01 | .886 E 00 | $.141 E 00$ | .807E 02 | $\because 8 G 0 E 03$ |
| 34 | -.877E-03 | -.434E.03 | .789E 00 | . 205 E 00 | $.167 E 01$ | - 3ñ3F 00 | .665E 02 | .4RAE 03 |
| 35 | . $216 \mathrm{E}=02$ | 121E=03 | .230 E 01 | 507E 00 | . 356 E 01 | -708F 00 | 193E 02 | 3 |

Table C16．（Continued）

## MFAN RESPOHSES

| ， | 181 | ［1B1 | 182 | 0182 | 183 | 1183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | －000E－80 | ．OOUE－80 | ． 000 Ė－80 | －00GE－80 | －000E－80 | －00゙0E－80 |
| $?$ | ．605E 05 | －．937E 05 | $.771 E 06$ | －．834E 86 | ．120E U7 | ． 126807 |
| 1 | －102E 05 | －．283E 05 | ．148E 06 | －．241E 06 | ．256E 06 | － 362 E － 6 |
| 4 | ．138E 05 | －．690E 05 | ．275E 05 | －．217E 6 | $.281 E 05$ | －．272F 06 |
| 5 | －．405E 05 | －．145E 06 | ．143E 06 | －．309E 06 | ． 186 E E | －． 329706 |
| 6 | －．177E 06 | －．257E 06 | －．421E 06 | －．501E 06 | ． 474 E 06 | －5n7E ก゙6 |
| 7 | －．353E 06 | －． 46 E 06 | －．748E 06 | －．7A8E 06 | . $.793 E 06$ | －．778F 06 |
| m | －．516E 06 | －．617E 06 | －．105E 07 | －112E 07 | －．110E ${ }^{7}$ | － 108 OF |
| 9 | －．520E06 | －．831E 06 | －．133E 07 | ． 177707 | －．155E 07 | －188F 07 |
| 10 | －．750E 06 | －．100E 07 | －．203E 07 | －196E 07 | －．241E 07 | －0199F 07 |
| 11 | －．153E 07 | $.121 E 07$ | －．327E 07 | $\bigcirc 205 E 07$ | －． $349 E 07$ | －1月7F 07 |
| 12 | －．197E 07 | $.163 E 07$ | －．353E 07 | －．287E 07 | －．361E 07 | － 270 EF |
| 13 | －． 137 E （ 0 | －．194E 07 | －．262E 07 | －．260E 07 | －．262E 07 | －． 186 F 07 |
| 14 | ．．670E 06 | －．130E 07 | －．112E 07 | －741E 06 | ． 101 E 07 | .392 E 06 |
| 15 | －．638E 04 | $.156 E 06$ | － $101 E 06$ | $.971 E 06$ | －308E 06 | $11^{81 F} 07$ |
| 16 | ．225E 06 | $.741 E 06$ | $.589 E 06$ | $.150 \mathrm{CF}^{-1}$ | ． 692 E 06 | $\bigcirc 169 E 07$ |
| 17 | $.182 E 06$ | $.110 E 07$ | ． 325 E 06 | ．136E 07 | ． 308 O 06 | ． 881 0 －6 |
| 18 | ．894E 05 | ．821E 06 | －．296E 05 | ．797E 06 | －．160E 06 | －291F 06 |
| 19 | ．674E 05 | .303506 | －．851E 05 | .110 E 06 | －．224E 06 | －． 200106 |
| 20 | －3A2E 05 | －．110E 05 | －．145E 06 | $\because 286606$ | －． 287 E 06 | －． $460 F 06$ |
| 21 | ．801E 04 | －．180E 08 | －． 216 O | －．407F 06 | －．366E 06 | －451E 46 |
| 22 | －270E 04 | －21月E 06 | －227E 06 | －．339E 06 | －．370E 06 | －287E 06 |
| 23 | ． $562 E 04$ | ． 164506 | －．162E 06 | －198E 86 | －．274E 06 | －．118F 06 |
| 24 | －1月5E 05 | －．90？05 | －．779E 05 | －．820E 05 | －． 151506 | － 227 C |
| 23 | －22AE 05 | －．391E 05 | －．612E 04 | － 105 E － 05 | －．385E 05 | ． 307 F 65 |
| 26 | －247E 05 | －．57月E O4 | －307E 05 | $.109 E 05$ | ．199F 05 | －241F 05 |
| 77 | ．146E 05 | －．507E 04 | ．449E 05 | 113 OF | ． 559505 | $243 F$ |
| 28 | ． 862 E 03 | －．611E 04 | ． 433 E 05 | ：906E 02 | －724F 05 | ：768E 04 |
| 29 | ． 207 O 05 | －．800E 04 | ．181E．05 | －133E 05 | ． 556 OF | －．130F 05 |
| 30 | －．461E 05 | $.942 E 04$ | －2A9E 05 | －244E 05 | 975 O | －．278E 05 |
| 31 | －．753E 05 | －．123E 05 | －900E 05 | －．290E ${ }^{-5}$ | ． $546 E 05$ | － $330 F Q^{5}$ |
| 32 | －115E 06 | －．129E 05 | －．151E 06 | －． 588 C | －． 106 E U6 | －152F 05 |
| 33 | －169E 06 | －．566E 04 | －．838E 05 | －171E 06 | ． $716 E 05$ | －290F 06 |
| 34 | －． 278506 | －． 253503 | ．160E 06 | ．402E 06 | ．608E 06 | ． 812 F －6 |
| 35 | $557 E 06$ | 790505 | $.603 F 06$ | ． 413506 | ．169E 07 | ．779F 06 |

Table C16．（Continued）

RESPONSE COVARIANCES

|  | DELTA | deltandelta | dDELTA | D2DOT | DELO | $\Delta \gamma$ | $\Delta \theta$ | $\Delta 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ．000E－80 | ．000E－80̈ | ．000E－80 | ．000E－80 | ．000F－80 | ．000F－80 | ．000E－80 | ：000E－80 |
| 2 | ． 2675 －05 | ．193E－05 | ． $733 \mathrm{E}=05$ | $.174 E 01$ | ． $558 \mathrm{E}-04$ | ．278E－ก゙3 | ：679E－03 | ，905E 00 |
| ， | ． 767 －05 | －127E－05 | ． $350 \mathrm{E}-0^{4}$ | ．132E 03 | ． $388 \mathrm{E}-04$ | ．489F－02 | ．764E－03 | －102E 04 |
| 4 | ．299E－04 | ．529E．06 | ． $959 \mathrm{E}-04$ | $.260 E 03$ | ．653E－05 | －401F－02 | ． 114 E －04 | ．1n7e 05 |
| 5 | ．651E－04 | －．112E－04 | ．132E＝03 | $.296 E 03$ | －130E－05 | ．241F－02 | $.276 \mathrm{E}=04$ | $.350 E^{\circ} \mathrm{OS}$ |
| 6 | ．845E－04 | －．259E－04 | －117E－03 | ． 304 E 03 | ．129E－05 | ．148F－ก゙2 | －599E－05 | .745 E 05 |
| 7 | ． $740 \mathrm{E}-04$ | －． $284 \mathrm{E}-04$ | ．879E－04 | ．293E 03 | ． 377 E －05 | ． $916 \mathrm{F-03}$ | ． $309 \mathrm{E}-04$ | .128 OC |
| A | ．620E－04 | －． $213 \mathrm{E}-04$ | ． 776 E －04 | ． 259 E 03 | ．820E－05 | ． 546 F －0゙3 | $\because 150 \mathrm{E}-03$ | $\because 194 E 06$ |
| 9 | ． $844 E-04$ | －． $204 \mathrm{E}=04$ | ． $964 \mathrm{EF-04}$ | ． 209 E 03 | $.131 E-04$ | ． $310 \mathrm{E}-03$ | ． $345 \mathrm{E}-03$ | ．266E 06 |
| 10 | ． $447 \mathrm{E}-0^{4}$ | $\therefore 315 E-04$ | －928E－04 | $.176 E{ }^{3}$. | $.797 E-05$ | －190F－ä | $\bullet 550 \mathrm{E}-03$ | －339E 06 |
| 11 | ．163E－04 | －．122E．04 | ，189E－03 | $\bigcirc 202503$ | ．150E－04 | ．1655．03 | ：920E－03 | $\bigcirc 407 E 06$ |
| 12 | $.114 \mathrm{E}-04$ | －．101E．04 | ．486E－03 | .355 E3 | $.321 E-04$ | $.228 F-03$ | －152E－02 | ．472E 06 |
| 13 | ．132E－04 | －．126E．04 | ．647E－03 | ．769E 73 | ．472E－04 | ． $394 \mathrm{~F}-03$ | －224E－02 | $\bigcirc .546 E 06$ |
| 14 | ．143E－04 | －．133E－04 | ．615E－03 | ．163E 04 | ．526E．04 | ． $671 \mathrm{~F}=03$ | ．269E－02 | ．660E 06 |
| 15 | ．145E－04 | －． 107 Co － 04 | ． $442 \mathrm{E}-03$ | $.304 F 04$ | ． $509 \mathrm{E}-04$ | ．997F－03 | －262E－02 | ．883E 06 |
| 16 | ．144E－04 | －． $784 \mathrm{E}-05$ | ． $236 \mathrm{E}=03$ | ．488E 04 | ． $350 \mathrm{E}-04$ | ． $12 \mathrm{AF-02}$ | $: 227 E-02$ | ．132E 07 |
| 17 | ．147E－04 | －．613E－05 | －126E－03 | ． 7 Ine 04 | －204E－04 | $-148 E-02$ | －197E－02 | －212E 07 |
| 13 | ．158E－04 | ．．510E．05 | ．645E04 | ．961E 04 | ．115E．04 | $.160 E-02$ | －172E－02 | ．342E 07 |
| 19 | －170E－04 | －．522E－05 | －293E－04 | ．124E O5 | ．580E－05 | ．165E－02 | $\because 144 E-02$ | ．543E 07 |
| 20 | －185E－04 | －． 550 － 05 | ．146E－04 | ．152E 05 | －358E－05 | ．163E－02 | ．110E－02 | ．832E 07 |
| 21 | －192E－04 | ． $0.583 \mathrm{E}-05$ | ．839E－05 | ．178F 05 | ．307E－05 | ．153E－02 | ．715E－03 | ．123E 08 |
| 22 | ．193E－04 | －．604E－05 | ． 537 E －05 | ．196E 05 | ． 390 －05 | ．138E．02 | $\bigcirc 342 \mathrm{E}=03$ | $\because 174 \mathrm{E} 0$ |
| 23 | －177E－04 | －．620E－05 | ． $405 \mathrm{E}=05$ | $.203 \% 05$ | ．630E－05 | ．117F－02 | $\bigcirc 675 \mathrm{E}-04$ | ． 236 OB |
| 24 | ．148E－04 | －．562E－05 | ． $317 \mathrm{E}-05$ | ．192E 05 | ．998E－05 | ．917¢．03 | $\because 570$ E－04 | ：309E OB |
| 25 | ．104E－04 | －． 478 E． 05 | ． 272 E .05 | ．161F 05 | ．158E．O4 | ．641F．03 | ． $608 \mathrm{E}-03$ | $.386 E 08$ |
| 26 | －591E－05 | －． 316 E－05 | ．195E－05 | ．110E 05 | ．167E－04 | － $373 \mathrm{E}-03$ | －202E－02 | －461E 08 |
| 27 | ． 219 －05 | ．．179E．05 | －159E－05 | ． 534 EA | ．168E－04 | ．155E－03 | ．426E－02 | －523E 08 |
| 29 | $.107 E-07$ | －．985E－07 | ．103E－05 | ． 106 E4 | ．131E．04 | ． 267 E－04 | ．721E－02 | ．5Rle 08 |
| 29 | ． 139 E－05 | ． 391 E．06 | ．139E－06 | ． 58.3 E 03 | ． 300 －05 | ． 128 F\％－04 | －981E－02 | ．565E 08 |
| 3 n | － 3 ．53E－05 | －． $433 \mathrm{E-06}$ | ．637E－07 | ． 572 F 04 | ．879E－06 | －111F－03 | $!103 \mathrm{E}=01$ | ． 530 E OB |
| 31 | ．526E－05 | －． 149 E .05 | ． $427 E-06$ | ． 159805 | ． 120 E .04 | ． $273 \mathrm{~F}=0$－ 3 | －815E－02 | ． 459 E 08 |
| 3 ？ | ．496E－05 | －．122E－05 | ． $302 \mathrm{E}=06$ | ．281E 05 | ． 371 E－04 | ． 429 F －03 | ． $448 \mathrm{E}=02$ | －365E 08 |
| 33 | －963E－05 | $\therefore 155 E=05$ | －251E－06 | $.370{ }^{-3}$ | －225E－03 | －507F－0．3 | －403E－03 | －263E 08 |
| 34 | ．102E．04 | －．142E．05 | ．204E－06 | ．317E OS | ．120E．02 | ．391E－03 | ．984E－02 | .175 E 08 |
| 35 | $.256 E-04$ | ．143E－05 | ．797E09 | ．539E 04 | ．675E－02 | ．605F－04 | 135E OON | 122 E 0 |

Table C16. (Continued)
RESPONSE COVARIANCES

| t | NIT | NIT*ONIT | DNIT | $Q^{\text {A }}$ LF | QALFedQALF | DQALF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 000 -80 | .000E-80 | - $0000 \mathrm{E}-80$ | . 0000 -80 | . $000 \mathrm{E}-80$ | - OTOE-80 |
| $?$ | .879E-01 | ..284E.01 | .958E-02 | $.110 E 00$ | -. 580E-02 | -520F-02 |
| $?$ | $.124 E 01$ | .340 E 00 | . 954 E -01 | .157E 01 | -.135E 00 | . 296500 |
| 4 | -309E 01 | -.387E-01 | . 773E-02 | .196 El | . 207E 00 | -185E 01 |
| 5 | . 242201 | -.143E 00 | . $305 \mathrm{E}=01$ | .493E 01 | . 260E 00 | .721E 01 |
| R | .162E 01 | -.102E 00 | .772E-01 | .787501 | .363 O 0 | .234 EO |
| 7 | .115E 01 | -.672E-01 | . 229E 00 | .925E 01 | .698E 00 | $.740 \mathrm{~F}^{0} 0$ |
| * | $.916 E 00$ | -.503E-01 | . 520 E 00 | .974E 01 | .138E 01 | $.195 \%$ त̇3 |
| 0 | .770 O 0 | -.599E-01 | .935E 00 | .137 E | .290 Ol | ¢428F 03 |
| 10 | .799E 00 | -.591E-01 | .193 E 01 | . 238802 | -232E 01 | .882F 03 |
| 11 | -115E 01 | -. 268500 | .461E 01 | :228E 02 | -.496E 01 | -187F $\mathbf{Q}^{4}$ |
| 17 | -158E 01 | -.897E 00 | .246E 02 | $\bigcirc 183 \mathrm{O}$ | -.583F 01 | . 363 F O4 |
| 13 | .174E 01 | -.805E 00 | .249E 02 | $.1780^{2}$ | .515E 01 | .590F 04 |
| 14 | .159E 01 | . .764 CO | -123E 02 | $.172 E 02$ | .173E 02 | .664F $\mathrm{BL}_{4}$ |
| 15 | .865E 00 | -.455E 00 | .249E 01 | .131 E 02 | .113E 02 | .474F 04 |
| 16 | . 357 O 0 | -.124E 00 | .283E 00 | . 104 E O2 | -.171E 01 | .278E 04 |
| 17 | .175E 00 | -. 135E-01 | . 364 E 0 | .880E O1 | -.582E 01 | $.160 F$ nis |
| 18 | .152E 00 | $.706 \mathrm{E}-02$ | .587E 00 | .898E OI | -.403E 01 | . 942 F 03 |
| 19 | . 205 O 0 | .928E02 | .470E 00 | .113E 02 | -. 218 Cl | .557爯 03 |
| 20 | .332E 00 | -177E-01 | .607E 00 | .161502 | -.777E 00 | . 330703 |
| 21 | .55AE 00 | . 243 E. 01 | .651E 00 | $.229 E 02$ | .146 E 0 | .197F 03 |
| 22 | .837E 00 | . $350 \mathrm{E}-01$ | .542E 00 | -308E 02 | .102 El | .116E 03 |
| 23 | .124E 01 | - 489E-01 | .472E 00 | .394E 02 | .187 OL | .682F 02 |
| 24 | .173E 01 | $.620 \mathrm{E}=01$ | .409E 00 | $\bigcirc 482 \mathrm{O}$ | .252 OL | -396F 02 |
| 25 | .241E 01 | . 725E-01 | . 306 E 0 | $.569 E 02$ | . 304E 01 | .222E 02 |
| 26 | -304E 01 | .645E.01 | .206E 00 | .608E 02 | .252E 01 | .116502 |
| 27 | -352E 01 | . $336 \mathrm{E}-01$ | .139E 00 | .574E 02 | -191E 01 | -5885 01 |
| 28 | . 362 El | -.131E-01 | .888E-01 | :500E 02 | -114E 01 | :298E 01 |
| 29 | . 333 E 01 | -.494E-01 | -579E-01 | .378E 02 | -699E-01 | :152F 01 |
| 30 | .254E 01 | -.853E-01 | .400E-01 | .232 E | -.585E 00 | .780E 00 |
| 31 | .145E 01 | -.831E-01 | , 272E-01 | .107E 02 | -.649E 00 | -387F |
| 32 | .522E 00 | -.738E-01 | . 224E-01 | .295E 01 | -.423E 00 | -198E ÖO |
| 33 | . $323 \mathrm{E}-02$ | -.140E-02 | . $456 \mathrm{E}=01$ | :223E-01 | . 298E-01 | .257E 00 |
| 34 | .204E 01 | .653E 00 | -211E 00 | .896E O1 | .253 Ol | -72AF 00 |
| 35 | .271E 02 | .629E 01 | $.146 E 01$ | $.626 E 02$ | .131E 02 | .273F 01 |

Table C16. (Concluded)
RESPONSE COVARIANCES

| t | 181 | 181*0181 | D181 | 182 | 1B20®IB2 | D182 | $\mathrm{IB}_{3}$ |  | D183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . $000 \mathrm{E}-80$ | . ODDE-80 | . $000 \mathrm{E}-80$ | .000E-80 | . DDOE-AO | . $000 \mathrm{~F}-80$ | . 000E-80 | -000E-80 | . DODE 80 |
| 2 | .167E 11 | .510E 11 | .188E 12 | .975E 12 | -.916E 12 | .573F 13 | $.306 E 13$ | -.218E 13 | $.121 E 14$ |
| 3 | -3ADE 12 | -.297E 11 | .189E 12 | .3A5E 13 | . 252E 13 | .248F 14 | .974E 13 | .600E 13 | .590E 14 |
| 4 | .619E 11 | .192E 11 | . 366 E 12 | .141E 14 | .568E 13 | .645F 14 | -393E 14 | .143 E 14 | $.156 E 15$ |
| 5 | .108E 12 | -.351E 11 | . 344 E 12 | .279E 14 | . 406E 13 | .790E 14 | :814E 14 | .113E 14 | $.197 E 15$ |
| 6 | . 33 AE 12 | -.987E 11 | . 564 E 12 | .321E 14 | -.233E 13 | $.561 E 14$ | .992E 14 | -.364E 13 | .150E 15 |
| 7 | -842E 12 | -.137E 12 | .262E 13 | .244E14 | -.657E 13 | . $270 \% 14$ | $\bigcirc 804{ }^{-84}$ | -.134E 14 | .830E 14 |
| 9 | .153E 13 | -. 204E 12 | -887E 13 | .196E 14 | -.578E 13 | .125F 14 | $\because 646 E 14$ | -.9A9E 13 | .455E 14 |
| 0 | .185E 13 | -.279E 12 | .182E 14 | $.306 E 14$ | -.380E 13 | .116F 14 | -941E 14 | -. 206 E 13 | .399E 14 |
| 10 | . 262E 13 | . 231 El 12 | . 254 E 14 | . 135114 | -.101E 14 | .144 El 14 | .428E 14 | -.266E 14 | .218 l 14 |
| 11 | .592E 13 | .142E 11 | .815E 14 | . 722 E 13 | -.603E 12 | . 330 F 14 | $\bigcirc 970$ E 13 | -.543E 13 | .964E 13 |
| 12 | .857E 13 | -.689E 12 | .218E 15 | .954E 13 | . 280E 13 | .860F 14 | $\bigcirc 520$ E 13 | .132E 13 | .161E 14 |
| 12 | .734E 13 | ..13RE 13 | .287E 15 | .877E 13 | . 236E 13 | .111F 15 | $\bigcirc 746 E 13$ | $.798 \mathrm{E}^{12}$ | .240E 14 |
| 14 | .512E 13 | -. 178E 13 | $.266 E 15$ | ¢828E 13 | .810E 12 | .995E 14 | .116E 14 | -.102E 13 | .251E 14 |
| 15 | . 283 E 13 | -.148E 13 | .179E 15 | .718E 13 | -.123E 13 | .633 El 14 | $\bigcirc 144 E 14$ | -.299E 13 | .291E 14 |
| 16 | .136E 13 | -.82bE 12 | .883E 14 | .572E 13 | -. 200 E 13 | .329F 14 | $.148 E^{14}$ | -.361E 13 | $\bigcirc 270$ E 14 |
| 17 | . 754 E 12 | -.439E 12 | .450E 14 | .467E 13 | -.162E 13 | .190 E 14 | $\bigcirc 146 E 14$ | -.267E 13 | .205E 14 |
| 18 | .517E 12 | -.202E 12 | . 232 E 14 | $.423 \mathrm{E}^{13}$ | -.798E 12 | .107 F 14 | .151E14 | -.104E 13 | .114E 14 |
| 10 | . 470 O 12 | -.712E 11 | .116F 14 | -382E13 | -.233E 12 | .512F 13 | :133E 14 | -.294E 12 | . 302 E 13 |
| 20 | . 587 F 12 | . 264 E 10 | .603E 13 | .337E13 | -. 109E 12 | . 269713 | -133E 14 | ..136E 12 | $.741 E 12$ |
| 21 | .853 E 12 | .465E 11 | -333E 13 | $.254 E 13$ | -.149E 12 | -163F 13 | $.140 E 14$ | -.343E 12 | .270E 12 |
| 22 | -11GE 13 | .841E 11 | .183E 13 | -177E 13 | -.215E 12 | .100 E 13 | $\bigcirc 124 E 14$ | -.634E 12 | .212E 12 |
| 23 | .154E 13 | .137E 12 | .103E 13 | .848E 12 | -.292E 12 | .708 F 12 | ¢931E 13 | -.124E 13 | 315E 12 |
| 24 | .199E 13 | .180E 12 | . 384 E 12 | $\bigcirc 153 \mathrm{E} 12$ | ..154E 12 | $.540 E 12$ | :566E 13 | -.129E 13 | .408 E 12 |
| 25 | .235E 13 | $.229 E 12$ | -310E 12 | -842F 11 | .172E 12 | .575\% 12 | .212E 13 | -. 121 E 13 | .763 E 12 |
| 26 | . 268 E 13 | .216 E 12 | .163E 12 | .102 E 13 | .631E 12 | . 499512 | $\bigcirc 148 \mathrm{E} 12$ | -. 326 E 12 | .791 l 12 |
| 29 | .279E 13 | . 220E 12 | .907E 11 | $\because 302 \mathrm{E} 13$ | :132E 13 | . 633 F 12 | $\bigcirc 622 \mathrm{~L} 12$ | .855E 12 | .121E 13 |
| 28 | -251E 13 | -19RE 12 | -490E 11 | -660E 13 | -227E 13 | .810F 12 | $\bigcirc 513 E 13$ | -295E 13 | -171E |
| 29 | .212E 13 | .965E 11 | .206E 11 | $\because 106814$ | .194E 13 | . 370 F 12 | $\bigcirc 127 E 14$ | .391E 13 | .820 E 12 |
| 30 | .153E 13 | .914E 10 | -839E 10 | $\bigcirc 120 E 14$ | .945 E 12 | $\stackrel{827 E 11}{ }$ | $\bigcirc 173 E 14$ | !laje 13 | $.200{ }^{.2} 12$ |
| 31 | . 846 E 12 | ..361E 11 | . 520 E 10 | .995 E 13 | -.119E 12 | .537 E 10 | -165E 14 | -. 554 E 11 | $.325 E 10$ |
| 32 | -332E 12 | -.243E 11 | . 322 E 10 | .643E 13 | . 379 E 11 | .175710 | $\bigcirc 120 E 14$ | . 266 E 12 | $.711 F 10$ |
| 33 | . 73 AE 11 | . $.164 E 11$ | -417E 10 | .700E 13 | .540 E 12 | .429F 11 | $\bigcirc 162 \mathrm{E} 14$ | !166E 13 | $.172 E 12$ |
| 34 | $.123 E 12$ | .464E 11 | .179E 11 | -283E 13 | . 237812 | .254F11 | $\because 103 \mathrm{l}$ | .128 E 13 | 172E 12 |
| 35 | $.148 E 13$ | $.225{ }^{\text {2 }} 12$ | $.340 E 11$ | :239E 13 | -149E 13 | $\because 930 F 12$ | -165E 14 | 740E 13 | 3315 |

Table C17. Attftude (C7) Covariance Results ( $\Delta t=0.02$ )

MEAN RESPONSES

|  | $\tilde{t}$ | DELTA | DDFLTA | Hsubit | DNSUP | QALF | QDALF | D2 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2}$ | $\begin{array}{r} .000 E-80 \\ \therefore 268 E-04 \end{array}$ | $\begin{aligned} & .000 F-80 \\ & -584 E=-5 \\ & \hline \end{aligned}$ | $\begin{array}{r} .000 E-80 \\ .695 E-03 \end{array}$ | $\begin{array}{r} .0 C O E-80 \\ -264 E-02 \end{array}$ | -000E-80 <br> - B06E-02 | $\begin{aligned} & .000 E=80 \\ & .398 E=0 ? \end{aligned}$ | $\begin{array}{r} .000 E-80 \\ -639 E=03 \end{array}$ | $\begin{array}{r} .000 E-80 \\ -516 E-03 \end{array}$ |
|  | 3 | -. $135 \mathrm{SE}=02$ | -.211E-43 | . $180 \mathrm{E}-01$ | -. 173 F -02 | . 403 E 00 | .964E-01 | -. $578 \mathrm{E}-01$ | -.112E 00 |
|  | 4 | -. $510 \mathrm{E}-02$ | . 248 E -3 | -6n3E-01 | -. 52BE-03 | .143E 01 | . 234 AEO | -. 233 F 00 | -.772E 00 |
|  | 5 | -.115E-01 | $.146 F=62$ | .140E 00 | : 236 E -02 | . 322 E 01 | . 478 CO | -.634E 00 | -.283E 01 |
|  | 6 | - $205 \mathrm{E}-61$ | - $354 \mathrm{E}-02$ | - 258 E 00 | . $813 \mathrm{E}-02$ | .574 E 01 | . 856 E 00 | -.136E 01 | -.767E O1 |
|  | 7 | -.310E.01 | .636E-d2 | .424E 00 | . 171E-01 | -8ROE 01 | .144E O1 | -.253E 01 | ..172E 02 |
|  |  | -.421E-01 | -966E-02 | . 624 E 0 | $.344 E-01$ | -121E 02 | . 218E01 | -.420E 01 | -.338E 02 |
|  | 9 | -.491E-Cl | -133E-11 | $.827 E 00$ | .801E-01 | .161E 02 | . 362 E O1 | -.643F 01 | -.601E 02 |
|  | 10 | -. $489 \mathrm{E}-61$ | -15k $\mathrm{E}^{\text {- }}$-1 | .948E 00 | .122 CO | -217E 02 | .517E O1 | -.954E 01 | -.997E 02 |
|  | 11 | -.647E-01 | .146F-61 | . 120 E O1 | . 11500 | . 227E 02 | $.561 E$ OL | -.139E 02 | -.158E 03 |
|  | 12 | -.867E-01 | .192E-01 | .601 E 00 | -. 678 E 00 | . 222E 02 | .741501 | -.161E 02 | -.235E 03 |
|  | 13 | $.955 E-C l$ $.000 E-80$ | $\text { - } 279 E-01$ <br> -000E-80 | $.461 E 00$ <br> -gone-ro | $.807 E$ .000 .0060 | $.268 E 02$ $.000 E 80$ | $.105 E O 2$ .0006 .80 | -145 C -102 $.000 E 80$ | $\begin{array}{r} \cdot .312 \mathrm{E} \\ \cdot 03 \\ 000 \mathrm{E} \\ \hline 00 \end{array}$ |
| Cr | $\begin{aligned} & 15 \\ & 16 \end{aligned}$ | - 000E-80 <br> - 00 OE -80 | - 000 E-80 <br> -00UE-BO | - COUE-80 <br> . 000 E-80 | -GOUE-80 <br> . 00 UE-80 | - UODE-80 <br> - OOUE-80 | - 00 NE- 80 <br> -0DUE-BU | $\begin{aligned} & 000 E-80 \\ & .000 E-80 \end{aligned}$ | $\begin{aligned} & -000 E=A 0 \\ & -000 E=80 \end{aligned}$ |
|  | 178 | . 0000 ERE80 | .00ue-80 | $.000 E-80$ $.00 U E-80$ | $.000 E-80$ $.006 E-80$ | $.000 E-80$ $.000 E 80$ | $.00 \cap E-80$ $.00 . j E-80$ | $.00 \cap E-80$ .0 OLE 80 | $\begin{aligned} & .000 E-80 \\ & .000 E-80 \end{aligned}$ |
|  | 19 | . OnOE-8C | . 000 E-80 | $.000 \mathrm{E}-80$ | .00UE-80 | . $000 \mathrm{E}=80$ | . $00.9 \mathrm{~F}=80$ | . 000080 | . 000E-80 |
|  | 20 21 | - $C O O^{2}-80$ <br> - OROE-80 | -000E-80 <br> .000E-80 | . 000 EE-80 <br> $.000 \mathrm{E}-80$ | -OCLE-80 $.00 \cup E-80$ | $-000 E-{ }^{2} 0$ $.000 \mathrm{E} .80$ | - 00uE-8 <br> - CunE-80 | $-000 E-80$ $.00 \cap \mathrm{E}-80$ | $.000 \mathrm{E}=80$ $.000 E=80$ |
|  | 22 | - $\cap$ COE-B0 | - OU0E-80 | . 0000 -80 | .000E-80 | - 000 E-80 | - $\operatorname{cog} E-80$ | . ODOE-80 | $.000 E-80$ |
|  | 23 | . $000 \mathrm{E}-80$ | - 00NE-80 | . 000 - 80 | - OOUE-80 | - UOCE 80 | - 00 ges-80 | - ODOE-80 | $.000 E-B D$ |
|  | 24 | . 000 E-80 | - none-8u | - 600 E-80 | -00UE-80 | -00ne-80 | -00.E-80 | . 0000 E-80 | -000E-RO |
|  | 25 | . DOUE-80 | -000E-80 | . OCOE-80 | . 000 E-80 | - UODF-80 | . 00.150 | . OONE-BO | . $000 \mathrm{E}-80$ |
|  | 26 | . OnOE-8N | . OOCE-80 | . 000 E-80 | . 000ERRO | . 000 E-80 | .00UE-80 | . 000 E -80 | . 000 E-80 |
|  | 27 | - OOUE-80 | - 000F-80 | -000E-80 | -0COE-80 | -000E-80 | - $000 \mathrm{E}=80$ | - 000F-80 | $-000 E-B 0$ |
|  | 28 | .000E-80 | -000E-80 | . OOTE-80 | . 000 E-80 | . $000 \mathrm{~F}-80$ | . CODE-80. | $.000 E-80$ | $.000 E=80$ |
|  | 29 | -000E-80 | - 00 CEF-80 | . $000 \mathrm{E}-80$ | -00UE-80 | -000E-80 | - CODE-80 | . 000 E-80 | . 000 E-80 |
|  | 30 | - OROE-8O | . 000E-80 | -000E-80 | . $000 \mathrm{O}-80$ | - OORE 80 | - DOCLE-80 | . 000 E-80 | . OOOE.80 |
|  | 31 | - OCOE-8C | -000E-E0 | $.000 E-30$ | . 000 UE-80 | -000E-80 | . 00uEn80 | . 000E-80 | -000E-80 |
|  | 32 | . 0000 -80 | . $000 \mathrm{E}-80$ | . 000 E-80 | .000E-80 | . $000 \mathrm{E}-80$ | . 000 DE -8u | . $000 \mathrm{E}-80$ | . $0000 \mathrm{E}=80$ |
|  | 33 | .0D0E-80 | . O00E-80 | . $000 \mathrm{E}-80$ | .000E-80 | $.000 \mathrm{E}-80$ | . 00 JE-80 | . $0005-80$ | . 000 E-80 |
|  | 34 35 | -000E-80 | -000E-80 | $.000 E-80$ $.0 n O F-80$ | - OOCE-80 <br> $.000 E-80$ | $+000 E-80$ <br> .000 E-8 | - ognerso <br> . 00JE-80 | $\begin{aligned} & 0001 E-80 \\ & .000 E-80 \end{aligned}$ | - ODOE-80 <br> .000 -80 |

Table C17. Continued

MEAN RESPONSES

|  | [ $1_{1}$ | DIBI | 182 | D1B2 | 183 | П183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | $\begin{array}{r} .000 E=80 \\ .349 E \quad 04 \end{array}$ | $\begin{array}{r} .000^{F}-80 \\ \therefore \quad 162 E 05 \end{array}$ | $\begin{array}{r} .000 E-80 \\ 131 E 05 \end{array}$ | $\begin{array}{r} .000 E=80 \\ .255 E 05 \\ \hline \end{array}$ | $\begin{aligned} & .000 E-80 \\ & .260 E 05 \end{aligned}$ | $\begin{array}{r} .000 E-80 \\ -\quad 21 B E \quad 5 \end{array}$ |
| 3 | -.675E 05 | . 224 E 05 | .871E 06 | . 482 E 06 | .152E 07 | .767 O6 |
| 4 | -.203E 06 | . 377 E 05 | .327E 07 | $\because 971 E 06$ | - 565E07 | -155E 07 |
| 5 | -.463E 06 | -417F 15 | . $739 E 07$ | .148E 07 | -128E 08 | $.239 E 07$ |
| 6 | -.869E 06 | .162E 05 | .130E 08 | -187E 07 | . 226 EF | .306E 07 |
| 7 | -.143E 07 | -.541E 65 | .195E Õ8 | .197 O | -340E 08 | $.330 E$ OT |
| 8 | -.213E 07 | -.165E 06 | $.262{ }^{-28}$ | -182E 07 | -459E 08 | .322 E 07 |
| 9 | -. 279 OF | -.491E 06 | -301E 08 | .183E 06 | . 531 E 08 | . 929E 06 |
| 10 | -. 326 E 07 | -.830E 06 | .291E Ü8 | .198E 07 | .521E 08 | -.220E 07 |
| 11 | -.474F 07 | -.922E05 | -379E $0^{8}$ | -326E 07 | .684E 08 | -546E 07 |
| 12 | -.407E 07 | ..217E 06 | . 531 E 08 | .441E 07 | .937E 08 | .758 OF |
| 13 | -.517E 07 | -.151E 09 | .590 O | . 161607 | .104 E O | -.782E 06 |
| 14 | . 000 E-80 | -000E-80 | . 000 E-80 | . $000 \mathrm{E}-80$ | - OOOE. 80 | . COUE-80 |
| 15 | -000E-8G | -000E-80 | . 0000 E-80 | . 00 U'E-80 | . 000 E=80 | . 000 E-80 |
| 16 | . $000 \mathrm{E}-80$ | - 000F-80 | . 000 OE-80 | . 000 EE-80 | . ODOE-80 | . OPOE-80 |
| 17 | . 000 E -80 | - 000 OE-80 | . O00E-80 | . OOUE-80 | . 000 -80 | $.080 \mathrm{E}-80$ |
| 18 | -000E-80 | - 000 E-80 | . O00E-80 | - 0COE-80 | - 000 Er80 | - 000E-80 |
| 19 | -000E=80 | - $0000 \mathrm{E}-80$ | - 000 - 80 | -00UE-80 | - ODDE-80 | - OUUE-80 |
| 20 | . $000 \mathrm{E}-80$ | - 000 E-80 | . 000 E-80 | . 000 CO 80 | - 000 -80 | . ODOE-80 |
| 31 | - OnOE-80 | - ODDE-AD | . 000E-80 | .000E-80 | - DODE-8 ${ }^{\circ}$ | . 00 DE -80 |
| 22 | .000E-80 | -00GE-80 | . 000 E-80 | . 00 LE-80 | - 000 O-80 | . 0000 -80 |
| 23 | . $0000 \mathrm{E}-80$ | . $000 \mathrm{~F}-80$ | - $000 \mathrm{E}=80$ | . 0000 E -80 | - DOOE-80 | - $000 \mathrm{E}-80$ |
| 24 | . OOOE-80 | .000E-80 | . 000 C-80 | .000E-80 | . OOOE.80 | . DOUE-80 |
| 25 26 | $\begin{array}{r} .00 G E-80 \\ .000 F-80 \end{array}$ | - OCUE-80 <br> - OODE-8O | $\begin{aligned} & 000 E-80 \\ & .000 E-80 \end{aligned}$ | $.060 E-80$ $.000-80$ | $.000 E-80$ $.000 E 80$ | - 000 O-80 |
| ¢ 2 | $.0005-80$ | -000E-80 | -000E-80 | - OCOE-80 | - ODOE-80 | - BOOE-80 |
| 28 | .000E-80 | . 000 E-80 | $.000 E-80$ | -OCOE-80 | - 000 - 80 | .000E-80 |
| 29 | -00ve-80 | . $0000 \mathrm{E}-80$ | - $000 \mathrm{E}-80$ | - 0 CUE-80 | . 000 E-80 | - 00 ÚFE8V |
| 30 | . 0000 -80 | . 0000 E-80 | . $000 \mathrm{E}-80$ | - UCOE-80 | - UOOE-80 | . 0000 E -80 |
| 31 | . 0000 E 80 | $.000 \mathrm{E}-80$ | . 000 E-80 | .OCOE. 80 | $.000 E^{8} 8$ | . 0000 -8u |
| 32 | -000E-80 | - 000E-80 | - $000 \mathrm{E}=80$ | - OOUE-Ro | - 000 -80 | - OQUE-80 |
| 33 | -000E-80 | .000E-80 | . $0000 \mathrm{E}-80$ | . 000 O-80 | . 0000 E-80 | -00je-80 |
| 34 | . $000 \mathrm{E}-80$ | . DOOE-8U | . 000 E-80 | - $0 C O E-80$ | . $0000 \mathrm{E}-80$ | . OUNE-80 |
| 35 | . OOOE- ${ }^{\text {O }}$ | - $0000 \mathrm{E}=80$ | . OGOE-80 | - UOUE-80 | - 0000 E 80 | -60JE-80 |

Table C17. Continued

## RESPONSE COVARIANCES

| DELTA | nelta*delta | DDELTA |
| :---: | :---: | :---: |
| -00UE-80 | -00ne-80 | - OUCE-80 |
| . $458 \mathrm{E}-06$ | --287E-46 | . 195E-06 |
| .108E-03 | -.161E-114 | . 561 LE -05 |
| . 232 E -03 | . $501 \mathrm{E}=04$ | . $224 \mathrm{E}-04$ |
| . $379 \mathrm{E}-03$ | . 0.916 E-04 | . 484 E-04 |
| . $532 \mathrm{E}=03$ | -.137E-03 | . $873 \mathrm{E}=04$ |
| .666E-03 | -.180F-03 | .149E-03 |
| .7R1E.03 | -.217E_U3 | . 247 E .03 |
| -760E-03 | -. $233 \mathrm{E}-03$ | -342E-03 |
| . $592 \mathrm{C}=03$ | -. 203 S - 03 | . 252 -03 |
| . O20E-03 | -.217E-03 | . 499 E-03 |
| .163E-02 | -.362E-03 | . $135 \mathrm{E}-02$ |
| .183E-02 | -.567E-C3 | $.177 E=02$ |
| . $000 \mathrm{E}-80$ | .000E-80 | - OUCE-80 |
| - $\cap C O E-80$ | .00uF-80 | . UnGE-80 |
| -000E-80 | -000E-80 | . 000 E-80 |
| -OTOE-80 | -000E-80 | . OOCE-80 |
| .000E-80 | -000E-80 | . $0000-80$ |
| - 000 - 80 | -000E-80 | -ODCE-80 |
| - COUE-80 | - OCOE-80 | . 000 E-80 |
| .000E-80 | -00nf-80 | . 00 CE-80 |
| . 000 E-80 | .000\%-80 | . OOCE-80 |
| . 0000 -80 | - $000 \mathrm{E}-8 \mathrm{C}$ | - 0才UE-80 |
| -000E-80 | - DOAE-80 | .00ne-80 |
| -COUE-80 | - 000 E-80 | . OOCE-80 |
| - OOOE-80 | -000E-80 | . OOCE-80 |
| . $0000-80$ | . 000 E-80 | . 000 E-80 |
| . OCOE-80 | . 000 E-80 | - COOE-80 |
| . $000 \mathrm{E}-80$ | .000E.80 | -UOCE-80 |
| - 000 E-80 | -000F-80 | .000E-80 |
| - OnUE-80 | .000E-80 | .000E-80 |
| - DCUE-80 | - OOOE-80 | - OCCE-80 |
| -CTUE-80 | -000E-80 | . 000 E-80 |
| -G0UE-80 | - OnOE-80 | . $00 C_{E-80}$ |
| . 000 E-80 | - OnOE-80 | . OOCE-80 |


| H200 | DELQ | $\Delta \gamma$ |
| :---: | :---: | :---: |
| - OOOE-80 | - OROE-80 | -00UE-80 |
| - $298 \mathrm{E}-03$ | -10RE-07 | . 461 E.07 |
| . 125F00 | .421E-06 | .453E-05 |
| . 280 O 0 | . $344 \mathrm{F}. \mathrm{O}_{6}$ | . 42 GE-05 |
| . 700e U0 | .524E-06 | . $565 \mathrm{E}-05$ |
| .161 E 01 | .817E-06 | . $777 E=05$ |
| . 337 E 01 | .134E.05 | .105E-04 |
| .657E 01 | . 229 E. 05 | . 138 E .04 |
| -121E 02 | - 332E.05 | .178E-04 |
| -219E 02 | - $232 \mathrm{E}-05$ | - $235 \mathrm{E}-04$ |
| . 396802 | .460E.05 | . $323 \mathrm{E}-04$ |
| .483E 4 ? | .111E.04 | . 31 UE-04 |
| . 346 E 02 | .139E-04 | -176E-04 |
| . OOUE-80 | - UnOE-80 | . $00.3 \mathrm{E}-80$ |
| . 00uE-80 | . 000 -80 | . OG.SE-80 |
| .000E-80 | - 100 E-80 | -009E-80 |
| . 000E-80 | - OnUE-80 | .009E-80 |
| -0UUE-80 | - 000 E-80 | - 000 E-80 |
| .00UF-80 | - Donem80 | . $000 \mathrm{E}-80$ |
| .000E-80 | - U0nE-80 | . OGNE-80 |
| . 000 E-80 | - D00E-8゙̇ | -00, 0 -80 |
| .00UE-80 | .000E.80 | - OUUE-8 |
| . O00E-80 | - U00E-84 | -00uF-80 |
| - OUUE-80 | . 000 -80 | .000E-80 |
| . $000 \mathrm{E}-80$ | - 000 - 80 | . OOJE-80 |
| . 00 UF-ro | -000E-BO | . OU0E-80 |
| . $000 \mathrm{~J}_{\mathrm{E}}-80$ | -00CE-80 | .00uE-80 |
| . OOUE-80 | . 000 E-80 | .00.JE-80 |
| . 000 E-RO | - 000 O. 80 | -COOE.80 |
| -00JE-80 | -000E-80 | - 00.E-8u |
| .000E-80 | .000E-80 | - $00.3 \mathrm{E}-80$ |
| . $000 \mathrm{E}-8$ ? | . 000 E-80 | . 000 E-80 |
| -OCUE-80 | -100E-80' | -OUSE-80 |
| . 0000 E-80 | - 000 e-80 | .00nE-80 |
| OGUE-80 | - DOOE-80 | -0GiF-80 |


| $\Delta \Theta$ | $\Delta z$ |
| :---: | :---: |
| . 0000 -80 | -000E-80 |
| -308E-07 | -307E-03 |
| 139E-04 | -132E O1 |
| $.354 E-04$ | .109E त̈2 |
| .601E-04 | .431E त? |
| -862E-04 | . 133 E 03 |
| -110E-03 | . 351 E - 3 |
| 129E.03 | . 832 E 0 |
| 130E-03 | -182E 04 |
| 106E-03 | . 376 E 04 |
| 142E-03 | . 744 E O |
| 245E-03 | .136E Ö5 |
| . $303 \mathrm{E}-03$ | -213E ${ }^{\text {® }}$ ( |
| .000E-80 | . 000 E -80 |
| . 000E-80 | . 000 E-80 |
| - 000E-80 | - 000 Er 80 |
| - DONE-80 | -000E-80 |
| .000E-80 | -000E-80 |
| . ODOE-80 | .000E-BO |
| -000E-80 | . $000 \mathrm{E}=80$ |
| .000F-80 | .000E-80 |
| .ODCE-80 | . 000 E-80 |
| -00NE-80 | . 000 E. 80 |
| . 000 -80 | -000E-80 |
| .000F-80 | . 000 E-80 |
| . 000 -80 | .000E-80 |
| .000E-80 | . 000 E-80 |
| .000E-80 | . 000 E-80 |
| . 000 E. 80 | .000E.80 |
| . 000 E-80 | . 000 E-80 |
| . 000 E-80 | .000E-80 |
| -000E-80 | . 000 -80 |
| . $000 \mathrm{E}-80$ | .000E-BO |
| 000E-80 | . $000 \mathrm{E}=80$ |
| ODNE-80 |  |

Table C17．Continued

DESPONSE COVARIANCES

| $\widetilde{t}$ | NIT | NIT＊DNT | DNIT | QALF | QALF $\triangle$ DAALF | DQALF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ． $000 \mathrm{E}=80$ | ．000E－80 | ．OnOE－80 | ．000E－80 | ．OCOE－80 | －00， 0 －80 |
| 2 | ． $258 \mathrm{E}=\mathrm{C} 3$ | ．103E－Ú2 | ．411E－02 | ． 377 E － 01 | －5¢2E－02 | ． $313 \mathrm{E}-02$ |
| 3 | $.391 E-02$ | －．15RE－72 | $.144 E-02$ | ． 739 El | －199E 00 | ． 157 E OB |
| 4 | ．147E－01 | －．140E－02 | ． 490 E－02 | .162 E ¢ | ．606E 00 | ． 977 E0 |
| 5 | $.349 E-01$ | －125E－02 | －187E－01 | －271E 02 | .155 E 01 | －358E Ol |
| 6 | ． 667 E －01 | －． 546 F． 84 | ．591E－01 | ． 389 CL | .305 Cl | ． 108 E |
| 7 | $.125 E 00$ | － 296 E－ 2 | －182E 00 | ．508E 22 | ．541E 01 | ．315E 02 |
| 8 | ． 213 U | －860F－02 | ． 416800 | ．626E 02 | ．826E O1 | ． $786 \mathrm{~V} \mathrm{U}^{2}$ |
| 9 | ．280E OC | －？ $01 \mathrm{E}-0.1$ | .617 E 0 | －813E U2 | .147 E 02 | ．173E $0^{3}$ |
| 10 | ． 4 AUE 00 | ．272E－01 | ．ll2e 0l | ．118E 03 | ． 236 E 0 ？ | .346 E 03 |
| 11 | .704 EO | －． $599 \mathrm{E}-02$ | .392801 | ．119E 3 | .254 E 02 | ．629E 03 |
| 12 | .748 CO | －．854E－U1 | $.178 \mathrm{E} \quad 02$ | ．116E U3 | － 328 E 02 | －107E $0^{4}$ |
| 13 | ．516E 00 | －．755F－n1 | $.206 E 02$ | $.149 E 03$ | ．455E 02 | $.165 E J 4$ |
| 14 | ． 000 E－80 | －netofero | －000E－80 | ． $000 \mathrm{C}=80$ | －OnOE－80 | －ПODE－80 |
| 15 | ．OOUE－80 | －000E－PO | －0nre－80 | ．00UF－8n | －UOOE．80 | －DOUE－84 |
| 16 | $.000 E-80$ | － $000 \mathrm{E}=80$ | －U00E－80 | ．000E－80 | －1100E－8i； | －00のE－80 |
| 17 | ．OOOE－80 | －OnOE－80 | ．000E－80 | － $000 \mathrm{CL}-8 \mathrm{C}$ | －UOOE－80 | ．OGOE－80 |
| 18 | ．ODOE－80 | ．OORE－80 | －C00E－80 | ．000E－8n | ．U0才E－80 | ． 00 UE－80 |
| 19 | －COOE－80 | － OUDE－80 | －Cogeso | －DOLE－80 | －000E．80 | －00uE－80 |
| 20 | ． 0000 －80 | －OnOE－80 | ．000E－80 | －00se－80 | ．000E．80 | －OCOE－80 |
| 21 | ． 0000 －80 | －000゙E－80 | －U00E－80 | ．OGOE－8N | －OOCE－80 | －OUUE－80 |
| 27 | ． 000 E－80 | －00CE－80 | ． 000 E－80 | ． 004 L －80 | －000E－80 | － 0000 E－80 |
| 23 | $.000 \mathrm{E}-80$ | －000E－80 | － $1000-80$ | ． $00 \checkmark_{E}=80$ | －000E－80 | －00nE－80 |
| 24 | ． $000 \mathrm{E}-80$ | － 000 E E－80 | －U00E－80 | ． 000 ER－80 | －00NE－80 | －CQOE－80 |
| 25 | ． 0000 E－80 | ． 000 E－80 | $.000 E-80$ | ． 00 UE－80 | ．ODOE－80 | ．00UE－80 |
| 26 | －000E－80 | －Nonfe80 | － 0 COE－80 | －00うE－80 | －000E－80 | －Coue－80 |
| 27 | ． 0000 －80 | －000E－80 | ．000E－80 | ． 000 E． 80 | ． 000 Cer 80 | －Coueso |
| 28 | －COUE－80 | －NJCE－80 | － 000 E－80 | ． $0000 \mathrm{E}-80$ | －000E－80 | －OODE－80 |
| 29 | ．000E－RO | ． 000 E－80 | ．U0CE－80 | ． 000 E－80 | ．000E．80 | －00UE－80 |
| 30 | ．000E－80 | －000F－80 | － 000 C－80 | ． $0000 \mathrm{E}-80$ | －000E－80 | ． 000 E－80 |
| 31 | ． 0000 － 80 | ．000E－80 | ． 0000 －80 | －OOUE－80 | －OOOE－80 | ．000E．80 |
| 32 | ． $000 \mathrm{E}-80$ | ． $0000 \mathrm{E}-80$ | ． $0000 \mathrm{E}-80$ | ． $0007=80$ | ． 000 E－80 | ． 00 UE－80 |
| 33 | － 000 E－${ }^{\text {A }}$ | －OOOE－80 | － $0000 \mathrm{E}-80$ | －00JE－80 | －000E－80 | － 00 OLE－8～ |
| 34 | ．UODE－80 | ．000E－80 | ．000E－80 | ． 000 E－80 | －00ロE－80 | ． 00 OE－80 |
| 35 | ． $000 \mathrm{E}=8 \mathrm{C}$ | ．OOGE－80 | －OOCE－80 | －COJE－80 | －ODOE－80 | ．000E－80 |

Table C17. Concluded)
a Esponse covariane es

|  | $\tilde{t}$ | 181 | [B10DIB1 | D181 | 182 | 102*D182 | D182 | 183 | 103*D183 | D183 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2}$ | . 000E-80 | - 000E-80 | :000E-80 | .000E-80 | $.000 E-80$ $-280 E 12$ | $\begin{array}{r}.0005 E-80 \\ .717 E 12 \\ \hline 12\end{array}$ | $\begin{array}{r} 000 E-80 \\ .032 E 12 \end{array}$ | $\begin{array}{r} .000 E=80 \\ -576 F \end{array}$ | $\begin{array}{r} 000 E_{m}^{80} \\ .788 E 12 \end{array}$ |
|  | 2 | .772E 10 | . 361 E 11 | . 169 E 12 | . 111 E 12 | - 280 E 12 | . 717 EL 12 | $.432 E 12$ | $.$ | $\begin{aligned} & 788 \mathrm{E} \\ & \hline 0.9 \mathrm{l} \end{aligned}$ |
|  | 3 | . 6173 E 11 | $-.332 \%$ $-448 E 11$ | . 5886 E (11 | $.984 E 14$ $.103 E 15$ | -928E 13 |  | $.138 E 15$ $.296 E 15$ | . 239 E 14 | .962E13 |
|  | 5 | . 384 E 12 |  | . 544 El 12 | $\cdots{ }^{\circ} 165 \mathrm{l}$ | .115E14 | $-217814$ | . 479815 | -311E14 | $9472{ }^{4} 14$ |
|  | 6 | . 726 E 12 | -.578E 11 | .144E 13 | . 226 E 15 | .104E 14 | .413 l 14 | .663E 15 | . 292 E 14 | .913E 14 |
|  | 7 | .129E 13 | -. 47711 | $.385{ }^{\text {P }} 13$ | . 27715 | .677E 13 | - A23E 14 | . $8200^{15}$ | .219 E 14 | -177E 15 |
|  | 8 | . 213 E 13 | -. 441 E 11 | . 928 E 13 | . 314E 15 | .243E 13 | .159E 15 | . 94515 | .143E 14 | . 334 E 15 |
|  | 9 | . 283 E 13 | .125E 12 | .161E 14 | . 293 E 15 | ..130E 14 | .238 E 15 | .899E 15 | -226E 14 | .490E 15 |
|  | 10 | - 330 E 13 | - A3GE 12 | .183E 14 | . 215815 | -231E 14 | .179 E | -679E 15 | -.507E 14 |  |
|  | 11 | -TE2E 13 | -.394E 12 | . 536 E 14 | . 318 c | -167E 14 | . 466815 | . 103 E 16 | .622E 14 | - B71E 15 |
|  | 12 | $.925 E 13$ | -.101E 13 | - 136 E 15 | . 609 E 15 | - 344E 14 | .129E 16 | . 190E 16 | . 132 E 15 | . 245E16 |
|  | 13 | -841E 13 | -.151E 1? | . 167E 15 | .703E 15 | -.525E 14 | .161E 16 | . 216816 | -.881E 14 | . 307 E 16 |
| O | 14 | - ncuerso | -000E-80 | . 000E-80 | . OOOE 80 | -000E-80 | -00ne-80 | . $000 \mathrm{E}=80$ | -000E-80 | . $0000 \mathrm{E}=80$ |
| O | 15 | - OROE-80 | .000E-80 | .000E-80 | - Onueso | -UDOE-8'゙ | - Onue-80 | .000E-80 | . 000E-80 | . O00E-80 |
|  | 16 | . OOOE.80 | .000E.80 | .000E.80 | . ODCE-80 | . NOOE.80 | - DOUE.80 | . 000E-80 | . O00E.80 | . OODE.80 |
|  | 17 | -00GE-EO | -000̇E-80 | -000E-80 | -000E-80 | - $0000 \mathrm{E}-80$ | - OUDE-80 | -0DOE-80 | -000 En80 | -000E-80 |
|  | 18 | -COOE-SO | -000E-80 | .000E-80 | . ODUE-80 | -000E-80 | -0@uE-80 | -000E-80 | -000E-80 | . $0000 \mathrm{E}-80$ |
|  | 19 | .000E-A0 | - TOOE-8U | . U00E-80 | . 0000 E 80 | - OOOE-80 | -000E-A0 | -000E-80 | -000E-80 | - 000E-80 |
|  | 20 | .000E-80 | -000E-80 | . DODE-80 | .006F-80 | -000E-80 | -00AE-80 | -000E-80 | -000E.80 | . 000E-80 |
|  | 21 | . $0000 \mathrm{E}=80$ | -00uE-80 | .000E-80 | -000E-80 | -000E-80 | -00JE-80 | .000E=80 | -000E-80 | . $0000 \mathrm{E}-80$ |
|  | 22 | . OCOE-80 | -00NE-80 | . OOOE-80 | - OnOE-80 | -000E.80 | -00 DE. 80 | . ODOE-80 | -000E-AD | . 000E.80 |
|  | 23 | . O00E-80 | .000F_80 | .000E-80 | .000E.80 | . DOCE.80 | . O00E.80 | .000E. 80 | .000E-80 | .000E. 00 |
|  |  | - OOUE-80 | - 00GE-80 | - U00E-80 | .000E-80 | -000E-80 | - 000E-80 | - 000E-80 | -000E-RO | - $000 \mathrm{E}=80$ |
|  | -25 | -000E-80 | -0noeso | . $0000 \mathrm{E}-80$ | .000E-80 | -000E-80 | -080E. 80 | .00ne-80 | -000E-80 | . $0000 \mathrm{E}-80$ |
|  | 26 | -000E-80 | - 000E-80 | -000E-80 | -000E-80 | -000E-80 | -00DE-80 | -000E-80 | -000E-80 | -000E-80 |
|  | 27 | -000E-80 | -OnOE-80 | .000E-80 | :000E-80 | -0DOE-80 | . OBOE ${ }^{\text {c }} 80$ | . $0000 \mathrm{E}-80$ | -000E-80 | .000E. 80 |
|  | 2.8 | -000E -80 | - $0000 \mathrm{E}-80$ | -000E-80 | -006E 80 | - 000E-80 | -000E-80 | . $0000 \mathrm{E}=80$ | -000E=80 | -000E-80 |
|  | 29 | . 000 E-80 | -000E-80 | .000E-80 | .000E-80 | - OODE.80 | . 00 JE-80 | . 000 E. 80 | -000E.80 | .000E.80 |
|  | 30 | . 000 E-80 | .000E-80 | .000E.80 | .000E-80 | - $000 \mathrm{E}^{80}$ | . 000 En80 | .000E.80 | -000E.80 | . D00E. 80 |
|  |  | - DU0E-80 | -000E-80 | -000E-80 | -000E-80 | - OOOE.80 | -000E-80 | . OOAE. 80 | -000E-80 | . 000 E-80 |
|  | 32 | -000E-80 | -000E-BO | -000E-80 | .000E-80 | -000E.80 | - DEAE-80 | -000E-80 | -000E.80 | .000E.80 |
|  | 33 | . 000E-80 | -000E-80 | . OODE-80 | .000E-80 | -000E.-80 | - DOUE-80 | . 000 E-80 | -000E-80 | . ODOE.80 |
|  | 34 | . 000E-80 | .000E-80 | . $000 \mathrm{E}-80$ | .000E-80 | .000E.80 | . OUOE-88 | . O00En80 | -000Es80 | . O00E.80 |
|  | 35 | $.000 \mathrm{E}=80$ | .000E-80 | $.000{ }_{\text {E }}-80$ | $.000{ }_{\text {E }}-80$ | -000E.80 | . $000 \mathrm{z}=80$ | . 0000 E 80 | . $000 \mathrm{E}=80$ | $.000 \mathrm{E}-80$ |

## APPENDIX D

LATERAL EQUATIONS AND DATA FOR COVARIANCE ANALYSES OF THE LAUNCH PHASE OF MSFC VEHICLE B

This appendix presents the equations and data used to generate the covariance analyses in Section III. The nomenclature, representation, and derivations are presented below. A sketch of the vehicle is presented in Figure 1.

