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FOREWORD 

This papel was piepared by the Space Division of North 
Ametican Rockwell Corpolation and its team member the Conval 
Division of Genetal Dynamics It deals with' details of the Phase B 
Space Shuttle Definition Program and the ovejali scope of the design 
and test activity being pelformed under the direction of NASA's 
Manned Spaceciaft Centei at Houston, Texas The material con­
tained in the paper was developed specifically for a National 
Aeronautics and Space Administration/European Launch Develop­
ment Oiganization (NASA/ELDO) Shuttle conference held in Bonn, 
Germany 7-8 July 1970 
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1. PROGRAM INTRODUCTION 

The North American Rockwell Space Division and the Convair 
Division of General Dynamics welcome the opportunity to partici- SUMMAnY QUTIS
 

pate in this review of the Space Shuttle Program by the National
 
Aeronautics and Space Administration (NASA) and the European PLAN
AEVELOPMENT
Launch Development Organization (ELDO). It is encouraging to see OPERATIONS "
 
the interest and enthusiasm that exists in Europe for the space 4.
 
program. It requires little imagination to envision the space shuttle SHUTTLE BOOSTER
 
being used to carry French, German, British, or, for that matter, any FIt. ,
 
international payload into earth orbit, with flight crews and scientists SHtJ
 
from various nations. A further level of participation in the shuttle is SHUTE YSTEM
 
also possible through teaming or subcontract arrangements. It is, PAVLOAD
 

therefore, timely at the outset of the Phase B to bring you up to date PROGRAM INTROOUCTION
 

on details of the shuttle. The material discussed today will possibly TEAM *BPLAN
 

provide a foundation for further communication between our
 
governments and assist industry-to-industry discussions on programs
 
of collaboration. Previous speakers have reviewed the primary reason
 
why the United States strongly supports development of the space
 
shuttle as the transportation system of the 70's and 80's. Therefore, Pigmnr 1-1. Presentafion Outline
 

,this paper will summarize the major aspects of the Space Shuttle
 
Phase B Definition Program contract that was recently awarded by with extensive experience in the aircraft and space design, develop-

NASA to an industrial team headed by Space Division. The material ment, and operations fields. As Figure 1-2 illustrates, Space Division
 
is divided into the seven major sections, as specified in Figure 1-1. 	 is the team leader and will be responsible for overall direction of 

Phase B contract. It will perform the overall program and system 
As will be seen from this outline, we will cover all aspects of the integration function and will be responsible for the preliminary 

progran, emphasizing the technical features of our baseline vehicles, design of the orbiter. This includes formulation of the development 
operations, and the development program plan. In addition, we will and operational plans and associated cost for this stage. Responsi­
briefly review the rationale we used in arriving at these baseline bility for the design and associated plans for the shuttle booster rests 
shuttle designs, The baselines provide a comprehensive definition of with Convair, The total integration of the avionics system for the 
the total shuttle system -- vehicles and the vehicle subsystems. These shuttle will be carried out by Space Division. IBM will support in the 
are to be used as points of departure, or as references, in investigating area of data management systems. Honeywell will be responsible for 
different approaches. During Phase B, the approaches will be the vehicle guidance control systems used on both the orbiter and 
compared to the baseline, and the system that meets the overall booster. The team is rounded out by American Airlines, It will 
program cost objectives, the mission flexibility requirements, mission provide information pertaining to commercial aircraft operational 
safety goals, and schedules will be selected, The contract for NASA experience and will support the program by studies on vehicle 
will be performed by a team of major United States corporations maintainability and the ground handling and turnaround. 
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DATA MANAGEMENT 	 ... 
SN SHUTTLE BOOSTER 

SYSTEM MAINTAINABILITY &EHCONLEDAE 
II GROUND HANDLING I OTO 

* TEAM LEADER 

* PROGRAM/SYSTEMS 	 SATURNS-Il APOLLOCSM 
INTEGRATION 	 B.Helo C. FELTZ 

(VP, LAUNCH OPS) (ASSTPROG MGR) 
W. Ezeh 	 B. HELLO* SHUTTLE ORBITER 

(CHIEF ENGR) 	 (VP, LAUNCH OP$) 

A. <EHLET(Sc MOR)Figure 1-2. Phase B Shuttle Team 

Space Division and Convair have long histories in aviation. Both 
have also made significant contributions to the United States space 
program. North American Rockwell built the X-15 airplane for 
NASA. This hypersonic research craft can be regarded as the first 
step in the shuttle program evolution in that it was a reusable rocket 
vehicle that explored a flight envelope similar to that the shuttle 
booster will fly on its normal mission. Referring to Figure 1-3, it will 
also be seen that Space Division's most recent space experience was 
gained through the development, production, and operations support 
of the Apollo command and service module and the S-II stage of the 
Saturn V launch vehicle. This performance provided in a most direct [ x.T1 ] . 

manner the technology and management experience necessary for (CHIEF ENGINEER) (ASSISTANT PROG MGR) 

undertaking a shuttle program. Convair Division of General Dy­
namics was a pioneer in development of launch vehicle and cryogenic Figure I-3. Introduction to North American Rockwell and GeneralDynamics 

upper stages. It designed and built the Atlas booster, which put the 
first American astronaut into earth orbit. In addition, Convair Thus, by working together over recent months, and because of the 
developed the Centaur upper stage used in the Surveyor lunar landing proved space and aircraft program capability, we feel confident that 
program. It is also planned as the stage that will boost many future we have assembled a team that can perform the shuttle definition 
deep space exploration and planetary spacecraft. Recent experience study and, of course, successfully compete later for the hardware 
of our avionics and airline team members is summarized in Figure 1-4. development. 
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TWO SHUTTLE SYSTEMS 

JUY200 & 1600 N MI CROSS RANGE QUL 

AIRLINES 
0S tIONS 

Fire 14. Inrodcion toteM, Hneyweall admeran Airlnes 

The contract awarded by the NASA is 12 months in duration. 

As Figure 1-5 illustrates, it is divided into three major parts: vehicle 
of theconfiguration selection, preliminary design and evaluation 

vehicle subsystems, and preliminary design and documentation. The 
latter phase includes generation of detailed program plans and overall 

resource requirements definitions. The Phase B contract will be 

supported by a substantial test program. The tests will provide 
supporting data that will assist in the overall configuration selection 
and design. Further, the tests will guide the detailed definition in 
critical technology areas such as (1) establishing high-temperature 
insulation material properties; (2) establishing the characteristics of 
long-life, high-temperature materials suitable for the external surfaces 

-3-

PAR 1', PART PART 3 

*CONFIGURATION *SYSTEMTRADES * PRELIMINARY DESIGN 

CONFIG VEH SUBSYSTEM1 UI 
TRADES INTEGISELECTION IDATE 

DESIGN DEFINITION 

I PRELIM I RESOURCE 
:I I PLANS I ANALYSES 

o 2 4 6 a 10 12 
MONTHS FROM GO-AHEAD 

Figure 1.S. Phw B Contract Plan 

of the vehicles: (3) developing design details, weight, and perform­
ance capabilities of integrated thermal protection systems; (4) veri­
fying the aerodynamic characteristics of the vehicles; (5) predicting 
the thermal environment for vehicle design, and (6) evaluating the 
vehicle flight control systems. The phasing of these supporting tests, 

to the vehicle design definition portions of the study, iswithlutaerespectnFgr -. Tecotatpromnewl lob 
also beillustrated in Figure 1-6. The contract performance will 

enhanced by the ongoing Phase B high-pressure main-rocket-engine 
studies and a large number of supporting technology development 

of this companion effort will be fed continuouslyprojects. Results 
into the vehicle studies, as Figure 1-6 indicates. 

Overall management aspects of the Phase B program having 
been described, we will concentrate on the technical aspects of 
shuttle design and operation. The study will consider only two-stage, 
fully reusable, shuttle systems that could be operational in the latter 
half of the 1970's. Figure 1-7 illustrates the major requirements that 

SD 70-9 
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CONFIG SELECT FINAL DOCUMENTATION were used in defining the current-shuttle system baselines we are 
I SYSTEM SELECTION I studying for NASA. As the figure shows, the designs are based on a 

t&I PRELtMINARY DESIGN fixed gross liftoff weight of 1,587,000 kilograms. As a reference 
P PROGRAM DEF OF COSTS mission, it is assumed the shuttle will be used for crew rotation and 

PRELIMINARY PLANS logistics resupply of an earth orbiting space station. It should be 
PROGRAM& VEHICLEREQUIREMENTS I noted, however, that, in the study, we will consider many other 

-missions such as (1) satellite deployment; (2) satellite maintenance, 
repair, or retrievability; (3) transporting into earth orbit propulsion 

MOCK UP DESIGN. FAB & EVALUATION stages that would later be used for high-energy missions such as 
WIND TUNNEL boosting a satellite to a geosynchronous orbit; (4) transporting 

FLIGHT SIMULATION propellants into orbit for loading into propulsion stages or space 
LARGE STRUCTURE tugs, and (5) space rescue missions. As will be discussed in more 

MATERIALS &THERMAL PROTECTION SYS detail later, two shuttle orbiters will be investigated in Phase B 
1 although only one will be developed. They will be designed to meet a 

BENGINE &TECHNOLOGY PROGRAMS cross-range requirement of 200 and 1500 nautical miles. (Cross range 
I I I I is defined here as the distance that the shuttle orbiter must be 

JULY 70 JAN 71 JULY 71 capable of aerodynamically traversing out of the plane of the orbit 
Figure 1-6. Maor Elements of Phae B 	 during entry.) The booster and orbiter will use the same basic 

L0 2/LH 2 main rocket engine. It is a high-pressure, bell-nozzle engine 
that has a retractable nozzle. The contour of the nozzles may be 
uniquely configured to each stage beyond where the area ratio e = 6. 

" LIFTOFF WEIGHT 1.587 X 06 Kg Thrust level of this common engine is established as 181,400 
kilograms at sea level. The shuttle orbiter is designed such that it can 

*REF MISSION, SPACE STATION RESUPPLY - 500 Km X 55 ° ORBIT accommodate a payload or cargo canister that is 18.3 meters by 4.6 
meters in diameter. The final major shuttle requirement is that each 

* CROSS-RANGE -200 & 1500 NMI vehicle should be capable of performing at least 100 operational 
missions. 

* COMMON MAIN ENGINE - 181.400 Kg THRUST 

As noted, shuttle designs will be developed to meet two 
SCARGO SAY - 18.3M X4.6 DIA M cross-range requirements. Referring to Figure 1-8, it will be seen that 

this is a major configuration driver. The necessity to meet a highATLEAST 100 MISSIONS/VEHICLE 
cross range (1500 nautical miles) means that the orbiter must be 
flown at a high hypersonic lift-to-drag ratio (L/D 5- 1.8) during a 
major portion of its earth atmospheric entry maneuver. Flying at this 
attitude over a large distance means that the vehicle exposes 

Figurm 1-7. Shuttle Requirements substantial areas of its surface to high heating rates for a long period 
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of time as compared to the shoit cross-range vehicle Consequently, 
the high cross-iange vehicle must be piovided with greater thermal 
protection In fact, the total heat load experienced by the high 
cdoss-range vehicle is five to seven times gicate than that iealized in 
the limited moss-range case (A comparison of the specific heat loads 
for orbiters is given later in this paper ) 

gpromising 

CROSSRANGE(NMI) N 

0 500 1000 1500 

MAXIMUM 
LIMITED 

LOW RANGE CONFIGURATION HIGH RANGE CONFIGURATION 

* I ANGLE OF ATTACK ENTRY *VARIABLE ANGLE OF ATTACK 

(a= 600) (a= 550 TO 100) 
*HEAT LOAD 15%OF HI CROSS * MAX SURFACE HEATING OVER TOTAL 

RANGE VALUE e THERMAL PROTECTION SYSTEM CRITICAL 

* MAX HEATING ON BASE ONLY TO FEASIBILITY 
* CAN BE USED FOR HI & LOW ANGLE ENTRY 

Figure18 Shuttle ConfigurahonRequirementsand Concepts 

For the limited cross range case, the vehicle is flown close to the 
-
maximum lift coefficient (CL) attitude (the L/D 0 5 at max CL), 

that is to say, at a high angle of attack, typically u = 60 degrees At 
this attitude, the majority of the aerodynamic heating is experienced 

across the base of the vehicle, the upper surfaces being in the shadow 
of the piimary shock system As a iesult, only limited thermal 

protection is iequied on the sides and uppei surfaces of the fuselage, 
wing, and empennage Flying at a high angle of attack, a fixed 
straight-wing vehicle of the type selected can expect some shock 
interactions and inteiferences on the forward portion of the wing 

16 Space Division 
North American Rockwell 

This could cause very high temperatuies in localized areas Limited 
hypetsonc wind tunnel tests have been conducted by NASA to 
investigate this phenomenon on the straight wing oibitei In tests 
conducted at M = 10 with the model at an angle of attack c = 60, the 
shock interference effects were found to be only slightly more severe 
than observed on other shuttle configuiations As the authois noted, 
the tests were limited, but at least from our viewpoint, the results are 

Throughout most of the 1960's, NASA, Space Division, 

Convair, and other companies, both m the United States and 
Europe, have investigated shuttle configuration concepts 2 This 
culminated last year in the award of Phase A studies on the Integral 
Launch and Reentiy Vehicle (ILRV) and Space Tiansportation 
Systems (STS) by the NASA and Air Force, respectively ILRV 
study results were presented to many of you at the Space Shuttle 
Symposium 3 held last October in Washington These studies, 
supported by mole than 200 man-years of engineering effoit during 
the past 12 months and backed up by wind tunnel tests, extensive 

materials tests, and structures tests, resulted in selections of the 
baseline vehicles outlined in Figuie 1-9 The concepts investigated 
ranged from lifting body shapes to vailable-geometty wing configura­
tions The figuie illustrates four genetic classes of orbiters investi­
gated It also lists some of the major criteria used to arrive at the 
baseline designs The check malks indicate factois that weigh 

1Mini's, Maxi's and Mustard Considerations in the Sizing of International Space 
Transportation Systems Paper presented at the 16th Annual Meeting,
American Astronautical Society, Anaheim, California (9June 1970) by 
Raymond F Creasey, Director of Advanced Systems and Technology, BritishAircraft Corporation 

2 Heating Studies on Manned Space Shuttle Concepts Paper presented at the 
Space Technology and Heat Transfer Conference ASME, Los Angeles,
California (21 24 June 1970) by Arthur Henderson, James C Dunavant, and 
Robert A Jones of NASA Langley Research Center Hampton, Virginia 

3 ntegral Launch and Reentry Vehicle Paper presented at the Space Shuttle 
Symposium, Washington, DC (16 17 October 1969) by George F Fraser, 
Space Division of North American Rockwell Corporation 
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favorably in the selection Lifting-body vehicles have been studied The variable geometry designs were found to have many 
and tested by NASA for a number of yeals However, this class of attiactive featmes These included low ineit/burnout weight and the 
vehicle was not competitive for the shuttle application because high hypersonic L/D necessaly to meet the maximum cross Lange 

The stowed-wing approach also permits the wing to be designed for 
1 The body shape did not lend itself to efficient packaging/ the low-speed flight regime it was found to be less attractive than 

installation of the lalge cargo bay, propellant tanks, and the selected configurations because 
major subsystems The high vehicle weight to projected planform area ratio 

2 The double curvature of the body results in a vehicle that 
is complex to fabricate Further, the body shape cannot be 

iesuits in higher average base heat-shield 
relative to the selected straight-wing design 

temperatures, 

ieadily divided into subassemblies and thereby simplify 2 Increased design and manufacturing complexity would 
manufacturing result from the mechanisms required to actuate the wing 

3 The large base area yields a relatively low subsonic and to transmit the flight loads 

lift-to-drag ratio Thus, the vehicle has a less attiactive The selected orbitel vehicle designed to provide low aero­
cruise capability and low-speed flight characteristics dynamic closs-iange capability has a low, swept, fixed wing 

configured to provide design simplicity, low weight, good handling, 
A ILFIV/ST$ & COMPANY STUDIES and good landing characteristics The vehicle enters at a high angle of 

STOWED WING/ 
VARIABLE GEOM 

STRAIGHT LOW 
SWEEP FIXED WINS 

SWEPT 
WING 

DELTA LIFTING BODY attack to minimize heating and to facilitate use of heat shield 
materials now available or in an advanced state of development 

-9 delta-wing orbiter was selected for achieving high aerodynamic cross 
range This system is designed to piovide capability for trim over a 
wide angle-of-attack range This allows initial entry at a high angle of 

HIGH 0 HIGH L/DHYP x ADVERSE HEATING V HIGH LtDuyp X DESIGN/DEVEL/ 
attack to minimize the severity of the entry environment Aftei peak 
heating, the vehicle is pitched down to a low angle of attack and 

RANGE 
ORBITER 

RANGE
V LOW WEIGHT 
X HIGHER ENTRY I 

x POTENTIAL STAB
PROBLEM 

V SIMPLE DESIGN 

RANGE 
VWIDE-TRIM 
x POTENTIAL WT 

MFG COMPLEXITY
& RSK banked to achieve cross Large This vehicle also exhibits good 

POTENTIAL RISKS V LOW WEIGHT INCREASE handling qualities and landing characteristics Tie selected booster is 

LOW 
t LOW WEIGHT 

IGHER 
V SIMPLE DESIGN 
VV LOW WT 

x WT INCREASE 
FOR A 

K DESIGN/DEVEL!
MFG COMPLEXITY 

also based on a fixed-wing design This booster is common for either 
orbiter 

RANGE ENTRY t VSTALLED ENTRY & RISKS 
ORBITER : POTENTIAL RISKS LOW t 

VGOOD LANDING Artists' concepts of each baseline vehicle are illustrated in 

BOOSTER 
V'LOW WEIGHT 
t HIGHER ENTRY I 
X POTENTIAL RISK 
V GOOD CRUISE 

ISIMPLE DESIGN 
LOW WT 

WSTALLED ENTRY 
LOW f 

90000 CRUISE 
& LOGISTICS 

x POTENTIAL WT 
INCREASE 

x HIGH LANDING 
ATT 

x OESIGN/DEVELI 
MFG COMPLEXITYRISK 

X POOR CRUISE 

Figure 1-10 It should be stressed that these configurations wll be 
used as points of departure at the beginning of the Phase B study 

The pimary objective of the Phase B study is to evaluate improve­
ments in these designs so that a system can be developed consistent 

Figure 19 Reusable Shuttle Concept Opt;ons with the cost, mission capability, and safety objectives noted eaiher 
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LOW CROSS RANGE ORBITER HI CROSS-RANGE ORBITER 

BOOSTER
 
LOW TOTAL PROGRAMCONFIGURATION COST EFFECTIVE 

OPTIONS & PAYLOAD CAPABILITY 
IMPROVEMENT 
 MISSION FLEXIBILITY 
WILL BE STUDIED &SAFETY MAJOR 

OBJECTIVES 

Figure 1 10 Baseline Configurations 
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2. 	SHUTTLE 


The shuttle system consists of the vehicles illustrated in 
Figure 1-1 and all suppoiting equipment necessaly to accomplish a 
variety of designated missions at a rate of 25 to 75 pei yeai, 
assuming a two-week tuinaround period Figute 2-1 illustiates the 
shuttle's total mission cycle The majot events include the boost 
flight phase, on-orbit opetations, oibiter and booster entry phase, 
and the ground operations cycle In the shuttle vehicle design 

development, all elements of this mission profile must be taken into 
account if a system consistent with the cost and opeiational 
objectives is to be designed One of the fist steps in the vehicle and 
system evaluation process isthe actual sizing of the vehicles, that is 

to say, determining the boost/payload performance capability, the 

optimum staging velocity, thrust-to-weight iatio at liftoff, numbei of 
engines, etc (Figure 2-2) This optimization process was petformed 
foi the candidate integrated vehicles The gross liftoff weight limit of 
1 587 x 106 kg was used, as was the requirement that the same basic 

BASELINE MISSION 

NFigure 
DEORSIT 	 I RI 

ORBITERin
',\SUPPORTGINSPACE___ BOSTER 

ORBITE GSPOTTIONATRATCISONSNRFLtYBACK CRUISESU / 


ENTRY 

CROSS 

RANGE 

LANDING SAFING SERVICING T LAUNCH 

PAD 

--	 otype 

-

Figure21 Shuttle Mission Profile 
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SYSTEM
 

__ ' '*ASCENT TEMP 

. - -- ' <ENTRY 

POSITIVE
/ 	 SEPARATION 

HIGHRANGE RANGE 

AG EMNTO ___ 

IA81 4M BOOSTE O ITN 

CONCEPT 7 2M 

I-43 3M -43-M-­

22 Integrated Vehicles 

(184,000 kilograms salevel thrust each) be employed o 
engineAT seaION 	 onTR 
both 	stages Fuither considerations weie 

1"-"Thhereve racicalearing expeieced during boost should 

dutIng entry 
2 The stages should be capable of positive separation 

without use of special sepaination rocket systems of the 

used on the Satuin vehicle 

3 	 The vehicle should be aeiodynamically stable in the 
integrated configuration This is required so that the 
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vehicles can coast with the main engines shut down The
coasting may be necessary during an abort The vehicles 
could slow to a lower velocity, where safe separation could 

take place 

4 	 For safety, it was required that mission termination 

capability be incorporated This is particularly impoitant 
when a one-engine-out condition is consideied on the 
oibitel immediately after separation fhor the boostei In 
fact, as will be seen later, this consideianon limits the size 

and gross weight of the orbiter 

5 	 In the inteiest of lower cost, a goal was to minimize the 

modification to the existing launch facilities at Com-

plex 39 of Kennedy Space Center (KSC) This constiained 

integrated vehicle designs as regaids geometry and giound 
operations 

Figure 2-3 illustrates the typical vehicle performance and 
stage-size tradeoff studies that were performed The figuie on the 
left-hand side presents the payload capability to the reference orbit as 
a function of the orbiter gross weight The data in the figuie are for 
both the high and low cross-lange orbiters Also illustrated is the 
difference in payload that results from the use of two or three main 
rocket engines on the orbiter By comparing the two upper curves on 
the left-hand graph, it will be seen that the highest payload 
performance lesults when two engines are used The approximate 
difference in payload is around 20 percent The payload decrement 
results ptincipally from the additional engine and engine installation 
weight present in the three-engine arrangement Of course, fiom a 
cost viewpoint, it is more desirable to use a smaller number of 
engines That arrangement yields lower production, maintenance, 
and opetation costs The orbiter gross weight of 344,700 kilogiams 
was selected in oider that safe mission termination could be achieved 
in the one-engine-out condition This results in a payload degradation 
of slightly ovei 10 peicent for the low cioss-iange orbiter relative to 
the optimum case The chart on the right-hand side of Figure 2-3 
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Figure 23 Effect of Orbiter Gross WeightonPayload 

illustrates the on-orbit AV capability of the orbiter (using both main 
and on-orbit propellants) as a function of the system gross weight 
This is for the case of failme of one orbitei rocket engine 
immediately after separation from the booster The slope of the line, 
or decreased AV available, is a result of the higher gravity losses 
involved in achieving a safe orbit of 185 kilometers The limit line on 
the curve is the AV lequned to circularize the orbit, and retro-thrust 
out of orbit for the entiy and return phase Thus, taking the 
intercept of the capability versus the limit/requirement line, it will be 
seen that the orbiter gross weight must not exceed 344,700 
kilograms 

To summalize the main points from this figure, the staging 
velocity/stage weights of the orbiter and booster are greatly 
influenced by the requirement for safe mission temmantion Two 
engines on the orbiter were found to be optimum for the gross liftoff 
weight of 1 587 x 106 kilograms and the main engine thrust limits 
specified The next step in the evaluation is to consider the number 
of boost engines Figure 2-4 illustrates the influence of liftoff 
thrust-to-eight ratio on the payload capability The case presented is 
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0 F Figure 25 Mated Configuration,Low Cross Range Orbiter 
12 13 14 1
 

LIFTOFF THRUST/WEIGHT 

Figure24 Number of BoosterEngines MISSION EVENT WT (Kg) 
LIFT OFF 1 587,600
M FF 121729for the straight-wing orbiter As this figure shows, the maximum L-F 

payload is achieved with a thrust-to-weight ratio of approimately TMAXBN 1219 729 

1 35 This thrust level is achieved thiough the use of 12 engines with BOOSTER BURNOUT 573504 

a thrust of 181,400 kilograms each 

When input data weie developed for this tradeoff, various 
engine installation designs weie considered, and the influence of the 70 
boost parameteis such as gravity losses and drag weie evaluated over I C , ­
a range of liftoff thiusts A further considetation in selection of the 69M -- STAGNC 26 8M 

numbei of engines is that the shuttle be able to accomplish its -Y j[ FT5FFCG 
primary mission with a single boostet engine out and that safe 3Mt 203 81 
mission termination be achievable with two engines out In both 8 4M 

cases, it is assumed that the booster engines can be run at an Figure 2 6 Mated Configuration, High Cross Range Orbiter
over-thrust condition in the engine-out case on the upper suiface of the booster fuselage This location provides 

As a result of the sizing plocesses and associated design analysis, an aerodynamically stable configuration It also minimizes the 
the two integrated-system configurations shown in Figures 2-5 and main-engine gimbal angle requned foi the boostei engine thrust 
2-6 were developed In both systems the orbiters ale located foiwaid, vector to be aligned with the center of gravity (c g ) of the integrated 
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system As the figute indicates, approximately thiee degices of 
gimbal is iequired because of the movement of the c g duing boost 
foi the straight-wing orbiter system An additional two degiees is 
necessary on the delta-wing system As the figures show, the boostel 
size and weight aie identical fo both cross-iange systems The 
diffeience in overall length of the two integiated vehicles results 
from the overhang of the orbiteis Refeiing to the stiaight-wing 
oibitei, it will be seen that the oveiall length of the entire system is 
apploximately 79 2 meters The overall height of the stacked 
configuration, while resting on the booster landing geai, is 32 2 
meters The equivalent dimensions for the delta-wing oibiter are 
given in Figule 2-6 

With the integrated designs developed, the capability of the 
shuttle to undertake other missions was determined That is to say, 
the performance of the vehicles at vaiious altitudes and inclinations 
was computed Typical of this are the data given in Figure 2-7, which 
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PAYLOAD PAYLOAD 

(1000 Kg) V (1000 kg) 

20 20 ­
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010 I I I 
0 400 800 1200 1 0 0 30 60 90 60 30 0 

ALTITUDE (Km) INCLINATION (DEGREES) 

Fgure27 Payloadand Mssion Capability 

depicts the payload capability of the straight-wing orbiter as a 
function of altitude and orbit inclination As can be seen from the 
left-hand cuive of Figure 2-7, appioximately 25,000 kilograms of 
payload can be delivered to a 185-kilometei oibit This, of course, 
means that, with the exception of the Saturn V, the shuttle would be 
able to cairy more payload than any othei launch system in the free 
woild As the curve illustiates, the payload capability reduces sharply 
with oibit altitude such that, foi altitudes greatei than 1500 kilo­
meteis, it will be necessary to use a separate propulsive stage or 
oibit-to-olbit tug The piopulsive stage, which could be an Agena or 
Centaui, and its payload, would be housed within the calgo bay of 
the shuttle It would be cairied to a 185-kiloneter oibit by shuttle 

After deployment fiom the caigo bay, it would be checked out and 
then ignited and boosted to the final operational msslontrajectory 
Foi example, this could be to a geosynchionous orbit or into a 
tians-Mats flight-path The special lequirements for conducting 
missions such as these, including the methods of loading the 
piopulsion stage and its payload, checking the system out on the 
giound and in oibit and deploying it, will be investigated as part of 
the Phase B contract The influence of carrying a tug and propellants 
foi the tug within the shuttle will also be studied Actual design of a 
space tug is being investigated fot NASA under a separate contract 

awarded recently to Space Division Details of the tug investigations 
will be covered in the papei to be piesented later in this confeicnce 

So far, we have primarily refenied. to optimizing the ascent 
poition of the vehicle flight to achieve maximum payload perform­
ance However, the actual vehicle optimization must consider all 

phases of the mission Specifically, the tradeoffs of vehicle boost 
loads, drag, boost and entry heating, in-orbit opeiations, etc , must 
be evaluated befoie the total system can be optimized The 
trajectory or flight profile foi the complete mission is illustrated in 
Figure 2-8, with added detail given in Figure 2-9 As shown, the 
vehicle is initially boosted fiom its vertical liftoff position to a 
staging altitude of 65 8 kilometeis and velocity of 2846 meteis per 
second, where the booster and orbiter sepaiate During boost 
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Figure2 8 FhightProfile 

thiough the atmosphere, a maximum aetodynamic pressure of about 
2600 Kg/M 2 is expeitenced This occrs appioximately 65 seconds 
after liftoff at a Mach number of slightly gieatei than one and an 
altitude of 9 75 kilometeis During ascent, the engines on both stages 
will be throttled to ieduce the axial acceleration experienced on the 
system to 3 g's Refeiing to the left-hand side of Figure 2-9, it will 
be seen that the booster is rolled and banked duiIng entry to ieduce 
the down-tange distance At subsonic speeds, the turbojet engines on 
the boostei are deployed and operated to fly the approximately 700 
kilometers back to the launch site From the point of sepalation, the 
oibiter accelerates to an elliptical oibit 92 by 185 kilometeis at 
burnout of its main-rocket-engine system Burnout actually occurs 
approximately 450 seconds aftei liftoff The orbitei then coasts up 
to apogee, where its on-orbit maneuvering propulsion system is filed, 
and the vehicle orbit is circulalized It remains in a circular otbit of 
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VELOCITY 55 INCLINATION 
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TIME FROM LIFT OFF (SECONDS) 

Figure 2 9 Ascent Trajectory Profile 

185 kilometeis until it Is applopilately phased with the rendezvous 
point Aftet coilect phasing is achieved, the on-orbit maneuvering 
plopulsion system is used to change the altitude and inclination This 
change requnes a AV = 170 meters per second From this point, the 
orbit opeiations aic performed After the orbit mission phase is 
completed, AV = 130 meters pei second is used to decelerate the 
vehicle and apply an initial entry angle of -0 15 degrees After 
deolbit, the vehicles proceed thiough the atmospheric entry, through 
transition, jet engine deployment, and final landing 

This, then, is a summary of the integrated vehicles, their design 
features, sizing, and performance We will now take each element of 
the system (orbiters, boosters, operations, and development pro­
giam) and give more details 
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3. SHUTTLE ORBITER 

This section discusses in moie detail specific features of each 
orbiter 

GENERAL CONFIGURATION 

Figures 3-1, 3-2, and 3-3 illustrate the high and low aero- , 

dynamic closs-iangeinvestigations orbiters that we started with in the Phase B X 
GROSS WT = 344 700 Kg 

IQ"L PL=20 412 Kg(NOM Isp)/1 8 0 2 5 Kg (MIN Isp) 

Low Cioss-Range Orbiter CONFIG 
FLOATING TANKS SIMPLE LOW 
WEIGHT EFFICIENT PACKAGE 

The stiaight-wing, low cross-iange orbitel has the capability of 
placing appioximately 20,400 kilogiams of payload into the refer-

AERO/ 
THERMAL 

ENTRY LD 
W/L S 

06 
213 Kg/M 2 

ence mission orbit In computing this value, it is assumed that a PRIMARY TITANIUM 

nominal Isp of 459 seconds is achieved with a high-pressure engine STRUCT/TPS TANKS 
HEATSHIELD 

ALUMINUM 
RADIATIVE 

SYSTEMS SEPARATE MAIN (2ENG) OMS (2 RL1O) 
SYSTMS" IAS REDUNDANCY 

Figure 3 2 Straight Wing Orbiter, Low Cross Range 

s-" ' ." 	 The nozzle expansion ratio of the engine selected fot the baseline is 
e = 120 1 A payload degradation of 11 percent would result if the 
engines used on both stages actually deliveled a specific impulse one 

under that quoted This ieduced payload is also noted on the 
figure The low closs-iange orbiter is configured to provide 

-percent 

- Q I1 	 A flat bottom, a laige planfoim aica and the ability to 

enter at high angle of attack to minimize heating (Unlike 
the high cross-iange system, the low cross-range system 
does not iequire hypersonic trim capability at low angles

__. 


Hi CROSS RANGE 	 of attack The vehicle, therefore, maintains a high angle of
LOW CROS5 RANGE 

attack until subsonic speed is achieved Then it is pitched 

Figure3 1 Shuttle Orbltters down foi appioach to the landing site 
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Figure 33 OrbliterDesign Details, Straght Wing Orbiter 

2 	 Efficient system packaging to minimize weight and to 
facilitate maintenance 

3 	 Low-sweep, fixed wings for design simplicity, low weight, 
and good landing chatacteristics 

The exteinal shape and design characteristics are presented in 
Figures 3-2 and 3-3 The configuration is a denivative of a design 
conceived by a NASA-MSC team and investigated by Space Division 
during the previous Phase A study The body shape and tank 
arrangement ale directed towaid design simplicity, ease of manufac-

tute, maximum packaging efficiency, and minimum weight A large 
leading-edge fillet at the intersection of wing and fuselage is used to 
reduce the inteifeience flow between the wing leading edge and body 
during entry An all-movable horizontal tail surface incoipoiates an 
elevator capable of the required iesponse rates for the normal flight 
control mode The independently hinged stabilizer is capable of low 
iesponse rates to provide the necessary pitch trim Because of the 

independent hinging, it is possible to use the stabilizeis for roll trm 
Noimal roll control is achieved by spoilers on the uppet surface of 
the wing This method of roll control was selected to eliminate a 
movable joint or slot on the lower suiface of the wing The problem 
of leduced effectiveness at high angles of attack may require either 
relocation of the spoileis or addition of small ailerons 

Internal features of the orbiter are shown in Figure 3-3 The 
basic load-cairying structure is titanium alloy with a iadiative heat 

The 	 body is divided into thice basic sections (1) nose, 

(2) cargo bay and oxidizet tankage, and (3) fuel tank and main 

engine 

nose section has provisions foi the ciew and passengers, 
nose landing geai, and vehicle equipment, including powet supply 
and consumables The crew and passengei compartments are ai­
ranged in two decks because of the short distance between the flight 
deck and the cargo bay (4 6 meters in diameter by 18 3 meters) and 
because of the deep body section Station tesupply missions 
noimally will have a crew of two, plus two passengets foi cargo 
handling Piovisions have been made for these four on the upper 
deck, with the crew and passengers sharing a common pressmized 
compartment The area between the upper ciew-passenger compart­
ment and the cargo bay houses an air lock and the cargo deployment 
actuation system Ten passengeis are located on the lower deck This 
approach was favored over using the cargo bay as the passengei 
compartment because it simplified the clew and life support system 
interfaces 

The oxidizer foi the main propulsion system is caliied in two 
floating aluminum tanks The tanks aie circular in section and 
slightly tapered They are uninsulated and located just below the 
foiward portion of the cargo bay The wing cairy-through structute 
consists of front and rear spais and provides sufficient volume foi the 
four JTF223-2 engines, which are installed in rotating pods The 
engines ale modified to use LH 2 The volume between the stowed 
turbofans and the cargo bay is used to stole LH2 turbofan fuel 
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The aft body section contains a floating LH 2 tank that is 
cuculat in section and inteinally insulated Structural provisions are 
made for mounting independently hinged horizontal stabilizers and 
the vertical fin, on-orbit tankage suppoit, and man-engine thiust 
structure A single bulkhead suppoits the stabilizei spindle and 

and the front spat of the veitical fin A separate thiustactuator 
stiuctuie is used for the main engines and the on-orbit engines Orbit 
maneuvening propellant is contained in two spherical L0 2 tanks and 

two spherical LH 2 tanks 

main engine bay has piovision foi installation of the twoThe 
main engines and two orbit maneuvenng engines The main engines 
ate L0 2/LH 2 , high-chambei-piessuie, bell-nozzle iockets with a

Stru ctura l and nozzlelating 	of 18 1,4 36 kilogra ms sea le vel thrust 
cleaiance is provided for a gimbal travel of 7 degies in pitch and 

yaw, with the yaw clearance based on a return to null on one failed 
engine This minimizes the base area by permitting the engines to be 
installed on a minimum center-to-center distance The orbit maneu-
veiing engines are mounted on a common-thiust stiucture with the 
main engines and provide ±4 degrees pitch and yaw gimbal 
capability 

1PULLUP 
Booster attach fittings are located on a bulkhead just ahead of 

the tuibofan engine pod and on the rear bulkhead that suppoits the 
hotizontal stabilizei This takes advantage of the existing main 
stiuctute 