## NOMENCLATURE

$A=$ Matrix [Equation (D1) and Table D1]
$A^{\prime}[x]=$ Slender body space derivative [Equation (D18)] ft
$C_{l_{p}}=\frac{\partial C_{l}}{\partial\left(\frac{\mathrm{pb}}{2 V}\right)} \quad$ Figure D4
$C_{\ell_{r}}=\frac{\partial C_{\ell}}{\partial\left(\frac{r b}{2 V}\right)}$ Figure D5
$1 / \mathrm{rad}$
$C_{\ell_{\beta_{c m}}}=C_{\ell_{\text {mrp }}}-C_{y_{\beta}}\left(\frac{z_{c m}-z_{m r p}}{b}\right) \quad 1 / \mathrm{rad}$
$\begin{array}{lll}\mathrm{C}_{\ell_{\mathrm{mrp}}} & \text { Figure D6 } & 1 / \mathrm{rad}\end{array}$
$\begin{array}{lr}\mathrm{C}_{\ell} \quad \text { Figure D7 } & 1 / \mathrm{rad} \\ C_{\mathrm{n}_{\mathrm{p}}}=\frac{\partial \mathrm{C}_{\mathrm{n}}}{\partial\left(\frac{\mathrm{pb}}{2 \mathrm{~V}}\right)} \text { Figure D8 } & 1 / \mathrm{rad} \\ \mathrm{C}_{\mathrm{n}_{\mathrm{r}}}=\frac{\partial \mathrm{C}_{\mathrm{n}}}{\partial\left(\frac{\mathrm{rb}}{2 \mathrm{~V}}\right)} \text { Figure D9 } & \end{array}$

$$
\left.\left.\begin{array}{ll}
C_{n_{p}}=\frac{\partial C_{n}}{\partial\left(\frac{p b}{2 V}\right)} & \text { Figure D8 }
\end{array}\right] 1 / \mathrm{rad}\right)
$$

| $\mathrm{C}_{\mathrm{n}_{\mathrm{cm}}}=\mathrm{C}_{\mathrm{n}_{\mathrm{m}_{\mathrm{mrp}}}}+\mathrm{C}_{\mathrm{y}_{\beta}}\left(\frac{\mathrm{x}_{\mathrm{cm}}-\mathrm{x}_{\mathrm{mrp}}}{\mathrm{b}}\right)$ | $1 / \mathrm{rad}$ |
| :---: | :---: |
| $\mathrm{C}_{\mathrm{n}_{\mathrm{cm}}} \quad$ Figure D10 | $1 / \mathrm{rad}$ |
| $\mathrm{C}_{\mathrm{n} \text { ¢a }} \quad$ Figure D11 | $1 / \mathrm{rad}$ |
| $\mathrm{C}_{\mathrm{y}_{\beta}}$ Figure D12 | $1 / \mathrm{rad}$ |
| $D=$ Matrix [Equation (D2) and Table D2] |  |
| $\mathrm{G}=$ Matrix [Equation (D1) and Table D1] |  |
| $\mathrm{H}=$ Matrix [Equation (D2) and Table D2] |  |
| $\mathrm{I}=\mathrm{I}_{\mathrm{xx}} \mathrm{I}_{\mathrm{zz}}-\mathrm{I}_{\mathrm{xz}}{ }^{2}$ | slug ${ }^{2} \mathrm{ft}^{4}$ |
| $\mathrm{I}_{\mathrm{xx}} \quad$ Table C7 | slug $\mathrm{ft}^{2}$ |
| $I_{X Z}=47.5 \cdot 10^{6}(1-t / 170)$ | slug $\mathrm{ft}^{2}$ |
| $\mathrm{I}_{\mathrm{yy}} \quad$ Table C7 | slug ft ${ }^{2}$ |
| $\mathrm{I}_{\mathrm{zz}} \quad$ Table C7 | slug ft ${ }^{2}$ |
| L Rolling moment | ft lb |
| $L_{p}=1750$ Scale length of rolling turbulence | ft |
| $L_{S}=228.5$ (Gust penetration length) | ft |

$\frac{{ }^{L^{\prime}}{ }_{p}}{T}$
$\frac{{ }^{\mathrm{L}} \delta_{r}}{\mathrm{~T}}=$ Rolling moment due to yaw command (Table D10) ft/rad
M Mach No. (Table C7)
M.R. $=\frac{(\ell+15)^{2}}{32.17} \frac{d}{d t} W-\frac{d}{d t} I_{z Z}$ (inertial rate and jet damping) slug $\mathrm{ft}^{2} / \mathrm{sec}$$\mathrm{M}_{1 \beta}^{\prime}=-8.96 \times 10^{6} \times 57.3\left(\mathrm{M}_{660}\right.$ due to $\left.\beta @ \overline{\mathrm{q}}_{\max }\right)$in. lb/rad$\mathrm{M}_{2 \beta}^{\prime}=-19.5 \times 10^{6} \times 57.3\left(\mathrm{M}_{880}\right.$ due to $\left.\beta @ \overline{\mathrm{q}}_{\max }\right)$in. $\mathrm{lb} / \mathrm{rad}$$\mathrm{M}^{\prime}{ }_{1 \delta}=-1.62 \times 10^{6} \times 57.3\left(\mathrm{M}_{660}\right.$ due to $\left.\delta_{\mathrm{z}} @ \overline{\mathrm{q}}_{\max }\right)$in. $\mathrm{lb} / \mathrm{rad}$$M_{2 \delta}^{\prime}=-22.8 \times 10^{6} \times 57.3\left(M_{1880}\right.$ due to $\left.\delta_{z}{ }^{(1)} \overline{\mathrm{q}}_{\max }\right)$lb/rad$N=$ Yawing momentft lb
$N_{\beta}=\frac{\partial N}{\partial \beta}$
$\frac{{ }^{N_{\delta}}}{T}=$ Yawing moment due to roll command (Table D10) $\mathrm{ft} / \mathrm{rad}$
$\frac{\mathrm{N}_{\delta_{r}}}{\mathrm{~T}}=$ Yawing moment due to yaw command (Table D10) ..... ft/rad$S=10,250$ (reference area)$f t^{2}$
$\mathrm{T}=\mathrm{Th}$ ust (Table C7) ..... 1b
$\mathrm{V}=$ Speed (Table C7)ft/sec

$$
\begin{aligned}
& \mathrm{W}=\mathrm{Weight} \text { (Table C7) } \\
& \text { db } \\
& \dot{\text { W }} \text { Table } 11 \text { (Table C7) } 1 \mathrm{~b} / \mathrm{sec} \\
& \frac{Y_{\delta_{p}}}{T}=\text { Side force due to roll command (Table D10) } \\
& \text { 1/rad } \\
& \begin{array}{l}
\frac{Y_{\delta_{r}}}{T}=\text { Side force due to yaw } \\
a_{i j} \quad \text { Element of A matrix }
\end{array} \\
& a_{y} \quad \text { Lateral acceleration at pilot's station } \mathrm{ft} / \mathrm{sec}^{2} \\
& a_{11}=\frac{1}{I}\left\{\frac{\bar{q} S b^{2}}{2 V}\left[I_{z z} C_{\ell_{p}}+I_{x z} C_{n}\right]+I_{x z}\left(I_{z z}+I_{x x}-I_{y y}\right) q_{o}\right\} \\
& a_{12}=\frac{1}{\bar{I}}\left\{\frac{\bar{q} S b^{2}}{2 V}\left[I_{z z} C_{\ell_{r}}+I_{x z} C_{n}\right]+\left[I_{z z}\left(I_{y y}-I_{z z}\right)-I_{x z}^{2}\right] q_{o}\right. \\
& \left.+\mathrm{I}_{\mathrm{xz}}(\mathrm{M} . \mathrm{R} .)\right\} \\
& \mathrm{a}_{13}=\frac{1}{\mathrm{I}}\left\{\frac{\bar{q} \mathrm{Sb}}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\beta}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta}}\right]\right\} \\
& a_{17}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q}} \mathrm{Sb}}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\beta}}{ }^{\mu}{ }_{21}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta}}{ }^{\mu}{ }_{11}\right]\right\} \\
& \mathrm{a}_{18}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q}} \mathrm{Sb}}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\beta}}{ }^{\mu}{ }_{22}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta}}{ }^{\mu} 12\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{a}_{19}=\frac{1}{\mathrm{I}}\left\{\frac{\bar{q} S b}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\beta}} \mu_{23}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta}} \mu_{13}\right]\right\} \\
& \mathrm{a}_{1,10}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q} S b^{2}}}{2 \mathrm{~V}}\left[\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\mathrm{p}}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}}\right]\right\} \\
& a_{1,14}=\frac{1}{I}\left\{I_{z z}\left(\frac{L_{\delta_{p}}}{T}\right) T+I_{x z}\left(\frac{N_{\delta_{p}}}{T}\right) T\right\} \\
& \mathrm{a}_{1,15}=\frac{1}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{zz}}\left(\frac{\mathrm{~L}_{\delta_{r}}}{\mathrm{~T}}\right) \mathrm{T}+\mathrm{I}_{\mathrm{xz}}\left(\frac{\mathrm{~N}_{\delta_{r}}}{\mathrm{~T}}\right) \mathrm{T}\right\} \\
& a_{1,16}=\frac{\bar{q} S b}{I}\left\{I_{z z} C_{\ell_{\delta a}}+I_{x z} C_{n_{\delta a}}\right\} \\
& a_{21}=\frac{1}{I}\left\{\frac{\bar{q} S b^{2}}{2 V}\left[I_{x x} C_{n_{p}}+I_{x z} C_{\ell_{p}}\right]+\left[I_{x x}\left(I_{x x}-I_{y y}\right)+I_{x z}{ }^{2}\right] q_{o}\right\} \\
& a_{22}=\frac{1}{I}\left\{\frac{\bar{q} S b^{2}}{2 \mathrm{~V}}\left[\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\mathrm{r}}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell}\right]+\mathrm{I}_{\mathrm{xz}}\left[\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{\mathrm{xx}}-\mathrm{I}_{\mathrm{zz}}\right] \mathrm{q}_{\mathrm{o}}+\mathrm{I}_{\mathrm{xx}}(\mathrm{M} . \mathrm{R} .)\right\} \\
& \mathrm{a}_{23}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q}} \mathrm{Sb}}{\mathrm{~V}}\left\{\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\beta}}\right]\right\} \\
& \mathrm{a}_{27}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q}} \mathrm{Sb}}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}} \mu_{11}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\beta}}{ }^{\mu}{ }_{21}\right]\right\} \\
& \mathrm{a}_{28}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q} S b}}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}}{ }^{\mu} 12+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\beta}}{ }^{\mu 22}\right]\right\} \\
& \mathrm{a}_{29}=\frac{1}{\mathrm{I}}\left\{\frac{\bar{q} S \mathrm{~b}}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}} \mu_{1}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\beta}} \mu_{23}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& a_{3,15}=\frac{g}{W}\left(\frac{Y_{\delta}}{T}\right) T \\
& \mathrm{a}_{3,16}=\frac{\mathrm{g}}{\mathrm{~W}} \bar{q}^{\mathrm{q}} \mathrm{C}_{y_{\delta \mathrm{a}}} \\
& a_{41}=1.0 \\
& a_{45}=-q_{0} \\
& a_{52}=1.0 \\
& a_{54}=q_{0} \\
& a_{63}=1.0 \\
& a_{64}=-w_{0} \\
& a_{65}=u_{0} \\
& a_{77}=-a_{7,11} \\
& a_{7,11}=+2.3 \frac{\mathrm{~V}}{L} \\
& a_{88}=-9.63 \frac{V}{L_{S}} \\
& a_{89}=-5.25 \frac{V}{L_{S}} \\
& a_{8,11}=+14.88 \frac{V}{L_{S}} \\
& a_{98}=+17.77 \frac{V}{L_{S}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{2,10}=\frac{1}{I}\left\{\frac{\overline{\operatorname{q} S b^{2}}}{2 V}\left[I_{x x} C_{n}+I_{x z} C_{\ell}\right]\right\} \\
& a_{2,14}=\frac{1}{I}\left\{I_{x x}\left(\frac{{ }^{N} \delta_{p}}{T}\right) T+I_{x z}\left(\frac{{ }^{L} \delta_{p}}{T}\right) T\right\} \\
& \mathrm{a}_{2,15}=\frac{1}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{xx}}\left(\frac{\mathrm{~N}_{\delta_{r}}}{\mathrm{~T}}\right) \mathrm{T}+\mathrm{I}_{\mathrm{xz}}\left(\frac{\mathrm{~L}_{\delta_{r}}}{\mathrm{~T}}\right) \mathrm{T}\right\} \\
& a_{2,16}=\frac{\bar{q} S b}{I}\left\{I_{x x} C_{n_{\delta a}}+I_{x z} C_{\ell_{\delta a}}\right\} \\
& a_{31}=w_{o} \\
& a_{32}=-u_{0} \\
& a_{33}=\frac{\mathrm{g}}{W} \frac{\bar{q} \mathrm{~S}}{\mathrm{~V}} \mathrm{C}_{\mathrm{y}_{\beta}} \\
& a_{34}=g\left(c \theta_{0}\right) \\
& \mathrm{a}_{35}=\mathrm{g}\left(\mathrm{~s} \theta_{0}\right) \\
& a_{37}=\frac{\mathrm{g}}{\mathrm{~W}} \frac{\overline{\mathrm{q}} \mathrm{~S}}{\mathrm{~V}} \mathrm{C}_{\mathrm{y}_{\beta}} \mu_{31} \\
& a_{38}=\frac{\mathrm{g}}{\mathrm{~W}} \frac{\overline{\mathrm{q}} \mathrm{~S}}{\mathrm{~V}} \mathrm{C}_{\mathrm{y}_{\beta}}{ }^{\mu} 32 \\
& a_{39}=\frac{g}{W} \frac{\bar{q} S}{V} C_{y_{\beta}}{ }^{\mu} 32 \\
& a_{3,14}=\frac{g}{W}\left(\frac{{ }_{\mathrm{Y}} \delta_{p}}{\mathrm{~T}}\right) \mathrm{T}
\end{aligned}
$$

$$
\begin{aligned}
& a_{99}=+5.03 \frac{V}{L_{s}} \\
& a_{9,11}=-22.8 \frac{V}{L_{S}} \\
& a_{10,10}=-a_{10,13} \\
& a_{10,13}=+2.3 \frac{V}{r . c .} \\
& a_{11,11}=\frac{\dot{\sigma}}{\sigma} \\
& a_{11,12}=c_{3} \sigma \dot{h} \\
& a_{12,11}=-c_{5} \frac{\dot{h}}{\sigma} \\
& a_{12,12}=-c_{4} \dot{\mathrm{~h}} \\
& a_{13,13}=-\frac{\pi}{4} \frac{V}{b} \\
& a_{14,14}=-g_{14,1} \\
& a_{15,15}=-g_{15,2} \\
& a_{16,16}=-g_{16,3} \\
& b=160 \text { (wing span) }
\end{aligned}
$$

b Body (subscript)
c Cosine
$\mathrm{cm} \quad$ Center of mass (subscript)
$c_{1} \sigma_{v} \sqrt{\dot{h}}$ Coefficient in random side wind (Figure A7 and Table A2) $\mathrm{ft} / \mathrm{sec}^{3 / 2}$ $c_{2}-\sqrt{\dot{h}} \quad$ Coefficient in random side wind (Figure A8 and Table A2) $1 / \mathrm{ft} \mathrm{sec}{ }^{1 / 2}$ $c_{3} \sigma_{v} \dot{h} \quad$ Coefficient in random side wind (Figure A9 and Table A2) $\mathrm{ft}^{2} / \mathrm{sec}^{2}$
$\mathrm{c}_{4} \dot{\mathrm{~h}} \quad$ Coefficient in random side wind (Figure A10 and Table A2) $1 / \mathrm{sec}$
$c_{5} h / \sigma_{v} \quad$ Coefficient in random side wind (Figure A11 and Table A2) $1 / \mathrm{ft}^{2}$
$d_{i j} \quad$ Element of $D$ matrix

$$
d_{21}=g_{14,1}
$$

$$
\mathrm{d}_{42}=\mathrm{g}_{15,2}
$$

$$
d_{63}=g_{16,3}
$$

$$
\mathrm{d}_{82}=\mathrm{h}_{7,15} \mathrm{~g}_{15,2}
$$

$$
\mathrm{d}_{84}=\mathrm{h}_{77} \mathrm{~g}_{74}
$$

$$
d_{10,2}=h_{9,15} g_{15,2}
$$

$$
\mathrm{d}_{10,4}=\mathrm{h}_{97} \mathrm{~g}_{74}
$$

$$
\mathrm{d}_{12,1}=\mathrm{h}_{11,14} \mathrm{~g}_{14,1}
$$

$$
d_{12,2}=h_{11,15^{g}} g_{15,2}
$$

$$
\mathrm{d}_{12,3}=\mathrm{h}_{11,16^{2}} \mathrm{~g}_{16,3}
$$

$$
d_{12,4}=h_{11,7} g_{74}+h_{11,8} g_{84}+h_{11,9} g_{94}
$$

$$
d_{14,4}=h_{13,7} g_{74}+h_{13,8} g_{84}+h_{13,9} g_{94}
$$

e Earth (subscript)
$f$ Force vector [Equation (D2) and Table D2]
$\tilde{\mathrm{f}} \quad$ Force vector [Equation (D1) and Table D1)
$f_{1} \quad$ Step response of $x_{1}$ [Equation (D13)]
$\mathrm{f}_{2} \quad$ Step response of $\mathrm{x}_{2}$ [Equation (D14)]
$\mathrm{f}_{3} \quad$ Step response of $\mathrm{x}_{3}$ [Equation (D15)]
$\mathrm{g}=32.17$ Gravity
$\mathrm{g}_{\mathrm{ij}} \quad$ Element of G matrix
$g_{74}=a_{7,11}$
$g_{84}=a_{8,11}$
$g_{94}=a_{9,11}$
$g_{11,5}=c_{1} \sigma \sqrt{\dot{h}}$
$g_{12,5}=c_{2} \sqrt{\dot{h}}$
$g_{13,6}=\sigma_{p} \sqrt{0.8 \frac{V}{L_{p}}} \frac{\pi}{4 b}\left(\frac{\pi}{4} \frac{L_{p}}{b}\right)^{1 / 6}$
$g_{14,1}=31.6$
$g_{15,2}=31.6$
$g_{16,3}=10.0$

$$
\begin{aligned}
& h_{1,14}=1.0 \\
& h_{2,14}=-g_{14,1} \\
& h_{3,15}=1.0 \\
& h_{4,15}=-g_{15,2} \\
& h_{5,16}=1.0 \\
& h_{6,16}=-g_{16,3} \\
& \mathrm{~h}_{73}=-\frac{\overline{\mathrm{q} ~ C}}{\mathrm{y}_{\beta}}{\mathrm{VW} 4.19 \times 10^{-4}}_{\mathrm{M}^{\prime}{ }_{1 \beta},} \\
& h_{77}=h_{73} \\
& \mathrm{~h}_{7,15}=\left(\mathrm{Y}_{\delta_{\mathrm{r}}} / \mathrm{T}\right) \mathrm{M}^{\prime}{ }_{1 \delta} \\
& h_{83}=h_{73}{ }^{\mathrm{a}} 33 \\
& h_{84}=h_{73}{ }^{\mathrm{a}}{ }_{34} \\
& h_{85}=h_{73}{ }^{\mathrm{a}}{ }_{35} \\
& h_{87}=h_{73}{ }^{a_{37}}+h_{77^{2}}{ }_{77} \\
& h_{88}=h_{73}{ }^{\mathrm{a}} 38
\end{aligned}
$$

$$
\begin{aligned}
& h_{89}=h_{73}{ }^{a_{39}} \\
& h_{8,11}=h_{77}{ }^{a_{7,11}} \\
& h_{8,14}=h_{73}{ }^{a_{3,14}} \\
& h_{8,15}=h_{73}{ }^{a_{3,15}}+h_{7,15}{ }^{\mathrm{a}}{ }_{15,15} \\
& h_{8,16}=h_{73}{ }^{a_{3,16}} \\
& h_{93}=-\frac{\bar{q} C_{y_{\beta}}}{v W 4.19 \times 10^{-4}} M^{\prime}{ }_{2 \beta} \\
& h_{97}=h_{93} \\
& \mathrm{~h}_{9,15}=\left(\mathrm{Y}_{\mathrm{\delta}_{\mathrm{r}}} / \mathrm{T}\right) \mathrm{M}^{\prime}{ }_{2 \delta} \\
& h_{10,3}=h_{93}{ }^{\mathrm{a}}{ }_{33} \\
& h_{10,4}=h_{93}{ }^{\mathrm{a}}{ }_{34} \\
& h_{10,5}=h_{93}{ }^{2}{ }_{35} \\
& h_{10,7}=h_{93}{ }^{a_{37}}+h_{97}{ }^{a_{77}} \\
& h_{10,8}=h_{93}{ }^{a_{38}} \\
& h_{10,9}=h_{93}{ }^{a_{39}} \\
& h_{10,11}=h_{97}{ }^{2} 7,11
\end{aligned}
$$

$$
\begin{aligned}
& h_{10,14}=h_{93} a_{3,14} \\
& h_{10,15}=h_{93} a_{3,15}+h_{9,15} a_{15,15} \\
& h_{10,16}=h_{93} a_{3,16} \\
& h_{11,1}=+x_{p} a_{21}-z_{p} a_{11} \\
& h_{11,2}=+x_{p} a_{22}-z_{p} a_{12} \\
& h_{11,3}=a_{33}+x_{p} a_{23}-z_{p} a_{13} \\
& h_{11,7}=a_{37}+x_{p} a_{27}-z_{p} a_{17} \\
& h_{11,8}=a_{38}+x_{p} a_{28}-z_{p} a_{18} \\
& h_{11,9}=a_{39}+x_{p} a_{29}-z_{p} a_{19} \\
& h_{11,10}=+x_{p} a_{2,10}-z_{p} a_{1,10} \\
& h_{11,14}=a_{3,14}+x_{p} a_{2,14}-z_{p} a_{1,14} \\
& h_{11,15}=a_{3,15}+x_{p} a_{2,15}-z_{p} a_{1,15} \\
& h_{11,16}=a_{3,16}+x_{p} a_{2,16}-z_{p} a_{1,16} \\
& h_{12,1}=h_{11,1} a_{11}+h_{11,2} a_{21} \\
& h_{12,2}=h_{11,1} a_{12}+h_{11,2} a_{22} \\
& h_{12,3}=h_{11,1} a_{13}+h_{11,2} a_{23}+h_{11,3} a_{33}
\end{aligned}
$$

$$
\begin{aligned}
& h_{12,4}=h_{11,3}{ }^{a_{34}} \\
& h_{12,5}=h_{11,3}{ }^{a_{35}} \\
& h_{12,7}=h_{11,1} a_{17}+h_{11,2} a_{27}+h_{11,3} a_{37}+h_{11,7}{ }^{a_{77}} \\
& h_{12,8}=h_{11,1} a_{18}+h_{11,2} a_{28}+h_{11,3} a_{38}+h_{11,8} a_{88}+h_{11,9}{ }_{98} \\
& h_{12,9}=h_{11,1} a_{19}+h_{11,2^{2}}{ }_{29}+h_{11,3} a_{39}+h_{11,8}{ }^{a_{89}}+h_{11,9} a_{99} \\
& h_{12,10}=h_{11,1} \mathrm{a}_{1,10}+\mathrm{h}_{11,2} \mathrm{a}_{2,10}+\mathrm{h}_{11,10} \mathrm{a}_{10,10} \\
& h_{12,11}=h_{11,7^{a}}{ }_{7,11}+h_{11,8}{ }^{a} 8,11+h_{11,9}{ }^{a} 9,11 \\
& h_{12,13}=h_{11,10^{2}}{ }_{10,13} \\
& h_{12,14}=h_{11,1} a_{1,14}+h_{11,2} a_{2,14}+h_{11,3} a_{3,14}+h_{11,14} a_{14,14} \\
& h_{12,15}=h_{11,1} a_{1,15}+h_{11,2}{ }^{a_{2,15}}+h_{11,3} a_{3,15}+h_{11,15}{ }_{15,15} \\
& h_{12,16}=h_{11,1} a_{1,16}+h_{11,2} a_{2,16}+h_{11,3} a_{3,16}+h_{11,16}{ }_{16,16} \\
& h_{13,3}=\frac{\bar{q}}{\mathrm{~V}} \\
& h_{13,7}=\frac{\bar{q}}{V} \mu_{31} \\
& h_{13,8}=\frac{\bar{q}}{\bar{V}} \mu_{32} \\
& h_{13,9}=\frac{\bar{q}}{V} \mu_{33}
\end{aligned}
$$

$$
\begin{aligned}
& h_{14,3}=h_{13,3} a_{33} \\
& h_{14,4}=h_{13,3^{a} 34} \\
& h_{14,5}=h_{13,3}{ }^{a_{35}} \\
& h_{14,7}=h_{13,3^{a}}{ }_{37}+h_{13,7^{a_{77}}} \\
& h_{14,8}=h_{13,3} a_{38}+h_{13,8} a_{88}+h_{13,9}{ }^{a} 98 \\
& h_{14,9}=h_{13,3} \mathrm{a}_{39}+\mathrm{h}_{13,8} \mathrm{a}_{89}+\mathrm{h}_{13,9}{ }^{\mathrm{a}} 99 \\
& h_{14,11}=h_{13,7^{a}}{ }_{7,11}+h_{13,8}{ }^{a_{8,11}}+h_{13,9}{ }^{\mathrm{a}} 9,11 \\
& h_{14,14}=h_{13,3} \mathrm{a}_{3,14} \\
& h_{14,15}=h_{13,3}{ }^{a_{3,15}} \\
& h_{14,16}=h_{13,3^{a}}{ }_{3,16} \\
& h_{15,4}=1.0 \\
& h_{16,1}=\mathrm{a}_{41} \\
& h_{16,5}=a_{45} \\
& h_{17,6}=1.0 \\
& h_{18,3}=a_{63} \\
& h_{18,4}=a_{64} \\
& h_{18,5}=a_{65}
\end{aligned}
$$

| $\hat{i}_{e}, \hat{j}_{e}, \hat{k}_{e} \quad U$ | it vectors in the flat earth |  |
| :---: | :---: | :---: |
| $\underline{L}=\mathrm{x}_{\delta}-\mathrm{x}_{\mathrm{cm}}$ |  | ft |
| mrp | Moment reference point (subscript) |  |
| $\bigcirc$ | Implies value on reference trajectory (subscript) ${ }^{\text {it }}$ |  |
| p | Body axis roll rate | $\mathrm{rad} / \mathrm{sec}$ |
| p | Pilot (subscript) |  |
| $\mathrm{p}_{\mathrm{g}}$ | Rolling wind velocity. An element of the state. | rad/sec |
| q | Body axis pitch rate | rad/sec |
| $\mathrm{q}_{\mathrm{o}}$ | Body axis reference pitch rate (Table C7) (use $\dot{\gamma}_{0}$ ) | rad/sec |
| $\bar{q}$ | Dynamic pressure (Table C7) | $\mathrm{lb} / \mathrm{ft}^{2}$ |
| r | Body axis yaw rate | rad/sec |
| r | Response vector [Equation (D2) and Table D2] |  |
| r.c. $=133.5$ | Root chord | ft |
| s | Laplace operator | 1/sec |
| s | Side (subscript) |  |
| $s$ | Sine |  |
| t | Time from launch | sec |
| u | Velocity along aircraft x axis | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{u}_{0}=\mathrm{V} \cos \alpha_{0}$ |  | $\mathrm{ft} / \mathrm{sec}$ |
| $u_{1}, u_{2}, u_{3}$ | Control inputs [Equation (D1) and Table D1] |  |
| v | Velocity along aircraft y axis | $\mathrm{ft} / \mathrm{sec}$ |


| $\mathrm{v}_{\mathrm{v}}=\overline{\mathrm{v}}+\widetilde{\mathrm{v}}$ | Side wind velocity | $\mathrm{ft} / \mathrm{sec}$ |
| :---: | :---: | :---: |
| $\overline{\mathrm{v}}$ | Mean side wind (Figure A5 and Table A2). An element of $\mathbb{T}$ | $\mathrm{ft} / \mathrm{sec}$ |
| $\widetilde{\mathrm{v}}$ | Random side wind. A component of the state $x$ | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{w}_{\mathrm{o}}=\mathrm{V} \sin \alpha_{\mathrm{o}}$ |  | $\mathrm{ft} / \mathrm{sec}$ |
| x | Distance forward of cm measured on x -axis (aircraft coordinates) | ft |
| x | Distance aft of nose measured on $x$-axis (shop coordinates) | ft |
| $x$ | State vector [Equation (D1) and Table D1] |  |
| x | A side wind state | $1 / \mathrm{ft}$ |
| $\begin{aligned} & \mathrm{x}_{\mathrm{cm}}=155.8 \\ & \mathrm{x}_{\mathrm{mrp}} \end{aligned}$ | Center of mass (shop coordinates, Table C7) (shop coordinates) | ft |
| $x_{p}=x_{c m}-59.7$ | (Pilot's position in aircraft coordinates) | ft |
| $\mathrm{x}_{\delta}=194.0$ | Gimbal position in shop coordinates | ft |
| $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ | Lumped parameters side wind distribution states | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{x}_{4}$ | Lumped parameter rolling gust distribution state | $\mathrm{rad} / \mathrm{sec}$ |
| y | Coordinate axis in aircraft |  |
| y | State component along $\mathrm{y}_{\mathrm{e}}$ |  |
| $\mathrm{y}_{\mathrm{cm}}$ | In shop coordinates; taken to be zero (Table C7) | ft |
| $\mathrm{y}_{\mathrm{e}}$ | Coordinate axis in earth | ft |
| $\mathrm{y}_{\delta_{\mathrm{i}}}=-16.0$ | In aircraft coordinates ( $\mathrm{i}=1,6$, Figure B9) | ft |
| $\mathrm{y}_{\delta_{i}}=-8.0$ | In aircraft coordinates ( $\mathrm{i}=2,7,11$, Figure B9) | ft |

$y_{\delta_{i}}=0.0 \quad$ In aircraft coordinates $(i=3,8,12$, Figure B9) ..... ft
$y_{\delta_{i}}=+8.0 \quad$ In aircraft coordinates $(i=4,9,13$, Figure B9) ..... ft
$y_{\delta_{i}}=+16.0 \quad$ In aircraft coordinates ( $i=5,10$, Figure B9) ..... ft
$z_{\mathrm{cm}}=$ Center of mass (shop coordinates Table C7) ..... ft$z_{\text {mrp }}=20.0$ (shop coordinates)
$z_{p}=z_{c m}-32.5$ (Pilot's position in aircraft coordinates) ..... ft
$z_{\delta_{i}}=+12.0-z_{\mathrm{cm}} \quad$ In aircraft coordinates ( $i=1-5$, Figure B9) ..... ft$z_{\delta_{i}}=+4.0-z_{c m} \quad$ In aircraft coordinates $(i=6-10$, Figure B9) $\quad \mathrm{ft}$
$\mathrm{z}_{\delta_{i}}=-4.0-\mathrm{z}_{\mathrm{cm}} \quad$ In aircraft coordinates $(\mathrm{i}=11-13$, Figure B9) ..... ft
$\Delta \quad$ Perturbation symbol (suppressed after derivations)
$\alpha_{0} \quad$ Angle of attack (Tables C7 and Figure B6) ..... rad
$\beta \quad$ Side slip angle ..... rad
$\delta_{a}$ Aileron deflection state component ..... rad
$\delta_{\mathrm{p}} \quad$ Gimbal roll command state component ..... rad
$\delta_{r}$ Gimbal yaw command state component ..... rad
$\boldsymbol{\delta}_{\mathrm{y}} \quad$ Gimbal deflection about aircraft y -axis ..... rad
$\delta_{z} \quad$ Gimbal deflection about aircraft z -axis ..... rad
$\eta_{1} \quad$ Unity white noise for side wind disturbance ..... $1 / \sec ^{1 / 2}$
$\eta_{2} \quad$ Unity white noise for rolling gust wind disturbance ( $\eta_{1}$ is independent of $\eta_{2}$ )
$1 / \sec ^{1 / 2}$
$\theta \quad$ Pitch angle ..... rad
$\theta_{0} \quad$ Body axis reference pitch angle (Table C7) ..... rad
$\mu_{1 j} \quad$ Obtained from the solution of Equations (D19) through (D21)
$\mu_{2 j} \quad$ Obtained from the solution of Equations (D19) through (D21)
$\mu_{3 j}$ Obtained from the solution of Equations (D19) through (D21)
$\sigma_{p} \quad$ Standard deviation of rolling gust (Table C7) ..... ft/sec
$\sigma_{v}=\sigma_{p}$ Standard deviation of random side wind ..... ft/sec
$\dot{\sigma}_{v} / \sigma_{v}$ Coefficient in random side wind (Figure A6 and Table A2) ..... $1 / \mathrm{sec}$
$\phi \quad$ Roll angle ..... rad
$\phi \quad$ Roll angle state component ..... rad
$\psi \quad$ Yaw angle ..... rad
$\psi \quad$ Yaw angle state component ..... rad

## REPRESENTATIONS

The generic forms for the perturbation state transition and response are given by:

$$
\begin{equation*}
\dot{\mathbf{x}}=A \mathbf{x}+G \tilde{\mathbf{f}} \tag{D1}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{r}=\mathrm{Hx}+\mathrm{Df} \tag{D2}
\end{equation*}
$$

They are presented explicitly in Tables D1 and D2. These tables and the nomenclature provide for generating all data.

The coefficients $\mathrm{a}_{77}$, a7, 11, a8, 11, a88, a99, a9, 11, $\mathrm{g}_{74}, \mathrm{~g} 84, \mathrm{~g} 94$, and $\overline{\mathrm{v}}$ are tabulated in Table A2. The remainder of the' coefficients of matrices A, G, H, and D are presented in Tables D3 through D6.

## DERIVATIONS

## Euler Angles

A pitch $(\theta)$, roll $\langle\phi\rangle$, yaw $(\psi)$ system relative to a flat earth is used. This system is nonsingular at liftoff as would be a heading, elevation, roll system.

Body axis base vectors ( $i, j, k$ ) are given relative to flat earth base vectors ( $i_{e}, j_{e}, k_{e}$ ) by

$$
\left\{\begin{array}{c}
\hat{i}  \tag{D3}\\
\hat{j} \\
\hat{k}
\end{array}\right\}=\left[\begin{array}{ccc}
(c \theta c \psi+s \theta s \phi s \psi) & (c \phi s \psi) & (-s \theta c \psi+c \theta s \phi s \psi) \\
(-c \theta s \psi+s \theta s \phi c \psi) & (c \phi c \psi) & (s \theta s \psi+c \theta s \phi c \psi) \\
(s \theta c \phi) & (-s \phi) & (c \theta c \phi)
\end{array}\right]\left\{\begin{array}{c}
\hat{i}_{e} \\
\hat{j} \\
e \\
\hat{k}_{e}
\end{array}\right\}
$$

Rotation rates $p, q$, and $r$ in body axes relative to $\dot{\theta}, \dot{\phi}, \dot{\psi}$, and the inverse are given by Equations (D4) and (D5).

$$
\left\{\begin{array}{c}
\mathrm{p}  \tag{D4}\\
\mathrm{q} \\
\mathrm{r}
\end{array}\right\}=\left[\begin{array}{ccc}
\mathrm{c} \psi & (\mathrm{c} \phi)(\mathrm{S} \psi) & 0 \\
-\mathrm{s} \psi & (\mathrm{c} \phi)(\mathrm{c} \psi) & 0 \\
0 & -\mathrm{s} \phi & 1
\end{array}\right]\left\{\begin{array}{c}
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right\}
$$

$$
\left.\left\{\begin{array}{l}
\dot{\phi}  \tag{D5}\\
\dot{\theta} \\
\dot{\psi}
\end{array}\right\}=\left[\begin{array}{cc}
c \psi & -s \psi \\
(\mathrm{~s} \psi / \mathrm{c} \mathrm{\phi}) & (\mathrm{c} \psi / \mathrm{c} \mathrm{\phi}) \\
(\tan \phi)(\mathrm{s} \psi) & (\tan \phi)(\mathrm{c} \psi)
\end{array}\right] \begin{array}{l}
0 \\
0 \\
1
\end{array} \begin{array}{l}
\mathrm{p} \\
\mathrm{q} \\
\mathrm{r}
\end{array}\right\}
$$

The perturbation equations for $\dot{\phi}$ and $\dot{\psi}$ are

$$
\begin{align*}
\Delta \dot{\phi} & =\Delta \mathrm{p}-\mathrm{q}_{\mathrm{o}} \Delta \psi  \tag{D6}\\
\Delta \dot{\psi} & =\Delta \mathrm{r}+\mathrm{q}_{\mathrm{o}} \Delta \phi \tag{D7}
\end{align*}
$$

which correspond to rows 4 and 5 of Table D1.
By use of Equation (D3), the cross-course velocity is

$$
\dot{y}=(c \phi)(s \psi) u+(c \phi)(c \psi) v-(s \phi) w
$$

Its perturbation equation is

$$
\begin{equation*}
\Delta \dot{y}=u_{o} \Delta \psi+\Delta v-w_{o} \Delta \emptyset \tag{D8}
\end{equation*}
$$

This corresponds to row 6 of Table D1.
In deriving (D6), (D7), and (D8), the variables $u$ and $w$ are not perturbed; $s \phi_{\mathrm{O}}=s \psi_{\mathrm{o}}=0$.

## Winds

Laterally, the shuttle is forced by side winds $\mathrm{v}_{\mathrm{w}}$ and by rolling gusts $\mathrm{p}_{\mathrm{g}}$. The side wind $v_{w}$ is made up of a mean $\bar{v}_{w}$ and ramdom $\widetilde{v}$. The model is discussed in Appendix A.

The mean wind $\overline{\mathrm{v}}$ appears as a disturbance function in Tables D1 and D2. Numerical values are shown in Figure A5 and column 2 of Table A2.

The random wind $\widetilde{\mathrm{v}}$ is generated by the differential equations of rows 7 and 8 of Table D1. Coefficients are plotted in Figures A6-A11 and columns 4-9 of Table A2.

There does not appear to be a rolling gust model specifically derived for vertically rising vehicles, The rolling gust model specified for horizontal flight (pp. 48-53 of ref. 13 will be adapted. This model is

$$
\begin{equation*}
p_{g}=\sigma_{p} \sqrt{\frac{1}{L_{p} V}} \frac{\sqrt{0.8\left(\frac{\pi}{4} \frac{L_{p}}{b}\right)^{1 / 3}}}{1+\frac{4 b}{\pi V} s} \eta_{2} \tag{D9}
\end{equation*}
$$

Values for the scale length $L_{p}$ and gust intensity $\sigma_{p}$ have to be chosen.
These are taken as

$$
\begin{aligned}
& L_{p}=1750 \text { feet } \\
& \sigma_{p}=\sigma_{v}
\end{aligned}
$$

These choices are motivated, reference 13; $\sigma_{\mathrm{v}}$ is plotted in Figure A2 and tabulated in Table A2.

A state representation for Equation (D9) is given by

$$
\begin{equation*}
\dot{p}_{g}=-\frac{\pi}{4} \frac{V}{b} p_{g}+\sigma_{p} \sqrt{0.8 \frac{V}{L_{p}}} \frac{\pi}{4 b}\left(\frac{\pi}{4} \frac{L_{p}}{b}\right)^{1 / 6} \eta_{2} \tag{D10}
\end{equation*}
$$

This corresponds to row 13 of Table D1.

## Distributing the Wind Gust Loads

The side force due to winds on the vehicle is the integrated sum of the local body and fin pressure developed by side gusts ( $\mathrm{v}_{\mathrm{w}}$ ). Analogous statements prevail for the yawing and rolling moments due to side gusts and for the rolling moment developed by the rolling wind ( $\mathrm{p}_{\mathrm{g}}$ ).
These are all distributed forces for which it is desirable (mandatory in the present context) to find a lumped parameter representation. Lumped parameter approximations for the side gusts are discussed first. Then the rolling gust approximation is presented.

The side force and yawing moment coefficients due to side gusts are taken to be

$$
\begin{align*}
& C_{y_{s g}}=\frac{C_{y_{\beta}}}{V}\left\{\mu_{31} x_{1}+\mu_{32} x_{2}+\mu_{33} x_{3}\right\}  \tag{D11}\\
& C_{n_{s g}}=\frac{C_{n_{\beta}}}{V}\left\{\mu_{11} x_{1}+\mu_{12} x_{2}+\mu_{13} x_{3}\right\} \tag{D12}
\end{align*}
$$

where $x_{1}, x_{2}$, and $x_{3}$ are system states driven by the wind $v_{w}$. For constant winds $x_{1}=x_{2}=x_{3}=V_{w}$. Rows 7, 8, and 9 of Table D1 show this and how the $x_{i} s$ are driven by the wind $v_{w}$. The $\mu_{i j} s$ are constants to be determined.

The step responses of $\mathrm{x}_{1}, \mathrm{x}_{2}$, and $\mathrm{x}_{3}$ (called $\mathrm{f}_{1}, \mathrm{f}_{2}$, and $\mathrm{f}_{3}$ ) for a sharpedged side gust $\mathrm{v}_{\mathrm{w}}$ are

$$
\begin{align*}
& \mathrm{f}_{1}[\mathrm{x}]=1-\mathrm{e}^{\frac{-2.3}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}} \\
& \mathrm{f}_{2}[\mathrm{x}]=1-\mathrm{e}^{\frac{-2.3}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}}\left\{\cos \frac{2 \pi}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}-1.165 \sin \frac{2 \pi}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}\right\}  \tag{D13}\\
& \mathrm{f}_{3}[\mathrm{x}]=1-\mathrm{e}^{\frac{-2.3}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}}\left\{\cos \frac{2 \pi}{L_{\mathrm{s}}} \mathrm{x}+1.167 \sin \frac{2 \pi}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}\right\}  \tag{D14}\\
& \mathrm{L}_{\mathrm{s}}=228.5 \tag{D15}
\end{align*}
$$

The most gross result of slender body theory (refs. 22 or 23 ) give the step responses for gust penetration as

$$
\begin{align*}
& \mathrm{C}_{\mathrm{y}_{\beta}}[\mathrm{x}]=\frac{-2}{\mathrm{~S}} \int_{0}^{\mathrm{x}} \mathrm{~A}^{\prime}[\widetilde{\mathrm{x}}] \mathrm{d} \widetilde{\mathrm{x}}  \tag{円D6}\\
& \mathrm{C}_{\mathrm{n}_{\beta}}[\mathrm{x}]=\frac{2}{\mathrm{Sb}} \int_{0}^{\mathrm{x}}\left(\widetilde{\mathrm{x}}-\mathrm{x}_{\mathrm{ref}}\right) \mathrm{A}^{\prime}[\widetilde{\mathrm{x}}] \mathrm{d} \widetilde{\mathrm{x}}  \tag{D17}\\
& 0 \leq \mathrm{x} \leq L_{\mathrm{S}} \\
& \mathrm{~A}[\mathrm{x}]=\frac{\pi}{4}(\mathrm{~d}[\mathrm{x}])^{2}
\end{align*}
$$

where $d[x]$ is the "slender body maximum" projected side dimension.
If the theory was correct, Equations (D16) and (D17) would yield the same results as the wind tunnel (Figures D10 and D11). The slender body depth is plotted in Figure D1 (from Figure 1), the slender body area in Figure D2. The slender body area is assumed to vary linearly between $0<x<120$ and $190<\mathrm{x}<228.5$. It is assumed constant for $120<\mathrm{x}<190$. With

$$
A^{\prime}[x]=\left\{\begin{array}{ccl}
\frac{4260}{120} & \text { for } & 0<x<120  \tag{D18}\\
0 & \text { for } & 120<x<190 \\
\frac{2900}{38.5} & \text { for } & 190<x<228.5
\end{array}\right.
$$

both $\mathrm{C}_{\mathrm{y}_{\beta}}$ and $\mathrm{C}_{\mathrm{n}_{\beta}}$ Figure D3 computed from Equations (D16) and (D17) agree with Figure D10 and D12 for $M=1.5$ (maximum $\bar{q}$ ). The amount of finagling is not large; the vertical fins are less effective than the theory estimates.

The $\mu_{i}{ }^{s}$ are to be determined to provide a least-squared fit of $C_{y_{\beta}}[x]$ and
$\mathrm{C}_{\mathrm{y}_{\beta_{c m}}}[\mathrm{x}]$ from the solution
${ }^{\mathrm{y}} \beta_{\mathrm{cm}}$

$$
\begin{align*}
& B_{\widetilde{\mu}_{i j}}=c_{i j} \quad \text { for } i=1,3  \tag{D19}\\
& \mu_{i j}=k_{i} \tilde{\mu}_{i j} \text { for } i=1,3  \tag{D20}\\
& k_{i}=\frac{1}{\sum_{j} \widetilde{\mu}_{i j}} \text { for } i=1,3 \tag{D21}
\end{align*}
$$



$\mathrm{g}_{1}=\mathrm{c}_{\mathrm{n}_{\mathrm{c}_{\mathrm{cm}}}}[\mathrm{x}]$

$$
\begin{aligned}
& \mathrm{g}_{3}=\mathrm{c}_{\mathrm{y}_{\beta}}[\mathrm{x}] \\
& \mathrm{x}_{\mathrm{cm}}=.107 .68\left(@ \overline{\mathrm{q}}_{\max }\right)
\end{aligned}
$$

The least-squared fit for the $\tilde{\mu}_{s}$ is obtained by Equation (D19). These are adjusted by Equation (D20) to enforce the correct steady state. The $\mu \mathrm{s}$ provide the correct steady-state side force and yawing for all flight conditions. Good accuracy should be obtained dynamically in the critical maximum dynamic pressure flight range. For the purpose intended, the representation should be reasonably good over the whole flight regime. To do better would require aerodynamic estimates appropriate to each flight regime, an increase in the number of basis functions ( $f_{i}$ ), and calculation of time-varying $\mu \mathrm{s}$; straightforward in principle but not warranted at this time.

For a constant side gust $\mathrm{v}_{\mathrm{w}}$, the rolling moment coefficient is

$$
\begin{equation*}
C_{\ell}=C_{\ell} \frac{v_{w}}{V} \tag{D22}
\end{equation*}
$$

For a sharp-edged side gust it is assumed that

$$
C_{\ell_{\beta}}[x]=\left\{\begin{array}{cc}
0 & \text { for } 0<x<95.0  \tag{D23}\\
\left\{\frac{(x-95.0)}{\text { r.c. }}\right\}^{2} & (-0.055) \\
\text { for } 95<x<228.5
\end{array}\right.
$$

where

$$
\text { r.c. }=133.5
$$

$\mathrm{C}_{\ell_{\beta}}$ is generated primarily by the wing which starts at $\mathrm{x}=95$ and extends to $\mathrm{x}=228.5$. The quadratic variation for $95<\mathrm{x}<228.5$ is motivated by the results of slender-body theory. $C_{\ell}$ at $M=1.5$ is -0.055 (Figure D6).

The $\mu_{2}$ js are obtained by use of Equations (D19) through (D21) (with a notational adjustment) and (D22).

Treatment of the rolling gusts is analogous to, but simpler than, those for the side gusts.

The rolling gust ( $\mathrm{p}_{\mathrm{g}}$ ) drives $\mathrm{x}_{4}$ through the equation shown in row 10 of Table D1. Time tơ 90 percent is taken as the time to traverse the wing root chord. $\mathrm{x}_{4}$ " distributes" $\mathrm{p}_{\mathrm{g}}$ over the wing chord. Steady-state values of $\mathrm{x}_{4}$. and $p_{g}$ are the same. $x_{4}$ drives the equations of motion in the same way as the geometric roll rate (p).

## Thrust Vectoring

There are a number of alternatives available in selecting the manner in which roll and yaw torques are obtained from gimbaling of the rocket engines. The one selected here has merit for this particular vehicle.

The gimbaling scheme selected:

- Yields pure roll torques (no yawing moments) about the velocity vector due to roll commands
- Yields pure yaw torques (no roll torques) about the velocity vector due to yaw commands

For roll commands, the sidewise motion of most of the engines is twice the vertical motion (to conserve pitch power).

For yaw commands, the maximum yawing moment used from thrust vectoring is less than that available, in order to obtain yawing moments without rolling
moments. This is not a loss. The resulting $\left|N_{\delta r} / N_{\beta}\right| \gg 1$ (yawing moment due yaw vectoring divided yawing moment due to sideslip is much greater than one, as it must be). This open-1oop compensation should give better control than can be attained with closed-loop control alone. Most importantly, it will permit a comparison between the results to be attained from these equations and those obtained from those of Appendix B.

There may be concern that the scheme selected will generate large payload losses. This is not the case. For maximum propulsive efficiency, the thrust vector should be aligned along the velocity vector. If it is not, there is a thrust loss (TL)

$$
(\mathrm{TL})=\mathrm{T}(1-\cos \delta) \cong \mathrm{T} \frac{\delta^{2}}{2}
$$

The fuel for control (FC)

$$
(F C)=\int_{0}^{170} \frac{\mathrm{~T} \delta^{2}}{2 \mathrm{I}} \mathrm{sp} \mathrm{dt}
$$

where
$\mathrm{I}_{\mathrm{sp}}$ is the specific impulse (taken equal to 450 lb thrust/fuel/sec). The analog results of Section III show that the gimb al angles approaching 0.1 radian are obtained over less than 20 seconds of flight. That is,

$$
(\mathrm{FC}) \leq \frac{\left(6 \cdot 10^{6}\right)(0.1)^{2} 20}{2(450)}=1330 \mathrm{lb}
$$

This is booster fuel. Using the $1 / 6$ rule of thumb, this implies a loss in payload of less than 225 lb for control.

Derivation of the equations is now presented, Forces and moments for a single engine are determined first. Coupling of the engines is then presented.

An engine with thrust $T_{i}$ is mounted at ( $x, y, z$ ) in aircraft coordinates. The nominal thrust is in the positive $x$ direction (directed along the unit vector, $\mathrm{i}_{1}$ ). Engine gimbals are provided along the $y$ and $z$ axes; positive rotations about the gimbal axes are $\delta_{y}$ and $\delta_{z}$ (radians). The ordering of gimbal rotations is $\delta_{y}$ and $\delta_{z}$.


Unit vectors $i_{1}, j_{1}$, and $k_{1}$ are aligned along the body axes, $x, y$, and $z$. Unit vectors $\mathrm{i}_{2}, \mathrm{j}_{2}$, and $\mathrm{k}_{2}$ are oriented with respect to the rocket nozzle after the rotation $\delta_{y}$. Unit vectors $i_{3}, j_{3}$, and $k_{3}$ are oriented with respect to the rocket nozzle after rotations $\delta_{y}$, and $\delta_{z}$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
i_{2} \\
j_{2} \\
k_{2}
\end{array}\right\}=\left[\begin{array}{ccc}
c \delta_{y} & 0 & -s \delta_{y} \\
0 & 1 & 0 \\
\mathrm{~s} \delta_{y} & 0 & c \delta_{y}
\end{array}\right]\left\{\begin{array}{l}
i_{1} \\
j_{1} \\
k_{1}
\end{array}\right\} \\
& \left\{\begin{array}{l}
i_{3} \\
j_{3} \\
k_{3}
\end{array}\right\}=\left[\begin{array}{ccc}
c \delta_{z} & \mathrm{~s} \delta_{z} & 0 \\
-s \delta_{z} & c \delta_{z} & 0 \\
0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
i_{2} \\
j_{2} \\
k_{2}
\end{array}\right\}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
i_{3} \\
j_{3} \\
k_{3}
\end{array}\right\}=\left[\begin{array}{ccc}
\left(c \delta_{y}\right)\left(c \delta_{z}\right) & s \delta_{z} & \left(-s \delta_{y}\right)\left(c \delta_{z}\right) \\
\left(c \delta_{y}\right)\left(-s \delta_{z}\right) & c \delta_{z} & \left(s \delta_{y}\right)\left(s \delta_{z}\right) \\
s \delta_{y} & 0 & c \delta_{y}
\end{array}\right]\left\{\begin{array}{c}
i_{1} \\
j_{1} \\
k_{1}
\end{array}\right\}
$$

Hence, the force $F$ along the body axes is

$$
F=T_{i}\left[\left(c \delta_{y}\right)\left(c \delta_{z}\right) \hat{i}_{1}+\left(s \delta_{z}\right) \hat{j}_{1}-\left(s \delta_{y}\right)\left(c \delta_{z}\right) \hat{k}_{1}\right]
$$

The moment is

$$
\begin{aligned}
\frac{M}{T_{i}} & =\left[\begin{array}{ccc}
\hat{i}_{1} & \hat{j}_{1} & \hat{k}_{1} \\
x & y & z \\
\left(c \delta_{y}\right)\left(c \delta_{z}\right) & \left(s \delta_{z}\right) & -\left(s \delta_{y}\right)\left(c \delta_{z}\right)
\end{array}\right] \\
= & \hat{i}_{1}\left[-y\left(s \delta_{y}\right)\left(c \delta_{z}\right)-z\left(s \delta_{z}\right)\right]+\hat{j}_{1}\left[z\left(c \delta_{y}\right)\left(c \delta_{z}\right)+x\left(s \delta_{y}\right)\left(c \delta_{z}\right)\right] \\
& +\hat{k}_{1}\left[x\left(s \delta_{z}\right)-y\left(c \delta_{y}\right)\left(c \delta_{z}\right)\right]
\end{aligned}
$$

The perturbation and moment equations are (for $s \delta_{z_{0}}=0 ; c \delta_{z_{o}}=1$ )

$$
\begin{array}{rlrl}
\Delta \mathrm{F} \cong & \mathrm{~T}_{\mathrm{i}} \hat{\mathrm{i}}_{1}\left[-\mathrm{s} \delta_{\mathrm{y}_{\mathrm{o}}}\left(\Delta \delta_{\mathrm{y}}\right)\right] & & \\
& +\mathrm{T}_{\mathrm{i}} \hat{\mathrm{j}}_{1}\left[\Delta \delta_{\mathrm{z}}\right] & & \\
& +\mathrm{T}_{\mathrm{i}} \hat{\mathrm{k}}_{1}\left[-\left(\mathrm{c} \delta_{\mathrm{y}_{\mathrm{o}}}\right)\left(\Delta \delta_{\mathrm{y}_{\mathrm{o}}}\right)\right] & \text { Heave } & \\
\Delta \mathrm{M} \cong & \mathrm{~T}_{\mathrm{i}} \hat{\mathrm{i}}_{1}\left[-\mathrm{y}\left(\mathrm{c} \delta_{\mathrm{y}_{\mathrm{o}}}\right)\left(\Delta \delta_{\mathrm{y}}\right)-\mathrm{z}\left(\Delta \delta_{\mathrm{z}}\right)\right] & & \\
& +\mathrm{T}_{\mathrm{i}} \hat{\mathrm{j}}_{1}\left[-\mathrm{z}\left(\mathrm{~s} \delta_{\mathrm{y}_{\mathrm{o}}}\right)\left(\Delta \delta_{\mathrm{y}}\right)+\mathrm{x}\left(\mathrm{c} \delta_{\mathrm{y}_{\mathrm{o}}}\right)\left(\Delta \delta_{\mathrm{y}}\right)\right] & \text { Pitching moment } \\
& +\mathrm{T}_{\mathrm{i}} \hat{\mathrm{k}}_{1}\left[\mathrm{x}\left(\Delta \delta_{\mathrm{z}}\right)+\mathrm{y}\left(\mathrm{~s} \delta_{\mathrm{y}_{\mathrm{o}}}\right)\left(\Delta \delta_{\mathrm{y}}\right)\right] & & \text { Rolling moment } \\
& & \text { Yawing moment }
\end{array}
$$

These are approximated to

$$
\begin{array}{ll}
\Delta Y=T_{i} \Delta \delta_{z} & \text { Side force } \\
\Delta L=T_{i}\left[-y\left(\Delta \delta_{y}\right)-z\left(\Delta \delta_{z}\right)\right] & \text { Rolling moment } \\
\Delta N=T_{i}\left[x\left(\Delta \delta_{z}\right)\right] & \text { Yawing moment } \tag{D26}
\end{array}
$$

The gimbals are to be driven to obtain:

- Yawing moment without rolling moment about the velocity vector due to yaw control
- Rolling moment without yawing moment about the velocity vector due to roll control
- The maximum yawing moment per gimbal deflection due to yaw commands
- The maximum rolling moment per gimbal deflection due to roll commands

The first two of the above are obtained by enforcing

$$
\begin{align*}
\mathrm{L}_{\delta_{\mathrm{r}}} & =-(\tan \alpha) \mathrm{N}_{\delta_{\mathrm{r}}}  \tag{D2}\\
\mathrm{~N}_{\delta_{\mathrm{p}}} & =(\tan \alpha) \mathrm{L}_{\delta_{\mathrm{p}}} \tag{D28}
\end{align*}
$$

where $\delta_{\mathbf{r}}$ and $\delta_{\mathrm{p}}$ are the yaw and roll commands.
Obtaining the latter two objectives is illustrated by example.
Figure 1 shows the vehicle; Figure B3 the engine numbering system. The $\mathbf{x}$-axis is taken midway between the bottom two rows of engines. The engines are taken as being 8 feet on centers. Table C7 presents the positions of the center of mass in "manufacturing shop" coordinates. At $10 \mathrm{sec} \mathrm{x}_{\mathrm{cm}}-93.46 \mathrm{ft}$, $y_{c m}=0$ (by assumption), and $z_{c m}=8.08$ feet. The $x$ gimbal positions are aff taken as 194 feet. For the $10-\mathrm{sec}$ flight condition the gimbal positions in flight coordinates are presented in Table D7. Engine numbers are identified in Figure B3. Figure B7 and Table C7 show the angle of attack is -0.6 degree so that $\tan \alpha=-0.0105$.

Roll commands are considered first. From Equations (D25) and (D26) the perturbation rolling and yawing moments for roll commands are

$$
\begin{align*}
& L_{\delta_{p}}=\sum_{i=1}^{13} T_{i}\left\{-y_{i} \frac{\partial \delta_{y_{i}}}{\partial \delta_{p}}-z_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{p}}\right\}  \tag{D29}\\
& N_{\delta_{p}}=\sum_{i=1}^{13} T_{i} x_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{p}} \tag{D30}
\end{align*}
$$

It is assumed

$$
\begin{align*}
& T_{i}=T_{j} \text { for all } i \text { and } j  \tag{D31}\\
& \frac{\partial \delta_{y_{i}}}{\partial \delta_{p}}=\left\{\begin{array}{rll}
+\frac{1}{2} & \text { for } & i=1,2,6,7,11 \\
0 & \text { for } & i=3,8,12 \\
-\frac{1}{2} & \text { for } & i=4,5,9,10,13
\end{array}\right. \tag{D32}
\end{align*}
$$

$$
\left[\begin{array}{ll}
\partial & \delta_{z_{i}}  \tag{D33}\\
\partial & \delta_{p}
\end{array}\right] \leq 1
$$

Hence, $\frac{\partial \delta_{\mathbf{z}_{\mathbf{i}}}}{\partial \delta_{p}}$ have to be determined to minimize $L_{\delta_{p}}$ subject to

$$
\begin{equation*}
\mathrm{N}_{\delta_{\mathrm{p}}}=-0.0105 \mathrm{~L}_{\delta_{p}} \tag{D34}
\end{equation*}
$$

Some fussing yields the solution of Table D9.
Yaw commands are derived similarly,

$$
\begin{equation*}
L_{\delta_{r}}=\sum_{i=1}^{13} T_{i}\left(-z_{i}\right) \frac{\partial \delta_{\mathbf{z}_{i}}}{\partial \delta_{\mathbf{r}}} \tag{D35}
\end{equation*}
$$

$$
\begin{equation*}
N_{\delta_{r}}=\sum_{i=1}^{13} T_{i} x_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}} \tag{D36}
\end{equation*}
$$

where it is now assumed

$$
\begin{align*}
& T_{i}=T_{j} \text { for all } i \text { and } j  \tag{D37}\\
& \left|\frac{\partial \delta_{z_{i}}}{\partial \delta_{r}}\right| \leq 1 \tag{D38}
\end{align*}
$$

Hence, $\frac{\partial \delta_{z_{i}}}{\partial \delta_{r}}$ have to be determined to minimize $N_{\delta_{r}}$ subject to

$$
\begin{equation*}
\mathrm{L}_{\delta_{\mathbf{r}}}=+0.0105 \mathrm{~N}_{\delta_{r}} \tag{D39}
\end{equation*}
$$

A little more fussing yields the solution of Table D9.

$$
\mathrm{L}_{\delta_{\mathrm{p}}} / \mathrm{T}, \mathrm{~N}_{\delta_{\mathrm{p}}} / \mathrm{T}, \mathrm{~L}_{\delta_{r}} / \mathrm{T}, \text { and } \mathrm{N}_{\delta_{r}} / \mathrm{T}
$$

from Tables D8 and D9 were interpolated and are presented at 5-second intervals in Table D 10. These quantities are used in coefficients ${ }_{1} 1,14$, $\mathrm{a}_{1,15}{ }^{\prime} \mathrm{a}_{2,14}$, and $\mathrm{a}_{2,15}{ }^{\circ}$

Side forces are also required. Equation (D24) shows they result from gimbal deflections $\delta_{z}$. For yaw control

$$
\begin{align*}
\frac{Y_{\delta_{r}}}{T} & =\frac{1}{T} \sum_{i} T_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}}  \tag{D40}\\
\frac{Y_{\delta_{r}}}{T} & =\left\{\begin{array}{l}
\frac{1}{13} \sum_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}} \text { for } t<117 \\
\frac{1}{10} \sum_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}} \text { for } 117<t<148 \\
\frac{1}{8} \sum_{i} \frac{\partial \delta_{z_{i}}}{\partial \delta_{r}} \text { for } 148<t<170
\end{array}\right. \tag{D41}
\end{align*}
$$

At 10 seconds, Table D9 yields

$$
\begin{equation*}
\frac{\mathrm{Y}_{\delta_{r}}}{\mathrm{~T}}=\frac{1}{13}(10+3 \cdot 0.294)=0.834 \tag{D42}
\end{equation*}
$$

$\frac{Y_{\delta}}{T}$ is obtained in a similar manner from Table $D 8 . Y_{\delta_{r}} / T$ and $Y_{\delta_{p}} / T$ are tabulated for use in Table D10. The latter is so small it will be neglected in the analyses; it is presented here for completeness.

Table D10 contains all the data needed for perturbation control synthesis. For flight purposes, the open-loop gains of Tables D8 and D9 would have to be implemented.

## Body Dynamics

The equations of motion are

$$
\begin{align*}
& \dot{p}=\frac{1}{I}\left\{I_{z z}\left[L-\left(I_{z z}-I_{y y}\right) q r+I_{x z} p q\right]+I_{x z}\left[N-\left(I_{y y}-I_{x x}\right) p q-I_{x z} q r\right]\right\} \\
& \dot{r}=\frac{1}{I}\left\{I_{x x}\left[N-\left(I_{y y}-I_{x x}\right) p q-I_{x z} q r\right]+I_{x z}\left[L-\left(I_{z z}-I_{y y}\right) q r+I_{x z} p q\right]\right\}  \tag{D43}\\
& \dot{v}=\frac{g}{W} Y+g(s \theta)(s \psi)+g(c \theta)(c \psi)-u r+w p \tag{D45}
\end{align*}
$$

The gravity contribution in Equation (D45) is obtained from Equation (D3).
The corresponding perturbation equations of motion are:

$$
\begin{align*}
\Delta \dot{p}= & \frac{1}{I}\left\{I_{z z}\left[\Delta \mathrm{~L}+\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{z z}\right) \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}+\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{p}\right]\right. \\
& \left.+\mathrm{I}_{\mathrm{xz}}\left[\Delta \mathrm{~N}+\left(\mathrm{I}_{\mathrm{xx}}-\mathrm{I}_{\mathrm{yy}}\right) \mathrm{q}_{\mathrm{o}} \Delta \mathrm{p}-\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}\right]\right\}  \tag{D46}\\
\Delta \dot{\mathrm{r}}= & \frac{1}{\mathrm{I}}\left\{_{\mathrm{xx}}\left[\Delta \mathrm{~N}+\left(\mathrm{I}_{\mathrm{xx}}-\mathrm{I}_{\mathrm{yy}}\right) \mathrm{q}_{\mathrm{o}} \Delta \mathrm{p}-\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}\right]\right. \\
& \left.+\mathrm{I}_{\mathrm{xz}}\left[\Delta \mathrm{~L}+\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{z \mathrm{zz}}\right) \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}+\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{p}\right]\right\}  \tag{D47}\\
\Delta \dot{\mathrm{v}=}= & \frac{\mathrm{g}}{\mathrm{~W}} \Delta \mathrm{Y}+\mathrm{g}\left(\mathrm{~s} \theta_{\mathrm{o}}\right) \Delta \psi+\mathrm{g}\left(\mathrm{c} \theta_{\mathrm{o}}\right) \Delta \phi-{u_{o}} \Delta r+\mathrm{w}_{\mathrm{o}} \Delta \mathrm{p} \tag{D48}
\end{align*}
$$

The perturbation rolling moment $\Delta L$ is taken as made up from two contributions from aerodynamics and thrust vectoring forces:

$$
\begin{equation*}
\Delta \mathrm{L}=\Delta \mathrm{L}_{1}+\Delta \mathrm{L}_{2} \tag{D49}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta L_{1}= & \left\{\bar{q}^{\mathrm{Gb}} \frac{\mathrm{~b}}{2 \mathrm{~V}} \mathrm{C}_{\ell_{p}} \Delta \mathrm{p}+\frac{\mathrm{b}}{2 \mathrm{~V}} \mathrm{C}_{\ell_{r}} \Delta \mathrm{r}+\mathrm{C}_{\ell_{\beta}} \Delta \beta+\mathrm{C}_{\ell_{\delta a}} \delta \mathrm{a}+\frac{\mathrm{b}}{2 \mathrm{~V}} \mathrm{C}_{\ell_{p}} \mathrm{x}_{4}\right. \\
& \left.+\frac{\mathrm{C}_{\ell_{\beta}}}{\mathrm{V}}\left[\mu_{21} \mathrm{x}_{1}+\mu_{22} \mathrm{x}_{2}+\mu_{23} \mathrm{x}_{3}\right]\right\}  \tag{D50}\\
\Delta \mathrm{L}_{2}= & \mathrm{T}\left(\frac{\mathrm{~L}_{\mathrm{p}}}{\mathrm{~T}}\right) \Delta \delta_{\mathrm{p}}+\mathrm{T}\left(\frac{\mathrm{~L}_{\mathrm{r}}}{\mathrm{~T}}\right) \Delta \delta_{\mathrm{r}} \tag{D51}
\end{align*}
$$

The first four terms of Equation (D50) are the usual aerodynamic force terms; the last four are associated with gust penetration which was discussed previously under Distributing the Wind Loads.

The thrust vectoring terms appear in Equation (D51). Their derivation was discussed under Thrust Vectoring.

Equations (D36), (D49), and (D51) correspond to row 1 of Table D1.
The perturbation rolling moment $\Delta \mathrm{N}$ is made up of three contributions:

$$
\begin{equation*}
\Delta \mathrm{N}=\Delta \mathrm{N}_{1}+\Delta \mathrm{N}_{2}+\Delta \mathrm{N}_{3} \tag{D52}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta N_{1}= & \bar{q} S b\left\{\frac{\mathrm{~b}}{2 \mathrm{~V}} \mathrm{C}_{\mathrm{n}_{\mathrm{p}}} \Delta \mathrm{p}+\frac{\mathrm{b}}{2 \mathrm{~V}} \mathrm{C}_{\mathrm{n}_{\mathrm{r}}} \Delta_{\mathrm{r}}+\mathrm{C}_{\mathrm{n}_{\beta}} \Delta \beta+\mathrm{C}_{\mathrm{n}_{\delta \mathrm{a}}} \delta \mathrm{a}+\frac{\mathrm{b}}{2 \mathrm{~V}} \mathrm{C}_{\mathrm{n}_{\mathrm{p}}} \mathrm{x}_{4}\right. \\
& \left.+\frac{\mathrm{C}_{\beta}}{\mathrm{V}}\left[\mu_{11} \mathrm{x}_{1}+\mu_{22^{2}} \mathrm{x}_{2}+\mu_{13} \mathrm{x}_{3} \cdot\right]\right\}  \tag{D53}\\
\Delta \mathrm{N}_{2}= & \mathrm{T}\left(\frac{\mathrm{~N}_{\mathrm{p}}}{\mathrm{~T}}\right) \Delta \delta_{\mathrm{p}}+\mathrm{T}\left\langle\frac{\mathrm{~N}_{\mathrm{r}}}{\mathrm{~T}}\right) \Delta \delta_{\mathrm{r}}  \tag{D54}\\
\Delta \mathrm{~N}_{3}= & \left\{\frac{(\ell+15)^{2}}{32.17} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{~W}-\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{I}_{\mathrm{zz}}\right\} \Delta \mathrm{r} \triangleq \text { (M. R.) } \Delta \mathrm{r} \tag{D55}
\end{align*}
$$

Equations (D53) and (D54) are in direct correspondence with (D50) and (D51). Equation (D55) is the mass rate damping term (from Equation 7. 8-2 of ref. D5).

Equations (D47), (D52), (D53), (D54), and (D55) correspond to row 2 of Table D1.

The perturbation side force $\Delta Y$ is taken as made up of two contributions:

$$
\begin{equation*}
\Delta Y=\Delta Y_{1}+\Delta Y_{2} \tag{D56}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta Y_{1}=\bar{q} S\left\{\mathrm{C}_{\mathrm{y}_{\beta}} \Delta \beta+\mathrm{C}_{\mathrm{y}_{\delta \mathrm{a}}} \delta \mathrm{a}+\frac{\mathrm{C} \mathrm{y}_{\beta}}{\mathrm{V}}\left[\mu_{31} \mathrm{x}_{1}+\mu_{32} \mathrm{x}_{2}+\mu_{33} \mathrm{x}_{3}\right]\right\}  \tag{D57}\\
& \Delta \mathrm{Y}_{2}=\mathrm{T}\left(\frac{\mathrm{Y}_{\mathrm{p}}}{\mathrm{~T}}\right) \Delta \delta_{\mathrm{p}}+\mathrm{T}\left(\frac{\mathrm{Y}_{\mathrm{K}}}{\mathrm{~T}}\right) \Delta \delta_{\mathrm{r}} \tag{D58}
\end{align*}
$$

Equations (D48), (D56), (D57), and (D58) correspond to row 3 of Table D1.

## Actuator Dynamics

Appendix $B$ uses second-order actuator dynamics for both the gimbals:

$$
\begin{equation*}
\ddot{\delta}=-2(0.396)(31.6) \dot{\delta}-(31.6)^{2} \delta \tag{D59}
\end{equation*}
$$

and for the aileron

$$
\begin{equation*}
\ddot{\delta}_{a}=-2(0.5)(10) \dot{\delta}_{a}-(10)^{2} \delta_{a} \tag{D60}
\end{equation*}
$$

First-order approximations to each of these are used here

$$
\begin{align*}
& \dot{\delta}_{\mathrm{r}}=-31.6 \delta_{\mathrm{r}}+31.6 \mu_{1}  \tag{D61}\\
& \dot{\delta}_{\mathrm{p}}=-31.6 \delta_{\mathrm{p}}+31.6 \mathrm{u}_{2}  \tag{D62}\\
& \dot{\delta}_{\mathrm{a}}=-10.0 \delta_{\mathrm{a}}+10.0 \mathrm{u}_{3} \tag{D63}
\end{align*}
$$

These correspond to rows 14 through 16 of Table D1.

## Bending Moments

The bending moments at stations 660 and 1800 are given by (page 15 of ref. 25) as

$$
\begin{align*}
& M_{660}=M_{1}=M_{1 \delta}^{\prime} \delta+M_{1 \beta}^{\prime} \beta  \tag{D64}\\
& M_{1800}=M_{2}=M_{2 \delta}^{\prime} \delta+M_{2 \beta}^{\prime} \beta \tag{D65}
\end{align*}
$$

where the numerical values for the maximum dynamic pressure condition are listed in Appendix B. The same assumption used in Appendix B is used to estimate $\mathrm{M}_{\beta}^{\prime} s$ for all flight conditions. The assumption on the $\mathrm{M}_{\delta}^{\prime}$ s used here is comparable to that in Appendix B; it differs slightly due to the differences in thrust vectoring.

For the $\mathrm{M}_{\beta}^{\prime}$ s Appendix $B$ assumes

$$
\begin{align*}
M_{\beta}^{\prime}[t] & =\frac{\frac{\bar{q} S}{W} C_{y_{\beta}}[t]}{\left(\frac{\bar{q} S}{W} C_{y_{\beta}}[t=64]\right)} M_{\beta}^{\prime} \\
& =\frac{\bar{q}}{W} \frac{C_{y_{\beta}}}{\left[\frac{7.86 \times 10^{2}}{2.63 \times 10^{6}}(-1.4)\right]} M_{\beta}^{\prime} \\
& =-\frac{\bar{q}}{W} \frac{C_{y_{\beta}}}{4.19 \times 10^{-4}} M_{\beta}^{\prime} \tag{D66}
\end{align*}
$$

It is the gimbaling about the z -axis gimbals that yields the side-bending moments. For the gimbaling selected here the rockets are not all fully slewed in yaw. They are deficient by the amount $\mathrm{Y}_{\delta_{r}}$ (column 6 of Table D10). Hence, consistency with Appendix B requires

$$
\mathrm{M}_{\delta}^{\prime}=\left(\mathrm{Y}_{\delta_{\mathrm{r}}} / \mathrm{T}\right)^{\mathrm{M}_{\delta}^{\prime}}
$$

For gust penetration the winds are assumed filtered by $\mathrm{x}_{1}$. Thus,

$$
\begin{equation*}
M_{1}=\left|Y_{\delta_{r}} / T\right| M_{1 \delta}^{\prime} \delta_{r}-\frac{\bar{q} C_{y_{\beta}}}{V W 4.19 \times 10^{-4}} M_{1 \beta}^{\prime}\left(v+x_{1}\right) \tag{D67}
\end{equation*}
$$

Similarly for $\mathrm{M}_{2}$. These equations correspond to rows 7 and 9 of Table D2.

## $\underline{\underline{q} \beta}$

The term $\bar{q} \beta$ is used as an indicator of aerodynamic loading. It is most commonly employed in preliminary design where gust penetration is neglected. Since gust penetration is included here, an equivalent $\bar{q} \beta$ is defined to be

$$
\begin{equation*}
\bar{q} \beta=\frac{\bar{q}}{\bar{v}}\left\{v+\mu_{31} \mathrm{x}_{1}+\mu_{32^{2}} \mathrm{x}_{2}+\mu_{\left.33^{\prime} \mathrm{x}_{3}\right\}}\right. \tag{D68}
\end{equation*}
$$

This is row 13 of Table D2.

## Pilot's Lateral Acceleration

The lateral acceleration felt by the pilot is [from Equation (D45)] approximately

$$
\begin{align*}
a_{y} & =\dot{v}+u r-w p-g(s \theta)(s \psi)-g(c \theta)(s \psi)+x_{p} \dot{r}-z_{p} \dot{p} \\
& =\frac{g}{W} Y+x_{p} \dot{r}-z_{p} \dot{p} \tag{D69}
\end{align*}
$$

Its perturbation [using Equations (D56) through (D58)] is

$$
\begin{align*}
\Delta a_{y}= & \frac{\mathrm{g}}{\mathrm{~W}} \frac{\overline{\mathrm{q}}}{\mathrm{~S}}\left\{\frac{\mathrm{C}_{\mathrm{y}_{\beta}}}{\mathrm{V}}\left[\mathrm{v}+\mu_{31} \mathrm{x}_{1}+\mu_{32^{x_{2}}}+\mu_{33} \mathrm{x}_{3}\right]+\mathrm{C}_{\mathrm{y}_{\delta \mathrm{a}}} \delta \mathrm{a}\right\} \\
& +\frac{\mathrm{g}}{\mathrm{~W}} \mathrm{~T}\left(\frac{{ }^{\mathrm{Y}} \delta_{\mathrm{p}}}{\mathrm{~T}}\right) \Delta \delta_{\mathrm{p}}+\frac{\mathrm{g}}{\mathrm{~W}} \mathrm{~T}\left(\frac{{ }^{\mathrm{Y}} \delta_{r}}{\mathrm{~T}}\right) \Delta \delta_{r}+\mathrm{x}_{\mathrm{p}} \Delta \dot{\mathrm{r}}-\mathrm{z}_{\mathrm{p}} \Delta \dot{\mathrm{p}} \tag{D70}
\end{align*}
$$

When rows 2 and 1 of Table D1 are used to obtain $\Delta \dot{x}$ and $\Delta \dot{p}$, the result is that listed in Table D2.