The low coss-iange obiter was designed to accomplish the 
entiy and recovery mission profile shown in Figures 3-4 and 3-5 
High angle-of-attack tiim capability (60 degrees) from initial entry 
condition to subsonic speeds is iequiied over a wide vehicle c g 
range Low lift loading also is necessay to minimize entiy heating, 
and aciodynamic control authority is essential to make the transition 
fiom high angle of attack to cruise conditions subsonically Good 
subsonic flight characteristics and handling qualities are provided for 
safe landing within a 3000-meterrunway 
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The external shape has been goveined by stability and heating 
considerations During entiy at a high angle of attack, the flat 
bottom of the fuselage piovides high lift, while the negative body 
camber aids in pitch tin and stability The relatively sharp corners 
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promote separation atound the sides of the body, resulting in low 
temperatures The sloping sides aid in providing lateral and ducc-
tional stability Lateral range greater than 370 kdiometeis is achieved 
by programming a bank angle while maintaining angle of attack in 
the control mode shown in Figure 3-4 The configuration is 
longitudinally stable duiing entuy and is self-trimming to the 
specified pitch angle (60 degrees) with a lift coefficient of 1 6 and a 
hft-to-drag ratio (L/D) of 0 56 Figure 3-6 defines the hypersonic 
aetodynamic characteristic of the oibiter The data shown ate based 
on analysis and verified by wind tunnel tests performed by ouiselves 
and NASA Damping and roll contiol is provided by the attitude 
control piopulsion system Subsonic characteristics displayed in 
Figures 3-7 and 3-8 show that the vehicle is stable at high (60 degree) 
and low angles of attack and that adequate contiol authority is 

to subsonic cruisethe pitchdown maneuveravailable to perform 
Center-of-gravity limits at hypeisonic and subsonic speeds are 
displayed in Figures 3-8 and 3-9, respectively The forward c g limit 
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Figure 3 6 Hypersonic Straight Wing Orbiter 
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is defined by the nominal forward c g location, with payload in, plus 
60 centimeters of tolerance The aft c g location is defined with the 
payload removed The all-movable tail provides maneuver and trim 

capability over the c g iange 
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Flight simulation studies have shown that the subsonic tiansi- Radiation equilibium temperatutc distributions for the vehicle 
tion maneuver to a low angle of attack can be peiformed with duing ascent and entiy are presented in Figuie 3-11 Design 
aerodynamic control, with the prtchdown maneuver accomplished by tempetatuies ovet the upper surface of the vehicle occur during 
a stabilizer command Dynamic response was smooth and well boost and over the remainder of the vehicle dming entry Tempera­
damped There was little overshoot, even though it was necessary to tures over a large area of the vehicle aie less than 10000C, with 
maneuver from one stable equilibrium point to another with igher temperatures on the nose and wing leading edge The 
nonlinear aerodynamic moments maximum temperaturc on the leading edge of the vertical stabilizer 

reaches 4700C during boost because of interference effects The wing 
During subsonic cruise, the maximum trimmed L/D is 8 2 at an leading edge reaches 16900C because of the interaction of the body 

angle of attack of 7 degrees The landing speed on a standard day is and wing shock 
149 knots (Figure 3-10) 

The peak radiation equilibrium tempeiatuies for the underside 
of the straight-wing orbiter entering at a 60-degree angle occur at 
approximately the pullout condition It has been observed that wing A 
leading-edge blending and sweep are beneficial in reducing inter­
ference heating on the wing and fuselage at high angles of attack 

RUNWAY 

LENGTH
TURBOJET APPROACH3'048M]

LANDING SPEED 149 KTS
 
AUTO LANDING AIDS (900 SEC ENTRY HEATING PERIOD)
 

()NOSE CAP 	 .00OD 
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SHOCK INTERFERENCE 1690:C '> ~ DISTURSEOXO° C0 
*HORIZ STABILIZER LEADING EDGE 1660 C 

o FUSELAGE LOWER SURFACE 761 C 

Figure 3 11 Straight Wing OrbiterEntry 

Figure 3-12 provides additional temperature data It also shows 
,__.... 	 a condensed summary of heat shield material selections Over a large 

area of the vehicle, the temperatures are less than 10000C, allowing 
use of materials that ale in a more advanced state of development 

Fgure 3 10 OrbterLanding 	 than those for the delta wing 
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High 	Cross-Range Orbiter 

The baseline, quasi-delta-shaped, high cross-range orbiter has a 
payload capability to the leference mission orbit of approximately 
9000 kilograms This is based on the engine performance assump­
tions defined earlier It is configured to provide the following 

S 	 Large planform area and capability for entry at high angles 
of attack to minimize heating 

2 	 Aerodynamic shape with good hypersonic lift-to-drag 
characteristics 

3 	 Thermal protection system (TPS) designed for 1500-
nautical-mile cross-range thermal environment 

4 	 Efficient system packaging to minimize weight and facili-

tate maintenance 

Sb Space Division 
North American Rockwell 

5 	 Aerodynamic shape foi good subsonic flight and landing 
charactelistics 

The 	 exteinal shape and design chatacteristics of the oibiter 

vehicle are presented in Figuie 3-13 Inteinal featuxes are shown in 
3-14 Vehicle basic load-carying stiucture is titanium alloy 

with a radiative heat shield The body is divided into thice majol 
sections (1) the nose and crew and passengei compartment, (2) the 

cargo alea, and (3) the main engine bay 
tank,

The nose section has sufficient volme f the LH 2 cew 
and passenger compaitment, and nose landing gear The shaping 
provides the necessary aerodynamic chaiacteiistics, resulting in the 

crew compaitment being located aft of the nose Thus, the projected 
Iateial area is minimized, and a reasonable fin size is maintained Coi 

directional stability A floating aluminum LH 2 tank is used It is a 
double-cell pressute vessel shaped for maximum volume usage 

GROSS WT = 344 700 Kg
 

PL= 9070Kg (NOM Isp)/ 6 700 Kg (MIN ISp)
 
FLOATING TANKS SIMPLE LOW 
WEIGHT EFFICIENT PACKAGE 

AERO/ 

THERMAL 
ENTRY LD 

SUBLL/D 

07 
69 

22 

STRUCT/TPS 
PRIMARY 
TANKS 
HEATSHIELO 

TITANIUM 
ALUMINUM 
RADIATIVE 

SYSTEMS SEPARATE MAIN (2 ENG) 
As REDUNDANCY 

OMS (2 RL10) 

Figure 3 13 Delta Wing Orbiter,High Cross Wing 
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c -,' "deployable 	 nacelles located in the undeisi face of the body neat thu 

INTONEL LAI4Vr LH 2 TANK C g Thus, elimination of the an-bicathing engines through iodifica­
718N/ TANK non of the go-around tcquitecient would not significantly affuct thlu 

(2) 	 b;G AI4Vvehicle c g 

Cb HAYNES INCONEIL-t0 
129Y 188 718 TPSHAYNES188/ The landing gear consists of two dual-whuelud main landing 

BULKINSUL geals with a dual-wheeled, stuei ible, nose landing goai The paclni­

18 nary analysis used to ustablish the basulic landing gear ILsultud inMAIN La 2 TANK 
(2219T81) thc selection of standard Type VII ties The landing geai eXtLunSlon 

.. and retiaction system and [anding geat doors are electricalfy 
MAIN L. ANKcontiolled 	 and hydiaulically opeiated 

Booster attach fittings, located on thu bulkhlads at cach und of 
HAYNES 188TPS TURBOFAN the cargo bay, are slightly recessed inside thc mold lint of thl 

ON ORBIT PROPELLANT TANKS UTF2KS 2) theinal protection system At sepaiation, the lecesses arc covUcLd 
TURBOFAN ENGINES (4) with self-closing doors to assure a smooth exterior suifaCL and to 

Figure 3 O4Orbiter Design Details 	 minimize local heating 

The crew and passengers are accommodated in a single The baseline high cross-range orbitti's aerodynamic configut i­
pressutized compartment, with an an lock provided for mtiavehicu- non was designed to satisfy criteria based on the entry flight profile 
lar activity (IVA) access to the cargo bay and space station The shown in Figures 3-15 and 3-16 At the same time, the design 
flight compartment has side-by-side seating This makes it practical piovides low drag and aerodynamic stability during the full flight 
fol sharing certain controls, windows, and displays and fol multiple iegime and good subsonic handling and landing chaiactuiistics 
use of access space Aerodynamic heating must be minimized during the initial entiy 

phase of the flight, and an adequate hypeisonic LID is necessary to 
The cargo bay is designed with top loading doors The main provide the 2770-kilometei cioss range To achieve the low entry 

L0 2 tanks are located on both sides of the caigo bay to piovide a heating and cross-range capability, it is necessary to providc for a low 
relatively stable c g location, with only a slight aft travel during burn planfoim loading and the ability to trim ovur a wide angle-of-attack 
of the main propellants These uninsulated aluminum tanks are of a range With this wide tinn capability, the orbiter's baseline untry 
simple cylindrical shape and ate supported from the body structure mode is to enter at a high angle of attack (55 dugrees) and to pitch 
in a mannet that minimizes induced body loads into the tanks The down (35 degrees) after peak heating Referimng to Figure 3-15, it 
area below the caigo bay and L0 2 tanks is used for the wing will be obseived that the transition to the low-angle-of-attack, 
carry-through stiuctuie and installation of air-breathing engines, maximum-L/D attitude occurs when approximately half the cross­
landing gear, and olbit maneuvering propellant iange distance has been achieved The vehicle is then further banked 

to achieve cioss range Transition to a low anglo of attack occurs at 
The air-breathing engines are identical to those descibed earlici supersonic speed, followed by subsonic poweed appioach to the 

As with the stiaight-wrng orbiter, the engines are paned in two landing site 
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system Actodynarnic chaiacteistics of thc vcliclc arc picscntcd in 
Figures 3-17 and 3-18 Thcy show that tinc vLchil providcs 
hypersonic LID of 1 4 whcn tirnmcd at a = 35 degreCs and L/D 2 2 
at a = 200 ThL maximum subsonic LID is 6 9 As shown in Figuic 

ENTRY PTA NSITIN__,__MAX G TURN 3-19,L90pitch control by elevOI s su'fficICnt f5 aerodynamic tnG~iE JE ;NGthroughout an anlgh.-of-attack range f[oran 0 to 60 degree(s, with anI 

120 "0C0001_.D-G.SC operational cg range of 60 ccnnati cts .IthcL sidc of a nominal
BY BANK M ODULATION- p o s to n1to provide fh.t lb lty i11pay lo ad ( g an d 1701 llllltIL In.111Ci-rt 


CROSS RANGEis 
 dcsmgncd to iunian stibic at all spLcds 
ALTTUDT K LANDING and pitch angles At hypeisonic speeds, the unstable Lcgion at low 

I\--124 

0 1050 3710 5560 7420 9200 11100 19000 L/D
 

DOWN RANGE (Km) TRIM CL
 

Figure315 Entry FlightProfileforHigh Cross Range, Delta Wing Orbiter 08 TRIM 08 

v 10 30 50 70 9D 010 30 50 70 90 
EVENT METERI V a #BANK t q N ANGLE OF ATTACK a (DEG) ANGLE OF ATTACK a (DEG)

2SEC (DEG) (DEG) (DEG) (SEC) KO/M (N s) 

ENTRY 7650 155 55 0 0 0 0 1 igurn 3 17 Hypersonic Aerodynamic Charact, nshtcs Dc/ta Wing Orbit r 

PULLUP 7500 004 55-35 0-81 261 39 02 CL TRIM 

BEGIN TRANSITION 3750 03 35 20 1625 180 094 1 2 L/D TRIM 

MAX g 1640 17 20 20 1984 205 12 10 10 

90 DEG TURN 625 79 10 20-0 2142 293 1 1 08 8 -

TURBOFAN IGNITION 182 100 8 0 2350 ( 10 06 6 
LANDING 11KT 3 0 15 0 2800 234 1 0 04 4
 

022
 
Figure 3 16 Entry FlightProfile for High Cross Range, Delta Wing Orbiter 0 2 

The dclta-wing otbiter planfoim and aerodynamic finenss i atio 0 10 20 30 40 50 0 10 20 30 40 50 

providc high L/D at hypeisonic specds and an acccptablc tmiangc ANGLE OF ATTACK a ANGLE OF ATTACK a 
over the entire flight regime Roll modulation for Iaiigc control (DEG) (DEG) 
during entry is accomplished through thc attitudc contiol propUlSiOn Iigurt 3 18 Subsonic A,rodyndmic Characteristics Dc/ta Wing Orbiter 
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HYPERSONIC 	 v (M/SEC) 

o 	 TRIM (DEG) 8012 15 
70 	 SUBSONIC 15V .- Vsp 

700- VJPP Vs VIs V (MISEC)FORWARD- 0 40 5060708090100110120130 
CONTROL 60 -TRIM CURVE VTD p0DLIMIT NEUTRAL 	 450 OPER 60 .... 12Vs 300 VTD 

40 STABILITY 	 REGION - - 600 
-
30 aTRIM - NEUTRAL 	 50 - 900 

STABILITY 	 120020-C 20- CURVE
 
10 OPER 8=00 40 l II
1 N70 80 90 100 RATE OF SINK 

0 0 1 I VEHICLE WEIGHT (M/MIN)
 
58 62 66 70 74 58 62 66 70 - 1000 Kg


CG LOCATION 

BD LENGTH XCG/1% BFigure 	 3 20 LandingCharacteristics 

Figure3 19 Cargo Centerof Gravity Variations 	 LANDING 
DISTANCE ANGLE OF ATTACK 

angles of attack has been minimized by high forebody fineness latio (MI =150 AT TD 
and by leducing body camber effects This design also results in 2400 RATE OF CLIMB 
relatively low diag during ascent, whele boostet-otbiter drag influ- 1300 AZB= 01 TAXI ANGLE OF (M/MIN) 4 ENGINES 

ences total payload to orbit Diiectional stability is piovided by twin 1200 -ATTACK=30 	 90 , . 
vertical tails mounted at the wing tips and sized to provide stability 600 --- B- 03 60 3 ENGINES 
throughout the speed range Two variables (wing dihedral and 0 1 1 1 1 1 1 30 
vertical tail cant) are used to establish the proper level of effective 70 8o 90 100 0 , , 
dihedral Control is through conventional rudders and elevons, with VEHICLE WEIGHT 80 90 100 110 120 

3 2g Vandingelim inate aerodynam ic -	 Characteristicscontrol interhnkage wheie necessary to 
Figure 321 Landing Characteristicscoupling 

during the high cross-range cntiy Entry temperatuies are generally
With the vehicle trimmed at a 15-degree angle of attack, 	 its less than 10000C over a large alea of the vehicle, however, the nose 

landing speed on a standard day is 119 knots, with an approximate and leading edges experience tempeiatures up to appioximately 
total landing distance of 1150 meters on a dry runway Additional 14000C These temperatuies reflect the modulated entry profiles 
data on the aeiodynamic and landing parameteis, such as approach already discussed 
speed and go-around climb rate, are given in Figures 3-20 and 3-21 

Referring to Figure 3-23, it can be seen that load-carrying
Radiation equilibrium temperature distribution over the vehicle structuial mateial, because of its attractive stiength-to-density 

during ascent and entry is presented in Figure 3-22 Design tempera- piopeities, coupled with satisfactory cteep characteristics in thermal 
tures for the upper surface of the vehicle occur during boost The environments up to 3400C, is titanium The fuselage, wing, and 
remainder of the vehicle experiences its maximum temperature thrust structute use Ti-6A1-4V alloy The main propellant tanks are 
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Figure 322 Delta Wing Orbiter Entry 
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COLUMBIUM (CI29Y) [-HIGH TEMPERATURE PROPERTIES 
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Figure 323 Maximum Temperatures and Matenals 
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constructed of 2219-T81 aluminum alloy It was chosen for its 
compatibility with cryogens, acceptable strength, good fracture 
toughness, and weldability Extensive experience with this material 
has been gained on the Saturn progiam Figure 3-21 is a condensed 
summary of heat shield matetials They were chosen primarily on the 
basis of vehicle surface-temperature profiles Major portions of the 

ale Haynes 188 and Inconel 718, with lesser amounts of TD 
NiCr and coated columbium The major portion of the upper surface 

the orbitei fuselage and the wing will be titanium hot structure 

It is well recognized by engineers working on the shuttle vehicle 
design that developing a lightweight, low cost, thermal protection 
system with multi-reuse capability is a key factor We define the 
thermal protection system as the heat shield, insulation and structure 

from the external suiface through to the inside of the propellant
tanks or the cargo bay or the passenger cabin Illustrated in 

Figuie 3-24 is a typical cross section of the thermal protection 

MATERIALS BEHAVIOR 
THERMAL PRESSURE
 

ENVIRONMENT STEGHCREEP
 

PRESS
 
TEMP7 OXIDATION FATIGUE
 

TIME 

STRUCTURE/TPS CONCEPTS 

BOOSTER 	 ORBITER 
OUTER SURFACE INTEGRAL TANK 

1 	 METALLIC 
D T-iSHLD 

TG 1 sooo__________ 

I' 	
- ' 

TG O00 

SOI 
CRYOGENIC PRIMARY STRUCTURE 
INSULATION 

Fggure 324 ThermalProtectionSystem Key Technology Factors 
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system. Referring to the orbiter drawing, it shows a metallic heat PRIMARY ORBITER SUBSYSTEMS 
shield and dynaflex insulation supported on the primary load­
carrying structure. Between the primary load-carrying structure and Structure and Primary Orbiter System 
the propellant tank is additional insulation. The governing parameter 
is the total temperature rise that occurs at the spray-on foam The material covered so far in this section has been configura­
insulation (SOFI) bond line of the hydrogen tank. A limiting value of tion dependent. To the first-order approximation, the overall 
approximately 2200 C exists at this point. Above that value the requirements and design characteristics of the systems are the same 
integrity of the bond breaks down. Also shown in Figure 3-24 are the for both the low and high cross-range orbiters. Therefore, the 
other major parameters that must be accounted for in selecting the structures, propulsion systems, and avionics subsystems for the delta 
thermal protection system. Not the least of them is the accurate wing will be discussed as they arc typical for both orbiters. 
prediction of the thermal environment and the computation of the 
temperature distribution within the structure. Through the X-15, Vehicle Structures 
Apollo and other programs, sophisticated analytical tools have been 
developed for performing these estimates. They will require further An overall summary of the primary structure and materials for 
refinement and test program verification during shuttle development, the orbiters has already been presented. The primary loading 

conditions that govern the strength requirements of the load-carrying 
Space Division and Convair have both been investigating heat structure arc illustrated in Figure 3-26. As this figure indicates, the 

shield and high-temperature structural materials and designs for the 
past several years. In addition, tests on TD Ni chrome materials and -MAX q,--- MAXu--] NSTAGE 

coated columbium have been performed, with the entry environment DESIGN LOAD -RUKT 

of the shuttle orbiter simulated. Photographs of typical specimens CONDITIONS 
are illustrated in Figure 3-25. 

BOOSTER ATTACH MAX gTER 
"-	 I ATTACH
 

LOAD INTENSITY STAGE 
(10 

8 DYNES/cm) ROCKET 

THRUST.12-

COMP 4""" 

4 - TOP I S /BTO 
TENSION BOTTOM 

12-I
 

TD NICr HEAT SHIELD COLUMBIUM LEADING EDGE 	 0 1520 2900 4000 5387 
(cm) 

Figure 3.26. Delta-Wing Orbiter Design Conditionsand Load Intensity 
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highest loads experienced over a large portion of the fuselage operations, (3) deorbit; and (4) control its attitude and make small 
structure occur during boost flight. Specifically, the upper and lower course corrections. To accomplish this, it is provided with separate 
surfaces of the forward fuselage are designed by the maximum main rocket engine systems, on-orbit systems, and attitude control 
aerodynamic pressure (max qca) and control moments that are systems (Figure 3-28). The general locations of the engines and their 
experienced in reacting steady-state wind shears and wind gusts in propellant tanks are also shown in this figure. 
the integrated launch configuration. The loading level per unit length 
of cross section is also shown in this figure. The orbiter main propulsion system (Figure 3-29) employs two 

turbopump-fed rocket engines burning a L0 2/LH 2 propellant coin-

In conjunction with NASA, the space shuttle contractors will bination at a nominal mixture ratio of 6:1. The engine power head 
design and test a representative large-scale section of the booster and assembly is identical to that used in the booster. A e = 120:1 

orbiter. Examples of the type of structure under consideration for expansion ratio nozzle assembly (two-position type) is used to 

design and test are shown in Figure 3-27. It illustrates the wing achieve high performance. A redundant, self-checking engine control 

root-fuselage joint for the orbiter. Also shown is a propellant-tank unit (ECU) controls and monitors engine operation, including 

fuselage cross section of the booster. throttling over a thrust range of 50 to 115 percent of rated thrust. 
Thrust vector control over a range of ±7 degrees is obtained with a 
self-contained gimbal actuation system mounted on the engine. 
Engine-mounted pressure volume compensated (PVC) flexible lines 
are employed at the engine/vehicle propellant duct interfaces. Use of 

6800 Kg ON-ORBIT 
ENGINE THRUST 

MAINRCE NIE 
a 181,436 K9 THRUST 
* TWO-POSITION NOZZLE 
•*210 Kg/cm2 

CHAMBER PRESS. 
* 100 MISSIONS 

ORBITER BOOSTER 
Figur 3-27. Large Structure Tests, Mojor Structural Subassemblies 

Rocket Engine Systems 

During a normal mission, the orbiter will be required to 

(I) boost itself into orbit; (2) perform on-orbit maneuvers and 

L~ z TNK/ /SYSTEM 

ON-ORBIT L0 2 TANK 
LH2 TANK* 

igure 3-28. Rocket Engine Systems 

(ACS) 

L02 1LH 2 
INTERNAL NOZZLE INST 
LOW PRESS, 
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VENT ISOLAON VALVE MAIN ENGINE CHARACTERISTICS installed in each L0 2 and LH 2 feedline to provide emergency cutoff 
VALVE 

AND.150?T VAC - 216,40 k. of propellant flow in the event of extreme leakage or propellant line 
SPECIFIC IMPULSE - 45 $t (ROM) rupture. 

_N, 464.1 SEC (-30) 
FILL F\TRST RIsE TIME • Point sensors and capacitance probes monitor liquid level and7. rT HELIUM OPERATINS uI RATIO - S.8 IS/F measure on-board propellant weight during prelaunch servicing. 

OI,FE R PMEPRESS6 46 CPSIIYP i ta
TO2 |, CAPAPIISDA residuals minimized by propellant bias;6.64, Propellant are loading 

VENT THROTTLE RANE - tl-In depletion sensing and shutdown will be accomplished by the engine 
"IN WEIBIT (BASIC EN) - 2864 US subsystem. Provisions are made for propellant utilization because of 

the direct exchange between residual propellant weight and payloadLInOtI 6287nkT j 
capability in the orbiter.

LH2 FILL 
A DRAM L0 FIIL mm (NOZZLE RETRACTED)L0I.2FILL 

&EORA OIAMETER 20 n The orbiter attitude control propulsion system (ACS) provides 
VAmoNmC b0uLE AREA RATIO 12Ai l(t n capability for small translational maneuvers and three-axis attitude 

: EXTENDED) 
RAJT COOLIUNSTRANSPIRATIONI REGENEIATIVE control. As shown in Figure 3-30, the baseline engine arrangement 

PR HEATEXCMAIaR * DUMP employs 22 thrusters, each operating at a vacuum thrust of 680 kilo­
grams to provide minimum angular accelerations of 0.50/sec 2 and 

Figure.3-29, OrbiteriMainPropulsion System translational rates of 0.03 m/sec 2 for each vehicle axis with one 

common engines and related equipment in the two stages will engine inoperative. Fail-safe attitude control at 67 percent of the 

substantially reduce development costs and simplify the operational 
phase of the program. THRUSTERS 

The propellant tanks are pressurized with GH 2 tapped from the - ,_-'.*/ NO. OF UNITS 22 

engine preburner inlet and GO 2 extracted from the turbine discharge THRUST B80 Kg 
IsPEC 423THRUSTER/3935YSDELheat exchanger of the L0 2 turbopump. Tank pressure is controlled 

by redundant flow control regulators. Ground-supplied helium is PC 21 Kg/cm2 

used for prelaunch pressurization prior to engine ignition. MR 4:1 
20:1 

The LH2 tank is insulated with closed-cell polyurethane foam WEIGHT 11 Kg 

applied to the tank inner wall. A fiberglass reinforcement layer DIAMETER 254 mm 

protects the surface of the foam from damage and inhibits LENGTH 684mm 
permeation of the foam by the LH2 . The L0 2 tank is uninsulated; a 

dry GN 2 purge is used to inhibit ice formation on the tank during eSIMILAR ACPS ENGINE LOCATIONS 
prelaunch servicing. Propellant feedline ducts are routed to allow FOR BOTH STRAIGHT WING & DELTA 

WING ORBITERconvective preconditioning of the main propulsion engines before 

liftoff. Normally open isolation valves with position latches are FigurS-O. Orbiter Attitudo Control Propulsion System 
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minimum design rate is possible after loss of any two thrusters, ENGINEcnACTcRIs-Ics-11004-3-IA 

Translation at the minimum acceleration rate is possible after loss of *PERFOMANCE TRUT, VAC 6,800 Rg 

either one or two thrusters. -- SPEIICs WAE - 444 SIC (NOMI 

THRUTRIE TIE.9SEC (# 
The thruster configuration selected for the baseline system' .. T.RSRMEn.2sE 

burns a gaseous hydrogen/oxygen propellant combination at a ....' 4(IASS 

chamber pressure of 21 kg/cm2. A nozzle expansion ratio of 20:1 IZ*E LENOT -.17, 

EIAMETER-a1016 ­was selected to limit nozzle exit plane diameter and thereby CYCce EfANCERCYCLE DIVEN 

minimize the area of vehicle outer skin penetrated by the thruster TWRSOFUJP 

nozzle. The selected baseline thruster uses augmented spark ignition. .,,,.o CUNO RW04PATIY 

Shielding will be employed if required to minimize electromagnetic .- NZZLE 

interference effects. In addition to providing adequate attitude and ..... AE 57o 

translation rates for the orbiter, the selected 680 kilograms thrust ... CONDITONING LOX ThRO/CflAUD 
level provides the desired attitude control system (ACS) control LHt ILEED THRUMANIFOLD 

authority for the booster; therefore, a common thruster configura- *PASTUSAOE CENTAIR, SATLRNS-V 

tion may be used with an associated reduction in hardware 
Figure 3-31. On.OrbitMaeuvedin System Schematicdevelopment and production costs. 

The orbit maneuvering system provides the capability for I fCOMMUNICATIONS 
COMMAND VOcE maneuvers, including circularization, orbit transfer, rendez- CHECKOUT OCorbiter FUNCTI1ON CMAD 

vous, and deorbit. Our baseline system (Figure 3-31) employs two CONTROL * TELEMETRY 
I_ a VIDEOrocket engines using L0 2 and LH 2 propellants stored in tankages a RANGINGcompletely independent of the main propulsion system. ** COMMAND 

EXTERNAL
 

Integrated Avionics and Electromechanical Subsystem 
INTERFACE GUIDANCE 
GROUND DISPLAYS& NAVIGATION 

Through the integrated avionics and electromechanical sub- *- CONTROLS &CONTROLelemntssubsstes ofthevehile BOOSTER
 
system (IAS), all elements and subsystems of the vehicle are *PAYLOAD "__CASCENT
 

integrated, controlled, and monitored. Since the requirements SATELLITE a•REENTRY
CORBITALOPNS


between the orbiter and the booster vehicles are quite similar, a high * FERRY 
e LANDINGdegree of commonality is possible in the avionics equipment, and the 

following descriptions are therefore equally applicable to both1 :DATA &CONTROL 

vehcle. DISTRIBUTION ELECTRICAL 
PROCESSOR SINLPOWER & 

a DATA BUS CONTROLFigure 3-32 represents a simplified block diagram of the IAS 

showing the major functional elements that are all controlled F u-.32. Integrated Electronics
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through a central data management system. Characteristics of the Communications 
JAS are enumerated on Figure 3-33. A brief description of the IAS 
elements follows. This element of the JAS provides voice, data, ranging, and 

navigational aids capabilities, as shown in Figure 3-34. The voice, 
* PROVIDE ON-BOARD CHECKOUT, COMMAND &CONTROL &SAFING PROVISIONS data, and ranging requirements will apply the techniques and 

probably much of the equipment that has been space-flight proved in* INTEGRATED ON&C 
Apollo. For the atmospheric flight phase, equipment developed for 

"CONVENTIONAL COMM, NAV &LANDING AIDS commercial and military aircraft is directly applicable. This sub­

* CENTRALIZED & SELECTED DEDICATED COMPUTERS system, therefore, requires little basic development but rather an 
effective means of integrating its functions into the vehicle system.

0 DATA BUS & STANDARD INTERFACE UNITS 

* MULTIPURPOSE DISPLAYS & CONTROLS . RELAY 

FAIL OPERATIONAL / FAIL OPERATIONAL/ FAIL SAVE OPERATIONSAELT* 

* ACCESS TO EACH LINE REPLACEABLE UNIT 4LRU) INDEPENDENTLY STATION 

GROUND STATION 
Figure 3-33. Integrated AvionicsCharactemstcs &LN SI 

Data Bus and Computers TWO-WAY DATA & SPACE RENDEZVOUS & ATMOSPHERIC NAVIGATION & 
VOICE EOUIPMENTS DOCKING AIDS' LANDING AIDS 

A common multiplexed data bus transmits all commands, *TRANSMIT&RECEIVE VOICEh A LINEOFACOUIRE.TRACKC&RANGE ACUIRE DATA FOR 

responses, and data, thus integrating all functional elements of the DATA COOPERTARIETSPASSIVE SIGHT NAVIGATION 

vehicle. The current preliminary computer configuration is primarily *PROVIDE VOICE INTERCOM aPROVIDE RADAR IDENTIFICATION 
BETWEEN CREW, PASSENGERS,& * SUPPORT RENDEZVOUS,

centralized with dedicated processors for flight control and main IIARDOWRE) SPACE STATION STATION-KEEPING,s OCCINO aDTERMINE RADAR ALTITUDE 
ISGROUND PERSONNEL WITH SPACESTATIONS 

rocket engine systems. Standard interface units are used to couple URAROUND IRANTDATA FORCAT it 

subsystem elements to the common data bus. They include data GROUND RANGING S' owoD RCOVER IGA 
acquisition and stimulus capability to support checkout and redun­
dancy management. Figre 3-34. Co.nmsniaons 

Guidance,Navigation, and FlightControl Crew Command andControl 

These functions use a strap-down-type inertial reference that is The shuttle cockpit is configured basically like an aircraft 
aligned optically. Flight control is accomplished through a digital cockpit (Figure 3-35). However, since the orbiter vehicle must 
system. Control of the vehicles throughout all boost, orbital, and function either as a spacecraft or an aircraft, the cockpit incorporates 
atmospheric flight phases presents a difficult flight-control problem controls and displays to satisfy all mission phases. On the Apollo 
inwhich we must use the knowledge gained through operations of the spacecraft, the principal flight displays were represented by indivi-
Saturn and Apollo vehicles, as well as commercial aircraft practices. dual instruments, as shown on Figure 3-36. if this approach is used 
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ALPHANUMERIC CAUTION & WARNING 
SAUIDCTR,:: .MESSAGE PANEL SrequireMULTIFORMAT 

MULIR-T.......
 
CAT DISPLAY 00COMPUTER STATUS/

ACTIVITY READOUT 

ROTATION HAND 
CONTROLLER 

ECthings, ENTRY/COMPUTER 

RUDDER 
 NOSEWHEEL 

STEERING, BRAKE PEDALS CONTROL KEYBOARD 

NAVIGATION & FLIGHT THROTTLES& TRANSLATION 
CONTROL MODE SELECTION CONTROLLER 

Figure3-35. Shuttle OrbiterCockpit 

0 

Figure 3-36. Apollo Crew Station and Equipment 

on shuttle, the cockpit would be larger and more Complex and might 
more than the two-man crew now planned. Therefore, a 

solution is to use fewer instruments having greater flexibility. 
Multi-format cathode-ray tube (CRT) displays can present on a single 
instrument the information that required a number of instruments in 

the past. Examples of the types of formats that will be used in two 
different flight phases are shown in Figures 3-37 and 3-38. The same 
CRT presents a display for ascent guidance during the boost phase 
and later presents a space attitude display for flight control during 
on-orbit phases. On Apollo, the computer was used only for 
navigation and guidance, and the display keyboard unit (DSKY) was 
limited to that task. Since the shuttle computers do many additional 

more flexibility is required but the same approach is used. 

Solid-state alphanumeric readouts and all-electronic keyboards 

are planned. To command the vehicle attitude in space, the 
Apollo-type and proved three-axis rotation hand controller is used. 
During atmospheric flight, only two axes pitch and roll, are 
controlled with the hand controller. Conventional aircraft-type 
pedals control yaw. A single translation controller similar to the 
Apollo type is mounted on the pedestal near the throttles for linear 
motion control in space. 

DIGITAL 
MISSION TIME H v PARAMETER 

JL.JL41 EVENTIME TOISC)----CML --- READ-OUTS 
. . R EQU IRED -s -W T - C AC"|l'llil 

aB J L A_ H/V LIMITS 
C:2LIMITREPRESENTATION 

OF 
NOMINAL H VS."LAUNCH TUBE" V PROFILE 

L? 

H & V VALUES 

LIMITS 
-- COMBINATION 

RELEVANT H/V 

PRESENT POSITIONLM 

N ACTUAL H VS. V PROFILE 

VELOCITY VECTOR
 

COMMAND POSITION
 

Figur -37. Boost aridAscent Display 
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COMMAND ATTITUDE PRESENT ROLL ANGLEr-E I 
ANGLES READ-OUT MEASUREMENTS 

,.%W ATTITUDE ERROR #PROPELLANT TEMPS r 
AT ERR 5 -1O & RATE SCALE PRESS, FLOW PROCESSING 

!o1OI&O" AT 2 i RNE ON-BOARD 
M2'ILJP RANGES * VALVE POSITIONS COMPUTERS 

L *THRUST * VEHICLE COMMAND & CONTROL 

0 VIBRATION LEVELS * GUIDANCE, NAV & FLIGHT 

270 o ,,PITCH RATE CONTROL 
MIXTURE RATIOPRESENT PITCH W

YAWNGLES 2 MAIN *MONITORING & DATAW L 20 " 10 MAIN ENGINE * GIMBAL ANGLES PROCESSING COMPARISON 

210 150 

0 DETERMINES OPERATIONAL READINESS 
PITCH ATTITUDE 
ERROR SCALE *CAUTION & WARNING SIGNALS 

Fijure 3-38. Space Attitude Display • FAULT ISOLATION & SWITCHING 

*TREND DATA FOR GROUND ANALYSISCheckout 

For a drastic reduction in ground equipment, number of ground Fijre -39.On-Boad Chwckot 

personnel required, and turnaround time, the shuttle vehicles uses 
on-board checkout. How the central data management system is 
applied in accomplishing the checkout function is shown in ORBITER COMPARISONS 
Figure 3-39. The example is the main rocket engines. Using appro­
priate sensors and transducers for the important engine parameters, It is appropriate to conclude the discussion with a comparison 
the computer processes these data and compares the results to the of the two systems. It has been noted that the payload performance 
expected or normal case. Through judicious use of primarily characteristics of each orbiter differ by 2:1 in favor of the 
operational parameters, the broad requirements of checkout are straight-wing design. This higher payload results principally from less 
satisfied. These include demonstration 'of operational readiness, thermal protection being required to meet the low cross-range 
caution, and warning displays for critical functions, fault isolation, requirement. Other benefits are gained because a simpler packaging 
and switching techniques, in addition to long-term trend analyses. of the propulsion and other systems is possible. Additional details of 

the weight breakdown and stage mass fraction of the vehicles are 
ElectricalPowerand Control shown in Figure 3-40. The values are for the gross liftoff weight limit 

of 1,587,000 kilograms. These same data are illustrated graphically in 
The power sources include fuel cells, APU's, and batteries. Figures 3-41 and 3-42. These figures indicate clearly the magnitude 

Appropriate conversion and distribution equipment is controlled of the penalty for thermally protecting vehicles to achieve a high 
through the common data bus. cross range. 
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WEIGHT WEIGHT STRAIGHT WING /7DELTA WING
(KgI) (Kg) 

STRUCTURE &TPS (BU OUIT-,S NLANDING 8 DOCKING H RESIDUALS 

60TURBO INSULPROPULSION 19,187 20.140 * RESIDUALS COMPS POWER
 
ORIENTATION, ROCKET BODY POWER
 
CONTROL & SEPARATION 4,218 
 2,495 40 SYSTEMS AERO E CONTROLS 
SUBSYSTEMS 5,035 5,126 TURBO SURFACE LDo GEAR 
PERSONNEL 318 318 30 * ROCKET * BODY 
PAYLOAD 20,412 9,070 ECLS RAERO
 

MAIN PROPELLANT 24204 24224 20SURFACES
 

OTHER PROPELLANT 7,394 7,757 
 A 

LIFTOFF WEIGHT 3463 9MC 
ENTRY WEIGHT 
LANDING WEIGHT PROPULSION STRUCT TPS MECH & PWR OTHER SUBSYS
STAGE MASS FRACTION 74 .712 SUBSYS
 

RFiae 3-42. Structural and Subsystem Weight DistributonFigure 3-40. Baeline Vehicle Mass Ctehmteristics, Gross LiftoffMass - 1,587,000 Iilograns 

q-WATTS/cm2
 
STRAIGHT WING 16 /q .
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PERCENT j l r07

(BURNOUT- __________________I RESIDUALS IIAS ETANK 10 DELTAWING 
TURBO INSUL a - 550/350
RESIDUALS II* ERPOWER 

--ROCKET Q313ov CNRL
 
ESYSTEMS AERO CONTROLS
 

,
*TURBO SURFACE 'LOGGEAR 
6A H W*0ROCKET ] BODY 

lOR B STAIH WN 

PROPULSION STRUCT TPS MECH &PWR OTHER TIME SEC) 

SUBSYS SUBSYS 
 Figure 3-43. Comparison of Orbiter Fuselage Heating Histories 
Figure 3-41. Structural and Subsystem Weight Distribution High and Low Cross-RangeEntry 
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A further illustration of this point is shown in Figure 3-43. This time curve provides a direct measure of the total heat load 
presents the heating rate histories of both orbiters. These heating experienced by a vehicle of this design. It shows that the heat load 
histories were computed for the entry trajectories presented in the for the high and low cross-range vehicles vary by a factor greater than 5. 
General Configuration section. The integral under this heating-rate­
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4. SHUTTLE 

BOOSTER MISSION PROFILE 

The booster illustrated in Figure 4-1 will be briefly discussed 
according to the outline in Figure 4-2. The object of the booster, of 
course, is to accelerate the orbiter to the appropriate staging 
conditions. The booster flight profile is indicated in Figure 4-3. 
Features of the booster include (1) vertical launch, (2) a maximum 
dynamic pressure of slightly more than 2600 kilograms per square 
meter (occurring at an altitude of slightly under 10 kilometers) and 
(3) separation of the orbiter at an altitude of slightly more than 65 
kilometers 3.2 minutes after launch and at a velocity of 2850 meters 
per second. After separation, the booster coasts to its apogee of 75 
kilometers and then enters at a high angle of attack (55 degrees) and 
with a bank angle of approximately 40 degrees. The bank angle is 
modulated to limit the maximum load factor to 4 g's. The bank 

BOOSTER 

GENERAL DESCRIPTION OF BASELINE 

AERODYNAMIC CHARACTERISTICS 

SEPARATION AND ABORT 

STRUCTURE AND TPS 

P SYSTEMS 

OTHER SUBSYSTEMS 

Figure 4. Outine,of Booster Brefing 

maneuver minimizes the down-range travel and thus the fuel required 
for cruising back for a landing at the launch site. 