Figure D1. Slender Body Depth


Figure D2. Slender Body Area


Figure D3. Gust Penetration


Figure D4. $\mathrm{C}_{\ell}$


Figure D5. $\mathrm{C}_{\ell_{\mathrm{r}}}$


Figure D6. $C_{\ell_{\beta}}$


Figure D7. $\mathrm{C}_{\ell_{\delta}}$


Figure D8. $\quad C_{n}$


Figure D9. $\mathrm{C}_{\mathrm{n}_{\mathrm{r}}}$

Figure D10. $\mathrm{C}_{\mathrm{n}_{\beta}}$

Table D2. Response Equations


Table D3. Numerical A Matrix

| ${ }^{\mathrm{a}} 11$ | $\mathrm{a}_{12}$ | ${ }^{\text {a }} 13$ | ${ }^{\text {a }} 17$ | ${ }^{1} 18$ | ${ }^{\mathbf{a}} 19$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -.10942510E.03 | -. 23103390 E -01 | .00000000E-8t | .00000000E-80 | .00000000E-80 | -00000000E-80 |
| -.84797199E.01 | -.13202627E 00 | -.60147640E-03 | -.11422768E-01 | . 67358367 E -02 | . $40854553 \mathrm{E}=02$ |
| -.17467967E 00 | -.24283685E 00 | -. 11789453E-02 | -. 17422992E01 | .10112008E.01 | $.61320388 \mathrm{E}-02$ |
| -.26357672E 00 | -.29307379E 00 | -.16607447E-02 | -. 22870958 E01 | .13203788E.01 | . 60064249 E -02 |
| -.34842418E 00 | -.50625468E 00 | -. $21547495 E-02$ | -. $25261668 \mathrm{c}=01$ | -14385855E-Dl | . $01217632 \mathrm{E}=02$ |
| -.42706874E 00 | -.64655902E 00 | -.24159099E-02 | -. $23660017 E-01$ | -132<7087E001 | -80174207E-02 |
| -.48883976E 00 | -.58305965E On | -.2544U727E07 | -.12708472E-01 | .63320766E.02 | .38323227E-02 |
| -.54334984E 00 | -.60148619E 00 | -. $25251617 \mathrm{E}-02$ | . 12023875 E -01 | -.90475717E.02 | -. $55014647 \mathrm{E}-02$ |
| -.58485227E 00 | -.65906769E 00 | -. $27171593 E 02$ | .46010607E-01 | -.30317462E-01 | -.18410905E-01 |
| -.62068003E 00 | -.70244405E 00 | -. 33133073 E -0? | -49242667E-01 | -. $32697905 \mathrm{E}-01$ | -. $19858070 \mathrm{c}-01$ |
| -6613n4345E 08 | -.71604642E 80 | -.56083615E-07 | -.47401886E-01 | -26023372E-01 | -15770152E-01 |
| -. 57349562 E 0 | -.66593643E 80 | -. 59842818 -02 | -.58511386E01 | . 32704040 E - 1 | .19823085 E -01 |
| -.50304859E 00 | -.56460461E 00 | $\cdots 51971390 \mathrm{E}-02$ | -.46806461E-01 | .25907674E-01 | .15701648E-01 |
| -.41562944E 00 | -.43491984E 00 | -. $43506164 E 02$ | -.35654633E-01 | .194E7352E-01 | . 11808665 E-01 |
| -.32402157E 00 | -.33837082E 00 | -.37740315E-02 | -.26300027E01 | .14028100E-01 | .84978949E-02 |
| -.25068073E 00 | -.2934A222E 00 | -. $33438407 \mathrm{E}=02$ | -. 18499904E-01 | .94405488E-02 | .57155145E-02 |
| -.18985170E 00 | -.21712020E 00 | -. $27694113 \mathrm{E}-02$ | -. 12344139E-01 | . $59656978 \mathrm{E}-02$ | . $36090297 \mathrm{E}=02$ |
| -. 14076694 EO | -.17237086E 00 | $-21609383 E-0 ?$ | $\rightarrow 795931898-02$ | . $36140343 \mathrm{E}-02$ | .21843462E-02 |
| -10396201E 00 | -.13486889E 00 | -. 16797116E-02 | -.51905344E.02 | . 21892000 -02 | .13216227E02 |
| $-76004863 \mathrm{E}-01$ | -.11126729E 00 | -.13229625E-02 | -.33558061E-02 | . $12685530 \mathrm{E}_{\text {- } 02}$ | -76437058E-03 |
| -. $53880166 E$ - 01 | -.89438464E.01 | -.99557663E-03 | -.24495412E-02 | .90740810E-03 | . 54655646 E -03 |
| -.39315363E-01 | -.71920031E=01 | -.73940752E-03 | -.17132532E-02 | .61038705E-03 | .367378598-03 |
| -.29271441E-01 | -.55534495E-01 | -.52992214E-03 | -.12179963E-02 | . 42957416 E.03 | . 25850002 cts |
| -. 21195606 E -01 | -. 40699454 E -01 | -. $36324813 \mathrm{E}-03$ | -.9833311E=03 | -38683186E.03 | . 23325411 c-03 |
|  | $\rightarrow 24744901 E-01$ | $\cdots 24200646 E-03$ | -.70937814E-03 | -29098505E-03 | -17550663E-83 |
| -,10221221E.01 | -.16022124E-01 | -16012421E-03 $-10443285-03$ | -.50721867E-03 | . 21641797 E -03 | . $13067646 E-03$ |
| $-.771 A 2732 E .02$ $-.60342651 E .02$ | $-12655222 \mathrm{E}-01$ -10278249 O -17 | $-10443928 E-03$ $-.66928279 E-04$ | $-.37046496 E=O 3$ $-26211499 E=03$ | $16502311 E-03$ $12164160 E-03$ | $190202565-03$ $.735451658-84$ |
| -.48050249E.02 | -. 75199463 E-02 | $\because .45038493 \mathrm{E}=04$ | -. $23019704 \mathrm{E}=03$ | -11534412E-03 | .69814424E-04 |
| -.36394110E-02 | - 49970539 E -0? | $\therefore 3286894$ - -04 | -.17532533E-03 | .88738252E-04 | C53718087(-04 |
| -. 26120359 E .02 | -.28322929E.02 | -.23460767E.04 | -.14376917E-03 | .74930R20E.04 | .45377584E-04 |
| -. 19575419 F 02 | -.15323952E-02 | -. $169306645-04$ | -.11089256E-03 | .5a518003E-J4 | -35443pl\|E-04 |
| -.150422a4E.02 | -.96147946E-03 | -. 122512342.04 | -. $71793104 E-84$ | -3703569E-04 | . 22456 liat-84 |
| -.11771541E-02 | -.84241776E-03 | -.90125355t-05 | -. $45702614 \mathrm{E}-84$ | . 22,56234E04 |  |
| $-90427390 \mathrm{C}-03$ | $\ldots 11033880^{2}-0^{2}$ | -.67804549E-05 |  | . 4535 g6a7E-05 | . $27240778{ }^{\text {a }}$ |

Table D3. Numerical A Matrix (Continued)


| $\mathrm{a}_{1,14}$ |
| :---: |
| ${ }^{64 E}$ |
|  |
| 19653690 E |
| $-19697455 \mathrm{E}$ |
| -19817460E |
| -.20005881E |
| -. 20253458 E |
| 20700874 E |
| 20922415E |
| -,21150633E |
| 21416459 E 21635508 |
| 2191828 |
| 21982849E |
| -. 22130387 E |
| -. 222053318 |
| -.22417879E |
| 2512500 E |
| 22879160 E |
| 231722698 |
| .23038495E |
| 21057217 E |
|  |
| 18996742 E |
| 18440206 E |
| -.17951205E |
| .16687406E |
| 6397961 l 6057608 E |
| OE |
| 5643828 E |

${ }^{\mathrm{a}}{ }_{1,15}$
-. 252699328 OI
-. 249955968 ol
$-.25052 g 05 \mathrm{~F}$ oi
,- 27717514 E 01
-31920086 E
$\therefore 33253047 E$ OI
$\because 29349958$ E OI
$\begin{array}{rl}-21396348 E & 01 \\ -2 & 203482068 \\ 01\end{array}$
$-.21659771 E 01$
-.22795986 E OI

- 22480222E OI
$-.18044276 E \quad 0$
. $.18044276 E$ O1
$\begin{array}{r}-113677959 E \\ -13757273 E 01\end{array}$
-. 12577333 O1
-. 15036421 E 01
-12917047 f
-. 13213841E of
$-13958814 E 01$
-. 15715193E O
-.16745998E O
$.18577491 E 01$
-. 20231502 E1
$\begin{array}{r}-12315931 E 01 \\ -12167244 E\end{array}$
-.12029329E 0
$-11878371 E 01$
$-11452599 E 01$
-. $11423335 E$ OI
-.93841336E OO
$.9743^{6} 328 \mathrm{E}$ on
. $.99293832 E 00$
-10027016 E
$-.10158330 E 01$

Table D3. Numerical A Matrix (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& $\mathrm{a}_{23}$ \& $\mathrm{a}_{27}$ \& $\mathrm{a}_{28}$ \& $\mathrm{a}_{29}$ \& $\mathrm{a}_{2,10}$ \& $\mathrm{a}_{2,14}$ <br>
\hline \& - onononoot-bo \& . 00003000 E \& .000050n0E-8n \& . $00000000 \mathrm{E}-80$ \& .0000nnoõe-50 \& 25423851800 <br>
\hline \& $\because 41997086 \mathrm{E}-05$ \& $\because 67114124 \mathrm{E}-02$ \& . $417411256 \mathrm{E}-02$ \& . 25331871 E 02 \& -0.11324986E-01 \& -25149999E 00 <br>
\hline \& -98850537604
$-95958085 E-04$ \&  \& -6329698E-82 \& .38414187E02 \&  \& -. 24679623800 <br>
\hline \& -.172日3322E.03 \& -.15072639E-01 \& -93162362E-02 \& -36335697E=02 \& 9.4723A166E.U1 \& -.24204392F 00 <br>
\hline \& -. 14371238E.03 \& -. 14015546E-01 \& -86330547E-0? \& . 52381785 E 02 \& 3.58534652E001 \& -.23982172E OO <br>
\hline \& $-.24666648 \mathrm{E}-03$ \& -. $61464034 \mathrm{E}=02$ \& . $36721479 \mathrm{E}-02$ \& . $22275890 \mathrm{E}=02$ \& -. $63133931 \mathrm{E}-01$ \& -.24012402E 00 <br>
\hline \& -. 45963645 E -03 \& \& $-80781379 E \cdot 02$ \& -. 49045142 E 022 \& -.68004701E-91 \& <br>
\hline \& $\cdots$ \& - $39964200 \mathrm{E}=01$ \& - 25369988 E -01 \& $\rightarrow 13400334 \mathrm{E} 01$ \& $\bigcirc .72053872 \mathrm{E}-01$ \& -. 24210591 E 00 <br>
\hline \& $\cdots 93496892 \mathrm{E} 03$ \& -44812876E001 \& -.28467253E-01 \& -. 17280992E-01 \& 0.75673901 E001 \& -.23999825E 00 <br>
\hline \& -. $28443013 \mathrm{E}-03$ \& ., $31449545 \mathrm{E}-01$ \& . 19395329 E 01 \& -11769767E01 \& -. $73730526 \mathrm{E}=01$ \& -23739161E 00 <br>
\hline \& $\rightarrow 19108445 \mathrm{E} 03$ \& $\because .41603814 \mathrm{E}$-01 \& -25772354E=01 \& -15640375 ${ }^{\text {e }}$ O1 \& -. $67782557 \mathrm{E}=01$ \& $\rightarrow 23552534{ }^{\text {¢ }}$ O0 <br>
\hline \& .. isubgtrot.03 \& -.33797191E001 \& -20920471E001 \& -12695822E-O1 \& ¢:57364262E-01 \& -.23801997E 00 <br>
\hline \& ..16808221E.03 \& -.26015414E.01 \& .16085121E.01 \& . $97613114 \mathrm{E}=02$ \& $0.44468250 \mathrm{E}-01$ \& -.23742243E00 <br>
\hline N \& $\square 18102876 E-03$

$-2448400-03$ \& $-18927064 E-01$
$-9254500 E-01$ \& -11666432F-01 \& - 707935332 E 022 \&  \& $-23476486 E 800$
-23160994800 <br>
\hline -1 \& $-:-106791405-03$ \&  \&  \&  \& -02429705E=01 \&  <br>
\hline \& $\because 1684 \mathrm{G635E} 03$ \& $\bigcirc-.43481925 \mathrm{E}-02$ \& -2601)403E-02 \& -15781698E002 \& $\because 14714841201$ \& -.22318431E 00 <br>
\hline \& $\rightarrow-13968163 \mathrm{E}-03$ \& -. $2352 \mathrm{B722E-02}$ \& .13770689E002 \& . $83552162 \mathrm{E}=03$ \& $\rightarrow$ - $11580994 \mathrm{E}=01$ \& -.21784771E 00 <br>
\hline \& $-.117121385 \mathrm{E}-03$ \& -. $10266636 \mathrm{E}-02$ \& -5663247E-03 \& \& -.92852671E-02 \& <br>
\hline \& -. 86327407 E .04 \& ..70101156E.03 \& - 382752385 E 03 \& - 23193177 E 03 \& -. 52019303 E - 02 \& $\bigcirc 20189908 \mathrm{O}$ <br>
\hline \& -.63175199E.04 \& -.40297095E-03 \& . $211624535-03$ \& -12817120E03 \& -. $369177{ }^{33 \mathrm{E}}$-02 \& -.19343872E 00 <br>
\hline \& .. $44131147 \mathrm{E.04}$ \& ..27567116E-03 \& -14420576E-03 \& -87334251E=04 \& -. 46416276 E02 \& -.18492475E 00 <br>
\hline \& $\because 258492345.04$ \& -. $43252157 \mathrm{E}=03$ \& . $25314625 \mathrm{f}-03$ \& . $15352609 \mathrm{E}=03$ \& -:34669721E.02 \& $\cdots 17138115 \mathrm{E} 0$ <br>
\hline \& -. 14951956 E.04 \& -. 39744065 E-03 \& -23800810f.03 \& . $14442039 \mathrm{E}=03$ \& -. 21781137 E .02 \& -. 15577690800 <br>
\hline \& $\bigcirc .19423660 \mathrm{E} .05$ \& -. 35662361 E .03 \& . 21701097 E 03 \& .13167028E-03 \& -. 15328340 E .02 \& -. 13829418 EO <br>
\hline \& \& \& \& \& -. $12412399 \mathrm{E}-02$ \& <br>
\hline \& -.36596571206 \& $\cdots$ \& -18469742E-03 \& -11298962E-03 \& $0.10497453 \mathrm{EmD2}$ \& -. $10232497{ }^{\text {a }}$ <br>
\hline \& . 21582122 E -05 \& -.37059771E03 \& -23190687E-03 \& . $14010905 \mathrm{E}=03$ \& -.88645986E.03 \& $-.83979935 \mathrm{E}=0$ <br>
\hline \& .275?.n356E.05 \& -. 33904136 E 03 \& -21260731E-03 \& .12909688E-03 \& -. $71926035 E .03$ \& -.64254322E-0. <br>
\hline \& . 38671050 E 05 \& -. $36545943 \mathrm{E}=03$ \& -22982828f=03 \& . $13949826 \mathrm{E}=03$ \& -. $32219258 \mathrm{E}=03$ \& -. $40631027 \mathrm{E}-0$ <br>
\hline \& .45493540E-05 \& - $37814558 \mathrm{E}-0^{3}$ \& -23814590E-03 \& . $14454904 \mathrm{E}=0^{3}$ \& -. $38660161 E \cdot 0^{3}$ \& -. 20583926 <br>
\hline \& .43477798E.05 \& -. $33867745 \mathrm{E.03}$ \& . 213499 C8E003 \& . 12996596 E 03 \& -:32510318E.03 \& $\cdots \mathrm{O} 26011626 \mathrm{E}-\mathrm{O}$ <br>
\hline \& .52082566E-05 \& $38350299 E \cdot 03$ \& -29188824E-03 \& -14682300E-03 \& -. 27790604 E 03 \& -30597871E-01 <br>
\hline \& . $5394 \mathrm{Al41E.05}$ \& 3A949185E.03 \& .24324156E03 \& .14764510E-03 \& -. 23643949 E -03 \& . 64277311 E 01 <br>
\hline
\end{tabular}

Table D3. Numerical A Matrix (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& ${ }^{2} 2,15$ \& ${ }^{\text {a }}$ 2,16 \& $\mathrm{a}_{31}$ \& $\mathrm{a}_{32}$ \& ${ }^{2} 3$ \& $\mathrm{a}_{34}$ <br>
\hline \& -15233970801
-15446200801 \& $.00000000 E-80$
$-18685009 E-02$ \& $000010000 \%-87$
$-7674020=000$ \& - $00090000 E-80$
$-80684922 E 02$ \& $.00000000 \mathrm{E}-80$
$.96086507 E-02$ \&  <br>
\hline \& $-15446290{ }^{\circ} 01$ \& $\square .18685709 \mathrm{E}-02$ \& -.76740020 E OO \&  \& $\because \cdot .96086507 E-02$ \&  <br>
\hline \&  \&  \&  \& -1662359403
$-2565394 E 03$ \& 3.27499760 EOH \& . 99731371200 <br>
\hline \& $\because 19015786801$ \& $\because 33775838 \mathrm{E} 01$ \& -.11036427E 02 \& $-352153100^{03}$ \& $0.37198029 \mathrm{E}-01$ \& -33494532E 01 <br>
\hline \& -.19959582E 01 \& -.53623667E.01 \& -. $15251974 \mathrm{E}^{\text {O2 }}$ \& -.45530562E 03 \& $0.45897913 \mathrm{E}-91$ \& - $583800564 \mathrm{C}^{01}$ <br>
\hline \& $-\square 18631020 E$

-1554936501
01 \& $-.77767144 E-01$
$-.10552477 E 00$ \& $\begin{array}{rl}-: 92062779 E & 01 \\ -.27827076 F & 01\end{array}$ \&  \& $-.53032128 E-31$
-.5903
$-938 E 01$ \& .77095716E 01 <br>
\hline \& $\because 15336096801$ \& $\because 13503347 \mathrm{E} 00$ \& -96389543E 01 \& -.82499496E 03 \& -.50567209E.01 \& -11721487E 02 <br>
\hline \& $\begin{array}{rl}\because 159546028 \\ \square 167679502 & 01\end{array}$ \& $\begin{array}{rl}-15321173 E & 00 \\ -15759911\end{array}$ \&  \&  \& -. $56118613 \mathrm{E}-91$ \&  <br>
\hline \& $\cdots$ \&  \&  \&  \&  \& - 168030510 E ( 02 <br>
\hline \& $\bigcirc 15783547601$ \& $\because 11641581 \mathrm{E} 00$ \& $\rightarrow 12841343 \mathrm{E} 02$ \& -0140011318 04 \& $\because$-95sJn8ite-01 \& .19330135E.02 <br>
\hline \& $-14146521 \mathrm{E} 01$ \& -, $81246874 \mathrm{E}=01$ \& .11371274E 01 \& -15639041E 04 \& -. $87996684 \mathrm{E}=01$ \& -209550038 02 <br>
\hline - \&  \& $-\quad 46658681 E-01$
$-\quad 3649173 E 01$ \& .60933596E 01 \&  \&  \& . 22423230 E O2 <br>
\hline $\infty$ \& $\because 13844000 \mathrm{E} 01$ \& \& \& \& \& . 25123964 E 02 <br>
\hline \& -.13812148E 01 \& -, $23628850 \mathrm{E}=01$ \& -.18111662E 02 \& -. $245697011^{04}$ \& $\bigcirc 39581759 \mathrm{E} 01$ \& . 26265445 E 02 <br>
\hline \& $\because 14037517801$ \& $\rightarrow 21 \mathrm{AB} 2939 \mathrm{E}=01$ \& -. 36534575402 \& -27481702E 04 \& -. $30409756 \mathrm{E}=01$ \& . 27258637802 <br>
\hline \& $\because 148.75102 E 01$ \& - $18667354 E-01$ \& -. 632138 A9E 02 \& -.30654922E 04 \& -. 23270669 E 01 \& -281270R3E 02 <br>
\hline \& $\because 15500079 \mathrm{El}$ \& -.13756891E-01 \& -.,10736062E 03 \& $-.34078824 \mathrm{E}^{04}$ \& 3.17776720E.01 \& . $28912521 E 02$ <br>
\hline \&  \& $-\therefore 13134042 E=01$
$-10701826 E-01 ~$ \&  \&  \& $\square 13569252 E=01$
$-10199461 E-01$ \& . 29637510 E 02 <br>
\hline \& $\because \because 18079024 \mathrm{E}$ OI \& $\because \because 86534747 \mathrm{FOO}$ \&  \& $\bigcirc$ \& $\because .77797505 E .02$ \& . 30640710 E O2 <br>
\hline \& -136448838 01 \& -. $68859673 \mathrm{E}-02$ \& -. 30098431 E 03 \& -. 50050241804 \& 0.591547315 .02 \& . 30824960 E 02 <br>
\hline \& $\because 134 R 2162 \mathrm{E} 01$ \& $\because .94101339 \mathrm{E}=02$ \& $\because-30869462 \varepsilon^{-93}$ \& -. 54331613 E 04 \& - $944969235 \mathrm{EEO2}$ \& . $31034678 \mathrm{E}^{02}$ <br>
\hline \& $\bigcirc 13370298801$ \& - $4.42416135 \mathrm{E}=02$ \&  \& -. 58638536804 \& -. 346622205002 \& -31327426E 02 <br>
\hline \&  \& -. 33471103 E -02 \& $\begin{array}{rl}-: 55775480 E & 03 \\ -.71652192 E ~ & 03\end{array}$ \& -.62905771E O4 \&  \& .31611503E 02 <br>
\hline \&  \&  \& -971652192803
-90975329803 \&  \& $\square .21196550 E .92$
.17516902 \& . 31985249802 <br>
\hline \& $\rightarrow 1214040^{\circ} \mathrm{E} 01$ \& $\rightarrow 17359795 \mathrm{E}_{\text {-02 }}$ \& -.82448714E 03 \& $-760288022^{\text {O4 }}$ \& -. 13986735 E 02 \& -31986307E 02 <br>
\hline \& -. 12731309E 01 \& -. 13984528 E 002 \& -.92003033E 03 \& -.80449632E O4 \& -. 11404998E.02 \& . 32057692 F 02 <br>
\hline \& -. 12992987E 01 \& ..11319331E-02 \& -. 11730395 E 04 \& -,846869422 04 \& -. $93026218 \mathrm{E}-03$ \& . 32139373 E 02 <br>
\hline \& $\begin{array}{r}\because 12836415 E \\ \because 1328046 E \\ \hline 01\end{array}$ \& $\square 91452961 E-03$
$\triangle 74462166 E-03$ \&  \&  \& $\square .75843583 E 03$
$-.62307968 E 03$ \& .32169910E 02 <br>
\hline
\end{tabular}

Table D3. Numerical A Matrix (Continued)

|  | $\mathrm{a}_{35}$ | $\mathrm{a}_{37}$ | $\mathrm{a}_{38}$ | $\mathrm{a}_{39}$ | ${ }^{\mathrm{a}} 13,13$ | $\mathrm{a}_{3,15}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -32168625E 02 | . $00000000 \mathrm{E}=80$ | .00000000E-80 | .00070000E.80 | .000nonooerso | .40148159E 02 |
|  | . 32167419E02 | -. $10583982 \mathrm{E}=01$ | . 722277195003 | $.253053711_{\text {E }} 03$ | $\therefore 39607877 E 00$ | . $40990<28 \mathrm{EL}$ |
|  | . $32168321 E 02$ | -. $20175125 \mathrm{E}-01$ | . $13768010 \mathrm{E}=02$ | . 48236954 E -03 | -.81603664E On | . $42465534 E 02$ |
|  | . 32154537E 02 | -. $30676664 \mathrm{E}-01$ | . $20934523 \mathrm{E}-02$ | . 73345212 E 03 | -.12594521E 01 | .45644448 D 2 |
|  | -31995157E 02 | -.40973834E-01 | . $21961570 \mathrm{E}=02$ | .97964842E-03 | -.17294747E O1 | . 51201458 E 02 |
|  | -31635334E 0 ? | -.50501730E-01 | . $34463645 \mathrm{E}-02$ | .12074521E-02 | -, 22362280 01 | .54457040E 02 |
|  | - 31232338802 | - 58415181E-01 |  | .19966557E=02 | $\rightarrow 27878594{ }^{-1}$ | .54043553E 02 |
|  | . 30704359 E 02 | -.60625693E-01 | . $41374490 \mathrm{E}=0$ ? | .14495071E-02 | -.33910126E O1 | .46631747E 02 |
|  | . 29958565 E 02 | -. $55700054 \mathrm{E}=01$ | . 38011111 E -02 | . $13317394 \mathrm{E}=02$ | $\rightarrow 40497451 E 01$ | .45921042 E |
|  | $\begin{array}{r} 28958754 E \\ .27788385 E \\ \hline 2 \end{array}$ |  | $\begin{array}{r}42144076 E-02 \\ \hline 71214954 E-02\end{array}$ | -14779415E-02 | -.47455759E 01 | .48258715\% 52 |
|  | .26642253E 02 | -.11103256E 00 | .71219954E-02 | . 24952289 E - 26546912 O | $-.54382675 E$ $-.61359587 E ~ O 1$ | .52010795E 02 |
|  | . 25563308 E 02 | -.10523653E 00 | .71816043E-02 | .25161131E-02 | -.68730724E O1 | -489noo3le 02 |
|  | . 24408946802 | -.96928832E-01 | . $66146661 \mathrm{E}=0$ ? | . $23174833 \mathrm{E}=02$ | -.76767918E 01 | .46292559E 02 |
| N | . 23067459502 | -.85980416E=01 | .58675187E-0? | . 20557163 E02 | -.85827343E 01 | .47142855E 02 |
| ¢ | .21603082E 02 | -.72374067E-01 | .49389875E-02 | .17304004E-02 | -96082978E O1 | . 47956813 O2 |
| $\bigcirc$ |  |  | -38791669E-02 | . $13590867 \mathrm{E}=02$ | -10766504E 02 | -49536024E 02 |
|  | -18575126E 02 | -.43599535E-01 | . 29753407 C -02 | . 10424264 EFO | $\because 12060941$ E 02 | . 51143030 E 02 |
|  | -17084335E 02 | -.33496514E=01 | . 22858859 E -02 | -80087226E03 | $\cdots{ }^{3}{ }^{3} 491229 E 02$ | . $536483180^{2}$ |
|  | . 13613332 E 02 | -.25632770E-01 | . 17492443 E -02 | . $61285703 \mathrm{E}-03$ | -15050886E 02 | .56272334E 02 |
|  | . 14105852 E 02 | -. $19581155 \mathrm{E}=01$ | . $13362670 \mathrm{c}=02$ | . $46816823 \mathrm{E}=03$ | $\because 1673669 \mathrm{E}^{-1}$ | . 59951166 E 02 |
|  | -124f3587E 02 <br> .10882966E 02 | $\begin{array}{r} =14948606 \mathrm{E}=01 \\ =11234763 \mathrm{E}=01 \end{array}$ | $\begin{array}{r}1 \\ +10199938 E-02 \\ .7666832 \mathrm{E} \\ \hline\end{array}$ | $.35736022 E=03$ $.26061332 E 03$ | - $18545306 E 02$ $-20496421 E 02$ | .63847710802 .68101025802 |
|  | .98008068E O1 | $=-856943$ OEF-02 |  | .26861332E03 | -.22521368E 02 | .68801025E 02 |
|  | .92049092E O1 | -.65159261E-02 | -44466310 E-0 | .13579008E-03 | -. $24612718 E 02$ | . $66069507 E 02$ |
|  | -84702581E O1 | -.49533860 ${ }^{\text {E }}$ - 02 | . $33803145 \mathrm{E}=03$ | .118431112-03 | $\because 26722760$ O2 | . 65789892 Ez |
|  | . 73144587 E O1 | -.38180626E-02 | . 26055415 E -03 | . $91286527 E .04$ | - 28852395 O2 | .65378337E 02 |
|  | . $596839900^{\text {c }}$ O | - 2942 540E-02 | ,20002090E03 | . 70358667 E.04 | - $30999924 E 02$ | . 69395592802 |
|  | - 47220328 E 01 | -. $23348117 \mathrm{E}-02$ | -15933339F-03 | - $55823299 \mathrm{E}=04$ | -.33164330E 02 | . 65266450802 |
|  | . 38792782 E O1 | -. 18899817 E -02 | -12897708E-03 | . $45187004 \mathrm{E}-04$ | -.35344506E 02 | .65176257E 02 |
|  | . $343293860^{01}$ | -.15406465E-02 | -10515757E-03 | -36835507E04 | -.37539325E 02 | .4586831aE 02 |
|  | . 26857579 E 01 | -. $12562228 E-02$ | . $85721787 E-04$ | $\because 30035185 \mathrm{E} 04$ | -.39748321E 02 | .51445802E 02 |
|  | . 14034307801 | -.10246089E-02 | . 69927335 E -04 | . $24499413 \mathrm{E}=04$ | -.11967469E 02 | .51219103E 02 |
|  | . $76009597 E-01$ | $.88542124 E-03$ $-6863290 E-0$. | $.57011236 E-04$ .46830583004 | $.1997 .4189 E-04 ~$ $.16409445-04$ |  | .62993996E 02 |

Table D3. Numerical A Matrix (Continued)

|  | ${ }^{2} 45$ | $\mathrm{a}_{54}$ | $\mathrm{a}_{64}$ | $\mathrm{a}_{65}$ | ${ }^{2} 77$ | $\mathrm{a}_{7,11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -82997700E.03 | -. $82997700 \mathrm{E}=3$ | .00000300E-80 | .00000000E-80 | .00000000E.80 | .00000000E-80 |
|  | . $24574100 \mathrm{E}_{-03}$ | -. $24574100 \mathrm{E}-\mathrm{O}^{3}$ | . 76740020 e on | . 80684922 E 02 | -.8121.256E 90 | . 81218236 E 00 |
|  | . 25294600 E 03 | -, $25294600 \mathrm{E}=03$ | . 13915154 E 01 | -16623594E 03 | -. 16733306 E 01 | . 16733306801 |
|  | . 67615700 E .02 | -.67515700 EnO? | -41860650 E 01 | . $25653934 \mathrm{E}^{03}$ | -.25825799E 01 | . 25825799801 |
|  | -14663200E.01 | $\because 14663200 E=01$ $\because 195100 E-01 ~$ | -11036427E ${ }^{15251974 F}$ | $\begin{array}{r}.35215310 E \\ -45305625 \\ \hline 453\end{array}$ |  |  |
|  | -15040300E.01 | $\because 15049300 \mathrm{E}=01$ | -92062779E 01 |  | -. $\% 77166679 \mathrm{El}$ | - 57665679 El |
|  | -14085700E.01 | -. 14085700E-01 | -27821076E 01 | .69080640E 03 | $0.69534687 E 01$ | .69534687E OI |
|  | . $13588300 \mathrm{E}=01$ | $-, 13589500_{\mathrm{E}-01}$ | .46389543E 01 | . $8^{2499496 E 03}$ | -.83042381E 01 | .83042381E 01 |
|  | -13906700E-01 | $\cdots 13906700 \mathrm{E}-01$ | .13897009E 02 | .966661TIE O3 | -.97310796E 01 | .973107968 01 |
|  | . 13849100 E 01 | -. $13849100 \mathrm{E}=01$ | . 24730495 E 02 | . $11075996 \mathrm{C}^{\text {O4 }}$ | -.11151484E 02 | . 11151484802 |
|  | -13781900E-01 | $\cdots 13781900 \mathrm{E}-01$ | -25162093E 02 | .12497550E 04 | -.12382140E 02 | -12582140E 02 |
|  | - 13555000 E . ${ }^{1}$ | $\because 13555000 \mathrm{E}-01$ | -12841343E 02 | -14001131E 04 | 3.14093635 E 02 | - 14093635 E 02 |
|  | -13178800 $=01$ | $\because 1317 \mathrm{AB00} \mathrm{E}=01$ | -.11371274E 01 | -15639041E OA | a. 15741708E 02 | .15741708E 02 |
| $\stackrel{\sim}{\circ}$ | . 126311008.01 | $\cdots 12631100 \mathrm{E}-01$ | -. $60933596 E 01$ | . 17484512 O 04 | -.17399397E 02 | . 17599397802 |
| $\bigcirc$ | . $11943900 \mathrm{E}_{\text {. }} \mathrm{Ol}$ | -. $119439000_{\text {¢ }} 01$ | -. 34489199 El | . 19573850 E 04 | -:19702374E 02 | . $19702374 E 02$ |
|  | 11175800 E .101 $.10361100 E .01$ | $\because 1173800 \mathrm{E}=01$ $\because 10361100 \mathrm{E}=01$ |  | - 219333307 E O4 |  | -22077343E 02 |
|  | $\bigcirc 95498200 \mathrm{E} .02$ | $\because \quad \because 95498200 \mathrm{E}=02$ | . 3653215948 O2 | -27481702E O4 | コ.27604515 02 | -27644591E 02 |
|  | . 87675400 E .02 | -.87675400E-02 | . 63213089 E 02 | - 30654922 E | -. $308627180^{02}$ | . $30862718 E^{2}$ |
|  | - $80305900 \mathrm{E}=02$ | $\because .80305900 \mathrm{E}_{\mathrm{E}}=02$ | -10730062E 03 | $\bigcirc 34078824 E 04$ | $\bigcirc \cdot 34319554 \mathrm{E} 02$ | . 34319354 E 02 |
|  | . $73303900 \mathrm{E}-\mathrm{O}^{2}$ | -.73503900E=02 | -18950220E ${ }^{\text {O }}$ | . $37734631{ }^{\text {O }} 04$ | -. 38028230E 02 | . 36028230 E 02 |
|  | . 67176700 E .02 | -. 67176700 E .02 | . 27808652 E 03 | -41621461E OA | -. 011988092 E | -41988092E 02 |
|  | -61468600E-02 | -.614686005-02 | - 32136733 E 03 | -45767503E 04 | -. 46181375 EE 02 | -46181375E 02 |
|  | -36399600 E 02 | $-56389600 E .02$ $-.51087100 E-02 ~$ | . 30098431 E 033 | -30050241E 04 | -.50069611E 02 | . $50469611 E 82$ |
|  | - 91981100 E .02 | $-51987100 \mathrm{E}-02$ | . 30864462 E 03 | . 34351613 E 04 | -.54796974E 02 | . $54796574{ }^{\text {a }} 02$ |
|  | . 48031800 E .02 | $-.48031800 \mathrm{E}-02$ | . 40418164803 | . 58638536804 | -.59163516E 02 | . 39163516802 |
|  | . $44587100 \mathrm{E}-02$ | $-.44587100 \mathrm{E}=02$ | . $55178480{ }^{\text {c }} 03$ | .62985771E 04 | -.6356714aE 02 | . 63367148802 |
|  | -4, 3 397700E-02 | $-{ }^{4} 13979700 \mathrm{EEO2}$ |  | -66180855 ${ }^{184}$ |  |  |
|  | - $385986000^{\text {c }} 02$ | $\cdots 38598600 \mathrm{E}-02$ | - $80973329 \mathrm{E}^{83}$ | . 71546522 E 04 | $0.72475966 \mathrm{E}^{02}$ | -12475966E 02 |
|  | - 36029100 E 02 l | $\square 36028100 \mathrm{E}=02$ $\because 33621700 \mathrm{E} \cdot 02$ | . 022488774 Cl | -76028802E ${ }^{\text {O }}$ |  | -76976571E 02 |
|  | . 336020000 E02 |  | -9206s093E 03 | - $804496322 E^{\text {O }}$ | -. 81506243802 | - $61506245 E 02$ |
|  | $\stackrel{31502000 E-02}{ }$ |  | -14669728E 04 | - 846869942 E O4 | -. 860066739 E | -86056739E 02 |
|  |  |  | - $16519861{ }^{\text {a }}$ | $\stackrel{.}{.93023877 E 04}$ | $\cdots$ | ,95099565E 02 |

Table D3. Numerical A Matrix (Continued)

| $\mathrm{a}_{88}$ | ${ }^{2} 89$ | ${ }^{\text {a }} 8$, 11 | ${ }^{\mathrm{a}} 9,8$ | ${ }^{\text {a }} 99$ | ${ }^{\text {a }} 9$, 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { .000n0000E. } 80$ $.034005731 E 01$ | $.00000000 \mathrm{E}-80$ | .00000000E-8n <br> 52544681 E | . 00000000E-80 | .00000000E-80 | . 10008000E-80 |
| $\because .70061626 E 01$ | $\rightarrow 38195990 \mathrm{E}^{-91}$ | -10325122E 02 | . 129282988 E | . 36595013 El | -.16587799E 02 |
| -.10813150E 02 | $\cdots 3895019^{4} E^{0} 01$ | .16705169E 02 | -19933237E 02 | -56479900E 01 | -.23601227E 02 |
| -.14848575E 02 | -.80950175E 01 | .22943592E 02 | . 27399707 E 02 | . $77557977 E 01$ | $\cdots 351595050^{02}$ |
| -. 19199355 E 02 | -.10466938E 02 | . 29660292 E 02 | . 35428093 E 02 | :10028323E 02 | -. $45456416 \mathrm{E}^{2}$ |
| $\cdots 3393540 \mathrm{E} 02$ | $\cdots 1304 n 916{ }^{-1502}$ | -36984356E 02 | -44167473E 02 | -1250224E 02 | $-566695778 \mathrm{E} 02$ |
|  |  | .44983919E O2 | . 53323104 E 02 | -15206934E 02 | - 68939038802 -82320273502 |
| $\because-040743607 E 02$ | -., 2221 2247E 02 | . 62939854 E O2 | . 645103167 E 02 | $\bigcirc{ }^{-121231448 E ~} 02$ | -:96464615E 02 |
| -. 46690779 E 02 | -,25454475E 02 | . 12145233 E 02 | . 86157336 E 02 | .24387811E 02 | -. 11054515 E 03 |
|  |  |  | $-97210711 E$ -108888650 03 0 | - 27516594802 |  |
| $\because 65909848 E 02$ | $\because 3$-3932160E 02 | $\bigcirc 10184201{ }^{\text {O }} 03$ | . 121621818 O3 | .34426432E 02 |  |
| -.736R7909E 02 | -. 40172536 E 02 | -11380044E 03 | -13597447E 03 | . 38480115 E 02 | $\bigcirc 17446358 E^{03}$ |
| -. 02492982 E 02 | $-.44972810^{\text {E O }}$ | .12746579E 03 | .15222225E 03 | -43088235E 02 | -.195310498 03 |
|  | ,$- 50393934 \varepsilon$ <br> $-56452708 E$ <br> -92 |  | -17057147E ${ }^{193}$ |  | $\cdots$ |
| $\because 11533027 \mathrm{O}^{\circ} \mathrm{O}$ | $\rightarrow 63147345 E 02$ | -17891762E 03 | -21373873E 03 | -60501170E 02 | $\because \cdot \square 27423990080$ |
| $\bigcirc \cdot 12920860^{03}$ | -.70447508E 02 | -19966836E 03 | .23844804E 03 | .67495422E 02 | $\rightarrow-93994346803$ |
| - $143369448 E^{03}$ | -.76338113\% 02 | . 2222032598 E | -26515586E 03 | $\bigcirc{ }^{15059373 E} 02$ | $-34021123 \mathrm{~S}^{03}$ |
| --15922255E O3 | -. 8680303569 E O2 |  | . 293380941 l | . $8311680868 E^{02}$ | -.376975350 03 |
|  | $\square, 95842365 \mathrm{E}^{02}$ -105414018 03 |  | $\begin{array}{r}\text {. } 32440365 \mathrm{E}^{03} \\ .35680132 \mathrm{E} \\ \hline 03\end{array}$ |  | $\bigcirc{ }^{\circ} 41622979 \mathrm{E}^{03}$ |
| $\bigcirc \square^{21131490 E 03}$ | $\cdots$ | - 32651773803 | .356893413E 03 |  | - 950030943803 |
| -.22943087E 03 | $\rightarrow 12509914 E^{03}$ | . 35451001503 | .42336310E 03 | $.119837728^{03}$ | -. $543200 \mathrm{B2E} \mathrm{O}{ }^{3}$ |
| -24771507E 03 | -.13504716E 03 | -30276223E 03 | .45711247E 03 | . $129388040^{03}$ | -. $50649031 \mathrm{C}^{03}$ |
| $-26615289 \mathrm{E} 03$ | $-.14309893 \mathrm{E}^{03}$ | .41123181E 03 | -49112532E 03 | ${ }^{13} 139118598 E^{03}$ | $\because 63014392 \mathrm{E}$ O3 |
|  |  |  |  |  |  |
| - 322297568.03 | $\rightarrow 17570739 \mathrm{E} 03$ | -49890495E 03 | . $59472768 \mathrm{C}^{03}$ | -16034441E 03 | $-16367210803$ |
| -03412.6311E 03 | $\because 18604686 E 03$ | . 32730997803 | .62972434E 03 | . 17025062803 | -. 01979749680.9 |
|  | --196433a6E 03 |  |  | - 108202358.03 | -.053044198 03 |
|  |  | . 961929284 CO |  |  | -.942726122 ${ }^{\text {- }}$ |

Table D3. Numerical A Matrix (Concluded)

|  | $\mathrm{a}_{10,10}$ | ${ }^{\text {a }} 10,13$ | ${ }^{1} 11,11$ | $\mathrm{a}_{11,12}$ | $\mathrm{a}_{12,11}$ | $\mathrm{a}_{12,12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -0nODODOOE-80 | . $00000000 \mathrm{E}-80$ | -0000U0NDE-80 | .00000000E-80 | . $00000000 \mathrm{E}-30$ | .00000000E.80 |
|  | $\begin{array}{rl}\square 16279273 E & 01 \\ \because 335004 E & 01\end{array}$ | ${ }^{16279273 E} 01$ | . $413036039 \mathrm{E}-02$ | . 123553344 E O4 | -. $58113625 \mathrm{E}-08$ | $-.46549826 \mathrm{E}=02$ |
|  | -. 91764869 E 01 | . 51764069801 | -12347064E=01 |  |  |  |
|  | -.71093316E 01 | . 71083316 E 01 | -16523451E-01 | -59839900E 04 | -. 272711418.07 |  |
|  | -.91911432E 01 | -. $91911432{ }^{\text {E }} 01$ | -19841999E-01 | . $83538353{ }^{\text {E }} 04$ | -. 32531303 E 007 | $-260692 \mathrm{GEE} 01$ |
|  | $\cdots 11458409 \mathrm{E} 02$ | -11458409E 02 | -21999842E-01 | -11939223E 03 | -.34457560E-07 | $\rightarrow 3204796$ EE01 |
|  | -.13937435E 02 | .13937435E 02 | -24171994E-01 | -16326898E 03 | -. 35750056 E 07 | -. $38233935 \mathrm{E}-01$ |
|  | $\cdots 16644898 \mathrm{E} 02$ | -16644898E 02 | -26304000E-01 | - 21550000 E 05 | -.36900000E-07 | -. $44500000 \mathrm{E}-01$ |
|  | $\square 195448398$ $\square$ $\because 22351978$ 02 | -19300439E 02 | -28243285E-01 | -26101492E 05 | - $36461567 \mathrm{E}-07$ | $-150593973 \mathrm{E}-01$ |
|  | -. $22351878 \mathrm{E}^{02}$ | .22351878E 02 | -3415<265E=01 | -36929247E 05 | -.34411297E-07 | -. 361125262001 |
|  |  | - $23219466 E 802$ | -37650936E0) | -47124992E 05 |  | -.6608420822-02 |
|  | $\rightarrow 31552459 \mathrm{O}$ | -31552459E O2 |  |  | -t 28998717 E - 07 | -: 64894305 Ecol |
| N | -. $35279984 \mathrm{C}^{02}$ | - 35275984 E 02 | - 366361934 E 001 | -59468078E OS | $\because \cdot 35267868 \mathrm{E}$ - 7 | -.72308361E.01 |
| N | -639491618 02 | . 39491161802 | -.41010923E-01 | -52120907E 05 | $\because . .44155989 \mathrm{E} 07$ | $\because: 76849768 \mathrm{E}-01$ |
|  | -. $442515160^{02}$ | -44251516E 02 | -29590865E-01 | . $46601270 \mathrm{E}^{\text {O5 }}$ | -.34211855E.07 | $-.79732630 \mathrm{E}-01$ |
|  | $-.49571797 \mathrm{E} 02$ | . 49571797 E 02 | $-.1790<946 E_{\text {- }}$ | -42307724E 03 | -.69144389E.07 | $\because 83153736 \mathrm{e}=01$ |
|  | $-955450438 E$ $-61860798 E ~$ | .55450438 E <br> 61860798 Ea <br> 62 | $-17640978 \mathrm{E}-01$ -21493622 E 01 | -38733698E 05 | -.76755601E-07 | -. $8621292929 \mathrm{E}=01$ |
|  | $\because 687 \mathrm{Co633E} 02$ | .688789633E 02 |  | :33228514E 05 |  |  |
|  | $\cdots$ | . 76823251 E 02 | - $-17113039 \mathrm{E}-01$ | -3119525E O5 | $\because \because 147163_{\text {BE }}$ |  |
|  | $\because 84160343 \mathrm{E} \mathrm{O}^{02}$ | . $848160343 \mathrm{~F} \mathrm{O}^{2}$ | $\rightarrow 149171648=01$ | -29384929E 05 | $-.12144593 \mathrm{E}-06$ | $-96663734 \mathrm{E}-01$ |
|  |  | -92563300E ${ }^{\text {c }}$ | -. $16378800 \mathrm{E}-01$ | -27577923E 05 | -. 1 4045649E-06 | -.98461586E-01 |
|  | $\square 10116098 E 803$ $\because 1098330 E ~$ 03 | . 10116098 E 03 | $-19400000 \%-01$ $-22107769 E 001$ | -23530000E 05 | -15350000E.06 | $\because 99608000 \mathrm{E}=01$ |
|  | $\bigcirc$ | -119836692E 03 | -, 21077698001 |  | -: $17402203 \mathrm{E}=066$ | $\cdots 999632{ }^{\text {a }}$ |
|  | $-12741310 \mathrm{E}^{03}$ | -12741310 03 | -,27507173E-01 | -17993875 05 |  | $\because 998715766_{6}=01$ |
|  | -. $13630905 \mathrm{E}^{\text {c }} 03$ | .1.3630905E 03 | $-.30949843 \mathrm{E}=01$ | -15623838E 05 |  | $\rightarrow 98092717 \mathrm{E}-01$ |
|  | -. 14526981 E 03 | .14526901E 03 | $-{ }_{-,} 34800702 \mathrm{E}_{01}$ | $\bigcirc 13274700 \mathrm{E}$ OS |  |  |
|  | --15429076E 03 | -15429076E 03 | $-.405309858 \mathrm{E}-01$ | -10542561E 05 | $\bigcirc \cdot .32412592 \mathrm{E}=06$ | $\therefore 945200458-01$ |
|  | --16336997E 03 | ,16336997E 03 | -.93232103E-01 | . 77057767 OA | -. 42742430 E .06 | -.91968334E-01 |
|  | -.17249092E 03 | -17249092E 03 | -199451022F-01 | .53776117E 04 | -.64062162E.06 | -. $88976780 \mathrm{E}-01$ |
|  | -. 18167956E 03 | -18167956E 03 | -,1328i049E 00 | . 32179279 O | -. 10660333 E .05 | -.05857943E-01 |
|  |  | .19061623E 03 | -.22900000e do | -10000000e O4 |  | $\rightarrow 03000000 \mathrm{E}-01$ |

Table D4. Numerical G Matrix

|  | $\mathrm{g}_{74}$ | $\mathrm{g}_{84}$ | $\mathrm{g}_{94}$ | $\mathrm{g}_{11,5}$ | $\mathrm{g}_{12,5}$ | $\mathrm{g}_{13,6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | .0n00noodeso | .00000000E.On | .00000000E-80 | .00000000E.80 | - $40000000 \mathrm{E}-80$ | .00000000E-80 |
|  | . 81218256 E 00 | . 52544681 E O1 | $\because 80512011 E 01$ | -10820374E 01 | -. $15071135 \mathrm{E}-05$ | -2077371E-01 |
|  | -1673306E 01 | -15825722E 02 | -.16387799E 02 | -15276645E 01 | -. 207482385005 | ,29823228E-01 |
|  | . 25525799 E 01 | -16708160E 02 | -.25601227E 02 | -20279125E 01 | $-26010943 \mathrm{E}=05$ | - $38974894 \mathrm{E}-01$ |
|  | $\begin{array}{r}.35463886 E ~ \\ \hline\end{array}$ |  |  |  | $-\quad 30552883 \mathrm{E}=05$ $-\quad 34462563 \mathrm{E}=05$ | . $4.4055245 \mathrm{E}=01$ |
|  | .57166679E 01 | -36984396E 02 | -.56669578E 02 | . $38432125 E 01$ | $\rightarrow 3{ }^{-1995} 23 \mathrm{E}=05$ | . $76957860 \mathrm{E}-01$ |
|  | . 69534687 EO | . 44985919 E 02 | -.68930038E 02 | . $481062180^{\text {Of }}$ | -. $41766140 \mathrm{E}-05$ | . 95929033 E .01 |
|  | -83042381E O1 | -53724810E O2 | -.82320273E 02 | .58700000E 01 | -. 451000000 -05 | -11906991E 00 |
|  | .97310796E 01 | . 62959854 E 02 | -.96464613E 02 | .71938670E 01 | -. $40114902 \mathrm{E}-05$ | .15037631E 00 |
|  | . $1115148^{4} \mathrm{E} 02$ | .72145253E 02 | -. 11054515E 03 | .88065314E 01 | -. $50641504 \mathrm{E}-05$ | . $18747^{388} 3 \mathrm{E} 00$ |
|  | . 12582140 E 02 | - $81400978 \mathrm{C}^{\text {O }}$ ? | $\cdots 12472731 E^{3}$ | - $11004029 \mathrm{E} \mathrm{O}^{2}$ | -. 526467777 -05 | - 23737109 E 00 |
|  | . 14093635 E 02 | .91179691E 02 | $-{ }_{-13971082 E 03}$ | . 13350246802 | -. 54306652 E 05 | . $29337632 \mathrm{E}^{00}$ |
|  | -15741708E 02 | -10184201E 1136034 | -.15604824E 03 | -14255429E 02 |  | -3357698E 00 |
| $\stackrel{\sim}{\sim}$ | -17599397E O2 | -11366044E 03 |  | -127694568 02 | $\cdots{ }^{-57382402 E 05}$ | -29706609E 000 |
| $\omega$ | .22077343E 02 | -142830日SE 03 |  | .9907721E 90 | -. $060991135 \mathrm{E}=05$ | .26381595E 2363006 |
|  | .24731662E 02 | .16000310E 03 | -.24516605E 03 | . 84814833 E 01 | -. $61764465 \mathrm{t}=03$ | .21814101E 00 |
|  | - $27664551 E 82$ | ${ }^{-17891762 E} 03$ | $\cdots$ | . 763397293 E 01 |  |  |
|  | -34319554E 02 | : $22203259 \mathrm{E}^{03}$ | $\because \rightarrow 34021123803$ | $\bigcirc 63369727 \mathrm{E} 01$ | $\bigcirc \bigcirc 6594750 \mathrm{OE}=05$ | $\bigcirc 10242109 E 00$ |
|  | . 38028230 E 02 | , 24672612 O | -93769750E 03 | .58453254E O1 | -.658491980-05 | -17540812E 00 |
|  | -41988092E 02 | -27164470 03 | -.41622979E 03 | .54333842E 01 | -.66569730 005 | -1697634AE 00 |
|  | .46181375E 02 | .29871342E 03 | -.45779798E 03 | . 50610690801 | -. 67141469 E 05 | -16379564E 00 |
|  | . 50469811 E 02 | . 32651773 E 03 | -.50030943E 03 | .46600000E 01 | -.,67500000E-05 | .15740575E 00 |
|  |  |  | - 543320082803 | .41852324 E 01 | -. $67591619 \mathrm{E}=05$ | -14739114E 00 |
|  | . 59163516802 | -38276223E 03 | - 96669051503 | -36932846E 01 | -. 674808366 EE 05 | -13818194E 00 |
|  | .63567148E 02 | -41120181E 03 | -.63014391E 03 | -32601122E 01 | -. $67253700 \mathrm{E}-05$ | -12771538E 00 |
|  | .68005388E 02 | .43996530E 03 | -.67414037E 03 | . 28751335 El | -.66909006E-05 | -11358017E 00 |
|  | .72475966E 02 | -46880799E 03 | -.71845741E 03 | . 24612601 E 01 | -.66374577E=05 | -99411048E-01 |
|  | .76976571E 02 | -498n0495E ${ }^{\text {P }}$ | -.76307210E 03 | . 19803648 E 01 |  | . 05375976 E .01 |
|  | . 01505245 E O2 | . 52730997803 | -.80797496E 03 | . 14850799801 | -. $64774424 E .05$ | ,702A1631E.01 |
|  | -86056739E 02 | . 55674968 E 03 | -.83308419E 03 | . $10330448^{\text {E }} 01$ | -.63694156E-05 | -51385100E.01 |
|  | . $90641007 E 02$ | . 58640791 Cl | -.89852024E 03 | .62836345E 00 | -.62875614E-05 | . 32781833 E .01 |
|  | .95099565E 02 | -615292.34E 03 | -.94272612E 03 | .25000000e 00 | $\bigcirc .61500000 \mathrm{E}=05$ | .14599309E.01 |

Table D5. Numerical H Matrix

|  | $h_{14,15}$ | $\mathrm{h}_{73}$ | $\mathrm{h}_{77}$ | ${ }^{\mathrm{h}} 7,15$ | $\mathrm{h}_{83}$ | ${ }^{h_{84}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . $00000000 \mathrm{E}-80$ | . $00000000 \mathrm{E} \times 80$ | . 00000000 E-80 | -.77973840E O8 | .00000000E-80 | -0n0n0000E-80 |
|  | . 37266019 El | -.35705580E 05 | -.357055808 05 | $\bigcirc .77973840 E$ Of | . $3430 \mathrm{Ca4aE} 03$ | -1454876BE 05 |
|  | .79346546E O1 | -.68061771E 05 | -.68061771205 | $\bigcirc .7892100$ OB | . 12466163504 | -.22368740E 05 |
|  | .12769363E 02 | -, 103ang23E 06 | -.10348923E O6 | -.82615140E Of | .28821502E 04 | -.10321123E 06 |
|  | .18831533E 02 | -13822723 E O6 | -.13822723E 06 | -.90041220E 08 | .51417807E 04 | -.46298565E 06 |
|  | .24412296E 02 | -.17037006E 06 | -.17031006E 06 | -.92826000 Of | .78111119E 04 | $-994630000^{06}$ |
|  | .27990693E 02 | -. $19706647 E 06$ | -.19706647E 06 | -.89112960E OB | . 10450854 ES | -. 15192981807 |
|  | . 26742451502 | -. $20452374 \mathrm{E}_{6}$ | -.20452374E Of | -.74260800 O OB | . 11256770 E 05 | -. 19633344E 07 |
|  | . 28124946 E 02 | -.1879n686E O6 | -.18790686E 06 | $\because 70547760 \mathrm{E}$ O8 | :95019245E O4 | $\because 22025478$ 07 |
|  | . 30402532 E 02 | -. 20853500 E 06 | - 20851580 O6 | -.71476020E OB | . 11702740 O | -.29217308E 07 |
|  | .32409321E 09 | $\ldots 352073{ }^{4} \mathrm{E}^{0} 6$ | -.352073s4E 06 | $\rightarrow 74260000 \mathrm{E}$ OB | . 33357526805 | - 57065786807 |
|  | - $32168282 E 02$ | -. 37457379 E O6 | -.37457379E O6 | -.74260800E OO | . 37757313 ES | -.67537563E 07 |
|  | , 27153401 E 07 | -.35502059E 06 | -.35502059E 06 | -.64978200 E 08 | . $33918247 E 05$ | -.69336001E 07 |
|  | .23241552E 02 | -.32699416E 06 | -. 32699416 E 06 | -.59440640E O8 | .28774402E O5 | -.68521642E Of |
| $\stackrel{N}{\ominus}$ | . 20596660 E 02 | -. $290059140^{06}$ | -. $290059140_{6}$ | -,58480380E O8 | . 22641199 ES | -.65046627E 07 |
| $\stackrel{\rightharpoonup}{\mapsto}$ | .17417637E 02 | - 24415746E 06 | -.24415746E $0_{6}$ | $-575521200_{8}$ | .16042288E 05 | $\because . .58196062$ Of |
|  | .14150991E 02 | -. 19176552 E Of | -.19176552E 06 | -.37352120 E OB | .98961751E 04 | -.,48179102E 07 |
|  | . 11236217802 | -.14708513E $0_{6}$ | -.14708513E 06 | $-57552120^{\text {E }}$ O | .98218881E 04 | -.38632564E 07 |
|  | .90032867E 01 | $-1)^{3} 00^{2} 1^{3} \mathrm{E}^{6}$ | -.11300213E 06 | -.58480380E O8 | . 34363672 E O4 | - 30808863 E 07 |
|  | . 71827430 E 01 | -.86473402E 65 | -.06473402E 05 | -,59488640E 08 | . 20122939504 | -. 2432244507 |
|  | .58087520E 01 | -.66057984E O5 | -66051984E 05 | -.61265160E OA | -11742943E O4 | - $190990280^{\text {Of }}$ |
|  | . $464946522^{01}$ | -.50423105E 05 | -.50423105E O5 | -.63121680E O8 | . 60420381 E 03 | - $14954237 E 07$ |
|  | . $369997380^{01}$ | - 37901022E 05 | -37901022E 05 | -.64978200E O8 | .38697000E 03 | $\because 11473673807$ |
|  | . 29149130801 | -. 28909418 E 05 | -. 28909418 E 05 | -.67762980E O8 | .22490806E 03 | -.88580509E 06 |
|  | ¢ $.19773945 E 01$ .1459351501 | $-21981795 E^{\text {O }}$ | -. $21981795 \mathrm{E}^{\text {O }}$ | -. 62193420 E O8 | .13003272E 03 | -. 67758011E O6 |
|  | $.14592351 E 01$ .10833409501 | -16710490 OS $-12880421 E 05$ | $\begin{aligned} &-16710490 E \\ &-12800421 E ~\end{aligned}$ | -62193420E O8 | : 75145794 E O2 | -51860801E 06 |
|  | . 10833409 E 01 | $-12880421 E 05$ $-99275247 E 4$ | $-12880421 E 05$ $-199275247 E 04$ | -.62193420E 08 | .44646399E 02 | -. 40351043 E 06 |
|  | .61576082E 00 | -9 $-978766014 E 04$ | $-199275247 E ~ O 4$ -.78760014 E | $-62193420 E ~ O 8$ $-.62193420 E ~ O B$ | $\begin{array}{r}.26522122 E ~ \\ \hline 166956785 \\ \hline\end{array}$ | $-31382398 E$ O6 $-25064570 E 06$ |
|  | . $47763574 E 00$ | -.63759438E 04 | $\because 637594500^{04}$ | -.62193420E Of | -10939953E 02 | -.20361741E O6 |
|  | . 26321468 E 00 | -.51974464E O4 | -.51974464E O4 | -.43628220E OB | . 72695305 E 01 | -.16624712E O6 |
|  | . 233688856 E 00 | -. 42379291504 | ..42379291E O4 | -.49197780E O8 | .48331879E 01 | -.13585822E O6 |
|  |  | -. $34568381 E{ }^{\text {O }}$ | $\rightarrow 34568381 \mathrm{E} \mathrm{O}_{4}$ | $\rightarrow 94767340 \mathrm{E}$ O | - 32157658 E O1 | -.11110061206 |
|  | . 17940548 E 00 | - 28183344 E O4 | -. 28183344 E O | -.60336900E OA | . 21375258 E O1 | $\rightarrow 90665565$ E OS |
|  | .15369931E 00 | -. 23153533 EA | -.23153533E O4 | $\because 65996460 \mathrm{E} 0 \mathrm{~g}$ | . 144 ¢6496E 01 | -.74464149E OS |

Table D5. Numerical H Matrix (Continued)

|  | $\mathrm{h}_{85}$ | $\mathrm{h}_{87}$ | $\mathrm{h}_{88}{ }^{\circ}$ | $\mathrm{h}_{89}$ | $\mathrm{h}_{8,11}$ | $\mathrm{h}_{8,14}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | .00000000E-80 | .00002000E-80 | .0n000000e-sio | .00000000E-80 | .00000000E-80 | .00000000e-80 |
|  |  | . 29377356505 | -. $257899333 \mathrm{E} \mathrm{O}^{\text {O2 }}$ | $\because 9034295 E 01$ | -. 289994449 E 95 | -00000000E-80 |
|  | -. 21894329 E 07 | . 11526300 E 06 | -.93707516E 02 | -. 32830925 E 02 | 2.11388985806 | . $000000000 \mathrm{E}-80$ |
|  | - 33276482807 | -27044390E $0_{6}$ | -.21664976E 03 | -.75944393E 02 | -. 26766920806 | -00000000E-80 |
|  | -. 44226020 E 07 | . 49587119 E 06 | -.38650504E 03 | -. 13541409803 | -.49020749E 06 | -00000000E-80 |
|  | -. 53897989 E 07 | . $78983835 \mathrm{E}^{06}$ | -.58719731E 03 | -. $20571368 \mathrm{E}^{03}$ | -.78123456E 96 | . $000000000 \mathrm{E}=80$ |
|  | -.61548860E 07 | .11380752E 07 | -.78558542E 03 | -.27523402E 03 | -. 11263636807 | .00000000E-80 |
|  | -.,62797704E 07 | .14343488E 07 | -.84610563E 03 | -.29645862 03 | -.142? 1494 E 07 | . $00000000 \mathrm{E}=80$ |
|  | -.56294199E 07 | -15708897E 07 | -.71429484E 03 | -i23024297E 03 | -. 15604233 E 97 | - 0 C000000E-80 |
|  | ..60389367E 07 | . 20421690807 | -.87960899E 03 | -.30820370E 03 | -. 20292784 E 07 | .00000000E-80 |
|  | $-.9735635 \mathrm{E} 07$ | -39628893E 07 | $-23074683^{35} 04$ | -.878504811 03 | $\therefore 39201458 \mathrm{EE} 07$ | - $000000000 \mathrm{E}-80$ |
|  | -.99794894E OT | . 47343299807 | -28381980E 04 | -.99437773E 03 | -.47129400E 07 | ,00000000E-80 |
|  | -.90759007E 07 | .50408917E 07 | -.25496174E 04 | -.89327197E 03 | -. 50035306E 07 | . $00000000 \mathrm{E}=80$ |
|  | -.79815828E OT | .51791418E 07 | -,21629571E 04 | -. $75780350 \mathrm{E}^{\text {O3 }}$ | -. 51474466 E 07 | -0000000nE-80 |
| $\cdots$ | -.66909273E 07 | ,51298052E 07 | -,17019274E 04 | -.59627930E 03 | -. 51048658 ET | . 40000000 E -80 |
| $\stackrel{\sim}{\circ}$ | $\rightarrow 3275041 \mathrm{AE} 07$ | -4828152lE ${ }^{\text {c }}$ | $-12058976 \mathrm{O}_{4}$ | $\bigcirc .42249017 \mathrm{E}{ }^{-3}$ | -. $481048814 E 07$ | -00000000E-80 |
|  | -. 3859.9855 E 07 | .42443738E 07 | -. 74389046603 | -. $26062597 \mathrm{Cl}^{03}$ | -.42336731E 07 | , 00008000E-80 |
|  | -. 27321248507 | . 36440726 E 07 | -.43762837E 03 | -. $15332542 \mathrm{E}^{03}$ | -. 36376598 ET | . $00000000 \mathrm{E}=80$ |
|  | -.19303662E 07 | . 31299383807 | -,25030998E 03 | -.90500269E 02 | -. 312615318 or | . $00000000 \mathrm{E}-80$ |
|  | -13501379E 07 | .26710207E 07 | -. 15126311E 03 | -. 52993632 E 02 | -.26688042E 07 | , 00000000E-80 |
|  | - $93180413 E 06$ | -22683740E 07 | $-\mathrm{rab271104E} 02$ | $-30926249 \mathrm{E} 02$ | -. 22658806807 | -90009000E-80 |
|  | $-62843274 E^{06}$ | -19182531E 07 | -.51431293E 02 | - 10019212202 | -19175014E 07 | - 000000000 E -80 |
|  |  | -15918174E ${ }^{\text {a }}$ | -.29058271E 02 | -.10180719E 02 | -1593916E 07 | -00000000E-60 |
|  |  |  |  | -.59231854E 01 | -:11094171E 07 | - $80000000 \mathrm{E}=80$ |
|  |  |  | -. $536466712^{2} 81$ | $\cdots 1979{ }^{4} 19{ }^{\text {9 }} 01$ | -. 915667759 E 96 |  |
|  | $\because 94213330 \mathrm{EE} 85$ | . $76210010 \mathrm{E}^{86}$ |  | -11758089E 01 | -76205100E 06 | . $0000800000 \mathrm{E}=60$ |
|  |  | -63109365 06 | $-19936544 E$ $-\quad 12550056 E 01$ | -.69848740E 00 | -. 63106444 E 068 | -0000000E-60 |
|  | $\because 24734067{ }^{-} 05$ | -4621488E 06 | $\because 82235088 \mathrm{E} 00$ | $\rightarrow 28811499500$ | - $4^{46210283506}$ | - $00000000 \mathrm{C}_{\mathrm{E}=80}$ |
|  | -.17842513E 05 | .4000B961E 06 | -95464692E 00 | -.19145057E 00 | -.40008161E 06 | - 00000000 E -80 |
|  | $\rightarrow 113 n 2051 \mathrm{E} 05$ | . 34542301 E 06 | -. 36330828 E 00 | -. 12728698 E 00 | -34341769E 06 | . $00000000 \mathrm{E}=80$ |
|  |  |  | $-24177^{748 E} 00$ | -. $84690504 \mathrm{E}=01$ | -. 297748422 E 06 | -60000000E.80 |
|  | $\rightarrow 214 ? 2046803$ | . 29545902 E 06 | -. 16067673 E 00 | -,56293944E.01 | -. 25593667 E 06 | . $0000000000 \mathrm{E}-80$ |
|  | -.17587457E O4 | .22019068E $0_{6}$ | -. 10844324E 00 | -. $37993663 \mathrm{E}=01$ | -. 22018909 C | -0noooooor-b0 |