After the booster has slowed during the entry maneuver to 
subsonic speed, the air-breathing flyback engines are deployed and 
started, and the booster cruises back as a large subsonic aircraft and 
makes a normal horizontal landing at a runway near the launch site. 
Landing occurs at a velocity of 155 knots approximately 111 
minutes after liftoff. 

As noted in Figure 4-4, the booster operates as a rocket­
powered launch vehicle for approximately three minutes, as an 
unpowered hypersonic glider for approximately 10 minutes, and as a 
subsonic aircraft for approximately an hour and a half. Landing is 
followed by a two-week turnaround operation on the ground. 

The booster is designed to be an efficient rocket-powered 
vehicle during the three-minute boost phase. During entry, cross­
range capability is not required for the booster. The configuration 
selected has acceptable hypersonic characteristics, but the lift-drag, 
ratio (4D) at high velocities has been purposely compromised in the 
selection of its design features to assure efficient operating character-Figure4-1. Baseline Booster After Staging 
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istics during the hour and one-half that the vehicle is operating as a BOOSTER CHARACTERISTICS 
subsonic aircraft. 

Design of the hypersonic vehicle is influenced by the require-
STAGE SEPARATION 	 ment to assure rapid and low-cost refurbishment during the 

T - 3.2MIN. 
H- 66.8 KM turnaround cycle. The basic characteristics of the baseline booster 

- "- ENTRY are listed in Figure 4-5. Note that the tail area is slightly larger thanMAX. DYNAMIC V - 2, 14M/SEC. 
PRESSURE - _. SANKANGLE = 44r that of the wing: 219 square meters for the tail and 186 square 

MAX. - 2-626 KG/M 2 B OTER MAX. LOAD FACTOR - 49 meters for the wing. The total platform area of more than 1000 
H - 9.7 KM 	 APOGEElaglfueeunrbd.pois

9 7 T - 3,9MIN. 	 square meters is largely fuselage underbody.This, of course, provides 
H -75.3 
KM most of the lift during the hypersonic glide phase. The baseline 

configuration has a fixed straight wing and a vee tail. The straight 
Z] wing was chosen for simplicity and low weight, taking into

consideration that the hypersonic characteristics need not be 
Vi ;j " CRUISEBACK ""MINT -RIEAC optimized and that the low hypersonic L/D of 0.5 is satisfactory~ 13 MON. 

H - 6.1 KM H - 6.1KM since cross range is not a criterion. The fixed-wing configuration
V ­ 250 KTAS DOWNRANGE 	 yields an L/D of 6.7. This ratio assures satisfactory cruise capability.

LANDING DIST. - 355 NMI. 
T - 111MIN. The lift loading of 430 kilograms per square meter is moderate to 
VTOUCHDOWN - 155 KTAS minimize aerodynamic heating. 

Figure 4-3. Booster Flight Profile 	 Pertinent characteristics of the baseline booster are noted in 

Figure 4-6. The air-breathing engines for the cruise phase are stowed
ORBITER 
 during the boost and hypersonic flight phase and then are deployed 

for cruising back to the launch site. These engines are mounted 

3I.WING 185.8 
SOER1MI.AREAS TAIL 219.1 

RNIC 	 (M2 ) TOTAL PLANFORM 1.008.0 

L/D 	 HYPERSONIC 0.5
SUBSONIC 6.7 

STAGING 	 VELOCITY IM/SEC.) 2,874 
ALTITUDE (KM) 86.8 

LIFT W/SCL 4KG/M 2) 432.1 
LOADING90 IN. 

SUBSONIC 	 LANDING V(KTAS) 156
 

A T 	 SPEED 

Figu 4-4. Booster FlightModes 	 Figure4-5. Baseline BoosterConfiguraton 
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CHARACTERISTIC RATIONALE 

AIR BREATHING ENGINES 
STOWED FORWARD 

BALANCE MINIMUM WEIGHT 
- -

GROSSWEIGHT = 1,242 864 KG 
LANDING WEIGHT = 210 470 KG 

SEPARATE CYLINDRICAL 
TANKS 

MINIMUM DEVELOPMENT COST 
& OPERATIONAL RISK 

FIXED STRAIGHT WING SIMPLICITY CRUISE LANDING 
PERFORMANCE &MAXIMUM 
PAYLOAD 

VEE TAILORBITER PLUME IMPINGEMENT 
MINIMUM WEIGHT 

12ENGINESoMISSION COMPLETED EVEN WITH 
TWO ENGINES FAILED960 

-/ 1o 

Figure 4 6 Charactenstics ofBaseline Booster 78 3M- . .. 4q q A 

forward to bring the center of gravity of the vehicle forward and help 
compensate for the large weight of the rocket engines at the aft end 
The liquid oxygen and liquid hydrogen tanks are cylindrical, 
load-carrying structures and they are separate tanks with no common 
bulkheads Twelve rocket engines are piovided for the boost phase 
The choice of 12 engines will be discussed later 

BOEING 747 

Figure 4 7 Baseline Booster 

BOOSTER BOEING 707 

The vee tail was selected partly because of the consideration of 
plume impingement of the oibiter engines during the staging 
sequence Basic dimensions of the booster are indicated in Fig­
ure 4-7 The overall length is slightly under 80 meters, the wing span 
is slightly over 43 meters, and the fuselage diameter is approximately 
9 and 1/2 meters The gloss liftoff weight of the boostei is 
appioximately 1 2 million kilograms 

A size comparison of the booster with the Boeing 747 and the 
Boeing 707 is presented in Figure 4-8 The relative dimensions and 
other characteristics of these three systems are presented in 
Figure 4-9 Note that the major diffetences are that the booster has a 
much higher maximum speed than either of the commeicial Figure48 Booster Size Comparison 
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transports, a much higher payload (the orbitel gloss weight), and a 
The wing span for the boostel is almostmuch higher gross weight 

identical with the wing span for the Boeing 707, and the total height 
for the booster is almost identical to that of the Boeing 747 The 
booster is appro'umately 8 meteis longei than the Boeing 747 

Note that the landing weight of the booster is actually less than 

the maximum landing weight of the Boeing 747, which is operating 
commercially 

A comparison of the weight chatactelistics of the booster with 
those of the sraght-wing obitei and the delta-wing orbiter is 

of the booster isin Figue4-10 The gloss weightpresented of the obiters, while the 
four times that of eithel 

appioximately 
empty weight is slightly ovet two times that of the orbiters Majol 
empty weight differences are in the structural and theimal protection 

area and in the propulsion systems The piopellant mass fractions for 

these thiee vehicles are booster, 0 81, straight wing, 0 74, and 

orbitei, 0 71 

BOEING 747 BOOSTER BOEING 707 

VELOCITIES (KTAS) 

MAXIMUM SPEED 556 541 
LANDING SPEED 140 155 140 

DIMENSIONS (M) 

SPAN 596 433 434 
LENGTH 705 783 466 

WEIGHTS (KG) 

12,792 
EMPTY WEIGHT 165 564 201 897 61 236 
LANDING WEIGHT 255830 210606 93895 

GROSS WEIGHT 351 540 @ 141 523 

PAYLOAD 28,123 

Figure 49 BoosterComparsonfData 

Sb Space Division 
North Arnerican Rockw 

STRAIGHT DELTA 
WING WING 

BOOSTER ORBITER ORBITER 
STRUCTURE &THERMAL PROTECTION 120 159 43 636 66382 

LANDING (&DOCKING) SYSTEM 8800 4899 4581 
PROPULSION SYSTEM 61236 19187 20140 

ORIENTATION CONTROL& SEPARATION 7258 4218 2495 
OTH ER SUBSYSTEMS 4445 5 035 5 126 

PERSONNEL 227 318 318 
PAYLOAD 18008 6713 
MAIN PROPELLANT 1013206 242 041 241 224 

2733 7394 7757
OTH ER PROPELLANT 1,242864 344736 344736LITOFFWEIGHT 
ENTRY WEIGHT 217,320 9]8 250 98 749 

210606 97297 97751LANDINGWEIGHT 

Figure 4 10 Baseline Vehicle Weight Charactenstics(kg) Gross Liftoff Weight 1,587,000kg 

AERODYNAMIC CHARACTERISTICS 

The combination of the large, flat undersurface of the fuselage 
with the fixed straight wing and the laige vee tail leads to favorable 
aerodynamic stability trends, as indicated in Figule 4-11 The normal 
force coefficients for the boostei fuselage by itself, foi the wing by 

itself, and for the vee tail by Itself as a function of Mach number are 
shown in the diagram at the upper right-hand corner of the chart 
Note that the body noimal force coefficient is essentially inde­
pendent of the Mach numbei The force coefficient fol the tail 
increases moderately and that for the wing increases quite dramati­

cally as the Mach number decreases toward the transonic regime 
When these three elements are combined, the overall effect (as 
indicated in the diagram in the lower left-hand corner of Figure 4-11) 

is a decreasing trim angle of attack (noted by circles In the diagram) 

with decreasing Mach number The trim angles of attack are 
determined by considering the location of the center of pressure and 
the center of gravity 

Another way of indicating the vailatlon of the trim angle of 
attack with Mach number is presented in the diagiam in the lower 
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CN B CONSTANT a 80 

CNT CNW RUDDERVATOR 400 UPCNB 

CNW NO DEFLECTION 

2 4 6 8 10 12 14 CNT TRIM ANGLE OF 

MACH NO ATTACK (DEGREES) 40 

MACH 10 

a 5 200 DOWN 
60 NOSE DOWN 

CENTER OF O ... _NOSE UP12PRESSURE 4 6 8 1ISUE%LENGTH) ' 0 

0 2 4 6 8 10 12 14 2 4 6 8 10 

MACH NO + CM MACH NUMBER 

Figure 4-11 Booster Stability Trends Figure 412 Vanation of Trim Angle ofAttack 

right-hand corner of Figure 4-11, which shows the noimal force The payload capability for the mated booster/orbiter system is 
coefficient versus the moment coefficient Fot trim conditions, the quite sensitive to drag loss during the boost phase As a result of 
moment coefficient must be zero Therefore, as indicated, the tm recent investigation, the nose of the booster has been sharpened from 
normal force coefficient (and angle of attack) decreases with that of the proposal booster This change in nose shape has resulted 
decreasing Mach number in a net payload change of 57 kilograms (Figuie 4-13) Still sharper 

noses, such as nose C, are being investigated The tradeoff that must 
The iesultant variation in trim angle of attack with Mach be examined, of course, is the teduction In boost-phase drag loss as 

number is portrayed in Figure 4-12 The upper dashed control compated to the weight increase associated with further streamlining 
boundary is for the maximum ruddervator travel of 40 degrees up This study of nose shape is typical of the many studies which are 
The lower dashed control boundaly is for the maximum down underway to improve the capability of the baseline booster further 
ruddervator travel of 20 degrees Stable operating conditions lie 
between these boundaries Note that for the case of no ruddervator SEPARATION AND ABORT 
deflection, the tiim angle of attack decreases from approximately 55 
degrees at Mach 10, in a smooth manner, to zeio degiees at Selection of the baseline separation concept was based on many 
approximately Mach 1 The natural reduction in trim angle of attack criteria These included (1) the exclusion of droppable hardware 
as the Mach number decreases during the entry phase has a veiy (which would preclude the attainment of all azimuth launch 
favorable weight impact Potentially high buffet loads associated capability), (2) the exclusion of pyrotechnics and of expendable 
with penetrating the tiansonic regime at a high angle of attack are components such as solid rocket staging motors, and (3) the inherent 
avoided Ruddervatot alea and control power requirements are also capability to provide positive sepaiation, not only at normal staging 
minimized conditions, but also under aboit conditions 
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NOSE C 

NOSE D P
PROPOSAL -

NOSE D SECTIONS BOOSTER 
ALL CI RCULAR 

NOSE SHAPE PAYLOAD CHANGE (KG) 

PROPOSAL BOOSTER 0 
WITH NOSE D +567 
WITH NOSE C +2268 
WITH HEMISPHERE NOSE 1088 6 

Figure 4 13 Vanations to Baseline BoosterNose 

The separation concept selected for the baseline is shown in 
Figure 4-14 The otbiter main rocket engines are Ignited to provide 
separation force The auxiliary propulsion systems, in both booster 
and orbiter, piovide attitude control during the separation phase 
Mechanical linkages attached to the booster ensute the maintenance 
of appropriate separation clearances 

Separation sequencing is shown in Figuie 4-15 The sequencing 

is Initiated when a low-level sensor in either the liquid oxygen or 
liquid hydrogen propellant tank in the booster is uncovered near the 
end of the boost-phase operation Uncovering the low-level sensor 

a run-out clock, which, in proper time sequencing, sendsactivates 
out the dlsctetes to ignte the rocket orbiter engines, to command 

shutdown of the booster rocket engines, and to initiate linkage 
rotation The exact time sequencing can only be deteimmed after 
definitive experimental data are obtained on the thiust transients 

engine startup andassociated with booster shutdown and oibiter 

altitude This staging system, as noted, offers the inheient capability 
to operate under conditions of abort 
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t= 8 0 SC75SEC t= 65 SEC t--55SEC t--0 t=E 1SEC 
CG COMBINED 

VEHICLES
 

CG ORBITER EXHAUST 

*CG BOOSTER 

LINKAGE 

ORBITER MAIN ENGINES PROVIDE SEPARATION FORCE 

AUXILIARY PROPULSION SYSTEMS PROVIDE ATTITUDE CONTROL 

MECHANICAL LINKAGES ENSURE SEPARATION CLEARANCES 

Figure4-14 Basehne Separation Concept 
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THRUST 1008 

( 3 KG) 00TORBITER 

0 
1 2 3 ' 5 6 7 8 9 

TIME (SEC) OBITER 
IGNITE ORBITER CCOMMAND SEPARATES 
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Figure 4 15 Baseline SeparationSequencing 
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Intact abort is a desired feature and is indicated in Figute 4-16 
The concept is that, if major malfunctions occut prior to staging, the 
mated vehicle combination will continue to an altitude wheie the 
dynamic pressure is sufficiently low to permit separation of the 
otbiter and booster After this abort separation, the booster willcontinue to opcrate at least some of the rocket enganes to burn off 
all the rocket engine propellants It will then make a normal entry
andtcruiseusinitsair-breathingengineprt s , bl to tke lanog tr aThe 
and cruise, usingAts ar-breathmg engines, back to the lan ng storp at 
the launch site After abort sepatatin, the orbiter will also burn off 
its rocket propellants and, during this operation, will adjust its 
trajectories to assure that at the completion of its enty phase it 
within range of an acceptable landing site 

STRUCTURAL AND THERMAL PROTECTION SYSTEMS 

A simple inboard profile of the booster is presented in 
Figure 4-17 The major characteristics selected and the rationale for 

The main propellanttheir selection are presented in Figure 4-18 
tanks are separate, cylindrical, load-carrying structures fabricated of 

BURNOFgure 

PROPELLANTS 


IISEPARATE 

GLID &'S PARATION 

GLIDE/ 
< CZ Y 

CRUISE 

Figure4 16 IntactAbort 
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2219 aluminum Such tanks lead to high volumetric efficiency and 
low structural weight 

The liquid oxidizer tank is located forward to assist in keeping 
the center of gravity forward near the aerodynamic center ofpressure No penetrations are made of either liquid oxygen or liquid 
hydrogen propellant tanks for purposes of stiuctural attachment 

air-breathing engines are deployable and mounted fotward This 
provides a benign environment for the air-breathing engines during
the boost and entry phase, assists in balance by moving the center of 
gravity forward, and assures excellent mlet performance for the
 
gsravitfirdpand alperformanceofortthe 
engines i ther deployed (operating) condtion 

"E/'] UISE I
 
2 LH 2 ISE
 

-- I-­

417 BoosterDesign ad Packaging Considerations 

MAIN PROPELLANT TANKS 

CYLINDRICAL 1OUrRCEFCEC 
LOAD CARRYINGi VOUERCFIINY 

-- p LOW WEIGHT 

L0 TN MI NIMUM OPERATIONS RISKFRWRL0 2 TANK FORWARD J AND COST 

__E___EN_ 

AIRBREATHING 

ENGINES
 1BALANCE1FORWARD 

DEPLOYABLE ENVIRONMENT 
INLET PERFORMANCE 

Figure 418 Booster Design and PackagingConsiderations 
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Some other packaging arrangements consideied are shown in 
Figure 4-19 Common bulkheads were eliminated to assure a reliable COMMON BULKHEAD FLOATING TANKS 

structure compatible with low-cost fabrication and with easy HAZARDS/COMPLEXITY HIGHER WT 

accessibility for inspection and repair Floating tanks were eliminated 
in favor of integral load-cairying tanks This is feasible for the 
booster since it does not have large cutouts such as the orbiter 
requires for the cargo bay The aft location of the liquid oxidizer 
tank was eliminated because that position resulted in an unfavorable AFT L0 2 TANK 
aft location of the center of gravity INSTABILITY 

Structural design conditions are portrayed in Figure 4-20 The 
forward portion of the fuselage is designed by the condition of 3 g's 
at booster burnout The cylindrical portion of the oxidizer tank and 
the inteistage structure is designed by the max qa condition The 
cylindrical poition of the liquid hydrogen tank is primarily designed 
by the 3-g condition at booster burnout, but at an aft station the Figure 4-19 Alterate Design Approaches 

maximum ground-wind condition dominates The lower portion of 
the aft fuselage is designed by thrust plus max qaz The corresponding 
load intensities (plus for tension and minus for compression) aie 3g BBa--MAX qa 3gBBO& MAX qa 
shown in the lower diagram of Figure 4-20 Peak values in both GROUND WIND 
tension and compression are approximately 900 kilograms per 
centimeter 

To avoid penetiation of the main propellant tanks, four majoi 
ring structural assemblies are used (Figure 4-21) A ring assembly just 1ooo; 
forward of the liquid oxygen tank takes out structural loads 8oo MAX qa 
associated with the nose landing gear, with operation of the attitude40-..BOWkNo 
control propulsion system thrusters, and with deployment and LOAD 3g BBO 

operation of the air-breathing cruise engines The second major INTENSITY 0_ -- ­

structural assembly is in the intertank region, where, at the top of (KG/CM) GO 
the fuselage, the loads associated with the forward orbiter attach- 400 GROUND 

ment are taken out The main structutal ring assembly is located at 00 MAX qu 
approximately the middle of the liquid hydrogen tank At this 100, 

with the wing, main landing a 50 100STATION 150 200 25Gstation the stiuctural loads associated 
gear, and with the aft attachment of the orbiter are taken out The 
rear barrel assembly aft of the liquid hydrogen tank takes out 
stiuctural loads associated with the vee tail and the axial thrust of Figure 420 BoosterDesign Conditionsand Load Intensuties 

the main rocket engines 
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ATTITUDE 
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40 
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Figure 421 Booster StructuralFeatures 

The cold load-carrying structure is protected rom the boost 	 0 o5 10 15 20 25 30 

and entry heating environment by a thermal protection system In RELATIVE VELOCITY (KM/SEC) 

addition, ceitain of the structural elements are of the hot structure Figure 422 Entry CorrtdorCompanson 

variety Selection of the external material is dependent on the 700 
thermal environment experienced during the boost and entiy phase 60s STRUCTURAL HEATSINK 043 2 

This is determined by detailed thermodynamic analysis and will be & INTERNAL RADIATION AL TANK- qr 

confirmed by wind tunnel tests 0 NCLUDED . 