Table D5. Numerical H Matrix (Continued)

|  | ${ }^{\text {h }} 8,15$ | $\mathrm{h}_{93}$ | $\mathrm{h}_{97}$. | $\mathrm{h}_{9,15}$ | $\mathrm{h}_{10,3}$ | $\mathrm{h}_{10,4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 24639733E $^{10}$ | . $08000000 \mathrm{E}-8 \mathrm{n}$ | .00000000E-80 | -. $10974096 \mathrm{E}^{10}$ | . $00000000 \mathrm{E}-\mathrm{so}$ | .00000000e-80 |
|  | . $24625098{ }^{\text {d }} 10$ | -. 77707456805 | -. 71707436 E 05 | -.10974096E 10 | . 74666380 EF 9 | -. 31663036805 |
|  | .24904161E 10 | -, 14812531E 06 | -14881essle 06 | -. 11104740 E 10 | . 27130601 E 94 | - 48681968 E O5 |
|  | $-^{26} 0059147 E 10$ |  |  | -.11627316E 10 | . 627253566 E 94 | $-22462264806$ |
|  | - 29240238 E 10 |  |  | - $\because 130644000_{\text {E }} 10$ | -11190259E 05 |  |
|  | -28053194E 10 | -. $428883500^{06}$ | -94886350E O6 | -. 12541024810 | . 22744605 E 05 | -.3306508ie of |
|  | . $23371040{ }^{\text {E }} 10$ | -.44511303E $0_{6}$ | -. 44511305 E O6 | -10451520 E 10 | .24498550E 05 | -. 42728819E $07^{0}$ |
|  | -22206803E 10 |  |  | - $\because 99289440 \mathrm{E}$ |  | -479349128 <br> 63586758 <br> 07 |
|  | -232B3296E 10 | $\bigcirc \cdot: 76623213 E 0_{6}$ | -.,76623213E $0_{6}$ | $\because \square$ | . 72597294 Cl O5 | $\because 12419452$ Of |
|  | - 23264401 E 10 | -.81519965E $0_{6}$ | -.81919965E 06 | $\bigcirc 10451520 \mathrm{E} 10$ | - $02172724 E$ D5 | -. 14698465808 |
|  | -20350506E 10 | $\because 772645266^{06}$ | -. 77264526806 | $\because 914508000^{0}$ | $\bigcirc{ }^{\circ} 7317614 \mathrm{E} 05$ |  |
| $\sim$ | -18621756E 100 |  |  |  |  |  |
| $\stackrel{\sim}{\circ}$ |  |  |  | $\rightarrow 80999280009$ |  |  |
|  | -18091477E 10 | -. $41734604 \mathrm{C}^{06}$ | -941734684E 06 | -. 00999280 O 09 | : 21937435 E 05 | -12665436E 08 |
|  | -1911246E 10 | $\rightarrow 32010715 \mathrm{E} 0_{6}$ | $\rightarrow 32010715 \mathrm{P} 0_{6}$ | $\because 80999280809$ | . 12670404 E 05 | -. 84077567807 |
|  | -18419176E 10 | $-24393097 E 06$ | $-24593097 E$ O6 | -.82305720E 09 | . 74787009 E 04 | -. 67037481207 |
|  |  | $-18819346 E$ <br> $-1476459 E$ |  | $-{ }^{83612160} \mathrm{E} 09$ | : 43794343 E 04 | $\because 52933893 \mathrm{E} 07$ |
|  | -19320184E 100 | $-14376459 E$ $-1093778 E$ -1 | $-14376459 E$ $-10973740 E 806$ |  |  |  |
|  | -2050 ${ }^{300 \mathrm{E}} 10$ |  | $\rightarrow 82483482 \mathrm{Cb}$ | $\triangle 91450900 \mathrm{E} 09$ | P6al30749E 03 | -249710408 07 |
|  | - 21392239 E 10 |  |  | $\cdots 95370120809$ | -40947622E 03 | $\cdots{ }^{-19278124 E} 07$ |
|  |  |  |  |  | $\begin{array}{r}28299531 E \\ .16394274 E \\ \hline 03\end{array}$ | -14746616807 <br> -.112066708 <br> 07 |
|  | -19644674E 10 | $\rightarrow 28032166 E^{05}$ |  | $\because 807531480 \mathrm{E} 09$ | $\bigcirc 97163713 \mathrm{E} 02$ | $\bigcirc-.07817561{ }^{-06}$ |
|  | -19646629E 10 |  |  | $\bigcirc{ }_{-6751480 E} 09$ | $\bigcirc 51731138 \mathrm{E}$ O2 | -. 588298745806 |
|  | -1964798969E 10 |  |  |  |  | -. $545499008 \mathrm{Cl}{ }^{06}$ |
|  | .13784144E 10 | $\bigcirc \cdot 1131407{ }^{-1}$ |  | $\begin{array}{rl}-96753480 E 09 \\ -.61402680 E ~ & 9\end{array}$ | -19820965E 02 | -. 361810131906 |
|  | . 15544318 EE 10 | -.9231715E04 | $-.92231719804$ | $-.69241320 \mathrm{E} 0 \mathrm{~g}$ | . 10518657802 | -29367359E 06 |
|  | -17304501E 10 | -.75232527E ${ }^{4}$ | -75232527E O4 | $\cdots$ - 77079960 E 09 | -69985974E O1 | $\rightarrow 24199262{ }^{\circ} 06$ |
|  | -19064685E 10 | -. 61336519 E ¢ | $\rightarrow \cdot 61336519 \mathrm{E}$ O4 | -.84910600E 09 | $\bigcirc 46519814 \mathrm{E}$ OL | -.19731903E ${ }^{\text {O6 }}$ |
|  | -20824849E 10 | 503899 | 303894 | 57240E 09 | 31396930 O1 | . 162059 |

Table D5. Numerical H Matrix (Continued)

| $\mathrm{h}_{10,5}$ | $\mathrm{h}_{10,7}$ | $h_{10,8}$ | ${ }^{\mathrm{h}} 10,9$ | $h_{10,11}$ | $h_{10,14}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -00000000E-AO | . 00000000E-80 | . 000000000808 | . $00000000 \mathrm{E}-80$ | .00000000E-80 | . $00000000 \mathrm{E}-80$ |
| . $24996483 E 07$ | .63935095E 05 | . .56126338E 02 | . 19664160 O | -.63112641E 05 | . $00000000 \mathrm{E}-80$ |
| -.47649489E 07 | . 25085140 E 06 | -. 20393935 E 03 | -.71451232E 02 | -.24786295E 06 | $.00000000 \mathrm{E}-80$ |
| $\bigcirc 72420915 \mathrm{O}$ | . 58857769 O | -47150339E03 | - $16519371 E 03$ | -.58166846E 96 | -OP000000E-80 |
| -.96250825E 07 | .10791839E 07 | -.84116610E 03 | -.29470700E 03 | -. 10668578 OF | .0000000nE-80 |
| - $11730031 E 08$ | $.17189567 E 07$ | -.12778535E 04 | -.44770276E 03 | -.17002315E 97 | -000n0000E-80 |
| -.13395120E OB | . 24768379507 | -. 17097004 OA | -.5990060E 03 | -. 24517846 Cl | . $00000000 \mathrm{E}-80$ |
| -13666911E08 | .31220650 E 07 | -.18415435E 04 | -.64519454E 03 | -.30950797E 07 | . $00000000 \mathrm{E}-80$ |
| -. 12251528E 08 | .34189890 07 | -. 15544609 E | -. 54461360 E 03 | -.33960105E 07 | . $00000000 \mathrm{E}-80$ |
| -.13142775E 08 | .44444527E 07 | -.19145017E 04 | -.67075582E 03 | - 44163983 OT | -00000000E-80 |
| - $21292354 \mathrm{E}^{08}$ | .86245917E 07 | -.54571017E 04 | -.19119245E 04 | -.85446254E 07 | -090日0000E-80 |
| -. 21718755 E 08 | . 10347470 O8 | -.61768819E O4 | -. 21641033 OA | -. 10256956 E 08 | .00000000E-80 |
| - 19751369 Eg | $.10970691 E 08$ | -. 55488325 O4 | -.19440629E 04 | -.10889380E 08 | -00000000E-80 |
| -.17370632E 08 | $.11271570 E 08$ | -.47073286E 04 | -.16492375E 04 | -11202590E 08 | . $000000008-80$ |
| -14561728E 08 | .11164197808 | -.37039715E 04 | -.12977061E 04 | -.11109920E 08 | $.00000000 \mathrm{c}-80$ |
| - 11480281E 08 | -10507697E 08 | -. $26244271 E 04$ | -.91948195E 03 | - 10469240 E 08 | -08009000E-80 |
| -.83854038E 07 | .92376328 E 67 | -. $16189580 \mathrm{E} \mathrm{O}^{4}$ | -. 56721053 C | . 0.92139092 OT | .00001000 E-80 |
| -.59460305E 07 | .79307384807 | -.95242782E 03 | -.33368814E 03 | -.79167819E 07 | -000ndodoE-80 |
| -.42015671E 07 | .68118077E 07 | -.56217015E 03 | -.19695929E 03 | -.68035699E 07 | - 40000000 E 80 |
| -.29383582E07 | . $581304740^{\prime}$ | -.32914985E 03 | -.11533691E 03 | -.58082234E 07 | . $00000000 \mathrm{E}-80$ |
| - 20279219E 07 | .49367515E 07 | -.19210787E 03 | -.67316011E 02 | -.49339365E 07 | . $08008000 \mathrm{E}-80$ |
| -.13677264E 07 | .41747739E 07 | -.11193186E 03 | -.39215919E 02 | -91731337E 07 | . $000000008=80$ |
| - $89768669 E 06$ .616634506 | . 34643348 E 07 | -63248656 -36793615 | $-22156699 E 02$ -1289086102 | -.34634081E 07 | -800080nE-80 |
| $\because 44036143 E 06$ | .2414779767 | - 21272614 E O2 | -.74529731E 01 | -.24144679E 07 | - 0000000 E-80 |
| - $10804377 E 06$ | .19930053E 07 | -.12293425E 02 | -.43070666E 01 | -.19928251E 07 | -0n00800nE-80 |
| -20504012E06 | -16585886E 07 | -.73038973E 01 | -.25589591E 01 | -.16584815E 07 | , $00090000 \mathrm{c}=80$ |
| -.12895121E 06 | -13734739 07 | -.43388685E 01 | -.152,1456E 01 | -.13734103E 97 | - 090n0000E-80 |
| -.80945828E 05 | .11657991E 07 | -.27313180E O1 | . $.95693176 E 00$ | - 11657591507 | - 0000000 E-80 |
| $=-53829722 \mathrm{E}$ | .10057188 ET | -.17891145E 01 | -.62703597E 00 | -10056925E 07 | $\text { - } 10000000 E-80$ |
| -.38031366E 05 | .897073074 OS | -.11892539E 01 | -. $41666140 E 00$ | -:87071332E 06 | - $00000000 \mathrm{E}-80$ |
| -. 24771205 E 05 | $.75175767 E 06$ | -.79068208E On | -.27741966E 00 | -.75174608E 56 | $.00000000 \mathrm{E}=80$ |
| -. $10558364 E 05$ | . 64743430 E 06 | -.52608101E 00 | -.18431527E 00 | -.64742659E 06 | - $100000008-80$ |
| -.46621641E03 | . 55596551 E 06 | -.34960708E 00 | -.12251472E00 | -.53596039E 06 | . 04008000 E-80 |
| -.38276273E 04 | .47920963 O6 | -.23608928E 00 | -.82687102E-01 | -.47920617E 06 | .00000000E-80 |

Table D5. Numerical H Matrix (Continued)

|  | ${ }^{\mathrm{h}} 10,15$ | $\mathrm{h}_{11,1}$ | ${ }^{\text {h }} 11,2$ | ${ }^{\mathrm{h}} 11,3$ | ${ }^{\text {h }} 11,7$ | $\mathrm{h}_{11,8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 34678143 El 11 | - $21108264 \mathrm{~F}-01$ | -. 10330011 E 01 | .00000000E 080 | -00000n00E-80 | - $0000 n 0000 \mathrm{E}-80$ |
|  | $\bigcirc 340846888$ II | - $\because 30454408801$ | $\rightarrow \square 1162192{ }^{-\square}$ | $\because 24416711001$ |  | . $46221067{ }^{\text {a }}$ |
|  | . 36732038 E 11 | .,74099595E 01 | -.13556041E 02 | -.702664TTE=01 | $\because 10625394 E 01$ | . $61795283 E 00$ |
|  | .40029596E 11 | -.96246973E 01 | -. $22936275 \mathrm{E}^{\text {02 }}$ | -.92834212E-01 | -.11959603E 01 | . 68683618 E 00 |
|  | -41263312E 11 | $\rightarrow 11880209 \mathrm{E} 02$ | $\rightarrow 29124476802$ | -. 10961181800 | -.11416118E 01 | .64331883E 00 |
|  | . 396099885 E 11 | -. 13516054 E 02 | -.29449153E 02 | -. $12295637 E 00$ | -.59803743E 00 | .296468R6E 00 |
|  | . 33006047 El 11 | -14994922E 02 | -. 31600390 E 02 | -. 13284685 E 00 | . 12334193500 | -.53195841E Of |
|  | . $31356684 \mathrm{El\mid}$ | -.16113633E 02 | -34793070E O2 | -.14728147E 00 | :26690482E 01 | -,17517932E 01 |
|  | . 31766396 E 11 | $-17035490 \mathrm{E} 02$ | $-37084922 \mathrm{E} 02$ | -. $17236357 E 00$ | $\bigcirc 29814522 \mathrm{El}$ | -. 19655585 E 01 |
|  | - 32986951 El 11 |  |  | - 235582989 E OO | - 23730132727801 | $14561252 E$ -191935018 01 |
|  |  |  |  |  |  | -19193501E O1 |
|  | . 26388498 E 11 | $-10774780 \mathrm{E} 02$ | -.27941387E 02 | -.19261133E 00 | - 21419901E 01 | . 12144594801 |
|  | .25978A4BE 11 | -.81373668E 01 | -. $23710800{ }_{\text {e }} 02$ | $-16952957 E 00$ | $\rightarrow \cdot 160 \leq 6360 E_{01} 01$ | -69302080E 00 |
| $\stackrel{\sim}{\infty}$ | . 25570290 E 11 | -. 60995182 E 01 | -. 20057362 E 02 | -. 14825860 E 0 | -. 11148605 E 01 | .60253562E 00 |
| $\infty$ | . 25575099 E 11 | -. 44974369 E 01 | -. 16173332 E 02 | -.12084013E 00 | -. 72349912 E 00 | . 37984391 E 00 |
|  | -25579401E 11 | $-3242968{ }^{-} 01$ | -.12949918E 02 | -.93979519E-01 | -.44730238E 00 | -220494968 00 |
|  | -25995414E |  | - $\quad 102335235020$ | -. $72819913 \mathrm{E}=01$ | -627203839E 00 | -12402536E 00 |
|  | -27238493E 11 | -.95012407E 30 | $\rightarrow 66116124 \mathrm{El}$ | $\rightarrow 42666192 \mathrm{E}=01$ | -11012173E 00 | . $42256607 \mathrm{E}=01$ |
|  | . $28069776 \mathrm{E}^{11}$ | $-.59553864 \mathrm{E}^{0}$ | -.52701701E 01 | $-.31 \mathrm{~T}^{2} 7227 \mathrm{E}-01$ | -.73053057E.01 | . $2592 \times 769 \times 2$-01 |
|  |  | $-48064444 E$ <br> $\because 27639299 E$ <br> 00 |  |  |  | -18184592E-01 |
|  | :276567a7E 11 | $\because 10200921500$ | $\rightarrow 23050190801$ | $\because 11296587 \mathrm{COL}$ | $\cdots 46293661 \mathrm{E}=01$ | -21864350E-01 |
|  | . 27697595811 | $\rightarrow$ - 02143439 E .03 | $\rightarrow 16827302 \mathrm{E} 01$ | -.78506771E-02 | -. $38837622 \mathrm{E}-01$ | . $19346373 \mathrm{E}-01$ |
|  | -27698109E 11 | -.60951167E01 | $\therefore 12660308 \mathrm{EE}$ | $\because .94738991 \mathrm{ECO2}$ | -. $34462268 E-01$ | -18086767e-01 |
|  | . 27658535 E 11 | . $99302036 \mathrm{E}=01$ | -. 91621970 OO | -. 38173040 EFO | -;29439622E.01 | .15980244E-01 |
|  | .27658829E 11 | . 11612408 E 0 | -.60054569E 00 | -. 26659187 EPO | -. $34483227 \mathrm{E}_{0} 01$ | . $19827316[01$ |
|  | -27659043E 11 | -13085282E 00 | ,$- 32454099 E 00$ ,$- 53400992-01$ | $\because 19977750 \mathrm{E}=02$ | $\bigcirc \cdot \mathrm{O} 14440012 \mathrm{E} 01$ | $118343736 E=01$ $19984075 E 01$ 0 |
|  | . 19402730 Cl 11 | -14870042E 15575113 O 00 |  | $-14251344 \mathrm{E}=02$ $-99375350 \mathrm{E}=03$ | $\because 34648542 \mathrm{E} 01$ | . $2099572464 \mathrm{E}=01$ |
|  | .24366837E 11 | . 152901 A 2 E 00 | . 45686849 E 00 | -.71629699E.03 | -. 31344949 E 01 | . 19071350 E 001 |
|  | .26833891E 11 | .14385848E 00 | , 71563497 E 00 | -. 40730980 c 003 | -. $39695123 \mathrm{E}=01$ | .21937293E=01 |
|  | -29310941E 11 | -14063224E 00 | .10407203E O1 | -.20843249E.03 | -. 362 99096E.01 | :2244335E-01 |

Table D5. Numerical H Matrix (Continued)

|  | $\mathrm{h}_{11,9}$ | $\mathrm{n}_{11,10}$ | $\mathrm{h}_{11,14}$ | ${ }^{\text {h }} 11,15$ | $\mathrm{h}_{11,16}$ | ${ }^{\text {h }} 12.1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -00000000E-80 | 0000000E-80 | -.96747881E 07 | -.70168471E 02 | . 000000000 E -80 | -.78772299E-03 |
|  |  | -24338522801 -.50522528801 | $\begin{array}{rl}-.56467892 E & 02 \\ -.5636238 E 02\end{array}$ |  | -.20274681E 00 | . 27348877 E On |
|  | -37432013E 00 | -.76048219E 01 | -. $5635 \times 1600^{0}$ | -.82219747E 02 | -. 20059624601 | .23446278E O1 |
|  | -41588990E 00 | -,10064069E 02 | -. 56235276802 | -.94596369E 02 | -. 36437696801 | -41311156E 01 |
|  | -38928118E 00 | - 12363045 E O? | -.56389485E 02 | -.99872600E 02 | -.57710714E 01 | .63676139E 01 |
|  | . 17861219800 | -.14002011E 02 | -.,56779958E02 | -.87752347E 02 | -. 03655493801 | .806396n2E 01 |
|  | $\rightarrow 32422957500$ | $\rightarrow 15466282802$ |  | $\because 65926869 \mathrm{E} 02$ | -. $11344936 \mathrm{E}^{02}$ | -98928953E 01 |
|  |  |  | - 57780365 El O2 | $-164920072 E \quad 02$ $-6964394 E 02$ |  | . 11503115 E 02 |
|  | . 88130461 E 00 | $\rightarrow 172356400^{02}$ | -,583180R9E 0? | -.73942175E 02 | -. $18061424 E 02$ | -12566100E 02 |
|  | -11623039E 01 | $\bigcirc .16029739 \mathrm{DO}$ | $\cdots$-.,9589660E 02 | $\bigcirc .74391503 \mathrm{E} 02$ | 3.17405044802 | -10893002E 02 |
|  | -99912920E 00 | $\square 13918519 E 02$ $\because \quad 1313301502$ | $\because$ $\because 591074488$ -5934227802 |  | $0.15780712 E ~ 02$ $0.12439573 E ~$ | -82073358E 01 |
| $\stackrel{N}{*}$ | . 73400855080800 | $\because 86694079 E ~$ $\square$ | $\begin{array}{rl}-15934189 E ~ & 02\end{array}$ | $-.95489170 E 02$ -91633003020 | $\because: .885336331801$ | -314048128 02 |
| $\omega$ | . 36406627 E 00 | -.661883388 01 | -,59259261E 02 | -.46735961E 02 | -.73776230E 01 | -180157992 01 |
|  | . 22681507 E 00 | -.49983617E 01 | -,59059412 02 | -.53649936E 02 | -61362710E 01 | .99599907e 00 |
|  | $113282789 E$ .7493098 .01 0 |  |  |  |  | . 52888514800 |
|  | - 35969893 E 01 | $\because \because, 20571017 E 01$ | -, 975649740802 | $\because \rightarrow 382446900^{\circ}$ | $\because .39093849 \mathrm{E}$ O1 | -13685722E 00 |
|  | -259R935E.01 | -,13638372E 01 | -,57089946E 02 | -.64652622E 02 | -.33163417E 01 | . $39639647 \mathrm{E}=01$ |
|  | -15398138E=01 | -.97698754E 00 | -, 56294341E 02 | -. 69278461 E 02 | - $27744474 E^{01}$ | -920290478-02 |
|  | -10737402E-0才 |  |  |  | -. 22599675 E (1) |  |
|  |  |  | $\rightarrow$-940442691E 02 | -.48857225E 02 | $\bigcirc 14485237801$ | $\rightarrow 39172142 \mathrm{E}-02$ |
|  | -11640572E.01 | -.27584379E 00 | -.45218203E 02 | -. 50070526 E 02 | $\bigcirc 113150720^{01}$ | -. $425220148-02$ |
|  | -10901603E01 |  | $\because-11968099802$ | -:51581710 02 | $\bigcirc 8882765100^{0} 00$ |  |
|  | . 96420744 E -02 | -. 17208796E 00 | -9387897511 02 | - 53366782 E 02 | -.69002719E 00 | -9 303215233002 |
|  | . 11989992 E 01 | ., 13981695 00 | -.,35992417E 02 | -. $49272166 \mathrm{O}^{2}$ | -.54359725E 00 | - 20570238 E -02 |
|  |  |  | $-32414014 E$ $-276527 E 2$ |  |  |  |
|  | -11101198E.01 |  |  | $\because 67262520 E$ $\because 693103970$ 02 | -. $34809032 E 00$ $.027494501 E 00$ | - $515066294 \mathrm{E}=03$ |
|  | -12697524E01 | $-57699035 E=01$ $\rightarrow-9764436 E 001$ |  | $-969310397 E 02$ $-.6848070 E O 2$ | -:274945018 |  |
|  | -13300520E=01 | $-\quad .38941016 E 01$ | $\because 17180607 \mathrm{O}$ | $\because .64246747 \mathrm{E}^{\circ} \mathrm{O}$ | $0.171051600^{00}$ | - $11031319 \mathrm{EEO2}$ |
|  | .13609308E-01 | -. $32496651 \mathrm{E}-01$ | -.12747353E 02 | -.65315780E 02 | -.136?9460E 00 | . $15885386 \mathrm{E}-02$ |

Table D5. Numerical H Matrix (Continued)

|  | ${ }^{\mathrm{h}} 12,2$ | ${ }^{\mathrm{h}} 12,3$ | $\mathrm{h}_{12,4}$ | ${ }^{\mathrm{h}} 12,5$ | $\mathrm{h}_{12,7}$ | $\mathrm{h}_{12,8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -14739415E-01 | -00000000E-80 | -00000000E-80 | -00000000E-80 | -00000000E-80 | - $000000000 \mathrm{E}-80$ |
|  | . 11303034 E OO | . $173327177 \mathrm{E}-02$ | - $-99999678 E=02$ | $-78944221 E$ $-.15382647 E ~$ 01 |  | . $8038846853 \mathrm{E}=01$ |
|  | -29634884E OI |  | -:79077726E=01 | $-: 15382647 E$ -.25936615 | - 31004045 E O1 | -57446647E 00 |
|  | .11672693E 02 | . $26543935 \mathrm{E}=01$ | $-.310943 \mathrm{BEE} 00$ | -. 29702452 E 01 | .48325713E 01 | . 64432411 E 00 |
|  | $-1899781 E$ $-19729806 E ~$ 0 | . $378880274 \mathrm{E}-01$ |  | $\cdots$ |  | -10312340E ${ }^{598520108}$ |
|  | -. 22799426802 | . $597010018=01$ | $\because: 12752613 \mathrm{E}$ O1 |  | -. 59977109 El |  |
|  | . $26969872{ }^{\text {O2 }}$ | -79288027E-01 | $\rightarrow-172639780^{\text {Of }}$ | $\bigcirc \rightarrow 44123414801$ | -. 24288083 O 02 | $\because \quad . \quad 602026$ Dot 01 |
|  | -3n097171E 02 | .10080120 00 | -.24177630E 01 | -.49972838E 01 | -. 31561223 E 02 | -. 0107286 nE 01 |
|  | ${ }^{-30358035 E} 02$ | -12685297E 00 | $-38184388 E 801$ $-44169279 E 01$ | -665464685E 01 | . 306986998 E - 02 |  |
|  |  |  | $-443010792 \mathrm{El}$ |  | -40331837E 02 | -10433435E 02 |
| N0. |  | . 68863388998001 | $\begin{array}{rl}-940361713 E & 01 \\ -38014005 E & 01\end{array}$ | - $-47014395 E 01$ | : 3488483330 E O2 | - 8697669990 E 01 |
|  | . 9720374648 E O1 |  |  |  | . 28882791 l |  |
|  | . 45116698801 | -21874448E=01 | $-.30359833 \mathrm{E}^{01}$ | $-24279406 \mathrm{E} 01$ | .16158975E 02 | . $38440675^{2} 01$ |
|  | -27758996E 01 | - 12991812565 E 01 |  |  |  | -25025852E 01 |
|  | -16713049E 01 | . $756106024 \mathrm{EOO2}$ |  | $\square 12440798 \mathrm{E}$ <br> $\because 88669773 \mathrm{O}$ <br> 00 |  | .15510017801 .78609272800 |
|  | -10413843E 01 | -44442827E02 ${ }^{\text {2 }}$ |  |  | .47373800E 01 | .78609272E 00 |
|  | . 374565896800 | . 12019691 E E02 | -994099096E On | $-39543504 \mathrm{E} 00$ | -27816999E OI | - 39433184800 |
|  | $\begin{array}{r}\text { 22604227E } \\ -1298400 \\ \hline\end{array}$ | . 672132966 E 003 l |  |  | - 218889213 c O1 |  |
|  | -66615322E-01 | . $12606666 \mathrm{E}-\mathrm{O}^{3}$ | $\therefore 3482169$ E 00 | -10398406E 00 | -23375047E 01 | -50912904E 00 |
|  | -17620688E001 | -16785021E04 |  |  | : 21288383080801 | . 50253101500 |
|  | .81597399E.02 | -41528026E05 | -.12067072E 00 | -. 22783193 EOOL | - 28716506801 | .48212093E 00 |
|  | .28867453E-02 | $-98533071{ }_{1}=06$ | $-.84833677_{E-01}$ | $\rightarrow 12588596 \mathrm{E}=01$ | . 23452473 E 01 | . 65405919800 |
|  | . $36330275 \mathrm{CoO3}$ | $-176661^{20 E}-0^{5}$ | -. $63999440 \mathrm{E}-01$ | -. $77499248 \mathrm{E} \cdot \mathrm{O}^{2}$ | -22787361E 01 | . 64813501880 |
|  | .. $41322737 \mathrm{E}_{0} 03$ | -. 17021445E.05 | -.453647beE.01 | -.48923991E.02 | :25795166E 01 | . 7560973780 |
|  | - $\mathbf{3} 5550330 \mathrm{E}=03$ | $-53351187 \mathrm{E}-\mathrm{O}_{6}$ | $-31857446 E-01$ $-2302133 E-01$ | -. $26689813 \mathrm{E}=02$ | -28239750E 01 |  |
|  | .57014126500 | -27399992-05 | $-13103120001$ |  | -323472915 01 | . 01263139 c |
|  | .11786607E.01 | .47908120E.05 | -.,67034036E-02 | -.15832561E.03 | :34478212E 01 | . 10640109801 |

Table D5. Numerical H Matrix (Continued)

| $\mathrm{h}_{12,9}$ | ${ }^{\text {h }} 12,10$ | ${ }^{\mathrm{h}} 12,11$ | $\mathrm{h}_{12,13}$ | $\mathrm{h}_{12,14}$ | ${ }^{\text {h }} 12,15$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -00000000E-80 <br> 26004882E 00 | -00000000E-80 <br> 26000 | .0000000nE-8 <br> $-3009458 \mathrm{E} 0 \mathrm{O}$ | $\text { . } 00000000 \mathrm{E}=30$ | . $17921903 \mathrm{E}^{04}$ <br> $-17906 \mathrm{~B}^{2} 3 \mathrm{E}$ 04 | - 22188452 E 04 <br> 225090898 |
| $\rightarrow$ - 1443965E 00 | -18085572E 02 | -.96449312F 00 | $\because 16945258502$ | $\bigcirc 17937266804$ | .23161397t O4 |
| -.16575094E 01 | .41788120E 02 | -.20022871E 01 | -. 39366261802 | . 17986372 C 04 | . 26389469804 |
| -. 25481000 E 01 | . 75956499 E 02 | -.31022514E 01 | $-.71538737 \mathrm{E} 02$ | . 18015445 E 04 | -30588414E O4 |
| -30776976E 01 | -12036626E 03 | -. 38453217 El | -. 11363052 E 03 | -18124360E 04 | -32476806E 04 |
| $\bigcirc \cdot .37500179 \mathrm{E}$ O1 |  | $\cdots$ | $\because 21556030 \mathrm{E}$ O3 |  |  |
| -14703051E 02 | . 28795405 O | :15682588E 02 | -. 27664873803 | -186728046E O4 | $\bigcirc \cdot 21308583804$ |
| .19218534E 02 | . $35535447 \mathrm{E}^{03}$ | .20550717E 02 | -. $34200194 \mathrm{E}^{03}$ | . 18793536804 | .22947895 04 |
| -.16280913E 02 | .39826067E 03 | -.21064338E 02 | -. $38524892 \mathrm{E}^{03}$ | . 18868097804 | ,24258091E O4 |
| -.24014998E 02 | -41557924E 03 | $-30590109 \mathrm{E} 02$ | -. $40426145 E^{\text {c }} 03$ | -18927387E 04 | -243403495 04 |
|  | -40177028E 363 |  | $-39318542 E$ $-35696247 E$ 03 |  | -11340399E 04 |
| $\rightarrow 15324856 E^{\circ} 02$ | - 30921890803 | $\rightarrow 20750946 \mathrm{E} 02$ | $\because 30582199803$ | - 18990080 OA | -16675682E O4 |
| -.11539338E 02 | ,26339286E 03 | -.16265680E 02 | -. 26138544 E 03 | . 18908466504 | -15036336E 04 |
| $\cdots 8010112{ }^{01}$ | -22233650 ${ }^{0} 3$ | -.119301577 02 | $-{ }_{-21185088} 03$ | -18797880E 04 | -17817077E 04 |
| $\begin{array}{rl}  \\ \because 52908864 E & 01 \\ \because 3369116 E & 01 \end{array}$ | $\begin{array}{r}18534044 E \\ .15373805 E .03 \\ \hline\end{array}$ |  | $\begin{array}{rl}-r 18469621 E & 03 \\ -15337944 & 03\end{array}$ |  | - 16359693 El O4 |
|  | -12743315E 03 |  |  | -18278053E ${ }^{184}$ | -18519222E 04 |
| $\rightarrow 9970919960^{-0}$ | :74511663E 02 | - -22039098001 | $\because \cdot .74469166 E 02$ | - $178 \mathrm{iza47E}$ O4 | . 21967689 OA |
| -. 74970440 E 00 | . 70657404 E 02 | $\rightarrow$ - $⿻$-1730140iE 01 | -.70624490E O2 | . $176162860^{\text {O4 }}$ | . 242610688 O4 |
| -. 10960759801 | .56420805 E 02 | -. 19546749 E 01 | -, 36484022E 02 | .17024996E 04 | . 26693141 O4 |
| $-1069374 E$ $-10290707 E$ -101 | .40274749E ${ }^{\text {a }}$ |  |  | -15313630E ${ }^{\text {a }}$ |  |
| $\because 10321832 \mathrm{O} 01$ | -25300097E 02 | $\because 15096645 \mathrm{O}^{-1}$ | $\because 252989700^{-} 02$ | -13262293E 04 |  |
| -99738428E 00 | . 21926659 E 02 | -.13753631E 01 | -.21926261E 02 | :12254718E O4 | -16873049E 04 |
| -.12946552E 01 | .19058321E 02 | -.17046522E 01 | $-.19058315 \mathrm{C} 02$ | .11245364E 04 | . $15594463{ }^{\text {E }} 04$ |
| $\rightarrow 12753854 E 01$ | -15784571E 02 | - $169126740^{\text {a }} 01$ | -. 15784782802 | .10240688E 04 | . 215404275804 |
| -, 14741814E 01 | .12012830E 02 | - ${ }^{\text {d8614343E } 01}$ | -. 12013160 E 02 | . 87400882 E 73 | . 21253559804 |
| $\cdots 16356555801$ | -94259570E 01 | $-20323797 E$ $-1938074 E$ 01 | $\because 94262899 \mathrm{E} 01$ |  | -21916302E 04 |
| $\because \cdot 1501$ | - $70745727^{22 E}$ O1 | - -23176001801 | $\cdots$ |  |  |
| $\bigcirc 2040602 \mathrm{Ol}$ | .61940159E 01 | $\rightarrow$-\%24709672E 01 | -.,61943892E O1 | . 40266325803 | . 20624393804 |

Table D5. Numerical H Matrix (Continued)

|  | ${ }^{\mathrm{h}} 12,16$ | $\mathrm{h}_{13,3}$ | ${ }^{\text {h }} 13,7$ | ${ }^{\mathrm{h}} 13.8$ | ${ }^{\text {h }} 13,9$ | ${ }^{\text {h }} 14,3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 00000000 \mathrm{O}=50 \\ .20526912 \mathrm{O} \\ \hline 201 \end{array}$ |  | $\begin{aligned} -000 u 0000 E-80 \\ 10014271 F \\ 100 \end{aligned}$ | $\begin{array}{r} .00000000 E=80 \\ .68339890 F=02 \end{array}$ | $\begin{array}{r} 00000000 \mathrm{E}=80 \\ \therefore 2394324 \mathrm{E}=02 \end{array}$ | $\begin{array}{r} .00000000 E=80 \\ \therefore 8735696 \mathrm{BE}=03 \end{array}$ |
|  | -88473201E 01 | -18684929E 00 | -20501532E 00 | $\because 14045366 \mathrm{E} 01$ | $\bigcirc \cdot 49208684 \mathrm{EDO2}$ | $\because 34223231 \mathrm{E}-02$ |
|  | -20723296E 02 | - $27975721 E 00$ | . 30815410 E O0 | $\because 21029207 \mathrm{E}-01$ | $\because, 73676942 \mathrm{E}$-02 | - 71711712 Cog |
|  | . 61140823802 | -44828540E OO | -49374083E OD | -. $33697386 \mathrm{E}=01$ |  | $\bigcirc 0205529516001$ |
|  | . $88994973 \mathrm{E}^{02}$ | . 51792843 E 00 | . 57050101 c dó | -.38932417E=01 | -. 13640179 E 01 | -. $27466847_{E=01}$ |
|  | -12132318E 03 | . $5734881645^{4} 800$ | .63169318E 00 |  | -. $15103230 \mathrm{E}-01$ | -. $31563821 \mathrm{E}-01$ |
|  | -1562526E 03 | . 61246315 E 00 | .67463153E On | -. 46038544 E.01 | -.16129848E.01 | -. $30970530 \mathrm{E}-01$ |
|  | $18222624 E$ <br> 194701418 <br> 103 | $.62999051 E$ <br> .62312683800 <br> 00 | .69393801E 00 |  | $\bigcirc \cdot 16591449 \mathrm{E}=01$ | -. $353541948 \mathrm{E}=01$ |
|  |  | . $59647065{ }^{\text {c }} 000$ | -65701570e ón | $\bigcirc \cdot \square 4836396 E 01$ | $\bigcirc \cdot .15708669 \mathrm{COO}$ | -960124680\%-01 |
|  | .1677918E Og | . 53528392 E 00 | .61164029E 00 | -. $11740410 \mathrm{E}-01$ | -. 14623974 E 01 | -,53051169E=01 |
|  | .13081267E 09 | .50205805E 00 | . 55301971 E 00 | -.37739449E.01 | -. 13222216 E .01 | -,44179444E-01 |
| N | -92072278E O2 | - 436689886 E 000 | $.48124690 E 800$ <br> $.40006043 E 00$ <br> 0 | $-32641465 E 01$ $-2730125 E-01$ | $-911506182 E-01$ | $-.34103094 E-01$ $-23863500-01 ~$ |
| N | .962817722E 02 | -28383221E 00 | . 31484575 E 00 | - $\quad=21485862 \mathrm{E}=01$ |  |  |
|  | . 53214003 E 02 | . 21970183 E 00 | . 24200277800 | -. $16514875 \mathrm{E}-01$ | -.57860740E-02 | -. $86961848 \mathrm{E}-02$ |
|  | . 46107665 E 02 | . 16782048 E 00 | .18485319E 00 | $-.12614981 \mathrm{E}-01$ | -.44197233E-02 | $-, 51033800 \mathrm{E}=02$ |
|  |  | -12764233E 00 |  | $\rightarrow 95948240 E=02$ | $\because 33615975 \mathrm{E}-02$ |  |
|  | -27874111E 02 | .72821175E01 | - $80212 \mathrm{gaza}=01$ |  | -: $19118{ }^{\text {206E.02 }}$ | $\bigcirc \cdot 988128866.03$ |
|  | .2263907E 02 | -54330024E.01 | - 59844821 E 01 | -. 40839603 E -02 | $\rightarrow$-14300372E.02 | -. $53113698 \mathrm{E}-03$ |
|  | -18308054E 02 | -40391309E01 | .44491249E-01 | $\rightarrow 30361942 \mathrm{E}-02$ | $\therefore .10637467 E-02$ | $-.31423430 \mathrm{E}=03$ |
|  | -14306677E ${ }^{1} 1322$ | -2992904E-81 | - 32966962 E E-gl |  | -. $78821114 E-03$ | -. $17704422 \mathrm{EEO3}$ |
|  | -11324212E | -22180232E01 | -24431648E-01 | $\because 16672768 \mathrm{E}=02$ | - ${ }^{56419926 E .03}$ | $\because 99742807 \mathrm{E} 04$ |
|  | $.88309584 E$ $.69086673 E$ Oi |  | .10196648E01 |  |  | -957261267E04 |
|  | -54350150E O1 | . 94345690 E 02 | -10392230E-01 | $-.70919176 \mathrm{E} 03$ | $-24846909 \mathrm{E} 0 \mathrm{O}^{\text {- }}$ | -. $19998032 \mathrm{EE-04}$ |
|  | -4350n003E OL | .73283703E07 | .80722401E.02 | -. $59086987 \mathrm{Cl03}$ | -. 19300018E.03 | -. 12574141E-04 |
|  | . $347889560^{01}$ | , 57636168 E 022 | .63486556E-02 | $-.43324815 \mathrm{E}=03$ | $-.15179078 \mathrm{E}=03$ | -, 806141792-05 |
|  | -27473986E Of | -45424222E-02 | . $50035031 \mathrm{E} 0^{\text {P }}$ | $\therefore 341^{45157 E-03}$ | $\rightarrow 11962937 \mathrm{~F} \mathrm{O}^{3}$ | -.51804302E-05 |
|  | .21033173E of | . 35881875 E 02 | . 39524083 E .02 | -, 26972223 E.03 | -.94498613E.04 | -. 33379551 E 05 |
|  | $17088426 E$ <br> .136137018 <br> 18 |  | - $91370628 \mathrm{E}=02$ |  | $\cdots$ | $\begin{gathered} \therefore 2160081=05 \\ \therefore 14107101 \mathrm{E}-05 \end{gathered}$ |

Table D5. Numerical H Matrix (Concluded)

|  | ${ }^{\text {h }}$ 14, 4 | ${ }^{\text {h }} 14,5$ | $\mathrm{h}_{14,7}$ | ${ }^{\text {h }} 14,8$ | h 14,9 | ${ }^{14,11}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -00000000E-80 | .00000000E-80 | .00000000E-80 | .00090000E-80 | .00000000E-80 | .000n0000E-80 |
|  | . $37044420 \mathrm{E}=01$ | -29244815E 01 | -. $822980397 \mathrm{E}-01$ | - $82807761 \mathrm{E}=02$ | . $64396863 \mathrm{E}-02$ | . $64702370 \mathrm{E}-01$ |
|  | -. 27900570 E 00 | . 60106278 Cl O1 |  | . 350429298 Cog | $.35729310 E 001$ $.8260109 E 001$ | . 2733972565000 |
|  | -12319051E 01 | -11767591E 02 | $\cdots 145180380801$ | -14614490E 00 | -149 37343 CO | -11429403E O1 |
|  | . 26171154801 | . 14181883 E 02 | -. 22869156801 | -23024691E 00 | -23485476E 00 | -18012610E 01 |
|  |  | .16176219E 02 | -. 32916197 El | . 33147697800 | . 33821827800 | -25944576E 01 |
|  | .55051617E 01 | . 17608386802 | -. $44272265 \mathrm{E}^{01}$ | . 44693044 E 00 | . $15337484 E 00$ | . 34942574801 |
|  | . 71789788 OL | .18348517E 02 | -. 56369151 E 01 | .56818525E 00 | . 58095696800 | -44567023E 01 |
|  | - 88268029 E 01 | -18243740E 02 | -.67917088E 01 | -60471604E 00 | .69972567E 00 | -53719221E 01 |
|  | -10099933E O2 | . 173156688 E 02 | -.77191606\% 01 | -T7753887E 00 | . 793024949800 | .60889981E Oi |
|  | .10754670E 02 | .15891322E 02 | -.83328915E 01 | . 83948922 EO | . 85704029 EO | .65762373E 01 |
|  | .10844770E O2 | .14194894E 02 | -,86787840E 01 | . 87468116800 | .89345418E 00 | . 68575975 E 01 |
|  | . 10520629 E 02 | . 12254708 E 02 | -.87541388E 01 | .88261249E 00 | .90292972E 00 | .69253172E OL |
| N | . 97966683680808 | -10078147E 02 |  | -85893330E 00 | . 87136034 E O8 | .673173382 01 |
| $\stackrel{\sim}{\sim}$ | . $869699026 E$ O1 | . 78468407 E ¢f |  |  | . 71629375600 | . 62763437501 |
|  | . 577056638 EO | :5749098916. 01 |  | -60517843E 00 | -619966642 00 | .55295761E 01 |
|  | -45745611E 01 | :28671014E 01 |  | . 51691379 E 00 |  | .40682016E 01 |
|  | . 35902119801 | . 19929251 OL | $-\mathrm{Ca} 429374 \mathrm{E}^{01}$ | . 43850833 E 00 | . 44911723 EO | . 345194150 O1 |
|  | .28010941E 01 | . 13665989 E 01 | - 36643331501 | . 37005173 E 00 | .37944419E 00 | .29135149E 01 |
|  | -21596947E \%1 | -90761302E 00 | - 30519440801 | -30817371E 00 | - 31568511500 | -24269970E 01 |
|  | -1644967E | - 39127180 E 00 | $\cdots{ }^{2} 2333002 E 81$ | -25384235E 00 | - 212004285800 | -19969407E 01 |
|  | . 92256053 E 00 | , 2795969796800 |  | . 20759410 E (1686813E 00 | . 2172638297800 | . 16345140 E ol |
|  | .68836079 EO | ,18781229E 00 | $-13388805{ }_{\text {E }} 01$ | .13522926E 00 | . 13854223 E 00 | . 10650092 E O1 |
|  | -51752273E 00 |  | -. 107604086801 | -10874342E 00 | -11140869E 09 | -8564338E 00 |
|  | . 39248720800 | , 74103412 E 01 | -. 06939674800 | , 87811727 E 01 | :09964631E.01 | .69158721E 00 |
|  | -30022658 00 | - 44550344 E 01 | -. 706749964000 | - 713842424 EOD | \% 131344215001 | -562210908 00 |
|  | .23403333E 00 | -28428767E-01 | -.50505726E 00 | .59092922E-01 | -60542213E.01 | -46510953E 00 |
|  | -18435682\% 00 |  | -. $48870662^{2} 00$ | . $49361243 \mathrm{c}=01$ | . $50571983 \mathrm{E}=01$ | , 38876533 E 00 |
|  | -14561957E 00 | -12199846E-01 | -. 40782246800 | -41191688E-01 | .42282122E.01 | . 32442346800 |
|  | .11532210E 00 | . 50351726 E 02 | -. 34013504 ED | . 343530265001 | .35197306E.01 | . 27057887 E 00 |
|  | -91619179E-O1 |  | - 28043069 IE 00 | - $28720422 \mathrm{E}=01$ | -29453509E-01 | -22620132E 00 |
|  | . 72815933 E .01 | .17198080E002 | -023717135E 00 | .23935307E.01 | .24543013E.01 | . 28067162 E |

Table D6. Numerical D Matrix

| $\mathrm{d}_{82}$ | $\mathrm{d}_{84}$ | $\mathrm{d}_{10,2}$ | ${ }^{\text {d }} 10,4$ |
| :---: | :---: | :---: | :---: |
| -. 24639733 E 10 | . 00000000 E -80 | -. 34678143 E 11 | .00000000E-80 |
| $-24639733 \mathrm{~F} 10$ | -.28999449E 05 | -.34678143E 11 | -.63112641E 05 |
| -. $24933064 E 10$ | -.11388985E 06 | -.35090978E 11 | -. 24786295806 |
| -.26100384E 10 | -.26726920E 06 | -.36792319E 11 | -.58166846E 06 |
| -28453026E 10 | -.49020749E 06 | -.40044999E 11 | -.10668578E 07 |
| -.29333016E IO | -.98123456E 06 | -.41283504E 11 | -. 17002315 E 07 |
| -.28159695E 10 | -.11265636E 07 | -. 39632164 E 11 | -. $24517846 E 07$ |
| -.23466413E 10 | -.14221494E 07 | -. 33026803 E 11 | -.30950791E 07 |
| -.22293092E 10 | -.15604233E 07 | 0.31375463 E 11 | -. 33960105 E 07 |
| -.22586422 10 | -.20292784E 07 | -. 31788298 E 11 | -.441639月3E 07 |
| -.23466413E 10 | -.39261458E 07 | 0333026803 E 11 | -. $05446254 E 07$ |
| -.23466413E 10 | -.47129400E 07 | -.33026803E 11 | -.10256956E O8 |
| -.20533111E 10 | -. $50035306 E 07$ | -. 28898453 Ll | -.10889380E OB |
| ..18773130E 10 | -.51474466E 07 | - 26421443 E 11 | -.11202590E Of |
| ..18479800E 10 | -.51048658E 07 | -. 26008608 E 11 | -.11109920E O8 |
| -1A186470e in | -.48104814E 07 | -.25595772E 11 | -.10469240E O8 |
| -.1888470E 10 | -.42336731E 07 | -.25595772E 11 | -92139092E 07 |
| -18186470E 10 | -. 36376598 ET | -. 25595772 L 11 | -. 79167819 E 07 |
| -.18479800E 10 | -.31261531E 07 | -.26008608E 11 | -.68035699E 07 |
| -.18773130E 10 | -.26688042E 07 | -.26421443E 11 | -.58082234E 07 |
| -.19359791E 10 | -.22670806E 07 | -.27247113E 11 | -.49339365E 07 |
| - $\quad 19946455{ }^{\text {a }}$ | $\cdots 19175014 \mathrm{E} 89$ | -. 28072783 E 11 | 4 -34313376 -340818 07 |
|  |  | ".28898453E II | -.34634081E 07 |
| ..19653121E IC | -.11094171E 07 | -.27659948E 11 | -.24144679E 07 |
| -.19653121E 10 | -.91567799E Of | -.27699948E 11 | -.19928251E 07 |
| -.19653121E 10 | -.76205100E OG | -. 27659948 E 11 | -.16584815E 07 |
| -.19653121E 10 | -.63106444E 06 | -.27699948E 11 | -.13734103E 07 |
| -.1965321E 10 | -.53565134E 06 | -. 27699948 E 11 | -11657591E 07 |
| -.19653121E 10 | -.46210283E 06 | -. 27659948 E 11 | -. 10056925 E 07 |
| -.13786518E 10 | -.40008161E 06 | -.19403247E 11 | -.87071332E O6 |
| -. 15540498 E 10 | -.34541769E 06 | -. 21880257 E 11 | -.7517460bE O6 |
| -.17306479E 10 | -.29748422E 06 | -. $24357267 \mathrm{l}^{11}$ | -.64742659E 06 |
| 19066460E 10 | -.25545667E 06 | -.26834278E 11 | -.53596039E 06 |
| 2n820441E 10 | 22018909E O6 | .29311288E 11 | .47920617E 06 |

Table D6. Numerical D Matrix (Concluded)

| $\mathrm{d}_{12,1}$ | ${ }^{\text {d } 12,2}$ | ${ }_{12,3}$ | $\mathrm{d}_{12,4}$ | ${ }_{\text {d }}^{14,4}$ |
| :---: | :---: | :---: | :---: | :---: |
| .. 17919691804 | -.22173237E 04 | . $00000000 \mathrm{E}-8 \mathrm{n}$ | . 00000000 E-80 | . $00000000 \mathrm{E}-80$ |
| -. $17843854 \mathrm{O}_{4}$ | -.22366186E O4 | -.20274681E O1 | -. 30094588 E 0 | . 64702370 E 01 |
| -.17810467E O4 | -.,22878232 04 | -.86353874E OI | -.96449312E 00 | .27397256E 00 |
| -.17807283E 04 | -.25981440E O4 | -. 20059624 O2 | -.20022871e 01 | . $63309506 E 00$ |
| - $17770347 \mathrm{E} \mathrm{O}^{\text {a }}$ | -. 29892516 E O4 | -. 36437696 O2 | -.31022514E O1 | . 11429403 El |
| -.17819077E 04 | $\cdots 31559805 \mathrm{E}$ OA | - $57714714 \mathrm{E}^{02}$ | -.38453217E O1 | . 18012610 E O1 |
|  | -.2772942E O4 | -.83659495E 02 | - 25759489 El | . $259445760^{31}$ |
| -018129179E O4 | -.20832691E O4 | -.1134936E O3 | .34482539E 01 | .34942574801 |
| -18235545E O4 | -.20514743E O4 | -.14537028E 03 | .15682588E 02 | .44567023E 01 |
| -. $18351904 \mathrm{E}^{\text {O }}$ | -.22070513E O4 | -16891010E 03 | .20550771E 02 | . $53719121 E 01$ |
| -. 18428516E O4 | -.23365727E O4 | -18061424E 03 | -21064338E 02 | .60889581E 01 |
|  |  |  | - $-20590105 E 02$ $-283094 E 02$ | .65762373E 01 |
|  | $\because 172185780^{\circ}$ | $\because 124395730^{\circ}$ | $\because 24718470$ E 02 | ¢69293if2E O1 |
| -. 18756872 E O4 | -.16316282E O4 | -.88533631E 02 | -.20750946E 02 | .67317138E 01 |
| -.18725926E O4 | - $14768564 \mathrm{O}^{4}$ | -.73176230E 02 | -.16268680E 02 | .62793437E 01 |
|  |  |  | $\cdots 11930157 E 82$ | .35295761E 4 |
| - $-184448220^{4}$ | -16592409E O4 | -.45507419E 02 | -.576956abe 01 | .40682016E 01 |
| -.18216854E 04 | -.18405322E O4 | -.39093849E 02 | -.36990947E O1 | . 34519415 EL |
|  | $-20430229 E ~$ -21891994804 | -.33163417E 02 | $-29699453 E$ -2203909801 -217 | $29135149 E$ $-24269970 E$ 01 |
| -:17597511E OA | -. $24196954{ }^{\text {O }}$ | -.22599675E 02 | - -17301481 E 01 | .19989407E 01 |
| -.17013133E 04 | -2664144BE O4 | -.18261597E 02 | -.19546749E 01 | . 16345140801 |
| -.15307890E 04 | $-1543888{ }^{3} \mathrm{E}$ O4 | -.14485237E 02 | -.17678703E 01 | .13236032E O1 |
|  | - 15822286804 | -.11319072E 02 | - 15928537 E 01 | -10650092E O1 |
| - 13261919 OA | - 16299820 Of | -.88276510E OI | -.15096645E 01 | :85643138E DO |
| - $12255665 \mathrm{E}^{04}$ | -16864535E O4 | -.69082719E 01 | -.13753831E 01 |  |
| -.11247204E 04 | -.15570005E 04 | -.54359725E O1 | -.17046522E 01 | \%56221090E OO |
| -. 10242829E 04 | -.15403121E O4 | -.43523862E O1 | -.16512674E 01 | -46540953E 00 |
| -.87485479E 03 | -. 21254956 O4 | -.34809032E O1 | -.18614343E 01 | .38876333E 00 |
| -.77608474E 03 | -.21921046E O4 | -27494501E 01 | -.20323797E 01 | . $32442346 E 00$ |
| -.66802029E 03 | -21692790E 04 | -.2185c178E 01 | -.19388274E 01 | . 27057887800 |
| $-.54290719 E 03$ $-.4021636 E 03$ | $-.20301972 E ~ O 4$ $-20639786 E 04$ | $=17105160 \mathrm{E}$ $=13629460 \mathrm{O}$ -1 | $=-23176001 E$ $=24709672 E 01$ | .22620132E 00 |
| -.40281636E 03 | - 20639786E O4 | -.13629460E OI | -.2479672E 01 | .18807162E 00 |

Table D7. Ten-Second Gimbal Positions

| Engine | Flight Coordinates |  |  |
| :---: | :---: | :---: | :---: |
|  | x <br> ft. | y <br> ft. | $z$ <br> ft. |
| 1 | -100.54 | -16.0 | -3.92 |
| 2 | -100.54 | -8.0 | -3.92 |
| 3 | -100.54 | 0.0 | -3.92 |
| 4 | -100.54 | +8.0 | -3.92 |
| 5 | -100.54 | +16.0 | -3.92 |
| 6 | -100.54 | -16.0 | 4.08 |
| 7 | -100.54 | -8.0 | 4.08 |
| 8 | -100.54 | 0.0 | 4.08 |
| 10 | -100.54 | +8.0 | 4.08 |
| 11 | -100.54 | +16.0 | 4.08 |
| 12 | -100.54 | -8.0 | 12.08 |
| 13 | -100.54 | 0.0 | 12.08 |

$$
\frac{x_{\mathrm{cm}}=93.46}{x_{\mathrm{g}}=194.00} \quad \mathrm{z}_{\mathrm{cm}}=8.08
$$

Table D8. Roll Gimbaling

|  | ENGINE t~sec | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | $\mathrm{L}_{\delta_{p} / \mathrm{T}}$ | $\mathrm{N}_{\delta_{\mathrm{p}}} / \mathrm{T}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +1.0 | -. 00418 | -. 00418 | -. 00418 | +1.0 | +1.0 | +1.0 | +1.0 | $-9.24$ | +. 0972 |
|  | 24 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +1.0 | -. 01433 | -. 01433 | -. 01433 | +1.0 | +1.0 | +1.0 | +1.0 | -9. 21 | +. 321 |
|  | 38 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +1.0 | -. 00372 | -. 00372 | -. 00372 | +1.0 | +1.0 | +1.0 | +1.0 | -9.20 | $+.0805$ |
| N | 54 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +1.0 | -. 0118 | -. 0118 | -. 0118 | +1.0 | +1.0 | +1.0 | +1.0 | -9.21 | +. 243 |
| $\checkmark$ | 64 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +1.0 | 0.0 | 0.0 | 0.0 | +1.0 | +1.0 | +1.0 | +1.0 | -9.23 | 0.0 |
|  | 90 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +1.0 | -. 00623 | -. .00623 | -. 00623 | +1.0 | +1.0 | +1.0 | +1.0 | -9.22 | $+.1125$ |
|  | 115 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +1.0 | -. 0429 | - . 0429 | -. 0429 | +1.0 | +1.0 | +1.0 | +1.0 | -9.35 | +. 711 |
|  | 120 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | +. 986 | +. 986 | +. 986 | +. 986 | +.986 |  |  |  | -8.73 | +. 455 |
|  | 145 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | . 965 | . 965 | . 965 | . 965 | . 965 |  |  |  | -8.36\% | $+.962$ |
|  | 150 | -1.0 | -. 0601 | -1.0 | -. 0601 | -1.0 | +1.0 |  | +1.0 |  | +1.0 |  |  |  | -7.91 | +.791 |
|  | 160 | -1.0 | -. 0926 | -1.0 | - . 0926 | -1.0 | +1.0 |  | +1.0 |  | +1.0 |  |  |  | -7.84 | +1.104 |

Table D9. Yaw Gimbal.ing

|  | $\frac{\partial \delta_{i}}{\partial \delta_{i}}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ENGINE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | $\mathrm{L}_{\delta_{\mathrm{r}} / \mathrm{T}}$ | $\mathrm{N}_{\delta_{\mathrm{r}} / \mathrm{T}}$ |
|  | 10 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +. 294 | +. 294 | + . 294 | -.871 | -84.2 |
|  | 24 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | -3.33 | -96.5 |
|  | 38 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | -. 0749 | - . 0749 | -. 0749 | -.612 | -70.3 |
| N | 54 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +. 1538 | $+.1538$ | +. 1538 | -1.88 | -71.7 |
| $\infty$ | 64 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | - . 539 | - . 539 | - . 539 | 0.0 | -55.5 |
|  | 90 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | -. 639 | - . 639 | - . 639 | - . 67 | -48.5 |
|  | 115 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | - . 2085 | - . 2085 | - . 2085 | -3.80 | -49.4 |
|  | 120 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | +. 129 | +. 129 | +. 129 | +. 129 | + . 129 |  |  |  | -1.985 | -38.1 |
|  | 145 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | +. 138 | +. 138 | +. 138 | +. 138 | $+.138$ |  |  |  | -3.565 | -31.3 |
|  | 150 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | - . 127 |  | - . 127 |  | - . 127 |  |  |  | -3.025 | $-30.25$ |
|  | 160 | +1.0 | +1.0 | +1.0 | +1.0 | +1.0 | - . 0958 |  | -. 0958 |  | -. 0958 |  |  |  | -3.96 | -28.0 |

Table D10. Rocket Gains

| $t$ $s e c$ | $\begin{gathered} \frac{{ }^{L_{\delta_{p}}}}{T} \\ \mathrm{ft} / \mathrm{rad} \end{gathered}$ | $\begin{aligned} & { }^{\mathrm{N}_{\delta_{p}}} \\ & \mathrm{~T} \\ & \mathrm{ft} / \mathrm{rad} \end{aligned}$ | $\begin{aligned} & \frac{{ }^{N_{\delta_{r}}}}{\mathrm{~T}} \\ & \mathrm{ft} / \mathrm{rad} \end{aligned}$ | $\begin{aligned} & \frac{L_{\delta_{Y}}}{T} \\ & \mathrm{ft} / \mathrm{rad} \end{aligned}$ | $\begin{aligned} & \frac{\mathrm{Y}_{\delta_{r}}}{\mathrm{~T}} \\ & \mathrm{l} / \mathrm{rad} \end{aligned}$ | $\begin{aligned} & \frac{\Psi_{\delta_{p}}}{T} \\ & 1 / \mathrm{rad} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -9.22 | . 110 | -84. | -. 9 | . 84 | -. 0020 |
| 5 | -9.22 | . 100 | -84. | -. 9 | . 84 | -.0020 |
| 10 | -9.22 | . 097 | -85. | -. 9 | . 85 | -. 0020 |
| 15 | -9.22 | . 115 | -90. | -1.6 | . 89 | -.0025 |
| 20 | -9.22 | . 280 | -95. | -3.0 | . 97 | -.003 2 |
| 25 | -9.22 | . 330 | -97. | -3.4 | 1.00 | -.0034 |
| 30 | -9.22 | . 260 | -89. | -2.6 | . 96 | -. 0025 |
| 35 | -9.22 | . 090 | -74. | -. 8 | . 80 | -. 0012 |
| 40 | -9.22 | . 090 | -71. | -. 7 | . 76 | -. 0010 |
| 45 | -9.22 | . 150 | -71. | -1.3 | . 77 | -. 0015 |
| 50 | -9.22 | . 220 | -72. | -1.7 | . 80 | -.0023 |
| 55 | -9.22 | . 240 | -71. | -1.7 | . 80 | -. 0028 |
| 60 | -9.22 | . 06 | -65. | -. 5 | . 70 | -. 00008 |
| 65 | -9.22 | . 000 | -57. | . 0 | . 64 | -.0000 |
| 70 | -9.22 | . 005 | -54. | . 0 | .63 | -, -001 |
| 75 | $-9.22$ | . 012 | -50. | . 0 | . 62 | -.0001 |
| 80 | -9.22 | . 030 | -50. | -. 1 | . 62 | -.0003 |
| 85 | -9.22 | . 060 | -49. | -. 4 | . 62 | -.cre9 |
| 90 | -9.22 | . 112 | -48. | -. 7 | . 63 | -. 00015 |
| 95 | -9.22 | . 230 | -49. | -1.0 | . 64 | -.0027 |
| 100 | -9.23 | . 340 | -49. | -1.8 | . 66 | -. 00042 |
| 105 | -9.25 | . 460 | -49. | $-2.3$ | . 68 | -.0060 |
| 110 | -9.28 | . 580 | -49. | -3.1 | . 70 | -.0081 |
| 115 | -9.32 | . 720 | -50. | -3.9 | . 73 | -. 010 c . |
| 120 | -8.73 | . 455 | -38. | -2.0 | . 57 | -.007 |
| 125 | -8.67 | . 560 | -37. | -2.3 | .67 | -.0c90 |
| 130 | -8.58 | . 650 | -36. | -2.6 | .67 | -.0110 |
| 135 | -8.51 | . 760 | -35. | -2.9 | . 67 | -.0195 |
| 140 | -8.44 | . 870 | -32. | -3.2 | . 67 | -.0155 |
| 145 | -8.37 | . 962 | -30. | -3.6 | . 67 | -.0175 |
| 150 | -7.91 | 1.020 | -29. | -3.0 | . 47 | -.0150 |
| 155 | -7.87 | 1.060 | -29. | -3.5 | . 53 | -. 190 |
| 160 | -7.84 | 1.104 | -28. | -4.0 | . 59 | -. 230 |
| 165 | -7.77 | 1.160 | -26. | -4.5 | . 65 | $\cdots .0270$ |
| 170 | -7.70 | 1.210 | -25. | -5.0 | . 71 | -. 0310 |

Table D11．Heading（ $u_{21 D}$ ）Covariance Results

| $\widetilde{\mathrm{t}}$ | $\delta_{p}$ | $\dot{\delta}_{p}$ | $\delta_{r}$ | $\dot{\delta}_{\mathrm{r}}$ | $\delta_{\mathrm{a}}$ | $\dot{\delta}^{2}$ | $\mathrm{M}_{660}$ | $\dot{\mathrm{M}}_{660}$ | $\mathrm{M}_{1880}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ．COOE－80 | ．000t－80 | －OUDE－80 | ．CODE－80 | ．0006－80 | －000E－80 | －000E－80 | ． $\mathrm{nOOL}-80$ | －000E－80 |
| 2 | －SIRE－04 | －．753E－02 | －133E－03 | ．115E－02 | －000E－80 | ．ODUE－BI | －．155E 05 | －．104t 06 | －．151t 06 |
| 3 | －．157E－O2 | －．813t－C7 | －175E－0？ | －． 47 $^{\text {P }}$ E－04 | －000t－80 | －000E－80 | －．331E 06 | －． 321 t 05 | －． 236 E 07 |
| 4 | －．653E－02 | －．147t－02 | ． $25 \mathrm{RE}-02$ | ． 37 AE－04 | －OUNE－80 | ．000e -80 | －．883E 06 | －．794E 05 | －．446E 07 |
| 5 | －．143E－01 | －． $224 \mathrm{E}-02$ | －312E－02 | －． $382 \mathrm{E}-04$ | ． $0000_{t-80}$ | ． 000 E－40 | －．181E 07 | －．118t 06 | －． 72 ＇E 07 |
| 6 | －．224E－01 | －．203E－02 | － $3<5 \mathrm{E}-02$ | －． $117 \mathrm{E}-03$ | ． $0000 \mathrm{E}-80$ | ．000E－80 | －． 304 E 07 | －．155t 06 | －．102E 08 |
| 7 | －．279E－d1 | －．111E－02 | －16RE－02 | －．585E－03 | ．000E－80 | ．000E－ $0^{0}$ | －． 431 E 07 | －．13aE 06 | －．112E OB |
| 8 | －．280E－01 | －216E－03 | －．529E－02 | －． $2<8 \mathrm{AE-02}$ | ． $000 \mathrm{E}-80$ | ． 000 E －80 | －．481E 07 | ．135t 05 | －．57日E 07 |
| 9 | －．268E－01 | ．644E－03 | －．176E－01 | －．${ }^{2} 12 \mathrm{E}-02$ | ．000 E－80 | ． $000 \mathrm{E}-80$ | －．4l7E 07 | ．107t 06 | ．56日E 07 |
| 10 | －．341E－01 | ． .169 E －0 2 | －．209t－01 | －． $537 \mathrm{E}-03$ | ．000E－80 | ． $000 \mathrm{E}-80$ | －．487E 07 | －．103t 06 | ．T16E 07 |
| 11 | －．thle－01 | －．147E－01 | －．119E－0］ | ． $818 \mathrm{E}-02$ | ．000 E－80 | ． 000 E－80 | －．113E Of | －．118t 07 | －．351t 08 |
| 12 | －．11CE 00 | －． 59 RE．02 | －167E－01 | ． $169 \mathrm{E}-02$ | ．000 E－80 | ． 000 E－80 | －．143t OR | －．959t 06 | －．47＇E OA |
| 13 | －．112E 00 | －1／3E－02 | ．190E－01 | －．475E－03 | ．000E－80 | ．000E－80 | －．163E OA | ．． 179 t 06 | －．50．1E OX |
| 14 | －．987E－01 | －607t－02 | ．138E－01 | －． $857 \mathrm{E}-03$ | ．000E－80 | ．000E－80 | －．142E OR | －． 148 E O6 | －．40＇E OB |
| 15 | －．426E－01 | －973t－02 | ． $434 \mathrm{E}-02$ | －．112E－02 | ． 000 E－80 | ． $0000 \mathrm{E}-80$ | －．693E 07 | ．911E 06 | －．18le O8 |
| 16 | ．104E－01 | －10RE－01 | －． $164 \mathrm{E}-02$ | －．471E－03 | ． $000 \mathrm{E}-80$ | ． $000 \mathrm{E}-80$ | ．175E 07 | ．14at 07 | ． 50 代 07 |
| 17 | －499E－01 | ． $722 \mathrm{E}-02$ | －． 3 －3E－02 | ． $132 \mathrm{E}-03$ | ． $000 \mathrm{E}-80$ | ．000E－80 | ． 762 E 07 | ．137t 07 | ．19くE 08 |
| 18 | ． $600 \mathrm{E}-01$ | ．736E－U3 | －． $290 \mathrm{E}-02$ | － 3 ¢7E－03 | ． $000 \mathrm{E}-80$ | ．000E－80 | ． 90 ［ E 07 | －T9RE 06 | ．217E 08 |
| 19 | ．501E－01 | －． $288 \mathrm{t}-02$ | －．135E－02 | ． $327 \mathrm{E}-03$ | ． $0000_{E-80}$ | ． $000 \mathrm{E}-80$ | .753 E 07 | ．192t 06 | ． 173 E O8 |
| 20 | ． $345 \mathrm{E}-91$ | －． $305 \mathrm{E}-02$ | －． $203 \mathrm{E}-03$ | ．196E－03 | －000E－80 | ． $0000 \mathrm{E}-80$ | ．508E 07 | －．133t 06 | －112E OR |
| 21 | ．187E－01 | －．346t－02 | －． $404 \mathrm{E}-04$ | ． $235 \mathrm{E}-04$ | $.000 \mathrm{E}=80$ | ． $000 \mathrm{E}-80$ | ．281E 07 | －． 263506 | ．615E 07 |
| 22 | ． $755 \mathrm{E}-02$ | －． $231 \mathrm{E}-02$ | ． 344 E －04 | ． $198 \mathrm{E}-05$ | ．000E－80 | ． $000 \mathrm{E}-80$ | ．118E 07 | －． 264 E 06 | ． 253 E 07 |
| 23 | ．173E－02 | －．113E－02 | ．195E－04 | －． $713 \mathrm{E}-05$ | ． $0000 \mathrm{E}-80$ | ． $000 \mathrm{E}-80$ | ． 284 E 06 | －．185E 06 | ． 604 E 06 |
| 24 | ．． $371 \mathrm{E}-03$ | －． 367 E－03 | ．139E－04 | －．417E－05 | ． $000 \mathrm{E}=80$ | ． $0000 \mathrm{E}-80$ | ．．707E 05 | －． 102 E 06 | －．165E 06 |
| 25 | －．937E－03 | －． 58 RE－04 | ． 278 E －04 | ． $808 \mathrm{E}-05$ | ． $000 \mathrm{E}-80$ | .000 E －80 | －． 162 E 06 | －．419t 05 | －． $372 \mathrm{E}^{06}$ |
| 26 | －． $567 \mathrm{E}-03$ | ． 744 E －04 | ．199E－04 | －．272E－0H | ． $0000 \mathrm{E}-80$ | ．000 E＿80 | ．． 121 E 06 | －．803t 04 | －． 271 E． 06 |
| 27 | ．．384E－03 | ． 496 E－ 04 | ．156E－04 | －．692E－06 | ． $000 \mathrm{E}_{-80} 80$ | ． 000 E － 80 | －． 912 E 05 | －． 679 E | ．．210 06 |
| 28 | －． 255 E－03 | －348E－04 | －139E－04 | －． $774 \mathrm{E}-07$ | ． 000 E － 80 | ．000E－80 | －．693E 05 | －．551t 04 | －．161t 06 |
| 29 | －． $180 \mathrm{E}-03$ | －204E－04 | ．195E－04 | ． $161 \mathrm{E}-05$ | ．000E－80 | ．000E．80 | －． 549 E 05 | －． 461 L 04 | －．134E O6 |
| 30 | －．137E．03 | ．117E－04 | ．174E－04 | －． $384 \mathrm{E}-06$ | ． $000 \mathrm{E}-80$ | ．000E＿80 | －．441E 05 | －．400E 04 | －．109E 06 |
| 31 | －．105E－03 | －927E－05 | ．144E－04 | －． $717 \mathrm{E}-06$ | ． $0000 \mathrm{E}-80$ | ． $000 \mathrm{E}-80$ | －．355E 05 | －．313t 04 | －．847t 05 |
| 32 | －．779E－04 | ． $729 \mathrm{E}-05$ | ． $132 \mathrm{E}-04$ | －． $249 \mathrm{E}-06$ | ．000E－80 | ． $000 \mathrm{E}-80$ | －．284t 05 | －．314t 04 | ．．70bE 05 |
| 33 | －． $588 \mathrm{E}-04$ | ． 514 t －05 | ．141E＿04 | ． 331 E － 06 | ． $000 \mathrm{E}_{\text {－} 80}$ | $.000 \mathrm{E}_{-80}$ | －．237E 05 | －． 195404 | －．607E 05 |
| 34 | －． $478 \mathrm{E}-04$ | ． $291 \mathrm{E}-05$ | ． $145 \mathrm{E}-04$ | ． $233 \mathrm{E}-06$ | ． $000 \mathrm{E}_{\mathrm{E}-80}$ | .$_{000} 00{ }_{\text {E }} 80$ | －．195E 05 | －． 215 E 04 | －．52be 05 |
| 35 | －． $388 \mathrm{E}=04$ | ．239E－05 | ．155E＿04 | ． $334 \mathrm{E}-06$ | ． $0000_{t-80}$ | ．000E＿80 | ．．163E 05 | －．18lt 04 | －．476e 05 |

Table D11．Heading（ $\mathrm{u}_{21 \mathrm{D}}$ ）Covariance Results（Continued）
mean respenses

| $\dot{\mathrm{M}}_{1880}$ |  |
| :---: | :---: |
| ．O0CE－80 |  |
| －．129E | 07 |
| －． 248 EE | $c^{5}$ |
| －． 209 E | 06 |
| －． 215 E | 06 |
| －． 210 E | 06 |
| －32CE | 06 |
| －205E | 07 |
| ． 284 E | 07 |
| ． 239 E | 06 |
| －．900E | 07 |
| －． 342 E | 07 |
| －． 124 E | 07 |
| .283 E | 06 |
| .274 E | 07 |
| ． 358 E | 07 |
| $.289 E$ | 07 |
| .147 E | 07 |
| ．193E | 06 |
| －． 0429 E | 06 |
| －． 589 E | 06 |
| －． 577 E | 06 |
| －． 395 E | 06 |
| －．221E | 06 |
| －．106E | 06 |
| －． 169 E | 05 |
| －． 14 AE | － 0 |
| －． .968 E | 04 |
| －．141E | 05 |
| －． 985 E | － 04 |
| －． 6.655 | C4 |
| －． 599 E | 04 |
| －． 588 E | 04 |
| －． 420 E | C4 |
| －．420E | 04 |


| ${ }^{2}$ | $\dot{\mathbf{a}}_{\mathbf{y}}$ | $\bar{q} \beta$ |
| :---: | :---: | :---: |
| － $900 \mathrm{E}-80$ | －OOOE－80 | ．OCOE－80 |
| －138k－O1 | －397E－01 | ．107E－01 |
| －236E－C1 | －． $3 \angle 9 E-01$ | －523E 00 |
| －．613E－01 | －． 132 E on | ．180E OL |
| －．251E 00 | －．331E 00 | ．405E 01 |
| －．555E 00 | －．723E On | ．720E 01 |
| －．103t 01 | －．560E On | ．109E 02 |
| －．164E 01 | －LbIE 01 | $.146 E 02$ |
| －． 227 E C1 | ．850E 01 | $.176 E 02$ |
| －．272E 01 | ．148E 02 | ．192E 02 |
| －．216E 01 | －．148E 02 | .184 E 02 |
| －．250E O1 | －． 276 E 02 | ．206E 02 |
| －．307E O1 | －． 298 E 02 | .235 E U2 |
| －．290E 01 | －．272E 02 | ．205E 02 |
| ． 155 E 01 | －．187E 02 | ．101E 02 |
| －305E 00 | －．880E 01 | －．244E O1 |
| ．178t 01 | －．230E 01 | －．110E 02 |
| － 224 Cl | ．179E OO | ．．133E 02 |
| ．193t 01 | －30EE OO | －．111E 02 |
| ．135E O1 | ．187E－01 | －．747E 01 |
| ．753E 00 | －．212E On | －．412E 01 |
| －321E 00 | －．278E 00 | －．171E 01 |
| －780E－01 | －．240E 00 | －．410E 00 |
| －．182E－01 | －．258E 00 | $.973 E-01$ |
| －．421上－01 | －． 166 E On | ．218E 00 |
| －．309上－01 | －． $553 \mathrm{E}-01$ | .158 E 00 |
| －．234E－01 | －．940E－02 | $.115 E 00$ |
| －． $173 \mathrm{E}-01$ | ．305E－01 | ． $856 \mathrm{E}-01$ |
| －．134E－01 | ． 5 \＆ 3 E－01 | ． $642 \mathrm{E}-01$ |
| － $106 \mathrm{E}-11$ | ．850E－01 | $.495 E-01$ |
| －．802E－02 | ．124E On | ． 3 日 $7 \mathrm{E}-01$ |
| －．708E－02 | .115 E O | ．303E－01 |
| －． $566 \mathrm{E}-02$ | ．lloe on | ．238E－01 |
| －． $395 \mathrm{E}-02$ | ．127E OO | $.188 E-01$ |
| －．290E．02 | ．116E On | ．149E－01 |

Table D11. Heading ( $\mathrm{u}_{21 \mathrm{D}}$ ) Covariance Results (Continued)

|  | $\underset{\mathrm{t}}{\text { RES }}$ | SE CCVARI | ${ }^{\text {i }}$ p | $\delta_{r}$ | $\delta_{r}{ }^{\text {c }}$ | $\delta_{\text {a }}$ | $\delta_{\text {a }}$ | $\mathrm{M}_{660}$ | $\dot{\mathbf{M}}_{660}$ | $\mathrm{M}_{1880}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\frac{1}{2}$ | - COOE-80 | $.000 t-80$ .3505 | . U00E-80 | . $000 \mathrm{E}-80$ | .000E-40 | . $000 \mathrm{E}-80$ | . OOOE-80 | . 2000 -80 | . 000t-HO |
|  | 2 | :584E-C5 | . $359 \mathrm{E}=\mathrm{CO}_{3}$ | . $13 \mathrm{fE}-04$ | -900E-03 | -000E-80 | -000E-80 | -175E 12 | . 773 t 14 | -18YE 14 |
|  | 3 | -184E-C3 | -620t-03 | . $296 \mathrm{E}-04$ | .301E-03 | -000E-80 | -000E-80 | $.212 E^{3}$ | -183E 15 | . 57 OE 14 |
|  | 4 | . $356 \mathrm{E}-\mathrm{C} 3$ | -341E-02 | .436E-04 | . $631 \mathrm{E}-03$ | .000E-80 | .000E-80 | .427e 13 | .293t 15 | -976E 14 |
|  | 5 | .536E-03 | - 7b PE-02 | . $417 \mathrm{E}-04$ | . 122E-02 | .000E-80 | .000E-80 | .659E 13 | .331E 15 | . 123 E 15 |
|  | 6 | .567E-03 | .105E-C1 | .330E-04 | .138E-02 | . $000 \mathrm{E}_{\mathrm{E}-80}$ | .000E-80 | -85HE 13 | . 274 t 15 | . 124 E 15 |
|  | 7 | .434 E - 3 | -367E-02 | . $774 \mathrm{E}-04$ | .424E-03 | .000E-80 | .000E-80 | .952E 13 | .571E 14 | . 716 E 14 |
|  | 8 | . $315 \mathrm{E}-03$ | -107E-C1 | .615E-04 | .411E-C2 | .000E-80 | . 000 E-80 | . 144 E 13 | . 35at 15 | .63yt 14 |
|  | 9 | .943E-C3 | .154E OC | . 719 E -03 | . $585 \mathrm{E}-01$ | .000E-80 | .000E.BO | .671E 13 | . 362 t 16 | . 590 t 15 |
|  | 10 | .1ぐ8E-C2 | . 250E On | . 10 FE-02 | .954E-01 | .000t-80 | .000E-80 | .870E 13 | . 542 t 16 | .870 E 15 |
|  | 11 | . $335 \mathrm{E}-02$ | -166E On | .4C2E-03 | . $469 \mathrm{E}-01$ | .000E-80 | . 0000 E-80 | .474E 14 | . 211 t 16 | .86yt 15 |
|  | 12 | . $723 \mathrm{E}-02$ | .411E 00 | . 107 E -02 | .123E 00 | .000 E-80 | .000E_80 | .991E 14 | . 563 t 16 | . 20 ¢E 16 |
|  | 13 | . $716 \mathrm{E}-02$ | . 333 E 0 | . $105 \mathrm{E}-02$ | .140 E 00 | . 000 E-80 | . $000 \mathrm{E}_{-80}$ | .123E 15 | . 431 t 16 | .194t 16 |
| N | 14 | .498E-02 | -189E CO | . 714 E -03 | .994E-01 | . $0000 \mathrm{E}-80$ | .000E_80 | .109 E 15 | .255E 16 | .134E 16 |
| $\omega$ | 15 | . $290 \mathrm{E}-\mathrm{C2}$ | . 726E-01 | .267E-03 | . $380 \mathrm{E}-01$ | .000E-80 | .000E-80 | . 70 be 14 | .100E 16 | .686E 15 |
|  | 16 | .181E-62 | . 224 E -01 | .779E-04 | $.105 \mathrm{E}-01$ | . $000 \mathrm{E}-80$ | .000E-80 | . 434 E 14 | . 334 E 15 | .342E 15 |
|  | 17 | .119E-02 | . $737 \mathrm{E}-02$ | .178E-04 | $.244 \mathrm{E}-02$ | . $000 \mathrm{E}-80$ | .000E-80 | . 264 E 14 | .108E 15 | . 173 E 15 |
|  | 18 | . $703 \mathrm{E}-03$ | . $217 \mathrm{E}-02$ | . $373 \mathrm{E}-0 \mathrm{~S}$ | . $501 \mathrm{E}-03$ | . $000 \mathrm{E}-80$ | .000E-80 | -151E 14 | . 410 E 14 | -916E 14 |
|  | 19 | -412E-03 | . $760 \mathrm{E}-03$ | . $670 \mathrm{E}-06$ | .884E-04 | . $000 \mathrm{E}-80$ | $.000 \mathrm{E}-80$ | .920E 13 | .190t 14 | .494 E 14 |
|  | 20 | .242E-C3 | . $291 \mathrm{E}-03$ | .473E.07 | . $977 \mathrm{E}-05$ | . $000 \mathrm{E}_{\mathrm{E}} \mathbf{8 0}$ | $.000 \mathrm{E}_{-80}$ | .518E 13 | . 97 7HE 13 | . 250 E 14 |
|  | 21 | . $130 \mathrm{E}-03$ | . 133 E -03 | .107E-07 | . 304 E - 05 | . $000 \mathrm{E}_{\text {- }} 80$ | $\stackrel{.000 E-80}{ }$ | . 291 l 13 | . 556 Et 13 | .141E 14 |
|  | 22 | . 674 E-04 | . $581 \mathrm{E}-04$ | $.231 \mathrm{E}_{-} \mathrm{O}_{8}$ | . $763 \mathrm{E}-06$ | . $0000{ }_{t-80}$ | . $000 \mathrm{E}_{-80}$ | . 165E 13 | .322 El 13 | . 77 IE 13 |
|  | 23 | . $333 \mathrm{E}-\mathrm{O} 4$ | . 256E.04 | . 156 E - OR | . 271 E -06 | . $0000 \mathrm{E}-80$ | . $000 \mathrm{E}_{-8} 8$ | $.914 \mathrm{E}^{12}$ | .184 t 13 | -424E 13 |
|  | 24 | -157E_C4 | . 127E_04 | -153E.0a | .461 E-06 | . $000 \mathrm{E}_{-80}$ | -000 E-80 | . 523 E 12 | $\cdot 109 t 13$ | - 253E 13 |
|  | 25 | -. 24 E_05 | -584E_05 | -476E.0R | -306E-06 | -000E_80 | -000 E_80 | . 295E 12 | .639E 12 | $.150{ }^{\text {E }} 13$ |
|  | 26 | . 371 E-C5 | . $235 \mathrm{E}-05$ | . 402 E - 0 R | . $228 \mathrm{EE}-06$ | . 000 E-80 | . $000 \mathrm{E}-80$ | .163 E 12 | .349 E 12 | .851E 12 |
|  | 27 | .164E-C5 | . 923 E -06 | . 390 E - 0 R | .147E-06 | . 000 E- 80 | .000E-80 | .926E 11 | $\stackrel{.1925}{ } 12$ | .498 E 12 |
|  | 28 | .697E-06 | . 346 E -06 | $.310 \mathrm{E}_{-} 08$ | . 799 E -07 | . $0000_{\mathrm{E}-80}$ | $.000 \mathrm{E}-80$ | . 522 E 11 | .105E 12 | . 288 E 12 |
|  | 29 | - $346 \mathrm{E}-06$ | . $171 \mathrm{E}-06$ | - $6 \angle 3 \mathrm{E}-0 \mathrm{O}$ | .829E-07 | . $000 \mathrm{E}_{\mathrm{E}-80}$ | . $000 \mathrm{E}_{-6} 0$ | . 318 E 11 | .761E 11 | .194E 12 |
|  | 30 | -193E-C6 | $.743 \mathrm{E}-07$ | -529E-0A | -414E-07 | - $000 \mathrm{E}-80$ | .000 E-80 | $.200{ }^{-11}$ | . 487 F 11 | .130 t 12 |
|  | 31 | . 115 E -C6 | . 362 E -07 | -O18E-OR | - $907 \mathrm{E}-07$ | -000E-80 | . 000E-80 | .126 E 11 | . 254 tl | - 512 E 11 |
|  | 32 | . 667 E - $\mathrm{Cl}^{\text {c }}$ | .127E-07 | - 5y7E-08 | -173E-07 | . 000E-80 | -000 E- 80 | - A20E 10 | .202 E 11 | . 586 E 11 |
|  | 33 | -377E-07 | . $334 \mathrm{E}-09$ | - 444 E - 0 R | . 363 E - 08 | . $000 \underline{E}_{\text {- }} 80$ | . $000 \mathrm{E}_{\text {_ }} 80$ | . 532 E 10 | $\cdot 154 \mathrm{ll}$ | - 408 E 11 |
|  | 34 | . 259 E . 07 | ¢ 812 E ¢ | - 576E_OR | $\stackrel{-864 E-09}{ }$ | $\stackrel{.000}{\text { E }} \mathbf{- 8 0}$ | ${ }_{-}^{.000} \mathrm{E}_{-80}$ | $.362{ }^{-3} 10$ | $\bigcirc 216 \mathrm{~L} 11$ | -344t 11 |
|  | 35 | .174E-^7 | .130E-09 | . 531 E -08 | . $682 \mathrm{E}-10$ | $.000 \mathrm{E}=80$ | $\stackrel{000}{ } \mathrm{E}_{-80}$ | . 250 E 10 | . 231511 | . 276 E 11 |

Table D11. Heading ( $\mathrm{u}_{21 \mathrm{D}}$ ) Covariance Results (Concluded)
resfense ccuarlarces

|  | $\tilde{\mathfrak{t}}$ | $\mathrm{M}_{1880}$ | $a_{y}$ | ay | $\bar{q} \beta$ | $\dot{q} \dot{\beta}$ | $\phi$ | $\dot{\phi}$ | y | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | .000E-80 | .000t-80 | . O00E-80 | .000E-80 | .000t-80 | .000E-80 | . $000 \mathrm{E}-80$ | .000E-80 | .000E-B0 |
|  | 2 | -113E 16 | -132E 00 | .102E 01 | .715E-01 | -512E 00 | .606E-08 | . $254 \mathrm{E}-06$ | -998E-02 | -334E-02 |
|  | 3 | . $374 E^{5}$ | - 784E-01 | -713E00 | -111E $0^{2}$ | . $737 \mathrm{E}-01$ | -102E-05 | . 747E-06 | -974E 02 | .451E 01 |
|  | 4 | $.113 E^{16}$ | . 232 E 00 | -r98e 01 | . 234 E 02 | .435E 00 | .211E-05 | . $257 \mathrm{E}-05$ | .274E 03 | .531E 00 |
|  | 5 | .198E 16 | -492E 00 | .369E 02 | .370E 02 | .147E 01 | . $314 \mathrm{E}-05$ | .450E-05 | .223t 03 | .208t 01 |
|  | 6 | .242E 16 | . 753 EO | . 810e 02 | .498E 02 | .408E 01 | .338E.05 | .486E-05 | .513E 01 | -160E 02 |
|  | 7 | . 724 E 15 | .710E 00 | .392E 02 | .613E 02 | .109E 02 | .283E-05 | .166E-05 | . 668 t 03 | .498E 02 |
|  | 8 | -431E 16 | .164E 01 | . 245 E 03 | .734E 02 | . 249 E 02 | -190E-05 | .298E-05 | . 4 BIE 04 | -113E 03 |
|  | 9 | . 569 E 17 | .124E 02 | . 470 E 04 | .884E 02 | .506E 02 | .198E-05 | . $401 \mathrm{E}-04$ | .172E 05 | .219E 03 |
|  | 10 | .949E 17 | .215E 02 | . 104 E 05 | .104E 03 | .978E 02 | .293E-05 | .613E-04 | .452t 05 | . 379 E 03 |
|  | 11 | .542E 17 | .144E 02 | . 896004 | .116E 03 | .183 E 03 | .168E-04 | . $463 \mathrm{E}-04$ | .990E 05 | . 560 E 03 |
|  | 12 | .141E 18 | .360E 02 | . 270 E 05 | .189 E 03 | . 300 E 03 | $.374 E_{\text {_ }} 04$ | . $111 \mathrm{E}-03$ | .18aE 06 | .751t 03 |
|  | 13 | .125E 18 | .346E 02 | .289E 05 | .250e 03 | .436E 03 | . $408 \mathrm{E}=04$ | . 88 EE-04 | . 324E 06 | .98BE 03 |
| N | 14 | .761E 17 | . 231 E 02 | . 212 E 05 | . 221E 03 | .467E 03 | .298E-04 | . $529 \mathrm{E}-04$ | . 516 t 06 | .125E 04 |
| $\stackrel{\omega}{\omega}$ | 15 | . 292E 17 | . 106 E 02 | . 101 E 05 | .143 E 03 | . 329E 03 | .182E-04 | . 226E-04 | . 771 E 06 | .140E 04 |
|  | 16 | .837E 16 | .441E 01 | . 364 Ca | .880E 02 | .192E 03 | .11日E-04 | . $841 \mathrm{E}-05$ | .107E 07 | .134E 04 |
|  | 17 | .220E 16 | -210E 01 | . 123 E 04 | . 552 E 02 | .106E 03 | . 797E-05 | . $341 \mathrm{E}-05$ | .141E 07 | .117E 04 |
|  | 18 | .981E 15 | .112E 01 | .381E 03 | .338 E 02 | .581 E 02 | .484E-05 | .126E-05 | .175t 07 | .998E 03 |
|  | 19 | .173E 15 | .639E 00 | . $116 E^{03}$ | .19RE 02 | . 322 E 02 | . $286 \mathrm{E}-05$ | . $534 \mathrm{E}-06$ | . 211 t 07 | . 857E 03 |
|  | 20 | .595E 14 | .371e on | .288E 02 | .112E 02 | .181E 02 | .169E-05 | . $241 \mathrm{E}-06$ | .247E 07 | .747E 03 |
|  | 21 | . 311 l 14 | . 210 E 0 | . 138802 | . 624 E 01 | .102E 02 | . 915 E -06 | . $113 \mathrm{E}-06$ | . 283 E 07 | .657E 03 |
|  | 22 | .167E 14 | .122E OO | . 550 E 01 | .345 El | $.577{ }^{-1} 01$ | . 479 E .06 | . $514 \mathrm{E}-07$ | -319E 07 | . 587E 03 |
|  | 23 | .925E 13 | .681E-01 | . 261E O1 | .188E 01 | . 325 E 01 | . 239 E .06 | . $224 \mathrm{E}-07$ | . 357 t 07 | . $534 \mathrm{E}^{03}$ |
|  | 24 | $.596{ }^{.9} 13$ | . 376 E-01 | . 283 E 01 | . 102 El | .182E 01 | . 115 E -06 | .107E-07 | . 394 ET | .494 E 03 |
|  | 25 | .343E 13 | . 202E-01 | .171 Ol | . 539 E 00 | .986t 00 | . $530 \mathrm{E}-07$ | . $44 \mathrm{BE-08}$ | . 43 北 07 | .466 O3 |
|  | 26 | .185E 13 | .110E-01 | .109 Ol | . 283 E 00 | .503 E 00 | . $236 \mathrm{E}-07$ | .180E-08 | .473E 07 | .444E 03 |
|  | 27 | . 997 E 12 | . $604 \mathrm{E}-02$ | . 867E 0 O | .149 E 00 | . 2488 E 00 | . $103 \mathrm{E}-07$ | . 698 E - 09 | .515 OF | . $428 \mathrm{E} ~ 03$ |
|  | 28 | .522 E 12 | .331E-02 | .669E 00 | . $793 \mathrm{E}-01$ | . 123 E 00 | . $430 \mathrm{E}-08$ | . 264E-09 | . 557t 07 | .415E 03 |
|  | 29 | .319 E 12 | -178E-G2 | .940 E 00 | . $433 \mathrm{E}-01$ | . $618 \mathrm{E}-01$ | . 207 E -08 | . $114 \mathrm{E}-09$ | .602t 07 | .406E 03 |
|  | 30 | .16aE 12 | . 106 t -02 | .702 E O | $.248 \mathrm{E}-01$ | . $303 \mathrm{E}=01$ | $.113 \mathrm{E}-08$ | . $496 \mathrm{E}-10$ | . 647 t 07 | . 399 E 03 |
|  | 31 | .845E 11 | . $675 \mathrm{E}-03$ | .595 E on | . $146 \mathrm{E}-01$ | . $134 \mathrm{E}-01$ | . 603 E -09 | . $204 \mathrm{E}-10$ | .695E 07 | . 394 E 03 |
|  | 32 | . 354 E 11 | . 311 E -03 | .390 E 00 | . 865 E-02 | . $515 \mathrm{E}-02$ | . 344 E -09 | . $750 \mathrm{E}-11$ | . 744 E 07 | $.390_{t} 03$ |
|  | 33 | .117E 11 | . 222 E -C3 | .160 E OO | - $517 \mathrm{E}-02$ | .170E-02 | .194E-09 | :254E-11 | . T95E 07 | .386 E 03 |
|  | 34 | .323 E 10 | .104E-C3 | . $767 \mathrm{E}-01$ | . $315 \mathrm{E}-02$ | . 436 E-03 | .129E-09 | . $686 \mathrm{E}-12$ | -947t 07 | $.384 \mathrm{E}^{03}$ |
|  | 35 | . 373 E 09 | . $513 \mathrm{E}-04$ | .126E.01 | .196E-02 | . $487 \mathrm{E}-04$ | . $854 \mathrm{E}-10$ | . $219 \mathrm{E}-12$ | .902 O | . 382 E 03 |

Table D12．Drift（ $\mathrm{u}_{22 \mathrm{D}}$ ）Covariance Results

| $\tau$ | $\delta_{p}$ | $\delta_{p}$ | $\delta_{r}$ | $\dot{\delta}_{r}$ | $\delta \mathrm{a}$ | $\dot{\delta}$ | $\mathrm{M}_{660}$ | $\dot{\mathrm{M}}_{660}$ | $\mathrm{M}_{1880}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ． 000 E－80 | ： 000 E－80 | ． $0000^{E-80}$ | －0： $5 E-8.5$ | －n¢0－－－J | －$) 3.3$ E－8？ | ．9J3E－30 | －9JJE－80 | － $110 \mathrm{JE=80}$ |
| 2 | ．831E－04 | ．663E－03 | －145E－03 | －125E－0才？ | －：ij J－${ }^{\text {a }}$ | －刀u比－8j | $\therefore 164 E 05$ | －． $112 \dot{F} 16$ | －．17JE UK |
| 3 | －．189E．02 | －．950E＿03 | ．169E－02 | ． 229 －04 |  | ．） 7 OE－8， | －．329E 05 | －．353E $n 5$ | －．23JE Ot |
| 4 | －． $627 \mathrm{E}=02$ | －． 13 EE－02 | .248 E 02 | ：217E－7A | － $030 \mathrm{E}-\mathrm{g} 3$ | ．JJTE－83 | －．856E 06 | －． 755 F 05 | －．13）E U7 |
| 5 | －．132E－01 | －．192E－02 | －288E－02 | －．696E－04 | －900E－80 | －งココE－8u | ．．168E 07 | －． 122 E 6 | －．674E 07 |
| 6 | －． $1988-01$ | －． $153 \mathrm{E}-02$ | ． $285 \mathrm{E}-02$ | －．148F－73 | ． $350 \mathrm{E}-\mathrm{g} 9$ | －0n土e－6！ | －．27JE 07 | －．19le 16 | －．903E 07 |
| 7 | －． $233 E-01$ | $=.460 E-03$ | ． $114 E-02$ | －．5a7E－73 | －000E－9， |  | －．3SUE 07 | ． 2.241506 | －．905E 07 |
| 8 | －． $215 \mathrm{E}-01$ | ． 821 E－03 | －．533E－02 | $\because 194 E \cdot 12$ | ．779E－83 |  | －．365E 17 | －．？）7E 06 | －．325E 97 |
| 9 | －．195E－01 | ：772E－03 | －． $154 \mathrm{E}-01$ | $\therefore 237 \mathrm{E}-122$ | －？J0E－8， | ．30．JE－Bij | －．29JE 37 | －．213E 06 | $.662 E 07$ |
| 10 | －．250E．01 | －．156E．02 | ．．182E－01 | ．． 576 E ． 33 | －VOEE－8\％ | －ग）${ }^{\text {O－}}$ ？ | － 347 ET | －． 463 F O6 | ． 793 OT |
| 11 | －． 826 E． 01 | －． 210 E 01 | ．117E－01 | － 549 F －J？ | －OUOE－8J | ． $00 J \mathrm{E}-8.4$ | $\because 1 J 8 E 08$ | －．167E ${ }^{\text {－}}$ | －． 73 AE 38 |
| 12 | －．115E 00 | －．569E－02 | －189E－01 | －173E－72 | －T，JE－3？ | －JJE－9！ | －．149E J3 | －． 125 E 77 | －．492E 08 |
| 13 | －．1098 00 | $.603 \mathrm{E}-02$ | －181E－01 | $\therefore 963 E-J 3$ | ．OU0E－自） | － $30 . \mathrm{E}-3.1$ | －．138E J3 | －．123E 17 | －．493 $\mathrm{E}^{3} \mathrm{~B}$ |
| 14 | －．892E－01 | ：533E－02 | ．137E－01 | －． 761 E．J3 | －DJJE－3？ | －］JJE－3？ | －．143E 08 | －．578F 16 | －．AJPE U8 |
| 15 | －．670E－01 | －369E－02 | ． $713 \mathrm{E}-32$ | －．636E－03 | －$\triangle$ DUE－8J | ．ว 7 可E－80 | －．109E 05 | ． 333 E 06 | －．2ABE U8 |
| 16 | －． $459 \mathrm{E}=01$ | ． $407 \mathrm{C}-02$ | － $315 \mathrm{E}-02$ | －． 38 ？E－3 3 | －Joot－rs |  | －．1：9E J7 | －182E Q ${ }^{\text {P }}$ | －． 178 E |
| 17 | ．．269E－01 | ．482E－02 | ． 806 E－03 | $=339 E-\ddot{3}$ |  | －1）IJE－39 | －．393E 07 | －19JE 07 | －．923E 07 |
| 18 | －．140E－01 | ． 39 gE－02 | ．127E－33 | －．155E－13 | －？）TE－ヵ） | －J） J－8：$^{\text {a }}$ | －2JBE 17 | －19．3F． 07 | －．46UE 97 |
| 19 | －．891E．02 | ．22？E．02 | ．105E．03 | －． 557 E －134 | －TVDE－8） | ．？IJEE－8．i | －．133E U7 | ．485E 16 | －． 290 O 07 |
| 20 | －．740E－02 | － $304 \mathrm{E}=03$ | ． 461 E－04 | $\therefore 304 E-34$ | － 9 DUF－83 | －106E－8．i | －．1才）${ }^{-17}$ | －3．73E J5 | －．？4UE 07 |
| 21 | －．783E－02 | $\because 201$ E－03 | ． $534 E .04$ | ． $264 \mathrm{E}=15$ | －クJTE－AJ | $.300 E-8 i]$ | －．119E 07 | －．LPAE 06 | －．261E 07 |
| 22 | －．850E－02 | － $360 \mathrm{E}-04$ | ．139E－04 | －．915E－ن5 | ． $2005-8.1$ | ． $103 \mathrm{E}-8.3$ | －． $134 \mathrm{E}^{27}$ | －． $2 \mathrm{Sa}_{5} \mathrm{u} 6$ | －．？92E 97 |
| 23 | $-8,4 E-2^{2}$ | .$\left.^{2}\right)^{3 E-03}$ | － $138 \mathrm{E}-04$ | －． $3465-35$ | －כこ刀E－83 | －00）E－Bj | $\because 135 \mathrm{E}$ O7 | －．109E 75 | －．294E 07 |
| 24 | －． 6988.02 | ． 4015.03 | ． 555 E ． 04 | － 285 E － 4 | －$:$ DEEPS |  | －．120E 07 | －． 347 E U5 | －．293E 07 |
| 25 | － 5 AOE－02 | －451E－03 | －134E－03 | － $41-2 \mathrm{E}-34$ | －$\sim$ JF－gi | －JTUE－9j | －．11．9E 07 | － 309775 | －．250E 07 |
| 26 | －． 418 E － 02 | ． 47 樶－03 | －127E－n3 | ： $5: 3 \mathrm{E}-35$ | － 2 OOE－80 |  | － $8.31 \overrightarrow{\mathrm{c}}$ U 0 | －．589E． 04 | －．201E 07 |
| 27 | － $298 \mathrm{C}=02$ | － $34 \mathrm{AE-03}$ | ． 134 E－J3 | －7 5E－J5 | ． 9 OOE－8J | －JリIE－80 | －．7．7aE dó | －． 536 E O4 | －．164E J7 |
| 29 | －．207E－02 | ． 261 E－03 | ．130E－03 | ． $2835-35$ | －UVOE－80 | ．00JE－80 | $\because 566 \mathrm{E} 05$ | －．759E 04 | －．133E 07 |
| 29 | －． $154 \mathrm{E}-02$ | ． 140 －03 | $.198 E-03$ | $\because 23^{4} \mathrm{E}-34$ | ． U＇）$_{\text {de－A }}$ | ．）J9E－80 | －． 469 E 36 | －． 519 F 04 | －．117E 07 |
| 30 | －．121E－02 | －937E－04 | －191E－03 | ． $911 \mathrm{E}-\mathrm{J6}$ | －OUTE－8．） | －JuJE－8J | －．391E O5 | －．353E 04 | －．993E 06 |
| 31 | ．．965E－03 | ． 785 E .04 | ． 208 CL －03 | ． $952 \mathrm{E}-15$ | －LDOE－gi | －Jリ旡－83 | －．322E Uú | －．325E 14 | －．RO8E 06 |
| 32 | －．764E－03 |  | － $218 \mathrm{E}-03$ | －5UiE－J6 | ．OEJE－83 | －J）JE－8J | －： 270 U U6 | －．393E J4 | $-714 E 36$ |
| 33 | －． 593 E －03 | ． 472 E 04 | －199E－03 | －． 676 － 05 | －COOE－AD | ．）：JE－80 | － 224 C 05 | －．14JE 04 | ．．617E 06 |
| 34 | －．504E－03 | ． 241 E．？4 | ． $231 \mathrm{E}-03$ | －818E－05 | －ODOE－80 | －）JJE－85 | － 17 Jo 06 | －．P53E 04 | －．578E 06 |
| 35 | $\therefore 421 E .03$ | ． 284 E －04 | ．226E－03 | －． 577 C － 05 | ．OUOE－8J | －UñコE－80 | $.161 E 05$ | －．135E 04 | －．523E 06 |

Table D12．Drift（ $\mathrm{u}_{22 \mathrm{D}}$ ）Covariance Results（Continued）

|  | MEAN | RESPONSES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\tilde{\mathrm{t}}$ | $\dot{M}_{1880}$ | $\mathrm{a}_{\mathrm{y}}$ | $\dot{a}_{y}$ | $\overline{\bar{q}} \beta$ | $\bar{q} \dot{\beta}$ | ¢ | $\dot{\phi}$ | y | y |
|  | 1 | ．000E－80 | ． 00 CE－80 | ．DOOE－80 | －JjuE－9！ | － 7 ： $35-51$ | ．1：5－3． | －1）jE－3！ | －19）E－80 | －，Je－an |
|  | 2 | ． $1140 E 07$ | .135 E － 01 | ． 375 －01 | －1：GE－ij |  | － 179.95 | ． 173 E．Jt | －－，－7－－17？ |  |
|  | 3 | －．978E 05 | ．227E－01 | －．295E－01 | ：53if ふu | ． 927 E－31 | －1＋ぐざう3 | $\ldots+35 \mathrm{E}-17$ | ．1315 71 | －JつE J7 |
|  | 4 | －．185E 06 | －．58？E－01 | －．136E 00 | .1755 |  | －－年待－12 | －．322E－77 | －1J1E M1 | ． $336 \mathrm{E}-\mathrm{Jl}$ |
|  | 5 | －．191E 06 | －23？ 00 | －．353E 00 | $: 377 \mathrm{E}$ | ．347E $)$ | － 116.000 | －． $11 \mathrm{~d}_{E-j 3}$ | ．Thje il | －．iove iJ |
|  | 6 |  | $.493 E 00$ $.479 E 00$ | －．775E OO | 6965 .6192 | $\rightarrow 553 \mathrm{~F}$－${ }^{\circ} \mathrm{F}$ |  |  | －． 3775111 | $\because{ }^{3} 12 \mathrm{E}$（1 |
|  | 7 | ．757E 05 | ＊．979E 00 | －． 664 E U 0 | ． 319 c ， 1 |  | －13＂L－J？ |  | － 0.315 l | －．t3je It |
|  | 8 9 | ．127E07 | $=.133 E$ $-.179 E$ | $.162 E ~ O 1$ $.824 E ~$ | $\begin{array}{ll} 114[ & 1 ? \\ 13: E & ? \end{array}$ |  | $=.179 E-112$ $=.153 E-3 ?$ | ： 4.3 F－37 |  | －．756E 71 |
|  | 10 | ．．512E 06 | －：216E O1 | .145 E 02 | －17AF 2 | .163 M |  | －．jう9［－17 | －．t．je ij？ | －．1ヶ5E U1 |
|  | 11 | －．111E 08 | －．204E O1 | －．147E 02 | ．175E ゝ2 | －？ 7 CE 1！ | －．J4¢E－J？ | －． $125 \mathrm{E}-\mathrm{J}$ ？ | －．3リ7F 32 | －．JIGE al |
|  | 12 | －．429E 07 | －．264E O1 | －．279E 02 | ．C15 ¢ ！？ | －＇1］E ： | －．7305－3： | －． $3575-13$ | －lufe Ji | －．cile ul |
| N | 13 | －． 185 E 07 | －．301E 01 | －． 304 E O2 | ．229F $?$ ？ | －645E 1 | －．71的－2？ | － 3 S $3 E-13$ | －L17E 3 |  |
| $\omega$ | 14 | ．．720E 06 | －．293E O1 | ． 274 C 22 | ．217E is？ | ． 45 E ． 1 | $\ldots+1 F-7$ ？ | ． 3 ？ 3 E －．$)^{3}$ | ．．131E 73 | －MTjE l1 |
| $\cdots$ | 15 |  | －．245E 01 | －．184E 02 | .1575 J | －．739E ：$]$ | － 5 － 5 ：-07 | －？ $31 t-73$ | －13， 3 E | －？ 19 9－ul |
|  | 16 | ．427E 07 | －． 178001 | －．819E 01 | ：1rat n？ | －． 232 El | －．33／c－1）？ | －253E－53 | －．127官 13 | －3．SE 71 |
|  | 17 | ． 436 E 07 | －． .103 E O1 | －．182E 01 | ：599E Ul | －． 259 E － 1 | －．231E－J？ | ． $237 \mathrm{~F}-\mathrm{i} 3$ | －（1）iff 73 | ．55aE O1 |
|  | 18 | －282E 07 | －．545E OL | ． 281800 | ：31］E J1 | －．176E 11 | －．123E－${ }^{\text {－}}$ ？ | － $2+1 \mathrm{E}-\mathrm{J}\}$ | －．t6IE 02 | －＇AGE 91 |
|  | 19 | ．110E 07 | －． 345 E E 0 | ． 205800 | $0.1758 \sim 1$ | －． 0.57 F \％ 3 | －．7178－33 |  | － $1.71 i_{i}$ ］？ | ． 475 Fl |
|  | 20 | ．888E 05 | －． 388500 | ．．132E 00 | ．16．5．11 | －． 235 E －${ }^{\text {？}}$ | －．5295－j3 |  | －－गisf 22 | ． 3.22 EJI |
|  | 21 | ．．410E 06 | －：315E 00 | ．．371E 00 | .173 E － 1 | ．？31Eu） | －． $552 \mathrm{E}-33$ | ．115E．j7 |  | .152 J 11 |
|  | 22 | －．492E 06 | －．361E 00 | －．398E 00 | $\because 193 \mathrm{El}$ | ． 357 E ［， 3 | －． $755 \mathrm{E}-13$ | ： 711 E －小 | －．135E it？ | －$\because 44 \mathrm{H}$ |
|  | 23 | －．363E 06 | － 368 SEO | －． 304 CO 0 | .1445 ！ 1 | ． 261 EJ －J | －． 8 ¢iE－J3 | ：117F－3． | －lije u？ | －1？${ }^{\text {（ }}$（1） |
|  | 24 | －．226E 06 | －．340E OG | －．296E 00 | ．179E 1 | .$\triangle A 4 E \quad$ ） | －ラэ゙リビ－J3 | ： 23.7 E－34 | －．11＋F 3 ？ | －1．7E गJ |
|  | 25 | ．．124E 06 | －．287E 00 | ． 190000 | $.149 E^{1} 1$ | －CaEsjl | －．1545－j3 | －319E－Ji | －．1）7F J？ | －íte no |
|  | 26 | －．148E 05 | －．227E 00 | －． $719 E=01$ | $: 1168 \sim 1$ | －4？aE－I？ | －13？-13 | － $272 \mathrm{E}-\mathrm{Jl}$ | －．733 - dl | －65JE In |
|  | 27 | ．．175E 05 | －：180E OC | －．214E－01 | ． 879 E ก〕 | － 3 32F－12 | －． $235 \mathrm{E}-\mathrm{U} 3$ | －232E－97 | －．326E J1 | －2， 0 OT |
|  | 28 | －．958E 04 | $-141500$ | ．220E－01 | －699E J） | ． $355 \mathrm{E}=72$ | －．162E－33 | $: 147 \mathrm{E}-34$ | －． 59 j E 11 | －ChAE Mo |
|  | 29 | －．311505 | －．110E00 | － $529 E-01$ |  | － $265 \mathrm{E}-\mathrm{i}$ ？ | －117E－03 | － $849 E-39$ | －．554F ？ 1 | － $2^{4} 1 \mathrm{l}$ ） 0 |
|  | 30 | －．991E 04 | －．895E－01 | － $324 \mathrm{E}=01$ | ．936E J3 | ． $37.7 \mathrm{E}-12$ |  | ：＇ 32 E －${ }^{\text {J }}$ | －0．43F J1 |  |
|  | 31 | －．120E 05 | －．734E－01 | －122E 00 | －247E Ju | － $471 \mathrm{E}-\mathrm{l} 2$ | －TJ．E．ja | －1335－13 | －36JF 11 | －17AE OJ |
|  | 32 | －．593E 04 | －．586E－01 | －114E 00 | $.279{ }^{\circ} \mathrm{E}$ | －．14JE－3？ | －．3425－47 | － 2 勺5E－i | －3 43 FF J1 | －I3SE 10 |
|  | 33 | －．273E 02 | －．465E－01 | －110E 00 | $.22153 J$ | －． $456 \mathrm{E}=12$ | －124E－CA | －25］-33 | －． 3 J［ 91 | －？ 03 E .00 |
|  | 34 | －．107E 05 | －． $328 \mathrm{E}=01$ | ．127E 00 | .177 EJ | －？27E－J？ | －． $355 \mathrm{E}-\mathrm{U}$＋ | $: 13 \leq E-23$ | －！ 64 F U1 | － 863 E － 101 |
|  | 35 | $.164 E 04$ | －．236E－01 | .116 E 0 | .143 E 03 | －． $845 \mathrm{E}-173$ | ．．295e－04 | ．172E－Ji | －．142E 01 | $.199 \mathrm{E}=01$ |

Table D12．Drift（ $\mathrm{u}_{22 \mathrm{D}}$ ）Covariance Results（Continued）

|  |  | $\begin{gathered} \text { ISE COVARI } \\ \delta_{p} \end{gathered}$ | Es $\dot{\delta}_{p}$ | $\delta_{r}$ | $\dot{\delta} \mathrm{r}$ | $\delta_{a}$ | $\delta_{a}$ | $\mathrm{M}_{660}$ | $\dot{\mathrm{M}}_{660}$ | $\mathrm{M}_{1880}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | ． 000 E．80 | － 00 OE－80 | ．OOCE－80 | ． 1$)^{9} \mathrm{~F} \cdot \mathrm{~B}$ ？ | －viser－8］ | －l．${ }^{\text {E－a．l }}$ |  |  |  |
|  | 2 | －445E－05 | ：272E－03 | －166E－34 | －1：17E－3？ |  |  | ？${ }^{\text {a }}$ ） 1 ？ | － 71 ？${ }^{\text {e }} 14$ | －20．je 14 |
|  | 3 | ．172E．03 | ． 104 E －02 | ． 377 E － 04 | $.454{ }^{\text {¢ }}$ ． 33 | －？ 3 （E－a） | －7，気－3＇ | － 13 Be 13 | ． 233 E 15 | ． 335 E 14 |
|  | 4 | ． 321 E .03 | ． 455 E － 22 | ． 564 E － 34 | （1）${ }^{\text {19－1？}}$ | －3］7－8， | ． M － 0 ： | ．373E 13 | －Pf） 15 | －！Me 15 |
|  | 5 | －452E－03 | －966E－0？ | ． $536 E-04$ | ： $1+3 \mathrm{E}-3$ ？ | －¢ ？（－3） | ，1：\％－81 | －1Jje ${ }^{\text {d }}$ | －ioje is | －1ATE 15 |
|  | 6 | －479E．03 | ！ 122 E － 01 | － 415 E － 74 |  | $\because 3 \mathrm{O}-3$ | ，11．es： | ． 657 E 13 | － 716515 | －1？ 15 |
|  | 9 | ． 351 fr .03 | ． 3968 －02 | －8－5E． 05 | －SaE．72 |  | ．）נe－d | ．73？ 13 | －jste la | －5y9E 14 |
|  | 8 | ． 270 －03 | －12？E－01 | ．939E－34 | － $4+8 \mathrm{E}-\mathrm{j}$ ？ | ．Anf．3： | －1， $15-3$ ？ | －jut 13 | －j3） $1 ;$ | ． 37 jE P |
|  | 9 | ． $105 \mathrm{c}-02$ | －170 00 | ． 10 ？E－02 | $\cdots 515 \mathrm{E}-31$ |  | －リ）こ－3， | ． 3502 | － 71 \％ 6 io | －0n．Je is |
|  | 10 | ．161E．02 | ． 276 E 00 | ．153E－32 | ．970¢．引！ | －？19E－3： |  | －Jove 13 | ．${ }^{4989} 15$ | ．is3E 15 |
|  | 11 | ． 275 E .02 | －173E 00 | ． 455 E － 03 | ¢SAPEJi |  | －Ti，mid | ． 17 le 14 | －？ 3 ar 10 | .1544 E 15 |
|  | 12 | － $620 \mathrm{E}-02$ | ． 433 E 00 | －130E－02 | －Ḣl ${ }^{\text {－}}$ | － 0 ：（E－3） | －11！ 1 － 3 ， | ． 1130814 | －93ic 19 | －T1IE 16 |
| N | 13 | ． 488 E －02 | ． 350 E 00 | －123E．02 | －137 ） | －jobed | － 11 －n3． |  | －573F if， | －TSJE 16 |
| ${ }_{\sim}^{\sim}$ | 14 | － 2 ， $2 \mathrm{E}-02$ | ．197E 00 | － 216 E－33 | －971E－31 | －${ }^{\sim}$ ：$)$ ¢－6 | ．J E－j， | ．315e 1 | $\therefore$－ 3 la | －＇1） 16 |
|  | 15 | ．137E．02 | ，749E．01 | －290E－J3 | ？？ 07 E －31 |  |  | ças 14 | －Tle 16 | －4！7E 15 |
|  | 16 | ． $68^{4} \mathrm{E}=03$ | ． $227 \mathrm{~F}=01$ | ． 756 E－04 | ．13 E－jl |  | －11， | －1； 17 | － 135 F | －Siof 15 |
|  | 17 | ． $384 \mathrm{E}=03$ | ． $733 \mathrm{E}-02$ | ．144E－04 | ．2？ $2 \mathrm{E}-12$ | －＇1E－3．J | ．गリ．${ }^{\text {a }}$ |  | ． 61514 |  |
|  | 18 | ． $205 \mathrm{~F}-03$ | ． 211 E －02 | ． $25 \mathrm{KE}-05$ |  |  | $\because)^{\prime}$ | － $1+3$－ 13 | －173E 14 | $\because 7 \mathrm{SE} 11$ |
|  | 19 | －114E－03 | ． $719 \mathrm{E}-03$ | ． 577 E －06 | －833E－j4 | $\because, 9 \square^{\square}-3$ |  |  |  |  |
|  | 20 21 | $.631 E .04$ $.323 E .04$ | $267 E .03$ $120 E .03$ | $251 E-06$ $.132 E-36$ | $153 E-14$ $0634 E-\therefore 5$ |  |  |  |  |  |
|  | 21 22 | ． $323 \mathrm{E}-04$ | $120 E-03$ $.52 \cap E-04$ | $132 E-36$ $.708 E-07$ | －634E－̇5 $.277 E-79$ |  |  | －717E l？ |  | TAJE $.195 E 13$ |
|  | 23 | ． $774 \mathrm{E}-05$ | ． 226 E－04 | － 3 34E－37 | －1？${ }^{\text {E }}$－ 15 | －Cijomery | －）． 0 ：$=-8$ ； | $\therefore 11: 10$ | －1） 13 | － 7 2．je 1 ？ |
|  | 24 | ． 364 E .05 | －113E．04 | ． $117 \mathrm{E}-07$ | ． $731 \mathrm{E}-1.5$ | －$\sim$ ） $\mathrm{E}-3$ ） |  | $\therefore$ ，20E 1 ？ | －11＋ 13 | －irue l？ |
|  | 25 | ． $180 \mathrm{E}-05$ | ， 53 ？E－05 | ．901E－08 | ． $5: 3 \mathrm{i}-15$ |  | ． ）$_{\text {Pe－3：}}$ | ．${ }^{31} 11$ | －Gise l？ | ．331：${ }^{\text {？}}$ |
|  | 26 27 | － $746 E-06$ | － $21 \sim E-05$ | － $4 A^{A} 4 E-08$ | － $219 \mathrm{c}-\mathrm{S}$ |  | －）116－3， | ． 321811 | －aijo i？ | $173 E 1 ?$ -139511 |
|  | 27 28 | $.291 E-06$ $.106 E-06$ | ． 318 Cl － 06 | $.255 E-08$ $.133 E-08$ | －RİEAE－j7 |  |  | ． 17 Le ll |  |  |
|  | 29 | ．445E．07 | $!153 \mathrm{E}-06$ | －126E－08 | － $75+5.17$ | －＂，¢E－${ }^{\text {a }}$ | －गne－d， | －Tje 1 | －Sta 11 | －294E 11 |
|  | 30 | ． 203 E 07 | － $564 \mathrm{E}=07$ | ． $752 \mathrm{E}-09$ | ．313E－：7 | －$\because 9$（－9） | －1．1．E－3． | －P）＋11 | －MVE H1 | － 34 E 11 |
|  | 31 | ． 837 E ． 08 | ． 324 E －07 | ． 546 E －09 | ．${ }^{\text {＇19 }}$－${ }^{\text {P }}$ | －＇ase－3j | ．1，10．3： | ．7， $\mathrm{l}^{\text {a }}$ | －14if 11 | ．013E 10 |
|  | 32 | $.349 \mathrm{E}-08$ | －112E－07 | $.335 \mathrm{E}-09$ | －13ic－l｜ | －inde－j？ | ． 11 －-0. | －12le J3 | ．535 | －${ }^{\text {P J J }} 17$ |
|  | 33 | － $105 \mathrm{E}-08$ | － $276 \mathrm{E}-18$ | －125E－07 | ：3） $5 \mathrm{E}-18$ |  | （1）E－3： | ．17te 3） | － 7 ＋íf 10 | －HPE 11 |
|  | 34 | ． 253 E ＿09 | ． 561 E －09 | ． 515 E －10 | （5） 5 － 37 |  | －J）${ }_{\text {cos：}}$ | － 35 E ¢ 3 | ．745E 17 | － $3 \times 5 \mathrm{c}$（19 |
|  | 35 | －295E－10 | ．540E－10 | －762E－11 | －5（1E－1） | （w） 5 － －$^{\text {a }}$ | －13 ¢ E－y | ．1746 ${ }^{\text {a }}$ | ． 11 ！${ }^{\text {l }}$ | ．t5le in |

Table D12．Drift（ $\mathrm{u}_{22 \mathrm{D}}$ ）Covaraiance Results（Concluded）

## response covarianees

| $\widetilde{t}$ | $\dot{M}_{1880}$ | $\mathrm{a}_{\mathrm{y}}$ | ${ }^{2}$ | $\bar{q} \beta$ | $\overline{\mathbf{q}} \dot{\beta}$ | $\phi$ | $\dot{\phi}$ | y | $\dot{y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ． 000 E－80 | ．OOOE－80 | ． 000 E－80 | －JJOE－3U | －）－ 5 － 3.9 |  | －JJJF－81 | － |  |
| ）．JE－8J | －11）E－80 |  |  |  |  |  |  |  |  |
| 2 | ．135E ${ }^{1} 6$ | ， 126800 | $913 E 00$ $933 E 0$ | － $711 E-J 1$ | $.515 E \cup 1$ | －473E－J3 |  | ． $903 \mathrm{~S}-12$ | － $236 E-U 2$ |
| 4 | $.146 E 16$ | ？210E 00 | $.106 E 02$ | ！lgle j？ | －44JE 10 | ． 176 E．J5 | $\because 371505$ | －2BJE 3 ？ | － 142 Cl |
| 5 | ．233E 16 | ！45AE 00 | .410 O | $.266 E 02$ | －147E JI | ．241E－05 | －616E－05 | .643 U Ji | 0.333 Ol |
| 6 | $.266 E 16$ | ．697E 00 | ．861E 02 | ：372E J2 | ．T7RE JI | －？ 2 2E－U5 | ．029E－．35 | －1？${ }^{\text {？}}$ ¢ 3 | .332 E J1 |
| 7 | ．745E 15 | .610800 | ． $402 E 02$ | ． 439 J ）2 | －JUTE l？ | －223E－15 | －190E－J5 | －377E J3 | －299E 111 |
| 8 | .470 E 16 | ．150E 01 | $.251 E 03$ | － 557 E 02 | .949 ll | ．15？£－15 | －345E－i） | －${ }^{\text {a7 }}$（1） 3 | ．379E 91 |
| 9 | .597 E 17 | －124E O2 | $.476 E 04$ | $\bigcirc 576 \mathrm{E}$－${ }^{2}$ | －5J4E ${ }^{\text {S }}$ | － $215 \mathrm{E}-15$ | $\because 519 \mathrm{C}-94$ | －111E 24 | －6才de Jl |
| 10 | .990 E 17 | C13E 02 | ． 105 E 3 | ．641E J？ | .778 E J？ | $.314 \bar{C} 05$ | .3 （3E－31 | －15JE il | －T 2 E I |
| 11 | $.531 E 17$ | $\because 140 E 02$ | ． 895 E 34 | －8ラフE J？ | $.133 E^{\wedge}$ | －123E－ 4 | ．514E－1） | .294 E 4 | －454E J1 |
| 12 | $.139 E 18$ | $\because 356 E 02$ | ． 269 E 05 | －175E 33 | ．3UJE U3 | ．291E． 34 | ．129E－J | ． 232 F （1） | －i？Je 01 |
| 13 | $.122 E 18$ | ．32AE 02 | ．288E 05 | .175 ¢ 3 | ．${ }^{\text {H }}$ SE J3 | ．24？ 2 － 4 | －1J？- － 1 | －？ 5 ？ E －14 | －1／AE 02 |
| 14 | ．741E 17 | ．206E 02 | $.211 E 05$ | ．1）4E 33 | ．156E 13 | ．14？¢． 34 | －591E－i） | －283E 17 | －1）9E J？ |
| 15 | .282 L 17 | $\because 353 \mathrm{El} 01$ | $.100 E 05$ | .575 E נ？ | －329E J3 | ． $723 \mathrm{~F}-05$ | －275E－37 | .277 JL | － 013 J J1 |
| 16 | ．802E 16 | ．287E 01 | ． 363 E 34 | ． 779 U U | ．191E 73 | ． $395 \mathrm{E}-25$ | ： $973 \mathrm{E}-05$ | －？13E J4 | ． 776 O1 |
| 17 | .208116 | ：103E 01 | ．123E 04 | ．167E i？ | －1．35 J3 | ．23EET－U5 | ． $334 \mathrm{E}-\mathrm{S}^{5}$ | ．174E．）4 | －jate Tl |
| 18 | ． 550 E 15 | $.413 E 00$ | ． 380 O | ．967E JI | .5915 」2 | －13．15－ij5 | －117E－i5 | －H57F 33 | ．459E Ol |
| 19 | $.168 E 15$ | $\because 197 E 00$ | ．116E 13 | ． $541 \mathrm{E} \mathrm{U1}$ | － 222 E U？ | ． 7645 － 06 | $\because 4675$ | ．49？${ }^{\text {a }} 3$ | －PaGE II |
| 20 | ．618E 14 | $.101 E 00$ | $.288 \mathrm{E}^{2}$ | $\div 2398) 1$ | ．］1［ ？ 2 | ． 127 －－－${ }^{\text {f }}$ | ？J1E－Js | ．？ 73 E リ | －6．9E 11 |
| 21 | $.328 E 14$ | ． 541 E －01 | ． 138 EE 02 | ． 154501 | －1̇2E J？ | －22？E－i5 | －7．77E－j7 | ． 153 E ¢ 3 | － 77 IE 7t |
| 22 | $.178 E 14$ | －296E－01 | .552 E 01 |  | .577 E 71 | $.112 \mathrm{E}-06$ | －39E－ら7 | －729E 12 | .554 C 10 |
| 23 | ．986E 13 | ．161E－01 | ． 262 E O1 | ． 435 E TJ | ． 325 E ¢1 | ．544E－JT | （171E－1） | ．1335 J？ | －1：19E Jh |
| 24 | ．612E 13 | －898E－02 | $.283 E 01$ | .233 E 93 |  | －？ $6^{n} E-57$ | ． $1325-j 3$ | ．？20E 1？ | ．167E J．） |
| 25 | $.350 E 13$ | $.457 \mathrm{E}-02$ | $.171 E 01$ | ．116E J？ | － 366 E 10 | －1175－j7 | ． $345 \overline{5}-19$ | － 115 F .32 | ．39 SE－J！ |
| 26 | $.188 E 13$ | －229E－02 | ．109F 01 | ．5\％－E．）1 | －5］3E ？ |  | ．137E－．3 | ．531E M1 | －467E－T1 |
| 27 | －100E 13 | ．112E－02 | － 867 E 00 | ．25aE－31 | － 243 E ？ | －173E－1） | －513［－j］ | －3 4 F 121 | －？39E－i）1 |
| 28 | ．521E12 | －531E－03 | ． 669 E 00 | ．119F－ul | －123E－7 | ． 54 SENJ | － 1 HIE－O） | ．143E A1 | ．1）2 E－II |
| 29 | ． 313 E 12 | －263E－03 | ． 940 CO 0 | ． $575 \mathrm{c}-1{ }^{\text {c }}$ | －619E－j1 | －${ }^{3}$（12E－i） | ． $7515-11$ | －731E 30 | －$)^{\text {？}}$ 3E－J2 |
| 30 | $.164 E 12$ | ，127E－03 | $.702 E 00$ | ：253E－32 | － 3 U3E－71 |  | ． $3735-11$ | － 355 EJJ | －317E－1）？ |
| 31 | ．821E 11 | ． $620 \mathrm{E}-04$ | .595 E 00 | ： $111 \mathrm{EF-j}$ ？ | ．134E－51 | －T6？$-1:$ | $.151 E=11$ | ． 169 F ． 3 J | ．157E－？？ |
| 32 | .342 E 11 | ． $251 \mathrm{E}-0^{4}$ | .370 O 0 | $.1+7 E-J^{3}$ | － $15 E-{ }^{\text {c }}$ ？ | ． $17, F_{-1}-1$ ； | ． $577 \mathrm{E}-11$ | －73E－Jl | ． $735 E={ }^{\text {c }}$ |
| 33 | $.114 E 11$ | ． 767 E －05 | ．160E 00 | $\because 144 E .73$ | ．179E．l？ | ． 5 51E．11 | ．154E－11 | － 7 （3）E－J1 | －3＇juEm＇l3 |
| 34 | ． $311 E 10$ | ：143E－03 | ． 767 E－01 | －314E－74 | － $435 \mathrm{E}-\underline{\mathrm{y}} 3$ | －132t－11 | －12 ${ }^{\text {a }}$－ 1 ？ | －！5JE－31 | － $153 \mathrm{B-i} 3$ |
| 35 | ．359E 09 | ：127E．06 | ．126E．OI | ． 35 EE－ 15 | －4B7E．i4 | ．161E．L？ | ． $5 \geq 45-11$ | ．5278－12 | ．779E－14 |

Table D13．Accelerometer Load Relief（ $\mathrm{u}_{24 \mathrm{D}}$ ）Covariance Results

| MEAN | RESPONSES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\tilde{t}$ | $\delta_{p}$ | $\dot{\delta}_{p}$ | $\delta_{r}$ | $\dot{\delta}_{r}$ | $\delta_{a}$ | $\dot{\delta}_{a}$ | $\mathrm{M}_{660}$ | $\dot{M}_{660}$ | $\mathrm{M}_{1880}$ |
| $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $.000 E=80$ $.918 E=04$ | $\begin{aligned} & .0 n O E-80 \\ & .753 E-07 \end{aligned}$ | $.000 E-80$ $.133 E-03$ | $.000 E-60$ $.115 E-02$ | $.000 E-80$ $.000 E-80$ | －UOOE－80 | $.000 E-80$ $-155 E 05$ | ．OOOE－80 | ．000E－80 |
| 3 | －．197E－Uつ | －．813E－03 | －175E－02 | －．4735－04 | －000 | － 000 E－80 | －．155E 05 | －．104E 06 | －．157E 06 |
| 4 | －．197E 65 | －．813E－03 | －175E－O2 | －．473E－04 | －OONE－80 | － $000 \mathrm{E}-80$ | －．331E 06 | －．321E 05 | －236E 07 |
| 4 | －． $653 \mathrm{ECO2}$ | －．147E－0？ | －258E－02 | ． $376 \mathrm{E}-04$ | －000E－80 | －000E－80 | －．883E $0^{6}$ | －．794E 05 | －．446E $0^{7}$ |
| 5 | －． 143 E． 01 | －．224E．0？ | ． 312 E －02 | －．382E．04 | ． 0000 E － 80 | ． 0000 － 80 | $.181 E 07$ | －．118E 06 | －．727E 07 |
| 6 | －． $224 \mathrm{EFO1}$ | －－203E－02 | －325E－02 | －．117E－03 | －000E－80 | ．000E－80 | －．304E 07 | －155E 06 | －．102E 08 |
| 7 | ． $.279 \mathrm{E}=01$ | －．111E＝11？ | ．168E－02 | －．585E．03 | －00NE－80 | －UOOE．80 | －．431E 07 | －13日E 06 | －．112E 08 |
| 8 | －．281E－01 | ．141E－03 | －．525E．02 | －． 228 E －02 | ：000E－80 | ． 000 E－80 | －．482F 07 | $.143 E 05$ | －．5日5E 07 |
| 9 | －．278E－01 | ．270E－03 | －．177E－01 | －．327E－02 | ． $0000 \mathrm{E}-80$ | －$\triangle$ OOE－80 | －．434E 07 | ．136E 06 | ．540E 07 |
| 10 | －． $382 \mathrm{E}=01$ | －．324E－0？ | －． 217 E －01 | －．762E－03 | $.000 \mathrm{E}-80$ | $.400 \mathrm{E}=80$ | －．552E 07 | －．651E 04 | ．642E 07 |
| 11 | －．855E－01 | －． $376 \mathrm{E}-\mathrm{n}^{2}$ | ．105E－01 | ．657E－02 | ． 000 E－80 | －VOOE－80 | －．110E 08 | －．101E 07 | －．332E $0^{8}$ |
| 12 | ．． 602 E －01 | ．621E．n2 | ．126E．01 | ． 216 E .03 | $\bigcirc 00 \cap E-80$ | ． 000 －80 | ．． 798 Cl | －．137E 07 | －．285E On |
| 13 | －．441E－01 | ．171E－0？ | ．109E－01 | －．574E－03 | .000 E－80 | ． 000 E－80 | －． 563507 | －．180E 07 | －．229E O8 |
| 14 | －．314E－01 | －189E－02 | －697E－02 | －．425E－03 | ．ODOE－80 | －OODE－80 | －．520E 07 | －．116E 07 | －．162E OB |
| 15 | －． 772 CO | ． 373 E 02 | ． 573 E．03 | －． 360 E 03 | ． $0000 \mathrm{E}-8$ | ．000E－80 | ． 126 E 07 | $.188 E 08$ | －．334E 07 |
| 16 | ．213E－01 | ．524E－02 | －． 255 E －02 | ． 246 E 04 | ． $0000 \mathrm{E}-80$ | ． $000 \mathrm{E}-80$ | ．345E 07 | ．113E 07 | $.926 E 07$ |
| 17 | ． 425 E01 | ．354E－02 | －． 329 E － 02 | ．251E．03 | ：000E－80 | ．000E－80 | .648507 | $.128 E 07$ | .184 OB |
| 18 | ． 443 EWOL | ．． 269 E－03 | －． $224 \mathrm{E}=02$ | ．321En03 | $\therefore 000 E-80$ | ． $000 \mathrm{E}-80$ | ．671E 07 | ．806E O6 | $.161 E 08$ |
| 19 | ． 334 EmO | ．． 245 E．02 | －． 936 E． 03 | ． 234 Em 03 | ．000E－80 | ． 000 E． 80 | $.502 E 07$ | $.217 E 08$ | .116 E |
| 20 | －．120E－01 | －．938E－02 | －．520E－03 | －．417E．03 | ． $0000-80$ | ．U00E－80 | －．180E 07 | ．624E05 | －．356E 07 |
| 21 | －．240E－01 | ．102E－02 | －113E－04 | ． $954 \mathrm{EDO4}$ | ：000E－80 | ． 000 － 80 | ．．362E 07 | －．147E 06 | －．788E 07 |
| 22 | －．215E－01 | －109E－0？ | －$-271 E 04$ | －．310E－04 | $: 000 E-80$ | ．000E－80 | －．338E 07 | －．196E 06 | －．733E 07 |
| 23 | －．176E－01 | －125E－0？ | －．827E－04 | －． 224 Em 05 | ． 000 E－80 | $.000 E-80$ | －．294E 07 | －．150E 06 | －．632E 07 |
| 24 | －．132E01 | －129E－02 | － $708 \mathrm{E}=04$ | ． $546 E=04$ | $: 000 E-80$ | ． $0008=80$ | －．242E 07 | －．8635 05 | －．532E 07 |
| 25 | －．997E－02 | ． $984 \mathrm{E}-0^{3}$ | －212E－03 | ． 525 E－04 | ：000E－80 | －YOOE－80 | －．189E 07 | －．343E 05 | －．428E 07 |
| 26 | － 668 E－d2 | ．8R5E－03 | ．197E．03 | ． 529 E 05 | ．000EAO | ． $000 \mathrm{E}-80$ | －140E 07 | ． 3 ．318E 04 | －．320E 07 |
| 27 | －．447E－02 | －595E－03 | －200E－03 | ． $674 E 05$ | －O00E－80 | －OOOE－80 | －． 106807 | －．394E 04 | －． 246 E － |
| 28 | －． 296 E －02 | ．412E－03 | －185E．03 | ．637E．06 | $.000 E^{80}$ | ．000E－80 | －．810E 06 | －．364E 04 | －．190E 07 |
| 29 | －．211E－02 | ．227E－03 | ．272E－03 | ．277f．04 | $.000 \mathrm{E}-8$ | ．000E－80 | －．643E O8 | －．511E 04 | －．160E 07 |
| 30 | －．161E．07 | ．137E－03 | ． $258 \mathrm{E}-03$ | －．220F－05 | ． 0000 E 80 | ．O00E－80 | －．518E 06 | －．317E 04 | －．132E 07 |
| 31 | －．126E－02 | ．1咸E－03 | ． 280 E－03 | ． 771 E－05 | $.000 E-80$ | $.000 E-80$ | ． 0419 O | $\bigcirc 305 \mathrm{E} 04$ | －．106E 07 |
| 32 | －． $974 \mathrm{E}-0^{3}$ | $.773 \mathrm{E}-0^{4}$ | －281E－03 | ．135E05 | ． $000 \mathrm{E}-80$ | ． 000 E－80 | －． $343 \mathrm{E} 0^{6}$ | －． $2900^{\text {E }} 0$ | －．912E $0^{6}$ |
| 33 | －．745E．03 | ．620E．04 | ． 249 E － 3 | ． 734 E 05 | －OnOE． 80 | $.000 E 80$ | －．281E 06 | －．132E 04 | ．．774E 06 |
| 34 35 | $-623 E-03$ $-.514 E-03$ | －393E－04 $.991 E .04$ | $.286 E-03$ $.278 E-03$ | $1085-04$ $.149 E-05$ | $.000 E-80$ $.000 E-80$ | $.800 E-80$ $.400 E-80$ | $.235 E 06$ $.196 E 06$ | $.267 E 04$ $.262 E 4$ | $.718 E 06$ .664508 |