Figure 4-22 presents a comparison of the booster entry 	 OUTER SHELL 718 Ni 
trajectory with the flight corridoi that has been experimentally s00 () 	 ALLOY 

SHELLexplored during flights of the X-15 research aircraft Maximum TEMP 200-

heating during booster entty occurs just to the right of where the T (C) 

booster entry trajectoly penetrates the right boundary of the 1os 

corridor explored by the X-15 However, Itis close enough so that 
good extrapolation of X-15 flight test data is possible, and this 

100
extrapolation of experimental data coirelates well with theoretical 
analysis Figure 4-23 shows the calculated variation of the tempera- 200- L2TANK (T2 ) 

ture of a thermal protection system panel located undei the liquid 2730 1 -0 3 .... 4 
oxygen propellant tank 12 2 meters from the nose of the boostei 0 20F 400 500 60M0 3N 


TIME FROM LAUNCH r(SEC)
The temperature of the aluminum liquid oxygen tank is also shown 

as a function of time 	 Figure4 23 Booster Temperature, Oxygen Tank Area Lower Surface 12 2 Meters From Nose 
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The outer shell experiences a peak temperature of approxi- The maximum tempetatuies experienced during either the 
mately 500'C, and this peak temperature is reached at appioxi- boost or the entry phase and selected mateials for the thermal 
mately six minutes after launch, during the entry phase The outet protection system and hot stiucture are summarized in Figure 4-25 
shell is sepatated from the aluminum liquid oxygen propellant tank The upper surface of the fuselage has moderate temperatures of less 
by a space purged with dry nitiogen Thus, the aluminum L0 2 tank than 3000 C Thus titanium 6A1-4V, which has an excellent 
is protected from convention heating, and its modest temperature strength-to-weight ratio, can be used Majol portions of the undeisui­
increase (Figure 4-23) is that resulting from radiation from the inside face of the fuselage are subjected to temperatures in the range of 400 
suiface of the thermal protection system panel 	 to 7000 C For these areas Inconel 718 has been chosen The lowet 

surface of the stabilizer, which is subjected to high heating rates 
during entry, experiences tempeiatures up to 850'C, and in this 

Similar data are presented in Figure 4-24 at a point on the lowei region Rene 41 has been selected The leading edge of the wing in the 
surface on the booster 27 4 metets from the nose in the liquid inboar region and in certain other small areas of shock impingement 
hydrogen propellant tank region The outer shell temperatures are heating will experience temperatures as high as 1300 0 C Foi these 
quite similar to the previous case The tempetature of the aluminum relatively small areas, coated columbium has been selected The 
liquid hydrogen tank is somewhat higher than that of the aluminum temperature distuibution shown and choice of mateials will plobably 
liquid oxygen propellant tank (Figure 4-22) since the hydrogen tank, change slightly as more definitive experimental data are obtained in 
unlike the L0 2 tank, has internal insulation and is thus not subjected wind tunnel tests and more definitive material characteristics are 
to the internal cryogenic temperature of the liquid hydrogen obtained from material and structural tests 
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The variation of acoustic levels at liftoff versus distance fromthe rocket nozzle exit plane is presented in Figure 4-26 Overall 	 ATTITUDECONTROLr 
PROPULSION SYSTEM 

sound pressure levels of appioximately 175 db are expetienced near 

the nozzle exit plane As a consequence, careful attention to fatigue 680 KG GO 2 THRUSTERS2 /GH (22) 

associated with repeated exposure to such acoustic levels must be a 
prime consideration in design of the vee tail and selection of 
structural materials MAIN 

F STEMBOOSTER PROPULSION SYSTEMS 
180 000 KG 

Three propulsion systems piovide thrust for the booster during L 2/LH2 ENGINES (12) 
its flight (Figure 4-27) Twelve liquid oxygen and liquid hydrogen PRISEATHINT 
propellant rocket engines developing 2,170,000 kilograms of total [ROPSION SYSTEM] 
thiust at launch accelerate the booster and orbitet to staging 23100 KG TURBOFAN ENGINES (4) 
conditions When the acceleration teaches a level of 3 g's, the rocket 
engine thiust is throttled to maintain acceleration at 3 g's After Figure 427 BoosterPropulsonSystems 
separation, the booster is pitched to an angle of attack of 55 degrees maneuvers and vehicle stabilization duing entiy until aerodynamic 
and banked 40 degtees to reduce its down-range flight Thrust from surfaces ate effective Four air-breathing engines ate deployed when 
the attitude control system provides reactant toique for these the booster is subsonic, and these provide thrust for the ctuise return 

flight of approximately 350 nautical miles to the launch site The 
engines are also used for ferry flights of the booster from one 

c location to anothei Each system will now be discussed in more 
180 	 -detail 

180 

175 	 Main Propulsion System 
170 

The main propulsion system (Figuxe 4-28) is the primaty 
OVERALL propulsion system of the booster The othet two plopulsion systems
SOUND PRESSURE 160 provide for the safe recovery of the booster after it has accelerated 
LEVEL (db) 	 frrcvr 
RE 00002 	 the orbiter to staging conditions
MIROB 1500002_
MICROBAR 150 . I The propellant tanks fot the main propulsion system serve as 

14 	 E I the pitmaty structural member of the booster body The oxygen
0 100 200 230 tank is located folward of the hydiogen tank to provide balance 

STATION NO (centet-of-gravity location) fo vehicle stability in case of loss of 
Figure 4 26 Acoustic Levels at Liftoff rocket power 
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Figure 4 28 Main Propulsion SystemnA 

The main propulsion system includes 12 high-performance 
LO 2/LH 2 engines The capability to complete the mission even after 
loss of one engine is required to meet the system reliability criteria 
This capability is provided by operating the remaining engines at 
9 percent overthrust Even with two engine failures, the primaiy figure 429 BoosterMain PropulsionSystem 

mission can be accomplished by operating the remaining engines at 
15 peicent overthrust L0 2 is supplied to the engine through two manifolds, each 

branching to feed six engines The LH2 is supplied to the engine 
Design features of the propulsion system (Figure 4-29) have through four manifolds, each branching to feed three engines Branch 

been selected to minimize maintenance and servicing requirements, points are located to provide equal-length flow paths to each engine, 
while obtaining high reliability and safety This is achieved by the minimizing residuals and giving equal pressure losses and transients at 
elimination of nonessential components and subsystems, or by each engine Thermally driven natural circulation, obtained by 
redundancy Use of flex joints or bellows, which may be subject to connecting the liquid oxygen manifolds at the engine interface with 
fatigue failures, is minimized Where required, tension-carrying flex recirculation ducts, eliminates geyserrng and preconditions the engine 
joints with external double-wall multiple bellows are used LH 2 ducts feed ducts This form of recirculation iequiies no active subsystems 
are vacuum-jacketed thioughout An active propellant utilization and has been proved on the Saturn IC, Atlas, and Titan I 
system is not used, since repeated flight experience with each 
operational booster will allow elimination of significant systematic As shown in Figure 4-30, the number of main tocket engines on 
residual errors, and sensitivity of payload capabilities to remaining the booster optimizes at 12 foi the 180,000-kilogram-thrust engines 
errois is slight Tank pressurization is obtained by gasified propel- This ielates to a thrust-to-weight ratio of 1 37 at liftoff for the 
lants supplied from the engine (278 K, H2 , and 444 K, 02) This booster As the number of engines is increased or decieased by one, 
reduces maintenance through elimination of a separate hehum there is a corresponding reduction of payload capability of 7 and 11 
pressurization system percent, respectively 
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NO OF BOOSTER ENGINES 

11 N 12 13 

PARAMETERNN 

RELATIVE PAYLOAD 89% 100% 93%CAABILITY 
OVERTHRUST REQUIRED 10% 9%WITH 1 ENGINE OUT 8% 

1CENTRAL 2 EXTERNAL 12 INTERNAL 
LINE LINES LINES 

__HARDWARE WEIGHT HEAVY V L'dH -tf....................... HEAVY
 

RESIDUALS HIGH LEAST HIGH 

O REFURBISHMENT OR REPAIR 1 DIFFICULT EASIEST DIFFICULT
OVERTHRUST REQUIRED 17% 15% 13% PROPELLANT CONDITIONING DIFFICULT CC U T .N ..... ....... 4. 
WITH 2 ENGINES OUT THRUST SECTION COMPLEXITY COMPLEX LINE ROUTING COMPLEX LINE ROUTING P..., 

DEVELOPMENT CONFIDENCE LOWEST LOW 

Ftgure430 Number of BoosterEngines Figure 431 LO2 Feed Duct Ceometry Options 

Reliability and cost analyses have shown that it is most cost Weight favors the external duct confxguiation, as only a single 
effective to continue the flight if one engine becomes inoperative To wall duct is required versus a dual wall duct for an internal line to 

provide this capability, the remaining engines overthrust to compen- insulate the oxygen from the hydrogen Additionally, with the 
sate for lost thiust resulting from one engine out This engine external ducts, both propellant tanks are shoIter, and oxygen volume 
capability is provided at the engine nominal mixture yatlo with little in the ducts is greater Also, there is no corresponding reduction in 

or no reduction in engine life If two engines fall, the mission can be available hydrogen tank volume 
completed by overthrusting the ten operating engines by 15 percent 
Operation at 15-percent overthiust will probably result in a modest Residuals occur as a result of unequal usage in the event of an 
reduction in engine life, but such operation would only occur in the engine out or different flowrates The least effect will be felt with 
rare case in which two engines fail the arrangement having the shortest line length from the blanch 

i e , the dual external line
feed duct options were investigated to point,Several liquid oxygen 

select the baseline configuration of two external lines (Figure 4-31) 
Then geometry is important to the booster propulsion system since If leaks occur with the internal duct configuration, the duct 
they contain 67,000 kilogiams of liquid oxygen (8 percent of the must be iemoved fiom the tunnel for repair For external ducts, leak 
total) and reach an internal pressuie of 17 kVlograms per square potential is halved, since there are no tunnels, and liquid oxygen duct 

centimeter during flight as a result of acceleration effects leaks may be repanied in place without duct lemoval 
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The use of dual external lines also provides a natural recircula-
tion to prevent geysering and to maintain subcooled L0 2 at the 

GO2 ACCUMULATOR 
GH2 ACCUMULATOR 

thrust section fot unlimited hold durations With inteinal lines, heat GAS GENERATORS 

transfei to the LH2 may suppress recirculation to an unsteady flow&HETXCAGR 
condition that may not be piedictable A subsystem such as helium 
injection would therefole be needed to force circulation 

Booster Attitude Control Propulsion System 

The boostei attitude contiol propulsion system piovides pitch, 
yaw, and roll control during the phase of boostei flight between 
booster and orbiter separation and tiansition to aerodynamic 
controls at appioximately six minutes after separation Duing this 
phase, when aerodynamic controls aie ineffective, the system 

piovides the required control torques to coriect separation dis-
turbances, maneuver the vehicle to the desired pitch and bank 
attitude foi atmospheric entry and turn to the flyback heading, and 
maintain desired vehicle attitude during the entty phase 

The boostei system uses high-chamber-pressure, 21 kg/cm2 , 
engines operating with gaseous hydrogen and oxygen propellants 
supplied thiough vapolization of stored liquids in a gas generator and 
heat exchanger conditioning loop The baseline system (Figure 4-32) 
is a low development risk system It can be developed and proved 
independently of the booster vehicle and can use minimum tech-
nology risk components 

The system is configured to provide opeiational capability afret 
component failure with no reduction in performance Even after 
thiee component failures, safe capability is provided, although with 
reduced performance Components are sized to accommodate the 
maximum system impulse ovet the range of missions assigned 

As illustrated, engines and system components are located 
forward of the main LO 2 tank to maximize engine moment arms, 
minimize system weight and complexity, and aid vehicle balance 
considerations 
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Figure432 Attitude ControlPropulsionSystem 

Twenty-two engines, at 680 kilograms of thrust each, supply 
0 5-degiee per second squared of rotational acceleration iates and 
minimum cross coupling with one engine in any axis inoperative 
Engines ate located to avoid penetration of the vehicle theimal 
protection system in areas of maximum entry heating As propellants 
are used by the thiusters and by the gas generators, decay of 
accumulator pressuie is sensed and makeup liquid piopellants are 
supplied to the heat exchanger for theimal conditioning and 
accumulator charge The proper feed temperature to the attitude 
control engines is obtained by modulating the gas generator flowrate 
to maintain constant piopellant dischaige tempeiature fiom the heat 
exchanger 

Propellant feed for the vehicle auxiliary power units is tapped 
off downstream of the accumulators Operation of the propellant 
supply and conditioning loop for auxiliary powei supply begins at 
launch minus five minutes and continues until termination of 
operation shoitly aftei booster landing 

The hot-gas generatoi exhaust gases are ducted to the base of 
the vehicle, where they aie vented duiing in-flight operation Dining 
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operation prior to launch, the exhaust products are ducted away of one engine, three engines will provide thiust fo cruise at 
fiom the vehicle thiough a disposal system connected to the in-flight Mach 0 35, at maximum continuous thrust setting With two engines 
vent pott failed, the vehicle will cruise at maximum continuous thrust at 

Mach 0 28 with the two remaining engines operating LH 2 is used for 
For maximum commonality and minimum development cost, booste cruise Its greater energy per pound, relative to JP-type fuel, 

attitude control engines, propellant conditioning loop components, results in an increase of 9,000 pounds in payload to orbit 
and system valving and legulators will be common between boostei 
and oibiter, whete possible 

THRUST (VAC) 680 KG2A chamber piessue of 21 kilograms per square centimeter and a CHAMBER PRESSURE 21 KG/CM2 

SPECIFIC IMPULSE 423 SEC 
nozzle expansion ratio of 20 1 were selected to limit engine size and OPERATING LIFE 3X10f SEC 

exit plane alea and minimize system weight An insulation jacket RESTARTS 106 

WEIGHT 113 KG
around the engine nozzle and combustion chambel allows buiied 5 

installation in the booster Dump-cooled extensions to the basic8 
thrust chamber provide fot engine installation, with the exit plane 
flush with the vehicle skin surface and resulting exit plane scarfing 
angles of approximately 32 degrees for the pitch and loll engines 
The engine uses a dual spark ignition system Engine design 
accommodates both steady-state and pulse-mode fiing operation - 28 CM-_ 
The requirement for extended operating life and cyclic capability is a 
major challenge for design of the attitude contiol engines The basic Plure433 Attitude Control Propulsion System Engine Characteristics Summay 

chaiacteristics of the engine ate summaiized in Figure 4-33 

Air-Breathing Propulsion System 

Cruise, go-around, and ferry propulsion ate piovided in the 
baseline configuration by four hydiogen-fueled General Electric 
CF6-50C high-bypass-iario (BPR) turbofans (Figure 4-34) These 
engines, committed to production foi the DC-10 Series 30 transport, 
have the highest thrust rating and the best thrust-to-weight ratio 
(T/W) of any programmed high BPR turbofans in the 18,000- to 
23,000-kilogram-thtust class The superior cruise specific fuel con­
sumption results in the lowest system weight Othei candidate 
engines, howevei, are being considered 

The foui-engine installation peimits safe ciuise flght aftei entry 
even if two of the engines fail to deploy or operate With the failure flgure 434 Air BreathingPropulsionSystem 
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The podded turbofans are stowed in an unplessurized compart- Four engines available from three different companies are prime 

mrent forward of the main liquid oxygen tank After entry, they ate candidates for the boostei turbofans The ensuing competition will 

deployed hydraulically about individual pivots Short concentric help to reduce engine development and procurement costs These 

inlets and concentric noncoplanar exhaust nozzles provide optimum engine options ate shown in Figure 4-36 

cruise perfoimance The DC-10 wing-mounted pods are similarly 
airanged The pod and pylon concept places the engines in a The GE CF6-50C turbofan was selected for the baseline booster 

desirable flow field for opetation It also enhances ground turn- because it is lightel and has a higher thiust level than competing 

around, service, and maintenance Double-breech cartridge starters engines committed to pioduction The higher-thiust engines permit 

are used for maximum air-start reliability the booster to lose two engines and still ietuin to the launch site 

The LH 2 fuel is contained in a separate ciUlse fuel tank, formed OTHER SUBSYSTEMS 
by an added bulkhead in the forwaid portion of the main LH 2 tank 
Submerged boost pumps supply liquid to the engine After the Integiated Avionics Subsystem 
staitup, gaseous hydiogen, bled fiom the heat exchangers at the 
engines, is used for tank piessurization A major objective in the definition and design of the integrated 

avionics subsystem (LAS) is cost savings to be achieved by com-

An existing air-breathing engine is preferred over a new monality between the orbitei and booster avionics The subsystem 

development to save $200 to $500 million in nonrecurring costs and (discussed in greater detail in the orbiter section) is diagrammed in 

12 to 20 months in development time, at a ielatively small engine 
and fuel weight penalty (Figure 4-35) Not only are the development 
costs an order of magnitude highel fol a new engine, but the 

P&W ROLLS ROYCEMANUFACTURER GENERAL ELECTRICmaintenance costs would be appreciable because of engine use on the 
shuttle alone, and not on any airlines PRODUCTION MODEL TF391 CF650C JT9D 15 R21156* 

APPLICATION C5 A DC1030 B747 L 1011 
EXISTING NEW 

SLS RtATING (KILOGRAMS) 18 617 23 103 20 610 23718 

$200 500M-$30M
NON RECURRING COSTTHRU QUALIFICATION 

3797 4 590GO AHEAD THRU QUALIFICATION 36 MONTHS 48 56MONTHS DRY WEIGHT (KG) 3187 3,708 

AVAILABLE FOR FIRST HORIZONTAL YES DOUBTFUL CRUISE SF0 (H2) 0175 0185 0180 0180
 
FLIGHT TEST KG/HRJKG
 

GOOD BETTERCYCLE OPTIMIZATION 

UNLIKELY *PRODUCTION CONTINGENT UPON SALE OF STRETCHED L 1011 NOT YET COMMITTEDCOMMONALITY WITH ORBITER UNLIKELY 
L__ .SEA LEVEL STATIC 