Table D13. Accelerometer Load Relief ( $\mathrm{u}_{24 \mathrm{D}}$ ) Covariance Results

|  | MEAN | RESPONSES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\tilde{t}$ | $\mathrm{M}_{1880}$ | ${ }^{\mathrm{a}} \mathrm{y}$ | $\dot{a}_{\mathrm{y}}$ | q $\beta$ | $\dot{q} \dot{\beta}$ | $\phi$ | $\dot{\phi}$ | y | y |
|  | $\frac{1}{2}$ | $\begin{array}{r} .000 E-80 \\ -\quad 129 E 07 \end{array}$ | $\begin{array}{r} 008 \mathrm{E}=80 \\ -138 \mathrm{E} \\ \hline 01 \end{array}$ | $\begin{array}{r} .000 \mathrm{E}-80 \\ .397 \mathrm{E} 01 \end{array}$ | $\begin{aligned} & .000 E-80 \\ & 107 E .01 \end{aligned}$ | $\begin{aligned} & 000 \mathrm{E}=8 \mathrm{~B} \\ & 300 \mathrm{O} \\ & \hline \end{aligned}$ | $\begin{array}{r} 400 E-80 \\ -286 E-05 \\ \hline \end{array}$ | $\begin{array}{r} .000 E-80 \\ .197 E-04 \end{array}$ | $\begin{array}{r} .000 E-80 \\ -\quad 245 E .02 \end{array}$ | $\begin{array}{r} .000 E-80 \\ -\quad 163 E-02 \end{array}$ |
|  | 3 | -.248E 05 | . 236 E 01 | ..329E.01 | $.523 E 00$ | :991E-01 | -.149E-03 | -.471E-04 | -879E 00 | . 330200 |
|  | 4 | -. 209806 | -.613E-01 | -.132E 00 | .180E 01 | :208E 00 | -.514E-03 | -.891E.04 | .290E 01 | .408E 00 |
|  | 5 | -.215E 06 | -.251E 00 | -.331E 00 | .405\% 01 | $.327 E 00$ | -. $114 \mathrm{E}-02$ | -.137E-03 | -397E 01 | -.151E 00 |
|  | 6 | -. 210 O | -.555E On | ..723E 00 | . 720 E 01 | . 451 E 00 | -. 181E-0? | -. 126E-03 | -.545E 00 | -.193E O1 |
|  | 7 | . 320806 | -.103E 01 | -. 560 E 00 | .109E 02 | -525E 00 | -.229E-02 | -. $711 \mathrm{E}=04$ | -185E 02 | -.369E O1 |
|  | 9 | . 205 E O7 |  | -181E 01 | 1 $.186 E$ -1822 | $.492 E 00$ $.386 E 00$ | - $232 \mathrm{E}-02$ | P19E-05 $.134 E-04$ | $.1622 E ~ 02$ $-149 E$ | $\cdots{ }^{-124 E} 02$ |
|  | 9 10 | $.303 E 07$ $.641 E 06$ | $-.233 E 01$ -.29501 | .853E Oi | .182 E .213 .2132 | 386 E <br> 3 <br> 34200 |  | $.134 E-04$ $-192 E-03$ | O-149E 03 $-.299 E 3$ | $-.229 E 02$ -.379 -3 |
|  | 11 | -.800E 07 | -.21aE 01 | -.153E 02 | .182E 02 | .116E 01 | -.697E-02 | -.325E-03 | -.530E 03 | -.537E 02 |
|  | 12 | -.322E 07 | -.124E 01 | -.286E 02 | . $1122^{\prime 2}$ | . 24TE 01 | -.509E-0? | -987E-03 | -.819E 03 | -.605E 02 |
| N | 13 | ..339E 07 | -.103E 01 | -.303E 02 | . 925 E 01 | . 329 El | -. 368E-02 | .117E゙03 | -.112E O4 | -.593E 02 |
| ¢ | 14 | -. 223 E OT | -.912E ON | -.275E 02 | . 735 E 01 | :232E 01 | -. 263E-02 | . $123 \mathrm{E}=03$ | -.141E OA | -.342E 02 |
| 0 | 15 16 | . 635 E 06 | . $-246 E$ .716800 .7150 |  | $183 E 01$ .496801 |  | $\begin{array}{r}\square 112 \mathrm{E}-03 \\ .166 \mathrm{O} \\ \hline 1\end{array}$ |  | $\because 166 E ~ O A$ | $-344 A E$ <br> $-309 E$ <br> $-3 \%$ |
|  | 17 | .261507 | .151E 01 | $\because 214 E 01$ | $\because 937 E 01$ | $\because$-173E 01 | -34AE-02 | - 23 EE-03 | $\because \because 19504$ | $\rightarrow$-illa 02 |
|  | 18 | .154E 07 | . 166801 | .243E 00 | -.982E O1 | -.115E 01 | .367E.02 | -.119E04 | -.196E 04 | .892E 01 |
|  | 19 | . 313 E 06 | .179E 01 | . 299 E 0 | -.737F 01 | - 316800 | . 281 E 02 | -153E=03 | -.186E 04 | .280 E 02 |
|  | 20 | . 430 E 06 | -.443E 00 | .478E 00 | .271E 01 | -.411E.01 | -.799E-03 | -.646E-03 | -.169E O4 | . 392 F 02 |
|  | 21 | -.388E 06 | -.961E 00 | -.394E.00 | :330E O1 | -222E00 | -. $200 \mathrm{E}-02$ | . 501 E -04 | -150E 04 | .357E 02 |
|  | 22 23 | - $-304 E$ $-323 E 6$ | .9 $.910 E 00$ $-798 E 00$ | - $\rightarrow 326 E 800$ -35080 | .488E 01 | ? 312 O | $-180 E-02$ -190002 | . $635 \mathrm{FE-04}$ |  |  |
|  | 24 | -.228E O6 | -.645E 00 | -.341E 00 | . 337 E 01 | 129E 00 | -. 113E-02 | -783E-04 | $-107 E 04$ | .227E 02 |
|  | 25 | -.122E 06 | -.492E 00 | -.213E 00 | . 256801 | ? 494 EFOl | -.801E=03 | .667E-04 | -.960E 03 | .198E 02 |
|  | 26 | -.911E 04 | -.362E 00 | -.893E=01 | $.185 \mathrm{E}^{01}$ | .127E-0? | -.535 $=03$ | . $518 \mathrm{E}=04$ | -.866E 03 | .177E 02 |
|  | 27 | -.142E 05 | ..270E 09 | -. 312E.01 | . 135 E 01 | .103E-02 | -. $355 \mathrm{E}-03$ | . 347 E -04 | -.782E 03 | .161E 02 |
|  | 28 | -.608E O4 | -.203E 00 | .166E-01 | .998 E 00 | ; 265 E-02 | -. $233 \mathrm{E}-03$ | . 23 7E-04 | -.705E 03 | .149E 02 |
|  | 29 30 | $-344 E$ <br> $-674 E 8$ <br> -24 | $-151 E$ $-118 E 00$ -1500 | .499E-01 | $.750 E 00$ $.577 E 00$ | -220E-02 | $\because 164 E-03$ $\because 123 E-03$ | $.130 E-04$ $.780 E=05$ | $\begin{array}{r}.6635 E \\ .6565 E \\ \hline .53\end{array}$ | $.139 E 02$ $.133 E 02$ |
|  | 31 3 | $-106 E 05$ | -.959E-01 | .121E00 | . 451 E 00 | - $486 \mathrm{E}=02$ | $-1913 E-04$ | .624E005 | $\rightarrow 0.5000^{-93}$ | -127E 02 |
|  | 32 | -.f33E 04 | ..743E-01 | -113E 00 | . 353 E 00 | -148E-02 | ..700E.04 | :412E-05 | -.437E 03 | . 123 l 02 |
|  | 33 | . 539 e 03 | -0*80E-01 | . 110 E 00 | .278 E 00 | - $: 460 \mathrm{E}-02$ | -. $533 \mathrm{E}=04$ | . 327 E -05 | -.371E 03 | . $1200^{22}$ |
|  | 34 | -. 129805 | -.4n3E-01 | . $126 E 00$ | . 220E 00 | :222E-02 | -. 440 E .04 | .175E.05 | -.317E 03 | . 117 E 02 |
|  | 35 | -.229E 04 | -.296E-01 | .115E 00 | .174E 00 | . $857 \mathrm{E}=03$ | -. 360E-04 | .156E-05 | -.259E 03 | ,116E 02 |

Table D13. Accelerometer Load Relief ( $\mathrm{u}_{24 \mathrm{D}}$ ) Covariance Results

| $\tilde{t}$ | $\delta_{p}$ | $\dot{\delta}_{p}$ | $\delta_{r}$ | $\dot{\delta}_{r}$ | $\delta_{a}$ | $\dot{\delta}_{a}$ | $\mathrm{M}_{660}$ | $\dot{\mathrm{M}}_{660}$ | $\mathrm{M}_{1880}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | .000E-80 | . OnioE-80 | .000E-80 | .000E-80 | . $000 \mathrm{E}-80$ | $.600 E-80$ | .000E-80 | . $000 \mathrm{E}=80$ | . $000 \mathrm{CO}-8$ |
| $?$ | $.984 \mathrm{E}-05$ | . 359 E-03 | . $138 \mathrm{E}=04$ | $.900 \mathrm{E}=03$ | . 000 E-80 | $.000 E-80$ | .175 l | .773 E 14 | $\cdot 189 \mathrm{C} 14$ |
| 3 | . 184E-03 | . 620 E-03 | . 2968 -04 | . 301E.03 | - OOOE-80 | $.000 E-80$ | . 212 E 13 | $.183 E 15$ | $.576{ }^{\circ} 14$ |
| 4 | . 356 E. 03 | . $341 \mathrm{E}_{0} 02$ | . 436 E. 04 | .831E.03 | $.000 \mathrm{E}-80$ | .000E. 80 | .427E13 | . 293 E 15 | . $976 E 14$ |
| 5 | . $336 \mathrm{E}=03$ | -787E-0? | -417E-04 | . 122E-02 | . 000 E-80 | . 000 E-80 | .659E 13 | . 331 15 | -123E 15 |
| 6 | .567E-03 | -105E-01 | . 330 OL 04 | . 13 AE-02 | -OADE-80 | $.000 E-80$ | .858 El 13 | . 274 E 15 | . 124 E 15 |
| 7 | . 434 ENO | . 367 -02 | - T74E-05 | . $424 \mathrm{~F}-03$ | $\bigcirc 000 E-80$ | . 000E-80 | .952E 13 | .571E 14 | $.716 \mathrm{C}^{14}$ |
| 8 | -312E03 | -1 1 OE=01 | . 562E-04 | . 375 E02 | . OñoE-80 | $.000 E=80$ | .818 E 13 | . 32AE 15 | .587E 14 |
| 9 | $.750 \mathrm{E}=03$ | $.136 E 00$ | .599E-03 | . 494 E-01 | $\because 000 E-80$ | $.000 E-80$ | .676E 13 | .302 E 16 | .473F 15 |
| 10 | .111E-02 | . 207 O 0 | .801E-83 | . 759 EOL | $\bigcirc 000 E-80$ | , OOOE-80 | . 103E 14 | . $416 E 16$ | .615E 15 |
| 11 | . 307E-02 | $.136 E 00$ | -268E-83 | . 359 E 01 | $\because 0000^{-80}$ | . 0000 -80 | -4A2E 14 | .138E 16 | .679 l |
| 12 | . $308 \mathrm{E}=02$ | -.333E On | -674E.03 | $.934 \mathrm{E}=01$ | - OOOE-80 | $.000 E=80$ | . 371 L | . $349 E 18$ | .115E 16 |
| 13 | . 250 - 02 | $.274 E 00$ | .664E=03 | -106E OO | OTOE-86 | $.000 E-80$ | $\bigcirc 372 E 14$ | . 268 E 16 | .95 OE 15 |
| 14 | . $188 \mathrm{E}=02$ | .158 CO | .455E-03 | . 755 E001 | $\because 000 E-80$ | $.000 E-80$ | .368 E 14 | $.161 E 16$ | .672F 15 |
| 15 | . 123 -02 | .614E-01 | .171E03 | $.286 E 0^{\circ}$ | - D00E-80 | . 8000 -80 | . 285 E 14 | .657E 15 | .354E 15 |
| 16 | . 86 HE-03 | $.193 E=01$ | - $489 \mathrm{E}=04$ | . 775 E02 | $.000 E-80$ | $.000 E-80$ | -202E 14 | -232E 15 | -180E 15 |
| 17 | . 599E=0 | .635E-02 | -110E-04 | . $173 \mathrm{E}-02$ | . 000E-80 | .000E-80 | .131514 | . 831514 | . 91514 |
| 18 | . $364 E .03$ | .195E.O2 | . $224 \mathrm{E}_{-05}$ | $.336 E 03$ | -000E-80 | .000E-80 | .807E 13 | $.355 E 14$ | -483E 14 |
| 19 | - 218E-03 | - 700E-03 | -389E-06 | -537E-04 | : OOOE-80 | $.000 E-80$ | $\because 48313$ | .179 C | -2635 14 |
| 20 | .626E.03 | . 309 E -03 | -121E-06 | . 53 AEV05 | - OOOE 80 | .000E-80 | -137E 14 | .990 C 13 | . 625 L 14 |
| 21 | -606E-03 | . $135 \mathrm{E}-03$ | -783E-08 | . $183 E=05$ | $.000 E-80$ | $.000 E-80$ | .137E 14 | $.556 E 13$ | . 650 O 14 |
| 22 | - 270 E 03 | .6n8E-04 | - 306 - 08 | . 561 E.06 | $.000 E-80$ | $.000 E-80$ | . 664 E 13 | $.322 E 13$ | .312E 14 |
| 23 | . $1178=03$ | . 270 E=04 | - $394 \mathrm{E}=0 \mathrm{~g}$ | -269E-06 | $: 000 E-80$ | $.000 E-80$ | $\cdots 32 \mathrm{Cl}$ | .185 E 13 | .149 la |
| 24 | - $504 \mathrm{E}-0^{4}$ | $.133 E-04$ | - $215 \mathrm{E}=08$ | . 461 E=06 | - ÖOE-80 | . OOOE-80 | $\because 168113$ | .110E 13 | . 811213 |
| 25 | . 251 E . 04 | .607E-05 | .115E.07 | . 367 -06 | :OnOE-80 | -000E-80 | .900 E 12 | .668E 12 | .458 C 13 |
| 26 | $.111 E=04$ |  | -101E-07 | . 228E06 | -000E-8 | $.000 E-80$ | $.489 E 12$ | . 374 E 12 | -254E 13 |
| 27 | -491E-05 | -981E-06 | -105E-07 | .147E-06 | $\bigcirc 000 E_{0} 8$ | -009E-80 | .278 E 12 | -218E 12 | .1492 |
| 28 | . 212E-05 | . 374E-06 | -882E-08 | $.799 E 07$ | $: 000 E-80$ | -000E-80 | .159 L 12 | .128 E 12 | $.877 E 12$ |
| 29 | . 107E-05 | . 179E-06 | -187E-07 | . 830 EOT | ; 000 E-8 | .000E-80 | .992E 11 | -125E 12 | -61AE 12 |
| 30 | $.617 E-06$ | . $773 \mathrm{E}-07$ | -166E-07 | - $414 \mathrm{E}=07$ | . $000 \mathrm{E}=80$ | $.000 \mathrm{E}-80$ | .640E 11 | .924E 11 | -417E 12 |
| 31 | -377E-06 | $.378 E-07$ | -201E-07 | - $50^{7 E}=07$ | - OORE-80 | -000E-80 | . 415 E 11 | . 519212 | $.267 E 12$ |
| 32 | . 225 -06 | . 1.37 E -07 | . 202 C 07 | .173E07 | -000E-80 | -000E -80 | $.277 E$ II | .545E 11 | -198E 12 |
| 33 |  | - $398 \mathrm{E}-08$ |  | - 364E-08 | $.000 E-80$ | -000E-80 |  |  | .142 L 12 |
| 34 | .917E-07 | .982E.09 | -204E-07 | . 886809 | . 000E-8 | -000E-80 | -128E 11 | .748 Cl | -127E 12 |
| 35 | .623E-07 | $.271 E-09$ | . 190 -07 | .68AE-10 | :000E-80 | $.000 E-80$ | .895 E 10 | $.824 E 11$ | -986E 11 |

Table D13. Accelerometer Load Relief ( $\mathrm{u}_{24 \mathrm{D}}$ ) Covariance Results

## - EsPOMSE COVARIANCES

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& $\widetilde{t}$ \& $\dot{M}_{1880}$ \& $\mathrm{a}_{\mathrm{y}}$ \& $\dot{a}_{y}$ \& $\bar{q} \beta$ \& $\overline{\text { q }} \beta$ \& $\phi$ \& ¢ \& y \& y <br>
\hline \& 1 \& . 000E-30 \& - Anse-se \& .000E-80 \& . 000E-80 \& :000E-88 \& . DeaE. 80 \& .000E-80 \& . ODOE-80 \& .000E-80 <br>
\hline \& , \& . 113516 \& -132E 01 \& -102E Ol \& - $715 \mathrm{E}-01$ \& . 512 El \& \& . 2 SaE -06 \& -998E-02 \& - $334 \mathrm{E}-82$ <br>
\hline \& 3 \& -374E 15 \& . 784 Cbl \& . 713 E 0 \& -111802 \& .737E-01 \& . 162 cos \& .747E-06 \& .974E 02 \& -45ir oi <br>
\hline \& 4 \& . 113816 \& .232E 90 \& -898E 01 \& . 234808 \& .435E O1 \& .211c-05 \& .257E-05 \& $.274{ }^{\text {O }}$ \& -5312 00 <br>
\hline \& 5 \& . 148 CHE 16 \& -4928 08 \& . 368802 \& . $378{ }^{49} 02$ \& . 147581 \& . 314 E -05 \& .150 - 05 \& . 223509 \& . 208 El <br>
\hline \& 7 \& c42E 16
$.724 E 15$ \& P53E Oo \& .810E 02 \& -49AE 02 \& ${ }^{1085} 01$ \& . $338 \mathrm{E}=05$ \& $0^{486 z-05}$ \& -513E 01 \& . 160 c 02 <br>
\hline \& 8 \& . 392816 \& $.162 E 01$ \& -235E 03 \& . 739 l \&  \& -203E-05 \& -166E-05 \& . 468 Et 03 \& .198E O? <br>
\hline \& 9 \& -47e li \& -110E 02 \& -4A0E Oa \& -956E 02 \& -906E O2 \& - 193 cos \&  \& -172E Og \& $!222503$ <br>
\hline \& 10 \& .753E 17 \& -2AT3E 02 \& .953E 04 \& $.136 E 03$ \& . PTEE 02 \& . 315 Co -05 \& -470E-04 \& - 458 ES \& . 10 at 03 <br>
\hline \& 11 \& . 421818 \& $.131{ }^{\text {c }} 02$ \& -822E 04 \& .112e 03 \& .183 El \& .169E-04 \& - 35acola \& . 103 S Of \& . 66BE 03 <br>
\hline \& 12 \& . 108 c 18 \& . 3060 O \& . 250505 \& . 598 E \& . 299 CO \& .139E-04 \& . 035 c -04 \& . 202E 06 \& . 016803 <br>
\hline N \& 13 \& .963 L 17 \& 2A1E 02 \& . 271E 05 \& .611802 \& . 435803 \& -106E-04 \& . $689 \mathrm{E}-04$ \& $.343 E 06$ \& . 820 OJ <br>
\hline - \& 19 \&  \&  \& -202E 05 \& $\begin{array}{r}657 E \\ .538 E \\ \hline 02\end{array}$ \& -465E 03 \& $698 \mathrm{E}-05$
$.676 E-05$ \& -129E-04 \& $.522 E$
$.731 E$
06 \& $.781 E$
$.779 E$
03 <br>
\hline \& 16 \& .669E 16 \& .296E 11 \& . 355 E \& C3gaE O2 \& -1jle os \& .525E-05 \& - 110 l \& -790E Of \& . 719 OJ <br>
\hline \& 17 \& .177E 16 \& . 127801 \& . 120804 \& . 271802 \& . 10505 \& . $388 \mathrm{E}-05$ \& . 2968.05 \& .125E 07 \& -124E OA <br>
\hline \& 18 \& .485e 15 \& .627E 08 \& -375E 03 \& .172 02 \& !580E 02 \& -245E-05 \& .115E-05 \& .161E 07 \& -180E OA <br>
\hline \& 19 \& . 152815 \& . 348 BE OE \& - IlaE 03 \& .104E 02 \& -322E 02 \& . 149 E -05 \& -501E.06 \& . 209 OT \& - 2568 OA <br>
\hline \& 24 \& . 565814 \& .922E 00 \& . 28680 \& $.300_{\text {E }} 02$ \& ¢181E 02 \& . 386 E-05 \& . $365 \mathrm{E}-06$ \& .275E 07 \& - 307 OA <br>
\hline \&  \& . $1018{ }^{\text {c }}$ \& .975E 08 \&  \& -294E 02 \& ? 303 PE 02 \& $.433 E-05$
.1950 .05 \& -13E-06
.6418 .07 \&  \& -2 ${ }^{6} 18{ }^{\text {O }}$ <br>
\hline \& 23
24 \& -926E is \& - 230 E - \& -261E O1 \& -664E 01 \& ¢325E of \& -852E-06 \& - 285 Sc 07 \& - 527809 \& - 196804 <br>
\hline \& 24 \& . 396813 \& - Iole 0 \& . 283 El \& $.327 E 01$ \& !182E 01 \& . 371 . 06 \& .131E.07 \& . 621607 \& -179E O4 <br>
\hline \& 25 \& . 343513 \& .611E01 \& -171E 01 \& . $1644^{01}$ \& .986E 08 \& . 163 F-06 \& - $553 \mathrm{E}=08$ \& .721E 07 \& <br>
\hline \& 26
27 \& \& . 326 E01 \& -109E Oi \& . 847 F 00 \& :903E 98 \& . 709 E07 \& . 226 E-08 \& .1225 07 \& -168E OA <br>
\hline \& 27 \& .997E 12 \& .179E-01 \& .86780 \& -446E 00 \& -248E 80 \& -3e0E-07 \& -898E-09 \& -336E 07 \& -153E 04 <br>
\hline \& 28

78 \& . 522812 \& .999E-82 \& . 669 E ¢ 0 \& -242E 00 \& $\bigcirc 123808$ \& -131E-d ${ }^{\text {c }}$ \& $\bigcirc 359 \mathrm{E} 09$ \& :105E OB \& -149E 04 <br>
\hline \& 39 \& \& $.546 E-72$
$.333 E-02$ \& -940E 0 \& . 135 E 00 \& .618E-D1 \& -645E-06 \& .141E-09 \& -117E O8 \& -14be 04 <br>
\hline \& 31 \& .1845E 1i \& $.333 E-02$
$.219 E-02$ \& - 9 ¢92E 00 \& -793E-01 \& $303 E-01$
$134 E-01$ \& . $3615-08$ \& - 59AE-10 \& -130E O8 \& -143E 04 <br>
\hline \& 32 \& .354F 11 \& -1?7E-02 \& -390E OO \& - $292 \mathrm{E}=01$ \& - $3134 \mathrm{E}=01$ \& \& . $2668=10$ \& -144E 08 \& -141E 04 <br>
\hline \& 33 \& .117211 \& . 765 E -03 \& -160E 0 \& .179E-01 \& - 170 CO \& . 671 Efeos \& .102E=10 \& $158 E 08$

$.172 E 08$ \& $$
\begin{aligned}
& .140 E O 4 \\
& 1305
\end{aligned}
$$ <br>

\hline \& 34 \& $.325 E 10$ \& . $366 \mathrm{E}-13$ \& . 767E-01 \& . $112 \mathrm{E}=01$ \& -436E=03 \& . 456 E -09 \& -118E-11 \& . 1888 C \& -139E OA <br>
\hline \& 35 \& -374E 8 \& -183E-03 \& -126E-01 \& $: 700 \mathrm{e} 02$ \& ? 487 E -04 \& -305E-09 \& : $626 E-12$ \& -20AE OB \& -137E OA <br>
\hline
\end{tabular}

Tabie D14. Sideslip Load Relief ( $\mathrm{u}_{25 \mathrm{D}}$ ) Covariance Results


Table D14. Sideslip Load Relief ( $\mathrm{u}_{24 \mathrm{D}}$ ) Covariance Results (Continued)


Table D14. $\underset{\text { Sideslip Load Relief ( } \mathrm{u}_{25 \mathrm{D}} \text { ) Covariance Results } \text { (Continued) }}{ }$
(Continued)


Table D14. $\underset{\text { Sideslip Load Relief ( } \mathrm{u}_{25 \mathrm{D}} \text { ) Covariance Results }}{\text { (Concluded) }}$

|  | $\widetilde{\mathrm{t}}$ | $\dot{M}_{1880}$ | ${ }^{\text {a }}$ | $\dot{a}_{y}$ | $\bar{q} \beta$ | $\bar{q} \dot{\beta}$ | $\phi$ | $\phi$ | y | $\dot{\text { y }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | - OCOE-80 | - DOOE-80 | .000E-80 | .000E-80 | . 000E-80 | - 000E-80 | .000E-80 | -00DE-80 | . 00DE-80 |
|  | $?$ | . 113 E 16 | -132E 00 | .102E 01 | - 715E01 | . 512 E 00 | -606E-0R | - 254 E -06 | -998E-02 | - 334E-02 |
|  | 3 | . 374 E 15 | -784E-01 | . 713 EO | . 111 E 02 | . 7375 -01 | . 162E-05 | . 747E-06 | . 874 E 02 | -451E 01 |
|  | 4 | .113E 16 | . 232 E 00 | .898E 01 | . 234 E 02 | . 435 E O | . 211 E - ${ }^{\text {S }}$ | . 257E-05 | . $274 \mathrm{E}^{03}$ | .531E 00 |
|  | 5 | . 198 E 16 | -49?E Oi | .369E 02 | . 370E 02 | .147E O1 | . $314 \mathrm{E}-05$ | . 450 E 05 | -2,3E 03 | .2nge ol |
|  | 6 | . 242 E 16 | .753E CO | . 810 E 02 | .49 F ¢ 02 | -908E Ol | . $338 \mathrm{E}=05$ | .486E-05 | .513E O1 | $.160 \mathrm{E}^{2}$ |
|  | 7 | .724 E | - 710 E 00 | .392E 02 | $.61^{3 E} 02$ | $\bigcirc 109 \mathrm{E}$ O2 | . $283 \mathrm{E}-0^{5}$ | -166E-05 | .668E 03 | .49BE 02 |
|  | 8 | $.406 E 16$ | . 163 E 01 | $.240 \mathrm{E}^{2} 3$ | .738 E 02 | -250E 02 | -191E.05 | . 279 E 05 | -AAIE OA | $.113 E^{03}$ |
|  |  | . 517 E 17 | .121F 02 | . 459 E O4 | .957E 02 | .507E 02 | . $195 \mathrm{E}-05$ | - 353E-04 | .172E 05 | $.222 E 03$ |
|  | 10 | -840E 17 | -211E 02 | . 101505 | .136E 03 | -981E 02 | . 319 E 05 | . 501 -04 | . 459805 | -409E 03 |
|  | 11 | .482E 17 | .139E 0 ? | .877E 04 | .110F 03 | .183E 03 | .1FTE-04 | . $383 \mathrm{E}-04$ | .103E 06 | .669E 03 |
|  | 12 | .125E 1A | .374E 0? | . 265 CS | . 557E 02 | . 298503 | -128E=04 | . 7965 -04 | . 2 İ2E 06 | $.8110^{03}$ |
| $\stackrel{\sim}{*}$ | 13 | . 112 la | . 296E 0 ? | .289E OS | . 578 E 02 | .434 E 03 | .101E-04 | . $735 \mathrm{E}=04$ | . 342E 06 | . 810E 03 |
| O | 14 | . $684 \mathrm{El}{ }^{\text {c }}$ | -190E02 | -210E 05 | - ${ }^{5} 25 \mathrm{E} 82$ | : $464 \mathrm{C}^{3}$ | . 860 E=05 | . 4 44E-04 | $.520 E 06$ | $.773 E 03$ |
|  | 15 | . 263 E 19 | - BiaE Oi | -999E 04 | . 515 C 0 | -327E 03 | .649E.05 | .192E-04 | . 727 O6 | $.784 E 03$ |
|  | 16 | . 758 E 16 | .300E O1 | . $363 \mathrm{E} \mathrm{O}_{4}$ | .382E 02 | -191E 03 | . 5naE-05 | - $734 \mathrm{E}-05$ | .966E 06 | .940E 03 |
|  | 17 | . 200 E 16 | -126E 01 | .123E 04 | . 260 E 02 | -105E OS | . 372 E -05 | . 304E-05 | -125E 07 | .131E 04 |
|  | 18 | . 526 E 15 | .611E 06 | . 380E 03 | .165F 02 | :580E 02 | . $234 \mathrm{E-05}$ | .117E-05 | .162E 07 | .190E O4 |
|  | 19 | .155E15 | . 336 E 00 | .116E 03 | .994E 01 | . 322E 02 | .143E-05 | . 505 E 06 | .212 OT | .271E 04 |
|  | 20 | .544E 14 | .963E OC | $.287 E 02$ | .313 E 02 | :181E 02 | . $402 \mathrm{E}=05$ | . 391 E=06 | $.281 E 09$ | .325804 |
|  | 21 22 |  | -102E 01 | $.137 E$ -549 O . | $.309 E 82$ $.146 E 82$ | $\begin{array}{r}\text { - } 103 \mathrm{E} \text { C2 } \\ .578 \mathrm{E} \\ \hline 1\end{array}$ | 455E-03 $.206 E-05$ | $.134 E-06$ $.649 E-07$ | $.363 E$ <br> $.452 E$ <br> . | $.276 E 04$ $.235 E 04$ |
|  | 23 | . 926 E 13 | .251E 00 | .261E 01 | . 7 COE O1 | ! 325 E 01 | .898E-06 |  | -546E 0\% | $\bigcirc 207804$ |
|  | 24 | . 598 E 13 | .127E 00 | .283 El | .344 Ol | .182E 01 | . 391 -06 | .133E-0才 | -6ABE 07 | -189E04 |
|  | 25 | . 343 E 13 | -643E-01 | .171E 01 | $.173 E 01$ | -986E 00 | .171E-06 | . 561 E-00 | - 750E 07 | -171E 04 |
|  | Et | .185E 13 | .343E-01 | . 109 OL | .891E 00 | .503E 00 | . 746E-07 | . $229 \mathrm{E}=0 \mathrm{C}$ | . 860 O7 | .169E 04 |
|  | 27 | . 997 E 12 | . $189 \mathrm{E}=01$ | . 867 O 0 | . 470 E 00 | :248E 00 | . $324 \mathrm{E}-07$ | . 914 E 09 | .971E 07 | . 162 E Oa |
|  | 28 | . 522 E 12 | -105E-01 | .669E 00 | - 254 E 00 | -123E O\% | -138E-07 | -363E-09 | -110E O8 | - 57504 |
|  | 29 | . 320 E I2 | -576E-0\% | .940E 00 | .142800 | :618E-01 | . $688 \mathrm{E}-08$ | . 144 E -09 | -123E O8 | -154E OA |
|  | 30 | - 168 EE 12 | - 351E-02 | - 702 E 00 | -836E01 | 3 $\vdots$ $134 E-01$ | - 381E-0A | -602E-10 | -136E OA | .151E 04 |
|  | 31 | $.849 E 11$ $.354 E 11$ | - 3 31E-0? | . 593 E 00 | . 507 E -01 | : $134 \mathrm{E}=01$ | . $209 \mathrm{E}-08$ | -271E-10 | -130E OR | -149E 04 |
|  | 33 | . 117 ll | .808E-03 | - 160000 | -190E01 | -170E-02 | - 709E-09 | -44EED | -1B1E 08 | -14BE 04 |
|  | 34 | .325 E 10 | . $386 \mathrm{E}=03$ | . 767 E -01 | .118E-01 | -436E-03 | -482E-09 | .122E-11 | . 1 OTE 08 | . 145 Ca |
|  | 35 | $.3740^{\circ}$ | -194E-03 | -126E-01 | :739E02 | ! $487 \mathrm{E}-\mathrm{O}^{4}$ | - 3 22E-09 | .65AE-12 | -214E O8 | -145E 04 |

Table D15．Heading（ $\mathrm{u}_{21 \mathrm{D}}$ ）Including Rolling Gust Covariance Results

|  | $\underset{\tilde{\mathrm{t}}}{\operatorname{ME} A N}$ | $\begin{gathered} \text { RESPONSES } \\ \delta_{p} \end{gathered}$ | $\dot{\delta}_{p}$ | $\delta_{\mathbf{r}}$ | $\dot{\delta}_{\mathbf{r}}$ | $\delta_{\mathrm{a}}$ | $\delta_{a}$ | $M_{660}$ | $M_{660}$ | $\mathrm{M}_{1880}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  |  | ．000E－80 | －JJJE－3\％ | －MJOE－S．j |  | ．1JフE－97 | $\therefore 70.15 \mathrm{~F}-10$ |  |
|  | 2 | ．918E．04 | ？ 753 E －03 | ． 133 E － 03 | ： 115 E －J2 | －730－811 | －Mne ${ }^{\text {a }}$ | －．15JE 15 | ． 1145 $=176$ | $-.157 \mathrm{E} \text { n }$ |
|  | 3 | －197E－02 | －．813E－03 | ． $1755 \mathrm{E}-02$ | $\begin{array}{r}-473 \mathrm{E}=.34 \\ 376 \mathrm{O} \\ \hline\end{array}$ | O9J $\mathrm{O}-8.1$ | － $3 \cap \mathrm{E}-8{ }^{\text {a }}$ | . $.331 E ~ U S ~$ $-.883 E$ | $\begin{array}{lll}-.321_{F} & 15 \\ -.7448 & 15\end{array}$ | $\begin{aligned} & -236 E=77 \\ & -446 F \end{aligned}$ |
|  | 4 5 | － $653 \mathrm{E}-02$ $-143 \mathrm{E}-01$ | － $-147 E-02$ $-122 E-02$ | $.258 E-02$ $.312 E .02$ | 376EDJ $-38 ? \mathrm{E}-\mathrm{J4}$ | $.030 \mathrm{E}-83$ $.030 \mathrm{E}-8 \mathrm{u}$ |  |  | $-.747 \%$ <br> -.119 <br> .15 | $\begin{aligned} & -446 E n 7 \\ & -.127 E \end{aligned}$ |
|  | 5 | －．143E－01 | $\cdots \cdot 224 E-02$ | ． $312 \mathrm{E}-02$ | －：38？E－J4 | －．30E－8u |  |  |  |  |
|  | 7 | －．224E－01 | $-203 E-02$ $-111 E-02$ | －16AEE02 | $\because .1595 \mathrm{E} .13$ |  | － 7 Ofe8） | －a31E 07 | －13：3F js | －-112 L 认为 |
|  | 8 | －．280E－01 | － 216 E －${ }^{\text {－}}$ | －．529E－02 | －． $22 \mathrm{gE-12}$ | － 3 30F－8． | ． 17 （1F－8） | －．431E 37 | ．175F 35 | －．578E 07 |
|  | ${ }_{9}^{8}$ | －． 268 E－01 | ． 624 E－03 | －．176E－01 | －． $31 \geq \mathrm{E}-\mathrm{J2}$ | － |  | －．717E 07 | －107E ：16 | .568 E 07 |
|  | 10 | ．．341E．01 | －．169E－02 | －．209E－01 | － $537 \mathrm{E}-\mathrm{J} 3$ |  |  | －．437e－ 7 | －． $103_{F} 16$ | ． $716 \mathrm{E}^{\mathrm{J7}}$ |
|  | 11 | －．871E－01 | $\rightarrow .147 \mathrm{E}-01$ | －119E－01 | ¢ 818 E －72 | －T JME－aj | －line－83 | －．13E 93 | －．1108 il | －．3F1F JR |
|  | 12 | －．110E 00 | －．593E－02 | ．187E－01 | ： $167 \mathrm{E}-\mathrm{J} 2$ | － 710 C | ．1．15－3） | －．tise 13 | －．759F 16 | －． 477 E 78 |
| ～ | 12 13 | $\because 112{ }^{-1} 00$ | $\bigcirc \quad .113 \mathrm{E}-02$ | －190E－01 |  | OMES－8， |  |  | $-.779 E$ $-.199 \%$ |  |
| $\sigma$ | 14 | $-887 E-01$ $-.426 E-01$ |  | －139E－01 | －：${ }^{\text {RS7E－J？}}$ |  |  |  | －obll ja |  |
|  | 15 16 | $-926 E-101$ $.104 E=01$ | ：973E－02 | $.434 E-02$ $-184 E-02$ | －．112E－J |  | － 1 O $\mathrm{E}=8 \mathrm{~B}$ | －．693E 37 | －${ }^{\text {ing ine }}$ ： 17 | －－innte jot |
|  | 17 | ． $499 \mathrm{c}=01$ | －722E02 | － $3_{8} 3^{\text {E }}$－02 | ：132E－J3 | － $700 \mathrm{E}-3: 1$ | －MasE－8， | ． 762 E 37 | － $137{ }_{\text {E }} .17$ | .1926 os |
|  | 18 | ．600E－01 | ． $736 \mathrm{E}-03$ | －．290E－02 | ： 3 37E－73 | $\therefore \mathrm{O} 05-81$ | ． $11.10 \mathrm{~F}-8.1$ | ． 317 l 17 | － 793 E is | － 2178 |
|  | 19 | ． 501 E 01 | －28AE－02 | －． $135 \mathrm{E}=02$ | ． $327 \mathrm{E}-33$ | － 0 due－9．） | ．HOE－3： | .753 － 17 | －922F 16 | .173 E JR |
|  | 20 | －345E－01 | － $-\quad 365 \mathrm{E}-02$ $-346 \mathrm{E}-02$ | r $-.263 E-03$ $-464 E-04$ | － $196 \mathrm{EF-1} 3$ |  |  |  | $-133 E$ -2636 -26 |  |
|  | 22 | ． 759 Em | －： 231 E －02 | －． $344 \mathrm{Cb-04}$ |  |  | －JinE－aí | －118E ${ }^{17}$ | －．2GAE IG | － 255507 |
|  | 23 | －173E．02 | － 113 E 02 | ．195E．04 | － $713 \mathrm{E}=05$ | －Ju9E－87 |  | ．284E 06 | －．185t as | － 5 ¢4E 36 |
|  | 24 | －．371E－03 | －． 367 F － 03 | －139E－04 | －．417E－．15 | －0．JUE－81 | － 119 年－31 | －． 757 l － 5 | －－10？ 16 | －．145 06 |
|  | 25 | ．．837E゙－03 | －． 58 RE －04 | ． 27 AE－04 | ． $938 \mathrm{E}-115$ | － 000 －8］ |  | －．162E 06 | －．419E 15 | －．372E US |
|  | 26 | －．567E－03 | ！ $744 \mathrm{E-04}$ | ．199E－14 | －212E－35 | ． $0900 \mathrm{E}-81$ | ． 3 ME－6．） | －lete fit | －．963E J4 | －． 277 E 05 |
|  | 27 | －．384E－03 |  | －156E－04 | －：692E－J6 | －390E－8．j | － 3 DOE－89 | $\begin{array}{r}-912 E \\ -693 \\ \hline\end{array}$ | －．679F 94 | －PIUE OS |
|  | 28 | －． 255 E － 03 | ， 348 E －${ }^{\text {C }}$ | ． 139 E －04 | －．T7IE－37 |  | －${ }^{\text {OUE－89 }}$ | －．693E 55 | －．551F 14 | －．161E 06 |
|  | 20 30 | $-180 E-03$ $-137 E .03$ | 204E－04 $.117 E-04$ | $195 E-04$ $.174 E-04$ | $.1161 E-35$ $-.394 E-35$ | － 3 MUE－3 ${ }^{\text {a }}$ |  | $-549 E 65$ -.441505 |  |  |
|  | 31 | －．105E－03 | －927E－05 | $.144 \mathrm{E}-04$ | －．717E－06 |  | －1JJE－8i） | －． 355 － 65 | －．313e 0 a | －$-8 \pm 7$－ 15 |
|  | 32 | －．779E．04 | ． 729 E －05 | ，132E．04 | －． 2.79 E .36 | － 3 J0E－8i | ． 319 ¢－8．1 | －． 239 E ． 5 | －． 112 F 14 | －． 706805 |
|  | 33 | －．，588E－04 | ；514E－05 | ．141E－04 | －331E－176 | ，） $3 \mathrm{E}-\mathrm{Bn}$ | ．J U E E－8， | －． 237 E 55 | －． 195 E J4 | －． 5 ¢．7E 35 |
|  |  | －． $478 \mathrm{E}-04$ | ： 791 E－05 | －145E－04 | －233E－J6 |  | － 373 ［［－3］ | － 1 135 ${ }^{5}$ | －？ 25 E 144 | －．528E 05 |
|  | 35 | ．． 3888.04 | ． 239 E .05 | ．155E．04 | ． 332 E ． 04 | ． 730 E － $\mathrm{P}^{1}$ | －गnderal | ．．líse US | －－181E 34 | －．476E 05 |

Table D15．Heading（ $\mathrm{u}_{21 \mathrm{D}}$ ）Including Rolling Gust Covariance Results （Continued）

MFAN RESpONSES

| $\widetilde{t}$ | $\dot{M}_{1880}$ |
| :---: | :---: |
| 1 | －0） 0 ¢－30 |
| 2 | －．124E 7 |
| 3 | $\cdots ? 99505$ |
| 4 | －．799E 06 |
| 5 | －？15E06 |
| 6 | －．21JE 06 |
| 7 | －3？JF 06 |
| A | － 205507 |
| 9 | ．2RAE 07 |
| 10 | －2．39E OR |
| 11 |  |
| 12 | －．342E ${ }^{-37}$ |
| 13 | －．I2AE 07 |
| 14 | －233F 06 |
| 15 | ． 274 E ก7 |
| 16 | .353 O 07 |
| 17 | －2¢9E 07 |
| 1 A | －147E 07 |
| 10 | － 193506 |
| 20 | ．．イ29E 06 |
| 21 | －．587\％ 06 |
| 22 | －．597E 06 |
| 23 | $\ldots 39516$ |
| 24 | －2？${ }^{\text {a }}$ ．${ }_{6}$ |
| 25 | ． 196506 |
| 26 | －．169505 |
| 27 | －．148E 05 |
| 28 | －． 963 F 04 |
| 29 | ．．141E 05 |
| 30 | ．．985E04 |
| 31 | －．655E 04 |
| 32 | －．593F 04 |
| 33 | － Fgh $^{\text {c }} 04$ |
| 34 | －．42JE 74 |
| 35 | －．42Je 04 |

$a_{y} \dot{a}_{y}$

| $\overline{\mathrm{q}} \beta$ |
| :---: |
| －J J－9？ |
| ．117ï1！ |
| ．5：3E 1） |
| ．1318 11 |
| $\cdots \rightarrow$ jit |
| ．7）？${ }^{\text {a }}$ ： |
| ．＇ว－1＇． |
| ．ils $\mathrm{c}_{\mathrm{c}}$ ； |
| ．IRE I？ |
| －dうr 1？ |
| －104F 1？ |
| ．¿haEl？ |
|  |
| $\because \square_{r}$ ？ |
| ．1．15 j？ |
| ctar ：！ |
| －．11i5 ハ |
| －．1396 |
| －．1115 1？ |
| －．7＋75 ？ |
| －．119r 0i |
| －．171E jl |
| －．ti，ul |
| ．973E－．1 |
| －＇lle ji |
| ．1795 \％ |
| ．115き ！ |
| －85jE－i1 |
|  |
| －小7 ¢－！ |
| ． 3 37E－ 11 |
| ．3）35．－11 |
| －23n¢－71 |
| （ $\mid$｜35－1） $\mid$ |
| ．1ne－11 |


| $\bar{q} \beta$ |
| :---: |
| ：－9－3？ |
| ，？，＂F－Ji |
| － $271 \mathrm{~F}-\mathrm{i}$（ |
| $.218 \% 11$ |
| ． 9 9\％ 7.1 |
| ． 5 it al |
| － $0^{35}$ |
| ．$\because 5 \%$ |
| －CAEF N－ |
| － $5855^{\circ}$ |
| －？ 25 － 1 |
|  |
| －SqF．Jl |
| －730－3， |
|  |
| $\ldots$ ． Qne $^{\text {a }}$ |
| － 0 ： 555 n ？ |
| －．114 $\mathrm{Cl}^{\text {n }}$ |
| －． $375{ }^{\text {a }}$ |
| －$\ddagger$ 亿－〕 |
|  |
| －：¢ ¢－ |
| こ94F～1 |
| － 54 －12 |
| － $436{ }^{-1} 1$ |
|  |
| －「2aE－7？ |
| －¢ ¢ E－？ |
|  |
| －＂ $7^{5}$－w？ |
| －034F－？ |
| －！175－${ }^{\text {a }}$ |
| －014 E－iv |
| ． 3 32E．？ |
| －．797E－ 3 |

$$
-11] E-47
$$

$$
\begin{array}{r}
\therefore C u E-89 \\
\therefore 1 \& 3 E-1 ?
\end{array}
$$

$$
\begin{aligned}
& \because 711 E-01-.35 \\
&-1 ? 15-11-.522 \\
& 02
\end{aligned}
$$

$$
\begin{array}{lll}
1215-11 & =.522 r & 12 \\
3.35-11 & -14 A^{2} & 13
\end{array}
$$

$$
\begin{aligned}
& =.589 \mathrm{E} \quad 1 \\
& -.127 E 12
\end{aligned}
$$

$$
=.115 \mathrm{E}-13
$$

$$
\begin{array}{rl}
-.379 \mathrm{r} & 13 \\
-9.18 F & 113
\end{array}
$$

$$
\begin{aligned}
& -.127 E \quad 12 \\
& -.227 E 92 \\
& =.9 r 10 E 12
\end{aligned}
$$

$$
\begin{array}{r}
=-15 E-93 \\
-A y 5 E-3
\end{array}
$$

$$
\begin{aligned}
& -33 ?-1 ? \\
& -195=-1 ?
\end{aligned}
$$

$$
\begin{aligned}
& =7: 18 F 113 \\
& =.773513
\end{aligned}
$$

$$
\begin{aligned}
& =9 r a E ~ 12 \\
& =497 E \text { U2 } \\
& =-5 n 7 F
\end{aligned}
$$

$$
\begin{array}{r}
5 i 1 c-17 \\
-377_{2}-13
\end{array}
$$

$$
\text { -1112 } 14
$$

$$
\begin{aligned}
& -.487 E \text { U2 } \\
& -.5 \cap 7 E \text { J2 } \\
& -.707 E \quad 12
\end{aligned}
$$

$$
\begin{aligned}
& -145=-1 ? \\
& -.3715-1 ?
\end{aligned}
$$

$$
\begin{array}{r}
-.3715-12 \\
.550-33
\end{array}
$$

$$
\begin{aligned}
& .377 \mathrm{~F}-33 \\
& .618 \mathrm{~F}=3
\end{aligned}
$$

$$
\begin{aligned}
& =1518 \\
& =.198 \\
& =989
\end{aligned}
$$

$$
\begin{array}{r}
.977 E 12 \\
. .976 E \quad 02
\end{array}
$$

$$
\begin{array}{r}
\text {-3.3ic U4 }
\end{array}
$$

$$
\begin{array}{r}
-976 E \\
-.989 E \\
-92
\end{array}
$$

$$
\begin{array}{r}
9.3544
\end{array}
$$

$$
\begin{aligned}
& .110203 \\
& -.763 E 0 ?
\end{aligned}
$$

$$
\begin{array}{lll}
.780 E & O 1 & -94 O E O U \\
.7 B E
\end{array}
$$

$$
\begin{array}{r}
.421 F-11 \\
-30 g E-01
\end{array}
$$

$$
\begin{array}{r}
-95 A C \\
-9 ?
\end{array}
$$

$$
\begin{aligned}
& =.35 A E \quad 3) \\
& =.1 S G E \quad J O
\end{aligned}
$$

$$
\begin{aligned}
& =309 E ヒ-01 \\
& =.234 E-01
\end{aligned}
$$

$$
\begin{aligned}
& =.156 E \\
& =.553 E-01 \\
& =.740 E .0 ?
\end{aligned}
$$

$$
\begin{array}{rr}
-234 E-01 & -740 t-02 \\
-.173 E-01 & -315 E-01
\end{array}
$$

$$
-134 E-01 \quad-383 E-01
$$

$$
\begin{aligned}
& 106 E=01 \\
& -.1050 E-31 \\
& -009
\end{aligned}
$$

$$
-809 E-02 \quad-124 E \text { Uj }
$$

$$
\begin{array}{r}
-.566 E-02 \\
-.395 F-02
\end{array}
$$

$-.395-02$
$-.299<-02$

$$
\begin{aligned}
& 1: 7 末-j ? \\
& 0,7-1 ?
\end{aligned}
$$

$$
\begin{aligned}
& \cdot 1: 3 ? E-i ? \\
& .0715-03
\end{aligned}
$$


－．？ $19 \mathrm{~g}-\mathrm{-j} 3$
$-.147 E-13$
$=.724 E-14$
$-.724 \mathrm{E}-14$
$-7 n 2 E-\therefore 7$
$-3: 9 E-j 5$

$-135-135$
$-287-15$
－3！-15
． $1175-15$
$0.62-15$
$.57,15-3!$
－57J5－35
.27 － $.2-3$

－．12：J 14
$-452 \mathrm{E} .14$
－4ADE $14-519 E 02$
$\begin{array}{ll}-511 \mathrm{E} & \mathrm{J4} \\ .501 E & =.522 \\ 02\end{array}$
－515E U4－－5．UE J2




－T10
$=.745 \mathrm{~B}$ 14 -.589 F 7

－． 233 EJT
-5996
-.589
$-963 \mathrm{E} 14 \quad-589 \mathrm{E} 02$

Table D15. Heading ( $u_{21 D}$ ) Including Rolling Gust Covariance Results (Continued)


Table D15. Heading ( $\mathrm{u}_{21 \mathrm{D}}$ ) Including Rolling Gust Covariance Results (Concluded)


Table D16. Heading ( $\mathrm{u}_{21 \mathrm{D}}$ with $\Delta \mathrm{t}=0.04$ ) Covariance Results

| $\widetilde{\mathrm{t}}$ | $\delta^{6}$ | $\dot{\delta}^{\text {p }}$ | $\delta_{r}$ | $\dot{\delta}_{r}$ | $\delta_{a}$ | $\dot{\delta}$ | $\mathrm{M}_{660}$ | $\dot{M}_{660}$ | $\mathrm{M}_{1880}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . 000E -80 | . 000E-80 | . 000E-80 | . 100E-80 | . OODE-P 0 | . 000 E-80 | - DCOE-80 | - 00-E-80 | - 3nJE-80 |
| 2 | -128E-03 | . $868 \mathrm{C}-03$ | . 335 E -03 | . 206 E -02 | . $0000 \mathrm{E}-80$ | -00gE-80 | -. $526 \mathrm{E} 0^{5}$ | - 174 C 06 | - 3A2E 06 |
| 3 | . 197E.02 | -103E-02 | .174E.02 | ..614E.04 | . 000 -80 | $.000 \mathrm{E}-8 \mathrm{C}$ | -. 329 E 06 | -.310E 05 | -. 235 OT |
| 1 | - 64?E-02 | - 191E-n2 | -236E-02 | . $470 \mathrm{E}-04$ | . O0JE-8U | . 000 E-89 | -.878E 06 | -.311E 05 | -.442E 07 |
| 5 | -.14E.01 | -.290E-02 | .316 E .02 | -.178E-04 | - OOOE-80 | .000E-80 | -.18CE 07 | -.127E 06 | -.731E 07 |
| 6 | -.224E-01 | -.276E-02 | . 335 E.02 | $\because 134 E=03$ | . OOSE-BC | - 90 OE-80 | -.305E 07 | -. 164E 75 | -.103E U0 |
| 7 | -. 280E-01 | -.143E-02 | .168E-02 | -.815E.03 | . U00E-80 | . $000 \mathrm{E}-8 \mathrm{C}$ | -.431E 07 | -.125E 06 | -.112E UR |
| 8 | -.280E-01 | . $280 \mathrm{E}-03$ | -.523E-02 | -. $295 \mathrm{E}=02$ | . 000 O-80 | . OUOE-80 | -.4812 07 | .503 E 05 | -. 5R4E 07 |
| 9 | -. $266 \mathrm{E}-01$ | $.954 E-0^{3}$ | -182E-01 | - $449 \mathrm{E}-0^{2}$ | - $000 \mathrm{E}-80$ | - 000E-80 | $\ldots 43 E 07$ | -191F 06 | .631E $0^{7}$ |
| 10 | -.340E.01 | . 213 E . 02 | - 211 E -01 | -.463E.O3 | .000 E. 80 | . $000 \mathrm{E}=80$ | -.483E 07 | -.139E 06 | . 738 ET |
| 11 | -.87EEO1 | -.196E-01 | . $125 \mathrm{E}-01$ | $-112 E-01$ | $.000 E-80$ | - $000 \mathrm{O}-80$ | -.113E 08 | - 148 E ¢ | -.356E 08 |
| 12 | -.109E 00 | -.677E.02 | -178E-01 | . 146 E 02 | - 000 -80 | - POOE-80 | -.143E 08 | -.917E 06 | -.468E 08 |
| 13 | -.114E 00 | .153E.03 | -217E-01 | .100E-02 | - LOOE-80 | . 000 E-80 | -. 164 E O8 | -.107E 07 | -.524E P8 |
| 14 | ..907E.01 | .793E.n2 | $.163 E .01$ | -.128E-02 | -COOE.AO | . 000 E. 80 | -.145E 08 | -. 190 C C6 | -.43UE OB |
| 15 | . 0000 E- 0 | $.000 \mathrm{E}-80$ | $.000 \mathrm{E}-80$ | $.800 \mathrm{E}-80$ | . $000 \mathrm{~F}-80$ | . 000 E-89 | .000 E-80 | - $006 \mathrm{C}=80$ | -1nUE-80 |
| 14 | - 000E-80 | - 000E-80 | -000E-80 | - $900 \mathrm{E}-80$ | .090E-80 | -00UE-80 | . $004 \mathrm{~L}-80$ | -000E-80 | - On UE-80 |
| 17 | .0006 .80 | . $000 \mathrm{E}-80$ | .000 E .80 | . OUOE-80 | - MJOE.AO | .000 E. 30 | $.000 E-80$ | .000E-8. | - 1000 -80 |
| 18 | . 000E-80 | - 000E-80 | - 000E-80 | - 00 UE-80 | - OUOE-80 | - JOCE-80 | . 000 E-80 | - 900 E-80 | - J NOE-80 |
| 19 | . 0000 E. 80 | . 0000 E - 80 | - ONOE-80 | - 000 E-80 | - U00E.80 | - 0 OOE-80 | . 000 E-80 | - 000E-80 | - 100 - 80 |
| 20 | . 000 E-80 | . 000 E-80 | . $000 \mathrm{E}-80$ | - 0 OUE-80 | -COOE-80 | -000E-60 | . 00 LE- 0 | - 000 E-80 |  |
| 21 | . 0000 E 80 | . O00E-80 | . 000E-80 | . 0 OES-80 | . 000 E-80 | . OCuE-80 | . 000 E-80 | . OOOE-80 | - $n$ OUE-80 |
| 22 | . $0000 \mathrm{E}-80$ | . 000 E-30 | . 000 E-80 | $.000 E-80$ | - 000 E-80 | . 000 E-30 | $.000 \mathrm{E}-80$ | . 000 E-80 | -JOOE-80 |
| 23 | . 0000 E-80 | . 000E-30 | -000E-80 | - 0 -00E-80 | -000E-80 | - OUOE-80 | . 000 CE-80 | -0クOE-89 |  |
| 24 | . 000 E.80 | , 000E-80 | . 0000 -80 | -100E-80 | - 700 C - 80 | . 000 E-80 | . 00 LE - 80 | . 000 E.8. |  |
| 25 26 | $.000 E-80$ $.000 E-80$ | $.000 E-80$ $.000 E 80$ | $.000 E-80$ $.000 E-80$ | - POUE-80 | .0 SCEFES $.000 E-80$ | . $000 \mathrm{E}-80$ | . OOUE-80 | . 000 U-80 |  |
| 26 29 | - 0000 E-80 | . .000 ( 0 - 80 | .0002-80 | - Houeroro |  | $.000 E-80$ $.000 E-80$ | .OOCE-80 | . 000 L - 80 | -ONUE-80 |
| 2月 | . UOCE-80 | . 000 - 80 | . 000E. 80 | . 130E-80 | . 0005 -80 | . $0000 \mathrm{E}-80$ | . 000 E-80 | . 000E-80 | - $\cap$ DOE-80 |
| 29 | , COOE-80 | . 000 E-80 | $.000 E-80$ | . OLE - 0 | - $000 \mathrm{E}-80$ | $.000 \mathrm{E}-80$ | $.000 \mathrm{E}-80$ | $.000 \mathrm{E}-80$ | - UnOE-80 |
| 3. | - 0 OOE-80 | - 000E-80 | . 0000 E-80 | - 000E-80 | . $0000 \mathrm{E}-8 . \mathrm{J}$ | - OUCE-80 | - VOCE-80 | - 900 E-80 | - 00 LE -80 |
| 31 | . 000 E. 80 | . $0000 \mathrm{E}-80$ | . 0000 L .80 | . 000 - 80 | -000E-AO | - 300 -60 | . 000 - 80 | - OOUE-80 | - Anue-80 |
| 32 | $.0 J O E-80$ |  |  | $.00 y E-80$ | $.0 C O E-80$ | $.900 E-80$ | . $0000 \mathrm{E}-80$ | - 000E-80 | - NUE-CO |
| 33 | $.000 E=80$ | . 0000 - 80 | . $0000 \mathrm{E}-80$ | $.800 \mathrm{E}-\mathrm{O}$ | . 000 E-80 | $.000 E=80$ | $.000 E-80$ | . 000 E-80 | $-\cup \cap O E-80$ |
| 34 | . 000 E-80 | . 000 E-80 | . 000 E-80 | . 000 E. 80 | -COOE-80 | . OTCE-80 | . OOGE-80 | - OOJE-80 | - TOOE-80 |
| 35 | .000E-80 | . OOOE-80 | .000E.80 | .000 -80 | . 1008 -80 | . OCOE-80 | .OOUE-8A | $.000 E-8 \sim$ | - $\cap$ DOE-80 |

Table D16．Heading（ $u_{2} 1 \mathrm{D}$ with $\Delta t=0.04$ ）Covariance Results

## mean responses

| $\tilde{t}$ | $\dot{\mathrm{M}}_{1880}$ | $\mathrm{a}_{\mathrm{y}}$ | $\dot{a}_{y}$ | $\bar{q} \beta$ | $\bar{q} \dot{\beta}$ | $\phi$ | $\dot{\text { ¢ }}$ | y | $\dot{\text { y }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | $\begin{array}{r} .000 E-80 \\ -\quad 229 E 07 \end{array}$ | $\begin{array}{r} .000 E=80 \\ -221 E-01 \end{array}$ | $\begin{array}{r} .000 E-80 \\ -188 E-01 \end{array}$ | $\begin{gathered} . \\ .14 U E-80 \\ 34 E-01 \end{gathered}$ | $\begin{array}{r} .090 E-80 \\ .290 E-01 \end{array}$ | $\begin{array}{r} .000 E-80 \\ .544 E-05 \end{array}$ | $\begin{aligned} & .00 E E-A O \\ & .219 E-04 \end{aligned}$ | $\begin{array}{r} .00 n E-80 \\ =-157 E-02 \end{array}$ | $\begin{array}{r} 900 E=80 \\ -332 E-02 \end{array}$ |
| 3 | ． 0.921 E 04 | ．236E－01 | －．207E－01 | .521 E 00 | －990E－01 | －．149E－03 | －． 176 E－04 | －887E 00 | $.371 E 00$ |
| 4 | －．222E 06 | －．620E－01 | －．117E 00 | $.179 E 01$ | ． 210 OE | －． 511 E －03 | －． 85 EE－04 | －290E O1 | ． 500 E 00 |
| 5 | －．256E 06 | －．250E 00 | －．355E 00 | $.403 E 01$ | $.347 E 00$ | －．113E．02 | －．128E－03 | ． 397 OL | －216E－01 |
|  | $-210 E 06$ | $-552 E 00$ | －．735E 00 | $.719 E 01$ | ． $477 E$ no | －182E－02 | －．122E－03 | －．420E 00 | －．167E 01 |
| 7 | $.592 E 06$ | －．102E 01 | －．SOOE 00 | .109502 | ． 547 CO | －．229E－02 | －．654E－04 | －．181E 02 | －．548E O1 |
| 8 | $.272 E 07$ | －．1GAE 01 | －181E 01 | $.146 E 02$ | －528E00 | －．？ $32 \mathrm{E}-02$ | $.372 E 05$ | －．614E 02 | －．127E 02 |
| 9 | ．417E 07 | －．231E 01 | －920E 01 | ．176E 02 | －51IE 00 | －．222E－02 | ．131E－04 | －．147E 03 | －．？ 4 ¢ 02 |
| 10 | ．984E 05 | －．ET3E 01 | ．171E 02 | .191502 | ．671E 0 | －．278E－02 | －． $146 \mathrm{E}=03$ | －．293E 03 | －．387E 02 |
| 11 | －．131E 08 | －．210E 01 | －．132E 02 | $.183 E 02$ | $.139 E 01$ | －．697E－02 | －．895E－03 | －．507E 03 | －．ATAE 02 |
| 12 | －．334E 07 | －．247E 01 | －．228E 02 | $.206 E 02$ | $.156 E 01$ | －． 889 －02 | －．291E－03 | －．776E 03 | －．569E 02 |
| 13 | $\begin{array}{r}-302 E 07 \\ .992 \mathrm{O} \\ \hline .060\end{array}$ | $-306 E$ $-.297 E$ -1 | . $.238 E 02$ $.0183 E 02$ | $\begin{array}{r} 234 E 02 \\ .268 E 02 \end{array}$ | $\begin{array}{r} 193 E 01 \\ 1780 E \cap 0 \end{array}$ | $\begin{aligned} & =940 E-02 \\ & =761 E=02 \end{aligned}$ | $\begin{aligned} & 313 E-04 \\ & .399 E-03 \end{aligned}$ | $\begin{aligned} & -111 E \quad 04 \\ & -150 E \\ & \hline \end{aligned}$ | $\begin{array}{r} \because 690 E 2 \\ -\quad 69 E 02 \end{array}$ |
| 15 | －OOOE－80 | ． 000 E－80 | ．000E－80 | －BEE－80 | ．O00E－80 | ．OOOE－80 | －000E－8 | －O00E－80 | －900E－80 |
| 16 | ．000E－80 | ． $0000 \mathrm{E}-80$ | ． 000 E－80 | ． 8 CeE－80 | ． 000 O－80 | ．000E－80 | ．008E－80 | ． $000 \mathrm{E}-80$ | － 000 E 80 |
| 17 | ． 0000 E－80 | ． $000 \mathrm{E}-80$ | ． 000 E－80 | ．A1－E－80 | ．000E－80 | － $0000 \mathrm{E}-80$ | $.000 E-88$ | － $0000 \mathrm{E}-80$ | －JJUE－80 |
| 18 | －000E－80 | ． $0000 \mathrm{E}-80$ | ． $0000 \mathrm{E}=80$ | －BEEE－80 | ． $0000 \mathrm{E}-80$ | ． 000 E－80 | －DOGE－80 | －000E－89 | － 0 OUE－80 |
| 19 | ．000F－80 | ． 000 E－80 | ．OOOE－ 80 | ． 00 OE－80 | ． 0000.80 | $.000 \mathrm{E}-80$ | ． 000 E－80 | ．000E－80 | －J OOE－80 |
| 20 | $\begin{aligned} & .000 E 80 \\ & .000 E=80 \end{aligned}$ | $.000 E-80$ $.000 E 80$ .0005 | $\begin{array}{r} .000 E-80 \\ .000 E=80 \end{array}$ | ．808E－80 | $\begin{aligned} & 000 E-80 \\ & .000 E-80 \end{aligned}$ | － 000 E－ $0_{0}$ <br> $.000 E-80$ | $\begin{aligned} & .000 E-80 \\ & .008 E-80 \end{aligned}$ | $\begin{aligned} & 000 E-80 \\ & -000 E-80 \end{aligned}$ | $-j \cap O E-80$ <br>  |
| 22 | ． 000 E－80 | ． 000 E－80 | ．000E－80 | ． 0 －00E－80 | ． 000 E－80 | ． 000 E－80 | ． 000 －80 | －000E－80 | －$⿻ 上 丨 .00 E 80$ |
| 23 | ．000E－80 | ．000E－80 | ． 0000 E． 80 | ．100E． 50 | ．000E－80 | ． 0000 E－80 | ．OOGE－80 | － 000 E－80 | － $1005=80$ |
| 24 | ． 000 E－80 | ． $0000 \mathrm{E}-80$ | ． 000 E－80 | $\therefore 100 E-80$ | ． 0000 －AO | ． 000 E－80 | ． 0000 E－80 | ．000F－87 | ． 900 E－80 |
| 25 | ． 000 E．80 | ． 000 E－80 | ． 0000 －80 | ．180E－80 | ． 0000 －80 | ． 000 E－80 | －OnCE－80 | ． 0000 －80 | － $200 E-80$ |
| 26 | ． 000 E－80 | ． 000 E－80 | ． 0000 E － 80 | ． $100 \mathrm{E}-80$ | ． 0000 EO | ． $000 \mathrm{E}-80$ | ．OOOE． 80 | ． 000 E． 80 | ． $200 \mathrm{E}-80$ |
| 27 | －000E－80 | －OOOE－80 | －000E－80 | －SEE－B0 | －000E－80 | －000E－80 |  | － $000 \mathrm{E}-80$ | $-900 E-80$ |
| 28 | －000E－80 | －000E－80 | ．000E．80 | － 10 E－80 | ． 0000 － 80 | －000E－80 | $.00 E E-80$ | －000E－80 | $.000 E=80$ |
| 29 | －ODOE－80 | －000E－80 | ． 000 E－80 | ．800E－8．3 | ． 000 － 20 | ．OOCE－80 | ． $000 \mathrm{O}-80$ | ． 000 E－80 | －JOOE－80 |
| 30 | ． 000 E－80 | ． 000 E－80 | ． $0000 \mathrm{E}-80$ | ． $8005-80$ | －DOOE－80 | ． $0000 \mathrm{E}-80$ | ． $000 \mathrm{E}-80$ | －000E－80 | －M O OE－80 |
| 31 | ． 000 E－80 | ． 000 E－80 | ． 000 E－80 | ． $000 \mathrm{E}-80$ | ．OODE－RO | ． 000 E－80 | .000 E－80 | －000E－80 | － $200 \mathrm{E}-80$ |
| 32 | ．000E．80 | ． 000 E －80 | ． $0000 \mathrm{E}=80$ | ． $180 \mathrm{E}-80$ | ． 0000 － 0 | ． 0000 －80 | ． 0000 － 80 | ． $0000 \mathrm{~F}-80$ | －TnUE－80 |
| 33 | ．O00E－80 | ．ODOE． 80 | ． 000 E．80 | ． 00 － 80 | ．OODE－ 0 | $.000 \mathrm{E}-80$ | $.000 E=80$ | ． $000 \mathrm{E}-80$ | $.000 E=80$ |
| 34 | $\begin{aligned} & .000 E=80 \\ & .000 E=80 \end{aligned}$ | $\begin{aligned} & 00 \mathrm{E}=80 \\ & 000 \mathrm{O}=80 \end{aligned}$ | $\begin{array}{r} .000 E-80 \\ -000 E=80 \end{array}$ | $-000 E-80$ <br> ． 000 － 80 | $\begin{aligned} & .000 E=80 \\ & -000 E=80 \end{aligned}$ | $\begin{aligned} & .000 E-80 \\ & .000 E-80 \end{aligned}$ | $\begin{aligned} & .000 E-80 \\ & .000 E=80 \end{aligned}$ | $\begin{aligned} & -000 E-80 \\ & -000 E-80 \end{aligned}$ | $\begin{aligned} & =\cap O O E=80 \\ & -\because O D E-80 \end{aligned}$ |

Table D16. Heading ( $u_{21 \mathrm{D}}$ with $\Delta \mathrm{t}=0.04$ ) Covariance Results (Continued)


Table D16. Heading ( $u_{21 \mathrm{D}}$ with $\Delta \mathrm{t}=0.04$ ) Covariance Results
(Concluded)
REsPONSE COVARIANCES

| $\widetilde{\mathbf{t}}$ | $\mathrm{M}_{1880}$ | $\mathrm{a}_{\mathrm{y}}$ | $a_{y}$ | $\bar{q} \beta$ | $\bar{q} \beta$ | $\phi$ | $\oplus$ | y | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | . ODOE. 80 | . 0002080 | .000E.80 | .080E-80 | -CGOE-80 | .000E-80 | . UCGE-80 | -0nUE-80 | . $700 E-80$ |
| 2 | .354 E 16 | $.349 E 00$ | .242 CO | .11900 | - AEle 00 | -196E-07 | . 291 E-06 | -645E-02 | $.773 E-02$ |
| 3 | . $0_{0} 8$ E 15 | $.816 \mathrm{E}^{-1}$ | . 269801 | .112 O | . T54E-nl | -107E-US | . 106E-05 | .981E $0^{2}$ | .494E ${ }^{\text {4 }}$ |
| , | .222516 | -286E 0 | $.308 E 02$ | $.234 E 02$ | -451E 00 | .216E-65 | -126E-05 | . 299503 | . 763 E |
| 5 | -419E 16 | -69\% 00 | .121503 | . 369 EZ | $-155 E$ nl | $.320 E-05$ | . 812E-45 | -249E U3 | $.193 E 01$ |
| 6 | .532E 16 | - Llze 01 | . $245 \pm 03$ | .499E 02 | . 439201 | .350E.US | . 921E-05 | -103E 02 | .150E 02 |
| 7 | .168E 16 | - 33400 | $.103 E 03$ | .616E 02 | .120E 02 | -285E-US | - $298 E=05$ | .602E 03 | - An3E 02 |
| A | .967E 16 | .207E 01 | .503E 03 | . $736 \mathrm{E} ~ 02$ | - <84E 2 | . 196E-45 | . 605 E -05 | -459E 04 | .116E 03 |
| 9 | -127E 18 | .182E 02 | $.8740^{04}$ | . 886 E 02 | $.597 E 02$ | $.250 \mathrm{E}-05$ | - $816 \mathrm{E}-01$ | -167E 05 | -240E 03 |
| 10 | . 212 E 18 | . 30月E 02 | .177E 05 | .104503 | -11AE 3 | . $378 \mathrm{E}-05$ | . 128 ECO | . 4459 c5 | -920E $0^{3}$ |
| 11 | .111E 18 | .188E 02 | .135E 05 | $.115 E 03$ | $.221 E 03$ | .175E.04 | . 067 E -04 | .980E 05 | .554E 03 |
| 12 | -301E 18 | -983E 02 | .397505 | . 1905 ¢ 3 | $.3700^{5} \mathrm{H}$ | -384E-04 | - 2111503 | -197E 06 | -733E 03 |
| 13 | .271510 | . 450502 | .406503 | . 249 E 03 | $.553 E 03$ | . 423 E .04 | .173 E 03 | -322E 06 | -9E6E 03 |
| 14 | $.164 E 18$ | .289E 02 | . 280503 | .223503 | -609E 03 | -310E-C4 | . 100E-03 | -513E 06 | -122E 04 |
| 15 | . 000 - 80 | . 000 E. 80 | . 000080 | .080E-80 | . 000080 | .000E-AO | . 000 E-80 | - DROE-80 | - TDOE-80 |
| 16 | . 000 E-20 | .000E-80 | . $000 \mathrm{E}-80$ | . $000 \mathrm{E}=80$ | . 000 E-80 | . $000 \mathrm{E}-80$ | - $\operatorname{cose}$ e $0^{\circ}$ | - J00E-80 | - $3 C U E=80$ |
| 17 | . 0000 - $0^{0}$ | . 000E-80 | -000E-80 | - 8007080 | . 000E-80 | . 000080 | - OOOE-88 | - 000E-8C | - OOUE-80 |
| 18 | . 0000 -80 | . 000 E 80 | . 000 - 80 | , 0 EE-80 | . 00020 | .000E.80 | . OCEE. 80 | -000E-80 | - 00 UE-80 |
| 19 | - 000E-80 | - 000E-80 | -000E-80 |  | - OOOE-80 | -00才E-80 | - V00E-80 | - OcuE-30 | - AnoE-80 |
| 20 | . O00E-80 | - 000E-80 | .000E-80 | - 6 EE-80 | . 0000 - 0 | - OCOE-80 | - DOCEFOO | -000E-80 | - OCJE-80 |
| 21 | . 000 E-80 | . O00E-80 | . O00E-80 | . 030E-80 | . O00E-80 | - 200 E-80 | - DCPE-A | - O90F-80 | - กOUE-80 |
| 22 | . 000E-80 | . O0AE-80 | . OOOE. 80 | . 0 HEE-80 | . 0000 -80 | . 0000 -80 | . 00 CECO | -006F-8U | -100E-80 |
| 23 | . 0000 c-80 | . 000 E-80 | $.000 \mathrm{E}-80$ | $.080 c-80$ | . 000emat | . 000 E-80 | . $0005-80$ | . 0000 E-8i | $.900 E=80$ |
| 24 | -000E-80 | . 000 E-80 | . OOOE-80 | . $000 E-80$ | . 000E-80 | - MOSE-80 | . $000 \mathrm{E}=80$ | - ONCE-80 | - ${ }^{\text {COES-8 }}$ |
| 29 | . 000 E. 80 | . 0000 E00 | . 000 E. 80 | .00SE-80 | . 0000 -80 | -ODCE. 80 | : OCGE-80 | . 000 - 80 | - $\cap 10 \mathrm{CO}$ |
| 26 | $\begin{aligned} & .000 E-80 \\ & .000 E-80 \end{aligned}$ | $-000 E-80$ <br> .000 E .80 | $\begin{aligned} & -000 E-80 \\ & -000 E-80 \end{aligned}$ | $-808 E-80$ $.00 E_{-00}$ | $\begin{aligned} & .000 E=A \\ & .000 E=80 \end{aligned}$ | $\begin{aligned} & . C O O E-80 \\ & .000 E-40 \end{aligned}$ | $\begin{aligned} & .0 C O E-80 \\ & .006 E=80 \end{aligned}$ | - OONE-80 <br> -00UE-80 | $\begin{aligned} &-300 E-80 \\ &--100 E=80 \end{aligned}$ |
| 28 | . OOOE-80 | . 000E-80 | .000E-80 | . 000E-80 | . O00E-80 | .00UE-80 | . O00E-80 | - ODUE-80 | -100E-80 |
| 29 | . 000 E 80 | . 000E-80 | . 000 E. 80 | . 800 E.80 | .000E-80 | .000E-80 | . On8E-80 | - 000 -80 | - $\triangle 100-80$ |
| 30 | . 0000 E-80 | . 000 E-80 | . 000 E -80 | . 000 E-80 | - 0008 E-80 | . $000 \mathrm{E}-80$ | . OOCE -80 | - 500E-80 | - 5 90E-80 |
| 31 | . $080 \mathrm{E}-80$ | . 000E-80 | . 000 E-80 | . $800 \mathrm{E}-80$ | . 000 E-80 | - OUOE-80 | . 00CE-80 | - OUJF-80 | - $700 E-80$ |
| 32 | . 080 - 80 | . 0000.80 | . 000 -80 | . 000 - 80 | - $1002=0$ | - 0 CuE-80 | . 000 E-80 | - Ooveras | .710 CBO |
| 33 | - 000 O-80 | . OOOE-80 | -000E-80 | - $000 \mathrm{OE}-80$ | .000E-80 | -000E-80 | - OOOE-80 | - O0nE-80 | $\rightarrow$ ? $00 E-80$ |
| 34 35 | . 000 E 80 | . 000 E.80 | .000E.80 | - 00 - 80 | .000E.0 | $.000 E=80$ | . 008E-AO | -000E-80 | $\therefore$ ACOE-80 |
| 35 | . O00E-80 | . $900 \mathrm{E}-80$ | . $000 \mathrm{E}-80$ | . OONE-80 | $.0 C O E-80$ | .OOOE-80 | . $0005-20$ | - $D 0$ OE-80 | - UOUE-80 |

## APPENDIX E

## LATERAL EQUATIONS AND DATA FOR NORTH AMERICAN 130G.

This appendix presents the vehicle equations and data used in Section VII.

VECTOR REPRESENTATION
A three-view of the airplane is presented as Figure 70. All data except for the rudder aerodynamics and actuator dynamics are taken from ref. 27. Honeywell obtained the missing data from North American.

The state equations are presented in Table E2, and the numerical data for them are presented in Table E1. The FC (flight conditions) referred to correspond to those being used by Honeywell Aerospace in the Phase B shuttle program. Table E3 identifies the flight conditions used.

## DISCUSSION

The weights, inertias, and centers of gravity used (Table E3) were obtained from North American.

Stability derivatives except for rudder were obtained from Figures E1 through E11. The signs of the derivatives for aileron $\delta_{\mathrm{a}}$ (differential tail deflection) and spoilers are reversed in going to Tables E1 and E4 to conform to conventional NASA practice. It is noted that both the ailerons and spoilers yield proverse yaw. The spoiler data were resolved from stability axes as presented in Figures E10 and E11 to body axes in Table E4. Table E4 also assumes a spoiler gearing has been provided to yield the linear effectiveness between 0 and $\pi / 2$ radians.

The generic form of the state perturbation equations of Table E2 is:

$$
\begin{aligned}
& \dot{p}=L_{p}^{\prime} p+L_{r}^{\prime} r+L_{\beta}^{\prime} \beta+L_{\delta a}^{\prime} \delta_{a}+L_{\delta r}^{\prime} \delta_{r}+L_{\delta s}^{\prime} \delta_{s} \\
& \dot{r}=N_{p}^{\prime} p+N_{r}^{\prime} r+N_{\beta}^{\prime} \beta+N_{\delta a}^{\prime} \delta_{a}+N_{\delta r}^{\prime} \delta_{r}+N_{\delta s}^{\prime} \delta_{s} \\
& \dot{\beta}=\frac{w_{o}}{V} p-\frac{u_{o}}{V} r+Y_{\beta} \beta+Y_{\delta r} \delta_{r}+\frac{g}{V}\left(c \theta_{o}\right) \phi \\
& \dot{\phi}=p+\left(\tan \theta_{o}\right) r
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\delta_{a}}=-\frac{\mathrm{T}_{\mathrm{a}_{1}}+\mathrm{T}_{\mathrm{a}_{2}}}{\mathrm{~T}_{\mathrm{a}_{1}} \mathrm{~T}_{\mathrm{a}_{2}}} \dot{\delta}_{\mathrm{a}}-\frac{1}{\mathrm{~T}_{\mathrm{a}_{1}} \mathrm{~T}_{\mathrm{a}_{2}}} \delta_{\mathrm{a}}+\frac{1}{\mathrm{~T}_{\mathrm{a}_{1}} \mathrm{~T}_{\mathrm{a}_{2}}} \mathrm{u}_{1} \\
& \ddot{\delta}_{\mathrm{r}}=-\frac{\mathrm{T}_{r_{1}}+\mathrm{T}_{\mathrm{r}_{2}}}{\mathrm{Tr}_{1} \mathrm{~T}_{\mathrm{r}_{2}}} \dot{\delta}_{\mathrm{r}}-\frac{1}{\mathrm{~T}_{\mathrm{r}_{1}} \mathrm{~T}_{\mathrm{r}_{2}}} \delta_{\mathrm{r}}+\frac{1}{\mathrm{~T}_{\mathrm{r}_{1}} \mathrm{~T}_{r_{2}}} \mathrm{u}_{2} \\
& \dot{\delta}_{\mathrm{s}}=-\frac{1}{\mathrm{~T}_{\mathrm{s}}} \delta_{\mathrm{s}}+\frac{1}{\mathrm{~T}_{\mathrm{s}}} \mathrm{u}_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{p, r}^{\prime}=\left(\frac{\bar{q} S b}{I}\right)\left|\frac{b}{2 \bar{V}}\right|\left\{I_{z z} C_{\ell_{p, r}}+I_{x z} C_{n_{p, r}}\right\} \\
& L_{\beta, \delta a, \delta r, \delta s}^{\prime}=\frac{\bar{q} S b}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell, \delta \mathrm{a}, \delta \mathrm{r}, \delta \mathrm{~s}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta, \delta \mathrm{a}}, \delta r, \delta \mathrm{~s}}\right\} \\
& \left.\left.N_{p, r}^{\prime}=\left(\frac{\bar{q} S b}{I}\right)\left(\frac{b}{2 v}\right) \right\rvert\, I_{x x} C_{n_{p, r}}+I_{x z} C_{\ell}, r\right\} \\
& N_{\beta, \delta r}^{\prime}=\frac{\bar{q} S b}{I}\left\{I_{x x} C_{n \beta, \delta r}+I_{x z} C_{\ell_{\beta, \delta r}}\right\} \\
& Y_{\beta, \delta r}=\frac{\mathrm{g}}{\mathrm{~V}} \frac{\overline{\mathrm{q}} \mathrm{~S}}{\mathrm{~W}}\left\{\mathrm{C}_{\mathrm{y}_{\beta, \delta \mathrm{r}}}\right\} \\
& I=I_{x x y y} I-I_{x z}{ }^{2}
\end{aligned}
$$

The time constants ( $\mathrm{T}_{\mathrm{a}_{1}}, \mathrm{~T}_{\mathrm{r}_{1}}, \mathrm{~T}_{\mathrm{a} 2}$, and $\mathrm{T}_{\mathrm{r}_{2}}$ ) for the aileron and rudder servo and actuator are taken as 0.030 second. The spoiler time constant is taken as 0.15 second.

Table E1. State Data

|  | FC 9 | FC 11 |
| :--- | :--- | :--- |
| ${ }^{a_{11}}$ | -2.85 | -1.299 |
| $a_{12}$ | +1.367 | +1.336 |
| $a_{13}$ | -6.37 | -1.668 |
| $a_{16}$ | -7.48 | -1.555 |
| $a_{18}$ | +4.46 | +.963 |
| $a_{19}$ | -.698 | -.212 |
| $a_{21}$ | +.1766 | +.0846 |
| $a_{22}$ | -.586 | -.405 |
| $a_{23}$ | +2.15 | +.491 |
| $a_{26}$ | -.985 | -.1633 |
| $a_{28}$ | -1.286 | -.332 |
| $a_{29}$ | -.0466 | -.01603 |
| $a_{31}$ | +.0262 | +.191 |
| $a_{32}$ | -1.00 | -.982 |
| $a_{33}$ | -.444 | -.325 |
| $a_{34}$ | +.0477 | +.1275 |
| $a_{38}$ | +.0723 | +.0405 |
| $a_{41}$ | +1.0 | +1.0 |
| $a_{42}$ | +.0262 | +.1942 |
| $a_{44}$ | 0.0 | 0.0 |

Table E1. State Data (Continued)

ALL FLIGHT CONDITIONS

| $\mathrm{a}_{55}$ | - 66.7 |
| :---: | :---: |
| $a_{56}$ | -1111.0 |
| ${ }^{\text {a } 65}$ | + 1.0 |
| $\mathrm{a}_{77}$ | - 66.7 |
| ${ }^{1} 78$ | -1111.0 |
| $\mathrm{a}_{87}$ | + 1.0 |
| $\mathrm{a}_{99}$ | - .15 |
| $b_{51}$ | +1111.0 |
| ${ }^{\mathrm{b}} 72$ | +1111.0 |
| ${ }^{\text {b }} 93$ | + . 15 |
| $\left\|\dot{\delta}_{a}\right\| \leq$ | . $262 \mathrm{rad} / \mathrm{sec}$ |
| $\left\|\delta_{a}\right\| \leq$ | . 262 rad |
| $\left\|\dot{\delta}_{r}\right\| \leq$ | . $349 \mathrm{rad} / \mathrm{sec}$ |
| $\left\|\delta_{r}\right\| \leq$ | . 1742 rad |
| $\left\|\dot{\delta}_{S}\right\| \leq$ | $.523 \mathrm{rad} / \mathrm{sec}$ |
| $\left\|\delta_{s}\right\| \leq$ | 1.572 rad |

Table E2. State Equations


Table E3. Flight Data

| $C_{L}$ |  | FC 9$0.234$ | FC 11 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0.922 |  |
| $\mathrm{I}_{\mathrm{xx}}$ |  | $1.91 \cdot 10^{6}$ | $1.92 \cdot 10^{6}$ | slug $f t^{2}$ |
| $\mathrm{I}_{\mathrm{xz}}$ |  | $.220 \cdot 10^{6}$ | $.222 \cdot 10^{6}$ | slug $\mathrm{ft}^{2}$ |
| $\mathrm{I}_{\mathrm{zz}}$ |  | $13.4 \cdot 10^{6}$ | $13.47 \cdot 10^{6}$ | slug $\mathrm{ft}^{2}$ |
| M | Mach | 0.650 | 0.226 |  |
| S | Wing area |  |  | $f t^{2}$ |
| W | Weight | 208,000 | 214,495 | 1 b |
| V | Speed | 674. | 252. | $\mathrm{ft} / \mathrm{sec}$ |
| b | Span |  |  | ft |
| h | Altitude | 20,000 | 0 | ft |
| $\bar{q}$ | Dynamic pressure | 287. | 75.5 | $\mathrm{lb} / \mathrm{ft}{ }^{2}$ |
| $u_{0}$ |  | 674. | 247. | $\mathrm{ft} / \mathrm{sec}$ |
| $w_{0}$ |  | +17.67 | +48.1 | $\mathrm{ft} / \mathrm{sec}$ |
| $\mathrm{x}_{\mathrm{cm}}$ | Center of mass | 1615. | 1465. | in. |
| $\mathrm{x}_{\mathrm{cm}}$ | Center of mass | 67.0 | 59.8 | \% |
| $\alpha_{0}$ | Attack | 1.5/57.3 | 11/57.3 | rad |

Table E4. Body Axis Stability Derivatives

| F.C. | 9 | 11 | 9 | 11 | 9 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(\cdot)$ | $-\left..540\right\|^{\mathrm{C}_{\ell}(\cdot)}-.350$ |  | $\mathrm{c}_{\mathrm{n}_{(\cdot)}}$ |  | $\mathrm{C}^{\mathrm{y}}(\cdot)$ |  |
| p |  |  | +. 295 | +. 200 | - | - |
| $r$ | +. 270 | +. 370 | -. 804 | -. 806 | - | - |
| $\beta$ | -. 115 | -. 115 | +. 275 | +. 241 | -2.18 | $-2.35$ |
| $\delta_{a}$ | -. 128 | -. 101 | . 105 | -. 064 | - | - |
| $\delta_{r}$ | +. 080 | +. 066 | -. 166 | -. 162 | . 355 | +. 292 |
| $\delta_{s}$ | -. 0120 | -. 01377 | -. 00427 | -. 0058 | - | - |



Figure E1. Trim Data


Figure $E 2 . \quad \mathrm{C}_{\ell_{p}}$


Figure E3. $\quad C_{n}$


Figure E4. $\mathrm{C}_{\ell}$ r


Figure E5. $\quad C_{n}$


Figure E6. $\mathrm{C}_{\ell_{\beta}}$

SSV ORBITER - I30B


Figure E7. $C_{n_{\beta}}$

MACH




Figure E9. $C_{1_{\delta a}}$ and $C_{n}{ }_{\delta a}$


Figure E10. $C_{\ell}$ Spoiler


Figure E11. $C_{n}$ Spoiler

## APPENDIX F

## LATERAL EQUATIONS AND DATA FOR NORTH AMERICAN 134D

This appendix presents the equations and data used to generate the results of Section VIII. The nomenclature, representations, and derivations are presented below.

NOMENCLATURE
A = Matrix [Equation (F1)]
$A[x]=$ Slender body area [Equations (F19) and (F20)]
$B=$ Matrix [Equation (F22)]

$$
C_{L}=0.345=\frac{W}{\overline{\mathrm{q} S}\left[c \gamma-(\mathrm{s} \gamma) \mathrm{C}_{\mathrm{D}} / \mathrm{C}_{\mathrm{L}}\right]}
$$

$$
\mathrm{C}_{l_{\mathrm{p}}}=(\mathrm{c} \alpha)^{2} \overline{\mathrm{C}}_{l_{\overline{\mathrm{p}}}}-(\mathrm{s} \alpha)(\mathrm{c} \alpha)\left(\overline{\mathrm{C}}_{l_{\overline{\mathrm{r}}}}+\overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathrm{p}}}}\right)+(\mathrm{s} \alpha)^{2} \overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathrm{r}}}} \quad 1 / \mathrm{rad}
$$

$$
1 / \mathrm{rad}
$$

$$
\mathrm{C}_{\ell_{\mathrm{r}}}=(\mathrm{c} \alpha)^{2} \overline{\mathrm{C}}_{\ell_{\overline{\mathrm{r}}}}+(\mathrm{s} \alpha)(\mathrm{c} \alpha)+\left(\overline{\mathrm{C}}_{\overline{\mathrm{p}}_{\overline{\mathrm{p}}}}-\overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathrm{r}}}}\right)-(\mathrm{s} \alpha)^{2} \overline{\mathrm{C}}_{\mathrm{n}_{\mathrm{p}}} \quad 1 / \mathrm{rad}
$$

$$
\overline{\mathrm{C}}_{\ell}=\frac{\partial \overline{\mathrm{C}}_{\ell}}{\partial\left|\frac{\overline{\mathrm{r}} \mathrm{~b}}{2 \mathrm{~V}}\right|} \text { (Figure F5) }
$$

$$
\mathrm{C}_{\ell_{\beta}}=57.3\left[(\mathrm{c} \alpha) \overline{\mathrm{C}}_{\ell_{\beta}}-(\mathrm{s} \alpha) \overline{\mathrm{C}}_{\mathrm{n}_{\beta}}\right]
$$

$$
1 / \mathrm{rad}
$$

$$
\bar{C}_{\ell}=\frac{\partial \bar{C}_{\ell}}{\partial \beta} \quad \text { (Figure F6) }
$$

$$
1 / \mathrm{deg}
$$

$$
\mathrm{C}_{\ell \mathrm{a}}=57.3\left[(\mathrm{c} \alpha) \overline{\mathrm{C}}_{\ell}-(\mathrm{s} \alpha) \overline{\mathrm{C}}_{\mathrm{n}_{\delta \mathrm{a}}}\right]
$$

$1 / \mathrm{rad}$

$$
\begin{aligned}
& \overline{\mathrm{C}}_{\ell}=\frac{\partial \overline{\mathrm{C}}_{\ell}}{\partial \delta_{\mathrm{a}}} \quad \text { (Figure } \mathrm{F} 7 \text { ) } \\
& \mathrm{C}_{\ell \delta \mathrm{r}}=57.3\left\{(\mathrm{c} \alpha) \mathrm{C}_{\ell \delta \mathrm{r}}-(\mathrm{s} \alpha) \overline{\mathrm{C}}_{\mathrm{n}}^{\delta \mathrm{r}}, 0\right. \\
& \overline{\mathrm{C}}_{\ell \mathrm{r}}=\frac{\partial \overline{\mathrm{C}}_{\ell}}{\partial \delta_{\mathrm{r}}} \quad \text { (Figure } \mathrm{F} 8 \text { ) } \\
& \mathrm{C}_{\mathrm{n}_{\mathrm{p}}}=(\mathrm{c} \alpha)^{2} \overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathrm{p}}}}+(\mathrm{s} \alpha)(\mathrm{c} \alpha)\left(+\overline{\mathrm{C}}_{\boldsymbol{l}_{\overline{\mathrm{p}}}}-\overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathrm{r}}}}\right)-(\mathrm{s} \alpha)^{2} \mathrm{C}_{\boldsymbol{l}_{\overline{\mathrm{r}}}} \quad 1 / \mathrm{rad} \\
& \overline{\mathrm{C}}_{\mathrm{n}_{\bar{p}}}=\frac{\partial \overline{\mathrm{C}}_{\mathrm{n}}}{\partial\left|\frac{\overline{\mathrm{~b}}}{2 \mathrm{~V}}\right|} \text { (Figure F4) } \\
& \left.\mathrm{C}_{\mathrm{n}_{\mathbf{r}}}=(\mathrm{c} \alpha)^{2} \overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathbf{r}}}}+(\mathrm{s} \alpha)(\mathrm{c} \alpha) \mid+\overline{\mathrm{C}}_{\ell_{\overline{\mathrm{r}}}}+\overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathrm{p}}}}\right)+(\mathrm{s} \alpha)^{2} \overline{\mathrm{C}}_{\ell_{\overline{\mathrm{p}}}} \\
& \overline{\mathrm{C}}_{\mathrm{n}_{\overline{\mathbf{r}}}}=\frac{\partial \overline{\mathrm{C}}_{\mathrm{n}}}{\partial\left(\left.\frac{\overline{\mathrm{r}} \mathrm{~b}}{2 \mathrm{~V}} \right\rvert\,\right.} \quad \text { (Figure F5) } \\
& C_{n_{\beta}}=57.3\left\{+(\mathrm{s} \alpha) \overline{\mathrm{c}}_{l_{\beta}}+(\mathrm{c} \alpha) \overline{\mathrm{C}}_{\mathrm{n}_{\beta}}+\frac{\mathrm{x}_{\mathrm{cm}}-\mathrm{x}_{\mathrm{mrp}}}{\mathrm{~b}} \overline{\mathrm{c}}_{\mathrm{y}_{\beta}}\right\} \\
& \overline{\mathrm{C}}_{\mathrm{n}_{\beta}}=\frac{\partial \overline{\mathrm{C}}_{\mathrm{n}}}{\partial \beta} \quad \text { (Figure F6) } \\
& \mathrm{C}_{\mathrm{n}_{\delta \mathrm{a}}}=57.3\left\{+(\mathrm{s} \alpha) \overline{\mathrm{c}}_{\ell_{\delta \mathrm{a}}}+(\mathrm{c} \alpha) \overline{\mathrm{C}}_{\mathrm{n}_{\delta \mathrm{a}}}+\frac{\mathrm{x}_{\mathrm{cm}}-\mathrm{x}_{\mathrm{mrp}}}{\mathrm{~b}} \overline{\mathrm{c}}_{\mathrm{y}_{\delta \mathrm{a}}}\right\} \\
& \overline{\mathrm{C}}_{\mathrm{n}}{ }_{\delta \mathrm{a}}=\frac{\partial \overline{\mathrm{C}}_{\mathrm{n}}}{\partial \delta_{\mathrm{a}}} \quad \text { (Figure F7) } \\
& \mathrm{C}_{\mathrm{n}_{\delta \mathrm{r}}}=57.3\left\{+(\mathrm{s} \alpha) \overline{\mathrm{C}}_{\ell}{ }_{\delta \mathrm{r}}+(\mathrm{c} \alpha) \overline{\mathrm{C}}_{\mathrm{n}_{\delta \mathrm{r}}}\right\} \\
& \bar{C}_{n}{ }_{\delta r}=\frac{\partial \bar{C}_{n}}{\partial \delta_{r}} \quad \text { (Figure F8) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{y}_{\beta}}=57.3 \overline{\mathrm{C}}_{\mathrm{y}_{\beta}} \\
& \overline{\mathrm{C}}_{\mathrm{y}_{\beta}}=\frac{\partial \overline{\mathrm{C}}_{\mathrm{y}}}{\partial \beta} \quad \text { (Figure F6) } \\
& \mathrm{C}_{\mathrm{y}_{\delta \mathrm{r}}}=57.3 \overline{\mathrm{C}}_{\mathrm{y}_{\delta \mathrm{r}}} \\
& \overline{\mathrm{C}}_{\mathrm{y}_{\delta \mathrm{r}}}=\frac{\partial \overline{\mathrm{C}}_{\mathrm{y}}}{\partial \delta_{\mathrm{r}}} \quad \text { (Figure F8) } \\
& \mathrm{D}=\text { Matrix [Equation (F2)] } \\
& \mathrm{E}_{\mathrm{o}}=2.5 / 57.3 \text { (Elevation angle) } \\
& \text { rad } \\
& \mathrm{G}=\text { Matrix [Equation (F1)] } \\
& \text { H = Matrix [Equation (F2)] } \\
& H=\text { Heading angle (rotation sequence } H, E, \phi \text { ) } \\
& \text { rad } \\
& \mathrm{I}=\mathrm{I}_{\mathrm{xx}} \mathrm{I}_{\mathrm{z}} \mathrm{I}^{-}-\mathrm{I}_{\mathrm{xz}}{ }^{2} \\
& I_{x x}=2.75 \cdot 10^{6} \text { (Inertia about } x \text { axes) } \\
& I_{x z}=-0.006 \cdot 10^{6} \text { (Product of inertia) } \\
& I_{z z}=14.394 \cdot 10^{6} \text { (Inertia about } \mathrm{z} \text { axis) } \\
& \text { slug/ft }{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathbf{r}}=1 / 6 \text { (Rudder actuator time constant) } \\
& \mathrm{V}=291 \text { (Airspeed) } \\
& W=212,740 \text { (Weight) } \\
& Y=\text { Side force } \\
& \mathrm{a}_{\mathrm{i}_{\mathrm{j}}}=\text { Element of A matrix } \\
& a_{11}=\frac{1}{\bar{I}}\left\{\frac{\bar{q} S b^{2}}{2 V}\left(I_{z z} C_{\ell}+I_{x z} C_{n}\right)+I_{z z^{\prime}} I_{x z} q_{o}+I_{x z}\left(I_{x x}-I_{y y}\right) q_{o}\right\} \\
& a_{12}=\frac{1}{\mathrm{I}}\left\{\frac{\bar{q} S b^{2}}{2 \mathrm{~V}}\left|\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{r}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\mathrm{r}}}\right\rangle+\mathrm{I}_{\mathrm{zz}}\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{z z}\right) \mathrm{q}_{\mathrm{o}}-\mathrm{I}_{\mathrm{xz}}{ }^{2} \mathrm{q}_{\mathrm{o}}\right\} \\
& \mathrm{a}_{13}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q} S b}}{\mathrm{~V}}\left(\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\beta}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta}}\right)\right\} \\
& a_{17}=\frac{\bar{q} S b}{I V}\left\{I_{z z} C_{\ell}{ }_{\beta} \mu_{21}+I_{x z} C_{n_{\beta}} \mu_{11}\right\} \\
& a_{18}=\frac{\bar{q} S b}{\overline{I V}}\left\{I_{z z} C_{\ell_{\beta}} \mu_{22}+I_{x z} C_{n_{\beta}}{ }^{\mu_{12}}\right\} \\
& \mathrm{a}_{19}=\frac{\bar{q} S b}{\mathrm{IV}}\left\{\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\beta}} \mu_{23}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta}}{ }^{\mu}{ }_{13}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& a_{1,14}=\frac{\overline{\bar{q}} \mathrm{Ib}}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\delta a}}\right\} \\
& a_{1,15}=\frac{\bar{q} S b}{\bar{I}}\left\{\mathrm{I}_{z z} C_{\ell}{ }_{\delta r}+\mathrm{I}_{x z} C_{n}{ }_{\delta r}\right\} \\
& a_{21}=\frac{1}{\bar{I}}\left\{\frac{\bar{q} S b^{2}}{2 V}\left(I_{x x} C_{n}+I_{x z} C_{\ell_{p}}\right)+I_{x x}\left(I_{x x}-I_{y y}\right) q_{o}+I_{x z}{ }^{2} q_{o}\right\}
\end{aligned}
$$

sec
$\mathrm{ft} / \mathrm{sec}$
lb
lb

$$
\begin{aligned}
& a_{22}=\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q} S b}}{2 \mathrm{~V}}\left(\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\mathrm{r}}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\mathrm{r}}}\right)-\mathrm{I}_{\mathrm{xx}} \mathrm{I}_{x z} \mathrm{q}_{\mathrm{o}}+\mathrm{I}_{\mathrm{xz}}\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{\mathrm{zz}}\right) \mathrm{q}_{\mathrm{o}}\right\} \\
& \mathrm{a}_{23}=\frac{1}{\mathrm{I}}\left\{\frac{\bar{q} S \mathrm{Sb}}{\mathrm{~V}}\left(\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\beta}}\right)\right\} \\
& \mathrm{a}_{27}=\frac{\bar{q} \mathrm{Sb}}{\mathrm{IV}}\left\{\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}} \mu_{11}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\beta}}{ }^{\mu} 21\right\} \\
& \mathrm{a}_{28}=\frac{\overline{\mathrm{q} S b}}{\mathrm{IV}}\left\{\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}}{ }^{\mu}{ }_{12}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell^{\prime}}{ }^{\mu}{ }_{22}\right\} \\
& \mathrm{a}_{29}=\frac{\bar{q} \mathrm{Sb}}{\overline{\mathrm{IV}}}\left\{\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}}{ }^{\mu}{ }_{13}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell}{ }_{\beta}{ }^{\mu}{ }_{23}\right\} \\
& a_{2,10}=\frac{\bar{q} S b^{2}}{2 I V}\left\{I_{x x} C_{n_{p}}+I_{x z} C_{\ell_{p}}\right\} \\
& a_{2,14}=\frac{\bar{q} S b}{I}\left\{I_{x x} C_{n_{\delta a}}+I_{x z} C_{\ell}{ }_{\delta a}\right\} \\
& a_{2,15}=\frac{\bar{q} S b}{I}\left\{I_{x x} C_{n}{ }_{\delta r}+I_{x z} C_{\ell r}\right\} \\
& a_{31}=w_{o} \\
& a_{32}=-u_{0} \\
& \mathrm{a}_{33}=\frac{\mathrm{g}}{\mathrm{~W}} \frac{\bar{q} \mathrm{~S}}{\mathrm{~V}} \mathrm{C}_{\mathrm{y}_{\beta}} \\
& a_{34}=g \cos E_{o} \\
& a_{37}=a_{33} \mu_{31} \\
& a_{38}=a_{33} \mu_{32} \\
& a_{39}=a_{33} \mu_{33} \\
& a_{3,14}=\frac{\mathrm{g}}{\mathrm{~W}} \overline{\mathrm{q}}^{\left(C_{y}\right.}{ }_{\delta \mathrm{a}}
\end{aligned}
$$

$$
\begin{aligned}
& a_{3,15}=\frac{g_{W}^{W}}{\bar{q} S C_{y}}{ }_{\delta r} \\
& a_{41}=1 \\
& a_{42}=\tan E_{0} \\
& a_{44}=q_{o} \tan E_{o} \\
& a_{52}=\frac{1}{\cos E} \\
& a_{54}=\frac{q_{O}}{\cos E} \\
& a_{63}=1.0 \\
& a_{64}=-w_{0} \\
& a_{65}=u_{0} \cos E+w_{0} \sin E \\
& a_{77}=-a_{7,11} \\
& a_{7,11}=+2.3 \frac{\mathrm{~V}}{\mathrm{~L}} \\
& a_{88}=-20.34 \frac{V}{L} \\
& \mathrm{a}_{89}=-51.86 \frac{\mathrm{~V}}{\mathrm{~L}} \\
& a_{8,11}=+72.2 \frac{\mathrm{~V}}{\mathrm{~L}} \\
& a_{98}=+7.04 \frac{\mathrm{~V}}{\mathrm{~L}} \\
& a_{99}=+15.76 \frac{\mathrm{~V}}{\mathrm{~L}} \\
& a_{9,11}=-22.8 \frac{\mathrm{~V}}{\mathrm{~L}} \\
& a_{10,10}=-a_{10,13}
\end{aligned}
$$

$a_{10,13}=2.3 \frac{V}{r . c .}$
$a_{11,12}=1.0$
$a_{12,11}=-\left(\frac{V}{L_{v}}\right)^{2}$
$a_{12,12}=-2\left(\frac{\mathrm{~V}}{\mathrm{~L}_{\mathrm{v}}}\right)$
$a_{13,13}=-\frac{\pi}{4} \frac{V}{b}$
$a_{14,14}=-g_{14,1}$
$\mathrm{a}_{15,15}=-\mathrm{g}_{15,2}$
b $=118.5$ Span
ft
$c=$ Cosine
$\mathrm{cm}=$ Center of mass (subscript)
$d[x]=$ Slender body diameter [Equation (F21)] ft
$d_{i j}=$ Element of $D$ matrix
$\mathrm{d}_{81}=\mathrm{g}_{14,1}$
$d_{10,2}=g_{15,2}$
$\mathrm{d}_{12,1}=\mathrm{h}_{11,14} \mathrm{~g}_{14,1}$
$\mathrm{d}_{12,2}=\mathrm{h}_{11,15} \mathrm{~g}_{15,2}$
e = Earth (subscript)
$\mathrm{f}=$ Equation (F2)
$\tilde{f}=$ Equation (F1)
$f_{i}=$ Step response of $x_{i}[i=1,2,3$; Equations (F16) through (F18) ft/sec

$$
\begin{aligned}
& \mathrm{g}=32.17 \text { (Gravity) } \\
& \mathrm{ft} / \mathrm{sec}^{2} \\
& \mathrm{~g}_{\mathrm{ij}}=\text { Element of } \mathrm{G} \text { matrix } \\
& g_{11,3}=\sigma_{v} \sqrt{\frac{3 \mathrm{~V}}{\pi L_{v}}} \\
& g_{12,3}=\frac{|1-2 \sqrt{3}|}{\sqrt{\pi}} \sigma_{v}\left(\frac{v}{L_{v}}\right)^{3 / 2} \\
& g_{13,4}=\frac{\pi}{4} \frac{\sigma_{w}}{b} \sqrt{\frac{V}{L_{w}}} \sqrt{0.8\left(\frac{\pi}{4} \frac{L_{w}}{b}\right)^{1 / 3}} \\
& \mathrm{~g}_{14,1}=\frac{1}{\mathrm{~T}_{\mathrm{a}}} \\
& \mathrm{~g}_{15,2}=\frac{1}{\mathrm{~T}_{\mathrm{r}}} \\
& \mathrm{~h}=600 \text { (Altitude) } \\
& h_{i j}=\text { Element of } H \text { matrix } \\
& h_{14}=1.0 \\
& h_{21}=a_{41} \\
& h_{22}=a_{42} \\
& h_{24}=a_{44} \\
& h_{35}=1.0 \\
& h_{42}=a_{52} \\
& \mathrm{~h}_{44}=\mathrm{a}_{54} \\
& h_{56}=1.0 \\
& h_{63}=a_{63}
\end{aligned}
$$

$$
\begin{aligned}
& h_{64}=a_{64} \\
& h_{65}=a_{65} \\
& h_{7,14}=1.0 \\
& h_{8,14}=-g_{14,1} \\
& h_{9,15}=1.0 \\
& h_{10,15}=-g_{15,2} \\
& h_{11,1}=+x_{p} a_{21}-z_{p} a_{11} \\
& h_{11,2}=+x_{p} a_{22}-z_{p} a_{12} \\
& h_{11,3}=a_{33}+x_{p} a_{23}-z_{p} a_{13} \\
& h_{11,4}=z_{e r o} \\
& h_{11,7}=a_{37}+x_{p} a_{27}-z_{p} a_{17} \\
& h_{11,8}=a_{38}+x_{p} a_{28}-z_{p} a_{18} \\
& h_{11,9}=a_{39}+x_{p} a_{29}-z_{p} a_{19} \\
& h_{11,10}=x_{p} a_{2,10}-z_{p} a_{1,10} \\
& h_{11,14}=a_{3,14}+x_{p} a_{2,14}-z_{p} a_{1,14} \\
& h_{11,15}=a_{3,15}+x_{p} a_{2,15}-z_{p} a_{1,15} \\
& h_{12,1}=h_{11,1} a_{11}+h_{11,2} a_{21}+h_{11,3} a_{31} \\
& h_{11,2}=h_{11,1} a_{12}+h_{11,2} a_{22}+h_{11,3} a_{32} \\
& h_{12,3}=h_{11,1} a_{13}+h_{11,2} a_{23}+h_{11,3} a_{33} \\
& h_{12,4}=h_{11,3} a_{34} \\
& h_{1,}
\end{aligned}
$$

$$
\begin{aligned}
& h_{12,7}=h_{11,1} a_{17}+h_{11,2} a_{27}+h_{11,3} a_{37}+h_{11,7}{ }^{a_{77}} \\
& h_{12,8}=h_{11,1} \mathrm{a}_{18}+\mathrm{h}_{11,2^{2}}{ }_{28}+\mathrm{h}_{11,3} \dot{\mathrm{a}}_{38}+\mathrm{H}_{11,8} \mathrm{a}_{88}+\mathrm{h}_{11,9} \mathrm{a}_{98} \\
& h_{12,9}=h_{11,1} a_{19}+h_{11,2} a_{29}+h_{11,3} a_{39}+h_{11,8}{ }^{a_{89}}+h_{11,9}{ }^{\mathrm{a}} 99 \\
& h_{12,10}=h_{11,1} a_{1,10}+h_{11,2}{ }_{2}, 10+h_{11,10}{ }^{1}{ }_{10,10} \\
& h_{12,11}=h_{11,7^{2}}{ }_{7,11}+h_{11,8}{ }_{8,11}+h_{11,9^{a}}{ }_{9,11} \\
& h_{12,13}=h_{11,10}{ }^{\mathrm{a}} 10,13 \\
& h_{12,14}=h_{11,1} a_{1,14}+h_{11,2} a_{2,14}+h_{11,3} a_{3,14}+h_{11,14} a_{14,14} \\
& h_{12,15}=h_{11,1} a_{1,15}+h_{11,2} a_{2,15}+h_{11,3} a_{3,15}+h_{11,15}{ }_{15,15} \\
& \text { i, } j, k=\text { Unit vectors in aircraft (Figure F3) } \\
& i_{e}, j_{e}, k_{e}=\text { Unit vectors relative to flat earth } \\
& \text { mrp }=\text { Moment reference point (subscript) } \\
& 0=\text { Reference trajectory (subscript) } \\
& \text { p = Roll rate (Figure F3) } \\
& \text { rad/sec } \\
& \mathrm{p}_{\mathrm{g}}=\text { Rolling wind } \\
& \mathrm{q}=\text { Pitch rate (Figure F3) } \\
& q_{o}=0 \text { (Reference pitch rate) } \\
& \overline{\mathrm{q}}=100 \text { (Dynamic pressure) } \\
& \text { r = Yaw rate } \\
& \mathbf{r}=\text { Response vector [Equation (F2)] } \\
& \text { r.c. }=90 \text { Root chord } \\
& \mathrm{s}=\text { Sine } \\
& \mathrm{s}=\text { Differentiation operator }
\end{aligned}
$$

> s.g. = Side gust (subscript)

$$
\begin{aligned}
& u_{0}=282=V(c \alpha) \\
& \text { ft/sec }
\end{aligned}
$$$\Delta=$ Perturbation symbol$\phi=$ Roll anglerad

$\alpha=14.5 / 57.3$ (Angle of attack) ..... rad
$\beta=$ Sideslip angle (Figure F3) ..... rad
$\gamma=-12 / 57.3$ (Flight path angle) ..... rad
$\delta_{\mathrm{a}}=$ Aileron deflection; each (Figure F3) ..... rad
$\delta_{r}=$ Rudder deflection (Figure F3) ..... rad
$\eta_{1}=$ Unity white noise (drives $\left.\tilde{\mathrm{v}}\right) \quad 1 / \mathrm{sec}^{1 / 2}$
$\eta_{2}=$ Unity white noise independent of $\eta_{1}$ (drives $p_{g}$ )
$1 / \sec ^{1 / 2}$
$\mu_{i j}=$ Wind weights [Equations (F23) and (F26)]
$\sigma_{v}=9.54$ (Standard deviation of side gusts) ft/sec
$\sigma_{w}=6.7$ (Standard' deviation of up gusts) $\mathrm{ft} / \mathrm{sec}$

- = Overscore indicating quantity is in stability axes


## REPRESENTATIONS

The generic forms for the perturbation state transition and response are given by Equations (F1) and (F2).

$$
\begin{align*}
& \dot{x}=A x+G \tilde{f}=A x+G_{1} u+G_{2} \eta  \tag{F1}\\
& \mathbf{r}=H x+D f=H x+D u \tag{F2}
\end{align*}
$$

They are presented explicitly in Tables F1 and F2. These tables and the nomenclature provide for generating all data.
Evaluation of these data for the flight condition investigated yields the numerical values for the matrices $A, G_{1}, G_{2}, H$, and $D$ listed in Tables F2 through F7. Gain matrices are listed in Tables 24 and 27.

The analog simulation for the plant and quadratic controller are presented as Figures F1 and F2. Pot settings are given in Tables F8 and F9, Table F10 lists the amplifiers used.

## DERIVATIONS

## Euler Angles

The aircraft body axes ( $\hat{i}, \hat{j}, \hat{k}$ : Figure $F 3$ ) relative to their initial position $\hat{i}_{e}, \hat{j}_{e}, \hat{k}_{e}$ over a flat earth are given by (Equation 1-4B of ref 28).

$$
\left\{\begin{array}{l}
\hat{i}  \tag{F3}\\
\hat{j} \\
\hat{\mathbf{k}}
\end{array}\right\}=\left[\begin{array}{lll}
(\mathrm{cEcH}) & (\mathrm{cEsH}) & (-\mathrm{sE}) \\
(-\mathrm{sHc} \Phi+\mathrm{sEcHs} \Phi) & (\mathrm{cHc} \Phi+\mathrm{sEsHs} \Phi) & (\mathrm{cEs} \Phi) \\
(\mathrm{sHs} \Phi+\mathrm{sEcHc} \Phi) & (-\mathrm{cHs} \Phi+\mathrm{sEsHc} \Phi) & (\mathrm{cEc} \Phi)
\end{array}\right]\left\{\begin{array}{l}
\hat{\mathrm{i}}_{e} \\
\hat{\mathrm{j}}_{e} \\
\hat{k}_{e}
\end{array}\right\}
$$

These equations are for the Euler rotation sequence heading $H$, elevation $E$, and roll $\phi$. The inverse of the above system is required but it will not be written explicitly, because it is available by transposing (inverting) the matrix. For example, the cross-course velocity $\dot{y}$ (in earth's coordinates) is required. By use of Equation (F3)

$$
\begin{equation*}
\dot{y}=(\mathrm{cEsH}) u+(\mathrm{cHc} \Phi+\mathrm{sEsHs} \Phi) v+(-\mathrm{cHs} \Phi+\mathrm{sEsHc} \Phi) \mathrm{w} \tag{F4}
\end{equation*}
$$

Taking perturbations in $\dot{y}, H, \Phi$, and v yields

$$
\begin{equation*}
\Delta \dot{y}=\left(u_{o} c E+w_{o} s E\right) \Delta H-w_{o} \Delta \varnothing+\Delta v \tag{F5}
\end{equation*}
$$

Equation (F5) corresponds to rows 6 of Tables F1 and F2; the perturbation symbol is dropped in Tables F1 and F2.

Evaluation of the goodness of roll control requires determination of the excursions in heading and roll. Their rates are given by (Equations 1 - 15, ref. 28).

$$
\begin{align*}
& \dot{H}=\frac{1}{c E}(q s \Phi+r c \Phi)  \tag{F6}\\
& \dot{\phi}=p+\tan E(q s \Phi+r c \Phi) \tag{F7}
\end{align*}
$$

Taking perturbations yields

$$
\begin{align*}
\dot{\Delta H} & =\frac{1}{\mathrm{cE}}\left(\mathrm{q}_{\mathrm{o}} \Delta \phi+\Delta r\right)  \tag{F8}\\
\dot{\Delta \phi} & =\Delta \mathrm{p}+\tan \mathrm{E}\left(\mathrm{q}_{\mathrm{o}} \Delta \phi+\Delta r\right) \tag{F9}
\end{align*}
$$

which agree with rows 5 and 4 of Table F1.

## Winds

The clear air wind turbulence models of the Dryden form for shuttle in post entry flight are specified on pages 48-53 of ref. 13. The lateral axis is forced by side gusts

$$
\begin{equation*}
\tilde{v}=\sigma_{v} \sqrt{\frac{L_{v}}{\pi V}} \frac{1+\frac{\sqrt{3} L_{v}}{V}}{\left(1+\frac{L_{v}}{V} s\right)^{2}} \eta_{1} \tag{F10}
\end{equation*}
$$

and by rolling gusts

$$
\begin{equation*}
p_{g}=\sigma_{w} \sqrt{\frac{1}{L_{w} V}} \frac{\sqrt{0.8\left(\frac{\pi}{4} \frac{L_{w}}{b}\right)^{1 / 3}}}{1+\frac{4 b}{\pi V} s} \eta_{2} \tag{F11}
\end{equation*}
$$

State representations for Equations (F10) and (F11) are given by

$$
\left\{\begin{array}{c}
\dot{\tilde{v}}  \tag{F12}\\
\dot{x}
\end{array}\right\}=\left[\begin{array}{cc}
0 & 1 \\
-\left(\frac{v}{L_{v}}\right)^{2} & -2 \frac{V}{L_{v}}
\end{array}\right]\left\{\begin{array}{l}
\tilde{v} \\
x
\end{array}\right\}+\left\{\begin{array}{c}
\sqrt{\frac{3}{\pi}} \sigma_{v} \sqrt{\frac{V}{L_{v}}} \\
\frac{1-2}{\sqrt{\pi}} \\
\sigma_{v}\left(\frac{V}{L_{v}}\right)^{3 / 2}
\end{array}\right\} n_{1}
$$

and

$$
\begin{equation*}
\dot{p}_{g}=\frac{\pi}{4} \frac{V}{b} p_{g}+\sigma_{w} \sqrt{0.8 \frac{V}{L_{w}}} \frac{\pi}{4 b}\left(\frac{\pi}{4} \frac{L_{w}}{b}\right)^{1 / 6} \eta_{2} \tag{F13}
\end{equation*}
$$

They correspond to rows 11 through 13 of Table F1.
Numerical values of $\sigma_{w}, \sigma_{v}, L_{w}$, and $L_{v}$ are needed. For 600 -feet altitude these are

$$
\begin{aligned}
& \sigma_{\mathrm{w}}=6.7 \mathrm{ft} / \mathrm{sec} \\
& \sigma_{\mathrm{v}}=9.54 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~L}_{\mathrm{w}}=600 \mathrm{ft} \\
& \mathrm{~L}_{\mathrm{v}}=1220 \mathrm{ft}
\end{aligned}
$$

$\sigma_{w}$ is taken directly from ref 13. For altitudes below 1750 feet

$$
\begin{aligned}
& L_{w}=h \\
& L_{v}=145 h^{1 / 3}
\end{aligned}
$$

Furthermore,

$$
\sigma_{v}=\sqrt{\frac{L_{v}}{L_{w}}} \sigma_{w}
$$

## Distributing the Wind Gust Loads

The side force due to winds on the vehicle is the integrated sum of the local body and fin pressure developed by side gusts ( $\widetilde{v}$ ). Analogous statements prevail for the yawing and rolling moments due to side gusts and for the rolling moment developed by the rolling wind ( $\mathrm{p}_{\mathrm{g}}$ ).

These are all distributed forces for which it is desirable (mandatory in the present content) to find a lumped parameter representation. Lumped parameter approximations for the side gusts are discussed first. Then the rolling gust approximation is presented.

The side force and yawing moment coefficients due to side gusts are taken to be

$$
\begin{align*}
C_{y_{s g}} & =\frac{C_{y_{\beta}}}{V}\left\{\mu_{31} x_{1}+\mu_{32} x_{2}+\mu_{33} x_{3}\right\}  \tag{F14}\\
C_{n_{s g}} & =\frac{C_{n_{\beta}}}{v}\left\{\mu_{11} x_{1}+\mu_{12} x_{2}+\mu_{13} x_{3}\right\} \tag{F15}
\end{align*}
$$

where $x_{1}, x_{2}$, and $x_{3}$ are system states driven by the wind $\tilde{v}$. For constant winds $x_{1}=x_{2}=x_{3}={ }^{3} \widetilde{v}$. Rows 7, 8, and 9 of Table F1 show this and how the $x_{i}$ 's are driven by the wind $\tilde{\mathrm{v}}$. The $\mu_{i j}$ 's are constants to be determined.
The step responses of $x_{1}, x_{2}$, and $x_{3}\left(\right.$ called $f_{1}, f_{2}$, and $f_{3}$ ) for a sharpedged side gust $\widetilde{\mathrm{v}}$ are

$$
\begin{align*}
& \mathrm{f}_{1}[\mathrm{x}]=1-\mathrm{e}^{-\frac{2.3}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}}  \tag{F16}\\
& \mathrm{f}_{2}[\mathrm{x}]=1-\mathrm{e}^{-\frac{2.3}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}}\left\{\cos \frac{2 \pi}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}-2.00 \sin \frac{2 \pi}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}\right\}  \tag{F17}\\
& -\frac{2.3}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}  \tag{F18}\\
& \mathrm{f}_{3}[\mathrm{x}]=1-\mathrm{e}^{\left.-\cos \frac{2 \pi}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}+3.985 \sin \frac{2 \pi}{\mathrm{~L}_{\mathrm{s}}} \mathrm{x}\right\}}
\end{align*}
$$

The most gross result of slender body theory (ref. 22 or 23 ) gives the step responses for gust penetration as

$$
\begin{align*}
& C_{y_{\beta}}[x]=\frac{2}{S} \int_{o}^{x} A^{\prime}[\tilde{x}] d \tilde{x}  \tag{F19}\\
& C_{n_{\beta}}[x]=\frac{2}{S b} \int_{o}^{x} \tilde{x} A^{\prime}[\tilde{x}] d \tilde{x} \tag{F20}
\end{align*}
$$

$A[x]$ is taken as

$$
\begin{equation*}
A[x]=\frac{\pi}{4}(d[x])^{2} \tag{F21}
\end{equation*}
$$

where $d[x]$ is the "slender body maximum" projected side dimension. Step responses for $\mathrm{C}_{\mathrm{y}_{\beta}}[\mathrm{x}], \mathrm{C}_{\mathrm{n}_{\beta_{\mathrm{o}}}}[\mathrm{x}]$, and $\mathrm{C}_{\mathrm{n}_{\beta_{\mathrm{cm}}}} \quad[\mathrm{x}]$ are presented in Figure
F9. The $\mu_{i j}$ 's are determined to provide a least squared fit of $C_{y_{\beta}}$ [x] and $\mathrm{C}_{\mathrm{n}_{\beta_{\mathrm{cm}}}}[\mathrm{x}]$ from the solution of

$$
\begin{align*}
& B \tilde{\mu}_{i j}=c_{i j} \text { for } i=1,3  \tag{F22}\\
& \mu_{i j}=k_{i} \tilde{\mu}_{i j} \text { for } i=1,3  \tag{F23}\\
& k_{i}=\frac{1}{\sum_{j=1}^{3} \tilde{\mu}_{i j}} \text { for } i=1,3 \tag{F24}
\end{align*}
$$

where

$$
\begin{aligned}
& c_{i_{j}}=\left|\begin{array}{lll}
1 & & \\
\int f_{1} g_{i} & d\left(\frac{x}{L}\right) \\
0 & \\
1 & \\
\int f_{2} g_{i} & d\left(\frac{x}{L}\right) \\
0 & \\
1 & & \\
\int f_{3} g_{i} & d\left(\frac{x}{L}\right) \\
o &
\end{array}\right| \\
& g_{1}=c_{n_{\beta}} \\
& g_{3}=c_{y_{\beta}}
\end{aligned}
$$

The $\mathrm{k}_{\mathrm{i}}$ 's may be considered as scale factors that enforce agreement between dsta sets for steady winds.

For a constant side gust $(\tilde{v})$, the rolling moment coefficient is

$$
\begin{equation*}
C_{\ell}=C_{\ell_{\beta}} \frac{\tilde{v}}{V} \tag{F25}
\end{equation*}
$$

For a sharp-edged side gust it is assumed that

$$
-g_{2}=\frac{C_{\ell_{\beta}}[x / L]}{C_{\ell_{\beta}}[1]}=\left\{\begin{array}{ccc}
0 & \text { for } & 0 \leq x / L \leq 0.6  \tag{F26}\\
\frac{(0.6-x / L)^{2}}{0.16} & \text { for } & 0.6 \leq x / L \leq 1
\end{array}\right.
$$

$C_{\ell_{\beta}}$ is generated primarily by the wing which starts at $x / L=0.6$ and extends $\ell_{\beta}$ to $\mathrm{x} / \mathrm{L}=1.0$. The quadratic variation for $0.6 \leq \mathrm{x} / \mathrm{L} \leq 1.0$ is motivated by slender body theory.

The $\mu_{2 j \text { 's }}$ are obtained by use of Equations (F22 through (F24) (with a notational adjustment) and (F26).

Treatment of the rolling gusts is analogous to, but simpler than, those for the side gusts.

The rolling gust ( $\mathrm{p}_{\mathrm{g}}$ ) drives $\mathrm{x}_{4}$ through the equation shown in row 10 of Table F1. Time to 90 percent is taken as the time to traverse the wing root chord. $\mathbf{x}_{4}$ "distributes" $\mathrm{p}_{\mathrm{g}}$ over the wing chord. Steady-state values of $x_{4}$ and $p_{g}$ are the same. $x_{4} g_{d r i v e s ~ t h e ~ e q u a t i o n ~ o f ~ m o t i o n ~ i n ~ t h e ~ s a m e ~}^{\text {d }}$ manner as the geometric $p$.

## Dynamic Equations

The equations of motion are

$$
\begin{align*}
& \dot{p}=\frac{1}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{zz}}\left[\mathrm{~L}-\left(\mathrm{I}_{\mathrm{zz}}-\mathrm{I}_{\mathrm{yy}}\right) \mathrm{qr}+\mathrm{I}_{\mathrm{xz}} \mathrm{pq}\right]+\mathrm{I}_{\mathrm{xz}}\left[\mathrm{~N}-\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{\mathrm{zz}}\right) \mathrm{pq}-\mathrm{I}_{\mathrm{xz}} \mathrm{qr}\right]\right\}  \tag{F27}\\
& \mathrm{r}=\frac{1}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{xx}}\left[\mathrm{~N}-\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{\mathrm{xx}}\right) \mathrm{pq}-\mathrm{I}_{\mathrm{xz}} \mathrm{qr}\right]+\mathrm{I}_{\mathrm{xz}}\left[\mathrm{~L}-\left(\mathrm{I}_{\mathrm{zz}}-\mathrm{I}_{\mathrm{yy}}\right) \mathrm{qr}+\mathrm{I}_{\mathrm{xz}} \mathrm{pq}\right]\right\}  \tag{F28}\\
& \dot{\mathrm{v}}=\frac{\mathrm{g}}{\mathrm{~W}} \mathrm{Y}+\mathrm{gcE} \mathrm{~s} \phi-\mathrm{ur}+\mathrm{wp} \tag{F29}
\end{align*}
$$

The corresponding perturbation equations are

$$
\begin{align*}
\Delta \dot{p}= & \frac{1}{\mathrm{I}}\left\{\mathrm { I } _ { \mathrm { xx } } \left[\left(\Delta \mathrm{~L}-\mathrm{I}_{\mathrm{zz}}-\mathrm{I}_{\mathrm{yy}}\right) \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}+\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{p}\right.\right. \\
& \left.+\mathrm{I}_{\mathrm{xz}}\left[\Delta \mathrm{~N}-\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{\mathrm{xx}}\right) \mathrm{o}_{\mathrm{o}} \Delta \mathrm{p}-\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}\right]\right\}  \tag{F30}\\
\Delta \dot{\mathrm{r}}= & \frac{1}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{xx}}\left[\Delta \mathrm{~N}-\left(\mathrm{I}_{\mathrm{yy}}-\mathrm{I}_{\mathrm{xx}}\right) \mathrm{q}_{\mathrm{o}} \Delta \mathrm{p}-\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}\right]\right. \\
& \left.+\mathrm{I}_{\mathrm{xz}}\left[\Delta \mathrm{~L}-\left(\mathrm{I}_{\mathrm{zz}}-\mathrm{I}_{\mathrm{yy}}\right) \mathrm{q}_{\mathrm{o}} \Delta \mathrm{r}+\mathrm{I}_{\mathrm{xz}} \mathrm{q}_{\mathrm{o}} \Delta \mathrm{p}\right]\right\}  \tag{F31}\\
\Delta \dot{\mathrm{v}=}= & \frac{\mathrm{g}}{\mathrm{w}} \Delta \mathrm{Y}+\mathrm{g}(\mathrm{cE})\left(\mathrm{c} \phi_{\mathrm{o}}\right) \Delta \phi-\mathrm{u}_{\mathrm{o}} \Delta \mathrm{r}+\mathrm{w}_{\mathrm{o}} \Delta \mathrm{p} \tag{F32}
\end{align*}
$$

Aerodynamic forces are given by

$$
\begin{align*}
& L=\bar{q} S b\left\{\frac{b}{2 v} C_{\ell_{p}}{ }^{p+\frac{b}{2 v}} C_{\ell_{r}} r+C_{\ell_{\beta}}{ }^{\beta+C_{\ell_{\delta a}}}{ }^{\delta a}+C_{\ell_{\delta r}}{ }^{\delta r}+\frac{b}{2 V} C_{\ell_{p}} x_{4}\right. \\
& \left.+\frac{{ }^{\mathrm{C}} \boldsymbol{l}_{\beta}}{\mathrm{V}}\left[\mu_{21} \mathrm{x}_{1}+\mu_{22} \mathrm{x}_{2}+\mu_{23} \mathrm{x}_{3}\right]\right\}  \tag{F33}\\
& N=\bar{q} S b\left\{\frac{b}{2 V} C_{n_{p}} p+\frac{b}{2 V} C_{n_{r}} r+C_{n_{\beta}} \beta+C_{n_{\delta a}} \delta a+C_{n_{\delta r}} \delta r+\frac{b}{2 V} C_{n_{p}} x_{4}\right. \\
& \left.+\frac{\mathrm{C}_{\beta}}{\mathrm{V}}\left[\mu_{11} \mathrm{x}_{1}+\mu_{12} \mathrm{x}_{2}+\mu_{13} \mathrm{x}_{3}\right]\right\}  \tag{F34}\\
& \mathrm{Y}=\overline{\mathrm{q}} \mathrm{~S}\left\{\mathrm{C}_{\mathrm{y}_{\beta}} \beta+\mathrm{C}_{\mathrm{y}_{\delta \mathrm{a}}} \delta \mathrm{a}+\mathrm{C}_{\mathrm{y}_{\delta \mathrm{r}}} \delta \mathrm{r}+\frac{\mathrm{C}_{\mathrm{y}_{\beta}}}{\mathrm{v}}\left[\mu_{31} \mathrm{x}_{1}+\mu_{32} \mathrm{x}_{2}+\mu_{33} \mathrm{x}_{3}\right]\right\} \tag{F35}
\end{align*}
$$

and their perturbations by

$$
\begin{align*}
\Delta L= & \bar{q} S b\left\{\frac{\mathrm{~b}}{2 \mathrm{~V}} \mathrm{C}_{\ell_{\mathrm{p}}} \Delta \mathrm{p}+\frac{\mathrm{b}}{2 \mathrm{~V}} \mathrm{C}_{\ell_{\mathrm{r}}} \Delta \mathrm{r}+\mathrm{C}_{\ell_{\beta}} \Delta \beta+\mathrm{C}_{\ell_{\delta \mathrm{a}}} \delta \mathrm{a}+\mathrm{C}_{\ell_{\delta r}} \delta \mathrm{r}\right. \\
& \left.+\frac{\mathrm{b}}{2 \mathrm{~V}} \mathrm{C}_{\ell_{\mathrm{p}}} \mathrm{x}_{4}+\frac{\mathrm{C}_{\ell_{\beta}}}{\mathrm{V}}\left[\mu_{21} \mathrm{x}_{1}+\mu_{22} \mathrm{x}_{2}+\mu_{23} \mathrm{x}_{3}\right]\right\} \tag{F36}
\end{align*}
$$

$$
\begin{align*}
\Delta N= & \left\{\bar{q} S b \frac{b}{2 V} C_{n_{p}} \Delta p^{2}+\frac{b}{2 V} C_{n_{r}} \Delta r+C_{n_{\beta}} \Delta \beta+C_{n_{\delta a}} \delta a+C_{n_{\delta r}} \delta r\right. \\
& \left.+\frac{b}{2 V} C_{n_{p}} x_{4}+\frac{C_{n_{\beta}}}{V}\left[\mu_{11} x_{1}+\mu_{12} x_{2}+\mu_{13} x_{3}\right]\right\}  \tag{F37}\\
\Delta y= & \bar{q} S\left\{C_{y_{\beta}} \Delta \beta+C_{y_{\delta a}} \delta a+C_{y_{\delta r}} \delta r+\frac{\mathrm{y}_{\beta}}{v}\left[\mu_{31} x_{1}+\mu_{32} x_{2}+\mu_{33} x_{3}\right]\right\} \tag{F38}
\end{align*}
$$

Substituting Equations (F36) through (F38) into Equations (F30) through (F32 yield Equations (F39 through (F41).

$$
\begin{align*}
& +\frac{1}{I}\left\{\frac{\bar{q} S b^{2}}{2 V}\left[I_{z z} C_{\ell_{r}}+I_{x z} C_{n_{r}}\right]+I_{z z}\left(I_{y y}-I_{z z}\right) q_{o}-I_{x z}^{2} q_{o}\right\} \Delta r \\
& +\frac{1}{\mathrm{I}}\left\{\frac{\overline{\mathrm{q} S b}}{\mathrm{~V}}\left[\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\beta}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\beta}}\right]\right\} \Delta \mathrm{v} \\
& +\frac{\bar{q} S b}{I V}\left\{I_{z z}\left[C_{\ell_{\beta}}\left(\mu_{21} x_{1}+\mu_{22} x_{2}+\mu_{23} x_{3}\right)+\frac{b}{2} C_{\ell_{p}} x_{4}\right]\right. \\
& \left.+\mathrm{I}_{\mathrm{xz}}\left[\mathrm{C}_{\mathrm{n}_{\beta}}\left(\mu_{11} \mathrm{x}_{1}+\mu_{12} \mathrm{x}_{2}+\mu_{13} \mathrm{x}_{3}\right)+\frac{\mathrm{b}}{2} \quad \mathrm{C}_{\mathrm{n}_{\mathrm{p}}} \mathrm{x}_{4}\right]\right\} \\
& +\frac{\overline{\mathrm{q}} \mathrm{Sb}}{\mathrm{I}}\left\{\mathrm{I}_{z z} \mathrm{C}_{\ell_{\delta a}}+\mathrm{I}_{x z} \mathrm{C}_{\mathrm{n}_{\delta \mathrm{a}}}\right\} \delta \mathrm{a} \\
& +\frac{\overline{\mathrm{q}} \mathrm{Sb}}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{zz}} \mathrm{C}_{\ell_{\delta r}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\mathrm{n}_{\delta r}}\right\} \delta \mathrm{r} \tag{F39}
\end{align*}
$$

$$
\begin{align*}
& \Delta \dot{r}=\frac{1}{I}\left\{\frac{\bar{q} S b^{2}}{2 \bar{V}}\left[I_{x x} C_{n_{p}}+I_{x z} C_{\ell_{p}}\right]+I_{x x}\left(I_{x x}-I_{y y}\right) q_{o}+I_{x x}{ }^{2} q_{o}\right\} \Delta p \\
& +\frac{1}{I}\left\{\frac{\bar{q}^{S b} b^{2}}{2 V}\left[I_{x x} C_{n_{r}}+I_{x z} C_{\ell_{r}}\right]-I_{x x} I_{x z} q_{o}+I_{x z}\left(I_{y y}-I_{z z}\right) q_{o}\right\} \Delta r \\
& +\frac{\overline{\mathrm{q} S b}}{\mathrm{IV}}\left\{\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\beta}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\ell_{\beta}}\right\} \quad \Delta \mathrm{v} \\
& +\frac{\bar{q} S b}{I V}\left\{I_{x x}\left[C_{n_{\beta}}\left(\mu_{11} x_{1}+\mu_{12} x_{2}+\mu_{13} x_{3}\right)+\frac{b}{2} C_{n_{p}} x_{4}\right]\right. \\
& \left.+\mathrm{I}_{\mathrm{xz}}\left[\mathrm{C}_{\ell_{\beta}}\left(\mu_{21} \mathrm{x}_{1}+\mu_{22} \mathrm{x}_{2}+\mu_{23} \mathrm{x}_{3}\right)+\frac{\mathrm{b}}{2} \mathrm{C}_{\ell_{p}} \mathrm{x}_{4}\right]\right\} \\
& +\frac{q S b}{I}\left\{I_{x x} C_{n}{ }_{\delta a}+I_{x z} C_{\ell_{\delta a}}\right\} \delta a \\
& +\frac{\mathrm{qSb}}{\mathrm{I}}\left\{\mathrm{I}_{\mathrm{xx}} \mathrm{C}_{\mathrm{n}_{\delta \mathrm{r}}}+\mathrm{I}_{\mathrm{xz}} \mathrm{C}_{\delta \mathrm{r}}\right\} \delta r  \tag{F40}\\
& \Delta \dot{\mathrm{v}}=+\mathrm{w}_{\mathrm{o}} \Delta_{\mathrm{p}}-\mathrm{u}_{\mathrm{o}} \Delta \mathrm{r}+\frac{\mathrm{g} \overline{\mathrm{q}} \mathrm{~S}}{\mathrm{VW}} \mathrm{C}_{\mathrm{y}_{\beta}} \Delta \mathrm{v}+\mathrm{g}(\mathrm{cE}) \Delta \phi \\
& +\frac{g \bar{q} S}{V W}\left\{\mu_{31} x_{1}+\mu_{32} x_{2}+\mu_{32} x_{3}\right\}+\frac{g \bar{q} S}{W}\left\{C_{y_{\delta a}} \delta a+C_{y_{\delta r}} \delta r\right\} \tag{F41}
\end{align*}
$$

Equations (F39) through (F41) correspond to rows $1-3$ of Table F1.