Figure 4 35 Existing Versus New Air Breathing Engines Ftgure 436 Candidate High Bypass Ratio Turbofans 
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Figure 4-37 Because of the otbiter's more sophisticated mission 4 DATA&CONTROL 

CM ANCOMPUTER /COMPUTER ANTENNA-'*I Nrequirements, the integrated avionics design is driven by the orbiter 
iequiiements, with hardwaie and software eliminated for the booster MAINMEMORY MAIN MEMORY SYSTEMS OATACOMM 

only Since the requirements for the booster are less stringent than 
those fot the orbiter, some of the hardware and software required for CENTRA MSFLGHT MUuN 

IPROCESO MEOY CROL R I USADA 
the orbitel IAS can be eliminated in the booster application In i 
particular, the entire rendezvous and docking avionics subsystem can BUS AFC IACT F]s 
be eliminated (Figuie 4-37) CT U T ACATRI ADI 

DATA BUS 

Crew Compartment g ACT ACT C 

'LIGHTACACACAT
 
CONTROLS UISNTS) UNIT(S) I UNTSThe crew compartment, designed for a crew of two, is shown in g irl: I0--- BACKUP LOCAL CENTRAL- ------- 1

Figure 4-38 The overall compartment configuration, ariangement, POWER POWET 
& WARNING DISPLAYS & & CREW -CONTROL CONTROL IIENGINE

CONTROLS ­seats, flight controls, avionics, and displays are essentially identical to CONTROLS I ELECT -_ j I 

the orbiter Differences in console exist because of elimination of ;SUBSYSTEMS I I POWER :r- 'iL___ L SYSTEM I tROCKET Itranslation controls IL...... J LST...J II ENGINET I 
t s i c rDISPLAYS & GIST ENPOWEREG INE I 

CONTROLS P CONTROL L& - JD 

Displays, readouts, and backup flight instruments are located on 
(AS Block Diagramthe forward panel Subsystem controls are located on the consoles Fig.re 4-37 

and overhead panels Hand controlleis for flight control ale located 
on each seat arm rest The booster can be flown fiom either seat and 
by a single crewman External visibility is comparable to that of 
commercial aircraft -4_ 

7 (N
Ingress and egiess are provided by two overhead hatches and 

from a hatch that leads to the bottom of the vehicle 

Crew procedures and operations are the same as for the orbitei 
to minimize training requirements and to provide flexibility in clew 
selection 

The environmental control life support system (Figure 4-39) 
provides a shirt-sleeve environment, controls cabin temperature, AVIONICS 1 
humidity and pressure, lemoves C0 2, and provides cooling for DISPLAYS BASICALLY THESAME FOR ORBITER AND BOOSTER 
electrical and avionic equipment The oxygen and nitiogen atmos­
phere is contiolled to 0 7 kilogiam pet square centimeter absolute 
with 0 217 kilograms pet square centimeter oxygen partial pressure Figure 4 38 Crew Compartment 
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Figure 4 39 lrivironmen tal ControlandLife Support Baseline 

A fluid loop with redundant pumps transports heat from the cabin 
heat exchangel and equipment cold plates and rejects it to a 
hydrogen heat exchanger A small quantity of oxygen is stoied for 
replenishing the atmosphere to maintain the tequired oxygen partial 
pressure level and to provide emergency oxygen for use with a face 
mask The orbiter system is common to that of the booster except 
for the requirements that are unique to orbiter operations such as 
food, water and waste management, the need fot a space heat sink, 
and long-duration operation 

Power Subsystem 

The powei subsystem has four identical auxiliary power units 
(APUs), as shown in Figute 4-40 Each unit diives a hydraulic pump 
and a genetator, piovides all power for the electrical and avionics 
systems, aerodynamic flight controls, cruise engine deployment, and 
landing gear operation APU's operate continuously flom pielaunch 
to landing Gaseous 02/H2 reactants were selected because of lower 
fuel consumption and to piovide commonality with the piopulsion 
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Figure 4 40 Powver System Basehne 

propellants The foul hydrauhc systems are physically separated and 
functionally isolated from each other to preclude multiple system 
loss in event of failule The flight contiol system is fly-by wire The 
redundant servoactuators incorporate automatic fault isolation capa­
bility The iedundancy shown provides for safe operation aftet two 
failutes for the mechanical systems and safe opetatton after three 
failures fol the electrical system, consistent with the avionics system 
citeria The APU, hydraulic pumps, and genetatols are identical to 
those used on the oibiter Conventional state-of-the-art components 
and design concepts ate used in the hydraulic and electiical systems 

Landing Gear 

The landing gear is a tiicycle type Each main gear consists of a 
conventional air-oil telescoping shock strut, folding side brace, four 
wheels, brakes, and anti-skid system The system retracts inboard 
(Figure 4-41) The outboard door is linked to the strut, and the 
inboaid door is hydiaulically actuated The nose geai (Figure 4-42) 
consists of a conventional air-oil telescoping shock strut, folding drag 
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brace, dual wheels, and stecirng Doors are mechanically actuated by 
operation of the gear The landing system utilizes conventional 
statc-of-the-art equipment and is similar to that used on large 
commercial and military aircraft Landing gcai characteilSttCS are 
summarized in Figure 4-43 

AIR OIL TELESCOPING STRUT 

MECHANICAL DOWN AND UP LOCKS 

TYPE VII TIRES (142 CM X 41 CM) 
Figure 4 41 Main Landing Gear 

18 3 KG/CM 2 MAIN GEAR 

fll r 7KG/CM2 NOSE GEAR 

MAIN GEAR ANTI SKID BRAKE SYSTEM 

K2WDSTEERING NOSE GEAR STEERINGE 

rigurc 4 43 Landing Ccar 

Fgurc 4 42 Nose Landing Gear 
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5. OPERATIONS
 

Operations from the post-landing operation thiough flight are bay required for booster and orbiter maintenance and refurbishment 
discussed in this section As shown in (Figure 5-1), the time for the A safing area would be required to deplete and clean the propellant 
total operation from landing to liftoff is 14 days This includes tanks after landing This area would be located between the runway 
post-landing operations, maintenance and refurbishment operations, 
pielaunch operations, and launch operations The booster flight 
operation lasts under two hours The baseline orbiter can stay in 
orbit approximately seven days befole retuning to the launch site 
Thus, although the booster has'an operational cycle of 14 days, the 
cycle for the orbiter is 21 days 

American Airlines is a key member of the North American 
Rockwell and Convair team The airline's extensive experience in 
operating and maintaining commercial aircraft is being applied in the 
early phase of shuttle definition and design to assure that low-cost 
operations can be achieved American Airlines is preparing detailed 
time lines and manpower loading tables for shuttle maintenance and 
refurbishment and for other ground operations American Airlines 
personnel are working with membeis of the North American 
Rockwell and Convair design teams to assure that appropriate design 
features are included that will facilitate low-cost operations 

The baseline operations facilities are described in this section, 
followed by a more detailed discussion of each operational phase 

BASELINE OPERATIONS SITE 

The baseline operations location selected is the Kennedy 
Spaceflight Center (KSC), Florida This baseline (Figure 5-2) is 
simply a point of departure fol the many trade studies (with respect 
to final selection of the operation site) that will be conducted during 
Phase B Final selection of the operations site will be made by 
NASA The KSC baseline would use existing Saturn and Apollo 
facilities with minimal modification A new runway 3050 meters 
long would be required The Veitical Assembly Building (VAB) 
would be modified as shown to provide both the high bay and low 
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and 	 the maintenance building Either Saturn/Apollo Pad A or B 
LANDING IT14 DAYS) 

POST LANDING OFS 

MAINTENANCE &
 
REFURBISHMENT 
 OPS 	 [ _ LIFTOFF 

PRELAUNCH OPS (T=0) 

[ 
LAUNCH OPS 

OPERATIONAL CYCLE R
 
ORBITER 21 DAYS
 

BOOSTER 14 DAYS ORBITER 
FLIGHT OPS 

Figure51 Cround and Flight Operations 

+j, ATLANTIC OCEAN 

BOOSTER/ORBITER BAY 

AT LAUNCH PAD 
Figure 52 Baseline Operations Facilities 
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would be modified to facilitate erection of the mated booster and The post-landing operations for the booster take a little less 

orbiter Fuel and oxidizer would be loaded and checkout completed than five hours from touchdown to delivery to the maintenance and 

at the pad Existing liquid hydrogen flow rate capacity at the pads is refurbishment area A time line of this activity is shown in 

not adequate for the shuttle and will therefore require modification Figure 5-6, which indicates that portions of the longest functions of 
safing, data analysis, and inspection will be done in parallel to permit 

One of the features of the NR/Convair design is the piggyback completion of the operations in less than one work shift 

arrangement shown (Figure 5-3) This ariangement allows for the 
A similar breakdown for the orbiter is shown in Figure 5-7 This

orbiter (unfueled) and payload to be installed on the booster and 

then towed to the pad on the booster landing gear, thereby 	 operation takes approximately seven hours, two hours longer than 

eliminating the expense and complexity of a crawler-type vehicle for the booster The two additional hours are required because of 
This capability does not create a design load in the booster landing passenger and cargo unloading and because of the increased amount 
gear since the gear is designed by landing loads 	 of integrated avionics on board the orbiter as compared to the 

booster 

HORIZONTAL RECOVERY	 MAINTENANCE AND REFURBISHMENT 

Shifting now to the second bar in Figure 5-1, the maintenance 
and refurbishment cycle begins with the launch preparation shown in 

VERTICALLAUNOCH Figure 5-8 The booster and orbiter time lines for the maintenance 
,,ORAGE& 	 and refurbishment cycle are shown in Figure 5-9 These time lines areCHECKOUT 

based on one shift per day, five days a week On this basis, fewei 
than seven working days are required for the maintenance and 
refurbishment phase 

MATING TRANSPORTINGMATIG TRNSPOTINPRELAUNCH 	 OPERATIONS 

After the maintenance and refuibishment cycle, prelaunch 
operations (third bar of Figure 5-1) are conducted The payload is 
installed in the orbiter, and the orbiter is mated to the booster in the 
horizontal position This mated configuration is then towed to the 

Figure 5 3 Ground Operations launch site on the landing gear of the booster (Figure 5-10) Being 
able to transport the mated configuration on the booster's landing 

POST-LANDING OPERATIONS gear is one of the features of the piggyback arrangement proposed by 
NR/Convair for Phase B It eliminates the need for a crawler 

An artist's concept of the booster landing is shown in However, vertical mating and alternative methods of tiansport 
(Figure 5-4) (This event is related to the first bar in Figure 5-1 ) including the crawler will be analyzed during Phase B Once the 
After the landing, the vehicle will taxi off the strip and will be towed mated configuration reaches the launch site, it is erected into the 
(or taxi) to the safing area (Figure 5-5) 	 vertical position (Figure 5-11) It is important to note that the 
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Figure 5.4. Booster Landlng
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payload is accessible through all phases of this opeiation Again the Since it is one of the critical factors in the two-hour 
baseline configuration shown is fLot the KSC, but the structuie shown countdown, the piopellant loading operation is further expanded in 
would be that iequired for any launch site Figure 5-14 The simultaneous flow of both liquid oxygen and liquid

hydrogen from giound storage facilities to the vehicle must be a 
The prelaunch operations time line is shown in Figure 5-12 design consideration fot vehicle propulsion system plumbing, and for 

These opetations tequire 18 working hous and can thus be propellant loading system design and opetation proceduies Launch 
accomplished in less than 3 eight-hou shifts opetations are then followed by flight operations for both the 

booster and orbiter, as depicted by the last two bars of Figure 5-1 

WORKING HOURS
 

FUNCTION 1 2 13 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FLIGHT OPERATIONS
 

PREP ORBITER MATE =After liftoff, the booster main propulsion system continues to 
PREP BOOSTER MATE operate for approximately thiec minutes to a staging velocity of 

LOAD PAYLOAD/CARGO 	 2865 meters per second (Figure 5-15) The vehicle goes through a 
maximum dynamic piessure of 2865 kilograms per squate meter at 
approximately 65 seconds After separation, the booster glides 

LOAD STORABLES hypersonically foi approximately 10 minutes and then cinises back 

TRANSPORT TO PAD to the launch site subsonically The cruise takes appioximately one 
and a half hours 

ERECT 

PERF PAD/VEH HOOKUP 
The orbiter goes to orbit after staging and can remain in orbit 

LAUNCH READINEISS 	 fot approximately seven days before deorbit, entry, and teturn to the 

launch site The baseline mission for the orbitei is resupply of a space 
Figure5 12 PrelaunchOperationsTune Line station, which is in a circular oibit inclined 55 degiecs from the plane 

of the equator and at an altitude of approximately 500 kilometers 
After iendezvous with the space station, docking opeations are 

LAUNCH OPERATIONS initiated (Figure 5-16) 

The fourth bai on Figure 5-1 is launch operations, and the The total flight operation time line for both orbiter and booster 
corresponding time line is shown in Figuie 5-13 The total time for is summarized in Figure 5-17 The total operational cycle for the 
the final countdown is two hours The two-hou countdown orbiter is approximately 21 days, and 14 days for the booster The 
capability provides fast lesponse for missions such as space rescue A difference is the seven-day on orbit opetation of the orbiter Even 
little mole than one hon of this time is taken up by piopellant before the orbiter is docked to the space station, the booster has 
loading, with approximately one-half hour requned for launch landed at the launch site (Figure 5-4), thus marking a retuin to the 
checkout start of the operational cycle as shown on the first bar of Figure 5-1 
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Figure 5 13 Launch OperationsTime Line Figure515 Ascent FlightOperations 
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OPERATIONS BOOSTER ORBITER 

LIFTOFF T=O T=0 

STAGING 005 005 

DOCK WITH SPACE STATION 245
 

UNDOCK WITH SPACE STATION 1534
 

TRANSFER TO PHASING ORBIT 1540
 

ENTRY 0 10 167 5
 

INITIATE CRUISE PHASE 020 1678
 

LANDING 185 1680
 

Figure 5-17 FlightOperationsTime Line (Hours) 
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6. DEVELOPMENT PLAN 

The development test philosophy for both booster and orbiteris outlined in Figute 6-1 Subsystems and structural subassemblies 

will be qualified by ground tests No complete booster or olbiter 
vehicle will be manufactuied for ground tests The first orbiter 
vehicle and the first booster vehicle manufactuied will be used for 
horizontal flight tests Vehicles 2 and 3 (of both orbitee and booster) 

will be used for vertical flight tests first, launches of single stages 
(both booster and orbiter launches), and finally launches of the 
mated booster/orbiter space shuttle For both booster and orbitei 
vehicles, the first horizontal flight tests begin in 1975, vertical launch 
of single stages in 1976, and vertical launch of the mated 
configutation in 1977 After flight test requirements have been 
satisfied, orbiter and booster vehicles 1 through 3 will be modified as 
required and delivered to the operational fleet 

The development progiam functional flow plan is diagrammed 
in Figuie 6-2 In addition to the production of flight test vehicles, 

QUALIFICATION LEVEL TEST ARTICLES COMMENTS 

& STRUCTURES SUBASSEMBLIES GROUND TESTS 

SUBSONIC BOOSTER VEHICLE 1 HORIZONTAL FLIGHT TESTS 
CHARACTERISTICS 

TRANSONIC/SUPERSONIC 
CHARACTERISTICS 

INTEGRATED SYSTEM 

OPERATIONS 

ORBITER VEHICLE 1 (1975) 

BOOSTER VEHICLE 2 & 3 SEPARATE VERTICAL LAUNCHES 
ORBITER VEHICLE 2 & 3 BOOSTER AND ORBITER (1976) 

BOOSTER 	 VEHICLE 2 & 3 VERTICAL LAUNCH OF MATED 

ORBITER VEHICLE 2 & 3 BOOSTER/ORBITER (1977) 

Figure 61 	 Development TestPhilosophy 

STRUCTURAL 
TEST 

MANUFFINAL 	 IH T E VR 

TEST 

STATIC I 
PROPULSION
TEST 

AIONEG 	 ONTROLS 

TEST 

Figure 62 	 ProgramFunctional Flow Plan 

production of structutal test articles, static populsion test haidware, 

and hardware foi integrated avionics and contiols testing will be 

required The piogiam elements defined in the functional flow plan 
that lead to operations (discussed in the last section) will be briefly 
discussed in sequence 

MANUFACTURING AND ASSEMBLY 

The assembly breakdown for the booster liquid hydrogen tank 
is depicted in Figure 6-3 Since the tank structure will be fabricated 
from conventional aerospace materials, detailed parts and compo­
nents can be fabicated in eXsting aetospace facilities However, it 
may be desiiable to use cuirently available specialized facilities such 
as those available at NASA-Seal Beach and NASA-Michoud for tank 
welding and hydiostatic testing These facilities have unique capa­
blity for assembly and testing of large propellant tanks 
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V (TYP ALL BLI<HD) 

SKINS FRAMES FINAL ASSY 
NTERTANK 

LO2TANK 
 ADAPTER
 
FINAL ASSY 

HYDROGEN - LONGERONS 	 a ATE 

BLKHDS (2) RINGS 

Figure 6 4 Mated Tank Assembly Breakdown 

AFT SECTION 01N~ E FLYLCKBEGIN 
_ :ENGINES FLYBACK ENGINE 

RADOME COMPARTMENT 	 ENGINE 
SUPPORT STRUCT 

Figure6 3 LHt2 Tank Assembly Breakdown 

TANK MATE
The assembly of the mated LH 2 and L0 2 tanks that form the 

structural backbone of the basic booster body is shown in Figure 6-4 MAIN 
PROPULSION 

THRUST ROCKET
 

The assembly breakdown fot the booster fuselage is shown in STRUCTURE ENGINES (12) 

Figure 6-5 The sequence of assembly is indicated in the flow 
diagram Most of the various subsystems and subassemblies are 
readily transportable to the fuselage assembly site and can be 
manufactured at other appiopilate sites It is expected that many of 
these wili be subcontracted The mated tank assembly, however, is 
too large for transport, except by baige It would probably be TPS 

fabricated at the same site used fol the fuselage assembly 

The mated tank structure is the majoi load carrying membei of Figure 6 5 Fuselage Assembly Breakdown 

the booster, to which the rocket engine thiust structure is attached, 
along with 12 high-picssure, L0 2 /LH 2 , 180,000-kilogiam-thiust then attached to the main tank structure by a system of support 
rocket engines The flyback an-breathing engine support stiuctuic is links that pLimits differential expansion of the TPS and the tank 
attached at the forward end of the main tank, along with the engine structuie Final steps In the sequence aie installation and checkout of 
compartment structure housing for these deployable turbofan the landing gear and deployment of the air-biCathing engines Thes 
engines The metallic iadiatve theimal protection system (TPS) is steps require a building with vertical clearance in excess of the 40 
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feet, which is typical of the high-bay sections of most existing The final orbiter assembly is depicted in Figuie 6-7 The otbiter 
aerospace industry factories is smaller than the booster, and its final assembly can be carried out 

in facilities compatible with the pioduction of vehicles such as large 
The sequence for final mating, assembly, and checkout of the commercial airciaft oi expendable launch vehicles The assembly site 

booster is shown in FiguIe 6-6 The location at which the final mate should have ready access to a 3050-meter runway for initial flight 
and assembly operations are perfolmed must have a satisfactory tests and feiry operations The propellant tanks in the orbiter are 
landing and takeoff strip so the vehicle can be self-ferned to the suspended within the load-cairying structure and aIe smaller and 
point of flight test or operations, if these are not cairied out at the thetefore easier to transport than the laige load-cartying propellant 
final assembly site If circumstances dictate that the final mating tanks of the booster This allows more flexibility in the choice of 
operations take place at a site diffetent from that of fuselage final final assembly site foI the otbitei 
assembly, barge transportation probably will be needed to transport 
the fuselage from the final assembly to the final mate location Its 
size piecludes overland transportation Phase B studies will consider 7O7SIZE FACILITY 
various candidate assembly final mating, and flight test sites to p7" ACCESS TO 10000 RUNWAY 
determine the most economical approach The studies also will A TRANSPORTATION FOR LARGE SUBASSY 
establish whether it is desirable to perform the final mating, SKILLED LABOR POOL 

assembly, and checkout opetations at the same site where the flight 
test program is conducted and will determine whether this should be 
the operational site as well 

MAJOR MATE 

A A L Figure 67 Final OrbiterAssembly 

GROUND TESTS 

FINAL CHECKOUT 

Figure 66 Final Mating, Assembly, and Checkout 

A large variety of giound tests of major subsystems and 
subassemblies is required (Figuie 6-8) Wind tunnel tests must be 
conducted at a number of government and industry facilities to 
explore completely the flight regimes of the vehicle A laige number 
of design development tests will be required to verify the selection of 
materials and detail design concepts Subsystem and structural 
subassembly tests will be required 
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WIND TUNNEL TESTS THERMO DYNAMI ,AERO 

DESIGN DEVELOPMENT 4 DESIGN-MATERIALS CONCEPTS 

INTEGRATED ELECTRONICS SYSTEM INTEGRATION 
& ELECTRICAL POWER CREW CABIN 

PROPULSION STATIC FIRING STAND 
SYSTEMS 6WING ANDCARRY THROUGH 
FLIGHT & 

Z-
ENVIRONMENTAL JELFLIGHT'CONTROLS 
CONTRL. 