## Control Surface Dyamics

Tail-wags-dog and dog-wags-tail dynamics are neglected.
Servo dynamics are also neglected. Actuator dynamics are taken as $6 \mathrm{rad} / \mathrm{sec}$.
For aileron actuation

$$
\begin{equation*}
\dot{\delta} a=-\frac{1}{T_{a}} \delta a+\frac{1}{T_{a}} u_{1} \tag{F42}
\end{equation*}
$$

Equation (F42) corresponds to row 14 of Table F2. With an obvious notation change it also corresponds to row 15.

## Pilot's Lateral Acceleration

The lateral acceleration at the pilot's station is approximated by

$$
\begin{equation*}
a_{y}=\dot{v}+u r-w p+x_{p} \dot{r}-z_{p} \dot{p}-g(C E(s \phi) \tag{F43}
\end{equation*}
$$

The perturbation equation is

$$
\begin{equation*}
\Delta a_{y}=\Delta \dot{v}+u_{o} \Delta r-w_{o} \Delta \mathrm{p}+\mathrm{x}_{\mathrm{p}} \Delta \dot{\mathrm{r}}-\mathrm{z}_{\mathrm{p}} \Delta \dot{\mathrm{p}}-\mathrm{g}\left(\mathrm{CE}_{\mathrm{o}}\right)\left(\mathrm{C} \phi_{\mathrm{o}}\right) \Delta \phi \tag{F44}
\end{equation*}
$$

Row 11 of Table F2 is the equivalent of Equation (F44). The $\Delta \dot{v}$. of Equation (F44) is obtained from row 3 of Table F1. Similarly, $\Delta r$ and $\Delta p$ are obtained from rows 2 and 1 of Table F1.
$\Delta \dot{a}_{\mathbf{y}}$ is obtained from differentiation of row 11 of Table $F 1$.

Resolution From Stability to Body Axes
The aerodynamic data of Figures F4 through F9 are given in stability axes (which here are the "barred" axes). The equations of motion are in body (unbarred) axes. From the sketch on the following page


$$
\left\{\begin{array}{l}
\mathrm{L}  \tag{F45}\\
\mathrm{~N}
\end{array}\right\}=\left[\begin{array}{lr}
\mathrm{c} \alpha & -\mathrm{s} \alpha \\
\mathrm{~s} \alpha & \mathrm{c} \alpha
\end{array}\right] \quad\left\{\begin{array}{l}
\overline{\mathrm{L}} \\
\overline{\mathrm{~N}}
\end{array}\right\}
$$

This implies $L_{\beta}=(c \alpha) L_{\beta}-(s \alpha) N_{B}$, etc.; as listed in the nomenclature. Also from the previous sketch

$$
\left[\begin{array}{ll}
\frac{\partial \bar{p}}{\partial p} & \frac{\partial p}{\partial r}  \tag{F46}\\
\frac{\partial \bar{r}}{\partial p} & \frac{\partial \bar{r}}{\partial r}
\end{array}\right]=\left[\begin{array}{ll}
c \alpha & s \alpha \\
-s \alpha & \mathrm{c} \alpha
\end{array}\right]
$$

Therefore,

$$
\left[\begin{array}{cc}
\mathrm{L}_{\mathrm{p}} & \mathrm{~L}_{\mathbf{r}} \\
\mathrm{N}_{\mathrm{p}} & \mathrm{~N}_{\mathbf{r}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{c} \alpha & -\mathrm{s} \alpha \\
\mathrm{~s} \alpha & \mathrm{c} \alpha
\end{array}\right]\left[\begin{array}{ll}
\overline{\mathrm{L}}_{\overline{\mathrm{p}}} & \overline{\mathrm{~L}}_{\mathbf{r}} \\
\overline{\mathrm{N}}_{\overline{\mathrm{p}}} & \overline{\mathrm{~N}}_{\mathbf{r}}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{c} \alpha & \mathrm{~s} \alpha \\
-\mathrm{s} \alpha & \mathrm{c} \alpha
\end{array}\right]
$$

with the particular implication

$$
\begin{equation*}
\mathrm{L}_{\mathrm{r}}=(\mathrm{c} \alpha)^{2} \overline{\mathrm{~L}}_{\bar{r}}+(\mathrm{s} \alpha \mathrm{c} \alpha)\left(\overline{\mathrm{L}}_{\overline{\mathrm{p}}}-\overline{\mathrm{N}}_{\mathbf{r}}\right)-(\mathrm{s} \alpha)^{2} \overline{\mathrm{~N}}_{\mathrm{p}} \tag{F47}
\end{equation*}
$$

etc., as listed in the nomenclature.

Table F1. State Equations


## Table F2. Response Equations



Table F3. A Matrix


Table F4. G1 Matrix


Table F5. G2 Matrix


Table F6. H Matrix


Table F7．D Matrix

| $\begin{gathered} \text { ReW } \quad 1 \\ .00000 \mathrm{E} \end{gathered}$ | 00 | －OOOOOE OC |
| :---: | :---: | :---: |
| ROW ？ |  |  |
| －00000e | 00 | －OCJOOE OO |
| KOw |  |  |
| －0000才e | 00 | $\cdot$－OOOOOE OO |
| ROW 4 |  |  |
| －00000E | 00 | －jo000e OO |
| Rew 5 |  |  |
| －OODOOE | 00 | －DODOOE OO |
| Row． 6 |  |  |
| －00000E | 00 | － 00000 E |
| 2日W |  |  |
| －00000e | 00 | －DOODOE OC |
| R日＇心 8 |  |  |
| －60000E | 01 | － 30000 E |
| RӨw 9 |  |  |
| －000coe | 30 | －JnOnot OO |
| ROW 10 |  |  |
| －O0000E | 00 | －SOLOOE O1 |
| Rew 11 |  |  |
| －00000e | 00 | －90000E |
| ROW 12 |  |  |
| ． 00000 E | 00 | －כOODOE |

Table F8. P Pots

| 00 |  | 28 | .2696 |
| :--- | :--- | :--- | :--- |
| 01 |  | 29 | .0243 |
| 02 | .2000 | 30 |  |
| 03 | .6010 | 31 |  |
| 04 | .0865 | 32 |  |
| 05 | .0113 | 33 |  |
| 06 | .3484 | 34 |  |
| 07 | .0703 | 35 | .0073 |
| 08 | .2000 | 36 | .2618 |
| 09 | .0188 | 37 | .8350 |
| 10 | .6400 | 38 | .1328 |
| 11 | .0444 | 39 | .0264 |
| 12 | .1650 | 40 |  |
| 13 | .1796 | 41 |  |
| 14 |  | 42 |  |
| 15 | .0422 | 43 |  |
| 16 | .0168 | 44 |  |
| 17 | .1435 | 45 | .9770 |
| 18 | .0208 | 46 | .5008 |
| 19 | .0988 | 47 | .0706 |
| 20 |  | 48 | .1612 |
| 21 |  | 49 | .2287 |
| 22 |  |  |  |
| 23 |  |  |  |
| 24 |  |  |  |
| 25 | .2128 |  |  |
| 26 | .7411 |  |  |
| 27 | .7411 |  |  |
|  |  |  |  |
|  |  |  |  |

Table F9. Q Pots

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 00 | .2500 | 40 |  | 80 | .2825 |
| 01 | .2500 | 41 |  | 81 | .4754 |
| 02 | .2400 | 42 |  | 82 | .1820 |
| 03 | .2400 | 43 |  | 83 | .3080 |
| 04 | .6000 | 44 |  | 84 | .1021 |
| 05 | .3845 | 45 | .1134 | 85 |  |
| 06 | .2743 | 46 | .2904 | 86 |  |
| 07 | .0246 | 47 |  | 87 | .4000 |
| 08 | .1914 | 48 |  | 88 | .0437 |
| 09 | .0703 | 49 |  | 89 | .3592 |
| 10 | .0181 | 50 | .2042 | 90 | .5000 |
| 11 | .0403 | 51 | .9562 | 91 | .5000 |
| 12 | .0160 | 52 | .3217 | 92 | .3460 |
| 13 | .0820 | 53 | .1278 | 93 | .4180 |
| 14 | .6000 | 54 | .1783 | 94 | .4639 |
| 15 | .5925 | 55 |  | 95 |  |
| 16 | .6080 | 56 |  | 96 | .3299 |
| 17 | .005 | 57 | .1731 | 97 | .308 |
| 18 | .0025 | 58 | .2810 | 98 | .0887 |
| 19 | .2006 | 59 | .8758 | 99 | .1280 |
| 20 | .0289 | 60 | .1779 |  |  |
| 21 | .1188 | 61 | .1180 |  |  |
| 22 | .0244 | 62 | .7260 |  |  |
| 23 | .2236 | 63 | .2662 |  |  |
| 24 |  | 64 | .1802 |  |  |
| 25 | .8760 | 65 |  |  |  |
| 26 | .3343 | 66 |  |  |  |
| 27 |  | 67 | .4665 |  |  |
| 28 |  | 68 | .1459 |  |  |
| 29 |  | 69 | .2122 |  |  |
| 30 |  | 70 | .1064 |  |  |
| 31 |  | 71 | .3208 |  |  |
| 32 |  | 72 | .1157 |  |  |
| 33 |  | 73 | .2000 |  |  |
| 34 |  | 74 | .0326 |  |  |
| 35 | .3878 | 75 |  |  |  |
| 36 | .3878 | 76 | .0852 |  |  |
| 37 |  | 77 | .08244 |  |  |
| 38 |  | 78 | .4244 |  |  |
| 39 |  | 79 | .1630 |  |  |

Table F10. Amplifiers

| 00 | $-500.8 \mathrm{a}$ | 20 |  | 40 |  | 60 | +10.v | 80 | $+2 . \widetilde{v}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | $-500 . \delta_{r}$ | 21 |  | 41 |  | 61 | +1000.r | 81 | +10. x |
| 02 | +500. $\delta_{r}^{\prime}$ | 22 |  | 42 |  | 62 | -1000.p | 82 | $-5 \cdot \eta_{1}$ |
| 03 | +500. $\delta_{a}$ | 23 |  | 43 | (1000.r) | 63 | $+200 . \dot{\delta}_{a}$ | 83 | $+5 \cdot \eta_{1}$ |
| 04 | $+200 . u_{1 Q}$ | 24 | $-5 . \mathbf{a}_{\mathrm{cm}}$ | 44 | $+5 . a_{y}$ | 64 | $+200 . \dot{\delta}_{r}$ | 84 | $+5.72$ |
| 05 |  | 25 | $+500 . \mathrm{x}_{4}$ | 45 | $+2 . x_{1}$ | 65 |  | 85 |  |
| 06 |  | 26 |  | 46 | +4. y | 66 |  | 86 |  |
| 07 | -1000.H | 27 |  | 47 | -4.y | 67 |  | 87 |  |
| 08 |  | 28 |  | 48 | $-2 . x_{1}$ | $68^{\circ}$ |  | 88 |  |
| 09 |  | 29 |  | 49 | $-2 . x_{2}$ | 69 |  | 89 |  |
| 10 |  | 30 |  | 50 | +1000. H | 70 | +1000.p | 90 | $\mathrm{NM}_{1}$ |
| 11 |  | 31 |  | 51 | $+1000 . \varnothing$ | 71 | $+500 \cdot \mathrm{p}_{\mathrm{g}}$ | 91 | $\mathrm{NM}_{2}$ |
| 12 | $-200 . u_{1 Q}$ | 20, |  | 52 | $-1000 . \phi$ | 72 | $-500 \cdot \mathrm{P}_{\mathrm{g}}$ | 92 | $-5 \cdot \eta_{2}$ |
| 13 | -200. ${ }^{\text {LQ }}$ | 33 |  | 53 | -10.v | 73 | -10.x | 93 | $-\mathrm{WN}_{1}$ |
| 14 | $+200 . u_{2 Q}$ | 34 | (4. y) | 54 | -1000.r | 74 | -2. $\widetilde{v}$ | 94 | $-\mathrm{WN} 2$ |
| 15 |  | 35 | $+2 . x_{3}$ | 55 |  | 75 |  | 95 |  |
| 16 |  | 36 | $+2 . x_{2}$ | 56 |  | 76 |  | 96 |  |
| 17 |  | 37 | $-2 . x_{3}$ | 57 |  | 77 |  | 97 |  |
| 18 |  | 38 | $-500 . x_{4}$ | 58 |  | 78 |  | 98 |  |
| 19 |  | 39 |  | 59 |  | 79 |  | 99 |  |

$$
\begin{aligned}
& +1000 \cdot \mathrm{p}=-\int\left\{\binom{-.1 a_{11}}{\mathrm{Q} 70}(10)(+1000 \cdot \mathrm{p})+\binom{+.1 a_{12}}{054}(10)(-1000 \cdot \mathrm{r})+\binom{-10 . a_{13}}{060}(10)(+10 . v)\right. \\
& +\binom{-25 \cdot a_{17}}{P 45}(20)\left(+2 . x_{1}\right)+\binom{+50 . a_{18}}{P 49}(10)\left(-2 \cdot x_{2}\right)+\binom{+50 . a_{19}}{P 37}(10)\left(-2 \cdot x_{3}\right) \\
& +\binom{-.2 a_{1}, 10}{\text { P25 }}(10)\left(+500 . x_{4}\right)+\binom{-.2 a_{1}, 14}{P 03}(10)\left(+500 . \delta_{a}\right) \\
& \left.+\binom{.2 a_{1}, 15}{p 01}(10)\left(-500 . \delta_{r}\right)\right\} d t \\
& -1000 \cdot p=-\{(1)(+1000 \cdot p)\} \\
& +1000 . r=-\int\left\{\binom{-a_{21}}{Q 69}(1)(+1000 \cdot p)+\binom{-a_{22}}{Q 61}(1)(+1000 . r)+\binom{+100 \cdot a_{23}}{053}(1)(-10 . v)\right. \\
& +\binom{-50 . a_{27}}{Q 68}(10)\left(+2 . x_{1}\right)+\binom{+500 . a_{28}}{067}(1)\left(-2 . x_{2}\right)+\binom{+50 . a_{29}}{079}(10)\left(-2 . x_{3}\right) \\
& +\binom{-2 . a_{2}, 10}{Q 78}(1)\left(+500 . x_{4}\right)+\binom{+2 . a_{2}, 14}{077}(1)\left(-500 \cdot \delta_{a}\right) \\
& \left.+\binom{-2 . a_{2,15}}{059}(1)\left(+500 . \delta_{r}\right)\right\} d t \\
& -1000 . r=-\{(1)(+1000 . r)\}
\end{aligned}
$$

Figure F1. Analog of Plant

$$
+1000 \cdot 0=-\int\left\{(1)(-1000 \cdot p)+\binom{+a_{42}}{Q 88}(1)(-1000 \cdot r)\right\} d t
$$

$-1000 . \phi=-\{(1)(+1000 . \phi)\}$
$+1000 \cdot \mathrm{H}=-\int\{(1)(-1000 \cdot \mathrm{r})\} \mathrm{dt}$

- $1000 . \mathrm{H}=-\{(1)(+1000 . \mathrm{H})\}$
$+4 . y=-\int\left\{\binom{+.4 a_{63}}{Q 87}(1)(-10 . v)+\binom{-.004 a_{64}}{Q+6}(1)(+1000 . \phi)\right.$

$$
\left.+\binom{.0004 a_{65}}{045}(10)(-1000 \cdot \mathrm{H})\right\} \mathrm{dt}
$$

$-4, y=-\{(1)(+4 . y)\}$

Figure F1. Analog of Plant (Continued)

$$
\begin{aligned}
& +10 . v=-\int\left\{\binom{+.01 a_{31}}{\text { Q62 }}(1)(-1000 . p)+\binom{-.001 a_{32}}{058}(10)(+1000 . r)+\binom{-\mathbf{a}_{33}}{057}(1)(+10 . v)\right. \\
& +\binom{+.01 a_{34}}{052}(1)(-1000, \phi)+\binom{-.5 a_{37}}{099}(10)\left(+2 \cdot x_{1}\right)+\binom{+5 \cdot a_{38}}{098}(1)\left(-2 \cdot x_{2}\right) \\
& \left.+\binom{+5 . a_{39}}{097}(1)\left(-2 . x_{3}\right)+\binom{+.02 a_{3}, 15}{089}(1)\left(-500 \cdot \delta_{r}\right)\right\} \mathrm{dt} \\
& -10 . v=-\{(1)(+10 . v)\}
\end{aligned}
$$

$-10 . x=-\{(1)(+10 . x)\}$

$$
\begin{aligned}
& +2 \cdot x_{1}=-\int\left\{\binom{-1 a_{77}}{Q 36}(10)\left(+2 \cdot x_{1}\right)+\binom{+.1 a_{7}, 11}{Q 37}(10)(-2 \cdot \widetilde{v})\right\} d t \\
& -2 \cdot x_{1}=-\left\{(1)\left(+2 \cdot x_{1}\right)\right\}
\end{aligned}
$$

$$
+2 . x_{2}=-\int\left\{\binom{-.00978 a_{88}}{Q 26}(102.3)\left(+2 . x_{2}\right)+\binom{-.01 a_{89}}{Q 25}(100)\left(+2 . x_{3}\right)\right.
$$

$$
\left.+\binom{+.005 a_{8,11}}{016}(200)(-2 . \tilde{v})\right\} d t
$$

$$
-2 \cdot x_{2}=-\left\{(1)\left(+2 \cdot x_{2}\right)\right\}
$$

$$
+2 . x_{3}=-\int\left\{\binom{+.05 a_{98}}{Q 15}(20)\left(-2 . x_{2}\right)+\binom{.01032 a^{99}}{\text { Q06 }}(96.7)\left(-2 \cdot x_{3}\right)\right.
$$

$$
\left.+\left(\begin{array}{c}
-.01 a \\
9,11 \\
005
\end{array}\right)(100)(+2 . \widetilde{v})\right\} d t
$$

$-2 \cdot x_{3}=-\left\{(1)\left(+2 \cdot x_{3}\right)\right\}$
$+500 \cdot x_{4}=-\int\left\{\binom{-.1 a_{10}, 10}{\mathrm{P} 26}(10)\left(+500 . x_{4}\right)+\binom{+.1 a_{10}, 13}{\mathrm{P} 27}(10)\left(-500 \cdot p_{g}\right)\right\} \mathrm{dt}$
$-500 \cdot x_{4}=-\left\{(1)\left(+500 . x_{4}\right)\right\}$

Figure F1. Analog of Plant (Continued)

$$
+10 \cdot x=\iint\left(\sim^{-a} 1_{2}, 1_{2}\right)
$$

$$
-500 \cdot p_{g}=-\left\{(1)\left(+500 . p_{g}\right)\right\}
$$

$$
\begin{aligned}
& -500 \cdot \delta_{a}=-\int\left\{\binom{.250}{000}(10)\left(+200 . \delta_{g}\right)\right\} \\
& 500 . \delta_{a}=-\left\{(1)\left(-500 . \delta^{\delta}\right)\right)
\end{aligned}
$$

$$
+500 \cdot \delta_{a}=-\left\{(1)\left(-500 . \delta_{a}\right)\right\}
$$

$$
\begin{aligned}
& -500 \cdot \delta_{r}=-\int\left\{\binom{.250}{001}(10)\left(+200 \cdot \dot{\delta}_{r}\right)\right\} d t \\
& 500 . \delta_{r}=-\{(1)(-500 . \varepsilon
\end{aligned}
$$

$$
+500 \cdot \delta_{r}=-\left\{(1)\left(-500 \cdot \delta_{r}\right)\right\}
$$

$$
-\hat{S . a}_{c_{m}}=-\left\{\left|-.5 a_{33}\right|\right.
$$

$$
{ }^{5 . a_{m}}=-\left\{\left[\begin{array}{c}
-.5 a_{33} \\
P_{04}
\end{array}\right](1)(-10 . v)+\left(-2.5 a_{2 n}\right)\right.
$$

$$
\begin{aligned}
& +\binom{+2.5 a_{39}}{p_{12}}(1)\left(+2.0_{x_{3}}\right)+\left(\begin{array}{c}
+.01_{a_{2}}, 15 \\
p_{10} \\
p_{13}
\end{array}\right)(1)\left(-5 \cdot x_{1}\right)+\binom{+2.5 a_{3}}{p_{11}}(1)\left(+2 . x_{2}\right)
\end{aligned}
$$

$$
\left.r \cdot\left(\delta_{r}\right)\right\}
$$

Figure fl. Analog of Plant (Continued)

$$
\begin{aligned}
+5 . a_{y}= & -\left\{\binom{-.005 h_{11,1}}{Q 84}(1)(+1000 . \mathrm{p})+\binom{+.005 h_{11,2}}{074}(1)(-1000 . r)+\binom{-.5 h_{11,3}}{Q 72}(1)(+10 . v)\right. \\
& +\binom{-.25 h_{11,7}}{Q 64}(10)\left(+2 . x_{1}\right)+\binom{+2.5 h_{11,8}}{Q 63}(1)\left(-2 . x_{2}\right)+\binom{+2.5 h_{11,9}}{Q 51}(1)\left(-2 . x_{3}\right) \\
& +\binom{-.01 h_{11,10}}{Q 50}(1)\left(+500 . x_{4}\right)+\binom{-.01 h_{11,14}}{Q 19}(1)\left(+500 . \delta_{\mathbf{a}}\right) \\
& +\left(\begin{array}{c} 
\\
Q 18
\end{array}\right)(1)\left(-500 . \delta_{r}\right\}
\end{aligned}
$$

Figure F1. Analog of Plant (Continued)


Figure F1. Analog of Plant (Concluded)

$$
\begin{aligned}
& +200 . u_{1 Q}=-\left\{\binom{.2 k_{11}}{Q 07}(1)(-1000 \mathrm{p} .)+\binom{.2 \mathrm{k}_{12}}{Q 08}(1)(-1000 . r)+\binom{20 . \mathrm{k}_{13}}{Q 09}(1)(-10 . v)\right. \\
& +\binom{.2 k_{14}}{\text { P05 }}(1)(-1000 . \phi)+\binom{.2 k_{15}}{\mathrm{P06}}(1)(-1000 . \mathrm{H})+\binom{50 . \mathrm{k}_{16}}{\mathrm{PO7}}(1)(-4 . \mathrm{y}) \\
& +\binom{-100 . k_{17}}{\mathrm{P} 08}(1)\left(+2 . x_{1}\right)+\binom{100 . \mathrm{k}_{18}}{\mathrm{P} 09}(1)\left(-2 . \mathrm{x}_{2}\right)+\binom{100 . \mathrm{k}_{19}}{\mathrm{P} 15}(1)\left(-2 . \mathrm{x}_{3}\right) \\
& +\binom{-.4 k_{1}, 10}{\mathrm{P} 16}(1)\left(+500 . \mathrm{x}_{4}\right)+\binom{-100 . \mathrm{k}_{1,11}}{\mathrm{P} 17}(1)(+2 . \tilde{v})+\binom{-20 . \mathrm{k}_{1}, 12}{\mathrm{P} 18}(1)(+10 . \mathrm{x}) \\
& \left.+\binom{-.4 \mathrm{k}_{1,13}}{\mathrm{P} 19}(1)\left(+500 . \mathrm{p}_{\mathrm{g}}\right)+\binom{+.4 \mathrm{k}_{1,14}}{\mathrm{P} 28}(1)\left(-500 . \delta_{\mathbf{a}}\right)+\binom{+.4 \mathrm{k}_{1,15}}{\mathrm{P} 29}(1)\left(+500 . \delta_{\mathrm{r}}\right)\right\} \\
& +200 . u_{2 Q}=-\left\{\binom{+.2 k_{21}}{\mathrm{P} 35}(1)(-1000 \cdot \mathrm{p})+\binom{+.2 k_{22}}{\mathrm{P} 36}(1)(-1000 . \mathrm{r})+\binom{+20 . \mathrm{k}_{23}}{\mathrm{P} 38}(1)(-10 . \mathrm{v})\right. \\
& +\binom{-.2 k}{\text { P39 }}(1)(+1000 . \emptyset)+\binom{+.2 k_{25}}{\mathrm{P} 46}(1)(-1000 . \mathrm{H})+\binom{+50 . \mathrm{k}_{26}}{\mathrm{P} 47}(1)(-4 . \mathrm{y}) \\
& +\binom{-100 . k_{27}}{\mathrm{P} 48}(1)\left(+2 . \mathrm{x}_{1}\right)+\binom{+100 . \mathrm{k}_{28}}{010}(1)\left(-2 . \mathrm{x}_{2}\right)+\binom{+100 . \mathrm{k}_{29}}{\mathrm{Q} 11}(1)\left(-2 . \mathrm{x}_{3}\right) \\
& +\binom{-.4 k_{2,10}}{\text { Q12 }}(1)\left(+500 . x_{4}\right)+\binom{-100, k_{2,11}}{Q 13}(1)(+2 . \tilde{v})+\binom{-20 . k_{2,12}}{Q 20}(1)(+10 . x) \\
& \left.+\binom{-.4 \mathrm{k}_{2,13}}{\mathrm{Q} 21}(1)\left(+500 \cdot \mathrm{p}_{\mathrm{g}}\right)+\binom{-.4 \mathrm{k}_{2,14}}{\mathrm{Q} 22}(1)\left(+500 . \mathrm{\delta}_{\mathbf{a}}\right)+\binom{+.4 \mathrm{k}_{2,15}}{\mathrm{Q} 23}(1)\left(-500 . \delta_{\mathbf{a}}\right)\right\} \\
& -200 . u_{1 Q}=1\left\{(1)\left(+200 . u_{1 Q}\right)\right\} \\
& \left.-200 . u_{2 Q}=1\{1)\left( \pm 200 . u_{2 Q}\right)\right\}
\end{aligned}
$$

Figure F2. Analog of Quadratic Controller


Figure F3. No Wind Flight Geometry


308

Figure F4. Damping in Roll (ref. 29)


Figure F6. Sideslip Derivatives (ref. 30)


Figure F7. Aileron Power (ref. 31)

Figure F8. Rudder Power (ref. 30)


Figure F9. Side Gust Penetration

## APPENDIX G

## High-ALTITUDE ABORT SIMULATION

This appendix discusses the simulation used to generate the high-altitude abort results of Section $V$.

The basis for the simulation is a 6-degree-of-freedom (6 DOF) hybrid simulation developed at Honeywell for performing entry simulations. This simulation includes data for the North American Rockwell (NR) 134D delta wing orbiter. The equations of motion are presented in Table G1. It is capable of simulating entry from orbiter to final approach, including navigation, guidance, and control. Closed-loop guidance was not used in this study. The high-altitude abort investigation of Section $V$ required modifications to the entry simulation. Table G2 presents the thrust vectoring forces and control equations added to the basic entry simulation. This includes provisions for variable mass, center of gravity, inertias, and the effects of offset between the center of mass and the aerodynamic moment reference center.

The thrust vector control system (TVC) is presented in Figure 56. Figure 60 gives power levels (PL), angle-of-attack commands ( $\alpha_{\mathrm{C}}$ ), and bank angle commands ( $\phi_{C}$ ) intended to duplicate the point mass trajectory obtained from NR. This abort trajectory initiated at 226,987 feet, at a velocity of $10,308 \mathrm{fps}$, with +6 deg of flight path angle. The commands are presented in Table G3 and are stored in the modified entry simulation.

Figure G1 shows the simulated mass properties variations with vehicle weight. The table at the top of the figure permits comparison with the source data. All of the tests began at the 650,000 pounds gross weight used by NR in generating the abort trajectory. The mass properties, as generated, are open to argument, since the cg's and inertias associated with 760,000 pounds gross weight were used at 650, 000 pounds. This is an error, but the consequences are considered minor; they should not influence the conclusions of this report.

Table G1. Equations of Motion

## BODY AXES LINEAR ACCELERATIONS

$$
\begin{aligned}
& a_{x}=\left(F_{x}+F_{x E}\right) / m \\
& a_{y}=\left(F_{y}+F_{y E}\right) / m \\
& a_{z}=\left(F_{z}+F_{z E}\right) / m
\end{aligned}
$$

BODY AXES EQUATIONS OF MOTION

$$
\begin{aligned}
& \dot{U}=a_{x}-(W Q-V R)+E_{11} g_{x}+E_{12} g_{y}+E_{13} g_{z} \\
& \dot{V}=a_{y}-(U R-W P)+E_{21} g_{x}+E_{22} g_{y}+E_{23} g_{z} \\
& \dot{W}=a_{z}-(V P-U Q)+E_{31} g_{x}+E_{32} g_{y}+E_{33} g_{z} \\
& \dot{P} I_{x}=L+L_{E}+I_{x z}[\dot{R}+P Q]+Q R\left[I_{y}-I_{z}\right] \\
& \dot{Q} I_{y}=M+M M_{E}+I_{x z}\left[R^{2}-P^{2}\right]+R P\left[I_{z}-I_{x}\right] \\
& \dot{R} I_{z}=N+N_{E}+I_{x z}[\dot{P}-Q R]+P Q\left[I_{x}-I_{y}\right]
\end{aligned}
$$

EULER PARAMETERS

$$
\left(\begin{array}{c}
\dot{\omega}_{1} \\
\dot{\omega}_{2} \\
\dot{\omega}_{3} \\
\dot{\omega}_{4}
\end{array}\right)=\left(\begin{array}{cccc}
\mathrm{O} & -\mathrm{P} & -\mathrm{Q} & -\mathrm{R} \\
\mathrm{P} & \mathrm{O} & \mathrm{R} & -\mathrm{Q} \\
\mathrm{Q} & -\mathrm{R} & \mathrm{O} & \mathrm{P} \\
\mathrm{R} & \mathrm{Q} & -\mathrm{P} & \mathrm{O}
\end{array}\right)\left(\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
\omega_{4}
\end{array}\right)
$$

Table G1. Equations of Motion (Continued)

DIRECTION COSINES BETWEEN INERTIAL AND BODY AXES

$$
\begin{aligned}
& E_{11}=\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}+\omega_{4}^{2} \\
& E_{12}=2\left(\omega_{2} \omega_{3}-\omega_{1} \omega_{4}\right) \\
& E_{13}=2\left(\omega_{2} \omega_{4}-\omega_{1} \omega_{3}\right) \\
& E_{21}=2\left(\omega_{2} \omega_{3}-\omega_{1} \omega_{4}\right) \\
& E_{22}=\omega_{1}^{2}-\omega_{2}^{2}+\omega_{3}^{2}-\omega_{4}^{2} \\
& E_{23}=2\left(\omega_{3} \omega_{4}+\omega_{1} \omega_{2}\right) \\
& E_{31}=2\left(\omega_{2} \omega_{4}+\omega_{1} \omega_{3}\right) \\
& E_{32}=2\left(\omega_{3} \omega_{4}-\omega_{1} \omega_{2}\right) \\
& E_{33}=\omega_{1}^{2}-\omega_{2}^{2}-\omega_{3}^{2}+\omega_{4}^{2}
\end{aligned}
$$

RELATION BETWEEN INERTIAL ( $\dot{X}, \dot{Y}, \dot{Z}$ ) AND BODY VELOCITIES (U, V, W)

$$
\left(\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{array}\right)=\left(\begin{array}{lll}
E_{11} & E_{21} & E_{31} \\
E_{12} & E_{22} & E_{32} \\
E_{13} & E_{23} & E_{33}
\end{array}\right)\left(\begin{array}{c}
U \\
V \\
W
\end{array}\right)
$$

GRAVITY COMPONENTS IN AN INERTIAL FRAME

$$
\begin{aligned}
& r=\left(X^{2}+Y^{2}+Z^{2}\right)^{1 / 2} \\
& g^{\prime}=g_{o} r_{o}^{2} / r^{2} \\
& \left.g_{x}=-g^{\prime}\left|\frac{X}{r}\right|, g_{y}=g^{\prime}\left(\frac{Y}{r}\right), g_{z}=g^{\prime} \left\lvert\, \frac{Z}{r}\right.\right)
\end{aligned}
$$

Table G1. Equations of Motion (Continued)

VEHICLE VELOCITY IN A LOCAL VERTICAL REFERENCE FRAME

$$
\left[\begin{array}{l}
\dot{X}_{\mathrm{e}} \\
\dot{\mathrm{Y}}_{\mathrm{e}} \\
\dot{\mathrm{Z}}_{\mathrm{e}}
\end{array}\right]=\left[\begin{array}{lll}
\operatorname{Sin} L \operatorname{Cos} B & -\operatorname{Sin} L \operatorname{Sin} B & -\operatorname{Cos} L \\
\operatorname{Sin} B & \operatorname{Cos} B & 0 \\
\operatorname{Cos} L \operatorname{Cos} B & -\operatorname{Cos} L \operatorname{Sin} B & \operatorname{Sin} L
\end{array}\right]\left[\begin{array}{l}
\dot{\mathrm{X}}-\omega_{\mathrm{E}} \mathrm{Y} \\
\dot{\mathrm{Y}}-\omega_{\mathrm{E}} \mathrm{X} \\
\dot{\mathrm{Z}}
\end{array}\right]
$$

ALTITUDE RATE, HEADING, AND FLIGHT PATH ANGLE
$\dot{h}=-\dot{Z}_{e}$
$X=\tan ^{-1}\left[\begin{array}{l}\dot{Y}_{e} \\ \dot{X}_{e}\end{array}\right]$
$\gamma=\tan ^{-1}\left[\frac{\dot{\mathrm{~h}}}{\left(\dot{\mathrm{X}}_{\mathrm{e}}^{2}+\dot{\mathrm{Y}}_{\mathrm{e}}^{2}+\dot{\mathrm{Z}}_{\mathrm{e}}^{2}\right)^{1 / 2}}\right]$

RELATIVE VELOCITIES

$$
\left(\begin{array}{c}
U_{a} \\
V_{a} \\
W_{a}
\end{array}\right)=\left(\begin{array}{l}
U \\
V \\
W
\end{array}\right)-\left(\begin{array}{l}
U \\
V \\
W
\end{array}\right)_{\text {gusts }}+\left(\begin{array}{lll}
E_{12} & -E_{11} & -- \\
E_{22} & -E_{21} & -- \\
E_{32} & -E_{31} & --
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
0
\end{array}\right) \omega_{E}
$$

Table G1. Equations of Motion (Concluded)

AIRSPEED, MACH NUMBER, $\alpha$, AND $\beta$

$$
\begin{aligned}
& V_{t}=\sqrt{\left(U_{a}^{2}+V_{a}^{2}+W_{a}^{2}\right)} \\
& M=V_{t / a} \\
& \alpha=\tan ^{-1}\left[\frac{W_{a}}{U_{a}}\right] \\
& \beta=\tan ^{-1}\left[\frac{V_{a}}{\sqrt{U_{a}^{2}+W_{a}^{2}}}\right] \\
& \dot{\alpha}=\left(U_{a} \dot{W}-W_{a} \dot{U}\right) /\left(U_{a}^{2}+W_{a}^{2}\right) \\
& \dot{\beta}=\frac{\left[\left(U_{a}^{2}+W_{a}^{2}\right) \dot{V}-V_{a}\left(U_{a} \dot{U}+W_{a} \dot{W}\right)\right]}{\sqrt{U_{a}^{2}+W_{a}^{2}\left(U_{a}^{2}+V_{a}^{2}+W_{a}^{2}\right)}}
\end{aligned}
$$

Table G2. TVC Equations Added to Entry 6 DOF Simulation

ENGINE THRUSTS (See Figure 60 for Power Level Program)
$\mathrm{FE} 1=\mathrm{PL} 1\left[477,000-\left(\mathrm{A}_{\mathrm{e}}\right) \mathrm{P}_{\text {ATMOS }}\right]$. If PL1 $<0.5, \mathrm{FE} 1=0$
$\mathrm{FE} 2=\mathrm{PL} 2\left[477,000-\left(\mathrm{A}_{\mathrm{e}}\right) \mathrm{P}_{\text {ATMOS }}\right]$. If PL2 $<0.5, \mathrm{FE} 2=0$
$P_{\text {ATMOS }}=$ atmospheric pressure, lbs/ft ${ }^{2}$
$A_{e}=50 \mathrm{ft}^{2}$, the effective nozzle exit area retracted $\beta$ command for unsymmetric thrust:

$$
\mathrm{IF}|\mathrm{PL} 1-\mathrm{PL} 2|>0.1, \beta_{\mathrm{c}}=\beta_{\mathrm{c}_{\mathrm{o}}} \operatorname{SIGN}(\mathrm{PL} 1-\mathrm{PL} 2)
$$

PROPELLANT BURNED BY MAIN ENGINES $\mathrm{WPRO}=400,000-\int 1,043(\mathrm{PL} 1+\mathrm{PL} 2) \mathrm{dt}$

Vehicle Weight $=225,000+$ WPRO $+(250,000-225,000)$
If $W P R O=0$, go to orbit maneuver burn

MASS PROPERTIES, MAIN ENGINE BURN

$$
\left.\begin{array}{l}
x_{C G}=x_{C G_{B O}}+\left({ }^{x_{C G}}{ }_{F U L L}-x_{C G_{B O}}\right)\left(\frac{W P R O}{400,000}\right) \\
z_{C G}=z_{C G_{B O}}+\left({ }_{\mathrm{z}_{\mathrm{CG}}^{\mathrm{FULL}}}-\mathrm{z}_{\mathrm{CG}}^{\mathrm{BO}}\right. \\
\end{array}\right)\left(\frac{\mathrm{WPRO}}{400,000}\right)
$$

Table G2. TVC Equations Added to Entry 6 DOF Simulation (Continued)
$I_{z}=I_{z_{B O}}+\left|I_{z_{\text {FULL }}}-\mathrm{I}_{z_{B O}}\right|\left(\frac{\text { WPRO }}{400,000}\right)$
$I_{x z}=I_{x z_{B O}}+\left(I_{x z z_{F U L L}}-I_{x z_{B O}}\right)\left(\frac{W P R O}{400,000}\right)$
See Figure G3 for constants.

ORBIT MANEUVER BURN
$x_{\text {FORCE }}=30,000 \mathrm{lb}$
$\beta_{c}=0$
Weight of OM propellant, $\mathrm{WOM}=25,000-63 \mathrm{t}$
If $W O M=0$, then $0=F X E=F Y E=F Z E=L E=M E=N E$

MASS PROPERTIES, ORBIT MANEUVER PROPELLANT BURN

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{CG}}=\mathrm{x}_{\mathrm{CG}}^{\mathrm{ENT}}+\left(\mathrm{x}_{\mathrm{CG}}^{\mathrm{BO}}-\mathrm{x}_{\mathrm{CG}}^{\mathrm{ENT}} \mid\right)\left(\frac{\mathrm{WOM}}{25,000}\right) \\
& z_{C G}=z_{C G}^{E N T}+\left(z_{\mathrm{zG}_{\mathrm{BO}}}-{ }^{-z_{C G}}{ }_{E N T}\right)\left(\frac{\text { WOM }}{25,000}\right) \\
& I_{x}=I_{x_{\mathrm{ENT}}}+\left(\mathrm{I}_{\mathrm{x}_{\mathrm{BO}}}-\mathrm{I}_{\mathrm{x}_{\mathrm{ENT}}}\right)\left(\frac{\mathrm{WOM}}{25,000}\right) \\
& I_{y}=I_{y_{E N T}}+\left(I_{y_{B O}}-I_{y_{E N T}}\right)\left(\frac{W O M}{25,000}\right) \\
& I_{z}=I_{z_{E N T}}+\left(I_{z_{B O}}-I_{z_{E N T}}\right)\left(\frac{\text { WOM }}{25,000}\right) \\
& I_{x z}=I_{x z_{E N T}}+\left(I_{x z_{B O}}-I_{x z_{E N T}}\right)\left(\frac{W O M}{25,000}\right)
\end{aligned}
$$

## Table G2. TVC Equations Added to Entry 6 DOF Simulation (Concluded)

ENGINE FORCES AND MOMENTS, BODY AXES

$$
\begin{aligned}
\mathrm{FXE} & =\mathrm{FE} 1+\mathrm{FE} 2+\mathrm{x}_{\mathrm{FORCE}} \\
\mathrm{FYE} & =(\mathrm{FE} 1) \delta_{1 \mathrm{z}}+(\mathrm{FE} 2) \delta_{2 \mathrm{z}} \\
\mathrm{FZE} & =-(\mathrm{FE} 1) \delta_{1 \mathrm{y}}-(\mathrm{FE} 2) \delta_{2 \mathrm{y}} \\
\mathrm{LE} & =\mathrm{FE} 1\left[\delta_{1 \mathrm{y}}\left(\mathrm{Y} \mathrm{CG}-\mathrm{Y} \delta_{1}\right)-\delta_{1 \mathrm{z}}\left(\mathrm{z}_{\mathrm{CG}}-\mathrm{z}_{\delta_{1}}\right)\right] \\
& +\mathrm{FE} 2\left[\delta_{2 \mathrm{y}}\left(\mathrm{Y} \mathrm{CG}-\mathrm{Y}_{\delta_{2}}\right)-\delta_{2 \mathrm{z}}\left(\mathrm{z} \mathrm{CG}^{\left.\left.-\mathrm{z}_{\delta_{2}}\right)\right]}\right.\right. \\
\mathrm{ME} & =\mathrm{FE} 1\left[\delta_{1 \mathrm{y}}\left(\mathrm{x}_{\mathrm{CG}}-\mathrm{x}_{\delta_{1}}\right)+\left(\mathrm{z}_{\mathrm{CG}}-\mathrm{z}_{\delta_{1}}\right)\right] \\
& +\mathrm{FE} 2\left[\delta_{2 \mathrm{y}}\left(\mathrm{x}_{\mathrm{CG}}-\mathrm{x}_{\delta_{2}}\right)+\left(\mathrm{z}_{\mathrm{CG}}-\mathrm{z}_{\delta_{2}}\right)\right] \\
\mathrm{NE} & \left.=\mathrm{FE1[ } \mathrm{\delta}_{1 \mathrm{z}}\left(\mathrm{x}_{\mathrm{CG}}-\mathrm{x}_{\delta_{1}}\right)+\left(\mathrm{y}_{\mathrm{CG}}-\mathrm{y}_{\delta_{1}}\right)\right] \\
& +F E 2\left[\delta_{2 \mathrm{z}}\left(\mathrm{x}_{\mathrm{CG}}-\mathrm{x}_{\delta_{1}}\right)+\left(\mathrm{y}_{\mathrm{CG}}-\mathrm{y}_{\delta_{2}}\right)\right]
\end{aligned}
$$

$y_{C G}$ is zero. Gimbal position coordinates are converted to feet. In inches, they are:

$$
\begin{array}{ll}
\mathrm{x}_{\delta_{1}}=2200 & \mathrm{x}_{\delta_{2}}=2200 \\
\mathrm{y}_{\delta_{1}}=-68 & \mathrm{y}_{\delta_{2}}=+68 \\
\mathrm{z}_{\delta_{1}}=+490 & \mathrm{z}_{\delta_{2}}=+490
\end{array}
$$

AERODYNAMIC MOMENTS CORRECTED FOR CG OFFSET FROM REFERENCE MOMENT CENTER

$$
\begin{aligned}
& x_{\text {RMC }}=(1422+211) / 12 \\
& C_{\text {NORM }}=C_{\text {LIFT }} \cos \alpha+C_{\text {DRAG }} \sin \alpha \\
& \left.C_{m_{C G}}=C_{m_{\text {RMC }}}+C_{N_{N}\left(x_{C G}\right.}-x_{\text {RMC }}\right) / \bar{c} \\
& C_{n_{C G}}=C_{n_{R M C}}+C_{y}\left(x_{C G}-x_{R M C}\right) / \mathrm{b}
\end{aligned}
$$

Table G3. Test Sequences to Check Out TVC and SAS


| NR 1340 | AUGUST 1970 |  | MASS PROPERTIES (NO PAYLOAD) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CONDITION | WEIGHT | $\begin{gathered} \text { C.G. } \\ \mathrm{x} \\ \hline \end{gathered}$ | $\underset{z}{\text { TION }}$ | $I_{x}$ | $\begin{gathered} \text { INER } \\ \mathrm{l}_{\mathrm{y}} \end{gathered}$ | $\begin{aligned} & 10^{-} \\ & I_{2} \end{aligned}$ | $\mathrm{I}_{x z}$ |
| LIFTOFF | 760,000 | 1578.1 | 484.6 | 5.74 | 22.9 | 26.3 | 1.04 |
| BURNOUT | 250,587 | 1692.8 | 486.5 | 3.49 | 15.0 | 16.1 | 1.21 |
| ENTRY | 214,861 | 1648.8 | 473.9 | 3.36 | 13.3 | 14.6 | 0.96 |



Figure G1. Mass Properties Variations with Vehicle Weight

## APPENDIX H <br> SYMBOLS AND NOTATION

## Reference: Thelander, J. A., "Aircraft Motion Analysis", Air Force Technical Documentary Report FDL-TDR-64-70, March 1965

The above reference provided the bulk of the notations used in this report as well as the equations of motion given in Appendix B. Additional symbols are due primarily to powered flight with thrust vector control systems.
$\mathrm{a}=$ speed of sound, $\mathrm{ft} / \mathrm{sec}$
$A_{e}=$ effective nozzle area of main engine, $\mathrm{ft}^{2}$, used to compute engine thrust: $A_{\ell}=\left(F_{V A C}-F_{S L}\right)^{/ P_{S L}}$
$a_{c g}=$ lateral acceleration at c.g., equations decoupled from pitch
ACPS $=$ attitude control propulsion system (acronym)
$a_{x}, a_{y}, a_{c g}=\underset{\text { linear } c . g \text {. accelerations along body } x, y \text {, and } z \text { axis, }}{\text { respectively }}$
$\mathrm{a}_{\mathrm{z}}=$ normal acceleration at station $\mathrm{x}_{\mathrm{a}}$
b $=$ wing span, or reference length for lateral aerodynamic moment coefficients
$B=$ inertial longitude; $B=\tan ^{-1}\left(\frac{-X}{Y}\right)$
$C=$ basic symbol for aerodynamic force and moment coefficients
$\bar{c}=$ wing mean aerodynamic chord
$\mathrm{C}_{\mathrm{D}_{\alpha}}, \mathrm{C}_{\mathrm{L}_{\mathrm{M}}}, \mathrm{C}_{\mathrm{n}_{\beta}}, \mathrm{C}_{\mathrm{m}_{\alpha}}$, etc. $=\underset{\text { reference to stability axes }}{\text { nondimensionalives } \text { with }}$
$C_{\ell}, C_{m}, C_{n}=$ rolling, pitching, and yawing moment coefficients, respectively

$$
\mathrm{C}_{\ell}=\frac{\mathrm{L}}{\mathrm{qSb}}, \mathrm{C}_{\mathrm{m}}=\frac{\mathrm{M}}{\mathrm{qSc}}, \mathrm{C}_{\mathrm{n}}=\frac{\mathrm{N}}{\mathrm{qSb}}
$$

$C_{L}, C_{D}=$ life and drag force coefficients, respectively, (stability axes) $\mathrm{C}_{\mathrm{N}}, \mathrm{C}_{\mathrm{A}}=$ normal and axial force coefficients, respectively (body axes) $C_{x}, C_{y}, C_{z}=\underset{\text { respectively (body axes) }}{\text { longitudinal, }}$ side-force, and normal-force coefficients,
$D=$ aerodynamic drag - the aerodynamic force in the plane of symmetry along the projection of the relative wind on the plane of symmetry. Drag is positive in the negative $X$ (downstream) direction
DWO $=$ Delta Wing Orbiter (acronym)
DWT $=$ Dog-Wag-Tail (acronym)
ECS $=$ Entry Control System (acronym)
$F_{E i}=$ thrust of ith engine, lbs: $\left(T=\Sigma F_{E i}\right)$
$F_{V A C}, F_{S L}=$ engine thrust in vacuum and at sea level, respectively
$F_{x^{\prime}} F_{y^{\prime}} F_{z}=$ total force components along body axes

$$
\begin{aligned}
& F_{x}=X_{g}+X+F_{x e} \\
& F_{y}=Y_{g}+Y+F_{y e} \\
& F_{z}=Z_{g}+Z+F_{z e}
\end{aligned}
$$

$F_{x e}, F_{y e}, F_{z e}=$ engine force components along body axes
$g=$ gravitational acceleration constant
$\mathrm{h}=$ altitude, feet
$H=$ heading; more often denoted by $\psi$
$I_{s p}=$ engine specific impulse, lbs thrust/lb/sec propellant consumed
$I_{E}=$ moment of inertia of one engine about hinge line
$I_{x}, I_{y}, I_{z}=$ moments of inertia about $X_{-}, Y_{-}$, and $Z$-axes, respectively
Ixz $=$ product of inertia with respect to $X$ - and $Z$-axes
$K=$ control system gain (G sometimes used in FORTRAN)
$\ell=$ reference length for aerodynamic moment coefficients
$\mathrm{L}=$ aerodynamic lift - the aerodynamic force in the plane of symmetry perpendicular to the projection of the relative wind on the plane of symmetry. Life is positive in the negative $Z$ (upward) sense.
$\mathrm{L}=$ inertial latitude, positive North
$L_{E}, M_{E}, N_{E}=$ engine rolling, pitching, and yawing moments about $X, Y$, and $Z$ axes, respectively
$\mathrm{L}, \mathrm{M}, \mathrm{N}=$ aerodynamic rolling, pitching, and yawing moments about $\mathrm{X}-\mathrm{F}, \mathrm{Y}$, and Z -axes
$\left.\mathrm{L}_{( }, \mathrm{M}_{( }, \mathrm{N}_{( }\right)=$basic symbols for dimensional moment derivatives; subscript denotes variable of differentiation, e.g., $L_{\beta}=$ $\partial L / \partial \beta, M_{\alpha}=\partial M / \partial \alpha$
$\mathrm{m}=$ mass
$\mathrm{M}=\mathrm{Mach}$ number
$m_{E}=$ mass of one engine
$\mathrm{N}=$ normal force; force component along negative Z axis
$P=$ atmospheric pressure, $\mathrm{lbs} / \mathrm{ft}^{2}\left(\mathrm{P}_{\mathrm{SL}}=2116 \mathrm{PSF}\right)$
$\mathrm{PL}=$ power level of propulsion engine; a value of 1.0 denotes $100 \%$ of normal power level
$\mathrm{p}, \mathrm{q}, \mathrm{r}=$ small-disturbance angular velocity components about $\mathrm{X}-, \mathrm{Y}-$, and Z -axes, respectively
$P, Q, R=$ rolling, pitching, and yawing velocity components (angular) about $\mathrm{X}-, \mathrm{Y}-$, and Z -axes, respectively
$\mathrm{q}=$ dynamic pressure

$$
q=\frac{\rho V^{2}}{2}
$$

$r m c=r e f e r e n c e$ moment center for aerodynamic data, normally used as a subscript
$S$ = wing area or reference area for aerodynamic coefficients
SAS = stability augmentation system (acronym)
$\mathrm{t}=$ time
$T=$ total direct thrust force $=\Sigma \mathrm{F}_{\mathrm{Ei}}$
TVC = thrust vector control (acronym)
TWD = Tail wag dog
$u, v, w=$ small-disturbance linear velocity components along $X-, Y-$, and Z-axes, respectively
$\mathrm{U}, \mathrm{V}, \mathrm{W}=$ linear velocity components along $\mathrm{X}-, \mathrm{Y}-$, and Z -axes, respectively
$\mathrm{U}_{\mathrm{A}}, \mathrm{V}_{\mathrm{A}}, \mathrm{W}_{\mathrm{A}}=$ vehicle velocity components with respect to the air mass along $\mathrm{X}-, \mathrm{Y}-$, and Z -axes, respectively:

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{A}}=\mathrm{U}-\mathrm{U}_{\mathrm{w}} \\
& \mathrm{~V}_{\mathrm{A}}=-\mathrm{V}-\mathrm{V}_{\mathrm{w}} \\
& \mathrm{~W}_{\mathrm{A}}=\mathrm{W}-\mathrm{W}_{\mathrm{w}}
\end{aligned}
$$

$\mathrm{U}_{\mathrm{w}}, \mathrm{V}_{\mathrm{w}}, \mathrm{W}_{\mathrm{w}}=\begin{gathered}\text { wind velocity } \\ \text { respectively }\end{gathered}$
$V=$ total linear velocity of vehicle c.g.
$V_{N}=$ velocity normal to the reference trajectory
$\mathrm{V}_{\mathrm{t}}=\begin{aligned} & \text { total velocity with respect to the relative wind, }\left[\mathrm{U}_{\mathrm{A}}{ }^{2}+\mathrm{V}_{\mathrm{A}}{ }^{2}+\mathrm{W}_{\mathrm{A}}{ }^{2}\right]^{1 / 2} \text {, }, \text { airspeed }\end{aligned}$
$\mathrm{W}=$ weight, lb.
$\mathrm{W}=$ wind vector, or horizontal component
$W_{x}, W_{y}, W_{z}=\begin{aligned} & \text { wind components with respect to launch local vertical (the } \\ & \text { boost study assumed } W_{z}=0 \text { ) }\end{aligned}$
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}=$ inertial position coordinates
$\mathrm{x}, \mathrm{y}, \mathrm{z}=$ lengths: measured from mass properties axes. The MSFC launch vehicle axes center at the booster nose on its $C_{L}$. $x$ positive aft, $y$ to right, and $z$ up. This is viewing the combination with orbiter on top, its belly to the belly of the booster, which is upside down
$\mathrm{x}_{\mathrm{E}_{\mathrm{i}}}, \mathrm{y}_{\mathrm{E}_{\mathrm{i}}},{ }^{\mathrm{z}} \mathrm{E}_{\mathrm{i}}=$ ith gimballed engine mass center coordinates
$\mathrm{x}_{\mathrm{CG}}, \mathrm{y}_{\mathrm{CG}}, \mathrm{z}_{\mathrm{CG}}=\mathrm{C} . \mathrm{G}$. coordinates
$\mathrm{x}_{\delta_{i}}, \mathrm{y}_{\delta_{\mathbf{i}}}, \mathrm{z}_{\delta_{i}}=$ ith gimballed engine hinge line coordinates
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}=$ aerodynamic force components along $\mathrm{X}-, \mathrm{Y}-$, and Z -axes, respectively
$X(), Y(), Z()=$ basic symbols for dimensional force derivative; subscript denotes variable of differentiation. For example,

$$
X u=\frac{\partial X}{\partial u} ; X \delta_{e}=\frac{\partial X}{\partial \delta_{e}} ; X w=\frac{\partial X}{\partial w}
$$

$\mathrm{Xg}, \mathrm{Yg}, \mathrm{Zg}=$ gravity force components along $\mathrm{X}-, \mathrm{Y}-$, and Z -axes. The boost analysis in this report uses:

$$
\left.\begin{array}{l}
\mathrm{Xg}=-\mathrm{mg} \sin \Theta \\
\mathrm{Yg}=\mathrm{mg} \cos \Theta \sin \Phi \\
\mathrm{Zg}=\mathrm{mg} \cos \Theta \cos \Phi
\end{array}\right\} \Theta=\gamma_{\mathrm{R}}+\theta
$$

$\alpha=$ angle of attack; $\tan \alpha=W_{A} / U_{A}$
$\beta=$ sideslip angle $\sin \beta=V_{A} / V_{t}$
$\begin{aligned} \delta \mathrm{i}_{y}, ~ & \delta \mathrm{i}_{z}=\end{aligned} \begin{aligned} & \text { ith engine gimbal rotations about gimbal pitch and yaw hinges; } \\ & \text { the notation implies control moments predominantly about body } \\ & \\ & \end{aligned}$
$\delta_{x}, \delta_{y}, \delta_{z}=$ TVC system parameters, denoting rotational commands about the $\mathrm{X}-, \mathrm{Y}-$, and Z -axes to be distributed to the $\delta \mathrm{i}_{\mathrm{y}}$ and $\delta \mathrm{i}_{\mathrm{z}}$

$\zeta=$ damping ratio
$\gamma=$ flight-path angle, the angle between the velocity vector and the plane of the horizon
$\gamma_{\mathbf{R}}=$ flight-path angle of boost reference trajectory
$\delta_{\mathbf{a}}, \delta_{e}, \delta_{r}=$ deflection of ailerons, elevator, and rudder, respectively
$\rho=$ air density
$\psi, \theta, \Phi=$ orientation angles of vehicle body axes in yaw, pitch, roll sequence
$x=$ heading of inertial velocity vector in local vertical frame
$\phi, \theta, \psi=$ perturbations of vehicle axes orientation angles $\Phi, \theta, \psi$, respectively. In the small-disturbance approximation $\phi=\int \mathrm{pdt}, \theta=\int \mathrm{qdt}, \psi=\int \mathrm{rdt}, \mathrm{respectively}$
$\omega=$ frequency, $\mathrm{rad} / \mathrm{sec}$
$\omega_{\mathrm{E}}=$ earth's rotation rate, $\mathrm{rad} / \mathrm{sec}$

## General Notes:

1. All angles and angular velocities are in radian measure.
2. Fundamental units are used throughout, i.e., slugs, feet, seconds.
3. Throughout this table, the symbol $q$ denotes dynamic pressure when multiplied by the wing area (qS).
4. The subscripts o denote steady-state reference condition for small-disturbance analyses, c command, j jet, respectively.

Subscripts
o steady-state value
c command
j reaction jet
e local vertical coordinates
a total velocity or component with respect to air mass
w wind velocity
E rocket engine

## REFERENCES

1. Anonymous, "Guidance, Navigation, and Control System: Flight Control Analysis," Honeywell Document 21602-1.3.3.7.3, Circa December 1970.
2. Ellison, D.E., et al, "USAF Stability and Control Datcom", McDonnell Douglas Corp. , Air Force Flight Dynamics Laboratory, 1970.
3. Anonymous, "Study of Automatic and Manual Terminal Guidance and Control Systems for Space Shuttle Vehicles," First through Fifth Monthly Progress Reports to NASA ARC under Contract NASA25804 by Sperry Flight Systems Division; April, May, --- 10 August 1970.
4. Smith, Herbert E., Jr., and Walter, Parry M., "Project Apollo Manned Simulation of a Straight Wing Orbiter Unpowered Approach and Landing', MSC-IN-EG-70-34, NASA MSC, 30 September 1970.
5. Vaughan, William W., "Interlevel and Intralevel Correlations of Wind Components for Six Geographical Locations, "NASA TN D-561, December 1960.
6. Skelton, G. B., et al., "Final Technical Report: Design of a LoadRelief Control System, " Honeywell report 12013 FR1 for NASA MSFC, Contract NAS8-20155, St. Paul, Minnesota, 9 May 1966.
7. Harvey, C.A., et al., "Application of Optimal Control Theory to Launch Vehicles, " Honeywell report 12073-FR1 for NASA MSFC Contract NAS8-21063, 1968.
8. Harris, Robert D., "Analysis and Design of Space Vehicle Flight Control Systems, Volume XIV -- Load Relief, " NASA CR-833, August 1967.
9. Edinger, L. D., "Saturn V/Voyager Load Relief Study, " NASA CR-61956, March 1968.
10. Anon., "NAS8-25181 Reference Data Package," supplied by MSFC.
11. Etheridge, Orval, "Preliminary Reference Trajectories of the MSFC In-house Space Shuttle, " MSFC S and E-Aero-GT-5-70, February 4, 1970.
12. Hoernor, S. F., Fluid-Dynamic Drag, published by the author, 1965.
13. Staff of NASA Flight Research Center, "Preliminary Flying Qualities Specifications for Space Shuttle Vehicles, "January 28, 1970.
14. Stein, G. and A. H. Henke, "A Design Procedure and HandlingQuality Criteria for Lateral-Directional Flight Control Systems," AFFDL-TR-70-152, October 1970.
15. Anon, "Study of Automatic and Manual Terminal Guidance and Control Systems for Space Shuttle Vehicles," First through Eighth Monthly Progress Reports to NASA ARC under Contract NASA25804 by Sperry Flight Systems Division; April, May, ---, 10 November 1970.
16. Schofield, B. L., Richardson, D. F., and Hoag, P. C., "Terminal Area Energy Management, Approach and Landing Investigation for Maneuvering Reentry Vehicles Using F-111A and NB-52B Aircraft," Technology Doc. No. 70-2, Air Force Flight Test Center, June 1970.
17. Smith, Herbert E., Jr., and Walter, Parry M., "Project Apollo Manned Simulation of a Straight Wing Orbiter Unpowered Approach and Landing", MSC-IN-EG-70-34, NASA MSC, 30 September 1970.
18. McAnnally, R.C., "Preliminary Reference Trajectories of the MSFC Inhouse Space Shuttle, " MSFC, February 4, 1970.
19. Thelander, J.A., FDL-TDR-64-70, "Aircraft Motion Analysis," March 1965 (AD617 354)
20. Nelson, F.R., Koerner, W., and Trudel, R. E., BUAER Report AE-61-4II, Dynamics of the Airframe, September 1952.
21. Edinger, L. D., Hughes, T. W., and Pluimer, M. J., "Data Base Report for Saturn/Voyager Load Relief Study," NASA MSFC Contract NAS8-21171, 30 January 1968.
22. Rheinfurth, Mario H., "Control-Feedback Stability Analysis, " Report No. DA-TR-2-60, Army Ballistic Agency, Redstone Arsenal, Alabama, January 11, 1960; AD 232447.
23. Miles, John W., The Potential Theory of Unsteady Supersonic Flow, Cambridge University Press, 1959.
24. Thomson, William Tyrrell, Introduction to Space Dynamics, John Wiley and Sons, Inc., 1962.
25. Anon., "NAS8-25181, Reference Data Package, " supplied by MSFC.
26. Anon., "Simplified Flight Loads Analysis Program, " Boeing publication circulation 1964.
27. Space Shuttle Aerodynamics Group, "NR Space Shuttle Program Aerody- namics Design Data Book: Volume 1, Straight-Wing Orbiter, " Report 2. 1. 5-13000-00, SD 70-414, Space Division, North American Rockwell, August 1970.
28. Graham, K. D., "Kinematic Model for Fire Control," MR10757, August 7, 1969.
29. Sokolosky, O. M., "SSV Aerodynamic Rotary Derivatives for the Delta Wing Orbiter (Aero Design Data Book II-DB 2.1.5- 13000-10)," NAR, August 31, 1970.
30. Ehlers, H. L., "Aero Data for 134D Vehicle."
31. Anon., "Aileron Effectiveness in Roll," NAR 11 August 1970.
32. Wyllie, C., 'Unpowered Orbiter Touchdown State Limits," Honeywell Internal Memorandum, 29 January 1971

[^0]:    －For sale by the National Technical Information Service，Springfield，Virginia 22151

[^1]:     （．002672．．00000）（．．20349：．00000）（．09504．．16623）（．09504．．．18623）
    
    
    （4 SEC）

[^2]:    

[^3]:    
    
    
    
    (170 SEC)

[^4]:    $\mathrm{h}_{72}$
    $.00000000 \mathrm{E}=\mathrm{AO}$
    -46416593E 07 . 20091318 E 08
    -47490621E 08
    .87730220 E 08
    . $19171876 E 09$
    :20887497E 09
    -28880652E 09
    .33946396809
    .32673767 E 09
    $-480 \leq 0396809$
    -64092051E 09 $.64601393 E 09$ -S4n21437E 09 -90125703E 09 $.41438529 E 09$ . 34114189E 09 :27537474E 09 :21588843E 09 .17134250E O9
    . 1388511780,9 -11115874E 09 . 09162445 E 08 :71328191E 08 -9496932be no -43SU2452E OB - $34877671 E 08$ -26530375E D8 -20953169E o8 -17490217E 08 . 14316769 ED -11933229E OB -10041419E 08 . $8127671 \mathrm{BE} \mathrm{OP}^{\circ}$ .67272352E 07