STRUCTURAL VJSAIFAIUSOC 
AIU OITESTS -fSAI 

Figure 6 8 Major Ground Tests 

Major structutal tests must be conducted on critical booster 
structural subassemblies (Figure 6-9) Typical of this very extensive 
test program ate the tests of the wing and cairy-through section The EMPENNAGE LANDING GEAR 
structuial integitlty and leak tightness of the clew compartment 
under pressuie loads must also be demonstrated Because of the large Figure69 Major StructuralTests (Booster) 

theimal gradients experienced by many of the sections, it will be 
necessary to test at elevated temperatures simulating flight environ­
ment as well as at loom temperature Because the shuttle vehicles are 
reusable aerodynamically recovered vehicles, the final proof testing CARGO BAY 
will, of course, be conducted in flight tests to subject the structure to 
its final flight environment in an inclemental fashion 

A similar bet of major structuIal tests must be conducted on the AEROELASTICITY/ 

otbiter (Figure 6-10) These tests again will verify the structural GEARthe opelation of all mechanical equipment
 
and check out
integrity 

such as landing gear and deployment of jet engines Wheie thermal 
stresses ate a pIoblem, tests must also simulate the flight environ- THRUST STRUCTURE 
ment to the extent necessaly to clheck out the design at operating 
conditions EMPENNAGESIDE LOAD 

Existing test facilities such as the Marshall Space Flight Center 
static test facility can be used fot major space shuttle structural static 
and fatigue tests as shown in Figure 6-11 (It should be noted that Figure 610 MajorStructuralTests (Orbiter) 
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BOOSTER FIRING BOOSTER CRYOGENIC ORBITER FIRING 
TESTS TESTS TESTS 

MARSHALL SPACEFLIGHT CENTER STATIC TEST FACILITY 

Figure6 l1 Structural Statzc/FatigueTest of 

Booster Thrust Barrel 

the specific development facilities referenced in this section have 
only been selected as baseline for the stait of Phase B During 
Phase B, tradeoff studies will be conducted in which all feasible 
development facilities are considered Final selection of majoi 
development facilities will be made by NASA) Large components 
such as the booster thiust barrel, as well as numerous smallei 
structural static and fatigue test specimens, could be handled in this 
facility The booster tankage is comparable in size to that of the 
Saturn fist stage Therefore, this facility is well suited to the 
experimental work 

Static propulsion system tests could be conducted at existing 
facilities at the NASA Mississippi Test Facility (Figure 6-12) Only 
modest modifications would be required to the Saturn first-stage 
stand to permit static firing of the booster plopulsion system to be 
carried out there Ciyogenic fatigue tests of the booster load-carrying 
propellant tanks could also be caried out at one of the Saturn 
second-stage test stands at the Mississippi Test Facility with only 

-67-

SIC STAND (MOD) S 11STAND A (MOD) S11 STAND S (MOD) 

Figure 6 12 Static Propusion Test, Mississippi Test Facity 

moderate modification The second Saturn stage-two test stand at 
the Mississippi Test Facility could support the static propulsion 
system firings for the orbiter propulsion system with only minor 
modifications of the facilities required Other test sites such as the 
NASA Rocket Propulsion Laboratory in California are being 
evaluated 

Detailed ground tests of the integrated avionics and control 
systems could be carried out using a test setup such as shown 
(Figuie 6-13) Interface of the integrated avionics with the flight 
contiol hardware could be checked out in development tests by 
connecting the avionics components to a flight deck mockup and an 
"iron hoise" fuselage and wing with the flight controls installed, and 
a vehicle thiust section with the engine gimbaling piovisions Flight 
crews and engineers could then simulate typical flight situations, 
checking the operation of the system and the interfaces between 
avionics and mechanical systems 
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1PRODUCTION EMPENNAGE -

AND THRUST SECTION SEPARATE BOOSTER & ORBITER FLIGHTS 

NASA FLIGHT RESEARCH CENTER 

(J l IRON HORSE FUSELAGEAND WING 

INTEGRATED AVIONICS 
~FLIGHTDECK MOCKUP 

Figure614 HorizontalFlight Test 

Figure 6 13 IntegratedAinongcs/Control Test 

GROUND HANDLING CHARACTERISTICS 

HORIZONTAL FLIGHT TESTS AIRSPEED CALIBRATION 

TAKEOFF &LANDING PERFORMANCE 
The NASA Flight Research Center in California, well suited fot 

STALLS &SLOW FLIGHT CHARACTERISTICShorizontal flight tests of both the boostet and orbiter, has been 
selected as a baseline for these tests (Figure 6 14) The orbitet and VIBRATION FLUTTER & STRUCTURAL LOADING DATA 

booster will be flight-tested separately as subsonic arcaft, going CLIMB &CRUISE PERFORMANCE 

through all the steps traditionally followed in aircraft testing 
beginning with low-speed taxi tests and progressing up through SUBSYSTEMS FUNCTIONAL CHECKS &PERFORMANCE 

low-speed flights until the entue speed and altitude spectrum of the FLYING QUALITIES 
vehicle operating with its airbreathing engines has been satisfactoiily 
checked out Since the orbiter and booster are ielativcly simple guir, 6 15 Horizontal FhghtTatObjetwves 
subsonic vehicles with rather modest performance requnements, as 
compared to conventional ancraft such as the C-SA, the subsonic worthiness of the orbiter and booster Il the subsonic flight mode 

phase of flight testing will be much shoiter and will be dnected Tests will bc conducted in an incremnrtal fashion to pelmit 

primarily at demonstrating the flhghtwoi thmcss of the vehicles modifications and corrections in proccdurcs to be mIdc a' the tests 
progress In thc Intetcsts of flight testing at the carlicst piactical 

Specific horizontal flight test objcctives aic summaiizcd in time, many subsystems not csscnLual to this phac of flight (such a 

Figure 6-15 The plimaiy objective is to demonstrate th flight- iockct engines) could be left out, simulated by miockup, 01 installed 
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as inactive hardware to simulated mass properties This would peimit 
tests to concentiate on the hardware involved in the subsonic legime 
only 

VERTICAL FLIGHT TESTS 

The boostet and orbitet will be tested separately in veitical 
flight tests, as indicated (Figuic 6-16) After satisfactoty completion 
of separate tests, they will be mated for integrated system tests, 
which will be conducted in incremental steps until the entire 
performance envelope is exploied The chait indicates typical tests to 
be accomplished in these three tests modes The vehicles would 
initially be flown at reduced thiust levels (engines throttled) and 
with reduced propellant loads so that their flight envelopes could be 
expanded incrementally Independent tests of the booster impose no 
particulai recovery problems The boostei has cruise-back capability, 
and the flights could be conducted so as not to exceed ctuise-back 

+ 

I 

OR I EGAAT,E 
-

REDUCEDTHRUST REDUCED PROPELLANT INTERFERENCE EFFECTS 
AERO/CONTROL-, LOAD STAGING 
MAXIMUM qa AERO/CONTROL PERFORMANCE ENVELOPE 
PITCH TRANSITION MAXIMUM qt OPEIRATIONS TEST 

PITCH TRANSITION 

Fgure 616 Vertical Flight Test 

lange of the boostei Oibitei vertical flight tests will be somewhat 
constrained by the recoveiy problem Since the orbiter does not have 
ciulse capability, the flight-test trajectories must be compatible with 
the availability of appiopliate down-range landing fields Orbiter 
tests could progress to increasing flight velocities, with landing at 
down-range sites at increasing distances from the launch sites The 
vehicle would then be flown back with a "strap-on" ferry kit that 
had air-breathing engines and fuel Prime pupose of these single­
vehicle tests will be to verify the vehicle aeiodynamic and flight 
contiol characteristics and to demonstrate integrity of the heat 
shields and stiuctute 

Major objectives of the integiated system tests would be to 
deteimine the interference effects of the mated vehicles up to the 
staging point The verification of the staging maneuvet is a majoi 
milestone in these tests The tests would also permit the full 
perfot mance envelope of the system to be explored Final tests 

would simulate typical operational modes to establish the opeia­
tional readiness of the system These tests would establish the 
operational procedures to be used and would piovide flm cost data 
on the piojected operational costs of the system This information 
would be vital to mission and payload planneis for planning use of 
the shuttle for future operations 

The summary progiam development plan is presented in 
Figure 6-17, with dates as specified for the Phase B study Phase ClD 
go-ahead is specified as 1 October 1971, and the date of initial 
opeiational capability is 1 October 1977 Major intermediate mile­

stone dates are as indicated It is not anticipated that this schedule 
could be significantly comptessed Therefore, if the Phase C/D 
go-ahead slipped fiom the date shown, all milestone dates indicated 
would slip by the same time interval This is regaided as a tight, but 
realistic, schedule that could be met if funding is provided 
throughout as planned and no major program redirections are 
imposed as the piogram piogiesses 
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CALENDAR YEARS shown to support an assumed operational piogram of 25 flights per 
MILESTONE 77 72 73 74 75 76 77 year Additional vehicles would be delivered to support a higher rate 

T 	 of flights
PHASE O/D GO AHEAD 

MOCKUPS COMPLETE V CALENDAR YEARS
 
71 721 731741 7 6 '77 17879 80 81
 

FIRST ROOSTER HORIZ FLT V F it
 

FIRST ORBITER HORIZ FLT 	 C FirstMatedFlight IOC1977'
 PHASE 01D C " 25FlsshtuYo,/ 
ENG RELEASE ossol%ay| 	 e


FIRST MATED FLT 
MFG TOOLING 9Snins oend 

V MOCK<UPS =3ne~it hc 
tOC• BOOSTERIORBITER STRUCT FIT fttT.,s 

TEST ELEMENT R l Aeea 

BOOSTER ORBITER PROP VEHICLE 
Figure 6 17 Summary ProgramPt BOOSTER FIT VEH 1 FIt Ttt -I 

ORBITER FIT VE14I Fit Test 
BOOSTER & ORBITER STRUCT 

TEST ARTICLE Fit Tit. 
More detail on the baseline program development plan is given BOOSTER FIT VEX 2 

Fiti Figure 6-18 Hardware manufacture wil stait on both booster and 	 ORBITER FIT VEH 3H aw 
orbiter vehicles in the second quarter of 1973, with first horizontal 	 ORBITER FIT VEl 3 

PROD BOOSTER I Mf uc 
PROD ORBITER I 	 PM C/oflights In the third qua ter of calendar 1975 Deliveries of production 
PROD DELIVERIES 	 tOottutvehicles would commence in mid-1977, with vehicles delivered at I 

six-month inteivals It is anticipated that three production boosteis
and four production orbiter vehicles would be delivered at the times 	 Figure 6 18 BaselineProgramPlan 

-70- SD 70-9
 



#ih Space Division 
NorthAmencan Rockwell 

7. SUMMARY
 

The essential features of the Phase B shuttle piogiam have been 
piesented Also, some of the technical aspects of the baseline system 
have been discussed These baselines replesent a going-in position, or 
a statting point, foi the study We will be endeavoring to impiove 
these initial approaches in order to develop a system that meets the 
performance, mission flexibility, and cost objectives that NASA has 
defined 

We have attempted to present here sufficient detail to indicate 
the majol program issues associated with shuttle All design options 
and issue solutions aie not yet fully developed One of the main 
objectives of Phase B is to develop the best shuttle system through 
design, analysis, and test The thiee most ctitical issues that are being
faced in the Phase B and thiough the shuttle development are 

1 	 Maintaining the vehicle weight taigets and, therefote, the 
peifoimance capabilty that we currently predict 

2 	 Achieving the curiently projected total progiam, produc-
tion, and operational costs 

3 	 Developing the system on a schedule consistent with the 
initial opelational capability goals Meeting this target Is 
most important Time is money and the unavailability of 
shuttle could have significant impact on othei manned and 
unmanned piograms 

Success in meeting these three objectives is directly related to 
the approach used in critical development or lisk areas The solutions 
to risk items must be balanced off against the parameters of weight 
and perfoimance, cost, and schedule Examples of the major risk 
ateas seen at this time ate shown in the upper right quadiant of 
Figure 7-1 

WEIGHT RISK 

SSAFE ABORT 
WT 

C/D GO AHEAD 1CC 

* THERMAL PROTECTION 
SYSTEM 

* PROPULSION SYSTEM 
PERFORMANCE 

COST 1 	 100SCE 

EST 	 %C/D
Gum PRODUCTION PROGRAMCOST 10 YEAR OPERATIONS COMPLETED 
($O 

C/o 	G AHEA10C /D GO AHEAD 1oCCl GO AHEAD 	 SCHEDULED COMPLETION 

Figure71 Most Cntical Issues 

Through recent space piogiam achievements, industry and 
NASA have demonstrated the ability to meet performance and 
schedule goals despite many technology and management hurdles 
Thus, with confidence in these areas, it is now of utmost importance 
that we devote equal energy to imptoving our cost peiformance In 
the shuttle progiam, we ate implementing management techniques 
that will assuie the cost and cost risk are included in all design and 
program decisions down to the component level We are confident 
this will lead to a shuttle design that meets the low development and 
operational cost objectives that have been established 

Theie is a common purpose in out meeting here today It is the 
combined development of an international shuttle By combined 
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development is meant the actual development of the hardware by the 
United States and European industy under common direction from 

NASA 

At Space Division our team membeis have given considerable 
thought to potential systems that might be developed by European 
partnets These are categoiized in Figure 7-2 As will be seen, a wide 
spectrum of areas of participation has been considered, langng fromavionics development to major propulsion system elements and 

pnimaiy structure These items represent a substantial portion of the 
development program They also would provide a challenge from a 
management and technology development viewpoint In addition, it 
1s necessary to now Start mission planning for non-U S payload 

ns 

This is iequired so that we can incorporate at an early time the 
unique mission application and payload inteiface requirements that 
might be generated by European payloads 

The schedule for various paiticipation in the shuttle progiam is 
outlined in Figure 7-3 As the figute shows, it is necessary to initiate 

*AVIONICS 

* FLIGHT TEST INSTRUMENTATION I •GROUND TEST & 
EQUIPMET Hshuttle 

LARGE STUU 	 LANDING GEAR WHEEL BRAKES 

- -P-"-ULSION SYSTEMSPROPULSION SYSTEMSberqidin97 
(EXCEPT MAIN) 

THRUSTSTRUCTURE 
(COMPOSITE MATERIALS) 

' WING LEADING EDGE 
(PYROLIZE PLASTIC 
& HOT STRUCTURE) 

NON U S MISSION 
REQUIREMENTS & 

APPLIRAINS 

Figure 7-2 	 Candidatesfor Participatuon 
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1071 19721 1971 

SHUTTLE PREDESIGN
 
DEVELOPMENT DETAILED
 

SCHEDULEDESIGN&TET DEVELOP 
c BUILD&TESTI 

t( 

PARTICIPATION &qB STUDY FOREIGN ASTRONAUTSFOEGISTOAT 

PRELIMINARY REQUIREMENTS FINAL DEFINITION OF MAJOR SUBS 
FOR FOREIGN PAYLOADS 

ESTABLISH SPECS FOR FOREIGN PAYLOADS 
PRELIMINARY SELECTION OF I 
POTENTIAL SUBS FOR HARDWARE 

Figure 73 Timetable 

agreements soon if Emopean industry is to be directly involved in 
the decisions and design details of Phase B Before the midpoint of 
the Phase B contract, i e , before the end of 1970, the requirements 
for launch of non-U S payloads should be integiated into the xehzcle 
designs Approximately 12 months from row we will be selecting 
prime contractors for development of major subsystems on the 

These organizations will work with us in Phase C and on into 
the final development and operation of the shuttle vehicles As is also 
shown in the figure, decisions tegaiding detailed specifications on 
non-U S payloads and final selection of subcontiactors will piobably 
be required in 1971 

In summary (Figure 7-4) oui Phase A and in-house studies lead 
us to project with confidence that the baseline shuttles we had 
described today are technically feasible and can be developed to 
meet the low cost tiansnortation objectivesm 

Through the Phase B contract, we will, during the next year,
develop high confidence in our designs, their performance, and in our 
cost and schedule projectons Finally, we believe that the shuttle 
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will ultimately develop into the international space tiansportation 

" PHASEASTUDIESHAVESSHOWNBASELINESTECHNICALLY system of the 70's and 80's We also feel that theie is a teal 
FEASIBLE& WILL MEET LOW COST TRANSPORTATION oppoitunity o the European industries reptesented here today to 
OBJECTIVES become directly involved in the development of this most necessary 

next step towards the space piogiam of the future 
" 	PHASE B WILL YIELD HIGH CONFIDENCE BECAUSE 

* PRELIMINARY DESIGNS 

* PERFORMANCE/MASS FRACTIONS 
* SOLUTIONS TO KEY ISSUES 

* COST SCHEDULE PROJECTIONS 

* 	 THERE ARE REAL OPPORTUNITIES FOR INTERNATIONAL 
PARTICIPATION 

Fgure 7 4 Summary 
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